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Abstract

Contemporary theories of animal learning propose that memory for a specific event 

can be based upon either an elemental network of associations, a configural 

associative network or a hybrid of these possibilities. The two aims of this thesis were 

(1) to assess whether rats form configural representations of the spatiotemporal 

features of specific cues, and (2) to test the hypothesis that the hippocampus plays a 

critical role in configural representations that encode the spatiotemporal properties of 

an event, more commonly known as episodic memory. Chapter 2 investigated rats’ 

ability to represent the spatiotemporal context in which objects were presented. These 

experiments failed to find robust evidence for such an ability. Chapter 3 discusses the 

development of a novel task, based on a sensory preconditioning procedure, that 

demonstrated configural memory for the spatiotemporal features of auditory cues in 

normal rats. In addition, it was shown that excitotoxic lesions of the hippocampus 

disrupted such configural memories. The experiments reported in Chapter 4 used the 

procedure developed in Chapter 3 to show that temporary inactivation of the 

hippocampus during memory retrieval disrupted configural, but not elemental 

memory retrieval. The results presented in this thesis support the hypothesis that 

normal rats are able to form elemental and configural representations involving the 

spatiotemporal properties of cues, and that the hippocampus has a role in configural 

but not elemental associative memory.
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Chapter 1

1.0. General introduction

The aim of this thesis is to investigate the role of the rat hippocampus in 

processing and retrieving configural information in rats. The emphasis here is on 

memory for patterns of stimulation with episodic content (i.e., what, where and when), 

which can be construed as either being supported by simple elemental associative 

structures or configural structures. More specifically, research will be presented that 

evaluates the hypothesis that the rat hippocampus contributes to the formation and 

retrieval of configural memories formed as the result of simple exposure to patterns of 

relatively neutral stimuli. Chapter 1 begins by providing a brief overview of the main 

theories of animal learning and memory that are relevant to the issue of how animals 

learn about patterns of stimulation in general. This is followed by an evaluation of recent 

research on the behavioural and neural systems that underpin memory for patterns in 

animals. The dominant perspective within the field of animal learning is an associative 

one, and the chapter begins with an outline of the standard associative explanations for 

learning and memory.

1.1. Associative learning

The fundamental proposition of associative learning theory is that pairing two 

stimuli will lead to a connection or association to form between the internal 

representations of these stimuli (see, for example, Hall, 1991). The precise nature of the 

associative structures involved remains a contentious issue, but three general classes of 

theory have been suggested and these are depicted in Figure 1.
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Elemental Configural

Simple exposure to a pattern consisting o f two stimuli

Hybrid

Elemental Configural

Pairing a two-stimulus pattern with a third stimulus

Hybrid

Figure 1. Alternative patterns of connections created within elemental, configural and 

hybrid associative networks by simple exposure to a pattern consisting o f two stimuli 

(upper row) and after pairing that pattern with another stimulus (e.g., during 

conditioning). Small dark circles represent elements/micro-features of each stimulus 

(represented by large white circles). Medium dark circles denote a configural 

representation activated by a pattern. Large grey circles represent another stimulus with 

which the pattern was paired (e.g., an unconditioned stimulus in Pavlovian conditioning).

Figure 1 illustrates the candidate associative structures that might be acquired 

during simple exposure to a pattern o f stimulation consisting o f two stimuli (upper row), 

and the structures that might result from pairing this pattern with another stimulus (lower 

row). The candidates can be divided according to whether they involve direct links

2



forming between the elements of the patterns (left), the elements coming to activate a 

separate configural unit (centre), or both (right).

One of the most influential elemental theories of associative learning was 

developed by Rescorla and Wagner (1972). The long-standing influence of this form of 

model reflects the fact that it allowed the formation and direct assessment of novel 

empirical predictions, and that it can accommodate a broad range of behavioural 

phenomena (see also McLaren & Mackintosh, 2000). However, there are aspects of 

associative learning that cannot be accommodated readily by elemental theories such as 

the Rescorla-Wagner model (1972). These include one-trial overshadowing (e.g., James 

& Wagner, 1980; Mackintosh & Reese, 1979; Pearce, 2002) and negative patterning 

(e.g., Alvarado & Rudy, 1995; Rudy & Sutherland, 1995). Overshadowing refers to the 

observation that where a less salient conditioned stimulus (e.g., a quiet tone) is 

accompanied by a more salient stimulus (e.g., a bright light) it acquires less ability to 

provoke conditioned responding than if it has been conditioned in isolation. The 

Rescorla-Wagner model (1972) predicts that such an effect will be evident after several 

conditioning trial, because after the first compound conditioning trial the associative 

strength of the overshadowing stimulus (the bright light in this case) will constrain the 

associative strength acquired by the target stimulus (the tone). However, it does not 

predict that overshadowing will occur on the first trial, when the light will have no 

associative strength and cannot constrain that acquired by the tone. In contrast to this 

prediction, tests have shown that overshadowing does occur on the first conditioning trial 

(Mackintosh & Reese, 1979; Pearce, 2002). Attempts to incorporate this observation 

with elemental learning models have suggested the involvement of an attentional 

mechanism, where the subject’s attention is directed toward the overshadowing stimulus 

more than the target stimulus, and thus the overshadowing stimulus acquires greater
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associative strength. However, one-trial overshadowing, without the inclusion of 

attentional factors, is consistent with a configural analysis in which, following compound 

conditioning, responding to the target is determined by its similarity to the configural 

representation formed on the compound conditioning trial (Pearce, 1987,1994).

In a negative patterning discrimination, the presentation of a compound of two 

stimuli (e.g., a tone and light) signals one outcome (e.g., no food) whereas the 

presentation of either one of the stimuli alone signals a different outcome (e.g., food). 

According to an elemental model of the type developed by Rescorla and Wagner (1972), 

the presentation of the compound should be especially likely to elicit conditioned 

responding as both of its components are associated with the same reinforcer. This state 

of affairs should result in summation of the associative strengths of the tone and light and 

result in an increased conditioned response. However, animals can learn such patterning 

discriminations - withholding responding on compound trials and responding whenever 

the elements are presented in isolation (e.g., Grand & Honey, 2008; Rescorla, 1972; 

Woodbury, 1943).

In contrast to elemental models, configural theories propose that associative 

learning involves the development of links between configural representations of the 

patterns of stimulation present on a given trial and the outcome of that trial (e.g., Pearce, 

1994). For example, during a patterning discrimination, separate configural 

representations of the elements and the compound become linked to no food and food, 

respectively (i.e., tone+light->no food, tone-»food and light->food). As indicated above, 

configural analyses also provide a simple account for other phenomena that have proven 

difficult for elemental analyses to explain (e.g., one-trial overshadowing; for a lull 

discussion, see Pearce, 2002).
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Finally, it must be noted that elemental and configural learning processes need not 

be viewed as mutually exclusive. Several hybrid models have been developed in the 

context of behavioural evidence (e.g., Kehoe, 1986), and have been prompted by 

neuroscientific dissociations of simple discrimination learning and configural 

discriminations (see, for example, Rudy & O’Reilly, 2001). It should, however, be 

acknowledged that some of these neuroscientific dissociations have proven difficult to 

interpret and indeed to replicate (e.g., compare, Rudy & Sutherland, 1989, with 

Davidson, McKeman, & Jarrard, 1993). The next section will now consider in detail the 

evidence that the hippocampus, a brain region linked closely with memory processes in 

human and non-human animals, makes a specific contribution to episodic memory 

processes. Given the information presented discussed in this section, it seems equally 

likely that this form of memory could be supported by either elemental or configural 

associative structures. This idea will be further developed in the sections that follow.

1.2. The role of the hippocampus in episodic memory

The study of medial temporal lobe resection patients such as HM led to the 

proposal that the hippocampus plays a critical role in memory processes (e.g., Milner, 

Corkin & Tueber, 1968). Although characterisation of the role of the hippocampus in 

humans remains controversial, there is evidence that the hippocampus contributes to 

episodic memory processes (e.g., Aggleton & Brown, 1999; Eichenbaum & Fortin, 1993; 

Hwang & Golby, 2006; Nyberg, 1998; Tulving, 2002). The concept of episodic memory 

was first developed by Tulving (1972). This term refers to memories that place events in 

specific spatiotemporal context (often referred to as what, where and when memory). It 

has been argued that episodic memory is distinct from memory for factual information 

(i.e., semantic memory, Wheeler & McMillan, 2001; c.f., Tulving 2002). The extent to
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which episodic memory is distinct from other forms of memory, with its own separate 

underlying psychological and neural mechanisms, has yet to be determined. In the 

context of this discussion, it could be argued that the formation of an integrated memory 

for what happened where and when might be supported by elemental or configural 

associative structures. That is, the same general theoretical analysis could be applied to 

the content of episodic memory as has been applied to memory involving other types of 

information. For example, Rudy and Sutherland (1995) draw comparisons between their 

configural theory, and the theory proposed by Gaffan (1991), who suggested that the 

hippocampus supports memory for the “whole scene” in which an event takes place. The 

idea that nonhuman animals might also be capable of forming episodic memories has also 

gathered pace since Clayton and Dickinson (1998) published their seminal work on the 

behaviour of the western scrub jay (see Eacott & Norman, 2004; Eichenbaum & Fortin, 

2003). The next section considers the evidence that nonhuman animals are able to form 

integrated memories that encode the spatiotemporal context of an event, followed by a 

discussion of the evidence that hippocampal damage may disrupt this form of memory in 

animals.

1.3. Episodic memory in nonhuman animals

Tulving (1972, 2002) identified conscious recollective processes, such as 

cronoaesthesia and the possession of an autonoetic consciousness (Eichenbaum & Fortin, 

2003; Tulving, 2002) as defining features of human episodic memory. Any assessment of 

episodic memory in non-verbal animals clearly precludes immediate access to this feature 

of episodic memory. Therefore the premise for much of the animal work in this area is 

based on a more restricted definition of episodic memory - one that emphasises memory 

for the spatiotemporal context in which an event occurred. This more restricted definition
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is often referred to “what”, “where” and “when” memory or “episodic-like” memory 

(Clayton, Griffiths, Emery & Dickinson, 2001a; see also Clayton, Yu & Dickinson, 

2001b; Eacott & Norman, 2004; Eichenbaum, Fortin, Ergorul, Wright & Agster, 2005; 

Rudy & Sutherland, 1995; Tulving, 1972; Wright & Agster, 2005).

1.4. Models of episodic-like memory in animals

The following sections critically discuss some of the recent attempts to assess 

episodic-like memory in animals, with particular focus on the extent to which these 

demonstrations show that animals can form an integrated memory of what happened 

where and when; and whether they can be explained by supposing that the animals have 

encoded the information elementally, configurally or in a manner that utilises both.

1.4.1. California scrub jays

Clayton and colleagues have produced some of the most compelling evidence for 

episodic-like memory in their studies of the behaviour of food storing birds (Clayton & 

Dickinson, 1999a; Griffiths, Dickinson & Clayton, 1999; Clayton et al, 2001a, Clayton et 

alf 2001b; Grifiths & Clayton, 2001; Raby, Alexis, Dickinson & Clayton, 2007). Food 

storing birds, such as scrub jays, spontaneously store seeds over a wide territory for later 

collection; and scrub jays can recall what food item they stored, the time at which that 

item was stored, and its spatial location. In one of the later, more complex experiments, 

Clayton et al. (2001b) supplied scrub jays with two food types, peanuts and mealworms, 

and allowed the birds to bury the items at specific feeding tray locations before retrieving 

the items after intervals of 4, 28 and 100 hours. Half of the birds (the degrade group) 

were trained that, over specific intervals, the preferred reward, mealworms, degraded, 

rendering them inedible. For the remaining birds (the replenish group) the food items
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were replaced with fresh stock. Clayton et al. (2001b) hypothesised that, if the birds in 

the degrade group were able to form an integrated memory for what type of food had 

been cached, where and when (length of interval since caching), they would favour 

retrieval of peanuts over mealworms (the preferred food item) at later but not earlier time 

points. The results were very clear: scrub jays in the degrade group searched for 

mealworm caches after the shorter interval (4 hours) when they were still edible, but 

searched for peanuts after the longer intervals (28 hours, 100 hours). This pattern of 

results is consistent with the view that the birds had encoded and integrated information 

about what food was buried where and when (Clayton et al, 2001a; 2001b; Eacott, Easton 

& Zinkivskay, 2005; Zentall, 2005). This conclusion is supported by the fact that birds 

that received no degradation training showed no indication of preferring peanuts at any 

stage of testing.

The findings described in the previous paragraph, together with additional control 

manipulations incorporating caches of crickets (more palatable than peanuts but less so 

than mealworms, with degradation times that differed from both) supported the 

conclusion that the scrub jays were able to remember the contents of the caches and their 

individual rates of decomposition. The way in which birds and other animals recall 

temporal information, the ‘when’ element of episodic memory, is unclear. Eichenbaum 

and Fortin (2003) argue that scrub jays can use decaying memory traces as a method for 

determining interval length (Friedman, 1993). Although utilising the different decay rates 

of memories would allow scrub jays to successfully complete the test, Eichenbaum and 

Fortin (2003) argue that this method does not constitute episodic-like memory as there is 

no ‘when’ information integrated into the memory representation. However, Clayton et 

al. (2001b) address this concern by highlighting the fact that retrieval behaviour does not 

noticeably decline over longer intervals, pointing out that using the differing trace
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strength of memories to successfully complete the test, depends on the unlikely 

assumption that progressively weaker memory traces would still result in equivalent 

levels of exploration. Clayton et al (2001b) argue that this process is unlikely to provide a 

complete explanation of their results. However, they do not provide conclusive evidence 

to rule it out completely; consequently, it remains a possible, if not a plausible, 

explanation of their results. The latter observation highlights the issue that the uncertain 

character of the ‘when’ representations encoded by nonhuman animals means that, at 

present, there is no general consensus as to what does or does not represent ‘when’. This 

issue will be discussed in further detail later in this chapter.

The work carried out by Clayton, Dickinson and their colleagues has provided 

evidence that scrub jays are able to form integrated representations that include the 

identity, location and (features associated with) the time of storage of an item. However, 

their procedure has limited use in terms of exploring the anatomical substrates of this 

form of memory (Eacott et al, 2005). Furthermore, it is possible that caching behaviour 

may be a highly specialised form of behaviour resulting from the development of 

specialised brain systems that are not evident in other animals. Thus, the generality of 

these behavioural observations remains to be determined. Moreover, while the results 

from scrub jays are consistent with them exhibiting “episodic-like” memory (cf. Clayton 

et al, 2001b), the theoretical and neural bases of this memory are not known. As 

previously discussed, the scrub jays’ behaviour may be supported by an integrated 

memory that consists of a pattern of elementary associations. Indeed, as part of the 

discussion regarding the nature of the memories used by scrub jays in their procedure, 

Clayton et al (2001b) propose a memory structure that requires elemental associations to 

be formed between the internal representations of the experimental stimuli. The
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alternative explanation is that scrub jays acquire a configural representation for the 

combinations of food item, cache location and interval presented in the training trials.

1.4.2. Experiments in rodents

There have been several attempts to extend the findings from scrub jays to 

rodents. Bird, Roberts, Abroms, Kit and Crupi (2003) developed a procedure that was 

closely modelled on that used by Clayton and colleagues. This procedure also involved 

two food types: cheese and the less preferred pretzels. Rats were trained to remove the 

foods from the centre of the maze and cache them in boxes at the end of the arms of a 

maze. Tests confirmed that the rats searched the arms in which the preferred foods were 

stored and thus demonstrated memory for ‘what’ they had stored and ‘where’. In order to 

assess memory for temporal interval, the preferred food items were spoiled (by treating it 

with quinine) at a specific interval after storing. It was predicted that rats would show a 

decreased preference for searching in the locations containing the preferred food item at 

the interval associated with the reduced palatability of the reward. Bird et al. (2003) 

found that rats failed to change their search preferences to reflect the change in food 

palatability after specific intervals, and concluded that rats were unable to form integrated 

memories for what-where-when in this procedure. However, it is perhaps noteworthy that 

the failure of rats to respond on the basis of the interval between storing and retrieving 

the food items may reflect the fact that the caches were spoiled after a moderate length of 

time but remained edible after longer interval, a manipulation that does not occur in 

nature, and thus may prove more difficult for rats to learn. Alterations to the procedure 

might yield positive results, but at present the absence of sensitivity to manipulation of 

the ‘when’ elements render the procedure unsuitable for investigating hippocampal 

function.
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Babb and Crystal (2006a) trained rats in an eight-arm radial maze in which all 

arms contained food. This was followed by a forced choice phase, where four of the eight 

arms were accessible (entry into the remaining arms was blocked) and contained food but 

only one arm contained a preferred food item (chocolate). Rats were trained that the arms 

containing food reward varied after short and long retention intervals (RI). After a one 

hour RI all eight arms were accessible, with the four arms previously blocked containing 

food. After a twenty-five hour RI, the same four arms previously blocked contained food, 

plus the arm that contained chocolate in the forced choice phase contained chocolate once 

again. The rats demonstrated sensitivity to these manipulations by showing a preference 

for the arm that contained the chocolate reward after the long RI. A revaluation test 

where chocolate was paired with lithium chloride before testing resulted in the rats 

showing a decreased preference for the arm containing the chocolate reward after the 

long RI. This finding demonstrated that the rats had encoded the sensory properties of the 

rewards contained in each arms, rather than exploring the arms based on memories that 

specific arms contained more palatable rewards. Taken together, the results suggest rats 

were able to form an integrated memory that specified the spatiotemporal features of food 

storing. A similar experiment conducted by the same researchers (Babb & Crystal, 

2006b) including two palatable flavours (one of which is devalued) also revealed that rats 

encode the sensory properties of the stimuli, which is more suggestive of an integrated 

memory for what, where and when.

Unlike Bird et al. (2003), Babb and Crystal (2006a, 2006b) showed that rats 

correctly modified their exploratory behaviour in response to variations in the interval 

length (one or twenty-five hours). Although Babb and Crystal (2006a) suggested that 

their results are consistent with the hypothesis that rats are able to form a configural 

memory of the time of day and place at which a food item was stored, the results are also
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amenable to interpretation in terms of simple elementary associations (cf. Figure 1). For 

ease of explanation, assume that the short and long intervals are represented by Ii and h, 

respectively, the eight arms of the maze are represented by letters A to G, and that 

chocolate and less-preferred food reward by X and Y respectively. During training, X, 

the preferred food, is always presented in the same arm (A) after the same interval (I2). 

