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Abstract

This thesis presents a framework for soft tissue modelling, facial surgery simulation, and

facial movement synthesis based on the volumetric finite element method.

Assessment of facial appearance pre- and post-surgery is of major concern for both patients
and clinicians. Pre-surgical planning is a prerequisite for successful surgical procedures and
outcomes. Early computer-assisted facial models have been geometrically based. They are
computationally efficient, but cannot give an accurate prediction for facial surgery
simulation. Therefore, in this thesis, the emphasis is placed on physically-based methods,
especially the finite element technique.

To achieve realistic surgery simulation, soft tissue modelling is of crucial importance.
Thus, in this thesis, considerable effort has been directed to develop constitutive equations
for facial skeletal muscles. The skeletal muscle model subsequently developed is able to
capture the complex mechanical properties of skeletal muscle, which are active,
quasi-incompressible, fibre-reinforced and hyperelastic. In addition, to improve the
characterisation of in-vivo muscle behaviour, a technique has been developed to visualise
the internal fibre arrangement of skeletal muscle using the FEM-NURBS method, which is
the combination of the finite element method and the non-uniform rational B-spline solid

mathematical representation.

Another principal contribution made in this thesis is the three-dimensional finite element
facial model, which can be used for the simulations of facial surgery and facial movement.
The procedure of one cranio-facial surgery is simulated by using this facial model and the
numerical predictions show a good agreement with the patient post-surgical data. In
addition, it would be very helpful to also simulate the facial movement and facial
expressions. In this thesis, two facial expressions (smile and disgust) and the mouth
opening are simulated to assess the post-surgical appearance and test the muscle-driven

facial movement simulation method.
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Chapter 1 Introduction

Chapter 1

Introduction

Since the development of modern medical imaging techniques, such as computer
tomography (CT) and magnetic resonance imaging (MRI), computer assisted facial surgery
has become a reality. Experimental limitations and difficulties are another drive for
developing computer aided facial surgery simulation systems. The early facial models are
parameterised, and just aim at the facial animation on a computer. More recent facial
models are moving towards physically-based techniques, since they can give more realistic
simulations. Methods for developing physically-based models include the mass-spring, the
mass tensor and the finite element methods. The models developed in this thesis are finite

element based.

1.1 Motivation and objectives

The motivations for the work presented in this thesis include the finite element modelling
of facial soft tissues, the outcome prediction of the facial surgery and the simulation of

facial movements.

@ Facial soft tissue modelling

For the purpose of realistic surgery simulation, the soft tissue deformations under external
forces are of crucial importance, and depend on the constitutive law of soft tissues. The

more precise the physical properties of the soft tissues in the facial model, the more
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Chapter 1 Introduction

realistic will be the simulation. More details about the response of soft tissues can be found
in Fung’s book (1981). Most of the current soft tissue models are based on the linear elastic
approximation, because it is robust and efficient. However, this kind of model cannot
accurately describe the mechanical properties of soft tissues, and is not suitable for large
deformations. Thus a model with appropriate soft tissue constitutive relations is a

prerequisite in providing a realistic facial surgery simulation.

® Facial surgery simulation

In modern society, personal looks are crucial in interpersonal relationships. For this reason,
people with facial disharmony and diseases are more likely to seek facial surgery to
normalise their facial appearance and to make them more attractive. From the patient’s
point of view, it would be of great benefit to be able to predict their post-surgery facial
appearance. From the clinician’s point of view, the post-surgical prediction could help plan
the surgery and optimize the surgical procedures. Therefore, a reliable facial surgery
simulation system would be considerably valuable for use by both clinicians and patients.

® Facial movement simulation

Patients may be unfamiliar with their facial appearance after surgery. Sometimes the patient
and close family and friends are dissatisfied with the new appearance and would like to
seek further corrections to achieve their goal. Therefore, prior to surgery, the patient should
have the opportunity to preview the planned post-surgery facial appearance especially
when the swellihg has receded. The clinician could improve and adjust their surgical
techniques to enhance the positive and minimize the negative facial effects. For these
reasons, it would be very helpful to preview not only the post-surgical static face, but also
the movement of the post-surgical face exhibited during facial expressions.

The arguments above have provided the motivation of this study. The objectives of this
thesis are to develop reliable numerical soft tissue models and a facial model, which can
give an accurate prediction of the facial surgery and can be used for the simulation of facial

movements.
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Chapter 1 Introduction

1.2 Contributions

The major contributions of this thesis are summarised as follows.

@® A validated three-dimensional constitutive skeletal muscle model

Existing three-dimensional (3D) constitutive skeletal muscle models are mainly derived
from either Hill-type three-element or Huxley-type cross-bridge models. Due to the lack of
experimental data published on skeletal muscle mechanical properties, existing 3D
constitutive skeletal muscle models are not reliable. The first contribution of this thesis is a
validated 3D constitutive skeletal muscle material model. This model is able to characterise
the skeletal muscle complex mechanical behaviour, including active, quasi-incompressible,
fibre-reinforced and hyperelastic response. The model is validated by comparing the finite
element (FE) simulation results with published experimental studies on the New Zealand
white rabbit tibialis anterior muscle. The results show that the model is able to capture both

the active and passive muscle tissue behaviour for strains below failure.

® A three-dimensional finite element facial model

Due to the complex facial anatomy, it is impossible for the clinician to predict the
post-surgical soft tissue changes. Thus, a computer-aided facial surgery system is needed to
assist with the prediction of the post-surgical appearance. The second contribution of this
thesis is a three-dimensional finite element facial model which can be used for the
prediction of facial surgical outcome and the simulation of facial movements. This facial
model is an anatomy-based model, where the skull and facial skin are reconstructed from
the patient specific Cone Beam Computerised Tomography (CBCT) scan data with the
facial muscle geometry being taken from a standardised forensic database provided by the

School of Life Sciences, University of Dundee.
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® Simulations of the cranio-facial surgery and facial movements

The numerical facial model developed in this work can be used for many kinds of
simulation. The third contribution is the simulation of cranio-facial surgery and
muscle-based facial movements using the developed facial model. The simulation of a
clinical case requiring cranio-facial surgery is presented. The result of the numerical
prediction agrees with the patient’s 6-month post-surgical data, showing the cormrection of
the developed facial model. For the simulation of facial movements, a novel approach is
proposed. In this approach, the muscles responsible for facial expressions are assigned by a
3D skeletal muscle material model specifically developed. Using this approach, two facial
expressions and the mouth opening process are simulated.

® FEM-NURBS method for modelling the fibre arrangement of skeletal

muscle
To accurately characterise the in vivo muscle behaviour, the internal features, such as the
fibre arrangement, need to be visualised. The last contribution of this thesis is the proposed
FEM-NURBS method, which is the combination of the finite element method (FEM) and
the non-uniform rational B-spline (NURBS) solid mathematical representation. Several
numerical examples demonstrate that this method is able to characterise both the fibre

ammgemém and the biomechanical response of skeletal muscle.

1.3 Outline and organisation

The structure of the present thesis consists of six chapters: 1) Introduction, 2) Background
knowledge, 3) Constitutive skeletal muscle model, 4) Three-dimensional finite element
facial model and facial movement simulation, 5) Modelling the fibre arrangement of
skeletal muscles using the FEM-NURBS method, 6) Conclusions and future work.

Chapter 1 gives the motivation and objectives of this thesis, and the contributions to the

science and technology.
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Chapter 1 Introduction

Chapter 2 provides the background knowledge on which this thesis is based. Facial
anatomy is briefly described. Information on the skeletal muscle structure, architecture and
mechanical properties are then provided. Finally, basic notions and mathematics relevant to

general elastic constitutive models are summarised and presented.

Chapter 3 concerns the mechanical description of constitutive skeletal muscle model.
Firstly, a review is given on existing constitutive skeletal muscle models and experimental
data published on skeletal muscle mechanical properties, which suggests a validated 3D
constitutive skeletal muscle model is needed. Then the detailed description of the
developed constitutive skeletal muscle model and the LS-DYNA implementation of this
model are presented. Finally, the validation of the developed skeletal muscle model is
provided through several numerical tests.

Chapter 4 focuses on the construction of a three-dimensional (3D) finite element facial
model and the simulation of facial movements. After an overview of various facial models,
including geometric models, mass-spring models, finite element models, etc., the procedure
for constructing the 3D finite element facial model is detailed. Then the applications of this
facial model, including the outcome prediction of a cranio-facial surgery an_d the simulation

of muscle-based facial movements, are presented.

In Chapter 5, a FEM-NURBS method is presented to model the fibre arrangement of
skeletal muscle. ’F'irstly, the related work on muscle fibre arrangement representations is
reviewed. Secondly, the background information on the NURBS mathematical description
is summarised. Following this, a FEM-NURBS method using ABAQUS is introduced and
the relevant muscle constitutive relation is provided. Finally, the validation of the proposed
FEM-NURBS method is discussed.

Chapter 6 summarises the main results of this thesis and provides the guidelines for future

improving work.
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Chapter 2

Background Knowledge

The biomechanical modelling of the facial structure requires a comprehensive knowledge
of three major fields: facial anatomy, facial physiology and continuum mechanics.
Anatomy is the study of internal and external structure of the body and the physical
relationships among body parts. In contrast, physiology is the study of how living
organisms perform their vital functions. Anatomy and physiology are closely integrated
both theoretically and practically. Anatomical information provides clues about functions,
and physiological mechanisms can be explained in terms of the underlying anatomy. The
knowledge of anatomy and physiology of the human face enables us to understand
important mechanisms of the human face. The knowledge of continuum mechanics enables
us to simulate the mechanisms of human facial movements, that is the biomechanics of the

human face.

In this chapter, firstly the facial anatomy is described. Then, the focus is placed on the
physiology and mechanical properties of human skeletal muscle. Finally, a basic
knowledge of the non-linear solid mechanics is provided. These are the fundamental

sections that form the basis of this thesis.

2.1 Facial anatomy

This section presents knowledge of the anatomy of the facial skin, facial muscles around
the head and neck, and the skull.




Chapter 2 Background Knowledge

2.1.1 Facial Skin

Facial skin provides the outermost covering ofthe face. The facial skin structure consists of
three main layers: the epidermis, the dermis and the hypodermis (Maurel, Wu, Thalmann et
al., 1998). The superficial layer, the epidermis, is a relatively thin layer of stratified
epithelium. It is around 0.1 mm thick (Odland, 1991). The underlying dermis is mainly
composed of collagen fibres, ground substance and elastic fibres. Since there is no sharp
boundary between the dermis and the subcutaneous layer, the thickness of the dermis is
hard to measure and varies over a range from 0.5 mm to 4.0 mm (Odland, 1991). The third
layer, the hypodermis, is composed of loose fatty connective tissue. Thus it is also called

the subcutaneous layer. Atypical structure of human skin is shown in Figure 2.1.

HUMAN SKIN

sStratum corneum
Granular cell layer

Spinous cell layer
cell layer

Sebaceous gland

Erector pili muscle

Sweat gland
Nerves
Hair follicle

Collagen and
elastin fibres

Artery
Vein

Fat (adipose)

© Epidermis © Dermis tissue

© Subcutaneous tissue

Figure 2.1 Structure ofhuman skin (Melbourne Dermatology, 2009)

2.1.2 Muscles of human head and neck

The muscular structure that connects the facial skin and the skull is extremely complex.
A muscle in the muscular system shortens under neural control, causing the soft tissues and
bony structures to move. Each muscle has two attachments to these structures, called origin
and insertion according to their roles in the movement. The origin is the end of the muscle

that is attached to the least movable structure and the insertion is the other end of the
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Chapter 2 Background Knowledge

muscle that is attached to the more movable structure. In general, the insertion of a muscle

moves toward the origin when the muscle contracts.

The muscles of the human head and neck can be divided into several groups by functions.
In this thesis, three groups of them are considered, i.e. muscles of facial expression,

muscles of mastication and the hyoid muscles.

*  Muscles of Facial expression

The muscles of facial expression are paired muscles in the superficial fascia of the facial
tissues, as shown in Figure 2.2. All the muscles of facial expression originate from the
surface of the skull bone and insert into the dermis of the skin tissue. When the muscle

contracts, the facial skin moves.

Epicranial —
aponeurosis

Occipitofrontalis
I frontal belly

Corrugator supercilii
Procerus

Levator labii
superioris
alaeque nasi

Orbicularis oculi

Levator labii superioris
alaeque nasi

Nasali Levator labii superioris
asalis
Levator labii Zygomaticus minor
superioris
Zygomaticus major
Zygomaticus minor"

Levator anguli oris
Zygomaticus major

Buccinator
Levator anguli oris
g Masseter
Risorius Orbicularis oris
Depressor anguli Depressor anguli oris
Platysma Depressor labii inferioris

Depressor labii inferioris .
Mentalis

Figure 2.2 Muscles of facial expression (Schuenke, Schulte, Schumacher et al., 2007)
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Chapter 2 Background Knowledge

During facial expression, the muscles act in various combinations to vary the appearance of
the face (MaKinley and O'Loughlin, 2005; Martini, Ober, Garrison et al, 2006;
Martini, Timmons and Tallitsch, 2008; Schuenke, Schulte, Schumacher et al., 2007), as
summarised in Table 2.1. Examples of facial expressions by using some of these muscles
are shown in Figure 2.3. In Figure 2.3A, the patient uses levator labii superioris muscle,
levator anguli oris muscle, risorius muscle, zygomaticus minor and major muscles to
provide a look of smile; In Figure 2.3B, the patient uses corrugator supercilii muscle,
levator labii superioris alaeque nasi muscle and depressor anguli oris muscle to provide a
look of disgust.

Table 2.1 Muscles of facial expression and their associated facial expressions

Muscles Facial Expression
Buccinator Chewing
Corrugator supercilii Frowning
Depressor anguli oris Frowning
Depressor labii inferioris Lowering lower lip
Epicranial Surprise
~ Levator anguli oris Smiling
Levator labii superioris Raising upper lip

Levator labii superoris alaeque nasi | Raising upper lip and dilating nostrils in a sneer

Mentalis Raising chin and protruding lower lip
Orbicularis oculi | Closing eyelid
Orbicularis oris Closing and pursing lips, pouting and grimacing
Platysma Raising neck skin and grimacing
Risorius Stretching lips
Zygomaticus major Smiling
Zygomaticus minor Raising upper lip, assisting in smiling
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Corrugator supercilii
Levator labii muscle
superioris Zygomaticus . L.
minor Levator labii superioris

Levator angul alaeque nasi muscle

ori< Zygomaticus

Risorius major Depressor anguli oris
muscle

Figure 2.3 Examples of facial expressions, Left: smiling; Right: Disgusted (Schuenke,

Schulte, Schumacher et al., 2007)

e Muscles of mastication

The muscles of mastication are four pairs of muscles attached to the mandible: the masseter,

the temporalis, the medial pterygoid and the lateral pterygoid muscles (Figure 2.4).
The muscles of mastication are responsible for closing the jaws, moving the lower jaw

forward or backward and shifting the jaw laterally. These jaw movements involve the

movement ofthe mandible, while the rest ofthe skull remains relatively stable.

Temporalis

Lateral
pterygoid

Medial pterygoid

Masseter

Figure 2.4 Muscles of Mastication (Schuenke, Schulte, Schumacher et al., 2007)
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Chapter 2 Background Knowledge

* Hyoid muscles

The hyoid muscles assist in the actions of mastication, swallowing and opening of the
mouth, etc. Most of these muscles are in a superficial position in the neck tissues. The
hyoid muscles are attached in a complex way to the hyoid bone. Based on their relationship
to the hyoid bone, they can be grouped to the suprahyoid muscles, which are above the
hyoid bone, and the infrahyoid muscles, which are below the hyoid bone, as shown in
Figure 2.5. The hyoid bone is a horseshoe-shaped bone suspended beneath the mandible,
with the open end ofthe horseshoe pointed posteriorly. The hyoid bone does not articulate
with any other bone and its only connection with other bones is through muscles and

ligament attachment.

Mylohyoid muscle A‘nteno‘r belly of
digastric muscle

Stylohyoid muscle

Posterior belly of

Hyoid bon
yor ¢ digastric muscle

Superior belly of
omohyoid mscle Thyroid cartilage

Thyrohyoid muscle Sternohyoid muscle

Sternothyroid
muscle Sternocleidomastoid

muscle
Inferior belly of

omohyoid muscle

Figure 2.5 Neck muscles (Fehrenbach and Herring, 2006)

The specific origin and insertion of facial muscles of interest are listed in Table 2.2.
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Chapter 2 Background Knowledge

Table 2.2 Origin and insertion of facial muscles (Fehrenbach and Herring, 2006)

Mouscles Origin Insertion
Anterior digastric intermediate tendon medial surface of mandible
. Maxilla, mandible and
Buccinators pterygo fibular raphe Angle of mouth
Depressor anguli oris Mandible Angle of mouth
Depressor labii Mandible Lower lip
inferioris
Geniohyoid Genial tubercles of mandible Body of hyoid bone
Superior head: greater wing Both heads: pterygoid
Lateral pterygoid of s:phenmd bone fovea of mandible
Inferior head: lateral
pterygoid plate from sphenoid
bone
Levator labii superioris | Infraorbital rim of the maxilla | Skin tissue of the upper lip
alaeque nasi the nose and the upper lip
Levator anguli oris Maxilla Angle of mouth
Superficial head: anterior two | Superficial head: angle of
Masseter thirds of lovs.'er border of mandible
Z, goma'mcus a.rch Deep head: ramus of
]?eep head: p.osterlor one mandible
third and medial surface of
zygomaticus arch
Medial pterygoid Pterygoid fossa of sphenoid Angle of mandible
A bone
Mentalis Mandible chin
Mylohyoid Mylohyoid line of mandible Body of hyoid bone
Orbicularis oculi Orbital rim, frontal and Lateral region of eye, some
maxillary bones encircle eye
Orbicularis oris Encircle mouth Angle of mouth
Posterior digastric mastoid notch of temporal intermediate tendon
bone
o - Fascia superficial to masseter
Risorius " muscle Angle of mouth
Stylohyoid Styloid process of temporal Body of hyoid bone
: Coronoid process of
Temporalis Temporal fossa mandible
Zygomaticus major Zygomatic bone Angle of mouth
Zygomaticus minor Zygomatic bone Upper lip
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Chapter 2 Background Knowledge

2.1.3 Human Skull

The human skull is the foundation for the soft tissues ofthe face and head. The bones ofthe
skull play several different roles. They protect the brain, form the facial skeleton, and
participate injaw movement. The skull is composed of22 bones which can be grouped into
two categories based upon their roles. Eight bones make up the neurocranium, surrounding
the brain and fourteen bones make up the viscerocranium, forming the face. Some ofthese
bones are single, e.g. the frontal bone, mandible, etc., and some are paired bones, e.g. the

maxilla, temporal bones, zygomatic bones, etc.

2.1.4 Temporomandibular Joint

The temporomandibular joint (TMJ) is a joint located on each side ofthe skull that allows
for the movement of the mandible. As its name indicates, the TMJ is the articulation

between the temporal bone and the mandible, as shown in Figure 2.6.

Mandibular fossa

TEMPORAL BONE
Temporomandibular
joint (TMJ)
. Zygomatic process
External auditory
of temporal bone
meatus
Mandibular condyle Articular eminence
Tympanic plate
Neck of condyle
Lateral pole of condyle
Mastoid process MANDIBLE

Figure 2.6 Lateral view ofthe bones ofthe temporomandibular joint (Liebgott, 2001)

The TMIJ has two distinct types of movement: a rotational movement and a gliding
movement. The gliding movement allows the lower jaw to move forward (protrusion) and
backward (retrusion). The protrusion involves the bilateral contraction of the lateral
pterygoid muscles and the retrusion involves the contraction of the posterior portions of

both temporalis muscles. The movements accomplished by TMJ rotation are the depression
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and elevation of the mandible. The muscles involved in elevating the mandible are the
bilateral masseter, temporalis, and medial pterygoid muscles, while the muscles involved in
depressing the mandible are the inferior heads of the lateral pterygoid and the anterior

suprahyoid muscles.

The various movements of'the jaw during speech and mastication are accomplished by the
combination ofthese two basic movements: gliding and rotation. For example, opening the
mouth involves both depression and protrusion of the mandible and closing the mouth

involves both elevation and retrusion ofthe mandible, as shown in Figure 2.7.

Articular fossa Fibrous
Postglenoid process Articular eminence
Condyle

Figure 2.7 Opening and closing ofthe mouth (Bath-Balogh,Fehrenbach and Thomas,
2006)
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Chapter 2 Background Knowledge

In this section, the structure, architecture, mechanical properties and the contraction

dynamics ofthe skeletal muscle tissue will be reviewed.

Muscles are distinguished from other soft tissues by their specific contractile properties.

They can be classified into three types based on the functions they fulfil (Pocock and

Richards, 2004; Widmaier, Raffand Strang, 2005):

Smooth muscle: This
muscle lies in the hollow
organs and blood vessels of
the body and is regulated by
the autonomic  nervous
system.

Cardiac muscle: This
muscle forms the wall of
the heart and 1is also
controlled by the autonomic
nervous system.

Skeletal muscle: This
muscle is also called
voluntary  muscle, since

they can be made to

contract or relax by

conscious control. As its
name  implies, skeletal
muscle is the muscle

directly attached to the

bones ofthe skeleton and its

Nuclei Cross-striations

Skeletal muscle

Intercalated disks Cross-striations Myocytes

Amgthlll m
GUM

Cardiac muscle

Nuclei Smooth muscle
cells

Smooth muscle

Figure 2.8 Microscopical appearance of

skeletal muscle, smooth and cardiac muscle

(Pocock and Richards, 2004)

role is to maintain posture and move the limbs by contracting.
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2.2.1 Skeletal muscle structure

A hierarchical structure ofthe skeletal muscle is shown in Figure 2.9. It can be seen that a
muscle belly comprises a large number of fasciculi enclosed in a connective sheath, the
epimysium. The fasciculi are formed by bundles of muscle fibres surrounded by a strong
connective sheath, the perimysium. The spaces between the muscle fibres within a bundle
are filled by a soft connective tissue called endomysium. Within a muscle fibre, there are a
large number of myofibrils, whose diameter is approximately lpm. The filaments of
myofibrils are called myofilaments which are the formation ofthe smallest functional unit
of muscle, termed the sarcomere. The sarcomere consists of two types of filaments: thin
and thick filaments. The thin filaments consist primarily of the protein actin and the thick

filaments consist primarily ofthe protein myosin (Berne and Levy, 2000).

Muscle belly

Bundle fibres
Myofibril

Myosin

Cross-bridge
Actin Sarcomere

Figure 2.9 The organisational hierarchy of skeletal muscle adapted from Gray’s anatomy

(Warwic and Willems, 1973)

The structure of a myofilament and the spatial arrangement of the actin and myosin
molecules are shown in Figure 2.10. It is shown that each myofibril is composed of arrays
of myofilaments, which are divided transversely by the Z-disk into serially repeating
regions called sarcomere which is about 2.5 pm long. The area between the Z-disk is
further divided into two bands: I band and A band, where the I band mainly contains thin
actin filaments, whose diameter is about 5Snm and the A band contains myosin filaments,
whose diameter is around 12nm. Within the A band, the central region is called the H band,

where there is no actin-myosin overlap when the muscle is in a relaxed state. Finally, the
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line transversely across the H band is called the M-line. More information of the
myofilament structure can be found in Carola, Wynsberghe et al.(1995), Silverthom, Ober

et al. (2009), Warwic and Willems (1973) and Widmaier, Raffet al. (2005).

Sarcomere

Thin filament

Thick filament

Z disk Z disk
Z disk
1band H zone M line Outer edge of A band
thin filaments thick filaments thick filaments linked thick and thin
only only with accessory proteins filaments overlap

Figure 2.10 Structure ofa myofilament (Silverthom, Ober, Garrison et al., 2009)

The actin filaments are attached at one end to the Z-line and are free at the other end to
interact with the myosin filaments. When a muscle contracts, the actin is pulled along
myosin toward the centre of the sarcomere until the actin and myosin filaments are
completely overlapped. If the muscle contracts greatly, I- and H- bands may narrow to
extinction, but the A-bands remain unaltered, as shown in Figure 2.11. This is called the
sliding filament theory of muscle contraction (Tortora and Grabowski, 2002; Vander,

Sherman and Luciano, 2003).
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2 Sarcomeres

H zone I band A band
111 e e L

HiltliLidn i liini'ht
wopth

I Thick filament

Z disc Thin filament Z disc M line Z disc
(a) Relaxed muscle

(b) Partially contracted muscle

T
(¢) Maximally contracted muscle

Figure 2.11 Sliding filament mechanism of muscle contraction (Tortora and Grabowski,

2002)

2.2.2 Skeletal muscle architecture

The muscle architecture is defined by the arrangement of the muscle fibres (Warwic and
Willems, 1973). The most common muscle architectures are the parallel fibred and the
pennate, as shown in Figure 2.12. In a parallel fibred muscle, the fibres are arranged along
the long muscle axis and have almost the same length as the muscle. In contrast, the
pennate muscle fibres run obliquely to the long axis and are relatively short compared to
the muscle length. The uni-pennate muscles have the tendon running along one side. In
bi-pennate muscles, the tendon passes through the centre of the muscle and the fibres are
attached to it on either side. In multi-pennate muscles, the fasciculi are arranged such that
they converge on many tendons. The fibres of a pennate muscle are connected to the
aponeurosis of the muscle, which is also called the internal portion ofthe tendon since its

properties are the same as those ofthe external portion ofthe tendon. Figure 2.13 shows the
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functional arrangement of'the fibres.

Figure 2.12 Muscle architectures, from left to right: unipennate, bipennate and fusiform

Muscle
S’ ' \
aponeurosis
fibres
C
external internal
y s
Tendon

Figure 2.13 Muscle-tendon architecture in a pennate muscle (Zajac, 1989)

2.2.3 Mechanical properties of skeletal muscle

In this section, the main mechanical properties of skeletal muscle will be discussed.

Non-linearity: The muscle tissue exhibits a non-linear stress-strain relationship which is
characterised by four regions: in region I, the tissue is under low strains, its response is
linear; in region II, the tangential modulus of'the tissue increases due to the straightening of
the collagen fibres; in region III, all the fibrils become taut and the tangential modulus of

the tissue reaches a maximum value, thus the stress increases linearly with the strain in the
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region; in region IV, groups of fibrils begin to fail and tissue destruction occurs, therefore

the tangential modulus decreases, as shown in Figure 2.14.

Strain

Figure 2.14 Non-linear stress-strain curve of soft tissue (Fung, 1981)

Anisotropy: If a material property depends on the material directionality, it is called
anisotropic material. Skeletal muscle is generally anisotropic because ofthe arrangement of
its muscle fibres (Swatland, 1995). In this study, the muscle tissue is modelled as a
transversely isotropic material by assuming the muscle is made of one branch of muscle

fibres.

Viscoelasticity: The response of a viscoelastic material depends on the history of the
deformation, i.e. the stress produced in the material is a function of not only the strain but
also the strain rate and the strain history. The stress values appear higher at larger strain rate
than those at a lower strain rate for the same strain, as shown in Figure 2.15 (Davis,
Kaufman and Lieber, 2003; Myers, Wooley, Slotter et al., 1998). The stress relaxation
behaviour of the muscle tissue has been demonstrated by the Van Loocke group (Van
Loocke, Lyons and Simms, 2008). They performed compression tests in vitro on fresh

porcine skeletal muscle at various rates and in different orientations of the tissue fibres.
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The test results showed that when the muscle is compressed and maintained at its new
length, the amplitude of the stress gradually drops with the time. Other time-dependent
behaviour of the muscle tissue includes creep, which means when the tissue is suddenly
submitted to a constant tensile stress, its length gradually increases with the time. The
evidence of creep phenomenon in the muscle tissue can be found in Pinto and Patitucci

(1977).

w—Myers et al.'s data, strain rate 25/s
m—Myers et al.'s data, strain rate 10/s
A—Myers et al.'s data, strain rate 1/s
V¥-Davis et al.'s data, quasi-static

Engineering strain (%)

Figure 2.15 Engineering stress versus strain curves for passive rabbit leg muscle

Quasi-incompressible material: Muscle tissue can be regarded as a quasi-incompressible
material because it is made up of about 80% incompressible water, 3% fat and 10%

collagenous tissues.

2.2.4 Contraction dynamics of skeletal muscle
Differing from other soft tissues, the skeletal muscle tissue has a unique feature of

voluntary contraction. The contraction dynamics ofthe muscle is discussed below.

Force-Iength relationship: The force-length relationship provides an isometric contraction
characteristic for the skeletal muscle tissue. This relationship is obtained from the static

tests of muscle tissues (Edman, 1966; Gordon, Huxley and Julian, 1966). The muscle was
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held at different lengths, and both the passive and the fully contracted muscle forces were
recorded. The active force is the difference between the forces developed when muscle is

activated and when muscle is passive.

—m—Active
—  Total
—A- Passive

Length L'

Figure 2.16 Muscle force-length relationship curves - fully activated state (Zajac, 1989)

—  Active
—s—Total
—*  Passive

Length L*

Figure 2.17 Muscle force-length relationship curves - halfactivated state (Zajac, 1989)

The isometric active and passive force-length curves are shown in Figures 2.16 and 2.17,
where in Figure 2.16, the muscle is fully activated and in Figure 2.17, the muscle is 50%
activated. The sliding filament theory of muscle contraction provides a clear explanation
for the skeletal muscle force-length relationship. When the muscle is at its resting length,

there is a maximum tension, because the thin and thick filaments overlap optimally and
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form a maximum number of cross-bridges. As the muscle lengthens, the filaments are
pulled apart and the number of cross-bridges reduces. This leads to a decline in the ability
of the muscle to generate tension. As the muscle shortens, the filaments from each end of
the sarcomere touch in the centre ofthe A band and each interferes with the motion of the

other. As a result, tension development declines.

Force-velocity relationship: The force-length relationship cannot account for muscle
dynamic properties. Thus the force-velocity relationship is developed by measuring the
velocity of a fully activated shortening muscle subjected to a constant tension. A
force-velocity graph is shown in Figure 2.18. The mechanical power output that the active
muscle can deliver is described in the force-velocity curve. It can be seen that the peak
power output occurs when the muscle shortens at around OJvmax (Woledge, Curtin and

Homsher, 1985).

