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Summary

This investigation concerned the design and development of a novel 

measurement system that incorporates bilayer sensors for monitoring applications in 

the biomedical and automotive industry. The bilayer sensors are made primarily from 

a configuration of soft magnetic material on a non magnetic substrate that is used to 

enhance the changes in the relative permeability of the material, caused by tensile or 

compressive stresses.

Three modulation techniques were examined as a method for convening the 

sensor signal information; this is the first use of the phase (PM) and frequency (FM) 

modulation methods in conjunction with bilayer sensors. The measurement system 

incorporated, in software code, a range of mathematical concepts used for extracting 

and processing the sensor information signal. The use of simulated and acquired 

modulation signals allowed the comparison of the modulation techniques. 

Optimisation o f the bilayer sensor was considered by studying the effects of the 

bilayer sensor physical dimensions and parameters on its performance. Also the 

thermal stability o f the bilayer sensor and FM  system was examined.

Physiological measurements for the detection and monitoring o f cardio­

respiratory activities were conducted. A bilayer sensor measurement system was used 

for the first time not only to detect but also to map the normal heartbeat rate through 

the hemo-dynamics o f the carotid artery. The system was used to monitor a range of 

respiratory activities such as normal respiration, deep inhalation/exhalation and 

apnoea. The application o f the sensor is a non-invasive and a non-disturbing method 

for monitoring biomedical activities related to skin curvature changes.

The bilayer sensor measurement system was used for monitoring of airflow in 

turbulent conditions. Measurements were conducted for a variety o f airflows and at a 

range o f distances from the centre of the tube, were the flow is at maximum. 

Furthermore the effect o f  substrate thickness and material choice was investigated on 

the performance o f the sensor.

This investigation led to the design and construction of a novel measurement 

system than can successfully detect and quantify displacements in the micron range. 

The application o f this system to biomedical and automotive applications showed the 

universality and adaptability o f the bilayer sensors and its measurement method.
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Glossary

Roman letters

Description Units

A Area m2
a Acceleration m/s2
B  Magnetic Flux Density T
c Curvature rad/m
C Capacitance F
d  Centroidal Distance from the Neutral Axis m

dm Diameter m
E  Young’s Modulus Pa
e Thermal Expansion Coefficient K '1

Ed Young’s Modulus (Demagnetised State) Pa
Es Young’s Modulus (Saturated State) Pa
F  Force N
/  Frequency Hz
h Height m
H  Magnetic Field A/m
I  Electric Current A

In Area Moment o f Inertia m4
L Inductance H
I  Length m
m Mass kg
M  Bending Moment N-m
M ’ Magnetisation A/m

mAM Modulation Depth for Amplitude Modulation
mFM Modulation Depth for Frequency Modulation
mm Magnetic Moments A m2

mpM Modulation Depth for Phase Modulation
N  Number o f Coil Turns
P  Pressure Pa
Ps Static Pressure Pa
q Dynamic Pressure Pa
R Resistance D
r Radius m
rc Radius o f Curvature m/rad
Re Reynolds Number
sc Square Correlation Coefficient
t Time s
T Temperature °C
Tc Curie Temperature °C
th Thickness m
u Velocity m/s
U ’ Stored Energy Per Unit Volume J/m3
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V Voltage Waveform Amplitude (Peak) V
V Electric Voltage V
w Width m
W Work J
Wt Magnetisation Energy J/m3
WK Anisotropic Energy J/m3
m Magnetostriction Energy J/m3
X Reactance n

Greek Letters

Description Units

y Shear Strain _

8 Elongation m
e Strain -

c Deflection m
Q Angle o f Rotation rad
A Magnetostriction -

M Permeability H/m
Mo Permeability o f Free Space H/m
M r Relative Permeability -

Vd Dynamic Viscosity P as
( Centroidal Distance Between Two Layers m
P Density kg/m3
o Stress Pa
X Shear Stress Pa
0 Magnetic Flux Wb
9 Phase Degrees
x ' Magnetic Susceptibility -

CO Angular Frequency rad/s

Acronyms

.html Hyper Text Mark-up Language
.xls Microsoft Excel® File Format
AC Alternating Current
Al Aluminium

AlMg Aluminium-Magnesium Alloy
AM Amplitude Modulation
B Boron
Be Beryllium
C Carbon

Co Cobalt
Cu Copper

CuBe Copper Beryllium Alloy
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DC  Direct Current
e.m .f Electro-Motive Force
ECG Electrocardiogram
EEG Electroencephalography
EMG Electromyography

Fe Iron
FEM  Finite Element Modelling
FM  Frequency Modulation

HA VAR High-Strength Non-magnetic Alloy
LSF  Lower Side Frequency
Mg Magnesium
Mo Molybdenum
N I National Instruments
Ni Nickel

Op-amp Operational Amplifier
PC  Personal Computer

PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PM  Phase Modulation
PSD Phase-Sensitive Detector
PSG Polysomnography
REM  Rapid Eye Movement

Si Silicon
SNR Signal-to-Noise Ratio
USF Upper Side Frequency
VCC Voltage-to-Current Converter
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Chapter 1 General Introduction

1.1 Preface

The highly sophisticated systems and instruments that surround us in our every day 

life need information from the outside world via the use o f sensors (transducers). 

Thus, sensors aid these devices to comprehend and interpid the surrounding 

environment by transforming physical phenomena that are associated with the laws of 

nature into electrical signals (Figure 1.1).

Modifier Physical Parameters:
- Radiant
- Thermal
- Mechanical
- Electrical
- Magnetic
- Chemical

magn

eLe.ct

ther

rad

Output

Input

Figure 1.1: Example diagram of a bilayer magnetic sensor indirectly converting a 

mechanical stimulus to an electrical signal using the magnetic principle of

permeability as the modifier1.

Currently sensors are able to convert a variety of physical parameters, directly or 

indirectly into electrical signals. These parameters may be but not limited to1:
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4 Radiant: Light intensity, polarisation, reflectance, transmittance, wavelength. 

*4 Mechanical: Acceleration, amplitude, force, inclination, position, pressure, 

stress, torsion, velocity, vibration.

4 Magnetic: Magnetic field strength, magnetic flux density, permeability.

^ Electrical: Capacitance, current, frequency, inductance, resistance, voltage.

4 Thermal: Entropy, temperature, thermal flux.

4 Chemical: Composition, concentration, toxicity.

1.2 Magnetic Sensors

Magnetic sensors follow the same principle as all sensors, i.e. they are devices that 

receive a signal or stimulus and can respond with an electrical output signal. The 

difference between the other types of sensors is that magnetic sensors utilize laws of 

electromagnetism and effects in electromagnetic fields in order to achieve their goal.

The magnetic sensors have two main groups of application1:

i. Direct: When the sensor is placed in the presence of a magnetic field, it 

converts the stimulus to an electrical signal.

ii. Indirect: There is a strong interaction in magnetic materials between their 

magnetic and mechanical properties. Any change in the sensor’s 

mechanical properties will result in a change in its magnetic behaviour. 

Hence, this change can be converted into an electrical signal .

Traditionally magnetic sensors can be used for the detection of a variety of physical 

phenomena such as mechanical, thermal and of course magnetic. The most common 

types of magnetic sensors are2:

4 Magnetic gradiometer: A pair of identical and aligned field sensors that are 

used for the detection of the change in magnitude and direction i.e. gradient of 

small fields.

G. S. Katranas, “Design and Development of Bilayer Sensor Systems for Biomedical and Automotive
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"t Magnetic field: An induction coil arrangement with a ferromagnetic core used 

for the detection of magnetic field generated by alternating currents. Part of 

this category is the SQUID (Superconductive Quantum Interface Device) 

sensor that is able to achieve magnetic field resolution in the order of fT (10‘15 

T).

4  Magnetoresistive: These sensors exploit of the effect of magnetic field on the 

resistivity of a material.

^  Masnetostrictive: Sensors that use magnetic materials that changes in 

dimensions under the application of a magnetic field. Inverse magnetostrictive 

sensors utilise the effect where the change of a magnetic materials dimensions, 

due to applied stress, creates a magnetic field.

One way to classify the various magnetic sensors is by their sensing range. Table 1.1 

lists, as an example, the various sensor technologies used for the magnetic field 

sensing and their respective ranges3.

M a g n e tic  S e n s o r  
T e ch n o lo g y

Detectable Field Range (Tesla) 

i 1 0 12 10'10 10 -* 'lO* 1 0 4 10'2 10 ° 102 104
SQUID (Superconducting 

Quantum Interference Device)

Search Coil

Earth’s Field

AMR (Anisotropic 
Magneto-resistive)

Fluxgate

GMR (Giant 
Magnetoresistive)

Hall Effect

Table 1.1: Example of magnetic sensor technology field ranges.

The application area of magnetic sensors can encompass a very broad field in 

engineering. Even sensors that work under the same principle can be used in 

completely different environments such as displacement sensors used in the

G. S. Katranas, “Design and Development o f Bilayer Sensor Systems for Biomedical and Automotive
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automotive industry, for monitoring airflow, and biomedical systems, for monitoring 

cardio-respiratory activity. Some of the applications areas of magnetic sensors are 2’4:

4 Aerospace 

4 Automotive 

4  Biomedical 

4  Consumer/domestic

4 Industrial (Construction, Electrical, Mechanical)

4 Scientific research 

4 Surveying

For those areas the magnetic sensors may have some of the following applications4:

4 Fluid flow: Blood flow, engine air or water flow monitoring and control.

4 Vibration and acceleration: Earthquake detection.

4 Displacement and position: Cardio-respiratory activities,

4 Stress and torque: Force loading, steering wheel torsion.

4 Magnetic field: Brain imaging, security systems, vehicle navigation.

4 Magnetic permeability: Archaeology, mineral exploration/exploitation,

unexploded ordnance.

The factor for choosing a sensor is of course not only the quantity to be measured but 

also attributes such as the accuracy, performance, range, size and last but not least the 

cost involved in the sensor manufacturing and in the realisation and production of the 

measurement system.

1.3 Bilayer Sensors, Applications and Requirements

Bilayer sensors use as their operating principle the inverse magnetostrictive effect. 

They comprise of a bilayer strip and a coil wound around one end. The bilayer strip 

comprises a magnetostrictive layer and a substrate which is non-magnetic in most 

cases. It’s bending yields single-sign stress in the magnetic layer; the corresponding

G. S. Katranas, “Design and Development o f Bilayer Sensor Systems for Biomedical and Automotive
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relative permeability change can be detectable with simple electronics. The 

performance and behaviour of the bending-sensitive material can be influenced 

significantly by layer thickness and the modulus of elasticity. The bilayer composition 

takes advantage from existing types of materials such as Fe-based amorphous ribbons. 

In addition, new alloys can be manufactured by means such as RF  sputtering. The 

adhesion of layers may be performed by agglutination or deposition of the magnetic 

material on the substrate.

This project aims at this new category of bilayer materials as a basic standard element 

for multi-functional sensor families which may replace the variety o f sensor principles 

utilised in systems for monitoring and control. The work involves a variety of specific 

technologies for the development of the sensor system (e.g. modulation methods, 

signal processing etc.) and disciplines (electronics, magnetism, material science, 

mechanics, physiology, software programming). The main objective is to use novel 

bilayer strips, as (i) robust but low-force activated, (ii) compact and low mass (up to 1 

g), and (iii) very cheap standard components in a universal family o f new sensors. A 

part of the project aims was the development o f a hardware and/or software 

measurement system that will aid to the establishment of the sensor signals and help 

exploit the bilayer configuration capabilities.

One focus of this project was to examine the application o f these sensors and the 

system for monitoring multi-parametric physiological quantities. Here special 

attractiveness results from low-force activation and low mass. To illustrate the 

versatility: Sleep laboratory sensors5 could include skin sensors for respiration, blood 

pressure, extremity or Rapid Eye Movements (REM), foetal movements, heartbeat 

rate; miniaturised catheter sensors could measure oesophageal pressure, blood 

pressure and blood velocity. At present, no sensor principle is available which can be 

applied in a comparably universal way. Another area of focus is the possible use of 

the sensors and the measurement system in the automotive industry. An application to 

combine both focal points (automotive and biomedical) can probably arise from the 

physiological monitoring o f the driver status for increased safety. The bilayers offer 

sensor applications for bending, displacement5, force, flow, vibration, acceleration6 

and temperature7 with a similar basic design8.

G. S. Katranas, “Design and Development o f Bilayer Sensor Systems for Biomedical and Automotive
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Other sensor principles that are successfully in use today to measure parameters such 

as force and displacement are most commonly capacitive, piezoelectric, ultrasound 

and optical based systems. The application of these principles, compared to the 

bilayer sensors, present certain limitations:

4 Capacitive -  Moisture, dust and humidity will have an effect on the sensor 

performance9

4 Piezoelectric -  Unable to measure a static force over a long period of time due to 

leakage currents and susceptible to ageing10.

4 Ultrasound -  Target surface reflectivity can affect the accuracy of the 

measurements11.

4  Optical -  Ambient light will interfere with the measurement12.

Regarding airflow measurements the two most common types of sensors used today
1 'Xin the automotive industry are the vane and the hot wire anemometers. These 

technologies are not able to measure airflow directly, require the presence of laminar 

flow (non-turbulence) and are composed of moving parts, subjected to wear and tear.

These principles are used for specific applications i.e. optical sensors can be used for 

measuring displacement but not airflow. There is a need in industry for a sensor 

principle that can be used for many different applications14. The new types of 

bending-sensitive materials is expected to yield a variety of sensors all based on a 

common procedure for the measurement of very different parameters. Modem 

systems and devices require many sensors for monitor and control purposes. Each of 

these sensors might have its own operation principle and a corresponding 

measurement system. This leads to a cost and size discrepancy. The universality of 

the bilayer sensor and the adaptability o f its measurement system may help to reduce 

costs for all types o f applications that it is intended. It can be produced by industrial 

mass production with a high degree of automation. This offers a multiple impact:

4 Reduction o f expensive work as resulting from incompatible sensors and 

components.

4 Cost reduction due to application-independent signal establishment methods, 

highly integrated systems and due to favored servicing.

G. S. Katranas, “Design and Development o f Bilayer Sensor Systems for Biomedical and Automotive
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4  Improvement of safety levels with respect to novel driver monitoring and 

alarm systems.

^4 New market sectors in diagnostics and supervision (e.g. driver status 

monitoring, sleep laboratories or intensive care). Patient comfort increases 

with the new sensors in ambulatory as well as providing undisturbed clinical 

sleep monitoring

1.4 Thesis Outline

There has been a detailed attempt to include a comprehensive literature review in the 

form of references. These references are found throughout the thesis to directly link 

previous work related not only to bilayer sensors but to the techniques used for the 

implementation o f the measurement system. This practice is hoped to enable the 

reader to embrace and understand the steps taken to design this multi-disciplinary 

project.

In Chapter 2 a brief introduction to the principles of mechanical engineering is given, 

servicing as a framework for many of the subsequent topics. It is this examination of 

the sensor’s mechanical behaviour which aids in the understanding its operation and 

its evaluation. Since the bilayer sensor acts as a cantilever beam, the conditions of 

deflection, bending and curvature change are examined along with a brief look on the 

development o f the internal stresses in the material under the application of an 

external force. Due to the nature of bilayer strips, special interest is given to the effect 

of layered structures on the analysis of cantilever principles. Finally for the 

application o f the bilayer sensor on airflow measurements the mechanics of fluids are 

briefly investigated.

Chapter 3 focuses on the working principles of magnetism behind the operation of the 

bilayer sensors. Attempts to explain how the mechanical stimulation on the sensor can 

be exploited and converted to inductance changes, are performed by examining the 

properties of magnetic materials and phenomena such as inverse magnetostriction.

G. S. Katranas, “Design and Development o f Bilayer Sensor Systems for Biomedical and Automotive
Applications”, Ph.D. Thesis, Cardiff University.



8

The desired magnetic and mechanical properties of materials, for bilayer sensor 

applications, are looked upon along with their fabrication methods.

The brief study o f the existing modulation method used as the process of exploiting 

the inductance changes o f the bilayer sensors is described in Chapter 4 along with its 

circuitry. Here the introduction of two alternative techniques is explained along with 

the principle o f operation and the hardware that is necessary to realise them. The 

concepts used for extracting the sensor information signal are examined with 

emphasis to their mathematical aspect. This aided their later conversion into software 

code that was implemented for the signal acquisition, demodulation and processing of 

the modulated waveforms.

The details o f the measurement system design are presented in Chapter 5. The 

software algorithm that is responsible for the signal processing o f each modulation 

technique is presented. A controlled displacement setup, using an actuator, was 

designed in order to aid to the direct comparison of the performance o f the three 

modulation methods. These results were also assessed against data obtained via a 

laser Doppler Vibrometer (LDV). The LDV  was used to examine the linearity, 

mechanical hysteresis and quality of the measurement system. An examination on the 

optimisation o f the bilayer sensor was considered by studying the effects of the 

bilayer sensor physical dimensions and parameters on its performance. Also the 

thermal stability is briefly examined to evaluate the bilayer sensor and the measuring 

system performance.

Finally, in Chapter 6, two applications of the bilayer sensor measurement system are 

considered for use in the field of the biomedical and automotive industry. Here the 

application of the measurement system is described, using bilayer sensors originally 

used for the detection o f bending, in order to measure with minimum disturbance the 

physiological activities that involve the dynamic deformations o f the curvature of the 

skin. Internal physiological activities are mirrored on the human body in the form of 

active variations o f the skin curvature. Depending on the body region these signals 

can display cardiac activity, lung ventilation and body movements. Another 

application that was examined for the bilayer sensor measurement system is the 

monitoring of airflow. Results were obtained for a variety of airflows and at a range

G. S. Katranas, “Design and Development o f Bilayer Sensor Systems for Biomedical and Automotive
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of distances from the centre o f the tube, where the flow is at maximum. Also the 

effect of substrate thickness and choice of material was investigated on the 

performance o f the sensor.

G. S. Katranas, “Design and Development o f Bilayer Sensor Systems for Biomedical and Automotive
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C hapter 2 M echanical Analysis

One of the parameters that influence the sensitivity and performance of the bilayer 

sensors is the stress which is induced due to bending. These devices employ bilayer 

strips that consist of a magnetic layer and a non-magnetic counter layer that is used to 

enhance the changes in the relative permeability of the material caused by tensile or 

compressive stresses during bending. Depending on the manufacturing procedure (RF 

sputtering or agglutination) there may be an additional agglutination layer (trilayer 

strip). Since the sensitivity depends on specific parameters such as Young’s modulus 

(modulus of elasticity) and dimensions it is necessary to briefly examine the 

principles of the mechanics involved. Also sensor applications such as airflow 

measurements, depend on the understanding of the fluid dynamics and the 

environment where the sensor is applied.

2.1 Stress, S train and Shear Force

Both magnetostriction and the Villari effect are properties of magnetic materials that 

involve mechanical principles for their characterisation. The most essential concepts 

in mechanical engineering are stress and strain. The explanation of these concepts can 

be performed by considering a straight structural member, initially of constant cross 

sectional area throughout its length, been subjected to an axial force (Figure 2.1)1.

Notch

Figure 2.1: Member subjected to a tensile force with a notch forming during

elongation1.
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Disregarding the own weight o f the bar, an assumption is made that the only force 

acting on it is the axial force, F  (N). This force is resisted by internal forces which are 

called stresses which do not allow the bar to move in the direction o f the force. Stress 

is force per unit area and it is symbolised as a  (Pa). The external force F  is in 

equilibrium with the forces that are acting inside the member. The summation of 

internal stresses is equal to a times A , where A is the cross-sectional area (m2) of the 

member. For equilibrium1:

g  - K -  F  -=> a  -  — 
A

2-1

When a member is subjected to stress a deformation (in this case a notch) will take 

place causing the member to change in length. The elongation, S (m), is the 

cumulative result o f stretching all elements of the bar. The elongation per unit length, 

€, is the strain, e and can be written as1:

5
e  = —

t
2-2

By drawing a diagram of stress versus strain various conclusions can be made 

regarding the behaviour o f material under an applied load (Figure 2.2)1.

Fraction

Returning
Path

8
>

Figure 2.2: Stress-strain diagram1
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a. Elastic region: In this region the relationship between stress and strain is expressed 

by a constant. This constant is the modulus of elasticity, E  (Pa), (Young’s modulus) 

and it is defined via Hooke’s law1:

— = E  = tan <p 2-3
e

b. Plastic region: When the stress increases beyond oy (yield stress) the material enters 

in to the second region which is called plastic region. Here small increments in <7, i.e. 

F , produce large increments in e.

c. Strain hardening region: In this region greater increase in a  is needed to produce 

greater amount o f e.

d. Fracture region: The last region is where the material eventually breaks and has a 

parabolic line. This parabolic line is due to the fact that the denominator in Eq. 2-1 is 

theoretically kept constant through out the application o f the external force F, when in 

fact the area A decreases creating a notch.

If the force was to be removed the following would be observed:

i. Elastic region: The member will return to its original condition.

ii. All the other regions: The member is permanently deformed (in this case 

elongated) and the returning path will be parallel to the path o f the elastic 

region, with zero strains. By re-applying the member with a new force, it 

will follow the returning path. Thus, the ay increases but the material 

becomes more brittle and much less ductile.

Stresses that act tangential to the surface of the material are called shear stresses (as 

seen in Figure 2.3) . Assuming that a force F  is acting on the surface o f the bar and 

that F ’ and F ” are in equilibrium (F ’ = F ”), then the force F  will “try” shear apart the 

bar. Therefore the bar at plane aa ’ suffers in shear, hence developing shear stresses 

which must balance the shear force F. Thus, if the shear area is A and the shear force 

is F  then the shear stress, r  (Pa), is expressed as2:
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F

b ’
T

— ►

----------------►

0  A

▼

a  a

r >

w

Figure 2.3: Shear stress on a member .

_ F  
T ~  A

2-4

2.2 Deflection and Stress in Cantilever Beams

When a concentrated load is acting upward at the free end of a cantilever beam, its 

axis will deform into a curve (Figure 2.4). The resulting stresses in the beam are 

related to the curvature of the deflection curve. If the loads acts on the x-y plane of 

symmetry of the beam then the deflection, £> is the displacement of the beam, in the 

direction where the load is applied (y direction in this case).

.
\
dO \  B ’

i Vi/
L ________ - Zj -iTc
' _____  x _____  ^ i <tx '■ XI 1 • 

--------------- :----- 1

\

dQ

m2 B'
\

m ,
\ d s ^ ^ * \G+d6

Ly  j yuu c + d (
C B

1 dx
X

1
\ . . . 1

Figure 2.4: Deflection of a cantilever beam under the application of a concentrated

load at the free end ’ .
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At point wy, at a distance x  from the x-axis origin, the deflection will be C In a 

distance x  + dx, from the origin, the deflection will be C + d£  at point m2, where d£ is 

the deflection increment moving from mi to m2 . When the beam is bent there is not 

only a deflection at each point along the axis but also a rotation. For point mu the 

angle of rotation, 0 (rad), o f the axis of the beam is the angle between the x-axis and 

the tangent to the deflection curve. At point m2 the angle o f rotation is 6 + dd, where 

dO is the increase in angle moving from mi to m2 . Also if  lines are drawn normal to 

the tangents, the angle between the two normal lines, is dO. The point o f intersection 

of those two lines is the centre of curvature o ’ and the distance from o ’ to the curve is 

the radius of curvature, rc (m/rad). These are related as:

rc d O -d s  2-5

where the ds (m) is the distance along the deflection curve between points mi and m2 . 

This leads to the definition o f curvature5, c (rad/m):

1 d 0  i fc -  — = —  2-6
rc ds

In the case o f a cantilever beam with a constraint at one end and a force applied at the 

free end (as in Figure 2.4) Equation 2-6 can be written as:

6  1 1c = — 2-7

Assuming that the shear forces are zero, (in the case o f theoretical bending), only the 

bending moment is acting on the beam. At the application of the load the longitudinal 

axis of the beam will be changed into a curve. Thus, the resulting stresses in the beam 

are directly related to the curvature of the deflection curve. During the deflection of 

the beam the elements on the convex side of the beam lengthen as a result of a tensile
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longitudinal force and the elements on the concave side shorten due to a compressive 

longitudinal force (Figure 2.5)3.

Through the beam cross section there is a neutral axis where elements are neither 

longer nor shorter and hence there is no stress and strain present. The stresses and 

strains in the beam are proportional to the distance from the neutral axis. Thus, the 

maximum stresses and strains arise at the greatest distance in the cross section from 

the neutral axis. By considering the deformation of the beam over the cross section, 

the distribution of the internal forces can be calculated. If the beam has a rectangular

cross section and two adjacent vertical lines mm ’ and nn ’ are drawn on its sides (see

Figure 2.5), it can be found that during bending these lines will remain straight and 

will rotate so as to be perpendicular to the longitudinal axis of the beam. By using the 

theorem in geometry of the similarity of triangles nsjs’and o'nm the following can be 

written4:

S  s'Si s'Si nsi y
*  =  7  =  — r  =  — =  ^ L =  -  2 - 8A. ss mn o n  rc

o

r.c

neutral axis

Figure 2.5: Stresses in beams4.
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It can be seen that the longitudinal strains are proportional to the distance, y  (m), from 

the neutral axis or the neutral surface and inversely proportional to the radius of 

curvature. In order for the cross section not to change from the application of the force 

the internal and external forces must be zero and since there is no shear forces then 

I F  = 0. The force acting on an elementary area dA is4,5:

dF = <j  ■ dA = E ■ £ ■ dA 2-9

From Eq. 2-8, Eq. 2-9 becomes:

dF = - - y - d A  2-10
rc

Thus, the total is:

F =  [-■ yd A = > F  = — \y-dA = 0 2-11
J K r yrc r.

For Eq. 2-11 to be equal to zero either:

—  =  0 2-12

or

Jy-dA  = 0 2-13

O f course E/rc £  0, hence in this case the x-axis (the centroidal axis) is the axis where 

Eq. 2-13 is equal to zero and therefore the neutral axis passes through the centroid of
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the cross section. The stresses on the beam have a resulting internal moment, Mint 

(N-m):

dM mi = <J - dA • y  2-14

From Eq. 2-3 and Eq. 2-8:

cr = £ • — 2-15
r c

So Equation 2-14 becomes:

dMi x = - - y y d A  = - - y 1 - d A ^ M i a = -  [y2 dA 2-16
r  r r J

The internally applied moment, Mi„u must be equal to its producer, which is the 

externally applied bending moment, M. The integral in Eq. 2-16 is defined as the area 

moment o f inertia, In (m4). The area moment of inertia is a tool, a mathematical 

expression rather than a physical representation which was introduced by Euler in the 

early 19th century. It is defined as the product of the area times the square of the 

distance o f the area from the reference axis. For the area in Figure 2.6 the moment of 

inertia around a reference y-axis parallel to the y-axis will be5:

din . = (d  + x)2 • dA = d 2 • dA + x2 • dA + 2 • x • d  • dA =>

Iny = d 21dA + j x 2 • dA + 2 • d  • jx  • dA = d 2 • A + Iny + Inc 2-17

where Iny and Inc are the moment of inertia and the first moment o f area respectively 

about the y-axis. If the y-axis is passing through the centroid o f the area then Inc and 

Iny become equal to zero.
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X

Figure 2.6: Calculation of inertia5.

Thus, for a rectangular parallelogram, (of width w (m) and height h (m)), with regard 

to the jc-axis and jp-axis passing through the centroid (Figure 2.7)6:

a  y-axis

h
y

dA
\ I d

 ►
x-axis

h/2

w

Figure 2.7: Calculation of area moment of inertia for a rectangular parallelogram6.

dA = w-dy 2-18
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From Eq. 2-17 and Eq. 2-187:

dln = y 2 -dA = y 1 - w dy=> In = w- /  -dy = [y3t Zi = 2-19

By combining Eq. 2-15 and Eq. 2-16, the equation known as the flexure formula, is 

found that shows the stress at any point in the cross section o f the beam:

a  = 2-20 
In

From this equation it can be seen that in order to calculate the stresses in the beam, the 

parameters under consideration are the geometry o f the cross section, the distance 

along the cross section from the neutral axis and the externally applied moment.

Thus, Equation 2-16 can be written as8:

1 M
—  =   2-21
r. E  In

The E-In term states the resistance of an elastic body to deflection by an applied force 

and it is termed stiffness.

Combining Eq. 2-5 and Eq. 2-21:

dO = - ^ — -ds 2-22
E-In

Since the two adjacent cross sections mj and m2 , (in Figure 2.4), are very close, and 

d6 is very small then ds &dx. Hence:
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M  r* 1 l e t  F  •£dO = - ^ —  dx=>®=  f — -— M d x  = — —  f F  ’( £ - x ) - d x  = ————  2-23
E -In  E -In  E  In 2 E -In

The deflection, & is measured along BB ’ (Figure 2.4) and is equal to:

d£  = (x + dx)-d0  = X ’dO + d x 'd 0  = x - — dx 2-24
E I n

This can be written as

rB M  , 1 et F - i  _
C - \  x  dx = -------  x- F  ■(£-x)-dx = ----------  2-25
^ E  In E -In  ^0 3 E In

2.3 Elastic S train Energy

When a load (tensile, compressive or bending) is applied on a piece of material, 

within its elastic region, it is deformed; the work done is stored as energy. After the 

removal of the loading, the material will return to its initial state as a result o f the 

releasing of the stored energy. This energy is called elastic strain energy (J) and it is 

stated as10,11:

Work done = W = — F  S  2-26
2

The stored energy per unit volume is:

, _ Work done _  J_ F  8  2_2 y
Volume 2 A - £

From Eq. 2-3 and Eq. 2-8, Eq. 2-27 becomes an equation that shows the relationship 

between the energy stored and the stress applied to the member10, u :
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U' a e 1  £1
2 E

2-28

2.4 Cantilever nth-layer Beams

The moment-curvature relationship (Eq. 2-21) for a composite beam o f nth layers can 

be determined from the condition that the moment resultant o f the bending stresses is 

equal to the bending moment acting at the cross section12,13.

M  = M l + M 2 +--- + M ll = E ' - ”»■ + ■ ■ ■ + E± - In-*-  =
rc rc rc

_ Er In ,+ E 2 -In2 + --  + En In, 2 2 9

In order to calculate the moment of inertia of each layer, the distance, d , between the 

neutral axis and the centroid of each layer needs to be determined (Appendix A). The 

general formula that defines the distance d  is14:

d_ =
£ ( £ . - * 4 . )

Z m ,
2-30

where is the distance from the centroid of the layer in question to the centroid of 

reference layer n and An is the cross sectional area of layer n.

The bending stress (Eq. 2-15) in the composite beam will be the sum of the stresses of 

each material:

E , ‘y E 2 -y  E  • y  O’t ==CT1 + (T2 + ••• + <Tn = -■ + 2~ +••• + - ”— 2-31
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From equations 2-29 and 2-31 the bending stress equation for a composite beam can 

be found15:

a, = M - y
Ex+ E 2 +--- + En

Ex • Inx + E 2 • In2 + En • Inn
2-32

In the case of the deformation of composite or multi-layer beams the stiffness of the 

structure will change. This can be seen from combining Eq. 2-25 and Eq. 2-29:

______________ F J ? ______________

3 • (Ei • Inx + Ex Inx H—  + En • Inn)
2-33

2.5 Brief Principles of Fluid Mechanics

Solid, liquid and gas are the three states of matter. Liquids and gases both share the 

common properties o f fluids; they lack the ability of solids to resist a deforming force. 

For as long as the force is applied fluids will flow under the action of such forces 

deforming continuously. Liquids and gases also have many distinctive characteristics 

of their own. Liquids are usually regarded as incompressible. A set mass of liquid 

occupies a fixed volume, irrespective of the size of its container and in the case where 

the volume o f the container is greater than that of the liquid, a free surface is formed. 

Unless restrained by a vessel, a given mass of gas will have no fixed volume and will 

continuously expand filling any vessel in which it is placed without forming a free 

surface16, 17. In gases the molecules are in constant, random motion colliding 

frequently with the walls o f the containing vessel and each other. During the 

collisions a change in velocity and therefore a change in the momentum of the 

molecules take place. The measure of the average linear momentum of the moving 

molecules is the pressure, P  (Pa), of the gas. Although pressure itself is a scalar 

quantity, it can be defined as the force, with a direction perpendicular to the surface, 

times the surface area. If  a gas is static and not flowing, the measured pressure, static
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pressure Ps, is the same in all directions. But if  the gas is moving, the measured
1 ftpressure depends on the direction of motion :

P ,=P ,+q  = P ,+ £ Y -  2-34

This is Bernoulli's equation for incompressible flow. The dynamic pressure, q , is a 

property of a moving flow o f gas that depends on the density, p, and the velocity, w, of 

the gas18.

When a fluid flows over a solid surface the velocity of the part o f fluid in contact with 

that boundary will stick to it, and will, therefore have the same velocity as that 

boundary. This is the non-slip condition of fluid mechanics. Moving away from the 

boundary the velocity o f the successive layers of fluid will increase, mainly as a result 

of viscosity. Shear stresses will therefore develop between the layers o f fluid moving 

with different velocities. Mathematically this can be described by Figure 2.8 that 

represents an element o f fluid (abed) in a tube under the application o f a force, F 16.

C

Figure 2.8: Flow of a fluid particle in a tube16.

The force per unit area is the shear stress, r, which is proportional to the deformation, 

y, (shear strain). Since solids can permanently resist shear stresses, y, will be a fixed 

quantity for a given r. In the case of fluids, y will continue to increase with time, 

hence the fluid will flow (a ’b 'cd). If a particle at a radial distance r from dc (the tube 

wall) moves a distance x  from point e to e ’, then at small angles the shear strain will 

be y = x/r. The velocity o f the particle will be u = x/t, hence the rate o f shear strain is
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= x/r -t = u/r, which is the change of velocity with r and can be re-written as du/dy.

Assuming that the shear stress is proportional to the shear strain, then19:

du „
t = vd •—  2-35

dr

The term Vd (Pa s) is the constant that depends on the fluid under consideration and is 

known as the dynamic viscosity of the fluid. This equation is Newton’s law of 

viscosity and it shows that the velocity of fluid increases as we move away from the 

boundary, i.e. the tube wall. The force balance due to pressure difference at r over a 

tube leng th^ is19:

n - r 1 -hJ> = 2 ' 7 t ' r ' t - T  2-36

Combining equations 2-35 and 2-36:

/r • r 2 • AP - 2  - n - r - l 'V ,
du
dr

du _ r-A P  
dr 2 • t  •v,

2-37

Solving for u:

AP r  ■ 1 AP , 2 .2x= ------------------r dr   (r - r  ) - u
2 -v d •£ 4 v ,  •£

AP

d

f
f r '

2 >

1 -
V J

2-38

Where u is the fluid velocity at the radial point r, r is the radius o f the tube, and umax is 

the maximum velocity, located at the axis of the tube. This equation gives a parabolic 

profile of u across the tube19. From the parabolic profile of fluid velocity in a tube the 

nature of fluid motion and the interactions between fluid particles can be described. 

Flow profiles can be separated to categories depending on the velocity o f the fluid; 

laminar when the velocity is low and turbulent when it is high. In the laminar flow, 

the layers of fluid present smooth flow patterns without any fluid particle mixing (at

G. S. Katranas, “Design and Development of Bilayer Sensor Systems for Biomedical and Automotive
Applications”, Ph.D. Thesis, Cardiff University.



26

the macroscopic level). In the turbulent flow, fluid velocities are higher and particles 

move at all angles forming unstable patterns. The transition from laminar to turbulent 

flow in tubes is a function o f the fluid velocity, dynamic viscosity and tube diameter, 

dm and is defined as:

2-39

where Re is the Reynolds number. In a straight tube when the Reynolds number is less 

than 2100 the flow is considered laminar and when it exceeds 4000 the flow is 

turbulent. The flow between these two values is referred to as the transition region 

where motion can be either laminar or turbulent19,20.

2.6 Summary

A brief overview o f the physics involved was given in this Chapter. This is important 

as it gives an understanding of how an applied force can deform (deflect) and stress 

the bilayer strip and also how the size and number o f layers affect its mechanical 

characteristics. The effect o f the force on internal stresses of the material is where the 

universality o f the bilayer sensor lies. Applications involving displacement, force, 

fluid flow or generally curvature change of the bilayer strip due to bending, are 

related to the creation o f internal stresses and hence changes in the structure of the 

material.
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Chapter 3 Magnetostriction and Amorphous Metallic Alloys

3.1 Basic Principles of Magnetics

The generation o f a magnetic field, H  (A/m), takes place when an electrical charge is 

in motion due to the flow o f an electrical current, I  (A), flowing through a conductor. 

In the case of a infinetly long circular conductor (solenoid) o f N  turns and t  length, 

the relationship between the magnetic field and the current is given by:

H  = N — 3-1
I

The intensity o f the magnetic field at any point in the magnetic field is a measure of 

the force exerted on an electrical charge moving through the field. When the current 

generates the field H  in a medium, such as air, then the response o f the medium is 

defined as its flux density, B (T). The relationship between B  and H  is stated as1,2:

B = H 'H  3-2

where the permeability, n, denotes the “easiness” of magnetisation of a medium in the 

presence o f a magnetic field. In the case of a ferromagnetic medium Eq. 3-2 

becomes2:

B = jli0(H  + M ')  3-3

where no is a constant, referred to as the permeability of free space and it is equal to 

= 471-1 O'7 (H/m) and M ’ (A/m) is the magnetisation of the magnetic material and it is 

defined as the atomic magnetic moments, mm per unit volume, V1,2:
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The relationship between the magnetisation and the magnetic field is given by1,2:

M'= x'-H 3-5

where x ' is the magnetic susceptibility of the material. By substituting Eq. 3-5 into Eq. 

3-31’2:

B = n 0H  + ju0x 'H  = //0(1 + x ')H  3-6

The term (1+*') = //r, where the term [xr is the permeability o f the ferromagnetic
1 0medium and termed relative permeability ’ . Comparing Eq. 3-2 with Eq. 3-6 the 

permeability^ is expressed as1,2:

M = M0 'Mr 3-7

There is another way o f expressing flux density by the number of flux lines, 0  (Wb),
1 ypassing through a unit area, A , ’ :

<DB = —  3-8
A

When the magnetic flux, 0 ,  changes with time (d0/dt) it can induce an electro-motive 

force (e.m.f), which in turn cause a current to flow through a coil o f N  turns, in a 

direction that opposes the flux. The induced e.m.f. can be expressed in volts by:

dd>
v = - N —  3-9

dt

Combining Eq. 3-8 and Eq 3-9 it can be seen that a time dependant magnetic 

induction can generate an electric current:
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v = - N A —  3-10
dt

Expanding Eq. 3-2 with Eq. 3-1 and Eq. 3-7:

From Eq. 3-11 the rate o f change of flux density is:

dB N  d l
—  =  H Qf i r   3-12
dt 0 r £ dt

Substituting Eq. 3-12 into Eq. 3-10:

N 2A d l
v = -juQjur -------------  3-13

0 r I  dt

The rate of change o f current in a coil results in the generation of an e.m.f. and the 

relationship between them is3:

v = - L —  3-14
dt

where L (H) is the inductance of the coil that opposes the change of current. The 

dependence o f inductance on the permeability of the medium, the number of turns and 

the dimensions o f the coil can be seen by merging Eq. 3-13 and Eq. 3-14:

r d l  N 2A d l  T N 2A- L —  = - f i Qur --------------=>L = ju0ur --------  3-15
dt 0 r £ dt ^ r I
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3.2 Magnetostriction

3.2.1 Principles of Magnetostriction

The electron revolution around its self and about the nucleus of the atom is conducted 

in a clockwise or anticlockwise direction depending on the placement of the electrons 

in the atom. It is these spin motions of electrons in an atom that are responsible for the 

magnetic moments and hence magnetisation4. A simple illustration of the relationship 

between magnetostriction and spin-orbit coupling is shown in Figure 3.1.

Paramagnetic
StateAbove Tc

f  H=0
Spontaneous

Magnetostriction

i \
Field Induced 

MagnetostrictionBelow Tc {

Forced
MagnetostrictionV

H > Hs
-►

Figure 3.1: Mechanism of magnetostriction5.

In the diagram the black dots depict the atomic nuclei, the arrows show the net 

magnetic moment per atom and the oval lines represent the electron cloud of each 

nucleus, distributed non-spherically around it5. The exchange interaction between two 

neighbouring spins is opposed by the thermal agitation of the atoms caused by the 

increase in temperature5. Thus, when the material is heated above its Curie
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temperature, Tc, the magnetic moments become randomly oriented (Figure 3.1). The 

spontaneous magnetisation occurring below Tc, during the cooling of the material, 

rotates the spins and the electron clouds into an ordered state.

The magnetic alignment o f atoms takes place within small volumes or domains of the 

bulk material. In an un-magnetised sample, the net magnetisation of the specimen 

within the bulk material is zero6,1. The ordering of the magnetic moments has the 

effect of increasing the distance between adjacent atomic nuclei. Thus, the original 

length, -t ’ of the sample will become -£ '+A-6 ’ = €. If a strong magnetic field is applied 

vertically the electron clouds will rotate into the direction of the magnetisation vector, 

reducing the distance between the atomic nuclei by A-C. The phenomenon were by a 

material experiences a change in dimensions when magnetised is termed 

magnetostriction, A, and it was discovered by Joule in 18425:

Where -t is the length of the material in the absence of H  and A€ is the change in 

length under the application of external field. The case depicted in (Figure 3.1) is for 

materials that exhibit very large values of field induced magnetostriction. Usually in 

most materials, the extend to which the electron spins are rotated by H  is very small5. 

There can be positive or negative magnetostriction depending on whether the material 

increases or decreases respectively in length as a result of an increasing field.

At magnetic fields above saturation, termed forced magnetostriction (Figure 3.2), the 

material is accompanied by changes in the materials volume5. Magnetostriction 

depends greatly on the internal structure of the magnetic material. When the spins 

inside a domain with a magnetisation are either parallel or anti-parallel to the external 

field it is said that they are in an easy direction towards the field, [100], and they do 

not experience any rotational force. If the spins inside the domain make some angle 

with the field direction (Figure 3.3a), then they start to rotate towards the field 

direction. The spin rotation will result in an increase in the volume o f the domain at 

the expense of other domains with magnetisation at an angle to the external field.
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Forced
Magnetostriction

Saturation

5 106 H (A/m)10‘ 10 '

Figure 3.2: Variation of magnetostriction with field strength7.

— \ H = 0 — ► — ► — — ►
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— ► — ► — ► — ►

a) c)

- * < ---
H > 0
X > 0< — — — <---

H »  0
X »  0

H = H,
X  — X c

b) d)
Figure 3.3: The effect of field to the domain magnetisation8.

As the magnetisation increases the domains with magnetisation at an angle to the 

external field will start to rotate (Figure 3.3b, c) and finally merge with the domains 

that are parallel to H  (Figure 3.3d). When the additional increase in external field 

results in no further changes in the magnetisation of the material then this is condition 

is termed saturation magnetisation. Magnetisation in directions at an angle to the easy 

axis will require larger fields to attain saturation magnetisation, hence requiring larger 

amounts of energy. This energy is known as magnetic anisotropy energy9. If the 

material in question is a cubic crystal then this energy can be expressed containing the 

direction cosines between the field and the crystal axis (Figure 3.4). Assuming that 

the field makes angles a, b, c with the crystal axis, a/, a2 , are the cosines of these
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angles and Kj (J/m ) a material constant then the anisotropy energy, Wk (J/m ), will

WK = K x {a*al + a \ a \  + a* a?) 3-17

z

[001]

[10

[010] 
 ►

y

x

Figure 3.4: The direction cosines aj, a2, aj between the field and the crystal axis4.