This could lead to an associative link between X and A, and between X and I2 . If the rat is 

placed in the maze at time point I2 this will activate a representation of X. Activation of a 

representation of X will then, in turn, activate a representation of A (i.e., a memory for 

the arm containing the preferred reward). Changing the incentive motivation properties of 

X will weaken the approach response to A (c.f., Balleine & Killcross, 2006). In 

conclusion, although the results reported by Babb and Crystal (2006a) appear to 

demonstrate memory for spatiotemporal context, it is unclear whether the effects are 

based upon elemental or configural integration. Although the associated experiment 

(Babb & Crystal, 2006b) establishes that rats are capable of differentiating between two 

palatable flavours, the very similar nature of the procedures means that this experiment 

also susceptible to the same criticism. Therefore, the use of this procedure as an assay of 

hippocampal function is limited by the fact that no strong a priori predictions can be 

made.

12



1.4.3. An alternative rodent procedure: what, where and which.
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Figure 2. ‘What-where-which’ procedure. Rats were trained in two E-mazes, each with a 

distinct pattern on the walls that provided two contexts. Before testing, rats received 

training sessions in which they were placed in the maze for 3 min. in arrangements A and 

B, where the locations of the stimulus objects (X and Y) alternated between contexts. 

This procedure was repeated in Stage 1 of the test in arrangements C and D, with objects 

placed at the bottom of the external arms. In Stage 2, rats were exposed to one stimulus 

object in a neutral context for 15 min. In Stage 3, rats were returned to the E-mazes in the 

same configuration as stage 1, and the first arm they chose to explore was recorded. S = 

Constant starting position where rats began training/test; predicted first choice
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Eacott and Norman (2004) have argued that the ‘when’ component of episodic- 

like memory can be replaced by a physical context (or ‘which’ component) that, like 

when, could serve as an occasion specifier (cf. Clayton & Dickinson, 1999b; Clayton et 

al, 2001b). Eacott et al (2005) utilised an object novelty preference paradigm (Dix & 

Aggleton, 1999; Ennaceur & Delacour, 1988). The general features of the procedure are 

shown in Figure 2. In this procedure, rats were first exposed to the two contexts each 

containing two different objects (X and Y). However, the location of the objects (left or 

right) differed as a function of the context (see Figure 2). In the next (exposure or 

habituation) stage, the rats were placed in a neutral context with one of the objects (e.g., 

X) for a period of eight minutes. This exposure phase was designed to reduce the novelty 

of the object and leave the rat with a preference for exploring Y and for searching for Y 

within the maze. In the critical test stage, the rats were given an opportunity to visit both 

locations of the maze. The hypothesis was that the rats would choose to avoid the arm 

that contained the object presented recently during the habituation stage, and to instead 

search for object Y in the context+arm configuration in which that object had been 

presented. To show this pattern of exploration they would need to have represented where 

the objects had been in which context. Eacott et al (2005) reported that the rats displayed 

a significant preference (65.2%) for the arm that housed the relatively novel object in 

each context. Rats therefore appeared to have acquired an integrated ‘what-where-which’ 

memory. As a tool for examining configural memory during unsupervised training, 

(where a stimulus or pattern of stimuli is presented in the absence of an associated 

stimulus of motivational significance, see Figure 1; cf. Rudy & Sutherland, 1995) this 

general procedure has much potential. Successful performance on the test suggests that 

rats are forming configural representations of the what, where and which stimuli 

presented during training sessions, without reinforcement (see Figure 1). Although rats
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may be forming simple elemental associations between the individual pairs of stimuli, the 

structure of the training trials means that such elemental associations could not provide a 

basis for the rats preferences: the objects are paired equally often with the left and right 

arms, and with two contexts. However, the combinations of context+arm does provide 

(configural) information about the location in which the preferred object (i.e., the object 

that has not undergone further habituation) will be found. Furthermore, the procedure 

could be modified to include a temporal component, in order to demonstrate the 

integration of temporal with either contextual or spatial information. This issue will be 

directly investigated in Chapter 2 of the thesis.

1.4.4. Odour sequence memory in rats

A novel approach to investigating episodic-like memory in rats has been used by 

Eichenbaum and colleagues (Eichenbaum & Fortin, 2003; Eichenbaum et al, 2005; 

Ergorul & Eichenbaum, 2004; Eichenbaum & Fortin, 2005). This approach involved 

assessing rat’s memory for sequences of odours. For example, in Ergorul and 

Eichenbaum (2004) rats with hippocampal lesions were able to discriminate between 

more or less recently presented odours, but perhaps unsurprisingly showed no evidence of 

spatial memory for the locations in which the odours had been presented. In a related 

experiment, Eichenbaum and Fortin (2005) used receiver-operating characteristics (ROC) 

signal detection analysis in the context of a similar odour recognition paradigm. This 

procedure involved analysing the number of true positives (i.e., correctly identified 

familiar target odours) and false positives (i.e., incorrectly identifying a novel odour as 

familiar). Hippocampal damage in both rats and humans resulted in performance that 

preserved the familiarity component of the ROC curve, but disrupted the all-or-nothing 

recollective component of recognition memory. The latter component is thought to
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involve the retrieval of the spatiotemporal context in which an item was presented and 

these results provide converging support for the role of the hippocampus in episodic 

memory. However, it should be noted that interpretation of ROC in behavioural studies 

remains controversial due to the uncertain variables involved; e.g. it has been shown, in 

human studies, that ROCs can be influenced by the perceived requirements of the test, 

rather than providing a reliable measure of different components of recognition memory 

(Rotello, Macmillan, Reeder & Wong, 2005). In the light of this observation, it is rather 

difficult to know what to make of the similarity between ROCs in animal studies and 

human studies (Eichenbaum & Fortin, 2005). The use of word-recall tests (cf. 

Eichenbaum & Fortin, 2005), to demonstrate episodic memory in humans, has also been 

questioned (Tulving, 2002).

Returning to Ergorul and Eichenbaum (2004), the procedure incorporated stimuli 

with what, where and when properties by presenting rats with a sequence of individual 

odours, each of which was placed in a unique spatial location in the experimental arena 

during the training trials. As the stimuli each had a unique combination of odour, location 

and relative recency, each odour could be viewed as having specific spatiotemporal 

properties. The rats also received training sessions where they were rewarded for 

exploring less recently encountered odours. During test trials, rats were simultaneously 

presented with two familiar odours in their associated locations, and rewarded for 

exploring the odour that was encountered first during training trials. Ergorul and 

Eichenbaum (2004) report that rats showed a significant preference to explore the less 

recent odour, and argued that this behaviour was supported by the rats recalling 

spatiotemporal information about the odours.

It is possible to generate both configural and elemental analyses for the results 

reported by Ergorul and Eichenbaum (2004; see Figure 1). If specific odours are viewed
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as the ‘what’ element, the spatial location in the experimental environment as the ‘where’ 

element, and the relative recency of the odours presented in the test as the ‘when’ 

element, then there are two ways in which the rats may be able to correctly determine the 

difference in recency of exposure between the stimuli present at test. First, by retrieving 

the specific spatiotemporal properties of each odour via an integrated configural 

representation; second, by the odours retrieving their spatial and temporal properties by 

elemental associations. These possibilities are not explicitly discussed in the paper itself, 

but Ergorul and Eichenbaum (2004) performed supplementary tests where rats were 

presented with familiar odours in novel spatial locations (what-when) and with unfamiliar 

(where-when) stimuli in familiar locations. The results of these tests suggest that the 

spatial information alone is not a sufficient basis upon which to generate the critical test 

results.

Ergorul and Eichenbaum (2004) also show that rats with hippocampal lesions 

performed poorly on the what-where-when test, but had no influence on the what-when 

test. It could be argued that the what-where-when test is more likely to be based upon 

configural memory than is the what-when test (cf. Rudy & Sutherland, 1995). However, 

there is insufficient data to rule out the possibility that rats are relying on a series of 

linked elemental representations when performing the what-where-when test: the test 

does not require configural memory. Moreover, Ergorul and Eichenbaum (2004) also 

report that rats with hippocampal lesions also perform poorly on the where-when test; so 

it is possible that the poor performance on the what-where-when test is due to 

hippocampal lesions disrupting the ability of rats to form encode where per se. Such a 

disruption would almost inevitably interfere with performance on the what-where-when 

test, whether it were dependent on a configural or elemental system. The results of this 

procedure are therefore of limited use in assessing whether the hippocampus is involved
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in elemental or configural processing of the components of episodic memory (i.e., what, 

where and when).

1.4.5. Episodic-like memory in object novelty tests

® Good et al. (2007)

Sample 1 Sample 2 Test

Kart-Teke et al (2006)

Sample 1 Sample 2 Test

Figure 3. Experimental designs used by (i) Good et al. (2007) and (ii) Kart-Teke et al. 

(2006). Both procedures included two sample stages and a test stage. In both procedures 

each stage lasted 5 min. Each test stage includes one static object, one spatially changed 

object, one temporally changed object and one spatiotemporally changed object. 

Numbers beside stimulus objects in the test stages denote the total number of 

spatial/temporal changes that the object has undergone since the sample stages (ITI = 2 

min. in Good et al., 2007, and 50 min. for Kart-Teke et a l , 2006)

There are two studies that have used object novelty preference to assess memory 

for the spatiotemporal context in which an object has been placed: Kart-Teke, De Souza 

Silva, Huston and Dere (2006), and Good, Barnes, Staal, McGregor and Honey (2007).
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Although the two experimental paradigms differ in some ways, they both make use of the 

well-documented tendency of rats to explore novel objects (e.g., Dix & Aggleton, 1999).

The design of the Good et al. (2007) study is summarised in the top panel of 

Figure 3. Rats received two consecutive exposure sessions in which they were placed in a 

square arena with two different objects in unique locations. Following the second 

exposure period, the rats were given a test in which all four objects were presented again, 

with the exception that two of the objects (one from the first and one from the second 

exposure period) switched locations. Items encountered less recently were considered to 

have undergone a greater change in temporal context than an object presented more 

recently. Previous research has shown that rats will explore recently presented items less 

than items presented more remotely, and will explore and objects re-presented in the 

same location less than those re-presented in a different location (e.g., Dix & Aggleton, 

1999). Good et al. (2007) showed that rats were more likely to explore an object that had 

been seen less recently and in a different location (i.e., object B in Figure 3) than the 

remaining objects that had undergone either a temporal (object A) or a spatial shift 

(objects C) or the object that had not undergone either form of shift (object D). In 

addition, Good et al. (2007) found that rats with hippocampal lesions did not exhibit a 

preference for object B over object A, or object C over object D. That is, the spatial shift 

did not influence the pattern of exploration in rats with hippocampal lesions. However, 

these results do not require to the assumption that there is anything other than two 

independent effects operating at test (one spatial and the other temporal) and that 

hippocampal damage has an effect on the spatial but not the temporal effect. That is, this 

procedure does not allow a choice between elemental and configural contributions to 

representing patterns of information.
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In the Kart-Teke et al. (2006) study, rats received two exposure trials before a test 

phase (see lower panel of Figure 3). On the first exposure trial, the rats were presented 

with four identical objects arranged in four (out of eight possible) locations. For the 

second exposure trial, another set of four identical novel objects were used. Two objects 

were placed in locations previously occupied by an object in the first trial, and the 

remaining two objects were placed in novel locations. On the test trial, two objects from 

the first sample stage and two objects from the second sample trial were presented to the 

rats. One of each object pair was placed in a location previously occupied by that object 

type, and the remaining item of each pair was placed in a location novel for that object 

type. The results from the test stage of Kart-Teke et al. (2006) differ from those of Good 

et al. (2007). The rats showed a marked avoidance of the object that had undergone a 

spatiotemporal change and a preference for the remaining objects that had changed either 

their spatial location or had been presented in the first exposure trial. Kart-Teke et al.

(2006) argue that the avoidance of the object that had undergone a spatiotemporal shift 

must reflect memory for the spatiotemporal features of the object. Why such a shift 

should result in avoidance under some conditions (Kart-Teke et al., 2006) and approach 

under others (Good et a l, 2007) remains unclear. However, the fact that spatial and 

temporal manipulations influence object exploration suggest that the spontaneous 

exploration procedure might be further developed to provide a suitable vehicle for 

assessing hippocampal function. This was the initial approach adopted in Chapter 2.

1.5. Episodic memory and the problem of ‘when’

The importance o f ‘when’ in episodic-like memory has led to some debate in the 

literature, with some claiming that it is the most important component of episodic-like 

memory (Clayton et al, 2001a) and others claiming that its role can be taken by any other
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occasion specifier, like “which” (Eacott & Norman, 2004; Zentall, Clement, Bhatt & 

Allen, 2001). Clayton et al. (2001a) argue that ‘when’ is the most important component 

as it is the only component that is unique to every episode. However, if commonly used 

experimental variables such as time of day, sequence, or interval length are accepted as 

representing and being encoded as ‘when’ elements, then an animal may encounter the 

same ‘when’ more than once. As already indicated, Eacott and Norman (2004) have 

argued that the ‘when’ aspect of episodic-like memory can be substituted by other 

occasion specifier such as the physical context in which other stimuli (e.g., objects) are 

presented, the argument concerning the importance of the 'when* element in episodic or 

episodic-like memory is secondary to the general aim of this thesis, which is, in general, 

concerned with the role of the rat hippocampus in processing and retrieval of memories 

for patterns of neutral stimulation, with particular reference to whether elemental or 

configural processes are involved. The choice of stimuli, however, was motivated by 

recent interest in episodic memory in nonhuman animals. Accordingly, the experiments 

use procedures in which the stimuli are, at an operational level, what, where and when, 

with the intention of developing a configural learning model with the potential to 

facilitate future study of episodic-like memory. It is also worth mentioning that there are 

numerous potential cues that could be used by rats to represent a specific when variable 

such as time of day (e.g. circadian rhythms, thirst, laboratory background noise etc.) 

Although the research conducted in this thesis was originally inspired by the episodic 

memory literature, given the theoretical issues involved and difficulty in establishing the 

nature of specific 'when' stimuli, the debate concerning the importance of ‘when’ in 

episodic-like memory will not be addressed in the following empirical chapters, except 

for instances when the experimental results obtained have some specific bearing on this 

issue; the focus of the thesis remains the role of the rat hippocampus in the processing
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and retrieval of configural memory. For the time being, further references to episodic-like 

memory can be interpreted as involving an integrated memory (elemental or configural) 

for a specific combination o f ‘what’, ‘where’ and ‘when’.

Object 1

Time 1

Object 1

1.6. Configural memory and episodic-like memory

Elemental Configural Hybrid

Time 1

TPO

Object 1

Figure 4. Elemental, configural and hybrid associative structures in which the elements 

of an exposed pattern of stimuli (i.e., ‘what’, ‘where’ and ‘when’; e.g. Time 1, Place 1 

and Object 1) become directly linked to one another by elemental associations, indirectly 

linked to one another through a shared capacity to activate an independent, configural 

unit (TPO; for Time 1+Place 1+Object 1), or a hybrid of both types of links are acquired.

As stated in the previous section, the aim of this thesis is to investigate the role of 

the rat hippocampus in processing and retrieval of memories for patterns of stimulation. 

The hippocampus has been subject to a great deal of study with regards to its role in 

memory function, particularly with regard to configural learning (Alvarado & Rudy, 

1995; O’Reilly & Rudy, 2001; Rudy & Sutherland, 1989, 1995; Wishaw & Tomie, 

1991), and there is also a large body of literature that emphasises the importance of the 

hippocampus in episodic memory processing (Aggleton & Brown, 1999; Eichenbaum & 

Fortin, 2003; Milner e t  al, 1968; Tulving, 2002). Comparisons have been made between 

the putative configural and episodic functions of the hippocampus (e.g. Rudy & 

Sutherland, 1995). Previously in this chapter, recent experimental attempts to
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demonstrate episodic-like memory in animals were discussed, and it has been shown that 

each example can be explained in terms of an elemental and/or configural learning 

system. These possibilities, together with their hybrid, are depicted in Figure 4 in order to 

make concrete the theoretical alternatives that are to be explored in this thesis. Although 

it remains a possibility that episodic memory is a distinct form of memory supported by 

its own hippocampal-dependent mechanism, this thesis takes as a starting point the idea 

that the types of associative structure that have been implicated in other forms of learning 

might provide a useful heuristic for understanding the basis of learning and memory 

involving what, where and when.

In short, although the focus of this thesis is investigating the role of the 

hippocampus in encoding and retrieving patterns of stimulation in general, the 

stimulation used will be episodic-like in nature. In this thesis the patterns of stimulation 

used include temporal information (i.e., relative recency in Experiment 1; time-of-day in 

Experiments 2-9), spatial information (i.e., spatial location in Experiments 1 and 2; 

contexts in Experiments 3-9), and either objects (Experiments 1 and 2) or auditory stimuli 

(Experiments 3-9). As it transpired, following the development of appropriate 

behavioural tasks in Chapters 2 and 3, the results of principal interest relate to the use of 

variants of a novel task that assessed whether the retrieval of elementary and configural 

memories involving these types of information are differentially reliant on the 

hippocampus.

1.7. Summary

Chapter 1 has evaluated evidence from studies with animals that have assessed the 

proposition that they can form integrated memories that have an episodic-like character.
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That is, they can form memories that bind a stimulus (e.g., an object or odour) to the 

spatiotemporal context in which it was presented.

It was hypothesised that rats would be able to demonstrate integrated configural 

memories for patterns of stimulation that were episodic-like in nature, and that this ability 

would be dependant on the hippocampus, whereas tests that could be supported by the 

use of elemental associations would not be affected by hippocampal lesioning. To this 

end, investigations began by drawing on existing behavioural procedures (Chapter 2) and 

when these proved to be less fruitful than had been anticipated (Experiments 1 and 2), it 

resulted in the development of some novel assays of mnemonic integration (Chapter 3) 

that were based on the phenomenon of sensory preconditioning (e.g., Brogden, 1939; 

Rescorla & Cunningham, 1978). This procedure has been used previously to show that 

animals can link representations of neutral stimuli that have co-occurred. For example, 

after exposure to one pattern (e.g., tone+light) establishing a conditioned response to one 

component of the pattern (e.g., the light) results in the remaining component (e.g., the 

tone) also eliciting conditioned responding. This robust finding indicates that a memory 

of the pattern has been formed, but does not allow one to conclude whether a configural 

memory of the pattern or simple chains of elementary associations are mediating test 

performance (e.g., tone—>light-»shock). Indeed, this ambiguity might help to explain 

why some have found that sensory preconditioning is disrupted by hippocampal lesions 

and others have not (see Ward-Robinson, Coutureau, Good, Honey, Killcross, & Oswald, 

2001). In Chapter 3, following the unsuccessful procedures used in Experiments 1 and 2, 

an alternative procedure that had proved to be successful in other experiments was 

adopted. As a result, a sensory preconditioning procedure was developed that shows that 

rats can form configural memories that represent which auditory stimulus was presented 

in which context and at what time of day (Experiments 3-5). This procedure was then
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used to examine whether this form of mnemonic integration was disrupted in rats given 

excitotoxic lesions of the hippocampus prior to behavioural training (Experiment 6). 

