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Abstract

The Flaviviridae is a family of 66 viruses of which almost half have been 

associated with human disease. The most well-known members are: Hepatitis C 

virus (HCV), Dengue virus (DV), and West Nile virus (WNV). Diseases caused by 

these viruses are a global health problem that put an estimated 2.5 billion people 

at risk. At present, there are neither vaccines nor other treatments available to 

prevent or cure these diseases. Potential targets for the development of 

therapeutics against the virus are the viral protease and polymerase. The aims of 

this project are to design and synthesize compounds that can be used as 

inhibitors for these two key enzymes for Dengue. Structure-based drug design 

methods utilize knowledge of a three dimensional structure of an 

enzyme/receptor to develop small molecules able to bind to the desired target, 

generating a specific biological response. These computer-based methodologies 

are now becoming an integral part of the drug discovery process and, although 

the principles of molecular recognition are far from being completely understood, 

some marketed compounds (i.e. Zanamivir, Lopinavir) have been developed with 

the help the of successful application of structure-based design techniques. 

Different structure-based drug design approaches have been used to identify 

putative new inhibitors for the Dengue protease and polymerase. A 

pharmacophore query has been built based on the active site of the Dengue 

protease enzyme and then used for screening different databases for 

identification of potential inhibitors. For the polymerase, a fragment-based 

approach has been used to find the fragments that would interact more efficiently 

with a specific binding pocket on the enzyme. The virtual library obtained by 

linking the best scored fragment was then docked to identify the most promising 

structures to be synthesized. The identification of potent small molecules that 

bind to receptors and enzymes is one of the major goals of chemical and 

biological research.
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Chapter 1 Introduction

1- Introduction.

The dengue virus (DV) is one of 53 viruses which are members of Flaviviridae 

family. It is a mosquito borne virus transmitted by the Aedes aegypti 

mosquito.1 Classification according to the analysis of NS3 Helicase regions has 

been done and Flaviviridae viruses were found to be in three genera,2 in which 

DV is grouped within the flavivirus genus.

Flaviviridae

Hepacivirus I Unassigned

I _____ I 1 [ ----------------!

1 1

r l

Figure 1.1 Classification of Flaviviridae family according to the analysis of NS3 Helicase. 
YFV: Yellow Fever Virus. DV: Dengue Virus. WNV: West Nile Virus. JEV: Japanese 
Encephalitis Virus. BVDV: Bovine Viral Diarrhea Virus. CSFV: Classical Swine Fever Virus. 
HCV: Hepatitis C Virus. GBV (A, B, C): Unassigned Viruses.
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Chapter 1 Introduction

DV is a global health problem which started after the epidemics that occurred in 

the 18m, and the 19th centuries.3 The problem with DV is its hemorrhagic fever 

(DHF) which has been the main cause of death of many children in different 

countries such as Manila, Philippines, Australia, Malaysia, Pakistan, Canada, 

Mexico beside other countries in south Africa. Another problem is the fact that it 

is highly distributed on a wide geographic area.4 5 In 1997, dengue viruses and 

the Aedes aegyptimosquito had a worldwide distribution in the tropics (Figure 

1.2), and over 2.5 billion people now live in areas where dengue is endemic.6-7

■I Areas infested with Aedes aegypti 
■  Areas with Aedes aegypti and dengue epidemic activity

Figure 1.2 The world wide distribution of the dengue virus.8
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Chapter 1 Introduction

More than 50 million people are infected with DV annually. From this number 

about 24000 people die every year and until now there is neither vaccination 

nor any chemotherapeutic agents that can inhibit the replication of DV.9 An 

understanding of the viral replication cycle can help us in the identification of 

the important targets that can be used for the design of novel inhibitors of DV 

replication. In this chapter we will report a survey of the DV genome, and 

replication cycle in detail to aid in the identification of the important targets that 

can be used as a starting point for the design of inhibitors.

1.1- Dengue Virus Serotypes.

DV has four serotypes DV-1, DV-2, DV-3, and DV-4.10 The complete genomic 

sequences for these serotypes was identified in 1990.11*14

1.2- Clinical m anifestations and Symptoms.

Dengue Fever (DF), Dengue Hemorrhagic Fever (DHF)/Dengue shock 

syndrome are the most important diseases that are caused by DV.1516 Fatal 

DHF is caused by DV-2 and DV-3.17 The incubation period is from 2 to 14 

days,1819 and the main symptoms are high fever, headache, lumbosacral pain, 

facial flushing, and conjunctival congestion. In severe cases of DF myalgia, 

anorexia, nausea, and vomiting with general weakness can be caused. In 

addition to DF the dengue virus can cause DHF which is considered to be a 

sever form of Dengue infections and known as Vascular Leak Syndrome.20 The 

dengue virus may be the cause of other diseases such as hepatitis with severe 

hemorrhage, liver failure, cardiomyopathy, and encephalopathy.21*22 Some 

patients with severe cases may develop a gastrointestinal hemorrhage and
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Chapter 1 Introduction

shock may result due to plasma leakage.20 Death from dengue is mainly due to 

DHF and shock is the second cause after DHF.

1.3- The Aedes Aegypti Life Cycle

A female mosquito becomes infected with dengue when biting an infected 

human who is viraemic (has enough dengue particles in his blood). Dengue can 

spread quickly and an infected person can transmit the virus to mosquitoes 

within 3-4 days of being bitten and can continue to do so for up to 12 days. It is 

important to know that the dengue virus is not spread directly from person to 

person. The Aedes Aegypti female mosquito bites only humans and animals 

for blood which is needed to mature its eggs. The eggs are laid separately to 

allow them to spread over large surfaces of water, if conditions are good. The 

eggs will have a better chance of survival. The freshly laid eggs are white in 

colour and soon turn black and convert to larvae. The young larvae feed on 

bacteria in water and grow rapidly. After a few weeks in the summer it enters 

the pupa Stage which is a short stage. They rapidly rise to the surface of water 

where the adult emerges. The female adult has the virus in its salivary glands.23 

(Figure 1.3). It is important to note that eggs can survive for long periods in a 

dry state (more than a year), the virus can be passed from adult mosquito to 

the eggs and in this case the virus is guaranteed survival until the next summer. 

The virus remains in the salivary glands of the mosquito and when it bites 

humans it injects saliva plus the virus into the wound where the anticoagulants 

contained in its saliva facilitate feeding. During the life cycle of the mosquito 

there is no intermediate host and it seems to be a closed system between man 

and mosquito
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s
• ^  v»•*-

Egg

T J t ) \
Larva

*

x

Pupa

y '

Mosquito

Figure 1.3 Life cycle of the Aedes Aegypti mosquito.23
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Chapter 1 Introduction

1.4- Viral Replication Cycle.

Viral replication is the process by which the virus reproduces to form new 

viruses inside the host cells. The main aim of this process is to maintain the 

survival of the virus and the generation of new genomes that can form new 

viruses to infect other hosts. For the dengue virus the process requires virus 

attachment to its receptor mediated by E protein and then endocytosis 

(receptor-mediated endocytosis) takes place to allow the virus to enter the cell. 

Here acidic pH is important for the fusion of the viral envelope and the 

endosomal membrane (Figure 1.4: I). After that the nucleocapsid (cap) is 

released in the cytosol and the viral positive single-stranded RNA (+ ss RNA) 

genome is uncoated to release the viral genome into the cytoplasm (Figure 1.6: 

II). The viral genome is a positive single-stranded sense RNA type (+ss RNA) 

and is surrounded by a lipid bilayer of the capsid protein (C) in which the 

envelope protein (E) is embedded to form the final spherical structure of the 

virion which is 500 A0 25 26 in diameter. The virion has two forms; the immature 

form in which the E protein is complexed with precursor membrane protein 

(prM) in the endoplasmic reticulum (ER) and upon moving to the trans-Golgi 

prM-E complex will be cleaved by the aid of cellular protease and furin 

enzymes to give the mature form of the virion in which a membrane protein M is 

complexed with E.27The cleavage of prM occurs at pH = 6 (Figure 1.5).28 The M 

proteih was found to have ion channels in its C-terminal that allow the 

permeability of important ions such as sodium, potassium, chloride and 

calcium,29 while the E protein is important in the binding and fusion of the virus 

to the host cell.30-31

7



Chapter 1 Introduction

The 5’ Untranslated region of the genome (5’ UTR) will then be directed to the 

ribosome (Figure 1.4: III) in which the viral genome will be translated directly to 

produce a polyprotein (Figure 1.4: IV).33 The polyprotein is processed by viral 

and host proteases (Figure 1.6) to produce structural (Figure 1.4: V) and non- 

structural proteins (Figure 1.4: VI).32 The viral RNA-dependant RNA- 

polymerase (RdRp) uses the +RNA genome to produce a complementary -  ss 

RNA strand that is used as a template for the production of new strands of + ss 

RNA genome (Figure 1.4: VII).34 Then the Helicase enzyme will unwind the 

newly formed strands to separate between them and liberate the + ss RNA 

genome (Figure 1.4: VIII). After replication the nucleocapsid will be formed 

around the viral genome and be directed to endoplasmic reticulum where it is 

surrounded by the lipid envelope (Figure 1.4: IX). Then the new completed 

viruses are released (Figure 1.4: X). Figurel .6 illustrates the viral replication 

cycle.

8
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Genomic Template
♦ (» ) RNA - (m ) RNA

Progeny
♦ (b ) RNA
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/ Viral m host 
Proteawt
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X

Figure 1.4 Replicative life cycle of the dengue virus genome.
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Figure 1.5 pH and conformational changes of the prM protein.30
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Figure 1.6 The processing of dengue polyprotein showing the cleavage sites of action of

different enzymes.
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Chapter 1 Introduction

1.5- Viral Targets for Drug discovery.

DV has a number of targets that may be used for the discovery of DV inhibitors. 

The structural proteins; C protein, prM and E proteins perform a number of 

conformational changes important for the viral entry, assembly and exit. Non- 

structural proteins found in NS3 and NS5 are also good targets. One example 

is the NS3 protease that is needed for the polyprotein processing and cleavage. 

HIV protease inhibitors are a good example of these kinds of drugs that are in 

clinical use.36 RdRp is the second target found in NS5 protein. It may be the 

target of choice regarding the specificity due to its absence in host cells. RdRp 

plays an important role in viral genome replication.37 NS3 helicase is a third 

target that is also, important for viral replication.3839 It is needed for the 

unwinding of the double-stranded RNA intermediate during the genomic 

replication (figure 1.7).

Identification of potential small molecules that can specifically inhibit the viral 

life cycle via the inhibition of one of the previously mentioned targets requires a 

detailed study of each target. In this research; protease, RdRp and helicase 

were selected for study and are discussed in the following sections.

11
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NHz COOH

MSI T 2* z> NS3 « NS5 j

Capsid

Envelope Methyltransferase Polymerase

Protease - Hefecase

Precursor membrane protein (prM)

Figure 1.7 Potential drug targets present in the dengue virus genome.
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1.5.1- NS3 Serine Protease.

This is a trypsin-like serine protease. It has been proven that it is located in the 

N-terminal 180 residues of NS3 protein. NS3 protease is responsible for site- 

specific cleavages in the viral polyprotein.35 The processing of the viral 

polyprotein is shown in (figure 1.5). Mutations in the NS3 protease which 

eliminate the protease activity have shown that the viral replication has been 

abolished as well.36 In addition protease inhibitors are a well known class of 

antiviral drugs for different viruses and are considered as an ideal target for 

drug design and discovery.

1.5.1.1- Proteases as a target for drug design

Proteases are amongst the most well understood proteins, both in structure 

and in function.39 Proteases are enzymes that selectively catalyze the 

hydrolysis of polypeptide bonds. They are involved in protein synthesis and in 

the regulation of important physiological processes. Many proteases are also 

essential for the propagation of diseases, therefore they can be considered to 

be an important target. Furthermore, protease inhibitors have been found to 

be successful in the treatment of different diseases such as, hepatitis 40, 

herpes41, various forms of cancer and human immunodeficiency virus (HIV)42

1.5.1.2- Nomenclature of Serine protease.

The protease enzyme is composed of a number of pockets (S pockets), 

stands for subsite. DV NS3 serine protease has S1, S2, S3, S T , S2” , S3” 

pockets. These pockets are essential for the fitting of the substrate that is 

required to be cleaved by protease. On the other hand, the substrate has 

some side chains that are labeled by ”P”  letter. Every P side chain fits with a

13



Chapter 1 Introduction

specific pocket. For example P1 fits into S1 pocket, P2 for S2 and so on 

(Figure 1.8). Residues in the N-terminal direction from the amide bond that is 

cleaved (scissile bond) by the protease are called the nonprime side and are 

designated Pn. However, the residues in the C-terminal directions are referred 

to as the prime side and are labeled Pn” and the corresponding Sn and Sn” 

in the enzyme are designated for the N- and C-terminal respectively.43

Scissle bond

Figure 1.8 Schematic representation of the standard nomenclature 

of a protease/substrate complex.
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Chapter 1 Introduction

There are four types of proteases; aspartic, cysteine, metallo, and serine 

proteases. In each type the proteases are often very similar, thus in designing 

a protease inhibitor it is important to consider possible cross inhibition of other 

proteases in the same subclass.44 DV has a NS3 serine protease enzyme 

which is a trypsin-like serine protease. The proteolytic mechanism here is the 

same as all serine proteases that have a catalytic triad in their active site 

composed of Ser, His, and Asp residues in order to activate the cleavage and 

processing of the polyprotein.

Figure 1.9 The active site of a serine protease consists of a catalytic triad that is composed 

of three residues Ser, His and Asp which are close to each other. According to DV NS3 

protease numbering it will be Ser 135, His 51, and Asp 129

15



Chapter 1 Introduction

1.5.1.3- Catalytic Mechanism of Serine Protease

When the substrate binds to the active site "The Michaelis complex” is formed 

in which the -NH of His 51 will interact through a H-Bond formation with the 

carboxylic group of aspartic acid (Asp 75). This will catalyze the hydroxyl 

group of Ser residue 135 to act as a nucleophile to attack the carbonyl group 

of scissile amide bond in the substrate (A). In this case a tetrahedral 

intermediate is formed and stabilized by H-Bond formation with -NH of both 

Gly 136 and Ser 135 residues which will form what is called

(B).«
N*

Oxyanion hole

H
/

A

V
N1

Oxyanion hole

Tetrahedral intermediate

B

16



Chapter 1 Introduction

A process which involves the transfer of proton from His of the catalytic triad to 

the amine of the tetrahedral intermediate takes place in order to liberate the 

free amine fragment (C).

Ser

His

Asp

j ® '
J L >

H
/

&

HN *H Nv

y v

/  Ser

Oxyanion hole

\ G l y

Tetrahedral intermediate

B

V

Ser
O

N

JL>
His '* '!

Asp

‘H

H
NH9

X
c r

,N, Ser

‘n:
\ Gly
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In the presence of a molecule of water the acyl-enzyme complex will interact 

with the water to form a new tetrahedral intermediate (D).

Ser
Pi4yNH

O —

(
H

Xser
‘N. Gly\

Jt>

dAsp

V

Ser-

' © HO

/  Ser 
N

Oxyanion hole

His

in ^

JL>^  »KI

-H
'nn  Gly

Tetrahedral intermediate

elAsPn^ ^ (o
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The newly formed tetrahedral intermediate will break in an acid medium to form 

carboxyl terminal from the cleaved substrate and Ser will become free.46

   / 1 0 ' -

JOi o —

,N, Ser

Gi
AsP v ^ o

HO © * * * .
Oxyanion hole

\ G l y

Tetrahedral intermediate

V

Ser
OH

J ^ N

0
ms ^ y

H

01  A s p ^ y ^ 0

( q\v

Oxyanion hole

‘N
\ Ser

Figure 1.10 the mechanism of Serine protease.
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1.5.1.4- NS3 protease Domain of DV.