Since the magnetisation o f the magnetic sample depends on the internal structure then 

the magnetostriction in a crystalline material will be defined by direction cosines 

using the Becker-Doring equation5:

where Xwo and Xm  are the saturation magnetostrictions (induced strain) 

conventionally measured when the crystal is magnetised in directions [100] and [111] 

respectively and pi, P2, Pi are the cosines of the angles between Xs and the crystal axis. 

In the case where the strain is in the same direction as the magnetic field Eq. 3-18 

will be reduced to5:
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~  '^100 3(^111 ^100 X ^ I  & 2  ^1  ^ 2  ) 3-19

In the case of isotropic materials (Xs=X/oo-X///) Eq. 3-18 can be further simplified:

A, a —  A,
0 2 5\

3-20

where Xe is the saturation magnetostriction at and angle 6 to the direction of the 

magnetic field.

3.2.2 Inverse Magnetostriction

Villari in 1864 found that when a stress is applied the direction of domain 

magnetisation changes due to the externally induced magnetostriction; this 

phenomenon is termed inverse magnetostriction. This in turn affects magnetic 

properties such as permeability. The elastic elongation o f a magnetic material 

produces a change in permeability in the direction of the applied force. A material

with positive X will show an increase in its permeability under tensile stress where as
1 ̂a negative magnetostriction will display a decrease in its jj. . Taking as an example a 

material with positive magnetostriction it can be seen that when the sample is 

magnetised with a field Hi (along [100]) at oj = 0, it has a magnetostriction value Xj. 

If a tensile force is applied (along [100]) at 0 2  > 0 7 , the magnetisation of the sample 

increases to H 2 > Hi. For this process to take place the material must posses some 

magnetisation because no change in / /w ill  take place if the material is stressed in a 

demagnetised state7.

In the case o f inverse magnetostriction the energy, Wt (J/m3), which governs the 

direction of magnetisation will be influenced by the material’s magnetostriction and 

anisotropy7:
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-3A 111a ( a la 2/ 1r 2 + a 3a 2/ 3/ 2 + a ia 3/ 1/ 3) - - 3-21

where the second and third term in the equation are the magnetostriction energy, W\

material and yi, y2, j 3 are the direction cosines between the stress and the crystal

where 6 is the angle between the magnetisation and the applied stress.

3.2.3 Magneto-mechanical Effect

The magneto-mechanical effect is the phenomenon where the mechanical stresses are 

interconnected with the change in magnetisation. The applied field is producing 

magnetostriction on the material, elongating or contracting it depending on the sign of 

k. This deformation is the result of the rotation of magnetisation inside the material11. 

The change in dimensions is caused by the rotation o f the magnetisation or 

displacement o f 90° domain walls. The application of stress has an effect on the 

magnetisation o f the magnetic material. In the case o f a positive magnetostrictive
o

material, stress will increase the magnetisation Af and raise fi . Mathematically the 

stresses, the applied field and magnetostriction are related by12,13:

(J/m3), o f the cubic crystal that arises under the application o f a uniform stress to the

axis10. If the material is isotropic, the first part of the equation can be omitted and both 

Xioo and k m  will be substituted by ks. Eq. 3-21 then is simplified to5:

fV =WA ct cos20i x 2 s 3-22

cr = 3-23
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3.3 Amorphous Metallic Alloys

The bilayer sensors use as their operating principle the inverse magnetostrictive 

effect. Since the demand is that the sensor is sensitive, robust, reliable and compact, 

the magnetic material that is used should have such qualities as to favourably exploit 

the operating principle. Amorphous alloys posses a unique set of magnetic and 

mechanical properties that make them near ideal in stress/displacement sensors. Due 

to the lack of crystal structure, near isotropic at the macroscopic level, the 

magnetostriction of amorphous alloys is the same in all directions13. Amorphous is 

derived from the Greek word “morphe”, which means “form” or “shape”. Thus, the 

word “a-morphous” means without form or shape. Amorphous are materials that have 

not got any ordered crystalline structure (at the macroscopic level) (Figure 3.5).

Metalloid (eg. B, Si, C) Metal (eg. Fe) Metalloid (eg. B, Si, C)

Crystalline Amorphous

Figure 3.5: The order o f individual atoms in the crystalline and amorphous structure14.

The amorphous state forms mostly by controlling the rate at which the molten alloy 

composition is cooled. When the material is still in liquid state the atoms and 

molecules have enough thermal energy to move randomly in any direction. Any 

temperature decrease is accompanied by a reduction in the mobility of the atoms and 

hence an increase in the viscosity of the substance7. One of the characteristics of the
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amorphous alloy compositions is the fact that they exhibit large viscosity changes 

over narrow temperature intervals. It is these large changes in viscosity that causes the 

alloy to turn into a rigid glass at certain temperature. At this temperature the atoms 

have their mobility reduced at such extent that they are restrained from forming a 

crystalline structure. In other words the molten alloy is cooled so rapidly (at least at 

106 K/s), that its atoms become frozen in their liquid configuration7.

If the alloy was then heated back to a liquid state and then cooled down at a slower 

rate then the alloy would form a crystalline structure. Amorphous alloys can be 

created using a number o f possible chemical compositions. The principle composition 

of ferromagnetic amorphous alloys is MxSioo-x where M  represents one or more metals 

such as Fe, Co and Ni, S  represents one or more metalloids (semiconductors) and x  is 

the metallic atomic percentage in the composition (70 % < x  < 86 %)7.

3.3.1 Production

The production o f amorphous alloys can be performed using many methods. Usually 

manufacturers o f amorphous alloys use the drum quenching technique in order to 

mass-produce continuous lengths of amorphous ribbons at relatively fast rate (Figure 

3.6)7. In this technique the materials are placed in a quartz tube where they are heated 

until they reach a molten state. When the molten state has been reached, inert gas (e.g. 

Argon) is used to press the liquid composition through an orifice at the bottom of the 

quartz tube. The composition which is ejected at high speeds comes in contact with a 

Cu or CuBe rotating drum which acts as a heat sink; hence the molten composition is 

quenched from its liquid phase to an amorphous state. These amorphous ribbons can 

then be cut to the desirable size and agglutinated (using a Cyanoacrylate adhesive) on 

a non-magnetic foil in order to create the bilayer strip that is used in the sensors.

These strips have been developed with thickness of the order o f tens of micrometers. 

One of the disadvantages of such bilayers is the production process i.e. the 

agglutination. The agglutination layer effectively forms a third layer (thickness ~75
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pm) which can be detriment to the overall performance of the sensor. These problems 

can be avoided if a different bilayer manufacturing process, as well as the amorphous 

material production, is used7.

Gas Pressure

Quartz
Tube

Molten
Composition

Orifice

Heating
Winding

Amorphous
RibbonRotating 

Drum "

Figure 3.6: Production of amorphous ribbon by drum quenching7.

The alternative method is the thin film deposition process such as the RF sputtering 

technique15,16. In this process the magnetic films are grown by RF magnetron sputter 

deposition on a 3 inch diameter (76.2 mm) non-magnetic substrate (AlMg or CuBe)xl. 

The target materials used were Metglas® 2605SC and 2705M (Appendix E) as seen 

in Table 3.1l8' 19.

M aterial Metglas® 2605SC Metglas® 2705M

Metglas® Composition
Metglas® Magnetostriction 
Metglas® Thickness (pm)

Substrate
Substrate Thickness (pm)

Bilayer Fabrication

30-1 O’6)
F e 8 i B i 3 5S i 3 j C 2  

tts*
2.9 

CuBe 
25 
RF

C 0 6 9 B 12 S i i 2F e 4M o  2 N i /

( i ,« 0 )
5 2.9

CuBe AlMg
25 30
RF RF

Table 3.1: Characteristics of the bilayer strip materials manufactured with the RF

sputtering technique18,19.

The bilayer strips were grown using the thin film magnetron sputtering system at 

Cardiff University (Figure 3.7). The base pressure of the sputtering chamber was 67
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fiPa (0.5 pTorr), and using a sputtering power of 75 W and a pressure of 0.53 Pa (4 

mTorr) of argon which produced a deposition rate of 0.1 nm/sec (Appendix E)17. The 

thickness of each film was measured in situ by a thin film thickness sensor. The 

disadvantage of this method is that it is a very slow fabrication technique which is not 

for mass-production15,20.

Figure 3.7: The thin film magnetron sputtering system at Cardiff University17.

3.3.2 Properties

The magnetic properties of amorphous alloys present them as the obvious choice for 

use in bilayer sensors. Because of the amorphous structure, (near isotropic at the 

macroscopic level), the magneto-crystalline anisotropy is almost non-existent7. Hence 

no extra energy is required to shift the magnetic moments towards the direction of 

stress or the magnetic field. However a small uni-axial anisotropy exists along the 

ribbon axis due to residue stresses during the manufacturing process (drum quenching
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technique). This can be removed through annealing; heating the material to achieve 

stress relief at temperatures around 150 °C -  250 °C7. Another interesting property of 

amorphous alloys is that their relative permeability can be much larger than 

conventional ferromagnetic materials. This means that under the same stress, a 

material with higher /ir will induce more H  in comparison with a material with lower 

relative permeability . As far as magnetostriction amorphous materials exhibit a range 

of As values, from 0 to 40-1 O'6 (approximately). Since the operating principle of these 

samples is the magnetostrictive effect, high values of As are desirable, which prompts 

to the selection o f Iron-based amorphous alloys7,14.

The bilayer sensors robustness relies mainly on the mechanical properties of the 

amorphous materials used. The high values of the Young’s modulus and the high 

tensile strength o f the amorphous alloys give the material a significantly increased 

elastic limit. This ensures that amorphous alloys can withstand high stresses and 

strains without incurring any plastic deformation. Another advantage of using 

amorphous alloys as the magnetic material in bilayer sensors is because they exhibit 

large bending fatigue limits. This makes certain that the material will withstand
7 7\continuous cyclic motion without incurring fatigue as early as crystalline material ’ .

3.4 Sum m ary

The amorphous magnetic materials that are used in these sensors tend to exhibit 

“sensitivity” to applied stress. When a bilayer sensor is physically bent at its free end, 

tensile stress develops along its length. This results in changes in the magnetisation of 

the strip and hence influences the relative permeability o f the material. These changes 

are detected by a pick-up coil, wound around one end o f the bilayer sensor, which 

produces the sensor signal as a result of changes in the inductance, AL. Thus, the 

change in AL corresponds to the displacement of the free end of the bilayer sensor. 

These materials also posses good mechanical properties such as high values of the 

modulus of elasticity and increased elastic limit. Thus, amorphous alloys can 

withstand high stresses and exhibit large bending fatigue limits.
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Chapter 4 Signal Modulation and Processing

4.1 Why M odulate?

The modulation o f the information signal in communication engineering is performed 

in order to convert the message into a form suitable for propagation over the 

transmitting medium1. Signal transmission over appreciable distance always involves 

a travelling electromagnetic wave, with or without a guiding medium. The efficiency 

of any particular transmission method also depends upon the frequency (Hz) of the 

signal being transmitted. By exploiting the frequency translation property of 

continuous wave modulation, (sinusoidal carrier modulation), the message 

information can be impressed on a carrier whose frequency has been selected for the 

desired transmission method. This efficiency can be made apparent by comparing 

modulated and unmodulated signal transmission. Unmodulated transmission of an 

audio signal contains frequency components of around 100 Hz (average male human 

voice frequency) , where as in frequency modulation (FM) broadcasting transmissions 

can be around 100 MHz. Taking into consideration that the efficient line-to-sight ratio 

propagation requires antennas that are at least 1/10 to 1/2 of the signals wavelength 

and that the wavelength and transmission frequencies are related by2:

Wavelength = 300 / frequency (MHz) 4-1

then for the unmodulated transmission, a 300 km long antenna is needed in contrast 

with the FM  broadcasting where only 1 m antenna can be used .

The modulation and demodulation of information signals is a concept borrowed from 

communication engineering and applied to magnetic sensors technology not to 

transmit information over a distance, but in order to detect displacement. When a 

bilayer sensor is physically bent at its free end (Figure 4.1), stresses, a, develop along 

its length.
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DisplacementMagnetic materialCoil

Non-magnetic material

Figure 4.1: Bilayer sensor physically bend at its free end.

This results in changes in the relative permeability, of the material. These changes 

are detected by a pick-up coil, wound around one end of the bilayer sensor, which 

produces the sensor signal as a result of changes in the inductance (H), AL, and hence 

its reactance X l 3’ 4. Thus, the change in AL corresponds to the displacement of the 

free end of the bilayer sensor. As part of an electronic circuit the bilayer sensor, acts 

as an inductor, L. Any changes AL may influence the alternating current (AC) that is 

used to excite the magnetic material, (Chapter 3), hence the properties of the output 

voltage signal. The main reason why AC is used is that in DC the excitation of L is 

non existent since the inductance depends on a time varying current. In principle DC 

excitation can be used to detect magnetisation dependence in stress but the output will 

be an extremely low-amplitude AC signal superimposed on DC, which would be very 

difficult to detect especially in the presence of noise.

When the displacement signal is conveyed through changes of the output waveform in 

amplitude, phase or frequency then the corresponding modulation scheme is 

amplitude (AM), phase (PM) or frequency (FM) respectively.

B FM

Time
a) b)

Figure 4.2: Classic AM, FM  and PM waveforms under a) sine or b) square vri
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4.2 Amplitude M odulation

In amplitude modulation the instantaneous amplitude, Vc, (V) o f the carrier waveform 

is varied linearly by the information (modulating) signal. A sinusoidal carrier 

waveform is mathematically represented by5:

vc =Vc - C0 S(6>c • t + <j>) — vc = Vc • cos(tf)c • t) 4-2

where the angular frequency coc = 2-Ttfc, f c is the carrier frequency (Hz) and (/> is the 

phase. If the modulating signal has the form of:

K = K - cos(co„ t + f> <MI >vm=Vm-c o s ■ t) 4-3

where the angular frequency com = 2-nfm, f m is the frequency of the information signal 

and (f> is the phase, then the AM  waveform is5:

VAM =  [ K  +  ■ COS(fi>„ • 0 ]  • COS(fflc • 0 4-4

When plotting Eq. 4-4 it can be seen that the amplitude o f the modulated carrier varies 

sinusoidally between the values of Vc + Vm and Vc - Vm (Figure 4.3).

Modulation Envelope
No 

Modulation V + Vvc vm

1

Figure 4.3: Amplitude modulation waveform5
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If

ym9H
F

mAM 4-5

where niAM is the modulation depth, then the AM  waveform becomes:

VAU = K  ■ C0SK  • 0  + mAM ■ K  ■ • o  • cos(tt>c • t) 4-6

From trigonometry:

cos(/l) • cos(i?) = • [cos(y4 + B) + cos(j4 -  5)] 4-7

Hence, from Eq. 4-6, Eq. 4-7 becomes5:

VAM = Vc ■ cos{coc • t )  + Vc . cos[(^m + C0c )  • t ] +  • co s[(^  -  coc )  • /] 4-8

Equation 4-8 shows that the AM  carrier wave contains three frequency components. 

The first term is the carrier waveform (Eq. 4-2). The second and third terms are the 

lower side frequency, LSF, and the upper side frequency, USF, respectively. The side 

frequencies are above and below the carrier frequency by an amount equal to f m 

(Figure 4.4).

V

v /2c

f - fc m 
LSF

Vc/2

f + fc m 
USF

Figure 4.4: The LSF  and USF when the modulation depth is equal to unity5,6.
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All three terms are waveforms of different frequencies. Eq. 4-8 shows that energy is 

added to the carrier vc in the form of the side frequencies. The information is 

contained in both side frequencies only and not in the carrier. The modulation factor 

is a measure of the amplitude of the information signal and at mAM — 1 the amplitude 

of each side band becomes half the amplitude of the carrier ( Vc 12). If the modulation 

depth is yham = 1, (100 % modulation), the peak to peak amplitude range of the 

composite waveform will be from 2* Vc to zero. The stronger the information signal is, 

the higher the modulation depth will be, but it should not exceed unity (itiam >1). This 

will lead to over modulation which will alter the modulation envelope and introduce a 

series of harmonics that will distort vam5’ 6•

4.3 VoItage-to-Current Converter (VCC)

Analogue voltage signals are susceptible to many factors, including the impedance of 

the wire that is used, the quality of the connections and in addition to that, voltage
<7

signals, especially small signals, are very susceptible to noise . Converting voltage 

signals to current signals gets rid of these problems very easily. Once the signal is in 

current form, the impedance of the wire, the distance and the connection resistance do
n

not change the current value . The simplest way to convert voltage signals to current 

signals is by connecting a shunt resistor across the voltage source. Although this 

seems an ideal solution in reality it does not work because the signal source usually 

has high output impedance so it can not supply a lot of current7. In order to overcome 

the problem o f high output impedance, an active circuit utilising an operational 

amplifier is used. An operational amplifier buffers the output o f the signal source so 

that the current drained from the signal source is negligible. The operational amplifier
7 ftinstead provides the necessary current ’ . An operational amplifier based voltage-to- 

current (VCC) circuit is shown in Figure 4.5.

The currents /;  and h  are:

V - V
4-9

*4
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Figure 4.5: Operational amplifier based voltage-to-current converter9.

The currents through the input leads of an unsaturated operational amplifier can be 

neglected (due to very high input impedance). For an ideal operational amplifier the 

inverting amplifier gain is given simply by:

V\ R2
Vo

For II equations 4-9, 4-10 and 4-11 are combined to9:

4-11

y2 VL ■v{ Rf ■vL _V2 R, ■vL R3 + R'■vL R, Vl

*3 * 3

+
R■R< r2 ■R, R, r2■R< *3 r2■R* R R,

1
/ R* r 2

■ * ]

1 R, Rt '
V3 1 3

-1------ 1 4

* T
J

\ r2 '  R* J R, I r2,1
4-12

By making R 1/R2 = R4/R 3 = Eq. 4.2-4 can be written as:
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h - S - f c - V i )A,
4-13

Thus, a signal in current form and proportional to the input voltage difference is 

created. Obviously, grounding just one of the two voltage inputs makes either an 

inverting or a non-inverting VCC.

By replacing RL (O) with the bilayer sensor in Figure 4.5, the resistive element of the 

inductor which is its reactance Ax, (XL=2-7rf-L) will act as the load resistance of the 

VCC. Thus, the bilayer will be magnetised by a magnetic field, H, generated by the 

sinusoidal current ii o f  constant amplitude h  and frequency /  in the pickup coil. As 

seen from Eq. 3-11, the magnetic field, B, depends on the permeability of the bilayer 

strip and the current i. The induced voltage, vL, o f the pickup coil is given by Eq.

By displacing the free end o f the bilayer strip or changing its curvature, vl will change 

accordingly. The displacement information will be carried as changes o f voltage

4.4 Angle M odulation

Angle modulation is the modulation in which the angle o f a sinusoidal carrier is the 

parameter subject to variation. Considering Eq. 4-2:

It can be seen that the frequency o f the carrier or its phase is also available for 

carrying information. Although frequency changes and phase changes are

N 1 A d l
4-14

amplitude of vx; hence, amplitude modulation is achieved10

vc = Vc •cos(0pM) = Vc • cos(o)j + 4-15
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synonymous there is a difference between what is known as frequency modulation 

and phase modulation1 12.

Phase modulation is angle modulation in which the phase of a sinusoidal carrier is 

caused to depart from the carrier phase by an amount proportional to the 

instantaneous value o f the modulating waveform. The instantaneous phase must be 

linearly related to the amplitude o f the modulating signal vm:

<t>i = < / > c +  v m 4-16

therefore:

8 P M  =  a V *  +  & + v m 4-17

Substituting Eq. 4-17 to Eq. 4-1511, n :

v p m  = v c  cos(®c t  + fc + kp -Vm c o s -tj)=Vc cos(ac t  + mPM cos(a>m tj) 4-18

where kp is an arbitrary constant and itipm is the modulation depth.

Frequency modulation is angle modulation in which the instantaneous frequency of a 

sinusoidal carrier is caused to depart from the carrier frequency by an amount 

proportional to the instantaneous value o f the modulating waveform. The carrier
i 2frequency will vary by :

/ , = / . + v .  4-19

In the unmodulated carrier the angular velocity moves constantly through a distance 6

= Co-tint seconds. When the carrier is frequency modulated the angular velocity is no
• 1 2longer constant. The angle o f the carrier waveform will change according to :
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gfm = /» ,•< * =  \ 2 n - f r d t =  }2 •»■•[/;+v.]-rf< =

= 2 - x - f c -t + 2 - x -  f v m dt 4-20

Combining Eq. 4-15 and Eq 4-20, the expression for the FM  signal becomes:

v™ = K  -cos[fi>r -t + 2-71 ■ jv m •<*]

= V. • cos
k  f • V

a>. - t + —  — • sin(<2> • t)
Z-K- fm

= Vc • cos[tof • t + mFM • sin(<a„ • /)] 4-21

where mFM is the modulation depth and k/sn  arbitrary constant.

The relationship that differentiates PM  from FM  is the definition o f instantaneous

frequency. Instantaneous frequency is the rate o f change o f time o f the angle of a sine
1 0wave function the argument o f which is a function o f time :

angular frequency = —  angle 4-22

Applying Eq. 4-17 and Eq. 4-20 to Eq. 4-22 12 .

d_
dt

2 -TC-fc-t+ j v m dt + <j>c = a>c +vm +<pc 4-23

^ r [ 2 - x - f c -t + v + &]=*>„ + 4 -v m +&  
dt dt

4-24

From Eq 4-23 it can be seen that in the FM , the deviation o f the instantaneous 

frequency from its unmodulated value is proportional to the magnitude of the
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modulating waveform, vm. Whereas from Eq. 4-24 it is found that in a PM  system the 

deviation o f the instantaneous frequency from its unmodulated value is proportional 

to the magnitude o f the derivative o f the modulating waveform. Although PM  and FM  

are forms of angle modulation they are not essentially different. In fact, PM  and FM  

are inseparable in the sense that any variation of the phase of a sinusoidal carrier is 

accompanied by a frequency variation and similarly, any frequency change 

necessarily involves a phase change. Thus, the terms PM  and FM  merely indicate 

which parameter is made proportional to the modulating waveform and they represent 

two cases o f the same type o f modulation12.

The LSF  and USF o f a FM  or PM  waveform can be found by expanding their 

equivalent expressions. Thus, for the FM  (and similarly for FM )12' 14:

vfm = K  ' cos[©c • t + mFM ■ sin(fflm • <)] 4-25

Expanding Eq. 4-25 yields12'14:

vfm = K ' {  cos(ac • t) • cos[mFM • sin(com • /)] -  sin(<3>c • t) • sin[mFM • sin(tyw • /)] } 4-26

From trigonometry:

C0S["V a/ s in (^ «  • 0 ]  =  J q ■ m FM +  2  J 2 ' m FM COS( 2 °>m * 0  +  • • • 4 ' 2 7

sin[mrM sin(<y„ ■t)]=2 J l • sin{p)m -t) + 2 ' J 3 ’WipM sin(3£UOT •/) + ... 4-28

The coefficients Jn -m are called Bessel functions o f the first kind and order n and can 

be written as:

J  m - ^rnVfl (m/2)2 (m/2)4 (m/2)6
v 2 j  n !!(« + ! ) !+ 2!(« + 2)! l!(« + 3)! +

4-29
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where m is the modulation depth of PM/FM. By combining Eq. 4-27 and Eq. 4-28 

into Eq. 4-2913' 14:

vfm = Vc{JamFM cosa)ct - J , m FM[cos(coe -com) t-cos(a )c + a m)-t]+

+ J 2mFU [cos(&>r -  2 • com) • t + cos(oc + 2 • com )■/]+...} 4-30

which reveals an infinite set o f side frequencies whose amplitudes are determined by 

the Bessel functions JomFM, J i^ fm etc. When mFM is small there are few side 

frequencies o f large amplitude and when mFM is large there are many side frequencies 

with smaller amplitudes14. The relative amplitude o f the carrier JomFM varies with the 

modulation depth and hence depends on the modulating signal. Thus, in contrast to 

AM  the carrier frequency component of the PM/FM  waveform contains part of the 

message information. The number of side frequencies having appreciable relative 

amplitude also depends on mFM. With mFM «  1 only Jo and Ji are significant, so the 

spectrum will consist o f  carrier and two side frequencies but if  mFM »  1 there will be 

many side frequencies13.

4.5 Oscillators

When the bilayer sensors are placed in an electrical circuit, they act as inductors 

whose reactance is varied during the displacement/stress o f the bilayer strip. The 

generation o f a FM /PM  waveform can be performed using a device/circuit whose 

sinusoidal output will undergo a phase or frequency deviation proportional to the 

change in the sensor reactance. In communication engineering the most common way 

to generate a FM /PM  waveform is by varying the reactance o f the tuned circuit of an 

oscillator15. Oscillators are circuits that produce specific, periodic waveforms such as 

square, triangular, saw-tooth and sinusoidal. Operational amplifier (op-amp) 

oscillators are circuits that are intentionally designed to remain in an unstable or 

oscillatory state. Oscillators are useful for generating uniform signals that are used as 

a reference in applications such as audio, function generators and communication
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systems. Op-amp sine-wave oscillators operate without an externally applied input 

signal. Instead a combination of positive and negative feedback is used to drive the 

op-amp into an unstable state, causing the output to cycle back and forth between the 

supply rails at a continuous rate. The frequency and amplitude of oscillation are set by 

the arrangement o f passive and active components around the op-amp. The simplest 

form of a negative feedback system is used to demonstrate the requirements for 

oscillation to occur. Figure 4.6 shows the block diagram for this system in which Vin 

is the input voltage, Vout is the output voltage from the amplifier gain block A, and /? is 

the signal, called the feedback factor, which is fed back to the summoning junction. 

Er represents the signal error term that is equal to the summation of the feedback 

factor and the input voltage16. The corresponding classical expression for a feedback 

system is derived as follows:

Vout -  E r-A 4-31

Er = Vm -/3-Vout 4-32

Vout

Figure 4.6: Canonical form of a feedback system16.

By combining Eq. 4-31 and Eq. 4-32 16:

Khml -  y  -  B -V  => V =V -I— +By m r '  y out y in y out I ^ 4-33

Oscillation results when the feedback system is not able to find a stable steady-state 

because its transfer function can not be satisfied. The system goes unstable when the
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denominator in Eq. 4-33 becomes zero, i.e., when 1+Ap = 0 or Ap=  -1. The key to 

the oscillation is A p=  - /. Satisfying this criterion requires that the magnitude of the 

loop gain is unity with a corresponding phase shift of 180° as indicated by the minus

sign16:

A- P  = Z -1 8 0 0 4-34

As the phase shift approaches 180° and \Ap\->\, the output voltage of the now 

unstable system tends to infinity but, is limited to finite values by the power supply 

(rail voltage). When the output voltage approaches either power rail, the active 

devices in the amplifiers change gain. This causes the value of A to change and forces 

A p  away from the singularity; thus the trajectory towards an infinite voltage slows 

and eventually halts. At this stage the system stays linear and reverses direction, 

heading for the opposite power rail. This produces a sine waveform at the output16.

4.5.1 Phase Shift Network

The 180° phase shift in Eq. 4-34 is introduced by active and passive components. 

Oscillators are dependant on passive-component phase shift because it is accurate and 

almost drift-free. Each RC network in Figure 4.7 contributes to a 60° phase shift, and 

because 180° of phase shift is required for oscillation, three poles are used in the 

oscillator design16.

PM

R C  N etw o rk

Figure 4.7: Classic phase shift oscillator17.
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The frequency of the output waveform can be calculated by (Appendix B):

/  =
2-jt  R- C

4-35

Since frequency and phase are interconnected, a change in the value of the passive 

components of the oscillator will shift the phase of the output waveform. By placing 

the bilayer sensor in one of the RC networks (Figure 4.8), any displacement of the 

bilayer strip will change the reactance of the sensor coil, hence changing the phase 

shift contribution of that network; Hence phase modulation is achieved.

PM

RC N etwork

Figure 4.8: Phase modulating circuit.

Using classical network analysis, (Appendix B), the frequency of the output 

waveform can be calculated by:

/ =
V3/g;C + £ 
2xRCy[6L

4-36

4.5.2 Colpitts

The FM  was achieved using a Colpitts oscillator (as seen in Figure 4.9). This circuit 

utilizes an LC tank with an inductor connected in parallel to two series capacitors (F).
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L+A]

X
C i :  R VFM

LC Tank

Figure 4.9: Colpitts oscillator18.

The output is a sine wave at a frequency,/, which is defined by the values of L and C 

(Appendix B):

The bilayer sensor acts as the inductive component of the Colpitts oscillator. Any 

change AL in the inductance L of the pickup coil will shift the operating/oscillating
10

frequency f ro m /to /+  A f  Hence, frequency modulation is achieved .

4.6 Signal Demodulation

Extracting or recovering information from a modulated signal is a procedure known 

as demodulation or detection. Signals with different characteristics such as amplitude 

or angle modulation require different methods of demodulation. In both cases it is 

essential to ensure linear demodulation in order to minimise distortion19.

Techniques such as low-pass or band-pass filtering are not able to demodulate 

successfully amplitude or angle modulated waveforms. Signals that carry modulation 

occupy a finite bandwidth which determines the smallest possible filter bandwidth. 

Also by designing filters with high selectivity (centre frequency/bandwidth) results in

/  = 4-37
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a tightly tuned system; hence problems arise in the form of susceptibility to drift and 

the inability to follow small variations in the frequency of the signal. Thus, alternative 

techniques are used for recovering information from a modulated signal20.

The two main types o f linear demodulation for AM  waveforms are the envelope and 

the synchronous (lock-in amplifier) detectors.

4.6.1 Envelope Detector

The principal operation of the envelope detector is to “follow” the envelope of the AM  

waveform because the shape of vam is similar to that of the information signal vm. 

Thus, the information can be recovered electrically by rectifying the full AM  signal to 

produce an output that is linearly proportional to its envelope. The basic circuit of an 

envelope detector consists of a diode in series with an RC tank (Figure 4.10). Even 

though the diode is a non-linear device, the V-I characteristics of it are considered 

linear at large input signals19. The charging and discharging of the capacitor (at time 

constant = R-C) will half-wave rectify the AM  waveform. The output signal produced 

will follow the modulation envelope Ve — Vc + vm. The Vc is a DC term which can be 

removed with the series capacitor Cs, at the output.

ID
C sv AM R ,- C  m

• --------------------------------- T -----------------------------•
Figure 4.10: Envelope detector

Mathematically, envelope detection is possible through a technique called Hilbert 

transform21,22. The Hilbert transform of a signal s(t) is denoted by s(t) and is obtained 

by shifting all the frequency components of s(t) by n il  (90°)23,24. A function s(t) and
21 25its Hilbert transform s(t) can form together a complex signal ' :
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S(t) = 5(0 + j  • i ( 0  4-38

Using Euler’s formula:

eMt = cos {co • 0  + j  sin(<y • t) 4-39

the signal S(t) can be represented as:

S(t) = E' ( t ) -eMt) 4-40

where (p(t) is the phase o f S(t) given as:

(p(t) -  tan -i 4-41

and E ’(t) is the envelope o f S(t):

E'(t) = \S(t)\ = yls2(l) + s 2(t) 4-42

For the demodulation o f the A M  waveform via the Hilbert transform:

VAM = [K + Vm (cos ®«0]cOS(fflc/) = E'(t)  COS(wct) 4-43

and

Vam = E ’(t)&in(a>j) 4-44

Converting Eq. 4-43 and Eq. 4-44 in a complex signal as in Eq. 4-38:

Vmv = v AM + j  ■ V AM = E '(0  Cos(^ c 0  + j ' ^ '( 0  sin(©c0  4-45

From Eq. 4-39, Eq. 4-45 becomes:
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4-46

The envelope of v A m  can be found from:

E \t)  = v,‘eJ  = K + K  cos(wct) = Vc +vm 4-47

The component Vc can then be removed, leaving only the information signal vm; hence 

AM  demodulation is achieved.

Envelope detection is only possible when the signal to noise ratio (SNR) is above 1:1. 

Below the 1:1 threshold the envelope detection deteriorates rapidly and the 

demodulated output becomes grossly distorted. The SNR o f the modulated signals that 

arise from the displacement of bilayer sensors is usually below the 1:1 threshold. 

Thus, the envelope detection is not the preferred method here for signal demodulation. 

On the other hand synchronous detectors (lock-in amplifiers) have the ability to
0C\measure signals accompanied by relatively high levels of noise and interference .

4.6.2 Lock-in Amplifier

A lock-in amplifier has the capability o f recovering small AC  signals (nV) in the 

presence of overwhelming background noise. This technique achieves this by acting 

as a very narrow band-pass filter that removes the unwanted noise and allows the 

desired signal to pass through. The capability of the lock-in amplifier can be seen in
ftthe following example :

If the information signal is a 10 nV sine wave at 5 kHz it needs amplification in order 

to be measured. Taking into consideration a good amplifier with 1000 gain, 1 MHz 

bandwidth and low input noise of 5 nV/VHz, then the output will be the information 

signal amplified to 10 pV (10 nV • 1000 gain) and broadband noise o f 5 mV (Vl MHz 

• 5 nV • 1000 gain). Obviously the signal is buried under the noise; even if  the signal

G. S. Katranas, “Design and Development of Bilayer Sensor Systems for Biomedical and Automotive
Applications”, Ph.D. Thesis, Cardiff University.



61

is band-passed filtered at a very good filter selectivity of a 5 kHz centre frequency and 

3db bandwidth (point o f a 50 % drop to the signal power) of 50 Hz, the noise level 

will be 35 pV (V50 Hz • 5 nV • 1000 gain). Accurate measurement is not possible to 

take place since the output noise is greater than the information signal. In contrast a 

standard commercial lock-in amplifier has a 0.125 Hz noise bandwidth and at a time 

constant of 1 second it will produce a noise level of only 1.7 pV (Vo.125 Hz • 5 nV • 

1000 gain), thus enabling the measurement of the 10 pV information signal26.

In essence lock-in amplifiers measure the amplitude, V, of a sinusoidal voltage v = V- 

sin(cot). This is achieved by multiplying the signal in question, v/„, with a reference 

signal, vrefi o f the same frequency and phase by using a phase-sensitive detector (PSD) 

which is a composed o f a mixer followed by a low pass filter (Figure 4.11). 

Mathematically the mixer produces a signal that is the sum of two new sinusoids, one 

having a frequency of f n +  f r e f  and the other a frequency of f n - f e f ° ’ 26,27:

vmixer = 2 * vin • vre/ = 2 • Vin cos(o)J) • Vref cos(coreft) 4-48

From Eq. 4-7, Eq. 4-48 becomes:

Vmixer  2 * * V re f J  cos(o)jn t + coreft) + J  cos(coin t -  coref o l  =

=  Kn ' K e f  cos( C O J  + corefi) + Vin • Vref cos(coint -  (Or e f t ) 4-49

Therefore a signal that is the sum of two new sinusoids, one having a frequency off„  

+ fref and the other a frequency of f„  - f ref, is generated. When the signal vref  is
20 26 27synchronised in frequency and phase with the vin, f n = frefth en  ’ ’ :

= V m ' V ref ™S(2a>in ) + Vln ■ Vref 4-50

In the case when the signal vin is obscured by noise v„ then:
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v« = Kcos (0) J )  + X  cos(a)„oi„r) 4-51

Hence Eq. 4-50 will become:

Kaer = K' ' KefCOS(2fi>w) + £  V ^  C O S + +

+ Z  ' ^«/ COS(°Jm„ J  ~Vref') 4-52

When passing the vmixer from a low-pass filter with sufficiently low cut-off frequency 

the signal Vin-VrefCos(2(oint) is eliminated along with most of the noise, including the 

component of the noise with frequencies near the frequency of the reference signal. 

The waveform, Vin-Vrefi from the PSD may be passed through a low frequency DC 

amplifier to boost the signal. If the signal V in is in the form of an A M  waveform (Eq. 

4-4) then the DC output of the lock-in amplifier would be20,26,27:

= I k  +  K  ■ cos(<y„ -I)]-K e f  4-53

If the magnitude Vref  is kept constant then the DC signal from the lock-in amplifier 

will be proportional to the magnitude of Vin, hence proportional to signal vm. Thus, the 

demodulation of the A M  waveform is achieved ’ ’ .

2v.v. inin

2v. • v in ref out

PSD
ref

2x Signal 
Amplifier

VCO

DC
Amplifier

Low-pass
Filter

Figure 4.11: Lock-in amplifier block diagram27.
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4 .6 .3  D isc r im in a to r

Extracting the modulation from an FM  waveform requires converting the changes in 

frequency to changes in amplitude. In other words the instantaneous amplitude of the 

FM  demodulator (discriminator) must be directly proportional to the instantaneous 

frequency of the F M  waveform28, 29. Since FM  discriminators are sensitive to 

amplitude variations the FM  signal is first passed through a limiter to reduce any 

random fluctuations. This step removes most of the unwanted noise interference that 

affects the quality o f the amplitude modulation waveforms, without influencing vm, 

because in an FM  signal the information is carried as changes in frequency30. The 

simplest type o f discriminator is the slope detector. The output o f this system equals 

to the time derivative o f the input waveform (FM), hence producing an FM-to-AM 

signal. Electronically the slope detector can be realised in the form of an LC  tank 

tuned to a frequency that is slightly higher than f c+Af The LC  tank amplitude will 

vary proportional according to the frequency variations of the FM  waveform (Figure 

4.12).

Modulation Envelope

FM-to-AM

Figure 4.12: The FM-to-AM  waveform.

The output signal would still have the FM  frequency variations but with the addition 

of amplitude changes proportional to vm. The information signal o f the FM-to-AM  

waveform can be extracted using a diode detector (Figure 4.13)30,31.
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v  FM
=

= c i

W 1
D JL

R =

T

C3
— C 2  V m

Slope detector

Figure 4.13: FM discriminator30,31.

Mathematically the output of the slope detector is the derivative of the FM waveform 

of Eq. 4-2130’31:

v,d = = vc ■ (a c + mFu ' a>m ■ cos (a)m ■ /))■ sin(a>c -t + mru ■ sin(o„ • /)) 4-54

Passing the output of the slope detector, v*/, through an envelope detector such as the 

Hilbert transform will produce the information signal30 31.

In the case of phase modulated waveforms the demodulation takes place by inputting 

the PM  signal (Eq. 4-18) through an integrating component :

vi« =  \ v pudt = 7   -■ 7 7S • s i n (® c ■l  +  mru -°K, cos(a>„ • /))1 (coc +mm  ■ com sm(<ym ■ t ))
4-55

This creates a PM-to-AM  waveform that carries the information signal as phase and 

amplitude changes. Inputting the PM-to-AM signal in an envelope detector, vm is 

found.

4.7 Summary

As part of an electronic circuit the bilayer sensor acts as an inductor, L. Any changes 

AL may influence the alternating current (AC) that is used to excite the magnetic 

material, hence the properties of the output voltage signal. The current method of
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conveying the displacement signal is through changes in the amplitude (AM) of the 

excitation waveform. In this Chapter the current method and its principles is portrait 

against two alternative techniques that convey the information through changes in 

phase (PM) and frequency (FM). Even though primarily these two techniques are 

used in the telecommunication industry, their principles can be applied to convey 

inductance changes. The generation of a FM/PM  waveform can be performed using a 

device/circuit whose sinusoidal output undergoes a phase or frequency deviation 

proportional to the change in the sensor reactance. This is a novel application for 

these two modulation techniques.
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C h a p te r  5 M e a s u re m e n t S ystem

5.1 System Overview

The measuring system consists of a personal computer (PC) based acquisition set-up 

and a circuit that conveys the sensor displacement signal to the unit, using the AM , 

PM  or FM  principles (Figure 5.1).

Data Acquisition 
Card DisplayBi-layer

Coil
Circuit

Figure 5.1: Measurement system set-up.

The use of data acquisition packages such as LabVIEW® allow a high degree of 

software modularity and provide the features necessary for obtaining the sensor 

signal, processing, analysing it and displaying the results. The signal detection was 

achieved through the use of LabVIEW® software and a NI-6120 data acquisition card 

with a maximum sampling rate of 800 kS/s per channel and 16-bit resolution1. For the 

signal processing, analysis and presentation, a program was written using the 

LabVIEW® graphical programming language. In this program, functions or 

principles such as Hilbert transform, lock-in amplifier or discriminator are represented 

mathematically in order to recover the sensor displacement signal. This programming 

language consists of layers of software termed virtual instruments (VPs) that use the 

processing power o f an ordinary PC to convert it to a custom designed instrument. 

The VPs consist of two main elements the block diagram (Figure 5.2) and the front 

panel (Figure 5.3). The front panel is the instruments interface and it is used for 

controlling the VI and displaying the data. The block diagram consists of the elements 

that acquire and process the signal. These VPs can be used as inside other VPs, as 

sub VPs, creating a hierarchical structure . The main code and hierarchy of the 

measurement system program is located in Appendix C.
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Figure 5.3: The front panel of the measurement system.

5.2 Software Design

The role of the software program is to acquire the modulated waveform {AM, PM, 

FM) and separate the sensor displacement information, vm, from the reference signal,
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o
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vc. For each of the modulation methods, their equivalent demodulation technique was 

implemented in code using their mathematical principles (Figure 5.4).

a)
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d e v ic e r r i6 i | -

[Samples In Acq ( I 3 2 l |-
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M E P  
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M ED
FILTER

FILTERH ilb e r t

Figure 5.4: Simplified version of the demodulating code for a) AM, b) FM  and c) PM.

Writing code in LabVIEW® is a simple procedure. For example the equation that 

describes frequency modulation (Eq. 4-20) can be implemented in code as seen in 

Figure 5.5. By inputting values to the parameters on the left, the vm can be generated, 

integrated as in Eq. 4-20, multiplied by 2n and then inserted into the vc as 

instantaneous frequency change; the output from this VI is an FM waveform.

The initial step in writing the demodulating program was to simulate the modulated 

signals (AM, PM  and FM), mathematically, with and without superimposed noise 

signals in order to test the demodulation algorithm of the LabVIEW® code.
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Figure 5.5: Example F7 that shows the implementation of the mathematical equations 

of a) AM, b) FM  and c) PM  using the LabVIEW language.

The results showed that in a simulation situation (ideal condition) the program can 

demodulate signals as low as 1 pV (Figure 5.6). This value is governed by 

software/code limitations but does not affect the accuracy of the system as the signals 

to be detected are above this mark. Thus, the results confirm the correct operation of 

the demodulation software. The next step was to connect the demodulation program 

to an Agilent 33250A waveform generator that was configured to output modulated 

waveforms3. From this procedure the behaviour of the system (acquisition time, noise 

levels etc) under real-time acquisition was examined. The results from the waveform 

generator acquisition showed the need to include in the program filtering (band-stop)

G. S. Katranas, “Design and Development o f Bilayer Sensor Systems for Biomedical and Automotive
Applications” , Ph.D. Thesis, Cardiff University.



72

to avoid the 50 Hz noise at the input and to condition the demodulated signal at the 

output.

