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Chapter 1 

Introduction

1.1 Overview

Chronic lung disease (CLD) of prematurity is a significant complication of preterm 

birth. The pathogenesis of CLD is linked to a number of risk factors, all of which are 

able to initiate or help to sustain an inflammatory process in the preterm lung and 

which will be further discussed in this chapter. Historically, the neutrophil appears to 

be the key cell of inflammation in this disease and a lack of resolution of neutrophilic 

inflammation, due to delayed or dysregulated neutrophil apoptosis, is thought to be an 

important component of the pathogenesis of CLD. The role of monocytes and 

macrophages in the process and resolution of inflammation is well described but their 

specific role in CLD remains to be elucidated. These concepts and ideas will be 

discussed and further explored in this chapter.

1.2 Prematurity

Preterm delivery is defined by the World Health Organisation as the delivery of an 

infant between 20 and 37 weeks’ gestation (Wen et al., 2004). A normal pregnancy is 

40 weeks in duration. Preterm deliveries account for between 5 and 12% of all births 

(USA 11%; Europe 5-7% (Goldenberg, 2002); Canada 6.5% (Joseph et al., 2001)). In 

industrialised countries, preterm birth is responsible for 70% of neonatal mortality and 

75% of neonatal morbidity (Challis et al., 2001) and contributes to long term 

neurodevelopmental problems, visual impairment (Repka, 2002) and lung 

dysfunction. Early preterm births i.e. those before 32 weeks’ gestation, have the 

highest rates of morbidity and mortality (Lumley, 1993).

Secular trends in preterm births show a steady increase since the early 1980s (Wen et 

al., 2004). This may reflect increasing numbers of multiple births due to assisted 

reproduction techniques as well as the advent of more accurate dating of pregnancies 

by routine ultrasound scanning. In addition, changes in the way births are registered 

may contribute to the increasing trend, as infants which may previously have been

16



registered as stillborn or miscarried are now being reflected as preterm births (Wen et 

al., 2004).

Outcomes for infants bom preterm are improving dramatically (Joseph et al., 2002, 

Horbar et al., 2002) however there are also larger numbers of surviving infants who 

have a significant disability (Wood et al., 2000).

1.3 Normal lung development

The normal development of the human lung can be divided into 5 phases (Kotecha, 

2000b, Kotecha, 2000a, Langston et al., 1984, Langston and Thurlbeck, 1982, 

Coalson, 2003) (Figure 1.1):

embryonic/embryonal phase (0 to 7 weeks’ gestation). The lung begins 

development as an outgrowth from the ventral aspect of the primitive foregut 

in the embryo and undergoes repetitive dichotomous branching to form the 

tracheobronchial tree. The developing airways are accompanied by branches 

of the pulmonary artery which is derived from the 6 aortic arch, 

pseudoglandular phase (7 to 16/17 weeks’ gestation). Airway and blood 

vessel branching continues to the level of the terminal bronchiole. Epithelial 

cells and cartilage differentiate. Pre-acinar vascular development is completed, 

canalicular phase (16/17 to 26/28 weeks’ gestation). The respiratory 

bronchiole, alveolar duct and primitive alveoli are formed. Type II epithelial 

cells begin to differentiate. The distal pulmonary circulation begins to develop 

to the level of capillaries at around 20 weeks.

saccular phase (26/28 to 32/36 weeks’ gestation). Airway walls thin and gas- 

exchange area is enlarged. Secondary crests, which are the progenitors of 

alveolar development, subdivide the cylindrical saccules of the alveolar duct, 

alveolar phase (32/36 weeks’ gestation to 2 years postnatally). Alveoli 

increase in number to around 300-600 million (Thurlbeck, 1982) and there is 

an increase in acinar complexity by increased extension and thinning of 

secondary crests.
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Figure 1.1 Stages o f normal lung development (Kotecha, 2000a)

1.4 Respiratory distress syndrome

Respiratory distress syndrome (RDS) is the most immediately life threatening 

condition to affect most infants bom significantly preterm (i.e. before 32 weeks’ 

gestation). RDS is a major cause of morbidity and mortality in preterm infants. It is 

primarily caused by a deficiency of pulmonary surfactant, which is usually produced 

by pulmonary type II epithelial cells after about 30-32 weeks’ gestation (Fraser et al., 

2004).

Infants with RDS present soon after birth with respiratory distress, tachypnoea, 

intercostal, subcostal and sternal recession, grunting, cyanosis and reduced breath 

sounds. If untreated, the infant will progress to fatigue, apnoea, hypoxia and 

respiratory failure which may require assisted ventilation (Fraser et al., 2004). In RDS 

the lungs are stiff and non-compliant, needing high ventilatory pressures and thus 

increasing the risk of complications e.g. pneumothorax, pneumomediastinum and 

pulmonary interstitial emphysema (Fraser et al., 2004).

Over the past 20-30 years administration of antenatal glucocorticoids to pregnant 

women at risk of preterm delivery has reduced mortality in preterm infants by 40% 

(Roberts and Dalziel, 2006). Surfactant replacement treatment with bovine 

(Survanta®, beractant, Abbott, Berkshire, UK) or porcine (Curosurf ®, poractant alfa, 

Chiesi Pharmaceuticals, Cheadle, UK ) surfactants has also achieved a 30-65%
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reduction in pneumothorax, thus significantly improving clinical outcomes in RDS 

(Fraser et al., 2004).

1.4.1 RDS at tissue level

RDS is characterised by impaired gas exchange, decreased lung compliance, 

pulmonary oedema due to loss of integrity of the alveolar-capillary barrier, 

impairment of normal surfactant function and an increased tendency of alveoli to 

collapse (Gitto et al., 2001).

Histologically, normal newborn lungs have few or no inflammatory cells in either 

term or preterm infants (Robertson, 1964). Bronchoalveolar lavage (BAL) fluid of 

babies bom without risk factors for infection contains <105 cells, some debris and 

very few neutrophils (also called polymorphonuclear leucocytes (PMN)) (Grigg et al.,

1993). RDS is characterised by alveolar neutrophil infiltration, which disappears as 

the condition resolves (Grigg et al., 1991). Neutrophils appear soon after initiation of 

ventilation in animal models and the appearance of neutrophils correlates with lung 

oedema and the appearance of early indicators of lung injury (Carlton et al., 1997). 

There is a parallel decrease in circulating neutrophils (Jobe and Bancalari, 2001) with 

systemic activation of the cells (Brus et al., 1996, Nupponen et al., 2002a).

1.5 Chronic Lung Disease of Prematurity

The most important long term complication of RDS is CLD. The incidence of CLD 

has been rising over the past decade despite antenatal steroid administration and 

surfactant treatment (Fraser et al., 2004).

The current definition of CLD is applied to infants who continue to require oxygen 

supplementation beyond 28 days of age or, more recently and more epidemiologically 

useful, beyond 36 weeks’ corrected gestational age and who have characteristic chest 

x-ray changes (Kotecha, 1999).

Despite improvements in neonatal care, mechanical ventilatory techniques and the use 

of exogenous surfactant, CLD remains the most common complication in babies
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under 1kg birth weight (Jobe, 1999), occurring in 51% of infants with a birth weight 

of 501-750 g (Fanaroff et al., 1995, Costeloe et al., 2000) and 35% of infants 

weighing 751-1000 g (Fanaroff et al., 1995, Stevenson et al., 1998). The reported 

incidence of CLD varies widely, especially due to the different definitions of the 

condition currently in use (Bancalari et al., 2003). However, most sources agree that it 

is uncommon in infants bom at more than 32 weeks’ gestation (Bancalari et al., 2003) 

and infrequent at birth weights of more than 1200 g. Gentler ventilation techniques, 

antenatal steroids and surfactant treatment have reduced severe lung injury especially 

in older gestations but there are still some, particularly low birth weight (LBW), 

infants who initially show minimal evidence of RDS but progress to CLD -  many of 

these infants have had possible exposure to chorioamnionitis (Rojas et al., 1995).

Some infants with CLD have severe lung disease requiring assisted ventilation for 

many months and supplemental oxygen for months or years. In addition, CLD is 

associated with poor developmental outcome in survivors (Welty, 2005) -  it is an 

independent risk factor for cerebral palsy (Teberg et al., 1991). This is probably due 

to a generalised inflammatory state in the perinatal period which leads to both lung 

and central nervous system damage (Welty, 2005).

1.5.1 “New BPD”

Northway et al (Northway et al., 1967, Jobe and Bancalari, 2001) originally described 

bronchopulmonary dysplasia (BPD) as lung injury in preterm infants resulting from 

oxygen and mechanical ventilation. The terms BPD and CLD have become used 

interchangeably. The form of CLD described by Northway et al (Northway et al., 

1967) was characterised by interstitial and alveolar oedema in the early stages and 

progressed to persistent airway inflammation with significant alveolar septal fibrosis 

and small airway disease. Chest radiographs showed severe over inflation with a 

mixture of cystic emphysema and areas of fibrosis with volume loss (Jobe and 

Ikegami, 1998, Bancalari et al., 2003, Husain et al., 1998). This clinical and 

radiographic presentation is now seldom seen, except in a few term infants who 

survive severe meconium aspiration syndrome or congenital diaphragmatic hernia and 

experience prolonged high pressure ventilation (Jobe and Ikegami, 1998).
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The clinical and pathological presentation of CLD described by Northway in 1967 

(Northway et al., 1967) has now become infrequent due to the use of antenatal 

steroids, surfactant and modem ventilation techniques (Husain et al., 1998, Bancalari 

et al., 2003). Now we see a histologically different, clinically milder form of CLD or 

so-called “new BPD”. Infants with “new BPD” have CLD with less fibrosis which is 

more diffuse (Husain et al., 1998), more uniform lung inflation, fewer and larger 

alveoli, increased elastic tissue and decreased pulmonary microvascular development 

(Jobe and Bancalari, 2001). Chest radiographs initially show uniformly hazy and 

dense lung fields which progress over time to a lacy parenchymal pattern with 

moderate hyperinflation but few large cysts (Toce et al., 1984).

Jobe and Ikegami (Jobe and Ikegami, 1998) hypothesise that the “new BPD” is no 

longer the primary injury and repair mechanism of “old” BPD but rather a sequence 

of maldevelopment of the lung which is caused by interference with/interruption of 

the normal developmental signalling for maturation and alveolarisation of the preterm 

lung.

Alveolar and capillary growth are disrupted in the immature lung causing 

developmental arrest and abnormal lung repair (Coalson, 2003, Coalson et al., 1995). 

The common thread in decreased alveolarisation is a persistent increase in airway 

leucocyte count and over expression of cytokines, particularly tumour necrosis factor 

a (TNF-a), transforming growth factor p (TGF P), interleukin (IL)-l 1 and IL-6 in 

airway secretions (Jobe, 1999, Ogden et al., 1984). These pro-inflammatory mediators 

interfere with as yet unknown signalling pathways which are important in lung 

maturation and alveolarisation, with the highest risk being in the most immature 

infants (Jobe and Ikegami, 1998, Jobe, 1999).

The development of the secondary crest (28-36 weeks) is a critical event in the 

process of septation and thus of normal acinar development (Coalson et al., 1999, 

Husain et al., 1998). Coalson et al showed that oxygen alone can arrest septation in 

the saccular stage of lung development in a baboon model of CLD (Coalson et al., 

1999).
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The effects of oxygen and/or pro-inflammatory cytokines result in decreased 

alveolarisation and abnormal capillary morphology along with variable 

fibroproliferation in the interstitium and abnormal elastic fibre deposition giving the 

overall histopathological features of what we see as CLD (Coalson, 2003).

1.5.2 Risk factors for the development of CLD

The traditional view holds that CLD is caused simply by mechanical ventilation and 

oxidant injury (Jobe and Bancalari, 2001). This view underestimates the complex 

pathogenesis of CLD which probably involves the interaction of numerous factors, 

including mainly immature lung (preterm birth), oxygen injury (premature initiation 

of pulmonary gas exchange resulting in relative hyperoxia), volutrauma (mechanical 

ventilation) and an inflammatory response (Coalson, 2003). Additional risk factors 

include babies who are small for gestational age (SGA), the severity of RDS, duration 

of ventilation, duration of oxygen administration, patent ductus arteriosus (PDA), 

chorioamnionitis and postnatal bacterial sepsis (Amon et al., 1993, Fraser et al.,

2004). Fluid overload, most frequently iatrogenic, has also been implicated in the 

causation of CLD (Shah, 2003, Truog et al., 2007). These factors act additively or 

synergistically to result in lung injury (Jobe and Bancalari, 2001).

a) Hyperoxia

Endogenous antioxidant activity is relatively deficient at birth and preterm infants 

have particularly low levels of antioxidants (Rodriguez-Pierce et al., 1994). The intra­

uterine environment is relatively hypoxic thus all infants are exposed to relative 

hyperoxia at birth. In addition to this, most preterm infants are exposed to increased 

inspired oxygen concentrations during their treatment. The generation of reactive 

oxygen species can initiate severe inflammatory changes and lung damage especially 

if antioxidant activity is inadequate (Davis et al., 1991).

Davis et al (Davis et al., 1991) showed that hyperoxia consistently evokes a more 

significant inflammatory response and subsequent acute lung injury than barotrauma 

alone, even in adult lung models. Hyperoxia increases pro-inflammatory cytokine 

production (tumour necrosis factor-a (TNF-a), interleukin-1 (IL-1), interleukin-6 (IL-
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6) and interleukin-8 (IL-8)) from alveolar macrophages, fibroblasts, type II 

pneumocytes and endothelial cells (Metinko et al., 1992). Hyperoxia also aggravates 

the destructive effects of elastase (Bruce et al., 1987, Bruce et al., 1985, Bruce et al., 

1992).

b) Mechanical ventilation

Any mechanical ventilation may be injurious to preterm lungs (Jobe and Bancalari, 

2001). Mechanical ventilation causes barotrauma and volutrauma due to high peak 

inspiratory pressures (>35 cm water) (Taghizadeh and Reynolds, 1976, Tremblay et 

al., 1997). The exact mechanism for the damage caused by ventilation is unclear, 

however it is thought that positive pressure ventilation disrupts the lung epithelium by 

over distension of the airways (Oei et al., 2003) leading to leucocyte (particularly 

neutrophil) (Oei et al., 2003) migration to the lungs, increased alveolar-capillary 

membrane permeability and alveolar and interstitial oedema. Over distension can 

stimulate the inflammatory cascade by release of TNF-a, IL-1, IL-6 and IL-8 

(Vlahakis et al., 1999, Yoder et al., 2000).

Low end expiratory pressures (Taghizadeh and Reynolds, 1976, Tremblay et al.,

1997) may also cause lung injury by causing cytokine release and promoting 

accumulation and activation of peripheral leucocytes in the lungs (Muscedere et al.,

1994).

c) Infection

Antenatal infection is thought to be a major cause of preterm labour. Microbial 

invasion of the amniotic fluid increases leucocyte recruitment and cytokine 

production (Keelan et al., 2003) which promote further neutrophil activation and 

cervical ripening and dilation. This leads to exposure and weakening of fetal 

membranes and prostaglandin release, which stimulates uterine contractions 

(Goldenberg et al., 2000).

Up to 80% of women delivering at <28 weeks’ gestation have evidence of intrauterine 

infection, compared to 10-15% of those delivering at term (Goldenberg et al., 2000).
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Up to 48% of spontaneous preterm deliveries may be due to infection (Gomez et al., 

1997) however it is often subclinical (Klein and Gibbs, 2004). Microbial invasion of 

the amniotic cavity could be identified in 16% of patients in preterm labour with 

intact membranes (Jacobsson et al., 2003) and 21% with preterm prelabour rupture of 

membranes (pPROM) (Satar et al., 2008). This contrasts with the findings of Miralles 

et al (Miralles et al., 2005) who applied polymerase chain reaction (PCR) techniques 

to detect microbial 16S ribosomal RNA (rRNA) genes to identify the presence of 

microbial colonisation in intrauterine samples from women delivering at <33 weeks 

and in gastric fluid or bronchoalveolar lavage fluid from their newborns. They 

reported microbial genes in at least one tissue or fluid sample (gastric aspirate, 

amniotic fluid, BAL, fetal membranes or placenta) in 70% of deliveries after pPROM 

and 80% after preterm labour with intact membranes.

The organisms frequently responsible for antenatal intra-uterine infection are from the 

cervicovaginal flora -  Mycoplasma spp., Gardnerella vaginalis, Ureaplasma spp. 

(present in the lower genital tract of 40-80% of pregnant women (van Waarde et al., 

1997) and the most common organism grown in the amniotic fluid in 

chorioamnionitis), Chlamydia trachomatis and other anaerobes (Wasiela et al., 2001). 

Additionally, Group B streptococci are an important cause of intra-uterine infection as 

well as a leading cause of early and late neonatal infection (Gibbs et al., 2004).

Animal models in which Ureaplasma urealyticum is injected into the amniotic fluid 

of pregnant baboons have demonstrated the ability of the organism to provoke an 

inflammatory response in the lungs of the preterm animal once delivered (Yoder et 

al., 2003) and they may go on to develop CLD.

There is a group of very low birth weight (VLBW) (<1500 g) infants who develop 

CLD without developing RDS at birth. Some of these infants may be ventilated (with 

low peak inspiratory pressures and low inspired oxygen concentrations) for apnoea or 

poor respiratory effort and others may have very mild RDS which responds well to 

surfactant treatment (Rojas et al., 1995). This group of infants develop a requirement 

for supplemental oxygen and ventilatory support over the first 2 weeks of life. A 

number of these babies will have been exposed to chorioamnionitis (Speer, 2001). 

Colonisation or infection with U. urealyticum appears to protect preterm infants from 

the developing RDS but predisposes them to CLD, independent of gestation
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(Hannaford et al., 1999).

Chorioamnionitis was present antenatally in 92% of infants who developed CLD 

compared to 62% of infants who did not (Yoon et al., 1997). Histological 

chorioamnionitis was noted in 33% of infants weighing <2000 g with RDS compared 

to 82% without RDS (Watterberg et al., 1996). In contrast, 63% of babies with CLD 

had exposure to chorioamnionitis compared to 21% of babies without CLD 

(Watterberg et al., 1996). Together these data suggest a subgroup of preterm babies 

who are exposed to chorioamnionitis are destined to develop CLD and that antenatal 

infection appears to have a specific role in triggering the inflammatory response in 

fetal lung (Watterberg et al., 1996). Antenatal infection may prime fetal lungs such 

that minimally injurious postnatal events, like gentle mechanical ventilation, provoke 

an excessive inflammatory response in neonatal airways and lung tissue (Speer,

2004).

Increased IL-lp has been noted on day 1 of life in tracheal lavage fluid of babies who 

developed CLD, suggesting pulmonary inflammation prior to delivery (Watterberg et 

al., 1996). Antenatal exposure to pro-inflammatory cytokines (IL-6, TNF-a and IL-8) 

has been identified as a risk factor for developing CLD (Yoon et al., 1997). An 

increase in neutrophils in tracheal aspirates at birth, implies the pathogenesis of CLD 

commences antenatally (Kim et al., 2004). The presence of pPROM for more than 24 

hours is independently associated with raised BAL cell counts (Giles et al., 2000).

The importance of pro-inflammatory cytokines and pro-fibrotic growth factors, such 

as transforming growth factor-P (TGF-P), which are increased in infants who develop 

CLD, lies in the fact that these factors are also important in promoting normal lung 

growth (Thibeault et al., 2000).

Antenatal infection and inflammation have also been strongly implicated in the 

pathogenesis of other important neonatal complications, particularly cerebral palsy 

(Girard et al., 2009).

The major association, other than birth weight and gestational age, with CLD is 

postnatal sepsis (Rojas et al., 1995) which is an independent risk factor for the 

development of CLD. Bacterial infections (Liljedahl et al., 2004, Cordero et al., 1997)
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as well as viruses like cytomegalovirus (CMV) and adenovirus (Sawyer et al., 1987, 

Couroucli et al., 2000) have all been suggested to increase CLD.

d) Ureaplasma

The role of Ureaplasma in neonatal morbidity and mortality has long been 

controversial. Ureaplasmas are eubacteria which belong to the class Mollicutes. They 

do not have cell walls and are thought to be the smallest free-living, self-replicating 

cells. They are limited by the lack of cell wall to a parasitic existence in eukaryotic 

cells. Ureaplasmas were previously designated “T-my coplasma” but later the genus 

Ureaplasma was designated in view of their use of urea as a metabolic substrate. 

Ureaplasma urealyticum was the only species known to infect humans and this 

species was recently subdivided into 2 separate species, U. urealyticum and U. 

parvum, on the basis of their 16S rRNA gene sequences.

Ureaplasma spp. has been shown to be implicated in preterm labour, spontaneous 

abortion and stillbirth (Embree and Embil, 1980, Schelonka and Waites, 2007, 

Kataoka et al., 2006). Up to 80% of women have been reported to be colonised with 

genital mycoplasmas (Quinn et al., 1983) and as many as 22% of women with 

pPROM or preterm labour have evidence of U. urealyticum in their amniotic fluid 

(Kirchner et al., 2007).

Transmission of Ureaplasma from a colonised or infected mother depends on a 

number of variables, particularly 

gestation

Preterm infants appear to be more likely to become colonised than their term 

counterparts (Alfa et al., 1995) with the rate of vertical transmission ranging 

between 18% and 55% for term infants and 29% and 55% for preterm infants 

(Sanchez, 1993). 

birthweight

A higher risk of vertical transmission of Ureaplasma in babies of lower birth 

weight has been reported. For example in babies weighing <1000 g at birth 

transmission may be up to 89% (Sanchez and Regan, 1990) but a transmission 

rate of only 15% has been reported among infants of >1500 g birthweight
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(Kafetzis et al., 2004). Alfa et al (Alfa et al., 1995) showed that VLBW 

(<1500 g) infants were at significantly higher risk of acquiring Ureaplasma 

spp. in their respiratory tract than larger preterm infants. It is difficult to 

control for the effects of preterm labour and delivery among these infants as 

Ureaplasma may be a causative factor in the preterm birth which resulted in 

the infant being classified as low birthwieght.

- route of delivery

Aaltonen et al (Aaltonen et al., 2006) reported a series of 49 infants bom at 

<30 weeks’ gestation, in which 45% of 33 spontaneous deliveries were 

colonised with Ureaplasma but none of the electively delivered infants 

appeared to be colonised. Goldenberg et al (Goldenberg et al., 2008) also 

reported a higher prevalence of U. urealyticum or Mycoplasma hominis in 

umbilical cord blood among 351 mother/baby pairs at 23-32 weeks where 

infants had delivered spontaneously rather than electively.

- pPROM

Infants with Ureaplasma are more likely to have been bom following pPROM 

than those not colonised (Pandey et al., 2007).

Ureaplasma is thought to infect or colonise up to 37% of newborns (Abele-Hom et 

al., 1998) and has been implicated in neonatal morbidity and mortality including 

congenital pneumonia, low birthweight, intrauterine growth restriction (Embree et al., 

1980), central nervous system infections (Waites et al., 1990, Neal et al., 1994, 

Hentschel et al., 1993, Chung et al., 2007, Rao et al., 2002) and a systemic 

inflammatory response (Ohlsson et al., 1993, Ollikainen et al., 1998).

Cultrera et al (Cultrera et al., 2006) studied the relationship between RDS and 

Ureaplasma in 50 babies of <37 weeks’ gestation. Fifteen out of 24 babies with RDS 

had U. urealyticum or U. parvum detected and only 4 of 26 babies without RDS were 

colonised with either organism, thus suggesting that Ureaplasma plays a role in the 

development of RDS. In contrast, Hannaford et al (Hannaford et al., 1999) showed 

significantly decreased incidence of RDS in infants of <28 weeks’ gestation who were 

colonised with Ureaplasma but many of the colonised infants progressed to develop 

CLD which is in keeping with data showing an association between chorioamnionitis 

and development of CLD from Watterberg and colleagues (Watterberg et al., 1996).
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The association between the presence of Ureaplasma and the development of CLD 

remains controversial. Pulmonary Ureaplasma colonisation is strongly linked to 

preterm delivery and the question remains if this pulmonary colonisation is an 

independent risk factor for CLD. The consistent observation in many publications is 

the difficulty in interpreting evidence from available studies due to small sample 

sizes, vastly different inclusion criteria, different methods of sampling and testing, 

and different diagnostic criteria for various outcomes including CLD. A 1995 meta­

analysis included 1479 babies from 17 studies (Wang et al., 1995) and reported a 

significant association between CLD diagnosed at 28 days of life and Ureaplasma 

colonisation with an overall relative risk of 1.72 (95% confidence intervals 1.5-1.96). 

Data on CLD at 36 weeks corrected gestation were not available.

Since that review, several further studies have been completed, including one by 

Kotecha et al (Kotecha et al., 2004) who sought Ureaplasma in BAL fluid from 17 

preterm neonates without clinical or laboratory evidence of infection in either the 

mother or infant and reported that of 6 infants who were positive for U. urealyticum, 5 

developed CLD whereas only 4 of the 11 babies without Ureaplasma developed 

CLD. In a cohort of 126 preterm deliveries, Kafetzis et al (Kafetzis et al., 2004) found 

a significant increase in CLD as well as mortality among Ureaplasma colonised 

infants and vanWaarde et al (van Waarde et al., 1997) found that Ureaplasma was 

significantly associated with both CLD and lower gestational age but logistic 

regression analysis failed to show a correlation between Ureaplasma colonisation and 

CLD. In 2005, a further meta-analysis (Schelonka et al., 2005) including 23 studies 

and 2216 babies showed an odds ratio of 2.83 (95% confidence intervals 2.29-3.51) 

for the relationship between the presence of Ureaplasma and CLD diagnosed at 28 

days of life. There were 751 babies for whom data were available regarding CLD at 

36 weeks’ gestation, again this showed a significant association.

More recent studies continue to fuel the controversy: Pandey et al (Pandey et al.,

2007) reported no role for Ureaplasma in the development of CLD in a group of 100 

babies of <34 weeks’ gestation. Goldenberg et al (Goldenberg et al., 2008) studied 

351 mother/baby pairs at 23-32 weeks, where the umbilical cord blood showed 

evidence of Ureaplasma or M. hominis and showed a probable association of U.
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urealyticum with the development of CLD. In other studies, U. urealyticum colonised 

infants have shown a non-significant trend towards higher neonatal morbidity (longer 

ventilation, longer hospital stay, younger gestational age, higher incidence of CLD 

and more late onset sepsis) (Kirchner et al., 2007). The role of Ureaplasma in CLD is 

further complicated by the identification of different patterns of Ureaplasma 

colonisation in the preterm neonate (persistently positive, early transient and late 

acquisition) which may also impact on the likelihood of a colonised neonate 

developing CLD, with only the “persistently positive” group showing a higher rate of 

CLD (Castro-Alcaraz et al., 2002).

If Ureaplasma has a causative role in the pathogenesis of CLD, it would be 

reasonable to expect the incidence of CLD to decrease by eradicating its colonisation 

with antibiotic treatment. Once again the literature contains a number of small sample 

size studies which vary in the time of commencement of treatment, type and duration 

of antibiotic therapy and many lack documentation of eradication of the organism at 

the end of the course of treatment. However, only two randomised controlled trials 

have been included in the Cochrane review by Mabanta et al (Mabanta et al., 2003) 

examining studies investigating the treatment of Ureaplasma to decrease the rate of 

CLD. In the first study, Lyon et al (Lyon et al., 1998) treated infants prior to knowing 

their colonisation status and showed no change in the number of infants who 

developed CLD. In the second study, Jonsson et al (Jonsson et al., 1998) treated only 

those infants with positive cultures from endotracheal or nasopharyngeal samples and 

were able to show a reduction in colonisation but not CLD. Together these two 

studies included only 37 colonised patients and there was no significant reduction in 

CLD with treatment in either study — disparate study designs prevented the results 

from being combined in the meta-analysis.
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1.6 Inflammation

There is now a wealth of evidence that lung inflammation, caused initially by the 

innate immune response, is a central key participant in the pathophysiology of CLD 

(Welty, 2005), with all the known risk factors for CLD being able to give rise to 

inflammation. CLD appears to begin as an acute lung injury which then initiates a 

series of inflammatory responses. This in turn evolves into the typical clinical and 

pathological features of CLD (Davis et al., 1991) but how the risk factors impact at 

the cellular and molecular level is not well described.

1.6.1 The process of inflammation

Inflammation is important to (Janeway et al., 2004):

- deliver effector molecules and cells to the site of infection or wounding and 

augment the killing of micro-organisms,

provide a physical barrier to the spread of infection by causing microvascular 

coagulation,

- promote the repair of injured tissue.

Inflammation is characterised by:

an inductive or initiation phase (Han and Ulevitch, 2005) characterised by 

neutrophil infiltration followed by 

a sustained response and then

- resolution (Han and Ulevitch, 2005) or failure of resolution, leading to 

chronicity of inflammation.

1.6.1.1 Initiation

Any harmful tissue event (infection, trauma, anoxia) is perceived mainly by tissue 

resident macrophages and monocytes which secrete cytokines (IL-1 and TNF) which 

act to stimulate other cells to produce a second wave of cytokines (IL-1, IL-2, IL-6 

and IL- 8) which serve to amplify the inflammatory response as well as to recruit 

inflammatory cells (neutrophils, monocytes, macrophages) and systems (complement, 

coagulation cascade).
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a) The neutrophil

Figure 3.42 Graphs showing ratio o f neutrophils to macrophages for individual babies 

with 3 or more BAL samples.

Neutrophils are the most numerous of the granulocytes and are the key effector cell of 

the innate immune system (Sabroe et al., 2005). They are produced in the bone 

marrow from myeloid stem cells and have a relatively short lifespan in the circulation 

of 8-20 hours (Akgul and Edwards, 2003). Neutrophils are abundant in the blood but 

are not present in normal healthy tissue (Janeway et al., 2004). Healthy adult BAL 

fluid has <10% neutrophils (Committee, 1990). They are the first cells to arrive at a 

site of inflammation (Savill et al., 1989b, Haslett, 1999) and their survival time 

increases significantly in tissues where they are exposed to pro-inflammatory signals 

(Akgul and Edwards, 2003).

Merritt et al (Merritt et al., 1983) first described the cellular changes in tracheal 

aspirate fluid (TAF) in the development of CLD. They examined the TAF of 26 

ventilated infants and identified neutrophils as the predominant cell type in RDS.

They found significantly higher cell counts in TAF from preterm infants with RDS, 

and particularly in the infants who went on to develop CLD, than in term infants 

ventilated for non-respiratory reasons. By day three of life infants who would develop 

CLD had neutrophil counts a hundred times that of the term controls and ten times
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that of preterm infants whose RDS resolved. It was also found that the cell count 

started to fall after three days in infants whose RDS resolved but elevated neutrophil 

counts persisted for weeks in those getting CLD (Amon et al., 1993, Kotecha et al.,

1995).

A study by Amon et al (Amon et al., 1993) showed that infants who progressed to 

CLD had significantly more neutrophils in BAL on day 5 and 7 than infants whose 

RDS resolved. They identified that the persistence of high neutrophil counts at day 7 

was a risk factor for the development of CLD. More recently Kotecha et al confirmed 

that airway neutrophilia is associated with the development of CLD by studying BAL 

fluid from 32 babies for up to 21 days (134 BAL samples) and 9 term controls 

(Kotecha et al., 1995). They found higher mean cell counts in CLD babies at day 10, 

mainly due to an increase in neutrophil count.

b) Initiation of inflammation by neutrophils

Neutrophils gain access to the interstitium of the lung by migrating from the blood. 

This migration is facilitated by interaction between adhesion molecules on the 

leucocyte surface and endothelial cells. L-selectin on leucocytes and P- and E- 

selectins on endothelial cells mediate neutrophil rolling along the endothelium. Firm 

adhesion and transmigration are mediated by p 2 integrins and intercellular adhesion 

molecules (ICAM).

ICAM-1 is a glycoprotein that facilitates cell-to-cell contact. It is expressed in 

response to IL-1 stimulation. It binds to CD1 lb/CD 18 on neutrophils and helps to 

regulate neutrophil diapedesis. Increased soluble ICAM-1 has been found in TAF of 

infants with early CLD (Kojima et al., 1993) and a role for ICAM-1 has been 

suggested in oxygen-induced lung injury.

CD1 lb/CD 18 and ICAM are increased in neutrophils from BAL fluid of babies who 

develop CLD (Kotecha et al., 1998, Kotecha et al., 1995). Soluble L-selectin increases 

and remains persistently high in CLD babies -  this may reflect leucocyte traffic in the 

lung i.e. continued neutrophil migration in babies developing CLD (Kotecha et al.,

1998).
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Tissue transmigration may serve to activate neutrophils and also impart anti-apoptotic 

signals, although cells retain their susceptibility to Fas (Sexton and Walsh, 2005).

Once activated the neutrophils are able to initiate a cascade of defence mechanisms.

c) Toll-like Receptors

Toll-like receptors (TLR) are a family of pattern recognition receptors (Dabbagh and 

Lewis, 2003) of which at least 10 have been described (Sabroe et al., 2005, Stevens,

2005). TLR initiate host defence in response to unique molecular patterns presented 

by invading organisms (Strieter et al., 2003, Dabbagh and Lewis, 2003) and are also 

able to respond to certain host molecules (hyaluronan, heat shock proteins, 

fibronectin, fibrinogen, surfactant protein-A (SP-A), necrotic cell products and 

reactive oxygen species (ROS)) (Dabbagh and Lewis, 2003, Chaudhuri et al., 2005, 

Qureshi et al., 2006). TLR are activated via TIRAP (also called TIR) (Toll-IL-1- 

receptor domain containing adapter protein) and MyD88 which in turn lead to NF-kB 

activation and the expression of cytokines (TNF-a, IL-1 (3, IL-6, IL-8) which amplify 

the inflammatory response (Stevens, 2005, Forster-Waldl et al., 2005, Dabbagh and 

Lewis, 2003, Aliprantis et al., 1999). TLR are also important in the formation of the 

adaptive immune response via dendritic cells (Dabbagh and Lewis, 2003).

Neutrophils express all the TLR except TLR 3 (Sabroe et al., 2005). TLR 2 and 4 

regulate important neutrophil functions including (Sabroe et al., 2005):

- recruitment (CD1 lb/CD 18 upregulation, L-selectin shedding, adhesion) 

migration and chemotaxis

activation (increased reactive oxygen species (ROS) production, increased 

degranulation, increased phagocytosis, cytokine generation, NF-kB activation) 

survival (inhibition of apoptosis via NF-kB and other molecules).

Neutrophils have TLR 2 and 4 at lower levels than monocytes (Sabroe et al., 2005). 

TLR 2 but not TLR 4 expression is increased on the neutrophil surface in the presence 

of pro-inflammatory cytokines (Kurt-Jones et al., 2002). Bacterial lipoproteins can 

mediate apoptosis via TLR 2 in monocytes and epithelial cells (Aliprantis et al., 1999)
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but there is conflicting evidence in neutrophils (Power et al., 2004, Sabroe et al.,

2003, Lotz et al., 2004, Aleman et al., 2004).

TLR 4 is the principal lipopolysaccharide (LPS) receptor and is known to reduce 

apoptosis (programmed cell death) in lung epithelial cells in response to hyperoxia 

(Qureshi et al., 2006). CD 14, MD-2 and LBP (LPS binding protein) are involved in 

the presentation of LPS to TLR 4 (Chaudhuri et al., 2005). There is less TLR 4 on 

preterm monocytes than term or adult monocytes thus there may be decreased 

cytokine production from monocytes after LPS exposure in preterm infants (Forster- 

Waldl et al., 2005). Genetically impaired TLR 4 function has been described in 

association with chronic inflammatory conditions, like inflammatory bowel disease in 

adults (Sabroe et al., 2005).

The TLR are an important part of the innate immune response, however TLR function 

and expression in neonatal neutrophils is not well described. The role of TLR in the 

pathogenesis of CLD is unknown.

1.6.1.2 Sustained Response

Once in the tissues, neutrophils recognise and engulf micro-organisms by 

phagocytosis. Once inside the neutrophil, organisms are killed and degraded by the 

production and release of ROS and granule proteins which are delivered to 

phagosomes and the extra-cellular environment.

The “respiratory burst” in neutrophils is usually triggered by phagocytosis and 

generates ROS. Superoxide is generated via NADPH oxidase and converted by 

superoxide dismutase (SOD) to H2O2 . H2O2 is in turn converted to hydroxyl radicals 

and hypochlorous acid (Janeway et al., 2004). These reactive oxygen species are 

directly cytotoxic and are effective in neutralising invading micro-organisms but are 

injurious to tissues if released outside of the neutrophil.

Neutrophils store anti-microbial, cytotoxic and proteolytic digestive proteins in their 

cytoplasmic granules (Cheah et al., 2005a). They contain four different granule types, 

namely azurophil, specific, gelatinase and secretory granules (Moraes et al., 2006),
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with each granule containing a number of different proteins. The granule contents are 

released upon phagocytosis or when neutrophils disintegrate. Similarly to ROS, 

uncontrolled release of granule contents may also cause injury to surrounding tissues.

a) Chemokines and cytokines

Cytokines are a category of small molecules that are used extensively in cellular 

communication. The term cytokine encompasses a large and diverse family of 

polypeptide regulators that are produced by many different cell types and usually 

circulate in picomolar concentrations that can increase up to 1,000-fold during trauma 

or infection.

Pro-inflammatory cytokines may be elevated in newborns due to fetal exposure to 

maternal inflammatory mediators, postnatal infection or due to mediator release by 

ventilator-induced injury (Gitto et al., 2001). Activated neutrophils are among the 

many different cell types that are able to synthesise various inflammatory mediators 

including chemokines and cytokines to recruit and regulate responses of other effector 

cells including macrophages, T-cells and other neutrophils (Theilgaard-Monch et al., 

2004).

The cytokine response in neonatal lungs may be immature or simply different to that 

seen in adults (Gitto et al., 2001). A number of studies have examined which 

cytokines are responsible for the cellular influx seen in RDS and it has been shown 

that airway secretions of infants developing CLD, in particular, have numerous 

chemotactic factors for neutrophil and macrophage recruitment (including C5a 

(complement component 5a), LTB4 (leukotriene B4), TNF-a, IL-8, PAF (platelet 

activating factor), ICAM-1, fibronectin and elastin degradation products (Lecart et al., 

2000, Kotecha et al., 1995, Kotecha, 1996)).

Various cytokines and chemokines have been studied in CLD in both human infants 

and in animal models of the disease. While animal models are useful in that 

experimental conditions can be very tightly controlled and regulated, results cannot 

always be directly extrapolated to human neonatal populations. In previous years, the 

analysis of inflammatory mediators in BAL fluid has been limited by the types of
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assay available, however newer multiplexed assays are becoming more common and 

are likely to be used extensively in the analysis of multiple mediators in small volume 

samples such as BAL fluid in the future.

Groneck et al showed that although multiple pro-inflammatory and chemotactic 

factors are present in the airspaces of ventilated preterm infants, they are present in 

higher concentration in those who develop CLD (Groneck and Speer, 1995). They had 

already established (Groneck et al., 1994) by examining the TAF from 59 ventilated 

infants that the supernatants from BAL samples of infants who developed CLD were 

significantly more chemotactic to adult peripheral blood neutrophils than those of 

infants who did not develop CLD. As with the cell count, the chemotactic activity in 

the supernatants increased in both groups from day one until day five before falling 

again in infants whose RDS resolved while staying high in infants who developed 

CLD.

i) Chemokines

IL-8 is probably one of the most important chemoattractants for neutrophils and the 

most extensively investigated in preterm infants (Groneck et al., 2001, Truog et al., 

2007, Munshi et al., 1997, D'Angio et al., 2002, Baier et al., 2002). It is produced by 

alveolar macrophages, neutrophils, fibroblasts, type II epithelial cells and endothelial 

cells and particularly by stimulated monocytes under the influence of TNF-a or LPS 

(Groneck et al., 1994). The IL-8 receptor (CD 128) is expressed in many different cell 

types. IL-8 is uniquely able to specifically activate neutrophils where it causes the 

release of enzymes from granules, enhances the metabolism of reactive oxygen 

species and increases chemotaxis and the expression of adhesion molecules.

IL-8 concentrations were shown to be up to 200 times higher in TAF than plasma and 

further increased in infants who develop CLD when compared to infants whose RDS 

resolves (Groneck et al., 1994, Kotecha et al., 1995, Jonsson et al., 1997).

Observations of the timing of the peak concentration of IL-8 are not consistent. IL-8 

was significantly elevated on first day of life (immediately preceding the marked peak 

in neutrophil count) in babies who progressed to CLD in one study (Munshi et al.,

1997) but in another study (Kotecha et al., 1995) IL-8 was elevated around day 10
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coinciding with the neutrophil peak. These differences were attributed to differences 

in sampling techniques between the two studies and possible clinical differences 

between the patient groups such as the presence of infection.

MCP-1 (monocyte chemotactic protein-1) belongs to the family of chemotactic 

cytokines known as chemokines. MCP-1 is expressed by monocytes, vascular 

endothelial cells, smooth muscle cells, and human type II pneumocytes under the 

influence of LPS and IL-1. MCP-1 is chemotactic for monocytes. It regulates the 

expression of certain cell surface antigens (like CD1 lb) and the expression of other 

cytokines (IL-1 and IL-6)

MCP-1 was measured in serial TAF samples from 56 preterm newborns by Baier et al 

(Baier et al., 2002, Baier et al., 2001) who noted that MCP-1 rose over the first week 

of life and the highest levels were found in infants who developed CLD. MCP-1 has 

been found to be elevated in airway secretions where Ureaplasma urealyticum has 

been detected (Baier et al., 2001).

The two MIP (macrophage inflammatory protein) proteins are the major factors 

produced by macrophages following their stimulation with bacterial endotoxins. Both 

proteins are involved in activation of granulocytes. Both forms of MIP-1 stimulate the 

production of reactive oxygen species in neutrophils and the release of lysosomal 

enzymes. They also induce the synthesis of other pro-inflammatory cytokines such as 

IL-1, IL-6 and TNF. M IP-la stimulates TNF secretion by macrophages, whereas 

MIP-lp antagonizes this effect.

The two forms of MIP-1 enhance the activities of GM-CSF and promote the growth 

of mature haematopoietic progenitor cells. M IP-la (but not MIP-ip) also acts as an 

inhibitor of the proliferation of immature haematopoietic stem cells and has therefore 

been called “stem cell inhibitor”. M IP-la and MIP-ip have been found to be elevated 

in preterm infants, particularly those developing CLD (Baier et al., 2004) and those 

exposed to hyperoxic conditions (D’Angio et al., 1998).
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ii) Cytokines

As well as chemotactic cytokines, pro-inflammatory cytokines such as IL-ip, IL-6 

and TNF-a are elevated in the lung lavage fluid of infants developing CLD and have 

been well studied (Jonsson et al., 1997, Kotecha, 1996, Patterson et al., 1998).

ILl-p is the predominant form of IL-1 in humans. It is produced by activated 

macrophages and by peripheral blood neutrophils, however monocytes are the main 

source of secreted IL-1, particularly in response to other cytokines (TNF-a and 

interferons) and invading pathogens. Many other cell types, including endothelial 

cells, fibroblasts, smooth muscle cells and lymphocytes also produce IL-1. It has a 

wide range of biological activities, both locally and systemically. IL-1 helps to initiate 

and modify the inflammatory cascade by promoting the chemotaxis, adhesion and 

activation of neutrophils and increasing secretion of inflammatory proteins such as 

proteases. IL-1 synergises with GM-CSF in promoting macrophage colony growth.

Increased concentrations of IL-1 p in tracheal aspirates are associated with the need for 

mechanical ventilation and supplemental oxygen as seen in CLD (Kotecha, 1996, 

Cayabyab et al., 2003). IL-1 p has the ability to prolong survival of neutrophils by 

reducing apoptosis and this may be its key role in the development of CLD (Colotta et 

al., 1992). IL-1 p has also been implicated in the disruption of postnatal lung 

morphology and growth in mice (Bry et al., 2007) and this may be relevant to the 

altered lung structure seen in infants with “new” CLD.

IL-6 is a pleiotropic cytokine and is one of the major physiological mediators of acute 

phase reactions. It has a role in upregulation of the inflammatory response but may 

also have anti-inflammatory effects via inhibition of TNF-a production in 

macrophages (Aderka et al., 1989). It is produced by many different cell types. The 

main sources in vivo are stimulated monocytes and endothelial cells but macrophages 

(including alveolar macrophages), lymphocytes, smooth muscle cells and eosinophils 

can also produce IL-6 after stimulation by IL-1, LPS and TNF among others. IL-6 can 

also stimulate or inhibit its own synthesis, depending upon the cell type. Intratracheal 

IL-6 has been shown to block LPS induced lung injury in rabbits (Ulich et al., 1991).
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IL-6 was significantly elevated on day 3 and 5 in babies who developed CLD (Munshi 

et al., 1997). Bagchi et al (Bagchi et al., 1994) studied 30 infants of <33 weeks’ 

gestation who were ventilated for RDS along with 10 controls ventilated for non- 

respiratory reasons (cardiac or gastrointestinal surgery) and found IL-6 activity was 

15 fold higher on day 1 in infants who would go on to develop CLD than in controls 

and 6.6 fold higher in babies with RDS compared to controls at the same time point. 

IL-6 activity remained elevated for the first 2 weeks of life in babies who developed 

CLD before returning to similar levels to controls by day 28. Jonsson et al suggested 

that elevated IL-6 levels may be predictive for the development of CLD (Jonsson et 

al., 1997).

TNF is a member of the TNF ligand superfamily. There are two molecular species of 

TNF, known as TNF-a (cachectin) and TNF-P (lymphotoxin), which generally 

display similar biological activities in vitro, although TNF-P is often less potent or has 

partial agonist activity.

TNF-a is derived mainly from macrophages and monocytes following stimulation by 

LPS, interferons, IL-2, GM-CSF, immune complexes or platelet activating factor. It is 

a potent chemoattractant for neutrophils and also enhances their adherence, 

phagocytic and cytotoxic abilities (Strieter et al., 2003). It activates NF-kB and can 

prolong the survival of neutrophils by reducing apoptosis (Colotta et al., 1992). It 

stimulates phagocytosis in macrophages and modulates the expression of other 

cytokines, including IL-1 and IL-6 (Bagchi et al., 1994). TNF-a can be found on 

monocytes and T-cells after cell activation where it mediates cell destruction by direct 

cell-to-cell contacts. It is also a potent promoter of angiogenesis.

TNF-a was undetectable in controls and low in infants with RDS but peaked at day 14 

in babies who progressed to CLD (Bagchi et al., 1994). TNF-a was elevated in BAL 

samples taken early in the ventilatory course of preterm infants with the worst 

pulmonary outcomes in one study (Mahieu et al., 2005).

IL-10 is predominantly an anti-inflammatory cytokine which inhibits production of 

pro-inflammatory cytokines like TNF-a, IL-lp, IL-6, IL-8, GM-CSF and G-CSF from 

monocytes and macrophages (Liles et al., 1996, de Waal Malefyt et al., 1991,
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Fiorentino et al., 1991) and is known to promote neutrophil apoptosis (Cox, 1996). It 

also inhibits antigen presentation and macrophage killing. It is produced by stimulated 

lymphocytes and by monocytes following cell activation by LPS.

IL-10 may be developmentally regulated, as shown by IL-10 being undetectable in 17 

preterm ventilated babies but expressed in term infants ventilated for persistent 

pulmonary hypertension or meconium aspiration syndrome (Whicher and Evans,

1990, Spits and de Waal Malefyt, 1992, Jones et al., 1996). IL-10 was lacking from 

the lung secretions of preterm infants in one study which may help to explain the 

continuing inflammatory process in these infants (Jones et al., 1996). In two other 

studies, IL-10 was detected in the lungs of preterm infants but was lower in infants 

who developed CLD or showed an early increase and then a fall to lower levels than 

in infants with RDS (McColm et al., 2000, Beresford and Shaw, 2002).

G-CSF is secreted by monocytes, macrophages and neutrophils after cell activation. 

The synthesis of G-CSF can be induced by bacterial endotoxins, TNF, IL-1 and GM- 

CSF. It stimulates the proliferation and differentiation of granulocytes and is able to 

activate neutrophils. G-CSF synergises with other cytokines, including GM-CSF. The 

G-CSF receptor (CD114) is expressed on all granulocytes as well as on endothelial 

cells.

GM-CSF is vital for the proliferation and differentiation of progenitors of 

granulocytes and macrophages. It enhances microbicidal activity, oxidative 

metabolism and phagocytotic activity of neutrophils and macrophages. GM-CSF 

receptors are expressed on the cell surface of myeloid cells and also on non- 

haematopoietic cells such as endothelial cells.

Neither G-CSF nor GM-CSF has been extensively studied in the preterm infant 

population but both have been detected in BAL fluid, with increasing levels recorded 

in infants developing CLD (Papoff et al., 2001).

Vascular Endothelial Growth Factor (VEGF) is a growth factor which has a role in 

the control of angiogenesis and thus plays a crucial role in alveolar development 

because of the very close relationship between vascular development and the 

development of the lung. It is produced by a plethora of cell types, including
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macrophages and lung epithelial cells. Its receptor is expressed on vascular 

endothelial cells. VEGF stimulates the proliferation of vascular endothelial cells and 

significantly influences vascular permeability. VEGF plays an important role in 

neovascularisation under physiological conditions and its synthesis is induced by 

hypoxia. It is also a potent chemoattractant for monocytes and is able to induce the 

synthesis of metalloproteinases which degrade interstitial collagen.

A number of investigators have found reduced VEGF levels in animal models of CLD 

(Bland et al., 2007, Tambunting et al., 2005). Lassus et al found a reduction in VEGF 

in human infants who developed CLD infants (Lassus et al., 1999) whereas Currie et 

al (Currie et al., 2001) found no difference between term and preterm infants with or 

without CLD. It has also been proposed that either elevated or decreased VEGF levels 

can mediate lung injury and emphysematous changes (Voelkel et al., 2006).

TGF-p is a protein which controls proliferation and cellular differentiation in many 

cell types and also acts as an inducer of apoptosis. TGF-p exists in three isoforms, 

namely TGF-pi, TGF-p2 and TGF-p3. Immunocytochemistry studies have localised 

TGF-p to alveolar macrophages obtained by BAL (Kotecha et al., 1996a).

In the past, TGF-p measurement in neonatal lung has produced variable results, 

possibly because of difficulty in finding an appropriate assay. Elevated levels of TGF- 

P have been shown in the presence of chorioamnionitis and in developing CLD 

(Kotecha et al., 1996a, Ichiba et al., 2009, Jonsson et al., 2000). TGF-P levels were 

also found to correlate with the duration of oxygen administration (Ichiba et al.,

2009). However, using two other methods, TGF-P levels were shown to be decreased 

in a similar population of preterm infants developing CLD (Choi et al., 2008) 

compared to controls.

b) Proteases

Human neutrophil elastase is the most abundant of the proteases in the lung and the 

vast majority is produced by neutrophils (Lee and Downey, 2001). Elastase is a serine 

protease and is stored in the intra-cytoplasmic azurophilic granules of neutrophils, 

from where it can be released at the time of neutrophil activation. In addition to its
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bactericidal role, elastase may also have an important role as a chemotactic agent, 

being capable of induction of IL-8 (Nakamura et al., 1992) and leukotriene B4 

(Hubbard et al., 1991) production.

Elastase is capable of digesting elastin, an important structural component of lung 

tissue. Elastin is relatively conserved throughout life and once damaged or destroyed 

is difficult to replace (Bigatel et al., 1999), and repair to elastin networks often results 

in malformed and dysfunctional elastin filaments (Finlay et al., 1996).

Neutrophil elastase is also capable of digesting almost all components of the 

extracellular matrix including collagens types I-IV, fibronectin, laminin and 

proteoglycans. The tissue damage that an excess of uninhibited protease activity can 

cause has been demonstrated in animal models (Lucey et al., 1985).

In the pre-surfactant era high elastase activity was detected in the majority of lung 

lavage samples from infants who developed CLD (Merritt et al., 1983, Ogden et al., 

1984, Watterberg et al., 1994). More recently, a number of studies have found elastase 

in only a minority of samples from the lungs of preterm infants and questioned the 

relationship of elastase to the development of CLD (Speer et al., 1993, Groneck et al., 

1994, Sveger et al., 2002, Sluis et al., 1994).

Matrix metalloproteinases (MMP) are proteases which are important in normal lung 

development (Greenlee et al., 2007) when appropriately controlled by specific 

protease inhibitors but their unregulated activity, particularly MMP-8 and 9, may be 

associated with the development of CLD (Sweet et al., 2004, Ekekezie et al., 2004, 

Cederqvist et al., 2001).

1.6.1.3 Resolution/Chronicity

Chronic inflammation is a continuous interaction between pro-inflammatory 

mechanisms which act to cause tissue injury and those mechanisms which act to 

promote resolution of inflammation. It is possible that either uncontrolled pro- 

inflammatory events, resulting in ongoing initiation of inflammation and/or continued
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infiltration and recruitment of neutrophils, or inefficient resolution processes result in 

chronic inflammation (Haslett, 1999).

Neutrophil contents, like elastase, described above, are not only histotoxic but are also 

able to amplify the inflammatory response by cleaving matrix proteins (Haslett, 1999, 

Savill et al., 1989b). The indiscriminate release of these contents as a consequence of 

neutrophil lysis can damage host tissue and lead to persistence of the inflammatory 

response (Haslett et al., 1994). Thus the fate of neutrophils is central to the resolution 

of inflammation (Savill et al., 1989a). Neutrophil persistence characterises the early 

stages of chronic inflammation (Koenig et al., 2005). Failure to achieve removal of 

neutrophils and their toxic products from a site of inflammation is associated with 

chronic/persistent inflammation (Whyte et al., 1993). Apoptosis, or programmed cell 

death, is critical to the resolution of inflammation as it promotes the removal of effete 

neutrophils by the reticuloendothelial system.

The persistence of neutrophil infiltration in babies with RDS is strongly associated 

with the development of CLD (Ogden et al., 1984). Grigg et al showed that 

neutrophils are cleared by apoptosis in RDS (Grigg et al., 1991), leading to the 

hypothesis that preterm babies are more at risk of lung injury because of reduced, 

delayed or impaired neutrophil apoptosis (Kotecha et al., 2003, Oei et al., 2003). 

Inhibition of apoptosis could result in more viable neutrophils persisting in the tissues 

or more necrotic neutrophils releasing their toxic contents into tissues and thus 

causing more lung injury (Matute-Bello et al., 1997).

a) Resolution

The usual outcome of inflammation is resolution and repair of damaged tissue rather 

than persistent or chronic inflammation and continued tissue damage (Serhan and 

Savill, 2005). It is unknown why some stimuli produce inflammation which 

completely resolves and others provoke a persistent reaction with tissue destruction 

and scarring or fibrosis (Haslett, 1999).

The resolution of inflammation requires: (Haslett, 1999)

- removal of the inflammatory stimulus
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removal and/or destruction of pro-inflammatory mediators 

cessation of granulocyte migration

restoration of normal vascular permeability and removal of extravasated fluid

stop granulocytes secreting pro-inflammatory and histotoxic substances

arrival of monocytes and their differentiation to macrophages

removal of debris and cells (apoptosis)

final removal of monocytes and macrophages

repair of injured tissue

In this process there are multiple points at which dysregulation may occur (Han and 

Ulevitch, 2005).

During the initial phase of resolution of the inflammatory response, prostaglandins are 

generated which are essential for control of blood flow and blood vessel dilatation for 

leucocytes to adhere and undergo diapedesis. The generation of arachidonic acid 

metabolites (e.g. lipoxins) retard entry of new neutrophils to the site of inflammation, 

reduce vascular permeability, promote non-phlogistic (not causing 

fever/inflammation) infiltration of monocytes and stimulate macrophages to ingest 

and clear apoptotic neutrophils (Serhan and Savill, 2005).

In order to resolve inflammation, neutrophil activity must be curtailed and senescent 

neutrophils disposed of so healing can occur (Oei et al., 2003). In healthy systems 

neutrophils undergo apoptosis (programmed cell death) and rapid clearance which has 

the effect of limiting tissue injury and promoting resolution of inflammation (Haslett,

1999). Cells which are not cleared by phagocytes undergo necrosis and disintegrate, 

releasing their toxic contents, which serve as a further pro-inflammatory stimulus 

(Savill et al., 2002).

Activated neutrophils initiate an apoptotic programme which facilitates resolution of 

inflammation and prevents tissue damage which would be caused by necrotic cell 

lysis (Kobayashi et al., 2003a, Kobayashi et al., 2003b). Following the initial pro- 

inflammatory response, a further transcriptional response occurs which promotes 

apoptosis. As part of this, upregulation of genes for pro-apoptotic proteins (TNF-a,
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TRAIL and their receptors, caspase 1, Bax and TLR 2 signalling pathway 

components) and downregulation of receptors for inflammatory mediators occurs.

1.7 Apoptosis

The term apoptosis was coined in 1972 by Kerr et al (Kerr et al., 1972) and is derived 

from ancient Greek, meaning “falling, as of leaves from a tree”. It was originally 

defined to mean a physiological or programmed form of cell death, affecting cells 

scattered throughout a tissue, which does not induce inflammation and allows for 

clearance of cells with minimal local injury.

Apoptosis is different to necrosis, which is defined as accidental cell death due to the 

effect of, for example, toxins, hypoxia or extremes of temperature. Primary necrosis is 

a passive process and tends to affect large numbers of neighbouring cells. It is 

characterised by swelling and bursting of the cell with release of cellular contents and 

is a pro-inflammatory stimulus in most tissues. Secondary necrosis is the 

disintegration of cells which have originally undergone apoptosis but have not been 

ingested or cleared by phagocytes possibly because the load of apoptotic cells exceeds 

the capacity for clearance by phagocytes (Savill et al., 2002).

Apoptosis pathways are broadly similar in phylogenetically diverse organisms which 

suggests that apoptosis and the phagocytosis of apoptotic cells are important 

regulatory mechanisms which have been conserved through evolution (Giles et al., 

2000). Apoptosis is important in a variety of biological systems for normal cell 

turnover and maintenance of cellular homeostasis, immune system regulation and the 

resolution of inflammation, embryonic development and tissue atrophy and 

remodelling, among others. Apoptosis is normally involved in the structural 

maturation of the lung, particularly in reducing the number of fibroblasts and type II 

epithelial cells in thinning of the alveolar septae in animal studies (Schittny et al.,

1998).

Apoptosis is a complex process, influenced by the cell’s internal genetic code and by 

its external environment and requires the co-ordinated action of multiple sub- 

programmes to be effectively carried out (Hengartner, 2000). Inappropriate or

45



dysregulated apoptosis is implicated in pathologies such as Alzheimer’s disease, 

Huntingdon’s disease, ischaemia-reperfusion injury, autoimmune disorders and some 

cancers (Cohen, 1997).