Force-velocity
Power-velocity

=}

Power output

Force
0.075 cx
0.2- 0.025
0.0
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Normalised velocity, v/vo

Figure 2.18 Muscle force-velocity relationship curve (McMahon, 1984)

When a fully activated muscle is subjected to a constant tension, it will first shorten and
then stop. The length where the shortening terminates corresponds to the length specified
by force-length relation curve of the fully activated muscle. As a result of this, the
mechanical properties of skeletal muscle can be described by a force-length-velocity

relation (Gatto and Swannell, 1990).
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2.3 Basics of non-linear solid mechanics

Skeletal muscle tissue is usually considered as an active, quasi-incompressible, transversely
isotropic and hyperelastic material. There is currently no available software which
presently describes these kinds of materials. However, ABAQUS and LS-DYNA provide
the interfaces which allow the users to define their own material models. Before developing
the constitutive models, it is worthwhile to revisit the basic notions and some general

constitutive models within the framework ofnon-linear solid mechanics.

Summarised below in Chapter 2.3.1 are some basic notions, including definitions of
deformation gradient, Cauchy stress, etc. for more details, see Belytschko, Liu and Moran
(2000) and Shabana (2008); Summarised below in Chapter 2.3.2 are some general elastic
constitutive models, including hyperelastic models, isotropic hyperelastic models and
transversely isotropic hyperelastic models, for more details, see Belytschko, Liu and Moran

(2000) and Weiss, Maker et al. (1996).

2.3.1 Basic notions

Let By be a continuum body which is a set of points, referred to as particles. The domain of
the body By in the initial state is denoted by fio and called the reference configuration,
which is also called the undeformed configuration. The domain of the body in the current
state is denoted by Q, and called the current configuration, which is also called the
deformed configuration. The boundaries in the reference and current configurations are
denoted by TO and Tt, respectively. The domain can be one-, two- or three-dimensional.
Thus, the boundary corresponding to the two end-points is a line segment in one dimension,
a curve in two dimensions and a surface in three dimensions. Two neighboring particles in
the undeformed configuration are denoted by Po and Qo and the corresponding particles in

the deformed configuration are denoted by Ptand Qt, as shown in Figure 2.19.
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y,Y

utdu

dX

X+dX x+dx

z. 7

Figure 2.19 Reference and current configurations ofa continuum body

A. Lagrangian and Eulerian coordinates
The position vector of a material point in the reference configuration is given by

(Belytschko, Liu and Moran, 2000):
X=XIEI (2.1)

where XY are the components of the position vector in the reference configuration and
E1 are the unit base vectors of a rectangular Cartesian coordinate system in the reference
configuration. The coordinates Xx give the position of a material point, thus are called

material coordinates or Lagrangian coordinates.

Correspondingly, the position vector of a point in the current configuration is given by
(Belytschko, Liu and Moran, 2000):

X=x,e' (2.2)
where x are the components of the position vector in the current configuration and e'
are the unit base vectors in the current configuration. The coordinates x¢ give the spatial
position and are called spatial coordinates or Eulerian coordinates. In this thesis, whenever
indicial notation is employed, lower-case letters refer to the deformed configuration and

upper case to the reference configuration.

Page 25



Chapter 2 Background Knowledge

B. Motion and displacement
A point in the reference configuration €, is mapped to the point in the current
configuration €, through the following relationship (Shabana, 2008):

X=X, 0)=X+u(X,r) 2.3)
where x is the position of the material point X at time t and u(X,r) is the displacement of

a material point.

C. Deformation gradient
The deformation gradient is an important variable in the characterisation of the deformation.
It is defined as (Belytschko, Liu and Moran, 2000):

dx;

F(X):=0p/0X =Y e
I

eE! (2.4)

It should be noted that, in the terminology of mathematics, the deformation gradient F is
the Jacobian matrix of the mapping function ¢@(X,7). The determinant of F is called the
Jacobian determinant or the determinant of the deformation gradient.

J =detF 2.5)

Note that, J is a scalar and for an incompressible material, it equals one.

A multiplicaﬁve decomposition of the deformation gradient is always applied to decouple
the deviatoric and dilatational response (Flory, 1961):
F=F, F, (2.6)

where F ,:=J'’I is the dilatational part, also called the volumetric response and

F., =J'°F is the deviatoric part, sometimes called the isochoric response.

The determinant of the deviatoric deformation gradient is always unity, i.e. det(F, )=1.
Therefore, det(F, ;) = detF = J, which means only the volumetric deformation gradient F,,

contributes to the volume change of the material.
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D. Strain measures

There are a number of different measures of strain used in non-linear continuum mechanics.
The ones considered in this thesis are the Green strain, the right and left Cauchy-Green
deformation tensors. In this section, the definitions of these étmin measures are given.

The Green strain or Lagrangian strain measures the difference of the square of the length of
an infinitesimal segment in the current configuration and the reference configuration.

The square of the length of the material vector dX in Figure 2.19 is given by:

(dX)’ =dX dX, =5,dX dX, 2.7
In the deformed configuration, this is given by:

(dx)* = dx,dx, = 6,dx,dx, (2.8)

where &, is the kronecker delta, with 6, =1ifi=jand §,=0ifi= j.

Then the difference of the square of the length is given by:

(dX)? — (dX)? = 24X -E-dX 2.9)
where E is the Green strain tensor and given by
E= %(FTF _1) (2.10)
or
B, = (FIF,-5,) @11)

I is the second order unit tensor.

The right and left Cauchy-Green deformation tensors are defined respectively as (Weiss,
Maker and Govindjee, 1996):

C=FF=F,FEF’ (2.12)

B:=FF' =F,F,ee (2.13)
The right and left Cauchy-Green deformation tensors can be used as a measure of the
deformation because in the case of an arbitrary rigid-body displacement, they remain
constant and are equal to the identity matrix.
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Based on the multiplicative split of the deformation gradient, the right and left
Cauchy-Green tensors can be decomposed as:
C=F'F=J%3C (2.14)
B=FF =JB (2.15)
where C and B are the right and left Cauchy-Green tensors with the volume change
eliminated.

E. Stress measures

In non-linear solid problems, various stress measures can be defined. However, in this
thesis, only three of them are considered: the Cauchy stress o, the first Piola-Kirchhoff
stress tensor PP (nominal stress tensor) and the second Piola-Kirchhoff stress tensor S. Their

definitions are given below.

A deformed body can be divided into two portions by a plane. Consider a surface element
ds on the cross-section in the current configuration. Let vector a be the outward unit vector
to this cross section. Correspondingly, let dS and A represent the surface element and the

outward normal vector in the reference configuration, as shown in Figure 2.20.

(=

Figure 2.20 Definition of the stress measures

The traction exerted on the surface element ds in the current configuration is called the
Cauchy traction vector t. The corresponding traction exerted on dS in the reference
configuration is called the first Piola-Kirchhoff traction vector to.
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According to Cauchy’s law, the following relation exists (Marsden and Hughes, 1994):
a-ods =df =tds (2.16)
and in the reference configuration (Marsden and Hughes, 1994):
A -PdS =df =t dS 2.17)
where 0 and P are the Cauchy stress tensor and the first Piola-Kirchhoff stress tensor,

respectively.

The relation between these two stresses can be obtained by using the Nanson’s relation
(Malvern, 1969), which relates the current normal to the reference normal by:
ads = JA-F'ds (2.18)
Further using Equations (2.16) and (2.17), the following equation is obtained.
JA-F'.0dS=A-PdS 2.19)
Thus the Cauchy stress tensor can be related to the first Piola-Kirchhoff stress tensor by:

P=-JF'0 (2.20)

The second Piola-Kirchhoff stress S is widely used for path-independent materials. It is
defined by (Marsden and Hughes, 1994):
A.SdS =F'.df =F" .t ds @.21)

Using Equations (2.17) and (2.21), the second Piola-Kirchhoff stress is related to the first
Piola-Kirchhoff stress by:

P=S-F 2.22)
Thus the Cauchy stress and the second Piola-Kirchhoff stress relate to each other by:
o=J'F-S-F (2.23)

It is worthy to note that: the Cauchy stress is expressed in terms of the area and normal of
the deformed surface; the first and second Piola-Kirchhoff stresses are defined in terms of
the area and normal of the undeformed surface; the Cauchy stress and the second
Piola-Kirchhoff stress are symmetric, ie. 0=0" and $=8"; the first Piola-Kirchhoff

stress is not symmetric.
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2.3.2 General elastic constitutive relations

The notions given in the preceding section are general, but they are not sufficient for
describing the behaviour of non-linear solids. To complete the description of the
mechanical properties of a material, a set of equations, called the constitutive equations, is
needed. These equations should be objective and should not lead to any change in the
energy of the stresses under an arbitrary rigid-body motion. Different constitutive equations
allow us to distinguish between different materials.

If the constitutive equations of a material depend only on the current state of deformation,
the behaviour is said to be elastic (Shabana, 2008). If the stresses can be derived from a
strain energy function, the material is called hyperelastic or Green elastic material; if the
stresses cannot be derived from a strain energy function, the material is called Cauchy
elastic material (Ogden, 1997). In this section, some general hyperelastic constitutive

relations are presented.

A. Hyperelastic material

Hyperelastic material is a special case of elastic materials with the property that the work is
independent of the load path. That is, the work done depends only on the initial and final
states. Hyperelastic materials are characterised by the existence of a stored energy function
or strain energy function (Belytschko, Liu and Moran, 2000; Ciarlet, 1988; Holzapfel,
2000). This strain energy function is also called the Helmholtz free-energy function and
must obey the principle of Material Frame Indifference, which means that the constitutive

equations must be invariant under changes of observer frame of reference.

For a hyperelastic material, the second Piola-Kirchhoff stress is derived from the strain
energy as (Belytschko, Liu and Moran, 2000):

_,OW(C) _oy(E)
s=22 =0 (2.24)

where W and Y are the strain energy functions;, C and E are the right Cauchy-Green
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deformation tensor and the Green strain, respectively. The relationship between these two

tensors is E =-:12(C —1I), where I is the second order unit tensor. Thus, the relation between

the two scalar functions is givenas W(C)=yw(2E+1).

According to Equation (2.23), the Cauchy stress for hyperelastic material can be written as:

= OW(C)
0=2J"F- ——=F 2.25
xc (2.25)
The material version of the second elasticity tensor C is obtained by differentiating of the
second Piola-Kirchhoff stress tensor S with respect to the deformation tensor C, as given
below (Weiss,Maker and Govindjee, 1996):
o'W oS 08

=22 =220 E’ QF’ QEX ®FE* (2.26)

G=4
Eor I o

The spatial version of the second elasticity tensor C is defined as the push-forward of the

material elasticity tensor c (Marsden and Hughes, 1994):

C=—FF-C-F'F’ (2.27)

1
J

B. Isotropic hyperelastic material

In the case of isdiiopic materials, the constitutive behaviour is the same in any material
direction. Thus, the relation between the strain energy function W and the right
Cauchy-Green deformation tensor C is independent of the chosen material axes. As a
consequence, the strain energy function # depends only on the invariants of the right
Cauchy-Green deformation tensor C and can be written as a function of the principal
invariants (/,,7,,1,) of the right Cauchy-Green deformation tensor C (Gurtin, 1981;
Malvern, 1969; Truesdell and Noll, 1992):

we)=w,l1,,1,) (2.28)
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The standard definitions of the principal invariants are given by (Spencer, 1984):

[=t0C=R+2+2 2.29)
I, =S WrCY ~C*]= BR + Bl + B A (2.30)
I,=detC=J>= 2122 (2.31)

where A2, 42 and 4 are the eigenvalues of the right Cauchy-Green tensor C; 4, 4,
and A4, are the eigenvalues of the deformation gradient F and represent the principal

stretches along the principal direction of F.

The invariants of the right Cauchy-Green tensor C have a clear physical meanings. For
example, the first invariant /, is the sum of the square of the eigenvalues of the right
Cauchy-Green deformation tensor C. It is an invariant that represents the multi-axial state
of deformation within the material, specifically the ground substance. Therefore, it
represents the isotropic shear and bulk behaviour of the matrix. The second invariant 7, is
less used than 7, and can be omitted for biological soft tissues (Holzapfel, 2000). The
third invariant I, characterises the volumetric response of the material and is directly
related to the degree of compressibility. As biological soft tissues contain a large proportion
of water (Fung, 1973), they can be assumed to be incompressible. In the case of
incompressible materials, the third invariant /, can be set to 1 and does not appear in the
equations. For more details about the physical interpretations of the above invariants, see

Limbert and Middleton (2004), Shabana (2008) and Zhurov, Limbert et al. (2007).

The derivatives of these invariants with respect to the right Cauchy-Green tensor C are

given as below:

a_y o
oCc  oC

=II-C, %Ici =LI-1C+C?=1,C" (232

Using these results and Equation (2.24), the second Piola-Kirchhoff stress for isotropic

hyperelastic materials can be written as:
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2295-6-1— =2(W, + IW, 0 - 2W,C+2I.W,C" (2.33)

where W, =0oW /0l ,(a =1,2,---) has been applied.

Incompressible isotropic hyperelastic model: When the material is incompressible,
which means I; =J%=1, W is a function of only I, andI,. However, another scalar
called hydrostatic pressure enters into the expression of S as a reaction to the kinematic
constraint in the deformation field. In this case, the second Piola-Kirchhoff stress is written
as (Weiss, Maker and Govindjee 1996):

- 22 W ol , ot - AW, + W) -W,C}+ pC™ (2.34)
o, oC

i#3

where p is the hydrostatic pressure, W, = 0W /0l ,(a =1,2,---) has been applied.

Based on Equations (2.23) and (2.34), the Cauchy stress for incompressible isotropic

hyperelastic material can be written as:
0 = 2((W, + I}7,)B~W,B%} + pI (2.35)

The following relations have been used to derive the above equation:

F,F,6,=F,F, =B, (236)
FyF,Cy =F,FyFyF, =(FyFyXFyFpy)=B,B,, (2.37)
F,F,C; =F,F,FJF} =6 (2.38)

Compressible isotropic hyperelastic model: When the material is slightly compressible,
the strain energy function can be split into the deviatoric and dilatational parts (Ogden,
1997):

W(C)=W,,(J)+W,(C) (2.39)

where W, ,(J) is the dilational component relating to the volume change and W, (E)is
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the deviatoric component, which is a function of the right Cauchy-Green deformation

tensor with volume change eliminated, C.

The corresponding second Piola-Kirchhoff stress can also be split into two parts:
S=S_,+S_, (2.40)
with

and S, =2—-% (2.41)

s Wl oW, OC
v al éC aC aC

In order to obtain the second Piola-Kirchhoff stress, the following decoupled invariants are
introduced (Holzapfel, 2000):

I,=trC=J72?] (2.42)
I,= —;—[(tré—)z —trC*=J*"1, (2.43)

The derivatives of these decoupled invariants with respect to both the right Cauchy-Green
tensor and the isochoric part of the right Cauchy-Green tensor are given below:

61

ac (J 2/31‘7'(:) J23 - I-lc-x (2.44)

'a‘ o (.. y a
o ECI 31, )= ~37 LT +J(1,1-C) (2.45)
-1 %:i,l-é (2:46)

Further
%Z%Jc-l (2.47)
~ -2/3

%_ aJac ®C+J“2/3%= __;_J—2/3c—l QC+J2L (2.48)

where L is the fourth order unit tensor.
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Based on the above relations, the specific expression of the second Piola-Kirchhoff stress

for a compressible isotropic hyperelastic material is given by:

ow,, ow,, 1 0W,
S=—jJC"+2J7%3 v . C)C™
a o oC 3( oC <)

oW,

B (2.49)
_ chﬂ + N"”((W}W +W2IN-W2C - %(W;,,I-l +2W2 T, f:‘)

where W, =0W, /oI, and W} =0W,, /0,

Introducing an operator DEV]-], which is the deviatoric projection operator for stress-like
quantities in the reference configuration:

DEVI-1=[-1—§([-1:E)E‘1 (2.50)

Then Equation (2.49) can be rewritten as:

S= ag/]“” JC +2J '2’3DEV[ ] (2.51)

The above constitutive relations for a quasi-incompressible, isotropic hyperelastic material
are apparently due to Simo, Taylor et al. (1985) and Weiss, Maker and Govindjee (1996).

It is worthwhile to note that there are some isotropic hyperelastic material models available
in the existing cbmmercial software ABAQUS and LS-DYNA, like the neo-Hookean
model, the Mooney-Rivlin model, the Arruda-Boyce model, the Ogden model, etc.
Isotropic hyperelastic models are widely used in modelling rubber-like material. When
modelling fibre-reinforced materials, like skeletal muscle tissue, these models are shown to

lead to unrealistic results.

C. Transversely isotropic hyperelastic material
Transversely isotropic hyperelastic material can be regarded as isotropic hyperelastic

material embedded by one set of fibres. Here, one unit vector N in the undeformed

configuration is introduced to denote the principal direction of the fibres. After the material
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undergoes deformation, the fibres will deform with the body as shown in Figure 2.21.
Then, another unit vector n is introduced to describe the fibre direction in the deformed
configuration. The relationship between the fibre direction in the undeformed configuration
and that in the deformed configuration is given by (Martins, Pires, Salvado et al., 1998):
An=F-N (2.52)

where A, is the fibre stretch ratio in the direction of the undeformed fibre. Since m is a

unit vector, A1, can be expressed as:

ir=JC:(N®N) (2.53)

)

(y
e

[ S
cemacmeP
cemmen=d

(

Figure 2.21 Schematic representation of fibre direction (Limbert and Taylor, 2002)

In order to characterise the material behaviour induced by the reinforced fibres, two other
invariants, namely I, and Is, are introduced into the strain energy function (Spencer,
1984). In this casé," fhe potential is expressed in terms of five invariants:

W) =w{,l,,1,,1,1) (2.54)

where I, and I are defined as (Spencer, 1984):
I,=(N®N):C and I, =(N®N):C? (2.55)

From Equations (2.55), it can be seen that the invariant 7, is the square of the stretch in
the fibre direction which is the projection of the right Cauchy-Green deformation tensor C

along the undeformed fibre direction N. It has a straightforward physical interpretation
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that it characterises the directional mechanical properties of the soft tissues introduced by
the presence of collagen fibres. The invariant 7, has similar physical interpretation as
I4, but it involves the quadratic terms of the deformation tensor C. Since the effect of
transverse isotropy has already been captured with I, the invariant [ is always

omitted in the strain energy function W.

The derivatives of invariants I, and /; are given by:

%_zmw and %’%:N@c.mu.caw (2.56)

Using these results and Equation (2.54), the second Piola-Kirchhoff stress for transversely
isotropic hyperelastic materials can be written as:

S oW al,
&3, oC (2.57)

= 2W, + IW N -2W,C+2ILW,C" + WNON+W,(NOCeN+N+C3N)

S=2

where W, =0W /0l ,(a =12,---) has been applied

Incompressible transversely isotropic hyperelastic model: With the strain energy
Equation (2.54), the second Piola-Kirchhoff stress for an incompressible, transversely

isotropic hyperelastic material can be written as:

Zzalai pC™
= o, oC (2.58)

=W, +IWN-W,C+WNON+W,(NSCeN+N+CRN)} +pC™

where p is the hydrostatic pressure and W, =0W /0l ,(a =1,2,---) has been applied.

The corresponding Cauchy stress is given as:
o =2{(W,+IW,)B-W,B* + 1w ,n®@®n+1W,(n@Ben+neBAn)}+pl (2.59)

The material elasticity tensor takes the form:
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W, 61 oW, oWw. oC
C=4IQ L 10W, —L 2 2
{ ac 2 o e c rac (2.60)
W,  al, o W, 621 o™ '
N®N® s@Ms ,
oC oC . o } P>
Making use of the chain rule:

oW, OW, 6I+6W al, +6W ol, 6W al
acazacazacalacazac

Zs(@=12-) 2.61)

and further using the following relations (Marsden and Hughes, 1994):

oC 1
L) = (E) = 5(5,,,5,, +8,6,) (2.62)
il
-1 ac—.l
R
ikl

The general form of material elasticity tensor for an incompressible, transversely isotropic

hyperelastic material can be obtained as

C=4{W, + 20,1, + W1} +WI®I—-W,, + W, XI®C+C®I)+W,COC-W,L

A al, ol
+(W,, + W, YI®ONON+NONSI) + ¥, + (W, I, + W")(ma_c' aém)

W, (CON®N+NONSC)—F, (C@‘;é Z‘é@cnw NONSN®N

ol, al
+sNEN® 2+ ZLONEN)+ W,s( Lelds 5)}+ch

(2.64)

where L is é fourth order unit tensor and W, = 62W/61a61p(a =12,---;#=12,--) has
been introduced. )

Using Equation (2.27), the spatial version of the second elasticity tensor can be obtained as:
C=4{(W, +2W,I, +W, +W,,1,")BOB - (W,, + W,,], (B®B* + B> ®B) + ,,B*> ® B

2

-WL .+, +W,1[XBOn®n+n®n®B)+W,¢’ :‘;:;C

(WZSI,+WH)(B®¢‘%IE;_ ¢'Zlé®3) W, B*®n®n+n®n®B?)- (2.65)
AT +¢'%®Bz)+WMn®n®n®n+

. Ol ol ol
W (n®n® ¢ 561+¢ a(§‘8>n®n)+W~,,5(q) aé®¢ __)} L
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where

¢'%=I4(n®8-n+n-B®n) (2.66)

To derive the spatial version of the second elasticity tensoi', following relations have been

used:
FyFy P Fp Ay = (Fy Fu1,)®(Fig Fy 1y )= B, ® B, (2.67)
FyF Fy Fy(I®C)y, =(FyF,1,)®(FyF,Cy)=B,®(B,B,) (2.68)
FiFy Py Fy (Lo )y =L (2.69)

(Lo = FyFy FFyL g = (BB + B;'B;})/2 (2.70)

Compressible transversely isotropic hyperelastic model: If a material is slightly
compressible, sometimes called quasi-incompressible, the strain energy function takes the

uncoupled form:
W=Wvol(J)+Wd¢v(I-1aizj4js) (2.11)

The corresponding second Piola-Kirchhoff stress can be written as:

oW,

oW,
S="—"2JC +2J **DEV]—% 2.72
PY: 4 P ] 2.72)
and the Cauchy stress takes the form:
o= My +3dev[*%i] (2.73)
aJ J oC

where the operator dev{] is defined as (Weiss, Maker and Govindjee, 1996):

dew-1=[-1—§(n:1)l @.74)
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Chapter 3

Constitutive Skeletal Muscle Model

3.1 Introduction

Skeletal muscle tissue plays an important role in the human body system and function. It
can generate voluntary forces leading to human body motion and also provide protection to
the upright skeleton. One way of studying the skeletal muscle tissue is through using the
finite element method. With the rapid development of computer capacity, the finite element
method has been used widely in studying the biomechanics of soft tissues and this method

continues to expand across all areas of biomechanics.

Skeletal mﬁscle exhibits very complex mechanical behaviour. It is active, incompressible,
transversely isotropic because of the presence of a single muscle fibre direction, highly
deformable and hnghly non-linear. The most important of all is that skeletal muscle fibres
can be activated through neural stimulation. In this chapter, a three-dimensional (3D) finite
element muscle model is developed to characterise the complex behaviour of the skeletal
muscle tissue. The developed muscle material model is implemented into the finite element
solver LS-DYNA by means of user-defined material (UMAT) subroutines. The
performance of the developed muscle model is evaluated by comparing the finite element
(FE) simulation results with the published experimental studies on the New Zealand white
rabbit tibialis anterior (TA) muscle.
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3.2 Literature reviews on constitutive muscle models

A number of mathematical skeletal muscle models have been developed over the past two
decades. They can be classified into two commonly used skeletal muscle models: Hill-type
and Huxley-type muscle models.

3.2.1 Hill-type muscle models

The first commonly used and phenomenologically based constitutive muscle model is
originated from Hill’s work (1938). The parameters involved in the Hill-type model are
derived from the Fenn and Marsh’s (1935) experiments. Hill’s model is the basis for most
of currently used muscle models and his model is composed of three elements, as depicted
in Figure 3.1:

® The contractile element (CE): This is used to model the active part of the muscle.
It can freely extend when the muscle is non-activated and it is responsible for
force generation within the muscle when activated.

® The series elastic element (SEE): This is a non-linear spring arranged in series
with the contractile element. It allows a rapid change of the muscle states from
inactive to active and provides an energy storing mechanism.

® The parallel element (PE): This is a non-linear spring in parallel with CE and
SEE. 1t is i'esponsible for the passive behaviour of the muscle when stretched. It is

related to the elasticity of the connective tissues.

«— ] —de——L;—p

'SEE
Tf NN\~ T,
SEE T, CE Ty S
PE T
< Ly >

Figure 3.1 Hill's three-element muscle model
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In Hill’s model, the contractile element generates a force with a magnitude that depends on
the deformation velocity, the relative muscle length, and the activation degree over time.
The generated force can be expressed as:

Fg =F xf,(OOx f,0)x f,(D G.1)

where F.

max

is the maximal isometric force; f, is a function of the relative contraction

velocity; f, is a function of the relative muscle length and £, is the activation function.

From figure 3.1, it is clear that the total muscle force F, equals the sum of the force in the
parallel element F,, and that in the contractile element F_,:
Fp=Fpp +Fye 3.2)
The force in the contractile element F. equals that in the series elastic element F:
Fop =Fgy (3.3)

On the other hand, the muscle length L. equals the sum of the length of the contractile

element L. and the length of the series elastic element Lg, .
Lpyg =L+ Ly _ 3.4

Hill’s three-element model has been used in studying the mechanical behaviour of different
muscle tissues (Aqdu and Davy, 1985; Pandy, Zajac, Sim et al., 1990; Winters, 1990; Zajac,
Topp and Stevenson, 1986). However, Hill’s model is only one-dimensional (1D). In order
to investigate the complex three-dimensional geometry and the mechanical behaviour of
skeletal muscle tissue, Hill’s 1D model has been extended into the three-dimensional (3D)
scope. The approach of extension, which has been employed by most researchers, is to add
up the longitudinal stress from the muscle fibres O 4, , stress from the embedding matrix
O ... and stress related to the incompressibility of the muscle o,,.,,,. Thus, the Cauchy

stress 0 produced in 3D muscle can be expressed as:

0=04,+0 i + iy 3.5
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In the 3D Hill-type skeletal muscle model proposed by Kojic, Mijailovic et al. (1998), the
contractile element and the series elastic element played the role of the active muscle fibre,
and the parallel element played the role of the surrounding matrix which was assumed to be
isotropic linear elastic. The incompressibility constraint was not taken into account. Thus
from Equation (3.5), the total stress in their muscle model was expressed as:

0 =0 .(1-¢§)+4- £,(1)-0° (36)

where ¢ was the volume fraction of the muscle fibre; f, was the activation function;
OF was the stress produced in the surrounding matrix; ¢° was the stress produced in the

active muscle fibre which has a non-zero component only in the fibre direction.

Based on Kojic, Mijailovic et al.’s model, Tang, Stojanovic et al. (2005) and Tang, Tsui et
al. (2007) incorporated muscle fatigue into the 3D skeletal muscle model. In their new
model, the force developed in a fatigued muscle was described by a muscle fatigue formula
which was a function of the time #, the activation «, and the stretch A . Stojanovic, Kojic
et al. (2006) extended Kojic, Mijailovic et al.’s work by taking different fibre types into
account. The model consisted of a number of different types of sarcomeres coupled in
parallel with the connective tissue. Each sarcomere was modelled by one non-linear elastic

element which was connected in series with one active contractile element, as shown in

Figure 3.2.
N SE CEn N
G, A
o, _ SEE CE; o
s M +——wWwW\w—{"1} - c
) —
o' SEE CE, c
= AWN—}—
PEE
i y <,

Figure 3.2 Multi-fibre types muscle model (Stojanovic, Kojic, Rosic et al., 2006)
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Martins, Pires et al. (1998) developed a 3D Hill-type skeletal muscle model based on the
concept of a fibre-reinforced composite. This was a modified form of the constitutive
equation proposed by Humphrey and Yin (1987) for cardiac tissue. The strain energy
density per unit volume of the reference configuration was given by:

U'—_UI(I_IC)+Uf(If9§CE)+UJ(J) (3.7

where U, was the strain energy stored in the surrounding matrix; U, was the strain
energy associated with volume change, which were the same as those used in Humphrey
and Yin’s model (1987), U, was the strain energy stored in the muscle fibre, which had

the following form:

Uy (g,€%) = Upg (A + Uge(Ay,£) (338)
where U,, and Ug, were the strain energy stored in the parallel element and the series

elastic element, respectively.

The Cauchy stress can be derived from the total strain energy Equation (3.7) by a standard
routine (Belytschko, Liu and Moran et al.,, 2000). The same as the stress expression in
Equation (3.5), the derived stress can also be divided into three parts: the first from the
muscle fibre, the second from the matrix and the third due to the volume change.

Martins, Pires et al.’s (1998) 3D hyperelastic muscle model has been widely adopted and
extended by other authors. Blemker, Pinsky et al. (2005) introduced two more strain
invariants, namely B; and B, (Criscione, Douglas and Hunger, 2001), into the model to
account for the shearing response along the muscle fibres and that transverse to the fibres.
The biceps brachii was studied using this model and the analysis revealed that the variation
in fascicle length within the muscle and the curvature of the fascicles were the primary
factors contributing to the non-uniform strains. Martins, Pato et al. (2006) recently updated
their previous model (1998) by multiplicative decomposition of the fibre stretch into
contractile stretch and elastic stretch in the series elastic element. The stresses in the
contractile element and the series elastic element can therefore be easily solved. Tang,
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Zhang et al. (2009) extended Martins, Pires et al.’s (1998) model to considering concentric,
eccentric, isometric and isotonic contractions of the skeletal muscle under either
quasi-static or dynamic conditions. The proposed model has been used to simulate the

dynamic response ofa squid tentacle during a strike to catch prey.

In the 3D Hill-type skeletal muscle model proposed by Johansson, Meier et al. (2000), the
Cauchy stress component in the active muscle fibre direction was described as the sum of
an active part produced in the contractile element and a passive part developed in the
parallel element. The series elastic element was not considered in this model. Therefore, it

was mainly appropriate for the dynamic analysis ofthe muscle behaviour.