Input AM

y  0.5

■* -0.5-0.5

Time (ms) Time (ms)

FMPM

y  0.5

-0.5 -0.5

Time (ms) Time (ms)

Figure 5.6: a) The unmodulated vm signal. The vm demodulated using the b) AM, c)

PM  and d) FM  principle.

Regardless o f the modulation principle some noise levels will degrade the signal 

quality. The solution for this is to insert at the output of the demodulator a median 

filter. The median filter is a low-pass non-linear filter used in digital signal processing 

to remove noise from signals or images (Figure 5.7)4. The filter works by using a 

window that consists o f an odd number of samples. These points are sorted (ranked) 

numerically in an ascending order.

y  o.5

-0.5-0 .5 -

Time (ms) Time (ms)

Figure 5.7: A noisy signal (a), filtered via the median filter principle (b).

The number in the centre o f the window is termed the median number. The old value 

is replaced with the new number which is actually the value of a neighbouring point.
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In this way the median filter isolates and removes all the spurious points (Figure 5.8a) 

without affecting the neighbouring values (Figure 5.8b). Other filters do equally 

reduce the noise but the spurious values tend to get averaged along with the 

unaffected points (Figure 5.8c)5,6.

Spurious point

Median

b)

Averaging

c)a)

Figure 5.8: The elimination o f spurious points via the median filter technique (b) and

with the averaging method (c)5,6.

After signal conditioning is preformed at the output of the demodulator, which 

ensures minimum amount o f noise interference, the information signal is passed into a 

subVI that handles the presentation and preservation of the data. This section of the 

system handles the tagging of the data with the sensor configuration (coil and bilayer 

material dimensions) and the presentation of the information by producing automated 

reports in .xls (Microsoft Excel®) or .html format (Appendix C).

5.3 Verification and Comparison

After verifying that the measurement system is able to demodulate simulated and 

acquired modulation waveforms, it is necessary to quantify the sensor information 

signal in terms o f displacement distance. For this task an LDV V450/1 Shaker System 

-  actuator (Appendix E) was used to provide a controlled displacement of the free end 

of the bilayer sensor (Figure 5.9).
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DisplacementMagnetic material

Non-magnetic material

Actuator Tip

Figure 5.9: The bilayer sensor during bending displacement at the free end.

The maximum peak to peak continuous displacement that the actuator can provide is 

19 mm at a 6 V DC supply. Using a F. W. Bell 9950 Gauss/Teslameter the maximum 

magnetic field that is generated from the actuator at its surface was measured to be 2.3 

kA/m.

D i s t a n c e  f r o m  a c t u a t o r  s u r f a c e  (m)

Figure 5.10: The field density becomes zero at a distance of 45 cm away from the

surface of the actuator.
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Rod (Movement)

tatic Tube

Holder

0.55 m

Tip of Actuator 
Shaft

Actuator

a)

Figure 5.11: a) Cylindrical extension assembly (with sensor holder) mounted on the 

actuator, b) the axial cross-section that shows the internal arrangements, c) magnified

view of the shaft tip.

To avoid any influence from that field (Figure 5.10), the bilayer sensor was placed 55 

cm away from the top surface of the actuator with the aid of a non-magnetic stainless 

steel cylindrical extension assembly (Figure 5.11). It comprises of a (10 mm x 550 

mm) rod attached to the actuator’s movement (actuator shaft) and housed within a (40 

mm x 500 mm) static tube fixed to the top surface of the actuator’s body. This
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extension also includes a holder base for the sensor that has an adjustable slider to 

accommodate sensor lengths of 5 mm - 40 mm (Figure 5.12).

Wiihirl*,,*

20 mm

Cylindrical
Bilayer Strip Extension

Assembly

Holder

Adjustable Slider Actuator

Modulating Circuits

Figure 5.12: a) Sensor mounted for taking measurements, b) two-dimensional 

movement adjustment of holder and slider, c) magnified view of holder and slider, c) 

actuator assembly with sensor connected to the modulating circuits.

For protection and easiness of handling, all three modulating circuits were transferred 

to a two-layer printed circuit board (PCB) and placed in a (90 mm x 60 mm x 30 mm) 

plastic enclosure box (Figure 5.13). In all three circuits an OPA37 ultra-low noise (4.5 

nV/VHz) precision operational amplifier15.

Figure 5.13: The three modulation circuits inside the enclosure box.
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Extra code was written to the LabVIEW® program in order to supply the actuator 

with a sinusoidal signal, via an Amcron PSA-2 Power Amplifier. For calibration and 

comparison purposes between the three modulation principles, (AM  7, F M 8’9 and PM  

10) a reference coil was used. The dimensions of the coil were 300 turns, 20 mm in 

length and 7 mm in width. The bilayer thin film strip that was used was an amorphous 

magnetic film, 2.9 pm thick, that was deposited from a Fe8 iBi^sSi3 .sC2 target using 

the RF  magnetron sputtering technique onto a 25 pm CuBe (Copper Beryllium) layer 

and had a size o f 40 mm length, 5 mm width. The signals that where supplied to the 

actuator where synchronised with the sensor data acquisition and had a range of low 

frequency (1 Hz - 6 Hz) sine waves, with variable peak to peak amplitudes from 1 V 

to 6 V. The resulting output peak to peak displacement ranged from 0.35 mm to 2 

mm. The displacement o f the actuator was measured with the aid of a Laser Doppler 

Vibrometer (LD V) 11.
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Figure 5.14: A comparison of the a) AM  information signal and b) the LDV  output at 

0.35 mm peak to peak plotted together with their percentage difference.

As seen in Figure 5.14 the AM  signal shows an average o f 1.7 % deviation with a 

3.9 % maximum deviation compared to the output signal from the LDV. At the same 

peak to peak displacement o f 0.35 mm, the PM  signal (Figure 5.15) shows an average
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1 % deviation with a 2.2 % maximum deviation whereas the FM  signal (Figure 5.16) 

shows an average o f 0.9 % deviation with a 2 % maximum deviation.

The AM  signal not only shows almost twice the amount of deviation, at this 

displacement range, compared to the PM  or FM  signal but it also depicts a 

deteriorated signal quality. This difference is expected to increase at displacements 

below 0.35 mm peak to peak. From this the influence of the noise effects that usually 

infest the AM  method is made apparent. Both angle modulations show similar results 

but during the acquisition and signal processing there is an increase of 10-15 % in the 

time it takes for the program to demodulate the PM  signal and present the data. This 

is due to the fact that the PM  circuit suffers from a minor frequency drift/instability 

(0.1 % more than the F M  circuit) which imposes the need to increase the sampling 

rate of the data acquisition card, to 200 kS/s, in order to enhance the quality of the 

signal. The instability o f the PM  circuit arises from the circuit component tolerances. 

The RC  tanks o f the P M  circuit need to be as closely matched as possible to ensure 

minimal drift.
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Figure 5.15: A comparison o f the a) PM  information signal and b) the LD V  output at 

0.35 mm peak to peak plotted together with their percentage difference.
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Figure 5.16: A comparison of the a) FM  information signal and b) the LDV  output at 

0.35 mm peak to peak plotted together with their percentage difference.

The output signal is determined by the degree o f bending o f the bilayer which can be 

converted into a displacement reading (Figure 5.17). The average peak to peak signal 

produced at the displacement range of the actuator, for all three modulation principles, 

was in the range of 0.8 mV to 4.6 mV. From the performance o f the system it was 

found that it has an average sensitivity of 2.2 mV/mm.

By removing the sensor from and then repositioning it on to the holder for each 

measurement an understanding on the repeatability was obtained. Repeating five 

times the measurement, under the same conditions for each modulation principle, the 

repeatability o f the system was examined. For each modulation system an average 

curve (Figure 5.17) was plotted from the five measurements and the maximum 

deviation was recorded. For the AM , PM  and FM  the non-repeatability of the results 

were 4.6 %, 2.7 % and 2.4 % respectively. Even though the non-repeatability values 

are within the desired limits12 of such sensor systems, the repeatability difference 

between the amplitude and angle modulation techniques is noticeable. Generally a 

number of factors can influence the quality of the results of a system such as the type 

of equipment that is used, the operator, environmental or equipment temperature or
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the presence of electric/magnetic fields13. In the AM  technique this undesirable 

interference is superimposed on the modulated signal as seen in Eq. 5-1.

VAM =  Ik  +  Vm ■ cos (com• o ] • cos(a>c • 0  + X  • cos(®™.« 5-1

Even though there is a filtering stage in the AM  demodulation process, the noise 

influence is still present. Amplitude variations due to the addition of noise on the 

amplitude of the a FM  or PM  signal do not influence the modulation waveform as the 

sensor information signal is conveyed as changes in frequency or phase. The main 

sources of any non-repeatability in angle modulation systems are the circuit 

component fluxuations (flicker noise)14 and the input noise of the amplifier15 

(Appendix E) that cause minor frequency instability in the oscillator’s operation.

5.0 T
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£  3.0 -

2.0 - ■
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0.0
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D i s p l a c e m e n t  (m m )

Figure 5.17: The peak to peak output voltage characteristics against peak to peak 

displacement of the bilayer sensor for all three modulation principles.
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The results in Figure 5.17 also showed that all three modulation systems have a linear 

behaviour with a square correlation coefficient value of sc2 = 0.99. The data 

examination was performed using standard statistical methods16.

Materials under the application o f a cyclic stress (within their elastic region) may 

show a distinct difference between the loading and unloading (return) path. This 

defect in Hooke’s law is termed mechanical hysteresis17. In order to examine the 

influence of mechanical hysteresis in the measurement system the difference between 

the increase and decrease o f the amplitude of the actuators tip and hence the increase 

and decrease of the sensors signal was examined. Five consecutive readings were 

taken for each modulation principle and the average increase and decrease curves 

were plotted. The mechanical hysteresis was found to be 3.6 %, 2.2 % and 1.8 % for 

the AM  (Figure 5.18), P M  (Figure 5.19) and FM  (Figure 5.20) respectively. These 

values are within the repeatability range of each modulation system. Since the sensor 

remained fixed on the holder (Figure 5.12) and connected in turn to each modulation 

circuit the only apparent explanation for the difference between the mechanical 

hysteresis values o f each system is due to the repeatability of these systems.

4.0 -

IncreaseDecrease

2.0 2.50.0
D isplacem ent (mm)

Figure 5.18: The peak to peak sensor signal (AM) against the displacement of the 

bilayer during the increase and decrease o f the actuators tip.
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Figure 5.19: The peak to peak sensor signal (PM) against the displacement of the 

bilayer during the increase and decrease of the actuators tip.
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Figure 5.20: The peak to peak sensor signal (FM) against the displacement of the 

bilayer during the increase and decrease o f the actuators tip.

By examining the performance of all three modulation techniques in this section (5.3) 

the preferred method for conveying the bilayer displacement information can be 

selected. It is important to note that all three principles were used to successfully 

convey the sensor information signal for displacements in the range o f 0.35 mm to 2 

mm (Figure 5.14, Figure 5.15, Figure 5.16 and Figure 5.17).
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Although the AM  technique can be effectively used in sensor systems, its 

susceptibility to noise, especially in the presence of electric or magnetic fields, can 

deteriorate the signal quality. The effect of noise is made apparent by examining not 

only the non-repeatability of the AM  signal (4.6 %) which is almost double of that of 

the angle modulation (2.7 % for PM  and 2.4 % for FM) but also the modulation 

parameter deviation. In order to illustrate the effect of noise on each modulation 

technique the effect of the bilayer sensor displacement on the deviation of modulation 

parameters in AM, PM  or FM  needs to be quantified. For example, in the case of the 

AM  principle, at a 2 mm displacement the sensor will produce a peak to peak A V 

deviation (20 pV) from Vr (1 V) equal to:

£ L  = 2 0 ^  = 2 0 . 10_6 

VR IV

In the laboratory environment in which the sensor was tested the ambient noise level 

was of the order of ~5 pV (peak to peak). This is significant when compared to the 20 

pV amplitude variation of the bilayer sensor signal. Therefore when increased levels 

of electric or magnetic fields are present the bilayer sensor information can be buried 

within the noise.

In contrast the angle modulation methods display higher deviations that the AM. At 2 

mm displacement the sensor will produce a 0.1 kHz A f  for the FM  and a 3.5° AQ for 

the PM:

Af_ = 0\kHz_ = o 02 
/ ,  5 kHz

^  = ^ 1 . 0 . 0 2  5-4
<!>r 180°

The higher change in parameter deviation (AfR for FM  or A(pR for PM) and the fact 

that noise interference is not a significant issue in angle modulation, improves the 

quality of the sensor signal and its sensitivity. In applications such as mapping the 

hemo-dynamic changes of the carotid artery the essence is to record the exact details
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of the heart beat waveform. Thus, it is very important that the sensor information 

signal deviates as less as possible from the actual displacement caused from the 

arterial expansion and contraction. The sensor signal “quality” was examined by 

comparing the deviation between the LDV output signal and the AM, PM  and FM  in 

Figure 5.14, Figure 5.15 and Figure 5.16 respectively. Comparing with the LDV 

output signal the AM  waveform showed that it has almost twice the average (1.7 %) 

and maximum (3.9 %) deviation in contrast to the PM  (average 1 %, maximum 2.2 %) 

and FM  (average 0.9 %, 2 % maximum). Thus, for reasons of noise susceptibility and 

signal quality, angle modulation is preferred over the AM.

Comparing the sensor signal quality (deviation from the LD V  waveform) between the 

two angle modulation principles the difference is ~10 % with the FM  marginally 

outperforming the PM. Also taking in to consideration the PM  method requires the 

RC tank components to be “hand-picked” to have values as close as possible in order 

to reduce the oscillator’s frequency/phase drift. The drift in the phase modulation 

technique can be further compensated by increasing the sampling rate of the software. 

The increase of sampling rate enhances the resolution of the acquired waveform and 

the software is able to filter the drift more effectively. Increasing the sampling rate 

causes a rise in the signal processing time as more samples (points) need to be 

processed. In applications such as airflow measurement in car intake (automotive) or 

monitoring the cardio-respiratory activity of a patient (biomedical), continuous data 

acquisition, signal processing and quality are of paramount importance. Hence 

preferred method for conveying the bilayer displacement information is by the use of 

the FM  principle.

5.4 Optimisation of Bilayer Sensor

The bilayer sensor used in the measurement system was designed according to the 

principles of the preferred modulation method (FM). When placed in the modulation 

circuit (Colpitts oscillator), the bilayer sensor acts as its inductive component. Any 

change AL in the inductance L of the pickup coil (sensor) will shift the 

operating/oscillating frequency from /  to /  + Af. Hence, frequency modulation is
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achieved. The inductor along with the two parallel capacitors set the frequency of 

operation of the circuit. The capacitors where chosen to be Ci = C2 = 1 pF, in order to 

keep the circuit frequency between 1 kHz to 10 kHz. For signal quality purposes (to 

avoid signal aliasing) the sampling rate must be 20 samples per Hertz which means 

that at 10 kHz there will be a need to acquire 200,000 samples per second (200 kS/s). 

Even though the data acquisition card can accept up to 800 kS/s, the processing time 

needed is increased rapidly. Taking in consideration the capacitor value and the 

desired frequency range the combination of coil parameters and excitation current 

were optimised, to provide the largest change of inductance and hence the largest 

change of relative permeability.

An essential part of the sensor comparison and parameter optimisation is the 

standardisation of the fabrication procedure (Figure 5.21a).
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Figure 5.21: A longitudinal cross sectional view in the z-x plane (not in scale) of a) 

the of sensor components (exploded view) and b) the assembled sensor.
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The sensor’s former was constructed by placing two Kapton® layers {t = 30 mm, w = 

6 mm, th = 75 pm) on each side of the bilayer strip. The Kapton® polyimide film was 

chosen as a former due to its ability to maintain its excellent mechanical properties at 

a wide range of temperatures (-269 °C to +400 °C)18 (Appendix E). The two Kapton® 

layers were fixed by wrapping layers of narrow width (w = 3 mm) insulating tape 

around both its ends; the tape layers depend on coil thickness. The area between the 

two insulating tapes is where the coil will be wound. The tape arrangement also 

serves as an aid during the winding of the copper wire (coil) as it maintains the 

desired coil length and holds the turns in place during the sensor operation. The 

resulting product is a flexible flat coil that can maintain its shape (Figure 5.21b). The 

sensor design also provides a fast and easy way to interchange bilayer strips with 

different magnetic characteristics.

Using as a reference magnetic material a 28 pm thick Metglas® 2605SC19 (i6 = 40 

mm, w = 5 mm), the effect of coil parameters on inductance, were examined. By 

keeping the coil cross sectional area constant and varying the length (5 mm -  20 mm) 

and number of turns (100 -  1000), 40 coils were manufactured using a 60 pm 

diameter enamel copper wire (Table 5.1). Five consecutive readings were taken for 

each set of data and the average was plotted in Figure 5.22 to Figure 5.31. The non­

repeatability error in the sensor optimisation data set was found to be ~1 %.

Turns

100 200 300 400 500 600 700 800 900 1000

5 mm Al A2 A3 A4 A5 A6 A7 A8 A9 A10

10 mm B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

15 mm Cl C2 C3 C4 C5 C6 C7 C8 C9 CIO

20 mm D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Table 5.1: The coils were manufactured by varying the number of turns and length.

These coils were placed in the Colpitts oscillator circuit and the resulting operating 

frequency and current through the coil were measured. An approximation of the
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relative permeability value was calculated from the measured frequency and current 

and through the use of Eq. 5-5 (Eq. 4-37) and Eq. 5-6 (Eq. 3-15):

/  = ------- , —  5-5

V c , + c 2

N *AL = MoVr — —  5‘6

It is these values, illustrated in Figure 5.22 - Figure 5.26, that give an indication of the 

optimum coil parameters for the magnetic material in question. By looking at Figure 

5.22 it can be seen that high values of relative permeability are recoded on longer 

coils at low numbers of turns, following Eq. 5-6.

30 T
5 mm

25 -

20  -

e  OE © <D o a. r-x

20 4 8 126 10
Coil turns (x100)

Figure 5.22: The effect of variation of coil length and number of turns on relative 

permeability (Sample 2605SC - 28 pm).

Figure 5.23 confirms that low turn coils (N = 200 - 400) are more suitable for sensors, 

since they display high values of current (compared with coils of high N), but it also 

shows that /  increases as € decreases as is expected from Eq. 5-7 (Eq. 3-1).
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H  = N -  5-7
£

0.16
♦— 5 mm 10 mm

20 mm
0.14

0.13

0.10

Coil turns (x100)

Figure 5.23: The effect of variation of coil length and number of turns on excitation

current (Sample 2605SC - 28 pm).

From the results shown in Figure 5.22 and Figure 5.23 it is apparent that low number 

of turns is a desired parameter for the design of the sensor coil (using the 2605SC - 28 

pm sample) as current reaches a peak using coils of 200 - 400 turns, regardless of coil 

length.

0.16

0.14

100 Turns

1000 Turns 5 mm
0.10

Relative permeability (x1000)

Figure 5.24: The effect of variation of coil length and number of turns on relative 

permeability and excitation current (Sample 2605SC - 28 pm).
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The relationship between the current and relative permeability (Figure 5.24) reveals 

the optimum number o f turns (using the 2605SC - 28 pm sample) which is found to 

be TV « 300. Current and relative permeability need to be high as to ensure high levels 

of sensor sensitivity as expected in Eq. 5-6 and Eq. 5-8 (3-13):

N 2A dl_ 
dt

5-8

The data points on Figure 5.24 represent the number of turns which increases from 

right (N=  100) to left (N=  1000).

The next parameter to be decided was the length of the coil. Plotting /  against pr 

(Figure 5.24) shows that, at 300 turns, longer coils may have lower current values 

(9 %) than the shorter but they present much higher amounts o f pir (72 %). If the 

relative permeability is high then the Ajur will be high (high AL) and hence the sensor 

sensitivity will increase. Thus, a coil of N  = 300 and ■€, = 20 mm would have the 

optimum dimensions needed for a sensor.

16 T 10 mm 
20 mm

5 mm

u_

Coil turns (x100)

Figure 5.25: The effect of variation of coil length and number of turns on operating

frequency (Sample 2605SC - 28 pm).
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Figure 5.26: The effect o f variation of coil length and number o f turns on excitation 

current and operating frequency (Sample 2605SC - 28 pm).

From Figure 5.25 it can be seen that the operating frequency does change (decrease) 

with the increase of N, as expected from Eq. 5-5 and Eq. 5-6 but also from Figure 

5.26 is evident that using a 300 -  400 turn coil the current peaks at 5 kHz.

The data points on Figure 5.26 represent the number o f turns which increases from 

right (N = 100) to left (N=  1000).

At this operating frequency the sampling rate will be 100 kS/s which will 

approximately take 1 - 2  seconds for the software to display the information signal 

ensuring continuous real-time acquisition and process of the data. The data shown on 

Figure 5.22 to Figure 5.26 show the optimum parameter selection only for the 

2605SC -  28 pm sample.

The measurement system can be used not only for the detection of stress/displacement 

but also for the evaluation of bilayer magnetic material for sensor applications. Hence, 

a comparison was made between two materials of different saturation 

magnetostriction at a range of thicknesses to conclude to an optimum coil dimension 

and magnetic material for the sensor. The materials used for this comparison were 

Metglas® 2605SC (Xs *  30-10'6)19 and Metglas® 2705M (Xs ~ 0 ) 19 (Table 5.2)20.
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Metglas® Material 2605SC (A s w 30-1 O'6) 2705M (X s * 0)

Metglas® Thickness 
(nm)

28 12 2.9 24 5 2.9 

A l  A l  C u B e  A I  C u B e  A l M g  

75 75 25 75 25 30 

Adhesive Adhesive R F  Adhesive R F  R F

Substrate
Substrate Thickness 

(nm)
Bilayer Fabrication

Table 5.2: Bilayer strip fabrication method and layer thickness.

The 28 pm thick 2605SC was reduced in thickness down to 12 pm by means of 

mechanical polishing. As expected from Eq. 5-6 the reduction in cross sectional area 

of the sensor due to the decrease of magnetic material thickness increases the values 

o f relative permeability (Figure 5.27). The exponential decrease of relative 

permeability with the increase of number o f turns is mainly due to the N 2 term in Eq. 

5-6. The highest values of relative permeability are recorded between N  = 100 -  300.

120 -T
2605SC - 28 pm 

■*— 2605SC - 2.9 pm 
2705M - 5 pm

2605SC- 12 pm 
2705M - 24 pm 
2705M - 2.9 pm

100  — -

S _  80 — -
E °E oo  60

> w  40

20  -

Coil turns (x100)

Figure 5.27: The effect of variation of magnetic material thickness and number of 

turns on the relative permeability for samples with different k s .

In Figure 5.27 the effect of magnetic material choice (2605SC, 2705M) and its 

thickness (28 pm -  2.9 pm) on the resulting relative permeability is studied. An 

indication o f the effect o f thickness on relative permeability can be seen by comparing 

the 2605SC -  28 pm and the 2605SC - 2.9 pm. For this material the -10  times 

reduction in thickness showed a ~3 times (averaged from N  =  100 -  1000) increase in 

This difference is non-linear and depends on the materials properties, operating
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frequency and the current induced in the coil. A comparison between strips that have 

similar dimensions and are of different magnetic material (2705M -  2.9 pm and 

2605SC - 2.9 pm) can also be made. On average the 2705M displayed a ptr 2.4 % 

higher than 2605SC due to its greater as cast DC permeability 19,20.

0.16 t

0.08 -

0.04
* r -  2605SC - 28 pm 2605SC - 12 (jm

2705M - 24 pm 2705M - 5 pm
2605SC- 2.9 pm 
2705M - 2.9 pm

0.00

Coil turns (x100)

Figure 5.28: The effect of variation of magnetic material thickness and number of 

turns on the excitation current for samples with different Xs.

In Figure 5.28 it is seen that the drop in thickness affects in the opposite manner the 

excitation current. The current increases with thickness and peaks between N =  300 -  

400 among the three thickest materials (2605SC -  28 pm, 2705M -  24 pm and 

2605SC -  12 pm) and between N  = 100 -  300 among the three thinnest materials 

(2705M -  5 pm, 2605SC -  2.9 pm and 2705M -  2.9 pm). Comparing the 2605SC 

materials, the 43 % reduction in thickness between the 28 pm and the 12 pm had a 23 

% reduction in I  whereas the 90 % decrease in th among the 28 pm and the 2.9 pm 

produced about 50 % less current. From the examination of the 2507M materials the 

reduction of thickness by 79 % (from 24 pm and the 5 pm) leads to a 43 % current fall 

and the decrease of th by 88 % (from 24 pm and the 2.9 pm) shows a 44 % drop in I. 

The effect of thickness reduction to current between the 2605 SC and the 2705M can 

be performed by comparing both the 2.9 pm samples. The difference between these is 

below the 1 % repeatability of the data, hence the 2605SC -  28 pm and 2705M -  24 

pm were examined instead. Even though there is a 4 pm difference between the two 

materials, the thickness reduction from 28 pm and 24 pm to 2.9 pm is of similar level
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89 ± 1 %. It can be seen that even though the 2705M displays less current loss, the 

2605SC does display higher values of X which gives an advantage for selection as the 

magnetic material for the bilayer sensors.

Both Figure 5.27 and Figure 5.28 show that the highest amounts of /  and nr occur as 

expected with low turn coils. By plotting the excitation current against the relative 

permeability, the effects o f thickness and number o f turns are made evident (Figure 

5.29). The data points on Figure 5.29 represent the number of turns which increases 

from right (N=  100) to left (N=  1000). The first thing that is made apparent from the 

/versus relationship is that thinner materials (2705M -  5 pm, 2605SC -  2.9 pm and 

2705M -  2.9 pm) display large amounts of relative permeability and smaller quantity 

of current compared to the thicker samples (2605SC -  28 pm, 2705M -  24 pm and 

2705M -  12 pm).

1000 Turns
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

100 Turns

■*— 2605SC - 28 pm —•— 2605SC - 12 pm 
- t r -  2705M - 24 |jm

2605SC - 2.9 |jm 
2705M - 2.9 pm

100 120
Relative permeability (x1000)

Figure 5.29: The effect of variation of magnetic material thickness and number of 

turns on I  and ̂ ir for samples with different Xs.

The behaviour of the system shows that the current is reversely proportional to the 

relative permeability (Eq. 5-8). Therefore a “balance” between current and relative 

permeability will define the optimum coil dimensions and material for the bilayer 

sensor system. From the results it is estimated that low turn coils (N  = 100 - 400) are 

more suitable for sensors, since they display high values of /  and ,ur (compared with 

coils of high N).
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By examining Figure 5.30 and Figure 5.29 it can be seen that the low turn coils (N = 

100 -  300) do produce high nr but they also generate operating frequencies above 10 

kHz depending on the thickness of the sample. An operating frequency above 10 kHz 

reduces significantly the data processing of the software and continuous real-time 

acquisition and process of the data is no longer possible. This upper frequency limit of 

the system shows that a sensor using magnetic material under ~5 pm in thickness can 

have as a minimum 300 turns; less turns will have/ >  10 kHz.

20 t
■*— 2605SC - 28 mm 
«— 2605SC - 2.9 pm 
■*— 2705M - 5 pm

2605SC- 12 pm 
2705M - 24 pm 
2705M - 2.9 pm

16 -

u_

Coil turns (x100)

Figure 5.30: The effect of variation of magnetic material thickness and number of 

turns on the operating frequency for samples with different Xs.

0.16

0.12
100 Turns

0.08
1000 Turns

0.04
■*- 2605SC - 28 pm 
- tr -  2705M - 24 pm

■ * —  2605SC - 2.9 pm 
■s— 2705M - 2.9 pm

+ —  2605SC - 12 pm 
+ —  2705M - 5 pm

0.00

Frequency (kHz)

Figure 5.31: The effect o f variation of magnetic material thickness and number of 

turns on current and frequency for samples with different Xs.
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The examination of Figure 5.31 shows that the samples with less thickness, and hence 

less cross sectional area of magnetic material in the coil, produce higher operating 

frequencies as its expected from Eq. 5-6 and Eq. 5-5. Taking in consideration the limit 

of the system that prevents the use of coils that generate/ >  10 kHz it can be seen that 

the maximum current occurs at -300 turns for all samples. The operating frequency 

with N  = 300 for the 2605SC -  28 pm, 2705M -  24 pm and 2705M -  12 pm samples 

will be around 5.5 kHz whereas for the 2705M -  5 pm, 2605SC -  2.9 pm and 2705M 

-  2.9 pm it will be approximately at the 10 kHz limit.

In the investigation of the data illustrated from Figure 5.22 to Figure 5.31 the coil’s 

length, thickness, number of turns and magnetic material were varied and the 

performance behaviour (current, relative permeability and frequency) was examined 

in order to optimise the design of bilayer sensor. From the parameters used in the 

measurement system and the materials and sample thickness tested (Table 5.2), the 

optimum coil number of turns and length were N  = 300 and -t = 20 mm. To further 

verify that these are the optimum coil parameters, four sensor configurations (Table 

5.3) were selected to be tested using the measurement system with the actuator set-up 

(Figure 5.32). Another parameter to be evaluated will be the performance of the two 

materials (2605 SC and 2705M) and the effect of thickness on the sensor sensitivity.

(0 0 0 (iii) (IV) (v)
Metglas® Material 2605SC 2705M

Metglas® Thickness (pm) 28 2.9 28 28 2.9
Turns 300 300 300 1000 300

Length (mm) 20 20 5 20 20

Table 5.3: The four coils used in the measurement system to verify the selected

optimum coil parameters.

As expected from Eq. 5-6, sensor (/) displays increased voltage output (average 

increase of -10  times) than (ii) since the thickness and hence the cross sectional area 

of the magnetic material in the coil is -10 times higher. The thicker material may 

have higher sensitivity but a thin strip has lower stiffness and hence will bend to 

smaller displacements (low forces). This is useful in applications such as detecting the 

hemo-dynamic changes of the heart beat where the skin curvature changes are 

dependant on the blood pressure in the vessel. If a material of high stiffness is used,
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the bending force exerted on the bilayer from the skin curvature changes will be too 

small and unable to bend the strip.

0.5
Displacement (mm)

Figure 5.32: The peak to peak output voltage characteristics against peak to peak 

displacement of bilayer sensors, using the configurations seen in Table 5.3.

Comparing sensor (/) and (iii) the effect of coil length reduction does produce lower 

output voltage (average -26 %) which is explained by Eq. 5-7 and the results from 

Figure 5.24. Increasing the number of turns on a coil will decrease the output voltage 

(average -47  %) as seen from sensor (/) and (fv), which verifies the results of Figure 

5.29. Also from Figure 5.32 it was seen that sensor (if) with the 2605SC (2 « 30-10'6) 

outperformed by -65 % the (v) with the 2705M (A » 0). Thus, the effect of materials 

with high saturation magnetostriction was noted, and the 2605 SC was chosen for use 

in bilayer sensors. The selected optimum coil parameters seem to give the highest 

output voltage compared with other configurations.

5.5 Effect of Substrate Parameters on Stress and Displacement

Regarding the selection of the optimum thickness of the magnetic material or the 

substrate, that will depend on the application of the bilayer sensor (desired strip 

elasticity) as well as any need for its miniaturisation. By performing a brief theoretical 

examination using finite element modelling software (.FEM), on the effect of the
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substrate thickness and modulus of elasticity on the stresses and displacement of
9 1bilayer sensors, useful conclusions can be drawn . For this assessment seven bilayer 

strips {t = 20 mm, w = 5 mm), in cantilever configuration, with a random magnetic 

material (th = 25 pm, E = 100 GPa) deposited on substrates with variable th and E  are 

considered (Table 5.4).

a b c d e / g
Young’s Modulus 

(GPa) 100 100 100 100 50 150 200

Thickness (pm) 25 50 75 100 75 75 75

Table 5.4: The seven substrates used for the calculation o f the effect of the substrate 

thickness and modulus of elasticity on the stresses and displacement of bilayer

sensors.

By using a force of F  = 0.1 N, Eq. 5-9 (Eq. 2-32) and Eq. 5-10 (Eq. 2-33) will give 

the maximum stress (in the magnetic layer) and tip displacement for each of the 

bilayer strips:

<jt = M  ■ y '  e 1+e 7 + -  + E. n
Ex Inx + E 2 • In2 + En Inn

5-9

F -£ 3r  = ----------------------  —-------------------------  5-10
3 • (£, • /« ,+ £ , Inx + ’" + En ■ Inn)

By keeping F  (and therefore a constant) and increasing E  from 50 GPa to 200 GPa, 

(strips e, c, f  g), the stresses on the magnetic material rise while the displacement is 

reduced due to the growing bilayer stiffness (Figure 5.33). The four times increase of 

E  caused a 60 % decrease in displacement, £  and a 28 % increase in stress. Since the 

output voltage of the measurement system is dependant on stress then it will follow 

accordingly.
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Figure 5.33: The stress and tip displacement plotted as a function of the substrates’

modulus of elasticity.

A substrate with higher E  does not imply that this bilayer can be used in all the sensor 

applications. In situations where the displacement force is small (heartbeat rate 

monitoring), a stiff bilayer will suppress it without bending; resulting in little or no 

sensor signal.

1.00 T T 6.0
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Figure 5.34: The stress and tip displacement plotted as a function of the substrates’

thickness.
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Increasing the thickness of the substrate from 25 pm to 100 pm (strips a, b, c, d), and 

keeping F  constant, will give rise to the cross sectional area of the bilayer strip, Eq. 

5-11 (Eq. 2-17) and Eq. 5-12 (Eq. 2-19), and hence change the value of inertia (Figure 

5.34):

I n . = d 2 ’A + In v + Inr 5-11/  y c

r w ' h 3In = -------  5-12
12

Since the stiffness of a material is defined according to the product of E-In (Chapter 

2), the increase of the inertia due to the four times increase of t h , will produce 75 % 

lower stress (Eq. 5-9 and Eq. 5-10). At the same time the tip displacement of the 

bilayer strip will be reduced by 94 % as the substrate thickness grows. A substrate 

with high thickness should be selected for applications where the displacement forces 

are large, such as measuring airflow in a car engine intake. These forces are usually 

large enough to bend a bilayer strip, of high stiffness, thus producing a voltage output 

which can be translated into an information signal for airflow measurements.

5 .6  T h e r m a l S ta b ility

To ensure thermal stability of bi-layer thin films the materials need to have 

approximately identical thermal expansion coefficients, e. If the thermal expansion 

coefficients o f the materials are chosen to be notably different then due to a 

temperature increase the material with the largest e will expand disproportionally 

from the other, thus producing unwanted curvature increase in the strip. This is the
‘17.reason why, in previous works, bilayer sensors have been used as thermal sensors ’

23

In order to examine the thermal stability of the sensors and FM  measurement system, 

a bilayer strip was fabricated with two materials with different thermal expansion 

coefficients using the RF  sputtering method. The bilayer sensor used consisted of an
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amorphous magnetic film, 2.9 pm thick, deposited from a FesiBi^Sis.sC: target 

(Metglas 2605SC) using the RF magnetron sputtering technique onto a 25 pm non­

magnetic layer CuBe layer. The strip was inserted in an N  = 300 turn, t  = 20 mm coil 

made without the insulating tape as it cannot withstand the temperature range that the 

sensor will be subjected to. The thermal expansion coefficients of the bilayer strip 

were ei = 5.9-1 O'6 K '1 for the amorphous magnetic film 2605SC19 and e2 = 17-10'6 K'1 

for the substrate CuBe24. The sensor and the actuator set-up were placed inside an 

environmental chamber25 and subjected to a temperature increase up to 180 °C 

(Figure 5.35). The actuator was supplied with a range of low frequency (1 Hz - 6 Hz) 

sine waves, with variable peak to peak amplitudes from 1 V to 6 V. The resulting 

output peak to peak displacement ranged from 0.35 mm to 2 mm and gave an average 

peak to peak signal of 0.8 mV to 4.6 mV.

Environmental Chamber Electronic
Circuit D isplay

\  Bi layer 
Sensor

Data Acquisition 
Card

Actuator

Figure 5.35: The bilayer sensor placed inside an environmental chamber26,27.

The output signal is determined by the degree of bending of the bi-layer which can be 

converted into a displacement reading. A comparison between the output at 25 °C and 

180 °C showed that the repeatability of the results was 2.7 %. The results were linear 

in this temperature region with a square correlation coefficient value of sc2 = 0.99 

(Figure 5.36). The sensor signal at 180 °C shows average absolute values of 1.7 % 

deviation, and a 2.3 % maximum deviation, compared to the signal taken at 25 °C. 

These values are within the repeatability percentage of the FM  system.
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Figure 5.36: A comparison of the sensor signal at 25 °C and at 180 °C plotted together 

with the absolute value of their percentage difference.
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Figure 5.37: The rise o f inductance due to temperature increase has minute effect to 

the peak to peak sensor signal taken at ~1.6mm peak to peak displacement.

As seen in Figure 5.37 the temperature increase caused a sharp and approximately 

linear rise, in region, o f the inductance value, reaching 63 % change in inductance, 

AL, at 180 °C. This high AL increase is explained by the notable different thermal 

expansion coefficients o f the two materials of the bi-layer strip. In contrast the peak to
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peak sensor signal starts at 3.45 mV (at 25 °C) and shows a 1.7 % increase at 180 °C 

with a 0.009 % per 1 °C increase of temperature.

- 6  E,

-©— F r e q u e n c y  d e v ia t io n  

I n d u c t a n c e  (m H )LL

rfc <£> ^  <§> <#> ^  ^  ^  ^  ^  ^  ^  ^

Temperature (Celcius)

Figure 5.38: The frequency dependence on temperature remains relatively 

uninfluenced from the rise of inductance due to temperature increase (displacement

was set at ~1.6mm peak to peak).

As inductance increases with temperature the reference frequency, f c, is also 

increasing but the percentage change AL remains approximately constant, thus A f  

follows proportionally at 7.2 % (Figure 5.38). With the system settings used the 

frequency deviation (Figure 5.38) is 7.19 % at 25 °C and it was raised to 7.26 % at 

180 °C due to the increase of the inductance value; the frequency deviation 

percentage does not change significantly with the increase o f inductance, due to 

temperature rise. Hence, the sensor signal is relatively uninfluenced by the increase of 

temperature as found experimentally26, 27. These findings allow the design and 

construction of temperature independent sensor families (in the range up to 180 °C) as 

required by industry28.
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5.7 Summary

To be able to extract and recover the sensor information/displacement signal from the 

modulated waveforms, software was written using the Lab VIEW® programming 

package. The written code contained methodologies primarily used in electronic 

circuitry (envelope detector, discriminator, low pass filter) and mathematical concepts 

(lock-in amplifier, Hilbert transform, median filter) in order to perform the 

acquisition, signal processing and presentation of the data. After verifying that the 

measurement system is able to demodulate simulated and acquired modulation 

waveforms, it was necessary to quantify the sensor information signal in terms of 

displacement distance. For this task an actuator set-up was designed and used to 

provide a controlled displacement of the free end of the bilayer sensor. This enabled 

the direct comparison and evaluation of the three modulation principles against the 

results obtained from a laser Doppler Vibrometer (LDV). The comparison between the 

AM , PM  and FM  principles and the LDV  was performed by looking at the relationship 

between the signal output versus displacement and the mechanical hysteresis for each 

modulation method. From the results it was deduced that the FM  principle 

outperforms in quality the AM  method and is noticeably faster than the PM  

modulation. Another well known advantage of the FM  technique is that it is not 

influenced by noise as much as the AM. Thus, the chosen method for conveying the 

bilayer displacement information was the FM  principle. The system alone 

encompasses techniques that make it so adaptable that it can even be successfully
90used with alternative non-bilayer sensor configurations .

The examination of the effects of bilayer sensor physical dimensions and parameters 

paved the way in its optimisation. In this investigation it was found that a coil of N  = 

300 and L = 20 mm would have the optimum dimensions needed for a sensor used in 

conjunction with the FM  system. The correctness of the chosen parameters was also 

confirmed by the system output where sensors of different sizes and characteristics 

were compared. The measurement system was used not only for the detection of 

stress/displacement but also for a brief evaluation of bilayer magnetic material for 

sensor applications. Comparing the two materials of different saturation 

magnetostriction (th = 2.9 pm) it was found that the signal output from a sensor with
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the 2605SC (X » 30-10'6) will outperform by 65 % the one with the 2705M (X » 0). 

Thus, the effect of materials with high saturation magnetostriction was noted, and the 

2605SC was chosen for use in bilayer sensors. Further investigation on the effect of 

substrate choice showed that high modulus of elasticity and high overall thickness, 

increases, as expected, the stiffness of the bilayer strip. Hence, in situations where the 

displacement force is weak (heartbeat rate monitoring), a stiff bilayer will suppress it 

without bending; resulting in little or no sensor signal. A substrate with high thickness 

should be selected for applications where the displacement forces are large, such as 

measuring airflow in a car engine intake; where as for functions where weak forces 

are to be measured the stiffness should be kept at low levels.

As part of examining the performance of the bilayer sensor, the thermal stability was 

tested over the temperature range of up to 180 °C. By placing the bilayer sensor and 

the actuator set-up inside an environmental chamber it was seen that although the 

temperature rise did cause inductance change, the sensor signal remained relatively 

unaffected due to the nature of the frequency modulation method. Thus, a bi-layer 

thin film sensor, using materials of different thermal expansion coefficients, can be 

used and have a good thermal stability over a range of temperatures up to 180 °C. A 

temperature independent sensor is needed in industry especially for application in car 

engines for measuring exhaust fume flow.
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Chapter 6 Bilayer Sensor Measurement System Applications

6.1 Introduction

The simple principle by which the bilayer sensors operate yields a wide range of 

applications that include bending, force or displacement in their operation. The 

applications of bilayer sensors are concentrated on biomedical monitoring and on the 

automotive sector, two fields where this new sensor concept shows interest due to the 

low sensor mass and the flat sensor design1.

Physiological measurements concentrate on “sleep laboratory” (Polysomnography) 

sensors for the detection and long-term monitoring of breathing, leg movement, heart 

activity, blood pressure, eye-lid movements by applying sensors on the human body. 

At present, no FM  based system or bilayer sensor principle is available which can be 

applied in a comparably universal way.

In the automotive sector, the bilayer is intended to be applied on steering wheels for 

angle and torque measurements, for driver status monitoring and for airflow 

observation of the car engine intake.

6.2 Biomedical

The non-disturbing monitoring of the cardio-respiratory activity o f the human body is 

an important parameter during biomedical tests, such as Polysomnography (PSG). 

This is a comprehensive recording of the physiological changes that occur during 

sleep. This diagnostic test monitors many medical techniques including 

electroencephalography (.EEG), rapid eye movement (REM), electromyography 

(EMG), electrocardiogram (ECG), and respiratory activity while the patient is 

sleeping. During the sleep study the breathing; oxygen levels, tracing of heartbeat
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waveform, and the different levels of sleep are recorded. A qualified sleep technician 

performs the test and monitors the patient’s sleep through the night. The sleep 

technician will place electrodes on the head and face to monitor levels of sleep, apply 

ECG patches to the chest to monitor the heartbeat, and place a flow sensor under the 

nose to monitor airflow. In addition, soft straps are placed around the chest and 

abdomen to monitor the rise and fall of the chest to determine whether the patient is 

breathing appropriately during sleep. These sensors, electrodes and straps can 

potentially disturb the patients sleep.

