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Summary
This thesis describes a combined exploratory analysis, on a fine spatial scale, of 
(i) England and Wales house prices, between the years 2000 and 2006; (ii) aggre­
gate statistics taken from the UK census of 2001; and (iii) interaction statistics 
also taken from that census. The house price data is derived from individual 
transactions and analysed mainly in the form of ward level indices with a time 
resolution of 100 days.

The study has twin aims: firstly, to improve understanding of the data set - 
which is large in nature - particularly with respect to exploring the interaction 
statistics; secondly, to improve the methods of exploratory analysis themselves.

With respect to the aim of understanding the data, both migration and house 
price changes are visualised in a novel way, and regression is used to determine 
indicators of likely house price cross-correlations between different market areas. 
Ripple type effects are shown to be related both to reactive mechanisms, and to 
the composition of migration flows. Further visualisation shows that the market 
may be understood in terms of clusters with similar behaviour, or alternatively, 
in terms of market-driving and market-driven regions. Variables which can be 
used to define these clusters and regions are identified via further regression.

With respect to improving the techniques of analysis, existing methods of 
visualising interaction data - based on clustering and linear ordering of points in 
geographic space - are extended to larger, hierarchical data sets and evaluated 
in this context. Novel approaches are presented for (i) construction of relative 
house price indices with minimal hedonic data, (ii) enhancement of time series 
predictions using cross-correlation data, and (iii) comparison of heterogeneous 
data sets via unification of all relevant information in the interaction domain, 
making it susceptible to analysis by regression aided with principal component 
based dimensionality reduction.
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Chapter 1

Introduction

1.1 On the adventure of mountaineering 
- or, the aims o f the study

This body of work is presented in the spirit of a first ascent of a vast mountain 
of data, a mountain formed by the collision of two pre-existing data ranges. One 
of these is the ancient massif of the UK Census, well trodden and traversed 
throughout history - a significant exploration of which was completed as early 
as the year 1085, as recorded by William the Conqueror in his Domesday book, 
though this was almost certainly not the first. Meanwhile in modern times, 
the region’s tourist board - the Office for National Statistics - has been keen to 
encourage visits to the area for all who display an interest in doing so.

The second mountain range is a newer batholithic eruption of house price 
data, rising from the hot magma of widespread individual home ownership, and 
in very recent years collected by the computers of the England and Wales Land 
Registry. In contrast to the former, this range has been fiercely guarded by its 
inhabitants, who would seldom allow outsiders to tread upon its slopes, let alone 
undertake a detailed expedition into its midst. Even now, hefty summit fees are 
charged for the privilege of doing so.

Due to the limited accessibility of the entire second range, it is believed that 
few researchers, if any, have yet climbed the interesting peak where the two ranges 
meet. This thesis, then, is an account of the exploration of that summit. The 
ascent has yielded evidence of some interesting features of the data set - plants,
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2 C H A P TE R 1. INTRODUCTION

beasts, rock and ice formations which had not yet been recorded by any explorer. 
Some of these were already suspected to exist (and their discovery therefore helps 
to validate the usefulness of the exploration) - most of the specimens collected, 
however, remain mysterious. The explorer is a specialist in computation, not 
housing markets; akin to a mountaineer who possesses only a basic knowledge 
of botany, zoology, geology and glaciology. Therefore, the principal contribution 
of this trip is a variety of techniques for climbing, traversing and descending the 
mountain, which in future might be used by specialists in other fields to explore 
it (or indeed other mountains) more fully.

George Mallory, who died in 1924 when descending from what might have 
been the first ascent of Everest, famously gave as his reason for climbing the 
mountain: “Because i t’s there” . This thesis is likewise driven by the exploratory 
analysis of a largely unknown socio-economic data set, simply because it is there. 
However it is not, primarily, a thesis on the housing market; the real motivation 
is better expressed by Edmund Hillary, who along with Tenzing Norgay in 1953 
returned from the summit alive. “It is not the mountain we conquer” , he said, 
“but ourselves” .1 Climbing the mountain of data effects improvement of the self; 
the creation of better tools and techniques which can be applied to other problems 
in future - and therein lies the primary purpose of the undertaking.

The aim, then, is not to build and interpret models for the sake of a compre­
hensive understanding of phenomena, but simply to use such models to explore 
some very large data sets which would otherwise remain untractable.

1.2 Background to  the study:
the state of com putational social sciences 
and the case for exploratory data analysis

The author hopes it is clear from the previous section that the main focus of this 
thesis is on the development of new exploratory data analysis techniques. The 
secondary focus is on the UK housing market. Instead of writing about these 
topics at length in the introduction, their background literature will be reviewed

1 Actually, this also echoes the words of Mallory - who wrote in an Alpine Club journal: 
“Have we vanquished an enemy? [...] None but ourselves”.
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where it is most relevant to the technical discussion: exploratory data analysis in 
chapter 3, and the housing market in chapters 4 and 5 - though some literature 
on the census and housing market, where it relates to the data sets and their 
aggregation, is also reviewed in chapter 2.

Such treatment of the existing literature, however, misses the question of why 
the study is necessary in the first place. This section therefore seeks to answer that 
question, through analysis of the current state of computational social sciences. 
This analysis discusses three areas of literature in turn: classical spatial economics 
(section 1.2.1), agent-based computational modelling (section 1.2.2) and network 
formalisms (section 1.2.3). Section 1.2.4 explains how the present study fits in 
with this literature.

1.2.1 Classical spatial econom ics

Modern approaches to analysis of the spatial distribution of human activity are 
generally considered to have started with the bid rent theory of Von Thunen, in 
the early part of the 19th century, which predicted patterns of land use based on 
who could best afford to pay for each unit of land. Much of mainstream spatial 
economics (or economic geography) owes its heritage both to this, and to the 
General Equilibrium framework developed in the wider field of Economics during 
the second half of that century - though also, to some extent, to the related field 
of Game Theory that emerged during the 1940s. McCann (2001) gives a wide 
overview of spatial economics, while Kreps (1990) covers game theory. The un­
derlying philosophy of the field could be summarised by saying that prices, spatial 
locations and human behaviour are best understood by the study of theoretical 
states of equilibrium, either defined as a balance between quantities and prices 
(in models of supply and demand) or structured agreements which no individual 
would have the incentive to defy (as is the case with game theory). Furthermore, 
it is generally accepted that analytical solutions to the equations that describe 
these states are a worthwhile contribution to knowledge. A good case study is 
the spatial location game of Hotelling (1929), which has been applied to the ex­
planation of a huge variety of phenomena, from the locations of shops on a street 
to the positioning of political parties on a left-to-right spectrum. The theory 
has been progressively refined over the years (Gabszewics & Thisse 1992, gives a 
good overview), including solutions for arbitrary numbers of competitors (Eaton



4 CH APTER1. INTRODUCTION

& Lipsey 1975) and in multidimensional space (Irmen & Thisse 1998).
The mainstream is not without its problems, however. Kreps (ibid) notes the 

difficulties of game theory, for example: on what basis is an equilibrium chosen 
if there are multiple equilibria? And what if players make moves which run 
counter to theory? Day (1993) points out that the founders of classical economics, 
including Adam Smith himself, were well aware that not all of human behaviour 
was rooted in balance and rationality. Atkinson (1969, in Ormerod 2005, p. 21), 
states that it may take over 100 years for economic growth equilibria to stabilise 
- meaning that the systems we observe are largely in disequilibrium in any case. 
And in the latter half of the 20th century, the advent of chaos theory undermined 
the idea that even the simplest behavioural foundations would necessarily result 
in an analytically tractable outcome. The sentiment is succinctly expressed by 
Strogatz (1994): “If you listen to your two favourite songs at the same time, you 
won’t get double the pleasure!”2

1.2.2 The advent o f agent-based m odels and evolutionary  
econom ics

The fields of social, economic and geographic agent-based modelling were founded 
on the principle that real economic systems “change slowly and irreversibly over 
time, which means that they do not lend themselves well to equilibrium analysis” 
(Andersson et al. 2006). Instead of taking the mathematically tractable, analyt­
ical approach, agent modelling seeks to simulate the actions of large numbers of 
independent entities by explicit stepwise computation. Axelrod (2006) clarifies 
the goals of agent modelling as (i) assisting theoretical understanding of the fun­
damental causes in social systems, (ii) assisting empirical understanding of why 
certain features have come to exist, and (iii) assisting normative understanding 
by helping us to design better systems.

The seminal work in this field is the model of ethnic segregation presented in 
Schelling (1971), which demonstrated that segregated societies can easily form in 
spite of a reasonable quantity of inter-racial tolerance on an individual level. This, 
combined with the advent of more powerful, yet cheaper computers in the past 
few decades, inspired a substantial body of similar work - some explicitly spatial,

Notwithstanding Drummond & Cauty (1988), which describes the production of a number 
one hit single based on the application of just such a procedure.
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some not. Some examples are Epstein & Axtell (1996), in which a simulated 
‘sugarscape’ provides a theoretical model for culture and trade; Tesfatsion (1997) 
which models trade via game theory; Page (1999) which deals with the location 
of cities; Axtell et al. (2000) which uses game theory to explain discrimination 
in a hierarchy of social classes; Lai (2006) which models urban planning through 
chance combinations of problems, solutions and decision makers; Webster (2001) 
which simulates competitive and cooperative behaviour over public goods; and 
Lake (2001) which investigates the effects of cultural learning on hunter-gatherer 
survival. Overviews of further literature are provided by Lebaron (2006), Kollman 
&; Page (2006) and Batty (2001) in the fields of finance, politics and pedestrian 
modelling respectively. Li (2005) contains some examples of cellular automata in­
tegrated with geographic information systems, and applied to agricultural zoning. 
Finally, echoing a return to the origins of spatial economics, Heikkila & Wang
(2006) describes the application of an agent model to examine the implications 
of unifying the theory of bid rent with Hotelling’s spatial location game.

A field that often overlaps with agent-based modelling is that of evolutionary 
economics. While Darwin’s Origin of Species was published in 1859 - and had 
a widespread impact on subsequent understanding of not only the biological, 
but also the social world - it wasn’t until the 1990s that serious attempts were 
made to explain society through actual simulations of Darwinian behaviour. As 
was the case with agent modelling, the reason for this probably relates to the 
advent of cheap computing power. Witt (1993) gives a good introduction to 
evolutionary economics, and also criticises general equilibrium from the point of 
view of evolutionary fitness and optima, which are in the real world axe ever- 
changing and adaptive (Witt 1992). Examples of the application of the field 
extend into financial markets (Xu 2006), innovation (Cowan et al. 2006) and the 
adoption of new technology (Schwoon 2006, Sandberg 2007).

1.2.3 Network formalisms

Throughout the majority of spatial computational models viewed above, the rep­
resentation of space is limited mainly to physical topology. In the late 1990s, 
however, a new concept of space started to emerge: that of network space. A  
network, whether deduced from transport links, trade relations or human con­
tact, can be defined as a structure representing the degree to which each pair of
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entities in a system is connected.
Watts & Strogatz (1998) demonstrated the creation of a small world network, 

in which the majority of nodes are not directly connected, but can nevertheless 
be reached from one another in a limited number of steps. Such networks are 
thought to be widely prevalent in the real world. Several network formalisations 
followed, extending the theory to allow network links of varying strength, and 
enabling the abstraction of any such network to a limited number of parameters 
(Barrat et al. 2004, Vragovic et al. 2005, Latora & Marchiori 2003). Also, al­
ternative processes were proposed that could explain the formation of networks 
(Masuda et al. 2005). Such networks soon became incorporated into agent-based 
models, e.g. of migration (Silveira et al. 2006) and the labour market (Tassier & 
Menczer 2001), while the properties of real-world networks were investigated (e.g. 
Jiang 2004, Faust et al. 2000). Notably, it is sometimes the case that abstract 
parameters of nodes derived from their positions in the network can be shown 
to correlate with real-world characteristics, for example in the De Montis et al.
(2007) study of inter-urban traffic.

Such network models have now gained widespread acceptance as a relevant 
depiction of social reality - one that is now mirrored in the significant commercial 
success of collaborative filtering systems such as stumbleupon.com, the recommen­
dations feature of Amazon, and social networking websites such as Facebook.

1.2.4 Concerns o f th e  present day

To date, then, computational models, dealing with both physical and network 
space, have been developed to address the limitations of classical spatial and 
economic theory. In the 21st century however, it has become apparent that 
- despite hundreds of citations of Schelling’s original paper on segregation3 - 
agent based modelling is not without its own problems. While Andersson et al. 
(2006) was quoted at the start of this section as a proponent of theoretical agent 
modelling, the same paper notes that

“the lessons that have been learned have not easily been carried over 
to applied models” .

3The ISI Web of Knowledge records 375 as of October 2008
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Indeed, while theoretical models have often been enlightening as to the emergent 
nature of society, they have not often been followed by accurate predictions of 
future changes. Pontius Jr et al. (2007), comparing a few different predictive 
models, concludes that many contain more error than truth. Wu (2005) states 
that validation of such models is still a problem. Indeed, it is often the case that 
several different plausible models can produce behaviour similar to that observed 
in the real world, and we are left wondering which one is correct. Models can 
lead to qualitative, as well as quantitative errors in understanding. Batty (2006) 
provides an example by visualising changes in the city hierarchy over time. When 
viewed at a single stage in time, existing models of city growth are quantitatively 
consistent the data, but the change in rank orderings of cities revealed by an 
extended historical study is qualitatively irreconcilable with those models.

The question, then, is where to go from here. One approach to the quantita­
tive problem is calibration with real data, to ensure that the model successfully 
reproduces known test cases before using it to extrapolate to future behaviour. 
An example of this is Whalley & Zhang (2007), which studies labour mobility 
restrictions in China. Another approach is to demonstrate that the model quanti­
tatively outperforms humans, as in the case of the auction trading agents of Cliff 
(2003): such behaviour is hard to argue with. However, none of these approaches 
can protect against the problem of qualitative error, whether in the form of failure 
to consider future effects of variables not considered in the model, or in the form 
of a misunderstanding of the true causes of existing scenarios.

One method for improving qualitative accuracy of the rule-set is to build mod­
els on better-developed discourse, such as the description of spatial co-operative 
behaviour in Webster & Lai (2003). Alternatively, empirical measurements can 
be taken of the motivation of individual agents, as in the interviewing techniques 
of Berger et al. (2006), which were applied before creating a model of the adop­
tion of innovations in developing world agriculture. Ultimately however, these 
approaches still cannot guarantee protection against such error.

What then is to be done? Perhaps qualitative error is best seen as an in­
evitable part of the rise and fall of scientific theories, which are progressively es­
tablished and refined through making real-world predictions and checking them 
against actual data. It is this second component - the real-world data - which 
although not entirely absent, is perhaps underrepresented in the field of agent
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modelling. While data plays a part in many of the studies cited above, the frac­
tion used in these models arguably lags behind the vast information resources 
available to us in the information age of the 21st century. Additionally, it would 
seem that the use of data to calibrate existing models, rather than to inform the 
choice of model in the first place, is potentially a waste of a valuable resource. 
The approach taken here, then, is to temporarily abandon modelling in favour of 
exploring the data already collected.

Rather than using computers to execute a model - which is usually geared 
towards testing a particular hypothesis - processing power can instead be used 
to extract likely bases for future models from empirical measurement. This is 
achieved through exploratory analysis. Cliff & Miller (2006) provides an example 
in evolutionary economics, which, despite studying the output of yet another 
model rather than collected data, serves to illustrate exploratory analysis fairly 
well. The work uses a novel visualisation to verify the assumption implicit in 
many genetic algorithms, that the most recent evolved population is in fact the 
most optimal when compared to the entire simulation history: however, this 
visualisation also enables the discovery of a diverse array of patterns which may 
not have been previously suspected in such simulations.

On the other hand, an excellent example of extensive real-world data analysis 
used to inform future simulations is the migration work of Stillwell (2008) (and 
the technical report Development of a migration model 2002), in which a vast 
quantity of existing hypotheses and known data are reviewed with the ultimate 
aim of model creation. These studies also inherently make use of network data, 
mirroring the focal interest of the formal network literature discussed in section 
1.2.3. However, this data is not analysed through explicit abstraction and for­
malism but instead, through a direct attem pt to model a network phenomenon.

The current study, therefore, does not aim to directly produce models of 
human interaction, but simply to comprehend it better through the exploration 
of existing data sets in ways which have not been achieved before. Additionally, 
in order to address the rising recognition of the importance of network models, 
analysis of network interaction data will play a part. The techniques chosen 
will be general, and hopefully not limited to use in the domains in which they 
are initially applied. It is hoped that in future, more accurate models may be 
informed by any ensuing deductions, thus -furthering the field of computational
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social science; however, it may well be that the realities unveiled by exploratory 
analysis alone constitute useful results.

Finally however, it should still be remembered that the focus of this thesis is 
on the methods, rather than outcomes, of analysis.

1.3 Limitation in scope: the housing market of 
England and Wales 2000-2006

For the most part, this study concerns the housing market of England and Wales4 
during the years 2000-2006. Figure 1.1 shows the overall behaviour of the market 
before, during and after this period. Historically, the UK property market has 
tended to rise in the long term, but to cycle through phases of boom and bust 
in the short term. The period of this study was characterised entirely by a small 
segment of a rising ‘boom’ phase. This particular boom started during the mid 
nineties with house price increases in London and the South East, continued 
with rapid gains nationwide (which slowed in 2004 after the interest rate started 
climbing from its level of 3.75% for the first time since 2000), and ended in 2008 
with what the media now calls a global recession caused by the sub-prime lending 
fiasco.

It can be assumed that any specific findings of this study, unless otherwise 
stated, apply only to the time period of the study.

1.4 Structure of the thesis

A mountaineer would be foolish to leave base camp without a map, therefore in 
the spirit of aiding the reader of this thesis, figure 1.2 provides a visual repre­
sentation of its structure. The perspective view chosen, however, is not topo­
graphical: instead, a data-flow diagram is provided. A key is given in figure 1.3, 
which introduces four types of data: unprocessed lists of transactions, geo-spatial 
data (typically modelled as a two-dimensional entity), geo-spatial-temporal data 
(shown here as three-dimensional) and finally interaction data (which, being de­
fined between a 2-d space of origins and a 2-d space of destinations, is four

4Scotland and Northern Ireland have separate land registries.
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Figure 1.1: Average England and Wales house prices 1995-2010. Source: HMLR
website

dimensional).
The remainder of the study is structured as follows.

C h ap te r 2 , to the left of figure 1.2, covers the first stage of analysis - the 
consideration of data issues and its spatial and temporal aggregation into 
the desired units of analysis. A novel technique is presented which enables 
increased accuracy in time aggregation of housing transaction data; this is 
useful for the detailed analysis conducted later on. The outputs from this 
stage are the housing, census aggregate and census interaction data used in 
the subsequent chapters.

C h ap te r 3 presents techniques used to visualise the data. Visualisation is a key 
part of this research, as it allows presentation to the human mind of a vast 
quantity of data while requiring minimal assumptions. Existing techniques 
for displaying interaction data via linearisation are incrementally improved 
through use of colour, interactive software, a better ordering algorithm and 
pre-processing of time series into cross-correlations. The techniques thus 
developed are also found to be useful in chapter 5.

C h ap te r 4 deals with the development of a general purpose, multivariate, multi­
level regression engine to complement the visualisation techniques. It is 
tested on some of the simpler types of input data: the 2-d geospatial sets of

period of study
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Figure 1.3: Key to the map of figure 1.2.

census aggregate statistics and average house prices from the year 2001. As 
with the visualisation techniques, the resulting software is used throughout 
the remainder of the study.

C h ap te r 5 develops a method for unifying all the housing, aggregate census and 
interaction data used, in the interaction domain. The regression model of 
chapter 4 is used in anger to search for correlations in this domain. Cross­
correlations in housing market time series have not previously been quali­
tatively analysed in this manner. The results partly confirm a hypothesis 
prevalent in the literature - that apparent house price interactions actually 
have a reactive explanation - but also reveal that the composition of mi­
gration flows has a significant effect at a fine spatial scale. Visualisation of 
the house price interaction domain also suggests two simpler analyses that 
may be of use in comprehending the data.

C h a p te r 6 explores these two simpler analyses: clustering, and assessment of 
regions in a market-driving/market-driven framework. Regression is used 
to deduce the underlying causes of these characteristics.

C h a p te r 7 concludes.

It is common practice in research, to separate methodology from analysis, 
however for the purpose of this thesis, the distinction between the two is not 
rigidly maintained: this enables instead, the presentation of relevant topics to­
gether and in appropriate sequence. Figure 1.4 shows a somewhat tongue-in-cheek
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■ analysis/novelty □methodology

2. data and aggregation 

3. visualisation
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£  4. regression
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Figure 1.4: Whimsical (and subjective) illustration of the quantity of novel con­
tent in each chapter. Chapters with more novelty can be considered analytical 
while chapters with less novelty can be considered more methodological in nature.

illustration of the distribution of novel research (analysis) over the thesis. Thus, 
while it can be seen that the majority of methodological content is presented in 
the early chapters, and the majority of novel analysis towards the end, significant 
findings occur at all stages of the narrative.
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Chapter 2 

D ata issues and aggregation

2.1 Introduction

This chapter discusses the data sets used in the thesis, and their aggregation 
into the units used for analysis. Such aggregation forms a significant part of the 
research methodology, and therefore merits in-depth discussion. Defined as the 
combining of a large number of data items into a smaller number of items, it 
is conducted here for three reasons: to increase data comprehensibility, to make 
computation more tractable, and to increase the accuracy of predictions. One 
might argue that all of scientific method is aggregation: the reduction of all our 
sensory inputs (a vast number of data items) to simple scientific models explaining 
those inputs (a much smaller number of data items). Certainly a thesis such as 
this could not exist without such a process - perhaps instead, a student would 
simply print out the entire Land Registry and Census datasets in their raw form, 
and submit them. If only it were that easy!

However, much though as researchers we may be thankful for any short-cuts to 
the completion of a project, if our long term aim is to better understand the world 
around us then aggregation is definitely one of those short cuts. Therefore any 
processes which reduce the size of a dataset, but maintain its comprehensibility 
and (so far as possible) its information content, are most welcome. The scope of 
this chapter is restricted to such processes.

This chapter therefore introduces the Land Registry and Census data sets used 
(section 2.2), and discusses their pre-processing - especially their aggregation both 
in space and time. Spatial aggregation is dealt with in section 2.3. Section 2.4

15
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discusses time aggregation for the Land Registry data only (a more complex task 
meriting its own section). In the case of Census data, no time aggregation is in 
fact conducted; section 2.5 explains why this is the case. Section 2.6 concludes.

2.2 Introduction to  the data sets

This section introduces each of the two data sets in turn.

2.2.1 The UK  C ensus o f 2001

A full census of the UK is conducted every 10 years, and this study makes use 
of two types of data from that carried out in 2001: aggregate statistics (which 
record a very wide range of statistics for each area), and interaction data (which 
records a more limited range of interaction statistics, such as the number of 
moving households or commuters, for each distinct pair of areas). These are 
both employed at three levels of aggregation: Output Area (OA), Ward and 
Local Authority.

2.2.1.1 Census Geographies

The smallest aggregation area is the OA, which is

...built from clusters of adjacent unit postcodes, but as they [reflect] 
the characteristics of the actual Census data ... [they are not] gener­
ated until after data processing. [OAs are] designed to have similar 
population sizes and be as socially homogeneous as possible (based 
on tenure of household and dwelling type) ... Urban/rural mixes [are] 
avoided where possible ...

The minimum OA size is 40 resident households and 100 resident 
persons but the recommended size [is] rather larger at 125 households 
... In total there are 175,434 OAs in England (165,665) and Wales 
(9,769). (UK Census Geography description web page (n.d.))

The next largest area of aggregation is the census ward, of which there are 
8850 in England and Wales. The largest area of aggregation used in this study 
is the Local or Unitary authority (a political division) - of which England and
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Wales contain 376. In chapter 3 some visualisations of the entire UK, including 
Scotland and Northern Ireland will be shown; in this case there are 426 local 
authorities present.

2.2.1.2 Issues of privacy

In order to preserve the privacy of individuals, the census office ensures that it is 
difficult to identify specific people in their statistics. Stillwell & Duke-Williams 
(2007) gives a good overview of the techniques used to achieve this. Besides 
pre-tabulation thresholding (only publishing values above a certain threshold) 
and record swapping (random exchanges of the data on individuals from similar 
areas), a Small Cell Adjustment Method (SCAM) is applied to interaction data.

SCAM operates by randomly adjusting table cells containing values of 1 or 2 
to either 0 or 3 with probabilities defined as follows:

The intention of this Monte-Carlo-style publication is that such small differences 
should cancel when aggregating over large numbers of areas, as the expected value 
of each cell remains unchanged by the random adjustments. In other words, if 
£ is a value pre-adjustment, and x' its corresponding value which is published 
post-adjustment, then

Fortunately, the property of differences cancelling during aggregation also applies 
to the regression analyses conducted in chapters 4-6. However, it is possible that 
they will cause occasional errors to appear in the high-resolution visualisations 
of chapter 3. This cannot be avoided; however, in an era when personal privacy 
is increasingly eroded both by private corporations and in the name of national 
security, the census office should be applauded for at least making an effort to 
preserve it in their published statistics.

P( 1 -+ 0) =  2/3 

P(1 —► 3) =  1/3 

P( 2 -> 0 ) =  1/3 

P(2 —► 3) =  2/3 (2 .1)

Mx.E(x') =  x (2.2)
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2.2.2 England and W ales Land Registry transactions 
2000-2006

This is the set of housing property transactions collected by the England and 
Wales Land Registry (officially Her Majesty’s Land Registry or HMLR). In the 
case of each transaction, the following information is available:

• Property sale value in pounds
• Sale Date
• Type of property: Detached, Terrace, Semi-Detached, Flat or Null
• Type of ownership: Leasehold, Freehold
• New build information: New, Not New, Null
• Address of the property
• Postcode of the property

The author has been provided only with the subset of transactions to which it 
was possible to assign a grid reference (geo-code), which constituted 89% of the 
original data set. Similarly, leaseholds are discarded from the data as information 
on the ground rent on all such properties is not available, and it is therefore hard 
to calculate a basis for comparison between leasehold and freehold prices. In 
both of these categories of transactions, flats are likely to be over-represented, 
as they tend to be sold on a leasehold basis and are not well handled in the OS 
ADDRESS-POINT data used for geocoding. The omission of such properties can 
be expected to bias the results of analyses conducted in chapters 4-6, in which 
the size of any effects relating to the ‘flat’ submarket will be underestimated.

2.3 Spatial aggregation

2.3.1 The need for spatial aggregation

Pre-aggregation of data is a prerequisite of some, but not all, computations car­
ried out during this thesis. In particular, it is essential for the cross-correlation 
analysis to be carried out in chapter 5. Aggregation is also needed at some stage 
of the visualisation process of chapter 3 (though not necessarily beforehand). Ag­
gregation is not needed for the regression models of chapter 4 per se. However,
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in order to produce directly comparable results from all stages of the study, a 
common aggregation step is carried out prior to the analysis.

2.3.2 Choice o f the appropriate scale for spatial aggrega­
tion

Part of the purpose of this study is to make use of extensive datasets which have 
not been combined before, so to fully exploit the large quantity of data, it is 
proposed that analysis is carried out at the maximum sensible resolution. But 
what does sensible mean? The following points are proposed:

1. we must consider the resolution of data available, both from the Census 
office and the Land Registry.

The Land Registry data set is the more spatially accurate of the two, pro­
viding individual addresses and postcodes, and is therefore not a limiting 
factor in this respect.

The census data is available on three levels: either at local authority, ward 
or output area (OA) level. The latter equates approximately to postcode 
areas, therefore this represents the highest resolution available from the 
data. However, not much information of interest is provided at OA level: 
for example, when looking at interaction data, we are told the number 
of migrants and commuters between each pair of OAs but not much else. 
Conversely if the resolution of interest is decreased to ward level, we are told 
the age and sex of migrants, and their occupational classifications, among 
other information.

2. we must consider at what level useful patterns will appear in the census 
data. Existing research shows that structure is visible at all levels: output 
area (Propper et al. 2005), wards (Titheridge & Hall 2006), London bor­
oughs (Congdon 2006), and counties Boyle (1993). In the case of Titheridge 
& Hall (2006) and Boyle (1993) these patterns emerge in interaction data 
as well as census area statistics. Multi level modelling approaches have also 
been used to find meaningful patterns, e.g. Manley et al. (2006). Over­
all therefore, it seems reasonable to assume that patterns of interest can 
emerge at all levels.
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3. we must consider at what level useful patterns will appear in the Land 
Registry data. This may well be the limiting factor in the choice of spatial 
resolution. For example, a typical Cardiff output area has approximately 30 
property transactions recorded since the year 2000 - an average of less than 
4 per year. This is unlikely to provide enough information to produce even 
a smooth annual price index (let alone a monthly index) for the output 
area. Therefore, some spatial aggregation of Land Registry data will be 
required.

4. we must consider the needs of the cross-correlation algorithm will be run 
on the output of aggregation. Computing cross-correlations for every pair 
of the 8850 census wards in England and Wales takes several hours. As this 
time is proportional to the square of the number of areas studied, practical 
considerations dictate that working at a finer granularity than the ward 
level would be inconvenient at best and impossible in the worst case.

It should be noted that it is not essential to work with only the areal units 
defined in the data sets, and that custom units could be defined at whatever 
level is deigned to be most appropriate. This could be performed by some kind of 
automated clustering process. However, this option has been rejected in favour of 
using established boundary data, as this data itself provides some socioeconomic 
information about the represented space. Section 2.3.3 will discuss this point in 
greater detail.

Balancing the considerations listed above, areal units approximately the size 
of (i) wards and (ii) local authorities, are deigned to be appropriate for study. 
As the census office provide data pre-aggregated to units of census wards and 
local/unitary authorities from the year 2001, these are the units of analysis chosen 
for the remainder of this work.1

2.3.3 Choice o f m ethod for spatial aggregation

A variety of methods are available for spatial aggregation, principally simple 
averaging, kriging and clustering.

1 Smaller areas will in fact be used to increase accuracy when constructing then index (to 
be discussed in section 2.4) however the analysis will thereafter be conducted at ward level or 
above.
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1. Simple averaging is the most obvious method for calculating an aggregate 
area statistic from given point data. Likewise, simple assignment is the most 
obvious method for calculating point data from a given aggregate statistic. 
This is used in e.g. Orford (1999) where Housing Condition Survey data, 
collected at a sub-street level, is assigned to individual properties.

2. Kriging covers a wide array of more sophisticated techniques used to esti­
mate the value of unknown point data by interpolation from known neigh­
bouring points. This can be extended to calculate statistics for areas based 
on the points within them, perhaps reflecting the underlying unmeasured 
data better than a simple average (Isaaks & Srivastava 1989).

3. Clustering processes group data in space based on similarity to neighbours, 
as in Slater (1976) or Bourassa et al. (1999, in Meen 2001). In the context 
of this study, for example, three neighbouring OAs containing a similar 
type of housing and resident could be clustered together. The similarity 
criterion - a measure of how similar two areas have to be, in order to be 
combined - would be varied at will, which would have the effect of changing 
the spatial resolution. Meen (2001) notes that areas constructed by these 
methods seldom match Local Authority areas. To call this a problem would 
be missing the point of the clustering process, the very aim of which is to 
define areas derived from the data itself. However, such aggregation is likely 
to complicate comparisons between different data sets, and comprehension 
of the results.

For the purposes of this study, the option of simple averaging was chosen. 
This is because, as noted in Isaaks k, Srivastava (1989),

“estimation requires a model of how the phenomenon behaves at 
locations where it has not been sampled; without a model, one has 
only the sample data and no inferences can be made about the un­
known values at locations that were not sampled.” (Chapter 9)

For geological data, it may be reasonable to assume some kind of spatial 
continuity and therefore apply kriging; however in the case of sociological data, 
the underlying unmeasured locations may change rapidly, e.g. in the case of
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a railway line dividing rich and poor areas of a city. Fortunately, the results of 
published work on the spatial distribution of social divisions is already available in 
the form of the Census output area geographies, which at least in urban areas are 
deliberately chosen so as to each contain, so far as possible, a consistent type of 
housing (Orford &; Radcliffe 2007). Therefore, if a model is to be chosen, it is not 
unreasonable to assume homogeneity among urban output areas (Rural areas are 
by their nature, far more varied, and in this study the problem of rural variability 
remains unaddressed; however it should be noted that approximately 80% of the 
UK population resides in an urban area). If each area, then, is assumed to be 
homogeneous then the appropriate technique for estimating an area statistic is a 
simple average of all known points within that area.

Simple averaging carries an additional advantage, over clustering, of making 
results easier to interpret and communicate: it is easier, for example, for the 
reader to relate to results concerning “output areas where the population exceeds 
N”, compared to results concerning “areas where the special density function used 
for this study exceeds N” .

Finally it should be noted that broadly speaking, kriging is a form of aver­
aging with additional data smoothing. Smoothing of spatial data will be carried 
out in subsequent computations - the processes that were listed in section 2.3.1 
all contain a spatial smoothing function already. Regression is itself a form of 
smoothing, fitting a straight or curved line to a number of discrete points. Visu­
alisation leaves the process of smoothing data to the human eye and brain, and 
while computing cross-correlations requires no spatial smoothing, all results from 
the process will be either visualised or used for regression. Additional smoothing 
stages may therefore be unnecessary.

2.4 Temporal aggregation o f Land Registry  
D ata

With spatial data, the main question to answer was at which level to conduct 
aggregation, and a secondary question was how to produce data at this spatial 
level. In the dimension of time, the importance of these questions is reversed. 
Section 2.4.1 discusses the need for temporal aggregation of data, and section 2.4.2 
discusses the choice of time resolution - the easy question - while the remaining
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sections deal with how to aggregate data appropriately: section 2.4.3 reviews 
existing techniques, section 2.4.4 proposes a new solution to the problem, section 
2.4.5 deals with testing the validity of this solution and section 2.4.6 concludes.

2.4.1 T he need for tem poral aggregation

Aggregation of data in time is needed for two of the three computations mentioned 
in section 2.3.1:

1. Data visualisation. As there are many more transactions in the data set 
than pixels on the average computer display, a single pixel of computer 
display must represent a number of individual transactions, and aggregation 
is therefore needed at some point in the visualisation process.

2. Computation of cross-correlations between housing market areas. It is the 
nature of the cross-correlation algorithm that it takes a time series, rather 
than individual point data, as input; therefore aggregation of individual 
data points into a time series is needed.

2.4.2 Choice of tim e resolution

The question of what time resolution to use is refreshingly simple: as studying 
fine grained house price data in this manner is unprecedented, it is not known 
at which level patterns will emerge, so all possible levels will be studied - within 
reason.

Common sense would suggest that for movements in the property market, the 
lower bound of ‘within reason’ cannot be much less than a month as it typically 
takes this long to complete a property transaction. Section 2.4.6.1 will present 
empirical evidence which points towards sensible lower limits of time resolution 
being in the region of 20 days; however, accuracy is decreased at this level, there­
fore section 2.4.6.2 considers the selection of an optimal unit of time resolution.

The upper bound of time resolution that can be studied, meanwhile, is fixed 
by the six year timespan of the available data.
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2.4.3 Existing m ethods for producing house price indices

2.4.3.1 Simple Averaging

The most simple and obvious method for collating Land Registry transaction 
data into a time-price index for a given area, is to divide the time period of 
interest into a number of slices, and then for each slice to compute the average 
sale price of transactions that occurred during that time slice and in that area.

mdextAREA =  iA R E A t\ E transaction price (2.3)
transE A R E A 1

where A R E A is the set of transactions that took place in the area of concern 
during time slice t. Alternatively, as in Meese Sz Wallace (1997), the median can 
be used instead of the mean, thus removing noise caused by outliers - particularly 
expensive or cheap houses which are unlikely to be representative of the market 
overall:

indextAREA =  median(transaction price for trans € A R E A 1) (2.4)

However, both of these methods suffer from the property basket problem, 
where the index price in each time slice is subject to variation based on the 
‘shopping basket’ of properties which happen to sell during that time slice. One 
approach to this problem is to create a mix-adjusted index, where average prices 
for each type of housing are computed separately and later combined into an 
index. Another approach is to employ hedonic modelling.

2.4.3.2 Hedonic modelling

Hedonic modelling (Rosen 1974) makes use of regression to estimate a wide variety 
of parameters which may affect the price of a property. Predictor variables may 
include for example, property-specific factors such as the floor area, number of 
bedrooms or access to off street parking; or neighbourhood-related factors such 
as the proximity of schools, parks or transport links. Thus, rather than trying 
to explain the value of each particular sale, it is possible to remove property- 
specific factors and analyse instead the changing values over time of the premiums 
associated with particular spatial regions.

