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Abstract

Short peptides have been designed and synthesised based on the JV-terminus of the 

p53 tumour suppressor. The crosslinking of these peptides with a thiol-reactive 

azobenzene crosslinker, optimised for water solubility, builds on previous research 

that has demonstrated the effective use of this chemical crosslinker in the regulation 

of a helical peptide structure. Both the crosslinked and uncrosslinked peptides were 

reported to bind Hdm-2 with high affinity when compared to the wild-type peptide 

and the isomeric conformation o f the attached crosslinker was reported to influence 

Hdm-2 binding. Although the extent o f binding affinity change through crosslinker 

conformational switching was not as high as intended, this low degree o f structural 

control contributed to the hypothesis that the strength o f the peptide interactions with 

Hdm-2 is enough to overcome the conformational constraints imposed by the 

crosslinker and that the extent o f secondary structure change upon photoswitching 

may be enhanced by engineering peptides to bind Hdm-2 though with a reduced 

affinity. The synthesis of Hdm-2 mutants designed to possess a reduced affinity for 

p53 further supported this proposal. The design o f Hdm-2 binding peptides based on a 

polyalanine scaffold was explored, since polyalanine forms a stable a-helix. The 

substitution of alanine residues in the appropriate positions respective to one-another 

with key p53 residues critical to Hdm-2 binding in addition to cysteine residues to 

enable the attachment of the azobenzene crosslinker led to the development of 

peptides with Hdm-2 binding affinities comparable to wild-type p53.
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Chapter 1: Introduction

1.1 Programmed Cell Death -  The Significance of Apoptosis

The term programmed cell death was introduced by Lockshin et al. when proposing 

the occurrence o f specific cell death during the development and maintenance of  

multicellular biological systems.1 It was proposed that localised cell destruction 

occurs as a result o f  a highly regulated sequence o f steps leading to physiological cell 

death.

Apoptosis was first described by Kerr et a l  to explain the morphological process 

which characterised the programmed self-destruction o f cells. The word Apoptosis is 

o f Greek origin meaning to fa ll or drop off, an analogy to the falling o f leaves and 

petals from trees and flowers. This analogy refers to the life cycle o f living organisms, 

and the importance o f  controlled cell death in growth, development and in the 

continuation o f  this cycle. It is said that mitosis produces approximately 100,000 cells 

every second in the adult human body, and that a similar number die by apoptosis.3 

Programmed cell death has widespread biological significance in numerous processes 

in living organisms such as development and morphogenesis, it has been intensely 

studied in the nematode Caenorhabditis elegans and found to be critical in the 

formation o f independently mobile limbs and digits by the specific death o f the 

interdigital mesenchymal tissue o f  a developing foetus.4 Certain aspects o f  

homeostasis, notably o f the immune system lymphocytes, are regulated by apoptosis 

in addition to the highly important process o f deleting damaged and dangerous cells 

such as those having sustained DNA damage and those subject to trauma or 

infection.5

2



Chapter 1: Introduction

Cells undergoing apoptosis display distinct morphological changes (Figure l .l) .6 The 

cell shows deformation and shrinkage, losing contact with adjacent cells. Proteolytic 

enzymes become activated, resulting in the chromatin condensating and marginating 

at the nuclear membrane, a process known as pyknosis. The plasma membrane 

undergoes budding yielding apoptotic bodies where it seals to form a separate 

membrane around solid materials arising from the fragmentation (karyorrhexis) of the 

cytosol, chromatin and organelles. These tightly packed membrane-enclosed 

structures later undergo phagocytosis by macrophages, resulting in the complete 

digestion and removal of the cell without initiating an inflammatory response.

APOPTOSIS
(cell shrinks, chrom atin condenses)

o

Viable
Cell

‘budding*
Apoptotic bodies are 

phagozytosed - no 
inflammation

NECROSIS
(cell swells)

m

® e x

It
/s,®VV 

u M

■ m  
' - • t D

Cell becomes leaky 
blebbing

Cellular and nuclear 
lysis causes 

inflammation

Figure 1.1: Apoptosis and necrosis in cells can be identified by distinct 
differences in cellular morphology.

Apoptosis demonstrates a highly regulated, precisely controlled method for removing 

damaged or infected cells whilst minimising localised effects. This is in stark contrast 

to necrotic cell death following rapid loss of cellular homeostasis (Figure 1.1), which 

is characterised by the swelling and subsequent failure of the cell membrane and

3



Chapter 1: Introduction

n

rupture o f the cell and leakage o f its contents to the surrounding tissue. Uncontrolled 

exposure o f the surrounding cells to previously shielded cellular contents, including 

proteolytic enzymes, result in DNA and protein fragmentation, eliciting a localised 

immune response resulting in inflammation and damage to adjacent cells.

Many diseases arise as a consequence of disruption o f apoptosis signalling pathways. 

Cancer, for example, can occur due to inhibited apoptosis resulting in cell 

accumulation and tumour growth. Excessive apoptosis has been linked to

o
neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. It has been 

proposed that malfunctions in apoptosis signalling pathways arise due to malfunctions 

within genes coding for factors critical for the initiation, mediation or execution o f  

apoptosis. An example o f  this is the receptor Fas, in which mutation prevents the 

binding o f its ligands (FasL) and subsequently inhibits apoptosis as observed in 

malignant lymphomas and solid tumours.9 Also, the oncogene coding for the p53 

tumour suppressor undergoes modifications resulting in mutant variants o f p53, the 

most common cause o f many malignant tumours. These mutations are generally found 

to be concentrated within the regions o f p53 essential for sequence-specific DNA 

binding.9

In cancer research, specific attention is being paid to the role o f defective apoptosis 

pathways in tumourigenesis and the identification o f such mutations. It has been 

found that defective cells acquire resistance to apoptosis through the untimely 

activation o f oncogenes leading to the expression o f anti-apoptotic proteins, and 

conversely by the deactivation o f pro-apoptotic factors which under normal conditions 

function as tumour suppressors.10

4



Chapter 1: Introduction

1.2 The Biological Mechanisms of Apoptosis

The apoptosis signalling pathway is highly regulated in order to prevent the 

destruction o f healthy tissues, this is achieved by the incorporation o f an intricate 

network o f signalling processes comprising o f many evenly distributed checkpoints. 

The process o f apoptosis commences with the initiation phase, requiring a pro- 

apoptotic stimulus that after a variable period o f time, depending on both the type o f  

cell and stimulus, results in the activation of the cells molecular signalling cascade. 

DNA fragmentation at inter-nucleosomal regions is initiated by endogenous 

deoxyribonucleases (DNases), which become selectively activated upon the 

proteolytic cleavage o f certain members of the caspase family, notably caspase-3.11 

Caspases are cysteine-dependent aspartate proteases, the activation o f which has been

1̂  1C
suggested as essential for the induction o f apoptotic cell death. " Caspases were first 

implicated in programmed cell death when the C. elegans death gene 3 (CED-3) was 

related to mammalian interleukin-1 ̂ -converting enzyme (ICE), otherwise known as 

caspase-1. Critical for activity, caspases contain a cysteine residue within a highly 

conserved pentapeptide active site and utilise aspartate side-chains within a specific 

proximity for cleavage. Recognition o f a tetrapeptide within its substrate’s active site 

results in its cleavage at the carbonyl side o f specific aspartic acid (Asp) residues.15 

Caspases are initially present as inactive prO-enzymes (zymogens) known as 

procaspases (MW; 30,000-50,000). These carry a prodomain at the A-terminus in 

addition to a large (MW; 20,000) and small (MW; 10,000) subunit with activation

5
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occurring auto-catalytically, known as a caspase cascade, arising from the existence 

o f Asp cleavage sites between the prodomains and subunits o f caspases.

Crystallographic studies suggest that active caspases exist as heterotetramers arising 

from proteolytic cleavage between the large and small prodomains, yielding both the 

large and small subunit, a further pair of which produces an active caspase with the 

restoration o f full enzymatic activity and yielding both large and small subunits.16 

This enables the processing o f one caspase to be followed by the activation o f another 

once the activation o f  an initiator caspase has taken place.15 These initiator caspases, 

for example caspase-2, -8, -9 and -10, contain long prodomains to allow for 

interaction with other proteins, ensuring that initiator caspases can remain within 

close proximity to one another, thus enabling the caspase cascade. Initiator caspases 

have both direct and indirect influences upon the activation o f downstream or effector 

caspases such as caspase-3, -6 and 7, which are characterised by their relatively short 

prodomains, the activation o f  which results in the initiation and execution o f the 

apoptotic degradation phase.

It is the direct and indirect action o f the activated effector caspases, which is 

responsible for the characteristic cellular morphology seen in classical caspase- 

dependant apoptosis. Activated cells in the effector phase are said to be committed 

and subsequent experiments involving cytosolic extracts from these cells has been

17 1ftshown to induce apoptotic changes in the nuclei o f non-committed cells. ’ Caspase- 

dependant apoptosis is optimised in such a way as to ensure that the signals required 

for the initiation o f phagocytosis are clearly displayed prior to the release o f the 

cellular constituents, thus minimising localised damage to surrounding tissues as
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characterised by necrotic cell death. Initiator caspase activation occurs in two 

different pathways. Extrinsic apoptosis arises from the ligation of cell surface death 

receptors, leading to formation of a complex known as a death inducing signalling 

complex (DISC), and intrinsic apoptosis occurs via signals from within the cell 

releasing apoptogenic factors from within the mitochondria.

Extrinsic apoptosis is initiated by the ligation of tumour necrosis factor receptor 

(TNFR) family members to the DISC, which then permits the ligation of death 

receptors including the cell surface protein Fas (also known as CD95 and Apo-1) 

resulting in caspase activation (Figure 1.2).19 In this pathway caspase-8 is the most 

influential, becoming recruited as inactive procaspase-8 via binding sites on the large 

subunit known as death effector domains (DED’s) which bind to the highly conserved 

cytoplasmic death domains (DD’s) of the DISC. Here, numerous procaspase-8 

molecules are within close proximity to one another and are thought to become 

activated by autoproteolysis.16

Ligand
(FasL, TNF-a)

Death R eceptor 
(Fas, TNFR)

ActiveActive C aspase-8  ■ Activation of — ► A poptosis
- |  r-j C asp ases

m  -3.-6.-7

Figure 1.2: Autoproteolytic activation o f  caspase 8 at the DISC by 
binding o f  the death effector domains (DED’s) o f  procaspase-8 to the 
death domains (DD’s) o f  the DISC.
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Cells with the ability to induce apoptosis by direct caspase-dependent pathways such 

as the extrinsic apoptosis pathway are classified as type I  cells and can be 

characterised by the large amount o f active caspase-8 and -3 present compared to the 

concentrations found within type II cells.20,21 In the case o f type II cells, the extrinsic 

signalling process is not strong enough to result directly in cell death due to reduced 

DISC formation but requires amplification via the mitochondria-dependant apoptosis 

pathway 22

The mitochondrial pathway, or intrinsic apoptosis, incorporates the influences o f  

cytotoxic agents, abnormal oncogene expression and the activities o f the p53 tumour 

suppressor protein upon apoptosis signals. The mitochondrial pathway is also the 

target o f some proteins associated with the B-cell lymphoma-2 family (Bcl-2), in 

particular Bid which provides die link between the extrinsic and intrinsic apoptosis 

pathways. Bid is translocated into the mitochondria as its truncated form (tBid) arising 

from its cleavage by caspase 8. Once within the mitochondrion tBid interacts with 

other pro-apoptotic Bcl-2 family members such as Bax and Bak leading to a key 

checkpoint in the intrinsic/mitochondrial apoptosis pathway. This checkpoint is the 

release o f the protein cytochrome C (the only water-soluble constituent o f the 

mitochondrial electron transport chain), amongst other caspase activating factors such 

as apoptosis inducing factor (AIF), into the cytosol from the mitochondrial trans­

membrane space. AIF is a 57,000 Da flavoprotein, which also induces the caspase 

independent formation o f large chromatin fragments (50 kb), in contrast to the caspase 

activated DNases, which yield oligosomal DNA fragments 23,24 AIF induced caspase 

independent apoptosis can be identified by a lesser degree o f  compaction o f the 

chromatin and nuclear fragmentation.11
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In the mitochondrial pathway, the initiation o f apoptosis begins with the activation of 

procaspase-9 by a complex consisting o f cytochrome C, dATP (deoxyadenosine 

triphosphate) and also the CED-4 homologue called apoptosis protease activating 

factor (Apaf-1). The mechanism of release o f cytochrome C from the mitochondrion 

during apoptosis has been a highly debated topic since the mitochondrion maintains 

its structural integrity throughout. Methods suggested include the mitochondrial 

membrane permeability transition and subsequent opening o f its associated pores and 

also the opening o f  selective release channels and swelling o f the mitochondrial 

matrix causing a permeability transition arising from a rupturing o f the mitochondrial 

membrane.25'27 The release o f cytochrome C leads to the interruption o f electron 

transportation within the mitochondria, which leads to an increase in the concentration 

o f reactive oxygen species (ROS). This results in the oxidation o f NAD(P)H, loss o f  

ATP and oxidation/depletion o f glutathione (GSH). These are all common 

observations preceding apoptosis, leading Loeffler et al. to propose that inhibition of 

caspases and nucleases often results only in changes to the biochemical and 

morphological characteristics o f cell death whilst ultimately failing to prevent 

apoptosis from occurring.28,29

A key checkpoint is the release o f  additional proteins such as DIABLO and Smac 

from the mitochondria, the role o f which is the removal o f caspase-inhibitory factors. 

These are proteins, the function o f  which is to bind to and act as antagonists of 

inhibitors o f apoptosis (IAP’s) and are necessary prior to the full activation o f the 

execution caspases. Upon the release o f cytochrome C into the cytosol, the formation 

o f a multi-protein complex known as the apoptosome is triggered, which in addition
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to cytochrome C contains Apaf-1 which functions to catalyse the ATP-dependent 

auto-activation and dimerisation of caspase-9 (Figure 1.3):30

Apoptotic
Stimulus

C Mitochondria ">]

Cytochrome C 
release

Apaf-1

Apoptosome

Active Caspase 
-9 Dimers

Figure 1.3: Intrinsic apoptosis resulting from cytochrome C release from  
the mitochondria, formation o f  the apoptosome and activation o f  
procaspase-9.31

Upon activation of such initiator caspases and apoptosome formation, cell death 

results via the CD95 signalling pathway by the proteolytic activation of effector 

caspases such as caspases-3, -6 and -7. Also known as executioner caspases these 

cleave numerous structural and regulatory proteins such as lamins (fibrous proteins 

with a structural function in the nucleus) and also cytokeratins (which form filaments 

within the cytoskeleton).

Biochemical studies have demonstrated that apoptosis and necrosis may share some 

pathways in the early stages of cell death. Anti-apoptotic proteins of the Bcl-2 (BH3) 

family such as Bcl-2 and B c1-xl  inhibit the release of cytochrome C from the
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mitochondrion preventing both apoptotic and non-apoptotic cell death, whereas pro- 

apoptotic members such as Bax, Bak, Bid and Bim induce both cell death pathways,

35 maintaining an equally strong presence. These pro-apoptotic proteins translocate 

into the mitochondria, the extent of which is dependant on various death stimuli 

(Figure 1.4), and ultimately it is the ratio between the pro- and anti-apoptotic 

members of the Bcl-2 family which determines whether the cell lives or dies.2j j6 j7

BtdDISC

C Mitochondria 3

Bct-2 v- 
Bd-XL

Bet-2
Bd-XL Bax.

Bax
■  Smac

p53

DNA Damage

Cleavage of Caspase 
Substrates

Nucleus

External Stress

APOPTOSIS

Growth Factor Receptors

Survival Signals

Figure 1.4: The intrinsic and extrinsic apoptotic signalling pathways 
result in caspase activation through protein-protein mediated 
interactions.11

In addition to amplifying and mediating extra-cellular apoptotic pathways the 

mitochondria possess a central role in the management and propagation of intra­

cellular death signals resulting from cell damage or starvation, DNA damage and 

oxidative stress in addition to cell death signals stimulated by 

cytotoxic/chemotherapeutic agents. Most apoptosis-inducing conditions incorporate
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the disruption o f the mitochondrial inner transmembrane potential in addition to an 

increase in the inner mitochondrial membrane permeability to solutes with a 

molecular mass less than 1500 Da, the so called permeability transition (PT). The 

result o f these changes is the influx o f water into the mitochondrial matrix leading to 

osmotic mitochondrial swelling and rupturing o f the outer mitochondrial membrane. 

These morphological changes result in the release o f pro-apoptotic proteins from the 

mitochondrial intermembrane space into the cytoplasm.

1.3 Regulatory Mechanisms in Apoptosis Signalling

The initiation o f apoptosis in response to extrinsic and intrinsic death signals implies 

that all cells are capable o f  undergoing programmed cell death and that such cellular 

responses remain inactive until activated by such signals. Ameisen has proposed that 

all cells are intrinsically programmed to self-destruct, and that this would inevitably 

occur were it not for continual repression by survival signals which enhance or 

maintain the functioning o f anti-apoptotic molecules, thereby suppressing the activity 

o f pro-apoptotic factors.38 Consequently, cellular agents with opposing pro- and anti- 

apoptotic functions have been identified, and it is the control and release o f these 

agents that determine the precision and timing o f the cell’s demise.

The 25,000 Da oncoprotein Bcl-2 (see chapter 1.2) was the first oncogene discovered 

to be involved in the inhibition rather than promotion o f cell death, and was the first 

known component o f the apoptosis signalling pathway to be identified to play a role
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in tumourigenesis.39 Vaux et al. investigated the effect o f Bcl-2 on haemopoietic cells 

in addition to its interaction with c-myc, a transcription factor involved in cell 

proliferation, commonly found to be up-regulated in many cancers. Bcl-2 was found 

to contribute to neoplasia and was therefore concluded to function within the 

antiapoptotic signalling pathway. Hockenbery and co-workers determined that Bcl-2 

was located intra-cellularly, localising in the mitochondria. Their research concluded 

that the over-expression o f Bcl-2 in pro-p-lymphocyte cells was found to block cell 

death via the intrinsic apoptosis pathway, whereas deregulation o f Bcl-2 expression in 

the same cells lines was found to extend cell survival.40 Consequently, Bcl-2 have 

been found to be over-expressed in a variety o f diseases, for example non-Hodgkins 

lymphomas, propagating the survival of cancerous cells through the inhibition o f  

apoptosis.

Further discoveries o f  homologues o f  Bcl-2, all containing conserved sequence motifs 

known as Bcl-2 homology domains (BH1 to BH4) led to the proposition o f a division 

existing in the Bcl-2 family between anti-apoptotic members such as Bcl-2 and B c 1 - x l  

(Bcl-2 survival factors) and proapoptotic members such as Bak and Bax in addition to 

the BH3 death proteins, so called due to their pro-apoptotic function arising from the 

presence o f a conserved homology known as the BH3 domain.41,42 The balance 

between pro- and anti-apoptotic members is thought to enable the Bcl-2 family to 

function as a checkpoint within the intrinsic apoptosis signalling pathway, indeed Bcl- 

2 knockout mice engineered to possess an inactivated gene coding for Bcl-2, have 

been shown to die after only a few weeks displaying symptoms o f lymphocyte, 

neuronal and intestinal apoptosis.9 Further investigation by Antonsson et al. has 

shown that the interaction o f pro-apoptotic BH3 homologues o f the Bcl-2 family
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displaces downstream pro-apoptotic factors such as Bak and Bax, previously in an 

inactive state due to their interaction with mitochondrial membrane bound 

antiapoptotic factors such as Bcl-2. The displaced pro-apoptotic factors are free to 

associate with the mitochondrial membrane, disrupting its permeability and resulting 

in the release of apoptogenic factors into the cytosol facilitating the propagation of 

intrinsic apoptosis (Figure 1.5).43

Figure 1.5: The role o f  the Bcl-2 family proteins in mediating the release 
o f  apoptogenic factors in the intrinsic apoptosis pathway.11

1.4 T he R ole o f  the p53 T um our Su ppressor in R egu lating  A poptosis  
Sign allin g

The 393 amino acid tumour suppressor protein p53 functions as a promoter of 

apoptosis within cells and is hence referred to as a tumour suppressor. Within cells, 

p53 can evoke several responses such as cell-cycle arrest, senescence, differentiation 

and apoptosis depending upon the stimuli. The most intensely studied apoptosis

1 B>xi

Mitochondria
Mitochondria

I  Cytochrome c
Cascade

Apoptosome
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related tumour suppressor, p53 is found to have become de-activated in over 50% of 

human cancers. Additionally, mutations in p53 have been linked to chemoresistance, 

for example in metastatic breast cancer where its mutation results in a significantly 

reduced response to the drug tamoxifen.9 The p53 tumour suppressor becomes 

activated in cells in response to both internal and external stimuli such as DNA  

damage and hypoxia, and has been referred to as “the guardian o f  the genome ” due to 

its central role as a checkpoint in numerous pathways responsible for maintaining the 

genomic integrity o f  the cell.44 p53 functions as a transcription factor resulting in the 

expression o f a variety o f  p53 target proteins such as Fas, a cell surface protein 

involved in the initiation o f extrinsic apoptosis by inhibition o f cell survival signalling 

processes, and Apaf-1, a component in a complex leading to the activation o f pro- 

caspase-9 in the mitochondrial apoptosis pathway.10 Chemotherapy treatments 

involving the use o f  methotrexate and cisplatin have been shown to stimulate the 

expression o f the ligand FasL, which ligates to Fas resulting in the activation of

caspase-8 and the commencement o f apoptosis via the extrinsic death-receptor

01pathway. The exact mechanism is however thought to be more complex, since cells 

deficient in Fas and so unable to undergo FasL binding and therefore extrinsic 

apoptosis have been shown to undergo apoptosis upon exposure to these same 

anticancer drugs.

Not only does p53 stimulate protein expression it also acts as a repressor o f the 

expression o f antiapoptotic factors such as B c 1 - x l  o f the Bcl-2 family proteins, for 

example p53 has been shown to actively repress the Bcl-2 promoter by binding to its 

TATA sequence 45 Mihara et a l  proposed that the intrinsic mitochondrial apoptosis 

pathway involves the translocation o f activated p53 from the nucleus to the
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mitochondria where it interacts with the DNA binding domain o f B c 1 - x l .46 This 

results in the formation o f a complex inducing mitochondrial permeabilisation leading 

to the release o f cytochrome c, which is not observed with many examples o f  mutated 

p53.

The p53 tumour suppressor must be tightly regulated since in non-stressed, 

undamaged cells its presence, particularly in an active state, would unnecessarily 

induce apoptosis within an otherwise healthy cell. As a result p53 is present at 

extremely low concentrations where it is retained in the cytoplasm in a deactivated, 

metastable state unable to penetrate the nucleus.47 Upon activation p53 translocates to 

the nucleus where apoptosis is induced through the transcription o f pro-apoptotic 

genes. Malfunctions o f p53 and its associated pathways occur in many ways, such as 

lesions preventing p53 activation or by mutation o f downstream mediators o f p53. 

Mutations involving p53 itself are predominantly single-point mutations as opposed to 

the deletions and ffame-shifts commonly seen in other tumour suppressor proteins.10 

Therefore, the cell retains its ability to express p53, albeit in a mutated form, which is 

often, more stable than the wild-type protein and thus present within the cell at more 

elevated concentrations.

A variety o f analytical techniques have been employed to evaluate the structure- 

function relationship o f p53 with respect to its quaternary structure, including X-ray 

crystallography and NMR.48 p53 is a homotetramer with the 393 amino acid sequence 

divided into two principal domains, a DNA binding domain (residues 94-294) and a 

tetramerisation domain (residues 323-360) which are linked by disordered 

sequences.48 The majority o f p53 mutations associated with the disruption o f the
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apoptosis-signalling pathway are found to occur in the DNA binding domain, which 

consists o f two loops stabilised by a zinc ion and a loop-sheet-helix motif.49

The 491 amino acid oncoprotein Human double minute-2 (Hdm-2) plays a central role 

in the regulation o f  p53 levels in cells, since Hdm-2 can bind to and inhibit the 

activity o f p53 (K<j 340 ± 1 0  nM).50 One o f the many functions o f Hdm-2 is as an E3 

ubiquitin ligase, mediating the ubiquitination o f  p53 at specific Lys residues o f the 

p53 C-terminus, where it is subsequently targeted for degradation by the proteasome. 

The activity o f  Hdm2 is controlled by Akt kinase in response to anti-apoptotic factors, 

which phosphorylates Hdm2 enabling its translocation from the cytosol to the nucleus 

in an active form, where it functions as an inhibitor o f p53. However, in a further twist 

to the complex mechanism that is the regulation o f both p53 and Hdm2, Akt is 

inhibited by the phosphatase PTEN, the expression o f which is induced by p53.

Hdm-2 binding is facilitated by the TV-terminal transactivation domain (residues 1-67) 

which in the unbound state is largely disordered48 This domain is the site o f  

interaction o f p53 with transcription factors and is subjected to extensive post- 

translational modifications such as phosphorylation which regulates its transcriptional

f  1 co
activity. * A proline-rich region (residues 69-94) within p53 has been associated 

with regulation o f stability, this has been supported by the work o f Sakamuro et al. 

who demonstrated that upon deletion o f  this region, p53 showed an increased 

susceptibility to degradation by Mdm-2. The C-termmus o f p53 (residues 360-393) 

is known as the regulatory domain, and has been linked to the negative regulation of 

p53, involved in the induction o f apoptotic programmed cell death.10,54

17



Chapter 1: Introduction

This intricate mechanism, a negative feedback loop, is highly efficient at minimising 

p53 levels in healthy cells. So called Mdm-2 knockout mice, engineered to be in 

possession o f an inactivated gene coding for the mouse equivalent o f Hdm-2, Mdm-2 

(Mouse double minute-2), die early during development.55 Crossing mice that are 

heterozygous for the deletion alleles for Mdm2 and p53 results in the ‘normal’ 

development o f such Mdm-2 and p53 knockout mice, thus demonstrating the 

importance o f  both p53 and Mdm-2 in the regulation o f one another.

As previously described, the p53 tumour suppressor becomes inhibited by the 90 kDa 

oncoprotein Mdm-2, leading to suppression o f apoptosis and as a result cell 

accumulation and tumour growth. The role o f p53 in malfunctioning apoptosis 

signalling pathways is supported by its involvement in both uncontrolled cell 

proliferation and premature activation of cell death through interlinked cellular 

pathways where p53 is a central checkpoint. These cellular pathways result in the 

activation o f a transcription factor, E2F-1, a function o f which is the stimulation of  

the tumour suppressor ARF  (p i4-ARF in humans) which promotes apoptosis by 

preferentially binding to Hdm2 leading to the stabilisation and activation o f p53.56

Consequently, it has been found that Mdm-2 over-expression is a common 

characteristic o f certain cancers, for example more than a third o f soft-tissue 

sarcomas, and is also a contributing factor in less common cancers such as leukaemia 

and breast cancer.57*60 In cases where Mdm-2 over-expression has been found to 

occur, the cell is typically found to contain wild-type p53, implying an alternative 

mechanism to that previously discussed, whereby over-expressed Mdm-2 provides an 

alternative to the mutational deactivation o f p53 in apoptosis inhibition (Figure 1.6).
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59 60 This is supported by previously mentioned work involving Mdm-2 knockout 

mice, which has been shown to enhance the tumourigenic potential of cells.55

E2F-1 Oncogenes Survival Signals
(Ras) \  (Growth Factors)

Kinases | Mdm2
ATM. Chk2
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Figure 1.6: The p53 network incorporating the p53 -  Mdm-2 negative 
feedback loop.11

1.5 T he M echan ism  o f  the p53/H dm 2 Interaction

There are four principal domains within the structure of Mdm-2, a C-terminal RING 

domain (residues 430-480) which requires two zinc ions for structural stabilisation 

and is associated with the function of Mdm-2 as a ubiquitin ligase.61 Mdm-2 also 

contains a central acidic domain (residues 230-300), this is required for both 

regulating p53 ubiquitination in addition to Mdm-2 translocation within the cell. The 

phosphorylation of specific residues within this region has been reported to be 

important for the regulation of Mdm-2 function.62 63 A combination of deletion and
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mutation analysis have revealed that it is the 109 amino acid TV-terminal domain of 

Mdm-2 which is responsible for binding to the transactivation domain of p53.64-67 

Chen and co-workers synthesised Hdm-2 deletion mutants corresponding to various 

fragments of Hdm-2 and conducted an immunoprecipitation assay with p53 as a GST 

fusion protein, it was reported that Hdm-2 residues 19-102 were critical for an 

interaction with p53.67 This has been further refined by proteolytic digestion, which 

has elucidated that it is the highly conserved 12,000 Da structural domain at the N- 

terminus of Mdm-2 residues 17-125 that is important.68 Within the p53 TV-terminal 

transactivation domain it is a sequence of 11 amino acids comprising of residues 17- 

27, which are critical for p53-Mdm-2 binding.