1.7.1 Neutrophil apoptosis

Neutrophil apoptosis has a major regulatory role in many biological processes, 

including the inflammatory response (Matute-Bello et al., 1997). Apoptosis is 

important in the resolution of inflammation as it leads to functional downregulation 

and clearance of neutrophils. Neutrophils have a constitutive apoptosis programme 

which is hastened during activation of the cell to ensure clearance from sites of 

inflammation before they become necrotic and release their toxic contents (Cheah et 

al., 2005a).

Neutrophil apoptosis is characterised by stereotypical cell morphological changes 

(Savill et al., 1989b, Cohen, 1997) which are not seen in circulating neutrophils 

(Wyllie et al., 1980):

condensation and fragmentation of nuclear chromatin and nucleolar 

prominence,

compaction of cytoplasmic organelles, swelling of the endoplasmic reticulum 

and cytoplasmic vacuolation, 

a decrease in cell volume 

- and eventually alterations to the plasma membrane resulting in recognition by 

phagocytes and phagocytosis.
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Figure 1.3 Apoptotic neutrophils showing condensation o f the nucleus, cytoplasmic 

vacuolation and decrease in cell volume (Pitrak, 1997).

During apoptosis the cell membrane and organelles remain intact and there is no 

leakage of cell contents. The neutrophil loses the ability to degranulate and the ability 

to phagocytose (Haslett, 1999, Savill et al., 1989b). Neutrophil nuclear chromatin 

becomes fragmented in a characteristic intemucleosomal pattern, where each 

fragment is a multiple of 180bp. This is thought to represent endogenous 

endonuclease activation. (Savill et al., 1989b)

Neutrophils which have been aged in culture show the characteristic changes of 

apoptosis but still exclude trypan blue and show little spontaneous release of 

myeloperoxidase (MPO) for up to 24 hours in culture. Thereafter more cells fail to 

exclude trypan blue, balloon and disintegrate -  undergoing necrosis and releasing 

their toxic contents (Savill et al., 1989b).

1.7.2 Mechanism/process of apoptosis

Two main apoptosis pathways are thought to occur in neutrophils (Akgul and 

Edwards, 2003):

- “extrinsic” or “death receptor” pathways (via Fas, TRAIL and TNF receptors) 

which directly activate the caspase cascade via caspase 8 

“intrinsic apoptosis pathway” which involves mitochondria and the Bcl2 

family of genes and activates the caspase cascade via caspase 9.
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1.7.2.1 Extrinsic or death receptor pathways

a) Fas

The Fas/FasL pathway is important for apoptosis in various cell types (Liles et al., 

1996), including neutrophils.

Fas (CD95/Apo-l) is a cell surface molecule (type 1 membrane protein) belonging to 

the TNF/nerve growth factor receptor family (Hanna et al., 2005, Nagata and 

Golstein, 1995). There is variable but wide expression of Fas in different tissues 

(Nagata and Golstein, 1995) including neutrophils (Hanna et al., 2005, Liles et al.,

1996) which express more Fas than other leucocytes (Liles et al., 1996).
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Fas ligand (FasL/CD95L) is a type 2 membrane protein with a homotrimeric structure 

(Nagata and Golstein, 1995). Constitutive expression of FasL is relatively limited 

(Akgul and Edwards, 2003, Hanna et al., 2005). Monocytes/ and macrophages are 

known to produce and express high levels of FasL (Kiener et al., 1997) and can 

induce Fas mediated neutrophil death (Brown and Savill, 1999). There are conflicting 

reports of FasL expression on human neutrophils (Serrao et al., 2001, Renshaw et al.,

2000, Brown and Savill, 1999, Hanna et al., 2005, Liles et al., 1996) probably as a 

result of differing neutrophil processing techniques, culture conditions, cultures being 

“contaminated” with monocytes and antibody detection differences.

Soluble FasL (sFasL) is derived from cleavage of membrane bound FasL by matrix 

metalloproteinases. Neutrophils undergoing apoptosis may liberate sFasL and thus 

weakly induce apoptosis of neighbouring cells in a paracrine manner (Serrao et al.,

2001, Liles et al., 1996). Soluble FasL is able to induce a profound chemotactic 

response in neutrophils (Ottonello et al., 1999, Seino et al., 1998).

FasL binds to the Fas “death receptor” and causes the target cell to undergo apoptosis. 

In order to trigger apoptosis, Fas needs to be cross-linked (Nagata and Golstein,

1995). Cross-linking of Fas by trimeric FasL results in clustering of intracellular death 

domains and the recruitment of adaptor proteins (Akgul and Edwards, 2003). The 

main adaptor protein in this pathway is FADD (Fas-associated death domain- 

containing protein). Interaction of Fas with FasL (or anti-Fas antibody) activates the 

FADD/MORT1 complex which contains a death effector domain which allows it to 

interact with caspase 8 (Akgul and Edwards, 2003). Pro-caspase 8 is cleaved to 

become an active enzyme and thus initiates activation of other caspases including 

caspase 3 (Luo et al., 2003). The binding of FasL to Fas also activates p38 MAP 

kinase and PI3-K (Hanna et al., 2005) and recruits RIP-1 (receptor interacting 

protein), the activation of which may be sufficient to induce apoptosis (Walczak and 

Krammer, 2000).

The Fas pathway is independent of extracellular calcium ions and is inhibited by Bcl2 

proteins (Nagata and Golstein, 1995). Fas-mediated apoptosis may heavily depend on 

the involvement of ROS (especially H2 O2) (Kasahara et al., 1997) but the role of ROS 

in triggering apoptosis via the Fas pathway is controversial. High levels of ROS can
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prevent caspase function and ROS may be involved in the Fas-mediated signalling 

system (Kasahara et al., 1997). Anti-Fas IgM mimics FasL activity in vitro. This 

antibody activates Fas and increases apoptosis in adult neutrophils (Liles et al., 1996, 

Hanna et al., 2005).

The Fas/FasL pathway is not the only mechanism for induction of apoptosis in 

neutrophils. Apoptosis still occurs if the Fas/FasL pathway is blocked (Liles et al.,

1996). However, Fas-mediated neutrophil apoptosis can be reduced by G-CSF, GM- 

CSF, EFNy (Interferon gamma), TNF-a and dexamethasone (Liles et al., 1996) but Fas 

ligation, even in the presence of these pro-inflammatory survival signals, causes 

apoptosis, in other words, inflammatory neutrophils retain their ability to respond to 

Fas death signals (Renshaw et al., 2000).

Fas and FasL have been studied in neonatal and paediatric blood samples (Ennaciri et 

al., 2006, Hanna et al., 2005, Sarandakou et al., 2003), but not in lung lavage samples 

in this age group.

b) TNF-a

TNF-a is a potent pro-inflammatory cytokine produced by macrophages, monocytes 

and other cell types (lymphocytes, fibroblasts) in response to injury, inflammation or 

infection (Baud and Karin, 2001).

There are two receptors for TNF-a, namely TNFR1 and TNFR2, which are both type 

1 trans-membrane proteins. TNFR1 binding recruits TRADD (TNFR1 associated 

death domain protein) which in turn recruits FADD and then caspase 8 resulting in 

apoptosis. TNFR1 binding also recruits RIP-1 (receptor interacting protein) and 

TRAF2 (TNF receptor associated factor 2) which result in NF-kB and AP-1 (via 

MAPK, JNK, p38) activation and pro-inflammation (Baud and Karin, 2001). Fas is a 

better activator of apoptosis than TNF-a because it is a poor activator of NF-kB, 

which acts to counteract the pro-apoptotic signal (Baud and Karin, 2001). TNFR2 

binding directly recruits TRAF2 which recruits TRAF 1 and increases inflammation 

(Baud and Karin, 2001).
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TNF-a is able to accelerate neutrophil apoptosis at early time points via TNFR1 but 

later inhibits apoptosis (after 12 hours in vitro) probably due to NF-kB activation 

(Baud and Karin, 2001, Murray et al., 1997).

c) Tumour necrosis factor-Related Apoptosis Inducing Ligand

TNF-related apoptosis inducing ligand (TRAIL) is a pro-apoptotic member of the 

TNF superfamily (Renshaw et al., 2003). It is a 281-amino acid type II 

transmembrane protein, closely related to FasL and, like FasL has a homotrimeric 

subunit structure (Pitti et al., 1996, Wiley et al., 1995). TRAIL is expressed on 

macrophages, monocytes and also T cells and NK cells and induces apoptosis when 

over-expressed (Walczak and Krammer, 2000).

TRAIL interacts with TRAIL-R1 and TRAIL-R2 which are “death receptors” and 

with TRAIL-R3 and TRAIL-R4 which may be decoy receptors, although resistance to 

TRAIL may be mediated at an intracellular level as well (Walczak and Krammer,

2000). Neutrophils have been found to contain mRNA for TRAIL, TRAIL-R2 and 

TRAIL-R3. TRAIL-R2 and TRAIL-R3 are expressed on the surface of neutrophils 

but TRAIL, TRAIL-R1 and TRAIL-R4 are not (Renshaw et al., 2003).

Signalling via TRAIL R1 and TRAIL R2 has 2 distinct pathways -  one resulting in 

apoptosis (major outcome) and the other in cell survival. The apoptosis pathway 

begins with recruitment of FADD. The DED (death effector domain) then recruits 

pro-caspase 8, which self-cleaves and then activates caspase 3 amongst others.

TRAIL receptors can also cause cell survival via NF-kB but NF-kB alone is 

insufficient to prevent apoptosis - a caspase inhibitor is also required (Kimberley and 

Screaton, 2004).

It is likely that TRAIL is rapidly cleaved from the cell surface by proteases, in a 

similar way to FasL cleavage. TRAIL has no effect on neutrophil chemotaxis, unlike 

FasL (Renshaw et al., 2003). Similar to FasL, TRAIL requires cross-linking of 

receptors for its activity (Renshaw et al., 2003) and TRAIL uses a caspase-dependent 

pathway to kill its target cell. Bcl2 and Bcl-xL do not protect cells from TRAIL- 

induced apoptosis (Walczak and Krammer, 2000).
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d) Caspases

A number of proteases play an important role in apoptosis including serine proteases, 

calpains, proteasomes and IL-1 p converting enzyme (ICE)-like proteases (cysteine 

proteases) called caspases (Cohen, 1997). Most of the morphological changes of 

apoptosis are the result of caspase activity (Hengartner, 2000).

Caspases are a family of cysteine proteases which are activated specifically in 

apoptotic cells. Over a dozen caspases have been identified which act on close to 100 

caspase substrates characterised to date. All caspases recognise specific polypeptide 

sequences and cleave their substrates after aspartic acid residues (Hengartner, 2000). 

Caspases can be inhibited by inhibitors of apoptosis (LAP) proteins (Hengartner, 

2000).

Caspases selectively cleave a set of target proteins usually inactivating them (Wyllie, 

1980). Additionally, caspases cleave nuclear lamins causing characteristic nuclear 

shrinkage and budding (Rao et al., 1996) and cleave cytoskeletal proteins (like fodrin 

and gelsolin) causing loss of cell shape (Kothakota et al., 1997). Not all caspases are 

required in a single cell for cell death to occur - some may be tissue specific (Cohen,

1997). Most caspases are activated by cleavage and are able to activate each other, 

especially caspases 3, 6 and 7 which are the more abundant, workhorses of apoptosis 

(Hengartner, 2000).

Caspase 3 is a key executioner of apoptosis, responsible for the cleavage of many key 

proteins (Cohen, 1997). It is widely distributed especially in cells of the immune 

system. Caspase 3 cleaves substrate at Asp-Xaa-Xaa-Asp (DXXD) motif (also seen in 

caspase 2, 6, 9) (Cohen, 1997). Caspase 3 activation is an early apoptotic event which 

precedes phosphatidylserine (PS) exposure. Proteolytic activation of caspase 3 occurs 

when initiator caspases cleave pro-caspase 3 (32kDa) into 2 subunits (p20/pl7 and 

p i2) (Cheah et al., 2005a). Cytoskeletal components function as substrates for caspase 

3. Caspase 3 may mediate the cleavage of the cytoskeletal element, fodrin, which is 

linked to PS expression on the outer plasma membrane (Luo et al., 2003). Decreased 

apoptosis has been observed in caspase 3 deficient mice (Cohen, 1997).
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Caspase 6 has a high homology with caspase 3 and may be activated by it. Caspase 6 

is the only caspase to cleave lamins, structural proteins of the nuclear envelope 

(Cohen, 1997).

Caspase 7 is also similar to caspase 3 and may be an important effector of apoptosis 

(Cohen, 1997) via the Fas pathway but caspase 7 is only minimally expressed in 

neutrophils (Luo et al., 2003).

Caspase 8 is involved in regulation of Fas or TNF-mediated apoptosis. It is a key 

initiator of apoptosis and is able to activate all the other caspases (Cohen, 1997). It 

can also be activated by protein-protein interactions i.e. several caspase 8 molecules 

can aggregate together at a death effector domain and activate themselves, without the 

need for cleavage by another molecule (Hengartner, 2000). Caspase 8-dependent 

cleavage of Bid and subsequent release of cytochrome c integrates the extrinsic and 

intrinsic pathways of apoptosis (Beere, 2005).

Caspase 9 is similar in structure to caspase 3 and is also activated by caspase 3 

(Cohen, 1997). Caspase 9 has a complex activation process and requires both 

cytochrome c and Apaf-1 for its activation (Luo et al., 2003, Hengartner, 2000).

1.7.2.2 Intrinsic apoptosis pathway

Within the cell, mitochondria sequester pro-apoptotic proteins e.g. cytochrome c -  

which, in addition to its involvement in oxidative phosphorylation, is important as a 

co-factor with caspase 9 (Hengartner, 2000). Pro-apoptotic proteins like cytochrome 

c, apoptosis inducing factor (AIF), endonuclease G and Smac/DIABLO are released 

from mitochondria under the influence of the opposing pro- and antiapoptotic 

members of the Bcl2 family of genes (Beere, 2005, Hengartner, 2000).

The Bcl2 family are a group of apoptotic regulators (Hengartner, 2000) which are 

divided into 3 sub-groups:

Group 1 (Bcl2, Bcl-xl) which are anti-apoptotic 

Group 2 (Bax, Bak, Bad) which are pro-apoptotic
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Group 3 (Bid, Bim, Bmf) which are pro-apoptotic.

Other Bcl-2 proteins include Bcl-w, Bcl-xs, and Mcl-1.

Bcl-2 family proteins acting on the mitochondria are probably among the key 

regulators of the apoptotic response (Cook et al., 1999). In one study, peripheral blood 

neutrophils in adult subjects expressed Bak, Bad, Bcl-w and Bfl-1, but hardly 

expressed Bcl-2, Bcl-xL, Bik, and Bax (Santos-Beneit and Mollinedo, 2000). In 

contrast, another study (Ohta et al., 1995) showed expression of Bax, but not other 

members of the Bcl-2 family in neutrophils, which may reflect the fact that they have 

the shortest life-span among blood leucocytes.

The expression of Bcl-2 family proteins in the human neonate in comparison to adults 

has been studied to a very limited extent (Hanna et al., 2005). Some differences have 

been shown in expression of the proteins in the cerebral cortex of term and preterm 

guinea pig fetuses (Abedin et al., 2005) and in the cardiac myocytes (Cook et al.,

1999) and neuronal tissue of rats (Vekrellis et al., 1997).

a) Bcl-xl

Bcl-xl stands for ’’Basal cell lymphoma-extra large’’. It is an anti-apoptotic, 

transmembrane protein, found particularly in the mitochondrial membranes of cells 

that are long-lived and postmitotic, such as adult brain cells. Bcl-xl appears to be the 

dominant regulator of apoptosis. It is known as the survival protein because of its cell 

death repressor activity.

Two different models of Bcl-xl function have been proposed. In one, Bcl-xl binds to 

an activator, thereby preventing Bax activation. In the other, Bcl-xl binds directly to 

activated Bax (Deming and Rathmell, 2006, Harada and Grant, 2003).

b) Bax

Bax is another homologue of the Bcl-2 gene, which acts as a facilitator of apoptotic 

cell death (Ohta et al., 1995). Although Bcl-xl and Bax are structurally similar, 

activated Bax forms large oligomers that permeabilise the outer mitochondrial
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membrane, releasing cytochrome c and thereby committing cells to apoptosis, 

whereas Bcl-xl and Bcl-2 inhibit this process (Vekrellis et al., 1997).

c) Mcl-1

Mcl-1 (Myeloid cell leukaemia sequence 1) is an anti-apoptotic member of the Bcl-2 

family (Michels et al., 2005) and plays a critical role in promoting the survival of 

lymphocytes and haematopoietic stem cells (Dzhagalov et al., 2007). Mcl-1 promotes 

cell survival by interfering in the cascade of events leading to release of cytochrome c 

from mitochondria. It has a short half life and is a highly regulated protein, induced 

by a wide range of survival signals, including the cytokine TNF-a (Cross et al., 2008) 

and also rapidly downregulated during apoptosis. Regulation of Mcl-1 expression 

occurs at multiple levels, allowing for either the rapid induction or elimination of the 

protein in response to different cellular events. This suggests that Mcl-1 can play an 

early role in response to signals directing either cell survival or cell death (Michels et 

al., 2005).

Accumulating evidence suggests that Mcl-1 plays a critical pro-survival role in the 

development and maintenance of both normal and malignant tissues as well as being 

required for embryonic development and the function of the immune system. 

Targeting of Mcl-1 may be useful as a therapeutic strategy in malignancy, 

inflammatory conditions and infectious disease where Mcl-1 may play a major role in 

suppressing apoptosis (Michels et al., 2005).

Studies have implicated Mcl-1 in regulating the survival of both neutrophils and 

macrophages (Dzhagalov et al., 2007). Mcl-1 conditional knockout mice had a severe 

defect in neutrophil survival, whereas macrophage survival was normal. The 

granulocytes in the blood, spleen and bone marrow of Mcl-1 conditional knockout 

mice exhibited a 2- to 3-fold higher apoptotic rate than in control animals. In contrast, 

macrophages from Mcl-1-deficient mice showed normal survival. Interestingly, Mcl-1 

can also be cleaved by caspases during apoptosis to produce a cell death promoting 

molecule (Michels et al., 2005).
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Overall it is the fine balance of expression of Bcl-2 family proteins which may 

regulate the life and death of haematolymphoid cells at different stages of cell 

differentiation and activation. Interactions between Bax, Bcl-xl, Bcl-2 and Mcl-1 play 

an important role in the control of cell death or survival (Ohta et al., 1995).

1.7.3 Control/modulation of apoptosis

The cellular environment influences apoptosis (Allgaier et al., 1998). The interplay 

between extrinsic (inflammatory milieu) and intrinsic (endogenous programme of 

constitutive apoptosis) factors will determine neutrophil longevity (Renshaw et al.,

2000). Cell immaturity may also influence the rate of apoptosis, although the 

mechanism of this is uncertain (Allgaier et al., 1998).

Various inflammatory mediators can modulate neutrophil apoptosis. The presence of 

pro-inflammatory factors (GM-CSF, G-CSF, TNF-a, IFN gamma, IL-2, IL-6, C5a) 

and glucocorticoids inhibit neutrophil apoptosis (Haslett, 1999, Leavey et al., 1998, 

Liles et al., 1996, Allgaier et al., 1998, Colotta et al., 1992, Lee et al., 1993, Matute- 

Bello et al., 1997). Neutrophil apoptosis may also be delayed by the presence of 

elevated extra-cellular calcium, LPS (Lee et al., 1993, Liles et al., 1996), hypoxia and 

corticosteroids (Allgaier et al., 1998, Haslett, 1999). NF-kB is a transcription factor 

which regulates the expression of many pro-inflammatory proteins including 

cytokines and adhesion molecules and generates anti-apoptotic signals (Cheah et al., 

2005a).

Inhibition of apoptosis serves to preserve and prolong the functional lifespan of the 

neutrophils (Lee et al., 1993). Neutrophil survival may benefit the host by more 

neutrophils remaining active at the site of inflammation to neutralise pathogens (Liles 

et al., 1996) (Leavey et al., 1998) but neutrophils are also capable of producing more 

tissue damage at the inflammatory site if they do not undergo apoptosis at an 

appropriate rate (Kasahara et al., 1997, Leavey et al., 1998).

Apoptosis may be enhanced by cycloheximide, TNF-a and nitric oxide donors 

(Haslett, 1999). Of clinical importance is that a number of drugs in common use may 

alter neutrophil apoptosis. It is increased by erythromycin (Healy et al., 2002) and
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theophyllines (Yasui et al., 2000) and decreased by glucocorticoids (McColl et al., 

2007) -  all 3 of which are commonly used in clinical neonatal practice.

NF-kB is an ubiquitously expressed transcription factor. It plays a role in expression 

of genes that regulate apoptosis, as well as controlling cell proliferation, 

differentiation, immune and inflammatory responses (Shishodia and Aggarwal, 2002). 

Usually, in non-stimulated cells, NF-kB is found in the cytoplasm, in complex with 

inhibitory proteins of the I-kB family (Beg and Baldwin, 1993, Finco et al., 1994) 

which inhibit its ability to bind to DNA. In response to a wide range of stimuli, I-kB 

is rapidly phosphorylated and degraded, allowing NF-kB translocation to the nucleus, 

DNA binding and transcription of target genes (Chu et al., 1997, Karin, 1999).

There are numerous reports showing the anti-apoptotic effect of N F - k B  (Shishodia 

and Aggarwal, 2002, Whyte et al., 1997, Ward et al., 1999). N F - k B  regulates 

apoptosis by regulating expression of genes that play a role in blocking apoptosis (e.g. 

LAP) and it may also have role in the activity of Bel 2.

1.7.4 Results of apoptosis

The onset of apoptosis is closely associated with functional impairment of neutrophils 

and their “isolation” from stimulation by inflammatory mediators (Whyte et al.,

1993). Whyte et al (Whyte et al., 1993) showed significant reductions in a number of 

neutrophil functions with the onset of apoptosis, including 

reduction in spreading ability,

reduced neutrophil polarisation (both spontaneous and in response to 

stimulation in vitro),

- reduced phagocytosis of opsonised particles,

reduced chemotaxis in both stimulated and unstimulated cells, 

reduced MPO enzyme release in response to stimulation and 

reduced superoxide anion release.

Dransfield et al (Dransfield et al., 1995) also showed that the ability of neutrophils to 

secrete granular contents was reduced with the onset of apoptosis and that their 

adhesive ability is also reduced as part of the damage limitation strategy of apoptosis.
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Some functional loss may precede the onset of morphologically recognisable 

apoptosis (Whyte et al., 1993).

The process of apoptosis induces changes to the expression of various cell surface 

markers and receptors related to cell function e.g. CD 16 (Haslett, 1999). Some of 

these alterations are important for neutrophil function (Dransfield et al., 1995).

CD1 lb and CD1 lc are increased on apoptotic neutrophils (but may be functionally 

inert), but CD 15, CD43, CD62L, CD35, CD1 la are decreased. CD66 expression is 

maintained (Dransfield et al., 1995). Other surface changes may be important for 

recognition of apoptotic neutrophils by macrophages, so that phagocytosis can occur 

and the apoptotic neutrophils can be “mopped up” before the onset of secondary 

necrosis.

a) CD16

CD 16 (Fey receptor III) mediates the binding of immunoglobulin opsonised particles 

to phagocytes (Dransfield et al., 1994). Neutrophil apoptosis is accompanied by 

proteolytic cleavage of CD 16 from the cell surface (Dransfield et al., 1995). Not all 

CD 16 is removed and the CD 16 remaining on CD 16 low apoptotic cells is the portion 

that is relatively resistant to protease cleavage (Dransfield et al., 1994). Levels of 

CD 16 expression can therefore be used to define apoptotic and non-apoptotic cells 

(Dransfield et al., 1994) as the number of CD 16 low cells strongly correlates with the 

number of apoptotic cells in culture.

b) Phosphatidylserine

Phosphatidylserine (PS) is a lipid normally confined to the inner leaflet of the plasma 

membrane. Its extemalisation is early and widespread in apoptosis, regardless of the 

apoptosis initiating stimulus (Martin et al., 1995). The extemalisation of PS has been 

proposed to occur during apoptosis as a result of an increase in intracellular calcium 

which activates the scramblases. Also, aminophospholipid translocase activity is 

thought to be suppressed by the increased calcium concentration, with the overall 

result that PS equilibrates between the inner and outer leaflets of the plasma 

membrane (Vance and Steenbergen, 2005). Changes in PS localisation can be
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detected before the morphological changes of apoptosis can be seen by microscopy. 

The extemalisation of PS appears to be one of the signals by which apoptotic cells are 

recognised and subsequently removed by phagocytes (Vance and Steenbergen, 2005).

Apoptotic neutrophils would normally be rapidly ingested by macrophages before 

losing membrane integrity. In the absence of macrophages or in conditions where 

macrophages do not adequately recognise apoptotic cells (cations, low pH, 

autoantibodies) or where macrophage clearance pathways are overwhelmed by large 

numbers of apoptotic cells, secondary necrosis will occur leading to liberation of the 

neutrophil contents and local tissue damage (Haslett, 1999).
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1.8. Mononuclear phagocytes

1.8.1 Monocytes

Monocytes appear in the circulation as early as 20 weeks’ gestation (Forster-Waldl et 

al., 2005). They can be rapidly recruited to the lung when required, usually following 

neutrophil influx. Monocytes are able to phagocytose cell debris and inflammatory 

products (Rosseau et al., 2000b, Gordon and Read, 2002). They can produce pro- 

inflammatory cytokines, ROS and proteolytic enzymes and may contribute to acute 

and chronic lung inflammation (Maus et al., 2002a). Monocytes have an important 

role in T-cell and macrophage activation via cytokine signalling (Gordon and Read,

2002) and may be important in the alveoli even in the absence of inflammation to 

expand the alveolar macrophage (AM) pool (Maus et al., 2002a).

The process and interactions of monocyte trafficking across the pulmonary 

endothelial/alveolar epithelial barrier in vivo are poorly characterised, when compared 

to what is known about neutrophil migration (Maus et al., 2002a). What is known is 

that the monocyte response is dependent largely on CD1 lb/CD 18 on monocytes and 

ICAM-1 on pulmonary epithelial and endothelial cells (Maus et al., 2002b).

Peripheral blood monocytes which are precursors of alveolar macrophages have an 

immature monocyte-like immunophenotype and may have augmented release of pro- 

inflammatory mediators (Rosseau et al., 2000a). In addition, recruited monocytes 

have increased CD 14 expression when compared to peripheral blood monocytes and 

have greater TNF-a response to LPS (Maus et al., 2002b).

Monocytes from newborn infants have reduced capacity to phagocytose apoptotic 

cells (Kramer et al., 2003) which may be important in the persistence of neutrophils in 

CLD. There may be some significant differences between adult and infant monocytes 

which may play a role in the pathogenesis of CLD, for example H2 O2 production in 

response to LPS in preterm and term sheep monocytes is reduced and delayed and 

monocytes from preterm infants have decreased HLA-DR expression (Hallwirth et al., 

2004). CD 14 expression on monocytes has been shown to be the same as adults 

(Forster-Waldl et al., 2005) but, paradoxically, also been shown to be gestation- 

dependent (Gengenbacher et al., 1998).
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1.8.2 Alveolar macrophages

%

Fig 1.5 An alveolar macrophage by light microscopy. Image from Ohio State University 

Department o f Pathology (www.pathology.med.ohio-state.edu)

Alveolar macrophages (AM) originate in the bone marrow as monocytes from 

haemopoetic precursor cells (Gordon and Read, 2002) and are the major resident 

population of immunocompetent cells in the lower respiratory tract. AM are resident 

lung phagocytes but are relatively poor antigen presenting cells. However they are 

able to release an array of inflammatory mediators (oxygen radicals, proteases, 

arachidonic acid metabolites and cytokines) and are thus implicated in the 

pathogenesis of lung injury (Maus et al., 1998). Resident macrophages in the 

peritoneum live for about 2 weeks in an uninflamed state (Bellingan et al., 1996).

Monocytes from the circulation enter the fetal lung in the third trimester in response 

to MCP-1, specific for the recruitment of mononuclear leucocytes, and mature to 

tissue macrophages under the influence of local factors (type II alveolar cells, 

bronchial epithelium, cytokines, surfactant) (Gordon and Read, 2002, Rosseau et al., 

2000a). Most only differentiate into macrophages after term birth (Alenghat and 

Esterly, 1984, Bellanti et al., 1979, Kramer et al., 2003). The presence of AM in the 

infant lung correlates mainly with the length of postnatal survival and the presence of 

pulmonary lesions. Gestational age shows some correlation in post-mortem studies 

but is not thought to be a major influence on the presence of AM as they can be seen
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as early as 20 weeks’ gestation if an infection such as congenital pneumonia is present 

(Alenghat and Esterly, 1984).

Alveolar macrophages account for 95% of the cell burden in healthy lung BAL fluid, 

with the remaining cells being lymphocytes (Gordon and Read, 2002). Macrophages 

which are present in the lung in acute inflammation have been found to be monocytic 

in origin, rather than as a result of proliferation of resident tissue macrophages which 

are terminally differentiated and not able to proliferate (Rosseau et al., 2000a, Van 

Furth et al., 1973).

Amon et al (Amon et al., 1993) showed that infants who progressed to CLD had 

fewer macrophages in BAL fluid on day 5 and 7 than infants whose RDS resolved. 

Macrophages peaked at around day 4 in other studies and persisted in the lung in CLD 

infants (Ogden et al., 1984, Clement et al., 1988).

1.8.3 Macrophage recognition of apoptotic cells

The final step in the process of apoptosis is the phagocytosis of cell “corpses”. The 

uptake of senescent neutrophils by macrophages was recognised by Metchnikoff in 

1891 but the process of apoptotic cell removal by professional phagocytes is complex 

and remains incompletely described at the molecular level. It has 2 central elements, 

namely

recognition (“eat me”)

- engulfment/phagocytosis (Lauber et al., 2004).

Neutrophil uptake by macrophages occurs via a number of specific recognition 

mechanisms, with different signals mediating recognition and engulfment (Lauber et 

al., 2004).

The process of apoptosis leads to recognition of apoptotic cells by macrophages 

(Savill et al., 1989b). This recognition process is complex (Lauber et al., 2004, Savill 

et al., 2002) and there are many possible receptors on the phagocyte for many 

different markers on apoptotic cells (Giles et al., 2000). Macrophage recognition of 

apoptotic neutrophils is different to recognition for red blood cells or apoptotic
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thymocytes (Savill et al., 1989a). Macrophage receptors for opsonins (Fc, C3b, iC3b) 

or for advanced glycosylated end products of proteins or N-acetylglucosamine- 

specific lectin may not be used in apoptotic neutrophil recognition (Savill et al., 

1989b). Apoptotic cells may be at different stages of apoptosis, so different mediators 

of phagocytosis in early and late apoptosis may be required (Giles et al., 2000). 

Recruited monocytes may also have to undergo a maturation process before they are 

able to recognise and remove apoptotic neutrophils as macrophages (Newman et al., 

1982).

PS is a well known “eat me” signal but the underlying mechanism of this signal to the 

macrophage is incompletely understood. PS is recognised by several different 

receptors, possibly including a specific PS receptor (Fadok et al., 2000) but may bind 

to it via a bridging molecule. It has been shown that the extemalisation of PS alone is 

insufficient for phagocytosis by macrophages in vitro (Devitt et al., 2003). The 

mechanism of recognition of apoptotic cells via PS may vary with different 

macrophage populations (Fadok et al., 1992).

Phagocytosis via the PS receptor pathway produces an increase in TGFp-1. TGFp-1 is 

multi-functional and modulates diverse cellular activities e.g. inhibits growth and 

differentiation of many cell types and regulates inflammatory response (Huynh et al., 

2002).

There are a number of other possible signals which mediate apoptotic neutrophil 

recognition by macrophages (Savill et al., 1990, Lauber et al., 2004), including 

(Figure 1.6):

The thrombospondin (TSP) receptor (CD36, a class B scavenger receptor) is 

an 88kD macrophage surface molecule. It acts as a receptor for a wide range 

of cells and molecules, including thrombospondin 1, and is synthesised and 

secreted by neutrophils and macrophages in culture (Savill et al., 1992). 

Macrophage synthesised thrombospondin mediates neutrophil/macrophage 

interaction by forming a molecular bridge between the cells. TSP binds to 

CD36 and to the vitronectin (avP3) receptor (Savill et al., 1992). This 

recognition process appears to be dependent on Ca++ and Mg++ for the 

interaction to occur. CD36 may also be able to work independently of the
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vitronectin receptor because transfecting CD36 into non-professional phagocytes 

induces the ability to phagocytose apoptotic neutrophils (Ren et al., 1995) 

some resembling oxidised LDL,

- sites to bind C lq and C3b/bi,

- collectin binding sites e.g. for MBL, SP-A, SP-D,

- CD91,

- ABC-1 (ATP binding cassette 1 transporter),

- class A scavenger receptor and

- CD 14 is a 55kDa glycoprotein cell surface receptor and differentiation marker

(Ziegler-Heitbrock and Ulevitch, 1993). It functions as a receptor for LPS and is 

found on mononuclear phagocytes and activated neutrophils (Hasday et al., 1997). 

CD 14 is capable of interactions with phospholipids and could function as alternative 

PS receptor but does not appear to do so (Devitt et al., 2003).

Apoptotic Cell

CD31

I n t e g r h

Figure 1.6 Diagram showing the numerous possible signals which mediate interactions 

between apoptotic cells and phagocytes (Vandivier et al., 2006).

Phagocytosis clears dead neutrophils but could also initiate a signal to macrophages to begin 

the process of egress from the inflamed site to draining lymphatics and lymph nodes 

(Bellingan et al., 1996, Serhan and Savill, 2005).
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1.8.4 Rate/regulation

Recognition and ingestion of neutrophils occurs very rapidly. In vitro, neutrophils can 

be phagocytosed by macrophages and digested to the point of being unable to be 

assessed morphologically within 30 minutes (Savill et al., 1989a).

The rate of macrophage ingestion of apoptotic cells can be altered. Macrophage 

clearance of apoptotic cells can be enhanced by various early inflammatory cytokines 

and by corticosteroids and CD44 ligation (Haslett, 1999). Surfactant protein A (SP-A) 

and, to a lesser extent, surfactant protein D (SP-D) accelerate alveolar macrophage 

phagocytosis of apoptotic neutrophils (Schagat et al., 2001).

Macrophage recognition of apoptotic cells is inhibited by cationic monosaccharides, 

amino sugars, heparin and basic amino acids and low pH. Changes in interstitial pH 

and release of charged molecules are well documented in inflammation -  this could 

delay macrophage uptake of apoptotic neutrophils and potentially lead to neutrophil 

disintegration during secondary necrosis and thus persistence of inflammation and 

exacerbation of tissue injury (Haslett, 1999, Savill et al., 1989b).

1.8.5 Outcome

Phagocytosis usually provokes a marked pro-inflammatory response from 

macrophages, however, macrophages do not have their usual inflammatory response 

to ingested apoptotic neutrophils (Haslett, 1999).

Phagocytosis of apoptotic neutrophils results in:

Suppression of release of pro-inflammatory agents like IL-ip, GM-CSF, IL-8, 

LT C4 and TNF-a (Fadok et al., 1998). ThromboxaneB2 release is suppressed 

to lower than normal background level (Meagher et al., 1992).

An increase in release of anti-inflammatory factors like IL-10, TGFp, 

prostaglandinE2 and PAF (Fadok et al., 1998).

Release of FasL from monocytes and macrophages and thus further Fas- 

mediated apoptosis of neutrophils (Brown and Savill, 1999).
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Macrophages retain their ability to liberate pro-inflammatory cytokines after apoptotic 

neutrophils are phagocytosed and digested, thus the “anti-inflammatory” effect of 

ingesting apoptotic neutrophils is dependent on the macrophage recognising that the 

neutrophil it is about to ingest is apoptotic, not as a result of the apoptotic particle 

itself. Ingestion of opsonised apoptotic neutrophils is able to cause a pro- 

inflammatory reaction (Meagher et al., 1992).

1.9 Neutrophil apoptosis in adult respiratory disease

Adult/Acute Respiratory Distress Syndrome (ARDS) is considered to be similar to 

neonatal RDS in some respects, particularly as neutrophil apoptosis is thought to play 

a significant role in its pathogenesis and patient outcome.

Matute-Bello et al (Matute-Bello et al., 1997) investigated neutrophil apoptosis in 34 

ARDS patients as well as 13 patients at risk for ARDS and a group of healthy adult 

controls. Neutrophil apoptosis was suppressed in ARDS and this effect was maximal 

in early disease but there was no significant difference in patients who survived 

compared to those who died from the disease. They also showed that BAL fluid was 

anti-apoptotic to human neutrophils and that apoptosis suppression is mostly mediated 

by anti-apoptotic cytokines, of which G-CSF and GM-CSF were most important in 

prolonging neutrophil survival.

Rosseau et al (Rosseau et al., 2000a) studied 49 ARDS patients by repeated BAL 

sampling. The first BAL sample on each patient showed an increase in total cell count 

with massive neutrophil influx and an overall expansion of the alveolar macrophage 

population due to peripheral blood monocytes being recruited to the alveolar 

compartment. Sequential samples showed increasing macrophage counts and 

neutrophil counts decreased only slightly. They found two sub-groups of patients - 

one in which there was a transition to a mature macrophage phenotype and another 

which had prolonged predominance of immature monocyte-like macrophages. There 

was a clinical correlation with improved oxygenation index, lung function and 

survival in the mature macrophages group.
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Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of 

adult lungs. Exacerbations of COPD are associated with viral or bacterial infection 

and airway inflammation, accumulation of neutrophils in the bronchial tree, tissue 

damage and bronchial obstruction. Increased neutrophil accumulation in COPD has 

been related to prolonged neutrophil survival/decreased apoptosis, similar to events in 

ARDS or bacterial pneumonia (Droemann et al., 2000, Matute-Bello et al., 1997).

Pletz et al (Pletz et al., 2004) studied 36 COPD patients and 10 healthy non-smoking 

volunteers and showed reduced spontaneous apoptosis in peripheral blood neutrophils 

during exacerbations of COPD and an increased rate during recovery.

1.10 Neonatal vs. adult neutrophils

There is a well recognised developmental immaturity of the neonatal immune system 

as evidenced by several studies on umbilical cord blood samples (Bortolussi et al., 

1993, Koenig et al., 1996).

Neutrophils from term newborn infants have shown defects in:

adherence (of which CD 1 lb/CD 18 is an important mediator), 

transendothelial migration (Anderson et al., 1990), 

chemotaxis (marked),

phagocytosis and oxidative metabolism and

non-oxygen dependent bactericidal activity (Levy et al., 1999)

All of which may contribute to the increased susceptibility of newborns to infection.

CD1 lb is part of the integrin family and mediates cell adhesion to the endothelium 

(Koenig et al., 2005). It is highly expressed on neutrophils and less is found on 

monocytes/macrophages. CD1 lb in combination with CD 18 forms CR3, a receptor 

for C3bi. Both quantitative and qualitative defects in CD1 lb have been described in 

neonatal neutrophils. CD1 lb has been found in equivalent amounts on adult 

neutrophils and those of vaginally delivered neonates but is lower in babies bom by 

Caesarean section (Nupponen et al., 2002a, Molloy et al., 2004, Abughali et al.,

1994). However, there are also contradictory reports that non-apoptotic neutrophils 

from cord blood express more CD1 lb than adult neutrophils but that the total cell
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content of CD1 lb/CD 18 is lower in neonates (Koenig et al., 2005) (Abughali et al.,

1994). Both term and preterm infants have significantly less upregulation of CD1 lb in 

response to stimulation (Anderson et al., 1987, Bruce et al., 1987, Nupponen et al., 

2002a). Upregulated CD1 lb may be protective against Fas-mediated apoptosis 

(Watson et al., 1997, Coxon et al., 1996).

Neonatal neutrophils have deficiencies in specific granule number and also possibly 

abnormal morphology of specific granules (Ambruso et al., 1984). Neonatal 

neutrophils have diminished lactoferrin (from specific granules) but release of 

lactoferrin on stimulation is comparable to adults (Ambruso et al., 1984, Anderson et 

al., 1987). Azurophilic granules in neonates contain less BPI

(bactericidal/permeability increasing protein), which has a high affinity for LPS, than 

adults and preterm neonates and have a lower capacity to release BPI than term 

infants or adults (Levy et al., 1999, Nupponen et al., 2002b) - this may be a reason for 

the increased susceptibility of newborns to Gram negative infections. However, large 

variations between amounts of BPI present in neonatal neutrophils have been noted 

(Levy et al., 1999). Neonatal neutrophils release very similar amounts of MPO 

(Nupponen et al., 2002a, Levy et al., 1999) from azurophilic granules when compared 

to adults. MPO and BPI both occur in the azurophil granules, so low BPI is probably 

not due to a problem with its release from the granule.

The oxygen-dependent killing ability of neonatal neutrophils shows some conflicting 

data and ROS killing capacity may be increased or decreased in neonates. Nupponen 

et al showed that preterm infants and infants with proven sepsis have reduced ROS 

(Nupponen et al., 2001) but there is enhanced release of ROS in non-apoptotic cells of 

cord blood compared to adult after 24 hours in culture (Koenig et al., 2005). This may 

be an important factor in tissue injury.

Cord blood neutrophils may have less capacity to undergo apoptosis than adult 

neutrophils (Allgaier et al., 1998, Luo et al., 2003). Several recent studies have shown 

reduced or delayed apoptosis, both spontaneous and induced, in neonatal compared to 

adult neutrophils (Oei et al., 2003, Molloy et al., 2004, Hanna et al., 2005, Allgaier et 

al., 1998). The reasons for this delay in apoptosis are unclear but there are a number 

of possible causes:
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- Lower levels of pro-apoptotic proteins in neonates (Bak, Bax, Bad) (Hanna et 

al., 2005).

Reduced pro-caspase 3 and caspase 3 amount and activity in neonates (Hanna 

et al., 2005, Luo et al., 2003), but similar levels of caspases 1 and 8.

- Caspase 9 may also be reduced in neonates (Molloy et al., 2005).

- FasL appears to be reduced in neonates (Hanna et al., 2005) although there are 

similar amounts of Fas on the surface of neonatal and adult neutrophils 

(Allgaier et al., 1998). Anti-Fas antibody did not induce apoptosis 

significantly in neutrophils of infants bom by Caesarean section whereas adult 

neutrophils and neutrophils from vaginally delivered neonates had a 

significant increase in apoptosis with Anti-Fas antibody (Hanna et al., 2005, 

Molloy et al., 2004, Allgaier et al., 1998).

Molloy et al (Molloy et al., 2004) showed that spontaneous neonatal 

neutrophil apoptosis is delayed in infants bom by Caesarean section and 

further delayed if an infant is vaginally delivered. Labour may thus cause 

“priming” of neutrophils and prolong their survival (Weinberger et al., 2007). 

Neonatal neutrophils may have altered responses to extracellular stimuli. For 

example, G-CSF (and not GM-CSF) further delays apoptosis in neonatal 

neutrophils. Both substances delay it in adults. In neonates at high risk for 

infection, neither substance delays apoptosis (Molloy et al., 2005). GM-CSF 

increases CD1 lb expression and ROS production but G-CSF has no effect 

(Molloy et al., 2005) possibly because there are reduced G-CSF receptors on 

neonatal neutrophils (Gessler et al., 1999).

However not all studies have shown a delay in neonatal neutrophil apoptosis. Uguz et 

al (Uguz et al., 2002) found increased Fas expression on neonatal neutrophils 

(following Caesarean delivery) compared to adult neutrophils and more rapid 

apoptosis in neonatal neutrophils.

Apoptotic neutrophils have diminished functional capacity. The function of surviving 

neutrophils is more important in disease processes. Koenig et al (Koenig et al., 2005) 

showed that neonatal neutrophils with prolonged survival exhibited enhanced 

inflammatory and cytotoxic responsiveness with more CD1 lb expressed and 

enhanced release of ROS compared to surviving adult neutrophils.
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1.11 Neutrophil apoptosis in chronic lung disease of prematurity

Grigg et al (Grigg et al., 1991) produced the first report of neutrophil apoptosis and 

removal by macrophages in neonatal lungs. They studied 8 babies - five <34 weeks’ 

gestation who were ventilated for RDS and three >34 weeks’ gestation without RDS. 

Intact neutrophils were identified within macrophages in BAL fluid by detecting 

MPO on cytospins and by electron microscopy. The neutrophils showed features of 

apoptosis by light microscopy. They questioned the pathophysiological relevance of 

this process in neonatal lung inflammation as their findings did not correlate with 

clinical outcome.

In a study of 52 babies, 23 of which were preterm and ventilated for RDS (Oei et al.,

2003), twice weekly tracheal aspirates were performed. Cell counts from the aspirates 

were lowest in preterm infants who did not progress to CLD and highest in term 

infants. All the samples were neutrophil predominant but the lowest proportion of 

neutrophils was in preterm infants who did not progress to CLD. Term babies had the 

highest proportion of apoptotic neutrophils in the first week, significantly more than 

all the preterm infants or the CLD group alone. There were significantly fewer 

apoptotic neutrophils in the first 4 days in the CLD group than in the RDS-only group 

or in term infants. They concluded that neutrophil apoptosis increases with gestational 

maturity and thus preterm babies may be more at risk of lung injury because of 

reduced neutrophil apoptosis. They also studied IL-10 in all the aspirate samples but 

found no correlation between IL-10 and apoptosis in any group.

Kotecha et al (Kotecha et al., 2003) studied 134 BAL samples from 32 infants who 

were ventilated for RDS. They found that the development of CLD is associated with 

persistent neutrophilia in BAL samples with the difference between RDS and CLD 

apparent at day 10. Macrophage counts were significantly higher in the RDS group on 

day 4. The percentage of apoptotic neutrophils in the BAL samples increased from 

1% on day 1 to 17% on day 7 in RDS but fell from 4.1% on day 1 to 0.7% at 7 days in 

the CLD group. The differences were statistically significant on day 7. In other words, 

increased survival may be the mechanism of neutrophil persistence in CLD. They also 

studied BAL fluid apoptotic activity against adult neutrophils and found RDS BAL 

fluid was significantly pro-apoptotic on days 1 and 2, which was not seen in BAL of
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babies who progressed to CLD. They also looked at GM-CSF, TNF-a and IL-10 but 

found no correlation between the levels and the amount of neutrophil apoptosis on 

day 1.

In apoptosis, cytochrome c released from mitochondria triggers cleavage of pro- 

caspase 9 which leads to activation of caspase 3 (Hanna et al., 2005). Caspase 3 levels 

in tracheal aspirate fluid (TAF) were studied in 27 ventilated preterm infants with 

RDS, 14 of whom developed CLD (Cheah et al., 2005a). No statistically significant 

relationship was found between caspase 3 activation and the development of CLD. 

The role of caspase 3 in the differences between neonatal and adult neutrophil 

apoptosis is still unclear.

1.12 Summary

The progression of RDS to CLD, rather than its resolution, is a cause of significant 

morbidity and mortality among infants bom at preterm gestations. CLD is thought to 

be a process of lung maldevelopment, predisposed to by ventilation, hyperoxia and 

pulmonary and systemic infection in the preterm infant. These risk factors all play a 

role in the generation of an innate inflammatory response in the lung, in which 

neutrophils are the predominant cell type. This neutrophilic inflammation needs to 

resolve by a process of neutrophil apoptosis and ingestion of the effete neutrophils by 

macrophages in order for RDS to resolve. It has been postulated that a failure of this 

resolution process is an important factor in the development of CLD.

It has previously been shown that apoptosis in neonatal neutrophils may be 

significantly delayed when compared to adults but the reason and mechanism for this 

remain unclear.

1.13 Aims and hypotheses

This project aims to describe the cellular component of BAL fluid from preterm 

infants who have RDS which resolves and compare this with preterm infants who 

develop CLD and with term infants who have no pulmonary pathology, using flow 

cytometry, a novel technique for this type of sample in this population of patients.
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1. I aim to characterise the BAL cells in terms of their cell type (neutrophil or 

macrophage) and then further characterise the different cell types according to 

their cell surface markers. The differences in BAL cells between infants in 

whom microbial infection or colonisation is detected will be described. I hope 

to be able to identify a factor or characteristic of the BAL cells which may 

predict the later development of CLD.

2. I will study macrophage surface markers as I hypothesise that a difference in 

these markers may highlight an altered ability to interact with and ultimately 

phagocytose apoptotic neutrophils, contributing to the pathogenesis of CLD.

3. I will determine the proportion of apoptotic cells in each BAL sample as well 

as an indication of the apoptotic activity of the BAL supernatant and compare 

this between groups, seeking a relationship between, in particular, neutrophil 

apoptosis and the pathogenesis of CLD,

4. I will attempt to understand the relationship between the different BAL 

cellular components and some of the inflammatory substances present in the 

BAL supernatant and the development of CLD as well as some of the 

relationships between the BAL supernatant, neutrophil apoptosis and the 

presence of microbial infection or colonisation.

5. In light of the association between infection and the development of CLD and 

the controversy in neonatal circles regarding the role of Ureaplasma in this 

disease, I will attempt to relate BAL cell and supernatant findings to the 

presence of micro-organisms in BAL samples.

6. It is probable that neutrophil apoptosis is delayed in newborn infants and I aim 

to confirm this and compare it between infants and adults, using umbilical 

cord blood, before going on to investigate possible mechanisms for any 

dysregulation of apoptosis in the newborn. This dysregulation of apoptosis 

may occur as a result of:

neutrophil factors, which will be investigated in BAL samples and in cord 

blood,

dysfunctional macrophage recognition or phagocytosis of apoptotic 

neutrophils, and macrophage surface markers will be investigated in BAL, 

the inflammatory environment in which the neutrophils find themselves, 

leading to analysis of some of the constituents of BAL supernatants, 

particularly in relation to apoptosis.
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Chapter 2

Materials and Methods

2.1 Chronic Lung Disease of Prematurity study

2.1.1 Patient Group

Patients were recruited in the regional neonatal intensive care unit at the University 

Hospital of Wales, Cardiff between February 2006 and June 2008.

Two groups of infants were recruited:

• Preterm infants (<32 weeks’ gestation) who required mechanical ventilation 

were recruited within the first 12 hours of life. This group was later subdivided 

into those infants who went on to develop CLD (oxygen dependence at 36 

weeks’ corrected gestation) and those infants whose RDS resolved.

• Term control infants (>37 weeks’ gestation) who required mechanical 

ventilation for non-respiratory reasons (for example infants ventilated peri- 

operatively for gastroschisis).

I excluded (did not recruit) any infant ventilated for hypoxic ischaemic 

encephalopathy, those with known chromosomal abnormalities and infants who were 

so unwell that they were extremely likely to die or be unlikely to tolerate the lavage 

procedure.

Parents whose infants met the study criteria were approached either prior to, or shortly 

after, delivery and invited to participate in the study. The study was explained to them 

and they were given an information leaflet about the study (appendix 1) before fully 

informed, written consent was obtained.

The study was approved by the Cardiff and Vale NHS Trust Research and 

Development committee and the South East Wales Research and Ethics Committee 

(Reference number 05/WSE04/85, 7th September 2005).
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2.1.2 Bronchoalveolar lavages

Infants requiring mechanical ventilation regularly have endotracheal suction 

performed as part of their routine care. Bronchoalveolar lavage (BAL) is a well 

established clinical and research technique that is safe and well tolerated (Grigg et al., 

1992, Shields and Riedler, 2000) in mechanically ventilated neonates (Vyas et al., 

2002), provides reproducible results and no long term adverse effects (Kotecha, 1999, 

Vyas et al., 2002).

For the purpose of this study, BAL was performed daily for the first week of life and 

then twice weekly until the infant was 28 days old or until the infant was extubated, 

whichever occurred first. Preterm infants in the neonatal unit in Cardiff routinely 

receive exogenous surfactant therapy at birth and again at 12 hours of age. In order to 

minimise any wash out of surfactant, the first BAL was performed at 12 hours of age, 

immediately prior to the administration of the second surfactant dose. Timing of 

subsequent lavages was co-ordinated daily with the nursing staff on the neonatal unit 

in order to replace the routine endotracheal suction and avoid extra suctioning 

procedures being performed on the infant. If an infant was judged too unwell by the 

attending clinician to tolerate a BAL, the procedure was withheld.

Bronchoalveolar lavages were performed using the guidelines set out by the European 

Respiratory Society task force on BAL in children (de Blic et al., 2000). The 

procedure was performed with the infant lying supine and the head turned to the left, 

thus increasing the likelihood of the suction catheter being introduced into the right 

lower lobe. If the infant was conventionally ventilated, the ventilator was briefly 

disconnected and a size 6 French Gauge (FG) catheter was gently introduced down 

the endotracheal tube until resistance was felt. If the infant was receiving high 

frequency oscillatory ventilation (HFOV) the procedure was carried out using the in­

line suction port to avoid the need to disconnect the ventilator. Once resistance to 

further advancement of the catheter was felt, 1 ml/kg of 0.9% saline (up to a 

maximum of 2 ml) was instilled via the catheter. The catheter was then connected to 

8-12 kPa of suction pressure and the lavage fluid was suctioned back and collected in 

a suction trap as the catheter was withdrawn. The ventilator was then reconnected and 

the infant’s heart rate and saturations, which may have dipped during suction, were
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allowed to return to normal before the procedure was repeated a second time. The 

BAL fluid was pooled from the two lavages, placed on ice and immediately 

transported to the laboratory for analysis.

2.1.3 Processing of bronchoalveolar lavage samples

The sample was transported on ice from the patient’s bedside to the laboratory within 

10 minutes of collection. An aliquot of 25 pi was taken from the BAL sample at this 

stage for culture for Ureaplasma (see 2.1.6 below). The sample was placed in a pre­

cooled centrifuge (Jencons, Leighton Buzzard, UK) and centrifuged at 4°C at 1 000 

xg for 10 minutes, resulting in the sample being separated into a cell pellet and 

supernatant. The supernatant was carefully removed and stored as 25 pi aliquots at - 

80°C for later analysis.

The cell pellet was re-suspended in 1 ml of phosphate buffered saline (PBS) with 5 

mM EDTA. In order to break up the thick mucus present in most of the lavage 

samples, 100 pi of 50 pg/ml dithiothreitol (DTT), a reducing agent, was added to the 

resuspended cell pellet and incubated for 15 minutes at room temperature. A cell 

count was performed on the re-suspended cells using a haemocytometer. A portion of 

the sample was mixed with an equal volume of trypan blue (Invitrogen, Paisley, UK) 

prior to counting, in order to facilitate counting and gain information about cell 

viability.

2.1.3.1 Use of DTT as a mucolytic

a) Effect of DTT of neutrophil surface antigens at different concentrations

A sample of 15 ml of peripheral venous blood was drawn from an adult volunteer and 

placed in a tube containing 1.5 ml of 3.8% sodium citrate (Martindale 

Pharmaceuticals, Romford, UK). The blood was then mixed with 3 ml of 6% dextran 

70 (Baxter Healthcare Ltd, Thetford, UK) and left to stand at room temperature for 40 

minutes. This allowed the red blood cells to sediment to the bottom of the tube, 

leaving a clear interface between an upper layer of serum containing leucocytes and a 

lower layer containing red blood cells. The leucocyte portion was carefully aspirated
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from the red blood cell layer and placed in a sterile universal container. The 

leucocytes were then centrifuged at 400 xg for 5 minutes, washed twice in 20 ml of 

flow cytometry (FACS) buffer and then resuspended in FACS buffer to a given 

volume. The resulting suspension was divided into two equal aliquots. To one aliquot, 

DTT was added at a concentration of 50 pg/ml and to the other, an equal volume of 

PBS (diluent for DTT) was added. Both tubes were left to stand at room temperature 

for 15 minutes.

Each sample was then centrifuged at 400 xg for 5 minutes and washed twice in 20 ml 

of FACS buffer to remove any trace of DTT. Thereafter each sample was counted on 

a haemocytometer and resuspended to a density of 106cells/ml using FACS buffer.

Cells were then placed into a round-bottomed 96 well plate (Nunc brand, Fisher 

Scientific, Loughborough, UK) (105cells/well) and prepared for flow cytometry as 

described in 2.1.4.1 (below). Wells were allocated for each isotype control antibody 

and for each surface marker that I intended to use. Each antibody was tested in 

duplicate and the experiment was performed on 3 occasions.

A further, similar set of experiments were performed, using concentrations of DTT of 

0, 5, 25, 50, 100 and 200 pg/ml.

2.1.3.2 Cytospins

At least 2 cytospins per BAL sample were made from the re-suspended cells, using a 

Cytospin 3 (Shandon, Runcorn, UK). A volume of 50 pi of cells resuspended in 

FACS buffer at a density of 0.5 x 106 cells/ml was added to the cytospins chamber 

and spun at 300 rpm for 4 minutes. The cytospins were air dried for at least 24 hours 

and then fixed in methanol and frozen at -20°C. The cytospins were defrosted and 

stained with Diff-Quik (Medion Diagnostics, Limerick, Ireland) before a differential 

cell count was obtained by counting at least 300 cells per sample under direct vision 

with a high powered light microscope. Counting for the neonatal arm of the study was 

performed by Miss Sharon Gill, laboratory technician in the Department of
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Respiratory Medicine at the University of Sheffield, who was blinded to the clinical 

condition of the children.

2.1.4 Analysis of bronchoalveolar lavage cell pellet

2.1.4.1 Preparation of samples for cell phenotype analysis by flow cytometry

Following the haemocytometer count, the remaining cells were washed in 20 ml flow 

cytometry buffer (PBS containing 0.1% sodium azide, 1% bovine serum albumin, 5% 

fetal calf serum and 5 mM EDTA) to remove the DTT and then resuspended to a 

density of ~106 cells/ml in flow cytometry buffer

Using a round bottomed 96 well plate, 100 pi of the cell suspension was added to 

each well, including wells for all antibody staining as well as controls. The number of 

cells obtained from the lavages varied greatly and the combinations of antibodies 

which could therefore be used was limited by the number of cells in some samples. 

Three separate templates (appendix 2) were designed to be used, depending on the 

number of cells obtained from the BAL sample in order to maximise the information 

obtained but still obtain a standard minimum data set for each lavage.

