
UJ 10 I (

Knowledge-Based Product Support Systems

A Thesis submitted

to Cardiff University

for the degree of

Doctor of Philosophy

by

Nikolaos Lagos BEng MSc

Cardiff School of Engineering,

Cardiff University,

United Kingdom

2007

i

UMI Number: U584930

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584930
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

SUMMARY OF THESIS

This research helps bridge the gap between conventional product support, where the

support system is considered as a stand-alone application, and the new paradigm of

responsive one, where the support system frequently communicates with its

environment and reacts to stimuli. This new paradigm would enable product support

knowledge to be captured, stored, processed, and updated automatically, being

delivered to the users when, where and in the form they need it.

The research reported in this thesis first defines Product Support Systems (PRSSs) as

electronic means that provide accurate and up-to-date information to the user in a

coherent and personalised manner. Product support knowledge is then identified as

the integration of product, task, user, and support documentation knowledge.

Next, the thesis focuses on an ontology-based model of the structure, relations, and

attributes of product support knowledge. In that model product support virtual

documentation (PSVD) is presented as an aggregation of Information Objects (IOs)

and Information Object Clusters (IOCs). The description of PSVD is followed by an

analysis of the relation between IOs, IOCs, and domain knowledge.

Then, the thesis builds on the ontology-based representation of product support

knowledge and explores the synergy between product support, problem solving, and

knowledge engineering. As a result, a structured problem solving approach is

introduced that combines case-based adaptation and model-based generation

techniques. Based on that approach a knowledge engineering framework for product

support systems is developed.

A conceptual model of context-aware product support systems that extends the

framework is then introduced. The conceptual model includes an ontology-based

representation of knowledge related to the users, their activities, the support

environment, and the device being used. An approach to semi-automatically

integrating design and documentation data is also proposed as part of context-aware

product support systems development process.

Acknowledgements

I would like to thank my supervisor Dr. R. M. Setchi for her invaluable guidance and

support throughout my work.

I would also like to thank Prof. D. T. Pham for giving me this opportunity to conduct

research in his laboratory.

All my friends for being there when I needed them and my girlfriend for tolerating my

long absences.

All members of the Intelligent Information Systems group which helped with their

feedback and support throughout these years.

Finally, my deepest gratitude is to my family who has given continuous support and

encouragement to me.

Table of Contents

Chapter 1 - Introduction

1 Introduction 1
1.1 Motivation 1
1.2 Aims and Objectives 2
1.3 Outline of the Thesis 3

Chapter 2 - Review of Product Support Systems, Semantic Technologies and
Electronic Documentation Models

2 Review of Product Support Systems and Electronic Documentation Models 7
2.1 Product Support 7

2.1.1 Interactive Electronic Technical Manuals 7
2.1.2 Electronic Performance Support Systems 10
2.1.3 Intelligent Product Manuals 12
2.1.4 Maintenance Systems 13
2.1.5 Discussion 14

2.2 Knowledge Engineering in Product Support Systems 14
2.2.1 Knowledge Engineering vs. Knowledge Management in Product 14
Support
2.2.2 Semantics-Based Technologies 16

2.2.2.1 Semantic Web 16
2.2.2.2 Ontologies 16

2.2.3 Knowledge Representation in Product Support Systems 18
2.2.4 Problem Solving and Reasoning Techniques in Product Support 19
2.2.5 Discussion 21

2.3 Content Models and Metadata in Electronic Documentation 22
2.3.1 Content Models and Components 22

2.3.1.1 Information Object 22
2.3.1.2 Information Block 23
2.3.1.3 Darwin Information Typing Architecture 24
2.3.1.4 Learning Object 25
2.3.1.5 Sharable Content Object Reference Model 26
2.3.1.6 CISCO Reusable Learning Object/Reusable Information Object 26
2.3.1.7 Leamativity Model 27
2.3.1.8 ALOCOM 27

