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v. Summary
Student ID Number: 100027414

Title: MR

Surname: COOK
First Names: NATHAN LUKE MEREDITH

School: SCHOOL OF MEDICINE

Title of Degree: MPHIL/PHD,
Full Title of Thesis Immunoregulation by Hepatocyte Growth Factor in 

Malignant Mesothelioma

Student ID Number: 100027414

Summary of Thesis:

This thesis is an investigation into effect of elevated levels of hepatocyte growth 
factor (HGF) on immune responses.
High levels of HGF are found in cancer such as in MPM patient serum and pleural 
fluid. However, little is known about the consequence of high HGF levels on the 
development and function of dendritic cells and contribution of these effects to 
tumour immune evasion.

A pre-treatment in vitro model system was applied to study the effects of high HGF 
concentrations on the development of dendritic cells (DC) from monocytes. The 
effects of HGF on the phenotype of dendritic cell, functional characteristics, including 
migration, phagocytosis and T cell stimulation were analysed.

Using this model system I discovered a previously un-reported immature DC-like 
phenotype, caused by the pre-treatment of monocytes for 24 h prior to induction of 
iDC development by GM-CSF/IL-4: Delayed differentiation of DC alone generates a 
Th2 bias, which is further enhanced by the presence of HGF.

HGF pre-treated DCs express both monocyte marker CD 14 and DC marker CD209 
(DC-SIGN). They are able to take up antigen by phagocytosis. However, they 
produce increased levels of IL-10 and express elevated levels Programmed Death 1 
(PD-1) ligand, PD-L1. HGF-pre-treated DC also display impaired ability to stimulate 
allo-T cell proliferation and antigen-specific IFN-y production. HGF pre-treated DC 
induces increased IL-10 production by T cells.

Blocking IL-10 with a neutralizing antibody restores normal DC differentiation, 
partially reduced PD-L1 levels and restored T cell stimulatory capacity of DC. The 
physiological relevance of these findings was demonstrated by similar effects on DC 
developed in the presence of mesothelioma pleural fluid, in a HGF dependent manner. 
This thesis demonstrates that HGF is an immunosuppressive factor that can contribute 
to tumour-induced regulation of DC function and T cell responses.
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Chapter -1  Introduction

1.1 Cell Mediated Immunity in Cancer

The immune system is primarily responsible for protection against pathogens, and is 

divided into two parts, the innate and the adaptive systems. The innate arm of the 

immune system is fast acting and recognises types of molecules peculiar to frequently 

encountered pathogens. It includes physical and chemical barriers (e.g. skin, mucosal 

membranes and stomach acids), phagocytic cells (neutrophils) and complement. The 

innate immune system can respond in hours, and once phagocytic cells encounter 

pathogens results in initiation of inflammatory responses, which is the first step 

towards a specific responses against the pathogen.

This specific response is the purview of the adaptive immune system, which in terms 

of cancer is regarded as the more important of the two arms of the immune system. 

Although some innate components, such as NK cells, can recognise cancer cells the 

majority of the innate immune system cannot. This is due the to the nature of cancer 

since it arises from host cells and it is therefore not a foreign pathogen, it bypasses 

much of the innate immune system. The adaptive immune system is able to recognise 

both foreign pathogens and self antigens (cancer/precancerous cells). It comprises of 

B cells, antigen presenting cells (APC) and T cells.

1.2 T Cells

T lymphocytes are composed of two subsets, based on the expression of CD4 and 

CD8 molecules. CD8+ T cell function is to recognise and eliminate transformed and 

virus infected cells, while the CD4+ subset is primarily responsible for providing
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‘help’ to CD8+ T cells via secretion of cytokines or cell to cell contact and are 

therefore commonly called T helper cells. CD4+ T cells play an important role in the 

induction and control of inflammatory responses and generation of CD8+ T cell 

responses. The importance of T cells in the control of immunity to tumours is 

supported by various studies using mouse models such as SCID or Rag2-/- mice, 

which lack T and B cells, or nude mice. These mice have increased susceptibility to 

tumour growth (Bosma, Custer et al. 1983; Svane, Engel et al. 1996; shankaran, Ikeda 

et al. 2001) while in humans immuno deficiency such as that seen in AIDS or 

transplant patients can also increase the susceptibility to tumour development (Weiss 

1999; Goedert 2000).

1.2.1 CD8+ T Cell Responses

T cells expressing CD8+ molecules recognise MHC Class I molecules presenting 

peptides derived from intracellular proteins. This endogenous antigen presentation by 

DC will be discussed in detail later. Briefly; proteins are degraded in cytostolic 

proteosomes; this typically produces 7-10 amino acid long peptides. These peptides 

are transported to the ER (via transporter proteins such as TAPs and LMPs) and bind 

to MHC Class I molecules, which are transported via the Golgi apparatus to the cell 

surface, displaying these peptide antigens for immune recognition. Specific 

recognition of antigens ensures lysis of infected, foreign, transformed or malignant 

cells.
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Anergy

Clonal
expansion

b) TCR activation with co-stimulation

a) TCR activation without Co-stimulation molecules

T cell
No response

c) Adhesion and co-stimulation without TCR activation

( K  MHC Complex

C=~ 3 CD80/CD86
— "1 Adhesion molecules (ICAMs)

J

CD28/CTLA4

Antigen

TCR

Figure 1.1 Co-Stimulatory Interactions in T Cell Stimulation

Outcomes of interactions between APC and T cells

a) Induction of anergy due to lack of appropriate co-stimulatory molecule:CD28 

interactions, b) Clonal expansion due to appropriate TCR activation and co

stimulatory interactions, c) No response when no antigen is present to induce the 

primary signal via TCR.
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CD8+ T cells once activated become programmed to expand and do not require further 

interaction with DC (Zarling, Johnson et al. 1999). Presentation of antigen-MHC to 

the T cell receptor, supported by secondary signals via CD28 as outlined in Figure 

1.1, results in activation via signalling intermediaries leading to NF-kB activation and 

up-regulation of IL-2 production.

CD28 expressed on T cells interacts with co-stimulatory factors such as CD80/CD86 

expressed on stimulating cells. TCR stimulation in the absence of CD28 signalling 

induces activation induced apoptosis in T cells (Radvanyi, Shi et al. 1996). Interaction 

of B7 molecules (e.g. CD80 or CD86) can rescue T cell from activation induced 

apoptosis by co-stimulating the release of IL-2 which promotes T cell proliferation 

and inhibits T cell apoptosis (Lenschow, Walunas et al. 1996). While cytolytic 

function of T cells is independent of CD28 ligation, it does however contribute to the 

overall strength and intensity of CTL mediated killing. However, CD28 ligation 

stimulates Th2 cells to produce IL-4, IL-5 and IL13 and contributes somewhat to the 

IFNy producing capacity of TH1 cells (Seder, Germain et al. 1994; King, Stupi et al. 

1995).

Interactions of B7 molecules with CD28 support can also suppress T cell activation 

via other receptors. CTLA4, a ligand for CD80 and CD86 molecules, which is 

expressed on T cells late on during activation and inhibits T cell activation 

(Chambers, Krummel et al. 1996). CTLA4 signalling limits the number and activity 

of CD4 and CD8 T cells that respond to antigen. CTLA affects both ThI and Th2 

cells. CTLA-4 does not just have these affects by competing with CD28 for 

CD80/CD86 binding, but also actively suppresses T cell activation. CTLA-4
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stimulation prevents cytokine production (IL-2), T cell proliferation and also increases 

apoptosis (Carter and Carreno 2003). Therefore CTLA-4 has been implicated in 

control of T cell activation, and is implicated in control of autoimmunity (Chambers, 

Krummel et al. 1996; Peggs, Quezada et al. 2006).

Lack of co-stimualtion via CD28 results in lower NF-kB activation leading to 

induction of anergy or activation induced apoptosis. CD8+ T cells can autonomously 

divide multiple times and acquire cytotoxic effector functions, without requiring 

further antigen stimulation (Kaech and Ahmed 2001; Van Stipdonk, Lemmens et al. 

2001). Cytotoxic T lymphocytes (CTL) do not stay in secondary lymphoid organs but 

migrate to sites of inflammation for delivery of their effector function. These CD8+ 

effector T cells have four main mechanisms for eliminating target cells.

A. Cytotoxic Cytokine Secretion

Cytokines, such as TNFa and IFNy, inhibit virus replication and increase MHC Class 

I-antigen presentation. They can also cause increase cell death by targeting cells 

susceptible to lysis (via up-regulation of death receptors such as Fas) or to 

programmed cell death (apoptosis). CD8+ T cell derived cytokines can remove or 

control the growth of malignant cells, which is demonstrated by the fact that mice 

lacking IFNy genes develop spontaneous tumours (Street, Trapani et al. 2002).

B. Perforin-Dependent or Calcium Dependent Cytotoxicity

Lytic granules, are stored by CTL and are the main killing mechanism employed by 

these cells. The granules are modified lysozomes containing pore-forming proteins 

(perforin) and enzymes such as granzymes. In combination, these proteins work
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together with perforins polymerising (in the presence of Ca ) and inserting pores into 

the membrane which allow entry of granzymes and other proteins that can induce 

apoptotic cell death. Perforin can also cause cell death by reducing the integrity of the 

plasma membrane causing osmotic lysis (Ojcius and Young 1990; Podack 1995; 

Bolitho, Voskoboinik et al 2007); mouse models lacking IFNy and perforin genes 

develop spontaneous tumours (Smyth, Thia et al. 2000; Street, Trapani et al. 2002).

C. FAS-Dependent or Calcium Independent Cytotoxicity

Activated T cells, (mainly CD8+ T cells) can also kill via FasrFasL interactions. Fas 

expression is widespread. However, its natural ligand has limited expression. Fas on 

tumour cells interacts with Fas-ligand on effector T cells causing aggregation of 

intracellular death domains to form the death-inducing signalling complex (DISC) in 

tumour cells. This leads to the activation of caspases, causing apoptotic cell death 

(Kagi, Vignaux et al 1994; Walsh, Matloubian et al 1994). However, it has also been 

suggested that Fas could be involved in tumour counterattack on the immune system 

as Fas is also expressed by activated T cells (Wajant 2006).

D. TRAIL (Tumour Necrosis Factor Related Apoptosis Inducing Ligand) 

Cytotoxicity

Activated T cells up-regulate another apoptosis-inducing ligand, TRAIL, which is a 

TNF-related ligand (Wiley, Schooley et al 1995). TRAIL receptors implicated in cell 

death are widely expressed and can be up-regulated in cancer (Walczak, Degli-Esposti 

et al 1997; Fanger, Maliszewski et al 1999; Hoskin 2000). Engagement of TRAIL on 

T cells with its receptors TRAIL-R1 or TRAIL-R2 on cancer cells, like the FasrFasL 

interaction, leads to the activation of DISC and inhibition of Bcl-2 and induction of
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caspase-dependent apoptotic cell death (Wiley, Schooley et al. 1995; Hoskin 2000). 

CD4+ cytolytic cells have been shown to kill TRAIL-R expressing tumours via the 

TRAIL/TRAIL-R system (Thomas and Hersey 1998; Wang, Boonman et al 2003). In 

mice lack of TRAIL expression causes increased growth and incidence of tumours 

(Takeda, Smyth et al 2002; Zerafa, Westwood et a l 2005).

1.2.2 CD4+ T Cell Responses

While CD8+ T cells or cytotoxic T lymphocytes (CTL), are the usual effector cells 

eliminating MHC Class 1+ target cells CD4+ T cells are required for the generation of 

CD8+ T cell responses. CD4+ T cells provide help in the generation of CD8+ T cell 

responses, either directly through cell-cell contact or by secretion of cytokines.

CD4+ T cells require antigen to be presented in the context of MHC Class II 

molecules, which are only expressed by antigen presenting cells. DC and other 

antigen presenting cells internalise foreign pathogens by phagocytosis, 

micropinocytosing soluble and endocytosing particulate proteins. These exogenous 

proteins are degraded in endosomes to produce peptides of 12-25 amino acid long and 

presented as discussed later.

CD4+ T cell priming by DC is delivered by three signals;

1) antigen presented on MHC Class II molecules,

2) co-stimulatory molecules CD80/CD86

3) cytokine secretion by DC (Fagnoni, Takamizawa et al 1995; Dilioglou, Cruse et 

al 2003; Shin, Kennedy et al 2003). Naive CD4+ T cells can receive polarising
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signals which induce their differentiation into distinct T helper populations usually 

categorised into either ThI, Tr2 or Th17 type responses.

Generally, pro-inflammatory cytokines/signals such as IFNy and IL-12 induce the 

development of ThI type responses (Caminschi, Venetsanakos et al 1998;

Caminschi, Venetsanakos et al 1999; Rissoan, Soumelis et al 1999; Luff, 

Maraskovsky et al 2004; Bellone, Carbone et al 2006). In the absence of IL-12, other 

cytokines, such as IL-10 and IL-4, can differentiate CD4+ T cells into Th2 type cells 

(Lucey, Clerici et al 1996). The distinction between ThI and Th2 type responses is 

based on the expression of cytokines, which induce different types of immune 

responses. Type I cytokines in the main are IFNy, IL-12 and TNFa while Th2 

cytokines are IL-4, IL-5 and IL-10 (Lucey, Clerici et al. 1996). ThI cytokines induce 

cell-mediated immunity, increase cell susceptibility to lysis, activate CTL and Natural 

Killer (NK) cells, while Th2 cytokines activate B cells and are fundamental to the 

generation of humoral responses. ThI 7 type T cells are mainly characterised by 

production of IL-17 and IL-22, and are implicated in autoimmune and inflammatory 

responses and are critical for protection against microbial infection, especially 

extracellular bacteria and fungi (Zhu and Paul 2008).

CD4+ T cells participate in the generation of CD8+ CTL responses to exogenous 

antigen presented by APC, where CD4+ T cell assistance is required (Friedman, Green 

et al 1988; Bennett, Carbone et al 1997; Kennedy and Celis 2006; Gupta, Boppana 

et al 2008). CD4+ T cells help in this process by recognising antigens expressed on 

DC and secreting cytokines (particularly IL-2) during interaction of APC with naive 

CD8+ T cells, or aiding the functional maturation of DC (increased costimulatory
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molecule and cytokine expression), prior to interaction of APC with naive CD8+ T 

cells (see figure 1.2). The interaction of CD4+ T cells with DC is via CD40 molecules 

(DC) and CD40L (CD 154 on T cells) (Caux, Massacrier et al. 1994; Bennett, Carbone 

et al. 1997; Danese, Scaldaferri et al. 2007). The importance of this interaction can be 

seen in in vivo experiments; CD40 ligation can completely restore CD8+ CTL activity 

in mice depleted of CD4+ T helper cells. (Bennett, Carbone et al. 1998; Schoenberger,' 

Toes et al 1998). Cancer immunotherapy approaches include CD40 stimulation using 

autologous tumour cell vaccines, CD40 gene therapy and CD40 agonistic antibodies 

(Bennett, Carbone et al. 1998; Schoenberger, Toes et al. 1998; Schultze, Anderson et 

al. 2001; Dzojic, Loskog et al. 2006; Loskog and Totterman 2007; Wu, Zhao et al. 

2007; Llopiz, Dotor et al. 2008).
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1.3 Dendritic Cells

Billingham and others observed in mice that tumours could be rejected and immunity 

could be developed by cellular components of the adaptive immune system 

(Billingham, Brent et al. 1953; Foley 1953; Baldwin 1955). This discovery was 

refined over the following 20 years, using mouse and rat models, culminating in the 

concept of immunological surveillance (Klein, Sjogren et al. 1960; Burnet 1964; 

Burnet 1970; Stutman 1975). Once tumours had been rejected these animals were 

resistant to subsequent challenge with the same tumour (Prehn and Main 1957; Klein, 

Sjogren et al. 1960). These demonstrations opened the way for developing both 

immunotherapy and cancer vaccines. Tumour antigens are carried by APC, which are 

dendritic cells, macrophages and monocytes. DC are the only cells able to migrate to 

lymph nodes, where the naive population of CD8+ T cells reside in an environment 

conducive to generation of immune responses. Maturing DC, containing antigen, 

migrate towards lymph nodes following chemokine signals such as CCL19. In the 

lymph nodes DC can present antigen to T cells, providing the necessary signals such 

as antigen in context of MHC Class I and II molecules, co-stimulatory signalling via 

CD80 and CD86 molecules and the appropriate cytokines to induce T cell activation.

DC derive from bone marrow CD34+ haematopoietic progenitor stem cells and are 

present in the blood, lymphoid organs and tissues. Two main subsets of dendritic cells 

can be identified in human blood using known DC markers (Figure 1.3). The cells 

derived from lymphoid progenitors (CD1 lc) in vitro differentiate into plasmacytoid 

DC (pDC) after stimulation with IL-3 and CD40 ligand (CD40L). The ones derived 

from myeloid progenitors (CD11+) develop into other cells such as granulocytes, 

monocytes, macrophages and myeloid DC and Langerhans cells, which reside in the
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epithelium and provide a sentinel role for infection. Plasmacytoid DC (pDC) produce 

large amounts of cytokines, particularly type IFNa and regulate inflammation 

(Colonna, Trinchieri et al 2004). pDC provide a link between innate and adaptive 

immunity. IFN released by human pDC activate NK cell cytolytic activity. pDCs are 

also activated by virus infections, and may be particularly important in inducing 

antiviral antibodies (Colonna, Trinchieri et al. 2004).
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CD 14+ monocytes obtained from peripheral blood and cultured with IL-4 and GM- 

CSF in vitro differentiate into monocytes derived DC (MDDC). These DC closely 

match myeloid cells found in tissues (Sallusto and Lanzavecchia 1994). This method 

is often used to develop DC used for vaccines as they produce a stable, homogenous 

population of DC which are able to evoke strong TrI type responses.

DC have distinct phenotypic and functional characteristics both in immature and 

mature states. MDDC are widely used for human in vitro immunological studies, due 

to the ease of generation from monocytes. DC present in most tissues are in the 

‘immature’ form, unable to stimulate T cells but well equipped to capture antigens, 

which may induce maturation of and mobilization of DC (Banchereau and Steinman 

1998). The ability of DC to be generated from PBMC enables both the study of the 

differentiation of DC from precursors and the maturation of these cells. In the work 

described in this thesis the development and function of monocyte derived DC were 

studied in relation to elevated HGF levels.

1.3.2 Dendritic Cell Maturation

Immature myeloid DC are generated in the bone marrow and travel via the blood to 

peripheral tissues (Banchereau and Steinman 1998). These immature DC are 

characterised by efficient antigen capture and processing but they do not have a high 

capacity to stimulate T cells. Phenotypically, they express low levels of co

stimulatory molecules (CD40, CD86, CD80) and do not express CD83. They can 

express other markers such as CD209, CD la, but do not express high levels of CD 14. 

In peripheral tissues these DC can account for up to 1-2% of total cells (Guermonprez, 

Valladeau et al. 2002). Their ability to capture antigens by various mechanisms



Page 25 of 209
*■

(micropinocytosis and ehdocytosis) enables them to function as peripheral sentinels 

for pathogens and damaged/abnormal cells.

Activation of DC induces the release of inflammatory chemokines and cytokines, 

such as IFNy, IL-12, TNFa, MIP-la and RANTES, to regulate leukocyte recruitment 

(Sozzani, Allavena et al 1998; Park, Kim et al 1999; Sallusto, Palermo et al 1999; 

Sozzani 2005). DC also undergo coordinated maturation, transforming from antigen 

processing to antigen presenting cells, enabling increased stimulation of memory and 

najfve T cells (Sallusto, Celia et al 1995; Tschoep, Manning et al 2003). DC possess 

receptors that recognise conserved molecules in pathogens or pathogen associated 

molecular patterns (P AMP). Toll-like receptors (TLR) are one example of these 

pattern recognition receptors(PRR) (Janeway Jr 1989). As PAMPs are absent from the 

host, they are not likely to be involved in the maturation of DC on encountering 

tumour cells. An alternative DC activation mechanism proposes that DC respond to 

endogenous signals (so called damage associated molecular patterns, DAMP) released 

by necrotic and damaged cells and cells under stress, in the absence of P AMP 

(Bianchi 2007).

Examples of PAMPs are: LPS, bacterial DNA and double stranded DNA (De Smedt, 

Pajak et al 1996; Akbari, Panjwani et al 1999; Celia, Salio et al 1999; Hartmann, 

Weiner et al 1999), while DAMPs can be signals from stressed or dying cells, such as 

TNFa, IL-1, IL-6, TGF-p and HMGB1 and heat shock proteins (Gallucci, Lolkema et 

al 1999; Bianchi 2007; Foell, Wittkowski etal 2007).

T cell-derived signals, especially CD40L interaction with CD40, induce terminal DC 

differentiation (Caux, Massacrier et al. 1994; Schoenberger, Toes et al. 1998;
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Vidalain, Azocar et al. 2000; Onaitis, Kalady et al. 2003). These mechanisms of 

inducing DC maturation have been investigated as part of possible immunotherapy 

approaches via gene therapy, cytokine therapy and tumour cell vacines (Friedlander, 

Delaune et al 2003; Gregoire, Ligeza-Poisson et al 2003; Koya, Kasahara et al 

2003; Bhardwaj 2007).

Maturation signals, such as LPS, lead in DC to the activation of the NF-kB pathway 

(Neumann, Fries et al 2000). In response to stimulation the IkB proteins which bind 

to and sequester NF-kB in the cytoplasm are broken down in proteosomes releasing 

active NF-kB. NF-kB translocates into the nucleus where it binds to specific 

sequences in the promoter/enhancer regions of genes, inducing transcription. Such 

activated genes, like MHC Class I and Class II molecules, co-stimulatory molecules, 

cytokines and cell adhesion receptors are important in the function of DC in immune 

response induction. The requirement of NF-kB for DC maturation has been 

demonstrated by blocking NF-kB using IkB<x transfection, which results in down 

regulation of MHC Class II, CD80, CD86, CD40 and pro-inflammatory cytokine 

expression such as IL-12 and TNFa (Yoshimura, Bondeson et al. 2001).

Maturing DC also up-regulate molecules such as CCR7, a receptor for CCL19 (a 

chemokine responsible for migration towards lymph nodes). Furthermore, they lose 

endocytic/phagocytic receptors and the functional capacity to capture antigen (De 

Smedt, Pajak et al. 1996; Jonuleit, Kuhn et al. 1997; Rovere, Vallinoto et al. 1998; 

Sozzani, Allavena et al. 1998; Celia, Salio et al. 1999). Additionally, CD83, a DC 

maturation marker is up-regulated. Cytokine production is increased, particularly the
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production of IL-12 and TNFa. LPS induces NF-kB pathway activation and is widely 

used to study DC maturation, it has been used in this thesis to mature DC.

Molecules, expressed on DC and with the greatest relevance to the generation of 

adaptive immune responses, are discussed below.

1.33 MHC Class I and II

‘Classical’ CD8+ T cell stimulation by peptide antigen requires that these proteins are 

synthesised within the antigen presenting cells (APC). This may represent a 

disadvantage for tumour antigen recognition associated with solid tumours, as these 

antigens are not endogenously synthesised in APC. Dendritic cells, as APC, support 

an alternative antigen presentation pathway that induces primary CD8+ T cells 

responses via the exogenous antigen presentation pathway. This process is called 

‘cross-presentation’ and the priming of CD8 T cells is referred to as ‘cross-priming’ 

(Brossart and Bevan 1997). This pathway is of particular interest in cancer 

immunology, as it allows presentation of antigens derived from solid tumours. Cross

presentation has been described when high concentration of exogenous antigen, either 

soluble or particulate (Bevan 1987) and from either apoptotic or necrotic tumour cells 

is presented by DC (Herr, Ranieri et al. 2000; Sauter, Albert et al. 2000). Exogenous 

antigen is taken up by DC, and processed for MHC Class I-restricted presentation, as 

described by (Brossart and Bevan 1997). Activation of T cell cytotoxic responses by 

cross presentation requires the assistance or ‘help’ of CD4+ T cells (Bennett, Carbone 

etal. 1997).

MHC Class I and II molecules bind endogenous or exogenous peptides and present 

these peptide antigens for recognition by T cells. Peptide antigens result from
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degradation of proteins into peptides within DC. Peptide antigens are transported to 

the cell surface by one of two routes; the endogenous pathway (for expression with 

MHC Class I) or the exogenous pathway (for expression on MHC Class II, see figure 

1.3).

The endogenous pathway presents peptide fragments, produced by the degradation of 

endogenous protein in proteosomes, which are then transported via TAP proteins to 

the rough endoplastic reticulum. Here they bind to MHC Class I^microglobulin 

complexed with chaperone proteins Calreticulin, Tapasin and ERp57. Binding of 

antigen to this complex releases the chaperones; MHC Class I-peptide complex is able 

to translocate via the Golgi apparatus to the cellular surface (Cresswell, Ackerman et 

al 2005).

The exogenous pathway presents exogenous proteins phagocytosed and degraded in 

endocytic compartments. MHC Class II molecules, complexed with the invariant 

chain/CLIP fragment (to stop non-specific protein binding), bind to these 

compartments causing disassociation of CLIP fragments and binding of exogenous 

peptides to MHC Class II molecules. These complexed antigen-MHC Class II 

molecules are then transported to the cells’ surface. The up-regulation of MHC- 

antigen complexes increases the efficiency of presentation of antigen to TCR on 

effector T cells.

1.3.4 CD80/CD86

The importance of DC providing the “second signal” via CD80 and CD86 molecules 

during the induction of primary T cell responses is well established. In some cases co-
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stimulation via CD28 molecules on T cells is not required for generation of cytotoxic 

T lymphocytes (CTL), as high levels of IL-12 and IL-2 can replace CD28 signalling 

(Makrigiannis, Musgrave et al 2001).

CD80 (B7-1) and CD86 (B7-2), are part of the B7 family of co-stimulatory molecules 

and are in turn members of the immunoglobulin superfamily of receptors. They are 

almost exclusively expressed on professional APC such as DC, monocytes and 

activated B cells. CD80/CD86 molecules interact with CD28, expressed on T cells, 

providing a second signal that in conjunction with the signal from TCR interaction 

with antigen-MHC cotnplexes, results in prolonged and enhanced IL-2 production. 

This causes prolonged and strong T cell activation (Van Gool, Vandenberghe et al 

1996; Kuroki, Shibaguchi et al 2004). Mouse models studying CD80 and CD86 

suggest that although co-stimulatory signals from these molecules are similar, CD80 

provides a quantifiably stronger stimulation than CD86, in terms of naive CD8+ T cell 

proliferation and IL-2 production (Creery, Diaz-Mitoma et al 1996; Gajewski 1996; 

Saito, Yagita et al 1996).