DV NS3 protein is a multi-functional protein with a trypsin-like serine 

protease domain located within the N-terminal 180 amino acid residues46 and 

A nucleoside triphosphatase (NTPase) and RNA helicase in the C-terminal 

moiety.47 A conserved catalytic triad consisting of His 51, Asp 75 and Ser 135 

and was identified by site-directed mutagenesis.48

Figure 1.11 The dengue virus NS3 protease domain is shown above. The helix is colored 

red, sheets are in yellow, and loops are in green. The catalytic triad is shown in sticks.
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The three dimensional structure of the dengue virus NS3 protease in complex 

with a co-factor NS2B was resolved at a resolution of 2.1 A0.49 It has been 

observed that the structure of the dengue NS3/NS2B protease is highly similar 

to that of the WNV NS3/NS2B protease and also to the hepatitis C virus 

NS3/NS4A complex. The difference might be in the structure of the cofactor 

dependent activation mechanism of the two proteases.50 The presence of the 

co-factor is essential for the activity of the NS3 protease which is a small 

activating protein important for optimal activity of the flaviviral NS3 proteases. In 

the case of DV NS2B is considered to be the co-factor required for this purpose 

and the minimal region necessary for protease activation was located in a 40- 

residue hydrophilic segment of NS2B.51 The enzymatic cleavage of dibasic 

peptides is enhanced with NS2B-NS3 complex (Figure 1.12) and the presence 

of the NS2B co-factor is very important for the cleavage of polyprotein 

substrates in vitro.52 The importance of the presence of the co-factor with 

protease is the presence of hydrophobic residues which act as an “anchor” for 

the protease-cofactor interactions. Previous studies of different structures of the 

NS3pro such as that of HCV, alone and in complex with NS4A-peptide53 

suggested that the mechanism of the co-factor is mediated by the local 

rearrangement of the catalytic triad towards a more catalytically favorable 

conformation. Recent molecular modeling studies in DV have shown that this 

mechanism is also available in flaviviruses.54
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Figure 1.12 NS3/NS2B complex showing the NS2B chain in red color.

1.5.1.5- Description of the crystal structure of the 
Dengue virus NS3 serine protease.

The NS3/NS2B complex catalyses the cleavage of the polyprotein at specific 

sites; NS2A-NS2B, NS2B-NS3, NS3-NS4A, and NS4B-NS5. These sites of the 

polyprotein have (Lys-Arg, Arg-Arg, Arg-Lys) in the P1 side chain and (Gln-Arg) 

in the P2 side chain then short chain amino acids (Gly, Ala, Ser) in the P1” side 

chain. The selectivity of proteases for particular substances is due to the 

existence of specific binding sites present on the enzyme surface for amino 

acid side chains of the substrate(s). Here the substrate is oriented by binding of 

the amino acid side chain of the P substrate residue in the corresponding S 
pocket of the receptor (figure 1.13).55
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Asn 152

Val 154

His 51Val 155 Gly 153

S e r135Gly 151

Val 155

Arg 157

Leu 128

Asp 129

His 51

n h v -ynkl ,+ * J  Tyr 150

Ser 163 AsP 129
Leu 115

S1

Figure 1.13 Substrale-receptor pockets complex.

1.5.1.6- Important Receptor Pockets.

1.5.1.6.1- S I Pocket.

S1 pocket contains Ser 131, Tyr 150, Ser 163, Asp 129, Phe 130, Ser 135 and 

leu 115. These residues are capable of making interactions with guanidine N 

atoms of Arg residue at P1 and they are important for the determination of 

substrate specificity. The following interactions were found; Leu 115 forms Van 

der Waals interactions with Arg from the substrate. Asp 129 lies in the bottom 

of S1 and provides a salt bridge with Arg of the substrate side chain. Important
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residues of the S1 pocket such as Tyr 150 and Asp 129 were found to stabilize 

the S1 pocket (for example; Tyr 150 forms a salt bridge hydrogen bond through 

its -OH group) and found to provide charge stabilization of the positive charge 

of P1 Arg or Lys by its aromatic electron cloud. When Ser 135 was replaced by 

Cys through a mutation study the resulting protease was inactive which 

confirmed its importance.

1.5.1.6.2- S2 Pocket.

Within this pocket the most important residue appeared to be Asn 152 which 

forms a hydrogen bond with Lys, Arg, and Gin of the P2 side chain.56 In addition 

to the above mentioned residues, other residues were also found to be useful in 

the interactions to stabilize the enzyme-substrate complex such as Ala 160. 

Also, Gly 133 and Ser 135 are most likely to form the oxyanion hole which is 

involved in the formation of the tetrahedral transition state with an acyl-enzyme 

intermediate. Site-directed mutagenesis studies were done to some of these 

residues to prove its role in protease activity. When His 51 residue was 

replaced with Ala residue the activity of protease was abolished.57 Also, upon 

replacement of Ser with Thr the activity was removed.58 Mutations of the 

catalytic triad residues completely abolished the activity.59 In DV-2 NS3/NS2B 

complex a site-directed mutagenesis of Asp 129, Tyr 150, and Gly153 were 

included60 Mutation of Asp 129 with Glu, Ala, and Ser did not affect the activity 

of protease which was retained and upon replacement of Asp 129 with Arg, 

Lys, and Leu protease activity was decreased but not abolished.60 Tyr 150 

residue was also replaced by Ala, Val, and His where the activity was 

eliminated.
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1.5.1.7- Dengue NS3 protease inhibitors

The success of some drugs such as ACE inhibitors of the metalloprotease 

class and HIV protease inhibitors of the aspartyl protease class, have served to 

increase the efforts to identify the inhibitors of other proteases like serine 

protease as drugs. The first inhibitor for the dengue NS3-protease was the 

Bowman-Birk inhibitor that was extracted from mung beans (MbBBI). The 

crystal structure of the inhibitor complexed with dengue NS3-pro was reported 

and can be found in the protein data bank with PDB code = 1df9.

Figure 1.14 MbBBI cartoon representation (yellow) -Dengue NS3 protease (green). Arg and

Lys residues in red color.
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MbBBI is extracted from a leguminous plant 61 and contains an anticancer 

activity.62 It is double-headed (composed of 2 p-sheets connected together with 7 

disulfide bridges and a hydrophobic core) so it can inhibit two molecules of 

protease at the same time by the standard serine protease inhibition 

mechanism.62 NS3 domain alone and the NS3/NS2B complex are inhibited by 

this inhibitor. While it was assumed that the NS2B cofactor is required for the 

proteolytic activity of the NS3, the NS3 alone can be inhibited by small molecule 

inhibitors.

Peptide inhibitors containing electrophilic functional groups are generally good 

inhibitors for serine protease as they will compete with the substrate for binding 

to Ser residue of the catalytic triad. The effect of different electrophilic functional 

groups on dengue protease was studied (Figure 1.15).63

Compound Ki (pM)
1 127.5
2 82.9
3 0.85
4 42.8
5 0.043

Table 1.1. Showing the activity of tetrapeptide inhibitors with different electrophilic functional 
groups.
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Figure 1.15 tetrapeptide dengue NS3-protease inhibitors. Where Bz- Nle is benzoylated L-
norleucine
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Different functional groups were used such as -COOH, -OH, -NH2 , - 

NHSO2CF3, Benzoxazole, thiazole, -CF3, and -B  (OH) 2 and the activity was 

evaluated. In contrast to the HCV NS3-4A protease which was inhibited by a 

peptide acid dengue NS3 protease could not be inhibited by carboxylic acids. 

Moreover, peptide analog containing trifluoroacetylsulfonamide (which are 

isostere for carboxylic acids) was not active as well.65 Tetrapeptide amides 

showed inhibitory activity but, at a high micro molar concentration. For inhibitors 

with a-keto heterocycle moiety it was proved to be less active than aldehydic 

moiety. In addition, the incorporation of trifluoromethyl ketone and boronic acid 

has yielded potent inhibitors specially as the tetrapeptide boronic acid was 

evaluated to be the most potent peptide inhibitor of dengue virus NS3 pro with 

Ki = 43 nM.64 Generally, peptides without electrophilic functional groups did not 

show potent inhibition of dengue NS3 pro.

In contrast to the above mentioned points for the tetrapeptide inhibitors, 

peptides suffer from some limitations when used as drugs that can be 

summarized in the following points66

1. Peptides will have a very short duration of action because they are liable to 

many proteases and peptidases in our body.

2. Many peptides are too large to pass through the digestive tract into the blood 

so, it can not be taken orally.

3. Peptide inhibitors lack the desired specificity because they can interact with a 

number of enzymes in the blood stream and may cause unwanted side 

effects.
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In a trial to find a non-peptidic inhibitor for DF/DHF some compounds were 

extracted from finger root, Boesenbergia rodunta (BR) and tested for their 

inhibition of the dengue NS3 protease. BR is a common spice belonging to a 

number of the ginger family (Zingiberaceae). The chalcone, Cardamonin 

which was isolated from BR and was recently reported to be active against HIV- 

1 protease.67 In addition to Cardamonin some compounds were isolated from 

BR and were tested for their inhibitory activity towards DV-2 virus NS3/NS2B 

protease.7' A Fluorogenic peptide substrate contains Arg-Arg residue was used 

to test the cleavage of Arg-Arg at the S1 pocket. DV-2 NS3/NS2B protease with 

and without BR extracts compounds of different concentrations were tested. 

The cleavage activity of dengue 2 NS2B/NS3 protease at S1 was inhibited by 

Panduratin A 11 and 4-hydroxypanduratin A 12 with an activity of 21 pM and 

25 pM respectively

6

7  R-OMe R-*OH
8 R=OH R—OH
9  R-OH R -O M e Cardamonin

10

R

11 R=OMe 2 5  f lM
(Panduratin A)

12 r=oh 21 j i M  

(4-hydroxypanduratin A)

Figure 1.16 Boesenbergia rodunta active compounds
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In another study, the crystal structure of dengue NS3 serine protease 

complexed with the Bowman Birk inhibitor was useful in understanding the 

important residues and interactions that may help in designing a potent 

inhibitor. Also, it was observed that NS2B enhances the hydrolysis of tripeptide 

substrates and has no effect on substrates that have only a P1 side chain.69 

Furthermore it is similar in this feature to HCV NS3 protease in which the 

cofactor has a very low effect on P1.70 Depending on the structure of the side 

chain present in P1 (Arg, or Lys)68, and by observing the interactions formed 

by MbBBI side chains in which Arg side chain from the inhibitor was involved by 

its guanidine moiety in the interactions with the residues found at the S1 pocket 

of the DV NS3/NS2B protease complex. Searching for commercially available

compounds that have guanidine scaffold which mimic this mode and can give

the same interactions that are done by Arg. 17 compounds were identified from 

which only 6 compounds were commercially available and were tested against:

•  DV-2 NS3/NS2B protease complex.

•  WNV NS3/NS2B protease complex.

Only 5 compounds show activity from which compounds number 16 and 17 

showed the best activity as shown in the table 1.1.
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Figure 1.17 structures of the DV NS3/NS2B protease inhibitors

Compound
KipM

DV-2 NS3/NS2B protease WNV NS3/NS2B protease

13 44±5 33±5

14 423±50 337±56

15 1783±113 1088±162

16 23±2 16±2

17 14±2 13± 1

Table 1.2 The DV NS3/NS2B and WNV NS3/NS2B serine protease inhibitors
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Both compound 16 and 17 have an electronegative oxygen that could mimic 

the carbonyl oxygen in the P1 side chain of protein/peptide inhibitor complex. 

This oxygen is of the carbonyl group of indoline moiety in compound 16 and of 

phosphonate group in compound 17 and in both cases it makes hydrogen bond 

with Ser residue of the catalytic active site in the DV NS3/NS2B protease 

complex and WNV NS3/NS2B protease complex.

Figure 1.18 DV NS3/NS2B and WNV NS3/NS2B serine protease inhibitors, most active
compound.

16 17
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1.5.2- DV RNA dependent RNA polymerase (RdRp)

Viral polymerases represent an attractive drug targets for the development of 

specific antiviral compounds. Indeed, selective inhibitors against HIV-1 reverse 

transcriptase have been approved as drugs such as Didanosine, Stavudine.72 

The genomic RNA of the dengue virus is translated into a single polyprotein.73 

This is cleaved into three structural C-prM-E and seven nonstructural NS1- 

NS2A-NS2B-NS3-NS4A-NS4B-NS5 proteins by both the viral and host 

proteases as mentioned before.74 The viral serine protease is located within the 

N-region of the NS3 75, while the C-region has the RNA Helicase that is working 

to separate the double-stranded RNA template into individual strands to 

facilitate the process of replication of the genome that will be done by NS5 76-77. 

NS5 is the largest and most conserved protein in dengue proteins. There are 

some amino acids sequences (motifs) present in the C-terminal of NS5 form 

the DV RNA-dependant-RNA-polymerase (RdRp) (Figure 1.19).

29* 320 368

Figure 1.19 The Conserved motifs (A, B, C, D, E, and F) of dengue RdRp.
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Polymerase is responsible for synthesizing a transient double-stranded 

replicative RNA intermediate. This RNA is composed of viral plus- and minus- 

strand RNA strands. The newly synthesized minus strand serves in turn as a 

template, allowing the RdRp to synthesize additional plus-strand genomic 

RNA.78-8'

1.5.2.1- Crystal structure of DV RdRp

Most of the polymerases such as that of the Flaviviridae family, and other viral 

families share an overall architecture composed of palm, fingers, and thumb 

domains82 and a common catalytic mechanism for nucleotide incorporation by 

using of two metal ions that are coordinated by two structurally conserved 

aspartic acid residues.83 Viral RdRp are characterized by the presence of a 

connection between the thumb and the finger domains, making the active site 

appears to be encircled, as seen in HCV RdRp. There is an additional motif, 

called motif F that is not present in host cells, which has an important role in the 

stabilization of the recently formed base pair. The three-dimensional structure 

of the DV RdRp was defined at 1.8 °A by X-ray crystallography (figurel .20).84
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Thatnb

Figure 1.20 Crystal structure of Dengue virus RdRp (pdb code = 2J7U)

1.5.2.3- Catalytic active site

The catalytic active site of the DV RdRp is found in the palm domain. It consists 

of residues 497 to 542 and 601 to 705; it appears to be the most structurally 

conserved. The catalytic domain of the DV RdRp shows good superimposition 

with those of other RdRps (e.g., HCV), with RMS deviations of about 1.7 A.
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1.5.2.4- Different motifs found in DV RdRp

P n m ii

Fingers
Template tunnel

Thumb

&

Figure 1.21 showing the different motifs of dengue RdRp. Motif A is in violet, motif B in 

white, motif C is in cyan, motif D is in pink, motif E is in blue, and motif F is in red color.84

DV RdRp has five important motifs that are distributed in its structure; Motif A 

has one hydrated Mg2* ion close to the expected catalytic position. Motif C 

contains catalytic triad GDD (Gly 662, Asp 663 and Asp 664).
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Motifs B and D are shown in the figure 1.21. Motif E is the most important 

conserved motif in the thumb domain. Additional interactions between the 

polymerase and the 3’-deoxy guanosine triphosphate (3’-dGTP) phosphate 

include hydrogen bonds with Thr-794 and Ser-796. Arg-737 makes a salt 

bridge with the phosphate moiety and Arg-729 (motif E) makes a salt bridge 

with the phosphate as well. However, Ser-710 (from motif E) makes a hydrogen 

bond with the phosphate. In a separate study, residues Ser-498 and Arg-517 in 

the Bovine viral diarrhea virus polymerase (corresponding to Ser-710 and Arg- 

729 in DENV RdRp) were mutated individually to alanine in order to test their 

contribution to an elongating (primer-dependent) versus de novo (primer- 

independent) mode of RNA synthesis. The de novo mode of the RNA synthesis 

was almost abolished by these single mutations, while the RNA elongation was 

reduced only approximately two- to nine folds. Thus, the mutation of these 

residues from the BVDV RdRp is able to confer specificity for a primer- 

dependent mechanism, as opposed to a de novo mechanism of the RNA 

synthesis. The structural conservation of these residues within motif E with the 

BVDV RdRp suggests a similar phenotype when Ser-710 and Arg-729 are 

mutated in the DENV RdRp enzyme. A comparable study of the HCV RdRp 

demonstrated a similar role played by Arg-386 and Arg-394 (also leading to a 

severe decrease in de novo initiation). These two residues are structurally 

equivalent to Arg- 729 and Arg-737 in the DENV 3 RdRp. Taken together; 

these data suggest an essential role for this GTP-binding site for de novo 

initiation of RNA synthesis by the DENV RdRp. Motif F plays an important role 

in the stabilization of the nascent base pair.84
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1.5.2.5- Mechanism of Action of DV RdRp.