2.3.2 Metadata 28
2.3.2.1 IEEE Learning Object Metadata 28
2.3.2.2 Dublin Core 30

2.3.3 Discussion 30

Chapter 3 - Product Support Knowledge

3 Product Support Knowledge 32
3.1 Analysis of Product Support 32
3.2 Product Support Systems 36

3.3 Definition of Product Support Knowledge 38
3.3.1 Product Support Knowledge Elements 38
3.3.2 Definition of Knowledge 39
3.3.3 Product Knowledge 42
3.3.4 Task Knowledge 44
3.3.5 User Knowledge 45
3.3.6 Product Support Virtual Document 46

3.4 Summary and Conclusions 47

Chapter 4 - Semantic Modelling of Product Support Knowledge

4 Semantic Modelling of Product Support Knowledge 50
4.1 Scope 50
4.2 Product Support Knowledge Model 51

4.2.1 Architectural Model 51
4.2.2 Functional Model 54

4.3 Product Support Electronic Documentation 56
4.3.1 Product Support Electronic Documentation Components 56

4.3.1.1 Information Object 57
4.3.1.2 Information Object Cluster 59
4.3.1.3 Product Support Virtual Document 60

4.3.2 Incorporating Product Support Documentation and Knowledge 62
4.3.3 Semantics of the Product Support Documentation Model 64

4.3.3.1 Abstraction (Generalisation/Specialisation) 66
4.3.3.2 Connector 68
4.3.3.3 Arc 71
4.3.3.4 Knowledge-Specifier 71

4.4 Summary and Conclusions 73

Chapter 5 - A Knowledge Engineering Framework for Product Support Systems

5. A Knowledge Engineering Framework for Product Support Systems 75
5.1 A Problem Solving Perspective on Product Support Systems 75

5.1.1 Problem Solving and Product Support 75
5.1.2 Product Support Problems 78

5.1.2.1 Product Support Problem Definition 78
5.1.2.2 Problem Classification 80

5.1.3 Problem Solving Approach 81
5.2 A Knowledge-Level View of a Framework for Product Support Systems 85

5.2.1 General Framework Structure and Operation 85
5.2.2 Data Space 88
5.2.3 Problem Space 90

5.2.3.1 Representing Product Support Problems with Cases 90
5.2.3.2 Integrating Case-Based Product Support Problem Descriptions 93
and Ontologies

5.2.4 The Hypothesis Space 96
5.2.4.1 Case Retrieval 98
5.2.4.2 Case-Based Adaptation 99
5.2.4.3 Model-Based Generation 102

5.2.5 The Solution Space 107

5.3 Summary and Conclusions 109

Chapter 6 - Context-A ware Product Support Systems

6. Context-A ware Product Support Systems 110
6.1 Conceptual Analysis of a Context-Aware Product Support System 110

6.1.1 Scope 110
6.1.2 Definition of a Context-A ware Product Support System 111
6.1.3 Conceptual Model of a Context-A ware PRSS 112

6.2 Modelling Context 115
6.2.1 General Ontology of Context for Product Support Systems 115
6.2.2 Activity Context 118
6.2.3 User Context 121
6.2.4 Context and Ontology-Based Representation of Knowledge in
Context-Aware Product Support Systems

123

6.3 Adaptation Approach 126
6.3.1 Correlation Between Context, Tasks, and Product Support
Documentation

126

6.3.2 Adaptation Method 128
6.3.2.1 Qualifications Assessment 128
6.3.2.2 Content Adaptation 130

6.4 Responding to Internal Stimuli-Integrating Product Design and Support
Documentation Data

132

6.4.1 Product Data 132
6.4.2 Required Resources 134
6.4.3 Integration Approach 135

6.4.3.1 Overall Approach 135
6.4.3.2 Integration of Product Design Data with the Knowledge Base 137
6.4.3.3 Integration of Product Design Data with the Case Base 140
6.4.3.4 Supporting Facilities 144

6.5 Summary and Conclusions 144

Chapter 7 - Verification and Validation

7. Verification and Validation 146
7.1 Semantic Product Support Environment: PROSON 146

7.1.1 PROSON Environment 146
7.1.1.1 PROSON Technical Specification 146
7.1.1.2 PROSON Enabling Technologies and Tools 148