Interaction between MHC-antigen complexes on APC with TCR on T cells can result 

in functional immune responses, anergy or apoptosis (Greenwald, Freeman et al

2005). Interactions between CD80/CD86 with CD28 on T cells can prevent activation 

induced apoptosis (Shi, Radvanyi et al 1995). While T cell stimulation with little or 

absent CD80 or CD86 signalling results in T cell anergy (Schwartz 1990; Radvanyi, 

Shi et al. 1996) this may be the result of lack of IL-2 production (Becker and Brocker 

1994; Coughlin, Wysocka et al 1995). The role of the B7 family on regulation of T 

cell activation or tolerence, via CD28 or CTLA4 respectively, make modulation of B7
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family members interactions of importance in the control of T cell activation (like 

PD-L1 and 2) in therapy (Greenwald, Freeman et al. 2005).

1.3.5 CD83

CD83 is often used as a marker of DC maturation due to its selective expression by 

mature DC (Zhou and Tedder 1995). CD83 expressed on DC surface acts as an 

adhesion receptor binding blood monocytes and activated or stressed CD8+ T cells 

(Scholler, Hayden-Ledbetter et al 2001). However CD83 is also found in soluble 

form (CD83s), released from activated DC by proteolytic shedding of the ecto domain 

of membrane CD83. sCD83 Ig domain has been shown to inhibit DC-mediated 

primary allogenic T cell proliferation as well as peptide specific T cell proliferation in 

vitro. sCD83 also binds immature DC, blocking maturation and can down-regulate 

CD83 expression on mature DC (Lechmann, Krooshoop et al. 2001; Lechmann,

Zinser et al 2002; Fujimoto and Tedder 2006). CD83 expressed by DC seems to play 

a role in intercellular T cell and DC communication, while sCD83 may serve as an 

immuno-regulatory molecule (Lechmann, Zinser et al. 2002; Fujimoto and Tedder

2006). CD83 ligand engagement, following TCR and CD28 signalling, supports the 

generation of long-lived antigen specific cytotoxic T cells, by inducing proliferation 

and inhibiting apoptosis (Hirano, Butler et al 2006).

1.3.6 CD40

CD40, a member of the TNFa receptor family, is expressed on all APC. CD40 ligand 

(CD40L or CD 154) is also a member of this family, and its expression is mainly 

restricted to activated CD4+ T cells (Armitage, Tough et al 1993; Cayabyab, Phillips 

et al 1994; Grewal and Flavell 1996). As discussed earlier, CD40 ligation induces
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terminal differentiation of DC characterised by increased expression of other co

stimulatory molecules and adhesion molecules including CD80, CD86, CD54 and 

CD58. Additionally, stimulation via CD40 induces increased IL-12 production by DC 

(Armant, Armitage et al 1996; Celia, Scheidegger et al. 1996; Kato, Hakamada et al 

1996). Therefore CD40 activation of DC is critical for effective antigen presentation 

and effective induction of T cell responses.

1.3.7 PD-L1 and PD-L2

Program death ligand 1 and 2 (PD-L1 and PD-L2) are recently discovered members of 

the B7 family of cell surface receptors, and are expressed on a number of immune 

cells including B cells, macrophages, T cells and dendritic cells, mesenchymal stem 

cells, bone marrow-derived mast cells and DC in mice and some cancer cells 

(Yamazaki, Akiba et al 2002). PD-L1 and PD-L2 are ligands of programmed death 1 

molecule (PD-l), which itself closely resembles CTLA-4. PD-1/PD-L1 or PD-L2 

interactions may result in cell cycle arrest of T cells (Brown, Dorfman et al 2003). 

PD-l is inducibly expressed on activated T cells and ligation of PD-l by PD-L1 has 

been shown to dampen T cell activation (Ozkaynak, Wang et al 2002).

Expression of PD-L 1 has been shown as an indicator of poor prognosis in cancer 

(Hamanishi, Mandai et al 2007; Noami, Sho et al 2007; Wang, Han et al 2007). PD- 

L1 on tumour associated myeloid DC can be up-regulated by factors in the tumour 

microenvironment, and its antibody blockade can enhance DC/T cell activation. PD-l 

blockade does not change levels of apoptotic cells but by decreasing proliferation, as 

signalling via PD-l inhibits both IL-2 and IFNy production by T cells. However as 

PD-l and PD-L1 are also expressed on regulatory T cells they may control Treg
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regulatory effects. PD-L2 expression is more restricted as is inducibly expressed on 

DC, macrophages and bone marrow derived stem cells (Zhong, Tumang et al 2007).

The role of PD-l and its ligands in regulating the balance between T cell activation 

and tolerance, how this mechanism has been used by tumours to aid in immune escape 

and the possible uses in therapy, have been thoroughly reviewed recently by Keir et al 

(Keir, Butte et al 2008). Signalling via PD-l interacts with early B7:CD28 signalling 

by blocking the activation of PI3K via CD28 leading to down-regulation of IL-2 ,

IFNy and a decrease in Bcl-2 family of anti-apoptotic proteins. Tumour associated 

APC can also use the PD-l pathway to control T cell immune responses (Curiel, Wei 

et al 2003). PD-l interactions exert vital and diverse immuno-regulatory roles on T 

cell activation and tolerance, by controlling pathogenic effector T cells. PD-L1/PD-L2 

are therefore fundamentally and therapeutically important in cancer immunology and 

merit further study

1.3.8 CD209

CD209, also known as DC-SIGN (DC - Specific ICAM-3 Grabbing Non-integrin), is 

a member of the mannose receptor family. The expression of CD209 is restricted to 

immature DC (Bleijs, Geijtenbeek et al 2001), and is down-regulated during 

maturation (Relloso, Puig-Kroger et al 2002). CD209 is not expressed by monocytes, 

activated monocytes, T cells, B cells, activated B cells, thymocytes and CD34+ bone 

marrow cells. It is expressed by cells in the T cell area of lymph nodes and other 

lymphoid organs; it is not expressed by CD la Langerhans cells in the skin, but is 

expressed by DC like cells in mucosal tissues (Geijtenbeek, Torensma et al. 2000). 

Additionally, recent studies suggest that CD209 may be expressed by macrophages in
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fetal tissues, and also on endothelial cells in the hepatic sinusoid and lymphatic sinus 

(Bleijs, Geijtenbeek et al. 2001). CD209 up-regulation during development of DC 

from monocytes using GM-CSF-CSF and IL-4 (GM4) is dependent on IL-4 (Relloso, 

Puig-Kroger et al. 2002).

CD209 on DC progenitors, immature and maturing DC can facilitate trans-endothelial 

migration by binding with ICAM-2 molecules on endothelial cells. Up-regulation of 

ICAM-1 during inflammation can strengthen this interaction and coupled with 

localised expression of chemokines this can result in the specific migration of DC into 

sites of inflammation. This allows these DC to carry out their immunological 

functions such as take up and processing of antigen, in the periphery. (Zhou, Chen et 

al. 2006). In the lymph node, CD209 can stabilise the binding of DC to T cells by 

interactions with ICAM-3. This binding also activates LFA-1 on T cells which 

stabilises the immunological synapse due to high affinity binding with ICAM-1 

(Zhou, Chen et al 2006).

In addition to stabilising T cell binding, CD209 can contribute directly to T cell 

activation by promoting T cells to produce IL-2 and increasing TCR signalling. 

Inhibition of CD209 expression has been shown to affect expression of CD1 lc,

CD83, CD80 and CD86; it is believed that this occurs via the NF-kB pathway, but the 

mechanism is still unclear (Zhou, Zhang et al 2006). CD209 has however, also been 

implicated in viral infections. Virus can bind to and then infect DC, as CD209 can 

recognise and bind to glycosylated viral proteins such as gp 120 on HIV. This allows 

transportation of the virus to lymphoid tissues by the DC (Geijtenbeek, Torensma et 

al. 2000; Alvarez, Lasala et al. 2002; Engering, Geijtenbeek et al. 2002; Caparros,
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Serrano et al. 2005; Aamoudse, Vallejo et al. 2006; Caparros, Munoz et al. 2006). 

Additionally, CD209 cross-linking bacteria such as Lewis+ Heliobacter pylori has 

been shown to mediate induction of Th2 type responses, allowing immune escape 

(Bergman, Engering et al 2004).

Recently CD209 has been linked to immune escape by tumours, but is poorly 

understood; it has however been demonstrated that there is cross-talk between CD209 

and Toll like receptors, which can interfere with TLR signalling and induction of DC 

maturation (Koppel, van Gisbergen et al. 2005; van Gisbergen, Aamoudse et al. 2005; 

Zhou, Chen et al. 2006).

It has also been shown that cancer antigens such as CEA in colorectal cancer interact 

with DC via CD209 (van Gisbergen, Aamoudse et al. 2005). CD209 cross-linking 

increases IL-10 production by LPS-stimulated DC, and can alter the balance of 

Th1/Th2 type responses and can induce regulatory cells (Caparros, Munoz et al 2006; 

Nonaka, Izumo et al 2008). In acute lymphoblastic leukemia interaction of cancer 

cells with CD209 has been shown to correlate with poor prognosis and tolerance 

induction (Gijzen, Raymakers et al 2008).

1.3.9 CD14

CD 14 is a 55 kDa cell surface LPS receptor. It lacks a transmembrane domain and is 

anchored to the plasma membrane via a GPI anchor (Ziegler-Heitbrock and Ulevitch 

1993; Antal-Szalmas 2000). CD14 forms part of the LPS receptor complex. LPS 

binds to CD 14 and this binding is increased greatly by the soluble plasma protein,

LPS binding protein (LBP) (Ziegler-Heitbrock and Ulevitch 1993; Hailman,



Page 35 of 209

Lichenstein et al 1994; Fenton and Golenbock 1998; Triantafilou and Triantafilou 

2002). The complex of CD14-LPS-LBP is likely to be stabilised by other membrane 

proteins which play a role in internalisation and signalling. CD 14 is implicated in the 

binding and internalisation of apoptotic bodies and the programmed cell death of 

monocytes. Many of the intracellular signalling proteins that are activated by LPS in a 

CD 14 dependent manner are associated with caveolae/GPI-microdomains and these 

may have a role in CD14 signalling (Lisanti, Tang et al 1995; Diks, Richel et al

2004).

CD 14 is present on the surface of different myeloid cells and at very low levels on B 

cells, baEsophils, mammary cells, placental trophoblasts and gingival fibroblasts. The 

earliest myeloid precursors are CD 14 negative but CD 14 expression is up-regulated 

during differentiation (Landmann, Wesp et al 1991; Ziegler-Heitbrock and Ulevitch 

1993; Zhou and Tedder 1996). CD 14 expression on macrophages differentiated from 

monocytes differs depending on tissues types. In monocytes cytokines such as IFNa, 

IFNy, IL-2, IL-4 and IL-13 decrease CD 14 expression (Landmann, Ludwig et al 

1991). LPS, the ligand for CD 14, can alter expression on monocytes, causing rapid 

up-regulation followed by a decrease in expression after a few hours; this is due to the 

mobilisation of intracellular stores of CD 14 (Landmann, Knopf et al 1996). A 

marked increase in CD 14 expression is observed after 1 day, due to de novo synthesis, 

and possibly correlates with monocyte differentiation (Landmann, Knopf et al. 1996).

CD 14 is typically used as a marker of monocytes and its expression is usually lost 

during DC development (Ruppert, Schutt et al. 1993; Xu, Kramer et al 1995; 

Kiertscher and Roth 1996; Pickl, Majdic et al 1996; Zhou and Tedder 1996; Chapuis,
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Rosenzwajg et al 1997). CD 14 shedding has been shown to be responsible for 

controlling surface expression of CD 14 and generates soluble CD 14 (sCD14) (Bazil 

and Strominger 1991; Rokita and Menzel 1997). sCD14 is required by DC for LPS 

mediated activation and maturation (Verhasselt, Buelens et al 1997). While CD 14 is 

usually down-regulated on DC, Katoh et al demonstrated that histamine can prevent 

the loss of CD 14 during GM4 induced DC development, resulting in DC expressing 

CD 14 (Katoh, Soga et al 2005). These CD14+CDla- DC had enhanced capacity to 

induce pro-inflammatory cytokines and chemokines and showed increased phagocytic 

capacity while having reduced antigen-presenting capacity (Katoh, Soga et al. 2005). 

Additionally, IL-10 produced by these histamine treated DC induced T cells with 

regulatory properties (Katoh, Soga et al. 2005).

1.4 NK Cells

Natural killer (NK) cells are a heterogeneous population of cells comprising about 10- 

20% of all peripheral blood lymphocytes (PBL). Human NK cells are defined 

phenotypically by surface expression of CD56 and the lack of surface CD3 expression 

and functionally by their ability to lyse targets independent of MHC antigens and 

without prior sensitisation (Robertson and Ritz 1990; Farag and Caligiuri 2006). Due 

to these functional properties NK cells are an important part of the innate immune 

system, providing a first line defence against infected, stressed or cancerous cells 

(Robertson and Ritz 1990; Whiteside and Herberman 1995; O'Byme and Rusch

2006). NK cells are able to distinguish between normal and abnormal cells, using 

stimulatory receptors such as the NKR-P1 receptor, which can recognise 

oligosaccharide moieties on target cells, NKG2D which recognises MIC-A or B and 

ULBP molecules. Other inhibitory receptors such as KIR system recognise MHC
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class I molecules and down-regulate NK cytotoxic activity. However, unlike cells of 

the adaptive immune system they are not sensitised to specific antigens, nor can they 

develop long lasting memory responses (Robertson and Ritz 1990; Hallett and 

Murphy 2004). NK cells similar to CTL, can kill via expression of perforin and 

granzyme, Fas ligand or TRAIL (Robertson and Ritz 1990; Zamai, Ponti et al 2007; 

Klingemann and Boissel 2008). NK cells can additionally produce a wide range of 

inhibitory or stimulatory cytokines upon activation, such as IFNy, TGF-P, GM-CSF 

and G-CSF (Robertson and Ritz 1990; Zamai, Ponti et al. 2007; Klingemann and 

Boissel 2008).

NK cell killing of tumour cells can contribute to tumour antigen uptake by DC 

making tumour antigenic material from dead and apoptotic tumour cells available. 

Recently it has been discovered that while NK cells are the major innate immune 

systems effector cells, they can also contribute to the development of adaptive 

immune responses (Kalinski, Mailliard et al 2005). NK cells provide help to the 

adaptive immune system by being able to mature DC and increase DC ability to 

produce pro-inflammatory cytokines such as IL-12, and induce DC maturation into 

stable type 1 cells (Cooper, Fehniger et al 2004; Ferlazzo 2005; Kalinski, Giermasz 

et al 2005; Woo, Clay et al 2006). These “polarised” DC stimulate ThI and CTL 

responses in tumour specific CD4+ and CD8+ T cells (Kalinski, Mailliard et al 2005).

In cancer, NK cells play an important role, as according to the ‘missing self 

hypothesis, tumour cells with low levels of MHC Class I molecule expression can be 

targeted by NK cells (Hallett and Murphy 2004). The observation that nude mice 

(which lack T and B cells but not NK cells) do not develop tumours more frequently
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than wild type mice supports the role of NK cells in control of tumour growth 

(Talmadge, Meyers et al. 1980; Stanbridge and Ceredig 1981; Malygin 1985; 

Frydecka 1988). Additionally, patients with Chediak-Higashi syndrome (who have 

abnormal NK function) have a 200-fold increased risk of developing cancer (Abo, 

Roder et al. 1982), With this and other evidence for the role of NK cells in cancer, 

serious interest began to turn towards the use of NK cells in immunotherapy (Hallett 

and Murphy 2004; Kalinski, Giermasz et al. 2005; Kalinski, Mailliard et al. 2005; 

Bhardwaj 2007; Zamai, Ponti et al. 2007).

NK cell-based immunotherapy in animal models gives encouraging results, but the 

translation of this into clinical applications has only been moderately effective 

(Herberman 2002; Hallett and Murphy 2004; Klingemann and Boissel 2008). The 

limited clinical effectiveness of NK therapies is thought to be due to tumour NK 

escape mechanisms as discussed later. Many of these may utilise existing control 

mechanisms to control or escape from NK cell killing (Klingemann and Boissel 

2008). Effective treatment will result therefore only if inhibitory controls on NK 

killing are bypassed. However, as the immune system and conventional therapies 

increase the selective pressure on tumours cells there is a risk of resistance developing 

to both chemotherapy and immunotherapy (when using NK cells) as cells naturally 

express molecules, such as MHC Class I molecules and KIR ligands, that prevent 

them being killed by NK cells (Herberman 1986; Timonen and Helander 1997; 

Herberman 2002). NK therapies are expected to be beneficial mainly in an anti

metastatic role and in haematological malignancies (Herberman 2002; Hallett and 

Murphy 2004).
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1.5 Cancer and the Immune System

Cancer is a multistep process and the steps required for the development of cancer (as 

defined by Hanahan and Weinberg) are shown in Figure 1.1 (Hanahan and Weinberg 

2000). The immune system is primarily responsible for protection against foreign 

pathogens; however in the 1950s, this understanding of the role of the immune system 

was widened to include elimination of tumour or preCancerous cells. Tumour 

immuno-surveillance has been reviewed many times but the evidence in the main 

comes from three types of observations (Dunn, Bruce et al 2002; Zitvogel, Tesniere 

et al 2006; Bhardwaj 2007; Swann and Smyth 2007);

1) Spontaneous cancer regression in patients, associated with elevated immune 

responses, such as those reported in mesothelioma (Fischbein, Suzuki et al 1978; 

Robinson, Robinson et al 2001).

2) Increased incidence of cancer in immuno-suppressed individuals, ranging from 

organ transplanted patients, individuals with primary immunodeficiency disorders and 

in recent years the prevalence of tumours in patients infected with HIV who have 

developed AIDS (Scully, Cawson et al 1986; Kahn, Northfelt et al 1992; Weiss 

1999).

3) Survival advantage of patients with activated CD8+ T cells infiltrating the tumour 

(Galon, Costes et al 2006; Anraku, Cunningham et al 2008; Han, Fletcher et al 

2008).

These observations however only indirectly prove the existence of tumour immuno- 

surveillance.

Since it was discovered that the immune system could mediate rejection and 

resistance to tumours, research has mainly been focused on understanding tumour
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antigen recognition, tumour antigen processing, antigen presentation and stimulation 

of effector cells (e.g. T cells) (Burnet 1964; Kavanaugh and Carbone 1996; 

Banchereau, Palucka et al. 2001; Dunn, Bruce et al. 2002; Ohm and Carbone 2002; 

Parish 2003; Gajewski, Meng et al. 2006; Zitvogel, Tesniere et al. 2006; Swann and 

Smyth 2007). Recently an addition to the hallmarks of cancer to include immune 

escape (see Figure 1.4) has been proposed by (Zitvogel, Tesniere et al. 2006).



Page 41 of 209

Jnsensitivity to Anti- 
Growth Signals

Self-sufficiency in 
Growth Signals

Immune Escape

Evading 
Apoptosis 
(programmed 
cell death)

Limitless
"Replicative
Potential

Sustained
Angiogenesis

Tissue 
Invasion and

(blood vessel growth) Metastasis

Figure 1 Steps in Cancer Development

(Hanahan and Weinberg 2000; Zitvogel, Tesniere et al. 2006)



Page 42 of 209

The goal of treating cancer via immunotherapeutic methods or developing cancer 

vaccines requires an understanding of the process of tumour immune recognition and 

the roles of the components of the adaptive immune system in this process (such as 

DC in the activation of T cells, as broadly shown in Figure 1.5). Tumour immune 

recognition can be broken down into 7 broad steps as outlined in 1.6. Failure at any of 

these steps results in the escape of tumour cells from immuno-surveillance and the 

clinical presentation of cancer. Some of the main mechanisms utilised by many 

cancers are discussed here;

• Decreased antigen presentation by tumour cells.

• Dendritic cell dysfunction (e.g. antigen uptake/antigen presentation/migration)

• Lack of/decreased co-stimulation by APC.

• Suppression of NK cells

• Fas/Fas-ligand interactions between T cells:tumour.

• Suppressor cells (Tregs, Regulatory DC and MDSC)

• Immunosuppressive cytokines



Page 43 of 209

DC MHC 
Class I TCR

CD8' 
naive T 

cell
CD40

MHC 
Class II CD80/

CD86

TCR CD28
IFNy
IL -12

IL-6
IL-10

CD40L

CD4+ 
naive T cell

IL-2, IL-4, 
IL-6, IL-12 
and TNF

TH2 TH1

Cytokines

Tumour Cell
CD8+ 

Cytotoxic 
T cell

Direct
T um our
Killing

Figure 1.5 Anti Tumour T Cell Responses, The Role of DC in T Cell Activation



Page 44 of 209

Tumour
iQ2  )  Tumour Cell

9
©

Draining 
Lymph Node

1. Damage to tumour antigen expressing tumour cells (NK cells, cross-reactive T cells and chemo- 

/radio-therapy

2. Uptake of tumour antigens by DC (as APC)

3. Maturation of DC by damage associated molecular proteins (DAMPs), and inflammatory 

cytokines

4. Migration of DC to draining lymph nodes.

5. Priming tumour antigen specific T cells

6. Migration of activated T cells out of secondary lymphoid organs and towards tumours.

7. Recognition of tumour cells, by specific T cells and T cell mediated tumour lysis 

Figure 1.6 Tumour-Immune System Interactions



Page 45 of 209

1.5.1 Decreased Antigen Presentation

Although immune recognition of tumour cells had been shown in the 1950s, it was 

not until molecular techniques advanced that the existence and molecular nature of 

tumour antigens could be proven and studied. The identification and cloning of the 

first human tumour (melanoma antigen MZ2-E, later named MAGE-1) antigen was 

reported in 1991 (van der Bruggen, Traversari et al. 1991). This was a major landmark 

in the establishment of the discipline of tumour immunology. Since then a large 

number of tumour antigens have been characterised. These tumour antigens can be 

divided into the following groups;

• Viral antigens;

• Normally silent genes;

• Changes in carbohydrate structure of proteins;

• Changes in expression of normally expressed proteins and mutant proteins.

The expression of tumour antigens is essential for immuno-surveillance of tumours; 

conversely, tumours need to escape from this immuno-surveillance to survive. MHC 

expression is required for recognition of tumour cells by T cells. Down-regulation of 

the expression o f MHC molecules on APC prevents the activation /priming of T cells 

to TAA. Down-regulation of MHC on the tumour cell surface also reduces the 

probability of activated T cells recognising tumour cells(Festenstein 1987; Garrido, 

Cabera et al. 1993; Garrido, Ruiz-Cabello et al. 1997).
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The following types of HLA loss have been identified:

• Total loss of HLA class (MHC Class I),

• Loss of HLA haplotype,

• HLA-A locus specific loss,

• HLA-B locus specific loss and

• Single HLA allelic loss (Garrido, Ruiz-Cabello et al. 1997).

Changes in HLA expression are not infrequent and may affect 39%-88% of tumours 

derived from epithelial cells, such as colorectal carcinomas, gastric carcinomas 

(Lopez Nevot, Esteban et al. 1989; Algarra, Gaforio et al. 1999; Sette, Chesnut et al. 

2001; Ordemann, Jacobi et al. 2002; Mazzoccoli, Grilli et al. 2003; Rajendra, 

Ackroyd et al. 2006; Ferrone and Whiteside 2007). It has been suggested that 

selective pressure by immuno surveillance of tumours leads to immuno-editing, 

producing tumours where those cells that have high expression of MHC Class I, 

increased TAA expression or both, are selected out with only cells with defects in 

MHC Class I/TAA expression surviving (Dunn, Bruce et al. 2002; Parish 2003; 

Swann and Smyth 2007). The down-regulation of antigen/antigen presentation can 

occur by transcriptional defects, mutations of genes’ HLA subunits or defects in the 

MHC processing machinery genes, including functional loss of p2-microglobulin and 

peptide transporter defects (TAP-1 and 2, LMP-2, LMP-7) (Ochoa 2003).

1.5.3 Dendritic Cell Dysfunction

DC, as the backbone of immune responses, have become the focus of research in 

cancer immunotherapy, since they are able to induce both primary and secondary T 

cell responses.
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In healthy individuals it is believed that DC in the tissues take up tumour antigens 

from damaged, apoptotic or necrotic e.g. due to NK killing or cross reactive T cell 

responses to abnormal self proteins (Cramer, Titus-Emstoff et al. 2005; Oppenheim, 

Dong et al 2005). DC process these antigens via cross presentation or the exogenous 

pathways and present antigen on both MHC Class I and II molecules (Finn 2004). 

During maturation MHC-antigen complexes and co-stimulatory molecules are up- 

regulated and DC migrate into lymph nodes where they interact with naive CD4+ and 

CD8+ T cells and generate both T helper and CTL responses. These effector cells 

migrate to the tissues and target and eliminate neoplastic cells. This process is briefly 

outlined in Figure 1.6 which also shows the possible stages where the tumour 

microenvironment can influence DC and T cell function.

Gabrilovich recently reviewed differentiation of myeloid cells in cancer and 

concluded that abnormal differentiation of DC from precursors results in three main 

consequences; decreased production of mature, functionally competent DC; the 

accumulation of iDC (which cannot up-regulate MHC Class II and co-stimulatory 

molecules); and increased production of immature myeloid cells (Gabrilovich 2004). 

Investigations of the functional activity of DC in cancer have reported defects in DC 

function such as poor expression of co-stimulatory molecules, inhibition of migration, 

inhibition of maturation of DC and defective antigen presentation (Chaux, Moutet et 

al. 1996; Thumher, Radmayr et al. 1996; Chaux, Favre et al. 1997; Gabrilovich, 

Corak et al. 1997; Nestle, Alijagic et al. 1998).
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Stimulation of tumour bearing host T cells by competent DC can result in anti-tumour 

responses (Spisek, Chevallier et al. 2002; Gregoire, Ligeza-Poisson et al. 2003). 

Therefore T cell responses seem to be affected only as a result of defective 

stimulation, as even CD3-antibody stimulation does not demonstrate detectable T cell 

defects, while in vitro functionally competent DC can be generated from tumour host 

DC-precursors. It has been shown that tumour cell conditioned supernatants can 

impair DC development from progenitors, affecting expression of molecules involved 

in antigen presentation and functions of DC (Gabrilovich, Ciemik et al. 1996; 

Gabrilovich, Nadaf et al 1996). Tumour cell supernatants can also skew DC 

differentiation towards monocytic cells with diminished APC function (Menetrier- 

Caux, Montmain et al. 1998).

In tumour bearing hosts DC defects, including reduced stimulatory capacity, affect 

DC of myeloid origin, while inhibition of DC differentiation results in the generation 

of immature myeloid cells and monocytes. Several factors have been implicated in 

DC dysfunction, including M-CSF,TGF-P, IL-6 and IL-10. M-CSF and IL-6 have 

been identified by use of neutralising antibodies (Vuckovic, Clark et al. 2002; Zou 

and Tam 2002; Panoskaltsis, Reid et al. 2004; Sikora, Dworacki et al. 2004). IL-10 is 

probably the best known of these inhibitory factors. IL-10 has been shown to block 

monocyte to DC differentiation and DC maturation and can skew development of 

monocytes towards macrophages or macrophage like subsets, induce DC capable of 

generating suppressive T cells (Tregs) and induce autocrine IL-10 production 

(Allavena, Piemonti et al 1998; Fortsch, Rollinghoff et al 2000; Corinti, Albanesi et 

al 2001). IL-10 is rarely produced by tumour cells, and neutralisation of IL-10, using 

neutralising Ab, in tumour cells does not totally abrogate inhibitory effects of tumour
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cell supernatants (Sica, Saccani et al. 2000; Specht, Bexten et al. 2001; Steinbrink, 

Graulich et al. 2002). Other tumour-related factors, such as VEGF, may also effect 

DC development by acting on DC precursors, blocking their development into DC 

(Gabrilovich, Ishida et al 1998). There is much work to be done in identifying the 

mechanisms by which tumour-induced factors affect DC development.