Unfortunately, such an approach is not possible using Land Registry data
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Areal/Time unit Median number 
of transactions

Percentage with 
no data

Percentage with 
no repeat sales

Ward, 5 day 1 43 69
Ward, 10 day 2 24 51
Ward, 20 day 4 9.8 32
Ward, 30 day 6 5.1 22
Ward, 90 day 18 0.44 5.8
LA, 5 day 25 1.7 3.6

Table 2.1: Volume of Land Registry data available, per space-time slice. Per­
centages are calculated as a proportion of slices from all areal units for which any 
data exists at all during the six year period of the study.

alone, as even the most basic variables necessary for a hedonic model (such as 
floor area) are not present in the data. While it would be possible to gather 
such data independently through a variety of means, to do so for all six million 
transactions in the data set would constitute another project in its own right so 
this approach has not been employed here.

2.4.3.3 Repeat price indices
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Figure 2.1: Histogram showing number of repeat sales per ward, over the entire 
data set
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Another approach is to generate a repeat price index from the sales of houses 
which have sold more than once during the period under consideration (see Meese 
& Wallace (1997) or Meen (2001)). Thus, market growth can be estimated from 
the change in value of a single property between two subsequent sales of that 
property; regression is then used to combine this information from each property 
that sold more than once. It is assumed that the property has the same hedonic 
value each time it sells; obviously this is not always true due to changes to the 
property itself or to its local environment, but the assumption is nonetheless 
considered reasonable. It is certainly a better assumption than the one implicit 
in taking a simple average: that the shopping baskets of houses which sell each 
month have the same hedonic value. Meese does, however, note that repeat price 
indices “suffer from sample selection bias and inconstancy of implicit housing 
characteristic prices, and they are quite sensitive to small sample problems” .

2.4.3.4 Discussion

As noted above, it was simply not possible to employ a hedonic index in this 
study, due to lack of data on housing attributes. Meese & Wallace (1997), which 
provides a useful comparison of the techniques described here, notes that missed 
attributes can cause major problems in hedonic index estimation.

Meanwhile, constructing a repeat price index entails throwing away five sixths 
of all the data available, which intuitively seems wasteful, particularly when at­
tempting to study short term dynamics in small areas for which little data is 
available to start with. Figure 2.1 shows the distribution of repeat sales over 
wards. Table 2.1 shows the median number of transactions per ward per month 
as 6; the corresponding figure for repeat sales is 1. While no transactions what­
soever occur during 5.1% of ward-months, in the case of repeat sales, no data is 
available 22% of the time. While this may be a fairly accurate technique, then, 
for producing a price index in a high volume sales area, it is not sufficient for the 
study of low volume areas. Repeat price techniques are therefore not employed 
to generate price indices in this study, however they are used in section 2.4.5 for 
benchmarking purposes.

Meese concludes with the suggestion that “researchers interested in regional 
real estate cycles, or just a reliable estimate of the local trend in housing price 
movements can rely on the simple median sales price index” . However, a tech­
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nique is proposed in the next section which - without restricting the data used to 
repeat sales, or requiring detailed housing attribute data - can improve on this.

2.4.4 M ethodology for aggregating data in tim e

This section proposes a new approach which makes use of census boundary data 
to approximate a hedonic model. For the purpose of the census, the UK is 
divided into approximately 220,000 output areas (henceforth OAs) which have 
been chosen partially with the goal of each OA representing a fairly consistent 
type of housing (Orford & Radcliffe 2007). To make use of this, it is explicitly 
assumed that all houses within the OA have exactly the same hedonic value. Like 
the other index generating assumptions mentioned above, this is of course not 
true - especially in rural areas where neighbouring properties tend to differ more 
than on a city street. However, as was the case with the repeat price index, it 
is perhaps better than the assumption used in taking a simple average (equation 
2.3), that the monthly ‘shopping basket’ of properties available for sale always 
contain properties of exactly the same hedonic value. Assuming that OAs are 
internally homogeneous is preferable to assuming that larger areas are internally 
homogeneous.

Therefore, a price index is constructed for each OA using equation 2.3. We 
then compute a log relative index for each OA:

i  i  •  • t  t i  indexUAlog relative m dex^  =  log ^  (2.5)
maex

where indexQA is the value of the absolute index for district OA at time t, and 
indexQA is the value of the absolute index for district OA at time zero (the first 
time slice in the study). This approximates a hedonic model because normalising 
each OA - i.e. studying only the price of housing relative to the average price 
in the OA at the start of the period under study - has the effect of removing 
the effect on prices of the average housing characteristics of that OA, at least for 
those housing characteristics whose relative value remains unchanged over the 
period of study.

Log price indices are not new, and are often appropriate for models of return 
on investment (Tsay 2002). In this case there are three reasons for converting to 
log indices:
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Relative return factor Percentage profit log2 relative return
A 0.5 -50 -1.00
B 1 0 0.00
C 2 100 1.00
D 2.1 110 1.07
E 11 1000 3.46
F 11.1 1010 3.47

Table 2.2: Thinking of financial returns on a logarithmic scale

1. Intuitively, human beings tend to think of the value of relative financial 
change in logarithmic terms. Table 2.2 gives some examples. Index A 
moves from 1 to 0.5 while C moves from 1 to 2: these movements are 
considered to be of equal magnitude but in opposite directions, and their 
log values of -1 and 1 respectively reflect this. B has a return exactly equal 
to the initial stake - no profit or loss - and hence a log value of 0. And the 
differences between lower returns are considered more significant than the 
differences between higher returns: the difference in log values of a 100% 
and 110% return (lines C and D) is 0.07, while the log difference between 
a 1000% and 1010% return (lines E and F) is 0.01.

2. Not only does our intuition match logarithmic valuing, but this also extends 
to the averaging processes. For example if lines A and C of table 2.2 corre­
spond to two areas of a city, one doubling in value while the other halves 
in value, we would like to report no average change in value overall. With 
linear factors or percentage returns, the average of 0.5 and 2 is 1.25 which 
is not what we would like to report. Using a logarithmic scale however, the 
average of -1 and 1 is 0.

3. Logarithmic indices simplify the process of normalising returns over time. 
For example, calculating the annual equivalent of a 50% return over five 
years necessitates solving (1 +  x)5 =  1.5, whereas with a logarithmic return, 
simple division can be used.

Finally the indices for OAs are combined into indices for larger areas using
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an arithmetic mean:

log relative index^£A =  . ^  (log relative index^) (2.6)
' ' O AeA REA

where A R E A  is the set of census output areas OA in the area of concern, and 
log relative in d ex ^  is the value of the log relative price index for district OA at 
time t. It is then possible to convert from log indices back to normal relative 
indices:

relative in d e x ^ ^  =  exp(log relative in d e x ^ ^ )  (2.7)

It should be noted that mathematically, the logarithms and exponential can 
cancel, leaving a geometric mean over output area price indices:

relative in d e x ^ ^  =  \ a r e a \ relative index^  (2.8)
y OAeAREA

However, for the reasons noted above, logarithmic indices are used for the rest 
of this study, so the calculation of indices ends with equation 2.6.

Note that it might be a cause for concern if the first timeslice in which trans­
actions occur contains unusually high or low prices. However, the alternative to 
normalising by the first timeslice is normalising by an average of several slices, 
and this option has been discarded for two reasons. Firstly, it will be easier to 
comprehend relative price indices if they all start with a value of 1. Secondly, 
for the purposes of this study, the indices are mainly used in first derivative form 
- showing inter-interval price change rather than absolute price - so the actual 
initial value of the time series is irrelevant.

It would also be possible to smooth the resulting time series to remove ‘noise’ 
caused by the property basket effect at short time scales. This has not been 
done for three reasons. Firstly, it is not possible to tell signal from noise: how 
can we distinguish which changes in price are due to the random selection of 
properties which happen to be sold, as opposed to the underlying short term 
market changes which are the object of this study? Secondly, Tsay (2002) notes 
that smoothing of time series introduces false autocorrelation to the data. This 
would be of concern considering that the generated time series are to be used
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in a cross-correlation analysis.2 Finally, as with the spatially aggregated data, 
smoothing will be applied at a later date anyway - in visualisation, regression, or 
integration of a cross-correlation function - all of which amount to smoothing in 
one way or another.

2.4.4.1 Summary of index generating m ethod

The indices are therefore constructed as follows:

1. leaseholds are removed from the index, as the property rent and duration of 
lease will have a significant impact on the transaction price. These factors 
are not included in the Land Registry data, so it is difficult to deduce much 
about underlying market value from any given leasehold transaction price.

2. regardless of the target spatial resolution of the index, transactions are 
assigned to census output areas (OAs).

3. for each timeslice and each OA, an average of ail sale prices is taken to form 
an absolute index.

4. a relative price index is created from each absolute index, i.e. all index 
values are computed relative to the absolute index price of the first timeslice 
in which transactions occur

5. for OAs with few transactions, all time slices where no transactions oc­
cur are assigned the same index value as in the previous time slice (i.e. 
there is an assumption of no market change). All index values prior to the 
occurrence of the first transaction in the OA are also assigned a value of 
1.0 .

6. for each area unit of the target spatial resolution (either a census ward or 
Local/Unitary Authority) a price index is constructed which is the geomet­
ric mean of the indices of smaller units within it.

2 Unfortunately, the process described here will itself generate some degree of false autocor­
relation due to the technique used to estimate a price for areas with no data. However the 
author sees no reason to further exacerbate the problem!
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2.4.5 Testing of index accuracy

The price indices developed in this chapter are to be used extensively in the 
remainder of the thesis, to produce visualisations (chapter 3), simple models of 
price growth (chapter 4) and more complex models based on inter-area time series 
correlation (chapters 5-6). They are therefore tested to ensure that they represent 
the raw transaction data in a reasonably accurate manner. Such tests can also 
be viewed to some extent as a test of the implicit ecological assumption inherent 
in indexing, that the price of each house within a certain area tends to behave in 
the same way as prices in the area on average.

To gauge the accuracy of the indexing process, therefore, some indices pro­
duced by it are compared with data derived from repeat sales: when a property 
has sold more than once during the period of the study, the rise in value of that 
property between subsequent sales is checked against the rise in the constructed 
index (which, for the purposes of the test, is constructed without using data from 
repeat sales; though these are included in the indices used in later chapters). As 
noted in section 2.4.3.3, repeat price indices - and hence all comparisons based 
on repeat sales - are subject to their own problems. However, they are used 
here only as a benchmark against which to compare other techniques, so it is 
their consistency rather than absolute accuracy which is of use. In particular, 
it is not necessary to define any spatial or temporal scale to examine a pair of 
repeat prices, so they are useful for comparing other indices in which the spatial 
or temporal granularity is varied. Additionally, any systematic difference be­
tween the behaviour of repeat price pairs and the behaviour of averaging indices 
- such as the fact that repeat sales suffer from sample selection bias, and their 
hedonic value tends to vary over time - is likely to affect the benchmarking of 
all averaging indices equally, rather than favouring one over another. In sum, 
benchmarking averaging indices against repeat price pairs may systematically 
overestimate the errors in the tested indices, however the relative differences in 
the benchmark scores of the tested indices are likely to be truly indicative of their 
relative performance.

For each agglomerated index, an Annual Mean Squared Error measure 
(AMSE) is defined, which gives an indication of the expected divergence of the
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Parameter Values tested
Time slice length (days) 
Spatial scale
Index construction method

5,10,15,20,25,30,60,90,120,150,180,210,240,270 
Local Authority, ward
Simple averaging, New technique with OA data

Table 2.3: Characteristics of indices tested

constructed index from repeat price data per year:

/ l og i n d ( t 2 ) _  jpg P r i c e ( t 2 )  \  2

AMSE =  jpppj E  (  ’" i(tl)A T t2 'mCe(tV' ) (2-9)
' ' t i , t2 e R P P  \  n  /

where RPP is the set of all repeat price pairs, t l  and t2 are a pair of transactions 
relating to the same dwelling, price(tl) and price(t2) are the prices of these 
transactions, ind(tl) and ind(t2) are the agglomerate index values for the same 
place and time as the transactions, and ATjj2 is the time difference between the 
transactions in years. Note that the set of all repeat price pairs can include 
individual prices more than once - for example if a given property sells three 
times at prices A, B and C, the price pairs AB, AC and BC are all incorporated 
in RPP and hence used to test the index. Again, log price indices are employed, 
hence, the actual expected divergence of the constructed index from a repeat 
price pair per year, is:

AMSE expressed as ratio =  es/̂ MSE (2.10)

A total of 56 different agglomerate price indices - covering all possible com­
binations of the parameters in table 2.3 - are tested against all 1,035,097 repeat 
sales price pairs present in the data set. Each index is either a simple average (as 
described in equation 2.3) which does not use OA information, or is derived using 
OA information as described in equation 2.6. Indices are measured both at Local 
Authority (LA) and ward level; and the length of the time slice for aggregation is 
varied between 5 and 270 days to gain a picture of how index accuracy changes 
with increasing time resolution.

A pertinent question during testing is whether or not to include the test data 
(repeat price pairs) in the training data set (i.e. the data used to generate the 
index in the first place). Statistical convention would dictate that the two data
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sets be kept separate, especially as in this case, when dealing with a short time 
slice and a small area, the only data present in the training set will be the test 
data itself - a single repeat price pair. On the other hand, excluding repeat 
price pairs from the training set risks including a systematic bias relating to the 
characteristics of housing which frequently changes ownership. The approach 
used is to present results without repeat sales included in the training data, 
although the AMSE values thus computed are assumed to be overestimations of 
the true error inherent in the indexing process.

2.4.6 Discussion

Results are shown in figure 2.2 and table 2.4.

2.4.6.1 Summary of results

Inspection of figure 2.2 and table 2.4 shows that the gains from the new indexing 
technique are small on long time scales (less than 3%) but large on shorter time 
scales: when using a time slice of five days, the index error is decreased by 
20% at LA level and 51% at ward level.3 Note that on short time scales, it 
is debatable whether or not the ward level price index is meaningful: table 2.1 
shows that 43% of space-time slices contain no ward level data at all in the average 
month, therefore these data points will be filled in by copying values from previous 
months, introducing some degree of false autocorrelation to the data. However, 
if even one transaction exists within a space-time slice, then knowledge of the 
output area (and hence assumed housing type) to which it refers, endows that 
transaction with some degree of meaning. Therefore, if the time scale is increased 
to 20 days - making data available for over 90% of space-time slices at ward level 
- the new technique still gives accuracy gains of 34%.

One statistic not visible in the results as presented - due to their use of a mean 
squared error estimate - is the systematic bias in the agglomerate indices. In the 
case of the LA level 5 day index, for example, the Annual Mean Error expressed as 
a ratio is 0.92, as compared to the Annual Mean Squared Error which expressed as 
a ratio is 1.37. Thus on average, the index price tends to underestimate the gain

3These percentages are calculated from table 2.4, however note that as a divergence ratio of 
unity represents complete accuracy, percentage differences are calculated only on the component 
of the ratio exceeding 1, i.e. the percentage difference between ratios a and b is .
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Figure 2.2: Plot of errors in new aggregated price index, as compared to errors 
from simple averaging index. The baseline chosen for comparison is repeat sale 
price pairs. AMSE is assumed to be a slight overestimation of true error, as the 
test data (repeat sales) are not included in indexing data.
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Space/time scale Divergence ratio 
(new index)

Divergence ratio 
(simple index)

LA level, 5 day (shortest tested/sensible) 1.37 1.46
Ward level, 5 day (shortest tested) 1.38 1.77
Ward level, 20 day (shortest sensible) 1.38 1.58
LA level, 60 day (optimal) 1.37 1.38
Ward level, 150 day (optimal) 1.38 1.40
LA level, 270 day (longest tested) 1.38 1.38
Ward level, 270 day (longest tested) 1.38 1.39

Table 2.4: Selection of results from testing generated indices against repeat price 
pairs

in value of multiply sold properties by a factor of ^  =  109. Comparison of this 
figure with the AMSE of 1.37 reveals that prices are not always underestimated, 
but that there is a slight tendency for underestimation to occur more frequently 
or more drastically than overestimation.

This could be a systematic error introduced by the fact that during the course 
of this study the market was generally rising, so perhaps in a falling market 
prices would be overestimated instead. However it is more likely to relate to 
the fundamental limits of repeat price accuracy (i.e. the fact that the hedonic 
value of properties tends to change, in particular to increase, between subsequent 
sales).

Determining the reason for this divergence with greater certainty would re­
quire comparison with a hedonic index.

2.4.6.2 Choice of optimal space/tim e aggregation units

It is interesting to ask which of the indices presented is the most accurate - i.e. 
given a property with a known price at some point in the past, which index can 
best be used to estimate its current price? This could be called the optimal 
index, and from figure 2.2 it is clear that optimal accuracy is obtained using the 
new indexing technique, at a Local Authority level, and with a 60 day time slice. 
However, despite this index being the most accurate index generated during this 
study, it is not necessarily the best to use in all cases.

Figure 2.2 shows that Local Authority level indices always give a better pre­
diction of price gain than ward level indices. This is presumably because of the
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greater number of properties present in the LA, which reduces the ‘shopping bas­
ket’ problem described in section 2.4.3.1; it must be the case that the advantages 
of eliminating that problem outweigh those gained by specifying a property’s 
location more precisely when trying to estimate changes in its price. Notwith­
standing, it is still relevant to study ward level dynamics, because the census 
data gives lots of interesting information about the constitution of wards and 
the relationships between them, and something can be gained from correlating 
this information with ward level price movements. Therefore, ward level indices 
are still employed as well as LA level indices. In the case of ward level indices, 
optimal accuracy is obtained with a 150 day time slice.

2.4.6.3 Conclusions

The new indexing techniques which use OA level information always exhibit bet­
ter performance than their counterpart simple averaging indices. This is because, 
as expected, they mitigate the ‘shopping basket’ problem; and as expected this 
performance increase becomes much more significant at short time scales (figure 
2.2), where the smaller number of properties used to construct the index becomes 
more susceptible to this problem.

It may be possible to further improve this process by using a weighted average 
based on the number of properties in each OA, rather than a simple average 
across OAs. Division into submarkets based on the housing type data provided 
by the Land Registry (house or flat) - thereby incorporating mix-adjusted index 
techniques - may also increase accuracy.

The results appear to indicate that time slices as small as 20 days can be used 
to study market dynamics at ward level, with little penalty to index accuracy. 
This may initially seem surprising given that housing transactions themselves 
usually take longer than this to complete, due to the legal complications of con­
veyancing. However, it is not clear how this time constraint should have an effect 
on short term market dynamics - in any case these are likely to be influenced by 
longer term macroeconomic trends, as well as local price fluctuations, so there is 
no reason to expect unstable behaviour over a shorter period per se. An interest­
ing question to be addressed over the course of the thesis, is whether the short 
term dynamics thus revealed are simply the same as long term dynamics with 
extra measurement noise, or whether they follow patterns of their own.
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One notable effect of relative, rather than absolute indexing is to remove the 
bias incurred by expensive properties. If sales in a given OA rise from around 
£1,000,000 to around £1,100,000, this will have the same effect on the index 
as another OA increasing its sale prices from £100,000 to £110,000. This is 
considered desirable for unearthing underlying market changes, however it should 
be noted that the indices do not directly reflect the total value invested in any 
given region of the spatial market.

For the remainder of this study, therefore, relative indices covering a variety 
of different time resolutions will be used to explore spatial market structure on 
different temporal and spatial scales. Absolute price indices will only be used 
when assessing absolute value, and the use of absolute indices will be restricted 
to long time scales to mitigate the ‘shopping basket’ problem. It can be assumed 
from testing the relative indices, on the other hand, that they are valid on all 
time scales greater than 20 days.

2.5 Temporal aggregation for Census data (or 
the lack thereof)

For the purposes of this study, time aggregation of census data is not needed 
because all census data used is taken from the year 2001 (the most recent full 
census of the UK). As such, the measurement is valid at one point in time only, 
and the statistics are assumed to remain static over subsequent years (2001-2006).

The reasons for this assumption are pragmatic. While there are some data 
available from the Census Bureau, and other sources, for the period from 2001 
to 2006, they are not so comprehensive as the full 2001 census, and in any case 
considerable effort would be required to integrate them into comparable formats. 
The immediate aim of this study is to explore links between the full Land Registry 
data set, and the Census data set, at a level of detail which has not been conducted 
before; therefore it was decided to focus the study on this novelty rather than on 
incorporating smaller quantities of data from subsequent years.

It is realistic to expect that some statistics measured in the year 2001 are 
‘unstable’ and will have changed during subsequent years, while others will have 
remained constant. However, note that the algorithms used in this study are 
designed to search for trends and correlations over the complete length of the
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Land Registry data set. Therefore, as any trends discovered will apply to all years 
2000-2006, there is a likelihood that any major trends will relate to statistics that 
remained fairly static over the entire 2001-2006 time period. Also, as any global 
trends should be interpreted on a case by case basis, later inspection of results 
provides a ‘safety net’ which may allow detection of those trends which, despite 
being stable themselves, relate to unstable statistics.

2.6 Summary

This chapter has described the data used during this study, and reviewed existing 
methods suitable for its aggregation in both space and time. Two spatial scales 
(those of the Local Authority and ward) have been chosen for further study; data 
will be aggregated to these scales by simple assignment.

A new technique has been proposed for aggregating house price data  in time, 
which uses census boundary data to approximate a hedonic model. This has 
been shown to outperform a simple average, especially over short time scales. A 
set of indices has been produced which allows for the study of market dynamics 
for a number of different time scales between 20 and 270 days. Chapter 5 will 
discuss whether the short term price movements thus uncovered reveal any novel 
information relating to market dynamics.



Chapter 3 

V isualisation of large datasets

“All you touch and all you see is all your life will ever be”
(Pink Floyd)

3.1 Introduction

From an early point in our scientific education, we are taught to double check 
both the outcomes of our measurements and the answers to our sums, if not by 
repeat calculation then by using common sense. If we deduce that the height of 
a mountain is 30cm, the speed of sound is 3km/h or that the age of the Earth 
is 6,000 years then we raise our eyebrows for a moment and then go back to 
see whether or not we made a mistake. Of course, doing so does not guarantee a 
correct answer, but it does catch a certain quantity of errors that would otherwise 
have slipped through the net.

The same applies to the data processing steps conducted in this thesis - it is 
vitally important to glance over both the inputs and outputs to each stage and 
check the figures for sanity. However, the quantity of data involved in both the 
measurement and calculation is somewhat larger than in the examples above. 
The Census data set is shipped out by the National Statistics office on a stack of 
CDs and DVDs almost as tall as the average desktop workstation, and there is 
no way that so many figures can be taken in with a quick glance. This chapter 
concerns visualisation techniques for distilling such large quantities of data into 
a form in which we can hope to quickly understand it. If that understanding is 
not precise and complete, then it should at least be adequate for the purpose of

39
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broad comprehension.

As stated in chapter 1, a particular focus of this research is interaction 
datasets, such as the network of migration movements that extends over the 
UK. Before embarking on any detailed study, the author was curious as to what 
the data looked like. For example, one might ask the questions, where do people 
move to, and where do they move from? But printing out a list of the top 100 
places for in- and out-migration respectively would not reveal anything about the 
nature of interaction between those places. Analysis techniques such as these only 
answer a specific and limited question, whereas what is really needed is to remove 
the metaphorical blinkers from our eyes and ask, ‘W hat is the big picture?’

We could of course, in the above case, draw a flow map with arrows of varying 
thickness connecting every origin and destination. W ith the quantities of data 
involved however, the numerous arrows required would completely obscure the 
map and each other, unless some kind of thresholding process were applied to 
filter out all but the largest flows of migrants (as in Bertin 1984, page 350) 
or other methods taken to improve readability such as the computation of line 
densities (as in Rae 2009). This, however, would miss patterns in the smaller 
flows of migrants, which may well still be of great significance. This chapter 
introduces techniques which do not require thresholding of data to remove the 
smaller interactions. In fact, quite the reverse is true: the logarithm of data 
values is often computed, in order to ‘tame’ the larger data values and prevent 
them from obscuring the smaller ones.

This chapter deals with the development of techniques used to visualise the 
large data sets used in this study. These are used both as an end in themselves, 
to understand the contents of specific data sets in isolation, and also as a tool 
for understanding the output of computations in later chapters, such as data sets 
of cross-correlations and regression residuals. The remainder of the chapter is 
structured as follows. Section 3.2 surveys background literature on exploratory 
data analysis and visualisation. Section 3.3 discusses the research philosophy 
behind the visualisation techniques employed in this study. Sections 3.4 to 3.6 
discuss different visualisation techniques used, and section 3.7 concludes.
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3.2 Literature review: Exploratory data analy­
sis and visualisation

The idea of Exploratory Data Analysis (EDA) is not new. One example of a work 
on the subject is Tukey (1977), which proposes the use of EDA for hypothesis 
generation: “Exploratory Data Analysis can never be the whole story, but nothing 
else can serve as the foundation stone -  as the first step”. Bertin (1984) also 
speaks of the use of graphics as a tool for thinking, for “augmenting [our] natural 
intelligence in the best possible way” and “finding the artificial memory that best 
supports our natural means of perception” (see also LeGates 2005).

Openshaw (1995) gives a good overview of the standard techniques used to 
visualise census data, for example nearest neighbour plots and scatterplot ma­
trices. These are certainly helpful techniques, however they do suffer from the 
‘blinkers’ problem to some extent in that they only ask specific questions, such 
as “to what degree is variable X spatially localised?”. Also featured, however, 
is the more advanced technique of dimensionality reduction, both via principal 
component analysis and via projection pursuit. Either of these methods can re­
duce a complex dataset to a simpler one which preserves the key relationships 
between variables. Clearly this can be employed to understand greater quantities 
of data at once; indeed it is used in this chapter. However, while the standard 
use of dimensionality reduction is to assist in classifying data by simplifying a 
set of measured variables, its use in this thesis is to simplify geographical data 
(i.e. the positions of towns on the map), not measured social data. Instead, the 
simplification of the former assists in visualising the latter.

Much visualisation research seeks to make minor improvements to standard 
techniques. For example Cowell (2005) advocates displaying stream strength 
data as a literal ‘stream’ centred around the x-axis, Eick (1996) recommends 
displaying network data on the surface of a sphere rather than a plane, and 
Devaney (2005) employs head tracking to assist with the display of 3-d datasets. 
What these techniques have in common is the idea of presenting information in 
a more intuitive way, one which makes use of physical analogies to hijack the 
brain’s ability to understand the physical world, and transfer that ability to the 
virtual one.

The manner in which Land Registry data is visualised in this thesis is novel.
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Such data covers a range of both space and time, and the techniques for visualis­
ing data that extends into both space and time are surprisingly limited, despite 
the early suggestion by Hagerstrand (1975) that space-time diagrams should be 
borrowed from the world of physics, to help us understand both physical and 
sociological limitations on human behaviour. A field known as Temporal GIS 
has existed since at least Langran (1989), which focuses on temporal search and 
database operations more than visualisation, using the obvious two approaches 
to display time: either as an extra spatial dimension (e.g. Kraak 2001), or with 
an animated display (e.g. Claramunt et al. 2000). Alternative approaches have, 
however, existed: Blok (2000) for example creates a new computer language to 
describe temporal changes, while Cai et al. (2007) takes an interesting approach 
to monitoring marine algae growth over time: firstly, persistent features are iden­
tified and tracked as a single entity; secondly, periodic components are detected 
and then displayed on a simple frequency/strength plot. Changes over time are 
thereby reduced to a number of frequency components. In the field of house 
price analysis, Guerois & Le Goix (2009) uses discontinuity analysis to classify 
the change over time in boundaries between different regions of a spatial market.

Another key area of development is that of displaying interaction data. Bertin 
(1984) recommends some techniques applicable to this - using as a backdrop ei­
ther the spatial domain (as is the case with flow maps) or the interaction domain 
(as is the case with interaction matrices). For the latter, the suggestion is to 
increasing comprehensibility by rearranging rows and columns to coalesce the 
larger data points into a familiar and easily recognisable shape - for example, 
a diagonal line or a triangle. Kwan (2000) uses 3d visualisations of the ‘space 
time aquarium’, sometimes normalised to a home-work axis, to show that peo­
ple’s spatial activities tend to congregate around their home, workplace or the 
route between. Kwan (ibid) also reduces timed flow data either to a single spa­
tial dimension - the distance from home - much as is done with the UK Census 
distance-to-work data; or eliminates the time dimension entirely to produce ac­
tivity density patterns. More recently, Yan h  Thill (2009) use a self organising 
map to classify different types of interaction links according to their properties 
(in this case, the relevant data are air fares and airline market share for different 
routes). Likewise, Andrienko et al. (2007) uses clustering to group extensive car 
journey data for display on a comparatively simple map. Rae (2009) produces
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UK interaction maps using flow thresholding, flow density and maps which dis­
tinguish between reciprocal and unique flows, while Cui et al. (2008) presents 
significant enhancements to traditional flow maps using on mesh-based warping 
of interaction lines. Wood et al. (2009) introduces flow tress, whereby each region 
of a spatial map is itself replaced by a miniature map of flow destinations from 
that region. Finally, Marble et al. (1997) takes an approach similar to that used 
in this chapter for the display of interaction data, albeit with a less sophisticated 
technique for ordering data points and somewhat bizarrely, making use of a 3d 
graphics where they are not needed.

While few techniques are specifically applicable to interaction or space-time 
data, some generic methods also exist for analysing any multidimensional dataset, 
and these may also be applied. Pryke & Beale (2005) gives a good overview. In 
general, multidimensional analysis focuses on looking for correlations between 
pairs of dimensions, which if they exist, represent frequently occurring patterns. 
Parallel Co-ordinate Plots (e.g. those on the Geovista project website n.d.) axe 
useful here. Also, interesting techniques exist for displaying correlations once 
discovered, for example the ‘spring network’ plot (Ebbels et al. 2006, Pawlak 
2005) in which strongly correlated variables are put more closely together on the 
page than weakly correlated ones. Alternatively, clustering can be used to group 
data points into a number of data-derived categories, a technique common in 
bioinformatics (Falkman 2001).

Finally it is important to mention Pixel methods (Keim 1996, Keim et al. 
2001) which are used extensively in this research. These follow the principle of 
reducing each data entry to a single pixel, which is coloured according to the data 
value. Providing that the pixels are arranged in a comprehensible manner, a very 
large dataset can then be viewed entirely on one plot, and hitherto unsuspected 
patterns can be spotted.

3.3 Visualisation philosophy

This chapter started by stating that the datasets employed in this thesis are too 
large to comprehend at a glance. Actually however, the human brain can process 
an astonishing amount of data in a short quantity of time, so long as it is provided 
in the correct form. One such ‘correct’ form is that which the our brains were
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primarily evolved to process: as a visual image.1
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Figure 3.1: Extract from a large numeric dataset

ai tm

Figure 3.2: Histogram of number frequency in Figure 3.1 dataset

As an example, figure 3.1 presents an extract from a dataset containing ap­
proximately 10,000,000 points. Examination of this reveals that the data consists 
entirely of positive integers, and none can be observed which are greater than 
about 300. Is there any way in which we can understand them better? One way 
would be to plot a histogram of frequency against AT, as in figure 3.2. This 
reveals that the range of 175 < N  <  200 contains by far the most frequent values 
of AT, and that the numbers appear to roughly fit a skewed normal distribution.

bonification processes, during which data is converted to sound, are also an interesting area 
of research with similar aims; however they are not employed in this thesis.
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Figure 3.3: Pixel based representation of Figure 3.1 dataset

Figure 3.4: Three possible errors in the data which are immediately obvious 
through visualisation.
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Such analysis of the data set suffers from what was described in section 3.1 as 
the ‘blinkers’ problem: it addresses one specific question, and misses the so-called 
big picture. The big picture, in this case, is displayed in figure 3.3. On looking at 
this it is immediately obvious that the data was collected by some kind of camera 
on the summit of a mountain, and that the data consists of measurements of 
light reflected from three happy rock climbers. At a glance, the human brain has 
processed ten megabytes of data which previously seemed incomprehensible. It 
has identified certain areas as being composed of rock, sky, cloud or person by 
their texture (a task which for computer programs is very hard) and formed an 
internal model of the relationships between these areas.

This kind of visualisation is the ultimate aim of pixel based methods. Even 
if the colour value of every pixel is not exactly known, it is possible to gain an 
intuitive understanding of our datasets which may not have been possible by 
using more specific analysis. Also, it should be possible to spot certain types 
of error in the data which may have been missed by other techniques. Classes 
of error noticeable through this visualisation may be for example, fundamental 
errors in the ordering of the dataset, missing parts of the set, or spurious data 
points which don’t seem to fit with their neighbours (each of which is illustrated 
in figure 3.4).

In a sense, pixel visualisations are an extension of the ASCII or numeric 
maps of data variables employed in the early days of computers; or indeed as 
the raw output from any modern computation. According to Burrough (1986), it 
was Edger M. Horwood who first made maps simply by printing grids of numeric 
data values onto paper; pixel visualisation simply makes this kind of output more 
readable.

3.4 M igration P ixel M atrix P lo ts

This section introduces the concept of pixel matrix plots, and describes their ap­
plication to the visualisation of census interaction data. Section 3.4.1 describes 
the structure of the data, section 3.4.2 describes the methodology, and sections
3.4.3 and 3.4.4 discuss its application at Local Authority and ward level respec­
tively. Section 3.4.5 provides an overall evaluation.
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3.4.1 Structure of the data

Interaction datasets contain information not about every object, but about every 
pair of objects in the dataset. Thus the migration data sets shown here can each 
be said to be a function mapping the product space of geographical regions L to 
the natural numbers No:

f . L x L ^  N0 (3.1)

The geographical regions themselves can be specified by a function from grid 
co-ordinates (latitude and longitude) to regions:

q : ]R x M i—> L (^‘2)

so combining these, it can be seen that the aim is to visualise a four dimensional 
function:

i—> No (3*3)

3.4.2 M ethodology

3.4.2.1 Pixelation

A simple example is given in figure 3.5. This could be considered as a migration 
table showing how many people moved between each pair of places a, 6, c, d and 
e in a given year.

From 
a b c d e

a
b

To c 
d 
e

5 6 0 1 0 
5 7 1 1 0  
1 2 3 2 1 
0 0 3 2 1 
0 1 1 1 1

Figure 3.5: Simple interaction dataset

Figure 3.6 illustrates how this would be displayed using a pixel-based method: 
each cell of the table is simply coloured in with an intensity proportional to the 
number of people it represents.2 While the illustration is large, this would in

2Actually in later plots, to prevent smaller migrations being completely obscured by the
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reality result in an image of 5 x 5 pixels, or less than 2 x 2  millimetres on a 
typical LCD display. Thus it is possible to display a much larger dataset on a 
computer monitor.

The catch is, that it would not be easy to comprehend such a dataset because 
the X and Y axes don’t represent anything real. The positions of places a to e on 
the diagram are determined solely by their positions in the alphabet. It would be 
better if an ordering could be derived for the set of places which is more intuitive 
to somebody who knows the places concerned.

a
From 

b c d e
a 5 6 ■  i ■
b 5 M

To c 1 ■> 3 o 1

■ 1 3 •_> 1

- 1 1 I

Figure 3.6: Pixelation applied to the Figure 3.5 dataset

3.4.2.2 Selection of th e  ordering  c rite rion

In order to display spatial interaction information on a 2-d plot in this manner, 
it is essential to reduce 2-d spatial information to a single dimension, in order 
to display spatial (2-d) information on each (1-d) axis of the table. The choice 
of ordering used on each axis will have a crucial effect on the information that, 
will be interpretable, and indeed whether it will be possible to interpret any in­
formation whatsoever. The latter concern is aptly illustrated by the fact that in 
the days before digital television, premium channels on Sky TV were encrypted 
simply by changing the ordering of pixels along the X axis of each line of pic­
ture ( VideoCrypt n.d.) and this was considered sufficient to prevent unauthorised 
access to the content! Likewise, the picture of UK migration could range from 
sharp to unintelligible depending on the ordering chosen for each axis. Inevitably, 
any such reduction from two dimensions to one, will not preserve spatial conti­
guity, as regions in 1-d space can have at most 2 neighbours, while the number 
of neighbours possible for an area in 2-d space is potentially unlimited.

larger ones, each pixel will be coloured with an intensity proportional to log(n+  1) rather than 
simply n, where n is the number of people.
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A number of approaches are possible.

• Ordering from a single statistic, e.g. total migration, or population size. 
Figure 3.7 gives an example of this, where local authorities on the X and 
Y axes are ordered on the size of internal migration flows within the local 
authority. London, Birmingham and other large cities all appear merged 
into one bright area at the bottom right of the plot, while rural areas are 
situated more towards the top left. While it is conceivable that such a repre­
sentation could be used to highlight certain elements of the social structure 
of a region, it is hard to discern much information about the UK from this 
plot, due to the lack of regional contiguity along the axes. Also, ordering 
based on a single statistic falls prey to the ‘blinkered’ approach discussed 
in the introduction to this chapter: while ordering based on population, for 
example, might reveal patterns related to population size and migration it 
might miss patterns related to other statistics. Therefore this approach is 
not used.