This section of the thesis describes the application of the measuring system, using 

bilayer sensors originally used for the detection of bending, in order to measure with 

minimum disturbance the physiological activities that involve the dynamic 

deformations of the curvature of the skin (Figure 6.1) . Internal physiological 

activities are mirrored on the human body in the form of active variations of the skin 

curvature. As an example, when the heart beats it pumps blood to the body, the 

arteries (i.e. carotid) expand and their radius, r, changes to r + Ar. The tissue around 

the artery will expand accordingly, forcing the surrounding skin area to change its 

curvature from cj to C2 (cj < ci). Hence the hemo-dynamic changes of the carotid 

artery (blood pressure) can be acquired using a displacement sensor placed on the skin 

surface.

Bi layer Bilayer
CoilCoil SkinSkin

.Carotid artery

r + ArRigid tissue Rigid tissue

Diastole Systolec < c.

Figure 6.1: The change of the carotid artery radius during the systolic/diastolic 

contractions of the heart alters the curvature of the skin7.
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Depending on the body region that the sensor is placed, the signals that can be 

acquired due to skin curvature changes will consist of three main components, cardiac 

activity sc (carotid artery systolic/diastolic contractions), lung ventilation sr (rib cage 

movement during air inhale/exhale) and body movements sm (muscle activation from 

active/aware stimulation or passive/sleep disturbance)3.

Display
Electronic

Circuit

Data Acquisition 
Card

Figure 6.2: Bilayer sensor system for registering cardio-respiratory activity ’5.

Here the measurement set-up consisted of the FM  system and the bilayer sensor 

placed on the patient; the location of which depends on the activity to be measured. 

The bilayer sensor used consisted of an amorphous magnetic film, 2.9 pm thick, 

deposited from a FesiB 13^ 3 ^ 2  target (Metglas 2605SC) using the RF magnetron 

sputtering technique onto a 25 pm non-magnetic layer CuBe layer.

Figure 6.3: Application of the bilayer thin film sensor over the carotid artery.
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For the detection of the heartbeat rate,/c, the sensor was attached on the neck over the 

carotid artery with the aid of double sided adhesive tape (Figure 6.3). Cardiac activity 

transmits blood pressure waves through the arterial system which result in the cyclic 

alteration of the vessel’s radius, r. This deformation is transmitted to the skin, through 

the surrounding tissue, resulting in change of curvature, Ac, proportional to Ar 6.

The respiratory activity, /r , was measured by fixing the sensor on the chest using 

double sided adhesive tape. As in the case of cardiac activity measurements, the 

deformation of the chest due to changes in respiration volume produces a sensor 

signal, s r , which characterises the lung ventilation.

6.2.1 Hemo-dynamics and Cardiac Rate

An Electrocardiogram (ECG) is an illustration produced by an Electrocardiograph, 

which measures the electrical potential between points o f the body in order to show 

the electrical activity in the heart. Up to 12 contacts (electrodes) are usually affixed to 

the arms, legs and chest on clean, shaven skin areas. The typical ECG  wave (Figure 

6.4a) starts with the spread of the heart stimulation through the atria (P wave), 

triggering the ventricular activation (Q, R and S  wave), and then ending up to the 

ventricular recovery (T  wave), which returns the stimulated ventricular muscle to its 

resting state.

S

FM System

Figure 6.4: Comparison between the basic ECG  output and the acquired heartbeat

from the FM  system4,5.
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Figure 6.4b shows the hemo-dynamic activity at the carotid artery caused by the 

pumping of the heart. As the heart pumps blood at different pressures, (during its 

systolic/diastolic contractions), the artery changes in diameter accordingly. This 

diameter change is reflected on the skin as skin curvature change (Figure 6.1).

A bilayer curvature sensor system was used for the first time not only to monitor but 

also to map the five characteristic waves of the normal heartbeat rate (F, Q, R, S  and T 

wave). This provided additional medical information about the cardiac activity and 

the blood pressure waveform of the patient that other magnetic bilayer sensor systems 

can not provide7. The shape and size of the P, Q, R, S  and T  waves (heartbeat 

waveform) can provide medical doctors with valuable information regarding the 

patient’s health8,9:

^  Arterial blood clots or blocked artery (occlusion)

Heart valve defects and congenital heart disease 

^  Narrowing (stenosis) of an artery

Heart condition - ischemia and infarction, pericarditis, ventricular hypertrophy, 

bundle branch block, and cerebral disease, ventricular strain, hypertrophy of the 

ventricle, obstructive septal hypertrophy etc.

The FM  bilayer sensor system can accurately and clearly reproduce the pressure 

changes of the carotid artery and give vital information regarding the condition of the 

heart or that of the arteries. Hence information such as heart arrhythmia or clotting of 

the carotid artery can be determined in a quick and inexpensive way. Also compared 

to the ECG, the bilayer sensor system only needs one contact to the body (the bilayer 

sensor) and there is no need for the preparation of the skin area.

Figure 6.5a demonstrates a characteristic pulse train, f a  acquired from the FM  system 

that corresponds to ~81 beats per minute. The normal resting heart rate for adults is 

between 60-100 beats per minute. The signal sc is usually influenced from other 

signals, sr and sm, that arise from respiration or body movements. The ramp increase 

of the cardiac waveform in Figure 6.5a arises from the change of the neck 

circumference and muscle motion during slow intake of air in the lungs.
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Figure 6.5: A detected pulse train segment, from the carotid artery displaying the 

hemo-dynamics o f the carotid artery, using a) the bilayer sensor measurement

system4,5 and b) ultrasound (normal Doppler spectrum) 10

When the patient is holding his breath and immobile (Figure 6.5b), only the signal 

from the cardiac activity, sc, is detected. The Figure 6.5b shows the hemo-dynamic 

activity of the carotid artery acquired by ultrasound10 (Doppler spectrum) normal to

S V Angle -60° 
D epl.6  cm 
Size 1.5 mm 

Freq 6.0 MHz 
WF Low 
Dop58% Map 3 
PRF5000 Hz
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the vessel (90°). Ultrasound is a non-invasive test that can is used to assess the flow of 

blood in the vascular system and its pressure by bouncing high-frequency sound 

waves (ultrasound) off moving objects (red blood cells). From the change in the 

frequency of these sound waves an estimate of how fast blood flows, by measuring 

the rate of change in its frequency can be acquired. Since ultrasound measures the 

blood flow the acquired signal is usually mixed with signals arising from other vessels 

or arteries. This adds unwanted noise to the signal in question (Figure 6.5b) which can 

bury the details (P , Q, R, S  and T waves) of the cardiac waveform. Ultrasound 

measurements need to be continuously monitored by experienced personnel to ensure 

accuracy of the results11, 12. The bilayer sensor system can provide prolonged and 

unmanned monitoring of cardio-respiratory activities with a clearer signal than 

Doppler ultrasound.

6.2.2 Respiratory Activity

During breathing, air is inspired and exhaled in the lugs, making them expand and 

contract. Throughout this motion the rib muscles contract (ribcage expands up and 

outwards) and relax (ribcage contracts inwards) hence changing the skin curvature of 

the chest. When the bilayer sensor is placed on the chest, respiratory activities can be 

monitored. Figure 6.6 displays the signal, s r , over 55 seconds, during which normal 

respiration, deep inhalation/exhalation and apnoea were recorded (from a healthy 

individual) with clear differentiation between respiratory activities. The study of the 

respiratory activity is important as it is a part of the PSG tests that are conducted in 

order to monitor abnormalities of sleep/wakefulness and other physiological 

parameters related to it. Generally the study of respiratory activities can reveal the 

following conditions13,14:

Apnoea (absence of spontaneous respiration)

■4 Bradypnoea (abnormally slow rate of respiration)

4i Cheyne-Stokes respiration (alternating periods o f hyperpnoea and apnoea)

4i Dyspnoea (shortness of breath)

Hyperpnoea (increase in the depth and rate of respiration)
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4  Hypopnoea (slow respiration)

4  Hyperventilation (abnormally rapid deep breathing)

During the PSG test the respiratory activity is monitored by placing two Velcro® 

straps, one placed around the chest under the breast area and one around the abdomen. 

This serves to determine chest wall and abdominal movements during breathing. A 

piezoelectric transducer is incorporated to this set-up and connected on each strap. 

The displacement force of the chest causes the expansion on the straps and hence 

stresses the transducer; this alters the signal to the physiological recorder. Along with 

the straps an airflow sensor (thermocouple) is placed under the nose to record airflow. 

The measurements of the straps and the airflow sensor are combined for the 

evaluation of respiratory activities. Attaching both the straps and the airflow sensor to 

the body will hinder any movement during sleep which will wake or disturb the 

patient and hence the monitoring .

Since the application of the bilayer sensor is a non-invasive and a non-disturbing 

method (only one sensor needed) for monitoring respiratory activities, i.e. with 

minimum inconvenience to the patient, then the system can be used for prolonged, 

undisturbed and successful monitoring.
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Figure 6.6: Respiratory activities using the bilayer thin film sensor system4,5.
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6.3 Airflow

The ability to quantify the flow of air or liquids, quickly and accurately, is greatly 

needed by industry. Applications of flow sensors can vary from measuring blood flow 

through the human artery system to determining the air flow through the intake of a 

car engine1, l5. The means to monitor the air flow through a car engine led to the 

introduction of electronic fuel injection systems that replaced carburettors that could 

not rapidly change the air-to-fuel ratio in order compensate for changes in 

atmospheric conditions. Thus, the electronic fuel injection system improved fuel 

economy and reduced exhaust emissions. Airflow sensors can also be a vital part of a 

condition monitoring system which together with an electronic processor it can 

analyse data and in turn warn the user for equipment fatigue and failure or to 

automatically control the apparatus i.e. by changing the air stream through pipes, 

vents etc, in order to correct any problems. The application of a novel system using 

bilayer sensors, originally used for the detection of bending, is described in this 

section. Based on the principle of bending bilayer sensors the system is able to 

measure the speed of an air stream through a cylindrical tube16. The measuring system 

was connected to a setup comprised of a cylindrical tube where the sensor is placed 

inside and a tank with compressed air that supplied the air flow (Figure 6.7).

TankTube

Circuit

DisplayData Acquisition 
Card

Figure 6.7: The bilayer sensor setup for airflow measurements.

The bilayer sensor used consisted of an amorphous magnetic film (Metglas 2605SC), 

28 pm thick, and agglutinated onto a 75 pm non-magnetic layer Al layer. The bilayer 

sensor was inserted in the middle of a cylindrical tube 70 mm long with 30 mm 

diameter. The orientation of the sensor was parallel to the radius of the tube with the
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broad face of the bilayer strip placed orthogonally to the air stream and the tip of its 

free end located in the centre of the tube (Figure 6.8a, b). The air stream was supplied 

to the tube from a compressed air tank with 8 bar (115 psi) maximum working 

pressure. An anemometer was placed at the other end of the tube to measure the air 

flow in order to correlate the sensor signal to the wind speed. The performance of the 

sensor was tested at air speeds up to 25 m/s and at a range of distances from the centre 

of the tube (reducing the bilayer strip length inside the tube) (Figure 6.8b). The tube 

diameter and the air speed range was chosen as such as to achieve a slightly turbulent 

flow through the tube with a Reynolds number of Re = 6324 at 3.9 m/s up to Re = 

40541 at 25 m/s using Eq. 6-1 (Eq. 2-39):

R tL d m = 25 ^  = 40541
v, 1.85 10

where vj is the dynamic viscosity of air equal to 1.85-1 O'5 P as at 25 °C17.

a)

Anemometer .  * a /S ensor

 'iBent Bi-layer A
1

Air Stream

b)

Figure 6.8: The

ensor.

Distance from the centre 

bilayer sensor configuration inside the cylindrical tube.
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In a straight tube when the Reynolds number is above 4000 then the flow is 

turbulent18. The reason behind this choice was to examine the performance of the

6.3.1 Sensor Tip Distance from Centre of Flow

In order to relate the sensor signal to the air flow, the environment inside the tube and 

the forces that displace the bilayer strip need to be considered. This was performed by 

modelling the sensor inside the tube using FEM  (Comsol Structural Mechanics® 

package)20. A model of the tube and strip arrangement was designed in FEM, 

applying parameters such as the air flow speed and the mechanical characteristics of 

the bilayer (Young’s modulus).

The nature of the air flow (air velocity) in a tube is parabolic (Figure 6.9) and depends 

on the radial distance from the centre of the tube (centre of flow where air speed is at 

maximum)21 as calculated from Eq. 6-2 (Eq. 2-38):

Hence at 0 mm, the centre of the tube (Figure 6.9) the air flow has its maximum speed 

of 25 m/s. This value drops in a parabolic manner until it reaches zero at 15 mm (tube 

wall).

The force exerted along the length of the bilayer strip depends on the air speed and 

hence on the distance from the centre of the tube Eq. 6-3 (Eq. 2-34):

where the static pressure, Ps, is equal to zero since the tube is not pressurised.

sensor in conditions found in engine intakes where the flow is usually turbulent19.

6-2

6-3
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Thus, the force will show a maximum value at the centre of the tube (0.265 N at 25 

m/s) and will display a bell shaped drop down to zero at 15 mm.

3 0 .0 00 .3 0

2 5 .0 00 .2 5

20.000.20

1 5 .0 00 .1 5

LL

10.000.10

0 .0 5 5 .0 0

0.00 0.00

Tube radius (mm)

Figure 6.9: The dependence of the airflow and force on the distance from the centre

of the tube (FEM Results).
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Figure 6.10: The bilayer sensor curvature and displacement at a range o f air speeds up

to 25 m/s (FEM Results).
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The data shown in Figure 6.9 were inserted in the FEM  calculations and the results 

obtained were plotted on Figure 6.10 to Figure 6.12 and represent the theoretical 

behaviour of the bilayer strip in the tube under the application of airflow up to 25 m/s.

When the bilayer is inserted in the tube the air flow, and hence the force, will be 

applied vertically to the longitudinal axis of the strip and throughout its length. The 

magnitude of the force will vary along the length of the strip according to Eq. 6-3. 

Since the force is applied throughout the bilayer’s length (Figure 6.10) rather than 

concentrated on its tip, the curvature at a point -C along the strip will be calculated 

using Eq. 6-3 and Eq. 6-4 (Eq. 2-25):

11
■*— 15 m m  

■O'— 1 3 m m ■e— 1 2 m m
8

6

4

2

0
0 .0 0  5 .0 0  1 0 .0 0  1 5 .0 0  2 0 .0 0  2 5 .0 0  3 0 .0 0

Airflow (m/s)

Figure 6.11: Bilayer length effect on tip displacement at speeds up to 25 m/s (FEM

Results).

By moving the sensor away from the centre o f the tube (reducing the length) and 

hence away from the point where the air force is at its maximum, it can be seen from 

the modelling results that the tip displacement o f the bilayer strip displacement is 

dramatically reduced 12.5 times at 25 m/s (Figure 6.11 and Figure 6.12) as expected 

from Eq. 6-2 and Eq. 6-3. This is not only because the force decreases towards the
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tube wall but also because the length of the strip affects the amount by which it can be 

displaced (Eq. 6-4). Figure 6.12 demonstrates that in order to displace by the same 

amount two bilayer strips of different length, higher amounts of force are required for 

the shorter strip.
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Figure 6.12: The bilayer sensor curvature and displacement at a range of air speeds up

to 25 m/s.
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Figure 6.13: The output voltage characteristics against the tip displacement of the 

bilayer sensor at a range of air speeds up to 25 m/s..
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The bilayer strip was inserted in the tube and subjected to a range of air flows up to 25 

m/s. The acquired sensor signal was recorded and plotted against the tip displacement. 

Measurements were also taken by reducing the strip length in the tube from 15 mm to 

12 mm in 1 mm steps. The results were repeated five times and the average values 

were plotted in Figure 6.13. The linearity was found to have a square correlation 

coefficient of 0.99 and the non-repeatability (2.4 %) of the data is within that of the 

FM  system. The closer the bilayer’s tip it to the centre of the tube the bigger the 

displacement of the trip. This is due to the higher air flow levels towards the centre 

and the fact that more strip area is present in the tube, subjected to additional force 

and hence increased displacement. This is explained in Eq. 6-4 where displacement is 

proportional to f 3. High levels of displacement will increase the stresses within the 

material which in turn will show elevated sensor signal. A bilayer, with its tip away 

from the centre of the tube will require much higher airflow to show the same tip 

displacement as a longer strip. Higher forces induce higher stresses in the magnetic 

material which in turn cause increased change in AL and hence increased levels of 

signal. This is observed in Figure 6.13 where at a 12 mm length the strip needs 25 m/s 

air flow to achieve a 0.8 mm displacement in contrast to a 15 mm length which 

reaches the same with ~5 m/s. Nevertheless, at C = 0.8 mm a 12 mm length the 

stresses are high and a 17 mV signal is recorded against the ~4 mV (76 % less signal) 

that arises at a 15 mm length. Hence even though shorter strip length gives less 

displacement it can be used in conditions where there is a high air flow rate. Longer 

strip lengths should be used in conditions of low air flow to increase the sensitivity.

Sensor

Bent Bi-layer Air Stream

Figure 6.14: At sufficiently high flow rates the sensor is deflected at around 90° to lie

parallel to the flow direction.
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At sufficiently high flow rates the longitudinal axis of the sensor is deflected at 

around 90° (bends backwards) to lie parallel to the flow direction (Figure 6.14). 

During this condition a further increase in the airflow will not result to a further 

increase of the sensor signal because there is no further bending/stressing on the 

material. This can be corrected by either reducing the sensor length in the tube or by 

increasing the substrate thickness in order to increase the stiffness of the bilayer.

6.3.2 Effect of Substrate Thickness and Material

In Chapter 5, section 5.5, with the aid of FEM  the effect of substrate thickness and 

modulus of elasticity on the displacement of bilayer strips was conducted. The sensor 

was inserted into the tube and subjected to a range of air flows up to 25 m/s. By 

placing in the sensor coil, strips constructed from substrates of different thickness or 

modulus of elasticity the theoretical finds from the FEM  can be verified.

Five bilayers made by agglutinating an amorphous magnetic film (Metglas 2605SC), 

28 pm thick, onto a range of non-magnetic layers of difference thickness and material 

were constructed (Table 6.1):

Substrate Material Al HAVAR

Young’s Modulus (GPa) 75 75 75 200 200

Thickness (pm) 75 150 225 75 100

Table 6.1: The five substrates used for the calculation of the effect of the substrate 

thickness and modulus of elasticity on the displacement and performance of bilayer

sensors.

In section 5.5 it was noted that, under the application of the same force, as stiffness 

increases the tip displacement of the bilayer strip will decrease. Figure 6.15 verifies 

the theoretical investigation conducted with the FEM that as the thickness of the
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substrate increases the tip displacement decreases. This is due to the fact that the 

increase of thickness is directly linked to the inertia of the bilayer strip, Eq. 6-5 (Eq. 

2-19), which in turn affects the stiffness of the material, Eq. 6-6 (Eq. 2-32):

In =
w-h'

12
6-5

cr, = M  • y
E1+ E 2 +--- + En

Ex Inx + E 2 • In2 + En - In n
6-6

By comparing the two bilayers with the 75 pm and 225 pm Al  substrate, it can be seen 

that a 3 times increase in the thickness gave a 76 % decrease in displacement due to 

the increase of inertia 96 % higher. Thus, having a material with higher stiffness will 

require increased amounts of force (airflow) to be displaced further. Similarly the 

comparison between the 75 pm Al (E  = 75 GPa) and 75 pm HAVAR (E = 200 GPa) 

shows that as the modulus of elasticity increases the tip displacement decreases. Here 

a 2.6 times increase in E  caused a 20 % decrease in the sensor tip displacement.

10
♦ — 7 5  u m  - Al

• — 1 5 0  u m  - Al8
2 2 5  u m  - Al

6 * - 7 5  u m  - H av ar

<>— 1 0 0  u m  - H avar
4

2

0
0 3 02 55 10 2015

Airflow (m/s)

Figure 6.15: The effect of varying the substrate thickness and its modulus of 

elasticity, on bilayer tip displacement at speeds up to 25 m/s.
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This is due to the fact that stiffness is defined as the product o f the modulus of 

elasticity with the moment of inertia (Chapter 2, page 19). The results o f Figure 6.16 

show that the sensor signal is influenced by the bilayer dimensions and by the 

displacement/stress induced on the strip. It is seen that comparing the two bilayers 

with the 75 pm and 225 pm Al  substrate, the 3 times increase in thickness displayed a 

35 % drop in the sensor signal at 25 m/s. From Figure 6.15 the airflow needed to 

displace the samples with the 75 pm and 225 pm Al  substrate at a 2 mm tip 

displacement is 8.9 m/s and 22.3m/s respectively. This demonstrates that the 

magnitude of the force applied on the bilayer tip needs to be increased in order to 

achieve the same amount of displacement due to the increased thickness (Eq. 6-4 and 

Eq. 6-5). To quantify this, a 2.5 times increase in airflow is needed (compared to the 

75 pm Al) to displace the tip of the 225 pm Al to 2 mm. From Figure 6.16 it is seen 

that at 2 mm tip displacement the 75 pm Al  substrate will show 5.5 mV of signal 

whereas the 225 pm Al  displays 24 mV. So the 3 times increase o f thickness produced 

a 4.4 times rise in output. This is due to the fact that the increase o f force will increase 

the stress and hence give a rise to the sensor signal (Eq. 6-6).

-♦— 7 5  p m  - Al 

■•— 150  p m  - Al 

-a—2 2 5  p m  - Al 

7 5  p m  - H avar 

♦ — 10 0  p m  - H avar

3 0  -

2 5  -

Airflow (m/s)

Figure 6.16: The effect of varying the substrate thickness and its modulus of 

elasticity, on bilayer signal output at speeds up to 25 m/s.

Accordingly, looking at the 75 pm Al (E = 15 GPa) and the 75 pm HAVAR (E = 200 

GPa), a 2.6 times increase in E  showed a 4 % decrease in sensor signal at 25 m/s, this
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is due to the increase in stiffness that gives rise to the stress in the bilayer strip. By 

comparing the 75 pm Al  and the 75 pm HAVAR (Figure 6.15), at 2 mm tip 

displacement, it is found that the airflow is 8.9 m/s and 11.2 m/s respectively, 

showing a 26 % increase. This produces a 7.1 mV signal for the 75 pm Al  and a 9.5 

mV output for the 75 pm HAVAR. Therefore the 2.6 times increase in E  will show a 

34 % increase in voltage signal. At low airflow where sensitivity is needed a sample 

with reduced thickness or with low E  is desired. Whereas in conditions of high 

airflow a thick material with a high E , (and hence high stiffness), is necessary. 

Therefore by choosing the th or E  of a bilayer according to the magnitude o f the 

applied force, the strip not only will be able to withstand higher forces without 

bending excessively (Figure 6.14) but also be sensitive enough to record a strong 

signal.
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Figure 6.17: The output voltage characteristics and the tip displacement o f the bilayer

sensor vs. the force exerted on the strip.

By plotting the acquisition results (sensor signal) against the tip displacement of the 

bilayer strip it can be seen that the relationship has a linear behaviour with a square 

correlation coefficient value of sc2 = 0.99 (Figure 6.13). The results present this 

linearity even at speeds up to 25 m/s where the conditions in the tube are turbulent. A 

direct connection between the sensor signal and the tip displacement o f the bilayer 

strip from the airflow was plotted in Figure 6.17. By plotting both the sensor tip
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displacement against force and the sensor signal versus force it can be seen that the 

responses closely follow each other. This further indicates that the sensor output 

signal faithfully replicates tip displacement position. Hence the bilayer sensor system 

can be used in air flow measurements as needed by industry19.

6.4  S u m m a ry

In Chapter 6 the bilayer sensor measurement system was used to observe 

physiological functions, such as the cardio-respiratory activities, and also to monitor 

and quantify the flow o f air.

The results showed that the various physiological activities that are mirrored on the 

human body in the form of active variations of skin curvature can be successfully 

detected. In fact a bilayer curvature sensor system was used for the first time not only 

to monitor but also to map the five characteristic waves of the normal heartbeat rate 

(P, Q, R, S  and T  wave), hence providing additional medical information about the 

cardiac activity of the patient that other magnetic bilayer sensor systems can not 

provide. Compared to commercial equipment such as the ECG, the bilayer sensor 

system only needs one contact to the body (the bilayer sensor) and there is no need for 

the preparation of the skin area. The FM  bilayer sensor system can accurately and 

clearly reproduce the hemo-dynamic pressure changes of the carotid artery and give 

vital information regarding the condition of the heart or that o f the arteries. Hence 

information such as heart arrhythmia or clotting of the carotid artery can be 

determined in a quick and inexpensive way.

When the bilayer sensor was placed on the chest a range of respiratory activities were 

monitored. These activities included normal respiration, deep inhalation/exhalation 

and apnoea which were recorded with a clear differentiation. The study of the 

respiratory activity is important as it is a part of the Polysomnography tests that are 

conducted in order to monitor abnormalities of sleep/wakefulness and other 

physiological parameters related to it. Since the application o f the sensor is a non- 

invasive and a non-disturbing method for monitoring respiratory activities, i.e. with
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minimum inconvenience to the patient, then the system can be used for prolonged, 

undisturbed and successful monitoring.

Based on the principle of bending, the bilayer sensor measuring system is able to 

measure the speed o f an air stream through a cylindrical tube. Sensor signals were 

recorded with the bilayer tip at a range of distances away from the centre o f the tube, 

where the airflow is at its maximum. It was found that in order to displace by the 

same amount, two bilayer strips of different length, higher amounts of force are 

required for the shorter strip. The higher forces induce higher stresses in the magnetic 

material which in turn cause increased change in AL and hence increased levels of 

signal. A strip with high stiffness or short in length can be used in conditions where 

sufficiently high flow rates can deflected the longitudinal axis of the sensor at around 

90° (bends backwards) to lie parallel to the flow direction. This is due to the fact that 

the thickness and the modulus of elasticity are directly linked to the stiffness of the 

material. Depending on the strength of the airflow and the sensitivity needed, 

accordingly the substrate needs to be chosen. It was also noted that the relationship 

between the sensor signal and the tip displacement of the bilayer strip has a linear 

behaviour presented even at speeds of 25 m/s where the conditions in the tube are 

turbulent. Hence, a direct connection between the sensor signal and the force exerted 

on the bilayer strip from the airflow can be made apparent.
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Chapter 7 Conclusions and Outlook

The conclusions of the work presented in this thesis are given, linking it to the larger 

context of the use of magnetic bilayer sensors and their measurement systems in the 

biomedical and automotive industry. Potential future research directions are explored.

7.1 Conclusions

The work concerned the development of a new type o f bilayer sensor measurement 

system and its possible application in dissimilar areas such as the observation of 

human physiological activities and monitoring o f the airflow inside a car engine.

The central questions were:

i. How to develop a measurement system that would have the ability to 

recover with detail weak signals, such as the heartbeat waveform, and 

simultaneously be adaptable to other applications that may have different 

parameters?

ii. What parameters in the design and manufacturing o f bilayer sensors could 

be critical in augmenting their performance, sensitivity and possible 

miniaturisation?

To cover the topic and the factors involved proved difficult as it encompassed a wide 

range of disciplines such as electronics, magnetism, material science, mechanics, 

physiology and software programming. It is hoped however, that the reader is left 

with an overview of the subject and a general intent for the many opportunities that 

remain to be explored and exploited.
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From the investigation that was carried out, the following conclusions were derived:

An algorithm was designed and developed that was able to extract and recover the 

sensor information/displacement signal from all three modulated waveforms (AM, 

PM  and FM). This program was written on the LabVIEW® platform. The 

measurement system is able to demodulate simulated and acquired modulation 

waveforms and quantify the sensor information signal in terms of displacement 

distance. The written code contained methodologies primarily used in electronic 

circuitry (envelope detector, discriminator, low pass filter) and mathematical 

concepts (lock-in amplifier, Hilbert transform, median filter) in order to perform 

the acquisition, signal processing and presentation of the data. Extra code was 

written in order to supply the actuator with a sinusoidal signal that was used in 

order to provide a synchronised and controlled displacement to the bilayer strip.

4* From the direct comparison between the AM, P M  and FM  signals it was deduced 

that the bilayer sensor measurement system can produce signals proportional to 

the displacement of its free end. All three principles were used to successfully 

convey the sensor information signal for displacements in the range of 0.35 mm to 

2 mm. However it was shown that the P M  and F M  principles are less susceptible 

to noise and hence outperform in quality the A M  method. It was also found that 

the FM  technique is noticeably faster than the P M  principle, due to phase drift 

problems that require higher sampling/acquisition rates. Thus, the chosen method 

for continuously conveying the bilayer displacement information was the FM  

principle. From the performance of the system it was found that along the region 

of 0.8 mV to 4.6 mV, it has a linearity o f sc2 = 0.99, non-repeatability of 2.4 % 

and an average sensitivity of 2.2 mV/mm.

*4 It was deduced from the examination of the effects of bilayer sensor physical 

dimensions and parameters that a coil o f N  = 300 and € = 20 mm would have the 

optimum dimensions needed to be used in conjunction with the FM  system. The 

correctness of the chosen parameters was also confirmed by the system output 

voltage where sensors of different sizes and characteristics were compared.
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4t The measurement system was used not only for the detection of 

stress/displacement but also for a brief evaluation of bilayer magnetic material for 

sensor applications. It was seen that a sensor with the 2605SC (th =2.9 pm, X » 

30-1 O'6) outperformed by ~65 % the 2705M (th =2.9 pm, X « 0). Thus, the effect 

of materials with high saturation magnetostriction was noted, and the 2605SC was 

chosen for use in bilayer sensors. The selected optimum coil parameters seem to 

give the highest output voltage compared with other configurations.

4k Further investigation on the effect of substrate choice showed that high modulus 

of elasticity and high thickness, increases, as expected, the stiffness of the bilayer 

strip. Hence, in situations where the displacement force is weak (heartbeat rate 

monitoring), a stiff bilayer will suppress it without bending; resulting in little or 

no sensor signal. A substrate with high thickness would be selected for 

applications where the displacement forces are large, such as measuring airflow in 

a car engine intake; where as for functions where weak forces are to be measured 

the stiffness should be kept at low levels.

4  The bi-layer thin film sensor, using materials o f different thermal expansion 

coefficients, showed a good thermal stability over a range o f temperatures up to 

180 °C. The sensor signal remained relatively uninfluenced by the increase of 

temperature, due to the nature of the frequency modulation method, as found 

experimentally. A temperature independent sensor is needed in industry especially 

for application for measuring air flow in intake in car engines

4k A bilayer curvature sensor system was used for the first time not only to monitor 

but also to map the five characteristic waves o f the normal heartbeat rate (P, Q, R, 

S  and T wave), hence providing additional medical information about the cardiac 

activity of the patient that other magnetic bilayer sensor systems can not provide. 

Compared to commercial equipment such as the ECG, the bilayer sensor system 

only needs one contact to the body (the bilayer sensor) and there is no need for the 

preparation of the skin area. The FM  bilayer sensor system can accurately and 

clearly reproduce the hemo-dynamic pressure changes of the carotid artery and 

give vital information regarding the condition of the heart or that of the arteries.
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Hence information such as heart arrhythmia or clotting of the carotid artery can be 

determined in a quick and inexpensive way.

4* It was seen that when the bilayer sensor was placed on the chest a range of 

respiratory activities were detected. These activities included normal respiration, 

deep inhalation/exhalation and apnoea which were recorded with a clear 

differentiation. Compared to existing methods the use of the bilayer sensor is a 

non-invasive and a non-disturbing method for monitoring respiratory activities, 

i.e. with minimum inconvenience to the patient, then the system can be used for 

prolonged, undisturbed and successful monitoring.

The bilayer sensor system was used successfully to measure airflow up to 25 m/s 

through a cylindrical tube. Sensor signals were recorded with the bilayer tip at a 

range of distances away from the centre o f the tube, where the airflow is at its 

maximum. It was found that in order to displace by the same amount, two bilayer 

strips of different length, higher amounts of force are required for the shorter strip. 

A strip with high stiffness or short in length can be used in conditions where 

sufficiently high flow rates can deflected the longitudinal axis of the sensor at 

around 90° (bends backwards) to lie parallel to the flow direction. The 

relationship between the sensor signal and the tip displacement of the bilayer strip 

has a linear behaviour with sc — 0.99. This linearity is presented even at speeds of 

25 m/s where the conditions in the tube are turbulent.

As expected the tip displacement and the sensor signal are affected by varying the 

bilayer strip thickness and the modulus o f elasticity of the materials that it is 

comprised of. Depending on the strength o f the force applied on the bilayer’s tip 

and the sensitivity needed, accordingly the substrate needs to be chosen.

This is the first application of angle modulation (PM, FM) principles for use in bilayer 

sensors. The application of this system to biomedical and automotive applications 

showed the universality and adaptability o f the bilayer sensors. It is hoped that the 

bilayer sensor measurement system will lend its self to other applications.
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7.2 Outlook

The bilayer sensor and its measurement system showed that it can measure 

displacement/stress and that it can be used in many different applications. This 

universality is very attractive for industry.

Fields such as sleep monitoring laboratories can use an array of these sensors for 

multiple monitoring o f physiological activities. The automotive industry may apply 

this sensor system not only for fluid control (air, water) but also for monitoring the 

drivers’ health via sensors placed on the steering wheel, the safety belt or the back of 

the seat. These sensors could be connected to a neural network system that can 

evaluate whether the driver is falling asleep or suffering from a condition that 

prevents him from driving safely. Further developments o f this sensor system may 

include an all hardware realisation of the measurement system in order to achieve 

portability as a hand held device. This can be o f use to the medical profession for 

quick observation o f the hemo-dynamics of the blood and hence the health condition 

of the heart. Further clinical testing will enable the medical community to correlate 

the results obtained from the bilayer measurement system with known medical 

conditions. The system could also be designed as a wireless stress monitoring sensor 

system with applications such as monitoring the structural integrity of installations 

such as power generation or chemical plants or even oil pipes.

The investigation o f the application o f the bilayer sensor system for airflow 

measurements showed promising future. Further tests will be necessary to fully record 

the effects of airflow on the bilayer sensor and perhaps propose new configurations 

depending on the area o f application. These tests will require to be conducted under 

specialised airflow dynamics laboratory for precise characterisation of the full 

abilities of the bilayer sensor.

Finally an interesting evolution of the bilayer sensors would be their 

miniaturisation and perhaps incorporation in micromechanical systems. The small size 

and very low power consumption can be used in every day consumer applications 

such as toothbrushes (applied pressure) or in less common devices like space 

exploration probes (displacement/stress).

It seems that there are plenty of opportunities to be explored and it is hoped that 

the reader might find the information presented here interesting and useful.
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Appendix A: Mechanical Analysis -  Derivations

- Calculation of the deflection of a nth layer cantilever beam 

Calculation of the deflection of an nth layer cantilever beam

In order to calculate the deflection of an nth layer cantilever beam loaded at the free 

end with a concentrated load, the centroid o f the composite structure and the area 

moment of inertia o f each layer need to be determined.

The centroid o f an area is the centre of mass of an object o f uniform density. Most 

composite or geometrically complex shapes can be considered to be made up by 

combining several shapes together. This can be used to locate the position of the 

centroid. If a complex area can be considered to be a composite o f two or more simple 

areas, the centroid and hence the neutral axis, can be found by applying the principle 

that the product of the total area times the distance to the centroid o f the total area is 

equal to the sum o f the products of the area of each component part times the distance 

to its centroid. For the calculation of <fw, the point o f reference is the centroid of layer 

n (Figure A.l).

Reference layer n

n-1

Neutral axis

Figure A .l: Calculation o f £n and dn.

Stating this mathematically1:
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V / ^n n /  \ ™ n )
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Beams that are made of different materials (different Young’s Modulus) need to be 

treated with the “equivalent width technique” (Figure A.2a). An assumption is made 

where by the width o f each component parallel to the principal axis of bending is 

increased in the same proportion that the modulus of elasticity of the nth component 

(En) makes with the modulus of elasticity (E j) of the assumed material. This 

proportionality is written as:

A -2

1---------- ------------1

E —  ■

E1
■

h /2 /

h /2 h /2

a b
Figure A.2: Cross sections of a) bilayer beam, b) the equivalent width technique

applied to a).

In the case of a bilayer strip with a cross section as shown in Figure A.2, Eq. A-l will 

become1,2:
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Using Equation 2-17 the area moment o f inertia can be found as:

r W \ ' h \ i j 2In, = —  vw, -h, 'di 12 i i , A-5

and

r  W2 ' H  / j 2= — -------\-w2 -h2 ' d 2
12

A-6

From Eq. A-5, Eq. A-6 and Eq. 2-33 the deflection o f the cantilever bilayer beam will 

be as follows:

F - l 3_______
3 • (is, • Inx + E 2 • In2)

A-7
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Appendix B: O scillator -  Derivations

B.l Phase shift oscillator

B.2 Phase shift oscillator with bilayer sensor

B.3 Colpitts oscillator

B.l Phase shift oscillator

A three section RC  network is used to achieve a phase shift of 180°. The loop gain can 

be found by breaking the feedback loop at x-x ’ (Figure B-l).

PM

RC Network

Figure B.l: Phase shift oscillator

Using Ohm’s and K irchoff s laws, the network equations become:

Vj (s2C + G )~  V2sC  + 0 = V0UtsC B-l

-  VxsC  + V2 (s2C  + G) -  VinsC  = 0 B-2

0 - V 2sC + Vin(sC  + G) = 0 B-3

where Vin = Vj, s = jco and G=l/R.

Using Cramer’s Rule to solve for/? = Vin /  Vou(:
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D
2 sC + G - s C  0 

- s C  2 sC + G - s C  
0 -  sC sC + G

=>D = s 3C3 + 6 Gs 2C 2 + 5 G2sC + G3 = F B-4

D. =
2 sC + G - s C  sC 

— sC 2 sC + G 0 
0 - s C  0

D. = s 3C3 = V„ B-5

V. s Cn  _  in  _______________ °  ^ ________________

F_ s3C3 +6Gs 2C 2 +5G2s C + G2 1 + + +
1

B-6

sRC s R C

Substituting s =jco, collecting real and imaginary parts and setting the imaginary part 

to zero and solving for co:

  ----- + * , -  = 0=>a> = — B-l
co j  RC co j  R C RC4b

Substituting Eq. B-7 to the real part of Eq. B-6:

P = \ -
co R C 4

1 —
R 2C :

P  = -  29 B-8

tf2C 2(V6):

From Eq. B-7 the circuit will oscillate at:

CO = ----—̂ j=  => f  =  5-p r  B-9
RCy/6 2 ttR C S
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V 53C3B = —UL- = ---------------------------------------_ --------------------------------------
Voul s 3C3 + 6Gs 2C 2 + 5 G2sC + Ws2C 2 + 3 WGsC + WG2 +G

1 +
sRC

+
s 2R 2C 2

+
1

s 3R 3C3
+

s 2CL
+ +

1
B-15

s3C zRL s C R L

Substituting s =jco, collecting real and imaginary parts and setting the imaginary part 

to zero and solving for co:

6 1 3 V3 R*C ++ ——:—-  + ——  = 0=>CD = -----------------------------------------------------------B-
sRC i 3/f3C 3 s 3C 2RL

16

From the above calculations the circuit will oscillate at:

V3 ¥ c +L_ ,  V3 R*C + L „  „co = --------- .— --=> /  = --------------------------------------------------------------------------B-17
RC46L 2nRCy/6L

B.3 Colpitts oscillator

in

FM
L+AL

LC Tank out

Figure B.3: Colpitts oscillator

By breaking the feedback loop at x-x ' and treating it as a voltage divider, comprised 

of reactive components, the oscillator gain and operating frequency can be found:
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V  =  V  •y out v 1
X g

x L + x C2 B-18

^  X n ( X L + X C 2 )

0 X a + ( X ,+ X c2)
B-19

V  = V -  •r 1 r in
X.  n

^ ,+ ^ 0
B-20

Combining Eq. B-19 and Eq. B-20:

V  =  V.  • •r 1 ' in

R\ +

X C , ( X L + X C 2 )  >

■yc, + ( x . + x C2)

 ̂ x r ,(^ ,. + ^ r7) '  
A'c,+ (A 'l + j r C2)

B-21

From Eq. B-21, Eq. B-18 becomes:

V  =r out
 ̂X c x  +  ( X L  +  X C 2 )  J

\  \

R, +
'  X r l ( X , , + X C 2 )  N

X C2

X ,+ X C2
B-22

The gain, p, of the oscillator is found as:

P
y out _  V

* ,+

X C1( X ,+ X C2)
X g  + ( X L + X C 2 )  

f  X r ] ( X , , + X r 7 )  >  

A'c, + ( ^ i + 2rC2)

* c»
-Y ,+ 2fC2

/ /
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X n ( Xl + X „ )  '
X cx + {X L + X C2)

X c  2

X L +*C 2

R\ +
X a ( X , + X n ) N 

KX n + ( X L+ X C2)C 2 f  J

X ^ x • XC2
1̂ •(*<-. + ^C2 + X L) + X cl m X  C 2 + x c i  •X L)

Replacing the reactance values of Eq. B-23 with:

=
1

jcoC 

X  L =  j c o L

1 1

/? =
j  coCx j  coC j

R ,
1 + 1

jcoCx jcoC2
+ jcoL + 1 ja>L

jcoCx jcoC2 jcoCx
+

-1
co2CxC2

(
V

1 1 • rH--------------- h J  COL
v jcoCx j  coC2

+ -1 +
cd  CXC2 Cx

Setting the imaginary part to zero and solving for co:

1 1 ■ t nH----------------h J CoL — 0
jcoCi j  coC2

1 1 2 T—  + —  = co L
C C^1 2'----V---- '1

Cr

1 1
CT cd  L

C D -
■yjLCj

Therefore the frequency is:

B-23

B-24

B-25

B-26

B-27
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C , + C

1
c  c1 2

B-28

Substituting Eq. B-27 to the real part of Eq. B-26:

-1
C C12

-1 - L
co2CxC2 Cj + C2 C|

B-29-1  L_
co2CxC2 Cx C\C2 C, 

L Q C 2
c x + c 2

-1  L—  + — L L c 2
c , c , + c ,

For Ci = C2 then ft = -1, which means that the amplifier must be in an inverting 

configuration (as in Figure B.3) with and the feedback gain at least 1 in order to 

oscillate.
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Appendix C: Software Hierarchy and Main Code

- Measurement system hierarchy

- Main system VPs

- Demodulation and signal processing code for the AM, PM  and FM  techniques

- Data output and report generation code

For the signal processing, analysis and presentation, a program was written using the 

Lab VIEW® graphical programming language. This programming language consists 

of layers of software termed virtual instruments (VPs) that use the processing power 

of an ordinary PC  to convert it to a custom designed instrument. These VPs can be 

used as inside other VPs, as subVPs, creating a hierarchical structure (Figure C.l). 

The LabVIEW Class Hierarchy window displays a graphical representation of the 

inheritance of LabVIEW classes.

The role of the main software program (Figure C.2) is to acquire the modulated 

waveform {AM, PM, FM)  that arises from the sensor circuit and separate the sensor 

displacement information from the reference signal. Extra code was written to the 

LabVIEW® program in order to supply the actuator with a sinusoidal signal that was 

used in order to provide a controlled displacement to the bilayer strip. For each of the 

modulation methods, their equivalent demodulation technique was implemented in 

code using their mathematical principles (Figure C.3 to Figure C.5).