1.5.4 Lack of /decreased Co-Stimulatory Molecule Expression.

Stimulation of naive T cells into effector cells requires interactions with professional 

antigen presenting cells of which DC are the most potent. These APC are able to 

provide the three signals required to activate nai've T cells, such as MHC-antigen 

complexes, co-stimulatory molecules, and cytokines. APC-T cell interactions include 

adhesion, recognition of MHC-antigen complex by the TCR and co-stimulation. The 

results of these interactions are illustrated in figure 1.5. MHC- TCR interactions 

without antigen even in the presence of both adhesion molecules and appropriate 

costimulatory molecules does not result in activation, while interaction of the MHC- 

antigen complex and TCR without costimulatory molecules induces T cell anergy or 

activation induced cell death. As shown on Figure 1.7, co-stimulation induces 

multiple transcription factors, whereas without co-stimulation activation of Nf-xB is 

inhibited resulting in reduced IL-2 production and activation of T cell
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1.5.5 Fas/Fas-Ligand Interactions.

As described earlier, Fas or CD95 is a member of the tumour necrosis factor receptor 

family of cell surface receptors and interacts with Fas ligand. Fas is expressed on a 

variety of lymphoid and non-lymphoid cells, while FasL is mainly restricted to 

activated T and NK cells and monocytes. Ligation of Fas molecules leads to 

signalling cascades that leads to programmed cell death or apoptosis (Kagi, Vignaux 

et al. 1994; Sikora, Dworacki et al. 1998). The Fas/FasL system is used by 

lymphocytes to eliminate target cells (Wajant 2006).

Fas/FasL are involved in immune system homeostasis, both in control of clonal 

expansion and also in effector responses. This has been illustrated by the immune 

disorders associated with mutations in genes encoding Fas/FasL. These are manifested 

in lymphoproliferative disease, resulting in massive lymphadenopathy, altered and 

enlarged T cells, and autoimmune disorders (Puck and Sneller 1997; Bleesing, Straus 

et al. 2000; Sneller, Dale et al. 2003). This emphasises that Fas/FasL interactions 

shape and maintain self-tolerence and down-regulate immune responses once the 

antigen stimulus subsides. Additionally expression of FasL on testes and eye tissues 

induces immune protection by inducing apoptosis in invading cells. Many tumour 

cells have been shown to express FasL, while hematopoietic malignancies and 

numerous non-hematopoietic tumours have been reported to express Fas (Wajant

2006). This has given rise to the hypothesis that the Fas/FasL system allows immune 

escape by allowing FasL expressing tumour cells to counter-attack infiltrating 

lymphocytes (O'Connell, O'Sullivan et al. 1996). Reduced tumour formation in a
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mouse model was reported where native FasL expression was silenced in tumours, 

supporting the FasL counterattack hypothesis (Ryan, Shanahan et al 2005).

Tumour cells have also been reported to develop resistance to Fas mediated apoptosis. 

This may result from immunoediting, as lack of expression or functionality of Fas 

confers a survival advantage to tumour cells (Sikora, Dworacki et al. 1998). Surface 

expression of Fas is requisite for FasL mediated induction of apoptosis. IFNy can 

revert tumour cells to a Fas-sensitive type in melanoma, although the mechanism is 

not well defined and not thought to be a common phenomenon (Ochoa 2003). The 

emergence of a Fas-apoptosis resistant phenotype seems to be a common immune 

escape by tumours.

The Fas/FasL system also offers the possibility of using this system for therapeutic 

intervention (Wajant 2006). This would be two-fold, such as increasing Fas 

expression/sensitivity on tumour cells, while decreasing FasL expression on tumour 

cells and decreasing Fas expression/sensitivity of CTL. However, due to the function 

of Fas in controlling immune cells and the fact that lack of Fas/FasL leads to 

autoimmunity this area of therapy will need much more study before it is ready for 

clinical use (Wajant 2006).

1.5.6 Suppression of NK Cells

Down-regulation of MHC Class I as described above is a mechanism allowing escape 

of cells from target recognition by CD8+ T cells. Lack of MHC Class I expression 

would normally target cells for elimination by NK cells. However allelic losses will 

not be susceptible to NK cells as HLA molecules are still expressed by tumour cells,
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but have impaired antigen presentation. Furthermore, several surface molecules such 

as NKp44 and other members of the HLA family have been shown to mediate 

suppression of NK lysis and may be used by tumours to facilitate immune escape. 

Soluble MIC-A and -B in tumour can down-regulate NK activity via blocking 

NKG2D (Raffaghello, Prigione et al. 2004; Clayton, Mitchell et al 2008)

1.5.7 Immunosuppressive Cytokines

Tumours secrete a number of soluble factors that support tumour cell growth, induce 

angiogenesis and cell invasiveness (e.g. VEGF, HGF). Factors secreted by tumours 

may also affect the induction of immune responses. IL-10, GM-CSF, M-CSF, IL-6 are 

all factors secreted by tumours that have been shown to modulate immune cells. 

Mesothelioma cell lines and tumours have been shown to produce cytokines including 

GM-CSF, IL-6 and IL-10 (Gottehrer, Taryle et al. 1991; Schmitter, Lauber et al.

1992; DeLong, Carroll et al. 2005).

GM-CSF can, in appropriate, amounts induce DC development and stimulate immune 

functions. Tumour cells modified to producing GM-CSF, irradiated and used as 

vaccines, increased anti-tumour responses. However, in mice, GM-CSF has been 

implicated in generation of immuno-suppressive myeloid cells with Gr-1+CD1 lb+ 

phenotype, following vaccination of mice with cells expressing large amounts of GM- 

CSF (Steptoe, Ritchie et al. 2005).

IL-10 has been shown to affect DC development and it appears that IL-10 affects 

more mature myeloid cells. As also discussed earlier, in mouse models IL-10 was 

found to be responsible for DC dysfunction (Kusmartsev and Gabrilovich 2006). DC
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exposed to IL-10 during their development have decreased allogenic T cell 

stimulatory capacity, reduced CTL responses and IL-12 production. Additionally, IL- 

10 induces CD4 and CD8 T cells that suppress antigen specific T cell proliferation. 

IL-10 may also mediate PGE2 and possibly other immune suppressive factors, as the 

immune suppressive effect of PGE2 may be reversed by administration of anti-IL-10 

antibodies (Misra, Selvakumar et al. 1995; van der Pouw Kraan, Boeije et al. 1995; 

Kim, Emi et al. 2006).

M-CSF and IL-6 modulate myeloid cell differentiation. Cancer cells expressing large 

amounts of M-CSF and IL-6 induce myeloid progenitor cells to differentiate into 

monocytic cells and can inhibit DC development (Menetrier-Caux, Montmain et al. 

1998; Zou and Tam 2002). These cells have characteristics of macrophages, with 

better phagocytic but poorer antigen presentation capacity (Kusmartsev and 

Gabrilovich 2006). In vitro pro-inflammatory cytokines such as IL-4 and IL-13 can 

reverse the effects of IL-6 and M-CSF (Park, Nakagawa et al. 2004).

Soluble factors secreted by tumours can, by affecting DC, amplify immuno 

suppressive effects since DC play a central role in T cell stimulation. Immuno 

suppressive cytokines can affect DC by modulating their development from 

precursors or by altering their functional ability; these effects have been discussed 

previously. Regulatory DC express lower levels of MHC Class II, CD86 but have 

higher expression of CD80, CD40 molecules; they also secrete more IL-10 and less 

IL-12, than normal DC (Zhang, Tang et al 2004). Regulatory DC cells did not 

mediate the suppression of T cell by differentiation of CD4+ T cells into Tregs(Zhang, 

Tang et al. 2004).
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1.5.8 Regulatory Cells (Tregs, Regulatory/Tolerogenic DC and MDSC)

Tumour cells can also evade the immune system by inducing regulatory T cells, DC 

and myeloid cells.

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of myeloid 

cells comprising immature macrophages, immature DC and immature myeloid cells, 

among others. These cells are at the early stages of differentiation, and in mice are 

defined as Gr-1+CD1 lb+ cells. In tumour bearing mice MDSC express MHC Class I 

molecules but little MHC Class II and co-stimulatory molecules (Rabinovich, 

Gabrilovich et al. 2007).

MDSC are characterised functionally by the inhibition of IFNy production by CD8+ T 

cells, stimulated by antigen-MHC Class I complexes on MDSC. The inhibitory effect 

is dependent on MHC Class I expression, requires cell:cell contact and is not 

mediated by soluble factors, but is mediated by reactive oxygen species. In a mouse 

model MDSC (but not iMC) induce antigen specific T cell tolerence (Watanabe, 

Deguchi et al. 2008). MDSC are capable of taking up antigen, processing and 

presenting it on the cell surface, and inducing antigen specific T cell anergy and 

suppression of T cell proliferation (Huang, Pan et al. 2006).

In humans, MDSC are defined as cells that express CD33 (a common myeloid 

marker) but lack expression of mature myeloid and lymphoid cell markers and HLA- 

DR (Almand, Clark et al. 2001). In advanced cancer these cells can accumulate in the 

blood (Almand, Clark et al. 2001; Danna, Sinha et al. 2004). MDSC from advanced



Page 56 of 209

cancer patients were functionally similar to mouse MDSC in inhibiting IFNy 

production by CD8+ T cells (Almand, Clark et al. 2001). Impaired cytokine 

production by T cells was abrogated by addition of catalase as a reactive oxygen 

scavenger (Kusmartsev and Gabrilovich 2003). MDSC can also induce T regulatory 

cells (Tregs) in vitro. This is dependent on IFNy and IL-10 (Kusmartsev and 

Gabrilovich 2006).

Recently much interest has been focussed on the role of Tregs in cancer-mediated 

immune suppression/escape. Tregs cells were identified as CD4+CD25+ T cells, a 

naturally occurring T cell subset that comprises about 5-10 % of all peripheral T cells, 

and which are capable of suppressing T cell responses in vivo reviewed by 

(Rabinovich, Gabrilovich et al. 2007). The transcription factor FoxP3 is used as an 

intracellular marker for Tregs in combination with other markers such as CD4 and 

CD25 and glucocorticoid-induced tumour necrosis factor receptor (GITR) (Zou

2005). Tregs play a pivotal role in the suppression of tumour immunity. In many 

cancer patients, including breast, ovarian and lung cancer patients elevated 

frequencies of CD4+CD25+FoxP3+ cells are found either in the circulation or in the 

tumour itself (Banham, Powrie et al. 2006; Betts, Clarke et al 2006; Wolf, Rumpold 

et al. 2006; Curiel 2007; Wang and Wang 2007). Large numbers of 

CD4+CD25+FoxP3+ cells in tumour/tumour microenvironment correlate with poor 

prognosis (Curiel, Coukos et al. 2004). Removal or depletion of Tregs by using anti- 

CD25 antibodies results in increased T cell mediated tumour rejection (Sutmuller, van 

Duivenvoorde et al. 2001; Grauer, Sutmuller et al. 2008; Kline, Brown et al. 2008). 

Strategies to inhibit/deplete Tregs, such as the engagement of toll-like receptors which 

can reverse the function of Tregs and drug mediated selective depletion of
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CD4+CD25+ T cells are being investigated as cancer therapies (Rabinovich, 

Gabrilovich et al. 2007). Recent work has also shown that DC exposed to IL-10 can 

promote Treg development (Bellinghausen, Konig et al 2006).

The expression of functionally active IDO, a factor that causes inhibition of T cell 

proliferation by depletion of extracellular tryptophan, has been reported by IDO- 

competent DC developed in the presence of IFNy (Orabona, Puccetti et al 2006). 

These cells are functional variable, causing difficulties in positively defining the IDO- 

competent cells able to suppress T cells (Rabinovich, Gabrilovich et al. 2007).

Immune cells with suppressive function, especially Treg cells, have been of increased 

interest in cancer immune therapy approaches. (Chattopadhyay, Chakraborty et al. 

2005; von Boehmer 2005; Betts, Clarke et al. 2006; Wolf, Rumpold et al. 2006; 

Rabinovich, Gabrilovich et al. 2007; Wang and Wang 2007).

1.6 H GF

Hepatocyte Growth Factor (HGF) or scatter factor (SF) was first discovered in the 

1980s as a growth factor for hepatocytes (Nakamura, Nawa et al 1984; Nakamura, 

Nishizawa et al 1989). It became clear that the biological activity of HGF was not 

solely limited to stimulation of cell growth, nor confined to a single cell type 

(Zamegar and Michalopoulos 1995). HGF is now well known to be a pleiotropic 

growth factor inducing mitogenic, morphogenic and motogenic activities in target 

cells. HGF is stromally derivred growth factor, but has been detected in a variety of 

cell types including; alveolar epithelial cells, hepatocytes, mesenchymal cells, 

neutrophils, macrophages, hematopoietic stem cells, endothelial cells, DC, 

myofibroblasts, and cancer cells. HGF is secreted as a single chain precursor that is
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biologically inert, called pro-HGF, and requires processing by proteases, such as 

urokinase-type plasminogen activator or a factor XH-like enzyme called HGF- 

activator. These enzymes cleave pro-HGF into active HGF, which is an 80kDa hetero- 

dimeric protein, consisting of two subunits; a and p (65 and 35 kDa respectively), 

linked by a single disulphide bond.

The amino acid sequence of HGF closely resembles several coagulation/fibrinolytic 

proteins, including prothrombin and plasminogen, due to the presence of kringle 

domains and a serine protease domain. HGF however, has no clotting or fibrinolytic 

activity; the converse is also true with related proteins showing no growth potentiating 

properties. Another property of HGF is its ability to bind heparin sulphate 

proteogyleans; this results in sequestration of HGF in the vicinity of HGF secreting 

cells. This then leads to high localised concentrations of HGF promoting a localised 

response, reviewed by (Zamegar and Michalopoulos 1995).

HGF has only a single known receptor, c-Met; this receptor was first characterised as 

an onco-protein (Cooper, Park et al. 1984). The association and relevance of HGF and 

c-Met in cancer and HGF have been reviewed by several people discussing the 

migration and motility effects of c-Met signalling, and how HGF can promote cell 

invasion and growth, in particular by the disruption of cell:cell structures (Giordano, 

di Renzo et al. 1992; Zamegar and Michalopoulos 1995; Corso, Comoglio et al. 2005; 

Jiang, Martin et al. 2005; Peruzzi and Bottaro 2006). The therapeutic opportunities 

and implications for treatment of cancer by targeting HGF have also been discussed 

(Stella and Comoglio 1999; Maulik, Shrikhande et al. 2002; Corso, Comoglio et al. 

2005; Jiang, Martin et al. 2005; Peruzzi and Bottaro 2006). However, little work has
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been done to investigate the high levels of HGF and its potential effects on immune 

responses. Indeed little work has been carried out even to characterise c-Met 

expression on human immune cells, apart from Galimi et al demonstrating that c-Met 

is expressed on monocytes (Galimi, Cottone et a l 2001). As part of the work for this 

thesis I have demonstrated functional expression of c-Met on human monocytes and 

dendritic cells and the lack of its expression on lymphocytes.

1.6.1 HGF in Health

HGF is a growth factor supporting the development and function of hepatocytes. 

Research on lung fibroblasts highlighted the effect of HGF, causing the dispersal of 

epithelial cells (Matsumoto and Nakamura 1993). Studies after this demonstrated that 

HGF induces morphogenesis in several types of epithelial cells. HGF added to 

cultures of various epithelial cells leads to formation of tubules, ducts and other 

structures, depending on the origin of the epithelial cells. Studies on mice have also 

contributed to the understanding of HGF. Knock out of HGF or c-Met genes causes 

pathological defects in animals leading to death in utero on day 15 of gestation. These 

embryos exhibit major defects in the placenta, liver and muscle (Uehara, Minowa et 

al. 1995). These and other studies, including those on organ regeneration, 

demonstrated that HGF and its receptor c-Met are mediators of epithelial- 

mesenchymal interactions and organ morphogenesis, and are critical in these 

processes during embryogenesis. However, while HGF’s role in the processes of cell 

growth and motility are understood, it remains unclear what role if any HGF and c- 

Met play in processes such as neuronal outgrowth, muscle migration and growth, 

angiogenesis, hematopoiesis, lympocyte adhesion and migration.
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1.6.2 HGF in Cancer

Elevated levels of HGF have been reported in several clinical conditions including 

cancer where high levels in plasma and in the tumour environment have been found 

(Giordano, di Renzo et al. 1992; Sheen-Chen, Liu et al. 2005; Jagadeeswaran, Ma et 

al. 2006; De Herdt and Baatenburg de Jong 2008). These high levels are associated 

with poor prognosis which is often attributed to the role of HGF in metastatic spread 

of cancer (Taniguchi, Kitamura et al. 1997; Zhu and Humphrey 2000; To, Seiden et 

al 2002).

In cancer, as described and illustrated in Figure 1.4, control of growth is dysregulated 

and invasive growth/metastasis is promoted. c-Met activation by HGF induces 

neoplastic/tumour cells to grow invasively by eroding the basement membrane and 

infiltrating stromal layers, which eventually leads to metastatic spread of these cells 

(Vande Woude, Jeffers et al. 1997; Stella and Comoglio 1999; Gao, Xie et al. 2005).

c-Met activation or dysregulation of activation can be both HGF dependent and 

independent, which has to be considered when searching for targets in cancer therapy. 

c-Met over-expression in cancer is the most frequent alteration noted in human 

tumours. This over-expression enables receptors to spontaneously dimerise causing 

activation. c-Met can also be affected by mutations, which cause increased kinase 

activity. Although it is still dependent on HGF, it correlates with increased 

invasiveness and metastatic spread of tumour cells (Danilkovitch-Miagkova and Zbar

2002). Increased secretion of HGF by tumour cells can lead to autocrine c-Met 

activation.
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Over-expression of HGF and c-Met have been reported in many cancers, such as 

bladder, lung, pancreas, thyroid, colon, stomach and breast cancer, and in some cases 

it serves as a negative prognostic factor (Di Renzo, Narsimhan et al. 1991; Yamashita, 

Ogawa et al 1994; Di Renzo, Olivero et al. 1995; Di Renzo, Poulsom et al. 1995). 

Mouse models using cells transfected with HGF and c-Met demonstrate that co

expression of these genes transforms transfected cells into tumourigenic cells (Rong, 

Bodescot et al. 1992). The fact that tumour cells, expressing both HGF and c-Met, 

also express epithelial and mesenchymal markers suggests that HGF maybe relevant 

in malignant pleural mesothelioma (MPM). This was studied by Harvey et al where 

they concluded that HGF is involved in MPM development (Eagles, Warn et al. 1996; 

Harvey, Warn et al. 1996).

1.6.3 Immunological Aspects of HGF

While traditionally thought of as a specific growth factor of epithelial cells, it has 

become clear recently that HGF can act as a regulator of immune function. HGF is 

known to stimulate the invasiveness of monocytes and alter the gene expression 

profile which suggests a pro-inflammatory role for HGF stimulated monocytes 

(Beilmann, Vande Woude et al. 2000). HGF has also been implicated in regulation of 

monocyte-macrophage function such as IL-6 production, c-Met up-regulation and 

HGF production (Galimi, Cottone et al. 2001).

Mouse models of bone marrow transplantation showed that HGF gene transfection 

reduced graft-versus-host disease (GVHD), suggesting that in transplanted mice 

immunological tolerance to host antigens was established (Imado, Iwasaki et al.

2004). HGF has also been reported to alleviate airway inflammation, collagen induced
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arthritis and autoimmune nephritis in mouse models (Ito, Kanehiro et al. 2005; 

Okunishi, Dohi et al. 2005; Kuroiwa, Iwasaki et al. 2006; Okunishi, Dohi et al. 2007) 

Skibinski discussed, in a brief review, the interactions of HGF with immune cells such 

as neutrophils, B cells and its effects on adhesion and transmigration, and suggested 

that HGF’s potential role in immune modulation via DC should be studied (Skibinski

2003).

Rutella et al have recently reported that HGF treated monocytes could induce Treg 

development and had increased IL-10 production. HGF was also observed to alter 

gene expression in monocytes, as discussed later (Rutella, Danese et al. 2006). 

Differentiation of HGF treated monocytes into DC was not studied apart from CD 14 

and CD la levels, as shown in their figure below. As the authors concluded, that 

“When HGF was added to GM-CSF and IL-4, the phenotype of DCs was similar to 

that described for GM4-DCs”, we assessed whether my project will result in novel 

information. We decided to continue the ongoing studies as it addressed a different 

question from that discussed in the paper by Rutella et al.
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‘Figure l.C  - (Rutella, Bonanno et al. 2006)’

Furthermore, my experimental approach extended that used by Rutella et al, as in my 

model monocytes were not only simultaneously treated with HGF and GM4 but also 

pre-treated with HGF before they enter DC differentiation induced by GM4. This is 

likely to mimic physiological conditions more closely, as HGF is likely to be present 

before and during DC development.

1.7 M esotheliom a

Malignant pleural mesothelioma (MPM) is an uncommon cancer arising from the 

mesothelial cells lining the membranes o f the pleura. The incidence of this cancer in 

more developed areas o f the world, such as Europe and Australia, is roughly the same 

as cancers o f the liver, bone and bladder. Wagner et al first published observations 

linking mesothelioma with exposure to asbestos fibres in the 1970’s (Wagner,
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Campbell et al 1979). Since then a number of studies have shown that 70-90% of 

mesothelioma cases can be linked conclusively to exposure to asbestos. The majority 

of this is occupational in origin, which leads to a skewed incidence of this disease in 

men to women (Kindler 2000; British Thoracic Society Standards of Care Committee 

2001; O'Byme and Rusch 2006). Due to wide use of asbestos and a long latency 

period, this incidence rate is still rising in many countries even after banning of its 

use; in the UK the number of new MPM cases is expected to rise from 1783 in 2003 

to 3000 by 2025 (Garlepp and Leong 1995; British Thoracic Society Standards of 

Care Committee 2001).

The prognosis of MPM is invariably bleak, and it is often rapidly fatal: studies report 

median survival times of between 8 to 14 months (Berry, Musk et al. 2003). MPM is 

resistant to radiotherapy and chemotherapy and often unsuitable for surgery: it is also 

often diagnosed late, which results in poor survival rates (Kindler 2000; O'Byme and 

Rusch 2006). Patients with cancer of comparable incidence (in UK) such as bladder or 

bone cancer show 5 year survival rates of 20-60% (CRUK). While multimodal forms 

of therapy offer MPM patients some hope, only up to 10% of patients are suitable for 

treatment, increasing the need for new treatments to be developed (British Thoracic 

Society Standards of Care Committee 2001). Increasing interest and research is 

therefore focussing on new treatment options such as gene therapy and 

immunotherapy. Recently it has been reported that HGF and c-Met are up-regulated in 

mesothelioma tumours and that targeting of this pathway in MPM maybe useful in 

future clinical trials (Jagadeeswaran, Ma et al. 2006).
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Although not generally considered as a classically immunogenic cancer, there is 

evidence for immune involvement in MPM including: a relationship between 

presence of tumour infiltrating lymphocytes (TIL) and prognosis (Leigh and Webster 

1982; Anraku, Cunningham et al 2008); a case of spontaneous regression associated 

with lymphocyte infiltration (Robinson, Robinson et al. 2001); a case of long term 

survival linked to normal T and B cell functions (Fischbein, Suzuki et al 1978); 

murine MPM models demonstrating responses to immunotherapy (Jackaman, Bundell 

et al 2003; Kruklitis, Singhal et al 2004; Hegmans, Hemmes et al 2005). Interest is 

focussing on the stimulation of specific responses by the activation of cytotoxic T 

lymphocytes (CTL), which has initially been demonstrated in vitro for MPM (Ebstein, 

Sapede et al 2004).

Immune deficiency is not well understood in MPM or other cancers, but is generally 

thought to be due to soluble factors released by tumours. Mesotheliomas produce high 

levels of soluble factors including vascular endothelial growth factor (VEGF), 

hepatocyte growth factor (HGF), interleukin-6 (IL-6) among others. Most of these 

factors are studied in cancer as they are required for tumour progression via 

angiogenesis, cell proliferation and metastatic invasion.

Immune suppression in cancer patients may contribute to tumour progression and the 

limited success of immunotherapy which relies on the patients’ immuno-competence 

(Lew, Tsang et al 1986). Therefore establishing if HGF and how it may contribute 

towards tumour immune suppression and can contribute to mesothelioma immune- 

escape would be valuable for the development of effective immunotherapy regimes 

for mesothelioma patients.
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Therefore in this thesis I aim to:

• Establish levels of HGF in mesothelioma (including differences between 

mesothelioma subtypes) and investigate if the tumour micro environment 

differs from circulating plasma with respect to HGF levels in mesothelioma.

• Investigate if impairment of mesothelioma patients (previously measured) 

immune responses correlate with systemic HGF levels.

• Develop models for investigating the effects of DC development.

• Analyse the effects of HGF on DC phenotype and function including 

migration and phagocytosis.

• Investigate effects of HGF on DC:T cell interations.

• Investigate mechanisms by which HGF may inhibit DC ability to stimulate T 

cell proliferation/function.

• Establish if in vitro effects can be observed in mesothelioma and the 

physocigcal relevance of in vitro observations.
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Chapter 2 - Materials and Methods

2.1 Donors

Peripheral blood was obtained by trained phlebotomists from healthy volunteers after 

informed consent had been obtained, using vacutainers (BD Pharmingen, San Diego, 

CA, USA) containing EDTA preservative to prevent coagulation. Blood and pleural 

fluid samples from mesothelioma patients used in this study were obtained from 

patients attending clinic at Llandough hospital (Cardiff and Vale NHS Trust). Ethical 

approval was obtained from the South East Wales Local Research Ethics Committee 

(Ref: 05/WSE02/177) and informed consent was provided. HLA types were 

determined by PCR single strand conformational polymorphism method, carried out 

by the Welsh Blood Service, Cardiff UK.