All antibodies were monoclonal mouse anti-human antibodies, produced 

commercially for use in flow cytometry and used in appropriate titres (Table 2.1).
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Anti&en Antibody clone IsotvDe Conjugate Cells identified
(suDDlier)

CD llb ICRF44
(eBioscience, San 
Diego, CA)

IgGl Biotin Monocytes, 
macrophages, 
granulocytes, activated 
lymphocytes

HLA-DR G46-6
(BD Pharmingen, 
Oxford, UK)

IgG2a Allophycocyanin
(APC)

Macrophages, 
monocytes, B cells

CD16 3G8
(BioLegend, San 
Diego, CA)

IgGl Phycoerythrin
(PE)

Neutrophils, activated 
monocytes (also Natural 
Killer (NK) cells and 
dendritic cells)

CD36 TR9
(BioLegend)

IgGl PE Monocytes, 
Macrophages (also 
platelets and 
erythrocytes)

CD15 HI98
(BioLegend)

IgM APC Neutrophils

CD14 61D3
(Southern Biotech, 
Birmingham, AL)

IgGl Biotin Monocytes,
macrophages, dendritic 
cells

TLR 2 TL2.1
(eBioscience)

IgG2a Biotin Any cell expressing TLR 
2

TLR4 HTA125
(eBioscience)

IgG2a Biotin Any cell expressing TLR 
4

IgGl
isotype
control

(eBioscience) IgGl Biotin

IgGl
isotype
control

MOPC-21
(BioLegend)

IgGl PE

IgG2a
isotype
control

(eBioscience) IgG2a Biotin

IgG2a
isotype
control

(eBioscience) IgG2a APC

IgM
isotype
control

MM-30
(BioLegend)

IgM APC

Table 2.1 Table showing the antibodies which were used, their isotype, the flurophor 

to which they were conjugated and an indication o f the cell type which each antibody 

could be used to identify, together with the selected isotype controls.
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The cells in the plate were then incubated for 30 minutes at 4°C in a blocking buffer 

containing PBS, 0.1% sodium azide, 1% BSA, 1% heat inactivated normal mouse 

serum and 5 mM EDTA, to block non-specific antibody binding sites on the cell 

surface. The cells were then centrifuged at 500 xg for 4 minutes and the supernatant 

removed. Biotinylated antibodies were diluted in flow cytometry buffer at pre­

determined optimal concentrations and 80 pi of the appropriate antibody solution was 

added to each well of the plate. Wells not requiring antibody at this stage received the 

same volume of flow cytometry buffer alone. The plate was incubated at 4°C for 30 

minutes. Following the incubation, cells were centrifuged at 500 xg for 4 minutes and 

then washed 3 times using 200 pi of flow cytometry buffer. Secondary fluorescent 

conjugated reagents or directly conjugated antibodies, again diluted to pre-determined 

optimal concentrations in 80 pi of flow cytometry buffer, were added to the cells and 

a further incubation at 4°C for 30 minutes followed. Thereafter, cells were again 

washed 3 times and resuspended in 200 pi flow cytometry buffer. Samples were then 

transferred to test tubes ready for immediate FACS analysis.

2.1.4.2 Preparation of samples for apoptosis analysis by flow cytometry

Cells obtained by BAL for apoptosis analysis were stained using phycoerythrin- 

conjugated Annexin-V (MBL International, Woburn, MA) which binds to exposed 

phosphatidyl serine on the cell membrane of apoptotic and necrotic cells and To-Pro-3 

(Invitrogen, Paisley, UK) which binds to DNA exposed in cells undergoing necrosis.

Cells were prepared in a similar way to those for phenotypic analysis. After the initial 

blocking step, cells were incubated in flow cytometry buffer for 30 minutes at 4°C 

and then washed three times in Annexin-V binding buffer (AVBB) (BD Pharmingen, 

Oxford, UK) to remove any EDTA containing flow cytometry buffer. Annexin-V 

binding to phosphatidylserine is a calcium dependent process which would be 

prevented by the presence of EDTA. An appropriate, pre-determined, volume of 

Annexin-V-PE was diluted in AVBB (5 jul of Annexin-V-PE per 100 pi AVBB) and 

80 pi of this solution was added to each appropriate well. As a negative control, 

Annexin-V-PE was added to AVBB containing 20 mM EDTA which would prevent 

Annexin-V binding and 80 pi of this solution was added to the appropriate well of the 

plate. The plate was then incubated at 4°C for 30 minutes before washing three times
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in AVBB. The cells were resuspended in either in 100 pi To-Pro-3 solution (diluted 

1:30 000 with AVBB) or AVBB, as appropriate, and transfered to FACS tubes, each 

containing 100 pi Annexin-V binding buffer, for analysis.

2.1.4.3 FACS analysis

All processed BAL samples were analysed on the same Becton Dickinson 

FACScalibur flow cytometer (Becton Dickinson, Oxford, UK) immediately following 

staining, regardless of the time of day or night.

All samples had appropriate negative and positive control antibodies included in the 

staining panel and compensation was adjusted appropriately for each individual 

sample. A polyhedral gate was drawn in order to exclude cell debris (very low 

forward and side scatter) and 10 000 gated events were collected for each control and 

each antibody combination.

In order to ensure consistency between FACS measurements over the duration of the 

project, Spherotech Ultra Rainbow beads (Spherotech, Lake Forest, IL) were run on 

the FACS machine from time to time and results compared and any minor variations 

noted so they could be adjusted for.

FACS data was analysed using Cellquest software (Becton Dickinson, Oxford, UK).

2.1.4 Polymerase chain reaction (PCR) for 16S rRNA

Ribosomes are the cellular organelles that translate messenger RNA into proteins. 

Eukaryotic ribosomes have a sedimentation of rate of 80 Svedburg (S) units, while 

prokaryotic ribosomes are highly homologous and have a sedimentation rate of 70S. 

The 70S ribosome consists of 2 subunits:- a smaller 30S subunit and a larger 50S 

subunit. The 30S subunit contains a 16S ribosomal RNA (rRNA) transcript 

associated with 21 bacterial proteins. The 16S rRNA is distinct from the analogous 

18S eukaryotic equivalent, but conserved enough amongst prokaryotes that primers 

can be designed that detect the presence of most bacteria without cross-reacting with 

eukaryotic host sequences. The presence of 16S rRNA gene is thus indicative of the
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presence of bacteria in a sample. Polymerase chain reaction (PCR) may be used to 

amplify the DNA that codes for 16S rRNA, without concern for RNA degradation, 

and is used to demonstrate the presence of bacterial DNA within a sample (Lane, 

1991).

In order to examine the relationship between bacterial presence in the airways and the 

development of CLD, 16S rRNA gene PCR was performed on the DNA extracted 

from any remaining BAL cell pellet after sufficient material had been obtained for 

flow cytometry analysis. The DNA extraction, PCR and sequencing was performed 

by Mr Michael Beeton, a PhD student in the department of Child Health in Cardiff.

2.1.5.1 DNA extraction

The DNA extraction was performed using a kit from Qiagen (Crawley, UK) in 

accordance with the manufacturer’s instructions.

The cell pellet was resuspended and the cells dissolved using 0.5 ml of lysis buffer. 

Equilibration buffer was then added and the cellular debris removed by centrifugation 

at 15 000 xg for 20 minutes at 4°C. The supernatant, containing the nucleic acids, was 

removed and ice cold isopropanol added, causing the nucleic acids in the sample to 

precipitate. The mixture was centrifuged at 15 000 xg for 30 minutes and this time the 

nucleic acids formed a pellet. The supernatant was discarded and the nucleic acids 

were resolublised in 150 pi of lysis buffer and heated for 6 minutes at 60°C. Then 

1.35 ml of equilibration buffer was added and any debris removed by centrifugation 

for 5 minutes at 5 000 xg. The supernatant, containing the nucleic acids, was removed 

and added to the top of an equilibrated Qiagen® tip, which is a small column 

containing resin beads. In the first run through the column, RNA binds to the column, 

whilst the DNA passes through and is collected. A wash buffer is added to the column 

and an elution buffer is used to remove the RNA from the column; this is collected for 

separate analysis. The collected DNA is added back to the column and, due to a 

change in the buffer, this now binds to the column. DNA elution buffer is then added 

to the column and a purer DNA sample is collected. The DNA is then precipitated 

with isopropanol and centrifuged to give a pellet of DNA. This pellet is washed twice 

in 70% ethanol before being resuspended in 100 pi of RNase-free water and heated to
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60°C for 6 minutes. The extracted DNA was then stored in this state at -20°C until the 

PCR was performed.

2.1.5.2 16S rRNA gene PCR

The PCR was performed by making a “master mixture” of Taq polymerase (Go Taq, 

Promega, Southampton, UK), forward and reverse primers consisting of 20 base pairs 

complementary to 16S rRNA (Forward 5’-3’ AGAGTTTGATCCTGGCTCAG, 

Reverse 5’-3* ACGGCTACCTTGTTACGACTT) (Weisburg et al., 1991) ordered 

from MWG Biotech, Ebersberr, Germany), deoxynucleoside triphosphates, 

magnesium (to aid nucleotide binding), buffer and water to a final volume of 20 pi.

In a PCR tube (Starlab, Milton Keynes), 19.5 pi of the master mixture and 0.5 pi of 

extracted DNA were mixed. Further tubes containing a positive control with known 

bacterial DNA and a negative control with no DNA were also made up. The PCR 

tubes were then placed in a thermocycler (Quanta QD96, Quanta Biotech, Byfleet, 

UK). This heats the mixture to 94°C for one minute to denature the DNA, then cools 

the sample to 67°C for 40 seconds to allow annealing of the primers to the open 

strands of DNA and then the sample is heated to 72°C for one minute which is the 

optimal temperature for the Taq polymerase to extend the primer to a full 

complementary strand of DNA. Detection of bacterial 16S rRNA genes was optimised 

by performing 20 such cycles but with each cycle the temperature of the annealing 

step was reduced by 1°C. A second set of 20 cycles was then performed using 94°C 

for one minute, 47°C for a further minute and 72°C for 90 seconds. The mixture was 

kept at 72°C for eight minutes before finally being cooled to 4°C then stored at -20°C 

until needed.

2.1.5.3 DNA Gel Electrophoresis of PCR products

To visualise amplified DNA and determine the size of DNA product, gel 

electrophoresis was performed. The gel was made up by adding lg agarose 

(Invitrogen, Paisley, UK) to 100 ml of 0.5X Tris borate EDTA (TBE) (Sigma- 

Aldrich, Irvine, UK) and 1 pi of the intercalating agent, ethidium bromide. The lanes 

were loaded with samples, positive control, negative control as well as a DNA ladder 

(Hyperladder 1, Bioline, London, UK) consisting of several strands of DNA of known
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length. The gel electrophoresis was run at 130V until the bromophenol blue in the 

sample loading buffer had moved sufficiently to indicate good separation had 

occurred (about 30 minutes). The gel was placed under a transilluminator and 

ethidium bromide which has intercalated into the amplified DNA fluoresces and was 

captured by a digital camera. Those samples that contain 16S rRNA as well as the 

positive control have a visible band at 1.2 kbp. Successful extraction of DNA from 

samples was judged by a second amplification to detect the human mitochondrial 

cyclo-oxygenase (HMCO) gene using specific primers and cycling conditions. 

Samples that failed to show either 16S rRNA or HMCO genes were considered 

indeterminate, while samples that were positive for HMCO but negative for 16S 

rRNA were deemed to be free of bacterial infection.

2.1.5.4 Sequencing of 16s rRNA genes to identify organisms

Samples that were positive for 16s rRNA genes went on to have the 16s rRNA gene 

sequenced in order to identify the organism that was present in the lavage (Lane, 

1991). If an infant had several samples in which the 16s rRNA gene was detected then 

the first positive sample and/or the sample closest to the peak BAL cell count was 

sequenced.

Selected samples had the 16s rRNA gene PCR repeated, as in section 2.1.5.2, and 

scaled up five fold to yield a sufficient quantity of DNA for sequencing. These were 

pooled and purified using a Novagen spin-prep PCR clean-up kit ™ (Merck 

Chemicals, Nottingham, UK), according to the manufacturer’s instructions, to remove 

the nucleotides, primers and enzymes and leave only the amplified 16s rRNA genes. 

The genes are then fluorescently labelled using the BigDye Terminator v3.1 cycle 

sequencing kit (Applied Biosystems, Warrington, UK), according to the 

manufacturer’s instructions and analysed by an ABI Prism 3130x1 Genetic Analyzer, 

(Applied Biosystems). This enabled different organisms to be identified as each has a 

specific variation in their 16s rRNA gene. Gene sequences were analysed using 

BLAST (Basic Local Alignment Search Tool) via the National Center for 

Biotechnology Information, U.S. National Library of Medicine 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).
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2.1.6 Detection of Ureaplasma in bronchoalveolar lavage samples

In order to further study the controversial association between Ureaplasma and CLD, 

as soon as each BAL sample had been obtained, 25 jul of BAL was placed into 2ml of 

Ureaplasma-spQcific culture medium (Mycoplasma Experience, Surrey, UK). This 

culture was incubated at 37°C for 5 days.

Ureaplasma contains the enzyme urease which breaks down urea. This causes a 

change in the pH of the culture medium, resulting in the orange culture medium 

turning a clear cherry red indicating a positive culture, usually within 24 hours. 

Cultures which remained orange were negative. Some cultures became cloudy due to 

the presence of other microbes which prevented accurate interpretation of any colour 

change and these samples were subjected to PCR for 16S r RNA and for Ureaplasma 

(see 2.1.5.2 above) in order to obtain an accurate assessment of the microbial 

colonisation in the sample.

2.1.7 Analysis of bronchoalveolar lavage supernatant

2.1.7.1 Elastase Activity Assay

One of the secondary objectives of this study was to measure enzymatically active 

elastase that was present in our lavage samples as a marker of “tissue damage 

potential “. I therefore performed a kinetic activity assay on all the lavage samples. 

Measurement of the rate of chromogenic conversion of the colourless Suc-Ala-Ala- 

Pro-Val-pNA substrate to a yellow product is a well established technique for 

measuring elastase activity and has been used previously in bronchoalveolar lavage 

samples from both neonatal and cystic fibrosis patients (Birrer et al., 1994, Speer et 

al., 1993, Sluis et al., 1994).

Stocks of standard human neutrophil elastase (Athens Research and Technology, 

Athens, GA) were prepared by reconstituting 100 pg of lyophilized elastase powder in 

a 200 pi solution of 50mM sodium acetate (pH 5.5) and 150 mM sodium chloride.
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The 16.9 pM enzyme solution was then divided into 20 pi aliquots and stored at - 

20°C.

To make up a standard curve, a 20 pi aliquot of elastase was thawed and diluted using 

activity buffer (0.1 M Tris (Fisher Scientific, Loughborough, UK), 0.5 M Sodium 

Chloride, pH 7.4, 0.05% Triton X-100) to make up concentrations of 20 nM, 10 nM, 5 

nM, 2.5 nM, 1.25 nM, 0.625 nM and 0.3125 nM of neutrophil elastase. These 

standard dilutions were then added in duplicate to a 96 well plate at a volume of 100 

pi per well.

BAL supernatants were thawed and 10 pi from each sample was added to the 96 well 

plate, again in duplicate, and made up to 100 pi with the activity buffer.

A stock solution of neutrophil elastase-specific chromogenic substrate, Suc-Ala-Ala- 

Pro-Val-pNA (Bachem, St Helens, UK), was prepared by reconstituting 50 mg of 

lyophilized powder in 10 ml dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Irvine,

UK). The 8.67 mM substrate solution was divided into lmL aliquots and stored at - 

20°C.

Prior to use, the substrate was thawed and diluted to a 2 mM concentration using 

“activity buffer”. Each well of the 96 well plate containing sample or standard 

concentrations of neutrophil elastase received 100 pi of the substrate solution. The 

kinetic assay was read at 405 nm in a heated (37°C) plate reader (Dynex Magellan 

Industries, Chantilly, VA) which shakes the plate and takes readings at 1 minute 

intervals for an hour. Integral Dynex Revelation software calculates concentration of 

elastase by comparing the rate of substrate conversion in the samples against the 

standard curve of purified elastase.

Any samples with elastase activity in excess of the standard curve were diluted further 

and reanalysed. The standard curve profile was examined for its consistency and 

concordance between duplicate values was also assessed.
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2.1.7.2 Cytometric Bead Array (CBA)

The environment in which the BAL cells are found may also have a profound effect 

on the behaviour of the cells, as well as reflecting products produced by them.

CBA is a technique which uses the ability of flow cytometry to discriminate between 

particles on the basis of size and color. CBA uses a series of beads with distinct 

fluorescence intensities which have been coated with specific capture antibodies to 

simultaneously detect multiple soluble analytes. Each bead in the CBA kit acts as a 

capture surface for a specific protein, in this case cytokines. A single set of diluted 

standards is used to generate a standard curve for each analyte so that concentrations 

of the cytokine can be determined in each sample. I used this technique to measure 

concentrations of 12 potentially relevant cytokines in BAL samples.

The CBA work was performed in the Central Biotechnology Services at University of 

Sheffield on my behalf. BAL samples were defrosted and 25 pi of BAL was diluted 

1:10 for MCP-1, EL-8, IL-6, MIP-1 a, MIP-1 p and G-CSF or used undiluted for IL-1, 

TNF-a, FasL, IL-10, GM-CSF and VEGF, based on a series of optimisation 

experiments. The samples were then incubated with the antibody-coated beads and the 

subjected to flow cytometry analysis on a FACSArray machine.

2.1.73 Bioassay

In order to assess the pro- or anti-apoptotic activity of BAL supernatants, their ability 

to induce apoptosis in fresh adult neutrophils was studied, similar to Kotecha et al 

(Kotecha et al., 2003). These experiments were performed by Sharon Gill, laboratory 

technician at the Department of Respiratory Medicine, Royal Hallamshire Hospital, 

Sheffield.

Peripheral blood neutrophils from healthy adult volunteers were isolated as described 

in 2.2.2 below and then resuspended in HBSS at a density of 5 x 106/ml. A 50 pi 

aliquot of the cell suspension was mixed with 25 pi of RPMI containing 10% FCS in 

each well of a 96 well plate. BAL supernatants were thawed and 25 pi of BAL was
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added to the neutrophil /RPMI mixture. Each BAL sample was assayed in duplicate at 

2 time points and the rate of spontneous apoptosis in the adult neutrophils was assessed 

by adding 25 pi of 0.9% saline (as this is the fluid in which BAL was originally 

collected from the infants), instead of BAL supernatant, as a control. The plate was 

incubated at 37°C in 5% CO2 for either 5 or 20 hours.

The percentage of apoptotic neutrophils at the outset and at 5 and 20 hours of 

incubation was assessed by cytospins, made as described in 2.1.3 above and stained 

with Diff-Quik.
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2.2 P eriphera l C ord  Blood N eutrophil study

2.2.1 Patient Groups

As well as examining neutrophil apoptosis in cells obtained by bronchoalveolar 

lavage from infants’ lungs, I also aimed to gain information on the differences in rates 

of neutrophil apoptosis between adults and newborn infants.

Blood sampling from healthy term neonates poses a number of ethical concerns and 

there are also clinical constraints on the volume of blood obtainable. For this reason 

umbilical cord blood was used as it is normally discarded following delivery of the 

infant and volumes of up to 40 ml can be obtained relatively easily. Similarly blood 

sampling from preterm neonates poses even more complex ethical issues. Preterm 

infants are infrequently bom by elective Caesarean section due to the more complex 

and higher risk nature of this procedure for the mother at preterm gestations. A 

majority of preterm infants are bom following spontaneous onset of preterm labour 

which may be due to sub-clinical infection in a significant proportion of cases 

(Gomez et al., 1997, Klein and Gibbs, 2004). The combination of possible infection 

along with the activating effect of labour on neutrophils (Molloy et al., 2004, 

Weinberger et al., 2007) made a majority of preterm infants ineligible for our study. 

For this reason, only term infants bom by elective Caesarean section were included in 

the study.

Healthy pregnant women who were undergoing elective Caesarean section (most 

frequently because of previous Caesarean delivery) at 37 weeks’ gestation or more 

were asked in advance of delivery whether cord blood could be taken once their 

infants were bom. An information sheet (appendix 1) was given to the women and 

written, informed consent was obtained.

At the Caesarean section, following delivery of the infant, the placenta is delivered 

and inspected for completeness by the attending midwife, before it is discarded. 

Within 5 minutes of the delivery of the placenta, blood was carefully obtained from 

the umbilical cord vessels using a 21G (green) needle and syringe and immediately 

placed into a 50 ml conical tube and mixed 1:6 with 3.8% sodium citrate (Martindale

89



Pharmaceuticals, Romford, UK) to prevent coagulation. The volume of blood 

obtained varied with the size and length of the portion of the umbilical cord available 

for sampling and ranged from less than 5 ml to over 60 ml from different cords.

For comparison, a similar volume of blood from healthy adult volunteers was 

obtained by venepuncture and prepared identically to cord blood samples.

The study was approved by both the Cardiff and Vale NHS Trust’s Research and 

Development committee and the South East Wales Research and Ethics Committee 

(Reference number: 05/WSE04/85, 7th September 2005).

Eight pairs of cord and adult samples were used for apoptosis experiments and four 

further pairs for the RT-PCR (section 2.2.5.3) and RPA (section 2.2.5.2) work.

2.2.2 Isolation of peripheral blood neutrophils

Both adult and cord blood samples were mixed by gentle inversion following 

collection and then centrifuged at 450 xg for 20 minutes at room temperature. The 

plasma (upper layer) was then carefully removed from the cellular component in each 

sample and placed into a clean conical tube. This plasma was centrifuged at 1300 xg 

for 20 minutes at room temperature to remove any remaining red blood cells and 

platelets. This platelet poor plasma (PPP) was saved in a clean 15 ml conical tube and 

used to make up the plasma percoll gradient later.

Percoll (Sigma-Aldrich, Dorset, UK) consists of polyvinylpyrrolidone (PVP)-coated 

colloidal silica particles which are 15-30 nm in diameter (23% w/w in water). The 

PVP coating renders the Percoll non-toxic to cells. Percoll is well suited for density 

gradient experiments due to its low viscosity and low osmolarity.

In a 15 ml conical tube, 1.02 ml of 90% Percoll and 0.98 ml of PPP were mixed (51% 

gradient layer). In a separate container a 42% gradient layer was made consisting of 

0.84 ml of 90% Percoll and 1.16 ml of PPP. This mixture was very carefully layered 

over the 51% layer in the 15 ml tube to avoid mixing of the layers. One or two such
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gradients were made for cord blood and another set for adult blood, depending on the 

original volume of blood obtained.

Following the initial centrifugation step and removal of the plasma layer, the lower 

layer of each sample was gently mixed 1:5 with warmed 6% dextran 70 (Baxter 

Healthcare Ltd, Thetford, UK) and then made up to the original volume of the blood 

sample with warmed 0.9% saline. These mixtures were left to settle at 37°C in a 

waterbath for 30 minutes with the lids loosely on until a clear line of demarcation 

could be observed between the lower layer containing red blood cells and the upper 

layer containing the white blood cells. The upper white blood cell-rich layers were 

carefully removed from the tube and centrifuged at 200 xg for 6 minutes at room 

temperature. The supernatants were discarded and the cell pellets gently resuspended 

in 2 ml of PPP each. These mixtures were then very carefully layered on top of the 

appropriate adult or cord plasma percoll gradient, once again to avoid mixing of the 

layers.

The gradients were centrifuged at 350 xg for 13 minutes at room temperature without 

braking. This allows the formation of 3 layers of cells in each tube. The upper layer 

consists of mononuclear cells, the middle layer contains polymorphonuclear 

leucocytes (mainly neutrophils) and the cell pellet in the bottom of the tube contains 

any remaining red blood cells. The layers were carefully aspirated from the gradient 

and placed into clean tubes.

The neutrophils were then washed once in 20 ml of warmed Hanks buffered saline 

solution (HBSS) without calcium and magnesium and twice more in HBSS with 

calcium and magnesium before being counted on a haemocytometer and resuspended 

at a density of ~106cells/ml in flow cytometry buffer for FACS staining and analysis 

or DMEM containing 5% FCS for culture.

Cytospins of the separated neutrophils were made as described in 2.1.3.1 (above) and 

at least 300 cells per slide were counted to obtain a differential cell count and thus 

confirm the purity (percentage neutrophils) of the separated cells.
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2.2.3 Culture

Working in a sterile hood, 100 pi (105 cells) aliquots of the isolated neutrophils were 

placed into each well of a 96-well flat bottomed plate, allowing at least 1 well per test 

for each subsequent planned timepoint as well as additional wells so that cytospins 

could also be made at each time point.

Half the neutrophils were cultured in DMEM medium alone and a further 100 pi of 

media was added to these wells. The other half of the cells were cultured in medium 

containing 50 ng/ml of bacterial lipopolysaccharide (LPS) from E.coli 0157:B8 

(Sigma-Aldrich, Irvine, UK). For this, a solution of medium containing 100 ng/ml of 

LPS was made up and 100 pi of this solution was added to each appropriate well, 

already containing 100 pi of cells in medium.

The plates were covered with plastic lids and placed in an incubator (Hera cell 240, 

Heraeus) at 37°C containing 5% CO2 for the required period (6 or 20 hours).

To remove cells from the plate at the end of the incubation period, cells were gently 

pipetted up and down twice before placing them in a round bottomed plate (or FACS 

tubes for caspase 3) staining. The plate was centrifuged at 500 xg for 4 minutes to 

pellet the cells and the supernatants were carefully removed and frozen at -80°C for 

later analysis.

Cytospins of apoptotic neutrophils at each time point were made as described in

2.1.3.1 above.

2.2.4.1 Preparation of cord and adult neutrophils for flow cytometry analysis

Using a round bottomed 96 well plate, 100 pi of the cell suspension was added to 

each well, including wells for all antibody staining as well as controls for both adult 

and cord neutrophils, according to a standard template (appendix 2) which I designed 

to assess the purity of neutrophil preparations and any relative difference in the 

expression of cell surface markers at the start of the culture period, using the 

antibodies listed in Table 2.1 (above).
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The cells in the plate were incubated for 30 minutes at 4°C in a blocking buffer 

containing PBS, 0.1% sodium azide, 1% BSA, 1% heat inactivated normal mouse 

serum and 5 mM EDTA, to block non-specific antibody binding sites on the cell 

surface. The cells were then centrifuged at 500 xg for 4 minutes and the supernatant 

removed. Biotinylated antibodies were diluted in flow cytometry buffer at pre­

determined optimal concentrations and 80 pi of the appropriate antibody solution was 

added to each well of the plate. Wells not requiring antibody at this stage received the 

same volume of flow cytometry buffer alone. The plate was incubated at 4°C for 30 

minutes. Following the incubation, cells were centrifuged at 500 xg for 4 minutes and 

then washed 3 times using 200 pi of flow cytometry buffer. Secondary fluorescent 

conjugated reagents or directly conjugated antibodies, again diluted to pre-determined 

optimal concentrations in 80 pi of flow cytometry bufer, were added to the cells and a 

further incubation at 4°C for 30 minutes followed. Thereafter, cells were again 

washed 3 times and resuspended in 200 pi flow cytometry buffer. Samples were then 

transferred to test tubes ready for immediate FACS analysis.

FACS analysis was performed as described for BAL samples in 2.1.4.3 (above).

2.2.4.2 Apoptosis

Isolated neutrophils from both cord and adult blood samples were assessed for the 

proportion of apoptotic cells at the start of the culture period (time 0), again at 6 hours 

from commencement of culture (time 6) and again at the end of the culture period 

(time 20) using annexin-V-PE and To-Pro 3 using an identical staining and FACS 

analysis protocol to that used for BAL samples (see 2.1.4.2 above).

2.2.4.3.1 Caspase 3

The amount of activated caspase 3 in cord and adult neutrophils was assessed at each 

of the three time points using Apo Logix ™ - SR Sulforhodamine Caspase Detection 

Kit (Peninsula Laboratories Inc, California, USA) according to the manufacturer’s 

instructions.
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Caspases specifically recognise a 4 amino acid sequence on their substrate, which in 

the case of Caspase 3 is the DEVD sequence. Sulforhodamine (SR)-labelled - DEVD 

-  fluoromethyl ketone (FMK) (SR-DEVD-FMK) is a potent inhibitor of caspase 

activity which enters the cell and binds irreversibly to activated caspase 3, rendering 

these cells visible by flow cytometry. It has lower binding affinity for caspases 8, 7, 

10 and 6.

A stock solution of SR-DEVD-FMK was made up by reconstituting the supplied vial 

of the peptide with 50 pi of DMSO to give a 150x stock solution which was stored in 

aliquots at -20°C. Immediately prior to use the 150x solution was thawed and diluted 

1 part SR-DEVD-FMK to 4 parts PBS to give the 30x working dilution.

Neutrophils were prepared as described in 2.2.4.1 above and then resuspended at a 

density of 106 cells/ml in tissue culture medium and divided into 300 pi aliquots in 

FACS tubes, allowing a control and a test sample for each condition. Each tube 

received 10 pi of a 30x working dilution of SR-DEVD-FMK and were gently mixed 

by flicking the tube. The control sample also received 2 pi of Sue-Ala-Ala (Bachem, 

St Helens, UK), an inhibitor of caspase 3 (molar equivalent of 10 pi of SR-DEVD- 

FMK). The tubes were incubated in the dark at 37°C and 5% CO2 for 1 hour.

Following incubation, 2 ml of IX working dilution of the supplied wash buffer was 

added to each tube before centrifuging at 500 xg for 4 minutes. The supernatant was 

discarded and the cells washed twice more, each time with 2 ml of wash buffer per 

tube, before resuspending the cells in 200 pi of flow cytometry buffer for analysis.

2.2.4.3.2 FACS analysis for caspase 3

The pink SR-DEVD-FMK reagent fluoresces in the red spectrum and 10 000 ungated 

events were collected for both control and test samples. Mean fluorescence intensity 

(MFI) was measured as well as the percentage of cells which were positive for 

activated caspase 3 and compared between control and test samples for both adult 

and cord neutrophils.
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2.2.4.4 Bax

1 chose to investigate the pro-apoptotic protein Bax in cord and adult neutrophils. Bax 

is an intracellular protein and thus neutrophils needed to be fixed and then rendered 

permeable to the Bax antibody (monoclonal phycoerythrin-conjugated mouse anti­

human Bax (Clone 2D2), Santa Cruz Biotechnology). The Fix &Perm kit (An Der 

Grub Bio Research GmbH, Austria) was used for this.

Using a 96-well round bottomed plate, 100 pi of neutrophil suspension (either fresh or 

from culture) was added to each required well. The cells were pelleted by centrifuging 

at 500 xg for 4 minutes. Each cell pellet was gently resuspended in 100 pi of Reagent 

A (a fixative containing formaldehyde) and the plate was incubated at room 

temperature, in the dark, for 20 minutes. The cells were then washed twice with 200 

pi of flow cytometry buffer before adding 100 pi of the supplied Reagent B (the 

permeabilising solution) containing an optimal concentration of Bax antibody or 

appropriate isotype control antibody (IgGl-PE (clone MOPC-21, Biolegend). The 

plate was again incubated for 20 minutes at room temperature in the dark before a 

further 2 washes. The cells were resuspended in 200 pi of flow cytometry buffer and 

analysed immediately.

FACS analysis was performed on the same BD FACScalibur machine as the BAL 

analysis, using appropriate settings which were saved and used for every cord/adult 

blood experiment. FACS data was again analysed using CellQuest software.

2.2.S Analysis of neutrophil mRNA Expression

2.2.S.1 Extraction of neutrophil RNA

Neutrophils were isolated by the plasma-Percoll gradient method (section 2.2.2) 

described above and a cell count was performed using a haemocytometer. Neutrophils
2+  2 1

were spun at 450 xg for 6 minutes at room temperature in HBSS with Ca and Mg 

and the cells were resuspended at 107/ml in HBSS with Ca2+ and Mg2+ then 

transferred as 1 ml aliquots to 1.5 ml RNase-free eppendorfs and microcentrifuged at

2 000 rpm for 2 minutes. Each pellet was resuspended in 250 pi cold PBS and
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following resuspension, 750 pi Tri-Reagent was added. The tubes were inverted to 

mix the contents and then incubated at room temperature for 5 minutes for cell lysis to 

occur. Each tube then had 200 pi chloroform added. Again the tubes were inverted 

and incubated at room temperature for a further 15 minutes. Cells were then spun in a 

microcentrifuge at 11,500 rpm for 15 minutes at 4°C. Following this, three layers are 

visible in each tube: at the bottom is a red layer of protein, in the middle a white band 

of DNA and on top a colourless, aqueous layer containing RNA. The top layer was 

carefully aspirated from each tube, without contamination of the sample with the 

DNA layer and transferred to new 1.5 ml RNase-free eppendorfs. The RNA solution 

was further suspended in 500 pi isopropanol per tube and incubated at room 

temperature for 10 minutes, followed by centrifugation at 11,500 rpm for 8 minutes at 

4°C. All the supernatant was carefully removed and discarded and 1ml 75% ethanol 

added (not resuspended) to the pellet to wash the cells. The tubes were centrifuged at 

9200 rpm for 5 minutes at 4°C and, once the supernatants had been removed, the 

pellets were left to air dry. One dry, the pellets were resuspended in 10 pi RNase-free 

water and stored at -80°C until analysis.

2.2.5.2 Ribonuclease (RNase) Protection Assay (RPA)

The RPA is a highly sensitive and specific method for the detection and quantitation 

of mRNA species. The assay uses DNA-dependent RNA polymerases for the 

synthesis of high-specific-activity RNA probes from DNA templates each of distinct 

length and each representing a sequence in a distinct mRNA species. The probe set is 

hybridized in excess to target RNA in solution, after which free probe and other 

single-stranded RNA are digested with RNases. The remaining “RNase-protected” 

probes are purified, resolved on denaturing polyacrylamide gels, and quantified by 

autoradiography. The quantity of each mRNA species in the original RNA sample can 

then be determined based on the intensity of the appropriately-sized, protected probe 

fragment.

The BD RiboQuant Multi-probe RNase Protection Assay System (BD Biosystems) 

was used according to the manufacturer’s instructions to analyse the RNA obtained 

from cord and adult blood nutrophils. The RPAs were performed by Vanessa
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Singleton in the Department of Respiratory Medicine at the Royal Hallamshire 

Hospital, Sheffield, where she has acquired appropriate expertise in this process.

RNA is very sensitive to RNase contamination and degrades very easily, so for this 

reason, all supplies and reagents used were RNase-free.

a) Synthesis of probe

The [a-32P]UTP, GACU nucleotide pool, DTT, 5x transcription buffer and RPA 

template set were brought to room temperature. The following reagents were added, 

in order, to a 1.5 ml Eppendorf tube: 1 pi RNasin, 1 pi GACU nucleotide pool, 2 pi 

DTT, 4 pi 5x transcription buffer, 1 pi RPA template set, 10 pi [a-32P] UTP, 1 pi T7 

RNA polymerase. The T7 RNA polymerase was kept at -20°C until use and returned 

to -20°C immediately after use. These were mixed and then incubated at 37°C for 1 

hour. The reaction was ended by adding 2 pi of DNase, mixed again and incubated at 

37°C for 30 minutes. Each Eppendorf tube then received (in order) 26 pi 20 mM 

EDTA, 25 pi Tris-saturated phenol, 25 pi chloroform:isoamylalcohol (50:1) and 2 pi 

yeast RNA. These were mixed and then micro-centrifuged for 5 minutes at room 

temperature. The upper, aqueous layer was transferred to a new 1.5 ml Eppendorf 

tube and 50 pi of chloroform: isoamylalcohol (50:1) was added. This was mixed and 

then micro-centrifuged for 2 minutes at room temperature. Again the upper, aqueous 

phase was transferred to a new 1.5 ml Eppendorf tube and 50 pi 4M ammonium 

acetate and 250 pi ice-cold 100% ethanol were added. The tubes were mixed by 

inverting them and incubated at -70°C for 30 minutes, after which they were micro- 

centrifuged for 5 minutes at 4°C. The liquid layer was carefully removed and 100 pi 

ice cold 90% ethanol was added before micro-centrifuging for 5 minutes at 4°C. The 

liquid was removed and the contents of the tube allowed to air dry for 5-10 minutes. 

Finally 100 pi of hybridisation buffer was added and the pellet solubilised by gently 

vortexing for 30 seconds. The probe was then stored at -20°C until needed.

b) Hybridisation

The RNA prepared in 2.2.5.1 was removed from -70°C storage and the quantity of 

RNA was measured using a NanoDrop Spectrophotometer ND-100 (Labtech

97



International, Lewes, UK). Each RNA sample was diluted to the same concentration 

and had 8 pi of hybridisation buffer added to the sample. The RNA was solublised by 

gently vortexing and then quickly spinning in the microcentrifuge. The chosen probe 

was diluted with hybridisation buffer and 2 pi of diluted probe was added to each 

RNA sample and mixed by pipetting. A drop of mineral oil was then placed on top of 

the mixture. The tubes were then placed in a pre-heated heat block at 90°C and 

immediately turned down to 56°C. They were then left to incubate for 12-16 hours. 

Samples were removed from the heat block 15 minutes prior to the RNase treatments 

and placed at room temperature to allow the temperature to equilibrate slowly.

c) RNase treatment

An RNase cocktail was prepared consisting of 2.5 ml RNase buffer and 6 pi RNase A 

+ T1 mix for twenty samples. To the RNA samples that had been removed from the 

heat block, 100 pi of cocktail was pipetted underneath the mineral oil into the aqueous 

layer and then incubated at 30°C for 45 minutes. During this time, the Proteinase K 

cocktail was prepared, consisting of 390 pi Proteinase K buffer (prewarmed to 37°C 

to solubilize the SDS), 30 pi Proteinase K and 30 pi Yeast tRNA for 20 samples. This 

was mixed and 18 pi added to new, labelled Eppendorf tubes. The aqueous layer was 

then removed from underneath the oil and placed in the vials containing the 

Proteinase K cocktail. This mixture was incubated for 15 minutes at 37°C before 

adding 65 pi of Tris-saturated phenol and 65 pi of chloroform: isoamylalcohol and 

centrifuged for 5 minutes at room temperature. The upper aqueous layer was aspirated 

and transferred to a new tube and 120 pi 4M ammonium acetate and 650 pi ice-cold 

100% alcohol were added. This was mixed by inverting and incubated at -70°C for 30 

minutes, then centrifuged for 15 minutes at 4°C. The liquid supernatant was removed, 

100 pi of ice-cold 90% ethanol added before centrifugation for a further 5 minutes at 

4°C. The ethanol was removed and the pellet allowed to air dry before adding 5 pi of 

loading buffer.

d) Gel Resolution of Protected Probes

The protected probes were then run on a 4.75% acrylamide sequencing gel composed 

of 35.82 g of urea, 22.35 ml dH20 , 7.45 ml of lOx TBE, 8.85 ml of 40% acrylamide,
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9.31 ml of 2% bis acrylamide, 450 pi ammonium persulfate (10%) and 60 pi TEMED. 

Using the recommended acrylamide concentration and acrylamide:bis acrylamide 

ratio is critical for the correct resolution of unprotected and protected probe bands. 

After polymerisation the gel was run in a vertical gel rig with 0.5x TBE running 

buffer in the upper and lower reservoirs.

The samples were heated for 2-3 minutes at 90°C before loading and running the gel. 

Once complete, the gel was removed, dried and exposed to X-ray film. Initial 

exposures were done overnight but finally required exposure for a week for optimal 

results.

In interpreting the film, it is important to note that the probe lengths are greater than 

the “protected” fragment lengths, due to the presence of flanking sequences in the 

probes which do not hybridise with target mRNA.

2.2.5.3 Reverse transcription -  Polymerase Chain Reaction (RT-PCR)

RNA that has been extracted from neutrophils was used for reverse transcription (RT) 

followed by PCR to analyse mRNA expression in a semi-quantitative manner. All 

RNA work was performed using RNase free pipette tips, eppendorfs and solutions.

The RT and PCR were performed by Kate Vaughan in the Department of Respiratory 

Medicine at the Royal Hallamshire Hospital, Sheffield, where she has acquired 

expertise in this process. The RNA was thawed and DNase-treated to remove any 

contaminating DNA by using a DNA -free™ kit (Ambion, Warrington, UK). Using 

this kit 2 pg of RNA was treated with 1 pi of the supplied DNase-I buffer and 1 pi of 

DNase-I for 25 minutes at 37°C, then 2 pi of stop-reagent beads was added and 

incubated for 2 minutes at room temperature before centrifuging the mixture at 10 000 

xg for 90 seconds. The RNA was then transferred to a fresh tube. The quantity of 

RNA was then measured using a NanoDrop Spectrophotometer ND-100 (Labtech 

International, Lewes, UK).
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Following this, the RNA was converted into cDNA as follows:

In thick walled 0.5 ml eppendorfs, each 1 pg of RNA was made up to a volume of

12.4 pi with RNase-free water, then 8 pi of AMV (Avian Myeloblastosis Virus) 

buffer, 16 pi of 10 mM dNTPs and 1.2 pi each of RNasin, Random primers and 

AMV-RT (all reagents from Promega, Southampton, UK). These tubes were then 

placed in an MJ Research Peltier Thermal Cycler-200 which keeps the reaction 

mixture at 23°C for 5 minutes which allows the oligo d(T) primers to anneal to the 

poly-A tails of the RNA. The temperature is raised to 42°C for 2 hours during which 

cDNA is synthesised, catalysed by reverse transcriptase. The mixtures are then heated 

to 99°C for 2 minutes which denatures the reverse transcriptase enzymes to stop the 

reaction. The products are then cooled to 4°C and held at this temperature until the 

resultant cDNA can be used in the quantitative PCR process.

2.2.5.4 Quantitative PCR

Quantitative PCR (Q-PCR) is a technique which is used to amplify and 

simultaneously quantify a specific sequence of DNA. Simply, cDNA samples are 

produced by the RT process (2.2.5.3 above). Specifically designed forward and 

reverse primers are added and annealed to specific cDNA sequences. A specifically 

designed fluorescent reporter probe is also allowed to anneal to the sequence between 

the forward and reverse primers. The probe has a 5’ high energy reporter dye (6- 

FAM) and a 3’ low energy non-fluorescent quencher (TAMRA) attached. Due to the 

close proximity of the reporter to the quencher its fluorescence is prevented. When the 

DNA polymerase (Taqman Gold), which has 5’-exo-nuclease activity, begins to copy 

the cDNA, it reaches the area where the probe has annealed. Using its 5’-exo-nuclease 

activity it cleaves the reporter dye from the quencher, enabling fluorescence of the 

reporter to be detected. This increase in fluorescence corresponds directly to the 

exponential increase in the number of amplicons generated and this is used to 

determine the threshold cycle (CT) in each reaction. The cycle at which fluorescence 

from a sample crosses the threshold is called the cycle threshold (Ct) (the threshold is 

above background) and since we know that the quantity of DNA doubles every cycle 

during the exponential phase, we can accurately quantify relative amounts of DNA in 

the samples by comparing the results to a standard curve produced by real-time PCR 

of serial dilutions of a known amount of DNA and thus make comparisons between
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samples. The measured amount of product from the gene of interest is divided by the 

amount of product from a housekeeping gene measured in the same sample to 

normalize for possible variation in the amount and quality of DNA/RNA between 

different samples.

The procedure was carried out as follows: Primers/probes, samples and the mastermix 

were kept on ice. A mastermix was made up for each set of primers. For primer/probe 

sets from Applied Biosystems (HIF-la: Hs00153153_ml; p-actin: Hs99999903_ml; 

GAPDH: Hs99999905_m 1; Bcl-xl: Hs99999146_ml; Mcl-1: Hs00172036_ml; Al: 

Hs00187845_ml)(Applied Biosystems, Gloucester, UK) the mastermix consisted of 

lOpl of buffer which contains the DNA polymerase (RT-QP2X-03, Eurogentec, 

Southampton, UK), 1 pi primer/probe set and 8 pi of sterile water. For the HIF-2a 

primer/probe set (HIF-2a: sense = CTCCCACggCCTgTACggACAC; anti-sense 

=AgTgCTCCCgCTgAATgACTCCACT; probe =

CTCggATTgTCACACCTATggCATATC)(Sigma-Genosys, Dorset, UK) the 

mastermix contained 10 pi of buffer, 0.1 pi forward primer, 0.1 pi reverse primer, 

0.02 pi probe and 8.78 pi water.

Standard curves of known amounts of cDNA were made up in water as follows: For 

Bcl-xl and Mcl-1 normoxic neutrophil cDNA was used in 1:4 serial dilutions to 

produce the standard curve. A l, GAPDH and P-actin used 1:10 serial dilutions of 

normoxic cDNA. HIF-la and HIF-2a used hypoxic cDNA in the standard curve at 

serial dilutions of 1:10 for HIF-la and 1:2 for HIF-2a.

Then, 19 pi of each master mix was accurately pipetted into appropriate wells of a 

polypropylene 384-well plate (Greiner, Gloucester, UK) allowing wells for each 

sample to be analysed and the standard curve in duplicate. Thereafter 1 pi of the 

appropriate standard curve concentration or cDNA sample was added to the 

appropriate wells. The plate was covered and sealed (Biorad, Hemel Hempstead, UK) 

then centrifuged at 800 xg for 2 minutes to remove any trapped air bubbles from the 

bottom of the wells.
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The plate was was then placed in the 7900HT Fast Real-Time PCR System (Applied 

Biosystems, Warrington, UK) and allowed to run. Data was analysed using SDS 2.2.1 

software (Applied Biosystems).

2.3 Statistical Analysis

Statistical analysis for this thesis was performed using Microsoft Excel, SPSS, 

Graphpad Prism and Instat as applicable. In general, lavage data were non-parametric 

in nature and comparisons between data sets were made using Mann-Whitney U tests, 

one way ANOVA (Kruskal-Wallis) and Chi Squared analysis, whilst correlations 

between groups were performed using Spearman correlation co-efficients. Data for 

lavages are expressed as median values with interquartile ranges given, to reduce the 

impact of any results which were marked outliers.

For cord and adult blood data results were normally distributed and as such data were 

also expressed as median and interquartile range (IQR) due to small numbers of 

repeat experiments. Significance was taken as a p value <0.05.
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Chapter 3

Bronchoalveolar lavage cell types and influx

3.1 Introduction

The primary focus of this thesis is the nature and progress of the inflammatory 

response in the lungs of preterm infants and how this may influence the development 

ofCLD.

Recent years have seen many significant changes in the treatment of infants bom 

prematurely as well as in the survival and long-term complications in those infants 

who are now surviving extreme preterm birth (Horbar et al., 2002, Wood et al., 2000). 

CLD continues to be the major respiratory complication in preterm infants, both in 

hospital and after discharge (Jobe, 1999). The aberrant lung development which 

“new” CLD is thought to represent is somewhat different to the simple “injury and 

repair” mechanism seen in historically reported “classical” CLD (Jobe, 1999). 

Although the pathogenesis of “new” CLD is multifactorial, the role of neutrophils 

appears to be pivotal. Their role in maintaining the inflammatory process is key to the 

disturbance of lung development seen in “new” CLD.

In this thesis I have sought to clarify the role of neutrophils and other cellular 

components of bronchoalveolar lavage fluid in infants at risk of developing CLD. In 

this chapter I have chosen to specifically examine whether there is a relationship 

between the number or proportion of neutrophils or macrophages in the BAL fluid 

and gestation or the development of CLD. Additionally I have looked in more detail 

at the surface markers on both neutrophils and macrophages in order to assess 

whether there are differences in the phenotypes of the cells present in different groups 

of infants.

It has been suggested that antenatal infection and the intra-uterine environment have 

an important role to play in the development of CLD and I will test this hypothesis by 

looking in more detail at cell counts and cell surface markers in BAL on the first day 

of life; looking particularly at whether any parameter in BAL on day 1 may be
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predictive of the development of CLD. The role of postnatal infection in the 

development of CLD will also be studied further by looking at the effect of the 

presence of microbial DNA on BAL cell counts and cell phenotypes.

In order to obtain the information required to test the above hypotheses, it was 

necessary to first develop a method for working with and obtaining the largest amount 

of relevant data by flow cytometry from the very small amounts of BAL fluid 

obtained from the smallest preterm infants. The development of this method will be 

described in this chapter. Previous studies of BAL cells (Grigg et al., 1991, Oei et al., 

2003, Kotecha et al., 2003) have relied mainly on data from microscopy and 

immunocytochemistry performed on cytospins and I will compare data gained by 

flow cytometry with cytospin findings.

For the purpose of this thesis the definition of CLD as oxygen dependence at 36 

weeks’ corrected gestation will be used as this implies a more severe form of lung 

disease than oxygen dependence at 28 days. It would be reasonable to assume that an 

infant bom at 23 weeks might continue to require supplemental oxygen at 28 days of 

life as this is only a corrected gestation of 27 weeks. The “36-weeks” definition of 

CLD allows infants to be compared at what should be similar stages of lung 

development rather than comparing very different babies who have simply been ex- 

utero for the same length of time.

3.3 Results

3.2.1 Patient Characteristics

Thirty two infants were recruited into the BAL arm of the study between February 

2006 and June 2008. Of these, 27 were bom at less than 32 weeks’ gestation and 5 

were term controls ie. babies who were ventilated for non-respiratory reasons. In the 

preterm group, 6 babies had resolved their RDS by 28 days of life, 20 remained in 

oxygen at this stage (CLD) and 1 infant died before a diagnosis could be assigned. By 

36 weeks’ corrected gestation, 11 of the surviving preterm babies were classified as 

having resolved RDS and the remaining 15 had CLD (Table 3.1).
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The infant who died was the second of non-identical twins, bom at 26+5 weeks’ 

gestation. The first twin died within hours of birth due to respiratory complications of 

prematurity combined with a large congenital diaphragmatic hernia and was not 

recmited into the study. The second (recmited) twin died on day 5 of life as a result of 

pericardial effusion and cardiac tamponade, a rare complication caused by migration 

of an intravenous long line (Pettit, 2003). This infant was excluded from analysis as 

her diagnosis at both 28 days and 36 weeks was unknown.

All 5 of the term control infants were bom with gastroschisis and were operated on 

during the first few hours of life. In most cases, children bom with gastroschisis who 

undergo primary closure of the abdominal defect are ventilated for only a brief period 

following surgery, however some require longer periods of ventilation, particularly if 

the gastroschisis closure is performed as a staged procedure due to a relatively small 

abdominal cavity. Ventilation of term infants for other non-respiratory reasons is 

unusual, the exception being in infants with hypoxic ischemic encephalopathy (HIE) 

and resultant poor respiratory drive. The pathogenesis of HIE implies a period of 

intra-uterine hypoxia which may have pro-inflammatory effects on the lung leaving 

them far from “normal” and for this reason these infants were excluded from the 

study. As a result of the entry criteria, the number of term control infants recmited 

was limited.

A statistically significant difference was found between the gestational age of infants 

who went on to develop CLD (mean 26+2 weeks; median 26+0 weeks, range 23+4 

weeks to 29+3 weeks) and that of infants whose RDS resolved (mean 28 weeks; 

median 27+1 weeks, range 25+4 weeks to 31+6 weeks) (p=0.024). The term infants 

had a median gestation of 38+1 weeks (range 37+2 to 38+3 weeks). The gestational 

age profile of the infants recmited is shown in Figure 3.1.

106



</>
1C
oo
*

p=0.024

co
CO

4 ->
(00)
O

CLD RDS Term

Figure 3.1 demonstrates the gestational ages o f the infants recruited, grouped 

according to diagnosis. Each marker represents one infant and the horizontal lines 

represent the median value for each group.
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Figure 3.2 demonstrates the gestational age profile o f the recruited infants. Each bar 

represents infants born during the stated week o f life. Infants between 32 and 37 

weeks ’ gestation were excluded from this study. The colours indicate the diagnostic 

categories to which the infants were assigned.

Patients who developed CLD did not have a significantly lower birth weight (mean 

875g ; median 85Og; range 560-1230g) than infants whose RDS resolved (mean 

1120g; median lOOOg; range 700-1900g, p=0.102, Mann-Whitney U-test), figure 3.3.
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Figure 3.3. Scatterplot comparing birthweight o f infants. Horizontal lines represent 

median values.

There was no difference in the male: female ratio between groups, although all the 

term controls were male which is consistent with the increased incidence of 

gastroschisis in males (Forrester and Merz, 1999, Calzolari et al., 1993, Alvarez and 

Burd, 2007) (Table 3.1). A similar proportion of infants in each group were bom by 

Caesarean section (Table 3.1).

The majority of preterm infants received antenatal steroids (Table 3.1). Not all babies 

in each group had received a full 2-dose course of antenatal steroids (6/11 in the RDS 

group and 9/15 in the CLD group) but this was not a statistically significant difference 

(p=0.46, Chi square test). All 11 babies in the RDS group had received at least one 

dose of steroids which was significantly more than the CLD group where only 10/15 

babies had been at least partially treated (p=0.033). One of the term infants had 

received a course of antenatal steroids for threatened preterm labour several weeks 

prior to delivery.

In line with the neonatal unit policy to administer exogenous surfactant to all 

intubated preterm infants as soon as possible after intubation, 100% of preterm babies 

received exogenous surfactant therapy (Curosurf™, Trinity-Chiesi Pharmaceuticals 

Ltd, UK) (Table 3.1).

There was no statistically significant difference between the number of infants with 

either RDS or CLD who were bom following prolonged rupture of the membranes



(RDS 4/11 and CLD 2/15) (p= 0.18, Fisher’s exact test) or between the groups when 

comparing for suspected maternal infection (based on maternal pyrexia, offensive 

vaginal discharge, elevated maternal CRP or WBC count) (p=0.69, Chi square test) 

(Table 3.1).

All the infants who developed CLD had a patent ductus arteriosus diagnosed during 

their admission compared to only 5/11 babies with RDS (p=0.002, Fisher’s exact 

test). In the CLD group 9/15 required medical (indomethacin) or surgical (ligation) 

intervention compared to only 1 of the 5 in the RDS group (p=0.152, Fisher’s exact 

test) (Table 3.1).

It is not surprising that those infants with apparently worse lung disease, who 

frequently went on to develop CLD, were ventilated for significantly longer than 

those infants whose RDS resolved. CLD infants were ventilated for a median of 36 

days (range 12-92 days) compared to infants whose RDS resolved who were 

ventilated for a median of 4 days (range 2-12 days), p=0.001. As a consequence, 

fewer samples were inevitably obtained from the resolved RDS group than the infants 

who developed CLD (Table 3.1).

Of the 15 infants who developed CLD, 7 were defined as having severe disease using 

the NICHD/NHLBI criteria (Jobe and Bancalari, 2001), as they were on IPPV or 

CPAP and/or requiring >30% oxygen at 36 weeks’ corrected gestation.

In total 207 BALs were performed. Of these 152 were from infants who developed 

CLD, 32 were from infants whose RDS resolved, 4 were from the infant who died and 

19 were from term controls. The median fluid volume recovered from the BALs 

performed was 61% of the volume of fluid introduced (mean 61.2%, range 23.5% - 

145.5%).

An element of bias is inherent in the nature of any study which requires infants to be 

intubated in order for lower airway secretions to be collected. Very few RDS infants 

remained ventilated beyond days 4 and 5 of life, thus it is only possible to make direct 

comparison between groups for the first few days of life and it is not possible to 

comment on what changes may be occurring in infants’ lungs following extubation,
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although we assume that if these infants remain extubated, that any changes within the 

lung are unlikely to be causing any significant respiratory compromise, compared to 

the intubated infants. Clearly for CLD infants, more samples will give the opportunity 

for greater amounts of data to be accumulated and for more peaks or troughs in 

various parameters to occur. Whilst these issues need to be considered when 

comparing groups, the longitudinal nature of our samples in individual infants does 

allow us to assess the nature of the inflammatory response and its resolution in these 

infants and to compare the relationships between numerous parameters for individual 

infants as well as groups of babies. Details of patient demographics are shown in table 

3.1.
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CLD group RDS group Term controls

Number of Patients 15 11 5

Number of Samples 152 32 19

Median Gestational Age 26+0 27+1 38+1

(range) (23+4_29+3 w ks) (25+4-31+6 wks) (37+2-38+s wks)

Median Birth Weight 850g lOOOg 2766g

(range) (550-1230g) (700-1900g) (2570-3000g)

Male: Female 7:8 8:3 5:0

Vaginal: Caesarean 

delivery
10:5 5:6 2:3

At least 1 dose antenatal 10/15 (67%) 11/11 (100%) 1/5 (20%)

steroids

Full course steroids 6/15 (40%) 6/11 (55%) 1/5 (20%)

Patent Ductus Arteriosus 15/15(100%) 5/11 (45%) 0/6 (0)%

PDA treated medically 

or surgically
9/15 1/5 0/0

Surfactant therapy (%) 15/15(100%) 11/11 (100%) 0/5 (0%)

Rupture of membranes 2/15(13%) 4/11 (36%) 0/6 (0%)

>24 hours

Infection suspected 

peripartum
7/15 (47%) 6/11 (55%) 0/6 (0%)

Median days of 36 4 3

ventilation (range) (12 - 92 d) (2 - 12 d) (2-9 d)

Table 3.1. Patient characteristics. Values are shown as medians or total numbers with 

percentages in brackets.
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3.2.2 Development of BAL cell processing method

3.2.2.1 DTT

In order to analyse cells from BAL samples, it is necessary to “extract” the cells from 

the thick mucus in which they are enveloped in the airways and thus in the BAL 

sample. Various methods of obtaining cells for analysis from sputum samples have 

been tried, including addition of DTT, deoxyribonuclease (DNAse), N-acetyl-L- 

cysteine, sodium EDTA or trypsin as well as mechanical methods such as mechanical 

blending or filtration of sputum through gauze or glass wool (Tockman et al., 1995, 

Pang et al., 1995). Given the very small volume (frequently less then 1 ml) of 

neonatal BAL samples, I felt that mechanical methods were unlikely to yield 

sufficient remaining sample for analysis and could potentially damage or activate any 

cells present. The use of DTT is the most frequently cited method in the literature in a 

range of concentrations, the most frequently used being around 50 pg/ml (Lensmar et 

al., 1998, Saraiva-Romanholo et al., 2003).

DTT is a reducing agent which breaks down disulphide bonds in sputum, rendering it 

less viscous and allowing cells within a sputum sample to be liberated for analysis. I 

was concerned that the reducing effect of DTT may alter the conformation of cell 

surface markers, thus changing the binding properties of the antibodies I was using for 

flow cytometry.

Although DTT has been used frequently in studies on adult sputum, there have been 

limited descriptions of its effect on cell surface markers detected by flow cytometry 

(Dominguez-Ortega et al., 2002, Loppow et al., 2000, Qiu and Tan, 1999) and these 

did not include a number of the antibodies which I was planning to use.

I studied the effect of DTT on the detection of the cell surface markers I had chosen to 

study in our neonatal BAL samples by exposing adult peripheral blood leucocytes to 

DTT and comparing cell surface marker expression against cells from the same blood 

sample not exposed to DTT.
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Two sets of experiments were performed - firstly to assess the effect of DTT on cell 

surface marker detection by flow cytometry and secondly to determine the optimal 

concentration of DTT.

There was no difference in the mean fluorescence intensity between DTT treated and 

untreated cells using DTT at a concentration of 50 jag/ml (Figure 3.4).
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Figure 3.4 Graphs showing mean (and standard deviation) fluorescence intensity for 

19 different antibodies by flow cytometry in DTT treated and untreated peripheral 

blood neutrophils. n=6 DTT treated and 6 untreated.
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Adding DTT to clinical BAL samples according to the method described above 

produced a visible alteration in the viscosity of the mucus component of the BAL 

sample, making the cell pellet easier to resuspend with much less vigorous pipetting, 

which could otherwise potentially have activated the neutrophils.

Flow cytometry analysis showed no significant difference in the mean fluorescence 

intensity between DTT treated and untreated cells for all of the antibodies and isotype 

controls used, which suggested that DTT did not cause a change in any of the epitopes 

to which our antibodies would bind. Thus, DTT at 50 pg/ml for 15 minutes at room 

temperature was selected as the method of dealing with the mucus component of BAL 

samples in order to obtain an appropriate cell suspension for analysis, particularly for 

flow cytometry purposes. All BAL samples were treated in this way before analysis.