•  The approaches suggested by (Bertin 1984, page 196) are either diago- 
nalisation or triangulation. These are processes which use the data itself 
to determine an ordering: the rows and columns of the matrix are pro­
gressively swapped around until all of the larger data points appear in a 
coherent shape. In the case of diagonalisation, all large values are grouped 
along the diagonal, while in the case of triangulation the aim is to put all 
large values on the same side of the diagonal to form a triangle.

This technique is commendable from the point of view of ‘getting the big 
picture’ - the ordering is not restricted to an arbitrary statistic so much 
as specifically rearranging it with the goal of producing a shape which is 
more easily comprehended by a human reader. However, it suffers from 
two drawbacks. Firstly, the process has the disadvantage that a different 
ordering will be employed for each of the different statistics displayed. For 
example, if one plot is produced detailing the number of migrants between 
each pair or locations, and a second plot is produced detailing the number 
of commuters, then these plots will likely each entail different orderings of 
the matrix, so not be directly comparable. Secondly, the technique was 
not designed for use with spatial information - Bertin applies it only to
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non-geographic data such as sales clerks and sale items, or South American 
tribes and technological developments. In the case of migration, where 
each point along an axis represents a Local Authority or Ward situated in 
real geographic space, such an ordering would lose the inherent geographical 
information to some extent. As our intuitive understanding of the structure 
of a country seems to be based on geographical space, it seems a shame to 
discard this information - therefore a different approach is chosen which 
preserves it.

•  The approach proposed in this thesis, therefore, consists of a hybrid method 
which both rearranges the matrix for greater comprehensibility, but also 
employs geographical data to fixate the graphic in real space. It thereby 
becomes, according to Bertin (1984), a map: a graphic where “the elements 
of a geographic component are arranged on a plane in the manner of their 
observed geographic order on the surface of the Earth” (page 285).

Researchers familiar with a given area, for example the United Kingdom, 
have an intuition for which places are close together and which are further 
apart. For example, without much thinking, the author knows that Reading 
is near London, and Edinburgh is near Glasgow, but that there is a long 
distance between Bristol and Aberdeen. Therefore the ordering aimed for 
is one in which the following two criteria are fulfilled to the greatest extent 
possible:

1. places which are physically close together on the map, will be close 
together in the ordering; likewise places which are far apart on the 
map will be far apart in the ordering

2. places which are close together in the ordering, will be close together 
on the map; likewise places which are far apart in the ordering will be 
far apart on the map.

3.4.2.3 M ethods for com puting the desired ordering

Having chosen suitable criteria by which to order each of the axes of the pixel
matrix plot, it is necessary to compute an ordering which fulfils these criteria.
This task is not necessarily simple, as for a series of n  geographical points there
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Figure 3.7: Local Authority level visualisation of UK internal migration, coloured 
by age as in figure 3.10, but ordered by size of internal migration flow rather than 
linearisation of geospace.

are n! possible orderings to choose from. In the case of UK local authorities, this 
equates to about lO1000 different orderings, while in the case of wards in England 
and Wales there are a colossal 1031089 different alternatives to consider. Even the 
smaller of these numbers is far larger than the number of atoms in the known 
universe! Total enumeration of all possible orderings to find the ‘best’ (according 
to our criteria) is therefore impossible, and instead an algorithm must be chosen 
which somehow approximates a good ordering.

Three approaches are used:

1. The first approach used is complete linkage clustering and optimal ordering 
(CLO-OPT). This is an approach suggested in Guo & Gahegan (2006), in 
which a variety of different algorithms are investigated for their ability, on 
average, to fulfil the criteria described above. The best of the algorithms 
investigated, CLO-OPT, finds the shortest possible path which visits all of 
the geographical points, subject to a clustering constraint. In particular it 
outperforms the space filling curve techniques used by Marble et al. (1997).

CLO-OPT solves a problem which is a minor variation on the Travelling
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Salesman Problem (TSP) - the problem of finding the shortest path which 
links a set of points. The general case is NP-complete with time complexity 
O(nl), where n is the number of points: there is no known way to find a 
shortest path (or optimal ordering) without considering all possible paths, 
which for more than a small number of points is computationally infeasible. 
CLO-OPT therefore differs from the standard TSP in that not all possible 
solutions are searched. Instead, the points are first clustered based on the 
geographic distance between them, such that (for the most part) towns and 
cities are recognised as single clusters. They are then optimally ordered, 
with the condition imposed that clusters of points must not be divided 
by the path (or ordering) chosen. Thus, any given cluster must remain 
in one continuous sequence in the final ordering. This approach has two 
advantages:

(a) the ordering derived will be more intuitively comprehensible to the 
researcher, as places they perceive as belonging in a group together 
(e.g. wards within the same city, or towns within a certain region) 
tend to be grouped together

(b) the problem is now computationally feasible. The time complexity of 
the Complete Linkage Clustering and Optimal Ordering algorithm is 
0 (n 3).

CLO-OPT was first developed in the field of bioinformatics (Bar-Joseph 
et al. 2003). On the set of approximately 400 local authority map points, it 
can compute an optimal ordering using a few seconds of time on an average 
desktop computer. Therefore, for the local authority level data set, only 
this technique is employed. However, for the 8850-point ward data set, this 
is not possible, and it is necessary to employ a 64-bit machine with around 
8GB of RAM.

2. The second approach used is a novel variant, Hierarchical CLO-OPT (CLO- 
HIERA-OPT). Running CLO-OPT on the 8850-point ward data set dis­
cards information about administrative hierarchies, as each ward is sit­
uated within a Local Authority. As such information forms part of the 
intuitive geographical knowledge of planners, and indeed many local resi­
dents’ mental models of space, this could well be useful in constructing a
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more comprehensible ordering. Therefore, Hierarchical CLO-OPT ensures 
grouping together of all wards within the same LA.

This is achieved by first running CLO-OPT to produce an ordering for Local 
Authorities, then using the index from that ordering to define a position in 
three-dimensional space for each ward, such that

%ward = geographical x coordinate (3.4)

Vward = geographical y coordinate (3.5)

Zward klLA(ward) (*Lb)

where lLA(ward) is the index of the ward’s containing Local Authority from 
the first-stage ordering, and A; is a suitably large constant designed to ensure 
that grouping of wards within Local Authorities takes priority over grouping 
of wards within physical space. This permits the use of existing CLO-OPT 
software without modification.

Of course, whether or not political boundaries should be included in the 
visualisation is a debatable question. However it should be noted that as 
social policy, or at least spending, can differ between authorities, it might
be expected that measured social data will reflect these differences and
therefore grouping these data points according to administrative regions is 
not an illogical approach to visualisation.

3. In addition to the first two approaches, for the purpose of creating tools 
accessible to all, alternatives to CLO-OPT and CLO-HIERA-OPT were 
evaluated which allow ward level visualisations on more modest computing 
hardware. The first of these is a hierarchical complete linkage clustering 
with non-optimal ordering algorithm (CLO-HIERA-NONOPT), the non- 
hierarchical version of which is described in Guo & Gahegan (2006). Instead 
of a two-stage process in which points are first clustered and then ordered, 
in the non-optimal algorithm the points are clustered and ordered simulta­
neously. The clustering process works as before except that once a cluster 
is formed, its ends are automatically joined to their nearest neighbouring 
clusters. This produces non-optimal results, albeit using considerably less 
computing time and memory than the optimal algorithm.
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temperature as function of time T(t) = 0.0 6 f

cooling factor f =  0.99999

distance scalar D =  initial square path distance x 2

probability of accepting change exp(—(pathlength_after — pathlength.before)/DT)

Table 3.1: Parameters for Simulated Annealing.
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Figure 3.8: Plot of simulated annealing parameters (temperature and total 
squared path length) over annealing run.
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4. Finally, and also with the aim of reducing computing power, a ward level 
simulated annealing approach is employed (CLO-HIERA-SA). Simulated 
annealing (see e.g. De Vicente et al. (2003)) works by repeatedly making 
random changes to the linear ordering, and accepting these changes i f  they 
do not degrade the quality of the ordering E  by more than a certain amount 
AE. The quality of each possible ordering is measured, in this case, by the 
squared path length of the ordering:

E  = LE NGTHf  (3.7)
l e L IN K S

The quantity AE  reduces from a high number to zero over time, so that 
in the end changes are only accepted if they actually improve the ordering. 
The process is analogous to the physical process of a liquid freezing to 
become a solid; with AE  representing the energy available for reconfiguring 
atoms into a different state, related to the temperature T  of the system. 
Provided that T  decreases slowly enough, a low energy configuration of 
atoms will be found; in the case of the ordering algorithm this equates to a 
good linear ordering i.e. a short overall path length.

Table 3.1 summarises the parameters used for simulated annealing, while 
figure 3.8 shows a plot of how temperature and overall path length change 
during the annealing run.

3.4.2.4 Software to enable display of the visualisations

This section discusses considerations in the creation of software to display pixel 
matrix plots.

1. Before a large pixel plot can be displayed, the place names on the axes must 
be labelled. However, as each column of the matrix is only one pixel wide, 
and each row only one pixel high, there is no room for text labelling of 
every place displayed. As it would be possible to label only key places, the 
approach taken was instead to display the plots via an interactive computer 
interface which, as the mouse is moved over the pixel plot, indicates on a 
map which geographical points are being viewed. This was implemented in
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Javascript, to allow easy dissemination via the world wide web. An example 
is displayed in figure 3.9.

2. Pixel matrix plots derived from Local Authority level have a size of approx­
imately 400x400 pixels, similar plots for Ward level data have dimensions of 
8850x8850 pixels. The latter does not fit on the average computer screen, 
so it was necessary to build a visualisation tool which allowed for zooming 
in on the data. Owing to the greater computing requirements of this task, 
the tool was implemented in Java. Some screenshots are shown in figure 
3.14.

3. A formula for selecting the colour of each pixel based on the data it repre­
sents must be chosen - especially in the case of the zooming tool where each 
pixel may represent more than one data point. In the case of migration and 
commuting plots, each pixel was set to the log sum of all points represented 
by it, normalised according to the average across the extent of the current 
display (rather than the entire data set):

l o a i j ' - .  data_values) 
pixeLvalue =  J  t . (3.8)

6 x log{J2dispiay E pixel data.values)

This has the consequence that bright pixels - representing high data values 
- tend to ‘clip’ (i.e. above a certain data value the maximum brightness is 
reached so no contrast is distinguishable). In practice, this artifact is rare 
and hence not usually a concern.

Colour was used to convey further information on some of the plots: the 
red, green and blue channels allowing for simultaneous display of three data 
sets. Alternatively, in the case of plots of market correlations - which can 
encompass both positive and negative values - the positive and negative 
data was summed separately to generate information for the red and blue 
colour channels respectively.

3.4.3 Discussion o f LA level m igration plot

The Pixel Matrix Plot was found to be a useful tool for obtaining an overview 
of a complex data set. This section is dedicated to the discussion of an example
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Figure 3.9: Visualisation of UK commuting flows between all local and unitary 
authorities in the UK, ordered with the CLO-OPT algorithm (the only algorithm 
used at LA level). The line formed by linearising all the geographic points is 
shown on the right hand side. As the mouse is moved over the pixel plot on 
the left hand side, red and green markers move over the map to show origin 
and destination points respectively. On the pixel plot, origin is represented by 
x-axis position, and destination by y-axis position. Axis labels are not present in 
the visualisation software though have been added to the figure for clarity. The 
bright diagonal line indicates that most commuting takes place on a local basis.
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SW Wales Midlands London SonthEast Midlands lloith

Figure 3.10: Local Authority level visualisation of UK internal migration,
coloured by age. Various features have been labelled - see section 3.4.3 for expla­
nation.
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(shown in figure 3.10), which shows internal migration for the 2001 census year, 
between all local authorities in the UK. The plot has additionally been coloured 
by age - the red, green and blue components of each pixel represent the following 
age bands, which were chosen following a principal component analysis of the age 
composition of moving groups: red pixel values show the component of migrants 
aged 16-25, green values show the 25-40 age range and blue values the 404- age 
range. (Due to the nature of the colour mixing process, therefore, the yellow pixels 
seen on much of the plot indicate a mixture of 16-40 year olds, light blue/cyan 
colours indicate a predominance of people over the age of 25, and white pixels 
show an even combination of all three age bands).

Several patterns in this plot are worthy of discussion.
The first point to note is the black diagonal line of pixels running right across 

the image, and the tendency of other pixels near this diagonal to be brighter. 
The black diagonal has been marked in afterwards to aid with interpretation - 
each point on it would represent migration from a local authority to itself. These 
pixels would naturally be shaded very near to white, as much migration takes 
place within local authorities; however they have been changed to black to allow 
easy identification of the diagonal. Given this feature, it is easy to see that the 
diagonal is surrounded by further bands of white pixels. This illustrates that the 
vast majority of migrations in the UK are localised - i.e. people tend to migrate 
to nearby areas.

Various other features have been labelled, to give an idea of the kind of pat­
terns which can be spotted. These are discussed in the following sections.

3.4.3.1 London

The four yellow squares of feature a represent London. Unfortunately, the algo­
rithm fails to group all of Greater London into one cluster; instead it is divided 
into two regions interspersed with some of the local authorities to the north (see 
figure 3.9 for a map of the ordering). Hence, London appears as 2 x 2 =  4 squares 
on the diagram, because on each axis it is represented by two different regions.

A lifecycle migration pattern is visible with respect to London. Thick orange 
lines, extending horizontally outwards from region a, indicate a flow of younger 
people from all over the country migrating into London. Fainter green lines 
extending vertically out of region a indicate the middle-aged leaving London;
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while the strong blue patch below (marked b) shows an older population migrating 
from London to Norfolk and surrounding areas.

The City of London is clearly visible as a black cross centred in the lower right 
yellow square. This is because it has little residential population and therefore 
very few migrations to and from the City occur.

3.4.3.2 N o rth e rn  Ire land

The feature marked /  represents Northern Ireland, easily identifiable because of 
its strong internal structure (a bright square of migration movements) but having 
little interaction with the rest of the UK (the black bars extending horizontally 
and vertically from it).

3.4.3.3 V isible evidence o f know n m ig ra tion  m odels

Aside from the diagonal bright region, the rest of the image contains several 
bright horizontal and vertical lines representing certain local authorities. Two 
such lines cross in the area marked c (which happens to be Cardiff). These lines 
tend to intersect on the diagonal, as large centres of population tend to have both 
high in- and out-migration.

However, where bright horizontal and vertical lines cross away from  the di­
agonal, even brighter pixels can be found at the intersection of the two lines. 
This indicates (roughly speaking) that for longer distance movements between 
two points X  and Y , the number of people moving between X  and Y  is propor­
tional both to the total number of migrants leaving X  and to the total number 
of migrants arriving at V, regardless of their actual destinations and origins.

Overall, the fact that the diagram appears to consist of a bright diagonal 
band, augmented with a series of horizontal and vertical lines, tells us that the 
migration data could broadly fit some kind of gravity model

populationx  x populationYmigrantsXY oc-------- — —— -----------    (3.9)
f  [distance. XY)

except in this case that we are not directly observing the populations of X  and 
Y , instead we are basing our mental model on the crude assumptions that

population x  oc out -m igrantsx (3.10)
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and
populationY oc injmigrantsY (3-11)

so the model we see in the diagram is therefore

  outjmigrantsx  x injmigrantsY (Q 10^
migrantsXY oc f ( distanceXY) ( )

Thus at shorter distances, the denominator of the fraction dominates and a high 
level of migration is seen, while at longer distances the numerator dominates and 
migration becomes more strongly related to the origin and destination popula­
tions.

It should be noted that this observation is not presented as concrete evidence; 
rather it is presented as a hint given to us by the visualisation. It would equally 
be possible, for example, to look at the visualisation and intuit the existence 
of a 2-state heterogeneous migration model: in this case, one type of migration 
(perhaps motivated by wanting a change of residence) would take place locally, 
explaining the bright diagonal band; meanwhile another type of migration (per­
haps motivated by a change of employment) would not be influenced much by 
distance but rather follow the multiplicative part of the gravity model:

long-distance jmigr ants XY oc population x  xpopulationY (3.13)

If we wished to test these hypotheses properly, we would of course have to com­
pute the models numerically. However, it is clear that the visualisation is of use 
in generating the two alternative hypotheses in the first place: it has given us 
some ideas about the data which we are now free to go and rigorously test. As it 
happens, such models are investigated in the existing literature e.g. Dennett & 
Stillwell (2008).

3.4.3.4 Polycentricity in London

A further interesting facet of this visualisation is that it has been possible to 
see evidence of urban polycentricity in London. Hall (2001) notes that London, 
rather than having a single centre which exceeds all other parts of the region in its 
provision of products and services, is “now the centre of a system of some 30-40 
centres within a 150km radius”. Each of these multiple centres can be defined as
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Algorithm Square path length (Grri2) Crossings
CLO-OPT 208 390

CLO-HIERA-SA 230 870
CLO-HIERA-OPT 293 1180

CLO-HIERA-NON OPT 1210 9390

Table 3.2: Ordering metrics for ward level (8850 point) linearisation algorithms.

such because in some specialist area of provision (for example financial services, or 
legal services) they are not superseded by anywhere else. The centre of expertise 
for each service category is in a different geographical location, rather than all 
such centres coinciding in one key location such as the City of London. In a more 
numerically-focused study, Taylor et al. (2006) shows that the entire south-east 
can be said to be polycentric, the principal nodes being London, Reading and 
Southamption. This is achieved via a lengthy measurement process involving the 
identification of links between regional branches of law firms.

The pixel matrix plot visualisation arguably also shows that Greater London 
is polycentric in terms of migration movements, because no discernible internal 
structure is visible within the yellow squares of region a. This is in contrast to 
other areas in the UK, for example region c which represents South Wales, with 
Cardiff clearly being a monocentric keystone of interaction for the region.

Again, this hypothesis would require numerical testing in order to confirm 
it rigorously; however again the visualisation has hinted at the existence of a 
pattern in the first place.

3.4.4 D iscussion o f Ward level m igration  p lots

The two visualisations presented so far have concerned commuting and migration 
flows for the 426 local authorities of Great Britain. However, much of the analysis 
in later chapters is conducted on the 8850 census wards of England and Wales. 
As interaction data relates to every pair of locations, rather than simply to every 
location, the size of the data set grows with the square of the number of locations. 
Thus the ward data set is over 400 times larger than the local authority data 
set, and different problems are encountered both in producing and interpreting 
the visualisation. The issues with producing the visualisation stem from the 
computational task of calculating an optimal ordering; as discussed in section
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Optimal hierarchical ordering Simulated anneal
approximate optimal 
hierarchical ordering

Figure 3.11: Map of UK wards ordered by four different linearisation algorithms. 
The wards are linked by a single line, coloured according to the spectrum from 
red through to violet.
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Figure 3.12: UK-wide Ward-level migration visualisations, accompanied by maps 
showing linearisation, ‘zoomed in’ to Cardiff area, for four different ordering 
algorithms. Place annotations are added manually, and the sketch figures to the 
right illustrate the relative positions of Cardiff, Penarth and the rest of the Vale 
of Glamorgan in each plot. The Penarth region is defined here as the wards 
of Sully, St. Augustine’s, Plymouth, Stanwell, Dinas Powys, Cornerswell and 
Llandough, while the rest of the Vale of Glamorgan is defined as Gibbonsdown, 
Cadoc, Court, Buttrils, Castleland, Baruc, Dyfan, Rhoose and Illtyd.
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Figure 3.13: Ordering metrics for ward level (8850 point) linearisation algorithms.

Algorithm Time requirements Space requirements
CLO-OPT 3 hours (Java code) 8 Gb

CLO-HIERA-SA 25 hours (Python code) minimal
CLO-HIERA-OPT 3 hours (Java code) 8 Gb

CLO-HIERA-NONOPT negligible minimal

Table 3.3: Computational requirements for ward level (8850 point) linearisation 
algorithms. Time requirements for CLO-HIERA-SA and CLO-HIERA-NONOPT 
refer to the linearising, rather than clustering phases, while time requirements for 
CLO-OPT and CLO-HIERA-OPT refer to both clustering and linearising phases. 
The author considers there to be considerable scope for time-optimisation of the 
Python-coded CLO-HIERA-SA algorithm, giving it the potential to compete with 
the run time of CLO-OPT if such work is undertaken.
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3.4.2.3. However, there are also problems with the interpretation of the larger 
Pixel Matrix Plots.

Figure 3.11 shows orderings of all wards in England and Wales, produced by 
each of the algorithms discussed in section 3.4.2.3. The maps are represented by 
a single continuous line illustrating the ordering, coloured through all hues in the 
spectrum from red to violet to give a general idea of its course through 2d space 
without having to study the details.

Some general statistics by which to compare the algorithms are given in figure 
3.13 and tables 3.2 and 3.3. The metric of total path length is what the ordering 
algorithm seeks to minimise; however, the number of intersections between fines 
(points at which the ordering crosses itself) is also given as this is thought to influ­
ence comprehensibility of the map somewhat. Note that complete solution of the 
travelling salesman problem would give an ordering with no intersections what­
soever, as any intersection of fines is an indication that the path may be further 
shortened (for example, in the case of a square ABCD, by visiting points in the 
order ABCD instead of ACBD). Notwithstanding, even the optimal algorithms 
presented here display some degree of path crossing due to the constraint that 
clusters must be contiguous in the ordering. According to both metrics, the out­
right optimal algorithm - CLO-OPT - performs best, followed by the hierarchical 
algorithms, in order from better to worse: CLO-HIERA-SA, CLO-HIERA-OPT, 
CLO-HIERA-NONOPT.

It seems counterintuitive that the hierarchical simulated annealing algorithm 
should outperform the ‘optimal’ hierarchical algorithm. This is due to the fact 
that Local Authorities in the CLO-HIERA-OPT result are constrained to a pre­
assigned order, whereas with CLO-HIERA-SA the Local Authority and Ward or­
derings are optimised concurrently. One would therefore expect an enhancement 
of the CLO-HIERA-OPT algorithm coded in a similar manner to outperform 
simulated annealing.

In contrast to the numerical findings, the author found orderings produced 
by CLO-HIERA-OPT to be by far the most comprehensible. This is because

1. the intuitive hierarchy imposed by grouping Local Authorities was thought 
to be of benefit, thereby causing the algorithm to outperform CLO-OPT;

2. the orderings produced by simulated annealing, despite having shorter path 
length and fewer crossing points, tended to be less intuitive, and
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Figure 3.14: Screenshots of software showing Ward level visualisation of UK 
internal migration, at wide and close zoom levels. Text to the left of the display 
shows names of the currently selected origin and destination, together with the 
relevant value(s) from the interaction matrix. For close levels of zoom (shown in 
the lower figure), place names are added to both the map and matrix.
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3. the orderings produced by non-optimal hierarchical ordering were mostly 
unreadable.

Point 2 above highlights the need for further research on what constitutes an 
‘intuitive’ ordering as this is clearly at odds with the metrics currently presented. 
For the purposes of present discussion, an example of a problematic ordering 
derived by simulated annealing - one which despite a short path length and few 
crossing points, is harder to read than the alternatives - is presented in section 
3.4.4.I.

3.4.4.1 Study of Cardiff and surroundings via ward level migration  
plot

Figure 3.12 shows visualisations of migration in Cardiff and the Vale of Glamorgan 
derived from each of the four ward-level ordering algorithms. In each case, the 
visualisations have been manually annotated to clarify the meaning of each section 
of the plot; in practice such information is obtainable from the interactive display 
interface.

By way of a case study, the relationship between Cardiff, the Penarth area 
and the remainder of the Vale of Glamorgan is considered. In all cases, internal 
interaction for each of the three areas is indicated by a bright square of pixels 
situated along the diagonal of the pixel matrix plot; therefore it is possible to say 
that each area is to some extent a self-contained entity. The interaction between 
the different areas, however, is perceived differently depending on the ordering 
algorithm used.

• with optimal ordering, the presence of a fainter square of bright pixels 
encapsulating the brighter squares representing the three areas, indicates 
that while Penarth, Cardiff and the Vale of Glamorgan can be considered as 
three independent entities, they also form a single loosely connected unit. 
Penarth, the central of the three squares, appears to be equally connected 
to both Cardiff and the Vale.

• with non-optimal hierarchical ordering, the loose grouping of the three areas 
is also visible, however a sudden jump in the ordering to Penarth from the 
opposite side of Cardiff displaces pixels representing local Cardiff-Penarth
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movements away from the corners of the bright squares. This causes Pe­
narth to appear more connected to the remainder of the Vale of Glamorgan 
than it is to Cardiff.

• a very similar situation exists with optimal hierarchical ordering. As the 
map for this ordering is displayed at a greater level of zoom, the offend­
ing sudden jump in the ordering (in this case from Rhiwbina to Sully) is 
annotated on the map.

• with simulated annealing, a different perspective is shown entirely. The 
ordering has separated Cardiff from Penarth and the Vale, placing most of 
the rest of South Wales in between. The loose grouping of the three areas 
is not so immediately apparent, though it can be deduced from the bright 
groups of pixels situated well away from the diagonal axis. It is almost im­
possible, however, to compare the relative strengths of the Penarth-Cardiff 
and Penarth-Vale of Glamorgan links.

The variety of ‘pictures’ of Cardiff area migration presented by the different 
algorithms highlights one limitation of pixel matrix plots, as it is undesirable for 
the information presented to vary so drastically with the precise details of the 
ordering algorithm chosen.

3.4.4.2 Alternatives to zoomable pixel matrix plots

The approach suggested by Guo (2007) is to first aggregate the data into a more 
manageable number of regions, before applying the clustering and linearisation 
algorithm. However, the zoom tool, at this stage, is a fun (if not easy) method 
for exploring the data set, and is consistent with the principle of not altering the 
underlying data but instead rearranging it into a more comprehensible format. 
Also, the zoom facility naturally allows analysis at any level of spatial aggregation 
chosen by the viewer, rather than just the top level.

3.4.5 Evaluation of P ixel M atrix P lots

It is interesting to compare the features of pixel matrix plots to the ideal proper­
ties of graphics as suggested in Bertin (1984). The latter proposes that graphics 
should be efficient, a property which is defined as such:
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“If, in order to obtain a correct and complete answer to a given 
question, all other things being equal, one construction requires a 
shorter observation time than another construction, we can say that 
it is more efficient for this question”. (Bertin 1984, page 139)

Arguably, as they take some practice and training to read, pixel matrix migration 
plots are not particularly efficient. However, if a researcher is already well trained 
in their use then they may be a suitable technique for answering the open-ended 
question, ‘What are the primary features of this data set?’.

Bertin suggest further guidelines for the construction of graphics: that the 
presenter should aim “to represent the information in a single image” and “to 
simplify the image without reducing the number of correspondences” (ibid, page 
171). These aims are both fulfilled by migration pixel matrix plots; indeed the 
second aim is fulfilled far better than in the case of flow maps (the conventional 
means of presenting migration information) as small correspondences need not 
be discarded in order to create a meaningful image.

As pixel matrix plots were developed primarily to assist with the other re­
search presented in this study, it is valid for the time being to evaluate their 
usefulness purely with respect to the other tasks undertaken in the thesis.

3.4.5.1 Advantages

Using pixel matrix plots assisted with gaining a broad overview of the data han­
dled. In the case of Local Authority level migration, they reveal a broad two-level 
structure of local and global migrations. In the case of Ward level migration, 
they highlight above all that the data is sparse, with few long-distance migra­
tions between individual pairs of wards. This hints that long-distance ward level 
migration might not be of great relevance in determining property market move­
ments, as there isn’t very much of it! In fact, the findings to be presented in 
chapter 5 confirm this.

In certain instances, the use of pixel matrix plots enabled the detection of 
software bugs. For example, in one case, migrations originating or ending outside 
the UK had not been removed from a data sets, a processing step which was 
required for the task at hand. This was immediately obvious when looking at the 
visualisation - the high volume of migrations showed up as a pair of extremely 
bright horizontal and vertical lines, with ward codes of 8888 and 9999 - those
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used to denote external migration by the census office. In another case, a list of 
wards from the entire UK was accidentally being used to index housing market 
data which related only to England and Wales. When visualising the output, it 
was clear that large sections of the plot were blank, because no data were present 
for Scotland or Northern Ireland.

Therefore, these plots are considered to be a useful tool both for creating and 
debugging systems which make use of large interaction datasets.

3.4.5.2 Disadvantages

One drawback of the pixel matrix plot is the learning curve associated with 
starting to use it. When presenting data to colleagues, they will often take some 
time to learn to interpret the output, which is far less intuitive to read than, for 
example, a flow map. However, it could be argued that for certain users, the time 
taken to learn how to read a pixel matrix plot is well worth the effort.

Another drawback is that some features shown on the plots are artifacts of 
the algorithm used to produce it rather than inherent properties of the data set. 
An example of this is the regions d and e marked in figure 3.10. These clusters 
of bright points far away from the diagonal would seem to imply a significant 
non-local migration movement between two specific regions of the country; a 
movement which furthermore does not fit the models proposed for longer distance 
migration in section 3.4.3.3. The viewer may be tempted to conclude that there 
is a specific reason for this movement, perhaps related to reasons such as the 
economic rise or downturn of a particular region. This, however, is not really 
the case: the two regions in question are in fact Liverpool and North Wales, 
which are situated close to one another on a map of the UK. Thus, the migration 
between them can be explained purely by their proximity; nothing out of the 
ordinary is occurring. The problem is that the linearising process applied to the 
UK has split up two regions which are geographically close together: examination 
of the map in figure 3.9 reveals that the ordering used first visits North Wales, 
then wanders around the Midlands, the South East, East Anglia and even South 
Yorkshire before returning to Liverpool.

The converse problem to this - the fact that some migration flows may be 
obscured by an unfortunate ordering of the matrix - was apparent when studying 
ward level migration in the Cardiff region. While it seems possible to deduce
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broad hierarchies of connections from the visualisation, the viewer should be 
careful if trying to gauge the relative importance of such connections by visual 
methods alone.

Such limitations are unavoidable side-effects of the linearisation process. The 
algorithms used are reducing two dimensional data to a single dimension and as 
such, can never perfectly replicate the properties that the data possessed in its 
original form. These limitations therefore highlight above all the need for the 
user to be aware of the linearisation process and its possible consequences.

3.4.5.3 Future improvements

It is possible to envisage a number of incremental improvements which would 
enhance comprehensibility of such a visualisation system in future.

•  User-controlled restriction of origin/destination areas to those of interest, 
and thresholding flows to levels of interest, are both mentioned in Marble 
et al. (1997) and would certainly be of use.

•  The ability to search by name for places of interest in the interaction matrix 
has obvious benefits.

• It would be helpful to leave choice of data reduction formula for the zoom 
tool to the user, for example allowing them to select whether the average, 
maximum or total of all contained points is used to determine the colour of 
a pixel. In the case of the Property Market Correlation Pixel Matrix Plots 
discussed in section 3.6, it is useful to implement more complex algorithms, 
for example assigning the maximum positive data value to the red level of 
a pixel at the same time as assigning the maximally negative data value to 
the blue level of a pixel.

•  When choosing colours for the linearised map, it would be useful to specify 
whether this is done so globally (thus ensuring continuity between zoom 
levels) or locally (thus displaying greater contrast within each level).

• Likewise, when colouring the interaction matrix, it is also useful to control 
whether the data is normalised globally (thus ensuring continuity between 
zoom levels) or adjusted locally for the section of the matrix currently 
displayed (thus displaying greater contrast within each level).
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• When studying origins and destinations far apart, it would be useful to split 
the interactive map into two panes, showing both the origin and destination 
zones in greater detail.

• It would also be useful to interactively colour areas in the map to show 
migration patterns (inward or outward flows) for the place currently under 
the mouse pointer - using the same colour scheme as in the matrix.

• Finally, due to the possibility of unfortunate matrix orderings having a 
greater impact on the display of some flows than on others, it would be 
helpful to allow the user to reorder the matrix at will, to assist with pro­
ducing plots for specific areas of interest.

3.5 Property Market Time Series P ixel Matrix 
Plots

This section describes the generation of property market time series plots, for 
visualising changes in market prices distributed over both space and time.

3.5.1 Structure of the data

In contrast to the interaction data displayed above, each time series data point 
relates only to one geographical region L, but now it also relates to a time slice, 
which is indexed by a natural number N0. Thus the data set can be seen as a 
function h from the product space of geographical regions and time, to the space 
of all possible prices expressed as real numbers:

h : L x Nq •—* M (3.14)

As before, regions are defined by the grid coordinates of points which fall inside 
them:

j : R x 1 h L (3.15)



74 CHAPTER 3. VISUALISATION OF LARG E DATASETS

thus a property market time series can be seen as a three dimensional function 
from geo-coordinates and time to some financial quantity:

R 2 x N0 R (3.16)

3.5.2 M ethodology

The geographical locations are reduced from a 2-dimensional to a 1-dimensional 
data space, exactly as in section 3.4.2.3. A plot can then be produced with 
‘location’ on the x-axis, and ‘time’ on the y-axis; where as before, the location 
axis has the following properties:

1. locations which are close together in real space, will be close together on 
the axis; likewise locations which are far apart in real space will be far apart 
on the axis;

2. locations which are close together on the axis, will be close together in real 
space; likewise locations which are far apart on the axis will be far apart in 
real space.

In all cases, the logarithm of data values log(d +  1) is taken so as to ‘tame’ 
larger data points and prevent them from obscuring any structure present at 
smaller levels of interaction.

3.5.3 D iscussion

Figure 3.15 shows the result of applying this process to the Land Registry data. In 
this case, absolute average prices are plotted for each Local Authority. It is imme­
diately apparent that the plot does not change much as time progresses (moving 
down the page) - the ‘data’, in this case, appears to be constructed of continuous 
vertical fines. Consequently it must be concluded that changes in house prices 
over time for each area are far exceeded by the disparity between different areas. 
The only tangible pattern apparent from this plot is that London and the South 
East exhibit higher house prices on average than the rest of England and Wales; 
the brightest vertical band being in the region of Westminster.

There is a second reason why the trend of prices generally rising over time is 
not easily visible in figure 3.15. The human eye is not sensitive to gradual colour
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31 Mar 2000

Figure 3.15: Visualisation of average Local/Unitary Authority house prices from 
2000 to 2006. Each time slice represents 180 days. Relatively little structure is 
seen in terms of change over time, because such differences are obscured by the 
initial disparity between prices in different regions.

Figure 3.16: Illusion demonstrating problem with visualisation in figure 3.15. 
The human eye is bad at judging absolute colour values; demonstrated here by 
the fact that square A and square B are shaded exactly the same colour. Image 
courtesy of Edward H. Adelson and Wikimedia commons.
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Figure 3.17: Visualisation of Local/Unitary Authority price indices from 2000 to 
2006. Each index is relative, i.e. it starts with a value of 1, so pixel brightness 
shows local prices relative to prices for the same area in the year 2000. Each time 
slice represents 180 days.

North

Figure 3.18: Visualisation of Local/Unitary Authority price change from 2000 to 
2006. Pixel brightness shows price change i.e. this is the first derivative in time 
of the plot in figure 3.17. Each time slice represents 180 days.
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Figure 3.19: Map of UK Wards with the greatest relative increase in price between 
2000 and 2006. Wards with < 500 transactions are not counted.
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gradients, nor good at judging absolute as opposed to relative colour. Figure 
3.16 shows a trick where the eye is deceived into thinking identical colours are 
different; conversely in the absolute time series plot, differing colours (at the top 
and bottom of the plot) are interpreted as being the same.

This suggests that a different method is needed for visualisation, which is pre­
sented in figure 3.17. In this case, prices for each Local Authority are normalised 
to remove the disparity between different areas, by dividing all indices by their 
own value at the beginning of the period studied. Thus, instead of visualising 
absolute average prices, each price index now begins at 1.0. It is now apparent 
that, having initially started with higher house prices, London and the South 
East do not grow as much in price over the time period under consideration. 
Thus, the gap between London and the periphery is seen to be narrowing.

Finally, growth can be visualised directly by taking the derivative of the data 
in figure 3.17. The result is given in figure 3.18. This shows more clearly the 
time slices in which the most growth occurred. In the 180 day period beginning 
in October 2001, growth occurs fairly uniformly across the country (except in 
some areas of Central London); outside of the South East, significant growth is 
sustained until September 2004. In September 2003 another significant wave of 
growth occurs nationwide, including the South East although it is not as strong 
here as elsewhere.

For comparison, figure 3.19 displays in a more traditional manner, the wards 
in which the most growth occurred between 2000 and 2006. However, as this is 
plotted on a conventional map of the UK it cannot (unlike figure 3.18) show in 
which years, as well as in which wards, the greatest growth occurred.

It is clear that further interactive improvements to the time series visualisation 
are possible. These would mostly be of a similar nature to those discussed for 
the migration matrix visualisation tools in section 3.4.5.3.