2.2 Tissue Culture Reagents

RPMI (RPMI 1640, Cambrex), was supplemented with 5% fetal bovine serum (FBS, 

PAA laboratories, Austria) with 100 IU/ml penicillin (Gibco, Grand Island, NY,

USA), 100 pg/ml streptomycin (Gibco) 2 mM L-glutamine (Gibco), 25 mM HEPES 

buffer (Sigma, Poole, Dorset, UK) and 2 mM sodium pyruvate (Sigma). Freezing 

cocktail for storing cells in vapour phase N2 contained 10% dimethyl sulphoxide 

(DMSO, Sigma) 20% FBS and 70% RPMI. Cells were centrifuged at 250 g for 3 min 

and resuspended on ice in cold freezing medium, prior to freezing at -80°C overnight 

and subsequent transfer to vapour phase N2 for long term storage.
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2.3 Mesothelioma Cell Lines

Primary cell lines have been isolated in the department as part of another project from 

tumour biopsies as follows. Tumour samples were cut into approximately 2-4mm 

pieces and cultured for 1-2 days in RPMI + 10% FBS in 75 cm2 culture 

flasks(Coming Inc., Coming, NY, USA) . The non adherent material was then 

removed and the adherent layer was washed and cultured in fresh RPMI + 5% FBS.

Primary cell lines were isolated from pleural fluid samples as follows. The cellular 

fraction of pleural fluid pelleted at 400 g and further isolated using Histopaque as 

described for PBMC. Cells were then resuspended in culture medium and ~106 were
'y

seeded in 75 cm culture flasks. The non adherent cells were removed after 2-3 days 

and adherent cells were maintained by regular passaging. Cells were removed using 

Trypsin/EDTA for maximum of 5 min, washed and resuspended at a 1:8 split. The 

cell lines were confirmed to be mesothelial by the Pathology Department of 

Llandough Hospital based on calretinin staining, and in the Department of Oncology 

based on mesothelin and calretinin staining and western blotting.

2.4 Isolation of PBMC

Venous blood from healthy volunteers was obtained as described in 2.1 above. 

Peripheral blood mononuclear cells (PBMC) were isolated by density gradient 

centrifugation on Histopaque 1077 (Sigma) following the manufacturers instmctions. 

Briefly; approximately 25 ml of blood was layered on top of 12 ml of Histopaque and 

centrifuged at 400 x g for 30 min at room temperature with the brake off. The 

supernatant (i.e. plasma) from this separation was frozen at -20°C in aliquots for later
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analysis. Cells from the mononuclear cell interface layer were collected and diluted 

with an equal volume of sterile PBS and pelleted at 250 g for 10 min. Cells were then 

resuspend and washed twice in 10 ml of PBS at 250 g, before a final wash in RPMI + 

10% FCS.

2.5 Assessment of HGF Levels

2.5.1 In Patients’ Blood/Pleural Fluid

Frozen plasma from patients and healthy donors, obtained as described above (section

2.1 and plasma separated as described in section 2.5), were thawed at 4°C overnight, 

and HGF levels measured using R&D Systems HGF Duoset ELISA kits (R&D 

Systems, Minneapolis, MN, USA), following the manufactures instructions. Briefly, 

ELISA plates were coated overnight with HGF capture antibody, and then washed 

with PBS + 0.01% Tween 20. The plates were blocked with 0.1% BSA for 2 h at RT 

and washed again. 100 pi of sample or standard was added, in duplicates for each 

sample and triplicate for standards, and incubated for 2 h at RT. The wells were then 

washed and incubated for 1 h with biotin-conjugated HGF detection antibody; the 

plates were washed and incubated for 30 min with streptavidin-peroxidase; then 

washed and R&D detection reagent was added. The reaction was stopped after 10 min 

using 2N H 2 S O 4 . Levels of HGF were determined using a Bio-Rad 4500 plate reader 

reading at 570 nm and using 540 nm as reference.
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2.5.2 HGF Detection in MPM Cell Line Supernatants

HGF levels in culture supernatants were determined using a commercially available 

ELISA kit (R&D Systems), as above Mesothelioma cell lines were seeded at 105 cells 

in 25cm2 flasks and grown for times stated, in RPMI + 5% FBS. They were harvested 

and counted and the supernatant removed and frozen for later analysis. Assays were 

carried out as detailed above in duplicate and analysed on a Bio Rad 4500 (Bio-Rad, 

Hercules, CA, USA) plate reader at 450nm.

2.6 Generation of Monocyte Derived DC

DC were generated according to standard methods (Sallusto and Lanzavecchia 1994) 

unless otherwise stated. PBMC were resuspended in PRMI 1640 without FCS and 

allowed to adhere in 6 or 12 well tissue culture plates at 15 x 106 cells per well or 4-5 

x 106 cells per well, respectively . After 2 h at 37°C, non adherent cells were removed 

by washing with PBS and cryopreserved in 20% FCS, 10% DMSO freezing mixture 

as described and stored in liquid nitrogen. The adherent cells were cultured in either 5 

ml or 2 ml RPMI 1640 + 5% FCS (6 well and 12 well plates respectively) with 

recombinant human GM-CSF 500 ng/ml (Prospec-tany technogene Ltd., Rehovot, 

Israel) and recombinant human IL-4 500 U/ml (Gentaur, Brussels, Belgium) for 5 

days. The non adherent cells were collected and the adherent cells were detached by 

incubating the cells with PBS for 15 min. The resulting cells were pooled, washed and 

counted and used as immature dendritic cells (iDC).
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2.7 Generation of Macrophages

PBMC were resuspended in culture medium and allowed to adhere into 6 or 12 well 

tissue culture plates (as above in section 2.6). After 2 h at 37°C, non-adherent cells 

were removed and cryopreserved. The adherent cells were cultured in either 5 ml or 2 

ml (6 or 12 well trays) RPMI 1640 + 5% FCS with 500 ng/ml recombinant human M- 

CSF (Peprotec, Rocky Hills NJ, USA) for 5 days. The resulting cells were detached 

by incubating with PBS for 15 min and the resulting cells used as macrophages.

2.8 HGF Treatment of Monocytes

The standard method of DC generation, as described above was modified by the 

addition of HGF or IL-10, in the following ways which are illustrated later in the 

Results chapters:

Co-treatment; PBMC were isolated as described previously and were resuspended in 

PRMI 1640 without FCS and allowed to adhere into 6 or 12 well tissue culture plates 

at 15 x 106 cells per well or 4-5 x 106 cells per well, respectively. After 2 h at 37°C, 

non adherent cells were removed by washing with PBS and cryopreserved in 20% 

FCS, 10% DMSO freezing mixture as described and stored in liquid nitrogen. 

Adherent fractions of PBMC were treated with 30 ng/ml HGF (Peprotech, Rocky 

Hill, NJ), in addition to GM-CSF and IL-4 (H-iDC), as specified above (Section 2.6) 

for 5 days. The non adherent cells were collected and the adherent cells were detached 

by incubating the cells with PBS for 15 min. The resulting cells were pooled, washed 

and counted and used as immature HGF co-treated dendritic cells (H-iDC).

Pre-Treatment; PBMC were isolated as described previously and were resuspended in 

PRMI 1640 without FCS and allowed to adhere into 6 or 12 well tissue culture plates
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at 15 x 106 cells per well or 4-5 x 106 cells per well respectively. After 2 h at 37°C, 

non adherent cells were removed by washing with PBS and cryopreserved in 20% 

FCS, 10% DMSO freezing mixture as described and stored in liquid nitrogen. 

Adherent fractions of PBMC were either treated with 30 ng/ml HGF (Peprotech, 

Rocky Hill, NJ) for 24 h (pH-DC), or left untreated for 24 h as controls (pC-DC) prior 

to the addition of GM-CSF and IL-4 in the manner specified as specified above 

(Section 2.6) for 5 days. The non adherent cells were collected and the adherent cells 

were detached by incubating the cells with PBS for 15 min. The resulting cells were 

pooled, washed and counted and used as immature pre-treated dendritic cells (pH-iDC 

or pC-iDC).

2.9 Maturation of iDC

LPS (Sigma) was used to trigger DC maturation. DC were generated as above and 

after 5 days in culture treated with 20 ng/ml LPS (Invitrogen Corporation, Carlsbad, 

CA, USA) for 48 h, to generate mature DC (mDC), mature HGF pre-treated DC (pH- 

mDC) or mature controls (pC-mDC). For determination of cytokine levels, cell free 

supernatants were collected after 2 days of culture by removing cells with 

centrifugation at 250 x g for 3 in.

2.10 Monoclonal Antibodies

The monoclonal antibodies (mAb) used in this study are shown in figure 2.1. The 

cells were analysed on a FACSCanto (Becton Dickinson & Co. San Jose, California, 

USA) flow cytometer using FACSDiva Software (BD).
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2.11 Immunofluorescent Labelling of Cell Surface Molecules to 

Assay Phenotype of DC

For immuno-phenotyping, cells were washed in PBS at 4°C and incubated at 4°C on 

ice for 30-45 min with the following antibodies: 10 pi CD40-FITC, 5pl PD-L1-PE- 

Cy7, 10 pi CD83-PE, 10 pi anti-CD86 FITC-conjugated, 10 pi anti-HLA-DR PE- 

conjugated, 10 pi c-Met-FITC, 10 pi anti-CD80 PE-Cy5-conjugated, 5 pi anti-CCR7 

PE-Cy7-conjugated, 10 pi anti-CD209 APC-conjugated, and 1.5 pi anti-CD 14 APC- 

Cy7-conjugated or 10 pi anti-CD86 FITC-conjugated, (all antibodies are from BD 

Pharmingen except HLA-DR antibody (AbD Serotec, Kidlington, Oxfordshire, UK) 

and c-Met antibody (eBioscience, Inc., San Diego, CA, USA). Cells were washed in 

PBS and then analyzed using a FACSCanto flow cytometer (BD).
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mAb (mouse anti
human)

Clone Label Source

CCR7 2H4 PE-Cy7 BD Pharmingen
CD14 MOP9 APC BD Pharmingen
CD209 DCN46 APC-Cy7 BD Pharmingen
CD3 APC BD Pharmingen
CD4 SK3 R-PE BD Pharmingen
CD40 FITC BD Pharmingen
CD8 RPA-T8 PE-Cy5 BD Pharmingen
CD80 L307.4 PE-Cy5 BD Pharmingen
CD83 PE BD Pharmingen
CD86 2331 (FUN-1) FITC BD Pharmingen
c-Met eBioclone 97 FITC eBioscience
HGF neutralising 24612 - R & D Systems
HLA-DR FITC AbD Serotec
IFNy 4S.B3 FITC BD Pharmingen
IL-10 PE BD Pharmingen
IL-10 neutralising 25209 - R & D Systems
Mouse IgGl 11711 - R & D Systems
Mouse IgG2b 20116 - R & D Systems
PD-L1 MIH1 Pe-Cy7 BD Pharmingen

Figure 2.1 Table of antibodies used for analysis
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2.12 ERK Phosphorylation by FACS

For measurement of ERK1/2 phosphorylation, PBMC in PBS were stimulated with 

HGF for 10 min in the presence or absence of an HGF-blocking antibody or its 

isotype control (R&D, Minneapolis, MN). Cells were then fixed and permeabilised 

using the BD Phosflow kit and labelled with ERKl/2p-PE (BD) or isotype control 

(BD), according to the manufacturer’s instructions, before flow cytometry analysis. 

Briefly cells were fixed by addition of an equal volume of pre-warmed BD Phosflow 

Fix Buffer I to the cell suspension and incubating the cells at 37°C for 10-15 min. 

Cells were washed and permeablised by addition of 1 ml BD Phosflow Perm/Wash 

Buffer I for 10 min at room temperature. Cells were then washed and resuspended in 

BD Phosflow Perm/Wash Buffer I and stained with 5pi pERKl/2 antibody for 30 min 

at room temperature in the dark. Cells were washed in PBS and then analyzed using a 

FACSCanto flow cytometer (BD).

2.13 Detection of Cytokine Production by ELISA

ELISA kits were purchased from R&D systems for determination of IL-10, and IL-12 

production. Samples from DC and T cell supernatants obtained as indicated in the 

results chapters were analysed following the manufacturer’s instructions.

2.14 DC Migration Assay

DC migration was assessed using polycarbonate transwell plates (Greiner,

Nuremberg, Germany) with 6.5 nm diameter wells and 5 pm pore size inserts. 600 pi 

of RPMI 1640 (Gibco), containing CCL19 (Peprotec) 200 ng/ml, 5% FBS (PAA) was 

added to the tissue culture plates. Control groups lacked CCL19 in medium. The 

upper chambers of the transwell plates were soaked in assay medium (without
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CCL19) for 16 h prior to use and were inserted into each well. DC were matured 

using 20 ng/ml LPS for 48 h. Equal numbers of DC from each group (0.4-1 x 

106/well) were added to the upper chambers in a final volume of 100 pl/well. The 

plates were incubated at 37 °C for 3 h. Medium from the lower chamber including 

migrated cells were collected, cell viability was assessed, and numbers of migrated 

cells were determined using a standard haemocytometer.

2.15 DC Phagocytosis Assay

DC phagocytic ability was assessed by measuring uptake of FITC labelled latex 

(Sigma) beads using FACSCanto flow cytometer (BD). DC were cultured for 5 days, 

then collected as described for iDC (section 2.6) washed and counted. 0.5 x 106DC 

were cultured in medium containing 5pi of 5pm diameter FITC-latex beads (Sigma) at 

either 37°C or 4°C (negative control) for 30 min. Cells were washed and analysed 

using BD FACScanto running FACSDiva software, and the proportion of cells 

positive for FITC was determined.

2.16 T Cell Proliferation Assay (CFSE Dilution Method)

Mixed lymphocyte reactions (MLR) were carried out in 96 well flat bottom microtitre 

plates by adding DC to allogeneic non-adherent PBMC. DC were seeded at 20 x 103 

per well in a 96 well flat bottomed tray. Non adherent PBMC from a different donor, 

were labelled with CFSE dye (Invitrogen) as per the manufacturer's instructions. 

Briefly; non adherent cells were incubated with 5 pM CFSE for 5 min at 37°C in 

RPMI 1640 without FCS in the dark, then washed in PBS and resuspend in RPMI 

1640 + 5% FCS medium for 15 min at 37 °C before resuspending in fresh culture 

medium. CFSE labelled cells were added to DC at 10:1 ratio (unless otherwise stated).
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Cells were collected after 7 days and analyzed using a FACScanto flow cytometer 

(BD)

2.17 T cell Proliferation Assays (3H-Thymidine Incorporation 

Method)

MLR were carried out in 96 well U bottom microtitre plates by adding DC to
1 o

allogeneic non-adherent PBMC. Briefly; DC were seeded at 20 x 10 per well in a 96 

well U bottomed tray in triplicates. Non-adherent lymphocytes were added at a ratio 

of 10:1 or as stated of T cell:DC. H-thymidine (Amersham, Buckinghamshire, UK) 

was added at 0.5 pCi/well on day 5 of culture for 16 h. The cells were harvested onto
O r

fibroglass filtermats and H-thymidine incorporation was measured by a Wallac 1450 

microbeta 0-plate counter (PerkinElmer Life And Analytical Sciences, Inc. Waltham, 

Mass, USA).

2.18 Peptide Stimulation of T Cells by Autologous DC

Memory T cell responses to common viral peptide antigens, consisting of eleven 15- 

mer peptides representing EBV, HCMV and influenza-derived CD8 T cell epitopes, 

were measured. Briefly, 5-10 x 104 DC were added to 48 well trays. DC were loaded 

with 5 pg antigen (common viral peptide antigens as specified in figure 2.2) for 4 h 

prior to adding non-adherent autologous PBMC. Non adherent autologous PBMC 

were added at a 10:1 ratio to DC in 1ml final volume. A second stimulation was 

carried out 7 days later with antigen presenting cells comprised of either autologous or 

HLA-matched BLCL, which were co-cultured with the viral peptide mix for 4 h at 5 

pg/ml and were added to T cell cultures at 1:10 ratio. After 1 h of co-incubation with
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T cells, 1 (i 1/ml Golgi Plug® (BD) was added and the cultures were further incubated 

at 37°C overnight.

2.19 Intracellular Labelling for Detection of Cytokines Produced by 

T Cells

Cytokine production (IFNy or IL-10) by T cells following peptide Ag-stimulation by 

Ag-loaded DC at a ratio of 10:1 T cell:DC as described above was measured by flow 

cytometry. The cells were washed with PBS, samples were fixed and permeablised 

using Intraprep kit (Beckamn Coulter) according to the manufacture’s instructions. 

The cells were labelled in the presence of the permabilising agent with the following 

antibodies 10 pi CD8-PE-Cy5, 5 pi CD3-APC and 2 pi IFNy-FITC for 45 min at 37°C 

in the dark. Cells were washed in PBS and analysed on FACSCanto flow cytometer.
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HLA Class 1 Score*
(SYFPEITHY)

Sequence*** Antigen Position

A1 31 IQMCTELKLSDYEGR Flu NP 41-55
A1 35 GLLVSDGGPNLYNIR Flu PB1 591-599
A2 30 LTKGILGFVFTLTVP Flu M1 55-69
A2 28 IQNAGLCTLVAMLEE EBV BMLF1 276-290
A3 30 SALILRGSVAHKSCL Flu NP 265-273
B7 19 RKTPRVTGGGAMAGA CMVpp65 415-429
B7 2 2 SQAPLPCVLWPVLPE BZLF1 40-54
B8 32 RKCRAKFKQLLQHYR BZLF1 187-201
B8 28 RRSQVKWRMTTLAAG EBNA3A 154-168
B44 2 2 QEFFWDANDIYRIFA CMVpp65 511-525
B44 25 QTEENLLDFVRFMGV EBNA3C 281-290
B44, A2, A3 25 AAFEDLRVLSFIKGTK Flu NP 336-351
B44, A1, B8 19 STLELRSRYWAIRTR Flu NP 377-391
B44, A2, 26 SLLTEVETPIRNEW Flu M2 1-15
A11, A2, A3 ? AVKGVGTMVMELVRMIK Flu NP 182-198

Figure 2.2 Control Peptide Antigens Used for T cell Stimulation

Peptides representing common viral antigenic epitopes, restricted by the most frequent

Caucasian HLA class I types.
jfc  ̂ ^

Predicts the strength of binding of peptides and the probability of being processed 

and presented by a given HLA allele, according to the SYFPEITHI algorithm 

(http://www.svfpeithi.de/Scripts/MHCServer.dll/home.htm)

** Published and/or predicted.

The peptides were selected based on (Currier, Kuta et al. 2002) and Influenza 

Sequence Database http://www.flu.lanl.gov/review/epitopes.html.

http://www.svfpeithi.de/Scripts/MHCServer.dll/home.htm
http://www.flu.lanl.gov/review/epitopes.html
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Chapter 3 - HGF in Malignant Pleural Mesothelioma (MPM)

3.1 Introduction

Elevated levels of HGF can be detected in the tumour environment and also systemically in 

many types of cancer. Tumour effusions represent a relatively easily available source of 

cells and cytokines which reflect most of the complexities of the tumour environment. 

Tumour effusions have been studied for their immunosuppressive effects (Chen, Ting et al 

2000; Sikora, Dworacki et al 2004; Delong, Carroll et al 2005) and a range of 

immunomodulatory factors have been identified such as IL-10, TGF-P, IL-6, GM-CSF and 

VEGF (Zou 2005). In spite of elevated levels of HGF in tumour effusions (Eagles, Warn et 

al 1996), its immunomodulatory effect has not attracted many investigations. HGF has 

only recently been implicated in interactions with the immune system (Skibinski 2003).

The ongoing research project in this department studying the immunological aspects of 

mesothelioma provided an opportunity to study HGF in the tumour exudates which 

accumulate in the pleural space of majority of patients and are regularly removed as part of 

palliative treatment to ease breathing. DC and T cells are important in tumour elimination, 

as described in Chapter 1 and therefore they are possible targets for modulation by tumour- 

induced HGF in MPM. The aim of this chapter was to establish what levels of HGF can be 

found in mesothelioma patients plasma, pleural fluid and tumour cell supernatant in order 

to:

a) guide the development of in vitro work to correctly model physiological HGF 

concentrations present in the tumour environment

b) to see if we can establish an in vitro model using HGF-producing mesothelioma cell 

lines.
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3.2 HGF in Blood and Tumour Micro-Environment of Mesothelioma 

Patients

Levels of plasma HGF were compared between mesothelioma patients and healthy donors. 

Significantly elevated levels of HGF were found in the plasma of mesothelioma patients 

(1980 ± 268 pg/ml, n=47, P=0.0064) compared to healthy donors (452 ±61 pg/ml, n=12), 

Figure 3.1. There are three subtypes of mesothelioma. I investigated how the levels of HGF 

vary between the different MPM subtypes (epithelioid, mixed (biphasic) and sarcomatoid). 

Each group of MPM patients had elevated HGF levels (epithelioid 2409±494 pg/ml n=19, 

mixed 1674 ±218 pg/ml n=l 1, sarcomatoid 4153±1951 pg/ml, n=4) compared to healthy 

donors, (Figure 3.2). There was no statistical difference in the HGF levels between the 

mesothelioma subtypes when compared to each other.
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Figure 3.1 Elevated Levels of HGF in Plasma of Mesothelioma Patients Compared to 

Healthy Donors

HGF levels were determined from plasma, kept frozen before the assay. Mesothelioma 

patient HGF levels ( • ) ,  were compared to healthy donors (normal) (■ ) HGF levels. HGF 

levels were determined using R&D systems HGF ELISA and expressed as pg/ml. Means of 

assay duplicates are plotted as individual points, the lines represent the mean HGF level for 

mesothelioma patients and healthy donors(normal), the bars represent the SEM. HGF levels 

are statistically higher (using an unpaired T test) in the plasma of mesothelioma patients 

(1980 ± 268 pg/ml, N=47) (P=0.0084) than in healthy donors (452 ±61 pg/ml, N=12). The 

healthy and cancer samples were not age matched, however the majority of healthy donors 

used by the department fall within similar ages to those of mesothelioma patents, however 

the normal samples were skewed more towards female rather than male donors. The 

samples obtainable were limited by the numbers of mesothelioma patients diagnosed, due 

the rarety of this cancer.
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Figure 3.2 Elevated Levels of HGF in Plasma of Mesothelioma Patients of All Three 

Tumour Types

HGF levels were determined as in Figure 3.1. Mesothelioma patient plasma HGF levels 

were studied according to mesothelioma subtypes (at diagnosis). Means of assay duplicates 

are plotted as individual points, lines represent the mean level of HGF (2409 ± 494 pg/ml, 

1674±218.9 pg/ml and 4153 ± 1951 pg/ml respectively, in epithelioid, mixed and 

sarcomatoid MPM) and the bars represent the SEM. There was no significant difference 

(using an unpaired T test) between the HGF levels in these subtypes.
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3.3 High Levels of HGF in Pleural Fluid

In mesothelioma patients’ tumours often produce pleural effusion which is drained as part 

of palliative treatment of this disease. Pleural effusions contain tumour cells, immune cells 

and soluble factors which are representative of the tumour environment.

HGF levels were measured in the pleural fluid in a small cohort of MPM patients. In 6 out 

of 7 patients both plasma and pleural fluid were available. HGF levels in tumour effusions 

were more than 10-fold higher than in patient’s plasma (> 7193 ± 3509 pg/ml vs. 650 ± 205 

pg/ml). Two pleural fluid samples had levels of HGF above 10,000 pg/ml, the upper limit 

of detection; for these samples estimated values were used (estimated values of 11339 and 

26789 pg/ml respectively) to determine the working concentration of HGF for experimental 

purposes (Figure 3.3).
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Figure 3.3 Increased Levels of HGF in Pleural Fluid Compared to Plasma in MPM

HGF levels in the pleural fluid (7193 ± 3509 pg/ml, n=7) or the plasma (650 ± 205 pg/ml, 

n=6) o f MPM patients were measured by ELISA. The dots represent individual patients, 

means o f duplicate samples are shown. A more than 10 fold higher level o f HGF was found 

in the pleural fluid than in plasma.
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3.4 Expression of HGF by Mesothelioma Cell Lines

HGF is secreted by MPM tumour cells (Harvey, Warn et al. 1998; Tolnay, Kuhnen et al. 

1998; Thirkettle, Harvey et al. 2000), but also by stromal cells (Skibinski, Skibinska et al. 

2001; Yoshida, Harada et al. 2002). To assess whether in vitro tumour cell supernatant 

could be harvested to yield tumour-produced HGF, and additionally whether these cell lines 

might be appropriate for establishing a model investigating the effect of MPM-derived 

HGF, the expression of HGF by MPM cell lines was examined (Figure 3.4). A few of 

these MPM cell lines did initially produce high levels of HGF (Figure 3.4). However, after 

48h of culture the amount of HGF decreased in all cell lines (Figure 3.5). Presumably this 

was due to its uptake by tumour cells as shown by (Harvey et al. 1998; Klominek, Baskin 

et al. 1998; Harvey, Clark et al. 2000). Due to the low concentrations of HGF in tumour 

cell line supernatants, it was not feasible to establish a mesothelioma cell line-derived HGF 

model.



Page 87 of 209

150h
m

E
^  60-
u.
O
X

time in culture (hours)

#01SM 
♦  #02CJ 

#12JH 
#15TR 
#18PM 

-0- #19DD2 
-B- #24 JC 

#26 KG 
-V- #34PP 

#34pPP 
#43GC

Figure 3.4 Decrease in HGF Production over Time by Mesothelioma Cells in Culture.

Serial cultures of cells seeded with the same number of tumour cells were started and at the 

time points indicated HGF production by cells was determined analysis of supernatant HGF 

concentration by ELISA. At the same time tumour cells were harvested, and total cell 

number was determined. Levels of HGF production were calculated as the amount of HGF 

(pg/ml) produced by 1000 cells. Each line represents a separate MPM-line, as indicated on 

the right.
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Figure 3.5 Total Levels of HGF in 

Mesothelioma Supernatant

Total levels of HGF were determined 

in the supernatant of mesothelioma 

cultures 24h, 48h and 144h. Briefly; 

wells were seeded with 10,000 

Mesothelioma cells and incubated for 

24,48 or 144 hours, supernatant was 

then removed and HGF concentration 

was determined using R&D HGF 

ELISA kit. Each bar represents a 

separate MPM line.

144h
1000-
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3.5 Elevated Plasma HGF Levels Elevated Plasma HGF Levels 

Elevated Plasma HGF Levels

The data on HGF levels indicate that plasma HGF is elevated in all mesothelioma subtypes. 