Finally, in Chapter 4, temporary inactivation procedures were used to contrast the role of 

the hippocampus during the retrieval of such configural memories (Experiment 7) and 

other memories (involving the same content) that could be supported by elementary 

associations (Experiments 8 and 9).

1.8. Aims of thesis

As discussed earlier in the chapter, the process of binding elements for a 

spatiotemporal context could be based upon simple elemental associations, configural 

associations or both (see Figures 1 and 4). In evaluating the available literature it 

becomes clear that there is little unambiguous evidence that animals are capable of 

forming configural representations of such a pattern of stimulation and, therefore, no 

extant way of assessing the role of the hippocampus in this form of binding (e.g., Rudy & 

O'Reilly, 2001). What is needed, therefore, are behavioural assays that allow the 

psychobiological models of hippocampal function to be appropriately evaluated. The aim 

of this thesis is to provide such assays and use them to evaluate the hippocampal role in 

the processing of configural memories for stimuli that have episodic-like properties.
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Chapter 2

Assessment of two potential assays of configural integration

Summary. The two experiments reported in this chapter investigate the ability of 

rats to show configural integration of episodic-like information using two variants of 

existing object recognition paradigms. Experiment 1 employed the procedure developed 

by Good et al. (2007), who reported that rats showed greater exploration of an object that 

had undergone a spatiotemporal context change than objects that had undergone either a 

spatial or a temporal context change. The results of this study were not sufficiently clear- 

cut to provide a basis for further investigation. Experiment 2 employed a novel procedure 

that made use of an E-maze (Eacott et al., 2005). In this procedure, the contexts (A or B) 

in which two objects (X and Y) were presented was dependent upon the time of day 

(morning or afternoon): In the morning object X was presented in context A and Y was 

presented in B, and in the afternoon this arrangement was reversed. Subsequently, X was 

paired with food and Y was not. If rats acquired configural memories of the context, time 

of day and object, then it was anticipated that this revaluation procedure would result in 

rats preferring to approach context A in the morning and context B in the afternoon.

2.0. Introduction

Rats display a preference for exploring novel objects, familiar objects that have 

been encountered less recently than others (change in temporal context) and familiar 

objects that have undergone a spatial location change (see Dix & Aggleton, 1999; Eacott 

et al., 2004; Ennaceur & Delacour, 1988; Good et al., 2007; Karte-Teke et al., 2006).
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Good et al (2007) showed that rats are especially likely to explore an object that has 

undergone a spatiotemporal change; an effect that is at least consistent with the rats 

having formed an integrated representation involving the components associated with 

episodic-like memory (Clayton et al., 2001b; Eichenbaum & Fortin, 2003; Rudy & 

Sutherland, 1995). However, as previously discussed, the results could also be explained 

by the combined, but separate influences of spatial and temporal changes on exploratory 

behaviour. The aim of Experiment 1 was to replicate the findings of Good et al (2007), 

with the intention of then modifying the procedure to allow the observed behaviour to be 

explored both behaviourally and neurally (i.e., by assessing the role of the hippocampus 

using both lesion and inactivation techniques). For example, it was the intention to 

proceed by developing a test in which pairs of objects were presented in each comer. In 

one comer, the pair would consist of one object that had undergone neither a change in 

spatial or temporal context and one object that had undergone a change in both. The 

other comer would contain one object that had undergone a spatial change and one that 

had undergone a temporal change. In this way, the pairs of objects in both comers would 

be equated in terms of the number of changes; if rats showed a preference for exploring 

the comer containing the object that had undergone a combined spatiotemporal change, it 

would suggest that this procedure reflected more than the simple summation of effects 

caused by spatial and temporal changes in isolation. The results of Experiment 1 and of 

other pilot studies, however, did not provide compelling grounds for pursuing this 

approach. The possible reasons for the failure to replicate the effects reported by Good et 

al (2007) are discussed later in the chapter.
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2.1. Experiment 1: Arena study

The design of Experiment 1 is closely modelled on that described by Good et al.

(2007) and is depicted in Figure 5. Briefly, rats first received exposure to one pair of 

objects (A and B) in separate comers of a square arena, and shortly after they received 

exposure to a second pair of objects (C and D) in the remaining comers. During the final 

test that followed, all four objects were presented, and while objects A and D were 

presented in the same comers as they had occupied during exposure, the spatial positions 

of objects B and C were swapped. The test includes objects that had undergone a spatial 

change (C), a temporal change (A), both changes (B) or neither change (D). On the basis 

of the results reported by Good et al (2007) rats should be most likely to explore object 

B and least likely to explore object D.

A B
| ___^

A C
m

c D
m(2riv) ® D

Pro-trial 1 Pro-trial 2 Tbat Trial
(5 min) (5 min) (5 min)

Figure 5. Replicated from figure 3i. A schematic representation of the procedure used in 

Experiment 1. A, B, C and D denote objects; the squares represent the experimental 

arena; ITI = Inter-trial interval; and the circle indicates the object that has undergone a 

spatiotemporal shift.
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2.2. Method

Subjects. Experiment 1 used 22 naive male hooded Lister rats (Rattus 

norvegicus; supplied by Harlan Olac ltd., UK; ad libitum weight range: 350-450 g) that 

were approximately 7 months old. Rats were housed in pairs and maintained in a 

temperature and humidity controlled room (20-22°C) on a standard 12 hour light-dark 

cycle. The rats had free access to food and water in their homes cages. All experiments 

were covered by a home-office licence and complied with Home-Office regulations, in 

accordance with the “Principles of laboratory animal care” (NIH publication No. 85-23, 

revised 1985) and the UK Animals (Scientific Procedures) Act (1986).

Apparatus. All trials took place in a wooden arena that was painted matt dark 

grey (W x L x H: 100cm x 100cm x 60cm) and filled with sawdust to an average depth of 

approximately 1cm. The arena was placed in the centre of an experimental room that was 

illuminated by standard overhead fluorescent room lights. The walls of the room were 

decorated with a variety of extramaze cues (e.g. black and white posters). The objects 

were obtained from a variety of commercial sources, all were constructed from durable 

nonporous materials that could not be easily gnawed or damaged by the rats during 

exploration (e.g., glass bottles, tin cans, ceramic ornaments and glassware). The objects 

were, approximately, matched in terms of size. Each item was weighted or secured to the 

floor of the arena with adhesive to prevent toppling when the rats explored them. The 

objects were cleaned with alcohol wipes before and after use on all trials. A video camera 

was mounted on the ceiling (approx 250cm above centre point of arena), and connected 

to a DVD recorder to record the exploratory behaviour for live and possible off-line 

scoring. A reduced instruction set computer (RISC PC) was placed alongside the arena,
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and the scoring program ‘Etho Vision’ was used to manually score the behaviour from 

direct observations, and to allow scoring from recordings if deemed necessary.

Procedure. The rats received one day of acclimatization to the experimental 

arena, in which they were placed individually in the centre of the arena with no stimulus 

objects and allowed to explore for 5 min. On the next two days this procedure was 

repeated, but with the addition that a novel object was placed in the centre of the arena to 

reduce general neophobia associated with the presence of an object. This object was not 

used during the later stages of the experiment. The experimenter was present during 

habituation, remaining stationary at the workstation used for scoring exploration 

behaviour.

The critical experimental procedure consisted of 3 parts: 2 pre-trials and a test 

trial. During pre-trial 1, each rat was presented with two novel objects (A and B). These 

were placed in adjacent comers of the arena (see Figure 4), equidistant between arena 

centre and comers themselves. The rats were allowed to explore the objects for 5 min. 

before being removed from the arena and returned for a 2 min. ITI to their covered home 

cage. During the ITI the walls of the arena and objects were cleaned with alcohol wipes 

to remove odour cues. For pre-trial 2, two new objects (C and D) were placed in the 

remaining comers of the arena at the same distance from the walls as A and B. Rats were 

again allowed to explore for 5 min. before being returned to the home cage for the second 

ITI. The arena and objects were again cleaned with alcohol wipes. For the test trial, 

identical copies of the 4 objects were placed in the arena in the following manner: 

Objects A and D were presented in the same comers as they had been on pre-trials 1 and 

2, respectively; whereas the comers in which objects B and C were presented at test were
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exchanged with respect to those that they occupied on Pre-trials 1 and 2, respectively. 

Thus, D was tested under conditions that most closely matched those that prevailed 

during exposure (same comer, recently observed); object A and C were tested under 

conditions that did not match those of training because they had either been presented 

less recently (A) or in a different place (C); and object B had both been presented less 

recently and in a different comer. Each rat was tested twice with two different stimulus 

objects sets, with a one-day break between first and second tests. The objects that served 

as A, B, C and D were counterbalanced as was the adjacent pairs of comers in which the 

pairs of objects (AB/CD) were placed.

Behavioural and statistical measures. Object exploration was recorded during the 

test and was defined as the amount of time a rat spent actively sniffing, with front paws 

resting on or head pointed towards an object at a distance no greater than 2cm (see Good 

et al., 2007). If the rat was within 2 cm of the object, but facing away from it, then it was 

not scored as exploring the object. Similarly, if the rat was on top of an object it was not 

considered to be exploring the object.

ANOVA and other parametric statistical analyses were used in this experiment 

and throughout the thesis.
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2.3. Results

Spatiotemporal Spatial Temporal

Object Contextual change

No change

Figure 6. Experiment 1: Mean exploration times (in seconds) of rats in the test session. 

Error bars show standard error of the mean (+SEM).

One rat contracted an illness between testing stages and thus could only be tested 

once, therefore any results obtained from this subject were excluded from the analysis. 

Figure 5 shows the mean exploration times for each of the four objects pooled across 

both tests. Inspection of this figure suggests that object B (that had undergone a 

spatiotemporal shift) elicited the most exploration (22.58s) and that object D (that had 

undergone the least change) elicited the least exploration (12.38s). Object C (that has 

been presented recently, but had changed location) and object A (that was presented in 

the same location, but had not been presented recently) elicited intermediate amounts of 

exploration (19.25s and 18.05s respectively). Statistical analysis provided partial support 

for this description of the results presented in Figure 5. Analysis of variance (ANOVA)
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with stimulus (A-D) as the within-subjects factor revealed an effect of stimulus, F^jso) = 

6.626, p < .05. Pairwise comparisons between exploration scores for individual stimuli 

revealed that A, B and C each elicited greater exploration than D (smallest = 2.679, p  

< .05), but that there were no significant differences between exploration of A, B and C 

(largest t(2G) = 1 869, p  > .05).

2.4. Discussion

The results of Experiment 1 replicate the overall pattern of behavioural results 

reported by Good et al. (2007), but failed to yield the pattern of statistical significance 

found in that paper. In particular, while rats in Experiment 1 were numerically, at least, 

more likely to explore an object (B) that had undergone the greatest change in spatial and 

temporal context than objects (A and C) that had only undergone one of these changes, 

this difference was not statistically significant. The reason for this failure to replicate is 

puzzling given the similarity between the two experiments. However, there are several 

seemingly minor differences that might have contributed to the difference patterns of 

statistical significance. These differences will be considered, in detail, below.

Before the start of the Experiment 1, pilot studies (not reported here) were 

performed in order to ensure that there were a sufficient number of available stimulus 

objects that elicited sufficient levels of exploration. These pilot studies were very closely 

modelled on the procedure used by Good et al (2007), including the same selection of 

stimuli and the same arena. However, the preliminary tests revealed that rats persistently 

attempted to, and in some cases succeeded in, escaping from the arena used in the 

original experiment. Therefore, one difference between the Good et al. (2007) study and
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Experiment 1 is that the walls of the area were higher in Experiment 1 (60 cm) than in the 

arena used by Good et al. (2007; 50 cm). This difference might have reduced the ability 

of rats to encode the spatial layout of the objects with respect to the extra-maze (room) 

cues and thereby reduced the likelihood of observing the effect of interest; and rats might 

have been more reliant on the spatial cues provided by the arrangement of stimulus 

objects themselves. This state of affairs might have increased the exploration directed 

towards each object and effectively masked differences in levels of exploration 

determined by spatial shifts (O’Keefe, 1991). This possibility is supported by the fact that 

Good et al. (2007) reported that rats tended to spend more time exploring the temporally 

changed object than the spatially changed object, whereas in Experiment 1 the opposite 

tendency was apparent (see Figure 6).

An alternative possibility can be derived from the observation that although the 

timing of the trials were nominally the same in Experiment 1 and Good et al. (2007), 

there might have been minor difference between the timing of the trials across the two 

studies. However, this possibility seems implausible given the fact that rats were 

exploring the test objects (spatiotemporal and temporal) that had been presented less 

recently than the remaining objects (see Figure 6).

Finally, a task that relies on spontaneous exploration, during both training and 

testing, might inevitably produce results that are inherently variable. The data obtained 

from the experiment is insufficient to determine the validity of these issues raised. The 

fact that data is collated from several repetitions of the procedure suggests that the lack of 

significance is not a result of low power, and that the underlying problems with the 

procedure were persistent. Although the procedure was designed to be as close as
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possible to that used by Good et a l (2007), circumstances and resources prevented an 

identical replication of the Good et al. (2007) procedure, meaning a direct comparison 

between this procedure and that used in Experiment 1 was unavailable. It was with the 

latter considerations borne in mind, that it was decided to adopt a procedure that was less 

reliant upon spontaneous exploration.

2.5. Experiment 2: E-maze study

The failure of the object recognition procedure used in Experiment 1 to produce 

any significant results raised questions as the suitability of the procedure for investigating 

the ability of rats to form hippocampal dependent configural memories for spatiotemporal 

context, which is the aim of this thesis. As a result, Experiment 2 adapted the E-maze 

apparatus used by Eacott et al. (2005) in an attempt to demonstrate integration of what 

object was presented where and when in a way that is beyond simple binary (i.e., what- 

where and what-when) associations. The design of the experiment is summarized in 

Figure 7. The original Eacott et al. (2005) procedure demonstrated configural memory 

for object, location and context in rats. However, in order to investigate to the aims of 

this thesis, the procedure was modified in order to test for configural memories for what- 

where-when. This required several modifications to the training and testing elements of 

the procedure, which will be described in the method section (for details regarding the 

original procedure, see Eacott et al., 2005).

During the first stage of the experiment, rats received two sessions each day; one 

in the morning (AM) and one in the afternoon (PM). In the AM sessions, rats were 

released from the central arm of the maze and upon entering the left arm would encounter
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object A, whereas upon entering the right arm they would encounter object B. In addition 

to the extra-maze cues associated with each arm, the entrance to the left and right arms 

were discriminated by the presence of different intra-maze cues. In the PM sessions, the 

position of the objects with respect to the left and right arms was reversed. In the second 

stage of the procedure, rats were placed in a square arena at midday where object A was 

paired with food and object B was not. Finally, rats were placed in the central start arm 

of the maze in the morning and afternoon and were allowed to explore both of the 

remaining arms. The question of interest was whether the rats would approach the arms 

in which object A had been presented at the appropriate time of day: In the current 

example, would the rats approach the left arm in the morning and the right arm in the 

afternoon? Given the fact that the left and right arms were equally often paired with 

objects A and B and that the morning and afternoon were also equally frequently paired 

with A and B, then simple binary associations could not provide the basis for any arm 

preference. Instead, a preference to explore the left arm in the morning and right arm in 

the afternoon must be based on an integrated, configural memory that codes for what 

happened where and when.
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2.6. Method

Thdniiig (0 5 min AM 5 m in
■
■
•

cTA B B
Training (ii)

B

5 min PM 5 min
■
■
■

B A
Revaluation 3 min 3 min

Testing AM test (3 min) PM test (3 min)

•  •  • •  •  •

Figure 7 A schematic representation of the E-maze procedure. S represents starting 

location; broken lines signify that an entrance to an arm is blocked; ‘A’ and ‘B’ represent 

stimulus objects; *+’ represents food. Arrows represents arm predicted to be chosen by 

rats during the test.

Subjects. The subjects were 12 naive male hooded Lister rats (ad libitum weight 

range: 350-450 g; approximately 6 months old). They were from the same supplier as
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Experiment 1 and housed and maintained in the same way as that experiment with the 

exception that they had restricted access to food (30g food pellets per cage per day).

Apparatus. A clear Perspex E-maze (overall external measurements: 104cm x 

70cm x 22cm; W x L x H )  was used. The maze was placed on the floor, and composed of 

three parallel sections, or ‘arms’, and one adjoining section that allowed rats access to 

each arm. Each section measured 14cm in width. Each arm measured 56cm in length 

(entrance to terminus). White paper was attached to the external walls to render the maze 

opaque except for areas at adjacent to the entrances of the left and right arms where a 

patterned sheet (22cm x 24cm) was affixed to the outer wall instead of plain white paper 

(see Figure 8). A checked pattern (22cm x 24cm) was attached near the entrance of the 

left arm, and a spotted pattern (2cm diameter black dots, 7cm centre to centre) attached to 

the entrance of the right arm. This was done to provide intramaze cues, in addition to the 

other cues (e.g., extramaze cues) to distinguish the arms of the maze. A clear Perspex 

sheet (W x L: 70cm x 110cm) was placed over the maze during testing sessions, in order 

to prevent subjects escaping, but allowing behavioural observation to occur. The stimulus 

objects were taken from the object set detailed in Section 2.2.
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104cm

56cm

Object

14cm 14cm 14cm

Figure 8. The internal layout of E-maze, measurements, and the position of the 

experimental components. Patterned sections represent visual cues affixed to outer walls 

to provide intramaze cues that differentiate left and right arms.

A video camera was mounted on the ceiling (approximately 200cm above centre 

point of arena), and connected to a video recorder in order to record the exploratory 

behaviour for live and possible off-line scoring. A RISC PC was placed alongside the 

arena, and the scoring program ‘EthoVision’ was used to manually score the behaviour 

from direct observations. A second matt grey square arena, as described in Experiment 1 

(Section 2.2), was used as during the revaluation stage (involving Coco pops, Kellogs) 

and to assess the efficacy of the revaluation procedure.

Procedure. The rats received 2 days of habituation in the E-maze. Each rat was 

placed in the centre of the empty E-maze at the constant start position (see Figure 8) and 

allowed to explore for 10 min. at, approximately, midday for two successive days. Rats
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were allowed unrestricted access to all arms of the maze during habituation sessions. The 

experimenter was present during habituation, sat stationary at the workstation used for 

scoring exploration behaviour. Rats also received 2 days of habituation to the arena used 

for the revaluation stage of the experiment, where they were placed in the centre of the 

arena and allowed to explore for 5 min. before being removed and returned to the home 

cage. Habituation again took place over two days, with each session occurring around 

midday.

