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Summary

In Saccharomyces cerevisiae efficient global genome nucleotide excision 
repair (GGR) requires a heterotrimeric protein complex of Abfl, Rad7 and Rad 16 
termed the GGR complex. Abfl is a site specific DNA binding protein with known 
roles in DNA replication, transcription and repair. Rad 16 has a DNA translocase 
activity and is a functional component of an E3 ubiquitin ligase. Rad 16 has recently 
been shown to regulate the occupancy of Gcn5 and histone H3 K9K14 acetylation in 
response to UV damage.

The current study investigates how GGR is organised throughout the genome 
using chromatin-immunoprecipitation coupled to microarrays. Abfl is observed to 
bind the genome at a high frequency and is preferentially localised to promoters. By 
analysing other genome-wide datasets in relation to Abfl binding, Rad 16 dependent 
histone H3 K9K14 acetylation and efficient GGR are observed to colocalise with 
Abfl binding sites at promoters. Rad 16 binding is also mapped and is found to 
colocalise with Abfl binding sites at many promoters. Peaks of Rad 16 binding are 
lost in a UV dependent manner and based on previous studies, this is suggested to 
occur by DNA translocation of Rad 16. The differences in Rad 16 binding levels are 
found to correlate with Rad 16 dependent acetylation and efficient GGR.

In addition to studying the occupancy of A bfl, novel tools are built for the 
genome-wide analysis of Abfl DNA binding kinetics. A recombinant protein termed 
a competitor is designed for this purpose. The competitor consists of an Abfl DNA 
binding domain fused to a hormone dependent regulatory cassette. Following 
activation, the rate at which the competitor replaces Abfl at a DNA binding site is 
monitored by chromatin immunoprecipitation to qualitatively measure Abfl DNA 
binding kinetics. Preliminary results are shown that might suggest changes in Abfl 
DNA binding kinetics following UV are mechanistically linked to GGR.
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1. Introduction

Chapter I

1.1 DNA damage

Deoxyribonucleic acid (DNA) encodes the genetic blueprint of cellular life. 

Using the four nucleotides of guanine, cytosine, adenine and thymine, DNA functions 

to store the information necessary for the development of all cellular components 

including all protein and RNA. Accurate preservation of this molecule and inheritance 

to the daughter cell is critical to life, and mechanisms that perturb these processes are 

considered to play fundamental roles within ageing, cancer and cell death. Therefore, 

maintenance of cellular DNA is imperative for the stable development and replication 

of all living organisms.

Within the cell, DNA is not inherently stable and is constantly exposed to 

agents that alter its primary structure, as well as spontaneous alterations. Deamination 

of four o f the five bases present in DNA (cytosine, adenine, guanine and 5- 

methylcytosine) can result in the conversion to alternative nitrogen bases (uracil, 

hypoxanthine, xanthine, thymine). In addition, uracil may be introduced into DNA 

during semi-conservative replication, which may also incorrectly incorporate non- 

complementary bases resulting in DNA mismatches. Similarly, non-replicative DNA 

synthesis may also introduce DNA mismatches. Cleavage of the N-glycosyl bond 

between a base and sugar phosphate within DNA produces an abasic site. Reactive 

oxygen species (ROS) derived from aerobic respiration and other sources can produce 

intracellular OH radicals which result in electrophilic additions to nucleobases or 

hydrogen abstraction of deoxyribose sugar, which can induce single strand breaks. A 

wide variety o f DNA damage is also introduced as a result of exogenous 

environmental factors. Ionizing radiation (from cosmic radiation and radionuclides) 

can induce regions of localised ROS which can induce a variety of DNA lesions 

including oxidative damage to bases, as well as single and double strand DNA breaks. 

UV irradiation (from sunlight) induces the saturation of the 5,6 double bond of 

pyrimidines to produce a wide variety of lesions including cyclobutane pyrimidine 

dimers, pyrimidine-pyrimidone (6-4) photoproducts, pyrimidine hydrates and thymine 

glycol. Alkylating agents (such as methyl chloride or S-adenosylmethionine) transfer 

alkyl groups to nucleophilic centres within DNA bases and the backbone. Alkylation 

also weakens the N-glycosyl bond and thus promotes formation of abasic nucleotides.
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Further to these examples, a plethora of extra DNA damages and sources of damage 

have been characterised (Friedberg, 2006).

In order to maintain the structure of DNA and promote cell survival, the cell 

has evolved a large repertoire of biochemical pathways to both reverse DNA damage 

and tolerate damage during DNA replication. A wide variety of sources of DNA 

damage to the cell have existed throughout evolution and these have functioned to 

impose a high selective pressure for the maintenance of these pathways. 

Consequently, most DNA repair pathways are highly homologous throughout the 

eukaryotic kingdom, and as such, model organisms including the yeast 

Saccharomyces cerevisiae have been, and continue to be, implemental in the quest for 

deciphering the molecular mechanism of eukaryotic DNA repair. The research 

presented here concerns the repair of UV induced DNA damage by the repair pathway 

nucleotide excision repair, using S. cerevisiae as a model organism.

1.1.1 UV irradiation induced DNA damage and mutagenesis

Ultra-violet radiation (UV) is subdivided into three ranges termed UVA (320- 

400nm), UVB (290-320nm) and UVC (200-290nm). Exposure of humans to UV from 

solar radiation principally consists of wavelengths from UVA (95%) and longer 

wavelengths in UVB (5%), whilst the earth’s ozone layer absorbs the majority of 

shorter wavelengths from UVB and UVC. UV radiation is both cytotoxic and 

mutagenic and a plethora of evidence demonstrates UV exposure is a primary factor 

in the development of skin cancers (Pfeifer et al., 2005). This is principally due to UV 

induced DNA damage. UV is readily absorbed by DNA and exposure induces a wide 

variety of DNA lesions; principally dipyrimidine photoproducts (discussed below) but 

also less commonly other damages including interstrand crosslinks, ssDNA breaks 

and oxidative lesions (Bourre et al., 1987; Douki et al., 2003; Ravanat et al., 2001). 

Pyrimidine photoproducts are refractory to DNA replication and if they are not 

tolerated by the cell, can result in necrosis (Prakash et al., 2005). Nucleotide excision 

repair (NER) is the principle pathway for the repair of UV damaged DNA (discussed 

below). Mutations which inactivate this pathway are the molecular cause of the 

homozygous recessive genetic disease Xeroderma pigmentosum (XP). This disease 

exemplifies the role of DNA damage in UV induced cytotoxicity and mutagenesis; 

XP patients show severe sensitivity to sunlight and a ~2000-fold increase in the 

incidence of skin cancer (Friedberg, 2006).
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In the absence of repair, DNA damage may be tolerated during DNA 

replication by a host of specialised polymerases termed translesion synthesis (TLS) 

polymerases, which mediate DNA replication past a lesion (Prakash et al., 2005). 

Although this process can occur via one polymerase, often damage is bypassed by the 

combinatorial activities of two polymerases; the first adds nucleotides opposite a 

lesion and the seconds extends synthesis beyond the lesion. Whilst these activities 

promote the tolerance of DNA damage, and cell survival, because the enzymes 

typically have a low fidelity this occurs at the cost of accurate DNA replication 

(Prakash et al., 2005). This inaccurate replication drives mutagenesis, and the vast 

majority of UV induced DNA mutagenesis in eukaryotes is dependent upon the 

activity o f TLS polymerases (Abdulovic and Jinks-Robertson, 2006; Yoon et al., 

2009, 2010).

Most DNA mutations induced by UVB or UVC light are base substitutions at 

dipyrimidines, most commonly C->T transition events (Armstrong and Kunz, 1992; 

Brash et al., 1987; Drobetsky et al., 1987; Dumstorf et al., 2006; Gueranger et al., 

2008). UVA induced DNA mutagenesis is currently a hot topic of debate, and in some 

experimental setups, it appears UVA induces a differential pattern of mutagenesis to 

that o f UVB or UVC (Runger and Kappes, 2008). This correlates with a differential 

pattern of UVA induced DNA damage (Douki et al., 2003). However, as with UVB 

and UVC, pyrimidine photoproducts still remain the primary DNA damage and these 

lesions have been correlated with UVA mutagenesis including the prototypical C->T 

transition (Mouret et al., 2006; Rochette et al., 2003; Runger and Kappes, 2008). In 

addition, UVA is considered only to contribute 0.01-10% of DNA damage from solar 

radiation (Runger and Kappes, 2008). Within the laboratory, UV damage is 

commonly induced by a germicidal lamp emitting principally wavelengths close to 

254nm, in the UVC range. This wavelength is not readily absorbed by proteins, but is 

near to the absorption maxima of DNA, permitting experimental selectivity for UV 

induced DNA lesions (Friedberg, 2006). It may thus be observed that whilst this does 

not recapitulate UV exposure from natural sunlight, the experimental procedure 

remains highly biologically relevant by inducing the same DNA damage and 

mutations as natural sunlight.
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1.1.2 Cvclobutane pyrimidine dimer (CPD)

The most common DNA lesion induced by UV irradiation occurs between 

adjacent pyrimidines which covalently link between the C5 and C6 double bonds of 

the respective bases to form a 4 carbon ring (Pig. 1.1). Such lesions are termed 

cyclobutane pyrimidine dimers or CPDs, and are classically represented between 

bases with “<>” such that a CPD between two thymines is denoted as T<>T. 

Theoretically four stereoisomers of the CPD exist, although in B-form DNA the lesion 

predominately occurs as the cis-syn isomer (Friedberg, 2006).

CPDs may form between any dipyrimidines, however lesion incidence is 

influenced by multiple factors. In this respect, base composition of the dipyrimidine 

appears to be important. Treatment of naked DNA with UVC induces CPDs between 

the adjacent pyrimidines T<>T, C<>T, T<>C, C<>C, at a ratio of 68:13:16:3, whilst 

UVB treatment achieves a similar ratio of 52:19:21:7 (Mitchell et al., 1992). The 

formation of CPDs plateaus at high levels of UV irradiation (Douki and Cadet, 2001; 

Douki et al., 2000). It should be noted that numerous studies have analysed the 

incidence of the CPD lesion for these four dipyrimidines using various techniques 

with both in vitro and in vivo DNA substrates. Whilst the ratios reported do differ 

from those stated above, two universal observations generally hold; that UVB and 

UVC induce CPD lesions at similar ratios for the dipyrimidines (and a given 

experimental condition) and that the T<>T CPD is the most frequent lesion observed 

(Bourre et al., 1987; Brash and Haseltine, 1982; Douki and Cadet, 2001; Rochette et 

al., 2003). Furthermore, the intracellular environment does not have a large influence 

upon the relative distribution of CPD incidence at dipyrimidines (Douki and Cadet, 

2001; Lippke et al., 1981; Teng et al., 2010). Interestingly, application of UVA to 

DNA does not induce the same pattern of DNA damage as that of UVB or UVC; 

neither C<>C CPDs nor (6-4)PPs (see below) are detectably induced and the ratio of 

T<>T CPD to other CPD lesions is far greater (Besaratinia et al., 2005; Courdavault et 

al., 2004; Douki et al., 2003; Rochette et al., 2003). Whilst this was predicted to 

suggest that UVA may induce CPD formation via an indirect method (thus contrasting 

with UVB and UVC), two recent reports strongly suggest damage induction occurs 

via direct absorption of the wavelength (Douki et al., 2003; Jiang et al., 2009; Mouret 

et al., 2010). As with UVB and UVC irradiation, the predominant lesion in UVA 

damaged DNA is the CPD (Courdavault et al., 2004; Douki et al., 2003; Mouret et al.,
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The CPD has long been suspected to be the principle mutagenic lesion induced 

by UV irradiation due to its abundant presence and slow repair in vivo (Courdavault 

et al., 2005). In support of this, selectively repairing CPDs after UV damage by 

photoreversal, drastically reduces UV induced mutagenesis in both yeast and 

mammalian cells (Armstrong and Kunz, 1992; Brash et al., 1987; Jans et al., 2005; 

Yoon et al., 2010; You et al., 2001). The most common base substitution at a CPD is a 

C->T transition (Yoon et al., 2009; You et al., 2001). Interestingly however, TLS past 

the cis-syn T<>T CPD is not a highly mutagenic process in vivo (Gibbs et al., 1993; 

Yoon et al., 2009). Indeed, it has been demonstrated that a T<>T CPD may be 

efficiently bypassed in an error-free manner by the TLS polymerase Polr| (Johnson et 

al., 1999b; Masutani et al., 1999a; Washington et al., 2000; Yoon et al., 2009). 

Furthermore, genetic abnormalities within this polymerase are the molecular basis of 

a variant form of XP (termed XPV) in which UV induced mutagenesis is highly 

prevalent (Johnson et al., 1999a; Masutani et al., 1999b). This suggests Polq is the 

principle polymerase involved in CPD TLS; the same conclusion is also made in yeast 

(Gibbs et al., 2005).

In a recent study it was shown that mammalian polymerases PoIk and Pol^ 

function in independent mutagenic TLS pathways for the CPD (Yoon et al., 2009). 

PoIk cannot bypass this lesion, whilst Pol£ bypass occurs infrequently (Johnson et al., 

2000a; Johnson et al., 2000b; Nelson et al., 1996). However, both can extend from a 

nucleotide opposite the 3’ thymine of a T<>T CPD, and both do this preferentially 

from an incorrectly incorporated guanine base (Johnson et al., 2000b; Washington et 

al., 2002). Therefore, it is predicted that an as yet to be identified TLS polymerase 

functions upstream of both PoIk and Pol^ dependent TLS to insert a nucleotide(s) 

opposite the CPD lesion (Yoon et al., 2009). Interestingly, two further human studies 

have produced contrasting results with that of Yoon et al. (2009) for CPD 

mutagenesis. Ziv et al. (2009) found that whilst Pol£ was necessary for CPD 

mutagenesis, their study suggested the polymerase functioned in two TLS pathways; 

one of which was dependent upon Poll and the other PoIk (Ziv et al., 2009). In further 

contrast to these reports, a third study has suggested Pol^ does not have a role in CPD 

mutagenesis (Shachar et al., 2009). At least some of these differences probably reflect 

the disparity in the experimental conditions; whilst all studies used plasmid based 

assays to assess mutagenesis, the latter two studies introduced the lesion upon a 

region of single stranded DNA and thus probably reflect TLS at post replication gaps

Page | 5
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rather than replication forks (Shachar et al., 2009). Finally, whilst human Poll has 

been demonstrated to efficiently bypass a CPD under certain in vitro conditions, this 

polymerase does not seem to significantly influence CPD mutagenicity in vivo 

(Gueranger et al., 2008; Vaisman et al., 2003; Yoon et al., 2009).

The molecular mechanism of the common UV/CPD induced C->T transition 

remains to be determined (Pfeifer et al., 2005). However, it has been speculated that 

this may be due to spontaneous deamination of cytosine within a CPD, producing 

uracil which, if correctly bypassed by TLS would incorporate a guanine and thus 

result in the C->T transition observed at this lesion (Vaisman et al., 2006).

(6-4) PP CPD

Figure 1.1. The chemical structure of the (6-4)PP and CPD. Both UV lesions are shown between two 
thymine bases. The aberrant covalent bonds in each lesion are shown in red. The two covalent bonds in 
light green represent bonds found in a standard (6-4)PP valence isomer, whilst these are replaced with 
the two covalent bonds represented in dark green for a Dewar valence (6-4)PP.

1.1.3 Pvrimidinc-pvrimidonc (6-4) photoproducts ((6-4)PP)

A second prevalent damage within DNA following UV irradiation covalently 

links the C6 position of a 5’ pyrimidine to the C4 position of a 3’ pyrimidine (Fig.
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l . l )  (Lippke et al., 1981). The damage is termed a pyrimidine-pyrimidone (6-4) 

photoproduct or (6-4)PP. The incidence of CPD relative to the (6-4) PP DNA damage 

depends both upon flanking DNA sequence and the wavelength of UV radiation; 

estimates typically calculate between three to ten fold higher levels of CPD incidence 

(Bourre et al., 1987; Brash and Haseltine, 1982; Douki et al., 2003; Perdiz et al.,

2000). In addition, the (6-4)PP also exists as a Dewar valence isomer (see Fig 1.1). As 

with the CPD, the incidence of (6-4)PP DNA damage is influenced by its nucleotide 

sequence. For both UVB and UVC irradiation, the (6-4)PP is most prevalent at TC 

dimers, while TT or CC (6-4)PPs occur around 5-10 times less often and CT (6-4)PPs 

are very uncommon; this pattern is true of both purified and intracellular DNA (Brash 

and Haseltine, 1982; Douki and Cadet, 2001; Lippke et al., 1981). Under conditions 

where the relationship between lesion formation and UVB/UVC irradiation is linear, 

the only Dewar valence isomer detected is the CC (6-4)PP isomer (Douki and Cadet,

2001). However, as UV irradiation exposure increases the relative distribution of 

damage alters such that (6-4)PP formation plateaus, whilst Dewar (6-4)PP continues 

to increase (Douki and Cadet, 2001; Douki et al., 2000). Whilst UVA irradiation 

cannot induce the formation of (6-4)PPs in DNA, it has been demonstrated to 

photoisomerize the damage into its Dewar valence isomer (Besaratinia et al., 2005; 

Douki et al., 2003; Rochette et al., 2003). As a consequence, simulated sunlight (95% 

UVA, 5% UVB) DNA damage results in high levels of Dewar valence isomers at a 

cost o f (6-4)PPs when compared with UVB DNA damage alone (Douki et al., 2003; 

Perdiz et al., 2000). The nucleotide composition of the dipyrimidine also influences 

this process and TT (6-4)PPs are photoisomerized more efficiently than TC (6-4)PPs 

by UVA (Courdavault et al., 2005).

The most common base substitution induced by the (6-4)PP is a T->C 

transition for both yeast and mammalian cells (Bresson and Fuchs, 2002; Gibbs et al., 

1995; Yoon et al., 2010). Interestingly, despite its error-free role in CPD TLS, Polrj is 

responsible for the majority of (6-4)PP induced mutagenesis in yeast (Bresson and 

Fuchs, 2002; Zhang and Siede, 2002). In vitro the polymerase preferentially inserts 

guanine opposite the 3’ thymine of a TT (6-4)PP (Johnson et al., 2001). This activity 

would result in the T->C transition mutations most frequently observed at the (6-4)PP 

in vivo. Poll may also insert nucleotides opposite a TT (6-4)PP and does this with a 

low fidelity (Haracska et al., 2001; Johnson et al., 2000b; Tissier et al., 2000; 

Vaisman et al., 2003). Irrespective of which polymerase inserts a nucleotide(s)
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opposite the (6-4)PP, neither can bypass the damage in vitro (Johnson et al., 2001; 

Seki and Wood, 2008; Vaisman et al., 2003). In both circumstances addition of Pol£ 

continues DNA polymerisation, which occurs consistently with the stated mutagenesis 

of a (6-4)PP above, by preferentially extending from an incorrectly inserted guanine 

nucleotide opposite a lesion thymine (Johnson et al., 2001; Johnson et al., 2000b). In 

vivo, Pol^ *s considered to the principle polymerase for TLS of the (6-4)PP in yeast 

(Gibbs et al., 2005).

In contrast with yeast, in humans these three polymerases appear to function 

independently in (6-4)PP TLS pathways; Polr| and Poll function in error-prone 

pathways whilst Pol£ is necessary for error free bypass o f the lesion (Yoon et al., 

2010). Given the above biochemical properties o f these polymerases, this suggests 

that at least two more TLS polymerases must exist; one to extend from Polr| and Poll 

nucleotide insertion opposite the lesion, and another to act upstream of Pol£ extension. 

PolO may be one likely candidate given that it can efficiently extend TLS across a (6- 

4)PP with Poll in vitro (Seki and Wood, 2008). A second recent human study has also 

explored (6-4)PP mutagenesis pathways but produced contrasting results with Yoon et 

al. (2010), suggesting Pol£ is the predominant driver o f (6-4)PP mutagenesis (Shachar 

et al., 2009). As discussed above, the differences may result from the experimental 

setup reflecting different types o f TLS at ssDNA and dsDNA lesion substrates.

1.2 Eukarvotlc DNA repair pathways
By way o f introduction to eukaryotic DNA repair the following account 

briefly summarises the repair pathways common to all eukaryotes; double strand 

break repair, mismatch repair and base excision repair, followed by a detailed account 

of nucleotide excision repair.

1.2.1 Double strand break repair
DNA double strand breaks (DSBs) are a highly cytotoxic DNA lesion and are 

the product o f multiple sources including ionizing radiation, oxidative stress and 

replication o f damaged DNA. DSB repair can occur via two repair mechanisms; non- 

homologous end joining (NHEJ) or homologous recombination (HR) (Heyer et al., 

2010; San Filippo et al., 2008). Since HR requires a second region of dsDNA 

homologous to the region in which a DSB has occurred, NHEJ is the only DSB repair 

option in any circumstance where this template is unavailable. NHEJ occurs using
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various functional components including a DSB multifunctional recruitment factor, a 

polymerase, nuclease, kinase/phosphatase and ligase, members of which are given for 

both yeast and humans in Fig. 1.2. For vertebrate NHEJ, when a DSB breaks forms, 

the DNA ends are bound by Ku and this complex functions to recruit the nuclease, 

polymerase and ligase activities (Lieber, 2010). Artemis :DNA-PKcs has a 5’ 

exonuclease activity as well as 5’ and 3 ’ endonucleolytic activities and is able to 

process a wide variety of damaged DNA overhangs. PolX and Polp bind Ku, and the 

latter is able to perform template independent DNA synthesis. A complex of 

XLF:XRCC4:DNA ligase IV functions as a flexible ligase able to ligate incompatible 

DNA ends and across gaps. Ku does not sequentially recruit these processive factors 

and thus DNA duplex ends may be processed by any one o f these catalytic activities 

at any one time. Processing may transiently terminate when two strands anneal, or 

permanently terminate when one or both of the duplex strands ligate (Lieber, 2010).

When a DSB is repaired by HR, DNA ends are processed by nucleolytic 

resection in the 5’->’3 direction to leave 3’ ssDNA ends (San Filippo et al., 2008). In 

S. cerevisiae this processing involves four nucleases Mrel 1-Rad50-Xrs2, Exol, Dna2 

and Sae2 as well as the helicase Sgsl (Heyer et al., 2010). ssDNA ends are coated 

with RPA to prevent secondary structures forming, but subsequent recombination 

requires the formation o f a nucleoprotein filament o f Rad51 and the ssDNA termed 

the presynaptic filament. Formation of the filament is mediated through three classes 

of factors; Rad51 paralogues, Rad52 and BRCA2 (the latter is only present in higher 

eukaryotes). The presynaptic filament then searches for homologous dsDNA and 

subsequent Rad54 mediated strand invasion results in formation of the D loop (see 

Fig. 1.2). Formation o f the D-loop represents a branching point whereby three 

pathways may occur (Heyer et al., 2010). DNA polymerase extension of the 3’ 

invaded strand may extend the filament beyond the point at which the DSB occurred. 

In the absence o f a complementary presynaptic filament the D-loop may become a 

replication fork in a process termed break induced replication. Alternatively, the 

extended filament may re-anneal with the reciprocal resected 3’ DNA filament 

restoring the dsDNA; this mechanism is termed synthesis dependent strand annealing. 

The second presynaptic filament may also anneal to the D-loop to produce two 

holiday junctions which may both be extended by DNA polymerisation. These 

junctions may be resolved in a variety o f ways to produce both recombinant and non- 

recombinant dsDNA. Finally, if following nucleolytic resection the two ssDNA
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filaments are complementary distal to the DSB, these may anneal followed by 

removal of the 3’ ssDNA ends in a mechanism call single strand annealing (Heyer et 

al., 2010; San Filippo et al., 2008).

A. Table of functional homologues in NHEJ
Functional component S.cerevisiae Multicellular eukaryote
Recruitment factor Ku 70/80 Ku 70/80
Polymerase Pol4 Pol p and pol X
Nuclease Rad50:Mrel 1 :Xrs2 Artemis: DN A-PKcs
Kinase/Phosphatase Tppl and others PNK and others
Ligase Nejl:Lifl:Dnl4 XLF XRCC4: DNA ligase IV

B. =  = = = = =  DSB

v l '

b------------5* 3 'ssDNA

y

D loop formation

* *

Break induced Synthesis dependent Double strand
replication strand annealing break repair

Figure 1.2. A. Table of NHEJ homologues adapted from (Lieber, 2010) B. DSB repair DNA 
intermediates and products. Redrawn from (Heyer et al., 2010)

1.2.2 Mismatch repair
Mismatch repair (MMR) is essential for the repair of base-base mismatches as well as 

insertion/deletions loops, both of which are primarily products of inaccurate DNA 

replication (Jiricny, 2006b; Pluciennik et al., 2010). In the absence of MMR,
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accumulation of these mutations promotes carcinogenesis. MMR principally occurs 

via a mechanism that involves ssDNA resection over the mismatched DNA, followed 

by DNA polymerase dependent resynthesis. Crucially, this pathway requires a 

mechanism to discriminate newly synthesised DNA with a mismatch from the 

template DNA to prevent ‘repair’ of the template and thus mutagenesis.

In eukaryotes, DNA mismatches are recognised by the MutS homologues 

MSH2, MSH3 and MSH6 (Kunkel and Erie, 2005). These proteins function as 

heterodimers of MSH2-MSH6 (MutSa) or MSH2-MSH3 (MutS/?), which encircle the 

DNA at a mismatch in an asymmetric binding manner. Msh2-Msh6 (the yeast 

homologue of human MSH2-MSH6) can slide along DNA in an ATP independent 

manner in the absence of rapid deassociation/reassociation events (Gorman et al., 

2007). Upon encountering DNA mismatches the complex is kinetically stabilised, 

which is predicted to signal MMR events (Zhai and Hingorani, 2010). MSH3 and 

MSH6 physically interact with proliferating cell nuclear antigen (PCNA), and this 

interaction has been predicted to couple MMR with DNA replication (Kunkel and 

Erie, 2005). A second heterodimeric complex important for MMR includes the MutL 

homologues which exist as MutLa (MLH1-PMS2 in humans, Mlhl-Pmsl in yeast), 

MutL/? (MLH1-PMS1, Mlhl-Mlh2 in yeast) and MutLy (MLH1-MLH3). MutLa has 

been demonstrated to function as a nicking endonuclease able to produce single 

stranded nicks in dsDNA (Kadyrov et al., 2006). MutLa is recruited by MutSa, and 

both PCNA, MutLa and MutSa can form complexes on DNA. The interaction with 

PCNA is necessary to activate the endonucleolytic activity of MutLa, and it appears 

that the orientation upon which PCNA is loaded onto DNA dictates which strand is 

incised (Pluciennik et al., 2010).

Bidirectional eukaryotic MMR has been reconstituted in vitro with the human 

proteins MutSa, MutLa, Exol, replication protein A (RPA), replication factor C 

(RFC), PCNA, DNA polymerase 6 (Pol6) and DNA ligase I (Constantin et al., 2005; 

Jiricny, 2006b). Reconstitution of efficient MMR requires both a mismatch and a 

single strand nick, which may be situated either 5’ or 3’ to the mismatch. DNA is 

resected in an Exol dependent manner between the nick and the mismatch, and 

subsequent DNA polymerisation by Pol6 restores the DNA. However, a second 

pathway that depends upon nucleotide displacement by Pol6 instead of Exol resection 

has also been implicated (Kadyrov et al., 2009). One paradox of these observations 

was that Exol is a 5’->3’ exonuclease and yet DNA was resected irrespective of the
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orientation of the nick to the mismatch. In the absence of RFC and PCNA, DNA is 

only resected in the 5’->3’ direction by Exol, even if the mismatch is found in the 

opposite direction. However, in their presence RFC can suppress futile 5 ’->3’ 

exonuclease activity from a nick that lies 3’ to the mismatch (Dzantiev et al., 2004). 

In addition RFC loads PCNA and this induces the MutLa endonucleolytic activity 

which may then introduce new nicks into the dsDNA 5’ to the mismatch. From these 

novel nucleation sites DNA may then be resected by Exol (Jiricny, 2006a).

In addition to in vitro studies, a nick or DNA end may also provide a strand 

discrimination signal in vivo, and these signals are predicted to arise from the ends of 

actively replicating DNA (Crouse, 2010). In support of this model, a recent 

publication using DNA polymerase mutants demonstrated MMR of base substitutions 

by Pola are corrected several fold more efficiently than those of Pol6 (Nick 

McElhinny et al., 2010). Given that DNA polymerised by Pola (on the lagging strand) 

will always be more proximal to the end of the replicating strand (and thus a 

discrimination signal) than DNA polymerised by Pol6, it was suggested MMR is more 

likely to occur w ithin the former.

1.23 Base excision repair

The base excision repair (BER) pathway is important for the repair of a wide 

variety of chemical lesions at the base of a single deoxyribonucleic acid. 

Toxicological chemical modifications repaired by BER include oxidation, alkylation 

and base deamination, however subdivisions of the BER pathway are also important 

for the repair of covalently attached DNA topoisomerase and the repair of DNA single 

strand breaks (Almeida and Sobol, 2007). Whilst the repair mechanism is well 

conserved throughout the eukaryotic kingdom, many of the biochemical roles in BER 

are performed by non-homologous factors when comparing BER of S. cerevisiae with 

that o f H.sapiens (Kelley et al., 2003). The minimal BER pathway may be 

reconstituted with only 4 or 5 enzymes, consisting of a DNA glycosylasc, AP 

endonuclease, DNA polymerase and a DNA ligase. BER is initiated through the 

activity of a DNA glycosylasc, which functions to recognise a lesion and cleave the 

N-glycosidic bond between a damaged base and the deoxyribose sugar, thus removing 

the lesion from the DNA molecule. Following this, the deoxyribose phosphate 

backbone adjacent to the apyrimidic/apurinic (AP) site is cleaved, either 5’ to the AP 

site by an AP endonuclease or 3 ’ to the AP site via an AP lyase activity present in
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some AP glycosylases. The cleaved DNA backbone may then be further processed by 

a variety of enzymes to produce a substrate compatible for DNA replication. The 

missing nucleotide is ultimately replaced by a DNA polymerase (primarily DNA pol P 

in mammals or pol e  in yeast), and the nicked DNA ligated by DNA ligase III (or 

ligase I, and in yeast Cdc9). The process of DNA replication may function to add a 

single nucleotide, a mechanism termed short-patch BER, or alternatively replace a 

further 1-12 downstream nucleotides in a mechanism termed long-patch BER. In long 

patch BER, DNA, cleaved by the AP endonuclease APE1 (or in yeast Apnl), is 

displaced by DNA polymerase in a PCNA dependent manner during replication. The 

displaced ssDNA fragment then is resolved by the endonuclease FEN1 (Rad27 in 

yeast) allowing DNA ligation to complete the reaction.

The eukaryotic cell contains a diverse range of DNA glycosylases; to date 11 

different mammalian glycosylases have been identified, a list of which, along with S. 

cerevisiae homologues, are given in Table 1.1 (Robertson et al., 2009). Most DNA 

glycosylases are promiscuous, thus many DNA damages are known to be repaired by 

numerous glycosylases with differing kinetics according to their substrate preference 

(Hegde et al., 2008). Following the activity of a DNA glycosylase the primary AP 

endonuclease in mammalian cells termed APE1 (or Apnl in S. cerevisiae), incises the 

DNA backbone (Boiteux and Guillet, 2004). This incision either occurs 5’ to an AP 

site to leave a 3’-OH and 5’ deoxyribophosphate (dRP), or if the DNA backbone was 

cleaved by a bifunctional DNA glycosylase, a 3 ’ phosphodiesterase activity may 

eliminate the 3’-ct,p unsaturated aldehyde (see Fig. 1.3) (Chen et al., 1991; Robson 

and Hickson, 1991; Winters et al., 1994). Whilst the latter incision produces a 

substrate compatible for nucleotide incorporation by Pol p, the former requires that 

the 5’dRP is eliminated through a catalytic activity present within this polymerase 

(Matsumoto and Kim, 1995). Interestingly, both APE1 and Apnl have also been 

demonstrated to nick DNA 5’ to many base lesions independent to prior detection by 

a DNA glycosylasc, initiating a repair pathway termed nucleotide incision repair 

(Daviet et al., 2007; Ischenko and Saparbaev, 2002).

Whilst APE1 is the archetypal enzyme necessary for the tailoring of DNA 

suitable for gap filling by DNA polymerase, other proteins have been demonstrated to 

play such roles in BER. One special case is seen with the bifunctional DNA 

glycosylases NEIL1 and NEIL2. In addition to their DNA glycosylase activity, these 

enzymes can perform a p,6 elimination of the DNA ribose backbone yielding a gap
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with both 5’ and 3’ phosphates (Hazra et al., 2002). In this circumstance, PNKP, 

which possesses a far stronger 3 ’-phosphatase activity than APE1, functions to 

eliminate the 3’ phosphate (Wiederhold et al., 2004). A second example is the activity 

of tyrosyl-DNA phophodiesterase (TDP1). This protein is able to cleave peptides 

covalently attached to the 3’ phosphate of the DNA backbone via a tyrosyl residue 

(Interthal et al., 2001). The activity is important for the repair of stalled topoisomerase 

covalently linked to DNA (Pouliot et al., 1999). The resultant nick may then be 

repaired by downstream BER enzymes. In addition to TDP1, APE1 is also known to 

be able to cleave 3’-phosphotyrosyl bonds, and recently a human enzyme that cleaves 

5’-phosphotyrosyl bonds was also identified (Cortes Ledesma et al., 2009; Wilson, 

2003).

DNA elvcosvlase 5. cerevisiae H. sapiens
3-Methlyl-adenine DNA glycoylase 11 MAGI
8-Oxoguanine DNA glycosylase OGGI OGGI
Endonuclease III1 endonuclease III like-1 NTG1/NTG2 NTHL1
Adenine-DNA glycosylase MUTYH
Methyl-CpG binding domain protein 4 MBD4
Uracil-DNA glycosylase UNG1 UNG
Single-strand selective monofunctional uracil-DNA 
glycosylase I

SMUG1

G:U mismatch specific DNA glycosylase/ thymine- 
DNA glycosylase

TDG

Endonuclease VUI-like 1 NEIL1
Endonuclease VUI-like 2 NEIL2
N-Mcthylpurine-DNA glycosylase MPG

Table 1.1. L ist of known DNA glycosylases from Homo sapiens and Saccharomyces cerevisiae, 
derived from (Robertson et al., 2009).

Following incision of the DNA backbone, two further proteins are considered 

to be important for the mechanism of BER termed XRCC1 and PARP1. XRCC1 has 

been demonstrated to bind a wide variety of BER enzymes including multiple DNA 

glycosylases, PARP1, DNA ligase III and DNA pol p, (Caldecott et al., 1996; 

Campalans et al., 2005; Masson et al., 1998). A catalytic activity is not associated 

with this protein, and it is thought to function as a scaffold protein by recruiting a 

protein complex necessary for BER to a lesion. PARP1 has long been identified as a 

molecular sensor of single stranded DNA nicks, and is considered to initiate repair of 

such lesions derived from endogenous oxidative metabolism or exogenous
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environmental agents (Almeida and Sobol, 2007; de Murcia and Menissier de Murcia, 

1994). The enzyme catalyses the polymerisation of a covalently attached poly(ADP- 

ribose) (PAR) moiety to various protein targets including itself, in response to DNA 

damage. PARP1 dependent PAR polymerisation is readily detected at single strand 

breaks; the role of this activity is not fully understood but there is good evidence that 

the mechanism includes the ability to recruit XRCC1 to the damage site (El-Khamisy 

et al., 2003; Okano et al., 2003). Whilst PARP-1 could conceivably play a similar role 

for the repair of single strand breaks from BER reaction intermediates this has not yet 

been demonstrated.

13 Nucleotide excision repair

Nucleotide excision repair (NER) is a powerful repair mechanism within the 

cell and the principle repair pathway for the restoration of DNA following UV 

damage. The pathway is also observed to repair a wide range of helix distorting 

lesions, including those induced by aromatic hydrocarbons or electrophilic molecules 

such as cisplatin, as well as intrastrand cross-links (Gillet and Scharer, 2006). The 

basic mechanism of NER entails five stages; DNA damage detection, separation of 

the dsDNA surrounding the lesion, incision of ssDNA both 5’ and 3’ to the lesion, 

extrusion of the damage containing oligonucleotide and finally DNA resynthesis (Fig. 

1.4). The pathway is split into two subpathways which differ only in their mechanism 

of damage detection. Transcription coupled NER (TCR) is initiated through damage 

mediated inhibition of RNA polymerase II (RNAPII) transcription (Hanawalt and 

Spivak, 2008). TCR is confined to only the transcribed strand (TS) of active genes, 

and is classically observed to promote rapid repair in these regions in comparison to 

the remaining genome. The second subpathway, termed global genome NER (GGR), 

restores DNA damage throughout the entire genome and repairs both active and 

inactive genes as well as intergenic regions. Damage detection in this pathway 

principally requires the mammalian protein XPC. Interestingly, the S. cerevisiae 

orthologue of XPC, Rad4, is required for damage detection in GGR, but in contrast to 

XPC, also has an essential role in TCR (Prakash and Prakash, 2000). With minor 

exceptions, the molecular mechanism of mammalian NER and S. cerevisiae NER are 

highly homologous. As exemplified in table 1.2, nearly all NER factors implicated in 

the pathway from damage detection through to damage incision have equivalent 

orthologues between human and S. cerevisiae. The following account of this repair
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pathway will first consider the entire TCR reaction from all eukaryotic model 

organisms. This is followed by a detailed discussion of the various factors necessary 

for GGR in humans and the yeast S. cerevisiae.

Lesion \5' NA 3'
i i i i i i ~ i  i~ i i r rr i i i i i i i
L l  1-1 1 I 1 1 1 I I 1.1.1 1 1 1 1 1 I
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Figure 1.4. Cartoon representing the molecular mechanism of S. cerevisiae NER.
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Main activity S. cerevisiae H. saoiens DescriDtion/Activity
Damage detection RAD4 XPC DNA damage recognition
in GGR RAD23 HR23B Downstream recruitment o f NER factors

RAD33 CEN2
DDB1 DNA damage recognition; chromatin
DDB2 remodelling?

Pre-incision RAD3 XPD 5’ 3’ DNA helicase
complex RAD25 XPB 3’ -> 5’ DNA helicase

SSL1 GTF2H2 Core TFIIH subunit p44
TFB1 GTF2H1 Core TFIIH subunit p62
TFB2 GTF2H4 Core TFIIH subunit p52
TFB4 GTF2H3 Core TFIIH subunit p34
TFB5 TTDA Stabilise TFIIH
TFB3 MAT1 Member of kinase complex CAK/TFIIK
KIN28 CDK.7 Member of kinase complex CAK/TFIIK
CCL1 Cyclin H Mamber of kinase complex CAK/TFIIK
RAD14 XPA Structural role? Damage verification?
RFA1-3 RPA1-3 ssDNA binding protein

Dual Incision RADI XPF Endonuclease for incision of ssDNA 5’ to damage
RADIO ERCC1
RAD2 XPG Endonuclease for incision o f ssDNA 3’ to damage

GGR specific ABF1 o Site specific DNA binding protein
RAD7 o SOCS box E3 ligase component
RAD 16 9 SnF2 family ATPase, RING finger

TCR specfic RAD28 CSA WD40 repeat E3 ligase component
RAD26 CSB SnF2 family ATPase

Table 1.2. List o f core NER genes for both S.cerev isiae and H.sapiens. Homologues are presented in 
the same rows.

13.1 Transcription coupled repair

RNAPI1 is proposed to function as the initiator of the TCR pathway by 

arresting at a lesion during transcription elongation. This proposition is based upon a 

plethora o f experimental observations. Firstly, lesions within DNA that function to 

inhibit transcription elongation by RNAPII are repaired by TCR. Such lesions include 

cisplatin or a CPD (Laine and Egly, 2006; Sarker et al., 2005; Selby et al., 1997a; 

Tomaletti, 2009; Tomaletti and Hanawalt, 1999; Tremeau-Bravard et al., 2004). 

Conversely, an .V-2-aminofluorenc adduct, which fails to inhibit RNAPII elongation, 

is not preferentially repaired within the TS of a gene; the operational definition of 

functional TCR (Donahue et al., 1996; Tang et al., 1989). Secondly, functional TCR 

requires ongoing transcription. Inhibiting RNAPII function either through chemical 

inhibition or through the use of temperature sensitive RNAPII mutants prohibits 

preferential repair of the TS of a gene (Christians and Hanawalt, 1992; Sweder and
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Hanawalt, 1992). Thirdly, using high resolution technologies, it has been observed 

that preferential repair of the TS begins adjacent to a transcription start site (TSS), and 

that the kinetics of repair are uniform along the TS (Teng et al., 1997; Tijsterman et 

al., 1999; Tijsterman et al., 1997). The latter observation is important since chromatin 

structure is known to strongly influence GGR repair kinetics (Li and Smerdon, 2004; 

Tijsterman et al., 1999; Waters et al., 2009). Damage recognition is commonly 

considered the rate limiting step in NER (Chaudhuri et al., 2009; Lommel et al., 

2000b). Thus, RNAPII, as a processive tracker along DNA, conceivably cannot 

preferentially distinguish lesions according to their position in chromatin. This 

provides a tantalising model to explain the absence of chromatin influence upon repair 

kinetics in TCR. Lastly, the incision reaction of TCR can be reconstituted in vitro at a 

lesion arrested RNAPII with recombinant NER proteins excluding the addition of 

XPC (Laine and Egly, 2006). In GGR, XPC is considered a fundamental damage 

recognition factor and is absolutely required for reconstitution of the reaction in vitro 

(Mu et al., 1996b; Rademakers et al., 2003; Volker et al., 2001).

The current model for TCR states that following arrest of RNAPII at a lesion, 

downstream NER factors are recruited (Laine and Egly, 2006). The exact order in 

which this occurs, and the molecular mechanisms necessary for this process are still 

an area o f intense research. O f the factors common to both TCR and GGR, TFIIH and 

XPA are predicted to preclude the arrival of further downstream repair proteins (Laine 

and Egly, 2006). In contrast, other studies have indicated XPG is independently able 

to recognise and bind RNAPII arrested at a lesion; indeed the two proteins interact in 

vivo (Sarker et al., 2005). However, the strongest candidate necessary for the 

molecular mechanism of TCR following RNAPII is the mammalian protein CSB. An 

interaction between CSB and RNAPII has been confirmed in vivo, and is stimulated 

upon UV damage (Fousteri et al., 2006a; van Gool et al., 1997). In vitro, this factor 

has been demonstrated to facilitate binding of TFIIH, CSA and XPG to RNAPII 

(Sarker et al., 2005; Tantin, 1998). More recently, it has been demonstrated in vivo, 

that CSB is essential for the recruitment of a wide array of NER factors to RNAPII in 

response to UV damage, including TFIIH, XPG, XPA, ERCC1 and CSA (Fousteri et 

al., 2006a). Lastly, in further support of the role of CSB to recruit TFIIH, in yeast, an 

absolute requirement for the CSB homologue Rad26 in TCR, is alleviated in regions 

of a gene promoter where TFIIH remains associated with RNAPII (Tijsterman et al.,

1997).
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Historically, the potential role of CSB in TCR was originally implicated by its 

structural similarities to an important TCR repair protein in Escherichia coli (E. coli) 

termed Mfd. In E. coli, RNA polymerase (RNAP) stalls at a DNA lesion and restricts 

damage binding by the recognition factors UvrA and UvrB. Upon binding RNAP, 

Mfd translocates along DNA and is thought to push RNAP toward a lesion, causing it 

to dissociate from the damaged DNA; Mfd then functions to recruit UvrA through a 

direct protein interaction (Deaconescu et al., 2007). Mfd is a member of the family 2 

ATPases/helicases, containing the seven signature domains necessary for ATPase 

activity that drives the Mfd translocase. CSB is also a member of this family, and thus 

has been suggested to similarly function to recruit NER factors by displacing RNAPII 

(Svejstrup, 2003; Troelstra et al., 1992). Indeed CSB/Rad26 is known to be a DNA 

dependent ATPase without detectable helicase activity, akin to Mfd (Citterio et al., 

1998; Guzder et al., 1996a; Selby and Sancar, 1997). However, in contrast to Mfd, 

CSB cannot displace RNAPII stalled at a lesion in vitro (Selby and Sancar, 1997). 

Interestingly, in a second contrast to the TCR pathway in E. coli, both DNA incision 

and oligonucleotide extrusion have been observed in vitro without the dissociation of 

RNAPII, despite the fact that DNA footprinting suggests RNAPII occupies a 30-40 

nucleotide territory around a CPD (Selby et al., 1997b; Tomaletti et al., 1999; 

Tremeau-Bravard et al., 2004). Therefore, despite sequence similarities, the 

biochemical activities of CSB and Mfd may well contrast.

How CSB is recruited to RNAPII, and how this functions to recruit 

downstream NER factors remains elusive. An intimate link between CSB and 

transcription has been previously reported suggesting that not only may the protein 

interact with RNAPII in the absence of damage, but that it may also have a role in 

transcription (Malik et al., 2010; van den Boom et al., 2004). Upon UV damage this 

interaction with RNAPII is stabilised and a net recruitment of CSB to chromatin is 

observed (Fousteri et al., 2006a; van den Boom et al., 2004). Chromatin recruitment, 

but not DNA binding, requires the ATPase activity of CSB, which has been shown to 

relieve an autorepressive N-tcrminal domain within the protein (Lake et al., 2010). 

How might CSB proceed to function in TCR? CSB has been demonstrated to induce 

negative supercoiling in dsDNA, have an ATPase dependent chromatin remodelling 

activity and the ability to catalyse both ssDNA annealing and strand exchange in vitro 

(Beerens et al., 2005; Citterio et al., 2000; Muftuoglu et al., 2006; Newman et al.,

2006). Furthermore, CSB has also been indicated to physically interact with TFIIH,
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XPA and CSA (Groisman et al., 2006; Henning et al., 1995; Selby and Sancar, 1997). 

How each of these properties play a role in recruiting downstream NER factors and/or 

contribute to as yet undefined molecular mechanisms remains to be seen.

Studies in S. cerevisiae that have explored the roles of Rad26 in TCR have 

revealed some contrasting features with CSB. In yeast there are two apparent 

subpathways of TCR; the first is dependent upon Rad26, whilst the second is 

dependent upon a non-essential subunit of RNAPII, Rpb9. Thus Rad26 is not essential 

for TCR in yeast (Li and Smerdon, 2002; Li and Smerdon, 2004). Rpb9 TCR strictly 

depends upon active transcription of a gene, whilst Rad26-mediated TCR is 

unaffected by temperature sensitive inhibition of transcription (Li et al., 2006a; Li et 

al., 2006c). In addition to this, RAD26 dependent NER has also been observed within 

the non-transcribed strand (NTS) of a repressed gene (Li et al., 2006a; Li et al., 2007). 

These observations clearly make it difficult to implicate Rad26 in a role that functions 

to couple the transcription machinery with core NER factors. Indeed, the requirement 

for Rad26 and Rpb9 in TCR is abolished in a spt4A mutant (Jansen et al., 2000; Li et 

al., 2006c). How’ Spt4 functions to prohibit TCR is unknown, but the observation has 

important implications. It demonstrates coupling of the transcription machinery to the 

NER machinery can occur independently of both Rad26 and Rpb9, which may imply 

that RNAPII is in fact intrinsically competent to do this itself. In support of this 

model, in vitro a mammalian lesion stalled RNAPII can recruit most core NER factors 

in the absence of CSB (Laine et al., 2006; Tremeau-Bravard et al., 2004). Therefore, 

CSB may function to alleviate conditions refractory to the recruitment of NER factors 

(such as chromatin environment or RNAPII binding proteins), rather than coupling 

RNAPII with them as seen for Mfd. Finally, another study in S. cerevisiae has also 

implicated RAD51 dependent homologous recombination to functionally couple 

transcription to NER in vivo (Aboussekhra and Al-Sharif, 2005).

Like CSB, CSA is also known to be exclusively required for TCR. In humans 

CSA is essential for TCR, whilst surprisingly, mutation of the yeast homologue 

RAD2H does not seem to affect repair kinetics (Bhatia et al., 1996; Venema et al., 

1990). As observed with CSB, CSA shows a UV dependent accumulation at lesion 

arrested RNAPII (Fousteri et al., 2006a; Groisman et al., 2003). CSA is a member of 

an E3 ubiquitin ligase complex, that includes Cul4A, R od  and all eight subunits of 

the COP9 signalosome (Groisman et al., 2003). E3 ubiquitin ligases target the 

covalent addition of an ubiquitin molecule to protein lysines, which often initiates
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proteasomal degradation of the protein (Finley, 2009). Remarkably, the GGR specific 

factor DDB2 also resides in an identical complex in place of CSA. COP9 functions to 

negatively regulate the CSA E3 ubiquitin ligase. To date, the only known substrate of 

this ligase is CSB (Groisman et al., 2006). Studies by Groisman et al., have shown 

that following UV damage, CSA mediated ubiquitin ligation targets CSB for 

proteasomal degradation, depleting cellular CSB hours after UV irradiation. 

Remarkably, they show that this activity is necessary for the recovery of RNA 

synthesis following UV damage. Unlike CSA, deletion of Rad28 does not affect post- 

UV recovery of RNA synthesis (Reagan and Friedberg, 1997). CSA is not considered 

to reside in a stable complex with CSB, and the two are thus considered to only 

transiently interact in vivo (van Gool et al., 1997). Furthermore, CSA is only required 

for the recruitment o f TFI1S, HMGN1 and XAB2 to RNPAII for TCR, and thus plays 

a functionally distinguishable role in TCR from CSB (Fousteri et al., 2006a).

One of the latest concepts to emerge in DNA repair is the importance of post- 

translational modifications to both core and accessory repair factors for the molecular 

mechanism of DNA repair. In particular, the covalent attachment of ubiquitin, through 

E3 ubiquitin ligases such as the CSA complex, and the structurally related SUMO 

polypeptides to repair proteins is highly prevalent (Bergink and Jentsch, 2009). In 

addition to CSB, the large subunit of RNAPII (PolII LS) is also known to be 

ubiquitylated in response to UV damage, resulting in proteasomal degradation of the 

protein (Ratner et al., 1998; Woudstra et al., 2002). Interestingly, this phenotype 

strictly depends upon the presence of both CSA and CSB, which founded the 

hypothesis that the modification was necessary for the mechanism of TCR. In support 

of this, DNA damage that is not repaired by TCR cannot induce this phenotype 

(Bregman et al., 1996). Arrest of an elongating RNAPII (by DNA damage or through 

chemical inhibition) appears to be the primary stimulus for PolII LS ubiquitylation, 

thus DNA damage per se is not a pre-requisite (Lee et al., 2002a; Somesh et al.,

2005). In S. cerevisiae it was later shown that inhibition of PolII LS ubiquitylation did 

not affect TCR in vivo, and that the E3 ligase that targeted PolII LS was not Rad28 

(Lommel et al., 2000a; Somesh et al., 2005). Whilst ubiquitylation and degradation of 

PolII LS are important for UV survival, mutations of this pathway are not epistatic 

with mutations in Rad26 (Somesh et al., 2007; Woudstra et al., 2002). These 

observations have led to the proposal that in the absence of successful TCR, an 

arrested RNAPII may be removed through degradation of PolII LS by the proteasome
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as ‘a last resort’ mechanism (Somesh et al., 2005; Svejstrup, 2007). If the two 

pathways are independent, then how are CSA and CSB required for PolII LS 

ubiquitylation? In fact the E3 ubiquitin ligase that targets PolII LS is conserved from 

S. cerevisiae to humans and the repair proteins are not required for this activity. This 

was recently established in an elegant study that demonstrated mutations in CSA/CSB 

that function to delay recovery of RNAPII transcription after UV treatment, actually 

cause a reduction of the substrate of PolII LS ubiquitylation, a lesion arrested RNAPII 

(Anindya et al., 2007). Despite this evidence, and that RNAPII does not sterically 

inhibit TCR in vitro, the degradation of PolII LS and subsequent elimination of 

RNAPII for TCR is still a working model (Fousteri et al., 2006a; Malik et al., 2010; 

Tremeau-Bravard et al., 2004). Finally, in S. cerevisiae, transcription arrested RNAPII 

also induces SUMOylation of PolII LS, however the covalent modification does not 

seem to influence TCR or degradation but instead looks to mediate activation of 

downstream DNA damage response pathways (Chen et al., 2009).

Very recently, CSB was identified to possess an ubiquitin binding domain 

(UBD) at its C-terminus (Anindya et al., 2010). In the absence of this domain, CSB is 

unable to dynamically associate with TCR complexes resulting in sequestration of the 

protein at a lesion. Remarkably, the truncated protein can still function to recruit all 

the proteins necessary for DNA incision and oligonucleotide extrusion at a lesion, 

however neither activity can be detected (Laine and Egly, 2006). Thus an 

ubiquitylation event seems absolutely required for onset of TCR via a CSB directed 

regulation mechanism. Interestingly, the yeast homologue of CSA, Rad28, is not 

essential for Rad26 dependent TCR (Bhatia et al., 1996). Given that Rad26 does not 

contain the UBD identified in CSB, this ubiquitin mediated regulation mechanism 

appears exclusive to higher eukaryotic TCR and most probably occurs through the E3 

ubiquitin ligase activity of CSA, which may explain the difference in necessity for 

CSA to Rad28 in TCR.

13.2 Formation of the preincision complex

Following DNA damage recognition a collection of factors associate with the 

lesion forming a multi-protein complex termed the preincision complex (PIC) (Mu et 

al., 1997; Wakasugi and Sancar, 1998). Sequential construction of the PIC leads to 

separation of the dsDNA around a lesion, followed by dual incision of ssDNA and 

subsequent extrusion of the damaged oligonucleotide. Oligonucleotide extrusion has
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been recapitulated in vitro with purified proteins for both GGR and TCR (Laine and 

Egly, 2006; Riedl et al., 2003). Whilst GGR requires the addition of XPC-HR23B for 

damage recognition and TCR requires RNAPII and CSB, all other additional factors 

required are identical and thus, following damage recognition, the two pathways 

converge.

1.33 TFIIH

The exact order of recruitment, if indeed an order exists, for the factors 

necessary to form the PIC has been a topic of debate for well over ten years (Gillet 

and Scharer, 2006; Reardon and Sancar, 2004). Following damage recognition, in 

vitro binding of the three factors TFIIH, XPA and RPA to a lesion are partially 

interdependent both for GGR and TCR (Laine and Egly, 2006; Mu et al., 1997; 

Wakasugi and Sancar, 1998). However, more sensitive in vitro studies and in vivo 

evidence strongly suggest TFIIH is the first protein complex to join a damage site 

following detection (Riedl et al., 2003; Tapias et al., 2004; Volker et al., 2001; Zotter 

et al., 2006). TFIIH is a multi-subunit complex necessary for the transcription of RNA 

polymerase I and II genes (Thomas and Chiang, 2006). It consists of a core complex 

of XPD, XPB, p62, p44, p34, p52, and TTDA, and an associated three subunit 

complex termed the CDK activating kinase (CAK). O f special interest, are the XPD 

and XPB subunits (yeast homologues Rad3 and Rad25), which possess 5’ -> 3’ and 3’ 

5’ helicase activity respectively (Drapkin et al., 1994; Guzder et al., 1994; 

Schaeffer et al., 1994; Schaeffer et al., 1993; Sung et al., 1993; Sung et al., 1987). For 

GGR, TFIIH is recruited through a direct protein-protein interaction with XPC 

(Araujo et al., 2001; Uchida et al., 2002; Yokoi et al., 2000). In vitro this recruitment 

seems to be ATP independent, whilst recent in vivo data suggests the ATPase activity 

of XPB is absolutely required for recruitment to damage sites in chromatin (Oksenych 

et al., 2009; Riedl et al., 2003).

Following recruitment, TFIIH has been previously suggested to verify the 

presence of a lesion. This bipartite damage recognition mechanism was originally 

proposed based upon the observation that lesions which fail to significantly alter DNA 

structure, are only efficiently repaired by NER if combined with a mismatch loop 

(Hess et al., 1997; Sugasawa et al., 2001). Given that a mismatch loop without a 

lesion is not a target for NER, these results indicate repair requires both DNA 

distortion and a lesion to initiate. Recently, an elegant study has extrapolated upon



Chapter I

these observations (Sugasawa et al., 2009). Here the authors demonstrated that a 

mismatch loop up to 160 nucleotides away from a CPD lesion remarkably enhanced 

the efficiency of its NER. Interestingly, the enhanced repair was only apparent when a 

loop was situated 5’ to a lesion (see Fig. 1.5). Given that XPC preferentially binds a 

mismatched loop over a CPD, in an orientation specific manner, the results suggest 

that an NER complex would have to translocate in a 5’ 3’ direction to locate the

damage (Sugasawa et al., 2002). This activity is likely driven by the 5’ 3’ helicase

of XPD, and in support of this, addition of TFIIH and XPA to an electrophoretic 

mobility shift assay (EMSA) containing XPC, relocalises the XPC bound complex 

from the mismatch loop to the damage site. Interestingly, both the ATPase and 

helicase activity of Rad3, is attenuated by UV induced DNA lesions (Naegeli et al., 

1992). However, attenuation strictly depends upon the presence of damage within the 

strand upon which Rad3 translocates. This strand is predicted to pass through a small 

pore of XPD, which conceivably could provide a mechanistic explanation for damage 

perception (Wolski et al., 2010). Complementary to the studies in yeast, archaeal XPD 

helicase activity has also recently been demonstrated to be attenuated by a CPD, 

resulting in a stable interaction between XPD and the damage site (Mathieu et al., 

2010). Interestingly however, the CPD does not function to attenuate the ATPase 

activity of XPD. Collectively, these data strongly suggest that damage dependent 

inhibition of TFIIH translocation functions to verify the presence of a lesion and 

situate PIC formation (Fig 1.5).