3.2.2.2 Working with very small numbers of cells

One of the biggest challenges of designing flow cytometry experiments on neonatal 

lung lavage samples is to be able to use the very small amount of sample available to 

obtain the largest possible amount of information. From previous studies (Mildner et 

al., 2005, Curley et al., 2004) and previous experience gained in our laboratory, I was 

able to estimate that the average return from a BAL procedure was of the order of 50- 

60% of the fluid instilled, however reported cell counts in the returned BAL varied 

widely.

Using mixed peripheral blood leucocyte populations, separated using dextran 

sedimentation, as described in section 2.2.2,1 was able to optimise antibody 

concentrations for each antibody used, working with 105 cells in 100 pi of buffer in 

each well of the 96 well plate in which the cells were being stained. The number of 

cells was then reduced to as few as 3xl04 cells with a corresponding reduction in 

antibody added and I was still able to obtain 10 000 gated events on the flow 

cytometer with similar mean cell fluorescence values when cells were analysed. It 

was then possible, once sufficient cells for cytospin preparation had been removed 

from the BAL sample, to calculate the number of aliquots of at least 30 000 cells into 

which the remaining sample could be divided for flow cytometry staining. With cell
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counts as low as 3x10 /ml or as high as 2x10 /ml, 3 templates were designed so that a 

basic level of information could be obtained from all BAL samples and additional 

data could be obtained from samples in which there was a relative abundance of cells 

(appendix 2). Even so, there were 3 BAL samples, of the 207 obtained, in which there 

were so few cells that only Annexin-V/To-Pro-3 staining for apoptosis was possible.

3.2.3 Flow cytometry of neonatal BAL samples

I was unable to find published flow cytometry plots of neonatal lung lavage, although 

some data for adult lung lavage has been published in this format (Rosseau et al., 

2000a, Guth et al., 2009). By running antibody-stained and unstained BAL cells from 

8 infants of different gestations and postnatal ages, appropriate flow cytometer 

settings were developed which could be used across the range of samples. These 8 

BAL samples were obtained from infants enrolled in another study of BAL samples in 

our department and were surplus to the requirements of the study. I am very grateful 

to Dr Phil Davies for his generosity in sharing these samples with me.

3.3 Bronchoalveolar lavage cell counts

Cell counts were performed using a haemocytometer and differentials performed by 

flow cytometry and by microscopy. The microscopy was undertaken by Sharon Gill 

using cytospins, as described in section 2.1.3.1.

3.3.1 Non-viable cells

Cells counted on the haemocytometer were stained with trypan blue (section 2.1.3 of 

Materials and Methods) to assess the viability of the BAL cells. The mean percentage 

of non-viable cells was 14.8% (range 0-60%). There was no significant difference 

between term and preterm infants (Mann-Whitney U-test, p=0.90), nor between 

babies who developed CLD and those whose RDS resolved (Mann-Whitney U-test, 

p=0.75) (Figure 3.5).
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Figure 3.5 Graph showing the median percentage o f non-viable (trypan blue positive 

staining) cells in all the BAL samples on different days o f collection. The error bars 

represent interquartile ranges.

3.3.2 Debris in BALs

From the outset it was noticeable that there was a large amount of low forward 

scatter/low side scatter material present in BAL samples which did not stain with any 

of the antibodies which I used to detect neutrophils or monocytes/macrophages by 

flow cytometry. The material was seen in the lower left-hand comer of the FSC/SSC 

plots, indicating material of small size and low granularity (Figure 3.6). It was most 

abundant in the first few days of life and reduced as the babies got older. From 

cytospins, much of this material was thought to be damaged fragments of cells and 

cell membranes, platelets and red blood cells and which I termed “debris”.
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Figure 3.6 Forward scatter (FSC) (horizontal axis) vs side scatter (SSC) (vertical 

axis) flow cytometry plots showing low forward scatter/low side scatter material 

identified as debris in BAL samples. Figure 3.6A represents a sample taken on day 1, 

figure B is a sample from the same baby on day 7 and figure C is from the same baby 

on day 20. R1 corresponds to the cells marked in red and the percentage o f the 

sample represented by the red area.

In order to further elucidate the nature of this debris, I used a phycoerythrin- 

conjugated antibody to CD59 (Mouse anti-human CD59-PE, Caltag Laboratories, 

Buckingham, UK), a complement regulatory protein (protectin) which is found on all 

human cells. Most of the material I had labelled debris was positive for CD59, 

indicating that it originated from human cells (Figure 3.7). The proportion of the 

sample that was CD59 positive however, was variable and was higher in the earliest 

BAL samples from each baby. Of the 207 samples taken, 5 were noted to be blood 

stained and these samples had very large amounts of so-called debris, an example of 

which can be seen in Figure 3.7. Additionally antibodies to CD3 and CD4 were used 

to identify lymphocytes There were no lymphocytes detected in any of the 10 BAL 

samples from different gestations and postnatal ages which were analysed for these 

markers.

The range of non-cellular (ie. CD59 negative) material varied between 0 and 90% of 

the total number of events counted by the flow cytometer for each sample. In the 

majority of samples it made up around 40% of the total event count. Debris which 

was CD59 negative stained positively for To-Pro-3, indicating the presence of DNA 

among the debris, confirming the possibility that much of the debris consisted of cell 

fragments.
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Figure 3.7 Forward scatter (horizontal axis) vs side scatter (vertical axis) plot (A) 

and histogram (B). “Debris ” in a BAL sample taken on day 16 from a preterm infant 

who developed CLD (Baby Y) is marked in red. The histogram shows only the 

material marked in red in plot shown in (A). The black line represents CD59-PE 

staining o f the “debris ” material and the blue histogram is an appropriate IgGl-PE 

isotype control.

When the amount of debris was averaged over the whole period of ventilation, 

preterm infants had significantly less debris present (p<0.0001) but it can be seen in 

figures 3.8 and 3.9 that the amount of debris in the BAL samples falls steeply over the 

first few days of life and relatively little debris remains in BALs of babies who remain 

ventilated and develop CLD. In the first 5 days of life when term and preterm infants 

can be adequately compared as the term and RDS groups are still ventilated, there was 

no significant difference between the diagnostic groups or between term and preterm 

infants.
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Figure 3.8 Graph showing median (and interquartile range (IQR)) percentage ofBAL 

sample composed o f debris. It can be clearly seen that the amount o f debris present 

was highest in the first few  days o f sampling before decreasing to a consistently lower 

level after the first week o f life.
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Figure 3.9 Graphs showing the median percentage o f BAL samples composed o f  

debris according to (A) diagnosis and (B) gestation. Error bars represent 

interquartile ranges.

For the purpose of analysis of results of FACS plots for the remainder of this thesis, 

the debris material was gated out.
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3.3.3 Total cell counts

Total cell counts obtained by haemocytometer counting were noted to be significantly 

greater in BAL fluid of preterm ventilated infants compared to term controls (Preterm 

median 1.48 xlO6cells/ml, mean 2.24 xlO6 cells/ml, range 0-15 xlO6 cells/ml; Term 

median 0.69 xlO6 cells/ml, mean 0.71 xlO6 cells/ml, range 0.07 -  1.7 xlO6 cells/ml; 

p=0.0002, Mann-Whitney U-test, Figure 3.10B). There was no significant difference 

in total cell counts between infants who went on to develop CLD (mean 2.19 x 106 

cells/ml; range xlO6 cells/ml, median 1.45 xl06cells/ml) compared to infants whose 

RDS resolved (mean 2.44 xlO6 cells/ml; x l06cells/ml, median 1.84, p=0.15, Mann- 

Whitney U-test, Figure 3.10A). However, both RDS and CLD groups were 

significantly different to term babies (Kruskal-Wallis test, p=0.0004, CLD vs term 

p<0.01, RDS vs term p<0.001).

RDS Term Preterm Term

Figure 3.10 Scatterplots showing total cell count in all BAL samples by (A) diagnosis 

and (B) gestation. Horizontal lines represent medians.

The highest recorded (peak) total cell counts in each infant were also noted to be 

significantly greater in BAL fluid of preterm ventilated infants compared to term 

controls (Preterm median 3.86 xlO6 cells/ml, mean 4.70 xlO6 cells/ml, range 0.7-10.9 

xlO6 cells/ml; Term median 1.04 xlO6 cells/ml, mean 1.033 xlO6 cells/ml, range 0.427 

-1 .7  xlO6 cells/ml; p=0.0027, Mann-Whitney U-test) (Figure 3.1 IB). There was 

again no significant difference in peak total cell counts between infants who went on 

to develop CLD (mean 5.21 x 106 cells/ml; range 1.05-10.9 xlO6 cells/ml, median 

5.09 xlO cells/ml) compared to infants whose RDS resolved (mean 3.93 xlO 

cells/ml; range 0.7-7.72 xl06cells/ml, median 3.13 xlO6 cells/ml; p=0.332, Mann- 

Whitney U test) (Figure 3.11 A).
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Figure 3.11 Peak cell count for all infants according to (A) diagnosis and (B) 

gestational group. Horizontal lines display median cell counts.

The day on which the peak cell counts occur was earliest in term babies (median day 

of peak count = day 1, mean 1.25 days), followed by RDS babies (median day 2, 

mean 2.44 days) and finally in babies who get CLD (median day 7, mean 9.5 days) 

(Figure 3.12). This may represent a delay in the ability to mount an inflammatory 

response in the group who get CLD or imply that the processes by which cells are 

removed from the lung are more efficient in term infants. When the cell counts for 

only the first 5 days of life are compared (ie. while babies from all 3 groups remain 

ventilated), the peak cell count in babies who get CLD occurs on a median of day 2.5 

(mean 2.88), implying that, while babies who develop CLD have a peak in total cell 

count during the first 5 days of life, a higher peak cell count occurs after the first 5 

days of life too.

Preterm infants who get CLD have a larger number of samples due to their continuing 

intubation and ventilation. When looking at pooled data for the whole CLD group of 

babies, an apparent second rise in the total cell count, peaking around day 21 can be 

seen in the CLD group after the RDS and term groups have been extubated. In 

practice, when cell counts are measured longitudinally, episodic spikes in cell counts 

were observed, frequently increasing from a low baseline and then returning to 

baseline following such a spike. Individual patients rarely had cell counts that 

resemble the overall median value trends, and this can be seen in the individual 

patient data in figure 3.13. Factors likely to be associated with these episodic spikes 

will be examined in more detail later in this chapter.

123



When all three diagnostic groups are compared longitudinally (Figure 3.12), a 

significant difference between the cell counts in the three diagnostic groups can be 

detected on day 5 (p=0.047, Kruskal-Wallis test) although small numbers make 

comparison between the groups difficult. The trend observed is that term infants 

generally have lower total cell counts which fall gradually until extubation, whereas 

preterm infants show a marked rise in total cell count from about day 3 until the end 

of the first week of life.

Preterm infants have consistently higher total cell counts than their term counterparts. 

Possible reasons at this stage could include immaturity of regulation of cell 

recruitment or disposal as well as possibly a different distribution of cell types within 

the total which may predispose to ongoing inflammation.
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Figure 3.12 Graphs showing longitudinal variation in median total cell count for (A) 

babies divided into groups based on diagnosis and (B) babies divided by gestational 

age. Error bars show interquartile ranges. (*p=0.047)
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Figure 3.13 Graphs o f total cell count for individual babies (only babies with 3 or more 

samples are represented). Late spikes in cell counts can be seen in infants ventilated over 

longer periods. Vertical arrow heads indicate that the BAL sample had 16S rRNA genes 

detected, implying the presence o f microbes in the sample.
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3.3.4 D ifferential counts

3.3.4.1 Comparison of BAL FACS data against BAL cytospin data

Differential counts of cells in BAL were obtained both by flow cytometry and by 

counting of cytospin preparations.
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Figure 3.14 Bland-Altman plots showing relationship between the differential count 

obtained by FACS and by microscopy o f counted cytospin preparations for (A) 

neutrophils and (B) macrophages. Horizontal dotted lines represent 95% limits o 

agreement.

Overall, the cytospin preparations gave significantly higher results for the percentage 

of neutrophils in BAL samples (Mean cytospins 73.86; mean FACS 56.14%, 

p<0.0001, Paired t-test) but there was a reasonable level of agreement between the 

two measurements (Figure 3.14A). Cytospins gave significantly lower results for the 

percentage of macrophages in BAL samples than FACS (Mean cytospins 22.0%; 

mean FACS 43.31%, p<0.0001, paired t-test) but again there was agreement between 

the two observations (Figure 3.14B). Possible reasons for this are reviewed in the 

discussion at the end of this chapter.

As identification of cell types by flow cytometry is potentially more accurate and 

enables further differentiation of sub-types of cells, data acquired by flow cytometry 

will be presented for all following cell type data.
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3.3.4.2 N eutrophil counts

Neutrophils were the predominant cell type in the majority of BAL samples, as 

identified by the expression of CD 15 on the cell surface.

Preterm infants had significantly higher neutrophil counts than their term counterparts 

(Preterm mean 0.84 xlO6 cells/ml, median 0.26 xlO6 cells/ml, range 0.01-11.12 xlO6 

cells/ml; Term mean 0.08 xlO6 cells/ml, median 0.04 xlO6 cells/ml, range 0.01-0.32 

xlO6 cells/ml; Mann-Whitney U-test, p=0.001)(Figure 3.15B). The difference in the 

absolute number of neutrophils was highly significant between CLD and term infants 

and between RDS and term infants (CLD mean 0.84 xlO6 cells/ml, median 0.25 xlO6 

cells/ml, range 0.01-11.12 xlO6 cells/ml; RDS mean 0.85 xlO6 cells/ml, median 0.62 

xlO6 cells/ml, range 0.1-3.60 xlO6 cells/ml; Term mean 0.08 xlO6 cells/ml, median 

0.04 xlO6 cells/ml, range 0.01-0.32 xlO6 cells/ml; Kruskal-Wallis test, p=0.001, CLD 

vs term <0.01, RDS vs term <0.001) although there was no significant difference 

between babies whose RDS resolved and those who developed CLD (Figure 3.15A).
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Figure 3.15 Scatterplots showing absolute neutrophil counts in BAL samples for 

babies according to (A) diagnosis and (B) gestation. Horizontal lines represent 

medians in each group.

When looking at peak values for neutrophil count, there were no significant 

differences between the peak neutrophil counts measured in the three diagnostic 

groups (Kruskal-Wallis test, p=0.089) (Figure 3.16A) or between term and preterm 

infants (p=0.095, Mann-Whitney U-test) (Figure 3.16B), however there was a 

significant difference (p<0.05) between CLD and term infants (Figure 3.16A) (CLD 

mean 3.64 xlO6 cells/ml, median 2.82 xlO6 cells/ml; RDS mean 1.50 xlO6 cells/ml, 

median 1.19 xlO6 cells/ml; term mean 0.57 xlO6 cells/ml, median 0.25 xlO6 cells/ml;
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preterm mean 2.80 xlO6 cells/ml, median 1.91 xlO6 cells/ml). This suggests that 

overall levels of neutrophils were higher in the preterm infants but that the peak levels 

attained did not differ statistically.
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Figure 3.16 Scatterplots representing peak neutrophil counts for each infant 

according to (A) diagnosis and (B) gestation. Horizontal lines indicate medians.

The days on which these peaks occurred may indicate a difference in the ability of the 

infants to recruit inflammatory cells to the lung. Neutrophil counts achieved their 

peak values earliest in term infants and babies with RDS (Term mean 2.5 days median 

2 days; RDS mean 2.5 days median 2 days) and much later in CLD (mean 10.1 days 

median 7 days) (Figure 3.17A) -  in other words the peak neutrophil counts in the 

CLD group tend to occur after almost all of their RDS and term counterparts had been 

extubated.

If data for only the first 5 days of life are compared, babies who go on to get CLD 

show a peak at a mean of 3.3 days (median 3.5 days) while RDS and term values 

remain unchanged. In other words the peak of neutrophil influx is still somewhat 

delayed in CLD infants compared to RDS and term babies. This may be a true delay 

in postnatal neutrophil influx the CLD group or may be as a result of earlier (perhaps 

antenatal) neutrophil influx in the other two groups or simply because it takes longer 

for such a large number of cells to leave the circulation and migrate into the airways.
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Figure 3.17 Graphs showing median (and interquartile range) neutrophil count over 

time according to (A) diagnostic group and (B) gestational age.
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In figure 3.17(A), it can be seen that in babies whose RDS resolved, the median 

absolute neutrophil count was higher than either of the other groups on each day 

studied. This may be partly as a result of the small number of infants in the group who 

remained ventilated for longer periods, particularly on days 5 and 6, where the result 

shown on the graph represents a “median” of only two or three babies’ results. For 

this reason, patterns of BAL fluid neutrophil counts for individual babies over the 

duration of their time on ventilation may be more informative than aggregated data. 

Data showing the BAL neutrophil counts for individual infants with 3 or more BAL 

samples is shown in Figure 3.18.
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Figure 3.18 Absolute neutrophil count (as identified by flow cytometry) for all infants 

with 3 or more BAL samples taken. Arrows represent days on which microbial DNA was 

isolated from the BAL.
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3.3.4.3 N eutrophil cell surface m arkers

Neutrophils are the first line of defence in the innate immune system. They express a 

number of molecules on the cell surface to enable them to respond to foreign material, 

which include CD 14, TLR2 and TLR4. There were fewer samples assessed for these 

markers as there were frequently insufficient cells available from the BAL sample to 

allow for the additional flow cytometry analysis which these markers required. Of the 

207 samples collected, 80 had neutrophil CD 14 assessed and 87 had TLR 2 and 4 

assessed. I attempted to assess the differences in these cell surface markers in relation 

to gestation and diagnosis as well as any changes in the markers over the duration of 

ventilation.

3.3.4.3.1 CD 14 expression on neutrophils

Quiescent adult neutrophils express low levels of CD 14 on the cell surface (Barth et 

al., 2001, Alexis et al., 2001). Eighty of the 207 BAL samples had sufficient cells 

present in order to look more closely at CD 14 expression on neutrophils. In the BAL 

samples analysed, I saw that some of the most preterm infants had a large proportion 

of the neutrophil population expressing high levels of CD 14, particularly on the first 2 

days of life (Figure 3.20 babies BB, CC and G) compared to term infants (Figure 3.20 

babies H and X). There was no significant difference in the mean CD 14 expression on 

neutrophils between term and preterm infants (p=0.63, term mean 41.43%, median 

29.24%, range 3.5-95.1%; preterm mean 36.52%, median 24.08%, range 0.2-97.2%). 

There was no significant difference between the groups on individual days or between 

term and preterm infants. There were insufficient data to separate infants with RDS 

from those who developed CLD.
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Figure 3.19 Graph showing median percentage o f neutrophils with high CD14 

expression in term and preterm infants. Error bars show interquartile ranges.
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expression in infants with 3 or more BAL samples.



3.3.4.3.2 T L R  2 and  4 expression on neu troph ils

TLR 2 and 4 are both expressed in small amounts on quiescent adult neutrophils 

(Koller et al., 2008, Harter et al., 2004) and in lower amounts in studies on neutrophils 

isolated from umbilical cord blood samples (Viemann et al., 2005, Sadeghi et al., 

2007) and are important for pathogen recognition by the neutrophil. No published 

data on TLR expression in neonatal BAL samples were found.

There was sufficient BAL sample available to study TLR expression on neutrophils in 

87 of the 207 BAL samples. The percentage of BAL neutrophils expressing TLR 2 

and TLR 4 was small, with TLR 2 expression slightly higher than TLR4 and both 

TLR 2 and TLR 4 appeared to change in their expression in parallel with one another 

from sample to sample.

Overall the percentage of neutrophils showing detectable TLR 2 expression in term 

infants was significantly more than in preterm infants even in this small sample 

(p=0.048, term mean 47.66%, median 59.05%, range 2.8-87.7%; preterm mean 

15.0%, median 8.1%, range 0.25-98.89%) (Figure 3.21 A). There was no significant 

difference between infants with RDS and those who developed CLD (p=0.159), nor 

was there any difference in TLR 2 expression between the groups on individual days.

The percentage of neutrophils expressing TLR 4 was also significantly higher in term 

infants than their preterm counterparts (p=0.041, term mean 43.89%, median 51.1%, 

range 1.77-87.7%; preterm mean 11.89%, median 5.63%, range 0-81.2%) (Figure 

3.2IB), but again there was no significance between infants with RDS and those who 

developed CLD nor between the groups on individual days.

Together these data may indicate that preterm neutrophils may have a reduced ability 

to recognise pathogens in the lung, which may allow the pathogen to persist, rather 

than be cleared and potentiate the inflammatory response within the lung.
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Figure 3.21 Graph showing median percentage o f neutrophils with high (A) TLR 2 

and (B) TLR 4 expression in term and preterm infants. Error bars show interquartile 

ranges.
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Figure 3.22 Graphs showing the percentage o f neutrophils expressing TLR 2 (black 

line) and TLR 4 (grey line) in individual infants with 3 or more BAL samples.
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3.3.4.4 Macrophages

Cells of the monocyte/macrophage lineage (MNC) were identified using 

combinations of antibodies to CD1 lb, CD 14, CD36 and HLA-DR. Macrophages were 

all CD1 lb positive as well as being either CD36 or HLA-DR positive or both.

The number of macrophages in BAL samples from preterm infants was very 

significantly higher than in term babies (Mann-Whitney U-test, p<0.0001) (Preterm 

median 0.29 xlO6 cells/ml, mean 0.48 xlO6 cells/ml; Term median 0.05 xlO6 cells/ml, 

mean 0.07 xlO6 cells/ml) (Figure 3.23B). There was however no significant difference 

between the CLD and RDS groups (Kruskal-Wallis test, p<0.0001, CLD vs term 

<0.001, RDS vs term <0.01) (CLD median 0.29 xlO6 cells/ml, mean 0.49 xlO6 

cells/ml; RDS median 0.31 xlO6 cells/ml, mean 0.43 xlO6 cells/ml; Term median 0.05 

xlO6 cells/ml, mean 0.07 xlO6 cells/ml) (Figure 3.23A).
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Figure 3.23 Scatterplots showing absolute macrophage count in BAL samples 

according to (A) diagnosis and (B) gestation. Horizontal lines represent medians.

When peaks in the macrophage count are assessed, there is a significant difference 

between the peak number present in term and preterm infants (Mann-Whitney U-test, 

p=0.021) (Term mean 0.13 xlO6 cells/ml, median 0.13 xlO6 cells/ml; preterm mean 

1.34 xlO6 cells/ml, median 1.07 xlO6 cells/ml) (Figure 3.24B). Also, when comparing 

the different diagnostic groups, there is a statistically significant difference between 

the peak macrophage count in term infants and those who get CLD (p<0.05) but not 

between RDS and CLD or between RDS and term babies (Term mean 0.13 xlO6 

cells/ml, median 0.13 xlO6 cells/ml; RDS mean 0.93 xlO6 cells/ml, median 0.49 xlO6 

cells/ml; CLD mean 1.58 xlO6 cells/ml, median 1.60 xlO6 cells/ml; Kruskal-Wallis 

test, p=0.023) (Figure 3.24A).
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Figure 3.24 Scatterplots showing peak macrophage counts fo r  each infant based on 

(A) diagnosis and (B) gestation. Horizontal lines represent medians.

The days on which peak macrophage counts occurred differed in the three groups; 

with term babies experiencing their highest macrophage counts on day 1 (median 1 

day, mean 1.25 days), babies with RDS a little later (median 2 days, mean 2.4 days) 

and CLD even further delayed (median 7 days, mean 9.1 days). These days do not 

agree exactly with the data shown in Figure 3.25 as the peak days were calculated by 

taking the median (or mean) of the days on which the highest count occurred in each 

baby, taking no account of the absolute number of macrophages on that day.

If only the first 5 days of life were reviewed, in order to compare groups of babies 

who were all still ventilated and exclude any later macrophage count increases in the 

group of babies who remained intubated for longer periods, the peak count in the 

CLD group was experienced after an average of 4.1 days (median 4 days), which is 

still later than the other two groups. This may imply a delayed monocyte influx in the 

CLD group relative to the other two groups or simply a longer time being required to 

reach the higher count, similar to that seen in neutrophil influx.

When viewed longitudinally, there is a significant difference among the 3 groups on 

day 5 (Kruskal-Wallis test, p=0.049) (Figure 3.25B) but numbers in each group are 

too small to make further comparisons between the groups. When term and preterm 

infants are compared, preterm infants have significantly higher macrophage counts on 

day 4 and day 5 than their term counterparts (Mann-Whitney U-test, p=0.019 for day 

4; Preterm mean 0.37 xlO6 cells/ml, median 0.27 xlO6 cells/ml; Term mean 0.03 xlO6 

cells/ml, median 0.03 xlO6 cells/ml and p=0.010 for day 5; Preterm mean 0.56 xlO6
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cells/ml, median 0.35 xlO6 cells/ml; Term mean 0.05 xlO6 cells/ml, median 0.04 xlO6 

cells/ml) (Figure 3.25A).
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Figure 3.25 Graphs representing median (and IQR) macrophage count over the 

duration o f the period o f ventilation in all infants, according to (A) diagnosis (* 

p=0.049) and (B) gestation (*p=0.019, **p=0.010).
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Once again, similar to neutrophil counts, aggregated data for groups of babies tend to 

obscure the “spikes” in macrophage count which occur in individual infants, when 

cell counts rise rapidly over a few days from a relatively low baseline and then return 

to baseline levels. Data for individual infants are shown in Figure 3.26.
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3.3.4.5 Sub-types of macrophages

I attempted to differentiate various sub-types of macrophages within the population. 

Macrophages with a monocyte-like phenotype which are immature, newly recruited 

macrophages have higher CD 14 expression than mature alveolar macrophages (Maus 

et al., 2002a). It may be that these immature macrophages have an enhanced ability to 

produce cytokines and other pro-inflammatory mediators (Maus et al., 2002b,

Rosseau et al., 2000a) or reduced ability to phagocytose apoptotic or necrotic cells 

(especially neutrophils). This may account for some of the differences in cell counts 

seen between the different groups of babies.

The median number of CD 14 high expressing macrophages (immature, monocyte-like 

phenotype) is significantly greater in the preterm group of infants (Mann-Whitney U- 

test, p=0.0002) (Figure 3.27) and also when data were compared over time, the 

preterm group showed slightly higher numbers of CD 14 high macrophages than term 

infants (Figure 3.28).
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Figure 3.27 Scatterplot showing the number o f CD 14 high macrophages in term and 

preterm infants. Horizontal lines represent medians.
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Figure 3.29 Scatterplot showing the ratio o f CD 14 high macrophages to the total 

macrophage count. Horizontal lines represent medians.

The immature macrophage phenotype was seen in a larger proportion of the total 

macrophage population in babies of preterm gestations (Mann-Whitney U-test, 

p=0.006) (Preterm median 0.55, mean 0.56; Term median 0.20, mean 0.28) (Figure
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3.29). It was not possible to compare diagnostic groups as there were insufficient data 

on this parameter for babies in the RDS group.
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Figure 3.30 Graph showing ratio o f immature: total macrophages in BAL from term 

and preterm infants. (Median and IQR shown)

Looking at median values (Figure 3.30) once again obscures the individual variation 

in immature macrophage counts which is more easily seen in data from individual 

babies (Figure 3.31). When individual infant data are reviewed, it can be seen that in a 

number of the most premature infants, immature macrophages frequently make up 

almost 100% of the macrophage population.
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Figure 3.31 Graphs showing immature (CD 14 high): total macrophage count ratios in 

individual infants who had 3 or more samples in which CD 14 on macrophages was 

measured. Vertical arrows again represent samples in which 16S rRNA genes were 

detected.
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Other subtypes of macrophage were also identified. CD36 may confer the ability to 

phagocytose apoptotic neutrophils and may thus be a limiting factor in the clearance 

of apoptotic neutrophils. In keeping with the higher total macrophage counts in 

preterm infants, the number of CD36 + cells was significantly higher in these babies 

too (Preterm mean 0.314 xlO6 cells/ml, median 0.163 xlO6 cells/ml; Term mean 0.039 

xlO6 cells/ml, median 0.039 x 106 cells/ml; Mann-Whitney U-test, p<0.0001) (Figure 

5.32).

******
TermPreterm

Figure 3.32 Scatterplot showing the number o f  CD36 positive cells in term and 

preterm infants. Horizontal lines represent medians.

When looking at the data longitudinally, there was a statistically significantly higher 

number of CD36 positive macrophages in preterm infants on day 5 (Mann-Whitney 

U-test, p=0.0333) (Term mean 0.023 xlO6 cells/ml, median 0.02 xlO6 cells/ml; 

preterm mean 0.35 xlO6 cells/ml, median 0.21 xlO6 cells/ml) (Figure 5.33B).
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Figure 3.33 Graphs showing fluctuations in median CD36 positive macrophage count 

over time in babies by (A) diagnosis and (B) by gestation. (* p=0.033)
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However, when the number of CD36 + cells was analysed as a proportion of the total 

number of macrophages, there was no significant difference in the proportion of 

macrophages that were CD36 + in term and preterm infants (Figure 5.34). There were 

also no differences in the ratio of CD36 + macrophages to total macrophage count 

when compared over time (Figure 3.35)
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Figure 3.34 Scatterplot showing the ratio o f CD36 positive macrophages to the total 

macrophage count in term and preterm infants. Horizontal lines represent medians.
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HLA-DR is expressed at low levels by monocytes and at higher levels by alveolar 

macrophages (Hallwirth et al., 2004). Higher numbers of cells with higher HLA-DR 

expression may indicate the presence of mature alveolar macrophages in the airways. 

Again, as a result of higher overall macrophage numbers, there were statistically more 

HLA-DR strongly positive macrophages present in preterm infants (p=0.0005)

(Figure 3.36).
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Figure 3.36 Scatterplot showing the number o f HLA-DR positive cells in term and 

preterm infants. Horizontal lines represent medians, (p=0.0005)

When viewed longitudinally, there was a significant difference in cell numbers 

between term and preterm infants on day 5 (Mann-Whitney U-test, p=0.015) (Term 

mean 0.037 xlO6 cells/ml, median 0.037 xlO6 cells/ml; preterm mean 0.382 xlO6 

cells/ml, median 0.23 xlO6 cells/ml) (Figure 3.37).
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When considered as a proportion of the total macrophage count, there was a higher 

proportion of HLA-DR positive macrophages in the term group of babies (Mann- 

Whitney U-test, p=0.013) (Preterm median 0.83, mean 0.74; Term median 1.00, mean 

0.91) (Figure 3.38).
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Figure 3.38 Scatterplot showing ratio o f mature (HLA-DR positive macrophages): 

total macrophage count. Horizontal lines represent medians.
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macrophages in BAL according to (A) diagnosis and (B) gestation. (* p=0.017)
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On day 1 there is a significant difference in ratio of HLA-DR positive macrophages to 

total macrophages between term and preterm infants (Mann-Whitney U-test, p=0.017) 

(Term mean 0.94, median 1; preterm mean 0.60, median 0.67) (Figure 3.39) but the 

difference was not significant thereafter (day 2 Mann-Whitney U-test, p=0.0947).

The pattern appears to be of a high proportion of macrophages present in the form of 

alveolar macrophages and lower proportions of monocyte-like macrophages in term 

infants initially but fewer mature macrophages and more immature cells in preterm 

infants. This can be seen in data from individual infants shown in figure 3.40. The 

proportion of both immature and mature macrophages fluctuates in the preterm group 

over the first few weeks of life and this may be related to the presence of infection 

which will be discussed in more detail later.
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Figure 3.40 Graphs showing macrophage markers (CD 14 -  broken line and grey triangles, 

CD36-solid black line and boxes, HLA-DR -  dotted line and open boxes) for individual 

infants with 3 or more BAL samples over the course o f their ventilation period.
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3.3.5 R elationship of neutrophils to m acrophages

As described in section 3.3.4.2 and 3.3.4.3, neutrophil and macrophage counts both 

reach their peak values on later days in CLD babies than in either of the other groups. 

Neutrophil and macrophage numbers also reach their highest levels on the same day 

of life in each group.

CLD RDS Term

Median neutrophil peak day 7 (3.5) 2 2

Median macrophage peak day 7(4) 2 1

Table 3.2 Median days on which peak neutrophil and macrophage counts occurred. 

Figures in brackets indicate on which o f the first 5 days (median) the peak cell counts 

occurred in CLD babies, in order to obtain a fairer comparison with RDS and term 

babies who were only ventilatedfor around 5 days.

When data for individual babies are viewed, it can be seen that neutrophil counts and 

macrophage counts tend to increase simultaneously, rather than consecutively. These 

increases in cell counts may be associated with infection and this will be examined in 

more detail later.
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Figure 3.41 Graphs showing relationship between neutrophil count (solid line) and 

macrophage count (dotted line) for individual babies with 3 or more BAL samples.
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Figure 3.42 Graphs showing ratio o f neutrophils to macrophages for individual babies 

with 3 or more BAL samples.
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When median data are viewed longitudinally, patterns for the ratio between 

neutrophils and macrophages are very similar (Figure 3.43) -  all groups showing an 

early neutrophil spike. There is a second spike which occurs very quickly in RDS and 

term babies but this second rise in the ratio appears to be delayed in CLD babies. The 

later samples (beyond day 7) in CLD babies continue to have a ratio of neutrophils: 

macrophages of >1, indicating an excess of neutrophils until the final sample which 

may be indicative of ongoing neutrophil recruitment or failure of neutrophil clearance 

from the lung, both of which indicate an ongoing inflammatory process in infants 

developing CLD. Term babies seldom seem to have neutrophil numbers in excess of 

the number of macrophages present (ie ratio < 1).
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Figure 3.43 Graphs showing longitudinal relationship between neutrophils and 

macrophages (in the form o f neutrophil: macrophage ratio) in BAL fluid according to 

(A) diagnosis and (B) gestation.
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3.3.6 D ifferences between the  groups on day 1

There is much debate about the antenatal determinants of CLD. It is ethically and 

technically almost impossible to measure the inflammatory process within the lung 

prior to birth. The first available observation of the process was made by us at 12 

hours of age in the majority of infants. The first BAL was performed at 12 hours of 

age in order to have negligible impact on the clinical care of the infant -  preterm 

infants are usually intubated and given a dose of exogenous surfactant via the 

endotracheal tube within seconds to minutes after delivery (unit policy dictates that 

surfactant should ideally be given prior to the first breath in extremely preterm 

infants) -  a BAL procedure at this point would prejudice this process, so BAL was 

performed at 12 hours of age, just prior to the second dose of surfactant being given, 

when the infant would routinely have endotracheal tube suctioning performed.

I compared results of values obtained for all the aforementioned parameters on the 

first day of life in order to ascertain whether any differences existed between the 

groups of infants at this early stage. This may shed light on the in-utero environment 

of the lungs before birth as well as possibly providing some form of prognostic 

indicator of the likely progression of lung disease at a very early stage in the clinical 

course. Such prognostic ability may facilitate specific clinical care interventions to 

prevent or reduce the severity of CLD.

There were 12 babies in the CLD group, 9 with RDS and all 5 term babies who had 

information available about cell counts on day 1 of life. When term babies were 

compared with preterm infants who recovered from RDS and with infants who 

developed CLD, I found no significant differences between the groups for total cell 

count on the first day of life (Kruskal-Wallis test, p=0.24; Term mean 1.027 xlO6 

cells/ml, median 1.04 xlO6 cells/ml; RDS mean 3.345 xlO6 cells/ml, median 1.95 xlO6 

cells/ml; CLD mean 1.702 xlO6 cells/ml, median 1.336 xlO6 cells/ml). As a group, 

preterm infants had slightly higher cell counts on day 1, but this was not a statistically 

significant difference (Mann-Whitney U-test, p=0.17; Term mean 1.027 xlO6 cells/ml, 

median 1.040 xlO6 cells/ml; Preterm mean 2.406 xlO6 cells/ml, median 1.76 xlO6 

cells/ml).
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Figure 3.44 Scatterplots showing total cell counts on day 1 fo r  (A) each diagnostic 

category and (B) the two gestational groups.

Adequate differential cell count data on day 1 were available for 11 babies who 

developed CLD, 7 of the RDS group and 4 of the term infants. The absolute number 

of macrophages was similar in all 3 groups (Kruskal-Wallis test, p=0.297; Term mean 

0.076 xlO6 cells/ml, median 0.077 xlO6 cells/ml; RDS mean 0.874 xlO6 cells/ml, 

median 0.025 xlO6 cells/ml; CLD mean 0.139 xlO6 cells/ml, median 0.023 xlO6 

cells/ml) (Figure 3.45B and D). The median number of neutrophils present on the first 

day of life in the lungs of babies whose RDS resolved was skewed mainly by 2 infants 

who had the highest day 1 neutrophil counts of all the 32 infants recruited. However, 

there was still no significant difference between the groups (Kruskal-Wallis test, 

p=0.279; Term mean 0.07 xlO6 cells/ml, median 0.067 xlO6 cells/ml; RDS mean 1.26 

xlO6 cells/ml, median 0.77 xlO6 cells/ml; CLD mean 0.19 xlO6 cells/ml, median 0.04 

xlO6 cells/ml) (Figure 3.45A and C) when the analysis was performed after excluding 

these 2 infants.
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Figure 3.45 Scatterplots showing neutrophil and macrophage counts on the first day 

of life according to (A and B) diagnostic group and (C and D) gestation.

When macrophage subtypes were assessed, there was no significant difference in the 

proportion or absolute number of macrophages which expressed CD36 and the 

proportion which were HLA-DR positive was also not quite significant (p=0.0502) 

between any of the diagnostic groups. Again the RDS group had two infants with 

results that were markedly different to the remainder of the group. There were 

insufficient data on CD 14 expression on day 1 to make an appropriate comparison.
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Figure 3.46 Scatterplots showing the number o f (A) CD36 positive and (B) HLA-DR 

positive macrophages in BAL fluid on Day 1 and the proportion o f cells which 

expressed (C) CD36 and (D) HLA-DR.

When term and preterm infants were compared, absolute numbers of HLA-DR+ and 

CD36+ cells were similar but, when expressed as a proportion of the total 

macrophage population, term infants had significantly more of their macrophages 

present in mature form on day 1 (p=0.015, median term 1, median preterm 0.62). This 

higher proportion of mature (HLA-DR expressing) macrophage from the outset in 

term infants may represent a significant difference between term and preterm infants, 

particularly with respect to phagocytosis of invading microbes and apoptotic cells.
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Figure 3.47 Scatterplots showing the absolute numbers (A and B) and relative 

proportions (C and D) o f macrophage subtypes in term and preterm infants on day 1.
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3.3.7 The role of infection

3.3.7.1 R elationship of BAL cell counts to the  presence of infection

The importance of infection in the development of CLD and the association with 

neutrophil influx into the lung was examined by detecting the presence of bacterial 

16S ribosomal RNA genes in the BAL cell pellet by PCR as described in section 2.1.5 

of chapter 2. The PCR was carried out by Mr Michael Beeton.

Human mitochondrial cytochrome oxidase (HMCO) is a marker of the presence of 

human mitochondrial DNA. Sufficient cell pellet, as judged by the presence of 

HMCO within the samples, was present in 177/207 samples from 31 of the 32 infants. 

In the remaining 30 samples there was insufficient cell pellet remaining for PCR after 

material had been processed for flow cytometry. Genes for 16S rRNA were detected 

in 35/177 (19.8%) of the tested lavage samples and at some stage in 14/31 infants 

(45.2%).

Significantly more infants who went on to develop CLD had 16S rRNA genes 

detected in their BAL fluid at some point (11/15 or 73.3%) compared to infants whose 

RDS resolved (2/10 or 20%), Chi square test, p=0.0089. The number of preterm 

babies who had 16S rRNA detected (11 CLD + 2 RDS = 13/25 or 52%, 95% Cl 

33.50% - 69.97%) was not statistically greater than that of term control infants (1/5 or 

20%, 95% Cl 2.03% - 64.04%) p=0.1904, probably partly as a result of the small 

number of term infants involved (Table 3.3).
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Babies with 

16s rRNA 

detected

(%)

Babies with 

16s rRNA 

not

detected

(%)

TOTALS

CLD 11 (73.3) 4 (26.7) 15

RDS 2(20) 8(80) 10

Term 1(20) 4(80) 5

Died 0(0) 1(100) 1

TOTALS 14 (45.2) 17 (54.8) 31

Table 3.3 Table showing number (and percentage) o f infants in each diagnostic 

category with and without 16S rRNA detected at any point during their period o f  

ventilation.

Both antenatal and postnatal infection have been implicated in the pathogenesis of 

CLD. In order to further define the possible roles for each of these infections, infants 

with 16S rRNA genes detectable in the first 3 days of life were assumed to have 

acquired these in the antenatal period. Beyond the first 3 days of life, it is more likely 

that micro-organisms in the lung may have been acquired postnatally, while the infant 

was ventilated on the neonatal unit.

There was no significant difference between CLD and RDS babies when compared 

for the presence of 16S rRNA genes in the first 3 days of life (3/15 or 20% in CLD vs 

0/10 or 0% in RDS) (Chi square test, p=0.471) (Table 3.4), nor was there a difference 

between term (1/5 or 20%) and preterm infants (3 CLD + 0 RDS = 3/25 or 12%) 

(p=0.823) in the first 3 days. This may indicate that the hospital-acquired infections 

associated with prolonged ventilation are important in the pathogenesis of CLD, 

rather than antenatal bacterial infection as is commonly thought. However, numbers 

in each group were small.
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Babies with 

16s rRNA 

detected by 

day 3 (%)

Babies with 

16s rRNA 

not

detected by 

day 3 (%)

TOTALS

CLD 3 (20) 12 (80) 15

RDS 0(0) 10(100) 10

Term 1(20) 4(80) 5

Died 0(0) 1(100) 1

TOTALS 14 (45.2) 17 (54.8) 31

Table 3.4 Table showing number (and percentage) o f infants in each diagnostic 

category with and without 16S rRNA detected in BAL samples during the first 3 days 

o f life.

Of the 129 samples from infants developing CLD which were judged to be adequate 

by the presence of HMCO, 28 (21.7%) had 16S rRNA genes detected, which was not 

significantly more than the 6/30 (20%) samples from infants whose RDS resolved, 

p=0.8374. There was also no significant difference in the number of 16S rRNA 

positive samples from preterm infants (34/159, 21.4%) and the 1/14 (7.1%) from term 

control infants (p=0.2035) (Table 3.5). The very small number of term controls makes 

interpretation of this result difficult.
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Samples 

with 16s 

rRNA 

detected

(%)

Samples 

with 16s 

rRNA not 

detected

(%)

TOTALS

CLD 28 (21.7) 101 (78.3) 129

RDS 6(20) 24 (80) 30

Term 1 (7.1) 13 (92.9) 14

Died 0(0) 4(100) 4

TOTALS 35 (19.8) 142 (80.2) 177

Table 3.5 Table showing number (and percentage) o f BAL samples from infants in 

each diagnostic category with and without 16S rRNA detected.

While more infants who developed CLD had 16S rRNA detectable in their BAL 

samples, a similar proportion of individual BAL samples from CLD and RDS babies 

had 16S rRNA genes present. Overall there were 11 babies with a total of 28 positive 

samples who developed CLD and 2 babies whose RDS resolved who supplied a total 

of 6 positive samples.

This information is difficult to interpret but may indicate that babies who develop 

CLD have more than one episode of infection with each being of short duration and 

babies whose RDS resolves tend to have only a single episode prior to being 

extubated. This pattern can be seen from the episodes of 16S rRNA positive BAL 

samples marked on individual babies’ data (arrows on Figures 3.13, 3.18, 3.26, 3.31 -  

particularly babies CC, G and O), but may be more evident from a larger sample. 

Other possible explanations for the differences observed between the frequency of 

detection of 16S rRNA genes between CLD and RDS babies could be that RDS 

infants are only colonised with microbes and CLD babies develop a true infection or 

that the immune response to the presence of a microbe differs between the two groups 

-  neither of these conclusions can be drawn from the data I collected.
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Data were, however, collected on the type of organism from which the 16S rRNA 

genes originated by sequencing of the 16S rRNA PCR product. It can be seen in 

Figure 3.49 that the two infants whose RDS resolved had S. epidermidis identified on 

sequencing of the 16S rRNA genes detected in their BAL samples, an organism not 

generally thought to be a pathogen in the neonatal lung; whereas babies who 

developed CLD had a variety of other organisms identified (but including S. 

epidermidis), which are generally considered to be pathogenic, particularly in the 

neonatal lung.

3.3.7.2 Total cell counts in infection

Samples in which 16S rRNA was detected had significantly higher total cell counts 

than samples which were negative for 16S rRNA (Mann-Whitney U-test, p=0.0001) 

(16S negative median 1.18 xlO6 cells/ml, mean 1.74 xlO6 cells/ml; 16S positive 

median 2.20 xlO6 cells/ml, mean 2.90 xlO6 cells/ml). There was no significant 

difference in the peak cell counts (16S positive median 4.21 xlO6 cells/ml, mean 5.11 

xlO6 cells/ml; 16S negative median 1.95 xlO6 cells/ml, mean 3.33 xlO6 cells/ml) 

(Mann-Whitney U-test, p=0.118)
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Figure 3.48 Scatterplot showing total cell count in BAL according to presence or 

abscence o f 16S rRNA genes in the same sample. Horizontal lines represent medians.
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When the 16S rRNA genes were sequenced, the highest cell counts were associated 

with organisms considered to be pathogens in neonatal practise and lower cell counts 

associated with the presence of S. epidermidis (Figure 3.49).
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Figure 3.49 Scatterplot ofpeak cell count for each diagnostic group. The filled boxes 

were 16S rRNA gene positive and the empty boxes were negative. Sequencing data for  

16S rRNA gene positive organisms is also shown.

3.3.7.3 Neutrophil counts in infection

Neutrophil counts were significantly higher in samples where 16S rRNA genes were 

detected (Mann-Whitney U-test, p=0.0003) (16S negative median 0.12 xlO6cells/ml, 

mean 0.53 x 106cells/ml; 16S positive median 0.67 xlO6cells/ml, mean 1.22 xlO6 

cells/ml) (Figure 3.50) but there was no significant difference in the peak neutrophil 

counts related to the presence of infection (Positive mean 3.65 xlO6 cells/ml, median

2.04 x 106 cells/ml; negative mean 1.37 x 106 cells/ml, median 0.91 xlO6 cells/ml) 

(Mann-Whitney U-test, p=0.105).

188



I . l  v f t f t f r _____
16S no t d e te c te d  16S d e te c te d

Figure 3.50 Scatterplot showing neutrophil counts in samples with and without the 

presence o f 16S rRNA genes. Horizontal lines represent medians.

Similar to the total cell count, the highest peak neutrophil counts in each baby were 

frequently associated with the presence of an organism considered to be pathogenic in 

the neonatal lung (Figure 3.51). Looking at the data longitudinally for individual 

infants shows that spikes in cell counts are often temporally associated with the 

detection of 16S rRNA genes in the cell pellet. (See individual baby data in Figure 

3.13 previously.)
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Figure 3.51 Scatterplot ofpeak neutrophil count for each diagnostic group. The filled  

boxes were 16S rRNA gene positive and the empty boxes were negative. Sequencing 

data for 16S rRNA gene positive organisms is also shown. One sample (from baby 

BB) was identified as 16S rRNA gene positive but no organism could be sequenced. 

There was no differential cell count for baby A (term) or B (CLD- H. influenza 

detected).

3.3.7.4 Macrophage counts in infection

The macrophage count is also significantly higher in infected babies (Mann-Whitney 

U-test, p=0.0003; 16S negative median 0.17 xlO6 cells/ml, mean 0.40 xlO6 cells/ml; 

Positive median 0.44 xlO6 cells/ml, mean 0.72 xlO6 cells/ml). This suggests that the 

overall total cell count increase is contributed to by both neutrophils and 

macrophages. Once again, there is no significant difference in the peak macrophage 

counts (positive mean 1.07 xlO6 cells/ml, median 0.74 xlO6 cells/ml; negative mean 

1.23 xlO6 cells/ml, median 0.51 xlO6 cells/ml) (Mann-Whitney U-test, p=0.786). The 

individual baby data shown in Figure 3.26 previously also confirm a temporal 

association between the detection of 16S rRNA and an increase in the macrophage 

count.
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Figure 3.52 Scatterplot showing macrophage count in samples with and without 16S 

rRNA detected.
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Figure 3.53 Scatterplot o f peak macrophage count for each diagnostic group. The 

filled boxes were 16S rRNA gene positive and the empty boxes were negative. 

Sequencing data for 16S rRNA gene positive organisms is also shown. One sample 

(from baby BB) was identified as 16S rRNA gene positive but no organism was able to 

be sequenced. There was no differential cell count for baby A (term) or B (CLD- H. 

influenza detected).
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3.3.7.5 Ureaplasma infection/colonisation

In addition to the detection of 16S rRNA for bacterial infection, BAL samples also 

underwent culture in Ureaplasma specific medium (as described in 2.1.6 above) in 

order to detect the presence of Ureaplasma spp. which have been implicated in the 

pathogenesis of CLD but whose exact role remains highly controversial.

In this studied group of patients, infants who went on to develop CLD had 

significantly higher rates of Ureaplasma detected in their BAL fluid at some point 

(8/15 or 53.3%) compared to infants whose RDS resolved (1/10 or 10%) (Chi square 

test, p=0.027). The number of preterm babies who had Ureaplasma detected (9/25 or 

36%) was not statistically greater than that of term control infants (1/5 or 20%) 

(p=0.488).

Babies with 

Ureaplasma 

detected

(%)

Babies with 

Ureaplasma 

not

detected

(%)

TOTALS

CLD 8 (53.3) 7 (46.7) 15

RDS 1(10) 9(90) 10

Term 1(20) 4(80) 5

Died 1(100) 0(0) 1

TOTALS 11 (35.5) 20 (64.5) 31

Table 3.6 Table showing the prevalence o f  Ureaplasma spp. in BAL samples.

In line with current practice and protocols on the neonatal unit, the majority (7/11) of 

infants in whom Ureaplasma was detected did not receive any specific treatment for 

this. Four babies were treated with macrolide antibiotics which resulted in the 

organism being cleared from 2 infants, a highly resistant organism persisting in one 

baby and the organism briefly being cleared before returning after antibiotic treatment 

was discontinued in the fourth infant. All 4 of these babies went on to develop CLD.
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33.1.6 Differential cell counts in babies with Ureaplasma

3.3.7.6.1 Neutrophils

There was no significant difference in either percentage (Mann-Whitney U-test, 

p=0.5839) or absolute neutrophil count (Mann-Whitney U-test, p=0.5388) in babies in 

whom Ureaplasma was detected.
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Figure 3.54 Scatterplot o f neutrophil counts in babies with or without Ureaplasma 

detected. Horizontal lines represent medians.

3.3.7.6.2 Macrophages

Both the percentage macrophages and absolute macrophage counts (Figure 3.55) were 

significantly higher in babies in whom Ureaplasma was detected (Percentages: Mann- 

Whitney U-test, p=0.0045; Negative median 14.2%, mean 18.8%; Positive median 

21.2%, mean 24.5%) (Counts: Mann-Whitney U-test, p=0.038; Negative median 0.21 

xlO6 cells/ml, mean 0.43 xlO6 cells/ml; Positive median 0.31 xlO6 cells/ml, mean 0.53 

xlO6 cells/ml). Peak macrophage counts were also significantly higher in babies with 

positive cultures for Ureaplasma (Mann-Whitney U-test, p=0.006; Negative median

0.40 xlO6 cells/ml, mean 0.77 xlO6 cells/ml; Positive median 1.76 xlO6 cells/ml, mean 

1.74 xlO6 cells/ml).

193



A A

; ; m v i

No U reap lasm a U reap lasm a  d e te c te d

Figure 3.55 Scatterplot o f macrophage counts in babies with or without Ureaplasma 

detected. Horizontal lines represent medians.
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Figure 3.56 Scatterplot o f peak macrophage counts o f babies with and without 

Ureaplasma. Horizontal lines represent medians.

33.1.1 Antenatal infection

Once again, I sought to understand if any differences between antenatally infected and 

uninfected infants could be found, by using data from the first day’s BAL sample as 

there is evidence to suggest that the majority of cases of spontaneous preterm labour 

occur as the result of an infective process (Gomez et al., 1997), even if a specific 

organism cannot be isolated or identitifed (Klein and Gibbs, 2004, Sanchez, 1993). I



compared preterm infants bom following spontaneous preterm labour against preterm 

infants bom by elective Caesarean section, when the mother was not in labour.

Preterm labour Elective Caesarean 
section (no labour)

Number of babies 20 6
Median birthweight 
(range)

0.905 kg 
(0.56-1.92 kg)

0.965 kg 
(0.7-1.18 kg)

Median gestation 
(range)

26+z
(23+4- 3 1 +2)

28+1
(27+° -  29+3)

Number with Ureaplasma 
diagnosed

9 0

Number with PROM 5 1
Number with clinical 
suspicion of infection*

11 3

Table 3.7 Table showing characteristics o f preterm infants born following 

spontaneous preterm labour or by elective Caesarean section.

*Clinical suspicion o f infection based on one or more o f the following being recorded 

in the maternal notes prior to delivery: pyrexia, offensive smelling vaginal discharge, 

elevated white blood cell count or C-reactive protein, result o f high vaginal swab 

shows organism/s not considered to be normal flora, uterine tenderness or irritability 

suggestive o f chorioamnionitis.

Infants bom following spontaneous preterm labour were not significantly different in 

weight (p=0.784) from their electively delivered counterparts. The preterm labour 

group had a median gestation which was statistically significantly lower than the 

elective Caesarean group (p=0.0224), possibly related to intrauterine infection 

precipitating the earlier onset of labour in these pregnancies.

It is immediately apparent that all the babies in whom Ureaplasma was detected were 

in the preterm labour group (Chi square test, p=0.042). Ureaplasma is well recognised 

as a cause of preterm labour (Embree and Embil, 1980, Kataoka et al., 2006) and the 

transmission from mother to infant has been shown to be highest in the most preterm 

infants (Alfa et al., 1995). The number of infants in each category with PROM was
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not significantly different (Chi square test, p=0.67), nor was the number with 

suspected infection (Chi square test, p=0.82).

In the preterm labour group, 11/20 infants developed CLD compared to 4/6 of the 

electively delivered infants (Chi square test, p=0.612). Larger numbers of patients 

would be required to make an adequate statistical comparison between the two 

groups.

3.3.7.7.1 Cell counts on day 1 in relation to mode of delivery

The total cell count just failed to reach significance in infants bom following 

spontaneous preterm labour compared to those bom by elective Caesarean section 

(p=0.051), however a larger sample may have produced a significant result.
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Figure 3.57 Scatterplot showing total cell count on the first day o f life for infants born 

following spontaneous onset o f  labour against infants born by elective Caesarean 

section without labour. Horizontal lines represent medians.

There were no significant differences between the two groups with respect to 

differential counts or macrophage subtypes.
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Figure 3.58 Scatterplots comparing infants following spontaneous labour compared 

with those born by elective Caesarean section before the onset o f labour. There were 

no significant differences in (A) proportion o f the sample made up o f neutrophils, (B) 

proportion o f the sample made up o f macrophages, (C) neutrophil count, (D) 

macrophage count, (E & G) proportion or absolute numbers o f macrophages 

expressing CD36 or HLA-DR (F & H).
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3.4 Sum m ary  of key results

1. BAL samples contain large amounts of “debris” and as much as 20% of cells 

may be non-viable.

2. Total cell counts as well as neutrophil and mononuclear cell counts were 

significantly higher in preterm infants but there were no obvious differences in 

cell counts between babies whose RDS resolved and those who progressed to 

CLD.

3. Neutrophils from term BAL samples express more TLR 2 and TLR 4 on the 

cell surface than BAL neutrophils from preterm infants, but the amounts of 

surface CD 14 expression were not significantly different.

4. Mononuclear cells have a more immature phenotype in preterm infants, with 

term infants having a higher proportion of mature alveolar macrophages even 

on the first day of life.

5. Cell counts peak earliest in term babies and those with RDS and later in babies 

who get CLD.

6. Almost no difference can be seen between the groups on the first day of life, 

apart from the higher proportion of mature macrophages present in term 

lavages.

7. There is a significant association between the presence of 16S rRNA genes in 

BAL samples and the development of CLD. This appears to be related to 

infection beyond the first 3 days of life in babies who get CLD. Babies who 

have samples positive for 16S rRNA have higher total, neutrophil and 

mononuclear cell counts.

8. There is a significant relationship between the presence of Ureaplasma spp. 

and the development of CLD and babies with Ureaplasma have significantly 

higher macrophage counts in BAL samples.

9. There were no appreciable differences between infants delivered by elective 

Caesarean section and those bom following spontaneous preterm labour, apart 

from the prevalence of Ureaplasma being significantly higher in the preterm 

labour group.
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3.5 Discussion

3.5.1 Overview

This portion of the study provides a detailed analysis of the inflammatory cell 

infiltrate in the lungs of a group of ventilated term and preterm infants using flow 

cytometry. The study includes 32 infants, of which 27 were less than 32 weeks’ 

gestational age. It is the only study, to my knowledge, that examines in such detail, by 

flow cytometry the cellular constituents of BAL samples in newborn term and preterm 

babies.

The median gestational age for the infants who developed CLD was 26 +0 weeks and 

for those whose RDS resolved it was 27+1 weeks. This was statistically significant 

and it is to be expected that those infants who did not develop CLD were more 

mature. Despite this difference in gestational age, there was no statistically significant 

difference in birthweight between the groups, although babies whose RDS resolved 

had a median birthweight 150 g more than the median for the CLD group. This is 

probably in keeping with a widely held view among neonatologists that infants who 

are “stressed” in-utero (reflected by reduced growth) experience less severe postnatal 

lung disease.

In the majority of the preterm cases, at least one dose of antenatal steroids had been 

administered to the baby’s mother prior to delivery. Less than half of the mothers 

received a second dose of antenatal steroids because, as a result of preterm labour, 

delivery of the infant occurred prior to the second dose being due. This may be a 

source of bias in this study because of the small sample size. Statistics for the neonatal 

unit reveal this cohort of infants to be slightly unusual, in that unit statistics reveal that 

88.5% of infants bom at less than 32 weeks’ gestation in 2007 received a full course 

of antenatal steroids (Cherian et al., 2007). All the preterm infants were intubated at 

birth and received exogenous surfactant therapy. All infants bom with respiratory 

distress received postnatal antibiotics for at least 48 hours, until blood cultures taken 

at birth could be confirmed as negative. Antibiotics were continued for 5 or 7 days if 

infection was proven or clinically suspected.
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The presence of a PDA which required medical or surgical intervention was a 

significant feature of the CLD group. PDA has not been shown to be an independent 

risk factor for CLD (Amon et al., 1993, Fraser et al., 2004). It may be that in this 

relatively small sample, the presence of a PDA in association with lung disease which 

showed signs of clinical progression towards CLD, prompted the attending clinician 

to choose medical or surgical PDA treatment. PDA closure may not have been 

undertaken in the RDS group as these babies may have been felt to be improving 

without the need for PDA closure. Additionally, the signs or symptoms of PDA may 

result in a longer duration of ventilation and the use of higher pressures and inspired 

oxygen levels, each increasing the likelihood of an “at-risk” infant developing CLD.