After signal conditioning is preformed the information signal is passed into a sub VI 

that handles the presentation and preservation of the data (Figure C.7). This section of 

the system handles the tagging of the data with the sensor configuration (coil and 

bilayer material dimensions) and the presentation of the information by producing 

automated reports in .xls (Microsoft Excel®) or .html format.
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Figure C .l: The 10-layer hierarchy of the measurement system code.
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Figure C.2: The measurement system code incorporating the FM  principle.
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Demodulation and signal processing code for the AM, PM  and FM  techniques.

Device ~mn|-------
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Requisition Time (s) 132 M-U' fta
|5can Rate LMsJ ■ ■1jchannels I / 0

Figure C.3: The AM  demodulation and signal processing code.
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Figure C.4: The PM  demodulation and signal processing code.
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Figure C.5: The FM demodulation and signal processing code.
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Figure C.6: The control code for the actuator
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Abstract

This paper introduces a novel approach to the detection  and accurate m easurem ent o f  extrem ely  sm all signals, produced by bilayer thin films 
without the use o f  sophisticated hardware. T h e im plem entation  o f  this m easuring system  is based on the LabVIEW  graphical programming. 
This general purpose, robust and low -cost signal detector, provides an excellen t w ay to evaluate m agnetostrictive materials and their application in 
magnetic sensors. Initially the com plete system  w as first sim ulated in LabVIEW  softw are with the sim ulated signal superim posed with noise signals 
and the correct performance o f  the program  w as su ccessfu lly  confirm ed. Later the softw are w as incorporated together with the sim ple modulating 
circuit o f the sensor. The results from  the acquisition  proved that the system  provides a quick and excellen t w ay to evaluate magnetostrictive 
materials and their application in m agnetic sensors.
©2006 Elsevier B.V. A ll rights reserved.

Keywords: Magnetostriction; Bilayer thin film sensors; Data acquisition; LabVIEW

1. Introduction

Magnetic sensors are devices that receive a stimulus and 
convert it to an electrical output signal by utilizing the laws 
Df electromagnetism and effects in electromagnetic fields in 
order to achieve their goal. Materials such as the soft magnetic 
amorphous ribbon exhibit discrete amounts of magnetostric­
tion. These materials display a property, which is known as the 
magnetoelastic effect. Depending on the sign of the sample’s 
magnetostrictive constant, the application of mechanical tensile 
stress, a, (or strain e) to bilayer thin film sensors, results in 
changes in the relative permeability, /xr, of the material [1,2]. 
iVhen a magnetostrictive amorphous ribbon is bent, the changes 
in the relative permeability, /xr, are not as large as expected, 
because there is a reduction due to the fact that the effect of 
tension in the first half of the material is counterbalanced by

* Corresponding author. Tel.: +44 2920 875934; fax: +44 2920 876729. 
E-mail address: katranasg@cf.ac.uk (G.S. Katranas).

1924-4247/$ -  see front matter © 2006 Elsevier B.V. All rights reserved. 
loi:10.1016/j.sna.2005.09.059

the effect of compression in the second half. Bilayer strips con­
sist of two layers, one layer that contains the magnetostrictive 
amorphous ribbon and a non-magnetic counter layer. The pur­
pose of this configuration is to shift the neutral bending area 
out of the amorphous ribbon, hence impose the same sign stress 
throughout the amorphous ribbon [3], The permeability changes 
are detected by a pickup coil, wrapped around one end of the 
bilayer sensor, which establishes the sensor signal as a change of 
inductance, AL[4]. Bilayer sensors are cost-effective and easy to 
operate and they have been developed to detect various measure­
ment categories such as displacement, bending, temperature, 
etc. [5]. These sensors can be used for a variety of applications 
such as automotive industry, aerospace, environmental monitor­
ing, earthquake prevention and especially biomedical for signal 
acquisition for monitoring physiological activities [6- 8]. So far, 
the sensor signals have been detected and analysed using sophis­
ticated electronic circuits and costly measuring systems [9]. The 
system described in this paper uses a PC-based system that con­
sists of a simple external circuit used for the modulation of the 
sensor signal and the National Instruments LabVIEW software

http://www.sciencedirect.com
http://www.elsevier.com/locate/sna
mailto:katranasg@cf.ac.uk
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Fig. 1. Measurement system.

and acquisition card. The detection of the signal was conducted 
by using the LabVIEW software that acquired the modulated sig­
nal from the circuit and demodulated it into its components via a 
technique known as the lock-in amplification. The use of the ver­
satile LabVIEW software provided a user-friendly method for 
accurately obtaining, analysing and displaying data, in a cost- 
effective way.

2. Experimental method

The measuring system consists of a simple circuit, that mod­
ulates the sensor displacement with a reference signal, and a 
PC-based acquisition setup, as seen in Fig. 1.

The bilayer thin film that was used in the sensor consists of 
a magnetostrictive layer and a counter layer of non-magnetic 
nature (mica). The 2 |xm thickness magnetic material (Metglas 
2605SC) was deposited on the 150p,m counter layer by using 
the magnetron sputtering technique.

In order to provide a controlled displacement, the free end 
of the bilayer sensor was attached mechanically to the tip of an 
actuator. This displacement was also monitored with the aid of a 
laser scanning Doppler vibrometer, in order to verify the correct 
operation of the measurement system.

When the bilayer is mechanically bend at the free end, the 
relative permeability, /zr, of the magnetostrictive layer changes, 
leading to a change AL in the inductance, L, of the pickup coil 
and hence its reactance, X*.. Thus, the change in AL corresponds 
to the displacement of the bilayer sensor (Fig. 2).

The pickup coil of the sensor was supplied with a volt­
age ur = Vrcos(27t/r0- The change in AL of the coil varies 
accordingly the amplitude, Vr. Thus, the voltage vr becomes

Displacement

N on Magnetic Material

Fig. 2. Bilayer sensor during bending.

R2UH
R1

VR=\^c°S(2TTfRt> -

► AM(t)

R3

Fig. 3. Voltage-controlled current source.

an amplitude-modulated signal (AM), and it is described as:

AM(f) =  [ Vr +  us(OJ cos(27t/ rO (1)
Where vs(0 is the information signal (sensor displacement). 

For the measurement system the actuator is setup to displace the 
bilayer according to:

vs(0 =  Vs cos(27r/s0 (2)

In the measurement setup, the amplitude /r, of the excitation 
current i'r = /Rsin(27r/Rf) is held constant with the aid of a voltage 
controlled current source (Fig. 3).

A PC with a NI-4472 card from National Instruments was 
used to acquire the data. The card used has a maximum sam­
pling rate of 102.4kS/s and provides a 24-bit resolution. The 
LabVIEW virtual instruments (Vi’s) are layers of software that 
use the processing power of an ordinary PC to convert it to a 
custom designed instrument. The Vi’s consist of two main ele­
ments the front panel and the block diagram. The front panel is 
the instruments interface and it is used for controlling the VI and 
displaying the data. The block diagram consists of the elements 
that acquire and process the signal [10].

The design was initiated with the simulation of the com­
plete system in LabVIEW. This included the modulation of two 
sine waves, a reference and a sensor signal under the amplitude 
modulation principle, and their demodulation via the lock-in 
technique. The correct performance of the simulated system was 
successful. The principal steps of the block diagram can be seen 
on the flowchart in Fig. 4. The core of the demodulation pro­
cess is the lock-in technique and there are two mathematical

Process 1 Lock-in I —
Simulation

Which
Lock-inAcquisition

Lock-m 1Process 2

Displa\

Fig. 4. Flowchart of the measurement system.
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A M  (t)

V s ( t )

Fig. 5. First lock-in technique.

processes of performing it. Both are incorporated within the 
LabVIEW program for evaluation purposes.

The first process is the multiplication of the amplitude- 
modulated signal with the reference signal [ 11 ] as seen in Fig. 5.

LA(r) = 2 cos(27t/ rOAM(/) (3)
After filtering the high frequency component through a low 

pass filter the remaining signal is the sensor signal with a DC 
component, which is then easily removed in LabVIEW. The 
second process is the subtraction from the amplitude-modulated 
signal, the component which in this case is the reference signal, 
as seen in Fig. 6.

Lb(0 =  AM(/) -  VR c o s ( 2 7 t / r 0  (4)

The signal now consists of two components, a low frequency 
component which is the sensor signal and a high frequency com­
ponent, cos(27t/r0 that originates from the reference signal. By 
multiplying Lb(0 with the reference signal, ur(0 , the high fre­
quency component is then squared.

Sm(0 = Vs cos(2nfst)VR cos2(27r/Rr) (5)

A M  (t)  LB (t)_________

H t H l H l l l M t f

m
V s ( t )

Fig. 6. Second lock-in technique.

This creates a signal S(t) as seen in Fig. 6. By passing S(t) 
through a low pass filter the high frequency component was 
removed. In both lock-in techniques care is taken so that the 
AM and the reference signal have the same phase between them 
to ensure correct demodulation.

3. Results

The software program was first tested by simulating the 
amplitude-modulated waveform AM(f) and demodulating it into 
its components via a technique known as the lock-in amplifica­
tion. In ideal conditions the software program will demodulate 
the AM(t) to its components, as it can be seen comparing the 
simulated sensor displacement vs(t) (input) in Fig. 7a, with the 
demodulated sensor displacement (output) in Fig. 7b. Tests were 
also run by adding noise components to the AM(t) signal and 
then successfully demodulating it as seen in Fig. 7c.

For the acquisition, the measurement system was set at 
V r  = 1 V, / r  = 20 kHz and / s  = 3 Hz, the displacement of the

Fig. 7. (a) simulated sensor displacement us(r) (input); (b) demodulated sensor displacement (output); (c) demodulated sensor displacement (output) after the addition 
of noise parameters to the AM(() signal; and (d) acquisition results.
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actuator was varied from 150 |xmpk-pk to 1 mmpk-pk and was 
measured in conjunction with a laser Doppler vibrometer in 
order to verify the accuracy of the results obtained from the 
LabVIEW-based system. The results showed that with the 
bilayer thin film used and at the minimum actuator displacement 
of 150fjLmpk-pk, a signal of 200 |xVpk-pk was produced as seen in 
Fig. 7d.

4. Conclusions

The measuring system proved that it is able to detect 
accurately displacements within the range of 150 |xmpk_pk to 
1 mnipk-pk- The LabVIEW-based measurement system provided 
an accurate and cost-effective method for determining the dis­
placement of the bilayer sensor.
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A  H y b r i d  M a g n e t i c  S e n s o r  S y s t e m  f o r  

M e a s u r i n g  D y n a m i c  F o r c e s
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This paper describes a hybrid device that com prises o f both a magnetostrictive rod and an amorphous wire magnetic sensor that 
could be used for force sensing applications. The am orphous sensor uses a frequency m odulation technique to detect changes in the 
»ire’s permeability. These permeability changes were a result of stress-induced changes in magnetization in a dynamically compressed 
magnetostrictive rod that was in close proxim ity to the am orphous sensor.

Index T erm s— Amorphous wire, force m easurem ent, frequency modulation, magnetostrictive sensor.

I. In t r o d u c t io n

T HE measurement of applied stress has been shown to be 
possible through the use of magnetostrictive materials 

such as Terfenol-D. A change in the applied stress to such 
materials results in a change in their magnetization; this is 
5nown as the Villari Effect [1].
There are a number of ways to measure the change in mag- 

letization in a rod of Terfenol-D [2]. The typical way is to 
find a sensing “pick-up coil” co-axially on the sensor’s Ter- 
ienol-D rod. However, in this paper a novel amorphous-wire 
sensor system is described that can detect the changes in mag- 
letization induced by an externally applied stress. These mag- 
letization changes are then related to the force that was applied 
othe transducer thereby enabling the calibration of the sensor.

II. E x p e r im e n t

1. A Hybrid Magnetostrictive Material/Amorphous Wire 
mor System
I) Sensor Design: The main component of the force sensor 

iasa 15 mm in diameter and 50 mm in length rod of Terfenol-D. 
ilwas housed in a cylindrical Tufnol former which enabled the 
ilignment of the sensor within the external test-rig whilst also 
giving support to the amorphous wire sensor. This sensor com- 
Jrised of a 30 mm long FeCoSiB amorphous wire that was sur­
rounded by a 350 turn excitation coil (see Fig. 1). The amor- 
ilious wire sensor was bent so that it would follow the circum- 
srence of the 1 mm thick Tufnol former that surrounded the 
Terfenol-D rod.
The coil that was wound around the amorphous wire was sup- 

)lied with a sinusoidal carrier signal of 5 kHz. Stress induced 
hanges in the magnetization state of the Terfenol-D rod pro­
duces a field that alters the impedance of the amorphous-ma- 
ttal sensor which in turn shifts the frequency of the carrier 
ignal by Af, hence producing a frequency modulated (FM) 
‘aveform. By demodulating the FM signal, the amplitude of 
■de peak-to-peak signal could be measured and then related to

Digital Object Identifier 10 .1 109 /T M A G .2006 .879745

Tufnol
Former

Side View Top View

Fig. 1. Schematic o f  the hybrid sensor.

the equivalent drive signal produced by applying a sinusoidal 
stress to the hybrid sensor [2].

The hybrid sensor was placed in a solenoid of 1375 turns, with 
an inner diameter of 55 mm, outer diameter 84 mm and length 
100 mm. This solenoid was incorporated so that a “biasing field” 
could be applied to the hybrid sensor.

It is considered that the biasing field moves the operating 
point of the Terfenol-D rod into a region of the strain versus 
induction curve where the dB/dA is greatest, where the value 
of the magnetic induction B, is a result of an externally applied 
stress-induced strain A. Therefore a change in applied stress at a 
favorable operating point will result in a greater change in mag­
netization than that produced in a region of lower dB/dA. It must 
also be noted that the transduction performance of Terfenol-D 
is also dependent on any applied pre-stress.

The Terfenol-D rod was positioned so that it was in the middle 
of a biasing solenoid that had a length twice that of the magne­
tostrictive component. A biasing coil of this length was used 
in order to improve applied field uniformity in the region of 
the Terfenol-D rod. At both ends of the Terfenol-D rod, brass 
“push rods” enabled the positioning of it in the former whilst 
also allowing the application of mechanical stress from an ex­
ternal source.

2) Test Rig: The main aim of these experiments was to de­
termine whether is was possible to calibrate the hybrid sensor

Amorphous 
Wire Sensor

Terfenol-D
Rod

0 0 1 8 -9464 /$20 .00  ©  2006  IEEE
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IFig. 2. Hybrid sensor mounted in the RSA 50 test machine. The bias coil is 
mot present in this image.

.against a known sensor, so that it could detect a dynamic force 
tthat was applied to it. To achieve this, the hybrid sensor 
'was installed in a Schenk RSA 50 Electromechanical Universal 
Testing Machine. By moving the RSA 50’s cross-head it was 

[possible to apply a known dynamic force (and hence a strain) 
tto the Terfenol-D rod in the hybrid sensor (see Fig. 2).

The force that was applied to the sensor was then directly 
imeasured via the RSA 50’s integral PM 63 k load cell that could 
imeasure loads up to 63 kN, via a Schenk M l602 display unit. 
The output signal from the load cell was processed by the RSA 

:50’s DP 151 control monitor unit before being recorded on an 
Agilent 54 624A oscilloscope where peak-to-peak force values 

(.could be identified.
A low-frequency dynamic force (~1.7  Hz) was applied to the 

(hybrid sensor with the amplitude of oscillation being controlled 
'via the RSA50’sFP 151,153,and FG 152control modules.This 
'was the highest frequency of oscillation that could be produced 
tfrom the RSA 50. The force was applied so that it ranged from 
.zero to its maximum value without an additionally applied pre- 
stress.

3) Signal Processing: The FM signal measurement system 
(.consisted of a personal computer (PC) based acquisition ar- 
rrangement. The detection of the FM signal was conducted 
tthrough the LabVIEW package and a National Instruments 
'NT-6120 data acquisition card with a maximum sampling rate 
(.of 800 kS/s and 16-bit resolution [3].

Changes in the state of magnetization of the Terfenol-D rod 
ccaused co-responding FM to the carrier signal that was applied 
tto the amorphous sensor. By demodulating this signal, the peak 
tto peak amplitude could be calculated by the LabVIEW system 
and then related to the equivalent drive signal produced by the 
IPM 63 k load cell as measured by the Agilent 54 624A. This 
(.could then be related to the applied force through calibration 
(.data that was obtained for the PM 63k’s load cell.

IB. Low-Frequency Force Measurements
It is understood that the performance of Terfenol-D in a 

'•sensor configuration is dependent on the applied stress, applied 
tbiasing field and the magnetic history of the active element. 
/As a result, it was certain that the output voltage from the 
fhybrid sensor would be influenced by these factors. Therefore,

0.18
0.16
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OJ 0.12

> 0.08
J- 0 06
3 0.04

0.02

1800 2000 2200 2400 2600 2800 3000 3200 3400
Applied peak-to-peak force (N)

Fig. 3. Measured output voltages from the hybrid sensor system for 
different applied forces at a frequency of 1.7 Hz with the following bias fields: 
A = 4 .13  kA/m, ■  =  3.50 kA/m. + =  3.34 kA/m, •  =  2.65 kA/m.
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Fig. 4. Influence o f  a varying bias field on the output voltage from the hybrid 
sensor at a fixed dynamic stress value. +  =  1-46 kN p-to-p, ■ =  1.97  
kN p-to-p, A ss 2.39 kN p-to-p.

measurements were made of the voltage output from the sensor 
system were made for different peak-to-peak amplitudes of the 
1.7 Hz applied force (see Fig. 3).

For each data point, five sensor output voltage measurements 
were made and averaged for each force amplitude. In each of 
the plots shown, different biasing fields were applied to the Ter- 
fenol-D rod. As can be seen, changing the bias field offsets the 
output voltage versus applied force curve. To investigate this 
further, the hybrid sensor was subjected to fixed amplitude dy­
namic forces of 1.46, 1.97, and 2.65 kN and the bias field that 
was applied to the device was altered between ~  3.5-8 kA/m 
(see Fig. 4).

It was noted here that increasing the dynamic force causes an 
offset of the sensor output curve. This is to be expected as Fig. 3 
demonstrates that an increase in the dynamic applied force re­
sults in an increase in sensor output. It must be noted that in this 
system configuration, the “effective” average force for each dy­
namic stress increases as the peak-to-peak force value increases. 
It has been shown [4] that Terfenol-D’s performance can be im­
proved through the suitable application of a pre-stress. It is pos­
sible that the performance of the sensor is influenced by this 
factor and an improvement to the device would be the applica­
tion of an additional pre-stress. Further work will be undertaken 
to optimize pre-stress levels for the hybrid sensor operation.

Inspection of Fig. 4 also shows that there seems to be a max­
imum value of sensor output voltage for a given dynamic force 
in the region of 6-7 kA/m for each curve. It is considered that 
this is due to the operating point of the transducer moving away
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jom a region of the B versus A curve where dB/dA is at a max-
jium.
It was found that both very high levels of stress and low 
nagnetic biasing levels resulted in distortions in the signal 
sitput from the sensor. When the sinusoidal applied stress’ 
mplitude is great enough, it can cause a change in magneti- 
ilion that result in the detected stress-induced magnetic field 
ianges passing through a minimum value. If this occurs, then 
■proportion of the signal output will be “frequency doubled.” 
liscan be mitigated against by supplying sufficient magnetic 
using so that any change in stress-induced magnetization does 
ml occur near this minimum. It was also noted that for some 
iger values of dynamic applied stress, the shape of one half of 
iesensor output signal was “flattened.” It is considered that in 
iiscase the Terfenol-D’s Villari effect is being saturated as a 
salt of the high applied forces. It is possible that selection of 
lappropriate pre-stress could improve the performance of the 
wand increase the applied force value at which saturation 
tcurs.
Although the dynamic force-spectrum that was applied to this 
w  was limited to 1.7 Hz, it is not considered that there 
wild be any difficulty in significantly increasing the operation 
jquency of the sensing system. Indeed, it has been shown in 
!]that such devices can operate at least to 3 kHz.

III. C o n c l u s i o n

In this paper, a hybrid magnetostrictive force sensor has been 
scribed. Experiments have been carried out to prove the prin­

ciple that it is possible to use an amorphous wire sensor system 
to detect the change in magnetization in dynamically stressed 
Terfenol-D rods as part of a hybrid force transducer. This has 
been successfully achieved for a 1.7 Hz applied force of up to 
2.65 kN peak-to-peak.

This LabVIEW based hybrid transducer offers considerable 
potential as a dynamic force sensor. It is considered that this 
system will lend itself to a number of dynamic force measure­
ment applications.
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A Novel Frequency Modulation Based System Using Bi-Layer Thin Film Displacement Sen­
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Introduction
A novel method has been used for accurately measuring low voltage signals (~10'4V) associated 
with inductance changes of bi-layer thin film sensors under bending stress, without the use of 
sophisticated hardware. Bi-layer thin films form the building blocks for a new generation of multi­
functional sensors. They consist of a magnetic layer deposited on a non magnetic layer that is used 
to enhance the changes in the relative permeability of the magnetic material, caused by tensile or 
compressive stresses. Bi-layer sensors are cost effective and easy to operate and they have been 
developed to detect various parameters such as displacement, temperature, stress etc [1]. Previous 
methods for detecting and analyzing sensor signals required the use of costly measurement systems 
such as Laser Scanning Doppler Vibrometer [2 ].
Frequency modulation based system
The bending sensor used is a bi-layer strip, which consists of a high positive magnetostrictive amor­
phous layer and a non-magnetic counter-layer (Copper Beryllium - CuBe). The amorphous mag­
netic film, 2.9pm thick, was deposited from a Feg,B,3 5Si3 5C2 ribbon target using the RF magnetron 
sputtering technique onto a 25pm CuBe layer. The measuring system consists of a personal com­
puter (PC) based acquisition set up and a circuit that modulates the sensor displacement signal with 
a reference signal, using the frequency modulation (Fig. la). Signal detection was achieved tlvrough 
the use of LabVIEW® software and a NI-6.120 data acquisition card (800kS/s 16-bit) which allows 
a high degree of software modularity [3]. In the frequency modulation (FM) scheme the sensor sig­
nal is not significantly influenced by noise. The FM was achieved using a Colpitts oscillator. The 
output is a sine wave at a frequency which is defined by the values of the circuit components L and 
C. The bi-layer sensor acts as the inductive component of the Colpitts oscillator. Any change AL in 
the inductance L of the pickup coil will shift the oscillator’s frequency f by Af. Hence, frequency 
modulation is achieved. An alternating sinusoidal force was applied to the free end of the bi-layer 
using a mechanical actuator operating at 3Hz to simulate the average maximum heart rate (180 
beats per minute) expected in a healthy 40 year old person [4]. In order to demodulate the FM sig­
nal it needs to be input through a differentiator followed by an envelope detector. The envelope 
detector used here was based on the Hilbert transform [5].
Capability of the system
Low frequency (3Hz) sine waves, with variable peak to peak amplitudes from IV to 6V, were 
applied to the actuator. The resulting output peak to peak displacement ranged from 0.35mm to 
2mm. The displacement of the actuator was first tested with the aid of a Laser Doppler Vibrome- 
ter (LDV) for calibration purposes. As seen in Fig. lb the frequency modulated signal (FM) shows 
an average 0.9% deviation with a 2% maximum deviation compared to the expected signal from the 
LDV. The output signal is determined by the degree of bending of the bi-layer which can be con­
verted into a displacement reading. The average peak to peak signal corresponding to the dis­

INTERMAG 2006

placement range o f  the actuator was in the range o f  0 .8m V  to 4.6mV. The results arc linear with a 
square correlation coeffic ient value o f  0 .99 (Fig. 1 c). The system  has a good performance with an 
average sensitivity o f  2.2mV/mm while the repeatability o f  the results w as 2.4%.
Conclusion
A new type of measuring system incorporating bi-layer displacement sensors has been developed. 
The system is capable of detecting peak to peak displacements using the frequency modulation 
scheme in the range of 0.35mm to 2mm. It has been shown that tire measurement system, together 
with the bi-layer sensors, provides an accurate and low-cost method for determining displacement. 
It is expected that this system will lend itself to a number of applications including biometric 
measurements. References
1. J. Kosel et al., “Non-Contact Signal Detection of Multifunctional Bi-layer Sensor,’* Proc. 
of Eurosensors XVIII, Italy, Rome, 2004, pp. 593-594.
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Fig. I. Frequency modulation based system 
a) block diagram, b) a comparison between 
the sensor signal and the LDV output at
0.35mm peak to peak, plotted together with 
their percentage difference and c) the out­
put voltage against the displacement of the 
bi-layer sensor.
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A novel method has been  u sed  for accurately measuring physiological parameters associated with 
body movements, such a s  cardiac and respiratory activities, using bi-layer thin-film sensors. A bi­
layer curvature sensor system  w as used  the first time not only to monitor but also to map the 
five characteristic w aves of the normal heartbeat rate (P, Q, R, S, and T wave), hence providing 
additional medical information about the cardiac activity of the patient. Also during monitoring of 
lung ventilation, parameters such a s  normal respiration, deep  inhalation/exhalation and apnoea 
were easily distinguishable in the output signal. The bi-layer thin films used are the building blocks 
for a new generation of multi-functional sensor families. They consist of a magnetic layer and a 
non magnetic counter layer that is used  to enhance the changes in the relative permeability of the 
material caused by tensile or com pressive s tresses  during bending. The measuring system  utilizes a 
personal computer based  system  using the LabVIEW® graphical programming package. This allows 
a high degree of software modularity and provides the features n ecessary for acquiring the sensor 
signal, analysing it and displaying the results. The results demonstrate that this system  provides a 
robust, cost effective solution to monitoring cardio-respiratory activity with minimum inconvenience 
to the patient, which is n ecessary  for prolonged, undisturbed monitoring.

Keywords: Data Acquisition, Frequency Modulation, Physiological Sensors, Thin Films, 
Transducer.

1. INTRODUCTION

The non-disturbing monitoring of the cardio-respiratory 
activity of the human body is an important parameter dur­
ing biometrical tests, such as polysomnography. This is 
a comprehensive recording of the physiological changes 
that occur during sleep. This diagnostic test monitors 
many medical techniques including electroencephalogra­
phy (EEG), rapid eye movement (REM), electromyog­
raphy (EMG), electrocardiogram (ECG), and respiratory 
activity while the patient is sleeping. During the sleep 
study the breathing; oxygen levels, heart tracing, and the 
different levels of sleep are recorded. A qualified sleep 
technician performs the test and monitors the patient’s 
sleep through the night. The sleep technician will place 
electrodes on the head and face to monitor levels of sleep, 
apply ECG (electrocardiogram) patches to the chest to 
monitor the heartbeat, and place a flow sensor under the 
nose to monitor airflow. In addition, soft straps are placed

‘Corresponding author; E-mail: Meydan@ cf.ac.uk

around the chest and abdomen to monitor the rise and fall 
of the chest to determine whether the patient is breathing 
appropriately during sleep. These sensors, electrodes, and 
straps can potentially disturb the patients sleep.

This paper describes the application of a novel system 
using bi-layer thin film sensors, originally used for the 
detection of bending.1 The system can also be used to mea­
sure, with minimum disturbance, physiological activities 
that involve the dynamic deformations of the curvature of 
the skin.

2. EXPERIMENTAL DETAILS

2.1. Measurement System

Bi-layer sensors are constructed from a ferromagnetic 
magnetostrictive layer that can be crystalline, nano crys­
talline or amorphous magnetic materials on a non­
magnetic layer. Bi-layer sensors are cost effective and easy 
to operate and they have been developed to detect para­
meters such as displacement, temperature, curvature, 
stress, etc.2 In this paper, a bi-layer with amorphous

Sensor Lett. 2007, Vol. 5, No. 1 1546-198X/2007/5/001/003 doi:10.1166/si.2007.075 1
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Fig. 1. Bi-layer sensor system for registering cardio-respiratory activity.

magnetostrictive layer is used because of its lack 
of magneto-crystalline anisotropy and high mechanical 
strength.3,4 Soft magnetic amorphous ribbons and thin 
films may exhibit high magnetostriction and therefore 
strong magneto-elastic effects. When a bi-layer thin film 
sensor is physically bent, stress develops along its length 
that is dependant by the geometry of the cantilever and 
its curvature, c. The changes in stress result in changes 
in the relative permeability of the material. These changes 
are detected by a pick-up coil, wound around one end of 
the bi-layer sensor, which produces the sensor signal, s, as 
a result of changes in the inductance, AL, and hence its 
reactance XL.5'6 Thus, the change in AL corresponds to the 
change of skin curvature, Ac, where the sensor is applied. 
The bending sensor used is a bi-layer strip, which consists 
of a magnetostrictive layer on a non-magnetic layer (Cop­
per Beryllium—CuBe). The magnetostrictive layer is an 
amorphous magnetic film, 2.9 /um thick, was deposited 
from a Fe81B13 5Si3 5C2 target using the RF magnetron 
sputtering technique onto a 25 /u,m CuBe layer. The mea­
suring system consists of a personal computer (PC) based 
acquisition set-up and an electronic circuit that modulates 
the sensor displacement signal with a reference signal, 
using the frequency modulation (FM) principle (Fig. I).1

Signal detection was achieved through the use of 
LabVIEW® software and a NI-6120 data acquisition card

Fig. 2. Application of the bi-layer thin film sensor over the carotid
artery.

T

ECG FM S ystem

Fig. 3. Comparison between the basic ECG output and the acquired 
heartbeat from the FM system.

with a maximum sampling rate of 800 kS/s per channel 
and 16-bit resolution.7

2.2. Sen sor  A p p lica tio n

Internal physiological activities are mirrored on the human 
body in the form of active variations of the skin curva­
ture, c. Depending on the body region these signals consist 
of three main components, cardiac activity, sc , lung ven­
tilation, sR, and body movements, sM.8 For the detection 
of the heartbeat rate, f c , the sensor was attached on the 
neck over the carotid artery with the aid of double sided 
adhesive tape (Fig. 2). Cardiac activity transmits blood 
pressure waves through the arterial system which result in 
the cyclic alteration of the vessel’s radius, r. This defor­
mation is transmitted to the skin, through the surrounding 
tissue, resulting in change of curvature, Ac, proportional 
to Ar.9 The respiratory activity, / R, was measured by fix­
ing the sensor on the chest using double sided adhesive 
tape. As in the case of cardiac activity measurements, the 
deformation of the chest due to changes in respiration vol­
ume produces a sensor signal, sR, which characterizes the 
lung ventilation.

3. RESULTS

An Electrocardiogram (ECG) is an illustration produced 
by an Electrocardiograph, which measures the electrical 
potential between points of the body in order to show the 
electrical activity in the heart. Up to 12 contacts (elec­
trodes) are usually affixed to the arms, legs, and chest 
on clean, shaven skin areas. The typical ECG wave starts

0.8-

0.6-

£  0 .4 -  

0.2-

0-
2 3 410

Time (s)

Fig. 4. A detected pulse train segment, from the carotid artery, using 
the bi-layer thin film sensor system.
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Fig. 5. Respiratory activities using the bi-layer thin film sensor system.

with the spread of the heart stimulation through the atria 
(P wave), triggering the ventricular activation (Q, R, and 
S wave), and then ending up to the ventricular recovery 
(T wave), which returns the stimulated ventricular muscle 
to its resting state.

Figure 3 shows the hemo-dynamic activity at the carotid 
artery caused by the pumping of the heart. A bi-layer cur­
vature sensor system was used for the first time not only 
to monitor but also to map the five characteristic waves 
of the normal heartbeat rate (P, Q, R, S, and T wave), 
hence providing additional medical information about the 
cardiac activity of the patient that other magnetic bi-layer 
sensor systems can not provide. Compared to the ECG, 
the bi-layer sensor system only needs one contact to the 
body (the bi-layer sensor) and there is no need for the 
preparation of the skin area.

Figure 4 demonstrates a characteristic pulse train, f c , 
acquired from the FM system that corresponds to 81 beats 
per minute. The normal resting heart rate for adults is 
between 60-100 beats per minute. The signal sc is usually 
influenced from other signals, jr , and jm, that arise from 
body movements including in this case from the change 
of the neck circumference during slow intake of air in 
the lungs. When the patient is holding his breath and 
immobile, only the signal from the cardiac activity, 5C, is 
detected.

When the bi-layer sensor is placed on the chest, respi­
ratory activities can be monitored. Figure 5 displays the

signal, sR, over 55 seconds, during which normal respira­
tion, deep inhalation/exhalation, and apnoea were recorded 
with clear differentiation between respiratory activities. 
Also from the performance of the system it was found that 
the non repeatability of the results is 2.4%.

4. CONCLUSION

A new system incorporating bi-layer thin film curva­
ture sensors has been developed. The system is capable 
of detecting cardio-respiratory activities using the fre­
quency modulation principle. It has been shown that the 
LabVIEW® based measurement system, together with the 
bi-layer thin film sensors, provides an accurate, robust, 
and low-cost method for monitoring physiological param­
eters that arise from the change of skin curvature. This 
sensor system also provides minimum inconvenience to 
the patient, which is essential for prolonged, undisturbed 
monitoring.
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The measuring system  utilizes a personal computer based system using the LabVIEW® graphical 
programming package. The sensor is connected to a circuit that modulates the bi-layer thin film 
sensor signal, which arises from a controlled displacement, with a reference signal using the fre­
quency modulation principle. This setup allows a high degree of software modularity and provides 
the features necessary for acquiring the sensor signal, analyzing, it and displaying the results. The 
bi-layer thin film sensor w as placed within an environmental chamber where its thermal stability was 
tested over the temperature range of up to 180 °C. The temperature rise d oes cau se inductance 
change, but the sensor signal remains unaffected due to the nature of the frequency modulation 
method, hence making it a temperature independent sensor that is needed in industry. Thus, having 
two materials, with different thermal coefficients of expansion in a bi-layer thin film sensor does not 
adversely influence the sensor signals.

Keywords: Data Acquisition, Frequency Modulation, Magnetostriction, Thin Films, Transducer.

1. INTRODUCTION

Bi-layer displacement sensors based on thin film technol­
ogy consist of magnetostrictive thin film deposited onto a 
non-magnetic layer in order to enhance the bending stress 
dependence of the relative permeability of the material. 
Such sensors can also operate at high temperatures for pro­
longed periods of time unlike agglutinated bi-layers that 
depend on the working temperature of the adhesive used. 
The bi-layer thin films used are the building blocks for a 
new generation of multi-functional sensor families. Indus­
try today needs sensors that are cost effective and easy 
to operate and are able to detect multiple parameters such 
as displacement, temperature, curvature, and stress; this 
is the reason why bi-layer sensors were developed.1 The 
ferromagnetic magnetostrictive layer can be crystalline, 
nano-crystalline, or amorphous magnetic material. In the 
system described in this paper, an amorphous magne­
tostrictive layer is used because of its lack of magneto- 
crystalline anisotropy and high mechanical strength.2,3 
Amorphous magnetic ribbons and thin films may exhibit 
high magnetostriction and therefore strong magneto-elastic 
effects. When a bi-layer magnetostrictive thin film sensor 
is physically bent, stress develops along its length that is

’Corresponding author; E-mail: Meydan@cf.ac.uk 
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influenced by the geometry of the cantilever and its cur­
vature. The changes in stress result in changes in the rel­
ative permeability of the material which are detected by a 
pick-up coil, wound around one end of the bi-layer sensor. 
These changes produce the sensor signal which arises as 
a result of changes in the inductance, AL, and hence its 
reactance XL.4,5 Thus, the change in AL corresponds to 
the displacement of the free end of the bi-layer sensor. To 
ensure thermal stability of bi-layer thin films the materials 
need to have approximately identical thermal expansion 
coefficients, a. If the thermal expansion coefficients of 
the materials are chosen to be notably different then due 
to a temperature increase the material with the largest a 
will expand disproportionally from the other, thus produc­
ing unwanted curvature increase in the strip.6,7 The paper 
shows how, due to the nature of the frequency modulation 
(FM) system, a bi-layer thin film sensor, using materials of 
different a, can be used and have a good thermal stability 
over a range of temperatures up to 180 °C.

2. EXPERIMENTAL DETAILS

A magnetostrictive layer on a non-magnetic layer (Cop­
per Beryllium— CuBe) is the two components that consist 
the bi-layer strip of the bending sensor. The amorphous

doi:10.1166/sl.2007.073 11546-198X/2007/5/001/003
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Bi-Iaycr

Coii
Actuator

Environmental Chamber

Electronic
Circuit

Data Acquisition 
Card

Display

Fig. 1. The Bi-layer sensor during the bending displacement o f  the
free end.

magnetic film, 2.9 fxm thick, was deposited from a 
Fe8|B135Si35C2 ribbon target using the RF magnetron 
sputtering technique onto a 25 ju,m CuBe layer. The ther­
mal expansion coefficients are a, =  5.9- 10~6 K-1 for the 
amorphous magnetic film and a 2 =  17 • 10~6 K-1 for the 
CuBe layer. An electronic circuit that modulates the sensor 
displacement with a reference signal, using the FM princi­
ple is connected to a personal computer (PC) based acqui­
sition set-up (Fig. I).8

The detection of the signal was achieved through the 
use of LabVIEW® software and a NI-6120 data acquisi­
tion card with a maximum sampling rate of 800 kS/s per 
channel and 16-bit resolution.9 A Colpitts oscillator circuit 
was used to produce the FM signal (Fig. 2).8

This circuit utilizes an LC tank with an inductor con­
nected in parallel to two series capacitors. The output is 
a sine wave at a frequency, f R, which is defined by the 
values of L and C:

~2irN/L(CjC2) /(C !+  C2) ( °
The bi-layer sensor acts as the inductive component of 
the Colpitts oscillator, L. Any change AL in the induc­
tance L of the pickup coil will shift the frequency propor­
tionally from f R by A /. Hence, frequency modulation is 
achieved.10

FM(/) =  VR cos 27TRt +  2TTfKf j  vs(t)d t
J O

(2)

where K{ is the modulation constant and vs(f) the sensor 
displacement signal. An actuator is set up to displace the 
free end of the bi-layer according to vs(t) =  V8cos(2ttf st). 
To optimize performance of the system, a range of coil 
configurations were investigated before deciding on the 
final specification of 300 turns, 20 mm in length and in 
7 mm width. The FM signal is demodulated via a dif­
ferentiator followed by an envelope detector based on the 
Hilbert transform.11,12

FM(t)
. L+AL

J Z l OPA37

' LC lank

Fig. 2. The Colpitts oscillator schematic diagram. The component 
values used were: R, =  10 kft, R2 =  100 k ft, C, = C 2 =  1 (jlF , and 
L =  3.02 mH.

f 5
u *C2> 3
5  13
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Fig. 3. A comparison o f the sensor signal at 25 °C and at 180 °C plotted 
together with the absolute value o f  their percentage difference.

3. RESULTS

The sensor was placed inside an environmental chamber 
and subjected to a temperature increase up to 180 °C. Sine 
waves, with variable peak to peak amplitudes from 1 V 
to 6 V, were applied to the actuator. The resulting output 
peak to peak displacement ranged from 0.35 mm to 2 mm. 
The output signal is determined by the degree of bending 
of the bi-layer which can be converted into a displacement 
reading (Fig. 3). The average peak to peak signal produced 
at the displacement of the actuator, was in the range of 
0.8 mV to 4.6 mV. From the performance of the system it 
was found that it has an average sensitivity of 2.2 mV/mm 
while the repeatability of the results was 2.7%. The results 
were approximately linear in this temperature region with 
a square correlation coefficient value of 0.99.13

The sensor signal at 180 °C shows average absolute val­
ues of 1.7% deviation, and a 2.3% maximum deviation, 
compared to the signal taken at 25 °C. These values are 
within the repeatability percentage of the FM system. As 
seen in Figure 4 the temperature increase caused a sharp 
and approximately linear rise in this temperature region, of 
the inductance value, reaching 163% change in inductance, 
AL, at 180 °C.

This high AL increase is explained by the notable dif­
ferent thermal expansion coefficients of the two materials 
of the bi-layer strip (a, =  5 .9 -10-6 K_1 for the amorphous 
magnetic film and a 2 =  17 • 10-6 K_1 for the CuBe layer). 
In contrast the peak to peak sensor signal remains quite 
uninfluenced by the increase of temperature. As inductance

T  9

S en so r  signal (mV) 
Inductance (mH)

Tem perature (Celcius)

Fig. 4. The rise o f inductance due to temperature increase has minute 
effect to the peak to peak sensor signal taken at ~  1.6 mm peak to peak 
displacement.
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Frequency deviation (%) 
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Temperature (Ceicius)
Fig. 5. The frequency dependence on temperature remains relatively 
uninfluenced from the rise o f inductance due to temperature increase 
(displacement was set at ~ 1 .6  mm peak to peak).

increases with temperature the reference frequency, f R, 
is also increasing but the percentage change AL remains 
approximately constant, thus A/  follows proportionally at 
7.2% (Fig. 5). With the system settings used the frequency 
deviation showed to be not very susceptible to the increase 
of the inductance value; hence the sensor signal is rela­
tively uninfluenced by the increase of temperature.

These findings allow the design and construction of tem­
perature independent sensor families (in the range up to 
180 °C) as required by industry.

4. CONCLUSION

The LabVIEW® based system was developed capable of 
detecting peak to peak displacements using the frequency 
modulation scheme. Since the sensor signal is transmitted 
through changes in phase and not in amplitude, the FM 
scheme has the advantage that it is not as affected by noise 
as the AM scheme. It has been shown that the LabVIEW® 
based measurement system, together with the bi-layer 
sensors, provides an accurate and low-cost method for

determining displacement. It is considered that this sys­
tem will lend itself to a number of applications including 
airflow measurements in engine exhaust pipe where the 
operating temperatures are high and variable.
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Abstract

A novel method has been used for accurately measuring low-voltage signals (~10~4V) associated with inductance changes of bi-layer 
thin-film sensors under bending stress. Bi-layer sensors consist of a magnetic layer and a non-magnetic counter layer that is used to 
tnhance the changes in the relative permeability of the material, caused by tensile or compressive stresses. The measuring system utilizes a 
personal computer-based system using the LabVIEW® graphical programming package. The results from the acquisition proved that 
this system provided a robust, cost-effective solution (as compared to hardware-based systems) to evaluate magnetostrictive materials 
and their application in magnetic sensors.
§2006 Elsevier B.V. All rights reserved.
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1. Introduction

Industry today needs sensors that are cost-effective 
and easy to operate and are able to detect multiple 
parameters such as displacement, temperature, curvature 
and stress; this is the reason why bi-layer sensors were 
developed [1]. When a bi-layer magnetostrictive thin 
Sim sensor is physically bent, stress develops along 
its length that is influenced by the geometry of the 
cantilever and its curvature. The changes in stress result 
in changes in the relative permeability of the material, 
which are detected by a pick-up coil wound around one end 
of the bi-layer sensor. These changes produce the sensor 
signal that arises as a result of changes in the inductance, 
if, and hence its reactance XL. Thus, the change in AL 
corresponds to the displacement of the free end of the bi­
layer sensor [2].

‘Corresponding author. Tel.: + 442920  875923; fax: + 4 4  2920 879538. 
E-mail address: M eydanf+cf.ac.uk (T. Meydan).