Once localised to a damage site, TFIIH subsequently functions to separate the 

dsDNA surrounding a lesion (Evans et al., 1997a; Evans et al., 1997b). Strand 

separation by TFIIH requires ATP hydrolysis and is thus predicted to be a function of 

the two helicases XPB and XPD (Tapias et al., 2004). More recent in vivo evidence 

has suggested that w hilst the helicase activity of XPD is essential for NER, an ATPase 

activity devoid of helicase function within XPB is sufficient to support the reaction 

(Coin et al., 2007). In light o f the recent data indicating TFIIH translocation in NER, 

Sugasawa et al. have suggested the above result indicates that XPB may separate 

DNA using an ATPase activity alone, whilst XPD functions to translocate TFIIH 

along DNA and separate the strands (Sugasawa et al., 2009). Given this translocation 

is in a 5’ -> 3’ direction, it may be predicted that inhibition of motility by a lesion 

would result in a bubble of separated DNA primarily situated 5 to the damage. 

Indeed, experiments that analyse either strand separation or cleavage of DNA relative
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to a lesion, suggest the bubble of separated DNA is positioned toward the 5’ of the 

damage (Evans et al., 1997b; Huang et al., 1992; Matsunaga et al., 1995; Moggs et al., 
1996; Tapias et al., 2004).
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Figure 1.5 Bipartite damage recognition by XPC and TFIIH. A. Schematic of the substrate used in 
(Sugasawa et al., 2009). B. In scenario B XPC binds the mismatch bubble in preference to the CPD and 
recruits TFIIH 5’ to the lesion. TFIIH translocation is attenuated by the CPD and repair is initiated. C. 
In scenario C the bubble lies 3* to the CPD and TFIIH recruitment and subsequent translocation is 
orientated away from the damage prohibiting functional repair.

More recent research has also focused upon how other constituents of TFIIH 

may function in NER. One example of this is the tenth member of the TFIIH complex 

to be discovered, TTDA. Mutations within this small protein are the molecular cause 

of the UV sensitive condition trichothiodystrophy (Giglia-Mari et al., 2004). Absence 

of TTDA from TFIIH prohibits functional NER and causes a reduction in cellular 

TFIIH levels (Giglia-Mari et al., 2004; Giglia-Mari et al., 2006). TTDA does not seem 

to have a role in XPC dependent damage recruitment for TFIIH, however, in its 

absence, strand separation and subsequent recruitment of NER factors is inhibited 

(Coin et al., 2006). A second example, from the same laboratory, has recently 

contradicted one of the paradigms of mammalian NER. The study demonstrated that 

the engagement of TFIIH in NER coincides with subsequent loss of the CAK 

complex, resulting in a form that cannot instigate transcriptional activation (Coin et
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al., 2008). This suggests TFIIH is a dynamic complex in NER, in complete contrast 

with previous mammalian studies which suggested that CAK was statically engaged 

with TFIIH both during repair and transcription (Araujo et al., 2001; Mu et al., 1996a; 

Riedl et al., 2003). However, in support of these observations, S. cerevisiae NER has 

also been demonstrated to utilise TFIIH independent of the CAK complex (termed 

TFIIK in yeast) (Svejstrup et al., 1995).

1.3.4 RPA and XPA

Once the DNA strands are separated by TFIIH, recruitment of XPA, RPA and 

XPCi functions to further separate the DNA around a lesion and this completes 

formation of the PIC (Tapias et al., 2004). The first stable NER multi-factor complex 

detectable upon a lesion in vitro consists of XPC-HR23B, TFIIH, RPA and XPA, with 

damage binding affinity increased upon introduction of XPG (Riedl et al., 2003; 

Wakasugi and Sancar, 1998). Binding of XPG is thought to be concurrent with the 

loss o f XPC-HR23B from the PIC, whilst other studies have implicated XPA-RPA to 

stimulate the loss of XPC-HR23B (Mu et al., 1996a; Riedl et al., 2003; Wakasugi and 

Sancar, 1998; You et al., 2003). In vivo, there is no apparent interdependence between 

these three factors for damage binding, and thus a strict order o f recruitment cannot be 

ascertained (Rademakers et al., 2003; Volker et al., 2001).

RPA is a heterotrimeric complex composed of subunits 70, 32 and 14kDa, 

commonly referred to as RPA1, RPA2 and RPA3 respectively (or Rfal, Rfa2 and 

Rfa3, in yeast) (Friedberg, 2006). Recently, a homologue of RPA2, termed RPA4, has 

also been identified and heterotrimeric complexes with either RPA2 paralogue can 

support NER (Kemp et al., 2010). RPA has a high affinity for ssDNA and stable 

interaction of the complex with ssDNA occludes a region o f -30  nucleotides, however 

RPA may also bind shorter DNA fragments with a lower affinity (Kim et al., 1994; 

Kim et al., 1992; Matsunaga et al., 1996). Interestingly, the 30 nucleotide DNA 

binding mode of RPA corresponds well with the predicted size of DNA strand 

separation during NER (Evans et al., 1997a; Mu et al., 1997; Riedl et al., 2003). RPA 

is also known to have a high preference for binding pyrimidines and UV induced 

DNA lesions such as (6-4)PPs (Kim et al., 1992; Wakasugi and Sancar, 1999). DNA 

binding is conferred by oligonucleotide binding (OB) domains; RPA1 contains 4 OB 

domains, whilst RPA2 and RPA3 each have one, and all three subunits contribute to 

DNA binding (Bastin-Shanower and Brill, 2001; Bochkarev et al., 1997; Bochkareva



Chapter 1

et al., 2002; Salas et al., 2009). DNA binding by RPA occurs with a strict polarity. 

When bound to ssDNA, RPA aligns such that RPA1 is located toward the 5’ of the 

strand with RPA2 and RPA3 following distally toward the 3 ’ of the strand 

(Bochkareva et al., 2002; Khlimankov et al., 2001; Kolpashchikov et al., 2001; Salas 

et al., 2009). High affinity DNA binding occurs at the 5’ of ssDNA via the RPA1 OB 

domain DBDA, and this is required for all DNA binding, whilst the weaker DNA 

interactions that occur toward the 3’ (by subsequent OB domains in RPA1 and 2) are 

required specifically for binding with longer nucleotide sequences (>12nt) (Bastin- 

Shanower and Brill, 2001; de Laat et al., 1998b).

During NER, binding of RPA to the separated DNA strands is thought to both 

stabilise the ssDNA intermediates whilst co-ordinating PIC formation through specific 

protein-protein interactions (de Laat et al., 1998b). Both RPA1 and RPA2 physically 

interact with XPA (He et al., 1995; Kemp et al., 2010; Li et al., 1995a; Stigger et al.,

1998). In vitro, addition of RPA has been demonstrated to co-operatively enhance 

damage binding by XPA (He et al., 1995; Kemp et al., 2010; Wakasugi and Sancar, 

1998; Wakasugi and Sancar, 1999). Thus, a stable interaction between XPA and RPA 

occurs at a damage site, and RPA protein domains necessary for both ssDNA binding 

and binding of XPA are essential for efficient NER (Stigger et al., 1998). Given the 

polarity of RPA ssDNA binding, and the strong interaction between RPA2 and XPA, 

it has been suggested that RPA may function to position XPA toward the 5’ of a DNA 

lesion (Mer et al., 2000). RPA also has roles in positioning and regulating the 

activities o f XPG and XPF-ERCC1. RPA physically interacts with and stimulates the 

DNA incision activity of both endonucleases (He et al., 1995; Matsunaga et al., 1996). 

Importantly, RPA only functions to recruit both endonucleases to their specific DNA 

junctions in one DNA binding orientation (de Laat et al., 1998b). Binding of RPA in 

the opposing direction prohibits binding of the endonucleases. These data strongly 

suggest RPA must bind the PIC with specific polarity to functionally recruit XPG and 

XPF-ERCC1. These conclusions also indicate that RPA must therefore bind the non­

damaged ssDNA of the NER PIC.

XPA, and the yeast orthologue Rad 14, both contain a zinc finger motif and 

preferentially bind UV damaged DNA (Guzder et al., 1993; Tanaka et al., 1990; 

Wakasugi and Sancar, 1998). XPA is known to bind UV lesions in a co-operative 

manner with RPA, and is predicted to function as a dimer (Wakasugi and Sancar, 

1998; Wakasugi and Sancar, 1999; Yang et al., 2002b). Whilst this has implicated the
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protein in damage detection, XPA is no longer considered to play this primordial role 

due to the absolute requirement of XPC for damage localisation of XPA in vivo 

(Volker et al., 2001). In addition, direct lesion recognition by XPA is not a 

prerequisite for repair excision (Missura et al., 2001). Indeed rather than detecting 

lesions per se, XPA has been demonstrated to have a high affinity for kinked DNA 

structures (C'amenisch et al., 2006). This activity, in combination with the single 

stranded DNA binding affinity of RPA, has been suggested to provide XPA-RPA 

with a highly sensitive method for molecular verification of the early NER PIC 

(Missura et al., 2001). However, the exact molecular function of XPA for the core 

NER reaction is unknown. It is noteworthy that the protein interacts with a remarkable 

number of the core NER factors and is thus likely to play a scaffold-like function 

within the PIC (reviewed in Gillet and Scharer, 2006). It is also known to be 

necessary for the recruitment of XPF- ERCC1 (Orelli et al., 2009).

More recent research has further identified XPA as a potential pivotal 

intermediate between the core NER reaction and DNA damage responsive checkpoint 

proteins. Numerous studies have demonstrated NER functions both upstream of, and 

downstream to cellular responses to DNA damage mediated by checkpoint proteins 

(Auclair et al., 2008; Giannattasio et al., 2004; Yu et al., 2001). Radl4 physically 

interacts with Ddcl and Mec3, two checkpoint proteins, and thus may play a role in 

damage recruitment of these factors necessary for activation of DNA damage 

responses (Giannattasio et al., 2004). Conversely, in mammals XPA is known to 

physically interact with the checkpoint protein ataxia-telangiectasia mutated and 

Rad3-related (ATR), and this interaction is required for UV dependent nuclear 

localisation of XPA (Shell et al., 2009; Wu et al., 2007). In addition, in response to 

UV, ATR functions to phosphorylate XPA and this modification improves CPD repair 

kinetics and post-UV cellular survival (Wu et al., 2006). Furthermore, XPA is 

acetylated and SIRT1 (Sir2 in yeast) mediated deacetylation, induced by UV damage, 

is necessary for proficient CPD repair (Fan and Luo, 2010). Together, these data 

suggest that post-translational modifications of XPA may function to modulate NER 

activity.

13.5 Dual Incision
Binding of XPG completes formation of the PIC and subsequent recruitment 

of XPF-ERCCI results in dual incision and oligonucleotide extrusion (Constantinou
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et al., 1999; Evans et al., 1997a; Evans et al., 1997b; Mu et al., 1997; Riedl et al., 

2003). In vitro, addition of XPG is absolutely required for the recruitment of XPF- 

ERCC 1 suggesting this factor is the last to join prior to DNA incision (Riedl et al., 

2003). XPG and XPF-ERCC 1 are structure specific endonucleases which function to 

incise the lesion containing oligonucleotide 3’ and 5’ to the damage respectively 

(O’Donovan et al., 1994; Sijbers et al., 1996a). The 5’ incision is made 15-24 

nucleotides from the lesion whilst the 3’ incision occurs 2-8 nucleotides away, 

releasing an oligonucleotide of -27  nucleotides (Huang et al., 1992; Matsunaga et al., 

1995; Moggs et al., 1996). Interestingly in vitro studies of yeast GGR demonstrate 

extrusion of the oligonucleotide is an active process requiring superhelical torsion 

produced by a heterotrimeric complex termed the GGR complex (discussed below) 

(Yu et al., 2004). This observation is reminiscent of the role of UvrD for 

oligonucleotide extrusion in prokaryotes, although in contrast to UvrD, the GGR 

complex is not a DNA helicase (Orren et al., 1992; Yu et al., 2009). Whether 

mammalian NER requires active extrusion of the oligonucleotide remains to be 

determined.

XPG is a structure specific endonuclease and incises ds/ssDNA junctions, 

splayed arms and bubble structures within the 5’ extending ssDNA (Evans et al., 

1997a; Hohl et al., 2003; Matsunaga et al., 1995; O'Donovan et al., 1994). This 

incision occurs within one nucleotide of the ds/ss junction depending upon the 

structure of the substrate (Hohl et al., 2003). The yeast homologue of XPG, Rad2, has 

also been demonstrated to posses an identical structural specificity, and activity in 

NER (Habraken et al., 1995). XPG/Rad2 interacts with TFIIH and this interaction is 

important for the stable recruitment of XPG to damage in vivo, and functional repair 

(Araujo et al., 2001; Dunand-Sauthier et al., 2005; Habraken et al., 1996; Ito et al., 

2007; Thorel et al., 2004). XPF-ERCC 1 is an obligate heterodimer, which functions to 

incise DNA structures with an exact opposite polarity to that by XPG (Sijbers et al., 

1996a). Incision occurs within 2-8 nucleotides of the ds/ss junction (de Laat et al., 

1998a). The dimer interacts at the C-terminal of both proteins, and the interaction is 

essential for functional NER (de Laat et al., 1998c; Sijbers et al., 1996b). The yeast 

orthologue, Radi-Rad 10, functions in NER in an identical manner although the 

protein interaction domains between the two complexes are non-homologous (Bailly 

et al., 1992; Bardwell et al., 1993; Bardwell et al., 1994; de Laat et al., 1998c). XPF- 

ERCC 1 and Radi-Rad 10 are recruited to the NER PIC by TFIIH and this interaction
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is essential for functional NER (Guzder et al., 2006; Guzder et al., 1996b; Li et al., 

1995b; Orelli et al., 2009; Tsodikov et al., 2007).

Whilst the order of recruitment for the two endonucleases is well defined in 

vitro, an outstanding controversy has remained over the order in which the two incise 

DNA during NER. In contrast to reconstituted NER in S. cerevisiae, under certain 

conditions both uncoupled 5’ and 3’ incisions have been observed in mammalian 

NER (Evans et al., 1997a; Guzder et al., 1995; Matsunaga et al., 1995). Whilst XPG 

can perform an incision in the absence of XPF-ERCC 1, XPF-ERCC 1 requires the 

presence but not the catalytic activity of XPG for incision (Constantinou et al., 1999; 

Mu et al., 1996a; Wakasugi et al., 1997). However, efficient XPG incision requires 

both the presence and catalytic activity of XPF-ERCC 1 (Tapias et al., 2004). A recent 

report demonstrated in vivo that the incision by XPF-ERCC 1 was sufficient to initiate 

downstream DNA synthesis, in the absence of the XPG incision (Staresincic et al., 

2009). Given this observation, the authors concluded that the 5’ incision of NER may 

occur prior to and be necessary for the 3 ’ incision in vivo. This observation is difficult 

to reconcile with previous reports of uncoupled 3’ incisions, however, to date such 

studies have only been performed upon naked DNA templates. Whether 3’ uncoupled 

incisions may occur in vivo is as yet to be ascertained, and will be fundamentally 

important for understanding the regulation of dual incision.

13.6 DNA resvnthesis

Following extrusion of the damaged oligonucleotide, resynthesis of the DNA 

molecule restores its native structure. In vitro, reconstitution of NER DNA resynthesis 

can be achieved through the addition of RPA, PCNA, RFC, DNA polymerase 5 or C 

(pol6/C) and DNA ligase I (Aboussekhra et al., 1995; Araujo et al., 2000; Mocquet et 

al., 2008; Shivji et al., 1995). This pathway with respect to NER is poorly 

characterised and thus the molecular mechanism is extrapolated from supposed 

parallels in DNA replication (Gillet and Scharer, 2006). RFC is a pcntameric complex 

which functions to load the trimeric ring structure of PCNA proximal to 3’ primer 

DNA. PCNA then interacts with a DNA polymerase and the complex functions to 

resynthesise DNA, thus replacing the lost oligonucleotide. DNA ligase subsequently 

restores the missing phosphodiester bond between the final nucleotide incorporated 

and the dsDNA molecule.
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Evidence for an in vivo role for these DNA replication factors in NER is also 

apparent. Cell free extracts depleted of PCNA cannot perform DNA resynthesis of 

NER substrates (Shivji et al., 1992). Furthermore, PCNA co-localises to UV damage 

in vivo and complexes with RPA in a UV dependent manner (Essers et al., 2005; 

Green and Almouzni, 2003; Mocquet et al., 2008; Moser et al., 2007). In yeast, 

temperature sensitive mutants of pol8/€ fail to progress beyond the incision step of 

NER (Budd and Campbell, 1995). As shown for PCNA, mammalian pol5 also 

colocalises with UV damage and complexes with RPA (Mocquet et al., 2008; Moser 

et al., 2007). In vitro, RFC is absolutely required for efficient catalytic activity of 

po!6 C implying an vivo role for NER (Podust et al., 1992). Finally, temperature 

sensitive mutants o f S. cerevisiae DNA ligase I (Cdc9) fail to ligate the DNA 

backbone following repair of NER substrates (Wu et al., 1999). Mammalian DNA 

ligase I also localises to UV damage in a cell-cycle regulated manner (Moser et al.,

2007).

More recent research in mammalian NER has also implicated another DNA 

polymerase, polx, and ligase, XRCC1-DNA ligase Ilia (DNA ligase III), to be 

important for resynthesis (Moser et al., 2007; Ogi and Lehmann, 2006). Pol5 and polic 

apparently function within the same pathway, and depleting all three polymerases is 

sufficient to inhibit DNA resynthesis in vivo (Ogi et al., 2010). Recruitment of pol8 to 

the NER reaction is mediated by RFC, whilst polC requires the alternative clamp 

loader CTF18-RFC and polic requires XRCC1 and ubiquitylated PCNA. DNA ligase 

III localises to UV damage in vivo, and in contrast to DNA ligase I, at all stages of the 

cell cycle and is apparently the predominant ligase in mammalian NER. Interestingly, 

polC has an identical cell cycle dependence for UV damage localisation to DNA 

ligase I, whilst pol8 is independent of the cell cycle, suggesting the two polymerases 

may utilise the different ligases (Moser et al., 2007).

Another aspect of NER that is poorly understood is the transition between 

incision (extrusion) and DNA resynthesis. A recent in vitro study demonstrated that 

proficient DNA resynthesis of an oligonucleotide extruded substrate required both 

RPA and XPG (Mocquet et al., 2008). RPA is known to remain associated with DNA 

following oligonucleotide extrusion, perhaps without surprise given its fundamental 

role in the resynthesis stage (Riedl et al., 2003; Shivji et al., 1995). XPG is also 

known to physically interact with PCNA and thus may play a role in recruiting this 

factor, although the requirement of this interaction for NER is yet to be proven (Gary
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et al., 1997). XPF is refractory to RFC and PCNA recruitment and thus is predicted to 

leave prior to their recruitment; this may support a model whereby XPF incision and 

DNA resynthesis occur prior to XPG incision (Mocquet et al., 2008; Staresincic et al., 

2009). Mechanisms that co-ordinate this transition are particularly topical given the 

recent observ ation that attenuation of DNA resynthesis in NER promotes activation of 

DNA damage responsive checkpoint proteins (Giannattasio et al., 2010). Checkpoint 

activation depends upon the nuclease Exol, which was demonstrated to promote long 

strands of ssDNA in an UV damage and Rad 14 dependent manner. Thus it was 

proposed that in the absence of DNA resynthesis, Exol resects the ssDNA gap to 

produce longer gaps that promote checkpoint activation (Giannattasio et al., 2010).

1.4 Proteins necessary for GGR

1.4.1 XPC-HR23B-centrin2

In mammals mutations within XPC specifically inhibit GRR but do not affect 

TCR (Venema et al., 1991). In vivo, XPC is a constituent of a heterotrimeric complex 

of XPC-HR23B-centrin2, which is known to have a fundamental role in DNA damage 

detection (Nishi et al., 2005; Volker et al., 2001).

In vitro, XPC-HR23B binds dsDNA but has a greater affinity for UV or 

cisplatin damaged dsDNA or dsDNA containing a (6-4)PP, platinum crosslink or 

cholesterol moiety (Batty and Wood, 2000; Kusumoto et al., 2001; Sugasawa et al., 

1998; Wakasugi and Sancar, 1999; You et al., 2003). DNA binding is mediated by the 

XPC protein (Yokoi et al., 2000). The ability of XPC to bind a broad variety of 

structurally unrelated DNA lesions suggests the protein must utilise a non-specific 

binding mode, which is thought to function by detecting perturbations in the canonical 

DNA structure caused by lesions (Sugasawa, 2009). In support of this, a non-lesion 

containing 5bp mismatch in dsDNA is readily bound by XPC-HR23B, however it is 

not excised by the NER machinery (Sugasawa et al., 2001). Furthermore, the CPD 

lesion, which is known to cause minimal alterations to the DNA helical structure is 

poorly bound by XPC-HR23B and poorly repaired when compared with (6-4)PPs 

(Batty et al., 2000; Kusumoto et al., 2001; Sugasawa et al., 2009). However, if the 

CPD is incorporated into a mismatch, the binding affinity of XPC-HR23B is higher 

and the efficiency of repair is dramatically increased (Mu and Sancar, 1997; 

Sugasawa et al., 2001). XPC binds ss/dsDNA junctions with high affinity and thus 

separation of the dsDNA by a lesion is considered the primary determinant for
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damage binding (Buterin et al., 2005; Sugasawa et al., 2002). Indeed, a recent study of 

DNA adduct structure demonstrated a good correlation between lesion derived 

dsDNA separation, XPC binding affinity and NER efficiency (Mocquet et al., 2007). 

Further studies have shown XPC also has a very high affinity for ssDNA, which is 

attenuated by UV damage, implying the protein may in fact primarily bind the non­

damaged strand at a lesion (Maillard et al., 2007). This conclusion is heavily 

supported by two other recent studies demonstrating that eliminating perturbations in 

the non-damaged DNA strand suppressed NER damage excision (Buterin et al., 2005; 

Sugasawa et al., 2009). Remarkably, a very recent study has functionally uncoupled 

the ability o f XPC to bind dsDNA mismatch loops and ssDNA (Camenisch et al., 

2009). The two activities lie within different regions of the XPC DNA binding 

domain (DBD), and suggest XPC binds lesions with a bipartite recognition 

mechanism. XPC binds dsDNA mismatches asymmetrically aligning toward the 5’ of 

such structures (Sugasawa et al., 2002). Damage binding is concurrent with further 

separation of the dsDNA at a lesion (Evans et al., 1997b; Tapias et al., 2004).

XPC is known to be post-translationally modified by both ubiquitin and 

SUMOl in a UV dependent manner (Sugasawa et al., 2005; Wang et al., 2005). Both 

modifications require DDB2 (discussed below). SUMOylation appears to be 

important for the stabilisation of XPC following UV (Wang et al., 2005). The stability 

of XPC is reduced after UV, and whilst this requires the activity of the proteasome, 

surprisingly it does not require ubiquitylation of the protein (Wang et al., 2007). 

Indeed, XPC ubiquitylation is readily reversible within the cell (Sugasawa et al.,

2005). Mutation of lysine 655 inhibits post-translational modifications of XPC, 

recruitment of XPG to UV damage (although XPA and XPB are unaffected) and 

abolishes GGR (Wang et al., 2007).

The role/s for HR23B in GGR are less clear. In mammalian cells, HR23B is 

known to express a paralogue called HR23A. Whilst the two proteins seem to play a 

functionally redundant role in NER, the majority of XPC complexes with HR23B 

(Araki et al., 2001; Ng et al., 2003). In vitro, addition of HR23B stimulates NER 

activity, and both the HR23B N-terminal ubiquitin like domain and XPC interaction 

domain are required for this activity (Masutani et al., 1997; Sugasawa et al., 1996). 

Currently, the only role attributed to HR23B in NER is its ability to stabilise XPC 

levels, and over-expression of XPC functions to partially relieve the UV sensitivity of
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mHR23A-/-, mHR23B-/- cell lines (Ng et al., 2003). The protein has also been 

suggested to contribute to turnover of XPC-HR23B at the PIC (You et al., 2003).

More recently XPC-HR23B was found to be in complex with centrin2; 

centrin2 binds XPC (Araki et al., 2001). Centrin2 is a calcium binding protein, whose 

affinity for an XPC peptide is strongly promoted by calcium presence (Popescu et al.,

2003). Binding of XPC by centrin2 is necessary for efficient repair in vivo and is 

demonstrated to increase damage binding by XPC in vitro (Nishi et al., 2005).

1.4.2 Rad4-Rad23-Rad33

S. cerevisiae contains homologues of XPC, termed Rad4, and HR23B, termed 

Rad23 which form a stable heterodimeric complex (Guzder et al., 1998a; Wang et al., 

1997). In addition, a likely homologue of centrin2 also exists, termed Rad33, which 

physically interacts with Rad4 (den Dulk et al., 2008). In contrast to mammalian 

NER, Rad4 is absolutely required for both GGR and TCR, however the role of Rad4 

in TCR is unknown (Teng et al., 2010). Similarly, mutations in RAD23 and RAD33 

also prohibit efficient GGR and TCR (den Dulk et al., 2006; He et al., 1996; Mueller 

and Smerdon, 1996).

Rad4-Rad23 shows high affinity binding for lesions including (6-4)PPs and N- 

acetyl-2-aminofluorenc adducts, but poorly recognises CPDs (Guzder et al., 1998a; 

Jansen et al., 1998; Xie et al., 2004). The structure of Rad4-Rad23 binding a CPD 

within a 3bp mismatch was recently solved (Min and Pavletich, 2007). In agreement 

with damage binding models of XPC, Rad4 primarily binds DNA at a lesion through 

interactions with the non-damaged strand. Rad4 binding is concurrent with 

dinucleotide flipping at both the lesion and at the opposing complementary 

nucleotides, and a P-hairpin of Rad4 inserts between the double stranded DNA at this 

position. This structure predicts that lesions which function to locally destabilise the 

structure of dsDNA w ill facilitate both nucleotide flipping and P-hairpin insertion, and 

thus be readily bound by Rad4; again in agreement with observations described for 

XPC above.

In contrast to mammalian cells, the role yeast Rad23 plays within the cell has 

been extensively characterised. Like its mammalian homologue, Rad23 consists of an 

N-terminal ubiquitin-like domain (UbL domain), a Rad4 binding domain and two 

ubiquitin associated domains (UBA domains), which lie either side of the Rad4 

binding domain (Dantuma et al., 2009). Rad23 is known to interact with the
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proteasome and is thought to function to target this to the various cellular pathways to 

which it contributes.

The ubiquitin-proteasome pathway (UPP) is responsible for the targeted 

degradation of proteins. The proteasome is a large multisubunit complex consisting of 

two principle particles termed the 19S regulatory particle and the 20S core particle 

(Finley, 2009). The 20S forms a large barrel-like structure; at either end there is an 

opening to which a 19S complex may interact. The 19S is further divided into two 

structures termed the base, which interacts with the 20S, and a peripheral lid. Proteins 

are targeted for degradation through covalent attachment o f at least four ubiquitin 

molecules (Thrower et al., 2000). The 19S functions to recruit, unfold and translocate 

such targeted proteins into the 20S core where they are subsequently cleaved into 

small peptides.

The UbL domain of Rad23 is known to bind the Rpnl subunit of the 19S base 

subcomplex (Elsasser et al., 2002; Saeki et al., 2002). This functions to recruit Rad23 

to the proteasome but does not result in its rapid degradation (Schauber et al., 1998; 

Watkins et al., 1993). Indeed the UBA2 domain of Rad23 has been demonstrated to 

protect the protein from proteolytic degradation (Heessen et al., 2005). Both UBA 

domains have been demonstrated to bind mono-, di- and tetraubiquitin species 

(Bcrtolaet et al., 2001; Chen et al., 2001; Raasi et al., 2005; Rao and Sastry, 2002; 

Verma et al., 2004). However, the predominant physiological target of the UBA 

domains appears to be ubiquitylated proteins rather than free ubiquitin chains (Chen 

and Madura, 2002). The simultaneous binding of UBA domains to ubiquitylated 

substrates and the UbL domain to the proteasome has founded the hypothesis that 

Rad23 is important for the recruitment of ubiquitylated proteins to the proteasome 

(Llsasser et al., 2004; Verma et al., 2004). In support of this model, various 

proteolytic substrates have been demonstrated to be stabilised in rad23A mutants, 

concurrent with increased cellular levels of polyubiquitylated proteins (Lambertson et 

al., 1999; Rao and Sastry, 2002; Verma et al., 2004). Furthermore, Rad23 also binds 

the E4 ubiquitin chain elongation factor Ufd2 via its UbL domain suggesting it may 

couple ubiquitylation to subsequent degradation (Kim et al., 2004). However, the 

Rad23 UBA domains have also been shown to suppress polyubiquitin chain 

polymerisation in vitro (Chen et al., 2001; Ortolan et al., 2000). Similarly, the UBA 

domains o f the Schizosaccharomyces pombe orthologue of Rad23, Rhp3, have also 

been shown to suppress de-ubiquitylation of polyubiquitylated substrates (Hartmann-
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Petersen et al., 2003). These observations suggest Rad23 could also stabilise protein 

substrates by regulating polyubiquitylation, and overexpressing Rad23 has been 

shown to increase the half life of some UPP targets (Chen and Madura, 2002; Ortolan 

et al., 2000). Interestingly, the effect Rad23 has on protein stabilisation in vitro is dose 

dependent; Rad23 promotes protein degradation unless a large molar excess is added 

whereby it inhibits the same activity (Verma et al., 2004). Thus although Rad23 can 

inhibit substrate polyubiquitylation, at physiological concentrations the protein is 

currently regarded to primarily promote UPP dependent degradation.

S. cerevisiae rad23A mutants are known to have an intermediate repair 

capacity and UV survival compared to mutants of essential NER genes such as Rad4 

or Rad 14, suggesting it may have a regulatory role in the reaction (He et al., 1996; 

Mueller and Smerdon, 1996; Prakash and Prakash, 2000). As with mammalians, 

Rad23 has been suggested to be important for the stability of Rad4 in vivo, although 

this has been disputed (Gillette et al., 2006; Lommel et al., 2002; Ortolan et al., 2004). 

Expression of the Rad4 binding domain of Rad23 alone, which functions to stabilise 

Rad4, or overexpressing Rad4 in the absence of Rad23, is not sufficient to restore 

wild type UV survival demonstrating Rad23 plays a role beyond stabilising Rad4 in 

NER (Ortolan et al., 2004; Xie et al., 2004). Deletion of the UbL domain of Rad23 

renders cells with an intermediate UV sensitivity between wild type and rad23A 

mutants; interestingly replacing the UbL domain with ubiquitin suppresses the UV 

sensitivity (Watkins 1993). Given an alternative proteasome interaction module can 

suppress the UV sensitivity of UbLA Rad23 it is likely the primary role of this domain 

is to accommodate an interaction with the proteasome (Dantuma et al., 2009). Whilst 

Rad4, Rad23 and the proteasome have been co-purified suggesting a role for the UPP 

pathway in NER, only mutations in the 19S specifically affect NER, suggesting a role 

independent of proteolysis is important in the molecular mechanism (Russell et al., 

1999; Schauber et al., 1998). The 19S has been demonstrated to negatively regulate 

the rate of lesion removal in vivo; however this activity is modulated through an 

interaction w ith the UbL domain of Rad23 which functions to suppress this (Gillette 

et al., 2001). Currently, the molecular mechanism behind these observations is 

unknown, however it has been shown that the pathway functions independent of de 

novo protein synthesis (Gillette et al., 2006).

Finally, whilst some previous reports have not seen UV sensitivity in RAD23 

with UBA domain mutations, it has been reported that UV sensitivity is observed
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when doses of UV are repeatedly applied (Bertolaet et al., 2001; Heessen et al., 2005; 

Ortolan et al., 2004). The authors suggested that the already low levels of Rad23 with 

a mutation in the UBA2 domain are depleted following a single UV dose rendering 

the cells sensitive to a subsequent UV dose.

1.4J UV-DDB complex

A second complex implicated in damage recognition in mammalian cells is 

termed the UV damaged DNA binding complex (UV-DDB) (Sugasawa, 2009). The 

complex consisting of the two subunits termed DDB1 (p i27) and DDB2 (p48) is able 

to bind a variety o f DNA lesions including (6-4)PPs, CPD and AP sites (Wittschieben 

et al., 2005). Mutations of DDB2 are the molecular defect in XPE patients, cell lines 

of which are known to have defects exclusively in GGR (Hwang et al., 1999; Tang 

and C'hu, 2002). XPE lines are known to have highly deficient CPD repair but only 

mild defects in (6-4)PP repair. In vivo, the UV-DDB complex has been demonstrated 

to bind both (6-4)PPs and CPDs, and damage recognition occurs independent of XPC- 

HR23B-Centrin2 (Luijsterburg et al., 2007; Moser et al., 2005). Interestingly, despite 

the molecular defect of XPE, cell-free extracts do not require the UV-DDB complex 

for efficient NER, however addition of the complex has been shown to have a 

stimulatory role for the repair of CPD (Wakasugi et al., 2002). Such assays employ 

naked DNA for repair, implying that UV-DDB may have a predominant role in the 

repair o f chromatin (Rapic-Otrin et al., 2002).

The above data strongly indicate a role for UV-DDB in damage recognition 

and specifically a role in promoting CPD repair in vivo. Recently, the X-ray crystal 

structure of UV-DDB was resolved bound to DNA containing a (6-4)PP or abasic 

analog lesion, tetrahydrofuran (Scrima et al., 2008). The study demonstrated DNA 

damage recognition occurs exclusively through DDB2. Binding of DDB2 results in 

flipping of a dinucleotide at the lesion and insertion of a three residue hairpin into this 

region, thus separating the DNA strands. The protein-DNA complex also results in 

extensive kinking of the DNA at the lesion. Both UV-DDB and XPC-HR23B bind 

DNA damage, but only XPC is essential for GGR (Hwang et al., 1999). Therefore, 

UV-DDB is proposed to function to bind DNA damage and promote XPC recruitment 

thereby enhancing GGR, especially so at lesions that are poorly recognised by XPC 

such as the CPD (Scrima et al., 2008). Indeed, there are many examples 

demonstrating enhanced damage binding of XPC as a consequence of UV-DDB
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(Fitch et al., 2003; Moser et al., 2005; Yasuda et al., 2007). Furthermore, XPC and 

UV-DDB have been shown to physically interact (Sugasawa et al., 2005). 

Comparison of the structure of UV-DDB and the XPC homolog Rad4 suggests that 

the two damage binding complexes could not bind a lesion simultaneously, however 

given that XPC DNA binding is bipartite utilising two domains (that bind both DNA 

strands around a lesion) a ternary complex of DDB2-DNA-XPC may transition the 

exchange (Scrima et al., 2008).

In vivo the UV-DDB complex is part of an E3 ubiquitin ligase, including 

Cul4A (or Cul4B), Rocl, and all members of the COP9 signalosome (Groisman et al., 

2003; Guerrero-Santoro et al., 2008). The COP9 signalosome functions to negatively 

regulate the E3 ubiquitin ligase and dissociates from this in response to UV damage. 

Both UV-DDB and associated E3 ubiquitin ligase subunits are recruited to damage 

sites as a complex (Luijsterburg et al., 2007). Following UV, the UV-DDB complex 

has been demonstrated to ubiquitylate a variety of targets including DDB2, XPC and 

histones H2A, H3 and H4 (El-Mahdy et al., 2006; Kapetanaki et al., 2006; Sugasawa 

et al., 2005; Wang et al., 2006). DDB2 is degraded in an UV-dose dependent manner, 

and it w as suggested that ubiquitylated DDB2 is degraded to allow access of XPC to a 

lesion (Kapetanaki et al., 2006; Sugasawa et al., 2005). However, recent evidence has 

demonstrated that the damage binding of UV-DDB is far more rapid than the half life 

of DDB2 in response to UV, and that UV dependent degradation occurs independent 

of XPC (Alekseev et al., 2008; Luijsterburg et al., 2007). Instead, UV-DDB 

ubiquitylation has been hypothesised to recruit XPC through an ubiquitin dependent 

interaction with HR23B, or degrade DDB2 to release DDB1 for subsequent damage 

responsive ubiquitylation activities (Alekseev et al., 2008; Kapetanaki et al., 2006). In 

contrast to DDB2, low-level degradation of XPC occurs in an UV-dose independent 

manner and a large fraction of the protein is known to be reversibly polyubiquitylated 

in response to damage (El-Mahdy et al., 2006; Sugasawa et al., 2005). The 

mechanistic significance of XPC ubiquitylation is unknown, however the post- 

translationally modified protein is observed to have a higher DNA binding affinity. 

The functional significance of histone ubiquitylation is also unknown; it has been 

suggested to help recruit XPC through HR23B or by changing nucleosome structure 

and therefore increasing DNA accessibility (Kapetanaki et al., 2006; Wang et al.,

2006).
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1.4.4 The GGR complex

In S. cerevisiae no direct homologues of UV-DDB are known, however it is 

emerging that functional homologues may instead exist. The genetics and biochemical 

properties of UV-DDB share considerable similarities with a heterotrimeric complex 

of Rad7, Rad 16 and Abfl (discussed below), termed the GGR complex (Reed and 

Gillette, 2007; Yu et al., 2004). In contrast to UV-DDB, the genes RAD7 and RAD 16 

are essential for the majority of GGR for both (6-4)PPs and CPDs (Teng et al., 1997; 

Tcrleth et al., 1990; Tijsterman et al., 1999; Verhage et al., 1994; Wang et al., 1997). 

Interestingly, two recent reports have indicated the potential of Rad 16 independent 

GGR specifically within the NTS of repressed genes (Li et al., 2006a; Li et al., 2007). 

This repair activity is strictly dependent upon Rad26 and is attenuated by 

transcriptional activation of the gene.

In vitro, the dimeric complex of Rad7 and Rad 16 has been demonstrated to 

posses high affinity binding for UV-damaged DNA (Guzder et al., 1997). Damage 

binding requires ATP and is independent of Rad7 alone, thus it is likely to depend 

upon the two zinc dependent DBDs of Rad 16 (Bang et al., 1992; Guzder et al., 1998b, 

1999). Rad 16 is a member of the Snf2 family of ATPases, many members of which 

are known to remodel chromatin (Durr et al., 2006; Flaus et al., 2006). This suggests 

that Rad 16 is also important for chromatin remodelling (further discussed in Chapter 

4.1). Through the activity of Rad 16, the GGR complex functions as a DNA 

translocase (Yu et al., 2009). In vitro, Radl6 ATP hydrolysis is stimulated in the 

presence of DNA, however, addition of UV-damaged DNA attenuates this activity 

(Guzder et al., 1998b). This observation has led to the hypothesis that the GGR 

complex functions to translocate along DNA until encountering a lesion, to which the 

complex binds, attenuating DNA translocation and ATP hydrolysis.

The GGR complex has been implicated to be important for UV responsive 

NLR dependent and NER independent events (Guzder et al., 1997; Reed et al., 1998; 

Yu et al., 2005). In vitro, addition of both Rad7-Radl6 and Rad4-Rad23 to UV- 

damaged DNA results in synergistic binding of both complexes to a lesion (Guzder et 

al., 1999). Rad7 and Rad4 are known to interact, and deletions in Rad7 that disrupt 

this interaction render the cell with a UV sensitivity equivalent to rad7A (Wang et al., 

1997). This result implies all activities that the GGR complex contributes to the 

survival o f the cell following UV damage require an interaction with Rad4. 

Interestingly, like UV-DDB, the GGR complex has been implicated in damage
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responsive activities independent of Rad4 (see below). In contrast to UV-DDB 

however, a potential role for the GGR complex in promoting the recruitment of Rad4- 

Rad23 (or the reverse) to a lesion is yet to be explored in vivo. Recently, it has been 

demonstrated that Rad 16 is important for global histone H3 K9K14 hyperacetylation 

in response to UV damage (Teng et al., 2008). Damage responsive increases in H3 

acetylation, which are a requisite for efficient GGR, occur independently of both 

Rad4 and Rad 14, but not Rad 16 (Yu et al., 2005). Given that Rad 16 is not a histone 

acetyl transferase (HAT) it has been predicted that the GGR complex may function to 

remodel chromatin and thus facilitate the recruitment of HATs (Teng et al., 2008). A 

recent report provided strong evidence that Rad 16 regulates UV dependent histone H3 

K.9K14 hyperacetylation by regulating the occupancy of HATs such as Gcn5 (see 

Chapter 4.1, Yu et al., 2011). Following dual incision around a lesion, the extrusion of 

a damage containing oligonucleotide has been demonstrated to require a domain of 

superhelicity in vitro (Yu et al., 2004). The GGR complex is able to produce negative 

superhelical torsion through a catalytic activity in Rad 16, and this has been shown to 

be necessary for damage excision in vitro. As observed with other members of the 

Snf2 protein family, this superhelical torsion is predicted to result from the activity of 

translocation (Lia et al., 2006; Yu et al., 2009).

The GGR complex is also part of an E3 ubiquitin ligase with the factors Cul3 

and Elcl (Gillette et al., 2006; Ramsey et al., 2004). This complex has been 

demonstrated to ubiquitylate Rad4 in response to UV, which results in UPP dependent 

degradation of the protein (Gillette et al., 2006). Interestingly, both Rad23 and the E3 

ligase of the GGR complex play functionally redundant roles for cellular UV survival. 

It was shown that the ubiquitylation event, rather than subsequent degradation of 

Rad4, was important for UV survival. The functional contribution of Rad4 

ubiquitylation to UV survival depended upon de novo protein synthesis, strongly 

suggesting the post-translational modification regulates a transcriptional response to 

UV. To date the only known target of the GGR complex E3 ubiquitin ligase is Rad4, 

however, whilst mutations that eliminate the ability o f the complex to ubiquitylate 

Rad4 do not predispose cells sensitive to UV, mutations designed to eliminate the 

RING domain of Rad 16, and thus all E3 ligase activity, do (Deshaies and Joazeiro, 

2009; Gillette et al., 2006; Ramsey et al., 2004; Yu et al., 2011). This result implies 

that the E3 ligase may have more as yet unidentified targets, which could include 

those already discussed for UV-DDB.
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1.5 Autonomously replicating sequence binding factor 1

Autonomously replicating sequence binding factor I (Abfl) was originally 

identified for its ability to bind DNA at a variety of origins of DNA replication, as 

well as the silencing loci HML and HMR (Diffley, 1992). A plethora of literature 

subsequently identified Abfl to bind within the upstream activating sequences 

(UASs) of a large array of gene promoters. It is now well established that Abfl is an 

abundant, essential, global site-specific DNA binding protein (Yarragudi and Morse,

2006). The protein has been physically mapped to 1964 unique binding sites 

throughout the genome (Schlecht et al., 2008). The protein binds the DNA consensus 

sequence 5’-CGTnnnnnnTGAT-3, which is predicted to be found at thousands of sites 

throughout the genome (Mukheijee et al., 2004; Yu et al., 2009). In addition Abfl has 

been demonstrated to bind at sites that do not match this consensus sequence (Della 

Seta et al., 1990; Schroeder and Weil, 1998). Abfl is known to play roles in many 

areas of chromatin metabolism including transcription, silencing, DNA replication 

and repair (Loo et al., 1995; Reed et al., 1999; Rhode et al., 1992). Its multifunctional 

character has resulted in the classification of the protein as a General Regulatory 

Factor (GRF), of which members also include Rapl and Rebl (Fourel et al., 2002). 

Like many transcription factors (TF), Abfl is bipartite consisting of N-terminal DBDs 

and a C-terminal activation domain (AD) (Yarragudi and Morse, 2006). The AD is 

further subdivided into two domains termed CS1 and CS2 (Miyake et al., 2002). Abfl 

DNA binding alone is not sufficient for its many activities and the C-terminal AD is 

known to be necessary for its roles in replication, transcription and silencing (Li et al., 

1998; Miyake et al., 2002). The following account reviews the characteristics of the 

protein in its many roles and discusses the molecular mechanisms proposed to account 

for these activities.

1.5.1 A role for Abfl in DNA replication

Abfl is known to bind only a subset of replication origins within the genome 

at an auxiliary element such as the B3 element of ARS1 (Marahrens and Stillman, 

1992). A role for Abfl in DNA replication was first demonstrated when plasmids 

based upon the ARSI or ARSI2I origin of replication were shown to have a reduced 

stability when their Abfl binding site/s were mutated (Walker et al., 1990; Walker et 

al., 1989). Cells expressing a temperature sensitive DNA binding mutant of Abfl, 

termed abfl-1, also show a reduced stability of such plasmids (Rhode et al., 1992).
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These results demonstrated that Abfl is not essential for DNA replication but instead 

stimulates the efficiency of replication at ARSs to which it binds. The stimulatory role 

for Abfl binding seems to be independent of both orientation and distance; 

functioning to stimulate DNA replication when placed up to 1.2Kb away from the 

essential ARS core element (Walker et al., 1990). Furthermore, the Abfl binding site 

of ARS1 can be functionally replaced by either a Rapl or Gal4 binding site, or by 

tethering various TF acidic ADs proximal to the ARS core element (Hu et al., 1999; 

Li et al., 1998; Marahrens and Stillman, 1992; Salghetti et al., 2001).

The functional redundancy of many DNA binding proteins at the B3 element 

ot A RSI has been proposed to implicate that these must function in a similar manner; 

suggested to include chromatin remodelling (Venditti et al., 1994). However, the 

functional redundancy shown between various TFs is not always observed and in the 

case o f  ARSI21 only Abfl functions to stimulate efficient DNA replication (Wiltshire 

et al., 1997). Furthermore, a second study which used an ARSJ derived plasmid 

devoid of a centromere and selectable marker found no stimulatory role for Abfl 

binding (Kohzaki et al., 1999). The latter result demonstrates the role which Abfl 

plays in replication is context dependent. In support o f this concept, addition of an 

Abfl binding site to certain ARS devoid of this element can inhibit replication 

efficiency (Kohzaki et al., 1999).

1.5.2 Abfl as a transcriptional re£ulator

Following identification of a consensus DNA binding site (DBS) for Abfl, the 

protein was quickly recognised to bind a large number of gene UASs. Such Abfl 

binding domains are able to activate transcription when placed upstream of a reporter 

construct devoid of a promoter (Della Seta et al., 1990). Furthermore, Abfl binding 

sites isolated from either an origin of replication or silencer are also competent in 

transcriptional activation (Buchman and Komberg, 1990). However, Abfl alone is a 

weak transactivator compared with other prototypical TFs such as Gal4. A strong 

transactivation potential is only achieved when the binding site is combined with a 

second UAS element (Buchman and Komberg, 1990; de Winde and Grivell, 1992). 

Abfl functions to synergistically activate transcription with a variety of other cis- 

acting regulatory elements (Martens and Brandi, 1994; Trawick et al., 1992; 

Yarragudi et al., 2004). The synergistic activation of genes is also known to occur 

with other GRFs such as Rapl and Rebl (Buchman and Komberg, 1990; Chasman et
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al., 1990). However, Abfl binding upstream of a gene does not always function as a 

transactivator. For example, mutation of the Abfl binding site at FOX3 functions to 

alleviate transcriptional repression of the gene under non-inducing conditions 

(Einerhand et al., 1995). More recent microarray analysis, using the DNA binding 

temperature sensitive abfl-1 allele identified 50 Abfl activated genes and 36 Abfl 

repressed genes (Miyake et al., 2004). This is remarkably lower than the number of 

genes predicted to be bound by Abfl (Lee et al., 2002b; Schlecht et al., 2008). Indeed, 

two latter studies have predicted Abfl to regulate up to 235 or even 3214 genes 

(Schlecht et al., 2008; Yarragudi et al., 2007).

Akin to its role in DNA replication, Abfl seems to function as a transactivator 

in an orientation independent manner (Yoo et al., 1995). Often Abfl binding sites 

known to be important for activation are found hundreds of bases away of a TSS 

(Trawick et al., 1992; Yoo et al., 1995). Furthermore, the role Abfl binding plays in 

transcription seems to be functionally redundant with numerous other DNA binding 

factors. A Rapl or Rebl DBS can functionally substitute for an Abfl DBS within a 

promoter without loss of transcriptional activity (Kraakman et al., 1991; Martens and 

Brandi, 1994). Conversely, an Abfl or Rapl DBS may functionally replace a Rebl 

DBS at a promoter (Martens and Brandi, 1994; Remade and Holmberg, 1992).

The precise activities through which Abfl functions to regulate transcription 

are unknown. Abfl binds to the promoters of multiple proteins that contribute to the 

same protein complex, indicating the protein is likely involved in co-regulating gene 

clusters (Tan et al., 2007). Indeed, Abfl and Rapl are known to bind to nearly all 

ribosomal protein genes. Interestingly, Esal, the catalytic subunit of the histone 

acetyltransferase complex NuA4 also co-localises to these gene promoters suggesting 

Abfl and Rapl may recruit histone modifiers (Reid et al., 2000). Indeed, mutation of 

a Rapl binding site was found to eliminate recruitment of Esal, although the same 

experiment was not performed for A bfl. Deletion of the transcriptional co-activators 

EAF5. EAF7, GCN5, HOS2, ISW2, SET1, SPT3, TAF1 and TBP all affect the 

expression of genes that overlap significantly with those bound by Abfl (Steinfeld et 

al., 2007). Therefore, the protein could potentially stimulate transcription by 

recruiting some of these factors also, although it is not known to physically interact 

with any o f them.
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1.53  Abfl is important for DNA silencing

The two mating type cassettes HMLa and HMRa are maintained 

transcriptionally inactive in co-ordination with cis-acting DNA regulatory sequences 

termed silencers, and the Silence Information Regulator genes (SIR genes) (Loo and 

Rine, 1994). Each cassette is flanked by one E silencer, and at the other end, one I 

silencer. Each silencer contains an ARS domain and may also contain an Abfl and/or 

Rapl DBS. Abfl is known to bind sites at HMR-E, HMR-I and HML-I (Buchman et 

al., 1988). A genetic screen for temperature sensitive mutants of silencing, identified 

that Abfl is important for efficient silencing at both HML and HMR (Loo et al.,

1995). HMR-E consists of three cis regulatory elements termed A, E and B bound by 

the origin recognition complex (ORC), Rapl and Abfl respectively (Brand et al., 

1987; Kelly et al., 1994). These three factors show a functional redundancy since only 

two of the three elements are required for maintenance of silencing. This is also 

observed at HML-I (Boscheron et al., 1996). This is thought to relate to a shared 

ability o f all factors to ultimately recruit the SIR complex (Allis et al., 2006). 

Individually these DNA elements do not function as a bona fide silencer, however 

artificially combining all three can produce a functional silencer (McNally and Rine, 

1991; Rivier et al., 1999). Given that these DNA elements are often found in pairs 

where they do not function as silencers clearly demonstrates their effects are context 

dependent. The combinatorial necessity for the three binding sites has resulted in each 

individually being dubbed a ‘protosilencer’. Each protosilencer is able to co-operate 

with a silencer up to 4kb away, in an orientation independent manner, to establish a 

repressed domain, but cannot alone function to silence chromatin (Boscheron et al.,

1996).

A second example where Abfl is known to function as a protosilencer is 

within the subtelomeric regions. All telomeres contain a region termed the core X 

element, a 473bp region with a strong ability to silence genes (Pryde and Louis,

1999). All core X elements contain an ARS consensus sequence (ACS) and 31 of 32 

also contain a consensus Abfl DBS. Mutation of either of these elements strongly 

relieves the repressive activity. Interestingly, the core X element alone does not 

function as a silencer but instead is able to potentiate the activity of a proximal 

silencer, at either the telomere or the mating type cassettes (Lebrun et al., 2001).

Page | 45



Chapter 1

1.5.4 The multifunctional roles of Abfl: extensive repertoire of biochemical 

activities or a universal context dependent role?

Having observed the large spectrum of roles Abfl plays in chromatin 

metabolism, the obvious question arises as to how Abfl achieves so many, and in 

some circumstances contrasting, activities. Abfl itself is thought to possess little 

intrinsic regulatory activity, but is known to have a large array of interacting partners 

involved in histone methylation and acetylation, nucleosome assembly, cell cycle 

checkpoints, DNA repair and replication, and posttranslational protein modification 

(28 partners in total from last count at Saccharomyces Genome Database; 

wwAv.veastgenome.org). In many circumstances, Abfl has been observed to amplify 

the activity of its interaction partners, and has hence been dubbed an ‘obligate 

synergiser’ (Fourel et al., 2002).

Models attempting to explain the role of Abfl in transcriptional regulation, 

silencing and replication share many commonalities, all implicating the protein to be 

fundamentally important for chromatin organisation. Mutations in Abfl DBSs are 

often associated with a loss in chromatin organisation. Specifically, it has been 

observed that areas proximal to Abfl DBSs often pertain defined nucleosome 

positions, which in response to loss of the binding site result in either changes in this 

positioning or a loss of definition. This has been observed at multiple ARS, silencers 

and UASs (de Winde and Grivell, 1992; Ganapathi et al., 2010; Hu et al., 1999; 

Lascaris et al., 2000; Lipford and Bell, 2001). At ARS I , Abfl binding has been 

demonstrated to prevent the encroachment of nucleosomes into the ACS and B 

elements, occupancy of which is known to inhibit DNA replication; this activity 

correlates well with its ability to stimulate DNA replication (Bodmer-Glavas et al., 

2001; Hu et al., 1999; Simpson, 1990; Venditti et al., 1994). Nucleosome remodelling 

at ARS I specifically requires the CS2 domain of Abfl (Miyake et al., 2002). The same 

activity has also been demonstrated for various DNA binding proteins that can 

substitute for Abfl at ARS1 (Bodmer-Glavas et al., 2001; Hu et al., 1999). Similarly, 

abolition o f Abfl occupancy at RPS2HA causes a loss in the strict positioning of 

nucleosomes; the authors here suggested a model in which Abfl defines nucleosome 

positioning by forming a physical boundary for nucleosomes (Lascaris et al., 2000). 

Abfl is also proposed to position a defined nucleosome proximal to its DBS at the 

silencers HML-I and HMR-E. In this circumstance it has been predicted that the



Chapter 1

positioned nucleosome facilitates the SIR complex to propagate silenced chromatin, 

thereby defining the directionality of silencing (Zou et al., 2006).

A second commonly observed property of Abfl is the ability to define a 

nucleosome depleted region (NDR) (Badis et al., 2008; Ganapathi et al., 2010). Abfl 

binding is commonly associated with an area of MNase/DNase hypersensitivity 

(Ganapathi et al., 2010; Hartley and Madhani, 2009; Hesselberth et al., 2009). In a 

genome wide study, binding sequences for Rebl and Abfl were two of the five most 

commonly associated sequences with a NDR (Lee et al., 2007b). Furthermore, 

introduction of an Abfl binding site into a nucleosomal domain often repositions the 

nucleosome, excluding it from the Abfl DBS (Hartley and Madhani, 2009; Lipford 

and Bell, 2001; Yarragudi et al., 2004). Interestingly, the ability to compete with 

nucleosome occupancy and chromatin remodelling have been suggested to be 

mutually exclusive activities since only the former activity appears to be independent 

of CS1 and CS2 (Yarragudi et al., 2004). Loss of the AD of Abfl is known to only 

affect expression of some genes under Abfl regulation implying the protein may 

function to activate transcription by more than one mechanism (Yarragudi et al.,

2007). It has been predicted that the combined effects o f chromatin remodelling and 

maintaining a NDR are necessary for facilitating the access of secondary TFs to their 

cis elements (Yarragudi et al., 2004; Yarragudi and Morse, 2006). In support of this 

model, the requirement of a Rapl binding site at HIS4 for Gcn4 dependent 

transcription is abrogated when Gcn4 is artificially tethered to the promoter (Yu and 

Morse, 1999). An Abfl binding site may also functionally substitute for a Rapl 

binding site at HIS4 (Yarragudi et al., 2004).

In addition to these properties Abfl binding has the ability to confine areas of 

differing chromatin states, most commonly between regions of silenced and active 

chromatin (Fourel et al., 2002; Yu et al., 2003). Binding of the protein to chromatin 

prevents spreading of a silenced domain beyond it; a protein with such property may 

be referred to as a genome partitioner, barrier element or insulator. By defining a 

NDR, Abfl is believed to inhibit the spread of silenced chromatin by inhibiting the 

propagation of the Sir complex along a nucleosomal array (Bi et al., 2004). In 

addition, Abfl and Rapl arc known to be able to bend DNA upon binding (McBroom 

and Sadowski, 1994b). Other GRFs that may functionally substitute for Abfl have 

many of the above characteristics described. For example, both Rapl and Rebl have 

been demonstrated to remodel chromatin, define NDRs and function as barrier

Page | 47
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elements (Bernstein et al., 2004; Hartley and Madhani, 2009; Lee et al., 2007b; Yu 

and Morse, 1999; Yu et al., 2003). Cells expressing a fusion protein which replaces 

the essential AD of Abfl for a partially homologous domain in Rapl are viable 

(Goncalves et al., 1996). The functional redundancy between GRFs suggests their 

molecular functions must be similar.

The C-terminal domain CS2 is necessary for the role of Abfl in silencing, 

transcriptional regulation, barrier activity and DNA replication (Fourel et al., 2002; 

Miyake et al., 2002). Given the interdependence of these activities it is tempting to 

speculate that the fundamental molecular mechanism through which Abfl acts is the 

same in all these circumstances. However, it should be noted that in some 

circumstances the relative affects of Abfl mutants do not equally attenuate its ability 

to function in its various contexts (Fourel et al., 2002; Reed et al., 1999; Rhode et al., 

1992; Yarragudi et al., 2004). This potentially implies that Abfl may in fact play 

multiple roles in chromatin metabolism at a single binding site (Yarragudi et al.,

2004). It is now’ also apparent that only subsets of promoters regulated by GRFs share 

the same cofactors (Deminoff and Santangelo, 2001; Reid et al., 2000). Clearly the 

physiological consequence of Abfl binding is not always completely consistent and is 

dependent upon the context in which the protein binds. The interplay between Abfl 

and its various cofactors, and how these contribute to chromatin metabolism remain to 

be elucidated. Furthermore, other mechanisms disparate to the protein’s role as a 

chromatin organiser have been proposed to account for A b fl’s activities; these 

include recruitment of chromatin to nuclear subcompartments and chromatin looping 

(Fourel et al., 2002). Further investigation at the level of the gene in combination with 

both genome-wide and three dimensional studies will be required to elucidate how 

GRFs regulate such a diverse range of nuclear functions.