Our study benefits from the presence of a group of term control infants, who were 

ventilated for non-respiratory reasons. Although there were only five infants recruited 

to this arm of the study, I was able to observe the responses of largely “normal” term 

infant lungs to low pressure, low volume ventilation in air or <28% oxygen and 

compare these with the findings in preterm infants. Recruitment of patients into the 

term control group was not easy due to the stringent entry criteria used in order to try 

to ensure the “normality” of the lungs of the term group. Clearly, healthy term infants 

are not usually ventilated. The main criteria for ventilation of term infants tend to be 

respiratory distress (e.g. secondary to infection or transient tachypnoea of the 

newborn), which would frequently require oxygen concentrations >28%, a key 

exclusion criterion of our study, as hyperoxia has documented pro-inflammatory 

effects on lung (Davis et al., 1991). Alternatively, term infants may be ventilated for 

neurological problems, such as hypoxic ischaemic encephalopathy (HIE). Such 

infants were also excluded from the term control group as the period of hypoxia 

responsible for producing HIE, would also be very likely to trigger inflammatory 

changes within the lung. All of our control group were infants who underwent surgery 

for gastroschisis on the first day of life and required ventilation post-operatively. 

Gastroschisis usually occurs as an isolated anomaly with no associated lung 

pathology, so that at birth the lungs should be healthy. I recognise that gastroschisis 

may be a cause of systemic illness and that even healthy lungs may not remain 

“normal” after a period of ventilation, however, it remains the best control group 

available and a reasonable comparison between ventilated term and preterm lungs. 

Gastroschisis is not a common condition (4.6/10 000 births (Drewett et al., 2006) and
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not every child bom with gastroschisis requires post-operative ventilation for more

than a few hours, which explains why only five term control infants were recruited.

Many studies which have examined lung lavage samples from newborn infants have 

used tracheal aspirate fluid (TAF), however, these samples largely reflect upper 

airway secretions. By using BAL fluid this study analyses inflammatory infiltrates 

from the lower airways, which may be particularly important in CLD where alveolar 

changes (larger, simplified alveoli), rather than more proximal airway abnormalities, 

are seen.

3.5.2 Development of flow cytometry analysis of BAL samples

Flow cytometry has not previously been published as a method for analysis of the 

celllar constituents of neonatal BAL samples. It has, however been used fairly 

extensively in studies of adult lung disease, including COPD and ARDS (Matute- 

Bello et al., 1997, Rosseau et al., 2000a, Pletz et al., 2004). Using the published 

information in the adult literature as a guide, I developed a method for the processing 

and analysis of neonatal BAL samples by flow cytometry, showing that the use of 

DTT as a mucolytic had no effect on any of the antigens which I studied.

Flow cytometry is a potentially more accurate method for identification of cell types 

and surface antigens than previously published techniques for analysis of neonatal 

BAL samples, which include immunocytochemistry and light microscopy and which 

rely on human observation for counting and recording cell types (Grigg et al., 1991, 

Kotecha et al., 2003, Oei et al., 2003). I found significant differences between total 

cell counts and differential counts based on the method used to analyse the cells, 

namely microscopy or flow cytometry.

There are a number of possible reasons for this:-

cytospins varied in quality, dependent on the amount of mucus and/or cellular 

debris present which made counting more difficult and complex.
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when very little BAL material was available, there were very few cells on the 

cytospin slide and counted cytospin may not have been representative of the 

whole sample.

when cells on cytospin slides were counted, at least 300 cells were counted for 

each sample in duplicate cytospins. Flow cytometry parameters were set up to 

count at least 10 000 events (with debris gated out). Thus flow cytometry 

differentials are more likely to be accurately representative of the sample. (The 

more events counted on a cytospins, the closer the result was to FACS results.) 

the flow cytometer requires a single cell suspension in order to accurately 

count and identify cells. At times there was clumping of BAL cells due to cell 

activation and/or the presence of mucus. These cell clumps would not be 

accurately counted by the flow cytometer but could be observed and counted 

more accurately on a cytospin slide.

clusters of apoptotic neutrophils on a cytospin slide may have been within a 

macrophage but the macrophage may not have been clearly identified and thus 

its contents would have been individually counted and the macrophage not 

counted. The flow cytometer would simply count the macrophage with its 

ingested contents as 1 large macrophage, not several neutrophils, 

there was some inter-observer difference noted when I re-counted (blinded) a 

proportion of the cytospins

inflammatory or immature macrophages (more monocyte-like phenotype) may 

not have been accurately counted as macrophages because of their small size 

and altered staining on cytospins when compared to more mature 

macrophages.

diff-quik staining of cytospins produced results which were very variable in 

quality and therefore ease of counting. This may have contributed to difficulty 

in correct identification of some cells.

The use of flow cytometry, although potentially more accurate than counted 

cytospins, for the detailed analysis of neonatal BAL samples is a very time consuming 

process. For optimal results in this study, BAL cells were stained with antibodies and 

analysed on the flow cytometer immediately following the lavage procedure to avoid 

any deterioration in the sample quality or any ongoing necrosis or apoptosis of cells. 

The process of obtaining the BAL, separating and staining the cells and FACS
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analysis took at least 4 hours per sample. By virtue of the study design, in which the 

first lavage was done when the infant was 12 hours old to minimise the impact of the 

procedure on clinical care, then repeated daily for 7 days, a large number of the BAL 

samples were taken at night and out of normal working hours, making the acquisition 

of data for the study relatively arduous. Fixation of stained BAL samples using 

paraformaldehyde to allow flow cytometry analysis to be delayed until “office hours” 

was considered but rejected for routine use as fixation changes the forward and side 

scatter patterns of cells on flow cytometry and would only have saved around 30 

minutes per sample. Cytospins, on the other hand, can be made relatively quickly after 

the BAL has been performed and then either fixed or stained for analysis at a more 

convenient time and may thus be more suited for routine clinical applications.

3.5.3 Debris and non-viable cells

A proportion of each BAL sample contained viable cells which could be identified as 

neutrophils or macrophages by either flow cytometry or cytospin slides but there was 

a large amount of non-viable debris in many of the BAL samples. The amount of 

viable material increased with increasing duration of extra-uterine life.

In this study, I think it is likely that the debris is composed mainly of cell fragments as 

shown by CD59 and To-Pro 3 staining, revealing the debris to originate from human 

cells and/or contain DNA. Some of the debris may be artefact, created by the 

processing of the BAL sample. Although every care was taken to be gentle in any 

manipulation of the samples, it is probable that some damage to the cells may be 

caused by the pipetting and centrifugation required to study them. Debris may also 

originate from dead or damaged cells sloughed in-utero during lung growth and 

development -  this may account for the larger amount of debris in initial samples. The 

initiation of an inflammatory process in the lungs may generate more debris in the 

early stages which then reduces as the process becomes established, but this is merely 

speculative as the debris component of BAL samples was not studied in detail.

No other study has reported the amount of non-viable material in infant BAL samples. 

Although there is no significant difference in the amount of debris between groups, 

the composition of the debris may in fact be variable and have an impact on the
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outcome for the infant. The disposal of debris and the pro- or anti-inflammatory 

effects of this may also be of significance in the resolution of RDS or the 

development of CLD.

3.5.4 Cell counts

As with previous studies, this study demonstrates increasing cell counts, particularly 

neutrophils over the first few days of life in preterm infants. In published cohorts, cell 

counts were significantly greater in lavage fluid from infants who went on to develop 

CLD compared to infants whose RDS resolved (Merritt et al., 1983, Ogden et al., 

1984, Watterberg et al., 1994), however this was not found in our group of babies, 

probably as a result of the relatively small number of infants studied. These papers 

also describe a pattern of elevated cell counts which remain high in infants who 

develop CLD compared to counts that rise over the first few days of life but then fall 

in infants whose RDS resolves. It important to note that most such studies have 

grouped data, which will have the effect of smoothing out an individual infant’s 

fluctuations in cell counts. By analysing individual infants as well as grouped data, 

our study demonstrates that whilst overall (median) cell counts increase and remain 

elevated in CLD, individual babies tend to have cell counts which increase in an 

episodic manner and then return to lower levels. Most babies show a cell count rise in 

the first few days of life and then babies who remain intubated have further sporadic 

rises in cell count. Nevertheless, increases in cell counts, and particularly that of 

neutrophils, in BAL fluid demonstrate that inflammatory changes occur.

a) Neutrophil cell surface markers

CD 14 expression on blood neutrophils has been reported to be lower in preterm 

infants than in adults or term babies (Henneke et al., 2003), however I found the 

expression of CD 14 appeared similar between neutrophils from BAL samples in term 

and preterm infants. Individual infants in the preterm group had a large proportion of 

the neutrophil population expressing high levels of CD 14, particularly on the first 2 

days of life. This may reflect antenatal exposure to infection as CD 14 is important in 

the recognition of pathogens by the cells and may be upregulated in the presence of 

LPS (Coimbra et al., 2004).
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Overall the percentage of neutrophils showing detectable TLR 2 and TLR 4 

expression in term infants was significantly more than in preterm infants even in this 

small sample. TLR 2 expression on leucocytes has been found to be slightly reduced 

in term infants compared to adults in one study of cord and adult blood (Viemann et 

al., 2005) but very similar in another (Sadeghi et al., 2007), however in the second 

study, response to TLR 2 signalling via MyD88 was reduced in newborns. Our 

finding of a significant reduction in the proportion of lung neutrophils expressing 

TLR 2 may indicate a further impairment in the ability of the preterm newborn to 

respond to pulmonary infection.

TLR 4 expression has been reported to increase with gestational age (Sadeghi et al., 

2007) on blood cells and this may hold true for cells which have migrated into the 

airways. My finding of a reduced percentage of lung neutrophils expressing TLR 4 in 

preterm infants is supportive of this. It has been noted that while TLR 2 is upregulated 

markedly in neonatal sepsis, no such alterations are seen in TLR 4 (Viemann et al.,

2005).

b) Macrophages

Macrophages show similar patterns of increase to the total cell count and neutrophil 

count, also showing sporadic peaks in association with the detection of infection in 

the BAL sample. Flow cytometry enables a detailed look at the different sub-types of 

macrophage present in BAL samples and this has not previously been undertaken in 

neonatal BAL fluid. Alveolar monocyte and macrophage phenotypes have been 

studied by flow cytometry in adults with both healthy and diseased lungs (Taylor et 

al., 2000, Umino et al., 1999, Ward et al., 2001). All agree that the study of alveolar 

macrophages by this method is useful but complicated by the high levels of 

autofluorescence of the macrophages and all the studies use different markers to 

classify and differentiate the cells. The only study of alveolar macrophage markers in 

the paediatric population (Grigg et al., 1999) studied BAL fluid from children from 7 

days to 17 years of age using immunocytochemistry and found that relative 

immaturity of alveolar macrophages may be a contributor to increased severity of 

pulmonary infection in young children. BAL samples from preterm infants in our
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study had higher numbers of monocyte-like (CD 14 high) macrophages than term 

babies. Preterm infants also had a higher proportion of the total macrophage count in 

the form of monocyte-like (CD 14 high) macrophages than term babies. Term infants 

had almost all their macrophages displaying high levels of HLA-DR, a marker of a 

mature alveolar macrophage, whereas in preterm infants, this proportion was lower. If 

day 1 alone is reviewed, term babies have a median of around 90% of their 

macrophages expressing high levels of HLA-DR, compared to just over 60% in the 

preterm group.

Together, this implies that the macrophage population in preterm infants is altogether 

less mature at delivery than in term infants. This immature macrophage population 

may be present as a result of rapid and ongoing recruitment of monocytes to the lung 

in the face of continuing inflammation. Immaturity may render the macrophage less 

able to cope with phagocytosis of pathogens, possibly leading to infection becoming 

established rather than being cleared. Immature (monocyte-like) macrophages have 

been shown to have augemented release of pro-inflammatory mediators in adults 

(Rosseau et al., 2000a, Maus et al., 2002c, Maus et al., 2001) and, although this has 

not yet been proven in infants, it is likely that the higher proportion of immature 

macrophages in preterm babies could also alter the ability of the macrophage 

population to modulate cytokine production and lead to further, excess neutrophil 

recruitment, which may overwhelm the macrophage capacity to clear the effete 

neutrophils. In addition, immature macrophages may be less able to phagocytose 

apoptotic neutrophils and this will be discussed in chapter 4. As a result, a large 

number of neutrophils is able to accumulate in the ventilated preterm infant lung.

c) Patterns of influx

The timing of neutrophil versus macrophage influx is of particular note. Previous 

studies (Kotecha et al., 2003) showed a total cell count which rose from birth and 

peaked on about day 4 of life in infants with RDS and on day 10 in infants who 

developed CLD. Our cohort showed peak total cell counts on day 2 in RDS and day 7 

in CLD compared to day 1 in term infants. The Kotecha et al paper only compared 

samples from preterm infants taken twice weekly and not daily as in our project, thus 

possibly missing important peaks in cell counts. Additionally, cell counting by
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cytospins and haemocytometer preparations may have contributed to the differences 

between our project and previously published work as these are to some extent 

operator dependent.

The macrophage count in this study reached its peak on day 10/11. Our data from the 

current cohort show that neutrophil and macrophage counts appear to increase almost 

simultaneously. This perceived difference may be related to the method of cell 

identification (cytospins in Kotecha et al compared to FACS in this study) and also to 

the small sample sizes available in studies of this nature. The Kotecha et al paper also 

did not perform daily samples during the first week of life which may imply that the 

peak cell counts which I observed early in the course of ventilation (days 3 - 4 )  were 

simply missed due to the sampling schedule used.

Not only is the timing of influx of different cell types of interest, but the timing of cell 

influx in the different diagnostic categories is also interesting. Term babies experience 

their peak total cell counts within the first 24 hours, followed by RDS babies and then 

CLD babies have highest cell counts at almost 3 days of age (when looking at first 5 

days alone) or day 7 (for entire ventilated period, but this is influenced by cell count 

fluctuations related to possible infective episodes later in the period of intubation). In 

order to try to elucidate factors which may differentiate between the groups very early 

in their ventilatory course and to shed some light on possible antenatal 

predeterminants of the course of pulmonary inflammation, various parameters were 

analysed on day 1 of life alone. No significant differences in total or differential cell 

counts were observed on the first day of life and for this reason it is unlikely that a 

cell count or differential count from a first day BAL sample would be clinically useful 

in the early identification of infants at highest risk of CLD.

d) Infection

A striking feature of all the longitudinal data for cell counts in individual babies is the 

sudden episodic increases that were observed. The most likely explanation for these 

sudden increases is the innate immune response to pulmonary infection. Ventilated 

preterm infants are at high risk of developing infections and much of neonatal care is 

devoted to preventing or treating these. All infants bom with respiratory distress on
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our unit are started on benzylpenillicin and gentamicin to treat potential infection and 

stringent precautions are in place to minimise nosocomial infection. Despite this, 

episodes of proven or suspected sepsis are common.

Identification of infection in neonates is difficult. Clinically, a variety of signs 

including temperature instability, poor perfusion, increased ventilatory requirements, 

changes in the infant’s usual behaviour or activity levels or poor feed tolerance may 

be noticed. Neonates are frequently treated for “presumed” or “suspected” sepsis 

based on clinical suspicion as all of these signs are non-specific and may not be 

present in the early stages of infection. Laboratory findings such as raised (or 

reduced) white cell counts, reduced platelet counts or elevated C-reactive protein may 

guide clinical judgement and cultures of blood, urine, airway secretions or 

cerebrospinal fluid may or may not identify pathogenic organisms. Special 

investigations such as X-rays may further assist in diagnosis of infection but X-ray 

findings, particularly chest X-ray features associated with infection, may lag behind 

clinical findings both in onset and resolution of changes.

Culture of BAL fluid is the best clinical method to identify a chest infection and 

identify an organism, however growth of a specific organism is frequently difficult to 

obtain given the small volumes of BAL fluid obtained and the widespread and early 

use of antibiotics when infection is suspected. The use of PCR to detect genes coding 

for 16S rRNA has been shown to increase sensitivity of bacterial detection in a 

number of clinical settings compared to standard cultures, such as in amniotic fluid 

(Markenson et al., 1997, Oyarzun et al., 1998) and in cystic fibrosis (Rogers et al.,

2006) and it is now widely used in a research setting. One study has used this 

technique in neonatal BAL fluid (Miralles et al., 2005), however, this only sought the 

presence of 16S rRNA genes on the first day of life and focused mainly on the role of 

antenatal infection on preterm labour. One previous study has used 16S rRNA genes 

to specifically examine the link between infection and pulmonary inflammation in the 

development of CLD (Miralles et al., 2005).

Although infection has been implicated in the development of CLD, there are 

surprisingly relatively few studies to support this. Antenatal infection, particularly 

with Ureaplasma urealyticum has been implicated in the onset of preterm labour
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(Goldenberg et al., 2000) and may be an independent risk factor for the development 

of CLD (Schelonka et al., 2005). Postnatal infection is less well examined. Several 

studies (Rojas et al., 1995, Van Marter et al., 2002, Liljedahl et al., 2004) found an 

association with systemic infection and the development of CLD. Cordero et al 

(Cordero et al., 1997) found that colonisation of the airways with Gram negative 

bacteria was associated with the development of CLD and Groneck et al (Groneck et 

al., 2001) demonstrated increased perinatal infections in tracheal aspirate fluid of 

infants who develop CLD.

Using PCR techniques to identify 16S rRNA genes, I demonstrated the presence of 

bacterial DNA in one fifth (35/177) of BAL samples. This may reflect true lower 

airway bacterial infection, although it is also possible that contamination could occur 

from the endotracheal tube through which the suction catheter must pass to perform 

the BAL. Among babies who developed CLD 11/15 had microbial DNA detected in 

their BAL sample at some stage, compared to 2/10 of the RDS group. The use of 

these PCR techniques would support the hypothesis that development of CLD is 

associated with the presence of bacteria. When the data are reviewed for only the first 

3 days of life, in an attempt to discriminate between antenatally and postnatally 

acquired organisms, the relationship between the presence of 16S rRNA genes and the 

development of CLD is not significant. Although the numbers are small, as this study 

was attempting to develop a methodology for neonatal BAL analysis by flow 

cytometry and not powered to detect differences in the development of CLD related to 

infection, this may suggest that it is infection in those babies who remain intubated 

which may be the cause of the lung injury that leads to the development of CLD, 

rather than antenatally acquired organisms.

The predominant organism detected in this cohort of infants was S. epidermidis. It 

was the only organism identified in the group of babies whose RDS resolved, while 

infants in the CLD group had a variety of organisms identified, including S. 

epidermidis but also a larger number of organisms which are widely recognised as 

pathogenic. The role of S. epidermidis in the neonatal lung is unclear. It is an 

organism which is frequently associated with indwelling venous or arterial catheters 

and S. epidermidis bacteraemia is always promptly treated with antibiotics and 

removal of the catheter, however S. epidermidis may equally colonise the
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endotracheal tube and be found in lung lavage samples. Many neonatal clinicians 

regard this as a contaminant, introduced during endotracheal suction, and will not 

routinely treat an infant for isolation of S. epidermidis from endotracheal secretions. 

Recently, more attention has been paid to the role of S. epidermidis, in particular its 

interaction with the neonatal immune system (Hartel et al., 2008). S. epidermidis 

colonisation of the endotracheal tube may be truly innocuous, however infection of 

the lung itself might be more harmful and the difference between endotracheal tube 

colonisation and true lung infection may help to explain the presence of S. 

epidermidis in both RDS and CLD groups. However, with respect to S. epidermidis, it 

has been previously shown that S. epidermidis is a weaker inducer of the neutrophil 

inflammatory response than an organism like S. aureus (Nilsdotter-Augustinsson et 

al., 2004), which may also in part account for our findings that S. epidermidis 

detection may be less frequently associated with the development of CLD than 

detection of other organisms. Further knowledge of the role of this organism may be a 

useful addition to neonatal care but this would require differentiation of colonisation 

of the endotracheal tube from infection in the lung itself and may thus entail the use of 

an animal model.

Ureaplasma was considered separately from other types of infection as its role in the 

development of CLD is far more controversial among neonatologists, possibly 

because its role in precipitating preterm labour and delivery is difficult to separate 

from the role of prematurity in the development of CLD (Embree and Embil, 1980, 

Schelonka and Waites, 2007, Kataoka et al., 2006). Also, treatment of Ureaplasma 

infection or colonisation has not been shown to reduce the development of CLD, 

although there is very little evidence for this conclusion (Mabanta et al., 2003).

This study supports a significant relationship between the development of CLD and 

the presence of Ureaplasma spp. in the preterm lung.

Overall, our data suggest that the presence of bacteria in the lung is associated with 

increased inflammation within the airways, as evidenced by elevated cell counts. As 

neutrophils enter the lungs they may release their proteases such as elastase and 

MMP-9 as well as reactive oxygen species in response to pathogens. These proteases 

and reactive oxygen species may be responsible for the tissue injury and abberant
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lung growth that is central to the development of CLD. Levels of human neutrophil 

elastase were measured in our samples and its role will be explored further in chapter

5.

3.5.5 Conclusion

In this chapter I have presented flow cytometry data on the cellular component of 

BAL fluid from a group of 32 ventilated term and preterm infants. Detailed flow 

cytometry analysis of BAL cells in this population of patients had not been previously 

published.

I have tried to describe the nature and progress of the inflammatory response in these 

infants and attempted to relate the number, type and sub-type of cells present to the 

development of CLD. Infants who develop CLD have higher cell counts and a larger 

proportion of the pulmonary mononuclear cell population are present in a more 

immature form, which may signify that immaturity of the innate immune system 

predisposes these preterm infants to a more uncontrolled or dysregulated 

inflammatory response and the development of CLD. Longitudinal data for individual 

infants over their entire ventilation course may be more informative regarding the 

development of CLD than looking at groups of babies due to the rapid and variable 

fluctuations in cell counts in individual babies, particularly in response to infection. 

Neither total nor differential cell counts on the first day of life were able to detect 

which infants might go on to develop CLD.

I also related the flow cytometry findings to the presence of bacterial 16S rRNA genes 

and Ureaplasma spp. in the lavage samples to show that infants in whom either 

organism is detected are a greater risk of developing CLD.
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Apoptosis

212



Chapter 4 

Apoptosis

4.1 Introduction

In chapter 3 I described the cellular component of the inflammatory response in the 

newborn lung, however once inflammatory cells have arrived in the airways, it is 

necessary for them to be removed again in order for the inflammatory process to be 

resolved. A lack of adequate or appropriate resolution of the inflammatory response 

has been linked with the development of CLD (Kotecha et al., 2003).

Cells, particularly neutrophils, are removed from the lung in a number of ways. In 

particular, neutrophils may undergo apoptosis and ingestion by macrophages, which 

helps to resolve inflammation, or they may undergo necrosis, resulting in a 

magnification of the inflammatory cascade. I hypothesised that the development of 

CLD may be linked to a reduction in neutrophil apoptosis, leading to a greater number 

of viable neutrophils remaining in the lung causing tissue injury and ongoing 

inflammation. Additionally, the immature macrophage phenotype demonstrated in 

chapter 3 may have an impact on phagocytosis of neutrophils that have become 

apoptotic, resulting in apoptotic neutrophils undergoing secondary necrosis, further 

increasing inflammation and tissue injury.

In this chapter I shall examine neutrophil apoptosis in BAL samples and endeavour to 

understand the relationships between neutrophil apoptosis and the development of 

CLD. Firstly, I shall attempt to further describe the BAL neutrophil population in 

terms of cell viability, apoptosis or necrosis, hypothesising that babies who go on to 

develop CLD will have fewer apoptotic and more viable and necrotic neutrophils 

present in the lung, contributing to tissue injury. I will also look at the impact of 

infection on neutrophil apoptosis, necrosis and viability in BAL samples. I will review 

data for the first few days of life in an attempt to determine if there is a parameter that 

may be predictive for the development of CLD. Additionally, I shall attempt to 

understand the relationship between the presence of macrophages in BAL samples 

and the apoptotic neutrophil population.
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4.2 Detection of apoptotic cells by cytospins vs FACS

The extemalisation of phosphatidylserine (PS) on the cell membrane is one of the 

early signs of apoptosis. Annexin-V is a protein of the annexin family which 

preferentially binds to negatively charged phospholipids like PS in the presence of 

Ca2+. Changes in PS asymmetry can be detected before morphological changes 

associated with apoptosis have occurred and before the integrity of the cell membrane 

has been lost. The use of a DNA stain (To-Pro 3) aids the differentiation of necrotic 

(Annexin V +, To-Pro 3 +) from apoptotic (Annexin V +, To-Pro 3 -) cells.

Neutrophils were gated on forward/side scatter plots, based on their typical size and 

granularity. This gating was confirmed to be around neutrophils by assessing CD 15 

positivity. The Annexin V and To-Pro 3 characteristics of these cells were then 

assessed.

TV  'apoptotic

viablê

Figure 4.1 Flow cytometry plots showing (A) gating on neutrophils (R2) and (B) 

Annexin- V (FL2) and To-Pro 3 (FL4) staining for the gated population.

Using flow cytometry it is possible to detect apoptosis before the morphological 

changes that can be seen on cytospins become apparent, therefore I expected a higher 

percentage of apoptotic cells to be detected by FACS and this was seen in our results, 

where the median percentage of the neutrophil population identified as apoptotic was 

12.38% by FACS and only 1.52% on counted cytospins (Mann-Whitney U-test, 

p<0.0001; Cytospin mean 3.51%, median 1.52%; FACS mean 13.05%, median
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12.38%) (Figure 4.2). Data that follow in this chapter are those obtained by flow 

cytometry, rather than on counted cytospins.
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Figure 4.2 (A) Scatterplot showing the percentage o f apoptotic cells in each BAL 

according to two different methods, namely counted on cytospin preparations and 

detected by FACS analysis. Horizontal lines represent medians.

(B) Bland-Altman plot showing comparison between cytospins andflow cytometry for  

detection o f apoptotic cells in BAL samples. Horizontal dotted lines represent 95% 

levels o f agreement.

4.3 Apoptotic neutrophils in BAL samples

The total number of apoptotic cells was not significantly different between either term 

and preterm infants (Preterm median 0.026 xlO6 cells/ml, mean 0.105 xlO6 cells/ml; 

Term median 0.011 xlO6 cells/ml, mean 0.018 xlO6 cells/ml; Mann-Whitney U-test, 

p=0.122), or between any of the diagnostic groups (CLD median 0.024 xlO6 cells/ml, 

mean 0.103 xlO6 cells/ml; RDS median 0.029 xlO6 cells/ml, mean 0.115 xlO6 

cells/ml; Term median 0.011 xlO6 cells/ml, mean 0.018 xlO6 cells/ml; Kruskal-Wallis 

test, p=0.111), although it can be seen that preterm infants, regardless of diagnosis, 

had a tendency to have higher numbers of apoptotic neutrophils present in BAL 

samples (Figure 4.3). This is not surprising in view of the higher absolute number of 

neutrophils present in preterm BAL samples.

215



101,

s  10°- 
□
8
=  1 0 ’ -  
a
0
S 1 0 2-0>

=  10 -3-1
f10-<-
10

xek$x
•7
•••Tit*

......

CLD RDS Term

10’n

S  10 ° -  
3 
8
= 1 0 ’J

310-2-
a»

I  1 ° -3 .

flÔ -
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Figure 4.3 Scatterplots (using log scale) showing the absolute number o f apoptotic 

neutrophils in BAL samples according to (A) diagnosis and (B) gestation. Horizontal 

lines represent medians.

However, when the percentage of the neutrophil population which was apoptotic was 

analysed, a significantly higher percentage of the neutrophil population was apoptotic 

in term infants when compared to preterm infants (Preterm median 12.38%, mean 

13.83%; Term median 21.62%, mean 25.68%; Mann-Whitney U-test, p=0.0009) 

(Figure 4.4B). Babies with RDS and those with CLD had very similar proportions of 

the neutrophil population in apoptosis (CLD median 12.52%, mean 13.71%; RDS 

median 10.46%, mean 14.48%; Term median 21.62%, mean 25.68%; Kruskal-Wallis 

test, p=0.0032; CLD vs term <0.01, RDS vs term <0.01) (Figure 4.4A). In other 

words, although preterm infants had higher numbers of neutrophils in BAL samples 

than their term counterparts, the proportion of the neutrophils which were apoptotic 

was significantly smaller in the preterm group.
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Figure 4.4 Scatterplots showing the percentage o f the neutrophil population which 

was apoptotic in BAL samples, according to (A) diagnosis and (B) gestation. 

Horizontal lines represent medians.
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When the data are viewed longitudinally over the entire duration of the ventilated 

period (Figure 4.5), term babies appear to have a sudden surge in the proportion of the 

neutrophil population which is apoptotic over the first 3 days of life and have 

consistently higher percentages of apoptotic neutrophils on all but the first day (Figure 

4.6). There is a statistically significant difference between term and preterm infants on 

day 3 (Figure 4.6). The median percentage of the neutrophil population which is 

apoptotic is very similar between all the groups of babies on day 1 and there is no 

statistically significant difference between the groups on day 2 either (Term mean 

26.61%, median 25.79%; preterm mean 16.04%, median 14.94%; Mann-Whitney U- 

test, p=0.342). However, there is a significant difference between term and preterm 

infants on day 3 (Term mean 42.96%, median 42.96%; preterm mean 13.23%, median 

10.06%; Mann-Whitney U-test, p=0.019). After this point, there are too few data in 

the term group to allow for meaningful comparisons to be made as all but 2 of the 

babies had no usable data for days 4 and 5 due to most having been extubated and 

others having very low total cell counts which did not allow sufficient cells to be 

analysed by flow cytometry for apoptosis. No significant difference in the percentage 

of neutrophils which were apoptotic was found between preterm babies who 

developed CLD and those whose RDS resolved on days 1-7.
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Figure 4.6 Scatterplots showing the percentage o f the neutrophil population which is 

apoptotic, comparing term and preterm infants on (A) day 1, (B) day 2 and (C) day 3.

According to figure 4.5 (B), the peak percentage of apoptotic neutrophils is achieved 

in term infants on day 3 and the proportion of apoptotic cells in term infants is 

consistently higher than in preterm infants. The highest proportion of apoptotic cells 

is present in preterm infants on day 5 (if only the first 5 days of life are considered) 

but median proportions of apoptotic neutrophils rise gradually in the preterm group to 

reach their highest level in the final (day 27) BAL sample.

When looking longitudinally at either numbers or proportions of apoptotic cells, 

grouped data for preterm infants show some initial day-to-day variations in apoptotic 

cells followed by a very slowly increasing proportion of apoptotic cells as the CLD 

babies approach the 27th day of life. However, when data from individual babies are 

reviewed, the slow increase in median apoptotic cells can be seen to be contributed to 

by short duration, episodic increases and decreases in the proportion of apoptotic
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Figure 4.7 Graphs showing percentage o f neutrophil population which is apoptotic 

for all babies with 3 or more BAL samples. Vertical arrows represent samples in 

which 16S rRNA was detected.
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There is also a significant difference in the peak percentage of apoptotic neutrophils 

among the 3 groups (CLD mean 20.24%, median 15.52%; RDS mean 10.64%, 

median 7.12%; Term mean 29.53%, median 32.02%; Kruskal-Wallis test, p=0.0395) 

(Figure 4.8). Despite the apparent trend, seen in Figure 4.7, among individual infants 

developing CLD to have higher percentages of apoptotic neutrophils in later B AL 

samples, very little difference can be seen in the median percentage of peak apoptotic 

neutrophils between the first 5 days of life (12.5%) and the whole ventilated period 

(15.5%).

Term Term

Figure 4.8 Scatterplots showing the highest percentage o f apoptotic cells reached in 

each individual infant in (A) the entire ventilated period and (B) the first 5 days o f  

life. Horizontal lines represent medians in each group.

It might be expected that the proportion of apoptotic neutrophils would fluctuate in 

parallel with the total neutrophil count or with the proportion of the total cell count 

made up of neutrophils. In figure 4.9 it can be seen that, in many babies, while 

neutrophil counts are relatively low, the percentage of apoptotic neutrophils are 

relatively high but there are also periods when the neutrophil count and percentage 

apoptotic cells appear to rise simultaneously. Figure 4.10 shows a significant linear 

relationship between the number of neutrophils present and the number of apoptotic 

neutrophils. This may indicate that, in addition to a reduction in the percentage of 

apoptotic neutrophils in preterm infants, lung injury also occurs as a result of an 

inability to clear away any apoptotic neutrophils, which go on to become necrotic.
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Figure 4.9 Graphs showing relationship between the proportion o f apoptotic 

neutrophils and the total neutrophil count in individual infants with 3 or more BAL 

samples. (Solid line indicates absolute neutrophil count, broken line indicates 

percentage o f apoptotic neutrophils.)
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Figure 4.10 Scatterplot showing linear relationship between neutrophil count and 

number o f apoptotic neutrophils. R2=0.5371, p<0.0001

4.4 Viable and necrotic neutrophils

In addition to considering apoptotic neutrophils, it is important to consider that viable 

and necrotic neutrophils may play a role in lung injury and in the development of 

CLD as they are more likely to release inflammatory mediators and agents of tissue 

damage such as elastase, metalloproteinases and reactive oxygen species than cells 

undergoing apoptosis.

4.4.1 Viable neutrophils in BAL samples

There are significantly more viable neutrophils (Annexin V To-Pro 3 -) in preterm 

than term babies (CLD median 0.14 xlO6 cells/ml, mean 0.47 xlO6 cells/ml; RDS 

median 0.37 xlO6 cells/ml, mean 0.47 xlO6 cells/ml; Term median 0.03 xlO6 cells/ml, 

mean 0.04 xlO6 cells/ml; Kruskal-Wallis test, p=0.0006, CLD vs term <0.01, RDS vs 

term<0.001) (Preterm median 0.15 xlO6 cells/ml, mean 0.47 xlO6 cells/ml; Term 

median 0.03 xlO6 cells/ml, mean 0.04 xlO6 cells/ml; Mann-Whitney U-test, 

p=0.0008). This was not unexpected due to the higher total number of neutrophils in 

preterm BAL samples.
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Figure 4.11 Scatterplots showing the viable neutrophil count in BAL samples 

according to (A) diagnosis and (B) gestation. Horizontal lines represent medians.

When the percentage of viable neutrophils is considered as a proportion of the total 

neutrophil population, no significant difference is observed among term, RDS and 

CLD babies (CLD median 62.46%, mean 59.97%; RDS median 59.84%, mean 

57.77%; Term median 50.95%, mean 49.72%; Kruskal-Wallis test, p=0.076), 

however, there is a significantly higher proportion of viable neutrophils in preterm 

infants when considered as a group (Preterm median 61.87, mean 59.62; Term median 

50.95, mean 49.72; Mann-Whitney U-test, p=0.026).
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Figure 4.12 Scatterplots showing the percentage o f the BAL neutrophils which were 

viable according to (A) diagnosis and (B) gestation. Horizontal lines represent 

medians.

When data for the percentage of viable neutrophils are viewed longitudinally over the 

entire length of the ventilation period, it can be seen that all 3 groups of infants have 

similar proportions of their neutrophil population as viable cells initially and that



infants who develop CLD have a proportion of viable neutrophils around a median of 

60% for most of the second, third and fourth weeks of life.
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Figure 4.13 Graphs showing changes in median percentage o f viable neutrophils over 

the course o f the ventilation period according to (A) diagnosis and (B) gestation.

Error bars represent interquartile ranges.

229



Once again, with the objective of identifying a possible prognostic indicator for the 

development of CLD, the first 3 days of life were reviewed in detail with respect to 

the percentage of viable neutrophils present, and despite the term group tending to 

have persistently lower percentages of viable neutrophils, there were no significant 
differences observed.
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Figure 4.14 Scatterplots showing the percentage o f the BAL neutrophils which were 

viable on (A) day 1, (B) day 2 and (C) day 3 o f life in each diagnostic group.
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Figure 4.15 Scatterplot showing the median peak percentage o f viable neutrophils in 

each infant according to diagnostic group.
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When data for individual infants are reviewed, it can be seen that the proportion of 

viable neutrophils in each infant is fairly constant but often falls around the time of a 

total neutrophil count increase (Figure 4.16). This may be related to large numbers of 

neutrophils dying by necrosis causing more neutrophils to be recruited to the site of 

inflammation or possibly the neutrophil count peak coincides with an increase in 

apoptosis of the neutrophils that are present in an attempt to control neutrophil 

numbers at the affected site. There is, however, a linear relationship between the total 

neutrophil count and the absolute number of viable neutrophils present (Figure 4.17).
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Figure 4.16 Graphs showing relationship between total neutrophil count (grey line) 

and the proportion o f the neutrophil population that was viable (black line) for all 

infants with 3 or more BAL samples.
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Figure 4.17 Scatterplot showing linear relationship between total neutrophils and 

number o f viable neutrophils. R2=0.6285, p<0.0001

4.4.2 Necrotic neutrophils in BAL samples

Necrotic cells were those neutrophils which were both Annexin V and To-Pro 3 

positive, indicating disruption of the cell membrane and exposure of DNA.

The absolute number of necrotic cells is significantly higher in preterm infants 

(Preterm median 0.07 xlO6 cells/ml, mean 0.22 xlO6 cells/ml; Term median 0.01 xlO6 

cells/ml, mean 0.02 xlO6 cells/ml; Mann-Whitney U-test, p=0.009) although, once 

again, no difference between the babies with RDS and CLD can be shown (CLD 

median 0.05 xlO6 cells/ml, mean 0.21 xlO6 cells/ml; RDS median 0.17 xlO6 cells/ml, 

mean 0.30 xlO6 cells/ml; Term median 0.01 xlO6 cells/ml, mean 0.02 xlO6 cells/ml; 

Kruskal-Wallis test, p=0.004, RDS vs term <0.01) (Figure 4.18). A large load of 

necrotic neutrophils may be responsible for release of various pro-inflammatory 

factors into the peri-cellular environment. Macrophages which ingest necrotic 

neutrophils are stimulated to release further pro-inflammatory cytokines, rather than 

anti-inflammatory mediators that are released upon phagocytosis of an apoptotic cell. 

Thus, this high load of necrotic neutrophils may help to potentiate the inflammatory 

response, both through the direct consequence of necrosis and the release of the 

neutrophil’s toxic contents and through the phagocytosis of necrotic neutrophils 

causing release of further pro-inflammatory mediators from macrophages.
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Figure 4.18 Scatterplots showing the necrotic neutrophil count in BAL samples 

according to (A) diagnosis and (B) gestation.

The proportion of the neutrophil population that was necrotic was not significantly 

different between the groups (CLD median 24.50%, mean 26.30%; RDS median 

30.43%, mean 27.76%; Term median 24.98%, mean 24.61%; Kruskal-Wallis test, 

p=0.74); (Preterm median 24.91%, mean 26.53%; Term median 24.98%, mean 

24.61%; Mann-Whitney U-test, p=0.706) (Figure 4.18).
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Figure 4.19 Scatterplots showing the percentage o f necrotic neutrophils in BAL 

samples according to (A) diagnosis and (B) gestation.

Although the overall number of necrotic neutrophils was significantly higher in BAL 

from preterm infants (Figure 4.18, above), analysis of the peak percentages of 

necrotic neutrophils showed no significant difference in the peak percentages of 

necrotic neutrophils in preterm infants (CLD mean 47.21%, median 43.37%; RDS 

mean 37.62%, median 36.14%; Term mean 33.11%, median 27.36%; Kruskal-Wallis 

test, p=0.0565)(Preterm mean 43.61%, median 42.28%; Term mean 33.11%, median 

27.36%; Mann-Whitney U-test, p=0.606) (Figure 4.20).
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Figure 4.20 Scatterplot showing peak percentage o f necrotic neutrophils in BAL 

samples, indicating a trend towards a higher percentage o f necrotic neutrophils in 

BAL fluid from babies who developed CLD.

In figure 4.2 IB (below) it can be seen that the highest proportion of necrotic 

neutrophils occurs on day 1 in term infants; whereas preterm infants have the largest 

percentage of necrotic cells on day 27. If only the first 5 days of life are compared, 

preterm infants, both those developing CLD and those whose RDS is resolving, have 

their peak percentage in necrotic cells at day 3. Similarly for apoptotic cells, peak 

percentages of apoptotic cells occur in RDS on day 3 and in CLD on day 27 but on 

day 3 in CLD if only the first 5 days are considered. More detailed review of each of 

the first 3 days of life shows no significant differences in percentage of necrotic 

neutrophils present between term and preterm infants (Figure 4.22).
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When individual infants’ data are reviewed (Figure 4.23), the relationship of necrotic 

neutrophils to the total neutrophil count can be seen to change in parallel, i.e. the 

higher the neutrophil count, the larger proportion of the cells are necrotic. This may 

suggest that neutrophil clearance from inflammatory sites, particularly by apoptosis, 

may be impaired, causing neutrophils to build up in numbers and become necrotic 

before being removed by macrophages. Figure 4.24 shows a linear relationship 

between neutrophil count and number of necrotic neutrophils.
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Figure 4.24 Scatterplot showing linear relationship between neutrophil count and 

number o f necrotic neutrophils. R2=0.5960, p<0.0001

In summary, preterm infants have a higher proportion of their BAL neutrophils as 

viable cells and there is a higher percentage of cells undergoing apoptosis in the term 

BAL samples. The proportion of the neutrophils which are necrotic is similar in both 

term and preterm infants but due to higher total neutrophil counts in the preterm 

group, the number of necrotic cells in preterm infants is significantly higher than in 

term babies. There are no significant differences between babies with RDS and CLD, 

which may imply that rates of neutrophil apoptosis may be associated with gestational 

age or with another factor which is common to both RDS and CLD groups.

Overall, preterm infants have slightly later peaks in both proportions of apoptotic and 

necrotic neutrophils than term infants. This may imply that both the process of 

neutrophil apoptosis and apoptotic cell clearance (allowing the uncleared apoptotic 

cells to undergo secondary necrosis) are delayed in preterm infants. It may be that the 

higher neutrophil counts present in preterm infants overwhelm the clearance 

mechanisms in addition to an inherent delay in neutrophil apoptosis compared to term 

infants.
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4.5 Relationship between neutrophil apoptosis and the presence of infection

The presence of 16S rRNA genes has already been temporally related to spikes in the 

total cell count and neutrophil count (Section 3.3.7 and Figures 3.15 and 3.17). I tried 

to clarify further the relationship between the presence of microbial genes in BAL 

samples and the proportion of apoptotic neutrophils present. It is likely that the pro- 

inflammatory factors associated with infection and which promote neutrophil 

recruitment also have an anti-apoptotic effect on the neutrophils e.g. TNFa and IL-lp 

(Colotta et al., 1992). This would have the effect of further increasing neutrophil 

counts.

No statistically significant differences were found in the percentage of the neutrophil 

population that was apoptotic, necrotic or viable between samples where 16S rRNA 

genes were detected and samples where the 16S rRNA gene was not found (Figure 

4.25).
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Figure 4.25 Scatterplots showing percentage o f (A) apoptotic, (B) viable and (C) 

necrotic neutrophils in BAL samples o f  babies in whom 16S rRNA was detected 

compared to those without.
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When looking at longitudinal data for individual babies (Figure 4.26), the percentage 

of apoptotic neutrophils is often low relative to the peak for that baby when the BAL 

sample is positive for 16S rRNA genes or that the percentage of apoptotic cells begins 

to fall once the 16S rRNA gene is detected. However similar variations in the number 

or percentage of apoptotic cells can also be observed in infants in whom infection was 

not detected so this is unlikely to be a significant observation.
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There were also no significant differences in apoptotic (p=0.2483), necrotic 

(p=0.3912) or viable (p=0.6198) neutrophil percentages between babies with or 

without Ureaplasma present in their BAL samples (Figure 4.27).
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Figure 4.27 Scatterplots showing percentage o f (A) apoptotic, (B) viable and (C) 

necrotic neutrophils in BAL samples o f babies in whom Ureaplasma was detected 

compared to those without.

4.6 Neutrophil apoptosis in relation to mode of delivery

The process of labour has been demonstrated to prime/activate neutrophils and thus 

delay apoptosis (Molloy et al., 2004). In addition, it is possible that an undetected 

antenatal infection may precipitate the process of preterm labour, resulting in an 

inflammatory environment present in the lung at delivery and further delay to the 

apoptotic process. It could thus be expected that infants bom following spontaneous 

preterm labour would have fewer apoptotic cells present initially than those bom by 

elective Caesarean section. However, in our cohort there was no difference in the 

percentage of apoptotic cells between spontaneously and electively delivered preterm 

infants on day 1 (Mann-Whitney U-test, p=0.63) (Figure 4.28A) or on day 2 (p=0.74)
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(Figure 4.28B). However, on day 3 the percentage of the neutrophil population that 

was apoptotic was significantly higher in the preterm labour group (p=0.019; 

Caesarean mean 2.18%, median 2.84%; labour mean 12.56%, median 7.37%) (Figure 

4.28C) which is contrary to what might be expected. It is possible that the priming 

effect of labour on neutrophils is no longer active by the third day of life or another 

confounding factor, including small sample size, is producing this effect on neutrophil 

apoptosis at this stage.
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Figure 4.28 Scatterplots showing the percentage o f apoptotic cells present in BAL 

samples ofpreterm infants (A) day 1, (B) day 2 and (C) day 3 o f life, according to 

whether the baby was delivered by elective Caesarean section or following 

spontaneous onset o f  preterm labour.

4.7 Relationship of apoptotic neutrophils to the macrophage population

I have already discussed the positive correlations between the total neutrophil count 

and the number of apoptotic, necrotic and viable neutrophils. The neutrophil 

population is dependent on the presence of macrophages in the lung for neutrophil 

recruitment and also for removal of both apoptotic and necrotic neutrophils. The 

number and type of macrophages present in the lung may have an influence on either 

number or proportion of apoptotic or necrotic cells present. I would expect higher
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numbers of macrophages, particularly mature macrophages, to reduce the number of 

apoptotic or necrotic cells present in the BAL samples due to phagocytosis of these 

cells.

When all babies are compared, there is a positive correlation between CD36+ 

macrophages and numbers of apoptotic (R2=0.330, p<0.0001), necrotic (R2=0.632, 

p<0.0001) and viable neutrophils. Intuitively there should be an inverse relationship 

between these variables as expression of CD36 should impart the ability to 

phagocytose apoptotic cells, however it must be considered that the number of 

apoptotic cells may have overwhelmed the macrophage response and thus the true 

relationship may be obscured. There was no significant relationship between the 

number of mature (HLA-DR +) alveolar macrophages and the number of apoptotic 

cells (R =0.13). Total macrophage count also did not correlate significantly with 

apoptotic or necrotic cell numbers.
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Figure 4.29 Scatterplots showing relationship between CD36 + macrophages and the 

number o f (A) apoptotic and (B) necrotic neutrophils.

Although the relationship between macrophages and apoptotic cells has proved 

difficult to explore, one of the advantages of our study is the ability to look 

longitudinally at individual infants over their entire ventilatory course and observe 

any possible relationships between different cell types.

When individual baby data are reviewed, there is again no clear relationship between 

the macrophage count and the percentage of the neutrophil population that is 

apoptotic (Figure 4.30), however a much clearer relationship exists between the
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macrophage count and the number of apoptotic cells present, with the two absolute 

cell counts appearing to rise and fall almost simultaneously in many cases (Figure 

4.31).
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line).
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Figure 4.31 Longitudinal data for babies with 3 or more BAL samples showing the 

macrophage count (solid line) against the total number o f apoptotic neutrophils 

present (dotted line).
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4.8 Sum m ary of m ain findings

1. A significantly higher percentage of the neutrophil population is apoptotic in 

term infants, although there is no difference in the absolute number of 

apoptotic neutrophils between the groups.

2. There are significantly more viable neutrophils in preterm infants, although 

the percentage of the neutrophil population which is viable is not significantly 

different from term infants.

3. There are significantly higher numbers of necrotic neutrophils in preterm 

infants, but again the proportion of the neutrophil population which is necrotic 

is not significantly different in term and preterm infants.

4. No significant differences were shown between infants whose RDS resolved 

and those who developed CLD, suggesting that neutrophil apoptosis may be 

linked to gestation or to another common factor between the groups.

5. Preterm infants have a slightly later peak in proportions of apoptotic and 

necrotic cells than term infants, suggesting a possible delay in the onset of 

neutrophil apoptosis and/or apoptotic cell clearance.

6. There is a positive correlation between CD36 expression on macrophages and 

the number of apoptotic and necrotic cells present, but no such relationship 

between HLA-DR expressing macrophages and apoptotic or necrotic cells was 

demonstrated.

7. Individual babies show a close temporal relationship between increases in 

apoptotic neutrophil count and total macrophage count.

8. There appears to be no difference in the percentage of apoptotic or necrotic 

neutrophils in BAL samples in relation to infection and, in individual babies, 

the relationships between the presence of different types of organism and the 

number or percentage of apoptotic cells is variable and complex.

259



4.9 Discussion

4.9.1 Overview

Ongoing inflammation is thought to be important in the pathogenesis of CLD. In 

chapter 3 I described the composition of the cellular component of BAL samples and 

patterns of influx of cells into the airways. Once in the airways, cells must be 

removed again in order for inflammation to be resolved. The removal of neutrophils 

from the airways in the newborn by apoptosis and then phagocytosis by macrophages 

was first described in 1991 by Grigg et al (Grigg et al., 1991). They identified, by 

microscopy, intact, apoptotic neutrophils within macrophages in BAL fluid of 8 

ventilated infants but noted that their findings did not correlate with clinical outcome.

Since then several investigators (Kotecha et al., 2003, Oei et al., 2003) have proposed 

that reduced neutrophil apoptosis and increased neutrophil survival may be the 

mechanism by which neutrophils persist in the lungs of preterm infants and promote 

the development of CLD. However, this has not been a completely consistent finding 

with Cheah et al (Cheah et al., 2005a, Cheah et al., 2005b) finding that high numbers 

of apoptotic cells did not preclude progression to CLD.

This study is the only one to my knowledge which has looked at apoptosis using flow 

cytometry in BAL samples from the lungs of newborn ventilated infants. The study 

also benefits from repeated sampling of the same infants over time so that the natural 

history of the infant’s lung injury and/or its resolution can be observed as it 

progresses. Previous studies of apoptosis in BAL fluid neutrophils (Kotecha et al., 

2003, Oei et al., 2003) have not performed daily samples in the first week of life. 

Even despite this study’s frequent sampling, comparison between term and preterm 

infants is hampered by the very short duration of ventilation in preterm infants.

The use of flow cytometry for assessment of neutrophil apoptosis in neonatal BAL 

samples is just as labour intensive as the preparation of cells for analysis of other 

surface markers as discussed in chapter 3. Again it requires immediate processing of 

BAL samples before any deterioration in the sample can occur and as such is not 

practical for routine use in clinical samples.
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4.9.2 N eutrophils -  apoptotic, necro tic  and  viable

As shown in chapter 3, preterm infants have higher neutrophil counts than their term 

counterparts, so it is perhaps not surprising that the numbers of viable neutrophils in 

BAL samples are significantly higher in preterm babies. In terms of the percentage of 

the neutrophil population that are viable, there is no significant difference between 

term and preterm infants. These higher absolute numbers of viable neutrophils may be 

responsible for the generation of proteases, ROS and other mediators which mediate 

lung damage. Analysis of these mediators in BAL supernatants is discussed further in 

chapter 5.

A similar picture is seen for the presence of necrotic cells -  with preterm and term 

infants having a similar percentage of their BAL neutrophil population undergoing 

necrosis, however the preterm group of babies have a higher overall number of 

neutrophils and therefore a significantly higher number of necrotic neutrophils 

present. This higher absolute load of necrotic neutrophils may be involved in 

mediating lung injury through release of proteases and other neutrophil granule 

contents into the tissues. In addition, phagocytosis of necrotic neutrophil fragments 

directs macrophages to release more pro-inflammatory mediators, thus exacerbating 

the inflammatory response within the lung (Savill et al., 2002).

With the above in mind, one would expect that preterm infants would have a similar 

percentage of apoptotic cells to their term counterparts and higher absolute numbers 

of apoptotic cells in BAL samples due to higher cell counts. This is not the case. The 

absolute numbers of apoptotic neutrophils in preterm BAL samples are not 

significantly different to those in term babies, however term babies have a 

significantly higher percentage of their BAL neutrophils undergoing apoptosis than in 

preterm babies. This might imply that preterm neutrophils are in some way resistant to 

death by apoptosis, perhaps remaining viable for longer or preferentially undergoing 

death by necrosis instead. I will explore this hypothesis further in cord blood cells in 

chapter 6.
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4.9.3 R elationship to m acrophages

Following apoptosis, effete neutrophils must be taken up by macrophages in order to 

be cleared from the site of inflammation, which in turn facilitates the production of 

anti-inflammatory cytokines by the macrophages and further downregulation of the 

inflammatory response (Haslett, 1999, Fadok et al., 1998).

There appears to be a temporal relationship in individual infants between the number 

of apoptotic neutrophils and the number of macrophages present in the BAL sample. I 

have noted previously (in chapter 3) that neutrophil counts and macrophage counts 

tend to rise and fall in close relationship to each other and also (in this chapter) that 

there is a linear relationship between total neutrophil count and the number of 

apoptotic neutrophils which may partly explain this relationship.

The phagocytosis of apoptotic neutrophils may be dependent on the expression of 

various cell surface markers on the macrophage which allow the cell to recognise an 

apoptotic neutrophil. These surface markers include CD36 but there are a host of 

other molecules which play a role in this complex recognition process (Vandivier et 

al., 2006). Failing to demonstrate a clear relationship between macrophages with 

different surface markers implies that the process of recognition and phagocytosis of 

apoptotic cells is probably just more complex than cells expressing CD36 alone. The 

inflammatory response, particularly in preterm infants, may simply overwhelm the 

macrophage phagocytosis system’s ability to deal effectively with apoptotic 

neutrophils, allowing more to become necrotic, resulting in further neutrophil and 

monocyte recruitment and obscuring (for the purposes of our study) the 

neutrophil/macrophage interactions that are taking place.

4.9.4 Relationship to infection

Current understanding of the role of inflammatory mediators in the process of 

apoptosis would suggest that the presence of infection would increase the longevity of 

neutrophils, reducing the percentage of the population that is apoptotic. Contrary to 

this, it is also known that certain organisms (e.g P. aeruginosa) are able to induce
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apoptosis in host neutrophils as an “immune evasion” technique (Usher et al., 2002) 

and others eg S. aureus can induce rapid necrosis in host immune cells for similar 

reasons.

The majority of 16S rRNA genes detected in BAL samples were shown on 

sequencing to be from S. epidermidis, an organism that frequently colonises 

indwelling plastic medical devices such as endotracheal tubes and intravenous lines 

and cannulae. As previously discussed, the presence of S. epidermidis in BAL 

samples cannot simply be interpreted as infection in the lungs of the baby concerned 

as it may be a contaminant from the endotracheal tube, unavoidably picked up during 

BAL sampling. The role of S. epidermidis in neutrophil apoptosis is not well 

described, but it is known that S. epidermidis is unable to induce neutrophil apoptosis 

in the way that S. aureus does (Nilsdotter-Augustinsson et al., 2004). Additionally, 

more recently it was demonstrated that apoptotic neutrophils containing S. 

epidermidis produced a pro-inflammatory response by way of TNFa and IL-6 by the 

macrophage when ingested, rather than the expected anti-inflammatory one (Wilsson 

et al., 2008).

The presence of Ureaplasma spp. in a sub-group of the babies may also further 

complicate the interpretation of the relationship between apoptosis in BAL 

neutrophils and infection, as Ureaplasma has been shown to induce apoptosis in lung 

macrophages (Li et al., 2002) but its role in neutrophil apoptosis remains unclear. Five 

infants in our cohort were positive for 16S rRNA and had Ureaplasma detected in 

BAL samples, which is likely to further complicate interpretation of the FACS data on 

BAL cells.

The role of infection in neutrophil apoptosis in the lung is clearly far more complex 

than a simple “infection delays apoptosis” conclusion and merits further investigation 

in an in vitro setting where some of the many interacting factors in the process can be 

controlled or eliminated for study purposes. Some aspects of this process have been 

studied in cord blood neutrophils in chapter 6.
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4.9.5 Conclusion

In this chapter I have described the BAL neutrophil population in terms of cell 

viability, apoptosis or necrosis and showed that preterm infants appear to have a high 

load of necrotic cells and a relatively low proportion of apoptotic neutrophils in BAL 

samples. Both of these factors can be understood to affect the development of CLD in 

preterm infants, although no difference between RDS and CLD groups was found, 

perhaps due to the relatively small number of infants studied and the low number of 

samples available from babies with resolving RDS as they were generally extubated 

very rapidly.

The apparent delay or reduction in neutrophil apoptosis in the preterm group of 

infants will be studied further in an in vitro setting in chapter 6 and possible 

mechanisms for this will be explored.

The relationship between macrophages and neutrophil apoptosis involves numerous 

factors, only a few of which have been studied here. This relationship may require 

further studies using different macrophage markers and possibly different 

methodology to more clearly elucidate the interactions that must be occurring.

The role of infection in neutrophil apoptosis is complex and no single effect of the 

presence of either 16S rRNA microbial genes or Ureaplasma spp. could be identified. 

The type of organism present may significantly alter the response of neutrophils 

entering apoptosis and the subsequent cytokine production by the macrophage after 

phagocytosis.

264



Chapter 5 

BAL fluid supernatants



Chapter 5

BAL fluid supernatants

5.1 Introduction

In the preceding two chapters, the focus was on the cellular component of the BAL 

samples, however it is vital that the cells are not studied in isolation as the 

environment in which the cell or cells are found may not only reflect the production 

or release of various chemical mediators by the cell but may also have a profound 

effect on the behaviour of the cells. There is a complex and finely balanced 

interaction between various pro- and anti-inflammatory proteins, particularly 

chemokines, cytokines and proteases which influences the recovery from or 

progression of the inflammatory process in the lung.

Inflammatory mediators, such as cytokines, at sites of inflammation are critical to the 

development and functioning of both the innate and adaptive immune response. These 

mediators are most frequently secreted by immune cells that have encountered a 

pathogen, thus activating and recruiting further immune cells to increase the immune 

response to the pathogen. Cytokines may have different pro- or anti-inflammatory 

effects on different cell types in different situations

I sought to measure various inflammatory mediators within BAL supernatants and 

then attempted to relate these measurements to clinical outcomes of the infants, 

hypothesising that those infants with higher levels of pro-inflammatory mediators 

within the BAL fluid might be more likely to progress to CLD than those with lower 

levels. I also sought to relate levels of inflammatory mediators to the presence or 

absence of microbial genes in the BAL fluid. In light of a previously published 

finding (Kotecha et al., 2003) that BAL fluid may be anti-apoptotic in infants who 

develop CLD, I investigated the relative ability of the BAL supernatants to promote or 

inhibit neutrophil apoptosis.
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5.2 C ytokine m easurem ents

A cytometric bead array (CBA) was used to determine the amounts of 12 potentially 

relevant inflammatory mediators in BAL samples (as described in 2.1.7.3 above). 