The process starts by the capped genomic (+) RNA that is found circularized 

(1) due to interactions between complementary sequence stretches at the 5’ 

and 3’ ends named UAR (Upstream of AUG Region) and CS (complementary 

sequences). The NS5 RdRp domain specifically binds to the promoter stem 

loop A (SLA) at the 5’ end of the genome and initiates de novo RNA synthesis 

using the 3’ end as a template (2). The NS5 RdRp synthesizes the complete (-) 

strand (3). The double-stranded RNA Replicative form (RF), consisting of the 

genomic strand annealed to the neosynthesized (-) strand (4), serves as a 

template for the synthesis of a new genomic (+) RNA, in the Replicative 

intermediate (Rl) (5).Bsm (Figure 1.22).

SLA\

CU 3"

3'<+> RF
5 »

cu m
GA 5 (-)

NS5

Figure.1.22 RdRp in Dengue virus replication.85
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1.5.2.6- DV RdRp Inhibitors.

As mentioned before, the dengue virus RdRp is considered to be an interesting 

enzyme that could provide specific inhibition of the viral replication because 

polymerases are not found in the host cells.87 Current RdRp inhibitors work 

either by directly chelating the catalytic active site in the palm domain, binding 

to the conserved active site or by binding to allosteric pockets.88 According to 

the chemical structure of RdRp inhibitors they may be classified into:

•  Nucleoside inhibitors.

•  Non- Nucleoside inhibitors.

•  Miscellaneous inhibitors.

1.5.2.6.1- N ucleoside Inhibitors.

Nucleoside inhibitors are analogues of the naturally occurring nucleotide 

triphosphates which are the physiological substrates of the RdRp. These are 

metabolized to the triphosphates and then incorporated into the growing RNA 

causing inhibition of RNA synthesis.89 90

1.5.2.6.2- N on-N ucleoside Inhibitors.

Non-nucleoside inhibitors are chemical agents that do not have purine or 

pyrimidine in their structure. They bind to the catalytic site of RdRp, conserved 

active site or to allosteric pockets. The use of this kind of inhibitors was 

successful for the inhibition of the HIV-reverse transcriptase91 and HCV RdRp. 

92*95 Anthranilic acid derivatives showed an interesting activity against HCV 

polymerase.96 They act by binding an allosteric pocket between the thumb and 

palm domain at 7.5 A0 away from NTP binding site.
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Recently N-sulfonylanthranilic acid derivatives were also discovered with some 

inhibitory activity against Dengue RdRp via an allosteric inhibition,97 the 

anthranilic acid derivatives have confirmed its great affinity towards the RdRp 

enzyme. First they synthesized compound 18 that was tested and found to 

have IC50 = 7.2 pM inhibitory concentrations by which it was considered to be 

a good hit to be modified to give compound 19 with IC50 = 0.7 pM and here 

they reached an interesting lead compound.

18 19

Figure.1.23 DV RdRp anthranilic acid derivatives inhibitors.
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1.5.3- DV NS3 Helicase as a target for drug design.

In the process of viral replication a negative stranded RNA is synthesized from 

a positive stranded RNA. The -RNA strand is then used as a template for the 

synthesis of complementary + RNA strand. As mentioned in the mechanism of 

the RdRp enzyme a double-stranded replicative form is synthesized. The 

helicase enzyme mediates the unwinding and separation of these two strands. 

Here the helicase works by disrupting the hydrogen bonds between the two 

strands. The energy required for this process is derived from the NTP 

hydrolysis. The helicase enzyme is found in the NS3 protein of the dengue 

vims, where the protease domain is located in the N-terminal region and the 

Helicase together with NTPase are in the C-terminal region.98 Flavivirus 

helicases are classified into three super families (SF); Super family 1 (SF1), 

Super family 2 (SF2), and Super family 3 (SF3) beside two other small families. 

Flaviviridae helicases belong to SF2." They contain seven conserved motifs (I, 

la, II, III, IV, V, and VI) as shown in (figure 1.24).
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Protease domain Helicasee/NTPase/RTPase domain

i  ia  n  ra  iv  v  v i

WaBcer A

W alker B

Figure 1.24 Schematic representation of the helicase motifs.

From the seven conserved motifs there are two important motifs which are 

Motif I and Motif II:

• Motif I (Walker A): also called phosphate-binding loop motif (P-loop) 

that binds the terminal phosphate group of NTP. The presence of a Gly- 

Lys-(Thr/or Ser) sequence is essential for this motif as the amino group 

of lysine residue will interact with the phosphate of MgATP/MgADP, and 

the hydroxyl group of threonine or serine will ligate the Mg+2 ion."

• Motif II (Walker B): has a general form of DEAH that is for Asp-Glu-Ala- 

His respectively. The carboxylic group of aspartic acid coordinates the 

Mg+2 ion of MgATP/MgADP. Glutamic acid acts as a catalytic base in 

ATP hydrolysis.

42



Chapter 1 Introduction

1.5.3.1- The crystal structure of D engue Helicase.

The crystal structure of DV NS3 Helicase is composed of three-lobed structural 

domains (Figure 1.25) of about 150 amino acids each forming a Y-shaped 

triangular structure. The three domains are representing the NTPase domain 

(Domain I), RNA-binding domain (Domain II) and a Helicase domain (Domain 

III). Domain I and II are structurally similar both being formed of a large central 

six-stranded parallel p-sheet with a twist flanked by four a-helices. Domain III is 

composed of a bundle of four parallel a-helices surrounded by three a-helices 

and augmented by two antiparallel p-strands. Domain I and II form a core that 

contains most of the conserved sequence motifs at the interface between the 

two domains. The Walker motif A is composed of a P-loop that is located on 

the surface of domain I and binds to the terminal phosphate group of the NTP. 

Walker motif B is also found in domain I and is responsible for the chelating of 

Mg2*.100

1.5.3.2- Importance of Helicase Enzyme.

Helicase and polymerase form a complex with other host and viral proteins to 

form the viral replicase multiprotein complex. The +ss RNA virus needs a 

negative strand RNA to be synthesized by the replicase complex using the 

+ RNA strand as a template. Then the newly synthesized -  ve RNA is used as 

a template for further synthesis of +ve RNA strands. Because +ve and -ve 

strands are complementary, Helicase enzyme is needed for the separation of 

the strands.
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Domain I
Domain II

Domain III

Figure 1.25 Crystal structure of Dengue virus Helicase enzyme showing Domain I (yellow),

Domain II (green) and Domain III (red).
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1.5.3.3- Mechanism of Flavivirus Helicase inhibition.

The conformation changes which occur in the helicase are an important issue 

for understanding the mechanism by which the helicase enzyme could be 

inhibited. The conformation of an active helicase can be broadly described as 

an "open” and "closed” complex of Domain I and II with a transition between 

them."

NTP-binding site

Domain 1

Domain 2

0 ~ \ NTP binding NTP hydrolysis

DNA/RNA

In transition Closed

NTP binding

DNA/RNA bind

<S> Inhibit NTP bindng Q  Inhibit NTP hydrolysis

0  Inhibit unwinding

Figure 1.26 Potential mechanism of helicase inhibition.91
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Inhibitors can have one of the following mechanisms to inhibit the helicase 

function:

•  Inhibit the NTPase activity by direct competition with the NTP binding 

site.

•  Inhibit nucleic acid binding.

•  Inhibit NTP hydrolysis or NDP release by blocking the movement of 

domain II.

•  Inhibit the process that couples the NTP hydrolysis to translocation and 

unwinding.

•  Inhibit unwinding by blocking the helicase translocation.

•  Other inhibitors can change the physical conformation of the helicase 

and altering the interface between domains I and II.
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2- Molecular M odeling in Drug Design.

2.1- Introduction

The process of drug discovery is a complicated process that starts with an idea 

and could end with a new drug. It aims to develop a new molecule which could 

be potent, selective, and have good bioavailability. Furthermore, this process is 

very expensive consuming both time and money. Modern techniques such as 

computational chemistry and molecular modeling are widely used nowadays in 

order to save time and money. The main features of such tools are that they 

can be used for the understanding, studying and designing or modifying the 

compounds which could be potential inhibitors against the target protein. This is 

carried out by getting the main interactions between the compounds and the 

protein, ranking the compounds and taking the top scoring compounds into 

consideration and the excluding of compounds that do not show any 

interactions. Many successful drugs have been designed by such methods and 

have been proven to be very active against their target. Molecular modeling by 

definition is the science of representing molecular structures and simulating 

their behaviour.1 Programs used for molecular modeling allow us to perform a 

number of operations which can be used in our research for drug design such 

as: the study of the target protein, energy minimization, docking studies, virtual 

screening, optimizing lead compounds, the design of de novo compounds, the 

study of the main interactions between compounds and protein, predicting the 

activities of unknown compounds, and studying structure-activity relationships 

(QSAR).
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2.2- Computer-Aided Drug Design.

Computer-aided drug design methods are mainly dependent on the presence 

or absence of the crystal structure of a target protein. If the structure is 

available structure-based design will be the ideal method, and if it is not 

available and there is no lead compound homology modeling will be the 

alternative method. In a situation where there is no crystal structure but, a lead 

compound is available a ligand-based approach is the method of choice. 

Structure-based drug design is when the crystal structure of the protein is 

available and is obtained either by X-ray crystallography or by nuclear magnetic 

resonance (NMR). Here we can visualize the protein and its active site and 

observe/predict how the small compounds can interact with the active site 

residues. Different methods such as docking and virtual screening are common 

in structure-based drug design methods to obtain new compounds for specific 

proteins.

Homology
Modelling

Ligand-BasedStructure-Based

Drug Design

-Crystal structure is not 
available.

•lead compounds available.
Crystal structure is available

Crystal structure is not available but 
the structure of related proteins is
known.

Figure 2.1 Schematic representation showing the different approaches in drug design.
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The active site here is considered to be a space which needs to be filled with 

suitable molecule(s) or fragments that could be linked together to give the final 

molecule. The most important factors to be taken into account are the shape, 

size, charge, number of electron donating groups, number of electron accepting 

groups, and essential pharmacophores.2 The following sections will summarize 

all the computational methods that were used in the present work showing the 

application of molecular modeling techniques in the process of drug design.

2.3-Molecular Mechanics (MM).

Molecular mechanics (MM) is the process used in order to calculate molecular 

geometries and energies. It considers the atoms as if they were rubber balls of 

different sizes connected together with springs (bonds). MM calculates the 

energy as a function of the nuclear position of atoms and this could be 

explained by the Bom-Oppenheimer approximation which states that electrons 

move around the nuclei in a fast movement due to the difference between the 

mass of both nuclei and electrons.3 MM can also calculate the total energy of a 

molecule taking into account its deviation from reference unstrained bond 

lengths, angles, torsions and non-bonded interactions. All of these unstrained 

items (angles, bond lengths, and torsions) together with the non-bonded 

interactions (Van der Waals and electrostatic interactions) and any force 

constants are called the force fields. Force fields can be defined as the 

functions and parameters that are used to describe the potential energy of a 

defined system.4
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Torsion

i ■
b I

Non-Bonded Interactions

Figure 2.2 Type of bonds.

The potential energy can be calculated by the following equation:

Etot (M M ) “ Estr + Efofnd + Etors + Evdw + Edec + .....

Where:-

•  E to t: is the total energy of a molecule.

• Estr: is the bond-stretching energy where the bond is treated as a spring

according to Hooke’s law in which the stretching of a spring is directly

proportional to the load added to it and the potential energy will be

proportional to the deviation from the equilibrium point.

• Ebend: is the angle-bending energy.

• Etors: torsional energy produced by rotation of a bond.
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• Non-bonded interactions:

1. Evdv.: van der Waals energy which could be defined as the 

attractive forces that could arise from the distortion of the 

electron clouds and hence causing dipoles that by its role will 

induce dipoles in the neighboring atoms and finally result in an 

attractive effect. If the atoms become very close their electron 

clouds will overlap causing a repulsive effect. The Lennard-Jones 

12-6 equation is considered the most widely used to calculate 

Van der Waals potential.5-6

E = 4c [« / r £  -  [«/r]«

Energy

van der Waals attraction

Optimum energy Separation

Figure 2.3 Lennard-Jones potential (12-6) function.7
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Where:

-r-12: is the repulsive component.

-r-6: is the attractive component.

r: the distance between the interacting atoms.

a: the distance from which the interaction energy is zero.

e: minimum energy when the distance between the nuclei is the sum of their

Van der Waals radii.

2. Eeiec: electrostatic energy that is resulted from electrostatic 

interactions and could be expressed by Coulomb’s law. It could 

be calculated after assignment of partial charges to all atoms 

because of the unequal distribution of charge in the molecules.

- j ,  1 Q l Q 2
J^elec = -----  - “ T "

4m  r"

Where:

r: The distance between two atoms of partial charges q1 and q2. 

e: Permittivity of the medium.
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2.4- Force Fields.

Force fields (FF) are mathematical equations that provide some parameters 

which are important in solving certain problems. By definition it is the functions 

and parameters that are used to describe the potential energy of a defined 

system. There are several FF that have been developed to deal with different 

types of atomic coordinates. FF can compute bonded and non-bonded 

interaction energies.8 We can find FF that are more suitable for some specific 

systems rather than other systems. So, the choice of the proper FF will mainly 

depend on the system to be used. For example, the AMBER FF is suitable for 

proteins and nucleic acids and not used for small organic molecules.9 While 

MMFF (Merck Molecular force field) is widely used with small organic 

molecules.10

2.5- Energy M inim isation (EM).

In the process of MM the total energy is minimized with respect to the atomic 

coordinates.4 Molecules can have different conformations due to rotations 

about single bonds. The conformations of lower energy are considered the 

most stable. So, the process of EM is mainly used to search for the optimum 

conformations with low energy using EM algorithms.3 The process of EM 

involves adjustments in the geometry of the molecules which are followed by 

energy calculations and the discarding of any geometry with high energy. Once 

the minimum energy is reached the process is stopped. The stable state of any 

molecule is known as local minima which is the minimum point in the energy. 