•304-8853/$ - see front matter ©  2006 Elsevier B.V. All rights reserved. 
•oi:10.1016/j.jmmm.2006.10.1030

2. Experimental

2.1. Measurement system

The bending sensor used is a bi-layer strip, which 
consists of an amorphous magnetostrictive layer on a non­
magnetic layer (copper beryllium—CuBe). The amorphous 
magnetic film, 2.9 pm thick, was deposited from a 
Fe8iB13.5Si3.5C2 target using the RF magnetron sputtering 
technique onto a 25 pm CuBe layer. The measuring system 
consists of a personal computer (PC)-based acquisition set 
up and a circuit that modulates the sensor displacement 
signal with a reference signal, using the phase modulation. 
Signal detection was achieved through the use of Lab- 
VIEW® software and a NI-6120 data acquisition card with 
a maximum sampling rate of 800kS/s per channel and 
16 bit resolution [3].

2.2. Phase modulation

For phase modulation, (PMJ, the instantaneous phase 
of the sine wave will deviate from the reference phase 
4>r by an amount A<P, proportional to the instantaneous

http://www.sciencedirect.com
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value of AL [4]:

PM(0 =  VR cos[2nf Rt +  A>us(0L (1)

where KP is the modulation constant, us(0 the sensor 
displacement signal and <PR =  KPvs (t). The PM was 
achieved using a phase shift oscillator (as seen in Fig. 1). 
This circuit utilizes three RC tanks with one of them having 
an inductor connected in parallel to two series capacitors. 
The output is a sine wave at a frequency, which is defined 
by the values of L and C:

/  =
V lC R 2 + L 
2nCRj6L

(2)

The bi-layer sensor acts as the inductive component of 
the phase shift oscillator. Any change AL in the inductance 
L of the pick-up coil will shift from (PR by A<P. Hence, 
phase modulation is achieved. For the measurement 
system, an actuator is set up to displace the bi-layer 
according to t>s(0 =  Vs cos(2nfst). To optimize perfor­
mance, a range of coil configurations were investigated 
before deciding on the final specification of 300 turns, 
20 mm length and 7 mm width. The PM signal is 
demodulated via a differentiator followed by an envelope 
detector based on the Hilbert transform [5].

FM(t)

j L ' - P'l+al T OPA37

RC Network

Fig. 1. The phase shift oscillator schematic diagram.

3. Results

Low-frequency (3 Hz) sine waves, with variable peak-to- 
peak amplitudes from 1 to 6 V, were applied to the 
actuator. The resulting output peak-to-peak displacement 
ranged from 0.35 to 2 mm. The displacement of the 
actuator was measured with the aid of a laser Doppler 
Vibrometer (LDV) [6].

As seen in Fig. 2 the phase modulated signal (PM) shows 
an average 1% deviation with a 2 .2% maximum deviation 
compared with the expected signal from the LDV. The 
output signal is determined by the degree of bending of the 
bi-layer which can be converted into a displacement 
reading (Fig. 3). The average peak-to-peak signal produced 
at the displacement range of the actuator, was in the range 
of 0.8 to 4.4 mV. From the performance of the system it 
was found that it has an average sensitivity of 2.2 mV/mm, 
whereas the repeatability of the results was 2.7%. 
The results were linear with a square correlation coefficient 
value of 0.99 [7], The mechanical hysteresis, i.e. 
the difference between the increase and decrease in

5.0 -r

f  4.0 -

15
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Fig. 3. The peak-to-peak output voltage characteristics against the 
displacement o f the bilayer during the increase and decrease o f  the 
actuators displacement.
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the amplitude of the actuators displacement and hence 
the increase and decrease in the sensors signal was 2.23%
(Fig. 3).

4. Conclusions

A new type of system incorporating bi-layer stress 
sensors was developed. The LabVIEW^'-based system 
was developed capable of detecting peak-to-peak displace­
ments using the phase modulation scheme in the range of 
0.35 mm to 2 mm. It was shown that the LabVIEW®-based 
measurement system, together with the bi-layer sensors, 
provides an accurate and low-cost method for determining 
displacement. It is considered that this system will lend 
itself to a number of applications including biometric 
measurements.
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A Bilayer Sensor System for Measuring Air Flow
G.S. Katranas and T. Meydan

Wolfson Centre for Magnetics, Cardiff School of Engineering, Cardiff University, Cardiff CF24 3A A, U.K.
A bilayer magnetostrictive sensor is inserted into a cylindrical tube where air flows at a controlled rate. A circuit connected to the 

sensor conveys a signal that arises from changes in frequency as a function of displacement using the frequency modulation principle. 
The performance of the sensor was tested at air stream speeds up to 25 m/s and at a range of distances from the center of the tube. The 
acquired response of the sensor was compared against a displacement simulation model designed using the Comsol Structural Mechanics 
package. The results demonstrate that this system provides a robust solution to the problem of monitoring variable airflows as needed 
by the automotive and biomedical industry.

Index Term s— Airflow, data acquisition, frequency modulation, transducer.

I. In t r o d u c t i o n

THE ability to quantify the flow of air or liquids quickly 
and accurately is greatly needed by the automotive and 

biomedical industry. Applications for flow sensors can vary 
from measuring blood flow through the human artery system 
to determining the air flow through the intake of a car engine 
[1], [2]. For example, the means to monitor the air flow through 
a car engine led to the introduction of electronic fuel injection 
systems, which replaced carburettors that could not rapidly 
change the air-to-fuel ratio in response to changes in atmo­
spheric conditions. This improved fuel economy and reduced 
exhaust emissions. Airflow sensors can also be a vital part of 
a condition monitoring system that collects data and warns 
the user of equipment fatigue and failure or automatically 
controls the apparatus by controlling the air stream through 
pipes and vents to correct problems. The application of a novel 
system using bilayer sensors, originally used for the detection 
of bending, is described in this paper [3]. By bending bilayer 
sensors, the system is able to measure the speed of an air stream 
through a cylindrical tube.

H . E x p e r i m e n t

A. Measurement System

Bilayer sensors are cost effective, easy to operate, and have 
been developed to detect various parameters such as displace­
ment, temperature, curvature, and stress [4], [5]. When a bilayer 
sensor is physically bent, stress develops along its length which 
is dependent on the geometry and curvature of the cantilever. 
The sensor consists of a magnetostrictive layer on a nonmag­
netic layer. The magnetostrictive layer is an amorphous mag­
netic film (Fe si B 1 3 .5  Si 3 . 5  C 2), 28 /jm thick, agglutinated 
onto a 75-/7,m aluminium layer. Details of the sensor design and 
measurement system can be found in [3]. Changes in stress re­
sult in changes in the relative permeability of the material. These 
changes are detected by a pick-up coil wound around one end

Data Acquisition  
Card Display

Circuit

Tank

Fig. 1. Bilayer sensor setup for airflow measurements.
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Distance from the centre 

Fig. 2. Bilayer sensor position inside cylindrical tube.

of the bilayer sensor, which produces the sensor signal as a re­
sult of changes in the inductive reactance X l , [6], [7]. Thus, the 
change in inductance corresponds to the change of bi layer cur­
vature, which is due to the applied force from the air stream on 
the sensor tip.

The measuring system (see Fig. 1) consists of a cylindrical 
tube with the sensor mounted inside, a tank with compressed air 
that generates the air flow, a PC-based acquisition system, and 
a circuit that conveys the sensor signal as changes in frequency 
using frequency modulation. The position and location of the 
sensor in the tube can be seen in Fig. 2. Signal detection and 
processing was achieved using a program written in Lab VIEW1

R egistered trademark.
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Fig. 4. Bilayer sensor curvature and displacement versus sensor length for a 
range of air speeds up to 25 m/s.

software and a NI-6120 data acquisition card with a maximum 
sampling rate of 800 kS/s per channel and 16-bit resolution [8].

S. S en sor A p p lic a t io n

The bilayer sensor was inserted into the middle of a cylin- 
dhcal tube 70 mm long with a 30-mm diameter. The orienta­
tion of the sensor was parallel to the radius of the tube with 
the broad face of the bi layer strip orthogonal to the air stream 
and free end in the center of the tube [Fig. 2(a) and (b)]. The 
air stream was supplied to the tube from a compressed air tank 
with an eight-bar (115 psi) maximum working pressure. An 
anemometer was placed at the end of the tube to measure the air 
Sow in order to correlate the sensor signal to the wind speed. The 
performance of the sensor was tested for a range of air speeds 
from 0 to 25 m/s and at a range of distances from the center of 
the tube that effectively reduced the bilayer strip length inside 
the tube [Fig. 2(b)]. The tube diameter and the air speed range 
were chosen to achieve a slightly turbulent flow through the tube 
with a Reynolds number of up to Re =  40541 at 25 m/s. The 
flow is turbulent in a straight tube when the Reynolds number is 
above 4000 [9]. The reason behind this choice was to examine 
the performance of the sensor in conditions found in engine in­
takes where the flow is usually turbulent.

C. Results

In order to relate the sensor signal to the air flow, the envi­
ronment inside the tube and the forces that displace the bilayer 
strip need to be calculated. This was performed by modelling the 
sensor inside the tube using the Comsol Structural Mechanics2 
package [10]. The nature of the air flow (air velocity) in a tube 
is parabolic (Fig. 3) and depends on the radial distance from 
Saecenter of the tube (center of flow where air speed is at max­
imum) [11]. The force exerted along the length of the bilayer 
strip depends on the air speed and hence on the distance from 
tte center of the tube.
The results from the simulation are shown in Fig. 4 where the 

application of an air speed range up to 25 m/s displaces the free 
end of the 15-mm-long bilayer strip, changing its curvature.
By moving the sensor away from the center of the tube and 

away from the point where the air force is at its maximum, it

Htegistered trademark.
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can be seen from the modelling data that the displacement of 
the bilayer strip is dramatically reduced (Figs. 5 and 6).

As the airflow is increased, the longitudinal axis of the sensor 
is bent. This curvature increases accordingly with the increase 
of the airflow. At the same time that the sensor is curved, the 
area vertical to the airflow is reduced until the longitudinal axis 
of the sensor is deflected at around 90° (parallel to the flow 
direction). In the case of Fig. 5, at around 20 m/s the area of 
the sensor is reduced to such an extent that higher airflows will 
result in an incremental increase in tip displacements. Hence, 
the tip displacement increases and then tails off.
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Fig. 7. Output voltage versus tip displacement o f bilayer sensor.

Fig. 6 demonstrates that given the same amount of displace­
ment for two bi layer strips of different length, more force is re­
quired for the shorter strip. In this case, higher forces induce 
higher stresses in the magnetic material, which in turn cause 
increased change in inductance and hence increased levels of 
signal, as in Fig. 7. This is useful when at sufficiently high flow 
rates the longitudinal axis of the sensor is deflected at around 
90°. During this condition, a further increase in the airflow will 
not result to a further increase of the sensor signal. This can be 
corrected by reducing the sensor length in the tube. By plot­
ting the acquisition results (sensor signal) against the tip dis­
placement of the bilayer strip it can be seen that the relationship 
is almost linear, with a square correlation coefficient value of 
r2 = 0.99 (Fig. 7).

By plotting both the sensor tip displacement against force 
and the sensor signal versus force it can be seen that the re­
sponses closely follow each other. This further indicates that the 
sensor output signal faithfully replicates tip displacement posi­
tion (Fig. 8).

III. C o n c l u s i o n

A new system incorporating bilayer magnetostrictive air flow 
sensors has been developed. It has been shown that the Lab- 
VIEW-based measurement system, in conjunction with bilayer 
sensors, provides an accurate and robust method for quantifying 
the flow of air, even when minor turbulence is present. It is ex­
pected that this system will lend itself to a diverse range of ap­

Tip Displacement (mm) 
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- 2 5  ?

■20

-■ 15

-  10

0.00 0.01 0.03 0.06 0.11 0.19 0.27
Force (N)

Fig. 8. Output voltage and tip displacement versus force exerted on strip.

plications from automotive (engine gases) to biomedical (blood 
flow) applications.
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A Frequency Modulation Based System Using 
Bilayer Thin-Film Displacement Sensors

G. S. Katranas, T. Meydan, T. A. Ovari, and F. Borza 

Wolfson Centre for Magnetics, Cardiff School of Engineering, Cardiff University, Cardiff CF24 3AA, U.K.

A novel method has been used for accurately measuring low voltage signals (~10-4 V ) associated with inductance changes of bilayer 
thin-film sensors under bending stress. In this paper the architecture of the system is first presented, and then the design ideas and key 
technologies are followed. Initially, the frequency modulated signals were simulated with superimposed noise signals to test the demod­
ulation performance of the written program. From the results, the expected output of the program was confirmed. Following this, the 
frequency modulation technique was used with actual sensor signals to measure the displacement of a bilayer thin film sensor. The results 
from the acquisition were compared with a previously developed amplitude modulation based setup, and it proved that the frequency 
modulation system provided a robust and accurate solution to evaluate magnetostrictive materials and their application in magnetic 
sensors.

Index Terms—Amorphous magnetic films, frequency modulation, magnetic sensors, magnetostriction.

I. In t r o d u c t i o n

T HE technological advances of the personal computer (PC) 
have enabled it to become a very efficient signal acquisi­

tion and analysis system. Out of the many software acquisition 
packages commercially available, LabVIEW provides a pow­
erful tool for signal analysis. By using the developed software 
and a few external components, the system can be used to detect 
iow voltage signals that are related to the displacement of bi­
layer sensors. Magnetic sensors are devices that receive a stim­
ulus and convert it to an electrical output signal by utilizing the 
laws of electromagnetism and effects in electromagnetic fields 
in order to achieve their goal. The bilayer thin films used are the 
building blocks for a new generation of multifunctional sensor 
families. They consist of a magnetic layer and a nonmagnetic 
counter layer that is used to enhance the changes in the relative 
permeability of the material, caused by tensile or compressive 
stresses. Bilayer sensors are constructed from a ferromagnetic 
magnetostrictive layer which can be crystalline, nanocrystalline, 
or amorphous, deposited on a nonmagnetic layer. In the system 
described in this paper, an amorphous magnetostrictive layer is 
used because of its lack of magnetocrystalline anisotropy and 
high mechanical strength [I], [2]. Soft magnetic amorphous rib­
bons and thin films may exhibit high magnetostriction and there­
fore strong magneto-elastic effects.

When a magnetostrictive amorphous ribbon is physically bent 
at its free end, a tensile stress, cr, develops along its length. The 
changes in the relative permeability, fxT, are not as large as ex­
pected [3], because there is a reduction due to the effect of ten­
sion in one half of the material which is counterbalanced by the 
effect of compression in the other half.

Digital Object Identifier 10.1109/TM AG .2006.888857

Color versions o f one or more o f  the figures in this paper are available online 
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Fig. 1.

Bilayer strips consist of two layers, one layer that contains the 
magnetostrictive amorphous ribbon and a nonmagnetic counter 
layer. The purpose of this configuration is to shift the neutral 
bending area out of the amorphous ribbon, hence impose the same 
sign stress throughout the amorphous ribbon [4], [5]. Bending this 
bilayer will result in changes in the relative permeability, fir , of 
the material. The permeability changes are detected by a pickup 
coil, wound around one end of the bilayer sensor, which produces 
the sensor signal as a result of changes in the inductance AL, and 
hence its reactance X l [6], [7] (Fig. 1).

Thus, the change in A L  corresponds to the displacement of 
the free end of the bilayer sensor.

Bilayer sensors are easy to operate and have been developed 
to detect various parameters such as displacement, stress, etc.
[8]. These sensors can be used for a variety of applications such 
as automotive industry, aerospace, environmental monitoring, 
earthquake detection, and especially biomedical for signal ac­
quisition for monitoring physiological activities [9], [10]. Pre­
vious methods for detecting and analyzing sensor signals have 
been conducted using bilayer thin films with the amplitude mod­
ulation scheme, which can be susceptible to noise [6], [8], [11]. 
In this paper, we report on a frequency modulation technique to 
measure the sensor signal. Also, a comparison is made between 
both modulation schemes.

II. E x p e r i m e n t a l  S e t u p

A. Sensor Design
The bending sensor used is a bilayer strip, which consists of 

a magnetostrictive layer on a nonmagnetic layer (Copper Beryl-

Coil Magnetic material Displacement

Non-magnetic material

Actuator

The bilayer sensor during the bending displacement o f  the free end.

0018-9464/$25.00 © 2007 IEEE
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Fig. 2. Frequency modulation based system for the measurement of displace­
ments.

lium, CuBe). The amorphous magnetic film, 2.9 pm thick, was 
deposited from a Feg1B13.5Si3.5C2 target using the RF mag­
netron sputtering technique onto a 25 pm CuBe layer [12], The 
dimensions of the coil that was used for these measurements 
were 300 turns, 20 mm in length, and 7 mm in width. The bi­
layer thin film strip that was used had a size of 40 mm length, 5 
mm width. This results in an inductance value of L =  3.02 mH.

B. Measurement System
The measuring system consists of a PC-based acquisition 

setup and a circuit that modulates the sensor displacement 
signal with a reference signal, using the frequency modulation
(Fig. 2).

Signal detection was achieved using the written software and 
aNI-6120 data acquisition card with a maximum sampling rate 
of 800 kS/s per channel and 16-bit resolution [13].

In order to compare the two systems (AM and FM system) 
and examine the performance of the frequency modulation their 
principle of operation is briefly explained in Sections II-C and 
D-D, respectively. Depending on the modulation principle used, 
(amplitude or frequency), the sensor is connected to the corre­
sponding circuit [14].

C. Amplitude Modulation
In amplitude modulation the instantaneous amplitude, V r ,  of 

the carrier waveform is varied linearly by the information signal, 
#s(f), i.e., the change in A L. A sinusoidal carrier waveform, 
v r ,  is mathematically represented by

vr =  VR • cos(2nfRt). (1)

When the carrier signal is modulated by the information signal, 
(1) becomes

AM(0 =  [V r  +  v ,( * ) ]  c o s (2 ? r • f R t ) (2)

where v s ( t )  is the information signal (sensor displacement 
signal). The details of the AM operation are described in [14]. 
By replacing R r  with the bilayer sensor in Fig. 3, the sensor 
will act as the load impedance of the voltage-to-current circuit 
(VCC). The resistive element of the inductor which is its reac­
tance X r , (X r = 2 • 7r ■ /  • L) will act as the load resistance 
of the VCC. For the AM technique, the settings were V\ =  v r  

and V2 =  0 (ground).

0. Frequency Modulation
For frequency modulation, FM, the instantaneous frequency 

of the sine wave will shift from the reference frequency f R by

V ,

+

hA
IL '

R,

Fig. 3. The VCC used in the amplitude modulation technique.

FM(t)

OPA37

C2

LC Tank

Fig. 4. The Colpitts oscillator schematic diagram. The component values used 
were: R , =  10 kft, R 2 =  100 kO, C , =  C 2 =  1 jtF, L =  3.02 mH, and 
A L  =  60 //H at 2 mm displacement.

an amount A /, proportional to the instantaneous value of AL 
[15]

FM(f) =  V r  cos 2-k  ■ f R  ■ t  +  2 tt ■ K f  f  v s { t ) d t
■Jo

(3)

where K f  is the modulation constant and v s { t )  is the sensor 
displacement signal. The FM was achieved using a Colpitts os­
cillator (as seen in Fig. 4).

This circuit utilizes an LC tank with an inductor connected in 
parallel to two series capacitors. The output is a sine wave at a 
frequency, / ,  which is defined by the values of L and C

f  =
27r L - C ) C 2

Ci +c2
(4)

The bilayer sensor acts as the inductive component of the 
Colpitts oscillator. Any change A L in the inductance L of 
the pickup coil will shift from / r  by A /.  Hence, frequency 
modulation is achieved.

For the measurement system, the actuator is set up to displace 
the bilayer according to

vs(t)  =  Vs • cos(27r f s t ) . (5)

An alternating sinusoidal force was applied to the free end of the 
bilayer using a mechanical actuator operating at 3 Hz to simulate 
the average maximum heart rate (180 beats per minute) expected 
in a healthy 40-year-old person [16].
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Time

D(t)

Fig. 5. The output signal of the differentiator, D ( t) ,  is a composite signal that 
consists of the amplitude (AM) and frequency (FM) modulation schemes.

E. Demodulation Technique
The core of the AM demodulation process is the lock-in tech­

nique. The mathematical process for performing the lock-in is 
known to be an accurate method to measure the displacements 
of bi layer sensors [6], [14].

In order to demodulate the FM signal, it needs to be input 
through a differentiator followed by an envelope detector. 
Rewriting (3) gives

FM(i) = V r c o s tOr • t + KfVs
fs

sin(o;.si) (6)

where tttfm is the modulation index. The derivative of FM(f) 
can be written as
dFM(t)

dt
= D(t) =  -  V r  ■ sin (cor • t +  t t i y m  • sin(u;s£))

FM (t)

\
ur +  27t • K f  ■ Vs • sin(ust)

'----- v—
Vs(t)V

(7)

7
As seen in from (7), the differentiation of the FM signal has been 
converted to a composite waveform that comprises the FM(f) 
and the va(t) signals [17]. D(t)  has become an amplitude mod­
ulated signal whose reference and modulating waveforms are 
the FM(t) and the vs (t ) (Fig. 5).

An envelope detector can be used to demodulate this signal 
and extract the sensor displacement signal. The envelope de­
tector used for the D(t ) was based on the Hilbert transform. 
A signal s(t) has a Hilbert transform denoted by s(t) and 
is obtained by shifting the frequency components of s(t) by 
7t/2(90°)) [18]. A function s(t) and its Hilbert transform s(t) 
can form together a complex signal [19]

S(t) =  s(t ) +  j  • s(t). 

Let D(t) be the Hilbert transform of D(t,)

(8)

D(t.) = - V r  • ĉos, (ur ■ t +  mpM • sin(a>.,£)) •
90° sh ift

• (uR +  27T • K f  ■ Vs • sin(ust ) ) . (9)
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Fig. 6. A comparison of: (a) sensor signal (FM) and (b) the LDV output at 
0.35 mm peak to peak plotted together with their percentage difference.

From trigonometry (sin2 x  +  c o s 2 .t  =  1) and (8), the sensor 
displacement signal can be found as [18]

Hs (t) =  \ D( t ) + j D( t ) \  =  s / D 2(t) +  £>2(t) =s- (Hs ( t ) f  
=  (VR ■ sin(uRt +  mpM • sin(ust))

■ (uR +  27vKf ■ Va ■ sin(ust )))2 
+ (Vr  • cos(uRt +  m FM • sin(cvsf))
• (uR +  2-KKf • Vs ■ sin(u3t)))2 

= [Vr • (uR +  27T ■ K f -Vs ■ sin(ust))J2.
Hence

H s ( t )  =  V r

(  \
Ur  +  27T • K f  ■ Vs • sin(ust)

V

(10)

(ii)
v3(t)

From (11), it can be seen that the information signal vs(t) has 
been recovered. The dc component that the signal is superim­
posed on can easily be removed in software.

III. R e s u l t s

Low-frequency (3 Hz) sine waves, with variable peak-to-peak 
amplitudes from 1 to 6 V, were applied to the actuator. The re­
sulting output peak to peak displacement ranged from 0.35 to 
2 mm. The displacement of the actuator was measured with the 
aid of a laser Doppler vibrometer (LDV) [20]. As seen in Fig. 6, 
the frequency modulated signal (FM) shows an average of 0.9% 
deviation with a 2% maximum deviation compared to the output 
signal from the LDV.

The output signal is determined by the degree of bending of 
the bilayer which can be converted into a displacement reading 
(Fig. 7).

The average peak-to-peak signal produced at the displace­
ment range of the actuator was in the range of 0.8 to 4.6 mV. 
From the performance of the system it was found that it has an 
average sensitivity of 2.2 mV/mm, whereas the nonrepeatability 
of the results is 2.4%. The data examination was performed 
using standard statistical methods [21]. The results showed
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Fig. 7. The output voltage characteristics against the displacement o f the bi­
layer during the increase and decrease o f the actuators displacement.

an almost linear behavior with a square correlation coefficient 
value of r2 = 0.99.

The mechanical hysteresis, i.e., the difference between the in­
crease and decrease of the amplitude of the actuators displace­
ment and hence the increase and decrease of the sensors signal, 
is 1.85% (Fig. 7).

As seen in Fig. 8, the amplitude modulated signal (AM) 
shows an average of 1.7% deviation with a 3.9% maximum 
deviation compared to the output signal from the LDV. The 
AM signal not only shows twice the amount of deviation, at 
this displacement range, compared to the FM signal but it also 
depicts a deteriorated signal quality. This difference is expected 
to increase at displacements lower than 0.35 mm. Also, at 2 mm 
displacement the AM shows a deviation of

AV
Vr

20 AiV
1 V

=  20 • 10~ 6 . (12)

Hence, the information signal can easily be buried in noise. The 
FM technique, on the other hand, has

* I
fR

0.1 kHz 
5 kHz

=  0 .02 . (13)

From this, it can be seen that the FM method has a high sensi­
tivity compared to the AM.

Another aspect of the FM technique is that if the sensor is 
placed in the presence of a dc field the A /  change increases 
(until the magnetic material reaches saturation) as the sensor 
approaches the source. This has an amplifying effect to signal; 
hence, the presence of a small permanent magnet can amplify 
signals that arise from small displacements. In the AM method, 
the presence of a dc field will augment the present noise levels 
which in turn cover the information signal.

As part of examining the performance of the measurement 
system, the thermal stability was tested over the temperature 
range of up to 180°C by placing the bilayer sensor and the 
actuator setup inside an environmental chamber. It was seen 
that although the temperature rise did cause inductance change,
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Fig. 8. A comparison of: (a) sensor signal (AM) and (b) the LDV output at 
0.35 mm peak to peak plotted together with their percentage difference.

and hence frequency increase, the percentage change of A/  re­
mained approximately constant [22], Thus, the sensor signal re­
mained relatively unaffected due to the nature of the frequency 
modulation method. A bilayer thin film sensor, using materials 
of different thermal expansion coefficients, can be used and 
have a good thermal stability over a range of temperatures up 
to 180 °C. A temperature independent sensor is needed in in­
dustry, especially for application in car engines for measuring 
exhaust fume flow.

IV. C o n c l u s i o n

A bilayer displacement sensor measurement system has been 
developed. The system is capable of detecting peak to peak dis­
placements using the frequency modulation scheme in the range 
of 0.35 to 2 mm. It has been shown that the measurement system, 
together with the bilayer sensors, provides an accurate method 
for determining displacement. Also, the FM system showed that 
it has better performance than the AM system. It is considered 
that this system will lend itself to a number of applications such 
as stress, airflow measurements in engine exhaust pipes, mon­
itoring physiological parameters that arise from the change of 
skin curvature such as cardio-respiratory activities.
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Abstract
A novel bi-layer thin film sensor system was used for accurately registering physiological parameters 
associated with body movements, such as cardiac and respiratory activities. The bi-layer curvature sensor 
system can provide additional medical information about the cardiac activity of the patient by mapping 
the five characteristic waves o f the normal heartbeat rate (P, Q, R, S and T wave). This system was also 
used for registering physiological parameters such as the monitoring of lung ventilation which can give a 
range of information about the patients health, (normal respiration patterns, deep inhalation/exhalation 
and apnoea), easily distinguishable in the output signal. The bi-layer thin films used consist of a magnetic 
layer and a non magnetic counter layer that is utilized to enhance the changes in the relative permeability 
of the material caused by tensile or compressive stresses during bending. The measuring system is based 
on a personal computer in conjunction with the LabVIEW® graphical programming package. The nature 
of this configuration provides the necessary features for sensor signal acquisition, analysis and data 
presentation. The results from the sensor application on patients demonstrate that this system can provide 
a robust, cost effective solution to monitoring cardio-respiratory activity with minimum inconvenience to 
the patient, which is necessary for prolonged, undisturbed monitoring.
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1. Introduction

Polysomnography is a diagnostic and comprehensive recording of the physiological changes that occur 
during sleep. This biometrical test includes medical techniques such as electroencephalography (EEG), 
rapid eye movement (REM), electromyography (EMG), electrocardiogram (ECG), and the patient’s 
respiratory activity during sleep. The non-disturbing monitoring of the human body activities during sleep 
and especially the cardio-respiratory activity is an important parameter. Body functions such as breathing, 
oxygen levels, heart tracing, and the different levels of sleep are recorded during the sleep study.

The test and monitoring of the patient’s sleep through the night is performed by a qualified sleep 
technician. Electrodes are placed on the head and face to monitor levels of sleep, ECG (electrocardiogram) 
patches will be applied to the chest to monitor the heartbeat, and a flow sensor is placed under the nose to 
monitor airflow. The respiratory activities are monitored by soft straps placed around the chest and 
abdomen that record the rise and fall of the chest to determine whether the patient is breathing 
appropriately during sleep. The patient’s sleep could probably be disturbed from the sensors, electrodes and 
straps.

This paper describes the applications of a novel system using bi-layer thin film sensors, originally used for 
the detection of bending [1], The physiological activities that involve the dynamic deformations of the 
curvature of the skin can be measured, with minimum disturbance, by this system.

2. Experimental

Measurement System

The bi-layer sensors are assembled from a ferromagnetic magnetostrictive layer that can be crystalline, 
nanocrvstalline or amorphous magnetic materials on a non-magnetic layer. These sensors are cost effective, 
easy to operate and they have been developed to detect parameters such as displacement, temperature, 
curvature, stress etc [2]. Due to the lack of magneto-crystalline anisotropy and high mechanical strength [3, 
4] an amorphous magnetostrictive layer was used for the bi-layer. Soft magnetic amorphous ribbons and 
thin films may exhibit rather high magnetostriction and therefore strong magneto-elastic effects. During the 
bending of a bi-layer thin film sensor, stress develops along its length that is dependent on the geometry of 
the cantilever and its curvature, c. Changes in stress cause changes in the relative permeability of the 
material. These variations are detected by a pick-up coil, wound around one end of the bi-layer sensor, 
which produces the sensor signal, s, as a result of changes in the inductance, AL, and hence its reactance XL 
[5, 6]. Thus, the change in AL corresponds to the change of skin curvature, Ac, where the sensor is applied. 
The bi-layer strip used in the bending sensor consists of a magnetostrictive layer on a non-magnetic layer 
(Copper Beryllium - CuBe). The magnetostrictive layer is an amorphous magnetic film, 2.9 pm thick, was 
deposited from a Fe8iBn.5Si3.5C2 target using the RF magnetron sputtering technique onto a 25 pm CuBe 
layer. The measuring system consists of a personal computer (PC) based acquisition set-up and an 
electronic circuit that modulates the sensor displacement signal with a reference signal, using the frequency 
modulation (FM) principle (Fig. 1) [1].

Using the LabVIEW® software and a NI-6120 data acquisition card the detection of the signal was 
achieved. This card has a maximum sampling rate of 800 kS/s per channel and 16-bit resolution [7].

In order to achieve frequency modulation, FM, the instantaneous frequency of the sine wave shifts from the 
reference frequency f R by an amount A f proportional to the instantaneous value of AL [8]:

, JL
Data Acquisition 

Card

Display

Fig. 1. Bi-layer sensor system for registering cardio-respiratory activity.



FM(t) = VR cos[2/r ■ f R t + 2x  K f  J vs (/)*//] (1)

where Kf is the modulation constant and vs(t) the sensor displacement signal. The FM was achieved using a 
Colpitts oscillator (as seen in Fig. 2).

FM(t)

OPA37

C 2

L+ALLC Tank

Fig. 2. The Colpitts oscillator schematic diagram. (R1 = 10 kH, R2 = 100 kQ, Cl = C2=  1 pF, L = 3.02
mH and AL = 60 pH at 2 mm displacement).

An LC tank is utilized in this circuit with an inductor connected in parallel to two series capacitors. The
output is a sine wave at a frequency,/, which is defined by the values off, and C:

/ =  1 ' (2)
L C, C,2n- Ci + Ĉ

The bi-layer sensor acts as the inductive component of the Colpitts oscillator. Any change AL in the 
inductance L of the pickup coil will shift from/? by Af Hence, frequency modulation is achieved.

Demodulation Technique

The demodulation o f the FM signal becomes feasible when the waveform is input through a differentiator 
followed by an envelope detector. Rewriting Eq. 1 gives:

FM(t) = VR cos
K f Vs

c°r 7 — sm(a>s0
J  S

(3)

where mFM is the modulation index. The derivative of FM(t) can be written as:

dFMjt) 
dt

= D(t) = -V R sin(coR t + mFM sin(costj)-
FM(t)

coR + 2 7T-Kf Vs • sin (cost)
v ,(0

(4)
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From Fig. 3 it can be seen that the differentiation of the FM signal creates a composite waveform that 
comprises of the FM(t) and the vs(i) signals [9]. D(t) has become an amplitude modulated signal whose 
reference and modulating waveforms are the FM(t) and the vs(t) (Fig. 3).

Time

Fig. 3. D(t), the output signal of the differentiator, is a composite signal that consists of the amplitude
(AM) and frequency (FM) modulation schemes.

The envelope detector is used to demodulate this signal and extract the sensor displacement signal. The 
Hilbert transform principle is the envelope detector used for the D(t). A signal s(t) has a Hilbert transform 
denoted by s(t) and is obtained by shifting the frequency components of s(t) by nil (90°) [10]. A function 
s(t) and its Hilbert transform s(t) can form together a complex signal [11]:

S{t) = s{t) + j s { t )  (5)

LetD(/) be the Hilbert transform of D(t):

D(t) = -VR • cos (coR -t + mFM sin(cost))-
90° shift

■ (coR + 271 ■ K f  • Vs • sin (mst')) (6)

From trigonometry (sin2x + cos2x = 1) and Eq. 5, the sensor displacement signal can be found as [10]:

Hs (/) =| D{t) + jD( t ) |= ^ D 2(/) + D 2(t) => (.Hs (t j f  =

= (vR sin(coRt + mFM sin (cast))-(coR +2nKf -Vs - sin(cost))f +

+ (vR ■ cos{coRt + mFM • sin(cost))-(coR + 27dCf ■ Vs ■ sin(costj)f =

= [f/? (cor +2n- K f  Vs • sin(c^r))]2 (7)

Hence,

Hs{t) = VR coR + 2k  ■ K f ■ Vs ■ sin (cost)
vt ( 0  y

(B)

From Eq. 8 it can be seen that the information signal vs(t) has been recovered. The superimposed DC 
component on the information signal can easily be removed in software.



Sensor Application

A range of internal physiological activities are mirrored on the human body in the form of active variations 
of the skin curvature, c. Depending on the body region these signals consist of three main components, 
cardiac activity, sc, lung ventilation, sR and body movements, sM [12]. Cardiac activity transmits blood 
pressure waves through the arterial system which result in the cyclic alteration of the vessel’s radius, r. This 
deformation is transmitted to the skin, through the surrounding tissue, resulting in change of curvature, Ac, 
proportional to Ar [13]. For the detection of the heartbeat rate,/c, the sensor was attached on the neck over 
the carotid artery with the aid of double sided adhesive tape (Fig. 4).

Fig. 4. The bi-layer thin film sensor applied over the carotid artery

As in the case of cardiac activity measurements, the deformation of the chest due to changes in respiration 
volume produces a sensor signal, sR, which characterizes the lung ventilation. The respiratory activity,^, 
was measured by fixing the sensor on the chest using double sided adhesive tape.

3. Results

An Electrocardiograph measures the electrical potential between points of the body in order to show the 
electrical activity in the heart; the data are displayed in the form of an illustration, an Electrocardiogram 
(ECG) as seen in Fig. 5a. A total of up to 12 contacts (electrodes) are usually affixed to the arms, legs and 
chest on clean, shaven skin areas. The typical ECG wave starts with the spread of the heart stimulation 
through the atria (P wave), triggering the ventricular activation (Q, R and S wave), and then ending up to 
the ventricular recovery (T wave), which returns the stimulated ventricular muscle to its resting state.

ECG FM System

Fie. 5. Comparison between a') the basic ECG output and b') the acquired heartbeat from the FM system.
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Fig. 5b shows the hemo-dynamic activity at the carotid artery caused by the pumping of the heart. A bi­
layer curvature sensor system was used for the first time not only to monitor but also to map the five 
characteristic waves o f the normal heartbeat rate (P, Q, R, S and T wave), hence providing additional 
medical information about the cardiac activity of the patient that other magnetic bi-layer sensor systems can 
not provide. Compared to the ECG, the bi-layer sensor system only needs one contact to the body (the bi­
layer sensor) and there is no need for the preparation of the skin area.

Fig. 6 demonstrates a characteristic pulse train, f c, acquired from the FM system that corresponds to 81 
beats per minute. For an adult the normal resting heart rate is between 60-100 beats per minute depending 
on the physical condition. The signal 5C is usually influenced from other signals, sR and sM, that arise from 
body movements including in this case from the change of the neck circumference during slow intake of air 
in the lungs. When the patient is holding his breath and immobile, only the signal from the cardiac activity, 
sc, is detected.

0.8

tv

0-
2 3 40 1

Time (s)

Fig. 6. A detected pulse train segment, from the carotid artery, using the bi-layer thin film sensor system.

The monitoring of respiratory activities is performed by placing the bi-layer sensor on the chest. Fig. 7 
displays the signal, sR, over 55 seconds, during which normal respiration, deep inhalation/exhalation and 
apnoea were recorded with clear differentiation between respiratory activities. Also from the performance 
of the system it was found that the non repeatability of the results is 2.4%.

15- Deep inhaleNormal
Brealhing10-

& 5-
0-

-5- Apnoea
Deep exhale

Fig. 7. A range o f respiratory activities recorded using the bi-layer thin film sensor system.

4. Conclusions

The system that was developed incorporates bi-layer thin film curvature sensors. It is capable of detecting 
and recording cardio-respiratory activities using the frequency modulation principle. It has been shown that 
the LabVIEW® based measurement system, together with the bi-layer thin film sensors, provides an 
accurate, robust and low-cost method for monitoring physiological parameters that arise from the change of 
skin curvature. This sensor system can be essential for prolonged, undisturbed monitoring as it provides 
minimum inconvenience to the patient.
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A bstract
The bi-layer thin film measurement system uses the principle of frequency modulation for the detection 
of displacement The measuring system utilizes a personal computer based system using the 
LabVIEW® graphical programming package that provides the features necessary for acquiring the 
sensor sgnal, analyzing it and displaying the results. The results from the acquisition were compared 
with previously developed amplitude and phase modulation based systems to show that the frequency 
modulation technique provides a robust and accurate solution to evaluate magnetostrictive materials 
and their application in magnetic sensors. The performance o f the bi-layer thin film sensor was 
examined and its thermal stability, over the temperature range of up to 180°C, was tested in an 
environmental chamber. The temperature rise does cause inductance change, but the sensor signal 
remains unaffected due to the nature of the frequency modulation method. Thus, having two materials, 
with different thermal coefficients o f  expansion in a bi-layer thin film sensor does not adverse  ̂
influence the sensor signals. This creates a temperature independent sensor that is needed for 
applications where there are temperature variations.
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1. Introduction

The reason why bi-layer sensors were developed was that industry today needs sensors that are cost 
effective and easy to operate and are able to detect multiple parameters such as displacement, 
temperature, curvature and stress [I]. Based on thin film technology, bi-layer displacement sensors 
consist of magnetostrictive thin film deposited onto a non-magnetic layer in order to enhance the 
bending stress dependence of the relative permeability of the material. Because o f the fact that the two 
layers are deposited instead o f agglutinated, these sensors can operate at high temperatures for 
prolonged periods o f time without depending on the working temperature of the adhesive used. The 
ferromagnetic magnetostrictive layer that is used for the bi-layer sensor strip can be crystalline, nano­
crystalline or amorphous magnetic material. In the system described in this paper, an amorphous 
magnetostrictive layer is used because of its lack o f magneto-crystalline anisotropy and high 
mechanical strength [2, 3]. When there is a change h stress on the bi-layer strip due to bending, 
changes in the relative permeability o f the material occur which are detected by a pick-up coil, wound 
around one end of the bi-layer sensor. These changes produce the sensor signal which arises as a result 
of changes in the inductance, AL, and hence its reactance XL[4, 5]. Thus, the change in AL corresponds 
to the displacement of the free end of the bi-layer sensor. In order for bi-layer thin films to have 
thermal stability it is necessary for the two materials to have approximately identical thermal expansion 
coefficients, a. If the thermal expansion coefficients of the chosen materials are notably different then 
an increase in the temperature will result in the material with the largest a to expand disproportionally 
with respect to the other, thus producing unwanted curvature increase in the strip [6]. The paper shows 
how, due to the nature of the frequency modulation (FM) system, a bi-layer thin film sensor, using 
materials of different a, can be used and have a good thermal stability over a range of temperatures up 
to 180 °C.

2. Experimental

A. Measurement System

The bi-layer strip o f the bending sensor consists o f a magnetostrictive layer on a non-magnetic layer 
(Copper Beiyllium - CuBe). The 2.9 pm thick amorphous magnetic film was deposited from a 
Fe8|B|35Si3 5C2 ribbon target using the RF magnetron sputtering technique onto a 25 pm CuBe layer. 
The thermal expansion coefficients are ai = 5.9-10-6 K'1 for the amorphous magnetic film and a2 = 
17-10-6 K"1 for the CuBe layer. The sensor is connected to an electronic circuit that modulates the 
displacement signal with a reference waveform. For each modulation principle there is an equivalent 
circuit which in turn is connected to a personal computer (PC) based acquisition set-up (Fig. 1) [7].
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Fig. 1. The Bi-layer sensor during the bending displacement o f the free end.

Using the LabVIEW® software and a NI-6120 data acquisition card the detection of the signal was 
achieved. This card has a maximum sampling rate o f 800 kS/s per channel and 16-bit resolution [8].

In order to compare the three systems (AM, PM and FM) and examine their performance, the principles 
ofoperation are briefly explained. Depending on the modulation principle used the sensor is connected 
to the corresponding circuit [10].

B. Amplitude Modulation

In the case of amplitude modulation (AM) the instantaneous amplitude, VR, of the carrier waveform is 
linearly varied by the information signal, vs(t), i.e. the change in AL. A sinusoidal carrier waveform, v̂ , 
is mathematically represented by:
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v/f= VR-cos(2nfRt) (1)

When the carrier s ignal is modulated by the information signal Eq. 1, becomes:

AM(t) = [VR + v, (/)]cos(2;r • f Rt) (2)

where vs(t) is the information signal (sensor displacement signal). Further information of the AM 
operation is described in ref. [9]. The bi-layer sensor behaves as the load impedance of the VCC when 
is placed in the place of Rl (Fig. 2). The reactance X l, (Xl = 2-rcf-L) which is the resistive element of 
the inductor will act as the bad resistance of the Voltage-to-Current Circuit (VCC). For the AM 
technique the settings where V! = vR and V2= 0 (Ground).

— — "1.-j— * *T -------------- ..
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Fig. 2. The Voltage-to-Current Circuit used for the amplitude modulation technique.

C. Frequency Modulation

In order to achieve frequency modulatbn, FM, foe instantaneous frequency of the sine wave shifts 
from the reference frequency/? by an amount Af, proportional to the instantaneous value of AL [10]:

FM(t) = VR cos[2# - f R- t +2n- Kf  £ v 5 (t ) d t ]

where Kf is foe modulatbn constant and Vg(t) the sensor displacement signal. For foe FM technique a 
Colpitts oscillator was used (as seen in Fig. 3).