In the 3D Hill-type muscle model proposed by Hedenstierna, Halldin et al. (2008), the
super-positioned muscle finite element (SMFE), which is the combination of the passive,
non-linear, visco-hyperelastic solid elements with the active Hill-type truss elements
(Figure 3.3), has been first evaluated. An asymmetric model of a rabbit tibialis anterior
muscle was used for the model validation. The model was tested under different strain rates
and in both active and passive states. The analysis showed the SMFE muscle model was
capable of simulating tensile experiments for quasi-static and dynamic loadings (1, 10, 25

s'D), in both passive and active states.

element

Solid element

Figure 3.3 SMFE element (Hedenstierna, Halldin and Brolin 2008)
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3.2.2 Huxley-type muscle models

The second most commonly used constitutive muscle model is based on the biophysical 1D
cross-bridge model proposed by Huxley (1957). Huxley’s model focuses on an ensemble of
myosin heads, which are always referred to as cross-bridges. It is assumed that each
myosin head is capable of binding to an actin binding site and acts independently of other
cross-bridges. It is further assumed that at any given time instant a cross-bridge can only
bond to its nearest actin site. The mechanical model of Huxley’s cross-bridge model is
shown in Figure 3.4, where ‘x’ is the displacement of the myosin head relative to the
equilibrium position. Huxley’s original theory also assumes that a cross-bridge could exist
in two biochemical states: attached and detached. In the attached state, the cross-bridge

generates a force proportional to its displacement x’.

equilibrium position

myosin filament Of%/[ site

actin filament

Figure 3.4 Schematic diagram ofa cross-bridge (Huxley, 2000)

Huxley developed a mathematical description of his two-state cross-bridge theory. He used
a distribution function n(x,t) to represent the fraction of attached cross-bridges with
displacement ‘x’at time ‘t’. Furthermore, he introduced a scaling factor ‘h’, which was the
maximum displacement ofthe myosin head where the attachment can occur. Then the rate

of change of'this distribution function can be expressed by a partial differential equation:

5 0« o5 =/(0OP - 0]-*«X §0 (3.9)
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where £ =x/h; u(t) is the scaled shortening velocity of a half sarcomere; f(£) and
g(£5) represent the attachment rate function and the detachment rate function respectively.

A number of researchers have extended Huxley’s work. Zahalak and Ma (1990) broadened
the basic Huxley model to taking account of the role of calcium in activating the contractile
machinery. They employed the consensus of opinion among biophysicists and biochemists
concerning how calcium induces muscular contraction: (1) an action potential depolarises
the sarcoplasmic reticulum (SR), causing a transient increase in the permeability of the SR
to Ca™" ions; (2) the calcium ions diffuse rapidly out of the SR, which is driven by a
calcium concentration difference between the interior and exterior of the SR; (3) the
calcium ions bind to specific receptor sites on troponin molecules located at intervals along
the thin actin filaments; (4) the troponin molecules with bound calcium, release an
inhibition which they impose in their calcium-free state on actin sites, permits myosin to
bond to actin and generates force and motion. This activation process is illustrated in

Figure 3.5.

Myosin . 7727
i ; ’ Myofibrillar
L P O space
) N O
Actin Troponin

Figure 3.5 Schematic diagram of the activation-contraction coupling (Zahalak and Ma,
1990)

Based on this activation-contraction mechanism, they introduced a parameter ‘r’, which
was referred to as the activation factor and given by:

{TCa,)
[T]+[TCal+[TCa,]

rdca) = (3.10)

where “T” stands for troponin; “Ca’ for the free Ca®" ions; “TCa’ for troponin bound to one

calcium ion and ‘TCa,’ for troponin bound to two calcium ions.
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Incorporating the activation factor ‘r’ into Huxley’s original rate Equation (3.9), a modified
two state Huxley equation can be obtained:

@—u(t)-zz

> Y f-r-lp-nl-g-n (3.11)

where ¢ represents the fraction of participating myosin heads; ‘r’ is the activation factor
given in Equation (3.10).

Huxley’s theory requires a solution for the bond distribution function n(¢£,7). However, for
describing the macroscopic muscle behaviour, only certain moments of the distribution
function are needed. In order to avoid the solution of the partial differential equations,
Zahalak (1981) developed a ‘distributed-moment (DM) approximation’ method, which can
give the direct approximation of these moments. Applying his DM approximation to
Equation (3.11) yields (Zahalak and Ma, 1990):

0,

7 =@-r-B, —r¢19—¢2e‘0'“(t)'Qe—1 (.12)

where ¢ represents the fraction of participating myosin heads; ‘r’ is the activation factor
and Qe is the 6-th normalised moment of the bond distribution function:

Q, = j:f"n(f,t)df (3.13)
and
Bo=[ & f(&)dE (3.14)
Bo = [ £°- f(&)-m&.0)dE (3.15)
b = [ £°-g(&)-n(&,1)de (3.16)

It can be seen that, through Zahalak’s DM method, Huxley’s partial differential equation
has been transformed into a system of ordinary differential equations, which are
computationally much simpler. Furthermore, the three lowest order moments, as described
in Equation (3.13), have direct physical meanings: (, is proportional to the instantaneous

stiffness of the contractile tissue; Q, is proportional to the instantaneous muscle force and
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Q, is proportional to the total elastic energy stored in the cross-bridges.

In applications, Gielen, Oomens et al. (2000) proposed a geometrically and physically
non-linear continuum muscle model which has been used to study the mechanical
behaviour of both passive and active skeletal muscles. In their model, the total stress o in
the muscle tissue was defined as a superposition of the active stresso, and the passive
stress @ ,. The active stress o, was derived from Huxley’s cross-bridge theory and had
the following form.

o, ()=0,A] £-n¢.1)-dE=a,A-0,(?) (3.17)

where o, was a material constant, which represented the maximal isometric stress with
the maximum number of cross-bridges attached and 4 was the extension ratio in the fibre

direction.

The analysis of the rat TA muscle behaviour has been performed with Gielen, Oomens et
al.’s model for the aim of future validation work. As far as we know, Gielen, Oomens et
al’s continuum skeletal muscle model is the first model that incorporates Huxley’s

contraction model for the active behaviour of the muscle.

Based on Giélen, Oomens et al.’s work, Oomens, Maenhout et al. (2003) used the same
continuum musclé model for describing the mechanical behaviour of rat TA muscle. The
results were compared with the experimentally determined strains at the surface of the
muscle. Qualitatively there was good agreement between the measured and the calculated

strains.

In summary, Hill-type and Huxley-type models are both phenomenological models, but are
based at different architectural levels. Hill-type models account for the force-velocity and
force-length relationship of the muscle, thus are based at the macroscopic level.
Huxley-type models describe the muscle behaviour at the molecular level. They are mainly
used to understand the properties of the microscopic contractile element.
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3.2.3 Other types of muscle models

Besides Hill-type and Huxley-type muscle models, there are various other kinds of muscle
models. For example, in order to gain insight into the complex biomechanical phenomena
related to ékeletal muscle modelling, Bl and Reese (2008) formulated a novel
micromechanically-based skeletal muscle model which split the Helmholtz free energy into
passive and active parts. The passive part was represented by an assembly of tetrahedral
and non-linear truss elements, and the active behaviour was implemented into 3D truss
elements. The stimulus rate dependence on the muscle contraction, the influence of muscle
fibre type and fibre recruitment on the muscle activation were incorporated into the 3D
model.

Van Loocke, Lyons et al. (2006) adapted Li, Guo et al.’s (2001) strain dependent Young’s
moduli model to represent the compressive behaviour of skeletal muscle tissue. The model
gave a good prediction for the muscle behaviour when it was compressed at various angles
from the fibre direction. Van Loocke, Lyons et al. (2008) extended their previous model
with Prony series to represent the skeletal muscle viscoelastic behaviour. This model
successfully predicted the muscle stress-relaxation behaviour at 60° from the fibre direction
and the muscle behaviour at compression rates of 0.05% s and 5% s™.

3.2.4 Reviews on muscle experimental data

It is worthy to review the experimental data available for studying 3D muscle models. The
published data can be divided into two groups according to the experiment types: data from
compression tests and data from tensile tests.

There has been some published experimental data on the compressive behaviour of passive
skeletal muscle. Grieve and Armstrong (1988) performed in vitro unconfined compression
tests on aged porcine samples in their transverse direction. Zhang, Mak et al. (1999)
developed an ultrasound indentation system with a pen-size hand-held probe and used it to

carry out manual indentation tests on the in vivo human forearm. Bosboom, Thomassen et
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al. (2001) performed indentation experiments on an excised muscle of a rat to determine
the passive transverse mechanical properties of skeletal muscle. Later on, Bosboom,
Hesselink et al. (2001) performed the compression tests on four rat TA muscles in vivo and
employed an incompressible viscoelastic Ogden model to describe the passive muscle
behaviour. The results showed that the measured behaviour can be accurately simulated
with the Ogden model. Van Loocke, Lyons et al. (2006) conducted uniaxial, unconstrained
compression experiments on both aged and fresh animal muscle samples oriented at
various angles from the fibre direction. They compared their experimental results with
other available published data, as shown in Figure 3.6, which serves as a short summary of
the published data from the compressive type of experiments. Besides, Palevski, Glaich et
al. (2006) performed rapid indentation tests on fresh porcine gluteus muscle in vitro to
measure the transient shear modulus of the tissue in the transverse direction. In 2008, Van
Loocke, Lyons et al. complemented their previous study by investigating the
time-dependent properties of passive skeletal muscle. They performed uniaxial ramp and
hold compression tests in vitro on fresh porcine skeletal muscle at various rates and
orientations of'the tissue fibres. The results showed that the viscoelastic component plays a

significant role in muscle mechanical properties
100

compression tension

CL

¢ -100-

— Hawkins & Bey (1997)
W -300- —Van Loocke aged (2006)

—Zheng etal. (1999)

— Bosboom in vitro (2001)

—Bosboom in vivo (2001)
-400

-0.4 0.2 0.0 0.2 0.4
Engineering strain

Figure 3.6 Published muscle tissue data from compression tests (VanLoocke,Lyons and

Simms, 2006)
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A number of authors have conducted tensile tests on animal muscles to study skeletal
muscle behaviour. Muhl (1982) determined the active length-tension relation for the left
digastric muscle of seven New Zealand White rabbits. Gareis, Solomonow et al. (1992)
determined experimentally the muscle length-force relations by using nine different skeletal
muscles in the hindlimb of the cat. Hawkins and Bey (1994) developed a comprehensive
approach for studying the mechanics of partially intact muscle-tendon and this approach
was applied to study a rat tibialis anterior muscle. They (1997) also investigated the
force-length properties of the rat TA muscle and tendon by determining the lengths
occurred in the rat body during the ankle joint motion ranging from 20° to 90° of flexion.
Davis, Kaufman et al. (2003) performed length-tension experiments on the isolated TA of
the New Zealand White rabbit to quantify the relationship between the intramuscular
pressure and muscle force during isometric contraction. Van Loocke (2007) summarised the
test data obtained by these authors in his thesis, as shown in Figure 3.7. In addition, Myers,
Wooley et al. (1998) measured the passive and stimulated engineering stress-strain
mechanical properties of skeletal muscle at the mid-belly of the rabbit tibialis anterior.
They also measured the effect of'the strain rate on these responses and obtained good data
for active muscle behaviour, which will be used in this study for validating the developed

constitutive muscle model.

2.5
—  Mulh Rabbit
Woittiez Rat
Gareis Cat
A — Hawkins 1994 Rat
15 — Hawkins 1997 Rat
Davis Rabbit

0.5

0.75 1.25 15
Wm0

Figure 3.7 Published muscle tissue data from tensile tests (Van Loocke, 2007)
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3.3 The constitutive skeletal muscle model

The skeletal muscle model developed in this chapter is based on the Hill-type model. The
constitutive relation is derived through the total strain energy and the formulations are within
the framework of non-linear solid mechanics (Truesdell and Noll, 2004).

The muscle is regarded as a fibre-reinforced composite comprising a ground substance
matrix and the muscle fibres (Figure 3.8). The fibres are assumed to be distributed in parallel
and have a single direction.

Muscle fibres 4‘:{{ ‘ ’

Matrix >

¢
L}
0
0
=

Figure 3.8 Diagram illustration of a parallel-fibred muscle
The total strain energy in the muscle is given by:
U=U,(5)+U,(Gy,2)+U, ) (3.18)

where

U, (78)= clexplp(Te - 3)|-1} (3.19)

is the strain energy‘ stored in the isotropic matrix;

- 7
UG A)= | [0 (4, 4) + 05 (DHA (3.20)

is the strain energy stored in the muscle fibres and
U,(J)= -;—(J -1y (3.21)

is the strain energy associated with the volume change. In these definitions, 7 is the first
invariant of the right Cauchy-Green strain tensor with the volume change eliminated; b and
c are material parameters; If is the fibre stretch ratio with the volume change eliminated;

A, is the stretch ratio in SEE; A is the fibre stretch ratio; o g;(4,4,) is the stress
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produced in SEE; o0,.(4) is the stress produced in PE; J is the Jacobian of the

deformation gradient; and D is the compressibility constant.

3.3.1 Stress produced in the series elastic element

Based on the experiments of Pinto and Fung (1973) on the papillary muscle of a rabbit heart,
a recurrence relation is proposed to express the stress produced in SEE (Fung, 1981):

“86pp = (0 + B)- B (22)
with
‘O g = Ple” P —1) (3.23)

where a , f are material constants

Equation (3.22) contains one unknown, namely AA,, and this can be solved using the
method proposed by Kojic, Mijailovic et al. (1998). The idea is to set up a non-linear
equation with the unknown AA, by utilizing the stresses relationship between CE and SEE,

i.e. the stress in CE is equal to the stress in SEE at any moment.

0 =" O g (3.29)

3.3.2 Stress produced in the contractile element
The stress produced inCEis given by:

"Gy =0, [t +AD- f(A,) £, (A,) (3.25)

where o, is the maximal isometric stress; f,(f+Af) is the muscle activation function;
fi (If) is the muscle force-stretch function; and £,(4,)is the muscle force-velocity

function.

(a) The activation function
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The activation behaviour of the muscle is quite complex and still under research. In the
model developed in this thesis, an exponential function, which has also been used by Meier
and Blickhan (2000), is adopted:
n, ‘ if t<t,
L©O={m +(,—n)-ht.1,), if t,<t<t,  (3.26)

m+(n, —m)-h(,1)— [, —m)-h (6, 0))- A1), i E>1
with
h(t,.1,) = {1 exp[-S- ¢, ~1,)]} (3.27)
where n; is the activation level before and after the activation; n,is the activation level
during the activation; # is the activation time; #; is the deactivation time; and S is the
exponential factor. When modelling single muscle fibres, the magnitude of parameter S is
related to the rate of the chemical processes. For modelling large muscles, S represents the

time dependent recruitment of different motor units.

Figure 3.9 shows the activation function curves for #, =0.1s, t, =0.4s, n, =0.0 and
n, =1.0, where the solid curve is with § = 50 and the dotted curve is with § = 100. The

diagram shows that the bigger the value of S, the faster the activation process.
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Figure 3.9 Activation function curve

(b) The force-stretch function

The force developed in a muscle depends on its sarcomere length. In order to find the
relationship between the isometric tension and the sarcomere length, Gordon, Huxley et al.
(1966) conducted a series of experiments on a single fibre of frog skeletal muscle and found
a piecewise linear isometric tension versus length dependency, as shown in Figure 3.10,
where the slack sarcomere length is 2.1 zon. By definition, the slack sarcomere length is the
one when the extension ratio is 1.0. It can be seen from the Figure 3.10 that when the
sarcomere length is too small or too large, the maximum tension will drop to zero. When the

sarcomere length falls in the range of 2.0 — 2.2 1, the tension is maximal.
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Figure 3.10 Isometric tension versus length curve (Gordon, Huxley and Julian, 1966)

In the muscle model developed in this thesis, a smooth quadratic function proposed by
Blemker, Pinsky and Delp (2005) is used to approximate Gordon’s experimental curve. This
quadratic function has also been used by Bol and Reese (2008) and it has the following form:

0, if 'A,12,,<04
| WA/ Ay —0.4°, if 04<'Z, /2, <06
[1(2)={1-40-"2,/4,,)", if 06<'Z, /4, <14 (3.28)
- WAl Ay —1.6), if 14<'A,[A,,<16

0, if ‘2,124,216

where 4,, is the optimal fibre stretch.

The smooth force against stretch function for A,,= 1.05 is plotted in Figure 3.11.
Compared to the piecewise linear function used by Tang, Zhang et al. (2009), this smooth

function has the big advantage that it reduces the parameter inputs from five to one.
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Figure 3.11 Normalised force versus extension ratio curve

(c) The force-velocity function

It is well-known that the force generated in the muscle during contraction is highly
dependent on its velocity of contraction (Hill, 1970). In 1938, Hill proposed a hyperbolic
relation between the muscle force and the velocity, which is still used by scientists today

(Hill, 1938), see Appendix C for more detail.

However, Hill’s force-velocity equation is restricted to the concentric and isometric
contraction of the muscle. The tension-velocity relation for muscle lengthening was first
characterised in the form of an equation by Otten (1987). Later, this hyperbolic equation
was used by Van Leeuwen (1991).

The force-velocity function, which is incorporated into the muscle model developed here,

is derived from the following equation:
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i "
i+M M 7°

d-(d -1) -
I-kkek, k, 7 %°

if 470
(3.29)

where kc and ke are shape parameters of the hyperbolic curves, which control the curvature
of the curve; d is the offset of the eccentric function; Am is the stretch rate in the CE and

/T is the minimum stretch rate.

The effect of Acon the force-velocity function is shown in Figure 3.12 and the effect of ke
on the eccentric contraction part of the force-velocity function is presented in Figure 3.13.
The two diagrams indicate that: during eccentric contraction, the force increases as kcand ke

increase; however, the force decreases as kcincreases during concentric contraction.

0.8
0.6
0.4

0.2

1 -0.5 0 0.5 1
Normalised stretch rate,

Figure 3.12 Effect ofkcon the normalised force versus velocity curve
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Figure 3.13 Effect ofkeon the normalised force versus velocity curve

By using Equations (3.22), (3.24) and (3.25), the following non-linear equation for solving

the stress increment in SEE, can be obtained:
f(M s)=(a2+a34As)ead* --a4M s- a 5€.30)

where, in case of muscle shortening

ke a, (3.31)

It A,
k. (3.32)

AT At
G - P ke-"fx{Af) f t{t+ A (3.33)
AT -At
T\ * o= tfx"~/)'M +At)-P-k
a5=Ia’+l}A(’\/) ’]]:l;t+A0 fx /) A”mAt) .................. ‘ (3.34)
and in case of muscle lengthening

(3.35)
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a, = (o, + )tk (3.36)

A At

Bk, -k 1 (Ay) f,(t+A)-(d-E, -k, +d-n,

) L (337
AT . At
a, =ﬁ+‘fl(i})'f,(l+A1)— fi (’q‘f)’f;(t"‘m)'gl;d;td‘k. -k,)-p-k, -k, a, (3.38)
with
a, =(1+k)*>2,-"4, kA, (3.39)

The derivation of «, is explained in Appendix D. Once AA, is solved, the stress in SEE

can be obtained by using Equation (3.22).

3.3.3 Stress produced in the parallel element

When a muscle is not activated, the forces in CE and SEE are zero. The force in PE is
positive when a muscle is stretched and null when it is compressed. Based on the

experimental test (Chen and Zeltzer, 1992), the stress in PE can be expressed as:

HNGPE = Uof PE (Hmzf) (3-40)
with
AT 2 At 7
1 (sz)={A( 2, -D%if A, >1 (3.41)
0, otherwise

where 4 is a material parameter.

Figure 3.14 shows an example of the normalised axial force against the muscle fibre stretch
ratio with A = 4.0. It should be noted that since the muscle fibre cannot resist any axially
compressive load, the force developed in the muscle fibre is null when the stretch ratio is
less than 1.0.
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Figure 3.14 Normalised force in PE versus stretch ratio curve

With the stress expressions of Equations (3.22) and (3.40), the strain energy produced in
the muscle fibres can now be obtained from Equation (3.20). Then the strain energy in the
whole composite can be solved by using Equation (3.18). The Cauchy stress tensor can be
derived from the strain energy following the procedure stated in Chapter 2.3.

3.4 LS-DYNA implementation of the skeletal muscle

material model

The software LS-DYNA (LSTC, Livermore, 2007) gives the possibility of defining up to
10 Fortran-routines. Thus a user can implement his or her own material model into the
software through the use of a user-defined material (UMAT) subroutine. There are two
formats of user routines: scalar or vector. In the scalar case, the user routine is sequentially
called for each element. In the vector case, the routine is called with a block of elements
and the size of this block depends on the type of machine. The scalar routines are called
umat41, umat42, ..., umat50 and the vector routines are called umat4lv, umat42y, ... ,
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umat50v. The material subroutine used in this thesis is scalar.

The structure of the skeletal muscle material subroutine developed in this thesis is shown in
Figure 3.15. The LS-DYNA code calculates the strain increments for a time step and passes
them to the UMAT subroutine at the beginning of each time step. The material constants
are read from the LS-DYNA input file by the subroutine. The history variables can be used
to store the accumulated variables. By using the history variables, the subroutine is able to
calculate the stresses at the end of the time step by using an incremental form of the
constitutive equations. The skeletal muscle material subroutine code developed in this

thesis is given in Appendix E.
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® Read in material constant values from input file
® Pass the deformation gradient, etc. from the main code
® Read in the history variable values from the previous time step

First iteration?

Define initial values:
°A,="4,="4, =1.0

o, =0,

@ Calculate the fibre stretch:
® Call the force-stretch function subroutine
® (all the activation function subroutine

:

Determine AA, by solving the non-linear equation:

f(Ms) = (az +a3Mskm -, AL —a,=0

v

Update the stretch in SEE and CE

|

Calculate Uy, Ug, U;

;

® - Update the history variables for the next time step

® Calculate the Cauchy stress

Termination
time reached ?

Figure 3.15 Flowchart for the implementation of the user defined material in LS-DYNA
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The user-defined material routine is invoked by LS-DYNA user material interface through
a LSDYNA Keyword input deck which uses the keyword
‘*MAT _USER_DEFINED MATERIAL MODELS’. The input parameter cards associated
with this keyword, which are needed for the skeletal muscle routine developed in this thesis,
are listed from Table 3.1 to Table 3.6 and the variables are eﬁplained in Table 3.7.

Eight history variables are defined in the developed skeletal muscle model. The first four of
them store the stress in the matrix, the stress in PE, the stress in SE and the stress due to the
volume change, respectively. These variables are stored for the purpose of validation and
verification. The last four of them are for calculating the Cauchy Stresses, updated at the
end of the routine and passed to the next time step iteration. All user-defined material
models require a bulk modulus and a shear modulus for transmitting boundaries, contact
interfaces, rigid body constraints and time step calculations. The bulk modulus K and shear
modulus G used in the developed skeletal muscle model are given as:

_E
T 3(1-2v) (342)
_E

G= 209 (3.43)

where E and v are the Young’s modulus and Poisson’s ratio of the skeletal muscle,
respectively. Based on the measurements of Duck (1990), a stiffness value of E = 6.2 KPa
is used for Young’s modulus of the muscle at rest. The Poisson’s ratio v is set as 0.499999,
since the skeletal m;xscle tissue is incompressible. Thus, X = 1.03x10°> MPa, G = 2.07 KPa.

An example of the input file for the developed skeletal muscle material routine is given in
Figure 3.16.
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Table 3.1 User defined material model card 1 (LS-DYNA, 2007)

Variable | MID RO MT LMC NHV IORTHO IBULK 1G

Type A8 F I I I I I I

Table 3.2 User defined material model card 2 (LS-DYNA, 2007)

Variable | IVECT IFAIL ITHERM IHYPER IEOS

Type I I I I I

Table 3.3 Define LMC material parameters using 8 parameters per card (a)

Variable P1 P2 P3 P4 P5 P6 P7 P8

Type F F F F F F F F

Table 3.4 Define LMC material parameters using 8 parameters per card (b)

Variable P9 P10 P11 P12 P13 P14 P15 P16

Type F F F F F F F F

Table 3.5 Define LMC material parameters using 8 parameters per card (c)

Variable | P17 P18 P19 P20 P21 P22 P23 P24

Type F F F F F F F F

Table 3.6 Define LMC material parameters using 8 parameters per card (d)

Variable | P25 P26 P27 P28 P29 P30 P31 P32

Type F F F F F F F F
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Table 3.7 Variable description

VARIABLE DESCRIPTION
MID Material identification
RO Mass density, 1060.0 kg/m* for muscle material.
MT User material type (41-50 inclusive).
LMC Length of material constant array.
NHV Number of history variables to be stored.
IORTHO Set to 1 if the material is orthotropic
IBULK Address of bulk modulus in material constants array
IG Address of shear modulus in material constants array
IVECT Vectorisation flag (on = 1)
IFAIL Failure flag (on = 1)
ITHERM Temperature flag (on =1)
IHYPER Deformation gradient flag (on =1 or -1)
IEOS Equation of state (on =1)
P1-P2 Material constants b and ¢ for determining the stress in matrix
P3 Material constant o, the maximal isometric stress
P4 Material constant D, the compressibility constant
P5 Material constant k, the length ratio between SEE and CE
P6, P7 Material constants a and P for determining the stress in SEE
P8 Material constant 4™ , the minimum stretch rate
P9,P10,Pil Material constants k., k. and d for the force-velocity function
P12, P13 Bulk modulus and shear modulus, respectively
P14, P15 Activation time and deactivation time, respectively
P16 Material constant S, the rate of the chemical process
P17 Material constant A for determining the stress in PE
P18 Activation level before and after the activation
P19 Activation level during the activation
P20 The optimal fibre stretch
P21-P24 Reserved for future development
P25,P26,P27 Coordinates of muscle origin point P
P28,P29,P30 Coordinates of muscle insertion point Q
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*MAT USER _DEFINED MATERIAL MODELS
17 10600 43 32 8 0 12 13
0 0.0 0 1 0
23.46 3790 16e5 10e9 03 100 10e5 -17.0
5.0 5.0 1.8 1.033¢9 2073 00 049 50.0
4.0 0.0 1.0 105 00 00 00 00
0.0 00 0.0 0.0 00 10 00 00

Figure 3.16 Example of skeletal muscle material definition in LS-DYNA

In order to create the LS-DYNA executable file used for the developed skeletal muscle
model, the following is needed:

Fortran user material subroutine

Intel@ Fortran 10.1 Compiler

Makefile (Appendix F)

The Fortran file dyn21.f

Object code files

The last three items are supplied by LS-DYNA distributor and they will need the
specifications for the operating system (OS) to be used. The systems used in this thesis are
described in Table 3.8.
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Table 3.8 System specifications
Computer Type Personal computer Merlin cluster
Computer OS Window XP V2002 SP2 RHEL 5

Processor Intel(R) Core(TM) 2 CPU 6320 | 2xXeon E5472 3.0 GHz,
@1.86GHz, 1.97 GB of RAM 1600FSB, 16GB of RAM

Compiler Intel@ Fortran Compiler 10.1 | Intel@ Fortran Compiler 10.1

for windowsXP for Linux
Pre-processor Oasys Primer 9.3 Oasys Primer 9.3
LS-DYNA version LS-DYNA 971R3 LS-DYNA 971R3
Post-processor Oasys D3plot 9.3 Oasys D3plot 9.3

In the file dyn21.f, all the available subroutines for user material routines can be found.
There are two ways to link the user routine to the compilation, either adding the code in the
dyn21.f file or commenting out a call in the dyn21.f and placing the user routine in a
separate file. When having done so and having the Makefile and the object code files in the
same directory, the user can execute the compilation and link the files by typing ‘nmake’ on

a command line. Now a new executable file should be generated.

In this thesis, two versions of executable files are generated: SMP and MPP. The SMP
version of executable file is used in the personal computer and the MPP version, which
enables the user to execute one LS-DYNA simulation on multiple processors, is used in the

cluster — Merlin. :

3.5 Validations and verifications of the developed skeletal

muscle model

The muscle model described in Section 3.3 is active, quasi-incompressible, fibre-reinforced
and hyperelastic. This model was implemented into LS-DYNA by means of user-defined
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material (UMAT) subroutines. There are 14 material parameters in this muscle model, as
listed in Table 3.9.

Table 3.9 Material parameters
Stressin | Stress | Stress Stress in CE Compressibility
the matrix | in SEE | inPE — constant
£ ® JACS) i)
b cla|B|A|o| S |k |k|d]|i™ Ay k D

Parameters b and c are used to characterise the stress produced in the isotropic matrix and
they first appeared in an exponential form expression proposed by Humphrey and Yin
(1987). In their work, the values of 4 and ¢ were determined in a least-squared sense from
the experimental data. However, it was pointed out that the best-fit material parameters
varied with the experimental protocol. In this thesis, the data set b =23.46 and c = 379.0 Pa
is chosen, as it has also been used in Martins et al.’s study (2006, 2007).

To determine the stress in the SEE, Pinto and Fung (1973) performed experiments on the
papillary muscle of a rabbit heart and it was found that the derivative of stress with respect
to strain is a linearly increasing function of the stress. From their experimental work, it is
found that @ = 10.0 and 8 = 1.0x10° Pa.

Chen and Zelter (1992) performed the tension-length experiment on frog muscle to
measure the force for the passive muscle. To express the experimental tension-length
curve, they subsequently proposed a quadratic function, as shown in Equation (3.41),
where the parameter 4 was set to 4.0 to best fit the experimental curve. With regard to the

maximum isometric stress g,, it is reported that o, ranges from 0.16 MPa to 1.0 MPa

(Zajac, 1989).

There is only one parameter S used to define the muscle activation function. Parameter S is
an exponential factor. When modelling single muscle fibres, the magnitude of S is related
to the rate of the chemical processes and when modelling large muscle compartments, S
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represents the time-dependent recruitment of different motor units. In this thesis, S is set as
50.0 to mimic the muscle activation process (Meier and Blickhan, 2000).

Four parameters k., k., d and ):,,","'" are used to describe the muscle force-velocity
relationship. It is reported that the value of k. for slow muscle fibres is 5.88 and its value
for fast muscle fibres is 4.0 (Close, 1964; Otten, 1987). The value of k. varies in the
literature. In Van Leeuwen’s work (Van Leeuwen, 1991), it was chosen as 7.56. In B5l and
Reese’s work (Bol and Reese, 2008), it was 5 and in Tang et al.’s work (Tang, Zhang and
Tsui, 2009), it was set to 3.14 for frog gastrocenemius muscle and 7.56 for squid tentacle.
The dimensionless constant d is the offset of the function due to the eccentric movement. It
is seen from Equation (3.29) that the maximum eccentric stress at time f+Af is
dominated by the parameter d. The ultimate tension that a muscle can sustain is limited
from 1.16, to 1.80, (Zajac, 1989). Therefore, the value range for dis from 1.1 to 1.8. It
is reported that the minimum stretch rate 4™ is -17 s™, although this cannot be reached
due to the inertia of muscle (Meier and Blickhan, 2000). In this thesis, the muscle inertia is

not taken into account. Therefore, A™" is chosen as-17 5.