Flexible molecules will have more local minima than rigid molecules.56 EM 

algorithms are classified into two groups: non-derivative methods (e.g. simplex 

method) that do not require calculations of potential energy and derivative 

methods (e.g. steepest descent, conjugate gradient, and Newton-Raphson).4-6
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EM is widely used in molecular modeling applications. It can be used with MM, 

molecular dynamics (MD), molecular docking, homology modeling (HM) and 

also, with conformational search methods such as systematic and stochastic 

methods to generate the starting point for the minimisation run.

2.6- Conformational Analysis

Molecular conformations are commonly defined as structures that can be 

interconverted by rotation about single bonds. The conformations available to a 

molecule can have a great effect on its biological activity and in some cases 

one of these conformations may be responsible for an observed behaviour. So, 

when we are going to analyze the effects of a 3D structure on molecular 

properties, we should consider all possible conformations. Some aspects 

should be taken into account such as, the conformational space which can be 

represented schematically by the following plot.

. . " ^ 7 y

N

Figure 2.6 energy versus torsional-angle plot where the x-axis represents the torsion space

and the y-axis represents energy.11
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The minima in the above conformational plot correspond to low energy 

conformations, while the maxima represent transition states between low 

energy conformations. The lowest energy conformer is referred to as the global 

minimum and lies at the bottom of the deepest potential energy well. 

Conformers that lie at the bottom of potential wells with energies higher than 

the global minimum energy are referred to as local minima. A complete 

conformational search via incremental rotations about all rotatable bonds often 

leads to a combinatorial explosion of structures that becomes impossible to 

enumerate. For example, a systematic 0-360 degree search of each rotatable 

bond in a structure containing 6 rotatable bonds would produce more than 2 

billion structures presuming that each angle is searched in 10-degree 

increments. Many more structures would result if the increment was lowered.11

2.6.1- Systematic Conformational Search

The main aim of the Systematic Conformational Search is to generate a 

collection of reasonable molecular conformations which may or may not be at 

local minima. This is by systematically rotating bonds in a molecule by discrete 

increments. A generated conformation is rejected if it contains two atoms 

whose mutual van der Waals energy exceeds a threshold (by default, 10 

kcal/mol). This ensures that the output conformations contain no conformations 

with heavily overlapped atoms. The main advantage of the systematic search is 

that its output will contain most of the local minima. The systematic search also 

produces reasonable molecular geometries that do not lie at potential energy 

minima. Such conformers can be important in situations where the minimum 

energy conformation of a bound structure (e.g., a ligand docked to a protein) 

does not correspond to a minimum energy conformation of the unbound 

structure (i.e., gas phase or free in solution). In any molecule, all bonds except
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bonds to terminal atoms are available for rotation. Such bonds are called 

rotation bonds. For each rotation bond, a list of possible relative dihedral 

increments, or steps, is determined. For example, the CH3-OH rotation bond 

might be assigned to rotate three times (e.g., 0, 120 and 240 degrees). Once 

the list of increments has been determined, the application generates all 

combinations of conformations according to the rules laid out in the increment 

list. Conformations with severe non-bonded contacts are eliminated from the 

set of generated conformers. The rotation increments are added to the dihedral 

angle of the starting conformation. For this reason, it is important to perform an 

energy minimization prior to running the Systematic Conformational Search.12

2.7- M olecular Alignm ent.

There are many different procedures proposed for aligning molecules. Different 

methods work better in different situations and there is no best method for all 

cases. There are three categories; substructure overlap, pharmacophore 

overlap and docking. 5 Substructural overlap is the simplest. It assumes that 

the molecules share a common core of atoms. This core is overlapped in each 

of the molecules in the dataset. On the other hand, pharmacophore overlap 

does not assume any particular common core for the active molecules. Instead, 

it assumes that the pharmacophore features involved in binding are identified 

(or can be identified) and attempts to maximize the overlap of these features 

between the molecules in the dataset. Docking is a third strategy that is based 

on the idea that if you know how the molecules can bind to the active site, you 

can use those coordinates for the alignment. The bound conformation is not 

necessarily to be the best conformation.
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2.8- Site Finder.

The aim of Site Finder is to calculate possible active sites in a receptor from the 

3D atomic coordinates of the receptor. This is to determine potential sites for 

ligand binding in docking calculations or Multifragment Search. Active sites are 

usually hydrophobic pockets that involve side chain atoms. There are some 

methods that use interaction energies between the receptor and different 

probes in an attempt to locate energetically favorable sites. However, this 

procedure requires the assignment of proton locations and partial charges to 

the receptor atoms and this is not always easy. While van der Waals energies 

can indicate sterically available regions, the long-range nature of electrostatic 

potentials makes the interpretation of energy levels difficult (e.g., a carboxylate 

in an active site will emphasize positively charged probes even though 

negatively charged probes like carbonyl oxygen may be part of the bound 

ligand). Alternatively, purely geometric methods seek to locate "pockets” 

without the use of energy models. This is advantageous since proton locations 

are not required. Another method uses a grid representation of the molecular 

volume and computes exterior site scores by projecting rays from the receptor 

exterior to the surface. The deeper and more surrounded a site is, the higher it 

scores. The Site Finder falls into the category of geometric methods since no 

energy models are used. Instead, the relative positions and accessibility of the 

receptor atoms are considered along with a rough classification of the chemical 

type.
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The following methodology principles have been used:

a) Identify regions of tight atomic packing. This is not the same as locating 

pockets, since surface sites may still be regions of tight packing.

b) Filter out sites that are “too exposed" to solvent. In other words, sites 

that are on protrusions are unlikely to be good active sites.

c) Use hydrophobic/hydrophilic classifications. This coarse classification of 

chemical type is used to separate water sites from the more likely 

hydrophobic sites.

d) Use a definition of hydrophilic that is invariant to protonation state and 

tautomer state (this means no distinction between donor and acceptor 

atoms).

e) Avoid grid-based methods since grid methods are not invariant to the 

rotation of the atomic coordinates and can consume large amounts of 

memory.

The Site Finder methodology is based upon Alpha Shapes which are a 

collection of 3D points in triangulated form. For each collection of four points 

there is an associated sphere called an alpha sphere. These spheres have 

differing radii including infinite radii (corresponding to the planes of the convex 

hull of the point set). The collection of alpha spheres is pruned by eliminating 

those corresponding to inaccessible regions of the receptor as well as those 

that are too exposed to solvent. In addition, only the small alpha spheres are 

retained since these correspond to locations of tight atomic packing in the 

receptor. Also, each alpha sphere is classified as either "hydrophobic" or 

"hydrophilic" depending on whether the sphere is in a good hydrogen bonding 

spot in the receptor. Hydrophilic spheres not near a hydrophobic sphere are 

eliminated (since these generally correspond to water sites). Finally, the alpha
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spheres are clustered using a single-linkage clustering algorithm to produce a 

collection of sites. Each site consists of one or more alpha spheres at least one 

of which is hydrophobic.13*18

Figure 2.7 This represents a group of alpha spheres indicating an allosteric site for inhibitor

design.
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2.9- Molecular Docking.

Molecular docking simulations represent a widely employed computational tool 

in drug discovery. It attempts to predict the structure of intermolecular complex 

between the ligand and macromolecule (target protein). The first docking 

attempts were done manually using interactive computer modelling. The ligand 

is put in the binding site and minimised to avoid bad steric clashes. Molecular 

docking is used either for prediction of the binding mode of a well known active 

ligand, identification of new ligands using virtual screening approaches or 

predicting of the binding affinities of a related series of active compounds. 

Docking procedures are classified depending on the approximation level into 

three categories; rigid body docking in which both protein and ligand are treated 

as rigid bodies, semi-flexible docking where the ligand only is considered a 

flexible and fully flexible docking in which both the ligand and protein are 

treated as flexible molecules. A standard docking protocol consists of a step­

wise process. First, a proper search algorithm predicts the various 

configurations of the ligand (poses) within the target binding site. In the second 

step, each docked pose is evaluated and ranked assessing the intermolecular 

interaction and estimation of the binding free-energy. The ability of a standard 

docking protocol to achieve its ultimate goal provides a reliable binding mode. 

Prediction strongly depends on the accuracy of the scoring function used. 

Molecular docking involves many degrees of freedom. Of the well known six 

degrees of freedom of translational and rotational freedom are of one molecule 

relative to the other. It also involves, the conformational degrees of freedom of 

the ligand and the protein. In order to perform docking for a large number of 

compounds the degrees of freedom should be fast.7
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2.9.1- Docking Algorithms.

Docking algorithms are used by the computational programs to deal with the 

flexibility of the ligands. The accuracy of predicting the ligand orientation in 

molecular docking is mainly due to a good docking algorithm. There are three 

methods of docking algorithms; systematic methods, stochastic methods, and 

simulation methods.19

2.9.1.1- Systematic M ethods.

(Incremental construction and multiconformer database.)

These methods explore all degrees of freedom of conformations due to the 

systematic variation of all torsional angles in the molecule and this can lead to a 

large number of conformations. To overcome this an incremental search in 

which the molecule is split into different rigid fragments then linked them 

together in an incremental construction manner or by splitting the molecule into 

two parts; rigid part (core) and flexible part (side chains). Here the core is

docked first then an incremental construction of the flexible parts takes place.20-

22

2.9.1.2- Stochastic M ethods.

(Monte Carlo, Genetic algorithm and Tabu search).

In stochastic methods a random changes are made to the ligand in order to find 

a new one that can be evaluated and the process is repeated until, it resulted in 

a number of conformations.23

2.9.1.3- Sim ulations M ethods.

(Molecular Dynamics M D  and EM)

Molecular Dynamics MD simulations are used to simulate the different parts of 

a protein-ligand complex at different temperatures.24 25 They can also bring the 

ligand in local minima.
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2.10- Scoring Functions (SF).

SF are mathematical methods used by molecular modeling programs in order 

to predict the strength of non-bonded interactions and the binding affinities of 

potential ligands to their proposed site of action. Some SF is dealing with 

hydrogen-bond energies or entropic loss which occurs to ligands due to 

solvation effects or the binding of ligands to their site. Scoring functions are 

used to evaluate and rank the resulting docked poses. This creates a 

correlation between the atomic coordinates and energy values. Poses of low 

energy are considered to have a higher chance for binding than those with high 

energy. Both FF and SF are similar in that they are mathematical functions but, 

SF are considered to be the speed determining point in a docking algorithm. In 

the process of molecular docking molecular algorithms are capable of 

generating a large number of conformations. Some of these conformations will 

be rejected due to their high energy clash with protein. The conformations of 

low energy should be assessed by using some SF which will be able to identify 

and rank the docked orientation for all docked ligands or conformations. There 

are four types of SF; Force Field-based SF, Empirical SF, Knowledge-based 

SF, and Consensus SF.

2.10.1- Force Field-Based SF.

Here the SF mainly depends on MMech FF which calculates the energies of 

both the receptor-ligand interactions energy and the ligand energy which could 

be due to steric strain resulting from binding. Because it deals with MMech FF it 

will use the Van der Waals (12-6 Lennard-Jones) and electrostatic (Coulomb’s 

law) energy equation. FF-based SF have some limitations due to their 

consideration of a single protein conformation and because they were 

developed for gas-phase in addition to their high cost.26
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2.10.2- Empirical SF.

Empirical SF is mainly used to produce the binding energies which are 

correlated with experimental affinity. Here a training set is used and the 

evaluated binding energies of the complex structures of this set are used in a 

regression analysis which will require the structures and the binding constants. 

The SF use hydrogen bonds, electrostatic and hydrophobic interactions. The 

main disadvantage of this type is that it depends mainly on the training set.27 31

2.10.3- Knowledge-Based SF.

This type of SF is used to generate experimental structures and does not deal 

with binding energy. The modeling of a receptor-ligand complex will depend on 

atomic interactions so; a number of atom-type interactions will be defined 

according to molecular environment. It is considered to be a simple method that 

could screen a large number of databases. The main disadvantage of this kind 

of SF is that it strongly depends on the data encoded in limited sites of protein- 

ligand complexes. Any interactions that are commonly used are considered to 

be attractive. However, the less frequently interactions are considered to be 

repulsive.26

2.10.4- Consensus SF.

It uses information from different scores to balance errors in single scores and 

to be able to improve and identify true ligands.26 31 An example of that is FlexX 

SF. If terms in different SF are significantly correlated the value of consensus 

scoring might be limited and it could amplify calculation errors and will not be 

able to balance them.
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2.11- Pharmacophore Search.

The main purpose of a pharmacophore search is to perform 3D searches of 

conformation databases using the annotations that are related to ligand 

receptor interactions. Here the pharmacophore can be defined as the group of 

structural features that are related to the ligand’s activity and recognition at the 

receptor site. In the MOE program the pharmacophoric structural features are 

represented by labeled points in space. There is a set of points for each 

conformation that could be considered as a set of structural features that may 

contribute to the pharmacophore of that ligand. By this it is possible to search a 

database of conformations with a pharmacophore query and the purpose of the 

use of that query is to select a limited subset from a large number of 

conformations. The output will have only the conformations that are matched 

with the pharmacophoric features of the query.

2.12- Structure-Based Virtual Screening.

Drug discovery has traditionally been successful by a combination of random 

screening and rational design. Nowadays, and by the huge progress in drug 

discovery approaches, new methods have been developed. One of these 

approaches which are of great importance in drug design is virtual screening. It 

can be named as in silico screening, attracting increasing levels of interests in 

the field of drug design. By definition, virtual screening is a computational 

approach used for the evaluation of binding properties using large ligand 

databases that may be fragment-like, lead-like, drug-like and can be used in 

rational drug design. The main principle of this process involves the 

computational analysis of chemical databases to identify compounds 

appropriate for a given biological receptor. This strategy implies that some 

information is available regarding either the nature of the receptor binding site
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or the type of the ligand that is expected to bind effectively to the receptor. An 

important class of this approach is based on virtual screening using a 

pharmacophore model that is derived from a known active Ligand. In this case 

a pharmacophore query is generated depending on the structure features of the 

reported active compound, taking in account the whole essential 

pharmacophoric features of this compound such as hydrogen bond acceptors, 

and hydrogen bond donors. A second class is docking and scoring techniques 

that predict the positions of bound Ligands and related binding affinities in case 

we have a 3D crystal structure of the target protein. Virtual screening can 

provide us with a potential hits that may be considered as a good starting point 

in drug discovery. In order to perform a successful virtual screening we should 

have a crystal structure of the target protein complexed with an inhibitor or to 

have data about the most active inhibitors for this target beside all the data 

about the active site/s of this protein, databases that can be used for the 

screening. The pharmacophore query that will be built depends on the active 

inhibitor by the aid of a molecular modeling program that will be also used also 

for docking and filtering of hits depending on their scoring. Finally, synthesis 

and measurement of the inhibitory activity will be the last step after the 

selection of the final hits. In comparison to in-vitro high-throughput screening, 

virtual screening technique is a faster and less expensive method for the 

selection of compounds that could be tested as it is if commercially available 

and can be synthesized or after the modification and removal of the undesired 

side chains that do not contribute to the built query and can affect the docking 

results.

77



Chapter 2 Introduction to Molecular Modeling

Building of Pharmacophore Query.

Protein Completed With Active Inhibitor.

3D Databases 
(Drug-like)

Further visual inspection erf the 
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Purchase or synthesis
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Biological testing.

Figure 2.4 Schematic representation of the key steps of 

The virtual screening process.
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2.13- M ultifragm ent search (MFS).

The purpose of MFS is to help understand the interactions between chemical 

functional groups (referred to as fragments) with the active site of a receptor. 