7.1.2 PROSON Development 151
7.1.2.1 Architectural Model Development 152
7.1.2.2 Functional Model Development 154
7.1.2.3 Product Support Documentation Development 156

7.2 Knowledge-Based Product Support System: PROGNOSIS 159
7.2.1 PROGNOSIS Environment 159

7.2.1.1 PROGNOSIS Technical Specification 159
7.2.1.2 PROGNOSIS Enabling Technologies and Tools 161

7.2.2 PROGNOSIS System Architecture 161
7.2.2.1 PROGNOSIS Data Space 164
7.2.2.2 PROGNOSIS Problem Space 164

7.2.2.3 PROGNOSIS Hypothesis Space 167
7.2.2.4 PROGNOSIS Solution Space 171

7.3 Context-Aware PROGNOSIS 171
7.3.1 Environment and Enabling Technologies 171
7.3.2 Context-Based Adaptation in PROGNOSIS 172

7.3.2.1 Ontology-Based Context Model 172
7.3.2.2 Adaptive Information Delivery 174

7.3.3 Responding to Internal Stimuli in PROGNOSIS 179
7.4 Conclusions 182

Chapter 8 - Contributions, Conclusions, Limitations and Future Work

8. Contributions, Conclusions, Limitations and Future Work 184
8.1 Contributions 184
8.2 Conclusions 187
8.3 Limitations 188
8.4 Future Work 189

Appendices

Appendix A - Examples of Instances of the PROSON-Based KB 191
Appendix B - Examples of Classes and Slots of the PROSON-Based KB 194
Appendix C - Example of the CLIPS Code Describing Protege Interface 197
Appendix D - Examples of IOCs, IOs, and PSVD 198
Appendix E - The Knowledge Base 204
Appendix F - LoginHandler 207
Appendix G - ApplicationController 209
Appendix H - KnowledgeBaseWrapper 213
Appendix I - Integrated View of PROSON and Case Base 216
Appendix J - Example Cases 217
Appendix K - Other Scenarios 219
Appendix L - The Case Creation and Validation Tool 223
Appendix M - User Attributes’ Values and Weights 224
Appendix N - Context Ontology (CLIPS) 226
Appendix O - Learning and Performing Activities in Traditional Systems and 230
in Context-A ware Product Support
Appendix P - Content Adaptation Scenarios 231
Appendix Q - CAD Based Integration Scenarios 233
Appendix R - Part of Driving Axle Design Data in STEP 236
Appendix S - Three BOM Tested Files 238
Appendix T - Supporting Facilities for the Integration Approach 242
Appendix U - Part of Parsing Algorithm 244
Appendix V - Data Files Examples 248

References

References 251

List of Figures

Figure 1.1 Outline o f the thesis 4

Figure 3.1 The need for product support 35

Figure 3.2 Product support knowledge 40

Figure 4.1 A fragment o f the developed knowledge base 53

Figure 4.2 Model o f virtual documentation components and their relations 58

Figure 4.3 Information object cluster's model 61

Figure 4.4 Structure o f a product support virtual document 63

Figure 5.1 Association between problem solving and types o f problems 11

Figure 5.2 Solving approach for different kinds ofproduct support problems 84

Figure 5.3 Knowledge-engineering framework for product support systems 86
(knowledge-level view)

Figure 5.4 Algorithm describing the operation o f the framework 89

Figure 5.5 Associations between ontology elements, case-based product 91
support problem constituents, and documentation components

Figure 5.6 Specialised adjustment heuristics for parameter adjustment 101

Figure 5.7 Conditional statements for “No Disks” descriptor 101

Figure 5.8 Example o f the representation ofproblems and solutions 103

Figure 5.9 Difference in structure o f a product support virtual document using 108
case-based reasoning and model-based reasoning

Figure 6.1 The concept o f context-aware PRSSs 113

Figure 6.2 Part o f the context ontology 117

Figure 6.3 Relation between the context (activity model) and domain 120
knowledge (task model)

