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Thesis Summary

Similarity, being a psychological notion, involves the comparison of finite object 

representations. The specific nature and complexity of these representations is a 

matter of fierce theoretical debate; traditionally, similarity research was dominated by 

the spatial and featural account. In the spatial account, similarity is determined by the 

distance between objects in a psychological space. Alternatively, the featural account 

proposes that similarity is determined by matching objects’ features. Despite the 

empirical success of these accounts, the object representations they posit are regarded 

too simple and specific to deal with more complex objects. Therefore, two structural 

accounts have been developed: structural alignment (SA) and Representational 

Distortion (RD).

This aim of this thesis was to further establish one particular structural account 

- RD - as a general framework for understanding the similarity between object 

representations. Specifically, RD measures similarity by the complexity of the 

transformation that “ distorts” one representation into the other.

This RD approach is investigated in detail by testing a detailed set of 

transformational predictions (coding scheme) within a rich stimulus domain. These 

predictions are tested through experiments and modelling that utilise both a) explicit 

measures (ratings, forced-choice), and, for the first time, b) implicit measures 

(reaction time, same-different errors & spontaneous categorisation). Moreover, RD is 

compared empirically with both traditional and alignment models of similarity.

Overall, the results suggest that similarity can be best understood by 

transformational relationships in a number of contexts. The performance of RD in 

both explicit and implicit measures is made more compelling by the fact that rival 

accounts fundamentally struggle to describe the sorts of relationships that are easily 

captured by RD. Finally, it is emphasised that RD is actually compatible with 

supposedly rival approaches and can incorporate theoretically these accounts, both 

traditional and structural, under one general framework.
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1
Similarity

“Upon those who step into the same rivers, different and again different waters flow. ” - Heraclitus

The environment is changing constantly in an infinite number of ways. Although a 

few of these changes may interest us as perceivers, many, however, will be subtle and 

irrelevant. In the famous adage (above), the Greek philosopher Heraclitus alludes to 

an essential cognitive ability, i.e., that despite constant environmental flux, we are 

able to successfully perceive relationships between objects in the world. Even though 

the environment is changing, in an objective and molecular sense, we are not 

representing this change psychologically. If it were unconstrained, this environmental 

complexity would present a clear problem for a finite cognitive system. As a result, 

therefore, we possess cognitive and perceptual mechanisms that 1) simplify 

environmental inputs (by representing only those properties that serve intelligent 

behaviour), and 2) reduce the novelty that arises from environmental and perceptual 

flux. The importance of similarity lies in the fact that it is considered to be one such 

mechanism.



Chapter 1 -  Similarity 9

Similarity is a perceived relationship between objects that will necessarily 

involve a comparison between two or more objects. This comparison is assumed to 

be characterised by a cognitive process or computation that, in some way, exploits 

object information to derive a final ‘similarity’ judgement. Generally speaking, 

similarity comparisons help identify consistencies and reduce what would otherwise 

be overwhelming novelty. It is this simple and yet fundamental function that has 

placed similarity at the core of cognition; cognitive and perceptual theories of 

categorisation and object recognition have assumed a central role for similarity-based 

processes (Graf, 2002, 2006; Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky, 

1984, 1986). Similarity is also considered to underlie many other cognitive processes 

such as memory retrieval (Chater & Brown, in press; Hintzmann, 1986), reasoning 

(Riesbeck & Schank, 1989) and induction (Osherson, Smith, Wilkie, Lopez & 

Shafiret, 1990), as well as perceptual phenomena such as object recognition and 

apparent motion (Graf, 2002; 2006; Oyama, Simizu & Tozawa, 1999; Shechter et al., 

1988). Given this prominent role within many areas of psychological study, there is a 

considerable need to better understand similarity.

Although similarity seems fairly basic in relation to our everyday experiences, 

understanding similarity and its psychological underpinnings is far from so. Its 

intimate connection with a broad range of both cognitive and perceptual theories 

requires an understanding of a range of related concepts: mental representation, 

feature processing, abstractness, analogy, feature-binding, local/global processing, 

attention and so on. By understanding these, one can begin to determine how the 

cognitive system might translate object information into some measure of similarity 

that, in turn, can lead to intelligent behaviour -  e.g., categorisation or problem 

solving. The theoretical debate surrounding these issues will be addressed in detail
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throughout this introduction. Specifically, the aim of this chapter is to provide a 

backdrop to current debate about the notion of similarity within cognitive psychology 

by discussing well-known, fundamental criticisms of similarity and the corresponding 

theoretical responses to these criticisms. The remainder of the thesis will then focus 

on a particular psychological theory of similarity -  the Transformational Approach. 

This approach will be investigated both through experiments and modelling, 

involving transformational predictions and those of rival approaches to psychological 

similarity.

Similarity’s ‘decline’

Intuitively, similarity is a function of “the properties that two objects have in 

common”, that is, it is a degree to which two objects share ‘things’. What these 

‘things’ are and how they come to be compared is the fundamental empirical question 

for similarity research. Crucially, similarity is a psychological notion and is not 

simply concerned with the properties that objects possess in the purely objective 

sense: to say that two objects are similar is equivalent to saying that they are 

perceived to be similar. Similarity is not an inherent relation between objects, but 

rather something we impose onto objects to guide intelligent behaviour and allow us 

to efficiently manage environmental complexity. This distinction, however, was not 

always so transparent. In fact, our contemporary view on similarity owes much to the 

philosopher Nelson Goodman (1972), who provided the first comprehensive attack on 

similarity and its supposed importance.

Goodman’s (1972) criticism dissected the commonly held intuition that “two 

objects are similar if they have a lot of properties in common”. He challenged this 

statement by arguing that all objects have something in common. For example, a
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mouse and a chair both share the property ‘weighs less than 5 tonnes’, ‘weighs less 

than 4 Vi tonnes’ and so on (Murphy & Medin, 1985). This logic suggests that all 

objects are both infinitely similar and infinitely dissimilar to all others; while a mouse 

has the property ‘weighs less than 100 grams’, a chair has the properties, ‘weighs 

more than 5 kilos’, ‘weighs less than 5.1 kilos’ and so on. However, if all objects are 

equally similar to all others, similarity ceases to provide an explanatory notion.

Consequently, Goodman (1972) suggests that similarity is useless until it is 

known in what respect two objects are similar, that is, concerning specific properties 

or features. To say that two objects are similar is meaningless unless we specify in 

what ‘respect’ we consider them similar, such as “oranges and footballs are similar in 

respect to shape ”. It follows therefore, says Goodman, that ‘respects’ do all the work, 

leaving similarity a vacuous concept; a “pretender, an imposter, a quack” (Goodman, 

1972, pp. 437). For example, to say that “object x belongs to category Y because it is 

similar to the category members of Y with respect to the property square”, is 

basically saying that it is categorised because it is, in fact, a square -  similarity is a 

blank to be filled in (Medin, Goldstone & Gentner, 1993). In short, Goodman 

concluded that ‘respects’ convey the true meaning of the comparison, not similarity 

per se.

Respects, in turn, take on a number of problems of their own: if two objects 

are similar how do we determine the respects in the first place? There is, as Goodman 

suggests, no one answer to the similarity between two objects, that is, the choice of 

this ‘respect’ seems entirely unconstrained. Therefore, if similarity is arbitrarily 

flexible then generating reliable theories of similarity process and computation may 

be unattainable.
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One source of flexibility that has been subject to not just philosophical, but 

also psychological attention, is the context in which a comparison takes place. 

Barsalou (1982, 1983) gave participants a number of comparisons with or without an 

explicit context. His results indicate that context can systematically change the 

similarity between two objects by changing the ‘respect’ in which those objects are 

compared. A snake and a racoon, for example, were rated similar when in the context 

of ‘pets’ but rated dissimilar when compared in isolation. In short, the properties that 

are made salient by a particular context profoundly affect the rated similarity, even if 

the comparison is identical in the objective sense. Tversky (1977) conducted a 

number of experiments investigating contextual effects in similarity judgements using 

a range of stimuli (schematic faces, countries). Tversky highlighted what he referred 

to as diagnostic factors, that is, the ‘classificatory significance’ of features (Tversky, 

1977, pp. 342). These factors refer to a general tendency to reduce information into 

clusters. So, when participants are presented with a ‘base’ object and are asked to rate 

the similarity of a number of ‘target’ objects, the rated similarities will depend on 

what clusters are made salient. In one study, the base stimulus Austria was presented 

with three further countries, Sweden, Poland and Hungary. In this context, Austria 

was considered most similar to Sweden. However, when Poland was swapped with 

Norway for a second group of subjects, the similarity to Sweden decreased. As 

Poland and Hungary form a cluster in the first example, the similarity between Austria 

and Sweden increases. However, the introduction of Norway allows Sweden and 

Norway to be clustered together based on their geographical proximity, which in turn 

increases the similarity between Austria and Hungary.

Close, Hahn and Honey (2009), finally, demonstrated that similarity can be 

contextually modulated even in rats, contrary to previous assertions (Chater & Heyes,
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1994). Initially, rats learnt to associate certain pairs of stimuli with an outcome (food) 

whilst in a particular context, X  (A and B -> food, C and D -> no food). Other pairs 

of stimuli were also associated with these outcomes in a different context, Y (A & D 

food, B & C -> no food). When A was subsequently paired with an electric shock 

there was a greater fear response to B in X , when compared to D in X , thus implying 

the A and B are most similar. When in context 7, however, there was a greater fear 

response to D when compared to B - the opposite pattern. These results suggest that 

rats, like humans, are affected by contextual factors when determining similarity. The 

similarity between A and B, or A and D, for example, is not fixed, but dependent on 

the context in which they are considered to be similar, much like in the human studies 

reported above (Barsalou, 1982; Medin et al., 1993; Tversky & Gati, 1978).

Studies of expertise further highlight the flexibility of similarity. In general, it 

has been shown that ‘novice’ participants tend to prefer surface similarities whereas 

expert participants generate a high-level interpretation of the particular comparison or 

problem (Chi et al., 1991; Hardiman et al., 1989; Kolstad & Baillargeon, 1991; 

Suzuki et al., 1992). In addition, it is a well-studied phenomenon in both humans and 

animals that, with increased experience, objects become more dissimilar or distinctive 

(Gibson, 1963; Goldstone, 1998) - a finding that, once again, supports the idea that 

similarity is a flexible notion.

So, does this flexibility of similarity undercut its explanatory power?

Psychological constraints on similarity

A number of authors have attempted to argue that it does not. It has been 

claimed that similarity, in a psychological sense, is not subject to the unconstrained
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comparison process that Goodman implies (Medin et al., 1993; Goldstone, 1994a). 

One possibility is that perception constrains similarity.

The idea that perceptual similarities are hard-wired is quite appealing; after all 

it would be difficult to deny that a 400Hz and 402Hz tone sound similar (Goldstone, 

1994a). Although this appears satisfactory, it is in fact victim to the inverse problem 

-  how can the perceptual system provide a sufficiently flexible input that can account 

for the comparison of high-level properties or knowledge-based conceptual 

knowledge (see Murphy and Medin, 1985). To reduce similarity to perception is to 

reduce its explanatory power once more. Therefore, whilst this may eliminate 

properties that are non-perceptual, such as ‘taller than 1cm’, from our actual similarity 

comparisons, it also eliminates other types of property that are shown to influence our 

similarity judgements, such as relational attributes or functional similarities. As 

Medin et al. (1993) state, “similarity cannot be completely inflexible for the work it 

has to do”.

The problem converges on Goodman’s (1972) notion of ‘respects’ - is the 

claim that similarity is useless without ‘respects’ an accurate one? And, if respects 

are doing all the work, are they psychologically constrained in some way? As 

discussed above, many studies have shown that contextual factors can dramatically 

alter what ‘respects’ are relevant. However, as Medin et al. (1993) state, it is not the 

case that these respects vary arbitrarily -  their variation seems constrained and 

systematic. In the context of ‘pets’, for example, a snake and racoon are considered 

similar, but if racoons were to become common household pets this similarity would 

reduce systematically as a function of this newly assimilated knowledge, that is, the 

change in similarity would be non-arbitrary.
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Likewise, Goldstone (1994a) argues that the comparison itself constrains 

similarity. According to Goldstone, the comparison process acts as a sort of 

‘relevance filter’; as objects enter into comparisons certain properties become relevant 

and others are discarded. By considering objects in isolation, it is impossible to 

determine what properties might be relevant. Medin et al. (1993) provide an elegant 

demonstration of this point by showing that the properties attributed to ambiguous 

objects depend on the comparisons in which they appear. For example, stimulus B in 

Figure 1 is considered to have three prongs when compared with A, and four prongs 

when compared with B. In such an example, where a certain property is ambiguous, 

or even irrelevant, the comparison itself actually disambiguates the property and 

increases its relevance. While certain constraints, such as similarity-as-perception 

(see above), may provide a more stable notion of similarity, an explanation that is 

based in the comparison process itself may be necessary if we are to resurrect the role 

of similarity in general (Goldstone, 1994a). After all, perceptual constraints can still 

be regarded as ‘respects’, i.e., A and B are similar in ‘respect’ to colour, frequency 

and so on.

f N  B and C share:
A and B Share: \  U  1 /  Pour prongs

Three prongs \  B and c  differ;
A and B Differ: g  ^as one sm aj(/

Different sh a p es warped prong
A C

Figure 1. An example of the stimuli used by Medin et al. (2003, pp. 262). Stimulus 

B is compared to either A or C. The common and distinctive properties associated 

with each comparison are listed.
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In terms of similarity itself having no role at all, Goldstone (1994a) also 

argued that a notion of similarity is still essential in integrating ‘respects’ into a single 

judgement of similarity. Specifically, Goldstone emphasises how similarity 

judgements are often made over a number of dimensions or properties, (size, shape, 

colour etc) not a single respect. Therefore, similarity is necessary to integrate and 

weight this information in order to form a single, unitary judgement. If two objects 

are similar in respect to their appearance, then saying that respects do all the work is 

highly simplistic. ‘Visual appearance’, as a respect, is comprised of many dimensions, 

and so it is unlikely that all these will be equally relevant in a given context. The 

challenge for similarity is integrating these properties and determining the relative 

weight of each.

Overall, then, Goodman’s claim that respects ‘do all the work’ is, to some 

extent, a fair conception of the problem. However, as research has shown, these 

‘respects’ do not vary in arbitrary ways, indicating that we, as intelligent animals, are 

able to impose constraints on what properties are relevant in a given context, as well 

as able to integrate multiple respects into a unitary judgement of similarity. Hence 

‘respects’ do not obviate the notion of similarity itself.

The question of what we mean psychologically by constraining similarity 

remains. To address this question we must return to the fundamental distinction 

between the ‘objective’ and the psychological. To restate, similarity is not an 

objective relation between objects in the world, it is imposed onto objects in order to 

connect our experiences, reduce novelty and make the most of limited information. 

Similarity, therefore, must be flexible, but moreover, it must be psychologically 

plausible. Similarity comparisons are carried out by a finite brain, thus ruling out the 

infinite number of properties that are central to Goodman’s argument. Goodman’s
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points have forced researchers to realise that similarity is a psychological notion: 

although objectively objects may share an infinite number of properties, subjectively, 

for a given cognitive agent, they most certainly do not. Human judgements of 

similarity are not based directly on the physical properties of objects as such, they are 

based on the way those objects appear to us, that is, they are based on our mental 

representations of objects (Hahn & Chater, 1997). When we represent a pair of 

objects, and the relationship between them, we represent only those elements and 

relations that are important in guiding problem solving, categorisation, and so on.

While mental representation and respects are equivalent under this view, they 

provide a very different focus (Hahn & Chater, 1997). Mental representation, as an 

explicit psychological notion, is naturally compatible with theories of cognition that 

assume comparisons between non-objective, non-physical identities -  for example, 

memory representations, such as those central to models of categorisation and 

recognition (e.g., Nosofsky, 1984, 1986; Graf, 2006). In addition, representations can 

assume more than a single respect, that is, representations can be comprised of 

multiple dimensions without any need to speak of multiple respects. Finally, the 

notion of mental representation provides a clear basis for theories of similarity to 

make detailed predictions about object representation and how representations are 

compared.

Theories of similarity

In light of this, it is unsurprising that the mental representation of objects has, 

in many ways, formed the focus of similarity theory. Although no model of similarity 

can be expected to provide a fully specified account of mental representation, any 

model must make assumptions about how certain representations are compared -  and
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this is not possible without assumptions about the sorts of properties that are 

represented in a particular context.

The empirical debate, until recently, has been dominated by two theories of 

similarity: the spatial account and the Contrast Model (or featural account).

y

Figure 2. A simple illustration of a multi-dimensional psychological space. Objects 

occupy locations based on their values on dimensions x and y. The closer two objects 

are, the more similar they are.

The Spatial Account

The spatial account of similarity is perhaps the most widely tested model of 

similarity to date. The spatial account defines similarity as a distance within a multi­

dimensional, psychological space (Shepard, 1957) and can be considered either a 

psychological theory or a convenient method for expressing and summarising 

similarity data (Gati & Tversky, 1982). Objects are represented as points within this 

space based on their values on underlying continuous dimensions. Once objects are 

represented within this coordinate space, similarity is determined most commonly by
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the Euclidean distances between objects in this underlying spatial representation, with 

distance inversely related to similarity (see Figure 2). Distance in geometric models 

is defined as:

dij= [I \x im- x jm\r]xlr (1)

where dy is the distance between objects i and j ,  Xim is the value of object i on 

dimension m and the parameter r refers to the spatial metric employed. If the value is 

r = 2 then the difference between objects is the length of the shortest line that relates 

them, i.e., the Euclidean distance. Alternatively, if the value is r = 1 then the distance 

between objects is equal to their summed differences on each dimension (known as 

the city-block metric). Of course, proximities will vary depending on the metric used: 

the city-block metric, for example, will penalise differences over more than one 

dimension whereas the Euclidean metric will not. In addition, this parameter 

highlights how different dimensions are integrated in determining the similarity 

between object representations -  emphasising similarity’s role in not only what 

dimensions are relevant but how dimensions or properties are combined (i.e., 

Goldstone, 1994a).

Crucially, varying the parameter r has been shown to have non-arbitrary 

effects on model accuracy in certain contexts. The suitability of each metric may 

depend on the stimuli used and the strategies that participants employ (Dunn, 1983; 

Gamer, 1974; Goldstone, 1994a; Melara, Marks & Lesko, 1992; Nosofsky, 1985a; 

Shepard, 1987; see Shepard, 1991 for review). For example, Shepard (1987) states 

that the Euclidean distance metric (r = 2) is more suitable for integral stimulus 

dimensions, such as the brightness and saturation of an object (see Gamer, 1970; but
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see also Hyman & Well, 1968) and that a city-block metric (r=  1) is more appropriate 

when dimensions are separable (e.g., the length and width of a rectangle). Notably, 

however, determining the relative integrality or separability of a stimulus is far from 

straight forward in a given context, making such a distinction less practical. For 

example, a number of studies have shown that the integrality of two dimensions is 

highly flexible and subject to task-specific properties/instructions (Felfoldy & Gamer, 

1971; Imai & Gamer, 1965; Potts, Melara & Marks, 1998), developmental factors (L. 

B. Smith & Evans, 1989) and individual differences (J. D. Smith & Baron, 1981; 

Ward, 1985).

In addition to being a model of similarity and mental representation, the 

spatial model also provides a technique for summarising and displaying all kinds of 

similarity data (ratings, confusability data, reaction time, same-different errors etc). 

The statistical procedure of multidimensional scaling (MDS; Shepard. 1957) will 

generate, as its output, a spatial representation of minimum dimensionality that 

preserves the proximities in the input data as best possible. The goodness of this fit is 

reflected in the ‘stress’ of a given solution (known as Stress-1). A high ‘stress’ value 

indicates that the input data has been distorted greatly in generating the output. The 

distances between objects in this output representation can be used to predict patterns 

of data in appropriate psychological models or fit related sets of similarity data (Frost 

& Gati, 1989; Nosofsky, 1983, 1986; Shepard, 1987).

As stated above, many psychological models have successfully adopted the 

notion that (dis)similarity corresponds to distance in a multidimensional space. The 

spatial model’s dominance is most pronounced in exemplar models of categorisation, 

namely the Generalised Context Model (GCM; Nosofsky, 1984, 1986) which is 

undoubtedly one of the most well tested cognitive models to date. The GCM — a
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generalised version of Medin and Schaffer’s (1978) Context Model -  assumes that the 

categorisation of a particular stimulus is based on the summed similarity of that 

stimulus to all exemplars in the candidate category. In this context, similarity does 

not correspond directly to distance; instead it is an exponential function of distance, 

that is

Sij =  exp(-c • dij) (2)

where the variable c refers to a ‘general sensitivity parameter’ that determines the 

‘spread’ of similarity. Increasing the value of c will increase the influence of ‘close’ 

similarities. Hence, high c values will mean that close exemplars in similarity space 

will exert a larger influence on categorisation than distant exemplars. This distance 

metric also incorporates further free parameters, wm, that can differentially weight 

stimulus dimensions (thus emphasising the requirement of similarity-based models to 

both integrate and weight relevant dimensions). The successful implementation of this 

account across a range of stimuli and tasks is compelling support for this exponential 

Taw of generalisation’ (Nosofsky, 1984, 1986; Shepard, 1987; see also Kruschke, 

1992 for a connectionist implementation of the GCM). Relatedly, however, some 

studies have also shown that a Gaussian similarity function is superior in many 

contexts (Ashby, 1992; Nosofsky, 1985a, 1985b, 1986), such as when performance is 

asymptotic rather than nonasymptotic, for example, learning data (Nosofsky, 1985b).

The success of similarity-based models of categorisation provides 

considerable support for similarity in general, at least in some contexts. 

Fundamentally, these conceptualisations of similarity (as exponential and Gaussian 

functions of distance in psychological space) have provided concrete interpretations
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of a construct once considered too vague to be any use at all in cognitive psychology 

(Cutzu & Edelman, 1998).

Despite the empirical success of the spatial account it has received 

considerable theoretical criticism. The most notable critic is Amos Tversky (1977), 

who launched a comprehensive attack on spatial models in support of his own theory 

of similarity - the Contrast Model (Frost & Gati, 1989; Gati & Tversky, 1982, 1984; 

Tversky, 1977). In general, Tversky’s criticisms focussed on the inadequacy of 

spatial representations and their underlying assumptions to deal with a range of 

similarity-based phenomena.

The Contrast Model/The featural approach

The Contrast Model, or the featural approach to similarity, states that 

similarity comparisons involve matching object features. The theory assumes that 

objects are represented as bundles of binary or nominal features. It follows that 

relevant features are selected through a process of extraction and compilation, both of 

which are determined by task and stimulus properties (Tversky, 1977). The Contrast 

Model is defined as follows

SIM(A,B) = 0/(An B) - a/(A - B) - 13/(B - A) (3)

A and B refer to the feature-sets of objects A and B respectively, so that the similarity 

between A and B is a function of three arguments: 1) features common to both A and 

B (An B), 2) features that belong to A and not B (A - B), and 3) features that belong 

to B and not A (B - A). 0, a, 13 are weight parameters that allow for a number of 

different similarity scales if these are weighted differentially; for example, if 0 = 1 and
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a, 6 disappear from the equation, then only the first argument is used to determine 

similarity, that is, (AnB). Likewise, if a = p = 1, and 0 is not used, then only the 

differences between A and B are taken into account, that is, f[A  - B) + - A).

Discrepant values of a and B will differentially weight the distinctive features of each 

compared object allowing for certain similarity relations to be bom out, as will be 

explained in more detail in the next section.

The Three Violated Axioms

Crucially, Tversky (1977) directly challenges geometric representations by 

demonstrating systematic violations of the metric axioms that can be readily explained 

by a featural account. If similarity is best represented as distance within a 

psychological space then it must obey the assumptions that underlie distance-based 

measures in general. The three axioms are as follows:

1) Minimality: d (a, b) = d (a, a) = 0

The similarity between an object and itself is the same for all objects.

2) Symmetry: d (a, b) = d (b, a)

The similarity between two objects is the same regardless of the 

direction.

3) Triangle inequality: d (a, b) + d (b, c) = d (a, c)

The distance between two objects must be smaller, or equal to, the sum 

of two other distances.

For the axiom of minimality, Tversky (1977) asserts that the probability of two 

identical objects being identified correctly as the same is not the same for all objects.
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If identification probability is regarded as measure of similarity, then this poses a 

threat to the spatial account. However, equating confusion probability and similarity 

is not unproblematic. Rather than inferring differences in self-similarity from indirect 

similarity measures, such as identification errors of reaction time, it seems equally 

plausible to assume that differences in those indirect measures reflect differences in 

the time course of the encoding and compiling of object features, that is, more 

complex objects will demand a greater level of processing relative to simple ones. 

While this may indicate a relationship between the complexity of feature-based 

representations and the processing required, it does not necessarily mean that a graded 

notion of self-similarity is meaningful.

Out of the three axioms, symmetry has received the most attention empirically. 

Before Tversky’s (1977) critique, symmetry had been widely regarded as an essential 

property of similarity judgements; after all, it seems intuitive that the similarity 

between two objects should be fixed regardless of the direction. Tversky famously 

challenged symmetry by showing a systematic preference for the statement “North 

Korea is similar to China” over the opposite. As a result, he argued that the similarity 

between two representations is dependent, in some contexts, on the direction of the 

comparison, that is, SIM (A, B) ^ SIM (B, A). Empirically, such asymmetries have 

been claimed to exist using both direct measures of similarity (Bowdle & Gentner, 

1998; Catrambone, Beike & Niedenthal, 1996; Op de Beeck, Wagermans & Vogels, 

2003; Rosch, 1978; Tversky, 1977; Tversky & Gati, 1978; White, 2008) and indirect 

measures (Kuhl, 1991; Rothkopf, 1957; Wish, 1967). Although asymmetry could be 

considered another example of similarity’s boundless flexibility, the Contrast Model 

makes specific predictions about when and how asymmetries arise.
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According to Tversky (1977) asymmetries can only occur in directional 

similarity statements, such as “how similar is A to B?”. Tversky argued that 

similarity statements are special because they, like the linguistic statements that 

underlie them, assume certain roles for the objects under comparison, that is, there is 

an ‘object’ and a ‘referent’ (or ‘base’ and ‘target’). As in syntactic structures, the 

roles of certain objects in the comparison are unlikely to be arbitrary. Similes and 

metaphors can help demonstrate this point; the two similes “a man is like a tree” and 

“a tree is like a man” take on very different meanings as a result of the direction 

assumed in each case. The former suggests that a man has roots while the former may 

suggest that the tree has a life history (Tversky, 1977). In short, the role of an object 

in the similarity statement affects what properties are transferred to the compared 

objects, or how properties are weighted in the comparison. It is this phenomenon that 

the Contrast Model attempts to capture. Tversky’s ‘focussing hypothesis’ states that 

people prefer the direction where similarity is maximised. This is achieved by placing 

the most salient object in the base/referent role of the comparison. Given Equation 3, 

asymmetries are achieved by differentially weighting the distinctive features of A and 

B by altering the free parameters a and 13. In a non-directional similarity comparison 

these parameters will necessarily be equal, that is, a = 13. In a directional similarity 

comparison, however, the distinctive features of one object may be weighted more 

than the other (e.g., a > 13). If the compared feature sets differ in ‘salience’, that is, 

f(A) the above weighting will result in an asymmetric relationship. The notion

of ‘salience’ refers, generally, to differences in complexity or goodness of form, with 

goodness of form differences (if present) being preferred to complexity differences 

when distinguishing between two objects (see Figure 3).
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While asymmetries appear robust in some contexts, it is debatable whether 

they translate beyond explicit, verbal judgements (i.e., Bowdle & Gentner, 1998; 

Rosch, 1978; Tversky, 1977). Gleitman et al. (1994) argued that asymmetry need not 

be something we attribute to similarity as a ‘concept’ but instead could arise from a 

number of ‘linguistic-interpretative’ principles. In support of this view, Gleitman et 

al. empirically demonstrated asymmetries for other clearly symmetrical predicates, 

such as ‘equal’, ‘identical’ and ‘meets’. Crucially, Gleitman et al.’s results necessitate 

more research into asymmetric similarities using non-linguistic, implicit measures of 

similarity.

In terms of spatial models, Nosofsky (1991) argues that a notion of differential 

stimulus bias can account for asymmetric similarity data, as opposed to committing to 

the notion that similarity proper is an asymmetric relation. Whereas similarity refers 

to a relationship between objects, this notion of ‘bias’ is associated with individual 

objects. Hence, under a bias account, asymmetries arise from processing and not from 

the internal representational space or the similarity comparison specifically (Hahn & 

Chater, 1998). As Nosofsky states, a number of influential cognitive models have 

incorporated this notion of bias and have successfully fitted asymmetric confusion 

matrices (Holman, 1979; Krumhansl, 1978). Generally speaking, the notion of 

stimulus-specific bias can capture many influential cognitive phenomena, such as 

density (Krumhansl, 1978), frequency of exposure (Nosofsky, 1987; Polk et al., 

2002), prototypicality (Rosch, 1973) and feature loss vs. feature gain (Gamer & Haun, 

1978). Crucially, Nosofsky emphasises that the Contrast Model, which is often 

portrayed at odds with the spatial account, can also be understood mathematically in 

terms of differential stimulus bias. This is because asymmetries require differential 

salience of the individual objects being compared in order to arise (see above).
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The final metric axiom, the triangle inequality, is empirically the hardest to 

address. The assertion that one distance must be smaller than two other distances is 

hard to refute using ordinal or interval data (Tversky, 1977). Although such 

violations may exist, and have been shown empirically (Gati & Tversky, 1982), it is 

difficult to assess just how fundamental they are in understanding similarity in 

general. Although the metric axioms constrain spatial representations they do not 

necessarily constrain similarity, if similarity and distance are not considered 

equivalent. For example, spatial models are not necessarily inflexible in terms of 

equating similarity and distance; the dimension weight parameters can allow, like the 

Contrast Model, for different dimensions to take precedence in particular 

comparisons. Also, as similarity is considered to be an exponentially decreasing 

function of distance this means that the similarity between two objects is related to 

both psychological distance and the rate of exponential decay that is considered 

relevant in a particular context.

Figure 3. Different sources of salience and asymmetry (Tversky, 1977, pp. 335). The 

top pair differs in goodness of form whereas the bottom pair are said to differ in 

complexity.

□ □
a
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In addition to highlighting these fundamental violations, Tversky (1977) 

mounted some general criticisms of spatial representations. Tversky claimed, for 

example, that feature sets are better than spatial representations for dealing with 

certain types of ‘feature-rich’ representations, such as faces, countries or personalities 

(a number of domains that feature in his seminal paper). This, he argues, is because 

the number of qualitative features provides a better representation of high-level 

conceptual domains when compared to a small number of quantitative dimensions 

(see also Kruschke, 1992). Many researchers, in turn, have supported the view that 

spatial models are only capable of representing continuous dimensions (Carroll, 1976; 

Choi, et al., 1993; Tenenbaum, 1996; see also Navarro & Lee, 2003). As a result, 

some spatial models have been reformulated to better deal with nominal features (Lee 

& Navarro, 2002; Navarro & Lee, 2003). Nosofsky (1990; see also Kruschke, 1992), 

however, rebutted this notion by arguing that discrete features do not necessarily 

present a major difficulty to spatial models, and that spatial models have been shown 

empirically to deal with binary and nominal features (i.e., Shepard, Hovland & 

Jenkins, 1961) - although this may be at the cost of model complexity (e.g., see 

Nosofsky, 1991). In addition, it has been suggested that conceptual stimuli could be 

made amenable to spatial models by being structured so as to give rise to hierarchical 

featural groupings or ‘pseudo-dimensions’ (Gamer, 1978; Hahn & Chater, 1998).