Lastly, it is worth noting that investigations into GRFs in yeast are likely to 

provide insights into the molecular biology of higher eukaryotes. Whilst a homologue 

of Abfl has not been identified in metazoans, proteins with highly similar properties 

to GRFs have been identified. A good example of this is CTCF; an abundant site 

specific genome-wide DNA binding protein. CTCF has been implicated in context 

dependent promoter activation/repression, silencing, barrier activity and long-range 

chromatin interactions (Phillips and Corces, 2009). The protein is highly conserved, 

ubiquitously expressed and essential. Many other similar examples are also appearing
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(Fourel et al., 2002; Phillips and Corces, 2009 and references therein). Therefore, 

GRFs may emerge as fundamental regulators of all eukaryotic genomes.

1.5.5 The role of Abfl in GGR

A role for Abfl in GGR was originally implicated from the observation that 

the protein co-purifies with Rad7 (Reed et al., 1999). In the absence of UV damage, 

Abfl forms a stable heterotrimeric complex with Rad7 and Rad 16, termed the GGR 

complex. How ev er, approximately only one third of cellular Abfl is predicted to be in 

complex with Rad7 and Rad 16. A temperature sensitive DNA binding mutant of 

Abfl, termed abfl -1, was demonstrated to possess a highly deficient repair activity of 

UV damage at the restrictive temperature. Subsequent to this observation, it was 

demonstrated that mutating an Abfl DBS inhibited efficient GGR both in vitro and in 

vivo (Yu et al., 2009). These results demonstrate that Abfl promotes efficient GGR 

through its site specific DNA binding activity. In vitro, mutation of an Abfl DBS at 

the HMLa-l silencer inhibited efficient binding of Abfl, Rad7 and Rad 16. When this 

mutation was incorporated in vivo, a ~400bp domain of deficient repair was situated 

upstream of the mutated Abfl DBS. These observations were interpreted to suggest 

that Abfl promotes efficient binding of the GGR complex to a consensus DBS, which 

facilitates the formation of GGR domains in response to DNA damage (Yu et al., 

2009). The unidirectional defect in repair at HMLa-l with the DBS mutation suggests 

that Abfl may direct the biochemical activities of the GGR complex in an orientation 

specific manner. Indeed, Abfl DNA binding has been suggested to be strictly 

orientated such that it predominantly contacts one face of the DNA helix at the 

adjacent major grooves 3 '-GCA-5' and 3’-YYRCTR-5' of the DNA binding 

consensus sequence (McBroom and Sadowski, 1994a). This could subsequently direct 

the activity o f the Rad 16 DNA translocase, which promotes GGR (Ramsey et al., 

2004; Yu et al., 2004; Yu et al., 2009). Indeed, in response to UV damage, Abfl 

occupancy was shown to fall at HML-L potentially reflecting a relocalisation of the 

GGR complex following UV. The above observations have been consolidated as a 

model presented in Fig. 1.6 (Yu et al., 2009).
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Figure 1.6. A. In the absence of DNA damage the GGR complex (represented as a green complex) is 
predicted to reside at various Abfl DBSs throughout the genome. B. In response to damage, the GGR 
complex induces superhelical torsion in DNA following unidirectional translocation initiated from the 
Abfl binding site. This creates domains of superhelical torsion (represented by striped DNA), the 
activity of which promotes efficient GGR. The GGR complex may translocate either short (B) or long 
distances (C) to promote GGR within a domain from the Abfl DBS.

1.6 DNA binding kinetics

1.6.1 The nomenclature used with respect to transcription factors

The principles from which many of the proceeding studies and discussions are 

derived concern site specific DNA binding regulators of transcription. Unfortunately, 

this field uses a range of loosely defined terms to describe the various proteins that 

bind chromatin necessary for transcription. Here, the term transcription factor (TF) is 

used to describe a site specific DNA binding protein which binds DNA at a region 

either proximal or distal to a core promoter and either positively or negatively 

regulates transcription of the promoter. This does not include any of the basal (or
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general) TFs, including site specific DNA binding proteins such as TBP. Nor does it 

include proteins that influence transcriptional regulation via recruitment by TFs 

(termed co-activators/co-repressors) such as histone modifiers or chromatin 

remodellers. A TF, in this sense, is equivalent to any protein categorised in 

transcriptional ‘orchestration’ from the given reference (Venters et al., 2011).

1.6.2 The in vivo lifetime of TF:DBS complexes

It is now well established that the regulation of transcription is at least partially 

controlled through TFs; proteins that function to recognise and bind a site specific 

DNA binding site (DBS) proximal to a gene’s core promoter and initiate a progressive 

recruitment of protein factors necessary for RNA polymerase mediated transcription 

(Weake and Workman, 2010). Prior to the advent of in vivo technologies such as 

chromatin immunoprecipitation (ChIP) or live-cell imagery, the delineation of this 

complex mechanism was established using in vitro assays. Using such assays, it was 

commonly observed that site specific DNA binding by a TF resulted in a highly stable 

complex with DNA. For example, a complex of the glucocorticoid receptor (GR) or 

NF-kB with its respective DBS has a half-life of 108 minutes or 45 minutes 

respectively (Perlmann et al., 1990; Zabel and Baeuerle, 1990). The vast majority of 

TFs in vitro form long-lived complexes with their cognate DBSs. Such observations 

founded the notion that upon activation, TFs stably bound DNA and resided at a 

promoter for the duration of transcriptional activation (reviewed in Hager et al.,

2006). It was therefore surprising when the occupancy of the oestrogen receptor-a 

(ERa) was observed at a promoter in vivo using ChIP. Using this technique the 

occupancy of ERa was observed to cyclically rise and fall in a pattern that 

periodically repeated every 80 minutes (Shang et al., 2000). The rise and fall in 

occupancy of both ERa and co-activators within this period was interpreted to 

represent a single binding event, indicating that the in vivo half life of ERa at a DBS 

was only around 20 minutes (see Fig. 1.7).
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Figure 1.7. Graphical representation of the occupancy of ERa at the capthepsin D promoter following 
addition of estradiol. ChIP results were presented in (Shang et al., 2000).

Whilst the data produced by Shang et al. (2000) was correct, the interpretation 

is likely flawed. The mistake made was to assume that the changes seen were directly 

representing the in vivo DNA binding kinetics of ERa. At a similar time to this 

publication, a study using live-cell imagery demonstrated the remarkable observation 

that the in vivo half-life of the GR at a promoter was of the order of a few seconds 

(McNally et al., 2000a). The rapid exchange of a TF with its promoter in vivo was 

later also observed for ERa, and has been made for all nuclear hormone receptors 

tested (Klokk et al., 2007; Rayasam et al., 2005; Sharp et al., 2006). These 

observations quickly altered the models derived from ChIP experiments, and, for 

some TFs including ERa, the oscillations in occupancy are now believed to reflect 

gradual changes in the chromatin environment that alter the accessibility of TF DBSs 

(and thus TF occupancy) over time (Hager et al., 2009; Karpova et al., 2008). 

Collectively this work demonstrates that a far more powerful appreciation of in vivo 

DNA binding by TFs is provided through studies that complement ChIP with 

techniques that analyse DNA binding kinetics. Secondly, this demonstrates that ChIP 

is not well suited for the analysis of DNA binding kinetics (discussed below).

Whilst the exploration of nuclear dynamics has become facile with the use of 

live-cell imaging, the analysis of site specific DNA binding kinetics (as opposed to 

generic DNA or chromatin binding) in vivo has remained very limited due to the vast 

technical difficulties in acquiring such information. Rapid exchange of DNA binding
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proteins is clearly not always observed in vivo; histones H3 and H4 remain bound 

within chromatin for several cell generations in HeLa cells, whilst different 

populations of H2B show variable half-lives ranging from 6 minutes to 8.5 hours 

(Kimura, 2005). In addition to the nuclear hormone receptors, two site specific DNA 

binding TFs, NF-kB and Acel (in S. cerevisiae) have been demonstrated to rapidly 

exchange at a promoter in vivo (Bosisio et al., 2006; Karpova et al., 2008). The 

prevalence of these examples is currently unknown; these studies typically investigate 

only a single cognate promoter bound by the TF using low resolution analysis. In 

contrast, under inducing conditions three TFs have been shown to reside at a cognate 

DBS/promoter in vivo with a half-life of at least 20 minutes; Gal4 (from S. 

cerevisiae), HSF (from D.Melongaster), and HIF-1 (from mammalians) (Nalley et al., 

2006; Yao et al., 2006; Yu and Kodadek, 2007). However, a recent publication has 

indicated that the stable binding of Gal4 observed at a promoter may result from an 

artefact of the experimental conditions employed and thus not reflect the wild type 

behaviour of the protein (Collins et al., 2009). Lastly, nuclear foci of the TF RUNX2, 

which represent regions of RNAPII mediated transcription, contain a mixed 

population of both rapid and slow exchanging proteins (Pockwinse et al., 2011). 

Although limited, the wide variance in the results obtained to date likely reflect that 

mechanisms that regulate DNA binding kinetics of TFs are both complex and diverse. 

Therefore, future studies will need to expand the repertoire of TF DNA binding 

kinetics analysed and include multiple chromosomal locations in order to substantiate 

how this property is regulated in vivo, and its resultant physiological consequences.

1.6.3 The regulation of DNA binding kinetics

The stark contrast in the lifetime of a DNA bound complex of GR or NF-kB 

with its cognate DBS in vitro, compared in vivo, suggests that exogenous factors must 

function to disrupt (or ‘turnover’; a term used here, not to be confused with 

proteolytic turnover) DNA bound protein complexes within the cell. In support of 

this, addition of nuclear extracts function to dissociate TF:DBS complexes in vitro 

(Fletcher et al., 2000; Fletcher et al., 2002; Rayasam et al., 2005). ATP depletion 

immobilises a fraction of GRs at a promoter array in vivo, suggesting that such 

activities require energy (Agresti et al., 2005; Stavreva et al., 2004). Furthermore, in 

situ depletion of soluble nuclear factors inhibit the nuclear mobility of the GR (Elbi et 

al., 2004). One complication with the latter observation is that the GR has been
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suggested to be sequestered at the nuclear scaffold (Stenoien et al., 2001). However, it 

is generally agreed that a significant fraction of GR is chromatin bound and thus 

nuclear factors must be important for turnover of chromatin bound GR, and 

presumably also site-specific DNA bound GR (Agresti et al., 2005; Hager et al., 

2009).

To date two classes of proteins have been demonstrated to actively turnover 

TF:DBS complexes in vitro. The first class of these are molecular chaperones. For 

example, p23 functions to disrupt thyroid receptor (TR) binding at a DBS in vitro 

(Freeman et al., 2000; Freeman and Yamamoto, 2002). This activity seems to have a 

physiological consequence in vivo since artificially tethering p23 proximal to a DBS 

functions to reduce transactivation by GR, TR, API and NF- kB. The same effect was 

also observed for the molecular chaperone Hsp90 (Freeman and Yamamoto, 2002). It 

was also shown in situ, that the loss of GR mobility due to nuclear factor depletion (as 

discussed above) could be restored through the addition of a cocktail of seven 

chaperones/co-chaperones (Elbi et al., 2004). The second class of proteins include 

members of the Snf2 family of ATPase chromatin remodellers. In vitro, SWI/SNF has 

been demonstrated to displace DBS binding by the androgen receptor (AR) and GR 

(Fletcher et al., 2002; Klokk et al., 2007). Interestingly, and in complete contrast to 

the above experiments for p23, displacement of protein binding strictly depended 

upon a chromatin template since identical experimental procedures using a naked 

DNA template did not result in TF turnover. This strongly suggests that the activity of 

chromatin remodelling is required, and a role for chromatin remodellers in regulating 

DNA binding by altering the accessibility of a DBS within chromatin has been 

proposed (Karpova et al., 2008; Nagaich et al., 2004). In this regard, SWI/SNF may 

parallel the activity of another Snf2 member Isw2. This has been demonstrated to 

displace DNA binding of the artificial activator Gal4 DBD-VP16 AD by sliding a 

nucleosome into the vicinity of a Gal4 DBS (Kassabov et al., 2002). As a final 

example, turnover of Acel on chromatin was demonstrated to be accelerated by Rsc2, 

however the results were concerned only with non-specific chromatin interactions, 

and have not been tested at a DBS (Karpova et al., 2004).

Accumulating evidence suggests that for some TFs there exists an intimate 

link between transcription and proteolytic turnover. For example, many ADs contain 

degrons, a TF’s stability is often inversely proportional to its transactivation potential 

and in some cases, inactivation of the proteasome completely inhibits functional
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transcription (Collins and Tansey, 2006). These data suggest that proteolytic turnover 

of some TFs is necessary for functional transcription. Furthermore, given that the 

proteasome is recruited to many promoters and that inhibition of transcription often 

leads to stabilisation of a TF, it is commonly proposed that proteolytic degradation of 

a TF occurs whilst DNA bound at a promoter and is mechanistically coupled to 

functional transcription (Kodadek et al., 2006; Morris et al., 2003; Reid et al., 2003; 

Sikder et al., 2006; Zhu et al., 2007). This model therefore describes a third 

mechanism by which the cell may function to regulate the turnover of a DNA binding 

protein at a DBS. Innumerable papers imply proteolytic turnover of a TF at a 

promoter; for example, in response to galactose only the transcriptionally active pool 

of Gal4 is rapidly degraded, whilst the remaining pool is stable (Muratani et al.,

2005). However, only a handful of examples directly demonstrate a role for 

proteolytic turnover at the DBS. Occupancy of HIF-la at a promoter is negatively 

regulated by the proteasome, and given that the protein stably binds a promoter in 

vivo, this activity is likely to occur whilst chromatin bound (Yu and Kodadek, 2007). 

Live cell imagery has demonstrated a slower exchange of both the GR and NF-kB at a 

promoter in response to proteasome inhibition or mutation of a degron respectively 

(Bosisio et al., 2006; Stavreva et al., 2004). Furthermore, SREBP1 is phosphorylated 

and ubiquitylated in response to binding a promoter and inhibition of the proteasome 

results in a rapid accumulation of phosphorylated SREBP1 at a promoter, without a 

concurrent cellular accumulation of the phosphorylated species, directly 

demonstrating the protein is proteolytically turned over whilst bound at a promoter 

(Punga et al., 2006).

1.6.4 Regulation of DNA binding kinetics bv the 19S sub-particle of the 

proteasome

Perhaps the best characterised regulator of TF DNA binding kinetics at a DBS 

is an apparent activity within the 19S sub-particle of the proteasome (Ferdous et al.,

2007). Here the authors demonstrated that the 19S is able to dissociate a stable 

interaction between a TF and its cognate DBS in vitro. As with p23, this activity was 

detectable using naked DNA templates. The activity does not prevent the TF from 

reassociating to a DBS suggesting that it does not involve proteolytic degradation or 

denaturation of the protein. Furthermore, the activity required a physical interaction 

between the 19S and a TF AD, and required ATP, and is thus likely to be a function
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of the chaperone activity of the 19S AAA ATPases. The second seminal finding of the 

paper was that monoubiquitylation of a TF functioned to attenuate this activity. It was 

later determined that the ubiquitin moiety interacts with the 19S subunits Rptl and 

Rpnl, and as such is believed to allosterically inhibit a 19S interaction with an AD 

(Archer et al., 2008a). As with the 19S interaction, monoubiquitylation required the 

presence of an AD. Collectively, these data demonstrate that post-translational mono­

ubiquitylation of a protein may function to regulate the lifetime of TF:DBS 

interactions.

Whilst these observations are very interesting, are they physiologically 

relevant in vivo? A derivative of Gal4, termed Gal4D, which lacks a region of the C- 

terminal AD necessary for monoubiquitylation, cannot efficiently occupy a cognate 

promoter in vivo or activate transcription (Archer et al., 2008b). However, in vitro the 

ability of Gal4D to bind DNA is not compromised (Wu et al., 1996). If the loss of 

DNA occupancy in vivo was due to 19S mediated disruption of TF:DBS complexes 

then inactivation of the 19S activity or artificially tethering ubiquitin to Gal4D should 

restore promoter occupancy; indeed this is the case for both (Archer et al., 2008b). 

Under certain experimental conditions, the turnover of Gal4 at a promoter is far more 

rapid under non-inducing conditions than inducing conditions for transcriptional 

activation (Nalley et al., 2006). This observation has led the authors to propose that, 

under inducing conditions, Gal4 monoubiquitylation functions to antagonise the 

destabilisation activity of the 19S resulting in stable, long lived, Gal4-DBS complexes 

(Ferdous et al., 2007). Indeed, indirect evidence has been provided for this 

ubiquitylation event under inducing conditions at a Gal4-binding promoter (Archer et 

al., 2008b). Whilst Gal4D cannot efficiently occupy a cognate promoter in vivo, a 

further deletion of Gal4D, which removes the 19S interaction module, seems to 

restore the ability of Gal4 to occupy its binding site in vivo (Nalley et al., 2006). 

However, the truncated protein does not retain kinetic stability on DNA under 

inducing conditions; it possesses a shorter half-life at a DBS when compared with the 

full length protein. Thus via a mechanism independent to monoubiquitylation, the 

ability to drive transcription also seems to stabilise the DNA binding kinetics of Gal4; 

an observation previously made for other TFs (Klokk et al., 2007; Reid et al., 2003; 

Stavreva et al., 2004; Yu and Kodadek, 2007).

Whilst the physiological relevance of 19S regulated DNA binding kinetics has 

only been demonstrated in vivo for Gal4, a variety of evidence indicates this
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phenomenon may be utilised for many TFs within the eukaryotic cell. Firstly, in vitro 

it was shown that DBS binding by Pho4 and p53 is also disrupted by the 19S, 

indicating that any protein that directly interacts with the 19S may be susceptible to 

the activity (Ferdous et al., 2007; Kim et al., 2009). Secondly, monoubiquitylation has 

been demonstrated to stimulate the occupancy and transactivation potential of 

multiple TFs (Bres et al., 2003; Greer et al., 2003; Le Cam et al., 2006; Salghetti et 

al., 2001). Lastly, the activity of the 19S has also been demonstrated to disrupt both 

site specific and generic DNA binding of p53; in vivo p53 recruits the 19S to a 

promoter and inhibition of the 19S both increases promoter occupancy and gene 

transcription (Kim et al., 2009).

1.6.5 Is there a physiological rationale in regulating DNA binding kinetics?

Whilst it has become apparent that mechanisms exist within the cell that alter 

the DNA binding kinetics of proteins in vivo, is this property important for the 

regulation of cellular metabolism or just a consequence of such activity? It is intuitive 

to suppose that, given the presence of a TF often promotes gene expression, changes 

that function to increase the occupancy of a TF (or Ka, see Fig. 1.8) should function to 

increase the transactivation potential. But does it matter how long it resides at a DBS? 

This topic is a matter of hot debate, but two studies have indicated the answer may 

well be yes (Brady et al., 2005; Yang et al., 2002a). In both examples a TF was 

isolated with DBD point mutations that failed to substantially alter the Ka of the 

protein at a DBS in vitro, but significantly altered the rate at which the protein bound 

and dissociated from the DBS (the Kon and Koff rates respectively). In both cases, the 

TF derivative which stably bound a DBS attained a far greater transactivation 

potential than that which was kinetically labile. These studies illustrate two important 

points. Firstly, they demonstrate that altering the lifetime of TF:DBS complexes may 

provide the cell with an elegant mechanism for the regulation of the physiological 

function of such proteins, a concept now receiving considerably support (Hager et al., 

2009). This correlates well with the observations that mono-ubiquitylation functions 

as a licensing factor for TFs, and stabilises their turnover at a DBS in vitro. It also 

correlates with two studies that have demonstrated the TFs Gal4 and HSF to be 

kinetically stabilised at a promoter in response to environmental cues that activate 

transcription (Nalley et al., 2006; Yao et al., 2006). Secondly, they demonstrate that 

technologies designed to measure DNA binding such as EMSA or ChIP, which
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measure a protein’s occupancy at a DBS (or Ka), will not necessarily observe changes 

in the DNA binding kinetics. This is because these techniques analyse the relative 

equilibrium between protein-bound and free DBSs, but do not measure the flux of the 

equilibrium. If a change in flux results in a change in the equilibrium then this is 

detected, however, flux can alter without detectable changes in the equilibrium, as 

demonstrated by the above references (see also Fig. 1.8).
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Figure 1.8. A. Standard equation representing the equilibrium between DNA bound and free protein. 
The Ka represents the affinity of a protein for its DBS, which is a function of its DNA binding kinetics. 
B. Examples of how changes in kinetics are represented by technologies such as ChIP that measure the 
Ka of a protein. In example 3, the rate of protein turnover as a DBS is 5x faster than in example 1, 
however because the ratio of Kon/Koff is maintained, the increase in turnover is not detected by ChIP.
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1.7 Aim of the current study

As described in 1.4.4, Abfl is part of a heterotrimeric complex with Rad7 and 

Rad 16 termed the GGR complex. Rad7 and Rad 16 are generally essential for GGR in 

vivo, the mechanism of which has been partially characterised. Rad 16 is able to 

induce superhelical torsion in the DNA molecule necessary for oligonucleotide 

extrusion in vitro. Rad7 and Rad 16 have also recently been demonstrated to promote 

histone H3 K9K14 acetylation and remodel chromatin in vivo, the activities of which 

are necessary for efficient GGR (further discussed in Chapter 4). As discussed in 

1.5.5, the ability of Abfl to promote GGR correlates with its site specific DNA 

binding activity. The protein is hypothesised to function by promoting binding of 

Rad7/Radl6 to domains in the genome in which their biochemical activities promote 

efficient GGR. The aim of the current study is to further characterise the Abfl and 

Radi6 proteins using ChIP coupled to microarrays (ChlP-on-chip). In Chapter 3, 

Abfl ChlP-on-chip is performed both in the absence and presence of UV damage. In 

Chapter 4, Rad 16 ChlP-on-chip is similarly performed both in the absence and 

presence of UV damage. How GGR is organised in relation to the genome-wide 

distribution of both Abfl and Rad 16 is investigated using global datasets for both 

histone H3 K9K14 acetylation and CPD repair.

As discussed in Chapter 1.6, the DNA binding kinetics of TFs is an emerging 

field of research. Numerous studies have indicated that there exists an intimate link 

between the DNA binding kinetics of TFs and transcriptional activation. Abfl is 

structurally homologous to canonical TFs (see Chapter 5.1), and in many 

circumstances functions as a transcriptional activator (Chapter 1.5.2). The cell appears 

to have many mechanisms that function to regulate the DNA binding kinetics of a TF 

in vivo including ubiquitylation and chromatin remodelling by Snf2 protein family 

ATPases. The GGR complex has both an E3 ubiquitin ligase activity and Rad 16 is a 

member of the Snf2 protein family. Given the structural and functional similarities 

between Abfl and other TFs, and that the GGR complex has two activities that could 

regulate DNA binding kinetics, this study aimed to investigate if changes in Abfl 

DNA binding kinetics were mechanistically linked to GGR. In Chapter 5, tools 

necessary for analysing Abfl DNA binding kinetics in vivo using the ChlP-on-chip 

technology are created and optimised. The aim of chapter 6 is then to use these tools 

to measure the genome-wide DNA binding kinetics of Abfl both in the presence and 

absence of UV damage, as a complementary study to Chapter 3.
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2. Materials and Methods

This chapter describes the molecular biological techniques employed in this study. 

Whilst the majority of solutions are described within the text, some solutions have 

been named but their contents not described; these descriptions may be found in 

Appendix I.

2.1 Strains, growth and storage

For the short term storage of strains, cell culture was streaked upon either 

YPD/synthetic drop out media agar plates and incubated at the appropriate 

temperature (30°C unless otherwise stated) in a LEEC compact incubator until 

colonies had formed (typically 2 days). Plates were stored at 4°C. For long term 

storage, cell cultures were grown in exponential phase, glycerol was added to a final 

concentration of 30% and cells were frozen at -70°C.

For the growth of cells, a single colony was picked from a plate, inoculated in 

fresh liquid media and maintained in exponential phase. This preculture was then used 

to inoculate large volumes of liquid media. Liquid cultures were incubated at the 

appropriate temperature (30°C unless otherwise stated) in an Infors HT multitron 

standard at 180rpm. Cell cultures taken from frozen stocks were first streaked onto 

plates, and colonies allowed to grow before proceeding with the above protocol.

For nearly all experimental purposes cell culture was grown to a density of 

2*107 cells/ml. This density was calculated in two manners. Firstly, 1ml of cell 

culture was measured at 595nm with a Jenway 6300 Spectrophotometer, blanked 

against liquid media without cell culture. Cells were grown to a typical OD value of

0.6. Secondly, cell density was calculated using an Improved Neubauer BS748 2 cell 

counting chamber (Hawksley).

2.2 UV damage

Yeast cells were collected by centrifugation and resuspended in chilled PBS

(4°C) to a density of 2*10^ cells/ml. 50ml of resuspended culture was poured into a 

Pyrex dish with a diameter of 15cm and exposed to 100J of UV light at 254nm from a

germicidal lamp at a fluence of lOW/m^. This was repeated 50ml at a time until all 

culture had received 100J of UV light. Yeast cells were subsequently collected and
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resuspended in liquid media for all downstream applications including crosslinking by 

formaldehyde. All cultures compared with UV treated cells were resuspended in PBS 

in an identical manner to that of UV treated cells.

2.3 DNA manipulations

2.3.1 DNA gel electrophoresis

Gel electrophoresis of DNA was routinely used for multiple applications 

including inspecting the success of PCR reactions or plasmid preparations, resolving 

restriction digestions, observing the uniformity of sonicated DNA samples, and the 

separation and isolation of DNA fragments for downstream cloning applications.

1. Various agarose concentrations were prepared depending on the downstream 

application. Typically, if DNA was to be purified from the gel, 0.7% agarose was 

used, otherwise a 1.0% agarose gel was prepared. Agarose was added to TAE buffer 

(40mM Tris-Acetate, ImM ethylenediamine tetraacetic acid (EDTA), pH8.0) and 

heated in a microwave to dissolve.

2. Agarose solution was cooled to ~50°C. To 100ml of agarose solution, lpl of 

lOmg/ml ethidium bromide was added and mixed well. Gels were either cast in a 

Horizon 58 (Life Technologies) or a Mini-Sub cell GT (Bio-Rad) and left to cool for 

one hour at room temperature.

3. 50-200ng of DNA was mixed with water to a total of lOpl, to which 2pl of 6x 

MassRuler loading dye (Fermentas) was added. To DNA samples with a large volume 

more loading dye was added. Gel tanks were filled with TAE buffer and samples were 

loaded into the wells. To one well a DNA ladder was loaded; either GeneRuler lkb 

DNA ladder or FastRuler low range DNA ladder (Fermentas). Gels were run at 75V 

on a power-pac 200 (BioRad) at room temperature.

4. Following electrophoresis DNA was visualised using a BioDoc-It Imaging system 

(UVP) at 302nm. If DNA was to be purified following electrophoresis then it was 

visualised at 365nm to minimise UV damage, and excised from the gel with a scalpel. 

DNA was purified from excised gel samples using the PureLink quick gel extraction
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kit (Invitrogen) according to the manufacturer’s protocol. DNA was purified to 30pl 

of water.

2.3.2 Polymerase Chain Reaction (PCR)

Unless otherwise stated all PCR reactions were performed using the Expand 

High fidelity PCR system (Roche). Typically PCR was performed in a total reaction 

volume of 50pl. If larger quantities of DNA were required multiple 50pl reactions 

were performed and pooled together during purification.

1. To a 0.2ml PCR tube on ice, the following were added:

1 Ox buffer with magnesium chloride (Roche) lOpl
dNTP mix lOmM (Fermentas) 1 pi
Forward primer (lOpM) 0.8 pi
Reverse primer (10 pM) 0.8 pi
25mM Magnesium chloride (Roche) 2 pi
DNA template 1 -1 Ong plasmid, 

100-500ng genomic DNA
Water Up to a total volume of 49.3 pi

2. To this 0.7pl of polymerase enzyme (Roche) was added and the tube was 

immediately vortex mixed, spun down and run on a PTC-200 PCR machine (MJ 

Research) with the following conditions:

1. 95.0°C for 4:00 minutes

2. 94.0°C for 0:30 minutes

3. AT°C for 0:30 minutes

4. 72.0°C for ET minutes

5. Go to 2. x30 times

6. 72.0°C for 10:00 minutes

7. End

AT (the annealing temperature) was calculated as five degrees Celsius lower than the 

lowest primer Tm. ET (extension time) was calculated as 1:00 minutes per kb of DNA 

to be amplified.

3. Fusion PCR: For fusion PCR the above protocol was also used with a single 

modification. DNA fragments to be fused were added to the reaction in equimolar 

concentrations to a total of 50-100ng of DNA.
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4. All PCR products were purified into water using the QLAquick PCR purification kit 

(Qiagen) according to the manufacturer’s instructions.

2.3.3 Cloning

Extensive DNA manipulations were performed for a wide variety of cloning 

purposes presented in subsequent chapters. Such manipulations included DNA 

restriction and DNA ligation. In these circumstances all enzymes used to perform 

these manipulations were from New England Biolabs. The following account outlines 

the common strategies employed for the production of a novel plasmid.

1. All DNA used for recombinant manipulations was purified into either water or 

lOmM Tris-Hcl pH8.0 and quantified using a Nanodrop 1000 spectrophotometer 

(ThermoScientific) according to manufacturer’s instructions.

2. For DNA restrictions: All restriction digestions were performed in a total volume of 

40pl. 1500ng of DNA was combined with water to a total volume of 34 pi for single 

enzyme digests, or 32 pi for double enzyme digests. To this 4 pi of enzyme buffer 

was added. 1 pi of each enzyme (at a starting concentration of 10,000 or 20,000 

units/ml) to be used was added to this and the reaction was incubated at 37°C for 90 

minutes. The reaction was briefly spun to collect condensation and a further 1 pi of 

each restriction enzyme was added. This was incubated at 37°C for a further 90 

minutes. DNA was either directly purified with the QIAquick PCR purification kit 

(Qiagen) to 30pl water or purified following gel electrophoresis as described above.

3. DNA ligation and cloning: DNA samples were combined with water to total a 

volume of 18pl consisting of ~200ng of DNA. Typically a single insert: vector ratio 

of 3:1 was used. For three fragment ligations insert: insert: vector ratios were altered 

according to size, where smaller fragments were added in a larger molar ratio. For 

example a lkb:3kb:5kb (vector) ligation would typically have a 5:3:1 molar ratio 

respectively. To the DNA solution 2pl of lOx T4 DNA ligase reaction buffer and lpl 

of T4 DNA ligase (400,000 cohesive end untis/ml; NEB) was added. Reactions were 

incubated at 16°C for 2-3 hours or at 4°C overnight. lOOpl of Library efficient DH5a 

chemically competent cells (Invitrogen) were subsequently transformed with lOpl of
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the ligation reaction according to the manufacturer’s protocol. All plasmids in the 

current study used ampicillin as a selection marker. Treated cells were plated onto LB 

plates supplemented with lOOpg/ml ampicillin and left overnight to grow at 37°C.

Single E. coli colonies were tested for the transformation of the correct 

plasmid by colony PCR (see below). Positive colonies were subsequently picked and 

grown overnight in LB supplemented with lOOpg/ml ampicillin at 37°C, 225 rpm in a 

Multitron standard incubation shaker (Infors AG). For mini-preps, 5ml of culture was 

purified to 50pl of EB buffer with the QLAprep spin miniprep kit (Qiagen). For midi- 

preps 50ml of culture was purified to 1ml of elution buffer with the GenElute FIP 

plasmid midiprep kit (Sigma Aldrich). Plasmid preparations were analysed by 

restriction digestion using half of the reaction volume to that stated above (20pl in 

total) and incubated at 37°C for one hour. Following this 3pl of 6x MassRuler loading 

dye (Fermentas) was added and the samples were run on a 1% agarose TAE gel. 

Positive plasmid preparations were finally selected for sequencing to confirm the 

correct clone had been isolated.

2.3.4 DNA sequencing

All sequencing reactions were performed using the BigDye terminator v3.1 

cycle sequencing kit (Applied Biosystems).

1. A PCR reaction was prepared in a 0.5ml polypropylene tube on ice with the 

following:

Template DNA 2-3 pg genomic DNA
3-10ng for 200-500bp PCR product 
5-20ng for >500bp PCR or plasmid DNA

Primer 0.32pl of lOpM stock
Ready reaction premix 4pl
BigDye sequencing buffer 2j*l
Water Up to a total of 20pl
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2. A PCR reaction was performed on a PTC-200 PCR machine (MJ Research) with 

the following conditions:

1. 96.0°C for 1:00 minutes

2. 96.0°C for 0:10 minutes

3. 50°C for 0:05 minutes

4. 60.0°C for 4:00 minutes

5. Go to 2. X25 times

6. End

3. Precipitation: To each PCR reaction 5pi of EDTA and 60pl of absolute ethanol 

were added. Samples were centrifuged at 13000 rpm for 20 minutes in a Beckman 

Coulter Microfuge 22R centrifuge at 4°C. The supernatant was removed and the pellet 

was washed with 60pl of 70% ethanol. A second centrifugation was performed for 5 

minutes as above. The supernatant was again removed and pellets were air dried for 

15 minutes.

4. DNA pellets were submitted to Central Biotechnology Services (Cardiff 

University) for analysis.

2.4 Yeast transformation

The protocol was regularly used for the transformation of plasmids and stable 

integration of DNA via recombination.

1. 50ml of cell culture was grown to an OD600 of 0.6-0.8.

2. Cells were collected by spinning at 3600 rpm for 5 minutes in an Eppendorf 

centrifuge 581 OR at room temperature. The pelleted cells were washed once in 20ml 

of water and collected as before.

3. Cells were resuspended in 15ml of lithium acetate solution (lOOmM lithium 

acetate, lOmM Tris base, ImM EDTA, pH7.5) and left at room temperature for one 

hour.

Page | 66



Chapter 2

4. Once permeabilised, cells were collected as before and resuspended in 500pl 

lithium acetate solution. For each transformation the following was added to a 1.5ml 

polypropylene tube:

50% Polyethlene glycol 3800, lOOmM lithium acetate, lOmM Tris 
base, ImM EDTA, pH7.5

300pl

Cells in lithium acetate solution 50-100pl

Denatured UltraPure salmon sperm DNA solution lOmg/ml 
(Invitrogen)

15pl

DNA to be transformed (plasmid ~30ng, integrating DNA ~1- 
10pg)

l-5pl

5. Solutions were incubated on a Mini Labroller rotator (Labnet) at room temperature 

for 30 minutes and then transferred into a water bath set at 42°C for 15 minutes. After 

15 minutes the cells were placed on ice for 3 minutes.

6. To precipitate the cells 1ml of water was added to each tube, the solution was spun 

at 3600 rpm for 5minutes in an eppendorf centrifuge 5414D and the supernatant 

discarded. Cells were resuspended in lOOpl of water and plated on selective media 

plates as undiluted, 1:10 diluted and 1:100 diluted cell solutions. Occasionally, to 

increase the efficiency of transformation, cells were resuspended in YPD and 

incubated for one hour in a Multitron standard incubation shaker (Lnfors AG) prior to 

plating.

7. Plates were incubated at a controlled temperature until visible colonies had formed. 

Transformation of the correct DNA was initially confirmed by colony PCR, and 

ultimately by DNA sequencing and/or confirmation of protein expression by western 

blot.

2.5 Colony PCR
Colony PCR was performed to check the correct integration of exogenous 

DNA into both E. coli and S. cerevisiae cells.
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1. Cell colonies were numbered on the plate as a reference. A P10 pipette tip was used 

to touch each colony on the plate. Each tip was then placed into 11.5pl of water 

within a 0.2ml PCR tube. Tips were left for 5 minutes to allow cells to transit into 

solution, removed and the PCR tubes were closed and micro-waved at full power 

(800W) for 2 minutes. To each tube, 0.5pl of a forward and reverse primer (at a 

starting concentration of lOpM) were added, followed by 12.5pi of 2x ReddyMix 

PCR master Mix (ThermoScientific).

2. PCR reactions were vortex mixed, spun down and run on a PTC-200 PCR machine 

(MJ Research) with the following conditions:

1. 95.0°C for 4:00 minutes

2. 94.0°C for 0:40 minutes

3. 55.0°C for 0:50 minutes

4. 72.0°C for 1:00 minutes

5. Go to 2. +3 sec/cycle x30 times

6. 72.0°C for 10:00 minutes

7. End

3. For each sample 7pl of the PCR mix was loaded onto a 1% agarose TAE gel with a

ladder to check for production of the correct product.

2.6 Protein work

2.6.1 Yeast whole protein lysates

The following protocol was performed for the isolation of the soluble protein 

fraction from yeast cell lysates.

1. 50ml of cell culture was grown to an OD600 of 0.6-0.8.

2. Cells were collected by spinning at 3600 rpm for 5 minutes in an Eppendorf

centrifuge 581 OR at room temperature.
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3. Pelleted cells were resuspended in 500pi of cold yeast dialysis buffer (20mM 

HEPES-KOH pH7.6, lOmM magnesium sulphate, lOmM ethylene glycol tetraacetic 

acid, 20% glycerol) supplemented with 5 pi of lOOx proteinase inhibitors (1 mg/ml 

pepstatin, 1 mg/ml leupeptin, 1 mg/ml chymostatin, 1 mg/ml antipan, 250mM 

benzamide, lOOmM phenylmethylsulfonyl fluoride in ethanol) and transferred to a 

1.5ml polypropylene tube.

4. 500pl of acid washed glass beads (Sigma Aldrich) were added to each sample. 

Cells were lysed by vortexing on a Vortex Genie 2 (Scientific Industries) at the 

highest setting. Tubes were vortexed for 2 minutes at 4°C and then transferred to ice 

for 1 minute. This was repeated four times in total.

5. Lysed cells were spun for 15 minutes at 13000 rpm in a Beckman Coulter 

Microfuge 22R at 4°C to collect cell debris. The supernatant was transferred to a new 

1.5ml tube. Protein lysates were quantified using the Bradford assay (see below), 

aliquoted, frozen in liquid nitrogen and stored at -80 °C.

2.6.2 Bradford Assay

The Bradford Assay was performed for the quantification of protein content. 

This had various applications including quantification of yeast whole protein lysates 

and whole cell extracts from ChlP.

1. A dye solution was prepared by diluting protein assay dye reagent concentrate 

(Bio-Rad) five fold in water. A series of standards and samples were then prepared in 

duplicate; for both standards and samples 1ml of diluted protein assay concentrate 

was added to a 1.6ml polystyrene cuvette (Fisher Scientific). For standards, 

1.38mg/ml lyophilised bovine serum albumin (Bio-Rad) was added to produce a 

linear range of five standards. Typically this range lay between 2-20 pg/ml. For 

samples, 1 pi of protein was added to the cuvette.
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2. All cuvettes were mixed by brief vortexing. Standards and samples were measured 

for absorbance at 595nm on a Beckman Coulter DU 800 spectrophotometer. Protein 

concentrations of unknown samples were calculated using the systems and 

applications software for DU 800 UV/visible spectrophotometer (Version 2.0, 

Beckman Coulter), calibrated against the standard’s linear range of absorbance.

2.6.3 Western blotting

All western blots were performed using the Bio-Rad Mini-PROTEAN 3. Gel 

electrophoresis and protein transfer were performed as described in the Mini- 

PROTEAN 3 instruction manual (Bio-Rad). The following account does not reiterate 

the entire protocol but instead includes details necessary for an exact reproduction of 

the work entailed.

All electrophoresis gels performed were 1.5mm thick. All stacking gels were set 

using the 1.5mm 10 slot combs (Bio-Rad).

1. Two western gels were always prepared at one time using the reagents listed below 

in table 2.1. Gel solutions were not degassed under vacuum. Ammonium persulphate 

(APS) and N,N,N’,N’-Tetramethylethylenediamine (TEMED) were added last to 

prevent polymerisation prior to pouring the gel solutions. 1ml of water was added to 

the surface of the resolving gel prior to its polymerisation.

20ml Resolving eel -  7.5% acrvlamide 20ml Resolving gel -  5% acrvlamide
3.75ml 40% acrylamide/bisacrylamide 
19:1 (Bio-Rad)

2.5ml 40% acrylamide/bisacrylamide 
19:1 (Bio-Rad)

5.00ml 1.5M Tris-Hcl (pH8.8) 5.00ml 1.5M Tris-Hcl (pH8.8)
10.90ml H20 12.15ml H20
200pl 10% sodium dodecyl sulphate 200pl 10% sodium dodecyl sulphate
lOOpl 10% APS lOOpl 10% APS
16pl TEMED (Sigma Aldrich) 16pl TEMED (Sigma Aldrich)

8ml Stacking eel -  4% acrvlamide
800|il 40% acrylamide/bisacrylamide 
19:1 (Bio-Rad)
5.00ml 1M Tris-Hcl (pH6.8)
6.1ml H20
80pl 10% sodium dodecyl sulphate
40pl 10% APS
8pl TEMED
Table 2.1, Recipes used for western blot resolving and stacking gels.
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2. 15pg of protein from yeast whole protein lysates were combined with water to a 

total of lOpl. To this lOpl of 2x SDS loading buffer (lOOmM Tris base, 4% sodium 

dodecyl sulphate (SDS), 0.2% bromophenol blue, 20% glycerol, 20mM dithiothreitol, 

pH6.8) was added. Protein samples were subsequently heated to 95°C for 10 minutes.

3. Each 20pl sample was subsequently loaded to the polyacrylamide gel. Each gel 

included one lane loaded with lOpl of Kaleidoscope Precision Plus protein standards 

(Bio-Rad).

4. Polyacrylamide gels were run using lx SDS-PAGE running buffer (25mM Tris 

base, 250mM glycine, 0.1% SDS, pH8.3) at 100V on a power-pac 300 (Bio-Rad) for 

60 to 180 minutes at 4°C.

5. Proteins were transferred from the gel to Immuno-Blot PVDF 0.2|im for protein 

blotting (Bio-Rad). PVDF membranes were cut to the same size as the gel, submerged 

in methanol and then water prior to loading to a cassette. Transfer was performed 

using Western transfer buffer (25mM Tris-base, 150mM glycine, 20% methanol,

0.015% SDS) at 4°C, 100V for 90 minutes.

6. Following transfer membranes were air dried for 40 minutes, submerged in 

methanol, and then water and transferred to a plastic tank. Membranes were blocked 

in 2% ECL advance blocking reagent (GE Healthcare) TBST (150mM sodium 

chloride, lOmM Tris-HCl pH 8.0, 0.05% TWEEN 20 (Sigma Aldrich)) overnight at 

4°C. Membrane tanks were rocked at 20 rev/min on a Stuart Scientific platform 

shaker STR6.

7. In the morning membranes were prepared for chemiluminescent detection. The 

entire procedure was performed at room temperature on the platform shaker at 20 

rev/min. Membranes were first washed in 20ml TBST for 5 minutes. A primary 

antibody was diluted in 10ml 2% ECL advance blocking reagent TBST. Membranes 

were incubated with the primary antibody for one hour. Then three washes of 20ml 

TBST for 10 minutes were performed. A secondary antibody was diluted in 10ml 2%
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ECL advance blocking reagent TBST. Membranes were incubated with the secondary 

antibody for one hour. A final three washes of TBST for 10 minutes were performed.

8. Chemiluminescent antibodies bound to the membranes were detected using ECL 

advance solution (GE Healthcare). Membranes were removed from TBST and blotted 

dry using tissue paper at the membrane edge. 1.5ml of development solution (solution 

A and B mixed) was applied to the membrane surface and left for 5 minutes. 

Membranes were subsequently blotted dry as before and applied to a plastic sheet for 

detection.

9. Chemiluminscence was detected with the AutoChemi Bioimaging system (UVP) 

and images were captured using Labworks (Version 4.6.00.0, UVP). Typically images 

were exposed for 1 minutes 30 seconds, and re-exposed up to 9 times.

10. Reprobing membranes: Membranes were incubated with 100ml stripping buffer 

(62.5mM Tris-HCl pH6.7, 2% SDS, lOOmM 2-mercaptoethanol) for 30 minutes at 

50°C with moderate shaking on a Hybaid Maxi 14 hybridization oven 

(ThermoScientific). Stripped membranes were washed for 5 minutes in TBST and 

blocked for one hour in 2% ECL advance blocking reagent TBST. The protocol was 

then resumed from step7.

2.7 Chromatin immunoprecipitation (ChlP)

ChIP was performed in a similar manner to that previously detailed (Yu et al.,

2009).

1.100ml cell samples were grown either in YPD or selective media to a density 2*10^ 

cells/ml.

2. To crosslink cells, 2.8ml of 36.5% formaldehyde (Sigma) was added to the 

medium. Cell samples were left to crosslink for 20 minutes during which time, 

samples were mixed every 5 minutes by swirling by hand.



Chapter 2

3. After 20 minutes, 5.5ml of 2.5M glycine was added and left at room temperature 

for 5 minutes. Subsequently, each cell sample was equally divided into two 50ml 

polypropylene conical tubes (Falcon).

4. Cells were pelleted by centrifugation at 4000rpm for 5minutes at 4°C in an 

Eppendorf centrifuge 581 OR. Cells were resuspended in 20ml of TBS (25 mM Tris, 

150 mM NaCl, 2 mM KC1, pH 7.4) at 4°C and pelleted by centrifugation as before. 

Each sample was combined from the two conical tubes by resuspending the pellets in 

500pl TBS (4°C) and transferring both cell solutions to a single 1.5ml polypropylene 

tube. Cells were pelleted by centrifugation at 4000rpm for 5minutes at 4°C in a 

Beckman Coulter Microfuge 22R centrifuge, resuspended in 1ml lysis buffer (50mM 

HEPES-KOH pH7.4, 140mM NaCl, ImM EDTA, 0.5% Igepal CA-630, 0.5% sodium 

deoxycholate), and pelleted once more as before. The mass of each cell pellet was 

measured using a Sarorius CP 124 S scale. These were flash frozen in liquid nitrogen 

and stored overnight at -80°C.

5. Cell pellets were thawed, and resuspended in 500pl of lysis buffer supplemented 

with 5pl lOOx proteinase inhibitors. To this 500pl of acid washed glass beads (Sigma) 

were added. Cells were lysed by vortexing the tubes on a Vortex genie 2 on the 

highest setting for 15 minutes at 4°C.

6. The cell lysate was separated from glass beads as shown in Fig. 2.1. A 25G needle 

was heated under a Bunsen burner and used to make a small hole in the base of the

1.5ml tube. These were subsequently placed into 2ml polypropylene tubes. Cell lysate 

was collected by a short centrifugation at 2000rpm, 4°C. 200pl lysis buffer/lx 

proteinase inhibitors was added to the glass beads to wash away remaining lysate and 

collected as before.
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Figure 2.1. Cartoon representing the separation of cell lysate from glass beads.

7. The cell lysate was centrifuged at 13,000rpm for 15 minutes at 4°C in a Beckman 

Coulter Microfuge 22R. The supernatant was decanted to remove the soluble protein 

fraction. Cell pellets were resuspended according to their mass; lOOpl lysis buffer/lx 

proteinase inhibitors was added per 0.0 lg of cell pellet.

8. For sonication 0.5-lml of cell lysate was pipetted into 15ml centrifuge tubes 

(Coming). Using a Bioruptor (Diagenode) three cell lysate samples were sonicated at 

a time with amplification poles for six cycles of 30 seconds on/ 30 seconds off at 

highest setting (200W), 4°C. This typically sheared DNA to an average length of 200- 

800bp (see Fig. 2.2A).

9. To pellet cell debris, sonicated samples were transferred to a 1.5ml polypropylene 

tube and centrifuged at 13,000rpm for 20 minutes at 4°C in an Eppendorf centrifuge 

581 OR. The supernatant was collected, aliquoted and flash frozen in liquid nitrogen. 

In addition, protein was quantified using the Bradford assay. For all 

immunoprecipitation and input samples an identical volume was aliquoted totalling 

~300pg of protein.

2.7.1 Immunoprecipitation (IP)

10. Immunoprecipitated antibody-antigen complexes were isolated using Protein G 

sepharose 4 fastflow (GE healthcare). Sepharose beads were twice washed in lml 

lysis buffer and collected by centrifugation at 3000rpm for 2 minutes on an Eppendorf
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centrifuge 581 OR. Beads were equilibrated by incubating in lml lysis 

buffer/400|!g/ml single stranded salmon sperm DNA (Sigma)/ lOpg/ml BSA (NEB) 

for one hour at 4°C on a Mini Labroller rotator (Labnet). Finally beads were washed 

twice in lml lysis buffer as above and resuspended with lysis buffer to make a 50% 

bead slurry (v/v).

11. To each immunoprecipitation sample lysis buffer/0.25% SDS/lx proteinase 

inhibitors was added to total volume of 500pl. To clear the solution of non-specific 

interactions 20pl of beads slurry was added and incubated at 4°C on a Mini Labroller 

rotator (Labnet) for 2-3 hours at 4°. Following this, beads were collected as above and 

the solution transferred to a fresh 1.5ml tube.

12. Antibody was added to each sample and left to incubate overnight at 4°C on a 

Mini Labroller rotator (Labnet). Antibody necessary for maximal chromatin 

immunoprecipitation was determined empirically by titrating the concentration and 

calculating DNA content by qPCR (see below). Antibody-antigen complexes were 

captured by adding 40pl of bead slurry the next morning and incubation was 

continued for 3 hours at 4°C.

13. To remove non-specific interactions, beads were sequentially washed with the 

four buffers below. All washes were incubated at room temperature for 10 minutes on 

a Mini Labroller rotator (Labnet). Beads were collected by centrifugation (2000rpm, 

2minutes, Eppendorf 5415D centrifuge) and the supernatant aspirated through a 25G 

microlance needle to avoid removing beads.

Wash 1. Lysis buffer

Wash 2. Lysis buffer with an increased NaCl concentration of 500mM.

Wash 3. LiCl buffer (lOmM Tris-HCl, 250mM LiCl, ImM EDTA, 0.5% Igepal CA- 

630, 0.5% sodium deoxycholate)

Wash 4. TE buffer (lOmM Tris-Cl, pH7.5, ImM EDTA)
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2.7.2 Preparation of DNA from immunoprecipitated and input samples

14. Input samples: Input solution volume was adjusted to 80pl with lysis buffer to 

which 20pl of 5x pronase buffer (125mM Tris-HCl pH7.5, 25mM EDTA, 2.5% SDS) 

and 6pl of 20mg/ml pronase (Roche) was added.

Immunoprecipitation samples: Following aspiration of the TE wash, beads were 

resuspended into 1 lOpl lx pronase buffer (25mM Tris-Cl pH7.5, 5mM EDTA, 0.5% 

SDS) and heated at 65°C on a Thermomixer comfort (Eppendorf) with shaking at 

1400rpm for 15 minutes to interrupt protein-protein interactions. Samples were 

centrifuged at 13,000 rpm for 2 minutes on an Eppendorf 5415D centrifuge and lOOpl 

of the solution was transferred to a fresh 1.5ml polypropylene tube. 6pl of 20mg/ml 

pronase (Roche) was added.

15. For all samples: Protein was digested by incubating the solutions at 65°C 

overnight. In the morning, lml of lOmg/ml RNase A (Sigma) was added and left to 

incubate at 37°C for 30 minutes.

16. Each sample DNA was purified to 30pl EB buffer using the QLAquick PCR 

purification kit (Qiagen) according to the manufacturer’s instructions.

17. To ensure that sonicated DNA samples were evenly sheared and to an appropriate 

length (~200-800bp), lOpl of each input DNA was run on a 1.5% TAE agarose gel 

alongside 5pl of FastRuler low range DNA ladder (Fermentas). A gel typical of 

sheared DNA appropriate for chromatin immunoprecipitation is shown in Fig. 2.2A.

2.7.3 Quantification of DNA by aPCR

1. All DNA samples were quantified by quantitative PCR (qPCR) using SYBR green

I. Typically, one input sample was diluted into water to prepare a 10-fold dilution

range from 10'1 down to 10"^. This range was used as a reference for relative DNA 

quantification between samples. For quantification, all input samples were diluted 

1000-fold in water and all immunoprecipitation samples were diluted 4-fold in water.
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2. All qPCR reactions were performed in 96 well PCR plates (Type: LW2215, Alpha 

Laboratories) and each reaction was prepared with the reagents listed in the below 

table. A mastermix of all reagents excluding the DNA sample to be quantified was 

prepared and 18pl aliquots were dispensed into wells using an Eppendorf multipette 

stream.

qPCR wells each contained:

2x iQ SYBR Green Supermix (Biorad) lOpl
Primer 1 (lOOpM) 0.06pl
Primer 2 (lOOpM) 0.06pl
H20 7.88pl
DNA to be quantified 2pl
Total 20ul

3. All PCR reactions to be quantified were repeated in triplicate including the dilution 

range. Plates were film sealed and DNA was quantified using an icycler thermal 

cycler (Bio-Rad) coupled to a My iQ optics module (BioRad). qPCR reactions were 

performed under the following conditions:

1. 95°C for 3 minutes

2. 95°C for 0:15 minutes

3. 55°C for 0:20 minutes

4. 55°C for 0:10 minutes -  followed by optical image

5. Go to 2. x44 times

6. 95°C for 1:00 minutes

7. 55°C for 0:30 minutes

8. Melt curve from 55°C
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Figure 2.2. A. Gel of typical input samples. The size in bp of the ladder references is given to the left. 
B. Example of an acceptable qPCR melt curve demonstrating amplification of a single product. C. 
Graphical representation of the qPCR results. Standards are shown as green circles, unknown samples 
green crosses. In the example, all unknown samples lie within the linear range of quantification.

2.7.4 Quantifying the relative occupancy of protein-chromatin binding

1. All qPCRs were analysed using the Bio-Rad iQ5 software. Prior to quantification 

the data was scrutinised to determine whether the reaction had suitably proceeded. 

The following criteria were evaluated. Firstly, any qPCR reaction that showed a 

marked variation from 100% efficiency was disregarded. Secondly, any reaction that 

did not display a single uniform peak on a melt curve was disregarded (Fig. 2.1). 

Thirdly, all unknown DNA samples had to be quantified within the linear range. iQ5 

graphically displays the Ct value of the standard dilution range combined with 

unknown samples (see Fig 2.1). Only unknown samples in which the Ct value lay 

within the linear range of quantification were accepted. Lastly, each data triplicate 

was visually inspected to confirm that all three repeats gave a reproducible Ct value, 

and single errors were deleted.
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2. All data was exported from iQ5 in excel format. The occupancy of 

immunoprecipitated DNA at given genetic locus was calculated as follows:

DNA occupancy = Starting quantity (SO) mean of immunoprecipitated sample (IP) 

Starting quantity (SQ) mean of input sample (Input)

2.8 ChlP-on-chip

ChIP samples were prepared for microarray analysis using a similar protocol 

to that previously detailed (Teng et al., 2010). The protocol first repairs DNA damage 

and then amplifies DNA using ligation mediated PCR. Amplified DNA is labelled by 

Cy5 and Cy3 dyes and subsequently applied to microarrays.

1. Following the ChIP protocol, 20-40pl of IP or lp l of input purified DNA was 

diluted with water to a total volume of 40pl. DNA damage within each sample was 

repaired using the PreCR repair mix (NEB). To each sample lOpl of repair mix was 

added and incubated for 20 minutes at 37°C. Repaired DNA was purified to 50pl EB 

buffer by the QLAquick PCR purification kit (Qiagen).

Repair mix

dNTP (lOmM) 0.5 pi
lOxThermoPol buffer 5 pi
100xNAD+ 0.5 pi
PreCR repair mix lu l
Water 3 pi
Total lOpl

2. To each sample 70pl of blunt end mix was added and incubated for 20 minutes at 

12°C. Following this incubation, 11.5pl of 3M NaAc (pH5.2) and 0.5pl glycogen 

(20mg/ml) were added and mixed by pipette. Then 120pl of 

phenol:chloroform:isoamly alcholol 25:24:1 (lOmM Tris, pH8.0, ImM EDTA) was 

added and samples were mixed by vortex, and subsequently centrifuged at 13000 rpm 

for 5 minutes in an Eppendorf centrifuge 5415D. The upper phase of each sample was 

transferred to a new tube and DNA was precipitated with 230pl absolute ethanol by 

centrifugation at 13000 rpm for 15 minutes at 4°C in a Beckman Coulter Microfuge
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22R. The supernatant was removed and the pellet was washed with 500pl of 75% 

ethanol and centrifuged as before for 5 minutes. Following this the wash was 

discarded and pellets were dried for 10 minutes in an ISS110 SpeedVac system 

(ThermoSavant) on the medium setting.

Blunt end mix

T4 DNA polymerase buffer 11 pi
BSA (lOmg/ml) 0.5 pi
dNTP (lOmM) lp l
T4 DNA polymerase (NEB #M0203S) 0.2 pi
Water 57.8 pi
Total 70 pi

3. Pellets were resuspended in 25pl of water to which 25pl of ligation mix was added 

and left overnight at 16°C.