In the developed muscle model, the muscle force-stretch relationship is characterised by
one parameter, namely Aoy In this thesis, the value of i, is set as 1.05 in order to fit
Gordon’s isbmetric tension-length curve obtained from the experiments on a single fibre of
frog skeletal .musclle', (Gordon, Huxley and Julian, 1966). Parameter & is the ratio of the
length of the contractile element to that of the series elastic element and is always assumed
to be 0.3 (Fung, 1981; Kojic, Mijailovic and Zdravkovic, 1998).

Parameter D is a compressibility constant and it can be best understood as a penalty
parameter which is used to penalise the volume change. Therefore, the value of D is chosen

on the condition that the object volume is preserved during the deformation.

From the above analysis, it is seen that the parameters b, ¢, a, # and A have been
determined by best fitting with the corresponding experimental data. Parameters o, S,
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A™ and Ao have their physical meanings. Parameters ., k, and d are for characterising
the muscle force-velocity curves. The analysis also shows that parameters o, k., k. and d
have their own value ranges. In this thesis, the investigations are performed to test if the
developed muscle constitutive model can predict some experimental data by tuning the
parameters within their value ranges. To do so, the experimental data from the New
Zealand white rabbit hind leg muscle tibialis anterior (Davis, Kaufman and Lieber, 2003;
Myers, Wooley, Slotter et al., 1998) are used. Passive and activated elongation simulations
are performed and the simulation results are compared with the experimental data. The
values of the parameters o,, D, k., k. and d were tuned to make the numerical results fit
with the experimental data. Finally, a good set of parameter values were found, as listed in
Table 3.10.

Table 3.10 Material parameters
Description Parameter Value Source
b 23.46 Humphr d Yi
. . phrey and Yin
Stress in Matrix ¢ (N/m?) 379.0 (1987)
a 10 .
Stress in SEE Pinto and Fung (1973)
essin § B (N/m?) 1.03
A 4.0 Chen and Zelter (1992)
Stress in PE :
o, (N/m?) 7.0e5 Zajac (1989)
N Meier and Blickhan
t ! 50
AU NG (2000)
k. 5 Close (1964)
. ke 3 Bol and Reese (2008)
tress : Tang et al. (2009)
in CE jjmin -17
i (If) /Iop: 1.05 Gordon (1966)
k 03 Fung (1981)
Compressibility D (m¥ N) 1.0e-9
constant
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Aother two tests, isometric contraction and isometric contraction followed by concentric
contraction, are performed for the purpose of model verification, even though no test data is

available.

A simple muscle model shown in Figure 3.17 is used for the validations and verifications.
The length of the muscle is 5.0 cm. The diameter is 0.9 cm for the smallest cross section
and 1.75 cm for the largest cross section. The initial direction of the parallel distributed

fibre is chosen to be along the Z direction.

Y

« 5.0cm >

Figure 3.17 Finite element mesh ofthe muscle

3.5.1 Passive elongation

In the passive elongation test, one end of the muscle was fully fixed and the other end of the
muscle was pulled quasi-statically at a controlled velocity of 5.0 mm/s from its rest length,
while the muscle was not activated. The engineering stress versus strain relationship was
obtained from the simulation results and plotted in Figure 3.18, with the available
experimental results included for comparison. Figure 3.18 shows a reasonably good

agreement between the experimental data and the passive elongation simulation results.
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— FE simulation
— Experiment data Davis (2003)
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Slg>
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Figure 3.18 Engineering stress versus strain curves for passive elongation

3.5.2 Activated elongation

The activated elongation simulation is divided into two stages. In the first stage, the muscle
was held constant in length while being stimulated for 0.5 s, at the end of which the muscle
reached full activation. In the second stage, while one end ofthe muscle was still fully fixed,
the other end of the muscle was released and pulled quasi-statically at a controlled velocity
of 5.0 mm/s. In this stage, the full activation was maintained. The stress response predicted
by the developed model is in accordance with the experimental data up to 15% engineering

strain (Figure 3.19).
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10.
— FE simulation
— Experiment data Myers (1998)
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Figure 3.19 Engineering stress versus strain curves for activated elongation

3.5.3 Isometric contraction

In this example, the muscle was subjected to an isometric contraction, thus its two ends were
fully fixed during the simulation. A neural excitation with the amplitude of 1.0 was applied
at 0.1 s and kept constant for 0.3 s, after which the neural excitation was gradually dropped
to zero. Thus, the parameters in the activation function are set as: rj= 0.0; n2= 1.0; to= 0.1;

ti = 0.4. The activation curve is shown in Figure 3.20.
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Figure 3.20 Activation curve for the isometric contraction simulation

The Cauchy stress components in the z axis direction have the following relation:

°33 = °CE33 + &VOL32 "+"=33 + & PE33 (3.44)

where a 3 isthe Z direction Cauchy stress component; <KE¥B is the component produced
in CE; G MIZB is the hydrostatic stress component; o I3 is the component produced in the

matrix; and <JHB is the component produced in PE .

The five stress components versus time at a node located in the middle part of the muscle
are plotted in Figure 3.21. Since the length of the muscle is held constant during the
simulation, the stresses produced in the parallel element and the isotropic substance matrix
are zero, as expected. The variation of the other three stresses with time reflects the
evolution ofthe activation function, i.e. they have the same shape as the activation function.

Those theoretical predictions are verified by the numerical results shown in Figure 3.21.
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Figure 3.21 Z-direction stress verse time curves at a node in the centre of muscle for the
isometric contraction simulation

3.5.4 Isometric contraction followed by concentric contraction

This test is divided into two stages. In the first stage, the muscle was subjected to an
isometric contraction. Its two ends were fixed and the muscle was stimulated until the
tetanised state was reached. The stimulus was kept for 0.4 s in this example. In the second
stage, one end ofthe muscle was released and the muscle was contracting quasi-statically at

a controlled velocity of 5.0 mm/s, while the full activation was maintained.

The four stress components from a node located in the middle part of the muscle versus
time are plotted, as shown in Figure 3.22. From time 0.0 s to 0.4 s, the muscle was
contracting isometrically and from 0.4 s to 2.4 s, the muscle was contracting concentrically
and quasi-statically. Since in reality the muscle fibre cannot resist a compressive force
along the fibre, the stress in the parallel element is zero in this simulation. The total length
of the muscle does not change during the isometric stage, thus the stress produced in the
isometric matrix is zero. In the concentric contraction stage, the matrix is producing a
resistant force. Thus the stress in the matrix is negative during concentric contraction.

These theoretical predictions are verified by the numerical results (Figure 3.22).
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Figure 3.22 Stress components versus time curves

Furthermore, the variation of the stress in the contractile element during the controlled
concentric contraction stage is discussed. The stress in CE is defined in Equation (3.25),

and given once more as below:

AV, =<10./,(/ + ( 3 . 4 5 )

During the concentric contraction, the activation function f#(f+ At) is a constant, since
the muscle was kept in a tetanised state. The muscle was contracting at a constant velocity,
thus the force-velocity function / v(Am) did not change in this stage. Therefore, the stress
in CE depends on the force-stretch functionfx(Xt). In this simulation, the force against
extension ratio curve as shown in Figure 3.23 was input into the model. The variation ofthe
normalised stress produced in CE against the extension ratio (Figure 3.24) reflects the

relationship between the input force and extension ratio, thus verifies the stress expression

in CE.
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Figure 3.23 Normalised force versus extension ratio curve (input)
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Figure 3.24 Normalised stress in CE versus extension ratio curve (output)
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3.6 Parametric studies of the parameters

Given that some of the input parameters are effectively guessed within their values ranges,
the sensitivity of these parameters needs investigating. In this thesis, the sensitivity tests of
D, o,, k., k., and d are performed, as their values were tuned during the fitting process. In
these tests, while the value of one parameter is varied, the values of the remaining 13
parameters are taken from Table 3.10. Since parameter k. and d are used in the
characterisation of muscle active stress, the sensitivities of k. and d are performed in the
activated elongation simulation. The results from the sensitivity tests (Figures 3.25 and
3.26) show that the engineering stress increases with the increase of &,, k. and 4 and
decreases with the increase of D. It is seen from Figure 3.25 (top) that parameter D has a
considerable influence on the total engineering stress and so its value should be carefully
chosen. In the thesis, the value of D is set based on the conditions that the muscle volume
has been preserved and the resulting stress-strain curves fit closely to the corresponding
experimental curve. Parameter o, has also a considerable influence and it is seen that the
relative difference between the engineering stresses at the maximal and minimal o, is up
to 60.7% at strain 0.2. Therefore, it is crucial to choose the right value for o, in the
numerical s_imulations. Since the value variation of o, depends on the muscle type, it is
hoped that the value of o, can be experimentally determined for individual muscle in the
future. It is séen from Figure 3.26 (top) that parameters . has little influence on the muscle
stress. Since parameter k. has similar effects on the muscle force-velocity curves as k.
(Figures 3.12 and 3.13), the sensitivity of k. is similar to that of k.. Therefore, the
sensitivity result of &, is not included here. It can be seen from Figure 3.26 that parameter d
has a bigger influence than parameter %, and %..
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Figure 3.25 Sensitivities of parameters D and 00 in the passive elongation simulation.
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Figure 3.26 Sensitivities of parameters kc and d in the activated elongation simulation
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3.7 Summary

In this chapter, a three-dimensional (3D) Hill-type skeletal muscle model has been developed
to characterise the complex mechanical behaviour of skeletal muscle, which is active,
quasi-incompressible, fibre-reinforced and hyperelastic. This model is derived based on the
concept of fibre-reinforced composite, where the muscle fibre is simulated using Hill’s
three-element model and the surround matrix is assumed to be an isotropic material. The
developed constitutive equations have been implemented into the non-linear finite element
analysis programme, LS-DYNA by means of user defined material (UMAT) subroutines. A
number of tests have been performed to demonstrate the ability of the model to simulate
various response of skeletal muscle. Myers, Wooley et al.’s (1998) and Davis, Kaufman et
al.’s (2003) experimental data have been used to validate the model. The developed model
has been shown to be able to capture both the passive and active muscle behaviour during

both the shortening and lengthening movements.

However, the development of a realistic skeletal muscle model based on the finite element
method is still in its early stages. Further studies should look at (i) integrating the viscous
effects into the muscle model, as the skeletal muscle tissue is rate-sensitivity and strain
history dependence (Myers, Wooley, Slotter et al., 1998); (ii) developing multi-scale finite
element model to account for the typical micro-structure of the muscle; and (i)

incorporating long-term tissue phenomena like ageing and tissue growth in the model.
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Chapter 4

Three-Dimensional Finite Element
Facial Model and Facial Movement
Simulation

4.1 Introduction

This chapter begins with a review of various facial models developed for the simulations of
facial animation and facial surgery, followed by a detailed introduction to the procedure of
constructing the three-dimensional (3D) finite element facial model. The construction work
involves the usage of patient specific Cone Beam Computerised Tomography (CBCT) scan
data of the facial bpnes and facial surface together with the adjusted generic facial muscles
which are taken from a standardised forensic database in the School of Life Sciences,
University of Dundee The simulation of patient specific cranio-facial surgery is performed
and subsequently validated with the patient’s post-surgical CBCT and surface scanning
data. Finally, a muscle-controlled facial movement simulation method is proposed. In this
method, the facial movement is created by activating the responsible muscles and the
muscle activation-contraction process is modelled by the developed muscle material model
which is described in Chapter 3. The facial movements, including two facial expressions
(smile and disgust) and the mouth opening process, are simulated by using the developed

finite element facial model.
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4.2 Overview of various facial simulation models

This section gives an overview of various facial simulation models. Special attention is

placed on the simulations of facial surgery and facial movement.

4.2.1 Geometric models

The first facial models were geometrically based and aimed just at facial animations. For
example, Parke (1982) proposed an early parameterised facial model, in which the head
was represented by polygons. Platt and Badler (1981) proposed a muscle-controlled facial
expression model, in which the skin was the outermost level represented by a set of 3D
points defining a movable surface and muscles are groups of elastic arcs underneath the
skin surface. Waters (1987) developed a parameterised muscle-controlled facial model for
creating realistic facial expressions. DiPaola (1992) developed a parametric facial
animation system, in which the facial expressions were accomplished by modifying the
parameters that define the facial model. A survey for parameterised facial models and facial
animation is provided in Parke and Waters’ (2008) book.

The geometric models are computationally efficient. However, they do not reflect the
physical properties of the face, thus they are mainly used in computer-aided design. As a
consequence of the demand for accuracy in the facial surgery simulation, physically-based
models are ueededT In the following sections, several physically-based facial models are
reviewed with the focus on mass-spring models (MSM) and finite element models (FEM).

4.2.2 Mass-spring models

Mass-spring systems are also called mass-spring-damper (MSD) systems. In these systems,
an object is modelled as a collection of point masses connected by springs in a lattice
structure as shown in Figure 4.1. The spring forces are often linear (Hookean law), but

non-linear springs can be used to model complex tissues such as human skin.
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Figure 4.1 Mass-spring model (Gibson and Mirtich, 1997)

Mass-spring systems were first exploited by Miller (1988). Now, mass-spring systems have
been widely applied to a variety of problems, such as cloth motion, facial animation and
surgery simulation. The research interest herein lies in their applications into the

simulations of facial animation and facial surgery.

In facial animation, Terzopoulos and Waters (1990) proposed a 3D hierarchical model of
the human face. This model consisted of three layers of elements representing the
cutaneous tissue, subcutaneous tissue and muscle layer. The springs in each layer had
different stiffness parameters in accordance with the non-homogeneity of real facial tissue.
A set of anatomically-motivated facial muscle actuators was incorporated into the model.
Thus the facial animations were produced as a result of the muscle contractions.
Examples of some of their produced facial animations are shown in Figure 4.2. Following
their work, Lee, Terzopoulos and Waters (1993; 1995) proposed a more accurate
biomechanical model for facial animation. The basic element used in their model is shown
in Figure 4.3. The epidermal surface is defined by nodes 1, 2 and 3, which are connected by
epidermal springs. The fascia surface is defined by nodes 4, 5 and 6, which are

interconnected by fascia springs. Nodes 7, 8 and 9 define the skull surface.
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(2) — (b) ~ (c)

Figure 4.2 Facial animations: (a) Jaw rotated; (b) Smile; (c) Anger (Terzopoulos and

Waters, 1990)

Epidermal Surface

Epidermal Nodes
Dermal-fatty Layer
Fascia Surface
Muscle
Bone Nodes
7,8,9

Figure 4.3 Triangular skin tissue prism element (Lee, Terzopoulos and Walters, 1995; Lee,

Terzopoulos and Waters, 1993)

In addition, Kahler, Haber et al. (2001) proposed a muscle-based model for facial
animation using a three-layer mass-spring system to connect the skull, muscle and the skin.
Pitermann and Munhall (2001) presented a dynamic inversion of a muscle-based model
that allows the facial animation to be created from the kinematical recordings of facial
movements. In this model, the facial tissue was modelled as a three-layered mesh: the

epidermis layer, the fascia layer and the skull layer. More recently, Zhang, Prakash et al.
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(2004) presented a physically-based 3D facial model. Their facial model had a multilayer
biomechanical structure and incorporated a set of anatomically-motivated facial muscle
actuators. In this model, non-linear springs were used to simulate the non-linear
viscoelastic behaviour of soft tissues, which is an improvement ofthe previous mass-spring

models.

Mass-spring systems have been also widely used in surgery simulations. Keeve, Girod et al.
(Keeve, Girod and Girod 1996a, b; Keeve, Girod, Kikinis et al., 1998) adopted a layered
mass-spring tissue model (Lee, Terzopoulos and Walters, 1995; Lee, Terzopoulos and
Waters, 1993) for simulating cranio-facial surgery. The basic tissue element used in Keeve,
Girod et al.’s model is shown in Figure 4.4, in which the mechanical properties of each
tissue layer are represented by various spring constants, and the incompressibility of human

tissue is taken into account by adding a volume preservation force to each node.

epidermis
dermis
fascia
muscles

— bone

Figure 4.4 Basic tissue element (Keeve, Girod, Kikinis et al., 1998)

Teschner, Girod et al. (1999) developed a system for interactive, 3D cranio-facial surgery
simulations. The system was based on the multi-layer soft tissue model, in which the layer
springs represented the soft tissue layers, the bone springs represented connections between
the bones and the soft tissues, and the boundary springs prevented the soft tissues from any
global transformation, as shown in Figure 4.5. This system was able to simulate bimaxillary
osteotomies and physiological jaw movement. Later, Teschner, Girod et al. (2000)

improved their mass-spring system to model patient individual soft tissue deformation. In
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the new system, the non-linear deformation and incompressibility of soft tissues were taken
into account. Furthermore, the mass and skin turgors were integrated into the proposed soft
tissue model. The developed methods have been tested for soft tissue deformation using
cuttings of six individual patient data. Figure 4.6 shows one ofthe test results showing the

soft tissue deformation for two different surgery options: the simulated realignment of a

part ofthe lower jaw and that ofthe chin.

boundary spring layer spnng soft tissue position

bone bone

bone spnng
Figure 4.5 Multi-layer soft tissue model (Teschner, Girod and Girod, 1999)

(b)
Figure 4.6 Surgery simulation: (a) Simulated bone realignment; (b) The corresponding soft

tissue changes (Teschner, Girod and Girod, 2000)
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Mollemans, Schutyser et al. (2003) proposed a tetrahedral-based Mass-Spring Model
(MSM) for a surgery planning system to predict soft tissue changes caused by the skeletal
changes. In contrast to traditional MSM, their extended model consisted of three types of
elements: mass points, springs and tetrahedrons. The tetrahedrons were extracted from the
3D tetrahedral mesh. The mass points were set on the mesh nodes and the linear springs on
the mesh edges. This MSM was quantitatively validated by measuring distances between
the predicted and the post-operative facial surface for three patients, suggesting that good
results could be achieved (Mollemans, Schutyser, Cleynenbreugel et al., 2004).

The main problem with MSM systems is how to experimentally determine the parameters
of the springs. In order to overcome this problem, Vicente, Buchart et al. (2009) proposed a
new MSM which was derived from a continuum and the scaled displacement method. With
the scaled displacement technique, neither re-meshing nor removing of elements was
required during the simulation of maxillofacial surgery. Therefore, a more reliable
description of the post-surgical displacement of soft tissues was achieved.

From the above, it can be seen that mass-spring systems have been widely used in the
simulations of facial animation and facial surgery. Mass-spring models are easy to
construct and allow for both interactive and real-time simulations. In addition, they are

efficient in dealing with large deformation problems.

However, mass-spring systems have several significant drawbacks. First of all, mass-spring
models give an insufficient approximation of true physics, because they only offer a coarse
approximation of true material properties. That means this system cannot provide required
accuracy for some complex composite materials such as soft tissues. Secondly, the material
behaviour relies on the spring constants, but accurate values for these constants are very
difficult to obtain from experiments. Furthermore, some material properties, such as
incompressibility and anisotropy, cannot be modelled in this system. In addition,
mass-spring systems are also weak in modelling thin surfaces, which resist bending. Last
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but not least, when modelling nearly rigid objects, large constants are needed. In this case
the mass-spring systems behave stiffly because of their poor stability resulting from a large

number of spring constants.

As a consequence, for simulations of complex objects such as human face, or complex
materials such as soft tissues, or accurate simulations such as surgical operations, other
methods should be employed, such as the finite element method, the finite difference
method, etc.

4.2.3 Finite element models

Mass-spring systems typically model an object in a discrete manner. In contrast, the finite
element method (FEM) is capable of modelling deformable objects as a continuum system.
Thus, a more realistic and accurate solution can be achieved by using the FEM. In addition,
the finite element technique is superior to other techniques when modelling deformable
objects, since it allows arbitrary geometries. However, the main limitation of the finite
element method lies in the computational costs. The more elements that are used, the more
computer resources are needed. Regardless of this limitation, the finite element method is
still widely used in many applications, such as soft tissue modelling and surgery

simulations.’

Koch, Gross et al. (1996) proposed a surface based finite element model for the simulation
of facial surgery. In their approach, the facial surface was represented by C'-continuous
thin plate finite elements and connected to the skull by springs, as shown in Figure 4.7. The
spring stiffness parameters were computed according to the segmentation of the underlying
CT data. This model has been successfully used in the simulation of facial surgery and
emotion editing (Koch, Gross and Bosshard, 1998). However, the model lacked true
volumetric physics and therefore was unable to account for some effects, such as volume
preservation. For volumetric soft tissue modelling, Koch (2000) extended the surface based
model towards volumetric finite element modelling. The material incompressibility was

incorporated into the model by means of linear elasto-mechanics. In this approach, instead
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of connecting top and bottom triangles with a spring, they established prism elements
during the set-up of the facial model. Koch, Roth et al. (2002) presented a framework for
the simulation of facial surgery based on volumetric finite element modelling. However,
their model was restricted to linear elastic theory, which could not deal with large
deformations. To achieve both volumetric and non-linear soft tissue modelling, Roth, Gross
et al. (1998) developed the tetrahedral Bemstein-Bezier elements by combining the finite
element method with Bemstein-Bezier representations. Although higher order
interpolations and incompressible, non-linear material behaviour were incorporated, it was
restricted to C°-continuous interpolation across element boundaries. To overcome this
shortcoming, Roth (2002) proposed a tetrahedral C l-continuous Bemstein-Bezier finite

element model, whose simulation results were better than the C° solution.

skin surface

strut spring
tissue springs

skull surface
v neighbour(i,

neighbour(i,3)

neighbour(i,0) mam spring

Figure 4.7 Spring mesh for soft tissue modelling (Koch, Gross, Carls et al., 1996)

Chabanas, Payan et al. have worked on the simulation of maxillo-facial surgery (Chabanas,
Luboz and Payan, 2003; Chabanas, Marecaux, Chouly et al., 2004; Chabanas, Marecaux,
Payan et al., 2002; Chabanas and Payan, 2000; Chabanas, Payan, Marecaux et al., 2004;
Luboz, Chabanas, Swider et al., 2005) by using the finite element method. They developed
a 3D mesh of a generic human face by using three surface meshes: the external surface

mesh represents the facial skin, the internal surface mesh corresponds to the projection of
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the external surface onto a standard skull and the intermediate surface mesh lies at the
interface between the dermis and the hypodermis. Two layers of hexahedral elements were
created by connecting the nodes ofthese surfaces, see Figure 4.8 (right). The facial muscles
were represented by labelling the corresponding elements inside the outer layer of the 3D
mesh, so that they can be prescribed with specific mechanical properties. Figure 4.8 (left
and middle) shows the final 3D mesh of a generic human face. Finally, patient specific
model can be quasi-automatically built up by adapting the generic mesh to an individual
patient’s morphology using the Mesh-Matching algorithm. The simulation of facial
expression is one application of their facial model. In their simulation, facial expressions
were created by muscular contractions which were modelled by a low-level force generator
applying forces on nodes located between the two extremities of the muscle. Figure 4.9
shows one example of the facial deformation caused by the muscle activation. The
simulation of maxillofacial surgery is a further application of their model. This was
accomplished by displacing the internal nodes of the mesh which were in contact with the
osteotomised bone segments. The quality ofthe simulation was assessed by comparing the
modelled deformation and the actual patient’s data using MESH software, as shown in

Figure 4.10.

external

outer surface

lay*r

intermediate
surface

Internal
surface

inner layer

Figure 4.8 The generic 3D mesh with embedded main facial muscles (Chabanas, Marecaux,

Payan et al., 2002)
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Figure 4.9 Face deformation due to the activation ofthe zygomaticus muscles (Chabanas,

Luboz and Payan, 2003)

5,041

4-0%1

04*0

Figure 4.10 Quantitative evaluation ofthe simulation (Chabanas, Marecaux, Chouly et al.,

2004)

Gladilin, Zachow et al. have undertaken considerable work on the simulation of
cranio-maxillofacial surgery (Gladilin, 2003; Gladilin and Ivanov, 2009; Gladilin,Ivanov
and Roginsky, 2004; Gladilin, Zachow, Deuflhard et al., 2003a; Zachow, Gladilin,
Zeilhofer et al., 2001; Zachow, Hege and Deuflhard, 2006) and the simulation of individual
facial expression (Gladilin, 2003; Gladilin, Zachow, Deuflhard et al., 2002a; Gladilin,
Zachow, Deuflhard et al., 2002b, 2003b; Gladilin, Zachow, Deuflhard et al., 2004) using
the finite element method. In their simulations, the individual geometrical models of

patients’ anatomy were generated from CT data and the triangulated surfaces were
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generated to represent the boundaries between the different tissue regions, see Figure
4.11(a). Since a volumetric mesh was needed for the finite element analysis, they generated
unstructured tetrahedral meshes on the basis of the non-manifold surface triangulations
with the advancing front method, see Figure 4.11(b). With this reconstructing method, they
were able to generate an adequate 3D patient specific model for the surgical planning and
soft tissue simulation. Several clinical cases have been simulated. Figure 4.12 shows one
case of the surgery simulations for a patient with maxillary retrognathism and mandibular
prognathism. The predicted facial appearance as a result of a bimaxillary operation is
shown in Figure 4.12(b). In their facial animation simulation approach, the individual facial
expressions were estimated by the superpositioning of pre-computed single muscle actions.
Some of the simulated expressions are shown in Figure 4.13, where happiness was
generated by superimpositioning of single muscle actions of zygomaticus major,
zygomaticus minor, risorius and orbicularis oris; and disgust was created by
superpositioning of single muscle actions of depressor angularis oris left, depressor labii

left, mentalis left, levator labii right and orbicularis oris left and right.

(a)
Figure 4.11 Facial model: (a) Simplified surface model; (b) Tetrahedral mesh (Zachow,

Gladilin, Zeilhofer et al., 2001)
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w 0>)
Figure 4.12 Simulation ofthe cranio-maxillofacial surgery: (a) Pre-surgery; (b)

Post-surgery (Gladilin, 2003)

Figure 4.13 Simulation of facial expressions: (a) Happiness; (b) Disgust (Gladilin, Zachow,
Deuflhard et al., 2004)

In addition, Vandewalle, Schutyser et al. (2003) discussed the modelling oftissue growth as
a result of maxillofacial surgery using the finite element method. Yu, Baik et al. (2007)
constructed a 3D finite element model of cranio-facial bones and the maxillary teeth to
simulate actual bone reactions. Barbarino, Jabareen et al. (2008) developed a 3D finite
element model of the face aiming at improving the design of medical devices used for
plastic surgery on the human face. Later, they (Barbarino, Jabareen, Trzewik et al., 2009)
validated the response of their facial model to gravity loads, and to the applications of a

pressure inside the oral cavity and of an imposed displacement. The ageing response ofthe
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face has also been modelled. Although this model has not been used for predicting the
outcome of a patient specific plastic surgery, the potential of this has been discussed in their

work.

4.2.4 Other models

Besides these two commonly used physically-based models (MSM and FEM), there are
some other physically-based models that can be applied in the simulations of facial
animation and facial surgery, as described below.

Mollemans, Schutyer et al. (2005) presented a Mass Tensor Model (MTM) to simulate soft
tissue deformations after maxillofacial surgery. They (2007) subsequently compared the
novel MTM with three other computational strategies: linear Finite Element Models,
non-linear Finite Element Models and Mass-Spring Models. The pre-operative and
post-operative CT data obtained from 10 patients, who underwent maxillofacial surgery,
was used to validate these techniques. They showed that the MTM strategy gives both a
fast solution and accurate results.

Sarti, Gori et al. (1999) presented an approach based on the use of embedded boundary
condition techniques, which allowed the simulation of cranio-facial surgery directly on the
grid of 3D CT'images of the patient. However, their method demanded a large amount of
data and the simulation has to been implemented on a supercomputer, which is a
considerable drawback.

4.3 Construction of the 3D finite element facial model

Building a three-dimensional (3D) finite element model of the human face is a complex
task. It involves a multi-disciplined knowledge base and a considerable understanding of
typical anatomy is required. This section presents the procedure for building a 3D finite
element mesh which is capable of accurately capturing facial geometry.
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4.3.1 Reconstruction of the facial geometry

Accurate data acquisition is an important step in this procedure. In this thesis, the facial
skin and skull structures were based on the available patient specific data. The geometry of
the patient specific face was re-visualised by using the cone-beam computer tomography
(CBCT) scanning. The scanned images in the DCM format were manipulated, and
triangulated surfaces in an STL format were obtained for the reconstruction of the facial
geometry. In this project, the scanning and image manipulation were done by the technical
staff in the School of Dentistry, Cardiff University. Finally, the patient specific STL files of
the facial skin and skull were provided. The muscles were obtained from a standardised
forensic database (Wilkinson, Rynn, et al. 2006) with each muscle being simulated
separately and stored as an STL file, which contains the original geometric data. The STL
files for the muscles used in the thesis were provided by Caroline Wilkinson at the School
of Life Sciences, University of Dundee.

The second step in this procedure is to reconstruct the geometric surfaces from the patient
STL files. The resulting triangulated mesh surface data, which is stored as STL files, can be
quite coarse due to holes, noise points, sharp edges, etc. If finite element models were
constructed . using these raw data, meshes with sharp angles are likely to induce
inaccuracies in the resulting analysis. Therefore, the triangulated mesh of an STL model
needs to be converted into a parametric surface so that the geometrical parameters of the
3D objects’ outer surfaces can be controlled. This work is difficult to implement in
common computer-aided design (CAD) software, even in the powerful CAD packages such
as UG and Pro/Engineer. However, the reverse engineering software, RapidForm, provides
the ability to solve this problem.

Reverse engineering is a modelling process which translates original data to a concise
geometric model which is exportable to CAD/CAM/FE packages. RapidForm is a software
based solution system that allows users to go from 3D scan data to a fully parametric CAD
model. It possesses automated methods for creating optimised polygon mesh models and
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also has functions to remove disparate geometries such as holes and noise points.