MFS uses a 3D structural model of the receptor, making it a structure-based 

ligand design methodology. Structure-based design is a term used to describe 

the design of an active ligand from scratch (de novo design) or the 

improvement of a known (structurally) active ligand. This document describes 

the individual steps of MFS as well as its input and output. The fundamental 

idea behind Multifragment Search is to place a relatively large number of copies 

of a fragment, say 200 copies of ethane, into the receptor's active site. The 

fragments are placed randomly around the active site atoms and are assumed 

not to interact with each other; no regard is paid to fragment overlap. Next, a 

special energy minimization protocol is used to refine the initial placement: the 

receptor atoms feel the average forces of the fragments, while each fragment 

feels the full force of the receptor but not of the other fragments. After 

preparation, the calculation begins in earnest. In turn, each of the fragment 

classes (i.e., all chemically identical fragments) are energy minimized; the other 

fragments and the receptor are held fixed. During this energy minimization, 

fragments interact only with the receptor and not with any other fragments. This 

is followed by the energy minimization of the receptor atoms with the fragment 

atoms held fixed. The receptor is subjected to the mean force of the fragments. 

This energy minimization protocol is repeated until convergence within a user- 

defined RMS gradient.32
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2.14- H om ology M odelling (HM).

The ultimate goal of protein modeling is to predict a structure from its primary 

sequence with an accuracy that is comparable to the best results achieved 

experimentally.33 This would be a good chance to use rapidly generated in 

silico protein models in the case that the crystal structure of the target protein is 

not available. Many proteins are simply too large for NMR analysis and cannot 

be crystallized for X-ray diffraction. In practice, homology modeling is a multi- 

step process that can be summarized in seven steps; the first step is to identify 

the best template depending on the percent of identity between it and the query 

sequence. Programs such as BLAST or FASTA are used for such purpose.34 35 

Alignment will be performed in the next step to determine the regions of low 

identity where the alignment will be difficult and may need correction. Then the 

coordinates of the template residues will be copied in order to build the 

backbone for the new model. The alignment between the model and template 

sequences can have gaps, which is due to gaps in the model sequence 

deletions or in the template sequence insertions. Both cases imply a 

conformational change of the backbone. These conformational changes cannot 

happen within regular secondary structure elements. It is therefore safe to shift 

all insertions or deletions in the alignment out of helices and strands, placing 

them in loops and turns which is done in the loop modeling step. When we 

have conserved residues in both the template and query it will be easier to copy 

these conserved residues entirely from the template to the model and achieve a 

higher accuracy than by copying just the backbone and repredicting from the 

side chains takes place. The next step will be the model optimisation to improve 

the models. The most straightforward approach to model optimization is simply 

to run a molecular dynamics simulation of the model. Finally, model validation 

takes place to make sure that the final model can be used.
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2.15- M olecular Dynam ics (MD).

MD is a powerful and widely used tool in chemistry, physics, and materials 

science. This technique is a scheme for the simulation of the natural motion of 

molecules and allows the prediction of the static and dynamic properties of 

substances directly from the underlying interactions between the molecules. It 

helps us to study the dynamic and thermodynamic properties by numerically 

solving an equation of motion, which is the formulation of the rules that govern 

the motion executed by the molecule. It applies the Newton’s second law of 

classical mechanics which states that atoms in a molecule interact with each 

other according to the rules of the employed force field at regular time intervals.

Fi (t) = m i a i (t)

Where:

♦> F i ( t)  = The force (F) of atom (i) at time (t).

♦> M i = The mass of atom i.

❖  a i = The acceleration of atom i at time (t).

It is mainly concerned with the atomic interactions, geometries, and energies in 

a given moment. MD predicts the temporal behaviour of a molecular system 

over time. MD is a good method for the generation of configurations for proteins 

and large molecules that can not be simulated by quantum mechanics due to 

their large size. Also, it provides a suitable refinement for models that were built 

by HM and alignment studies in order to adjust their coordinates.4
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2.16- Aim of work and objectives.

Structure-based drug design methods utilize the knowledge of a three 

dimensional structure of an enzyme/receptor to develop small molecules able 

to bind to the desired target, generating a specific biological response. These 

computer-based methodologies are now becoming an integral part of the drug 

discovery process and, although the principles of molecular recognition are far 

from being completely understood, some marketed compounds (i.e. Zanamivir, 

Lopinavir) have been developed with the help of the successful application of 

structure-based design techniques.

COOH

Lopinavir
HIV protease inhibitor

Zanamivir
Antiinfluenza

Figure 2.5 Structure of real drugs developed by structure-based approach.
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• The first aim of this work is to modify the structure of Panduratin A 

(derived from BR extract) that has an activity = 25 pM depending on 

molecular modeling and docking results into the S1 pocket of 

Dengue virus NS3 protease. That is done by removal of undesired 

substituents such as 2-(3-methyl-3-butenyl) and 6-phenyl moieties.

• The second aim of our project is to design and synthesize small non- 

peptidic molecules that could be potential inhibitors for DV-2 NS3 

protease using the virtual screening approach.

• Design and synthesis of novel Dengue RdRp allosteric inhibitors by 

fragment-based drug discovery methods and depending upon the 

presence of a 3’ GTP inhibitor complexed with Dengue virus RdRp. 

The aim is to find a suitable fragments that could be linked together 

to reach to a potential inhibitor.

Thr 794
Trp 795

Arg 737

'A rg  729

Ser 796
Ser 710

Figure 2.6 Potential site for allosteric RdRp inhibitor design.
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•  Docking studies of well known Flaviviral Helicase inhibitors 

against HCV, Dengue and WNV helicase which required the 

building of a homology model for WNV helicase in order to do a 

comparative docking study that could result in some aspects 

important in the design of novel dengue virus helicase 

inhibitors.
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Docking and modification of Panduratin A and 

4-Hydroxypanduratin A toward the inhibition 

of Dengue N53 protease.
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Chapter 3

3.1- Importance of SI pocket.

According to the literature, 1 the S1 pocket could be used for the development 

of small molecule that could inhibit the DV NS3/NS2B protease. The S1 pocket 

could be used alone instead of depending on all the pockets that may require a 

large peptide inhibitor rather than a small molecule inhibitor.2

Substrate

P1’P1P2
P3 P3'

S2 sr
S2'

S3*

Enzyme

Figure 3.1 Schematic representation of substrate side chains and their fitting in the

NS3 protease pockets
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3.2- Docking of Panduratin A and 4- 

Hydroxypanduratin A.

A Fluorogenic peptide substrate containg Arg-Arg residue was used in order to 

test the cleavage of Arg-Arg at the S1 pocket. Dengue 2 protease with or 

without BR extracts compounds of different concentrations were buffered at pH 

8.5 and tested. The cleavage activity of dengue 2 NS2B/NS3 protease at S1 
was inhibited by Panduratin A 11 and 4-hydroxypanduratin A 12 with an activity 

of 21 pM and 25 pM respectively.3 It was decided to use these compounds as 

a starting point to find the best mode of binding of such compounds with the 

dengue virus NS3 protease by docking these compounds against the S1 pocket 

of the dengue NS3 protease.

OH

HO

Panduratin A

11 (25 uM )

OHHO

CH3 h 3c

4-Hydroxypanduratin A

12 (21 pM )

Figure 3.2 Chemical Structure of Panduratin A and 4-hydroxypanduratin A.
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3.3- Preparation of the crystal structure.

The crystal structure of the dengue virus NS3/NS2B (pdb code = 2FOM) is 

considered to be the active form of the protease enzyme due to its combination 

with the cofactor as reported in the literature.4 The crystal structure was 

downloaded from pdb, all hydrogens were added and minimized. The residues 

of the S1 pocket were identified to be used as the docking site (Figure 3.3). The 

structures of 11 and 12 were built by MOE builder and saved as moe and mol2 

for the docking that was done by both MOE5 and FlexX 3.3.1.6

Figure 3.3 Identification of DV NS3 S1 pocket and its main residues.
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3.4- Docking results.

Poses of best scoring (Table 3.1) from both programs were visualized. It was 

found that the 2-methyl-1 -propenyl side chain present in position number 2 of 

the cyclohexene ring did not show any kind of interactions and had some 

clashes with different residues within the S1 pocket.

Figure 3.4 Docking of 4-hydroxypandurantin A (12) within the S1 pocket
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Moreover, it was found that the 6-phenyl ring could be retained or replaced by a 

basic moiety or by an electron donating group that could increase the chance of 

interact ion with the Asp 129 and/or Phe 130 residues present in the bottom of 

the S1 pocket. The 2, 4, 6-trihydroxyl groups could be replaced by 2, 4, 6- 

trimethoxy groups that have shown some interactions with Ser 135 -OH group. 

The presence of the carbonyl functional group of 3-cyclohexenyl methanone 

was important in the docking against the specified site of action.

Compound FlexX Score
M OE docking results and scores.

Kcal/mol Affinity
Kcal/mol

Interacted
moiety

Main
Residue

4-hydroxy 
panduratin A 12 -6.893 -11.25 -c=o

-OCHj
Ser 135 
Tyr 150

panduratin A l l

•6.660 -11.1 -c=o Ser 135 
Tyr 150

Table 3.1 Docking scores of MOE and FlexX for BR derivatives and the designed

compounds.
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A proposed mode of interaction for the new modified compounds was 

suggested. The oxygen atom at position 2 of the phenyl ring could interact with 

the hydroxyl group of Ser 135 forming a hydrogen bond. In addition, the 

carbonyl group is proposed to form a hydrogen bond with the hydroxyl group of 

Tyr 161. However, the presence of a basic moiety or electron donating group 

on the other side may have a kind of hydrogen bonding with the carboxylate 

moiety of Asp 129 or the -C =0 group of both Asp 129, and Phe 130.

basic or N 
electron 
donnating 
group

Figure 3.5 Predicted mode of binding of the modified compounds..
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3.5- D esign of new  com pounds.

According to the docking results three compounds were designed in which the 

phenyl ring was replaced by piperazine, 4-pyridine and 3-pyridine. 2, 4, 6- 

trihydroxy groups substituted with 2, 4, 6-trimethoxy groups were drawn by the 

MOE builder and were docked against the S1 pocket of DV NS3 protease.

OMeMeO.MeO. OMeMeO. OMe

NH

OMeOMeOMe

20 21 22

Figure 3.6 Structure of the newly designed modified structures.
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3.6- Docking of 20.
Docking of 20 has shown some interactions in which the 2-methoxy and 4- 

methoxy groups were involved in hydrogen bond formation with -OH groups of 

Tyr 161 and Ser 135 respectively. Also the -C =0 group of methanone moiety 

was involved in another hydrogen bond with -OH of Tyr 161, while the 4- 

pyridine ring was not involved in any kind of interactions.

Figure 3.7 Docking results of compound 20 showing interactions with His 51, Ser 135, and

Tyr 161 residues.
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3.7- Docking of 21.
The same results of 20 were seen in the docking of 21 and the 3-pyridine ring 

was not involved in any interactions as was expected.

vJ

His 51

Ser135

Tyr 161

Phe 130

Asp 129

Figure 3.8 Docking of compound 21 showing interactions with Ser 135 and Tyr 161
residues.
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3.8- Docking of 22.
Compound 22 has shown two modes of binding: the first mode in which the 

-C=0 group of methanone moiety was involved in the hydrogen bond formation 

with -OH group of Tyr 161 (Figure 3.9), and the second mode has shown 

another hydrogen bond formed between the -NH of piperazine and an oxygen 

atom of -OH group of Tyr 161 (Figure 3.10).

Figure 3.9 Binding mode 1 of compound 22 showing hydrogen bond with Tyr 161 residue.

99



Chapter 3

His 51

Ser 135

Phe 130

Asp 129

Figure 3.10 Binding mode 2 of compound 22 showing two hydrogen bonds with Tyr 161 and

Ser 135.
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3.9- Synthesis of (3-methyl-6-phenyl-3-cyclohexenyl)(2,4/6- 

trimethoxyphenyl) methanone.

Building on the previous molecular docking results it was found that the 3- 

pyridine and 4-pyridine rings were not involved in the interactions. It was also 

found that presence of the piperazine ring as in 22 has shown a hydrogen bond 

between its -NH and the oxygen atom of the -OH group of Tyr 161. Two 

compounds were selected for synthesis. The first of was (3, 4-dimethyl-6- 

piperazino-3-cyclohexenyl) (2, 4, 6-trimethoxyphenyl) methanone (modified 

22). While the second was (3, 4-dimethyl-6-phenyl-3-cyclohexenyl) (2, 4, 6- 

trimethoxyphenyl) methanone 27.

Figure 3.11 The chemical structure of modified 22 and 27 in which 3,4-dimethyl substitution 

of the cyclohexene ring is introduced for the ease of synthesis.

MeO

Modified 22 27
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Docking of 27 has revealed some interactions including the hydrogen formed 

between the oxygen atom of the 4-methoxy group and the -OH group of Ser 

135. Also, the hydrogen bond between the -C =0 group of methanone moiety 

and the -OH group of Tyr 161.

Figure 3.12 Docking results of compound 27 showing the main interactions with Tyr 161 and

Ser 135.
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Searching for the best synthetic method for both of them, it was found that 

substituted cyclohexenyl methanone could be synthesized by the Diels Alder 

reaction starting with an a, p-unsaturated carbonyl compound. For (3-methyl-6- 

phenyl-3-cyclohexenyl) (2, 4, 6-trimethoxyphenyl) methanone the starting 

compound was 3-phenyl-1-(2, 4, 6-trimethoxyphenyl) -2-propen-1-one that was 

synthesized according to the literature 7 by the reaction of 2, 4, 6-trimethoxy 

acetophenone with benzaldehyde in presence of NaOH and it was isolated as 

yellow crystals in 80 % yield.

•Me o HO •Me O

NaOH

MeO OMe MeO OMe

23 24

Scheme 3.1 Synthetic pathway for 25.

The mechanism of the synthesis of a, p-unsaturated carbonyl compounds is 

referred to Aldol Condensation reaction 8 that might be explained in five 

steps. In the first step the hydroxyl ion of NaOH will facilitate the removal of 

acidic hydrogen from 2, 4, 6-trimethoxy acetophenone leading to the formation 

of a strong nucleophilic enolate ion (Figure 3.13. I). The second step is the 

nucleophilic attack of the enolate ion of the electrophilic carbon of 

benzaldehyde resulting in an intermediate alkoxide (II).
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The formed alkoxide will deprotonate a water molecule resulting in a hydroxide 

ion and p-hydroxyl carbonyl compound that is called Aldol product (III). Step 4 

involves the dehydration of the previously formed Aldol product when a 

hydroxyl ion attacks the acidic hydrogen resulting in the formation of an active 

enolate (IV). In the last and final step the active enolate will be rearranged to 

form the 3-phenyl-1-(2,4, 6-trimethoxyphenyl)-2-propen-1-one (V) 25.

OMe :Q: H

OH
MeO OMe MeO OMe

OMe :0:

HOH

MeO OMe
25 (V)

(I) Enolate ion

H - 0. \

MeO OMe

H

Intermediate alkoxide

OMe :Q: :OH

CH

MeO MeO OMe V  — 
: OH

Aldol product

OMe (III)(IV)

Figure 3.13 Aldol condensation mechanism for the synthesis of chalcones.
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After the synthesis of 25 it was supposed that the reaction of 3-phenyl-1-(2, 4, 

6-trimethoxyphenyl)-2-propen-1-one with diene such as dimethyl butadiene that 

was available commercially at high temperature would result in the formation of

27.

Temp
xylene

Scheme 3.2 Synthetic pathway for 27.

The reaction was first done under high temperature and it was repeated under 

both high temperature in an oil bath and a U-tube was used to apply the high 

pressure but, unfortunately, it did not give the required compound.

Temp
Pressure

Scheme 3.3 Synthetic pathway for 27 on application of pressure.
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3.10- Conclusion.