CBA is a costly assay and it was not possible to analyse fluid from every one of the 

207 BAL samples I had collected. From previous work (Kotecha et al., 1995, Kotecha 

et al., 1998, Kotecha et al., 1996a, Kotecha et al., 1996b) it was suggested that days 1, 

2, 4 and 7 were likely to yield useful data for comparison with published data and 

between infants in this study cohort. These samples were analysed as well as samples 

from later time points in those babies who were ventilated for longer periods.

It is apparent that measurement of cytokines in BALsupematants is difficult, complex 

and potentially inaccurate due to the mucousy nature of BAL supernatant even after 

centrifugation, the minute amount of BAL fluid returned from tiny preterm infants 

and the dilutional effect of the saline used for lavage. Attempts have been made in the 

past to correct cytokine concentrations for the dilutional effect of saline used for the 

lavage. The ERS guidelines (Haslam and Baughman, 1999, de Blic et al., 2000) 

suggest that no correction be made and this is the approach that has been used in the 

analysis and interpretation of the results of the CBA assay. Virtually all nucleated 

cells, including endothelial and epithelial cells are potent producers of cytokines such 

as IL-1, IL-6, and TNF-a and thus the amount of cytokine in a BAL sample cannot 

consistently be directly related to a variable such as cell count, making any form of 

“correction” of cytokine values of little value.

5.2.1 lnterleukin-1 beta (IL-lp)

Levels of IL-1 P rose steadily over the whole ventilated period in infants who 

developed CLD and by the end of the first week of life (day 7) were statistically 

higher than levels in the same babies on day 1 (Mann-Whitney U-test, p=0.019) 

(Figure 5.1). The small number of samples at later time points prevented similar 

analysis for the whole period.
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Figure 5.1 Graph o f median IL-1 ft concentration against time in term, RDS and CLD 

infants. Error bars represent interquartile ranges. p=0.019 for day 1 vs day 7 values 

for infants developing CLD.

Increased concentrations of IL-1 p in TAF have been associated with the development 

of CLD, possibly through the inhibition of neutrophil apoptosis (Kotecha et al.,

1996b, Cayabyab et al., 2003). There appeared to be a close parallel between levels of 

IL-1 p and percentage apoptotic neutrophils in BAL samples, with peaks occurring 

almost simultaneously in many patients, rather than a definite suppression of 

neutrophil apoptosis being seen when IL-1P levels were high (Figure 5.2).
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Figure 5.2 Graphs showing relationship between IL-lfi (black line) and percentage o f 

the neutrophil population which was apoptotic (grey line) for all babies with 3 or 

more results for each variable.
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5.2.2 Interleukin-8 (IL-8)

There appear to be higher levels of IL-8 in both RDS and CLD infants compared to 

term babies on day 4 (Figure 5.3), although this is not statistically significant. IL-8 

concentrations have previously been shown to be significantly higher in infants who 

develop CLD than in infants whose RDS resolves (Kotecha et al., 1995, Groneck et 

al., 1994).
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Figure 5.3 Graph o f  median IL-8 concentration (pg/ml, log scale) against time in 

term, RDS and CLD infants. Error bars represent interquartile ranges.

In published work, IL-8 was significantly elevated on the first day of life 

(immediately preceding the marked peak in neutrophil count) in babies who 

progressed to CLD in one study (Munshi et al., 1997) but in another study (Kotecha et 

al., 1995), IL-8 was elevated around day 10 coinciding with the neutrophil peak. From 

our data, in the majority of babies IL-8 and the neutrophil count track one another, 

peaking either in the same sample or the neutrophil count peaks shortly after the IL-8 

peak, thus agreeing with previously published findings (Figure 5.4).
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neutrophil count (grey line) for all babies with 3 or more results for each variable.
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5.2.3 Monocyte Chemoattractant Protein-1 (MCP-1)

MCP-1 levels were significantly higher in term babies compared to infants with RDS 

on day 1 (Kruskal-Wallis test, p=0.024) and in term babies compared to infants who 

developed CLD on day 2 (Kruskal-Wallis test, p=0.049). When the whole preterm 

group was compared with term infants, term infants had significantly higher MCP-1 

levels than preterm babies on day 1 (Mann-Whitney U-test, p=0.011) and day 2 

(p=0.018), but no significant difference was detected between any of the groups by 

the day 4 samples (Figure 5.5).

MCP-1 has also been found to be elevated in airway secretions where Ureaplasma 

urealyticum has been detected (Baier et al., 2001). No such relationship was found in 

our cohort (No Ureaplasma mean 20 140 pg/ml, median 31 880 pg/ml; Ureaplasma 

detected mean 35 870 pg/ml, median 35 110 pg/ml; p=0.53) (Figure 5.17 below).

Levels of MCP-1 measured, particularly in the CLD group of infants from the day 4 

sample onwards, were very high (around 80 000 pg/ml) and 24 out of 103 measured 

values were on or exceeding the maximum range of the standard curve (60 000 

pg/ml). For analysis purposes these data were included however, for this reason, mean 

or median MCP-1 levels may be falsely low in the CLD group as the assay was 

unable to measure accurately at such high values. Non-parametric statistical tests are 

rank tests and thus may still be a reasonably robust method for analysis of these data.
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Figure 5.5 Graph o f median MCP-1 concentration against time in term, RDS and 

CLD infants. Error bars represent interquartile ranges.

5.2.4 Interleukin-6 (IL-6)

IL-6 has previously been found to be dramatically elevated in preterm infants, 

particularly in infants developing CLD early in their ventilator course (Bagchi et al., 

1994) and may be predictive for the development of CLD (Jonsson et al., 1997).

Levels of IL-6 measured in all 3 groups of infants in this study were very similar. 

Possible reasons for the difference between my results and previously published data 

may be due to methodological differences (neither previous study used CBA 

methodology on BAL samples) or because both previous studies were performed 

early on in the “surfactant era” and even the most recent of these two papers, had only 

two thirds antenatal steroid coverage and used surfactant as “rescue” therapy only in 

infants requiring more than 60% inspired oxygen which implies a slightly different 

study population from the one in our study.
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Figure 5.6 Graph o f median IL-6 concentration against time in term, RDS and CLD 

infants. Error bars represent interquartile ranges.

5.2.5 Interleukin-10 (IL-10)

There was a large number of samples (44/108) with undetectable IL-10. There were 

only 4 samples with detectable IL-10 from a total of 3 babies in the term group so 

statistical comparison with the term group was not possible, however it appears that 

levels of IL-10 were markedly lower in term babies than in either of the preterm 

groups.

In contrast to this observation, IL-10 has been reported to rise rapidly over the first 

five days of life (Beresford and Shaw, 2002) but to be significantly lower or even 

undetectable in preterm infants (Jones et al., 1996, Whicher and Evans, 1990) and in 

infants developing CLD (Beresford and Shaw, 2002, McColm et al., 2000). Only 

40.7% of our samples yielded results for IL-10 and the sensitivity of the assay was 

around 300 pg/ml. Lower IL-10 levels in term infants (as seen in median values 

shown in Figure 5.7) are extrapolated and should be interpreted with caution.

2 7 4



CLD
RDS
Term

S 1 0 2-
O)

10°
15

Day
25

Figure 5.7 Graph o f median IL-10 concentration against time in term, RDS and CLD 

infants. Error bars represent interquartile ranges.

5.2.6 Granulocyte - Colony Stimulating Factor (G-CSF)

There were no significant differences in G-CSF among the groups. Further discussed 

in 5.2.7, below.
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Figure 5.8 Graph o f median G-CSF concentration against time in term, RDS and 

CLD infants. Error bars represent interquartile ranges.
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5.2.7 Granulocyte Macrophage -  Colony Stimulating Factor (GM-CSF)

A small minority of the infants had GM-CSF detectable in their BAL supernatant. 

Only 14 out of 104 (13.5%) samples tested had detectable levels. These 14 samples 

came from 8 individuals (one baby with 3 positive samples, 4 with 2 positive samples 

and 3 with one positive sample each). Four samples (2 each from 2 different babies) 

had only just detectable levels which fell just below the standard curve for GM-CSF 

but have been included in the analysis. All the babies with detectable GM-CSF were 

preterm.

RDSCLD

Figure 5.9 Scatterplot o f all measured GM-CSF concentrations in term, RDS and 

CLD infants.

In a study (Papoff et al., 2001) of 18 preterm ventilated infants, both G-CSF and GM- 

CSF were detectable in BAL supernatant. Babies with RDS had the highest G-CSF 

and GM-CSF levels in the first few days of life which then reduced over time, 

whereas in infants developing CLD, these levels increased steadily. Dexamethasone 

reduced G-CSF and GM-CSF levels but LPS increased them. Hyperoxia did not 

appear to influence these cytokines (Papoff et al., 2001).

In our cohort, G-CSF levels appear to rise in both preterm groups before those with 

RDS are extubated and those developing CLD appear to plateau. GM-CSF was 

detected in too few infants for a trend to be observed.
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5.2.8 Macrophage inflammatory proteins (M IP-la and MIP-ip)

Both these cytokines are present at significantly higher levels in preterm infants than 

term babies on the fourth day of life (Mann-Whitney U-test, MIP-la p=0.041; MIP- 

ip p=0.028) (Figure 5.10 B and D). Levels of both cytokines rise steadily in infants 

developing CLD, throughout their ventilated period.

MIP-la and MIP-lp were expected to be elevated in preterm infants, particularly 

those developing CLD (Baier et al., 2004) and those exposed to hyperoxic conditions 

(D'Angio et al., 1998). Our data confirm statistically significantly higher levels of 

both these cytokines on day 4 of life but unfortunately there were no term or RDS 

infants who were ventilated for long enough to enable comparisons to be made later in 

the clinical course for these infants.
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Figure 5.10 Graph o f median MIP-la (A and B) and M lP-lf (C and D) 

concentrations according to (A and C) diagnosis and (B and D) gestation against 

time. Error bars represent interquartile ranges. In (B) *p=0.041 and in (D)

*p=0.028.
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5.2.9 Tumour necrosis factor alpha (TNF-a)

Levels of TNF-a were not significantly different among the 3 groups of infants but 

TNF-a levels in infants developing CLD rose sharply over the first few days of life 

and throughout the ventilated period, such that by the end of the first week of life, 

levels of TNF-a in babies developing CLD were significantly higher than on day 1 

(CLD Day 1, mean 45.99 pg/ml, median 7.29 pg/ml; Day 7 mean 361.70 pg/ml, 

median 81.32 pg/ml; Mann-Whitney U-test, p=0.016) (Figure 5.11).

In previous studies, TNF-a was undetectable in term controls and low in infants with 

RDS but peaked at day 14 in babies who progressed to CLD (Bagchi et al., 1994). 

TNF-a was elevated in BAL samples taken early in the ventilatory course of preterm 

infants with the worst pulmonary outcomes in one study (Mahieu et al., 2005). Our 

cohort showed no significant difference among the groups, although peak TNF-a 

levels (see 5.2.12) were significantly higher in babies who developed CLD and 

peaked on around day 20 in this group.
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Figure 5.11 Graph o f  median TNF-a concentration (pg/ml, log scale) against time in 

term, RDS and CLD infants. Error bars represent interquartile ranges. p=0.016 for  

day 1 vs day 7 levels in infants developing CLD.
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5.2.10 Fas ligand (FasL)

No significant differences could be observed between levels of FasL among the 

groups. FasL has been studied in neonatal and paediatric blood samples (Ennaciri et 

al., 2006, Hanna et al., 2005, Sarandakou et al., 2003), but not in lung lavage samples 

in this age group. No significant changes in FasL were noted and FasL remained 

relatively constant after the end of the first week of life in the CLD group.
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Figure 5.12 Graph o f median FasL concentration against time in term, RDS and CLD 

infants. Error bars represent interquartile ranges.

5.2.11 Vascular Endothelial Growth Factor (VEGF)

No significant differences in VEGF levels among groups could be seen. This is in 

agreement with published data from Currie et al (Currie et al., 2001) who found no 

difference in VEGF levels between term infants and preterm infants with or without 

CLD, but in contrast to the reduced levels found in infants developing CLD by Lassus 

et al. (Lassus et al., 1999). It has been postulated that either increased or decreased 

VEGF levels can mediate lung injury (Voelkel et al., 2006).
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Figure 5.13 Graph o f median VEGF concentration against time in term, RDS and 

CLD infants. Error bars represent interquartile ranges.

5.2.12 Individual infants

Just as it is difficult to adequately compare pooled data from groups of infants for cell 

counts and differential cell counts, it is similarly difficult to adequately compare 

levels of cytokines longitudinally between babies. For this reason, data from 

individual babies was reviewed to identify patterns or relationships between various 

cytokines and clinical diagnosis or infection (Figure 5.14).
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Figure 5.14 Graphs showing cytokine levels (pg/ml) for all babies with 3 or more BAL 

samples in which cytokines were measured. Samples which were positive for 16S rRNA are 

indicated by arrows.
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In most babies who developed CLD, an increase in all the cytokines was observed 

over the first week of life. Thereafter high levels were maintained for almost the 

entire ventilated period. Levels of all the interleukins studied, along with TNF, had 

begun to decline by day 28 or extubation in most infants (left hand panel in Figure 

5.14), whereas levels of other cytokines remained elevated. In the two term infants (H 

and X) all levels are beginning to fall by the time of extubation and well within the 

first week of life.

5.2.13 Peak cytokine levels

Significantly higher peak levels of all the cytokines measured, except GM-CSF where 

the number of samples was too small, were present in preterm infants compared to 

their term counterparts. Infants who developed CLD had significantly higher levels of 

IL-ip, M IP-la and TNF (Figure 5.15) than those whose RDS resolved.

The majority of the highest cytokine peaks occurred in infants who had 16S rRNA 

detected (see 5.2.14).
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Figure 5.15 Scatterplots o f peak cytokine concentrations (pg/ml, log scale) in term, 

RDS and CLD infants. Horizontal lines represent medians. Filled markers indicate 

infants in whom 16S rRNA genes were detected in that sample or an immediately 

adjacent one. Empty markers reflect babies in whom infection was not detected.

5.2.14 Day 1 cytokine data

A more detailed analysis of cytokine levels on the first day of life may be useful as 

these levels may reflect antenatal conditions, such as infection in utero. It could be 

clinically useful if cytokine values in BAL fluid on the first day of life could serve as 

a prognostic indicator.

However, comparing term against preterm infants for levels of all 12 cytokines on day 

1 of life only gives a significant difference only for MCP-1 (p=0.011) with term 

infants having much higher MCP-1 levels than preterm. This fits with a higher 

proportion of macrophages being mature alveolar macrophages in term babies 

(although absolute numbers of macrophages and mature macrophages are similar) 

(section 3.3.4.4). More MCP-1 in the term infants on day 1 could allow resolution of
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the inflammatory process to begin almost immediately by promoting recruitment of 

more mature macrophages and the lower MCP-1 levels in preterm infants may help to 

explain the relative delay in macrophage recruitment in the preterm group.

No child had detectable levels of GM-CSF on day 1 of life.

5.2.15 BAL fluid cytokines in infection

Once again the role of infection in the inflammatory process in the neonatal lung was 

studied in the light of the cytokine values obtained. PCR for the 16S rRNA gene was 

undertaken as described in 2.1.5.2.

Overall, there was significantly more IL-1(3, IL-8, IL-6, G-CSF, MIP-la, MIP-lp and 

TNF detected in samples that were 16S rRNA positive (Figure 5.16). GM-CSF, FasL 

and VEGF showed no significant differences between samples where 16S rRNA 

genes were detected and samples in which they were not found (Figure 5.16).
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Figure 5.16 Scatterplots showing levels o f inflammatory mediators in infants 

according to whether 16S rRNA genes were or were not detected in BAL samples.

This mixture of pro- and anti-inflammatory cytokines in most samples may reflect 

that while there are attempts at resolution of the inflammatory process, the pro- 

inflammatory actions of microbes in the lung are superimposed on this picture. The 

timing of the detection of 16S rRNA genes in BAL samples PCR may lag behind the 

actual appearance of the organism in the lung (BAL samples were obtained at 

intervals of approximately 24 hours during the first week and intervals of 2-4 days 

thereafter). The cytokine response to the presence of a microbe in the lung is rapid 

and it is impossible for us to determine exactly how far into the course of a possible 

infection our observations have been made. The snapshot nature of BAL sampling, 

combined with the fact that only BAL supernatants from days 1, 2, 4, 7 were 

subjected to CBA analysis, may mean that important alterations in cytokine balance 

were missed at times or days when there were no samples analysed.

When data from individual babies were reviewed (Figure 5.14) there did not appear to 

be a consistent relationship between the level of cytokines and the detection of 16S
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rRNA genes in BAL samples. In some infants, a sharp rise in almost all cytokine 

levels coincided with the detection of 16S rRNA genes, however this was not a 

universal finding. This may be because 16S rRNA genes represent colonisation of the 

endotracheal tube, rather than true infection in some infants, or that 16S rRNA genes 

were detected in some infants before an infection became established and a cytokine 

response was mounted. There may have been other factors which altered this 

relationship, such as administration of antibiotics, some of which have anti­

inflammatory effects e.g. erythromycin, or drugs like indomethacin (for PDA 

treatment).

5.2.16 Cytokines in Ureaplasma colonisation or infection

Almost all of the inflammatory mediators tested, apart from MCP-1 (in which the 

result may be affected by around 1 in 4 values being above or close to the upper limit 

of the standard curve for the assay), GM-CSF (in which there were too few results to 

make adequate comparisons), MIP-la and VEGF, show significantly higher levels of 

the inflammatory mediators in samples in which Ureaplasma was detectable in the 

BAL fluid. IL-6 does not quite reach significance.
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Figure 5.17 Scatterplots showing levels o f measured inflammatory mediators in 

neonatal BAL samples according to whether Ureaplasma was detected in the sample. 

Horizontal lines represent medians. Significant p values shown.

5.2.17 Cytokines and mode of delivery

Comparing babies bom by elective Caesarean section where the mother was not in 

labour with babies bom as a result of spontaneous preterm labour, in whom antenatal 

infection could not be ruled out as a cause for preterm labour, there were no 

significant differences in levels of the selected cytokines in BAL fluid between the 

two groups, except for FasL which was significantly higher in babies bom following 

spontaneous preterm labour compared to those delivered electively (p=0.028). Again, 

this is difficult to fully explain and there may be more than one factor responsible for 

this.
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5.3 E lastase in BAL supernatan ts.

Human neutrophil elastase is the most abundant protease found in the lung. It is stored 

in intra-cytoplasmic azurophilic neutrophil granules from where it can be released 

into a phagocytic vacuole or into the surrounding environment at the time of 

neutrophil activation.

Elastase is capable of digesting elastin, an important structural component of lung 

tissue, as well as almost all components of the extracellular matrix including collagen 

types I-IV, fibronectin, laminin and proteoglycans. It may play a role in the 

physiological turnover of connective tissue when produced by tissue macrophages and 

certain stromal cells, however hydrolysis of matrix macromolecules by neutrophil 

elastase most probably represents a pathological process (Janoff, 1983).

Neutrophil elastase activity was measured in all 207 BAL supernatants as described in 

section 2.1.7.1.

Elastase activity was detected in 50/207 (24.2%) BAL samples and in a total of 19 of 

the 32 infants studied. In 13/15 (86.7%) infants who developed CLD there was 

elastase detected in at least one lavage sample, which was significantly more than 

4/11 (36.4%) in preterm infants whose RDS resolved (Chi square test, p=0.0077). 

When all preterm infants are compared to term infants, where only 1/5 had free 

elastase activity in their BAL fluid, this was not significantly different (p=0.0596), 

probably on account of the small numbers of infants in the term control group.
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Elastase 

detected (%)

No elastase 

detected (%)

TOTALS

CLD 13(86.7) 2(13.3) 15

RDS 4 (36.4) 7 (63.6) 11

Term 1(20) 4(80) 5

Died 1(100) 0(0) 1

TOTALS 19 (59.4) 13 (40.6) 32

Table 5.1 Table showing numbers o f infants with and without elastase activity 

detected in at least one BAL sample.

Peak elastase activity was also significantly greater in infants who went on to develop 

CLD compared to both infants with resolved RDS (Mann-Witney U-test, p=0.0131) 

and term controls (p=0.028), as demonstrated in figure 5.16. There was no significant 

difference in the peak elastase activity between preterm infants whose RDS resolved 

and term infants.
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•  •
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Figure 5.18 A scatterplot o f the peak elastase concentrations for infants with CLD, 

resolved RDS and control infants, demonstrating significantly higher peaks in infants 

developing CLD.

If the presence of elastase is considered in terms of the 50 samples in which elastase 

activity was detected out of the total of 207 samples collected, rather than individual 

patients, the following results are found: in those infants who developed CLD,
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elastase activity was detected in 37/152 (24.3%) samples and 8/32 (25%) samples 

from infants developing RDS, compared to 1/19 (5.3%) of term control infants. All 4 

samples from the infant who died had elastase present, albeit in very small amounts. 

When elastase activity was present, it was episodic in nature and was only present for 

a small number of samples for each infant. The timing of the activity spikes was also 

extremely variable, with the initial spike of elastase activity (when present) being a 

median of 7.5 days (range 3-27 days, IQR 5-19 days) after birth. No baby had elastase 

present on day 1.

When longitudinal data for individual infants is analysed (figure 5.19) the episodic 

spiking nature of increases in elastase activity can be appreciated. It also appears that 

the timing of increases in elastase activity correlates well with the timing of increases 

in cell count and with the presence of 16S rRNA genes in the sample.
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Figure 5.19 Graphs o f total cell count (solid line), elastase activity (dotted line) and the 

presence o f 16S rRNA (arrows) for individual infants with at least 3 BAL samples and either 

elastase activity or 16S rRNA or both present.
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5.3.1 Elastase and infection

In babies in whom elastase was present, the spike in the elastase activity frequently 

coincided with a spike in the total cell count (Figure 5.19 above) and also in the 

neutrophil count (Figure 5.20). When figure 5.18 is redrawn showing the infection 

status of the individual babies (Figure 5.21), it can be seen that many of the highest 

elastase levels occur in babies who are infected with organisms other than S. 

epidermidis, an organism which tends to be regarded by neonatal clinicians as being 

of low pathogenicity in the lung. However, the peak elastase level does not invariably 

coincide with the presence of microbial DNA.
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cross in the centre indicate infants in whom 16S rRNA was detected but this was not 

coincident (or one day before or after) with the peak elastase level. Open markers 

indicate that 16S rRNA genes were not detected in that infant.

5.3.2 Elastase and apoptosis or necrosis

Elastase peaks are frequently temporally associated with peaks in the neutrophil count 

(Figure 5.20). Elastase has been implicated in the process of apoptosis, through its 

ability to stimulate or induce apoptosis (Trevani et al., 1996, Yang et al., 1996) and 

through cleavage of cell surface antigens eg CD 16 (Middelhoven et al., 2001) and is 

released during cell death by necrosis, so elastase levels were plotted against both 

apoptotic and necrotic neutrophil percentages in order to assess a possible relationship 

between elastase and either apoptosis or necrosis of lung neutrophils (Figures 5.22 

and 5.23). In some infants a temporal relationship between apoptosis or necrosis of 

neutrophils and the presence of elastase could be observed but this pattern was not as 

consistent as the relationship between elastase and the neutrophil count.
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Figure 5.22 Graphs showing elastase concentration (nM) (solid line) and percentage 

apoptotic neutrophils (dotted line) in infants from whom 3 or more BAL samples were 

taken and in which elastase was detected.
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Figure 5.23 Graphs showing elastase concentration (nM) (solid line) and percentage 

necrotic neutrophils (dotted line) in infants from whom 3 or more BAL samples were 

taken and in which elastase was detected.
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5.4 A poptotic activity of BAL fluid -  the  Sheffield “bioassay”

The environment in which the cells are found may have important effects on the 

initiation and progress of apoptosis. For this reason, the apoptotic activity of BAL 

fluid (182 samples in total) against freshly isolated adult neutrophils was assessed in 

an assay performed by Sharon Gill, in Sheffield, as described in materials and 

methods (2.1.7.2). The percentage of the adult neutrophils that were apoptotic was 

assessed on cytospins by light microscopy at the outset and then after 5 and 20 hours 

of exposure to the BAL supernatant.

Only 9/182 samples showed a higher percentage of apoptotic neutrophils than the 

saline control at 5 hours and just 3 samples at 20 hours. However, when the “fold 

change” in apoptotic cells was measured between the 5 and 20 hour time points in 

each sample and compared to the fold change in the saline control over the same 

period, 96 samples had greater fold change in the percentage of apoptotic neutrophils 

than their respective controls -  i.e relatively proapoptotic BAL fluid (Figure 5.24 and 

Table 5.2). All the following results for pro- or anti-apoptotic activity of BAL fluid 

refer to fold change.

Among samples from babies who developed CLD, 71/135 (52.6%) were pro­

apoptotic compared with 11/28 (39.3%) from RDS infants -  this was not statistically 

significant. In the term group, 14/15 (93.3%) samples were pro-apoptotic and this was 

significantly more than either CLD (p=0.0025) or RDS groups (p=0.0006). None of 

the 4 samples from the infant who died was pro-apoptotic.
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Pro-

apoptotic 

BAL (%)

Anti- 

apoptotic 

BAL (%)

TOTALS

CLD 71 (52.6) 64 (47.4) 135

RDS 11 (39.3) 17 (60.7) 28

Term 14 (93.3) 1 (6.7) 15

Died 0(0) 4(100) 4

TOTALS 96 (52.7) 86 (47.3) 182

Table 5.2 Table showing the number o f  BAL supernatants in each diagnostic group 

which displayed either relative pro- or anti-apoptotic activity compared to saline 

controls.

The pattern of pro- and anti-apoptotic samples in individual infants can be seen in the 

bar graphs in Figure 5.24. Term infants (H and X) appear to have BAL fluid that is 

consistently relatively pro-apoptotic when compared to their saline control. Preterm 

infants tend to have a more mixed picture with some samples relatively pro-apoptotic 

and others relatively anti-apoptotic. It is noticeable in Figure 5.24 that in many of the 

preterm infants, particularly babies BB, CC, L, N, O, W and Y, although early 

samples are strongly pro-apoptotic, later samples become more anti-apoptotic.

This experiment was conducted using adult neutrophils in vitro. It is known and will 

be shown again in chapter 6 that neutrophils from newborn infants have different 

apoptotic rates and responses to adult neutrophils, so data from this series of 

experiments must be interpreted in light of this.

In Figure 5.24, it is also noticeable that in samples from which 16S rRNA microbial 

genes were isolated, the levels of apoptotic activity are among the most anti-apoptotic 

for that individual infant.

310



u>

Feld change In apoptotic a c tlv lt

O » 3 S 8 8 8

<r

\

Fold change in apoptotic ac tiv it

CD■
S
rI
ro<n

x-</>
<-pO

Fold change In apoptotic a c tiv it

9 •  8 *  8 W

r

Fold change in apoptotic ac tiv it
: > u . S S B 8 8 8 8

r

Fold change In apoptotic a c tiv it 
o $ 8 8 8 8 8 3 8 8

r

if

Fold change in apoptotic a c tiv it

o « 8 £ 8 K

■

■

o
<-o

Fold change in apoptotic a c tiv it

■

Fold change In apoptotic a c tiv it

o S 8 8 8 8 8

rI
I *

Fold change in apoptotic ac tiv it

\

Fold change in apoptotic a c tiv it

o  m * •  •  8  8

CDfi
s01



S  35 ■
f 30 ■
I 25 ■

1 20 - *
I  15 ■
I 10 - ■
1  5 I

* o L .

Baby W -  24 wks, CLD

*  10 
1 •
•I

LI 1 i . » i  !

Baby M -  28 wks, RDS

■  I I I
&  Sample (day)

£

m

!' 1

Baby Y -  26 wks, CLD

^  f  '

= *

a l i  in .  ! ■

Baby S -  26 wks, RD' 

1

S

i
/ ................♦ • * * C*M 1 2 >

& “1 .: •

! i l

Baby Z - 26 wks, CLD i £

m i ,  i J . i

Baby T -  26 wks^RDS ^  ^

1  l l . i . l✓.........^ •••••••

I I

Bajiy D -  25 wks, RDS ^

Jg
i  ®
.a 
! ■ a •

r—I S
_  |  *

i I ' , (---| -o-------- -—■■-----H —,—■■-----■■-----■■— z  .

Baby H - Term

■  n  n  B  a  i

— mmt

e  *
1 . x
i  !
I :
i

|: 1

Baby J -  27 wks, RDS

■ I . . : :

Baby X - Term 

.  1 1 1 1 1
*  0 ------  —  “■ "

Figure 5.24 Bar graphs showing the fold change in apoptotic neutrophils between 5 

and 20 hours o f incubation with either saline control (red bars) or BAL supernatants 

(blue bars). Bars taller than control are considered pro-apoptotic, shorter than 

control are relatively anti-apoptotic. Vertical arrows indicate that 16s rRNA genes 

were isolated from that sample.

31 2



It is noticeable in Figure 5.25, particularly among the CLD group of infants, that the 

day/sample on which cytokine levels are highest is almost always the day on which 

apoptotic activity in BAL supernatants, as assessed by the bio-assay, is the lowest. To 

illustrate this (Figure 5.25), IL-8 was chosen to be plotted against the BAL fluid 

apoptotic activity, but almost identical graphs could be drawn for other pro- 

inflammatory mediators. However, this trend is, once again, not a completely 

consistent finding, raising the possibility that it is not only the composition of the 

supernatant that affects or controls the process of apoptosis, but the properties of the 

neutrophils themselves may be inherently important.
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5.4.1 BAL fluid apoptotic activity and  apopto tic  neutrophil counts

In Figure 5.26 the BAL fluid apoptotic activity (fold change) has been plotted 

alongside the number of apoptotic neutrophils present in that BAL sample. There does 

not appear to be a clear relationship between the number of apoptotic neutrophils 

present in preterm BAL fluid and the apoptotic activity of the BAL sample. However, 

in the two term infants (H and X), the highest number of apoptotic neutrophils 

correspond to the day on which the highest pro-apoptotic activity as seen in BAL 

fluid. This may be a chance finding due to the very small number of term infants 

which were studied but may also indicate that neutrophils in term infant lungs are able 

to respond appropriately to pro-apoptotic stimuli in the BAL fluid more effectively 

than neutrophils in preterm lungs.
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5.5 Sum m ary of key findings

1. Levels of MCP-1 were significantly higher in term infants on the first 2 days 

of life than in their preterm counterparts.

2. Levels of IL-10 were lowest in term infants, but not significantly so.

3. Levels of MIP-1 a and MIP-1 p were significantly higher in preterm infants 

than in term babies on day 4.

4. A minority of samples (14/104) had GM-CSF detectable.

5. Levels of other cytokines measured, namely IL-lp, IL-8, IL-6, TNF, G-CSF, 

FasL and VEGF generally increased steadily throughout the period of 

ventilation in infants developing CLD.

6. Peak cytokine levels were highest among infants developing CLD, especially 

in association with the detection of 16S rRNA genes in the BAL sample.

7. BAL samples from infants in whom either 16S rRNA microbial genes or 

Ureaplasma spp. were identified had statistically higher levels of almost all 

the mediators tested.

8. Neutrophil elastase activity was detected in a minority of samples in episodic 

spikes, temporally associated with increasing cell counts and the presence of 

infection but there was a much less obvious relationship between the 

percentage of apoptotic or necrotic neutrophils and the presence of elastase in 

BAL fluid.

9. There was a significant relationship between the detection of elastase in BAL 

supernatants and the development of CLD.

10. Significantly more BAL supernatants from term babies showed pro-apoptotic 

activity than those from preterm infants, but there did not appear to be a clear 

relationship between apoptotic neutrophils in BALsamples and the recorded 

BAL fluid apoptotic activity.
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5.6 Discussion

5.6.1 Introduction

The inflammatory environment in the lung is likely to be critical to the development 

of CLD. Not only do proteins like elastase have a direct effect on lung tissue, but the 

cytokine balance in the lung will have a marked effect on the composition of the 

cellular inflammatory response and the behaviour of those cells, thus contributing to 

the resolution or maintenance of the inflammatory response.

5.6.2 Cytokines

A large number of publications have studied cytokines in the neonatal lung under 

various conditions and reported generally that, although multiple pro-inflammatory 

and chemotactic factors are present in the airspaces of ventilated preterm infants, they 

are present in higher concentrations in those who develop CLD. Infants who develop 

CLD are also generally felt to be relatively lacking in the anti-inflammatory mediators 

which should promote resolution of their lung disease by various mechanisms 

including enhanced neutrophil apoptosis.

In this study, only MCP-1, MIP-la and MIP-lp yielded statistically significant results 

for the differences between term and preterm infants. This may be partly as a result of 

the small number of infants studied as well as the fact that inflammatory mediators 

were measured only on selected days, raising the possibility of a significant peak in 

levels having been missed.

Peak levels of all the cytokines measured were significantly higher in infants 

developing CLD which may be related to the higher incidence of infection and higher 

cell counts in this group of infants.

Our longitudinal data for MCP-1 showed significantly higher levels of MCP-1 in term 

infants compared to infants bom preterm on the first 2 postnatal days, but there was 

no difference between babies with RDS and those who go on to develop CLD. MCP-1 

was measured in serial TAF samples from 56 preterm newborns by Baier et al (Baier
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et al., 2001, Baier et al., 2002, Baier et al., 2004) who noted that MCP-1 rose over the 

first week of life and the highest levels were found in infants who developed CLD. 

Similarly, I found a marked increase in MCP-1 levels after day 2 and from day 4 

onwards; some of the highest levels of MCP-1 were obtained from CLD infants, in 

concordance with the Baier papers. They showed a marked difference between RDS 

and CLD groups but their study lacked term controls.

Another study of MCP-1 levels in term infants with congenital diaphragmatic hernia 

showed a relationship between high levels of MCP-1 and severe pulmonary 

hypoplasia with persistent pulmonary hypertension but even the highest levels of 

MCP-1 in this study were of the order of 102-103 pg/ml rather than 104-105 pg/ml as in 

our infants (Okawada et al., 2007). This may be related to the fact that our control 

group is very small but also that these infants had surgery for their gastroschisis 

within hours of birth -  usually before the first BAL sample was obtained, in keeping 

with our study protocol. Animal studies show elevated MCP-1 levels following soft 

tissue injury and surgical trauma (Kobbe et al., 2008, Kotzampassi et al., 2009) and 

this may be the mechanism of the elevated levels seen in our term infants.

MIP-la and MIP-ip levels were expected to be elevated in preterm infants, 

particularly those developing CLD (Baier et al., 2004) and our data does confirm 

higher levels of both these cytokines on day 4 but there are insufficient data to make 

further comparisons.

One might expect that levels of pro-inflammatory cytokines might be dramatically 

increased in infants developing CLD while anti-inflammatory mediators may be 

reduced in concentration. This was not the case in our cohort and may reflect the very 

high cell counts in the CLD group compard to term infants -  the amount of anti- 

inflamatory cytokines present may indeed be relatively low compared to pro- 

inflammatory cytokine levels but still elevated compared to term controls. There may 

be dysregulation of cytokine production on account of the profuse inflammatory 

response in the neonatal lung which may cause cells and cytokines to interact in ways 

that can not or have not yet been reproduced in vitro.
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It is important to note that levels of inflammatory mediators are affected by a wide 

variety of other clinical factors, including the administration of antenatal steroids 

(Kramer, 2008), mode of ventilation (Capoluongo et al., 2005, Lista et al., 2008), 

oxygen concentration (Bhandari and Elias, 2006), pulmonary haemorrhage (Baier et 

al., 2002), drugs and medications including azithromycin (Aghai et al., 2007, Ballard 

et al., 2007), indomethacin (Sirota et al., 2001) and melatonin (Gitto et al., 2005) but 

may be unaffected by others e.g. nitric oxide (Truog et al., 2007).

The presence or absence of antenatal infection and the presence of postnatal systemic 

or isolated pulmonary infection may all play an important role in the alteration of 

cytokine expression in the lung (Kramer, 2008). I have shown a significant elevation 

in levels of almost all the mediators studied in infants in whom Ureaplasma or 16S 

rRNA genes were detected -  this may be a contributory factor to the ongoing 

inflammatory process and highlight a possible reason for the significant relationship 

between the presence of Ureaplasma or other microbes and the development of CLD.

All of the above mentioned clinical factors may have contributed to the lack of 

marked difference between RDS and CLD groups of infants in our cohort and the 

cohort was too small to control for such a large number of possible confounders.

A caveat to all the cytokine experiments and results is that the amount of cytokine 

detected may not always be clinically relevant as the amount detected may not be 

proportional to its biological activity due to variable degrees of tissue binding, the 

availability of receptors and the presence of inhibitors or enhancers of cytokine 

activity which may be unmeasured or even unknown.

5.6.3 Elastase

There is much evidence to support the role of elastase as part of the complex 

pathogenesis of CLD. In the pre-surfactant era very high elastase activity was 

detected in the majority of lung lavage samples from infants with RDS, particularly in 

those infants who developed CLD (Merritt et al., 1983, Ogden et al., 1984,

Watterberg et al., 1994). However more recently, following the introduction of 

routine use of exogenous surfactant in extremely preterm infants, the pattern of
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elastase activity appears to have changed. A number of recent studies have found 

elastase in only a minority of samples from the lungs of preterm infants and no 

relationship to the development of CLD in these infants (Speer et al., 1993, Sveger et 

al., 2002, Sluis et al., 1994, Groneck et al., 1994). This may be as a result of changing 

neonatal practices such as exogenous surfactant administration and gentler ventilator 

techniques as well as a changing, more premature, neonatal population and 

increasingly specific laboratory methods for the detection of neutrophil elastase 

activity.

Our data appear to agree with this trend for fewer samples exhibiting elastase activity, 

with only around one quarter of samples and 19 out of 32 infants having detectable 

elastase activity. There was however a significant relationship between the presence 

of elastase and the development of CLD in the preterm group.

Previous studies in so-called “new” CLD have only examined elastase activity at 

single points in time (Sluis et al., 1994, Speer et al., 1993, Griese et al., 1998) or taken 

up to four samples from individual infants and frequently there were large gaps 

between time points (Sveger et al., 2002, Groneck et al., 1994).

This component of our study benefits from more frequent BAL sampling, enabling 

patterns to be evaluated in individual infants over time as well as being more likely to 

detect the brief increases in elastase which occur. These brief rises may be missed by 

“one o ff’ sampling or overlooked in studies with large time gaps between samples.

The temporal relationship between cell counts and elastase activity is present in at 

least half of the infants studied. Elastase peaks are also frequently, but not invariably, 

associated with the presence of microbial genes in the BAL supernatants. Elastase is a 

product of neutrophil degranulation and a high neutophil load, possibly provoked by 

the presence of a pathogen in the respiratory tract, may produce sufficient elastase to 

overwhelm the natural elastase inhibitors, such as alpha-1-anti-trypsin, which would 

normally serve to neutralise its tissue damaging effects. Additionally the release of 

elastase potentiates the inflammatory response and enhances the recruitment of further 

inflammatory cells (Nakamura et al., 1992).
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5.6.4 Apoptosis -  the “ Sheffield bio-assay”

In the only previous paper to study the effect of neonatal BAL supernatants on 

apoptosis of purified adult neutrophils, Kotecha et al (Kotecha et al., 2003) obtained 

134 samples from 45 ventilated term and preterm neonates (in addition to a group of 

babies undergoing ECMO) and found that BAL fluid from babies whose RDS 

resolved was pro-apoptotic to adult neutrophils and CLD BAL fluid was not. Our 

cohort of 182 samples from 32 babies represents more samples per baby on average 

than the previous study but we found very few samples which were considered pro- 

apoptotic i.e. resulting in a higher proportion of apoptotic neutrophils than the saline 

control -  only 9/182 samples at 5 hours and 3 at 20 hours. This was despite no 

obvious changes to the method used in the Kotecha et al paper, but subtle differences 

in patient population, BAL technique, reagents, purification of adult neutrophils or 

conduct of the assay can not be completely excluded from the list of reasons for 

differing findings. Neutrophils are highly sensitive cells to a wide variety of stimuli 

and some aspect of our experiment may have caused a degree of cell activation and 

thus a failure to show any pro-apoptotic effect of the supernatants.

The use of calculated rates of change in apoptosis between the 5 hour and 20 hour 

time points in our cohort produces a significant difference between term and preterm 

infants but no difference between RDS and CLD groups. High levels of cytokines 

(e.g. IL-8) in the BAL fluid tended to correlate with more anti-apoptotic activity in the 

BAL supernatant, which may be related to the presence of infection, as samples from 

which 16S rRNA genes were isolated were among the most anti-apoptotic samples in 

each individual baby. The relationship between apoptotic neutrophils and BAL 

supernatant apoptotic activity was more difficult to interpret, although there was the 

impression of a better response by term neutrophils to the pro-apoptotic nature of the 

BAL supernatant. Although inconclusive in this study, it is possible that term 

neutrophils are able to respond better to pro-apoptotic signals in their surroundings 

than neutrophils from more preterm infants.

The “Sheffield bio-assay” used purified adult neutrophils, however the results of this 

in vitro experiment may not be able to be extrapolated directly to preterm neutrophils, 

as neutrophils from preterm infants may exhibit some significant differences in their
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ability to undergo apoptosis, compared to either adult or term neutrophils. (The 

differences between term newborn and adult neutrophils will be explored further in 

chapter 6 and this may be exaggerated in more preterm infants).

This in vitro experiment, however, may offer better insights into the response of lung 

neutrophils in vivo than experiments using individual cytokines or chemokines in 

vitro, as BAL supernatant constituents are a mixture of pro- and anti-inflammatory 

substances which can be quantified by methods such as CBA, used here.

5.6.5 Conclusion

This chapter has focussed on the BAL supernatant which reflects the environment in 

which the BAL cells are found. Various cytokines as well as neutrophil elastase were 

measured in the supernatants and the relative apoptotic activity of the supernatants 

against adult neutrophils was also assessed.

The relationship between cytokines and the development of CLD is complex and 

influenced by a wide variety of factors, particularly in relation to the clinical 

management of the infant. Further progress in neonatal intensive care may result in 

methods of management which further reduce the pro-inflammatory nature of the 

exudates within the alveoli and lead to a reduction in or amelioration of CLD.

Although elastase seems less important in the pathogenesis of “new” CLD, it is still a 

mechanism by which lung tissue damage can be mediated. Elastase may also 

contribute to the overall pro-inflammatory environment within the lung by being 

chemotactic for inflammatory cells and by regulating the activity of cytokines and 

chemokines (Nakamura et al., 1992, Pham, 2006).

The relative pro- or anti-apoptotic ability of BAL supernatants was also studied and a 

temporal relationship between low apoptotic activity and higher cytokine levels and 

the presence of microbial genes was seen in individual infants. However, this was not 

a completely consistent finding and raises the possibility that neutrophil apoptosis 

may not be completely regulated by factors external to the cell.
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Overall, the relationship between the studied constituents of BAL supernatants and 

CLD is complex and reflects the multi-factorial nature of the disease. In order to 

control for the very wide variety of influences on the content of the BAL supernatant, 

many in vitro studies have been conducted, but these ignore the complex and multi­

facetted interactions between components of the BAL supernatant, between the 

different types of BAL cells and their environment and the impact of clinical variables 

such as changing modes of ventilation and the administration of drugs whose 

deliberate effect or unintended side-effect may be pro- or anti-inflammatory.
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Chapter 6 

Cord blood

6.1 Introduction

In chapters 3 and 4 I showed that, while large numbers of neutrophils continue to be 

present in the lungs of preterm infants who progress to CLD, the proportion of the 

neutrophil population which is undergoing apoptosis is significantly reduced in 

preterm infants compared to those bom at term. Additionally in chapter 5, it was seen 

that neutrophil apoptosis is not always directly related to the levels of various pro- or 

anti-apoptotic influences in the supernatant. One possible explanation for this could 

be that neutrophls in the preterm infant are inherently more resistant to apoptosis, 

possibly due to a degree of immaturity of one or more parts of the apoptotic pathways.

It has previously been shown that cord blood neutrophils are relatively resistant to 

apoptosis when compared to adult neutrophils (Molloy et al., 2005, Molloy et al., 

2004, Koenig et al., 2005, Luo et al., 2003, Hanna et al., 2005, Allgaier et al., 1998) 

but there is also a single paper that reports exactly opposite findings (Uguz et al., 

2002). Many of these studies had investigated aspects of the role of infection in this 

process in vitro and some have attempted to investigate the possible mechanism for 

the differences observed. Most investigations have concentrated on factors external to 

the neutrophil (labour, infection, medications, cytokines, Fas and colony stimulating 

factors) while two (Luo et al., 2003, Hanna et al., 2005) have looked more closely at 

the caspases and the Bcl-2 family of proteins.

In this chapter, I have examined the effect of maturity upon the ability of neutrophils 

to undergo apoptosis by comparing neutrophils isolated from newborn term cord 

blood and adult blood. In particular I have examined:

the changes in the rate of apoptosis related to infection, using LPS to mimic 

some of the effects of infection

levels of activated caspase 3, the most central workhorse of the caspases in the 

apoptotic process
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the amount of Bax present, a pro-apoptotic member of the Bcl-2 family of 

proteins

amounts of RNA present for both caspases and the Bcl-2 family of proteins 

using a ribosomal protection assay (RPA)

the amounts of some of the Bcl-2 proteins in adult and cord neutrophils using 

reverse transcription and quantitative PCR techniques.

6.2 Results 

6.2.1 Patient information/demographics

Cord blood was collected (as detailed in section 2.2) in the first few minutes 

following delivery of term infants by elective Caesarean section. The most common 

indication for Caesarean section was in mothers who had had a previous Caesarean 

and had opted for this mode of delivery in their subsequent pregnancy. None of the 

women was in labour at the time of operation, since the process of labour may be 

responsible for activation of neonatal neutrophils (Molloy et al., 2004), nor did they 

have any identified risk factors for infection, another potential activator of neonatal 

neutrophils.

In accordance with ethical guidelines and so as not to delay sample collection, verbal 

assent was obtained from the mother in advance of the cord blood being collected and 

written consent was obtained post-operatively, later the same day. Cord blood 

samples were collected and then processed in parallel with peripheral venous blood 

samples from adult volunteers as in section 2.2, ensuring cord neutrophils and adult 

control neutrophils were exposed to identical experimental conditions as far as 

possible.

6.2.2 Purity of neutrophil preparations

There is considerable debate about whether neutrophil preparations should be 

completely free from other cell types, particularly monocytes, in experiments of this 

nature because of the ability of these macrophages to produce cytokines which may 

activate neutrophils and alter experimental results (Sabroe et al., 2004). I elected to try
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to obtain the purest possible neutrophil preparations, without resorting to magnetic 

bead separation or other processes, such as flow sorting, which required extensive 

handling/manipulation of the neutrophils and could result in cell activation.

Using the technique detailed in section 2.2.2, it was possible to obtain a population of 

cells consisting of in excess of 97% neutrophils with negligible activation of the 

neutrophils. Any contaminating cells were usually eosinophils, very occasional 

monocytes, or, in the case of cord blood samples, immature (nucleated) red blood 

cells. There was no significant difference in the percentage of contaminating cells 

between adult and cord blood samples (Adult mean 0.84%, median 0.80%; cord mean 

1.89%, median 1.40%; p=0.329) (Figure 6.1).
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Figure 6.1 Flow cytometer (forward scatter vs side scatter) plots showing (A) whole 

blood and (B) adult or cord neutrophil preparations. The lack o f lymphocyte and 

monocyte populations in the prepared neutrophils can be clearly seen.

6.2.3 Phenotyping of cord blood

Using flow cytometry I compared the surface expression of relevant cell surface 

markers (CD 15, CD 16, CD 14, CD1 lb, TLR2 and TLR4) and combinations of these 

markers (CD 14/15, CD 15/16, and CD 14/16) between 7 paired samples of cord and 

adult neutrophils in order to assess whether there was any difference in surface 

marker expression between the two types of sample immediately after neutrophil
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separation. No significant differences in the chosen markers were observed (Figure 

6.2).

□  Adult 

^  Cord

Figure 6.2 Bar graph showing median relative expression o f various neutrophil cell 

surface markers in cord and adult neutrophils. Error bars show interquartile ranges. 

There are no statistically significant differences between any o f the pairs. (n=7 pairs)

6.2.4 Neutrophil apoptosis in cord and adult blood

Neutrophil apoptosis was quantified after neutrophil purification (time 0) and again 

after 6 and 20 hours in culture, by means of flow cytometry using annexin-V and To- 

Pro 3 staining (see methods 2.1.4.2 and 2.1.4.3) in 8 paired cord and adult blood 

samples. The proportion of apoptotic cells was also confirmed by light microscopy of 

cytospin preparations.

The percentage of apoptotic neutrophils in cord and adult blood immediately after 

neutrophil isolation was similar in both cord and adult blood (Adult mean 4.90%, 

median 3.34%, range 2%-12.97%; cord mean 4.62%, median 3.01%, range 0.51%- 

12.00%, p=0.73, Mann-Whitney U-test).
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It was not unexpected therefore that the percentage of necrotic cells and the viable 

percentage were also not significantly different (necrotic adult mean 2.02%, median 

1.45%; cord mean 1.47%, median 1.08%, p=0.95; viable adult mean 90.20%, median 

92.77%; cord mean 86.60%, median 92.06%, p=0.80, Mann-Whitney U-test) between 

the two groups at the outset.

Following 6 hours in culture the percentage of apoptotic cells among the adult 

neutrophils was significantly higher than in cord neutrophils (adult mean 40.08%, 

median 42.38%; cord mean 15.58%, median 13.36%; p=0.0013, Mann-Whitney U- 

test) (Figure 6.3). The percentage of necrotic cells was similar (adult mean 2.39%, 

median 1.07%; cord mean 3.71%, median 1.66%; p=0.3659, Mann-Whitney U-test) 

(Figure 6.4) and the percentage of viable neutrophils remaining was therefore 

significantly higher among the cord neutrophils (adult mean 55.85%, median 53.97%; 

cord mean 78.77%, median 82.42%; p= 0.0127, Mann-Whitney U-test) (Figure 6.5).

After 20 hours in culture the adult neutrophils continued to have a significantly higher 

percentage of apoptotic cells (adult mean 41.22%, median 46.24%; cord mean 

21.64%, median 23.20%; p=0.020, Mann-Whitney U-test) (Figure 6.3) and a 

significantly lower percentage of viable cells (adult mean 30.33%, median 29.42%; 

cord mean 57.18%, median 56.66%; p=0.0027, Mann-Whitney U-test) (Figure 6.4). 

The percentage of necrotic cells among adult neutrophils was slightly higher than in 

cord blood (adult mean 23.67%, median 25.24%; cord mean 16.06%, median 

15.30%) but this was not statistically significant (p=0.155, Mann-Whitney U-test) 

(Figure 6.5).

Addition of 50 ng/ml LPS to the culture medium resulted in a statistically significant 

reduction in the percentage of apoptotic neutrophils in adult samples at both 6 and 20 

hours (6 hours - adult mean 40.08%, median 42.38%; adult LPS mean 13.44%, 

median 11.12%; p=0.0002, Mann-Whitney U-test) (20 hours - adult mean 41.22%, 

median 46.24%; adult LPS mean 24.29%, median 22.06%; p= 0.0207, Mann-Whitney 

U-test) (Figure 6.3). In cord blood neutrophils, the same conditions resulted in no 

significant difference in the percentage of apoptotic cells at 6 hours (cord mean 

15.58%, median 13.36%; cord LPS mean 11.31%, median 6.93%; p= 0.180, Mann- 

Whitney U-test) but there was a statistically significant reduction in the percentage of
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apoptotic cells by 20 hours when LPS was added to cord blood neutrophils in culture 

(Cord mean 21.64%, median 23.20%; Cord LPS mean 7.89%, median 4.96%; p= 

0.0260, Mann-Whitney U-test) (Figure 6.3). There was no significant difference in the 

percentage of necrotic cells present in any of the cultures at either 6 (adult vs adult 

LPS: adult mean 2.39%, median 1.07%, adult LPS mean 3.35%, median 1.40%; p= 

0.792; cord vs cord LPS: cord mean 3.71%, median 1.66%; cord LPS mean 5.11%, 

median 2.93%; p= 0.423, Mann-Whitney U-test) or 20 hours (adult vs adult LPS: 

adult mean 23.67%, median 25.24%, adult LPS mean 26.13%, median 22.62%; p= 

0.959; cord vs cord LPS: cord mean 16.06%, median 15.30%; cord LPS mean 

18.30%, median 17.88%; p= 0.699, Mann-Whitney U-test) (Figure 6.5).

As a result of the large reduction in apoptosis in adult cells after the addition of LPS 

and the negligible change in apoptotsis in cord blood cells to which LPS had been 

added, the significant difference seen between adult and cord neutrophil apoptosis at 6 

hours of culture was not present when LPS was added to both adult and cord 

neutrophils (adult mean 13.44, median 11.12; cord mean 11.31, median 6.93; p= 

0.345, Mann-Whitney U-test) (Figures 6.3, 6.4 and 6.5) however, the significant 

difference in apoptosis between the two types of samples was apparent at 20 hours 

when neutrophils were cultured with LPS (adult LPS mean 24.29, median 22.06; cord 

LPS mean 7.89, median 4.95; p= 0.0013, Mann-Whitney U-test) (Figure 6.3). There 

was no significant difference in the percentage of necrotic cells between the two 

sample types at either time point (6 hours adult LPS vs cord LPS p= 0.0811; 20 hours 

adult LPS vs cord LPS p= 0.796, Mann-Whitney U-test). The percentage of viable 

cells was not significantly different at 6 hours (p= 0.846) or 20 hours (p= 0.302).
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Figure 6.3 Graph showing the percentage o f apoptotic cells in cultured cord and 

adult neutrophils at three time points, with and without addition o f LPS. (n= 8 pairs)
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Figure 6.4 Graph showing the percentage o f viable cells in cultured cord and adult 

neutrophils at three time points, with and without addition o f LPS. (n= 8 pairs)
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Figure 6.5 Graph showing the percentage o f necrotic cells in cultured cord and adult 

neutrophils at three time points and two conditions (with and without addition o f  

LPS). (n= 8 pairs).
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Figure 6.6 Bar graphs showing the relative proportions o f apoptotic, necrotic and 

viable neutrophils in cultured adult and cord cells at (A) time 0, (B) 6 hours and (C) 

20 hours. (n= 8 pairs)
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6.2.5 Extended time points

In one adult/cord pair, the neutrophils were continued in culture for 42 hours in order 

to observe any further changes (Figure 6.7 A, B and C). Although this is only a single 

pair of samples, in both adult and cord neutrophils incubated with medium alone, the 

percentage of apoptotic cells reaches a peak at around 20 hours before beginning to 

fall again as viable cells steadily decrease and the proportion of necrotic cells 

increases. This probably reflects an increasing number of apoptotic cells undergoing 

secondary necrosis in the absence of macrophages to remove the apoptotic cells by 

phagocytosis.

q  Necrotic

■ Apoptotic

■  Viable
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The addition of LPS to both adult and cord cells appears to delay the peak in 

apoptosis to around the 28 hour time point (Figure 6.1 A). LPS can be seen to be 

increasing the proportion of viable cells quite markedly compared to adult cells in 

medium alone (Figure 6.7C). Cord neutrophils with and without LPS have very 

similar proportions of viable cells throughout the time period.
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6.2.6 Possible mechanism s for delayed apoptosis in cord  blood

6.2.6.1 Bax

An early and critical step in the so-called intrinsic apoptosis pathway is the activation 

of Bax. Bax activation allows Bax to pierce holes in the outer mitochondrial 

membrane allowing for cytochrome c to be released and combine with Apaf 1. This 

complex in turn is able to activate caspase 9.

I chose to examine Bax activation in 8 paired samples of purified adult and cord 

neutrophils by flow cytometry, as described in section 2.2.4A

Immediately following neutrophil separation, there was no significant difference in 

the expression of Bax in adult and cord neutrophils (Adult mean 38.89%, median 

5.01%; cord mean 35.92%, median 11.04%; p=1.00).

After 6 and 20 hours in culture with medium alone there was no significant difference 

between the percentage of cells expressing Bax in adult and cord samples (p=0.06 at 6 

hours and p=0.09 at 20 hours), despite the percentage of apoptotic cells in these 

samples being significantly different (see 6.2.4 above). One might expect a significant 

increase in the percentage of cells expressing Bax when the percentage of apoptotic 

cells in the sample is significantly inceased, however this was not seen.

At 6 hours, more adult neutrophils cultured in medium alone expressed Bax than adult 

neutrophils cultured with LPS. This was a statistically significant difference 

(p=0.031) consistent with the observation that there are significantly more apoptotic 

cells among medium cultured adult neutrophils than among those cultured with LPS. 

After 20 hours there was no significant difference between the 2 conditions (p=0.15), 

despite a significant difference being observed in the percentage of apoptotic cells 

present (see 6.2.4 and Figure 6.3 above). This raises a number of questions: is there a 

delay between Bax activation and the appearance of apoptosis detectable by flow 

cytometry or does this reflect a maximal activation of Bax within the neutrophil at 20 

hours or is there another, anti-apoptotic, factor acting in opposition to the pro- 

apoptotic effects of Bax?
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Cord neutrophils cultured with LPS had similar levels of Bax activity to cord 

neutrophils cultured in medium only (6 hours p=0.5887; 20 hours p= 0.1797).

These results suggest that a difference in Bax is probably not the reason for the 

differences observed in rates of apoptosis between cord and adult neutrophils, 

although the reduction in apoptosis in the presence of LPS, particularly in adult 

neutrophils at 6 hours, may be related to a reduction in Bax activity, but this is not 

observed in cord blood.

Adult 
Cord 

-Q- Adult LPS 
Cord LPS

At 6 hours, p=0.031 for adult vs 
adult LPS.

Figure 6.8 Graphs showing the percentage o f cells with detectable Bax activity at 3 

time points, with and without LPS.

6.2.6.2 The Bcl-2 family of apoptotic proteins

The Bcl-2 family of proteins, which includes Bax, is central to the so-called intrinsic 

pathway of apoptosis. I chose to further investigate this family of molecules in cord 

and adult neutrophil preparations.

RNA was extracted from purified cord and adult neutrophils (4 pairs) as explained in 

section 2.2.5. The extracted RNA was frozen and then sent to Sheffield, where it was 

used in RNase protection assay (RPA) and RT-PCR, performed by Vanessa Singleton 

and Dr Lynne Prince, in order to further investigate the possible differences in the 

Bcl-2 family of proteins between the two types of cells. RNA was only extracted from 

fresh neutrophils, not from cells which had been left to apoptose in culture, because of
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the very large number of neutrophils required to obtain sufficient RNA for the assays 

and in order to assess if any differences exist between adult and cord neutrophils at 

baseline, rather than once apoptosis has commenced.
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Figure 6.9 Photograph o f  RPA autoradiograph showing larger amounts o f Bcl-xl in 

cord and Mcl-l in adult lanes.