Therefore, in this thesis, RapidForm (INUS Technology Inc. & Rapidform Inc. 2006) was
used to process the raw data. The dense point clouds were cleaned, holes were filled-in and
sharp edges were smoothed using standardised algorithms. Non-Uniform Rational Basis
Spline (NURBS) surface were employed to mathematically represent the exterior
anatomical structures. Three examples are given to show the differences before and after
the process. Figures 4.14 (a), (c) and (e) show the raw triangulated mesh models which are
stored in the format of STL files. Figures 4.14 (b), (d) and (f) show the corresponding
NURBS surface models after the smoothing process was applied.
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(a). Raw mandible (b). Processed mandible
(c). Raw levator (d). Processed levator
(e). Raw mentalis (f). Processed mentalis

Figure 4.14 Data process. Left: triangulated mesh models; Right: NURBS surface models
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4.3.2 Creation of the 3D finite element facial model

Constructing a three-dimensional finite element model of the human face is a complicated
task. First of all, human face is a complex structure. Even ina simplified form, human face
has approximate 27 components, including the skull, facial skin, 20 facial muscles, etc. For
the finite element computation, these components should be correctly connected within the
continuum system. However, in the geometry reconstruction process, when using the
parametric surface approximates the triangulated mesh, the geometry of each component
may be expanded or shrunk due to the approximation. Thus, some overlaps and gaps may
occur between the components. Therefore, in order to accurately predict the soft tissue
deformation, any overlapped sections should be removed and the gaps should be replaced

or filled to provide an accurate description of the facial construct.

Secondly, either rigid node constraints or contact constraints should be applied to the
surfaces where two components contact with each other. The difficulty here is to identify
the contact surfaces or nodes and furthermore geometrical irregularity makes this process

even more difficult.

Also, facial skin and bone structure have quite different material properties. What is further
complicated is that facial muscles have different mechanical properties. Therefore, while
building a finite element model of human face, the nodes and elements should be classified
such that corresponding components can be described within elemental and nodal data sets.

Because of the difficulties mentioned above in developing a finite element facial model,
choosing the appropriate software is a critical process. ABAQUS (Hibbit, Karlsson and
Sorensen Inc. 2006) is a highly sophisticated, general purpose finite element analysis (FEA)
package and is widely used in many research areas, such as mechanical engineering,
structural design and biomedical analysis. However, in this application, it is quite difficult
for ABAQUS to automatically detect the contact surfaces. MSC Corporation developed
MSC/PATRAN (MSC.Software Corporation, 2008) which is the world leading

Page 101



Chapter 4 Three-Dimensional Finite Element Facial Model and Facial Movement Simulation

pre/post-processing software for finite element analysis and MSC/PATRAN provids solid
modelling, meshing, and analysis setup for ABAQUS, LS-DYNA, ANSYS, etc.
Unfortunately, MSC/PATRAN still has the problem of identifying the contact surfaces.

To overcome some of these problems, the Simpleware software package (Simpleware Ltd.,
2008) *ScanCAD, ScanIP and *ScanFE and the Oasys.PRIMER (Oasys Ltd & Arup, 2009)
were chosen as the pre-processing software for building the finite element facial model.

Simpleware is a well developed software solution for the conversion of 3D images into
CAD/STL files, rapid prototyping applications and finite element meshes. Simpleware
offers three software options for processing and meshing 3D image data: *ScanCAD,
ScanIP and *ScanFE. The *ScanCAD module is mainly used for working with implants and
allows importing CAD models, positioning them interactively and generating a ScanIP
mask of the combined data. The ScanIP module provides an extensive selection of image
processing tools to assist the user in visualizing and segmenting regions of interest from
any volumetric 3D data (e.g. MRI, CT, Micro CT). Segmented images can be exported as
STL files for CAD analysis or RP manufacturing. The *ScanFE module generates volume
and/or surfaee meshes, contact surfaces and material properties from segmented data. The

relationship between these modules is shown in Figure 4.15.

Import --»

ScanIP Export —»
CTLMRLMicro-CT - - -- Image processing tools
CAD,STL

cw, (N

STL ScanCAD ScanFE
""" » | Integrating CAD into image Volumetric meshing FE, CFD

Figure 4.15 Simpleware software products
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In this thesis, 27 STL files, which are geometrical data of the 27 facial components, were
imported into *ScanCAD. In *ScanCAD, 27 masks were created by using the ‘CAD to
Mask’ method and all the muscles were placed as accurately as possible according to their
anatomic positions. Then all the masks were exported into ScanIP, in which the
subcutaneous tissue was created. In ScanIP, the overlapped sections were automatically
identified and were fixed by using ‘Boolean’ operations. Finally the facial model was
exported into *ScanFE for generating the volumetric meshes. An important component in
the facial model is the subcutaneous tissue, which fills the gaps among the facial skin, the
bones and the facial muscles. It is worthy to mention that the subcutaneous tissue is created

by using ScanlP and the creation process is shown in Figures 4.16.
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- itlzaks piayiei/

(a). Step 1 (b). Step 2

(c). Step 3 (d). Step 4

Figure 4.16 Procedure for the creation ofthe subcutaneous tissue
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In step 1, a duplicated face was created and the nose, eye and mouth openings were filled.
In step 2, the ‘Morphological filter & Dilate’ tool was used to expand the face 10mm
forward and backward. In step 3, Boolean operations were used to subtract the face from
the dilated face. In step 4, ‘Segementation’, ‘FloodFill’ tools were used with the inner

dilated face retained and the rest ofthe dilated face being deleted.

Oasys Ltd is the software house of Arup and distributor of LS-DYNA software in UK,
India and China. Arup developed the Oasys suite of pre- and post- processing software for
use with LS-DYNA. The Oasys shell is shown in Figure 4.17.

stages:
Oasys LS-DYNA Environment 9.2

preparation PRIMB?

Monftor

i
solution LS-DYNA

Manuals

post THIS D3PLOT ~ ~
processing

Support
reporting REPORTS? /-

Figure 4.17 Oasys shell

In this thesis, the finite element facial model was exported from +ScanFE as a keyword file,
which was later read into Oasys PRIMER for preparing the facial model. One application
of Oasys PRIMER is to set up the connections. As mentioned, the geometry of the facial
components may have been expanded or shrunk after the geometry reconstruction process.
The geometrical expansion is likely to induce wrong connections which are automatically

defined in ScanIP, and these connections are redundant. The geometrical shrinkage is likely
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to induce the missing of some connections. For example, the top left comer ofthe masseter
muscle should connect with the maxilla from the anatomy point of view. However, in the
reconstructed model, there is a gap between them, as indicated in Figure 4.18 (a). In order
to define this missing connection, prescribed nodes from the maxilla were connected with
prescribed nodes from the masseter, as shown in Figure 4.18 (b). Through studying the
facial anatomy and using expertise within the Department of Anatomy at Cardiff University,
the redundant connections generated in the facial model were detected and detached using
the ‘clipboard’tool in Oasys PRIMER; the missing connections were detected and defined
by using the ‘noderigidbody’ keyword for defining attachments between two deformable
bodies and using the ‘extra nodes’ keyword for defining attachments to the rigid body. The
facial model with the connections being corrected is shown in Figure 4.18 (b), where the

dense points indicate the position where the connection corrections were made.

Connection
Missing

Hissing
connection
defined

(a) Model from ScanFE (b) Model with the connections corrected

Figure 4.18 Correcting the connections in the finite element facial model

The second application of Oasys PRIMER is to define the boundary conditions. The

assumption of facial symmetry was introduced to allow the development of a half-facial
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model, which reduced both the size ofthe finite element model and the computational time
considerably. Plane symmetry was assumed in the facial structure and plane symmetrical
boundary conditions were applied to the symmetry plane, as shown in Figure 4.19. Because
of the symmetrical boundary conditions, the nodes located in the symmetrical plane are
fixed and cannot move left or right. However, for the cases when the loading and constraint
conditions are not symmetrical to the middle plane, the symmetrical boundary condition
should be removed and the half model should be mirrored to build the whole facial model.
In the following two applications, the loading and constraint conditions are both
symmetrical to the symmetrical plane. So using a half-facial model is appropriate in this

case.

(a) front view (b) Side view

Figure 4.19 Symmetry boundary conditions in the finite element facial model

Other applications of Oasys PRIMER include defining the temporomandibular joint, and
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assigning the material properties. In the facial model developed in this thesis, the revolute
joint is used to simulate the human temporomandibular joint (TMJ). A revolute joint (also
called hinge joint) is a one degree of freedom kinematic pair used in mechanisms. Revolute
joints provide single-axis rotation function used in many places such as door hinges,
folding mechanisms, etc. In this thesis, the revolute joint is used to define the TMJ, where
the maxilla stands still and the mandible rotates along a horizontal axis which is located at

the maxilla-mandible connection. The material properties for the individual component are

detailed in the following section.

4.3.3 Description of the 3D finite element facial model

In the finite element facial model, 20 muscles are simulated as listed in Table 4.1.

Table 4.1 List of facial muscles modelled

Muscle type Muscles

Buccinator
Zygomaticus major
Zygomaticus minor
Risorius
Depressor anguli oris
Muscle of facial expression Orbicularis oculi
Orbicularis oris
Mentalis
Levator labii superioris alaeque nasi (LLSAN)
Depressor labii inferioris
Levator labii superioris
Temporalis
Muscles of mastication Masseter
Lateral pterygoid
Medial pterygoid
Stylohyoid
Posterior digastric
Hyoid muscles Mylohyoid
Anterior digastric
Geniohyoid

The 20 facial muscles are illustrated in Figure 4.20.
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Temporalis

M asseter

Risorius

Buccinator

Depressor

Anguli Oris

Mylohyoid

Geniohyoid

Orbicularis
Oculi LevatorLabiiSuperio
risAlaequeNasi
(LLSAN)
LevatorLabiiS
uperioris
Zygomaticus
major and minor
Orbicularis
Oris
Mentalis
Depressor
Labiilnferioris
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Pterygoid
Medial Pterygoid
Stylohyoid
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Digastric

Figure 4.20 Finite element facial model - muscle illustration: Top: Lateral view (external);

Bottom: Lateral view (internal)
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Besides the facial muscles, three bones are modelled: mandible, maxilla and hyoid bones,
as illustrated in Figure 4.21 (a). In addition, the eyeball, the nose cartilage and the
subcutaneous tissue are modelled, as shown in Figures 4.21 (b) and (c). Finally, the patient

specific facial skin is implemented into the facial model, as shown in Figure 4.21 (d).

Eve ball
cartilage
Macxilla
Mandible
(@ (b)
Facial
skin
Subcutaneous
tissue
(© ()]

Figure 4.21 Finite element facial model illustration
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The 3D finite element model of the half face is meshed with approximately 2 million
tetrahedral solid elements and the element size is approximately 1 mm, as shown in Figure
4.22, where the left figure shows the whole facial mesh and the right figure shows the
enlarged mesh around the mouth. It should be noted that the finite element mesh was
generated in +ScanFE and in the current version of+ScanFE (version 3.1), the control ofthe
element size is restricted. As the further development of +ScanFE and the permission of
controlling the element is gained, the developed facial face should be meshed with coarse,
bigger elements and the mesh in the concerned zones should be refined. In this way, the

computational time will be considerably reduced.

Figure 4.22 Mesh ofthe finite element facial model

The mechanical property of facial tissues plays an important role in the finite element
analysis. Different material properties could induce different simulation results. Thus, the
most accurate choice for the soft tissue materials is critical for achieving accurate

simulations. In this work, various facial tissue models have been explored. Then the
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material models for different facial tissues are selected or developed on the consideration of

both the model simplicity and the simulation accuracy.

The mechanical properties of facial skin are complex because of its intricate structure.
Extensive experiments have shown that facial skin is an inhomogeneous, anisotropic,
multi-layered and viscoelastic material (Fung, 1981; Tran, Charleux, Rachik et al., 2007).
In the developed facial model, the facial skin is modelled as an isotropic linear elastic
material with two independent material constants, Poisson ratio and Young’s modulus. The
Poisson ratio is chosen as 0.49 in order to simulate the quasi-incompressibility of the skin
tissue. The Young’s modulus is set to 15 KPa , according to Fung’s work (Fung, 1981). A
more accurate material model should be considered in the future. However, in this thesis,
the influence of facial skin is considered to have less impact to the overall results, so a

linear elastic approximation to the facial skin is appropriate.

Two sets of material properties are defined for the skeletal muscle, one for active muscles,
and the other for non-active muscles. For muscles in the active state, they are characterised
as active, quasi-incompressible, fibre-reinforced and hyperelastic materials as described in
Chapter 3. For the muscles in the non-active state, they are characterised as linear elastic
materials with the Young’s modulus of 6.2 KPa, as measured by Duck (1990). The Poisson

ratio is set to 0.49, as skeletal muscle is mainly composed of water, thus incompressible.

To simplify the facial model, the gaps among the facial skin, muscles and bones, are filled
with only one material, i.e. the subcutaneous tissue. In this work, the subcutaneous tissue is
treated as a non-linear slightly compressible material and simulated by the neo-Hookean

model with the strain energy density function given by:

U=CI/, -3) +0.5K(J - 1)2 4.1)

where /, 1is the first invariant of the strain tensor, J is the Jacobian of the deformation
gradient, CI0 and K are material parameters. The values of CI0 and K are taken from
Tran et.al.’s indentation tests: C10= 0.42 KPa and K= 36 KPa (Tran, Charleux, Rachik et
al., 2007).
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The mechanical properties of bones vary a lot, depending upon the age, anatomical location,
liquid content, etc. In the model developed in this thesis, the bones are assumed to be rigid
elastic material, since the main focus in this work is the deformation ofthe soft tissues. The

material parameter values for the bones are taken from Sarkar, Majumder et al.’s (2004)
work, i.e. density = 1412Ag7/w3, Young’s Modulus = 6.5¢3 MPa and Poisson’s ratio =

0.22. The nose cartilage and the eyeball were modelled as a linear elastic material with the

Young’s modulus of 6.1 MPa and Poisson’s ratio of 0.2 (Protsenko and Wong, 2007).

Figure 4.23 shows the material models used for different facial tissues.

Facial bones Subcutaneous tissue - Facial skin - Linear

Rigid material Neo-Hookean material elastic material

Muscles - User Defined

materials or linear

elastic material Nose  cartilage and
eyeball - Linear elastic

material

Figure 4.23 Materials for the finite element facial components
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This concludes the review of how the 3D finite element facial model was formed. The
non-linear finite element analysis programme LS-DYNA is employed as the computational
analysis tool and Oasys D3PLOT 9.3 is used for post-processing, i.e. the visualisation of
results, animations, viewing the displacement and stress, etc. The procedure for developing
the facial model is summarised in Figure 4.24.

Obtain surface data from
CBCT and database

I

Create NURBS surfaces
using RapidForm

I

Create FE solid model
using Simpleware package

A

Set up the model with connections,

| boundary conditions, materials etc.
using Oasys PRIMER

Il v
Perform the analysis using LS-DYNA explicit

g

Visualise the results using Oasys D3PLOT

No
Is the result

satisfactory?

Figure 4.24 Procedure for developing the 3D finite element facial model
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4.4 Cranio-facial surgery simulation

One application of the facial model is the outcome prediction of facial surgery. In this
section, a cranio-facial surgical procedure is simulated and the accuracy of the simulation is
discussed.

4.4.1 A clinical case report

A male student was referred to the University Hospital of Wales with the lower jaw anterior
to the upper (Class ITI and skeletal 3 malocclusion). The permission was obtained from this
patient to use his data for research. The sequence of the surgical procedures is outlined in
Figure 4.25. His 3D facial surface was captured using two Konica Minolta Vivid 910 laser
cameras. The surface scan and the skeletal structures were placed in the correct spatial
relationship and then aligned to the horizontal plane based on the inner canthi and
mid-sagittal planes, as shown in Figure 4.25 (a). In order to determine the soft tissue
discrepancies for this patient, an average facial template matched for age and sex was fitted
to the individual’s face. The details of the discrepancies were quantified using a colour
deviation map, as shown in Figure 4.25 (b), which clearly highlighted a mid-face
insuﬂicienqy and that the lower lip was prominent. The ‘cut-away’ approach was used
whereby thé half facial shell was removed to reveal the underlying skeletal structure, as
shown in Fim 4.25 (c). As the individual’s face was long by 4mm, a bi-maxillary surgical
procedure was plifmed. The maxilla and mandible were removed from the computerised
model just leaving the cranial base, as shown in Figure 4.25 (d). A Le fort 1 procedure was
proposed to move the maxilla upward 4mm and forward by Smm, as shown in Figure 4.25
(e). The upper and lower dental casts were scanned in a best-fit occlusion and then
superimposed on the maxillary dentition, as shown in Figure 4.25 (f). A sagittal split
procedure was performed, the anterior part of the mandible was aligned and fitted to the
mandibular dental cast and the posterior fragment left in its original position, as shown in
Figure 4.25 (g). Finally, the individual’s surface laser scan was repeated post-operatively,
aligned and fitted to the original facial surface, as shown in Figure 4.25 (h).
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Figure 4.25 Procedure ofthe cranio-facial surgery (Richmond, Beldie, Lu et al., 2010)
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The clinical photographs of the patient before and after orthodontic alignment and

orthognathic surgery are shown in Figures 4.26 and 4.27.

Figure 4.26 Changes ofthe dental occlusion before (left) and after (right) operation

Figure 4.27 Changes ofthe patient appearance before (left) and after (right) operation
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4.4.2 Finite element simulation results

In the clinical case described in Section 4.4.1, the patient specific data for the skull and the
outer facial shell was used to construct the finite element facial model, while the muscle
data came from the standardised forensic database. The procedure for building the finite
element facial model has already been described in Chapter 4.3. The finite element analysis
(FEA) was performed to simulate the surgical procedure listed in Figure 4.24 in the
Advanced Research Computing @ Cardiff (ARCCA) High-Performance Computing (HPC)

Cluster - Merlin. The simulation took around 3 minutes when using 8 processors.

In the finite element simulation, a Le Fort 1 was performed with the maxilla being moved
upwards by 4mm and forwards by Smm. A sagittal split was performed on the mandible.
The anterior part of the mandible was moved to create the best fit (occlusal fit) with the
upper jaw and the posterior fragment was left in its original position. The finite element
simulation is outlined in Figure 4.28, where the left column shows the facial features before
the surgery, the middle column shows the facial features in the middle ofthe simulation and

the right column shows the facial features after the surgery.
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4.4 3Validation of the finite element prediction

The patient returned 6-month after the surgery, at which time the facial swelling has
reduced (Kau, Cronin and Richmond, 2007) and the surface scans were repeated. The
6-month post-surgical facial shell (gray) was superimposed on the pre-surgical facial shell,
as shown in Figure 4.29 (a). For comparison, in Figure 4.29 (b), the finite element
simulated face (green), which corresponds to the 6-month post-surgical face, was
superimposed on the pre-calculated finite element face (red), which corresponds to the
pre-surgical face. The colour map based on the differences between pre-surgical and
6-month post-surgical faces was drawn in Figure 4.29 (c), in which one can see a
significant improvement in the mid-face (yellow-orange) and the retraction ofthe mandible
(blue) after the surgery. In Figure 4.29 (d), the differences between the computationally
simulated face and the pre-surgical face were quantified in comparison with Figure 4.29 (c).
The clinic data and the finite element simulated results show similar facial movements
resulting from the surgery, as can be seen by comparing the colour deviation maps in

Figures 4.29 (c) and 4.29 (d).

(@
Figure 4.29 Superimposition ofthe pre-surgical and 6-month post-surgical faces. Left:
clinic data, Right: finite element results
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The finite element simulated face after the cranio-facial surgery was also superimposed on
the patient’s face at 6-month post-surgery using Geomagic Qualify 10 (Raindrop Geomagic,
Inc., 2008), as shown in Figure 4.30 (a). The differences are highlighted using a colour
deviation map, as shown in Figure 4.30 (b), where the green represents a tolerance level of
+2.0 mm, which is the acceptable mean surface error (Kaipatur and Flores-Mir 2009), the
yellow area (the bridge of the nose and the lower lip) represents the prominence of the
simulated face and the blue area (the chin) represents the less prominence of the simulated
face. The superimposition shows that the finite element prediction ofthe face after surgery
is in good agreement with the patient’s surgical outcome, with an overall agreement of 85%
while the error was generally contained within a £ 2.0 mm threshold. That means 85% of
the points from the finite element prediction model are within the tolerance of+ 2.0 mm
with the patient’s 6-month surgical outcome. The areas which show less accuracy are the
lower lip and a localised area of the lower cheek. The results are promising, especially
showing that the use of generic facial muscles does not compromise the predicted results.

However, more development work is needed before the proposed method can be used as a
tool in the day-to-day planning of cranio-facial surgery. For example, the need of a more

efficient segmentation technique is required to build a patient specific facial model.

Figure 4.30 Superimposition of facial finite element simulation with patient data at
6-month post-surgery
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4.5 Facial movement simulation

The other application of the facial model is the simulation of facial movement. Two facial
expressions (smile and disgust) and mouth opening process are simulated. The simulations
were performed with 8 processors in the ARCCA HPC cluster - Merlin. The simulation
times for each analysis are listed in Table 4.2

Table 4.2 Simulation times for each analysis

Simulation | Pre-surgery Pre-surgery | Post-surgery | Post-surgery Mouth
type smile disgust Smile disgust opening

Simulation | 5 hours 38 5 hours 48 3 hours 43 3 hours 52 3 hours 50
time minutes minutes minutes minutes minutes

4.5.1 Facial expression simulation

Simulating facial expressions is challenging, since there is little knowledge of the muscles
involved and the amount of contraction each muscle undertakes during various facial
expressions. §econdly, the fact that the muscle fibres generally intertwine with each other
makes it very difficult to measure the amount of contraction of active muscles during facial
expression. Fiﬁally, the size and shape of the muscles may vary slightly from person to

person.

In this thesis, research has been concentrated on the simulation of two expressions, which
are smile and disgust. With the finite element facial model developed in this thesis, some
other expressions cannot be simulated because of the shortage of facial muscle data. For
example, surprise and frowning cannot be simulated since they require epicranial and
corrugator supercilii muscles, respectively, which are not modelled in the finite element

facial model here.
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The developed constitutive muscle model, described in Chapter 3, is applied to the half
facial model to simulate the facial expressions. During the simulation of facial expressions,
the active muscles are assigned with the developed muscle material model and the
activation function used for the simulation of facial expressions is defined as follows: the
activation levels before and after the stimulation are set to zero to simulate the rest state of
facial muscle; the activation level during the stimulation is set to one to simulate the fully
contracted state of facial muscle; the activation is set to start from time zero and the
deactivation time is set to infinity so that the simulated facial expression is maintained.
Please refer to Chapter 3.3.2 for the detail of the activation function applied.

According to Fehrenbach and Herring’s (2006) work, for the expression of smile, the
muscles activated are the Zygomaticus Major, the Risorius and the Orbicularis Oculi
muscles; and for the expression of disgust, the muscles activated are the Levator Labii
Superioris Alaeque Nasi, the Orbicularis Oculi and the Depressor Anguli Oris muscles.
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The smile and disgust expressions were first simulated in the pre-surgical facial model, as

shown in Figure 4.31.

Figure 4.31 Facial expressions in the pre-surgical facial model - smile (first row) and
disgust (second row). Left: at simulation time zero; Middle: in the middle ofthe simulation;

Right: at the end ofthe simulation
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The smile and disgust expressions were then simulated in the post-surgical facial model, as
shown in Figure 4.32. The simulations of facial expressions in the post-surgical facial
model can be used as an additional virtual tool to give more information about the outcome
of the surgery, to assist the clinician to study various surgery plans, and to help the patient

understand the suggested outcomes.

Figure 4.32 Facial expressions in the post-surgical facial model - smile (first row) and
disgust (second row). Left: at simulation time zero; Middle: in the middle ofthe simulation;

Right: at the end ofthe simulation
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4.5.2 Mouth opening simulation

A simulation ofthe mouth opening process was performed in the pre-surgical facial model
by activating Anterior Digastric and Mylohyoid muscles. The results are shown in Figure
4.33. The work is still at its early stages and development. The ultimate goal of this is to

simulate the facial movement during speech.

Figure 4.33 Finite element simulation ofthe mouth opening. Left: at the simulation time

zero; Middle: in the middle ofthe simulation; Right: at the end ofthe simulation

Page 126



Chapter 4 Three-Dimensional Finite Element Facial Model and Facial Movement Simulation

4.6 Discussion and conclusion

In this chapter, a finite element facial model was created based on the patient specific facial
skin, skull data and the generic muscles. The Simpleware package and Oasys PRIMER
were employed in the procedure of developing the finite element facial model. The
developed finite element facial model was firstly used to simulate a cranio-facial surgical
procedure. The results of the finite element prediction showed good agreement with the
patient’s 6-month post-surgical data, with the errors generally being within the range of
-2.0 mm to +2.0 mm. The areas that showed least agreement were the lower lip with a 4.2
mm variation and a small area of the lower cheek with a 2.8 mm deviation. These results
are promising, especially showing that the use of generic facial muscles does not
compromise the predicted results. However, further work is needed before the proposed
method can be used as a tool in the day-to-day planning of cranio-facial surgery, such as
the need of a more efficient segmentation process of the facial muscles leading to a more
accurate patient specific finite element facial model.

Secondly, the finite element facial model was used to simulate the facial movements, which
includes two'facial expressions and the mouth opening process. In this thesis, a novel
approach for the simulation of facial movement was proposed. In this method, the muscles
responsible for individual facial expression were assigned with the developed muscle
material model, which was described in Chapter 3. Two facial expressions, smile and
disgust, were successfully performed on both pre- and post-surgical facial models by
activating the comresponding muscles. In addition, the mouth opening process was
simulated by activating the Anterior Digastric and Mylohyoid muscles. The simulation of
the aforementioned facial movements showed promising results of the proposed simulation
method. Furthermore, the simulation of the facial expressions post-surgery can be included
in the process of planning the maxillofacial surgery, as a virtual tool to help predict the
outcome of facial surgery and help the surgeon exploring various different surgery

scenarios. A more quantitative comparison of the simulation of the facial expressions with
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the actual patient expressions would have been beneficial, however not enough data post
surgery was available in order to accommodate this. Work is currently being undertaken to
establish a three-dimensional database for normal facial movement and compare and
contrast facial movement of patients with facial disharmony with this normative group
prior to surgery and post-operatively. We hope to use this as one of the measures to
quantify movement and success of surgery.

The potential for this work to provide a virtual training tool is enormous. It has been
demonstrated in this chapter that the computational tool can provide detailed
three-dimensional anatomy of the human face. Different surgical scenarios can be
demonstrated. With the development of force-feedback haptic technology, computational
models could potentially deliver the same ‘hands on’ feeling as the dummy simulators.
However, to use the computational models for educational purposes, significant research
and development are required and the researchers need to overcome the limitation of the

current modelling frameworks and liaise with clinical experts to identify their needs.

In order for the models to be clinically useful, several factor need to be addressed, such as
the computational speed, reliability and user friendliness of the software tools. The solution
procedure of current model is too slow and sometimes unstable, which precludes real-time
clinical application. The inclusion of detailed anatomical information will require more
computational power and efficiency to cope with the complexity of the models. In order to
overcome the speed issue, advanced numerical methods are required to handle the
increased nonlinearities and computational demand. Besides, the model reliability needs to
be improved by quantitatively validating the predictions against experimental data and/or
clinical measurements. To data, little work has been done using such models as clinical
tools. The next stage of model development should be carried out in collaboration with
clinicians to assess their needs and requirements. In general, a clinical/educational tool
should have the following features: a quick and easy interface with reasonable precision

and accuracy; a clear display; the capacity to store, search, and quickly retrieve patient
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information; and the ability to connect to an online database for cross-reference and

diagnosis.

In the finite element modelling, a finer mesh typically results in a more accurate solution.
However, as a mesh is made finer, the computational time increases. Therefore, a mesh
convergence study should be preformed to get a mesh that satisfactorily balances accuracy
and computing resources. As the version of Simpleware we used (version 3.1) does not
allow the user to change the element size, the convergence study was not performed in this
thesis. The newly released Simpleware (version 4.0) has enabled the user to refine the mesh.
Therefore, a convergence analysis of the developed facial model is highly recommended in

the future to determine a proper mesh density.

More future development work concerns (i) improvement of the accuracy of the finite
element facial model by constructing the patient face using patient specific muscle data
instead of generic muscle data and by modelling a variety of muscle fibre arrangements; (ii)
development of better models for the facial skin instead of the linear elastic model used in
this thesis. The skin shows a non-linear stress-strain relationship, behaves tinie-dependent,
incompressible, anisotropic and inhomogeneous. Besides, the skin has a wrinkling
phenomenon. Incorporatmg these features into the FE facial model will lead to a
realistically simulated appearance of the face; (iii) quantitative validation of the simulated
facial movements by comparing the results with the actual patient facial movements
through collection of post-operative patient data; and (iv) using the developed finite
element facial model to simulate speech and other facial actions.
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Chapter 5

Modelling the Fibre Arrangement of
Skeletal Muscle Using the FEM-
NURBS Method

5.1 Introduction

Skeletal muscle is responsible for the movement of human body. In contrast to other
biological tissues, they display the ability of active contraction and when activated, they
contract along their fibre directions. In order to more precisely characterise their in vivo
behaviour, 1t is very important to visualise their internal features such as the fibre

orientation arrangements.

Skeletal muscle has a complex fibre orientation arrangement and this makes the creation of
an accurate finite element (FE) muscle model a difficult task. In general, each change in the
fibre orientation requires a new material to be defined in ABAQUS. As a result, it is nearly
impossible to simulate the complex fibre arrangement using existing techniques. In this
chapter, a FEM-NURBS method, which is the combination of the finite element method
and the non-uniform rational B-spline (NURBS) solid mathematical representation, is
proposed. With the introduction of this method, only one ABAQUS material per muscle is
needed to be prescribed. The initial direction of the muscle fibre is specified as the tangent
direction of the NURBS curve which the fibre lies on. The direction at each Gauss point is
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calculated from the NURBS mathematical formulation and passed into the finite element
software as the initial fibre direction. In the subsequent calculation, the fibre directions are
updated using the initial fibre directions, the deformation gradients and the fibre stretches.
Several numerical examples are used to demonstrate the ability of the proposed
FEM-NURBS method.