Phe19

Figure 1.7: Structure o f  the p53 TV-terminal transactivation domain (red) 
adopting a helical structure and binding to Mdm-2 (blue) via key 
interactions o f  p53 residues (yellow) Phel9, Trp23 and Leu26 projected 
into the hydrophobic binding cleft o f  Mdm-268
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The tertiary structure o f the A-terminal domain o f Mdm-2 is arranged in such a way as 

to form a deep hydrophobic cleft o f approximately 25 A in length, 10 A width and 10 

A in depth, narrowing towards the bottom. The cleft is comprised o f two a-helices for 

the sides, two shorter a-helices for the bottom, and is enclosed at the ends by a pair of 

anti-parallel 3-stranded (3-sheets. The vV-terminal transactivation domain o f p53 has 

been shown in NMR studies to be unstructured in the absence o f Mdm-2, however, it 

adopts an amphipathic a-helix o f approximately 2.5 helical turns in length along 

Residues 18-26 when bound within the Mdm-2 hydrophobic cleft (Figure 1.7).68

The p53 a-helix presents a hydrophobic face that binds within the hydrophobic cleft 

o f Mdm-2, facilitated by the interaction o f specific amino acids on the surfaces o f  

both proteins. Schon et al. demonstrated that upon binding to p53, the tertiary 

structure o f Mdm-2 undergoes a significant rearrangement, and further NMR studies 

o f ‘free’ apo-Mdm-2 have revealed that an unstructured segment o f the A-terminus o f

Mdm-2 occludes the narrowed p53 binding cleft and is displaced upon p53 binding.69'

71

Critical to the interaction between these two proteins are three hydrophobic amino 

acids along one face o f the p53 a-helix namely, Phel9, Trp23, and Leu26 which are 

inserted deeply into the hydrophobic Mdm-2 cleft (Figure 1.7). These residues were 

identified by a range o f techniques including the screening o f peptide libraries and 

site-directed mutagenesis o f wild-type p53.64,65,72 Substitution o f Leu26 for Ala in a 

designed p53 peptide resulted in a 100-fold reduction in Hdm-2 binding, and that 

similar substitution o f either Phel9 or Trp23 resulted in the total loss o f Hdm-2 

binding.73'75
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The structural examination of the binding interface between p53 and Mdm-2 reveals 

key information about the mechanism of inhibition o f the activity o f p5 3 as a tumour 

suppressor by Mdm-2. The binding o f these same hydrophobic amino acids that are 

critical for the p5 3-Mdm-2 interaction facilitates the translocation o f p53 in an active 

state from the cytoplasm to the nucleus where apoptosis is initiated. This translocation 

is facilitated by the binding o f these p53 residues to the TATA box binding protein 

associated proteins (TAF’s).76 Upon p53 binding to Mdm-2 however, these residues 

are shielded from the TAF’s, preventing the activation and translocation o f p53 to the 

nucleus and breaking the chain o f events in the apoptosis signalling pathway that lead 

to programmed cell death.

Supporting evidence for the involvement o f the p53 transactivation domain in 

apoptosis signalling is provided by the occurrence o f a highly conserved sequence o f  

amino acids in mammals referred to as the BoxI region (Figure 1.8).73 The initial six 

amino acids o f the BoxI region (residues 13-18), although highly conserved, contain 

no residues that are critical for Mdm-2 binding. This has been suggested to have 

sufficient helical propensity to permit the formation o f the p53 a-helix upon binding 

to Mdm-2 whilst also maintaining being flexible enough to divert the following 

residues in the p53 sequence away from the Mdm-2 hydrophobic cleft. It was found 

that mutation o f Phel9 to Ala completely blocked the interaction o f p53 with Mdm-2 

and its subsequent degradation.64 This supported a previous study which showed a 

peptide containing alanine substitutions o f  both Leu 14 and Phel9 which exhibited no 

p53-Mdm-2 binding.64,73,74
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Figure 1.8: N-terminal amino acid sequence o f  p 5 3 from various 
mammals, showing the highly conserved BoxI region.

Residues within the BoxI region o f p53 have been shown to become phosphorylated at 

specific serine residues in positions 15 and 20 by checkpoint kinases Chkl and Chk2. 

This occurs in response to a variety o f factors that result in DNA damage such as UV 

and ionising radiation and has been shown to contribute towards the stabilisation o f  

p53 with an insignificant effect upon p53-Mdm-2 binding (270 nM and 360 nM 

respectively).70 Additionally, the phosphorylation o f p53 at Ser20 initiates its 

phosphorylation at Thrl8, which has the most significant effect upon p53-Mdm-2 

binding, rendering p53 in the active state by inhibiting its interaction with Mdm-2 via

*77
disruption o f the stability o f the p53 amphipathic a-helix. Examination o f the rate 

constants for the interaction o f synthesised p53 peptides with Mdm-2 residues 2-125 

showed that p53 phosphorylated at Thrl8 possessed a kon rate comparable to the wild- 

type peptide, however a significantly faster koff rate results in a weaker K<j (3150 ± 

280 nM), leading to apoptosis through the prevention o f Mdm-2 mediated degradation

o f p53 70
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Schon and co-workers also investigated the effect of removing the surplus terminal 

residues of p53,70 and found that the optimum binding between Mdm-2 and a p53- 

based peptide was achieved using a peptide 10 amino acids in length corresponding to 

p53 residues 17-26 (K d  =  46 nM ± 7 nM). The removal of Glul7 from the p53 peptide 

reduced the binding affinity of the peptide for Mdm-2 (K d = 70 nM) although still
SO

much improved upon the original 15 amino acid peptide (K d  = 280 nM).

Thr18

Asp21

Figure 1.9: Helix stabilising interactions; p53 Thrl8 side-chain hydroxyl 
group hydrogen bonding with the backbone amide and side-chain 
carboxyl groups o f  Asp21, in addition to hydrogen bonding between the 
Asp21 carboxyl group and Thrl8 backbone amide.

As previously mentioned, the phosphorylation of p53 at specific serine and threonine 

residues is a key step in the regulation of the p53-Mdm-2 interaction whereby the 

affinity of p53 for Mdm-2 is reduced upon its phosphorylation. The work of Schon 

and co-workers demonstrated a K d o f 3150 nM (± 280 nM) for a 15 amino acid 

peptide corresponding to p53 residues 15-29 phosphorylated at Thrl8.70 Further 

investigation by Lai et a l supports the hypothesis that Thrl8 phosphorylation results 

in disruption of inter-molecular interactions between p53 and Hdm-2, in addition to
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proposing that intra-molecular hydrogen bonds within the p53 a-helix formed 

between the side-chain hydroxyl group o f Thrl 8 and the backbone amine and side- 

chain carboxyl groups o f  Asp21 (Figure 1.9) are not able to form when Thrl 8 is

ne

phosphorylated, resulting in a-helix destabilisation. Sakaguchi et al. further 

suggested that the p53 a-helix disruption is further enhanced by charge-charge 

repulsions between the phosphorylated Thrl 8 side-chain and the carboxyl group o f  

Asp21 due to their proximity when in the a-helical conformation.

Fluorescence anisotropy measurements have been employed to measure the binding 

affinity o f a range o f short p53 peptides incorporating variations in peptide length and 

phosphate incorporation with Hdm-2 residues 1-126. The results demonstrated that 

phosphorylation o f p53 at Thrl 8 had a significant effect upon the affinity o f p53 

peptides for Hdm2, with a 20-fold increase in the dissociation constant (IQ) from 0.7 

to 11 pM. It is thought that the phosphorylation o f p53 regulates sub-cellular 

localisation and its transcriptional activity, with studies showing that the 

phosphorylation o f p53 at the vV-terminus leads to increased transcriptional activity 

through increased p53 stability, whereas p53 phosphorylation at the C-terminus

7Rresults in enhanced DNA binding. Oren has proposed that other modifications in 

addition to phosphorylation are responsible for the disruption o f the p53-Mdm2 

interaction resulting in the inhibition o f p53 binding, such as the acetylation o f p53,

70which has been shown to result in an increase in p53 DNA binding.

Studies investigating the variation in the p53 peptide length showed no significant 

changes in IQ when the A-terminal peptide length was reduced from amino acids 1-35 

to residues 10-29 indicating that the subtracted residues play no part in the p53-Hdm2
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nc

interaction. However, a nine amino acid peptide (p53 residues 18-26) showed a ten­

fold increase in affinity for Hdm-2 (Kd 70 nM), whereas the additional deletion o f  

Thrl 8 (p53 residues 19-26) resulted in an increase in the Kd by an order o f magnitude 

(Kd 800 nM). It has been proposed that the shorter p53 peptides bind faster due to a 

smaller loss o f  entropy, and further investigation into the conformational change that 

Mdm-2 undergoes upon p53 binding has revealed that the long and short peptides (15 

and 10 amino acids respectively) caused a similar magnitude o f conformational 

change within the p53 binding cleft of Mdm-2; however there was a significant

71 7̂difference in the long-range conformational effects. ’ In the work published by 

Schon et al. these longer-range conformational changes were found to occur 

predominantly in the p-sheets capping the ends o f the Mdm-2 hydrophobic cleft. In

7ft 7^
accordance with proposals within the previous work, ’ it was suggested that the 

reduced binding affinity o f the longer p53-based peptides occurs due to a loss in 

binding energy whilst overcoming the unfavourable energetics o f the induced 

conformational change in the Mdm-2 domain.

Previous research involving the quantification o f the binding interaction between p53

C A  7 C

and Mdm-2 has used fluorescence anisotropy. ’ ’ By exciting a sample with 

polarised light at a wavelength dependant upon the fluorophore present, an emission is 

observed as polarised light which gradually becomes depolarised in a manner that is 

dependant upon several factors including the rotational diffusion caused by the 

movement or tumbling o f the fluorophore in solution. The anisotropy intensity is 

directly related to the polarisation, being the ratio o f the polarised light component to 

the total intensity o f the emission. This relationship is ideal for studying interactions 

between small macromolecules. By taking measurements o f the fluorescence
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anisotropy corresponding to a specific fluorophore upon a ligand it is possible to 

monitor the behaviour o f this molecule when in the presence o f its target protein, for 

example p53 and Hdm-2.

A small molecule will tumble in solution freely, resulting in a prompt reduction in the 

polarisation o f the emitted light, and thus a low reading for the anisotropy intensity. 

As the molecule binds it will form part o f a larger complex that tumbles in solution at 

a reduced rate due to its increased size. This reduction in the rate o f tumbling means 

that the polarisation o f the emitted light becomes scrambled at a much slower rate 

resulting in a larger reading for the anisotropy intensity. It is important to note that 

anisotropy data is most accurate when observing a fluorophore upon the smallest 

component o f a complex since the overall increase in size and hence the net change in 

rotational diffusion o f the emitted polarised light will be greatest. In the case o f the 

p53-Hdm-2 interaction, by observing the changes in the fluorescence anisotropy o f a 

fluorophore attached to a p53-based peptide it is possible to calculate the dissociation 

constant ( K d )  for the binding interaction between the two molecules. Since there is a 

finite quantity o f ligand (peptide) present amongst an increasing quantity o f protein, 

the anisotropy intensities will increase until the ligand is completely bound at which 

point the anisotropy will remain constant, indicating that saturation o f the ligand with 

the target protein has occurred.

When considering the placement o f the fluorophore upon the p53-based peptide a 

location in which a definitive structural change occurs is ideally suited. For this 

reason Lai et al. chose to attach a fluorophore to the side-chain o f the lysine 

corresponding to p53 residue 24 within their peptide based on the A-terminal residues
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1-35 o f p53.75 At this point the disordered peptide becomes a highly ordered a-helix 

fixing the position o f the side-chain and therefore the fluorophore within the complex, 

thus a small change in the binding o f the complex results in a definite change in 

anisotropy o f the fluorophore.

1.6 Small Molecule Inhibitors of the p53-Hdm2 Interaction

In apoptosis, protein-protein interactions are heavily involved in the regulation o f both 

intrinsic and extrinsic apoptosis. For example, the oligomerisation o f death receptors 

leads to the activation o f caspase-8 and the activation o f caspase-9 via the formation 

o f the apoptosome from the association between cytochrome c and Apaf-1. Apoptosis 

research has been undertaken using small molecules such as synthetic peptides, 

natural products and designed compounds that modulate protein-protein interactions 

by binding to specific protein surfaces. The central role o f p53 as a key checkpoint in 

programmed cell death highlights the importance o f finding ways to inhibit complex 

formation between p53 and Mdm-2, and has been proposed as a novel strategy for 

tumour therapy.74

Studies have shown that the activation o f p53 can occur by the disruption o f the p53- 

Mdm-2 interaction and suppression o f Mdm-2 expression leading to a reduction in 

tumour growth.80 The confined nature o f the Mdm-2 hydrophobic p53 binding cleft 

and the critical involvement o f only a small number o f amino acids on the same face 

of the p53 a-helix support the use o f small molecules to disrupt p53-Mdm-2 binding
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by preferentially binding Mdm-2. Based on the understanding o f the p53-Mdm-2 

interaction the ideal inhibitor should lead to the blockage o f p53 nuclear export and 

degradation through the stabilisation and accumulation o f p53 in addition to 

stimulating the expression of Mdm-2 and activation o f downstream p53-regulated 

genes. The activation o f p53 by DNA damaging treatments such as chemotherapy or 

radiotherapy may be limited in cells retaining the ability to express Mdm-2 and in 

particular, cases o f Mdm-2 over-expression. Therefore, the therapeutic effectiveness 

o f p53 activation in response to DNA damaging treatments is enhanced by the 

inactivation o f the p53-Mdm-2 negative feedback loop.

The crystal structure o f the p53-Mdm-2 binding interface revealed the interaction 

between the p53 iV-terminal transactivation domain and the hydrophobic cleft formed 

by the Mdm-2 V-terminal domain to be augmented by two intramolecular hydrogen 

bonds. These were identified as occurring between the backbone amide o f Phel9 from 

p53 with the Gln72 side chain o f Mdm-2, in addition to the indole group o f p53 Trp23

/TO
and the backbone carbonyl o f  Mdm-2 Leu54. Various strategies have been applied 

in the design o f synthetic mimics o f the p53 binding interface, Holak et al. 

synthesised a number o f chalcone derivatives, which, although showing activity 

through binding to Mdm-2, had high I C 5 0  values ranging from 50 to more than 250 

pM and further synthesis o f molecules designed with additional refinement based on 

data from the p53-Mdm-2 crystal structure yielded similar results (Figure 1.9).68,81
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Figure 1.10: Small molecule inhibitors o f  the p53-Mdm-2 interaction, I) 
chalcone derivative o f  Holak et al.81 II) polycyclic compound originating 
from  rational design using the p53-Mdm-2 crystal structure68 and III) 
Nutlin-1 synthesised by Vassilev et a l 80

A combination o f rational drug design and computational drug screening has 

advanced the discovery o f non-peptidic small-molecule inhibitors o f protein-protein 

interactions, and are considered the preferred treatment option due to a higher 

permeability to cells when compared to peptide-based drugs. Vassilev et al. used 

library screening to identify lead structures resulting in the discovery o f a group of 

compounds termed Nutlins, which are c/s-imidazoline analogues that have been 

optimised for improved specificity and binding, resulting in I C 5 0  values in the range 

o f 100 to 300 nM (Figure 1.10).80
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F ig u re  1.11: Nutlin-2 (left) functions as an inhibitor o f the p53-Mdm-2 
interaction by the projection o f a bromophenyl ring deep into the hydrophobic 
cleft o f Mdm-2 (right).80

It was reported by Vassilev et al. that the imidazoline scaffold exhibited a similar 

structure to the backbone of an a-helix and the design of the Nutlin compounds drew 

inspiration from previous work involving the substitution of p53 Trp23 with 6- 

chlorotryptophan, which resulted in substantially improved binding leading to the
O')

incorporation of halogen substituted aromatic rings within the Nutlin structures. X- 

ray analysis was used to evaluate the crystal structure of Mdm-2 with Nutlin-2, this 

showed that one of the bromophenyl rings of Nutlin-2 is oriented directly within the 

p53 Trp23 binding site, whilst the other acts as a substitute for Leu26 (Figure 1.11). 

Also present is an ethyl ether side-chain that takes the position of Phel9, while the 

imidazoline scaffold effectively acts as a substitute for the p53 helical backbone. 

These small molecules showed p53-dependant activity in multiple cellular models 

demonstrating a link between an anti-tumour mechanism and the activation of the p53 

pathway.
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The screening o f combinatorial libraries has resulted in molecules that lead to the 

reactivation o f mutant p53 through binding to DNA, however these interactions are 

potentially non-specific and may also yield mutagenic effects despite being 

demonstrated to restore wild type p53 function. Antisense oligonucleotides have 

been engineered through rational gene-based drug design to block protein expression, 

and have shown both in vitro and in vivo activity using prostrate cancer cell lines in 

the inhibition o f Mdm-2 expression, which has led to increased p53 levels.84 Also, a 

combination o f both the antisense oligonucleotide and a conventional cancer 

chemotherapeutic agent results in significant inhibition o f tumour growth as opposed 

to the action o f either substance alone. This research highlights the importance o f  

Mdm-2 regulation in apoptosis signalling in a p53-independent manner in addition to 

its role with p53, thus demonstrating how the suppression o f Mdm-2 expression leads 

to the accumulation o f activated p53, enhancing the effectiveness o f DNA damaging 

drugs.

Recently attempts have been made to mimic the side-chain components o f a-helices 

through the de novo design o f scaffolds that present side-chain functionality with 

similar distance and angular constraints to that found along one face o f an a-helix. 

Scaffolds investigated included oligo-amide, terephthalamide and terphenyl (Figure 

1.12).85-87 Hamilton et a l  investigated the use o f terphenyl groups as scaffolds for 

mimicking the face o f an a-helix by the appropriate placement o f functional groups 

along a terphenyl scaffold in the design o f molecules which bind B c 1 - x l ,  assessment 

o f their binding affinities using fluorescence polarisation showed the most potent 

binding to be 114 nM, with lower affinities for the less hydrophobic terphenyl 

derivatives.88
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I) H

HN.

II)

c o 2h

III) c o 2h

Figure 1.12: Non-peptidic scaffolds used as mimics fo r  a-helices I) oligo- 
amide,87II) terephthalamide86 and III) terphenyl.85

This work demonstrated the potential for the design o f scaffolds mimicking helical 

structures in addition to highlighting the significance o f the role o f hydrophobic 

interactions in the binding o f  ligands to B c 1-x l . Further work resulted in the 

development o f inhibitors o f the p53-Hdm-2 interaction through the development o f a 

library o f terphenyl compounds created by the substitution o f the ortho positions of 

the terphenyl scaffold, projecting groups in a manner similar to the i,i+4 and i,i+7 

residues o f an a-helix, the most potent o f which disrupted the p53-Hdm-2 interaction 

with a kj o f 182 nM.89 Like the work o f Schepartz et a l the versatility o f the approach 

o f Hamilton et al. was demonstrated by the subsequent development o f mimics o f the 

BH3 region o f Bak and Bad with dissociation constants in the region of 114 nM to 

2.09 pM when tested against a protein target that was also used to prove the

O f 0*7 AA

effectiveness o f polyamide foldamers utilising a trispyridylamide scaffold. ’ ’
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1.7 Proteomic Applications in the Design of Inhibitors Targeting 
the p53-Hdm2 Interaction

The therapeutic potential for the use o f synthetic proteins in addition to designed, 

short, stable peptides for the disruption o f specific protein-protein interactions, in 

particular the activation o f p53 in the absence of stress signals or DNA damage was 

highlighted by Bottger et al.91 who designed a synthetic Mdm-2 binding protein. This 

was achieved by constructing a modified Escherichia coli thioredoxin gene 

incorporating a sequence coding for a 12-amino acid peptide (previously identified by 

phage selection) between Gly33 and Pro34 o f the thioredoxin active site loop.74 The 

location o f  the peptide insert ensures the deactivation o f thioredoxin whilst providing 

a stable scaffold that is readily expressed in both prokaryotes and eukaryotes. 

Interestingly, the Mdm-2 binding peptide identified by phage display was found to 

incorporate the key p53 amino acids required for Mdm-2 binding Phe, Trp and Leu 

with the same spacings as found in wild-type p53.

The synthetic protein designed by Bottger et al. (Figure 1.13) was found to interact 

with Mdm-2 with the same strength as the wild-type p53 protein, and cells that were 

injected with the plasmid encompassing the gene for the synthetic protein were found 

to accumulate high levels o f activated p53 leading to cellular growth arrest.91 This is 

supported by the work o f Wasylyk et a l  who investigated the effectiveness o f the 

disruption o f the p53-Mdm-2 interaction at stimulating p53-dependant cell death. This 

was highlighted as an important area o f interest since Mdm-2 over-expression was 

reported to lower cellular p53 concentrations which were thought to potentially be
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Q9below the threshold required to initiate apoptosis. Although this hypothesis was 

proved incorrect, the peptides synthesised by Wasylyk et al. were Glutathione-S- 

Transferase (GST) fusions; at this point little evidence existed to support the efficacy 

o f short independent peptides in the cellular environment, an area o f particular interest 

since the inhibition properties o f peptides fused to GST and thioredoxin may be 

reduced due to steric inhibition by the bulky fusion proteins.

Wild Type TIP p p l s q e t f s d l w k l l p e n g
Super TIP p p l s m p r f m d y w e g l n e n g
Super TIP-Ala p p l s m p r a m d y a e g a n e n g

Figure 1.13: Thioredoxin insert amino acid sequences incorporated by 
Bottger and co-workers91, the control (Wild Type TIP) was comparable to 
the p53 protein as was the sequence selected by phage display (Super 
TIP). Substitution o f  critical amino acid residues (bold) eliminated Mdm-2 
binding (Super TIP-Ala).

The design o f short p53 peptide mimetics that activate p5 3-dependant transcription in 

cells in which this has become blocked or deactivated by defective apoptosis 

signalling pathways provides a novel target for the re-activation o f p53, in particular 

circumstances in which the wild-type p53 protein has become inactivated due to over- 

active degradation arising from the over-expression o f Mdm-2. Chene et al. 

demonstrated the use o f peptidic small molecule inhibitors to disrupt protein-protein 

interactions in vivo with a synthetic 8-mer peptide incorporating four non-natural 

amino acids, which had already showed potential as an inhibitor o f the p53-Mdm-2

QTinteraction in vitro. The peptide was found to activate the p53-pathway in tumour 

cells expressing wild-type p53 with an I C 5 0  o f 5 nM, which is 60 times more potent
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than the synthetic protein reported by Bottger et al.91 The peptide synthesised by 

Chene and co-workers induced p53 accumulation in colon cancer cells however, due 

to the poor cellular penetration o f peptides a high concentration was required for 

effective use.93

Hara et a l  reviewed inhibitors o f the p53-Mdm-2 interaction and concluded that the 

most effective inhibitors o f  p53 binding were hydrophobic, oligomeric molecules in 

which the hydrophobic side-chains are positioned in the same conformational 

arrangement as found with the wild-type p53 a-helix.94 Peptoids were investigated as 

potential small-molecule inhibitors o f the p53-Mdm-2 interaction, and have high 

potential as alternatives to peptide-based inhibitors, since peptoid monomers are 

essentially TV-substituted glycines incorporating a wide range o f side-chains and are 

therefore less susceptible to proteolytic digestion due to the substitution o f the amino 

acid a-carbon atom for nitrogen.95

The handedness o f a peptide backbone is determined by the chirality o f the a-carbon 

atom, which for all naturally occurring amino acids is identical. The backbone 

conformation is driven by the local conformational properties o f the differing amino 

acids within the peptide sequence in addition to the side-chain interactions. Peptoid 

backbones may adopt forced conformations by the incorporation o f chiral side-chains 

upon the a-nitrogen atom, these give steric bias to the peptoid and can result in the 

peptoid backbone adopting dihedral angles which promote an a-helical 

conformation96 Consequently, favourable binding can be engineered due to the 

reduced entropy arising from the presence o f a pre-formed a-helical scaffold. Hara et 

al. synthesised peptoid derivatives based on a TV-terminal p53 peptide incorporating
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novel side-groups that showed competition for Hdm-2 binding with wild-type p53 in 

the lower micromolar range.94 Sadowsky et al. further investigated the importance of 

having a well-defined secondary structure as a tool for designing inhibitors o f protein- 

protein interactions by examining the use o f foldamers, oligomers with a well-defined

07secondary structures. Their research focussed on the development o f foldamers that 

were intended to bind tightly to selective protein surfaces, in this instance ligands for 

B c1-x l based on the Bak BH3 domain. A  combination o f peptides were evaluated 

consisting o f (3-amino acids (P-peptides) and also sequences o f alternating a- and P- 

amino acids (a-P-peptides), with both structures showing binding activity. Sadowsky 

et al. proposed that since a-peptides have a regular and flexible structure, this allows 

for localised distortion, whereas foldamers typically contain conformational restraints, 

which act to reduce this flexibility thus reducing the affinity o f the foldamer ligand for 

the its target. The needs o f different protein-epitopes for a variety o f foldamer 

scaffolds were highlighted from this work. It was suggested that further research be 

conducted into creating greater variation in foldamer side-chain projection in order to

07achieve the desired localised distortions at the binding interface.

1.8 Secondary Structure Considerations in The Regulation of 
Protein-Protein Interactions -  The a-Helix

Protein-protein interactions are highly coordinated events facilitated by the specific 

geometry o f functional groups within the amino acid side-chains and backbones of 

protein sequences. Consequently these interactions often occur between highly 

ordered structural motifs such as a-helices and P-sheets, as a result random coil
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segments o f proteins must be modulated by entropy and enthalpy compensation to 

facilitate the adoption o f an ordered structure. When considering the interaction 

between proteins, the a-helix is a widely used structural motif employed to facilitate 

such an interaction. Examples o f the versatility o f a helical structure can be found 

extensively in nature, for example the DNA double helix, collagen triple helices and 

bacterial flagella.

The residues in a right handed a-helix backbone adopt Phi (cp, C’-N-Ca-C’) and Psi 

(vj/, Ca-C’-N-Ca) dihedral angles o f approximately -60° and -45° respectively. Within 

an a-helix the Phi and Psi angles o f successive amino acids must be the same for each 

residue in order to obtain the cooperativity between residues required to facilitate 

helix formation. Examination o f dihedral angles in relation to the occurrence o f

QO
structural motifs in proteins led to the development o f the Ramachandran plot. This 

presents a schematic representation o f Phi dihedral angles plotted against Psi for each 

residue in a polypeptide sequence. Using computational models to discount sterically 

disallowed conformations, a-helices and (3-sheets were found to occupy specific 

regions o f  the plot. Using this information, these plots are useful when examining the 

amino acid sequences o f proteins, enabling the prediction o f secondary structure 

motifs within the folded structure. The sheer variation o f amino acids within a 

sequence give rise to a vast number o f proteins each with their own individual 

structure and consequently their own specific function. Indeed the correct sequence is 

required to enable key interactions between residues in order to facilitate both the 

protein folding and activity, a single mutation o f the most apparently insignificant 

residue can render a protein unstructured or more likely lead to the formation o f  

aggregates and insoluble particulates.
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N^"H V/R

Figure 1.14: The a-helix is stabilised by a network o f  hydrogen bonds 
(green) between carbonyl oxygen atoms (hydrogen bond acceptor, blue) 
and the amino acid backbone amides (hydrogen bond donor, red).

The a-helix is stabilised by hydrogen bonds between the carbonyl (CO) and amide 

(NH) groups situated along the peptide backbone. The carbonyl group o f one amino 

acid (/) extends almost parallel to the axis o f the helix towards the C-terminus and is 

pointed directly at the A-terminal facing amide group o f the peptide bond four amino 

acids ahead in the sequence (z+4) forming a hydrogen bond. Along an a-helix the 

side-groups o f  each amino acid are oriented approximately perpendicular to the helix 

axis, projecting away from the helix slightly towards the TV-terminus (Figure 1.14). 

The amino acids in an a-helix are spaced in such a way as to complete a single helical 

turn every 3.6 residues occupying a length along the helical axis o f 5.4 A, thus each 

amino acid constitutes a 100° turn o f the helix, with a translation o f 1.5 A along the 

helical axis.
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The formation o f a-helices is driven by enthalpically favoured packing interactions in 

addition to a gain in entropy due to desolvation arising from the exclusion o f water 

during the formation o f the helical core. The loss o f water occurs due to the high 

density o f residue packing within an a-helix, making the core a highly hydrophobic 

environment." The formation o f the a-helix from a random conformation first 

requires the initiation o f the helical structure by the first four amino acids o f the helix, 

which although an entropically disfavoured process once commenced this propagates 

the remaining favourable residues to form a helix. Typically, a-helices are short 

structures comprising o f approximately ten residues in length giving a three turn 

helical motif. This is because o f the increased loss in entropy for the protein due to the 

high degree o f organisation required to maintain a stable helical structure. Scholtz et 

al. proposed that a-helices comprising o f less than 15 amino acids are unstable in the 

absence o f supporting forces, since folding leads to a loss in entropy.100 The fewer 

residues involved in the a-helix results in a shorter helical backbone and therefore a 

reduction in the number o f stabilising hydrogen bonding interactions available to 

overcome the unfavourable reduction in entropy.

The ability o f specific residues to participate in a-helix formation is dependant upon 

the intrinsic helical propensity o f  each individual amino acid, whereby residues that 

actively participate in a-helix formation do so with minimal entropic and steric cost to 

the overall structural integrity. Proline is a good example o f a molecule which is 

unlikely to be found within conventional a-helical structures due to it having no 

ability to form a helix backbone stabilising amide hydrogen bond in addition to its 

side-chain presenting steric interferences with the backbone Phi dihedral angle. 

Proline residues are however often located close to the nucleation site o f an a-helix,
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this is due to its high structural rigidity and is illustrated by the presence o f a proline 

residue within the sequence o f the p53 iV-terminal transactivation domain which forms 

an a-helix upon interaction with Mdm-2. Glycine is another residue which is 

considered helix disrupting due to its side-chain permitting a high degree of 

conformational flexibility therefore its incorporation within an a-helix would be at a 

high entropic cost and so is considered unfavourable, glycine residues are commonly 

found upon termination o f an a-helix. Contrary to glycine yet differing structurally by 

the presence o f a methyl group upon the a-carbon atom is alanine, which is highly 

favoured within a-helices due to increased rigidity arising the presence of the methyl 

group and also has a minimal steric interference with the helix backbone.