3.6 Property M arket Correlation P ixel M atrix  
Plots

Another visualisation technique which is used later in this study is the Property 
Market Correlation Plot This is a means of viewing the Land Registry data set 
not as a set of geo-coded time series, but as interaction data - defined, as with
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migration, as relationships between pairs of geographical regions. For any two 
regions A  and B, the interaction data in question is a market correlation measure 
which provides an estimate of the extent to which the property market at place 
A  is driven by that at place B , i.e. the extent to which, based on existing data, 
a price change at B  is likely to be followed by a similar price change at A. The 
derivation of market correlation will be described in chapter 5; however a brief 
overview of the resulting visualisation is given here.

3.6.1 Structure of the data

The market correlation data sets shown here can each be said to be a function 
mapping the product space of geographical regions L to the real numbers M:

/ T x L h R  (3.17)

The geographical regions themselves can be specified by a function from grid 
co-ordinates (latitude and longitude) to regions:

g : M x K i—► L (3.18)

so combining these, it can be seen that the aim is to visualise a four dimensional 
function:

M4 •-> E (3.19)

The geographical regions are assigned to a linear ordering as described in 
section 3.4.2.3.

3.6.2 Discussion

Figure 3.20 shows the result. This will not be discussed at this stage, except to 
say that the large blocks of red situated on the diagonal axis indicate a region 
of strongly correlated price movement. Thus, as already identified above, is it 
noticeable that London and the South East have followed a different pattern of 
development between 2000-2006 than most of the rest of England and Wales.

This and similar visualisations, including display of regression predictions 
and residuals, were found t<? be of considerable use in developing the market
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S o u th w e s t  | London/South E ast I North

Figure 3.20: Interaction plot of market correlation between all pairs of Local 
Authorities in England and Wales. Red indicates above average correlation; blue 
indicates below average correlation.

correlation measure displayed here, however this discussion will be postponed to 
chapter 5.

3.7 Conclusions

3 .7 .1  N o v e lty

A number of visualisation techniques have been presented in this chapter; all of 
which are based on the idea of reducing 2-d spatial data to a single dimension 
through linearisation. This has allowed for the display of spatial migration and 
correlation matrices as well as price change data over time.

To the best of the author's knowledge, this is the first time such a technique 
has been used to visualise the spatial distribution of price change over time. 
While Marble et al. (1997) has used similar techniques to visualise US migration 
data, this study increases the scale and complexity of that work, by application 
of the CLO-OPT algorithm rather than a semi-contiguous space filling curve. 
Guo (2007) uses the same process to display simulation outputs, although stays 
clear of actual demographic data. Also, the technique has never been applied to 
correlation data before (further details on correlation wall be described in chapter
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5).
Moreover, the work presented in this chapter improves on all of the above 

(i) by providing a zoomable tool, (ii) by using political hierarchies to increase 
intuitive comprehensibility of the orderings, and (iii) by investigating alternative 
techniques which can be used if computing resources are limited.

Overall, these techniques have proven to be useful both for gaining a gen­
eral impression of the contents of a large data set, and also for ‘sanity checking’ 
of model inputs and results, hypothesis generation, algorithm comparison and 
program debugging. Several deductions about the nature of migration patterns 
derived from visualisation have already been presented in this chapter; however 
it will also be seen in chapter 5 that two significant hypotheses of this thesis 
are generated through visualisation of property market cross-correlations. Their 
usefulness notwithstanding, the limitations of these visualisations have also been 
investigated, and suggestions for overcoming these limitations have been put for­
ward.

3.7.2 Closing comments on social construction

A final advantage of the linearisation-visualisation approach has become evident 
when presenting this work to colleagues. In our current research climate, nu­
merical techniques in the social sciences have come under criticism for being too 
‘inhuman’: ignoring the complexity of social construction, and making too many 
assumptions about human behaviour. Visualisation methods such as those pre­
sented in this chapter are one possible answer to such criticism, because rather 
than employing a computer to reduce data to a small set of figures - making many 
assumptions about meaning and validity along the way - pixel visualisation can 
present a researcher with a large data set in its entirety. Arguably in the case 
of Pixel Matrix Plots of migration and Time Series Plots of house prices, the 
data has not been changed at all - instead, a plot of raw data has merely been 
formatted for easier comprehension. Also, while the nature of the data has been 
changed in the case of Property Market Correlation Plots (they are a derivative 
of the time series data) - it has not been overly simplified, merely transferred from 
the time domain to a correlation domain. Some information is lost in the latter 
process, but it is in no way comparable to the data loss inherent in (for example)
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reducing the data to a map of price increase as in figure 3.193.
The lack of data reduction has the fundamental advantage of requiring fewer 

assumptions about the data. Making assumptions, both explicit and implicit, 
is inevitable when carrying out any scientific task whatsoever; however there is 
always the risk that these assumptions will be wrong, especially in the case of 
implicit assumptions - of which (by their nature) the researcher may not even be 
aware. Therefore, requiring fewer assumptions overall means that there is less 
likely to be a false assumption hidden among our set of implicit axioms.

This state of affairs allows the researcher, then, to dynamically make their own 
assumptions about the data, form their own mental models and make their own 
conclusions about its meaning, rather than having these assumption, models and 
conclusions forced upon them by the statistical techniques such as aggregation or 
averaging. Social construction need not be ignored, because the visualised data 
is simply another input to the human mind, which is where the real deduction 
takes place.

3It should be pointed out that while the data  have not been altered, ordering it in different 
ways reveals different inform ation; so it is possible that patterns may be present in the data 
which are missed by the approach chosen here. However, presenting the data in their entirety 
rather than in simplified form increases, rather than decreases the number of patterns that 
could conceivable be spotted; therefore it can only be a good thing if taken in conjunction with 
more traditional approaches.



Chapter 4

D evelopm ent of an exploratory  
housing market regression m odel 
(and som e basic results)

“But I’m just saying 
I don’t think you’re special 
I mean... I think you’re special 
But
You fall within a bell curve” (Tim Minchin)

4.1 Introduction

From the moment they awake to the moment they sleep, the majority of human 
beings use vision to assist with every possible task - whether eating breakfast, 
solving equations or avoiding being hit by a bus. The author recalls attending a 
presentation course where the vast majority of those present (all of whom were 
scientists) purported to be ‘visual thinkers’ - a condition even more common 
among the scientific community, according to the course lecturer, than in the 
other groups he had taught. And yet in matters of research, we do not trust 
vision alone - a sentiment expressed well by physicist William Kelvin: “When 
you can measure what you are speaking about, and express it in numbers, you 
know something about it; but when you cannot measure it your knowledge is of 
a meagre and unsatisfactory kind”. As children we were taught to join the num­

83



84 CHAPTER 4. REGRESSION METHODOLOGY

bered dots to create a picture. As scientists using a visualisation-based workflow, 
we must learn to do the opposite: number the dots in the picture to create a 
narrative.

Regression was created primarily as a tool to perform exactly this task, and 
as such is usually used not for exploratory but for confirmatory data analysis. 
However, the use of regression to confirm patterns seen in a visualisation would 
contradict one of the principles of statistical hypothesis testing: that the hy­
pothesis should be decided upon before the data set is examined. Therefore, 
the techniques presented in this chapter are instead presented in an exploratory 
spirit. Firstly, they are used to complement the visualisations of chapter 3 by 
allowing for the logical discussion of patterns first seen during the visualisation 
process; also however, they enable the detection of additional patterns missed by 
the visualisation, and provide the bridge between the two data sets studied - the 
link between the house price and census data. Thus, they extend the exploratory 
nature of visualisation into a non-visual, symbolic realm.

Discussing regression at this point means that the chapters in this thesis are 
presented out of sequence, as the cross-correlation analysis of chapter 5 was in 
fact performed before this one. However, as the regression model will be used in 
both chapters 5 and 6, it is logical to discuss it beforehand.

This chapter therefore deals with the development of a generalised exploratory 
regression model, based on explanatory data relevant to the housing market, 
which will be used during the cross-correlation analyses of chaters 5 and 6. The 
model is tested on the simpler problem of predicting average prices on a ward 
level during the year 2001. The remainder of the chapter is structured as fol­
lows: section 4.2 discusses the development of a statistical model, and section 4.3 
discusses the choice of explanatory variables. Sections 4.4 and 4.5 present the 
results of a test analysis used to validate the statistical framework, and section
4.6 concludes.

4.2 Developm ent o f a statistica l m odel

4.2.1 Choice o f statistical technique

Although the title of this chapter focuses on regression, it should be noted that 
regression is by no means the only way to achieve the aim of analysing the patterns
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seen in visualisations, and searching for patterns not already spotted. This section 
therefore discusses the other options available, and explains why regression has 
been chosen.

A statistical technique is needed which fulfils three criteria:

1. Computational feasibility. While the data sets presented in this chapter are 
only moderate in size (a set of house prices and about 90 census variables 
for each of 8,850 wards), those to be used in chapter 5 are interaction sets, 
and therefore encompass a larger set of variables - up to 1000 - for each 
possible pair of wards (78 million pairs). Whatever analysis is used must 
be computationally feasible.

2. Reliability. For a tool used to assist in analysing a large data set for the 
first time, as is the case in this study, complex analyses are rejected in 
favour of simpler approaches. Note that the techniques presented in this 
chapter are not themselves the main topic of the thesis; instead they are 
used to examine the output of other, more novel processes. As such, it is 
essential to use a tool which can be relied upon to give accurate results, as 
these will in turn be used to evaluate other tools. There is no reason not 
to undertake a complex analysis at a later date, but without the simpler 
results for comparison, it would be impossible to tell whether or not the 
complex approach is actually better.

Thus, Occam’s razor is applicable to the selection of this technique - the 
principle that “entities must not be multiplied beyond necessity” (or in the 
original Latin, entia non sunt multiplicanda praeter necessitatem). It may 
be, however, that the simplest approaches are computationally infeasible, so 
the approach taken may be better summarised in Einstein’s maxim: “Make 
everything as simple as possible, but not simpler.”

3. The final criterion is explanatory power. In particular, it is desired to 
chose a technique which can reveal complex interactions between variables 
in addition to calculating basic correlations.
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Ability to sp eak Latin
Hiqh Fair M oderate Low N one

Te
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tin

Hiqh 1 1 0 1 0
Fair 1 1 0 6 0

M oderate 3 2 1 1 0
Low 1 0 0 1 2

N one 0 0 0 6 18

Table 4.1: 2-d illustration of a data cube, for a fictitious survey of PhD students 

4.2.1.1 R ule based d a ta  m ining

A logical starting point for analysis of large quantities of data is rule based data 
mining. The term ‘data mining’ has gained popularity of late, mainly in the world 
of retail, due to the desire of marketing departments to squeeze every last drop of 
commercially valuable information out of customer transaction databases! Han 
& Kamber (2006) gives a good overview of principles. Data cube techniques will 
not be employed in this study, however, they are described here in some detail 
because they inspired the choice of the alternative methods used, and because 
they illustrate the fundamental problems of multidimensional analysis.

The first stage of data mining usually involves dividing data points into dif­
ferent buckets based on their parameters; together, these buckets form a multi­
dimensional data cube, with the number of dimensions equalling the number of 
parameters being studied. Table 4.1 shows the process in two dimensions, for a 
fictitious survey of the tendency of PhD students to use Latin quotations (such 
as the one above) in their theses. Note that the data cube contains far more 
information than would a simple correlation coefficient fitted between the two 
variables. For example, in table 4.1 we see that most (5/6) students with a high 
level of fluency in Latin have at least a moderate tendency to use Latin quota­
tions, while most (18/20) students with no knowledge of Latin do not use Latin 
quotations at all. Fitting a coefficient of correlation would reveal the obvious 
trend that greater fluency in Latin corresponds to greater likelihood to use Latin 
quotations. However, this misses the fact that a considerable number (8/15) of 
low-ability Latin speakers have a moderate to high tendency to use it in their 
work - an anomaly revealed by the data cube (and, the author fears, applicable 
to the quotation from the previous section!).
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Rule based mining processes improve on correlation analysis by searching for 
rules based on a support /  confidence /  lift framework. So for a rule of the form 
‘X implies Y’ {X  =* Y),

• Support indicates the proportion of the data set to which the rule applies, 
P(X).

•  Confidence indicates the certainty of the rule, i.e. the probability of the 
rule being true for an arbitrary item to which it applies: P(Y\X).

• Lift is a measure of the extra knowledge represented by the rule, and is 
calculated as the confidence of the rule relative to the confidence of making 
such a prediction without using the rule: P(Y\X) /P(Y) .

So for the data set above, some examples of rules might be:

•  Students with low ability to speak Latin will have fair tendency to quote 
in Latin

Support =  6/46 (13%), Confidence =  6/15 (40%), Lift = |y || =  2.30

• Students with low ability to speak Latin will have high tendency to quote 
in Latin

Support =  1/46 (2%), Confidence =  1/15 (7%), Lift =  =  1.02

• Students with high ability to speak Latin will have moderate tendency to 
quote in Latin

Support =  3/46 (7%), Confidence =  3/6 (50%), Lift =  = 3.29

Such rules are then filtered (for example, discarding rules with low support, 
confidence or lift, depending on the requirements of the researcher) and merged 
if they refer to adjacent sections of the data cube. The end result should be a set 
of rules which effectively describe the data set. It would be hoped that the end 
result of data mining the above table would be

• a rule showing the tendency of students with no fluency in Latin to avoid 
using Latin

• a rule showing the tendency of students with fluency in Latin to use Latin



88 CHAPTER 4. REGRESSION METHODOLOGY

•  a rule showing the anomaly whereby some students with a little knowledge 
of Latin use it in excess of their ability

Thus, complex interactions between variables, beyond simple correlation, can 
be automatically captured.

4.2.1.2 The curse of dimensionality

The technique illustrated above is easy enough to understand and compute when 
applied to two variables. However, the computational complexity increases expo­
nentially with the number of dimensions. If, for example, we have five categories 
per variable (continuous variables are usually divided into discrete intervals), then 
for n variables we will require 5" buckets, where each bucket represents a unique 
combination of categories from each variable, that is to say, it is a single box in 
the data cube. Even for the 90 variables used in this chapter, an estimated 1053 
gigabytes of buckets would be required - and one of the analyses in chapter 5, 
which uses 1000 derived variables, would require 10689 ‘gigabuckets’.

As the count of data items (78 million) is vastly smaller than 10689, most 
of these buckets would be empty, so the data cube is sparse and the patently 
ridiculous amount of storage just quoted would not be required. Still, however, 
the mining process would need to check for the existence of data in each of these 
buckets - a task which remains computationally infeasible.

Several approaches are commonly used to mitigate this problem (Han & Kam- 
ber 2006):

1. Limited rule based mining. It is possible, instead of searching for inter­
actions between all possible combinations of variables, to search for inter­
actions between (for example) every pair of variables. This would mean 
performing up to 10002 computations using a simple 5 x 5  grid such as that 
in table 4.1 - a task which is feasible. However, more complex interactions 
would be missed.

2. Heuristic rule based mining. ‘Intelligent’ algorithms can be used to guide 
the selection of further rules to seek, based on rules already found.

3. Clustering. This is a process whereby points in the data set are repeatedly 
combined with near neighbours to produce clusters. Typically, the user
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must specify how many clusters they wish to see, and the clustering algo­
rithm will vary the degree of aggregation accordingly. Once similar points 
have been grouped together, the clusters can be described by rules: clus­
tering the data of table 4.1 would hopefully produce the same final three 
rules as rule-based data mining.

Clustering takes advantage of the sparseness of the data cube, because the 
complexity of the algorithm scales polynomially with the number of points 
p, as 0(p2) - instead of exponentially with the number of dimensions, as 
0 (2” ).

The three approaches listed above all have disadvantages. In the first case, 
any interaction which is a product of more than two variables will be missed. 
In the second and third, any form of interaction could potentially be missed, 
depending on whether or not the heuristic search or clustering process finds it. 
This is not to say that these processes are not worthwhile, and should not be 
employed in future! However, for the time being, the curse of dimensionality 
has forced the introduction of greater complexity to the data mining framework, 
and this now violates the principle of Occam’s razor stated in section 4.2.1, as 
another, simpler technique can be used to process the data: Multivariate Linear 
Regression.

4.2.1.3 M ultivariate Linear Regression

Regression is the process of drawing a best-fit line through a range of data points. 
While it misses many of the subtleties of interaction revealed by the data cube, 
the previous section demonstrated that data cube analysis is not possible for the 
large number of variables present in this study, without employing more complex 
algorithms. In light of this, linear regression becomes a reasonable first step for 
understanding the data set. While limited rule based mining is capable of de­
tecting any interaction between any pair of variables, multivariate regression is 
capable of picking out any linear interaction between all of the variables. Cru­
cially, when multiple variables all appear to have an effect on the target variable, 
linear regression can tell us which one best models the target phenomenon. This 
is a useful property in a study involving detailed sociodemographic data in which 
many variables will exhibit correlations with one another, but many such corre­
lations will be far better explained by a smaller subset of variable interactions.
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The trade-off made by linear regression is that by restricting the search for in­
teractions to linear rules, it is not necessary to restrict the subset of variable 
combinations that are searched.1

Multivariate linear regression also has the advantage of being a well- 
understood and frequently used approach in the biological, social and economic 
sciences. It therefore seems reasonable to conduct a multivariate regression as a 
benchmark against which other techniques can be compared in future.

In keeping with the visualisation philosophy presented in chapter 3, numerical 
techniques are not relied upon in entirety. In addition to computing regression 
coefficients, scatterplots are also viewed of each regression dimension versus the 
target variable. Due to the large quantities of data points involved, these are 
shown as scatter density plots rather than simple scatterplots, allowing for the 
viewing of detail where points on a scatterplot become too dense for meaning­
ful analysis. In chapter 5, some instances will be presented where viewing of 
these scatterplots allowed for the discovery of data features missed by the linear 
regression.

Finally, in keeping with the principle of reliability, a correlation coefficient 
can be computed between each explanatory variable and the target, because this 
is a process simpler than that of linear regression. The correlation coefficient 
suffers from the disadvantage of not recognising multi-variable interactions, nor 
being able to identify which of a set of strongly correlated variables best models 
the target phenomenon, so it is best viewed as a simpler yet inferior analysis 
conducted at the same time. However, it also provides a valuable fall-back, and 
a point of reference in case any of the assumptions upon which linear regression 
rests happen to be violated.

Section 4.2.2 discusses the assumptions inherent in linear regression and the 
steps taken to verify them.
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Assumption Consequence of viola­
tion

How checked

Data can be explained 
by linear relationship

Model is mis-specified Assumed false 
(though scatter­
plots of explanatory 
vs target variables 
still used)

Explanatory variables 
are free of error

Parameters may be 
underestimated

Assumed false

Mean residual is zero Model is mis-specified, 
possibly variables left 
out

Value computed and 
checked

Errors are not spa­
tially correlated

Model is mis-specified Residuals mapped, 
Moran I test

Errors are home- 
oscedastic

Model is mis-specified 
and confidence inter­
vals may be wrong

Plot of residuals vs 
prediction

Errors are approxi­
mately normally dis­
tributed

Confidence intervals 
may be wrong

Histogram plot of 
residuals vs Gaussian 
curve

Explanatory variables 
not exactly collinear

Model unsolvable 
(multiple solutions)

Assumed true as PCA 
used

Explanatory variables 
not seriously collinear

Parameter estimates 
unreliable

Assumed true as PCA 
used

Table 4.2: Assumptions of linear regression
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4.2.2 A ssum ptions o f Linear Regression

Table 4.2 lists the assumptions inherent in performing a linear regression analysis. 
The treatment of these is discussed below. In some cases it is permissible to 
violate the assumptions; in other cases they must be rigorously checked. However 
it should be noted, that as the data is divided into a ‘training’ and ‘test’ set, the 
effects of violating any regression assumptions are minimised, as checking of errors 
from a test set will highlight the presence of any bad regression model where more 
complex analysis of residuals may have failed to do so.

4.2.2.1 Linearity

As its name suggests, linear regression assumes a linear relationship between 
the explanatory and target variables - but, in the complex real world of market 
interactions, it is unlikely that this will hold! Three justifications are presented 
for violating this assumption. Firstly, the consequences are not dire: nonlinearity 
merely means that the model thus derived may not be the most accurate possible. 
As the models will be tested for accuracy (both by checking residuals and errors) 
it will be possible to decide experimentally whether they are accurate enough for 
the task at hand. Secondly, regression is being used not as the final analysis, 
but instead to complement the visualisation process. It allows us to codify and 
enumerate the contents of the visualisations, so we need not rely on it in totality. 
Finally, for reasons of computational feasibility, we have chosen to violate the 
assumption of linearity in order to study multivariate interactions in a very large 
data set. Without taking such a step, this study would not be possible.

4.2.2.2 Accuracy o f explanatory variables

It is not assumed that the measurement of the explanatory variables is free of 
error. Even if the census were completely accurate on matters such a population 
count, it should be noted that population would have changed over the six year 
period of the study. However, the consequence of violating this assumption is

xIt should be noted that other nonlinear multivariate regression techniques exist, for exam­
ple, Stepwise regression or Multivariate Adaptive Regression Splines (MARS). The algorithms 
for these are comparable to those of heuristic rule based mining: regression terms are repeat­
edly added and removed based on a heuristic guess as to their ultimate usefulness. Therefore, 
while these techniques may be valuable, they are rejected in this study for the same reason that 
heuristic data mining is rejected:- the more reliable approach should be tried first.
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usually that coefficients will be ‘diluted’ - that the effect of explanatory variables 
will be underestimated. For the reasons described in section 4.2.2.1 this is not 
considered a major problem. Also, it is usually considered sufficient to assume 
that the errors in the explanatory variables are insignificant compared to the 
errors in the target variable. When the target variable is a measure derived from 
market fluctuations (as will be the case in chapters 5 and 6), this will almost 
certainly be true.

Note that this assumption is not necessary if an errors-in-variables model 
is used. However, such models are more complex and more computationally 
expensive than simple least squares regression. Computational cost is a major 
concern for the datasets which will be analysed in chapter 5, so errors-in-variables 
models are not used. Also, as the large data sets in this study have necessitated 
the coding of custom software, implementation complexity is also a concern, 
because it is hard to prove the correctness of complex statistical software without 
extended trials.

4.2.2.3 Residuals have mean of zero and are not spatially correlated

Violation of either of these assumptions implies a mis-specified model, which 
could be improved by inclusion of an extra variable. Again, for the reasons 
described in section 4.2.2.1 this is not considered serious. However, testing for 
violation of the assumptions is undertaken nonetheless; through spatial mapping 
of the residuals and application of the Moran I test. The latter is performed as 
described in Cliff &; Ord (1981), and for speed of computation, using a 20km- 
threshold weight matrix of the same type as in e.g. Mella-Marzuez h  Chasco- 
Yrigoyen (2006), and a permutation approach to generate inference statistics.

4.2.2.4 Homeoscedasticity of errors

If the errors are not homeoscedastic - that is, errors tend to be greater in certain 
parts of parameter space than in others - this can imply a mis-specified model, 
and also may mean that confidence intervals calculated for parameters are inac­
curate. The latter consequence is considered serious, as the calculated confidence 
intervals are used to decide on whether or not regression findings are significant. 
After Mather (1976), this is checked via scatterplots of residuals vs predictions. 
It is also considered prudent to check plots of residuals vs explanatory variables;
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however this is not necessary as plots of target vs explanatory variables are be­
ing produced as part of the visualisation methodology (section 4.2.1.3) and any 
heteroscedasticity should be visible in these - the plot would take the form of a 
wedge or triangle shape rather than an uncorrelated scattering.

4.2.2.5 Approximate normal distribution o f errors

The assumption of normality of errors is likewise necessary for accurate computa­
tion of confidence intervals, and is therefore important. If the other assumptions 
of regression are fulfilled then for a sufficiently large data set, central limit the­
orem dictates that normality of errors will hold as the errors are the sum of a 
number of small independent variables (Mather 1976). However, as not all of 
the above assumptions are fulfilled, histogram plots of residuals are made and 
compared with normal probability density functions with the same location and 
scale to check for approximate normality.

4.2.2.6 Collinearity

In the case of exact collinearity of explanatory variables, linear regression is an 
unsolvable problem as infinitely many valid combinations of parameter will exist. 
In the case of major (but not exact) collinearity, parameter estimates are still 
unreliable; ordinary least squares regression may derive unusually large parameter 
values which happen to cancel for the purposes of the data at hand. This problem 
is a form of overfitting - whereby it is possible, by choosing ridiculous parameter 
values, to represent the training data set more accurately, albeit at the expense 
of destroying the predictive power of the regression when applied to data outside 
of the original set.

Both of the problems of collinearity are avoided by use of Principal Component 
Analysis for dimensionality reduction.

4.2.3 U se o f Principal C om ponent A nalysis (P C A )

Principal component analysis is performed using the mdp toolkit in Python (Zito 
et al. 2009). This section discusses the need for PCA, interpretation of results 
and choice of an appropriate number of dimensions.
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4.2.3.1 Need for dimensionality reduction

Reducing the number of dimensions is necessary for three reasons:

1. Elimination of multicollinearity. As discussed in section 4.2.2.6, this causes 
technical problems with parameter estimation during regression.

2. Automatic variable selection. Part of the purpose of multivariate linear re­
gression is to be able to automatically analyse a large number of variables 
and discover which are the most relevant to the phenomenon at hand. With 
so much data available, it is preferable to be able to do this rather than 
specifically choose a small subset of variables for analysis. In general, the 
approach has been taken of including a large number of variables so it is 
necessary to be told automatically which are the most important. Linear 
regression can do this, although with large numbers of variables, the com­
puted confidence intervals for each coefficient become large so the results 
become largely meaningless if dimensionality reduction is not also used.

3. Ease of computation. The computational complexity of linear regression 
increases linearly with the number of dimensions, so the reduction of the 
data set to 40 dimensions from (in some cases) up to 1000 initial variables 
has a significant effect on the time taken to compute a regression.

4.2.3.2 Interpretation of results

PCA can be used to achieve dimensionality reduction by finding a number of 
orthogonal linear combinations of the input variables - called components - from 
which most of the variance in the original data set can be reconstructed, while 
discarding components which account for little of the variance in the input data. 
Regression is then performed on the output of the PCA process. A disadvantage 
of this is that when regression coefficients are computed, they relate to PCA 
components rather than directly relating to input variables, which can make 
interpretation of the results difficult. Therefore in this study, a form of reverse 
transform is applied to deduce parameters for each variable. This transform is 
described below.

The PCA regression model predicts a relationship of the form

V = Po + + P2C2 + fhPz + ...
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where y is the target variable, f3n are the component coefficients and C n are the 
PCA components, each defined thus:

On =  7 (n ,l)# l +  7(n,2)^2 +  7(n,3)^3 +  ••• (4 -2 )

where xp are the input variables and 7(n,P) is the PCA coefficient for component 
n and input variable xp. Substituting (4.2) into (4.1):

y = /30 +  $i(7(i,i)^i+7(i,2)^2 +  7(i,3)^3+ •••)

+  1)^1 +  7 (2,2)^ 2  +  7 (2 ,3 )^ 3  +  ...)

+  ... (4.3)

Multiplying and collecting terms;

y = Po +  (ft7(i,i) +  A7(2,i) +  - ) * i

+  ($ 1 7 ( 1 ,2 )  +  @21(2,2) +  ••■)X2

+  ... (4.4)

The terms in brackets represent the contribution of each input variable xn towards 
the target variable y, thus it can be said that:

contribution(xp) = $i7(i,P) +  $2 7 (2,P) +  ••• (4.5)

As PCA is merely a rotation and scaling of parameter space, the coefficients j n>p 
are free from error. Hence, as /3n are assumed normally distributed with standard 
deviations &pn, the standard deviation of contribution(xp) can be assumed to be

&contribution(xp) =  \ J  ( < » f t 7 ( i  ,p ))2 +  (< ^ /3 2 7 (2 ,p ) ) 2 +  . . .  (4.6)

as the variance of a sum of normally distributed variables can be calculated by the 
formula crx+y = +  ay- This enables the calculation of confidence intervals
for each explanatory variable. Figure 4.1 illustrates the entire process.

Such unpacking of regression results for PCA components, into the total con­
tribution of each input variable to the model prediction, is a novel and unusual 
method of displaying coefficients. It is employed to assist in interpreting results
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Figure 4.1: Illustration of the combined PCA and regression process

from the regressions which in chapter 5, will contain on the order of 1000 vari­
ables. However, care is still needed with the interpretation of such results, which 
in the case of variables which are not strongly represented in any of the PCA 
components selected for regression, may not accurately reflect the importance of 
those variables.

4.2.3.3 Choice of dimensionality

The problem remains of choosing an appropriate number of dimensions to repre­
sent the data. The primary reason for dimensionality reduction, as discussed in 
section 4.2.2.6, is to eliminate problems of overfitting. Figure 4.2 illustrates this. 
The Land Registry and Census data sets are randomly divided into two subsets, 
one for ‘training’ and the other for test purposes, and a test regression of house 
price inflation against a set of approximately 90 census variables is conducted, 
using only the training set. Two separate quantities are plotted:

• mean square residual - a measure of goodness of fit of the regression to the 
training set, and

• mean square error - a measure of the accuracy of predictions from the 
training set when applied to the test set.

It can be seen that if more than 75 dimensions are used, the model is over­
fitted and errors (computed from checking against the test set) are huge. This 
is likely to be because of multicollinearity in population variables - e.g. the 
sum of the variables defining population by age is likely to equal the sum of
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Figure 4.2: Plot of mean square residual, and mean square error vs number 
of dimensions used, for regression of 2000-2006 growth. Residual/error values 
are normalised such that a value of unity is equivalent to modelling the entire 
population by computing the mean target variable. Note that after dimension 75, 
the model falls victim to multicollinearity and as a result is over-fitted: although 
the mean square residual continues to fall, the mean square error suddenly rises 
off the chart, eventually reaching a staggering maximum of about 370,000.
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Figure 4.3: Plot of dimension variance for regression of 2000-2006 growth
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variables defining population by social class, which is also likely to equal the total 
population. However, if fewer than 75 dimensions are used, the mean square error 
is similar to the mean square residual - i.e. the regression model makes accurate 
predictions about points not in the original set.

Computing a regression for each possible number of dimensions is too expen­
sive a process to use throughout this study, so has only been conducted here to 
put an approximate upper bound on the number of dimensions which can be used. 
More commonly, the number of dimensions is chosen by use of a variance plot as 
in figure 4.3, which shows the amount of variability in the data accounted for by 
the inclusion of each extra dimension. Here, it can be seen that when using even 
as many as forty dimensions, the amount of unaccounted-for variability is negli­
gible. As this is well clear of the 75-dimension limit at which overfitting occurs, 
it can be seen that the exact choice of number of dimensions is not important - 
any of a wide range of dimensionalities could be used. Therefore, 40 dimensions 
are chosen as safely representing most of the variability in the data (even leaving 
room for the extra dimensionality of the data sets expected to be encountered in 
chapter 5) while staying well clear of the problems caused by overfitting.

It should be noted that PCA is based on the assumption that dimensions 
accounting for little variability in the explanatory data set will also account for 
little variability in the target variable. This is not usually considered to be a 
problem, if explanatory variables are sensibly chosen. In this case, the specific 
assumption is that major differences in the housing market are caused by major, 
rather than minor, sociodemographic variation. This was shown to be the case in 
the graph of figure 4.2, because beyond a certain point, adding extra dimensions 
did not increase the goodness-of-fit of the model.

4.2.4 Developm ent of software

4.2.4.1 System  Architecture

Owing to the large size of the datasets to be studied in chapter 5, it was necessary 
to hand-code a linear regression algorithm which does not load the entire data set 
into memory, but instead makes multiple passes through the source files on disk 
in order to accumulate the required parameters. This was conducted in Python, 
using the pylab interface to the open-source numpy and matplotlib libraries to
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Calculate errors using te s t set

Perform PCA transform 
(whitening output to have zero m ean and unit variance) 

R egress com ponents against target 
Calculate residuals

Calculate m ean of each variable and target 

Calculate s.d. of each variable and target 

Com pute PCA  rotation

Figure 4.4: Serial passes through the data set made by the regression engine.

assist with linear algebra and graph display functions. Custom modifications 
were made to the PCA whitening mdp node, in order to perform PCA based 
on normalised input variables, therefore ensuring that components represent the 
relative importance of different variables within the data set rather than simply 
being a reflection of units of measurement. Thus, normalisation (to zero mean 
and unit variance) is undertaken both before and after the PCA stage. Figure
4.4 shows the passes through the data set made by the regression engine.

The software is engineered according to the ‘small-tools’ philosophy embodied 
in Unix. In other words, each program is run from the command line and executes 
one specific task. The largest program is the regression engine, but several smaller 
programs are used to split census data tables, normalise, sort and take logarithms 
of data before regression, and calculate the Moran I statistic after regression. 
Shell scripting, or makefiles can then be used to combine multiple programs to 
carry out more complex tasks.

The data is held in plain text comma separated value format, with only one 
variable per file. This allows for easy specification of the variables to include in 
any regression, simply by specifying the set of input files on the command line. 
However, as variable files must be read in parallel, it is important that each input 
file is pre-sorted before regression. The sorting order used is the same as in the 
linearised visualisation of chapter 3.

Variables are stored in a directory structure which separates ward from LA
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data, thus allowing quick selection of all data from a given level. A sparse format 
is used - meaning that rather than storing a literal zero to disk when a variable 
has a value of zero, no data at all is stored. This saves considerable space when 
storing the migration interaction datasets.

The software is run on the Advanced Research Computing at Cardiff (AR- 
CCA) facility. This allows for parallel execution of several regression runs concur­
rently, with no loss of speed. It is also possible to parallelise the PCA regression 
itself; however this level of speed was not necessary for the initial regressions on 
geographical space.

4 .2 A .2  Validation

As is a problem with any software which crunches a large quantity of data into 
a small set of figures, it is difficult to know whether those figures are correct, 
or whether a bug in the software has caused it to present the wrong answer. 
Both the regression and Moran-I software was validated by means of a number 
of small test cases. A larger scale - though less formal - test of the software is 
also conducted in section 4.5.2 by comparing the results of a regression on 2001 
house prices, with the qualitative predictions of a number of known models of 
the property market.

Before conducting a regression, however, it is necessary to select the set of 
explanatory variables.

4.3 Choice of variables

It is likely that explanatory models of the housing market have existed ever since 
humankind first started assigning financial value to pieces of land, and almost 
any such model can be used to suggest a choice of variables for a regression 
framework. Therefore, rather than committing to any specific model, variables 
from several common models are combined to produce a dataset which should 
be meaningful to housing market analysis. In this section, a list of variables is 
constructed, with reference to the models which inspired their selection.

As the analysis employed is spatial rather than temporal, variables which 
are known to have an impact on the housing market, but which are spatially 
homogeneous (such as the overall interest rate) have been discarded.
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In the case of many variables discussed, there is a choice to be made between 
relative and absolute variables. For example, if considering the effect of the 16-25 
year old population, do we express this as an absolute count of individuals or 
instead as a proportion of the total population of all ages? The approach taken is 
to use both: this is in the spirit of using a regression model which can cope with a 
vast amount of data and pick out only the important factors. Obviously, adding 
both relative and absolute statistics introduces serious multicollinearity to the 
data; however as PCA is used to reduce dimensionality, this is not a problem.

As is standard practice (Openshaw 1995), the logarithms of all absolute fi­
nancial and population variables have been taken in order to remove outliers. 
To avoid taking a logarithm of zero, this has been achieved with the formula 
log(x + 1).

Also, as discussed in chapter 2, variables are included on two spatial scales 
simultaneously: both on the level of the individual ward, and of the containing 
Local Authority. This could be considered a crude form of multi level model; 
while the target variable is not split into regional and local components, the 
explanatory variables are supplied in such a manner. Thus if, for example, Local 
Authority level statistics are found to be better determinants of local price change 
than local statistics, then the regression model should detect this.

The models giving rise to choice of variables are discussed below.

4.3.1 Life cycle m odels

Meen (2001), Murphy & Muellbauer (1993) and Orford (1999) all refer to life 
cycle models of migration. Obviously various different ‘life cycles’ are possible 
depending on the individual, but an example might be that of a worker growing up 
in the countryside, seeking their fortune in a central urban area, later migrating 
to the suburbs to raise a family, and finally retiring once more to the countryside. 
Such cycles of migration are apparent in the visualisations of section 3.4.3.1.

If properties in different regions are typically purchased by inhabitants of 
different ages, it is reasonable to expect that the economic situation of buyers 
and sellers will vary according to the age distribution of people in the region. 
Therefore a detailed breakdown of local population by age is included in the 
regression dataset, using the following variables:

•  number of children under the age of 16
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• number of 16-25 year olds
• number of 26-35 year olds
• number of 36-45 year olds
• number of 46-55 year olds
• number of 56-65 year olds
• number of 66-79 year olds
• number of people aged 80 or above

These are taken from census table UV004.