The remainder of the experiment lasted nine days. On the first 4 days, rats 

received two training sessions on each day, one in the morning (9.30am onwards) and 

one in the afternoon (2.30pm onwards). Each session consisted of two parts. If objects are 

represented by A and B, and outer arms of the maze are represented by X (nearest to the 

checked intra-maze cue) and Y (nearest to the spotted intra-maze cue), then in each part 

rats had access to one object-arm (what-where) combination. In the morning session, 

access to one arm was restricted, allowing the rats 5-min access to only one combination 

(e.g., AX), before being returned to the covered home cage in a nearby holding room for 

a 5 min. ITI. The rat was then returned to the E-maze for the second part, in which the 

alternate arm was blocked, allowing 5-min access to the second combination (i.e., BY). 

In the afternoon, the objects occupied the opposite arms, (i.e. AY and BX; see Figure 6). 

The second day of the training trials followed the same procedure, with the difference 

that the order in which the arms were blocked was reversed. For example, if on Day 1 the 

rats were exposed to AX, BY in the morning session, and AY, BX in the afternoon, then 

on Day 2 the rats were exposed to BY, AX in the morning and BX, AY in the afternoon. 

This sequence was repeated on days 3 and 4, and the object location and order of
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presentation of stimulus combinations was counterbalanced between subjects. E-maze 

and objects were wiped down with alcohol wipes each time a subject was removed from 

the apparatus, in order to remove odour cues.

Revaluation sessions began at midday. Each object was placed at the centre of 

the square arena. On a rewarded trial, 2.5g of Coco Pops was placed around object A at a 

distance of no more than 2cm from the base of the object. Rats were put in the arena and 

allowed to consume the reward for 3 min. and were then removed from the arena. On a 

nonrewarded trial, the rats were placed in the arena with object B for 3 min., but there 

were no Coco pops. Half of the rats received a rewarded trial that was followed by a 

nonrewarded trial on Day 1 and the reverse on Day 2; and the remainder received the 

opposite sequences of trials. The rats were returned to their homes cages in the 3-min ITI 

between the two trials on each day and during this period objects A and B were cleaned 

with alcohol wipes.

Rats received two test sessions on each of two days, one in the morning and one 

in the afternoon, which began at approximately the same time of day as the training trials. 

Each test consisted of a rat being placed in the E-maze at the same start location. The E- 

maze contained no objects, and all areas of the maze were accessible. Rats were allowed 

to explore for 3 min. The amount of time that rats spent exploring the two outer arms was 

measured. A rat was said to be exploring an arm when their head and forelimbs were 

beyond the entrance to that arm. The rear half of the body crossing the entrance with the 

head and forelimbs outside of the arm was not scored as exploratory behaviour. 

Exploration was scored online or from recording where required in three successive 

blocks of one min. The E-maze was cleaned with alcohol wipes after each trial to
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remove odour cues. It was predicted that the subjects would initially spend more time 

exploring the arm that had housed the revalued object during the training trials, and that 

this arm preference would depend upon the AM and PM session. Objects were not 

present in the E-maze during the test trials, nor were they visible during the initial stages 

of training trials when subjects were placed in the start location, meaning successful 

performance would imply the use of configural what-where-when memories.

A test to assess the effectiveness of the revaluation procedure was conducted in 

the square arena at midday. Objects A and B were both placed in adjacent quadrants of 

the arena and rats were allowed to explore for 3 min. The amount of time that the rats 

spent in the quadrants occupied by one of the objects was assessed in consecutive 1-min 

blocks. The quadrant each object occupied was counterbalanced between subjects. After 

each session, rats were returned to the home cages. If the revaluation trials had been 

successful, then the rats were expected to spend significantly more time in proximity to 

the revalued object, A, than the non-revalued object, B.

2.7. Results

Figure 9 shows the results from the first testing day. In particular, it shows the 

mean amounts of time rats spent in the arms associated with object A in the morning and 

afternoon (the correct arms) and the arms associated with object B in the same sessions 

(the incorrect arms). Inspection of this figure suggests that, at least in the first minute of 

testing, there was a tendency for rats to spend more time in the correct than the incorrect 

arms. However, exploration of the objects decreased across blocks and any consistent 

sign of a preference to explore the correct arms had disappeared by the second and third
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minutes of testing. ANOVA with arm (correct versus incorrect), test (morning or 

afternoon) and block (1-3) as factors revealed no effect of arm or test (Fs < 1), but there 

was an effect of block (F(2,66) = 5.726, p < .05). There were, however, no interactions 

between these factors (largest F(2,66) = .860,/? > .05).

□  Correct (AM) ■  Incorrect (AM) H Correct (PM) □  Incorrect (PM)

20 1

E
5

.110 5
2o
a

0

1 min 2  min 3  min
Scoring block

Figure 9. Experiment 2: Mean exploration times (in seconds, -s; +SEM) for the correct 

and incorrect arms in the morning (AM) and afternoon (PM) sessions over the course of 

the 3-minute tests on Day 1 of testing.
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□ Correct (AM) ■ Incorrect (AM) H Correct (PM) □  Incorrect (PM)
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Figure 10: Experiment 2: Mean exploration times (in seconds, -s; +SEM) for the correct 

and incorrect arms in the morning (AM) and afternoon (PM) sessions over the course of 

the 3-minute tests on Day 2 of testing.

Rats received a second day of testing, the results of which are shown in Figure 10. 

Inspection of this figure reveals that the levels of exploration were similar across each 

minute of the test, and that in the morning there was some tendency for rats to explore the 

incorrect arm in the AM session. ANOVA with arm (correct versus incorrect), test 

(morning or afternoon) and block (1-3) as factors revealed no effect of any variables 

(largest 2,66) = 1-45, p  > .05). This second test was followed by a test of the 

effectiveness of the revaluation procedure. In this test, the rats were given a choice 

between objects A and B at midday in the open-field arena used for revaluation training. 

ANOVA with object and block (3 consecutive 1-min periods) as factors revealed no 

significant effect of object (F < 1; A = 21.37s and B = 21.178 s), an effect of block (F(2,22) 

= 3.56,/? > .05; 1 = 19.23 s, 2 = 21.82 s and 3 = 22.78 s), and no significant interaction
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between object and block (F < 1). Post-hoc analysis revealed that exploration of objects 

A and B did not differ during each minute of training (largest fyi) = 1.189, p > .05).

2.8. Discussion

The results of Experiment 2 provide no support for the suggestion that rats form 

an integrated memory for which object (A or B) was presented where (left or right arm) 

and when (AM or PM). Of course, this failure should not be taken to undermine the 

utility of E-maze because the procedure differed considerably from that used successfully 

elsewhere (Eacott et al., 2005; Eacott & Norman, 2004). However, other attempts to 

modify the current procedure to produce clearer results proved unsuccessful. Thus, 

further pilot studies (not reported here) using procedures that were more similar to those 

described by Eacott et al. (2005) were as unsuccessful as Experiment 2. In these studies, 

different times of day were again substituted for contexts, and the target object was 

revalued by pairing it with food, rather than by giving rats habituation to the object. 

However, the scoring procedure (i.e., first-turn choice) was more similar to that used by 

Eacott et al. (2005), as was the first stage of training in which the arms were no longer 

blocked: The removal of the blocks in the test stage of Experiment 2 might have resulted 

in generalization decrement - a disruption to what had been successfully learned during 

stage 1. However, these changes to the procedure did not result in an arm preference that 

depended upon the time of day that the arm was encountered. These pilot studies, in 

which the arms were not blocked during stage 1, did highlight another concern that was 

not evident in Experiment 2: observation of exploratory behaviour during training
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sessions revealed that the rats did not spend an equivalent amount of time exploring each 

object and that could, in itself, contaminate subsequent arm preferences.

Finally, the test to assess whether the revaluation procedure had been successful 

revealed that pairing object A with Coco pops and B with no Coco pops resulted in no 

preference to approach object A during the final test. There are a variety of ways in 

which the procedure using the E-maze in Experiment 2 could be improved. However, the 

fact that the revaluation procedure did not produce a robust preference for object A 

motivated the development of a different procedure, which does produce a rapid and 

robust revaluation effect. The experimental designs used in subsequent chapters are 

formally equivalent to that of Experiment 2, but the procedures make use of more 

standard stimuli and apparatus.

2.9. General Discussion

As previously stated in Chapter 1, the aim of this thesis is to provide an assay for the 

process of binding elements for a spatiotemporal context and use them to evaluate the 

hippocampal role in the processing of configural memories for stimuli that have episodic-like 

properties. Experiment 1 failed to provide clear-cut evidence that rats show a particularly 

marked preference for a familiar object that had undergone a spatiotemporal shift with 

respect to its training conditions. As has been discussed in previous sections, even had such 

a preference been visible, this would not have constituted evidence that the rats had formed 

an integrated configural memory for what had been presented where and when: Separate 

additive influences of a spatial and temporal shift would have been sufficient to explain such 

an effect (see Good et al., 2007). In any case, the results of Experiment 1 did little to
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encourage a more detailed analysis of the results (of the kind outlined in the Introduction) 

and prompted a move to a procedure which, it was hoped, would allow more control of the 

rats exploration to be induced. Experiment 2 used a novel experimental design and an E- 

maze (Eacott et al., 2005) to investigate the possibility that rats could form integrated 

configural memories for which object was presented where and when. Rats first received 

training trials in which object A was presented in the left arm during the morning sessions, 

and in the right arm during the afternoon sessions, with object B occupying the opposite arm 

at both times of day (see Figure 7). After this training, object A was paired with food (Coco 

pops) at midday in a different apparatus. Finally, rats were allowed to explore the maze at 

during morning and afternoon test sessions. The prediction was that the revaluation training 

would result in the rats would showing a preference for the left arm in the morning and the 

right arm in the afternoon; and thereby provide evidence that they had encoded the 

combinations of where and when objects A and B had been presented. However, there was 

no significant evidence of such an effect.

There are reasons to be cautious before rejecting the general approach developed 

in Experiment 2. For example, the final revaluation test revealed that, at least after the 

conclusion of the tests in the E-maze, there was no preference for object A over object B.

In addition, the modifications to the original E-maze procedure, although deemed 

necessary to fulfil the aims of the research, may have resulted in disrupting any 

significant effect. Repeating the experiment with a less-extensively modified E-maze 

procedure may yet prove successful. Although this option presented an approach for 

continuing the research, ongoing developments within the Behavioural Neuroscience 

Laboratory, aligned to the experiments discussed in this chapter, indicated that a new
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procedure modelled on Experiment 2 produced results that were extremely promising. 

This procedure made use of contexts and stimuli that produce reliable sensory 

preconditioning effects in rats (e.g., Ward-Robinson & Honey, 2000) and are based on a 

revaluation procedure that is both rapid and highly effective, so it was decided to adopt 

this procedure for subsequent experiments. Chapter 3 describes the development of this 

procedure as both a behavioural effect and an assay to assess the role of the hippocampus 

in mnemonic integration.
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Chapter 3

A novel assay for configural integration and hippocampal function

Summary. The results of the two experiments described in Chapter 2 

(Experiments 1 and 2) prompted the development of an alternative procedure for 

demonstrating configural memory in rats (see Figure 1). The design of the first three 

experiments in Chapter 3 (Experiments 3, 4 and 5) was formally equivalent to that used 

in Experiment 2. However, in place of objects, auditory stimuli were used, and in place of 

arms of a maze, different experimental contexts were employed. In this procedure, like 

those discussed in Chapter 2, the information to be combined had an episodic nature and 

the task required a configural solution. In addition, the ineffective object revaluation 

procedure was replaced with an aversive conditioning procedure involving the two 

auditory stimuli. Experiments 3-5 examined how the effect of interest varies as a product 

of the amount of initial exposure to the various configurations. Experiment 6 examined 

whether the configural learning effect is reliant on the hippocampus. To this end, rats 

with excitotoxic lesions of the hippocampus made prior to behavioural training were run 

through the task.

3.0. Introduction

The experiments discussed in Chapter 3 were based on the design of Experiment 

2. As with the previous experiment, Experiment 3 uses a procedure in which rats were 

exposed to specific configurations of cues (what was presented where and when) and in 

which the anticipated pattern of test performance could not be based on binary what- 

where and what-when associations alone. The ‘where5 elements were provided by two
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distinct skinner boxes with unique visual properties (spot or check patterns on the internal 

walls). The ‘what’ elements were provided by two distinct auditory stimuli (tone or 

click). As in Experiment 2, the 'when' element was provided by time of day (morning or 

afternoon). The design of the experiment is depicted in Figure 11. Initially, rats received 

trials in which whether the tone or click was presented was signalled by the combination 

of the time of day and context in which the rats were placed. For example, in the 

morning the tone was presented in the spot context and the click in the check context, 

whereas in the afternoon the tone was presented in the check context and the click in the 

spot context. After this training, rats received pairings of, for example, the tone with 

shock and the click with no shock in a third context at midday. Finally, the amount of 

fear (as evident in rats freezing behaviour) was assessed in both contexts, in the morning 

and afternoon. If the rats had leamt what stimulus was presented where and when, then 

they should show more fear to the context+time of day combinations that signalled the 

tone. In the previous example, they should be more fearful of the spot context in the 

morning and the check context in the afternoon than of the two remaining combinations. 

Experiments 3, 4 and 5 varied the amount of initial training. The principal reason for 

doing this was to pave the way for studying the effect of inactivating the hippocampus 

either during training or testing: If the behavioural effect can be demonstrated with little 

training then it would be possible to examine the effect of inactivating the hippocampus 

during training and avoid the possibility of repeated inactivation causing permanent 

damage to the hippocampus. As it transpired, the results of Experiments 3-5 meant that it 

was only possible, in Chapter 4, to examine the effect of hippocampal inactivation during 

testing.
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Morning sessions Test; M orning sessions

Clicks Revaluation: 
Midday sessions

Afternoon sessions T est: Afternoon sessions
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« • • • • • • •

No Shock

Figure 11. Example of the treatments for rats in Experiments 3-5 in which the first stage 

of training involved 1 day (Experiment 3), 2 days (Experiment 4) or 4 days (Experiment 

5). In the morning, a tone was presented in the spotted context and a series of clicks in 

the checked context; whereas in the afternoon the clicks were presented in the spotted 

context and the tone in the checked context. To assess if rats had formed configural 

memories of where and when the tone had been presented, fear was first established to 

the tone (but not the clicker) by pairing it with shock (in another context at midday on 

Days 5 and 6). Rats then received test configurations on Days 7 and 8 that should either 

result in the retrieval of the feared tone (i.e., morning with spotted context, and afternoon 

with checked context) or should not (i.e., the remaining combinations).
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3.1. Experiments 3, 4 and 5: Integrating contexts, times of day and auditory stimuli

Experiments 3, 4 and 5 all used the experimental design summarized in Figure 11 

and described above. The experiments matched the overall amount of presentations of 

the auditory stimuli within the four context+time of day combinations (check+moming, 

spot+moming, check+aftemoon, spot+aftemoon), but varied the number of days over 

which initial training took place (Experiment 3 = 1 day; Experiment 4 = 2 days; 

Experiment 5 = 4  days). Experiments 3-5 were conducted in parallel with those now 

published in Iordanova, Good and Honey (2008).

3.2. Method

Subjects. 48 naive adult male hooded Lister rats (Rattus norvegicus; supplied by 

Harlan Olac Ltd., UK) were used in Experiments 3, 4 and 5 (ns = 16). The ad libitum 

weight ranges of the rats were: 320-600 g. Rats were maintained in the same way as rats 

in Experiment 1 and, like those rats, had ad libitum access to food and water in their 

home cages. As in previous experiments, all procedures were covered by Home Office 

Regulations (see Section 2.2).

Apparatus. Four chambers (L x W x H: 24cm x 24.5cm x 21cm; supplied by 

Camden Instruments Ltd. UK), arranged in a 2 x 2 array, were used during the exposure 

and test stages of the experiments. Each chamber was composed of three aluminium 

walls, an aluminium ceiling section and a clear, hinged plastic flap that served as 

door/wall to the chamber. The top two chambers in the array had their internal 

aluminium walls and ceiling covered with spotted laminated paper (black circles on white 

background). The lower two chambers had their internal aluminium walls and ceiling
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covered with black and white and white checked laminated paper (black and white 

squares arranged in a grid pattern; see Honey & Watt, 1999). Each section of laminated 

paper was fixed behind cut sheets of clear plastic that lined the walls and ceilings of each 

chamber. The floor of each chamber consisted of stainless steel rods, 0.5 cm in diameter 

and placed approximately 1.5cm apart, centre to centre. Below the rods in each chamber 

was an aluminium tray containing a 24m x 24cm sheet of absorbent paper. Each chamber 

was illuminated by a single light source, a 15 V, 24-W jewel light housed in the centre of 

the ceiling section. The experimental room lights were turned off during the procedure. 

Each chamber was housed individually in a sound-attenuating cabinet which was left 

open during each trial to allow visual recording of rat behaviour during the test trials. 

Aversive conditioning took place in two further chambers, which were identical in 

structure to those used in the training and test trials but were undecorated, had plain 

aluminium walls and ceilings, and were not illuminated. These chambers were not 

contained within a sound attenuating cabinet, and were placed beneath the 2 x 2 array of 

chambers 1-4, at floor level. The floors of these two chambers were connected to a shock 

scrambler and generator (Camden instruments Ltd., Models 521C and 52IS respectively) 

which enabled a 0.5 s, 0.5 mA electric shock to be delivered to the chamber floor. Each 

of the 6 chambers were equipped with a speaker mounted above the ceiling section, 

which was used to deliver either a 2 KHz tone or a 10 KHz click (depending on the 

configuration of stimuli required) at an intensity of approx 78 dB (A: Briiel & Kjaer, 

Type 2235). The auditory stimulus presented at each time point was the same in each 

chamber to avoid auditory contamination.
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Procedure

Experiments 3 ( 6  days), 4 (7 days), and 5 (9 days) were identical with the 

exception that the first stage of training occurred over 1 day, 2 days, and 4 days, 

respectively. During training trials, rats were placed in the two contexts during the 

morning (between 9.00 am and 11.30 am) and, 6-7 hours later, in the afternoon sessions 

(between 3.00 pm and 4 pm ). For a given rat, the order in which the contexts were 

presented, both within a day and between days, was the same. The context that was 

presented first and second was counterbalanced between subjects, and the auditory 

stimulus presented in the first and second context was also counterbalanced; with the 

designation in the morning dictating that the auditory stimuli would be presented in the 

opposite contexts in the afternoon session (see Figure 11). Each 10-s auditory stimulus 

was presented on 40 occasions in its designated context and successive presentations of a 

stimulus within a session were separated by 20 s. The first auditory stimulus was 

presented 20 s after the rat was placed in each context. Following the end of each session 

the rats were placed back in their holding cages and taken back to the colony room where 

they remained between sessions.