Docking of panduratin A 11 and 4-hydroxypanduratin A 12 against DV NS3 

protease (pdb code = 2FOM) has revealed they have a binding mode in which 

the substituted benzoyl moiety was found interacting with some residues in the 

S1 pocket such as Tyr 161, Ser 135, and His 51. The trial to synthesize some 

derivatives of these compounds by the Diels Alder reaction in which the 2- 

methyl-1-propenyl side chain was removed and a basic moiety was introduced 

in the position of cyclohexenyl ring failed. Therefore the importance of using a 

second approach arises to find small molecules that could inhibit the DV NS3 

protease by binding to the S1 pocket. Virtual screening was chosen as a 

second approach to search for new scaffolds that could be good hits to be used 

as a starting point.
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Chapter 4

4.1- Design of DV NS3 Protease Inhibitors by 

Structure-based Virtual Screening.

Virtual Screening (VS) has successfully been used in the process of drug 

discovery.1 DV has three crystal structures available in pdb. The first one is 

complexed with MbBBI (pdb code = 1DF9) that was used previously for the 

development of non-peptidic inhibitors.2*3 The second crystal structure is the 

dengue virus NS3/NS2B (pdb code = 2FOM) which is considered to be the 

active form of protease enzyme,4 while the third one is the dengue virus NS3 

domain alone (pdb code = 1BEF).5 To date there is no crystal structure of 

dengue NS3 protease that is complexed with a small molecule inhibitor. The 

crystal structure of the dengue virus NS3 in complex with MbBBI was used for 

discovery of dengue inhibitors and resulted in some compounds with high micro 

molar inhibition activity. The structure of MbBBI might cause some 

conformational changes to the site of action of NS3 protease that might be the 

main cause of inhibition beside its two Arg and Lys side chains that were found 

interacting with the S1 pocket residues. Also, if we depend only on the basic 

residue found in the S1 pocket that would result in a basic compound to be 

used as an inhibitor. But, the interesting point is that the S1 pocket alone could 

be used for discovery of novel NS3 protease inhibitors for dengue. The 

assumption of the use of the S1 pocket for design of flaviviral NS3 protease 

inhibitors has been reported in the literature.6*7 For this reason we have 

identified the main residues in the S1 pocket together with the oxyanion hole.
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A similarity search was done to find a similar NS3 structure from the 

Flaviviridae family that has a high percentage of identity and similarity 

especially for its S1 pocket. WNV NS3 serine protease has been found to be 

the best choice with identity = 62.5 % and was inhibited by a potent peptidic 

inhibitor that was complexed with its crystal structure (pdb code = 2FP7)8 and 

was found to be similar to that of the DV NS3/NS2B protease.

HN

NH 3

h 2n

Figure 4.1 Structure of the peptide inhibitor of WNV NS3/NS2B protease.
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The developed idea was to use the similarity between the DV NS3 serine 

protease and WNV NS3 serine protease by means of using the peptidic 

inhibitor in building a pharmacophore model that could be used for VS 

searching for potential hits. To begin building the model, the crystal structures 

of the two viruses NS3 proteases were downloaded for sequence alignment as 

the first step.

NS3 domain 

(Serine protease/NTPase/helicase)

Percent of Identity  

with DV NS3.

WNV 62.5 %

HCV 24.9%

YFV 51.2%

Table 4.1 Percentage of identity between DV NS3 sequence and NS3 sequence of WNV,

HCV, and YFV
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4.2- Superim position of the crystal structures of DV  

and WNV NS3 proteases.

A superimposition of the two crystal structures of dengue and WNV NS3 

proteases with pdb code = 2F0M and 2FP7 respectively was done by the MOE 

2007.08. By downloading both crystal structures into the MOE 9 window. The 

residues of the dengue virus NS3 S1 pocket slightly deviated from that of the 

WNV S1 pocket; RMSD was found 1.37 A0 between the two backbones.

Figure 4.2 Superimposition of both 2FOM (in yellow) of dengue NS3 protease and 2FP7 

(in red) for WNV NS3 protease with the peptidic inhibitor (in blue)
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The alignment was also performed with the ClustalW program provided by the 

Uniprot website (http://services.uniDrot.org/clustalwA. between the serine 

protease/NTPase/helicase NS3 sequence of the Dengue 2 virus that has the 

sequence from 1475-2093, and WNV that has the serine 

protease/NTPase/helicase NS3 sequence 1502-2120 (Figure 4.2). Identical 

residues are marked with a star and are shaded with grey as found in the 

following figure.
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1 6 7 6 ¥NV
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1 8 2 9 DEN2
1 8 5 6 ¥NV

1 8 8 9 DEN2
1 9 1 6 ¥NV

1 9 4 9 DEN2
1 9 7 6 ¥NV

2 0 0 9 DEN2
2 0 3  6 ¥NV

2 0 6 9 DEN2
2 0 9 6 ¥NV

2 1 2 9 DEN2
2 1 5 5 ¥NV

Figure 4.3 ClustalW sequence alignment between DV NS3 and WNV NS3.
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By visualization of the site at which the peptidic inhibitor fits in both DV NS3 

protease and WNV NS3 protease before and after the superimposition, it was 

found that it had the same binding site. The most important here was the Arg 

side chain from the inhibitor that was found in the S1 pocket of both DV and 

WNV NS3 protease that could give a clear overview of the possible interactions 

between the guanidine moiety of the bound ligand and the residues at the S1 

pocket of the DV NS3 protease.

Figure 4.4 The site of the binding of peptidic inhibitor 

That is mainly within the S1 pocket.
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The observed difference between the two pockets of both DV and WNV NS3 

serine proteases was the presence of Tyr 130 in WNV instead of Phe 130 in 

DV. The overall orientation of the residues at the S1 pocket in both DV NS3 

protease and WNV NS3 protease that were involved in the interactions was 

almost the same.

His 51

Ser 135T y r161

Tyr 130Asp 129

Phe 130

Figure 4.5 WNV residues in ball and stick (Yellow) and DV in the line representation (red) 

are showing the same orientation of their functional groups.
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4.3- Building of the Pharmacophore model.

A variety of pharmacophoric features were introduced by the ligand such as the 

two carbonyl groups of amide bonds that were involved in the hydrogen bond 

formation with Tyr 161 and His 51 of WNV NS3 protease and Tyr 161 and His 

51 of DV NS3 protease. Also, it was found that the Asp 129 residue was 

involved by its carboxylic -C =0  group as an acceptor with the positively 

charged N atom of ligand present in its guanidinium moiety in both WNV and 

DV. Comparison of the formed interactions in both the WNV NS3 protease and 

the DV NS3 protease with residues of the S1 pocket and with the measured 

distances is shown in figure 4.7 and figure 4.8. Table 4.2 shows the involved 

residues together with the measured distances for each enzyme.

W NV NS3 protease DV NS3 protease

Tyr130 2.8 A° Phe130 1.83 A0

Asp 129 2.87 A° Asp 129 2.00 A0

Tyr161 2.83 A° Tyr161 2.62 A°

His 51 2.77 A° His 51 2.23 A0

Gly 153 2.86 A°

Table 4.2 Comparison of the involved residues and measured distances in the interactions

with the peptide inhibitor.
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The DV NS3 protease-Ligand interactions have shown that the artificially fixed 

ligand was fitted in the same site as in the case of the WNV NS3 protease. 

Taking into account the similarity between the two enzymes to find a small 

potential compound that could be suitable for the DV NS3 protease, a virtual 

screening (VS) approach was chosen for that purpose. Building a 

pharmacophore model depending on the previous data was done by choosing 

the pharmacophoric features that were involved in the interactions including two 

cationic/donating features derived from the guanidine moiety -NH2 and -C=N 

groups. It also includes two accepting groups derived from two separate 

carbonyl groups. Each feature was built with the radius = 1.4 A0. A 

pharmacophoric model was built and was ready to search databases to get 

hits. Two types of databases were used: the first was a zinc database of drug­

like compounds subset (http://zinc.docking.org/). A number of drug-like subsets 

were downloaded in mol2 format that were converted to mdb format by the 

MOE. A conformation import was carried out in order to get the conformations 

for the databases that will be searched. The second type of databases was the 

MOE databases provided by the MOE package.
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4.5- Selection of Hits.

Searching of hits is a long process that needs a long time as each database will 

produce a large number of conformations that need to be searched. Also, when 

the process of searching is finished a large number of hits may be produced as 

well. Conformational import of Zinc databases was done to generate all 

possible conformations. Then searching of both Zinc and Moe databases was 

performed starting with a total number of conformations = 8 million 

conformations. Filteration according to pharmacophore features resulted in a 

total number of 300 hits. All the produced hits were visualized in order to be 

filtered and restricted to a small number that could have a high priority. The hits 

were filtered according to Lipinski’s rule of five 11 which states that a compound 

to be considered having drug-like properties should be of molecular weight less 

than 500, have cLogp less than 5, have a number of hydrogen bond donors 

less than 5, and the number of hydrogen bond acceptors should be less than 

10. A second step of filtration was performed according to RMSD from the 

pharmacophore model. Hits with RMSD more than 1.2 were rejected because it 

was observed that RMSD values more than 1.2 did not fit well. As a result a 

number of 15 hits of different scaffolds with a variety of chemical scaffolds 

including substituted pyridine, triazine, piperazine, thiadiazole, pyrimidine, 

thiopyrimidine, thiadiazolane, and hydrazinecarboximidothioate may have the 

chance to provide at least one potential lead compound to be selective for our 

enzyme. Docking of all these hits against the DV NS3 protease in the S1 
pocket as a docking site was essential to find out the best binding mode by 

docking of each hit and testing weather there is any modification that needed to 

be performed.
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Z iic  databases

Conformational import.

8 mil Bo a coaformatioas from Z i  a id  
M O E  databases.

AH compounds matched 
with the query were 
selected

300 com po a ads resalted.

Lipmskf s rule of 5 for 
further filteration.

15 kits witk differeat chemical 
scaffolds.

Docking and visual 
inspection.

Fiaal kits for syathesis or parchase.

Figure 4.11 A diagrammatic chart describes the steps of virtual screening.
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database reference No Structure RMSD
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• Z1NC03901312

• MOE = 13954 xk fxOMe
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OMe
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O H \
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O ^ j  N H , /
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Table 4.3 Selected hits with their database numbers and RMSD values.
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4.6-Docking and Synthesis of the Hits.

As mentioned before a number of different chemical scaffolds were found 

matching our pharmacophore model. Most of these hits were not available 

commercially. As a result a chemical synthesis of those was the proper method. 

Before the chemical synthesis docking was done against the DV NS3 protease 

S1 pocket in order to observe the predicted binding mode using the London dG 

scoring provided in the MOE. A suitable synthetic pathway was selected to 

synthesize each hit as was found or after modification that may be needed for 

best fitting and/or synthesis. In the following section the docking and synthesis 

of each scaffold will be discussed in detail.

4.6.1- Docking of Thiadiazole based scaffold Hit.

OMe

30

Figure 4.12 Chemical structure of hit 30.
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The first scaffold that was found in both Zinc and MOE databases was found as 

a thiadiazole ring system substituted with a 3, 4, 5-trimethoxy phenyl ring, 

acetyl and acetamido functional groups. By observing the hit within the model 

we found the sulphur atom in the thiadiazole ring did not contribute to the 

features of the model. Also, both the acetyl and acetamido side chains were not 

involved neither in the model nor in the docking interactions. As found in the 

highly ranked pose in the docking output the methoxy groups in 3, 4, 5- 

trimethoxyphenyl moiety may be of interest in interacting with Ser 135. In order 

to stabilize the interactions from the other side of the molecule an amino group 

may be useful for hydrogen bond formation with -C =0 of Asp 129. That could 

be achieved by substitution on the N-3 of the thiadiazole ring with -Nhh group 

that is separated by one carbon from the N atom of thiadiazole in order to be at 

a suitable distance from -C=0 of Asp 129. The sulfur atom could be replaced 

by carbon as it does not have any contribution and both the acetamido and 

acetyl groups in position 2 and 4 respectively could be removed.

128



Chapter 4 Design of Dengue NS3 protease inhibitors

4.6.2- Synthesis of 5-phenyl-3-(substituted-trimethoxyphenyl)- 

4, 5-dihydro-lH-pyrazolecarbothioam ide.

The synthesis of 1 -thiocarbamoyl-3,5-diaryh4,5-dihydro (1H)- pyrazole was 

achieved by the reaction of 1 equivalent of Chalcone [3-phenyl-1 -(3,4,5- 

trimethoxy phenyl)-1,2-propene-1-one] 34 and 2 equivalent of 

thiosemicarbazide 35 in the presence of a base (NaOH) and by using ethanol 

as a solvent and the mixture was heated (scheme 4.1).12 According to the 

reported procedure 5-phenyl-3-(substituted-trimethoxyphenyl)-4,5-dihydro-1 H- 

pyrazolecarbothioamide was synthesized and the yield was 49 % and the 

product was recrystalised from ethanol.

OMe
OMe

MeO
MeO

NaOH
CH

MeO MeO

3432 33

NH

35

NaOH

OMe

MeO

MeO
N N

Scheme 4.1 synthesis of pyrazole carbothioamide derivatives.
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The mechanism of the first step of the Chalcone formation could be explained 

by Aldol condensation 13 in which the 3, 4, 5-trimethoxy acetophenone and 

benzaldehyde were stirred together for 40 minutes in basic medium to give 34 

and the formed product was filtered, washed and dried then refluxed with 

thiosemicarbazide 35 that would act as a nucleophile in the basic medium to 

attack 34. The reaction mechanism involved the formation of hydrazone that 

resulted from the attack of thiosemicarbazide on 34 as an intermediate and was 

then followed by the addition of -NH to the olefinic C=C of Chalcone and by 

further condensation it will close the pyrazole ring.

OMe OMeMeOOMe

OMe
NaOH

34 OH

NH NH

OMe

OMe
OMeHN

OMe

OMe
OMe

OMeN  N
OMe

NH2 OMe

35

Figure 4.16 reaction mechanism of pyrazole carbothioamide formation.

133



Chapter 4 Design of Dengue NS3 protease inhibitors

4.6.4- Synthesis of 4-phenyl-6-(2, 4, 6-
trimethoxyphenyl)-l, 2, 3, 4-tetrahydro-2-
pyrimidinethione

The synthesis of 4-phenyl-6-(2, 4, 6-trimethoxyphenyl)-1, 2, 3, 4-tetrahydro-2- 

pyrimidinethione 39 was achieved in two steps (scheme 4.2). The first step was 

the Aldol condensation of 2, 4, 6-trimethoxy acetophenone with benzaldehyde 

in the presence of NaOH to give yellow crystals that were recrystalised from 

ethanol. The second step was the cyclization and formation of the pyrimidine 

ring by the reaction of the chalcone formed in the first step with Thiourea using 

NaOH as a base in ethanol to afford 39 in 45 % yield.

MeO OMe O
OMe

^ " O M e
MeO OMeMeO

23 24 25

NaOH

OMeHN NH

MeO OMe

Scheme 4.2 Synthesis of compound 39.
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The mechanism of the cyclization of the pyrimidine ring from 25 could be 

explained as the Michael addition reaction 14 in which a nucleophile can react 

with a, p-unsaturated carbonyl compounds so as to give the conjugate addition 

product I (Figure .4.22). In this case the amino group of thiourea is activated in 

the presence of a base to act as a nucleophile. This reaction is a good reaction 

for the formation of C-C bonds, and it can be performed in ethanol and the base 

used was sodium hydroxide.