LC Tmi
MFA3?
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Fig. 3. The Colpitts oscillator schematic diagram. (Rl = 10 kG, R2 = 100 kn, Cl = C2 = 1 pJF, L = 
3.02 mH and AL = 60 pH at 2 mm displacement).

The LC tank used with foe Colpitts oscillator is composed of an inductor connected in parallel to two 
series capacitors. The output is a sine wave at a frequency,/ which is defined by the values ofL and C:

/  =
2*. 'L<

C\ +  ^ 2  ( 4 )



By replacing the inductive component of the Colpitts oscillator with the bi-layer sensor any change AL 
in the inductance L of the pickup coil will shift fnomy^by Af Hence, frequency modulation is achieved.

D. Phase Modulation

For phase modulation, PM, the instantaneous phase of the sine wave will deviate from the reference 
phase <PR by an amount AO, proportional to the instantaneous value of AL [11]:

PM(t) = VR cos[2#y  + KPvs (/)] (5)

where KP is the modulatbn constant, Vs(t) the sensor displacement sgnal and <PR=KPvs(t). The PM was 
achieved using a phase shift oscillator (Fig. 4). There are three RC tanks, in the circuit, with one of 
them having an inductor connected in parallel to two series capacitors. The output is asine wave with a 
frequency defined by the values of L and C:

/  =
>l3CR2 +L 
iTtCRyfeL

(6)

The bi-layer sensor acls as the inductive component of the phase shift oscillator. Any change AL in the 
inductance Lof the pickup coil will shift from <PR by A<I>. Hence, phase modulatbn is achieved.

Fig. 4. The phase shift oscillator schematic diagram.

For the measurement system the actuator is set up to displace the bi-layer according to:

vs(t) = Vs • cos(2nfy) (7)

A mechanical actuator was used in order to apply a controlled altemathg sinusoidal force to the free 
end of the bi-layer. To optimize performance a range of coil configurations were investigated before 
deciding on the final specification o f 300 turns, 20 mm length and 7 mm width.

E. Demodulation Techniques

The core of the AM demodulatbn process is the lock-in technique. This is known to be an accurate 
method to measure the displacements of bi-layer sensois [4, 9]. The mathematical process for 
performing the lock-in is the multiplicatbn of the amplitude modulated signal with the reference signal.

L{t) -  2 ■ cos(2^fRt) ■ AM(t) (8)

By passing the L(t) through a low pass filter the high frequency component is eliminated and the 
remaining s ignal is the sensor signal with a DC component which is then easily removed in LabVIEW.

The demodulation of the FM signal becomes feasible when the waveform is input through a 
differentiator folbwed by an envebpe detector [7]. The derivative o fFM(t) can be written as:



dFM(t) . / x— ——  = D(0 = - VR • sin(aj  ̂• / + mFM • sinf<otO)-
' TmIj)

f \
coR + I n ■ Kf  • Vx -sin (coj) 

MO (9)

The differentiation of the FM signal creates a composite waveform that comprises of the FM(t) and the 
vs(t) signals [12]. D(t) has become an amplitude modulated signal whose reference and modulating 
waveforms are the FM(t) and the vs(t).

To demodulate this signal and extract the sensor displacement signal and the Hilbert transform 
principle is used as an envelope detector for the D(t). Mathematically a signal s(t) has a Hilbert 
transform denoted by s(t) which is obtained by shifting the frequency components of s(t) by nil (90°)
[9], If D(t) is the Hilbert transform of D(t) then:

Hs (t) H D(t) + jD(t ) |= VD2(t) + D 2(t)

coR + ln  • Kf  ■ Vs -sin (cost)
V ,( 0

(10)

Eq. 10 shows that the information signal vs{ t)  has been recovered. The superimposed DC component on 
the information signal can easily be removed in software.

In the case of phase modulated waveforms the demodulation takes place by integrating the PM signal 
(Eq. 5) [14]:

cô  4“ K. p '  ̂' ( o sin (cô  * / j
MPM

■ sin(<yc +mPM 'c°m cos(6;m ’1 )) CD

where mPM is the phase modulation index. This creates a composite waveform that carries the 
information signal as phase and amplitude changes. Inputting this signal in an envelope detector such 
as the Hilbert transform, vs(t) is found.

3. Results

A. Performance

The actuator was supplied with low frequency (3 Hz) sine waves, with variable peak to peak 
amplitudes from 1 V to 6 V The resulting output peak to peak displacement ranged from 0.35 mm to 2 
mm. A Laser Doppler Vibro meter (LDV) was used to measure the displacement o f the actuator [15]. In 
Fig. 5 the frequency modulated signal (FM) was compared to the output signal from the LDV and 
showed an average deviation of 0.9 % with a maximum deviation of 2 %.
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Fig. 5. A comparison of: a) sensor signal (FM)and b)the LDV output at 0.35 mm peak to peak plotted
together with their percentage difference.

The output signal is determined by the degree o f bending of the bi-layer which can be converted into a 
displacement read ing (F ig. 6).

The average peak to peak signal produced at the displacement range of the actuator, for all three 
modulatbn principles, was in the range o f 0.8 mV to 4.6 mV. From the performance of the three 
systems it was found that it has an average sensitivity of 2.2 mV/mm. For the AM, PM and FM the 
non-repeatability of the results were 4.6 %, 2.7 % and 2.4 % respectively. The mechanical hysteresis,
i.e. the difference between the increase and decrease of the amp litude of the actuators tip and hence the 
increase and decrease o f the sensors signal is 3.6 %, 2.2 % and 1.8 % for the AM, PM and FM 
respectively. Standard statistical methods were performed for the data examination [16]. The results 
showed a square correlation coefficient value of r2, = 0.99 and an almost linear behavior. The 
mechanical hysteresis, i.e. the difference between the increase and decrease of the amplitude of the 
actuators displacement and hence the increase and decrease of the sensois signal is 1.85 % (Fig. 6).

00
20no

Fig. 6. The output voltage characteristics against the displacement of the bi-layer during die increase 
and decrease o f the actuators displacement (FM System).

Comparing the output signal (AM) with the LDV (Fig. 7) it can be seen that the amplitude modulated 
signal shows an average o f 1.7 % deviatbn with a 3.9 % maximum deviatbn.
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Fig. 7. A comparison of: a) sensor signal (AM) and b) the LDV output at 0.35 mm peak to peak plotted
together with their percentage difference.

From the above it can be noticed that the AM sgnal not only shows twice the amount of deviation, at 
this displacement range, but also compared to the FM signal it depicts a deteriorated signal quality. 
This difference is expected to increase at displacements lower than 0.35 mm.
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Fig. 8. A comparison of: a) sensor signal (PM) and b) the LDV output at 0.35mm peak to peak plotted
together with their percentage difference.

From Fig. 8 the phase modulated signal (PM) shows an average 1% deviation with a 2.2 % maximum 
deviation compared to the expected signal from the LDV.

Comparing the AM, PM, FM principles against the LDV results and also looking at the relationship 
between the signal output versus displacement and the mechanical hysteresis for each modulation 
method, a useful conclusion can be drawn. The FM principle outperforms in quality the other two 
modulation principles. Thus, the preferred method for conveying the bi-layer displacement information 
is by the use of the FM principle. Another aspect of the FM and PM techniques is that if the sensor is 
placed in the presence of a DC field the Af (or A<& for PM) change increases (until the magnetic 
material reaches saturation) as the sensor approaches the source. Thus, presence of a small permanent 
magnet has an amplifying effect to signal and it can increase signals that arise from small 
displacements. In the case of the AM technique the presence of a DC field will augment the present 
noise levels which in turn cover the information signal.



B. Thermal Stability

As part of examining the performance of the FM measurement system, the thermal stability was tested 
over the temperature range of up to 180 °C by placing the bi-layer sensor and the actuator set-up inside 
an environmental chamber. The sensor was placed inside an environmental chamber and subjected to a 
temperature increase up to 180 °C.
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Fig. 9. The sensor signal at 25 °C and at 180 °C plotted together with the absolute value of their
percentage difference.

The sensor signal at 180 °C shows average absolute values of 1.7 % deviation, and a 2.3 % maximum 
deviation, compared to the signal taken at 25 °C (Fg. 9). These values are within the repeatability 
percentage of the FM system. In Fig. 10 the inductance value reached 163 % change in inductance, AL, 
at 180 °C rising sharply and approximately linear.
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Fig. 10. The rise of inductance due to temperature increase has minute effect to the peak to peak sensor 
signal taken at ~1.6 mm peak to peak displacement
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Fig. 11. The frequency dependence on temperature remains relatively uninfluenced from the rise of 
inductance due to temperature increase (displacement was set at -1.6 mm peak to peak).

The notable different thermal expansion coefficients of the two materials of the bi-layer strip (a, = 
5.9-10-6 K'1 for the amorphous magnetic film and a2 = 17-10-6 K.'1 for the CuBe layer) explains the 
high AL increase. In contrast the increase of temperature does not influences the peak to peak sensor
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signal. As inductance increases with temperature the reference frequency, f li} is also increasing but the 
percentage change AL remains approximately constant, thus Af follows proportional  ̂at 7.2 % Fig. 11. 
The sensor signal is relatively uninfluenced by the increase of temperature as the frequency deviation 
showed to be not very susceptible to the increase of the inductance value under these system settings. 
These findings allow the design and construction of temperature independent sensor families (in the 
range up to 180 °C) as required by industry.

4. Conclusions

The LabVIEW® based system was developed capable of detecting peak to peak displacements using 
the frequency modulation scheme. It has been shown that the LabVIEW® based measurement system, 
together with the bi-layer sensors, provides an accurate and low-cost method for determining 
displacement It was also seen that although the temperature rise did cause inductance change, and 
hence frequency increase, the percentage change of Af remained approximately constant. The sensor 
signal remained relatively unaffected due to the nature of the frequency modulation method. Thus, the 
bi-layer thin film sensor, using materials of different thermal expansion coefficients, can be used and 
have a good thermal stability over a range of temperatures up to 180 °C. It is considered that this 
temperature independent sensor system has the prospect of being used for applications such as airflow 
measurements in engine exhaust pipe where the operating temperatures are high and variable especially 
for application in car engines for measuring exhaust fume flow.
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Abstract
A novel method has been proposed for accurately measuring physiological parameters associated 
with body movements, such as cardiac and respiratory activities, using bi-layer thin-film sensors. 
A bi-layer curvature sensor system was used the first time not only to monitor but also to map the 
five characteristic waves of the normal heartbeat rate (P, Q, R, S and T wave), hence providing 
additional medical information about the cardiac activity of the patient. Also during monitoring 
of lung ventilation, various parameters such as normal respiration, deep inhalation/exhalation and 
apnoea were easily distinguishable in the output signal. The bi-layer thin films used are the 
building blocks for a new generation of multi-functional sensor families. They consist of a 
magnetic layer and a non magnetic counter layer that is used to enhance the changes in the 
relative permeability of the material caused by tensile or compressive stresses during bending. 
The measuring system utilizes a personal computer based system using the LabVIEW® graphical 
programming package. This allows a high degree of software modularity and provides the 
features necessary for acquiring the sensor signal, analysing it and displaying the results. The 
results demonstrate that this system provides a robust, cost effective solution to monitoring 
cardio-respiratory activity with minimum inconvenience to the patient, which is necessary for 
prolonged, undisturbed monitoring.

Introduction
The non-disturbing monitoring of the cardio-respiratory activity of the human body is an 
important parameter during biometrical tests, such as polysomnography. This is a comprehensive 
recording of the physiological changes that occur during sleep. This diagnostic test monitors 
many medical techniques including electroencephalography (EEG), rapid eye movement (REM), 
electromyography (EMG), electrocardiogram (ECG), and respiratory activity while the patient is 
sleeping. During the sleep study the breathing; oxygen levels, heart tracing, and the different 
levels of sleep are recorded. A qualified sleep technician performs the test and monitors the 
patient’s sleep through the night. The sleep technician will place electrodes on the head and face 
to monitor levels of sleep, apply ECG (electrocardiogram) patches to the chest to monitor the 
heartbeat, and place a flow sensor under the nose to monitor airflow. In addition, soft straps are 
placed around the chest and abdomen to monitor the rise and fall of the chest to determine 
whether the patient is breathing appropriately during sleep. These sensors, electrodes and straps 
can potentially disturb the patients sleep.
This paper describes the application of a novel system using bilayer thin film sensors, originally 
used for the detection of bending1. The system can also be used to measure, with minimum 
disturbance, various physiological activities that involve the dynamic deformations of the 
curvature of the skin.



Experimental
Measurement System

Bi-layer sensors are constructed from a ferromagnetic magnetostrictive layer that can be 
crystalline, nano crystalline or amorphous magnetic materials on a non-magnetic layer. Bi-layer 
sensors are cost effective and easy to operate and they have been developed to detect various 
parameters such as displacement, temperature, curvature, stress etc2. In this paper, a bi-layer with 
amorphous magnetostrictive layer is used because of its lack of magneto-crystalline anisotropy 
and high mechanical strength3, 4. Soft magnetic amorphous ribbons and thin films may exhibit 
high magnetostriction and therefore strong magneto-elastic effects. When a bi-layer thin film 
sensor is physically bent, stress develops along its length that is dependant by the geometry of the 
cantilever and its curvature, c. The changes in stress result in changes in the relative permeability 
of the material. These changes are detected by a pick-up coil, wound around one end of the bi­
layer sensor, which produces the sensor signal, s, as a result of changes in the inductance, AL, 
and hence its reactance X l5, 6. Thus, the change in AL corresponds to the change of skin 
curvature, Ac, where the sensor is applied. The bending sensor used is a bi-layer strip, which 
consists of a magnetostrictive layer on a non-magnetic layer (Copper Beryllium - CuBe). The 
magnetostrictive layer is an amorphous magnetic film, 2.9pm thick, was deposited from a 
Feg1B13.5Si3.5C2 target using the RF magnetron sputtering technique onto a 25pm CuBe layer. 
The measuring system consists of a personal computer (PC) based acquisition set-up and a circuit 
that modulates the sensor displacement signal with a reference signal, using the frequency 
modulation (FM) principle (Figure l ) 1.

Display
Circuit

Data Acquisition 
Card

Fig. 1. Bi-layer sensor system for registering cardio-respiratory activity.

Signal detection was achieved through the use of LabVIEW® software and a NI-6120 data 
acquisition card with a maximum sampling rate of 800kS/s per channel and 16-bit resolution7.

Sensor Application
Various internal physiological activities are mirrored on the human body in the form of active 
variations of the skin curvature, c. Depending on the body region these signals consist of three 
main components, cardiac activity, sc, lung ventilation, sR and various body movements, sM8. For 
the detection of the heartbeat rate, fc, the sensor was attached on the neck over the carotid artery 
with the aid of double sided adhesive tape (Fig. 2). Cardiac activity transmits blood pressure 
waves through the arterial system which result in the cyclic alteration of the vessel’s radius, r. 
This deformation is transmitted to the skin, through the surrounding tissue, resulting in change of 
curvature, Ac, proportional to Ar9. The respiratory activity, fR, was measured by fixing the sensor 
on the chest using double sided adhesive tape. As in the case of cardiac activity measurements, 
the deformation of the chest due to changes in respiration volume produces a sensor signal, sR, 
which characterizes the lung ventilation.



Fig. 2. Application of the bi-layer thin film sensor over the carotid artery

Results
An Electrocardiogram (ECG) is an illustration produced by an Electrocardiograph, which 
measures the electrical potential between various points of the body in order to show the 
electrical activity in the heart. Up to 12 contacts (electrodes) are usually affixed to the arms, legs 
and chest on clean, shaven skin areas. The typical ECG wave starts with the spread of the heart 
stimulation through the atria (P wave), triggering the ventricular activation (Q, R and S wave), 
and then ending up to the ventricular recovery (T wave), which returns the stimulated ventricular 
muscle to its resting state.

k r S

ECG FM System
Fig. 3. Comparison between the basic ECG output and the acquired heartbeat from the FM

system.

Figure 3 shows the hemo-dynamic activity at the carotid artery caused by the pumping of the 
heart. A bilayer curvature sensor system was used for the first time not only to monitor but also 
to map the five characteristic waves of the normal heartbeat rate (P, Q, R, S and T wave), hence 
providing additional medical information about the cardiac activity of the patient. Compared to 
the ECG, the bi-layer sensor system only needs one contact to the body (the bi-layer sensor) and 
there is no need for the preparation of the skin area.
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Fig. 4. A detected pulse train segment, from the carotid artery, using the bilayer thin film sensor
system.

Fig. 4 demonstrates a characteristic pulse train, fc, acquired from the FM system that corresponds 
to 81 beats per minute. The normal resting heart rate for adults is between 60-100 beats per 
minute. The signal sc is usually influenced from other signals, s r  and sm, that arise from various 
body movements including in this case from the change of the neck circumference during slow 
intake of air in the lungs. When the patient is holding his breath and immobile, only the signal 
from the cardiac activity, sc, is detected.
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Fig. 5. Respiratory activities using the bilayer thin film sensor system.

When the bilayer sensor is placed on the chest, various respiratory activities can be monitored. 
Fig. 5 displays the signal, sR, over 55 seconds, during which normal respiration, deep 
inhalation/exhalation and apnoea were recorded with clear differentiation between respiratory 
activities. Also from the performance of the system it was found that the repeatability of the 
results is 2.4%.

Conclusion
A new system incorporating bi-layer thin film curvature sensors has been developed. The 

system is capable of detecting cardio-respiratory activities using the frequency modulation 
principle. It has been shown that the LabVIEW® based measurement system, together with the 
bi-layer thin film sensors, provides an accurate, robust and low-cost method for monitoring 
various physiological parameters that arise from the change of skin curvature. This sensor system 
also provides minimum inconvenience to the patient, which is essential for prolonged, 
undisturbed monitoring.
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Abstract

Bi-layer sensors been used to detect a range of parameters such as displacement, temperature, curvature and stress. This is possible by 
accurately measuring low voltage signals (~10'4 V) associated with inductance changes of bi-layer thin-film sensors under bending stress. Bi­
layer sensors consist of a magnetic layer and a non magnetic counter layer that is used to enhance the changes in the relative permeability of the 
material, caused by tensile or compressive stresses. The sensor sensitivity is governed by the bending stresses on the bi-layer and the coil 
jarameters. These parameters are the coil’s physical dimensions, number of turns and of course the cross sectional area and properties of the 
magnetic material (ie magnetostriction, relative permeability). Taking in consideration the modulating circuit component values and the desired 
frequency range, the combination of coil parameters and excitation current were optimized to provide the largest change of inductance and 
lienee the largest change of relative permeability.
32007 Elsevier B.V. All rights reserved
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1. Introduction

When a bi-layer sensor is physically bent at its free end, 
stresses, a, develop along its length. This results in changes in 
the relative permeability, f r, o f the material. These changes are 
detected by a pick-up coil, wound around one end of the bi- 
layer sensor, which produces the sensor signal as a result of 
:hanges in the inductance, AL, and hence its reactance XL. 
Ihus, the change in AL corresponds to the displacement o f the 
free end of the bi-layer sensor. As part o f an electronic circuit 
ie bi-layer sensor, acts as an inductor, L. Any changes AL 
may influence the alternating current (AC) that is used to 
excite the magnetic material, hence the properties o f the 
ratput voltage signal [1].

!. Experimental
i Measurement System
lie measuring system consists o f a personal computer (PC) 
frased acquisition set up and a circuit that modulates the sensor 
Isplacement signal with a reference signal, using the

frequency modulation principle. Signal detection and 
processing was achieved through the use of LabVIEW® 
software and a NI-6120 data acquisition card with a maximum 
sampling rate of 800 kS/s per channel and 16-bit resolution [2].

B. Frequency Modulation
The FM is achieved using a Colpitts oscillator. This circuit 
utilizes an LC tank with an inductor connected in parallel to 
two series capacitors [3]. The output is a sine wave at a 
frequency, which is defined by the values of L and C:

/ = ■
1

2k ■ L- Cj • C2
C\ + Ct

(2)

The FM signal is demodulated in software via a differentiator 
followed by an envelope detector based on the Hilbert
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transform [3]. The bilayer sensor used in the measurement 
system was designed according to the principles o f the 
frequency modulation method (FM). When placed in the 
modulation circuit (Colpitts oscillator), the bilayer sensor acts 
as its inductive component. Any change AL in the inductance 
i of the pickup coil (sensor) will shift the operating/oscillating 
frequency from f  to f  + Af. Hence, frequency modulation is 
achieved. The capacitors where chosen to be Cj = C2 = 1 pF, 
in order to keep the circuit frequency between 1 kHz to 
10 kHz. For signal quality purposes (to avoid signal aliasing) 
the sampling rate must be 20 samples per Hertz which means 
that at 10 kHz there will be a need to acquire 200,000 samples 
per second (200 kS/s). Even though the data acquisition card 
can accept up to 800 kS/s, the processing time needed is 
increased rapidly. Taking in consideration the capacitor value 
and the desired frequency range, the combination of coil 
parameters and excitation current were optimised, to provide 
the largest change of inductance and hence the largest change 
of relative permeability.

3. Results
k. Coil Parameter Optimisation 

Using as a reference magnetic material a 28 pm thick 
Metglas® 2605SC [4] (f = 40 mm, w = 5 mm) agglutinated on 
a 75 pm Aluminium substrate, the effect o f coil parameters on 
inductance, were examined. By keeping the coil cross 
sectional area constant and varying the length (5 mm -  20 
ram) at steps of 5 mm and the number o f turns (100 -  1000) at 
steps of 100, 40 coils were manufactured using a 60 pm 
diameter enamel copper wire.

Five consecutive readings were taken for each set o f data and 
die average was plotted in Fig. 1 to Fig. 5. The non- 
lepeatability error in the sensor optimisation data set was 
found to be ~1 %. The coils were placed in the Colpitts 
oscillator circuit and the resulting operating frequency and 
current through the coil were measured. An approximation of 
die relative permeability value was calculated from the 
measured frequency and current and through the use o f Eq. 2 
indEq. 3:

H = N — (4)

. N 2A
l=W r — jT (3)

It is these values, illustrated in Fig. 1 - Fig. 4, that give an 
indication of the optimum coil parameters for the magnetic 
material in question. By looking at Fig. 1 it can be seen that 
iigh values of relative permeability are recoded on longer 
»ils at low numbers of turns, following Eq. 3. Fig. 1 also 
confirms that low turn coils (N  = 200 - 400) are more suitable 
for sensors, since they display high values o f current 
(compared with coils of high AO, but it also shows that /  
increases as f  decreases as is expected from Eq. 4.

It is apparent that low number of turns is a desired parameter 
for the design of the sensor coil (using the 2605SC - 28 pm 
sample) as current reaches a peak using coils of 200 - 400 
turns, regardless of coil length. Current and relative 
permeability need to be high as to ensure high levels of sensor 
sensitivity as expected in Eq. 3 and Eq. 5:

N 2 A dl
v = -MoMr • — :------   (5)

dt

The data points on Fig. 1 represent the number of turns which 
increases from right (N =  100) to left (N=  1000).
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0.10

R elative permeability (x1000)

Fig. 1: The effect of variation of coil length and number of 
turns on relative permeability and excitation current (Sample 

2605SC - 28 pm).

The next parameter to be decided was the length of the coil. 
Plotting /  against fj.r (Fig. 1) shows that, at 300 turns, longer 
coils may have lower current values (9 %) than the shorter but 
they present much higher amounts of )tr (72 %). If the relative 
permeability is high then the Aftr will be high (high AL) and 
hence the sensor sensitivity will increase. Thus, a coil of N = 
300 and -C = 20 mm would have the optimum dimensions 
needed for a sensor.

0 .16 -r

0.15 - 

% 0.14 -
100 Turns

1000 Turns 15 mm5 mm 10 mm 20 mm
0.10

F requency (kHz)

Fig. 2: The effect o f variation of coil length and number of 
turns on excitation current and operating frequency (Sample 

2605SC - 28 pm).

From Fig. 2 it can be seen that the operating frequency does 
change (decrease) with the increase of N, as expected from Eq. 
1 and Eq. 2. It is also evident that using a 300 -  400 turn coil 
the current peaks at 5 kHz. The data points on Fig. 2 represent 
the number o f turns which increases from right (N = 100) to
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left (N = 1000). At this operating frequency the sampling rate 
will be 100 kS/s which will approximately take 1 - 2  seconds 
for the software to display the information signal ensuring 
;ontinuous real-time acquisition and process o f the data. The 
lata shown on Fig. 1 and Fig. 2 show the optimum parameter 
selection only for the 2605SC -  28 pm sample.

B, Magnetic Material Selection and Thickness 
The measurement system can be used not only for the 

ietection of stress/displacement but also for the evaluation of 
bilayer magnetic material for sensor applications. Hence, a 
comparison was made between two materials o f different 
saturation magnetostriction at a range o f thicknesses (th) to 
conclude to an optimum coil dimension and magnetic material 
for the sensor. The materials used for this comparison were 
Metglas® 2605SC (2, * 30-10'6) and Metglas® 2705M (2, * 0) 
(Table 1) [4, 5]. The magnetic materials (f  = 40 mm, w = 5 
mm) were either agglutinated (Adh) or deposited (RF) on the 
substrate using the RF sputtering method. The substrates used 
were Aluminium (Al), Copper-Beryllium (Cube) and 
Aluminium-Magnesium (AlMg).

Metglas® Material 2605S C  (A, * 30-1 O'6) 2 7 0 5 M  (A, * 0 )

Metglas® Thickness 
(Urn)

28 12 2 .9 24 5 2 .9

Substrate Al Al CuBe Al CuBe AlMg
Substrate Thickness 

(Mm)
15 75 25 75 25 30

Bilayer Fabrication Adh Adh RF A dh RF RF
Table 1: Bilayer strip fabrication method and layer thickness.

The 28 pm thick 2605SC was reduced in thickness down to 
12 |im by means of mechanical polishing. As expected from 
Eq. 2 the reduction in cross sectional area o f the sensor due to 
Ie decrease of magnetic material thickness increases the 
values of relative permeability (Fig. 3). The exponential 
decrease of relative permeability with the increase o f number 
of turns is mainly due to the N2 term in Eq. 2. The highest 
values of relative permeability are recorded between 
IV= 100 — 300. An indication o f the effect o f thickness on 
relative permeability can be seen by comparing the 2605SC -  
28 nm and the 2605SC - 2.9 pm. For this material the -1 0  
times reduction in thickness showed a -3  times (averaged 
lorn yV = 100 -  1000) increase in //r. This difference is non­
linear and depends on the materials properties, operating 
frequency and the current induced in the coil. A comparison 
between strips that have similar dimensions and are of 
different magnetic material (2705M -  2.9 pm and 2605SC -
2.9 pm) can also be made. On average the 2705M displayed a 
*,2.4 % higher than 2605 SC due to its greater as cast DC  
permeability [4, 5]. It can be seen that the drop in thickness 
iffects in the opposite manner the excitation current. The 
current increases with thickness and peaks between N  = 300 -  
400 among the three thickest materials (2605SC -  28 pm, 
2705M -  24 pm and 2605SC -  12 pm) and between N =  100 -  
300 among the three thinnest materials (2705M -  5 pm, 
2605SC -  2.9 pm and 2705M -  2.9 pm). Comparing the 
2605SC materials, the 43 % reduction in thickness between 
die 28 pm and the 12 pm had a 23 % reduction in /  whereas 
k  90 % decrease in th among the 28 pm and the 2.9 pm

produced about 50 % less current. From the examination of 
the 2507M materials the reduction of thickness by 79 % (from 
24 pm and the 5 pm) leads to a 43 % current fall and the 
decrease of th by 88 % (from 24 pm and the 2.9 pm) shows a 
44 % drop in I. The effect of thickness reduction to current 
between the 2605SC and the 2705M can be performed by 
comparing both the 2.9 pm samples. The difference between 
these is below the 1 % repeatability of the data, hence the 
2605SC -  28 pm and 2705M -  24 pm were examined instead. 
Even though there is a 4 pm difference between the two 
materials, the thickness reduction from 28 pm and 24 pm to
2.9 pm is of similar level 89 ± 1 %. It can be seen that even 
though the 2705M displays less current loss, the 2605SC does 
display higher values of X which gives an advantage for 
selection as the magnetic material for the bilayer sensors. The 
highest amounts of I and occur as expected with low turn 
coils. By plotting the excitation current against the relative 
permeability, the effects of thickness and number of turns are 
made evident.

The data points on Fig. 3 represent the number of turns which 
increases from right (N = 100) to left (N  = 1000). The first 
thing that is made apparent from the I versus )tr relationship is 
that thinner materials (2705M -  5 pm, 2605SC -  2.9 pm and 
2705M -  2.9 pm) display large amounts of relative 
permeability and smaller quantity of current compared to the 
thicker samples (2605SC -  28 pm, 2705M -  24 pm and 
2705M - 12 pm).

1000 Turns

0 14 

?  0.12

100 Turns
§  0 . 0 8 -  
i= 0.06 -
°  0 .04 - -  

0.02  -  

0.00  - -

2 6 0 5 S C -  12 |jm  
2705M - 5 Mm

2605SC  - 2.9 Mm 
2705M - 2.9 Mm

2605S C  - 28 Mm 
2705M - 24 Mm

120100
R elative permeability (x1000)

Fig. 3: The effect of variation of magnetic material thickness 
and number of turns on I and pr for samples with different Xs.

The behaviour of the system shows that the current is 
reversely proportional to the relative permeability (Eq. 5). 
Therefore a “balance” between current and relative 
permeability will define the optimum coil dimensions and 
material for the bilayer sensor system. From the results it is 
estimated that low turn coils (N = 100 - 400) are more suitable 
for sensors, since they display high values of /  and 
(compared with coils o f high N).

By examining Fig. 4 it can be seen that the low turn coils (N = 
100 -  300) do produce high f r but they also generate operating 
frequencies above 10 kHz depending on the thickness of the 
sample. An operating frequency above 10 kHz reduces 
significantly the data processing of the software and 
continuous real-time acquisition and process of the data is no 
longer possible. This upper frequency limit of the system 
shows that a sensor using magnetic material under -5  pm in
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hickness can have as a minimum 300 turns; less turns will 
lave/ >  10 kHz.

[he examination of Fig. 4 shows that the samples with less 
hickness, and hence less cross sectional area o f magnetic 
naterial in the coil, produce higher operating frequencies as 
ts expected from Eq. 1 and Eq. 2. Taking in consideration the 
imit of the system that prevents the use o f coils that generate 
>10 kHz it can be seen that the maximum current occurs at 

-300 turns for all samples. The operating frequency with 
V= 300 for the 2605SC -  28 pm, 2705M -  24 pm and 2705M 

12 pm samples will be around 5.5 kHz whereas for the 
1705M -  5 pm, 2605SC -  2.9 pm and 2705M -  2.9 pm it will 
je approximately at the 10 kHz limit.

0 16 7

100 Turns

0  00  -

1000 Turns
0 0 .04 2605SC - 28 pm 

2705M - 24 pm
2605SC - 12 Mm 
2705M - 5 Mm__

2605SC - 2.9 Mm 
2705M - 2.9 Mm

0.00

Frequency (kHz)

Fig. 4: The effect of variation o f magnetic material thickness 
and number of turns on current and frequency for samples 

with different Xs.

in the investigation of the data illustrated from Fig. 1 to Fig. 4 
he coil’s length, thickness, number o f turns and magnetic 
material were varied and the performance behaviour (current, 
relative permeability and frequency) was examined in order to 
jptimise the design of bilayer sensor. From the parameters 
used in the measurement system and the materials and sample 
iickness tested (Table 2), the optimum coil number o f turns 
and length were N = 300 and € = 20 mm. To further verify that 
these are the optimum coil parameters, four sensor 
:onfigurations were selected to be tested using the 
measurement system and a controlled displacement (Fig. 5).

(0 (it) | (iii) (iv) (v)
Metglas® Material 2605SC 2705M
Metglas® Thickness 

(pm)
28 2.9 28 28 2.9

Turns 300 300 300 1000 300
Length (mm) 20 20 5 20 20

Table 2: The four coils used in the measurement system to 
verify the selected optimum coil parameters.

Is expected from Eq. 3, sensor (i) displays increased voltage 
lutput (average increase o f -1 0  times) than (ii) since the 
iickness and hence the cross sectional area o f the magnetic 
material in the coil is -10  times higher. The thicker material 
may have higher sensitivity but a thin strip has lower stiffness 
ffld hence will bend to smaller displacements (low forces). 
Phis is useful in applications such as detecting the hemo- 
iynamic changes of the heart beat where the skin curvature 
:hanges are dependant on the blood pressure in the vessel. If a

material of high stiffness is used, the bending force exerted on 
the bilayer from the skin curvature changes will be too small 
and unable to bend the strip.

50 j  
g 40 - r

 iii

0.5
Displacem ent (mm)

Fig. 4: The peak to peak output voltage characteristics against
peak to peak displacement of bilayer sensors, using the 

configurations seen in Table 2.

Comparing sensor (z) and (iii) the effect of coil length 
reduction does produce lower output voltage (average -26 %) 
which is explained by Eq. 4 and the results from Fig. 1. 
Increasing the number of turns on a coil will decrease the 
output voltage (average -47  %) as seen from sensor (i) and 
(z'v), which verifies the results of Fig. 3. Also from Fig. 5 it 
was seen that sensor (ii) with the 2605SC (2 « 30-10'6) 
outperformed by -65 % the (v) with the 2705M (2 * 0). Thus, 
the effect o f materials with high saturation magnetostriction 
was noted, and the 2605SC was chosen for use in bilayer 
sensors. The selected optimum coil parameters seem to give 
the highest output voltage compared with other configurations.

4. Conclusions
Industry today needs sensors that are cost effective and 

easy to operate and are able to detect multiple parameters such 
as displacement, temperature, curvature and stress; this is the 
reason why bi-layer sensors were developed. By optimising 
the bi-layer sensor parameters greater sensitivity can be 
achieved. It is considered that this system will lend itself to a 
number of automotive and biomedical applications.
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Appendix E: Datasheets

Metglas 2605SC (Iron Based)

Metglas 2705M (Cobalt Based)

CuBe - Copper Beryllium (Cu9gBe2)

- AlMg -  Aluminium Magnesium (Al95Mg5)

- Cardiff University Thin Film Magnetron Sputtering System 

OPA37 Ultra-Low Noise Precision Operational Amplifier

- Kapton Polyimide Film

- LDV V450/I Shaker System

G. S. Katranas, “D esign and Developm ent o f Bilayer Sensor Systems for Biomedical and Automotive
Applications”, Ph.D. Thesis, C ardiff University.
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Physical Properties

Density ( g / c c ) .................................................................. 7 . 3 2
Vicker's H ard n ess  ( 5 0 g  l o a d ) ................................. 8 8 0
Tensil S tren gth  ( G P a ) .................................................... 1 - 2
Elastic Modulus ( G P a ) ........................................ 1 0 0 - 1 1 0
Lamination Factor ( % ) ................................................ > 7 5
Thermal Expansion  ( p p m / ° C ) ................................. 5 . 9
Crystallization T e m p e r a t u r e  ( ° C ) .........................4 8 0
Continuous S e r v ic e  T e m p .  ( ° C ) ............................ 1 2 5

M agnetic Properties

S a tu ra t io n  In du ction  ( T e s l a ) .............................................. 1 .6 1
M axim um  D.C. P erm eab i l i ty  (p ):
A n n e a l e d .................................................................................3 0 0 , 0 0 0
As C a s t .................................................................................... > 4 0 , 0 0 0
S a tu ra t io n  M a gn etostr ic t ion  ( p p m ) ...................................... 3 0
Electrical R esist iv ity  ( p - - c m )  \  . . . 1 3 5
Curie T e m p e r a tu r e  ( ° C ) ..........................................................3 7 0
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>per/Beryllium - Goodfellow, online source, sources, small quant... http://www.goodfellow.eom/csp/active/statie/E/Copper-Beryllium.

G a o d F e M m u

Copper/Beryllium - Material Information 
C u 9 8 /B e 2

Buy C op p er/B erylliu m  o n lin e

Buy sm all q u a n titie s  o n lin e  o f  C o p p er /B erv lliu m  for research  a n d /o r  d ev e lo p m en t

Click to se e  Standard Catalogue items from one of the forms

Foil Insulated Wire Rod Wire 
t 1; P3K

General D escription:

Common Brand n a m e s  :A m p co lo y  8 4 ®  B e r y lc o ®  B rush 1 9 0 ®  M allory®

B est m ech an ica l p r o p e r tie s  o f  a n y  C o p p er  a llo y  w h ich  im p ro v e  a t su b -z e r o  te m p e r a tu r e s  a s  low  a s  -2 0 0 C .  
H ardened by h e a t  tr e a tm e n t  th is  a llo y  m a c h in e s  b e s t  in th e  qu arter  hard cold  w ork co n d itio n . U ses  include  
sp rings o f all kinds w h er e  h igh  s tr e n g th  an d  co rro sio n  r e s is ta n c e  a re  im p o rta n t, r e s is ta n c e  w eld ing  e le c tr o d e s ,  
d ies and high s tr en g th , co rro sio n  r e s is ta n t  tu b in g .

Electrical Properties

Temperature coefficient ( K"1 ) 0 .0010-0 .0018

Electrical resistivity ( pOhmcm ) 5 .4 -1 1 .5

Mechanical Properties
Elongation at break ( % ) <50

Hardness - Brinell 100-360

Modulus of elasticity ( GPa ) 120-160

Tensile strength ( MPa ) 500-1300

Physical Properties

D ensity ( g cm '3 )

Melting point ( C ) 860-1000

Thermal Properties

Coefficient of thermal exp an sion  @ 2 5-300C  ( x10"6 K'1 ) 

Thermal conductivity @ 23C  ( W rrf1 K'1 )

Click to se e  Standard Catalogue items from one of the forms

20/02/2007 12:45
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luminium/Magnesium - Goodfellow, online source, sources, small... http://www.goodfellow.eom/csp/active/static/E/Aluminium-Magne.

G o o d F e H o u u
a agMBM m mBMW I  I

Aluminium/Magnesium - Material Information 
AI95/Mg 5

Buy A lum inium /M agnesium  o n lin e

Buy sm all q u a n tities  o n lin e  o f  A lu m in iu m /M agn esiu m  for resea rch  a n d /o r  d ev e lo p m en t  

Click to se e  Standard Catalogue items from one of the forms

Foil Tube

r u  wm

General D escription:

Electrical Properties

Temperature coefficient ( K-1 ) 

Electrical resistivity ( pOhmcm )

0 .0020  

5.6-6 .1

Mechanical Properties
Elongation at break ( % ) <20

Hardness - Brinell 60-120

Shear strength ( MPa ) 150-230

Tensile strength ( MPa ) 300-450

Physical Properties

Density ( g cm"'5 )

Thermal Properties

-3 * 2 .65

23 .0 -2 3 .5Coefficient of thermal exp an sion  @ 2 0-100C  ( x10" K" )

Thermal conductivity @ 23C  ( W m"1 K"1 ) 125-130
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Foil Tube
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Thin Film Magnetron Sputtering System

P u rp o se

The Thin Film deposition system comprises a 

TORUS® source, which is both RF- and DC- 

compatible, and can deposit many classes of 

materials: conductors, semiconductors, 

insulators, and refractory materials. It is also 

capable of reactive sputtering.

The main task for this system is to produce a varied range of advanced magnetic thin films, 

such as single and multi-layered amorphous and crystalline magnetic thin films, GMR (Giant 

Magneto-Resistance), AMR (Anisotropiclly Biased Magneto-Resistance) and GMI (Giant 

Magneto-Impedance) configurations for magnetic sensor applications.

Specification

Up to 10-9 Torr vacuum

RF and DC- flexible magnetron sputtering sources 

Substrate semi-automatic front loading

Rotatable substrate platen for 3” diameter substrate with motor and controller 

2” target conversion kit for a 3” source (useful to deposit both 2” and 3” targets) 

Substrate cooling (water and liquid nitrogen)

Film thickness monitor

Plasma cleaning/milling for substrates and RF/DC-biasing of substrate

U ser M anual: Contact Dr. Firuta Borza 

O perator: F. Borza, T. A. Ovari 

Location: Clean Room, N3.07
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Ultra-Low Noise, Precision 
OPERATIONAL AMPLIFIERS

FEATURES
•  LOW NOISE: 4.5nV/VHz m ax at 1kHz
•  LOW OFFSET: 100^iV max
•  LOW DRIFT: 0.4|oV/°C
•  HIGH OPEN-LOOP GAIN: 117dB min
•  HIGH COMMON-MODE REJECTION: 100dB min
•  HIGH POWER-SUPPLY REJECTION: 94dB min
•  FITS OP-07, OP-05, AD510, AND AD517 

SOCKETS

APPLICATIONS
•  PRECISION INSTRUMENTATION
•  DATA ACQUISITION
•  TEST EQUIPMENT
•  PROFESSIONAL AUDIO EQUIPMENT
•  TRANSDUCER AMPLIFIERS
•  RADIATION HARD EQUIPMENT

DESCRIPTION
The OPA27 and OPA37 are ultra-low noise, high-precision 
monolithic operational amplifiers.
Laser-trimmed thin-film resistors provide excellent long­
term voltage offset stability and allow superior voltage 
offset compared to common zener-zap techniques.
A unique bias current cancellation circuit allows bias and 
offset current specifications to be met over the full -55°C to 
+125°C temperature range.
The OPA27 is internally compensated for unity-gain stabil­
ity. The decompensated OPA37 requires a closed-loop gain 
> 5.
The Burr-Brown OPA27 and OPA37 are improved replace­
ments for the industry-standard OP-27 and OP-37.

-o+v.

Trim O-

Trim O-

Output

CD CD
-InO-

+ln O-

■O —V,

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of 
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

PRODUCTION DATA information is current a s  of publication date. 
Products conform to specifications per the term s of Texas Instruments 
standard warranty. Production processing d o es  not necessarily  include 
testing of all parameters.

_  Copyright ©  1984-2003, Texas Instruments Incorporated
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SPECIFICATIONS
At Vcc = ±15V and TA = +25°C, unless otherwise noted.