Figure 6.4 User context concept 122

Figure 6.5 Part o f the ontology for context-aware product support systems 124

x

Figure 6.6 Model o f context-aware virtual documents and their relations 124

Figure 6.7 Correlation between task, context and product support 127
documentation and comparison with adaptive systems

Figure 6.8 Overall approach 136

Figure 6.9 Integration with domain knowledge 138

Figure 6.10 Transforming a STEP file into an ontology-based product 139
structure

Figure 6.11 Integration with case knowledge 142

Figure 6.12 Utilising a data file to create a new case 143

Figure 7.1 CLIPS code that describes small part o f the architectural model for 153
“Clutch ” assembly

Figure 7.2 CLIPS code that describes small part o f the functional model for 155
“Clutch ” assembly

Figure 7.3 Product support documentation model 157

Figure 7.4 Product support virtual documentation creation using PROSON 158

Figure 7.5 PROGNOSIS system architecture 162

Figure 7.6 Identifying goals by system usage 165

Figure 7.7 Connection between concepts in PROSON knowledge base and 166
concept-level features in PROGNOSIS

Figure 7.8 Case-based adaptation 168

Figure 7.9 Model-based generation 170

Figure 7.10 Part o f the context ontology in PROGNOSIS support problem 173
constituents, and documentation components

Figure 7.11 Case 1: An inexperienced user designs a clutch (perform activity) 176

Figure 7.12 Case 2: An experienced user designs a clutch (perform activity) 176

Figure 7.13 Case 3: An inexperienced user requests more information on 177
clutch design (learn activity)

Figure 7.14 Case 4: An experienced user requests more information on clutch 177
design (learn activity)

xi

Figure 7.15. Case creation in PROGNOSIS using CAD relatedfiles 180

Figure E. 1 The product ontology with the clutch concept selected 204

Figure E. 2 Part o f the task ontology (actions), knowledge-specifiers (with 204
ComplexProduct concept highlighted) and documentation ontology

Figure E. 3 Visualisation o f a small part o f the knowledge base (including 205
relations and instances)

Figure E. 4 Visualisation o f a part o f the knowledge base subclasses 205
(including relations)

Figure E. 5 Visualisation o f the knowledge base as a tree (only is-a and 206
instance-of relations are included)

Figure 1 .1 Integrated knowledge base o f PROGNOSIS 216

Figure K. 1 Double disk clutch 219

Figure K. 2 Six-disk clutch 219

Figure K. 3 Clutch for BMWZ4 (Normal-racing version) 220

Figure K. 4 Clutch for BMW Alpine (Lightweight version) 220

Figure K. 5 Inspecting a transaxle (based on behaviour model) 221

Figure K. 6 Concept that does not exist in the knowledge base but in a case 221
(assembly that does not exist but the IOC for assemblies is precomposed)

Figure K. 7 Concept that does not exist in the knowledge base but in a case 222
(assembly that does not exist but the IOC for assemblies is NOT precomposed)

Figure L. 1 Selecting the case creation and validation tool by clicking on 223
“Add case ” or “Adapt case “Add case ”permits the modification o f static
and dynamic features, while the “Adapt case ” only dynamic features

Figure L. 2 The values o f the new case are based on previous cases 223

Figure P. 1 Describing a clutch for an experienced user (concise descriptions, 231
still images, and facts compose the document in this scenario)

Figure P. 2 Describing a clutch for an inexperienced user (detailed 231
descriptions, animations, and clarifications such as rules-of-thumb form the
document)

Figure P. 3 Installing a clutch for an experienced-receptive user (a lot o f text 232
that includes warnings and facts)

xii

Figure P. 4 Installing a clutch for an inexperienced-unreceptive user (big 232
clear pictures including clarification types)