Crucially, a general theory of similarity should be able to tolerate both discrete 

features and continuous dimensions within the same general representational 

framework -  whether features or spatial models achieve this is clearly debatable.

Another prominent criticism of spatial models is their inability to account for 

the increase in perceived similarity between two objects when the number of common 

features also increases (Frost & Gati, 1989; Gati & Tversky, 1982). Fundamentally,



Chapter 1 -  Similarity 29

in an unmodified spatial model, the distance between two objects will not decrease as 

more common features are added, as distance is only determined by dimensional 

differences. Furthermore, by default, spatial models are unable to account for the 

total number of dimensions in a given comparison. Hahn and Chater (1997) provide a 

simple example to demonstrate this point: if two objects, represented by three 

dimensions, differ substantially on all these dimensions, then one would assume them 

to be quite dissimilar. However, if  the two objects were represented by 10,000 

dimensions and, as before, differed substantially on three of them, the objects would 

be very similar. The fundamental difference between these instances is that in the 

latter case, the objects differ on much less of the dimensions relative to the total. As 

before, spatial models can account for this effect, post hoc, by adjusting the dimension 

weights, wm. Given the constraint that the weights, wm> must equal 1, the introduction 

of new dimensions will necessarily reduce the relative influence of previous 

dimensions resulting in a decrease in the relative impact of mismatches along those 

dimensions. Similarity, as a result, will increase as more dimensions are introduced.

Oppositely, however, this assumption is also problematic for the Contrast 

Model; the assumption that adding common features increases similarity implies that 

similarity has no upper bound. Thus, according to the Contrast Model, no point exists 

at which true identity is realised. It also supposes that sameness is not a stable 

property and that sameness or identity can in fact vary in some way between objects -  

again, a rather unintuitive notion given that direct measures of similarity seldom 

reveal that sameness differs between objects. Once again, we must ask ourselves 

whether such effects are really part of similarity proper, or merely a by-product of 

some other process, such as the time course of stimulus encoding. As for these 

accounts, such criticisms may prove to be just the tip of the iceberg, as we shall see.



Chapter I -  Similarity 30

The need for “deeper” representation

The spatial and featural accounts share one fundamental criticism -  the 

representation of structure. To some degree, this criticism was first made by Murphy 

and Medin (1985), in support of the theory-based view of conceptual structure, or the 

‘knowledge approach’ (Murphy, 2004). They argued that the then current notion of 

similarity was insufficient for explaining categorisation because category assignment 

could, in some cases, involve more complex properties such as relations and causal 

structures (Medin & Wattenmaker, 1987; Murphy & Medin, 1985).

More recently, this limitation has been directly addressed within the similarity 

literature. Generally, it has been argued that the representations posited by spatial and 

featural models -  multidimensional spaces and feature sets - are too specific and 

simple for the representation and comparison of high-level properties (Hahn, Chater 

& Richardson, 2003). In particular, Hahn et al. (2003) stress how the representations 

central to traditional models are incompatible with the way we represent natural 

objects, such as visual scenes, linguistic structures, faces, visual textures, complex 

categories and geometric figures. A set of features provides only one level of 

description; for example, a face is made up of two eyes, a nose, and a mouth. 

However, this description is not sufficient; to accurately represent a face we need to 

know the how these features are interrelated, that is, the structure (Biederman, 1985, 

1987). In other words, a face with all the necessary features, but in arbitrary 

locations, is not a face. Moreover, mere feature-overlap, or a spatial model, cannot 

easily distinguish a jumbled facial configuration from a normal configuration -  

despite their obvious difference. Crucially, the relations between features cannot be 

represented easily by either theory.
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It is possible, as Markman & Gentner (1997) describe, to code a particular 

relation as a feature or dimension. For example, two objects that ‘mirror’ one another 

may be argued to possess the feature, or dimension, ‘symmetry’. Likewise, the 

difference between a square above a triangle and the opposite, a triangle above a 

square, could be captured by a ‘shape-above-shape’ feature. However, adding 

relational features or dimensions becomes increasingly complex and ‘unwieldy’ when 

more and more relations are relevant for a particular comparison (Markman & 

Gentner, 1997). Furthermore, in some contexts, both higher order relations (above, 

below etc) and their arguments (square, triangle) will need to be matched 

simultaneously in a hierarchical representation and this is simply not possible in a 

purely spatial or featural model. From this perspective, therefore, it is essential that 

new theories of similarity can tolerate structured object representations (Biederman, 

1985, 1987; Chater & Vitanyi, 2003; Fodor & Pylyshyn, 1988; Gentner, 1983, 1989; 

Markman & Gentner, 1993a).

Importantly, the criticisms of Murphy and Medin (1985) outlined above need 

not apply to similarity in general - only to these specific theories. As discussed 

throughout, both featural and spatial accounts of similarity provide accurate fits of 

psychological data, and in a range of contexts. The representational schemes they 

posit, however, lack the generality to provide explanations that match the supposed 

ubiquity of similarity; both features sets and multidimensional spaces seem 

respectively well-suited to binary and continuous properties, but are equally ill-suited 

to their respective opposites.

Fundamentally, the object representations they posit are too simple and, as a 

result, fare particularly well with artificial stimuli comprised of a few well-defined 

features or dimensions. Likewise, these theories of similarity may be perfectly
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adequate at modelling similarity and generalisation in species with more basic 

representational capacities or in tasks where less complex representations are utilised, 

i.e., speeded same-different tasks (see Markman & Gentner, 2005). When object 

representations become hierarchical, that is, when both relations and surface features 

must be considered simultaneously, then these models are completely inadequate. 

The challenge, then, is to develop and test new theories of similarity that can cope 

with a range of arbitrary representations while still preserving the role of similarity in 

various prominent models of cognition, that is, in models of categorisation, induction 

and so on. Of course, a novel, more general approach to similarity does not 

necessarily make previous accounts redundant but merely widens the scope of 

similarity theories to account for psychological phenomena, such as similarities within 

knowledge-based, high-level domains.

Furthermore, it may be beneficial to develop less complex, parameter-laden 

approaches to similarity. While featural and spatial models have fitted a range of 

data, this is often at the cost of model complexity. Spatial models, in particular, are 

permitted considerable leeway by varying dimension weights. Comparably, the 

Contrast Model is able to account for asymmetries, and other effects, without having 

to specify anything about how objects are compared or how relevant features are 

selected and weighted in the first place. In fact both models assume, through the 

inclusion of stimulus biases, that such effects occur outside the frame of comparison, 

that is, they arise from the inherent properties of individual objects -  not the process 

of comparison. Crucially, this enables both models to leave their representational 

scheme untouched in the face o f seemingly conflicting evidence. However, such 

object-specific biases fail to account for comparisons where no discemable 

differences in object complexity or salience arise (see Medin et al., 1993). As we
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have discussed at length, similarity needs to be flexible in order to account for as 

much as it does; stimulus biases, being stimulus-based and not comparison-based, are 

arguably too inflexible to account for the dynamic nature of similarity.

The exposition above, in many ways, presents basic criteria, or a starting 

point, for theories of similarity. To summarise, one may present these criteria, 

simply, as follows:

1) As similarity is a flexible construct, a theory of similarity should also be 

sufficiently flexible to account for similarity judgements from different 

domains, measures and modalities.

2) A theory of similarity should be able to explain basic similarity-based 

phenomena such as asymmetric similarities - if robust (see Gleitman et al., 

1996, above).

3) A theory of similarity should be applicable to representations of real world 

objects. This necessitates, for example, a capacity to compare and 

represent structure, knowledge and relations.

4) A theory of similarity should be able to make some assertion about how 

object representations are compared and why properties are represented in 

the first place.

5) A theory of similarity should be useful in psychological models that 

assume a central role for similarity, i.e., categorisation, induction and so 

on.

Over the course of this thesis some of these important criteria will be 

addressed in relation to a new theory of similarity called Representational Distortion,



Chapter 1 -  Similarity 34

or the transformational approach to similarity (RD; Hahn et al., 2003). In basic terms, 

RD theory states that similarity is determined by the number of transformations 

required to change one object representation into another. The only requirement for 

RD is that a plausible set of mental transformations can be derived for the stimulus set 

in question. In particular, the aim of this thesis is to demonstrate how this notion of 

‘transformation distance’, that is both parsimonious and well-founded in the study of 

conceptual knowledge and perception, can provide a sufficient and broad account of 

similarity in a specific domain.
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The difference between this investigation and previous studies of RD is a 

matter of approach; in the first in-depth study of RD, Hahn et al. (2003) tested the 

transformational approach using a wide range of different materials, including dot 

sequences, unitary geometric objects and Lego brick arrangements (see Figure 4, top 

panel). Specifically, Hahn et al. generated a set of transformations for each of these 

domains, and then correlated these predictions with participants’ pairwise similarity 

ratings (for details on specific predictions see Chapter 2). More recently, Hahn, Close 

and Graf (2009) demonstrated that RD could account for asymmetric similarities 

using naturalistic, real world stimuli (see Figure 4, centre panel). Interestingly, they 

showed that the rated similarity between one object and another was greater when the 

direction of the comparison matched the direction of a previously viewed shape- 

changing transformation.

Therefore, whilst RD has already been shown to accurately predict similarity 

ratings across a range of materials, it is yet to be explored across a wider range of 

tasks within a single stimulus domain. Also, as previous studies have sought mainly to 

establish the basic notion that transformations can predict similarity, RD is yet to be 

contrasted, in detail, with rival approaches to similarity. In relation to this, Larkey 

and Markman (2005) contrasted RD with a selection of structural alignment models 

and argued that RD, when compared to these other accounts, could not provide a 

sufficient account of similarity ratings. The materials they used were pairs of 

geometric objects that, while simple and feature-based, could be instantiated in a 

number of ways that involved both relational and structural information -  for 

example, the left/right location of objects could vary (see Figure 4, bottom panel). For 

this reason, this domain is ideal for a full exploration of RD and its relationship with 

rival approaches to similarity. Furthermore, this domain is appealing because it was
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not selected with transformations specifically in mind, and can therefore not be 

considered to favour the theory a priori.

Firstly, therefore, the claim that RD cannot predict similarity in this domain is 

re-examined by 1) generating a set of psychologically plausible transformations (that 

will be used throughout the thesis), and 2) performing a more detailed contrast 

between RD and models of structural alignment. Following a discussion of Larkey 

and Markman’s (2005) original study and a new, more detailed empirical contrast, the 

idea that these theories may offer complimentary rather than competing accounts of 

similarity is discussed. In Chapter 3, these RD predictions are then tested for the first 

time within an implicit, online task -  the same-different paradigm. As similarity in 

speeded tasks is considered to be based on less complex, featural similarity (Markman 

& Gentner, 2005), a basic feature-matching model is introduced into the model 

comparisons in order to look at how task constraints affect mental representations and, 

in turn, affect what similarity model fits the data most accurately.

In Chapter 4, the asymmetries that arise naturally from the coding scheme are 

examined. As shown by Hahn et al. (2009) the ease of transforming two objects is not 

necessarily equal in both directions, for example, transforming a tadpole into a frog is 

easier than the opposite. In addition, as the Contrast Model predicts asymmetries 

based on differential salience, the salience of individual stimuli is also investigated by 

measuring and comparing their ‘self-similarities’ (Tversky, 1977). This chapter also 

contains the first direct study of asymmetric similarity in humans using an implicit 

task; as the same-different task allows for sequential stimulus presentation, it is 

possible to present stimuli in an order that is analogous to the similar statement “how 

similar is A to B?”, that is, the base of the comparison is first in the sequence and the 

target is second.



Chapter 1 -  Similarity 37

In the last empirical chapter, a spontaneous categorisation task is used to see 

whether the transformations posited for this domain can predict stimulus 

classification. Although the importance of transformations in categorisation has been 

implied previously, as will be discussed in Chapter 5, the RD theory of similarity has 

not yet been tested formally in a categorisation task. In terms of model comparison, 

RD is contrasted with a spatial model here because, despite its ailing reputation in 

similarity research, it is still the most commonly used model of similarity in 

categorisation research (see GCM above).

First of all, the current structural approaches to similarity will be introduced - 

namely RD theory and structural alignment. Once Larkey and Markman’s (2005) 

contrast is discussed in detail, a set of concrete operations will be presented that will 

form the focus of the empirical chapters that follow.
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2
Structural Accounts of Similarity
Transformation and Alignment1

As discussed in Chapter 1, traditional accounts of similarity are fundamentally limited 

when it comes to representing structure. To recap, these accounts define similarity 

over very specific and simple kinds of mental representation, that is, points in a 

psychological space or feature sets. Crucially, these representations are incompatible 

with the way in which we represent natural objects (Hahn et al., 2003). In other 

words, many natural objects are simply too complex to be represented solely by a list 

of features or by a number of continuous dimensions. Instead, theories of similarity 

must be able to compare not only the composite elements but the relations between 

them (Biederman, 1985, 1987; Gentner, 1983, 1989; Markman & Gentner, 1993a, 

1993b). For example, as noted in Chapter 1, an accurate description of a human face 

must include the features it possesses and, more importantly, their interrelations. 

Capturing both these aspects requires structured representations.

1 This chapter is based on Hodgetts, Hahn and Chater (2009).
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In response to this criticism, two structural accounts of similarity have 

emerged: structural alignment (henceforth SA; e.g., Gentner & Markman, 1997; 

Goldstone, 1994b; Markman & Gentner, 1993a, 1993b) and, more recently, the 

transformational approach or Representational Distortion (henceforth RD; Hahn et al.,

2003). Fundamentally, both of these approaches can, in theory, address the many 

criticisms that have been put forward against theories of similarity and similarity’s 

role more generally (see Murphy & Medin, 1985).

Although these accounts may be related conceptually, as will be discussed 

later, specific models implementing the SA framework and RD can be contrasted 

empirically. Larkey and Markman (2005) identified an ideal testing domain for such 

comparisons, namely geometric object pairs of the kind used widely for the study of 

feature binding (see Bushnell & Roder, 1985; Cheries, Newman, Santos & Scholl, 

2005; Kaldy & Leslie, 2003). Their initial ordinal comparisons between participants’ 

data and the model predictions for selected items from this domain suggested that the 

SA model, Similarity as Interactive Mapping and Mapping (SIAM; Goldstone, 1994b) 

was slightly better than both RD and the Structure Mapping Engine (SME; Gentner, 

1989) at matching the pattern of participants’ similarity ratings.

The present chapter seeks to examine the relative performance of alignment 

and transformational accounts, and their relationship, in more depth - both by 

exploring this stimulus domain in detail and by conducting detailed quantitative 

comparisons.

Structural alignment/Structure Mapping

Within SA, similarity comparisons are made in a manner akin to analogical 

reasoning (Gentner, 1983). Like analogical mapping, the SA account of similarity
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focuses on methods for determining correspondences between different

representations through a process of alignment (see Gentner, 1983, 1989). Crucially, 

this process of alignment characterises similarity not by the number of matching 

predicates alone but also by the nature of these compared predicates (Gentner, 1989; 

see Figure 5). Consequently, similarity spans a continuum where different kinds of 

similarity relate different kinds of mental representation. Analogy, for example, is 

thought to focus solely on aligning relations, so that water flow and heat flow may be 

aligned due to the corresponding roles played by attributes in each representation. 

Literal similarity will involve mappings between both relations and attributes. Mere 

similarity, however, involves only matching the object descriptions, that is, the 

‘lower-order’ features of each. In essence, Gentner suggests that similarity can be 

understood as a continuum whereby the type of similarity that is relevant depends on 

the representation that is made available in a given context through task properties, 

expertise, and so on. Therefore, SA makes an important distinction between relations 

and attributes and how each influences similarity in a given context. Furthermore, SA 

embraces the notion that similarity is flexible by emphasising that many kinds of 

similarity may be relevant, as has been shown empirically.

In general, similarity in SA is driven by processes that are sensitive to both

object features and the bindings between them (Gentner & Markman, 1997). Such 

bindings, if  relevant, may require the representation of higher level relations such as 

causal or spatial relations. In comparing two objects, the aim should be to achieve a 

structurally consistent match between two representations. Structural consistency 

refers to two constraints that are central to models of SA. The first constraint, known 

as one-to-one correspondence, ensures that elements in the base representation can be 

aligned with, at most, one element in the target representation (Gentner, 1983, 1989).



Chapter 2 -  Structural Accounts o f  Similarity 41

The second, referred to as parallel connectivity, requires that matching relations must 

also have matching arguments.

SA combines structured object representations with the earlier assumptions of 

Tversky (1977) - who stated that similarity is a function of common and distinctive 

features (i.e., commonalities and differences). SA, however, extends this notion by 

specifying two types of commonality and two types of difference.

Literal
SimilarityAnalogy

CO

Metaphor
Mere AppetAnomaly

Attributes Shared

Figure 5. An illustration of “similarity space” (Gentner, 1989, pp. 207). The 

similarity space emphasises the notion that similarity is related to the type of 

information exploited when comparing two object representations.

Types o f commonality

Two types of commonality have been proposed: matches in place and matches 

out of place (Goldstone, 1994b). A match in place (MIP) is a feature match between
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objects that correspond. In other words, a MIP is a match that is consistent with the 

global structure, that is, the structure where all objects have been placed in one-to-one 

correspondence. A match out of place (MOP), on the other hand, is a match between 

elements that do not correspond. Thusly, a MOP reflects a match outside the best 

global mapping (see Figure 6). Again, by distinguishing two types of commonality, 

SA emphasises the importance of representing the structural nature of compared 

object representations.

Figure 6. An example of MIPs and MOPs. The birds’ heads reflects a match in place 

whereas the black of the tail compared with the black of the wing reflects a match out 

of place. This MOP occurs because the wing has already been aligned with the other 

wing on the basis of shape and so cannot be mapped onto the tail as well -  doing so 

would violate the one-to-one mapping constraint (outlined above).

Moreover, these ‘matches’ have been shown to be psychologically distinct; 

MIPs, for example, have been shown to have a greater influence on similarity than 

MOPs (Goldstone, 1994b; Goldstone & Medin, 1994), demonstrating again that it is
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not the mere sharing of features that increases similarity but also the degree to which 

features occupy corresponding structural roles.

Alignable and Nonalignable differences

Likewise, Markman and Gentner (1993a) identified two types of differences 

between items. Alignable differences are differences that are occur within the 

common structure (Markman & Gentner, 1993b, 1996). For example, despite the fact 

that a soccer ball and a rugby ball differ, their respective roles in each sport is 

nevertheless alignable. Alternatively, this can be expressed as a difference along a 

common dimension, that is, a difference along the dimension balls (Estes & Hasson,

2004). Nonalignable differences are differences where a feature or element in one 

representation does not correspond to any feature in the other representation. For 

example, the scrum in rugby cannot be easily aligned with any aspect of soccer. 

Importantly, like the matches described above, these types of difference differentially 

affect perceived similarity. For example, alignable differences seem to decrease 

similarity more than nonalignable differences (e.g., Hahn & Bailey, 2005; Markman 

& Gentner 1993 a; Markman & Gentner, 1996; see, however, Estes & Hasson, 2004). 

To reemphasise, this distinction between two types of difference suggests that is not 

simply the case that differences decrease similarity, but that differences within the 

common relational structure have a greater negative effect on similarity than those 

unconnected to this common structure.

Models of structural alignment

A number of models have been developed that, to some degree, assume 

alignments between compared representations. In general, models of SA differ in the
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degree to which they obey the constraints outlined above, that is, one-to-one 

correspondence and parallel connectivity. Arguably, the two most prominent models 

of structural alignment in similarity judgements are the Structure Mapping Engine 

(SME) and SIAM, and the empirical tests in this Chapter will focus on these models.

The Structure Mapping Engine (SME)

The structure mapping engine (Falkenhainer, Forbus & Gentner, 1989) 

extends Gentner’s (1983) earlier structure-mapping theory of analogy. As its input, 

SME receives two hierarchical representations comprised of entities, predicates and 

functions. SME takes these representations, computes the correspondences and 

searches for the ‘maximal structurally consistent match’ (Markman & Gentner, 

1993a). SME will place stimulus properties (entities, predicates and functions) into 

one-to-one correspondence and strive for structurally consistent matches that retain 

parallel connectivity. This assumption is fundamental because it implies that 

mappings are not based solely on the featural similarities of objects but on the role 

these features or entities play in the relational structure.

For an example, consider the comparison of the two following inputs: “Square 

above circle” and “triangle above square”. In this example, the square and triangle 

could be aligned as they both share the role as the ‘above’ object. Alternatively, the 

square could be mapped onto the square in the second configuration. Therefore, in 

principle, the square in the first representation can be mapped onto either object in the 

second representation. However, the strict adherence to one-to-one correspondence in 

SME means that the square can only be mapped onto one object in the target 

representation. This strict constraint means that MOPs have little influence on
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similarity computation (i.e., the black feature match between wing and tail in Figure 6 

will not be considered).

Similarity as Interactive Activation and Mapping (SIAM)

SIAM (Goldstone, 1994b) provides a connectionist implementation of the 

alignment process that has much in common with Holyoak and Thagard’s (1989) 

model ACME. SIAM is a localist, connectionist model that assumes similarity to be 

determined through a dynamic process of interactive activation between feature, 

object and role correspondences. Correspondences operate reciprocally, as the degree 

to which objects from two scenes are placed in correspondence depends on the degree 

to which the composite features of those objects are also placed in correspondence. 

The opposite is likewise true; the strength of feature correspondences also depends on 

the strength of object correspondences.

SIAM’S network is comprised of nodes that can form excitatory and inhibitory 

connections with one another depending on the consistency between different 

correspondences. A node in SIAM represents the hypothesis that two entities 

correspond across two scenes. There are three types of node: object-to-object,

feature-to-feature and role-to-role (Goldstone, 1994b). Similarly to SME, there are 

constraints on what counts as a consistent correspondence for both features and 

objects. For example, correspondences where more than one feature or object maps 

onto another are deemed inconsistent, resulting in inhibition between inconsistent 

nodes. Therefore, if a feature in both object A and B correspond to a feature in object 

C, then the two nodes that reflect this correspondence will inhibit one another. The 

same system applies to object-to-object nodes.
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SIAM’s network activity begins by placing features in correspondence 

according to their basic match values. Match values represent basic perceptual 

similarity for both associated features and roles, and can range from 0 to 1, with 0 

indicating maximal difference (or dissimilarity) and 1 indicating an identical match 

value. By default, SIAM’s node activation commences at 0.5 in order to signify 

‘maximal uncertainty’ about the possible alignments between objects. After featural 

correspondences are calculated, SIAM begins to place objects into correspondences 

that are consistent with the feature-to-feature mappings. Activation is then fed back to 

feature matches consistent with the object alignments. Similarity in SIAM is a 

function of the match values for each node, weighted by the current activation of that 

node. As a consequence, matching features increase similarity to a greater or lesser 

extent depending on the degree of correspondence.

SIAM differs from SME by not adhering as strictly to the one-to-one 

constraint; it allows for degrees of correspondence rather than an ‘all or nothing’ 

approach. This means that in SIAM, MOPs will have an influence on similarity (albeit 

a lesser influence than MIPs).

Other models

These two specific models of structural alignment stem from a wider literature 

on analogical reasoning that contains a wealth of other models that embody the same 

fundamental assumption that analogies are governed by processes that seek to 

determine structurally consistent alignments (see e.g., ACME, Holyoak & Thagard, 

1989; LISA, Hummel & Holyoak, 1997; IAM, Keane, Ledgeway & Duff, 1994). As 

many alignment models are primarily models of analogy, not similarity in general, 

many are not appropriate for the current investigation. Larkey and Markman (2005)
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also considered CAB (Larkey & Love, 2003), a model of structural alignment that 

uses directed-acyclic graphs as its fundamental representation. CAB, however, fared 

poorly in predicting their similarity data. Relatedly, Taylor and Hummel (2009) 

attempted to model Larkey and Markman’s data using LISA, a model of relational 

reasoning. Like CAB, this model failed to match the ordinal differences in the human 

similarity data (see Taylor & Hummel, pp. 238). Moreover, LISA contains 22 free 

parameters and is non-deterministic, thus requiring multiple runs to derive an 

‘average’ fit for any given data point - this rules out its practical use as a measure of 

similarity. Consequently, the present investigation will be limited to SME and SIAM. 

Finally, it should be noted that the emphasis on structure-mapping is not universally 

shared by models of analogy (see e.g., French, 1995; Hofstadter, 1995).

Representational Distortion

Representational distortion is a structural account of similarity that posits that 

the similarity between representations is determined by transformation distance. 

Transformation distance refers to the complexity required to “distort” the 

representation of one object into the representation of another (Chater & Hahn, 1997; 

Chater & Vitanyi, 2003; Hahn & Chater, 1997; Hahn et al., 2003; Hahn, et al., 2009). 

The simpler this transformation is, the more similar the objects are deemed to be. RD 

asks, in concrete terms, how each representation can be mapped onto, and transformed 

into, the other. Of course, if there are structural relationships between the two items, 

this will tend to make such mappings simpler by allowing an entire chunk of a 

representation to be transformed as a whole, rather than piecemeal. To this extent, RD 

need not be viewed in opposition to structural analogy models. Nonetheless, the focus 

of RD is different; and specific models based on RD, such as that described below,
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will be based on providing a coding language for possible transformations, so that the 

complexity of transformations can be operationalised in terms of the length of the 

code required to specify them. Moreover, perhaps not surprisingly, the detailed 

predictions of such a model will not typically agree with the predictions of specific 

instantiations of structural alignment models of similarity, such as SME or SIAM, as 

we shall see. The general relationship between MIPS and MOPS, however, will still 

often hold, in that MIPS will typically be associated with simpler transformations 

when compared to MOPs.

As its foundation, RD can call upon a particular branch of mathematics known 

as Kolmogorov complexity theory (Li & Vitanyi, 1997). According to Kolmogorov 

complexity theory, the complexity of a transformation is the shortest computer 

program that is required to perform it. The intuition of RD is that a simple 

transformation between representations can be expressed using a short “program” or 

code, whereas more complex transformations require longer programs.

To bring this idea closer to psychological similarity, the RD between two 

object mental representations, A and B, is determined by the length of the shortest 

code or program which can distort A into B. If the coding language is a general- 

purpose computer programming language, this distortion can be mathematically 

expressed as the Kolmogorov complexity, K, of B given A, K  (.B\A). This general 

notion of coding complexity or ‘information distance’ has a number of useful 

applications in perception, generalisation, language and mathematics. For example, 

Chater (1996) applied this notion of complexity to perceptual organisation, arguing 

that the perceptual system, when faced with a particular sensory input, chooses the 

simplest (and most likely) perceptual organisation, as determined by the K- 

complexity. In general, complexity-based coding schemes have a long history in
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concretely testing the simplicity of visual inputs in perceptual research (Hochberg & 

McAlister, 1953; Restle, 1970; Simon, 1972). Likewise, Falk and Konold (1997) 

suggest that psychological judgements of randomness are best explained by the 

difficulty to encode a given input, that is, the coding complexity. This, in turn, may 

explain why participants create sequences with more alternations than would be 

expected by chance. Also, in relation to similarity, Chater and Vitanyi (2003) 

demonstrate that Shepard’s (1987) ‘Universal Law of Generalisation’ can be derived 

using transformation distance.

To make this type of account psychologically concrete requires specifying a 

particular coding language for transformations, in which concrete code lengths can be 

associated with specific transformations. The complexity of a transformation, relative 

to a coding language, is determined by the length of shortest code that carries out that 

transformation; and transformational complexity is assumed to be inversely related to 

similarity. A simple mathematical example provides a basic demonstration: 1 2 3 4 5 

6 and 2 3 4 5 6 7 are similar in that one simple instruction can transform on into the 

other, that is, add 1 to each number. By contrast, 1 2 3 4 5 6 and 3 5 7 9 1 1  13 are 

less similar, as two instructions are need to transform one into the other, multiply by 2 

and add 1.

Prior empirical research has indicated that this view is promising. In particular, 

Hahn et al. (2003) found, in three experiments, that transformation distance predicted 

patterns of similarity ratings. In their first experiment, participants were presented 

with sequences of filled or unfilled circles. The basic transformations were reversal, 

deletion, insertion, mirror imaging and phase shift (based on the work of Imai, 1977). 

Transformation distance was operationalised by the number of these basic 

transformations required to distort the representation of the test item into the target
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item. There was a high correlation between transformations and perceived similarity. 

Moreover, a featural description of the data did not predict perceived similarity as 

accurately. Hahn et al.’s second experiment used pairs of geometric stimuli that were 

related by a range of perceptually natural transformations. Again, transformational 

complexity (measured simply by the number of transformations) was correlated 

strongly with perceived similarity.

In Hahn et al.’s (2003) final experiment, participants had to make judgements 

of similarity based primarily on relational information rooted in the spatial 

relationships between arrangements of Lego blocks. As featural and spatial accounts 

are inappropriate for dealing with structured representations, this experiment directly 

addresses a critical limitation of earlier theories of similarity and their representation 

schemes. The results closely matched the relationship between transformation 

distance and similarity that was observed in their first two experiments, despite the 

fact that both the materials and the relevant transformations differed greatly. These 

findings provided further evidence against a purely featural or spatial view of 

similarity, in that neither account can tolerate structured representations, as discussed 

above. To this end, they provided support for structural theories of similarity, such as 

RD and, potentially, also SA.

The current investigation

As stated previously, within the current chapter and throughout this thesis, 

transformational relationships will be explored using a stimulus domain that has been 

previously identified as an ideal testing ground for studying structural models of 

similarity (Larkey & Markman, 2005). As noted, this domain had been used to 

explore feature binding in adult humans, infants, and non-human primates (Bushnell
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& Roder, 1985; Cheries, Newman, Santos & Scholl, 2005; Kaldy & Leslie, 2003). In 

this domain, participants compare assemblies of simple, geometric objects. In a given 

comparison, participants contrast two pairs of geometric shapes that vary in both 

shape and colour (see Figures 4 & 7). These stimuli allow for both colour and shape to 

vary simultaneously or for one of these dimensions to vary independently. Crucially, 

the former method of variation allows an investigation of 1) how separable properties 

or dimensions are psychologically bound into individual objects, and 2) what 

conditions facilitate the binding of object features. Therefore, this recommends the 

domain not only for its original purpose of investigating feature binding, but also for 

testing structure-based theories of similarity.

Stimuli will be described using a description scheme previously developed by 

Larkey and Markman (2005). On this scheme, each unique letter corresponds to a 

unique shape or colour; in other words a square might be represented by the letter A, a 

circle by the letter B, and a triangle by the letter C. “AB/AC”, then refers to, say, a 

square and a circle, that together make up the first object pair, and a square and a 

triangle, that together make up the second pair. The comparison at the top of Figure 

7, for example, can be represented by the code AB/AB on both shape and colour. 