An equal load of RNA was placed in each lane of the gel, however it can be seen in 

Figure 6.9 that “housekeeping” genes such as GAPDH are expressed in greater 

quantities in cord neutrophils; this may be because cord neutrophils are more 

transcriptionally active and may have a higher proportion of their RNA present as 

mRNA, rather than rRNA, explaining the higher global gene expression in the cord 

samples.
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Looking at the four pairs of samples that were subjected to this analysis, and allowing 

for the relatively heavier staining of the cord lanes, there appear to be larger amounts 

of both the anti-apoptotic proteins Bcl-xl and Al (bfl-1) in cord blood neutrophils and 

higher levels of Mcl-1 in adult neutrophils.

These perceived differences were further analysed by RT-PCR as described in section 

2.2.5.3, the results of which are summarised in Figure 6.10. When normalised for 

either GAPDH or p-actin, Bcl-xl was significantly upregulated in the cord neutrophils 

and Mcl-1 was significantly more abundant in adult neutrophils. There was no 

statistically significant difference in Al or in GAPDH between adult and cord cells. 

GAPDH and H IFla are both induced by hypoxia but were not statistically 

significantly different between the two groups, indicating that the relative hypoxia of 

the intra-uterine environment was not likely to be the cause of the differences 

observed. HIF 2a, along with HIF la, is also a key regulator of the transcriptional 

response to hypoxia (Bracken et al., 2005, Scortegagna et al., 2003), however HIF la  

and HIF 2a have unique targets and different biological effects (Patel and Simon, 

2008) and it is mainly HIF la  which regulates neutrophil survival (Walmsley et al., 

2005).
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Figure 6.10 Graphs showing median fo ld  change in (A) Bcl-xl, (B) A-l, (C) Mcl-1, 

(D) HIF-la, (E) HIF-2a and (F) GAPDH for cord and adult neutrophil RNA 

subjected to RT-PCR. (n=4)
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6.2.6.3 Caspase 3

Caspase 3 is a central executioner of apoptosis which cleaves many key cytoskeletal 

components at an Asp-Xaa-Xaa-Asp (DXXD) motif (Cohen, 1997). Caspase 3 

activation by cleavage of pro-caspase 3 is an early apoptotic event. I chose to study 

this caspase further due to its probable central role in the “final common pathway” of 

both intrinsic and extrinsic proposed pathways of apoptosis.

Caspase 3 was measured by flow cytometry at each of the three time points (0, 6 and 

20 hours) in neutrophils purified from 8 pairs of cord and adult blood samples using 

Apo Logix ™ - SR Sulforhodamine Caspase Detection Kit (Peninsula Laboratories 

Inc, California, USA) as described in chapter 2, section 2.2.4.3.I.

There was no significant difference in MFI or the percentage of cells positive for 

activated caspase 3 at any of the time points or conditions, despite the significant 

differences observed in the percentage of apoptotic cells in section 6.2.4 above.
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Figure 6.11 Graph showing percentage o f cells expressing caspase 3 at 3 time points, 

with and without LPS.

6.2.6A. Other caspases

Similar to the Bcl-2 family, the caspases were also analysed by RPA methodology by 

Vanessa Singleton in Sheffield, using RNA extracted and frozen in Cardiff from 

neutrophils which were isolated from 4 pairs of cord and adult blood samples. Again, 

despite equivalent loading of RNA, the cord neutrophils appear to have higher
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amounts of the loading controls GAPDH and L32. Caspases 1, 4 and 8 are expressed 

highly in both cord and adult neutrophils but differences in caspases between cord and 

adult neutrophils are difficult to elucidate from this assay. These findings have not 

been further analysed by RT-PCR.

Caspases Caspases

GAPDH
GAPDH

'TJ

I

Figure 6.12 Photograph o f autoradiograph o f RPA for caspases, showing high 

expression o f caspases 1, 4 and 8 in adult and cord lanes.
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6.3 Sum m ary of m ain findings

1. I confirmed that cord blood neutrophils from term infants undergo apoptosis 

less readily than adult neutrophils.

2. Apoptosis in adult neutrophils can be delayed by the addition of LPS (seen 

clearly by 6 hours), but this effect appears to be delayed in onset in cord 

neutrophils (only seen at 20 hours).

3. A similar proportion of both cord and adult neutrophils have Bax and caspase 

3 activity detected despite higher levels of apoptosis in adult neutrophils.

4. Adult and cord blood have differing expression o f  anti-apoptotic proteins of 

the Bcl-2 family, specifically cord neutrophils have higher levels of the anti- 

apoptotic protein Bcl-xl and lower levels of the pro-apoptotic protein Mcl-1. 

These differences cannot be attributed solely to the relative hypoxia of intra­

uterine life.

6.4 Discussion

6.4.1 Introduction

Apoptosis in cord blood neutrophils has been studied by a number of groups, with the 

majority finding that cord neutrophils were relatively resistant to apoptosis compared 

to neutrophils from adult peripheral blood (Allgaier et al., 1998, Hanna et al., 2005, 

Koenig et al., 2005, Luo et al., 2003, Molloy et al., 2004, Molloy et al., 2005), 

however one group found exactly the opposite (Uguz et al., 2002) for reasons which 

remain unclear, but may be methodological. The method o f neutrophil separation may 

have a profound effect on neutrophil activation and thus the ability of the cells to 

undergo apoptosis. “Contamination” of neutrophil preparations with monocytes may 

also produce altered results in apoptosis experiments as monocytes are a source of 

cytokines and other inflammatory mediators which prolong neutrophil survival 

(Sabroe et al., 2004). It is possible that these studies differed in their results because 

of the way in which the neutrophils were purified and handled prior to commencing 

the apoptosis experiments.
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I elected to use umbilical cord blood from infants bom at term by elective Caesarean 

section to healthy mothers for two main reasons:

- cord blood is available in sufficient quantities at delivery without 

compromising the health or medical care of the mother or baby (the cord and 

the blood contained therein are normally disposed of following inspection by 

the delivering midwife) (range <5 -  60 ml per cord, average 20 -  25 ml per 

cord in experienced hands).

- babies delivered by Caesarean section prior to the onset of labour are the least 

likely to have neutrophils which have been primed or activated either by 

infection or the process of labour.

6.4.2 Neutrophil apoptosis

I confirmed the findings of published studies by using flow cytometry to assess 

neutrophil apoptosis in preparations of cord and adult neutrophils which were 

effectively free of monocyte contamination, which may have altered rates of apoptosis 

of the neutrophils in culture (Sabroe et al., 2004).

Cord blood neutrophils did indeed undergo apoptosis less readily that those from adult 

peripheral blood and also appeared less able to respond to the addition of LPS. This 

hyporesponsiveness o f neonatal neutrophils to LPS has previously been described by 

Molloy et a l (Molloy et al., 2008) in a paper published shortly before our experiments 

had been completed. They attributed this relative lack of response to LPS to the 

failure of neonatal neutrophils to upregulate TLR 4 in response to sepsis (Molloy et 

al., 2006, Viemann et al., 2005). I found a similar expression of TLR 2 and 4 and 

CD 14 on cord and adult neutrophils, suggesting that the poor response to LPS that 

was witnessed in cord neutrophils is mediated by intracellular mechanisms, rather 

than the neutrophils being unable to respond to the stimulus.

6.4.3 Mechanisms for the delay in neonatal neutrophil apoptosis

Luo et a l (Luo et al., 2003) used RT-PCR and enzymatic assays to describe a 

reduction in caspase 3 mRNA and functional activity as a possible cause for the delay 

in Fas mediated neutrophil apoptosis in cord neutrophils. Hanna et al (Hanna et al.,
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2005) described reduced expression of the Fas receptor in neonatal neutrophils as well 

as reduced expression of caspase 3 and the pro-apoptotic proteins Bax, Bad, and Bak 

by flow cytometry.

I found no significant difference in caspase 3 activation between adult and cord 

samples, either in fresh neutrophils or those allowed to undergo apoptosis in culture. 

The results of the RPA appeared to agree with this finding, but suggest that further 

investigation of other caspases may yield more useful results.

The Bcl-2 family comprises both pro- and anti-apoptotic member proteins. Bax is a 

pro-apoptotic protein which, following activation by Bid, makes holes in 

mitochondrial membrane. Our data show that levels of Bax activation are remarkably 

similar in cord and adult neutrophils, especially when the delay in apoptosis in cord 

neutrophils is considered. This raises the question of whether there is another, anti- 

apoptotic, factor acting in cord blood to produce the delay in apoptosis which I 

observed.

The delay in cord neutrophil apoptosis may be partly explained by the significant 

increase in Bcl-xl which I observed in cord neutrophils. Bcl-xL appears to be the 

dominant regulator of apoptosis and has been called the “survival protein” because of 

its cell death repressor activity. Bcl-xl has been shown to compete with Bax and 

prevent the binding of Bax to the mitochondrial membrane (Billen et al., 2008), thus 

delaying or preventing apoptosis. This may be the mechanism by which cord blood 

neutrophils experience a delay in apoptosis and still have the similar levels of Bax 

activation which I have described.

Bax and Bcl-xl have been studied in adult and neonatal rat cardiac myocytes, where 

neonatal cells have high levels of both Bcl-xl and Bax but with age, Bcl-xl is 

maintained but Bax levels are barely detectable in adult rat hearts (Cook et al., 1999). 

In neuronal tissue Bcl-xl is not downregulated in the adult rat although Bax levels are 

20- to 140-fold lower in adult compared to neonatal rat tissues (Vekrellis et al., 1997). 

Adult peripheral blood neutrophils have previously been shown to express very low 

levels of both Bcl-xl and Bax, as well as Bcl-2, Bik and caspase 2 (Santos-Beneit and 

Mollinedo, 2000), although an earlier study found only Bax and no other Bcl-2 family
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members in adult neutrophils (Ohta et al., 1995). Apart from the Hanna et al (Hanna 

et al., 2005) paper, there have been no published comparisons, to our knowledge, 

looking in detail at the Bcl-2 proteins in adult and neonatal neutrophils.

Additionally, I have shown levels of Mcl-1 protein are significantly increased in adult 

neutrophils when compared to cord cells. Mcl-1 is generally an anti-apoptotic member 

of the Bcl-2 family (Michels et al., 2005) and had been described as being essential 

for the survival of neutrophils (Dzhagalov et al., 2007). It promotes cell survival by 

interfering in the cascade of events leading to release of cytochrome c from 

mitochondria. However, Mcl-1 can also be cleaved by caspases during apoptosis to 

produce a cell death promoting molecule (Michels et al., 2005) and this may also be 

significant in explaining the differences observed between adult and cord neutrophil 

apoptosis. The cell death promoting activity of Mcl-1 may be partly responsible for 

adult neutrophils undergoing apoptosis more readily than cord neutrophils.

Hypoxia inducible factor (HIF) is an oxygen-sensitive transcription factor which 

regulates cell responses to hypoxia and is upregulated under conditions of low oxygen 

tension (Walmsley et al., 2008). HIF-la promotes neutrophil survival but the 

mechanism of this has yet to be fully elucidated (Mecklenburgh et al., 2002, 

Walmsley et al., 2005a, Walmsley et al., 2005b). The fact that HIF-la is not 

upregulated in cord neutrophils indicates that the significantly prolonged survival of 

cord neutrophils is unlikely to be due to the relative hypoxia of the intra-uterine 

environment. A study of guinea pig fetuses failed to show increased expression of 

Bcl-xl following hypoxia, although Bax expression was increased by hypoxic 

conditions (Abedin et al., 2005). HIF-2a shows upregulation in cord neutrophils but it 

appears to be less important in neutrophils than H IF-la (Mecklenburgh et al., 2002, 

Walmsley et al., 2005a, Walmsley et al., 2005b).

Al (bfl-1) has been previously studied and found in similar amounts in adult and cord 

neutrophils (Hanna et al., 2005). I initially tried to study this protein by flow 

cytometry but no effective antibody was available for this purpose. Levels of A-l are 

not significantly different between adult and cord blood in our study when the results 

of the RT-PCR are reviewed.

350



6.4.4 Conclusion

This chapter aimed to examine the effect of maturity (term newborn vs adult) on the 

ability of neutrophils to undergo apoptosis, in light of the significantly lower 

percentage of the neutrophil population that was apoptotic in BAL samples from 

preterm infants.

Neonatal neutrophils displayed a delay in apoptosis when compared to adult 

neutrophils and were also hyporesponsive to the pro-survival effects of LPS.

The differences in the Bcl-2 family members between adult and cord neutrophils may 

be the most significant of the factors investigated in explaining the delay in apoptosis 

in term cord neutrophils. It is interesting to observe the differential use of the Bcl-2 

family of proteins in promoting neutrophil survival between adults and newborn 

infants. It would be a useful addition to this study to investigate the same Bcl-2 family 

members in cord blood taken from preterm infants to assess whether a decrease in 

gestation would further alter the regulation of apoptosis in preterm infants compared 

to term babies.
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Chapter 7 

Final Discussion

7.1 Overview

In this thesis, I have sought to examine the inflammatory process in the lungs of 

ventilated newborn infants. I have described both the cellular and supernatant 

components of bronchoalveolar lavage samples from term and preterm infants and 

focused on the relationship of various components of the pulmonary inflammatory 

response to the pathogenesis of CLD. I have paid particular attention to the role of 

infection in lung disease of preterm infants and tried to identify a predictive factor for 

the development of CLD. I have focused more specifically on the role of neutrophil 

apoptosis in CLD and have sought to understand the mechanism for the delay in 

neutrophil apoptosis in newborn infants and how this may impact on lung disease. I 

used flow cytometry, a technique not previously reported in the study of neonatal 

BAL, to accurately describe the cellular component of BAL samples and to study 

neutrophil and macrophage surface markers in BAL samples as well as neutrophil 

apoptosis in BAL samples. I have also attempted to study apoptosis in neonatal 

neutrophils in the in vitro setting to discover reasons for their delayed apoptosis.

7.2 Initiation of the inflammatory response

Initially I confirmed previously published findings (Merritt et al., 1983, Kotecha et 

al., 2003, Amon et al., 1993) which showed that the total cellular load, as well as the 

number of both neutrophils and macrophages, in the lungs of ventilated preterm 

infants is much greater than their term counterparts but I failed to show a significant 

difference between preterm infants whose RDS resolves and those who go on to 

develop CLD. This lack of a significant result may be due to the small numbers in 

each patient group in our cohort. However, our study has the advantage of daily 

sampling in the first week of life which may have detected changes in cell influx that 

would have been missed by less the frequent sampling protocols used in other studies 

(Kotecha et al., 2003). Many of the studies of the cellular components of BAL 

samples mentioned above date from 5-10 years ago and have a cohort of infants with
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RDS that are ventilated for longer periods than in this study -  this may imply subtle 

differences in the studied population or in the care offered to these infants in different 

intensive care units at different times. Also this study cohort was slightly atypical, 

even for the Welsh Regional Neonatal Unit, as a significant proportion of the enrolled 

infants had not received a full course of antenatal steroids, which may have had an 

impact on the initiation of the pulmonary inflammatory response in these infants.

RDS is a neutrophil-dominant pathology (Amon et al., 1993) and it is likely that it is 

the persistence of neutrophils and their impact on enhancing and maintaining the 

ongoing inflammatory process that allows for the development of the lung injury that 

characterises CLD (Haslett, 1999, Serhan and Savill, 2005). I showed that 

significantly fewer neutrophils from the preterm lung have surface expression of TLR 

2 and TLR 4 which are important in mediating the recognition of pathogens in the 

lung so that possibly despite increased neutrophil numbers the response of the preterm 

infant to an invading micro-organism may be impaired and thus allow an infection to 

become established rather than rapidly cleared. Although in freshly isolated cord 

blood neutrophils there were no significant differences in TLR 2 and 4 expression 

when compared to freshly isolated adult neutrophils there appear to be differences in 

expression in neutrophils found in term and preterm lungs. It would therefore be 

useful to compare preterm and term cord blood neutrophils to assess whether the 

difference observed in BAL neutrophils is related to gestation and maturation or 

occurs as a result of failure of the preterm neutrophils to upregulate TLR 2 and 4 

expression in response to the environment in the lung.

Part of the strength of this study is the repeated samples taken from babies, 

particularly in the first week of life which enabled me to look more closely at 

individual infants and identify sudden increases in cell count which often coincided 

with the presence of microbial DNA in the BAL fluid. I was also able to show that the 

peak in total, neutrophil and macrophage counts was delayed in infants who 

developed CLD, more than either those babies with RDS or those bom at term. This 

may be because cell influx continues over a longer period in CLD infants, to reach a 

higher peak, and the inflammatory process continues long after this process has 

received a signal to begin resolution in the other groups of babies. This prolongation 

of cell influx is likely to be contributed to by the presence of infection or colonisation

354



with micro-organisms. The presence of an endotracheal tube in the ventilated neonate 

provides a portal of entry for infection as well as an indwelling foreign body for 

maintenance of infection or colonisation (in addition to the multiple venous access 

devices frequently present in these infants). Infants developing CLD were ventilated 

for a longer period, allowing increased opportunity for colonisation or infection with 

microbes and therefore may have required ongoing ventilation, thus worsening CLD, 

which required ongoing intubation in a self-perpetuating cycle.

7.3 Maintenance of the inflammatory response

I found a significant association between the presence of microbial DNA in BAL 

samples and CLD, particularly when microbial DNA was detected beyond the first 3 

days of life. This implies an important role for hospital-acquired, late-onset neonatal 

infection in the development of CLD, probably related to the persistence of the 

endotracheal tube in these long term ventilated patients. Episodes of microbial 

infection or colonisation were temporally associated with further increases in total, 

neutrophil and macrophage counts, exaggerating the inflammatory response and lung 

injury in these babies.

Similarly the presence of Ureaplasma spp. in BAL samples was also associated with 

CLD. This may be partly as a result of Ureaplasma being a well recognised cause of 

preterm labour (Kirchner et al., 2007), but antenatal infection or colonisation with this 

organism may start the inflammatory cascade before birth in the most immature lungs 

and this is then further exaggerated by the routine activities of clinical neonatology, 

such as ventilation and the provision of supplemental oxygen, which are known to be 

pro-inflammatory (Davis et al., 1991, Jobe and Bancalari, 2001).

Integral to the maintenance of the inflammatory response are various cellular 

messengers including cytokines and growth factors. I found significantly elevated 

peak levels of numerous pro-inflammatory mediators, but also of anti-inflammatory 

cytokines, like IL-10 in preterm infants who developed CLD. I believe this reflects 

complete dysregulation of the inflammatory process and cells may be unable to 

respond to anti-inflammatory stimuli because of the sheer size of the ongoing pro-
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inflammatory reaction. The presence of microbial DNA in BAL samples was 

associated with further increases in cytokine levels

7.4 Tissue damage

I studied only one major mediator of tissue damage in BAL samples, namely elastase. 

Neutrophil elastase activity was detected in a minority of samples in episodic spikes, 

temporally associated with the presence of infection but there was a significant 

relationship between the detection of elastase in BAL supernatants and the 

development of CLD. There was also a noticeable link between the presence of 

microbial DNA from species other than S. epiderm idis and the highest elastase levels, 

adding a further possible mechanism for the association seen between infection and 

CLD. Historically, elastase was considered one of the most important mediators of 

lung injury in preterm ventilated infants (Merritt et al., 1983, Ogden et al., 1984, 

Watterberg et al., 1994), however, more recently the role of elastase in CLD in the era 

of antenatal steroid and postnatal surfactant treatment has become less prominent 

(Speer et al., 1993, Sveger et al., 2002, Sluis et al., 1994). The uncontrolled release of 

neutrophil elastase into lung tissue is still a cause of lung tissue injury and the 

association of peaks in elastase with the presence of microbial DNA confirms the 

importance of microbial infection or colonisation in the pathogenesis of CLD.

The reason for uncontrolled neutrophil elastase release in the lung may be speculated 

to be due to large numbers of neutrophils present in the lung, particularly neutrophils 

dying by necrosis. This was not clearly shown by data from this cohort.

A commonly held view of the pathogenesis of CLD is that it is a process of aberrant 

lung development (Jobe and Bancalari, 2001) contributed to by numerous pro- and -  

anti-inflammatory mediators and growth factors present in the preterm lung. My 

findings of elevated peak levels of a number of cytokines in infants developing CLD 

would support this view. Additionally the significantly higher cytokine levels 

demonstrated in BAL samples where 16S rRNA or Ureaplasma were isolated, along 

with the higher neutrophil counts associated temporally with infection, may allow 

aberrant repair of elastase damaged tissues due to abnormally high levels of cytokines
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present or lack of resolution because of ongoing neutrophil recruitment in response to 

high levels of, particularly pro-inflammatory, cytokines.

7.5 Resolution of inflammation

The reason for this ongoing response in what are frequently the smallest and most 

immature infants may be related in part to my findings among the 

monocyte/macrophage population. I showed that the macrophages have a more 

immature phenotype in preterm infants and that term infants have a higher proportion 

of mature alveolar macrophages from as early as the first day of life. In fact, this was 

one of the only differences between the BAL samples of term and preterm infants at 

this early stage, although probably not clinically useful as a prognostic indicator of the 

future development of CLD as no differences were shown between RDS and CLD 

infants. The presence of mature macrophages in the lung may allow the process of 

resolution of pulmonary inflammation to begin very early in the ventilator course in 

term infants, by allowing phagocytosis of apoptotic neutrophils and production of 

anti-inflammatory cytokines. This process of resolution is likely to be reflected as an 

improvement in the infant’s clinical status and facilitates rapid extubation and thus 

further reduction in the pro-inflammatory stimuli associated with prolonged 

ventilation, which include barotrauma, hyperoxia and secondary infection.

I hypothesise that the more immature monocyte-like cells may also be able to produce 

an exaggerated cytokine response (Maus et al., 2002b, Maus et al., 2001, Rosseau et 

al., 2000a, Rosseau et al., 2000b) and be less able to phagocytose apoptotic 

neutrophils (Hallwirth et al., 2004), thus less able to provide an anti-apoptotic signal 

to promote resolution of inflammation (Haslett, 1999). This was not apparent from 

this study, but nevertheless may merit further investigation by in vitro  studies of the 

ability of immature macrophages to interact with apoptotic neutrophils from cord 

blood of both term, initially, and then preterm infants.

A recent study (Kevill et al., 2008) has shown that macrophage migration inhibitory 

factor may be an important protective factor in the development of CLD in both a 

mouse model and in human infants. This may serve to support my hypothesis that the 

presence of immature macrophages in the newborn lung is a critical component of the
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pathogenesis of CLD. G-CSF and GM-CSF are known to promote macrophage 

maturation, however their presence in the lung may also make a considerable 

contribution to the accumulation of neutrophils, thus negating any positive effect from 

these mediators (Papoff et al., 2001).

The clearance of neutrophils from the site of inflammation is vital to the resolution of 

the inflammatory process. Part of this process is the death of neutrophils by apoptosis 

and their subsequent phagocytosis by macrophages. I hypothesised that there may be 

a disruption or dysregulation of neutrophil apoptosis in infants who develop CLD 

(Kotecha et al., 2003) as a result of factors inherent in the neutrophil, dysfunctional 

macrophage recognition or phagocytosis of apoptotic neutrophils or factors related to 

the inflammatory environment in which the neutrophils are found.

I showed that a significantly higher percentage of the neutrophil population was 

apoptotic in term infants compared to preterm babies. Having more of the neutrophil 

population undergoing apoptosis renders fewer neutrophils available to actively 

contribute to the inflammatory process and tissue injury (Whyte et al., 1993, 

Dransfield et al., 1995). This, in combination with a large number of mature 

macrophages available to remove these effete neutrophils before they become 

secondarily necrotic (Matute-Bello et al., 1997), allows for the resolution of 

inflammation to begin.

Preterm infants had higher peak neutrophil counts and lower percentages of apoptotic 

neutrophils, which would effectively leave higher numbers of viable neutrophils 

present in the airways. These neutrophils are however inefficient in responding to 

microbial pathogens (Anderson et al., 1990, Levy et al., 1999), for reasons including 

their cell surface receptor expression (particularly TLRs), but also other factors not 

studied in this thesis e.g. adherence, chemotaxis, phagocytosis and non-oxygen 

dependent bactericidal activity (Anderson et al., 1990, Levy et al., 1999). The 

neutrophils are also delayed in entering the process of apoptosis. These factors allow 

neutrophil numbers to accumulate and potentially release their toxic contents causing 

a further escalation in the pro-inflammatory environment and further lung injury. 

These large numbers of neutrophils remain active at the site of inflamation (Liles et 

al., 1996, Leavey et al., 1998, Kasahara et al., 1997) until they eventually undergo
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apoptosis but then may not be able to be effectively taken up by the immature 

mononuclear phagocytes so then undergo secondary necrosis, further exaggerating the 

inflammatory problem. I showed that preterm infants do indeed have higher numbers 

of necrotic neutrophils present in BAL samples.

There appears to be a dysregulated relationship between apoptotic neutrophils, the 

mononuclear phagocyte population and the presence of infection, possibly because 

the system is completely overwhelmed by the numbers of neutrophils present and its 

regulation may be far more complex than originally thought.

I showed that the proportion of apoptotic neutrophils in preterm BAL samples reached 

a peak later than in term infants. This appears to be consistent with previously 

published findings that apoptosis is delayed in neonatal neutrophils from umbilical 

cord blood in vitro when compared to adult cells (Allgaier et al., 1998, Hanna et al., 

2005, Luo et al., 2003, Molloy et al., 2004). I was able to confirm these in vitro 

findings and went on to investigate possible reasons for this delay.

I found that the Bcl-2 family of proteins, particularly the anti-apoptotic proteins Bcl- 

xl and Mcl-1, are differentially expressed in term cord blood and adult neutrophils. 

The action of Bcl-xl in preventing permeablisation of the mitochondrial membrane by 

activated Bax may be critical in the delay in neutrophil apoptosis seen in cord 

neutrophils. This difference in Bcl-2 expression between cord and adult blood had not 

previously been described.

The addition of LPS to in vitro experiments with cord and adult neutrophils to mimic 

some of the effects of infection showed a very small further delay in apoptosis in cord 

neutrophils. This highlighted the hyporesponsiveness of infant neutrophils to infective 

stimuli and the likelihood that infection could further contribute to delayed neutrophil 

apoptosis.

The environment within the lung may also exert a significant influence on the 

resolution of pulmonary inflammation. I studied the BAL supernatants to determine 

their relative pro- or anti-apoptotic activity and found that significantly more 

supernatants had pro-apoptotic activity among the term population. It therefore
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appears that resolution of the inflammatory response in the preterm lung is hampered 

not only by an inherent delay in neutrophil apoptosis within the neutrophil itself but 

also that the cell finds itself in an environment which supplies anti-apoptotic stimuli 

external to the neutrophil as well.

In summary, it would seem that the inflammatory process in the neonatal lung is 

characterised by a series of interconnecting circles of failure of resolution of an 

inflammatory process causing, and in turn caused by, an increase in pro-inflammatory 

stimuli.

7.6 Difficulties and limitations

No discussion would be complete without a review of some of the difficulties 

experienced in the conduct of this piece of work.

The collection of BAL samples, particularly on a daily basis in the first week of life 

and then the process of preparing the samples for FACS analysis, is necessarily time 

consuming and labour intensive, frequently being undertaken outside of normal 

working hours, which may make this technique not well suited for routine clinical 

use. In my view these daily samples were an important element of this study and 

provided useful information particularly in the term and RDS group of infants. Term 

and RDS babies were only ventilated for very short periods. Perhaps this cohort are 

not a true representation of the duration of ventilation in RDS because of the small 

sample size, or perhaps ongoing improvements in neonatal care are truly having an 

impact in this group of infants, but in view of this short ventilation period, if sampling 

had taken place less frequently, there would have been very little data on the term or 

RDS babies at all.

Neonatal BAL is frequently performed on the smallest, sickest infants from whom a 

sample of any type will be small and often difficult to obtain and ethical issues around 

consent for this sort of study will always be raised. Flow cytometry is not a technique 

that has been used previously in the analysis of preterm neonatal lung lavages, 

although it has been used to some extent in adult sputum studies. It took some time to 

establish appropriate processing techniques, including the use of DTT, and FACS
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staining and settings for this somewhat unusual sample type, particularly in view of 

the very tiny sample volumes obtained. The use of multi-colour (3-colour in this 

study) flow cytometry techniques enabled multiple antigens to be detected 

simultaneously, thus making good use of small samples. This was complicated by the 

high level of auto-fluorescence seen in both neutrophils and macrophages in these 

samples and fluorophores must be chosen with care in order to minimise the amount 

of FACS compensation required.

7.7 Future studies

This thesis has raised a number of questions which I believe could be further 

investigated:

I have identified a relative immaturity in lung macrophage populations in preterm 

infants. Unfortunately because of small sample sizes there were very few babies in 

whom these cells could be fully characterised. It would be interesting to fully 

characterise lung macrophages, using a large panel of potentially significant 

antigens/antibodies eg. CD 14, CD36 and HLA-DR, along with CD31, CD44 and the 

“PS-receptor” among others, in a population of ventilated infants of various 

gestational ages to ascertain whether increasing prematurity increases macrophage 

immaturity. Exposure to antenatal infection has been reported to precipitate migration 

of macrophages to the lung in the fetus (Alenghat and Esterly, 1984) and 

characterisation of macrophage maturity in the first few days of life in infected and 

uninfected premature infants might show marked differences and help to explain later 

responses to the inflammatory stimuli of routine preterm neonatal care.

The relationship between macrophages and neutrophil apoptosis involves numerous 

factors, including properties of both the neutrophil and the macrophage, their 

interaction and their environment (Vandivier et al., 2006). The interactions between 

apoptotic neutrophils and the macrophages which should engulf them are known to be 

complex (Vandivier et al., 2006) and are perhaps best studied in an in vitro setting 

where some of the many interacting factors in the process can be controlled or 

eliminated for study purposes. There may be further neutrophil dependent factors, 

such as altered surface antigen expression which, after the delay in apoptosis, prevent
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effective recognition and therefore removal of the neutrophils by phagocytes. 

Observation of neutrophil-macrophage interactions in term and preterm blood cells 

would appear to be a logical extension of this work.

I have noted a relationship between the presence of Ureaplasma and the development 

of CLD. This remains a controversial area of neonatal practice. The natural history of 

untreated Ureaplasma colonisation is unclear. One of our studied infants, who 

developed CLD, had no treatment for Ureaplasm a but was noted to have cleared the 

organism from his pulmonary secretions by 112 days of age in a sample taken for 

other clinical purposes. While this lack of clarity over the role of Ureaplasma in 

neonatal lung disease exists, it could still be ethically acceptable to observe the natural 

history of Ureaplasma colonisation in affected infants. There is little evidence 

(Mabanta et al., 2003) that treatment for U reaplasm a is useful in preventing the 

development of CLD but this is based on only 37 colonised patients from 2 studies 

where treatment protocols differed too much for the infants’ data to be analysed 

together as part of the review. A well-designed clinical trial of treatment of this 

organism in the preterm neonatal population is warranted, although the effects of 

Ureaplasma in the preterm lung may begin antenatally and treatment, even from birth 

before Ureaplasma colonisation status is known, may be too late to prevent CLD.

All our in vitro studies of neutrophil apoptosis were conducted using cord blood from 

term infants collected following elective Caesarean section. I would like to assess the 

impact of decreasing gestational age on the delay in neutrophil apoptosis and its 

causes, particularly the Bcl-2 proteins. Working with preterm cord blood will be more 

challenging than in term infants for a number of reasons:-

Significantly preterm infants are not often delivered by elective Caesarean 

section and those that are, are often in situations of severe fetal compromise or 

maternal ill health, so samples might not be easily obtained from this group. 

An extremely preterm or severely compromised fetus frequently has a very 

small, thin umbilical cord which will yield only a very small blood sample. 

This may drive the development of methods of separating neutrophils from 

and working with very small amounts of cord blood. This small sample 

methodology might then be useful in working with blood samples from infants 

and children -  currently prevented by the need for large blood samples.
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Infants who are bom spontaneously preterm often do so because of antenatal 

infection or inflammation which may be clinically undiagnosed (Goldenberg 

et al., 2000). Methods of identifying these infants and/or their mothers will be 

important in differentiating the potential anti-apoptotic effect of infection from 

a gestational delay in apoptosis.

I would also like to be able to observe the “maturation” of neutrophil apoptosis in 

infants and children to determine at what point it reaches adult rates. Again, this 

would require the ability to work with very small blood samples for clinical and 

ethical reasons.

The therapeutic use of cytokine analogues or antagonists has been effective in 

inflammatory diseases of adults e.g. rheumatoid arthrititis (Drynda et al., 2002). It has 

been suggested that similar interventions may be beneficial in the neonate. The effects 

of such drugs in reducing the inflammatory response may be beneficial but this may 

have to be traded against a further reduction in the ability of the infant to combat 

pathogens. The administration of substances which will act externally to the 

neutrophil to attempt to enhance apoptosis (e.g. FasL) may still be unable to 

overcome the anti-apoptotic effect of proteins like Bcl-xl which are having their effect 

at a mitochondrial membrane level.

7.8 Final summary

In this thesis I have sought to understand aspects of the inflammatory process in the 

neonatal lung by analysis of bronchoalveolar lavage fluid and cells.

I have performed detailed longitudinal analysis of cells types and counts in the 

airways of ventilated neonates using flow cytometry -  a technique not previously used 

for analysis of neonatal BAL cell phenotypes. I have established a reliable method for 

the use of flow cytometry in the very small samples obtained from neonatal BAL and 

shown that the use of DTT as a mucolytic in these samples has no significant effect on 

the detection of specific cell surface markers by flow cytometry. I have sought and 

found relationships between the presence of either 16S rRNA genes or Ureaplasma in 

BAL samples and the development of CLD.
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I have found significantly elevated peak levels of a number of different cytokines in 

BAL supernatants from preterm infants and more pro-apoptotic activity against adult 

neutrophils in BAL supernatants from term infants.

I have focused on the role and process of neutrophil apoptosis in infants at risk of 

developing CLD and found a delay in apoptosis in lung neutrophils in preterm infants 

and confirmed a delay in neutrophil apoptosis in blood neutrophils of term infants 

compared to adults. I have shown that this delay might be due to differential 

expression of anti-apoptotic proteins Bcl-xl and Mcl-1 between cord and adult 

neutrophils, something which has not previously been described.
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Minicom 029 2074 3632 Minicom 029 2074 3632

INFORMATION SHEET FOR PARENTS/GUARDIANS Ver 3

Principle Investigators: Professor Sailesh Kotecha, Consultant Neonatologist
Contact Details: Neonatal Unit, 029 20 74 3374

1. Study Title
Is chronic lung disease of prematurity a consequence of immature regulation of 
neutrophil apoptosis in preterm infants?

2. Invitation
You are being invited to take part in a research study. Before you decide it is 
important for you to understand why the research is being done and what it will 
involve. Please take time to read the following information carefully and discuss it 
with others if you wish. Ask us if there is anything that is not clear or if you would 
like more information. Take time to decide whether or not you wish to take part.

Thank you for reading this leaflet.

3. What is the purpose of the study?
Chronic lung disease (CLD), a common disease of premature babies, is characterised 
by prolonged oxygen dependency. Cells of inflammation, called neutrophils, are 
increased in the lungs of babies who develop CLD. Neutrophils are removed from the 
lungs by a process called apoptosis. We recently showed that the removal of 
neutrophils by this process of apoptosis is increased in babies who recover from their 
lung disease but not in those who develop CLD. In addition, cells called macrophages, 
which remove the apoptotic neutrophils, were increased in babies who recovered from 
their breathing difficulties but not if they developed CLD. We wish to determine 
whether CLD develops due to immaturity of factors that normally regulate this 
process called apoptosis. In particular, we wish to determine if apoptosis of 
neutrophils is related to the prematurity of the baby.

Using blood and lung washings from babies who do and do not recover from their 
lung disease, we will identify whether any factors important in neutrophil apoptosis 
are deficient or the macrophages are immature in babies who develop CLD. The 
results will help us understand why some babies progress to develop CLD whilst 
others recover and may help us develop therapies which can enhance apoptosis.
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4. Why have I and/or my baby been chosen?
We wish to obtain samples from two groups of babies:

(a) babies who are bom at or less than 32 weeks gestation and who need help with 
their breathing with breathing machines because of under-developed lungs, or

(b) babies who need help with their breathing with breathing machines because of 
non-breathing problems e.g. surgery.

As your baby may fall into one of these two groups, we would like to invite you to 
take part in our study.

5. Does my baby have to take part?
It is up to you to decide whether or not you want your baby to take part. If you do 
decide that your baby can take part, you will be given this information sheet to keep 
and be asked to sign a consent form. If you decide for your baby to take part, you are 
still free to withdraw your baby at any time and without giving a reason. A decision to 
withdraw at any time, or a decision not to take part, will not affect the standard of care 
that your baby receives.

6. What will happen if my baby takes part?

(a) If at all possible, we would like to obtain blood (about a teaspoon) from the 
umbilical cord when the baby is bom.

(b) We would also like to obtain 0.5 -  1.0 ml of blood (5 ml is a teaspoon) if and only 
if the baby is having blood taken for other routine blood tests. We would like to 
obtain blood daily for the first week and twice weekly thereafter for the first month.

(c) We would also like to obtain lung fluid from your baby whilst the baby remains on 
a breathing machine. The fluid will be obtained daily for the first week and twice 
weekly thereafter or until your baby is removed from the breathing machine, 
whichever occurs first. The breathing tube is often sucked out by the nurses to prevent 
it from blocking. We would replace this suctioning wherever possible so it does not 
need to be performed twice. In order to compare the results with other baby’s results, 
we have standardised this method of suctioning: the baby will be placed on his/her 
back and turn the head to the left side to encourage the suction tube to go down the 
right lung. We will then gently place a suction tube through the breathing tube into the 
lungs and through the tube insert saline (salt water). The amount of saline is based on 
the baby’s weight using 1 ml for each kilogram of the baby’s weight (one teaspoon is 
5 ml). After instilling the saline, we will suck up as much fluid as possible and repeat 
the procedure once more. The returned fluid will consist of the saline and will also 
have the baby’s lung fluid which we can use for our research.

We will monitor the baby’s heart rate and oxygen saturation during the procedure and 
sometimes the baby may need a little more oxygen (usually 5 -  10%) for a short 
period of time.

392



7. Will this affect my or my baby’s treatment?
The medical care of you or your baby will not be affected by this study. The 
information from this study will not be used to diagnose or treat you or your baby.

8. What will happen to the samples collected?
We will first separate the cells and fluid from the samples collected. We will 
determine the proportion of different cells types and also how many neutrophils are 
apoptotic by using modem techniques which can look at the small number of cells 
obtained from small babies. We will use the fluid to measure or identify proteins 
which promote or inhibit apoptosis. Some fluid and cell samples will be sent to 
Professor Moira Whyte’s group in Sheffield as they have specific expertise in 
apoptosis of neutrophils. They will work together with us in identifying any particular 
factors which may be increased or decreased in babies who develop CLD.

9. What are the risks of my baby taking part?
Babies who receive mechanical ventilation are monitored closely for their heart rate 
and oxygen levels. The risks are similar to those of routine suctioning that the baby 
may have. Sometimes the babies may need extra oxygen, typically 5 -  10%, for 5 -  
10 minutes and sometimes especially when the suction tube is placed the heart rate 
may drop for a few seconds (usually less than 30 seconds). We would monitor the 
baby throughout the procedure and stop it if the baby becomes unwell in any way.

10. What if something goes wrong?
If your baby is harmed by taking part in this research project, there are no special 
compensation arrangements. If your baby is harmed due to someone’s negligence, 
then you may have grounds for a legal action but you may have to pay for it. 
Regardless of this, if you wish to complain, or have any concerns about any aspect of 
the way you or your baby have been approached or treated during the course of this 
study, the normal National Health Service complaints mechanisms should be 
available to you.

11. Will my baby’s taking part be kept confidential?
All information which is collected about your baby during the course of the research 
will be kept strictly confidential. Any information about your baby which leaves the 
hospital will have your and the baby’s name and address removed so that you cannot 
be recognised from it. We will assign a number to each baby and use this to label the 
samples obtained for the study.

12. What will happen to the results of the study?
We will publish the results in reputable medical journals and present the data at 
scientific and medical meetings. Your baby’s name and details will NOT be revealed 
at any stage. Please let us know if you would like a copy of the report.
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13. Who is paying for the study?
The study is funded by the Wellcome Trust which is a major medical charity in the 
UK.

14. Who had reviewed the study?
This study has been reviewed by the South East Wales Research Ethics Committee 
and also by the Wellcome Trust who have funded the study.

15. Who can 1 contact for further information?
You may contact Professor Sailesh Kotecha by asking one of the staff on the neonatal 
unit or by telephoning 029 20 74 3374 or by email rKotechaS@Cardiff.ac.uk") or by 
mail to: Professor Sailesh Kotecha, Neonatal Unit, Heath Hospital, Heath Park, 
Cardiff CF14 4XN.

Thank you for taking time to read this information leaflet at such a difficult time. 
Please do not hesitate to ask Professor Sailesh Kotecha or Dr Nicola Maxwell if you 
would like to discuss anything further.

Dr Nicola Maxwell Professor Sailesh Kotecha
Clinical Research Fellow Consultant in Neonatal Medicine
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Direct Line/Llinell uniongychol

Ysbyty Athrofaol Cymru
University Hospital of Wales

Heath Park,
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Phone 029 2074 7747 
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Caerdydd, CF14 4XW 
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Ffacs 029 20743838

Minicom 029 2074 3632

Patient Identification Number for this study:

CONSENT FORM

Is chronic lung disease of prematurity a consequence of immature regulation 
of neutrophil apoptosis in preterm infants?

Name of R e se a rc h e r :  P ro fe s s o r  S a ile sh  K o techa ,  C o n s u l ta n t  N eonato log is t ,  
N eonatal Unit, Heath H ospita l ,  Cardiff CF14 4XN

P le a se  initial box

1. I confirm that I have read and understand the information sheet dated 
6th September 2005 (version 3) for the above study and have had the 
opportunity to ask questions.

2. I understand that my baby’s participation is voluntary and that I am 
free to withdraw my baby at any time, without giving any reason, 
without my baby’s medical care or legal rights being affected.

3. I understand that sections of any of my baby’s medical notes may 
be looked at by the research individuals I give permission for
these individuals to have access to my baby’s records.

4. I agree for my baby to take part in the above study.

□
□
□
□

Name of Parent/Guardian Date Signature

Name of Person taking consent 
(if different from researcher)

Date Signature

Researcher Date Signature

1 for patient, 1 for researcher, 1 to be kept with hospital notes.
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INFORMATION SHEET FOR PARENTS/GUARDIANS Version 1 (6th
December 2005) -
NORMAL TERM CONTROLS

Principle Investigators: Professor Sailesh Kotecha, Consultant Neonatologist
Contact Details: Neonatal Unit, 029 20 74 3374

3. Study Title
Is chronic lung disease of prematurity a consequence of immature regulation of 
neutrophil apoptosis in preterm infants?

4. Invitation
You are being invited to take part in a research study. Before you decide it is 
important for you to understand why the research is being done and what it will 
involve. Please take time to read the following information carefully and discuss it 
with others if you wish. Ask us if there is anything that is not clear or if you would 
like more information. Take time to decide whether or not you wish to take part.

Thank you for reading this leaflet.

3. What is the purpose of the study?
Chronic lung disease (CLD), a common disease of premature babies, is characterised 
by prolonged oxygen dependency. Cells of inflammation, called neutrophils, are 
increased in the lungs of babies who develop CLD. Neutrophils are removed from the 
lungs by a process called apoptosis. We recently showed that the removal of 
neutrophils by this process of apoptosis is increased in babies who recover from their 
lung disease but not in those who develop CLD. In addition, cells called macrophages, 
which remove the apoptotic neutrophils, were increased in babies who recovered from 
their breathing difficulties but not if they developed CLD. We wish to determine 
whether CLD develops due to immaturity of factors that normally regulate this 
process called apoptosis. In particular, we wish to determine if apoptosis of 
neutrophils is related to the prematurity of the baby.

Using blood and lung washings from babies who do and do not recover from their 
lung disease and comparing these to umbilical cord blood from healthy babies bom at 
term, we will identify whether any factors important in neutrophil apoptosis are 
deficient or the macrophages are immature in babies who develop CLD. The results 
will help us understand why some babies progress to develop CLD whilst others 
recover and may help us develop therapies which can enhance apoptosis.
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4. Why have I and/or my baby been chosen?
We wish to obtain samples from three groups of babies:

(c) babies who are bom at or less than 32 weeks gestation and who need help with 
their breathing with breathing machines because of under-developed lungs, or

(d) babies who need help with their breathing with breathing machines because of 
non-breathing problems e.g. surgery.

(e) babies bom at term (more than 37 weeks gestation) who are healthy

We would like to ask you to join our study as you have had a normal pregnancy and 
use the blood from the umbilical cord as controls (group c) to compare the results 
from premature babies (groups a and b).

5. Does my baby have to take part?
It is up to you to decide whether or not you want your baby to take part. If you do 
decide that your baby can take part, you will be given this information sheet to keep 
and be asked to sign a consent form. If you decide for your baby to take part, you are 
still free to withdraw your baby at any time and without giving a reason. A decision to 
withdraw at any time, or a decision not to take part, will not affect the standard of care 
that your baby receives.

What will happen if my baby takes part?
We would like to obtain blood (about a teaspoon) from the umbilical cord when the 
baby is bom.

7. Will this affect my or my baby’s treatment?
The medical care of you or your baby will not be affected by this study. The 
information from this study will not be used to diagnose or treat you or your baby.

8. What will happen to the samples collected?
We will first separate the cells and fluid from the blood samples collected. We will 
determine the proportion of different cell types and also how many neutrophils are 
apoptotic by using modem techniques which can look at the small number of cells 
obtained from babies. We will use the fluid to measure or identify proteins which 
promote or inhibit apoptosis. Some fluid and cell samples will be sent to Professor 
Moira Whyte’s group in Sheffield as they have specific expertise in apoptosis of 
neutrophils. They will work together with us in identifying any particular factors 
which may be increased or decreased in babies who develop CLD.

9. What are the risks of my baby taking part?
The cord blood sample will be taken after the umbilical cord has been cut and is not 
harmful or painful for you or your baby.
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10. What if something goes wrong?
If your baby is harmed by taking part in this research project, there are no special 
compensation arrangements. If your baby is harmed due to someone’s negligence, 
then you may have grounds for a legal action but you may have to pay for it. 
Regardless of this, if you wish to complain, or have any concerns about any aspect of 
the way you or your baby have been approached or treated during the course of this 
study, the normal National Health Service complaints mechanisms should be 
available to you.

11. Will my baby’s taking part be kept confidential?
All information which is collected about your baby during the course of the research 
will be kept strictly confidential. Any information about your baby which leaves the 
hospital will have your and the baby’s name and address removed so that you cannot 
be recognised from it. We will assign a number to each baby and use this to label the 
samples obtained for the study.

12. What will happen to the results of the study?
We will publish the results in reputable medical journals and present the data at 
scientific and medical meetings. Your baby’s name and details will NOT be revealed 
at any stage. Please let us know if you would like a copy of the report.

13. Who is paying for the study?
The study is funded by the Wellcome Trust which is a major medical charity in the 
UK.

14. Who had reviewed the study?
This study has been reviewed by the South East Wales Research Ethics Committee 
and also by the Wellcome Trust who have funded the study.

15. Who can 1 contact for further information?
You may contact Professor Sailesh Kotecha by asking one of the staff on the delivery 
suite or by telephoning 029 20 74 3374 or by email (KotechaS@Cardiff.ac.uk) or by 
mail to: Professor Sailesh Kotecha, Neonatal Unit, Heath Hospital, Heath Park, 
Cardiff CF14 4XN.

Thank you for taking time to read this information leaflet. Please do not hesitate 
to ask Professor Sailesh Kotecha or Dr Nicola Maxwell if you would like to 
discuss anything further.

Dr Nicola Maxwell Professor Sailesh Kotecha
Clinical Research Fellow Consultant in Neonatal Medicine
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University Hospital of Wales
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Parc Y Mynydd Bychan, 
Caerdydd, CF14 4XW 
Ffon 029 2074 7747 
Ffacs 029 20743838

Minicom 029 2074 3632

Patient Identification Number for this study:

CONSENT FORM - Controls
Is chronic lung disease of prematurity a consequence of immature regulation of 
neutrophil apoptosis in preterm infants?

Name of R e se a rc h e r :  P r o f e s s o r  S a i le sh  K o tech a ,  C o n s u l ta n t  N eonato log is t ,
N eonata l Unit, Heath  H ospita l ,  Cardiff CF14 4XN

P le a s e  initial box

1. I confirm that I have read and understand the information sheet dated 

6th December 2005 (version 1) for the above study and have had the 

opportunity to ask questions.

2. I understand that my baby’s participation is voluntary and that I am 

free to withdraw my baby at any time, without giving any reason, 

without my baby’s medical care or legal rights being affected.

3. I understand that sections of any of my baby’s medical notes 

may be looked at by the research individuals I give permission for 

these individuals to have access to my baby’s records.

4. I agree for my baby to take part in the above study.

□
□

□
□

Name of Parent/Guardian Date Signature

Name of Person taking consent Date Signature
(if different from researcher)

Researcher Date Signature

1 for patient, 1 for researcher, 1 to be kept with hospital notes.
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Appendix 2 

Flow cytometry staining templates
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Full panel (>1.1 million cells)

1 2 3 4 5 6 7 8 9 10 11 12
A - - - - IgGl-BIO IgG2a-

BIO
- - CDllb-

BIO
CDllb-
BIO

CDllb-
BIO

CDllb-
BIO

IgM-APC IgG2a-
APC

IgGl-PE PE-Cy5.5 PE-Cy5.5 CD15-
APC

CD16-PE PE-Cy5.5 CD15-
APC
CD16-PE
PE-Cy5.5

HLA-DR-
APC
CD16-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

B CDllc-
BIO

CDllc-
BIO

CD 14-BIO CD 14-BIO CD95L-
BIO

TNF’ -BIO TRAIL-
BIO

TLR2-BIO TLR4-BIO

HLA-DR-
APC
CD16-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD16-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

CD15-
APC
CD36-PE
PE-Cy5.5

CD15-
APC
CD36-PE
PE-Cy5.5

C - - - -

AnnexinV-
PE/EDTA

AnnexinV-
PE

To-Pro3 AnnexinV- 
PE/ To- 
Pro3

(2 million cells = approx 75 000/well)
(For 1.1 million cells - controls reduced to 25 000/well and other wells at 50 000/well)



Reduced panel (0.8 -1  million cells)

1 2 3 4 5 6 7 8 9 10 11 12
A - - - - IgGl-BIO IgG2a-

BIO
- - CDllb-

BIO
CDllb-
BIO

CDllb-
BIO

CD 14-BIO

IgM-APC IgG2a-
APC

IgGl-PE PE-Cy5.5 PE-Cy5.5 CD15-
APC

CD16-PE PE-Cy5.5 CD15-
APC
CD16-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD16-PE
PE-Cy5.5

B CD 14-BIO CD95L-
BIO

TNF’ -BIO TRAIL-
BIO

TLR2-BIO TLR4-BIO

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

CD 15- 
APC
CD36-PE
PE-Cy5.5

CD 15- 
APC
CD36-PE
PE-Cy5.5

C - - - -

AnnexinV-
PE/EDTA

AnnexinV-
PE

To-Pro3 AnnexinV- 
PE/ To- 
Pro3

(For 0.8 million cells, controls use 25 000/well and remaining 12 wells at approx. 50 000/well)



Minimum panel (Around 0.5million cells)

1 2 3 4 5 6 7 8 9 10 11 12
A - - - - IgGl-BIO - - CDllb-

BIO
CDllb-
BIO

CDllb-
BIO

CD 14-BIO

IgM-APC IgG2a-
APC

IgGl-PE PE-Cy5.5 CD15-
APC

CD16-PE PE-Cy5.5 CD15-
APC
CD16-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

B - - - -

AnnexinV-
PE/EDTA

AnnexinV-
PE

To-Pro3 AnnexinV- 
PE/ To- 
Pro3

(For 0.5 million cells, controls use 25 000/well and remaining 8 wells at approx. 40 000/well)



Cord blood panel

1 2 3 4 5 6 7 8 9 10 11 12
A - - - - IgGl-BIO IgG2a-

BIO
- - CDllb-

BIO
CDllb-
BIO

CDllb-
BIO

CDllb-
BIO

IgM-APC IgG2a-
APC

IgGl-PE PE-Cy5.5 PE-Cy5.5 CD15-
APC

CD16-PE PE-Cy5.5 CD15-
APC
CD16-PE
PE-Cy5.5

HLA-DR-
APC
CD16-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

B CDllc-
BIO

CDllc-
BIO

CD 14-BIO CD 14-BIO CD95L-
BIO

TNF’ -BIO TRAIL-
BIO

TLR2-BIO TLR4-BIO

HLA-DR-
APC
CD16-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD16-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

HLA-DR-
APC
CD36-PE
PE-Cy5.5

CD15-
APC
CD36-PE
PE-Cy5.5

CD15-
APC
CD36-PE
PE-Cy5.5

C - - - - Casp3/
Inhib.

Casp3 Casp3/
ToPro

IgGl-PE Bax-PE -

AnnexinV-
PE/EDTA

AnnexinV-
PE

To-Pro3 AnnexinV- 
PE/ To- 
Pro3
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Delayed Neutrophil Apoptosis may predispose to Lung Injury in Chronic Lung 
Disease of Prematurity
Nicola C. Maxwell, Philip L. Davies, O. Brad Spiller, Eamon P. McGreal, Sailesh 
Kotecha
Department o f  Child Health, C ardiff University, Cardiff, United Kingdom  

Introduction:
The pathogenesis of Chronic Lung Disease of prematurity (CLD) involves 
interactions between numerous factors. Neonatal Respiratory Distress Syndrome 
(RDS) is characterised by alveolar neutrophil (PMN) infiltration, which disappears as 
RDS resolves (1). Persistence of PMN infiltration is strongly associated with the 
development of CLD (2,3). PMN apoptosis is important in regulation and resolution 
of inflammation. Apoptosis causes functional downregulation of PMN. Recognition 
and clearance of PMN by macrophages further downregulates the inflammatory 
response. Developmental immaturity of the neonatal immune system is well 
recognised (4). Several recent studies have shown reduced apoptosis, both 
spontaneous and induced, in neonatal compared to adult neutrophils (5,6,7,8). The 
reasons for this are unclear. There is currently no published data regarding rates of 
apoptosis in preterm neutrophils.
Hypotheses:
There is increasing dysregulation of neutrophil apoptosis with decreasing gestational 
age.
Dysregulation of neutrophil apoptosis in preterm infants contributes to development 
of CLD.
Aim:
We compared rates of apoptosis of PMN between adult peripheral blood and cord 
blood from term infants and tried to elucidate underlying mechanisms for the 
differences noted.
Method:
PMN were isolated from adult peripheral blood and from umbilical cord blood from 
term infants delivered by elective caesarean section (n= 6 adult/cord pairs). PMN 
were cultured in the presence or absence of lipopolysaccharide (LPS)(50ng/ml) and 
assessed at baseline and then 6, 12 and 20 hours from commencement of culture for 
apoptosis by flow cytometry, using Annexin-V-PE (MBL International) and To-Pro-3 
(Invitrogen). Cells positive for Annexin-V and To-Pro-3 were considered necrotic and 
those positive for Annexin-V alone were apoptotic. Activity of the apoptotic effector, 
caspase 3 (Apo-Logix®, Peninsula Laboratories) and anti-apoptotic regulator, Bax 
(monoclonal phycoerythrin-conjugated mouse anti human Bax (2D2), Santa Cruz 
Biotechnology), were similarly assessed.
Results:
PMN from cord blood underwent apoptosis at a significantly slower rate than adult 
PMN (p<0.02 at 6, 12 and 20 hours) although there was no significant difference in 
the number of apoptotic cells in the fresh samples (p=NS). The addition of LPS 
reduced adult PMN apoptosis significantly by 12 hours (p=0.04) but did not reduce 
cord PMN apoptosis. Caspase 3 is a key executioner of apoptosis and its activation is 
an early apoptotic event. It is able to activate other caspases as well as cleave 
cytoskeletal components. Caspase 3 activation reaches similar levels in cord and adult 
neutrophils undergoing apoptosis in culture, both with and without LPS. However,
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despite similar levels of caspase 3 activation, neonatal neutrophils remain resistant to 
apoptosis. Possible mechanisms for this are neonatal caspase 3 is inefficient or a 
molecule or pathway necessary for apoptosis but distal to caspase 3 activation is 
deficient or inhibited. Bax is a pro-apoptotic member of the Bcl2 group of apoptotic 
regulators. Within the cell, mitochondria sequester pro-apoptotic proteins e.g. 
cytochrome c which are released under the influence of Bax. Bax activity, similar to 
adult levels is seen in cord blood neutrophils in culture, despite levels of apoptosis in 
cord neutrophils being suppressed. The significance of this result has yet to be 
assessed.
Conclusion:
Term infant PMN undergo apoptosis at a slower rate than adult PMN. These 
differences were not due to caspase 3 or Bax activity suggesting an alternative 
mechanism for the differences in apoptosis we have noted. This may be exaggerated 
with decreasing gestation, hence contributing to the development of CLD.
Future aims/questions:
Determine the impact of gestational age on the rate of neutrophil apoptosis 
(spontaneous and induced). We will compare neutrophil apoptosis in preterm infants 
bom following spontaneous preterm labour, where subclinical infection is a leading 
cause of preterm delivery, with neutrophil apoptosis in infants bom electively preterm 
for a maternal indication or foetal growth restriction.
Further investigate possible mechanisms for alterations in the rate of neutrophil 
apoptosis in infants. Term cord blood neutrophils undergo apoptosis more slowly than 
adult neutrophils but levels of caspase 3 activation appear remarkably similar. This 
initial data implies that there may be a defect in the apoptotic pathway distal to 
caspase 3. We plan to investigate other caspases as well as other pro-(Bak, Bad) and 
anti-apoptotic (Al, BclXL) Bcl2 family members to possibly explain the mechanism 
of reduced apoptosis in cord neutrophils.