Figure Q. 1 Select the case 233

Figure Q. 2 Select the file and operation 233

Figure Q. 3 Validate the product structure 234

Figure Q. 4 Validate the values o f the new case’s features 234

Figure Q. 5 Generated product support document based on CAD data 235

Figure T. 1 Supporting facilities for the integration process 243

xiii

List of Tables

Table 3.1 Definitions related to product support knowledge 48

Table 4.1 Documentation and knowledge base elements 65

Table 4.2 Effects on availability, level o f detail, type, and theme o f IOCs and 72
IOs from the semantic analysis o f knowledge base constructs

Table 5.1 Structure o f a case-based product support problem 94

Table 5.2 Content o f a case-based product support problem 94

Table 6.1. Documentation element attributes 131

Table 6.2 Documentation element attributes for different contexts 131

Table 7.1. Clutch subassemblies and attributes considered in the case study 147

Table 7.2 Technical specification o f the developed system components 149

Table 7.3 Technical specification o f PROGNOSIS system components 160

Table 7.4 Symbols used in case study 175

Table M.l Characteristics, their attributes, and values (weights) 224

Table 0.1 Differences between performance support, e-Learning, and context- 230
aware product support

xiv

Abbreviations

AM Activity Model

BOM Bill Of Materials

CALS Continuous Acquisition and Life Cycle S

CBR Case-Based Reasoning

CF Content Fragment

CO Content Object

CON Context

DF Data File

DITA Darwin Information Typing Architecture

DoD Department of Defence

EM Environment Model

EPSS Electronic Performance Support System

HYP Hypothesis

IB Information Block

IETM Interactive Electronic Technical Manual

10 Information Object

IOC Information Object Cluster

IPM Intelligent Product Manual

JSP Java Server Page

KB Knowledge Base

LO Learning Object

LOM Learning Object Metadata

LRU Least Replaceable Unit

MBR Model-Based Reasoning

MOD Models

OBS Observations

OWL Web Ontology Language

PAL Protege Axiom Language

PCD Performance-Centred Design

PDM Product Data Management

PM Physical Model

PROSON PROduct Support ONtology

PRSS PRoduct Support System

PS Performance Support

PSP Product Support Problem

PSS Product Support Solution

PSVD Product Support Virtual Document

RDFS Resource Description Framework Schema

RIO Reusable Information Object

RLO Reusable Learning Object

SCO Sharable Content Object

SCORM Sharable Content Object Reference Model

SGML Standard Generalised Markup Language

SHriMP Simple Hierarchical Multi-Perspective

SI Status Identifier

TM Technical Manual

UCD User-Centred Design

UI Unique Identifier

UM User Model

VD Virtual Document

W3C World Wide Web Consortium

XML extensible Markup Language

xvii

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Expanding domestic and international product competition markets have increased the

competition among global manufacturing organisations. As a result many industries

have chosen to adopt advanced manufacturing technologies that secure increased

product and volume flexibility, superior quality and lower manufacturing costs. The

introduction of these technologies requires effective training and product support

(Waldeck and Lefakis 2005). For instance, a survey conducted by SEMTA (2004)

shows that more than 2500 trainees are employed in the UK aerospace industry alone.

In addition, because of the continuously changing manufacturing requirements and

products, training materials rapidly become out of date, even just after two months of

their introduction. The evolving nature of the training requirements and the need to

help users to maximise different processes, actions, and strategies associated with a

product, require high quality product support (Mathieu 2001, Setchi et al. 2006).

In the last few years there has been a rapid progress in product support systems

because many technical barriers have been removed. Producing, storing and

transporting information in large quantities are no longer significant problems.

However, product support is still in its infancy in terms of information integration and

sharing. That is due to the multi-disciplinary nature of product support knowledge.

Stuckenschmidt and Van Harmelen (2005) state that the problem of information

sharing is only solvable by giving the computer better access to the semantics of the

1

information. Thus a challenge in product support is to define formally product

support knowledge and its semantics.

In addition, Pasantonopoulos (2005) notes that a product support framework that

would formalise the development of product support systems is required. The lack of

such a framework makes the process of delivering product support information much

more complex and reduces the degree of automation that can be introduced within a

continuously evolving Intranet/Internet environment. Another challenge therefore is

to develop a framework for product support.