In Experiment 3, rats were placed in the two contexts for 20 min. in both the 

morning and afternoon. Rats received 40 presentations of the designated auditory 

stimulus in each context, and there was a 2 0 -min interval between sessions at a given 

time of day. In Experiment 4, rats were placed in the two contexts in the morning and 

afternoon for 1 0  min, and there was a 1 0 -min intervals between the two sessions at a 

given time of day. Rats received 20 presentations of the designated auditory stimuli in 

each context and training was repeated on two consecutive days. In Experiment 5, rats
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were placed in the two contexts for 5 min. in the morning and the afternoon, with a 5-min 

interval between sessions at a given time of day. Rats received 10 presentations of the 

designated auditory stimulus in each context and training continued for 4 days. During 

the intervals between the pairs of morning sessions (and afternoon sessions) as well as the 

interval between the morning and afternoon sessions, rats were returned to their homes 

cages.

On the two days following training, rats received an aversive revaluation 

procedure between 12.30 pm and 2.00 pm. On the first day, rats received 2 sessions 

where they were placed in the neutral, undecorated conditioning chamber for 90 s. In one 

session they received 3 presentations of an auditory stimulus (e.g., tone), separated by 20 

s, that was followed by the delivery of shock. In the other session the second auditory 

stimulus (e.g., click) was presented, but no shocks were delivered. In the 20-min interval 

between sessions the rats were then returned to the holding cage. On the first day of 

aversive conditioning, half of the rats received the aversive conditioning session first and 

the other non-reinforced session second, and the remainder received the opposite 

sequence. On the second day, the sequence of sessions was reversed for each rat. The 

identities of the auditory stimuli that were paired with shock and no shock was fully 

counterbalanced with respect to the previous counterbalancing operations.

Following the aversive revaluation procedure, conditioned fear was assessed in 

both contexts in the morning and afternoon; with the sessions occurring at approximately 

the same time of day as the training sessions for each rat. Each test session was 3 min. 

and there was a 3-min interval between test sessions at a given time of day during which 

rats were returned to the home cage. The order in which the rats were placed in the
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contexts was the same as during training; with the result that the context that should elicit 

the most fear was the first context in the morning and the second context in the afternoon 

for half of the rats and the second context in the morning and the first context in the 

afternoon for the remainder. This test procedure was repeated on day two.

On the final day of the procedure the level of fear elicited by the auditory stimuli 

was assessed at approximately midday in the contexts used for aversive conditioning. 

The test was conducted in the same way as revaluation training with the exception that no 

shocks were delivered. The sequence in which the auditory stimuli were presented in the 

two test sessions was counterbalanced.

Behavioural measures and statistical analysis. During testing sessions, for 

Experiments 3-5, the behaviour of rats was recorded by a stationary video camera (which 

was present but switched off during training and conditioning sessions). The freezing 

behaviour of rats was assessed from these recordings using a time-sampling procedure, 

where rats were observed every two seconds, and scored as either freezing or moving 

(inactive or active). Freezing was defined as the absence of movement, excluding that 

related to breathing or minor movements such as movement of the whiskers alone 

(Iordanova et al. 2008). The scoring was conducted by raters who were blind with 

respect to the specific treatment that each rats had received (Dean Burnett and Mihaela 

Iordanova). The percentages of observations on which freezing was observed in the tests 

was used to calculate separate ratio scores for the morning and afternoon sessions. These 

ratios were used in order to reduce individual variability and both ratios took the 

following form: Percentage of freezing in the context which predicted the now aversive 

stimulus in the morning, divided by the total amount of freezing during both sessions at a
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given time of day. Using this measure, a morning ratio of above 0.50 indicates that rats 

are responding appropriately: showing more fear of the context+moming combination 

that had been paired with auditory stimulus that was later paired with shock than the 

other context+moming combination; and an afternoon ratio below 0.50 indicates that rats 

are showing more fear to the context+aftemoon combination that had been paired with 

the same auditory stimulus than to the other context+aftemoon combination.

As previously stated, ANOVA and other parametric statistical analyses were used 

throughout the thesis. Parametic statistics (e.g., ANOVA) were used on the basis of the 

fact that the behavioural scores (e.g., freezing ratios) conformed to the conventional 

assumptions that underlie their use.

3.3. Results

The results from the morning (AM) and afternoon (PM) tests for Experiments 3-5 

are shown in Figure 12. Inspection of the left-hand pair of bars shows that the ratios for 

rats in Experiment 3 were the same in the morning and the afternoon. The fact that the 

ratios were both above 0.50 indicates that rats were consistently showing fear to the 

context associated with the revalued stimulus in the morning. That is, during the test a 

simple association was influencing their behaviour, namely the association resulting from 

the morning pairing of the context with the revalued stimulus. This description was 

supported by the fact that there was no difference between the morning and afternoon 

ratios ( t ^  = .049, p  > .05), and that both sets of ratios differed from chance (i.e., .50; 

AM : /(is) = 3.240, p < .01, PM: t(\5) = 2.168, p  < .05). An analysis of the overall 

percentages of freezing in the AM (M -  38.13) and PM (M = 30.48) revealed a
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significant difference between them (/(i5) = 2.743,/? < .05). This observation is consistent 

with the idea that extinction, during the AM session, influenced performance during the 

PM session: The AM sessions expose the rats to the contextual stimuli in the absence of 

the revalued auditory stimuli, causing a degree of extinction and resulting in a weaker 

context+auditory stimuli association in the PM sessions, which would logically result in 

reduced freezing levels. By contrast with the results of Experiment 3, the results from 

Experiment 4 (shown in the centre pair of bars if Figure 12) indicate that the scores in 

both morning and afternoon sessions are close to 0.50. This description of the results was 

supported by the fact that there was no difference between the morning and afternoon 

ratios (t^5) = -.854, p > .05), and that neither sets of ratios differed from 0.50 (AM: f(i5) = 

-.671, p  > .05, PM: /(i5) = .566, p  > .05). An analysis of the overall percentages of 

freezing in the AM (M = 38.93) and PM (M = 33.28) revealed no significant difference 

between them (f(i5) = 1.125,/? > .05).

58



□  AM ■ PM
0.75 -i

e
a*
I  0.50 ]
<D

0.25 J-----
Experiment 3 Experiment 4 Experiment 5

Figure 12. Experiments 3-5: Mean freezing ratios (+SEM) in Experiment 3 (1 day 

training procedure), Experiment 4 (2 day training procedure) and Experiment 5 (4 day 

training procedure).

Finally, inspection of the pattern of results in the right-hand pair of bars 

(Experiment 5) indicates that the time of day influenced which context provoked the most 

freezing. The fact that the ratio is above 0.50 in the morning signifies that the 

context+moming combination paired with the revalued auditory stimulus is eliciting 

more freezing than the other combination; similarly, the fact that the scores are below 

0.50 in the afternoon indicates that the pattern of contextual freezing has reversed in the 

afternoon. Statistical analysis confirmed that AM and PM scores differed (f(i5) = 4.941, p 

< .05) and that when the scores are combined in such a away as to maintain the direction 

of their differences from 0.50 the scores differ from chance (0.50; f(i5) = 4.485, p < .05). 

This is also the case if the scores are analysed individually, with the mean score in the
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AM (0.58) and PM (0.41) sessions both differing from chance (AM: 0.50; = 2.535,/?

< .05. PM: 0.50; 5) = -2.986, p < .05) Analysis of the overall percentage scores of 

freezing revealed no significant difference between the morning (M = 36.35) and 

afternoon (M = 36.49) sessions (/(3i) = -.042, p  > .05).

■  CS+ ■  CS-

100

Experiment 3 Experiment 4 Experiment 5

EXPERIMENTAL GROUP

Figure 13. Experiments 3-5: Mean percentages of observations freezing (+SEM) during 

presentations of the auditory stimulus paired with footshock (CS+) and the auditory 

stimulus that was not paired with footshock (CS-).

Figure 13 shows the results of the revaluation test in which the auditory stimuli 

were presented in the context in which aversive conditioning had taken place. The scores 

are pooled across the three presentations of each stimulus and indicate that freezing was, 

unsurprisingly, more evident during the stimulus paired with shock (CS+) than the other 

stimulus (CS-). Rats in each experiment showed this pattern of results (Experiment 3: fys)
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= 7.673, p  < .005; Experiment 4: fa )  = 8.482,/? < .005; Experiment 5: f(i5) = 3.381,/? < 

.005).

3.4. Discussion

The results of Experiment 5 demonstrate that rats can form configural memories 

involving time of day, contexts and auditory stimuli. More specifically, rats first received 

four days of exposure to four combinations of context+time+stimulus, and then one 

stimulus was paired with shock. As a result of this training, rats showed more fear to the 

context+time combinations that had been paired with that auditory stimulus (e.g., 

spot+moming and check+aftemoon) than to the other combinations (e.g., check+moming 

and spot+aftemoon). However, this pattern of results was not observed after one or two 

days of initial exposure to the combinations. In fact, after a single day of initial exposure 

(Experiment 3) rats showed most fear to the context that was associated with the revalued 

stimulus during the morning, irrespective of whether this context was presented in the 

morning or the afternoon at test. This finding raises the possibility that massed exposure 

to the context+time+stimulus combinations in the morning session interfered with 

learning in the afternoon.

In Experiment 4 there level of fear to the contexts was the same (unlike in 

Experiment 3) and did not differ as a function of time of day (unlike in Experiment 5). 

Presented in isolation, the findings from Experiment 4 would suggest that no learning had 

taken place. However, taken together with the results of Experiments 3 and 5 this seems 

implausible. Instead it seems possible that the extra day of training has been sufficient to 

render the various binary associations (involving the contexts) equivalent, but insufficient
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to result in appreciable configural learning involving what was presented where and 

when. The implications of this possibility for the role of the hippocampus in configural 

learning is discussed later in the chapter.

Although there is insufficient data to determine the exact mechanism(s) that 

mediate the outcomes of Experiments 3 and 4, the results of Experiment 5 suggest that 

rats can form configural memories involving episodic-like features, and provide a basis 

upon which to assess the role of the hippocampus in this form of learning. As such, the 

procedure used in Experiment 5 can be said to meet the aims of the thesis in part, as they 

provide a behavioural assay for the processing of configural memories for patterns of 

stimulation with episodic properties.

The procedure used in Experiment 5, in comparison to previous attempts to 

configural memories for what-where-when stimuli (discussed in Chapter 1), requires 

several days of training as opposed to minutes or hours, but has the distinct advantages of 

incorporating an effective revaluation method (shock) and not relying on spontaneous 

exploration or similar behavioural measurements, the outcomes of which risk being 

influenced by various motivational factors that are difficult to determine or recognise; the 

Experiment 5 procedure requires the subjects to take a more passive role, so this 

possibility is reduced.

It is also worth acknowledging that, due to the counterbalancing of the manner in 

which stimuli were presented, successful performance in the procedure requires the 

effective processing of configural memories, as the use of binary elemental associations 

alone (Figure 1) could not result in differentiation between patterns of stimuli based on

62



responses to any one or pair of stimulus elements. This property in particular was judged 

as potentially very useful in pursuing the aims of this thesis.

Specifically, the procedure used in Experiment 5 provide the opportunity, in 

Experiments 7-9, to investigate the effect of hippocampal inactivation on test 

performance (i.e., on the retrieval of configural information). In Experiment 6 , however, 

the effect of excitotoxic lesions to the hippocampus made prior to behavioural training 

was examined.

3.5. Experiment 6: The role of the hippocampus in configural integration

As discussed in Chapter 1, although many theorists have suggested that the 

hippocampus is involved in configural integration (Iordanova et al, 2008; O’Reilly & 

Rudy, 2001; Rudy & Sutherland, 1995), the evidence demonstrating that lesions to the 

hippocampus disrupt the formation of a reinforced configural discrimination is 

surprisingly sparse. Prompted by the finding that rewarded configural discriminations can 

be acquired by rats with hippocampal lesions, it has been suggested that the hippocampus 

might be especially important in forming and retrieving configural memories formed as 

the result of simple exposure to patterns of stimulations (e.g., O’Reilly & Rudy, 2001). 

Experiment 6  used the experimental design depicted in Figure 11, and used in 

Experiment 5, to examine the role of the hippocampus in configural integration that takes 

place during simple exposure to patterns of stimulation. There were two groups of rats 

that received different treatments prior to behavioural training and testing. One group 

received sham operations and the other group received excitotoxic lesions of the
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hippocampus. The question of principal interest was whether the groups would differ in 

terms of their ability to show configural integration.

3.6. Method

Subjects. 30 naive adult male hooded Lister rats (Rattus norvegicus; supplied by 

Harlan Olac ltd., UK) were used in Experiment 6 , of which 3 were excluded from the 

experiment as a result of complications following surgery, resulting in a total of 27 

subjects. The rats were approximately 10 months old {ad libitum weight range: 400-650 

g) and were split into two groups: Rats in group Control received sham surgery {n = 10) 

and those in group Hippocampal received bilateral lesions of the hippocampus {n = 17 

after the exclusion of 3 rats). Rats were maintained in the same way as Experiment 1. 

Surgery. Before behavioural testing began, rats received either sham or hippocampal 

lesions. All rats were first placed in an induction chamber and anesthetized using an 

isoflurane-oxygen mix. When rats were observed to be sufficiently anaesthetised, the fur 

covering the area of the skull to be operated on was removed. Rats were then placed in a 

stereotaxic frame (Kopf Instruments, Tujunga, CA). The skin was incised and the tissue 

covering the skull was retracted back and held in place with surgical clamps, thereby 

exposing the surface of the skull. For rats receiving sham surgery, this scalp incision was 

immediately sutured and the rats were then placed in an incubator at approximately 30 °C 

to facilitate recovery from anaesthesia. For rats receiving lesions, the bone covering the 

target regions of the cortex was removed and target regions were infused with ibotenic 

acid (Biosearch Technologies, San Rafael, CA; dissolved in phosphate-buffered saline 

[pH 7.4] to provide a solution with a concentration of 63 mM). The infusions were
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administered with a 2 jxl Hamilton syringe, held in place and controlled by a 

microinjector (Kopf instruments, model 5000). There were a total of 28 infusions, 14 in 

each hemisphere. Each infusion occurred at a rate of 0.30 pl/min. The precise location 

and infusion volumes used for complete bilateral hippocampal lesions are provided in 

Table 1.
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AP (mm) ML (mm) DV (mm) IBO (pi)

-5.0
-6 . 1

-5.3
-4.5

0.08
0.08
0.09

-5.4 +5.0
-6 . 1

-5.3
-4.5

0.08
0.08
0.09

-4.2 -3.9 0 . 1 0

+4.2 -3.9 0 . 1 0

-4.5 -6.5 0.05

+4.5 -6.5 0.05
-4.7

-4.0 -7.2
-3.5

0 . 1 0

0.05

+4.0 -7.2
-3.5

0 . 1 0

0.05
-3.5 -2.7 0 . 1 0

+3.5 -2.7 0 . 1 0

-3.9
-2 . 2

-3.0
- 1 . 8

0 . 1 0

0 . 1 0

+2 . 2
-3.0
- 1 . 8

0 . 1 0

0 . 1 0

-3.0 -2.7 0 . 1 0

+3.0 -2.7 0 . 1 0

-3.1 -1.4 -3.0
-2 . 1

0 . 1 0

0 . 1 0

+1.4 -3.0
-2 . 1

0 . 1 0

0 . 1 0

-2.4
- 1 . 0 -3.0 0.05

+1 . 0 -3.0 0.05

Table 1. The total number of infusions with associated coordinates and volumes of 

ibotenic acid administered. All coordinates are relative to bregma (bregma = 0.0). AP = 

Anterio-posterior; ML = Medio-lateral; DV = Dorso-ventral; IBO = Ibotenic acid 

(volume in microlitres, pi).

After infusion, the syringe was left in place for 1 min in order to allow the 

neurotoxin to diffuse out from the injection site and to minimise possible re-uptake
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caused by the subsequent removal of the syringe from the cortex. Once all infusions were 

completed, the scalp tissue was replaced, sutured and cleaned, and rats were removed 

from stereotaxic frame and placed in an incubator at 30 °C to facilitate recovery from 

anaesthesia. When rats regained mobility they were returned to the holding room and 

placed individually in cages and allowed to recover fully. Soluble paracetamol was added 

to the rats' water bottles to aide recovery prior to and following surgery. Rats were 

returned to their home cage along with their cage mate when both showed normal levels 

of behaviour post-surgery. Rats were monitored for any signs of post-operative 

complications for 10 days post-surgery, and all rats were allowed at least 14 days of 

recovery time before undergoing behavioural testing.

Histology. Following the completion of behavioural testing, rats received a lethal 

dose (approximately 1 ml) of sodium pentobarbitone (Euthatal) and were immediately 

transcardially perfused with a 0.9% saline solution followed by 10.0% formal-saline. The 

brains were then extracted and placed directly into 1 0 .0 % formal-saline and postfixed for 

24 hours. The brains were then transferred to a 30.0% sucrose solution for approximately 

48 hours, until the brains were observed to sink in the sucrose solution in order to cryo- 

protect the brains from the low temperatures encountered in the cryostat during 

sectioning. Brains were then removed from the solution and frozen in a cryostat at -20 °C 

and sliced coronally at 40 pm through the length of the hippocampus. Eveiy fifth section 

was affixed to a glass slide, with 6  sections on every slide. Slides were then left to dry at 

room temperatures for a minimum of 24 hours before staining with cresyl violet. Slides 

were immersed in increasingly concentrations of alcohol which was then removed by 

immersion in xylene. Slides were then placed in cresyl violet to stain, before being fixed
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in xylene and dehydrated again in alcohol of increasing concentration. A covering slide 

was then fixed in place and the slides were left in a fume cupboard to allow the xylene to 

evaporate.

Apparatus and procedure. The same chambers and procedures as described in 

Experiment 5 were employed in Experiment 6.

3.7. Results

Behavioural Analysis
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Figure 14. Experiment 6: Mean freezing ratios (+SEM) during the morning (AM) and 

afternoon (PM) tests for groups Sham and Hippocampal.

Figure 14 shows the mean freezing ratios for Experiment 6 for groups Sham and 

Hippocampal during the morning and afternoon test sessions. As previously stated, of the 

20 rats that underwent hippocampal lesions, two did not recover from anaesthesia, and
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one displayed no sign of hippocampal damage following histological analysis, resulting 

in a total of 17 rats in the hippocampal group. Inspection of the ratios for group Sham 

reveals the same pattern as in Experiment 5: The ratios were above 0.50 in the morning 

and below 0.50 in the afternoon. This pattern of results indicates that rats were exhibiting 

a configural integration effect, and replicated the pattern reported in Experiment 5. It is 

also evident from inspection of Figure 14 that the pattern of results in group Hippocampal 

is quite different from that of group Sham: The ratios for rats in group Hippocampal did 

not differ in the morning and afternoon, with both ratios being close to 0.50. ANOVA 

revealed that there was no significant effect of group (Sham versus Hippocampal; F < 1), 

a significant effect of time (AM versus PM; F(1>2s> = 4.41, p  < .05), and a significant 

interaction between these two factors (F(i>25) = 9.18, p  < .05). Pairwise comparisons 

revealed that there was a significant difference in the freezing ratios between AM and PM 

scores for group Sham (f(9) = 2.490, p < .05), and when these ratios were computed in 

such a way as to maintain the direction of their differences from chance, they differed 

from 0.50 (/(9) = 2.467, p < .05). There was no significant difference between AM and 

PM freezing ratios for hippocampal rats (t (i6) = -.974, p  > .05), and these ratios, when 

combined in the same way as above, did not deviate from chance (.50; *(16) =-.955,/? > 

.05).