What these letters refer to specifically is arbitrary within this domain; the nature of 

these stimuli ensures also that the degree of featural similarity between non-matching 

shapes (e.g. the similarity between a square and a triangle) is of little importance 

when making judgements, that is, only the structural relationships between pairs are 

important - or the ‘what’ and ‘where’ aspects.

To further reduce the influence of any unwanted featural similarities in the 

data, the assignment of actual shapes to structural descriptions is randomised; that is,
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on a given trial ‘A’ might correspond to a square, whereas on other trials it might be 

instantiated by a circle or triangle.

□A AB-AB □A
□A AB-BA ■
□A AB-AA

□A AB-BB AA
□A A B A C

□A AB-CB OA
□A AB-CA OB
□A AB-BC A #
□A AB-CD O 'k

Figure 7. The nine feature combinations used by Larkey and Markman (2005, p. 

1068) for the dimension of shape (the second dimension, colour, was fixed to 

AB/AB).

Larkey and Markman (2005) used a number of these pairs to conduct what is 

the only explicit comparison between SA and RD to date. Specifically, they used nine 

unique feature combinations for each dimension (shape and colour; see Figure 7). The 

data that Larkey and Markman reported were the ordinal relationships between 

perceived similarity for the nine combinations on one dimension when the other 

dimension (colour or texture) was characterised either by the simple relationship 

AB/AB or AB/BA (resulting in 18 stimulus combinations overall). These ordinal 

relationships were then compared with the predictions made by each account (see 

Figure 8). As can be seen in Figure 8, the leftmost column on each panel shows the
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ordinal patterns in the behavioural data where each horizontal line represents a 

significant difference between combinations in the behavioural data; the remaining 

columns show the predictions ascribed to RD and the SA models. The vertical order 

in each table signifies descending similarity and stimuli within a box are predicted to 

be equally similar.

Most
Similar

Least 
Similar

Figure 8. Results table after Larkey and Markman (2005), p. 1070; in the original 

table, results for CAB were also reported, but the model fared poorly and has been 

omitted for ease of reference. The left-hand table shows the relationships between 

methods of changing one dimension when the other dimension displays the “null” 

relationship of no change, AB/AB. The right-hand table reports the same methods on 

one dimension with the other dimension showing the relation AB/BA.

Inspection of Larkey and Markman’s (2005) results shows that for the first 

case, in which one dimension was fixed to AB/AB (left panel, Figure 8), the 

predictions for both RD and SIAM matched the descending similarity reported by 

participants but those of SME failed to do so (in particular this model ranked the 

similarity of AB/BA considerably lower than observed). However, both RD and

Colour and shape RD SME SIAM

AB-AB AB-A B AB-AB AB-A B

A B -B A A B -B A AB-AA A B -B A

A B -A A A B -A A AB-AC A B -A A

AB-AC AB-AC AB-BA AB-AC

A B -C A A B -C A AB-CA A B -C A

AB-CD AB -C D AB-CD A B -C D

Colour and shape RD SME SIAM

A B -B A AB-AB A B-BA AB-BA

AB-AB AB-BA AB-AA AB-AB

A B-AA AB-AA AB-CA AB-AA

A B -C A AB-CA AB-AB AB-CA

AB-AC AB-AC AB-AC AB-AC

AB-CD AB-CD AB-CD AB-CD
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SIAM made more fine-grained differentiations than observed in the behavioural data, 

and SME provided a better account in this regard. Alternatively, when that dimension 

was fixed to AB/BA, (right panel Figure 8), only SIAM fits the pattern of descending 

similarity shown in the actual data set. The predictions ascribed to RD did not.

From this, Larkey and Markman (2005) concluded that SIAM provides a 

superior account of structural similarity. However, there are several reasons why one 

might want to probe the model relationships more thoroughly. First, purely ordinal 

comparisons provide a fairly weak test. For one, partitioning participant data into 

patterns that do or do not differ significantly in terms of their rated similarity depends 

in part on sample size. Moreover, purely ordinal comparisons do not take into account 

how far off a model is. Second, the stimulus set consisted of a fairly small and 

specific selection of the whole domain. Of course, it is quite possible that different 

models may fail on different kinds of items within this domain. Hence, testing a more 

representative sample could be informative with regards to the specific strengths and 

weaknesses of each model, and could alter radically their comparative performance.

Finally, it was not clear how RD’s predictions were derived. Larkey and 

Markman (2005) seem to have assumed that each physically unique relationship 

between pairs corresponded to a single, unique transformation. However, as stressed 

in Chapter 1, similarity is a relationship between mental representations of objects, 

not objects themselves. Also, the coding theoretic basis of RD demands the 

specification of a coding scheme for the domain in question and an appropriate set of 

code-based transformations. However, neither a specific coding language, nor a set of 

psychologically plausible transformations represented in that language was specified.

That RD requires the specification of psychological transformations in order to 

be put to test, of course, does not mark it out from other accounts of similarity (see
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also Hahn et al., 2003). SA models likewise need specification of psychologically 

relevant features, relations and their degree of match in order to be applied at all. 

Given that this stimulus domain provides such rich and yet constrained materials in 

which to test theories of similarity based on structured representations, a simple and 

perceptually natural coding scheme is presented here, from which a rich set of 

predictions for this entire domain can be derived.

Coding Scheme and Predictions

The challenge is to generate a natural coding scheme that makes intuitive 

predictions about the sorts of transformations that would be relevant over mental 

representations. It was assumed that the relationship between the pairs could be 

intuitively captured by three distinct operations. Each operation takes a base pair and 

modifies it, as follows:

1) Create feature -  taking the base pair we apply this operation to create a new feature that is 

unique to the target pair. For example, i f  the base pair consists o f two black shapes, and the 

target pair consists o f  a grey shape and a black shape, we have to create the feature “grey,” as 

this is not present in the base pair.

2) Apply feature -  this operation takes an object or entity that is currently available and applies it 

to one or both o f  the objects in the target pair. The ‘both’ element emphasises that applying a 

shape that is readily available (on a representational level) to both shapes in the target can be 

equivalently difficult to applying it to one. Thus, once the “grey” feature has been created 

(using operation 1), it may be applied to one, or both, o f the black objects.

3) Swap -  this swaps features between a pair o f objects or swaps the object in its entirety (i.e. on 

both dimensions). Thus, swap can reverse the shapes in the pair o f objects, leaving colour 

invariant; it can reverse the colour, leaving shape invariant; or it can simply swap the left-right 

positions o f the entire object.
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Figure 9 shows an example of these operations being applied to the 

comparison AB/BC. Using these operations, specific transformation distances can be 

associated with all possible stimulus combinations and subsequently compared with 

similarity judgements (see Figure 10 later below).

Initial comparsion

Triangle has 
changed location so 

swap features

Create new feature 
which is unique to 

the target pair

Apply new circle 
feature

□ A 
\
AD 

\
-O AD 

\
AO

AO

Figure 9. An example of the transformations being applied to the combination 

AB/BC. This comparison has a transformation distance of 3.

Importantly, this scheme must provide a natural description of how these 

objects are compared and represented. Firstly, the motivation for the posited 

operations seems consistent with previous research on feature-binding; Cheries et al. 

(2006) investigated whether rhesus monkeys have the capacity to bind features for 

stimuli very similar to those used in the current investigation. They described their 

materials, which consisted of two simple geometric objects varying in shape and 

colour, in the following way: “the monkeys were then presented with test displays in
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which the objects: (i) remained identical; (ii) changed their colours (e.g., two green 

shapes both turning yellow); (iii) changed their shapes (e.g., two rings turning both 

turning into triangles); (iv) swap location; or (v) swapped features” (Cheries et al., 

2006, p. 1061). After habituating to the base pair, looking times were measured 

during the presentation of the test pair. The monkeys in this paradigm dishabituated 

for both swapped cases, that is, for condition (iv) and condition (v). This suggests 

that the rhesus monkeys were not only sensitive to features swapping in general, but 

also to the notion that changes across a single dimension violate original object 

identity. For the present context, it provides support for the naturalness of the posited 

swap transformation .

Regarding the remaining two transformations, ‘create’ and ‘apply’ operations 

are posited (as opposed to a single transformation that simply ‘adds’ or ‘changes’ 

objects) to reflect the fact that specifying a new object in its entirety requires more 

information than merely copying an object that is already represented. Two otherwise 

identical squares will require less code than a square and a circle, because the 

generation of the second square is parasitic on the specification of the first. Separating 

apply from create allows one to respect that difference (see Appendix A.l).

2 The salience o f  the swap transformation was also confirmed in a pilot study. When small sample o f  
participants (n = 5) was asked how they could change one pair o f shapes into another, they often opted 
to carry out a swap when both a single feature changed location and when an object changed location in 
its entirety. The only notable difference in participants’ reports was that they would only report the 
specific feature (i.e., the shape or colour) when the feature was manipulated independently o f  the other 
feature. One could argue that the assignment o f  linguistic labels to transformations is not evidence that 
the transformations themselves are actually represented during similarity computation. However, the 
relationship between linguistic and visual representations o f visual space has received some attention 
empirically and may suggest that spatial language, and the spatial representations they describe, share 
some common underlying structure (Hayward & Tarr, 1995; Pinker & Bloom, 1990). Hayward and 
Tarr (1995) suggest that there must be some level o f  visual representation that can be accessed by our 
linguistic system and their results support this idea, particularly for prototypical relations such as 
‘above’, ‘below’, ‘left’ and ‘right’. Crucially, it is these relations that are manipulated during the swap 
transformation i.e., ‘left o f  becomes ‘right o f  and vice versa. In light o f this, it seems intuitive to 
allow a ‘swap’ transformation which can be applied to single features or whole objects - where features 
interact.
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With this coding scheme in hand, a comprehensive test of RD is provided that 

expands on Hahn et al.’s (2003) initial findings while also providing more detailed 

comparisons with SA models, hence expanding on Larkey and Markman’s (2005) 

original investigation. Specifically, two experiments that employ a wide, 

representative range of stimuli, and two different dependent measures of similarity 

(forced choice and direct ratings) will provide a basis for qualitative model evaluation.

Experiment 1

The first experiment tested the coding scheme against a stimulus set that 

varied across a single dimension, namely ‘shape’. For this test all unique feature 

combinations that are possible within the domain were tested. This expands 

considerably on the specific combinations tested in previous work. As discussed 

above, Larkey and Markman’s (2005) method of testing multiple shape assignments 

was used again here in order to reduce unwanted effects of similarity between non­

matching shapes. As a dependent measure of perceived similarity, participants were 

given a simple, two-alternative forced-choice task. Notably, the forced-choice task 

has been widely used for this purpose (e.g., Bailey & Hahn, 2005; Goldstone, Medin 

& Gentner, 1991; Hahn & Bailey, 2005; Tversky, 1977). Given all pairwise 

judgements for a set of items, this method allowed for an underlying ratio scale of 

similarity to be recovered from the individually ordinal judgements (see Luce, 1959). 

In addition, this task is conceptually easier for participants when compared to direct 

ratings of similarity, hence offering, in effect, a less noise-prone way of achieving the 

same level of measurement (forced choice tasks also avoid some of the other well- 

known problems of direct ratings such as compression of scale etc).
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Transformation distance was operationalised by the number of transformations 

specified by the coding scheme. It must be noted that counting the number of 

transformations is an approximation of transformational complexity. Although this 

may not provide the most accurate account of the data in all contexts, this method 

does provide a useful, and simple, starting point for operationalising transformation 

distance (see Chapter 6 for more discussion). For example, it may be that certain 

transformations differ in complexity, and thus should be weighted accordingly. In 

such a case, a mere counting method may not provide the best account of the data 

when compared to a weighted model of RD. Crucially, in the current context there 

seems little reason to assume a priori that certain operations will wield a greater effect 

on perceived similarity and, as a result, all operations are given equal weight.

Method

Participants

A total of 42 of Cardiff University undergraduates completed the experiment 

(mean age = 19.6, range = 18 to 25). Participants were either allocated course credit or 

paid £3 for their participation. Each participant was tested individually. As a result of 

a failure to follow basic instructions, the data from two participants were later 

omitted.

Materials

Trials were presented on a 19” LCD screen. Each display contained two 

separate comparisons, each comprised of two pairs. One of these comparisons 

occupied the upper part of the display and the other occupied the lower. Each 

component object within a pair was approximately 2.5 cm wide x 2.5 cm tall. Each
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set was presented horizontally with the first pair in the set on the left and the second 

pair on the right. The distance between object pairs was 7.5 cm with a within-pair 

object distance of 0.5 cm. The two independent sets were separated by a vertical 

distance of 15 cm on the screen.

Shape set Object Code Relevant transformations No. o f  
transformations

1 I E 0 0 AA/AA N/A 0

2 □A BA AB/AB N/A 0

3 □A A 0 AB/BA Swap 1

4 0 0 0 A AA/AB Create + Apply 2

5 □ 0 A 0 AA/BA Create + Apply 2

6 0 A 0 0 AB/AA Create + Apply 2

7 0 A AA AB/BB Create + Apply 2

8 0 0 AA AA/BB Create + Apply 2

9 ESA □O AB/AC Create + Apply 2

10 0 A ©A AB/CB Create + Apply 2

11 □A AO AB/BC Swap + Create + Apply 3

12 0 A ©□ AB/CA Swap + Create + Apply 3

13 0 0 A© AA/BC Create + Apply; Create + 
Apply

4

14 0 A ©O AB/CC
Create + Apply; Create + 

Apply
4

Figure 10. Stimuli used in Experiment 1. Depicted in column 1 is one of six possible 

shape assignments (see Materials, Experiment 1), all of which instantiate the logical 

code structure of column 2. Columns 3 and 4 contain the specific transformations and 

their respective code lengths.
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For a single dimension, pairs of objects could be combined by fourteen 

different predetermined methods resulting in fourteen unique comparisons in this 

experiment (see object codes, Figure 10). As outlined above, the specific 

instantiations are represented using letters: For example, a combination represented by 

the letters ‘AB/AC’ will have shapes A and B as one object pair and shapes A and C 

as the other: The letter A refers to the type of the first shape, reading from left to right; 

the letter B refers to the second unique shape (i.e., the next shape that was not 

identical to shape A); the letter C refers to the third unique shape (if any), and so on.

In an attempt to control for spurious featural similarities between non­

matching objects, six unique shape assignments were used; these differentially 

assigned the shapes triangle, circle and square to A, B and C, depending on the 

assignment group. For each of the specific shape assignments, the letters 

consequently represented a different specific object (i.e., A might refer to a square in 

one group; but to a triangle in another group, depending on which specific shape 

happened to be leftmost). As there was no predicted difference depending on the 

specific shapes used, responses were collapsed across assignments for analysis, 

resulting in one data point for each of the fourteen combinations. On a given trial a 

comparison (i.e., AB/BA) would be randomly selected to occupy the top of the 

display and this could then be randomly paired with any of the remaining object 

comparisons (see Figure 11). Screen position (top or bottom half) was 

counterbalanced within participants, by showing each set of pairs of objects twice, 

with opposite screen locations. In total there were 182 trials, that is, 14 x 13 (13 

because no comparison was paired with itself).
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□O OA
Is the similarity between the pairs in the above set 
greater than the sim ilarity between the pairs in the 

below shape set?

□o no
Figure 11. The organisation of the display in Experiment 1. A comparison occupied 

the upper and lower section of the display and participants were required to make two 

separate similarity judgements and choose the one with greatest between-pair 

similarity.

Procedure

On each trial, participants observed two sets of stimuli (or two comparisons) 

where each individual comparison consisted of two pairs of shapes (see Figure 11). 

Their task was to judge which of the two sets of pairs had the greatest between-pair 

similarity. Specifically, participants were asked “Is the similarity between the pairs in 

the above set greater than the similarity between the pairs in the below shape set?”. 

This question was presented in the centre of the display between the two sets on each 

trial. Participants then made a ‘yes’/ ’no’ by pressing Z on the keyboard for ‘yes’ or M 

on the keyboard for ‘no’. After their response, the screen was erased and two more
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object sets were randomly selected for the next trial. All participants completed all 

182 trials (14 x 13) and the task took approximately 20 minutes to complete.
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Figure 12. Graph depicting the relationship between transformation distance and the 

mean percentage of times that each comparison was judged the most similar in a 

forced-choice paradigm. Each point represents the mean similarity for each object set 

across participants and assignments. Note: horizontal jitter is added to two points due 

to an overlap at two transformations on the x axis.

Results

For each comparison (e.g., AB/AC), the percentage that it was selected as the 

most similar, out of all possible pairings, was the derived measure of similarity. This 

provides a ratio-level measure of the similarity between each pair in the stimulus set 

(see also Bailey & Hahn, 2005). These similarity data were correlated with the
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predicted transformation distances in order to evaluate how well the posited coding 

language accounts for the perceived similarity between items. Inspection of Figure 12 

reveals the expected negative correlation between perceived similarity and 

transformation distance. As in Hahn et al. (2003), this relationship between similarity 

and transformation distance seems linear.

The bivariate correlation between the number of transformations and 

perceived similarity was highly significant: Pearson’s r (r = - 0.946, p <0.01). In 

addition, transformation distance, as specified by the coding scheme, accounts for 

90% of the variance in perceived similarity (R2 = 0.90), without recourse to any free 

parameters.

Models o f structural alignment

The results for Experiment 1 provide compelling fits for RD when the stimuli 

vary across one dimension. However, there remains the question of how well SA 

models will fare, and whether they might provide equally good, or even better, 

explanations of the data.

For SME the number of matches in place (MIPs) was correlated with the 

similarity data (see Appendix A.3 for an explanation). The left graph in Figure 13 

depicts the relationship between the number of matches in place (MIPS) and 

perceived similarity. As can be seen from the graph, there is a positive correlation 

between perceived similarity and MIPs, as predicted, and this correlation is 

statistically significant (r = 0.74, p <0.05). However, MIPs account for much less of 

the variance when compared to RD (54% vs. 90%).

Second, how well does SIAM account for these results? Following Larkey and 

Markman (2005) the data were modelled using SLAM’s default parameters
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(Goldstone, 1994b), as these had provided excellent fits in Larkey and Markman’s 

previous experiment. Given these parameter values, SIAM also correlates 

significantly with participants’ similarity ratings (r = 0.76, p <0.01; Pearson’s r; see 

Figure 13), and accounted for slightly more of the variance in perceived similarity 

than SME (58% vs. 54%).3

100-

M«
E

a.
BBI

40 -

2 4 0.70 0.80 0.90 1.00
MIPs SIAM

Figure 13. Left: Graph showing the relationship between similarity (as the mean 

percentage selected) and matches in place (MIPs). Right: Graph depicting the 

relationship between mean percentage and the default SIAM predictions.

As an additional model comparison, the likelihood ratio was correlated for 

each model pair (see Glover & Dixon, 2004). This simple statistic indicates the 

relative likelihood of the data given the two models. Comparing RD and SME, the

3 As one reviewer o f  Hodgetts, Hahn and Chater (2009) noted, the combinations AA/AB, AA/BA, 
AB/AA and AB/BB might be considered equivalent, at least when considered in isolation. Whether 
they seem equivalent to the participant who sees all 14 possible combinations is, o f course, an 
empirical question. It is, however, o f  interest whether the discrepancies in model performance might be 
driven, in part, by these ‘repeats’. Consequently, the data were also analysed with these ‘repeats’ 
collapsed into a single observation. The same overall relationship between the models is maintained: 
for RD, r = -0.949, p <.01; R-square = 0.90; for SME, r =  0.74, p <.01; R-square = 0.54; for SIAM, r  = 
0.78, p <.01; R-square = 0.61.
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data are 43581 times more likely to occur if RD is true than if SME is true. When 

compared with SIAM, the data, given RD, are 23053 times more likely. The data are 

1.9 times more likely to occur under SIAM when compared to SME.

Finally, given that different instantiations of SA assign different weights to 

MIPs and MOPs (as in SME and SIAM), it is possible that some other account of SA, 

that assigns differential weights to MIPs and MOPs could yield even better fits. To 

assess this, a range of possible relative weights between MIPs and MOPs was 

considered, correlating each weighted MIP/MOP model with the similarity data. In 

general, when MIPs are given more weight the models account for more variance. 

Overall, more variance is accounted for when MOPs still have a slight influence in the 

model output (i.e., 0.3). As can be observed in Figure 14, no weighted combination of 

MIPs and MOPs accounted for as much of the variance as RD.

MIP weighting

Figure 14. Graph showing the variance accounted for by MIPs/MOPs when they are 

weighted differentially. The dotted line represents the variance accounted for by RD.



Chapter 2 -  Structural Accounts o f  Similarity 6 7

Discussion

The results from Experiment 1 provide evidence for a strong relationship 

between transformation distance and perceived similarity. These data provide support 

for RD, extending the empirical results of Hahn et al. (2003) to a new stimulus 

domain. Transformational relationships accounted for most of the variance in 

participants’ responses, even though there were no free parameters involved in fitting 

the data, and the fits obtained were superior to those of SA models. The 

transformation set was next tested on materials that involved modifications over two 

dimensions as used by Larkey and Markman (2005).

Experiment 2

For the second experiment, RD was tested using the same general stimulus 

domain as Experiment 1, but the stimuli varied across two featural dimensions: colour 

and shape. This not only provides a test with a more complex stimulus set, it also 

enables examination of the way these featural dimensions interact.

Larkey and Markman (2005) found that the combination AB/CA is less similar 

than the combination AB/AC when the relationship on the second dimension is 

AB/AB. However, the opposite pattern is observed when the relationship on the 

second dimension is AB/BA (see Figure 15). This, they argued, is problematic for RD 

if these relationships are assumed to reflect transformations, because the impact of a 

given transformation on one dimension is not independent of the transformational 

relationships governing the second dimension. This means that no simple scheme for 

weighting transformations could be invoked to explain the rank-order similarities 

observed in the data, because the relative weight of a particular transformation would
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seem to depend also on the relationships governing the other dimension, leaving the 

account over-parameterised and ad hoc.

Example 1
AB—>CA decreases similarity 

compared to AB—>AC

■ A AB—>CA (shape) 
AB—»AB (color)

■ A AB—>AC (shape) 
AB—i-AB (color) ■  O
Whole object swap

Example 2
AB—>CA increases similarity 

compared to AB—>AC
■ A AB—►CA (shape) 

AB—>BA (color)

■ A AB—>AC (shape) 
AB—>BA (color)

Figure 15. An example of a transformation’s supposed ‘non-fixed’ effect on 

similarity, as discussed by Larkey and Markman (2005). The shape ‘transformation’ 

AB/CA reduces perceived similarity relative to AB/AC in the upper case whereas it 

increases perceived similarity in the lower case when paired with colour swap,

However, no differential weighting of transformations is required: interactions 

arise readily within the simple 3-operation coding scheme presented above. Figure 15 

depicts the interaction discussed by Larkey and Markman (2005); on inspection of 

Figure 15, it is clear in the lower example that one of the shapes is naturally perceived 

to have swapped location. If transformations are applied to objects in their entirety, 

and not just to single dimensions, as is inherent in any kind of ‘move-object’ 

operation, the presence of dimensional ‘interactions’ is guaranteed. Consequently,

AB/BA.
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interactions do not, in and of themselves, provide evidence against a transformational 

account. Specifying a ‘transformation’ for each feature assumes that the 

representation itself separates these features, even when these dimensions are 

manipulated simultaneously.

Nevertheless, it remains to be seen how RD will fare qualitatively on such 

interactions present within this domain.

The goal was to provide a test that would give results representative of all the 

stimulus combinations contained within the domain. Given the 14 distinct 

combinations per dimension (see Figure 10), the full set of all possible two 

dimensional combinations would contain 14 x 14, that is, 196 items (see Appendix 

A.2 for the full set of possible combinations along with the corresponding 

transformational predictions). A forced-choice design, which pairs each item with 

every other item, was no longer possible for this many items (over 19,000 

comparisons would be required) so a different dependent measure was adopted in 

Experiment 2: a rating task. However even rating 196 distinct pairs seemed unduly 

onerous. Consequently a random subset of items was selected; statistics obtained from 

such a random sample should provide estimates that are representative of the entire 

population.

Method

Participants

A total of 33 participants took part in Experiment 2 (mean age = 19.9, range = 

18 to 23). The subjects were Cardiff University students who were either allocated 

course credit or paid £4 for their participation. Each participant was tested 

individually.
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Materials and procedure

As in Experiment 1, participants were presented trials on a 19” LCD screen. 

On each trial participants were presented with a single comparison that consisted of 

two object pairs; the base pair was situated on the left of the display and the target pair 

was situated on the right. The shapes used were squares, circles and triangles. All 

shapes were created using the ‘Autoshape’ function on Microsoft Publisher. Each 

shape object was 2.5 cm x 2.5 cm tall. The comparisons were displayed horizontally 

on each trial, with a 7.5 cm distance between the pairs. The within-pair distance was 

0.5 cm. The two pair set was located directly in the centre of the display.

Each dimension (shape and colour) could be combined in one of fourteen 

predetermined methods (see Figure 10 for these methods applied to one dimension). A 

random subset of 81 combinations was selected from all possible combinations. This 

subset was presented to all participants.

As in Experiment 1, this set of 81 comparisons was instantiated in more than 

one specific set of shapes and colours - specifically, there were a total of three 

possible unique shape and colour combinations to which participants were 

systematically assigned. As before, there was no predicted difference between 

assignments, and so results across these groups were collapsed for subsequent 

analysis. The order in which participants saw the object pairs was randomised for 

each of the three assignments.

Procedure

Participants were first presented instructions on the computer screen before 

being told to press the space bar to commence the task. On each trial, the participants 

were presented with a comparison consisting of a base pair and a target pair and were
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required to provide a rating of similarity between the pairs. Similarity ratings were 

made on a Likert scale between 1 and 6 (1 = highly dissimilar; 6 = very similar). 

Participants made the appropriate response on the keyboard for each trial. After the 

response, the screen was erased and another stimulus comparison was randomly 

selected for the next trial. All participants rated each of the 81 trials.
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Figure 16. Graph depicting the relationship between transformation distance and the 

mean similarity ratings, from 1 (very dissimilar) to 6 (very similar). Each point 

represents the mean similarity for an object set across participants and assignments.

Results

The mean similarity ratings, averaged across participants and shape 

assignments, were correlated with transformation distance. Figure 16 indicates, once 

again, the predicted negative correlation between participants’ perceived similarity



Chapter 2 -  Structural Accounts o f  Similarity 72

and transformation distance, thus matching the pattern exhibited in Experiment 1. In 

line with previous findings, the nature and fit of the scatter suggests a linear fit 

between transformations and similarity (see Experiment 1; Hahn et al. 2003).

Experiment 1 Experiment 2
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Figure 17. Left: Histogram plotting the frequency of R-square values across the whole 

sample for Experiment 1. Right: Histogram plotting the frequency of R-square values 

for Experiment 2. The dotted line signifies the mean R-square and the thick line 

signifies the variance accounted for by the coding scheme for RD.

As before, there was a significant bivariate correlation between transformation 

distance and perceived similarity {r = - 0.86, p <0.01, Pearson’s r). Transformation 

distance, as determined by the three-operation coding language, accounted for 73% of 

the variance in perceived similarity (R2 = 0.732), without free parameters.
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Comparing experiments

Although a strong correlation was found in Experiment 2, the coding scheme 

accounts for less of the variance than in Experiment 1. Why is there a poorer fit of the 

data in Experiment 2? One possibility is that the behavioural data are simply noisier; 

either because of the greater complexity of the stimuli or because of the use of a rating 

task, rather than a two alternative forced-choice, as in Experiment 1. To investigate 

this possibility each participant was correlated with the rest of the sample: these 

correlations provide a baseline against which to evaluate model performance. 

Essentially, if participants themselves agree only very little, then there is only so 

much any given model can do.

The histogram (see Figure 17) plots R-square values for each participant, 

where each participant’s ratings were taken as a ‘predictor’ of the group’s average 

rating (calculated without that participant), that is, as if each participant was a 

hypothesised model. It also displays the R-square value associated with RD’s 

predictions. The R-square value for RD in Experiment 2 (right panel, Figure 17) is 

higher than the mean R-square observed. In other words, RD was a more successful 

predictor of the average similarity rating of each item than were the majority of 

individual participants. Indeed RD proved a better predictor than any one participant. 

This suggests that RD is doing an excellent job at accounting for the data, especially 

given the levels of noise present within the data set. This is supported further by 

considering the same analysis carried out on the data from Experiment 1 (left panel, 

Figure 17), where 90% of the variance was explained. Here too, RD appears as an 

‘ideal’ participant, in that the amount of variance accounted for by RD, relative to 

individuals within the sample, is very high. The main difference between the two sets 

of data is simply that the overall peak corresponds to a much higher R-square value in
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Experiment 1 when compared to Experiment 2, that is, both the correlations between 

model and data and amongst individual participants are higher in Experiment 1.

In conclusion, these analyses suggest that the levels of fit displayed by the 

model are very good (even though the overall R-square value is reduced relative to 

Experiment 1), and that RD also provides a good account of a more complex set of 

items that display structural variations across two dimensions simultaneously.
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Figure 18. Graph depicting the relationship between mean similarity ratings and 

transformation distance for interaction items only. As data points were overlapping, 

horizontal jitter has been added to clearly show all observations.

Interaction items

In addition to assessing all comparisons, the items for which RD predicts an 

interaction between dimensions were extracted from the data set, as outlined above.



Chapter 2 -  Structural Accounts o f  Similarity 75

To reiterate, interactions arise on this coding scheme because the ‘swap’ 

transformation can be applied not just to a single dimension, but to whole objects. To 

address the unique predictions made by the coding scheme with regards to these 

items, all object sets that involved a whole object swap are identified (i.e. a swap on 

both colour and shape). These interaction items consisted of all possible combinations 

of AB/BA, AB/CA, and AB/BC. Figure 18 shows specifically the relationship 

between transformation distance and these interaction items. The expected linear 

negative relationship is preserved for these items and this correlation is significant (r 

— - 0.93, p <0.01). As the number of observations are small (n = 7), an adjusted 

correlation coefficient is calculated to correct for this (see Howell, 1997, p. 240): this 

correlation is also significant: radj = -0.92, p < 0.01.
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Figure 19. Left: Graph showing the relationship between mean similarity ratings and 

matches in place (MIPs). Right: Graph depicting the relationship between mean 

ratings and default SIAM predictions.



Chapter 2 -  Structural Accounts o f  Similarity 76

Models o f  structural alignment

As in Experiment 1, SME and SIAM’s respective data fits are examined 

against the full data set. The left panel in Figure 19 depicts the relationship between 

perceived similarity and the number of MIPs - as predicted by SME. The predicted 

positive relationship is evident here, with rated similarity increasing as the number of 

corresponding features also increases. This correlation is also statistically significant 

(r = 074, p <0.01). However, considerably less of the variance is accounted for 

relative to RD (55% vs. 73%).