Using an arbitrary cut off for high and low levels of HGF as 1000 pg/ml (~2x healthy donor 

levels), T cell responses (% CD8+ T cell producing IFNy) to recall antigens were measured 

as described (Coleman, Clayton et al. 2005; Coleman, Gibbs et al 2008). Results are 

expressed as a stimulation index (SI) (peptide-induced responses divided by control 

responses (T cell IFNy production in the absence of peptides)). The T cell work was carried 

out in the department prior to the work for this thesis: Figure 3.6 demonstrates existing T 

cell data in the light of HGF levels in the plasma of these patients, determined in Figure 

3.1. Mesothelioma patients with high HGF levels had slightly decreased SI values (high 

4.741 ± 0.9895), but not significantly different (p=0.7522) from the low HGF group (low 

5.307 ± 1.597). The results indicate that the concentration of HGF found in MPM patient 

plasma is not sufficient to cause systemic modulation of immune responses.
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Figure 3.6 Plasma HGF Levels Do Not Affect Systemic T Cell Responses

HGF levels were determined previously using ELISA (R&D systems). Patients were split 

into two groups depending on HGF levels High HGF (>1000pg/ml, n=17) (■), Low HGF 

(0-1000 pg/ml, n=l 1) (A). The stimulation index, as calculated in (Coleman et a l 2005; 

Coleman et al 2008), was used as a measure of the immune response. The points indicate 

mean SI of duplicates; the lines are the mean SI for each group. No significant difference 

was observed using an unpaired T test (p=0.752).
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3.6 Summary

In this chapter I set out to establish HGF levels in mesothelioma patients’ plasma, pleural 

effusions and tumour cell supernatant. Elevated levels of HGF are found in MPM plasma 

compared to that in the plasma of healthy donors. This agrees with other reports showing 

that HGF can be elevated in the circulation of cancer patients (Eagles G, Warn A et al. 

1996; Harvey, Warn et al. 1996; Taniguchi, Kitamura et al. 1997; Harvey et al. 1998; 

Tolnay et al. 1998; Harvey et al. 2000; Naughton, Picus et al. 2001; Hashem and Essam 

2005; Jiang, Martin et al. 2005; Mukohara, Civiello et al. 2005; Sheen-Chen, Liu et al. 

2005; Peruzzi and Bottaro 2006).

The average HGF level is about four times higher in MPM plasma than in healthy donors 

and in the range of ~lng/ml. Similar levels are observed in the plasma of prostate and 

gastric cancer patients (Taniguchi et al. 1997; Naughton et al. 2001). Of greatest interest 

from my results is the highly elevated levels of HGF in pleural fluid, as this demonstrates 

that the physiological levels local to mesothelioma tumours are vastly different from that in 

the plasma.

HGF is routinely used at concentrations between 1-100 ng/ml in vitro for measuring its 

effects on cell migration and infiltration (Vande Woude, Jeffers et al. 1997; Klominek et al. 

1998; Beilmann, Vande Woude et al. 2000; Harvey et al. 2000). In light of this and the 

levels found in pleural fluid levels, it was decided to use 30 ng/ml HGF as the standard 

dose in the experiments. This concentration maximises both any observable effects of HGF 

on cells, while still reflecting the physiological conditions. Additionally, as HGF binds to 

heparin sulphate proteoglycans and is sequestered near the cells producing it, it is likely
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that levels of HGF within the tumour are higher than those in the pleural fluid. Systemically 

elevated HGF levels do not have a negative effect on T cell memory responses generated in 

vitro from PBMC of MPM patients. Systemic immuno-suppression can be observed in 

certain advanced cancers, e.g. ovarian cancer (Coleman et al. 2005), but this does not seem 

to be a feature of MPM. Local immuno-suppression in the tumour environment is a well 

established phenomenon, hampering anti-tumour effector function and the success of 

therapeutic cancer vaccines (Yang and Carbone 2004; Pinzon-Charry, Maxwell et al 2005; 

Hegmans, Hemmes et al. 2006; Curiel 2007). As noted above, it was interesting to see that 

HGF concentrations are more than 10-fold higher in the pleural fluid than in paired plasma 

samples. The typical concentration of HGF in the pleural fluid is in the nanogram range, 

reaching >20ng/ml in several patients. Similar studies in MPM have not been carried out 

before, although immunomodulatory cytokines have been described in the pleural fluid of 

mesothelioma (Delong, Carroll et al. 2005; Hegmans et al. 2006).

Tumour cell lines established in the laboratory from the pleural fluid or tissue samples of 

mesothelioma patients are also studied for their ability to produce HGF. These in vitro HGF 

levels are relatively low, maybe because in mesothelioma, like in other cancers, the stromal 

cells are the main source of HGF (Harvey et al. 1996; Yoshida et al. 2002; Masuya, Huang 

et al. 2004). The HGF concentration does not increase with time in the culture supernatant 

with time, presumably due to the autocrine uptake by tumour cells, as suggested by others 

(Harvey et al. 1996; Harvey et al. 1998; Klominek et al. 1998; Harvey et al. 2000). Thus, 

although the experiments with the cell lines confirmed that HGF is produced by 

mesothelioma cells, it did not seem feasible that an in vitro model of tumour-derived HGF 

can be established in order to study the immunomodulatory effects of HGF.
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In summary, the high levels of tumour-associated HGF found in mesothelioma patients 

agree with other reports that HGF levels can be elevated in cancer (Taniguchi et al. 1997; 

Naughton et al. 2001; Hashem and Essam 2005; Sheen-Chen et al. 2005), and is in 

agreement with the observation that HGF expression is up-regulated in mesothelioma 

(Harvey et al. 1996; Harvey et al. 1998; Harvey et al. 2000; Thirkettle et al. 2000;

Hegmans et al. 2006; Jagadeeswaran, Ma et al. 2006). I have further shown that HGF 

levels are elevated in all subtypes of mesothelioma.

On examining the immune responses of these patients there is no systemic immune 

suppression due to increased HGF levels in plasma. However, it was determined that HGF 

levels in the tumour microenvironment (pleural fluid) are markedly increased (over 5 fold 

and possibly as much as much as 100 fold) over the levels found in patient’s plasma. 

Therefore, the higher local levels of HGF in the tumour microenvironment may cause 

localised immunological effects rather than systemic ones.
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Chapter 4 - The Effect of HGF on Monocyte-derived-DC 

(MDDC) Differentiation.

4.1 Introduction

Ovali et al. described the effects of HGF on the development of human DC from CD34+ 

cells (Ovali, Ratip et al. 2000). They concluded that HGF increases DC development 

from CD34+ bone marrow cells and, in conjuction with GM-CSF, augments the 

development of both DC and CD 14+ cells. They suggested that further work should be 

done to show the expression of HGF receptors on DC and the effect of HGF on the 

phenotype of DC, including antigens up-regulated during maturation such as CD86 and 

CD80.

At the beginning of my study there was no published data on the effect of HGF on 

human DC development, phenotype and functions. In a review (Skibinski 2003) the 

immunological effects of HGF were discussed but the review did not include the 

possible role of HGF in affecting DC development and the knock on effect this may have 

on DC functions.

In an attempt to address the lack of information on the role of HGF in the development 

of human DC, I investigated the effects of HGF treatment prior to and during DC 

development. I investigated HGF effects using the widely used method of developing 

MDDC in vitro from monocytes by administration of GM-CSF and IL-4. In 2006 Rutella 

et al published their finding of accessory cells (which they termed HGF monocytes) with 

regulatory activity. These studies showed that HGF treated monocytes had monocyte like 

phenotypic features such as low expression of co-stimulatory molecules, lack of CD209
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and maintenance of CD 14. These monocytes produced increased levels of IL-10 and 

were poor activators of allogenic CD4+ T cell proliferation when compared to GM-CSF 

and IL-4 generated DC. They also characterised the changes in gene expression of their 

HGF-monocytes, compared with both DC and untreated monocytes. HGF up-regulated 

a number genes of interest in immune responses, chemotaxis and cell adhesion, 

including; DAD1, IDO, ILT-3, C8XCL1, IL1B, IL18, ILIA, CXCL5, CCL2, CCR5, 

CD47, GPNMB, PPARD, MMP9, and IL-10 (Rutella, Bonanno et al 2006). They 

effectively showed that these cells have different gene expression patterns to both DC 

and control unexposed monocytes.

Rutella et aV s paper does present an interesting population of monocytes with regulatory 

features that could be important in immune modulation. But apart from a single 

phenotype attempt (shown in chapter 1), measuring only CD 14 and CD la  levels, their 

work did not address the effects of HGF on DC development. Rutella et al implied that 

IL-4 and HGF compete in the generation of DC before the HGF-specific differentiation 

is initiated, but no experiments addressed these questions. In the experiments presented 

in this chapter I investigated the effects of HGF exposure of monocytes both prior to and 

during GM-CSF and IL-4 (GM4) treatment. All experiments in this chapter are carried 

out using healthy donor monocytes.

4.2 Functional HGF-Receptor (c-Met) Expression on Monocytes

To determine whether generating MDDC is a suitable model to investigate the effects of

HGF on DC differentiation, first I investigated the expression of the only known HGF 

receptor, c-Met, on PBMC. This was to determine the population of cells that HGF may 

target in peripheral blood. The levels of c-Met expression were measured on BMC either
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freshly isolated or following 24 h (Figure 4.1 and 4.2) HGF or GM4 treatment or no 

treatment (Figure 4.2) from healthy donors. Cells in the lymphocyte region did not 

express the receptor, while cells in the monocytes/macrophages gate (FSc/SSc) bound c- 

Met antibody at a level considerably higher than the isotype control Ab (Figure 4.1).

GM4 treatment reduced the level of surface expression of c-Met on monocytes after 24 

h, compared to levels on fresh PBMC or 24 h untreated monocytes. HGF pre-treatment 

increased the level of surface c-Met expression by up to -44% compared to levels found 

on freshly isolated monocytes (Figure 4.2).

The expression of c-Met and the change of expression in response to HGF indicates that 

monocytes express functional c-Met (Figure 4.2). To demonstrate that HGF is inducing 

signalling via c-Met, ERK phosphorylation, known to be part of c-Met signalling in 

other cell types (Choi, Park et al. 2004; Jagadeeswaran, Ma et a l 2006; Lee, Choi et al. 

2006; Park, Nam et al. 2007; He, Wu et al. 2008) was measured in response to HGF. 

ERK phosphorylation was detectable after 10 min incubation with HGF. HGF 

stimulation increases phosphorylated ERK1/2 level above that seen in un-stimulated 

(resting) monocytes (Figure 4.3). This ERK1/2 phosphorylation was abolished by using 

HGF blocking antibody. This demonstrates that c-Met on monocytes is functional and 

able to transduce signals via the ERK 1/2 pathway. Based on these results I concluded 

that MDDC is a suitable model for studying the effect of HGF on DC development.
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Figure 4.1 c-Met Expression on Monocytes in PBMC

FACS-analysis of PBMC. The top plot shows FSc/SSc profile of a sample of freshly 

isolated PBMC, PI representing monocytes (red); P2 representing lymphocytes (green). 

The black filled histograms represent c-Met expression on lymphocytes (lower left hand 

plot) or monocytes (lower right hand plot). The black lines represent the binding of the 

isotype control antibody.
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Figure 4.2 Opposite Effects of GM4 and HGF on c-Met Expression on Monocytes.

FACS-analysis o f c-Met expression on the surface o f monocytes o f freshly isolated

PBMC, or adherent monocytes cultured for 24 h in the presence o f GM-CSF and IL-4 

(GM4) or 30 ng/ml HGF (HGF) or without any added factors (Nil). The numbers 

represent MFI o f c-Met expression on cells in the monocyte gate. Representative o f 3 

experiments.
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Figure 4.3 ERK1/2 Phosphorylation of Monocytes Following HGF-Treatment.

Top: Gray shaded histogram: ERKl/2p expression 10 min after HGF treatment in the

presence of isotype control antibody for HGF blocking. Dotted line: isotype control of 

ERKl/2p antibody. Black line, ERKl/2p expression without HGF treatment.

Bottom: Gray shaded histogram and black line same as above, Dotted line: HGF 

treatment, with HGF-blocking antibody. Representative o f 3 experiments.

No HGF + Isotype Ab (anti HGF) 
+ pERKl/2 -PE

+HGF + Isotype Ab (anti-HGF) 
+ pERKl/2 -PE
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4.3 The Effect of HGF on MDDC Differentiation. Phenotypic Analysis.

DC, differentiated from monocytes using GM4, undergo some typical phenotypic

changes, such as down-regulation of CD 14, up-regulation of DC-SIGN, MHC-Class II, 

and co-stimulatory molecules CD80 and CD86. In this section the effect of HGF on 

these phenotypic changes is studied. HGF at 30 ng/ml, the dose determined to be 

relevant in the tumour environment (see Chapter 3), was added in two different ways to 

the adherent fraction of PBMC: either together with GM4 (co-treatment) or 24 h before 

GM4 (pre-treatment). DC generated in the former is designated as H-iDC, while the 

latter as pH-iDC. HGF untreated groups are the immature DC (iDC), or the 24 h nil pre

treatment control DC (pC-iDC). The schematic representation of co-and pre-treatment 

experiments is shown below. pH-iDC was compared to iDC to establish differences 

between HGF pre-treated and “conventional” iDC, but also compared to pC-DC to 

distinguish between HGF effects and any possible effects induced by delayed GM4 

treatment.
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Figure 4.4 HGF Co- and Pre-Treatment Models

The figure represents the two treatment models used in this thesis in the co-treatment 

model HGF is added to PBMC at the same time as GM4. This si the obvious method for 

assessing the effects of HGF on DC as they develop from precursors 

In the pre-treatment model PBMC are incubated for 24 h, prior to GM4, treatment with 

or with out HGF. This methods duplicates the physiological setting of cancer patients 

with elevated HGF levels, where DC precursors are exposed to elevated HGF levels 

prior to and during DC development. HGF as shown in figure 4.2 increased the level of 

surface c-Met expression by up to -44% compared to levels found on freshly isolated 

monocytes over 24h, while GM4 treatment reduced c-Met expression. Additionally 

factor like VEGF have been postulated to affect development of DC by affecting 

precursors rather than interfering with development of DC from precursors.
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4.3.1 CD14 and DC-SIGN

The expression of neither CD 14 nor CD209 was significantly altered by the presence of 

HGF during MDDC development from monocytes. CD 14 was down-regulated at the 

same extent on HGF-treated and untreated DC (Figure 4.5), while CD209 was up- 

regulated to the same level on both groups of DC (Figure 4.6). When the same 

experiments were carried out in the second model, applying HGF for 24 h before GM4 

was added, there was a strong inhibition of CD 14 down-regulation compared to that both 

on normal iDC and on pC-iDC (Figure 4.7). This observation suggested that exposure of 

monocytes to HGF before GM4, retained cells in an immature state of DC development, 

resembling monocytes/macrophages.

However, when the pre-treatment effect was tested on CD209 expression, it was found 

that CD209 levels were elevated not only compared to monocytes but also to those on 

iDC and pC-iDC (Figure 4.8). These differences reached statistical significance when 

repeated from seven different donors (Figures 4.8B). This observation suggested that 

HGF treated monocytes do not differentiate into normal immature DC. In order to assess 

if HGF pre-treatment generated CD14+CD209+ double positive cells or whether these 

markers were expressed on different cell subsets, two-colour analysis of DC was carried 

out. Increases in the proportion of double positive DC following HGF pre-treatment, and 

to lesser extent, without HGF but delayed DC differentiation with GM4 (Figure 4.9) 

were observed. While iDC contained ~5% double positive cells (Figure 4.9) after 5 days 

of GM4 treatment, 39.4% ± 4% (n=7) of pC-iDC and 62.5% ± 8% of pH-iDC were 

double positive. This confirmed that CD 14 remains high and may even become up- 

regulated on the same cells which also express CD209 following HGF pre-treatment.
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Figure 4.5 HGF Co-Treatment of Monocytes with GM4 Does Not Affect the Down-

Regulation of CD14 on MDDC.

A. Expression of CD 14 was measured using FACS analysis on iDC (top histogram), and

on H-iDC (bottom histogram). Levels o f CD 14 expressed as mean fluorescence intensity 

(MFI) are indicated on each histogram.

B. MFI expression of CD 14 on paired iDC and H-iDC samples from 4 donors connected 

by lines. There was no significant difference between the samples (n=4) using a paired T 

testp>0.05.
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Figure 4.6 Expression of DC Marker CD209 is Not Affected by HGF Co-Treatment

with GM4 of Monocytes.

A. Expression of CD209 was measured using FACS analysis on iDC (top histogram),

and on H-iDC (bottom histogram). Levels of CD209 expressed as MFI are indicated on 

the histograms.

B. MFI of CD209 expression of paired iDC and H-iDC samples from 7 donors 

connected by lines, There was no significant difference between the treatment groups 

(n=7), using a paired T test p=0.202.
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Figure 4.7 HGF Pre-Treatment Up-Regulates CD14 Levels on DC

A. Expression of CD 14 was measured using FACS analysis on iDC (top histogram),

control DC (pC-iDC) (middle histogram) and on HGF pre-treated DC (pH-iDC, bottom 

histogram). Levels of CD 14 expressed as MFI are indicated on each histogram.

B. Relative expression of CD 14 as a factor o f expression on iDC, on paired pC-iDC and 

pH-iDC samples from 7 donors connected by lines. As indicated by the capped line, the 

difference between CD 14 expression by the two groups o f DC (p=0.0156), was 

significant using a paired T test. Up-regulation of CD 14 on pre-treated cells was also 

observed in other experiments, where CD 14 and CD209 were used to check 

development/maturation state of DC.
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Figure 4.8 HGF Pre-Treatment Up-Regulates CD209 Levels on GM4 DC

A. Levels of CD209 were measured on day 5 iDC (top histogram), pC-iDC (middle

histogram), pH-iDC (bottom histogram) are expressed as MFI and are indicated at the 

top of each histogram.

B. MFI of CD209 expression on paired pC-iDC and pH-iDC samples from 7 donors 

connected by lines. The difference between CD209 expression by control and HGF pre

treated groups was significant p=0.0156, using a paired T test, and is indicated by a 

capped line.Like CD 14 up-regulation , increased levels of CD209 on pre-treated cells 

was also observed in other experiments, where CD 14 and CD209 were used to check 

development/maturation state o f DC.
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Figure 4.9 HGF Pre-Treatment Increases the Proportion of CD209+CD14+ Double

Positive Cells

A. DC differentiated from monocytes (iDC), untreated monocytes (pC-iDC) after 24 h 

hours or from 30 ng/ml HGF pre-treated monocytes (pH-iDC) were labelled with CD 14 

(APC-Cy7) and CD209 (APC) specific antibodies and analysed by FACS. Percentages 

of CD209h,§hCD14hlgh DC are indicated next to each dot-plot. A representative 

experiment is shown.

B. The percentages o f CD209+CD14+ cells in paired pC-iDC and pH-iDC samples from 

7 donors are shown, connected by lines. There was as significant difference between the 

frequency of double positive cells in pC-iDC and pH-iDC (P=0.0209) as indicated by the 

capped line.
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4.3.2 MHC Class II and Co-Stimulatory Molecule Expression

MHC class II levels were not significantly different on pH-iDC (Figure 4.10), compared 

to iDC or pC-iDC. Although pC-iDC had increased expression of MHC Class II 

molecules compared to iDC (p=0.005, n=15), HGF pre-treatment did not increase it 

further, indicating that the effect was not HGF mediated in this setting. However HGF 

co-treated iDC (H-iDC) had lower levels of MHC class II expression compared to iDC 

(iDC vs. pH-iDC, p=0.0042, n=10), (Figure 4.11).

Co-stimulatory molecules CD80 and CD86 are critical in providing the second signal 

required for effective naive T cell priming, and are up-regulated during DC development. 

The expression of both these co-stimulatory molecules was variable on pH-iDC 

compared to both iDC and pC-DC, and no significant difference was observed (Figure 

4.13 and 4.15). However, there was a trend of both pC-iDC and pH-iDC to have lower 

levels of CD86 expression compared to iDC in 8 of 11 donors (Figure 13). The 

expression of CD80 expression was widely variable and no trend was observed, 

compared to either iDC or pC-iDC (Figure 4.15). However, in the co-treatment model 

H-iDC expressed significantly lower levels of CD86 compared to iDC (p=0.0048, n=8) 

(Figure 4.12). H-iDC also expressed significantly lower levels of CD80 compared to iDC 

(p=0.0216, n=9) (Figure 4.14).

4.3.3 PDL-1 Expression is Up-Regulated by HGF Pre-Treatment

Programmed death-1 (PD-1) molecule is expressed on T cells and its ligand PD-L1 is 

expressed on T cells and APC. The interaction between these two molecules can control 

T cells responses by inducing cell death or unresponsiveness of T cells as discussed in 

the introduction. HGF pre-treatment induced a significant up-regulation of PD-L1 on DC
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(Figure 4.16) compared to DC. On pH-iDC the increase in PDL-1 on expression was 2 

fold while pC-iDC the PD-L1 expression represents an intermediate level. A similar 

experiment in the co-treated model was not carried out.
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Figure 4.10 HGF pre-treated cells do not express altered levels of MHC Class II

A. The histograms show the levels o f MHC Class II surface expression on iDC (top

histogram), pC-iDC (middle histogram) and pH-iDC (bottom histogram). MFI are 

indicated at the top o f each histogram.

B. The fold increases o f MHC class II levels on pC-iDC and pH-iDC compared to that 

on iDC are shown. Each line represents an individual donor (n=15). Using a paired T test 

there was no statistical difference between pC-iDC and pH-iDC, (p>0.05 n=15). Dotted 

line indicates relative MHC Class II expression on iDC.
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Figure 4.11 HGF Co-Treatment Down-Regulates MHC Class I I  Expression.

A. Expression if MHC class II was measured using FACS analysis on iDC (top

histogram) or H-iDC (bottom histogram). The numbers indicate MFI o f MHC Class II 

staining.

B. MFI of MHC Class II expression on iDC and H-iDC from 10 donors. Paired samples 

linked by lines. Using a paired T test, the difference between the groups was statistically 

different (p=0.0059, n=8).
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Figure 4.12 HGF Co-Treatment Down-Regulates CD86 Expression.

A. Surface expression of CD86 was measured using FACS analysis on iDC (top

histogram ), and H-iDC (bottom histogram). The histograms show a representative 

experiment, the numbers indicate CD86 expression levels by MFI.

B. The lines show the mean expression of CD86 on iDC and H-iDC o f paired samples 

from 8 different donors. Using a paired T test the difference between CD86 levels on 

iDC and H-iDC was statistically significant (p=0.0048, n=8)
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Figure 4.13 HGF Pre-Treatment Does Not Alter Expression of CD86 on immature 

DC

A. Surface expression o f CD86 on iDC (top histogram), pC-iDC (middle histogram) and 

on pH-iDC (bottom histogram). The histograms show a representative experiment, the 

numbers indicate CD86 expression levels by MFI.

B. The fold increase o f CD86 levels on pC-iDC and pH-iDC compared to iDC. Each line 

represents a different donor (n=l 1). There was no significant difference between pH-iDC 

compared to pC-iDC or to iDC (p>0.05, n=l 1).
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Figure 4.14 HGF Co-Treatment Down-Regulates Expression of CD80 Expression.

A. Expression o f CD80 measured using FACS analysis on iDC (top histogram) or H-

iDC (bottom histogram) the number represent mfi o f CD80 expression.

B. CD80 levels on iDC or on H-iDC paired, linked by lines. The difference between 

CD80 levels on iDC and H-iDC was statistically different (p=0.0216, n=9), using a 

paired T test.
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Figure 4.15 HGF Pre-Treatment Does Not Alter CD80 Expression on immature DC

A. CD80 expression was determined on iDC (top histogram), pC-iDC (middle

histogram) and pH-iDC (Bottom histogram). Representative histograms showing level o f 

CD80 expression indicated by MFI values.

B. The expression of CD80 on pC-iDC and pH-iDC compared to that on iDC. Paired 

samples from individual donors are linked by lines. There was no significant difference 

between the groups, when analysed using a paired T test, (p>0.05) n=6.
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Figure 4.16 HGF Pre-Treatment Increases PDL-1 Expression on DC

Bars represent means and SEM of PDL-1 expression (MFI) on day 5 DC from 6 separate

donors, the difference between iDC and pH-DC was significant p=0.0186, n=6 and the 

difference between pC-iDC and pH-iDC was also significant p=0.02, n=6.
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4.4 Phenotypic Characterisation of HGF Pre-Treated DC.

Treatment of monocytes with HGF at the beginning of their differentiation into DC

(HGF co-treatment or H-iDC) produced DC with lower expression of MHC Class II, 

CD80 and CD86 molecules than untreated DC. These changes are expected to have a 

negative effect on the T cell stimulatory efficiency of HGF-treated DC. However, HGF 

pre-treatment resulted in the generation of DC-like cells with a hitherto undescribed 

phenotype, CD209+CD14+ClassII+CD80+CD86+PD-Ll+. We decided to focus on this 

population of DCs, so in the rest of my thesis I shall present the detailed characterisation 

of DC derived from HGF pre-treated monocytes.

4.4.1 Maturation

In order to confirm that HGF pre-treatment generates cells which, although expressing 

CD 14, still behave more like DC than macrophages, pH-iDC were LPS treated and the 

phenotypic and functional characteristics of the resulting cells, pH-mDC were studied, 

according to the diagram on Figure 4.18. LPS treatment is known to activate 

macrophages resulting in an increase of CD 14 and MHC Class II molecules expression, 

but the level of co-stimulatory molecules or CD 8 3 Is not known. Their phagocytic 

activity also increases. LPS treatment of iDC up-regulates MHC Class II, CD80, CD86, 

CD40 and CD83 molecules and down-regulates CD209, CD 14 molecules and 

phagocytic activity. The cells are labelled as mDC in the experiments
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Figure 4.17 Diagram of HGF pre-treatment of matured DC

4.4.2 Up-Regulation of MHC Class II, CD209, CD14, CD40 and Co-Stimulatory 

Molecules on pH-DC Following LPS Treatment

When comparing mDC with pH-mDC or pC-DC, there was no significant difference 

between the levels of MHC Class II expression (Figure 4.18, n=5), and MHC Class II 

was up-regulated in all these groups compared to iDC. This demonstrates that pre

treatment with HGF does not affect the LPS mediated up-regulation of MHC Class II.

Unlike MHC Class II expression, HGF had a significant negative effect on the LPS- 

mediated up-regulation of CD80 and CD86 molecules (Figures 4.19 and 20). To allow 

easy comparison between mDC, pC-mDC and pH-mDC, the MFI values were used to 

calculate fold increases of expression compared to baseline expression on iDC. The 

inhibition of CD80 up-regulation was HGF dependent, as pC-mDC expressed higher 

levels of CD80 than pH-mDC. HGF pre-treatment inhibited the up-regulation of CD80 

compared to both mDC (p=0.0352, n=4) and pC-mDC (p=0.0417, n=3). CD86 up- 

regulation was also impaired by HGF pre-treatment, compared to both mDC and pC- 

mDC (p=0.0244, n=4 and 0.0324, n=5 respectively), although it was also inhibited in the
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pC-mDC group compared to that on mDC. These results suggest that HGF pre-treatment 

and delayed DC differentiation (induced by GM4) interact inhibiting CD86 up-regulation 

by LPS.

Expression of CD83 is only expected to be seen on mature DC and not on monocytes or 

iDC. Both control mature DC (pC-mDC) and HGF pre-treated mature DC (pH-mDC) 

had a slightly higher expression of CD83 than mDC but this was not significant (n=4). 

This indicates that HGF pre-treatment of monocytes generates DC-like cells which, like 

untreated DC, are able to undergo phenotypic maturation.
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Figure 4.18 HGF Pre-Treatment Did Not Affect MHC Class II Expression on DC

Following LPS Treatment.