Dr Maxwell is supported by the Wellcome Trust and Dr Davies by Arriva 
Pharmaceuticals.
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The Role of Proteases in the Development of Chronic Lung Disease of 
Prematurity
Philip L. Davies, O. Brad Spiller, Nicola C. Maxwell, Sailesh Kotecha 
Department o f  Child Health, C ardiff University, Cardiff, United Kingdom

Introduction
Proteases are enzymes that hydrolyse proteins. They are produced by a number of cell 
types within the lung, including inflammatory cells such as neutrophils, where they 
play a key role in host defence and airway remodelling. An imbalance of neutrophil 
proteases (elastase and matrix metalloproteinases, MMP-9) and anti-proteases (alpha 
1-antitrypsin and tissue inhibitors of matrix metalloproteinases, TIMPs) has been 
implicated in the development of classical Chronic Lung Disease of prematurity 
(CLD). “New” CLD affects extremely preterm infants and is thought to represent an 
aberration of lung growth.
Aims
To assess the proteolytic balance in infants with new CLD and to examine 
relationships between proteolytic changes.
Methods
Ventilated preterm infants (<32 weeks gestation) and term controls underwent serial 
bronchoalveolar lavages (BAL) performed until extubation. Elastase activity assays 
were performed using a specific chromogenic substrate (Bachem, St Helens, UK) 
against a standard curve of neutrophil elastase (Athens Research and Technology,
GA, USA). Total MMP-9 and MMP-9/TIMP-1 ELIS As (R&D Systems, Minneapolis, 
USA) were performed on all samples .
Results
48 infants were recruited. 20 developed CLD, 17 had respiratory distress syndrome 
(RDS) that resolved, 5 died and 6 were term controls. The demographic profile of 
these infants is shown on table 1. Peak total MMP-9 was significantly greater in 
infants who developed CLD (median 763ng/ml) compared to infants with resolved 
RDS (median 47ng/ml), p=0.003, figure 1. Peak MMP-9/TIMP1 complex was also 
significantly greater in CLD infants (median 29.9ng/ml) compared to resolved RDS 
infants (median 1.5ng/ml), p=0.004. Elastase activity was only detected in a minority 
of samples but was present in at least one sample from more CLD infants (10/20) than 
resolved RDS infants (2/17), p=0.013.
Peaks of MMP-9, MMP-9/TIMP-1 complex and elastase tended to coincide and 
frequently occurred late figure 2. There was a strong correlation between log MMP-9 
and log MMP-9/TIMP-1 R=0.89 and a moderate correlation between log elastase 
activity and log MMP-9 R=0.63.
Conclusions
Peak MMP-9, MMP-9/TIMP-1 complex and elastase were increased in CLD infants 
although protease levels were generally less than in classical CLD. Episodic peaks in 
MMP-9 concentrations occurred for individual infants who underwent longitudinal 
sampling and these were temporally related to concentrations of MMP-9/TIMP-1 
complex and if present neutrophil elastase activity. It remains to be seen if these 
smaller increases in proteases adversely affect lung growth that occurs in “new” CLD. 
Speculation
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The underlying cause of the episodic increases in proteolytic activity continues to be 
investigated, however, infection remains a likely factor. Proteases are key to the 
neutrophil’s bactericidal activity and we speculate that infection triggers proteolytic 
release that may cause lung injury.
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Comparison of Neutrophil Elastase in Adults and Cord Blood from Term Infants
Philip L. Davies, Nicola C. Maxwell, O. Brad Spiller, Sailesh Kotecha 
Department o f  Child Health, C ard iff University, Cardiff, United Kingdom

Introduction
Neutrophil elastase (HNE) is important in the antimicrobial defence of the lung and 
may also be important in the development of chronic lung disease of prematurity 
(CLD). Infants are at greater risk of lung infection than adults and infant maturity is 
important in the changing pattern of CLD.
Aims
To assess differences in newborn and adult neutrophil elastase that may account for 
differences in lung pathology.
Methods
Neutrophils were isolated from newborn cord and adult blood using histopaque-1077 
(Sigma Aldrich, Irvine,UK) and the cells resuspended to a million cells/ml in Hanks 
buffered saline. Cells were stimulated with the following inflammatory stimulants: 
N-formyl-methionyl-leucyl-phenylalanine (fMLP), cytochalasin B, cytochalasin B 
and fMLP, cytochalasin B and lipopolysaccharide (LPS) or cytochalasin B and 
interleukin-8 (IL-8) at 1:1000 for 10 minutes or they received no stimulation. 
Stimulants were chosen as they represented a spectrum of potency in their ability to 
activate neutrophils. The solution was centrifuged at 13000rpm for 10 minutes and the 
supernatant removed. The cell pellet was then dissolved using distilled water and 
Triton X for two hours. Elastase activity was determined using a specific 
chromogenic substrate, Sue -  Ala -  Ala -  Pro -  Val - pNA (Bachem, St Helens, UK) 
on the supernatant and cellular fractions.
Results
Ten full term cord blood samples and ten adult blood samples were analysed. The 
total elastase present in unstimulated neutrophils was significantly lower from cord 
blood (mean 15.2 +/-5.2nM) compared to adult blood (25.2 +/-8.4nM), p=0.007. 
Cytochalasin B in combination with fMLP proved to be the most effective stimulus. 
The proportion of neutrophil elastase released by cord blood and adult blood was not 
significantly different for any of the stimuli. (fMLP 15.9% cord vs 12.2% adult; 
cytochalasin B 12.6% vs 8.9%; cytochalasin B and fMLP 66.3% vs 72.7%; 
cytochalasin B and LPS 14.0% vs 10.9% and cytochalasin B and IL-8 21.3% vs 
20.9%).
Conclusions
Adult neutrophils contain significantly greater total elastase than cord blood 
neutrophils, although similar proportions of elastase are released by the different 
inflammatory stimulants.
Reduced elastase content of neutrophils with reduced maturity may be important in 
explaining differences in lung pathology observed in the neonatal lung.

The study was sponsored by Arriva Pharmaceuticals and a grant by the Wellcome 
Trust.
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Ureaplasma in Chronic Lung Disease of Prematurity -  Strains, Resistance and 
Treatment
Nicola C. Maxwell, Michael L. Beeton, O. Brad Spiller and Sailesh Kotecha 
Department o f  Child Health, School o f  Medicine, C ardiff University, Cardiff, United 
Kingdom

Background:
The role of Ureaplasma in chronic lung disease of prematurity (CLD) remains 
controversial. In 2005, a meta-analysis (2216 babies, 23 studies) showed an odds ratio 
of 2.83 (2.29-3.51) for the relationship between the presence of Ureaplasma and CLD 
at 28 days of life (1).
Less is known about the role of antimicrobial treatment for the prevention of CLD. 
Two randomised controlled trials (2,3) of erythromycin used to eradicate Ureaplasma 
and prevent CLD have been performed. Together the studies include only 37 
colonised patients. There was no significant reduction in CLD with treatment in either 
study -  disparate study designs prevented the results from being combined in the 
meta-analysis (4).
Aim:
To further elucidate the role of Ureaplasma in CLD by examining different strains and 
the relationship between its treatment and clinical outcome.
Method:
Serial bronchoalveolar lavage (BAL) was performed on 26 infants <32 weeks 
gestation. BAL fluid was cultured for presence of Ureaplasma and confirmed by 
polymerase chain reaction (PCR). Further PCR was used to determine species, either 
Ureaplasma parvum (Up) or Ureaplasma urealyticum (Uu). All isolates were tested 
for antibiotic resistance using a novel microbroth dilution method.
Results:
Of 26 infants, 10 had Ureaplasma isolated from BAL. Moderate or severe CLD 
developed in 8/9 infants with Ureaplasma and 7/16 infants without (p=0.027). 
Sequencing showed 7/10 were Up and 2/10 Uu (1 not identifiable). Five of the infants 
received treatment for Ureaplasma, at the discretion of the infant’s consultant 
neonatologist, from day 5 of life at the earliest. Ureaplasma was successfully 
eradicated following treatment in 2 babies (both Up, one treated with erythromycin 
and the other with clarithromycin) and it recurred after treatment in a third (Uu). In 
one infant a highly erythromycin resistant strain of Up was isolated. One infant died. 
All surviving treated infants developed CLD. Up appeared to clear spontaneously 
from a sixth infant. The mutation thought to be responsible for eruthromycin 
resistance was characterised and a 6 base pair (corresponding to 2 amino acids -  Arg 
and Gin) deletion, was characterised.
Conclusion:
Up is the more frequently isolated Ureaplasma in preterm infants. Erythromycin 
resistance was noted in one infant and the molecular mechanism characterised. 
References:
1. Schelonka RL et al. Critical appraisal of the role of Ureaplasma in the development 
of bronchopulmonary dysplasia with metaanalytic techniques. Pediatr Infect Dis J. 
2005 Dec;24(12): 1033-9.
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Dr Maxwell is supported by the Wellcome Trust.
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The Relationship between Chronic Lung Disease of Prematurity and Ureaplasma 
s p p A Survey of Senior Neonatologists
Nicola C. Maxwell, Diane E. Nuttall, O. Brad Spiller and Sailesh Kotecha 
Department o f  Child Health, School o f  Medicine, C ardiff University, Cardiff, United 
Kingdom  
Background:
A 1995 meta-analysis (1479 babies, 17 studies) (1) found a significant association 
between chronic lung disease of prematurity (CLD) at 28 days of life and Ureaplasma 
urealyticum  colonisation. In 2005, a further meta-analysis (2216 babies, 23 studies) 
showed an odds ratio of 2.83 (2.29-3.51) for the relationship between the presence of 
Ureaplasma and CLD at 28 days of life (2). Two randomised controlled trials (3,4) 
were included in a Cochrane review of erythromycin used to eradicate Ureaplasma 
and prevent CLD (5). Together the studies included only 37 colonised patients and 
there was no significant reduction in CLD with treatment in either study -  disparate 
study designs prevented the results from being combined in the meta-analysis.
Aim:
To seek the views of senior UK neonatologists on whether Ureaplasma spp. is 
important in the development of chronic lung disease of prematurity and to gauge the 
need for a randomised control trial to determine if CLD can be prevented by treatment 
of Ureaplasma.
Method:
A structured questionnaire consisting of 18 questions was sent to 300 consultant 
neonatologists and paediatricians with a special interest in neonatology working in 
UK neonatal units.
Results:
Fifty seven percent (172/300) of questionnaires were returned. Of the 172 
respondents, 137 were consultant neonatologists while the remainder were 
paediatricians with a special interest in neonatal medicine. One hundred and twenty 
five worked in level 3 intensive care units.
Most respondents felt that there was neither evidence in favour of Ureaplasma spp. 
causing CLD nor any evidence to show that it did not. The respiratory colonisation 
rate of preterm infants with Ureaplasma spp. was unclear as few units tested for the 
organism regularly. Of the 102 respondents who said they ever tested for Ureaplasma, 
the samples sent varied widely in type and timing. Endotracheal secretions were the 
most frequent Sample sent for testing, with many units sending more than one sample 
type. The most common time to send a sample for Ureaplasma was in relation to the 
patient’s clinical condition rather than samples being sent routinely. Only 49/172 
(28%) consultants were able to estimate the number of infections seen each year, with 
most saying they were unable to answer the question due to lack of testing. Fifty nine 
percent (59%) said that they would be interested in an affordable test to identify 
Ureaplasma spp.. There was a very strong call (68%) for a randomised trial involving 
infants bom between 23 -  28 weeks gestation to address this controversy. A majority 
of consultants favoured erythromycin as a treatment for Ureaplasma with the duration 
of treatment chosen as 7-14 days (range 3-28 days, mode 14 days). Just under half 
were concerned about possible adverse effects of dmg treatment to eradicate 
Ureaplasma spp. in this group of patients, with most respondents concerned about 
gastrointestinal effects of erythromycin, antibiotic resistance, alterations to normal
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microbial flora and phlebitis causing difficulties with venous access in the smallest 
preterm infants.
Within a trial, a majority (71/117) were in favour of delaying the start of treatment 
until results of testing for U reaplasm a were available, however opinion was divided 
(Yes 48, No 45, Don’t know 24) as to whether such a delay in starting treatment 
would mean that it would be too late to be of benefit.
Conclusion:
There is no clear view among neonatologists regarding the role of Ureaplasma spp. in 
the development of CLD. However, there was a clear call for a randomised controlled 
trial to determine if eradication of Ureaplasma spp. decreases the development of 
CLD.
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colonization with chronic lung disease of prematurity: results of a metaanalysis. J 
Pediatr. 1995 Oct; 127(4):640-4.
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of bronchopulmonary dysplasia with metaanalytic techniques. Pediatr Infect Dis J. 
2005 Dec;24(12): 1033-9.
3. Lyon AJ et al. Randomised trial of erythromycin on the development of chronic 
lung disease in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1998 
Jan;78(l):F10-4.
4. Jonsson B, Rylander M, Faxelius G. Ureaplasma urealyticum, erythromycin and 
respiratory morbidity in high-risk preterm neonates. Acta Paediatr. 1998 
Oct;87(10): 1079-84.
5. Mabanta CG et al. Erythromycin for the prevention of chronic lung disease in 
intubated preterm infants at risk for, or colonized or infected with Ureaplasma 
urealyticum. Cochrane Database Syst Rev. 2003(4):CD003744.
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Appendix 4 

Table of data



Clinical information

Babv Gestation
Weieht

Diagnosis
Vent. Oxvcen

dPROM

Antenatal
infection

Deliveryfkfi) Davs davs susDected
A Term 2.8 Term 2 2 no no Vaginal
B 25+5 0.74 CLD 22 44 yes yes Vaginal
C 31+2 1.92 RDS 1 0 yes yes Vaginal
D 25+4 0.84 RDS 12 12 no no Vaginal
E 28 0.91 CLD 3 20 no no Caesarean
F 31 1.69 RDS 2 3 yes yes Caesarean
G 25+3 1.04 CLD 31 63 no no Vaginal
H Term 3 Term 9 30 no no Caesarean
I 26+6 1 RDS 18 47 no no Vaginal
J 27 0.7 RDS 18 32 yes yes Caesarean
K Term 2.81 Term 3 3 no no Caesarean
L 27 0.85 CLD 35 36 no no Caesarean
M 28+4 1.31 RDS 5 2 yes yes Vaginal
N 25+3 0.79 CLD 29 67 no yes Vaginal
O 26 0.74 CLD 58 101 yes yes Vaginal
P 26+5 0.87 Died 5 5 no yes Vaginal
9 25+4 0.76 CLD 43 107 no no Vaginal
R 29+3 1.02 CLD 44 107 no no Caesarean
S 26+4 0.89 RDS 10 18 no yes Caesarean
T 26+4 1.04 RDS 13 18 no yes Caesarean
U 28+3 1.18 CLD 17 75 no yes Caesarean
V 28+3 1.08 CLD 12 75 no yes Caesarean
w 24+4 0.69 CLD 49 89 no no Vaginal
X Term 2.63 Term 5 2 no no Vaginal
Y 26+2 0.9 CLD 88 154 no yes Vaginal
Z 26+2 1.08 CLD 28 69 no yes Vaginal
AA Term 2.57 Term 4 1 no no Caesarean
BB 23+4 0.56 CLD 45 86 no no Vaginal
CC 27+1 1.23 CLD 36 109 no no Caesarean
DD 28 0.91 RDS 16 44 no no Caesarean
EE 24+2 0.67 CLD 39 45 no no Vaginal
FF 27+1 1.18 RDS 1 1 no no Vaginal
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Babv Dav Gest Wt Dx Cell count Abs CD14 Abs CD36 Abs HLADR PMN%
A 1 38 2.8 Term 1.04 0.1401 0.053664
AA 1 38.428 2.57 Term 0.6857 0.0644 0.0445705 0.07083281 9.06

2 38.428 0.7182 0.1366 0.05307498 0.1217349 26.48
B 1 25.714 0.74 CLD 4.66 0.1154 0.270746

2 25.714 9.99 0.2804 0.403596
3 25.714 2.4 0.3333 0.20064
4 25.714 3.24 0.2828 0.308124
5 25.714 5.88 1.059 0.944328
6 25.714
7 25.714 1.22 1.0325 0.179096
9 25.714 1.34 1.2726 0.230212

BB 1 23.57 0.56 CLD 2.35 0.1859 0.13583 0.120085 24.62
2 23.57 0.9429 0.8766 0.05035086 0.0452592 41.73
3 23.57 2.5667 1.2912 0.23921644 0.16503881 33.3
4 23.57 4.1625 1.2672 0.39585375 0.46953 40.81
5 23.57 9.675 3.0495 2.145915 1.124235 59.97
6 23.57 5.9 1.1526 1.14932 1.4278 5.5
7 23.57 4.44 2.0517 1.044732 1.070484 22.13
9 23.57 4.5 2.9673 1.18935 1.0701 40.68
13 23.57 2.08 3.8064 0.625872 0.622128 13.89
16 23.57 1.5 4.192 0.3255 0.3681 40.56
20 23.57 3.75 5.628 0.75 0.823875 45.41
23 23.57 0.7 6.0237 0.1785 0.16723 28.26

C 1 31.857 1.92 RDS 1.14 0.0769 0.026562
CC 2 27.143 1.23 CLD 0.9667 0.4822 0.04205145 0.02494086 17.64

3 27.143 0.8462 0.4593 0.03494806 0.03697894 11.54
4 27.143 0.71 0.4492 0.063545 0.037204 10.34
5 27.143 1.54 0.3255 0.165704 0.141218 12.64
6 27.143 1.42 0.6204 0.169406 0.30317 11.44
7 27.143 1.8923 0.4235 0.26094817 0.30712029 1.86
9 27.143 1.5938 0.9513 0.26887406 0.6526611 12.62
13 27.143 0.7538 2.3166 0.12558308 0.23450718 6.67
16 27.143 1.8789 4.3984 0.50899401 0.79007745 15.42
20 27.143 0.8867 5.738 0.20163558 0.3795076 28.37

D 2 25.57 0.84 RDS 2 0.1572 0.1442
3 25.57 1.46 0.2148 0.046574 0.1898 1.91
4 25.57 3.2 0.196 0.1792 0.28128 11.76
5 25.57 3.14 0.578 0.2198 0.20567 28.5
6 25.57 2.04 0.7926 0.073032 0.04386 58.39
7 25.57 3.33 0.6265 0.177156 0.113886 35.21

DD 1 28 0.91 RDS 0.5333 0.04042414 0.03050476 2.57
2 28 0.7 0.2152 0.05908 0.01932 5.06

E 1 28 0.91 RDS 4.4 0.0684 0.30448

NC% % debris CD14hiMNC Abs PMN Abs MNC Abs mono PMN:MNC Elastase 16s Uu
0 0 0

10.33 80.61 1.49 0.0621244 0.0708328 0.0102169 2.23703704 0 1 0
16.95 56.57 1.62 0.1901794 0.1217349 0.0116348 5.13178295 0 0 0

0 1 0
0.295 1 0

5.5 0 0
58.1 0 0

20.655 0
6.44 0 0

0 0
0 0 0

5.89 69.49 4.85 0.57857 0.138415 0.113975 4.17996604 0 0 0
7.64 50.63 8.74 0.3934722 0.0720376 0.0824095 5.46204188 0 0
9.32 57.38 9.26 0.8547111 0.2392164 0.2376764 4.3134715 0 0

11.28 47.91 11.24 1.6987163 0.46953 0.467865 4.32767762 0 0 0
25.84 14.19 21.69 5.8020975 2.50002 2.0985075 2.32082043 0.19 1 0
39.12 55.38 16.26 0.3245 2.30808 0.95934 0.14059305 0 1 0
61.64 16.23 10.34 0.982572 2.736816 0.459096 0.35902012 0 1 0
26.43 32.89 1.8306 1.18935 1.62915499 0 1 0
30.09 56.02 27.56 0.288912 0.625872 0.573248 0.50380849 0 1 0
24.54 34.9 20.78 0.6084 0.3681 0.3117 1.69140951 0 0 0
29.87 24.72 25.82 1.702875 1.120125 0.96825 1.52025444 0 0 0
25.63 46.11 23.83 0.19782 0.17941 0.16681 1.10261412 0 0 0

0 0 0
5.63 76.73 5.34 0.1705259 0.0544252 0.0516218 3.13321492 0 1 0
4.48 83.98 4.49 0.0976515 0.0379098 0.0379944 2.57589286 0 1 0
8.95 80.71 4.98 0.073414 0.063545 0.035358 2.20940171 0.245 1 0

13.66 73.7 2.19 0.194656 0.210364 0.033726 0.92532943 0.53 1 0
21.35 67.21 2.82 0.162448 0.30317 0.040044 1.10960233 0 1 0
16.23 81.91 1.46 0.0351968 0.3071203 0.0276276 0.54705882 0 1 0
40.95 46.43 0.2011376 0.6526611 1.20534862 0 0
31.11 62.22 11.25 0.0502785 0.2345072 0.0848025 0.27493817 0 0 0
42.05 42.53 24.61 0.2897264 0.7900775 0.4623973 0.38588589 0 1 0

42.8 28.83 23.94 0.2515568 0.3795076 0.212276 0.93016393 0 0 0
7.21 92.79 0.1442 0 0 0

19.93 78.16 0.027886 0.290978 0.09583542 0 0 0
18.06 70.18 0.37632 0.57792 0.65116279 1.59 1 0
15.14 56.36 0.8949 0.475396 1.88243065 2.12 0 0

16.9 24.71 1.191156 0.34476 3.45502959 18.69 0 0
12.36 52.43 1.172493 0.411588 2.8487055 0 1 0
7.58 89.85 0.0137058 0.0404241 2.35779817 0 0 0
8.44 86.5 1.96 0.03542 0.05908 0.01372 2.28959276 0 0 0

0 0 0 0
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O

P

Q

Day Gest Wt Dx Cell count Abs CD14 Abs CD36 Abs HLADR PMN%
1 28.57 1.31 RDS 9 0.4216 2.6901 3.7953 40.11
2 28.57 1.6222 0.4662 0.14908018 0.20212612 55.21
3 28.57 1.12 0.7701 0.10864 0.224 52.62
1 25.428 0.79 CLD 2.6364 0.0969 0.85498452 0.48694308 36.8
2 25.428 0.3429 0.0037719 0.01676781 10.53
3 25.428 2.3091 0.4257 0.03117285 0.09767493 18.57
4 25.428 10.9091 0.278 0.72763697 0.981819 59.27
5 25.428 7.0077 0.442 0.45409896 0.26348952 46.56
6 25.428 5.8 0.63 0.4031 0.47966 60.78
7 25.428 7.8 0.5411 0.5343 0.20592 42.42
13 25.428 3.6667 0.7605 0.83564093 0.97680888 50.47
1 26 0.74 CLD 0.3636 0.0395 0.00785376 0.00705384 7.41
2 26 2.65 0.2618 0.20405 0.249895 33.79
3 26 2.9846 0.3078 0.28413392 0.20802662 34.61
5 26 0.6667
6 26 1.7143 0.3042 0.06325767 0.06754342 25.67
7 26 10.1 1.4798 0.59893 0.15756 69.15
9 26 5.3571 0.6813 0.32731881 0.32946165 58.2
13 26 1.3143 2.509 0.14207583 0.07162935 58.98
16 26 2 4.9104 0.391 0.6344 27.09
20 26 0.6667 10.706 0.17634215 0.35248429 1.11
23 26 1.2333 1.1799 0.05907507 0.04045224 4.21
27 26 0.1833 57.64
31 26
1 26.714 0.87 Died 2.3182 0.035 0.02040016 0.02735476 3.9
2 26.714 3.825 0.0736 0.055845 0.0677025 3.69
3 26.714 5.3333 0.3717 0.43679727 1.50772391 1.84
5 26.714 12.3
1 25.57 0.76 CLD 1.4571 0.2226 0.04050738 0.08626032 1.1
2 25.57 2.16 0.3074 0.26028 0.150768 2.8
3 25.57 1.44 0.7851 0.286848 0.398736 0.75
4 25.57 0.775 0.208 0.0501425 0.0712225
5 25.57 0.7429 0.304 0.04249388 0.09033664 4.76
6 25.57 0.8 1.8912 0.19264 0.41368 3.87
7 25.57 0.35 44.19
9 25.57 2.6286 3.6153 0.96233046 1.42838124 14.01
13 25.57 0.4133 4.1925 0.16403877 0.20850985 8.98
16 25.57 0.3 3.7888 0.06198 0.06339 27.31
20 25.57 0.08
23 25.57 0.1333
27 25.57 0.7143 7.5168 0.30229176 0.32036355 15.32

MNC% % debris CD14hiMNC Abs PMN Abs MNC Abs mono PMN:MNC Elastase 16s Uu
44.44 15.45 33.24 3.6099 3.9996 2.9916 0.90256526 0 0 0
25.52 19.27 10.99 0.8956166 0.4139854 0.1782798 2.16340125 0 0 0
49.69 15.56 0.589344 0.556528 0.174272 1.05896559 0.745 0 0

36 27.2 5.7 0.9701952 0.949104 0.1502748 1.02222222 0 0 1
10.06 79.41 0.0361074 0.0344957 1.04671968 0 0 1
4.23 77.2 1.28 0.4287999 0.0976749 0.0295565 10.5511364 0 0 1

9 31.73 4.91 6.4658236 0.981819 0.5356368 10.2720971 15.13 1 1
19.27 34.17 6.72 3.2627851 1.3503838 0.4709174 2.41619097 28.765 1 1

8.27 30.95 5.67 3.52524 0.47966 0.32886 7.81233933 17.1 1 1
6.85 50.73 4.72 3.30876 0.5343 0.36816 6.98846787 21.045 0 1
31.2 18.33 16.34 1.8505835 1.1440104 0.5991388 1.61762821 43.095 0 0

2.7 89.89 0.0269428 0.0098172 2.74444444 0 1 1
21.32 44.89 0.895435 0.56498 1.58489681 0 0 1

9.52 55.87 1.0329701 0.2841339 4.89533239 0 0 1
0 0 0.5

11.34 62.99 0.4400608 0.1944016 2.26366843 3.11 0 0.5
17.47 13.38 6.98415 1.76447 3.95821408 0 1 1

9.92 31.88 3.1178322 0.5314243 5.86693548 6.73 0 1
29.36 11.66 0.7751741 0.3858785 2.00885559 0 0 1
31.72 41.19 0.5418 0.6344 0.91028226 0 0 1
61.84 37.05 0.0074004 0.4122873 0.01794955 0 0

6.47 89.32 0.0519219 0.0797945 0.65069552 0 0 0.5
14.62 27.74 0.0267985 0 0 0.5
21.92 78.08

2.44 93.66 0.0904098 0.0565641 1.59836066 0.865 0 0
1.77 94.54 0.1411425 0.0677025 2.14534884 0.975 0 1

28.27 69.89 0.0981327 1.5077239 0.12707182 0.815 0 1
26.93 60.77 0.83 0 1
14.73 84.17 0.0160281 0.2146308 0.07467753 0 0 1
13.33 83.87 0.06048 0.287928 0.21005251 0 0 1
36.91 62.34 0.0108 0.531504 0.0203197 0 0 1

9.19 90.81 0.0712225 0 0 1
12.16 83.08 0.035362 0.0903366 0.86861314 0 0 1
51.71 44.42 0.03096 0.41368 0.11292676 0 0 0.5
17.23 38.58 0.154665 0.060305 2.56471271 0 0 1
54.34 31.65 0.3682669 1.4283812 0.31307263 0 0 1
50.45 40.57 0.0371143 0.2085099 0.23538663 0 0 0
23.49 49.2 0.08193 0.07047 1.16262239 0 0 0

0 0 0
0 0 0

49.64 35.04 0.1094308 0.3545785 0.30862208 0 0 0



Babv
R

W

Dav Gest Wt Dx Cell count Abs CD14 Abs CD36 Abs HLADR PMN%
1 29.428 1.02 CLD 1.8267 0.0323 0.11398608 0.10211253 13.49
2 29.428 0.3733 0.0514 0.01224424 0.00627144 3
3 29.428 1.0625 0.1089 0.051 0.0204 3.63
4 29.428 0.3538 0.4128 0.02614582 0.0263581 20.46
5 29.428 0.6 1.332 0.06768 0.06684 41.03
6 29.428 1.04 1.4736 0.111384 0.042224 45.09
7 29.428 0.36 1.3461 0.044316 0.03888 17.11
9 29.428 0.3857 1.0827 0.05087383 0.05226235 12.4
13 29.428 1.0909 1.6575 0.12959892 0.13570796 40.98
16 29.428 0.9231 10.0672 0.32926977 0.10144869 41.73
20 29.428 1.875 5.026 0.4344375 0.1725 43.31
1 26.57 0.89 RDS 7.725 0.1992 1.259175 1.1672475 42.74
2 26.57 3.3 0.3808 0.30789 0.33891 25.09
3 26.57 3.575 0.5628 0.3557125 0.452595 52.09
1 26.57 1.04 RDS 0.5385 0.1865 0.0609582 0.03225615 12.06
2 26.57 1.3 0.1534 0.078 0.0832 6.62
3 26.57 0.6909 0.1908 0.02922507 0.03551226 11.39
4 26.57 0.4867 0.372 0.04755059 0.07013347 22.04
5 26.57 2.93 0.7345 0.359511 0.352772 69.55
6 26.57 2.1 1.0992 0.42315 0.35091 40.28
7 26.57 0.6286 0.609 0.07568344 0.08900976 30.44
1 28.428 1.18 CLD 0.6 0.0886 0.05118 0.02598 3.44
2 28.428 1.05 0.1168 0.028875 0.05565 5.59
3 28.428 0.4429 0.2094 0.02449237 0.02493527 4.55
4 28.428 0.6 0.2916 0.0231 0.04194 2.89
1 28.428 1.04 CLD 0.6154 0.0601 0.01396958 0.0230775 2.24
2 28.428 0.5385 0.2034 0.02600955 0.0341409 7.42
3 28.428 0.3333 0.3657 0.01246542 0.27
4 28.428 2.3714 0.4732 0.14536682 0.22030306 35.46
5 28.428 1.6667 0.397 0.02866724 0.16150323 4.05
3 24.57 0.69 CLD 0.633 0.6372 0.1137501 0.1998381 4.25
4 24.57 1.45 0.3384 0.04234 0.061625 4.17
5 24.57 1.6167 0.6895 0.21211104 0.17767533 39.78
6 24.57 3.8636 1.0254 0.24765676 0.164203 67.66
7 24.57 1.525 1.134 0.0666425 0.0468175 23.31
9 24.57 1.1333 1.8027 0.09576385 0.033999 19.53
13 24.57 1.97
16 24.57 0.5 0.4672 0.0481 0.0249 0.36
20 24.57 2.1667 2.766 0.25003718 0.33735519 56.85
23 24.57 2.625 8.7906 0.4704 0.5200125 21.89
27 24.57 1.57 20.8332 0.585767 0.557664 37.48

MNC% % debris CD14hiMNC Abs PMN Abs MNC Abs mono PMN:MNC Elastase 16s yu
6.24 80.27 0.2464218 0.1139861 5.29019608 0 0 0
3.28 93.72 0.011199 0.0122442 1.50753769 0 0 0

4.8 91.57 0.0385688 0.051 1.87113402 0 0 0
7.45 72.09 0.0723875 0.0263581 4.15010142 0 0 0

14.64 44.33 0.24618 0.08784 2.80259563 0 0 0
15.92 38.99 0.468936 0.165568 2.83228643 0 0 0
18.11 64.78 0.061596 0.065196 0.94478189 0 0 0
13.55 74.05 0.0478268 0.0522624 2.80542986 0 0 0
12.44 46.58 0.4470508 0.135708 3.77348066 1.91 0 0
35.67 22.6 0.3852096 0.3292698 1.27497709 25.53 0 0
23.17 33.52 0.8120625 0.4344375 2.8739217 48.7 0 0
18.11 39.15 3.301665 1.3989975 2.36002209 0 0 0
10.27 64.64 0.82797 0.33891 0 0 0
12.66 35.25 1.8622175 0.452595 6.20858164 2.25 0 0
11.32 76.62 0.0649431 0.0609582 1.75036284 0 0 0

6.4 86.98 0.08606 0.0832 2.35587189 0 0 0
6.22 82.39 0.0786935 0.042974 1.83118971 0 0 0

14.41 63.55 0.1072687 0.0701335 1.94871795 0 0 0
12.27 18.18 2.037815 0.359511 6.11697449 1.375 1 0
22.3 37.42 0.84588 0.4683 1.80627803 1.225 1 0

14.16 55.4 0.1913458 0.0890098 3.66305656 0 1 0
8.53 88.03 3.44 0.02064 0.05118 0.02064 0.88431877 0 0 0

5.3 89.11 0.7 0.058695 0.05565 0.00735 2.07037037 0 0 0
5.63 89.82 0.81 0.020152 0.0249353 0.0035875 3.20422535 0 0 0

8 89.11 3.87 0.01734 0.048 0.02322 0.36125 0 1 0
3.75 94.01 2.6 0.013785 0.0230775 0.0160004 1.19148936 0 0 0

10.32 82.26 8.87 0.0399567 0.0555732 0.047765 0.71899225 0 0 0
11.34 88.39 2.48 0.0008999 0.0377962 0.0082658 0.02380952 0 0 0
14.77 49.77 8.78 0.8408984 0.3502558 0.2082089 2.40081246 41.44 1 0
12.34 83.61 5.41 0.0675014 0.2056708 0.0901685 0.32820097 0 1 0
31.57 64.18 0.0269025 0.1998381 0.15103056 0 0 0
22.21 73.62 7.58 0.060465 0.322045 0.10991 0.18775326 0.135 0 0
20.51 39.71 5.34 0.6431233 0.3315852 0.0863318 1.93954169 0.07 0 0
66.47 -34.13 12.73 2.6141118 2.5681349 0.4918363 1.01790281 2.345 0 1
57.37 19.32 54.48 0.3554775 0.8748925 0.83082 0.40630992 0 0 1
26.26 54.21 23.62 0.2213335 0.2976046 0.2676855 0.74371668 0 0 0

52.2 45.83 16.88 0 0 0
9.62 90.02 0.0018 0.0481 0.06282723 0 0 0

15.57 27.58 4.57 1.231769 0.3373552 0.0990182 5.69639279 7.83 0 1

19.81 58.3 14.22 0.5746125 0.5200125 0.373275 1.39338001 0.295 0 1
41.52 21 0.588436 0.651864 0.9026975 0 1



Babv
X

Y

Day Gest Wt Dx Cell count Abs CD14 Abs CD36 Abs HLADR PMN%
1 38 2.65 Term 0.4273 0.0643 0.0029911 0.14720485 5.66
2 38 0.3333 0.2062 0.01279872 0.05772756 7.04
3 38 0.2258 0.2313 0.00704496 0.03269584 9.26
4 38 0.0714 0.7088 0.00957474 0.00588336 7.95
5 38 0.2941 2.1185 0.01196987 0.04396795 35.29
1 26.286 0.91 CLD 1.2154 0.052 0.06709008 0.0474006 1.39
2 26.286 1.0667 0.0948 0.02858756 0.02485411 1.52
3 26.286 1.4154 0.3993 0.20070372 0.36078546 0.77
4 26.286 1.4 0.4004 0.23674 0.5614 7.56
5 26.286 0.6643 0.7255 0.1155882 0 .2 2 9 9 1423 13.37
6 26.286 1.4231 0.888 0.35506345 0.35136339 9.47
7 26.286 1 0.4165 0.095 0.0351 2.67
9 26.286 0.1818
13 26.286 2.51 1.3676 0.225649 0.270076 15.38
20 26.286 5.3333 8.726 1.24372556 0.97386058 65.64
23 26.286 2.2909 14.49 1.23387874 1.42745979 31.7
27 26.286 9.1667 25.137 1.59958915 0.77825283 79.7
1 26.286 1.08 CLD 1.1455 0.0719 0.06930275 0.0368851 6.84
2 26.286 0.24 0.1808 0.016704 0.043368 10.11
3 26.286 0.5857 0.5283 0.10794451 0.17301578 1.84
4 26.286 0.5875 0.8828 0.14634625 0.216435 4.52
5 26.286 0.2917 1.153 0.06405732 0.13520295 1.96
6 26.286 0.5278 1.1886 0.09284002 0.18847738 7.77
7 26.286 5.4 4.0404 1.72314 1.01736 56.17
9 26.286 2.1875 2.4399 0.343 0.1771875 37.33
13 26.286 0.7667 3.2968 0.14889314 0.16277041 49.91
16 26.286 1.8182 1.3552 0.29891208 0.2981848 55.28

MNC% % debris CD14hiMNC Abs PMN Abs MNC Abs mono PMN.MNC Elastase 16s Uu
34.45 59.89 25.76 0.0241852 0.1472049 0.1100725 0.21603053 0 0 0
17.32 75.64 1.99 0.0234643 0.0577276 0.0066327 2.5323741 0 0 0
14.48 76.26 5.68 0.0209091 0.0326958 0.0128254 1.29691877 0 0 0
13.41 78.64 0.0056763 0.0095747 1 0 0 1
14.95 49.76 5.05 0.1037879 0.043968 0.0148521 5.82343234 1.37 0 1

5.52 93.09 0.99 0.0168941 0.0670901 0.0120325 1.26363636 0 0 0
2.68 95.8 1.32 0.0162138 0.0285876 0.0140804 0.88888889 0 0 0

25.49 73.74 17.58 0.0108986 0.3607855 0.2488273 0.04333146 0 0 0
40.1 52.34 28.12 0.10584 0.5614 0.39368 0.21129122 0 0 0

34.61 52.02 29.69 0.0888169 0.2299142 0.1972307 0.42566062 0 1
24.95 65.58 9.35 0.1347676 0.3550635 0.1330599 0.48663926 0 1 1

9.5 87.83 0.89 0.0267 0.095 0.0089 2.1023622 0 0 1
100 0 0 1

10.76 73.86 4.83 0.386038 0.270076 0.121233 2.32326284 0.805 0 1
23.32 11.04 21.2 3.5007781 1.2437256 1.1306596 5.14823529 42.21 0 1
62.31 5.99 52.27 0.7262153 1.4274598 1.1974534 0.54920305 0.585 0 0.5
32.49 17.37 7.3058599 2.9782608 1.5922558 2.45306248 44.665 1

6.05 87.11 1.55 0.0783522 0.0693028 0.0177553 3.48979592 0 0 0
18.07 71.82 0.024264 0.043368 1.93307839 0 0 0
29.54 68.62 13.51 0.0107769 0.1730158 0.0791281 0.09823812 0 0 0
36.84 58.64 34.46 0.026555 0.216435 0.2024525 0.12932761 0 0
46.35 51.69 0.0057173 0.135203 0.05172869 0 0 1
35.71 56.52 10.34 0.0410101 0.1884774 0.0545745 0.42762796 0 0 1
35.89 7.94 21.98 3.03318 1.93806 1.18692 1.56505991 0.905 0 1
15.68 46.99 8.59 0.8165938 0.343 0.1879063 3.90073145 0 0 1
21.23 28.86 17.91 0.38266 0.1627704 0.137316 2.35091851 0 0 1
16.44 28.28 3.21 1.005101 0.2989121 0.0583642 3.89021816 2.925 0 0.5



Babv Pay IL-lb IL-8 MCP-1 IL-6 IL-10 GCSF GMCSF
A 1 70.3453 5791.58 9357.713 726.3317 1.28464 287.3604 0
AA 1 67.2839 10360.1 30647.22 3120.22 0 999.6245 0

2 131.912 17922.9 56478.3 2187.09 0 432.5354 0
B 1 1369.23 35459.7 39885.23 18899.85 513.643 17313.54 0

2
o

347.935 14407.6 67580.27 4094.246 315.355 2609.948 0
o

4
5

1680.52 79409.7 83389.4 3105.888 81.1012 7499.903 0

6
7 626.473 26324.7 19828.29 2085.096 18.3552 2452.839 0
9 118.502 21817.1 20113.5 731.0233 20.1529 1365.972 0

BB 1 99.015 24492.8 15422.08 10793.76 162.178 5739.828 0
2 63.3337 8623.21 5718.847 3249.34 10.0621 663.9006 0
3
4
5

906.752 65683.2 66179.76 9303.98 200.41 13165.38 0

6
7 2288.26 132500 78821.06 11333.99 246.783 9921.275 0
9

13
2005.72 73942 86587.49 5663.87 16.0848 7418.799 0

16
20

1745.54 23763 54218.06 2482.1 16.6085 2506.602 0

C
23

1
1142.64
13.5776

17904.5 38582.13 1200.23 0
1.83212

2050.711
115.714

0
0

CC 2 356.817 19123.7 10652.95 4219.38 0 3160.365 0
3
4
5

3639.54 92231 29267 18924.49 0 19140.1 0

6
7 3788.77 131949 78085.17 25819.98 0 35034.01 42.28798
9

13
16
20

273.926 51668.3 83775.25 2240.68 0 3820.884 14.42969

D 2
q

150.951 44122.5 63909.42 1749.58 0 714.3317 0
o
4
5

882.921 30049.3 46875.42 2057.29 21.679 9927.382 0

6
7 3399.44 185004 86587.49 12349.06 59.0532 17456.6 4.244753

DD 1 38.8554 317.286 980.2672 784.37 0 253.4785 0

E
2
1

63.5926 587.193 3319.148 88.57 0 443.6557 0

IIP1a MIP1b TNF FasL VEGF ADODt. Viable Necr. TrvDan b
73.53495 12.967 21.545 22.2832 16.11 57.59 26.3
67.03882 410.1023 0 15.896 0 18.57 56.95 24.48 60
156.7855 667.0431 0 15.141 0 36.74 46.86 16.4 13
1944.285 29416.92 174.02 28.484 19.0176 16.77 4.35 78.87
1346.411 34843.9 65.707 70.357 61.5526 12.12 45.53 42.35

10.92 63.49 25.6
3973.557 11465.47 129.1 88.974 680.654 1.04 51.08 47.89

33.15 37.02 29.82

1433.041 7657.434 97.006 36.301 554.879 4.96 14.15 80.89
966.874 6689.456 19.931 44.943 948.17 23.32 34.62 39.06

279.1318 2719.13 26.58 38.865 1140.33 37.56 50.41 12.03 20
117.7689 1021.48 0 14.914 898.749 18.01 57.05 24.94 10

24.92 49.51 25.57 7
3609.863 40248.5 96.671 63.383 1881.72 3.69 75.43 20.88 10

20.46 40.61 38.93 21
20.74 61.05 18.21 5

931.0261 11719.34 61.677 57.452 2140.82 11.91 62.76 25.33 1
1040.887 8696.06 22.692 67.615 1336.62 22.57 59.34 18.09 7

18.98 55.44 25.57 5
462.8169 2023.44 51.521 32.821 1268.35 22.89 64.47 12.63 20

11.28 66.02 22.7 5
335.0952 1116.11 56.254 33.765 1334.43 16.87 68.69 14.44

0 6.2873 12.007 74.8955 15.82 45.76 38.42
920.2394 7567.88 18.702 4.2836 383.207 41.47 51.07 7.45 16

44.87 48.5 6.64 19
4577.63 49289.11 35.482 9.0961 684.304 14.47 64.74 20.59 10

19.88 57.54 22.58 13
34.02 43.82 22.15 24

4335.386 42457.32 284.33 28.439 572.267 31.06 52.38 16.55 26
339.0553 7063.16 9.2881 28.459 460.231 12.2 49.78 38.02 22

12.56 44.09 43.35 26
18.97 48.66 32.37 6
13.56 57.17 29.27 8

224.6558 2522.99 12.255 20.656 493.055

756.5183 7329.29 255.78 24.736 254.104 1.44 78.29 20.27
19.81 66.93 13.25
2.91 82.96 14.13

6013.286 49363.74 413.61 24.736 1694.84 2.37 66 31.63
0 215.1048 0 6.3762 0 75.96 19.08 4.96
0 238.0457 0 5.3184 0 24.89 71.97 3.15



Babv Dav IL-1b IL-8 MCP-1 lL-6 IL-10 GCSF GMCSF
EE 3

4
5
6 
7 
9

13
16
20
23
27

1
2
1

338.579
63.4184
22.2318 3105.11 9488.682 5475.228

86.1295
6.50981
3.11689 474.3641

2
o

87.5256 8941.62 7887.289 2081.767 1.41099 938.1691
O
4
5

77.1358 12683.6 54668.43 687.8007 5.43472 349.0121

6
7 1615.28 38019.6 81261.92 3108.139 8.93513 4518.812
9 8332.43 95571.6 37011.96 13466.67 106.251 10636.46

13
16 5148.59 56646.7 19292.82 7723.785 10.771 2581.205
20
23 364.984 15251.6 10686.56 701.5599 4.61282 473.7879

1 28.2494 12107.1 84659.09 1262.209 2.25331 195.2502
2 33.8466 8478.34 87071.26 749.5756 1.55839 370.0079
3
4 16.8804 930.68 34320.52 0 159.3419
5
1 254.798 24345.1 18707.41 9499.261 56.067 4412.863
2 501.337 35145.4 36755.46 6112.386 38.8139 4042.045
1 685.144 31984.4 8740.148 6965.2 60.0532 5672.353
2
n

110.866 11111.6 20010.33 1710.67 0 601.4726
0
1 62.4272 5794.9 40311.03 3146.57 0 5449.13
2 141.302 13529.2 60755.49 2774.52 0 1018.798
1 11.7697 821.906 9565.874 2290.855 1.91635 255.5058
2
Q

31.6056 2076.36 5493.408 395.7495 1.28464 227.8807
o
4
5

24.4007 1331.34 19096.65 1.81107 134.6008

6
7 41.5838 4329.26 30993.81 67.44605 1.53731 266.1144
9 337.905 31398.4 27346.43 3219.753 6.72065 893.0032

13
16 33336 192968 37778.13 28622.4 116.938 7244.606
20 16318.5 193191 38796.64 16959.23 172.928 3031.001
23
27 160.507 28144.5 2125.917 10.1589 3685.525

MIPIa MIPIb TNF FasL VEGF

986.205
71.12916
25.90698
227.9487

541.2549
1634.322

61.191
37.482

8.042
19.542

50.377
13.804

15.13
15.067

125.2857 603.366 9.0222 30.007

923.9442
7769.511

4596.657
53658.43

57.301
3235.6

41.781
23.067

2642.343 6152.206 121.91 29.817

330.775
111.7811
103.0809

1746.757
27.60369
26.19826

43.261
10.39

8.5206

25.884
22.463
26.739

27.25434 18.67242 6.7658 20.976

592.5209
987.2346
740.4218
654.5011

8447.685
10510.16
9866.704
4475.305

14.838
25.233
59.784
8.3672

18.983
21.292
20.656
37.581

21.62116
138.602

8 .0 2 6 7 9 2

39.26208

342.4276
468.6029
402.5254
461.9162

5.0575
8.6346

19.372
9.0961
8.0747
13.268

24.21571 237.5009 6.2873 16.519

104.8643
352.5429

466.4498
2004.27

6.424
138.44

17.561
27.913

5000.025
13361.6

21441.41
14429.79

1157.3
1956.1

32.421
29.055

475.3381 6045.653 26.125 27.057

Apopt. Viable Necr. Trypan blue %
3.09 61.87 35.04
6.88 76.06 17.05 33
9.61 63.45 26.95 4
9.87 57.39 32.74 29
5.55 74.54 19.91 10
1.02 74.07 24.91 8
6.5 71.03 22.47 12

11.19 75.02 13.79 20
7.06 63.46 29.48 10
9.88 75.47 14.65 14
4.47 48.65 46.88

71.3227 4.64 59.84 35.52
8.8505 9.93 55.26 34.81 1

1.15808 5.22 48.19 46.59 10
96.9955

7.78 67.69 24.53
676.237 7.19 80.73 12.09

18.33 56.54 25.13
1.01 81.64 17.35

295.252 4.91 83.2 11.89
237.445 18.9 54.75 26.35

6.39 82.69 10.92
635.785 8.47 71.48 20.05

8.57 77.95 13.48
1207.41 35.01 1.49 63.51
15.6269 26.08 46.56 27.36 7
53.4908 14.84 77.14 8.02

35 47.75 17.25
296.374 24.67 60.06 15.28

18.44 60.88 20.67
153.498 12.96 56.61 30.43
1119.84 4.06 64.82 31.12 0
335.067 1.86 77.56 20.58 3
893.059 3.81 31.59 64.6

6.89 52.64 40.47
6.41 60.67 32.92
8.76 54.15 37.1

20.23 63.41 16.36 40
47.2863 25.88 55.21 18.91

10.06 64.34 25.61
106.199 12.38 64.96 22.65

3.09 45.45 51.47 14
5.84 82.33 11.84 10

288.848 2.11 85.99 11.91 10
579.846 2.22 70.69 27.1

13.81 41.76 44.43 6
669.309 8.74 56.72 34.54 25
1019.44 3.92 69.7 26.38 21

2.73 46.9 50.37 6
777.191 4.82 42.07 53.11 12



Babv Dav
M

2
3
1
2
3
4
5
6 
7

13
1
2
3
5
6 
7 
9

13
16
20
23
27
31

1
2
3
5
1
2
3
4
5
6 
7 
9

13
16
20
23
27

IL-1b
273.926
124.594
207.614
392.057

26.852

IL-8
16401.8
6919.68
10714.1
37093.7

2131.1

MCP-1
5223.152
9232.669
26778.24
7496.631
2618.888

IL-6
415.567
5167.14
4303.66

17969.13
393.87

IL-10
130.993

118.781
2.4218

GCSF
1835.002
1981.244
793.8428
8208.728
311.7069

193191 43676.73 12198.34 60.4695 6088.746

189526 63984.86 14608.9 138.04 6600.545

58.4122
159.175

5281.37 
9765.82

6167.101
23200.36

1238.81
1915.4 10.8715

241.5797
344.5804

341.922 4062.26 9068.367 351.31 19.2985 416.292

4442.42
856.757

185004
56335.5

69454.22
34978.82

30890.39
8885.19

264.828
21.8695

17911.85
2338.501

457.193 41024.9 60069.54 6724.83 12.4902 4068.202

41.8342
665.263

3429.2
97812.1

7987.335
33085.38

1561.2
7657.78

1797.43
3340.301

435.304
68.7086

23076.5
9484.19

1314.637
1879.586

15873.79
599.88

137.325
6.25326

9372.803
523.3198

240.77 12845.2 12335.42 404.22 616.0955

506.021
1544.71

12276.6
185004

14324.4
86587.49

1000.8
19336.03 244.307

1673.41
4591.594

GMCSF

2391.824

IIRIa MIP1b INF FasL VEGF ADODt. Viable Necr. TrvDan t
346.6835 6727.049 35.482 28.439 29.97 29.17 40.86 15
143.7725 1349.538 17.483 3.63 76.75 19.62
305.0347 4110.534 28.439 12.07 44.13 43.8
240.4603 2286.719 43.606 34.17 52.7077 5.85 52.55 41.6
39.35374 408.8727 12.602 16.393 19.6392 14.48 75.45 10.06

6.84 73.06 20.1
11967.36 20293.35 2897.2 28.77 193.845 12.94 65.7 21.37 24

12.63 69.79 17.58 22
8.68 75.3 16.02 26

4360.481 20922.27 1204.6 32.358 137.958 14.89 64.5 20.61 10
14.48 63.69 21.83 23

43.01135 1060.48 9.0961 124.127 16.83 49.63 33.53
155.2199 2120.36 29.723 607.278 21.2 37.8 41 0

16.38 54.74 28.89 24
387.0964 2230.48 22.027 8.265 193.711 28.46 42.72 28.83 20

8.23 62.83 28.94 0
7053.178 92613.4 2169.2 92.435 1224.8 13.21 58.2 28.59 10
1244.092 17512.58 73.7 73.546 1597.68 5.07 59.49 35.45 24

8.5 47.26 44.25 15
2391.824 18908.7 23.767 105.92 2144.54 3.22 44.97 51.81 4

16.21 42.11 41.68 10
3.78 89.06 7.16 10

31.61 43.45 24.94 8
20.57 50 29.43 10

3.281953 352.751 9.0961 12.0928 5.86 87.67 6.47 0
892.6255 8206.822 102.96 16.727 423.907 7.05 73.41 19.54 15

15.7 56.37 27.93 23
13.42 61.99 24.6 40

328.9038 2743.22 279.62 63.572 114.061 7.09 62.96 29.95 5
131.3102 1722.33 37.938 64.706 161.763 33

2.78 50.85 46.37 25
868.9397 3223.84 22.385 86.466 236.161 1.68 67.33 30.99 33

2.39 75.76 21.85 30
13.09 39.12 47.79 30

488.3682 2269.48 87.871 9.0961 12.0928 6.64 71.83 21.53 10
2158.619 36653.75 206.97 47.101 577.519 5.8 40.61 53.6 10

10.06 38.36 51.58 5
13.28 72.49 14.23 9
20.55 40.45 39 10
17.05 47.85 35.11 12
8.78 54.59 36.64 0



Babv
R

Day

W

IL-1b IL-8 MCP-1 IL-6
1 72.4645 18067.1 14745.81 48815.75
2 39.6001 3521.59 6076.826 3155.34
3
4 43.5503 5004.91 4778.048 983.77
5
6
7 150.627 8931.41 11781.22 1742.27
9

13 128.836 25723.7 18066.92 678.19
16 937.448 54547.8 4411.24
20 122.587 12728.7 8938.113 234.75

1 1142.61 66768.2 2448.245 79746.64
2 207.614 20091.7 3194.109 13818.05
3
1 47.2738 1839.36 2533.188 3033.93
2 41.8342 5108.11 3960.932 1422.33
3
4 110.801 17502.7 34483.25 2672.97
5
6
7 688.382 42143.7 25784.96 3440
1 39.1144 2868.02 8881.734 3790.36
2 307.083 38019.2 28663.16 12819.41
3
4 123.105 15569.2 75536.47 1891.91
1 36.8479 852.298 1965.794 681.51
2 46.5616 2785.93 6788.126 396.43
3
4 4338.46 96904 86587.49 29753.72
5
3
4 1478.2 76891.9 69786.89 11096.57
5
6
7 180.934 21607 79751.89 6731.88
9 169.342 29281.5 32059.77 7432.92

13
16
20
23
27

IL-10 GCSF
10585.01
731.1819

347.1425

498.9029

865.8677 
30.8679 2349.823 

854.4819 
1142.94 8059.041 
106.616 432.5354

471.899
237.3306

1155.091

2625.433 
155.8703 
6028.411

432.5354
150.7863
263.6821

20.6792 16959.57

23.0121 5195.561

51.1499 10557.16 
5595.771

GMCSF

26.36942

504.6747

1126.475

8.323102

IIP1a MIP1b INF FasL VEGF Apopt. Viable Necr. Trvpan fa
116.2804 1651.79 8.3672 16.69 61.9828 12.14 79.35 8.51 1

369.3827 9.8517 119.75 16.19 79.72 4.09 13
5.88 88.44 5.69 2

54.40025 640.0856 9.2473 277.038 9.01 70.31 20.68 7
18.5 62.15 19.36 4

10.91 70.56 18.53 5
36.46294 425.5881 10.003 371.391 13.14 74.35 12.52 6

8.57 74.75 16.68 14
276.3569 1591.569 7.4717 389.116 8.57 82.25 9.18 20
476.5146 5796.178 301.52 6.6028 354.98 18.11 49.25 32.64 5
425.7794 3050.638 18.369 10.041 590.648 5.25 66.52 28.23 31
917.1643 15350.11 129.06 52.919 105.308 9.75 37.85 52.4 9
456.1475 5055.731 35.482 28.439 12.0928 8.36 59.86 31.77 30

20.33 51.05 28.63 22
251.81 11.212 58.9195 13.74 76.33 9.93 7

26.36942 476.63 9.0961 12.0928 19.38 71.1 9.52 0
33.84 52.29 13.87 24

504.6747 1533.07 18.918 243.601 10.46 64.95 24.6 20
16.55 47.31 36.14 20

9.52 69.06 21.42 27
1126.475 3649.41 48.58 9.0961 1468.57 15.99 50.5 33.51 31

302.2801 13.252 261.982 20.78 75.41 3.81 38
691.1722 3197.463 22.385 9.0961 1356.53 15.19 80.82 3.99 90

4.68 72.85 22.46 2
226.3265 2430.072 11.335 25.039 506.183 4.48 64.57 30.95 10

264.4277 8.4162 49.7291 15.25 80.94 3.82 10
5.384719 347.0156 8.1895 128.065 25.78 54.79 19.44 5

4.06 40.74 55.2 2
3865.137 11852.41 1596.3 23.527 849.296 19.89 54.37 25.74 20

9.15 72.47 18.37 10
13.5 63.38 23.12 8

2556.513 29768.62 48.784 36.523 440.538 7.15 71.52 21.33 2
11.12 67.05 21.84 15
24.99 41.87 33.15 10

1053.521 15901.91 54.003 26.776 1678.21 16.64 40 43.37 20
1081.252 7579.35 291.49 14.687 669.423 21.13 51.4 27.48 15

12.92 46.29 40.79 18

12.78 44.76 42.46
17.52 47.34 35.14
19.67 62.94 17.39 4 4

33.61 41.16 25.22 25



Babv Dav
X

IL-lb IL-8 MCP-1 IL-6 IL-10 GCSF GMCSF MIPla MIPIb TNF FasL VEGF ADODt. Viable Necr. TrvDan b

1 19.6008 691.022 13079.19 1.53733 120.1563 158.1623 8.703 24.965 385.614 16.97 32.74 50.3 8

2 22.5722 2117.94 20166.29 138.4903 8.36243 154.9888 6.9025 24.996 737.867 46.11 25.77 28.11 13

3 50.91 23.62 25.47 10

4 15.0277 261.314 7403.957 116.2691 1.56379 145.9215 5.9911 20.438 401.871 6
5 39.91 45.28 14.81
1 41.3809 1718.32 5794.052 684.63 385.538 290.81 10.985 149.509 19 77.08 3.93 2
2 54.1381 12086.4 9171.079 2176.7 853.6112 36.88588 398.63 14.073 360.45 9.6 80.51 9.89 1
3 9.93 68.82 21.26 5
4 75.3137 18581.6 86587.49 1018.47 767.0267 145.5488 782.89 12.614 36.448 930.697 21.81 52.84 25.35 45
5 12.69 63.53 23.78 25
6 13.74 70.56 15.7 50
7 655.226 16574.1 52571.67 2010.63 1330.713 14.42969 245.7596 638.37 74.774 9.0961 1020.42 4.1 94.43 1.46 32
9 20

13 3934.43 185004 83880.55 61662.2 32.6295 23925 17.82991 2281.298 15948.95 356.98 30.932 1644.95 6.22 85.36 8.42
20 71.3 11.41 17.28 33
23 1067.36 53043.9 39603.76 10640.51 150.656 3172.669 1803.527 17549.26 428.04 53.523 1347.78 50.65 15.56 33.78
27 70.42 11.75 17.82

1 14.3493 1099.07 3716.362 516.1106 1.32675 264.7174 210.2991 6.5379 12.259 275.243 7.01 82.17 10.82 1
2 17.9001 1186.54 2832.449 48.79873 248.2527 164.5094 7.062 12.795 163.564 14.68 65.2 20.12 5
3 12.48 69.89 17.62 25
4 18.4565 2753.83 20627.46 2.48502 150.2061 179.9238 8.2927 22.304 592.7 25.9 44.81 29.29 13
5 23.07 52.47 24.46 10
6 10.65 54.59 34.77 32
7 10000 77694.1 44356.23 14747.83 65.3212 5702.108 0.6681 1958.48 242.79 25.003 1253.67 28.6 32.87 38.54 50
9 19.99 72.86 7.15 2

13 3359.88 53356 42489.39 2588.161 12.9243 2194.781 0.606476 2060.488 59.33 28.516 1772.1 25.41 57.67 16.92 4
16 19.14 56.87 24 10