SIAM (Goldstone, 1994b), again using the default parameters, also correlated 

significantly with participants’ rated similarity (r = 0.74, p <0.01; Pearson’s r; see 

right panel, Figure 19). Fits were comparable to those obtained with SME, with an R- 

square value of 0.54.

MIP weighting

Figure 20. Graph showing the variance accounted for by MIPs/MOPs when they are 

weighted differentially. The dotted line represents the variance accounted for by RD.
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As in Experiment 1, the likelihood ratio for each model pair is calculated (see 

Glover & Dixon, 2004). If RD is true then the data are 965,771,442 times more likely 

when compared to SME. When compared with SIAM, the data, given RD, are 

2,352,121,407 times more likely. If SME is true, then the data is 2.43 times more 

likely when compared to SIAM.

Finally, as with Experiment 1, the performance of any weighted combination 

of MIPs and MOPs was investigated. R- square values between weighted MIP/MOP 

combinations and perceived similarity are plotted in Figure 20. As can be observed, 

the pattern is similar to that in Experiment 1. As MIPs are given greater weight in the 

models, relative to MOPs, both the fit improves and the overall best fit obtained -  

albeit with a slight influence of MOPs (i.e., 0.2). Again, RD provides fits superior to 

those of any weighted combination of MIPs and MOPs.

Discussion

The results from Experiment 2 show a very similar pattern to those reported in 

Experiment 1, despite a more complex stimulus set. The results also suggest that the 

slightly lower fits in Experiment 2, relative to Experiment 1, are a consequence of 

greater noise in the data, not a specific inability of RD to deal with aspects of these 

more complex stimuli. These results again provide evidence for a close relationship 

between transformational complexity and perceived similarity. Furthermore, RD 

seems to provide an excellent account of the dimensional interactions within this 

domain. As Larkey and Markman (2005) noted, particular combinations on one 

dimension can decrease similarity in one case but increase similarity in another 

depending on the combination on the other dimension. The simple coding language
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tested here, which allows the same operations to apply to both individual features and 

to whole objects, directly predicts, and explains, such interactions.

Finally, comparisons with models based on SA demonstrated that despite 

obtaining moderate data fits, models of SA could not capture the data to the extent 

demonstrated by RD.

General Discussion

The results from two experiments support the view that similarity can be 

understood in terms of Representational Distortion, that is, the simpler the 

transformation required to distort the mental representation of one item into another, 

the greater the judged similarity between those items. To provide direct predictions, 

the RD framework requires specifying a coding language (just as, e.g., feature-based 

approaches require specifying a set of features in terms of which items are encoded, 

and so on with other models of similarity). The results demonstrate that an extremely 

simple coding language allows the RD approach to fit the empirical data well, with no 

free parameters. Moreover, because the stimuli sampled are representative of the 

domain (containing all possible one-dimensional variations in Experiment 1, and a 

representative sample of all possible two-dimensional variations in Experiment 2) this 

excellent performance can be taken to extend to the domain in general; it is not a 

consequence of selecting only particular kinds of relationships for test.

Furthermore, the use of a considerably larger and, more importantly, an evenly 

sampled stimulus set gives rise to very different relationships between structural 

models of similarity than that observed in the selective test carried out by Larkey and 

Markman (2005). First, RD considerably outperforms all of the SA models tested. 

This, in part, is undoubtedly attributable to the use of a psychologically plausible
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transformation set, as opposed to Larkey and Markman’s use of ‘physical 

transformations’. However, Larkey and Markman’s results concerning the 

relationships between SA models themselves also fail to scale to a more 

representative stimulus set. Whereas SIAM had considerably outperformed SME in 

Larkey and Markman’s study, there was little to choose between the two models on 

the tests performed here. Whereas SIAM performed slightly better on the one­

dimensional items of Experiment 1, SME slightly outperformed SIAM on the 

representative sample of the domain as a whole in Experiment 2. Moreover, the 

respective likelihood ratios indicate that these differences discriminate only weakly 

between the two models.

Finally, additional analyses for both experiments found that no model based 

on differentially weighted MOPS and MIPS outperforms RD on either experiment.

Although a specific version of RD (using a particular coding language) is 

contrasted with specific SA models here, it is important to emphasise that 

transformations and structural alignment are not necessarily in conflict. Determining 

the transformations between one object and another will typically involve specifying 

an alignment between the representations in question. This raises the possibility that 

the RD perspective on similarity might yield insights into the process by which 

structural alignment is achieved. In essence, because the RD framework suggests that 

the preferred alignment will be that which is required to provide the simplest 

transformation between objects, the process of alignment should involve a 

minimisation of transformation distance.

Such a relationship between transformations and alignment has been explored 

within the realm of object recognition; recognising an object can be viewed as 

transforming a perceptual input into one or more mentally represented prototypes or
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templates where the process of alignment between perceptual input and stored 

template is of critical importance. One illustration of this point is that there are 

examples where the speed and ease of object recognition seems to be inversely related 

to the complexity of transformations in orientation, size and location in object 

recognition (Bundesen & Larsen, 1975; Cave et al., 1994; Milliken & Jolicoeur, 1992; 

Tarr, 1995; Tarr & Pinker, 1989; these mental transformations themselves have been 

extensively studied, for example, in Kosslyn, 1980; Shepard, 1984; Shepard & 

Cooper, 1982). As a consequence, transformation and alignment are tightly coupled, 

for example, in Graf s recent Transformational Framework of Recognition (Graf, 

2006).

More generally, both transformation distance and alignment play a role in the 

visual system’s determination of object identity. As we, and the objects we perceive 

move through space, the retinal image of an object changes. One of the most basic 

functions of the visual system is the maintenance of object constancy across 

systematic changes in retinal input such as location, rotation, size/scale changes, or 

changes in colour. Deciding that an object is the same object across two viewpoints, 

as opposed to a new and separate entity, is again a correspondence or mapping 

problem. That transformation distance is a factor in determining this kind of 

correspondence is supported by studies of apparent motion (Anstis & Mather, 1985; 

Bundesen, Larsen & Farrell, 1983; Farrell, 1983; He & Nakayama, 1994; Oyama et 

al., 1999; Shechter et al., 1988; Shepard & Judd, 1976). Apparent motion refers to the 

illusory motion or ‘impletion’ between sequentially presented stimuli that appear in 

different spatial locations. The experience of apparent motion is reliant on the visual 

system drawing correspondences between objects in different frames as a means of 

maintaining or preserving perceptual constancy (Oyama et al., 1999; Ullman, 1979).
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Crucially, the correspondence strength between objects in two frames has been found 

to increase with their similarity, as determined by a number of perceptual attributes, 

such as colour, luminance, size, shape and orientation (Anstis & Mather, 1985; He & 

Nakayama, 1994; Oyama et al., 1999; Shechter et al., 1988). Moreover, a number of 

studies have explicitly investigated the role of visual transformations between objects 

in alternating frames. For example, the presentation of a sequentially alternating 

object at different orientations creates the perceptual illusion of a single object 

rotating through space (Farrell & Shepard, 1981; Shepard & Judd, 1976). Hence, the 

intimate connection between correspondence and transformation is strongly supported 

in this domain, by evidence that the visual system uses transformations to determine 

object correspondences in the service of object constancy.

All of this suggests a reciprocal relationship between mapping and 

transformations, whereby mappings constrain what transformations can be applied, 

but transformations themselves constrain what mappings are assumed.

This general relationship between mapping, transformation distance and object 

identity also surfaces in the present data with the interaction items. The coding 

scheme makes specific predictions about interactions between the two independent 

dimensions of these materials. A simple example is shown in Figure 16. The 

operations in this coding scheme need not be applied to each feature dimension 

separately and summed (i.e. swap (colour) + swap (shape) = 2) because the coding 

scheme allows operations to be applied to whole objects, as well as to individual 

features. Furthermore, this ability to manipulate representations of objects in their 

entirety seems definitional of what it means to represent a set of features as a single 

object in the first place.
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Finally, this relates to the observation that there seems to be a bi-directional 

relationship between transformational relationships and object representation (Hahn et 

al., 2003). Given the pair of objects on the left of Figure 21, it might be natural to 

encode them simply as ‘a black square and a white triangle’. The relative location of 

the two objects within the pairs is not necessarily salient, and so might not be included 

in our mental representation of these objects. Once contrasted with the pair on the 

right, however, the relative location becomes relevant, and is effectively made salient 

through a simple psychological transformation, that is, a ‘swap’. Transformations, 

mapping, object representation, and object identity all go hand in glove.

Figure 21. The stimuli used in Experiment 2.

Transformation distance in all of these contexts might be viewed as the 

quantity that is minimised when making alignments; in other words, minimisation of 

transformation distance might provide a functional, computational level, explanation 

of how alignment takes place.

Despite this close relationship between RD and alignment in general, specific 

instantiations of each may give rise to very different predictions. The poorer fits of the 

specific SA models tested suggest that the constraints they embody might be too rigid. 

Of course, for RD, the ability to predict perceived similarity depends on a growing
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understanding of psychologically relevant transformations. Moreover, it seems 

inevitable that the set of relevant transformations will differ depending on the types of 

items being compared. The mathematical theory of Kolmogorov complexity ensures, 

however, that a very general theory of representation and transformation is viable, and 

has appealing theoretical properties (Chater & Vitanyi, 2003). However, to be useful 

as a cognitive account, transformational predictions will need to be exhaustively 

validated not only across (i.e., Hahn et al., 2003) but within stimulus domains, 

particularly those which require structured representations (Hahn, et al., 2003). Given 

that this domain contains a number of appealing properties and is, contrary to Larkey 

and Markman (2005), well suited for testing transformations in an explicit similarity 

task, these materials are perfectly suited for such an exhaustive exploration. To this 

end, therefore, this domain will now be followed through both a range of tasks and a 

selection of theoretical comparisons. In Chapter 3, this coding language will be tested 

using an implicit task -  the same-different paradigm - to see whether such 

transformations are relevant above and beyond direct measures of similarity.

Summary

This chapter presented empirical support for Representational Distortion, a 

transformational theory of similarity. Two experiments provided new evidence that 

the similarity between objects is determined by the complexity of the transformation 

required to distort the representation of one object into that of another. Furthermore, 

the relationship between RD and other structural accounts of similarity was explored, 

emphasising how transformational and structural alignment processes may be 

complementary, rather than standing in competition.
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3

The Time Course of Similarity

Although a number of studies have, to date, supported a transformational approach, 

there are still significant steps to take to further establish this account. For example, it 

is important to determine whether there is a place for structure and transformations 

above and beyond direct judgements of similarity. Previously, similarity judgements 

have been gathered in two ways (Medin, Goldstone & Gentner, 1993): direct or 

explicit similarity assessment (e.g., subjective ratings, forced choice), and indirect or 

implicit measures, such as false positives in old-new recognition, reaction time or 

similarity as measured through related processes, that is, categorisation or induction 

(i.e., does similarity model x predict the likelihood of a particular classification). 

Whereas Chapter 2 provided strong evidence for RD using the first type of measure -  

forced choice and similarity ratings - this chapter seeks to provide further evidence for 

a transformational notion of similarity using an indirect measure of similarity: the 

same-different paradigm. So far, evidence for RD has been based wholly on explicit 

similarity judgements (Hahn et al., 2003; Hahn et al., 2009). Both explicit and implicit
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measures have their benefits and drawbacks; in particular, ratings provide an 

individual’s subjective and unambiguous assessment of similarity. However, it is 

unclear how results obtained with these ratings extend to similarity as it functions 

implicitly in a wide range of cognitive tasks, such as categorisation, inductive 

reasoning and so on. Implicit tests, by contrast, are less readily interpretable but 

potentially address not only specific similarity accounts but also the sorts of 

representations that underlie low-level stimulus comparisons in general.

Parallels between similarity research and perceptual theory provide some 

grounds for believing that transformations are relevant beyond explicit tasks. As 

discussed in Chapter 2, navigating our environment continuously transforms our 

retinal input. However, even under these circumstances we are still able to maintain 

object constancy, suggesting that our visual system is equipped with mechanisms and 

representations attuned to visual transformation (e.g., rotation, dilation). For example, 

in object naming/recognition tasks the speed and ease of responses have commonly 

been associated with the transformational distance between compared object 

viewpoints (e.g., Bundesen & Larsen, 1975; Bundesen et al., 1981, 1983; Graf, 2002, 

2006; Lawson, 1999; Lawson, Humphreys & Jolicoeur, 2000; Lawson, Bultoff & 

Dumbell, 2003; Tarr & Pinker, 1989). In addition, studies of apparent motion have 

also suggested that, along with spatio-temporal proximity parameters, similarity and 

transformation distance are key factors in facilitating motion correspondence 

(Bundesen et al, 1983; Farrell, 1983; Shepard & Judd, 1976). It is important to stress 

that these studies differ from studies of transformational similarity in the context of 

RD in that they often manipulate only a single transformation (i.e., the degree of 

rotation) as opposed to manipulating multiple transformations simultaneously (but see 

Lawson et al., 2003). Overall, however, this literature does provide a basis for the



Chapter 3 -  The Time Course o f  Similarity 86

idea that transformational relationships will be readily identified in a perceptual task, 

and given that similarity in RD also refers to a distance from an original object 

identity (particularly in a directional similarity comparison), this parallel seems both 

relevant and justified.

Considering the conceptual relationship between transformations in visual 

perception and the transformational approach to similarity, it would be desirable to 

manipulate structure-based transformations and their role in judged similarity more 

directly. To this end, a speeded same-different (or ‘perceptual matching’) task was 

used to implicitly assess similarity. Previous research has consistently confirmed that 

greater difference or dissimilarity gives rise to faster RTs in a speeded, same-different 

task (Cohen & Nosofsky, 2000; Farrel, 1985; Goldstone & Medin, 1994; Posner & 

Mitchell, 1967; Takane & Sergent, 1983). Likewise, similarity affects accuracy: 

similarity between non-identical objects will result in a response competition between 

same and different responses; consequently, greater similarity leads to higher error 

rates on different trials.

Despite the importance of similarity in the same-different paradigm, the 

relationship between specific similarity models and same-different performance has 

been relatively under-explored (but see Frost & Gati, 1989; Takane & Sergent, 1983; 

Tversky, 1977). Tversky (1977), for example, used the predictions of the Contrast 

Model to account for patterns of same-different responding between Morse Code 

signals of varying length (see Rothkopf, 1957). Frost and Gati (1989) compared the 

Contrast Model and spatial models using a same-different task and showed that 

adding a common feature to both objects in a comparison increased their similarity, as 

measured by the number of incorrect same responses. Crucially, this result was not 

predicted by the spatial model, as noted in Chapter 1.
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Despite the benefits of measuring similarity implicitly (see above), there has 

been very little research into how more complex representational schemes fare in 

speeded tasks, such as the same-different task. The only study to specifically 

investigate structural models of similarity was conducted by Goldstone and Medin 

(1994) who used the same-different task to test the dynamic, time-course 

characteristics of the similarity model SIAM. SIAM, as noted earlier, belongs to the 

larger class of models known broadly as structural alignment models, or SA (Gentner, 

1983, 1989; Markman & Gentner, 1993a, 1993b). As was described in Chapter 2, the 

SA framework assumes that similarity is determined via the same processes of 

alignment that are involved in analogical mapping (Gentner, 1989). Crucially, this 

can involve aligning the features, objects and relations in one scene with those in 

another, depending on the representations that are compared in a given context. In the 

case of SIAM, this function is carried out by a process of interactive activation 

(McClellend & Rummelhart, 1981). As was introduced in Chapter 2, there are two 

kinds of matches in SIAM, and SA more generally, that are fundamental in governing 

model behaviour: 1) matches in place (MIPs) and 2) matches out of place (MOPs). 

To restate, a MIP is a feature match between corresponding objects, whereas a MOP 

is a feature match between objects that have not been placed in correspondence (see 

Figure 5, Chapter 2). Optimally, SIAM will make correspondences that maximise the 

number of MIPs, that is, make correspondences that are globally consistent with other 

correspondences. Crucially, this type of alignment, given its complexity, will be 

associated with a particular time course, as determined by the complexity of the 

compared mental representations. Early on, MIPs and MOPs will be equally salient, 

meaning that locally consistent matches (i.e., matching attributes), as well as one-to- 

one matches, will influence similarity. However, over time, MIPs will grow in
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salience and principally determine similarity.

Goldstone and Medin’s (1994) data supported SIAM’s predictions for thirteen 

stimuli that varied along four dimensions. Specifically, MIPs and MOPs had a near 

equal influence on similarity at short response deadlines. At long deadlines, however, 

MIPS had a much larger influence on similarity, as determined by the number of 

errors.

In the present study, the same-different paradigm is likewise used to provide a 

detailed investigation of similarity with particular focus on RD, a theory of similarity 

that is yet to be tested in an implicit domain. Additionally, however, RD will also be 

compared with both a featural model and an alignment model that relatively weights 

MIPs and MOPs (as in Chapter 2). Given that feature-matches provide a simpler, 

non-structured account of these comparisons, this SA model provides an ideal 

benchmark against which the importance of structure can be inferred.

Experiment 3

For Experiment 3, the stimulus set and coding scheme from Chapter 2 were 

used. As in Chapter 2 (Experiment 4), a random subset of all possible two- 

dimensional comparisons was employed (81 comparisons), that is, those stimuli that 

vary in both shape and colour (see Figure 22). Likewise, this subset should provide a 

sufficient estimate of the entire population. To recap, the three transformations that 

govern similarity in this domain take the base pair and modify it as follows: 1) Create 

-  taking the base pair this operation creates a new feature that is unique to the target 

pair; 2) Apply -  this operation takes an object or entity that is currently available (by 

being present in the base or by having been created via step (1) and applies it to one 

or both of the objects in the target pair. 3) Swap -  this swaps features between a pair
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of objects or swaps the object in its entirety (i.e., on both dimensions)4.

89
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Figure 22. An example of the stimuli used in Experiment 3. As in Experiment 2 

objects vary in both colour and shape. Top panel: a comparison that reflects the code 

structure ‘AB/AA (shape) -  AB/CC (colour)’. Bottom panel: comparison following 

the structure ‘AB/CA (shape) -  AA/BC (colour)’.

Participants took part in a sequential same-different task whereby the entire 

random subset of 81 comparisons made up the different trials. Unlike the tasks 

employed in Chapter 2, the sequential same-different task has a directional 

component, that is, a sequential stimulus presentation is analogous to the similarity 

statement “how similar is A to B?”. In a non-directional similarity task/statement, 

such as “are A and B similar?”, the RD predictions are taken to be the MAX distance, 

that is, the greatest distance out of A to B and B to A (see Hahn et al., 2003; Li & 

Vitanyi, 1997). Crucially, this measure of information distance, which was also used

4 In a directional similarity comparison (i.e., ‘how similar is B to A' as opposed to ‘A and B are 
similar’), the term ‘base’ refers to the referent object or A.
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in the previous chapter, provides a symmetrical estimate of the distance between two 

objects (see also Appendix A .l)5.

As the length of transformation, for some of these stimuli, depends on the 

direction of presentation, the data were averaged across both directions and then 

correlated with the MAX distances; this was performed to remove any unwanted 

asymmetries (a detailed investigation of asymmetry itself will be provided in Chapter 

4). Unlike Goldstone and Medin (1994), response deadlines were not imposed and 

stimuli were presented sequentially. Primarily, this experiment indicates whether the 

coding language, that provided accurate fits of similarity rating data, will successfully 

extend to an implicit measure of similarity, that is, response-time in a same-different 

task.

Method

Participants

A total of 30 Cardiff University undergraduates completed the experiment 

(mean age = 19.2, range = 18 to 25). Participants were allocated course credit for their 

participation. Each participant was tested individually. As a result of a failure to 

follow the basic instructions, the data from two participants were later omitted.

Materials and procedure

The stimulus set used here is identical to that used in Experiment 2. These 

stimuli are a randomly selected subset of all possible two-dimensional comparisons -  

81 comparisons. Trials were sequentially presented on a 19” LCD monitor with a 

refresh rate of 60 Hz (1024 x 768 pixels). There were three possible features on each

5 A sequential paradigm is used (as opposed to a simultaneous matching task) so that the asymmetries 
predicted by the coding scheme can also be examined - this analysis if  provided in Chapter 4.
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dimension (shape = triangle, square, circle; colour = yellow, purple, green; for a 

detailed description see Chapter 2; Appendix A). Each shape was 2.5cm wide x 2.5cm 

tall and each had a strong outline (0.75pt) and bold colour. The screen location of 

each presented pair varied on each trial by randomly combining predetermined values 

on each screen axis (i.e., 10, 20, 30, 40, 50, 60, 70, 80 and 90). The stimulus duration 

for a given pair was 833ms (50 frames) and the inter-stimulus interval (ISI) was 16ms 

(1 frame). A response could be given at the onset of the second stimulus pair. All 

participants were seated approximately 60cm away from the screen.

Stimulus comparisons were presented in a random order. Different trials were 

presented in both directions (i.e., each participant saw the left pair in Figure 21 

followed by the right pair, and vice versa) resulting in 162 different trials (81 x 2). 

The ‘same trials’ were generated by pairing each of the eight composite pairs (AB, 

AA, BA, BC and so on) with itself 16 times, resulting in 128 same trials. Participants 

could indicate ‘same’ by pressing Z on the keyboard and ‘different’ by pressing M. 

The allocation of button to response was counterbalanced. A ‘different’ response was 

given if pairs differed in any respect other than screen location, that is, on a single 

dimension or on both. After a response was given, the screen was erased and a new 

pair was randomly selected for the next trial. No response deadline was imposed but 

participants were urged to respond as quickly as possible.

Results

For analysis, both reaction time (RT) and error responses are reported. 

Specifically, the RTs on correct different trials are analysed. To derive an RT for 

each comparison, the RT is averaged across both directions of presentation (i.e., pair 

A to pair B and vice versa). RTs that were three standard deviations above and below
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the overall mean were removed (2% of trials were removed). ‘Mean errors’ in the 

graphs below refer to the number of false-positives per comparison (i.e., where 

participants incorrectly judged two different objects to be identical when they are the 

same) when averaged across the two response button assignments (i.e., the allocation 

of ‘z’ and ‘m’ to same and different). These errors did not include removed outliers.
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Figure 23. Graph depicting the relationship between transformation distance and 

reaction time (r = -0.55).

Transformations

As noted above, differences will be identified more quickly where items are 

less similar, that is, for pairs related by greater transformation distances. As seen in 

Figure 23, this expected negative, monotonic relationship between RT and 

transformation distance was indeed observed. A bivariate correlation between the 

number of transformations and RT for the different trials was found to be significant
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using Pearson’s r  (r = - 0.55, p <0.01). Without free parameters, transformation 

distance, as specified by the coding scheme, accounted for 31% of the variance in 

reaction time for correct different responses (R2 = 0.31).
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Figure 24. The relationship between error responses and transformation distance.

Error responses, like RT, should be positively related to similarity. Although 

response deadlines were not implemented, there were still a sufficient number of 

errors for each comparison across all participants to provide interpretable results 

(4.65% of all responses are errors). The likelihood of making an error, or falsely 

judging two different objects to be the same should increase with their similarity, 

which again implies a negative relationship with transformations: erroneous ‘same’ 

responses will be more likely to arise when the transformation distance is small, as 

differences will be harder to identify. As seen in Figure 24 this relationship was 

observed; errors decreased significantly with transformation distance (r = - 0.52, p 

<0.01), with our coding scheme accounting for 27% of the variance (R = 0.27).
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Figure 25. The relationship between the number of feature-matches and reaction time. 

Feature matches

As a model comparison the total number of features matches was correlated 

with the similarity data. In calculating this featural model, object features were 

matched regardless of where they appeared in each object and a feature could be 

matched with more than one feature in the other object. In the top panel of Figure 22, 

for example, the square in left hand pair is matched with both squares in the right 

hand object, resulting in two matches overall. Matching features in this way captures 

the notion that similarity is greater when there are two matching features in the 

compared object compared to the when there is a completely new additional feature, 

such as the triangle shown in the bottom panel of Figure 22.

Again, reaction time should increase with similarity. For the feature model, 

which measures similarity directly, not distance, this means a positive relationship 

where reaction times should increase as a function of the number of matching 

features. The graph in Figure 25 displays the relationship between RT and the
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number of feature matches. A positive relationship is clearly evident and this 

relationship is bom out statistically (r = 0.51, p <0.05; Pearson’s r). The variance 

accounted for is slightly less than RD at 29% (RD for RT = 31%). As in Chapter 2, 

the likelihood ratio for each model contrast is calculated (see Glover & Dixon, 2004). 

If RD is true then the data are 3 times more likely when compared to the feature 

matching model.
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Figure 26. The relationship between the number of feature-matches and errors.

This basic feature-matching model was correlated with the error data and the 

predicted positive relationship was again bom out (see Figure 26). Feature-matches 

correlated significantly with the error data using Pearson’s r (r = 0.40, p <0.01) and 

accounted for 16% of variance in error responses, providing, once again, a poorer fit 

relative to RD. This is confirmed by the likelihood ratio, where the data are more 294 

times more likely given RD.
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MIP/MOP weighting

As in Chapter 2, the relative influence of specific feature alignments was 

investigated. As stated earlier, models of SA will optimally form alignments that are 

maximally consistent by placing each feature into one-to-one correspondence, that is, 

by maximising the number of MIPs. Crucially, such alignments are considered more 

effortful and complex than simply matching local features, such as in the feature 

model implemented here (Markman & Gentner, 2005), and involves consideration not 

just of features but of structure.
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Figure 27. Variance accounted for by MIPs/MOPs when they are weighted 

differentially for the RT (left panel) and error data (right panel). Increments on x-axis 

correspond to percentage weight increases in steps of 10, i.e., tick mark ‘3’ 

corresponds to a weighted average that is 30% MOP/70% MIP. The horizontal dotted 

line and horizontal bold line represent the variance accounted for by RD and the 

feature matching model respectively.
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As before, all weighted combinations of MIPs and MOPs are correlated 

against the participant data. As different models of SA place different weights on 

MIPs and MOPs, as demonstrated in Chapter 2, this model provides a broad 

approximation for many instantiations of SA. Figure 27 depicts the variance 

accounted for by a model that counts differentially weighted MIP and MOPs, 

considered over the entire range of possible weightings between the two. The marker 

on the y-axis signifies the variance accounted for by transformation distance alone.

As seen in the graph, differentially weighting MIPs and MOPs has a profound 

effect on overall fit. For RT, the optimal model fit is where MIPs are weighted at 80% 

and MOPs are weighted at 20% (point 8 on the y-axis). At this point, the weighted 

MIP/MOP model exhibits a slightly better fit than that provided by RD, and indeed 

the feature-matching model. Again, however, model complexity needs to be factored 

into the comparative evaluation; the weighted MIP/MOP model has one free 

parameter and this provides only a small increase in accuracy (1-2%). This is 

reflected in the respective AIC (Akaike Information Criterion) values, with RD 

having a lower AIC than the best fitting MIP/MOP model (243.5 vs. 244.9). Overall, 

this suggests that transformations provide the more accurate account of the data once 

model complexity (the number of free parameters) is taken into account.

As seen in Figure 27 (right panel) the optimal fit for errors is at point 8 on the 

x-axis where MOPs are weighted 20% and MIPs 80% - here it accounts for 12% of 

the variance. However, even at this optimal point, the model is accounting for 

considerably less of the data compared to RD and slightly less than the basic feature- 

matching model -  despite having a free parameter (i.e., the relative weight of MIPs & 

MOPs).
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Discussion

Experiment 3 provides the first direct support for RD in an implicit task. This 

instantiation of RD, based on three simple operations, achieved significant data fits 

when correlated with reaction time and errors. When compared to the featural model, 

RD achieves a marginally superior fit of the RT data (as reflected by the small 

likelihood ratio) and is considerably more accurate for the error data, suggesting, at 

least to some extent, that transformational relationships and the representations that 

underlie them are relevant in this sort of task. In addition, an alignment model that 

differentially weights MIPs and MOPs is tested in detail; crucially, MIPs and MOPs 

provide a more constrained featural description of these comparisons depending on 

the relative weight given to these matches; a MIP-only model only predicts one-to- 

one matches whereas a model that weights MIPs and MOPs equally will not require 

features to be in one-to-one correspondence and is thus less constrained. Crucially, 

this model performs worse than RD for both RT and errors, with RD having no free 

parameters. Interestingly, whilst this model performs better than a crude feature- 

matching model for RT, it fails to do so for the error data. This may be taken to 

suggest that structural, one-to-one matches are relevant, at least to some extent, but 

that the correspondence rules embodied in this model are ultimately not quite right 

(Goldstone & Medin, 1994).

The fact that the featural model performed poorer than RD (for errors in 

particular) provides evidence that the underlying representations in this task may be 

more complex than those permitted under this simpler account. In terms of the 

transformation set used here, it is assumed that not only separate features are 

perceived, through the creation and application of new and existing features, but also 

that structure matters: the individual features are bound together as whole objects,
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hence an object, with both its colour and shape, can swap location in its entirety. By 

contrast, simple features matches alone will, in some cases, provide no evidence for 

whether something is the same or different! For example, the comparison made up of 

AB/BA (shape) and AB/AB (colour) has as many features in common as the identical 

case, AB/AB (shape & colour). Of course, one could always posit other features. In 

particular, one could propose location-specific features, where ‘A-left’ matches ‘A- 

left’ and so on, but this would then fail for the ‘swap’ items because the same features 

will then occupy different spatial locations resulting in no features matches overall. 

By contrast, transformations can capture the fact that in this task, with no response 

deadline, responses can be affected by more than just the number of matching features 

namely both by ‘what’ features are present and, perhaps more importantly, ‘where’ 

they appear in each configuration.

Of course, it is possible that these transformational relationships will be less 

salient if the time to respond is restricted, that is, when there is less time to encode the 

structure and bind relevant features into whole objects. Therefore, it might be the 

case that under increased time pressure, more complex transformations will add no 

predictive benefits over the basic featural account, or indeed the SA model. To this 

end, it would be informative to see if and how representations build over time for 

these objects.

Experiment 4

The following experiment attempted to disentangle the intimate relationship 

between model fits and the way representations build up over time. As in previous 

studies (Goldstone & Medin, 1994; Lamberts, Brockdorff & Heit, 2002), this was



Chapter 3 - The Time Course o f  Similarity 100

achieved by presenting the same stimuli with four different response deadlines: 

500ms600ms, ‘750ms’, and 2000ms.

The rationale is this: manipulating the deadline, and with it the encoding and 

comparison process, should affect what stimulus attributes are available and hence 

relevant. In general, this design should determine whether there is a strong basis for 

the claims made in relation to the previous experiment: 1) that representations build 

up over time and 2) that this ‘representation shift’ will affect the relative efficacy of 

specific models over the time course.

At the moment, RD provides only a static, end-state prediction. In other 

words, it provides a computational level measure of similarity, not a process model. It 

would, of course, be possible to devise such a model. One step on this way would be 

to allow differential weights for individual transformations (see Hahn et al. 2003, for 

discussion), and such weights could change over time. This is not the path pursued 

here. This is because the static, end-state predictions considered so far are themselves 

informative when the associated model accuracy can be tracked across changes in an 

independent variable such as available response time. Specifically, any change in 

model performance over the time course will provide some insight into the emergence 

of certain mental representations. Consequently, the coding scheme used thus far will 

be examined across the time course and compared with the simple featural model. 