5.2 Related work on muscle fibre representation

One way of simulating the muscle fibre arrangement is through using a series of line
segments (Chao, Lynch and Vanderploeg, 1993; Delp, Loan, Hoy et al., 1990; Hoy, Zajac
and Gordon, 1990; Jensen and Davy, 1975; Nedel and Thalmann, 1998). In Hoy, Zajac et
al.’s (1990) approach, the musculotendon actuators (lliopsoas, hamstrings and vasti) were
modelled as a single straight line from the origin to the insertion, as shown in Figure 5.1. In
Nedel and Thalmann’s (1998) work, the Biceps Brachii muscle was represented by two
action lines running from the insertion points to the origin points (Figure 5.2). In this
method, the line segments pass through the approximate centroidal path of the muscle and
represent thg muscle action lines. This fact makes it very challenging to define a series of
line segmenfs for muscles with complex geometries and muscles wrapping around the
underlying structures In addition, the line segment muscle representation method assumes
that all fibres within a muscle have the same length and moment arm (Zajac, 1989).
However, studies (Herzog and Keurs, 1988) show that the variations in fibre lengths and
moment arms could greatly affect the muscle force, especially for muscles with complex
geometries. Thus the line segment method cannot accurately represent in vivo muscle

behaviour.

Page 131



Chapter 5 Modelling the Fibre Arrangement of Skeletal Muscle Using die FEM-NURBS Method

lliopsoas

*Vasti
Hamstrings

Figure 5.1 Straight-line approximation for musculotendon actuators(Hoy, Zajac and

Gordon, 1990)

ontrol

msertio]

Figure 5.2 The biceps Brachi muscle and its action line (Nedel and Thalmann, 1998)

Considerable research has been reported in the use of the finite element method for

simulating the muscle behaviour (Blemker and Delp, 2005; Blemker, Pinsky and Delp,
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2005; Chen and Zeltzer, 1992). The finite element model is usually created by considering
the volumetric shape ofthe muscle, which makes the solution more accurate. However, it is
difficult to define the fibre orientation arrangement in the finite element muscle model due
to the complex geometries. In Blemker, Pinsky et al.’s (2005) model, the long head of the
biceps muscle tissue was represented with a finite element hexahedral mesh, as shown in
Figure 5.3(a). In order to define the initial fibre direction vector for each element in the
mesh, a fibre map was created based on the fascicle arrangement measurements from
ultrasound images, as shown in Figure 5.3(b). In Tang et al.’s (2009) FE muscle model, the
fibre orientation was determined by a line joining the two central points ofthe two surfaces
of a hexahedron (Figure 5.4). This method restricted its application to muscle models
meshed only with regularly arranged hexahedrons. In the presence of a complex
geometrical model meshed with tetrahedrons, this method could lose its applicability. Bol
and Reese (2008) proposed an approach to model the complex muscle structures with
arbitrary fibre orientation arrangement by combining truss elements with tetrahedrons. The
orientations of the muscle fibres were taken into account through 3D truss elements.
However, in their approach, a so-called finite element unit cell, consisting of one
tetrahedral element and six truss elements, needed to be formed to mesh the object which

made their model quite difficult for general applications.

external proxima]

element aponeurosis

muscle tissue

dz distal aponeurosis . . .
sagittal view top view

@

. . anterior
direction

centerline sagittal view top view

(b)
Figure 5.3 Finite element model ofbiceps brachii: (A) muscle tissue mesh; (B) muscle

fibre map (Blemker, Pinsky and Delp, 2005)
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Muscle
connective tissue

77X

Figure 5.4 Schematic diagram o f muscle architecture (Tang, Zhang and Tsui, 2009)

It has been demonstrated that a B-spline solid model can be used to represent a large
variety of muscle shapes (Ng-Thow-Hing and Fiume, 1997). The B-spline solid model
allows the internal structures to be specified over the entire domain of the solid. A
framework of how to create different B-spline muscle solids from the contour curves,
which are extracted from medical images, has been proposed in Ng-Thow-Hing and Fiume
(2002), as shown in Figure 5.5. However, a B-spline solid representation is just a geometric
description and it cannot be used to capture the biomechanical behaviour of skeletal
muscle. In order to do this, Teran et al. (2003) proposed a finite volume method to simulate

the skeletal muscle, where the B-spline solids were used to model the fibre directions.
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1) Sketch origin and insertion curves  2) Sketch axial curve

m |

3) Build B-spline solid from profiles = 4) Edit solid by manipulating profile curves

Figure 5.5 Stages of development of B-spline solids for representing muscle

(Ng-Thow-Hing and Fiume, 2002)

By combining the merits of the Non-Uniform Rational B-spline (NURBS) geometric
representation and the Galerkin finite element method, a FEM-NURBS method for
modelling skeletal muscle was first proposed by Zhou and Lu in 2005. In this method, the
finite element equations were derived directly from the existing NURBS geometric
description, and so no finite elements needed to be generated. The passive stretch of one
muscle was simulated using their FEM-NURBS method, as shown in Figure 5.6, where the

dots represented the control points of the NURBS solid. Following Zhou and Lu’s idea, a
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FEM-NURBS method using ABAQUS is proposed in this chapter. In this method, the
NURBS representation is integrated into the commercial finite element software ABAQUS
(Hibbit, Karlsson and Sorensen Inc. 2006) by means of user-defined material (UMAT)
subroutines. Thus, the discretised governing equations are formulated implicitly rather than
explicitly, making the method much easier for applications. In addition, the NURBS
representation is only used in the direction definition of the undeformed fibres at each
Gauss point. No NURBS information is required in the subsequent calculation procedure,
because the directions ofthe deformed fibres are calculated from the initial fibre directions,
the deformation gradient and the fibre stretch ratio. Furthermore, the method proposed here
has no restrictions on element types and therefore it is easy for the simulations of general

deformable bodies and easy for general applications.

(b)

Figure 5.6 Passive stretch of a muscle: (a) Initial shape; (b) Deformation (Zhou and Lu,

2005)

5.3 Mathematical description of the NURBS

Before introducing the proposed FEM-NURBS method, it is worthwhile to give a brief
mathematical description ofthe NURBS. The non-Uniform Rational B-Splines, or NURBS,
was first studied in the 1950s for the aim of mathematically precise representation of

freeform surfaces. The pioneering work was undertaken by Pierre Bezier and Paul de
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Casteljau in the late 1960s and early 1970s. The first personal computer NURBS modeller
was developed in 1985 for the creation of ships and workboats. Today, NURBS are the
standard for describing objects in computer aided design and computer graphics and are
widely used in areas from automobile bodies to animated characters in films. In this section,
the mathematical definitions of NURBS curve, surface and solid are presented.

5.3.1 NURBS Curve definition (Rogers, 2001)

A B-spline curve is a curve generated by using the vertices of a control polygon. Letting P(7)
be the position vector along the curve as a function of the parameter 7, a B-spline curve is
given by:

n+l

P®)=)> BN, (.1, <t<t,2<k<n+l G.1)

i=1

where B, are the position vectors of the n+1 control polygon vertices, and N, , are the

normalised B-spline basis functions.

For the i normalised B-spline basis function of order p, the basis functions N, ,(u) are

defined by the Cox de Boor recursion relation and given by:

' u-—u, u,,—u
Ni,p(u) = _:—Ni,p—l (u)+ r:_—__NHl,p—l (u) (5.2)
- i+p-1 i i+p i+l
with
1 u <u<u.
N, (w)={" ! i+ 53
0 (®) {0, otherwise ©3)

where u, and u,, arethe elements of the knot vectors.

A NURBS curve is the generalisation of a B-spline curve. It is defined by its basis
functions and a set of weighted control points. A NURBS curve in four-dimensional (4D)

homogeneous coordinate space is given as:

P@t)= ~ilB?NM, (3) (5.9
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where B} are the 4D homogeneous control polygon vertices; N, , are the non-rational

B-spline basis functions previous given in Equations (5.2) and (5.3).

Projecting Equation (5.4) back into 3D space by dividing through the homogeneous
coordinate yields the rational B-spline curve

SBwN, 0O .,
P()=2_ -3BR,0) 5.5)
Z wiNi,p (t) =

where B, are the 3D control polygon vertices for the rational B-spline curve; w, are the
homogeneous coordinates, which are also called the homogeneous weighting factors or just

weights, and

N. (t
Ry @)= e (56)

ZwilNil,p(t)

il=1

are the rational B-spline basis functions.

From the definitions, it can be seen that the non-rational B-spline curves are a special case
of rational B-spline curves. The primary difference is the weighting of the control points
which makes the NURBS curves rational. One example of NURBS curve and its control

points are shown in Figure 5.7.
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— NURBS curve
B ©  control point

] 1 1 ] 1 1 i 1

1 2 3 4 5 6 7 8
Figure 5.7 ANURBS curve (blue line) and its control polygon (red dot)

5.3.2 NURBS Surface definition (Rogers, 2001)

Since non-rational B-splines are a special case of rational B-splines, as stated in Chapter
5.3.1, only rational B-spline surface and solid definitions are presented in the sections to

follow.

A Cartesian product rational B-spline surface in 4D homogeneous coordinate space is given
by:

n+l m+l

Q,v)=Y Y B!,N,,@)N, ) .7

=l j=1
where B ; are the 4D homogeneous polygonal control vertices, and N, () and
N, (v) are the non-rational B-spline basis functions which have been previously defined

in Equations (5.2) and (5.3).
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Projecting back into 3D space by dividing through the homogeneous coordinate gives the

rational B-spline surface:

w+l m+1 B —h.
QM= =7 7 B (JSu («,v) (5.8)
felM

»=l 7=1

where Bi; are the 3D control net vertices; wt. are the weight factors associated with the

vertices; and S#%(u,v) are the rational B-spline surface basis functions which are defined

as:

wt .NtJu)N, (v) wt Nt _(i/W, (v)

s, j<tv)= -z L -JfI1 (59>

il=1 /1=!

One example of NURBS surface and its control points can be seen in Figure 5.8.

INURBS surface

+u control points

-10  -10

Figure 5.8 ANURBS surface (colour area) and its control points (red stars)
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5.3.3 NURBS solid definition (Hoschek and Lasser, 1993)

A NURBS solid representation is the generalisation of NURBS representation of curves

and surfaces. A position of a generic point in the solid is defined as:

n+l mel 1+1

222 W, 4B i N, , N, ()N, , (W)
Hw,v,w) =212 (5.10)

n+l mtl 141

22 Z W, uNi , GON, (VN ,(w)

i=1 j=1 k=1

where B, ;, are the control point position vectors; w, ;, are the weights associated with
the control points; and N, (»),N, (v), N, (w) are the basis functions previously
defined in Equations (5.2) and (5.3).

Giving the rational B-spline solid basis functions:

S _ wi, j,kN i,p (u)N j.q (V)N k,r (W) _ wi, j,kN ip (u)N j.q (V)N k.r (W)
i,j.k (u’ v W) T atl mel 111 - S, [u v W)
Z Z Z Wik N, ,@N, (N, (w) il
il=1 j1=1 k1=l
(5.11)

The NURBS solid representation (5.10) can then be written as:

n+l m+l 141

Hu,v,w)=2>">'C, .S, . (@,v,w) (5.12)

i=l j=1 k=1

5.3.4 NURBS solid construction

There is no information about NURBS solids available directly from any existing
geometric modelling system. In most applications, a NURBS solid is described in terms of
its boundary surfaces. Therefore, the way of constructing a NURBS solid is through
extending its corresponding NURBS surfaces. There are several existing common methods,
for example ruling, sweeping, skinning and shrinking (Ma, Lin and Chua, 2001). In this
application, the shrinking method proposed by Ma, Lin and chua (2001) is used for
constructing the NURBS solid. The shrinking method has been frequently used to deal with
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close or periodic NURBS surfaces. For example, by shrinking a sphere to its centre point, a
spheroid is derived and by shrinking a cylinder surface to its centreline, a cylinder volume
is obtained. The NURBS solids presented in this chapter are derived by shrinking their
boundary surfaces to their centrelines.

It is assumed that the centreline of the NURBS solid lies in the v direction. Therefore, the
mathematical description of the NURBS solid can be written as (Ma, Lin and Chua, 2001):

n+l m+l 141

H@,v,w)=>">">"C} N, )N, (V)N,,(w) (5.13)

i=l j=1 k=1

where C;,, =B, and C},, =D ; D, are the control point vectors of the centreline
and given as (Ma, Lin and Chua, 2001):

1 1
D, = Z:TZ{ B, (5.14)

Projecting back into 3D space by dividing through by the homogeneous coordinate gives
the NURBS solid:

n+l m+l 141

_Z Zzwi.f,kci.j,kN i,p (u)N 79 (v)N k,r (w) n+l m+l 141
Hu, v, w) = 2L =3.22.C.S., v, W)
S S N @N, N, ) AR
i=l j=1 k=1

(5.15)

where S, ;,(u,v,w) is defined in Equation (5.11).

The derivatives of the NURBS solid are obtained by formal differentiation of Equation
(5.15) and given as:

N" (N D,
H=—= -2 5.16
“* D \NH D) (5.16)

ﬁn (‘ﬁH D"\
H=—=-== 5.17
*" D|\N* D, (17
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N?(N? D
H, === 5.18
where N7 and D7 are the numerator and denominator of Equation (5.15), respectively.
— n+l m+l 141
N7 =333 w,,,C N, ,@N, N, W) (5.19)
i=1 j=1 k=1
—p n+l m+l 141
D" =322 Wiy N, OIN,, (W) (5.20)
i=l j=1 k=1

Their derivatives are given as:
— n+l m+l 141
N'=3>">w,,,C...N,,@N, (N, W) (5.21)
i=1 j=1 k=1
] n+l m+l I+l
N'=33>w,,,C.uN,,@N,, N, W) (.22)
i=l j=1 k=1
=W n+l m+l 1+1
NY'=>>>w,,.C.sN,, N, (MN;, (W) (5.23)
= j=1 k=
—g n+l m+1 I+1
D[ =333 W, N, ,N, (N, (W) (5.24)
i=l j=1 k=1
=g n+l m+l 141
DI =33 w, N, ,@N, (N, (w) (5.25)
i=1 j=1 k=1
n+l m+l 1+1

D] = Z Z Z W, 4N ,GON (WN, (W) (5.26)

i=l j=1 k=1

From the definition of a NURBS solid, it can be seen that the NURBS solid is able to
describe not only the exterior surface of an object but also the interior. In this thesis, the
mathematic description of NURBS solid is applied to the finite element muscle model to

characterise the muscle fibre orientation arrangement.

In order to formulise the NURBS solid, the information on its boundary surface is required.
There are two different ways to construct the boundary NURBS surfaces for a solid. In the
first approach, the boundary surfaces are obtained directly form the Visible Human Data.
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Firstly, the contours lines are extracted from Data Slices. Then the boundary NURBS

surfaces are created by using these contour lines. This approach is illustrated in Figure 5.9.

(a) (b) ©

Figure 5.9 3D reconstruction o f muscle shape with NURBS: (a) Contour of muscle
boundary in one slice; (b) Stacks of contour curves; (¢) NURBS surface by skinning the

NURBS contours (Zhou and Lu, 2005)

In the second approach, the boundary NURBS surfaces are created from the muscle
geometry. Taking the depressor anguli oris muscle as an example to illustrate this method,
Figure 5.10 (a) shows the geometry of this muscle. First, the corresponding contour lines,
as shown in Figure 5.10 (b), are extracted from the geometric model by using the
pre-processing tool, ANSA (BETA CAE Systems S.A., 2009). Then the boundary NURBS
surfaces, as shown in Figure 5.10 (c), are generated by blending the contour lines in the
CAD package software Pro/ENGINEER (Parametric Technology Corp, 2004). Finally,
these NURBS surfaces are exported as an IGS file, from which the corresponding

information is extracted for creating the NURBS solid model.
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Figure 5.10 Procedure of creating boundary NURBS surface: (a) Muscle geometry; (b)

Muscle contour lines; (¢c) NURBS surface

In the applications presented in this chapter, the second method of creating NURBS
boundary surfaces is used. The NURBS solids are created by shrinking the boundary
NURBS surfaces to their centrelines. This step is accomplished by writing a FORTRAN

code. The corresponding programme is given in Appendix G.

5.4 FEM-NURBS method

Characterising the complex interior fibre orientation arrangement of skeletal muscle is the
motivation for developing the FEM-NURBS method. The basic idea of the FEM-NURBS
method proposed in this chapter is to use the NURBS solid for representing the muscle
fibre orientation arrangement, and pass the fibre directions at each Gauss point into the

finite element model as the initial fibre directions.
A quarter of a torus is created as an example to illustrate the FEM-NURBS method.

Figure 5.11 (a) shows a finite element torus model meshed with tetrahedrons. A NURBS

solid of the same size, as shown in Figure 5.11(b), is constructed by using the shrinking
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method which is introduced in Chapter 5.3.4. The fibres within the quarter torus are
assumed to be the isocurves in the circumference direction, as shown in Figure 5.11(b).
Thus, the initial fibre direction at any point within the quarter torus can be calculated by

computing the tangent of the isocurve on which the point lies.

Pass in the
coordinates

&
-«

Pass back the
fibre direction

Figure 5.11 Illustration of the FEM-NURBS method: (a) FE model with tetrahedrons; (b)
NURBS solid model with the fibre orientation arrangement indicated

As an example, assuming a fibre lies on an isocurve P and the fibre direction is along the
u-direction, thén on this isocurve P, the values of the other two directions are constant, i.e.

w} = {vo,w(; }. This isocurve can be expressed mathematically as:

I m n

H(u,v,,w,) = Z Z Z C. xS (v, W,) (5.27)

i=0 j=0 k=0

The tangent vector of this isocurve can be obtained by taking the derivative of Equation
(5.27) with respect to . The normalised form can be expressed as:

a.l(ua Vo > wo )/a"

A, vy, w,) = |oH(, v,, w,)/0u|

(5.28)

The fibre direction at a point, which lies on the isocurve P and has the coordinate of

{u,,v,,w,}, is given by:
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MG, v,,w,)/0u |
I@H(u, Vo, Wo)/ au”,ﬁ 29

A(u,,v,,w,)=

where the derivative of the isocurve P =H(u,v,,w,) with respect to u is given in

Equation (5.16).

In the first iteration of the finite element calculation, the fibre directions at all Gauss
integration points are calculated using Equation (5.29). These fibre direction vectors are
then passed back to the finite element solver as the initial fibre directions. In the subsequent
iterations, the fibre directions at each Gauss integration point are updated by (Weiss et al.
1996):

F-A
FA 5.30
-7 (5.30)

where a is the deformed fibre direction; A is the undeformed fibre direction; F is the
deformation gradient and A, is the fibre stretch ratio. The process of how the

FEM-NURBS method is implemented into ABAQUS is shown in Figure 5.12.

do i=1, steps
do j=0, increments in each step
do m=0, iterations in each increment
do n=1, elements in the model
do p=1, integration points in each element

if{((i .eq. 1) and. (j .eq. 0) .and. (m .eq.0)) then
call the FEM-NURBS method to assign the fibre directions

else
use Equation (5.30) to update the fibre directions

endif

Figure 5.12 Fibre direction assignment process in ABAQUS
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Finally, it should be noted that the FEM-NURBS method can be implemented into any
commercial finite element software, as long as enougix information is passed to the
user-defined material subroutines. The specific information needed for the FEM-NURBS
method is the coordinates of each Gauss point. The user-defined material subroutine
interface in ABAQUS is shown in Figure 5.13, where COORDS is an array containing the
coordinates of current Gauss integration point.

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
1 RPL,DDSDDT,DRPLDE,DRPLDT,
2 STRAN,DSTRAN, TIME,DTIME, TEMP,DTEMP,PREDEF,DPRED,CMNAME,
3 NDLNSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS, DROT,PNEWDT,
4 CELENT.DFGRDO0.DFGRD1.NOEL.NPT.LAYER KSPT.KSTEPKINC)

Figure 5.13 User subroutine interface in ABAQUS

The FEM-NURBS method cannot be implemented into LS-DYNA at this stage, because
the coordinates of each Gauss point is not available from the LS-DYNA user subroutine
interface. Figure 5.14 shows the user-defined material subroutine interface in LS-DYNA. It
is seen the information in the LS-DYNA user subroutine interface is less than that in the

ABAQUS user subroutine interface and it is restricted at the moment.

SUBROUTINE UMAT43 (CM, EPS, SIG EPSP, HSV, DT1, CAPA, ETYPE, TIME,
1 TEMP, FAILEL, CRV)

Figure 5.14 User subtoutine interface in LS-DYNA

5.5 Muscle constitutive relation

Since the FEM-NURBS method cannot be implemented into LS-DYNA at this stage and
the validated three-dimensional (3D) finite element (FE) skeletal muscle model presented
in Chapter 3 was developed in LS-DYNA, this model cannot be used for the calculations

undertaken in this chapter.
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In this chapter, a 3D FE skeletal muscle model was developed in ABAQUS (Hibbit,
Karlsson and Sorensen Inc. 2006). The muscle constitutive relation is proposed by Tang et
al. (2009) and this model has been validated through several scenarios in their work. The
model is able to capture the complex behaviour of skeletal muscle, which is active,
quasi-incompressible, transversely isotropic and hyperelastic (Herzog, 2000; Oomens,
Maenhout, Drost et al., 2003). Different from that in LS-DYNA, the material constitutive
model in ABAQUS requires the spatial form of the material tensor to be defined. Thus it is
worthwhile to give an overview of Tang et al.’s 3D skeletal muscle constitutive relation.

Tang et al.’s model is an extension of the Hill-type muscle model (Figure 5.15), consisting
of a contractile element in series with a series elastic element (SEE) and in parallel with a

parallel elastic element (PE).

Oy YWWA—/{"""""]— o,
< SEE CE )]
NN\ ——er—
PE

Figure 5.15 Hill’s three-element muscle model

The strain energy function used in their model has the following form:

U=U,(7)+U(4;,a,,A4,)+U, () (5.31)

where U,, U, are the strain energy stored in the isotropic matrix and the muscle fibre
structures, respectively; and U, is the portion of strain energy associated with the volume
change.

The ground substance consists of the connective tissue and the water. In Tang et al.’s (2009)
model, the ground substance is modelled as an isotropic material with the following strain

energy form:

U, (7 )= clexpblI? - 3)|-1} (532)
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where b and c are material constants; I is the first invariant of the right Cauchy-Green

strain tensor with the volume change eliminated.

In order to preserve the volume during the deformation, an additional item U,(J) is
added into the total strain energy:

U,0)= S0 -1 (5.33)
where J is the Jacobian of the deformation gradient; the constant D can be best understood

as a penalty parameter for incompressibility. Thus, nearly incompressibility can be
modelled with a rather small value of D.

The muscle fibre strain energy has the following form:
Uf(’Tf,aa’ Ad,)= UPE(If)_*-Um(Ifaaa’Alx) (5_~34)

where 4, is the stretch ratio in the muscle with the volume change eliminated; @, is the
activation ﬁmction and A4, is the stretch increment in the series elastic element; U,
Ug are the energy stored in the parallel element (PE) and series elastic element (SEE),
respectively. Theyvcan be expressed as the integral form of stress in PE (o ,;) and stress in

SEE (o) over the muscle stretch 4:

Ueg (;{f )= ftf 0 g (A)dA (5.35)
U (R, M) = [ 05 (4,a,, A%, YA (536)
where
— . |MA-n%i A, >1
rs(Ar) = {O, otherwise (>37)
ou(Ay.a,,A4,) = Blexpla(4, -1)]-1} (538)

where o, is the maximal isometric stress and a, f are material constants.

The process of updating A, has been given in Chapter 3.3, where the stress relationship
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between CE and SEE is used, i.e. the stress in CE equals to the stress in SEE. Since the
stress expression in CE here is different from that in Chapter 3.3, it is worthwhile to give
the expression of the stress in CE at timet + At :

1+ A4, /A4, AL <0
t+Ato, (Aﬂ,,,)='0' t+Ata l—kcAj‘u/A}'mO ’!f MS (539)
- B PPN L.V /¥ PP PR
1+kck¢Aj‘m/Aj1n0, "

where ‘o, is the stress corresponding to the fibre stretch ‘A ; k,='c,/a, and k, are

the shape parameters of the hyperbolic tension force-velocity curve of the contractile

element.

The 2nd Piola-Kirchhoff stress tensor S can be obtained from the strain energy density
given in Equation (5.31) (Belytschko, Liu and Moran et al., 2000):

S = %% =U, (2.1-2/31 - ;l’fc-‘J + U}(J””’I}’ (N®N)- -;-ZfC“ J +JU,C™ (5.40)

The Cauchy stress is defined by the push-forward of S (Marsden and Hughes, 1994):

6= %[U,’ (zﬁ_.i_ Tf’[)+U} [L(n@n)—éxf I)]+U} 1 (5.41)
where
. au -
U, = 2L = beexpp(7e -3)] (5.42)
BA
U'f = U'PE(Zf) +U'SE(Zf>aa’Ms) (543)
. oU, 2
= ==(-1 5.44
U, =—2=5V-1 (5.44)
with
Ups (If) =Opg (If) (5.45)
Ug(;,@,,A4,)=0g(4,a,,A%) (5.46)
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For the hyperelastic material specified by a strain energy function U, the material elasticity
tensor is given by:

U oS
H=4 =2—
oCoC oC

- 4J”“’3U,"(I®I)—§—J

23, +ICU)A®C™ +C @)

+[§TIC(U} +f,°U;)+—;—If(U} + U +IU, +JU, )](c-l ®C™)

(5.47)
+J AU, + AU, XNONON®N)
-3 U + TV, XNENSC ! +C ONEN)
2zcrp 1o :
_2(-51]0(]] +'§2-fo —JUJ}-cq
where
oc™ 1 . .
QT = ( ) =—2(c;/'cit +c;ic) (5.48)
¢ € ), 2“7

The spatial form of the material tensor is again defined as the push-forward of the material
elasticity tensor H (Marsden and Hughes, 1994):

h:= —FF-H.F'F’

” 'B‘@E—-;-J—‘(U; +IFU;)(BOI+1®B)

1[4:c, 0 zepon . 1o gr 7o U
+7[5 U +ITUD +54,U; + AU+ WU, +JUJ>](1®D

& (5.49)
+ f(U}_,T;‘ nn@n®n)
___j{_(U;',+I}‘U})(n®n®l+l®n®n)

2(2
+

- , 1 —_.. '
7(;15(]1 +§lfo —JUJ)L

where L is the symmetric 4™ order unit tensor

1
Ly = 5(5,_,‘5], +8,6,) (5.50)
and

= bzcexp[b(flc - 3)] (5.51)
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U'r =U'PE(Zf)+U'SE(If,ad,M’) (5.52)

- 8(4, =D, for 4,>1

Uy ()=
rs(4,)= 00{0 otherwise (5:33)
N 1+k
Us(d,,a,,M4,)= aﬂTexp[a(ﬂ,, -Dj] (5.59)
- 2

U, = 5 (5.55)

where £ is the ratio of the length of contractile element to that of series elastic element.

The material parameter values are adopted from Tang et al. (2009) and given in Table 5.1.

Table 5.1 Muscle material model parameters

b c D a B d k. i..o o, a, -k
(N/m?) | (m’/N) (N/m’) ) | Nm’) | O/m’)

1.79 821 1.0e-9 | 100| 0.1 1.65| 3.14 2 22e5 | 7.0e4 |03

5.6 Numerical examples

The proposed FEM-NURBS method and the muscle constitutive equations outlined in
Chapter 5.5 were implemented into ABAQUS (Hibbit, Karlsson and Sorensen Inc. 2006)
by programming user-defined material (UMAT) subroutines. The ability of the proposed
FEM-NURBS method is demonstrated through the examples presented below.

The muscle response can be classified as active or passive. The active muscle response is
induced by the brain signal. The active muscle force is generated by the contraction of
muscle fibres and the contraction magnitude is controlled by the neural input, which is
represented by the activation function @, in the constitutive model. In the following five

numerical examples, only the active responses of several different muscles are simulated
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and the muscles are stimulated from time zero. It is assumed that the muscles take 0.005 s
to reach the fully activated level and then the fully activated muscle is maintained in this
state until the end of the simulation. The total activation time is defined as 0.2 s. This

muscle activation function is shown in Figure 5.16.

1.2

0.6 H

0.4

Activation level

0.2

O 1 L 1 l

0 0.05 0.1 0.15 0.2 0.25
Time (s)

' Figin'e 5.16 The muscle activation function for the simulations

In the following five examples, only one boundary NURBS surface is generated for each
muscle. The orders of the two basis functions, which are used for defining the NURBS
surface, are set to 4. Each NURBS solid is created by shrinking its corresponding boundary
NURBS surface to its centreline. The control points in the centreline are obtained using
Equation (5.14). The order of basis function in the shrinking direction is set to 2. The
weight at each control point is set to 1. The knot vector and control point values are fetched
from the IGS files, which contain the NURBS surface information.

5.6.1 Example one: contraction of a cone

A muscle with a conical shape is considered for the test in this example. The top diameter

of the cone is 0.8 cm, the bottom diameter is 4.0 cm and the height is 5.0 cm (Figure 5.17).
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The bottom face of the cone is fully fixed during the simulation (Figure 5.18). The fibres

within the cone are assumed to be arranged in the way described in Figure 5.19.

0.8cm

JL

5.0cm

4.0cm

Figure 5.17 Geometry ofthe cone

Figure 5.18 Boundary condition on the cone  Figure 5.19 Fibre arrangement in the cone

Two methods are used for simulating the fibre arrangement within this cone. In the first
approach, the fibre directions are approximated as being along the z-direction. In the
second approach, the fibre arrangement is simulated using the NURBS method. The

deformed contour lines from these two methods, together with the undeformed contour
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lines, are plotted in Figure 5.20. From this figure, it can be seen that the deformations from
the two methods are almost identical. The deformation of the cone and the Z-directional
displacement distribution are presented in Figure 5.21.

undeformed contour shape

- ¢- deformed contour shape (NURBS)
— deformed contour shape (0,0,1)

4.00
g 3.00
1% 2.00
1.00

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00

Y coordinate (cm)

Figure 5.20 The undeformed and deformed contour lines ofthe cone

u, u3 (mm)

+1.855e 03
1.586e-01
-3.190e-01
-4.794e-01
-6.398e-01
-8.003e-01
-9.607e-01
-1.121e+00
-1.282e+00
-1.442e+00
-1.602e¢+00
-1.7630+00
-1.9230+00

Figure 5.21 (a) Deformation of the cone: Shaded area represents the deformed shape and

the red lines represent the undeformed shape; (b) Z-directional displacement distribution
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5.6.2 Example two: contraction of a barrel shape muscle

In this case, a barrel shape muscle is constructed for the test. The length of this muscle is
5.0 cm, the diameter at the two ends is 0.9 cm, and the diameter in the middle is 1.75 cm,
as shown in Figure 5.22. The left end of the muscle is fully fixed during the simulation
(Figure 5.23). The fibres inside this muscle are assumed to be arranged in the way

described in Figure 5.24.