Chou and Fasman pioneered a technique for the prediction o f protein secondary 

structure by collating data on the frequency o f occurance o f amino acid residues in a- 

helices, P-sheets and turns using X-ray crystallographic data from known protein 

structures.101'103 Using this data probability parameters were derived from the 

frequency o f appearance o f amino acid residues in each secondary structural motif, 

thereby enabling the calculation o f  the probability o f the occurance o f an a-helix, p- 

sheet or turn motif within a given amino acid sequence. This method has yielded data 

acknowledged to be 50-60 %  accurate showing how alanine, glutamic acid, leucine 

and methionine are typically found to be most abundant within a-helices and are 

therefore considered helix forming residues. This is contrary to proline and glycine, as 

previously described, which are found commonly after termination of the helical 

motif.103
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The GOR method o f secondary structure prediction, so called since it was developed 

by Gamier, Osguthorpe and Robson, built upon the work o f Chou and Fasman by the 

inclusion o f Bayesian inference, a statistical inference whereby data is collated and 

the experimental results consistently updated and re-evaluated as a result.104 This 

method was expanded to take into account the probability o f specific residues being 

found within a given structural motif based not just on residue specific data, but also 

by evaluating the additional occurance o f neighbouring residues, therefore providing 

increased sensitivity in particular for prediction o f a-helices and p-sheets for residues 

with only minimal differences in helical propensities.104

The relative helical propensities o f individual amino acids was calculated by Degrado 

et a l  relative to glycine by substituting each of the naturally occurring amino acids 

into a guest site within a peptide which forms a non-covalent a-helical dimer which is 

in equilibrium with a randomly coiled monomeric state. The equilibrium constants for 

the monomer-dimer equilibrium were determined to assess the free energy differences 

arising from the incorporation o f each amino acid (Table 1.1).105

Upon the a-helix resides an overall dipole due to the cumulative effect o f dipoles 

arising from the carbonyl groups o f the peptide bonds and their parallel orientation 

along the helical axis. The helix dipole charge has been found to be stabilised by the 

presence o f a positively Charged residue at the C-terminus and a negatively charged 

residue at the vV-terminus resulting in neutralisation o f the dipole charge. The helix 

dipole causes the destabilisation o f the helical structure as a result o f entropic effects, 

and its elimination through the positioning o f complimentary charged residues has 

been noted to be widely employed in nature.106 This technique has been adopted in the
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design o f stable a-helices and has become known as helix capping. For example, 

residues that act as hydrogen bond acceptors such as Asp and Glu provide 

stabilisation to the a-helix when situated at the A-terminus. Similarly, amino acids 

such as Arg and Lys which have side-chain amine groups, provide stability to the C- 

terminus by acting as hydrogen bond donors to the backbone carbonyl groups, 

however this is less common and can disrupt the helical structure."

Table 1.1: Relative helical tendencies o f  all natural amino acids measured from the 
free energy change (A AG) calculated from the equilibrium constant o f  a specifically 
designed helix-loop-helix dimer peptide.105

Amino Acid Relative Stabilisation of a-Helical Conformation (kcal mol'1)
Ala -0.77
Arg -0.68
Lys -0.65
Leu -0.62
Met -0.50
Trp -0.45
Phe -0.41
Ser -0.35
Gin -0.33
Glu -0.27
Cys -0.23
lie -0.23
Tyr -0.17
Asp -0.15
Val -0.14
Thr -0.11
Asn -0.07
His -0.06
Gly 0.00
Pro ~3
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1.9 Strategies For Engineering a-Helix Stabilisation and The 
Design of Helical Mimics of Ligands Involved in Protein- 
Protein Interactions

A variety o f strategies have been employed to stabilise a-helices, although most have 

been based upon novel concepts some very successful applications have taken 

inspiration from nature. Fairlie et al. noted that in nature the coordination o f histidine 

to metal ions has been utilised in stabilising helical motifs, examples o f this practice 

include haemoglobin and plastocyanin.107 This has been seen to occur in zinc finger 

transcription factors where the formation of an a-helix that binds to the major groove 

o f DNA is facilitated by the coordination of a metal ion to two histidines via their 

imidazole N1 nitrogens.107 In order to use metal ions to stabilise short a-helical 

peptides the metal ion is required to ideally stabilise two amino acid side-chains with 

the appropriate spacing. Fairlie et a l  investigated the use o f metal-ion clips involving 

the chelation o f histidine residues at various intervals, with particular attention to

• • • 107 . ,iimproving a-helix stability in water via overlapping His-M-His bridges. Their 

results showed that the coordination o f the metal ion (M) to the histidine residues 

exhibited a preference to an /,/+3 spacing, however greater thermodynamic stability 

was gained in an i,i+4 conformation enabling the correct geometry between residues 

to facilitate multiple intra-molecular hydrogen bonds.

Nicoll et al. synthesised a helical switch, the activity o f which was induced by metal 

binding, this was referred to as a metal-induced A-terminal stabilised peptide 

(MINTS), and was based on a previously designed A-terminally stabilising peptide 

known as NTSP originating from the reverse sequence o f apamin.108'110 Apamin is a
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neurotoxic peptide consisting o f 18 amino acids half o f which are found in an a- 

helical conformation stabilised by two disulphide bridges.111,112 The design o f MINTS 

involved the insertion o f two histidine residues /,/+4 to one-another in order to enable 

metal co-ordination, and was found to have a high-affinity for copper with the peptide 

adopting an a-helical conformation from random upon co-ordination to a metal ion.111 

The development o f MINTS shows promise for the application o f histidine residues 

within designed protein sequences to regulate functionality through the co-ordination 

o f metal ions by inducing a helical conformation.

Natural oxaloacetate decarboxylases are large proteins, the activity o f which requires

*y i 1 1 ' I

the co-ordination o f a Mn ion within the active site. A key step in the industrial 

synthesis o f phenylalanine is the decarboxylation o f oxaloacetate, therefore for 

environmental reasons it was highlighted that a metal free oxaloacetate 

decarboxylases enzyme would be desirable.114 It was a series o f artificial oxaloacetate 

decarboxylases which first demonstrated the importance o f secondary structure with 

respect to the function o f a de-novo designed peptide. Two 14-residue peptides were 

synthesised, termed Oxalidie-1 and Oxaldie-2 these differed only by Oxaldie-2 being 

A-terminally acetylated in order to observe the effect o f stabilising the helix dipole. 

CD experiments showed the helical contents to be 18 % and 33 % respectively, 

however catalysis experiments showed the efficiency o f Oxalide-1 to be three times 

greater than Oxaldie-2 (0.47 and 0.15 M'1 s"1 respectively) and the activity was found 

to be concentration dependant.115

This study highlighted the possibility for the synthesis o f short peptides with catalytic 

activity; however small peptides are predominantly found as disordered structures
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when in the absence of supporting protein structures/interactions due to the 

thermodynamically unfavourable folding process. As shown previously (Table 1.1) 

some amino acids provide an increased helix propensity when included within peptide 

sequences yielding known helical structures that provide structural clues as to how to 

incorporate such amino acids into synthetic peptides with a view to obtaining a 

desired conformation. A shortcut to this goal has been to take a known short, stable 

helical motif as a scaffold and substitute residues that have no detrimental effect upon 

structural integrity with key residues at specific locations required to facilitate a 

desired interaction. Further work concerning the development of oxaloacetate 

decarboxylases focussed on developing peptides upon a structural support, in the case 

of the synthesis of Oxaldie-3, the chosen scaffold was avian pancreatic polypeptide 

(aPP), a peptide hormone produced in nature in the pancreas of turkeys, where it 

functions as a regulator of weight. aPP is a 36 amino acid helix-loop-helix 

homodimer, with two antiparallel monomers stabilised by a hydrophobic core of 

aliphatic and aromatic residues (Figure 1.15).116

Figure 1.15: The 36 amino acid protein avian pancreatic polypeptide 
consisting o f an a-helix (red) stabilised by a type II polyproline helix 
(blue).
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CD studies o f Oxaldie-3 showed a helical content o f 52 %, this was similar to the 58

117 _
% helicity obtained from the evaluation o f the crystal structure o f aPP. The 

catalytic efficiency o f Oxaldie-3 was reported to be one order o f magnitude greater 

than for Oxaldie-2 and was found to be concentration independent.116 In order to 

evaluate the effect o f increasing the tertiary structure stability on Oxaldie catalysis, a 

further structure was synthesised, Oxaldie-4, based on the scaffold bovine pancreatic 

polypeptide (bPP).118,119 Thermal denaturation and NMR experiments showed that 

Oxaldie-4 was more stable than its predecessor Oxaldie-3, in addition to remaining 

fully folded in solution, these findings were attributed to Oxaldie-4 demonstrating a 

catalytic efficiency twice that o f Oxaldie-3 (3.5 M'1 s'1).116

A further miniaturisation step was achieved in the development o f oxaloacetate 

decarboxylases by the use o f the disulphide stabilised motif apamin, a peptide found 

in bee venom containing short helices stabilised by a single disulphide bridge in an 

i,/+7 conformation. The presence o f  the two disulphide bonds provides additional 

stabilisation to apamin at both high temperatures and also in the presence o f 6 M

i noconcentrations o f the denaturant guanidinium chloride. This same stability was 

observed for the resulting structure named Apoxaldie-1, maintaining a stable structure 

observed by CD spectroscopy with no change up to 80 °C and the majority o f helicity 

still present at 95 °C or in 6M guanidinium chloride. Despite a three-fold reduction in 

size when compared to the Oxaldie decarboxylases, Apoxaldie-1 was reported to be 

the second most efficient catalyst studied (2.22 M"1 s'1).

The ability o f nature to produce stable a-helical structures which can be adapted for 

use as scaffolds has also been readily exploited by Schepartz et a l  who also used aPP
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to produce a stable a-helix which bound DNA tightly and with high specificity and 

was further proof-of-principle for the technique which has been termed as ‘protein 

grafting'}20 This technique was further adapted by Schepartz and co-workers to 

produce ligands based on the highly conserved BH3 domain (Bcl-2 homology 

domain) o f the oncoprotein Bak which bound Bcl-2 and Bc1-Xl using aPP as a 

scaffold to project specific residues in a stable conformation within the binding sites 

o f Bcl-2 and BcI-X l.90

Schepartz et al. further refined the use o f aPP as a helical scaffold, developing a DNA

binding motif based upon Q50K engrailed homeodomain, a DNA binding protein,

which resulted in both high affinity and selectivity for DNA previously seen in

1̂ 1proteins only containing a complete functional epitope. The versatility o f this 

technique was further enhanced with the synthesis o f an inhibitor o f the p53-Hdm-2 

interaction with dissociation constants in the low-nanomolar region, again based upon 

the aPP scaffold incorporating the functionally selective amino acids required by p53 

for Hdm-2 binding.122

Gellmann et al. demonstrated how P-peptides could be synthesised to give differing 

secondary structures to their corresponding naturally occurring amino acid 

counterparts.123 P-Amino acids differ from natural a-amino acids by the presence of 

an additional carbon atom and therefore show resistance to metabolism and 

proteolysis. The use o f P-peptides to form stable a-helices was also investigated by 

Schepartz et al. and was used to construct an a-helical P-peptide based upon a stable 

helical P-decapeptide that exhibited nanomolar binding affinity for Hdm-2.124 Helix 

stabilisation has been investigated using a variety o f other methods including the use
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o f non-natural amino acids, for example the work o f Chene and co-workers as 

mentioned previously in section 1.7.93,125 Cheng et al. reported the use of fluorinated 

amino acids to enhance secondary structure stabilisation in many applications, 

referring to the ‘fluoro-stabilisation effect ’, whereby protein stability is enhanced by 

replacing hydrocarbon residues with fluorocarbon residues. Hydrophobics have been 

strongly associated with the fluoro-stabilisation effect since it was reported by Marsh 

et al. that the difference in hydrophobicity when substituting leucine with 

hexafluoroleucine in a peptide that adopts a four-helix bundle structure results in a

17A
similar change in the peptide stability. Cheng and co-workers evaluated the helical 

propensity o f three highly fluorinated amino acids using an alanine based peptide 

incorporating the fluorinated residue o f interest within the central region o f the 

peptide sequence. Circular dichroism studies were used to evaluate the helical content 

o f the peptides where it was reported that the helical propensities were reduced for the 

fluorinated residues, proposing that the observed increase in a-helix stability arises

177due to the increased hydrophobicity o f the fluorinated side-chain.

The introduction of side-chain constraints such as disulphides, hydrazones and 

lactams for forcing helical conformations has been thoroughly examined (Figure

19X 1 m1.16). ' Doig et al. investigated the use o f salt bridges in stabilising a-helices,

stating that they are found in approximately 60% o f protein structures, 20% of which 

are present in a-helices in an /,/+3 or /,/+4 spacing. It was also noted that the role of 

salt bridges in enhancing protein stability is supported by their increased occurrence

n i
in thermophillic proteins.

49



Chapter 1: Introduction

-v/v̂N.

Disulphide Hydrazone Lactam

Figure 1.16: Side-chain constraints within an a-helix (black) shown 
amongst helix backbone (green) and supporting hydrogen bonds (red).

1.10 M an ip u latin g  P ep tid e  Secondary Structure T hrough T he  
In corp oration  o f  R eversib le  C onform ational C onstraints

The introduction of conformational constraints within a peptide as a means to 

manipulate secondary structure is a thoroughly researched field. The most 

fundamental constraint incorporated within amino acid sequences and frequently used 

in nature as a means of stabilising all manner of proteins is the disulphide bridge, for 

which the relative positions o f cysteine residues have been found to be highly 

conserved. The use of disulphide bonds in the provision of additional stability has 

previously been highlighted through the successful development of a miniaturised 

oxaloacetate decarboxylase termed Apoxaldie, utilising a scaffold based on apamin 

(Section 1.9). Schulz et a l  also took advantage of the disulphide bridge framework of 

apamin.130 The versatility of disulphide bonds is such that they can be formed under 

mild conditions, in a variety of solvents and in the presence of a variety of functional 

groups. An A-terminally stabilised a-helical peptide optimised from the reversed
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sequence o f apamin has also been developed.112 This peptide was //-terminally 

acetylated and C-terminally amidated to increase stability and folded to give a stable 

TV-terminal helix stabilised by two disulphide bonds.

Turner et al. used the disulphide bridge stabilisation o f apamin to stabilise a DNA 

recognition helix o f the transcription factor MyoD, extending the apamin a-helix by 

the fusion o f the //-terminus o f the basic helix-loop-helix (bHLH) domain o f MyoD to

1 'XOproduce ApaMyoD. This was found to bind DNA more avidly than the parent 

protein and circular dichroism (CD) spectroscopy showed a significantly higher 

proportion o f a-helix, hence the increased affinity for DNA and improved thermal 

stability. All these changes could be attributed directly to the presence o f the 

disulphide linkage within the apamin scaffold, since the reduced form of ApaMyoD 

displayed properties directly comparable to the parent protein. The work o f Turner et 

al. reinforced the importance o f structural constraints with respect to the regulation of  

protein activity through its secondary structure.

The use o f disulphides and their reversible nature under oxidising and reducing 

conditions enhances the possibilities for the use o f structural constraints and has 

prompted a search for chemical crosslinkers that may be attached to peptide chains at 

the appropriate spacing in which to initiate the formation o f a specific structural motif. 

This has led to the desire to posses control over the functionality o f these crosslinkers 

and the use o f certain functional groups has been employed at the centre o f such 

crosslinkers that elicit a reversible response depending upon the stimuli applied.
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11.3 A

N = N

Scheme 1.1: Photoisomerisation o f  azobenzene, the end-to-end distances 
fo r the chloroacetamido groups are given for the cis and trans isomers

The sensitivity o f proteins and their respective interactions within their environment

means that there are few conditions that can be varied and are applicable to the use o f

chemical crosslinkers both in vitro and in vivo, with the notable exception o f

disulphide bonds as previously discussed. However, the sensitivity o f specific

chromophores to light and the non-invasive nature of such an environmental change

have led to the development o f molecules for u se  as chemical crosslinkers that

undergo reversible changes upon exposure to specific wavelengths o f light. The most

versatile and hence widely researched example o f such crosslinkers are those which

incorporate an azobenzene, undergoing reversible trans to cis isomerisation upon

exposure to UV light (Scheme 1.1). The azobenzene chromophore undergoes fast

(picosecond) isomerisation with a low rate o f photo-degradation (bleaching), high

1 ̂quantum yields and a long lifetime for the excited cis azobenzene state.

Moroder et al. examined the use o f azobenzene crosslinkers in the construction of 

cyclic bis-cysteinyl peptides based on the active site o f thioredoxin reductase in 

addition to the incorporation o f further structural constraints by the presence o f a 

disulphide bridge.134 An azobenzene moiety was used to cyclise the molecule,
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however it was reported that the presence o f disulphide bridges led to multiple 

conformers o f both the cis and trans isomers. This was resolved by the addition o f  

methylene spacers between the azobenzene moiety and the peptide, permitting the 

folding o f the peptide into lower energy conformations. Differences in the redox 

potentials o f the peptide-linker system when comparing the cis and trans isomers 

were observed and compared against the subsequent change in folding as observed by 

CD spectroscopy measurements. Moroder et a l later adapted this linker for use within 

an integrin binding ligand, successfully manipulating the binding affinity o f the ligand

11Sfor the integrin by the application o f specific wavelengths o f UV light.

Moroder and co-workers later optimised a P-hairpin structure based upon a tryptophan 

zipper motif.136 Unstable and difficult to characterise spectroscopically, P-hairpins are 

heavily involved in both protein-protein and protein-DNA interactions, p-hairpins 

occur where two anti-parallel strands o f P-sheet are linked by a small loop. The 

incorporation o f an azobenzene motif enabled control over the formation or disruption 

o f the P-hairpin structure (Structure 1.1) and was confirmed by NMR spectroscopy, 

and the degree o f secondary structure change caused by the disruption induced by the 

temperature dependant relaxation o f the azobenzene crosslinker from cis to trans 

conformations enabled studies to be undertaken using CD measurements into the rate 

o f folding o f the p-hairpin into its stable secondary structure upon reversion of the 

azobenzene functional group from cis to trans.
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H-Ser-Trp—Thr—Trp-Glu-N 
H

H2N-Lys—Trp-Thr—Trp-Lys'

Structure 1.1: A photo-controlled /3-hairpin structure designed by 
Moroder et al.136

The incorporation o f photo-inducible crosslinkers into P-hairpin structures was further 

adapted by Hilvert et a l  who incorporated an azobenzene containing amino acid 

derivative within an open-chain p-hairpin peptide sequence 12 amino acids in length, 

the sequence segment °Pro-Gly was identified as the nucleation site for the p-tum and 

so was replaced with the azobenzene-containing mimetic (Figure 1.17).

Arg-Trp-Gln-T yr-V al-DPro-Gly-Lys-Phe-T yr-V al-Gln-NFb 

Arg-Trp-Gln-Tyr-Val-X-Ly s-Phe-Tyr-Val-Gln-NH2

Figure 1.17: Peptide sequences fo r a /3-turn peptide (top) and the 
modified photo-switchable azobenzene containing (X, bottom) /3-turn motif 
designed by Hilvert et al.137

A reversible change in peptide conformation upon the switching o f the azobenzene 

trans/cis configuration was observed, supporting the data from molecular dynamic

1 ̂ 7
simulations carried out by the same researchers. Hilvert and co-workers later 

extended their research into investigating helical polypeptides, using the previously 

mentioned aPP since it contains a stable, well-researched secondary structure. Their 

work on photo-controllable p-hairpins was incorporated through the substitution of 

three residues from a p-tum with an azobenzene containing synthetic amino acid
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moiety. Hilvert and co-workers used CD spectroscopy to show the modified peptide

to exhibit similar helicity to wild-type aPP, they concluded that although they were

able to produce an analogue o f aPP in which the secondary structure, and therefore

dimerisation could be manipulated by the switching o f the cis/trans conformation

1repeated isomerisation o f the structure led to its precipitation.

Woolley and co-workers have carried out further research into the development of 

reversible crosslinkers that can be used to both stabilise and destabilise a-helix 

formation. This was initially achieved by the incorporation o f an azobenzene 

containing amino acid, phenylazophenylalanine (Pap) within the ribonuclease A 

sequence. The rate o f RNA hydrolysis was observed, and was found to be influenced

170by the isomerisation o f the Pap side-chain. Woolley and co-workers conducted 

further research into the development o f azobenzene containing crosslinkers through 

the exploitation o f the change in length o f the crosslinker through photoisomerisation. 

The initial crosslinker used iodoacetamide functional groups bonded to each end of 

the azobenzene motif, these were attached to a short peptide via reaction with the thiol 

side-chains o f cysteine residues engineered within the sequence at an /,/+7 spacing. 

CD spectroscopy showed a four-fold increase in a-helicity from 12 % to 48 % for the 

crosslinked peptide in the cis conformation when compared to the helix destabilising 

trans conformation. Further work by Kumita et al. used enhanced molecular 

modelling techniques to identify alternative spacings o f the cysteine residues and 

therefore the appropriate spacing for the crosslinker influences the subsequent end-to- 

end distance between chloroacetamide groups o f the crosslinker. It was found that for 

stabilisation o f a helical structure in the cis isomer cysteines were required to be 

distributed /,/+4 or i,i+7 obtaining 70-90 % cis in the light-adapted state, whereas for
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the trans isomer a spacing of /',/'+1 1 is required whereby > 99 % trans is obtained in 

the dark-adapted state.140,141 Further work by Flint et al. supported the findings of 

Kumita and co-workers, peptides were synthesised incorporating cysteine residues in 

both 7,7+4 and 7,7+11 spacings. The crosslinking o f these peptides and subsequent 

analysis by CD spectroscopy revealed a degree o f photocontrol for both peptides.141

Kumita and co-workers designed a coiled-coil peptide, a common structural moiety 

found in nature; based on the coiled-coil leucine zipper peptide GCN-4-P1. This 

structure consists o f two parallel amphipathic a-helices that wrap around one another 

to yield a homodimeric left-handed supercoil. A coiled-coil structure was chosen 

because the formation o f two helices that then combine to give a more helical 

quaternary structure makes CD spectroscopy an ideal tool to monitor the changes in 

helicity which can be related directly to interactions between the two peptides and it 

was found that the helicity and therefore ability for the coiled-coil structure to 

dimerize was influenced by the isomerisation of the crosslinker.140 Although some 

degree o f photocontrol was achieved, the choice o f location for the 7,7+7 spaced 

cysteine residues were found to significantly affect the functionality o f the peptide.

A potential drawback in the use o f the azobenzene crosslinker designed by Woolley et 

al. is the poor aqueous solubility o f the molecule, illustrated in the published method 

for crosslinking describing the use o f a water and dimethylsulphoxide co-solvent. 

Further work by Zhang et al. led to the development o f a water-soluble crosslinker 

through the addition o f sulphonate groups to the meta positions within the azobenzene 

ring system.142 The iodoacetamide groups were also substituted for chloroacetamide 

groups in order to improve the light stability o f the linker (Scheme 1.2).142,143
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Scheme 1.2: Azobenzene crosslinker designed and optimised by Zhang et al.142

In order to assess whether the reversibility of the conformational change provided by 

the attachment o f the engineered water-soluble azobenzene crosslinker would be 

maintained when the conformational change is associated with a change in biological 

activity such as binding to another molecule Woolley et al. studied the bZIP DNA 

binding domain o f the yeast transcriptional activator GCN4.144 An i,i+7 spaced 

cysteine containing peptide was synthesised and crosslinked, the helical propensity 

and therefore the dimerisation and DNA binding affinity was reported to be increased 

for the light induced (cis) crosslinked structure, whereas the dark adapted (trans) 

crosslinked peptide showed reduced helicity and DNA binding when compared to 

wild-type GCN4-bZIP.144

The azobenzene crosslinker designed by Zhang and co-workers for optimised light 

and water stability was also used by Guerrero et al. to design an 18 residue DNA 

binding peptide based on the recognition helix o f the Q50K engrailed homeodomain. 

This peptide, referred to as HDH-3 incorporated cysteine residues within an /,/+11 

spacing at locations shown in molecular modelling to not interfere with DNA binding.
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CD spectroscopy showed the uncrosslinked peptide to be unstructured, however upon 

addition of the crosslinker the trans isomer displayed a significant increase in a- 

helicity that was reduced upon irradiation of the crosslinker to the cis isomer. The CD 

data was supported by fluorescence anisotropy DNA binding assays which for the 

dark-adapted trans isomer a Kd of 7.5 nM (± 1.3) was reported, this was reduced 

significantly to 140 nM (± 11) upon irradiation with 360 nm UV light (Figure

Figure 1.18: Photocontrol o f  peptide helicity for an i,i+7 spaced 
azobenzene crosslinker incorporated within a short peptide based on the 
p53 N-terminus.145

Guerrero et al. further tested the use of azobenzene crosslinkers in the regulation of 

peptide secondary structure through the design of photoMyoD, a peptide derived from 

MyoD, a muscle-specific transcription factor that relies on the basic helix-loop helix 

(bHLH) domain for DNA binding which is mediated through its A-terminal 

recognition a-helix contacting the major groove of DNA. An 18 residue peptide based 

on this helical motif was synthesised incorporating cysteine residues in an i,i+7

360 nm

450 nm
or A
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spacing, this peptide photoMyoD, was identified by CD spectroscopy to be 

predominantly random coil, containing approximately 10 % a-helix. Upon 

crosslinking, the secondary structure of the trans isomer was reported to be 

comparable to the uncrosslinked peptide and irradiation o f crosslinked photoMyoD 

was reported to give 19 % a-helicity for the cis isomer. Fluorescence anisotropy 

measurements o f the dissociation constants for the interaction o f photoMyoD with 

DNA showed little difference between the uncrosslinked and the trans isomer o f the 

crosslinked peptide (8.8 ±  2.2 xlO'15 M2 and 1.5 ± 0.38 xlO'14 M2 respectively), 

however irradiation to the cis isomer significantly improved the stability o f the 

photoMyoD complex equating to a reduction of the dissociation constant by three 

orders o f magnitude (4.4 ± 0.16 x l O'18 M2).

When in the relaxed, trans (dark-adapted) state the crosslinker exhibits a maximum at 

360 nm in its UV spectrum, which becomes substantially reduced upon isomerisation 

to the cis (light-induced) state when exposed to 360 nm UV light (Figure 1.19). It is 

important to note that since the isomerisation o f the crosslinker from the trans to cis 

isomer only produces a maximum yield o f 60-70 % the presence o f the remaining 

trans isomer means that the crosslinker solution will always exhibit some absorbance 

at 360 nm.141 Contrary to the moderate quantum yield arising from the light induced 

isomerisation o f the crosslinker from trans to cis, its subsequent relaxation into the 

dark-adapted state from cis to trans results in an approximate 100 % yield o f the trans 

isomer, hence a full recovery o f its maximum at 360 nm in the UV spectrum, thus 

enabling the relaxation o f the crosslinker molecule to be monitored by UV 

spectroscopy.
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Figure 1.19: The UV maxima at 360 nm for the crosslinker is reduced 
upon isomerisation to the cis isomer. This recovers in a time and 
temperature dependant manner (shown crosslinker at 20 °C)

We propose that the relaxation times of the crosslinker when attached to a variety of 

p53-based peptides will be greater than the relaxation time for the free crosslinker due 

to its restraint at both ends to the peptide cysteine residues. Direct comparison of the 

relaxation times for the crosslinked peptides will reveal information relating to the 

stability of the constrained peptide secondary structure influenced by the crosslinker 

conformation. This is proposed since a more stable induced secondary structure would 

be more resistant to relaxation of the crosslinker, resulting in increased relaxation 

times.
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1.11 Aims of the Project

Based upon the work o f Woolley et al. and Schepartz and co-workers it is proposed to 

attach a photoisomerisable water-soluble azobenzene derived crosslinker to a short 

peptide mimicking the TV-terminal transactivation domain 0f  p53 90’120’121’139’140’142'144 It 

is believed that the potency o f  such molecules may be controlled via photo- 

isomerisation o f the crosslinker through the manipulation o f the peptide secondary 

structure, since Mdm-2 binding o f  p53 requires the adoption o f an a-helical motif. 

This will be achieved through the design and synthesis o f short peptides based on the 

TV-terminal transactivation domain o f p53 which incorporate cysteine residues at 

desired spacings for the attachment o f the crosslinker.

The interaction o f optimised p53-based peptides with Hdm-2 is to be measured using 

fluorescence anisotropy and the differences in the binding affinities o f the 

uncrosslinked, light induced and dark-adapted peptides are to be compared against 

structural information relating to these peptides acquired from circular dichroism 

spectroscopy. Additionally, the rate o f relaxation of the crosslinked peptide from the 

light induced, cis state to the dark-adapted, trans state will be investigated, and it is 

proposed that this rate o f relaxation is related to the stability o f the induced a-helix. 