Such comparisons should provide an indicator of when more complex, structured 

representations arise.

As with Experiment 3, the relationship between RD, feature-matches and 

certain alignments will be addressed also. As in Goldstone and Medin (1994), there 

should be a greater influence of MOPs at shorter deadlines with that influence 

decreasing over the time course.
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Method

Participants

A total of 46 Cardiff University students completed the experiment. 

Participants were paid £2 for their participation. Each participant was tested 

individually. As a result of a failure to follow the basic instructions, the data from one 

participant were later omitted.

Materials and procedure

As in Experiment 3 trials were presented on a 19” LCD monitor (refresh rate 

of 60 Hz). Stimulus properties (object size, colour, shape etc) were identical to the 

first experiment. However, in this experiment, pairs were presented simultaneously, 

with one shape pair on the left of the display and another on the right. The left-right 

position of pairs on different trials was counterbalanced resulting in 162 different 

trials (81 x 2). Each individual pair (AB, BA, AA etc) was presented with itself to 

generate the same trials and these were duplicated to match the number of different 

trials resulting in 324 trials overall (162 x 2). Pairs were separated by a horizontal 

distance of 18.5cm. The prompt “Same or different?” was also presented at the 

bottom-centre of the display. Participants indicated same by pressing Z on the 

keyboard and different by pressing M. Here, this key assignment was reversed for 

left-handed participants.

Response deadlines varied between participants. From stimulus onset, 

deadlines could either be 500ms, 600ms, 750ms or 2000ms. As soon as the 

designated time elapsed the screen was erased and the next trial appeared after a post­

trial interval of 500ms. There was no feedback for correct or incorrect responses.
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Figure 28. The relationship between transformation distance and RT for each 

response deadline: 500ms (top left panel), 600ms (top right panel), 750ms (bottom 

left panel) and 2000ms (bottom right panel). The predicted trend is absent in the top 

panels and emerges from 750ms onward.

Results

Both RT and error responses were analysed separately for each response 

deadline. As before, RTs more than three standard deviations above the group mean 

and less than 200ms after stimulus presentation were removed from analysis. Only 

the 2000ms condition contained RTs below the 200ms cutoff and these removed
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outliers only constituted 1.98% of the trial data in the 2000ms condition. The correct 

different trials were analysed and were averaged across screen locations (left to right 

and right to left6).

The graphs in Figure 28 show the relationship between the number of 

transformations and RT at each response deadline. Firstly, it can be seen that the 

strength of the relationship between RD and RT changes over time. At 500ms, there 

is no relationship between similarity, as determined by the number of transformations, 

and the speed to respond. At 600ms, the predicted relationship is still absent, 

although the data do begin to show a negative trend. At the 750ms response deadline, 

the predicted pattern of results emerges quite clearly and reflects the observed 

relationship shown in Experiment 1. A Pearson’s r showed there to be a significant 

correlation between RD and RT at 750ms (r = -0.46, p <0.01). Likewise, when the 

participants are allowed 2000ms to respond (equivalent to no deadline at all, 

Experiment 3), the predicted negative relationship between the number of 

transformations and RT is evident in the graph and the correlation is significant (r = - 

0.44, p <0.01).

Table 1.

Descriptive statistics fo r the four conditions tested.

Response
Mean RT

Errors RT St. Size of RT Distance - mean
deadline (%) Dev range RT to deadline
500ms 427.21 61.97 20.56 276 72.81
600ms 498.94 43.83 18.13 393 101.06
750ms 551.97 20.42 24.49 541 198.03

2000ms 641.93 6.98 51.69 869 1358.07

6 Note, this averaging is only a basic experimental procedure, it is not expected, unlike Experiment 1, 
that the relative screen location will affect similarity. There is no theoretical basis for assuming that 
screen position maps cleanly onto the role o f  objects in directional similarity comparison.
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In the data here, there seems to be little evidence for a steady increment in 

model accuracy over the time course between, in particular, the shortest three 

deadlines. Instead, the correlation between RD and similarity, as measured by RT, 

seems to emerge rather suddenly somewhere between 600 and 750ms.

There are three possible explanations for this observation: firstly the selected 

response deadlines may lack the sensitivity to detect a continuous increase in model 

accuracy. Alternatively, it may be that the relationship between RD and RT is not a 

continuous one, that is, in order to make a response based on the information assumed 

by the coding language, there needs to be a specific amount of time in order to 

represent the properties manipulated by the transformation set. Thirdly, it may be that 

the deadlines are so short that there is not enough time to provide responses that are 

sufficiently variable. The descriptive statistics in Table 1 seem to support this last 

interpretation. In the 500ms condition, 61% of responses are either incorrect or 

timeouts, resulting in less interpretable RT data to begin with. Furthermore, RTs are, 

on average, 72ms away from the deadline - this emphasises the difficulty of making a 

correct response within this time window.

Table 2.

Summary o f correlation coefficients fo r RD and the featural model (reaction time).

Model\Deadline 500ms 600ms 750ms 2000ms

RD .044 -.093 -.46(*) -.44(*)
Feature matches -.11 -.09 .42(*) .29(*)

* Correlation is significant at the 0.01 level (2-tailed).
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For contrast, Table 2 displays the fits of the simple feature matching model. 

Here, too, there was no relationship between RT and feature matches at 500ms and 

600ms, but a significant correlation between the number of feature matches and 

reaction time at a 750ms response deadline (r = .42, p < 0.05) and at 2000ms (r = .29, 

p < 0.05). In both cases, however, the feature model accounts for less variance than 

RD, as can be seen in Figure 29. At 750ms the size of difference is smaller, as 

reflected by the likelihood ratio for this condition: the data are 6 times more likely for 

RD than for the feature-matching model, thus providing moderate evidence for 

choosing RD in this condition. At 2000ms, however, the feature model provides a 

much poorer fit of the data when compared to 750ms, accounting for only 8% of the 

variance at 2000ms. Indeed, the likelihood ratio between RD and the feature model 

indicates this: the data are 174 times more likely given RD in the 2000ms condition 

and, therefore, favor RD strongly. As the graph shows, there is no notable change in 

RD’s fit at the longer deadlines, that is, between 750ms and 2000ms.

—  RD 
_ Feature 

m atches

750ms 2000ms
Response deadline

Figure 29. Graph showing the variance accounted or by RD and feature matches over 

the time course for RT data only.
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In sum, RT fails to tell us much about either model at short response 

deadlines. We next consider whether the same is true of the error data. Given that it 

was difficult to make a response at short deadlines, not only incorrect judgments but 

also failures to make an appropriate response in time at all should be related to the 

similarity between objects.

Table 3

Summary o f Pearson's r values for each tested model across the time course (errors).

Model\Deadline 500ms 600ms 750ms 2000ms
RD -0.38(**) -0.46(**) -0.47(**) -0.49(**)

Feature matches 0.43 (**) 0.44 (**) 0.38 (**) 0.40 (**)

* Correlation is significant at the 0.01 level (2-tailed).

For analysis, both false-positives and timeouts were classified as errors (see 

Goldstone & Medin, 1994). The graphs in Figure 30 show the relationship between 

the number of transformations and error responses at each response deadline. Unlike 

the RT measure, the predicted negative relationship between transformation distance 

and errors is evident at each response deadline. The predicted relationship is bom out 

statistically at 500ms (r = -.38, p < .01), 600ms (r = -.46, p < .01), 750ms (r = -.47, p 

< .01) and 2000ms (r = -.49, p < .01).

Relative to reaction time, the predicted pattern is shown consistently across 

deadlines, emphasising the importance of incorporating both of these measures when 

assessing model performance (see Figure 30). The discrepancy across measures is 

most profound at the 500ms and 600ms deadlines, where neither model correlated at 

all with RT; the task was clearly too difficult to see sufficient variation in RTs to get
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the predicted pattern o f results. Like RD, the featural model performed better across 

the time course when correlated with errors (see Table 3) and showed significant 

correlations at each response deadline. The relative performance of each model (i.e., 

the variance accounted for) can be observed in Figure 31.
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Figure 30. Graphs showing the relationship between RD and the total number of 

errors per item for each response deadline.

As can be seen, the feature matching model provides a slightly better fit of the 

data at 500ms: RD accounts 14% of the variance and the featural model accounts for
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18%. Correspondingly, the data are 7 times more likely given a crude feature- 

matching model at 500ms, thus providing moderate support for the feature model at 

this point in time. At 600ms, the variance accounted for by RD shows a substantial 

increase whereas the feature model shows little improvement. The data are 3 times 

more likely given the RD at 600ms, providing slight support for RD over the feature 

model. As seen in Figure 31, the feature model becomes less accurate over time and 

performs worse relative to RD at longer deadlines (750ms & 2000ms). This 

improvement by RD is shown in the likelihood ratios: the data are 44 and 57 times 

more likely given RD in each of the respective conditions. Both by interpreting the 

graph in Figure 31 and by studying the likelihood ratios, it is clear that RD is by far 

the best model at longer deadlines. Trend-wise, RD shows a gradual increase in model 

accuracy over time whereas the feature model actually accounts for less of the data at 

longer deadlines. In addition, RD provides the best account of these data at all but the 

500ms deadline -  although RD provides only a moderately better fit at 600ms.

Feature 
'  matches

“  18-

15—

11>—
600ms 750ms 2000ms500ms
Response deadline

Figure 31. Graph comparing the variance accounted for (R2) by RD and features 

matches over time for the error data.
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MIP/MOP weighting

As before, an alignment model was also tested on these data. Based on 

previous research participants should be more inclined to make alignments outside the 

best global mapping at shorter deadlines, or align features that go against the one-to- 

one constraint. Although Goldstone and Medin (1994) demonstrated that MIPs and 

MOPs are equally salient at short deadlines, they used much longer deadlines (Is, 

1.84s & 2.86s) and more complex stimuli. Therefore, it is not completely clear what 

to expect in the present context. Given the much shorter deadlines used here, MOPs 

may have an equal influence overall, that is, both MIPs and MOPs will be equally 

salient throughout the range of response deadlines studied here.

The top two panels of Figure 32 depict the change in model accuracy when 

MIPs and MOPs are differentially weighted for the RT data (the data for earlier 

deadlines are not shown as no model provided accurate fits). The best-fitting SA 

model at 750ms is when MOPs are given greater weight in the model - i.e., MOP 

weighting = 0.7 (see upper left panel, Figure 32). At the 2000ms deadline, the best 

fitting SA model gives greater weight to MIPs (MIP weighting = 0.8; upper right 

panel, Figure 32). Notably, at 750ms, the best fitting SA model provides a poorer fit 

than both the feature matching model and RD, despite having a free parameter. At 

2000ms, the best SA model also accounts for less of the variance than RD.

For the error data, the MIP/MOP fits can be observed across the whole tested 

time course (bottom four panels, Figure 32). For the 500ms response deadline, the 

model accuracy varies considerably depending on the relative weightings of MIPs and 

MOPs. When MOPs are given greater weight in the model, 40% to 100%, it achieves 

a fit that is superior to RD and the featural model and accounts for 22% of the 

variance at the optimal point.
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Figure 32. Variance accounted for by MIPs/MOPs when they are weighted 

differentially. The dotted line and bold grey line represent the variance accounted for 

by RD and feature matches respectively. The top two panels are the RT data and the 

lower panels are the error data.
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Considering the free parameter, AICs are calculated to determine the cost of 

model complexity for the SA model (see Table 4). Indeed, once model complexity is 

taken into account, the SA model performs worse than both RD and the feature 

matching model at 500ms (see Table 4). Here, the feature model provides the best fit 

of the data once complexity is taken into account. At 600ms, once again, the 

MIP/MOP model achieves the strongest fit of the error data set when MOPs are given 

greater weight in the model. At this optimal point, the model slightly outperforms RD 

and the feature-matching model, albeit to a lesser extent (21% vs. 19%). Again, 

however, the SA model provides the poorest fit of the data once this free parameter is 

accounted for in the model evaluations. Overall, however, there is very little to tell 

between the models at 600ms.

Table 4

Summary o f AIC values for the 500ms and 600ms conditions. The AIC reflects the 

amount o f information lost once complexity and accuracy are taken into account (i.e., 

smaller the better). A* is the distance between a model 's AIC and the best fitting model 

and K is the number o f free parameters.

500ms Model K RSS AIC Ai

Features 0 931.37 63.95 0.000

RD 0 944.60 65.79 1.842

Best SA 1 910.72 69.88 5.932

600ms Model K RSS AIC Ai

RD 0 931.37 85.91 0.000

Features 0 944.60 86.41 0.496

Best SA 1 910.72 87.12 1.211
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At longer deadlines (750ms & 2000ms), this free parameter does not yield 

superior fits of the data. Like the model comparisons between RD and features shown 

above, the data favor the RD account at longer deadlines. Overall, the MIP/MOP 

model shows poorer fits at long deadlines when compared to shorter deadlines.

Discussion

In general, Experiment 4 once again provides some support for the 

transformational approach in an implicit, speeded task. For short deadlines, no model 

showed a relationship with RT, statistically or otherwise. However, at 2000ms and, to 

a lesser extent, 750ms, the data favor a transformational approach when compared to 

both a feature-matching model and an SA model that can differentially weight MIPs 

and MOPs. For the error data, performance could be compared across all conditions 

and, as expected, the relationship between models over time is more complex; RD, 

feature matches and the SA model achieved significant fits of the data across the time 

course - making errors the more valuable measure in this experiment. At 500ms, a 

crude feature-matching model provides the most accurate fit of the error data once the 

SA model’s free parameter is taken into account. At 600ms, all models perform 

almost equivalently, with RD being the slightly preferred model once the SA model’s 

additional complexity is considered. Overall, the data at longer deadlines (i.e., 750ms 

& 2000ms) favor RD and thus resemble the order of model performance observed in 

Experiment 3.

The SA model provides the strongest data fits for both the 500ms and 600ms 

deadlines when MOPs are given slight precedence in the model (i.e., 70% weight). In 

addition, the increasing salience of MIPs over time, as indicated by the rightward shift 

of the optimal fit in Figure 32, is compatible with the findings of Goldstone and
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Medin (1994), despite the much shorter response deadlines used here. At longer 

deadlines (750ms & 2000ms), no weighted version of SA can account for as much as 

the data as the transformational account.

Crucially, the performance of the feature-based model at short deadlines may 

be indicative of the sorts of representations being exploited at this stage in time. 

Crucially, these tests, by comparing models that assume different underlying object 

representations, probe how representations, more generally, build over time for these 

objects. Thus, given that RD and the feature model provide only an end-state 

prediction in this context, these results can help in determining what specific stimulus 

properties are being encoded in this task and, more importantly, when.

General Discussion

Both experiments support the notion that transformational relationships can 

predict the perceived similarity between object representations in an implicit task. In 

Experiment 3 the predictions of RD, as determined by a three-operation coding 

scheme, provided (to varying degrees) the best fits of both RT and error data when 

compared to a basic feature matching model and an alignment model in a sequential 

matching task. In Experiment 4, the same models were examined over the time course 

using a simultaneous matching task with four different response deadlines. Unlike the 

order of performance observed in Experiment 3, a basic feature-matching model 

provided a more ‘likely’ fit of the data than RD at 500ms. Also, at 600ms, there was 

no compelling evidence for selecting one model over another, with all models 

yielding comparable fits of the data. However, at longer deadlines, RD fitted more of 

the data than any other model. The superiority of the more basic feature-based models 

at short response deadlines, coupled with RD’s superiority at long deadlines, suggests
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that the encoding and accumulation of more complex object properties takes time. 

Before discussing how these time course changes may relate to the representation 

schemes of the models compared, the general implications of these findings for the 

study of RD will be discussed.

Significantly, this study is the first evidence for RD using an implicit measure 

of similarity. While both explicit and implicit measures have their benefits, similarity, 

in our everyday experience, is often derived very quickly without a conscious 

reference to the comparison taking place or to the properties that are implicated in that 

comparison (note, direct measures are not necessarily poor measures of perceived 

similarity - they merely represent one out of a number of possible similarity measures; 

for comparisons of both implicit and explicit measures, see Desmarais & Dixon, 

2005). As transformations can provide accurate fits in this context, it supports the idea 

that transformations could be important in other areas of behaviour where implicit 

judgements of similarity are carried out, such as in spontaneous categorisation (see 

Chapter 5). As well as supporting RD generally, these results also support further the 

intuitiveness of the specific coding scheme used. As the coding scheme assumes the 

representation of feature locations and whole objects (through feature binding), these 

results provide further support for the representation of such information in implicit 

contexts (see Schoenfeld et al., 2003). In terms of similarity theories in general, these 

experiments also provide more insight into the role of features and alignment 

processes in this domain and how these may relate to the sorts of transformations that 

are relevant/detected.

Additionally, the reasonable fits found for the transformational account in this 

implicit task are compatible with the perception literature that has long assumed a role 

for transformations and structure in the processing of visual stimuli, namely object
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recognition and apparent motion (Biederman, 1986; Graf, 2006; Shepard & Judd, 

1976). More specifically, a number of behavioural studies that have employed 

speeded object-naming tasks have found a monotonic increase in RT with increasing 

transformation distance between two sequentially presented object viewpoints. This 

pattern has been shown for both spatial transformations, such as rotation and 

translation (Bundesen & Larsen, 1975; Bundesen et al., 1981, 1983), and also shape- 

changing transformations, such as object morphs or ‘warps’ (Graf, 2002, 2006). Graf 

(2002) showed that RT and errors increased with transformation distance when 

participants had to indicate whether the viewed objects were the same basic-level 

category. Correspondingly, similarity ratings also decreased with transformation 

distance, matching the predictions of an RD account. A later study by Panis, 

Vangeneugden and Wagemans (2008) also reported the same patterns between RT 

and transformation distance using morph stimuli across 11 natural object categories.

Overall, this literature supports the results found here, albeit indirectly. For 

one, the fact that a negative trend is observed between transformation distance and RT 

here signifies that transformations affect behaviour differentially in this specific 

version of the same-different task. Studies of object recognition, in general, demand 

participants to indicate whether a two viewpoints are the same object or category or 

not -  not an identical image. Therefore, the task requires participants to search for 

commonalities, or any invariant properties, once the object has undergone some 

degree of transformation (i.e., spatial and/or topological transformation). When 

studying similarity, as opposed to recognition, participants respond same if and only if 

the compared images are identical in each and every respect. In this version of the 

task, then, it is object differences that are of interest because once a difference is 

identified, ‘sameness’ is falsified and the appropriate rejection response can be made
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(Frost & Gati, 1989). Therefore, in the context of a same-different task, centred on 

strict identity, similarity has the opposite influence on RT and errors, regardless of 

how similarity is measured.

2 M IPs (shape +  colour) 1 MIP (colour)

1 MOP (shape)

Figure 33. An example of a MOP in this domain. The left square in the pair 1 is 

placed into one-to-one correspondence with the left square in object 2 (MIP). 

Therefore, the leftover match between the left square in pair 1 and the right square in 

pair 2 is outside the best global mapping.

Experiment 4 provided the opportunity to assess the relative performance of 

each model over time. From these model comparisons it is possible to infer what 

stimulus information is represented at any one time; for example, the poorer 

performance of RD (in relation to other models) at 500ms within the error data 

suggests that all properties central to the coding language are not necessarily 

represented at this point in time, for example, the binding of features and the 

processing of structural information.
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Firstly, however, it is important to address why a MOP-weighted model 

performed adequately at short deadlines. The data from 750ms onward are compatible 

with Goldstone and Medin (1994), who demonstrated that MIPs and MOPs have 

equal influence early on in time. These data also show that MOPs become less 

influential over time. However, a model which actually places more weight on MOPs 

provides a better account of the error data at very short deadlines when compared to 

RD. To re-clarify, MOPs are alignments between features that do not correspond 

(i.e., attribute matches outside the best global mapping, see Figure 33). Initially, 

MOPs may correlate strongly with errors because they provide misleading 

information, that is, they force participants to falsely respond ‘same’ because they are, 

by definition, matches, albeit non-optimal. Also, the competition between finding a 

feature match but not confirming object identity leads to a response slowing down - 

resulting in a timeout. The most important fact is that MOPs, unlike actual 

differences, are still matches and therefore invite response competition.

Furthermore, as Markman and Gentner (2005) state, “ensuring that the entire 

correspondence obeys the constraint of one-to-one mapping is a complex process” and 

is probably simply not possible at such short deadlines when the resources are not 

available to align many features, let alone form structure mappings. Therefore, the 

importance of MOPs early-on may reflect, quite simply, that fewer features have been 

accumulated at that point in time. For a MIP-based model to do well, all MIPs must 

be recognised, and given that there are, on average, two MIPs per comparison, 

participants will have to match at least four features for this model to perform well at 

short deadlines. Incidentally, there are actually fewer MOPs per comparison, thus 

fewer feature matches overall. In short, a model that predicts a greater influence of 

MOPs will just predict fewer matches to take place (see Figure 34, top panel) which
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consequently will lead to better fits at short deadlines because only a few local 

matches are taking place at this point in time.
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Figure 34. Graphs explaining the data fits of the MOP-weighted model early on. Top 

panel: the average number of matches required at each MIP/MOP weighting. Bottom 

panel: the difference between the MOP-weighted model and the feature model across 

all tested items (the x axis represents all 81 comparisons in the subset). This graph 

indicates that 1) the number of matches in total per comparison differs, and 2) that the 

spread in the predicted values is much lower for the MOP-weighted model.
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The difference between the MOP-weighted model and the feature matching 

model indicates a related point: as can be seen in Figure 34 (bottom panel), the actual 

‘spread’ of the best-fitting SA model predictions (grey line, range = 3) is much less 

than the featural model (black line, range = 6) - in addition to predicting fewer 

matches overall. So, while both models exhibit similar patterns across all 

comparisons (as can be seen by the peaks in Figure 34, bottom panel), the actual total 

number of features matched, as well as the spread of the predictions, varies 

considerably. Interestingly, therefore, these graphs suggest that the strong fits 

obtained by this SA model are incidental rather than reflecting something inherently 

important about MOPs for these items at this point in time. In a sense, the model is 

doing better because it predicts few differences in data that, due to severe response 

time restrictions, contains few differences. This confirms the idea that stimuli are not 

yet fully encoded at short deadlines (Goldstone & Medin, 1994; Lovett et al., 2009), 

thus explaining why transformations also perform poorer early on relative to feature 

models. It does not, however, ultimately recommend MOPs as a measure of 

similarity.

Likewise, the fact that the tested transformations fare worse at the shorter 

deadlines is not, however, evidence against these transformations in general. RD, as 

outlined here, provides only an end-state prediction, which is dependent on a 

particular mental representation of the objects in question. Therefore, RD’s 

performance necessarily depends on how representations build and change over time; 

mental representations are not fixed entities but are instead shaped by our perception, 

goals, knowledge, context and so on. Transformations should be relevant across the 

whole time course but as representations continuously change so will the relevant 

transformations. Quite simply, at any point in time, we compare what ever
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representations happen to have built up -  if these happen to be simple, the 

transformations will be simple also.

The posited transformation set relies on the representation of not only new and 

copied features, through the ‘create’ and ‘apply’ operations, but also on the 

representation of where these features are located within a pair -  as in the ‘swap’ 

operation. Therefore, if short deadlines do not allow for the sufficient processing of 

‘what’, and more importantly, ‘where’ information, then certain transformational 

relationships will not be recognised at all and non-structural, feature-based 

transformations will be all that is left, that is, just ‘create’ and ‘apply’-like 

transformations.

This can be inferred from the present data because the featural model 

outperforms RD early on (Figure 32). Comparing incomplete and unstructured 

representations will favour this model for a number of reasons; firstly, as feature 

models define objects as bundles of separate features, there will be no requirement 

for features to be bound into whole objects, unlike the coding scheme on certain 

comparisons. Secondly, both of these models match features regardless of spatial 

location, meaning that non-structured representations will pose no problems at all. 

Finally, as discussed above, the MOP-weighted model will be more accurate when 

stimuli are not fully encoded because it predicts both fewer matches to take place 

overall and fewer differences in the data. Therefore, if the object representations 

being exploited are simple and feature-based then why should the similarity model 

assume anything more complex?

This question does not challenge a transformational account because the 

adding, copying and deleting of features are, by definition, transformations, albeit 

non-structural, and the fact that RD still performs significantly at 500ms and 600ms
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(in the error data) indicates that this coding scheme, predominantly made up of 

featural transformations, is still, to some extent, relevant at this stage.

So, the poorer fits at short deadlines are not evidence against transformations 

per se but solely against the representations required for the whole transformation set 

to be relevant - for example, structured representations. Hence, the performance of 

this transformation set, relative to, say, a feature-matching model, is important for 

understanding how mental representations build in general. Indeed, it seems that 

both the absolute improvement of RD over time, and the relative improvement of RD 

over feature-based models, confirms the intuition that structured and more complex 

representations emerge over time. Even the SA model used here, which does not 

provide the most accurate account of similarity in this task, is an analytic tool in this 

context for tracking the emergence of these more complex representations (see Figure 

32). For example, the fact that the peak fit for the SA model shifts from being MOP- 

weighted at 500ms to being at the point where MIPs and MOPs are equally weighted 

at 2000ms (see Figure 32) suggests that more complex alignments are taking place 

later on. Likewise, the fact that the best SA model in Experiment 3 predicts a greater 

influence of one-to-one matches (i.e., is MIP-weighted) supports the general notion 

that similarity comparisons exploit more complex representations as more time is 

allowed to process objects.

In addition, if transformations that require structured representations (i.e., 

swaps) are relevant at all early on (see below) then this emphasises the need for 

similarity models that can tolerate a wider range of mental representations -  

particularly those that are structured.

This temporal change in mental representation (described above) has been 

discussed previously in relation to this task; Brockdorff and Lamberts (2000), for
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example, describe representation building as an ‘information accumulation process’, 

whereby processing time is related to how detailed the object representation is in 

memory. From this process, the ‘richest’ representation can only be utilised when the 

essential ‘what’ and ‘where’ information has been accumulated.

Also, Markman and Gentner (2005) state that structure-based similarity 

comparisons are slower and more effortful than indiscriminative feature based 

comparisons and will emerge over a period of seconds not milliseconds. This is 

presumably based on the fact that the input representations, which are incomplete, are 

simply too limited to warrant any high-level structural alignment. Whilst this general 

intuition seems correct, as shown here and in other studies, the time course they 

assume for comparing structured representation may be far too long, at least for this 

domain. The end-state prediction of RD, that assumes a role for both structured 

representations and the binding of object features, still does well at explaining errors 

as early as 500ms after stimulus presentation; however, this alone does not necessitate 

the early emergence of structured representations given that the coding scheme, being 

largely comprised of featural transformations such as ‘create’ and ‘apply’, will 

naturally correlate with featural models to some extent at this point. Looking at these 

transformations in more detail, however, may help us address this.

As explained in this chapter earlier, the featural model makes some very 

counterintuitive predictions that are well explained by RD (if one assumes objects to 

be fully encoded). For example, the comparisons ‘AB/AB’ and ‘AB/BA’ have the 

same number of feature matches, despite two objects being identical in former and 

different in the latter. If you match spatial features to correct for this, such as ‘left A’ 

or ‘right A’, then the model then predicts no features in common at all, despite the 

fact that the same objects are compared in both comparisons. However, the swap
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transformation can easily deal with this contrast but for a swap to give rise to this 

difference the relative location of features needs to be represented -  if not, a featural 

model may do very well.
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Figure 34. Graphs to that demonstrate the role of certain properties over time. Top 

panel: graph showing the difference between RD and the feature model at fitting 

comparisons with structural differences (AB/BA) and those with only featural 

differences (AB/AC). Bottom left panel: graph showing the difference between RD 

with and RD without the whole object swap transformation. Bottom right panel: graph 

showing the changing influence of the swap transformation over the time course.
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The ‘whole object swap’ (AB/BA, colour; AB/BA, shape) also assumes, as 

well as the relative location of features, that features across both dimensions (shape 

and colour) are bound into a unitary percept. The graph in the bottom right panel of 

Figure 34 depicts the effect of the whole-object swap on errors over time. Two 

patterns can be observed: firstly, errors on the swapped item decrease as more time is 

allowed for the comparison, and secondly, errors for the swapped case increase 

relative to the mean errors across all items. The absolute decrease in errors 

demonstrates that the difference that arises from the swap is more noticeable at longer 

deadlines, that is, it is easier to notice that two object have changed location. 

However, the relative increase in errors shows that, with sufficient time, the high 

similarity between the swapped pairs, as predicted by RD, is bom out relative to other 

items, and as early as 600ms. This is likely because longer deadlines allow for 1) the 

representation of structure, and 2) allow separate features that have changed in 

associated ways to be bound into whole objects. The graph in the bottom left panel of 

Figure 34, to some extent, also supports this view; as can be seen, the RD model that 

does not code ‘whole object swaps’ is better than RD-proper at 600ms. At longer 

deadlines, however, the RD model that assumes relational bindings improves and fits 

more of the data than the non-swap RD model, thus supporting the claim that structure 

becomes more important over time in this task.

Research into the time course of feature binding supports these observations: 

task relevant features are selected between 120 and 180ms and the subsequent binding 

will take up to 300ms (Kenemans et al., 2002; Schoenfeld et al. 2003; Sharikadze et 

al., 2003). This time course seems compatible with the current findings as a 

differential sensitivity to whole object swaps is shown as early 600ms (see bottom 

right panel, Figure 34) -  note, that the above time course needs to be applied to two
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objects. To recognise that an object is the same as one previously seen in a different 

spatial position will firstly require the representation of a whole object -  this will 

involve attending to the common association between colour and shape (i.e., that they 

both swap location) -  which will then indicate the need for additional processing and 

facilitate the binding of these features (Markman & Gentner, 1995; Reeves, Fuller & 

Fine, 2005; Treisman, 1977, 1998; Treisman & Kanwisher, 1998).

Of course, it is not too surprising that binding occurs so early given the 

importance, and indeed naturalness, of representing objects as integrated wholes and 

not as bundles of separable features. A feature-based model that parses dimensions 

and features will necessarily fall short when object features are perceived to transform 

and act simultaneously as whole objects, even in implicit tasks.

Furthermore, the top panel of Figure 34 indicates a related point; the graph 

displays the data fit of both RD and the feature model for items with structural 

differences (i.e., left vs. right, such as AB/BC) and those with no structural 

differences (differences between features in situ, such as AB/AC). Noticeably, the 

feature model’s performance at 500ms is being driven by its fit of these non­

structured items. This suggests what has been stated previously, namely that this 

model is well suited to incomplete, unstructured stimuli -  i.e., a feature model is quite 

good at predicting responses when stimulus information is still being accumulated. 

The most striking element of this graph, however, is that the feature model’s fit of 

these items decreases substantially over time whereas RD shows little change. This 

suggests that crude feature matches alone are not enough for capturing featural 

differences once stimulus representations become richer and more complex -  

regardless of structure.