A. Histograms show MFI o f MHC Class II expression, in a representative experiment.

B. The fold increase o f MHC Class II expression (MFI) compared to iDC is shown. Each 

line represents a different donor (n=5). Using a paired T test there was no significant 

difference between the groups.
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Figure 4.19 HGF Pre-Treatment Resulted in Decreased CD80 Up-Regulation

Following LPS Treatment.

A. Histograms show the MFI expression of CD80 on representative samples of 4 donors, 

numbers represent CD80 expression.

B. The fold increase o f MFI of CD80 compared to iDC. Each line represents a different 

donor (n=4), capped lines indicate significant differences between treatments. The 

significance of differences between the pairs was assessed and are indicated by capped 

lines using paired T tests (mDC vs. pH-mDC p=0.0352, n=4, pC-mDC vs. pH-mDC, 

p=0.0417, n=3).
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Figure 4.20 HGF Pre-Treatment Resulted in Decreased CD86 Expression Following

LPS Treatment.

A. Histograms show the MFI of CD86 expression in a representative experiment o f 6 

donors, on groups o f DC as indicated.

B. The fold increase o f MFI o f CD86 compared to that on iDC is shown. Each line 

represents a different donor (n=6), capped lines indicate significant differences between 

treatments, using paired T tests (mDC vs. pH-mDC p=0.0324, n=5, mDC vs. pH-mDC, 

p=0.0417, n=6, mDC vs. pC-mDC p=0.0472 n=5).
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Figure 4.21 HGF Pre-Treatment Did Not Affect CD83 Expression Following LPS

Treatment.

A. Histograms show the MFI of CD83 expression in a representative experiment on 

groups of DC as indicated.

B. Fold increase of MFI of CD83 compared to iDC is shown. Each line represents a 

different donor (n=4). There were no significant differences between groups using 

paired t tests p>0.05, n=4.
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4.4.3 Effect of LPS on Other DC Markers

CD40 is a DC surface molecule involved in the interactions with T cells and up- 

regulated during DC maturation. HGF pre-treatment does not inhibit the up-regulation of 

CD40 by LPS when compared to that on mDC (Figure 4.22, n=4). CD40 expression was 

also up-regulated by LPS on pC-mDC, compared to iDC, to a similar level than that on 

mDC and pH-mDC, indicating no HGF-mediated effect.

CD209 down-regulation has been shown to occur on DC following LPS treatment. This 

down-regulation was observed on all matured DC (mDC, pC-mDC and pH-mDC). No 

difference was observed between any of the DC groups (Figure 4.23).

As described earlier, pre-treatment of DC with HGF causes inhibition of the normal 

down-regulation of CD 14 seen during GM4-induced monocyte to DC differentiation. To 

assess whether the levels of CD 14 are maintained through the maturation of these DC- 

like cells, the expression of CD 14 following LPS treatment was investigated. LPS 

induced the down-regulation of CD 14 in the HGF pre-treated DC group (Figure 4.24). 

There was no difference between the expression of CD 14 on pH-mDC and on mDC 

(n=12 in all cases). This indicates that the HGF-induced differentiation-arrest of iDC can 

be overdriven by strong maturation signals. Macrophages, induced by M-CSF treatment 

of monocytes showed no change in the levels of CD 14 when treated with LPS (n=4) 

(Figure 4.24).
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Figure 4.22 Up-Regulation of CD40 on HGF Pre-Treated DC by LPS Treatment.

A. Histograms show the MFI of CD40 expression in a representative experiment on

group of DC, as indicated.

B. The increase (fold) o f MFI of CD40 relative to iDC is shown. Each line represents a 

different donor. There was no significant difference between CD40 levels on DC in the 

three different groups, using a paired t tests (n=4).
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Figure 4.23 HGF Pre-Treatment Does Not Effect LPS Down-Regulation of CD209

A. Histograms show the MFI of CD209 expression in a representative experiment, on

groups of DC as indicated.

B. The fold increase o f MFI of CD209 relative to iDC. Each line represents a different 

donor (n=7). There was no significant difference between CD209 levels on DC in the 

three groups, using paired t tests p>0.05.
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Figure 4.24 LPS Treatment Down-Regulates CD14 Expression on pH-mDC.

A. Mean and SEM of the expression o f CD 14 (MFI) on macrophages (MO) or

macrophages treated with LPS (MO + LPS) from 4 donors; there was no significant 

difference between LPS treated or untreated samples using an unpaired t-test.

B. Paired samples o f pH-iDC and pH-mDC, each line represents an individual donor 

(n=12). The dotted lines indicate the average levels o f CD 14 on macrophages (M-CSF 

treated monocytes for 5 days +2 days LPS treatment) and CD 14 expression levels on 

mDC. The capped line indicates a significant difference between CD 14 levels on pH- 

iDC vs. pH-mDC samples using a paired T-test p=0.0133, n=12.
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4.4.4 PD-L1 Expression is Up-Regulated by HGF Pre-Treatment

PD-L1 expression is up-regulated by HGF pre-treatment as mentioned earlier. Figure

4.25 demonstrates that PD-L1 is up-regulated on pH-DC by LPS treatment. Interestingly 

LPS does not up-regulate PD-L1 expression on pC-mDC compared to that on DC, 

indicating that the increased PD-L1 expression is due to HGF pre-treatment.
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Figure 4.25 HGF Pre-Treatment Increases PDL-1 Expression on DC by LPS

Bars represent the means and SEM of PDL-1 expression (MFI) after DC have been

treated with LPS for 48h, n=8. The difference between mDC and pH-mDC was 

significant p=0.0248 also between pC-mDC and pH-mDC p=0.0348, n=8, using paired t 

tests.
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4.5 Functional Characterisation of HGF Pre-Treated DC

4.5.1 Phagocytosis

The uptake of antigen via the process of phagocytosis is a characteristic of immature DC. 

To investigate whether HGF modulates the phagocytic ability of DC, FITC conjugated 

latex beads were incubated with pH-iDC and control. Background levels of antigen 

uptake, caused by non-specific binding of beads to cell surface receptors but not being 

internalised by DC, was measured by incubating DC with FITC-beads at 4°C. Figure

4.26 shows that there was no difference in the level of the FITC-bead uptake by pH-iDC 

compared to controls. The results were reproducible in 3 separate donors.
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Figure 4.26 Antigen Uptake is Unaffected by HGF Pre-Treatment of DC

Uptake of FITC conjugated latex beads by iDC, pC-iDC and pH-iDC, expressed as

percentage of cells that become FITC positive. The results are means of duplicate 

samples, the bars represent the SEM. The black bars represent FITC-latex bead uptake at 

37°C. White bars are the background level of FITC-latex bead binding to DC cell surface 

at 4°C. Representative of 3 experiments.
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4.5.2 Migratory Capacity

The migration of DC towards secondary lymphoid organs is a key function of DC. This 

enables DC after picking up antigen in the peripheral tissues to move to lymph nodes to 

interact with T and B cells. pH-mDC were assessed for their ability to migrate towards 

the lower chamber of a transwell migration chamber, containing CCL19, following LPS- 

stimulation (Figure 4.27). Results were determined as means (4 counts per well) of 

migrated cells as percentages of input DC numbers. As immature DC do not migrate 

towards CCL19, they were used as a negative control.

pH-mDC were less able to migrate towards lymphoid chemokine CCL19 when 

compared either to mDC or pC-mDC. 31.7% ± 7.7% pH-mDC migrated, as opposed to 

62.7% ± 1.6% of mDC. This decreased migratory capacity could be due to down- 

regulation of the CCL19 receptor CCR7; however there was no significant change in 

CCR7 levels between mDC and pH-mDC (Figure 4.28). Alternatively, increased cell

cell or cell-plastic adherence may be responsible for the impaired migration; however,, 

these possibilities were not investigated further. It is also possible that HGF affects DC 

by affecting altering DC responses to or production of other migratory chemokines.
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Figure 4.27 HGF Pre-Treatment Inhibits the Migration of mature DC

Percentage of DC that migrated towards CCL19. The columns represent the mean of

duplicate or triplicate wells from 4 donors (each value calculated from the mean of 4 

separate counts). The bars show the SEM. The capped lines indicate the significant 

differences between pH-mDC and mDC, p=0.0289 n=4, and pH-mDC and pc-mDC 

p=0.0368, n=4, using a paired t tests.
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Figure 4.28 HGF Pre-Treatment Does Not Alter the Expression of CCR7, Induced

by LPS

Fold increases of CCR7 expression (MFI) compared to that on iDC. Each line represents 

a different donor (n=4). The donors for these experiments are the same as those used in 

the migration experiments.
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4.5.3 Cytokine Production

11-12 was chosen as a representative ThI cytokine as is the most important cytokine in 

development of anti-tumour responses. While IL-10 was chosen as a representative Th2 

cytokine as this cytokine as been shown affect the immune responses even in the 

presence of IL-12, and also is the accepted as the a major cytokine involved in immune 

suppression. HGF has been shown to up-regulate IL-10 production in monocytes 

(Rutella et al. 2006) but the impact of GM-CSF/IL-4-treatment on HGF-induced IL-10 

production has not been investigated. HGF pre-treatment resulted in elevated levels of 

soluble IL-10 in the supernatant of monocytes 24 h after HGF-treatment (Figure 4.29). 

HGF-induced IL-10 levels remained higher during 5 days of culture and following LPS- 

treatment, compared to that produced by iDC or pC-iDC. These results suggest that 

increased IL-10 production is triggered by HGF in monocytes and it is maintained and 

further amplified even after GM-CSF/IL-4 treatment.

During maturation, DC secrete cytokines, in particular IL-12 and IL-10, that determine T 

cell activation towards ThI or Th2 type responses. DC differentiated using GM4 secrete 

cytokines that induce a strong type 1 T cell response during LPS mediated maturation, 

and secrete high levels of IL-12. Therefore, LPS stimulation of DC is a good in vitro 

model for studying the effect of HGF on DC cytokine release.
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HGF pre-treatment did not alter LPS induced IL-12 production compared to that by 

either mDC or pC-mDC. However pH-mDC produced 2 fold more IL-10 compared to 

mDC (Figure 4.30 and 4.31), p=0.0446, n=9. HGF pre-treatment significantly increased 

the IL-10/IL-12 ratio, when compared to pC-mDC and mDC (p=0.0370 n=6, p=0.0263 

n=6, respectively), indicating that the shift in cytokine production towards IL-10 is HGF 

dependent.
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Figure 4.29 HGF Mediated Up-Regul;

Persists After G

A. The levels of IL-10 produced by untr

24h of culture were determined from supernatants by ELISA. Mean and SEM of IL-10 

levels (pg/ml) from 2 samples are shown.

B. IL-10 levels from day 5 DC supernatants. Mean and SEM of IL-10 levels (pg/ml) 

from duplicates, were determined from supernatants by ELISA.
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Figure 4.30 HGF Pre-Treatment Does Not Alter IL-12 Production

Levels of IL-12 in the supernatant o f lxlO6 pC-mDC or pH-mDC 48 h after LPS

stimulation were measured by ELISA and compared to that found in mDC supernatant. 

Dotted line indicates mDC IL-12 index. Means and SEM of ratios calculated from 

duplicate samples o f 9 donors are shown.
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Figure 4.31 HGF Pre-Treatment Causes Increased IL-10 Production

Levels of IL-10 in the supernatant o f lx l  06 pH-mDC or pC-mDC 48 h after LPS

stimulation were measured by ELISA and compared to that found in the mDC 

supernatant. Dotted line indicates mDC IL-10 index Means and SEM of ratios calculated 

from duplicate samples o f 9 donors, are shown. The difference between pC-DC and pH- 

DC is significant as calculated by paired t test, p=0.0446, n=9.
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4.6 Summary

The results I have presented in this chapter indicate that HGF, when added to monocytes 

before DC differentiation, affects the development of DC, by inducing a DC-like cells 

with a hitherto undescribed phenotype. This DC population can be described as 

immature DC-like cells, exhibiting markers of both monocytes and DC (CD 14 and 

CD209). These DC are able to take up antigen, but their migratory capacity is impaired 

and are skewed towards IL-10 production. HGF co-treatment of monocytes with GM- 

CSF results in a different change in DC phenotype with MHC Class II, and co

stimulatory molecules down-regulated, but CD 14 and CD209 expression is not affected, 

as summarised in Figure 4.32

Co-treatment C D 80* C D 86* MHC Class II * CD14 ns CD209 ns

Pre-treatment CD80 (ns) CD86 (ns) MHC Class II *  (ns) CD14 * CD209 * PD-L1 *

Re-treatment 

+ LPS
C D 80* C D 86* MHC Class II (ns) CD 14 (ns) CD209 (ns) PD-L1 *

Figure 4.32 Summary of Effects on DC Phenotype
^  Down-regulated, f  Up-regulated, (ns) -  no change

Firstly I analysed the expression of HGF receptor c-Met on monocytes. Monocytes 

express c-Met, and lymphocytes are negative, which agrees with a previous report 

(Galimi, Cottone et al. 2001). To test that phenotypic or functional effects can be 

mediated by HGF, I confirmed that c-Met expressed on monocytes is functionally active 

by measuring ERK1/2 phosphorylation. This pathway is activated by c-Met HGF 

interaction in tumour cell lines of MPM and induces migration of human myeloma cells, 

but has not been studied in immune cells before (Jagadeeswaran, Ma et al. 2006; Holt, 

Fagerli et al. 2008). I also showed that an HGF blocking antibody is capable of blocking
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HGF:c-Met signalling. This demonstrated that monocytes react to HGF via c-Met. I also 

showed that c-Met receptor is down-regulated during GM4-induced DC development. 

This supports the later finding that HGF-pre-treatment had more pronounced effects than 

co-treatment, and indicates that the timing of HGF treatment relative to the induction of 

DC differentiation may be important. This is physiologically relevant as levels of HGF 

are elevated in MPM cancer patients, both systemically and to a greater extent locally, 

therefore monocytes are likely to be exposed to HGF both prior to and during developing 

into DC.

To investigate if HGF co-applied with GM4 is sufficient to modulate DC differentiation 

I analysed the phenotypic development of DC. The resulting DC in this model display 

small but significant modulation in-particular showing down-regulation of co

stimulatory molecules CD80 and CD86 and also of MHC Class II. Markers of DC 

development, low CD 14 and high CD209 are similar to those on untreated DC. Low 

levels of CD80, CD86 and MHC Class II are known to affect DC:T cell interactions, 

resulting in poor T cell stimulation (Ovali et al. 2000; Kurz, Diebold et al. 2002; Zou 

and Tam 2002; Okunishi, Dohi et al 2005). This may help in explaining mouse models 

where HGF causes immune modulation, such as beneficial (immunosuppressive) effects 

in acute GVHD, autoimmune nephritis, collagen-induced arthritis, and allergic airway 

inflammation (Imado, Iwasaki et al 2004; Ito, Kanehiro et a l 2005; Iwasaki, Imado et 

al 2006; Kuroiwa, Iwasaki et a l 2006; Okunishi, Dohi et al 2007).

HGF treatment of monocytes up-regulates c-Met expression, while GM4 down-regulates 

it. Thus the pre-treatment system allows HGF to interact with monocytes expressing 

higher levels of c-Met, for signal transduction.
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Interestingly, control monocytes (pC-iDC) also exhibit a phenotype different from that of 

iDC. Delayed DC differentiation also generates, although at a lower frequency, DC-like 

cells with markers for both DC (CD209) and monocytes (CD 14). GM-CSF/IL-4 

treatment is a standard method of generating DC in vitro from monocytes, resembling 

the process which occurs in vivo during inflammatory DC development. The resulting 

DC is a relatively homogenous population, with a stable phenotype, which is useful for 

in vitro studies and is capable of generating sufficient DC for in vivo adoptive transfer 

models in vaccine studies. DC in vivo are however much more heterogeneous and the 

cytokine composition of the microenvironment during their differentiation can determine 

the range of subtypes. The results from pC-iDC indicate that delayed application of GM4 

does not prevent DC development but allows the development of a less homogeneous 

DC population than that seen in GM4 iDC. The possible reason of the phenotypic bias of 

the pC-iDC might be the default autocrine IL-10 production, observed in the first 24 h of 

monocyte culture. HGF pre-treatment interacts with delayed treatment, as CD 14, CD209 

and PD-L1 are up-regulated further, while MHC Class II expression is generally up- 

regulated due to delayed GM4 application, in a HGF independent manner.

pH-iDC express markers of both DC and monocytes/macrophages, such as CD80, CD86 

MHC Class II, CD209 and CD 14. CD 14 expression is normally used to exclude 

monocytes from DC populations. Using CD 14 and CD209 to categorise cells I observed 

that CD209+CD14+ cells make the majority of DC like cells in HGF pre-treated DC, and 

only a small proportion of the cells express CD209 but not CD 14, and therefore 

conforms to the phenotype of CD209+CD14’ DC seen in iDC. The generation of 

CD209+ CD14+ cells with a tumour growth factor is interesting, as in advanced cancer
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patients decreased frequencies of circulating DC (CD 14'), and increased numbers of 

immature antigen presenting cells are observed. Such DC, expressing CD 14 would not 

be counted in “normal” lineage negative DC subsets which typically lack the expression 

of CD14, CD3, CD19, CD20, CD34 and CD56 molecules. DC with CD14 expression 

has also been observed when DC were generated in vitro from monocytes with GM-CSF 

and IFN-a or IL-15 (Banchereau, Pascual et al. 2004). It is also possible that HGF, 

expressed constitutively in the liver, is responsible for the presence of this unique 

CD 14+ DC population in the liver (Cabillic, Rougier et al. 2006). Additionally, IL-10 

and histamine are also known mediators of maintaining CD 14 expression (Buelens, 

Verhasselt et al. 1997; Katoh, Soga et al. 2005). The data presented here adds HGF to 

the list of agents which inhibit CD 14 down-regulation during DC differentiation.

While MHC Class II and costimulatory molecule expression was not significantly altered 

on pH-iDC or pC-iDC, expression of DC marker CD209 is up-regulated. CD209, DC- 

specific ICAM-3 grabbing non-integrin (DC-SIGN), is important in cell-cell contacts 

between DC and resting T cells via ICAM-3, and stabilising T cell:DC interaction in 

their early stages (Colmenares, Puig-Kroger et al. 2002; Zhou, Chen et al. 2006). CD209 

can also mediate transmigration by interactions with ICAM-2. It is not expressed by 

blood DC but is expressed by MDDC and on tissue DC especially those in the skin, 

mucosa, liver tonsils and on some DC in spleen and lymph nodes (Geijtenbeek,

Torensma et al. 2000; Cabillic, Rougier et al. 2006).

HGF interacts with delayed GM4 application, increasing the levels of CD209. Over

expression of CD209 may cause increased cellular adhesion, or accelerated trans- 

endothelial migration of DC with the CD209+ CD14+ phenotype. CD209 molecules
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following cross-linking by tumour cells expressing certain tumour-associated antigens 

(e.g. carcinoembryonic antigen, CEA, in colorectal cancer), similar to signalling by 

viruses such as HIV or dengue virus may cause preferential activation of ERK1/2 and 

enhance IL-10 production promoting predominantly Th2 type responses allowing tumour 

immune-evasion (Van Gisbergen, Aamoudse et a l 2005; Caparros, Munoz et al 2006; 

Nonaka, Izumo et al. 2008).

In addition to the up-regulation of CD 14 and CD209, HGF pre-treatment also affects the 

expression of PD-L1. PD-L1 is a member of the B7 family which is expressed on human 

DC and monocytes and has also been described on several types of tumors (Keir, 

Francisco et al 2007; Keir, Butte et al 2008). PD-L1 can inhibit the function of PD-1 

expressing T cells. Tumour factors have been shown to up-regulate PD-L1 on dendritic 

cells, but HGF has not been implicated in this process Here I provided evidence that 

HGF is a relevant factor in the induction of PD-L1 up-regulation.

The first part of this chapter indicates that HGF has a modulatory effect on DC 

development, the nature of which depends in the kinetics of HGF-monocyte- 

differentiation signal interaction.

There were two reasons why I further characterised the DC-like cells in the pre-treatment 

model: one is to obtain more information about their function, the other is to demonstrate 

whether they are more DC-like than macrophage/monocyte like.

Phenotypic maturation of DC is a process that allows DC to develop from an antigen- 

capturing into an antigen presenting role. It is one of the abilities of DC which underpin 

their “professional” status as APC in the immune system. In contrast, monocyte-derived 

macrophages display immune modulatory function during allo-T cell stimulation (Hoves,
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Krause et al 2006). They do not express CD209, nor are they able to phenotypically 

mature like DC, they do however retain CD 14 expression. Macrophage development is 

also known to be inhibited by IL-4 (Canque, Camus et al. 1998).

I found that HGF pre-treated DC are able to phenotypically mature. LPS up-regulates the 

expression of MHC Class II and co-stimulatory molecules on both pH-mDC and pC- 

mDC. However HGF pre-treatment significantly inhibits the LPS-induced up-regulation 

of co-stimulatory molecules CD80 and CD86 during maturation. This is a similar effect 

to that observed in the HGF-co-treatment model. Although HGF pre-treatment up- 

regulates CD209 on immature cells, it does not interfere with CD209 down-regulation 

during LPS-induced maturation. CD 14 expression which is also up-regulated by HGF 

pre-treatment, is down-regulated by LPS leading to pH-mDC expressing levels of CD 14 

indistinguishable from mDC or iDC. LPS also up-regulates both CD83 and CD40 on 

pH-mDC to levels similar to those on mDC. pH-iDC therefore undergo phenotypic 

maturation very similar to iDC, confirming that they are indeed DC-like. PD-L1 

expression is further up-regulated during LPS-induced maturation on pH-mDC 

indicating the long term effect of HGF pre-treatment on the expression of this T cell 

inhibitory molecule.

The phenotypic data provide evidence to support the DC-like nature of cells developed 

from HGF pre-treated monocytes, due to their maturation characteristics. They indicate 

the role of HGF as an immunomodulator of DC function, via inhibiting the up-regulation 

of co-stimulatory molecules, and lasting up-regulation of the T cell inhibitory ligand PD- 

Ll.
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An important function of DC is the phagocytosis of antigen to allow presentation of 

exogenous antigen to T cells. Functional analysis of phagocytosis of immature DC 

indicated no effect by HGF or delayed-GM4 stimulation. Both pC-iDC and pH-iDC have 

similar phagocytic function to iDC, which is compared to macrophages is relatively 

weak (Matsuno, Ezaki et al. 1996). The loss of phagocytic ability of the DC groups upon 

LPS treatment was not studied; it may add a further line of evidence to the DC-like 

nature of pH-DCs.

During maturation DC express CCR7 allowing recognition of lymphoid migration 

signals. CCR7 recognises CCL19, the concentration gradient effect of which guides DC 

migration towards lymph nodes. This ability facilitates DC migration out of tissues and 

into draining lymph nodes where DC undergo terminal maturation and prime naive T 

cells. However, pH-mDC have a significantly reduced migratory capacity towards this 

stimulus while expression of CCR7 is not significantly altered compared to mDC. pC- 

mDC are able to migrate towards CCL19, indicating that the observed effect is HGF 

specific. As shown in T cells, the defect may be at the signalling level of CCR7 not the 

surface expression level (Garcia-Zepeda, Licona-Limon et al. 2007). DC activated by 

HGF may produce CCL19 which would abolish the gradient needed for migration, or 

pH-DC may adhere more readily to other cells or surfaces slowing down the rate of 

migration.

Another functional aspect of DC is their ability to generate cytokines, and in GM4 DC 

these are associated with strong ThI type responses. pC-mDC produce levels of IL-12 

and IL-10 similar to that by mDC. This agrees with both phenotypic maturation and 

functional aspects of these cells so far. pH-mDC produce similar levels of IL-12 as the
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controls, however they produce much higher levels of IL-10 compared to pC-mDC and 

mDC. This alters the balance of IL-10:IL-12. IL-10 production by DC is linked to 

induction of regulatory function of DC and induction of Treg (Corinti, Albanesi et al. 

2001; Zhang, Koldzic et al. 2004; Bellinghausen, Konig et al. 2006). The generation of 

anti-tumour T cell responses requires the presence of IL-12. However, IL-10 can induce 

Th2 responses even in the presence of IL-12. (Steinbrink, Wolfl et al. 1997; Liu, Rich et 

al. 1998; Ria, Penna et al. 1998; Jonuleit, Schmitt et al. 2000). Therefore, the ability of 

HGF to increase production of Th2 type cytokines such as IL-10 would impair the ability 

of these cells to induce the ThI response required for elimination of cancer cells.

Both the phenotypic and functional data presented in this chapter indicate that high HGF 

levels, like those present in the tumour environment of mesothelioma cancer patients, 

can affect the development of DC.

The DC-like cells induced by HGF can be characterised in their immature state as being 

double positive for CD209 and CD 14. In their mature state they may be characterised by 

low co-stimulatory molecule expression and significantly increased PD-L1 expression 

and IL-10 production. The ability of HGF-induced DC-like cells to stimulate T cells, 

also the role that IL-10 may play in mediating HGF’s effects merit further investigation 

and will be addressed in chapters 5 and 6, together with the potential physiological 

relevance of this cell population in MPM.
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Chapter 5 - The effect of HGF pre-treatment on DC:T 

stimulation

5.1 Introduction

DC are uniquely able to induce primary T cell responses and efficiently restimulate memory 

T cells. As shown in chapter 4, HGF interferes with the development of iDC, most 

fundamentally by retaining CD 14 expression, inhibiting migration, up-regulating PD-L1 

molecule expression and increasing the ratio of IL-10:IL-12. In vitro induction of human T 

cell proliferation by HGF-treated monocytes has been shown to be impaired compared to DC 

(Rutella, S., Bonanno et a l 2006). However, there have been no studies on the effect of HGF 

on human DC-induced T cell responses.

The aim in this chapter was to establish whether HGF-pre-treatment affects the ability of DC 

to stimulate T cells. Firstly, allogenic T cell stimulation by DC was studied, a model of
• • 'Xprimary T cell responses in vitro. T cell proliferation was measured by using either H- 

thymidine uptake assay or CFSE-dilution method; secondly, the ability of DC to induce 

memory responses, by measuring cytokine (IFNy) production by T cells was studied. 15-mer 

peptides from common viral antigens, including published or predicted T cell epitopes, were 

loaded onto pH-mDC or pC-mDC and T cell recall responses were measured by cytokine 

flow cytometry for IL-10 and IFNy production. IL-10 production by T cells was also 

measured to determine Th1/Th2 responses. Experiments with pH-mDC to stimulate T cells 

were carried out according to the diagram below (Figure 5.1)
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Figure 5.1 T Cell Stimulation by pH-mDC or Controls.