4.3.2 Bid rent theory

Bid rent theory was first introduced by Von Thunen in 1826, though both Orford 
(1999) and Meen (2001) note its ongoing relevance to housing market structure. 
When applied to residential property, the implication is that home buyers make 
a choice of housing location based on a trade off between commuting costs and 
land rent. This suggests that local travel-to-work distances will have an impact 
on the housing market. The following variables are therefore included:

• population with travel to work distance under 2km
• population with travel to work distance 2km - 5km
• population with travel to work distance 5km - 10km
• population with travel to work distance 10km - 20km
• population with travel to work distance 20km - 30km
• population with travel to work distance over 30km
• population with no fixed place of work
• population working outside the UK
• population working offshore

These are taken from census table UV035.

4.3.3 The Ripple Effect

Many sources refer to a so-called “Ripple effect” (see Meen 2001, for an overview) 
whereby price movements in the UK market appear to start in London and the 
South East, and the rest of the country follows. However, the cause of this is 
debatable. Is it because the rest of the country turns to London to set their
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expectations on the underlying state of the market? Or is it because certain 
socioeconomic variables differ between the North and South - such as the degree 
of property speculation, or the average Loan-To-Value ratio (and hence sensitivity 
of the market to changes in the interest rate)? In the latter case, if the variables 
are measurable, they should be used in a regression model, but if not they may 
cause spatial coefficient heterogeneity, whereby deduced regression coefficients 
appear to vary depending on the region from which they were derived.

A simplistic approach is adopted in this study; a single variable is included:

•  distance to London

on the assumption that London and surrounding areas will behave differently 
to everything else. Note that it may seem somewhat odd to include an explicit 
measure of space in this spatial model, when it would be more enlightening to 
look at other spatial variables for explanatory power (therefore answering the 
question ‘why do different areas behave differently?’ rather than ‘do different 
areas behave differently?’). However, as this study is an exploration of data 
rather than an attempt at detailed model construction, selection of the variable 
with most explanatory power is left to the regression engine - and distance to 
London is included in the variable set.

Distance to London is calculated from the UKBorders dataset, and measured 
from the centroid of each areal unit.

4.3.4 Speculative m odels

In an environment where home buyers increasingly engage in property specula­
tion with their own residence - relying, for example, on an increase in the price 
of their house to fund a retirement plan - speculative models are of relevance. 
Cameron et al. (2005) and Meen (2001) note that buyers may be attracted by 
anticipated capital gains on a property, but are also tempered by considerations 
of affordability. The following variable is therefore included:

• average 2001 house price

This is derived from the Land Registry dataset, and is used when regressing for 
a target variable of relative growth (but not, obviously, when regressing for a 
target variable of average 2001 house price)!
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4.3.5 M odels of supply and demand

Cameron et al. (2005) and Meen (2001) note that supply and demand enter the 
housing market in two ways. Firstly, potential inhabitants can choose an area in 
which to live based on a risk-reward calculation; namely trading off the average 
income in an area against the chances of gaining employment there. Secondly, 
and more directly, the quantity of available housing stock will have an impact on 
its price. The following variables are therefore included:

• log average weekly income
• total population
• housing stock: number of household spaces
• housing stock: number of occupied household spaces
• housing stock: number of unoccupied household spaces
• housing stock: quantity of second residence/holiday accommodation
• housing stock: number of vacant household spaces
• employment: number of people employed
• employment: number of people unemployed
• employment: number of people categorised as ‘other’

Population, housing stock and employment data is taken from census tables 
UV004, UV053 and UV028 respectively. Average weekly income data is available 
separately from the Census office.

4.3.6 Submarket-based models

Orford (1999) states that “the principle of stratification of a housing market into 
subsets is widely recognised in the valuation literature” (page 79). These subsets 
can be based on spatial division, or type of property. In the former case, our 
model is already explicitly spatial; however in the latter case we can extend it 
by including data on the types of property inhabited by households (household 
data) and types of dwellings, using the following variables:

• num. households
• num. households in an unshared dwelling
• num. households in bungalow
• num. households in detached house
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•  num. households in semi-detached house
•  num. households in terraced housing (including end terrace)
•  num. households in flat, maisonette or apartment
•  num. households in a purpose-built block of flats
•  num. households in part of a converted or shared house
•  num. households in a commercial building
•  num. households in a caravan or other mobile or temporary structure
•  num. households in a shared dwelling
•  num. dwellings
•  num. dwellings unshared
•  num. dwellings shared

The household and dwelling data are found in census tables UV056 and UV055 
respectively. An extra variable is included to help distinguish between urban and 
rural areas, in case different submarkets exist for each:

•  population density (from census table UV002).

4.3.7 M odels o f market turnover

Meen (2001) notes that there is a high level of correlation, both in the US and UK, 
between price movements and transaction frequency. Theoretically, in an efficient 
market this should not be the case; however in the real world they “exhibit strong 
autocorrelation ... [although] there is little evidence that either transactions affect 
prices or vice versa” (page 20). In other words, it is not yet known why this 
correlation exists. In any case, the following variable is included:

•  number of transactions between the years 2000 and 2006 

This is derived from the Land Registry dataset.

4.3.8 M odels linked to  socio-econom ic class

Variables relating to the population distribution over National Statistics Socio­
economic Classifications (NS-SeC) - social class - are also included. Class often 
appears as a factor in property market behaviour, for example



4.4. PRELIMINARY RESULTS 107

• Murphy & Muellbauer (1993), states that “high relative house prices in the  
South East encouraged migration of skilled and professional workers from 
the South East” . In this case, of certain economic conditions have had an 
impact only on certain classes of worker.

• Meen (2001) mentions the effect of labour mobility: “in the short run , prices 
differ because labour is immobile, but the differences are gradually eroded 
over time through migration” . If labour mobility has an impact on the 
market, then it is reasonable to expect that the class of participants has an 
effect also as differing classes tend to have differing mobility.

• a clustering-based study of the property market in Paris (Guerois & Le Goix 
2009) indicates that social class has a significant effect on prices, and th a t 
both of these variables are finked to other neighbourhood characteristics.

In short, economic factors affecting specific types of professions might generate 
separate submarkets for different social classes. The following variables are  there­
fore included:

• num. people classed as Higher Managerial And Professional
• num. people classed as Lower Managerial And Professional
• num. people classed as Intermediate
• num. people classed as Small Employers
• num. people classed as Lower Supervisory And Technical
• num. people classed as Semi-Routine
• num. people classed as Routine
• num. people classed as Never Worked, Long Term Unemployed or Not 

Classified

These are found in census table UV031.

4.4 Preliminary results

The analyses presented in this chapter are not considered to be thorough. Re­
sults from two preliminary regressions are given, these are presented not as novel 
findings, but as a means of testing and validating the regression engine before it 
is used in anger in chapters 5 and 6.
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The test regressions have target variables of (i) average 2001 house price, and 
(ii) average relative growth, respectively. For the purpose of this study, price 
growth is defined as the average price in the final fifth, divided by the average 
price in the first fifth of the time span under consideration, using the relative 
price indices developed in chapter 2. As almost no areas fell in price during the 
period of study, this amounts to measuring a (smoothed) gradient of growth over 
the entire time series.

4.4.1 V isualisation

As stated in section 4.2.1.3, scatterplots of principal components against the 
target are used in conjunction with regression to check for any details which have 
been missed. All scatterplots showed either a clear correlation (in a form that 
would be picked up by regression analysis) or no correlation; also none showed 
any evidence of heteroscedasticity. Figure 4.5 displays an example of a correlated 
principal component, and an uncorrelated principal component, for the 2001 price 
regression.

4.4.2 Regression diagnostics

4.4.2.1 Diagnostics for the 2001 house price regression

To test for heteroscedasticity, a scatter density plot of residual versus prediction 
is given in figure 4.6. No significant correlation is visible, thus this test does not 
indicate the presence of heteroscedasticity. Figure 4.7 shows a histogram of the 
residuals; these are seen to be approximately normally distributed, allowing for 
valid computation of confidence intervals on regression parameter estimates.

The Moran I statistic for spatial autocorrelation in the residuals is 0.050. This 
is significant (with the 99% confidence level being 0.003) though not large (the 
theoretical maximum is approximately 0.5). The residuals have been mapped 
in figure 4.8. If our aim were to create the most accurate model possible of 
house prices in the UK, we would of course deduce that there is likely to be a 
spatial variable missing from our model, and the residuals map would provide 
us with a hint as to what that variable might be. However, as the purpose of 
the regression is not to provide a complete explanatory model, but rather to
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3rd PCA component

1*tPCA component

Figure 4.5: Plot of typical correlated and uncorrelated components vs the target 
variable. All such scatterplots were checked for interesting features. In this case, 
the first component correlates strongly to absolute numbers of dwellings/people, 
and the third with high income professions and shared dwellings.
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Prediction

Figure 4.6: Plot of residuals vs predictions for 2001 house price regression

1.6

residual

Figure 4.7: Histogram plot of residuals for 2001 house price regression; bold line 
shows normal distribution curve
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Figure 4.8: Map of residuals for 2001 house price regression. The residuals have 
been divided into quintiles, coloured (in order from positive to negative): red, 
pink, white, light blue, dark blue. Spatial autocorrelation is strongly visible.
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Regression Mean square residual Mean square error
2001 prices 0.095 0.107
Price growth 0.385 0.365

Table 4.3: Measures of goodness-of-fit for the test regressions. The data set is 
divided into a training and test set; the mean square residual is goodness-of-fit 
to the training set; mean square error is goodness-of-fit to the test set. The test 
set is employed to ensure that the data has not been over-fitted, as explained in 
section 4.2.3.3.

complete a preliminary exploration of the data, no further variables are added 
and the model is used as it stands.

4.4.2.2 Diagnostics for the house price growth regression

In the case of the price growth regression, a plot of residuals versus predictions 
shows no correlation, and a histogram plot of residuals shows approximately 
normal distribution. As these are similar in appearance to figures 4.6 and 4.7, 
neither are reproduced. The Moran I statistic is again significant (at 0.030, with 
the 99% confidence level being 0.002) but not large.

4.4.3 Tables o f param eters

Having discussed the validity of the results, they can be presented. Tables 4.4 
and 4.5 list the top 40 variables for each regression, in descending order of the 
magnitude of their regression coefficient. Where explanatory variables have been 
taken from census data, they have been named in a uniform manner to clarify 
data sources.

• all names for ward level data take the form UVxxx-yzz- VariableName, where 
xxx indicates the univariate census table number; y indicates whether this 
is a normalised statistic (A), expressed as a proportion of population, or 
absolute (A) expressed as a direct count; and 22  is a table column index 
assigned for the purpose of this study.

• all names for Local Authority level data take the form UVxxx-LA-yzz- 
VariableName, where xxx, y and zz are defined as above.

Table 4.3 gives the mean square residuals and errors for the regressions.



4.4. PRELIMINARY RESULTS 113

Variable Name Mean Std. Dev Reg. Coeff 99% Conf Corr. Coeff
logweeklyincome 2.7 0.12 0.11 0.0061 0.79
U V 031-NOO-HigherManageria 0.036 0.019 0.11 0.0054 0.8
distance to London.log 5.1 0.43 -0.086 0.0064 -0.63
UV 031-N02-Intermediate 0.038 0.01 -0.084 0.0091 0.15
UV031-N04-LowerSupervisor 0.031 0.0088 -0.068 0.0059 -0.65
UV031-N05-SemiRoutine 0.048 0.013 -0.065 0.0036 -0.73
U V056-N05-Terracedincludi 0.025 0.016 -0.06 0.0079 -0.48
UV056-LA-N07-Inapurposebu 0.011 0.0085 0.059 0.0051 0.38
UV 031-AOO-HigherManageria 2.4 0.37 0.057 0.0023 0.47
U V 031-L A-NOO-HigherManage 0.035 0.013 0.054 0.0041 0.71
UV031-N01-LowerManagerial 0.077 0.02 0.053 0.0036 0.73
ward numtransactions 7.4e+02 5.6e+02 -0.05 0.0064 -0.17
U V028-N01-U nemployed 0.013 0.0065 -0.05 0.0051 -0.52
UV004-N05-46to55 0.03 0.0052 0.049 0.0092 0.25
UV035-LA-N06-NoFixedPlace 0.019 0.0043 0.046 0.0064 0.46
U V031-L A-N02-Intermediate 0.038 0.0066 -0.045 0.0079 0.28
U V053-L A-N 04-Vacanthouseh 0.0067 0.0022 -0.045 0.0086 -0.42
U V056-L A-N 04-Semidetatche 0.033 0.008 -0.041 0.0088 -0.42
U V056-L A-N 06-Flatmaisonet 0.016 0.012 0.039 0.0031 0.4
UV056-L A-N02-Houseorbunga 0.083 0.011 -0.039 0.0033 -0.41
U V056-L A-A07-Inapurposebu 3.7 0.41 0.039 0.0032 0.15
UV031-N06-Routine 0.038 0.016 -0.039 0.0039 -0.76
UV004-N03-26to35 0.029 0.008 -0.038 0.0063 -0.022
U V056-N04-Semidetatched 0.033 0.014 0.038 0.0091 -0.28
U V 031-A04-LowerSupervisor 2.4 0.32 -0.035 0.0026 -0.36
UV031-LA-N07-NeverWorkedL 0.11 0.016 -0.035 0.0041 -0.44
U V035-N 06-N oFixedPlaceOfW 0.02 0.0061 0.034 0.0083 0.38
UV028-LA-N00-Employed.log 0.21 0.015 0.033 0.0038 0.49
UV053-A03-Secondresidence 0.87 0.53 0.033 0.0057 0.29
UV028-LA-N02-Other.log 0.13 0.015 -0.033 0.0041 -0.48
UV031-A06-Routine.log 2.4 0.37 -0.032 0.0019 -0.48
UV031-A05-SemiRoutine.log 2.6 0.33 -0.031 0.0017 -0.36
UV031-LA-N01-LowerManager 0.074 0.012 0.029 0.0031 0.72
U V056-A08-Partofaconverte 1.4 0.66 0.029 0.0048 0.18
UV056-LA-A06-Flatmaisonet 3.8 0.4 0.029 0.0026 0.17
UV004-LA-N08-Over79.log 0.0096 0.0023 0.028 0.006 0.041
U V056- A05-Terracedincludi 2.6 0.5 -0.027 0.0047 -0.33
UV004-LA-N03-26to35.log 0.029 0.0048 0.026 0.0049 0.25
U V056-L A-A04-Semidetatche 4.2 0.27 -0.026 0.0041 -0.34
UV056-LA-A03-Detatched.lo 4.1 0.27 -0.026 0.0048 -0.11

Table 4.4: Top 40 determinants of 2001 house prices. Means and standard de­
viations of explanatory variables are given to add context to their normalised 
coefficients, and data for reconstruction.
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Variable Name Mean Std. Dev Reg. Coeff 99% Conf Corr. Coeff
distance to London.log 5.1 0.43 0.072 0.011 0.63
log 2001 prices 5 0.3 -0.072 0.016 -0.63
UV056-LA-N07-Inapurposebu 0.011 0.0087 -0.058 0.01 -0.33
logweeklyincome 2.7 0.14 -0.057 0.017 -0.51
U V031-NOO-HigherManageria 0.036 0.019 -0.051 0.0097 -0.62
UV028-LA-N00-Employed.log 0.21 0.015 -0.05 0.0076 -0.51
UV028-LA-N02-Other.log 0.13 0.015 0.049 0.0081 0.52
U V 031 -L A-N 00-HigherManage 0.035 0.013 -0.048 0.0083 -0.66
UV 031-L A-N 07-NeverWorkedL 0.11 0.016 0.048 0.0083 0.47
U V053-L A-N 04-Vacanthouseh 0.0067 0.0022 0.048 0.018 0.45
U V056-L A-N04-Semidetatche 0.033 0.0081 0.041 0.018 0.32
UV031-LA-N01-LowerManager 0.074 0.012 -0.041 0.0063 -0.67
U V056-L A-A07-Inapurposebu 3.7 0.41 -0.039 0.0064 -0.17
UV004-LA-N03-26to35.log 0.029 0.0049 -0.038 0.0092 -0.29
UV004-LA-N05-46to55.log 0.029 0.0026 0.038 0.01 0.046
UV056-LA-N06-Flatmaisonet 0.016 0.012 -0.037 0.0062 -0.33
U V056-L A-N 02-Houseorbunga 0.083 0.011 0.035 0.0066 0.33
UV056-N05-Terracedincludi 0.025 0.016 0.035 0.016 0.3
UV028-LA-N01-Unemployed.l 0.013 0.0046 0.035 0.0086 0.39
UV056-A10-Caravanorotherm 0.59 0.57 0.033 0.028 -0.092
UV028-N01-Unemployed 0.013 0.0065 0.033 0.0095 0.4
U V056-L A-A06-Flatmaisonet 3.8 0.4 -0.031 0.0054 -0.16
UV004-LA-N06-56to65.log 0.023 0.003 0.03 0.0084 0.22
UV053-L A-A04-Vacanthouseh 3.2 0.27 0.029 0.0089 0.29
U V 031-AOO-HigherManageria 2.4 0.38 -0.029 0.004 -0.43
U V035-L A-N06-NoFixedPlace 0.019 0.0043 -0.027 0.011 -0.37
U V002-LA-AOO-PopulationDe 2.5 0.35 -0.027 0.0094 -0.055
UV056-N00- ALLHOUSEHOLDS 0.1 0.00058 -0.026 0.015 -0.13
U V056-L A-NOl-Inanunshared 0.097 0.00019 -0.025 0.011 0.077
UV056-N08-Partofaconverte 0.0032 0.0061 0.025 0.019 -0.18
UV 031-L A-AOO-HigherManage 3.8 0.29 -0.025 0.0046 -0.36
U V053-A03-Secondresidence 0.87 0.53 -0.024 0.012 -0.11
U V056-L A-A04-Semidetatche 4.2 0.28 0.024 0.0081 0.23
U V 03 l-N05-SemiRoutine 0.048 0.013 0.024 0.0075 0.49
U V053-L A-A03-Secondreside 2.4 0.48 -0.024 0.0083 -0.012
UV004-N04-36to45 0.031 0.0039 0.024 0.012 -0.23
UV031-LA-N02-Intermediate 0.038 0.0066 -0.023 0.014 -0.39
UV031-N02-Intermediate 0.038 0.01 0.022 0.018 -0.28
ward numtransactions 7.4e+02 5.6e+02 0.022 0.012 0.069
UV031-LA-N06-Routine.log 0.038 0.0098 0.022 0.0081 0.58

Table 4.5: Top 40 determinants of house price growth 2000-2006. Means and 
standard deviations of explanatory variables are given to add context to their 
normalised coefficients, and data for reconstruction.
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4.5 Discussion

This section is divided into three. Subsection 4.5.1 summarises results. Subsec­
tion 4.5.2 evaluates these with respect to existing models of market behaviour, 
and subsection 4.5.4 discusses the possibility of there being important variables 
missing from the model.

4.5.1 Summary of results

The primary advantage of the regression models presented here is their ability 
to identify the most important explanatory variables from a very large set of 
candidates. Such variables can be found at the top of tables 4.4 and 4.5 as 
these are ordered in decreasing order of coefficient magnitude. However, it is also 
possible to summarise these tables more succinctly by listing the order in which 
different categories of variables first appear. In the case of 2001 house prices, 
these are

1. income
2. social class
3. distance to London
4. housing type
5. market turnover
6. employment level
7. age distribution2
8. housing stock

For subsequent (2000-2006) price growth the order of importance for variable 
categories is

1. distance to London
2. 2001 price
3. housing type
4. income
5. social class
6. employment level

2 Though only one age variable appears at this level, therefore, this result may not be stable 
in the face of adding more explanatory variables.
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7. housing stock
8. age distribution

As these summaries cannot encapsulate the full complexity of the regression out­
put, the author recommends that they are only used as a rough guide to the 
real interactions between variables. They are still, however, considered useful for 
basic comprehension of the data set.

4.5.2 Evaluation o f 2001 price regression w ith  respect to  
housing market m odels

In this section, the results will be discussed with reference to the models which 
inspired choice of variables, in the same order as presented in section 4.3. It can 
be seen that, in the majority of cases, coefficients behave a-s expected. Most of 
the coefficients derived are significant at the 99% level, however to shorten the 
discussion, only those greater than the average coefficient magnitude (0.01) will 
be considered. Coefficients below this level, while statistically significant, can be 
considered of diminished importance compared to other factors in the regression.

4.5.2.1 Lifecycle models

The premise of life cycle models is that there is a tendency for people of different 
ages tend to live in different areas, and also for people of different ages to have 
differing financial means. One would therefore expect areas populated by more 
affluent age groups to exhibit higher house prices. The patterns exhibited by the 
regression coefficients are discussed below.

• Negative effects on price for the 56-65 and 66-79 age band

This might be explained as indicating the presence of couples whose children 
have left home and are fully financially independent, and retirees, many of whom 
choose to ‘downscale’ at this stage in life, freeing some property capital to cover 
living expenses.

•  Positive effects on price for the 80+ age band

This, by definition, will be positively correlated with the quantity of residents 
with greater than average longevity - this is in turn known to be correlated
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with better financial means so it is not surprising that housing in areas with a 
significant population in the oldest age band is more expensive.

• Mixed effects on price (positive at Ward level, negative at LA level) for the 
16-25 age band

• Mixed effects on price (positive at Ward level, negative at LA level) for the 
46-55 age band

• Mixed effects on price (negative at Ward level, positive at LA level) for the 
26-35 age band.

These are harder to explain, at least without increasing the level of wild specu­
lation! It is not uncommon, however, for mixed effects to occur in a multi-level 
model. One explanation for the first of these results may be that the 16-25 age 
band are not usually high earners, so may have a negative effect on prices at 
LA level; however at Ward level the presence of many 16-25 year-olds might 
be indicative of a strong rental market, thus locally increasing property prices. 
The latter result, conversely, may relate to first time buyers of houses who will 
typically chose to locate in cheaper areas; however their greater affluence overall 
contributes positively to average prices in the Local Authority.

These results are not presented as definitive, so much as a being plausible 
validation of the regression model.

4.5.2.2 Bid rent theory

Bid rent theory predicts that, as labourers make a trade-off between land rent 
and commuting costs when choosing a location in which to live, locations where 
the average travel-to-work distance is small will command greater land rents. At 
Ward level, this is reflected in some of the regression parameters, with a positive 
coefficient of 0.017 for people travelling less than 2km to work. However, mixed 
effects are also noted for most travel to work distances, particularly the > 30km 
band, which has an unexpected positive effect at ward level as well as the expected 
negative effect at LA level. The reason for this may be understood by studying 
the ‘working outside the UK’ category, which has a universally positive effect 
on house prices. It seems likely that on an international level, bid rent theories 
no longer apply, while the presence of a population which works abroad may be 
indicative of higher earners, whose commuting costs - if these are actually paid for
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by the worker rather than employer - are insignificant compared to their wages. 
Similar reasoning could probably be applied to the case of those travelling over 
30km to work.

4.5.2.3 The Ripple Effect

In a period of overall market growth, the ripple effect predicts that the log dis­
tance to London will have a large negative impact on house price. This prediction 
is borne out in the regression coefficient, which has a value of -0.09.

4.5.2.4 Supply and demand

The theory of supply and demand applied to the mobile labour market suggests 
that high incomes and employment levels will have a positive impact on house 
prices. The theory of supply and demand applied to housing stock suggests that 
high levels of housing availability will have a negative impact on prices.

As expected, large positive coefficients (> 0.01) are noted for the average 
income and employment level. Large negative coefficients are noted for unem­
ployment and vacant household spaces. Additionally, the quantity of second res­
idence/holiday accommodation has a large positive effect, presumably because of 
the increased demand for housing in areas considered pleasant for recreation.

4.5.2.5 Submarket-based models

Submarket models suggest that different types of accommodation will be sought 
by different categories of people, so there is no reason why the markets for these 
different types should be completely correlated. In the case of absolute house 
prices, a more direct effect is noticeable - that different categories of accommo­
dation tend to have different absolute hedonic values. Thus at Ward level, bun­
galows, terraces and commercial buildings have a negative effect on prices, while 
semi- or detached housing and flats have a positive impact on prices. Bizarrely, 
shared housing and caravans/temporary structures also have a positive effect on 
prices. The former may be indicative of a strong rental market while the latter 
may be indicative of rural areas. Population density was seen to have a negative 
effect on prices at a local level, perhaps because high density is indicative of poor 
local housing quality.
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The relation of Local Authority level housing type variables to house price is 
unclear.

4.5.2.6 Models of market turnover

The number of transactions between the years 2000 and 2006 was seen to be neg­
atively correlated with 2001 house prices. Using this as an explanatory variable 
is of course reversing causality somewhat! However, the result is easily explained. 
The general trend during these years was for the cheaper areas of the market to 
grow more - either because they were affordable, or because they were behind 
London and the South East (the prices of which had already risen) in a ripple 
pattern of growth.3 As growth, in turn, is correlated with high numbers of trans­
actions4 we therefore would expect high numbers of transactions to correlate with 
low 2001 house prices.

4.5.2.7 Effect of social class

As predicted in section 4.3.8, the socio-economic classification of residents has 
a direct impact on prices, with strong positive effects noted for managerial and 
professional classes, and negative effects for intermediate, lower supervisory, tech­
nical, semi-routine and routine classes. Mixed effects were noted for small em­
ployers.

4.5.3 Evaluation of 2000-2006 price growth regression 
w ith  respect to  housing market m odels

The regression on price growth between the years 2000-2006 requires far less 
discussion than the regression on 2001 house prices. This is because by far the 
largest coefficients estimated are for the distance to London (which had a positive 
effect on price growth) and the 2001 house price (which had a negative effect on 
price growth). Both of these are reconcilable with the ripple effect model: namely 
that in the tail end of a rising phase of the market, properties in London had 
already increased in price before commencement of the study, while properties

3The price growth regression gives a coefficient of -0.07 relating 2001 prices to subsequent 
growth.

4This is backed up by a coefficient of 0.02 in the price growth regression.
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elsewhere had yet to exhibit a similar gain in value. Thus during this period, low 
priced houses far from London gained more in value than any elsewhere.

4.5.4 M issing Variables

The presence of spatial autocorrelation in the residuals points to the conclusion 
that at least one important spatial variable has been missed from the model. 
Examination of the residuals map hints that this variable may be related to the 
urban/rural divide. While population density has been included as a variable, 
perhaps this is not sufficient, and failing to include more detailed information 
on this division has perhaps resulted in the regression process attempting to 
compensate in other ways. For example, in the case of population travelling 2- 
5km to work (measured at ward level), a significant positive coefficient has been 
assigned to the absolute number of people, while a significant negative coefficient 
has been assigned to the corresponding relative proportion of the total population. 
Also in many cases, variables are shown to have a positive effect at one spatial 
scale and a negative effect at another.

It is almost certain that simple regression is not the optimal technique for 
making accurate predictions of the market, and a model which allows for coeffi­
cient heterogeneity between urban and rural areas may perform better. However, 
it is not the purpose of this study to produce the best possible model, so much as 
to conduct a preliminary exploration of the data, for which the model presented 
- in light of the low mean square error - is considered to be adequate.

4.6 Conclusions

In this chapter, one of the simplest possible approaches for understanding a large 
data set has been implemented. Data mining has been rejected in favour of a 
hybrid visualisation-regression technique. Regression assumptions axe checked, 
and PCA is used to reduce the dimensionality of the data, thus allowing for 
input of a large number of explanatory variables. Custom software is necessary 
in anticipation of the size of the data sets to be analysed in the upcoming chapters. 
Based on existing market models, a set of variables has been selected for study.

Overall, despite evidence of missing variables, the regression framework is 
found to be effective. For the 2001 house price model, the normalised mean
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square residual - the error in the average prediction made by the model - is 0.095, 
which is low; by contrast, using a global mean price to model housing market 
variations would result in a mean square residual of 1.0. Likewise for the price 
growth model the mean square residual is 0.385. It is clear that in each case the 
regression analysis, while not completely modelling the data, has accounted for 
a large proportion - in fact, the majority - of variation in the target variable.

The model has allowed us to identify the most important out of a range of 
candidate variables. Additionally, evidence for many of the existing models of 
housing market behaviour has been found in the output from the model. This 
would suggest that the regression framework is a valid approach.

Having used this framework to identify some of the more relevant variables, it 
may be fruitful in future to return to data mining techniques to carry out a more 
detailed analysis of the way in which these variables interact. In particular, such 
techniques may help to untangle the causes of the mixed effects on house price 
noted for certain classes of variable, such as population age, social class and travel- 
to-work distances. However in sum, the framework developed here is considered 
sufficient for a preliminary exploration of the data, and will be extended and 
applied in anger to the much larger data sets encountered in chapter 5.



CHAPTER 4. REGRESSION METHODOLOGY



Chapter 5

Developm ent of a general, 
exploratory, interactive and  
reactive housing market m odel

5.1 Introduction

This chapter presents perhaps the primary novel piece of work in the thesis: a 
combined analysis of three data sets at an unprecedented level of detail.

Returning to the mountaineering analogy of the introduction, this is the crux 
of the mountain of data, where the most complex manoeuvres must be conducted, 
using both innovative statistical technique and raw computing power. In chapter 
2 the mountain’s easy lower slopes were climbed through aggregation of data. 
In chapters 3 and 4 two subsidiary peaks of visualisation and regression were 
climbed - not so important in and of themselves, so much as for the skills thereby 
developed which will be applied to the main summit. But now it is time to 
address the main challenge of the ascent: the joint exploratory analysis of two 
large spatial time series and network interaction data sets, those of the Land 
Registry and Census Office.

The route taken in this analysis is chosen so as to fulfil three criteria:

• both the Land Registry and Census data must be used, on a fine scale - to 
take maximum advantage of the available data,

• the Census Interaction data must be used - because detailed comparison of

123
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this with Land Registry data is unprecedented, and

• the Census Interaction data should not be used in isolation, as that would 
not be indicative of its overall importance in explaining house price interac­
tions, which must somehow be compared to the importance of the Census 
Area Statistics.

It is hoped that any significant findings from this exploration will be novel. 
Because detailed study of the interaction data in this manner is unprecedented, a 
guiding principle of this study is that if there are interactive effects in the housing 
market, however small or localised, it is the aim of the analysis to find them. This 
principle is of relevance to many of the decisions taken on methodology.

The remainder of this chapter is structured as follows. Section 5.2 reviews 
previous work in this area. Section 5.3 discusses the choice of an appropriate 
methodology for analysis of the interaction domain. Section 5.4 applies this 
to an exploratory regression analysis of the data, however visualisation remains 
an important component of the study and is therefore employed in section 5.5. 
Section 5.6 concludes.

5.2 Literature review

5.2.1 Spatial housing market m odels

A suitably broad starting point for models of spatial processes is that of Cliff &; 
Ord (1981):

“When we develop a model for a spatial process, we must always 
ask whether the levels of the process at two (neighbouring) sites reflect 
interaction (between the sites) or reaction to some other variable. The 
case is rarely open and shut.”

Cliff and Ord go on to define interaction through spatial auto-correlation 
models, and reaction through regression models, culminating in the presentation 
of combined models which are capable of reflecting both kinds of process, with 
parameters fitted by regression.
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In the case of housing markets, such reactive and interactive models are both 
present. Meen (2001) provides a good overview. In general, regional (and hence 
spatial) housing market models fall into one of three categories:

1. Reactive models. Probably the most common type of model, these deal 
with the response of regions to changes in macroeconomic variables such 
as housing stock or average income (as were discussed in chapter 4), or to 
the response of prices to local variables such as neighbourhood quality, as 
is the case with hedonic modelling (discussed in chapter 2).

2. Interactive models. These deal with the correlation between markets in 
different regions, and the propagation of price changes between them. Such 
models can either be parametrised, e.g. with distance decay or spatial auto­
correlation terms, or alternatively - if there is enough data - the data itself 
can be used to directly estimate the values in the spatial interaction matrix. 
This second type of model is rare, but the work presented in this chapter 
belongs in this category, therefore such models are therefore discussed in 
more detail in section 5.2.2.

3. Mixed models. These combine both reactive and interactive models, and 
are far more common than pure interactive models. However, interaction 
between regions is typically incorporated in a somewhat constrained man­
ner, using the first (parametrised) form of interaction model noted in (2). 
An example is the spatial cross-section model of (Anselin 1988, in Meen, 
2001):

y =  pWy +  /3x + e (5.1)

where y is the vector of regional prices, VP is a spatial weights matrix, x is 
a vector of regression variables, p and (3 are coefficients to be determined 
and e is the error term. However, the model’s weakness is that W  must 
be specified directly - based for example on spatial contiguity or distance 
decay - rather than deduced from the data. While this has the advantage 
of providing strong explanatory power if the model fits the data well, it 
is likewise limited to explaining interactions only of the form explicitly 
specified.

As directly estimated interactive models are of greatest relevance to under­
standing interaction data, they are discussed in more detail in section 5.2.2.
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A A
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Figure 5.1: Illustration of transitive cross-correlation for three time series A, B 
and C. If A, B and C are linked by weak and strong links as shown in (i), then 
VAR analysis for series A will deduce the correct structure. However, Granger 
or Cross-correlation analysis will deduce the structure in (ii) whereby a link is 
deduced between A and C because of the transitive correlation between A-B-C. 
While series A and C are indeed correlated, this misses the point that such a 
correlation is better explained by the mutual link to B than by a direct link.

5.2.2 Spatial housing market m odels w ith  d irectly  esti­
m ated interaction m atrices

5.2.2.1 Estimation techniques

A number of techniques have been used to directly estimate the form of interaction 
matrices, when sufficient data is available.

•  Seemingly Unrelated Regression (SUR) can be used to separately estimate 
reactive regression models for each region, but look for correlations in the 
residuals across regions (Meen 2001, page 166). This essentially treats the 
interaction matrix as a form of error analysis to be studied after conducting 
a regression, although it does allow for the inclusion of spatial coefficient 
heterogeneity.

• Cross-correlation, as used in Giussani &; Hadjimatheou (1991) and Shi et al. 
(2009), looks for simple correlation between the current growth of a region 
and past growth values of all other regions.

• Granger causality tests, as used in Giussani & Hadjimatheou (1991), Shi 
et al. (2009), Worthington & Higgs (2003) and MacDonald & Taylor (1993) 
are a more sophisticated form of correlation analysis. A regression is per­
formed relating current growth in a region to past growth in the same
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region and each other region separately. This has two advantages, firstly 
that by modelling autocorrelation is it is possible to find out the relative 
importance of auto- and cross-correlation; and secondly that it is easier to 
estimate statistical significance of the resulting coefficients.

• Vector Auto-regression (VAR), as used in Pollakowski & Ray (1997), Shi 
et al. (2009) and Worthington & Higgs (2003) is the multivariate extension 
of Granger causality tests. For each time series, a multivariate regression 
is conducted relating that series to both its own past values, and the past 
values of all other time series. It is thus possible to separate the cross­
correlations which have greater explanatory power, from those which appear 
simply because of transitive cross-correlation. Figure 5.1 illustrates the 
difference between Granger tests and VAR.

• Johansen tests, as used in MacDonald & Taylor (1993) and Shi et al. 
(2009) are the most sophisticated, as they can search for all combinations 
of co-integrating time series simultaneously. Time series are said to be co­
integrated if a linear combination of them can be made which is stationary. 
For example, for two near-identical time series A  and B, the linear combi­
nation A — B  would always be near zero so the time series could be said to 
be co-integrated. Results from Johansen tests are therefore presented not 
as a matrix but as a set of sets of time series.

5.2.2.2 Explanatory power

While all of the above studies uncover some form of interaction structure between 
regions, little attempt is made to extend the model to explain why that interaction 
exists. Instead, the results are interpreted on a qualitative basis. Pollakowski and 
May’s US study, for example, notes that

“although many [regional] cross lags are significant, neither a spa­
tial pattern nor any other discernible pattern is evident”

and that

“From inspection [of New York districts], it does appear that there
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may be some sort of spatial diffusion pattern ... [though] a statistical 
inference clearly cannot be reliably made.”

Shi et al. (2009) notes that in New Zealand, correlation is measurable within 
but not between regions, and thence argues that the apparent correlation is a 
reactive phenomenon - caused by differing response to external economic factors 
rather than by spatial proximity.

In the case of the British literature, most of the studies are targeted at an­
swering a question often posed in the wider literature, namely: “Is there a rip­
ple effect between London and the other regions?” (Holmes & Grimes 2005). 
Giussani, having concluded that the effect exists, mentions a variety of possible 
reasons, including the possibility that regions react differently to housing stock, 
income etc (essentially reactive models as described in section 5.2.1). Correlations 
are also noted between acceleration in inter-region migration and price change, 
albeit aggregated to a very course level. Worthington & Higgs (2003) concludes 
that the South East drives the rest of the market, but offers little explanation 
for why this may be the case; meanwhile Macdonald and Taylor openly admit 
that their deduced interaction structure remains unexplained. Meen meanwhile, 
puts the UK ripple effect down to spatial coefficient heterogeneity, with respect 
to responsiveness to incomes and interest rates, concluding that

“The spatial pattern that we observe has little to do with spa­
tial movements between regions through migration, for example, but 
relates to adjustments within regions” (emphasis in original).