The overall percentages of freezing in the AM and PM sessions in group Sham 

(AM: M  = 53.5; PM: M  = 43.9) were somewhat higher than in group Hippocampal (AM: 

M  = 32.6; PM: M  = 29.8), and were slightly higher in the morning than in the afternoon. 

ANOVA revealed a significant effect of group (F(i>25) = 4.976, p < .05, an effect of time 

of day (F(\,2S) = 9.788, p< .05) and a significant interaction between these factors (F(i)>25) =
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103.622, p  < .005). Pairwise comparisons revealed a significant difference between AM 

and PM scores for Sham rats (f(9) = 3.082, p  < .05), but not in hippocampal rats (f(i6) = 

1.165,/? >.05).

□  CS+ ■  CS-
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Figure 15. Experiment 6 : Mean percentages of freezing behaviour (+ SEM) in groups 

Sham and Hippocampal to the auditory stimulus paired with shock (CS+) and the 

auditory stimulus that was not paired with shock (CS-).

Inspection of Figure 15 shows that rats in both groups Sham and Hippocampal showed 

more fear to the auditory stimulus that had been paired with shock (CS+) than the 

auditory stimulus that had not been paired with shock (CS-). ANOVA confirmed that 

there was a significant effect of stimulus (F(i, 25) -  84.558, p  < .005), but no effect of 

groups and no interaction between these factors (Fs < 1).

Histological analyses
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Figure 16. The maximum (dark grey) and minimum (black) extent of the lesion in 

Experiment 6. All sections are posterior to and occur at specific distances (in mm) from 

Bregma (top to bottom, then left to right: 2.12, 2.80, 3.30, 3.80, 4.30, 4.80, 5.30, 6.30, 

6.80) according to the Paxinos and Watson (1998) stereotaxic atlas, from which diagrams 

were derived.

Figure 16 shows a series of coronal sections through the rat brain (adapted from 

Paxinos & Watson, 1998) with the maximum and minimum extent of cell loss for rats in 

group Hippocampal. Histological analysis revealed that there was a degree of sparing in 

the ventral area of the hippocampus (-6.80 mm from Bregma) in rats with the smallest
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lesions, with the most extensive damage found in the dorsal regions of the hippocampus 

in all cases. All rats sustained damage to CA1 and CA2 regions, and to the dorsal 

subiculum. Sparing of areas of the dentate gyrus (granular, lacunosum and polymorph 

layers) in the left hemisphere (figure 3.8.3) that were close to the midline was present in 

ten of the rats. These rats were included in the experiment as the majority of the dentate 

gyrus and CA1 regions was missing in each case, and CA2 and CA3 lesions were 

effectively removed. As previously stated, analysis of one rat showed no visible damage 

to any areas of the hippocampus beyond that caused by insertion of the syringe, and as 

such this rat was excluded from the results. Two rats also showed extensive damage to 

the cortex and areas beyond the hippocampal formation in both dorsal and ventral lesions, 

and were therefore excluded from the hippocampal lesion group. Two rats did not recover 

from anaesthesia. The final number of rats in the hippocampal group was 17, with 10 in 

the sham group.

Although histological analysis revealed noticeable variation in the extent of 

hippocampal lesions, there was no evidence of significant variation in freezing behaviour 

between individuals in the hippocampal group that correlated with variations in the size 

of the lesions. Histological analysis also revealed consistent cortical damage in the areas 

situated between -4.30 and -5.30 mm from bregma. This was an unintended result of the 

extensive lesioning procedure used. It must be acknowledged, therefore, that the deficit 

demonstrated in lesioned rats in the current procedure may also be due, at least in part, to 

the effects of cortical damage. The role of cortical damage disrupting the formation of 

configural representations and associations (depicted in Figure 4; see also O’Reilly &
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Rudy, 2001; Rudy & Sutherland, 1995) will be considered in more detail in the following 

sections.

3.8. Discussion

The results from group Sham in Experiment 6 replicate those from Experiment 5 

in showing that rats can from configural representations for patterns of stimulation 

involving contexts, times of day and auditory stimuli. There was no indication that rats 

with hippocampal lesions had formed (or could retrieve) such configural representations. 

There are a number of potential uninteresting explanations for the pattern of results in rats 

with hippocampal lesions, some of which can be discounted. One possibility is that they 

had formed configural representations during exposure to the patterns of stimulation, but 

that the revaluation procedure was ineffective. The results of the final test, in which the 

effectiveness of the aversive conditioning procedure was assessed, are inconsistent with 

this possibility. A more plausible possibility is that the deficit in configural learning is 

parasitic on a more basic deficit in learning about contexts or times of day (cf. Kim & 

Fanselow, 1992). There is nothing in the results of Experiment 6 that allow one to rule 

out these possibilities, and one of the aims of Chapter 4 is to assess its validity.

Another possibility which will be assessed in chapter 4 is that the deficit 

demonstrated by lesioned rats is actually caused by the incidental cortex damage that 

resulted from the lesioning procedure. Given the extent of the lesions and the fact that all 

lesions are administered prior to testing, there is no data from Experiment 6 that allows us 

to differentiate between a deficit caused by hippocampal or cortical lesions (cf. O'Reilly 

& Rudy, 2001; Rudy & Sutherland, 1989, 1995), or some combination of the two.
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The possibility that cortical, rather than hippocampal, damage is responsible for the 

deficit observed in Experiment 6 is consistent with the view that the behavioural effect of 

interest emerges over several days; and that it has often been supposed that whereas the 

hippocampus is involved in the rapid learning of configurations (Kim & Fanselow, 1992; 

Gaffan, 1991; Good et al, 2007; O’Keefe & Nadel, 1978; Rudy & Sutherland, 1995) 

gradual learning is a feature of the cortex (O’Reilly & Rudy, 2001; Rudy & Sutherland, 

1995). Although the rats with more extensive cortical damage were excluded from the 

results, the infusion procedure still resulted in less extensive but consistent damage to the 

cortex, and as such it is possible that the pattern of results is a result of this damage rather 

than damage to the hippocampus. The results presented in Chapter 4 will begin to 

address this concern by adopting an alternative method to manipulate hippocampal 

function that results in less cortical damage (i.e., temporary inactivation)

3.9. General Discussion

The aims of the experiments described in Chapter 3 was to develop a behavioural 

assay to assess configural memory for patterns of sensory stimulation, to explore the 

boundary conditions of the assay, and to then assess the role of the hippocampus in 

configural memory. The results of Experiments 3-5 show that a configural integration 

effect is evident after four days of training, but not if training is massed and occurs over 

one or two days. Experiment 6 replicated the results from Experiment 5 and showed that 

the configural integration effect is abolished in rats who have received lesions of the 

hippocampus prior to behavioural training. This finding is consistent with view that the 

hippocampus supports configural memory under some circumstances (OReilly & Rudy,
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2001). However, without contrasting the current assay with others involving the same 

content, but that do not require configural memory, this conclusion should be tempered 

with some caution. For example, rats with hippocampal lesions might be unable to learn 

about the contexts or times of day; such a deficit would almost inevitably influence 

performance in the procedures used in Experiment 6. Also, the results of Experiment 6 

could not establish whether the involvement of the hippocampus (or cortex) is necessary 

during retrieval of configural memories. As previously stated, studies in both humans and 

nonhumans have described the hippocampus generally in terms of its role in the encoding 

of configural/episodic memories (Alvarado & Rudy, 1995; Bunsey & Eichenbaum, 1996; 

Morris, 2006; Nyberg, 1997; Wishaw & Tomie, 1991), but there is also evidence to 

suggest that it has a role in the retrieval process of the same memories process (Aggleton 

& Brown, 1999; Holt & Maren, 1999; O’Reilly & Rudy, 2001; Rudy & Sutherland, 

1995). However, the nature of the lesioning procedure means that the hippocampus is 

absent during both encoding and retrieval stages of the experiment, so the effects of 

lesions on either process cannot be determined from the results provided in Experiment 6. 

These issues that will be addressed by the studies reported in Chapter 4. Before moving 

on to Chapter 4, however, some consideration should be given to why the behavioural 

procedures used in Experiments 5 and 6 were successful in generating a configural 

learning effect that involved time of day, when Experiments 2, 3 and 4 were not 

successful.

One obvious possibility is that the additional days of training in Experiment 5 and 

6 allowed the animals to learn that both the context and the time of day were informative 

with respect to whether a tone or click would be delivered. That is, like many traditional
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configural learning tasks the development of a configural association takes time. This 

could either reflect the fact that the links between the components of an "episode" (i.e., 

what, where and when) and a separate configural unit (see Figure 4) all form only slowly, 

or that any one of these components (e.g., when) requires many trials to become linked to 

the configural unit activated by the other components (what and where). One reason that 

learning involving morning and afternoon might be relatively slow is that, unlike the 

contexts and auditory cues, rats have experienced times of day on a regular basis before 

the experiment has started. It is well known that such exposure results in a retardation in 

that rate at which learning takes place - an effect known as latent inhibition (Lubow, 

1973). Leaving this conjecture aside, the results of Experiment 6 provide a clear impetus 

for examining, in greater detail, the role of the hippocampus in the processing of patterns 

of stimulation. However, the results of Experiments 3-5 do place some constraints on 

how to proceed.

Taken together, the results of Experiments 3-5 suggest that investigation of the 

role of the hippocampus during encoding of the stimulus patterns (e.g., by temporary 

inactivation) might be technically difficult: the requirement to repeatedly inactivate the 

hippocampus over the course of the four days of training that are required to generate the 

effect of interest. However, there is still the possibility of examining the role of the 

hippocampus during testing using this technique. The final set of experiments have two 

aims: To assess the role of the hippocampus during the recollection of configural 

memory using the behavioural assay developed in Chapter 3; and to contrast the effect of 

hippocampal inactivation during the configural assay (developed in this chapter) with 

comparable assays based upon the same content but that do not require configural
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processes. These assessments, coupled with a hippocampal inactivation technique, that 

presents a greatly reduced possibility of cortical disruption, will also help to address the 

concern that the deficit observed in Experiment 6 was a result of cortical damage rather 

than hippocampal damage. Once these aims have been achieved, it will be possible to 

offer a more definitive answer regarding the role of the hippocampus in mnemonic 

integration.
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Chapter 4

The role of the hippocampus in the retrieval of configural and elemental
information

Summary. The results from Chapter 3 demonstrate that rats acquire configural 

memories involving contexts, times of day, and auditory stimuli. This form of configural 

memory, based upon simple exposure to patterns of stimulation, was disrupted by 

excitotoxic lesions of the hippocampus. The three experiments reported in Chapter 4 

investigated the role of the hippocampus during the retrieval of configural memories 

(Experiment 7) and the retrieval of those that could be based on simpler, binary 

associations (Experiments 8 and 9). The technique used to disrupt hippocampal function 

during retrieval was temporary inactivation induced by muscimol, which allowed the 

critical comparisons in each experiment to be conducted within subjects, and also greatly 

reduced cortical damage that resulted from the excitotoxic lesioning procedure.

4.1. Experiment 7, 8 and 9: The role of the hippocampus in memory retrieval

Experiment 7 used the same procedure as Experiment 6 where test performance 

requires the use of configural memory (see Figure 17) which is reproduced from Chapter 

3 both to facilitate presentation and to contrast the procedure with those used in 

Experiments 8 and 9 that are presented on the succeeding pages. After the rats had 

received the exposure and revaluation procedure they received two tests days that were 

identical to the test day in Experiment 6. Briefly, in the morning and afternoon rats were 

placed in the two experimental contexts and freezing was assessed. On one test day, the 

hippocampus was inactivated by the administration of muscimol, a potent GABA agonist
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that temporarily blocks synaptic transmission (Beaumont, Chilton, Yamamura. & Enna, 

1978), immediately prior to the morning and afternoon tests. On the other test day, rats 

received administration of artificial cerebrospinal fluid (aCSF) immediately prior to both 

tests. Comparison of test performance on the two test days should allow to an assessment 

of the role of the hippocampus in the retrieval of configural memories. Two further 

experiments were conducted to examine the specificity of any effects of inactivating the 

hippocampus observed in Experiment 7. The same within-subject inactivation procedure 

was used, but the behavioural assays, were modified. The modifications were relatively 

minor, but theoretically important.
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Figure 17. Example of the treatments given to rats in Experiment 7 (reproduced from 

Figure 11). In the morning sessions on Days 1-4 a tone was presented in the spotted 

context and a series of clicks in the checked context; whereas in the afternoon sessions on 

Days 1-4 the clicks were presented in the spotted context and the tone in the checked 

context. To assess if rats had formed configural memories of location and time of day in 

which the tone had been presented, fear was first established to the tone (but not the 

clicker) by pairing it with shock (in another context at midday on Days 5 and 6). Rats 

then received test configurations on Days 7 and 8 that should either result in the retrieval 

of the feared tone (i.e., morning with spotted context, and afternoon with checked 

context) or should not (i.e., the remaining combinations).

The design used in Experiments 8 is depicted in Figure 18, and is formally 

equivalent to the sensory preconditioning procedure described by Rescorla and 

Cunningham (1978) who used a flavour-aversion procedure. Rats were first placed in the 

two contexts (in the morning or afternoon) and received presentations of one auditory 

stimulus (e.g., tone) in one of the contexts (e.g., spot) and the other auditory stimulus
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(e.g., click) in the second context (e.g., check). After this training, rats received the same 

revaluation procedure as in Experiment 6, where one of the auditory stimuli (e.g., tone) 

was paired with shock and the other (e.g., click) was not. Finally, the rats were placed in 

both contexts in the morning and freezing was assessed. It was anticipated that rats would 

show more fear to the context (e.g., spot) that had previously been paired with the 

revalued stimulus (e.g., tone). Although, such test performance could be mediated by a 

configural memory that integrates the three features of the training trials (e.g., 

spot+moming+tone) there is a simpler alternative: Rats could have formed direct 

elemental associations between the components of the patterns during the training stage 

(e.g., between the spot and tone) and between the tone and shock during the revaluations 

stage. The presence of a simple associative chain (spot-»tone-*shock) would be 

sufficient to provoke freezing behaviour (see Brogden, 1939; Rescorla & Cunningham, 

1978).
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Figure 18. Example of the behavioural treatments given to rats in Experiment 8. On Days 

1-4, a tone was presented in the spotted and a clicker in the checked context in the 

morning. Revaluation was identical to that described for Experiments 1 and 3: fear was 

established to the tone (but not the clicker) by pairing it with shock (in another context at 

midday on Days 5 and 6). Rats then received test configurations on Days 7 and 8 that 

should result in the retrieval of the feared tone in the appropriate context (i.e., in the 

spotted context, but not in the checked context). In order to counterbalance any effects of 

time of day, 50% of the rats were trained and tested in the morning only (as illustrated in 

Figure 18), whereas the remaining rats were trained and tested in the afternoon only. The 

stimulus-context pairings were also counterbalanced between subjects.

The design used in Experiment 9 is again similar to that employed in Experiment 

7 and is depicted in Figure 19. The rats were placed in the same context (e.g., spot) in the 

morning and afternoon. In the morning, they received presentations of one stimulus (e.g., 

tone) and in the afternoon session they received another stimulus (e.g., click). All rats 

then received the revaluation procedure and then freezing was assessed in the morning 

and afternoon. It was anticipated that rats would should more fear at the time of day that 

had been paired with the revalued stimulus and, as in Experiments 7 and 8, although such
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test performance could be mediated by a configural memory that integrates the three 

features of the training trials (e.g., spot+moming+tone) it could be based upon the 

presence of a simple associative chain (morning—»tone—> shock). The question of 

primary interest from Experiments 7-9, is whether inactivation of the hippocampus 

during testing has a general effect on retrieval at test, that is independent of how test 

performance could be mediated, or a more selective effect, that depends on whether test 

performance requires configural memory (Experiment 7) or does not (Experiments 8 and 

9).
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Figure 19. Example of the behavioural treatments given to rats in Experiment 9. On Days 

1-4, in the morning a tone was presented in the spotted context whereas in the afternoon a 

clicker was presented in the spotted context. Revaluation was identical to that described 

for Experiments 1 and 3: fear was established to the tone (but not the clicker) by pairing it 

with shock (in another context at midday on Days 5 and 6). Rats then received test 

configurations on Days 7-10 that should result in the retrieval of the feared tone at the 

appropriate time of day (i.e., in the morning, but not in the afternoon). In order to 

counterbalance any effects of specific contexts, 50% of the rats were trained and tested in 

the spotted context only (as illustrated in Figure 18), whereas the remaining rats were 

trained and tested in the checked context only. The stimulus-time of day pairings were 

also counterbalanced between subjects

4.2. Method

Subjects and apparatus. 48 naive adult male hooded Lister rats (Rattus 

norvegicus; supplied by Harlan Olac ltd., UK) were used in Experiments 7, 8 and 9 (ns = 

16). The ad libitum weight ranges of the rats were: 293-324 g (Experiment 7), 277-301 g 

(Experiment 8), and 288-329 g (Experiment 9). Rats were maintained in the same way as

Clicks
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rats in Experiment 1. As in previous experiments, all procedures were covered by Home 

Office Regulations (see Section 2.2). The apparatus was the same as that used in 

Experiment 5.

Surgery. All rats used in Experiments 7, 8 and 9, prior to behavioural testing, 

were surgically fitted with cannulae to directly administer substances to the hippocampus 

before the testing sessions. All rats were first placed in an induction chamber and 

anesthetized using an isoflurane-oxygen mix. When rats were observed to be sufficiently 

anaesthetised, the scalp was shaved and they were placed in a stereotaxic frame (Kopf 

Instruments, Tujunga, CA). The skin and tissue covering the skull was surgically 

removed and retracted back, providing an exposed bone surface. Each rat was implanted 

with double 26-gauge guide cannulae (Blaney, UK), with the tip of guide cannulae aimed 

at the dorsal hippocampus by positioning it 2.0 mm below bregma through bilateral holes 

drilled 3.0 mm posterior to and 1.5 mm lateral to bregma. Guide cannulae were fixed in 

position with dental cement within a section of Perspex tubing (approx 5mm in length, 15 

mm in diameter), four screws, and anchored in place with Super Glue. The guide 

cannulae contained dummy cannulae at all times outside of microinjection session, during 

which muscimol [1 pg/ml] (for a more detailed description of muscimol preparation and 

dosage, see Holt and Maren, 1999), or artificial cerebrospinal fluid (aCSF) was 

administered. Following surgery, the scalp was sutured around the cannulae housing, rats 

were removed from stereotaxic frame and placed in an incubator at 30 °C to facilitate 

recovery from anaesthesia. When rats were seen to regain mobility they were transferred 

back to the home cage and returned to the holding room. The rats were allowed to
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recover until they re-established their pre-operative weights. During recovery and most 

days of experimentation the rats were handled and weighed daily.