Ligation mix

DNA ligase buffer 5 pi
Linker hybrid DNA 6.7 pi
T4 DNA ligase (NEB #M0202S) 0.5 pi
Water 13 pi
Total 25 pi

4. In the morning 6pl of NaAC (3M) was added to each sample. To this 130(il of 

ethanol was added and DNA was subsequently precipitated in an identical fashion to 

that detailed in step 2. Pellets were resuspended in 25pl of water to which 15pl of 

PCR mix A was added and the solution was transferred to 0.5ml PCR tubes. Each 

sample was heated in a PCR block for 2 minutes at 55°C (PTC-200 PCR machine (MJ 

Research)), after which 1 Opl of PCR mix B was added. PCR was performed with the 

conditions shown below.

PCR mix A

5xHF Buffer (Finnzymes #F-518) 8 pi
dNTP (lOmM) 1.25 pi
Oligo 102 (40pM) 1.25 pi
Water 4.5 pi
Total 15 pi
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PCR mix B

5xHF Buffer (Finnzymes #F-518) 2 pi
Phusion DNA polymerase (Finnzmyes #F-530) lp l
Water 7 pi
Total 10 pi

PCR conditions:

1. 55.0°C for 2:00 minutes

2. 72.0°C for 3:00 minutes

3. 98.0°C for 1:00 minutes

4. 55.0°C for 0:30 minutes

5. 72.0°C for 1:00 minutes

6. Go to 3. X14 times

7. 72.0°C for 5:00 minutes

8. End

5. Following the PCR reaction, 450pl of water was added to each sample and a second 

PCR amplification was performed with 5pl of the diluted DNA in combination with 

45 pi of PCR mix 2 and using steps 3 to 8 of the above PCR conditions.

PCR mix 2

5xHF Buffer (Finnzymes #F-518) 10 pi
NTP(lOmM) 1.25 pi
Oligo 102 (40pM) 1.25 pi
Phusion DNA polymerase (Finnzmyes #F-530) 0.5 pi
Water 32 pi
Total 45 pi

6. These PCR reactions were precipitated by adding 25pl of Ammonium acetate 

(7.5M) and 225pl of absolute ethanol and preceded in a similar fashion to that stated 

in step 2. DNA pellets were resuspended in 13pl of water and DNA concentration was 

quantified using a Nanodrop 1000 spectrophotometer (ThermoScientific). DNA 

concentrations were adjusted to 150ng/pl with water.

7. DNA was labelled using the BioPrime total genomic labelling system (Invitrogen) 

by combining the following:
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Labelling reaction

DNA sample in water (150ng/pl) 10.5 pi
EDTA (5mM) 2.5 pi
Alexa Fluor Cy3 or Cy5 reaction mix 15 pi
Water 10 pi
Total 22 pi
Typically IP samples were labelled with Cy5 and input samples were labelled with 

Cy3.

8. Reaction mixes were incubated at 95°C for 5 minutes in a PCR block (PTC-200 

PCR machine (MJ Research)). Each sample was subsequently put on ice for 5 minutes 

and 2pl of Exo-Klenow fragment was added. Samples were returned to the PCR block 

at 37°C for 2 hours.

8. Labelled DNA was purified to 51.5pl buffer El using Invitrogen columns 

according to the manufacturer’s protocol. Purified DNA (1.5pl) was measured using 

the Nanodrop 1000 spectrophotometer (ThermoScientific), according to 

manufacturer’s ’ protocol.

9. Corresponding IP and input samples were combined to give a total solution volume 

of lOOpl, to which 12pl of NaAc (3M) and 5pl Polyacrylamide (2.5pg/ml) was added. 

DNA was precipitated with 290pl of absolute ethanol in an identical fashion to that 

detailed in step 2.

10. Pellets were resuspended in 39pl of water, and to each sample the following were 

added in order:

Human Cot-1 DNA (l.Omg/ml) (Invitrogen) 5 pi
lOx Blocking agent (Agilent) 11 pi
2x Hybridisation buffer (Agilent) 55 pi

11. Samples were mixed and heated at 95°C for 3 minutes in a PCR block. Following 

this, samples were immediately transferred to another PCR block at 37°C and 

incubated for 30 minutes.
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12. Each 110(j.l sample was loaded onto one of four arrays on a yeast whole genome 

ChlP-on-chip microarray 4x44K (Agilent, #G4493A). Slides were transferred to an 

Agilent Hybridization oven (G2545A) set at 65°C and the maximal rotation speed 

(20) and left to incubate for ~24 hours.

13. Following hybridisation, slides were washed in ChIP wash buffer I and then ChIP 

wash buffer II for 5 minutes each according to the manufacturer’s protocol (Agilent).

14. Features were extracted using an Agilent microarray scanner (G2505B, Agilent 

technologies) according to the manufacturer’s instructions with the following settings:

Scan region 61 x 21.6 mm
Scan resolution 5 pm
5pm scanning mode Single pass
extended dynamic range Selected
Dye channel Red & Green
Green PMT XDR Hi 100%, XDR Lo 10%
Red PMT XDR Hi 100%, XDR Lol0%

15. TIFF files of the scanned slides were analysed using Agilent feature extraction 

software (version 10.10.1.1) and the protocol ChlP lOlO SeplO according to the 

manufacturer’s instructions. Data was exported as a tab delimited text file (.tab). Data 

under the column titles ‘Row’, ‘Col’, ‘ProbeUID’, ‘ControlType’, ‘ProbeName’, 

‘GeneName’, ‘SystematicName’, ‘Description’, ‘rBGSubSignal’ and ‘gBGSubSignal’ 

were extracted from the text files and imported into the statistical open source 

software language ‘R’ as an RGList using the bioconductor package Limma (M. 

Bennet; unpublished results, Gentleman, 2005; Team, 2010). ‘gBGSubSignal’ 

represents the quantification of Cy3 labelled DNA hybridisation, which is referred to 

as ‘Green channel’ or G. ‘rBGSubSignal’ represents the quantification of Cy5 labelled 

DNA hybridisation, which is referred to as ‘Red channel’ or R. All subsequent data 

analysis was performed in R using custom scripts written by Mark Bennett 

(unpublished results, Team, 2010). The binding profile for ChlP-on-chip experiments 

was calculated as R/G.
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3. Mapping the genome-wide localisation of Abfl in 
the absence and presence of UV damage

3.1 Introduction

Since the development of microarrays and other high throughput technologies, 

an ever increasing wealth of genome-wide datasets are becoming available and 

rapidly driving a new era of scientific discovery. Of these technologies, the use of 

ChIP followed by hybridisation to microarrays (ChlP-on-chip) has proven to be a 

powerful technique for mapping the genome-wide localisation of a variety of features 

including protein-chromatin interactions (Venters et al., 2011), histones and histone 

modifications (Pokholok et al., 2005) and even direct DNA damage (Teng et al., 

2010). The relative ease of growing large cell numbers, genetically epitope tagging 

proteins and mapping the small genome of S. cerevisiae has consequently resulted in 

the vast majority of studies in this field to adopt this organism. Furthermore, a wide 

variety of other genome-wide studies (such as differential expression profiles) are 

available for S. cerevisiae, providing a platform for correlative studies.

One field with which ChlP-on-chip has significantly contributed is in 

examining how TFs are organised throughout the genome. A large body of evidence 

indicates that TFs function in complex and diverse manners. This is best exemplified 

by two fundamental studies that have examined the localisation of nearly all -200 TFs 

encoded in the yeast genome (Harbison et al., 2004; Lee et al., 2002b). These studies 

demonstrated not only a wide variance in the numbers of genes bound by a TF but 

also that many genes are frequently bound by numerous TFs or even multiple times 

by the same TF. In addition, by re-examining the localisation of many TFs in response 

to various environmental stresses, the latter study further demonstrated TFs are often 

redistributed in response to external stimuli (Harbison et al., 2004). Other studies have 

similarly demonstrated the relocalisation of TFs by ChlP-on-chip in response to 

glucose depletion, galactose, pheromones, DNA damage, heat and osmotic shock 

(Buck and Lieb, 2006; Ni et al., 2009; Ren et al., 2000; Tan et al., 2008; Zanton and 

Pugh, 2006). Four patterns of binding behaviour have been categorised in response to 

an environmental stress; condition invariant (does not change localisation), condition 

enabled (binding activated), condition expanded (target gene number increases) and 

condition altered (target gene preferences change) (Harbison et al., 2004). These data
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suggest that the DNA binding of many TFs is regulated necessary for transcriptional 

responses to environmental stress.

Abfl itself has been the subject of numerous genome-wide studies. The first 

gene expression profiling study that attempted to identify genes regulated by Abfl 

genome-wide, compared wild type strains to those expressing the temperature 

sensitive DNA binding mutant abfl-1 at both the permissive and restrictive 

temperature (Miyake et al., 2004). This study identified 86 genes differentially 

regulated (>1.8 fold change, p<0.001) due to the loss of Abfl binding in the 

temperature sensitive mutant. Of these, 50 were positively regulated by A bfl, and 36 

negatively regulated. A second study, using a similar strategy identified 235 genes 

that were differentially expressed in the abfl-1 strain (Yarragudi et al., 2007). Whilst 

these two studies demonstrate Abfl clearly influences the transcription of a large 

number of gene targets, the estimations are likely to be under representative; for 

example, one or more Abfl consensus DNA binding sequences have been identified 

in 1049 promoters (Schlecht et al., 2008). Indeed, a third study using the abfl-1 

mutant and less stringent selection criteria identified 3214 genes potentially regulated 

by Abfl (Schlecht et al., 2008). One fundamental difference in this study was that 

differential gene expression was sampled during three environmental conditions; 

fermentation, respiration and sporulation. For each condition a subset of genes was 

observed to be uniquely differentially expressed; 626 genes during fermentation, 966 

genes during respiration and 627 genes during sporulation. This suggests that the 

activities of Abfl can target different genes in response to an environmental stimulus. 

One difficulty presented within all three studies, was correlating gene expression 

targets with the physical location of A bfl. In all cases, the presence of Abfl at gene 

promoters from ChlP-on-chip studies (discussed below) was evident for less than 50% 

of the targets identified. One possible explanation for these observations is that 

previous studies that have mapped Abfl binding have failed to sensitively assay all 

Abfl binding sites within the genome.

To date, three studies have examined the global localisation of Abfl using 

ChlP-on-chip technology. The first two studies analysed the occupancy of a large 

number of yeast TFs by Myc epitope tagging the proteins and limiting their analysis 

to intergenic regions of the yeast genome. Lee et al. identified 462 Abfl binding sites 

(P<0.005), whilst Flarbison et al. identified 458 Abfl binding sites (P<0.005) 

(Harbison et al., 2004; Lee et al., 2002b). The latter study also included how the
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location of TFs changed in response to different environmental stresses. Whilst this 

analysis did not include Abfl, it did demonstrate that other GRFs such as Rapl and 

Rebl dynamically change their genome-wide distribution in response to 

environmental stresses such as DNA damage and heat shock. When the data from Lee 

et al. was combined with expression studies under a variety of environmental stresses, 

a subset of Abfl bound genes were differentially expressed in all conditions tested, 

whilst other subsets were found to be differentially regulated under only one specific 

condition (Luscombe et al., 2004). This was interpreted to mean that Abfl 

dynamically interacts with a subset of its target genes according to environmental 

stresses, whilst consistently maintaining the regulation of other gene subsets (likely 

housekeeping genes). This idea is further supported by the study of Schlecht et al 

during fermentation, respiration and sporulation (Schlecht et al., 2008). The authors 

included a ChlP-on-chip analysis of Abfl binding at both intergenic and genic 

regions, identifying 1689 genes potentially bound by the protein (using non-stringent 

selection criteria). Of these, 387 genes were also identified by Harbison et al (2004). 

Whilst 1169 genes were bound in all three conditions, Abfl was suggested to 

exclusively occupy 82 novel genes during fermentation, 105 during respiration and 

331 during sporulation.

One prominent feature of all three ChlP-on-chip studies described above is 

that they all predict a remarkably similar consensus DNA binding sequence for Abfl 

as that derived from in vitro studies (Mukherjee et al., 2004). This strongly suggests 

DNA is the predominant determinant of Abfl binding in vivo. Indeed, the Abfl DNA 

binding motifs established by in vitro protein binding microarrays are highly 

represented at in vivo Abfl binding peaks (Gordan et al., 2009). In addition, high 

resolution genome-wide maps of nucleosome occupancy demonstrate that the Abfl 

DNA binding consensus sequence is the most commonly found motif in NDRs (Lee 

et al., 2007b). These NDRs are not inherently encoded within the DNA sequence 

since in vitro reconstitution of chromatin with purified DNA and histone proteins does 

not recapitulate the NDRs (Kaplan et al., 2009). Indeed, ectopic addition of an Abfl 

binding site into DNA in vivo has been demonstrated to occlude nucleosome 

occupancy proximal to the insertion (Yarragudi et al., 2004). Furthermore, a study 

that analysed nucleosome occupancy on chromosome III demonstrated a loss of 9% of 

promoter NDRs in response to Abfl depletion (Hartley and Madhani, 2009). The 

majority of NDRs in yeast are found within gene promoters (Lee et al., 2007b). The
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high association of an Abfl consensus DBS with NDRs has provided a novel method 

for mapping Abfl genome-wide DNA binding in vivo (and other TFs) by using a 

DNasel footprint assay coupled to massively parallel DNA sequencing (Hesselberth et 

al., 2009). By identifying short nucleotide regions within NDRs that are protected and 

map to a DNA binding consensus sequence, the location of various DNA binding 

proteins can be estimated. Using this assay, 536 sites were identified that contained a 

signature pattern of DNasel protection over the Abfl consensus DNA binding 

sequence. These sites were observed to typically occupy a region ~100bp upstream of 

a transcription start site (TSS). The frequent occupancy of Abfl within this region of a 

promoter has similarly been discerned by other authors (Ganapathi et al., 2010; Lee et 

al., 2007b; Yarragudi et al., 2007). Collectively, these data strongly suggest the vast 

majority of interactions between Abfl and chromatin occur through direct protein- 

DNA interactions.

Abfl forms a stable heterotrimeric complex with Rad7 and Rad 16 termed the 

GGR complex (Yu et al., 2004). Rad7 and Rad 16 are necessary for the majority of 

GGR in vivo (Teng et al., 1997; Verhage et al., 1994). The mechanism through which 

Rad7/Radl6 promotes GGR in vivo has long been considered to include chromatin 

remodelling, and recent evidence has demonstrated that this is significantly promoted 

by Rad 16 dependent histone H3 K9K14 hyperacetylation after UV (see Chapter 1.4.4 

and 4.1 for further discussion, Teng et al., 2008; Yu et al., 2011). Currently, the 

precise role of Abfl in the GGR complex is less well understood. Previous studies 

with strains expressing temperature sensitive mutants of Abfl demonstrated a 

correlation between the ability of Abfl to bind DNA and the proficient repair of UV 

induced DNA lesions in vivo (Reed et al., 1999). It was subsequently shown that the 

Abfl DBS within the HMLa I-silencer positively regulated the kinetics of CPD repair 

at a domain extending ~400bp from the binding site (Yu et al., 2009). This suggests 

that the site specific DNA binding activity of Abfl promotes efficient binding of the 

GGR complex and consequently repair at regions of the genome to which it binds (see 

Chapter 1.5.5 for further discussion). Efficient repair at the HMLa I-silencer was 

observed to occur concurrent with changes in the occupancy of A bfl. However, it was 

not established whether the initial increase, nor subsequent decrease in Abfl 

occupancy after UV was related to its role in promoting GGR. Interestingly though, 

these changes in occupancy may suggest a dynamic relocalisation of Abfl occurs in 

response to UV, a phenotype observed for many TFs in response to various
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environmental stresses (discussed above). The present study investigates the 

relationship between GGR and Abfl DNA binding in vivo using ChlP-on-chip 

studies. The genome-wide localisation of Abfl is mapped both before and after UV to 

investigate how changes in Abfl binding may be related to the molecular mechanism 

of GGR. In addition, both histone H3 K9K14 acetylation and CPD repair are 

examined at Abfl binding sites to investigate how GGR is organised in relation to 

Abfl binding.
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3.2 Materials and Methods

Strains used in this study:
Strain Genotype Source
BY4742 MATa, his3A 1 leu2A 0 lys2A 0 ura3A 0 Euroscarf

ChlP-on-chip/ChIP

BY4742 was grown in YPD at 30°C up to a density of 2*10^ cells/ml and UV 

irradiated as described in Chapter 2.2. ChlP was performed as detailed in Chapter 2.7. 

For IP samples, lOOpl of WCE was immunoprecipitated with 20pl a-Abfl antibody 

(yC-20, #sc-6679, Santa Cruz Biotechnology). Input samples were purified from 50pl 

of WCE. ChlP samples were prepared for ChlP-on-chip analysis as described in 2.8.

Data values of microarray quantification in Fig. 3.7 and 3.8 are available in appendix

II.

ChlP-on-chip chromosomal maps

Chromosomal maps of the averaged traces of ChlP-on-chip data for all Abfl 

datasets are available on the accompanying DVD (D:/Chapter 3/ChIPchip).

Primers used for qPCR:

prRPL24A:

Forward: 5’ -  TTGGTGTCTTGCTTAACTTGG 

Reverse: 5’ -  ACGGG AGG AAAT ACC AC AC A 

Corresponding microrray probe: A 75 P01412828

ARS231:

Forward: 5’ -  CCCGTCTCTCCGGTCATATT 

Reverse: 5’ -  GCATAGCTTGCTCAATACGC 

Corresponding microrray probe: A 75 P01042310

NAT4\

Forward: 5’ -  TATATGAGGCGCTTGGGTTC 

Reverse: 5’ -  GTCGGAGTCAAGGATTCGAG 

Corresponding microrray probe: A 75 P01862612
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HML-a l-silencer.

Forward: 5’ -  CAACATGAAAGCCCGACGTTTG 

Reverse: 5’ -  TTTGATTTTTTCACCCAGAACCCCA 

Corresponding microrray probe: A 7 5 P 0 1 104456

Data values of qPCR quantification are available in appendix II. Error bars represent 

the standard deviation of replicates.

Data normalisation and statistical analysis

All ChlP-on-chip data was exported into ‘R’ as background subtracted values 

(see Chapter 2.8). R is an open source software language used for the statistical 

analysis of data and graphical representation (R Development Core Team, 2010). All 

probes for mitochondrial DNA and deleted genes (markers) were removed from 

datasets prior to data analysis. Both quantile normalisation, and shift by mode data 

manipulations on R/G signals, as well as the peak detection algorithm were performed 

in R using custom scripts by M.Bennet (unpublished results, R Development 

CoreTeam, 2010). Averaged datasets were produced using the mean of three 

normalised biological repeats. Linear chromosomal maps of ChlP-on-chip enrichment 

were plotted in R using custom scripts by M.Bennett (unpublished results, R 

Development CoreTeam, 2010). All linear correlations were analysed in R using 

standard pearson correlation analysis, while all non-linear correlation analysis used 

standard spearman methods. T-tests were performed in R using a two sided 

independent samples t-test (p<0.05) assuming non-equal variance. All scatter graphs 

and box plots were produced in R.

Composite profiles

In this study composite profiles are defined as graphs which repeatedly plot 

and superimpose ChlP-on-chip data over a range of 4kb. The data is centred at either 

Abfl binding peaks or intergenic regions in this chapter, and at Abfl or Rad 16 

binding peaks in Chapter 4. An example is given for Abfl binding in Fig. 3.1. In this 

circumstance, for every Abfl binding peak, the composite profile plots 4kb of Abfl 

ChlP-on-chip data with the peak position itself at the centre of the graph (a profile). 

This is repeated for every Abfl binding peak, and all the profiles are superimposed 

(composite profile). When this is complete a trendline, which represents the mean
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pattern formed by all the profiles is displayed. Composite profiles used in this study 

were performed in R using custom scripts by M.Bennett (unpublished results, R 

Development CoreTeam, 2010). All composite profiles in this study used averaged 

datasets. The trendline represents the mean of the plotted data (50 means are taken 

along the course of the composite profile).

For scaled chromosomal position (SCP) composite plots, data is centred at 

intergenic regions between genes (rather than Abfl binding sites), the borders of 

which are defined by annotation data from SGD (http://www.veastgen0me.0rg/V All 

SCP composite profiles exclusively plot intergenic regions of at least 300bp in length, 

and include 1 kb of an ORF either side, unless the ORF is less than lkb in length. SCP 

functions to scale profiles such that all intergenic regions are the same length, this 

scaling applies both to the intergenic and ORF profiles plotted (see Fig. 3.1 D and E). 

All SCP composite plots that include promoters function to exclude intergenic regions 

classified as ‘downstream’; see Fig.3.6 for a picture of this classification.

Note for Fig. 3.12C

The Rad 16 dependent repair rate was calculated by subtracting the radl6A 

CPD repair rate (Red channel/Green channel) from the wild type CPD repair rate (Red 

channel/Green channel) at each position on the yeast microarray. A constant was 

added to the resultant repair rate at every probe so that every value was a positive 

number. This does not function to skew the data, nor affect the distributions 

presented in these figure but does result in higher arbitrary values than those seen in 

other figures. For graphical representation the Rad 16 dependent repair rate was 

converted to log2-

Other ChlP-on-chip datasets used in this study

The CPD repair and histone H3 K9K14 acetylation datasets used in this study were 

kindly provided by K.Evans and Y.Teng (unpublished results, Teng et al., 2010).

http://www.veastgen0me.0rg/V


Chapter 3

A. Abfl binding profile

Chromosomal position

B, Cpmposite profile

1
15

■>

C J repdjine only

1
lo

Trendline

D. Chromosomal positions 

1Kb ,

E. Scaled chromosomal positions

-I h
O R F > O R F > ■> H

1Kb

[0RF>

1Kb

O R F > 1Kb 
H— I

O R F >
, 1Kb

■ A

ORF Intergenic ORF

F i g u r e  3 . 1 .  How composite profiles function to display Abfl ChlP-on-chip data. A. Example of an 
Abfl binding profile; the red dots in this graph represent Abfl binding peaks, the blue bars below 
represent a 4kb range with the Abfl binding peak at the centre. B. Example of a composite profile. The 
trace from A is repeatedly plotted centred at the Abfl binding peak. For each peak, a range of 4kb is 
plotted. C. A trendline represents the repeated plots shown in B. D. Examples of data with an intergenic 
region and an ORF either side. E. Example of how data plotted at these sites would be scaled during a 
SCP composite profile.
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3.3 Results

3.3.1 Genome-wide analysis of Abfl bindine

To determine the genome-wide binding of Abfl before and after UV 

irradiation, DNA from Abfl immunoprecipitated chromatin was purified, and 

following downstream preparation, applied to microarrays (ChlP-on-chip). For this 

study S. cerevisiae strain BY4742 was used (EUROSCARF). This strain is the chosen 

isogenic background for all genome-wide studies within our laboratory, allowing data 

derived from different experiments to be cross examined without the influence of 

genetic variation. BY4742 is a haploid strain isogenic to the sequenced strain S288c, 

and has the added advantage that a complete library of viable gene knockouts is 

available (Winzeler et al., 1999).

In order to delineate the early response of Abfl binding following UV 

damage, three cell populations were prepared for ChlP-on-chip; cells that had not 

received UV treatment (U), cells immediately after UV treatment (0) and a third 

population which was incubated to repair UV damage for 30 minutes after treatment 

(30). For each sample, both immunoprecipitated DNA (IP), and DNA from the whole 

cell extracts (input) were prepared. IP and input DNA were PCR amplified, labelled 

with Cy5 or Cy3 respectively and applied to yeast whole genome microarrays. In 

addition, as various studies have indicated a potential bias in results due to probe 

specific differential dye labelling (termed sample specific dye bias), a fourth sample 

was prepared where the unirradiated sample IP and input Cy labels were switched 

(Dobbin et al., 2005). These experiments generated four datasets for genome-wide 

Abfl binding (termed U, 0, 30 and dyeswap). The protocol was repeated twice such 

that each dataset had results from three biological repeats. A diagram summarising the 

overall protocol is shown in Fig. 3.2.
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Figure 3.2. Cartoon detailing the various stages necessary for Abfl ChlP-on-chip.
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3.3.2 Normalisation of data

For each dataset, the Abfl binding profile was calculated in ‘R’ by dividing 

the background subtracted red channel (IP, except for dyeswap) by the background 

subtracted green channel (input, except for dyeswap) data values extracted by the 

Agilent extraction software (see Chapter 2.8).

These datasets were then normalised using two strategies; quantile 

normalisation followed by shift by mode. All data normalisation and analyses were 

performed in ‘R’ using scripts written by Mark Bennett (unpublished results, R 

Development CoreTeam, 2010). Firstly, data was quantile normalised. Quantile 

normalisation was performed between biological replicates for each dataset (U, 0 and 

30), but was not performed across datasets, so as to maintain biologically relevant 

changes between these. Quantile normalisation functions to normalise the data such 

that the empirical distribution of data values is equal between replicates. An example 

of its use is also shown in Fig. 3.3. This corrects for non-linear systematic error. This 

error may derive from sources such as differential PCR efficiency of DNA.

Following quantile normalisation, all datasets were shifted such that the modal 

value of enrichment was centred at 0 (shift by mode). If background enrichment on a 

microarray is defined as regions of the genome where Abfl enrichment does not result 

in a peak, then this normalisation method functions to centre background enrichment 

at a value of 0. This adjusts datasets by a constant so that the background between 

different datasets is of an equal value.

Following the two normalisation methods the binding profiles of Abfl were 

highly reproducible between each of the three biological replicates as demonstrated in 

Fig. 3.3. The mean of the three biological replicates was then used as the final dataset.
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3.3.3 Investigating the effect of dve bias

Prior to data analysis, it was necessary to determine if Cy5 IP labelling 

conferred a dye bias. To examine this, the average of the two normalised datasets 

taken for Abfl binding in the absence of UV irradiation, but alternatively Cy labelled 

(Cy5 IP/Cy3 input vs Cy3IP/Cy5 input), were directly compared. As shown in Fig. 

3.4, the two datasets are virtually analogous, with an almost perfect linear 

relationship. Importantly, this demonstrates that the use of Cy5 labelling for an IP 

sample, combined with Cy3 labelling for an input sample neither creates false positive 

Abfl binding peaks nor alters the relative pattern of peak height when compared to 

results using opposing labelling. Therefore, data analysis was exclusively performed 

with the three datasets without the need to correct for gene specific dye bias (Dobbin 

et al., 2005).

A.
oCl
c

>\ U
CL

>su

CMOlo

Pearson correlation 
co-efficient: 0.9611

o

5 60 2 31 4

log2 (U Cy5(IP)/Cy3(input))

B. T00 70000 80000 90000

i
Chr. 2

Cy5IP/ 
Cy3 Input

Cy3 Input/ 
Cy5 IP

Fieure 3.4. A. Scatter graph of the averaged U dataset plotted against the averaged dyeswap dataset. A 
pearson correlation coefficient is given in the top left of the graph. B. Example of the data maps for the 
averaged datasets plotted in A. at chromosome 2. The genome-wide map of B. is available on the 
accompanying DVD (D:/Chapter3/ChIPchip).
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3.3.4 Mapping Abfl binding peaks

To investigate the genome-wide localisation of Abfl in response to UV 

damage, a peak detection algorithm was performed on datasets U, 0 and 30. 

Statistically significant Abfl binding peaks (p<0.01) were identified in the U, 0 and 

30 datasets to give 3571, 3459 and 2872 peaks respectively (Fig. 3.5A). The majority 

of the Abfl binding peaks in each dataset overlap, and careful examination of the 

chromosomal maps demonstrates that Abfl binding does not relocalise in response to 

UV irradiation (available on the accompanying DVD, D:/Chapter3/ChIPchip). Abfl 

binding peaks that did not overlap in all three datasets were further investigated and 

the vast majority were not found to represent regions where Abfl is relocalised. Of 

the non-overlapping peaks detected, roughly one third were found to be the result of 

the peak shifting by a single probe on the microarray (Fig. 3.5C). Due to the high 

resolution of the microarrays, this shift in the peak position is likely to be within the 

error of the system, rather than representing a genuine relocalisation of Abfl binding. 

In support of this, 39% of non-overlapping peaks characterised as unique to U when 

compared with the dyeswap were also due to this occurrence. In addition, only one 

third of the peaks that had shifted by one probe were common when comparing 

datasets U and 0 with U and 30.

A second common cause of non-overlapping peaks was found to occur at 

regions of low enrichment, in which the Abfl binding peak was considered 

statistically significant in one dataset but not the other. As shown in Fig. 3.5B, a box 

plot of enrichment for all peaks detected in U and those detected in U but not 0, 

demonstrates the binding level of the peaks from the latter is significantly lower. To 

discount peaks of this nature, student t-tests were performed between datasets at non- 

overlapping peak positions that had not shifted by one probe (Fig. 3.5C). This vastly 

reduced the number of non-overlapping peaks.

By filtering non-overlapping peaks by discounting those that had shifted by 

one probe, and those whose height had not significantly changed between the datasets, 

non-overlapping peaks were not detected when comparing the U and 0 datasets. 

Under the same criteria, only 4 peaks were detected in 30 that were absent in U. 

Approximately 100 peaks were detected in U or 0 that were not identified in 30, 

indicating that following 30 minutes repair after UV damage the occupancy of Abfl is 

lost at a very small subset of binding peaks. Therefore, the localisation of Abfl 

binding is the same both before and after UV irradiation.
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A. Abfl binding peaks
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C. Table categorising non-overlapping Abfl binding peaks

Peaks 
found in

Peaks absent 
from

Quantity Peaks moved 
by one probe

Remaining Remaining peaks statistically 
different (p<0.05)

U 0 580 239 341 0
0 U 468 239 229 0
U 30 1124 254 870 95
30 U 425 254 171 4
0 30 1036 264 772 98
30 0 449 264 185 0

Figure 3.5. A. Venn diagram representing the number of peaks detected in each Abfl dataset that are 
present at identical probes on the microarray. Numbers in brackets represent the total number of peaks 
identified in each dataset. B. Box plot comparing the range of enrichment for peaks identified in U that 
were not present in 0 versus all peaks identified in U. C. Summary of the non-overlapping peaks 
identified in each dataset.
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Given the absence of novel Abfl binding peaks in response to UV irradiation, 

the Abfl peaks defined in U represent an appropriate approximation of the 

distribution of Abfl binding both before and after UV irradiation. Therefore, unless 

otherwise stated, the positional data of Abfl binding peaks defined in U was used for 

all subsequent data analysis.

3.3.5. Abfl preferentially binds promoter re2ions of the genome

Having identified the relative position of Abfl binding genome-wide, the 

peaks were categorised according to their location in the genome. The data was split 

into 5 categories; intragenic, promoter, divergent promoter, downstream or unknown 

according to the microarray probe classifications (see Fig. 3.6A). These are provided 

under the column heading of ‘Description’ in the exported data files following feature 

extraction (see Chapter 2.8). As shown in Fig. 3.6A, Abfl binding peaks are highly 

over represented at both promoters and divergent promoters but highly under­

represented at intragenic regions, relative to the number of probes on the microarray 

in each category. This suggests Abfl preferentially binds chromatin at promoter 

regions. Upon analysis of the genome-wide chromosomal maps it was apparent that a 

peak of Abfl binding can be observed upstream of nearly all promoter regions (an 

example is given in Fig. 3.6B). However, statistically significant binding peaks are 

only identified at -40% of yeast promoters. Therefore Abfl may bind many 

promoters at a low level that is not statistically significant. To test this possibility a 

composite profile of Abfl binding was plotted at intergenic regions with a promoter 

where Abfl was identified to bind by statistical analysis and compared against a plot 

where Abfl binding was not statistically significant (Fig. 3.6C and D). As shown in 

Fig. 3.6D, when promoter regions where Abfl is not identified to bind at statistically 

significant levels are collectively plotted, a moderate enrichment of chromatin is 

observed relative to intragenic chromatin. This demonstrates that the location of low 

level Abfl binding is non-random (and thus unlikely to be an experimental error) and 

at promoter regions. This corresponds to the same preferential localisation as 

statistically significant peaks of Abfl binding. This suggests that a significant 

proportion of these promoter regions are occupied by low level binding (LLB) of 

Abfl, whilst regions with statistically significant peaks represent high level binding 

(HLB) of Abfl.
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A. Location of Abfl binding peaks
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Figure 3.6. A. Location of Abfl binding peaks. ‘% of probes on array’ represents the percentage of the 
total probes on each microarray that are classified according to each category under ‘Abfl peak 
position’. Intergenic probes are a total of all probes that are not classified as intragenic. An example of 
a promoter, divergent promoter and downstream region (shown in red) is given below. B. 
Chromosomal map of Abfl binding from the U dataset. Red dots are shown below statistically 
significant Anfl binding peaks. Black arrows represent Abfl binding peaks at promoters that are not 
assigned as statistically significant. C. A composite profile of Abfl binding centred at intergenic 
regions with a promoter that contains a statistically significant peak (2332 regions from A). The trace 
maps the averaged binding data of U for the intergenic region and both the upstream and downstream 
gene. This trace is repeated for each of the 2332 intergenic regions. The data is scaled such that all data 
from intergenic regions and ORFs are mapped according to the grey bars shown. A trendline is given in 
red. D. The composite plot is of the same format as C., but instead plots intergenic regions that do not 
contain a statistically significant Abfl binding peak.
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3.3.6 UV dependent changes in Abfl occupancy

Mutation of the Abfl binding site at the HMLa I-silencer was previously 

shown to inhibit efficient GGR (Yu et al., 2009). In addition, the occupancy of Abfl 

was observed to alter at the wild type HMLa I-silencer in response to UV irradiation. 

Using ChlP, it was shown that the occupancy of Abfl initially increased following 

UV, but subsequently decreased at various time points analysed following repair. The 

significance of these changes was unknown, but the data suggests that alterations in 

Abfl occupancy could be mechanistically important for GGR. Recently, our 

laboratory has utilised ChlP-on-chip technology for the analysis of CPD incidence 

(and repair) in chromatin following UV irradiation (Fig. 3.7A, Teng et al., 2010). The 

high correlation between the predicted and experimentally established profile of CPD 

incidence, demonstrates that the technology provides accurate quantitative 

information regarding the presence of CPD damage throughout the genome. As a 

consequence, the Abfl ChlP-on-chip datasets were examined to determine the change 

in Abfl occupancy in response to UV genome-wide.

In order to validate the Abfl ChlP-on-chip data, the changes in Abfl binding 

after UV were quantified by quantitative PCR (qPCR) at a number of loci and 

compared to the changes in Abfl binding as quantified by the microarray datasets. 

qPCR was performed using primers that amplified regions of the genome where a 

peak of Abfl binding was observed by ChlP-on-chip. Both the qPCR and ChlP-on- 

chip datasets used the same DNA sample purified from chromatin. As shown in Fig. 

3.7B, when quantified by qPCR, binding of Abfl at the HMLa I-silencer follows an 

identical pattern to that originally described; a UV dependent increase in occupancy, 

followed by a decrease after 30 minutes repair (Yu et al., 2009). In contrast, the 

microarray data instead predicts a small loss in Abfl occupancy immediately after 

UV. A second example of Abfl binding is shown at NAT4. In this example, both the 

qPCR and microarray data indicate the same pattern of Abfl occupancy. Therefore, in 

some examples there are discrepancies between changes in Abfl occupancy as 

quantified by qPCR and microarray methodologies.

To visualise the genome-wide changes in Abfl occupancy in response to UV, 

histograms examining the change in Abfl binding were plotted comparing the U 

dataset with 0 and the 0 dataset with 30. As shown in Fig. 3.8A, relatively few Abfl 

binding peaks demonstrated large changes in Abfl occupancy (>20%) directly after
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A. CPD incidence profile
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Figure 3.7 A. Example of the quantitative nature of the ChlP-on-chip strategy employed within the 
laboratory. The experimentally determined CPD incidence, as identified by using an antibody raised 
against the CPD damage (black line), correlates with a theoretical profile of CPD damage based upon 
sequence data and the known ratios of CPD incidence between dipyrimidines (red line). B. Comparison 
of changes in Abfl binding peaks as quantified by qPCR and microarray.

UV irradiation. However, following 30 minutes repair of UV damage, the occupancy 

of Abfl at a large proportion (>50%) of binding peaks is found to decrease (>20%) 

(Fig. 3.8B). Therefore the predominant UV response of Abfl after 30 minutes repair 

results in a loss of occupancy at binding sites. Two of the loci which were found to 

have a statistically significant loss in Abfl occupancy (p<0.05) between the datasets 

U and 30 were selected for quantification by qPCR. As shown in Fig. 3.8C, the qPCR 

data corresponds well with the prediction by the microarray data demonstrating a 

significant loss of Abfl occupancy following 30 minutes repair. Whilst the loss of 

Abfl binding was investigated in relation to CPD repair rates (Teng et al., 2010), 

neither Pearson nor Spearman correlation analysis identified a correlation between the 

changes in Abfl binding and efficient CPD repair.

Page | 103
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Figure 3.8. A. Histogram of the relative change in Abfl occupancy (as a % of the original peak height) 
when comparing the U dataset with the 0 dataset. B. Identical format as A. comparing the 0 dataset 
with the 30 dataset. Both A. and B. compare peaks identified in the U dataset. C. Comparison of two 
Abfl binding peaks predicted to fall in response to UV after 30 minutes repair, as quantified by qPCR 
and microarray.
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3.3.7 Investigating histone H3 K9K14 hyperacetvlation at Abfl binding peaks

As previously discussed in the introduction, the Rad7/Radl6 components of 

the GGR complex promote histone H3 K9K14 hyperacetylation after UV and GGR 

(see Chapters 1.4.4 and 4.1, Teng et al., 2008; Verhage et al., 1994). Given that Abfl 

binding is believed to promote efficient binding of the GGR complex to domains 

throughout the genome, this suggests that Abfl binding may co-ordinate the 

localisation of Rad 16 dependent acetylation and GGR (see Chapter 1.5.5 and 

introduction for further discussion, Yu et al., 2009). Our lab has recently mapped the 

genome-wide UV response of histone H3 K9K14 acetylation and CPD DNA repair 

using the ChlP-on-chip strategy described above (K.Evans, Y.Teng, unpublished data, 

Teng et al., 2010). This has been performed in both wild type and radl6A strains of 

BY4742. These datasets were plotted at Abfl binding sites to investigate how histone 

H3 K9K14 acetylation and CPD repair are organised in relation to Abfl binding.

When the acetylation data was plotted at Abfl binding peaks as a composite 

profile, a trendline of two peaks of hyperacetylation either side of the Abfl binding 

position was identified (Fig. 3.9). This suggests that Abfl binding may regulate the 

distribution of histone H3 K9K14 hyperacetylation. It was previously observed in S. 

cerevisiae that both histone H3 K9 and H3 K14 acetylation, peaks at the TSS of genes 

(Pokholok et al., 2005). This suggested that histone hyperacetylation at Abfl binding 

sites may occur at promoter regions, which as previously shown, is where Abfl is 

predominantly localised (Fig. 3.6). To investigate this, composite profiles of histone 

H3 K.9K.14 acetylation were plotted in relation to Abfl binding peaks classified 

according to their genomic location, as described in Fig. 3.6A (Fig. 3.10). As shown 

in Fig. 3.10, when plotted in this manner, histone H3 K9K14 hyperacetylation peaks 

are only found at Abfl binding sites within both classes of promoter regions. 

Interestingly however, a low level peak of acetylation is found centred at intragenic 

Abfl binding peaks, suggesting that Abfl binding might promote low level 

acetylation in these regions. Collectively, these data suggest that histone H3 K9K14 

hyperacetylation is organised at the Abfl binding sites of promoter regions.
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Figure 3.9. Composite profile of histone H3 K9K14 acetylation data. 4000 nucleotides of acetylation 
data (from unirridiated cells) is plotted such the centre of this plot colocalises at an Abfl binding peak 
defined in U. This plot is repeated and superimposed for each of the 3571 Abfl binding peaks.

To further investigate how histone H3 K9K14 acetylation is organised at Abfl 

binding sites, composite profiles of the acetylation data were plotted in relation to 

Abfl binding peaks both before and after UV irradiation using the wild type and 

radl6A datasets (Fig. 3.10). As observed in the absence of UV damage, peaks of post- 

UV histone H3 K.9K14 hyperacetylation only occur proximal to Abfl binding sites at 

promoter regions. In response to UV, the distribution of acetylation is similar to that 

observed before UV damage at the Abfl binding sites of all genomic locations. 

However, the greatest differences in the distribution of acetylation occur at promoters, 

where the hyperacetylation peaks before UV are accentuated. In the absence of 

Rad 16, the distribution of acetylation is significantly altered at the Abfl binding sites 

of promoters; in the absence of UV damage, acetylation is diminished at regions 

proximal to the Abfl binding site and the peaks of hyperacetylation are significantly 

reduced. Interestingly, in response to UV the altered distribution of acetylation at 

promoters is maintained. This suggests that Rad 16 regulates the distribution of histone 

acetylation at promoters in a similar manner both before and after UV irradiation. 

These data show that Rad 16 is important in regulating the distribution of histone H3 

K9K14 acetylation at Abfl binding sites in promoter regions.
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Figure 3.10.(Above) Composite profiles of histone H3 K.9K.14 acetylation data both before (U -  red 
lines) and one hours after ( lhrs - green line) UV irradiation at Abfl binding peaks. Abfl binding peaks 
from the U dataset were categorised according to their location and plotted as four separate graphs. The 
title in the top left o f  each plot represents which location the Abfl binding peaks used to produce the 
graph are located at. All Abfl binding peaks for each location were included. Only the trendline of 
each plot is shown. All graphs on the left represent data from wild type cells. All graphs on the right 
represent data from radJ6Ace\\s. NB. Scales are non-equivalent between wild type and Aradl6 
datasets. Scales are also non-equivalent between U and lhrs datasets.

Histone H3 K9K.14 acetylation at promoters that were not bound by Abfl 

could not be investigated because promoters that do not contain a statistically 

significant Abfl binding peak do not accurately represent regions of the genome 

where Abfl is not observed to bind (Fig. 3.6). Consequently, a role for Abfl binding 

in regulating the distribution of histone H3 K9K.14 acetylation at promoters was 

investigated by comparing promoters with HLB of Abfl to promoters with LLB of 

Abfl (Fig. 3.11). Histone H3 K.9K.14 hyperacetylation data was plotted at intergenic 

regions with a promoter and classified into two composite profiles according to 

whether the intergenic regions contained HLB of Abfl (statistically significant peak) 

or LLB o f Abfl (statistically insignificant peak). As shown in Fig. 3.11, peaks of 

hyperacetylation were centred at promoter regions with HLB and LLB of Abfl (Fig. 

3.11 C. and D.). This suggests that the level of Abfl binding at a promoter does not 

regulate histone hyperacetylation. As previously discussed for promoters with HLB of 

Abfl, the pattern of hyperacetylation is not significantly altered in response to UV at 

promoters with LLB of A bfl.

It was speculated that if HLB of Abfl is necessary for the localisation of the 

Rad 16 dependent distribution of histone H3 K9K14 acetylation at promoters, then 

acetylation at promoters with LLB of Abfl might be unaffected in a radl6A strain. To 

test this possibility, the intergenic composite profiles of acetylation at promoters 

classified according to HLB or LLB of Abfl, were repeated for the radl6A dataset 

(Fig 3.11 E. and F.). In the absence of Radl6 the distribution of acetylation at 

promoters with HLB and LLB of Abfl are significantly altered in both cases 

(compare Fig. 3.11 C with E and 3.1 ID with F). Therefore, Radl6 regulates the wild 

type distribution of histone H3 K9K14 acetylation at promoters in a manner 

independent of the level of Abfl binding.
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Figure 3.11 (above). A. and B; Composite profiles of Abfl binding at intergenic regions that contain a 
promoter using the scaled chromosomal position strategy as described in Fig. 3.6C. Data is classified 
into intergenic regions with HLB of Abfl (statistically significant peaks) (A.) or those with LLB of 
Abfl (statistically insignificant peaks) (B.). C. and D; Composite profiles of histone H3 K9K14 
acetylation from BY4742 before (C) and lhrs after (D) UV irradiation, centred at intergenic regions 
which contain a promoter. The data is classified according to intergenic regions with HLB or LLB of 
Abfl as seen in A. and B. Only the trendline of the plots is shown. E and F; Identical to that of C. and 
D. except that the acetylation data is derived from strain radl6A  BY4742. E. is before UV and F. lhrs 
after. NB: Data from C., D., E. and F. plots use non-equivalent arbitrary units/scales. (Below) 
Summary of conclusions.

3.3.8 Investing GGR at Abfl binding peaks

Abfl binding sites were previously suggested to promote domains of efficient 

GGR (see Chapter 1.5.5, Yu et al., 2009). To investigate CPD repair at Abfl binding 

sites a composite profile of wild type CPD repair rates was plotted in relation to Abfl 

binding peaks. A domain of rapid repair in the vicinity of Abfl binding was not 

observed (Fig. 3.12A). Therefore in wild type cells, rapid CPD repair does not occur 

at domains proximal to Abfl binding peaks. However, in the absence of Rad 16, CPD 

repair is slowest at regions of the genome centred at Abfl binding peaks (Fig. 3.12A). 

To further investigate this observation, composite profiles were plotted according to 

the genomic location of the Abfl binding peak. As shown in Fig. 3.12C, the largest 

differences between the wild type and rad16A mutant repair rates occur at Abfl 

binding peaks situated at promoters. The relative pattern of CPD repair at Abfl 

binding peaks that are intragenic is unaffected by the loss of Rad 16 likely reflecting 

the predominance of the TCR pathway in these regions. Remarkably, regions bound 

by Abfl downstream of genes are significantly repair defective in wild type cells. 

This phenotype was observed to be a general trend of regions downstream of a gene 

(Fig. 3.12B). However, in the absence of Rad 16 a domain of deficient repair 

downstream of genes is not observed. Collectively these results suggest that efficient 

Rad 16 dependent GGR is organised at the Abfl binding peaks of promoter regions.

To test whether efficient Rad 16 dependent GGR colocalised at promoters with 

HLB of Abfl, CPD repair rates were plotted using composite profiles at intergenic 

regions which contained a promoter and the data was analysed according to whether 

the promoter contained HLB or LLB of Abfl. As shown in Fig. 3.13, when plotted in 

this manner the slowest rates of repair in a rad 16/1 mutant occur at promoter regions 

for both classes of Abfl binding, however, repair rates are slower at promoters with 

HLB of Abfl. In the presence of Rad 16, repair rates remain slowest at promoters with 

HLB of Abfl. Given that the repair rates are not equal in the absence of Rad 16



Chapter 3

Tf-3 ’

f i :

>*>■

1
B■Z
.±s

E —  WT
—  radl6A

»  •  n o jooo
Distance from Abfl binding peak 

(nucleotides)

&
CL

I
■oOl
I

fKJ
>5g-

I
§

—  WT
—  rad16A

Cl

ORF 0 9

Scaled chromosomal 
position

C Repair rates according to position of Abfl binding peak

1 =

I<
i

ft
1  
*

2
.is 5
f t■

Promoter —  WT
—  rad 16A H5.

1 i
§ I »• *O"

€  1

Distance from Abfl binding peak 
(nucleotides)

1 s

1 :
<jk -
CM

2

±

Divergent
promoter

WT
rad16A ■Q.

o  —t

*< -«
« c  S o 3 "3.' *

f t

Distance from Abfl binding peak 
(nucleotides)

s
3  r 

2I J 
<
R ?
I
« 5
fc-

8I
►—
£

JOOC

'  * 
s:

-Q.

>

s s *8at 
<2 
c

8 icr
—•

INJ

Distance from Abf 1 binding peak 
(nucleotides)

Downstream —  WT
—  rad16A

c3 •
2
•» ;

?N 2O'J

CL

CTO

2 rsj
oII-

£ o <00010W

Distance from Abfl binding peak 
(nucleotides)

Figure 3.12. A. Composite profile of wild type (red line) and radl6A (green line) repair rates plotted at 
Abfl binding peaks. Only the trendlines are shown. B. Composite profile of repair centred at intergenic 
regions downstream of a gene (both gene ORFs terminate at the intergenic region, hence a promoter is 
never present) that do not contain a statistically significant Abfl binding peak. The trendline of the data 
is given for wild type repair rates (red) and rad!6A repair rates (green). C. Composite profiles of an 
identical format as Fig. 3.10 but plotting wild type (red) and radl6A (green) repair rates. NB. Scales are 
non-equivalent between wild type and Arad 16 datasets.

Page | 111



Chapter 3

between the two classes of Abfl binding, Rad 16 dependent GGR was estimated by 

subtracting the Arad 16 CPD repair rate from wild type CPD repair rate. When these 

data are plotted, little difference in Rad 16 dependent GGR rates is observed between 

promoters with HLB and LLB of Abfl. Collectively these data suggest that there is no 

correlation between the Abfl binding level and the rate of Rad 16 dependent GGR at 

promoter regions.
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the scaled chromosomal position strategy as Fig. 3.6C. Data is classified into intergenic regions with 
HLB of Abfl (statistically significant peaks) or those with LLB of Abfl (statistically insignificant 
peaks). Only trendlines are shown. A. Wild type CPD repair. B. radl6A CPD repair. C. Rad 16 
dependent CPD repair (wild type rad!6A CPD repair). NB: Data from A., B., and C. plots use non­
equivalent arbitrary units/scales.
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3,4 Discussion

The aim of the current study was to map the genome-wide localisation of Abfl 

before and after UV damage using ChlP-on-chip, to investigate how the protein 

responds to UV damage as part of the molecular mechanism of GGR. Furthermore, 

the distribution of Rad 16 dependent histone acetylation and GGR were investigated in 

relation to Abfl binding sites. Abfl is observed to bind the genome at a high 

frequency, and is preferentially localised at promoter regions. In contrast to many 

TFs, Abfl is not observed to relocalise its distribution in response to UV damage, 

however the level of Abfl binding is significantly reduced at many sites following 30 

minutes repair. Abfl, Rad7 and Rad 16 form the GGR complex and Rad7/16 promote 

UV induced histone H3 K.9K14 hyperacetylation and CPD repair. Rad 16 regulates the 

distribution of histone H3 K.9K14 acetylation at Abfl binding sites within promoter 

regions. In addition, efficient GGR is organised at Abfl binding sites in promoter 

regions. This suggests that Abfl binding targets the GGR complex and thus organises 

GGR at promoter regions. To investigate if Abfl binding is necessary for efficient 

Rad 16 dependent histone acetylation and efficient GGR at promoter regions, the 

promoter regions were classified according to whether they contained a statistically 

significant Abfl binding peak or not. In this study, Abfl is observed to bind a very 

high frequency of promoter regions in vivo, and promoters that do not contain 

statistically significant binding peaks o f Abfl are observed to contain LLB of Abfl, 

rather than an absence of Abfl binding. When the data is classified into promoter 

regions with HLB or LLB of A bfl, neither the distribution of acetylation nor CPD 

repair rates are significantly different between the two classes. This suggests that the 

level of Abfl binding is not related to acetylation nor CPD repair rates at promoter 

regions.

Under the current experimental conditions employed, over 3500 statistically 

significant peaks of Abfl binding (p<0.01) are observed in the absence of UV 

irradiation (Fig. 3.5A). This is considerably higher than the number of sites Abfl is 

predicted to bind the genome from previous ChlP-on-chip studies (Harbison et al., 

2004; Lee et al., 2002b; Schlecht et al., 2008). However, other investigators have 

indicated that the number o f TF interactions estimated in these early studies were low 

due to the statistical models employed (Workman et al., 2006). Importantly, the 

studies presented here employ microarrays with a far higher resolution than 

previously used (4-8 fold higher depending upon the study being compared), which
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includes intragenic regions (not analysed in Lee et al., 2002 or Harbison et al., 2004). 

This not only provides a greater coverage of the yeast genome, but allows more 

accurate estimations of binding peaks as previously described (Pokholok et al., 2005). 

This suggests that previous studies have underestimated the true number of Abfl 

binding sites in vivo.

Comparison of the location of Abfl binding peaks suggest that Abfl is 

predominantly located within intergenic regions, primarily situated at promoters (Fig. 

3.6A). Indeed, Abfl has previously been observed to preferentially bind upstream of 

genes (Schlecht et al., 2008). This correlates with the preferential location of the Abfl 

DNA binding consensus sequence found ~100bp upstream of a TSS (Schlecht et al.,

2008). Interestingly this location maps to the preferential position of a promoter NDR, 

and as previously discussed Abfl is known to promote NDRs (Hartley and Madhani, 

2009; Lee et al., 2007b; Yarragudi et al., 2004). The consensus DNA binding 

sequence of Abfl was previously mapped to -500 promoters at NDRs, however the 

studies presented here suggest that Abfl in fact binds at a much larger number of 

promoters. This likely reflects the fact that Abfl is not exclusively found at NDRs, 

nor its consensus DNA binding sequence (Ganapathi et al., 2010; Schroeder and Weil, 

1998). Indeed, of the 3571 Abfl binding peaks identified in this study only -1000 are 

observed to contain an Abfl consensus DNA binding sequence (M. Bennett, 

unpublished results). The results presented here also suggest that the 2332 promoters 

identified to be bound by Abfl may be a conservative estimation, as statistically 

insignificant LLB peaks of Abfl are found at many other promoter regions (Fig. 

3.6C). A recent study that analysed nucleosome occupancy genome-wide, 

demonstrated that a strain expressing the DNA binding temperature sensitive mutant 

abfl -1 at the restrictive temperature, displayed higher levels of nucleosome 

occupancy at NDRs when compared with the wild type strain (Ganapathi et al., 2010). 

Whilst they detected changes at 444 NDRs that were considered statistically 

significant (p<0.05), 4478 loci were observed to change. Interestingly, the statistical 

significance for changes in nucleosome occupancy correlated well with that for Abfl 

occupancy at values far below p<0.05. This suggests that many of the enriched sites 

(p<0.05) in both microarray studies genuinely represent Abfl binding sites despite a 

lack of statistical significance at the level of probability selected. These observations 

are in good agreement with the conclusions presented in this study; that Abfl binds at 

thousands of sites throughout the genome, that Abfl is preferentially localised at
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promoter regions (where NDRs are primarily found) and that many regions of Abfl 

binding that are not statistically significant likely represent true binding sites that are 

biologically relevant. Therefore, promoter regions with statistically insignificant Abfl 

binding peaks identified in this study (Fig. 3.6), as a population, are more 

appropriately considered to represent regions of LLB for Abfl rather than regions not 

bound by the protein. Furthermore, given that the cell populations used in these 

studies were heterogeneous, LLB of Abfl may also represent binding sites that are 

differentially bound at different phases of the cell cycle.

Immediately after UV irradiation the genome-wide localisation of Abfl was 

not observed to change significantly, however, following 30 minutes repair, the 

occupancy of Abfl is found to fall at a large proportion of Abfl binding peaks (Fig.

3.5 and 3.8). Therefore the recruitment of Abfl to numerous novel genomic loci does 

not occur as part of the early DNA damage response. These observations suggest that 

the GGR complex may bind Abfl binding sites in the absence of DNA damage, rather 

than being recruited to binding sites in response to UV. Alternatively, a dynamic 

exchange of Abfl for the GGR complex at Abfl binding sites could occur after UV; 

this might not be detected using the current experimental strategy. The data suggests 

that Abfl is a condition invariant DNA binding protein, in contrast to other GRFs 

such as Rebl and Rapl (Harbison et al., 2004). Induced binding of Abfl to a small 

subset o f genes has previously been observed under conditions promoting 

fermentation, respiration or sporulation (Schlecht et al., 2008). However, the authors 

noted that the majority o f Abfl binding targets remained the same in all conditions. It 

is noteworthy that this study also suggested that a proportion of Abfl binding targets 

were different in response to UV irradiation (Fig. 3.5A), however, after careful 

analysis these results were discovered to be false positives. The cause of this was 

either due to the peak position shifting by a single probe or where low binding peaks 

were not statistically significant either before and after UV despite little change in the 

level of binding. Therefore, the small subsets of differential Abfl binding targets 

identified by Schlecht et al. could potentially represent false positives due to the same 

causes described in this study. As previously shown at the HMLa I-silencer, the 

occupancy of Abfl is lower at many Abfl binding sites in response to UV damage 

(Fig. 3.8B, Yu et al., 2009). However, when Abfl binding is quantified by qPCR 

directly after UV damage some loci show increased levels of occupancy that is not 

reflected in the microarray data (Fig. 3.7B, Fig. 3.8C). Whilst the reasons for these
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discrepancies are unknown, the collective data suggests that the predominant loss of 

Abfl occupancy correlates with the onset of DNA repair following UV damage. 

However correlations were not observed between changes in the level of Abfl 

binding and CPD repair rates. This is further discussed in Chapter 7.

Abfl promotes binding of the GGR complex to an Abfl consensus DBS in 

vitro, suggesting that Rad7/Radl6 may be targeted to domains bound by Abfl in vivo 

(Yu et al., 2009). This may function to co-ordinate Rad 16 dependent histone H3 

K9K14 acetylation and GGR at domains bound by Abfl. Using composite profiles, 

histone H3 K.9K14 hyperacetylation peaks were observed proximal to Abfl binding 

sites within promoter regions (Fig. 3.10). In these regions, a peak of acetylation is 

situated either side of the Abfl binding sites. Given that both K9 and K14 

hyperacetylation peaks have previously been suggested to be orientated at TSSs, this 

double peak pattern may represent the distribution of TSSs either side of Abfl binding 

sites in promoters (Pokholok et al., 2005). However, when acetylation is plotted at 

Abfl binding sites where a TSS is strictly orientated to one side of the binding site, 

two peaks are still observed (see appendix II). Given that Abfl is known to promote 

NDRs at promoters (Hartley and Madhani, 2009; Yarragudi et al., 2004), an 

alternative explanation for the distribution of histone acetylation at the Abfl binding 

sites is that an NDR functions to lower the level o f acetylation by reducing the target 

substrate itself (ie. a nucleosome). Indeed, preliminary data from our lab has 

suggested that when histone acetylation is normalised relative to histone occupancy a 

single peak of histone H3 K.9K14 acetylation is found centred at the Abfl binding site 

(K. Evans, unpublished data). This suggests that Abfl binding may have a functional 

role in regulating the distribution of histone H3 K.9K14 acetylation at promoters.