However, Meen also speculates that in other cases, differing economic conditions, 
information dissemination through property searches and equity transfer (the lat­
ter two being interaction-related) could also cause inter-regional price differences. 
This may be supported by Cameron et al. (2005) which, although not using an 
interaction model, aggregates in- and out-migration on a regional level and finds 
“strong housing market effects consistent between inflow and outflow equations”.

Cameron also cautions, however, against “drawing policy inferences from one 
set of relationships in a complicated web” . Indeed, overall it would seem that 
the order of cause and effect, when applied to the interacting systems of migra­
tion, house prices, economic conditions and housing market structure, is almost
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never clear. What is therefore sought in the study is correlation, not causation 
- however, regression analysis does make it possible to decide which correlations 
explain the structure of the data better than others.

Section 5.3 discusses a technique for exploring the HMLR and Census data 
in a manner which can incorporate much of the above. In particular, not only 
are interactions directly estimated, but in section 5.4, a quantitative attempt is 
made to explain them, in terms of both interaction and reaction.

5.3 Interaction domain methodology: cross­
correlation and other comparisons

5.3.1 Choice of analysis domain

To recap the criteria for choosing an analysis technique, it is desired to com­
pare the currently underutilised Census interaction data to the Land Registry 
(HMLR) data, but also including Census Area Statistics (CAS), so the relative 
explanatory capabilities of each data set can be directly assessed. This is largely 
to be conducted at Census ward level (8850 areal units) although data aggregated 
to local/unitary authorities (of which there are 376 in England and Wales) will 
also be employed.

Referring back to the thesis map of figure 1.2, the Land Registry data is now 
in the form of per-area house price time series, the area statistics are a two- 
dimensional geographical data set, and the interaction data is a four-dimensional 
set (linking 2-d origins to 2-d destinations). As such, to compare these is to 
compare ‘apples and oranges’ - they must first be converted to a common format 
before they can be analysed. Once this has been done, the data sets can be 
regressed against one another in the manner described in chapter 4.

To make best use of the interaction data, therefore, the HMLR and CAS 
data sets are converted into an interaction format. All subsequent analysis is 
conducted purely in the interaction domain. The remainder of this section is 
structured as follows. Section 5.3.1.1 explains the conversion of HMLR data to 
an interaction format, while section 5.3.1.3 deals with the conversion of CAS to 
an interaction format. Section 5.3.1.4 further discusses, and presents justification 
for, the choice of analysis domain.
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5.3.1.1 Converting tim e series data to a network interaction format 
using cross-correlation

The literature presented in section 5.2.2 presents several techniques for converting 
multivariate time series data into an interaction matrix. These are discussed in 
turn.

• Seemingly Unrelated Regression can be used to perform regressions in a 
reactive or mixed model for each time series separately, then study the error 
terms for possible interactions. This would be a fairly complex method to 
use here as it would divide the explanatory (regression) phase into two - 
it would first be necessary to regress with a reactive model, then regress 
again for interactive components. This complexity seems unwarranted for 
an initial analysis.

• Johansen and Vector Auto-regression (VAR) techniques are difficult to use 
here due to the ratio of time series slices (i.e., 21 slices of 100 days over 
6 years) to locations (i.e., 8850 census wards). The problem is clearest 
when considering VAR: for each census ward, we must estimate at least 
8850 regression parameters to determine the influence of each other ward, 
on the ward under consideration. To do so from only 21 data points in the 
time series would lead to confidence intervals on the parameters which are 
wide enough to be useless. As many wards exhibit similar behaviour, the 
regression would be prone to serious multicollinearity. This problem may 
be solvable with principal component analysis as in chapter 4. However to 
do so would add considerable complexity to the analysis.

It is also the case that 8850 regions are a lot to use in a VAR framework 
- Pollakowski & Ray (1997) only uses 9 census regions in one test, and 5 
districts of New York in another. Likewise (Meen 2001, page 174) notes 
that even “nine census divisions are a lot to use in a single Johansen co- 
integrating system”.

• Granger causality tests. As Granger tests only consider pairwise relation­
ships between time series (and not multivariate relationships), they would 
be computationally feasible.
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• Cross-correlation is computationally simpler than all the above techniques. 
It is therefore chosen for conversion of the HMLR data to an interaction 
format.

For the purposes of this study, cross-correlation between two time series A 
and B  is defined as a normalised cross-correlation function,

(A* B), = Y ) {A  ~ A)(B,+X ~  B) (5.2)

where (A  ★ B)x is the value of the correlation function for time offset x, At and 
Bt are the values of time series A  and B  respectively at time t, A, B, a a and gb 
are the mean and standard deviation of each time series, and T  is the length of 
the original time series.

However, this time series is only studied for x > 0, that is to say, for the 
region in which the present value of B  is correlated with past values of A, and 
not vice versa. Thus it is a measure of the extent to which ‘A causes B’ - though 
note that this is Granger causality, not true causality as both series could be 
responding to the same external cause.

Section 5.3.2.1 will discuss the typical properties of this series, with respect 
to its highest peak, the time offset of this peak and the sum of the series. The 
sum of the series is defined as

wmax

corr_sum^ =  ^  (A  ★ B)x (5.3)
x=w m in

where wmin and wmax are the minimum and maximum time offsets defining the 
window over which a search is conducted for correlations. Thus, correlation sums 
are not symmetric:

corr_sumf ^  corr_sum^ (5.4)

except in the trivial case where wmin = wmax =  0. Note that in addition to 
these windowing parameters, the time resolution of the original series has a major 
effect on the computed cross-correlations. Thus while it is possible to interpret 
window parameters as the time scales over which correlations are sought, e.g.:

max_corr_offset_searched_(days) =  time_sliceJength x wmax (5.5)
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it is not necessarily the case that the correlations for parameters that result in 
the same correlation window (measured in days) will be identical. Therefore the 
parameters used to define a cross-correlation metric are:

• wmin (measured in time slices)

• wmax (measured in time slices)

• time slice length (measured in days).

It should finally be noted that before cross-correlations are computed, all time 
series are first differentiated, therefore all cross-correlations discussed hereafter 
relate to price movements rather than absolute prices.

Computation of cross-correlations for 8850 wards can be achieved in a few 
hours on modest computing hardware (a single 3GHz Itanium core). There is 
probably further scope for code optimisations to speed up such computation.

5.3.1.2 Converting tim e series data to  a network interaction format
using simple division

The format conversion described in section 5.3.1.1, then, allows the discussion 
of data trends in terms of linked housing markets. For example, by comparing 
HMLR with interaction data, the model could answer the question “does a flow 
of migrants between areas A and B cause the housing market at A to affect the 
market at B?” . However, by using this technique, the opportunity to answer 
a simpler class of interaction-related questions is missed, such as “do people 
generally move upmarket?” Therefore, a second technique is also used to convert 
HMLR data to an interaction format:

log price ratio® =  (  %  *  b°th  prfceS 3X6 de&led
y 0 otherwise

(5.6)
This is a simple log ratio and will therefore be positive if the prices at A  are 

higher than at B, and negative if the prices at B  are higher than at A. As A is 
the origin and B the destination, positive values of this measure indicate a move 
downmarket, while negative values indicate a move upmarket.
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An additional advantage of studying this simpler interaction structure is that, 
price ratios being better understood than market correlations, it provides a means 
of testing and validating the regression engine on more familiar data.

5.3.1.3 Converting Census Area Statistics to a network interaction 
format

Converting Land Registry data to an interaction format allows for direct com­
parison of housing market interactions with census interaction data. However, 
it is well known that many other factors influence the housing market, and it is 
wise to assume that the influence of these other factors will be greater than those 
of the interactions captured by the census.

Therefore, the Census aggregate statistics are also converted into an interac­
tion format, allowing analysis of housing market interactions with respect to all 
the categories of variables discussed in chapter 4:- population age distribution, 
travel to work distances, distance to London, average 2001 house price, housing 
stock, incomes, employment, housing type and social class.

This conversion is achieved by including three interaction variables for each 
area statistic variable X. As all interactions are defined between pairs of places 
A and B, the following are included for the interaction between A and B:

1. FROM-X, the value of X at origin, X&

2. TO-X, value of X at destination, X b

3. CHANGESQ-X, square difference in value of X between origin and desti­
nation, (XB — X a)2.

Thus, it is possible in principle to deduce results such as, “there is a tendency 
for areas with a similar proportion of skilled professions in the resident population, 
to have correlated housing markets.” It is also possible to directly estimate the 
relative importance of these effects over the importance of interaction effects such 
as migration.

5.3.1.4 Discussion

The methods presented above merit further discussion. The justification pre­
sented for their choice is that they fulfil the aims of the study, by combining



134 CHAPTER 5. A N  EXPLORATORY HOUSING M ARKET MODEL

the three incompatible data sets to produce a unified analysis. As such, they 
are different to existing techniques which either (a) parameterise spatial inter­
action or (b) directly estimate the interaction matrix. Instead, they take these 
techniques further by first directly estimating the matrix, and then analysing it - 
which may hint at methods of parameterising the interaction in future. Another 
advantage of their use, is that they are also sufficiently general that they may find 
application in other fields of study. As discussed in chapter 4, general techniques 
are preferred for an exploratory data analysis as they do not, so far as possible, 
confine the study to a search for evidence of a specific model.

It should be noted that there is considerable scope for criticising the techniques 
on grounds of information theory: they appear to greatly expand the information 
originally entered into the system. Taking a 21-point time series for 8850 wards 
(a total of 185,850 data points) and using it to compute 8850 x 8850 pairwise 
cross-correlations (a total of 78,322,500 data points) is expanding the data set 
by a factor of 421. Meanwhile, expanding an aggregate statistic defined for 8850 
wards to three sets of interaction statistics as described in section 5.3.1.3 expands 
the data by a factor of 26,550.

The justification for such expansion is that it could be seen as a process 
analogous to data decompression: converting a small, high-entropy file into a 
larger, low-entropy file, which may take more space but crucially, is easier to 
understand. It is noted, however, that as the entropy of the data has decreased, 
there is likely to be some kind of spatial autocorrelation present in the four- 
dimensional interaction data space. This correlation may or may not take the 
form of correlation with neighbouring points (however we chose to define those), 
but it is safe to assume that it could violate the regression assumptions of section
4.2.2. Fortunately, the penalty for this is not severe: if spatial autocorrelation is 
present, then the regression does not become invalid, it is simply the case that 
perhaps there is a better model which can be used instead. Therefore in addition 
to the regression analysis, section 5.5 presents a visualisation methodology which 
is employed to check for the possibility of using alternative models and take 
appropriate action.
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5.3.2 Validation of cross-correlation data

5.3.2.1 Explanatory power of cross-correlation with respect to recon­
structing time series

To validate the interpretation of cross-correlation metrics as a meaningful statistic 
prior to their use in a regression analysis of the housing market, an attempt is 
made to use them to reconstruct the market growth patterns from 2000-2006, 
i.e. to reproduce the first derivative of the original 8850 ward timeseries (as was 
shown in figure 3.18 back in chapter 3). To prevent exponential divergence of 
the reconstructed time series from the original, this is performed using series 
which are normalised over all wards at each time step. Thus, overall market 
growth and volatility (defined here as the variance in growth over all wards for a 
given time slice) is considered exogenous to the system, because a pure market 
cross-correlation model cannot be expected to predict them.

The algorithm for reconstruction is as follows:

1. compute cross-correlation sums (corr_sum) from source data
as specified in equation 5.3
using parameters wmin=l, wmax=2, time slice length = 100 days

2. initialise prediction matrix to store predictions
number of rows = number of wards 
number of columns = time series length

3. copy initial time series values from source data to first column
of prediction matrix

4. for each time step t
4.a. for each ward w

4.a.l set prediction matrix [w,t] as

prediction^ =  ^  corr_sumjf x prediction^ (5.7)
w '^w

4.b. normalise predictions over all wards such that mean is 0
4.c. normalise predictions over all wards such that variance is

5. compare prediction matrix with source data

(In equation 5.7, prediction™ is the predicted growth for ward w at time t, 
corr_sum™ is the sum of the cross-correlation function between wards w and w'
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and prediction^ is the prediction for the previous time step. Note that the 
autocorrelation term xcorrJJJ®  ̂is excluded from the summation. Thus intuitively 
this equation is an attempt to predict the growth of each ward by summing 
the growth of all other wards in the previous time step, weighted by the inter­
ward correlation matrix). The entire algorithm is run for five separate sets of 
initial conditions, representing five different simulation start points spread evenly 
through the time span of the data.

For comparison, the time series are also reconstructed using only autocorre­
lation information. Thus, equation 5.7 is replaced with

prediction]*’0*’** =  corr_sum™“Ĵ  x prediction]”?]’** (5.8)

The results of the cross-correlation based reconstruction are presented in figure
5.2, while the results of the autocorrelation-based reconstruction are presented in 
figure 5.3. The RMS divergence of cross-correlation based reconstruction, for the 
first time slice, is 0.53; rising over a six-year period to approximately 0.9. This 
compares favourably to predictions made by assuming homogeneity of growth 
(i.e. assuming all time series are equal to the national average time series, which 
for normalised series will always have an RMS divergence of 1.00) and also to 
predictions based on autocorrelation alone (which have first time slice RMS of 
1.12, rising rapidly to 1.4).

It is not clear why predictions based on autocorrelation alone behave so badly 
- worse, on average, than a prediction based on market average. One hypothesis 
for this might be that such predictions are based on a single data point in the 
cross-correlation matrix and are therefore far more susceptible to noise in the 
data than other predictions. As they are only used as a benchmark, however, 
the quality of autocorrelation predictions is not of concern here. Meanwhile, it 
is encouraging to note that cross-correlation based predictions show significant 
improvement over homogeneous predictions in the short term (1 year), and slight 
improvement in the long term (4 or more years).

5.3.2.2 Stability of cross-correlations over tim e

It is pertinent to ask whether the structure of cross-correlations revealed in this 
analysis are a permanent feature of the market, or merely a transient reflection of 
its current state. Dividing the time series into two halves, and comparing cross-
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Figure 5.2: Plot of RMS divergence of predicted from actual time series, based 
on cross-correlation data with time slice of 100 days, wm in=l, wmax=2. Results 
from five different simulation runs are shown as separate curves, with start, times 
evenly spaced over the 2000-2006 time span of the data set.
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Figure 5.3: Plot of RMS divergence of predicted from actual time series, based 
on auto-correlation data with time slice of 100 days, wmin=l, wmax=2. Results 
from five different simulation runs are shown as separate curves, with start times 
evenly spaced over the 2000-2006 time span of the data set.
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103

9.0

Figure 5.4: Plot of all cross-correlations during first half of time series, vs their 
values for the same pair of wards during second half of time series. Time slice 
length of 90 days, wmin=0, wmax=l. Frequency (z) axis shows natural logarith­
mic frequency count l n ( f  + 1).

correlation derived from each half, answers this question succinctly. Figure 5.4 
shows a scatterplot of cross-correlation sums derived from the years 2000-2003, 
versus the same correlation sums from the years 2003-2006. The circular shape 
of this plot indicates that cross-correlations derived from each time period are 
approximately normally distributed and independent; thus, the cross-correlations 
are not stable over time.

There are two possible explanations for this. Firstly, it is almost certain that 
in a social system as complex as the housing market, cross-correlations will change 
over time. However, this probably does not account for all of the variability in 
measurement shown here. A second explanation (as discussed in section 1.3) is 
that the entire study spans only a six year period. Therefore, much error in 
cross-correlation measurement could relate to insufficient data, and this will only 
be exacerbated when further subdividing the time series to analyse the stability 
of cross-correlations.

It is not possible to conclude from this study, which of the two explanations 
holds more explanatory power. However, study of cross-correlation is still valid 
for a number of reasons. Firstly, it is useful to explore methodologies for handling 
data sets such as these, even if the results appear unstable in this case. Secondly, 
even though the results are unstable, they may well be a good measure of the 
internal state of the market during the period under study. This is evidenced

□
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xcofr sum darivad from first half of lima sarias
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both by their usefulness in reconstructing time series (section 5.3.2.1) and by 
their correlation to census statistics (which will be discussed in section 5.4.3). 
And finally, while a stable cross-correlation relationship may not exist for the 
vast majority of ward pairs, it may be that a small minority do exhibit a stable 
relationship, although these are not visible when displaying the data set as a 
whole. This latter possibility will be discussed in section 5.4.3.1.

5.3.3 Choice of appropriate tim e scale and metrics for 
further correlation study

All results presented in section 5.3.2.1 relate to correlation metrics calculated by 
summing the cross-correlation function of two time series over a window of a single 
time step. It is therefore pertinent to ask whether using longer time slices would 
lead to better reconstruction of the original time series. However, if extending the 
time span of the cross-correlation metric, it is also pertinent to ask whether any 
better alternatives exist than simple summation of the cross-correlation signal 
(as in section 5.3.1.1), such as the inter-series time difference at which maximum 
correlation occurs, and the magnitude of that maximum correlation.

Section 5.3.3.1 discusses use of alternative correlation metrics, and section
5.3.3.2 discusses measuring correlation over different time scales.

5.3.3.1 Investigation of correlation time lag data

Figure 5.5 shows a matrix of scatter plots displaying the relationship between 
three different candidate correlation metrics:

• sum of cross-correlation series

• value of maximum peak in cross-correlation series

• time offset of maximum peak in cross-correlation series.

The most important of these plots is that of sum vs maximum, the shape of which 
may be explained as follows:

• The x-axis reflection is caused by the fact that the value with greatest 
magnitude may be either positive or negative.
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•  The tails to the right of the upper cluster of points, and to the left of the 
lower cluster of points, show that for a small subset of cross-correlation 
functions, the presence of a single large maximum value has some effect on 
the overall sum.

• The vast concentration of points in the centre of the clusters, and their 
approximate y-axis symmetry (discounting the tails) reveals that there is 
little overall correlation between maximum and sum.

Similar analysis may be conducted for the plots of time of maximum peak 
vs sum and maximum, in all cases showing little in the way of interesting cor­
relation. The lack of such correlations points toward the conclusion that the 
cross-correlation functions themselves are too noisy for the extraction of more 
detailed metrics, as in the absence of noise it would be expected that at least 
maximum should correlate with sum (as would be the case for e.g. a bell curve). 
Such detailed metrics are therefore discarded.

5.3.3.2 Investigation of different correlation tim e scales

Bearing in mind that the cross-correlation functions are too noisy for detailed 
temporal analysis, it is unclear how the additional temporal information gained 
from longer cross-correlation functions could be used to increase the accuracy 
of predictions. Therefore, in investigating different correlation time-scales, the 
reconstruction algorithm remains the same as in section 5.3.2.1. Figure 5.6 shows 
the result of reconstructing the original time series based on longer-term (up to 
800-day) correlations.

The divergence graph for 200-day correlations initially rises to a higher value 
than was the case with 100-day correlations, however divergence in the longer 
term increases more slowly. Thus, the results display decreasing performance of 
the reconstruction when longer time scales are used to predict short-term move­
ments, and increasing performance when longer time scales are used to predict 
longer term movements. This is presumably because short-term and long-term 
correlations differ (so it would be logical to expect short term measurements to 
be best for short term predictions, and so on) - however it may also be the case 
that predictions from long-term data are less susceptible to short term noise.
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sum of xcorr function max of xcorr function

Figure 5.5: Scatter plots of sum/maximum/time of maximum peak for cross­
correlation functions of each pair of wards. Frequency (z) axis shows natural 
logarithmic frequency count l n( f  +  1).

For completeness, figure 5.7 presents scatterplots of shorter vs longer term 
market correlations. The generally uncorrelated shape of the plots shows that 
short term correlation only dimly reflects long term correlation, and vice versa.

For the regression analysis, both 100- and 200-day correlations were used. 
The 200-day analysis is presented as a stronger relationship to the census data is 
visible in the results.

5.4 Regression analysis

As stated in the opening section of this chapter, the purpose of this study is 
both to make use of interaction data to gain new perspectives on the UK housing 
market, and also to rate its relative importance to housing market structure as 
compared to the importance of more standard spatial data sets. Now that all 
data has been converted to a directly comparable network interaction format,
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Figure 5.6: Reconstruction of time series based on long-term cross-correlation. 
In each case, wmin = 0 and wmax = 1 while the time slice length is varied. First 
time-slice errors are approx. 0.5 for 100 days, 0.6 for 200 days, 0.7 for 400 days 
and 1.0 for 800 days (not shown).
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Figure 5.7: Scatter density plots of longer vs shorter term cross-correlation. 
Again, wmin  =  0 and wm ax = 1, while time slice length varies. Frequency 
(z) axis shows natural logarithmic frequency count l n( f  +  1).

it is possible to fulfil the criteria for the study using regression analysis. Two 
regressions are conducted, one for each of the target variables designed in section 
5.3: these are, for each pair of wards in the data set, (i) cross-correlation, and 
(ii) log price ratios, formed by simple division of relative growth.

It should be remembered that the role of regression in this study is not, as is 
usually the case, to provide a comprehensive model of the data accompanied by a 
substantive interpretation of the meaning of that model. Instead, regression has 
been selected as the most appropriate tool for providing an exploratory analysis 
of the contents of the data set. However, it is impossible to entirely separate 
the processes of exploration and interpretation, because in the current context - 
where the aim is to develop analytical methods - those methods must be eval­
uated, and in evaluation, can only be considered useful if there is a meaningful 
interpretation of their outcomes. Therefore, an outline sketch of how the results 
may be interpreted is provided alongside the raw results.

The remainder of the section is structured as follows. Section 5.4.1 deals with 
the choice of explanatory variables. Section 5.4.2 discusses computational issues, 
and regression results for cross-correlation and log price ratios are presented in 
sections 5.4.3 and 5.4.4 respectively.

5.4.1 Choice of explanatory variables

When applying regression to the outcome of the cross-correlation analysis, it is 
again necessary to chose explanatory variables. Almost all considerations are the
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same as those covered in chapter 4, therefore the reader is referred back to that 
chapter for more detail on the following points:

1. All variables are included both in absolute terms and as a relative propor­
tion of population, where appropriate.

2. All variables are given both at ward and LA level, thereby allowing crude 
multi-level modelling of the explanatory variables.

3. All variables relating to population and finance are used in the form log(x + 
1) to ‘tame’ outliers.

4. Principal Component Analysis is applied to reduce approximately 1000 
explanatory variables to 40 components, thus eliminating problems of 
collinearity. It is arguable that a higher number of components should 
be used for the more complex interaction data; however due to software 
and compute time limitations the number has been kept at 40 as was the 
case in previous regressions.

5. Finally, a back-transform of the estimated regression coefficients is used to 
display results in terms of explanatory variables rather than components.

As noted in the introduction to this chapter, spatial models can be classified as 
interactive or reactive. The same classification applies to explanatory regression 
variables.

• The reactive variables used are identical to the set used in chapter 4, falling 
into the categories of population age distribution, travel to work distances, 
distance to London, average 2001 house price, housing stock, incomes, em­
ployment, housing type and social class. Chapter 4 should be referred to 
for a full discussion of these variables. As described in section 5.3.1.3, reac­
tive variables are converted to an interaction format, and named as either 
FROM, TO or CHANGESQ variables depending on whether they relate to 
the origin or destination area, or the squared difference between them.

• The interaction variables used are described in sections 5.4.1.1 to 5.4.1.5 
below.
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All interaction variables relate to each of 78,332,500 pairs of census wards, 
however, the interaction matrices are usually sparse - that is to say, most entries 
are equal to zero, because for the vast majority of ward pairs no migrations 
occurred. Thus, considerable computing storage can be saved by not storing 
zero-values.

5.4.1.1 Migrating population disaggregated by age

Dennett & Stillwell (2008) provides a comprehensive district-level analysis of UK 
migration, noting (among other things) age as a key determinant of migration 
behaviour. It is reasonable to expect that migrants differing in behaviour - i.e., 
migrating for different reasons - will have differing effects on the housing market. 

The following variables are therefore included:

• total number of migrants
• number of migrants aged under 16
• number of migrants aged 16 to 24
• number of migrants aged 25 to 34
• number of migrants aged 35 to 44
• number of migrants aged 45 to 59
• number of migrants aged 60 to 64
• number of migrants aged 65 to 74
• number of migrants aged 75 to 110

Data on the age of migrants is derived from census interaction table MG201.

5.4.1.2 Migrating population disaggregated by social class

Dennett & Stillwell (2008) also notes that socio-demographic characteristics of 
origins and destinations have major influence on the behaviour of migrants. Char­
acteristics of origins and destinations are already included in the regression model 
employed here, using the variables described in chapter 4 and the expansion tech­
nique described in section 5.3.1.3. However, it also seems pertinent to include 
information on the class of migrants.

The following variables are therefore included:

• number of Total Wholly moving households
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• number of Total Other moving groups
• number of Large employers and higher managerial occupations (Wholly 

moving households)
• number of Large employers and higher managerial occupations (Other mov­

ing groups)
• number of Higher professional occupations (Wholly moving households)
• number of Higher professional occupations (Other moving groups)
• number of Lower managerial and professional occupations (Wholly moving 

households)
• number of Lower managerial and professional occupations (Other moving 

groups)
• number of Intermediate occupations (Wholly moving households)
• number of Intermediate occupations (Other moving groups)
• number of Small employers and own account workers (Wholly moving 

households)
• number of Small employers and own account workers (Other moving groups)
• number of Lower supervisory and technical occupations (Wholly moving
• households)
• number of Lower supervisory and technical occupations (Other moving 

groups)
• number of Semi routine occupations (Wholly moving households)
• number of Semi routine occupations (Other moving groups)
• number of Routine occupations (Wholly moving households)
• number of Routine occupations (Other moving groups)
• number of Never worked and long term unemployed (Wholly moving house­

holds)
• number of Never worked and long term unemployed (Other moving groups)
• number of Full time student (Wholly moving households)
• number of Full time student (Other moving groups)
• number of Not classifiable for other reasons (Wholly moving households)
• number of Not classifiable for other reasons (Other moving groups)

Data on the social class of migrants is derived from census interaction table 
MG204.
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5.4.1.3 Migrating households disaggregated by tenure type

It is reasonable to expect that migrants between regions will have differing im­
pact on inter-regional market linkage depending on whether they rent, buy or 
occupy social housing. It is certainly already known that housing type affects 
mobility and hence migration behaviour: Boyle (1993) finds in a UK study that 
owner-occupier migrants are more restricted by distance than other types, the 
population of the South enjoys greater overall mobility, and that council tenants 
tend to migrate less for a variety of social and structural reasons.

The following variables are therefore included:

• number of owner occupied households migrating (whole household)
• number of owner occupied households migrating (partial household)
• number of social rented households migrating (whole household)
• number of social rented households migrating (partial household)
• number of private rented households migrating (whole household)
• number of private rented households migrating (partial household)

Migrating household tenure type data is derived from census interaction table 
MG205.

5.4.1.4 Commuting flows

Bidrent theory, as discussed in chapter 4, suggests that working households may 
locate based on a trade-off between commuting and land rent costs. Therefore, if 
it is feasible to commute between two places A and B, it is reasonable to expect 
that workers at A can chose to live either at A or B, provided land rents at A 
are not too high.

For this reason, the following variable is included:

• total number of commuters

This figure is derived from the census travel-to-work data.

5.4.1.5 Inter-ward distances

Finally, a key (perhaps definitive) component of a spatial analysis is the study of 
any links between spatial proximity and correlation! Therefore, a distance metric
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is included, not only because of it’s known connection to migration behaviour 
(Dennett & Stillwell 2008) but because it defines this study:

• inter-ward distance

Inter-ward distance is measured from ward centroids and derived from the 
UKBORDERS dataset. In the case of Local Authorities, an average distance 
between all pairs of wards across the pair of LAs is used.

5.4.2 Computation

The data set used in this regression is large: 78 million data points, for each of

• approx. 40 interaction variables, duplicated for absolute (direct count- 
ing)/relative (as a proportion of population) measures, and duplicated again 
for LA/ward measures =  160 variables

• approx. 50 reactive variables, each used three times as described in section 
5.3.1.3, duplicated for absolute/relative measures and duplicated again for 
LA/ward measures =  600 variables

to create a total of approximately 760 explanatory variables. In order to complete 
regression on the entire data set within a reasonable time frame, it was necessary 
to parallelise some of the steps described in chapter 4, notably

• calculation of the correlation matrix for principal component analysis, and

• producing scatter plots of all explanatory components vs the target.

The data expansion phase described in section 5.3.1.3, and the ward to Local 
Authority lookup and subsequent retrieval of LA-level variables was also paral­
lelised. Fortunately the mdp toolkit provides resources with which to parallelise 
data generation and PCA transformation. For the visualisation process, each 
plot is produced independently therefore parallelisation is relatively simple.

The regressions each took approximately 48 hours to run on a 16-core 3GHz 
Itanium machine. There is probably much scope for code optimisation which 
would reduce this runtime considerably (however for research purposes it is con­
sidered a better use of time to attend to other tasks while the machine continues 
computing!). The final version of the code also used 32Gb of memory. Such
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memory use is unnecessary as the data set can be processed from disk in a lin­
ear manner, however loading the output of the PCA dimension reduction into 
available memory allows a memory/runtime tradeoff to be made, reducing run 
times.

5.4.3 Regression results for cross-correlations

This section presents results for regression of cross-correlation data against census 
interaction and aggregate statistics. The time slice length is 200 days, with 
wmin =  0 and wmax = 2 time slices, therefore all correlated movements must 
occur within 400 days of each other in order to be detected.

5.4.3.1 Cross-correlation regression diagnostics

The regression of cross-correlation against census variables had a mean square 
residual of 0.88, indicating that the model does not fit the data well. However, it 
should be remembered that this regression is an attempt to explain market move­
ments, which in an efficient market should be entirely unpredictable. Therefore, 
the ability to explain even as much as 12% in the variation in correlation is a 
useful finding - even though few would argue that the UK property market is 
efficient! Furthermore, the mean square error (when regression was applied to 
the test set) was also 0.88, indicating that the findings of the regression do not 
lose any predictive power when applied to other data from the same time period; 
this fact helps to validate the meaningfulness of the derived parameters.

A histogram plot of residuals (figure 5.8) shows that they are normally dis­
tributed. A plot of residual against prediction (figure 5.9) shows no correlation 
for the majority of data points, but considerable evidence of heteroscedasticity 
for a subset of outlying data. The slope of the plot indicates that high correla­
tion predictions are too high, while low correlation predictions are too low: this 
may be explained by nonlinearity at the extreme ends of the data range, however 
without a fuller investigation it is impossible to be certain. The Moran I statistic 
is not computed for the residuals, as to do so for a data set of this size would 
require implementation of a more complex algorithm than that used in chapter 4; 
moreover, a visualisation of the residuals themselves (to be shown at the end of 
this chapter, in figure 5.20) shows that massive spatial autocorrelation is present
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Figure 5.8: Histogram plot of residuals from cross-correlation regression.

in any case, indicating that exploratory analysis has only begun to scratch the 
surface of what may be explainable in the data set. The similarity of this figure 
to the target variable of cross-correlation itself may be partially explainable by 
the nonlinearities shown in the plot of residual against prediction.

As visualisation is considered a crucial part of this research, scatterplots of 
all PC A components versus the target variable were created and checked for in­
teresting behaviour. The most correlated component is displayed in figure 5.10; 
the most significant variables represented by this component relate to absolute 
numbers of residents and dwellings, dwelling type and social class for the origin 
ward (with positive correlation) and destination wards (with negative correla­
tion). Thus, component describes a signed difference between the wards in terms 
of these variables.

5.4.3.2 Discussion of cross-correlation regression results

The results of the cross-correlation regression can be summarised (as with the 
house price regression of chapter 4) by an approximate description of the list of 
explanatory coefficients, ranked in order of magnitude. The coefficients them­
selves are shown in table 5.1. For the definition of FROM, TO and CHANGESQ 
variables see section 5.3.1.3.

• The first four coefficients relate to migration at ward level. Note, however, 
that the signs of these coefficients differ: it is not the total level of migration
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Prediction

Figure 5.9: Plot of residuals against corr_sum values predicted by regression. 
Frequency (z) axis shows natural logarithmic frequency count l n ( f  +  1).

2nd PCA component

Figure 5.10: Plot of cross-correlation against most correlated component for cross­
correlation regression. Frequency (z) axis shows natural logarithmic frequency 
count l n ( f  +  1).
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Variable Name Reg. Coeff 99% Conf
MG204-N01-TotalOthermovinggroups.log. wardindex.sor 0.0017 2.1e-05
MG204-N00-Total Whollymovinghouseholds.log. wardinde -0.0016 1.8e-05
MG204-A00-TotalWhollymovinghouseholds.log.wardinde -0.0014 1.6e-05
MG204-A01-TotalOthermovinggroups.log. wardindex.sor 0.0014 1.8e-05
TO-UV031-LA-N03-SmallEmployers.log -0.0012 1.3e-05
TO-UV055-LA-A02-Shared.log -0.0012 l.le-05
TO-UV035-LA-A03-10k20k.log -0.0012 l.le-05
TO-UV028-LA-A00-Employed.log -0.0011 l.le-05
TO-UV031-LA-A05-SemiRoutine.log -0.0011 l.le-05
TO-UV056-LA-N07-Inapurposebuiltblockofflats.log -0.0011 1.2e-05
TO-UV035-N04-20k30k -0.0011 l.le-05
TO-UV004-LA-A07-66to79.log -0.0011 le-05
FROM-UV056-N03-Detatched 0.0011 l.le-05
MG205-N05-Pri vateRentedOther.log. wardindex.sorted 0.0011 1.3e-05
TO-U V035-A03-10k20k. log -0.0011 le-05
TO-UV056-N03-Detatched -0.0011 le-05
FROM-UV031-LA-N03-SmallEmployers.log 0.0011 1.3e-05
FROM-UV035-N04-20k30k 0.0011 l.le-05
TO-UV035-LA-N08-WorkingOfFshore.log -0.0011 le-05
TO-UV035-LA-N03-10k20k.log -0.001 le-05
TO-UV053-N04-Vacanthouseholdspace -0.001 l.le-05
TO-UV056-LA-A03-Detatched.log -0.001 l.le-05
TO-UV035-LA-N00-Under2k.log -0.001 l.le-05
TO-UV056-N08-Partofaconvertedorsharedhouse -0.001 l.le-05
FROM-UV055-LA-A02-Shared.log 0.001 l.le-05
TO-UV031-L A-AO 1-LowerManagerialAndProfessional. log -0.001 l.le-05
TO-UV056-LA-AOO-ALLHOUSEHOLDS.log -0.001 l.le-05
FROM-UV035-LA-A03-10k20k.log 0.001 l.le-05
TO-UV056-A11-Inashareddwelling.log -0.001 1.2e-05
TO-UV 03 l-N04-LowerSupervisoryAndTechnical -0.001 le-05
TO-UV056-A06-Flatmaisonetteorapartment.log -0.001 l.le-05
TO-UV035-N05-Over30k -0.001 le-05
FROM-UV004-LA-A07-66to79.log 0.001 le-05
FROM-UV056-LA-N07-Inapurposebuiltblockofflats.log 0.00099 1.2e-05
FROM-UV056- A11-Inashareddwelling.log 0.00098 1.2e-05
MG204-N07-Lowermanagerialandprofessionaloccupation 0.00098 1.2e-05
FROM-UV035-LA-N03-10k20k.log 0.00098 le-05
FROM-UV053-N04-Vacanthouseholdspace 0.00098 l.le-05
FROM-UV031-LA-A05-SemiRoutine.log 0.00097 l.le-05
TO-UV004-LA-N01-Underl6.log -0.00097 9e-06
TO-UV004-A07-66to79.log -0.00096 le-05
FROM-UV028-LA-A00-Employed.log 0.00096 l.le-05
TO-UV031-LA-A04-LowerSupervisoryAndTechnical.log -0.00096 9e-06

Table 5.1: Most significant parameters (those with greatest magnitude) from the 
ward-level cross-correlation regression.
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which forms an indicator of housing market connectedness, so much as its 
type, both in absolute numbers and as a proportion of migrants. Wholly 
moving households tend to indicate less correlation between areas, while 
other moving groups indicate a more connected market. Coefficient mag­
nitudes range from 0.0017 to 0.0014; although these appear small, they are 
at least five times larger than the average coefficient magnitude from the 
regression, which is 0.00025. Also, the 99% confidence intervals are small 
in comparison to the coefficient magnitudes.

The presence of these variables appears to be due mainly to the 29th prin­
cipal component, which appears to distinguish primarily between wholly 
moving households and other moving groups, and is the 5th most impor­
tant component for determining market correlation. Private renting and 
lower managerial/professional occupations are also noted to correlate with 
the ‘other moving groups’ category, thus, further migration variables relat­
ing to these categories appear prominent in the results.