I

-h 2o

cyclization

o-

Figure 4.22 Mechanism of Michael addition reaction in pyrimidinethione synthesis

Pyrimidinethione derivative
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4.6.7- Synthesis of 2-amino-4-phenyl-6-(2, 4, 6-

trimethoxyphenyl)-3-pyridyl cyanide.

n h 2
OMe O CN

OMe N

OMeMeO CN
MeO OMe

4443

Scheme 4.3 showing the proposed synthesis of 41.

According to the reported method 15 the synthesis of this hit was supposed to be 

done by the reaction of chalcone 43 with enaminnitrile and here the enaminnitrile 

that could produce the desired product is 2-cyanoethanimidamine that could 

provide the amino group in the position 2 of the pyridine ring. Unfortunately 44 

was not commercially available. A second pathway was to react 43 with 3- 

aminocrotononitrile 45 that was commercially available and the product was 

separated in 60 % after the reflux of both 43 and 45 in ethanol. Here the product 

46 has a methyl group instead of the amino group found in 41.
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4.6.9-2-amino-4-(3/5-dimethoxyphenyl)-6- 

(ethylsulfanyl)-3, 5-pyridinedicarbonitrile 42.

The ethyl group in the 6 position of the pyridine ring of 42 was replaced by 

phenyl ring due to the availability of thiophenol to produce 47. Docking of 47 

against the DV NS3 protease S1 pocket has shown some interesting 

interactions. For example the oxygen atoms of methoxy groups in the 3 and 5 

positions of the phenyl ring have formed a hydrogen bond with -OH of Tyr 161 

from one side and on the other side with -OH of Ser 135. The amino group at 2 

position of the pyridine ring has shown a hydrogen bond with -C =0 group of 

both Asp 129 and Phe130 at the same pose (Figure 4.28).

4742

Figure 4.27 Chemical Structure of hit 42 and 47.
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The mechanism of this step involved the formation of a C=C double bond that 

could be observed in the intermediate 50. The reaction mechanism in the first 

step is a base-catalyzed Knoevenagel condensation reaction.18 The reaction 

is base catalyzed in order to activate the methylene in malononitrile to attack 

the carbonyl of 3, 5-dimethoxy benzaldehyde (Figure 4.29).

In the second step compound 50 was refluxed in malononitrile and thiophenol 

in the presence of triethylamine. After cooling, the precipitate was separated 

and dried to give 47. Here thiophenol was added to one nitrile group of the first 

adduct, causing the formation of intermediate II. A second equivalent of 

malononitrile will be added to this intermediate in a 1,4- addition giving III which 

is expected to cyclise in the presence of a base to give a closed ring 

intermediate IV, the compound will then tautomerise to give V which will be 

oxidised to give the final pyridine-3,5-dicarbonitrile (Figure 4.30).19

MeO

50

Figure 4.29 Mechanism of Knoevenagel adduct formation.
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Kambe et a l20 proposed that the final conversion from 1, 4-dihydropyridine to 

the final product occurred by the loss of molecular hydrogen from 1, 4- 

dihydropyridine. The oxidation is an aerobic oxidation that occurs after the 

reaction finished, cooled and stirred with exposure to air. Evdokimov21, 

reported a different mechanism in which thiophenol, malononitrile, and the 

Knoevenagel adduct I will close a ring in one step. The product tautomerises to 

give 1, 4-dihydropyridine. And under base catalysis the Knoevenagel adduct I 

acts as an oxidizing agent for the 1, 4-dihydropyridine and Knoevenagel adduct 

I that will be reduced. The following scheme illustrates this mechanism (Figure 

4.31).
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OMe OMe

OMe Me°MeO OMe MeO

H„NH„N

54 55 56 57

Figure 4.34 A group of compounds containing different substitutions of the methoxy group

on the phenyl ring.

A number of compounds were built and docked using MOE. Docking of 54 

showed an improved scoring and the expected interaction of the Ser 135 -OH 

group with the recently introduced 4-methoxy group was achieved with a score 

of 62.3 % and a distance of 2.87 A0. Also, the hydrogen bond formation 

between an amino group and the -C = 0  of Asp 129 with a score 10.5 % and a 

distance of 2.67 A0 was observed (Figure 4.35).
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4.6.12- Synthesis of 6-(substituted phenyD-l, 3, 5- 
triazine-2, 4-diamine

According to the literature substituted 1, 3, 5-triazine-2, 4-diamine is prepared 

in a two step route. In the first step an aldehyde is reacted with ammonia in the 

presence of iodine to give a nitrile. This is then condensed with cyanoguanidine 

(dicyandiamide) to give the 1, 3, 5-triazine.23 24

HV / N H N  |\L N KAmmonia v h 2 *
A r-C H O  -------------------------- -- Ar— CN ^  •

Ar
58-61 54-57

OMe

»- * o O -  'Z &  cr1.
Meu OMe M e O ^

54 55 56 57

Scheme 4.6 synthesis of 2 ,4-diamino-(1, 3, 5-substituted)-triazines.

The previously reported method was tried for the synthesis of 54, 55, and 56 

starting with 4-methoxy benzaldehyde, 3, 5-dimethoxy benzaldehyde and 3, 4, 

5-trimethoxy benzaldehyde. But, the yield of this method was too low for the 

first step. The second choice was to begin from the aryl nitriles by reacting 

them with dicyandiamide. A mixture of dicyandiamide (1.1 mmole) and KOH 

(2.2 mmole) was added to 1 mmole of the nitrile (4-methoxy benzonitrile 58, 3, 

5-dimethoxy benzonitrile 59, 3, 4, 5-benzonitrile 61 and 4-methoxy benzoyl 

nitrile 60) in THF and was refluxed and monitored with TLC. Upon cooling the 

formed precipitate was collected, washed and dried. The direct reaction 

between the nitrile and the cyanoguanidine was successful in a yield 73 %.
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The second step of the mechanism involves the reaction of thionyl chloride 

with the previously formed alcohol in order to get the chloro derivative. This 

takes place in five steps. In step I, (Figure 4.46) the oxygen atom of the 

alcohol acts as a nucleophile to attack the highly electrophilic sulfur atom of 

thionyl chloride. Then in step II, the presence of a base will remove the 

proton from the alcoholic oxygen atom. In step III the intermediate is 

rearranged to form the S=0 and a chloride ion is lost as a leaving group. In 

step IV an SN2 reaction occurs in which the chloride ion acts as a 

nucleophile on the electrophilic carbon from the alcohol to displace the SO2 

group that will be a leaving group and release another chloride ion and the 

final chloride derivative of our alcohol will be formed V.

MeO MeOOMe OMe
MeO MeO

OH 'S f - f - c -

MeO MeOOMe OMeMeO MeO

o=s=o
S -C I +

MeO
OMe

BH
MeO

H//A II
o S -C I .

T  1 - ^

Figure: 4.46 Mechanism of thionyl chloride reaction with alcohols.
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The mechanism of such a reaction could be explained by the reaction of 

aldehyde and primary amine to give the C=N bond of the Schiff s base which is 

attacked by the C=C at position 3 of the reagent to give an intermediate which 

is arranged so that the lone pair on the -NH will attack the ester -C=0 carbon 

to close the pyrrolin-2-one ring and liberate the alcohol.33

:OH

OEt
Me

NH

O H
OEt

Me
- EtO H

R =
OMe

A r = OMe

OMe

Figure 4.58 Possible mechanism for the synthesis of 

5-(3, 4, 5-trimethoxy phenyl)-4-acyl-3-hydroxy-1-morpholinoethyl-3-pyrrolin-2-one
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COOH

Figure 5.11 A library of 13 designed compounds.

5.4- Docking of designed compounds.

Docking of the designed library was done using the MOE in which the 

previously identified allosteric site was used for docking and the rescoring was 

done by London dG. After docking visualization of the best poses of each 

compound was carried out in order to indicate the best mode of binding. Table

5.1 contains the chemical structure, score of the best pose for every docked 

compound in Kcal/mol and an image for that pose.
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5.5- Results and Discussion of Docking.

According to the docking results and visualization of the best pose of each 

compound from the designed library it was found that the carbonyl group of the 

2-acetyl moiety found in the 2-amino acetophenone seed nucleus was involved 

in some interactions forming hydrogen bonding with -Nhh of Arg 737 as in 94 

and sometimes with -OH group of Ser 710, Thr 794, Trp 795 and Ser 796 as in 

case of 95, 96, 100 and 102 respectively. The presence of an electron 

accepting group like the carbonyl group in the substituted benzamide moiety 

and sulfonyl group in the substituted benzene sulfonamide moiety was 

important in making good interactions with some residues within the specified 

pocket. For example, the carbonyl group was found to form hydrogen bonds 

with Arg 737, 729, Thr 794 as found in compounds 92, 94, 95, 99, 100, 101, 
102. On the other hand, the sulfonyl group was found interacting with -OH 

group of Thr 794 as in 93, the -OH of Ser 710 as in 96 and -OH group of Ser 

796 and -NH 2 group of Arg 729 as in 98. The carboxylic group in the meta 

position of benzene sulfonamide was important for the -NH 2 of both Arg 729 

and 737 as in 98. However, that in the ortho position was important for 

interacting with the -OH of Thr 794 and the -NH of Trp 795 as in 97. The 

oxygen atom of 3, 5-dimethoxy groups in 100 formed a hydrogen bond with -  

OH of Ser 796. The nitro group in 101,102,103, and 104 was not involved in 

any kind of interactions according to our docking. According to these results 

and according to the availability of commercial reagents we decided to 

synthesize compounds 92, 93, 98, 99 and 100 aiming to find a potential 

selective inhibitor for DV RdRp.
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Chapter 6

6.1- HCV Replicon Assay.

Replicon is a genetic element, which can be either DNA or RNA that can 

replicate under its own control in a cell.1 Since viruses are obligate intracellular 

parasites, the efficacy of an antiviral drug is usually evaluated in a cell culture 

system. Unfortunately, hepatitis C virus isolates taken from patients usually 

replicate poorly in cell culture. 1 Initially HCV replicons were replicating in 

genetically engineered HCV RNA ”mini-genomes” in which the regions that 

encodes the core to NS2 is replaced by a selectable marker and an internal 

ribosome entry site (IRES) that mediates translation of HCV replicase (NS3- 

5B). Transfection of this RNA in cells of human hepatoma cell line Huh-7, 

followed by selection results in HCV clones. Recently, many different HCV 

replicons have been developed that allow screening of chemical compounds.2 

Replicon development had gone through the following stages;

6.1.1- Cell Culture Propagation of HCV.

In the ideal case, a virus can be propagated in the laboratory by infection of 

cultured cell lines that are readily available. For unknown reasons, propagation 

of HCV in primary human hepatocytes has been suffering from low 

reproducibility and efficacy.34 this low efficacy made the specific detection of 

HCV viral antigens or RNA difficult. As a further complication, primary cells 

were not readily available, and the efficiency of infection depends on the quality 

of the cells, which is a parameter that is difficult to control. So, the usefulness of 

these systems for drug development is limited.1
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6.1.2- Establishment of the first H CV Replicon.

However, encouraged by results from other positive-strand RNA viruses, which 

showed that the structural proteins are not essential for RNA replication, an 

alternative strategy based on the construction of subgenomic, selectable 

replicons was devised. 5'8 In these genetically modified HCV "minigenomes” 

the region that encodes the structural proteins by a selectable marker; the neo 

gene encoding the enzyme neomycin phosphotransferase (NPT), which 

inactivates the cytotoxic drug G418 (geneticin; an aminoglycoside antibiotic for 

eukaryotic cell selection) was used.1

a Structural proteins Non-structural proteins
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Figure 6.1 A) HCV genome encoding the core structural protein C and the envelope 

glycoproteins (E1 and E2), the non-structural (NS) proteins NS2 to NS5B is in color. B) A 

subgenomic replicon by replacing up to the NS2-encoding region by the neomycin 

phosphotransferase gene (neo) and the internal ribosome-entry site (IRES) of another virus 

(encephalomyocarditis virus; EMCV)1
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These replicons are called bicistronic since they consists of two genetic units 

that are expressed as two proteins, Neomycin phosphotransferase (NPT) 

mediated by the HCV internal ribosome-entry site (IRES), whereas a second 

IRES of another virus (encephalomyocarditis virus; EMCV) is to direct the 

expression of the HCV replication proteins (NS3 to NS5B)1 after Transfection 

of the human hepatoma cell line Huh-7 with the subgenomic replicon RNA and 

subsequent selection with G418, only cells in which the replicon was amplified 

to high levels expressed sufficient amounts of NPT, therefore survive into a 

colony that can be isolated and expanded.1

In vitro transcription

^  L l  J 1

» I P I - 1 I I' I.....T"""—ti
Replicon RNAsPlasmid DNA with HCV replicon

Transfection 
of Huh-7

Cell-done

expansion selection

Figure 6.2 Establishment of the cell clones. Cells that did not take up the RNA (white) and 
cells that does not replicate (orange) will die because of the toxic effect of G418.
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6.1.3- Breakthrough for HCV research.

In the past decade, HCV replicon systems have viral molecular biology and 

virus-host interactions to be probed 67 however, these systems can not 

replicate in vitro without acquiring adaptive mutations, nor do they produce 

infectious virions 9’11 more recently, a system that replicates a full-length RNA 

without acquired mutations was developed and hence is representative of the 

wild type infectious HCV virions.12'14 Moreover, RNA replication was measured 

originally by quantifying the amount of HCV RNA or protein in a cell but, the 

insertion of a reporter gene, such as firefly luciferase has made this process 

much easier by measuring its activity without the time-consuming selection for 

stable cell clones.15’22

6.1.4- Application in drug development.

HCV replicon is a powerful tool to unravel the principles of HCV replications. 

Despite this several considerations should be made when using it. First, since 

replication of these RNAs depends on cell proliferation, compounds that 

interfere with cell growth lead to an apparent inhibition of the replicon; however, 

by using assays for cell metabolic activity, such false positive hits can be 

excluded. Second, by using subgenomic replicons, compounds that work by 

interfering with HCV structural proteins might be missed. With the availability of 

full-length genomes this possibly can be examined. 23‘24
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As a result of the previous assay some compounds showed low micro molar 

inhibition of HCV replicon. The most potent compound 62 that has EC50 value 

of 1.1 pM that could prove that piperazine based scaffold may be a promising 

for antiviral activity. Compounds 76, 77 and 78 with the substituted-phenyl 

methylidene-1-hydrazine carbothioamide scaffold showed EC50 values of 5.5 

pM and 17.9 pM and 22.6 pM respectively. Compound 31 showed EC50 value 

of 23 pM. Compound 98 showed EC50 value of 8.7 pM. Compound is 47 with 

the pyridine dicarbonitrile scaffold showed EC50 value of 5.6 pM.

6.2- Dengue Assay.

All compounds were tested for their antiviral activity against dengue virus. The 

assay for the prepared compounds was carried out in the Rega Institute for 

Medical Research, KULeuven, Leuven, Belgium, under the supervision of 

Professor Johan Neyts. Only five compounds showed low micro molar activity 

and the results are shown in table 6.2.

Compound Observed activity pM
39 faint CPE reduction at 140
46 faint CPE reduction at 5
47 A delayed CPE reduction at 128
78 Normal growth at 209
88 a clear CPE reduction at 138

Ribavirin Normal growth at 81

Table 6.2 Inhibition of DV replication in the dengue assay, showing the observed activity of 5 

compounds in pM compared to Ribavirin as a standard.
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Compound 39 has a faint cytopathic effect (CPE) reduction at 140 pM. 