Histology. Following behavioural testing, rats received a lethal dose of sodium 

pentobarbitone (Euthatal). The brains were then extracted (without fixing) and placed 

directly into 10.0% formal-saline and postfixed for 24 hours. Brains were then transferred 

to a 30.0% sucrose solution for approximately 48 hours, in order to act as a 

cryoprotectant before being removed from the solution and frozen in a cryostat at -20 °C. 

The brains were then sliced coronally at 40 pm through the hippocampus, mounted on 

slides, left to dry at room temperatures and then stained with cresyl violet using the same 

procedure as detailed in section 3.7.

Infusion procedure. For microinjection sessions, the dummy cannulae were 

replaced with a 33 gauge double microinjection cannula which projected a further 1mm 

ventral from the guide cannula. These microinjection cannula were connected to a 1ml 

glass syringe operated by an infusion pump (Harvard Apparatus, South Natick, MA). On 

control test days, rats received an infusion of 0.5 pi of aCSF immediately prior to the 

morning and afternoon test sessions. On inactivation test days, rats received an infusion 

of 0.5 pi of muscimol immediately prior to the morning and afternoon test sessions. The 

order in which these two treatments were given was counterbalanced.

Behavioural procedures. Experiment 7 was conducted over a period of 8 days. 

The procedure was identical to that described for Experiment 6 (the what-where-when 

procedure, see Figure 17) but without the final day of testing which assessed the efficacy 

of the revaluation procedure, as it was deemed that the revaluation method has been 

proven to be effective in subsequent tests. The stimuli and apparatus used in
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Experiments 8 and 9 were identical to those used in Experiment 6. In the Experiment 8 

(see Figure 18; the what-where procedure), during the first 4 days rats were placed in one 

context (e.g., spotted), where they received one auditory stimulus (e.g., tone), and a 

second context (e.g., checked), where they received the other auditory stimulus (e.g., 

clicks). This arrangement equates the number of pairings between a given context and 

auditory stimulus with the number of pairings between a given (context-time of day) 

configuration and auditory stimulus in the what-where-when procedure. Half of the rats 

received these sessions in the morning and the remainder received them in the afternoon. 

The sequence in which the rats received the two contexts was arranged in the same way 

as in Experiment 6. On Days 5 and 6, all rats received aversive conditioning trials in the 

undecorated chamber at midday, in the same way as Experiment 6. Finally, on Days 7 

and 8 rats received test sessions in which their contextual fear in the two contexts was 

assessed. These test sessions were arranged in the same fashion as in Experiment 6 with 

the exception that rats only received a single pair of test sessions in the contexts at the 

same time as they had been presented during exposure. In Experiment 9 (see Figure 19; 

the what-when procedure), half of the rats received presentations of the tone in the 

morning and clicks in the afternoon during the first 4 days; for the remaining rats, this 

arrangement was reversed. This arrangement equates the number of pairings between a 

given time of day and a specific auditory stimulus with the number of pairings between a 

given (context-time of day) configuration and a specific auditory stimulus in the what- 

where-when procedure. For half of the rats in each of the sub-conditions created by the 

previous counterbalancing operation, exposure and test sessions occurred in a spotted 

chamber and for the rest they occurred in a checked chamber. The revaluation stage was
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identical to that described in Experiment 6 and for Experiments 7 and 8: one of the 

auditory stimuli was paired with shock and the other was not. Rats in the what-when 

condition received testing over four days, Days 7-10. On each day, they received a single 

test either in the morning or the afternoon. For half of the rats the sequence of tests was 

morning (Day 7), afternoon (Day 8), afternoon (Day 9), morning (Day 10), and for the 

remainder the sequence of tests across the four days was afternoon, morning, morning, 

afternoon.

Scoring and statistical analysis. Experiment 7 used the same morning and 

afternoon ratio score as Experiment 6. For Experiment 8 the ratio took the following 

form: freezing in the context that had signaled the auditory stimulus that was later paired 

with shock, divided by freezing during both contexts. Using this measure, scores above 

0.50 indicate that a rat is showing more freezing in the context that had signaled the now 

feared auditory stimulus (e.g., the tone in Figure 18) than the other context. Similarly, for 

Experiment 9 the ratio took the following form: Freezing at the time of day that was 

previously paired with the now aversive auditory stimulus, divided by freezing at both 

times of day. Again, scores above 0.50 indicate that a rat is showing greater freezing at 

the time of day at which the now feared auditory stimulus (e.g., the tone in Figure 19) had 

been presented during the first stage of training, than at the other time of day.

Scores were analysed using ANOVA and other parametric tests. In Experiment 7, 

the within-subject variables were aCSF/muscimol infusions and morning/afternoon 

freezing ratios. In Experiments 8 and 9 (analyzed in conjunction) the within-subject 

variable was aCSF/Muscimol infusions and the between-subject variable was contextual
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(Experiment 8) and temporal (Experiment 9) procedure used. A variety of post-hoc t-tests 

was also used.

4.3. Results

Behavioural analysis
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Figure 20. Experiments 7-9: Left panel -  Mean contextual freezing ratios (+SEM) in the 

morning and afternoon for the aCSF and muscimol conditions in Experiment 7 on tests 1 

and 2. Right panel -  Mean contextual (Experiment 8) and temporal (Experiment 9) 

freezing ratios (+ SEM) for the aCSF and muscimol conditions.

Experiment 7. The mean freezing ratios for Experiment 7 are shown in the left 

panel of Figure 20. As in Experiment 6, scores above .50 in the morning and below .50 in 

the afternoon indicate that the test configurations are successfully retrieving the auditory 

stimuli that they had signaled during the first stage of training. Inspection of the left panel 

of Figure 20 reveals that when the rats received infusions of aCSF into the dorsal 

hippocampus (in either Test 1 or Test 2) they showed the same pattern of results as the 

sham rats from Experiment 6: the freezing ratios were above .50 in the morning and 

below .50 in the afternoon. However, there was no indication that the pattern of freezing
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in the two contexts was modulated by the time of day when the same rats were given 

infusions of muscimol into the dorsal hippocampus; that is, the morning and afternoon 

ratios neither differed from one another nor from 0.50. A repeated measures ANOVA 

with inactivation treatment (aCSF versus muscimol) and time of day (morning versus 

afternoon) revealed that there was no effect of inactivation treatment, F(i,i4) < 1 , P > 05, 

an effect for time of day, F( i,i4) = 28.15, p  < .05, and a significant interaction between 

these factors, F(iti4) = 8.53, p  < .05. An analysis of simple main effects revealed that there 

was a difference in the freezing ratios between morning and afternoon for rats infused 

with aCSF, F(i,i4) = 34.81, p < .05; and, when the morning and afternoon scores were 

averaged in the same way as in Experiment 6, these averaged ratios were different from 

0.50, f(i4) = 5.90, p  < .05. There was no difference between the morning and afternoon 

freezing ratios when the same rats were infused with muscimol, Fi,i4 = 1.07, p  > .05; and 

their ratios did not differ from chance, 7(i4)= 1.03,/? > .05

Freezing analyses. An analysis of the overall contextual freezing levels when rats 

were given infusions into the dorsal hippocampus of aCSF versus muscimol revealed no 

differences between the two conditions (aCSF = 37%, Muscimol = 27%; /(i4) = 1.94, p  > 

0.05).

Experiments 8 and 9. In Experiment 8, 1 rat did not recover from surgery and 

another rat irreparably damaged their guide cannulae during the post-surgery recovery 

period. Similarly, in Experiment 9, 2 rats irreparably damaged their guide cannulae 

during the post-surgery recovery period. All of these rats were excluded from the 

procedure, with the result that n = 14 for Experiments 8 and 9 (n = 28 for results 

collapsed across both experiments). The mean freezing ratios for Experiments 8 and 9 are
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shown in the right panel of Figure 20. Inspection of this figure reveals that rats showed 

greater freezing in the context and at the time of day previously paired with the revalued 

auditory stimulus than in the context and at the time of day associated with other auditory 

stimulus; that is, the ratios were above .50. Inspection of this figure also reveals that this 

pattern of results was not influenced by whether the rats had received infusions of aCSF 

or muscimol prior to the test sessions. ANOVA with drug and Experiment (8 or 9) 

confirmed that there was no effect of inactivation treatment, F < 1, p  > .05, no effect of 

Experiment, F(ii26) = 3.26, p > .05, and no interaction between these factors, F < 1, p > 

.05. The freezing ratios differed from chance both when rats were infused with aCSF, 

*(27) = 4.58, p < 0.05, and when the same rats were infused with muscimol, t{11) = 3.60, p  

< 0.05. Despite freezing ratios in Experiment 8 (context, what-where test) being 

noticeably higher than those in Experiment 9 (time of day, what-when test), analysis of 

the combined aCSF and muscimol scores for both experiments revealed that freezing 

ratios were significantly higher than chance (context: f(27) = 6.206,/? < .05; time of day: 

/(27) = 2.314. p  < .05). When the scores were averaged across aCSF and muscimol 

conditions, both the what-where and what-when test scores differed from chance 

(context: /(i3) = 9.277,/? < .05; Time of day: t ^  = 9.277,/? < .05)

Freezing analyses. Analyses of the overall contextual freezing levels revealed no 

differences between aCSF and Muscimol infusion conditions (context: aCSF = 38%, 

Muscimol = 27%; i3) = 1.64,/? > 0.05; time of day: aCSF = 36%, Muscimol = 26%; f(i3) 

= 1.55,/? > 0.05).
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Histological analyses

Figure 21. Coronal sections taken throughout the dorsoventral extent of the brain 

identifying the placement of guide cannulae into the dorsal hippocampus for Experiment 

7 (left), Experiment 8 (centre), and Experiment 9 (right); the open triangles denote rats 

infused with muscimol during Test 1 and the closed squares denote rats infused with 

muscimol during Test 2. The sections are posterior to and at specific distances (in mm) 

from Bregma (top to bottom, 2.12, 2.80, 3.30, 3.80, 4.30) taken from the Paxinos and 

Watson (1996) stereotaxic atlas.

Figure 21 shows the location of the ends of the guide cannulae, and inspection of 

this figure confirms that they were within area CA1 of the dorsal hippocampus. There 

was a small amount of damage associated with the guide cannulae tract in the overlying 

cortex in all rats. There was no evidence that the infusions of either muscimol and aCSF 

had caused any long-lasting damage to the hippocampus. The data from one rat were 

excluded from the statistical analyses because the guide cannulae became displaced prior 

to testing thereby precluding either infusing muscimol or aCSF.
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4.4. General Discussion

Behavioural, computational and neural levels of analysis draw a fundamental 

distinction between two ways in which the components of a pattern of stimulation can be 

bound together in memory: Elemental accounts assume that exposure to a pattern allows 

links to form between its components (e.g., Hebb, 1949; Rescorla & Cunningham, 1978), 

whereas configural accounts hold that the components of a pattern of stimulation become 

bound together through becoming linked to a shared configural memory (e.g., Pearce, 

1994; Sutherland & Rudy, 1989, 1995; see Figure 1). The experiments reported in 

Chapters 3 and 4 examined the role of the hippocampus in mediating these processes. In 

particular, they assessed the effects of disrupting the operation of these structures (using 

lesions in Chapter 3 and temporary inactivation in Chapter 4) on behavioural assays 

where successful performance could reflect the operation of elemental or configural 

processes (Experiments 8 and 9), and on a novel assay where successful performance 

requires the operation of configural processes (Experiments 6 and 7). The use of this 

novel combination of assays (involving the same content and procedures) allowed me to 

provide converging evidence that both elemental and configural processes are involved in 

pattern memory and that disrupting hippocampal function leaves rats reliant on elemental 

processes Experiments 7 confirmed that rats form integrated configural memories in 

which the combination of a specific time of day and context indicates which auditory 

stimulus will be presented (cf. Experiments 5 and 6). The results of my assessment of the 

effect of inactivating the hippocampus during retrieval were clear-cut: Inactivating the 

hippocampus at test disrupted the performance in the task that required configural 

memory (Experiment 7), while leaving intact performance in the tasks that only required
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elemental associations (Experiments 8 and 9). These results provide a firm basis for the 

suggestion that the hippocampus is necessary for the acquisition and/or retrieval o f  

configural memories, but not elementary memories, involving the same content(the 

uncertainty regarding the acquisition or retrieval stems from the fact that experiments 

have yet to be performed where the hippocampus is deactivated during the acquisition 

phase of the experiment only, as the lesion studies described in Chapter 3 introduced 

hippocampal disruption to both acquisition and retrieval phases, so the effect of lesions 

cannot be specifically attributed to disruption of a specific stage). This precise pattern o f  

dissociations is also evident when the hippocampus is lesioned prior to behavioural 

training and testing (see Iordanova, Burnett, Aggleton, Good & Honey, in press). In the 

discussion of Experiment 6, it was suggested that the reported deficit may have been due 

to the cortical damage caused by the extensive lesioning procedure (see Chapter 3). 

Although there remains insufficient data to completely rule out this possibility, the fact 

that Experiment 7 demonstrated the same deficit when rats underwent temporary 

hippocampal deactivation by infusion of muscimol (a procedure that gready reduced the 

amount of cortical damage visible) strongly suggests that hippocampal disruption in both 

experiments is responsible for the recorded deficit.

This type of configural/elemental dissociation was foreshadowed by Rudy and 

Sutherland (1989; Rudy, Huff & Matus-Amat, 2004; see also, O'Keefe & Nadel, 1978) 

and is consistent with earlier evidence implicating the hippocampus in the process o f  

forming and/or retrieving memories of complex patterns of contextual stimulation, but not 

simple stimuli (e.g., auditory cues; see Fanselow, 1990; Kim & Fanselow, 1992; Phillips 

& LeDoux, 1992). The results of Experiments 7-9 are informative because they suggest
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that the results upon which these analyses were based (e.g., deficits in contextual fear 

conditioning, but not discrete cue conditioning) might well have reflected a disruption to 

configural integration rather than elemental integration (see also, Good & Honey, 1997). 

An equivalent argument applies to more recent results reported by Holt and Maren 

(1999). They showed that inactivation of the hippocampus disrupts the contextual 

dependence of latent inhibition during testing (see also, Honey & Good, 1993). The 

contextual dependence of latent inhibition might reflect either the operation of elementary 

associative processes (see Wagner, 1981; Honey, Iordanova & Good, 2009) or 

configural/hierarchical processes: where latent inhibition accrues to the configuration of 

the stimulus and the context in which it was presented. Our results are consistent with the 

suggestion that hippocampal inactivation disrupted the latter, configural process in the 

study reported by Holt and Maren (1999). The conclusion that the hippocampus has an 

important role in the effective binding of elements of complex patterns is in-keeping with 

similar observations reported in the literature (e.g. Eacott & Gaffan, 2005; Iordanova et 

al. 2008; O'Reilly & Rudy, 2001). One important feature of the two types of 

behavioural task used in Chapter 4 (i.e., the what-where-when versus what-where and 

what-when tasks) is that they are very similar. For example, all of the training patterns 

involve three components (an auditory stimulus presented in a context at a given time of 

day), the aversive conditioning stage is identical, and each of the test patterns involved a 

context presented at a given time of day. In fact, the first pair of test trials were identical 

in the what-where-when and what-where tasks (i.e., the two contexts were presented in 

the morning; compare Figures 17 and 18). Also, the tests in the what-when task matched 

the first tests in the what-where-when task (i.e., the same context was presented in the
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morning and afternoon). Moreover, as we have noted in passing, the training stages 

equate the number of pairings between a given pattern (context and time of day) and 

auditory stimulus. Not only are the two types of behavioural task very similar at a 

procedural level, they also resulted in very similar levels of test performance (see Figure 

20, left and right panels): the idea that the dissociations that we have observed between 

the tasks reflect different levels of baseline performance or indeed task difficulty, 

therefore, seems to be implausible.

The findings from Experiments 8 and 9 provide a relatively direct means of 

assessing the suggestion, from the discussion of the results of Experiments 3-5, that rats 

might have a particular problem in learning about time of day, relative to other stimuli. 

Now, although the ratios for the what-when task were numerically lower than those for 

the what-where task, these differences were not statistically significant and, what is more, 

both differed from chance. Admittedly, this is a null result and one where the levels of 

performance are rather low. However, keeping these caveats in mind, the results of 

Experiments 8 and 9 do begin to inform our understanding of why the configural learning 

effect takes several days to emerge (see Chapter 3). The results of these experiments are 

more consistent with the suggestions that configural learning occurs slowly than with the 

view that rats have a specific problem with learning about time of day.

In summary, the results of the Experiments detailed in this chapter clearly show 

that rats can acquire integrated long-term configural memories (involving what occurs 

where and when) and that this form of long-term memory, unlike elementary associative 

memory involving the same content, requires the integrity of the hippocampus. In
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Chapter 5 I will draw out the general implications of the experimental work reported in 

this thesis particularly with regards to the literature available of episodic-like memory and 

previous studies in this area, and suggest further ways in which to pursue the issues of 

central interest.
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Chapter 5

Configural memory and the hippocampus

Summary. In this chapter, a summary and evaluation of the new experimental 

results presented in this thesis is presented. The overarching aim of this thesis was to 

investigate the role of the rat hippocampus in processing and retrieving memories for 

patterns of stimulation and whether these memories are based on elemental or configural 

mnemonic structures, with the secondary aim of assessing memory for stimuli with 

episodic content. More specifically, the new experimental work assessed the idea that the 

rat hippocampus contributes to the formation and retrieval of configural, as contrasted 

with elemental, memories of what happened, where and when (cf. Aggleton & Brown, 

1999; Tulving, 1978; 2002). The experimental work focussed on the case in which the 

information to be bound together involved stimulus dimensions that are aligned to the 

critical components of episodic memory (i.e., what: object or auditory stimulus; where: 

which location or experimental context; and when: relative recency or time of day). 

After a summary of the new results presented in this thesis, and an evaluation of their 

theoretical significance, there follows a discussion of a series of further experiments that 

would serve to further refine our understanding of hippocampal function.

5.1. Summary of new results

5.1.1. Spontaneous exploration as a measure of mnemonic integration

Experiment 1 attempted to replicate the results reported by Good et al (2007; see 

also, Kart-Teke et al, 2006) as a prelude to examining the nature of their results. 