< 5.0cm >

Figure 5.22 Geometry ofthe barrel shape muscle

Figure 5.23 Boundary condition on the barrel shape muscle

Figure 5.24 Fibre arrangement in the barrel shape muscle
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Two methods are used to model the fibre arrangement in this barrel shape muscle. In the
first approach, it is assumed the muscle fibres are arranged parallel in a single direction
(Z-direction). In the second approach, the fibre arrangement shown in Figure 5.24 is
simulated using the NURBS technique. The deformed contour lines from the two methods,
together with the undeformed contour lines, are plotted in Figure 5.25. From the resulting
configurations, it can be concluded that the muscle deformations from these two methods
are almost identical, which agrees with that from the first example. The deformation of'this
muscle and the displacement distribution are presented in Figures 5.26, 5.27 and 5.28. It is
known that muscle tissue is basically an incompressible material. Thus, the little change in
the muscle fibre arrangement cannot make a big difference in the total deformation. The
results from the two approaches therefore demonstrate that the NURBS technique can

provide accurate results.

undeformed contour shape
" deformed contour shape (NURBS)
deformed contour shape (0,0,1)

0.50

0.00 1.00 2.00 3.00 4.00 5.0 6.00

-1.00
Z coordinate (cm)

Figure 5.25 The undeformed and deformed contour lines ofthe muscle

X Z

Figure 5.26 Deformation ofthe muscle: Shaded area represents the deformed shape and the
red lines represent the undeformed shape
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U, U3 (m)
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Figure 5.27 Z-directional displacement distribution in the muscle
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Figure 5.28 Magnitude displacement distribution in the muscle

5.6.3 Example three: contraction of a whole torus

In this example, a whole torus is considered for the demonstration. The geometry of the
torus is shown in Figure 5.29(a), where the inner radius is 0.9 cm and the outer radius is 1.7
cm. It is assumed that the torus has a parallel circular fibre arrangement as shown in Figure
5.29(b). In the finite element analysis, the eighth torus model is utilised due to the
symmetry of the torus. Plane symmetrical boundary conditions are applied to the eighth
torus model, as shown in Figure 5.30, where ZSYM’, 'YSYM’ and ‘XSYM’ represent
Z-plane, Y-plane and X-plane symmetrical conditions, respectively. However, the eighth

torus model is only used in the finite element calculation. To better visualise the
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deformation of the torus, the results on the whole torus are used and they are obtained

through mirroring the results from the eighth torus model.

L

>.9ci

() (b)

Figure 5.29 (a) Geometry ofthe torus; (b) Fibre arrangement in the torus

ZS

XSYM

YSYM

Figure 5.30 Boundary conditions on the eighth torus

In practice, when the torus is stimulated, it would contract along its circular fibres. Then the
circular fibres will shrink towards the centre ofthe torus after the deformation. On the other
hand, since the torus is modelled as an incompressible material, it will become thicker in
Z-direction. These theoretical predictions are matched by the finite element results
presented in Figures 5.31 and 5.32, where ‘U1’ and ‘U3’ represent X-directional and
Z-directional displacements, respectively. It should be noted that the aim of'this example is
towards the realistic simulation of the orbicularis oris muscle which also has circularly

arranged fibres.
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(a)
Figure 5.31 (a) Deformation of the torus: Shaded area represents the deformed shape and

the red lines represent the undeformed shape; (b) X-directional displacement distribution

W OO\ N — 00— W h O\
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Figure 5.32 (a) Deformation of the torus: Shaded area represents the deformed shape and

the red lines represent the undeformed shape; (b) Z-directional displacement distribution

5.6.4 Example four: contraction of a half torus

In this example, a halftorus is built with the inner radius of 0.7 cm and the outer radius of
1.3 cm (Figure 5.33). The fibres within this half torus are assumed to be arranged
circumferentially, as shown in Figure 5.34. During the simulation, one end ofthe halftorus

is fully fixed, as shown in Figure 5.35. If the halftorus is regarded as a muscle, this fully

Page 161



Chapter S Modelling the Fibre Arrangement of Skeletal Muscle Using the FEM-NURBS Method

fixed end can be regarded the origin side ofthe muscle which is always attached to a least

moveable structure.

0.7cm-
-1.3cm-

Figure 5.33 Geometry ofthe halftorus

Figure 5.34 Fibre arrangement in the halftorus

Figure 5.35 Boundary condition on the halftorus

In this example, two methods are used to simulate the fibre arrangement inside this half
torus. In the first approach, the halftorus is divided into two segments from the middle and
the fibre direction in each segment is approximated by a single unchanged direction, as
shown in Figure 5.36, where the green part represents one segment of the half torus, the

grey part represents the other segment, and the red arrow lines represent the fibre direction
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in each segment. The results from this method are presented in Figures 5.37 and 5.38.

Fibre direction:

Figure 5.36 Fibre directions in segments ofthe halftorus (method 1)

Figure 5.37 Deformation ofthe halftorus from method 1

u, ul (cm) 02 (cm)
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+1.866e-01 +2.975e-01
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+3.7330-02 +5.3710-02
+0.000e+00 -7.2440-03

u

Figure 5.38 X-directional and Y-directional displacement distribution in the halftorus

(method 1)

In the second approach, the fibre arrangement within the halftorus is represented using the

NURBS technique and the results from this method are presented in Figures 5.39 and 5.40.
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Figure 5.39 Deformation ofthe halftorus from method 2
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Figure 5.40 X-directional and Y-directional displacement distribution in the halftorus

(method 2)

It is obvious that the results from the second approach are more realistic than those from
the first approach. The first approach causes more vertical displacement (Y-directional
displacement) in the free end of the half torus and more horizontal displacement
(X-directional displacement) at the top of the deformed half torus. Furthermore, the first

approach causes a hollow part at the place where the two segments connect with each other,

which is not expected in reality.

5.6.5 Example five: contraction of the depressor anguli oris

In this demonstration, a human facial muscle is considered. The shape of the depressor

anguli oris muscle is taken from the standardised forensic database provided by School of
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Life Sciences, Dundee University. The geometry of this muscle is shown in Figure 5.41.
The fibres within this muscle are assumed to be arranged from one end to the other end

along Z-direction. During the simulation, one end ofthe muscle is fully fixed, as shown in

Figure 5.42.

0.4cm

Figure 541 Geometry ofthe depressor anguli oris muscle

Figure 5.42 Boundary condition on the depressor anguli oris muscle

Two approaches for simulating the fibre arrangement inside the depressor anguli oris
muscle are performed here. In the first approach, the muscle is divided into two segments
from the middle and the fibre directions in each segment are approximated by one single

unchanged direction, as indicated by the red arrow lines in Figure 5.43. It should be noted
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that this approach is widely used in most of the musculoskeletal human body systems
where the muscles are represented by the line segments. The simulated muscle shape and
the displacement distributions from this approach are presented in Figures 5.44 and 5.45,
respectively. It can be seen that the free end has rotated away from the undeformed

configuration, suggesting the deformation is not realistic.

Fibre directions

Figure 5.43 Fibre directions in the segments ofthe muscle (method 1)

Figure 5.44 Deformation ofthe depressor anguli oris muscle (method 1)
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Figure 5.45 Displacement distributions in the depressor anguli oris muscle (method I)

In the second approach, the fibre arrangement is represented using the NURBS technique.
The deformed muscle shapes and the displacement distributions from this approach are
shown in Figures 5.46 and 5.47, respectively. It is seen that the results from the second
approach are more realistic than those from the first approach. The muscle contracts along
this shape in the second approach. This suggests that the FEM-NURBS technique is
capable of simulating the fibre arrangement in an irregular muscle as long as the fibres

within the muscle can be represented by the isocurves ofa NURBS solid.
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Figure 5.46 Deformation ofthe depressor anguli oris muscle (method 2)
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Figure 5.47 Displacement distributions in the depressor anguli oris muscle (method 2)
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5.7 Summary

In this chapter, the FEM-NURBS method, which is based on the combination of the finite
element method and the non-uniform rational B-spline (NURBS) solid mathematical
representation, has been proposed to characterise the fibre orientation arrangement of
skeletal muscle. This method has been implemented into a non-linear finite element
analysis programme, ABAQUS, by means of user-defined material (UMAT) subroutines.
A number of examples have been used to demonstrate the ability of this method to model
muscle structures. The results show that the proposed method is able to characterise both

the fibre arrangement and the biomechanical response of skeletal muscle.

The FEM-NURBS method proposed in this thesis provides an alternative way of describing
the fibre orientation arrangement. Compared to the commonly used line segment method,
the FEM-NURBS method characterises the fibre orientations more accurately. Compared to
the method of using a local element coordinate system, the FEM-NURBS method is easier

for modelling objects with complex geometries.

The advantages of the proposed FEM-NURBS method are its ability to model curved fibre
arrangement and the feature that it takes use of the commercial software (ABAQUS) for
the calculation. The skeletal muscle architectures are the parallel fibred and the pinnate
fibred, as stated in Section 2.2.2. The FEM-NURBS method is able to simulate the parallel
and unipennate arranged muscle fibres. However, for a bi-pennate or multi-pennate muscle,
one single NURBS solid is unable to represent its fibre arrangement. In this case, two or
more NURBS solids need to be created. However, how will this perform is unknown so far.
Future work should investigate the ability of the FEM-NURBS method to model
multi-branches muscles. Another limitation of the FEM-NURBS method is that the muscle
fibres are assumed to be the isocurves in the NURBS solid. Therefore, the fibre orientation
arrangement is not based on the actual muscle architecture. In the future, it is hoped the
muscle fibre orientation information can be accurately obtained from the MRI data and

then input into the finite element model for the calculation.
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It should be noted that the FEM-NURBS method developed in this chapter enables a more
accurate simulation of the facial muscles. However, because of the limitation of the data
that can be fetched to the LS-DYNA user subroutine interface, this FEM-NURBS method
cannot be implemented into LS-DYNA at this stage. Therefore, this method has not been
applied to the facial model developed in Chapter 4. In the future, as the development of
LS-DYNA progresses, the implementation of the FEM-NURBS method will become
achievable and this will permit a more accurate facial model. Furthermore, the muscle fibre
orientation arrangements of the facial model could also be considered for investigation
using the FEM-NURBS method developed in this chapter.
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Chapter 6

Conclusions and Future Work

6.1 Summary and conclusions

This chapter summarises the general conclusions that are drawn from the present
investigation and gives guidelines for future research. For specific conclusions and future

research directions, readers are directed to these sections at the end of each chapter.

The research objectives of this thesis, as outlined in Chapter 1 - introduction, were to:

1. Develop reliable numerical facial soft tissue models

2. Develop a numerical facial model which can be used for the simulations of facial

surgery anvdv facial movement.

In respect to these objectives, the following research has been undertaken, which has led to

the following conclusions being made:

® Skeletal muscle model development

A finite element skeletal muscle model has been developed to simulate the skeletal muscle
mechanical behaviour which include the active, quasi-incompressible, fibre-reinforced and
hyperelastic behaviour. This model is phenomenological and based on Hill’s three-element
model. The force-velocity and force-length relationships of the muscle are incorporated

into the model. The model is implemented into a non-linear finite element analysis
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programme LS-DYNA by means of user-defined material subroutines and validated by
comparing the finite element analysis results with the published experimental data on the
New Zealand white rabbit tibialis anterior muscle. It is shown that the model is able to
capture the passive and active muscle behaviour during both the shortening and
lengthening movements. This work is presented in Chapter 3.

The constitutive skeletal muscle model developed in Chapter 3 is able to capture the
complex mechanical behaviour of skeletal muscle. However, in this model, it is assumed
that the skeletal muscle fibres are distributed parallel and have a single direction. Thus, the
model fails to capture the complex fibre arrangement within a skeletal muscle system. To
overcome this problem, in Chapter 5, a FEM-NURBS method is proposed to model both
the mechanical properties and the internal fibre arrangement of skeletal muscle. This
method is implemented into the non-linear finite element analysis programme, ABAQUS
by means of user defined material subroutines. A number of numerical examples have been
carried out to demonstrate that the proposed method is able to capture both the
biomechanical response and the fibre arrangement of skeletal muscle.

® Finite element facial model development

A finite element facial model has been developed which can be used for the simulation of
facial surgery and facial movement. In this model, the facial skin and the skull structures
are based on the patient specific CBCT data, and the muscle geometry is taken from a
standardised forensic database. The subcutaneous tissue is created to fill the gap among the
facial skin, the skull and the muscles. This facial model is first used to simulate
cranio-facial surgical procedures. The results are compared with the patient’s 6-month
post-surgery data. Good agreement is achieved, suggesting that the finite element

modelling technique can serve as a predictive tool for surgical procedures.

Apart from using the developed facial model for predicting a patient’s post-surgical facial

changes, simulations of human facial movement are also considered. In these simulations, a
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novel approach is proposed. In this method, the facial muscles responsible for individual
facial expressions are assigned with the constitutive muscle material model developed in
Chapter 3. Thus, muscles can be activated and contracted to generate individual facial
expressions. To test this method, firstly, two facial expressions (smile and disgust) are
performed on the patient’s pre- and post-surgical facial models. This is followed by the
simulation of mouth opening process by activating the anterior digastric and mylohyoid

muscles. The simulations of the aforementioned facial movements show promising results.

6.2 Directions for future work

As a consequence of the above conclusions, directions for future work are suggested in the

following areas:

® Finite element skeletal muscle model development

Although, an active, quasi-incompressible, fibre-reinforced and hyperelastic finite element
skeletal muscle model has been developed in this thesis, the development of the skeletal
muscle model is still in its early stages. In order to consider some of the shortcomings, the

model can be improved from the following perspectives:

(i) The skeletal muscle behaviour is known to be viscoelastic. It is shown that the skeletal
muscle tissue stress-strain curves are affected by the loading rate (Myers, Wooley,
Slotter et al., 1998). Therefore, when modelling the dynamic behaviour of the skeletal

muscle, it is necessary to take the muscle strain rate effects into account.

(ii) The developed skeletal muscle model is based on Hill-type and is based at the
macroscopic level. This model is able to describe the general macroscopic phenomenon
of skeletal muscle, including the skeletal muscle force-velocity and force-length
relationships. The shortcoming of this model is that it always involves many material
constants, some of which do not have physical interpretations and cannot be measured
from experiments. However, in the micro-structural Huxley-type model, most
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parameters have a physical meaning and some of them can be measured directly.
Besides, the Huxley-type model describes the muscular contraction dynamics at a
micro-scale level, which is more reasonable when compared to the Hill-type model.
However, the Huxley-type model increases the level of complexity due to the need of
capturing data at the micro level. Future work here could be to develop a multi-scale
skeletal muscle by combining the merits of Hill-type and Huxley-type models.

(iii) A FEM-NURBS method has been proposed and is able to characterise the fibre
orientation arrangement of skeletal muscle. However, this method is unable to handle
an arbitrary muscle fibre arrangement at present. When the muscle has multiple
branches, this method loses its applicability. Further improvement could be carried out

to deal with multi-branches muscles in the future.

® Development of accurate finite element facial models

Further to the developed finite element facial model for the simulations of facial surgery

and facial movement, more studies are suggested in the following areas:

(i) In this thesié, a finite element facial model is constructed from the patient specific
CBCT data of the facial bones and facial skin together with the adjusted generic facial
muscles. As the development of MRI and image segmentation techniques and patient
specific muscle data becoming available, more accurate simulation is possible. Here, in
particular, patient specific muscle data instead of generic muscle data would provide
enhanced results. In addition, MRI will provide detailed fibre orientation of each facial
muscle. Inputting the fibre orientation information into the FE facial model will

significantly increase the simulation accuracy.

(i) Human skin is a complex tissue consisting of several distinct layers. The complex
structure of the skin leads to complex mechanical behaviour. The skin shows a

non-linear stress-strain relationship, time-dependent, incompressible, anisotropic and
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inhomogeneous behaviour (Hendriks, Brokken, Eemeren, et al. 2003). Besides,
wrinkling is a phenomenon common to all human skin. On the face, certain wrinkles
are important for self-expression. Any model of skin should take the complex
mechanical behaviour and skin wrinkling into consideration in order to make realistic
predictions. Therefore, future work should look at developing better facial skin models
instead of the linear elastic model used in this thesis.

(iii) In this thesis, the simulation of facial surgery using the finite element technique has
only been validated by using one patient. Quantitative validation of the simulation
should be considered in the future. On the other hand, in this thesis, simulations of two
facial expressions and the mouth opening process have been performed. However, none
of these results have been validated at present. In the future, both pre-surgery and
post-surgery facial movement data could be collected and used for the validation of

these simulated facial movements (facial expressions and mouth opening).

(iv) The FEM-NURBS technique developed in this thesis has been implemented into the
ABAQUS system. Because of the restriction of the data passed into LS-DYNA user
subroutines, the FEM-NURBS method cannot be implemented into LS—DYNA at
present. However, the facial model is developed in LS-DYNA. Thus, the FEM-NURBS
method cannot be applied into the developed facial model at the current stage. Further
extension of the LS-DYNA code would allow the implementation of the proposed
FEM-NURBS technique to the facial model. Then, the accuracy of the facial model
with the muscle fibre orientation arrangement modelled by the method presented herein

should be investigated.

(v) After the facial surgery, clinician and patient are interested in the expected facial
contours and shape some months after the swelling has disappeared. During this healing
period, the soft tissue changes due to not only reduced swelling but also ageing and
growth. Therefore, incorporating of the soft tissue growth into the finite element facial
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model will increase the accuracy of simulating the long-term post-surgery facial

movements.

(vi) In addition, more work is needed before the proposed method can be used as a tool in
the day-to-day planning of maxillofacial surgery, such as simplifying the process of
creating the finite element facial model and the need of finding faster segmentation
methods for facial muscles. More future challenging work could be to simulate speech
and other facial actions.
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1D One-dimensional

3D Three-dimensional

4D Four-dimensional

ARCCA Advanced Research Computing @ Cardiff
CAD Computer-aided Design

CAM Computer-aided Manufacturing

CBCT Cone Beam Computerised Tomography
CE Contractile element

CT Computer Tomography

DM Distributed moment

FE Finite element

FEA Finite Element Analysis

FEM Finite Element Model

HPC High-Performance Computing

MRI ‘Magnetic Resonance Imaging

MSD Mass-Spring-Damper

MSM Mass-Spring Model

MTM Mass Tensor Model

NURBS Non-uniform Rational Basis Spline
oS Operating system

PE Parallel element

SEE Series elastic element

SMFE Super-positioned muscle finite element
SR Sarcoplasmatic reticulum

TA Tibialis anterior

™J Temporomandibular joint

UMAT User-defined material
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Boldface is used for tensors

Chapter 2
a Outward unit vector in the current configuration
A Outward unit vector in the reference configuration
B Left Cauchy-Green deformation tensor
B Left Cauchy-Green tensor with the volume change eliminated
By A continuum body
C Right Cauchy-Green deformation tensor
c Right Cauchy-Green tensor with the volume change eliminated
c Material version of the second elasticity tensor
c " Spatial version of the second elasticity tensor
E Green strain tensor
E' Umtbase vector components in the reference configuration
¢ Unit base vector components in the current configuration
F Deformation gradient
Fual Dilatational part of the deformation gradient
Faev Deviatoric part of the deformation gradient

I,,1,,...,1; Strain invariants
I,,1,,1,,1, Strain invariants with the volume change eliminated
J Jacobian determinant of the deformation gradient

n Fibre direction in the deformed configuration
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P

Py

Qo

Svel

Sdev

Fibre direction in the undeformed configuration

First Piola-Kirchhoff stress tensor

A particle in the deformation configuration

A particle in the undeformed configuration

A particle in the deformation configuration

A particle in the undeformed configuration

Second Piola-Kirchhoff stress tensor

Dilatational part of the deformation gradient

Deviatoric part of the deformation gradient

Cauchy traction vector

First Piola-Kirchhoff traction vector

Displacement of a material point

Displacement of material point X at time t

Strain energy function

Derivatives of strain energy function W with respectto /(o =12,--)
Dilational part of the strain energy

Deviatoric part of the strain energy

Position vector of a material point in the current configuration
Components of position vector in the current configuration
Position vector of a material point in the reference configuration
Components of position vector in the reference configuration
Fibre stretch ratio in the direction of the undeformed fibre
Eigenvalues of the deformation gradient F

Cauchy stress
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T, Boundaries in the reference configuration
I, Boundaries in the current configuration

(X, 1) Mapping function

v(E) Strain energy function
Q, Reference configuration
Q, Current configuration
Chapter 3
A Material constants associated with PE
b,c Material constants associated with the isotropic matrix
d Offset of the eccentric part of force-velocity function
D Compressibility constant
E Young’s modulus
f(& Attachment rate function
S, Muscle force-velocity function
fa Muscle force-length function
S Muscle activation function
F Force generated in the contractile element of Hill’s muscle model
F, Total muscle force generated in Hill’s muscle model
I O Maximal isometric force
F, Force generated in the parallel element of Hill’s muscle model
Fo Force generated in the series elastic element of Hill’s muscle model
g Detachment rate function
G Shear modulus
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2~
Q

x~ NS
Y

(o T B o
a ]

2 1~

Second order unit tensor

First invariant of the right Cauchy-Green strain tensor with the volume change
eliminated

Jacobian of the deformation gradient

Bulk modulus

Shape parameters of the force-velocity curves
Symmetric fourth order unit tensor

Total muscle length

Muscle length component in the contractile element
Muscle length component in the series elastic element
Fibre direction vector in the undeformed configuration
Fibre direction vector in the deformed configuration
Distribution function

Activation level before and after the activation
Activation level during the activation

0-th normalised moment of the bond distribution function
Activation factor

Parameter related to the rate of the chemical process
Activation time

Deactivation time

Scaled shortening velocity of a half sarcomere

Total strain energy in the muscle

Strain energy stored in the muscle fibre

Strain energy stored in the isotropic matrix
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U, Strain energy associated with the volume change

Upe Strain energy stored in the parallel element (PE)

U Strain energy stored in the series elastic element (SEE)
v Poisson’s ratio

a, Fibre activation

a,p Material constants associated with SEE

AA, Fibre stretch increment in the series elastic element
EE A non-dimensional quantity proportional to the strain of CE
A Extension ratio in the fibre direction

A Fibre stretch ratio with the volume change eliminated
A, Fibre stretch in the series elastic element

Aopt Optimal fibre stretch

Y Minimum stretch rate

A,  Stretch rate in CE

o Cauchy stress produced in the whole muscle

o, Maximal isometric stress

o, Active stress generated by all cross-bridges

Ocx Stress produced in the contractile element

O (e Stress produced in the muscle fibres

O incomp Stress due to the volume change

[ S Stress produced in the surrounding matrix

o, Passive stress produced in the muscle model

Opg Stress produced in the parallel element

O ux Stress produced in the series elastic element
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9 ol

& U o

Stress produced in the surrounding matrix
Stress produced in the active muscle fibre
Fraction of the muscle fibre

Fraction of participating myosin heads

Chapter 4

Strain energy density function

First invariant of the strain tensor
Jacobian of the deformation gradient
Material parameter

Material parameter

Chapter S

Control point position vectors for NURBS curve

Control point position vectors for NURBS surface

Co_ntrol' point position vectors for NURBS solid

Four-dimensional homogeneous control vertices

Four-dimensional homogeneous control net vertices

Left Cauchy-Green strain tensor with the volume change eliminated

Material constants associated with the isotropic matrix

Right Cauchy-Green deformation tensor with the volume change eliminated

Control point vectors of the centreline
Material constant associated with the volume change

Offset of the eccentric force-velocity function
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x

Kol
N

z -

n
N, @)
P(t)
Q(,v)
R, , ()
S

Si,j (u’ V)

Green strain tensor
Deformation gradient tensor
Rational B-spline solid representation
Material tangent stiffness tensor
Spatial form of the material tangent stiffness tensor
Second order unit tensor
First invariant of the right Cauchy-Green strain tensor with the volume change
eliminated
Jacobian of the deformation gradient
Material constant, ratio of length of CE to that of SEE
Shape parameters of hyperbolic force-velocity curve of contractile element
Symmetric fourth order unit tensor
Fibre direction vector in the undeformed configuration
Fibre direction vector in the deformed configuration
Non-rational B-spline basis functions
B-spline curve representation
Cartesian product rational B-spline surface representation
Rational B-spline curve basis functions
Second Piola-Kirchhoff stress tensor

Rational B-spline surface basis function

S, ;. (u,v,w)Rational B-spline solid basis function

U
U,

Uy

Total strain energy in the muscle
Strain energy stored in the isotropic matrix

Strain energy stored in the muscle fibre

Page 200



Appendix B — Notation

U, Strain energy associated with the volume change

Uy Strain energy stored in the parallel element (PE)

Ug Strain energy stored in the series elastic element (SEE)

W, Weight factors

a, Activation function

a,pf Material constants associated with the series elastic element
AZ, Fibre stretch increment in the series elastic element

o Strain rate corresponding to the maximum isometric tetanised force

A Fibre stretch ratio with the volume change eliminated
o Cauchy stress tensor

o, Material constant, the maximal isometric stress

Oy Stress produced in the parallel element (PE)

O Stress produced in the series elastic element (SEE)
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Appendix C — Hill’s Force-Velocity
Equation

The most famous equation in muscle mechanics is Hill’s equation (Hill, 1938). The
equation refers to the property of a skeletal muscle in the tetanised condition. It has the

form:
v+p)T +9) = p(T, +q) (C.1)

where T represents the tension in a muscle; v represents the velocity of contraction; T
is the maximum tension developed in the muscle under isometric condition; and ¢, p are

constants.

Hill’s Equation (C.1) is an empirical equation based on the experimental data from the frog
Sartorius muscle. During the experiment, the muscle was held under the isometric
condition, i.e. its ends were clamped. Then the muscle was stimulated electrically at a very
high voltage aﬁd frequency to generate the maximum tension. After this, the muscle was
released suddeﬁl& to a new length. The tensile force 7 corresponding to this new length was
developed. T is smaller than 7. Immediately after the release, the contraction velocity was
measured. The experimental data are plotted in Figure (C.1), where the circles represent the
experimental data and the solid curve represents Hill’s Equation (C.1) with ¢ = 357

gram/sq.cm; ¢/ T,= 0.22; p = 1.03 cm./sec.
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-

-]
R

D

l“ v
S (=3
T T

Velocity of shortening (cm./sec)

Load (g.wt.)

Figure C.1. Relation between load (g.wt.) and speed of shortening (cm./sec.) during
isotonic contraction. (Hill, 1938)

From Figure C.1, it is seen that Hill’s equation shows a hyperbolic relation between T"and v .
The higher the contraction velocity, the lower is the tension; the slower the contraction

velocity, the higher is the tension.