For example, a more stable a-helix arising from a light induced crosslinker 

conformation is proposed to result in an increased relaxation time for the crosslinker 

to revert back into the dark-adapted state.
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The purpose o f this research is to build upon the work o f Guerrero et a l  who 

developed a DNA binding peptide in an i,i+\ 1 spacing resulting in a stabilised a-helix 

in the dark-adapted, trans isomer.145 The application o f this to the development o f  

photo-switchable p53-based peptides that bind Hdm-2 with high affinity in a 

reversible manner shows potential for therapeutic use in patients in which the 

apoptosis pathway is inhibited as a result of over-expression o f Hdm-2 inhibiting free 

p53. The introduction o f high affinity Hdm-2 binding peptides are proposed to 

compete with cellular p53 and ensure the saturation o f p53 binding sites upon Hdm-2, 

whilst the use o f the azobenzene crosslinker provides a means o f regulating their 

specificity, since the control o f the conformation o f the azobenzene chromophore 

might allow switching between an active and inactive conformation o f the peptide.
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Chapter 2: Materials & Methods

2.1 Materials

All chemicals, solvents and biological buffers were purchased from Fisher, Sigma- 

Aldrich or Fluka. Amino acids arid reagents for peptide synthesis were purchased 

from Novabiochem or AGTC Bioproducts Ltd. Molecular biology reagents were 

purchased from New England Biolabs, GE Healthcare or QIAGEN.

2.1.1 Preparation of Reagents and Buffers

50 x TAE (Tris-acetate/EDTA) Electrophoresis Buffer

Tris base (242.0 g) was dissolved in deionised water (500 ml) containing glacial 

acetic acid (57 ml). 100 ml ethylenediaminetetraacetic acid (EDTA) solution (0.5 M, 

pH 8.0) was added and the resulting solution diluted to 1 L with deionised water.

10 x SDS Running Buffer

Glycine (72.0 g), Tris base (15.4 g) and sodium dodecyl sulphate (SDS, 5.0 g) were 

dissolved in deionised water (250 ml). The resulting solution was diluted to 500 ml 

with the same solvent.

SDS Gel loading Buffer

To 0.5 M Tris-HCl (pH 6.8, 1.25 ml) was added, deionised water (3.55 ml), glycerol 

(2.5 ml), 10 % w/v SDS (2.0 ml) and 0.5 %  w/v bromophenol blue (0.2 ml). Prior to 

use 950 pi o f this mixture was added to 50 pi 2-mercaptoethanol.
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Stain Buffer for SDS-PAGE

Coomassie brilliant blue G (0.25 g) was dissolved in a solution consisting of 

deionised water (45 ml), ethanol (45 ml) and glacial acetic acid (10.0 ml).

Destain Buffer for SDS-PAGE

Isopropanol (100 ml) was added to a solution consisting o f deionised water (780 ml) 

and glacial acetic acid (120 ml).

Gel-loading Buffer for Agarose Gel Electrophoresis

Bromophenol blue (0.25 % (w/v), 2.5 pi) was added to a solution consisting of 

deionised water (697.5 pi) and glycerol (30 % (v/v), 300 pi). This solution was stored 

at -2 0  °C prior to use.

0.12 M  Ethanolic Sodium Acetate Solution

Anhydrous sodium acetate (0.2 g) was added to a solution containing deionised water 

(1.0 ml) and ethanol (15.0 ml). The resulting solution was made up to 20 ml with 

ethanol.

0.1 M  CaCh Solution

CaCl2 (5.88 g) was dissolved in deionised water (400 ml), prior to sterilisation by 

autoclaving (20 min, 15 lb in* ) on a liquid cycle.
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80 mM MgCh, 20 mM CaCh Solution

MgCb (6.50 g) and CaCI2 (1.17 g) were dissolved in deionised water (400 ml), prior 

to sterilisation by autoclaving (20 min, 15 lb in' ) on a liquid cycle.

0.5 MEDTA Solution

EDTA (14,61 g) was dissolved in deionised water (50 ml), and the pH adjusted to 8.0 

using NaOH (5 M). The resulting solution was diluted to 100 ml with deionised water.

10% Ethidium Bromide Solution

Ethidium bromide (0.5 g) was dissolved in deionised water (50 ml) by stirring at room 

temperature overnight protected from light. The resulting solution was stored at 4 °C 

prior to use.

10 % (w/v) SDS Solution

SDS (10.0 g) was dissolved in deionised water (90 ml) and diluted to 100 ml with the 

same solvent.

0.5 % (w/v) Bromophenol Blue Solution

Bromophenol blue (50 mg) was dissolved in deionised water (10 ml).

10 % (w/v) Ammonium Persulphate Solution

Prepared on day o f use. Ammonium persulphate (100 mg) was dissolved in deionised 

water (lm l).
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10 x Phosphate Buffered Saline Solution (PBS)

NaCl (40.9 g), KC1 (1.05 g), Na2HPC>4 (7.05 g) and KH2PO4 (1.2 g) were dissolved in 

deionised water (400 ml) and diluted to 500 ml with the same solvent.

Deoxyribonucleotide triphosphate (dNTP) Mix

An aqueous solution (pH 7.5) was made consisting o f 0.2 mM o f each; dATP, dCTP, 

dGTP and dTTP.

Hdm-2 Lysis Buffer 

50 mM Tris-HCl (pH 8.0)

500 mM NaCl

10 mM 2-mercaptoethanol

1 mM EDTA

1 mM phenylmethylsulphonyl fluoride (PMSF)

0.1 % (w/v) Triton X -100

Hdm-2 Buffer A

50 mM Tris-HCl (pH 8.0)

500 mM NaCl

10 mM 2-mercaptoethanol

1 mM EDTA
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Hdm-2 Buffer B

This buffer was prepared as per Hdm-2 Buffer A with the inclusion o f 10 mM reduced 

glutathione

Fluorescence Anisotropy Buffer

100 mM Potassium phosphate buffer (pH 7.0)

5 mM dithiothreitol 

150 mM NaCl

Circular Dichroism Buffer

5 mM Potassium phosphate buffer (pH 7.0)

0.5 mM dithiothreitol

For solutions containing 2,2,2-trifluoroethanol (TFE) the appropriate volume of 

deionised water was substituted for the desired concentration (v/v) o f TFE.

p53 Lysis Buffer 

50 mM Tris-HCl (pH 8.0)

2 mM EDTA 

100 mM NaCl 

1 mM PMSF
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p53 Buffer A

This buffer was prepared as per p53 Lysis buffer with the inclusion o f 0.5 %  (w/v) 

Triton X -100.

p53 Buffer B

5 M guanidine chloride 

50 mM Tris-HCl (pH 8.0)

0.005 % (w/v) Tween 80

p53 Buffer C

1 M guanidine chloride 

50 mM Tris-HCl (pH 8.0)

0.005 % (w/v) Tween 80

2 mM Reduced glutathione 

0.02 mM Oxidised glutathione

p53 Buffer D

50 mM Tris-HCl (pH 8.0)

150 mM NaCl 

0.005 % (w/v) Tween 80

p53 Buffer E

0.15 M NaCl

50 mM Tris-HCl (pH 8.0)

69



Chapter 2: Materials & Methods

p53 Buffer F

0.5 M NaCl

50 mM Tris-HCl (pH 8.0)

2.1.2 Culture Media

Preparation of Luria-Bertani (LB) Medium

Tryptone (10.0 g), NaCl (10.0 g) and yeast extract (5.0 g) were added to deionised 

water (950 ml) and the pH of the resulting solution adjusted to 7 with NaOH (5 M). 

The solution was made up to a final volume o f 1 L, prior to sterilisation by 

autoclaving (20 min, 15 lb in'2) on a liquid cycle.146

2.1.3 Preparation of Antibiotic Solutions 

50 mg mT1 AmpicUlin Stock Solution

Ampicillin sodium salt (500 mg) was dissolved in sterile deionised water (10 ml) and 

the resulting solution filter-sterilised using a 0.22 pm syringe filter, prior to dividing 

into 200 pi aliquots which were stored at -2 0  °C.

34 mg mT1 Chloramphenicol Stock Solution

Chloramphenicol (34 mg) was dissolved in ethanol (1.0 ml), and stored at -20  °C 

prior to use.
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2.1.4 Agar Plates 

LB Agar Plates

Tryptone (2.10 g), NaCl (2.10 g), yeast extract (1.06 g) and agar (3.16 g) were 

dissolved in deionised water (200 ml), prior to sterilisation by autoclaving (20 min, 15 

lb in ') on a liquid cycle. The resulting mixture was cooled to ca. 30 C poor to 

dividing between sterile petri dishes, where it was cooled and stored inverted at 4 °C.

Ampicillin-Agar Plates

Prepared as described for standard LB agar plates. Upon cooling {ca. 30 °C) a 200 pi 

aliquot o f ampicillin stock solution was added (resulting ampicillin concentration 0.1 

mg ml'1) and gently mixed, prior to dividing between sterile petri dishes, where it was 

cooled and stored inverted at 4 °C.

Chloramphenicol-Agar Plates

Prepared as described for standard LB agar plates. Prior to use 15 pi of 

chloramphenicol stock solution (34 mg ml’1) was spread across the plate surface and 

dried at 37 °C for 10 min.
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2.2 Methods

2.2.1 Crosslinker Synthesis

The synthesis o f the water-soluble azobenzene crosslinker (3,3’-bis-(sulfo)-4,4’-bis- 

(chloroacetamido)-azobenzene) was carried out as described by Zhang et a l  (Scheme 

2.1) with !H and 13C NMR employed to characterise the products at the end o f each 

step as detailed in Scheme 3.2 and Appendix 1,142

2.2.2 Peptide Synthesis and Purification 

Peptide Synthesis

Peptides were synthesised using the CEM Liberty microwave assisted peptide 

synthesiser using standard Fmoc protocols as detailed further in Section 3.1.147 The 9- 

fluorenylmethoxycarbonyl (Fmoc) chloride and side-chain protected amino acids 

(Asn, Cys, Gin (trt); Asp, Glu (OtBu); Tyr, Ser, Thr (tBu); Lys, Trp (Boc)) were 

coupled in accordance with the desired sequence, starting from the carboxy terminus 

using a Rink Amide MBHA resin on a 0.1 mmol scale.

N-Terminal Fluorophore Labelling o f Peptides

The peptide containing resin was added to a mixture o f 5,6-carboxyfluorescein (FAM, 

25 mg), A-hydroxybenzotriazole (HOBt, 10 mg) and NJST-diisopropylcarbodiimide 

(DIC, 13 pi) in A^A-dimethylformamide (DMF, 3.0 ml). The resulting mixture was
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shaken gently (protected from light) for 2 hours prior to the washing of the resin with 

DMF using a sintered glass funnel.

Peptide Cleavage

The resulting peptides underwent a cleavage and deprotection with trifluoroacetic acid 

(TFA):water: phenol:triisopropylsilane (88:5:5:2; v/v) per gram o f resin for 2 hours, 

protected from light at room temperature. The resin was removed by filtration and the 

filtrate concentrated in vacuo and precipitated by washing with ice-cold diethyl ether 

( 3 x 5  ml) and allowed to stand at -2 0  °C for 2 hours. The crude peptide mixture was 

dissolved in a water:acetonitrile solution (3:1) followed by lyophilisation.

Peptide Purification

Peptides were eluted from a LUNA 10p Cig column (250 x 100 mm) with a linear 

gradient from 0-60 %  acetonitrile in water (0.05 % TFA) over 60 min with a flow rate 

of 4.0 ml min'1. Peptide fractions were identified by matrix-assisted laser 

desorption/ionisation time o f  flight (MALDI-TOF) mass spectrometry, and the solvent 

removed from the appropriate fractions in vacuo followed by lyophilisation and 

storage protected from light at -2 0  °C. The experimentally determined peptide masses 

were found to be in good agreement with the calculated masses. The purity of the 

purified peptides was demonstrated to be greater than 98 % by reversed-phase high 

performance liquid chromatography (HPLC) using an analytical LUNA lOp Cig 

column (250 x 4.6 mm).
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Crosslinking of Peptides

The uncrosslinked peptide {ca. 0.5 mg) was dissolved in 50 mM Tris-base (pH 8.3,

3.0 ml) containing 2 mM tris(2-chloroethyl)phosphate (TCEP), and incubated with 

stirring at 4 °C (30 min) to ensure cysteine residues were in the reduced state. The 

water-soluble azobenzene crosslinker, 3,3’-bis-(sulfo)-4,4’-bis-(chloroacetamido)- 

azobenzene (2 mM) was dissolved in 50 mM Tris base (pH 8.3, 1.0 ml) and slowly 

added to the peptide solution in three aliquots of 333.3 pi at 20 min intervals. The 

reaction was allowed to proceed overnight protected from light with stirring at 4 °C.

Purification of Crosslinked Peptides

Crosslinked peptides were purified according to the standard procedure for peptide 

purification.

Photoisomerisation of Crosslinked Peptides

The photoisomerisation o f the dark-adapted peptides was achieved by the irradiation 

o f samples at 4 °C using a 250 W metal halide UV light point source (UV-P 280) 

coupled to a 360 nm band pass filter. Photoisomerisation by UV irradiation was 

conducted for 3 min, and was calculated as sufficient due to the absence of changes in 

the UV-Vis spectra of the samples.
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2.2.3 Molecular Biology 

Preparation of Competent Cells

A sample o f a competent cell stock was plated onto agar and incubated at 37 °C 

overnight. A single bacterial colony was incubated in 5 ml LB media overnight at 37 

°C with shaking. 100 pi o f the resulting culture was transferred to 5 ml o f LB media 

and incubated with shaking at 37 °C until an OD6oonm of ca- 0.4 was achieved and the 

cells recovered by centrifugation (4 °C, 4000 rpm, 10 min). The cell pellet was 

resuspended in 1.5 ml ice-cold MgCL (80 mM), CaCL (20 mM) solution and the cells 

recovered by centrifugation (4 °C, 4000 rpm, 10 min). The cell pellet was then 

resuspended in 0.2 ml CaCh solution (0.1 M) followed by the addition o f 0.2 ml 

sterile glycerol prior to dividing into 100 pi aliquots and stored at -8 0  °C.

DNA Plasmid Extraction and Purification

Plasmid DNA was purified using a QIAGEN plasmid purification kit according to the 

manufacturers protocols.148_150

Transformation of Competent Cells with DNA Plasmids

Competent cells (100 pi) were thawed on ice prior to the addition o f the DNA plasmid 

(1-2 pi). After 20 min, the cells were heat shocked for 90 sec at 42 °C and returned to 

ice for 3 min, followed by the addition o f 1.0 ml o f media and incubation with 

shaking at 37 °C for 1 hour. The culture was then spread onto an agar plate containing 

the appropriate concentration o f antibiotic where required and incubated overnight 

with shaking at 37 °C. Plates containing transformed cells were stored at 4 °C.
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Agarose Gel Electrophoresis

A 5 % (w/v) agarose solution was made by dissolving agarose (0.5 g) in TAE buffer 

(50 ml) by microwave heating. This solution was poured into a Mini-Sub Cell (Bio- 

Rad), and covered in TAE buffer, prior the loading o f the DNA samples (0.25 % 

bromophenol blue, 30 %  glycerol). Gels were run at 60 mA (ca. 45 min) and soaked 

in deionised water (200 ml) containing 200 pi of ethidium bromide solution (10 mg 

ml*1) prior to visualisation by the fluorescence o f the intercalated ethidium bromide.

Digestion of DNA with Restriction Enzymes

Restriction endonucleases (New England Biolabs) were used to digest DNA following 

the manufacturers recommended protocols, incubated with shaking at 37 °C for 1 

hour. Agarose gel electrophoresis was used to analyse the digestion products.

Polymerase Chain Reaction (PCR)

All oligonucleotide primers were synthesised and purified by Operon 

Biotechnologies. Reactions were performed in a Biometra T Personal Thermal Cycler, 

and were prepared in a 0.5 ml PCR tube comprising o f Pfu DNA polymerase (5 U), 2 

ng DNA template, 0.5 mM o f each primer, dNTP mix (10 mM), 1 x PCR buffer, KC1 

(500 mM) and MgCk (2 mM). Sterile deionised water was added to give a final 

volume o f 50 pi, and mineral oil (30 pi) was used to form an upper surface to prevent 

evaporation o f the reaction mixture during thermal cycling.
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Table 2.1 -  Primer sequences for the mutation o f  Hdm-2 Ile61 to Ala.

Primer Oligonucleotide Melting Temp
(°C)

Hdm-2] . 125 

Wild-Type
5’-CTTGGCCAGTATATTATGACTA 

AACGATTATATGATGAG-3 ’
-

Hdm-2] . 125 

Ala61 Fwd
5’-CTTGGCCAGTATGCGATGACTA 

AACGATTATATGATGAG-3 ’ 68.9

Hdm-2].]25 
Ala61 Rev

5 ’-GAACCGGTCATACGCTACTGAT 
TTGCTAATATACTACTC-3 ’ 68.9

Table 2.2 -  Primer sequences fo r the mutations induced in wild-type 
Hdm-2i.i2 5 position 72.

Primer Oligonucleotide Melting Temp
(°C)

Hdm-2] . 125 

Wild-Type
5 ’ -CG ATT AT AT GAT G AGAAGC AAC AAC AT A  

TTGTATATTGTTCAAATG-3’ -

Hdm-2 ].]25  

Asn72 Fwd
5 ’ -CGATT AT AT GATG AGAAGC AAAACC AT A 

TTGTATATTGTTCAAATG-3 ’ 65.6

Hdm-2 i-i 25 

Asn72 Rev
5’-GCTAATATACTACTCTTCGTTTTGGTAT 

AAC ATATAAC AAGTTTAC-3 ’ 65.6

Hdm-2 i-i 25 

Met72 Fwd
5 ’ -CGATT AT AT GAT G AGAAGC AAAT GC AT A 

TTGTATATTGTTCAAATG-3 ’ 65.6

Hdm-2 i-i25 

Met72 Rev
5 ’ -GCT AAT AT ACT ACTCTTCGTTT ACGT AT 

AAC ATATAAC AAGTTTAC-3 ’ 65.6

Hdm-2 i-i 25 

Leu72 Fwd
5 ’ -CGATTATAT GAT G AGAAGC AACT GC AT A 

TTGTATATTGTTCAAATG-3’ 66.5

Hdm-2i-i25 
Leu72 Rev

5’-GCTAATATACTACTCTTCGTTGACGTAT 
AAC ATATAAC AAGTTTAC-3 ’ 66.5

The melting temperatures o f the primers were considered when determining the 

cycling temperatures. A typical cycle commenced with denaturation (1 min at 95 °C),
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followed by annealing (1 min at 55 °C) and extension (30 sec 70 °C). The thermal 

cycling was repeated 30 times.

Agarose gel electrophoresis was used to confirm the amplification o f the desired DNA 

fragment.

Site Directed Mutagenesis

The procedure for PCR was followed using the appropriate primers (Tables 2.1-2.2). 

Plasmid DNA was digested with the addition of Dpn\ restriction endonuclease using 

previously described conditions. Agarose gel electrophoresis was used to determine 

the presence o f the desired DNA fragment, which was transformed into JM109 

competent E. coli and incubated on LB agar overnight at 37 °C.

DNA plasmids were extracted and purified following the previously described 

protocol, and successful mutagenesis was confirmed by DNA sequencing.

Preparation of Glycerol Stocks

A sample from an overnight culture (0.8 ml) was aseptically mixed with sterile 

glycerol (0.2 ml) and stored at -8 0  °C.

Ethanol Precipitation of Nucleic Acids

0.12 M ethanolic sodium acetate (1.0 ml) was added to sample DNA and stored at -20  

°C for 1 hour. The solution was centrifuged (13,000 rpm, 10 min) and the supernatant 

decanted. The precipitate was dried at 42 °C prior to storage at -80  °C.
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2.2.4 Gene Expression and Protein Purification 

Over-Expression o f  Recombinant Proteins

A single transformed bacterial colony was incubated in 5 ml o f LB broth containing 

ampicillin (0.1 mg ml'1) overnight with shaking at 37 °C. The overnight culture was 

transferred to 500 ml o f LB media containing ampicillin (0.1 mg ml"1) and incubated 

with shaking at 37 °C until an OD6oonm of ca. 0.6 was achieved. Isopropyl-beta-D- 

thiogalactopyranoside (IPTG, 0.8 mM) was added to induce protein expression for a 

further 4 hours after which, cells were centrifuged (5,000 rpm, 10 min) to remove the 

supernatant and stored at -2 0  °C.

Cell Lysis

Pellets from a large-scale expression were thawed on ice and resuspended by 

vortexing in the appropriate lysis buffer. The suspension was sonicated for 5 min (30 

sec on, 30 sec off) on ice using a Sonicator W-37 (Heat Systems Ultrasonics Inc.). 

The resulting lysate was centrifuged (14,000 rpm, 20 min) and the protein-containing 

supernatant decanted, the pellet was retained for use as a reference when analysing the 

supernatant by SDS-PAGE.

Purification of the desired protein was commenced within 2 hours, however the 

solution was stored at 4 °C prior to use.
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Affinity Chromatography

Crude protein was loaded using a Watson Marlow lOlU/R peristaltic pump onto a 

drip-column prepared using glutathione sepharose 4B resin with a 5 ml bed volume. 

Washed columns were stored in 20 % ethanol solution at 4 °C.

Thrombin Cleavage o f Hdm-2

Concentrated GST-Hdm-2 was incubated in a water bath overnight (30 °C) with 60 U 

thrombin protease.

Size-Exclusion Chromatography

Concentrated protein was loaded onto a Superdex G75 10/300 GL gel filtration 

column attached to an AKTA FPLC using the appropriate buffer. The fractions

containing pure protein were pooled and stored at 4 °C.

DEAE Ion-Exchange Chromatography

Dialysed protein solution was loaded onto a DEAE Biogel A ion exchange column 

attached to an AKTA FPLC using the appropriate buffer. The fractions containing

pure protein were pooled and stored at 4 °C.

SDS Polyacrylamide Gel Electrophoresis

SDS gels were produced in accordance with the Bio-Rad Mini-PROTEAN™ 3 Cell 

protocols.151 Protein samples were mixed with SDS-Gel loading buffer and heated (80 

°C, 4 min) before loading onto 15 % gels, which were run for 45-60 min (200 V) in
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SDS running buffer. To visualise the bands, gels were stained with SDS-PAGE stain 

buffer and destained with SDS-PAGE destain buffer.

Dialysis of Protein Solutions

To remove undesired buffer components, samples were dialysed using Medicell 

International Ltd. dialysis membranes (3,500 molecular weight cut off (MWCO)) into 

2 1 o f the appropriate buffer with stirring at 4 °C. The dialysis buffer was changed at 

ca. 9 hour intervals a total o f three times.

Protein Concentration

Concentration of proteins was carried out using an Amicon ultrafiltration system fitted 

with a Millipore ultrafiltration membrane (-3,000 MWCO) with a N 2 pressure o f 3 

bar at 4 °C.

2.3 Analytical Techniques

2.3.1 MALDI-TOF Mass Spectrometry of Peptides

MALDI-TOF mass spectra were obtained using a Waters Micro MX mass 

spectrometer. Peptides were ionised on a thin film of one part peptide solution to one 

part a-cyano-4-hydroxy cinnamic acid.
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2.3.2 Circular Dichroism (CD) Spectroscopy

CD experiments were performed using an Applied Photophysics Chirascan CD 

spectrometer. Scans were performed (190-320 nm) on samples in CD buffer at 20 °C 

using a 1 mm pathlength cuvette. The mean residue ellipticity [0 ]r was calculated 

according to Equation 2.1.

[@]r= © / (10 x n x c x f )  Equation 2.1

Where n is the number o f backbone amide bonds, c is the molar (M) concentration of

the sample solution and / is the cuvette pathlength (cm). Mean residue ellipticity is

2 1expressed with the units deg cm dmol’ .

100 %  a-helix [@]r 222 = [- 40,000 (n - 4 ) ] / n  Equation 2.2

The percentage a-helix content o f the peptides was calculated using the value for 100

152% a-helix derived from Equation 2.2.

2.3.3 Estimation of DNA and Oligonucleotide Concentration

The concentration o f nucleic acids was determined spectrophotometrically using a 

Shimadzu Biospec-mini spectrophotometer. The optical density o f a sample solution 

was measured at 260 nm (OD26o)- A solution o f double stranded DNA ca. 50 pg ml'1 

gives an OD26oof 1.0 with single stranded DNA (40 pg ml'1) and oligonucleotides (20 

H gm l'1).
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The ratio o f absorbancies measured at 260 and 280 nm (OD260/OD280) was used as an 

indicator o f the purity o f the nucleic acid sample. A ratio value ca. 1.8 indicates a 

DNA sample is pure; this becomes reduced as the level o f contaminant proteins and 

lipids is increased.

2.3.4 DNA Sequencing

DNA sequencing was performed by Cogenics Ltd, using an Applied Biosystems 

3730x1 DNA analyser.

2.3.5 Peptide and Protein Concentration Determination

The concentration o f purified Hdm-21.125 in addition to the uncrosslinked and 

crosslinked peptides was determined spectrophotometrically using a Jasco V-660 UV- 

Vis spectrophotometer at 20 °C.

A = s c  I Equation 2.3

The concentrations (c) were calculated according to the Beer-Lambert law (Equation 

2.3), using a quartz UV cuvette with a 1 cm pathlength (/). The molar extinction 

coefficient (e) o f H'dm-2i.i25 (54,055 M'1 cm'1 ± 1809) was determined from the 

amino acid analysis data (Appendix A2) and for the peptides was taken as the value 

for the iV-terminal attached FAM (83,000 M'1 cm'1) from the manufacturer’s product 

specification.
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2.3.6 Fluorescence Anisotropy

Fluorescence anisotropy measurements were performed at 20 °C on a Perkin Elmer 

LS 55 Luminescence spectrophotometer arranged in L format (494 nm excitation; 520 

nm emission). Binding assay titrations were performed in the fluorescence anisotropy 

buffer using a 1 ml quartz fluorescence cuvette. Fixed quantities o f Hdm-2i-i25 (2.0-

4.0 juM) were added successively to 1.0 ml o f a peptide solution (10-50 nM). The G 

factor, the monochromator ratio o f sensitivities for horizontally and vertically 

polarised light, was calculated for each equation as a correction for bias in one o f the 

detectors (Equation 2.4).153

G = I_l / 1|| Equation 2. 4

Where I|| and Ii are the intensities o f the fluorescent emissions in parallel and 

perpendicular planes, respectively, to the excitation plane. The values for the G factor 

were always found to be between 1.11 and 1.13. The fluorescence anisotropy was 

determined with an integration time o f 5 sec (Equation 2.5) for each step in the 

titration, which was repeated a total o f 5 times for each assay.154

A = (Iy - G x Ii) / (Iy + G x I_l) Equation 2.5

The fraction o f peptide bound for each addition o f protein was calculated by 

determining the end-point o f the titration, whereby the anisotropy values remained 

unchanged despite the continued addition o f protein.
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2.3.7 Quantification of Crosslinker Relaxation by UV Spectroscopy

Crosslinker relaxation was observed by UV measurements using a Jasco V-660 UV- 

Vis spectrophotometer with a 1 cm pathlength quartz UV cuvette. Samples were 

dissolved in CD buffer and experiments were conducted with varying temperatures, 

using a Julabo F12 temperature controller. By assuming the kinetics o f the thermal 

relaxation o f the azobenzene crosslinker (cis to trans) to be a first-order process, the 

half-life (ti/2) o f the cis isomer can be calculated (Equation 2.6).

ti/2 = In 2 / k Equation 2.6

Where the rate constant for the thermal relaxation process is given as k, calculated by 

plotting the natural logarithm o f the percentage of the cis isomer (derived from UV 

measurements at 360 nm) against time (Figure 2.1).

£*) = -k time + b
0 20 40 60 80 120100

Time (min)

Figure 2.1: The rate constant fo r the thermal relaxation o f  the cis isomer 
o f the azobenzene crosslinker is derived from the plot o f  the natural 
logarithm o f  the percentage cis isomer against time.
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2.3.8 Determination of Dissociation Constants (Kd) From Fluorescence 
Anisotropy Data

Fluorescence anisotropy experiments were conducted by titrating Hdm-2 (protein) of  

a known concentration into a 1 cm fluorescence cuvette containing 1 ml o f a known 

concentration o f peptide ([LJiotai, ligand). The change in fluorescence anisotropy was 

recorded upon each addition o f protein and this was considered saturated with respect 

to protein-ligand binding once the anisotropy values remained constant despite 

continued addition o f protein.

The cumulative volume of the resulting protein-ligand solution (V2) was recorded 

upon each protein addition (total added = Vi) and the resulting protein concentration 

(C2) calculated accordingly based on the known concentration o f the protein solution 

added (Ci, Equation 2.7). In order to evaluate the saturation point o f the titration (100 

% peptide bound), the constant anisotropy values at saturation were plotted against 

protein concentration and the values representative o f m and c from the equation of 

the resulting straight line used to determine the Y value (Equation 2.8).

C2 = G  x Vi Equation 2.7
"V2 " -

Y = w x C2 + c Equation 2.8

A fraction (Fi) was generated for each anisotropy value using the initial anisotropy 

value as 100% free ligand (Ao, Equation 2.9), this was converted to represent the 

fraction o f ligand bound (F2, Equation 2.10).
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Fi = A - Y Equation 2.9
Y - A 0

F2 = Fi + 1 Equation 2.10

Fraction F2 was converted to represent a concentration o f peptide bound ([L]Bound)> 

Equation 2.11. This value was plotted against protein concentration ([P]) and a curve 

fitted from the resulting data points using a one-site binding model (Equation 2.12, 

where Bmax = maximum concentration o f bound peptide).

[L\Bound = F2 X [L]Total Equation 2.11

[L]Bou»d = Bmax x fP] Equation 2.12
Kd + [P]

2.3.9 Calculation of Error Values From Experimental Data

The error for n repeats were determined according to Equation 2.13, where z 

represents the value for standard deviation (a) from the mean. A 68 % confidence 

limit arises from a value o f z  = 1, increasing to 95 % where z  = 2.