Unfortunately, the pattern of results, although similar to that reported by Good et al
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(2007), was not entirely consistent with their results. In particular, the rats were no more 

likely to explore an object that had undergone a spatiotemporal change than objects that 

had either undergone either a spatial or temporal change. Rather than directly examine 

the basis for this discrepancy, research was conducted using an alternative behavioural 

assessment of mnemonic integration. Experiment 2 employed a modified E-maze 

procedure that Eacott et al. (2005) had successfully used to examine ‘what-where-which’ 

memory. Briefly, this modification involved exposing rats to patterns of stimulation (e.g., 

moming+left arm+object X; moming+right arm+object Y; aftemoon+left arm+object Y; 

and aftemoon+right arm+object X). After this training, X was paired with food, and an 

assessment was made of whether rats explored the configurations associated with X (i.e., 

moming+left arm, and aftemoon+right arm) significantly more than the remaining 

configurations. Unfortunately, there was no sign of any such effect, but there was also 

no sign that the revaluation procedure involving X had been successful.

An extensive consideration of the potential reasons for the failure of Experiments 

1 and 2 is presented in the discussion sections of Chapter 2. No doubt, with further 

refinement of the procedures used in Experiments 1 and 2 it would prove possible to 

replicate and extend the findings upon which these experiments were based (i.e., Eacott et 

al., 2005; Good et al., 2007). Moreover, there is other evidence, some from studies using 

spontaneous exploration, that encourage the view that animals can form integrated 

memories for what happened, where and when (e.g., Babb & Crystal, 2006a; Clayton & 

Dickinson, 1998; Clayton et al., 2001; Eacott & Norman, 2004; Ergorul & Eichenbaum, 

2004; Good et al., 2007). However, as has been discussed in Chapter 1, many of these 

results might be based upon either elementary or configural processes; and this thesis was
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particularly concerned with the contrast between these two types of process in the context 

of integrating information with an obvious episodic content. For example, scrub jays may 

be exploring caches based on differences in what-where memory trace strength, rather 

than memory for specific what-where-when configurations (Clayton & Dickinson, 1998; 

Clayton et al., 2001; Eichenbaum & Fortin, 2003), whereas the finding that rats 

preferentially explore an object that has undergone a spatiotemporal context change 

might be based on the combined influence of both what-where and what-when elemental 

memories (Ergorul & Eichenbaum, 2004; Good et al., 2007).

Having spent a considerable amount of time using spontaneous exploration to 

study mnemonic integration in rats (see Chapter 2) it is perhaps worth making it clear that 

the failure of this enterprise to generate useful assays should not be taken to undermine 

the use of these types of procedures more generally. It is worth noting, however, that the 

use of explicit reinforcement often produced more robust behavioural effects. For 

example, sensory preconditioning procedures often produce behavioural effects that are 

marked (e.g., Rescorla & Cunningham, 1978). So, why is it that effects that are based on 

spontaneous exploration are, or appear to be, less marked? For example, even though 

Eacott and Norman (2004) reported evidence showing what-where-which memory in a 

configural task, the behavioural effect itself was relatively small. What factors might 

limit the size of effects produced in experiments that solely use spontaneous exploration 

as a measure? One observation is that in such procedures, the experimenter relinquishes 

some control of how the animal interacts with the critical aspects of the stimulation. For 

example, the rats might spend a good deal of time approaching an (asymmetric) object 

from one angle, and not experience its other feature, which will thereby remain
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unfamiliar. If these elements are encountered during the test, then they will generate 

approach to an object that is operationally familiar. Also, at a more theoretical level, 

spontaneous exploration tasks rely on exposure to a stimulus or pattern of stimulation 

resulting in habituation. There have been many attempts to explain habituation and few 

have considered the possibility that habituation occurs to configurations of stimuli (for a 

recent review, see Honey et al., 2010). Indeed, there is evidence to show that simple 

habituation might be multiply determined: under these circumstances, perhaps the 

apparent simplicity of the procedures might belie the fact that the target behaviour (e.g., 

approach and contact) is itself under the control of a range of theoretical and neural 

processes (Honey, Watt, & Good, 1998).

Leaving to one side the discussion related to Experiments 1 and 2, it is now 

appropriate to consider the use that was made, in subsequent chapters, of a different 

procedure to investigate mnemonic integration. This procedure was based on the type of 

sensory preconditioning procedure mentioned, in passing, above.

5.1.2. Configural memory in a sensory preconditioning procedure

The design of Experiments 3-5 was based on that used in Experiment 2. They 

again used times of day as when, but used the visual contexts as where, and auditory 

stimuli as what. Rats were exposed to four configurations. For example, moming+spotted 

context+tone, moming+checked context+click, aftemoon+spotted context+click, and 

aftemoon+checked context+tone. In Experiments 3-5, the duration of training was 

increased from 1 day to 2 days, and finally to 4 days, respectively. After this period of 

exposure, rats then received pairings of, for example, the tone with shock and click with
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no shock and their tendency to show freezing to the remaining components of the 

configurations was assessed (i.e., moming+spotted context, moming+checked context, 

aftemoon+spotted context, and aftemoon+checked context). Importantly, in Experiment 

5 (after 4 days of initial training), rats showed more fear to the configurations that had 

been paired with the tone (in the current example, moming+spotted context and 

aftemoon+checked context) than the remaining configurations. The fact that 4 days of 

training was required to generate the configural learning effect was taken to reflect the 

fact that after 1 or 2 days might have been insufficient for the rats to encode the time of 

day at which the other stimuli were occurring (see Chapter 3 for further discussion of this 

issue).

Experiment 5 demonstrated that rats show significant differences in freezing 

behaviour when presented with a combination of where-when stimuli that was previously 

presented with an audio ‘what' stimulus which was subsequently revalued with shock. 

This result is important, as it demonstrates that rats are capable of forming integrated 

memories for different configurations of what-where-when. Although evidence consistent 

with possibility has been presented before, Experiment 5 uses a testing procedure which 

rules out the possibility that the test performance of rats is based upon simple elemental 

associations: these are equated in Experiment 5 and so could not provide a basis for the 

test results (see Figure 4). The procedure pioneered by Eacott and Norman (2004) is 

another example of a test where elemental associations or links cannot explain successful 

test performance, but Experiment 5 incorporates a ‘ when ’ element (time of day) making 

the results more consistent with the traditional definition of episodic-like memory (e.g., 

Clayton & Dickinson, 1998). The procedure developed in Experiment 5 therefore
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allowed subsequent investigation of the role of the hippocampus in the formation and 

retrieval of such configural memories, and contrasting such memories with other, 

elemental memories based upon the same content.

5.1.3. Assessing the contribution of the hippocampus to configural memory

Experiments 6-9 examined the role of the hippocampus in mediating configural 

memory. In particular, these experiments assessed the effects of disrupting the function 

of the hippocampus using lesions (Experiment 6) and temporary inactivation 

(Experiments 7-9) on behavioural assays where successful performance could reflect the 

operation of either elemental processes (Experiments 8 and 9) or required configural 

processes (Experiments 6 and 7). The use of this novel combination of assays (involving 

the same content and procedures) allowed the provision of converging evidence that both 

elemental and configural processes are involved in pattern memory and that disrupting 

hippocampal function leaves rats reliant on elemental processes. Experiment 6 

demonstrated that hippocampal lesions disrupt configural memory using a novel 

behavioural procedure (i.e., that of Experiment 5). Experiment 7 demonstrated that 

hippocampal inactivation during test disrupted successful performance in the configural 

memory procedure used in Experiments 5 and 6. Experiments 8 and 9 showed that 

hippocampal inactivation did not disrupt more standard sensory preconditioning effects 

where performance could be mediated by elementary, associative chains.
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5.2. Theoretical implications of experimental results

Behavioural, computational and neural levels of analysis draw a fundamental 

distinction between two ways in which the components of a pattern of stimulation can be 

bound together in memory: Elemental accounts assume that exposure to a pattern allows 

links to form between its components (see Figure 20; e.g., Hebb, 1949; Rescorla & 

Cunningham, 1978), whereas configural accounts hold that the components of a pattern of 

stimulation become bound together through links to a shared configural memory (e.g., 

Pearce, 1994; Sutherland & Rudy, 1989, 1995). After establishing that rats could form 

configural memories for patterns of stimulation with episodic content, Chapters 3 and 4 

examined the role of the hippocampus in mediating these processes. The research 

focussed specifically on the effects of disrupting the operation of these structures (using 

lesions in Chapter 3 and temporary inactivation in Chapter 4) on behavioural assays 

where successful performance could reflect the operation of elemental or configural 

processes (Experiments 8 and 9), and on a novel assay where successful performance 

requires the operation of configural processes (Experiments 6 and 7). As previously 

stated, the use of this novel combination of assays (involving the same content and 

procedures) allowed converging evidence to be provided for the proposition that both 

elemental and configural processes are involved in pattern memory and that disrupting 

hippocampal function leaves rats reliant on elemental processes. This theoretical analysis 

is presented characterized in Figure 22.

105



Elemental Configural Hybrid

Object 1

Time 1

TPO

Place 1 O bject 1
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Place 1 Object 1

Figure 22. Alternative patterns of connections (denoted by arrows) created within elemental 

(left), configural (centre) and hybrid (right) associative networks after exposure to a pattern 

consisting of neutral episodic-like stimuli (Time 1, Place 1, Object 1; note: TPO is a 

configural unit activated by a specific pattern of stimulation). The right-hand, hybrid model 

is assumed to underlie performance in control rats, and the left-hand, elemental model is 

assumed to underlie the residual ability of rats with hippocampal damage (or inactivation) to 

form/retrieve memories of patterns of stimulation.

If we accept that ordinarily rats are hybrid animals, using both elemental and 

configural processes to combine information about what has happened where and when, 

whereas hippocampal animals are forced to rely on elementary associations there is at 

least one important theoretical question that remains: Why is the hippocampus required 

for configural memory in the behavioural assays discussed in Chapters 3 and 4, but not 

elementary associations involving the same content? One possible answer to this question 

is that the hippocampus is required to co-ordinate, or to otherwise maintain, the pattern of 

activation provoked by a test pattern and thereby allow the corresponding configural 

memory to become activated (cf. Olton et al, 1979). Without a co

ordination/maintenance process like that postulated, ensuring that the neural correlates
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role for the hippocampus in maintaining the relevant pattern of activation might be limited 

until the more gradual cortical system can encode the pattern as part of long-term 

memory. This possibility is supported by the fact that hippocampal lesions do not affect at 

least simple contextual conditioning if these lesions are made once a sufficiently long 

period has elapsed after training (Kim & Fanselow, 1992). Rudy and Sutherland (1995) 

propose a related pattern-enhancing role for the hippocampus in their model of 

hippocampal function.

One feature of this analysis is that it does not assume that the formation and 

retrieval of all configural memories will be equally reliant on the hippocampus: the 

involvement of the hippocampus should be restricted to cases where the information to be 

combined comes from disparate sources (either spatially or temporally). Indeed the 

analysis might well provide grounds for supposing that the binding of certain kinds of 

(episodic) information will be particularly dependent upon the hippocampus (see 

Aggleton & Brown, 1999; Day et al, 2003; Eichenbaum et al, 1994; Ergorul & 

Eichenbaum, 2004; Good et al, 2007; Morris, 2006). This idea is consistent with the view 

that there are other regions of the brain (e.g., the perirhinal cortex) that might also be 

involved in representing configurations of certain classes of stimulation (e.g., the 

combination of visual features; e.g., Bussey, Saksida & Murray, 2002; Eacott & Gaffan, 

2005; Iordanova et al, 2009).

Another feature of the analysis of hippocampal function that is described above is 

that it predicts that other forms of memory involving the same content (e.g., context, time 

of day and auditory stimulus) need not require the involvement of the hippocampus. For 

example, provided it is the case that simple links have formed between the components of
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a pattern of stimulation, then presenting one of its components should be sufficient to 

allow propagation of activity to other components of the pattern (cf. Hebb, 1949; Rudy et 

al, 2004); such associative chains could not, of course, support configural memory. Of 

course, the results of Experiments 8 and 9 provide direct support for this suggestion, as 

hippocampal inactivation does not have any discemable effect on recall of what-where 

and what-when information. These findings are themselves not without interest: previous 

studies suggest that the hippocampus is involved in spatial memory (Ergorul & 

Eichenbaum, 2004; O’Keefe, 1991); but more pertinent is the fact that hippocampal 

lesions disrupt context fear conditioning (e.g., Kim & Fanselow, 1992). In Experiment 8, 

in order to show selective fear in one of the test contexts, they must have learnt the 

location/context in which the revalued auditory stimulus was presented. Clearly, 

hippocampal lesions do not influence the process of associating a context with an auditory 

stimulus in Experiment 8, and this places further constraints on the role of the 

hippocampus in learning about contextual cues.

The theoretical analysis presented above and summarized in Figure 22 can also 

provide one account for extant evidence suggesting that non-humans animals might 

possess the rudiments of episodic memory. For example, the results of the scrub jay 

experiments performed by Clayton and Dickinson (1998; see also Clayton et al., 2001b) 

could be based upon the scrub jays using configural memories for the 

location+interval+food stored. Alternatively, as suggested in Chapter 1, they could use a 

sequence of elemental associations, interval-^food storedlocation (Clayton et al., 

2001b).

Finally, the procedures used in Experiments 5, 6, 7 and 9 demonstrate that time of
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day can be used as a cue by rats. Although the manner in which time of day is encoded in 

these experiments remains unknown, Experiment 9 reveals that successful recall of time 

of day is not based on the within-day order of sessions (the AM and PM tests were 

conducted across days). However, there was some evidence that time of day might be 

less salient than other cues (e.g., the contexts). In Experiment 3, there was evidence that 

rats had acquired a context-stimulus association, before they had acquired a time-of-day- 

stimulus association.

5.3. Some future directions

There are a variety of issues that remain unresolved in the context of the empirical 

work presented in this thesis, and the theoretical interpretation of the patterns of 

dissociations that have been observed (especially in Chapter 4). For example, although 

the configural assay was well matched to the assays where test performance could be 

supported by elemental associations, there remain some differences. The training 

procedure for the configural (what-where-when) task involved twice the number of 

training patterns as the training procedure for the what-where and what-when tasks 

(compare Figure 16 with Figures 17 and 18). This difference between the tasks might 

have contributed, in some way, to the patterns of dissociations that were observed in 

Chapter 4. In a series of follow-up experiments, Iordanova, Burnett, Good and Honey (in 

preparation) doubled the number of training patterns in the what-where task (Experiment 

8): by adding afternoon sessions in which the patterns presented in the morning were 

repeated; and in the what-when tasks (Experiment 9): by adding a second session in the 

morning and afternoon in which the same auditory stimuli were presented, but in a
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second context. These modifications to the procedures in the what-where and what-when 

tasks equate the number of training patterns with the what-where-when task. We found 

that lesions made prior to behavioural training were again without effect on tasks where 

test performance required only elemental processing (i.e., the what-where and what-when 

tasks). Therefore, the number of training trials does not appear to be the critical factor in 

determining whether or not lesioning the hippocampus prior to behavioural training 

influences test performance (cf. Iordanova et al, 2009). Clearly, it would be worthwhile 

confirming that this pattern of results is also observed when hippocampal function is 

temporarily disrupted during testing (cf. Experiments 7-9).

The inactivation studies in Chapter 4 reveal that the hippocampus has a role in 

retrieval of configural memory. It would be of interest to examine whether the 

hippocampus has a role in the encoding of configural memories; certainly the theoretical 

analysis described in Section 5.2 would predict that inactivating the hippocampus during 

training should also disrupt the formation of configural memories. Unfortunately, the use 

of temporary inactivation procedures is counter-indicated by the results of Experiments 

3-5 - where 4 days of training proved to be necessary in order to observe the effect of 

interest. It might still be possible, however, to temporarily inactivate the hippocampus on 

two of the training days and still be sensitive to observing a disruption of configural 

learning. Of course, a null result under such conditions would not be readily 

interpretable. An alternative approach would be to examine whether or not temporary 

inactivation of the hippocampus during the revaluation stage is effective. There is no 

requirement that the configural memories involving the auditory stimuli are re-activated 

during revaluation in order for the test effect to be observed: for example, the various
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context+time of day configurations would remain able to activate the auditory stimuli 

with which they were paired. Accordingly, inactivating the hippocampus during 

revaluation might be without effect.

Another question involves whether the effects observed in Chapter 4 are restricted 

to the stimuli with the episodic-like properties, or might the effects also be observed 

when other stimuli with different properties are used. It is well established that exposure 

to flavour compounds produce robust sensory preconditioning effects (e.g., Rescorla & 

Cunningham, 1978) and that such effects are not influenced by lesions of the 

hippocampus made prior to behavioural training (Ward-Robinson et al, 2001). The latter 

sensory preconditioning procedures are formally equivalent to the what-where and what- 

when assays used in Chapter 4, which were not influenced by hippocampal inactivation at 

test. It would be interesting to examine whether an assay that was formally equivalent to 

the configural what-where-when procedure developed here, would be sensitive to the 

effects of hippocampal lesions and inactivation. As indicated in Section 5.2, it seems 

possible that the role of the hippocampus in configural memory might be restricted to 

certain types of stimulus materials; namely, phasic stimuli that require short-term 

maintenance or co-ordination.

Finally, the test procedures used in Experiments 6-9 occurred relatively shortly 

after training had taken place. It has been argued that the role of the hippocampus in 

some forms of memory might be time dependent: with lesions placed shortly after 

training having a greater impact on later memory than lesions placed some time later 

(e.g., Kim & Fanselow, 1992). If the behavioural effects observed in Experiments 6-9 

proved to be relatively robust (lasting for many weeks) then it would be interesting to
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examine whether temporary inactivation of the hippocampus at test still produces the 

pattern of dissociations observed in Chapter 4. Certainly, the theoretical analysis 

presented in Section 5.2 predicts, other things being equal, temporary inactivation should 

disrupt the retrieval of configural memories.

5.4. Summary statement

The results of primary theoretical significance from this thesis are those 

pertaining to the dissociation between different ways in which patterns of stimulation can 

be represented. The finding that at least some forms of configural integration are reliant 

on the hippocampus, whereas other forms of elementary integration are not, is entirely 

consistent with some psychobiological models of memory that rely on a hybrid of 

elemental and configural processes (see right-hand panels of Figure 20; e.g., Sutherland 

& Rudy, 1989, 1995). The same results are inconsistent with the more parsimonious 

accounts that rely on either elemental (see left-hand panels of Figure 20; e.g., Rescorla & 

Wagner, 1972) or configural processes (see centre panels of Figure 20; e.g., Pearce, 

1994). However, I have argued that the dissociation between elemental and configural 

memory might be a secondary consequence of a disruption to the short-term maintenance 

of stimulus traces (cf. Olton et al, 1979) that has a greater impact when there is an 

obvious requirement to co-ordinate or maintain disparate stimulus traces than when there 

is no such requirement.
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