In response to UV damage the distribution of histone H3 K.9K14 acetylation at 

Abfl binding sites is not significantly altered (Fig. 3.10). These observations also 

hold true at promoter regions with LLB of Abfl (Fig. 3.11). It was previously shown 

that the genome-wide levels o f histone H3 K9K14 acetylation significantly rise in 

response to UV damage (Teng et al., 2008; Yu et al., 2005). Collectively these data 

suggest that regions of hyperacetylation prior to UV are maintained after UV. Indeed, 

a very strong correlation is observed between the distribution of histone H3 K9K14 

acetylation before and after UV (K. Evans, unpublished data). This suggests that 

mechanisms which regulate the distribution of histone H3 K9K14 acetylation prior to 

UV are likely to be functional in the UV responsive pathway. In support of this idea,
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it is interesting to note that the loss of Rad 16 significantly affects the distribution of 

histone acetylation at promoters both before and after UV (Fig. 3.10 and 3.11). This 

demonstrates that Rad 16 has a functional role in histone acetylation in the absence of 

UV damage, in addition to its previously noted role after UV (Yu et al., 2005). Rad 16 

functions to promote the distribution of acetylation at regions proximal to Abfl 

binding sites in promoter regions (Fig. 3.10 and 3.11). This effect is profound and 

likely occurs at a large majority of promoters. In response to UV irradiation, the 

distorted distribution of acetylation at promoters in the radl6A  mutant is maintained 

(Fig. 3.10). These data again support the hypothesis that similar mechanisms regulate 

the distribution of acetylation in the absence and presence of UV damage. This 

suggests that the activities of Rad 16 necessary for histone acetylation are upregulated, 

rather than activated, in response to UV.

Abfl preferentially binds at promoter regions and Radi6 functions to promote 

the distribution of histone H3 K9K14 hyperacetylation at Abfl binding sites in 

promoter regions, suggesting that Abfl functions to target Rad 16 dependent histone 

acetylation to these sites. To investigate whether Abfl binding is necessary for histone 

hyperacetylation at promoters, histone H3 K9K14 acetylation was plotted at 

promoters that do not contain a statistically significant Abfl binding peak (Fig. 3.11 C 

and D). These regions of the genome were predicted to be absent of histone H3 

K9K.14 hyperacetylation peaks if Abfl binding was necessary for the acetylation 

pattern. Although such promoters still demonstrate typical hyperacetylation peaks, 

these regions more accurately represent domains of LLB rather than domains not 

bound by Abfl (Fig. 3.6). Therefore, using the current experimental data it is unclear 

whether Abfl binding is necessary for or promotes histone H3 K9K14 

hyperacetylation at promoter regions. The same conclusion may also be made for 

Rad 16 dependent acetylation and GGR. By comparing promoter regions with 

statistically significant Abfl binding peaks (HLB) to those that do not contain a 

statistically significant Abfl binding peak (LLB), it was shown that Radl6 dependent 

acetylation is not restricted to promoter regions with HLB of Abfl (Fig.3.11 E. and 

F ). These data demonstrate that the level of Abfl binding is not important for 

promoting Rad 16 dependent acetylation at promoters. Indeed, pearson/spearman 

correlation analysis did not observe a correlation between the level of Abfl binding 

and either wild type nor radl6A  acetylation levels. This is further discussed in 

Chapter 7.
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When the Abfl DNA consensus binding site was mutated at the HMLa I- 

silencer a ~400bp domain of reduced GGR was observed extending in one direction 

from the binding site (Yu et al., 2009). This demonstrates that Abfl binding can 

promote GRR within a proximal domain. At the genomic level rapid CPD repair rates 

do not colocalise with Abfl binding (Fig. 3.12). This demonstrates that other factors 

promote rapid CPD repair rates in vivo. One such factor is likely to be the presence of 

genes, which would be preferentially repaired on the TS by TCR; this is known to 

repair C’PDs taster than GGR (Mellon et al., 1987). Therefore, analysing GGR rates in 

the absence of TCR may be more suitable to investigate how Abfl binding influences 

C PD repair genome-wide. Relative to the wild type repair rates, the largest defects in 

C'PD repair in a radl6A  mutant are observed at Abfl binding sites in promoter regions 

(Fig. 3.12). This demonstrates that efficient Radl6 dependent GGR is organised at 

Abfl binding sites in promoter regions, which correlates with the location of Rad 16 

dependent histone acetylation. The large defect in repair in a radl6A mutant at 

promoters likely reflects the fact that TCR does not significantly function to 

contribute to repair in these regions of the genome and thus most CPD repair here 

requires GGR and thus Rad 16 (Hanawalt and Spivak, 2008). Therefore, in the absence 

of a Rad 16 dependent CPD repair profile, promoter regions may represent the most 

suitable regions of the genome for analysing GGR. As with acetylation, distinguishing 

HLB and LLB of Abfl at promoters demonstrates that there is not a correlation 

between the level of Abfl binding and Radl6 dependent GGR (Fig 3.13).

The current study demonstrates that Abfl binds the genome at a high 

frequency, and is predominantly situated within promoter regions. In response to UV, 

Abfl does not relocalise but the global occupancy of Abfl binding on chromatin is 

reduced at a proportion of its binding sites. This suggests that the GGR complex may 

bind at Abfl binding sites in the absence of UV damage. Rad 16 has a global role in 

regulating the distribution of histone H3 K9K14 acetylation at promoters both before 

and after UV. It is also at these regions that efficient Rad 16 dependent GGR is 

localised. The correlation between Abfl binding at promoters and the organisation of 

Rad 16 dependent histone H3 K9K14 acetylation and efficient GGR in these regions
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strongly suggests that Abfl binding targets the GGR complex and thus organises 

GGR from promoter regions of the genome.

As a complementary study to the current chapter, the proceeding chapter 

investigates the genome-wide localisation of the GGR complex by analysing the 

distribution of Rad 16 binding using a similar ChlP-on-chip strategy.
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4. Mapping the genome-wide localisation of Radl6 in 
the absence and presence of UV damage

4.1 Introduction

To date, the current understanding of the molecular mechanism of NER has 

been significantly determined using biochemical in vitro assays that have studied the 

repair of naked DNA. However, within the cell DNA is packaged into a structural 

fibre of nucleosomal DNA termed chromatin. The nucleosome consists of a protein 

octamer o f two copies o f histones H2A, H2B, H3 and H4. This core particle also 

includes ~~147bp of DNA which wraps around the histone octamer. This primary 

structure is the predominant form in which DNA exists within the cell, and therefore 

this poses the fundamental question as to how NER operates during repair of this 

substrate.

In vitro, reconstitution of naked DNA into chromatin inhibits the efficient 

excision of NER substrates such as (6-4)PPs, when combined with the core NER 

factors necessary for efficient repair of naked DNA (Hara and Sancar, 2002, 2003; 

Ura et al., 2001). These observations suggest that additional factors exist within the 

cell to permit efficient repair of chromatin in vivo. The original observation that repair 

of UV damage is concurrent with the relaxation of chromatin founded the long 

standing model whereby chromatin is remodelled to permit efficient NER, and then 

restored to its original structure; this is termed the access, repair, restore (ARR) model 

(Green and Almouzni, 2002; Smerdon and Lieberman, 1978). Chromatin remodelling 

is considered to occur by three principle activities; exchange of core histones with 

histone variants, covalent modification of histone tails and alterations in histone-DNA 

interactions (Saha et al., 2006). The latter of these activities is catalysed by the Snf2 

protein family of ATPases (Clapier and Caims, 2009; Flaus et al., 2006). These 

activities are believed to modulate the accessibility of DNA within the nucleosome 

thereby facilitating DNA dependent interactions/reactions with chromatin modifying 

factors.

Recent evidence has implicated a variety of chromatin remodellers and 

modifications to be related to UV damage and NER in vivo (Palomera-Sanchez and 

Zurita, 2011; Zhang et al., 2009). In S. cerevisiae, an interaction between Rad4-Rad23 

and the Snf2 chromatin remodeller SWI/SNF is stimulated upon UV irradiation (Gong
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et al., 2006). Deletion of Snf6, a subunit of the SWI/SNF complex necessary for 

functional activity, inhibits both UV dependent chromatin remodelling and efficient 

GGR in vivo. Knockdown of Brgl, the catalytic subunit of hSWI/SNF, similarly 

inhibits efficient UV dependent chromatin remodelling and CPD repair in human cells 

(Zhao et al., 2009). A UV inducible interaction between Rad4-Rad23 and the Snf2 

chromatin remodeller Ino80 complex has also been recently observed (Sarkar et al., 

2010). In mammalians, the INO80 complex interacts with DDB1, and whilst in both 

yeast and mammalian cells INO80 is observed to promote repair of UV damaged 

DNA, the stage at which this protein promotes NER is unresolved (Jiang et al., 2010). 

The UV-DDB complex is also part of an E3 ubiquitin ligase which has been 

demonstrated to ubiquitylate histones H2A, H2B, H3 and H4 in vitro (Wang et al., 

2006). Interestingly, both histone H2A, H3 and H4 ubiquitylation has been 

demonstrated to be upregulated in response to UV, implicating that these 

modifications could occur by UV-DDB to remodel chromatin during GGR (Bergink 

et al., 2006; Kapetanaki et al., 2006; Wang et al., 2006). The UV-DDB complex has 

also been shown to interact with the histone acetyl transferases (HATs) CBP, ST AG A 

and p300 suggesting that histone acetylation may also be important for UV dependent 

chromatin remodelling (Datta et al., 2001; Martinez et al., 2001; Rapic-Otrin et al., 

2002). Recently, the catalytic component of STAGA, GCN5, was demonstrated to be 

recruited to UV damaged chromatin in an E2F1 dependent manner (Guo et al., 2010a; 

Guo et al., 2010b). E2F1 is a TF that is also known to interact with UV-DDB (Flayes 

et al., 1998). Importantly, GCN5 is necessary for UV dependent histone H3 K9 

acetylation at sites of DNA damage. Knockdown of GCN5 inhibited this UV 

dependent acetylation event and significantly reduced the repair rates of both (6-4)PPs 

and CPDs. Collectively these data strongly suggest that chromatin remodelling is 

necessary for the efficient repair of DNA damage by NER in vivo.

As previously described in Chapter 1.4.4, Rad 16 is a member of the Snf2 

family o f ATPases, suggesting that the protein may play a fundamental role in 

chromatin remodelling. As with other members of the Snf2 family, Rad 16 is able to 

induce superhelical torsion in DNA, likely through the activity of DNA translocation 

(Flaus et al., 2006; Yu et al., 2004; Yu et al., 2009). DNA translocation (and torsion) 

by Snf2 members is thought to disrupt histone-DNA interactions which can result in a 

variety of chromatin remodelling outcomes including the ejection of the nucleosome, 

nucleosome sliding, unwrapping of DNA at the nucleosome and histone variant
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exchange (Clapier and Cairns, 2009). In vitro, Rad 16, as part of the GGR complex, 

was not observed to promote nucleosome sliding (Yu et al., 2009). In addition, the 

RING domain of Rad 16, in combination with Rad7, Cul3 and Elcl functions as an E3 

ubiquitin ligase (Gillette et al., 2006; Ramsey et al., 2004). As discussed above, the 

activities o f either o f these functions may promote chromatin remodelling in response 

to UV damage.

Gcn5 was originally demonstrated to be necessary for the efficient in vivo 

repair of CPDs in S. cerevisiae (Teng et al., 2002; Yu et al., 2005). UV irradiation 

stimulates large increases in histone H3 K9K14 acetylation levels, concurrent with 

increases in chromatin accessibility (Yu et al., 2005). This hyperacetylation event 

requires Gcn5, demonstrating that HATs catalyse UV dependent histone 

hyperacetylation in both yeast and humans. Interestingly, whilst UV dependent 

histone H3 K9K14 hyperacetylation can occur in the absence of Rad4 or Rad 14 and 

thus functional NER, Rad 16 is strictly required (Teng et al., 2008; Yu et al., 2005). At 

the MFA2 promoter, deletion of TUP1 suppresses the requirement of Rad 16 for 

functional GGR (Teng et al., 2008). Deletion of TUP1 also induces histone H3 

K9K.14 hyperacetylation. These observations suggested that Rad 16 might function to 

promote UV dependent histone H3 K9K14 hyperacetylation prior to repair, which is 

necessary for efficient GGR in vivo. This hypothesis has recently been tested at the 

MFA2 locus (Yu et al., 2011). Using this model gene locus, it was shown that both 

Rad7 and Rad 16 are required for UV dependent increases in the level of Gcn5 

binding, subsequent histone H3 K9K14 acetylation and increases in chromatin 

accessibility. In the absence of Tupl and R adi6, histone H3 K9K14 hyperacetylation 

at MFA2 is abrogated when Gcn5 is deleted. In addition to the loss of 

hyperacetylation, the triple mutant also showed a significant decrease in chromatin 

accessibility and GGR. This demonstrates that a significant proportion of Rad 16 

independent GGR in TUP1A is due to histone H3 K9K.14 hyperacetylation. Therefore, 

Rad7/Radl6 regulates the occupancy of Gcn5 and histone H3 K9K14 acetylation that 

mediates chromatin remodelling necessary for efficient GGR in vivo. Interestingly, 

mutating either the ATPase domain or RING domain of Rad 16 alone partly inhibits 

efficient GGR but mutating both domains was necessary to inhibit UV dependent 

increases in Gcn5 occupancy and histone H3 hyperacetylation. These observations 

demonstrate that both the ATPase and E3 ligase activities of Rad 16 contribute to 

regulating Gcn5 occupancy and histone acetylation. They also suggest that histone H3
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hyperacetylation might not be the only chromatin remodelling activity that 

Rad7/Radl6 promotes necessary for efficient GGR in vivo. Other chromatin 

remodelling activities could include histone ubiquitylation and the induction of 

superhelical torsion by Rad 16 dependent translocation.

Site specific DNA binding by Abfl promotes efficient DNA binding of the 

GGR complex in vitro and efficient GGR at a proximal domain in vivo (Yu et al., 

2009). Efficient binding of Rad7 and Rad 16 at Abfl binding sites is hypothesised to 

promote domains o f efficient GGR (see Chapter 1.5.5, Chapter 3). In the previous 

chapter, both histone H3 K.9K14 acetylation and CPD repair was investigated in 

relation to Abfl binding (Chapter 3). A correlation was observed between Abfl 

binding at promoter regions, Rad 16 dependent histone acetylation and efficient GGR 

suggesting that Abfl binding targets the GGR complex to promoter regions. In 

response to UV, unidirectional translocation by Rad 16 from the Abfl binding site (see 

Chapter 1.5.5), in addition to the E3 ligase of the GGR complex, is modelled to 

promote histone hyperacetylation and remodel chromatin (see above). These activities 

subsequently promote efficient GGR. It was also suggested that Rad 16 regulates the 

distribution of histone acetylation at promoters in a similar manner both before and 

after UV (Chapter 3). Therefore the E3 ligase/DNA translocation by the GGR 

complex may also be actively promoting acetylation in the absence of damage, and 

this is upregulated in response to UV. Finally, it was shown that the genome-wide 

localisation of Abfl does not change in response to UV damage; this was interpreted 

to suggest that the GGR complex functions to bind chromatin in the absence of UV. 

The present study aims to further extrapolate upon these conclusions by investigating 

the global role of the GGR complex by performing Rad 16 ChlP-on-chip in both the 

presence and absence of UV damage. Using these datasets, Rad 16 binding is then 

correlated with both acetylation and CPD repair in the context of Abfl DNA binding 

sites at promoters.
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4.2 Materials and Methods

Strains used in this study:
Strain Genotype Source
BY4742 MATa, his3A 1 leu2A 0 lys2A 0  ura3A 0 Euroscarf
BY4742
(Radl6-Myc)

BY4742, RAD16:: 18xMyc-URA3 S.Yu
(unpublished)

ChlP-on-chip/ChlP

BY4742 (or BY4742 (Radl6-Myc)) was grown in YPD at 30°C up to a

density of 2*10^ cells/ml and UV irradiated as described in Chapter 2.2. ChIP was 

performed as detailed in Chapter 2.7 with the following modifications. Cells were 

crosslinked for 40 minutes. Cell were lysed by vortexing with glass beads for 30 

minutes. IPs were performed using Dynabeads pan mouse IgG (Invitrogen, #110.41). 

Beads were washed three times in 500pl of PBS (BSA 1 mg/ml) and resuspended in an 

equal volume of PBS (BSA 1 mg/ml) to that originally taken. a-Myc antibody (9B11 

mAB#2276, Cell Signalling Technology) was added at a concentration of 4pl per 

lOOpl of bead suspension and left to incubate at 30°C and 1300rpm on an eppendorf 

thermomixer comfort for 30 minutes. Bead suspension was subsequently washed three 

times and resuspended as before. For IP samples, 200pl of WCE was diluted with 

lOOpl of bead suspension and BSA was added to a final concentration of 1 mg/ml. IP 

samples were incubated at 21°C and 1300rpm on an eppendorf thermomixer comfort 

for 3 hours. Beads were subsequently washed and immunoprecipitated chromatin was 

purified to DNA as described in Chapter 2.7. Input samples were purified from 50pl 

of WCE. ChIP samples were prepared for ChlP-on-chip analysis as described in 

Chapter 2.8.

ChlP-on-chip chromosomal maps

Chromosomal maps of the averaged traces o f ChlP-on-chip data for both 

Rad 16 datasets are available on the accompanying DVD (D:/Chapter 4/ChIPchip).

Primers used for oPCR:

IRC5:

Forward: 5’ -  AGTCGGGGCAGATACAGTTG 

Reverse: 5’ -  GGCCGCTCTGGTCAATATAA
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prRAD23:

Forward: 5’ -  TAGCAAGCTTGTCTGCGAAC 

Reverse: 5’ -  AGGC A AG AAAT AGCG AC AGC

prMFA2:

Forward: 5’ -  A A A AGC AT GT ATTT ACCT ATT CG 

Reverse: 5’ -  T AT AT AC AAAATT ACGTGGT AATGC

Data values o f qPCR quantification are available in appendix 111. Error bars 

represent the standard deviation of replicates.

Data normalisation and statistical analysis

All data normalisation, manipulations and statistical analysis were performed 

in ‘R’ as described in Chapter 3.2.

Note for Fig. 4.4B and C

The fold change in Abfl enrichment after UV was calculated as log2(Red

channel/Green channel) 30 -  log2(Red channel/Green channel) U using the averaged 

Abfl binding datasets. The data values of log2 (Red channel/Green channel) 30 -  

log2 (Red channel/Green channel) U at Abfl binding peaks that co-localised with 

Rad 16 binding peaks were ranked and sorted from largest increases to largest 

decreases. These sorted values were equally divided into 5 groups of ~200 values. The 

corresponding probes from these values were then used in 5 individual composite 

profiles for each of the trendlines given in Fig. 4.4B. The fold change in Rad 16 

enrichment after UV was calculated as log2 (Red channel/Green channel) 30 -  log2

(Red channel/Green channel) U using the averaged Rad 16 binding datasets. The same 

5 groups of probes identified for fold changes in Abfl binding defined the composite 

profiles for the trendlines of Rad 16 binding fold change given in Fig. 4.4C.

Note for Fie. 4.6. 4.7 and 4.8

As described in the legend above Fig. 4.6, 4.7 and 4.8 also use a ranking 

system to graphically display correlations. The data plotted at these graphs is limited
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to sites where a Rad 16 binding peak colocalises at an Abfl binding peak, and this is 

found within a promoter region. In all three figures the level of Rad 16 binding in the 

absence of UV is ranked from highest to lowest and the sorted values are spilt into 5 

groups -150 values. The trendlines of these groups are then plotted on the composite 

profiles. All other datasets are split into the same 5 groups as defined by the Rad 16 

binding rank and the corresponding trendlines are plotted.

Note for Fig. 4.8.

Rad 16 dependent histone H3 K9K14 acetylation was calculated as (Red 

channel/Green channel) U wild type -  (Red channel/Green channel)U radl6A. The 

Rad 16 dependent repair rate was calculated as (Red channel/Green channel) wild type 

CPD repair rate -  (Red channel/Green channel) radl6A  CPD repair rate using the 

averaged datasets. For graphical representation these calculations were converted to 

log2- Because some R/G values were negative (which cannot be logged) in these

datasets, a constant was added to these R/G datasets to remove these. This does not 

function to skew the data, nor affect the patterns presented in these figures but does 

result in higher arbitrary values than those seen in other figures.

Other ChlP-on-chip datasets used in this study

The CPD repair and histone H3 K9K14 acetylation datasets used in this study were 

kindly provided by K.Evans and Y.Teng (unpublished results, Teng et al., 2010).
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4.3 Results

4.3.1 Genome-wide analysis of Rad 16 binding

In order to delineate the global distribution of Rad 16 before and after UV 

irradiation, a similar strategy was used to that previously described for Abfl (see 

Chapter 3.3). For these experiments BY4742 harbouring an endogenous copy of 

Rad 16 with an 18xMyc tag at its C-terminal was used. This strain is known to possess 

a wild type UV sensitivity, demonstrating that the tag does not alter the functionality 

of the protein (S.Yu, unpublished results). Rad 16 was immunoprecipitated from 

chromatin that had not received UV irradiation (U) and from a sample allowed to 

repair UV damage for 30 minutes following UV irradiation (30). IP and input DNA 

was labelled with Cy5 and Cy3 respectively and applied to yeast whole genome 

microarrays. These experiments were repeated to provide three biological replicates of 

the data. Raw data was quantile normalised and shifted by mode between each of the 

three biological replicates as previously described for Abfl ChlP-on-chip (Chapter 

3.3.2).

As seen with Abfl, following data normalisation each of the replicates 

presented highly reproducible results (Fig. 4.1 A). In contrast to Abfl, the genome- 

wide distribution of Rad 16 both before and after UV irradiation presented peaks with 

low levels of enrichment above background (2-4 fold) (the averaged datasets are 

available on the accompanying DVD, D:/Chapter 4/ChIPchip). In further contrast to 

the Abfl datasets, Rad 16 peaks are not detected as discrete peaks in some instances; 

instead, a broad range of enrichment is observed over many kilobases (Fig. 4.1 A). 

These observations suggested that Rad 16 may be capable of binding throughout the 

entire genome but is preferentially localised to certain regions where peaks are 

observed. To test this possibility, ChIP enrichment of Radl6 with the C-terminal Myc 

tag was compared against an isogenic strain without the tag (negative control) at 

numerous loci where Rad 16 binding was not observed to peak from the genome-wide 

data. As shown in Fig. 4 .IB, when ChIP is performed upon both strains using an a- 

Myc antibody, the strain expressing Myc tagged Rad 16 immunoprecipitates higher 

levels of chromatin than the negative control at all regions tested. This is true both in 

the absence and presence of UV damage. These results demonstrate that Rad 16 

interacts with chromatin throughout the entire genome both before and after UV 

damage.
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Figure 4.1. A. Example of the Rad 16 binding datasets at chromosome 11 following normalisation. B. 
Rad 16 ChIP at three sites where a peak of enrichment is not observed in the genome-wide datasets. 
Left hand graphs represent the averaged datasets of Rad 16 enrichment in the unirradiated condition 
(black line) and 30 minutes following repair (red line). The blue line represents the region analysed 
using qPCR. Right hand graphs show the quantification of Rad 16 binding for a positive (Myc tagged) 
and negative (non-tagged) control strain at the loci represented at the blue lines.
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4J.2 The distribution of RadI6 before and after UV irradiation

The peak detection strategy previously applied to the Abfl datasets was also 

utilised for Rad 16 binding (Fig. 4.2A). In the absence of UV irradiation a total of 

1479 peaks were detected (p<0.01), which dropped to 728 peaks after UV. Of these 

peaks, 384 overlapped within a single probe of each other between the two datasets. 

As previously noted with the Abfl datasets, all non-overlapping peaks detected in the 

Rad 16 dataset after UV were not statistically different in height from the equivalent 

probes in the U dataset, suggesting that these peaks represent false positives. 

However, of the 1095 peaks present in the U dataset but absent in the 30 dataset, 653 

were significantly lower following 30 minutes repair (p<0.05). These data suggest 

that following UV, peaks of Rad 16 binding are lost or diminshed (Fig. 4.2C and D). 

Given that this does not represent loss of Rad 16 chromatin binding (Fig 4 .IB), this 

indicates that the genome-wide localisation of Rad 16 is more evenly distributed in 

response to UV damage. These observations are consistent with a model in which UV 

damage upregulates the DNA translocase activity of Rad 16, resulting in the more 

uniform distribution of Rad 16 binding observed (see discussion). The genome-wide 

loss of Rad 16 binding peaks after UV correlates with the onset of histone H3 K9K14 

hyperacetylation (Teng et al., 2008; Yu et al., 2005). When composite profiles of 

Rad 16 binding are compared at the 1479 binding sites defined in U, the loss of Rad 16 

peaks is clearly apparent (compare Fig. 4.2C and D). The Rad 16 peaks in U were also 

categorised into their respective genomic location (Fig. 4.2B). As previously seen 

with Abfl, Rad 16 binding peaks are highly enriched at promoter regions.
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A. Radi 6 peak detection summary
Dataset Peaks Identical peak 

position
Peaks moved by 
one probe

Remaining
peaks

Remaining peaks statistically 
different (p<0.05)

U 1479 284 100 1095 653
30 728 284 100 344 0

B. Location of Radi 6 binding peaks
Radl6 peak position Number of peaks % of peaks % of probes on array %peaks/%probes
Intragenic 420 28 73 0.38
Intergenic 1059 72 27 2.67
Promoter 554 37 14 2.64
Divergent promoter 395 27 8 3.38

-Downstream 106 7 5 1.40
Unknown 4 0.2 0.3 0.67
Total 1479 100 100 N/A

CN
I  "
1*o
£  -
vO
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(2 -

Figure 4.2. A. Table summarising peaks detected in the Rad 16 datasets. B. Table summarising the 
location of the Rad 16 peaks detected in the U dataset. C. Composite profile of Rad 16 binding at the 
peaks identified in the U dataset. D. Composite profile using the same peak positions as C. but data 
shows Rad 16 binding after UV irradiation (30).

4.3.3 Rad 16 binding colocaliscs with Abfl binding in vivo

Abfl binding by the GGR complex has been previously demonstrated to target 

Rad7/Rad 16 to a consensus binding site in vitro in the absence of UV damage, but 

due to technical limitations at the time, this was not demonstrated in vivo (Yu et al.,

2009). To investigate whether Abfl functions to localise Rad 16 to regions of the 

genome to which it efficiently binds, the co-localisation of the two proteins was 

examined. When the U Rad 16 dataset is plotted at the statistically significant Abfl 

binding peaks identified in the respective U dataset (Chapter 3), a clear co-localisation 

is observed (Fig. 4.3A). Indeed, of the 1479 Radl6 peaks detected in the U dataset, 

519 of these intersect with an Abfl binding peak whilst a further 450 co-localise
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within one probe on the microarray. Furthermore, of the Rad 16 peaks in promoters 

that do not co-localise with Abfl, —50% of these are present at the same gene 

promoters as statistically significant Abfl binding peaks (data not shown). This 

demonstrates that the majority of Rad 16 peaks colocalise with Abfl binding peaks, 

strongly supporting the hypothesis that Abfl functions to promote binding of the 

GGR complex to its cognate binding sites in vivo. In accordance with the above 

results, peaks of Rad 16 binding at Abfl binding peaks is lost after UV irradiation 

(Fig. 4.3B). The genomic position of Rad 16 colocalisation with Abfl binding was 

also examined (Fig. 4.3C). Interestingly, ~80% of sites of colocalisation occur at 

promoter regions further supporting the hypothesis that Abfl binding targets the GGR 

complex to promoter regions (Chapter 3).

Trendline Trendline

•—i----------- 1----------- 1----------- 1------------r—1 I----------- 1----------- 1----------- I-----------H
3000 1000 0 1000 MOO 2000 1000 0  1000 2000

Distance from Abfl DNA binding peak Distance from Abfl DNA binding peak
(nucleotides) (nucleotides)

C. Relative distribution of Abfl /Rad 16 colocalisation
Rad 16 peak position Independent 

of Abfl peak
Colocalise 
with Abfl

% of peaks 
that colocalise

% of Abfl 
peaks

%peaks colocalise 
f %  Abfl peaks

Intragenic 279 141 15 27 0.56
Intergenic 231 828 85 73 1.16
Promoter 120 434 45 40 1.13

-Divergent promoter 81 314 32 26 1.23
Downstream 30 76 8 7 1.14

-Unknown 0 4 0.4 0.2 2.00
-Total 510 969 100 100 N/A

Figure 4.3. A. Composite profile of Rad 16 binding data (U) plotted at Abfl binding peaks identified in 
U. B. As A. but plots the Rad 16 binding data after UV irradiation (30). C. Table summarising the 
location of Rad 16 peaks (U) in relation to Abfl binding peaks (U).
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43.4  The UV responsive changes in GGR complex chromatin binding

In response to UV, the GGR complex was previously suggested to promote 

domains of superhelical torsion necessary for GGR in vivo by unidirectional 

translocation initiated at an Abfl DBS (Yu et al., 2009). The UV dependent loss of 

Rad 16 enrichment at Abfl binding peaks is consistent with the translocation of Rad 16 

after UV (Fig. 4.3A and B). This view would be further substantiated if the 

localisation of the GGR complex was observed to redistribute itself distal to an Abfl 

binding peak at an intermediate timepoint between the unirriadiated condition and 30 

minutes after UV. Therefore, composite profiles of Abfl binding were plotted at the 

916 sites where Rad 16 and Abfl were observed to co-localise and examined for the 

U, 0 and 30 datasets. As shown in Fig. 4.4 A, the distribution of Abfl binding does not 

relocalise distal to the binding site neither immediately nor 30 minutes after UV 

irradiation. However as seen for Rad 16, the peak of Abfl binding, as a population, is 

observed to decline after 30 minutes repair. Given that Abfl and Rad 16 exist as a 

complex in the absence of UV damage, the general loss of binding peaks by both 

proteins suggests that they remain in complex after UV (Yu et al., 2009). To test this 

possibility, the Abfl binding peaks that co-localised with Rad 16 were ranked 

according to their UV response (from largest decline in enrichment to largest 

increase) and plotted as 5 groups of ~200 probes (Fig. 4.4B). As shown in Fig. 4.4C, 

when the equivalent groups are plotted as changes in Rad 16 binding, there is no 

correlation between the two datasets; ie. peaks of Rad 16 binding are observed to 

decline after UV independently of changes in Abfl binding. Pearson correlation 

analysis did not indicate a correlation between the changes in Rad 16 and Abfl 

binding after UV. These data suggest that the two proteins might not function as a 

complex on chromatin after UV irradiation.
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Figure 4.4. A. Composite profile of Abfl binding for the datasets U (red line), 0 (green line) and 30 
(blue line) positioned at Abfl binding peaks that co-localise with a Rad 16 binding peak. Only the 
trendlines are shown. The red trendline (U) maps exactly to that of the green trendline (0). B. 
Composite profile of the relative UV responsive changes in Abfl binding positioned at Abfl binding 
peaks that co-localise with a Rad 16 binding peak. The data was separated into 5 groups according to 
the relative change. The trendlines plotted represent the average response for each group. C. As B. but 
plotting the equivalent UV responsive changes in Rad 16 binding.
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4.3.5 Investigating CPD repair at regions of the genome where Abfl and Radl6 

binding peaks colocalise

As previously investigated, regions of high level Abfl binding were predicted 

to promote efficient binding of Rad 16 and consequently Rad 16 dependent 

hyperacetylation patterns and CPD repair although little difference was observed 

between regions of the genome with high level Abfl binding and low level Abfl 

binding (Chapter 3). Because peaks of Radi6 binding (in the U dataset) are not 

observed at all Abfl binding peaks, this suggests that Abfl might promote binding of 

Rad 16, as part o f the GGR complex, to only a subset of Abfl binding sites. Therefore, 

Rad 16 dependent histone hyperacetylation and GGR may be more efficient at Abfl 

binding peaks that colocalise with Rad 16 binding peaks in the absence of UV damage. 

To test this, composite profiles o f CPD repair were plotted at Abfl binding peaks, and 

the data was analysed according to whether a statistically significant Rad 16 peak was 

observed to co-localise at the Abfl binding peak. The data was further analysed 

according to the genomic location of the Abfl binding peak (Fig. 4.5). As shown in 

Fig. 4.5, in contrast to the above prediction, regions of the genome where Abfl and 

Rad 16 binding peaks colocalise before UV have slower repair rates than regions with 

an Abfl binding peak alone (Fig. 4.5). These observations are most prominent at 

promoters and downstream of genes. Furthermore, in the absence of Rad 16 the 

difference in repair rates between the two groups is largely diminished. Therefore the 

difference in the repair rates between the two groups in wild type cells is likely due to 

Rad 16 dependent GGR. This suggests that the absence of Rad 16 binding peaks at 

Abfl binding sites is related to rapid GGR.
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Figure 4.5 (Above). Composite profiles of wild type (left hand graphs) and radl6A (right hand graphs) 
CPD repair rates. Data is plotted at Abfl binding peaks that either co-localise with Rad 16 binding 
peaks (red trendline) or do not co-localise (green trendline). Only trendlines are shown. The position of 
the Abfl binding peaks is identified in the top left of each plot. NB. Scales are non-equivalent between 
wild type and Aradl6  datasets.

4.3.6 Investigating the relationship between Rad 16 binding,. Rad 16 dependent 

acetylation and CPD repair

The results in 4.3.5 were further investigated exclusively at promoter regions 

efficiently bound by the GGR complex in the absence of UV (simultaneously 

analysing promoters and divergent promoters where Abfl and Rad 16 binding peaks 

colocalise) using ranked composite profiles as adopted in Fig. 4.4. The results in Fig.

4.5 suggested a relationship between the level of Rad 16 binding and CPD repair. 

Given that Rad 16 dependent histone H3 K.9K.14 acetylation has also been recently 

demonstrated to be necessary for efficient GGR in vivo (Yu et al., 2011), the 

relationship between Rad 16 binding, histone H3 K9K14 acetylation and CPD repair 

rates was investigated. As shown in Fig. 4.6, an inverse relationship is observed 

between the level of Rad 16 binding and wild type unirradiated acetylation levels at 

promoters efficiently bound by the GGR complex (Fig. 4.6 A and B). Sites with low 

level Rad 16 binding peaks, have high acetylation levels. The unirradiated acetylation 

status also positively correlates with the rate of repair (Fig. 4.6 B and C). Radi6 

binding and acetylation after UV were also investigated in relation to Rad 16 binding 

before UV. As seen in Fig. 4.6 D and E, Rad 16 binding is lost after UV, and this 

correlates with increased acetylation levels. Furthermore, the relationship between 

Rad 16 binding and acetylation does not change after UV. Therefore, sites with the 

highest level of Rad 16 binding before UV, have the highest level of Rad 16 binding 

after UV, which correlates with the lowest levels of acetylation both before and after 

UV, and the slowest repair.

The above data suggests that loss of Rad 16 binding at Abfl binding sites 

positively regulates acetylation, which subsequently promotes efficient repair in 

promoter regions. When the distribution of hyperacetylation at promoters where Abfl 

and Rad 16 colocalise in the absence of UV is compared to regions with an Abfl 

binding peak alone, the level o f histone H3 K9K14 acetylation is higher at a domain 

proximal to the Abfl binding site for regions efficiently bound by Abfl alone (Fig.

4.6 F). This occurs within the same domain where more efficient repair is observed
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(Fig. 4.5). This strongly suggests that the differences in the acetylation levels at these 

regions significantly determine the differences in wild type CPD repair rates.

I
i<o

i

Distance from Abfl binding peak 
(nudeobdes)

0, Rad 16 binding after UY (3Qmins)

Distance from Abfl binding peak 
(nudeobdes)

Figure 4.6. A. Rad 16 binding peaks that colocalise with Abfl at a promoter were ranked and reordered 
according to the peak height. These were split into 5 even groups of -150 probes, the trendlines of 
which are shown in A. The data shown in B, C, D and E is ordered into the same groups as A. A 
pearson’s correlation coefficient is given for the correlation between A and either B, C, D or E at the 
Abfl binding peak, in each plot. Only trendlines are shown. F. Composite profile of histone H3 K9K14 
acetylation before UV (U) at promoters where Rad 16 and Abfl binding peaks colocalise (red line), or 
where an Abfl peak is only observed (green line). NB. F. uses a different scale to that used in B. and E.

To investigate whether the correlation between Rad 16 binding levels and the 

acetylation status is directly related to the presence of Rad 16, histone H3 K9K14 

acetylation from the rad 16/1 dataset was compared to the level of Rad 16 binding (Fig.

4.7 A and B). An inverse relationship between Rad 16 binding and acetylation can still 

be observed, suggesting that some of the differences in the acetylation levels at sites 

efficiently bound by the GGR complex occur in a Rad 16 independent fashion. 

However, the presence of Rad 16 in wild type cells clearly induces changes in the 

acetylation patterns (compare Fig. 4.7 B and D).
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Composite profiles at promoters where Abfl/Rad 16 binding peaks colocalise
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Figure 4.7 A and C. Radi6 binding is ranked and grouped as described in Fig. 4.6A. B. Composite 
profile of histone H3 K9K14 acetylation in the absence of Rad 16, ranked and grouped according to 
Rad 16 binding in A. D. Composite profile of histone H3 K9K14 acetylation in the wild type cells, 
ranked and grouped according to Rad 16 binding in C. E. Composite profile of histone H3 K9K14 
acetylation in the absence of Rad 16, ranked and grouped according to the level of acetylation at the 
Abfl binding site.

Finally, to investigate the effect of Rad 16 binding on acetylation and repair, 

Rad 16 independent acetylation and CPD repair was compared against Rad 16 

dependent acetylation and CPD repair. Rad 16 dependent acetylation was calculated 

by subtracting the rad16A acetylation pattern from the wild type acetylation pattern. 

The Rad 16 dependent repair rate was calculated by subtracting the radl6A repair rate 

from the wild type repair rate. As shown in Fig. 4.8, in the absence of Rad 16, the 

differences in the acetylation levels at promoters ordinarily bound by the GGR 

complex have a minor effect in promoting CPD repair (Fig. 4.8 A-C). This 

demonstrates that in this context, differences in acetylation have only a minor role in
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promoting Rad 16 independent repair. In contrast, when Rad 16 dependent acetylation 

and CPD repair is plotted, a strong correlation is observed between the level of 

Rad 16, Rad 16 dependent acetylation and Rad 16 dependent CPD repair at the Abfl 

binding sites (Fig. 4.8 D-F). This strongly suggests that loss o f Rad 16 binding 

functions to positively regulate Rad 16 dependent hyperacetylation and CPD repair at 

regions proximal to an Abfl binding site. In other words, low level binding of Rad 16 

promotes high level Rad 16 dependent acetylation and rapid Rad 16 dependent GGR.
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Ki2 ure 4.8. A. Rad 16 binding is ranked and grouped as Fig. 4.6A. Composite profile of histone H3 
K9K14 acetylation in the absence of Rad 16, ranked and grouped according to Rad 16 binding in A. 
Composite profile of repair in the absence of Rad 16, ranked and grouped according to Rad 16 binding 
in A. D as A. E. Composite profile of Rad 16 dependent histone H3 K.9K14 acetylation, ranked and 
grouped according to Rad 16 binding in D. F. Composite profile of Rad 16 dependent repair, ranked and 
grouped according to Rad 16 binding in D. A pearson correlation coefficient is given in B, C, E and F 
for the correlations (A and B), (A and C), (D and E) and (D and F). NB: Data from B., C., E. and F. 
plots use non-equivalent arbitrary units/scales.
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4.4 Discussion

By analysing the genome-wide distribution of Rad 16 binding, the current 

study significantly expands our understanding of how Rad 16 interacts with chromatin 

and functions to promote both acetylation and CPD repair genome-wide. Both in the 

presence and absence of UV damage Rad 16 binds throughout the genome, however 

peaks of high level Rad 16 binding are observed in the absence of UV and these 

predominantly colocalise with Abfl binding peaks in promoter regions. In response to 

UV, peaks of Rad 16 binding are lost in a manner that appears independent to changes 

in Abfl binding. Whilst Rad 16 functions to promote acetylation and CPD repair 

genome-wide, regions o f the genome where Abfl and Rad 16 binding peaks colocalise 

in the absence of UV demonstrate slow repair rates at regions proximal to the Abfl 

binding site and this correlates with low histone H3 JC9K14 acetylation levels. The 

ability of Rad 16 to promote both acetylation and CPD repair is inversely related to the 

level of Rad 16 binding both before and after UV.

By using a combination of both genome-wide and site specific ChIP analysis, 

Rad 16 was observed to bind throughout the yeast genome both in the absence and 

presence of UV damage (Fig. 4.1). The universal occupancy of Radl6 on chromatin 

in the absence of UV damage correlates with the ability of this protein to promote 

histone H3 acetylation patterns genome-wide before UV irradiation (Chapter 3). 

These observations are particularly significant as classically NER factors are 

generally believed to be recruited to chromatin in response to UV damage (Groisman 

et al., 2003; Houtsmuller et al., 1999; Zotter et al., 2006). However, some factors such 

as TF1IH, CSA and XPC have previously been observed to interact with chromatin in 

the absence of UV damage (Groisman et al., 2003; Hoogstraten et al., 2008; 

Hoogstraten et al., 2002). In addition, it was recently demonstrated that core NER 

factors are recruited to promoters in a manner necessary for transcriptional activation, 

but independent to functional NER, in the absence of UV damage (Le May et al., 

2010). These observations correlate with the preferential location of Rad 16 binding 

peaks at promoter regions (Fig. 4.2). Therefore, Rad 16 may play a functional role in 

the transcription of genes. However, in contrast to mammalian NER factors, Rad 16 is 

not observed to be recruited to specific promoters as part of a transcriptional response 

to UV damage (Fig. 4.2). In addition, UV dependent chromatin remodelling at the 

MFA2 promoter by Rad 16 was previously demonstrated not to induce transcriptional
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activation of the gene (Teng et al., 2008). This suggests that the genome-wide 

localisation of Rad 16 is principally related to the mechanism of GGR.

High level binding peaks of Rad 16 principally colocalises with Abfl binding 

peaks, and these sites of colocalisation are predominantly found at promoter regions 

(Fig. 4.3). This strongly suggests that Abfl binding functions to promote efficient 

binding o f the GGR complex in vivo. These observations also provide further support 

of a model in which Abfl binding targets the location of the GGR complex and thus 

organises GGR from promoter regions. High level Rad 16 binding peaks are restricted 

to roughly one third of Abfl binding peaks, therefore, other factors independent of 

Abfl binding must influence the binding level of Rad 16 at these sites in vivo (see 

below). In response to UV damage, peaks of high level Rad 16 binding are diminished 

(Fig. 4.2). As previously discussed, Rad 16 is a Snf2 family ATPase which can 

translocate along DNA and induce superhelical torsion in vitro (Yu et al., 2004; Yu et 

al., 2009). These activities are suggested to promote histone hyperacetylation and 

chromatin remodelling necessary for efficient GGR (see introduction). The loss of 

high level Rad 16 binding does not reflect dissociation of Rad 16 from chromatin but 

instead a redistribution of the protein (Fig. 4.1). These observations are in strong 

support o f a model whereby in response to UV damage, the translocation of Rad 16 is 

upregulated at Abfl binding sites, as part of the response to promote GGR. The global 

interaction of Rad 16 with chromatin in the absence of UV, also suggests that Rad 16 

may translocate from an Abfl binding site in the absence of DNA lesions. This 

proposition is consistent with the observation that Rad 16 binding peaks are not 

exclusively found at Abfl binding peaks (Fig. 4.3). Therefore, the activity of Radl6 

translocation may also function to influence the binding level of Rad 16 at Abfl 

binding sites in the absence of UV, in which low level Rad 16 binding is indicative of 

high level DNA translocase activity.

At sites where Abfl and Rad 16 colocalise, the loss of Rad 16 binding in 

response to UV does not correlate with changes in the levels of Abfl binding (Fig. 

4.4). This suggests that the two proteins may not function in complex after UV. DNA 

translocation by Rad 16 could conceivably transition the dissociation from Abfl. In 

relation to above disussions, this transition may also occur in the absence of UV 

damage. However, it is noted that Abfl is a highly abundant protein, and that a large 

fraction (-70% ) of this protein is not found in complex with Rad 16 (Reed et al., 

1999). Therefore, the discordance between Abfl binding and Rad 16 binding in
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response to UV may result from a predominant fraction of Abfl at sites of 

colocalisation functioning independently of Radi6. This model is not favoured as the 

presence of Rad 16 peaks that do not colocalise with Abfl demonstrates that Rad 16 

can interact with chromatin independent of an interaction with Abfl (Fig. 4.3).

Regions of the genome where Abfl and Rad 16 binding peaks colocalise in the 

absence of U V damage have slower CPD repair rates in vivo relative to regions of the 

genome with high level Abfl binding alone (Fig. 4.5). Given that DNA translocation 

by Rad 16 is hypothesised to promote GGR, I speculated that the loss of Rad 16 from 

Abfl binding sites promotes rapid CPD repair. This was investigated by examining 

the relationship between Rad 16 binding, histone H3 K.9K14 acetylation and CPD 

repair at promoter regions where Abfl and Rad 16 binding peaks colocalise. 

Interestingly, an inverse relationship is found between the level of Rad 16 binding and 

histone H3 K.9K14 acetylation or CPD repair rates (Fig. 4.6). Low level binding of 

Rad 16 correlates with high level acetylation and rapid CPD repair (Fig. 4.6 A-C). 

Furthermore, in response to UV, lower levels of Rad 16 binding correlate with higher 

levels of acetylation (Fig. 4.6 D and E). A strong correlation exists between Rad 16 

binding and acetylation before UV and Rad 16 binding and acetylation after UV, 

further supporting a model in which Rad 16 functions to promote the distribution of 

acetylation both before and after UV in a similar manner (Fig. 4.6 D. and E., see also 

Chapter 3.4). These observations are consistent with a model in which the level of 

Rad 16 binding at Abfl binding sites is inversely proportional to the level of DNA 

translocase activity (as discussed above). 1 suggest that low level binding of Rad 16 

reflects regions of the genome where Rad 16 efficiently translocates from the Abfl 

binding site. As previously discussed, the ATPase motors of Rad 16, necessary for 

DNA translocation, are suggested to function to promote histone H3 K9K14 

hyperacetylation and efficient GGR (see introduction). Therefore low levels of Rad 16 

binding that represent efficient translocation, would correlate with high level 

acetylation and rapid CPD repair at the Abfl binding site, as observed (Fig. 4.6 and 

4.8, Yu et al., 2011). This model may also predict that Abfl binding sites where 

Rad 16 peaks are not observed to colocalise could reflect regions of the genome where 

efficient Rad 16 translocation also occurs, and thus subsequent high level acetylation 

and GGR at the Abfl binding site. This phenotype was observed to be true at 

promoter regions (Fig. 4.5 and 4.6). However, it is not expected that all Abfl binding 

sites that do not colocalise with Rad 16 would necessarily demonstrate this
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relationship. As previously discussed Abfl binding appears to primarily organise 

GGR at promoter regions, therefore the relationship may be restricted to these sites 

(Chapter 3). The details of this model are shown in Fig. 4.9. An alternative 

interpretation of these data is that efficient binding of the GGR complex colocalises 

with regions of the genome that are refractory to histone hyperacetylation and 

efficient CPD repair, and thus efficient binding of the GGR complex functions to 

promote these activities.

Histone H3 K9K.14 acetylation levels in a radl6A  mutant also correlate with 

Rad 16 binding levels at promoters where Abfl and Rad 16 binding peaks colocalise 

(Fig. 4.7). This demonstrates that Rad 16 is not the only determinant of acetylation 

levels(/distribution) at these sites. Interestingly, even in the absence of Rad 16 there is 

a weak correlation between histone H3 K9K14 acetylation and CPD repair rates (Fig. 

4.8C). This is found at regions proximal to the Abfl binding site within a promoter. 

This likely represents regions of the genome where TCR is unable to repair (see 

Chapter 3.4), strongly suggesting that this is Rad 16 independent GGR occurring in a 

similar fashion to that described at MFA2 in TUP1A mutant cells (Yu et al., 2011). 

Importantly though, only low level repair rates are observed. However, when the 

Rad 16 dependent increase in histone H3 K9K14 acetylation is plotted at promoters a 

robust correlation is found with the promotion of Rad 16 dependent GGR. This 

strongly suggests that Rad 16 dependent histone acetylation promotes the GGR rates in 

these regions, which correlates with the recent observations reported at the MFA2 

locus (Yu et al., 2011). The level of Rad 16 dependent acetylation and GGR has an 

inverse relationship to the level of Radl6 binding (Fig. 4.9). In reference to the model 

above, this suggests that the activity of the Rad 16 DNA translocase promotes Radl6 

dependent acetylation and GGR.

Finally, it may be observed that wild type CPD repair rates at regions distal to 

the Abfl binding sites of promoters do not correlate with either Rad 16 dependent or 

Rad 16 independent histone H3 K9K14 acetylation (Fig. 4.6 and 4.8). Given that these 

sections predominantly represent genic regions this suggests that the TCR pathway 

predominately dictates the ultimate repair rate in these regions and that this is not as 

significantly influenced by histone H3 K9K14 acetylation levels as GGR (Fig. 4.6, Yu 

et al., 2011).
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Figure 4.9. A. In promoter regions of the genome where Abfl and Rad 16 colocalise, Rad 16 fails to 
efficiently translocate from the Abfl binding site and thus functional recruitment of HATs such as 
Gcn5 does not occur. This results in low level acetylation at the Abfl binding site and a chromatin 
structure refractory to efficient GGR. B. In response to UV irradiation the dissociation of Rad 16 and 
subsequent translocation is upregulated from Abfl binding sites promoting the recruitment of HATs, 
chromatin remodelling and GGR. C. At promoter regions of the genome where Abfl does not 
colocalise with Rad 16, Rad 16 dependent chromatin remodelling as described in B occurs at high levels 
in the absence of UV irradiation. D. The upregulation of chromatin remodelling is not required in these 
regions (or is more rapidly activated) permitting efficient GGR to occur and thus CPD repair is faster.

As explained in the aims of the study, several lines of evidence suggest that 

the GGR complex could function to regulate the DNA binding kinetics of Abfl (see 

Chapters 1.7, 5 and 6.1). Therefore, 1 wished to investigate if, as recently seen for 

transcription, changes in Abfl DNA binding kinetics are mechanistically linked to 

GGR. As a complementary study to the steady state occupancy of Abfl binding as 

reported in Chapter 3, the proceeding chapters aim to investigate Abfl DNA binding 

kinetics in the presence and absence of U V using a novel variant of the ChlP-on-chip 

strategy.
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5. Developing tools for the in vivo analysis of Abfl 
DNA binding kinetics

5.1 Introduction

The site specific DNA binding activity of Abfl is important for the ability of 

the protein to promote GGR (see Chapter 1.5.5, Reed et al., 1999; Yu et al., 2009). 

Given these observations, ChlP-on-chip studies were performed both in the absence 

and presence of UV damage to investigate how changes in the level of Abfl DNA 

binding are linked to the protein’s role in GGR (Chapter 3). Interestingly, Abfl does 

not relocalise in response to UV damage. The absence of relocalisation is surprising 

given that this is often observed for TFs in response to different environmental stimuli 

(Harbison et al., 2004). These results suggest that neither DNA damage response 

regulatory pathways upstream of Abfl nor the biochemical activities of the GGR 

complex itself function to alter the localisation of Abfl DNA binding in response to 

UV, despite the fact that the binding of Abfl itself is important for efficient GGR. 

One property that standard ChlP studies fail to accurately measure is the DNA 

binding kinetics of a protein (Brady et al., 2005; Hager et al., 2009; Yang et al., 

2002a). Consequently the following studies aimed to investigate if the DNA binding 

kinetics of Abfl provide a more informative view of both how and where Abfl DNA 

binding is related to promoting efficient GGR.

TFs are critical determinants for the regulation of RNAPH gene transcription 

(see Chapter 1.6.1 for the definition of a TF in this study). DNA sequences within the 

promoters (and beyond) of genes are bound by TFs which function to control the 

activities of RNAPI1 mediated transcription. TFs are typically modular in nature and 

may consist of a variety of interchangeable domains, but fundamentally include a 

DBD and a domain which functions to promote transcription termed an activation 

domain (AD) (Kadonaga, 2004). The modular structure of the proto-typical TF Gal4 

is shown in Fig. 5.2. Some TFs target the recruitment of co-activators to genes which 

function to promote transcription. The activities o f such co-activators include 

chromatin remodelling by covalent histone modification or ATP dependent 

nucleosome remodelling (Weake and Workman, 2010).

The molecular mechanisms through which TFs function to promote 

transcription are at least partially conserved, given that the ectopic recruitment of ADs
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to promoters from proteins including Gal4 or herpes simplex virus protein VP 16 

function to promote gene transcription in a wide variety of eukaryotic hosts (Ptashne, 

1988). Furthermore, TFs have also been shown to promote the activity of other 

processes including DNA replication, meiotic recombination and DNA repair, and in 

all cases this has been correlated with the ability o f these factors to promote chromatin 

remodelling (Frit et al., 2002; Kohzaki and Murakami, 2005; Nicolas, 1998). The 

ability o f TFs to promote numerous pathways in chromatin metabolism is reminiscent 

of the multiple regulatory functions of Abfl (Yarragudi and Morse, 2006). As with 

other TFs, Abfl is modular consisting of two N-terminal DBDs and a C-terminal AD 

that has been subcategorised into two regions termed CS1 and CS2 (Fig. 5.2) (Miyake 

et al., 2002). Interestingly, with respect to ARS1 dependent DNA replication, the 

stimulatory role o f Abfl can be functionally substituted by other TFs such as Gal4, 

VP 16 and p53 (Li et al., 1998). Collectively, these observations suggest that whilst 

TFs are tailored to individual roles within the cell, many of the molecular mechanisms 

employed by these proteins share common origins.

As discussed in Chapter 1.6, the DNA binding kinetics of TFs in vivo has 

become a recent area of active research. Interestingly, a number of studies have 

demonstrated a correlation between the DNA binding kinetics of a TF at a promoter, 

and transactivation of a gene (Brady et al., 2005; Klokk et al., 2007; Nalley et al., 

2006; Reid et al., 2003; Stavreva et al., 2004; Yang et al., 2002a; Yao et al., 2006). In 

all of these examples, the stabilisation of a TF:DBS interaction correlates with the 

onset of efficient transcriptional activation. The cell appears to contain a diverse range 

of mechanisms which may function to regulate DNA binding kinetics in vivo 

(Ferdous et al., 2007; Freeman and Yamamoto, 2002; Yu and Kodadek, 2007). At 

present it remains unclear whether changes in TF DNA binding kinetics at promoters 

are necessary for the regulation of transcription or a consequence of such activity 

(Hager et al., 2009; Kodadek et al., 2006). However, importantly these data 

demonstrate that changes in TF DNA binding kinetics are mechanistically coupled to 

the activity of transcriptional regulation. Given that Abfl is structurally homologous 

to canonical TFs, and in some contexts functions as a TF, the following studies aimed 

to investigate whether, as discussed above for transcription, changes in Abfl DNA 

binding kinetics are mechanistically coupled to GGR. The current chapter describes 

the creation of the tools necessary for the analysis of Abfl DNA binding kinetics in 

vivo, which are utilised in the proceeding chapter.
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5.1.1 Molecular biological techniques for the study of DNA binding kinetics in 

vivo

The kinetics of protein-DNA (or chromatin) interactions in vivo can be studied 

through the genetic fusion of the protein of interest to a fluorescent molecule; most 

commonly green fluorescent protein (GFP) (Voss and Hager, 2008). Provided the 

fusion protein retains its biological function in vivo, this can then be readily visualised 

using fluorescence microscopy. Protein DNA binding kinetics are measured using a 

technique termed fluorescent recovery after photobleaching (FRAP) (Fig. 5.1 A) 

(Hager et al., 2009). The technique uses a high intensity laser to photobleach the GFP 

fusions in a partial area of a nucleus without destroying the protein’s biological 

function. Three derivatives of this technique are used for the quantitative 

measurement of protein-DBS interactions (Fig. 5.1 A). The first method bleaches a 

large area of the nucleus and then monitors the rate at which both the bleached and 

non-bleached areas resolve to a uniform fluorescence (Phair et al., 2004). Models of 

protein binding kinetics are then formulated to fit the experimental data (Phair et al., 

2004). For a TF, this technique often predicts two (or more) populations; one which 

has a short residence time on a substrate, and one a long residence time. These are 

predicted to indicate chromatin binding and site specific DNA interactions, but the 

genuine substrates are not known. Furthermore, kinetic predictions are only validated 

by the fact that the models predict an outcome that mimics the experimental findings, 

therefore, the results are highly sensitive to the model used, and differing models can 

shift estimates by at least three orders of magnitude (Mueller et al., 2010). 

Alternatively, direct measurements of residence times at specific sites on chromatin 

may be quantified by FRAP or FLIP (fluorescence loss in photobleaching). For a TF, 

for example, either the GFP fusion at the promoter is photobleached (FRAP), or the 

entire nucleus except for the promoter is photobleached (FLIP). The time taken for the 

difference in fluorescence between the nucleus and the promoter to resolve indicates 

the rate of protein exchange.