5.2 pH-mDC Are Less Efficient T Cell Stimulators Than Control DC

pH-mDC-induced T cell proliferation was less efficient than that induced by mDC by up to 

50% (Figure 5.2A). pH-mDC, were also less efficient at stimulating T cell proliferation than 

pC-mDC (figure 5.2B), but the effects of delayed DC development and HGF-treatment were 

cumulative. It was not calculated whether pH-mDC induced fewer cycles of T cell 

proliferation, although it is likely as the MFI of proliferating T cells was higher in pH-mDC- 

compared to pC-mDC-stimulated T cells (1487± 155 pH-DC compared to 1166 ± 5 pC-DC).

T cell proliferation, measured either by 3H-thymidine uptake or CFSE dilution, was lower (at 

all stimulator to responder ratios) with pH-mDC stimulators than with the pC-mDC 

stimulators (figures 5.3A and 5.3B). Inhibition varied between 8-13% using the CFSE- 

dilution method, while with 3H-thymidine uptake inhibition of proliferation varied between 

15-25% depending on DC:T ratio, T cell stimulation was not carried out in this experiment 

due to the lack of sufficient number of DC obtainable from an average donor. However, 

impairment of T cell proliferation was observed by both methods.
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Figure 5.2 HGF Pre-Treatment Decreases the T Cell Stimulatory Capacity of DC.

A. Representative histograms show proliferation of T cells by CFSE dilution assay after 7 

days, following stimulation with allogenic DC. The numbers represent the percentage of total 

gated CD3+ T cells that proliferated (i.e. had lower CFSE intensity (MFI) than unstimulated 

T cells (not shown). This experiment was representative of 5 donors.

B. Proliferating T cells (based on CFSE dilution of CD3+ lymphocytes) from 5 donors 

following stimulation with pC-DC or pH-DC. The symbols represent means of 3 replicates 

per donor at a stimulator:responder ratio of 1:10. The lines and bars indicate means and 

SEM, while the capped line indicates a significant difference between the treatment groups 

using a paired T test p=0.0216, n= 5.
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Figure 5.3 HGF Pre-Treatment Decreases the Stimulatory Capacity of mature DC

A. Percentages of CFSE-labelled proliferating T cells are shown, following stimulation with 

decreasing numbers of allogenic DC as indicated by the different symbols. The percentage of 

total T cell proliferation was calculated as the number of T cells with MFI of CFSE dye 

lower than that in unstimulated T cell cultures but higher than that of unlabelled cells. The 

symbols and bars indicate the mean and SEM of 3 replicates; the results are representative of 

3 donors.B. 3H-thymidine uptake by proliferating lymphocytes on day 5 following 

stimulation with allogenic pC-mDC or pH-mDC at decreasing DC:T ratios. The symbols and 

bars indicate the mean and SEM of 3 replicates. Anaylsis of proliferation by CFSE dilution 

method was statistically more accurate determining cell proliferation. However it was not 

compatible with HGF inhibitor SU11274, which due to its coloured nature interfered with 

CFSE measurements by flow cytometry. However determination of proliferation by H- 

thymidine uptake was also able to determine differences between pC-mDC and pH-mDC 

although at with lower accuracy and was there for used in expermiments with SU11274.
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5.3 c-Met Inhibition Partially Recovers T Cell Stimulatory Ability of 

pH-mDC

A c-Met specific inhibitor (SU11274, Calbiochem®, IC50 20 nM) added to adherent PBMC at 

the same time as HGF pre-treatment began, partially restored the ability of pH-mDC to 

stimulate allogenic T cell proliferation (Figure 5.4). H-thymidine uptake without SU11274 

in pH-mDC stimulated cultures was 70% lower than in pC-mDC cultures, while with the 

addition of SU11274 the difference was only 25% (Figure 5.4). This inhibitor did not affect 

the T cell stimulatory capacity of pC-mDC (Figure 5.4). It was not possible to perform any 

FACS analysis of CFSE labelled c-Met treated DC, due to the nature of this inhibitor as it is 

a bright yellow/orange material in solution and interferes with FACS analysis.
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Figure 5.4 Inhibition of c-Met During HGF Pre-Treatment of Monocytes Partially 

Restores T Cell Stimulatory Capacity of DC.

pH-mDC or pC-mDC were cultured from day 0, in the presence or absence of SU11274 at 

40 nM. The resulting cells were used as described previously to stimulate allogenic T cells at 

1:10 DC:T cell ratio. H-thymidine uptake by proliferating lymphocytes following 5 day 

stimulation is shown. Means and SEM of triplicates from a representative experiment of 3 is 

shown.
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5.4 pH-mDC are Less Efficient at Generating T cell Recall Responses 

Than Control DC

I also investigated the ability of DC to present peptide antigens and induce memory CD8+ T 

cell responses measured by IFNy production. 15-mer peptides from common viral antigens, 

to which both CD8+ and CD4+ T cell recall responses have been demonstrated (Coleman, 

Clayton et al. 2005), were used. The responding cells have been characterised in the 

department as CD45RA", CCR7‘, CD62L' cells, representing the effector memory subset.

The ability of DC to induce T cell responses was measured by stimulating autologous T cells 

with peptide-antigen loaded DC, then measuring the recall responses of T cell populations 

following a brief restimulation by autologous BLCL ± peptide antigen. The production of 

IFNy was measured by cytokine flow cytometry.

HGF pre-treatment impaired the ability of DC to stimulate CD8+ T cell recall responses, by 

up to 50% compared to both mDC and pC-DC (P=0.0255 and p=0.0402, respectively; n=3), 

whilst with pC-mDC compared to mDC no impairment was observed, (Figure 5.5) indicating 

that the effect was HGF-specific.
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Figure 5.5 pH-mDC Stimulate Weaker CD8+ Recall Responses.

A. Gating of CD3+CD8+ lymphocytes (blue) for analysis.

B. The proportion o f total CD3+CD8+ T cells producing IFNy are indicated by the numbers 

in the upper right quadrants. The left column: autologous CD8+ T cells stimulated with 

peptide antigen loaded DC. Right column: CD8+ T cell responses without peptide loading of 

DC. The plots are typical responses o f 3 donors.

C. Summary of the percentage o f total CD3+CD8+ T cells responding (triplicates). Black 

bars indicate mean responses (IFNy+) of peptide stimulated T cells, error bars indicate SEM. 

Blue bars indicate the background T cell IFNy responses to DC without peptide (single 

samples). Capped lines indicate the statistical analysis by paired t test between T cell 

responses induced by pH-mDC compared to pC-mDC (p=0.0402) or mDC (0=0.0255).
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5.5 pH-mDC Up-Regulate IL-10 Production by T Cells

IL-10 is a potent immunosuppressive cytokine that attenuates cellular immune responses and 

suppresses production of inflammatory cytokines. It has been noted previously that HGF 

conditioned monocytes can induce an up-regulation of T-cell IL-10 production (Rutella, S., 

Bonanno et al. 2006). Additionally, IL-10-secreting DC, or IL-10 treatment are also known 

to induce IL-10 production by T cells (Liu, Rich et al. 1998; Battaglia, Stabilini et al. 2006). 

Therefore I investigated whether pH-mDC, which produce elevated levels of IL-10, can also 

alter the levels of IL-10 secreted by T cells.

Allogenic T cells, stimulated with pH-mDC, produced more IL-10 compared to both that by 

pC-mDC and mDC (Figure 5.6). HGF pre-treated DC induced 3-fold more IL-10 production 

by T cells compared to control DC (4360 pg/ml pH-DC vs. 1435 pg/ml pC-DC). T cells 

stimulated by mDC produced only very low amounts of IL-10 (57 pg/ml).

Autologous T cells stimulated with antigen-loaded pH-mDC were examined for IFNy and 

IL-10 production. IFNy production was much lower by CD3+ CD8+ T cells stimulated by 

pH-mDC, than that by pC-mDC, while IL-10 production remained unchanged. However, in 

CD3+CD8- T cells which are mainly CD4+ T cells, while IFNy production was reduced, IL- 

10 production was slightly increased (Figure 5.7).
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Figure 5.6 HGF Pre-Treated DC Induce Increased IL-10 Production by T Cells

The bars show the production of IL-10 (pg/ml) in 7 day cultures following allogenic T cell 

stimulation by irradiated pH-mDC, pC-mDC and mDC at 10:1 T:DC ratio. Means and SEM 

of duplicate samples are shown, measured by IL-10 ELISA (R&D systems). This is a 

representative of 3 donors.
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Figure 5.7 HGF Pre-Treated DC, Induce Less IFNy and More IL-10 Production by 

CD8 T Cells.

A. Bars represent percentage of CD8+ T cells producing IL-10 or IFNy after stimulation with 

viral peptide antigen loaded DC. The bars represent means and SEM of duplicate samples.

B. Bars represent percentage o f CD8- T cells producing IL-10 or IFNy after stimulation with 

viral peptide antigen loaded DC. The bars represent means and SEM of duplicate samples, 

are typical responses o f 3 donors.
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5.6 Sum m ary

In this chapter I set out to establish whether the pre-treatment of DC with HGF affects the 

ability of DC to stimulate T cells. To achieve this I used two approaches, naive T cell 

stimulation by allogenic mDC and stimulation of T cell memory responses by viral antigen- 

loaded mDC, measuring T cell proliferation and cytokine production. The results in this 

chapter demonstrate that HGF impairs the T cell stimulatory capacity of DC , both in 

primary and in recall (memory) responses, and shifts the ratio of T h 1/T h2  cytokines 

produced by T cells by decreasing IFNy and increasing IL-10 production.

Impaired ability of pH-mDC to stimulate primary and secondary responses in vitro is likely 

to be due to multiple factors. The impaired T cell stimulatory ability was observed following 

stimulation with LPS treated DC. I demonstrated in Chapter 4 that pH-mDC express lower 

levels of co-stimulatory molecules compared to controls, while MHC Class II levels are 

unaffected. Furthermore, IL-10 production and PD-L1 expression are significantly elevated 

in HGF pre-treated mature DC. It is likely that these known mechanisms of T cell 

suppression affect the functional behaviour of pH-mDC. Lower levels of MHC Class II and 

co-stimulatory molecules (Hermans, Ritchie et al. 1999; Almand, Clark et al. 2001), 

increased IL-10 (Allavena, Piemonti et al. 1998; Corinti, Albanesi et al. 2001; Battaglia et 

al. 2006) and increased expression of PD-L1 (Seo, Seo et al. 2006; Sharpe, Wherry et al. 

2007) are all factors that can contribute to impaired T cell stimulation. The exact role of IL- 

10 in the HGF-mediated negative functional effect will be analysed later (Chapter 6). The 

functional role of PD-L1 in silencing T cell responses, by the use of PD-L1 blocking 

antibodies (where PD1 is up-regulated by T cell activation) (Sharpe et al. 2007; Wang, Han 

et al. 2007) was not confirmed due to the lack of time.

HGF’s ability to dampen human T cell responses via modulation of DC function has not 

been observed before. However, in mice, Okunishi et al 2005 observed the inhibition of 

antigen presenting function of DC and suppression of both ThI and Th2 responses and a 

protective role in airway inflammation (Okunishi, K., Dohi et al. 2005). IL-10 production 

was not increased in their model. The same group (Okunishi, K., Dohi et al. 2007) found that 

HGF potently inhibited collagen-induced arthritis in mice via IL-10 and TH2-mediated 

mechanisms. HGF-treated monocytes (HGFMo) induced weaker allo-T cell proliferation in 

vitro compared to DC (Rutella, S., Bonanno et al. 2006). However, as untreated monocytes
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were not included as controls in the experiments, it can not be concluded from this work that 

HGF itself had any affect on monocyte-T cell interaction. Nevertheless, the T cell inhibitory 

effect was attributed to IL-10 and IDO, induced in the monocytes by HGF. Due to the lack of 

time I did not study the activation of IDO. Another possibility, contributing to the functional 

character of pH-mDC, is the up-regulation of PD-L2 (Blank and Mackensen 2007). These 

additional mechanisms would be interesting to study as further work, in order to completely 

define the functional consequences of HGF pre-treatment on DC.

Taken together, the results in this chapter provide evidence that pre-exposure of monocytes 

to HGF before differentiation into DC results in a long lasting and significant impairment of 

the ability of DC to stimulate primary and secondary T cell responses and also in a shift 

towards Tn2-type responses. The possible mechanisms and the relevance of these findings 

are explored further in the next chapter.



Page 160 of 209

Chapter 6 - Possible Mechanism and Physiological Relevance 

of the Immuno-Modulatory Effects of HGF

6.1 Introduction

In Chapter 4 ,1 demonstrated that both HGF-treated monocytes and DC derived from 

these cells produce elevated levels of IL-10. In this chapter, the impact of HGF- 

induced IL-10 on the phenotype and function of pH-DC is studied in order to 

demonstrate whether IL-10 production is the major mechanism responsible for the 

immunomodulatory effects of HGF. The experiments compare the similarities between 

IL-10- and HGF-mediated immunological effects and determine IL-lO’s role in the 

HGF-pre-treated setting by introducing an IL-10 neutralising antibody. Both DC 

phenotypic changes and pH-DC stimulated T cell responses are analysed this way.

In Chapter 3, elevated levels of HGF in tumour-exudate or pleural fluid of MPM 

patients were demonstrated. In the light of the evidence provided in chapters 4 and 5, 

i.e. that human recombinant HGF mediates immunomodulatory effects, it is important 

to determine whether tumour associated HGF is also able to deliver similar 

immunological effects. The pleural fluid contains tumour-cells, lymphocytes, 

monocytes and soluble factors and represents a relatively easily obtainable material for 

the study of tumour-immune interactions. The general immunosuppressive effect of 

pleural fluid has been demonstrated (Gottehrer, Taryle et al 1991; Delong, Carroll et 

al 2005; Hegmans, Hemmes et al 2006), but the contribution of HGF to this effect has 

not been addressed before. For this, the cell-free filtered fraction of pleural fluid 

containing elevated levels of HGF was introduced during DC differentiation in vitro 

and the phenotypic and functional effects were observed in the presence of HGF- 

blocking and control antibodies respectively. Furthermore, the frequency of 

CD209+CD14+ cells, normally low in PBMC, was also studied in pleural fluid, as 

elevated frequency would confirm that the in vitro observed skewing effect on myeloid 

cell differentiation also exists in the tumour environment.
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6.2 HGF Induces the Development CD209+CD14+ DC via IL-10

As HGF induces elevated levels of IL-10, which might then be responsible for the 

phenotypic and functional changes in pH-DC, first I studied whether IL-10 had the 

same phenotypic effects on in vitro DC differentiation as HGF did. Monocytes were 

pre-treated with either 5 ng/ml IL-10 (normal donors typically have less than 20 pg/ml 

IL-10 in peripheral blood serum) or 30 ng/ml HGF for 24 h before GM4 treatment. IL- 

10 was indeed able to generate double positive DC expressing both CD 14 and CD209 

molecules (Figure 6.1). In order to determine that the effect was IL-10-driven, isotype 

control or IL-10 neutralising antibodies, respectively, were present during DC 

differentiation. Both IL-10 and HGF-mediated phenotypic changes were blocked by 

IL-10 neutralising antibody, although only partially. Either higher concentrations of the 

blocking antibody may have been necessary to achieve complete blocking, or IL-10 are 

only partially responsible for the observed phenotypic effects.

6.3 Impaired T Cell Stimulation by pH-DC is Mediated by IL-10

IL-10 is well characterised as a powerful anti-inflammatory cytokine and its inhibitory 

effects on T cell proliferation and function are well established. Here, as in the 

previous experiment, HGF was added to monocytes in the presence of an IL-10 

blocking or an isotype control antibody. On day 5, DC were collected, washed and 

counted, loaded with a mixture of viral peptides (see Chapter 2 and Figure 2.2) and 

used as antigen presenting cells to stimulate autologous memory T cell responses. 

Similar to results presented in Chapter 5, pH-mDC were less able to stimulate T cell 

responses than mDC, this time in the presence of a control isotype antibody, but when 

IL-10 neutralising antibody was added, both mDC stimulated and pH-mDC stimulated 

T cell responses were elevated to equal levels (Figure 6.2). This experiment 

demonstrates not only that HGF-induced IL-10 dampens antigen specific CD8+ T cells 

to produce IFNy but also the general immunosuppressive effects of autocrine IL-10, 

which acts as a default cytokine on T cell responses. Based on these blocking 

experiments with IL-10 it can be concluded that HGF-induced IL-10 is crucially 

important in the immunomodulatory effects of HGF on T cell responses.
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Figure 6.1 Blocking IL-10 Partially Recovers the Effect of HGF Pre-Treatment.

Dot plots o f the expression of CD209 and CD 14 on FSc/SSc ‘monocyte/DC’ gated 

cells. The percentage o f double positive (CD209+CD14+) cells is indicated on each dot 

plot. A representative o f 3 separate experiments, however there is variability in the 

range of CD209 levels they there DC express, this range is also variable between 

donors.
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Figure 6.2 HGF Mediates the Inhibition of IFNy Production by CD8+ T Cells via 

IL-10

The percentages of CD8+ T cells producing IFNy after stimulation with viral antigen 

(minus background unstimulated responses) are shown. Black bars represent T cell 

responses stimulated with DC differentiated in the presence of isotype control 

antibody, while white bars are T cell responses stimulated with DC differentiated in the 

presence of IL-10 blocking antibody. The error bars represent SEM of duplicate 

samples. A representative of 3 experiments is shown.
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6.4 Tumour-Associated HGF Modifies DC Differentiation in vitro

The physiological relevance of HGF can be studied by using HGF-containing pleural 

fluid, representing the tumour associated environment in mesothelioma. The pleural 

fluid is known to contain not only well-characterised inhibitory but also immuno- 

stimulatory agents, therefore it is interesting to see if HGF, as part of this mixture, has 

a distinctly detectable effect, similar to that observed with human recombinant HGF. 

For this, filtered aliquots of cell free pleural fluid, containing ~30ng/ml HGF, were 

added at 5% concentration to normal (healthy) monocytes for 24 h before GM4 was 

added, either in the presence of HGF-neutralising antibody or control isotype antibody. 

The frequency of the CD209+CD14+ cells was analysed by flow cytometry as 

described. The frequency of CD209+CD14+ cells was <2% in normal iDC (Figure 6.3), 

while when 5% pleural fluid was added, the proportion of double positive DC 

increased dramatically to 81%. The effect of HGF in mediating this transmission was 

confirmed by employing an HGF-neutralising antibody at 10 pg/ml from the beginning 

of the in vitro culture. This specifically blocked the development of CD209+CD14+ 

cells (33%), as the application of a control isotype had only a slight effect on the 

development of CD209+CD14+ cells (63%). This experiment indicates that HGF in the 

pleural fluid has the ability to modify DC development.
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Figure 6.3 CD209+CD14+ DC Induced by MPM Pleural Fluid is Mediated by HGF

A. Dot plots o f the expression of CD209 and CD 14 on FSc/SSc ‘monocytes/DC’ 

gated cells. The percentage o f total cells that are double positive for CD209 and 

CD 14 are indicated on each dot plot with the mean and SEM of duplicate 

samples, for DC generated from Pf pre-treated monocytes with and without 

HGF neutralising antibody or its isotype control, as indicated. Representative of 

2 separate experiments. B. Percentage CD209+CD14+ DC (FSc/SSc gated 

monocytes/DC). The percentage o f total cells double positive for both CD209 

and CD 14 generated on from Pf pre-treated monocytes with and without HGF 

neutralising antibody of its isotype control, as indicated.

rmn| i i ill iiij m  
10° 10*

i mil r
7os

DC 
+ P f
+ Isotype Ab

O
Q

u +D) o>
<0 o

§8
r?

O
o

DC + P f

DC + Pf 
+ anti- 
HGF Ab



Page 166 of 209

6.5 CD209+CD14+ DC are Present at Elevated Frequencies in the

Tumour Environment

The next question was whether the presence of HGF-induced CD209+CD14+ cells is 

restricted to DC differentiated in vitro, or can also be observed in the tumour 

environment where HGF levels are elevated. The cellular fraction of pleural fluid was 

obtained by centrifugation at 400 x g for 30 min, followed by removal of red blood 

cells by Histopaque® gradient centrifugation. The interface cells were frozen and 

aliquots from different donors were studied in a same day comparative analysis by 

flow cytometry. Due to the complexity of the cellular faction (tumour cells with wide 

FSc and SSc profile were often present), first resting lymphocytes and large tumour 

cells were gated out based on FSc and SSc characteristics, then in the second step of 

gating, CD 14 negative cells were excluded (Figure 6.4). The expression of CD209 

molecules was analysed on CD14+ cells. While this proportion is low (4%) in PBMC, 

the tumour environment contains a significantly higher proportion of CD209+CD14+ 

cells ranging from 10% to nearly 60%, as the analysis of five samples shows. Although 

the number of samples available is too small for a correlation analysis between HGF 

levels and the frequency of CD209+CD14+ cells, it is of interest that Pf 5 (last panel) 

contained the lowest level of HGF (1696 ng/ml) and also contained the lowest 

proportion of CD209+CD14+ (10.4%).

6.6 Tumour-Associated HGF Induces PD-L1 Expression on DC in 

vitro

In Chapter 4, an observation that HGF up-regulates the expression of PD-L1 on DC 

was made. The physiological significance of this finding may be interesting, as PD-L1 

over-expression could also contribute to impaired T cell responses. Here, the ability of 

HGF-containing pleural fluid was studied on DC differentiation in vitro. The 

experiment was carried out as above, with pre-treatment using 5% Pf and HGF- 

neutralising or control antibody present from the beginning of the in vitro culture of 

monocyte-derived DC. Flow cytometry of CD 14, CD209 and PD-L1 expression was 

carried out after 5 days in culture (Figure 6.5). Compared to iDC, pre-treatment of 

monocytes with 5% Pf resulted in the up-regulation of CD 14 and CD209 molecules,
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confirming the experiment shown in Figure 6.3. PD-L1 expression was also up- 

regulated (Figure 6.5, last column). These effects were specifically prevented by the 

presence of HGF-neutralizing antibodies but not the control antibody. The prevention 

of the PD-L1 up-regulation was partial, indicating that other components of the pleural 

fluid, e.g. tumour derived IL-10, may also be able to influence PD-L1 levels.

6.7 PD-L1+CD14+ cells are present at elevated frequencies in the

tumour environment

In order to demonstrate the physiological importance of the observations of CD 14 and 

PD-L1 expression on DC, we asked whether PD-L1 is also up-regulated on tumour- 

associated monocytes and DC-like cells in the pleural fluid. The cellular fractions of 

pleural fluid samples were isolated as described above. Flow cytometry analysis of PD- 

L1 expression was carried out on CD14+ cells (tumour cells may also express PD-L1 

which is why they were excluded by CD14+ gating). The frequency of PD-L1 • 

expressing cells was low on CD14+ PBMC (6.6%). PF cells from 5 donors contained a 

wide range of PD-L1+CD14+ cells. While cells in one sample contained practically no 

PD-L1+ cells (0.1%), the other four contained high proportions of these cells (range 

8.8% - 67%; mean = 30.7 %). The absence of PD-L1+ cells in one patient is interesting 

and would warrant further investigation of the presence of other factors which could 

support or counteract PD-L1 up-regulation.

These results demonstrate that PD-L1 expression can be up-regulated by pleural fluid 

HGF on DC in vitro and PD-L1+CD14+ cells can be found at elevated frequencies in 

the cellular fraction of pleural fluid. As it is not possible to prove the role of HGF in 

the in situ up-regulation of PD-L1, the latter observation remains indirect evidence for 

the physiological relevance of my observations with HGF.

t
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Figure 6.4 CD209+CD14+ cells can be detected in MPM pleural fluid

A. Gating of cells for CD209 analysis, first by FSc/SSc profile then by CD 14 

expression.

B. Dot plots o f the expression of CD209 on CD14+, FSc/SSc ‘monocytes/DC’ gated 

cells, derived from P f (1-5) or healthy donor PBMC (first dot plot). The percentages of 

double positive cells (CD209+CD14+) are indicated on each dot plot.
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+ control Ab 29188 ±4395 6175 ±1592 10123 ±1266
Pf Pre-treated 
+ aHGF Ab 13989 ± 7 7 2014 ±145 8578 ±641

Figure 6.5 PD-L1 up-regulation on DC by Pf is partially mediated by HGF

A. Histograms of the expression o f CD 14, CD209 and PD-L1 on DC pre-treated with 

5% Pf for 24 h prior to adding GM4 in the absence (2nd row) or the presence o f HGF 

neutralising antibody (4th row) or isotype control antibody (3rd row) (lOug/ml).

B. The table contains the means and SD o f the MFI values o f CD 14, CD209 and PD- 

L l, from duplicates. A representative o f 3 separate experiments.

LA ..I......... ................................................- j . 1 ..........- j. • \ , A .to* Id* to* 10*
i..Aw------T, ■ ....... >  ........... VJ* .........." >  '

i, .—A10* tO* 10*
1 A

to* to* to* 10*
5 A .

To* to* to!

I _A I .  A ,
to* to* to* to*

« r  wl4 i ?
fA i

to* to* to* to*
1 Aw



Page 170 of 209

PD-L1
r

> < PF-PBMC BLF01 001

28%6,6% Pfl

BLF01 002 BLF01 003

19% 0 .1%Pf3Pf2

Q2

Q3 Q4 Q3

Q3 Q4

2l

^►CD14

Figure 6.6 PD-L1 is expressed on CD14+ cells in the pleural fluid

Dot plots of the expression of PD-L1 on CD14+, FSc/SSc ‘monocytes/DC’ gated cells. 

The percentage o f double positive (PD-L1+CD14+) cells are indicated on each dot plot, 

such as for healthy donor PBMC (first panel) and for Pf cells from five different 

individual patients (Pf 1, 2, 3, 4 and 5).
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6.8 Tumour-Associated HGF Impairs T-Cell Stimulatory Function

of DC in vitro

In Chapter 5, the observation that human recombinant HGF is able to suppress the T 

cell stimulatory capacity of DC was made. The physiological significance of this 

finding is important, as it would contribute to the suppressive nature of pleural fluid 

(Hegmans et al. 2006). Here the ability of HGF-containing pleural fluid was studied on 

DC-induced T cell responses in vitro. DC were pre-treated as described above with 5% 

Pf and HGF-neutralising or control antibodies were present from the beginning of the 

in vitro culture of monocyte-derived DC. On day 5 DC were loaded with a mixture of 

viral peptides to stimulate autologous memory T cell responses. In the presence of Pf, 

DC were less able to stimulate T cell responses than control DC differentiated in the 

presence of AB serum, but when HGF-neutralising antibody was added T cell 

responses were elevated both in Pf treated and to some extent in AB serum-treated 

cells (Figure 6.7 and 6.8).
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Figure 6.7 The effect of Pf-associated HGF on T cell stimulatory capacity of DC

Dot plots o f IFNy production by CD3+CD8+ cells CD8 vs. IFNy expression are 

indicated by the arrows. Numbers indicate IFNy producing cells as a proportion o f total 

CD3+CD8+ T cells. Healthy donor DC were pre-treated with either Pleural fluid (PF1 

or PF2) or with AB serum as a control, in the presence o f no Ab (left column), isotype 

control Ab (middle column) o f HGF neutralising Ab (right hand column). Autologous 

T cell responses were detected against common viral antigens by intracellular cytokine 

staining as described in Chapter 2. Representative samples o f triplicates are shown. 