Compound 46 has a cytostatic effect at 138 pM and a faint CPE reduction at 5 

pM. Compound 47 showed a cytostatic effect at 128 pM and a delayed CPE 

reduction at 128 pM. Compound 78 showed a delayed CPE and the cells 

appear to have grown normally at 209 pM. Compound 88 has a clear CPE 

reduction and cells appear to have grown normally at 138 pM. Ribavirin has a 

cytostatic effect at 409 pM and cells appear to have grown normally at 81 pM. 

The clear CPE reduction of compound 88 can be used as a start point for 

developing a new potent inhibitor. Also, compounds 47 and 78 showed antiviral 

activity for both HCV and DV that could have a good effect on WNV as well. 

The presence of 3,4,5-trimethoxy phenyl moiety and 2,4,6-trimethoxy phenyl 

moiety was important for interacting with Ser 135, Tyr 150, and His 51 of the S1 

pocket. The cyano group found in compounds 46 and 47 may have good 

hydrogen formation with -NH of PHE 130. As a result pyrimidinethione, 

pyridine, imine and pyrrolin-2-one based scaffolds showed their ability to be 

used for the inhibition of potential compounds against DV.
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Chapter 7

The first aim of this work was to modify the structure of Panduratin A and 4- 

hydroxypanduratin A 1 aiming to find a better inhibition of the dengue virus 

replication. Docking of these compounds revealed some interactions and some 

suggestions for the modification of the structure. The 2-methyl-1 -propenyl side 

chain was suggested to be excluded from the structure. 4, 6-Dihydroxy groups 

were replaced by methoxy groups. The resulting compound was predicted to be 

synthesized in a two step reaction. The first step involved the synthesis of 3- 

phenyl-1-(2, 4, 6-trimethoxyphenyl) -2-propen-1-one by Aldol condensation. 

The second step involved the reaction of 3-phenyl-1-(2, 4, 6-trimethoxyphenyl) - 

2-propen-1-one with 1, 3-dimethyl butadiene to close the cyclohexenyl ring via 

the Diels Alder reaction. However, the second step failed.

The second aim of this work was to design small potential inhibitors of DV NS3 

serine protease. A similarity search was done to find a similar crystal structure 

for DV NS3 protease. The crystal structure of WNV NS3 protease was found to 

be the highly similar to DV NS3 protease. A superimposition of WNV NS3 

protease complexed with a peptide inhibitor (pdb code = 2FP7)2 together with 

the DV NS3 protease (pdb code = 2FOM) was done. The peptide inhibitor was 

fixed within the DV NS3 protease crystal structure and all possible interactions 

with S1 pocket residues were visualized. A pharmacophore model was built 

that has two cationic/donor features and two acceptor features. Structure-based 

VS was applied by searching drug-like databases. Filtration of hits was carried 

out according to the Lipinski rule of five, and RMSD values. As a result a 

number of hits that had a variety of chemical scaffolds were docked and 

selected for chemical synthesis after some modifications required for some hits.
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7.1- Compounds with antiviral activity against the 

Dengue virus.

All compounds were tested against the dengue virus. Compounds 39, 46, 47, 

78, and 88 showed reduction of cytopathic effect of 140 pM, 5 pM, 128 pM, 

209 pM, and 138 pM respectively against DV. As a result pyrimidinethione, 

pyridine, imine and pyrrolin-2-one based scaffolds showed their ability to be 

used for the inhibition of DV.

7.2- Compounds with antiviral activity against HCV.

Compounds 62, 76, 98, and 47 showed some activity against HCV replicon 

assay of 1.1 pM, 5.5 pM, 8.7 pM, and 5.6 pM respectively. The activity of 

compound 98 may be explained due to its similarity with anthranilic acid 

derivatives that act on the HCV RdRp. Compound 47 was found to be of an 

interesting antiviral activity against both the Dengue virus and HCV.

7.3- Conclusion.

The use of molecular modeling approaches such as structure-based virtual 

screening, molecular alignment and docking was successful in obtaining some 

compounds of low micro molar activity against HCV and DV. This could be a 

successful starting point for further development of potent inhibitor. Compound 

98 has a similar scaffold to anthranilic acid derivatives that inhibit RdRp and it 

showed an inhibition of HCV = 8.7 pM. Pyridine dicarbonitrile scaffold found in 

compound 47 showed an activity against HCV = 5.6 pM and against DV = 128 

pM. The (substituted-phenylmethylidene)-l-hydrazine carbothioamide scaffold 

in 76,77, and 78 showed an activity against HCV of 5.5 pM, 17.9 pM and 22.6 

pM respectively. In addition, 78 showed 209 pM activity against DV. 

Compound 88 showed a clear inhibition of DV = 138 pM. The presence of 2, 4, 

6-trimethoxy phenyl moiety was observed as a common feature in compound
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39, and 46 that showed activity against DV. However, the 3,5-trimethoxy phenyl 

moiety was a common feature in 47 and 78.

7.4- Future work.

Further study and modification may be required for the active compounds that 

showed activity against DV to get a potent inhibitor. In addition to the previously 

studies DV NS3 protease enzyme and DV RdRp the importance of the helicase 

enzyme in the virus maturation makes it an interesting target for drug discovery. 

The discovery of potent HCV helicase inhibitors 3 was successful. In the future 

work we will be looking for a comparative study between different flaviviral 

Helicases in order to study the main difference between them and trying to 

dock some of the HCV helicase inhibitors against the other crystal structures. 

The crystal structure of the helicase enzyme of HCV, DV, and YFV were 

reported in pdb. While that of WNV was not published to date. A homology 

model of WNV NS3 Helicase was built using MOE program.4 The future work 

will include this comparative study aiming to find a suitable design of potential 

inhibitors for DV, WNV Helicases.
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General Information.

All chemicals, reagents and solvents were purchased from Aldrich or purified by 

standard techniques.

Thin layer chromatography (TLC).

Silica gel plates (Merck Kieselgel 60F254) were used and were developed by 

the ascending method. After solvent evaporation, compounds were visualized 

by irradiation with UV light at 254 nm and 366 nm.

N M R  Spectroscopy.

1H, 13C NMR spectra were recorded on a Bruker AVANCE 500 spectrometer 

(500 MHz) and auto calibrated to the deuterated solvent reference peak. 

Chemical shifts are given in 6 relative to the tetramethylsilane (TMS). The 

spectra were recorded in CDCb or DMSO at room temperature. TMS served as 

an internal standard (6 = 0 ppm) for 1HNMR and CDCb was used as an internal 

standard (6 = 77.0 ppm) for 13CNMR.

Computational Studies.

All molecular modeling studies were performed using Molecular Operating 

Environment (MOE) version 2007.09, 2008.10 and FlexX 3.3.1 for molecular 

docking. Molecular docking was performed setting the first scoring function to 

the default London dG retaining the number of output poses to 30. All docked 

poses and scores were written to ”dock.mdb” output database. Before docking 

the protein was prepared by addition of all hydrogens, and energy minimization.
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8.1- Synthesis of (E)-3-phenyl-l-(2, 4, 6-trimethoxyphenyl)-2- 

propen-l-one (42).

NaOH

2, 4, 6-trimethoxyacetophenone (0.9 gm, 0.0043 mol) was added To NaOH (2.2 

g) in 20 ml water and 12 ml absolute ethanol. The mixture was cooled in 

crushed ice and stirred for 15 minutes. Then benzaldehyde (0.455gm, 0.0043 

mol) was added drop wise. The mixture was stirred vigorously till the reaction 

mixture became thick. The stirrer was removed and the contents were left in the 

refrigerator overnight, filtered, washed with cold water, and crystallized from 

ethanol. Over yield: 1.0g (80 %). Yellow crystals. M.P = 110-1150 C

1H NMR (500 .0 MHz, CDCI3) 5 8.0 (s, 1H, CH), 7.9 (s, 1H, CH), 7.8 (dd, 1H, 

CH), 7.5 (m, 5H, C6H5), 6.6 (dd, 1H, 2CH), 3.8 (s, 6H, OCH3), 3.5 (s, 3H, 

OCHs].

13C NMR (CDCI3) 5 189.23 (carbonyl), 162.2 (Quaternary carbon), 160.0 

(Quaternary carbon), 144.7 (CH), 133.5 (Quaternary C), 130.5 (CH aromatic), 

128.9 (CH aromatic), 121.8 (CH), 103.6 (1C, Quaternary carbon), 91.1 (CH),

55.7 (OCH3), 55.4 (OCH3).
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8.2- Synthesis of 3-phenyl-5-(3, 4, 5-trimethoxyphenyl)-4, 5- 

dihydro-lH-l-pyrazole carbo thioamide (31).

OMe
MeO.

.CH.
MeO

OMe

NaOH MeO

32 33

MeO

34
H„N

NH

H,N

NaOH
35

OMe
MeO.

MeO
N N

NH.

31

General procedure for chalcones was used to synthesize compound 34. 

Thiosemicarbazide (1.09 gm, 0.012 mol) was added to a suspension of 34 

(2.98 gm, 0.01 mol), NaOH (1gm, 0.025 mol) in ethanol, and the mixture was 

refluxed for 8 hours. The product was poured on crushed ice and the solid was 

separated and crystallized from ethanol. Yield: 1.8g (49 %). M.P = 250-255 °C.
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1H NMR (500 .0 MHz, CDCI3) 5 3.2 (s, 1H), 5 3.7 (s, 1H), 5 4.0 (s, 9H), 5 6.2 (s, 

1H), 5 7.0 (d, 2H), 5 7.2 (s, 2H), 5 7.4 (m, 5H).

13C NMR (CDCI3) 5176.6 (C=S), 155.8 (Quaternary carbon), 153.5 (CH), 141.7 

(Quaternary carbon), 140.9 (Quaternary carbon), 128.9 (aromatic CH), 127.7 

(aromatic CH), 125,4 (aromatic CH), 125,9 (Quaternary carbon), 104.4 (CH 

aromatic), 63.6 (Quaternary carbon), 61.0 (OCH3), 56.4 (OCH3), 43.2 (CH).
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8.3- Synthesis of 4-phenyl-6-(2,4, 6-trimethoxyphenyl)-l, 2, 3, 4- 

tetrahydro-2-pyrimidine -thione (39).

Thiourea (0.19 gm, 2.5 mmole) was added to (E)-3-phenyl-1 -(2,4,6- 

trimethoxyphenyl)-2-propen-1-one (0.298gm, 1 mmole) of in absolute ethanol. 

Then K2CO3 (0.345 gm, 2.5mmole) was added to the reaction mixture. The 

mixture was refluxed overnight then poured on ice, Filtered and crystallized 

from ethanol. Yield: 0.16g (45%). M.P = 240-245 °C

m NMR (500 .0 MHz, CDCI3) 5 7.5 (m, 5H), 6.5 (s, 1H), 6.1 (s, 2H), 5.3 (d, 

1H), 5.0 (d, 1H), 4.0 (s, 6H), .5 (s, 3H).

o

Me<
23 33 42

NaOH

OMeHN NH

39
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8.4- Synthesis of 2-Methyl-6-phenyl-4-(3,4,5-trimethoxy 

phenyl)-3-pyridyl cyanide (46).

OMe O

MeO
+

h 3c

h 2n CN

42 45

CN
OMe N

MeO OMe

46

NaOH (0.4 gm, 10 mmole) was added to (E)-3-phenyl-1 -(2,4,6- 

trimethoxyphenyl)-2-propen-1-one (2.98 gm, 10 mmole) in 40 ml absolute 

ethanol. A solution of 3-aminocrotononitrile (0.025 M) (20 ml) in absolute 

ethanol was added and shaked well. The mixture was refluxed at 70 °C for 6 

hours, then cooled. A solution of 0.05 M HCI (10 ml) was added and shaked 

then the solution mixture was concentrated under reduced pressure. The 

resulted white powder was crystallized from absolute ethanol. Yield: 2.1g 

(60%). M.P = 170-175 °C

1H NMR (500 .0 MHz DMSO-d6) 5 7.4 (m, 5H), 7.2 (s, 1H), 6.3 (s, 2H), 3.9 (s, 

3H), 3.8 (s, 3H), 3.4 (s, 3H), 1.9 (s, 3H).

13C NMR (DMSO-d6) 5 161.30 (quaternary), 148.0 (CH), 128.7 (CH), 128.3 

(CH aromatic), 127.7 (quaternary carbon), 126.4 (CN), 121.7 (CH aromatic),

106.7 (CH aromatic), 103.3 (Quaternary carbon), 90.8 (quaternary carbon),

77.5 (CH aromatic), 55.8 (OCH3), 55.4 (OCH3), 39.5 (OCH3), 17.8 (CH3).
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8.5- Synthesis of 2-[ (3,5-dime thoxy phenyl) methylene]

malononitrile (50).

48  49  50

Malononitrile (0.021 gm, 1.5 mmole) was dissolved in 14 ml ethanol. 3, 5- 

Dimethoxy benzaldehyde (0.166gm, 1mmol), 3 drops of piperidine were mixed 

and the mixture was refluxed for 1 hour. Then cooled to room temperature. The 

formed brown precipitate was filtered off and dried. Yield: 0.15g (73 %). M.P 

=115-120 °C.

1H NMR (500 .0 MHz DMSO-d6) 5 7.8 (s, 1H), 7.1 (s, 2H), 6.8 (s, 1H), 3.8 (s, 

6H).
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8.6-Synthesis of 2-Amino-4-(3/5-dimethoxypheny)-6- 

(phenylsulfanyl)-3, 5-pyridine dicarbonitrile (47).

CN

CN

51

MeO^ 'OMe

50

CN 
/  49

CN

M e O ^ ^ x ^ ^ O M e

NC> .CN

,
S N NK

47

2-[(3,5-dimethoxyphenyl) methylene] malononitrile (0.214gm, 1 mmole) was 

dissolved in absolute ethanol (5ml). Malononitrile (0.014gm, 1 mmole) and 

thiophenol (0.11 gm, 1 mmole), and triethylamine (5ml) were added and the 

mixture was refluxed for 4 hours. Then cooled and filtered. The resulted 

greenish precipitate was crystallized from ethanol. Yield: 0.15g (40 %). M.P = 

210-215 °C.

1H NMR (500 .0 MHz DMSO-d6) 5 7.8 (s, 2H), 7.7 (m, 5H), 7.5 (s, 1H), 6.7 (s, 

2H), 3.7 (s, 6H).

13C NMR (DMSO-d6) 5 165.9 (quaternary carbon), 160.4 (quaternary carbon),

159.5 (quaternary carbon), 135.7 (Quaternary carbon), 134.8 (CH aromatic),

129.6 (CH aromatic), 129.4 (1C, CH aromatic), 127.1 (quaternary carbon),

115.1 (CN), 114.8 (CN), 106.5 (CH aromatic), 101.7 (CH aromatic), 93.3 

(quaternary carbon), 87.1 (quaternary carbon), 55.5 (2 OCH3).
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8.7- Synthesis of 2-(4-methoxyphenyl)-l, 3, 5-triazine-2, 4- 

diamine (54).

H2N CN ,N H 2

MeO— / /  \ — CN -HN̂ ~-H---------- MeO— ( ^ V - ( n _  N
KOH N—^

NH2
54

A mixture of dicyandiamide (0.09g, 1.1 mmole) and KOH (0.12g, 2.2 mmole) 

was added to 4-methoxybenzonitrile (0.133g, 1 mmole) in THF (10ml). The 

mixture was refluxed for 6 hours. Upon cooling the formed precipitate was 

collected, washed and dried. Yield: 0.14g (65 %.). M.P = 270-275 °C.

1H NMR (500 .0 MHz D20) 6 7.7 (dd, 2H), 7.0 (dd, 2H), 3.6 (s, 3H).
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