Although FRAP and FLIP are very powerful techniques, when this method is 

specifically applied to monitor site specific DNA binding kinetics in vivo the 

principle limitation is the spatial resolution of the technique. Whilst microscopy is 

able to detect single GFP molecules, it is currently very difficult to distinguish a 

single DBS bound molecule amongst thousands of proximal non-bound molecules
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(Baldini et al., 2005; Hager et al., 2006). Whilst this has been achieved, it is yet to be 

widely applied to DNA binding kinetic studies (Elf et al., 2007). Furthermore, there 

are no generally applicable methods for the identification of chromosomal 

positions/promoters that are compatible with live cell imagery. These practical issues 

have been circumvented by the artificial incorporation of a gene array into the 

genome, providing hundreds of proximal DBSs, which, if bound by the tagged TF, 

produces a spot of intense fluorescence (McNally et al., 2000b). This unambiguously
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Figure 5.1. A. Pictorial representation, and concurrent graphical output of the data provided from a 
nuclear localised protein fused to GFP under microscopic investigations; using three techniques: (i) 
The protein does not accumulate to form a dot. A region of the nucleus is bleached and the rate of 
exchange of the GFP signal between bleached and non-bleached is measured, (ii) The protein 
accumulates at a nuclear structure forming a dot, this is bleached in FRAP, (iii) All regions except the 
dot are bleached in FLIP. In both (ii) and (iii) fluorescence is monitored at the dot. B. Cells UV 
irradiated through a porous filter create ‘spots’ of localised UV damage, which may be subsequently 
studied using techniques such as FRAP and derivatives.
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identifies both chromosomal location, and the chromatin bound tagged proteins. In 

rare examples artificial gene arrays are not required when a protein naturally 

accumulates to a site in the genome, provided this location can be unambiguously 

identified in each nucleus (Karpova et al., 2008; Yao et al., 2006).

Fluorescently tagged proteins have also been extensively used for the study of 

mammalian NER. To date, published studies have used florescent tagged versions of 

NER factors DDB2 (Alekseev et al., 2008; Luijsterburg et al., 2007), DDB1 

(Alekseev et al., 2008), XPC (Hoogstraten et al., 2008), ERCC1 (Houtsmuller et al., 

1999), XPG (Zotter et al., 2006), XPB (Hoogstraten et al., 2002), XPA (Rademakers 

et al., 2003), CSB (van den Boom et al., 2004) and PCNA (Essers et al., 2005). The 

technology has been used to provide a wealth of information including protein cellular 

localisation, whether NER factors diffuse as singular molecules or combined as 

preassembled complexes, the order of factor assembly at a damage site and kinetics. 

In order to study kinetics and circumvent microscopy resolution limitations, cell 

nuclei are damaged in one small region by virtue of passing UV light through a 

polycarbonate filter with 5pM pores (Rademakers et al., 2003). This localises the 

tagged NER factors to this area causing a spot o f intense fluorescence (Fig. 5. IB). The 

reaction rate for the spot fluorescence to plateau indicates the damage binding 

kinetics, or in other words, the rate at which the protein associates to a damage site. 

The mean residence time of a protein at a damage site is also measured using FRAP 

and FLIP (Zotter et al., 2006).

Despite the widespread applications o f fluorescence microscopy, its use for 

measuring DNA binding kinetics at a DBS still has some large drawbacks. The 

protein of interest must be tagged with a large fluorescent protein and is usually 

overexpressed (Phair et al., 2004). As discussed, the cell line hosting this recombinant 

protein must also have an artificial gene array integrated. Even if these technical 

requirements are established, it remains unknown how any of these artificial 

alterations might affect in vivo kinetics. Furthermore, the analysis remains limited to 

one chromosomal location.
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5.1.2 Competitive CHIP; a novel technique for the analysis of DNA binding 

kinetics in vivo

An alternative to fluorescence microscopy for the analysis of DNA binding 

kinetics in vivo has been to use a technique termed competitive ChlP. In one 

derivative o f this technique, the protein of interest is expressed in two formats, one of 

which is constitutively expressed, and the other of which is inducibly overexpressed 

(relative to the first) (Dion et al., 2007; van Werven et al., 2009). Both versions of the 

protein are distinguished by different epitope tags. Following induction the large 

molar excess o f the induced protein functions to replace the occupancy of the 

constitutive protein on chromatin. ChlP is performed at various time points to follow 

the rate of exchange. Since the constitutively expressed protein must dissociate from 

chromatin for the induced protein to bind, regions of the genome where the 

constitutive protein are rapidly replaced demonstrate shorter residence times on 

chromatin than those which are slowly replaced. This technique vastly improves the 

spatial resolution of analysing DNA binding kinetics, however, because the technique 

requires 30-45 minutes for the induced protein to accumulate, it cannot analyse the 

kinetics o f DNA binding proteins with short half-lives on chromatin. It also requires a 

system where transcription is not inhibited (not compatible for UV damaged cells as 

general transcription is inhibited by this damage (Reagan and Friedberg, 1997)).

A second variant of competitive ChlP also exists. This strategy has previously 

been used for the study of DNA binding kinetics with Gal4 in yeast and HIFla in 

mammalian cells (Nalley et al., 2006; Yu and Kodadek, 2007). Using the Gal4 system 

as an example, the principle behind this concept is outlined in Fig. 5.2. The strategy 

requires the expression of a novel protein termed the competitor. The structure of the 

Gal4 competitor is given in Fig. 5.2A. The competitor is a recombinant protein 

containing the Gal4 DBD which functions to bind DNA at a Gal4 DBS. However, the 

competitor’s DNA binding activity is tightly regulated through fusion to a hormone 

binding domain (HBD), which functions as an autonomous regulatory cassette 

subjecting the competitor to hormonal control. Following hormonal activation, the 

large molar excess of the competitor functions to replace endogenous Gal4 at a DBS. 

This is monitored by ChlP in the same manner as above. This technique is 

advantageous compared with the former derivative of competitive ChlP since post- 

translational activation of the competitor is more rapid than transcriptional activation, 

and the endogenous protein does not require an epitope tag. However, it has been
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noted that this technique is also limited, and cannot resolve the kinetics of proteins 

with a half-life on chromatin of less than ~5 minutes (Yu and Kodadek, 2007).

The structure of the Gal4 competitor used by Nalley and co-workers is shown 

in Fig. 5.2A. The protein’s N-terminal contains a single Myc tag which was used to 

immunoprecipitate the competitor. This is followed by the Gal4 DBD. Hormonal 

control o f DNA binding is achieved by fusion of the Gal4 DBD to the oestrogen- 

receptor a  ligand binding domain (ERa LBD). The heterologous fusion of a wide 

variety of proteins to steroid receptor LBDs has been demonstrated to subject their 

activity to hormonal control (Picard, 2000). Steroid receptors LBDs form high affinity 

complexes with the molecular chaperone Hsp90 and this complex is believed to 

maintain the apo-protein in an inactive state (Picard, 2006). Addition of a reciprocal 

hormone causes ligand binding and release of Hsp90 from the LBD (Fig. 5.2B). It is 

believed that the Hsp90-LBD functions to inhibit macromolecular interactions 

through steric hindrance. The system allows constitutive expression of the Gal4 

competitor with rapid activation following addition of the ligand 17 p-oestradiol.

The final two domains of the Gal4 competitor are the acidic AD of the herpes 

simplex virus protein VP 16 (VP 16 AD) and a C-terminal FLAG tag. Under 

conditions in which Gal4 promotes transcription, Nalley et al. demonstrated the 

competitor was unable to occupy Gal4 responsive gene promoters within 60 minutes 

after hormonal activation. However, under non-inducing conditions the competitor 

rapidly replaced the occupancy of Gal4. Furthermore, the authors also showed that a 

derivative of Gal4 deleted of its C-terminal AD was also rapidly replaced by the 

competitor even under inducing conditions. The interpretation of these data was that 

activation of transcription functions to stabilise a Gal4:DBS interaction (Nalley et al., 

2006). These observations may explain why the competitor needs the VP16AD, since 

in its absence the recombinant protein is not an effective competitor of Gal4 

occupancy at a gene promoter (T. Kodadek, personal communication). Presumably a 

Gal4 competitor absent of the VP 16 AD, which is unable to activate transcription, 

cannot form a stable complex at a DBS and effectively compete with Gal4 for 

promoter occupancy (Louvion et al., 1993).
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CS1 (624-628)

Atypical zinc finger 
(40-91)

Putative HtH (basic region) 
(323-496)

CS2 (639-662)

Gal4

Gal4 DBD

ri H4^
ARI

Inhibitory domains Gal80 interact

Glucose response domain AR2 

Myc tag ER-a LBD (282-595) FLAG tag

Gal4 competitor

Gal4 DBD (1 -93) VP 16 AD (424-490)

Inactive competitor

lisp1

HspW

+ p- estradiol
Free competitor

No competition
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Competition j|
Free Gal4 DBS

— ^  mm
Figure 5.2. A. Structure of Abfl, Gal4 and the Gal4 competitor. B. Cartoon representing the molecular 
mechanism of Gal4 competitive ChlP. Note that when Gal4 occupies a DBS, the competitor would be 
unable to bind until the protein has dissociated.
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The aim of this chapter is to adapt the Gal4 competitor for the subsequent use 

of the reagent to analyse Abfl DNA binding kinetics. In order to establish an ‘Abfl 

competitor' a variety of criteria had to be fulfilled. As with the Gal4 competitor, an 

Abfl competitor must:

• Be immunologically distinguishable from the endogenous protein

• Function to bind DNA in the same site specific manner as the 

endogenous protein

• Be dormant in the absence of hormonal activation

• Bind DNA(/chromatin) in the presence of hormonal activation 

Creation of a fully functional Abfl competitor required extensive DNA

manipulations, parameter optimisations and the design of novel experiments to test 

such parameters. The following chapter describes the design, practical implementation 

and results of this work in chronological order. This organisation best explains why 

and how the final design of the Abfl competitor was determined.
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5.2 Materials and Methods

Strains used in this study

Strain Genotype Source
SX46a MATa, ade2 his3-532 trp 1-289 ura3-52 (Reed et al., 

1999)
SX46a pRS314 SX46a, pRS314 (TRP) Commercial

plasmid
JCA30 MATa, trplA his3A200 ura3-52 lys2-801 ade2-l 

gal ABF1 HIS3a
(Rhode et al., 
1992)

JCA31 MATa, trplA his3A200 ura3-52 lys2-801 ade2-l 
gal abfl-1 HIS3a

(Rhode et al., 
1992)

JCA30 pRS314 JCA30 pRS314 (TRP) Commercial
plasmid

JCA31 pRS314 JCA31 pRS314 (TRP) Commercial
plasmid

SX46a 
pCCAl 14

SX46a pRS314-prADH 1 -Abf:aa 19-523-ERaLBD This study

SX46a
pCCA214

SX46a pRS314-prADH 1 -Abf:aa 19-523-ERaLBD- 
VP16AD

This study

SX46a
pCCA314

SX46a pRS314-prADH 1 -Abf:aa 1 -530-ERaLBD This study

SX46a pCCTl 14 SX46a pRS314-prTDH3-Abf:aal 9-523-ERaLBD This study
SX46a pCCT314 SX46a pRS314-prTEF2-Abf:aal-530-ERaLBD This study
SX46a 
pCCGl 14

SX46a pRS314-prTDH3-Abf:aa 19-523-ERaLBD This study

SX46a
pCCG314

SX46a pRS314-prTDH3-Abf:aal -530-ERaLBD This study

JCA31 
pCCAl 14

JC A31 pRS314-prADH 1 - Abf:aa 19-523-ERaLBD This study

JCA31
pCCA314

JC A31 pRS314-prADH 1 - Abf:aa 1 -530-ERaLBD This study

JCA31 pCCTl 14 JCA31 pRS314-prTDH3-Abf:aal 9-523-ERaLBD This study
JCA31 pCCT314 JC A31 pRS314-prTEF2-Abf:aa 1 -530-ERaLBD This study
JCA31 pCCT414 JC A31 pRS314-prTEF2-Abf:aa 1 -530-ERaLBD- 

VP16AD
This study

JCA31 
pCCGl 14

JCA31 pRS314-prTDH3-Abf:aa 19-523-ERaLBD This study

JCA31
PCCG314

JC A31 pRS314-prTDH3-Abf:aa 1 -530-ERaLBD This study

JCA31
PCCG514

JCA31 pRS314-prTDH3- ERaLBD-Abf:aal-530- 
ERaLBD

This study

JCA31
PCCG614

JCA31 pRS314-prTDH3- ERaLBD-Abf:aal-530- 
ERaLBD-VP 16 AD

This study
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Western blotting

Western blots were performed as described in Chapter 2.6.3 using yeast whole 

protein lysates (Chapter 2.6.1). The Abfl competitor was detected using a-Myc 

antibody (9B11 mAB#2276, Cell Signalling Technology) 1:2000 dilution, and 

secondary antibody goat-a-Mouse IgG (H+L) HRP #NA931VS (Amersham) 1:30,000 

dilution. Abfl was detected with a-Abfl antibody (yC-20 #sc-6679 Santa Cruz 

Biotechnology) 1:1000 dilution, and secondary antibody donkey-a-goat IgG-HRP 

(#sc-2020 Santa Cruz) 1:30,000 dilution. Tubulin (a subunit) was detected with a- 

Tubulin antibody (YL1/2 GTX76511, Genetex) 1:2000 dilution, and secondary 

antibody rabbit-a-rat(ab6734-l, abeam) 1:30,000 dilution.

Cloning

The extensive cloning described in this chapter required a large number of 

strategies, including fusion PCR, to successfully construct the various recombinant 

proteins described. All primer names end in either suffix F or suffix R. F, or forward 

primers are always complementary to the antisense strand of the ORF, whilst R, or 

reverse primers are always complementary to the sense strand of an ORF. A complete 

list of primers used for the PCRs described below are given in appendix IV. All 

plasmids were sequenced, and if necessary, subcloned to remove point mutations 

(these frequently occurred during fusion PCR reactions). All PCR conditions, 

restriction assays and cloning techniques are described in Chapter 2.3.

pCCAl 14: (For graphical representation of this method, see Fig. 5.4)

The 5’ PCR consisting of the ADH1 promoter and Myc epitope was amplified 

from pTK513 using primers A D H 1F  and A D H 1R . A D H 1F  introduces a 5’ BamHI 

restriction site, whilst A D H 1R  introduces the first fifty nucleotides of the ABF1 

ORF starting at +55 (amino acid 19) downstream of the Myc tag. The ABF1 DBD 

was PCR amplified from genomic DNA (strain BY4742) using primers ABF155F 

and ABF11569R. The 3’ PCR was amplified from pTK513 using primers ER F and 

HR R. ER F introduces the last fifty nucleotides of ABF1 DBD finishing at +1569 5’ 

to the ERa LBD primer. ER R introduces the large T antigen NLS, followed by two 

STOP codons and an Xhol restriction site after the ERa LBD. The three PCRs were 

combined by fusion PCR using the primers ADH1_F#2 and ER_R#3. The PCR 

product was subsequently cloned as a BamHI/XhoI fragment into PRS314.



Chapter 5

PCCA214:

The 5’ PCR and ABF1 DBD PCR performed above were included in the 

fusion PCR. The 3’ PCR was amplified from pTK513 using primers ER F and 

ER_R#2. ER_R#2 introduces the large T antigen NLS, followed by two STOP codons 

and an Xhol restriction site after the VP 16 AD. The three PCR products were fused in 

an identical fashion to that as stated above using the primers ADH1_F#2 and 

ER_R#3. The PCR product was subsequently cloned as a BamHI/XhoI fragment into 

PRS314.

PCCA314 and PCCA414:

The ABF1 DBD (nucleotides +1 to +1590) was amplified from genomic DNA 

(strain BY4742) using the primers A B F11F  and ABF1 1590R. A B F11F introduces 

an Aval site 5’ to the ABF1 DBD; this restriction site is also located at the 3’ of the 

competitor Myc tag ORF (see Fig. 5.3). The competitor ORF downstream of the 

ABF1 DBD was amplified from pCCAl 14 or pCCA214 with the primers E R f u s F  

and ER_R#3. ER fus F introduces the last fifty nucleotides of the ABF1 DBD 

finishing at +1590 5’ to the ERa LBD primer. The Abfl DBD (+1-1590) was fused to 

the ORF PCR of pCCAl 14 or pCCA214 by fusion PCR using the primers 

ABF1_1F#2 and ER_R#3. pCCAl 14 was restricted with Aval, and the ORF was 

removed by gel purification. The fusion PCRs were subsequently cloned into the 

cleaved plasmid as an Aval restricted fragment to replace the ORF (for visual aid, see 

Fig. 5.3).

Page | 156
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A v a l
Mlul EcoRI

A g e l

Myc

B a m M I

A val
VP 16 AD

A val
'Xhol

NLS

F i g u r e  5.3. A restriction map of pCCA214. All restriction sites shown are unique except Aval. A total 
of three Aval sites are found within pCCA214 (or two in pCCAl 14).

Altering the promoter:

TEF2: The TEF2 promoter (nucleotides -402 to -1) was amplified from 

genomic DNA (strain BY4742) using the primers TEF2 -402F and TEF2-1R. 

TEF2 -402F introduces a BamHI site 5’ to the promoter, whilst TEF2-1R introduces 

the first 36 nucleotides of the Myc tag downstream of the promoter (this region 

contains the Aval restriction site). pCCAl 14 was restricted with BamHI and Aval, 

and the promoter was removed by gel purification. The TEF2 promoter PCR was 

subsequently cloned into this cleaved plasmid as a BamHI/Aval restricted fragment to 

produce pCCTl 14.

TDH3: The TDH3 promoter (-690 to -3) was amplified from genomic DNA 

(strain BY4742) using the primers TDH F and TDH R. The competitor ORF was 

amplified from pCCAl 14 using the primers ORF F and ORF R. ORF F introduces 

the last 53 nucleotides of the TDH3 promoter upstream of the competitor ORF. The

Page | 157
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TDH3 promoter PCR was fused to the ORF PCR of pCCAl 14 by fusion PCR using 

the primers TDH_F#2 and ER_R#3. TDH_F#2 introduces a BamHI restriction site 5’ 

to the TDH3 promoter. The fusion PCR was cloned into pRS314 as a BamHL/XhoI 

restricted fragment to give pCCGl 14.

Exchanging domains:

The remaining plasmids shown in Fig. 5.10 were constructed by exchanging domains 

between two plasmids. In each case, a plasmid was restricted at two sites and the 

fragment was removed from the plasmid by gel purification. This was replaced by the 

same restricted fragment from a second plasmid. The details of such exchanges are 

given in Table 5.1.

Plasmid
created

Domain
exchanged

Removed from Replaced with 
same domain from

Alteration
made

pCCT214 Agel/Xhol pCCTl 14 pCCA214 +VP16 AD
pCCT314 Aval/Aval pCCTl 14 pCCA314 +(aa1-530) 

DBD
pCCT414 Agel/Xhol pCCT314 pCCA414 +VP16 AD
pCCG214 Agel/Xhol pCCGl 14 pCCA214 +VP16 AD
pCCG314 Aval/Aval pCCGl 14 pCCA314 +(aal-530)

DBD
pCCG414 Agel/Xhol pCCG314 pCCA414 +VP16 AD
Table 5.1. The exchanged domains, shown as restriction fragments, of the competitor plasmids used to 
create new variants.

PCCG514 and pCCG614

The ERa LBD was amplified from pTK513 using the primers ER_F#2 and 

ER fiis R. ER fiis R introduces the first fifty nucleotides of Abfl 3’ to the ERa- 

LBD ORF. ABF1 (+1-180) was amplified from pCCA314 using the primers 

ABF1 1F#3 and A BF160R. The ERa LBD was fused upstream of the first 180nt of 

ABF1 with the primers ER F#3 and A BF160R. ER F#3 introduces an Aval site 5’ 

to the ERa LBD. The fused PCR product was inserted into pCCG314 or pCCG414 as 

an Aval/Mlul restricted fragment to give pCCG514 and pCCG614 respectively.

pCCG714

The N-terminal ERa LBD and Abfl DBD were amplified from pCCG514 

using the primers Myc F and ABF1_1590R#2. ABF1_1590R#2 introduces a NLS,
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two STOP codons and an Xhol restriction site 3’ to the Abfl DBD. The PCR product 

was inserted into pCCGl 14 as an Aval restricted fragment to give pCCG714.

The sequences o f all the plasmids created in this study are available on the 

accompanying DVD (D:/Plasmids).

Yeast transformation

Strains were transformed with the plasmids described in this study as detailed 

in Chapter 2.4.

Competitive ChlP

Strains were grown in synthetic dropout media (-Trp) at 30°C up to a density

of 2*10^ cells/ml. ChlP was performed as detailed in Chapter 2.7. Competitive ChlP 

was activated by lpM p-oestradiol (Sigma-Aldirch, E8875) using a stock of ImM p- 

oestradiol in ethanol. After P-oestradiol addition, cells were returned to an incubator 

with shaking for the timepoints indicated. For each ~300pg protein sample (50pl of 

WCE), Abfl was immunoprecipitated with 12pl of a-Abfl (yC-20 Santa Cruz 

Biotechnology) and the competitor was immunoprecipitated with 4pl of a-Myc (mAB 

2276, Cell signalling technology).

Primers used for qPCR:

HML-a I-silencer:

Forward: 5’ -  CAACATGAAAGCCCGACGTTTG 

Reverse: 5’ -  TTTGATTTTTTCACCCAGAACCCCA

ARS121:

Forward: 5’ -  TCATGTTGCGGGTTGGTAT 

Reverse: 5’ -  CGCCGAAATGGGTAATAAGT

Negative Primers (IRC5)

Forward: 5’ -  AGTCGGGGCAGATACAGTTG 

Reverse: 5’ -  GGCCGCT CT GGT C A AT AT A A
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NAT4:

Forward: 5’ -  T AT AT G AGGCGCTT GGGTT C 

Reverse: 5’ -  GTCGGAGTCAAGGATTCGAG

Data values of qPCR quantification are available in appendix IV. Error bars 

represent the standard deviation of replicates.

abfl-I Competitive ChlP

Strains were grown in synthetic dropout media (-Trp) at 25°C and then 

subsequently incubated at the semi-permissive temperature (32°C) for three hours, to

a density of 2 * 10^ cells/ml. Incubations following addition of P-oestradiol were 

performed at 32°C. All further experimental conditions were performed as described 

above (Competitive ChlP).
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5.3 Results

5.3.1 Designing an Abfl competitor

The Gal4 competitor was constitutively expressed under the ADH1 promoter 

from the centromeric plasmid pTK513. Therefore, appropriate alterations were made 

to pTK513 to produce the Abfl competitor.

Abfl contains two DBDs; an atypical zinc finger situated between aa40-91 

and a putative helix-tum-helix (HtH) motif situated between aa323-496 (Fig. 5.2) 

(Cho et al., 1995). Both domains are required for DNA binding, whilst the C-terminal 

of the protein is not (Cho et al., 1995; Miyake et al., 2002). Therefore Abfl aa 19-523 

was selected to replace the Gal4 DBD of pTK513.

To date, hormone activated competitive ChlP has successfully been employed 

tor the study of two TFs; Gal4 in yeast and H IF-la in human cells (Nalley et al., 

2006; Yu and Kodadek, 2007). As previously detailed, a Gal4 competitor devoid of an 

AD could not function to replace endogenous Gal4. Conversely, a HIF-la competitor 

absent of an AD has been demonstrated to successfully compete for promoter 

occupancy with the endogenous TF. As a consequence the necessity to include the 

VP 16 AD within the Abfl competitor was unknown. Recently, the 19S proteasome 

has been demonstrated to reversibly disrupt TF:DBS complexes and tethering the 

Gal4 DBD to the VP 16 AD (which physically interacts with 19S subunit Sugl) results 

in 19S dependent destabilisation of DNA binding in vitro (Ferdous et al., 2007; Lee et 

al., 1995). Therefore, the VP 16 AD had the potential to both stabilise or destabilise 

the DNA binding activity of an Abfl competitor. Consequently two versions of the 

construct were made, one of which kept the VP 16 AD of pTK513, the other did not.

A final consideration for the Abfl competitor was the intracellular localisation 

of the protein. Clearly for efficient and rapid competition following hormone 

induction the competitor needed to be localised in the nucleus prior to hormone 

activation. Unfortunately, HBDs other than the glucocorticoid receptor are not 

efficient at regulating nuclear localisation (Picard, 2000). In addition, since a nuclear 

localisation signal (NLS) is known to be found within the Gal4 DBD (amino acids 1- 

74), deleting this domain for the Abfl competitor may have resulted in cytoplasmic 

localisation (Nelson and Silver, 1989). The NLS necessary and sufficient for Abfl 

nuclear localisation lies within the AD (aa604-662) (Loch et al., 2004). Loch and co­

workers demonstrated that a K625I mutation of Abfl aa 1-662 (the minimal domain of
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Abfl necessary to support cell growth (Miyake et al., 2002)) abolished nuclear 

localisation. However addition of the SV40 large T antigen NLS (PKJCKRKV) at the 

C-terminus of this mutant fully restored nuclear localisation. Therefore, the SV40 

NLS was also incorporated at the C-terminal of the Abfl competitor.

Given these considerations two competitors were designed as shown in Fig.

5.4.

5.3.2 Construction and expression of an Abfl competitor

The two variants of the Abfl competitor were constructed using a fusion PCR 

strategy, whereby three separate PCR products were fused together in a final PCR 

reaction. The strategy employed is outlined in Fig. 5.4. The first PCR product, 

containing the ADHl promoter and a Myc tag was amplified from pTK513. Using 5’ 

primer overhangs a BamHI restriction site was introduced 5’ to the ADHl promoter, 

and fifty bases homologous to the Abfl DBD (beginning at nucleotide +54) was 

introduced in frame 3’ to the Myc tag. The second PCR product amplified the Abfl 

DBD (nt +54-1569) from S. cerevisiae genomic DNA. Oligo (Molecular Biology 

Insights, Inc) primer design designated favourable priming sites within a DBD 

spanning Abfl aa 19-523 (nt +54 -  1569), which included both the Abfl zinc finger 

and putative HtH domain (see above). The final PCR product, which contained the 

HRa LBD either with or without a VP16AD was amplified from pTK513. Using 5’ 

primer overhangs fifty bases homologous to the Abfl DBD (ending at nucleotide 

+ 1569) was introduced in frame 5’ to the ERa LBD, whilst to the 3’ of both PCR 

products the large T antigen NLS, two STOP codons and an Xhol restriction site were 

added respectively. Three separate PCR products were combined in a final fusion 

PCR for each of the variant constructs, which were subsequently inserted into 

pRS314.

prADHl- Myc-Abfl DBD(aa 19-523)- ERa LBD- NLS was inserted into pRS314 to 

give pCCAl 14 (plasmid Competitive Chip ADH 114).

prADHl- Myc- Abfl DBD(aa 19-523)- ERa LBD- VP 16 AD- NLS was inserted into 

pRS3l4 to give pCCA214.
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Figure 5.4. A. Domain structure of the Gal4 competitor of pTK513 with a representation of the 
position of the primers used to replicate the domains necessary for the Abfl competitor, and resultant 
PCR products. Angular writing describes 5’ sequences added to each primer. B. Graphical 
representation of the three PCR products used for each final construct and the resultant fusion PCR 
product. Double headed arrows indicate regions of homology.

pCCAl 14 and pCCA214 were transformed into SX46a. Western blots of 

protein whole cell extract from these strains were performed to test for the stable 

expression of the competitor, and to ascertain that the competitor was 

immunologically distinguishable from endogenous Abfl. As shown in Fig. 5.5, stable 

expression of the Abfl competitor was confirmed from whole cell extract by western

VPI6 AD FLAG
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blot using an a-Myc antibody. This demonstrates that under the conditions tested, the 

a-Myc antibody binds the Abfl competitor without a detectable ability to bind 

endogenous Abfl. In addition, Fig. 5.5 shows the same membrane reprobed with an 

a-Abfl antibody. Equally this demonstrates that a-Abfl can only detect the 

endogenous protein, not the competitor.

a - Myc a - Abfl
Fieure 5.5. Western blot of SX46a transformed with either pCCAl 14, pCCA214 or PRS314 (empty 
vector). Ladder indicates approximate positioning of molecular weight. The left blot is developed using 
a-Myc, and the right picture indicates the same blot reprobed for with a-Abfl. A negative control for 
the Abfl protein is not shown because the protein is essential. However, the antibody detecting Abfl 
was well characterised and therefore there is a high confidence the band indicating Abfl is correct (see 
appendix IV for antibody characterisation).

5.3.3 Abfl competitive ChlP

Given that both strains stably expressed the individual Abfl competitors and 

that both Abfl and the competitor could be immunologically distinguished, the two 

strains were tested to see if the competition assay was functional. Competitive ChlP 

was performed in a similar manner to that previously described (Nalley et al., 2006). 

Both Abfl and competitor were immunoprecipitated with the same antibodies as used 

for the western blot in Fig. 5.5. As shown in Fig. 5.6, the occupancy of both Abfl and 

the competitor were compared at timepoints -1, 30 and 60 minutes after hormone 

activation by addition of p-oestradiol. The DNA binding occupancy was analysed at 

two established Abfl binding sites; the I-silencer of HML-a and the B3 element of 

ARS12J (Francesconi and Eisenberg, 1989; Harbison et al., 2004; Yu et al., 2009). 

These sites were compared to a negative control where Abfl does not bind (IRC5, 

taken from Chapter 3 data, see appendix IV). As shown in Fig. 5.6, under all 

conditions tested, immunoprecipitation of the competitor was not observed to enrich
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chromatin to a level higher than a negative control. This demonstrates that DNA 

binding of the competitor to ARS121 or HMLa could not be detected. In contrast, 

endogenous Abfl DNA binding was readily detected at both genomic loci.

HMLq - PCCA114

4  90 60
Time after P-oestradiol addition (mins)

ARSU1 - PCCA114

•1 30 60
Time after {J-oestradiol addition (mins)

HMlfl-fiCCA.214 A.RSU1-PCCA214

-I JO 60
Time after P-oestradiol addition (mins)

1 1 1
•1 90 60

Time after {J-oestradk>l addition (mins)

■  Abfl
□  Competitor

■  Abfl Negative
■  Competitor negative

Figure 5.6. Graphs representing the occupancy of Abfl and the competitor (pCCAl 14) or (pCCA214) 
by ChlP, before and after p-oestradiol addition. Two genomic loci were observed -  the I-silencer of 
HMLa and ARS121. The bars indicated as ‘negative’ represent a region of the genome (IRC5) where 
Abfl does not bind.

The failure to detect DNA binding of the competitor in vivo could be 

potentially attributed to a number of difficulties. An insufficient p-oestradiol 

concentration could fail to activate the competitor. This was considered unlikely given 

that the transactivation potential of the Gal4 competitor expressed under the ADH1 

promoter is saturated at 0.1 pM p-oestradiol (Louvion et al., 1993). The Abfl 

competitor was induced at a ten-fold higher concentration to this (lpM); as previously
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described for Gal4 competitive ChlP (Nalley et al., 2006). Alternatively, the Myc- 

ChlP may have failed. This was also deemed an unlikely cause, given that, under 

identical conditions the Abfl ChlP was successful and that the a-Myc antibody used 

to IP the competitor has been successfully used for Myc-ChIP both in our lab and 

others (Fox and Good, 2008; Kibe et al., 2007; Lee et al., 2007a; Ono et al., 2003; 

Ueno et al., 2004, unpublished results; Dr. Y.Yu). Therefore, the most likely cause of 

an inability to ChlP the competitor was considered to be one of two causes. Firstly, if 

Abfl were to stably bind at the DBS, then this would function to sterically inhibit 

DNA binding o f the competitor. Alternatively, the design of the Abfl competitor may 

have been flawed.

5.3.4 Testing the ability of the competitor to bind chromatin in the absence of 

Abfl binding

It has previously been suggested that Abfl fully occupies its binding sites in 

vivo (Schroeder and Weil, 1998). Therefore, if Abfl does this in a kinetically stable 

manner, with a half-life in the range of hours, then the competitor would be unable to 

occupy chromatin under the conditions tested in 5.3.3. Therefore, designing an assay 

that eliminated endogenous Abfl binding, whilst maintaining the Abfl DBS would 

circumvent this issue. Abfl is an essential gene and as such a null mutant is inviable, 

therefore a temperature sensitive DNA binding mutant of Abfl, termed abfl-1, was 

used (Rhode et al., 1992; Rhode et al., 1989). By comparing genome-wide ChlP data 

for Abfl (strain JCA30) with abfl-l (strain JCA31) in cells grown under the semi- 

permissive temperature (32°C), a genomic locus was chosen with exceptionally 

reduced Abfl occupancy (unpublished results; Dr Y.Teng, Dr S.Yu). As shown in 

Fig. 5.7, when JCA30 and JCA31 are grown at the restrictive temperature for three 

hours, the occupancy of abfl-1 is significantly reduced (relative to Abfl) at the gene 

NAT4. Furthermore, in response to addition of p-oestradiol the occupancy of abfl-1 

remains very low after 30 minutes.

To test the competitor at an endogenous Abfl DBS in the absence of Abfl 

occupancy, JCA31 was transformed with pCCA114 and pCCA214. These strains 

were subsequently grown under the semi-permissive temperature and were incubated 

with P-oestradiol for 30 minutes, a timepoint previously shown to be sufficient for 

maximal competitor activation (Nalley et al., 2006; Yu and Kodadek, 2007). Both
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competitor and Abfl ChlP were performed. Neither competitor was found to bind 

NAT4 under these conditions (data not shown). The competitor was subsequently 

redesigned (discussed below) and placed under the strongest constitutive yeast 

promoter known, prTDH3 (Mumberg et al., 1995; Velculescu et al., 1997). As shown 

in Fig. 5.7B, when the Abfl competitor without an AD is expressed under prTDHS 

(expressed on pCCGl 14) in JCA31 (abfl-1), binding at NAT4 cannot be detected 30 

minutes after P-oestradiol addition. The results are not expected to differ for a 

competitor with the VP16AD (not tested, see below). Collectively these data 

demonstrates that in the absence of Abfl binding, the competitor remained unable to 

bind at an Abfl DBS following hormonal activation.

At .Abfl and abfl-1 Q « u p a n tY n a t 4

■  JCAMpHSSM

■  JCA31 pftSJ 14

Time after ^-oestradiol addition (mins)

Bl Competitor g^ypgncy at NAT4 in
JCA31

■ a b f l-1  (p*S31« - t f npty vector) 

■  ab fl-1  (pCCGllO 

□  C o n v e n o r (pCC6114) 

a  Competitor negative (pCC6114)

r eferenc 0}
Time after f}-oestradiot addition (mins)

Figure 5.7. A. ChlP occupancy of Abfl (JCA30) and abfl-1 (JCA31) grown under the semi- 
permissive temperature, before and after P-oestradiol addition. B. ChlP occupancy of abfl-1 (red bar) 
and the competitor (yellow bar) in JCA31 cells expressing pCCGl 14 (Myc-Abfl DBD (19-523)- ERa 
LBD) 30 minutes after p-oestradiol addition. The enrichment of the competitor at IRC5 (purple bar) 
functions as a negative control. NB- the blue bar at -lmins in graph B functions as a reference -  this 
represents the occupancy of abfl-1 in JCA31 cells expressing an empty vector. As can be seen, the 
occupancy of abfl-1 in JCA31 expressing pCCGl 14, remains very low relative to the occupancy of 
Abfl in JCA30 cells.

5.3.5 Redesigning the Abfl competitor

Given the results in Fig. 5.7 it was considered possible that the design of the 

Abfl competitor was flawed, thus inhibiting it from binding DNA. Three potential 

flaws were identified. Firstly, the competitor may not be nuclear localised. This was 

considered very unlikely given that the large T antigen NLS is known to be a 

powerful nuclear import signal with the ability to ectopically import recombinant 

proteins in excess o f lOOkDa into the yeast nucleus, and as such was not investigated 

(Nelson and Silver, 1989). Secondly, the competitor expression level may have been
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too low to significantly bind the thousands of Abfl binding sites within the genome 

(see Chapter 3). Thirdly, the Abfl DBD selected for the competitor may have been 
non-functional.

Re-examining the expression level of the competitor

The expression of Abfl is considered to be significantly higher than that of 

other stereotypical TFs such as Gal4 or Gcn4 (Arndt and Fink, 1986; Bram and 

Romberg, 1985; Dorsman et al., 1988). As a consequence, whilst the ADHI promoter 

may have been suitable to express a sufficient concentration of Gal4 competitor, the 

same may not be true of Abfl. To directly assess if the Abfl competitor was 

sufficiently expressed required a means to compare the stable expression level of both 

Abfl and competitor. Since there was no facile way of achieving this, and since it was 

impossible to predict the level of expression required to successfully compete with 

Abfl for DNA occupancy, the promoter of the Abfl competitor was chosen to be 

altered such that a range of expression levels could be achieved. This was 

accomplished by replacing the ADH1 promoter with either the TEF2 promoter or 

TDH3 promoter. When these promoters are fused to an ORF on a centromeric plasmid 

(as used in this study) they are predicted to increase protein levels ~17-fold higher (pr 

TEF2) or ~72-fold higher (pr TDH3) than the ADH1 promoter (Mumberg et al., 

1995). Fig. 5.8 shows three independent clones of SX46a expressing Myc-Abfl DBD 

(aal9-523)- ERa LBD under the ADHI, TEF2 or TDH3 promoter. In good agreement 

with Mumberg et al (1995) this successfully achieves a range of increasing expression 

levels.

Promoter TEF2 ADHI TDH3
______  A _______   A .r >\ r S  r ^

Clone 1 2 3 1 2  3 1 2 3
—  Competitor 

^  ■“* Tubulin (a)

F i g u r e  5 . 8 .  Western blot of three different SX46a clones, expressing Myc-Abfl DBD (aal9-523)-ERa 
LBD under the control of the promoter from ADHI, TEF2 or TDH3. The competitor blot was 
developed with a-Myc. As a loading control, the blot was reprobed with a-Tubulin.
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Re-examining the Abfl DBD

Whilst the two domains attributed to Abfl DNA binding are stated to lie 

between aa40-496, it was plausible that aa 19-523 of Abfl within the competitor was 

not sufficient for DNA binding in vivo (Miyake et al., 2002; Yarragudi and Morse, 

2006). Two Abfl homologues, both of which can substitute for the essential functions 

of Abfl in S. cerevisiae, have been identified in Kluyveromyces lactis and 

Kluyveromyces marxianus (Goncalves et al., 1992; Oberye et al., 1993 respectively). 

A sequence alignment of the three homologues is given in Fig. 5.9. Interestingly the 

three homologues have two areas of high homology that approximately map to the 

two predicted DBDs in Abfl. These two domains correspond to Abfl aa6-81 and 

aa323-441. Since the conservation of these residues may indicate that these are 

necessary for protein functionality, it is possible that residues N-terminal to aal9 of 

Abfl are necessary for functional DNA binding in vivo. To date the minimum DBD 

sufficient for Abfl binding in vivo has been demonstrated to be aa 1-577 (Miyake et 

al., 2002). However, an Abfl DBD of aal-530 has been demonstrated to bind an Abfl 

DNA binding consensus sequence in vitro (Halfter et al., 1989). Given that the 

domain of aal-530 included both regions of homology shown in Fig.5.9, this was 

chosen to replace the competitor Abfl DBD of aa 19-523.

By changing both the promoter of the competitor and the Abfl DBD, a series 

of novel Abfl competitors were created and cloned into pRS314. Various domains 

were constructed and exchanged by both fusion PCR and standard cloning techniques. 

The details of this, along with a restriction map of one of the competitors in pRS314 

are described in Chapter 5.2. This resulted in a total of 12 variations of the Abfl 

competitor, the structures of which, and the nomenclature used for the plasmids, are 

provided in Fig. 5.10. Strains SX46a (Abfl) and JCA31 (abfl-1) were subsequently 

transformed with each of the 12 Abfl competitor plasmids to test the competition 

assay in the presence of Abfl or abfl-1, respectively. During the transformations, it 

was observed that there was a considerable contrast in the transformation efficiency 

and cell growth rates between the various transformants. These observations are 

summarized in Fig. 5.10. Plasmids containing the VP 16 AD gave indistinguishable 

results from their counterparts without an AD (data not shown). Essentially all 

plasmids containing the TEF2 promoter gave similar results to those with the ADHI 

promoter. Plasmids with the TDH3 (strongest) promoter clearly showed a reduction in
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Figure 5.9. Sequence alignment of Abfl homologues from Saccharomyces cerevisiae, Kluyveromyces 
marxianus and Kluyveromyces lactis. Numbers above borders of high homology represent the aa 
position of Abfl from S. cerevisiae. Alignment was produced using tcoffee (http://tcoffee. vital- 
it.ch/cgi-bin/Tcoffec/tcoffec cgi/indexxgi).

http://tcoffee
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A.
Promoter

ADHI

TEF2

TDH3

DNA binding domain Activation domain 
Abfl DBD (aa 19-523)

ERa LBD

T
Abfl DBD (aal-530)

VP16AD

N om enclature A bfl DBD (aal9-523) A bfl DBD (aal-530)
P rom oter No AD With VP16 AD No AD With VP16 AD
ADHI (pCCA) pCCA114 pCCA214 pCCA314 pCCA414
TEF2(pCCT) PCCT114 PCCT214 PCCT314 pCCT414

TDH3(pCCG) PCCG114 PCCG214 PCCG314 PCCG414

Table C.
Strain
(Genotype)

Plasmid Transform ation
efficiency

Colony Growth Protein expression of 
th e  com petitor

SX46a (Abfl) PCCA114 ++++ ++++ Stable
SX46a (Abfl) pCCT114 ++++ ++++ Stable

SX46a (Abfl) PCCG114 +++ +++ Stable

SX46a (Abfl) pCCA314 ++++ +++ Stable

SX46a(Abf l ) PCCT314 ++++ +++ Stable

SX46a (Abfl) PCCG314 ++ + Unstable

JCA31 (abfl-1) PCCA114 ++++ ++ Stable

JCA31 (abfl-1) PCCT114 ++++ ++ Stable

JCA31 (abfl-1) pCCG114 +++ ++ Stable

JCA31 (abfl-1) PCCA314 ++ ++ Stable

JCA31 (abfl-1) PCCT314 ++ I + Stable

JCA31 (abfl-1) pCCG314 1 - N/A

Figure 5.10. A. Graphic illustrating the exchanged domains (titled above) of the Abfl competitor. 
Table B. Listing of the nomenclature for the 16 plasmids created. Table C. Relative transformation 
efficiency, rate of colony growth and protein expression of strains SX46a and JCA31 following 
transformation with all Abfl competitor variants without the VP 16 AD. Increasing numbers of *+’ 
indicates either a higher number of transformants per ng of plasmid DNA or faster colony growth. 
indicates that no transformants could be obtained. For pictorial examples of the data shown in Table C 
please refer to appendix IV.
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transformation efficiency and cell growth. In addition, changing the competitor DBD 

from aa 19-523 to aal-530 of Abfl also had a similar effect. Of great interest, when 

the competitor with the Abfl DBD 1-530 was expressed under the TDH3 promoter 

(on plasmid pCCG314), a very significant defect in transformation efficiency and cell 

growth rate was observed (see also appendix IV). JCA31 cells (abfl-1) transformed 

with the plasmid pCCG314 were inviable (data not shown). Although SX46a cells 

transformed with pCCG314 were viable, cell growth was very slow and a clone that 

stably expressed the competitor was not isolated (clonal expansion of cells 

consistently resulted in the loss of competitor expression). Therefore, experiments 

could not be performed using a competitor with the Abfl DBD aal-530 expressed 

from the TDH3 promoter.

The above results demonstrate that the additional residues within the Abfl 

DBD aal-530 (relative to aa 19-523), render the competitor (or its expression) capable 

of interfering with efficient cell growth. Since overexpressing Abfl, or expressing C- 

terminal truncated versions of Abfl also interfere with cell growth, this phenotype 

could be due to the competitor emulating Abfl (or a C-terminal truncated Abfl) 

(Miyake et al., 2002; Sopko et al., 2006). This was interpreted to mean that the 

competitor with the DBD aal-530 was DNA binding competent, whilst the competitor 

with DBD aa 19-523 was not. This was subsequently investigated in 5.3.6 (see below).

5.3.6 The in vivo molecular characteristics of the revised Abfl competitor

If, as suggested by the results in 5.3.5, the Abfl competitor with a DBD aal- 

530 of Abfl, could bind DNA at Abfl DBS, and that this functioned to inhibit 

efficient cell growth, then two other important conclusions may be drawn from the 

observations in Fig. 5.10. Firstly, the competitor was not under complete hormonal 

regulation, since the inhibition of cell growth could be observed in the absence of P~ 

oestradiol. Secondly, given that inhibition of cell growth was only prominent when 

the competitor was expressed from the TDH3 promoter, this expression level is most 

likely to be required for strong competition of Abfl DBSs by the competitor. This 

second assumption is further supported by the observation that addition of P- 

oestradiol to cells expressing the competitor under the TEF2 promoter did not inhibit 

cell growth (data not shown).

In order to test whether the altered DBD renders the competitor DNA binding 

competent, competitive ChlP was performed in JCA31 cells (abfl-1) expressing the
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Abfl competitor (DBD aal-530) under the TEF2 promoter, with the assay established 

in 5.3.4. The occupancy of abfl-1 and the competitor was measured both before and 

after P-oestradiol addition at a locus both positive (NAT4) and negative (IRC5) for 

Abfl binding. As shown in Fig. 5.11, the competitor binds at NAT4 irrespective of 

whether it possesses the VP16AD or not. Furthermore, the competitor binds at NAT4 

in the absence of p-estradiol, although occupancy is increased in response to 

hormonal activation. However, the competitor does not bind within a region of the 

genome to which Abfl does not bind, demonstrating that the DNA binding capacity 

of the competitor is specific to Abfl DBS (Fig. 5.11).

N A T 4-PC C T 314

1 I m M  v ec to r) 

■  abfl-1 (pCCT314|

□  Comb*Mor (pCCT314)

IRC5 - PCCT314

■ab fl-1  (amply vector) a* NAT4

1 (pCCT314)

(PCCT314)

rm wn<

NAT4- PCCT414

■  abfl-1 (amply vector)

■  abfl-1 (pCCT414)

O Competitor (pCCT414)

J .

i

-1 SO

Time after p-oestradiol addition (mins)

IR C 5-PC C T 414

(reference) 1 (em pty vector) at NAT4

1 (pCCT414)

(DCCT414)

•1 SO
Time after P-oestradiol addition (mins)

-i so
Time after P-oestradiol addition (mins)

Figure 5.11. ChlP of abfl-1 and the competitor expressed from pCCT314 and pCCT414 at NAT4 
(positive control) and 1RC5 (negative control). At the IRC5 locus the blue bar represents the equivalent 
occupancy of abfl -1 at NA T4.

5.3.7 Improving the hormonal regulation of the Abfl competitor

Collectively the results from 5.3.5 and 5.3.6 suggested that an Abfl competitor 

(with the DBD aal-530) expressed under the TDH3 promoter would be optimal if the 

DNA binding capacity of this competitor was under stricter hormonal control. 

Previous work with hormone binding domains (HBDs) has suggested that the

Page | 173
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proximity of the HBD fusion to the domain to be regulated vastly influences the 

efficiency of hormone dependent regulation (Nichols et al., 1997; Picard et al., 1988). 

Therefore, the ~430aa distance between the ERa LBD and the zinc finger of the Abfl 

DBD within the competitor seemed a likely cause of incomplete hormonal regulation. 

To counter this, two new derivatives of the competitor were created. The first version 

repositioned the ERa LBD N-terminal to the Abfl DBD so that it is proximal to the 

atypical zinc finger but distal to the HtH domain. A second version was created that 

included an ERa LBD both N and C-terminal to the Abfl DBD. As with all other 

competitors both a version with and without the VP 16 AD were constructed.

Upon transforming cells with the plasmid expressing the N-terminal ERa LBD 

under the TDH3 promoter (pCCG714 (without VP16AD)), a similar phenotype was 

observed to that of transformants with plasmid pCCG314. Since JCA31 cells 

expressing this competitor could not be obtained, further investigations with this 

plasmid were not performed. In contrast, cells transformed with the double ERa LBD 

(pCCG514 (without VP 16 AD) and pCCG614 (with VP 16 AD)) showed a 

transformation efficiency and cell growth phenotype indistinguishable from cells 

transformed with pCCG114 (DNA binding defective competitor under the TDH3 

promoter). The activity of these two competitors was subsequently tested in JCA31 

under identical conditions to that used for the experiments in Fig. 5.7 and Fig. 5.11. 

As shown in Fig. 5.12, in the absence of p-oestradiol neither competitor can be 

detected at NAT4. However, in the presence of the hormone both competitors bind at 

the locus, although surprisingly the occupancy of the competitor is considerably lower 

than that observed for the competitors expressed on pCCT314 and pCCT414 as seen 

in Fig. 5.11.

N A T4-PC C G 5

&£
&

u  - 
0 •

■  abfl-1 (empty vector)

■  abf l-1 (pCCGSl*)

□  C om petitor (pCCGS14)

1 I

N A T4-PC C G 614

•a »
Time after P-oestradiol addition (mins)

0.4

oa |

so•a
Time after P-oestradiol addition (mins)

Figure 5.12. ChlP of abfl-1 and the competitor expressed from pCCG514 and pCCG614 at NAT4.
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5.4 Discussion

The aim of the current study was to adapt a reagent previously used for Gal4 

competitive ChlP, so that it may utilised for Abfl competitive ChlP. These studies 

present the successful creation of a recombinant protein that; is immunologically 

distinguishable from Abfl, can bind at Abfl DBSs in vivo and ultimately is under 

strict hormonal regulation, thus fulfilling all the criteria previously considered 

necessary for a functional Abfl competitor. The results presented here highlight some 

of the principle considerations and parameters that must be optimised to establish a 

functional competitor. These include; identifying a suitable DBD, choosing an 

appropriate expression level, optimising regulation through HBD fusion and 

considering the influence of an AD upon DNA binding in vivo.

The original design for an Abfl competitor included a DBD between aa 19-523 

of A bfl. This DBD was subsequently shown to be unable to bind a domain bound by 

endogenous Abfl at NAT4 in vivo (Fig. 5.7). NAT4 contains multiple copies of the 

Abfl consensus DBS, and is a high affinity binding domain for Abfl in vivo 

(unpublished results, Chapter 3). The N-terminal two thirds of bacterially expressed 

Abfl (aal-530) was previously demonstrated to bind an Abfl DBS in vitro (Halfter et 

al., 1989). This domain includes a sequence that loosely resembles a zinc finger DBD 

predicted to be located between aa40-91 (Cho et al., 1995; Diffley and Stillman, 1989; 

Halfter et al., 1989; Rhode et al., 1989). Indeed, the protein does require zinc to bind 

DNA in vitro (Diffley and Stillman, 1989). Zinc fingers are common DNA binding 

motifs predominantly characterised by the presence of histidine and cysteine residues 

which function as ligands for the zinc atom (Klug, 2010). Abfl contains histidine 

residues at aa57, 61 and 67, and cysteine residues at aa49, 66 and 71. Base 

substitutions at any of these residues inhibit Abfl DNA binding in vitro (Cho et al., 

1995; Halfter et al., 1989; Rhode et al., 1992). A second domain in Abfl between 

aa323-496 is also predicted to function as a putative HtH DBD, and mutations within 

this region similarly inhibit efficient DNA binding of Abfl in vitro (Cho et al., 1995).

By switching the Abfl DBD to aal-530, the competitor was subsequently 

demonstrated to bind at NAT4 in vivo (Fig. 5.11). This suggests that either aal-19 or 

aa523-530 are essential for Abfl DNA binding in vivo, and two lines of evidence 

suggest the essential residues are found within aal-19. Firstly, it has been previously 

demonstrated that deleting the N-terminal 47aa of Abfl inhibits functional DNA 

binding in vitro (Halfter et al., 1989). Interestingly, this deletion mutant does not
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exclude any of the histidine or cysteine residues predicted to function within the zinc 

finger, and combined with the studies presented here, may suggest residues upstream 

of aal9 are necessary for the functional activity of this domain. Secondly, two 

homologues of Abfl found in Kluyveromyces lactis and Kluyveromyces marxianus 

each contain domains of high homology between aa6-81 of Abfl, but only low 

homology between aa441-538 (Fig. 5.9). S. cerevisiae strains expressing either of 

these homologues in place of the endogenous protein are viable (Goncalves et al., 

1992; Oberye et al., 1993). Given that the ability of Abfl to bind DNA is essential for 

cell viability, these homologues must possess all residues necessary for DNA binding 

at an Abfl DBS in vivo (Rhode et al., 1992). Interestingly this suggests that residues 

approximately between aa81-323 of Abfl are dispensable for DNA binding and 

indeed a deletion mutant of Abfl (A200/265) retains DNA binding capacity in vitro 

(Fig. 5.9, Cho et al., 1995)

Relative to the studies performed in vitro, less is known about the residues of 

Abfl necessary for DNA binding in vivo. To date, the minimum in vivo DBD has 

only been ascertained through C-terminal deletions of the protein that maintain cell 

viability. A deletion mutant of Abfl (aa 1-599) is lethal, however if an AD (devoid of 

DNA binding activity) of Rapl is added to this C-terminal, cell viability is restored 

(Goncalves et al., 1996; Rhode et al., 1992). Interestingly, Miyake and co-workers 

demonstrated that whilst a deletion mutant of Abfl (aal-587) was lethal, a further 

deletion mutant Abfl (aa 1-577) was viable. However, C-terminal deletions beyond 

aa577 did not support cell viability. The studies presented here demonstrate for the 

first time that the minimum in vitro DBD of Abfl (aal-530) is sufficient for DNA 

binding in vivo.

Over expressing a DNA binding competent competitor under limited hormonal 

regulation reduced cell viability and growth (Fig. 5.8 and 5.10). This phenotype is 

likely to be the result of the competitor contending against endogenous Abfl for 

DBSs in vivo. This conclusion is supported by the observation that over expressing a 

DNA binding defective competitor (Abfl DBD aal9-523), does not inhibit viability 

or cell growth (Fig. 5.7 and 5.10). Furthermore, inhibiting the DBD of the competitor 

with two ERa LBDs restores viability and cell growth (Fig. 5.12). How might binding 

of the competitor at Abfl DBSs reduce the viability of the cell? As explained above, 

C-terminal truncations of Abfl similar to that of the competitor (ie beyond aa530) are 

not viable (Goncalves et al., 1996; Miyake et al., 2002; Rhode et al., 1992). Within
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the C-terminal of Abfl two domains have been characterised, termed CS1 (aa624- 

628) and CS2 (639-662), which have been demonstrated to be necessary for the roles 

of Abfl in transcription, silencing, DNA replication and nucleosome remodelling 

(Miyake et al., 2002). Therefore, a competitor deleted of this domain of Abfl is 

unlikely to perform any of these activities in vivo. Interestingly, overexpressing the 

unregulated competitor with a VP16AD equally causes reduced viability and cell 

growth (data not shown). As discussed within the introduction, Abfl may function to 

mediate both transcription and DNA replication in a similar manner. Indeed, the DBS 

of Abfl at ARS1 (on a plasmid) may be functionally substituted for the DBS of a 

transcriptional activator such as Gal4 or Rapl (Marahrens and Stillman, 1992). 

Furthermore, artificially tethering the C-terminus of Abfl (aa608-731), the Gal4 AD 

or the VP16AD to the B3 element of ARS1 stabilises autonomous replication of a 

plasmid deleted of an Abfl binding site (Li et al., 1998; Marahrens and Stillman, 

1992). These domains are also known to function as transcriptional activators 

(Miyake et al., 2002; Ptashne, 1988). This either suggests the domains promote two 

biochemical activities, or the same activity stimulates both processes. It also suggests 

that a competitor with the VP16AD may promote some of the activities of Abfl in 

vivo. Since overexpression of this construct still reduces viability, the VP16AD may 

not function to substitute for all essential activities found within the C-terminal of 

Abfl. To date, the only transactivation domain tested to substitute for the C-terminal 

of Abfl is a domain within Rapl, which maintained the viability of the cell 

(Goncalves et al., 1996). Alternatively, given that over expressing Abfl is also lethal, 

overexpression of the competitor may promote this phenotype by emulating the 

endogenous protein (Sopko et al., 2006).

As previously detailed for the Gal4 and H IF-la DBDs, heterologous fusion of 

the ERa LBD to an Abfl DBD inhibits DNA binding (Fig. 5.11 and 5.12, Nalley et 

al., 2006; Yu and Kodadek, 2007). This inhibition by virtue of fusion to a HBD is not 

limited to DNA binding, and has been shown to regulate a wide variety of activities 

including kinases, recombinases and enzymes such as p-galactosidase (Picard, 1999). 

Interestingly, addition of a single ERa LBD to the Abfl DBD did not fully inhibit 

DNA binding activity of the competitor (Fig. 5.11). This is in contrast to studies with 

Gal4 and HIF-la, however in these cases the target to be inhibited was far smaller. 

The Gal4 competitor included just aal-93 of GaI4 next to the HBD. Although the 

HIF-la competitor included aa 1-390, this domain includes both a DBD and a HIF-lp
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interaction domain where inhibition of either inhibits functional DNA binding (the 

protein binds DNA as a heterodimer with HIF-ip) (Yu and Kodadek, 2007). 