Background responses induced by DC in the absence o f peptide were 2.4 ± 0.4%.
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Figure 6.8 The effect of Pf associated HGF on T cell stimulatory capacity of DC

Summary of IFNy production by CD3+CD8+ cells indicated as percentage of cells 

producing IFNy from triplicate samples o f one donor. DC were pre-treated with either 

pleural fluid, P f 1 (black bars) or Pf 2 (grey bars) or with AB serum (white bars) as a 

control. The cells were cultured in the presence o f no antibody (no Ab), Isotype Ab or 

HGF neutralising Ab (anti HGF Ab), as indicated. Background responses induced by 

DC in the absence o f peptide were 2.4 ± 0.4% and is indicated by the dotted line. T cell 

responses recovered by HGF Blocking Ab were significantly higher than in the 

presence of the isotype control Ab (p=0.0498, n=3, PF2) using a paired t test in PF2 

while the responses in PF1 were also elevated but not significant p=0.0771.
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6.9 Summary

The results in this chapter demonstrate that the immuno-modulatory effects of HGF are 

mediated by IL-10, particularly the generation of CD209+CD14+ DC-like cells and the 

impaired T cell stimulatory capacity of these cells. IL-10 is known to arrest the 

development of DC, causing inhibition of CD 14 down-regulation, increasing autocrine 

IL-10 production, stimulating lower levels of IL-12 production resulting in DC which 

are less able to induce T cell IFNy responses (Buelens, Verhasselt et al 1997; Fortsch, 

Rollinghoff et a l 2000; Corinti, Albanesi et al 2001; Chang, Baumgarth et al. 2007). 

IL-10 production is known to promote the generation of tolerogenic DC (Steinbrink, 

Wolfl et al. 1997; Rutella and Lemoli 2004; Bellone, Carbone et al. 2006; Rutella, 

Danese et al. 2006). Autocrine IL-10 produced by DC has been demonstrated (Corinti 

et al. 2001) to affect DC functions.

Blocking IL-10 partially prevents the phenotypic effects of HGF-pre-treatment, while 

the ability of pH-DC to stimulate CD8+ T cells is completely recovered by the 

blockade of IL-10. IL-10-treated DC exhibit similar features to HGF-pre-treated DC, 

such as CD 14 expression, ability to stimulate T cells and IL-10 production.

The similarity between IL-10 and HGF pre-treated DC, coupled with partial restoration 

of phenotype with IL-10 blocking antibody indicates that HGF mediates its effects via 

IL-10. However, as IL-10 blocking does not completely prevent the phenotypic effects 

of HGF, HGF may also mediate some of its effects directly, especially as HGF:c-Met 

interactions signal via ERK1/2, MAPK and JNK (Boisleve, Kerdine-Romer et al.

2005; Jiang, Martin et al. 2005; Caparros, Munoz et al. 2006; Luft, Rodionova et al. 

2006; Nakahara, Moroi et al. 2006; Qian, Jiang et al 2006). ERK1/2 signalling in 

monocytes is involved in the induction of cytokine production such as IL-10 and 

TNFa, it is also involved in increased monocytes survival.

Although IL-10 seems to be the main mechanism responsible for HGF’s effects on 

inhibiting T cell responses, other mechanisms should also be considered. As shown in 

Chapter 4, HGF pre-treatment up-regulates PD-L1, a B7 family member that can 

inhibit lymphocyte activation, by signalling through activation of PD-1 ITIM motifs in 

T cells (Freeman, Long et al 2000). This up-regulation of PD-L1 expression may also
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contribute to inhibition of T cell stimulation by HGF pre-treated DC with IFNy or IL- 

10 (Yamazaki, Akiba et al. 2002; Brown, Dorfman et al. 2003; Matsumoto, Inoue et 

al. 2004). Up-regulation of PD-L1 is also seen by Pf, partially mediated by HGF, as 

shown by neutralisation of HGF in Pf. Other groups have shown in vitro that PD-L1 

and PD-1 interactions can cause suppression of T cell activation and decrease of 

cytokine production, which can be recovered by blocking the interaction of PD-L1 and 

PD-1 with antibodies (Brown et al. 2003). Additionally PD-1 deficient knock out mice 

exhibit multiple autoimmune conditions (Freeman et al 2000; Dong and Chen 2003; 

Liu et al. 2003). The increased expression of inhibitory factors such as PD-L1 either by 

recombinant HGF or by pleural fluid HGF in my pre-treatment model provides strong 

evidence that HGF contributes to the development of a tolerogenic DC phenotype in 

vitro.

My in vitro studies prove that HGF promotes the development of DC with immuno 

regulatory characteristics. To demonstrate the relevance of HGF’s immuno modulatory 

role in cancer, I analysed cells collected from mesothelioma patients’ pleural fluid. 

Pleural fluid contains high levels of HGF compared to that in blood from both 

mesothelioma patients and healthy donors. There is a high degree of up-regulation of 

CD209+ on CD14+ cells in Pf, compared to that observed on healthy donor PBMC, 

providing indirect evidence about the possible in situ effect of HGF.

Taken together, IL-10 mediates some of the effects of HGF, including phenotypic and 

functional effects (T cell stimulatory capacity). This agrees with physiological data 

where DC with phenotypic characteristics seen on HGF DC are found among patient 

pleural fluid cells. Furthermore, Pf can also induce the same effects seen by human 

recombinant HGF in an HGF dependent manner. However, most notably, blockade of 

HGF in Pf restores the ability of DC to stimulate T cell responses. This indicates that 

blocking of HGF in cancer apart from its direct anti-tumour effects may result in the 

restoration of immune responses and in particular may contribute to the restoration of 

antitumour CD8+ IFNy responses.
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Chapter 7 - General Discussion

The study of HGF on immune responses conducted in this thesis focused on the 

following points:

• Development of models for analysis of the immunological effects of HGF

• Analysis of the effects of HGF on DC development

• Analysis of the effects of HGF on T cell responses (via DC)

• Identification of possible mechanisms of HGF-mediated immune modulation

• Demonstration of the physiological relevance of the effects of HGF on DC 

development in the tumour environment

To study HGF’s effects on cellular immune responses, I first confirmed HGF’s target 

cell population in peripheral blood. It has been previously reported that human 

monocytes express c-Met, the only reported HGF receptor, while mature lymphocytes 

do not (Chen, Defiances et a l 1996; Beilmann, Odenthal et al 1997; Beilmann, 

Vande Woude et al. 2000; Ovali, Ratip et al. 2000). My experiments confirmed c-Met 

expression on cells within the monocyte gate of PBMC. Functional expression of c- 

Met has not been demonstrated on human monocytes before this. To confirm that the 

c-Met expressed is active on monocytes, based on available information on HGF- 

mediated c-Met signalling in tumour cells and in epithelial cells (Stella and Comoglio 

1999; Sunitha, Shen et al 1999; Derksen, Keehnen et al 2002; Fan, Gao et al 2005; 

Peruzzi and Bottaro 2006; Ramos-Nino, Blumen et al 2007; Ramos-Nino, Blumen et 

al 2008), I chose the downstream signalling molecule ERK1/2, demonstrating its 

phosphorylation upon c-Met engagement by HGF. The results confirmed that c-Met 

expressed on monocytes is functionally active, so further experiments were planned to 

assess the effect of HGF on the development of the most important immune cells, 

dendritic cells, from monocytes.

The effects of HGF were analysed using two in vitro models. Both these models 

utilised the well established method of generating monocyte-derived DC by treating 

monocytes with GM-CSF and IL-4 (Sallusto and Lanzavecchia 1994). In the first 

model, which I termed co-treatment (H-iDC), GM-CSF, IL-4 and HGF are applied 

together. In the second, which I called pre-treatment, HGF is added to monocytes 24 h
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before GM-CSF and IL-4 are added. DC development from monocytes occurs in the 

skin and peripheral tissues in situ, although the resulting DC are phenotypically and 

functionally much more diverse than those generated in vitro (Vuckovic, Clark et al. 

2002; Gabrilovich 2004; Leon, Lopez-Bravo et al. 2005; Pinzon-Charry, Maxwell et 

al. 2005; Rutella, Danese et al. 2006; Svane, Nikolajsen et al. 2006). The-pre- 

treatment approach has not been used widely in vitro. Monocytes for all experiments 

were isolated from peripheral blood samples of healthy donors by plastic adherence, 

because magnetic bead separation with anti-CD 14 antibody coated beads lead to the 

down regulation of CD 14, similar to that observed by others using anti-CD 14 

antibody (Bazil and Strominger 1991).

Generation of monocyte-derived DC obtained from the blood of healthy volunteers 

imposed a limit’on the number of DC available for each experiment. 50 ml of blood 

provides, on average, 75 x 106 mononuclear cells, which yields about 2-3 x 106DCs. 

This is sufficient to study 5-8 treatment groups in duplicates per experiment. Thus, it 

was important to establish a working concentration of HGF, which is high enough to 

induce an in vitro effect and comparable to that used by others for in vitro HGF work 

(Klominek, Baskin et a l 1998; Beilmann et a l 2000; Harvey, Clark et al 2000), 

while also being in the range which can be found within the tumour environment. I 

chose 30 ng/ml HGF as the standard dose to be used in experiments in this thesis. 

There is considerable individual variation in the sensitivity of monocytes to HGF, and 

some of the experiments were carried out from 5-10 donors to establish a statistically 

significant effect, especially in the DC phenotypic experiments.

The effects of HGF differs on DC development in the co-treatment and in the pre

treatment models. HGF co-treatment results in DC with MHC Class II, CD80 and 

CD86 being down-regulated by about 25%, in a statistically significant manner, while 

HGF pre-treatment only affects CD86 levels. HGF co-treatment dose not have any 

other phenotypic effects. The effect of HGF on the co-stimulatory molecule 

expression of MDDC has not been tested before, as only CD 14 and CD la expression 

was studied and the level of these did not change (Rutella, Bonanno et al 2006). The 

effect of MHC Class II and co-stimulatory molecule down-regulation is likely to lead 

to sub-optimal T cell stimulation; characterised by reduced IFNy production by T 

cells, and decreased T cell proliferation due to reduced IL-2 production, (Van Gool,
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Vandenberghe et al 1996; Howard, Hope et a l 2002; Dilioglou, Cruse et al 2003; 

Shin, Kennedy et a l 2003; Waeckerle-Men, Scandella et a l 2004; Greenwald, 

Freeman et a l 2005; Jen, Jain et al 2006). Sub-optimal stimulation of T cells by 

impaired DC has been seen in studies with other agents including; direct blocking 

with neutralising antibodies (in vitro and in vivo), virus infection and also by cancer 

induced factors (Gajewski 1996; Saito, Yagita et a l 1996; Villegas, Wille et al. 2000; 

Moutaftsi, Mehl et a l 2002; Aalamian-Matheis, Chatta et a l 2007; Bae, Mitsiades et 

al 2007).

The pre-treatment model, more interestingly, results in up-regulated CD209 

expression on DC at the same or higher level than on control DC, but failure to down- 

regulate CD 14. Cells with CD209+CD14+ phenotype can be observed in normal 

human skin where they are referred to as interstitial dendritic cells (Berges, Naujokat 

et al 2005; Bechetoille, Andre et a l 2006). However CD209 expressing macrophages 

have also been reported in peripheral tissues (Granelli-Pipemo, Pritsker et al 2005; 

Rappocciolo, Jenkins et a l 2006; Ochoa, Loncaric et al 2008). Recently 

CD83+CD209+ non dendritic APC, induced by IFNa from monocytes, have also been 

described (Gerlini, Mariotti et al 2008), indicating a high level of functional plasticity 

of DC induced by different stimuli.

Maturation of pC-DC and pH-DC with LPS results in down-regulation of CD 14 and 

CD209 expression and up-regulation of maturation markers, indicating that these pC- 

DC and pH-DC are more like DC than macrophages. pC-DC and pH-DC phagocytose 

antigen at a similar level to that observed in DC, and the ability of pC-DC to produce 

cytokines and to migrate towards lymphoid signals does not differ from DC.

However, while HGF does not affect the ability of DC to phagocytose, it greatly 

increases IL-10 production and decreases migratory capacity of pH-DC. These 

findings, particularly the increased IL-10 production, indicate that pH-DC may be 

more similar to tolerogenic/regulatory DC (Buelens, Willems et al 1995; Jonuleit, 

Schmitt et al 2000; Steinbrink, Graulich et al 2002; Enk 2005). A further finding 

also indicates that pH-DC resembles tolerogenic DC more than human skin interstitial 

DC. This finding that the up-regulation of PD-L1 expression on pH-iDC and its 

further up-regulation following DC maturation. PD-L1 expression is especially high 

on pH-DC which also express high levels of CD209 and CD 14 molecules.
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Thus I found that while HGF co-treatment has a relatively mild impairment of DC 

markers important in T cell stimulation, pre-treatment results in a population of DC- 

like cells with different characteristics from ‘normal’ DC. Some of the effects in the 

pre-treatment model can be considered additive, as delayed DC differentiation alone, 

(the control in this model (pC-DC)), is also observed to have considerable effects on 

DC phenotype. It is therefore important to ensure that HGF has a significant effect 

compared to both GM4 and delayed GM4 controls when analysing the results.

The effect of delayed DC differentiation alone may indicate that a default mechanism, 

protecting monocytes from becoming activated in the absence of pro-inflammatory 

stimuli may have a lasting effect on DC development. Further analysis of the 

maturation and LPS-induced cytokine expression revealed wider differences between 

pH-DC and pC-DC, indicating that exposure of monocytes to HGF before DC 

development has long lasting, HGF-specific effects which act synergistically with the 

effects of delayed GM4 application.

The mechanistic experiments revealed that IL-10 can be produced by monocytes 

without any treatment, while GM4 treatment alkmost completely stops IL-10 

production. As HGF alone is also able to induce significant IL-10 production, it seems 

relatively easy to explain how HGF, in the pre-treatment model, is having a 

significant skewing effect on DC differentiation. Autocrine IL-10 production by 

monocytes has been observed before (Demangel, Bertolino et al. 2002; Chang- 

Rodriguez, Ecker et al. 2004; Raftery, Wieland et al. 2004; Samarasinghe, Tailor et 

al. 2006; Chang, Baumgarth et al. 2007). However, my findings indicate that the 

presence of cytokines and growth factors in the microenvironment before DC 

differentiation is triggered may determine the differentiation pathway of these cells. 

Similar effect of environmental cytokines on DC development has been suggested by 

(Zou and Tam 2002).

HGF impairs the ability of pre-treated DC to stimulate naive T cell proliferation 

which can be recovered by inhibiting c-Met signalling. The ability of HGF to 

influence T cell stimulation has been reported in mouse models, particularly by 

preferentially enhancing Tn2-type responses and Th2 cytokines (Kuroiwa, Kakishita
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et al 2001; Skibinski, Skibinska et a l 2001; Ito, Kanehiro et al 2005; Okunishi, Dohi 

et al 2007). All the major effects observed on pH-DC such as lower CD86 

expression, increased IL-10 production and increased PD-L1 expression are known to 

affect T cell stimulation (Allavena, Piemonti et a l 1998; Hermans, Ritchie et al 

1999; Almand, Clark et al 2001; Corinti, Albanesi et a l 2001; Battaglia, Stabilini et 

al 2006; Seo, Seo et a l 2006; Sharpe, Wherry et a l 2007). However HGF pre

treatment does not affect IL-12 production and therefore suppression of ThI responses 

does not seem to occur by this mechanism. The up-regulation of IL-10 production, 

which is involved in the generation of TH2 type responses, indicates that HGF’s main 

effect is to skew DC development towards TH2 type responses (Liu, Rich et al 1998; 

Bellinghausen, Brand et a l 2001; Kuroiwa et a l 2001; Daly, Johnson et al 2005; Ito 

et al 2005; Okunishi et a l 2007; Chhabra, Chakraborty et a l 2008).

HGF also impairs the ability of DC to induce recall antigen induced cytokine 

production, measured by detecting IFNy production by CD8 T cells. This effector 

mechanisms is also important in the efficient elimination of tumours (Rosendahl, 

Kristensson et a l 1998; Prevost-Blondel, Neuenhahn et a l 2000). Impaired HGF- 

mediated production of IFNy has been reported in mouse models studying immune 

responses (Kuroiwa, Iwasaki et al 2006; Okunishi et al 2007). Both the reduction of 

CD86 and increased PD-L1 expression may contribute to this by sub-optimal 

activation of antigen specific T cell and also by inducing apoptosis, or anergy of 

activated T cells via PD-L1:PD-1 interactions. IL-10 production by CD4 T cells may 

also contribute to the inhibition of CD8+ IFNy production, by reducing the ability of T 

helper cells to contribute to CD8 T cell activation (Steinbrink, Wolfl et al 1997; 

Steinbrink, Jonuleit et a l 1999; Corinti et al 2001; Mcbride, Jung et al 2002). The 

production of IL-10 by CD4 T cells also raises the possibility of pH-DC mediating 

immune suppressive effects by induction of Tregs. CD4+CD25+Foxp3+ Tregs have 

been reported in mesothelioma pleural fluid and DC exposed to IL-10, and it maybe 

that HGF mediated production of IL-10 by DC contributes to the development of Treg 

in the pleural fluid (Delong, Carroll et a l 2005; Hegmans, Hemmes et al 2006). Treg 

induction may also contribute to the inhibition of T cell activation mediated by HGF.

IL-10 also induces some of the same characteristics as pC-DC and pH-DC, such as 

phenotypic changes but with no effect on phagocytosis, and decreased T cell antigen
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stimulation (Faulkner, Buchan et al 2000; Fortsch, Rollinghoff et al 2000; Mcbride 

et al 2002). Therefore, HGF pre-treatment was compared IL-10 treatment to evaluate 

those effects mediated by IL-10 and those which are independent of IL-10. IL-10 

induces, to some extent, development of CD14+CD209+ cells, and blocking of IL-10 

in HGF treated monocytes cultures partially recovers the effects of HGF on DC 

phenotype. IL-10 blocking also recovers the T cell stimulatory capacity of pH-DC. 

Therefore, the suppression of antigen specific T cell responses by HGF is mediated by 

monocyte- and DC-derived IL-10.

It would be of interest to study the effects of HGF in vivo, however as both HGF and 

C-Met knockouts are embryonically lethal, studying the effects of HGF on immune 

functions in vivo would need to be accomplished by knocking out c-mET or DC- 

precursors, using C-Met/HGF or blacking antibodies or by using gene silencing 

mechanisms such as siRNA. Additionally as IL-10 production by by DC and T cells 

occurs it would be interesting to study the effects of HGF on DC and T cells in IL-10 

knockout mice and using adoptive transfer of DC of T cells, would help to further 

elucidate the contribution to the immune suppression I have observed.

It would be useful using IL-10 or IL-10 receptor knock mice to investigate if HGF can 

suppress antigen recall responses and T cell proliferation and can CD209+CD14+ DC 

develop in the absence of IL-10? And does the up-regulation of CD 14 or CD209 

depend on IL-10 or is it independent. Additionally it would be of interest to 

investigate immune suppression by HGF in CD209, PD-L1 and PD-L2 knockout mice 

if these contribute to HGF induced DC:T cell inhibition, either by their up-regulation 

as in the case of PD-L1 and PD-L2 or by signalling as in the case of CD209. It would 

also be interesting to study the development of mesothelioma producing high levels of 

HGF in wild type mice and compare these to IL-10 knock-out mice. First to determine 

if analogs of CD14+CD209+ DC can be seen in both. Second to investigate what 

effects these have on the immune responses of these mice, and tumour development 

and progression. This could be compared to IL-10 knock out mice, mice treated with 

RNAi, small molecule inhibitors and blocking antibodies to inhibit c-Met or IL-10 

function and to further examine the role of HGF in immune interactions.
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Mesothelioma pleural fluid is high in HGF and it is capable of inducing cells with 

similar phenotype to those induced by human recombinant HGF, such as 

CD209+CD14+ cells. The development of CD209+CD14+ cells is inhibited using 

blocking of HGF by antibodies. Furthermore, pleural fluid from MPM, similarly to 

HGF is also able to up-regulate PD-L1 expression on healthy DC. Up-regulation of 

PD-L1 was only partially mediated by HGF. Pf induced DC also resemble 

tolerogenic/regulatory DC. This agrees with reports that mesothelioma pleural fluid 

contains cytokines and regulatory cells (Enk, Jonuleit et al. 1997; Mahnke, Schmitt et 

al. 2002; Gajewski, Meng et al. 2006; Hegmans et al. 2006). Analysis of cells 

recovered from pleural fluid revealed an unreported phenotype of cells, similar to 

those generated by pleural fluid, or by human recombinant HGF pre-treatment of 

healthy monocytes. These cells represent a significant proportion of the cells in the 

monocyte gate that express CD 14. CD209+CD14+ cells also display increased PD-L1 

expression. Most importantly the pleural fluid also inhibits the generation of T cell 

responses by Pf-treated DC, in a HGF-dependent manner. This demonstrates that the 

pleural fluid of MPM patients can mediate suppression of T cell responses induced by 

DC, by affecting DC development. It also demonstrates that this immuno-suppression 

is mediated, at least in part, by HGF which is elevated in MPM-derived Pf as it can be 

prevented by blocking HGF.

The role of HGF in cancer is of interest and a number of drugs aimed at c-Met are 

undergoing clinical trials, such as PF2341066, CE-355621 and PHA665752, small 

molecule inhibitors of c-Met. The small molecule RTK-inhibitor XL880 (Exelixis) is 

being evaluated in patients with advanced solid tumors, including papillary renal 

carcinoma and gastric cancer (Christensen, Zou et al. 2007; Zou, Li et al. 2007; 

Chandrani Chattopadhyay 2008; Tseng, Kang et al. 2008; Yang, Wislez et al. 2008).

It would be of interest to see whether systemic blocking of c-Met results in any 

immunological effects, which may, in the light of the work presented here, be further 

exploited for optimising new treatments of cancer.

The main finding in this thesis is that HGF induces DC-like cells with 

CD209+CD14+CD86/CD80medMHCIIhighIL-10highPD-L 1high phenotype. These DC are 

able to phenotypically mature, but have reduced T cell stimulatory capacity, and 

generates a Th2 bias. CD14+ cells with similar phenotype can be found m the tumour
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microenvironment (e.g. MPM pleural fluid) where high levels of HGF are present. 

Neutralisation of HGF (both recombinant human and Pf associated HGF) or IL-10 

which is the mediator of the HGF effect can recover the ability of DC to induce T 

cells response and partially recovers DC phenotype.

The work presented here provides an insight into the potential immunological effects 

of HGF. The results describe basic observations and provide some mechanistic 

explanation, but they also raise further questions which I did not have time to explore. 

To mention a few:

• Can CD14+CD209+ DC be induced by other mechanisms and can HGF pre

treatment affect DC development using other mechanisms of developing 

human DC such as using CD34+ cells or using buffy coat preparations?

• What is the effect of HGF on DC developed from monocytes by stimuli other 

than GM4 (e.g. high concentration GM-CSF, which is used in 

immunotherapy)? What other tumour factors can in this model system effect 

DC development?

• Do CD209+CD14+ and CD209+CD14‘ mature to the same state? Are 

CD209+CD14+ immature DC solely inhibitory in nature and is CD 14 

expression, by DC, a marker of inhibitory/suppressive function? Can 

CD209+CD14+ DC be isolated from health donor and cancer patient perpheral 

blood, as well, as tumour effusions? Does CD209+CD14+ expression by 

Tumour infiltrating DC correlate with prognosis?

• Is IL-10 the sole mechanism by which HGF has suppressive effects on DC:T 

cells? Do IL-10 knockout in vivo models reduce of eliminate the effects of 

HGF on DC and T cells?

• Do pH-DC generate functionally active Treg cells? It would be interesting to 

investigate if HGF pre-treated DC induce Treg phenotype in T cells and 

whether this effect is HGF dependent and if it is, is the HGF dependence also 

dependent of HGF induced IL-10 production? Additionally if HGF pre-treated 

DC do induce Treg development can this also be observed using patient 

pleural fluid and do HGF inhibitors (such as inhibitor SU11274) and HGF 

blocking antibodies inhibit this effect of plural fluid in vitro? Also can high
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HGF levels in vivo models of mesothelioma occur and do the correlate with 

increased levels of Tregs?

• Does high expression of CD209 on pH-DC when these DC encounter tumour 

cells, induce/enhance Th2 skewing? It would be interesting to determine the 

exact effect of HGF on the full ThI and Th2 cytokine profiles of DC and T 

cells using a cytokine bead array. It would also be useful to sort DC depednign 

on CD209/CD14 expression profiles and determine the contributions of 

CD209+CD14- and CD209+CD14+ DC, to IL-10 and IL-12 production by 

DC upon maturation and the possible skewing of T cell responses from ThI to 

Th2. It would also be interesting to determine what contribution these two 

phenotypes play to stimulation or suppression of T cell proliferation.

• Does PD-L1 expression on pH-DC play a role in inhibition of T cell function? 

To follow up on the finding of up-regulation of PD-L1 expression separation, 

blocking experiments with PD-1 and PD-L1 blocking antibodies would 

resolve the role of PD-L1 up-regulation on T cell inhibition by pH-DC. Also 

experiments to characterise the phenotype of PD-L1+ cells do they express 

CD 14? Also does HGF effect he expression PD-L2 and does this also 

contribute to T cell inhibition?

• It would be interesting to investigate the prognostic value of CD209+CD14+ 

DC in cancers and auto-immune diseases. Also can analysis of T responses, 

DC numbers in peripheral blood (including and excluding CD 14+ DC) can be 

correlated with increased HGF levels in mesothelioma pleural fluid and 

plasma, by looking immune responses of 3-4000 mesothelioma patients, 

analysing their immune responsiveness and HGF levels at diagnosis and 

through treatment, can this be correlated with disease progression or 

prognosis? I would also be interested in starting a program of work 

investigating in other cancers (with increased HGF expression) does; T cell 

responses, T cell-IL-10 production, Tr1/Th2 balance, the levels of IL-10 in the 

tumour microenvironment or number of circulating DC be correlated with 

HGF production by tumours in either microenvironment of systemically. Also 

I would like to investigate study both patients and animasl models does HGF 

act at a systemic level to suppress the immune system or is it more localised in
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its affects. And are these localised effects mediated by its affects on DC 

development?

• I would like to further explore HGF, IL-10 histamine and other molecules that 

generate CD 14+ DC and the functionally of DC and immune responses in 

cancers expressing these molecules and also other disease such as EBV, 

HCMV which may use this mechanism to evade immune recognition.

Taken together, HGF in MPM pleural fluid and possibly in other tumour 

microenvironments is likely to contribute to tumour immune escape by supporting the 

development of CD209+CD14+CD86/CD80raedMHCIIhi8hIL-10highPD-Llhigh DC-like 

cells, resulting in a reduced ability of tumour-exposed DC to stimulate anti-tumour T 

cells responses.
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