Importantly, the random subset of stimuli used here was not selected to
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distinguish these accounts on the basis of structure alone - it was selected to represent 

this domain in its entirety. What is clear from these final observations is that RD is 

still accounting more data at long deadlines than the feature model, even without 

whole object transformations. What can not be ignored, therefore, is that these data 

also support the non-structural, feature-based transformations, such as ‘create’ and 

‘apply’, particularly when richer, more ‘complete’ object representations have been 

formed (e.g., post 600ms).

Summary

Overall, these experiments have provided the first support for a 

transformational account in a speeded, implicit task. Furthermore, the results of 

Experiment 4 show how the sorts of transformations that are relevant in a given 

context depend on what representations have been built. Although the stronger fits 

obtained by basic featural models early on suggest that representing structural 

information takes time, there is some evidence here (in the error data) to suggest that 

more complex information is relevant as early as 600ms when judging the similarity 

between objects.
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4

Transformation and Asymmetry

Asymmetry is arguably the most counter-intuitive phenomenon in the study of 

similarity and, as result, is somewhat diagnostic in distinguishing between different 

theoretical approaches. To recap, in the context of similarity, asymmetry refers to a 

difference in perceived similarity that arises from the direction of the comparison 

itself, that is, SIM(A,B)^SIM(B,A). For example, the statement “North Korea is 

similar to China” is often preferred to the opposite (Tversky, 1977). As mentioned in 

earlier chapters, RD theory can predict asymmetries because the complexity or ease of 

a transformation can depend on the direction implied. Such differences in 

transformational complexity are predicted within the domain tested throughout and so, 

given the importance of asymmetries in distinguishing between different models of 

similarity, these asymmetries are examined in detail in the following chapter.

Indeed, asymmetries seem fairly robust; evidence of asymmetric similarity has 

been accrued across different stimuli (geometric shapes, rotated projections, countries,
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narratives, self concepts & music), measures (confusability, ratings) and species (e.g., 

non-human primates; for previous evidence see Bartlett & Downing, 1988; Bowdle & 

Gentner, 1997; Catrambone, Beike & Niedenthal, 1996; Op de Beeck, Wagemans & 

Vogels, 2003; Tversky, 1977). Although evidence, on the whole, suggests that 

asymmetric similarities are psychologically real, this evidence is far from conclusive. 

As stated in Chapter 1, Gleitman et al., (1994) argued that the asymmetries observed 

by Tversky (1977), and necessarily others (e.g., Bowdle & Gentner, 1998), may not 

be related to similarity proper but to the syntactic structures in which these so called 

‘symmetrical’ predicates appear. In support of this view, Gleitman et al. reproduced 

these asymmetries for 20 other symmetrical predicates, such as ‘equal’, ‘identical’ and 

‘meets’. Fundamentally, this shows that the preference for a particular order of 

objects is independent of the predicate used, implying that similarity need not be 

reconceptualised as an asymmetric construct.

These findings may suggest that an asymmetric analysis of similarity may be 

unjustified based on some of the similarity experiments that have been employed so 

far. Gleitman et al.’s (1994) perspective strongly necessitates further research into 

asymmetry using non-linguistic, implicit similarity measures and also a clearer 

understanding of what it means to say that similarity proper is asymmetrical. If 

similarity is, in some cases, asymmetrical, then directional differences in perceived 

similarity should occur across a range of measures, not just within verbal tasks. In the 

current chapter, therefore, asymmetries will be tested using the implicit paradigm 

from the previous chapter - the same-different task. Furthermore, specific 

transformational predictions of asymmetry will be investigated, that is, comparisons 

where the transformation distance varies according to the direction of comparison.

Despite Gleitman et al.’s (1994) critique, asymmetries have been very
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important in distinguishing between different accounts of similarity. Initially, 

similarity was considered to epitomise symmetry. For example, as described in 

Chapter 1, the spatial model (Shepard, 1957) embodies symmetry in its fundamental 

axioms (i.e., the distance between two objects in a coordinate space is the same 

regardless of direction). It was because of this fundamental assumption that 

asymmetries gained theoretical attention. To recap, Tversky (1977) specifically put 

forward asymmetries as evidence against spatial models, and in favour of his own 

featural approach, the Contrast Model. Tversky argued that judgements of similarity 

could not be removed from the actual statements which formed the basis of them. 

The statement “A is like B” is unique in that it has a directional component; it has a 

referent (or base) B and a subject (or target) A, and the allocation of objects to these 

respective roles is unlikely to be arbitrary (but see above). Crucially, this direction 

can be induced by directional similarity statements or by sequential presentation (see 

Chapter 3).

More specifically, Tversky (1977) noticed that participants preferred the 

direction where similarity was maximised, and this involved selecting the most salient 

or prototypical object as the base object, as opposed to the target, for example, “North 

Korea is similar to Red China ” is preferred to “North Korea is similar to Red 

China ”. To restate Chapter 1, Tversky’s contrast model,

SIM(A,B) = 0/(An B) - a/(A - B) - B̂ (B - A) (3)

defines the similarity of representations A and B as a function of their shared features, 

minus those distinctive to A , minus again those specific to B. The parameters a, 13, and 

0 are weighting terms that depend on the task. In a non-directional judgement (“how



Chapter 5 -  Transformation &. Asymmetry 130

similar are A and i??”) the distinctive feature sets of both objects are given equal 

weight (i.e., a = 6). In this case, similarity will necessarily be symmetric. However, 

asymmetries will arise when objects are subject to a directional comparison, in which 

case the distinctive features of one object may be weighted more heavily than those of 

the other (i.e., a > 6). This will give rise to asymmetries whenever the objects differ 

in salience, that is,J(A)

There is an interesting consequence of this assumption in the Contrast Model: 

if  two objects differ in salience, then their ‘self-similarity’ will also necessarily differ, 

with the most salient object being more similar to itself than the least salient. In 

distance-based models of similarity, the similarity of an object to itself is the same, 

regardless of the object. In the Contrast Model, however, similarity, and with it self­

similarity, has no inherent upper bound (see Chapter 1 for a discussion of this issue). 

In support, Tversky (1977) provides some evidence for differences in what might be 

construed as self-similarity in both ratings tasks (Gati & Tversky, 1982) and in the 

percentage of correct same responses on a same-different task (Rothkopf, 1957).

In response to Tversky’s (1977) critique of spatial models, Krumhansl (1978) 

put forward the distance-density model - an amended spatial model that can allow for 

asymmetries. Krumhansl provided a psychological interpretation of stimulus bias by 

assuming that the objects in denser regions of psychological space will possess greater 

weight. In the distance density model there is density parameter, d, associated with 

each object (e.g., i and j )  and three weighting factors, a, p and 0. More specifically, 

asymmetries will arise when both density and weighting factors differ, that is, when 

5(i) T 5(j) and a ^ p. Nosofsky (1991), then, redefined the spatial approach and argued 

that a spatial approach to similarity can account for asymmetries through a more 

general notion of a ‘differential stimulus bias’. Whereas Krumhansl provided one
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example of stimulus bias, that is, density, Nosofsky’s notion of bias refers to a number 

of possibilities that are both stimulus-based and response based, e.g., density, 

frequency and feature loss vs. feature gain. Crucially, differential biases are associated 

with individual stimuli and not with similarity per se. Nosofsky then went on to 

demonstrate that not only Krumhansl’s (1978) model, but also the Contrast Model (at 

least in specific versions) is an example of the same general, stimulus bias framework. 

The Contrast Model, for example, does not account for asymmetry in the matching 

process itself but by differentially weighting model parameters.

What is common to all specific manifestations of the stimulus bias framework 

is that asymmetries arise as a consequence of the inherent properties of individual 

stimuli; they do not stem from the nature of the comparison process itself. This is in 

marked contrast to the transformational approach to similarity. As will be shown 

below, it accommodates asymmetries based on stimulus salience or complexity, but 

also allows asymmetries in cases where no differences in complexity or salience exist.

Hahn et al. (2009) were the first to exploit directional similarity judgements 

(‘how similar is A to B ?’) in testing the transformational account. Transformational 

complexity can differ readily depending on direction: spilling water from a cup, for 

example, is easier than gathering the spilled water back in. Any such directional 

difference should give rise to attendant differences in perceived similarity, and hence 

asymmetric similarity between the two comparison points. Hahn et al. (2009) tested 

whether an inherent sense of direction could be artificially induced. To this end, they 

showed participants short animations of one familiar basic level object undergoing a 

shape-changing transformation into another. After viewing the animation, participants 

rated the similarity of objects drawn from the morph continuum. Directional 

similarity ratings for the exact same comparisons were higher when the referent object
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(or base) had appeared first in the preceding animation; that is, ratings were higher 

when the direction of the similarity comparison corresponded with the direction of the 

preceding animation. In the second experiment, the start and end points of the morph 

sequence were visible on all trials to control for any primary or recency effects that 

may result in differences in endpoint salience. The same pattern in similarity ratings 

was shown even when these endpoints were available onscreen.

Given that the experimental manipulation involved only the direction of the 

preceding animation, it is hard to see how these results could be explained through 

differential salience or complexity of the two objects being compared. Instead, it 

seems that perception of the ease or naturalness of the transformation itself was being 

affected. In other words, it seems that the directional asymmetries that arose stemmed 

from the nature of the comparison process itself, not from intrinsic properties of the 

individual stimuli.

Measuring asymmetry

Studies that have investigated asymmetric similarity directly have largely 

focused on using explicit measures of similarity such as preference judgements, 

similarity ratings or forced choice responses (e.g., Bowdle & Gentner, 1997; 

Deregowski & McGeorge, 1998; Tversky, 1977). It may be fruitful, given that 

similarities emerge rapidly in the categorisation and recognition of visual stimuli, to 

study asymmetries implicitly using a low-level similarity task. In addition, if 

asymmetry is part of similarity in general, then asymmetries should pervade through 

both verbal and non-verbal tasks, as long as the comparison is directional (see above). 

As discussed above, Gleitman et al., (1994) demonstrated asymmetries for many 

clearly symmetric predicates using verbal manipulations, such as ‘equal’ and
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‘identical’. Crucially, this result suggests that asymmetries are related to the linguistic 

structures in which they appear, not necessarily to an underlying concept of 

asymmetric similarity. Therefore, reliable demonstrations of asymmetric similarity in 

implicit tasks, as well as verbal tasks, will indicate that asymmetric similarity in some 

contexts is more than just an artefact of syntactic structure.

To date, there is some evidence of asymmetric similarity using perceptual 

tasks. Rothkopf (1957) for example, found asymmetries based on the length of Morse 

code signals in a sequential same-different task. Specifically, there was systematic 

difference between the numbers of incorrect ‘same’ responses depending on whether 

code length went from ‘short’ to ‘long’ or the opposite. Tversky (1977), Krumhansl 

(1978) and Nosofsky (1991) later interpreted these findings as being compatible with 

their respective similarity models.

Op de Beeck et al. (2003) presented rhesus monkeys with a same-different 

task where stimuli varied according to their prototypicality. In line with Rosch (1975), 

there were fewer errors when more prototypical items were in the base position of the 

comparison. Unfortunately, Op de Beeck et al. did not choose to replicate this finding 

in humans using the same task, and instead opted for a similarity rating task.

Asymmetries in the transformational approach

The transformational approach predicts asymmetries - i.e., directional 

differences in transformational complexity -  within the stimulus domain tested 

throughout Chapters 2 and 3. In the current chapter these predictions will be 

investigated through a reanalysis of Experiment 3 and by testing all asymmetric 

predictions for this domain. Furthermore, this will be the first direct investigation of 

asymmetric similarity in humans using an implicit, low-level task. More specifically,
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similarity will be inferred from patterns in reaction time and not from preferences 

ratings, similarity ratings, or forced choice responding. As the Contrast Model (i.e., a 

differential-salience account) provides the only testable prediction for these sorts of 

stimuli, the compatibility of these RD predictions with the Contrast Model is 

examined by looking at the relative salience of individuals pairs -  i.e., the prediction 

that self-similarity will vary according to goodness or complexity.

Figure 35. Stimuli from the two-dimensional stimulus set.

Experiment 5

For Experiment 5, a reanalysis of the data reported in Experiment 3 (Chapter 

3) is carried out. To recap, participants had to compare, in a same-different task, two 

sequentially presented pairs of shapes that varied along two dimensions (shape and 

colour), as illustrated in Figure 35.

In previous chapters, excellent quantitative fits were found between the 

transformational predictions derived from the coding language and perceived 

similarity for both a two-alternative forced-choice task and a direct ratings task. As 

the relevant test stimuli are a subset of those used in Chapters 2 and 3 these materials, 

and the associated transformations, will be briefly described again. On each of the 

two dimensions (i.e., colour and shape) there are 14 possible feature combinations. 

For example, the colour dimension’s features in Figure 35 are combined white, black,
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black, white. As colour and shape can be combined factorially, there are 196 possible 

comparisons in this domain. There are three general transformations, or operations, 

for comparing these items. These are applied to the base pair in order to modify it so 

as to generate the target pair. To reiterate, these operations are (in no specific order):

1) Create feature -  taking the base pair we apply this operation to create a new 

feature that is unique to the target pair.

2) Apply feature -  this operation takes an object or entity that is currently 

available (by being present in the base or by having been created via step (1)) 

and applies it to one or both of the objects in the target pair.

3) Swap -  this swaps features between a pair of objects or swaps the object in its 

entirety (i.e. swap shape and colour features simultaneously; see Figure 9 for a 

possible sequence).

As stated previously, in a non-directional similarity comparison, that is “how 

similar are A and B?” this coding scheme takes the distance associated with the 

greatest complexity, the MAX-distance between the two pairs, as its overall 

symmetrical prediction. However, when a comparison is directional (i.e., when there 

is a base and target) the distance is simply the number of steps from whatever is 

portrayed as the base. Out of the 196 possible comparisons, 122 are asymmetrical; 

here, the transformation distance between the two pairs depends on the direction of 

the comparison, or, in other words, which object pair is the base of the comparison 

(from which the target is derived). The asymmetries themselves arise from a number
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of principles embedded within the coding language outlined above; these principles 

are not arbitrary but are instead considered to account for how these representations 

are compared psychologically. For example, separating ‘create’ and ‘apply’ makes an 

important computational distinction between specifying a whole new and copying 

something that is already present in the base representation. In addition, applying 

two versions of the same object is as simple as applying one; this is to emphasise the 

fact the copying an object that is already available is ‘cheaper’ psychologically (in 

terms of computational complexity) than specifying a new feature in it entirety (for a 

detailed description see Chapter 2). An example of how this maps onto individual 

comparisons is depicted in Figure 36.

a
Direction o f  presentation

Direction o f  presentation

Figure 36. An example of an asymmetric relationship.

As can be observed, the transformation distance from left to right is two, 

whereas it is four in the opposite direction. In complexity terms, the former 

transformation is simpler and therefore associated with greater perceived similarity. 

The code is shorter, or simpler, left-to-right because ‘applying’ a feature to two shapes 

is as complex as applying it to one, that is:
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create (circle) + apply (circle(s)) -  2
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By contrast, in the case of the longer code, both shapes must be created and 

applied separately;

create (square) + create (triangle) + apply (square) + apply (triangle) = 4

There are no concessions for applying two objects because the shapes differ 

and thus require more effort to specify.

As the differences in complexity give rise to differences in code length (that is, 

the specification of the instructions required to perform the transformation) these two 

directions will be labelled ‘long’ and ‘short’ in the following chapter, where stimuli of 

varying transformation distance are considered. From this, a clear prediction is 

made: there will be greater perceived similarity in the ‘short’ direction relative to 

‘long’ for identical similarity comparisons.

It is worth noting that the transformational coding scheme introduced in 

Chapter 2 was not derived with asymmetries explicitly in mind, rather they are simply 

a consequence of the operations that were associated with specific comparisons a 

priori. Moreover, from simply observing these shapes, it seems difficult to assign 

differential salience to these pairs. Under the Contrast Model, the idea of salience is 

ill-defined and open to interpretation in many contexts, for example, the right hand 

object in Figure 36 could be argued to possess greater ‘goodness of form’ and 

therefore be more salient. Alternatively, the left object, by possessing a greater 

number of unique features could be argued to be more complex, and therefore more 

salient. In other words, it seems difficult, from the perspective of the Contrast Model,
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to make a priori predictions about whether or not these stimuli should give rise to 

asymmetries, and, if yes, what the direction of the asymmetry should be.

To test experimentally these predictions a directional task was required. The 

direction of comparison can be manipulated in a number of ways; the most common 

method is using explicit or verbal similarity statements such as “how similar is A to 

B?” and comparing these to the reverse (see Hahn et al., 2009, Tversky, 1977). Less 

common, however, is the method of manipulating the temporal order of presentation 

so that the first and second object in the sequence respectively correspond to the base 

and target roles of the directional similarity comparison. In this instance, the stimulus 

currently in the visual field is compared to the memory representation of the first 

stimulus, making the first the ‘referent’, or ‘base’. Given that the second stimulus is 

currently perceived at the time of judgement, it is sensible to label this the ‘target’ or 

‘subject’ of the comparison (i.e., “is the stimulus I am currently perceiving the same 

as what I just saw?”) rather than map this order directly onto a similarity statement 

(i.e., is stimulus 1 the same as stimulus 2?). This rationale, whilst justifiable, has 

never been explicitly stated in relation to this task. Tversky (1977), amongst others, 

have assumed the opposite, as this order has favoured, post hoc, the predictions of 

their stimulus bias accounts.

The sequential, perceptual-matching task provides an opportunity to 

manipulate the direction of comparison but also test these asymmetric predictions in a 

low-level, implicit task. In this task, participants are presented with two visual stimuli 

in sequence, and asked whether the second stimulus is the same (identical) or different 

to the first. This task provides a paradigm for measuring similarity implicitly, 

because, as stated in Chapter 3, response times on this task have been found to depend 

lawfully on the degree of similarity between compared stimuli. Specifically,
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participants take longer to correctly identify two stimuli as different when they are 

more similar (e.g. Cohen & Nosofsky, 2000; Farell, 1985; Podgomy & Gamer, 1979; 

Posner & Mitchell, 1967; see also Tomonaga & Matsuzawa, 1992, for matching-to- 

sample paradigm). Consequently, if the predictions of the transformational account 

are correct, participants should take longer to correctly respond ‘different ’ when the 

transformation distance is short -  as the differences that arise from the specific 

transformations will be harder to identify. When the distance, or code length, is long, 

differences will be rapidly perceived and a quicker ‘different' response will be made.

In the previous chapter a basic perceptual-matching paradigm was used to test 

the predictions of the transformational approach for a subset of all possible 

comparisons (81 comparisons). In order to control for direction each comparison was 

presented in both directions and averaged for subsequent analysis. Here, however, 

each direction (i.e., short and long) can now be separated and compared to examine 

any possible asymmetries.

As the original subset was chosen at random it did not include all 122 

asymmetric comparisons (48 comparisons). As a preliminary investigation, therefore, 

these 48 asymmetric comparisons were selected from the whole subset to see if the 

predicted directional differences in similarity were bom out. Evidence for such 

patterns could then motivate a subsequent, more detailed exploration using all 

possible comparisons.

Method

Participants

A total of 30 Cardiff University undergraduates completed the experiment 

(range = 18 to 25) and were all allocated course credit for their participation. The data
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from two participants were later omitted due to a failure to follow basic task 

instructions.

A to  B

Duration 
50 fram es

1 fram e ISI

Remains until 
resp onse

B to  A

Figure 37. Testing asymmetries using a perceptual matching task. A to B, in this 

example, corresponds to a ‘short’ distance (as in Figure 36, above), whereas B to A is 

Tong’.instructions.

Materials and procedure

For details regarding task parameters and specific stimulus information see 

Experiment 3 (Chapter 3) as this is the same experiment re-analysed. Out of the 81 

tested items in Experiment 3, 48 stimuli contained a predicted asymmetry (59%). 

Crucially, participants were presented each comparison in both directions (see Figure 

37) allowing both the symmetric (Experiment 3) and asymmetric predictions to be 

tested (see Figure 37).

Results

Comparisons that contained the predicted asymmetry were selected for 

analysis. As each comparison was presented in two directions - A to B and Bio A (see
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Figure 37) - we could simply compare the reaction times for each of these directions 

by assigning the relevant direction to a particular distance. As there were insufficient 

errors in this task analysis was restricted to RT only (4.65% of all responses are 

errors). RTs that were three or more standard deviations above and below the overall 

mean were removed from analysis (2% of trials were removed). To reiterate, the 

transformational approach predicts slower RTs in the short group as differences will 

be harder to identify when fewer transformations relate the compared objects. The 

mean RTs are displayed in Figure 38. As can be observed, the predicted pattern is 

bom out -  the mean reaction time is slower in the short condition when compared to 

the long condition (607ms vs. 594ms). This difference is significant using a one­

tailed within-subjects t-test (t (1, 36) = 2.5, p<.05).

a
2 600

a 595

S h o r t  L o n g

Transformation distance

Figure 38. Graph depicting mean reaction time for each transformation distance (error

bars = Standard Error).
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Discussion

The reanalysis of the Chapter 3 data supports the predictions of the 

transformation approach for this domain. Furthermore, these predicted asymmetries 

are bom out in an implicit perceptual task, where similarities are not determined 

through subjective assessment, but inferred through response times when faced with 

rapidly presented visual stimuli. Crucially, the comparisons are identical in each 

condition - the only difference is the order of their presentation. Given this result, it 

would be useful to study these asymmetries more directly, by testing each asymmetric 

comparison for this stimulus domain.

Experiment 6

In Experiment 6, the same stimulus domain was used. For this experiment, 

however, only those comparisons where an asymmetry was predicted were presented 

to participants (122 unique stimulus comparisons). The same stimulus and task 

parameters (ISI, stimulus duration) were employed. In addition to comparing 

directional differences in transformation distance, the predictions of the Contrast 

Model (Tversky, 1977) are also investigated by seeing whether the data are 

compatible with the notion of differential salience. Specifically, we test these 

predictions by looking at RTs for correct same trials, that it, ‘self-similarity’.

Method

Participants

A total of 39 psychology undergraduates participated. All were rewarded 

course credit for taking part. Participants were tested individually and were presented 

both experimental conditions.
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Materials

All task and stimulus parameters replicated those described in Experiment 5. 

The crucial difference was the number of asymmetric stimuli used. From the 196 

comparisons available in this domain, 122 contain a directional difference in 

transformation complexity, or distance. These 122 comparisons constituted the 

different trials. As each comparison was presented in both directions, ‘short’ and 

Tong’, there were a total of 244 different trials and 244 same trials across two blocks. 

As before, same trials were generated by taking the composite pairs (AA, AB and so 

on) and pairing them with themselves so to match the number of different trials. These 

244 trials were divided into two blocks based on the default direction of the 

asymmetry (‘left to right’ and ‘right to left’), as determined by the original object 

codes used; so, AB/CC would be in group 1, as it is simpler left to right, whereas 

AA/BC would be in group 2, as it is simpler right to left. This resulted in 122 

different trials in each block. Although this did not matter to the task, it made the task 

less exhaustive for participants.

To manipulate direction, participants were shown 61 comparisons ‘base to 

target’ and 61 comparisons ‘target to base’ in each block. Participants responded same 

or different by pressing the appropriate key (‘Z’ or ‘M’). The assignment of key to 

response depended on the handedness of participants -  i.e., different was assigned to 

the dominant hand. Participants could respond at the onset of the second stimulus. No 

response deadline was imposed but participants were urged to respond as quickly as 

possible. The task took approximately 20 minutes to complete.
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Results

Initially, mean RTs on correct ‘different’ trials were compared for each of the 

tested directions (‘short’ and ‘long’). As in previous analyses, RTs more than three 

standard deviations above and below the overall mean were removed from analysis 

(2% of all trials were removed). Two participants were removed for low overall 

accuracy (<50% correct).

660

650 -

tn

Short Long

Transformation distance

Figure 39. Graph depicting mean reaction time on correct different trials for each 

direction (error bars = Standard Error).

The graph in Figure 39 confirms this predicted pattern of results. The slower 

observed RT in the ‘short’ direction indicates greater perceived similarity (mean = 

644.9ms; SE = 24.8). Correspondingly, the faster RT in direction of the long 

transformation indicates that these comparisons are less similar (mean = 633ms; SE = 

26.8). A subsequent within-subjects t-test indicates a significant difference (t (1, 36) = 

2.5, p<.05). Moreover, 29 of the 37 participants showed the predicted difference in



Chapter 5 -  Transformation & Asymmetry 145

RT. The specific objects compared in each case are identical; the only difference is 

the order of their presentation. Crucially, this order differentially affects the 

complexity of the transformation that manipulates the compared object 

representations.

Self-similarity and complexity

As noted in the introduction for Experiment 5, it is unclear what the 

predictions of the Contrast Model are for these materials. However, it is possible to 

test, post hoc, whether the differences found are compatible with the model by 

investigating the ‘same’-trials. So, as stated above, the Contrast Model assumes that if 

object A is more salient than object B , that is, iff(A) > f(B), then UB is like A” will be 

preferred to the opposite. At the same time, if f(A) > f(B), then the self-similarity of 

object A will be greater than that of object B , that is, the more salient, or more 

complex object, will always be more similar to itself than the less salient object.

■* 710

S  705

B ase Target

Stimulus position in 'short' transformation

Figure 40. Graph depicting mean reaction time on correct same trials for each

direction (error bars = Standard Error).
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To assess ‘self-similarity’, RTs for correct same trials were compared as an 

index of self-similarity. If differential salience/complexity, as assumed by the 

Contrast Model, can explain these results, then RTs should be greater for those pairs 

that form the base of the short transformation, as they are more salient according to 

the model (i.e., pair a in Figure 36 will have a slower same trial RT when compared to 

b). The graph in Figure 40 shows mean same trial RTs for the base and target objects 

in the ‘short’ condition, that is, the condition with the shortest transformation distance. 

The graph shows that the base objects, on average, have slower same trial RTs when 

compared with the target objects in the ‘short’ condition. This relationship was also 

bom out statistically; a within samples t-test yielded a significant difference (t (1, 113) 

= 4.5, p<0.01). The longer RTs on the same trials for the base pairs indicate that the 

result, while not clearly predicted by the Contrast Model, is at least compatible with 

the notion of differential salience.

Discussion

The results of Experiment 6, once again, support the predictions of the 

transformational approach. Unlike Experiment 5, directional differences in perceived 

similarity are demonstrated for all asymmetric comparisons in this stimulus domain -  

a total of 122 comparisons. As before, these predictions are bom out in a non-verbal 

similarity task. This result, by using a richer set of visual stimuli, gives even more 

strength to the claim that asymmetries are not limited to linguistic contexts and are 

part of similarity proper.

The observed differences in ‘self-similarity’ are compatible with Tversky’s 

(1977) notion that asymmetries are a result of differential salience. However, this 

finding, as is discussed below, is not at odds with a transformational account and is, in
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fact, problematic for the Contrast model for two reasons: 1) the notion of salience is 

ambiguous, and 2) the direction of the asymmetry is incompatible with Tversky’s 

original assertion about the roles of stimuli the sequential matching task.

General Discussion

The results from these experiments support the idea that the unique predictions 

of a transformational approach can accurately predict asymmetric similarity between 

objects. This, in turn, supports not only the general idea that similarity can be 

conceptualised by transformational relationships, but also that the specific coding 

language, devised to reflect the representations of these objects, is making the right 

psychological predictions. These results extend on the work of Hahn et al. (2009), by 

showing transformation based asymmetries in a different domain, and with a non­

verbal, implicit measure of similarity, as opposed to explicit ratings. Crucially, the 

asymmetries demonstrated here negate Gleitman et al.’s (1994) claim that 

asymmetries arise solely from linguistic structures; they can be predicted in online 

tasks that require rapid perceptual matching between visual stimuli.

In RD, asymmetries arise when one direction is simpler than the other in terms 

of transformational complexity, or code length (i.e., fewer instructions are required to 

transform the two objects). In the current experiment, asymmetric similarities are 

manifest in the longer RTs that exist in the direction of the ‘short’ transformation 

distance. Moreover, unlike the Contrast Model, the coding scheme used here makes 

unequivocal predictions both about the existence of asymmetries with these objects, 

and about their direction.

Nevertheless, in this experiment, the results are compatible with both the 

transformational account and the Contrast Model. Analysis of the same-trials showed
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the preferred base objects (i.e., the base of the simplest transformation) to possess 

greater self-similarity. According to the Contrast Model, asymmetries arise when 

object A is more salient than object B; meaning the statement “B is like A” will be 

preferred over “A is like B”. From this, the Contrast Model predicts greater self- 

similarity for the salient (or preferred base) object, which is measured here by RT on 

‘same’ trials. The slower responses for the base pairs of the ‘short’ transformation 

support the idea that they possess greater salience than the preferred target. Whilst 

this by no means negates a transformational explanation, it does not necessarily refute 

Tversky’s (1977) notion that asymmetries emerge from the differential salience of the 

compared objects.

Interestingly, however, Tversky’s (1977) predictions for this task suppose the 

opposite role of target and base (i.e., target first and base second). Not only does this 

order seem counterintuitive but it is also at odds with the self-similarity patterns 

presented here, that is, the slower RTs observed for the first object in the sequence. 

This relates to another issue: whilst differential salience can be inferred from ‘same’ 

trial response times it is not clear how this salience is defined in any given context, as 

noted in Chapter 1. For example, Tversky explicitly states that ‘goodness of form’ 

will be preferred over complexity, and this, in turn, will lead to increased salience. 

However, in this domain, the ‘good’ figures (where two objects are the same) tend to 

occupy the target location for the short transformation and are associated with faster 

RTs, not slower. Indeed, it may be that the complex object is more salient, but this is 

not stated clearly by Tversky.

Furthermore, this notion of ‘goodness’ has been previously associated with 

transformations. In the case of this domain, a pair of matching shapes, that is, two 

squares or two circles, is ‘good’ insofar that they are preserved under a number of
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transformations, such as the number of axes on which the object is mirror symmetrical 

(both the vertical and horizontal in this example; Palmer, 1983; Ullman, 1989). 

‘Goodness’ also relates to object simplicity (Chater, 1996; Chater & Vitanyi, 2003); 

the direction of the transformation that maximises similarity will move from complex 

to simple, not the other way round. This is because, in coding complexity terms, an 

object of two matching features is easier to specify than an object made up of two 

distinct features, as generating the second will be parasitic on the existence of the 

first, as in the coding scheme used here. In general, this indicates that the observed 

asymmetries are in fact completely compatible, unequivocally, with RD and the 

notion of coding complexity in general.

In this regard, the present results also complement those of Hahn et al. (2009), 

by demonstrating how the transformational framework applies to asymmetries that 

arise from differential object complexity. Although it is the complexity of the 

transformations relating the two objects, on this account, not the complexity of the 

objects themselves, there will typically be a systematic connection between the two. 

The fact that one of the ‘objects’ in Figure 36 contains two different shapes, whereas 

the other ‘object’ contains only one, has knock-on effects for the transformations that 

relate them; “applying” two different features costs more than applying the same 

feature twice. Critically, these predictions will come about naturally under a coding 

complexity account, without additional parameters. The same is true of other potential 

differences in complexity; for example, the Contrast Model also predicts that adding 

distinctive features to the base will increase the magnitude of the asymmetry. In this 

case, an attendant complexity difference in the associated transformation arises 

because deleting features requires a less complete specification of those features than
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inserting features, leading to a shorter code overall (see also Hahn & Bailey, 2005, for 

evidence to this effect in the domain of word similarity).