Autonomous regulation through HBD fusion is considered to occur through an 

interaction between the HBD and Hsp90 in the absence of a ligand, which functions to 

sterically interfere with proximal regulatory domains (Picard, 1999; Picard, 2006). A 

corollary of this prediction is that domains distal to the HBD will not be under 

hormonal regulation. In support of this, ERa LBD repression of FLP recombinase (in 

the absence of a hormone) is stronger when the N-terminal domain of the LBD is 

deleted thus bringing the recombinase sequence more proximal to the HBD (Nichols 

et al., 1997). Similarly, fusion of the adenovirus El A protein to the glucocorticoid 

receptor LBD confers complete hormonal dependence for transcriptional activation of 

targets genes (Picard et al., 1988). However if a 500aa intramolecular spacer is added 

between El A and the HBD, the repressive activity of the HBD is lost, and even a 

lOOaa spacer causes partial derepression (Picard et al., 1988). The latter result 

suggests that the ERa LBD C-terminal to the Abfl DBD (aal-530) may not have any 

influence upon the zinc finger of the Abfl DBD. However, the zinc finger of Abfl 

alone is not sufficient for DNA binding both in vitro and in vivo, therefore it is likely 

that a single C-terminal ERa LBD cannot fully inhibit the activity of the putative HtH 

motif of the Abfl DBD either (Cho et al., 1995; Rhode et al., 1992). Over expressing 

the C-terminal fused ERa LBD competitor reduced cell viability and growth and this 

correlates with the ability of the competitor to bind DNA in the absence of hormonal 

activation (see above). Furthermore, it was found that over expressing a competitor 

with an N-terminal ERa LBD resulted in an identical phenotype and was thus 

assumed to similarly bind DNA in the absence of hormonal activation (data not 

shown). However, when a competitor with an ERa LBD both N and C-terminal to the 

Abf DBD was over expressed, the product neither reduced viability or cell growth, 

and could only bind DNA at NAT4 in the presence of p-oestradiol (Fig. 5.12). In the 

absence of P-oestradiol this construct was unable to bind NAT4 despite the fact that 

-90%  of the occupancy of Abfl was lost from this site under the conditions tested, 

and therefore could not prevent the competitor binding due to steric hindrance. It is 

believed that this is the first ever example of using two HBDs to regulate protein 

function in this way.
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When the double ERa LBD competitor was induced by P-oestradiol it was 

observed to occupy NA T4 at a far lower level than that of the competitor with only a 

C-terminal ERa LBD (compare Fig. 5.111 with 5.12). This is despite the fact that the 

former competitor was expressed under the stronger TDH3 promoter (Fig. 5.8, 

Mumberg et al., 1995). Therefore it is possible that the inclusion of a large N-terminal 

polypeptide (>300aa in total) interferes with the ability of the Abfl DBD to interact 

with DNA. However, it is worth noting that the occupancy of the competitor with two 

ERa LBDs would be expected to be lower than a competitor with one ERa LBD if the 

concentration of P-oestradiol was limiting, since the former should require at least 

double the concentration to be fully alleviated of HBD regulation (this is examined in 

Chapter 6). HBDs are also known to dimerize albeit with a weak interaction, and thus 

two ERa LBDs may stabilise intermolecular dimerization between the competitor 

proteins more efficiently than one LBD (Picard, 1999). Furthermore, the double ERa 

LBD has the potential to form intramolecular dimerization interactions. In either case, 

this would lower the pool of free competitor proteins to bind DNA.

The results from Fig. 5.11 and 5.12 suggest that the inclusion of the VP16AD 

has little influence upon the ability of the competitor to bind chromatin in vivo. 

Nevertheless, these results are obtained in the absence of competition from Abfl. 

Whilst this does establish that the competitor does not require the VP 16 AD for DNA 

binding in vivo, it does not provide an indication of the efficiency of competition 

against endogenous Abfl occupancy.

Within the following chapter the tools constructed here were subsequently 

used to determine appropriate reaction conditions for Abfl competitive ChlP and 

ultimately utilised to explore the in vivo kinetics of Abfl DNA binding both in the 

absence and presence of UV damage.
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6. Investigating Abfl DNA binding kinetics using 
Abfl competitive ChlP

6.1 Introduction

An accurate description of the molecular mechanism of Abfl, as part of the 

GGR complex, must include an understanding of DNA binding kinetics since this can 

significantly alter the interpretations of ChlP data (see Chapter 1.6 and Chapter 5). In 

addition, several lines of evidence suggest that changes in the DNA binding kinetics 

of Abfl may be mechanistically linked to GGR. Firstly, data from our lab has recently 

identified a physical interaction between Abfl and the 19S by co- 

immunoprecipitation (N.Humphryes, Thesis (2010)). To date, site specific DNA 

binding by three TFs (Gal4 DBD-VP16, Pho4 and p53) has been demonstrated to be 

displaced from a DBS by an activity within the 19S (Ferdous et al., 2007; Kim et al., 

2009). In all cases, a physical interaction between the TF and the 19S was necessary 

for the displacement from a DBS, and this interaction occurred at the AD for both p53 

and Gal4-VP16AD. Therefore, the 19S may function to promote the displacement of 

Abfl at DBSs in vivo. Interestingly, both the p53 AD and VP 16 AD have been shown 

to functionally substitute for the Abfl AD at an origin of replication, potentially 

indicating that the C-terminal of Abfl harbours an interaction domain with the 19S 

(Li et al., 1998). Secondly, monoubiquitylation of a TF functions to allosterically 

inhibit the 19S and attenuate its capacity to displace TF DBS binding (Archer et al., 

2008b; Ferdous et al., 2007). Both Rad7 and Rad 16, together with Cul3 and Elcl, are 

functional members of an ECS type E3 ubiquitin ligase, which has previously been 

demonstrated to ubiquity late Rad4 in response to UV (Gillette et al., 2006; Ramsey et 

al., 2004). Therefore, Abfl, as a part of the GGR complex, physically interacts with 

members of a UV dependent ubiquitin ligase. This ubiquitin ligase could therefore 

regulate Abfl DNA binding kinetics by modulating a functional interaction with the 

19S. Alternatively, an ubiquitylation event could initiate proteolytic turnover of Abfl 

at a DBS. In either case, this would regulate the half-life of the AbfLDBS interaction. 

As previously discussed with transcription, this could potentially regulate the 

mechanism by which Abfl promotes efficient GGR (see Chapter 1.6 for discussion).

A second activity within the GGR complex could also mediate changes in 

Abfl DNA binding kinetics. As previously discussed, the GGR complex is
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hypothesised to translocate from Abfl binding sites in response to UV as part of the 

molecular mechanism of GGR (see Chapter 1.5.5 and 4). This process is predicted to 

be catalytically driven by the known translocase activity of Rad 16, which functions to 

promote superhelical torsion in DNA and has recently been shown to promote 

chromatin remodeling (see Chapter 4.1, Yu et al., 2004; Yu et al., 2009; Yu et al., 

2011). Chromatin remodelling by the Snf2 protein SWI/SNF has previously been 

demonstrated to displace TF binding of both the androgen receptor and glucocorticoid 

receptor from a DBS (Fletcher et al., 2002; Klokk et al., 2007). A second member of 

the Snf2 superfamily, Rsc2, has also been shown to increases the kinetics of Acel 

binding in vivo; this is also predicted to occur through chromatin remodelling 

(Karpova et al., 2004). Therefore, the rapid turnover of Abfl DNA binding at Abfl 

binding sites could represent where Rad 16 translocates and promotes chromatin 

remodelling in response to UV.

The aim of the current study is to use Abfl competitive ChlP for the analysis 

of Abfl DNA binding kinetics both in the absence and presence of UV damage. These 

datasets could then be compared to the Rad 16 binding datasets, as well as CPD repair 

and histone acetylation to investigate the relationship between Abfl DNA binding 

kinetics and GGR. The data presented in this study demonstrates that the exchange of 

the competitor for Abfl at a DBS is incomplete when the competition reaction is in 

equilibrium. At least one potential caveat is identified when interpreting data of this 

nature. The results indicate that at present, the current Abfl competitor adopted for 

the analysis of Abfl DNA binding kinetics may require further optimisation for this 

investigation.
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6.2 Materials and methods

Strains used in this study

Strain Genotype Source
BY4742 MATo, his3A 1 leu2A 0 lys2A 0 ura3A 0 Euroscarf
JCA30 MATa, trplA his3A200 ura3-52 lys2-801 ade2-l 

gal ABF1 HIS3a
(Rhode et al., 
1992)

JCA31 MATa, trplA his3A200 ura3-52 lys2-801 ade2-l 
gal abfl-1 HIS3a

(Rhode et al., 
1992)

SX46a MATa, ade2 his3-532 trp 1-289 ura3-52 (Reed et al., 
1999)

BY4742 pRS316 BY4742 pRS316 (URA) Commercial
plasmid

BY4742
pCCG516

BY4742 pRS316-prTDH3- ERaLBD-Abf:aal- 
530-ERaLBD

This study

BY4742
pCCG616

BY4742 pRS316- prTDH3- ERaLBD-Abf:aa 1 - 
530-ERaLBD-VP 16AD

This study

BY4742
pCCG616A

BY4742 pRS316- prTDH3- ERaLBD-Abf:aa 1 - 
530-ERaLBD-Abfl :aa531 -680

This study

BY4742
pCCG616R

BY4742 pRS316- prTDH3- ERaLBD-Abf:aal- 
530-ERaLBD-Rap 1 :aa582-692

This study

JCA30
pCCG616

JCA30 pRS316- prTDH3- ERaLBD-Abf:aal-530- 
ERaLBD-VP 16 AD

This study

JCA31
PCCG616

JCA31 pRS316- prTDH3- ERaLBD-Abf:aa 1-530- 
ERaLBD-VP 16 AD

This study

JCA31 
pGMAl 14

JCA31 pRS314- prTDH3- Myc- Abfl This study

SX46a pCCT314 SX46a pRS314- prTEF2- Abf:aal-530-ERaLBD This study

Cloning

All PCR conditions, restriction assays and cloning techniques are described in 

Chapter 2.3.

The promoter and ORF of the Abfl competitor was restricted from pCCG514 

or pCCG614 as a BamHI/XhoI fragment and inserted into the multiple cloning site of 

pRS316 to give pCCG516 and pCCG616 respectively.

To produce the Myc tagged Abfl protein used in Fig. 6.5, Abfl was amplified 

from genomic DNA (BY4742) using the primers ABF1 IMF and ABF1 2924MR 

with the PCR conditions given in Chapter 2.3.2. ABF 1 1 MF  introduces part of a Myc 

tag 5’ to the Abfl ORF, which includes an Aval restriction site. ABF1 2924MR 

introduces two STOP codons and an Aval restriction site 3’ to the end of the Abfl 

ORF. The PCR was Aval restricted and replaced the Aval enclosed competitor ORF 

of pCCG314 to give pGMA 114.
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The incorporation of Abfl (aa531-680) or Rapl (aa582-692) to the C-terminal 

of the Abfl competitor was achieved using a fusion PCR strategy. Abfl (aa531 -680) 

was amplified with the primers ABF1 1593F and ABF12193R from genomic DNA 

(BY4742). ABF12193R introduces a NLS and two STOP codons 3’ to the Abfl 

domain. The ERa LBD was amplified from pCCA314 with the primers ABF1 1437F 

and A B F l f u s R .  A B F l f u s R  introduces the first 50 nucleotides of Abfl aa531-680 

3’ to the ERa LBD. The PCRs of the ERa LBD and Abfl aa531-680 were fused using 

the primers ABF1 1437F and ER_R#3. The fusion PCR was Agel/Xhol restricted 

and replaced an Agel/Xhol domain within pCCG616 to give pCCG616A. Rapl 

(aa582-692) was added with an identical strategy. The Rapl domain was amplified 

with the primers RAP1 1746F and RAP1 2076R from genomic DNA (BY4742). The 

ERa LBD was amplified from pCCA314 with the primers ABF1 1437F and 

RAPl fus R. The two domains were fused using the primers ABF1 1437F and 

ER_R#3 and the product was inserted as an Agel/Xhol fragment in pCC616 to give 

pCCG616R.

All primers described above are listed in appendix V.

The sequences of all the plasmids created in this study are available on the 

accompanying DVD (D:/Plasmids).

Yeast transformation

Strains were transformed with the plasmids described in this study as detailed 

in Chapter 2.4.

Western blotting

Western blots were performed as described in Chapter 2.6.3 using yeast whole 

protein lysates (Chapter 2.6.1) and the conditions detailed in Chapter 5.2. To IP Myc 

tagged Abfl from protein lysate of JCA31 expressing pGMA114, 180pg of protein 

was used for an IP as described in Chapter 2.7.1. 5pl of a-Myc antibody (9B11 

mAB#2276, Cell Signalling Technology) was used to IP Myc tagged Abfl.
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Competitive ChlP

Optimisation of hormone: A ImM stock of p-oestradiol (Sigma-Aldirch, 

E8875) in ethanol was used to activate the competitor at a final concentration of 1, 10 

or 20pM p-oestradiol. A 2mM stock of p-oestradiol in dimethly sulfoxide (DMSO) 

was used to activate the competitor at a final concentration of 200pM.

All other steps in the protocol were performed as detailed in Chapter 5.2. 

Competitors expressed on pRS316 were selected for using synthetic dropout media (- 

Ura). ChlP analysed at NAT4, ARS121 and HMLa used the primers given in Chapter

5.2.

Novel qPCR primers used: 

prSRB2:

Forward. 5 ’- GATAACGCACGCAAAACTCA 

Reverse: 5’- GCT GGCT GG AG A AC AAT AGC

abfl-1 Competitive ChlP

This was performed as described in Chapter 5.2.

Data values o f qPCR quantification are available in appendix V.

Competitive ChlP-on-chip

BY4742 pCCG616 was grown in synthetic dropout media (-Ura) at 30°C up to

a density of 2*10? cells/ml and UV irradiated as described in Chapter 2.2. During the 

process of (mock/) UV treatment p-oestradiol was added to PBS prior to UV 

treatment to a final concentration of 20pM from a stock of ImM in ethanol. 

Following UV treatment cells were resuspended in synthetic dropout media (-Ura) 

identically supplemented with 20pM p-oestradiol. ChlP was performed as detailed in 

Chapter 2.7, using the conditions given in Chapter 5.2. All ChlP-on-chip datasets 

were normalised using shift-by-mode only, as described in Chapter 3.

ChlP-on-chip chromosomal maps

Chromosomal maps of the competitive ChlP-on-chip data are available on the 

accompanying DVD (D:/Chapter 6/ChIPchip).



Chapter 6

6.3 Results

Prior to the investigations presented in this chapter, the promoter and ORF of 

the Abfl competitors from plasmids pCCG514 and pCCG614 (Chapter 5) were 

inserted into pRS316 to give the plasmids pCCG516 and pCCG616. These plasmids 

were transformed into yeast strain BY4742 such that competitive ChlP-on-chip could 

be performed in an isogenic strain to that of the Abfl/Rad 16 ChlP-on-chip studies 

presented in Chapters 3 and 4.

6.3.1 Optimising hormone concentration for competitive ChlP

As demonstrated in Chapter 5, the Abfl competitor did not occupy NAT4 to a 

high level following hormonal induction, even in the absence of endogenous Abfl 

binding when investigated using the abfl-1 mutant (Fig. 5.12). One possible 

explanation for these observations is that the concentration of p-oestradiol employed 

in these experiments was insufficient to complete competitor activation when highly 

expressed. In order to test this possibility, competitive ChlP was activated for 4 hours 

using a range of p-oestradiol concentration. The subsequent occupancy of Abfl and 

the competitor was analysed at NAT4 and the HMLa I-silencer (Fig. 6.1). 

Complicating this experiment is the fact that p-oestradiol has a low solubility in water, 

estimated to be ~5.5pM (Shareef et al., 2006). However, the solubility of p-oestradiol 

is improved in ethanol and is even higher when dissolved in DMSO for example p- 

oestradiol has a solubility of ~700pM when dissolved in 1:4 DMSO:PBS (see 

www.cavmanchem.com/pdfs/1000631). Competitive ChlP was activated by p- 

oestradiol dissolved in either ethanol or DMSO, however, in either case the precise 

concentration of soluble p-oestradiol is unknown (see materials and methods). As 

shown in Fig. 6.1, increasing the concentration of p-oestradiol from lpM (as used in 

the experiments in Chapter 5) to 20pM effectively increased the occupancy of the 

competitor at both NAT4 and the HMLa I-silencer. This also resulted in a concurrent 

loss of Abfl occupancy. However, attempts to further this exchange by adding p- 

oestradiol at a concentration of 200pM in DMSO did not significantly improve the 

competition reaction beyond that observed for 20pM p-oestradiol in ethanol.

http://www.cavmanchem.com/pdfs/1000631
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Concentration of P-oestradiol (|iM) Concentration of p-oestradiol (nM)
Figure 6.1. The influence of P-oestradiol on Abfl competitive ChlP at NAT4 and HMLa 4 hours after 
activation. The experiment was performed in BY4742 transformed with pCCG616. The use of *<’ is in 
reference to the fact that the precise concentration of p-oestradiol used in these experiments is unknown 
(see text for details).

6.3.2 Examining the efficiency of the competition reaction

Coincident with p-estradiol optimisation, the activity of Abfl competitive 

ChlP was studied both one and two hours after hormonal activation. As shown in Fig.

6.2, when the competitor was induced with the optimal concentration of 20pM P- 

oestradiol, the competition reaction reached equilibrium at NAT4 within one hour 

(Fig. 6.2B and C). This was also observed to be true at the HMLa locus (Fig. 6.3C). 

Therefore, the reaction conditions chosen for p-estradiol optimisation (4 hours 

following activation), were sufficient for the competition reaction to complete and 

thus demonstrate that 20pM p-estradiol is adequate for maximal activation of the 

competitor. This concentration was adopted for all subsequent experiments.

Two further experiments were performed under the same experimental 

conditions as above. Firstly, p-oestradiol was added to a strain transformed with an 

empty vector (not expressing an Abfl competitor) (Fig. 6.2A). In this circumstance, 

p-oestradiol failed to alter the occupancy of Abfl at NAT4. This suggests the hormone 

has minimal effect upon the endogenous protein’s ability to bind DNA. It also 

demonstrates that the loss of Abfl must be a direct consequence of competition 

following hormonal activation in cells expressing the competitor. Secondly, the 

reaction was performed with cells expressing the competitor devoid of the VP 16 AD 

(Fig. 6.2B). As shown, the competition reaction also reaches equilibrium within one 

hour at NAT4, with indistinguishable exchange to that observed with the competitor 

with a VP 16 AD. Both competitors were also found to be expressed at similar levels 

(Fig. 6.2D) and thus must have a similar capacity to compete with endogenous Abfl

Page| 186
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for occupancy. Consequently, further studies were performed using only the 

competitor with the VP 16 AD.

PRS316 (empty vector) at NAT4

•1 tO 120
Time after P-oestradiol addition (mins)

PCC<5516(-AD) at NAT4
■  Abfl

■  Competitor

1 t
111

_ 1 . 1
•1 60 120 

Time after P-oestradiol addition (mins)

2- aa

PCCQ$l$(+AP)pt NAT4 D
■ a m i Competitor 

-AD +AD

i  I
•t tO 120

Time after P-oestradiol addition (mins)

a - Myc 

a-Tub

Figure 6.2. A. ChlP of Abfl performed at NAT4. B. Competitive ChlP at NAT4 using the competitor 
expressed upon pCCG516 (- AD). C. Competitive ChlP at NAT4 using the competitor expressed upon 
pCCG616 (+AD). D. Western blot of the relative expression of the competitor expressed from 
pCCG516 (-AD) and pCCG616 (+AD). All experiments were performed in BY4742.

An important observation from Fig. 6.2 is that when the competition reaction 

has reached equilibrium, the exchange of Abfl occupancy for the competitor is 

incomplete. It was unknown how common this phenomenon would be at Abfl 

binding sites. Furthermore, the rate of exchange between Abfl and the competitor was 

unknown. To gain an understanding into both of these considerations, the competition 

reaction was repeated and analysed 10 minutes, 60 minutes and 120 minutes after 

activation at a range of Abfl binding sites. As shown in Fig. 6.3, at all three loci 

tested, the competition reaction did not reach an equilibrium after 10 minutes 

following P-estradiol addition. Flowever, by 60 minutes the exchange had reached 

equilibrium at all loci since little additional exchange between Abfl and the 

competitor was observed 120 minutes after activation compared with 60 minutes. As

Page | 187
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previously observed, the level of exchange between Abfl and the competitor was 

partial for all sites tested. However, the total occupancy replaced by the competitor 

was different for each example. In contrast to the results presented at NAT4 (Fig. 

6.2C), where the competitor was observed to replace roughly half the occupancy of 

Abfl, at the loci ARS121 and prSRB2 lower levels of exchange between Abfl and the 
competitor are observed.

Abfl com petition at prSRB2

u

1

B Abfl competition at ARS121
14 ■

S 0.

0.2

o I

■  ConnxWDf

-I 10 60 120

Time after P-oestradiol addition (mins) Time after P-oestradiol addition (mins)

Abfl competition at HMLa

u
i

.c
aT 0.6

■
-1 10 60 120 

Time after P-oestradiol addition (mins)

Figure 6.3. Competitive ChlP with BY4742 expressing pCCG616 at the loci prSRB2 (A), ARS121 (B) 
and the HMLa I-silencer (C). Experiments were performed in BY4742.

6.3.3 Potential caveats when investigating DNA binding kinetics at sites of 

incomplete competitor exchange with Abfl

The results shown in Fig. 6.3 could be interpreted to suggest that Abfl DNA 

binding kinetics are more rapid at loci where a greater exchange with the competitor 

has occurred one hour after hormonal activation, than those with little exchange. 

However, in the current experimental setup, the exchange of Abfl for the competitor 

is incomplete when at equilibrium. I hypothesised that the affinity of Abfl relative to 

the competitor for any given locus could influence the relative exchange of the two
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proteins in a manner independent to Abfl DNA binding kinetics. For example, if the 

competitor had a lower affinity for binding at prSRB2 than NAT4, relative to Abfl, 

then little exchange of the two proteins would occur at prSRB2 (as observed).

To investigate these two possibilities, the competitor was activated both in the 

presence and absence of Abfl binding using the JCA30 (Abfl) and JCA31 (abfl-1) 

strains. Abfl DNA binding was diminished by growing cells at the restrictive 

temperature as previously shown (Chapter 5.3) and competitor binding was observed 

at the loci NAT4 and prSRB2, as examples of ‘good’ and ‘poor’ competition 

respectively (Fig. 6.4). Occupancy of Abfl and the competitor were observed -1, 10 

and 20 minutes after hormonal activation. As previously shown (Fig. 6.2C and 6.3A), 

in the presence of Abfl binding the efficiency of competition was greater at NAT4 

than prSRB2. Interestingly, in both examples the competition reaction 20 minutes 

after hormonal activation is similar to the reaction at equilibrium described above 

(Fig. 6.2 and 6.3), suggesting that at both loci the competition reaction completes 

within ~20 minutes. It should be noted, that both the Gal4 and FIIF-la competitors 

required ~20 minutes for full activation to occur in the absence of the endogenous 

protein (Nalley et al., 2006; Yu and Kodadek, 2007). By significantly reducing the 

occupancy of Abfl using the abfl -1 mutant, it can be seen that the activation of the 

competitor is also incomplete 10 minutes after activation in the absence of Abfl 

binding. This strongly suggests that at NAT4 andprSRB2, the competitor requires ~20 

minutes for full induction, and at these sites the kinetics of Abfl binding are rapid 

such that they do not delay binding of the competitor to the loci (Fig. 6.4B and 6.4D). 

Furthermore, in the abfl-1 mutant (Fig. 6.4B and 6.4D) the level of competitor 

binding at NAT4 is higher than prSRB2 relative to the wild type levels of Abfl 

binding. This explanation is true both 10 minutes (during competition) and 20 minutes 

(when equilibrium is reached) after hormone activation. This might suggest that the 

occupancy of the competitor for these two sites is different in a manner independent 

to endogenous Abfl binding, and this may influence the exchange of the two proteins, 

rather than Abfl DNA binding kinetics. These results demonstrate that the 

interpretation of competitive ChIP results at loci where protein exchange is 

incomplete, may not accurately reflect Abfl DNA binding kinetics.

Page | 189
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Figure 6.4. Competitive ChIP using pCCG616 expressed in either JCA30 (Abfl competition) or 
JCA31 (abfl-1 competition). A and B. compare competition at NAT4. C and D. compare competition at 
prSRB2.

6.3.4 C om paring the protein level of the com petitor to Abfl in vivo

The inefficiency of the competition reaction was surprising given that the 

competitor was expressed under the powerful TDH3 promoter (see Chapter 5). If the 

competitor was highly abundant relative to Abfl, it should be expected to effectively 

compete for Abfl DBSs. In order to establish whether this was the case, the relative 

intracellular levels of the two proteins were compared. An effective antibody that 

could recognise an epitope shared in both the competitor and Abfl could not be 

acquired (data not shown). Consequently, several attempts were made to Myc tag the 

endogenous Abfl protein. However, this was also an unsuccessful strategy (data not 

shown). Therefore, the ORF of pCCG314 was altered to give a construct which 

contained the exact full length ORF of Abfl with an N-terminal Myc epitope. The 

protein was expressed in JCA31 (abfl-1), the only strain identified to stably express 

Myc tagged Abfl. The Myc tagged protein was subsequently isolated by
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immunoprecipitation from whole cell extracts. This protein provided a convenient 

intermediate to directly compare the endogenous levels of Abfl and the competitor by 

western blot (see Fig. 6.5 for details). As shown in Fig. 6.5, the competitor is 

expressed ~4-fold higher than endogenous Abfl.

Expression Myc-Abfl (A) Competitor (C) (Myc-LBD-DBD-LBD-VP16)

Mock IP Myc IP

a -Abfl

^  A
a - Myc

5Lane 1 2 3 4 6 7

Figure 6.5. Picture shows a single western blot probed with a-Abfl and then reprobed with a-Myc. 
Left hand side; Myc tagged Abfl (A) expressed in JCA31 is isolated by a-Myc IP (Lane 2). The mock 
IP fails to isolate Abfl (Lanel) demonstrating all Abfl in Lane 2 is Myc tagged. Right hand side; 
Protein WCE from BY4742 expressing the competitor (C) and endogenous non-tagged Abfl. A serial 
dilution of WCE runs from Lanes 3-7. a-Abfl developed membrane; Lane 3 demonstrates that BY4742 
has equivalent levels of Abfl to the level of Myc tagged Abfl loaded in Lane 2. a-Myc developed 
membrane; Lane5, which has four fold less BY4742 WCE than lane 3, has an equivalent level of 
competitor to the Myc tagged Abfl in Lane 2. Thus the competitor expressed in BY4742 is ~4 fold 
higher than the endogenous Abfl protein level.

6.3.5 Attempts to further improve the efficiency o f  A b fl  competitive CHIP

As demonstrated in 6.3.3, the interpretation of Abfl competitive ChIP is 

difficult when the exchange of Abfl and the competitor is incomplete. Therefore, 

adapting the assay such that the competitor could replace Abfl occupancy entirely 

(>90%) was a high priority. Given that the competitor was only in 4-fold molar excess 

to Abfl, further overexpression of the competitor was attempted by incorporating the 

construct into the multicopy plasmids pRS426 or YEplacl95. However, a strain that 

stably expressed either competitor (with or without the VP 16 AD) could not be 

isolated.
If one considers that a competitor with aa 1-530 of Abfl, expressed 4-fold 

higher than Abfl, has a much lower affinity for binding in vivo than the endogenous 

protein, this may suggest that the C-terminal aa531-731 of Abfl is important for DNA 

binding in vivo, and that the VP 16 AD does not functionally substitute for this 

activity. To test this hypothesis, the VP 16 AD of the competitor was replaced with 

Abfl aa531-680. This domain ensured that the competitor remained immunologically
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distinguishable from the endogenous protein. In addition, the VP 16 AD was 

substituted for a similar domain from Rapl (aa582-692) which has been demonstrated 

to functionally substitute for the Abfl C-terminal in cell survival assays (Goncalves et 

al., 1996). Both competitors were activated for 4 hours and tested at the prSRB2 locus. 

However, neither proved to be an effective competitor at this site (Fig. 6.6). As a final 

attempt, the competitor with a single C-terminal ERa LBD (from Chapter 5) was also 

tested but was observed to be equally ineffective at prSRB2 (Fig. 6.6).

I -

PCCG516A (A bfl AD) i t  prSRB2

Time after 0-oestradtoi addition (hrs)

p«<5516R IRaal API atflrSRM

PCCT414 at prSRB2

Time after 0-oestradio< addition (hrs)

Prom oter TDH3

Myc LBD DBD LBD

Abfl AD (aa531-680)

Time after ^-oestradioi addition (hrs)

TDH3

Competitor 

Myc LBD DBD LBD

Rapl AD (aa582-692)

■aan

L

Promoter tefe

Competitor 

Myc DBD LBD

VP 16 AD (aa424-490)

Figure 6.6. Competitive ChIP at prSRB2 4 hours following p-oestradiol activation. The competitor 
constructs are shown on the right, and ChIP results to the left. pCCG516A and pCCG516R were 
expressed in BY4742. pCCT414 was expressed in SX46a.
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6.3.6 Genome-wide analysis of Abfl competitive ChIP both in the presence and 

absence of UV damage

Despite the difficulties presented for the Abfl competition reaction, Abfl 

competitive ChIP was performed genome-wide to try and identify regions of the 

genome in which the competitor provided effective competition with Abfl, and 

analyse how the kinetics of Abfl binding might differ in response to UV damage. 

ChlP-on-chip was performed in a similar manner to that previously described 

(Chapter 3). Abfl competitive ChIP was initiated in BY4742 expressing pCCG616 

with 20pM P-oestradiol. Addition of oestradiol was performed during mock UV (cold 

PBS only) or UV treatment of cells. Cells were subsequently resuspended in selective 

media containing 20pM P-oestradiol and incubated for one hour. Cells were fixed 

prior to UV treatment (No treatment), after 10 minutes incubation following UV 

treatment (10 minutes) and after 60 minutes incubation following UV treatment (60 

minutes). Based upon the experiments presented in Fig. 6.3 and Fig. 6.4, these 

incubations were hypothesised to mostly represent where the competition reaction is 

in dynamic exchange (10 minutes) and has reached equilibrium (60 minutes). As 

shown in Fig. 6.7, in the absence of UV damage binding of the competitor at Abfl 

binding sites is not observed to occupy at a high level, even following 60 minutes 

after activation. This suggests that the ability of the competitor to compete with Abfl 

binding is limited throughout the genome. An alternative interpretation of these data is 

that endogenous Abfl is stably bound at DBSs in the absence of UV.

In response to UV damage, the occupancy of the Abfl competitor is observed 

to increase at some Abfl binding sites to a moderate degree. Binding of the 

competitor is rapid and occurs within 10 minutes after p-oestradiol addition (Fig. 6.7). 

One interpretation of these data is that the half live of Abfl binding at some DBSs is 

shorter in response to UV irradiation. However as discerned in 6.3.3, the biological 

significance of partial exchange between the competitor and Abfl is difficult to 

interpret. It should be noted that in the absence of UV damage the competitor is not 

observed to occupy Abfl binding sites to an equivalent level, even following one hour 

after activation. This could suggest that the ability of the competitor to bind at these 

sites is non-equivalent in the presence and absence of UV damage. As previously 

discussed this might suggest that the levels of competitor binding do not represent 

differences in Abfl DNA binding kinetics (6.3.3, see also discussion). These data 

suggest that the competitor may require further optimisation to improve the
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confidence of results obtained using the reagent before biological interpretations of 

Abfl DNA binding kinetics can be made.

Finally, whilst the reasons for the differences observed for competitor binding 

at Abfl sites in the presence and absence of UV damage were not resolved, I wished 

to investigate how the competitor behaved after UV damage relative to the location of 

the Abfl binding site. Therefore, the binding of the competitor in the presence of UV 

damage, ten minutes after p-oestradiol, was plotted at the Abfl binding sites classified 

according to their genomic location. Interestingly, significant binding by the 

competitor was only observed at Abfl binding sites within the promoter regions (Fig. 

6.8). These observations correlate with the preferential location the GGR complex and 

where Rad 16 dependent acetylation and efficient GGR appear to be organised from 

(Chapters 3 and 4). This suggests that this phenotype may be mechanistically related 

to the activity of GGR.
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Figure 6.7. Composite profile centred at all Abfl binding peaks defined in the unirradiated condition 
(Chapter 3). All x-axes represent distance from an Abfl binding peak (nucleotides). Above 6 plots 
represent data taken in the absence of UV irradiation. Blow 6 plots represent data taken in the presence 
of UV irradiation. Experiments were performed in BY4742.
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Figure 6.8. Binding of Abfl (from the U dataset) was plotted using composite profiles, and split 
according to the genomic location of the Abfl binding site (left hand graphs). Binding of the 
competitor in the presence of UV damage, 10 minutes after addition of p-oestradiol was plotted in the 
same manner (right hand graphs). All x-axes represent distance from an Abfl binding peak 
(nucleotides). All Abfl binding peak positions were derived from classifications determined in Chapter 
3.
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6.4 Discussion

The aim of the present study was to use the Abfl competitor developed in 

Chapter 5 for the analysis of Abfl DNA binding kinetics by competitive ChIP before 

and after UV. The preliminary results presented in this chapter indicate that there may 

exist a link between Abfl DNA binding kinetics and GGR. However at present, the 

Abfl competitors designed in this study may require further optimisation for this 

investigation. The Abfl competitor is only able to partially replace endogenous Abfl 

occupancy at an Abfl binding site, this holds true genome-wide. The results presented 

here suggest that differences between competitor and Abfl exchange at two loci 

might not accurately reflect differences in the DNA binding kinetics of Abfl, if the 

extent of exchange is different at the two sites when at equilibrium. When the Abfl 

competition reaction is performed in the absence and presence of UV damage, the 

competitor is found to rapidly occupy an Abfl DBS only in the presence of UV 

damage, suggesting the kinetics of Abfl DNA binding alter in response to UV. 

However, it appears once the competition reaction has reached equilibrium, the level 

of exchange between Abfl and the competitor is non-equivalent in the absence and 

presence of UV damage. Therefore, it is unknown whether the differences accurately 

reflect changes in Abfl DNA binding kinetics as a result of UV damage.

At the locus NA T4, when the competition reaction is activated with the optimal 

concentration of 20pM p-oestradiol the occupancy of the competitor and Abfl reaches 

an equilibrium by one hour (Fig. 6.1 and Fig. 6.2). The concentration of hormone used 

in these studies is considerably higher than that previously adopted for Gal4 

competitive ChIP, however it should be noted that the Abfl competitor is expressed at 

a much higher level than the Gal4 competitor, and includes two copies of the ERa- 

LBD (see Chapter 5.3, Mumberg et al., 1995; Nalley et al., 2006). Following 

activation, the competitor successfully competes with Abfl for binding at NAT4 in 

vivo (Fig. 6.2B and C). This conclusion is supported by the observation that addition 

of P-oestradiol in the absence of a competitor does not result in a loss of occupancy of 

Abfl at NAT4 (Fig. 6.2A). In the absence of a competitor, addition of p-oestradiol 

appears to have little effect upon the level of Abfl binding. This is in contrast to a 

recent report which demonstrated that the levels of Gal4 binding at the GAL 1/10 

promoter significantly increase in response to addition of the hormone; this has 

complicated the interpretations of data using the Gal4 competitor (Collins et al., 

2009). The exchange of Abfl and the competitor one hour after hormone activation
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suggests that Abfl does not stably occupy this locus in vivo with a half life in the 

range of hours. Although the data is limited, this conclusion appears to be true for a 

large number of Abfl binding sites (Fig. 6.3 and 6.7). Interestingly, at both NAT4 and 

prSRB2 the competition reaction completes within ~20 minutes (Fig. 6.4). It was 

previously shown for both the Gal4 and HIFla competitor that in the absence of the 

endogenous protein, the competitor required ~20 minutes for full occupancy at a locus 

in vivo (Nalley et al., 2006; Yu and Kodadek, 2007). When Abfl binding at NAT4 is 

diminished using the abfl-1 temperature sensitive mutant, the competition reaction 

similarly requires >20 minutes for full activation (Fig. 6.4A). Therefore, as previously 

observed for other competitors, the rate of association on chromatin for the Abfl 

competitor is limited within this time period, and this could be due to a factor other 

than Abfl binding kinetics. Because all three competitors (Abfl, Gal4, HIFla) have 

been shown to be limited in this manner, the mechanism is likely to be the same for 

all. This could include the rate of hormone diffusion through the cell, the association 

rate of hormone-LBD complexes or the dissociation rate of LBD-Hsp90 complexes. 

However, because Abfl appears to play fundamental roles in the structure of 

chromatin, the ‘slow’ activation of the competitor for the results presented in this 

study could also be due to a fundamental difference in chromatin structure in the abfl - 

1 mutant (see Chapter 1.5, Lee et al., 2007b; Yarragudi and Morse, 2006). These data 

suggest that at NAT4 and prSRB2 the kinetics of Abfl DNA binding are rapid such 

that the association rate of the competitor is not restricted by this parameter. This 

suggests that Abfl binds at these sites with a short half-life (t‘/2 < ~5mins). It is noted 

that the confidence of these conclusions is very much limited due to the inefficiency 

of the competition reaction.

At present, the exchange between Abfl and the competitor is only partial 

when the reaction is at equilibrium, and at the majority of Abfl binding sites very 

little exchange between the two proteins is observed (Fig. 6.2, 6.3, 6.6, 6.7). These 

observations may not be entirely due to stable binding of Abfl inhibiting the 

competitor from binding at DBSs since neither diminishing the occupancy of Abfl 

with abfl-1, nor allowing the competition reaction to proceed for long periods of time 

permit high level competitor binding (Fig. 6.2, 6.3, 6.4, 6.6, 6.7). This suggests that 

the competitor is unable to efficiently bind DNA in vivo, or it is expressed at levels 

far lower than endogenous Abfl. The latter proposition was investigated and the 

protein level of the competitor was demonstrated to be ~4 fold higher than the Abfl
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protein level (Fig. 6.5). Therefore theoretically if the competitor was equally efficient 

at binding DNA in vivo, at equilibrium with Abfl this should occupy -80% of an 

Abfl DBS. This strongly suggests that the competitor cannot efficiently bind DNA in 

vivo. How might the competitor be restricted in this function? Previous studies have 

suggested that the AD of a TF functions to stabilise the DNA binding kinetics of a 

protein in vivo, which can influence the level of protein binding (see Chapter 1.6, 

Ferdous et al., 2007; Klokk et al., 2007; Nalley et al., 2006; Reid et al., 2003; 

Stavreva et al., 2004; Yu and Kodadek, 2007). However, neither the VP 16 AD, Rapl 

AD nor the Abfl AD was observed to improve the efficiency of the competitor to 

bind DNA in vivo (Fig. 6.2, 6.6). The inclusion of the Abfl AD (aa 531-680) to the 

competitor incorporates both the CS1 and CS2 domains of Abfl, known to be 

important for the protein’s function in vivo (Li et al., 1998; Miyake et al., 2002). It 

was previously shown that cells expressing Abfl aa 1-662 have a growth phenotype 

indistinguishable from those expressing full length Abfl (Miyake et al., 2002). The 

ability of Abfl to bind DNA in vivo is essential for robust cell growth, strongly 

suggesting that Abfl aa 1-662 contains all the amino acids necessary for efficient 

DNA binding in vivo (Rhode et al., 1992). Therefore the inability of the competitor 

with the Abfl DBD (aa 1-530) and Abfl AD (aa 530-680) to efficiently bind DNA in 

vivo suggests that the two ERa LBDs present within this recombinant protein restrict 

this activity, even in the presence of p-oestradiol. This observation was also proposed 

in the previous chapter (see Chapter 5.4 for discussion), where it was shown that the 

addition of a second ERa LBD N-terminal to the Abfl DBD significantly reduced the 

capacity of the competitor to occupy an Abfl DBS in vivo (Fig. 5.11 and 5.12). Given 

these considerations, the Abfl competitor with a single ERa LBD (C-terminal to the 

Abfl DBD) was tested using the optimal p-oestradiol concentration established in this 

chapter, however, this competitor was equally inefficient at competing for Abfl 

occupancy at prSRB2 (Fig. 6.6). This likely reflects the fact that this protein is 

expressed at a much lower level than the other competitors used in the current study, 

since high level expression of this competitor is lethal (Chapter 5.3).

The experiment designed in Fig. 6.4 investigated whether Abfl DNA binding 

kinetics could be compared between different Abfl binding sites using an incomplete 

competition reaction. The data demonstrated that the different levels of exchange 

between Abfl and the competitor may not be entirely due to differences in the 

kinetics of Abfl DNA binding at the different sites. In this example it was suggested
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that the affinity of the competitor for a DNA binding site, relative to Abfl, may 

influence the level of exchange between the two proteins (Fig. 6.4). Therefore, Abfl 

DNA binding kinetics at two DBSs may only comparable if the level of exchange 

between Abfl and the competitor is equivalent when the competition reaction is in 

equilibrium (see Fig. 6.8 for graphical explanation). Practically, this is best achieved 

by expressing a competitor that functions to replace the occupancy of Abfl at all 

DBSs (>90%). In this circumstance, the time taken to reach this equilibrium provides 

a qualitative measurement of Abfl DNA binding kinetics.

Despite the partial exchange between the competitor and Abfl at equilibrium, 

some preliminary experiments were performed to examine if changes in Abfl DNA 

binding kinetics may be mechanistically coupled to GGR. In the presence of UV 

irradiation, higher levels of competitor binding are observed 10 minutes after 

activation of the competition reaction, than seen in the absence of UV damage. This 

could suggest that there is a change in the binding kinetics of Abfl in the presence of 

UV damage. For four loci tested, the data suggested that by one hour the competition 

reaction was in equilibrium in the absence of UV (Fig. 6.2 and 6.3). Therefore, this 

suggests that for many of the Abfl DBS, the competition reaction may be at 

equilibrium one hour following hormonal activation. Given that binding of the 

competitor is not equivalent by one hour in the presence and absence of UV, an 

alternative interpretation of the data is that the affinity of the competitor for Abfl 

binding sites, relative to Abfl itself, is not equivalent in the absence and presence of 

U V damage. Therefore, the difference in the competition reaction experiments may be 

independent of Abfl DNA binding kinetics (see above, 6.3.3). Consequently, at 

present the biological interpretation for the differences in competitor binding in the 

absence and presence of UV damage is unclear. Interestingly, when the competitor 

binding in the presence of UV damage is organised according to the location of the 

Abfl binding site, competitor binding is specifically enriched at promoter regions 

(Fig. 6.8). This correlates with the preferential location of the GGR complex (Chapter 

4) and is where GGR appears to be organised from (Chapter 3), suggesting that the 

competition phenotype may be linked to the activity of GGR. This clearly warrants 

further investigation.
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F i g u r e  6 . 8 .  Graphical representation of potential caveats when comparing DNA binding kinetics at 
sites of partial exchange between Abfl and the competitor. In A, a 50% exchange between Abfl and 
the competitor is complete by timepoint 3. In B a 20% exchange between Abfl and the competitor is 
complete by timepoint 3. However the dissociation rate of Abfl is not necessarily faster in A than B 
since the time taken for the competition reaction to reach equilibrium is the same in both. In D a 50% 
exchange between Abfl and the competitor also occurs, but is complete by timepoint 5. A greater 
confidence in the interpretation of results is provided when comparing the kinetics of C and D. In this 
example, Abfl should dissociate faster at C than D since both competition reactions reach an 
equivalent equilibrium, but C reaches this sooner than D.
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7. General conclusions and future experiments
In S. cerevisiae, the GGR complex is a heterotrimeric complex of Abfl, Rad7 

and Rad 16 necessary for UV dependent histone H3 K9K14 hyperacetylation and the 

efficient repair o f UV damage by GGR (Reed et al., 1999; Teng et al., 1997; Teng et 

al., 2008; Verhage et al., 1994; Yu et al., 2009; Yu et al., 2011). The present study has 

used the powerful technique of ChlP-on-chip to further characterise both the Abfl and 

Rad 16 proteins in a genome-wide context in relation to their roles in GGR. The results 

presented here strongly suggest that GGR is organised by Abfl binding to domains 

within the promoter regions of the yeast genome. In addition, a number of 

characteristics were observed that significantly expand our understanding of how the 

GGR complex functions in vivo both in the absence and presence of UV damage. In 

addition to these studies, this investigation reports the development of a novel tool for 

the analysis o f Abfl DNA binding kinetics in vivo. Preliminary data is reported 

suggesting that changes in this property might be related to promoting efficient GGR. 

The work in this study provides numerous avenues for further research, as discussed 

below.

7.1 Chapter 3. Mapping the genome-wide localisation of Abfl in the absence and 

presence of UV damage

The ability of Abfl to promote GGR correlates with the protein’s site specific 

DNA binding activity (Reed et al., 1999; Yu et al., 2009). In many respects Abfl is 

analogous to canonical TFs; it has the ability to both promote and repress transcription 

and its structure is bipartite, consisting of N-terminal DBDs and a C-terminal AD that 

has been shown to be functionally redundant with many canonical TFs ADs at an 

origin of replication (Cho et al., 1995; Li et al., 1998; Marahrens and Stillman, 1992; 

Miyake et al., 2004). The recent use of ChlP-on-chip for the analysis of genome-wide 

TF binding has significantly expanded our understanding of how transcription is 

organised within the cell (Harbison et al., 2004; Lee et al., 2002b). In addition, 

numerous studies have demonstrated that the DNA binding of many TFs relocalises 

and is thus likely to be regulated in response to environmental stresses such as DNA 

damage (Harbison et al., 2004; Workman et al., 2006). Therefore, the genome-wide 

analysis of Abfl was performed both before and after UV damage to observe whether 

changes in DNA binding of Abfl may be related to efficient GGR. A previous study
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suggested that the site specific DNA binding activity of Abfl promotes efficient 

binding of the GGR complex, and subsequently GGR, at domains within the genome 

to which the protein binds (Yu et al., 2009). Therefore, both Rad 16 dependent histone 

H3 K9K14 acetylation and GGR were investigated in relation to Abfl binding.

In Chapter 3, the localisation of Abfl was observed using ChlP-on-chip both 

before and after UV irradiation. Abfl was shown to bind the genome at thousands of 

sites, and is preferentially localised to promoter regions of the genome. Whilst -3500 

statistically significant (P<0.05) binding peaks were identified, this study suggests 

that Abfl binding is localised to the vast majority of promoter regions in the genome, 

many of which occur at a low level that is not statistically significant. In response to 

UV, Abfl was not observed to relocalise, although the occupancy of Abfl binding 

was observed to fall at a proportion of binding sites. This demonstrates that the GGR 

complex is not recruited to novel Abfl binding sites in response to UV damage. This 

suggested that the GGR complex binds chromatin in the absence of UV damage, 

which was subsequently demonstrated in the proceeding chapter. Although the loss of 

Abfl occupancy at binding sites correlates with the onset of DNA repair, correlations 

between the level of Abfl binding (or UV dependent changes) and CPD repair were 

not observed. Difficulties in correlating TF binding to gene expression studies have 

also been reported, and in these circumstances numerous potential caveats could 

preclude identifying correlations, these include; temporal fluctuations in TF 

occupancy (Karpova et al., 2008; Metivier et al., 2003; Ni et al., 2009), combinatorial 

regulation by numerous TFs (Harbison et al., 2004; Tan et al., 2008; Wang et al., 

2009), positive and negative regulatory activities elicited by the same TF (Ni et al., 

2009; Tan et al., 2008) and indirect regulation (Workman et al., 2006). Numerous 

factors may similarly preclude direct correlations between the level of Abfl DNA 

binding and CPD repair despite the fact that Abfl binding promotes CPD repair (Reed 

et al., 1999). Firstly, ChlP-on-chip will detect a heterogeneous pool of Abfl, a large 

proportion of which will not be in complex with Rad7/Radl6 (Reed et al., 1999). 

Secondly, Abfl may not promote binding of Rad 16 to all sites of the genome with 

which it binds itself. Thirdly, Abfl may not promote CPD repair directly at the 

binding site but instead at a domain proximal to the binding site. Fourthly, a stronger 

correlation may exist with Abfl DNA binding kinetics rather than the protein binding 

level. These parameters may similarly preclude the observation of correlations 

between the level of Abfl binding and histone acetylation. It was also noted that the
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TCR rate is likely to predominate the ultimate CPD repair rate at genic regions since 

TCR is known to repair CPDs at a faster rate than GGR (Mellon et al., 1987). This 

could function to mask a correlation between the level of Abfl binding and GGR 

rates. It would therefore be of great interest to experimentally determine the genome- 

wide repair rates of GGR in the absence of TCR using a rad26Arpb9A double mutant 

(Li et al., 2006b; Li and Smerdon, 2004).

It is also worth noting that Abfl DNA binding is known to mediate both 

transcription and DNA replication, the activities of which are regulated in response to 

UV damage (Friedberg, 2006; Rhode et al., 1992). It is likely therefore, that some of 

the changes in Abfl DNA binding observed in response to UV, could reflect the role 

of Abfl in pathways other than GGR. Functionally separating DNA repair from other 

DNA damage responses is difficult as often such pathways are regulated by DNA 

repair factors. It would be interesting to observe what changes, if any, occur for Abfl 

DNA binding in response to UV in the radl6A  mutant. It has previously been shown 

that Rad7/Radl6 proteins are not required for the UV dependent activation of G1 and 

G2 checkpoint responses, although both proteins have been implicated in UV 

dependent de novo protein synthesis (Giannattasio et al., 2004; Gillette et al., 2006). 

Therefore, a proportion of the UV DNA damage response should proceed in the 

absence of Rad 16.

When analysed in relation to Abfl binding, the distribution of Rad 16 

dependent histone H3 K9K14 acetylation is organised at Abfl binding sites in 

promoters. Rad 16 is observed to have a global role in promoting acetylation at 

promoters, and this is observed both in the presence and absence of UV damage. 

Therefore, Rad 16 is important for regulating histone H3 K9K14 acetylation in the 

absence of UV damage, as well as in response to UV, as previously reported (Yu et 

al., 2005). This was interpreted to suggest that the activities of Radl6 necessary for 

histone acetylation are upregulated, rather than activated, in response to UV. In 

addition to Rad 16 dependent acetylation, efficient Rad 16 dependent GGR also 

correlates with Abfl binding sites in promoter regions. This suggests that Abfl 

binding targets the GGR complex to promoter regions, thus organising GGR at these 

sites. Further investigation of this hypothesis should be performed by genome-wide 

analysis of both acetylation and CPD repair in the absence of Abfl binding. Given 

that Abfl is an essential gene, this would best be achieved using the abfl-1 

temperature sensitive DNA binding mutant, and repeating the genome-wide
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acetylation and CPD repair datasets using this strain (Rhode et al., 1992). An 

alternative strategy would be to degrade Abfl in a temperature sensitive manner, 

using the N-degron strategy previously described (Reed et al., 1999). One difficulty 

with this experiment is that the degradation of Abfl also significantly reduces the 

stability of Rad7 and Rad 16 (Reed et al., 1999), therefore these proteins would have 

to be artificially overexpressed to maintain wild type levels.

7.2 Chapter 4. Mapping the genome-wide localisation of Radl6 in the absence 

and presence of UV damage

Rad 16 is known to posses both an ATPase activity necessary for DNA 

translocation, and a RING domain which functions with Rad7, Elcl and Cul3 as an 

E3 ubiquitin ligase (Gillette et al., 2006; Ramsey et al., 2004; Yu et al., 2009). Both of 

these activities are necessary for GGR (Ramsey et al., 2004; Yu et al., 2011). In 

addition, both activities have also been shown to be important for UV dependent 

increases in both Gcn5 occupancy and histone K9K14 acetylation, which promotes 

chromatin remodelling necessary for efficient GGR (see Chapter 4.1, Yu et al., 2011). 

The results from chapter 3 suggested that Abfl binding functioned to organise these 

Rad 16 dependent activities and subsequently acetylation and GGR at the promoter 

regions of the yeast genome. It was suggested that the GGR complex was likely to 

bind chromatin in the absence of UV damage, and that Rad 16 functioned in a similar 

manner both before and after UV to promote histone acetylation, however this is 

upregulated in response to UV damage. These conclusions were further investigated 

by analysing the genome-wide distribution of Rad 16.

In Chapter 4, the localisation of Rad 16 was observed using ChlP-on-chip both 

before and after UV irradiation. Rad 16 was demonstrated to interact with chromatin 

throughout the entire genome both before and after UV irradiation. These 

observations correlate with the ability of the protein to regulate the distribution of 

histone H3 K9K14 from Abfl binding sites at promoters throughout the entire 

genome both before and after UV irradiation (Chapter 3). Although Rad 16 associates 

with chromatin genome-wide, peaks of Rad 16 binding were observed in unirradiated 

cells. These were predominantly localised to Abfl binding sites situated within 

promoter regions, suggesting that, as previously shown in vitro, Abfl DNA binding 

promotes binding of the GGR complex to domains in vivo (Yu et al., 2009). These 

observations strongly support a model where Abfl binding targets efficient binding of
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the GGR complex to promoter regions thus organising the GGR response from these 

sites.

In response to UV irradiation, peaks of Rad 16 at Abfl binding sites are lost, 

resulting in a more uniform distribution of Rad 16 throughout the genome. These 

observations are in strong support of a model in which Rad 16 DNA translocation is 

upregulated from Abfl binding sites in response to UV. This activity is hypothesised 

to promote histone hyperacetylation and chromatin remodelling necessary for efficient 

GGR. A critical experiment to test this hypothesis would be to repeat the Rad 16 ChlP- 

on-chip datasets using a strain expressing ATPase mutated Rad 16 (Ramsey et al., 

2004; Yu et al., 2011). As observed for many Snf2 family proteins, ATP hydrolysis 

by Rad 16 is necessary for DNA translocation (Flaus et al., 2006; Yu et al., 2009). A 

previous study demonstrated that a K216A mutation within the walker A domain of 

Rad 16 functions to inhibit the ATPase activity (Ramsey et al., 2004). This mutant was 

also shown to have a defective GGR capacity and lower UV survival than wild type 

cells (Yu et al., 2011). Therefore, the UV dependent change in localisation of K216A 

mutated Rad 16 should be determined using ChlP-on-chip. It would also be of interest 

to examine if the E3 ligase activity of Rad 16 mediates the genome-wide localisation 

of this protein. Similar experiments could therefore be performed using the RING 

mutated Rad 16 protein (C552A,H554A); cells expressing this are also known to have 

a defective GGR capacity and reduced UV survival (Yu et al., 2011).

At sites where Abfl and Rad 16 binding peaks were found to colocalise, it was 

observed that the UV dependent changes in Abfl binding do not correlate with 

changes in Rad 16 binding. This suggests that Abfl and Rad 16 might not remain in 

complex after UV irradiation. However, because Abfl is highly abundant within the 

cell, a large proportion (-70%) of the protein is not found in complex with 

Rad7/Radl6 (Reed et al., 1999). Therefore a correlation between Abfl binding and 

Rad 16 binding in response to UV may be masked by the predominant fraction of 

Abfl that functions independently of Rad 16. A facile method for testing if Abfl and 

Rad 16 are not in complex after UV would be to co-immunoprecipitate the proteins 

from protein extracts before and after UV. This experiment was attempted using 

antibodies against Rad7 and Abfl however conditions which successfully co- 

immunoprecipitated the two proteins were not established. An alternative method 

could be to biochemically purify the GGR complex using His-tagged Rad7 (as 

originally described (Reed et al., 1999)) in the absence and presence of damage using
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a UV mimetic such as 4-nitroquinoline 1-oxide. However, the best strategy for this 

experiment would probably be to use ChlP-westem, in which chromatin WCE is 

prepared for standard ChIP (see Chapter 2.7), chromatin is immunoprecipitated, 

crosslinking is reversed and co-immunoprecipitated proteins are analysed by western 

blotting (Fousteri et al., 2006b). This strategy has the added advantages that chemical 

crosslinking can capture transient protein-protein interactions, and that the strategy is 

limited to chromatin bound proteins. The latter advantage is especially useful as 

Rad 16 was suggested to dissociate from Abfl upon chromatin binding. This was 

based upon the observation that peaks of Rad 16 binding were not exclusively found to 

colocalise with Abfl binding peaks prior to UV irradiation. Both before and after UV 

irradiation, dissociation of Rad 16 from Abfl is suggested to occur by the translocation 

activity of Rad 16. However, the E3 ligase activity of Rad 16 may also contribute to 

this transition. Therefore, depending on the results of the former experiment, it would 

be of interest to see how mutating either the RING or ATPase domains of Rad 16 

could modulate an interaction with Abfl on chromatin.

Regions of the genome in which peaks of Abfl and Rad 16 binding colocalise 

in the absence of UV damage have significantly slower GGR rates than those bound 

by Abfl alone. When these observations were further investigated at promoter regions 

where Abfl and Rad 16 binding peaks colocalise, an inverse relationship was found 

between the level of Rad 16 binding and the level of Rad 16 dependent acetylation in 

the absence of UV damage. Abfl binding sites at promoters with low level Rad 16 

binding peaks, or absent of a Rad 16 binding peak, are suggested to represent regions 

of the genome where there is high level Rad 16 DNA translocation activity, which 

would promote binding of HATs such as Gcn5 and subsequently histone H3 K9K14 

hyperacetylation. This hypothesis is based upon the recent observation that the 

ATPase activity of Rad 16 is important for UV dependent increases in Gcn5 

occupancy and histone H3 K9K14 acetylation at the MFA2 locus (Yu et al., 2011). 

Gcn5 has previously been demonstrated to promote GGR in yeast (Teng et al., 2002; 

Yu et al., 2005). It has also recently been shown to promote CPD repair in human 

cells (Guo et al., 2010a; Guo et al., 2010b). Thus, performing Gcn5 ChlP-on-chip 

would provide further evidence to establish the link between Rad 16 binding and 

acetylation genome-wide. It would also be of great interest to examine the levels of 

ATPase mutated Rad 16 binding in the absence of UV damage to see if the binding 

levels are considerably higher than the wild type protein. This would strongly suggest
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that DNA translocation by Rad 16 functions to reduce the binding peak levels. The 

difference in Rad 16 binding levels between wild type and ATPase mutated Rad 16 

may also indicate the level of DNA translocase activity, which could be correlated to 

Rad 16 dependent acetylation (and Gcn5 occupancy).