Error = a x z  Equation 2.13

The errors reported from the fluorescence anisotropy binding data are reported using 

a value o f z  = 1.
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Chapter 3: Synthesis ofp53 Peptides & Express ion o f Related Proteins

3.1 Fundamental Principles of Peptide Synthesis

The biosynthesis of proteins and peptides occurs as a result o f a chain o f processes 

commencing with transcription, where in mammalian cells an wRNA template is 

formed from one strand o f the DNA double helix. The mRNA then migrates to the 

ribosomes within the cytoplasm of the cell where /RNA containing amino acids 

complementary to the mRNA result in the formation o f peptide bonds between the 

adjacent amino acids and the production of a protein. The chemical synthesis of 

peptides involves a repetitive sequence o f reactions undertaken to ensure optimum 

yield and purity. Unlike the biosynthetic pathway additional care must be taken during 

peptide bond formation to ensure that bonds are formed between the desirable 

functional groups, since during biosynthesis reactions are mediated by enzymes which 

co-ordinate the geometry o f the molecules ensuring the formation of the correct 

bonds. The challenge for the development o f synthetic peptides is to ensure the 

correct reactions are permitted, whilst the amino acid side-chains remain 

unadulterated throughout the duration o f the synthesis. This is achieved by the 

extensive use o f protecting groups to shield specific functional groups from 

undesirable reactions, in addition to the immobilisation o f the peptide chain upon a 

solid support. By immobilising the peptide upon a resin, it is possible to carry out 

many reactions in one chamber by the sequential washing and filtration of this 

peptide-bound solid support to remove traces o f the previous reactants.
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Merrifield first introduced the concept o f solid phase peptide synthesis (SPPS) in 

1963, with the publication o f the synthesis o f a tetrapeptide.155 The basic principle of  

SPPS involves the covalent attachment o f the C-terminus o f the first amino acid to a 

solid support, essentially a porous bead. The A-terminus o f this amino acid is also 

covalently attached to a protecting group, which then undergoes a deprotection 

reaction with a weak base such as piperidine to yield a free amine terminus prior to 

the addition o f another A-terminally protected amino acid. A coupling reaction then 

takes place to facilitate peptide bond formation (Scheme 3.1). This process is repeated 

using the required amino acids until the desired peptide length is achieved, at which 

point the peptide then undergoes a final deprotection and cleavage from the solid 

support.

R R

Coupling

II Final Deprotection. 
0 Cleavage

Scheme 3.1: A solid phase peptide synthesis coupling and deprotection 
cycle leading to a single peptide bond between two amino acids.

Some amino acid side-chains have the potential to undergo reactions in place o f the 

functional groups of the amino acid backbone, for example the carboxyl side-chain of 

aspartic acid or the amino side-chain o f lysine. These side reactions result in reduced 

yields due to increased levels of impurities, so in order to prevent the occurrence of  

these impurities additional protecting groups are used in order to prevent the reaction
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of free carboxyl groups (t-Butyl protection) and amine side chains (Fmoc and Boc) 

(Figure 3.1).

X
III)

Figure 3.1: Commonly used protecting groups I) t-Butyl (t-Bu), II) 9- 
Fluorenylmethoxycarbonyl (Fmoc) and III) t-Butyloxycarbonyl (Boc).

It is essential that these side-chain protecting groups are unreactive under the basic 

conditions used to remove the backbone TV-terminal protecting group so as to remain 

bonded to the side-chains throughout the repeated deprotection reactions that precede 

each additional coupling reaction. However, the side-chain protecting groups must 

also be able to be cleanly removed upon the cleavage o f the peptide from its solid 

support for which a strong acid such as trifluoroacetic acid is conventially used. Upon 

cleavage, peptides are typically precipitated into cold ether where the precipitate is 

collected for purification by reversed-phase HPLC using a water and acetonitrile 

gradient (0-100 % ACN, 60 min). Fractions collected corresponding to peaks on the 

HPLC chromatogram are subjected to matrix-assisted laser desorption ionisation time 

of flight (MALDI-TOF) mass spectrometry in order to verify the existence o f the 

correct mass corresponding to the amino acid sequence o f the desired peptide.
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3.2 Design and Synthesis of p53 Based Peptides

3.2.1 Design and Synthesis of Wild-Type p53 Peptides

The highly conserved Box I region o f p53 contains the critical amino acids required to 

facilitate binding to Hdm-2 (Chapter 1, Section 1.5). Within this region a 15 amino 

acid sequence has been identified previously as a suitable starting point for the 

investigation into the functionality o f the Hdm-2 binding a-helix o f p53. By means 

of a control and also in order to validate the p53-Hdm-2 binding assay, a 15 amino 

acid peptide based on p53 ^-terminal residues 15-29 was synthesised incorporating a 

fluorophore, 5,6-carboxyfluorescein (FAM). All peptides in this chapter were 

synthesised on an Fmoc-amide resin, resulting in an amidated C-terminus and they 

were labelled with FAM at the W-terminus. These were then purified by reversed 

phase HPLC, and the desired product identified by MALDI-TOF mass spectrometry. 

The synthesised wild-type (WT), truncated wild-type (twt) and alanine substituted 

(P27A) mutant peptides are summarised in Table 3.1.

Table 3.1: Summary o f FAM labelled synthesised p53 derived peptides.

Peptide Sequence Calculated Actual % Yield mg
p53_WT SQETFSDLWKLLPEN 2164.0 2165.5 3.7 8.0
p53_twt ETFSDLWKLL 1608.4 1608.7 2.5 4.0

p53_P27A SQETFSDLWKLLAEN 2138.0 2138.2 4.1 8.8
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The 15 amino acid p53_WT peptide is an appropriate length for use as a template for 

the design and optimisation o f an z,z+7 and z,z+11 crosslinked peptide. As discussed 

further in chapter 5.1 it has been reported from the crystal structure that the TV- 

terminal amino acids o f p53 are in an extended conformation which is proposed to 

enhance helix destabilisation reducing the strength o f the p5 3-Hdm-2 binding 

interaction due to increased entropy.68 The work of Schon and co-workers resulted in 

the identification o f a peptide sequence ten amino acids in length corresponding to 

p53 residues 17-26 in which the Kd was improved by one order o f magnitude when

70compared to the 15 amino acid wild-type peptide. This peptide is a good length for 

investigating the design o f an z',z+4 crosslinked p53-based peptide since a peptide of 

this length, with the crosslinker in an i,i+4 conformation is expected to be more stable 

due to the reduced number o f residues in the sequence not within the constraint o f the 

z',z+4 cysteine spacing thus reducing entropy. The synthesis o f the truncated ten amino 

acid p53-wild type peptide, p53_twt, described by Schon et al. was repeated using an

70Fmoc amide resin and labelled a the TV-terminus with FAM (Table 3.1).

The presence of a proline residue at position 27 of the p53 TV-terminus facilitates the

/TO

extended conformation proposed to reduce the affinity o f p53 for Hdm-2. This is 

due to the poor helical propensity o f proline (Chapter 1.8 Table 1.1) and to resolve 

this it was decided to substitute this for an alanine residue (P27A mutant) due to its 

high helical stabilisation and the minimally invasive nature o f the methyl side-chain 

with respect to the Hdm-2 hydrophobic cleft.
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3.2.2 Design and Synthesis of Cysteine Containing Modified p53 Peptides for 
the Attachment of the Azobenzene Crosslinker

When modifying the peptide sequences in order to accommodate the cysteine residues 

for the attachment of the azobenzene crosslinker, the most appropriate spacings must 

be considered based upon the desired peptide conformation with respect to each 

isomer of the crosslinker. In order to favour an a-helical conformation when applied 

to the azobenzene crosslinker in the light induced conformation, the end-to-end 

distance between the chloroacetamide groups (11.3 A, Scheme 3.1) is stabilised by the 

positioning of the cysteine residues in both an /,/+4 and iJ+7 spacing. The increased 

distance between the crosslinker chloroacetamide groups when in the dark-adapted, 

trans isomer (16.8 A, Scheme 1.1) permits the promotion of an a-helical 

conformation when attached by cysteine residues in an /,/+! 1 spacing.

Glu
Lys

Phe Leu

Figure 3.2: Helical wheel representation o f the ten amino acid peptide 
p53_twt, the residues critical fo r  Hdm-2 binding are shown in orange. 
Structure numbered according to p53 sequence homology.
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The design o f a light-stabilised a-helical p53-based peptide where the azobenzene 

crosslinker is attached by the incorporation of cysteine residues in an i,i+4 spacing is 

better suited to a shorter length peptide as previously discussed in this section. 

Consequently, a modified derivative o f the peptide p53_twt was evaluated and a 

helical wheel projection o f p53_twt is depicted in Figure 3.2 with the critical residues 

for Hdm-2 binding (Phel9, Trp23 and Leu26) highlighted in orange. It can be seen 

that they are concentrated around the same hydrophobic face o f the p53 a-helix.

The most appropriate residues to substitute for cysteines in order to allow for the 

attachment of the crosslinker are Ser20 and Lys24, since other possible locations 

involve the substitution o f Asp21. The deprotonated side-chain carboxyl group of 

Asp21 acts as a hydrogen bond acceptor from the side-chain hydroxyl o f Thrl8, this is 

a helix-stabilising hydrogen bond and therefore needs to be retained, especially in an 

already shortened peptide where the reduced length contributes to a-helix instability. 

As a result, the i f+4 spaced peptide, p53_twt_/,/+4, was synthesised and is shown in 

Table 3.2.

Table 3.2: Summary o f FAM labelled p5 3-based cysteine containing modified 
peptides. Cysteine residues are highlighted in bold.

Peptide Sequence Calculated Actual m/z % Yield
p53_/,/+4 ETFCDLWCLL 1599.5 1599.8 2.5

p53_P27AJ,/+7 SQCTFSDLWCLLAEN 2086.9 2087.9 3.2
P53_P27A_M+11 SQCTFSDLWKLLACN 2086,0 2085.3 3.0
P53_D21EJ,z+7 SQCTFSELWCLLAEN 2101.0 2101.2 2.8

P53_D21EJ,/+11 SQCTFSELWKLLACN 2100.0 2099.0 2.2



Chapter 3: Synthesis ofp53 Peptides &Expression o f Related Proteins

The incorporation o f cysteine residues in an i,i+7 spacing also has the potential to 

stabilise a helical structure when the crosslinker is in the cis, light induced state. 

However, unlike the z,z+4 spacing it is proposed that this provides additional 

stabilisation for a longer peptide chain, due to an increased number o f residues 

constrained between the cysteines. For this reason the 15 amino acid peptide is better 

suited to an /',/+7 spacing for cysteines as opposed to the i,i+4 distribution employed 

for the truncated ten amino acid peptide.

The helical wheel projection for the peptide p53_P27A is shown in Figure 3.3. There 

are three possibilities for the incorporation of cysteine residues in an i,i+ 1  spacing 

where the crosslinker remains on the opposing face o f the a-helix to the residues 

critical to Hdm-2 binding, therefore being oriented away from the hydrophobic 

binding cleft o f Hdm-2 to minimise any disruption its presence may cause to the p53- 

Hdm-2 interaction. Ideally the substitution o f Asp21 and Glu28 for cysteines would 

position the crosslinker exactly opposite the site o f the p53-Hdm-2 binding 

interaction, however as mentioned (Chapter 1.5) Asp21 provides additional stability 

to the p53 a-helix by the formation o f hydrogen bonds involving the Asp21 side-chain 

carboxyl group and Thrl8. It was also noted that this configuration does not contain 

Phel9 between the cysteine residues and therefore the influence o f this residue, 

already noted to be highly important for helix formation, may not be directly under 

the control o f the crosslinker. The second possible location for the positioning o f the 

cysteine residues in an i,i+ l spacing involves the substitution o f Thrl8 and Leu25. 

However this is not favoured due to the interaction between Thrl8 and Asp21, which 

as previously mentioned provides an additional hydrogen bond, enhancing the 

stability o f the p53 a-helix.
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Ser

Figure 3.3: Helical wheel representation o f the 15 amino acid peptide 
p53_P27A, the residues critical for Hdm-2 binding are shown in 
orange. Structure numbered according to p53 sequence homology.

The final possible location for the substitution of p53 residues for cysteines without 

encroaching upon the hydrophobic face of the p53 a-helix is Glul7 and Lys24. This 

does not interfere with any additional hydrogen bonds, although Lys24 has been 

implicated in salt bridge formation due to its proximity to complementary residues, 

although this has not been proven to contribute to p53 helix formation. The loss of a 

charged amino acid (Glul7) may reduce the solubility of the peptide, however 

attachment of the azobenzene crosslinker modified by Woolley et al. to enhance its 

water solubility by the addition of sulphonate groups to the meta position on the 

aromatic rings is proposed to offset the charge loss from the substitution of Glul7 for 

cysteine.142 The sequence of the resulting peptide p53_P27A_z,/+7 is documented in 

Table 3.2.

This same principle was applied to the design of a peptide incorporating an /,z+11 

spacing for cysteines in which a crosslinked version of the peptide would be 

encouraged to adopt a helical conformation when the crosslinker is in the relaxed,
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dark adapted state. The i ,i+11 spacing enables the critical amino acids for Hdm-2 

binding to be contained between the cysteine residues. The only suitable location for 

the positioning o f the cysteines is the substitution o f Glul7 and Glu28. As discussed 

previously when designing p53_P27A_/,z+7 the loss o f charged amino acids has a 

detrimental effect upon the peptide solubility, however this is counteracted by the 

attachment o f the crosslinker as a result, the peptide p53_P27A_/,/+l 1 was 

synthesised and is shown in Table 3.2.

The benefit o f having the crosslinker attached and in a conformation that would 

promote a-helix formation is believed to out-weigh the helix stabilising contribution 

of this hydrogen bond if  it were eliminated, whilst its removal would also encourage 

the crosslinker-mediated disruption o f the helical structure. Chapter 1.8, Table 1.1 

highlights the observation that amino acids in which the side-chains are only one 

carbon atom in length prior to the functional group have a lesser ability to stabilise an 

a-helical conformation that those with two carbon atoms, most likely due to the close 

proximity o f the side-chains to the backbone of the a-helix and their repulsive and 

steric effects upon one another when encouraged to be packed this tightly. Using this 

information, it was proposed that the modification o f Asp21 for Glu and therefore the 

elimination of the side-chain hydrogen bond with Thrl8 would improve the overall 

helix-forming ability o f the peptide, whilst having no change to the relative quantity 

of charged and uncharged amino acids and thus no detrimental effect upon the 

solubility o f the peptide.

As discussed previously we proposed that the modification o f Asp21 to Glu, although 

enhancing the promotion of an a-helical conformation, will also disrupt the formation
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of the hydrogen bond between p53 residue 21 and Thrl8. Although ultimately this 

modification will decrease the overall helix-forming ability o f the peptide through the 

loss o f a potential stabilising interaction, it is proposed to enhance the degree of 

control exercised by the crosslinker. To test this hypothesis, two peptides were 

synthesised which were identical to p53_P27A_/,z+7 and p53_P27A_z',z+l 1 with the 

exception o f Asp21 which was substituted with Glu (Table 3.2).

3.2.3 Design and Synthesis of Cysteine Containing Hdm-2 Binding Peptides 
Based Upon a Polyalanine Scaffold

Polyalanine forms a stable a-helix in water.156 As previously shown (Chapter 1.8 

Table 1.1), alanine has the highest helical propensity out of all the natural amino 

acids, hence its selection as a suitable residue for the substitution o f Pro27 in the 

optimisation of the p53-based peptides. We decided to investigate the possibility of 

designing a Hdm-2 binding a-helical peptide based on a polyalanine scaffold by the 

incorporation of key residues critical for the p53-Hdm-2 interaction. In order to 

regulate the interaction between Hdm-2 and the polyalanine based peptide scaffolds it 

was also decided to incorporate the cysteine residues to enable the attachment o f the 

azobenzene crosslinker.

Table 3.3: Summary o f  the FAM labelled cysteine containing Hdm-2 binding 
peptides based on a polyalanine scaffold. Cysteine residues are highlighted in 
bold.

Peptide Sequence Calculated Actual m/z % Yield
p53_Ala_z,/+7 EACTFADAWCALAAR 1955.8 1953.8 1.6

p53_Ala_z',/+l 1 EACTFADAWAALACR 1955.8 1954.4 1.9

99



Chapter 3: Synthesis ofp5 3 Peptides &Expression o f Related Proteins

Two peptides were synthesised incorporating cysteine residues in both an i9i+7 and 

i,i+ 11 spacing (Table 3.3). These peptides were 15 amino acids in length and it was 

decided to substitute all residues except for those essential for the p53-Hdm-2 binding 

interaction or that provide additional helix stabilising contributions. The three amino 

acids directly involved in the p53-Hdm-2 interaction, Phel9, Trp23 and Leu26 were 

retained, as were Thrl8 and Asp21. In order to reduce the helix dipole a positively 

charged Arg residue was situated at the C-terminus o f the peptide, and negatively 

charged Glu residue at the A-terminus. It was noted when preparing the crude peptide 

for purification that a reduction in the number o f charged amino acids had a 

significant effect upon the solubility o f these peptides.
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3.3 Synthesis of the Azobenzene Crosslinker and Attachment to 
Peptides

The water-soluble azobenzene crosslinker described by Zhang et al. was synthesised 

according to the published method for the synthesis (Scheme 3.2).142

S 03-Na+
AcNH

XXnh2 HOAc, AcaO ^ ^ N H A c  NaCI°  

2

N— N 

3 NHAc 
S03*Na+

1.HCI 
{ 2. NaOH
S 03 Na+

H2N
S 0 3-Na+

N— N 

4

O
3. CICH2COOH/ 

NH2 (CICH2C(0))20  
S 03*Na+

NH 
S 0 3'Na+

O

Scheme 3.2 -  Schematic representation of the key stages involved in the 
synthesis o f the azobenzene crosslinker 3,3 ’-Bis(sulfo)-4,4 
bis(chloroacetamido)azobenzene,142

The methodology employed to attach the crosslinker to the cysteine-containing 

peptides was taken from the work o f Guerrero et al.145 The mechanism by which the 

crosslinker attaches to the side-chains o f the cysteine residues is thought to be a 

bimolecular nucleophilic substitution reaction mediated by the loss o f the chlorine 

atoms from the terminal chloroacetamido groups of the crosslinker. It was noted that 

as proposed in Section 3.2 the water-solubility of the peptides upon the addition of the 

azobenzene crosslinker was improved, particularly in the peptides where the
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optimisation for Hdm-2 binding and allocation o f space for the cysteine residues had 

resulted in the removal o f  charged amino acids. As described for the crude peptide 

precipitate in Chapter 3.2, the crosslinked peptides were purified by reversed-phase 

HPLC using a water-acetonitrile gradient (crosslinked peptide observed at both 210 

nm and 360 nm), and each fraction verified by MALDI-TOF mass spectrometry 

(Table 3.4). The crosslinked peptide was then isolated by lyophilisation of the 

appropriate fraction.

Table 3.4 -  Summary o f crosslinked p53-based cysteine containing modified 
peptides. Cysteine residues are highlighted in bold.

Peptide Sequence Calculated Actual m/z
p53_z,/+4_XL ETFCDLWCLL 2051.4 2051.9

P5 3 P 2 7  A_/,/+7_XL SQCTFSDLWCLLPEN 2561.5 2560.4
p53_P27AJ,H ll_XL SQCTFSDLWKLLPCN 2537.5 2538.3
p5 3_D21 E_z,/+7_XL SQCTFSELWCLLPEN 2552.5 2549.2

p53_D21EJ,z+ll_XL SQCTFSELWKLLPCN 2551.5 2550.8

3.4 Expression and Purification of Hdm-2

The cDNA clone corresponding to the human equivalent o f Mdm-2 (Hdm-2) residues 

1-188 was provided by Professor Sir D. P. Lane, Dundee University, as a pGEX-2T 

expression vector, cloned within the BamHl and EcoRl multiple cloning site (Figure

72 • •3.4). Initial attempts to purify Hdm-2 Mgs as a GST fusion protein were unsuccessful 

at the stage involving the cleavage o f the GST from Hdm-2 mss using thrombin 

protease. Upon incubation of the thrombin with GST-Hdm-2i-i8g SDS-PAGE 

indicated the presence o f a protein with a mass comparable to GST, however there
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was only a faint indication of the presence of cleaved Hdm-2. It is proposed that upon 

cleavage, the Hdm-2 u 88 forms aggregates resulting in its precipitation from solution. 

Indeed previous research detailing the interaction o f p53 with Hdm-2 residues 1-188 

utilised predominantly the uncleaved protein G S T -H d m -2 i- i8 8  74,157

Thrombin

p G E X

Figure 3.4: The pGEX-2T expression vector, Hdm-2 1-188 was inserted 
between BamHl and EcoRl within the multiple cloning site . 72

Table 3.5 — Primer sequences for the mutation o f  Hdm-2j.iss residues 
126-127 giving rise to Hdm-21.125.

Primer Oligonucleotide

Hdm-2 i.i 88 Wild-Type 

Hdm-2i.i25 Fwd 

Hdm-2i_i25 Rev

5’-CTGTGAGTGAGAACAGGTGTCA 
CCTTGAAGGTGGG-3 ’

5 ’ -CTGT G AGT G AG AACTG AT G AC A 
CCTTGAAGGTGGG-3’

5’-CCCACCTTCAAGGTGTCATCAG 
TTCTC ACTC AC AG-3 ’
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MCNTNMSVPTDGAVTTSQIPASEQETLVRPKPLLLKLLKSVGAQKDTYT

MKEVLFYLGQYIMTKRLYDEKQQHIVYCSNDLLGDLFGVPSFSVKEHRK

IYTMIYRNLVWNQQESSDSGTSVSEN

F ig u re  3 .5 : The amino acid sequence for Hdm-2 residues 1-125 resulting 
from the mutation o f Hdm-2 j.iss by the insertion o f a double stop codon. 70

The work of Lane et al. and Fersht and co-workers involved the use of shorter GST- 

Hdm-2 residues 2-125 which was successfully cleaved to give a stable protein.70 7j 

This initiative was followed to produce a cDNA clone corresponding to GST-Hdm-2 

residues 1-125 by site-directed mutagenesis involving the modification of the initial 

cDNA sequence of GST-Hdm-2 mss at positions 126 and 127 to contain a double-stop 

codon (Figure 3.5).

Marker (Da) Supernatant Flow Through Wash  EluentEluent

■GST-Hdm2M25

F ig u re  3.6 -  SDS-PAGE o f affinity column fractions from step 1 of  
Hdm-2i.j25 purification. GST-Hdm-21.125 is present in the eluent.
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Once confirmed by DNA sequencing, the resulting protein Hdm-2i.i25 was expressed 

and successfully cleaved and purified as described by Schon et al. The supernatant 

solution from the crude cell lysate was applied to a glutathione sepharose 4B affinity 

column pre-equilibrated with Hdm-2 buffer A, and was washed with approximately 6  

column volumes of the same buffer before eluting the GST-Hdm-2i-i25 from the 

column with Hdm-2 Buffer B (Figure 3.6). The affinity column eluents were 

combined and concentrated before incubating at 30 °C overnight in the presence of 

thrombin protease, (Figure 3.7).

Marker (Da) Before After
Cleavage Cleavage

47,500

32,500

25,000

GST-Hdm2,.125

GST
Hdm2 i.i25

F ig u re  3 .7  -  SDS-PAGE o f thrombin cleavage o f GST-Hdm-21.1 25.

The resulting cleavage mixture was run back through the affinity column with Hdm-2 

buffer A to remove the GST, which bound to the resin whilst the cleaved Hdm-21.125 

remained in the flow-through and the bound GST was later eluted using Hdm-2 buffer 

B (Figure 3.8). Any residual GST remaining in the Hdm-2 solution was later removed 

by gel filtration chromatography.
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Marker Column Fractions
(Da) 1 2 3 4 5

G ST

- H d m 2 M 25

F ig u re  3.8 -  SDS-PAGE detailing the separation o f Hdm-21.125 from 
residual GST by gel filtration chromatography.

The flow-through was concentrated and applied to a Superdex G75 10/300 GL gel 

filtration column pre-equilibrated with Hdm-2 buffer A. Hdm-2 containing fractions 

were pooled and the resulting solution dialysed into the fluorescence anisotropy buffer 

prior to concentration and quantitative UV analysis.

The purified Hdm-21.125 was stored in 200 pi aliquots at -80 °C. Amino acid analysis 

of the cleaved and purified protein enabled the calculation of the molar extinction 

coefficient for Hdm-2i-i25, reported as 54,055 M ' 1 cm ' 1 (± 1809, see Appendix A2 for 

data) and provided the means to calculate the concentration of Hdm-21.125 in solution.

3.5 E xpression  and P urification  o f  H um an p53

Professor Sir D. P. Lane, Dundee University, also provided the cDNA clone 

corresponding to full-length human p53. The purification was undertaken according to

32,500

25,000
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a protocol published by Midgley et a/.158 The cell pellet from the centrifuged cell 

lysate was resuspended in p53 buffer A and re-pelleted by centrifugation at 10,000 g. 

This washing procedure was repeated a further two times. The resulting pellet (Figure 

3.9, PI) was solubilised in p53 buffer B by gentle stirring at 4 °C for five hours 

(Figure 3.9, SI). The centrifugation step was repeated in order to remove the 

remaining insoluble matter (Figure 3.9, P2)

- P5383.00 0-----62.00 0-----

47,500-----

F ig u re  3 .9  -  SDS-PAGE detailing the initial purification steps for p53.
P = Pelleted Lysate, SI =Solubilised pellet, P2 = Insoluble Matter

The supernatant solution was diluted in order to give a final buffer concentration 

equivalent to p53 buffer C. This solution was stirred for a further 18 hours at 4 °C (to 

aid protein refolding), dialysed against p53 buffer D and then centrifuged at 10,000 g 

to remove any insoluble matter. The resulting supernatant was applied to a DEAE ion 

exchange column where pure p53 was eluted using an NaCl gradient (0.15 M to 0.5 

M) using p53 buffers E and F.

It was noted that the p53 protein was obtained in a low yield as estimated from the 

intensity of the band observed by SDS-PAGE, however no attempts were made to 

optimise this further since a sufficient quantity of the p53 protein was obtained for the 

initial assays.
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3.6 Conclusion

Peptides have been designed taking into consideration the requirements for both p53- 

Hdm-2 binding and also the attachment o f the azobenzene crosslinker in the 

appropriate spacing where necessary. Initially only subtle changes such as the 

substitution of Pro27 for Ala and the truncation o f the peptide were made in order to 

optimise the natural p53 peptide amino acid sequence. This was done in order to 

provide data to use as a benchmark for comparative purposes. This information was 

useful for planning subsequent modifications o f the p53 peptides and to assess the 

influence of the attached azobenzene crosslinker with respect to not only the relative 

spacing between cysteine residues but also where modifications have been undertaken 

to the p53 peptide such as the substitution of Asp21 for Glu, that are predicted to 

enhance the changes in the degree o f control over the peptide helicity exhibited by the 

azobenzene crosslinker.

A reliable method for the expression and purification o f Hdm-2 residues 1-125 has

nc\been employed based on the work o f Schon et al. This protein was produced as a 

consequence of problems encountered with the purification o f the initial 188 amino 

acid protein upon cleavage from GST with thrombin. Once the purification of Hdm- 

2 i.i25 was refined, amino acid analysis enabled the determination o f the molar 

extinction coefficient allowing for the accurate quantification o f Hdm-2 residues 1- 

125 in solution. This is a critical requirement in the design o f an accurate, repeatable 

binding assay to enable the measurement o f the p53-Hdm-2 interaction. The
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acquisition o f purified p53 enables some exploratory binding assays to be conducted 

which can be used to compare the binding behaviour o f some p5 3-based peptides with 

Hdm-2i-i25 in both the presence and absence o f its complementary binding protein.
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Chapter 4: Evaluation o f Peptide Secondary Structure

4.1 Use of Circular Dichroism to Probe Peptide Secondary 
Structure

Chiral molecules such as amino acids and sugars interact with circularly polarised 

light. The extent of this interaction depends on both the direction o f rotation o f the 

polarised light and the conformation o f the chiral molecule. Circular dichroism 

spectroscopy exposes a sample to equal amounts o f left and right circularly polarised 

light and, depending upon the chirality o f the molecules present, one of the two types 

of polarised light is absorbed more than the other. When the remaining unabsorbed 

left and right circularly polarised light are combined, the result is no longer an 

oscillation along a straight line but along an ellipsoid path, the direction o f rotation of 

which depends upon which circularly polarised component retains the greatest 

intensity upon emerging from the sample cell, i.e. the component that is absorbed the 

least. This yields a value for the degree o f ellipticity (0), Figure 4.1.

Figure 4.1: The angle o f  ellipticity (6) arises from the preferential 
absorption o f left or right circularly polarised light.
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Chapter 4: Evaluation o f Peptide Secondary Structure

CD spectroscopy can be used to determine the secondary structure of proteins and 

peptides by observing the CD signal in the far UV region (190-250 nm), where the 

chromophore of interest is the peptide bond. The CD signal, hence the degree of 

ellipticity is dependent upon the rotation of the Phi (cp) and Psi (vj/) dihedral angles 

along the amino acid chain backbone (Figure 4.2).

psi

Figure 4.2: The phi (q>) and psi (if/) dihedral angles o f  an amino acid are 
found between the a-carbon atom and the amino nitrogen and carbonyl 
carbon atoms respectively.