The idea that asymmetries may arise from insertions being more ‘effortful’ 

than deletions has been observed previously, though not explicitly conceptualised in 

terms of coding complexity. Rothkopf (1957), for example, observed that going from 

short to long when matching Morse code signals of varying length, resulted in less 

confusions than the opposite. In addition, Gamer and Haun (1978), using line/letter 

stimuli, showed that ‘many-features’ is more similar to 4few-features’ when compared 

to the opposite -  again, this result is suggestive of the notion that deleting is in some 

way simpler than inserting new object features (see Figure 41).

New feature added 
1^— = long

4

Feature deleted = 
short

Figure 41. The type of stimuli used by Gamer and Haun (1978). Principles of 

complexity, like those used in the transformational approach, are compatible with the 

direction of asymmetry found.

Interestingly, this domain contains a further possibility for testing not only the 

Contrast Model, but the entire notion of differential bias in spatial models of 

similarity. Nosofsky (1991) highlights a simple way in which the differential bias 

hypothesis could be falsified. Any additive similarity and bias model implies the
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following transitivity condition: If p(i, j ) = p(j, i), and p(J, k) = p(k, j), then p(i, k) = 

p(k, i). Essentially, if an asymmetry exists for i and j  then at least one asymmetry 

must exist for i and k or j  and k. If one conceptualises these objects as possessing 

differential biases, outside the comparison, then one can see how asymmetries must 

be transitive in these triple scenarios. Identifying and demonstrating violations of this 

transitivity condition would be of enormous theoretical importance in terms of 

modelling asymmetries. As the coding scheme presented here allows for such 

‘isolated asymmetries’, testing these potential ‘triplets’ should be a priority for future 

research.

Finally, the most general conceptual difference between the transformational 

account and both spatial and featural models is that the transformational account 

allows for asymmetries within a structural framework. As emphasised throughout this 

thesis, these traditional models assume very simple and specific representations. For 

the objects in the domain examined here, certain transformations, such as the swap 

transformation, implicitly suggest that the left-ofright-of relations between objects are 

represented and thus manipulated via the swap. Although these structure-based 

transformations are not exploited in all asymmetries tested here, the RD framework 

does allow for a level of complexity not permitted under any simple featural or spatial 

model.

Furthermore, there has been actually very little support for structural models 

of similarity predicting asymmetries in similarity judgements. The only previous 

study was conducted by Bowdle and Gentner (1997), who combined structure 

mapping theory with Grice’s (1975) pragmatic principle of informativity. Structure 

mapping theory states that the similarity between two objects is calculated by 

structurally aligning object representations (Gentner, 1983; 1989; Markman &
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Gentner, 1993a). Generally, they argue that asymmetries will occur when the base is 

more systematic or ‘conceptually coherent’ than the target, as it then ‘lends’ structure 

accordingly. Like the transformational account, this model measures similarity within 

the frame of comparison, as object must be aligned to be compared. However, 

conceptualising the asymmetries found here (i.e., for geometric configurations) in 

terms of systematicity or informativity seems much less intuitive than it does for the 

sorts of domains typically used when testing structure mapping models (i.e., short 

narratives). Furthermore, this ‘base systematicity advantage’ requires that the 

compared objects are alignable in the first place, as “neither direction of the 

comparison will be informative if the representations are not alignable” (Bowdle & 

Gentner, 1998, pp. 249). Crucially, in this domain, there are asymmetries between 

objects that share no common features whatsoever, such as AB/CC, and thus neither 

object can lend structure to the other. In other words, models of structural alignment 

would not predict asymmetries for these items.

Summary

In summary, these experiments have provided evidence that asymmetries in 

directional similarity comparisons can be accurately predicted by a difference in 

transformational complexity. Furthermore this accuracy is demonstrated in an 

implicit speeded task. Whilst these results are, to some extent, compatible with the 

Contrast Model, the transformational account embodies these asymmetries in the 

comparison process itself through the differing complexity of specific 

transformations, without any need for assuming the differential salience of individual 

objects. Hence, this domain recommends itself for further exploration of asymmetries 

as a diagnostic test for models of similarity.
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5

Transformations in Spontaneous 
Categorisation

As was emphasised in Chapter 1, the natural world contains an inconceivable amount 

of information that we, as perceivers, are required to process and ultimately simplify. 

Hence, the finite cognitive system needs ways of managing and simplifying this 

information effectively. Like similarity, our ability to spontaneously form categories 

is an example of this. Categorisation is the “process by which discriminably different 

things are classified into groups” (Nosofsky, 1986). Categorisation, or the 

classification of objects into ‘kinds’, has many broad and important functions: 

simplifying psychological inputs by placing similar objects together, generalising 

properties across category members, rapid object recognition, and so on. The question 

of what information or strategies we use to form categories is a matter of fierce debate 

in cognitive psychology. One method for categorising objects, and the focus of this 

chapter, is similarity.
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To restate, similarity, considered the factotum to cognition (Larkey & 

Markman, 2005), is argued to hold many important roles across a range of cognitive 

phenomena. Out of these many roles, categorisation has been the most thoroughly 

studied in cognitive psychology. As a result, numerous studies and models of 

categorisation have regarded similarity to be central in classifying objects (Allen & 

Brooks, 1991; Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky, 1984; Posner & 

Keele, 1968; Pothos & Close, 2008; Reed, 1972). Despite assuming a central role for 

similarity, most models only utilise spatial models that, as discussed throughout, have 

undergone considerable criticism within the similarity literature. The purpose of this 

chapter is two-fold: 1) to examine whether transformation distance can accurately 

predict classification and 2) to compare RD with the model most often implemented 

in models of categorisation -  the spatial model. Given its almost axiomatic role in 

cognitive models, it is important to see whether it, in fact, provides the best account of 

classification -  even in a stimulus domain made up of simple pairs of geometric 

objects. Hence, model comparisons in this chapter are limited to the spatial model - 

not feature or alignment models. As has been discussed in previous chapters, RD can 

tolerate, in theory, the sorts of representations (e.g., structured representations) that 

cannot be embedded easily within a spatial representation (supposing that a 

transformation set can be postulated). In addition, as we will see later, spatial models 

embody other constraints that can limit its application in certain domains. Importantly, 

if the transformational approach is to be taken seriously as a basis for similarity 

computation then it must be tested as a basis for both similarity and similarity-based 

phenomena, such as categorisation behaviour. Also, given the potential generality of a 

transformational approach, such investigations can only contribute valuably to the 

study of similarity and categorisation in general.
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Before outlining this experiment in more detail, the role of similarity in 

categorisation will be described.

Similarity’s decline in categorisation

Despite their intimate relationship, research into categorisation and similarity 

has rarely converged (for discussions of similarity’s role in general see Close, Hahn, 

Hodgetts & Pothos, 2010; Goldstone, 1994a; Hahn & Chater, 1998). Whilst similarity 

is rarely questioned as a candidate process in categorisation, the role of similarity in 

general has faced considerable criticism within the similarity literature, as discussed 

in the first chapter. In order to place this experiment in context, certain theoretical 

points from Chapter 1 will be restated throughout this discussion.

If similarity is to provide an adequate explanation of categorisation then 

similarity must be a useful and meaningful construct in the first place. To recap, 

Goodman (1972) launched the first comprehensive attack on similarity’s explanatory 

power by staunchly labelling it ‘vacuous’, an ‘imposter’. His argument rested on the 

intuition that the similarity between two objects is determined by the number of 

properties that two objects have in common. As any two objects can share an 

arbitrary number of properties, Goodman argued that this explanation is useless; for 

example, a badger and a submarine share the property ‘heavier than one pound’, 

‘heavier than two pounds’ and so on. If this holds true then all objects are somewhat 

similar to one another and similarity is a meaningless notion. Importantly, however, 

Goodman’s criticism forced a number of researchers, particularly those advocating 

theory-based approaches, to reappraise the withstanding role of similarity in 

categorisation.

Murphy and Medin (1985), drawing on Goodman’s critique, claimed that
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similarity was too limited to explain conceptual structure. They argued that mere 

feature overlap was too constrained because categorisation can go beyond perceptual 

similarities and refer to the more complex, high level properties not included in the 

surface representations of objects. This led to the ‘knowledge’ or ‘theory-based 

approach’ to conceptual structure, which stated that categories were held together by 

our knowledge or theories about the world and objects (see Carey, 1985; Chi et al., 

1981; Keil, 1989; Malt, 1990; Murphy & Medin, 1985; Rips, 1989). In support of this 

view, Rips (1989) demonstrated empirically an apparent dissociation between 

categorisation and similarity. In Rips’ experiment, participants were told that a bird 

had changed superficially into an insect (e.g. by toxic waste disaster). Crucially, 

participants were also told that the insect still had the ‘essence’ of a bird, that is, it 

could still mate with birds and produce bird offspring. Having received this 

information, participants would still categorise the transformed bird as a ‘bird’ despite 

it being perceptually similar to the insect. Likewise, Keil (1989) showed that the 

likelihood of children to categorise on the basis of these more complex biological 

properties or theories increases over childhood at the cost of perceptual similarity.

Although knowledge theories consider similarity-based categorisation to be 

too constrained, other evidence, as discussed in Chapter 1, has sought to expose the 

apparent over-flexibility of similarity. Goodman (1972) stated that similarity is 

useless until it is known in what respects two objects are similar -  and once these are 

known it is these respects that govern the response. In essence, Goodman’s notion of 

respects is based on the fact that there is no definitive answer to the similarity between 

x and y 9 that is, perceived similarity has been shown to depend on a number of 

external factors, such as context (Barsalou, 1982, 1983; Close et al., 2009), expertise 

(Hardiman, et al., 1989; Suzuki et al., 1992) and the particular measure used
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(Desmarais, et al., 1998; Podgomy & Gamer, 1979; Sergent & Takane, 1987; but see 

also Chapters 2 and 3).

Evidence for similarity in categorisation

Regardless of this criticism, similarity and similarity-based models of 

categorisation have continued to find substantial support. Similarity-based processes 

have gained considerable support in studies of supervised categorisation (SC). In SC, 

category structures are pre-defined by the experimenter and are then learnt by the 

participant through response feedback. Crucially, these pre-defined categories allow 

researchers to control what properties are exploited by participants when making 

category judgements.

In prototype models of categorisation, SC studies have shown that participants 

classify test items based on their similarity to prototypical representations, as 

determined by distance within a psychological space (Hampton, 1979, 1995a, 1995b; 

Posner & Keele, 1968; Reed, 1972).

Exemplar models of categorisation, that have used SC tasks, have also 

supported the role of similarity-based processes (Nosofsky, 1984, 1986, 1988). Some 

of the most compelling evidence for the role of similarity in categorisation comes 

from a number of studies demonstrating that ‘exemplar similarity’ affects 

categorisation, even when participants are given a perfectly predictive, explicit rule 

(Allen & Brooks, 1991; Regehr & Brooks, 1993; see also Juslin, Olsson & Olsson, 

2003; Lacroix, Giguere, & Larochelle, 2005, 2003; Thibaut & Gelaes, 2006). In the 

seminal study by Allen and Brooks (1991) participants were required to classify a set 

of artificial animal stimuli. Even though participants were given a simple rule with 

which to classify these stimuli, similarity effects were still observed, that is, the
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similarity of novel transfer items to training items influenced classification. In 

addition, similarity was actually orthogonal to the explicit rule meaning that similarity 

actually decreased task accuracy and the speed of making individual responses. 

Fundamentally, participants were not aware of the effect of similarity on their 

behaviour thus supporting the notion that similarity has a mandatory effect on 

categorisation, at least in some contexts.

In general, similarity-based models of categorisation have shown a bias 

towards spatial models of similarity. In such models, the likelihood of classifying a 

particular object/exemplar depends on the metric distance (dissimilarity) in this 

coordinate space between the object and other category members, or the prototypical 

representation. As stated in Chapter 1, this approach to similarity has provided the 

basis for a number of successful and widely tested models of categorisation (GCM, 

Nosofsky, 1986; for variations see ALCOVE, Kruschke, 1992; Stewart & Brown, 

2005). The GCM, which is arguably one of most successful mathematical models in 

Cognitive Psychology, uses a general distance metric and has successfully captured 

supervised and unsupervised classification data (see below) for both explicit and 

implicit measures of categorisation (Nosofsky, 1986; Nosofsky & Palmeri, 1997; 

Pothos & Bailey, 2009).

Fundamentally, studies and models of SC support the notion that similarity, in 

some contexts, can provide a compelling account of classification behaviour. More 

specifically, in relation to specific models of SC, similarity seems to be a very good 

predictor of exemplar categorisation, particularly for simple, artificial stimuli 

comprised of few continuous dimensions. Therefore, Murphy and Medin’s (1985) 

critique does not apply generally -  similarity influences categorisation and, in certain 

stimulus domains, specific models of similarity perform excellently.
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In addition to SC, similarity is an important part of many models of 

unsupervised categorisation (USC). USC differs to SC in that participants do not 

receive feedback for their category judgements. Although the categories, in some 

cases, are not defined a priori, many studies of USC implement pre-defined category 

structures and stimuli that will naturally promote certain classifications. Generally, 

participants are instructed to sort a set of stimuli into categories that feel natural or 

intuitive to them. As there is less control over the categories that people form, this 

form of categorisation is often considered more representative of how categorisation 

operates implicitly.

In terms of similarity, many models assume that spontaneous sorts reflect a 

‘similarity bias’ whereby within-group similarity is maximised and between-group 

similarity is minimised (Compton & Logan, 1993; Gureckis & Love, 2002; Handel & 

Imai, 1972; Love, Medin & Gureckis, 2004; Milton & Wills, 2004; Pothos & Chater, 

2002). Given the lack of control over the sorts, and number, of categories that people 

form, studies of USC will often use very simple stimuli with few dimensions. As in 

SC, such stimuli are amenable to models of similarity, such as spatial models, that are 

well suited to specific object representations where stimuli differ on a few continuous 

dimensions. Again, whilst some have argued that categorisation is, in some contexts, 

‘deeper’ than perceptual similarity, the evidence within USC does suggest that 

similarity, and specific models of similarity, can serve as an accurate predictor for 

spontaneous sorting behaviour in certain stimulus domains.

A (not so) new approach to understanding similarity

To restate the central point of Chapter 1, the criticisms of Goodman (1972) 

and Murphy and Medin (1985), whilst justified, are not psychologically important: the
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representation of boundless property sets does not apply to a finite cognitive system. 

Crucially, similarity-based categorisation must operate within the limits of a cognitive 

system that attempts to simplify environmental inputs. In this regard, it is no surprise 

that similarity theories have been very successful in modelling categorisation in 

specific contexts. In similarity’s defence, it has been suggested that researchers select 

well defined, perceptual stimuli in order to avoid the issues of psychological 

representation highlighted here (Pothos & Chater, 2002); this does not mean, 

however, that more complex representational schemes are not available, that is, 

schemes that can tolerate more complex object representations. As spatial models 

assume relatively simple object representations (i.e., locations in a coordinate space), 

the simple and artificial stimuli often used will not pose serious problems for such 

models (or individual studies). As soon as representations become structured, 

knowledge-based or analogically rich, these basic similarity models are limited (see 

Chapter 2). On the whole, the claim that categorisation is based on more than 

perceptual similarity is justified, but only in reference to similarity models that can 

not scale up easily to more complex object representations.

The onus, therefore, is not on similarity, but on categorisation, and its 

paradigms, to integrate new models of similarity that can cope with more complex 

representational properties, namely relational information and background knowledge. 

In short, the spatial model is being essentially ‘kept alive’ by models such as the 

GCM. In order to further strengthen similarity’s role in categorisation, studies of 

categorisation must seek new theories of similarity that can provide a more general 

framework for understanding how people form concepts, both low-level and high- 

level.

Whilst many of these fundamental criticisms of similarity have been addressed
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theoretically by structural accounts of similarity, such as the transformational account, 

these accounts are yet to be tested directly as a basis for categorisation. According to 

RD, an object is likely to be classified as a particular type if the transformation 

distance between that type, exemplar or prototype is short. The longer the code is, 

that specifies a transformation between two objects, the less similar these objects will 

be judged to be and the less likely they will be categorised together. Indeed, the 

properties manipulated by a given transformation will depend on the context in which 

the objects are classified, such as the expertise of the classifier or the category level at 

which the categorisation takes place.

In the current chapter, using the shape stimuli of previous chapters, an 

experiment is conducted to investigate whether the transformational approach to 

similarity can account for the classification of objects in an unsupervised task. 

Furthermore the accuracy of a transformational approach is contrasted with a spatial 

model -  which is still prominent in models of categorisation.

Experiment 7

In the present study, participants took part in an unsupervised categorisation 

task. Instead of presenting all stimuli from the onset, each participant was given 

initially a category ‘seed’, that is, a single stimulus that would act as a category 

reference (see Regehr & Brooks, 1995). After studying this ‘seed’, the remaining 

items were presented and the whole array was available. Participants were told, 

indirectly, to use this ‘seed’ as a basis for their judgement and to choose items that 

they felt ‘belonged’ with it, that is, belonged to the same arbitrary category. Hence, 

the likelihood of classifying items with the category seed should be related to the 

degree of similarity between each item and the seed. This method was selected
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because engaging participants in all possible pairwise comparisons between individual 

items would have resulted in a number of ‘repeats’, that is, equivalent comparisons 

with matching predictions. Forcing participants to compare the seed with all other 

tasks items ensured that each comparison was unique and could be easily mapped 

onto the predictions of the tested similarity models. Notably, this methodology differs 

to the typical version where the whole stimulus array is presented simultaneously 

(e.g., Pothos & Close, 2008).

The same class of stimuli from previous chapters is used again here in order to 

provide a cohesive exploration of the transformation set and the specific domain 

(which is far from exhausted for testing similarity models in general; see Chapter 6). 

As in Experiment 1, each object in the experiment is a pair of geometric objects that 

can vary in shape alone (see Figure 42). The predictions for each comparison - 

between ‘seed’ and ‘target’ - are derived from the three-operation coding scheme that 

has featured throughout the thesis, that is, 1) create, 2) apply and 3) swap (see Chapter 

2, for more detail).

Calcgorv
seed

Task
objects

Transformation
distance

Object
code

□  A □  A 0 A B /A B

□ A AD 1 A B /B A

□ A □  □ 2 A B /A A

□  A AA 2 A B /B B

□ A □  O 2 A B/A C

□  A on 3 A B/C B

□  A AO 3 A B/BC

□  A on 3 A B /C A

□  A 0 0 4 AB/CC

Figure 42. All relevant comparisons between the seed object and the task objects
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The category seed was fixed across participants and each ‘task item’ was 

generated from this. As the seed is the only category reference available, participants 

must classify in reference to it, and not in reference to other task items. Therefore, 

transformation distances were derived between the category seed and each task item. 

Figure 42 shows the transformation distances bom out of the coding scheme for these 

items. If these transformational relationships in any way govern categorisation, and 

not simply the rated similarities, then a strong relationship is expected between 

transformation distance and the probability that a given object is placed in the same 

category as the ‘seed’.

Method

Participants

A total of 30 Cardiff University students completed the experiment. 

Participants were allocated course credit for taking part. Participants were tested 

individually and were all given the same set of objects.

Materials

The stimuli used were pairs of shapes that could vary in composition 

according to a number of predetermined methods (see Figure 42). As used 

throughout, the combination of shape features for each comparison can be represented 

using letters, with each unique letter referring to a unique shape feature, for example 

the category seed is represented by the code AB, that is, square/triangle. As in earlier 

chapters there were three possible features (square, triangle and circle) which, in this 

context, could be combined in nine unique ways given the single seed or ‘base’ object 

AB (see Figure 42). The assignment of shapes within this abstract code was fixed to
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square = A, triangle = B and circle = C. As there was a single category reference (the 

category seed), the only relevant comparisons for modelling the data were those 

between task items and the category seed, that is, not all pairwise comparisons are 

carried out for this specific task. Using the coding language transformation distances 

could be calculated for each of the nine comparisons between seed object and task 

object.

O o o o o o o o

Figure 43. An example of the stimuli used.

In order to give these basic stimuli more impact as a basis for categorisation, a 

back-story was created that placed the shape pairs in a context that made them more 

engaging. The back-story was as follows:

“A group o f UFOs infiltrated Earth’s atmosphere at 

approximately 2am. There is a danger that they will wreak 

havoc on mankind unless they are swiftly identified and stopped.

The biggest problem is that only some o f these ships are hostile.

Your task is to help the armed forces by identifying which ships 

you believe are hostile based on the evidence. The only 

distinguishing marks are two symbols on the side-panel o f each
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craft. Based on these features alone, which other ships would 

you consider a possible danger? Rely on your intuition and 

select as naturally as possible. Good luck... ”

The pairs, to reflect the back-story, were presented on UFOs (see Figure 43). 

The back-story was presented on an A4 sheet. At the bottom of the sheet was a flap 

large enough to conceal the category seed. The spaceships were approximately 8cm x 

5cm with the pair located in the centre of each. Each shape was 0.7cm x 0.7cm and 

was separated by a horizontal distance of 0.2cm. Stimuli were presented on laminated 

card that was 12cm x 6cm.

Procedure

Participants were tested individually and were first instructed to read the back- 

story before inspecting the category seed. After reading the story they were asked to 

lift the flap at the bottom of the sheet to reveal the category seed (pair AB; see Figure 

43). After inspecting the category seed they were handed the nine task items and 

asked to organise them as described on the instruction sheet (back-story). After 

deciding which spaceships they considered hostile or not, based on the shape 

information, they informed the experimenter that they had completed the task. The 

experimenter then took away the items and entered the data onto the coding sheet 

provided. Finally, participants were asked how they classified the items; responses 

were then recorded.
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Figure 44. Graph depicting the relationship between transformation distance and 

classification behaviour. Note, jitter is added to data point AB/AC because of an 

overlap.

Results

Transformations

To test model accuracy, the percentage that each task item was classified with 

the seed was correlated with the model predictions. There are nine observations (i.e., 

nine task items compared with the seed) averaged across all participants. Predictions 

were those generated from the transformation set (see above). The graph in Figure 44 

depicts the relationship between transformations and the percentage that each task 

item was classified with the seed.

As can be seen in the graph, there is a strong relationship between the number 

of transformations and probability that a given item was considered the same category 

as the seed overall. This relationship is also bom out statistically (r = -0.98, p < 0.01; 

Pearson’s r). The predictions of the transformational approach, as determined by the
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three-operation coding language, accounts for 95% of the variance indicating a very 

strong relationship. Also, the strength of this relationship closely matches the 

similarity ratings data in Chapter 2, where an almost identical set of items was used.
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Figure 45. Left panel: The MDS representation of the tested object pairs. Right panel: 

The relationship between derived distances and the percentage that each object was 

considered the seed-object’s category.

The spatial account

In addition, this data was modelled using the spatial model, or MDS. A total 

of 10 participants completed a similarity rating task of all pairwise comparisons used 

in this experiment (i.e., 9 x 9  = 81). The MDS-generated representation is shown in 

Figure 45 and demonstrates what appears to be an annular configuration of the data. 

Although the proximities (derived from the spatial representation, left panel, Figure

45) show the expected non-positive relationship with similarity-based classification, 

the fit is slightly poorer than RD (r = -0.94, p < 0.01; Pearson’s r) with the variance
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accounted for by this spatial solution at 88% (RD = 95%). A likelihood ratio for these 

data shows that the data are 51 times more likely to occur under RD making it quite 

clear that RD is the preferred model in this context.
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Figure 46. Top-left panel: The MDS representation of the RD predictions. Top-right 

panel: the MDS representation of the pairwise similarity ratings (as in Figure 45). 

Bottom-left panel: The relationship between MDS-RD and the participant 

categorisation data. Bottom-right panel: The original relationship between ratings 

derived MDS solution and the categorisation data.
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The stress-1 value for this solution is 0.11. Although there are no definitive 

benchmarks for the acceptable level of stress in an MDS solution, this would largely 

be considered a fair degree of stress (Guttman, 1965; Kruskal, 1964). The difference 

in the fits reported here may suggest that RD and the spatial model are not entirely 

compatible for these items, that is, RD can allow similarity relationships that cannot 

be embedded easily into a two-dimensional spatial representation. In order to further 

probe this issue, an MDS solution for the RD prediction matrix was generated (MDS- 

RD). If RD makes predictions incompatible with a spatial model this should lead to a 

high stress solution when scaling these inputs.

The spatial solution for RDs predictions are shown in Figure 46 (top-left 

panel). The configuration is again annular and, under closer inspection, is a rotation 

invariant version of the original configuration shown in the top-right panel. The fit of 

these distances with the categorisation data is also shown in the bottom two panels of 

Figure 46.

Although statistically significant, the fit is less accurate than that obtained 

from RD’s original predictions, implying that MDS distorts the RD-based similarities. 

This is indeed confirmed by the increased stress-1 value. The stress of the solution is 

0.19, which is considered to indicate an unacceptable, or ‘imprecise’, level of data 

distortion (Guttman, 1965; Kruskal, 1964). Furthermore, there are common 

problematic residuals for both the RD-derived and ratings-derived solutions (with 

slight variation): AB/BB, AB/CA and AB/CB (highlighted in bottom panels, Figure

46). The original RD predictions fit these particular data/comparisons very well (see 

Figure 44) suggesting that these poor fits relate to the spatial model in general and 

not, for example, the sample-size from which the pairwise ratings were derived.

The graph in Figure 47 plots the correlation between the RD-derived MDS
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solution (MDS-RD) and RD proper. As can be seen, the graph illustrates the degree 

to which the RD model predictions, which perform superiorly, are distorted by a 

spatial model (R2 = 0.88). The general difficulty of MDS to scale RD’s predictions 

suggests that these predictions are in fact incompatible with a spatial solution.
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Figure 47. Graph depicting the relationship between MDS-RD and RD predictions 

proper.

General discussion

This experiment provides the first support for RD as a basis for categorisation. 

Similarity, as determined by a combination of three concrete operations (create, apply 

and swap), is related strongly to the likelihood that a given object is considered the 

same category as a category seed. Arguably, this study provides some of the most 

compelling evidence for the notion that similarity is determined by the transformation 

distance between compared object representations. Moreover, the success of RD in
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this task, relative to a spatial model, is an important step in reassessing the general 

role of spatial models in categorisation, particularly when the similarity relationships 

between objects/exemplars are more complex and thus incompatible with spatial 

representations. Besides, if RD is to be established a general theory of similarity, it 

must provide explanations in contexts where similarity is considered to be vital -  that 

is, categorisation.

Given that similarity is not tested explicitly in this task, this experiment 

supports RD using an indirect measure (i.e., the probability of a certain classification). 

In addition, this implies that that the operations within the coding scheme, and the 

object representations assumed to underlie them, are not only relevant in a typical 

rating tasks (Chapter 2, Experiment 1) but also in contexts where similarity 

comparisons are made spontaneously to infer category membership. Also, given that 

unsupervised categorisation is widely considered to reflect a more natural 

categorisation process, these findings support directly the idea that transformations are 

relevant in contexts outside basic similarity tasks and in areas where similarity is 

important in guiding intelligent behaviour.

To return briefly to the focus of Chapter 3, the supposed role of 

transformations in categorisation has been addressed, to some extent, in studies of 

object recognition that have shown that transformation distance is related to speed and 

ease of recognising that an object is a given category (Graf, 2002; but see also Panis et 

al., 2008). As the paradigms used are often speeded category-naming tasks, it does 

provide further evidence that transformational relationships are detected in a 

perceptual domain and are indeed bom out when categorising objects spontaneously.

A number of other studies have also provided some support for a relationship 

between transformations and categorisation - although indirectly. In particular, several
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researchers have emphasised the importance of transformational relationships (e.g., 

Zaki & Homa, 1999) in understanding the environment around us. Zaki and Homa 

(1999) argue that because objects, scenes and organisms transform in constrained and 

principled ways, any changes that do not obey these observed principles of growth 

will have profound effects on categorisation and conceptual knowledge. Specifically, 

transformational sequences help us bind disparate objects together making them both 

perceptually and psychologically more similar - an obvious example is the tadpole 

and the frog. In relation to this point, transformational similarity has actually been 

implicated previously as a basis for categorisation, although not in relation to an RD 

account; in the study by Rips (1989), outlined earlier, participants were presented with 

two stories about an animal that changed its essential properties to resemble an 

entirely different category of animal. Participants were told that this change occurred 

because of a) maturation, that is, a continuous transformation, or b) because of some 

catastrophe that resulted in a sudden change. In condition (a) the new animal was 

considered a member of the category but was also considered more similar to the 

original animal; the opposite was reported in condition (b). Although this experiment 

has been interpreted as separating similarity and categorisation, or at least supporting 

a notion of ‘similarity chains’ (Heit, 1992; Pothos, Hahn & Prat-Sala, 2009), it does, 

albeit indirectly, support the transformational approach to similarity.

Crucially, the current experiment highlights some of the limitations of the 

spatial model. While spatial representations are employed almost invariably in models 

of categorisation, the current finding does provide grounds for integrating new 

similarity approaches when studying categorisation. The criticisms that defined the so 

called ‘decline of similarity’ are relevant, but only in relation to specific theories of 

similarity that struggle with more complex representations and/or object relationships.
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The most important aspect of this chapter is that RD can seemingly tolerate 

representations that spatial models find difficult (as indicated primarily by the stress 

values). Apart from the difference in model accuracy, the difficulty of MDS to find a 

spatial solution for RD’s predictions is indicative of the limitations imposed by spatial 

representations in the first place. For example, it is has been reported that spatial 

models have a bias towards annular configurations under certain conditions, such as 

for poor fits or when the true configuration is non-annular or incompatible (Goodhill, 

Simmen & Willshaw, 1995). As can be seen in the analysis, rotation-invariant annular 

representations are derived from MDS, indicative of this bias (see Figures 45 & 46). 

In addition, averaging data across participants, as is performed here, has been shown 

to hide violations of the metric axioms. Ashby, Maddox and Lee (1994) for example 

showed, for example, that averaging across participants eliminated violations of the 

triangle inequality axiom, a violation that was evident on a single subject basis. As 

averaging hides these violations, MDS should theoretically provide deceptively more 

accurate fits of the data when the data is averaged; the fact that it performs worse than 

RD here is a testament to RD in this domain and highlights, once again, the difficulty 

for the spatial model to match RD without succumbing to greater model complexity.

Tversky and Hutchinson (1986), in their discussion of featural and spatial 

models, highlight the spatial model’s limitation on the number of ‘nearest neighbours’ 

that is, the number of items that can be most similar to another item. These 

‘neighbourhood’ relations are problematic in contexts where numerous objects appear 

to share the same nearest neighbour, such as in super-ordinate categories (Tversky & 

Hutchinson, 1986). In RD, an object can have as many nearest neighbours as there are 

available transformations. Such constraints, therefore, will necessary favour RD in 

this domain, as there are a number of items that transform equivalently into other
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objects. The data in Figures 46 and 47 demonstrate a related point; as can be 

observed, a number of comparisons appear particularly problematic for a spatial 

account. It would appear that the neighbourhood relations in RD, that is, the distances 

between certain pairs, are different to those allowed in the spatial representation. For 

example, a number o f task items are equally similar to the category seed under RD but 

are not permitted this equivalence on a spatial account as there is simply no way to 

embed these relations in a multidimensional space whilst still maintaining the 

similarity between the task items themselves.