A non-dimensional form of Hill’s equation is given as:

_T_= 1-(v/v,) €2)

I, 1+k,(v/v,) ’
Or

v _1-d/T) (C3)

vo 1+k(T/T,)
where k, =7,/q and the maximum velocity v, =p7,/q. The constant ¢ is almost
proportional to T;,. The value of &, for skeletal muscle is in the range of 1.2 to 4 (Fung

1981)

Page 203



Appendix D — Geometry Relation in Hill’s Three-Element Model

Appendix D — Geometry Relation in
Hill’s Three-Element Model

CE SEE

\\ﬁ\

Figure D.1 Geometry of Hill’s Model (Kojic, Mijailovic and Zdravkovic, 1998)

When the Hill’s three-element muscle is stretched without activation, the geometry relation
among the three elements can be drawn in Figure D.1. The following relation can be

obtained from this figure:

L,+U, =L +Up+L,+U; ®.1)

where L, is the total initial length, L,,and L, are the initial lengths of the contractile
and series elastic elements respectively; U; is the total displacement, U’ and U_are
the displaoements of the contractile and series elastic elements respectively. Since the
muscle is passively elongated, the displacement in the series elastic element is zero,

i.e.U? =0, as illustrated in Figure D.1

Assuming the ratio of the length of contractile element to that of series elastic element as:
k = LsO /Lmo (D2)

When the muscle has no deformation, the following relation holds:

L,=L,+L, D.3)
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Dividing Equation (D.1) by L,, and using Equations (D.2) and (D.3), the following

relation is obtained:

A, = (1+ E)A, — kAL D.4)
0 o o

where AZ),, A1) and AZ] are defined as:M?,,:—U—"‘—,M‘;=£]3— and AL U
Lmo Lpo LsO

the initial state, i.e. the muscle has no deformation, AZ), =0,A4) =0and A4 =0

Now considering an arbitrary time 7 state, the following equation can be obtained:

‘L,=Ly+U=L,+U+ [ v, dt+L,+U, D.5)
where v, is the velocity of the contractile element contraction, and ¢, is the activation

time. Dividing Equation (D.5) by L_,, the following equation can be obtained:

A+B)'A, =20+ Z—"dt+k‘,l, D.6)
4 Limo
t ’ 0
where ‘A4, , A, and ‘A are defined as: ‘A4, Lo+ U, , A= Luo +Um and
,. d L, L.,
g =LM,+‘U=L;,0 .
? L, L,
Further, Equation (D.6) can be written at the end of the time step as:
a +k)”"‘,1p =4, +AA, +k'A, +kAA, ®.7)
Then, the increment of stretch in the contractile element can be obtained as:
Mm = al —kA/%‘ (D8)
where
a =0+ k)‘*’”lp -4, —k‘A, D.9)
AA_ is the stretch increment in the contractile element.
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Appendix E — Fortran Codefor the
Skeletal Muscle Model

Subroutine umat43 (cm, eps,sig,epsp,hsv,dt1,capa,etype,time, temp, failel,crv)
c*****##**************************#***********#****#*********************
c LS-DYNA user defined routine for skeletal muscle constitutive model
c Copyright: Yongtao Lu, School of Engineering, Cardiff University
c*******#*#**t******##*t**************t*****#**********#*****************
ST input variables explanation  ////IHITIIITIIIIIININEENECIEEIEEEE VA E 0

cm(1) --- cm(32) = variables comes from the LS-DYNA keyword input deck
Cauchy stress components

sig(1) = local x Cauchy stress

sig(2) = local y Cauchy stress

sig(3) = local z Cauchy stress

sig(4) = local xy Cauchy stress

sig(5) = local yz Cauchy stress

sig(6) = local zx Cauchy stress
history variables

hsv(1) = 1* history variable

hsv(2) = 2™ history variable

hsv(n) = nth history variable
other variables

dt1 = current time step size

time = current time

temp = current temperature
include 'nlqgparm'
include 'iounits.inc'
common/bk06/idmmy,iaddp,ifil, maxsiz,ncycle,ctime(2,30)
character*5 etype
dimension cm(*),eps(*),hsv(*),crv(lq1,2,*),sig(*)
logical faile

O 0 O O 0 0 0 0 0 0 0 0 06 06 06 06 0060

DIMENSION GC(3,3),CBAR(3,3),GB(3,3),BBAR(3,3),AN0(3), ANNO(3,3),
1 FN(3),AN1(3), ANN1(3,3),UNIT2(3,3),ST(3,3), DFGRD1(3,3),
2 STI(3,3),STFPE(3,3),STFSE(3,3),STJ(3,3)

PARAMETER (ONE=1.0D0,TWO=2.0D0, THREE=3.0D0,S[X=6.0D0)
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(o]

aO O 60 0

if (etype.eq.'solid") then

b=cm(1) b

c=cm(2) lc :

TMO = cm(3) ! SIGMAO, maximum isometric stress

D =cm(4) ID

AK= cm(5) I CONTANT K

ALFA= cm(6) t ALFA

BETA= cm(7) | BETA

DDRSMO0= cm(8) I anmdafm-zero-dot

AC= cm(9) ! K-c

AB= cm(10) !K-e

AD= cm(11) ! d

Time0 = cm(14) ! t0: the activation time

Timel = cm(15) | t1:the deactivation time

Factor = cm(16) ! S: the exponential factor

APE =cm(17) ! material constant A

aLevell = cm(18) | activation level before and after contraction,0.0
aLevel2 = cm(19) ! activation level during contraction, 1.0

emda_opt =cm(20) ! the optimal fibre stretch

calculate the intial fibre direction according to the two nodes' coordinates

FX1 = cm(25); FY1 = cm(26); FZ1 = cm(27)

FX2 = cm(28); FY2 = cm(29); FZ2 = cm(30)

DIS = sqrt((FX2-FX1)**2HFY2-FY1)**2HFZ2-FZ1)**2)

FXO0 = (FX2-FX1)/DIS; FYO0 = (FY2-FY1)/DIS; FZ0 = (FZ2-FZ1)/DIS
ANO(1)=FX0; ANO(2)=FY0; ANO(3)=FZ0

NHV=8, thus,deformation gradient stored in hsv(9),...,hsv(17)
pass the deformation gradient to the matrix DFGRD(3,3)

DFGRD1(1,1)=hsv(9); DFGRDI(1,2)=hsv(12); DFGRDI1(1,3)=hsv(15);
DFGRD1(2,1)=hsv(10); DFGRD1(2,2)=hsv(13); DFGRD1(2,3)=hsv(16);
DFGRD1(3,1)=hsv(11); DFGRD1(3,2)=hsv(14); DFGRD1(3,3)=hsv(17);

compute the Jacobian

DET = DFGRDI(],1) * DFGRD1(2,2) * DFGRDI1(3,3)
2  +DFGRDI(1,2) * DFGRDI1(2,3) * DFGRDI(3,1)
3 +DFGRDI(1,3) * DFGRDI(3,2) * DFGRD1(2,1)
4  -DFGRDI(],2) * DFGRDI(2,1) * DFGRDI1(3,3)
5  -DFGRDI(1,3) * DFGRDI(3,1) * DFGRD1(2,2)
6 -DFGRDI(2,3) * DFGRDI(3,2) * DFGRDI(1,1)
SCALE1 = DET**(-ONE/THREE)
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SCALE2 = DET**(-TWO/THREE)
c compute right Cauchy-Green tensor — GC(3,3)

DO2001I=1,3
DO 200J=1,3
GC(L))=0.0
DO 200 K=1,3
GC(LJ)= GC(L))+DFGRD1(K,)*DFGRD1(K,J)
200 continue
c
c compute the right Cauchy-Green tensor with the volume change eliminated,
CBAR(3,3)
c
DO 210 =1,3
DO 210J=1,3
CBAR(LJ) = GC(L))* SCALE2
210 continue

c compute left Cauchy-Green tensor -- GB(3,3)

DO 2201I=13
DO220J=13
GB(1,J)=0.0
DO 220 K=1,3
GB(1,))= GB(L,J)+DFGRD1(ILK)*DFGRD1(J,K)
220 continue
c o
c compute the left Cauchy-Green tensor with the volume change eliminated,

BBAR(3,3)
c
DO 2301=1,3
DO 230 J=1,3
BBAR(LJ) = GB(LJ)* SCALE2
230 continue

c compute the first invariant with the volume change eliminated
HIBARC1=CBAR(1,1)*CBAR(2,2)+CBAR(3,3)

c compute the fibre stretch ratio in the undeformed configuration

DO 240 I=1,3
DO 240 J=1,3
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ANNO(LJ)=ANO(I)* ANO(J)
240 continue

ANMDF = 0.0
DO 250 I=1,3
DO 250 J=1,3
ANMDF =ANMDF + CBAR(LJ)* ANNO(J,I)
250 continue
ANMDF = SQRT(ANMDF)

(<]

compute the current muscle fibre direction

DO I=1,3
FN(I) =0.0
DO K=1,3
FN(I) =FN()+DFGRD1(LK)* ANO(K)
END DO
AN1(I) = SCALE1*FN(I)/ANMDF
END DO

set the initial values for some variables

(]

RSS = hsv(5) ! stretch ratio in SEE, =Ls(t)/Ls(0)
RSM = hsv(6) ! stretch ratio in CE, =Lm(t)/Lm(0)
SIGMO = hsv(7) !  maximum stress of CE at initial time
DRSM = hsv(8) | stretch increment in CE, =Um(t)/Lm(0)
AAA0=0.0
DO I=5,8

AAAO0=AAAO0+ABS(hsv(l))
END DO
IF (AAA0.EQ.0.) THEN ! first iteration

RSS=1.0

RSP=1.0 ! stretch ratioin PE
RSM = (1.0+AK)*RSP-AK ! the stretch ratio in CE
DRSM=0.0
call ForceExten(RSP,emda_opt,ForceNor)
SIGMO = TMO*ForceNor
goto 900 ! store the history variables and go to the next iteration
ENDIF
RSP=ANMDF

c compute the activation level at time t
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ATIME=time
if((ATIME.GT. Time0) .AND. (ATIME LT.(Time1+0.1))) then
call ActiLevel(ATIME,ALFAA aLevell,aLevel2, Time0, Time1l,Factor)

else ! the muscle is in the non-activation state
SIGMS =0.0 ! stress in CE and SE equals zero
goto 800
endif
c
c computing the stress in CE at the previous time step

EXPARS=EXP(ALFA*( RSS-1.0))
SIGMS= BETA*(EXPARS-1.0)

(<]

compute the cofficient A1l

Al=(1.+AK)*RSP-RSM-AK*RSS
DRSMO0=DT1*DDRSMO0

IF (DRSM.GT.0.0) THEN llengthening case
A2=(SIGMS+BETA)*(1.0-AB*AC*A1/DRSMO0)
A3=(SIGMS+BETA)*AB*AK*AC/DRSMO0

A4=(AB*BETA*AC+SIGM0*ALFAA*(AD*AB*AC+AD-1.0))*AK/DRSMO0
AS5=BETA+ SIGMO*ALFAA+
1 (SIGMO0*ALFAA*(1.0-AD-AD*AB*AC)-AB*BETA*AC)*A1/DRSMO
ELSE Ishortening case

A2=(SIGMS+BETA)*(1.0+AC*A1/DRSMO0)
A3=-(SIGMS+BETA)*AK*AC/DRSMO0
A4=(SIGMO0*ALFAA-BETA*AC)*AK/DRSMO
AS5=BETA+SIGM0*ALFAA+(BETA*AC-SIGMO0*ALFAA)*A1/DRSMO

END IF

c solve the unknown RSS by standard Newton's method

DRSS=0.0
CALL DNEWT(DRSS, A2,A3,A4,AS5,ALFA ncycle)

update the variables for the next step

[< N < N < IO ¢

update RSS and RSM
RSS=RSS+DRSS
DRSM=A1-AK*DRSS
RSM=RSM+DRSM
c calculate SIGMS at current time step
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EXPARS=EXP(ALFA*( RSS-1.0))
SIGMS= BETA*(EXPARS-1.0)

800 IF(ANMDF.GT.1.0) THEN ! muscle is stretched
FPE = APE*(ANMDF-1.0)**2
ELSE ! muscle is shortening, no force in PE
FPE=0.0
END IF
c
c calculate the strain energy

U1PE=TMO*FPE

U1SE = SIGMS
U1F=U1PE+U1SE
Ull=b*c*EXP(b*(HIBARC1-3.0))
U1J=2.*(DET-1.0)/D

(<]

compute the Cauchy stress from the strain energy

DO 260 I=1,3
DO 260 J=1,3
ANNI1(L)=AN1(I)*AN1(J)
260 continue

DO I=1,3
DO J=1,3
~ UNIT2(L))=0.0
END DO
UNIT2(L])=1.0
END DO

DO 270 I=1,3
DO 270 J=1,3
STI(L,J) = (U1I*(2.0*BBAR(,J)-2. 0*HIBARC1*UNIT2(L,J)/3.0))/DET

270 continue

DO 280 I=1,3
DO 280 J=1,3

STFPE(LJ)=(U1PE*(ANMDF*ANN1(1J)-1.0*ANMDF*UNIT2(LJ)/3.0))/DET
280 continue

DO 290 I=1,3
DO 290 J=1,3
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C
c
C

STFSE(LJ)=(U1SE*(ANMDF* ANN1(LJ)-1.0* ANMDF*UNIT2(L,J)/3.0))/DET
290 continue '

DO 300 I=1,3
DO 300 J=1,3
STI(L,J))=U1J*UNIT2(L,J)
300 continue

DO 310=1,3
DO 310 J=1,3
ST(LJ) = STI(LY)+STFPE(LJ)+STFSE(LI)+STI(LJ)
310 continue
stored as history variables for output purpose
hsv(1)=STI(3,3)
hsv(2)=STFPE(3,3)
hsv(3)=STFSE(3,3)
hsv(4)=STJ(3,3)

pass Cauchy stress

sig(1)= ST(1,1); sig(2)= ST(2,2); sig(3)= ST(3,3)
sig(4)= ST(1,2); sig(5)= ST(2,3); sig(6)= ST(1,3)

compute the muscle at time t

Call ‘ForceExten(RSP, emda opt,ForceNor)
SIGMO = TMO*ForceNor

pass back the history varialbes for the next iteration

900 hsv(5) =RSS ! rate of stretch in SEE

C

hsv(6) = RSM ! rate of stretch in CE
hsv(7)=SIGMO ! maximum stress of CE at time t+dt
hsv(8) = DRSM ! increment rate of stretch of CE

else
write ( *,20) etype
write (iohsp,20) etype
write (iomsg,20) etype
call adios(2)

endif

20 FORMAT(/
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1'*** Error element type ',a,' can not be',

2 run with the current material model.")
. ‘
RETURN
END
c
c Subroutines definition
c

SUBROUTINE ActiLevel(t,acti,alLevell,aLevel2, Time0, Time1,Factor)

c*****************#********#**#****#*#*#*******************#*********#*#*
%*

c subroutine to define the activation function
c#*####*##t*##****#***#***###*****####***#***#t*#*****#*##*t*#**#*#**###*
/T inpat parameters explanation /////1HTTTTTTHITHINITININEEEETI TN T L0 1
t = the current time

alevell = the activation level before and after the activation

alevel2 = the activation level during the activation

TimeO = the activation time

Timel = the deactivation time

Factor = the rate of the chemical process

/I  foutpuat parameters explanation /111N EEE 1]
c acti = the activation level corresponding to the current time t

O O O 0 00

if{t .LT. Time0) acti = alevell
‘if{(t .GE. Time0) .and. (t LT. Timel)) then
~ acti = aLevell + (aLevel2-aL.evel1)*(1-exp(-factor*(t-Time0)))
endif
ifit .GT. Timel) then
temp1l = (aLevel2-aLevel1)*(1-exp(-factor*(Time1-Time0)))
acti = aLevell + temp1 - temp1*(1-exp(-factor*(t-Timel)))
endif
RETURN
END

SUBROUTINE ForceExten(x,x1,y)

c#*************************#*********************************************

c subroutine to define the force -- extension function
c************************************#***********************************

ST finpat parameters explanation /////1/TITHTITITTTITTHITTITHITITIINTN TN
c x = the current stretch

c x1 = the optimal fibre stretch
ST T  output parameters explanation /////11HTIHTTTTTTTTTTITTTITTTHEITTTETTT
c y = the normalised force corresponding to the current stretch
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tmp = x/x1
ifitmp LT. 0.4) y=1.0e-4
if{(tmp .GE. 0.4) .and. (tmp LT. 0.6)) y=9*(tmp-0.4)**2
if{(tmp .GE. 0.6) .and. (tmp .LT. 1.4)) y=1-4*(1-tmp)**2
if{((tmp .GE. 1.4) .and. (tmp LT. 1.6)) y=9*(tmp-1.6)**2
if{tmp .GT. 1.6) y=1.0e-4

RETURN

END

SUBROUTINE FS(X,F,DY,A2,A3,A4,A5, ALFA)

c**************##**#***#***********#*******#*******#*********************

c subroutine to compute f{x)=F and df/dx=DY

c*****#******#**********#*********************************#**************

ST T finpuat parameters explanation //////ITTHITITIIITTEIIIETTIITI I N T 10T
c X = the independent variable

c A2 — AS = coefficient of the non-linear equation

c ALFA = the material constant a

/I  loatpat parameters explanation /11111 EEEETE 1]
c F = the value of the non-linear equation

c DY = the Jacobian df/dx

F = (A2+A3*X)*EXP(ALFA* X)-A4* X-AS
DY=(A3+ ALFA *(A2+A3* X))* EXP(ALFA* X)-A4
RETURN
END

SUBROUTINE DNEWT(X, A2,A3,A4,A5, ALFA NITE)

c***#**#******************#******t***********************‘***********#***

c subroutine for newton iteration method
c***********************************************************#************

S/ input parameters explanation /////TTTHTTTTTTTTTTTTTTNTIEIEETTEEETTTTE ]

c A2 — A5 = coefficient of the non-linear equation
c ALFA = the material constant a
c NITE = the current iteration number

S/ foutput parameters explanation /111NN
c X = the solution

EPSS = 1.0E-6 | used to control the solution precision
L=60 ! the most iterative number to be given
CALL FS(X,F.DY,A2,A3,A4,A5 ALFA)
30 IF ((ABS(DY)+1.0.EQ.1.0) . AND. NITE .GT. 0.0) THEN
L=0
WRITE(*,2000)
RETURN
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END IF
X1=X-F/DY
CALL FS(X1,FDY,A2,A3,A4 A5, ALFA)
IF ((ABS(X1-X).GE.EPSS) .AND. (ABS(F).GE.EPSS)) THEN
L=L-1
X=X1
IF (L.EQ.0) RETURN
GOTO 30
END IF
X=X1
iffNITE .EQ. 0) X=0.0
RETURN
2000 FORMAT(1X, ERR’)
END
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Appendix F — Makefile for Building
LS971.exe on WindowsXP

FC=ifort
FFLAGS=-c -W0 -WB -unroll -fp:precise -4 Yportlib -assume:byterecl,buffered_io \
-Qfpp2 -DPCWIN -DINTEL -QxK

SMPS = -DOPENMP -Qopenmp
NSMPD=-DAUTODOUBLE -4R8 -4I8
SMPD = -DOPENMP -Qopenmp -DAUTODOUBLE -4R8 -418

FFLAGS = $(FFLAGS) $(SMPS)

LFLAGS = -F:4000000 -link -force -nodefaultlib:msvcrt.lib

OBJS= dyn21.0bj dyn21b.obj umat43.0bj

LIBS= libdyna.lib libansys.lib libguide.lib shell32.1ib user32.lib comctl32.1ib comdig32.1ib

1s971.exe: $(OBJS)
$(FC) -w -q -0 1s971.exe $(OBJS) $(LIBS) $(LFLAGS)

dyn21.0bj: dyn21.F

$(FC) $(FFLAGS) dyn21.F
dyn21b.obj: dyn21b.F

$(FC) $(FFLAGS) dyn21b.F
umat43.obj: umat43.F

$(FC) $(FFLAGS) umat43.F

clean:
-if exist *.obj erase *.obj
-if exist 1s971.exe erase 1s971.exe
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Appendix G — Fortran Code for
NURBS Solid Representation and its
Derivatives

SUBROUTINE NURBSOLID(Vertex,OrderU,OrderV,NumPointU,
1 NumPointV, VectorKnotU, VectorKnotV)

c***#******************#*************************************************

c Subroutine to calculate a Cartesian product rational B-spline Solid
c using an open knot vector and write the derivatives into a file
c Copyright: Yongtao Lu, School of Engineering, Cardiff University

c************************************************************************

/T  inpat parameters explanation //////1IHTTTIITTTTTIIIINETEEEETENEE TN T
Vertex () = array containing the NURBS surface control net vertices
Vertex (;,1) contains the x component of the vertex
Vertex (:,2) contains the y component of the vertex
Vertex (:,3) contains the z component of the vertex
Vertex (:,4) contains the homogeneous weighting factor
OrderU = order of the NURBS in u direction
_OrderV = order of the NURBS in v direction
NumPointU = number of the control net vertices in u direction
NumPointV = number of the control net vertices in v direction
VectorKnotU() = open uniform knot vector in u direction
VectorKnotV() = open uniform knot vector in v direction

(N < I « BN « TN « BN « BN < N « N « N <« TN <]

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

integer OrderU,OrderV,OrderW,iOutFile

dimension  Point(3),PointCoordi(3),PointTemp(3),

1 BasisUNumPointU), BasisV(NumPointV), BasisW(2),

2 Vertex(200,4), VertexTemp(200,4),

3 VertexNet(NumPointU,NumPointV,2,4),

4  VectorKnotU(200), VectorKnotV(200), VectorKnotW(4),

5 BasisDUNumPointU), BasisDV(NumPointV), BasisDW(2),

6 DerU(3),DerV(3),DerW(3),ZBar(3),ZUBar(3),ZVBar(3),ZWBar(3)
PARAMETER (ZERO=0.0D0,0ONE=1.0D0, TWO=2.0D0, THREE=3.0D0)

c //llii/////initialization part//////////

OrderW =2 ! order of the NURBS in w direction
NumPointW = 2 | number of control net vertices in w direction
NumMeshU = 100 | number of mesh in cylinder axial direction
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NumMeshV = 100 ! number of mesh in cylinder circumferential direction
NumMeshW = 10 ! number of mesh in cylinder radius direction
VertexTemp = 0.0 ! VertexTemp is a matrix

! calculate the number of knot vectors in each direction
NumKnotU = NumPointU + OrderU
NumKnotV = NumPointV + OrderV
NumKnotW = NumPointW + OrderW
! assign the vector kont in w direction
VectorKnotW = [0.0,0.0,1.0,1.0]
c/lllIliI111///end initialization part//////////]
! open a file for output the results
iOutFile = 20
open(iOutFile, file="information.txt", status=Replace')
! calculate the total number of control points
NumNode = (NumMeshU+1)*(NumMeshV+1)*(NumMeshW+1)
write(iOutfile,*), NumNode

| assign the exterior circle
do i=1, NumPointU
do j=1, NumPointV
j1 = NumPointV*(i-1) +j
VertexNet(i,j,1,1) = Vertex(j1,1)
VertexNet(i,j,1,2) = Vertex(j1,2)
VertexNet(i,j,1,3) = Vertex(j1,3)
VertexNet(i,j,1,4) = Vertex(j1,4)
enddo
enddo
| calculate the interior circle and assign to the control net
do i=1, NumPointU
do j=1, NumPointV
VertexTemp(i,1) = VertexTemp(i,1) + VertexNet(ij,1,1)
VertexTemp(i,2) = VertexTemp(i,2) + VertexNet(i,j,1,2)
VertexTemp(i,3) = VertexTemp(i,3) + VertexNet(i,j,1,3)
VertexTemp(i,4) = VertexTemp(i,4) + VertexNet(i,j,1,4)
enddo
do j=1, NumPointV
VertexNet(i,j,2,1) = VertexTemp(i,1)/NumPointV
VertexNet(i,j,2,2) = VertexTemp(i,2)/NumPointV
VertexNet(i,j,2,3) = VertexTemp(i,3)/NumPointV
VertexNet(i,j,2,4) = VertexTemp(i,4)/NumPointV
enddo
enddo
c end partl
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¢c-————part2 find the parametric lines in each direction -——-—--
do u=VectorKnotU(1), VectorKnotU(NumKnotU), ,
1 abs(VectorKnotUNumKnotU)-VectorKnotU(1))/NumMeshU
call dbasisF(OrderU,u,NumPointU, VectorKnotU,BasisU,BasisDU)
do v=VectorKnotV(1), VectorKnotV(NumKnot V),
1 abs(VectorKnot V(NumKnotV)-VectorKnotV(1))/NumMeshV
call dbasisF(OrderV,v,NumPointV, VectorKnot V,BasisV,BasisDV)
do w=VectorKnotW(1), VectorKnot W(NumKnotW),
1 VectorKnotW(NumKnotW)/NumMeshW
call dbasisF(OrderW,w,NumPointW, VectorKnotW,BasisW,BasisDW)
! sum of basis function
call sumrbas1(VertexNet,BasisU,BasisU,BasisW,NumPointU,
1 NumPointU,NumPointW,sum)
! calculate the B-spline solid
PointCoordi = 0.0 ! set the array to zero
do i=1, NumPointU
do j=1, NumPointV
do k=1, NumPointW
dom=1,3
qtemp = VertexNet(i,j,k,4)* VertexNet(i,j,k,m)
1 *BasisU(i)*BasisV(j)*BasisW(k)/sum
PointCoordi(m) = PointCoordi(m) + qtemp
enddo
enddo
enddo
enddo
! calculate the derivatives
call sumrbas2(VertexNet,BasisU,BasisV,BasisW,NumPointU,
1 NumPointV,NumPointW,ZBar)
call sumrbas1(VertexNet,BasisU,BasisV,BasisW,NumPointU,
1 NumPointV,NumPointW,DBar)
! 1. derivatives with respect to u
call sumrbas2(VertexNet,BasisDU,BasisV,BasisW,NumPointU,

1 NumPointV,NumPointW,ZUBar)
call sumrbas1(VertexNet,BasisDU,BasisV,BasisW,NumPointU,
1 NumPointV,NumPointW,DUBar)
dok=1,3
DerU(k) = ZUBar(k)/DBar-(DUBar/DBar**2)*ZBar(k)
enddo

! 2. derivatives with respect to v
call sumrbas2(VertexNet,BasisU,BasisDV,BasisW,NumPointU,

1 NumPointV,NumPointW,ZVBar)
call sumrbas1(VertexNet,BasisU,BasisDV,BasisW,NumPointU,
1 NumPointV,NumPointW,DVBar)
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do k=1,3
DerV(k) = ZVBar(k)/DBar-(DVBar/DBar**2)*ZBar(k)
enddo
! 3. derivatives with respect to w
call sumrbas2(VertexNet,BasisU,BasisV,BasisDW,NumPointU,

1 NumPointV,NumPointW,ZWBar)
call sumrbas1(VertexNet,BasisU,BasisV,BasisDW,NumPointU,
1 NumPointV,NumPointW,DWBar)
dok=1,3
DerW(k) = ZWBar(k)/DBar-(DWBar/DBar**2)*ZBar(k)
enddo

! calculate the normalised tangent vector of the isocurve with respect to u
disance = sqrt(DerU(1)**2+DerU(2)**2+DerU(3)**2)
DirectionX = DerU(1)/disance
DirectionY = DerU(2)/disance
DirectionZ = DerU(3)/disance

! write out the results, just write the u direction derivatives in this example
write(iOutfile, 100),PointCoordi(1),PointCoordi(2),PointCoordi(3),
2 DirectionX,DirectionY,DirectionZ
100 format(F12.6,F12.6,F12.6,F12.6,F12.6, F12.6,F12.6,F12.6, F12.6
enddo '
enddo
enddo
c _ : end part2

RETURN
END

subroutine definition

(<]

SUBROUTINE sumrbas1(VertexNet,BasisU,Basis V,BasisW,NumPointU,
1 NumPointV,NumPointW,sum)

c**************************#***********************#********************

¢ subroutine to calculate the sum of the nonrational basis functions
c********#**************************#***********************************

ST input parameters explanation  /////I1IITTHIIITTIITTINEHETTETETEETT
VertexNet () = array containing the NURBS solid control net vertices

c
c Vertex (;,:,:,1) contains the x component of the vertex

c Vertex (;,:,:,2) contains the y component of the vertex

c Vertex (;,:,:,3) contains the z component of the vertex

c Vertex (:,:,:,4) contains the homogeneous weighting factor

c BasisU() = array containing the nonrational basis functions for u

Page 220



Appendix G — Fortran Code for NURBS Solid Representation and its Derivatives

O O 0 0 6

BasisV() = o array containing the nonrational basis functions for v
BasisW() = o array containing the nonrational basis functions for w
NumPointU = number of the control net vertices in u direction
NumPointV = number of the control net vertices in v direction
NumPointW = number of the control net vertices in w direction

TN output parameters explanation  ////IIIHIIIIIINIIIIINEI ]

C

sum = sum of the nonrational basis functions

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
dimension VertexNet(9,21,2,4),
1 BasisU(NumPointU), BasisV(NumPointV), BasisW(NumPointW)

sum=0.0
do i=1,NumPointU !along the cylinder
do j=1,NumPointV ! cylinder circumferential direction

do k=1, NumPointW ! cylinder axial direction
sum = sum + VertexNet(i,j,k,4)*BasisU(i)*Basis V(j)*BasisW(k)
enddo
enddo
enddo
RETURN
END

SUBROUTINE sumrbas2(VertexNet,BasisU,Basis V,BasisW,NumPointU,
1 NumPointV,NumPointW,summ)

c************************#**********************************************

C

subroutine to calculate the sum of the rational basis functions with vertex value

c*************#*********************************************************

ST inpat parameters explanation //////11HITHHTTIITTTIITTITTTTTTTETHTTTHTTTTE

C

same as those in subroutine sumrbasl

ST outpuat parameters explanation  ////////IHTTTTHITHITIHITTTENNETEE T

c

summ(:) = sum of the rational basis functions with vertex value

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
dimension VertexNet(9,21,2,4),summ(3),
1 BasisUNumPointU), BasisV(NumPointV), BasisW(NumPointW)

summ = 0.0
do i=1,NumPointU !along the cylinder
do j=1,NumPointV ! cylinder circumferential direction
do k=1, NumPointW ! cylinder axial direction
summ(1) = summ(1) + VertexNet(i,j,k, 1)* VertexNet(i,j,k,4)
1 *BasisU(i)*BasisV(j)*BasisW(k)
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summ(2) = summ(2) + VertexNet(i,j,k,2)* VertexNet(i,j,k,4)

1 *BasisU(i)*BasisV(j)*BasisW(k)
summ(3) = summ(3) + VertexNet(ij,k,3)* VertexNet(i,j,k,4)
1 *BasisU(i)*BasisV(j)*BasisW(k)
enddo
enddo

enddo

return

end

SUBROUTINE dbasisF(Order,t, NumPoint, VKnot,Basis,BasisD1)
c*************************#********###***********#********#******
¢ subroutine to generate B-spline basis functions and their derivatives
c for open knot vectors
c************************************************#***************

/I input parameters explanation /////I1ITTHITITITIIIITEEINEENNE TR T

c Order = order of the B-spline basis function

c t = parameter value

c NumPoint = number of control polygon vertices

c VKnot() = knot vector

/NN - oatpat parameters explanation //////11HHITTTITTTHTTTIIIINNENIEEE T
c Basis() = array containing the basis functions

c BasisD1() = array containing the derivatives of the basis functions

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

integer Order

dimension temp(200), temp1(200), VKnot(NumPoint+Order),
1  basis(NumPoint), basisD1(NumPoint)

PARAMETER (ZERO=0.0D0,0NE~=1.0D0,TWO0=2.0D0, THREE=3.0D0)
NumKnot = NumPoint + Order | number of knot values

EPS = 1.0E-6
temp = 0.0 !ARRAY
templ =0.0 !ARRAY

¢ calculate the first-order basis functions n(i, 1)
do i=1, NumKnot-1
if{(t .ge. VKnot(i)) .and. t .It. VKnot(i+1)) then
temp(i) = 1
else
temp(i) =0
end if
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enddo
!'handle the end specially by setting the first-order basis functions
if{abs(t-VKnot(NumKnot)) .It. EPS) temp(NumPoint) = 1

¢ calculate the higher-order basis functions and their derivatives
do k=2, Order
do i=1, NumKnot-k
Icalculate basis function
Mfirst term of the basis function
ifitemp(i) /= zero)  then
bl = ((t-VKnot(i))*temp(i))/(VKnot(i+k-1)-VKnot(i))
else
b1=0.0
endif
Isecond term of the basis function
if{temp(i+1) /= zero) then
b2 =((VKnot(i+k)-t)*temp(i+1))/(VKnot(i+k)-VKnot(i+1))
else
b2=0.0
endif
c calculate first derivative
if{temp(i) /= zero) then
f1 = temp(i)/(VKnot(i+k-1)-VKnot(i))
else
fl1=0
endif
if{temp(i+1) /= zero) then
2 = -temp(i+1)/(VKnot(i+k)-VKnot(i+1))
else
2=0
endif
i{temp1(i) /= zero) then
3 = (t-VKnot(i))*temp1(i)/(VKnot(i+k-1)-VKnot(i))
else
f3=0
endif
ifitemp1(i+1) /= zero) then
f4 = (VKnot(i+k)-t)*temp1(i+1)/(VKnot(i+k)- VKnot(i+1))
else
fa=0
endif

temp(i) = bl + b2
templ(i)=fl +f2 + {3 + 14
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enddo
enddo

pass the results back
do i=1, NumPoint

basis(i) = temp(i)

basisd1(i) = temp1(i)
enddo

RETURN
END
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