ChlP-on-chip of histone H3 K9K14 acetylation (/Gcn5 occupancy) could also 

be performed in the Rad 16 ATPase mutant to investigate how the distribution of 

Rad 16 dependent histone H3 K9K14 acetylation is related to the translocase activity. 

However, it should be noted that it was previously observed that mutation of either the 

RING domain or the ATPase domain of Rad 16 alone does not inhibit UV dependent 

increases in Gcn5 occupancy and histone H3 K9K14 acetylation at MFA2, whilst 

mutation of both does (Yu et al., 2011). Therefore, ChlP-on-chip investigations with 

either the E3 ligase or ATPase mutated Rad 16 alone may not demonstrate differences 

in the occupancy of Gcn5 and histone hyperacetylation. The double mutant might be 

expected to provide identical results to a radl6A mutant since it possesses a similar 

repair defect and UV sensitivity (Yu et al., 2011). The necessity to disable both 

catalytic activities of Rad 16 to inhibit this phenotype suggests that other factors 

within the cell may functionally substitute for the catalytic activities of Rad 16. With 

respect to the ATPase activity of Rad 16, this may have a functional redundancy with 

other Snf2 family proteins already implicated in NER such as SWI/SNF or the Ino80 

complex (Gong et al., 2006; Jiang et al., 2010; Sarkar et al., 2010; Zhao et al., 2009). 

This in itself is also an interesting topic of research.

Based upon observations in Chapter 3, the mechanism through which Rad 16 

functions to promote acetylation is suggested to be the same both before and after UV 

irradiation. In support of this, the same inverse relationship between Rad 16 binding 

and histone acetylation is observed both before and after UV. A strong correlation 

between the level of histone H3 K9K14 acetylation and CPD repair was observed at 

Abfl binding sites in promoters, but not at regions distal to this. This is expected to 

occur because these regions are mostly genic and TCR is suggested not to be 

promoted by histone H3 K9K14 acetylation. Therefore, it would be interesting to 

correlate histone H3 K9K14 acetylation levels to the genome-wide dataset of GGR 

using the rad26Arpb9A double mutant (Li et al., 2006b; Li and Smerdon, 2004). 

Finally, it was suggested that Rad 16 promoted an activity necessary for GGR 

independent of histone H3 K9K14 hyperacetylation (see Chapter 4.1). It would be 

interesting to identify and characterise further this activity. This might be achieved
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using a strain which expresses histone H3 mutated at K9K14 to eliminate post- 

translational modifications at these sites. Such strains are viable (Jin et al., 2009). This 

would be predicted to inhibit Rad 16 dependent acetylation events that promote GGR. 

In the absence of this activity, it would then be of interest to see how both the ATPase 

and RING domains of Rad 16 contribute to UV dependent chromatin remodelling and 

functional GGR.

The genome-wide datasets presented in this study, in combination with future 

ChlP-on-chip studies such as those discussed above, provide a platform for systems 

biology based approaches to investigate NER at a global level. In addition to these 

studies, it is important to appreciate that statistical packages must also be developed 

for the analysis of these datasets. The current study employed a statistical strategy for 

the identification of peaks in both the Abfl and Rad 16 datasets (Chapters 3 and 4). 

Multiple strategies for this type of statistical analysis have been published (Buck et 

al., 2005; Glynn et al., 2004). However at present numerous conclusions drawn in this 

study lack statistical inference. These include the low level binding of Abfl observed 

at numerous promoter regions (Fig. 3.6), the differences in acetylation patterns 

observed between wild type and Aradl6  cells (Fig. 3.10) and the colocalisation of 

Abfl and Rad 16 binding peaks (Fig. 4.3). Therefore, in future it will be necessary to 

develop tools for the statistical analysis of these relationships. Previous studies have 

used statistical strategies for the analysis of protein colocalisation between multiple 

ChlP-on-chip datasets (Schlecht et al., 2008; Workman et al., 2006). A means to 

evaluate the statistical significance of the CPD repair rate is also necessary. This will 

be of paramount importance when comparing repair profiles between different 

datasets (for example between the wild type and Arad16 datasets).

Ultimately, the development of statistical packages as well as other advanced 

bioinformatic tools will be utilised to incorporate these multiple ChlP-on-chip 

datasets into networks. The aim of such networks would be to accurately define the 

functional components that mediate the heterogeneous DNA repair rate in vivo. These 

advanced strategies are still in their infancy but techniques such as Bayesian network 

inference are beginning to be employed to produce detailed maps of 

targeting/functional protein interactions and ultimately how these function to 

influence transcriptional output (Beyer et al., 2006; van Steensel et al., 2010).
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7.3 Chapter 5. Developing tools for the in vivo analysis of Abfl DNA binding 

kinetics

Recent studies have suggested that there exists an intimate link between 

transcriptional regulation and the DNA binding kinetics of TFs (Brady et al., 2005; 

Klokk et al., 2007; Nalley et al., 2006; Reid et al., 2003; Stavreva et al., 2004; Yang et 

al., 2002a; Yao et al., 2006). These data complement the observations that the cell 

appears to posses a variety of strategies which can regulate the half-life of TF:DBS 

interactions (Ferdous et al., 2007; Freeman and Yamamoto, 2002; Yu and Kodadek, 

2007). The analysis of DNA binding kinetics provides a more powerful interpretation 

of steady state binding datasets using studies such as ChIP (Hager et al., 2009; 

Karpova et al., 2008). Given that Abfl shares many structural and functional 

properties with canonical TFs, I wished to investigate if changes in Abfl DNA 

binding kinetics were mechanistically coupled to the protein’s role in GGR. The study 

of Abfl DNA binding kinetics was considered a complementary study to the steady 

state binding of Abfl (in Chapter 3) to provide a more powerful appreciation of both 

how and where Abfl DNA binding promotes efficient GGR.

In Chapter 5, a tool termed the competitor, previously used for the analysis of 

Gal4 and HIF-la, was adapted for the study of Abfl DNA binding kinetics (Nalley et 

al., 2006; Yu and Kodadek, 2007). The competitor is an abundant site specific DNA 

binding recombinant protein that replaces the occupancy of an endogenous protein at 

a DBS in response to hormonal activation. Because the competitor can only bind at a 

DBS when the endogenous protein has dissociated from this site, the rate at which the 

competitor replaces the occupancy of the endogenous protein, as measured by ChIP, 

is a qualitative measurement of the rate of dissociation of the endogenous protein 

from the DBS (Yu and Kodadek, 2007).

Abfl is considered to have two DBDs both of which are necessary for site 

specific DNA binding; an atypical zinc finger situated between aa40-91 and a putative 

helix-tum-helix (HtH) motif situated between aa323-496 (Cho et al., 1995; Miyake et 

al., 2002; Yarragudi and Morse, 2006). Consequently, the original Abfl competitor 

design included a DBD of Abfl aa 19-523. This was subsequently demonstrated to be 

unable to bind at an Abfl DBS in vivo. However, when the competitor DBD was 

changed to aa 1-530, the protein acquired a site specific DNA binding capacity in vivo. 

When Abfl was aligned with two known homologues in K. marxianus and K. lactis, 

two regions of homology were found between these proteins that approximately map



Chapter 7

to the DBDs of A bfl. Given these results, it is suggested that the zinc finger domain 

of Abfl, necessary for site specific DNA binding is found within a domain aa6-81.

When the ERa LBD was fused C-terminally to the Abfl DBD (aal-530), the 

protein was demonstrated not to be under strict hormonal control. This is believed to 

be related to the size of the Abfl DBD (see below). Indirect evidence was also 

provided to suggest that an N-terminal fusion is equally unable to strictly regulate the 

Abfl DBD. Interestingly, when these competitors are expressed under the powerful 

TDH3 promoter a significant inhibition of cell growth and survival is observed. This 

phenotype requires the competitor to have a DNA binding capacity. This strongly 

suggests that DNA binding by the competitor at Abfl DBSs inhibits cell growth and 

survival. This observation correlates with the observations that overepxression of 

Abfl, or expressing C-terminal truncated Abfl is lethal (Miyake et al., 2002; Sopko et 

al., 2006). However, when the competitor was expressed from the weaker TEF2 or 

ADH1 promoters cell growth and survival were not inhibited suggesting that the 

protein level of the competitor was insufficient to effectively compete with 

endogenous Abfl binding for a DBS.

To suppress the lethality of overexpressing the Abfl competitor with a single 

ERa LBD, a second ERa LBD was added to the construct in an attempt to tighten the 

hormonal regulation of the competitor. This strategy successfully placed DNA 

binding of the Abfl competitor under strict hormonal regulation, however the addition 

of a second ERa LBD was observed to restrict the ability of the competitor to bind at 

a DBS in the presence of p-oestradiol.

7.4 Chapter 6. Investigating Abfl DNA binding kinetics using Abfl competitive 
ChIP

In chapter 6, the tools created in chapter 5 were used to perform Abfl 

competitive ChIP for the analysis of Abfl DNA binding kinetics in vivo. At numerous 

loci including NAT4, HMLa and SRB2 the competitor was demonstrated to replace 

occupancy of endogenous Abfl within one hour. This suggests that Abfl does not 

possess a half-live on chromatin in the range of hours. Interestingly, as observed for 

both the Gal4 and HIFla competitors, the Abfl competition reaction appeared to 

require -20 minutes for full activation (Nalley et al., 2006; Yu and Kodadek, 2007). 

For both NAT4 and SRB2 it was shown that the competition reaction had reached 

equilibrium within this timeframe suggesting that Abfl interacts with a DBS in these
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regions with rapid kinetics (half-life < 5 minutes). However, at all loci tested the 

competitor was not observed to replace the occupancy of Abfl when the competition 

reaction had reached equilibrium, potentially compromising the confidence of the 

interpretation of these results.

One of the primary difficulties identified in this study in interpreting data for 

competitive ChIP is when the exchange for the endogenous protein by the competitor 

is incomplete at equilibrium. If this occurs, then the loss of Abfl binding from the 

DBS during the competition reaction is not irreversible. In this circumstance, the rate 

and level of exchange between Abfl and the competitor is influenced by the 

association rate of Abfl. Therefore, the assay does not exclusively measure the 

dissociation rate of Abfl, complicating data interpretation. This potential caveat has 

previously been identified (Yu and Kodadek, 2007). Using NAT4 and SRB2 as a 

model it was shown that in the absence of Abfl binding the relative affinity of the 

competitor appeared higher for NAT4 than SRB2. Because of this, it was suggested 

that at these loci, that the differences in the relative exchange between the competitor 

and Abfl may occur in a manner independent to Abfl DNA binding kinetics.

How might the efficiency of the Abfl competition reaction be improved? In 

Chapter 5, strong indirect evidence was provided that a competitor with a single ERa 

LBD, expressed under the TDH3 promoter, could effectively compete for occupancy 

at an Abfl DBS. However, expression of the reagent was lethal to the cell. This was 

suggested to be a result of the fact that the competitor was not under strict hormonal 

regulation. Whilst adding a second ERa LBD to the competitor functions to suppress 

the lethality of expressing the competitor from the TDH3 promoter, the results in 

Chapter 6 suggest that this also functions to significantly restrict DNA binding by the 

Abfl DBD. These data suggest that an optimal competitor would be expressed under 

the TDH3 promoter with a single C-terminal HBD that can strictly regulate DNA 

binding of the competitor. One method by which the activity of the competitor might 

be more tightly regulated is through control of the nuclear localisation of the 

competitor. If in the absence of a hormone the competitor is not nuclear localised then 

this could not bind DNA. Whilst HBDs are not generally considered to regulate 

nuclear localisation, the GR has previously been demonstrated to regulate the 

localisation of the TF El A (Picard et al., 1990; Picard et al., 1988). Therefore, 

switching the ERa LBD for the GR LBD may tighten the regulation of the competitor. 

It has also been suggested that the distance between the HBD and the regulatory target
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of the fusion protein can significantly influence the efficiency of hormone regulation 

(Nichols et al., 1997; Picard, 1999; Picard et al., 1988). This is of interest because the 

Abfl DBD is very large, and therefore the distance between the ERa LBD and its 

regulatory targets is also large. Therefore, minimising the size of the Abfl DBD may 

improve the regulation by a single ERa LBD. One strategy to reduce the size of the 

Abfl DBD, may be to delete sequences found between the N-terminal zinc finger and 

the central putatutive HtH domain (Chapter 5). Indeed, it has previously been shown 

that deleting aa200-265 (which lies between these domains) of Abfl does not inhibit 

DNA binding in vitro (Cho et al., 1995). An alternative strategy may also be to swap 

the Abfl DBD for a homologous sequence from either the Abfl protein homologue of 

Kluyveromyces marxianus or Kluyveromyces lactis (Goncalves et al., 1992; Oberye et 

al., 1993). As demonstrated in Chapter 5, both of these proteins have regions of high 

homology at the zinc finger and putative HtH domain of A bfl. Both of these proteins 

may also functionally substitute for the essential functions of Abfl in S. cerevisiae 

and therefore must bind Abfl DBSs in vivo (Goncalves et al., 1992; Oberye et al., 

1993; Rhode et al., 1992). Importantly, the protein domain that maps to the Abfl 

DBD for either of these homologues is considerably smaller.

Two other parameters may be worth considering to improve the efficiency of 

the competition reaction. Whilst, a concentration of P-oestradiol above 20pM was not 

observed to significantly improve the competition reaction, this experiment is 

complicated by the fact that the solubility of p-oestradiol in water is ~5.5pM (Shareef 

et al., 2006). Therefore, it is unknown whether the addition of higher concentrations 

of p-oestradiol actually increases the intracellular concentration of the soluble 

hormone. An alternative strategy to increase intracellular hormone concentrations 

would be to genetically cripple ATP binding cassette transporters, which are 

necessary for the catalytic efflux of toxic compounds in yeast (Paumi et al., 2009). It 

has previously been shown that mutating the ABC transporter genes PDR5 and SNQ2, 

can increase intracellular p-oestradiol concentrations by up to ~30-fold (Mahe et al., 

1996). Finally, further increasing the expression level of the competitor would be 

expected to improve the efficiency of the competition reaction also, although as 

discussed in Chapter 6, attempts to express the competitor from a multicopy plasmid 

were not successful. Expressing a heterologous protein from the TDH3 promoter on a 

multicopy plasmid is predicted to increase expression ~4 fold relative to expressing it 

from a centromeric plasmid (Mumberg et al., 1995).

Page | 213
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Even in the absence of an optimised protocol, Abfl competitive ChIP data 

clearly demonstrated a phenotype when compared in the absence and presence of UV 

damage. The Abfl competitor was observed to rapidly bind chromatin at numerous 

loci in response to UV. This primarily occurred at Abfl binding sites in promoter 

regions, which correlates with sites at which GGR appears to be organised from, 

suggesting that this is somehow mechanistically linked to the process of GGR. Whilst 

the interpretation of the data is complicated, these observations clearly warrant further 

investigation. The interpretation of data using the current Abfl competitive ChIP 

protocol would be more accurate if the competition reaction is performed at numerous 

timepoints so that a good approximation of the time taken for the reaction to reach 

equilibrium can be ascertained. As discussed in Chapter 6, comparing sites where the 

exchange between Abfl and the competitor is equivalent is also easier to interpret. 

Therefore, at present, the genome-wide datasets are most probably best used to 

identify model genes for further investigation by competitive ChIP.
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Appendix 1 -  Liquid and solid media

Y P D - 1 L
1 Og Yeast extract 
20g Bacto peptone 
20g Glucose
Fill to 1L with water. Autoclave at 125°C for 15 minutes.

Synthetic dropout (minimal media) -  1L
6.6g Yeast nitrogen base 
20g Glucose
850mg Synthetic complete dropout mix
Fill to 1L with water. Autoclave at 125°C for 15 minutes.

Synthetic complete dropout medium -  36J&
2g Adenine hemisulphate*
2g Arginine HC1 
2g Histidine HC1*
2g Isoleucine 
2g Leucine*
2g Lysine HC1*
2g Methionine 
3g Phenylalanine 
2g Serine 
2g Threonine 
3g Tryptophan*
2g Tyrosine 
1.2g Uracil*
9g Valine

*Appropriate aa were excluded according to selectable marker.

LB Media with ampicillin -  IL
1 Og Bacto tryptone 
5g Bacto yeast extract 
5g NaCl
Fill to 1L with water. Autoclave at 125°C for 15 minutes. Allow to cool to 55°C and 
add ampicillin to a final concentration of lOOpg/ml.

YPD/Selective media/LB plates
Media was prepared as above with 2% agar.

PBS
137mM NaCl, 2.7mM KC1, 4.3mM Na2HPQ4, 1.47mM KH2PQ4, pH 7.4
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Appendix II -  Raw data and supplementary information for Chapter 3

ChIP qPCR quantification at HMLa (Chapter 3. Fig. 3.71

SQ Mean Averaged Dataset
Genotype Timepoint Abf IP Input IP/input Normalise to 

1
Mean SD

BY4742 NoUV 3.02E-03 9.28E-04 3.25E+00 1 .OOE+OO 1.00E+00 0.00E+00
BY4742 Omins 7.1 IE-03 1.09E-03 6.51E+00 2.00E+00 1.75E+00 4.78E-01
BY4742 30mins 2.88E-03 1.10E-03 2.61 E+00 8.03 E-01 9.25E-01 5.15E-01
Repeat 1
BY4742 NoUV 5.95E-03 1.02E-03 5.82E+00 1.00E+00
BY4742 Omins 1.06E-02 8.86E-04 1.20E+01 2.05 E+00
BY4742 30mins 5.26E-03 6.06E-04 8.67E+00 1.49E+00
Repeat 2
BY4742 NoUV 9.61E-03 1.09E-03 8.80E+00 1.00E+00
BY4742 Omins 1.43E-02 1.35E-03 1.06E+01 1.20E+00
BY4742 3 Omins 5.18E-03 1.22E-03 4.25E+00 4.83E-01

SD = Standard deviation

Excel files of quantification available on DVD (D:/Chapter 3/Figure 3.7)

ChIP qPCR quantification at NAT4 (Chapter 3, Fig. 3.7)

SQ Mean Averaged Dataset
Genotype Timepoint Abf IP Input IP/input Normalise to 

1
Mean SD

BY4742 NoUV 3.28E-02 1.41E-03 2.32E+01 1.00E+00 1.00E+00 0.00E+00

BY4742 Omins 5.05E-02 1.06E-03 4.77E+01 2.05 E+00 1.34E+00 6.73E-01

BY4742 30mins 6.22E-02 2.24E-03 2.77E+01 1.19E+00 8.07E-01 3.60E-01

Repeat 1
BY4742 NoUV 7.31E-02 1.19E-03 6.15E+01 1.00E+00

BY4742 Omins 1.20E-01 1.53E-03 7.81E+01 1.27E+00

BY4742 30mins 8.67E-02 1.88E-03 4.60E+01 7.48E-01

Repeat 2
BY4742 NoUV 8.50E-02 1.24E-03 6.83E+01 1.00E+00

BY4742 Omins 1.26E-01 2.59E-03 4.86E+01 7.11 E-01

BY4742 30mins 9.04E-02 2.76E-03 3.28E+01 4.80E-01

SD = Standard deviation

Excel files of quantification available on DVD (Dr/Chapter 3/Figure 3.7)
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CHIP qPCR Quantification at prRPL24A (Chapter 3. Fig. 3.81

SQ Mean Averaged Dataset
Genotype Timepoint Abf IP Input IP/input Normalise to 

1
Mean SD

BY4742 NoUV 4.14E-03 1.32E-03 3.14E+00 1.00E+00 1.00E+00 0.00E+00
BY4742 Omins 5.17E-03 1.59E-03 3.26E+00 1.04E+00 9.37E-01 2.18E-01
BY4742 3 Omins 1.62E-03 1.87E-03 8.67E-01 2.76E-01 3.50E-01 2.01 E-01
Repeat 1
BY4742 NoUV 7.59E-03 1.55E-03 4.88E+00 1.00E+00
BY4742 Omins 6.82E-03 1.29E-03 5.31 E+00 1.09E+00
BY4742 30mins 3.83E-03 1.36E-03 2.82 E+00 5.78E-01
Repeat 2
BY4742 NoUV 9.04E-03 1.59E-03 5.69E+00 1.00E+00
BY4742 Omins 9.09E-03 2.32E-03 3.91 E+00 6.87E-01
BY4742 30mins 2.22E-03 1.98E-03 1.12E+00 1.97E-01

SD = Standard deviation

Excel files of quantification available on DVD (D:/Chapter 3/Figure 3.8)

ChIP qPCR quantification at ARS231 (Chapter 3. Fig. 3.8)

SQ Mean Averaged Dataset

Genotype Timepoint Abf IP Input IP/input Normalise to 
1

Mean SD

BY4742 NoUV 2.70E-03 1.43E-03 1.89E+00 1.00E+00 1.00E+00 0.00E+00

BY4742 Omins 3.94E-03 1.31E-03 3.02E+00 1.60E+00 1.39E+00 3.86E-01

BY4742 30mins 1.46E-03 1.91E-03 7.63E-01 4.04E-01 3.85E-01 8.86E-02

Repeat 1
BY4742 NoUV 6.39E-03 1.49E-03 4.28E+00 1.00E+00

BY4742 Omins 8.84E-03 1.27E-03 6.97E+00 1.63 E+00

BY4742 30mins 3.09E-03 1.56E-03 1.98E+00 4.62E-01

Repeat 2
BY4742 NoUV 5.83E-03 1.57E-03 3.73E+00 1.00E+00

BY4742 Omins 9.08E-03 2.58E-03 3.53E+00 9.47E-01

BY4742 30mins 2.27E-03 2.1 IE-03 1.08E+00 2.88E-01

SD = Standard deviation

Excel files of quantification available on DVD (D:/Chapter 3/Figure 3.8)
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ChIP micorarrav quantification (Chapter 3. Fig. 3.7 and 3.R1

Quantile normalised data
Repeat

Locus Timepoint 1 2 3
HMLa NoUV 1.23E+01 7.63E+00 6.02E+00

Omins 5.99E+00 5.82E+00 4.84E+00
30mins 5.06E+00 4.56E+00 5.38E+00

NAT4 NoUV 4.62E+01 6.00E+01 5.14E+01
Omins 7.13E+01 6.52E+01 5.93E+01
30mins 4.55E+01 5.20E+01 3.85E+01

ARS231 NoUV 7.23E+00 6.15 E+00 6.11 E+00
Omins 4.50E+00 4.28E+00 4.29E+00
3 Omins 1.69E+00 1.42E+00 1.67E+00

prRPL24A NoUV 8.98E+00 1.19E+01 1.37E+01
Omins 9.11 E+00 6.59E+00 9.63 E+00
30mins 2.18E+00 3.10E+00 3.22E+00

Normalised to 1
Repeat

Locus Timepoint 1 2 3 Mean SD
HMLa NoUV 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00

Omins 4.88E-01 7.63E-01 8.03E-01 6.85E-01 1.71 E-01
30mins 4.12E-01 5.98E-01 8.93E-01 6.34E-01 2.42E-01

NAT4 NoUV 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00

Omins 1.54E+00 1.09E+00 1.16E+00 1.26E+00 2.46E-01
30mins 9.84E-01 8.67E-01 7.50E-01 8.67E-01 1.17E-01

ARS231 NoUV 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00

Omins 6.23E-01 6.97E-01 7.02E-01 6.74E-01 4.40E-02

30mins 2.34E-01 2.30E-01 2.74E-01 2.46E-01 2.41E-02

prRPL24A NoUV 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00

Omins 1.01 E+00 5.53E-01 7.01 E-01 7.56E-01 2.35E-01

30mins 2.43E-01 2.60E-01 2.35E-01 2.46E-01 1.29E-02



Appendix II

The distribution of histone 113 K9K14 aeetvlation at promoters in relation to the 
position of a TSS
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In the above figure histone H3 K.9K14 acetylation (U) is plotted at Abfl binding sites 
found at promoters only (does not include divergent promoters). The data has been 
orientated such that the TSS of the promoter is always found to the right of the Abfl 
binding site. Note that when the data is orientated in this manner a peak of 
hyperacetylation is still found either side of the Abfl binding site.
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Appendix III

Appendix III -  Raw data and supplementary information for Chapter 4

ChIP qPCR quantification at prRAD23 (Chapter 4. Fig. 4.1)

SQ mean
Genotype Timepoint Myc IP Input IP/input
BY4742 RAD 16:: 18xMyc-URA3 NoUV 1.10E-03 6.78E-04 1.63E+00
BY4742 RAD 16:: 18xMyc-URA3 30mins 1.03E-03 4.33E-04 2.37E+00
BY4742 NoUV 2.77E-04 1.11E-03 2.50E-01
BY4742 3 Omins 2.95E-04 1.11E-03 2.66E-01
Repeat 1
BY4742 RAD 16:: 18xMyc-URA3 NoUV 3.73E-03 5.60E-04 6.67E+00
BY4742 RAD16::18xMyc-URA3 3 Omins 1.97E-03 5.83E-04 3.37E+00
BY4742 NoUV 1.94E-04 4.89E-04 3.97E-01
BY4742 3 Omins 6.84E-04 6.10E-04 1.12E+00
Repeat 2
BY4742 RAD 16:: 18xMyc-URA3 NoUV 1.68E-03 4.34E-04 3.88E+00
BY4742 RAD16::18xMyc-URA3 30mins 2.94E-03 4.23E-04 6.96E+00
BY4742 NoUV 1.68E-04 7.08E-04 2.38E-01
BY4742 3 Omins 6.01E-04 6.71E-04 8.96E-01

SQ mean Averaged Dataset
Genotype Timepoint Normalise to 1 Mean SD
BY4742 RAD 16:: 18xMyc-URA3 NoUV 1.00E+00 1.00E+00 7.61E-16

BY4742 RAD 16:: 18xMyc-URA3 30mins 1.46E+00 1.25E+00 6.68E-01

BY4742 NoUV 1.54E-01 9.16E-02 5.39E-02

BY4742 3 Omins 1.64E-01 1.88E-01 3.79E-02

Repeat 1
BY4742 RAD16:: 18xMyc-URA3 NoUV 1.00E+00

BY4742 RAD 16:: 18xMyc-URA3 3 Omins 5.06E-01

BY4742 NoUV 5.95E-02

BY4742 3 Omins 1.68E-01

Repeat 2
BY4742 RAD 16:: 18xMyc-URA3 NoUV 1.00E+00

BY4742 RAD16:: 18xMyc-URA3 30mins 1.79E+00

BY4742 ' NoUV 6.14E-02

BY4742 30mins 2.3 IE-01

SD = Standard deviation
Excel files o f quantification available on DVD (D:/Chapter 4/Figure 4.1)
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ChIP qPCR quantification at IRC5 (Chapter 4. Fig. 4.13

SQ mean
Genotype Timepoint Myc IP Input IP/input
BY4742 RAD 16:: 18xMyc-URA3 NoUV 6.27E-04 5.13E-04 1.22E+00
BY4742 RAD16:: 18xMyc-URA3 30mins 5.53E-04 4.06E-04 1.36E+00
BY4742 NoUV 2.82E-04 1.04E-03 2.73E-01
BY4742 30mins 2.59E-04 9.57E-04 2.71 E-01
Repeat 1

BY4742 RAD16::18xMyc-URA3 NoUV 8.77E-04 4.72E-04 1.86E+00
BY4742 RAD16:: 18xMyc-URA3 3 Omins 2.48E-03 5.15E-04 4.81 E+00
BY4742 NoUV 1.31E-04 4.77E-04 2.75E-01
BY4742 30mins 4.37E-04 5.49E-04 7.96E-01
Repeat 2
BY4742 RAD 16:: 18xMyc-URA3 NoUV 8.82E-04 4.20E-04 2.10E+00
BY4742 RAD16:: 18xMyc-URA3 30mins 1.80E-03 3.72E-04 4.84E+00
BY4742 NoUV 1.62E-04 5.74E-04 2.83E-01
BY4742 3 Omins 5.88E-04 6.08E-04 9.68E-01

SQ mean Averaged Dataset
Genotype Timepoint Normalise to 1 Mean SD
BY4742 RAD 16:: 18xMyc-URA3 NoUV 1.00E+00 1.00E+00 1.25E-15

BY4742 RAD16:: 18xMyc-URA3 30mins 1.12E+00 2.00E+00 7.82E-01

BY4742 NoUV 2.23E-01 1.68E-01 4.76E-02

BY4742 3 Omins 2.21 E-01 3.70E-01 1.30E-01

Repeat 1
BY4742 RAD16:: 18xMyc-URA3 NoUV 1.00E+00

BY4742 RAD16:: 18xMyc-URA3 30mins 2.59E+00

BY4742 NoUV 1.48E-01

BY4742 30mins 4.28E-01

Repeat 2
BY4742 RAD16:: 18xMyc-URA3 NoUV 1.00E+00

BY4742 RAD16:: 18xMyc-URA3 30mins 2.30E+00

BY4742 NoUV 1.35E-01

BY4742 3 Omins 4.61E-01

SD = Standard deviation
Excel files o f quantification available on DVD (D.VChapter 4/Figure 4.1)
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ChIP qPCR quantification at MFA2 (Chapter 4. Fig. 4,1)

SQ mean
Genotype Timepoint Myc IP Input IP/input
BY4742 RAD16:: 18xMyc-URA3 NoUV 7.87E-04 5.02E-04 1.57E+00
BY4742 RAD 16:: 18xMyc-URA3 3 Omins 9.53E-04 3.41 E-04 2.79E+00
BY4742 NoUV 3.06E-04 9.69E-04 3.16E-01
BY4742 3 Omins 3.35E-04 7.68E-04 4.36E-01
Repeat 1
BY4742 RAD 16:: 18xMyc-URA3 NoUV 2.57E-03 4.11 E-04 6.24E+00
BY4742 RADI6:: 18xMyc-URA3 30mins 1.98E-03 5.22E-04 3.80E+00
BY4742 NoUV 2.49E-04 4.33E-04 5.75E-01
BY4742 30mins 7.74E-04 5.89E-04 1.32E+00
Repeat 2
BY4742 RAD 16:: 18xMyc-URA3 NoUV 1.73E-03 4.33E-04 4.00E+00
BY4742 RAD 16:: 18xMyc-URA3 3 Omins 1.90E-03 3.42E-04 5.56E+00
BY4742 NoUV 2.79E-04 5.40E-04 5.16E-01
BY4742 3 Omins 6.40E-04 5.37E-04 1.19E+00

SQ mean Averaged Dataset

Genotype Timepoint Normalise to 1 Mean SD
BY4742 RAD 16:: 18xMyc-URA3 NoUV 1.00E+00 1.00E+00 1.32E-15

BY4742 RAD 16:: 18xMyc-URA3 30mins 1.78E+00 1.26E+00 5.97E-01

BY4742 NoUV 2.01E-01 1.41 E-01 5.56E-02

BY4742 3 Omins 2.78E-01 2.62E-01 4.59E-02

Repeat 1
BY4742 RAD16:: 18xMyc-URA3 NoUV 1.00E+00

BY4742 RAD 16:: 18xMyc-URA3 3 Omins 6.08E-01

BY4742 NoUV 9.20E-02

BY4742 3 Omins 2.11 E-01

Repeat 2
BY4742 RAD16:: 18xMyc-URA3 NoUV 1.00E+00

BY4742 RAD16:: 18xMyc-URA3 30mins 1.39E+00

BY4742 NoUV 1.29E-01

BY4742 30mins 2.98E-01

SD = Standard deviation
Excel files o f quantification available on DVD (D:/Chapter 4/Figure 4.1)
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Appendix IV -  Raw data and supplementary information for Chapter 5

Primers used for cloning/sequencing
Cloning primer Sequence (annotations below)
ABF1 1569R 5’- CCGGTGACTAGAGGTTTTATC
ABF1 1590R 5 - TGGCATCTTCTTGGGTTGAT
ABFI 1590R#2 5 - TATACTCGAGCTAG ACTTATACCrTTCTCTTCTTTTTTGG..........

Xhol STOP PKKKRKV

.........TGGCATCTTCTTGGGTTGAT -  3’
3’ ABFI DBD

ABF1 55F 5 - GACCTGGCCATTGGAGCC
ABFI 60R 5 - GTT TGTTCCTATGCGAATTC
ABFI IF 5’- AT ATCTCGGG AATATGGACAAATT AGTCGTG A ATT ATT 

Aval ABFI +1-25
ABFI 1F#2 5 - AT ATCTCGGG AATATGG AC AAA
ABFI 1 F#3 5 - ATGGACAAATTAGTCGTGAATTATT
ADHI F 5’- ATATGGATCCGGGATCGAAGAAATGATGGTA 

BamHl 5’ ADHI coding region
ADH1 F#2 5 - ATATGGATCCGGGATCGAAG
ADHI R 5 GC ACCC AAGGT GGG AAATTTTTT GCCT CC AT GGGCT CCA AT GGCC AGGT C .......

ABFI +55-105

ATTCCCGAGGTCCTCTTC -  3’
3’ Myc tag

ER F 5’- ACGCCTCAAATTTAATGGAAAGTGTGCTAGATAAAACCTCTAGTCACCGG.......
ABFI +1519-1569

T CT GCT GG AG AC AT GAG AG -  3’
5’ ERa LBD

ER F#2 5 - TCTGCTGGAGACATGAGAG
ER F#3 5 - ATATCTCGGGAATTCTGCTGGAGACATGAGAG 

Aval
ER fus F 5 - GTGTGCTAGATAAAACCTCTAGTCACCGGTATCAACCCAAGAAGATGCCA.......

ABFI +1540-1590

TCTGCTGGAGACATGAGAG -  3’
5’ ERa LBD ORF

ER fus R 5’- TT AATT AT AGGGT GCTT GT ATTC AT AAT AATTCACG ACT AATTTGTCC AT.........
ABFI +1-50

GACTGTGGCAGGGAAACC -  3’
3’ of ERa LBD

ER R 5 ’ - TAT ACTCG AGCT AG ACTT AT A C C T T T C T C T T C m T T T G G G  ACTGTGGC AGGG AAACC 
Xhol STOP PKKKRKV 3’ ERa LBD

ER R«2 5’- T AT ACTCGAGCT AG ACTT AT ACCTTTCTCTTCTTTTTTGGCCC ACCGT ACTCGTC AAT 
Xhol STOP PKKKRKV 3’ VP 16 AD

ER R#3 5 - TAT ACTCG AGCT AG ACTT AT ACC
Myc F 5 - CAGAAACTTATCTCAGAAGAGG
ORF F S’- AGTTTTAAAACACCAAGAACTTAGTTTCGAATAAACACACATAAACAAA CAAA.....

3’of TDH3 Dromoter

AT GG AGC AG AAACTT ATCTC AG -  3’
5’ of competitor ORF

ORF R 5 - TATACTCGAGCTAGACTTATACCT
TEF2 -IR S’- ATATCCCGAGGTCCTCTTCTGAGATAAGTTTCTGCTCCATGTTTAGTTAATTATAGTTCGTTG 

Aval Myc tag 3’ ofprTEF2
TEF2 -402F 5’- ATATGGATCCATTACCCATAAGGTTGTTTGTG 

BamHI
TDH F 5 - CACGCTTTTTCAGTTCGAGTT
TDH F#2 S’- ATATGGATCCCACGCTTTTTCAGTTCGAGTT 

BamHl 5’ prTDH3
TDH R 5 - GTTTGTTTATGTGTGTTTATTCG
Seauencine Drimer
5' ADHI sea 5 ’ -G ATGTGCTGC AAGGCG ATT A
3’ ADHI seq 5 - GGAAGGGAACTT TACACTTCT
5’ ORF seq 5’- AAGTTTGCTGTCTTGCTATCA
ABFI DBDseq 5 - TCAAGAACGACACTGAAGATG
5’ ER-LBD seq 5’- TCCCAAATAGCCAGACGTA
3’ ORF seq 5’- CTTGCTCTTGGACAGGAA
3’ TDH3 seq 5’- GAAATTATTCCCCTACTTGA
3’ TEF2 seq 5 - GAGATGATCGAGCCGGTAG
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Characterising the Abfl antibody (sc6679) for western blotting

a - Myc a . Abfl

250kDa ------

150kDa -------

Abfl
lOOkDa -------

75kDa -------

Goat a-Abfl Goat IgG

0 1 3  5 Hrs after degradation activated

0 250 kDa
150 kDa ___ mm < 4  —  Abfl

100 kDa -----
75 kDa -----

All western analysis and ChIP experiments of Abfl were performed with goat a-Abfl 
(yC-20 #sc-6679 Santa Cruz Biotechnology). A. Western blot as shown in Fig. 5.5. 
The arrow indicates the band that represents the Abfl protein. This band is weaker 
than usually observed by western blot because the blot has been striped and reprobed 
following detection of the competitor with a-Myc (see Chapter 2.6.3). B. Protein 
WCE from SX46a was blotted (see as described in Chapter 5.2) using with either goat 
a-Abfl (left blot) or goat IgG (sc-2028 Santa Cruz Biotechnology). Note that the only 
band clearly detected by the antibody exactly maps to the Abfl band identified in A. 
Abfl has previously been observed by western blot at an apparent molecular mass of 
-135 kDa despite an estimated mass of -80 kDa predicted from its primary sequence, 
as seen here (Rhode et al., 1989). C. As further evidence that the only clear band that 
a-Abfl (sc-6679) detects is truly Abfl, SX46a expressing a temperature degradable 
version of Abfl was analysed at various timepoints following activation of 
degradation as described (Reed et al., 1999). The protein has a higher molecular mass 
because it includes an N-terminal degron.

0 250kDa

l50kDa

lOOkDa

75kDa
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Abfl binding level at IRC5.
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Probe positions

The picture above displays the mean trace of Abfl binding at a domain of 
chromosome 6 (taken from the ChlP-chip work performed in Chapter 3) for 
unirradiated (NoUV), 0 minutes and 30 minutes after UV. The binding level is not 
given in log2. The yellow bar represents the approximate position of the ORF of 
IRC5. The black arrows above this represent the forward and reverse primers that are 
used to amplify IRC5 for qPCR in Chapter 5. This region is considered a negative 
control region for Abfl DNA binding in vivo.
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The effect upon changing domains of the competitor in SX46a

pCCAl 14 PCCA314

Abf 1 DBD (aa 19-523) Abf 1 DBD (aa 1 -530)

T m m m m

dCCGI 14 pCCG314

Abfl DBD (aa 19-523) Abfl DBD (aa 1 -530)

TDH 3 promoter

The picture above illustrates 4 plates where equal volumes of SX46a were transformed with an equal 
amount of plasmid DNA in the same experiment. The transformed plates were all left for ~2 days. The 
plasmid used for each transformation is given above the picture. Each plasmid core structure is 
pRS314. The only difference is the ORF insert; the structures of which are shown below each picture. 
As can be seen, expressing the competitor with the non-functional DBD (aal9-523) from the very 
powerful promoter of TDH3 suppresses efficient transformation and cell growth. Under the weak 
promoter ADHI, changing the competitor DBD to the functional DBD (aal-530) has little effect upon 
efficient transformation and cell growth. However, changing the promoter of the competitor with the 
functional DBD (aal-530) from the weak ADHI promoter to the powerful TDH3 promoter drastically 
reduces efficient transformation and cell growth in a manner far greater than would be expected due to 
over expression alone.
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ChIP qPCR quantification at HMLa and ARS121 (Chapter 5. Fig. 5.6)

Genomic
locus

Plasmid Time after 0-
oestradiol
(mins)

Mean Abfl
(IP/input)
Normalised

Abfl SD Mean
Competitor
(IP/input)
Normalised

Comp SD

HML-a pCCAl 14 -1 1.00E+00 0.00E+0
0

2.10E-02 8.21E-03

pCCAl 14 30 8.80E-01 2.26E-01 5.32E-02 2.25E-03
pCCAl 14 60 8.15E-01 2.12E-01 3.22E-02 5.22E-03

IRC5 pCCAl 14 -1 9.88E-02 1.84E-02 2.06E-02 8.39E-03
pCCAl 14 30 7.27E-02 1.10E-02 1.95E-02 1.22E-02
pCCAl 14 60 6.84E-02 5.88E-03 1.95E-02 4.29E-03

HML-a pCCA214 -1 1.00E+00 0.00E+0
0

2.67E-02 1.14E-02

pCCA214 30 6.63E-01 6.13E-02 3.43E-02 1.99E-02
pCCA214 60 6.60E-01 3.97E-02 1.99E-02 8.46E-03

IRC5 pCCA214 -1 8.00E-02 5.02E-02 1.94E-02 1.39E-02
pCCA214 30 7.73E-02 1.38E-02 2.16E-02 1.63E-02
pCCA214 60 6.57E-02 2.57E-02 1.45E-02 7.78E-03

Genomic
locus

Plasmid Time after 0-
oestradiol
(mins)

Mean Abfl
(IP/input)
Normalised

Abfl SD Mean
Competitor
(IP/input)
Normalised

Comp SD

ARS121 pCCAl 14 -1 1.00E+00 0.00E+0
0

9.58E-03 7.74E-04

pCCAl 14 30 9.93E-01 1.54E-01 1.53E-02 3.56E-03
pCCAl 14 60 6.61 E-01 3.71E-02 1.02E-02 2.88E-03

IRC5 pCCAl 14 -1 5.47E-02 1.89E-03 1.12E-02 2.96E-03

pCCAl 14 30 4.04E-02 4.55E-06 1.04E-02 5.21E-03

pCCAl 14 60 3.82E-02 2.53E-03 1.08E-02 7.49E-04

ARS121 pCCA214 -1 1.00E+00 0.00E+0
0

1.30E-02 2.71E-03

pCCA214 30 9.62E-01 2.42E-01 1.28E-02 1.07E-03

pCCA214 60 6.21 E-01 2.45E-01 7.07E-03 6.24E-04

IRC5 pCCA214 -1 5.17E-02 1.43E-03 1.21E-02 1.71E-03

pCCA214 30 5.84E-02 2.63E-02 1.33E-02 2.52E-03

pCCA214 60 4.62E-02 1.13E-02 9.65E-03 7.74E-04

SD = Standard deviation
Excel files for the quantification of replicates and averaged values available on DVD 
(D:/Chapter 5/Figure 5.6)
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ChIP qPCR quantification at NAT4 (Chapter 5, Fig. 5.7A1

Genotype Timepoint
(mins)

Abfl
(IP/input)

Normalise 
to 1

M ean SD

JCA30 pRS314 -1 3.91E+01 1.00E+00 1.00E+00 0.00E+00
30 5.92E+01 1.51 E+00 1.12E+00 5.59E-01

JCA31 pRS314 -1 3.88E+00 9.93E-02 1.01 E-01 1.92E-03
30 2.16E+00 5.53E-02 4.35E-02 1.67E-02

Repeat
JCA30 pRS314 -1 2.86E+01 1.00E+00

30 2.07E+01 7.25E-01
JCA31 pRS314 -1 2.92E+00 1.02E-01

30 9.05E-01 3.17E-02

ChIP qPCR quantification at NAT4 (Chapter 5, Fig. 5.7B)

Genotype Timepoint
(mins)

Mean Abfl
(IP/input)
Normalised

Abfl SD Mean competitor
(IP/Input)
Normalised

Competitor
SD

JCA31 pRS314 -1 1.00E+00 0.00E+00
JCA31 pCCGl 14 30 5.73E-01 1.04E-01 3.04E-02 2.07E-02

ChIP qPCR quantification at IRC5 (Chapter 5. Fig. 5.7B)

Genotype Timepoint
(mins)

Mean Abfl
(IP/input)
Normalised

Abfl SD Mean competitor
(IP/Input)
Normalised

Competitor
SD

JCA31 pCCGl 14 30 1.01E-02 4.23E-03

SD = Standard deviation

Excel files for the quantification of replicates and averaged values available on DVD 
(D:/Chapter 5/Figure 5.7)
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ChIP qPCR quantification at NAT4 (Chapter 5, Fig. 5.11)

Locus Plasmid Time after
P-oestradiol
(mins)

Mean Abfl
(IP/input)
Normalised

A bn  SD Mean Competitor 
(IP/input) 
Normalised

Competitor
SD

NAT4 pRS314 -1 1.00E+00 0.00E+00
pCCT314 -1 6.34E-01 6.20E-02 2.07E+00 1.02 E+00
pCCT314 30 6.10E-01 2.53E-01 5.00E+00 5.25E-01

NAT4 pRS314 -1 1.00E+00 0.00E+00
pCCT414 -1 3.99E-01 4.55E-02 1.91 E+00 4.79E-01
pCCT414 30 3.37E-01 4.66E-02 3.29E+00 9.32E-01

IRC 5 pRS314 -1 1.00E+00 0.00E+00
pCCT314 -1 3.99E-02 5.94E-03 2.54E-02 1.61E-02
pCCT314 30 2.77E-02 1.04E-03 4.38E-02 1.31E-02

IRC5 pRS314 -1 1.00E+00 0.00E+00
pCCT414 -1 2.99E-02 1.07E-02 2.90E-02 3.29E-03
pCCT414 30 1.61E-02 8.27E-03 2.78E-02 8.59E-03

SD = Standard deviation

Excel files for the quantification of replicates and averaged values available on DVD 
(D:/Chapter 5/Figure 5.11)
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CHIP qPCR Quantification at NAT4 (Chapter 5, Fig. 5.12)

Locus Plasmid Time after
P-oestradiol
(mins)

Mean Abfl 
(I P/input) 
Normalised

A bfl SD Mean Competitor 
(I P/input) 
Normalised

Competitor
SD

NAT4 pRS314 -1 1.00E+00 0.00E+00
pCCG514 -1 4.34E-01 1.62E-01 1.15E-02 6.08E-03
pCCG514 30 3.40E-01 4.34E-02 4.59E-01 1.51 E-01

NAT4 pRS314 -1 1.00E+00 0.00E+00
pCCG614 -1 4.33E-01 2.44E-01 2.09E-02 1.07E-02
pCCG614 30 2.37E-01 1.62E-01 2.13E-01 3.97E-02

SD = Standard deviation

Excel files for the quantification of replicates and averaged values available on DVD 
(D:/Chapter 5/Figure 5.12)
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Appendix V -  Raw data and supplementary information for chapter 6

Primers used for cloning

Cloning
primer

Sequence (annotations below)

ABFI IMF 5’- AT ATCTCGGG AAT ATGG AC AAATTAGTCGTGAATT ATT 
Aval ABFI nt+1-25

ABFI 1437F 5’ - GCGGGTACCTCATCGAACA
ABFI 1593F 5’ - AGCGTCAATAAATGGAGCAAGC
ABFI 2193R 5 ’-T AT ACTCGAGCT AG ACTT ATACCTTTCTCTTCTTTTTTGG.....

Xhol STOP PKKKRKV

ATCCACGTCCACCATTACATC -  3’
3’ of ABFI

ABFI 2924M 
R

5 - TATACTCGAGTTAGACCTATTGACCTCTTAATTCTGG 
Aval STOP ABFI nt+2906-2924

ABFI fus R 5’ GACACGTCTGAATGAGTTATTTGATCTGGCTTGCTCCATTTATTGACGC.....
ABFI +2143-2193

..... TGACTGTGGCAGGGAAAC -  3’
3’ of ERa LBD

ER R#3 5’- TAT ACTCG AGCT AG ACTT AT ACC
RAP1 1746F 5’ - AAGAGGCCTGGCGTTCC
RAP1 2076R 5’- TAT ACTCGAGCT AGACTT ATACCTTTCTCTTCTTTTTTGG.....

Xhol STOP PKKKRKV

GCTT AT GGT ATC AGG ATC AAT A -  3’
3’ of ERa LBD

RAP1 fus R 5 ’ CTCTTGGCGGC AG AGTTAT AATTGCC AGG AGTGGG AACGCC AGGCCTCT.....
RAP 1+2026-2076

....... TGACTGTGGCAGGGAAAC-  3’
3' of ERa LBD



Appendix V

ChIP qPCR quantification at NAT4 (Chapter 6. Fig. 6.1)

p -oestradiol
concentration
(HM)

SQ
Mean

IP/input Normalise to 1

AbO IP Competitor
IP

Input Abfl Competitor Abfl Competitor

1 2.89E-02 3.47E-03 1.19E-03 2.43E+01 2.91 E+00 1.00E+00 1.20E-01
10< 1.27E-02 5.85E-03 7.86E-04 1.61E+01 7.45E+00 6.64E-01 3.07E-01
2CK 7.03E-03 5.88E-03 5.78E-04 1.22E+01 1.02E+01 5.01E-01 4.19E-01
20CK 9.42E-03 1.07E-02 8.79E-04 1.07E+01 1.22E+01 4.41 E-01 5.02E-01

ChIP qPCR quantification at HMLa (Chapter 6. Fig. 6.1)

^-oestradiol
concentration
(pM)

SQ
Mean

IP/input Normalise to 1

AbH IP Competitor
IP

Input Abfl Competitor AbH Competitor

1 2.74E-03 1.47E-04 1.10E-03 2.50E+00 1.34E-01 1.00E+00 5.37E-02

10< 1.68E-03 4.55E-04 9.51 E-04 1.76E+00 4.78E-01 7.06E-01 1.91 E-01

20< 1.03E-03 6.06E-04 7.07E-04 1.46E+00 8.57E-01 5.86E-01 3.43 E-01

200< 9.82E-04 3.85E-04 9.32E-04 1.05E+00 4.13E-01 4.22E-01 1.65E-01

Raw data is available on the accompanying DVD (D:/Chapter 6/Figure 6.1).
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Appendix V

ChIP qPCR quantification at NAT4 for pRS316 (Chapter 6. Fig. 6.2A)

SQ Mean Normalise to 1
Time after f&-oestradiol 
addition (mins)

Abfl IP Input IP/input

-1 3.81 E-03 1.27E-03 3.00 E+00 1.00E+00
60 3.73E-03 9.70E-04 3.84E+00 1.28E+00
120 2.48E-03 8.83 E-04 2.81 E+00 9.37E-01

ChIP qPCR quantification at NAT4 for pCCG516 (Chapter 6, Fig. 6.2B)

Time after p- 
oestradiol 
addition 
(mins)

SQ
Mean

IP/input Normalise to 1

Abfl IP Competitor
IP

Input Abfl Competitor AbH Competitor

-1 1.82E-02 4.85E-05 1.11 E-03 1.63E+01 4.37E-02 1.00E+00 2.67E-03

60 6.39E-03 5.41 E-03 1.02E-03 6.24E+00 5.28E+00 3.82E-01 3.23 E-01

120 6.87E-03 8.82E-03 8.27E-04 8.31 E+00 1.07E+01 5.08E-01 6.53E-01

ChIP qPCR quantification at NAT4 for pCCG616 (Chapter 6, Fig. 6.2C)

Time after p- 
oestradiol 
addition 
(mins)

SQ
Mean

IP/input Normalise to 1

Abfl IP Competitor
IP

Input Abfl Competitor Abfl Competitor

-1 5.27E-03 8.02E-05 9.97E-04 5.29E+00 8.04E-02 1.00E+00 1.52E-02

60 2.24E-03 3.00E-03 1.28E-03 1.75E+00 2.34E+00 3.30E-01 4.42E-01

120 2.78E-03 2.96E-03 1.34E-03 2.08E+00 2.21 E+00 3.93E-01 4.18E-01

Raw data is available on the accompanying DVD (D:/Chapter 6/Figure 6.2).
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Appendix V

ChIP qPCR quantification at prSRB2 (Chapter 6, Fig. 6.3A)

Time after fi- 
oestradiol 
addition 
(mins)

SQ
Mean

IP/input Normalise to 1

Abfl IP Competitor
IP

Input Abfl Competitor Abfl Competitor

-1 2.21E-02 2.43 E-04 1.27E-03 1.74E+01 1.92E-01 1.00E+00 1.10E-02
10 2 .10E-02 7.87 E-04 1.36E-03 1.55E+01 5.79E-01 8.87E-01 3.32E-02
60 1.76E-02 4.42E-03 1.34E-03 1.31E+01 3.30E+00 7.51E-01 1.89E-01
120 1.70E-02 4.06E-03 1.25E-03 1.37E+01 3.25 E+00 7.83E-01 1.87E-01

ChIP qPCR quantification at ARS121 (Chapter 6, Fig. 6.3B)

Time after 0- 
oestradiol 
addition 
(mins)

SQ
Mean

IP/input Normalise to 1

AbH IP Competitor
IP

Input Abfl Competitor AbH Competitor

-1 5.58E-03 1.60E-04 1.38E-03 4.06E+00 1.16E-01 1.00E+00 2.87E-02

10 5.25E-03 2.67E-04 1.17E-03 4.51 E+00 2.29E-01 1.11E+00 5.66E-02

60 4.95E-03 7.43 E-04 1.11 E-03 4.47E+00 6.72E-01 1.10E+00 1.66E-01

120 4.04E-03 9.98E-04 1.14E-03 3.53E+00 8.73E-01 8.70E-01 2.15E-01

ChIP qPCR quantification at HMLa (Chapter 6, Fig. 6.3C)

Time after 0- 
oestradiol 
addition 
(mins)

SQ
Mean

IP/input Normalise to 1

AbH IP Competitor
IP

Input AbH Competitor Abfl Competitor

-1 5.29E-03 3.24E-04 1.16E-03 4.58E+00 2.81E-01 1.00E+00 6.13E-02

10 5.17 E-03 6.70E-04 1.25E-03 4.15E+00 5.38E-01 9.07E-01 1.17E-01

60 3.89E-03 2.94E-03 1.27E-03 3.06E+00 2.32E+00 6.68E-01 5.06E-01

120 3.57E-03 3.23E-03 1.32E-03 2.71 E+00 2.45 E+00 5.92E-01 5.36E-01

Raw data is available on the accompanying DVD (D:/Chapter 6/Figure 6.3).



Appendix V

ChIP qPCR quantification at NAT4 in JCA30 (Chapter 6. Fig. 6.4A)

Time after 0- 
oestradiol 
addition 
(mins)

SQ
Mean

IP/input Normalise to 1

Abfl IP Competitor
IP

Input Abfl Competitor Abfl Competitor

-1 2.81 E-02 1.17E-04 1.03E-03 2.75E+01 1.14E-01 1.00E+00 4.14E-03
10 2.45E-02 6.91 E-03 1.27E-03 1.94E+01 5.46E+00 7.06E-01 1.99E-01
20 1.41 E-02 1.05E-02 1.02E-03 1.39E+01 1.03E+01 5.04E-01 3.75E-01

ChIP qPCR quantification at NAT4 in JCA31 (Chapter 6. Fig. 6.4B)

Time after 0- 
oestradiol 
addition 
(mins)

SQ
Mean

IP/input Normalise to 1 (relative 
to -lA bfl IP in JCA30)

Abfl IP Competitor
IP

Input Abfl Competitor AbH Competitor

-1 4.36E-03 3.04 E-04 1.36E-03 3.21 E+00 2.24E-01 1.17E-01 8.15E-03
10 2.54E-03 7.02E-03 1.49E-03 1.70E+00 4.70E+00 6.20E-02 1.71 E-01

20 3.68E-03 1.18E-02 1.64E-03 2.24E+00 7.22E+00 8.16E-02 2.63E-01

ChIP qPCR quantification at prSRB2 in JCA30 (Chapter 6, Fig. 6.4C)

Time after 0- 
oestradiol 
addition 
(mins)

SQ
Mean

IP/input Normalise to 1

AbH IP Competitor
IP

Input Abfl Competitor Abfl Competitor

-1 1.44E-02 7.46E-05 1.19E-03 1.21E+01 6.27E-02 1.00E+00 5.20E-03

10 1.51 E-02 1.01 E-03 1.10E-03 1.37E+01 9.14E-01 1.13E+00 7.58E-02

20 9.12E-03 1.91 E-03 8.53E-04 1.07E+01 2.24E+00 8.86E-01 1.86E-01

ChIP qPCR quantification at prSRB2 in JCA31 (Chapter 6, Fig. 6.4D)

Time after 0- 
oestradiol 
addition 
(mins)

SQ
Mean

IP/input Normalise to 1 (relative 
to -lA bfl IP in JCA30)

Abfl IP Competitor
IP

Input Abfl Competitor Abfl Competitor

-1 9.16E-04 5.74E-05 1.23E-03 7.44E-01 4.66E-02 6.17E-02 3.87E-03

10 8.48E-04 9.66E-04 1.41 E-03 6.02E-01 6.86E-01 4.99E-02 5.69E-02

20 1.08E-03 1.85E-03 1.47E-03 7.33E-01 1.26E+00 6.07E-02 1.04E-01

Raw data is available on the accompanying DVD (D:/Chapter 6/Figure 6.4).
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Appendix V

ChIP qPCR quantification at prSRB2 with PCCG516A (Chapter 6, Fig. 6.6)

Time after P- 
oestradiol 
addition 
(hrs)

SQ
Mean

IP/input Normalise to 1

AbH IP Competitor
IP

Input AbH Competitor Abfl Competitor

4 1.74E-02 1.89E-03 1.07E-03 1.62E+01 1.77E+00 1.00E+00 1.09E-01

ChIP qPCR Quantification at prSRB2 with PCCG516R (Chapter 6, Fig. 6.6)

Time after p- 
oestradiol 
addition 
(hrs)

SQ
Mean

IP/input Normalise to 1

Abfl IP Competitor
IP

Input AbH Competitor Abfl Competitor

4 1.92E-02 1.87E-03 2.14E-03 8.97E+00 8.73E-01 1.00E+00 9.73E-02

ChIP qPCR quantification at prSRB2 with pCCT414 (Chapter 6, Fig. 6.6)

Time after |1- 
oestradiol 
addition 
(hrs)

SQ
Mean

IP/input Normalise to 1

Abfl IP Competitor
IP

Input Abfl Competitor Abfl Competitor

4 1.37E-02 1.47E-03 8.92E-04 1.54E+01 1.65E+00 1.00E+00 1.07E-01

Raw data is available on the accompanying DVD (D:/Chapter 6/Figure 6.6).
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