Given these constraints it seems difficult to foresee how a spatial model could 

outperform RD in this domain, regardless of the participants used and the free 

parameters required to achieve it.

It is clearly not the case that MDS is a useless similarity model, simply limited 

in some fundamental respects. Even in the current experiment, the spatial model still 

provides an accurate fit of the data. What this study shows, however, is that it is not 

necessarily the best available similarity model, even for seemingly simple stimuli that 

one would consider ideal for a spatial model at first glance. Indeed, there are likely to 

be contexts where there is no accuracy gain for using a model like RD over a spatial 

model -  for example, when objects vary on a few continuous dimensions. However, 

such a scenario would not present problems for RD because any change along a 

continuous dimension is still, by definition a transformation, such as those explored in 

the object recognition literature (e.g., Bundesen et al., 1981, 1983; Jolicouer, 1990; 

Lawson et al., 2003; Shepard & Cooper, 1982). It is when representations become 

more complex that spatial representations expose their limitations.
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6
Conclusions

Over the course of this thesis, I have provided evidence that similarity can be 

understood in terms of transformation distance or ‘Representational Distortion’. More 

specifically, I have demonstrated that transformational relationships are important in a 

range of contexts that involve judging the similarity between object representations.

Despite the shortcomings of featural, spatial and alignment approaches to 

similarity, it is still the case that these accounts have received considerable empirical 

attention in a variety of cognitive models that have drawn on the corresponding 

representation schemes. As a result, it will be important to probe further the potential 

role of transformations across many areas of cognition. This is no small task and is 

well beyond the scope of the current thesis. The experiments presented here do, 

however, make a significant start by taking a specific stimulus domain and 1) using 

both implicit and explicit measures, 2) directly comparing RD with a number of 

competitor models of similarity (both structural and traditional), and 3) using a range
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of similarity-based phenomena (asymmetry and categorisation behaviour) to 

distinguish RD from rival accounts.

Crucially, a set of transformational predictions fared excellently against rival 

approaches to similarity in a domain that was originally put forward as evidence 

against an RD account. Apart from being a suitable domain for RD, the stimulus 

domain used, by containing both featural and relational information, provided a 

number of insights into the relationship between a number of similarity models -  both 

structural and traditional.

Although many specific theoretical issues have been addressed, I consider the 

following to be central in understanding the role of transformations in similarity as a 

whole.

Comparing representation schemes within a domain

As described in the opening chapter, similarity involves comparing the mental 

representations of objects. Therefore, when predicting the similarity between objects, 

careful consideration must be given to how objects might be represented in a 

particular context, or as Markman and Gentner (1997) state, “we must take 

representation seriously”.

Crucially, representations, unlike the objects themselves, are flexible entities 

that are affected by the context in which they are called upon, that is, the measure 

used, the goals of the perceiver, background knowledge and so on. Given this 

flexibility, the decision of what is psychologically relevant in the first place is a 

difficult one — particularly as we do not have direct access to mental representations. 

Therefore, depending on the domain under investigation, cognitive scientists must 

choose what features, relations, or indeed transformations, they consider relevant in a
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given context. This, to some, may appear like too much predictive freedom. Indeed, 

this freedom depends to a large degree on what is (or can) be predicted by a given 

account. In the following section, I will reflect on the most pertinent issues concerning 

the representation schemes of rival approaches for the stimulus domain tested 

throughout this thesis.

The difficulty of deciding what properties are important or relevant in a given 

context is shared by all the similarity accounts tested here. As we have seen 

throughout, there are usually a number of ways to conceptualise object representations 

for a domain, and each interpretation, depending on the constraints of the model 

tested, will give rise to vastly different fits of the data; the challenge is deciding 

which, if any, are right psychologically. Crucially, all models must make a priori 

predictions about what representations, or properties are relevant, and these must 

generalise to the whole domain being tested.

The coding scheme tested throughout actually assumes very little about what 

information is represented explicitly; specifically it assumes only that features matter, 

that their spatial locations matter, and that features will become bound to each other to 

represent coherent objects. It is clear, from simply inspecting the objects, that only 

the presence/absence of features and their relative spatial locations are important for 

comparing pairs in this domain. If the coding scheme had to account additionally for 

featural degrees of similarity, that is, the similarity between a circle and a square, for 

example, then different and arguably more complex operations would be required. 

Even if this was the case, then RD predictions could still be derived as 

transformations could be proposed that relate individual features. This could be 

achieved by proposing a set of operations (e.g., insertion, creation and deletion) that 

could manipulate the presence or absence of specific geometric properties (i.e., lines,
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comers) or, more appealingly, shape representations could be related by shape 

changing (morph) transformations, as have been proposed in the perception literature 

(Graf, 2002; Graf, Bundesen & Schneider, 2008).

When modelling similarity, selecting representations is, to a large extent, a 

matter of conjecture. The problem with this is that a potentially well-suited account 

may fare poorly if it is ascribed the wrong sorts of predictions -  or indeed it may be 

unclear what a certain account predicts at all. To restate Chapter 2, Larkey and 

Markman (2005) assumed that each physically distinct set of objects in this domain 

was governed by a unique transformational relationship; that is, they equated physical 

and psychological relationships. However, this is not a natural way to conceptualise 

transformations nor is it, empirically, an appropriate way to capture these items. 

Although the location of features changes on each dimension for AB/BA (dimension 

one), AB/BA (dimension two), the simultaneous change of both features, gives rise to 

a completely unique mental operation -  i.e., a whole object swap. This is in line with 

the fact that this domain has been used widely in the studying feature binding - a 

process that generates a ‘whole object’ identity (see Cheries et al., 2006).

The reduction of objects into their composite features is a typical and almost 

necessary aspect of feature-based models - alignment-based or otherwise -  and can be 

problematic, as we have seen. For example, a MIP in this domain is a MIP regardless 

of where it appears within the target representation -  the only constraint is that 

matches must be one-to-one (Goldstone, 1994b; Goldstone & Medin, 1994; Larkey & 

Markman, 2005). Indeed, it would have been reasonable to define MIPs as feature 

matches that occupy the same relative location in each pair (i.e., left square matches 

left square) and MOPs as matches between features in different locations (i.e., left 

square matches right square) but such an interpretation performs much worse for the
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data in this thesis (see also Taylor & Hummel, 2009). Moreover, the one-to-one 

constraint, that is central to SA models (i.e., SME), is violated regularly regardless of 

the type of similarity measure employed. For example, the results of Chapters 2 and 3 

indicate that MOPs are, to some extent, influential in this domain in both explicit and 

implicit tasks, suggesting that the strict constraints embodied in SA models are not 

necessarily appropriate, even when stimulus comparisons are “effortful” and carried 

out over many seconds (see Markman & Gentner, 2005).

Also, the sorts of matches that take place on featural accounts (including SA) 

mean that there is no gain for matching two features on the same object. This is 

unnatural because, as stated in Chapter 2, representing objects as integral wholes and 

not as lists of separable features is definitional of how we perceive ‘objects’ in the 

first place. The transformational approach can deal appropriately with this issue 

because transformations are not properties of objects themselves, they are relations 

between objects (Hahn et al., 2003), meaning that they can refer to objects differences 

that cannot easily be described under a purely featural, or indeed purely spatial, 

account. The whole object swap is, again, indicative of this point; even though object 

features are preserved there is nevertheless a transformation between the compared 

representations.

Essentially, these sorts of differences -  where features are transformed in 

chunks rather than piece by piece — are perfectly suited to RD because transformations 

can manipulate objects without necessarily manipulating the number of features (but 

can also refer to the creation, deletion and insertion of object features). It is no 

surprise, therefore, that transformational relationships are often implicated in studies 

of object recognition where objects are perceived to change but leave the feature 

quantities invariant; transformational sequences, unlike crude feature matches, can
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help ascertain that two images are in fact two slightly different views of the same 

object, even when all features are maintained (see Graf, 2002; Jolicoeur, 1990; 

Lawson, 1999; Tarr, 1995; Tarr & Pinker, 1990)

For traditional accounts of similarity specifically, a number of other issues 

have been highlighted in this thesis. In a featural model it must be determined what 

features are relevant, in addition to what constitutes a psychologically relevant feature 

in the first place. Although this may be straightforward for basic, well-defined object 

representations, this is less simple for complex representations. As discussed in 

Chapter 3, the matches counted by the basic featural model do not require features to 

occupy corresponding spatial locations; this is, of course, problematic for capturing 

the sorts of differences that occur when multiple features are transformed 

simultaneously. Crucially, this problem holds for the basic geometric objects used in 

this domain because a featural scheme that counts only spatial features (e.g., ‘left A’ 

matches ‘left A’) fares worse and is unable to capture the similarity between AB and 

the reverse, BA.

In addition, while the asymmetries predicted by RD in Chapter 4 are arguably 

compatible with the Contrast Model, it is not clear exactly how a difference in 

salience arises in the first place - and the prior work by Tversky (1977) makes 

questionable predictions regarding the assignment of base and target in the same- 

different task.

Similar problems exist for spatial models too; the results of Chapter 5 

demonstrate how difficult it can be to embed certain object relationships within a 

spatial representation. Fundamentally, this experiment showed that spatial 

representations, albeit effective in many contexts, are ultimately too constrained for 

certain types of objects. Also, it seems that new approaches to similarity, such as RD
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and, to some extent, maybe SA, can give new insights into categorisation -  even for 

complex, knowledge-based domains (e.g., Rips, 1989; Zaki & Homa, 1999).

Importantly, it is not simply the case that the representation schemes of 

traditional similarity accounts are the best for capturing similarity in basic geometric 

stimulus domains, like the one used throughout this thesis. RD’s predictions compare 

favourably with both featural and spatial models despite assuming very little about the 

representation of complex properties in this domain, such as structure -  but a little, it 

seems, goes a long way.

Comparing similarity measures

Going beyond direct ratings of Chapter 2 was important for investigating 

directly the role of transformations, and indeed structure, in speeded similarity 

judgements. By studying similarity within a single stimulus domain it was also 

possible to infer how certain measures -  implicit or explicit - affected what 

representations were generated for the exact same physical objects.

The evidence presented in Chapter 2 suggests that the representations assumed 

by the coding scheme (see above) are relevant in direct similarity tasks. However, 

these direct measures, as mentioned in Chapter 3, do not necessarily tap into how 

similarity operates implicitly. Therefore, the results of Experiment 3 (and to some 

extent Experiment 4) are important for they indicate that the coding language, that 

fared well against ratings and forced choice data, is also relevant in an indirect, 

speeded task.

In Experiment 4, the relationship between transformations, mental 

representation and speeded task performance was investigated in more detail. 

Specifically, response deadlines were imposed as a means of assessing how model
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performance relates to the time allowed for stimulus information to be processed and 

represented. Overall, the improvement of RD over time, relative to other models 

(featural model and SA model), indicates that representations build continuously over 

time as more stimulus information in processed and accumulated (see also Lamberts 

et al., 2003). More specifically, as structure sets apart RD from other accounts in this 

context, this improvement indicates that structured representations and feature binding 

happens gradually over time -  it is not a case of structure ‘all the way’. Likewise, the 

relative fits of more basic similarity accounts, when tracked against RD, are important 

tools for measuring the emergence of more complex mental representations. 

Therefore, whilst the representations underlying such models are limited in general, 

for the reasons just described, they are, however, beneficial for our general 

understanding of similarity and representation.

What Experiment 4 supports is the contention that similarity tasks do not 

change similarity directly - they change the underlying object representations. This is 

an important point to consider when reconciling the systematic differences that exist 

between dependent measures that should intuitively address the same underlying 

construct (see Getty, Swets, Swets & Green, 1979; Goldstone, 1994a).

The Transformation ‘Framework’

On the whole, it has been shown that RD’s predictions in this domain are 

problematic for featural, spatial and for particular alignment models. However, the 

sorts of properties that are considered central to these accounts (i.e., binary features 

and continuous dimensions) are still compatible with a transformational approach. As 

stated above, transformations need not manipulate structure to be tested; the ‘create’ 

and ‘apply’ operations proposed here manipulate only the presence of features. The
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gain for RD, even here, is that certain principles of coding complexity can relate 

features in more complex ways, for example, applying two identical features is easier 

than applying two different features, or insertion is more complex than deletion (see 

Chapter 4).

Likewise, the sorts of properties that are considered amenable to spatial 

models can also be recast into a transformational framework. As Hahn et al. (2003) 

state, for example, changes along a continuous dimension can also be considered bona 

fide transformations, such as rotation, translation and so on. Therefore, RD can 

encompass these traditional accounts by providing a framework in which to relate and 

combine these different properties, such as spatial transformations along a continuous 

dimension (Bundesen et al., 1981, 1983; Jolicouer, 1990; Lawson et al., 2003; 

Shepard & Cooper, 1982; Shepard & Metzler, 1971), morphological/topological 

transformations (Graf, 2002, 2006; Hahn et al., 2009; Panis et al., 2008) and the 

insertion/deletion of new features (Gamer & Haun, 1978; Rothkopf, 1957).

Importantly, however, RD can also allow complex transformational 

relationships that are outside the remit of these other approaches. In the case of object 

recognition, it has been shown that different degrees of plane rotation have a non­

monotonic effect of recognition in an object naming task (Jolicouer, 1990; Lawson & 

Jolicouer, 1999). This is because there seems to be a preference for certain 

orientations, such 90° and 180°, that preserve the spatial relations of the original 0° 

view. Whilst a continuous transformation may capture many intermediate 

representations, certain orientations could give rise to simpler, qualitatively unique 

transformations, such as reversal, or mirror image (in the case of 180°). From this 

perspective, therefore, RD is not so much a new theory of similarity but a general 

framework of similarity in which many types of comparison, captured by a family of



Chapter 6 - Conclusions 184

similarity models, can be conceptualised simply by the distance of a transformational 

sequence that can vary both qualitatively and quantitatively. Theoretically, then, this 

can include the insertion of a square when comparing two basic configurations, or the 

similarity between a frog and a tadpole - the only requirement is that there must be 

some way, conceptually, to connect the two states by a pre-determined single, or set 

of transformations. As this thesis and other studies have shown (e.g., Hahn et al., 

2009), RD benefits from that fact that certain principles of coding complexity can also 

be exploited to account for robust similarity-based phenomena, such as asymmetric 

similarity, and without the need to make additional assumption about the absolute 

complexity or differential stimulus bias. Indeed, these notions of complexity, salience 

and attention are embedded into the predictions in the first place, through the posited 

transformation set.

Future challenges and directions

Despite the growing support for the transformational account, much more 

research is required in order to establish RD firmly as a general framework of 

similarity. Given its infancy, there are many possible directions for this future 

research. The directions that seem most beneficial to this end will be discussed in this 

final section.

Indeed, the domain tested within this thesis is by no means the ‘litmus test’ for 

RD and other models of similarity - to be truly useful as a cognitive scientific account 

of specific phenomena, RD must be tested thoroughly in a wide range of domains, 

particular those that can further distinguish RD from other, more constrained 

similarity models. However, these experiments do demonstrate the importance of 

exploring exhaustively a single set of materials, namely because the conclusions made
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for one task do not necessarily hold for another (see Chapter 2 & 3, for example). 

Overall, it will certainly not harm future studies of similarity to adopt a similar 

approach for other stimulus domains.

Transformations, in their ability to relate arbitrary properties of varying 

complexity, makes them amenable to a wide range of stimulus domains, ranging from 

sentences, music, visual scenes, naturalistic stimuli, knowledge-based similarity and 

so on. The only requirement is that a set of plausible transformations and 

representations can be generated initially (Hahn et al., 2003). Naturally, then, it is not 

the case that a transformation set in one domain (i.e., the coding scheme used here) 

will generalise simply to others -  as objects vary so will the transformations that 

relate them. This, of course, does not single out RD: the specific features that are 

matched on a featural account will change across domains, but they are nonetheless 

all features. Despite this, it would be interesting to see whether the coding scheme 

used here would be relevant for single objects rather than pairs, like those used by 

Hahn et al. (2003, Experiment 2). Further possibilities for these transformations and 

stimuli will also be discussed further below.

Throughout this investigation, transformation distance has been 

operationalised by the number of instructions required to transform one representation 

into another. It may be possible, as mentioned in Chapter 3 in particular, that 

transformations may bear different weights in certain contexts. Given that certain 

transformations appear to have a non-fixed influence over time (swap, Chapter 3) it 

may be interesting to investigate a weighted RD model in future research. For 

example, Cheries et al.’s (2003) study into the feature binding of rhesus macaques 

demonstrated that looking time recovered more when only one feature dimension was 

swapped, compared to the whole object - although this was not a significant
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difference. As it is quite possible that whole object swaps are simpler than feature 

swaps (in particular if, from a code length perspective, objects are easier to 

individuate than features), it could be possible to reformulate the coding language so 

that swaps along one dimension are assigned a greater weight, that is, have a greater 

effect on similarity when they occur. However, a non-parameterised, simpler model 

is surely preferable unless the more complex model is really necessary - and in the 

context of the present studies, the simple approach works well and there seems little 

need to increase model complexity. Also, given that the end-state predictions of RD 

were still diagnostic in determining the emergence of structured representations it is 

not simply the case that developing process-like models is the best solution, on its 

own, for understanding the relationship between similarity and mental representation.

Also, if transformations do differ in individual complexity (Hahn et al., 2003) 

it should still hold that two operations result in a more complex transformation 

overall, that is, two is always more complex than one, and so on. Clearly, these issues 

would be interesting to explore further in future work but without further, independent 

motivation for a differential weighting, and ideally, some way of tying down those 

weights in advance, inclusion of differential weights would appear ad hoc and more in 

keeping with the ‘leeway approaches’ of featural and spatial accounts (see Chapter 1).

Furthermore, the issue of determining what transformations are 

psychologically relevant in a given context does bring about the question of how 

transformations are actually selected from the infinite pool of possible object 

relationships. This was highlighted by the philosopher Goldman (1986), who asks 

whether there is a finite set of transformations or whether the set of cognitively 

relevant transformations is potentially unbounded. Likewise, such a question has 

given rise to some researchers questioning the ‘tractability’ of the transformational
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approach. The ‘Tractable Cognition Thesis’, or TCT (Van Rooij, 2008; Muller, van 

Rooij & Wareham, 2009), states that we must possess tractable algorithms for 

cognitive computations because our brain/mind is finite and is thus ultimately 

constrained. Muller, van Rooij & Wareham (2009) identify a number of parameters 

that could render certain instantiations of RD intractable. The following assumptions 

can, according to TCT, render RD tractable:

1) Similarity is computed on simple objects (short representations) and all 

intermediate transformations are equally simple.

2) Humans compute transformation distances only for objects that are 

somewhat similar.

3) The set of transformations in a given context is small.

4) The transformations that are relevant in a given context are non- 

inferentially provided.

5) The number of transformations in total, in any context, is “not too large”.

Whilst all of the above are important to consider, they do, however, provide no 

fundamental problems for RD. First of all, one must consider whether tractability is 

an issue for RD at all. Such considerations rely on what computations are necessary 

given the constraints imposed by external and internal factors, that is, context and our 

perceptual system. Assumption 1, for example, requires that ‘short’ representations 

be compared. Muller et al, argue that this is implausible psychologically, as we can 

compare many ‘objectively’ complex objects. Even for the complex ‘objects’ they 

mention - such as buildings, movies or faces - it is unlikely that our representations 

will contain all properties that make up those objects in any given comparison. It
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does not follow, necessarily, that complex objects require complex representations; 

we need only those properties that will support efficiently what the representations are 

required to do (e.g., Goodman, 1972; see also Chater, 1996).

In addition, it is in a cognisor’s best interest, given external constraints, to 

represent only a subset of an object’s properties when making a similarity 

comparison. It is unlikely that this extraction requires much computation as some 

properties are given ‘for free’ by our perceptual system, or by previous experiences 

that have rendered certain properties useful or informative.

In relation to this, it has been suggested that our cognitive system, when 

presented with a complex input, will seek to find the simplest (or most likely) 

interpretation/organisation of that particular input (Chater, 1996). Essentially, to say 

that a movie is more complex than everyday visual inputs is missing the point; the 

cognitive system will try and build the simplest representation it can, given the 

computational constraints it possesses. Likewise, therefore, the notion of simplicity 

also applies to finding the simplest transformation between two object 

representations; for the sake of psychological plausibility, the cognitive system will 

select the simplest transformation, or set of transformations it can find in a particular 

context, even if this is not the simplest in reality and is selected from only a very 

small set of candidate transformations.

Also, transformation distances will only be computed for objects that are 

somewhat similar. According to Hahn et al. (2003), “for pairs of items for which no 

transformational relationship is discemable, RD predicts simply that these items are 

maximally dissimilar”. Similarity, of course, serves a cognitive function, and thus 

their will be a point of dissimilarity where there is no cognitive-adaptive benefit of 

computing similarity at all; at this point, it would be best to delete one representation
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and create the target representation from scratch. Importantly, however, this notion 

goes further than other models in that transformations can be specified in situations 

where there is no featural similarity to be exploited at all, as in the create operation for 

items such as AB/CC.

The requirement for sets of transformations to be small does not present any 

immediate challenges; in this investigation, and in previous studies, the set of possible 

transformations is quite small. Although many transformations could relate two 

objects objectively, many of them will not be psychologically plausible or 

perceptually salient. In the speeded tasks we report, it would not make sense to 

speculate about hypothetical transformations that may exist between the compared 

objects, as there is neither the time nor the resources to perceive or implement them. 

In addition, the transformations that are available in a certain context will necessarily 

be related to the object representations that are being compared. Goldman (1986), for 

example, suggested that transformations could be subject to a sort of ‘preference 

ranking’ that is activated when multiple transformational sequences are available for 

one comparison.

The results reported here also present new questions and new approaches. To 

this end, I will now describe the priorities for future research. As stated before, RD 

must be applied in many different contexts if it is to be established as an account of 

similarity. This investigation has underlined the sort of approach that is required in 

other stimulus domains: so, RD can accurately explain similarity ratings for a 

particular group of items, but do the proposed transformations scale up to more 

implicit measures of similarity? If not, what does this tell us about the sorts of 

representations being exploited in this task? Do the transformations seem an 

appropriate basis for categorisation? And so on. A number of domains seem
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particularly well suited to a transformational approach. For example, auditory stimuli 

such as sounds, voices and music, seem particularly amenable to transformational 

relationships. Furthermore, studies of analogy have already begun to incorporate 

transformation distance. Leech, Mareschal and Cooper (2008), for example, provided 

evidence that the degree of transformation between two states (or the ‘size’ of a 

relation) is a factor in analogical problem solving - a finding that can not be easily 

accounted for by models of structural alignment. Further investigation into the role of 

transformations in analogy is important given that RD is yet to be thoroughly tested in 

high-level stimulus domains.

Chapter 4, on asymmetry, also outlined how stimulus bias accounts can be 

falsified by demonstrating the existence of ‘isolated triples’. To reiterate, if there is a 

bias associated with object A, resulting in an asymmetric similarity with object B, 

then object C must be asymmetric with at least one of these objects. In other words, C 

cannot be symmetrically related to both A and B because they are not equally 

weighted. There exists, in the coding scheme tested throughout, comparisons that 

violate this assumption. If this could be shown empirically, in line with the 

predictions, then stimulus bias accounts could be falsified unequivocally.

Also, there are number of areas, and indeed dependent variables, in perceptual 

research that would seem well suited for further studying similarity and 

transformations. For example, studies that have demonstrated reliable asymmetries 

based on insertion vs. deletion in visual search may provide another promising avenue 

for studying transformations in an implicit paradigm (e.g., Treisman and Souther, 

1985). Likewise, the strength of perceived apparent motion between two items could 

provide another measure of similarity in a perceptual domain. Interestingly, pilot 

demonstrations using the same stimulus domain tested here provided some evidence
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for the perception of objects ‘swapping’ in motion for the comparison AB/BA. 

Formal demonstrations of this could provide further support for the plausibility of this 

scheme, as it suggests that our perceptual system is sensitive to these transformational 

relationships when forming motion correspondences.

Although similarity is a flexible construct, there are many examples that 

suggest that similarity has a mandatory effect on our behaviour - or possesses a 

‘context-independent core’ (Goldstone, 1994a). Egeth (1966), for example, showed 

that participants were affected by similarities on an irrelevant task dimension using a 

same-different task — even though the stimuli were composed of separable properties 

such as shape and colour. Overall, this suggests that similarity is processed early on 

regardless of actual task demands. This has obvious parallels with the famous Stroop 

effect (Stroop, 1935) where participants are slow to name the colour of a written word 

when the word itself refers to a conflicting colour. Such an effect could be exploited 

empirically; for example a stroop-like task could be derived where the supposedly 

‘irrelevant’ task dimensions are manipulated by set of pre-determined 

transformations. If the underlying transformational relationships on the irrelevant 

dimension affect response time and/or errors, this could provide evidence for the 

mandatory effect of both similarity and transformation.

Overall, whilst the experiments presented throughout this thesis support the 

notion that similarity is determined by transformational complexity, there is still much 

work to be done in terms of testing the unique predictions of RD in a wide range of 

stimulus domains -  particularly those that involve more complex, structured 

representations.

Importantly, these experiments have highlighted how certain relationships that 

are easily captured by transformations (such as transforming assemblies of features)
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are not necessarily compatible with other theories of similarity. Such findings, 

therefore, have the potential to enhance similarity’s explanatory power in general; 

given that RD can tolerate more complex relationships between object representations 

it should be a priority to understand how closely related phenomena, once beyond 

traditional accounts of similarity, can be understood in terms of transformation 

distance -  such areas, as discussed above, may include visual search, apparent motion 

and knowledge-based categorisation.

The main implication of this is that areas that once seemed distinct, or even at 

odds with similarity, could be unified under a general framework of transformational 

complexity. To this extent, RD is not so much a new ‘theory’ of similarity, but a 

convenient framework in which a wide range of arbitrary object relationships can be 

understood - as long as a relevant set of transformations can be specified.

Despite the truth that RD still needs be tested thoroughly in a range of 

contexts, it seems that the role of transformations in understanding similarity, and 

indeed mental representation, is already a vital one.
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Appendices

Appendix A.l - Model Predictions for RD

The table in Appendix A.2 displays the transformation distances for each 

distinct comparison in the domain tested throughout this thesis. The numbers refer to 

the number of operations, from the 3-operation coding scheme, required to transform 

the representation of one object into that of the other as a measure of code length. The 

first column and the top row refer to the respective dimensions (shape or colour). As 

directional comparisons (see Tversky, 1977) not all comparisons are symmetrical, for 

example, “how similar is AB to BB?” ^ “how similar is BB to AB?” (see Chapter 4). 

Given that certain experiments within this thesis involve non-directional judgements 

(“how similar are pair 1 and 2?”), the simplest symmetrical measure within the 

Kolmogorov complexity framework was used: max-distance, which takes the larger of 

the two distances, in each direction, as the fixed complexity measure (Li & Vitanyi, 

1997). Max-distance was also the measure used in Hahn et al. (2003), and further 

discussion of this measure can be found there in Footnote 2.



Appendix A.2 - Table of predictions

D im e n s io n  1 /2 AA/AA AB/AB AB/BA AA/AB AA/BA AB/AA AB/BB AA/BB AB/AC AB/CB AB/BC AB/CA AA/BC AB/CC

A A / A A 0 0 1 2 2 2 2 2 2 2 3 3 4 4

A B / A B 0 0 1 2 2 2 2 2 2 2 3 3 4 4

A B / B A 1 1 1 3 3 3 3 3 3 3 3 3 5 5

A A / A B 2 2 3 4 4 3 3 4 4 4 5 5 6 5

A  A / B A 2 2 3 4 2 3 3 4 4 4 5 5 6 5

A B / A A 2 2 3 3 3 4 4 4 4 4 5 5 5 6

A B / B B 2 2 3 3 3 4 4 4 4 4 5 5 5 6

A A / B B 2 2 3 4 4 4 4 4 4 4 5 5 6 6

A B /A C 2 2 3 4 4 4 4 4 4 4 5 5 6 6

A B /C B 2 2 3 4 4 4 4 4 4 4 5 5 6 6

A B /B C 3 3 3 5 5 5 5 5 5 5 5 5 7 7

A B / C A 3 3 3 5 5 5 5 5 5 5 5 5 7 7

A A / B C 4 4 5 6 6 5 5 6 6 6 7 7 8 6

A B /C C 4 4 5 5 5 6 6 6 6 6 7 7 6 8

Nb. Not included is ABCD - a dimensional structure with no within-dimension similarity effectively reduces to a comparison involving similarities on one 

dimension only, that is, to column 1 or row 1, and hence is equivalent to the 14 possible comparisons examined in full in Experiment 1.



In order to find the simplest transformation, we conducted an exhaustive 

search and selected the set with the smallest number of operations. This almost always 

led to a unique transformation. I note that the search space for these items is small. 

There are typically very few ways to conceptualise transforming one pair into the 

other, and the simplest is also, in our experience, the most natural. For example, in the 

case where dimension 1 =AB/BA and dimension 2 = AB/BA, one could either a) 

swap on two dimensions or b) by a whole object swap. The latter is not only simpler, 

but also more intuitive and hence likely to be found first. A reader should be able to 

verify these claims by picking a few pairs and trying to apply the transformations 

themselves.

Appendix A.3 - Model predictions for SA

SME

Model predictions for SME followed directly Larkey and Markman (2005). 

The similarity measure for SME was based on MIPS only. The exclusive focus on 

MIPs stems from SME’s strict adherence to the one-to-one mapping constraint, which 

states that features and/or relations cannot form multiple alignments. Strictly 

speaking this constraint governs the mapping process, and it would be possible to 

impose similarity measures on the final mapping that also took into account MOPs 

though this has not been common practice in the past.

The way mappings were determined is illustrated in the following example: In 

the comparison - black square, white triangle vs. black triangle, black triangle -  there 

are a number of mapping conflicts. The black square maps onto both triangles on the 

basis of colour but under the constraint can only form one-to-one alignments. The 

final mapping would involve 2 MIPs, black square to black triangle (colour MIP), and
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white triangle to black triangle (shape MIP). The ‘leftover’ mappings are the matches 

that do not correspond (i.e., MOPs). This would be the black square to the second 

black triangle (colour MOP).

Note that this approach does not code MIPs on the basis of location, i.e., left 

of/right of. A MIP model that referred to feature locations was also tested where 

features were only aligned if they occupied the same relative position in a pair. These 

two alternative approaches make quite distinct predictions, correlating only at r=.463 

for Experiment 1. The original version used by Larkey and Markman provides 

considerably better data fits, so reporting in the manuscript is restricted to that 

scheme.

SIAM

The simulations used the original code developed by L. Larkey for Larkey and 

Markman, (2005) which was generously made available to us. As in that paper, all 

simulations used the default model values.