Secondary structure motifs exhibit specific patterns of ellipticity with respect to 

wavelength, and hence a-helices, p-sheets and random coil conformations give 

characteristic shapes and magnitudes of CD spectra (Figure 4.3), the a-helix for 

example exhibits a positive value for ellipticity at 192 nm, and negative at 209 nm and 

222 nm. The CD signal given by a molecule reflects an average of the entire 

molecular population, so whilst CD spectroscopy enables the overall percentage 

composition of a specific structural motif to be determined, it is unable to assign the 

role of specific residues with respect to the conformations within the observed 

structure.
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Figure 4.3: Characteristic CD signals observed fo r  secondary structural 
motifs (left) and a ramachandran plot (right) showing corresponding 
differences in dihedral angles.159

As described previously in chapter 1.5 the p53 A-terminal transactivation domain has 

a random coil conformation when in the un-bound state and upon binding to Hdm-2 

adopts an a-helical conformation. It is proposed that the transition from random coil 

to a-helix is dependent firstly upon the interaction of key residues of p53 such as 

Phel9, Trp23 and Leu26 with residues within the hydrophobic binding site of Hdm-
/O h

2. This is preceded by intra-molecular hydrogen bonding interactions within p53, 

where the proximity of the critical p53 residues facilitates the adoption of an a-helical 

structure to reduce steric constraints between residues.

The proposed crosslinking of p53 peptides is designed to control the proximity of key 

residues of p53 so as to make adoption of an a-helical conformation sterically and 

energetically favourable upon photo-isomerisation of the crosslinker when covalently 

attached to the peptide with the appropriate spacing.142
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4.2 Evaluation of the structure of wild-type and modified p53- 
based peptides incorporating the attachment and isomerisation 
of the azobenzene crosslinker

4.2.1 The role of Pro27 and the significance of reduced peptide length when 
compared to the control 15 amino acid wild-type peptide

The synthesis of wild-type p53 peptide derivatives enabled the comparison of 

structural changes arising from sequence changes with the control, 15-amino acid 

wild-type peptide (p53_WT). This further allows changes in the structure and stability 

o f the peptide to be attributed to progressive changes to the peptide sequence, be it the 

substitution of residues for cysteines, or the attachment o f the azobenzene crosslinker 

and subsequent isomerism between the c is  and tra n s  isomers.

The CD signals at 197 nm, 209 nm and 222 nm corresponding to an a-helical 

structure will become more pronounced with increasing helicity and it can be seen 

from Figure 4.4 that the wild-type peptide p53_WT exhibits a predominantly random 

coil structure with only 9.5 %  (± 1) a-helical content (calculated using equation 2.2).

The substitution of Pro27 for Ala can be seen to increase peptide helicity with the

2 1mean residue ellipticity at 222 nm ([@]r 222) increasing from -2705 deg cm dm of to 

-13030 deg cm2 dmol'1 equating to a structure with 45.6 %  helicity (± 0.9 % ) relative 

to p53_WT. This supports the rationale for the substitution o f the proline residue at 

position 27 within the p53 peptide sequence, whereby the proline was considered to 

contribute to the disruption o f the formation o f the p53 a-helix due to its poor helical 

propensity as outlined in chapter 1.8, Table 1.1.
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Figure 4.4: CD MRE spectra o f p53_WT, p53_twt and p53_P27A. For
conditions see Section 2.3.2.

The deletion of the C and A-terminal amino acids to yield the ten amino acid 

truncated peptide p53_twt results in a structure with greater a-helicity than p53_WT 

(33.9 % ± 1.1) but less helicity than p53_P27A (Table 4.1). The loss in a-helicity of 

p53_twt when compared to p53_P27A is proposed to be due to the reduction in 

peptide chain length, decreasing the number of supporting helix promoting residues 

(in addition to the loss of Pro27) and therefore the reduction in the helix stabilising 

backbone hydrogen bonding network.

4.2.2 A light stabilised short p53-based peptide designed to promote a-helix 
formation by the attachment of the azobenzene crosslinker in an i,i+4 
spacing

When designing the peptide incorporating cysteine residues in an 7,7+4 spacing we 

decided to use the ten amino acid truncated wild-type peptide (p53_twt) due to there 

being fewer residues outside the constraint of the proposed site for the azobenzene 

crosslinker. When crosslinked, we proposed that peptides with cysteine residues in an
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spacing will encourage a-helicity when the attached crosslinker is in the light 

induced cis isomer, whilst providing an unfavourable geometry when in the dark- 

adapted, trans isomer. As detailed in chapter 3.2 the cysteine residues were 

incorporated by the substitution of p53 residues Ser20 and Lys24. Initially this 

generated some concern whether the substitution of Lys24 for cysteine would further 

destabilise a-helix formation due to the implication of Lys24 in salt-bridge formation. 

There was only a small difference in secondary structure between p53_WT and the 

uncrosslinked peptide p53_twt_i,/+4 (Figure 4.5), with a net improvement in p53 a- 

helicity from 9.5 % (± 1.0) to 21.4 % (± 0.5) being observed. Comparing the CD data 

for the truncated peptide, p53_twt with p53_twt_/,/+4 demonstrates a reduction in a- 

helicity, with a reduced value of [0 ]r 190 and increased value o f [0]r 222 from -7532.6 

deg cm2 dmol'1 (± 243.6) to +1753.1 deg cm2 dmol'1 (± 121.4). This represents a 

reduction in a-helicity from 33.9 % (± 1.1) to 21.4 %  (± 0.5) for p53_twt and 

p53_twt_/,/+4 respectively (relative to p53_WT).

25000
—  p53_WT 

p53_twt
—  p53_twt_

20000
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Figure 4.5: CD MRE spectra o f  p53_WT, p53_twt and p53_twt_,i,i+4. 
For conditions see Section 2.3.2.
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This adds further evidence to the suggestion that Lys24 plays a part in stabilising an 

a-helical conformation besides its contribution via backbone hydrogen bonding. 

Chapter 1.8, Table 1.1 shows that aside from the issue of salt-bridge formation, lysine 

has a high helical propensity whereas its substitution for cysteine will reduce the 

relative stabilisation of the a-helical conformation. Upon crosslinking p53_twt_/,/'+4, 

there is a significant increase in a-helicity when compared to the uncrosslinked 

peptide. However, when comparing the crosslinker in both the dark-adapted trans and 

light induced cis conformations, the difference in a-helicity was fairly insignificant 

with [0 ] r 222 o f-12236 deg cm2 dmol'1 (± 306.7) and -10708 deg cm2 dmol'1 (± 188.6) 

respectively (Figure 4.6). We have proposed that the steric constraints between the 

crosslinker and peptide and additionally between residues within the peptide itself 

may be unfavourable when the crosslinker attached in an /,/+4 spacing and in the 

trans conformation. As a result, the attached crosslinker may be forced to adopt a cis 

conformation, permitting the adoption of a more stable a-helical structure.

—  p53_WT
—  p53_twt_/,/+4
—  p53_twt_/>4_XL LIGHT
—  p53_twt_/,/+4_XL DARK

25000

■at 15000

E 5000 o
0303
— -5000

-15000

-25000

-35000
190 200 210 220 230 240 250 260 270 280X (nm)

Figure 4.6: CD MRE spectra o f  p53_twt_i,i+4 in addition to light/dark 
adaptedp53_twt_i, i+4_XL andp53_WT. For conditions see Section 2.3.2.
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4.2.3 The design of a-helical light stabilised i,/+7 crosslinked peptides and 
sequence optimisation to enhance the destabilisation of the peptide a-helix 
upon relaxation of the crosslinker to the dark-adapted state

Like the peptides containing cysteine in an i,i+4 spacing, the attachment of the 

azobenzene crosslinker to a peptide containing cysteine residues in an iJ+7 spacing 

also favours an a-helical conformation when the crosslinker is in the cis isomer, with 

this conformation becoming unfavourable upon relaxation to the trans isomer. The 

larger spacing between the cysteine residues places more residues within the 

constraint o f the attached crosslinker and therefore makes it favourable for a 

derivative o f a 15 amino acid wild-type p53 peptide to be used for the basis o f the 

design of a peptide for crosslinking where the cysteine residues are positioned in an 

i,i+7 spacing. As shown in Figure 4.4, the substitution o f Pro27 for alanine in the 

wild-type p53 peptide p53_P27A increases the a-helicity o f the resulting peptide by 

approximately 36 % compared to p53_WT. Therefore this provided a good starting 

point for the design o f such a peptide.

As detailed in chapter 3.2 the synthesis o f a peptide containing cysteine residues in an 

i,i+7 spacing based upon p53_P27A involved the substitution of both Glul7 and 

Lys24 for cysteine since other favourable locations upon the peptide chain would 

have resulted in the breaking o f specific helix-stabilising interactions. Figure 4.7 

illustrates the CD spectrum o f the resulting uncrosslinked peptide, p53_P27A_/,z'+7 

overlaid against the spectra for p53_P27A and the uncrosslinked z,j+4 spaced peptide 

p53_twt_z',z+4. It can be seen from the spectra at (©]r 222 that the modification o f the 

peptide to incorporate cysteine residues reduces the helicity of the free peptide when

118



Chapter 4: Evaluation o f Peptide Secondary Structure

compared to the wild-type P27A peptide, with values o f -7583.8 deg cm2 dmol'1 (± 

208.7) and —4753.1 deg cm2 dmol*1 (± 121.4) respectively corresponding to the 

percentage a-helix content decreasing from 45.6 % to 26.5 % relative to p53_WT. 

This reduction was not as significant as that of the /,i+4 spaced peptide (21.4 %), most 

likely due to the differences in relative helical stabilisations of the substituted Glul7 

(-0.27 kcal mol'1) of the z,z+7 peptide and Ser20 (-0.35 kcal mol'1) of the z,z+4 peptide 

with respect to Cys (-0.23 kcal mol'1).
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— p53_P27A
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Figure 4.7: The i,i+7 spaced peptide shows a greater degree o f a-helix 
stability than the i,i+4 spaced peptide. For conditions see Section 2.3.2.

The CD spectrum of the crosslinked p53_P27A_z,z+7_XL shows that the peptide has 

comparable secondary structures when the crosslinker is in the light-induced and dark 

adapted conformation (Figure 4.8). The [@]r 222 for both the light-induced and dark 

adapted peptide give values of 11 % a-helicity, relative to p53_WT. This is a 

significant decrease from the 45.6 % helicity calculated for the modified wild-type 

peptide p53_P27A, in addition to a reduction of approximately 15 % a-helicity when 

compared to the uncrosslinked peptide. This data indicates that the presence of the
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attached crosslinker has only a minimal contribution to the destabilisation of the a- 

helicity of the peptide when in both the c is  and tran s isomer. We reason that the 

substitution of Glul7 and Lys24 for cysteines in the design of the /,/+7 spaced peptide 

significantly impairs the ability of the peptide to maintain a stable helical structure.
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Figure 4.8: C D  M R E  sp e c tra  o f  p 5 3 _ P 2 7 A _ i,i+ 7  in a d d itio n  to  lig h t a n d  
d a rk  a d a p ted p 5 3 _ P 2 7 A _ i,i+ 7 _ X L . F or con d ition s se e  S ec tio n  2.3 .2 .

The examination of the CD data for the /,/+ 4  spaced uncrosslinked peptide 

p53_twt_/,/+4 showed a reduction in a-helix content by 12.5 % when compared to the 

template truncated wild-type peptide p53_twt (relative to p53_WT), and involved the 

substitution of Ser20 and Lys24 for Cys residues. Chapter 1.8, Table 1.1 shows that 

whilst the substitution of Ser, Lys and Glu for Cys would all result in a decrease in the 

relative helical stabilisation for the resulting peptide sequences, the small differences 

between the values of helical stabilisation given for Glu and Cys, -0.27 kcal mol'1 and 

-0.23 kcal mol'1 respectively suggests that the major contribution to the 19.1 % 

reduction in a-helicity between the peptides p53_P27A and the Cys incorporated 

p53_P27A_/,/+7 (relative to p53_WT) arises from the loss of Lys24, which has a
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contribution to helical stabilisation of -0.65 kcal mol1.99 As described previously, the 

decision to substitute Glu 17 and Lys24 was taken since other possible locations for an 

i,i+ l spacing between Cys residues would have involved the disruption of known 

additional helix stabilising interactions involving residue side-chains such as the 

hydrogen bond between Thr 18 and Asp21.

In order to improve upon the reduction in a-helicity seen with the peptide 

p53_P27A_/,/+7 it was decided to build upon the gain in helix stability provided by 

the P27A modification by further enhancing the a-helical stabilisation provided by all 

of the amino acids within the peptide sequence. It would also be an advantage if this 

further optimisation were to encourage a-helix formation with the attached crosslinker 

in the appropriate isomer, without providing additional helix-stabilising interactions 

thus permitting desired helix destabilisation when switching to the appropriate isomer 

of the crosslinker. As described in chapter 3.2, we substituted Asp21 for Glu, since 

this was proposed to eliminate the helix stabilising additional hydrogen bond of the 

Asp21 side-chain with Thrl8. Chapter 1.8 Table 1.1 does not take into account side- 

chain interactions and so indicates that this change may also encourage an a-helical 

conformation since there is a net improvement in the relative helical stabilisation of 

the peptide upon substitution of Asp (-0.15 kcal m ol1) for Glu (-0.27 kcal mol'1).

The CD spectrum for the resulting peptide, p53_D21E_z',/+7, is shown in Figure 4.9 

overlaid with its predecessor p53_P27A_z,z'+7. The substitution of Asp21 for Glu 

appears to make no significant difference to the secondary structure o f the peptide, 

although analysis of the [@]r 222 measurements suggest an improvement in the peptide 

a-helix content from 26.5 % to 38.6 % respectively, relative to p53_WT. This makes
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the secondary structure of the Glu21 modified peptide more comparable to that of the 

substituted wild-type peptide p53_P27A, with values for [0]r 222 o f -11041 deg cm2 

dmol'1 and -13030 deg cm2 dmol'1 respectively giving rise to a difference of only 7.8 

% a-helicity between the two peptides (Figure 4.9). The secondary structure data for 

p53_D21E_/,/+7 shows that the strategy of sacrificing a helix stabilising hydrogen 

bond for the sake of substituting an amino acid for another which contributes to a 

higher degree of a-helical stabilisation was successful. An improvement in the overall 

a-helicity of the resulting peptide has been recorded, in this instance off-setting the 

loss in a-helix stability as seen with the initial i,i+ 7  substituted peptide 

(p53_P27A_/,z+7) attributed predominantly to the loss of helix stabilisation 

contributed by Lys24.
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Figure 4.9: The su bstitu tion  o f  A sp21  f o r  G lu  com plim en ts the P27A  
m odifica tion  in the resu ltin g  i , i+ 7  s p a c e d  p e p tid e  to  enhance p h o to - 
sw itc h a b ility  o f  a-helicity . F or con d ition s see  S ec tion  2 .3.2.

The crosslinked derivative of the improved i,i+ 7  Cys substituted peptide 

p53_D21E_z,z+7_XL is shown in Figure 4.10 in both the light induced and dark-
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adapted states in comparison with its predecessor p53_P27A_/,7+7_XL. Although CD 

signals at 222 nm suggest p53_D21E_/,/+7_XL shows a greater degree of a-helicity 

with both the c is  and tran s isomers of the crosslinker than that of 

p53_P27A_M+7_XL, the evaluation of the line shape suggests all peptides are 

random. As seen previously, the isomerisation of the crosslinker appears to make an 

insignificant difference to the secondary structure of the peptide. This brings into 

question the ability of CD spectroscopy to differentiate between the structural 

discrepancies between the light induced and dark-adapted states of such short 

crosslinked peptides.
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Figure 4.10: D ark  a n d  lig h t-a d a p ted  p53_D21E_i,i+7_XL show  no  
im provem en t in a -h e lic ity  co m p a re d  to  its p re d e c e sso r  
p53_P27A_i,i+7_XL. F or con d ition s see  S ec tion  2.3.2.

Although CD spectroscopy is able to clearly outline the differences in secondary 

structure characteristics between an a-helix and a truly random coil structure, it is 

proposed that the attachment of the crosslinker is still constraining the peptide’s
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structure be it in the cis or trans isomer. This may therefore contribute to difficulties 

in discriminating between the ordered structure that is defined as a-helix promoting 

and that which although ordered due to the constraint o f the attached crosslinker is 

regarded as a-helix destabilising. For example, a short crosslinked peptide in such a 

conformation to destabilise a-helix formation, although potentially random in its 

secondary structure, it is still effectively ordered via the attachment o f its two cysteine 

residues to the crosslinker and so potentially lacks the conformational flexibility 

afforded to a truly random coil conformation.

4.2.4 Dark stabilised 15 amino acid p53-based peptides designed to promote a- 
helix formation by the attachment of the azobenzene crosslinker in an 
i,/+ ll spacing

The attachment of the azobenzene crosslinker to peptides via cysteine residues in an 

i,i+\ 1 spacing permits the stabilisation o f the peptide in an a-helical conformation 

when the crosslinker is in its relaxed, dark-adapted trans isomer. Upon isomerisation 

to the light-induced cis isomer it is proposed that the change in end-to-end distance of 

the crosslinker is sufficient to destabilise the a-helical structure of the peptide, 

resulting in a more random coil conformation. As described in Chapter 3.2 the /,/+l 1 

spaced peptide was based on the P27A substituted wild-type peptide, due to the 

improvement that this modification made to the resulting peptide secondary structure 

over the wild-type 15 amino acid peptide. The only possible location for the cysteine 

residues in this spacing involved the substitution o f p53 Glu residues 17 and 28, 

which although having a negative effect upon the solubility o f the uncrosslinked 

peptide, has a minimal effect upon the conformational stability of the peptide. This is
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due to the relative helical stabilisation of -0.27 kcal mol'1 and -0.23 kcal mol'1 

contributed by Glu and Cys respectively."

20000
—  p53_WT
—  p53_P27AJ,/'+7
—  p53_P27A_/,/+11
—  p53_P27A

15000

-10000

-15000

-20000

-25000

-30000
190 200 210 220 230. 240 250 260 270 280

Figure 4.11: The p o s itio n in g  o f  cyste in e  res id u es  in an  i , i + l l  sp a c in g  
sh o w s a  sign ifican t im provem en t in p e p tid e  a -h e lic ity  o ver  th eir  
p o s itio n in g  in an i ,i+ 7  spacing. F or con d ition s see  S ec tio n  2 .3.2.

Figure 4.11 shows the CD spectrum of the resulting peptide p53_P27A_/,/+l 1 

overlaid with the equivalent /,/+7 peptide and the modified wild-type peptide 

p53_P27A. It is clear that there is a significant difference in secondary structure 

between the /,/+11 spaced peptide compared to the /,/+7 spaced peptide, which 

according to MRE data at 222 nm equates to an increase in the a-helix content from 

26.5 %  to 40.0 %. The CD spectra for the resulting crosslinked peptide 

p53_P27A_/,/+l 1_XL, for both the cis  and tran s  isomer of the crosslinker, displaying 

a clear [0] minimum at 222 nm indicative of an a-helical structure, Figure 4.12.
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Figure 4.12: The cro sslin k in g  o f  p 5 3  P 2 7 A _ i,i+ l  1 sh o w s a  sign ifican t 
im provem en t upon a-h elic ity , m o st n o ta b ly  in the d a rk -a d a p te d  sta te. F or  
con d ition s see  S ection  2.3 .2 .

The crosslinked peptide shows a significant improvement in a-helicity over the 

uncrosslinked /,/+l 1 spaced peptide, with an a-helix content of 70.7 % and 56.8 %  

with respect to p53_WT for the dark-adapted and light induced conformations 

respectively. Although clearly demonstrating the ability of the azobenzene crosslinker 

to influence the secondary structure of a peptide, the desired degree of secondary 

structure switching that arises from the isomerism of the attached crosslinker is still 

lacking in significance. We therefore employed the same modification as used for the 

/,i+7 spaced peptide and made the Asp21Glu mutation which was proposed to 

increase the influence of the crosslinker over the peptide secondary structure.
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Figure 4.13: The su bstitu tion  o f  A sp21  f o r  G lu in the p e p tid e  p 5 3 _ D 2 1 E _  
i , i + l l  sh o w s co m p a ra b le  seco n d a ry  stru ctu re  to  its  p r e d e c e s so r  
p 5 3 _ P 2 7 A  _  i,i+77. F or co n d itio n s see  Section  2.3.2.

Substitution of Asp21 for Glu causes a loss of a-helicity in comparison with the 

Asp21 containing peptide p53_P27A_/,/+l 1 (Figure 4.13) as expected, since the loss 

of the additional stabilisation provided by Asp21 would destabilise the free peptide. 

Figure 4.14 highlights the differences between the peptide secondary structures when 

the crosslinker is in its respective isomers. Although there is clearly a greater helical 

structure in the dark-adapted state (86.6 %) when compared to the light-induced state 

(75 %), there is only an 11.6 % difference in a-helicity between the cis and trans  

isomers compared to the 13.9 %  difference observed between the isomers of the 

peptide p53_P27A_i,i+l 1_XL. This shows that whilst the substitution of Asp21 for 

Glu reduced a-helicity, there is no observed improvement in the secondary structure 

switching abilities for the respective crosslinker conformation required to initiate a- 

helix destabilisation.
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Figure 4.14: The cro sslin k in g  o f  p 5 3 _ D 2 1 E _ i,i+ l 1 sh o w s a  sign ifican t 
im provem ent upon a -h elic ity , m o st n o tab ly  in the d a rk -a d a p te d  sta te . F or  
con dition s see S ection  2.3 .2 .
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4.3 E valuation  o f  the stab ility  o f  the light-induced conform ation o f  
the crosslinked m odified  p53-based peptides -  C om parison o f  
the rate o f  relaxation o f  the azobenzene crosslinker by U V  
spectroscopy
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Figure 4.15: The U V  spectru m  o f  the a zo b en zen e  cro sslin k er sh ow s  
re laxa tion  fro m  the c is  to  tran s isom er, re c o v e r in g  its  m axim a a t 36 0  nm.
T  =  2 0  °C in C D  buffer.

The UV absorbance spectrum for the dark-adapted, tra n s  isomer of the azobenzene 

crosslinker shows an absorbance maximum at 360 nm. Upon isomerisation to the c is  

form, the absorbance of the crosslinker at 360 nm is significantly reduced. As detailed 

in chapter 1.9 due to the continuous relaxation of the c is  isomer to the trans form only 

70-90% c is is obtained, and therefore by taking this value of UV absorbance as 

representative of the total possible conversion of the crosslinker to the cis isomer it is 

possible to monitor the relaxation of the crosslinker towards the dark-adapted, tran s  

isomer. This relaxation can be achieved over time and in a temperature dependant 

manner with a yield > 99 %  of the tra n s  isomer, thus permitting the crosslinker 

relaxation to be monitored by the use of UV spectroscopy. Figure 4.15 shows UV 

spectra for the azobenzene crosslinker in a light induced state in addition to UV scans
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taken at intervals o f 20 minutes at 20 °C demonstrating the recovery of the 360 nm 

absorbance maxima upon relaxation to the dark-adapted trans isomer.

By monitoring the increase in absorbance of the light-induced crosslinker over time 

until a constant value is achieved (> 99 % trans) it is possible to calculate the value 

for the half-life at a specific temperature. By constructing an Arrhenius plot of the 

natural logarithm of the rate constant (k) for the thermal relaxation process against 1/T 

a straight line is obtained (Figure 4.16) and the activation energy (EJ calculated from 

the gradient.

terecpt = In A
- 6.5

■7

Slope = E8 / R
- 7.5

-8
♦

- 8.5
3.2 3.25 3.3 3.35 3.4  3.45  3.5 3.55 3.6 3.65

1 /T  (xIO*3)

Figure 4.16: Plotting the rate constant (k) against temperature (1/T) 
enables the calculation o f  the activation energy (EJ for the relaxation o f  
the crosslinked peptides.

The results for the half-lives o f all crosslinked peptides based on UV relaxation 

measurements at different temperatures are given in Appendix A3, and the data based 

on the Arrhenius plots for these peptides is summarised in Table 4.1. The free 

azobenzene crosslinker has the fastest relaxation half-lives when compared to the
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crosslinked peptides at different temperatures, but it also has the highest activation 

energy, and is thus proposed to undergo faster relaxation due to it being free in 

solution as opposed to the constraint of the crosslinker when attached at each end to 

the respective peptide. Almost all crosslinked peptides posses similar activation 

energies since they all constrain the crosslinker in the same way, however 

p53_D21E_z,z+7_XL has an activation energy approximately 10 kJ mol'1 lower than 

the other crosslinked peptides. This further highlights the importance o f the role of 

Asp21 in stabilising the p53 a-helix and shows how the formation o f a stable peptide 

a-helix contributes to the increased half-lives seen with the crosslinked peptides, this 

is because a greater helical stability opposes relaxation o f the attached crosslinker.

Table 4.1: Summary o f  the UV relaxation data for the crosslinked p53-based 
peptides and comparison with the free crosslinker.

Slope = 
-Ea/RT

Ea
(kJ mol'1)

Arrhenius 
Parameter (s'1)

Crosslinker -3890.9 ±289.6 32.35 ±2.41 428.76
P 5 3_twt_z, z'+4_XL -2992.3 ± 229.7 24.88 ±1.91 6.30
P53_P27A_z,z+7_XL -3101.7 ±291.0 25.79 ± 2.42 6.05
P 5 3 D 2 1 E_z,z+7_XL -1876.3 ± 155.4 15.60 ± 1 .29 0.09
P53_P27A_z,z+ll_XL -3030.2 ± 352.9 25.19 ±2.93 3.77
P5 3 JD 21 E_z,z+11 _XL -3237.2 ±413.3 26.91 ± 3 .44 8.54

4.4 Investigating the secondary structure of cysteine containing 
peptides based upon a polyalanine scaffold incorporating 
residues critical for Hdm-2 binding

The synthesis o f p53_Ala_z',z'+7 and p53_Ala_z',z'+l 1 was intended to demonstrate the 

use of a stabilised polyalanine scaffold incorporating only the residues critical for
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p53-Hdm-2 binding in addition to those known to stabilise the p53 a-helix. As noted 

previously, the increase in the number of alanine residues within the 15-amino acid 

peptides had a clear effect upon the solubility of the peptides, despite the inclusion of 

charged terminal capping residues whose function was predominantly to stabilise the 

helix dipole.

15000
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—  p53_Ala_/,/+7
—  p53_Ala_/,f+1110000

O 5000 
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Figure 4.17: The i ,i+ 7  s p a c e d  A la  scaffo ld  p e p tid e  sh o w e d  im p ro ved  a- 
h e lic ity  w hen co m p a red  to  the w ild -ty p e  p ep tid e  p53_W T .

The CD spectra of these peptides are shown in Figure 4.17, where it is apparent that 

the secondary structure is not truly a-helical for either peptides. The CD spectrum of 

the /,/+7 spaced peptide p53_Ala_/,/+7 shows a structure with an increased a-helix 

character at 222 nm compared to the control, wild-type peptide p53_WT, with a total 

a-helix content of approximately 17.8 % and 9.5 % respectively. There is however, a 

greater resemblance to a random conformation for p53_Ala_/,/+l 1 which is more 

comparable to p53_WT. Although identical with respect to the critical amino acids 

and number of alanine residues, both the 7,7+7 and 7,7+11 spaced peptides contain a
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single cysteine residue in differing positions and this is proposed as the reason for the 

significant difference in a-helicity between the two peptides. In the ij+7  spaced 

peptide, the cysteine is positioned as residue 24 within the middle of the peptide 

sequence, whereas it corresponds to residue 28 for the i , i+ l l  spaced peptide, the 

penultimate amino acid from the peptide C-terminus.

4.5 Conclusion

Circular dichroism spectroscopy was used to probe the secondary structure of the 

synthesised peptides, which were then compared to the control 15 amino acid wild- 

type peptide p53_WT, calculated to possess only a 9.5 % a-helix content. 

Optimisation of the wild-type structure showed that substitution o f Pro27 (to give 

p53_P27A) increased a-helicity to 45.6 % (relative to p53_WT) as predicted due to 

the disruption proline contributes to an a-helical structure. Reducing the peptide 

length (p53_twt) also increases the a-helicity with respect to the initial peptide 

p53_WT. However, the low a-helicity o f the wild-type peptide has been attributed to 

the presence of Pro27 so when compared to p53_P27A the truncated ten amino acid 

peptide shows a net reduction o f 11.7 % a-helicity.

Comparison of the secondary structures o f the peptides designed to incorporate 

cysteine residues at defined spacings revealed key information regarding the 

involvement of specific amino acids in the stabilisation o f the p53 a-helix. The i,i+4 

spaced peptide was based on the ten amino acid peptide p53_twt, and the subsequent
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peptide (p53_twt_/,/+4) although still more a-helical than the 15 amino acid wild-type 

peptide showed a reduction of 12.5 % a-helicity when compared to the peptide 

p53_twt. This is expected since the reduction in the length o f the peptide chain results 

in a decrease in the number o f potential a-helix stabilising hydrogen bonds, however 

it also highlighted the contribution of Lys24 in terms of increasing the overall a-helix 

propensity o f the peptide sequence. The addition of the azobenzene crosslinker 

improves the a-helicity o f both the dark-adapted and the light induced structures (55.0 

% and 48.2 % respectively), which is surprising since although it was intended to 

induce a helical conformation when in the light induced state; this increase is also 

seen for the dark-adapted structure.