PARAMETER CONDITIONS

OPA27G
OPA37G

UNITSMIN TYP MAX

INPUT NOISE <«>
Voltage, f0  = 10Hz 3.8 8.0 nV/VHz

f0 = 30Hz 3.3 5.6 nV/VRz
f0 = 1 kHz 3.2 4.5 nV/VRz
fB = 0.1Hz to 10Hz 0.09 0.25 pVp-p

Current/1) fG = 10Hz 1.7 pA/VHz
f0 = 30Hz 1.0 p a / ' /H z

f0  = 1 kHz 0.4 0.6 pA/VHi
OFFSET VOLTAGE (2>
Input Offset Voltage ±25 ±100 pV
Average Drift*3' Ta min to Ta MAx ±0.4 ±1.8 <6' pV/°C
Long Term Stability*4' 0 .4 2.0 pV/mo

Supply Rejection ±VCC = 4 to 18V 94 120 dB
±VCC = 4  to 18V ±1 ±20 pVA/

BIAS CURRENT
Input Bias Current ±15 ±80 nA

OFFSET CURRENT
Input Offset Current 10 75 nA

IMPEDANCE
Common-Mode 2 || 2 .5 GQ || pF

VOLTAGE RANGE
Common-Mode Input Range ±11 ±12.3 V
Common-Mode Rejection VIN=±11V D C 100 122 dB

OPEN-LOOP VOLTAGE GAIN, DC Rl > 2kQ 117 124 dB
RL> 1k£2 124 dB

FREQUENCY RESPONSE
Gain-Bandwidth Product*5' O PA27 5<6' 8 MHz

OPA37 45  <6> 63 MHz
Slew Rate *5' VQ = ±10V,

Rl = 2kS2
O PA27, G = +1 1.7 *6> 1.9 V/ps
O PA37, G = +5 1 K6' 11.9 V/ps

Settling Time, 0.01% O PA 27, G = +1 25 ps
O PA 37, G = +5 25 ps

RATED OUTPUT
Voltage Output Rl > 2kQ ±12 ±13.8 V

Rl > 600S2 ±10 ±12.8 V
Output Resistance DC, O pen Loop 70 a
Short Circuit Current RU = 0£1 25 60*6> mA

POWER SUPPLY
Rated Voltage ±15 VDC
Voltage Range,
Derated Performance ±4 ±22 VDC
Current, Quiescent l0  = OmADC 3.3 5.7 mA

TEMPERATURE RANGE
Specification -4 0 +85 °C
Operating -4 0 +85 °C

NOTES: (1) Measured with industry-standard n o ise test circuit (Figures 1 and 2). D ue to errors introduced by this method, th ese  current noise specifications should 
be used for comparison purposes only. (2) Offset voltage specification are m easured with automatic test equipment after approximately 0.5 secon d s from power turn­
on. (3) Unnulled or nulled with 8k£2 to 20k£2 potentiom eter. (4) Long-term voltage offset vs time trend line d o es  not include warm-up drift. (5) Typical specification only 
on plastic package units. Slew  rate varies on all units d u e to differing test m ethods. Minimum specification applies to open-loop test. (6) This parameter guaranteed by 
design.

In st r u m e n t s  OPA27, OPA37
W W W .ti.com  SBOS135A
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SPECIFICATIONS
At Vc c = ±15V and -4 0°C  < TA < +25°C , u nless otherwise noted.

OPA27G
OPA37G

PARAMETER CONDITIONS MIN TYP MAX UNITS

INPUT VOLTAGE <')
Input Offset Voltage 
Average Drift*2) 
Supply Rejection

Tamin Io Tamax 
±Vc c = 4 .5 to 1 8 V  
±Vc c  = 4 .5 to  18V 90 <3>

±48
±0.4

122

±220*3)
±1.8(3)

pV
pV/°C

dB

BIAS CURRENT
Input Bias Current ±21 ±150<3) nA

OFFSET CURRENT
Input Offset Current 
E, F. G 20 135(3) nA

VOLTAGE RANGE
Common-Mode Input R ange 
Common-Mode Rejection V in = ±11VDC

±10.5(3)
960 )

±11.8
122

V
dB

OPEN-LOOP GAIN, DC
Open-Loop Voltage Gain Rl > 2kS2 113(3) 120 dB

RATED OUTPUT
Voltage Output 
Short Circuit Current

Rl = 2k£2 
VQ = OVDC

±11.0(3) ±13.4
25

V
mA

TEMPERATURE RANGE
Specification —40 +85 °C

NOTES: (1) Offset voltage specification are m easu red  with autom atic test equipment after approximately 0 .5 s  from power turn-on. (2) Unnulled or nulled with 8kft to 
20kfi potentiometer. (3) This parameter guaranteed by design .

OPA27, OPA37
SBOS135A
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CONNECTION DIAGRAMS

Top View

Offset Trim Offset Trim

+V,-In

+ln Output

NC

ABSOLUTE MAXIMUM RATINGS
Supply V oltage........................................................................................................ +22V
Internal Power Dissipation (1> ...................................................................... 500m W
Input Voltage ........................................................................................................... ±VCC
Output Short-Circuit Duration <2> ...............................................................Indefinite
Differential Input Voltage <3> ..............................................................................±0.7V
Differential Input Current <3> ........................................................................... ±25m A
Storage Temperature R a n g e  -5 5 °C  to +125°C
Operating Temperature R an ge....................................................-4 0 °C  to +85°C
Lead Temperature:

P (soldering, 1 0 s ) .......................................................................................... +300°C
U (soldering, 3 s ) .............................................................................................+260°C

NOTES: (1) Maximum package power dissipation versu s am bient tem pera­
ture. (2) To common with ±Vcc = 15V. (3) The inputs are protected by back- 
to-back diodes. Current limiting resistors are not u sed  in order to ach ieve low 
noise. If differential input voltage e x c eed s  ±0.7V , the input current should be  
limited to 25mA.

A  ELECTROSTATIC 
DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas 
Instruments recommends that all integrated circuits be handled 
with appropriate precautions. Failure to observe proper han­
dling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation 
to complete device failure. Precision integrated circuits may 
be more susceptible to damage because very small parametric 
changes could cause the device not to meet its published 
specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT PACKAGE
PACKAGE

DRAWING*1)

SPECIFIED
TEMPERATURE

RANGE
PACKAGE
MARKING

ORDERING
NUMBER

TRANSPORT 
MEDIA, QUANTITY

OPA27 DIP-8 P -4 0 °C  to + 85°C OPA27GP OPA27GP Rail, 50
OPA27 SO-8 D -4 0 °C  to +85 °C OPA27U OPA27GU Rail, 100

11 " 11 11 OPA27GU/2K5 Tape and Reel, 2500

OPA37 DIP-8 P -4 0 °C  to +85 °C OPA37GP OPA37GP Rail, 50
OPA37 SO-8 D —40°C  to + 85°C OPA37U OPA37GU Rail, 100

11 " " " OPA37GU/2K5 Tape and Reel, 2500

NOTE: (1) For the most current package and ordering information, s e e  the P ackage Option Addendum located at the end of this data sheet.

In st r u m e n t s  OPA27, OPA37
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General Specifications

< € 1 8 5

Kapton
polyimide film

General S pecifica tions
Introduction
DuPont High Performance Materials manufactures 
and sells a variety of high-quality plastic film prod­
ucts in conformance with ISO 9002 certification.

These specifications describe the values and tol­
erances for Kapton® film properties. Where neces­
sary for thorough understanding, test methods and 
procedures have been included.

Any aspects of the specifications that require 
further interpretation or clarification should be 
discussed with representatives o f DuPont High 
Performance Materials.

Types o f  Kapton® Polyim ide Film
DuPont makes several types of Kapton® film.
Types HN, FN, and VN are used most commonly.

Types H, F, and V are alternative, special versions 
of these standard types. The specifications in this 
bulletin apply to them as well. In addition to these 
three types of Kapton®, films are available with the 
following attributes:
• antistat
• thermally conductive
• polyimides for fine line circuitry
• cryogenic insulation
• corona resistant
• pigmented for color
• conformable
• other films tailored to meet customers’ needs

Data for these films are covered in separate product 
bulletins, which can be obtained from your DuPont 
Kapton® representative.

Type HN Film
Kapton® Type HN is a tough, aromatic polyimide 
film, exhibiting an excellent balance of physical, 
chemical, and electrical properties over a wide 
temperature range, particularly at unusually 
high temperatures. Chemically, its polyimide 
polymer makeup is the result of a polycondensation 
reaction between pyromellitic dianhydride and 
4,4'diaminodiphenyl ether. Kapton® HN is avail­
able in the following gauges: 30 (7.5 pm), 50 (12.7 
pm), 100 (25.4 pm), 200 (50.8 pm), 300 (76.2 pm), 
and 500 (127 pm). Other gauges, such as 75 (19.1 
pm) and 400 (102 pm), are available by special 
request.

Type FN Film
Kapton® Type FN film is a heat sealable grade that 
retains the unique balance of properties of Kapton® 
Type HN over a wide temperature range. This is 
achieved by combining Type HN with DuPont 
Teflon® FEP fluorocarbon resin in a composite 
structure. Table 1 lists the common types of FN 
film available. Other combinations are available. 
Consult your DuPont Kapton® marketing represen­
tative for further information.



Table 1
Kapton® FN Polyimide Film Types

Designation
Construction, mil (jxm)

FEP HN FEP
120FN616 0.10  (2.5) 1 .00 (25 .4) 0 .1 0  (2.5)

120FN616B 0.15 (3.8) 1 .00 (25.4) 0 .1 5  (3.8)

150FN019 1.00  (25 .4) 0 .5 0  (12.7)

200FN919 0.50 (12.7) 1 .00  (25 .4) 0 .5 0  (12.7)

200F N 011 1.00 (25.4) 1 .00  (25.4)

250FN029 2 .00  (50.8) 0 .5 0  (12.7)

300FN021 2 .0 0  (50.8) 1 .00 (25.4)

300FN929 0.50 (12.7) 2 .0 0  (50.8) 0 .5 0  (12.7)

400FN022 2 .0 0  (50 .8) 2 .0 0  (50.8)

500FN131 1.00 (25.4) 3 .0 0  (76.2) 1 .00  (25.4)

Type VN Film
Kapton® Type VN is the same tough polyimide film 
as Type HN Film, exhibiting an excellent balance 
of physical, chemical, and electrical properties over 
a wide temperature range, with superior dimen­
sional stability at elevated temperatures. This 
product is available in 50 (12.7 fxm), 75 (19.1 pm), 
100 (25.4 pm), 200 (50.8 pm), 300 (76.2 pm), and 
500 (127 pm) gauges.

Certification
Kapton® is certified to meet the requirements of the 
military specification ASTMD-5213-95 in addition 
to the items covered by this specifications 
bulletin. Written confirmation is availalbe with 
each delivery upon request.

Thermal Durability
The thermal durability of Kapton® film depends on 
the environmental conditions under which it is aged 
and tested. Its lifetime depends on the criterion of 
failure. Kapton® is routinely tested at the manufac­
turing site in the following manner:

Sheets of film 8.5" x 11" (216 mm x 279 mm) are 
freely suspended in an oven at a temperature of 
400°C ±2°C (752°F ±3.6°F), monitored with a 
thermocouple to ensure accuracy. Sheets are 
removed after 2 hr (1 hr for 30 [7.6 pm] and 
50 [12.7 pm] gauge film) and tested on an Instron 
Tensile Tester as described in Table 2. The elonga­
tion of the film at 23.5°C (74.3°F) should not be 
less than 10% after this aging at 400°C (752°F).

In addition, Kapton® conforms to ASTM 
D -5213-95, Standard Specification for Polymeric 
Resin Film for Electrical Insulation and Dielectric 
Applications.

Underwriters Laboratories, Inc. lists a thermal 
index of 200 to 220°C (392 to 428°F) (depending 
on gauge and type) for mechanical properties and 
220 to 240°C (428 to 464°F) (depending on gauge 
and type) for electrical properties, under their file 
number E39505 for Kapton® polyimide film.

Properties o f  Type FIM Film 
Heat Seal Strength
Film-to-Film Seals
The peel strength of heat seals between the coated 
and uncoated sides of one-side coated Kapton® or 
between the coated sides of both one- and two-side 
coated Kapton® is determined as follows.

Seals are made in a jaw sealer at 350°C (662°F),
20 psi (1.4 bar), with a 20-sec dwell time. After 
cooling, the seals are cut into 1" (25.4-mm) wide 
strips using a Thwing-Albert JDC sample cutter or 
its equivalent. The seal strength is measured with 
an Instron-type tensile tester. Seal strength is de­
fined as the peak instantaneous strength occurring 
in each seal. Five specimen values are averaged.

The minimum peel strength between the coated 
sides of one- or two-side coated Kapton® film will 
be 700 g/in (2.7 N/cm), except for 120FN616 and 
120FN616B, which will be 450 g/in (1.7 N/cm). 
The minimum peel strength between the coated and 
uncoated side of one-side coated Kapton® will be 
450 g/in (1.7 N/cm).

Film-to-Copper S ea ls
The ability of FEP film to adhere to copper is 
measured using the same heat seal peel strength 
technique as described in “Film-to-Film Seals.”

The peel strength is measured with the FEP side 
sealed to the untreated side of 1 mil (25.4 |^m),
3/4 oz GT copper foil; it will be a minimum of 
300 g/in (1.2 N/cm).

A s-Received Strength (Cold Peel) o f Bonds 
B etw een  Kapton® Type HN and Teflon® Layers
The bond between the Kapton® Type HN and 
Teflon® fluorocarbon resin layers on all Type FN 
products except 120FN616 and 120FN616B will 
have a minimum peel strength of 225 g/in (0.87 
N/cm), measured using an Instron-type tensile 
tester and a 180° peel.
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Table 2
Mechanical Properties of Kapton® Type HN Polyimide Film

Property Value— Film Thickness, mil (pm )

Property
0.30
(7.6)

0.50
(12.7)"

1.00
(25.4)*

2.00
(50.8)*

3.00
(76.2)*

5.00
(127)* Method

T ensile  S tren g th , 16 ,000  
psi (MPa) at (110) 
23°C (73°F).
M achine D irection  
(MD) and T ra n sv erse  
Direction (TD), m in .

2 0 ,0 0 0
(138)

24 ,0 0 0
(165)

24 ,000
(165)

24 ,000
(165)

24 ,0 0 0
(165)

ASTM D-882-91, M ethod A, 
u sin g  an Instron T ensile  Tester  
(sp ec im en  size: W x  6" [12.7 
m m  x 152 m m ]; jaw  separa­
tion: 4" [102 m m ]; jaw  sp eed: 
2 7 m in  [51 m m /m in]). Calcu­
late th e  a v erage  of five sp ec i­
m e n s  b a sed  on original 
m ea su red  th ickness.

E longation , %, MD  
and TD, m in.

25 35 40 45 50 50 S a m e  a s  ab o v e .

Shrinkage, %, MD 
and TD at 400°C  
(752°F), m ax.

4 .0 4 .0 2.5 2.5 2.5 2.5 I The percent 
sh rink age is obta ined  for 
eith er th e  MD or TD using the  
av era g e  o f three m easu re­
m e n ts  in either direction before  
and after cond ition ing . Prior to  
m ea su rem en t, th e  8 y2" x 11" 
(216 m m  x 279 m m ) sp ecim en  
is con d itio n ed  by freely  su s ­
p en d in g  it for 2 hr** in an oven  
co n tro lled  to  400°C (752°F).

M oisture  
A bsorption , %, 
m ax.

4 .0 4 .0 4 .0 4.0 4.0 4.0 ASTM D-570-92, using  
24-hr im m ersion  at 23°C (73°F). 
A v era g e  o f three sp ec im en s.

*Also applies to Type VN, except shrinkage, which is shown in Table 5. 
**1 hr for 30 and 50 gauge film

Table 3
Electrical Properties o f HN Film

Property Value— Film Thickness, mil (pm )

Property
0.30
(7.6)

0.50
(12.7)*

1.00
(25.4)*

2.00
(50.8)*

3.00
(76.2)*

5.00
(127)* Method

D ielectric S tren g th , 
AC V/mil (kV /m m ), 
min.

3 ,0 0 0
(118)

3 ,0 0 0
(118)

6 ,000
(236)

5 ,000
(197)

4 ,5 0 0
(177)

3 ,0 0 0
(118)

ASTM  D-149-94. (A verage o f 
ten  sp ec im en s .)  Flat sh e e ts  in 
air p laced  b e tw een  Va" (6 mm ) 
d ia m eter  brass e lectro d es with  
V32"  (0 .8  m m ) e d g e  radius 
su b jec ted  to  60 cy c les  AC 
v o lta g e  at 500 V /sec rate o f rise 
to  th e  breakdow n v o lta g e .

V olum e R esistiv ity , 
ohm -cm  at 200°C  
(392°F), m in.

1 0 12 1 0 12 10 12 10 12 1012 1012 ASTM  D -257-93

D ielectric C o n sta n t  
at 1 kHz, m ax.

4 .0 4 .0 3.9 3.9 3.9 3.9 ASTM  D-150-94. U se co n d u ct­
ing silver  paint e lectro d es, 
tw o-term in a l sy stem  of m ea ­
su re m en t at standard con d i­
t io n s . R esu lts are b a sed  on an 
a v era g e  o f  f ive  te s ts  using  
m ea su red  th ick n ess of 
sp e c im e n s .

D issip ation  Factor  
at 1 kHz, m ax.

0 .0 0 7 0 0 .0 0 5 0 0 .0 0 3 6 0 .0036 0 .0036 0 .0 0 3 6 S a m e  a s  a b ove .

*Also applies to Type VN
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Table 4
Dielectric Strength of Kapton® Type FN

Polyimide Films
Gauge
Construction

Minimum Breakdown 
V/m il (kV/m m )

120FN616 4 ,2 0 0  (165)

120FN616B 4 ,2 0 0  (165)

150FN019 3 ,7 0 0  (146)

200FN919 3 ,2 0 0  (126)

200F N 011 3 ,2 0 0  (126)

250FN029 2 ,7 5 0  (108)

300FN021 2 ,7 0 0  (106)

300FN929 2 ,7 0 0  (106)

400FN022 2 ,2 0 0  (87)

500FN131 2 ,2 0 0  (87)

Test Method
A verage o f te n  sp e c im e n s  te s te d  per ASTM  D -14 9 -9 2 .
Flat sh ee ts  in air p laced  b e tw e e n  Va" (6 m m ) d ia m e ter
brass e lectro d es w ith V22"  (0.8 m m ) e d g e  ra d iu s s u b ­
jected  to  60 cyc les  AC v o lta g e . R ise  is 5 0 0  V /se c  to  th e
breakdow n vo ltage.

General
Materials
Kapton® Type HN and Type VN films are poly­
imide polymers in the form of a film.

Kapton® Type FN film is a combination of Type 
HN film with Teflon® FEP fluorocarbon resin on 
one or both sides.

Uniformity
Material shall be uniform in composition and free 
from defects that impair serviceability and/or 
appearance in proven applications.

U.S. Cores
Cores shall be of sufficient strength to prevent 
collapsing from handling. Standard core internal 
diameters (I.D.) are nominally 3" and 6" (76 mm 
and 152 mm) with the following specifications:

Paper
3" (76 mm) I.D. 

6" (152 mm) I.D. 

Plastic
3" (76 mm) I.D. 

6" (152 mm) I.D.

3.032" ± 0.008"
(77.01 mm ± 0.2 mm)

6.028" ±0.010"
(153.11 mm ± 0.25 mm)

3.024" ± 0.005"
(76.81 mm ±0.1 mm)

6.041" ±0.010"
(153.44 mm ± 0.25 mm)

Core material will be plastic for 3" (76 mm) I.D. 
cores less than 5A" (16 mm) wide.

Core material will be fiber for 3" (76 mm) I.D. 
cores wider than 5A" (16 mm) and for 6" (152 mm) 
I.D. cores. A split 3" (76 mm) I.D. fiber core is 
standard for all universal and Step-Pac™ rolls.

If these cores are not suitable, further information 
on other options may be obtained from your 
DuPont Kapton® representative.

Table 5
Shrinkage o f Kapton® Type VN Polyim ide Film

Property Value Film Thickness, mil (pm)

Property__________________________ 0.50(12.7) 1.00(25.4) 2.00(50.8) 3.00(76.2) 5.00(127)
Shrinkage, %, MD and TD 0 .1 0  0 .1 0  0 .1 0  0 .10  0 .10
at 200°C (392°F), m ax.

Test Method
The percent shrinkage o b ta in ed  for  e ith er  th e  MD o rT D  by u sin g  th e  a v era g e  o f  th ree  m e a su r e m e n ts  in either  
direction before and after c o n d it io n in g . T em p era tu re  e x p o su r e  200°C ±2°C (392°F ±3.6°F) for 1 hr. M ea su re­
m ents m ust be m ade at th e  s a m e  te m p er a tu r e  and  h u m id ity  co n d itio n s  before  and after c o n d itio n in g . To  
ensu re sa m p le /a m b ien t eq u ilib riu m  b e fo r e  and  after  c o n d itio n in g , sp e c im e n s  sh o u ld  b e  e x p o se d  for 3 hr.
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Width Tolerance
The maximum variation in film width from that 
specified on the order shall be as follows:

Slit Width Range Tolerance
1 Vi" (38 mm) or less ±0.005" (0.13 mm)

1 Vi to 4" (38 mm to 102 mm) ±0.030" (0.76 mm) 

>4" (> 102 mm) ±0.060" (1.5 mm)

Luxembourg Supply
Cores shall be o f sufficient strength to prevent 
collapsing from handling. Luxembourg supplies pad 
rolls in widths below 9Vi" (240 mm) and universal 
wound rolls.

Standard core internal diameter for Luxembourg 
is 3" (76 mm) (nominal 3" ±0.008" [76 mm 
±0.2 mm]).
Standard cores for pad rolls are paper cores, except 
for widths below Vi" (13 mm), where it will be 
plastic.

Standard universal: core length 
2.8" ±0.08" (70 mm ±2 mm) (split core)
Wide universal: core length
4.3" ±0.08" (110 mm ±2 mm) (non-split core)

A different put-up called Step-Pac™ is available 
from the U.S. Contact your DuPont Kapton® 
representative for more information.

Width Tolerance
The maximum variation in film width from that 
specified on the order shall be as follows:

Slit Width Range Tolerance
0.9" (22 mm) or less 0.008" (0.20 mm)
Universal
6" (152 mm) or less 0.016" (0.40 mm)
Pad rolls
6" to 9Vi" (153 mm to 240 mm) 0.04" (1.00 mm) 
Pad rolls
Outside diameter tolerance: ±0.4" (10 mm)

Table 6
Kapton® Polyim ide Film Specifications and Tolerances

Thickness
Nominal

Thickness Tolerance Width Range Unit Weight
Min. Max. Min. Max. Min. Max. Area Factor

Film Type mil (pm)* mil (pm) mil (pm) in (mm) in (mm) g/m2 g/rn2 ft2/lb (m2/kg)

30HN 0.30 (7.6) 0.24 (6.1) 0.36 (9.1) 3/ie (4.8) 52 (1320) 7.6 14.0 453 92.8
50HN 0.50 (12.7) 0.35 (8.9) 0.65 (16.5) 3/ie (4.8) 52 (1320) 14.0 26.0 272 55.7
100HN 1.00 (25.4) 0.85(21.6) 1.15(29.2) 3/ie (4.8) 52 (1320) 32.7 39.7 136 27.9
200HN 2.00 (50.8) 1.75 (44.5) 2.25 (57.2) 3/ie (4.8) 52 (1320) 66.9 77.9 68 13.9
300HN 3.00 (76.2) 2.72 (69.1) 3.28 (83.3) 3/i6 (4.8) 52 (1320) 101.9 115.4 45 9.2
500HN 5.00 (127) 4.65 (118) 5.35 (136) 3/i6 (4.8) 52 (1320) 169.5 192.5 27 5.5
50V N 0.50 (12.7) 0.35 (8.9) 0.65 (16.5) 3/i6 (4.8) 52 (1320) 14.0 26.0 272 55.7
100VN 1.00 (25.4) 0.85 (21.6) 1.15(29.2) 3/i6 (4.8) 52 (1320) 32.7 39.7 136 27.9
200V N 2.00 (50.8) 1.75 (44.5) 2.25 (57.2) 3/16 (4.8) 52 (1320) 66.9 77.9 68 13.9
300VN 3.00 (76.2) 2.72 (69.1) 3.28 (83.3) 3/ie (4.8) 50 (1270) 101.9 115.4 45 9.2
500V N 5.00 (127) 4.65 (118) 5.35 (136) 3/ie (4.8) 50 (1270) 169.5 192.5 27 5.5
120FN616 1.20 (30.5) 1.10(27.9) 1.40 (35.6) 3/ie (4.8) 44 (1118) 41.0 58.0 104 21.3
120FN616B 1.30 (33.0) 1.20 (30.5) 1.50 (38.1) 3/ie (4.8) 44 (1118) 47.0 54.0 92 18.8
150FN019 1.50 (38.1) 1.25 (31.8) 1.75 (44.5) 3/i6 (4.8) 44 (1118) 53.0 74.0 77 15.8
200FN011 2.00 (50.8) 1.70 (43.2) 2.30 (58.4) 3/i6 (4.8) 44 (1118) 77.0 104.0 54 11.1
200FN919 2.00 (50.8) 1.70 (43.2) 2.30 (58.4) 3/i6 (4.8) 44 (1118) 77.0 104.0 54 11.1
250FN029 2.50 (63.5) 2.25 (57.2) 2.75 (69.9) 3/ie (4.8) 44 (1118) 87.0 113.0 49 10.0
300FN021 3.00 (76.2) 2.60 (66.0) 3.40 (86.4) 3/i6 (4.8) 44 (1118) 111.0 142.0 39 8.0
300FN929 3.00 (76.2) 2.60 (66.0) 3.40 (86.4) 3/ib (4.8) 44 (1118) 111.0 142.0 39 8.0
400FN022 4.00 (102) 3.50 (88.9) 4.50 (114) 3/i6 (4.8) 44 (1118) 163.0 200.0 27 5.5
500FN131 5.00 (127) 4.50 (114) 5.50 (140) 3/ie (4.8) 44 (1118) 195.0 239.0 23 4.7

’ Reference: A S T M  D -374-94, M e th o d  A, C, or D.

The usual dim ensions o f pad  rolls a re  3" (76 mm) I.D. x  6" (152 mm) or 9" (230 mm) outside d iam eter (O.D.) for widths up to 4 "  (102 
mm). In Luxem bourg, 152 m m, 180 mm, 203 mm, and 240 mm O.D. rolls a re  available. For w id e r rolls, the  usual dimensions are 6" (152 
mm) I.D. x  9V2"  (240 m m) or 11" (280 m m) O.D. For Universal and S tep-Pac™  rolls, th e  dim ensions a re  3" (76 mm) I.D. x  6" (152 mm), 8" 
(203 mm), or 12" (305 mm) O.D. If th e s e  dim ensions a re  not suitable, inform ation on o th er options is availab le  from your DuPont High 
P erform ance Films te c h n ic a l o r custom er serv ice  representative.
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Roll Types
Kapton® polyimide film is supplied in three types
of rolls: pad, universal, and S tep-Pac™  wind.

Pad Roll Specifications
• Core width will be the film width +Vs"

(+3.2 mm), -0.
• Core edges shall not project more than V\(>"

(1.6 mm) beyond the roll face on either side.
• Core shall not be recessed on either side.
• The outside and starting ends of the film shall be 

fastened in a manner to prevent unwinding.
• “Dishing” or “cupping” may not exceed V\(>"

(1.6 mm), measured with a straightedge across 
the diameter of the roll.

Universal and Step-Pac™ Roll S p ecifica tion s
• The difference between the lengths o f the pro­

jecting core on each side shall not exceed V\t," 
(4.8 mm).

• Film shall not project from the main body o f the 
roll more than Vs" (3.2 mm).

• The outside and starting ends o f the film shall be 
fastened in a manner to prevent unwinding.

• Roll face depression, the difference between the 
highest and lowest points of the roll, unstressed, 
shall not exceed V\d' (4.8 mm).

Table 7
Reference Guide: Standard Length v ersu s  

Roll O.D. (U.S. Supply)

Type
Standard 

Length Roll
Roll O.D.

3" Core I.D. 6" Core I.D.

100HN 5,000 ft SVi" 11"
(1,525 m) (241 m m ) (279  m m )
10,000 ft 11" 14"

(3,050 m) (279  m m ) (356  m m )

200HN 2,500 ft 9 1/ / ' 11"
(763 m) (241 m m ) (279  m m )

300HN 1,670 ft 9 1/ 2" 11"
(509 m) (241 m m ) (279  m m )

500HN 1,000 ft 9y 2" 11"
(305 m) (241 m m ) (279  m m )

Splices
Description
Three types of splice are available.

• Mylar® polyester film-based yellow tape 
(standard).

• Kapton® polyimide film-based tape (special 
requirements only).

• Heat seal splice, 12" (305 mm) or less in width 
(Type FN).

Splices will be centered on the joint to ±Vt"
(±6 mm). They will be smooth and wrinkle-free 
to avoid distortion of the adjacent film layers in 
the roll.

Tape Splices
Tape splices are standard on all gauges of HN and 
VN film and on all gauges of FN film more than 
12" (305 mm) wide.

Tape splices are made with the butt edges of the 
film covered on both sides with pressure-sensitive 
adhesive tape. Two-inch (50 mm) wide splicing 
tape is used.

Heat Seal Splices
Overlap heat seal splices are made on all FN films, 
except 250FN029, with an overlap that is a mini­
mum of Vs" (9.5 mm) wide.

On 250FN029, a butt splice is made using 
120FN616 as the joining tape applied on the FEP 
surface. The butt splice is oriented with the 
120FN616 tape on the top of the film as it unwinds 
from a universal put-up and on the bottom as it 
unwinds from a pad.

Overlap heat seal splices for one-side and two-side 
FEP composites are oriented with the leading edge 
of the new film on the bottom for universal and 
Step-Pac™ put-ups. Pad put-ups of one- or two-side 
FEP composites have the leading edge of the new 
film on the top.
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Packaging and Marking 
Packaging
Kapton® polyimide film shall be adequately packed 
to prevent loss of contents or damage during 
shipment.

All film will be wrapped with a non-fibrous 
material.

Marking
Kapton® is identified, as shown in Table 8, to allow 
complete traceability back to the raw materials and 
processing conditions.

Arrangements for special markings can be made 
(such as part or specification number). Consult with 
your DuPont Kapton® technical or customer service 
representative for details.

All package marking information is available with 
bar code labels.

Table 8 
Package Marking

Shipping
Container Package

Core
Label*

S c h e d u led  D ate X X X

C u stom er O rder N u m ber X X

D uPont O rder N u m ber X X X

G au ge X X X

T ype X X X

W idth

N u m ber o f  R olls per

X X X

C ontainer X X

N et W eig h t  

A ctual F o o ta g e

X X

X

Mill Roll N u m b er X X X

I.D. and O .D .** X X

* Affixed to the core on all cores. 2.25" (57 mm) wide and over. 
Included with the package on all cores less than 2.25" (57 mm) wide 

** Inside diameter of core and nominal outside diameter of roll
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Permanent magnet 
vibration testing systems

9 to 489 N (2 -110 Ibf)

V101/2, V201/3, 
V406/8, V450/1 
and V455/6 Shakers

PA Amplifiers

m  SIKMJL

Typical system  app lications

•  laboratory experiments

•  modal studies

•  electronic assemblies

•  physiological research

•  high speed actuators

•  velocity transducers

A range of vibration testing systems
designed to minimise operational costs
whilst providing the maximum flexibility
to the scientist or test engineer.
Featuring:-

•  Permanent magnet construction

•  Low mass, high performance 
armature construction

•  Wide frequency band operation - 
dc to 13 kHz

•  Well proven armature suspension 
system

•  Mounted on base or support trunnion

•  Option of auxiliary suspension

•  Ultra-compact energy efficient 
amplifiers

Total system  solutions

With the addition of an LDS sine, 
random and shock controller we can 
provide total testing solutions. 
Alternatively our systems are designed 
to interface with any standard third party 
controller. Whichever route you choose, 
you have the assurance that all LDS 
products are supported by a world-wide 
sales and service organisation. From 
application engineering, installation and 
training through to maintenance, spares 
and repairs LDS offers a total service 
approach to keep your system operating 
efficiently and reliably.



V1 0 1 /2 ,  V 2 0 1 /3 , V 4 0 6 /8 , V 4 5 0 /1 , V 4 5 5 /6

Shaker system
configuration & performance parameters

V 4 0 6 /8  -  PA 100E V 4 0 6 /8  -  PA 5 0 0 L V 4 5 0 /1  -  PA 500L V 4 5 5 /6  -  PA 1000LV 1 0 1 /2  -  PA 25E V 20 1 /3  -  PA 25E

Metric American Metric American Metric American Metric American Metric American Metric American C o o lin g  b lo w e r s

Armature diameter - 3 8  mm 1.5  in 38  mm 1.5  in 6 3 .5  mm 2 .5  in 6 3 .5  mm 2.5  in Blower Wt A B C

System  sine force peak - naturally cooled 8 .9  N 2 Ibf 1 7 .8  N 4  Ibf 9 8  N 22  Ibf 9 8  N 22  Ibf 1 7 8  N 4 0  Ibf 178 N 40  Ibf Kg mm mm mm

System  sine force peak - forced air cooled - 1 7 .8  N 4 Ibf 9 8  N 22  Ibf 196  N 44  Ibf 3 1 1 N 7 0  Ibf 4 8 9  N 110  Ibf V 406 /8  5 0  Hz 17 241 389  249

Shaker sine force peak* - forced air cooled 2 6 .7  N 6 Ibf 196 N 4 4  Ibf 196  N 44  Ibf 3 1 1 N 7 0  Ibf 4 8 9  N 110 Ibf V 406 /8  60  Hz 15 241 365  249

System  random force rms (IS05344) 3 8  N 8 .5  Ibf 8 9  N 20  Ibf 2 1 4  N 4 8  Ibf 3 0 2  N 6 8  Ibf V 450 /1  5 0 /6 0  Hz 5 .4 241 186 249

Shaker max random force rms* • 8 9  N 20 Ibf 8 9  N 20 Ibf 2 1 4  N 48  Ibf 3 3 4  N 7 5  Ibf V 455 /6  5 0 /6 0  Hz 5.4 241 186 249

Armature resonance frequency 1 2000  Hz 1 2000  Hz 13000  Hz 13 0 0 0  Hz 9 0 0 0  Hz 9 0 0 0  Hz 9 000  Hz 900 0  Hz 6 0 0 0  Hz 6 0 0 0  Hz 6 0 0 0  Hz 6 0 0 0  Hz
A

Useful frequency range 

Effective m ass of moving element

5-12000 Hz

A AACC l/rt

5-12000 Hz

A A4 AO IK

5-13000 Hz

ri n oft
5-13000 Hz

A r\A A  Ih

5-9000 Hz

n onn 1ta

5-9000 Hz

ft AA  Ih

5-9000 Hz 

a  o a a  La

5-9000 Hz

ft A A  Ih

5-7500 Hz

A A O R ltd

5-7500 Hz

ft QA  Ih

5-7500 Hz

A AOR ltd

5-7500 Hz 

ft QA |h

System  velocity sine peak

U.UDOO Kg

1 .3 1  m /s

U .U lA o  ID

5 1 .6  in /s

U.UAU Kg

1 .49  m /s 5 8 .7  in /s

U ./U U  Kg

1 .5 2  m /s

U .4*4* ID

6 0  in /s

U ./U U  Kg

1 .78  m /s 70  in /s

KJ.HAV Kg

1 .7 8  m /s

U .W  IU

70  in /s

U.HZD Kg

2 .5  m /s

U.S7** IU

9 8 .4  in /s

Shaker velocity sine peak* 1 .31  m /s 5 1 .6  in /s 1 .83  m /s 72  in /s 1 .7 8  m /s 7 0  in /s 1 .7 8  m /s 70  in /s 2 .0  m /s 7 8 .7  in /s 2 .5  m /s 9 8 .4  in /s C 1 P P
Max acceleration sine peak 1 373  m /s2 140 gn 133 4  m /s2 136 gn 9 8 1  m /s2 100  gn 9 8 1  m /s2 100  gn 7 3 0  m /s2 74.5  gn 1147 m /s2 117 gn

Amplifier rating 0 .0 4 8  kVA 0 .0 4 8  kVA 0 .0 4 8  kVA 0 .0 4 8  kVA 0 .1 4 7  kVA 0 .147  kVA 0.7  kVA 0.7  kVA 0 .7  kVA 0 .7  KVA 1.4 kVA 1.4  kVA B

LDS amplifier PA25E PA25E PA25E PA25E PA100E PA 100E PA 500L PA500L PA 500L PA 500L PA1000L PA 1000L
PA am D lifiers

Suspension axial stiffness 3 .1 5  N/mm 1 8  Ibf/in 3 .5  N/mm 20  Ibf/in 1 2 .3  N/mm 70  Ibf/in 12 .3  N/mm 70  Ibf/in 17 .5  N/mm 1 0 0  Ibf/in 17 .5  N/mm 100 Ibf/in
Amplifier Wt A B C

Aux. suspension axial stiffness 8 .7 6  N/mm 50  Ibf/in 2 2 .8  N/mm 130 Ibf/in 22 .8  N/mm 130  Ibf/in - Kg mm mm mm

System  displacem ent (continuous) pk-pk 2 .5  mm 0 .1  in 5  mm 0 .2  in 1 4 .0  mm 0 .55  in 17.6  mm 0 .6 9  in 19  mm 0 .7 5  in 19 mm 0 .7 5  in PA25E 9 488 337 92

Shaker displacem ent (continuous) pk-pk* 2.5  mm 0 .1  in 5  mm 0 .2  in 1 7 .6  mm 0 .69  in 17.6 mm 0 .6 9  in 19  mm 0 .7 5  in 19 mm 0 .7 5  in PA 100E 15 488 337  92

Vibrator mass-optional trunnion mounted • - 3.17  Kg 7 lb 2 2 .7  kg 501b 2 2 .7  kg 501b 8 2  kg 1801b 82  kg 1801b
PA 500L 20 448 412  188

Cooling air flow rate 0 .0 0 1 2  mJ/ s 2 .5  f f /m 0 .0 1 4  m2/ s 30  ftVm 0 .0 1 4  m’/ s 3 0  ftVm 0 .0 1 2  m2/ s 25  f f /m j 0 .0 1 2  m2/ s 25  f f /m
PA 1000L 35 482 505  188

Shaker m ass base mounted 0 .9 1  kg 21b 1 .8 1 k g 4 lb 14.1  kg 3 1  lb 14.1  kg 3 1  lb 6 4  kg 1411b 1 6 4  kg 1411b -----------------

Max. working ambient temperature
Shaker: 30 “C 86"F 30°C 86°F 30°C 86°F 30*0 86'F 30*C 86°F 30°C 86°F A rm atu re in s e r t  D a tter n s
Amplifier: 35°C 9 5 “F 35°C 95°F 35°C 95°F 30°C 86°F 30*C 86°F 30"C 86°F

Heat rejected to air Shaker V 1 0 1 /2  V 201 /3  V 4 0 6 /O  V 4 S U /1  V 4 0 0 / 0

Shaker cooling fan: . 0 .4 6  kW 0 .4 6  kW 0 .2 9  kW 0 .2 9  kW 0 .7 5  kW 0 .7 5  kW
Amplifier: 0 .0 6 7  kW 0 .067  kW 0.0 6 7  kW 0 .0 6 7  kW 0 .1 5  kW 0 .1 5  kW 0 .4 0  kW 0 .4 0  kW 0 .3 7  kW 0 .3 7  kW 0.87  kW

1------------- --------
0 .87  kW Armature dia. 

mm 38 6 3 .5 6 3 .5

Electrical requirement -t 1
Amplifier: 0 .0 9  kVA 0.09  kVA 0 .0 9  kVA 0 .0 9  kVA 0 .2 7  kVA 0 .2 7  kVA 1.5 kVAt 1 .5  kVAt 1.4 kVAt 1.4  kVAf 2 .9  kVAt 2.9  kVAt Centre insert l 1 1 ± -L

Acoustic noise at 2m** ! 2 5 .4  mm 6
Shaker: 105 dBA 105 dBA 105 dBA 105 dBA 105  dBA 1 05  dBA 105 dBA 105 dBA C c
Amplifier: silent silent silent silent silent silent 4 7  dBA 47 dBA 47 dBA 47  dBA 47 dBA 47 dBA 5 0  mm o

PCD inserts equi-spaced

Shaker ratings are th o se  which can be achieved with a larger amplifier than that supplied a s  standard 
* Maximum n o ise level during operation at full thrust, m easured at 2m distance 

Includes cooling fan



Options
Shaker model V 1 0 1 /2 V 2 0 1 /3 V 4 0 6 /8 V 4 5 0 /1 V 4 5 5 /6

Alternative inserts: M4 • • • . .

6 / 3 2 ” UNC • . . .

8 / 3 2 ” UNC - • • . .

M5 - - - • •
1 0 / 3 2 ” UNF - - O • •

Rubber isolation mounting - - - O O
Base mounting • • • • •

Support trunnion O O O O

Auxilliary suspension O O

Cooling fan - - •  •  •

KEY •  standard O standard option - not available

PA series power amplifier characteristics 
Amplifier model PA 25E PA 100E PA 500L PA 1000L

Rated sinusoidal power output 48  W 147 W 500 W 1000 w
(Matched resistive load) (5R3) (2R9)

Maximum continuous sinusoidal
VA output, 0.5pf 48 VA 147 VA 700 VA 1400 VA

Frequency range at rated power 10Hz -1 0  kHz 10Hz -1 0  kHz 10Hz -1 4  kHz 10Hz -14  kHz

Total harmonic distortion
at rated output 20  Hz - 1 0  kHz Typically 0.3  % Typically 0.5 % Typically 0.2 % Typically 0.2 %

Maximum output voltage 16V rms 20V rms 40V rms 80V rms

Maximum no load voltage 24V rms 32V rms 45V rms 86V rms

Voltage regulation 1% 3% 2% 2%

Output current at rated VA 2.7A rms 7A rms 18A rms 18A rms

Maximum output current 3A rms 7A rms 18A rms 18A rms

Random output current 5.9A pk 14A pk 54A pk 54A pk

Overcurrent trip level 4.2A rms 10A rms 20A rms 20A rms

Input sensitivity for maximum output (4 0 0  Hz) 1.0V rms 1.0V rms 1.0V rms 1.0V rms

Signal to noise ratio > 75 dB > 75 dB > 75 dB > 80 dB

Amplifier efficiency 59 % 58 % 59% 59%

Protection Fast acting Fast acting Output device Output device
current limit current limit protection protection

S o m e o f the fea tu res listed  are ava ilab le  a s  s ta n d a r d , o th e r s  a s  o p tio n s .
P le a se  con tact LDS for advice on  th e  op tim u m  sp e c if ic a tio n  to  m e e t  your sy s te m  n e e d s .
S pecification s are correct at tim e o f go in g  to  print. LDS r e s e r v e s  th e  right to  am e n d  sp e c if ic a tio n s  w ithout prior n otice .

LING DYNAMIC SYSTEMS
World leaders in vibration and 
environmental test systems

A United Dom inion Com pany

Ling Dynamic Systems Limited 
Heath Works, Baldock Road, Royston, 
Hertfordshire SG8 5BQ, England.
Tel (UK) 01763 242424 
International + 44 1763 242424 
Fax (UK) 01763 249715 
International + 44 1763 249715 
Email sales@lds-group.com 
www.lds-group.com

Ling Dynamic Systems Inc 
60 Church Street, Yalesville, 
Connecticut 06492, USA.
Tel (203) 265 7966 
Toll Free # 1- 800 - GO TO LDS 
Fax (203) 284 9399 
Email sales@lds-usa.com

LDS SARL
Z.l. I’Eglantier-17, rue des Cerisiers, 
CE 1528 Lisses - 91015 Evry Cedex, 
France.
Tel (1) 69 11 21 30 
Fax (1) 69 11 21 31 
Email lds@lds-france.com

Ling Dynamic Systems GmbH 
Freisinger StraBe 32,
D-85737 Ismaning, Germany.
Tel (+49) 89 96 98 9180 
Fax (+49) 89 96 98 9189 
Email mayer-lds@t-online.de

C €
All LDS equipment com plies with current 
European and USA safety and EMC regulations

IS O  9 0 0 1
Cert No. FM 26616

mailto:sales@lds-group.com
http://www.lds-group.com
mailto:sales@lds-usa.com
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