Local authority level migration does not appear until 91st place, with a 
coefficient magnitude of 0.00074. This hints that the usefulness of migration 
as an indicator of market linkage might be limited to local movements, as 
long-distance inter-ward migration is fairly sparse.

In 5th to 261st position, a large number of FROM- and TO- type variables 
appear, generated from census tables UV031 (social class), UV035 (travel 
to work distance), UV055 (dwelling occupancy), UV056 (dwelling type), 
UV004 (population age), UV053 (housing stock) and UV028 (economic 
activity). Coefficient magnitudes range from 0.0012 to 0.00017.

It can therefore be said that the individual wards’ characteristics have a 
large part to play in whether they drive, or are driven by, the market of 
other wards. The importance of FROM- and TO- type variables relative to 
CHANGESQ- type variables, suggests that for a significant proportion of 
pairs of differing wards A and B, it can be said that A affects B more than 
B affects A. This could be interpreted as a kind of ripple effect, though not 
necessarily in the form popularised in the literature. The question of which 
wards tend to more strongly drive others will be explored in more detail in 
chapter 6.
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It is noticeable that variables from both ward and LA level are present; also 
both absolute and relative measures are significant (that is, both direct 
head/dwelling counts, and relative fractions of population/housing stock 
by type). Little pattern is discernible as to which sub-types of variable the 
regression model has ‘chosen’ to represent the underlying statistics; however 
as an exception to this, it is noticeable that housing stock tends to have a 
greater effect at ward level, while short commuting distances have a greater 
effect at LA level - the latter possibly being indicative of urban centres.

• In 262nd place, the first CHANGESQ (square change) variable appears 
with a coefficient of 0.00018, suggesting that the unsigned square difference 
between area characteristics is not nearly so important as their signed differ­
ence in determining market correlation. That is to say, knowing that areas 
A and B differ in terms of a certain statistic is not of great use compared 
to knowing which one possesses the higher value of that statistic. Thus, 
differing housing submarkets defined by the characteristics of areas are not 
actually independent; instead, certain types of submarket appear to drive 
certain other types.

• In 390th place, the interaction variable relating to the absolute distance 
between wards appears (/? =  0.000095). Paradoxically, the insignificance of 
physical distance in determining ward level market correlation would be a 
significant finding! However, such a low coefficient may relate in part to the 
fact that migration interaction data is a better indicator of the proximity 
of areas than straight line distance, which fails particularly in cases where 
road network distance is much greater than a straight line, e.g. for towns 
situated on opposite sides of a river estuary. Still, it is shown that greater 
inter-ward distance tends to reduce market cross-correlation.

To reassure the reader that the “CHANGESQ-distance-to-London” variable 
is not being used as a proxy for inter-ward distance, it is noted that this 
variable is also assigned only a small parameter (-0.000059, in 487th place).

Overall however, this finding should be taken with the caveat that inter­
ward distance, being a single variable, accounts for only a small proportion 
of variability in the combined set of interaction data, and is therefore not 
strongly or independently represented in any of the 40 PCA components
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FROM Relative number of Smal Employers at LA lewi (log, normafcsed)

Figure 5.11: Plot of cross-correlation metric (Y) against a significantly correlated 
‘FROM’ variable (X) - difference between relative number of small employers at 
local authority level. Vertical lines appear due to grouping of 8850 wards into 
376 local authorities; meaning that the variable can only take one of 376 discrete 
values. Frequency (z) axis shows natural logarithmic frequency count l n( f  +  1).

used for regression.1 Thus, it may be the case that the limitations of PCA 
regression preclude meaningful discussion of coefficients with a magnitude 
so small as this.

As a key component of this research is visualisation, scatterplots of all input 
variables versus the target variable were produced. Figure 5.11 shows an example 
for a significant FROM variable, while figures 5.12 and 5.13 show the relationship 
of market correlation to total migration flow, and inter-ward distance respectively.

The latter two plots merit further discussion. It should firstly be noted that 
both variables show a clear correlation with property market connectedness. How­
ever, the low coefficients assigned to them by the regression engine imply that 
this correlation is better explained by characteristics of individual areas, and by 
the type of migration flow, than by total migration flows or inter-ward distances.

Secondly it should be noted that the migration versus market correlation plot 
of figure 5.12 displays a ‘tail5 of points about which more information is known: 
if total migration flows exceed 100 people, then it is almost certain that the 
areas concerned exhibit above average correlation. Such a relationship could be 
further analysed through the data mining techniques discussed in chapter 4, using

xOut of the 40 regression components used, distance appears most strongly in number 22, 
which relates mainly to social class and dwelling type.
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Figure 5.12: Plot of cross-correlation metric (Y) against total migration flow (X). 
Vertical lines appear due to the discrete nature of migration flows, with a gap 
where 0 < log(migration) < 0.5, i.e. for migration values of 1 or 2, caused by 
small value adjustment carried out by the census office to preserve anonymity. 
Frequency (z) axis shows natural logarithmic frequency counts l n ( f  +  1).

Inter-ward distance (km)

Figure 5.13: Plot of cross-correlation metric (Y) against inter-ward distance in 
metres (X). Frequency (z) axis shows natural logarithmic frequency counts l n ( f +  
! ) •
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Figure 5.14: Map of ‘tail’ interactions from figure 5.12: highly correlated wards 
linked by strong migration flows. Note that not all wards shown on this map are 
correlated with one another - they are most likely each correlated only with their 
close neighbours.
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a support/confidence/lift framework. However, this finding is not considered to 
be particularly meaningful for two reasons:

1. all that has been identified in the migration plot ‘tail’ is a small subset 
of highly linked areas. To illustrate, the areas represented by the tail of 
figure 5.12 are plotted on a map in figure 5.14. The map simply identifies 
a certain quantity of urban areas, within each of which the housing market 
is tightly integrated.

2. in any case, as mentioned above, characteristics of origins and destinations 
and the type of migration flow, explain market correlation far better than 
total migration flows.

Several of the scatter plots of components against the target variable exhibit 
similar ‘tails’ - figure 5.10, for example, exhibits two such features. These could, 
in future, be further explored through data mining; such work certainly has the 
potential to produce more accurate regression models.

5.4.4 Regression results for log price ratios

This section presents the results for the regression of log price ratios against 
census statistics. While this is a somewhat redundant study - as a price ratio 
is determined from two individual prices, and the variance of these has already 
been well explained in chapter 4 - the analysis is still of value, firstly because by 
producing sensible results relating to better understood systems, the properties of 
the regression engine can be further studied and validated; and secondly because 
it allows a study to be made of the links between interaction data (specifically, 
migration) and house price difference.

5.4.4.1 Log price ratio regression diagnostics

The mean square residual in the log price ratio regression is 0.25, indicating a 
much better goodness-of-fit than for market cross-correlation data. The mean 
square error against a test data set is likewise 0.25, confirming the applicability 
of the derived parameters to other data recorded during the same area and time 
period.
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A histogram plot of residuals is not shown as it appears very similar to figure 
5.8, exhibiting a normal distribution. Figure 5.15 gives a plot of residuals against 
predicted target value for each regression point, which shows a number of features 
of interest:

• The majority of the data points show a very slight positive correlation 
between residual and prediction, indicating small nonlinearities in the data 
unaccounted for by the model - high predictions turn out to be not quite 
as high as the actual target value, while low predictions turn out not to be 
quite as low as the actual target.

•  A backward diagonal line is clearly visible spanning the entire plot. This 
is caused by the price ratio being defined as zero if either the origin or 
destination exhibits no transactions from which to measure the price. In the 
case where target = 0, then residual =  tar get — prediction =  —prediction. 
Arguably for these points, the prediction provides better valuation than the 
data itself, which contains no transactions.

• Overall, the plot is approximately symmetrical, which is reassuring as price 
ratios should appear in matched pairs a/6 and 6/a.

As visualisation is considered a crucial part of this research, scatterplots of 
all PCA components versus the target variable were created and checked for 
interesting behaviour. The most correlated component is displayed in figure 5.16; 
the most significant variables in this component relate to differences in social class, 
age, commute distance and dwelling type.

5.4.4.2 Discussion of log price ratio regression results

Results for the log price ratio regression are shown in table 5.2.
No single category of variable appears to be more important than any other 

in the log price ratio regression. For the most important 40 variables, coeffi­
cient magnitudes range from 0.003 to 0.001, as compared to a mean coefficient 
magnitude of 0.0004.

It is notable that FROM and TO variables appear in matched pairs, e.g. the 
FROM and TO coefficients for the same variable will tend to have opposing signs. 
This is to be expected as any statistic which increases the origin-destination ratio
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Figure 5.15: Plot of residuals against log price ratios predicted by regression. 
Frequency (z) axis shows natural logarithmic frequency count ln( f  +  1).
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Figure 5.16: Plot of most correlated component for log price ratio regression. 
Frequency (z) axis shows natural logarithmic frequency count ln( f  +  1).
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Variable Name Reg. Coeff 99% Conf
FROM-UV031-N06-Routine -0.0032 4e-06
TO-UV031-N06-Routine 0.003 4e-06
FROM-UV031-LA-A01-LowerManagerialAndProfessional.l -0.0027 4e-06
TO-UV031-LA-A01-LowerManagerialAndProfessional.log 0.0026 3e-06
MG204-N00-Total Whollymovinghouseholds.log. wardinde -0.0026 9e-06
MG204-A00-TotalWhollymovinghouseholds.log.wardinde -0.0026 le-05
TO-UV056-N04-Semidetatched -0.0024 6e-06
FROM-UV004-A06-56to65.log 0.0024 4e-06
FROM-UV056-N04-Semidetatched 0.0023 6e-06
TO-UV004-A06-56to65.log -0.0022 4e-06
FROM-UV031-LA-N00-HigherManagerialAndProfessional. 0.0022 5e-06
TO-UV031-LA-N00-HigherManagerialAndProfessional.lo -0.0021 5e-06
FROM-UV056-A09-Inacommercialbuilding.log 0.002 4e-06
FROM-distance to London.log -0.002 5e-06
TO-UV056-A09-Inacommercialbuilding.log -0.002 4e-06
TO-distance to London.log 0.0019 5e-06
FROM-UV035-LA-N01-2k5k.log 0.0018 5e-06
MG205-AOO-OwnerOccupiedWholeHousehold.log. wardinde -0.0018 7e-06
TO-UV035-LA-N01-2k5k.log -0.0018 5e-06
MG204-A06-Lowermanagerialandprofessionaloccupation -0.0017 6e-06
TO-UV004-LA-A01-Underl6.log -0.0017 5e-06
FROM-UV004-LA-A01-Underl6.log 0.0016 5e-06
FROM-UV056-L A-N 10-Caravanorothermobileortemporarys 0.0016 3e-06
TO-UV056-LA-N10-Caravanorothermobileortemporarystr -0.0016 3e-06
FROM-UV035-LA-N06-NoFixedPlaceOfWork.log -0.0016 6e-06
FROM-UV056-A10-Caravanorothermobileortemporarystru -0.0016 4e-06
FROM-UV035-LA-A03- 10k20k.log -0.0016 6e-06
TO-UV056-A10-Caravanorothermobileortemporarystruct 0.0016 4e-06
MG205-A04-PrivateRentedWholeHousehold.log. wardinde -0.0016 7e-06
MG205-N00-Owner OccupiedWholeHousehold. log. wardinde -0.0015 5e-06
TO-UV035-LA-N06-NoFixedPlaceOfWork.log 0.0015 6e-06
MG204-N06-Lowermanagerialandprofessionaloccupation -0.0015 5e-06
FROM-UV004-LA-A03-26to35.log 0.0015 4e-06
FROM-UV031-N03-SmallEmployers 0.0015 4e-06
TO-UV004-LA-A03-26to35.log -0.0014 4e-06
TO-UV031-N04-LowerSupervisoryAndTechnical -0.0014 6e-06
TO-UV004-A05-46to55.log -0.0014 3e-06
FROM-UV004-A05-46to55.log 0.0014 3e-06
MG205-N04-PrivateRentedWholeHousehold.log.wardinde -0.0013 5e-06
TO-UV035-LA-A03-10k20k.log 0.0013 6e-06
T O-U V 031-N 03-SmallEmployers -0.0013 4e-06
MG201-A01-Underl6.log. wardindex.sorted -0.0013 7e-06
MG201-A04-35to44.1og.wardindex.sorted -0.0013 7e-06

Table 5.2: Most significant parameters (those with greatest magnitude) from the 
log price ratio regression.
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Figure 5.17: Plot of derived coefficients for FROM- and TO- pairs of variables in 
the log price ratio regression.

will also decrease the destination-origin ratio. Figure 5.17 illustrates this corre­
lation by plotting FROM- coefficients against their TO- counterparts. By the 
same reasoning, CHANGESQ coefficients should theoretically always equal zero, 
otherwise their effect will be to increase the accuracy of one origin-destination 
prediction at the expense of decreasing the accuracy of another. The largest value 
assigned to any such coefficient is 0.00017, which is 18 times smaller than the max­
imum coefficient, but still half the size of the average coefficient magnitude. This 
finding has implications for the accuracy of the market cross-correlation regres­
sion: showing that parameters derived from the 760-variable regression engine, 
while generally indicative of the underlying trends, may still be susceptible to 
some small degree of error. However, the clear linear plot of figure 5.17 helps 
to validate the assumption that the regression engine is performing the task ex­
pected of it.

Migration variables are also important, with coefficients up to 0.002. In gen­
eral - as was the case with the cross-correlation regression - ward level migration 
variables are assigned larger coefficients than local authority level migration vari­
ables; possibly because they provide valuable information on lifecycle-type moves 
within a region, which can be used to deduce the structure of the local housing 
market.
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5.4.4.3 Analysis of the relation of migration to price differences via 
simple correlation

While the study of regression coefficients allows for estim ation of price differ­
entials, as noted in section 5.4.4, this is a  redundant prediction useful only for 
validation of the regression engine itself. In terms of general interest, the question 
of which variables best predict price differential between two areas is a slightly 
odd question to  ask, when it is already well known which variables determine 
price for each area individually. It is more interesting, therefore, to  study the 
link between price differential and migration not in terms of regression coeffi­
cients but in term s of simple correlation. These statistics are displayed in table 
5.3. To pick out a few salient features of the data;

•  the top upm arket movers are owner-occupied whole households and all 
wholly moving households, while the top downmarket movers are the ‘other 
moving groups’ (partial households) in the private rental market, higher 
professional and lower managerial/professional occupations.

•  all age bands tend to  move upmarket except for 16-25, 26-34 and 35-44 year 
olds, and those over the age of 75.

•  commuting usually takes place from a lower- to higher-value area.

Note th a t as this calculation is performed on a per-interaction basis, not a 
per-person or per-household basis. Thus the figures do not necessarily reflect the 
relative likelihood of each individual from that category to  move up or downmar­

ket, instead they represent the tendency of up- and downmarket price differentials 
to be coincident w ith moving groups of the types listed. Also, as the da ta  does 
not represent the value of individual houses but is captured a t ward level, inter­
pretation in term s of people moving up/downmarket is likely to  be inaccurate in 
wards with diverse housing types, i.e., particularly in rural areas.

5.5 Visualisation

While scatterplot visualisation of principal components versus the target variable, 
and each input variable versus the target variable is undertaken in sections 5.4.3 
and 5.4.4, to  date the new data  generated in this chapter - the  cross-correlation
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Variable Name Coeff
MGcommute.log -0.0072
MG205-AOO-OwnerOccupiedWholeHousehold.log -0.0032
MG205-A05-PrivateRentedOther.log 0.0028
MG204-A00-TotalWhollymovinghouseholds.log -0.0026
MG204-A05-HigherprofessionaloccupationsOthermovinggroups.log 0.0026
MG204-A07-LowermanagerialandprofessionaloccupationsOthermovi 0.0022
MG204-A21-FulltimestudentOthermovinggroups.log -0.0021
MG204-A20-FulltimestudentWhollymovinghouseholds.log -0.0018
MG204-A01-TotalOthermovinggroups.log 0.0015
MG201-A05-45to59.log -0.0014
MG204-A22-NotclassifiableforotherreasonsWhollymovinghousehol -0.0012
MG201-A06-60to64.log -0.0012
MG204-A14-SemiroutineoccupationsWhollymovinghouseholds.log -0.0012
MG204-A09-IntermediateoccupationsOthermovinggroups.log 0.0012
MG204-A06-LowermanagerialandprofessionaloccupationsWhollymov -0.0011
MG204-A08-IntermediateoccupationsWhollymovinghouseholds.log -0.0011
MG204-A03-LargeemployersandhighermanagerialoccupationsOtherm 0.0011
MG201-A07-65to74.log -0.00091
MG204-A16-RoutineoccupationsWhollymovinghouseholds.log -0.00087
MG201-A00-AllPeople.log -0.00085
MG205-A03-SocialRentedOther.log -0.00067
MG205-A02-SocialRentedWholeHousehold.log -0.00066
MG204-A18-NeverworkedandlongtermunemployedWhollymovinghouseh -0.00065
MG204-A12-LowersupervisoryandtechnicaloccupationsWhollymovin -0.00046
MG201-A01-Underl6.log -0.00043
MG204-A10-SmallemployersandownaccountworkersWhollymovinghous -0.00038
MG204-A13-LowersupervisoryandtechnicaloccupationsOthermoving -0.00034
MG204-A02-Largeemployersandhighermanagerialoccupations Wholly 0.00034
MG205-A01-OwnerOccupiedOther.log -0.00034
MG204-A19-NeverworkedandlongtermunemployedOthermovinggroups. -0.00033
MG201-A02- 16to24. log 0.00033
MG204-A17-Routineoccupat ionsOthermovinggroups. log -0.0003
MG204- A11-SmallemployersandownaccountworkersOthermovinggroup -0.00024
MG201-A08-75toll0.log 0.00022
MG201-A03-25to34.log 0.0002
MG201-A04-35to44.log -0.00013
MG204-A23-NotclassifiableforotherreasonsOthermovinggroups.lo -0.00011
MG204-A15-SemiroutineoccupationsOthermovinggroups.log -8.9e-05
MG205-A04-PrivateRentedWholeHousehold.log -7.4e-05
MG204-A04-HigherprofessionaloccupationsWhollymovinghousehold -8e-06

Table 5.3: Correlation coefficients for ward level interaction variables versus log 
price ratio. Negative values indicate a  move upmarket.
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matrix between all pairs of wards - has not been visualised. Such visualisation 
can now be performed using the techniques developed in chapter 3, and is shown 
in figures 5.18 and 5.19. Regression residuals are also visualised in figure 5.20, 
though these are not discussed further at this stage - the possibility of extended 
analysis of residuals is dealt with in chapter 7.

Examination of figures 5.18 and 5.19 shows that wards and Local Authori­
ties both exhibit strong inter-correlation. However, while LAs overall tend to be 
strongly positively or negatively correlated (relative to the average correlation 
level), the correlation properties of individual wards within them are not deter­
mined by the correlation of the LA alone. In other words, an LA with positive 
correlation to an external location X may still contain some wards with strong 
negative correlation to X. This points to the need, in future studies of correla­
tion, for true multi-level modelling whereby the variance of the target variable 
(correlation) is split into broader and finer spatial levels which axe then treated 
separately. There is even a remote possibility that correlation matrices exhibit 
fractal behaviour, down to the physical limit of an individual property. If this is 
the case, it may be worth computing their fractal dimension - although exactly 
what such a computation would reveal about the system overall would be difficult 
to answer unless a variety of different markets were studied.

Two features of the cross-correlation plots are particularly noticeable.

• the existence of large red and blue blocks - more visible in the LA level plot 
(fig. 5.19) but also visible for wards (fig. 5.18) - indicate that large spatially 
contiguous regions have above average intra-region time series correlation. 
Meanwhile, the inter-region correlation appears to be below average.

• the prevalence of horizontal and vertical lines. This agrees with the finding 
of section 5.4.3.2 that characteristics of origins and destinations, taken in 
isolation, are important in determining patterns of cross-correlation.

The existence of these two features points toward the potential usefulness 
of two simpler techniques which can be used to disentangle the complexity of 
property market interactions. In the former case, the presence of large, spatially 
contiguous regions exhibiting similar market behaviour could be uncovered by a 
cluster analysis. In the latter case, the presence of horizontal and vertical lines 
suggest that it is worth studying what causes a ward to drive the rest of the
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S o u th w e s t N orth  East Anglia L ondon S o u th  M idlands

Detail

Figure 5.18: Pixel matrix plot of ward cross-correlations, 200 day time slice, 
wm in  =  wmax =  0. Axis ordering is hierarchical non-optimal - for further 
explanation of the display technique, see chapter 3. Red indicates above average 
correlation; blue indicates below average correlation.



5.5. VISUALISATION 167

South W est | London/South E ast I North

Figure 5.19: Pixel matrix plot of local authority cross-correlations. Axis order is 
optimal. Red indicates above average correlation; blue indicates below average 
correlation.

Figure 5.20: Pixel matrix plot of cross-correlation regression residuals, zoomed 
out to small scale using nearest neighbour interpolation. Axis ordering is hi­
erarchical non-optimal. Red indicates positive residual, blue indicates negative. 
Massive spatial autocorrelation is visible, demonstrating that the model presented 
has only scratched the surface of what is explainable in this data. Note the sim­
ilarity of the pattern of residuals to the cross-correlation itself shown in figure 
5.18.
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m arket (indicated by a strong red vertical line) or be driven by it (indicated by 
a strong red horizontal line).

Such analyses will therefore be conducted in the remaining chapter of this 
thesis.

5.6 Conclusion

5.6.1 Summary of key findings

The key findings of this chapter can be summarised as follows.

•  analysis of the cross-correlation between each pair of wards is a valuable, if 
computationally expensive way to study fine grained spatial movements in 

the housing property market. Derived cross-correlation d a ta  can go some 
way toward reconstructing the original m arket tim e series, thereby validat­

ing its meaning.

•  property market cross-correlation appears to  be a multi-level phenomenon, 
therefore further analysis of it should be conducted using multilevel mod­
elling

•  it is hard to  deduce what constitutes a good indicator of cross-correlation, 
as only 12% of the variance in correlation has been explained by this study. 
However, inasmuch as it is possible to make predictions:

-  a t ward level, the composition, ra ther than  to ta l size, of migration 
flows has a significant effect

-  the characteristics of each area are also im portant - social class, travel 
to  work distance, dwelling occupancy, dwelling type, population age, 
housing stock and economic activity

-  the to tal size of migration and commuting flows, along with physical 
distances, are relatively unim portant in determ ining m arket linkage.

The importance of origin and destination characteristics is concomitant 
with the explanation for the UK ripple effect presented in Meen (2001), 
namely th a t the seeming propagation of prices from one region to  another is
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in fact caused by locally differing responses to external economic conditions 
rather than direct interaction effects. This is also reflected in the conclusions 
of Giussani & Hadjimatheou (1991) in the UK, and mirrored by Shi et al. 
(2009) in New Zealand.

The importance of the composition of migration flows, on the other hand, 
would appear to contradict the above studies. However it should be noted 
that the current analysis is conducted on a finer spatial scale than any 
of the cited literature, therefore different effects may be expected to ap­
ply. In Cameron et al. (2005), a correlation between migration and price 
propagation is noted, although only on a very broad spatial scale.

• alternatively, it is possible to explain cross-correlation by simpler methods, 
either

— as an effect of the existence of separate clusters of areas, which axe 
internally more correlated but externally less correlated;

-  as an effect of the existence of certain areas which drive the market, 
and other areas which are more susceptible to their influence.

The final analysis chapter of this thesis will address alternative explanations 
of cross-correlation, through both clustering and a driving/driven wards analysis.

5.6.2 Limitations

One crucial limitation of the study is the time period over which data was avail­
able. As all findings relate to the years 2000-2006, they should be interpreted 
as a reflection of the state of the market during those years as opposed to some 
kind of universal invariant. The years studied represent the latter phase of an 
upswing of the market - thus, a logical extension of the analysis would be to study 
all phases of the property market cycle as and when appropriate data becomes 
available. It would also be worthwhile to study data spanning several cycles.

A second limitation relates to the use of PCA to reduce the explanatory 
variables to 40 dimensions. This is the same number chosen for the purely reactive 
regression modelling of chapter 4 - despite the increased complexity of interaction 
data; the reason for this relates to compute time and software limitations. In an 
ideal situation, it would be possible to perform the computation for every possible
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num ber of dimensions between 1 and the number of explanatory variables (760); 

thereby precisely determining the  point at which collinearity and overfitting occur 
in the model and thus preventing it w ithout any loss of accuracy. W ithout such a 
process, it is impossible to  verify a  crucial assumption of PCA based regression: 

th a t a low-variance component currently excluded from analysis, does not display 

significant correlation with the target variable. Checking this assumption may 
be possible in future with increased compute times and better-optim ised code.

5.6.3 Novelty

The work presented in this chapter constitutes the first combined study of house 
price data, census aggregate statistics and census interaction d a ta  a t a fine spatial 
and tem poral level (UK census wards w ith 200-day tim e slices).

It is also the first interaction study with explanatory power, in the sense of 
offering parameters which begin to  predict interactions between wards.

The reconstruction of tim e series based on cross-correlation alone is believed 

to  be novel. While of limited use in isolation - other than  to  validate the use of 
cross-correlation as a metric for further study - such reconstruction techniques 
may be of use as an incremental improvement to  existing predictive regional price 

models.



Chapter 6

A lternative analyses of housing 
market interactions

6.1 Introduction

If this thesis is to  be seen as a first ascent of a mountain of data, then the summit 
was reached in chapter 5. A significant quantity of computing power was used to 
perform a regression analysis which revealed some trends in the data. However, 
the summit was not reached in the dark, nor in a white-out: visualisations of the 
data  were also produced. The pictures generated reveal two alternative routes 

up the m ountain, bo th  steeped in assumptions not present in the original ascent, 
but justified on the  grounds th a t we now know th a t they also lead to the summit. 
It is also noted th a t the alternative routes require far less computing power.

These alternative routes - th a t is, hypotheses which can be tested by alterna­
tive analyses - are as follows:

•  large, spatially contiguous blocks of wards exhibit similar price time series 
behaviour, therefore it is reasonable to  model the system as being composed 
from a small number of ‘clusters’

•  certain wards display a consistent tendency to  drive the market or be driven 
by it, therefore it is reasonable to  model the system in term s of these wards.

This chapter therefore focuses firstly on identifying the clusters, driving and 
driven wards in the market, and secondly returning to  regression to  identify what,

171
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over the six year period, causes a ward to belong to a particular cluster, to drive 
the market or be driven by it. Section 6.2 deals with the clustering analysis, 
while section 6.3 deals with driving/driven analysis. Section 6.4 concludes.

6.2 Cluster analysis of house prices

Like many of the techniques in this thesis, cluster analysis of data has been taking 
place for a long time. As even the simplest artificial neural networks are capable 
of performing clustering (Kohonen 1982), it is arguable that the process has been 
taking place since organisms with neurons first evolved during the Cambrian 
explosion (for which it would be appropriate to cite Earth’s Oceans, 500 million 
years ago). Modern recognition of the technique, however, dates back to the 
1950s (Steinhaus 1957), leading to the development of the now widely-used k- 
means algorithm (MacQueen 1967). This algorithm, given a number of data 
points and a distance metric between them, divides the data into a pre-specified 
number of clusters as follows:

1. create n new centroid points at random (these centroids will eventually 
represent the centres of the n clusters)

2. repeat the following steps:

(a) assign each data point to the cluster represented by the closest centroid

(b) update the position of each centroid to be the mean of the points in 
its cluster

(c) compute distortion (the mean square distance of each data point from 
the centroid of its assigned cluster - which should reduce at each step),

until no further reduction in distortion (greater than a certain iterative 
threshold) takes place.

K-means clustering has been used in numerous financial studies; however for 
two applications in spatial property markets see Goetzmann & Wachter (1995), 
which classifies the economies of US cities based on rental prices and vacancies, 
and Bourassa et al. (1999) which uses k-means clustering as part of a complex 
process for identifying housing submarkets in Melbourne.
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A full, fine-grained cluster analysis of the UK housing market could doubtless 
constitute a whole thesis in its own right. Instead, then, a terse analysis is 
presented here: firstly to explore the hypothesis generated in chapter 5 that large 
spatially contiguous blocks of wards exist with similar market behaviour, and 
secondly to provide a brief alternative exploration of the data.

6.2.1 M ethodology

6.2.1.1 D ata

Clustering is undertaken on two alternative sets of time series data, thereby 
grouping together wards whose time series display similar behaviour. The data 
sets are:

1. relative ward price indices, as defined in chapter 2 - whereby an index is 
generated for each ward which starts at 1.0 in the year 2000

2. relative ward price indices, converted to a log series, normalised so that the 
maximum of each index is 1, and then re-converted to linear series. Hence 
each series starts with 1.0 and never exceeds 2.72 (e).

The second data set is included because clustering data set (1), as will be 
seen, divides wards mainly according to total growth over the years 2000-2006 - 
essentially the height of the time series graph. Removing this information allows 
for further division according to the shape of that graph.

6.2.1.2 Algorithm

Clustering is implemented using python’s built-in k-means routines defined in the 
numpy library. A list of algorithm parameters is given in table 6.1. Clustering 
solutions are evaluated in terms of distortion, which in the case of UK wards is 
defined as

t= T

distortion =  ^  ^\(centroid^ard — data™ard)2 (6.1)
ward€wards t = 0

where T  is the time series length, dataward is the time series for each ward and 
centroidward is the time series of the assigned centroid of the cluster for the same
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number of clusters tried n =  1 — 30
cluster solution chosen for each n best of 20 runs
iterative threshold for each run 10~5
length of time series 12 slices
time slice length 200 days

Table 6.1: Parameters for the k-means clustering algorithm. The iterative thresh­
old is the criterion by which computation of a single clustering run is considered 
complete, if altering cluster centroids does not decrease distortion by more than 
this threshold. Each solution is derived by choosing the best results from 20 runs.

number of clusters

Figure 6.1: Plot of distortion against number of clusters for analysis of normalised 
time series.

ward. In other words, distortion is the mean square error caused by assuming 
that each ward behaves exactly like all other wards in the same cluster. In the 
case of a single cluster system, this single cluster will be the system-wide mean, 
and distortion therefore becomes the variance.

6.2.1.3 Choosing the number of clusters

Choosing the number of clusters is a similar process to that of choosing the output 
dimensionality of principal component analysis (as discussed in section 4.2.3.3). 
The criteria for choice are slightly different however: with PCA, the aim is to 
eliminate collinearity and maximise explanatory power of the regression, which 
led to a choice of 40 dimensions, however with clustering the requirement is to 
make a good trade-off between distortion and comprehensibility of results. In 
each case a graph of distortion versus number of clusters is plotted, and in all 
cases it will be seen that even modelling the system by as few as two clusters
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Figure 6.2: 4-cluster map of relative time series. The four colours represent 
time series as shown in the graph beneath. Saturation level represents residuals, 
the median residual being 0.44. Thus, bold colours indicate locations where the 
model fits well, and paler colours indicate a looser fit.
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Figure 6.3: Plot of distortion against number of clusters for analysis of normalised 
time series shapes.

leads to a significant reduction in distortion as compared to one cluster (the 
system-wide mean).

In addition to the analysis of distortion, the output was visually inspected 
over a range of different cluster counts - as many as 12 in some cases - and the 
most easily comprehensible results were selected by hand for presentation. These 
tend to be cluster sets where the majority of clusters form a continuum between, 
say, early market growth and late market growth, or between large price increases 
and small price increases; while a small number of clusters represent exceptions 
to the continuum.

6.2.2 Results

6.2.2.1 Relative ward price tim e series clustering

Figure 6.1 shows the relationship between distortion and number of clusters for 
the initial clustering of normalised ward price time series, and figure 6.2 shows 
a map of a four-cluster system derived by this method, together with a time 
series plot of the four clusters. It can be seen that the cluster time series are 
almost identical in shape, differing only in height: in other words, this method 
has divided wards on how much growth took place during the years 2000-2006. 
A clear spatial pattern is visible, with the core (London and the central South) 
tending to exhibit the least growth while the periphery (Wales and the North) 
exhibits the most. The residuals are greater for some rural areas, as illustrated 
by paler colours.
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Figure 6.4: 2-cluster map of relative time series shape, i.e, time series are nor­
malised to have identical minima and maxima. The two colours represent time 
series as shown in the graph beneath. Saturation level represents residuals, the 
mean residual being 0.56. Thus, bold colours indicate locations where the model 
fits well, and paler colours indicate a looser fit.



178 CHAPTER 6. ALTERNATIVE ANALYSES

—  Cluster 1 (early growth)

—  Cluster 2 (...)

— Cluster 3 (...)

Cluster 4 (late growth)

—  Cluster 5 (with pause in growth)

—  Cluster 6 (early peak and decline)

1 2 3 4 5 6 7 8 9 10 11 12
tim* slic*

Figure 6.5: 6-cluster map of relative time series shape, i.e, time series are nor­
malised to have identical minima and maxima. The six colours represent time 
series as shown in the graph beneath. Saturation level represents residuals, the 
mean residual being 0.49. Thus, bold colours indicate locations where the model 
fits well, and paler colours indicate a looser fit.

0.5

2 5

2

1.5

1



6.2. CLUSTER ANALYSIS OF HOUSE PRICES 179

For a numerical analysis of this result, the reader should refer back to table 
4.5 in chapter 4, in which overall growth from 2000-2006 was analysed. As may be 
suspected from examination of the map, spatial co-ordinates (namely the distance 
to London) turn out to have a large amount of explanatory power with respect to 
price growth. However, regional prices from the year 2001 are equally important 
in this respect, and a number of variables relating to socio-demographics of the 
population follow shortly after. The question of which class of variable consti­
tutes the underlying cause - spatial or sociodemographic - is left to an economic 
geographer. A data driven study can only demonstrate explanatory power, not 
causality.

6.2.2.2 Tim e series shape clustering with two clusters

As initial clustering of time series divided them only on overall growth or height, 
and the factors affecting this were already explained in chapter 4, a second clus­
tering analysis was undertaken with height information removed, allowing for 
division of time series on their shape.

Figure 6.3 shows the relationship between distortion and number of clusters 
for normalised ward price time series shapes. The simplest fruitful analysis is of 
a 2-cluster system, and is shown in figure 6.4. The distinction between wards 
revealed by the algorithm is in the timing of growth: in general it appears that 
southern and urban areas had a tendency to grow earlier than rural and north­
ern/Welsh areas. Northern/Welsh urban and southern rural areas are divided in 
their characteristics, and as before, rural areas tend to exhibit greater residuals
i.e. they do not fit the cluster pattern so well. Overall, the pattern is consistent 
with the hypothesis that the years 2000-2006 represented the tail end of a ripple 
growth phase, whereby most of the growth in the core had already taken place 
while the periphery had yet to follow suit.

Table 6.2 shows the results of a regression on cluster membership. The regres­
sion target is a dummy variable set to 1 for those places which increased in value 
earlier (the yellow cluster in fig. 6.4) or 0 for those which increased later (the red 
cluster). As can be seen from the map and regression, locations near to London 
had a tendency to lead the market, although this is better explained by many 
of the following characteristics: class (areas inhabited by people with intermedi­
ate occupations tending to exhibit earlier growth, while areas with high unem­
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ployment were later); age (the 36-45 age band indicating a later growth); hous­
ing characteristics (detached and shared housing areas exhibiting earlier growth, 
while terraced and semi-detached areas follow) and housing turnover (more trans­
actions implied earlier growth). While both ward- and LA-level characteristics 
are important, it seems that relative characteristics are slightly more strongly 
represented than absolutes, indicating that the composition of an area may be of 
slightly greater importance than its population count. It should not be forgotten, 
though, that population density itself is a key factor. Predictions made by the 
regression were good, with a 75% accuracy rate.1

6.2.2.3 Time series shape clustering with six clusters

For systems with 3-5 clusters, similar behaviour to the two-cluster analysis is dis­
played: the derived clusters divide wards on the differing timing of their growth. 
A 6-cluster analysis is the simplest result which exhibits qualitatively different 
behaviour, and is therefore presented in figure 6.5. Clusters 1-4 (shaded with 
colours red through yellow) provide the same timing information as the 2-cluster 
analysis, albeit with finer resolution. Cluster 5 (shown in green) exhibits initial 
growth matching cluster 2, but which later hits a plateau before growing again. 
Most interesting however is cluster 6 (shown in light blue) which reaches an early 
peak in 2005 and actually begins a decline.

It should be noted that most areas classified as belonging to cluster 6 exhibit 
large residuals, i.e. the fit is only approximate. The results of a regression on 
the membership of cluster 6 is provided in table 6.3. The regression target is a 
dummy variable set to 1 for areas within cluster six, or 0 otherwise. Examination 
of the (relatively few) positive coefficients in this regression suggests that such 
areas are rural, high priced and occupied by higher managerial professions with 
high income. Predictive power of this regression was poor, however, with a mean 
square error on the dummy variable of 82%.