The distribution of cysteines in an i,/+7 spacing supported the results o f the i,i+4 

spaced peptide in which the significance of the helical propensity o f Lys (-0.65) 

becomes evident. The peptide p53_P27A_/,z+7 showed a 19.1 % reduction in a- 

helicity since incorporation of Cys required the substitution o f Lys24, although upon 

crosslinking, both the cis and trans isomers showed an 11 % increase in a-helicity 

over the uncrosslinked peptide. Like the peptide p53_twt_i',i+4_XL, we proposed that 

the addition o f the crosslinker whether in the cis or trans isomer adds some degree of 

order to the peptide. When comparing the crosslinked to the uncrosslinked peptide, it 

is thought that the uncrosslinked peptide has greater mobility in such a way as the 

movement o f one Cys residue when not attached to the crosslinker is independent of 

the other.

In order to compensate for the loss o f Lys24 when designing the i,i+7 spaced peptide, 

in addition to giving more control o f the peptide secondary structure to the isomerism
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of the crosslinker, it was decided to substitute Asp21 for Glu. The loss of Lys24 was 

unavoidable in the design of the i,i+ l spaced peptide since other favourable locations 

for cysteine residues would have disrupted known helix stabilising interactions. This 

modified uncrosslinked peptide (p53_D21 E_z',z+7) shows a 12.1 % increase in the a- 

helix content when compared to its predecessor p53_P27A_z',z+7 giving an a-helix 

content comparable to the wild-type peptide p53_P27A. Again the resulting 

crosslinked peptide showed an increase in a-helicity, however there was no further 

evidence of the regulation of the peptide secondary structure by the isomerism of the 

crosslinker.

The principle of the design for the z,z+l 1 spaced peptides was to yield dark-adapted, 

trans stabilised a-helices which become destabilised upon isomerism of the 

crosslinker from trans to cis. The z,z'+11 spaced peptides allow for Lys24 to remain 

included within the peptide sequence and as a result the uncrosslinked peptide shows 

an increase in a-helicity over p53_P27A_z',z+7 by 13.5 %. Upon crosslinking, the a- 

helix content was significantly increased again for both the dark-adapted and light- 

induced peptides, however there was 13.9 % greater a-helicity observed for the dark- 

adapted, trans isomer. The designed Hdm-2 binding peptides based upon a 

polyalanine a-helix incorporating cysteine residues show a defined secondary 

structure, with the z',z'+l 1 spaced peptide more helical than the z',z'+7 spaced peptide 

which is comparable to that of the peptide p53_WT. This further highlights the 

importance of the positioning of the cysteine residues with respect to the resulting 

secondary structure since in both cases alanine is substituted for cysteine.
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Examination of the UV relaxation of the crosslinked peptides showed a temperature 

dependant decrease in the half-life o f the cis isomer of the azobenzene crosslinker as 

observed with the crosslinker in a free un-bound state. The calculation of the half-life 

for the crosslinker enables the determination o f the activation energy for this process 

and interestingly, the free crosslinker has the highest value, 32.35 kJ mol*1. All o f the 

crosslinked peptides have similar values for Ea, with the exception of 

p53_D21E_/,i+7_XL which is approximately 10 kJ mol'1 lower, supporting the 

evidence for the D21E mutation promoting the disruption o f a-helicity in the dark- 

adapted state when attached in an iJ+7 spacing.

This work has yielded peptides able to be crosslinked in addition to presenting key 

residues required for interaction with Hdm-2. Although the addition o f the crosslinker 

using cysteine residues incorporated within the sequence in an i,i+4 and i,i+7 spacing 

proved unsuccessful for the regulation o f the peptide secondary structure there is 

potential for further optimisation o f this sequence to gain further a-helical preference 

and enhance the effect of photoswitching on peptide conformation. UV spectroscopy 

has been successfully used to monitor the relaxation o f the crosslinker, this has shown 

as proposed that the half-life o f the cis isomer is significantly affected by attachment 

to a peptide, the extent of which provides a good guide to the stability of the peptide 

conformation induced from the photoisomerisation o f the crosslinker.
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Chapter 5: Quantification of p53-Hdm-2 Binding

5.1 Measuring Peptide-Protein Interactions

The importance o f the interaction between p53 and Mdm-2 for the regulation of 

apoptosis has been highlighted in chapter 1.4. Further investigation into this 

interaction has revealed a 1:1 relationship between the binding o f these two proteins 

(Equation 5.1). Therefore the dissociation constant (KD) can be defined as the 

relationship between the free protein ([P]) and ligand ([L]) with respect to the bound 

protein-ligand complex ([PL]), Equation 5.2.

K.
[P] + [L] [PL] Equation 5.1

Kn = rPl FL1 Equation 5.2
[PL]

Previous investigations of the interaction between p53 and Mdm-2 have been 

conducted using a variety of techniques including enzyme-linked immunosorbent 

assay (ELISA),74 isothermal titration calorimetry (ITC)70 and also fluorescence-based 

techniques.50,75,77 Schon et al. investigated the mechanism of p53-Mdm-2 binding by 

examining the binding o f a set of peptides derived from the A-terminus of wild-type

70p53. Their experiments showed how phosphorylation o f p53 Seri 5 and Ser20 did 

not affect p53-Mdm-2 binding, however the phosphorylation of Thrl8 resulted in the 

reduction in binding affinity for Mdm-2 by an order of magnitude. NMR studies 

carried out by Schon and co-workers revealed how upon binding Mdm-2 undergoes a 

conformational change that is not limited to the hydrophobic cleft. The ITC data
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reported by Schon et al. gave a Kd o f 580 nM (±19  nM) for a 15 amino acid peptide

representing p53 residues 15-29. This result was comparable with the work of Fersht

et al. who also used ITC to measure the binding o f full-length p53 to Hdm-2 residues

2-125.50 They measured a Kd o f 340 nM ( ± 1 0  nM), an improvement over the 15

amino acid peptide o f Schon et al.10 The crystal structure o f the p53-Mdm-2 complex

reveals the terminal ends of the p53 a-helix to be in an extended conformation, less

• 68ordered when compared to the residues actively involved in Mdm-2 binding. As a 

result, these may contribute to the destabilisation o f the p53 a-helix whereas in full- 

length p53 these same residues are somewhat constrained between other secondary 

structural motifs o f p53 reducing the flexibility in the extended conformation o f these 

residues.

5.2 Evaluation of the binding of p53-based peptides with Hdm-2

Due to steric constraints, the functionality o f the crosslinker requires a clear path 

between the two cysteine residues where it forms its covalent attachments to the 

peptide. Consequently the attachment o f a fluorophore to any part o f the p53 peptide 

other than the N  or C-terminus would not only restrict the possible combination of 

locations for the attachment o f the crosslinker but also may interfere with and 

contribute to the inhibition of p53-Hdm-2 binding. Attachment o f the fluorophore to 

either the flexible N- or C- terminus means the change in anisotropy observed upon 

complexation may be reduced.
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Table 5.1: Binding data for the wild-type p53-based peptides.

Peptide J£/>(nM)
p53_WT (15-29) 268 ± 49

p53_P27A 22 ± 3
p53_twt 1 1 ±1

p53 (15-29) Schon et al.'" 580 ± 19
p53 protein 340 ± 10

Fluorescence anisotropy binding assays were carried out by titrating Hdm-2 of a pre­

determined concentration into a 1 cm fluorescence cuvette containing a 1 ml solution 

of a specific concentration o f peptide (typically 10 nM), anisotropy values were 

recorded two minutes after each addition o f protein. The binding data for the wild- 

type p53-based peptides is summarised in Table 5.1, and demonstrate the 

effectiveness o f the optimised fluorescence anisotropy binding assay since the 15 

amino acid control peptide p53_WT, yields Hdm-2 binding results comparable to

70values previously reported for this peptide without the amidated C-terminus.
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Figure 5.1: Fluorescence anisotropy binding curves for a 1:1 binding 
model. p53_WT (left, Kd = 268 nM ± 49) andp53_twt (right, Kd = 11 nM
± 1).

Figure 5.1 highlights the difference between a binding curve for a weakly binding 

peptide (p53_WT) when compared to a tightly binding peptide (p53_twt). Table 5.1
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shows that there is a significant improvement in the binding affinity for the modified 

wild-type peptides over the control, 15 amino acid wild-type peptide p53_WT. This 

binding affinity is marginally stronger than the values given by previous researchers, 

possibly due to the additional stabilisation provided by the amidation at the C- 

terminus of the peptides.50,70

The modification o f the wild-type peptide by the substitution o f Pro27 for Ala 

improved the binding affinity o f the peptide for Hdm-2 i.i25 by an order o f magnitude, 

supporting the proposal for the A-terminus of the p53 a-helix being in an extended 

conformation resulting in a-helix destabilisation,68 since a-helix instability would 

have a negative effect upon p53-Hdm-2 binding. The substitution o f the proline 

residue in position 27 for a more helix promoting amino acid reduced the extent of 

helix destabilisation resulting in a higher p53 -  Hdm-2i-i25 binding affinity. This is 

supported by the CD data of Chapter 4 where the a-helix content increases by 

approximately four times its value for p53_WT. The two orders o f magnitude increase 

in Hdm-2 binding for the truncated peptide p53_twt also correlates with the CD 

secondary structure data, since the free peptide is shown to have a more highly 

ordered a-helical structure compared to p53_WT, 33.9 % and 9.7 % a-helicity 

respectively (Chapter 4.2, Figure 4.4). We propose the shorter a-helix is potentially 

able to fit deeper within the hydrophobic cleft o f Hdm-2 therefore increasing the 

binding affinity. Additionally, we believe the shorter peptide has less o f an extended 

conformation, and is therefore a more stable helical structure than the longer, 15 

amino acid peptides.
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The truncated ten amino acid peptide was used as the template for the design of the 

/,/+4 spaced cysteine containing peptides, and the binding data is given in Table 5.2. 

The incorporation of the cysteine residues appears to have had only a slightly negative 

effect upon the binding affinity o f the uncrosslinked iJ+4 spaced peptide when 

compared to the wild-type peptide p53_twt, supporting the CD data where 

approximately a one-third reduction in the peptide a-helicity is observed. Upon 

crosslinking, a further reduction in Hdm-2 binding affinity occurs to approximately 

half that of the initial truncated wild-type peptide. There also appears to be some 

functionality introduced between the binding affinity o f the light-induced and dark- 

adapted structures, with tighter binding in favour o f the light-adapted structure as 

desired. However, upon closer examination of the error values, for these assays it is 

apparent that these binding affinities are essentially identical. Interestingly, whilst the 

CD data shows a significant improvement upon the a-helix content o f the /,/+4 spaced 

peptides upon crosslinking, the binding affinity is reduced implying that the proposed 

increase in penetration of the truncated peptide within the hydrophobic cleft o f Hdm-2 

is in some way inhibited by the presence of the crosslinker however this is unlikely 

since the binding affinity data is still significantly more improved than the wild-type. 

It is proposed that the interaction o f the conserved peptide residues from the p53 

sequence with their respective residues of Hdm-2 are strong enough to overcome the 

constraints imposed by the crosslinker, hence both the cis and trans isomers have no 

impact upon the binding interaction o f this particular peptide.
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Table 5.2: Binding data for the i,i+4 spaced p53-based peptides.

Peptide Kd (nM)
p53_twt_z,i+4 19 ± 2

P53_twt_/,i+4_XL Dark 27 ± 4
P53_twt_/,/+4_XL Light 2 1  ± 2

It was therefore decided to investigate the competition between the p53 protein and a 

selection of p53 peptides for the binding to Hdm-21.125. The results show that for the 

truncated wild-type peptide p53_twt there is no change in the binding affinity of the 

peptide for Hdm-2i-i25 when in the presence of the p53 protein (Table 5.3).

Table 5.3: Binding data for peptides in the presence offull-length human p53.

Peptide Kd (nM)
p53_twt_/,z+4 2 0  ± 2

p5 3_twt_/,i+4_XL Dark 2 0  ± 3
p53_twt_i‘,i+4_XL Light 1 2  ± 2

When this experiment was repeated using a crosslinked peptide (p5 3_twt_i, i+4_XL), 

no change in the binding affinity o f the trans, dark-adapted peptide was observed. 

However, upon isomerisation to the cis, light-induced state the binding affinity was 

twice the strength o f the same peptide in the absence o f the p53 protein. Since the 

other peptides show no change in their binding affinities when p53 is present in the 

assay mixture, it is proposed that this additional increase in a-helicity arises due to 

experimental error.

The binding data for the uncrosslinked and crosslinked i,i+ l spaced peptides is shown 

in Table 5.4, where in general it can be seen that the change from the distribution of
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the cysteines from an i,i+4 to an i,i+7 spacing has a negative effect upon Hdm-2 

binding. This is contrary to the calculated increase in a-helicity observed by CD 

spectroscopy, and it is proposed that substitution o f Glul7 as observed by Schon et al. 

is a contributing factor,70 in addition to the difference in peptide length as previously 

described when discussing the significant binding increase observed for the truncated 

wild-type peptide, p53_twt. The substitution o f a charged residue (Glul7Cys) and the 

reduction in hydrophilicity (Lys24Cys) are proposed to influence the behaviour of the 

p53 peptide within the hydrophobic cleft o f Hdm-2.

Upon crosslinking, the binding affinity for Hdm-2i_i25 o f both the P27A and D21E 

modified i,i+7 spaced peptides is marginally increased in the light-induced 

conformation. Indeed, to achieve binding affinities in this conformation comparable to 

the uncrosslinked peptide is in-line with the data for the same conformer of 

p53_twt_z',/+4. However this contradicts the CD data in which upon crosslinking a 

decrease in helicity is observed for both the P27A and D21E modified peptides in the 

trans and cis conformations, and again highlights the role o f the Hdm-2 hydrophobic 

cleft in the alignment and orientation o f p53 A-terminal residues. The substitution of 

Asp21 for Glu, proposed to assist in destabilising the p53 a-helix, appears to actually 

stabilise the trans isomer of the crosslinked peptide, a contradiction to the intention 

for its design. As previously discussed, according to the work of Degrado et al. the 

substitution of Asp21 for Glu results in the incorporation of a more helix promoting 

residue.105 Although this modification has not had a negative effect upon Hdm-2 

binding, it has not achieved its desired effect o f enhancing the degree o f control over 

peptide secondary structure exerted by the crosslinker.
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Table 5.4: Binding data for the i,i+7 spaced p5  3-based peptides.

Peptide KD (nM)
p5 3_P27 A_z,z+7 42 ± 6

p53_P27A_z,z+7_XL Dark 80 ± 9
p53_P27A_z,z+7_XL Light 37 ± 4

p53_D21E_z,z+7 24 ± 2
p53_D21 E_z,z+7_XL Dark 23 ± 5
p53_D21 E_z,z+7_XL Light 16 ± 5

The objective for the design of the i,i+11 spaced p53-based peptides was to obtain 

dark-stabilised a-helical peptides, the structures of which become disrupted upon the 

application of 360 nm UV light and subsequent isomerism o f the crosslinker from 

trans to cis. The Hdm-2i.i25 binding data for these peptides is summarised in Table 

5.5, where it can be seen that the peptide p53_P27A _z',z+l 1 has 15 nM improvement 

over the z,i+7 spaced equivalent. Since the crosslinking o f this peptide showed no 

significant loss or gain in Hdm-2 binding despite the observed > 46 % increase in a- 

helicity, we decided to test the D21E z',z'+l 1 spaced modified peptide. This gave a 

binding affinity comparable to the P 2 7 A  equivalent peptide in accordance with the 

CD data, however upon crosslinking no significant difference in binding affinities 

were observed between the light and dark-adapted peptides.

Table 5.5: Binding data for the i , i+ l l  spaced p5  3-based peptides.

Peptide Kd (nM)
p53_P27A_z',z+l 1 27 ± 2

p53_P27A_z,z+l 1_XL Light 25 ± 5
p53_P27A_z,z+l 1_XL Dark 22 ± 3

p53_D21 E_z,z+11 24 ±1
p53_D21 E_z,z+11 _XL Light 27 ± 3
p53_D21E_z,z+l 1_XL Dark 18 ± 2
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Previously, the designed polyalanine-based peptide scaffolds incorporating only the 

key residues required to facilitate the p53-Hdm-2 interaction and enable the addition 

of the crosslinker had shown CD spectra indicating the presence of a helical structure 

comparable to that of the wild-type peptide p53_WT. Further investigation into the 

binding behaviour of these peptides in the presence o f  Hdm-21.125 revealed that an 

interaction was occurring (Figure 5.2) The strength o f their binding with Hdm-21.125 is 

summarised in Table 5.6, and it can be seen that the alanine scaffold peptides display 

binding affinities with Hdm-2i-i25, which although not as high as those observed for 

the optimised p53-based peptides, are still comparable to the Kd obtained for the 15 

amino acid wild-type peptide p53_WT (268 nM ± 49) . 70
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Figure 5.2: A fluorescence anisotropy binding curve for the alanine 
scaffold peptide p53_Ala_i,i+ll (Kd = 137 nM ± 26).

Table 5.6: Binding data for the designed polyalanine-based Hdm-2 
binding peptides.

Kd (nM) Error (1<f)
p53_Ala_z,/+7 283 1 2 0

p53_Ala_z',z+l 1 137 26
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The data suggests that there is definitely an interaction taking place, between the 

polyalanine scaffold peptides and Hdm-2i_i25, although the more structured iJ+7 

peptide has the weaker binding affinity. We proposed that these results represent a 

good starting point for the use of a stable polyalanine scaffold, much like the 

previously described work o f Schepartz et al. where the stability of the aPP a-helix 

was exploited. 122 Throughout the design of the i,i+l 1 spaced p53-based peptides all of 

the data has reinforced the significance o f the relocation o f a single cysteine residue 

from the central region of the peptide near to the C-terminus, thus increasing the a- 

helicity o f the crosslinked peptide in the appropriate conformation. This has also been 

observed for the polyalanine scaffold peptides despite as discussed when examining 

the CD data, the presence of Ala in positions 24 and 28 in the /,/+11 and i,i+7 peptides 

respectively. In short, the amino acid composition o f each o f the i,i+ 11 and i,i+7 

alanine scaffold peptides remain the same with the exception o f the positioning of this 

one cysteine residue, yet differences in their affinities for Hdm-2 i-i25 was observed. 

Further experimentation is required to determine the effect o f crosslinking on the 

secondary structure of the polyalanine-based peptides.

5.3 Conclusion

The binding affinities o f modified and (where applicable) crosslinked p53 peptides 

with Hdm-2i-i25 were examined by fluorescence anisotropy measurements. The 

binding data for the control, 15-amino acid wild-type peptide (p53_WT) validated the 

assay by producing values for the Kd between p53_WT and Hdm-21.125 slightly lower
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than previously published data, which has been proposed to arise from the additional 

stability gained from the amidation of the peptide at the C-terminus.50,70 The 246 nM 

(tenfold) improvement of the binding affinity o f the wild-type peptide in which Pro27 

was substituted for Ala has supported the hypothesis o f the increased stability of the 

a-helix resulting in an improvement in the Hdm-2 binding affinity. This too has been 

highlighted by the repetition o f the work o f Schon et al. which has been used as the 

basis for the design of an i j +4 crosslinked peptide.

Analysis of the binding interaction between the crosslinked peptides and Hdm-2i.i25 

has generally yielded data supported by the degree o f a-helicity calculated from the 

CD data. Experiments with full-length human p53 have indicated that the presence of 

p53 has no effect upon the binding affinity of the p53-based peptides for Hdm-2i-i25. 

The significantly low binding affinities of the modified p5 3-based peptides are 

unlikely to be affected by the weakly binding full-length p53, however this is not 

conclusive evidence suggesting that they function as inhibitors o f  the p5 3-Hdm-2 

interaction.

Overall, the addition of the azobenzene crosslinker has failed to introduce any specific 

isomeric control over the binding o f the peptides to Hdm-21.125, with the exception of 

the dark-stabilised peptide p53_D21E_z,z+l 1_XL which loses 33 % o f its binding 

affinity upon isomerisation of the crosslinker to the cis conformation. This supports 

the reasoning for the substitution o f Asp21 for Glu, as increased functionality has 

been assigned to the photoswitching of the crosslinker due to the loss of a helix 

stabilising hydrogen bond between p53 amino acid side-chains. The polyalanine 

scaffold-based peptides have been shown to exhibit an interaction with Hdm-2 i-i25,
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and there is potential for the optimisation o f these peptides by further substitutions, 

although as shown in Table 5.6 the assay requires further repetition in order to reduce 

the error values and improve the accuracy of the dissociation constants.

149



CHAPTER 6: 

EXPRESSION OF HDM-2 

MUTANTS DESIGNED FOR 

LOW AFFINITY P53 BINDING



Chapter 6: Design o f Hdm-2 Mutants that Disrupt Hdm-2 Induced Helix Formation o f p53 Peptides

6.1 The Significance o f  p53 P h e l9  in H dm -2 B inding and a-H elix  
Initiation

The crystal structure of the p53-Mdm-2 complex reveals the key interactions between 

critical residues of both p53 and Mdm-2 that enable binding to occur.68 Previous 

mutational analysis has identified the presence of Phel9 and Trp23 as important for 

p53-Hdm-2 binding, since a double alanine mutation of both residues resulted in a 

complete loss of p53 binding.64 The substitution of p53 residue Asp21 for Ala also 

showed a significant reduction in p53-Hdm-2 binding,65 destabilising the p53 a-helix 

by the same mechanism as mentioned in chapter 5.1 where phosphorylation of Thrl8 

prevents the formation of a helix-stabilising hydrogen bond between the side-chain 

hydroxyl group of Thrl8 and the backbone amine and side-chain carboxyl groups of 

Asp21. The crystal structure of the p53 -  Mdm2 interaction shows that p53 Phel9 

forms van der Waals contacts with Gly58 and Ile61 of Mdm-2, as does p53 Trp23. 

Hydrogen bonding was also reported between the backbone amide of Phel9 and the 

amide side-chain of Mdm-2 Gln72 (Figure 6.1) in addition to the indole group of p53 

Trp23 and the backbone carbonyl of Mdm-2 Leu54.

Phe19

Figure 6.1: The backbon e  am ide o f  p 5 3  P h e l9  fo rm s  a  h ydrogen  b o n d  
w ith  the a m ide  s id e -ch a in  o f  H dm -2 Gln72.
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The critical role of p53 Phel9 in the p53-Hdm-2 interaction supports the mechanism 

of p53 -Hdm-2 binding in which it is proposed that the interaction of this residue with 

key functional groups of Hdm-2 amino acids initiates the formation of an a-helical 

conformation for the p53 ^-terminal chain. The interaction o f p53 residues Trp23 and 

Leu26 with the hydrophobic binding cleft o f Hdm-2 further stabilises the p53 a- 

helical conformation due to the steric constraints imposed by their binding. The p53- 

Hdm-2 interaction and the subsequent formation o f the p53 Ar-terminal a-helix are 

proposed to propagate from the interaction o f Phel9 with the p53-binding site of 

Hdm-2.

By modifying the hydrophobic p5 3-binding cleft o f Hdm-2 to reduce its ability to 

form interactions with Phel9 o f p53 we tested the hypothesis that the binding 

interaction between p53 and Hdm-2 will be reduced (increase Kd) for p5 3-based 

peptides that are structurally disordered. For peptides in the unbound state where they 

are in a more highly-ordered a-helical conformation, for example, an i,i+7 crosslinked 

peptide in a light induced conformation, we predict that although the binding when 

compared to the wild-type Hdm-2 would be reduced, the ordered structure of the p53 

peptide would still permit p53-Hdm-2 binding through the interactions of p53 residues 

Trp23 and Leu26 with Hdm2.
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6.2 D esign and Purification  o f  M utant H dm -2

The aim of the mutation of Hdm-2i.i25 as discussed in section 6.1 was to reduce the 

binding interaction between Hdm-2 and the structurally disordered p53-based peptides 

in order to increase the specificity of the p5 3-binding site for the induced a-helical 

conformation arising from the appropriately positioned crosslinker. The interactions 

of p53 Phel9 with Hdm-2 are critical to the nucleation of the p53 a-helix and 

subsequent Hdm-2 binding, thus by examining the interactions of this residue with 

Hdm-2 it is apparent to focus on its van der Waals contact with Ile61 and the 

hydrogen bond between the Phel9 backbone amide and the amide side-chain of Hdm- 

2 Gln72 (Figure 6.2).

Phe19.Phe19
Ala61

^Hdm2

H d m 2

Figure 6.2: Ile61 o f  w ild - ty p e  H dm -2  (left) w a s m u ta ted  to  A la  (right).

The presence of lie in position 61 of Hdm-2, a hydrophobic amino acid with a 

reasonably large side-chain appears to be present to provide hydrophobic bulk to the 

binding site and mutation to Leu, Val and Ala were considered. Examination of
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molecular models o f the mutated proteins derived from the p53-Hdm-2 crystal 

structure suggest the most effective mutation of Ile61 is Ala since Leu and Val 

provide almost as much hydrophobic bulk as lie and so may have a lesser impact upon 

minimising the interaction with Phel9 o f p53 .68 Mutation o f Ile61 to Ala for Hdm-2i. 

125 was achieved by site-directed mutagenesis (Table 2.1) using the conditions 

outlined in section 2.2.2, confirmation was achieved by DNA sequencing. The 

resulting protein was expressed and purified as previously described for wild-type 

Hdm-2 i-i 25.

The role of Hdm-2 residue Gln72 was highlighted from the crystal structure data that 

showed a hydrogen bond with Phel9 .68 When considering the possible mutations of 

Hdm-2 Gln72 to eliminate this hydrogen bond it is important to maintain the 

structural integrity of the Hdm-2 hydrophobic cleft. Residues without large side- 

chains are favoured as substitutes to Gin, the substitution o f Gln72 for Asn and Leu 

was therefore proposed (Figure 6.3). Gln72Asn was designed to eliminate the 

hydrogen bond due to the reduction in side-chain length by one carbon atom and 

subsequent orientation of the Asn side-chain amide away from the vicinity of the Phe 

backbone amide. The Gln72Asn mutant is expected to exhibit the smallest difference 

out of all Hdm-2 mutants when compared to the wild-type protein, this is due to 

Gln72Asn differing from wild-type Hdm-2].i25 by a side-chain shorter by one carbon 

atom in position 72.
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Met72Leu72
Hdm2H d m 2

Phe19

Figure 6.3: P ro p o se d  m u tan ts o f  H dm -2 1.125 (top  left), H dm -2G ln72A sn  
(to p  righ t) a n d  G ln72L eu  (bo ttom  left) a n d  G ln72M et (bottom  righ t)

The Hdm-2 mutant Gln72Leu was expected to eliminate the hydrogen bond by the 

removal of charged functional groups from residue 72 side-chain, whilst maintaining 

approximately the same steric bulk as Gin. The substitution of Hdm-2 Gln72 with Met 

was also considered since Met possesses a bulky side-chain, thus occupying a similar 

space to Gln72 within the hydrophobic binding cleft of Hdm-2. However Met in 

position 72 is proposed to not be capable of forming a hydrogen bond with the p53 

Phel9 backbone amide (Figure 6.3).

The Hdm-2 position 72 mutants were obtained by site-directed mutagenesis using the 

PCR procedure outlined in section 2.2.2 (Table 2.2). Expression and purification of 

mutant GST-Hdm-21.125 was carried out as previously described for the wild-type
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GST-Hdm-21-125. It was noted from samples taken at timed intervals during the 

expression of the mutant proteins that GST-Hdm-21-125 Ile61 Ala was expressed at low 

levels, as indicated by the presence o f only a faint band corresponding to this mutant 

when compared to the other GST-Hdm-2i-i25 mutants. As described in chapter 3.4, the 

purification of Hdm-2 i-ig8 was unsuccessful at the thrombin cleavage due to 

aggregation and precipitation of the cleaved Hdm-2 m 88- This also occurred when 

attempting to purify the Ile61Ala mutant and as a result no pure protein was obtained. 

We propose that this mutation was sufficient to render the protein unstable due to the 

loss of hydrophobic bulk within the p53 binding cleft, leading to the precipitation of 

the protein. A planned double mutant, incorporating both Ile61Ala and the residue 72 

mutation most successful at enhancing the differences in binding affinities o f the light 

and dark-adapted crosslinked peptides was proposed, however the poor yield of the 

Hdm-2 mutant Ile61Ala led us to the conclusion that this additional mutagenesis 

would not be constructive.

6.3 Determination of the extent of p53 peptide binding with 
modified Hdm-2 proteins

The fluorescence anisotropy binding assay used for the p53-based peptides with wild- 

type Hdm-21.125 was employed firstly with the control peptide p53_WT. The 

dissociation constants for the Hdm-2 mutants are summarised in Table 6.1. No 

binding was detected for the Hdm-2 mutants with the control, wild-type peptide 

p53_WT. This implies that the Hdm-2 mutations were effective enough to result in 

the complete loss in wild-type p53 binding, and that the p53_WT peptide was not a-
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helical enough to induce binding through the interactions of Trp23 and Leu26 in the 

absence of the interactions with Phel9. We therefore decided to compare the binding 

of the i,i+4 spaced peptides, since the proposed mechanism of binding involving the 

positioning of the peptide deeper within the hydrophobic cleft o f Hdm-2 was 

proposed to promote the optimal geometry for binding interactions to occur.

Table 6.1: Binding data for the modified Hdm-2 proteins with selected 
peptides compared with wild-type Hdm-2 1-125.