6.2.3 Discussion

Overall, and perhaps unsurprisingly given its long history of use in such problems, 
clustering of time series has proven to provide a useful perspective on house price

1To avoid misrepresenting Bayesian statistics: False negatives rate is 9%, the false positive 
rate 16%, and actual membership of 1st cluster 62%.
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Variable Name Mean Std. Dev Reg. Coeff 99% Conf
UV031-N02-Intermediate 0.038 0.01 0.11 0.025
UV004-N04-36to45 0.031 0.0039 -0.07 0.017
UV056-A03-Detatched.log 2.6 0.37 0.061 0.016
U V035-L A-N 06-NoFixedPlace 0.019 0.0043 0.061 0.016
UV004-LA-N04-36to45.log 0.031 0.002 -0.059 0.015
UV031-LA-N02-Intermediate 0.038 0.0066 0.056 0.019
U V053-L A-N 04-Vacanthouseh 0.0067 0.0022 -0.054 0.024
ward numtransactions 7.4e+02 5.6e+02 0.05 0.018
U V002-AOO-PopulationDensi 1 0.58 0.049 0.014
UV004-N02-16to25 0.024 0.0096 0.047 0.021
U V056-L A-N 03-Detatched. lo 0.03 0.013 0.047 0.014
U V028-N01-U nemployed 0.013 0.0065 -0.046 0.013
UV053-N04-Vacanthousehold 0.0067 0.0042 -0.046 0.024
U V053-N 03-Secondresidence 0.0022 0.0056 0.045 0.022
UV031-N04-LowerSupervisor 0.031 0.0088 0.044 0.017
UV056-N03-Detatched 0.032 0.022 0.044 0.013
UV004-N05-46to55 0.03 0.0052 -0.043 0.024
UV056-LA-A03-Detatched.lo 4.1 0.28 0.042 0.013
UV031-A02-Intermediate.lo 2.5 0.36 0.04 0.008
U V 031-L A-N 00-HigherManage 0.035 0.013 -0.038 0.011
UV031-N00-HigherManageria 0.036 0.019 -0.037 0.014
UV004-LA-N05-46to55.log 0.029 0.0026 -0.036 0.014
UV053-L A-A04-Vacanthouseh 3.2 0.27 -0.035 0.012
U V056-L A-A11-Inashareddwe 1.9 0.58 0.035 0.016
U V031-N06-Routine 0.038 0.016 -0.035 0.011
UV053-A04r-Vacanthousehold 1.8 0.37 -0.034 0.014
UV004-N08-Over79 0.0096 0.0042 0.034 0.019
UV031-LA-N05-SemiRoutine. 0.048 0.0074 0.033 0.012
U V056-L A-N 05-Terracedincl 0.025 0.0095 -0.032 0.018
UV056-LA-N04-Semidetatche 0.033 0.0081 -0.032 0.024
U V031-L A-N04-LowerSupervi 0.031 0.0055 0.032 0.016
UV056-N04-Semidetatched 0.033 0.014 -0.031 0.024
UV002-LA-A00-PopulationDe 2.5 0.35 0.031 0.014
UV004-LA-N01-Underl6.log 0.041 0.0031 0.03 0.023
UV055-A02-Shared.log 0.24 0.42 0.03 0.025
UV028-N00-Employed 0.23 0.027 0.03 0.0097
UV004-LA-N08-Over79.log 0.0096 0.0023 0.03 0.016
U V 03 l-N03-SmallEmployers 0.035 0.017 -0.028 0.017
UV031-A04-LowerSupervisor 2.4 0.33 0.027 0.0071
UV056-A11-Inashareddwelli 0.43 0.61 0.027 0.022
distance to London.log 5.1 0.43 -0.027 0.015

Table 6.2: Top determinants of earlier growth 2000-2006, from regression on 2- 
cluster time series shape. Variables for which the coefficient is less than its 99% 
confidence interval have been omitted.
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Variable Name Mean Std. Dev Reg. Coeff 99% Conf
U V031-N02-Intermediate 0.038 0.01 -0.04 0.027
U V03 l-N03-SmallEmployers 0.035 0.017 0.037 0.018
log 2001 prices 5 0.3 0.033 0.017
U V002-AOO-PopulationDensi 1 0.58 -0.031 0.016
U V053- A03-Secondresidence 0.87 0.53 0.03 0.018
UV031-N04-LowerSupervisor 0.031 0.0088 -0.03 0.018
logweeklyincome 2.7 0.14 0.028 0.019
average la income 2.7 0.13 0.027 0.02
UV035-N04-20k30k 0.026 0.018 -0.027 0.026
UV035-A04-20k30k.log 2 0.36 -0.025 0.017
UV004-N08-Over79 0.0096 0.0042 -0.024 0.02
UV031-N05-SemiRoutine 0.048 0.013 -0.021 0.011
U V 031-N 00-HigherManageria 0.036 0.019 0.021 0.015
U V002-LA- AOO-PopulationDe 2.5 0.35 -0.02 0.016
U V031-A04-LowerSupervisor 2.4 0.33 -0.018 0.0077
UV031-A02-Intermediate.lo 2.5 0.36 -0.017 0.0087
U V031-A03-SmallEmployers. 2.4 0.25 0.017 0.012
U V053-N02-U noccupiedhouse 0.0089 0.0073 0.016 0.012
UV053-NOO-ALLHOUSEHOLDSPA 0.19 0.003 -0.016 0.012
U V053-N 01-Occupiedhouseho 0.18 0.0092 -0.015 0.012
UV031-A05-SemiRoutine.log 2.6 0.34 -0.015 0.005
UV004-A08-Over79.log 2.3 0.33 -0.014 0.0094
UV053-A02-Unoccupiedhouse 1.8 0.36 0.013 0.0099
UV031-A06-Routine.log 2.4 0.37 -0.011 0.0057
UV035-LA-A00-Under2k.log 4.2 0.19 0.01 0.0079
LA-log 2001 prices 5 0.22 0.0099 0.0091
UV004-A02-16to25.log 2.7 0.37 -0.0092 0.0079
UV004-A03-26to35.log 2.8 0.37 -0.0086 0.0048
U V031-A01-LowerManagerial 2.8 0.32 -0.0078 0.0043
UV053-A01-Occupiedhouseho 3.3 0.3 -0.0071 0.0028
U V004-A00-AllPeople. log 3.7 0.3 -0.0066 0.0029
UV004-A07-66to79.log 2.7 0.29 -0.0066 0.0064
UV056-AOl-Inanunshareddwe 3.3 0.3 -0.0066 0.0029
UV055-A00-ALLDWELLINGS .lo 3.3 0.3 -0.0066 0.0029
UV055-A01-Unshared.log 3.3 0.3 -0.0066 0.0029
UV028-A00-Employed.log 3.3 0.3 -0.0066 0.0035
UV056-AOO-ALLHOUSEHOLDS.1 3.3 0.3 -0.0064 0.0029
UV053-AOO-ALLHOUSEHOLDSPA 3.3 0.3 -0.0064 0.003

Table 6.3: Top determinants of 6th cluster membership, i.e. an early peak fol­
lowed by decline. Variables for which the coefficient is less than its 99% confidence 
interval have been omitted.
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data. While the behaviour thus revealed is not as rich as that discovered through 
cross-correlation analysis, it is simpler to understand, and for all cases presented 
here, accounts for a large proportion (around 50%) of the variability in time 
series data. Moreover, as the work presented in chapter 5 has shown that the 
characteristics of individual areas have a much greater influence on house prices 
than interaction between areas, the inevitable loss of interaction information 
necessary to conduct such a simple clustering analysis can be considered justified.

In terms of direct results, it has been demonstrated that core areas of the UK 
exhibited earlier (though lesser) growth during the years 2000-2006, while periph­
eral areas exhibited later (and greater) growth. Certain rural areas had already 
peaked and commenced a decline by the start of 2006. Expressing results in terms 
of a core-periphery relationship begs the question of what constitutes core and 
periphery. While the simple spatial measure of distance-to-London was shown 
to have some explanatory power, socio-economic and demographic variables were 
shown to be of greater relevance in determining cluster membership.

6.3 D riv ing/driven  analysis of house prices

The second analysis presented in this chapter is that of classifying ward interac­
tions in terms of which wards tend to drive the market overall, and which wards 
are more susceptible to being influenced by movements in the wider market. This 
is based on the observation that the visualisation of cross-correlation in figure 5.18 
exhibits a large quantity of continuous horizontal and vertical lines, indicating 
that such driving and driven places do exist. It would seem logical to derive a 
metric for such places in order to further study the phenomenon.

6.3.1 M ethodology

Breaking down a full interaction matrix into the corresponding influence of 
sources and destinations has many characteristics in common with calibration of 
an unconstrained spatial interaction (SI) model (Fotheringham & O’Kelly 1989). 
Such a process involves assigning parameters such as attractiveness/repulsiveness 
coefficients (or in the current case, driving/driven scores) to each location such 
that the model explains the observed pattern of interaction as closely as possible.
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It is, however, worth noting the differences between this correlation analysis 
and traditional SI modelling.

• SI models were developed to handle flows of people, in particular with ap­
plications of migration, commuting and shopping behaviour. It is thus one 
of their assumptions that people make a conscious choice concerning their 
behaviour. This is not true of property market correlations, which are the 
sum total of many factors rather than being under the control of a limited 
number of individuals. Different census wards do not consciously choose to 
correlate their price behaviour with others!

• SI models will typically include some kind of distance decay function, which 
(as was shown in chapter 5) is not particularly relevant in the case of house 
price interactions. Such a function is therefore excluded from the current 
analysis.

• It is also the case with many migration based interaction models, that a 
fixed sum of total migrations can be assumed - whereas in the current case of 
house price correlations it is certainly not true that total system correlation 
is limited, so such a constraint cannot be applied.

On the other hand, one relevant consideration of SI models is the concept of 
entropy and maximum likelihood estimation (ibid.) whereby the location coeffi­
cients are assigned in such a way as to be as robust as possible with respect to 
small changes in the observed data. It is thus hoped that the estimated model will 
still be relevant for making predictions as well as explaining current observation.

For a preliminary exploration, a simpler method than this is used - although 
the study of residuals from this method (to be presented in section 6.3.2) hints 
at potential future improvements. As horizontal and vertical lines are clearly 
visible in the plots of inter-ward correlations presented in section 5.5, the chosen 
method is to sum the columns of the ward interaction table to produce ‘driving’ 
scores for each ward, and to sum the rows to produce ‘driven’ scores. In section
6.3.3 this approach will be shown to produce results sufficiently robust for anal­
ysis, inasmuch as the resulting parameters exhibit strong correlation with census 
characteristics.
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Figure 6.6: The relationship between the cross-correlation and driving/driven 
frameworks, shown as (i) scatter density plot of cross-correlation against driving 
score of origin; (ii) scatter density plot of cross-correlation against driven score 
of destination.

Thus, the 'driving’ characteristic is defined as

drivingward =  ^  corr_sumother .ward  
ward (6 .2)

other .w ar dEwards

while the ‘driven’ characteristic is defined as

drivenward =  ^  corr_sumward
other.ward

other.war dEwards

(6.3)

where corr_sum is the sum of a ward cross-correlation function as defined in 
equation 5.3.

6.3.2 Results

In order to provide an indication of the extent to which the cross-correlation 
matrix can be explained by driving and driven scores, scatterplots of inter-ward 
correlation against the driving score for the origin, and the driven score for the 
destination, are given in figure 6.6. A clear correlation is visible in each case, 
however it is noted that as discussed in chapter 5, the cross-correlation data is 
very noisy so the observed correlation is weakened as a result. One advantage 
of summing the cross-correlation data to produce driving and driven metrics is, 
indeed, a reduction is this level of noise.

Figure 6.7 shows details from the cross-correlation matrix after driving and 
driven characteristics have been removed from the data. This could be considered
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Variable Name Mean Std. Dev Reg. Coeff 99% Conf
UV031-N02-Intermediate 
ward numtransactions 
UV053-N04-Vacant household 
UV 031-NOO-HigherManageria 
U V053-N03-Secondresidence 
UV031-N04-LowerSupervisor 
UV004-N05-46to55 
UV031-LA-N02-Intermediate 
U V004-N04-36to45 
UV031-A02-Intermediate.lo

0.038
7.4e+02
0.0067
0.036
0.0022
0.031
0.03
0.038
0.031
2.5

0.01
5.6e+02
0.0042
0.019
0.0057
0.0088
0.0052
0.0066
0.0039
0.36

0.14
0.085
-0.077
-0.063
0.062
0.061
-0.06
0.056
-0.051
0.051

0.022
0.016
0.022
0.013
0.02
0.015
0.022
0.018
0.016
0.0072

Table 6.4: Top ten predictors of ‘driving’ wards along with regression coefficients. 
Average residual for the whole regression was 0.61.

Variable Name Mean Std. Dev Reg. Coeff 99% Conf
UV031-N02-Intermediate 
ward numtransactions 
UV053-N04-Vacanthousehold 
log 2001 prices 
U V 031-N 00-HigherManageria 
UV053-N03-Secondresidence 
U V002-AOO-PopulationDensi 
UV031-N04-LowerSupervisor 
UV004-LA-N01-Underl6.log 
UV031-A02-Intermediate.lo

0.038
7.4e+02
0.0067

5
0.036
0.0022

1
0.031
0.041
2.5

0.01
5.6e+02
0.0042
0.32
0.019
0.0057
0.58

0.0088
0.0031
0.36

0.093
0.068
-0.064
-0.06
-0.058
0.054
0.044
0.042
0.039
0.038

0.023
0.016
0.022
0.015
0.013
0.02
0.013
0.015
0.021
0.0073

Table 6.5: Top ten predictors of ‘driven’ wards along with regression coefficients. 
Average residual for the whole regression was 0.62.



6.3. DRIVING/DRIVEN ANALYSIS OF HOUSE PRICES 187

origin w aido r ig in  w .in l

initial data aftei 1 iteiation

oiigin watd

aftei 30 iteiatior

Figure 6.7: Detail from inter-ward cross-correlation residuals as driving/driven 
characteristics are iteratively removed. Note how apparent structure decreases 
with the number of iterations.

as a kind of residual analysis. Removal of driving and driven characteristics is 
achieved by subtracting the average of the origin’s driving, and destination’s 
driven scores for each cross-correlation, i.e.

B B drivingA + driven B
residual% = corr_sum2    (6.4)

Note that a driving/driven structure, characterised by horizontal and vertical 
lines, is still apparent after the initial removal of these characteristics. This is 
due to the fact that removal must necessarily be a compromise between elimi­
nating both the driving and driven characteristics - the horizontal and vertical 
lines. Therefore, the process is iteratively repeated, and in this way succeeds in
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Figure 6.8: Display of mean 'driving1 scores through five successive iterations 
of driving/driven analysis. The tendency of each data point to be of the same 
sign though smaller magnitude than the same point for the preceding iteration 
indicates a stable convergence of the algorithm.

removing apparent structure from the data. Figure 6.8 shows a visualisation of 
the driving scores derived at each of the first five stages of the iteration. It can 
be seen that for each ward, the driving score computed for an iteration appears 
to be of similar sign but smaller magnitude than the score for the same ward 
in the previous iteration. This would suggest that the iterative removal process 
converges on a stable solution. It may be the case that future techniques for the 
assignment of driving/driven parameters can make use of this iterative process.

6.3.3 Discussion

Maps of the driving/driven scores of each ward are given in figures 6.9 and 6.10. 
Visual inspection shows that broadly similar spatial patterns are exhibited for 
both measures: urban areas tend to be both more strongly driving and driven, 
particularly in the North, while rural areas tend to score less strongly on both 
fronts. Analysis of the stability of driving/driven scores over time, in a similar 
manner to that used for cross-correlation characteristics in chapter 5, reveals that 
little correlation exists between driving or driven characteristics of the same place 
during different time spans. The usual disclaimer applies, therefore, that these 
metrics appear to represent the actual state of the market during the period 
studied, rather than revealing a universal invariant in market behaviour.

It is noteworthy, however, that approximately 40% of the variability in driv­
ing/driven scores is explainable by regression against census aggregate statis­
tics. This compares favourably to a figure of only 10% for the proportion of 
cross-correlation variability explained by the census data. It might therefore be 
suggested that the driving/driven scores, being based on a larger quantity of
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Figure 6.10: Market driven areas in the UK. Lighter shade indicates higher driven 
score.
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aggregated data, are less prone to noise than cross-correlation. Moreover, it is 
shown that despite the instability over time of driving/driven scores, these met­
rics do correlate to something real and this goes a long way towards validating 
them as a worthwhile object of study.

Results of the regression are given in tables 6.4 and 6.5. Overall, it can be seen 
that for both driving and driven characteristics, the presence of a high proportion 
of intermediate and lower supervisory occupations, and second residences, as well 
as a high market turnover correlate positively with high driving/driven scores. 
Negative correlations are noted for vacant households and higher managerial and 
professional occupations. Note the prevalence of ward-level relative variables, 
showing the importance of the local composition of an area in determining its 
level of driving/driven-ness.

6.4 Conclusions

In sum, this chapter has shown that the property market cross-correlation be­
haviour discovered in chapter 5 can be more simply, though quite efficiently ex­
plained (i) through a clustering framework and (ii) through a driving/driven 
wards framework. It is thus a useful result that the complex market behaviour 
initially defined in a 78-million-point interaction space, can mostly be approxi­
mated in an 8850-point geographical space. Furthermore, it is argued that these 
derived representations of market interaction are meaningful, because a large pro­
portion of their variability can be explained by regression against census statistics. 
The fact that clusters and driving/driven scores correlate with real data should 
be taken as an indication of their ‘reality’.

Unfortunately, driving/driven characteristics were shown to be unstable over 
time, inasmuch as scores derived from the years 2000-2002 did not correlate with 
scores derived in the years 2003-2006. There are three possible reasons why this 
might be the case:

1. the scores are always unstable over time;

2. the scores are stable, but noisy, therefore data covering a longer time span 
is required for their accurate estimation;

3. the scores are stable, but only for a small subset of wards studied.
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A short pilot study investigating hypothesis (3) showed that while there are 
indeed some wards which exhibit stable driving/driven scores over the time period 
studied, there is no way of telling whether or not this is purely due to coincidence: 
no method was discovered for predicting which wards will be stable, other than 
directly measuring their tendency to change over time. The explanation then, is 
assumed to be either (1) or (2), and further investigation must be left to a future 
study as it is not possible to tell which of these is true without acquiring digitised 
data spanning a much larger time period.

6.4.1 Combined models as an avenue for future explo­
ration

A final suggestion for future investigation is the question of how to combine the 
clustering and driving/driven models into a single, unified framework. It is also 
relevant to ask, after this framework has been applied, whether the residuals cor­
relate to any interaction characteristics. The latter question could be investigated 
using the techniques of chapter 5, as it is possible that once the most signifi­
cant determinants of cross-correlation have thus been removed, a faint pattern 
of inter-ward interaction may remain. However, as noted above, consideration 
of such a combined model should probably be postponed until data covering a 
greater time-span is available, as this study remains limited by the lack of such 
data and the ensuing inability to tell whether there are any timescales for which 
derived correlation statistics are in fact stable.



C hapter 7 

C onclusions

7.1 Sum m ary o f contributions

The aim of this thesis was to conduct exploratory analysis of a new data set: a 
set comprising nearly 90% of all housing transactions recorded by the UK Land 
Registry between mid 2000 and mid 2006. This data was analysed in tandem 
with census data from the year 2001, including both aggregate and interaction 
statistics. The extensive coverage of these data sets, combined with their com­
plexity (in the case of the interaction data) and fine grained spatial scale, meant 
that their analysis - conducted at ward level - entailed contributions both to our 
knowledge of the data, and to the techniques of exploratory analysis themselves.

The key contributions are:

• An improved technique for forming price indices from transaction  
data, in which relative indices are first created for output areas, which are 
later aggregated to the areal units desired (section 2.4). This has the advan­
tage of incorporating hedonic information (from the definition of the output 
area) into the index, when such information may be otherwise unavailable.

• Application o f com plete linkage clustering and linearisation algo­
rithms, for the first tim e, to  visualise census and Land Registry  
data (chapter 3).

• Incremental im provem ents to  these techniques during the course of 
their application to the data sets (which are larger than those for which 
they were designed). Alternative algorithms based on hierarchical optimal

193
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clustering, and on simulated annealing, were investigated, and an interac­
tive zooming tool was created. Comparison of the information revealed by 
the different algorithms revealed limitations on the size of the data sets to 
which they can usefully be applied (chapter 3).

• A novel method for unification of data in the interaction domain, 
to allow comparison of price time series, interaction data and ag­
gregate census statistics. This method computes cross-correlations of 
time series and regresses them (i) against interaction data and (ii) against 
values of each aggregate statistic from the origin and destination area, their 
difference and square difference (section 5.3.1). Principal component anal­
ysis is used to combat the inevitable collinearity that results from this 
technique. Such unified analysis of data, combined with visualisation, has 
led to:

=> potential improvements to time series prediction, as regional 
cross-correlation based predictions are shown to significantly outper­
form those based on auto-correlation or a market average (section
5.3.2.1);

=> confirmation of an existing hypotheses that spatial patterns of 
diffusion in housing markets, and particularly the UK housing market, 
are often caused by reactive rather than interactive processes (section
5.4.3.2);

=> an additional finding that the composition of migration flows is an 
important indicator of market cross-correlation on a fine spatial scale 
(section 5.4.3.2);

==> provision of a novel justification for the use of clustering ap­
proaches, as visualisations of the cross-correlation matrix suggest a 
clustered structure (section 5.5) which is also explicitly confirmed, and 
each cluster linked to explanatory variables (section 6.2);

=> development of new theories concerning market-driving and 
market-driven areas, as visualisations of the cross-correlation ma­
trix also suggest a driving/driven structure (section 5.5);

=> detection of such areas, and some suggestions as to their 
causes by row- and columnwise summation of the cross-correlation
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matrix to produce driving/driven metrics, which are regressed against 
census aggregate statistics (section 6.3);

=> overall increased understanding of the inherently noisy na­
ture o f housing market cross-correlations - to be summarised in 
section 7.2.3.

There is an apparent incongruency in the cross-correlation analysis which is 
worth pointing out at this stage. Time series reconstruction (as conducted in 
section 5.2) was only possible if the global trend of mean market value was first 
removed from the data. Conversely, removal of this trend decreased the strength 
of results from the regression analysis of cross-correlation, and these results are 
therefore presented with the trend left in place. Thus, time series reconstruction 
using cross-correlation data with the trend removed, is used to justify analysis of 
cross-correlation data with the trend present.

This inconsistency is not considered a problem, as other grounds exist for 
justifying the cross-correlation regression: namely, that the results themselves 
show a clear link between census and Land Registry data, and also lead to a 
fruitful market-driving/market-driven analysis. The necessity of trend removal 
before time series reconstruction is probably best seen as a limitation only of the 
reconstruction technique, relating in no small part to its consideration of reactive 
mechanisms as exogenous to the system. As such, the reconstruction technique - 
despite its limitations - still supports the hypothesis that cross-correlation data 
(whether or not global trends have been removed) is a meaningful target for 
analysis.

The remainder of this chapter will discuss the limitations of these findings 
(section 7.2) and their implications for the wider field of research in which they 
are situated (section 7.3). Section 7.4 concludes.

7.2 Lim itations and future work

It is often the case that the limitations of existing research are a useful source 
of inspiration for proposals relating to the extension of that research. Therefore, 
this section represents a combined discussion of both limitations and possible 
continuation projects.
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There are two exceptions - in the present case - to this duality of limitation 
and opportunity. One is the endless potential for inventing new visualisation 
techniques, and combining them with existing ones. Animations, 3-d displays, 
further interactive features and indeed methods from any of the literature re­
viewed in chapter 3 could potentially be combined with the techniques used here 
to produce ever more sophisticated visualisation tools.

The other extension not directly related to a limitation of the study, is the 
obvious idea of applying similar methods to other data sets, of which many exist 
not only in housing (the housing markets of other countries, for example); but 
also in the wider social sciences, and indeed beyond that, in fields such as biology 
and informatics. The sharing of techniques between disciplines can hardly fail to 
benefit both sides.

The remainder of this section discusses issues that are both limitations of this 
study, and possible ideas for future investigation.

7.2.1 Choice of target variable

It is notable that the analysis was conducted with all target variables derived 
from Land Registry data, and most explanatory variables derived from census 
data. This is an acceptable approach when the census data is already well- 
understood, and it is the Land Registry information which requires more detailed 
investigation. However, if applying these techniques to other data sets, it may be 
more appropriate either to directly analyse the output of PCA, or to repeat the 
regression with every variable, in turn, as the target. Additional techniques such 
as spring networks (Ebbels et al. 2006, Pawlak 2005) may be necessary to visualise 
the output of such an analysis, which would provide a very general overview of 
the interrelationship of all variables in a complex data set.

7.2.2 Left out variables

“Garbage in, garbage out” has become a universal mantra relating to computer 
systems, however in the case of regression, failing to input the relevant can often 
be a more serious problem than including the irrelevant. Undoubtedly there must 
be measurable quantities which have an impact on housing markets, but which 
have not been included in this study, which for the most part has settled on
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census statistics.

Future work could always, therefore, aim to include more sources of informa­
tion - the system has been designed to be as general as possible, thus it should 
not be too hard to include additional data sets. However, there is one in par­
ticular which springs to mind. A large body of literature exists geared towards 
computing abstract qualities of interaction networks which often correlate with 
real world statistics (the reader is referred back to section 1.2.3 for a brief re­
view). As network data - in terms of distance, migration and road linkage is 
readily available - it would make sense to reduce this to such metrics (for exam­
ple, polycentricity and spatial locality of settlement interactions) and include the 
resulting data in the analyses.

7.2.3 Inherent noisiness o f ward level cross-correlations

A key inference drawn from this study is that the ward level cross-correlations 
computed were inherently very noisy. This cannot be conclusively demonstrated, 
as to do so would require a measure of the underlying ‘signal’ of ward interactions 
which cross-correlation imperfectly attempts to measure. However, the following 
evidence points towards this conclusion:

1. the complete lack of consistency between identical ward pair correlations 
derived from different tiinespans (section 5.3.2.2),

2. the inability of the regression analysis to explain more than 10% of the 
variability in cross-correlation (section 5.4.3.1),

3. the fact that the quantity of data is expanded by a factor of around 400 when 
computing cross-correlations from time series, when no new information has 
been generated (section 5.3.1.4),

4. the relative success of time series predictions based on cross-correlation 
when compared to predictions based on autocorrelation alone. If cross­
correlations are noisy then we would expect this to be the case, as the 
former type of prediction averages over more data points thereby reducing 
noise to some extent (section 5.2),
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5. the fact that repeat-sale house price predictions based on local authority in­
formation outperform those based on ward information, which may indicate 
that ward level price indices are themselves noisy (section 2.4.6.2).

This limitation of noise may well apply not only to the study of housing market 
cross-correlations, but also to any methodology that involves expansion of data in 
a similar manner. In this case, due to the presence of noise, it has been impossible 
to say to what extent cross-correlations naturally change over time (and are thus 
accurate for the time period and time scales studied) as compared to the extent 
that they are imperfectly measured. It would appear that the latter is strongly 
true, though the possibility of change over time remains to be investigated.

For the analysis of Land Registry data, four avenues are suggested for miti­
gation of noise-related problems in future research.

• One is to aggregate the data to larger areas in order to reduce noise. An 
obvious candidate is the Local Authority level; also, such analysis will help 
to answer the question of whether migration plays a significant part in 
market correlation except on a fine spatial scale. The result may well be 
a much more accurate predictive regression; however there is a caveat that 
despite the noise in the data, some variables were still found to have a 
meaningful effect on cross-correlation at ward level (section 5.4.3.2) and 
moreover, almost all of the top characteristics of driving/driven areas are 
determined at ward level (section 6.3.3). Therefore is is probable that 
information will be lost, as well as gained, by such a change in spatial scale.

•  An alternative possibility is to work on reducing the noise in cross­
correlation data. It may be the case that, as the indexing techniques of 
chapter 2 allow for meaningful predictions to be made on a shorter time 
scale, it is better to employ price indices with shorter time slices in order 
to provide more data points with which to compute meaningful correla­
tions. This is in contrast to the work presented in this thesis, which used 
time slice lengths of around 100-200 days based on an ‘optimum’ length 
estimated for predictive accuracy in section 2.4.6.2. It is nonetheless con­
ceivable that a small decrease in predictive accuracy, combined with a large 
increase in temporal precision, could allow more meaningful analysis of the 
relative shapes of different time series. Thus, in the terms of section 5.3.1.1,
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cross-correlation could be computed with [time_sliceJength =  20, wmax =  
10] instead of [time_sliceJength =  100, wmax =  2] - even though both 
computations give an overall correlation window length of 200 days.

• Seemingly in contradiction to the suggestion of aggregating data into larger 
areas, it is noted that in many cases, output areas will not accurately cap­
ture the housing attributes of individual properties. This ecological fallacy 
applies especially in rural areas. Therefore, a heterogenous analysis based 
on different submarkets, or perhaps even incorporating individual property 
data, may also reduce what currently appears to be noise in the data, but 
is in reality caused by individual variation.

• The final way to reduce noise in the cross-correlation data is simply to 
obtain more house price data. This will be discussed in section 7.2.4.

7.2.4 T im e span o f th e data

An ever-present concern throughout this research has been the limited time span 
of the data, from the years 2000-2006. This means that despite studying one 
of the largest sets of housing transactions to date, the scope of the study is 
necessarily limited to the nature of housing interactions during the tail end of a 
nationwide increase in the overall market that was occurring during these years. 
It also means that any correlations, or good predictive relationships discovered in 
the data do not reflect a universal characteristic of the UK property market but 
are better seen as a measure of its state during those years. As well as mitigating 
these concerns, the acquisition of more data to analyse may assist in reducing 
the noise of cross-correlations as discussed in the previous section (7.2.3).

Since commencement of the study, the average house price has dropped by 
as much as 30% in some cases, to pre-2001 levels. Inclusion of even these past 
three years of data would greatly broaden the scope, as it would allow for the 
study of both a rising and falling market. Extending the time span of the data 
in the other direction is not so easy, as records before the year 2000 were not 
digitised at time of creation. However, it seems that an ongoing drive exists 
to put some of this data into electronic form. As was seen in section 7.2.3, it 
is perhaps the case that aggregating data to local authority (rather than ward) 
level would be a more fruitful avenue of study. Therefore, increasing availability
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of historic housing data, even if aggregated to coarser units of time and space 
than used here, may yet contribute to our understanding of housing markets.

7.2.5 Study of residuals

A standard component of regression analysis is to study not only the estimated 
coefficients, but also to study the regression residuals for any kind of pattern 
missed by the regression. While this has been undertaken to a limited extent 
(such as checking for heteroscedasticity of errors in the plots of residual versus 
prediction, figure 5.9), further analysis has been limited by the sheer amount 
of noise in the data as discussed in section 7.2.3. In the absence of this prob­
lem, study of residuals would likely provide hints as to how to improve existing 
models, and indeed it is possible to envisage an incremental development cycle 
whereby the residuals for each model in turn are used to inspire its successor. 
This possibility will be discussed in more detail in section 7.3.

7.3 Broader implications: on scientific m ethod  
in the era o f data-driven science

The work presented in this thesis is situated within the field of exploratory data 
analysis - a collection of techniques used to familiarise oneself with a data set 
before proceeding to confirmatory data analysis, in which hypotheses are for­
mally tested. The complex visualisations employed are simply an extension of 
such techniques to ever-larger and more complex data sets. Visualisation has 
shown itself to be of use not only for exploratory analysis, but also for debugging 
software, and in this age of the world wide web, for quick dissemination through 
online tools. Visualisation based research workflows are now commonplace in a 
wide range of fields - for example climate science (Kehrer et al. 2008), intelligence 
(Thomas & Cook 2006) and biodiversity (Kelling et al. 2009).

It should be noted, however, that the regression coefficients presented are also 
in the spirit of exploratory analysis, effectively used to ‘visualise’ facets of the 
data which are not so easily represented by a graphic. Such analyses should not be 
confused with the confirmation of any hypothesis - which is the more traditional 
use for regression! The only exception to this is where hypotheses have previously
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been proposed by other researchers: for example, the assertion of Meen (2001) 
that differing reaction to external influences is responsible for apparent interactive 
price propagation in the UK, which chapter 5 serves to test. In formal terms, use 
of statistical hypothesis testing requires that the hypothesis be decided on before 
the test is conducted, else the data is not really an independent test and does 
not tell us anything about the tru th  of the hypothesis.

It is notable that this consensus on the requirements of scientific method was 
developed against a background of research studies in the physical and biolog­
ical sciences, where the data collected represented only a very small sample of 
the underlying population. However, it may in fact be possible to waive this re­
quirement depending on the scope of the study. For example, if one is interested 
only in the England and Wales housing freehold market from 2000-2006, the data 
set employed here is almost entirely complete. Two possible interpretations are 
therefore suggested for this work:

1. If the reader is interested only in the area studied during the period of 
the study, then the estimated coefficients can be taken as entirely repre­
sentative, and any hypothesis supported by these results can be taken as 
confirmed - even if such hypotheses were generated by reading the results 
in the first place.1

2. If the reader is interested in the behaviour of housing markets in multiple 
countries, or in multiple time periods including the past or future, then 
the estimated coefficients can only be considered a limited sample of the 
underlying population. Any hypothesis supported by the results is therefore 
only a suggestion which is subject to further testing on other data before 
confirmation can occur.

A related feature of all the regression analyses conducted in this thesis is that 
the estimated parameters were tested on a subset of the data not used in the 
estimation process. Again, this should not be confused with the confirmation 
of any hypothesis, because the test data set is sampled within the same time 
and space constraints as the training set (e.g. England and Wales, 2000-2006)

1 It would be wise in so doing, however, to be mindful of the limitations of principal com­
ponent analysis, and if greater certainty is required it would be prudent to conduct a further 
regression of one’s own, dispensing with PCA and using only the variables of interest.



202 CHAPTER 7. CONCLUSIONS

Traditional
Science

Visualisation
Workflow

4 VISUALISE E

HYPOTHESIS HYPOTHESIS

*—  FORMAL TEST FORMAL TEST

VISUALISE RESIDUALS

PRELIMINARY 
REGRESSION TEST

3  3a~3 °O  "*>^ VI

vi 3  O
°*3eg.«
£ ̂  Q-O ^ O.

O  O  

0*v> 
^  2 . 
VI «o  3  o a  

■ o  a  
o  o

..‘3  32 0*3“V< o

Figure 7.1: Illustration of the visualisation-based workflow.

and therefore cannot be expected to be representative of any data outside of this 
scope. However, it is nonetheless hoped that such a process of testing increases 
the likelihood of any generated hypothesis surviving the test process on other 
data sets in the future.

An illustration of the overall workflow is given in figure 7.1. The new workflow 
(and the proposed extension of studying residuals mentioned in the previous 
section 7.2.5) can be considered as fitting in with traditional scientific method; 
however, exactly which part of the scientific cycle has been conducted depends, 
as noted above, on the stated scope of the study.

Whereas traditional method consists a repeated iteration of hypothesis and 
test, the new workflow starts with visualisation and hypothesis generation, fol­
lowed by a regression test of the hypothesis, which is performed on the same data 
used to create that hypothesis. At this stage, it is possible to reject the hypothesis 
altogether; however if successful, it is possible to study the residuals and further 
refine the hypothesis. Overall, two ‘inner loops’ have been added to the scien­
tific process before the traditional hypothesis test is reached. These inner loops 
have rapid execution times, inasmuch as they allow for the quick development of 
complex hypotheses that have a fair chance of standing up to wider confirmation; 
this is the primary contribution of the visualisation based workflow. It should be 
remembered however, that if we are interested not in the particulars of the data
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but in developing a broad scientific understanding of the world around us, the 
workflow presented stops short of the final confirmatory test.

7.4 Closing remarks
- or, the return to  base camp

And there it is: the mountain of data was climbed, the summit reached, the clouds 
parted and the view was recorded. It is often said that the most dangerous part 
of a mountaineering trip is the descent, and perhaps that can be likened to the 
conclusions of a research project. Just as we must be careful, once the summit 
has been reached, not to slip on the way down, in science we must also be careful 
not to slip when interpreting the wider meaning of our work.

Much as expected, a little knowledge was gained of the mountain; much more 
was gained, however, in terms of mountaineering expertise itself. In the 1950s, 
the ascent of Everest was considered justified purely in terms of the existence of 
the challenge itself, but it should be noted that such acceptance of the merits of 
mountaineering has not always been widespread in society at large. When Michel- 
Gabriel Paccard and Jacques Bahnat first summited Mont Blanc in 1786, for 
example, the trip was justified to the wider public on the grounds of a barometer 
reading taken from the summit. In this day and age however, ascents of difficult 
peaks are accepted as worthwhile in their own right; likewise, the prevailing 
scientific opinion is (and always was) that methodological contributions are a 
valid and essential part of progress in research.
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