Hdm-2 Mutant Peptide Kd (nM)

Gln72

p53_WT 268 ± 49
p53_twt 11 ± 1

p53_twt_/,/+4_XL LIGHT 27 ± 4
p53_twt_/,/+4_XL DARK 21 ± 2

Gln72Met

p53_WT NO BINDING
p53_twt 54 ± 9

p53_twtJ,/+4_XL LIGHT 27 ± 8
p53_twt_/,/+4_XL DARK 57 ± 2 7

Gln72Asn

p53_WT NO BINDING
p53_twt 26 ± 5

p53_twtJ,H4_XL LIGHT 17 ± 1
p53_twt_/,/+4_XL DARK 33 ± 15

Gln72Leu

p53_WT NO BINDING
p53_twt NO BINDING

p53_twtJ,/+4_XL LIGHT NO BINDING
p5 3_twt_/,/+4_XL DARK NO BINDING

The Gln72Leu mutant showed no binding with any of the peptides indicating that 

whilst the approximate volume occupied by the replaced Gin side-chain was 

sufficiently compensated for, the loss in charge and subsequent placement o f a 

hydrophobic residue resulted in an unfavourable environment for the positioning of  

Phel9 of p53. The binding o f the mutant Hdm-2 proteins with the truncated wild-type 

peptide p53_twt was examined, which binds the wild-type Hdm-2 residues 1-125 with

157



Chapter 6: Design o f Hdm-2 Mutants that Disrupt Hdm-2 Induced Helix Formation ofp53 Peptides

a Kd o f 11 nM (± 1). Whilst p53_twt was able to bind both the Gln72Met and 

Gln72Asn Hdm-2 mutants, there was an approximate five and two-fold reduction 

respectively in the p53_twt binding affinity when compared to the wild-type protein 

(Table 6.1). The Hdm-2 mutant that least affected the binding of p53_twt was 

Gln72Asn, as previously predicted, since the only change is the reduction in the side- 

chain length of residue 72 by one carbon atom, and the subsequent change in the 

orientation of its amide group.

The binding data o f the p53-based peptides demonstrates a clear preference for the 

presence of a hydrophilic residue at position 72 o f the Hdm-2 protein. However, table 

6.1 shows that binding between this peptide and the hydrophobic mutant Gln72Met is 

still favoured. We believe that the increase in hydrophobicity is not as great as that 

experienced with the Hdm-2 mutant Gln72Leu. This tolerance of the p53 A-terminal 

transactivation domain to moderate increases in hydrophobicity enables the 

positioning of the p53 Phel9 residue within the hydrophobic cleft of Hdm-2 in such a 

conformation so as to permit the interaction o f p53 key residues Trp23 and Leu26 

with Hdm-2.

Upon examination of the crosslinked /,/+4 spaced peptides, we propose that the 

reduction in attractive forces o f the Hdm-2 mutants for p53 residue Phel9 had 

permitted a greater degree o f control to be exerted over the binding interaction by 

altering the crosslinker conformation. Indeed, the preference for an a-helical structure 

when the crosslinker is in the light-induced, cis conformation within an i,i+4 spaced 

peptide is highlighted in Table 6.1, where the binding is marginally improved upon 

the uncroSslinked peptide. It was also found that upon relaxation to the dark-adapted
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trans conformation, the binding to both the Gln72Met and Gln72Asn Hdm-2 mutants 

was reduced by approximately 50 %.

6.4 Conclusion

The involvement of the p53 residues critical for Hdm-2 binding, in particular Phel9 

have been highlighted by the development of Hdm-2 mutant proteins 125 amino acids 

in length. These show how the removal or reduction in the ability o f Hdm-2 to interact 

with p53 residue Phel9, influences the ability o f p53 to bind to Hdm-2. The 

underlying principle employed in the design o f these mutants was that the binding of 

p53 to Hdm-2 relies upon the p53 TV-terminus adopting an a-helical conformation, and 

that the deletion of p53 Phel9 has been reported to eliminate p53-Hdm-2 binding.64 

Based on these findings it was proposed that the inhibition of p53 a-helix formation 

arises from the positioning o f p53 residue Phel9 within the Hdm-2 hydrophobic cleft 

where it then becomes entropically favourable for p53 to adopt an a-helical 

conformation. Upon initiation o f the formation o f the p53 a-helix, p53 residues Trp23 

and Leu26 become oriented in such a position so as to form additional helix 

stabilising interactions.

By modifying Hdm-2 in such a way it was intended to enhance the difference between 

the stabilised and destabilised conformations of the crosslinked peptides. From the 

crystal structure o f the p53-Mdm-2 complex, interactions were highlighted between 

Phel9 of p53 and Hdm-2 residues Gly58, Ile61 (van der Waals), and Gln72 (hydrogen
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bonding) . 68 We proposed that the simplicity of the Gly58 side-chain, i.e. the presence 

of a single methyl group, meant that any modifications to Hdm-2 residue 58 would 

most likely be too disruptive to the Hdm-2 hydrophobic cleft. This, if not by the 

introduction of charged groups, or the change in hydrophobicity, would almost 

certainly be due to the increased bulk of other amino acid side-chains with the 

exception o f Gly. As a result, we decided to focus on Hdm-2i-i25 residues 61 and 72 

since the mutation of residues in these positions offered more flexibility and tolerance 

for different amino acid side chains. Four mutants were proposed, firstly mutation of 

Ile61 to Ala, and also mutation o f Gln72 to Asn, Met and Leu. These were all 

successfully generated from the wild-type cDNA and expressed. Upon purification it 

was found that while the three Hdm-2 variants with mutation at site 72 all expressed 

well, yielding soluble protein in quantities comparable to wild-type Hdm-21-125, the 

Hdm-2 Ile61Ala mutant however, precipitated and so further work on this mutant was 

discontinued.

We found that all of the Hdm-2 mutants showed no measurable binding affinity to the 

wild-type peptide. p53_WT was demonstrated to display a weaker binding affinity to 

the wild-type protein than all of the modified p53-based peptides synthesised (Kd = 

268 nM ± 49), and it is proposed that the reduction in affinity of the Hdm-2 mutants 

for p53 Phel9 prevented the initiation o f an a-helix from a predominantly random coil 

structure. The decision to then use the most potent wild-type p53-based peptide 

(p53_twt) revealed a trend where an increase in hydrophobicity in Hdm-2 residue 72 

beyond a certain limit resulted in a reduction in binding affinity. This led to there 

being no binding detected between the peptide p53_twt and the Leu72 mutant of 

H d m - 2 i- i25-
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There are several possible reasons for the loss of binding observed between p53_twt 

and Hdm-2i.i25 Gln72Leu. Firstly, the increase in hydrophobicity results in there 

being no interaction with p53 Phel9 and so no initiation o f the a-helix from the free 

conformation of the peptide. This is unlikely, since the peptide has approximately 34 

% a-helicity (calculated from the CD data). It is also possible that the mutation of 

Gln72 to Leu within Hdm-2i-i25 results in a change in the conformation of the 

hydrophobic p53 binding site of the protein, thus preventing the binding o f p53 to the 

Gln72Leu mutant protein. Although this is supported by the fact that no binding was 

observed for any peptides with the Gln72Leu mutant protein, the suggested 

conformational change in the structure o f Hdm-21.125 Gln72Leu may affect the 

stability o f the protein. As previously discussed, the mutant Hdm-2 protein Gln72Leu 

was obtained in a yield comparable to the wild-type parent protein, and as a result a 

conformational change is unlikely. We propose instead that the increase in 

hydrophobicity arising from the Gln72Leu mutant makes the orientation of p53 

residue Phel 9 within the Hdm-2 hydrophobic cleft unfavourable promoting additional 

helix stabilising interactions, such as those involving p53 residues Trp23 and Leu26. 

This consequently inhibits the adoption o f an a-helical structure, preventing p53 

binding.

The effect o f the Hdm-2 modifications was examined using a crosslinked peptide in 

both its dark-adapted and light-induced states, where it was found that the binding 

affinity for the Hdm-2 mutants differed between the peptide conformations. This was 

much like the Tesult initially intended when designing the D21E modified p53 

peptides, however whereas these peptides showed only a slight difference in binding 

affinities for wild-type Hdm-21.125 when comparing the light and dark-adapted
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conformations, the Hdm-2 mutant proteins yielded a greater reduction in their binding 

affinities for p53_twt_z,z+4_XL by approximately 50% when switching to the 

conformation favouring a-helix destabilisation. These results demonstrate the 

importance of the flexibility of the p53 peptide structure, where with the wild-type 

Hdm-2 protein there are sufficient interactions stabilising p53 to permit a less ordered 

a-helical conformation such as that exhibited by a crosslinked peptide in a 

destabilised conformation. The improvement in the degree o f mutant Hdm-2 binding 

observed with the helix stabilised crosslinked peptides over the uncrosslinked 

peptides reinforces the previous hypothesis whereby an induced, increased a-helical 

structure compensates for the reduced stabilisation o f the peptide Phel9 residue, 

through the improved alignment o f residues Trp23 and Leu26. These results reinforce 

the potential functionality afforded by the attachment o f the crosslinker to an 

appropriately designed peptide. In circumstances in which a binding interaction is 

facilitated by the adoption of an a-helical structure, the application o f a crosslinker to 

the a-helical motif reduces the significance o f the interaction o f a particular residue 

within the peptide required initially to propagate the formation of an a-helical 

structure.

Whilst the interaction o f p53 residue Phel9 with Hdm-21-125 TV-terminal residues 58, 

61 and 72 has been previously reported to induce a-helix formation of the p53 N- 

terminus. This work highlights that a reduction in the interaction of p53 Phel9 with 

Hdm-2 and the associated reduction in the peptide binding affinity can be 

compensated for by the introduction o f a crosslinker to the p53 peptide in a 

conformation such that the other key Hdm-2 binding residues o f p53 become pre­

ordered to permit their additional interactions with the Hdm-2 binding site, even if
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this induced conformation is not a true a-helix. This principle supports the results 

obtained for the crosslinked peptides involving wild-type Hdm-21.125 whereby there 

was little difference in Hdm-2 binding observed between peptides in the light and 

dark-adapted conformations. We propose the strength of the interaction of p53 Phel9 

with the wild-type Hdm-2 protein brings the additional p53 residues Trp23 and Leu26 

required for Hdm-2 binding within a suitable proximity o f the p53 binding site of 

Hdm-2 to facilitate a binding interaction, regardless o f the conformation of the 

crosslinker. In effect, the conformation o f the crosslinker does not influence the initial 

binding behaviour o f p53 Phel9 with Hdm-2, leading to the previously described 

behaviour o f its associated residues resulting in Hdm-2 binding.
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Chapter 7: General Discussions and Conclusions

The aim of this work was the design of short a-helical peptides based upon the Af­

terminus of the p53 tumour suppressor which function as inhibitors or antagonists of 

the interaction o f p53 with its repressor Hdm-2. Such peptides are only likely to have 

therapeutic potential if  there is an in-built mechanism to control the functionality of 

the molecules, allowing targeting o f  only cells with defective apoptosis signalling 

pathways. Upon reviewing methods o f exercising control over peptide secondary 

structure such as the introduction o f side chain constraints and the use of metal clips, 

it was decided to build upon the work o f Zhang et al. with the incorporation of a 

water-soluble photoisomerisable azobenzene crosslinker via attachment to the thiol 

groups of cysteine residues.141,143,144 By the attachment of the crosslinker to cysteine 

residues of the appropriate spacing, it was proposed that the secondary structure of the 

modified p53-based peptides could be switched between a random coil and a-helical 

conformation by the application o f 360 nm UV light.142

The a-helix content o f the synthesised peptides was monitored using circular 

dichroism spectroscopy, while the binding between the peptides and Hdm-21.125 was 

monitored using a fluorescence anisotropy binding assay. A 15 amino acid peptide 

based on p53 N-terminal residues 15-29 showed comparable Hdm-2 affinity to that 

seen in previous work using this same control peptide, its slight improvement was 

concluded to be due to the amidation o f the C-terminus o f the peptide providing 

additional stabilisation. This demonstrated not only the effectiveness of the binding 

assay, but also that the presence o f the 5,6-carboxyfluorescein fluorophore upon the 

A-terminus of the peptides does not negatively impact upon Hdm-2 binding. Using 

CD spectroscopy it was determined that the free peptide had a low a-helix content, 

implying that a significant conformational change was required upon binding to Hdm-
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2. A variety o f other wild-type peptides were synthesised, including a peptide 

modified by the substitution o f the helix destabilising Pro27 for Ala, which showed a 

four-fold improvement in a-helicity and a significant improvement in Hdm-2 binding. 

Truncation of the control peptide results in the production of a ten amino acid peptide 

with a binding affinity 20 times more potent than the 15 amino acid control peptide. 

Although the truncated peptide showed less a-helicity when compared to the 

Pro27Ala modified peptide it is proposed that the reduced peptide length enables 

deeper penetration o f the peptide within the Hdm-2 hydrophobic cleft. The lower a- 

helix content of the free peptide is likely a direct consequence o f the reduced length of 

the truncated wild-type peptide, which would result in a less stable conformation 

when free in solution.

The incorporation of Cys residues within the modified p53 peptides was based on 

their inclusion within the peptide sequences in 3 possible spacings. The i,i+4 and i,i+7 

spacing was employed to permit the stabilisation o f an a-helical conformation with 

the attached crosslinker in a light-induced cis conformation. The z,/+l 1 spacing was 

employed to stabilise an a-helical conformation with the crosslinker in a dark-adapted 

trans conformation. The Cys-containing modified uncrosslinked peptides possessed a 

lower percentage a-helicity and reduced binding affinity for Hdm-2 when compared 

to the parent wild-type peptides. This is due to the substitution of more helix 

promoting residues with Cys.

The crosslinking o f the cysteine containing peptides resulted in no observed 

improvement in the peptide secondary structures as observed by CD spectroscopy. 

Also, little difference in secondary structure was observed for the crosslinked peptides
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when comparing the light and dark-adapted conformations. The only exception being 

the dark-stabilised i,/+l 1 spaced peptides where upon isomerism from trans to cis 

there was a 10-15 %  reduction in a-helicity. The crosslinked peptides show a clear 

trend, where the crosslinker conformation favouring a-helix formation shows an 

increased affinity for Hdm-2 binding over the helix destabilised conformation. This 

indicates that the peptide is constrained in such a way to be under the influence of the 

crosslinker despite the lack o f observed change in a-helicity. However, the peptide 

sequence itself gave a greater effect on binding affinity, and so the predicted trend, 

whereby a general increase in a-helicity results in improved Hdm-2 binding, was not 

observed. As a-helicity is measured for the free peptide in solution, the attachment of 

the crosslinker may enforce a constraint upon the peptide regardless of its 

conformation. Consequently, for such short peptides the dark and light-adapted 

peptides show little difference in a-helicity. It is worth noting that since the p53 N- 

terminus only adopts an a-helical structure upon binding with Hdm-2 it may therefore 

be difficult to directly relate the secondary structure of peptides when free in solution 

with their binding affinities for Hdm-2.

The reason behind the small change in binding affinity on photoswitching was further 

investigated by the mutation o f Hdm-2 in order to weaken the interaction between 

Hdm-2 and the helix inducing p53 Phel9. As the hydrophobicity of the residue in 

position 72 of Hdm-2 increased, the binding affinity for p53 peptides was reduced, to 

the point where Gln72Leu resulted in no binding being detected. We noted that 

reducing the affinity o f Hdm-2 for p53 Phel9 led to an improvement in the degree of 

photocontrol over the binding affinity o f the crosslinked peptides. This provides 

further evidence for the crosslinker providing a slight yet meaningful change to the
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peptide secondary structure, since a reduction in the ability o f the Hdm-2 mutants to 

interact with p53 Phel9 permits a greater binding interaction with residues oriented in 

the most appropriate conformation. This supports the initial proposal where in 

peptides with a pre-organised a-helical conformation Trp23 and Leu26 of p53 are able 

to interact without re-organisation arising from the interaction of p53 Phel9. Indeed, 

the organisation o f p53 Trp23 and Leu26 into an a-helical conformation prior to 

Hdm-2 binding may achieve the reverse o f the initiation of wild-type p53-Hdm-2 

binding, whereby it is the interaction between p53 residues Trp23 and Leu26 that 

facilitates the interaction o f Phe 19 with Hdm-2.

Since polyalanine forms a stable a-helix, peptides were also synthesised using this as 

the basis of a helical scaffold for the incorporation o f only the amino acids critical for 

Hdm-2 binding in addition to cysteine residues to enable die attachment o f the 

azobenzene crosslinker. The resulting polyalanine p53 scaffolds showed Hdm-2 

binding affinities comparable to the 15 amino acid wild-type p53 peptide. This 

provides a sound proof-of-principle demonstration for the use of such a scaffold to 

provide the backbone for an a-helical peptide when the residues involved in the 

binding interaction are clearly defined. We found that there may be issues with 

solubility, in particular with longer poly-alanine chains, however there are also 

advantages associated with structures predominantly containing alanine residues. The 

simplicity o f alanine in addition to there being no need for the protection o f the side- 

chain, means that from a manufacturing perspective costs are reduced when compared 

to the more complex amino acids. Also from a therapeutic perspective, the stability of 

the peptides may be improved in the body due to a reduction in the number of 

protease cleavage sites.
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Previous research has shown that the substitution of Trp23 within p53 for chloro- 

tryptophan (Cl-Trp) significantly increases p53-Hdm-2 binding affinity.160 Cl-Trp23 

was proposed to occupy hydrophobic regions within the Hdm-2 hydrophobic cleft 

previously exposed when binding to wild-type p53. Further investigation may be 

conducted with crosslinked peptides analogous to those synthesised in this research, 

however incorporating Cl-Trp at position 23. The binding affinities for these peptides 

with the mutant Hdm-2 proteins could be compared with those o f the parent peptides 

to provide supporting data for the significance of the pre-organisation of Trp23 with 

respect to the binding affinity o f p5 3-based peptides with weakened binding via 

Phel9.

Interestingly, it is proposed that the better inhibitor need not have the strongest 

affinity for Hdm-2 in circumstances in which a controllable crosslinker is employed. 

Indeed, if  a crosslinked peptide in a helix stabilising conformation were to have a 

binding affinity comparable to the wild-type peptide, yet the affinity of the helix 

destabilising conformation was significantly reduced, the gain in increased 

functionality with respect to the crosslinker is worth more than the loss in binding 

affinity. An increased binding affinity reduces the degree o f control the crosslinker 

has over the peptide conformation, since a stronger interaction with Hdm-2 can exert 

a greater influence over the peptide secondary structure than the crosslinker, which 

may be conflicting. An example o f such is when the crosslinker is in a helix 

destabilising conformation, yet high Hdm-2 binding affinities are still observed. There 

is potential for further optimisation o f the peptide sequences to enhance Hdm-2 

binding, or perhaps engineer instability when the crosslinker is attached and in the 

appropriate helix destabilising conformation. This is a novel approach well worth
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considering since the difference in Hdm-2 binding affinity between light and dark- 

adapted crosslinked peptides was found to increase as the affinity was reduced.

Enhancing the effect of photoswitching a crosslinked peptide may be further 

investigated by the development o f peptides containing cysteine residues in 

alternative spacings. Woolley et al. reported the use o f an /,/+5 and i,i+10 spacing to 

be theoretically as effective as the iJ+4 and i,i+\ 1 spacing respectively, however 

chose not to pursue this further.141 This is worth examining further since the 

effectiveness of the spacing o f the cysteine residues may depend upon the individual 

peptide sequences.141 This method o f research is complementary to that mentioned in 

the previous paragraph, where it was suggested that a-helix instability be engineered 

within the peptide sequences. However, there are opportunities to explore novel 

cysteine spacings within the peptides already described in this work that may also 

result in new orientations of the crosslinker within the p53 binding site of Hdm-2, 

possibly enhancing also the extent o f peptide binding with respect to the conformation 

of the crosslinked peptide.

This research has yielded short Hdm-2 binding peptides with affinities an order of 

magnitude greater than a peptide based on wild-type p53. Although the attachment of 

an azobenzene-based crosslinker has not significantly influenced the peptide 

secondary structure, its presence is notable when examining the fluorescence 

anisotropy binding data where the helix stabilising conformation results in a slightly 

increased affinity o f the peptide for Hdm-2i_i25. Mutation of Hdm-2 has provided 

supporting evidence for previous work where the initiation of the formation of the p53 

a-helix was proposed to commence from the interaction of p53 Phel9 with Hdm-2,
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and has yielded information on the reduced degree of photocontrol observed. There is 

the potential for the future development of Hdm-2 mutants that would enable a more 

precise degree o f tolerance o f the Hdm-2 binding site to be calculated with respect to 

hydrophobicity. Future investigation should also be focussed on the use of 

polyalanine scaffolds in addition to exploring the impact of optimising the residue at 

position 19 within the p53 peptides that is occupied by Phe in the wild-type sequence. 

This is worthwhile since weakening the interaction o f the previously reported p53 

residue critical for Hdm-2 binding (p53 Phe 19) has been shown to only impact 

slightly upon the p53-Hdm-2 binding interaction in cases where an increased 

secondary structure with respect to Trp23 and Leu26 is observed. The development of 

the polyalanine scaffold peptides provides a blank canvas for the optimisation of 

specific positions within the sequence. This has the potential to provide template for 

the design of an optimised peptide sequence incorporating the azobenzene crosslinker 

at specific spacings, where specific residues may be substituted to introduce 

functionality as opposed to taking a functional sequence and optimising this for 

improved structure.
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Appendix 1: Crosslinker Characterisation

A1 Spectrosopic Characterisation of the Synthesised Azobenzene 

Crosslinker

S 0 3-Na+

O __  H^ n- n x / 4 h ^

S 03-Na+

Figure A l.l  -  Schematic representation o f the crosslinker showing 
proton assignments used for NMR characterisation.

Synthesis of Compound 2 -  2-Acetylamino-5-aminobenzenesulfonic acid

C8H10N2O4S: MWCaic = 230.0361, MWobs = 230.2, Yield = 55 %

'H NMR (500 MHz, DMSO-rf6): CH3 (2.10 ppm, s, 1H), Hc (7.30 ppm, dd, J = 2.7,

8.7 Hz, 1H), Ha (7.70 ppm, d, J = 2.7 Hz, 1H), Hb (8.40 ppm, d, 3 = 8.7 Hz, 1H), NH 

(10.35 ppm, s, 1H).

13C NMR (125 MHz, DMSO-rf6): CH3 (25 ppm), CHb (122 ppm), CHa (123 ppm), 

CHc (125 ppm), Cnh2 (126 ppm), CSo3 (135 ppm), Cacetainido (136 ppm), C(O) (168 

ppm).

Synthesis of Compound 3 -  Sodium 3,3’-Bis(sulfonato)-4,4’-bis-(acetamido) 
azobenzene

C16Hi5N4 0 8S2': MWcaic = 455.0366, MWobs = 455.1, Yield = 27 %
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'H NMR (500 MHz, D20): CH3 (2.10 ppm, s, 6H), Hc (7.80 ppm, dd, J = 2.2, 8.4 Hz, 

2H), Hb (7.95 ppm, d, J = 8.4 Hz, 2H), Ha (8.12 ppm, d, J = 2.2 Hz, 2H).

I3C NMR (125 MHz, D20): CH3 (25 ppm), CHb (124 ppm), CHa (122 ppm), CHc 

(126 ppm), Cazo (147 ppm), CSo3 (136 ppm), CaCciamido (134 ppm), C (O ) (173 ppm).

0.7
™ Dark Adapted (C/s) 
Light Adapted {Trans)

0.6

0.5

0.4

O 0.3

0.2

0.1

200 250 300 350 400 450 500 550 600
Wavelength (nm)

Figure A1.2 -  Azobenzene formation confirmed by UV spectroscopy; 
irradiation with 360 nm UV light resulted in isomerism from trans (red) 
to cis (blue)

Synthesis of Compound 4 -  Sodium 3 3 ’-Bis(sulfonato)-4,4’-bis-(amino) 
azobenzene

C n H n N ^ S z ’: MWcaic = 371.0125, MWobs = 371.3, Yield = 82 %

'H NMR (500 MHz, DMSO-</6): Hc (7.55 ppm, dd, J = 2.4, 8.6 Hz, 2H), Hb (6.70 

ppm, d, J = 8.6 Hz, 2H), Ha (7.95 ppm, d, J = 2.4 Hz, 2H), NH2 (6.20 ppm, 4H).

13C NMR (125 MHz, DMSO-</6): CHb (115 ppm), CHa (122 ppm), CHc (125 ppm), 

C^o (142 ppm), Cso3 (148 ppm), Cnh2 (130 ppm).
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Synthesis of Compound 5 -  3,3,-Bis(sulfo)-4,4*-bis-(chloroacetamido)
azobenzene

C16H13N4O8S2CI2': MWCaic = 522.9557, MWobs = 522.4, Yield = 11  %

'H NMR (500 MHz, DMSO-rf6): CH2 (4.45 ppm, s, 4H), He (8.00 ppm, dd, J = 2.4,

8 .8  Hz, 2H), Hb (8.60 ppm, d, J = 8 . 8  Hz, 2H), Ha (8.20 ppm, d, J = 2.4 Hz, 2H), NH 

(11.20 ppm, s, 4H).

13C NMR (125 MHz, DMSO-rf6): CH2 (44 ppm), CHb (121 ppm), CHa (120 ppm), 

CHc (126 ppm), Cazo (147 ppm), CSo3 (137 ppm), Caceamido (137 ppm), C(O) (165 

ppm).
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Appendix 2: Evaluation of Hdm-2i_l2s

A2 Hdm-2i_i25 Amino Acid Analysis Data

Amino Acid nmol ml'1 Hgmi'1

Aspartic acid 73.200 8.43
Threonine 58.100 5.87
Serine 77,100 6.72
Glutamic acid 96.400 12.40
Proline 29.100 2.83
Glycine 49.700 2.84
Alanine 22.800 1.62
Cysteine 2.0300 0.45
Valine 67.000 6.64
Methionine 4.580 0.60
Isoleucine 25.000 2.83
Leucine 75.400 8.54
Tyrosine 34.700 5.66
Phenylalanine 17.100 2.52
Histidine 43.600 5.98
Tryptophan - -

Lysine 52.600 6.74
Arginine 21.700 3.39

TOTAL 750.000 84.10

Notes:
Asn and Gin are converted to Asp and Glu during acid hydrolysis of the 
protein

Values for Thr and Ser are corrected for hydrolysis losses o f 5 % and 10 % 
respectively

Trp suffers complete loss during hydrolysis and is therefore not quantified
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Appendix 3: UV Relaxation Data

A3 Determination Of The Half-Lives Of The Cis Isomer Of 
Crosslinked Peptides

Azobenzene Crosslinker

Temp (K) k ti/2 (min)
277 3.04 x 10-4 36.91
283 4.90 x 1 O'4 23.58
288 5.71 x 10-4 20.24
293 8.06 x 10"4 14.33
298 9.91 x 10-4 11.65
303 11.4 x 10-4 10.91
310 13.6 x 10"4 8.76

p53_twt_i,i+4_XL

Temp (K) k ti/2 (min)
277 1.32 x 10"4 87.63
283 1.52 xlO -4 72.96
288 1.79 x lO'4 64.60
293 2.50 x 10-4 46.18
298 3.02 x 1 O'4 38.23
303 3.17 x 10*4 36.39
310 3.85 x ID-4 29.97

p53_P27A_i,i+7_XL

Temp (K) k ti /2 (min)

277 8.86 x 10-5 141.17
283 9.53 x 1 O'5 121.18
288 1.20 x lO -4 96.4
293 1.58 x 10*4 73.35
298 2.12 xlO -4 57.81
303 2.04 x 1 O'4 56.68
310 2.67 x lO -4 43.19
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p53_D21 E_i,i+7_XL

Temp (K) k ti/2 (min)
277 1 .06x1 O'4 109.33
283 1.28 x 10-4 97.35
288 1.30 x 10-4 89.09
293 1.48 x lO -4 78.06
298 1 .82x1  O'4 63.36
303 1.96 x 10*4 58.94
310 2.11 x 10-4 54.88

p53_D21 E_i,i+7_XL 10 % TFE

Temp (K) k ti /2 (min)
277 7.98 x 1 O'5 144.71
283 1.02 x 10-4 112.71
288 1.11 x 10-4 104.23
293 1.25 x 10-4 92.17
298 1.31 x 10*4 83.51
303 1.58 x 10-4 73.27
310 2.18 x 10-4 53.03

p53_D21 E_i,i+7_XL 20 % TFE

Temp (K) k ti/2 (min)

277 6 .0 2 x 1  O'5 222.16
283 7.91 x lO'5 146.23
288 8.42 x lO'5 137.26
293 8.52 x 10° 135.65
298 9.71 x 10° 119.10
303 1.14 x 10-4 101.04
310 2.35 x 10*4 56.68
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p53_D21E_i,i+7_XL 30 % TFE

Temp (K) k ti/2 (min)
277 6.46 x 10* 178.65
283 7,39'x 10* 156.11
293 7.76 x 10* 148.74
298 8.07 x 10* 143.21
303 8.83 x 10* 130.78
310 1.08 x 1 0 -4 106.97

p53_P27A_#,i+ll_XL

Temp (K) k ti/2 (min)
277 7.71 x 10* 150.03
283 8.06 x 1 0 * 143.51
288 8.33 x 10* 138.63
293 1.25 x 10^ 92.30
298 1.49 x 10* 77.71
303 1 . 6 8  x 10"4 68.83
310 2.28 x 1 0 * 50.78

p53_D21 E_i,i+11_XL

Temp (K) k tj/2 (min)
277 8.05 x 10* 143.51
283 9.07 x 10* 127.42
288 1.13 x 10* 101.93
293 1.23 x 10* 94.31
298 1.33 x 10* 86.75
303 2.03 x 1 O’4 56.82
310 2.91 x 10* 39.70
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