The advent of new mobile devices and distributed networks raises the need of

providing context-specific information to the users (Setchi and Lagos 2006). As

Prekop and Burnett (2003) state, computer-based services should be adapted

according to the context of their use. That poses a new challenge to product support

systems that have to become more attentive, responsive and aware o f user's

environment and requirements.

1.2 AIM AND OBJECTIVES

The challenges discussed in the previous section are addressed in the rest of this thesis.

The overall aim is to provide consistent, up-to-date and customer-benefits driven

product support that actively assists the users. This research endeavours to integrate

knowledge engineering with product support and help bridge the gap between

conventional product support, where the support system is considered as a stand-alone

application, and the new paradigm of responsive one, where the support system

frequently communicates with its environment and reacts to stimuli. This new

2

paradigm would enable product support knowledge to be captured, stored, processed,

and updated automatically, and being delivered to the users when, where and in the

form they need it.

The individual objectives of the project are:

1. To define and product support knowledge.

2. To develop a semantic model of product support knowledge.

3. To develop a knowledge engineering approach and framework for product support

systems.

4. To create a conceptual model of context-aware product support systems that

supports context-specific delivery of information.

5. To create an approach for integrating product design and support documentation

data.

1.3 OUTLINE OF THE THESIS

The main body of the thesis comprises Chapters 2 to 7 (Fig. 1.1). Chapter 2 is a

review chapter. Chapters 3-6 address the objectives listed above. Chapter 7 provides

validation and verification of the research results. The final chapter, Chapter 8,

summarises the contributions and conclusions of the work and makes suggestions for

further research.

3

Motivation, aim, and
objectives of the
research

“ U

Related theory
including review of
relevant work and
main definitions

Main research
body

B/aluation of
research results

Contributions and
oondusionsofthe
research

Chapter 3
Product support

knowledge

Chapter 1
Introduction

Chapter 8
Contributions, condusions,
limitations and future work

Chapter 2
Review o f product support

systems and electronic
documentation models

Chapter 5
A knowledge-engineering

framework for product
support systems

Chapter 6
Context-aware product

support systems

Chapter 7
Verification and validation

Chapter 4
Semantic modelling o f

product support knowledge

Figure 1.1. Outline of the thesis

4

Chapter 2 consists of three reviews that provide background knowledge for Chapters

3-6. The first review discusses product support. The second review focuses on

semantics-related technologies and the application of knowledge engineering

techniques in current product support systems. The third review is dedicated to

content models and metadata in electronic documentation.

Chapter 3 addresses research objective (1). The chapter introduces a task-based

analysis of product support that leads to the definition of a PRoduct Support System

(PRSS) in terms of its ability of providing accurate and up-to-date information to the

user in a coherent and personalised manner. Product support knowledge is then

defined as the integration of product, task, user, and support documentation

knowledge.

Chapter 4 addresses research objective (2). It introduces a knowledge model that

represents the structure, relations, and attributes of product support knowledge. A

formal model of product support documentation is also introduced in terms of its

components. These are Information Objects (IOs) and Information Object Clusters

(IOCs). The discussion of the documentation model is followed by an analysis of the

relation between IOs, IOCs, and domain knowledge. Next, runtime commitments

based on the semantics of product support knowledge are discussed.

Chapter 5 focuses on research objective (3). It builds on the ontology-based

representation of product support knowledge and explores the synergy between

product support, problem solving, and knowledge engineering. Then, a structured

problem solving approach is introduced that defines and classifies product support

problems and utilises a multimodal reasoning strategy. The strategy combines case-

5

based adaptation and model-based generation techniques. Based on the proposed

approach a knowledge engineering framework for product support systems is

presented.

Chapter 6 addresses research objectives (4) and (5). It introduces a conceptual model

of context-aware product support systems that extends the framework described in

chapter 5. The conceptual model includes a formal representation of its context of use

in terms of an ontology. The ontology contains knowledge about the users, their

activities, the support environment, and device specifications and is further utilised

for adapting information delivery according to context-specific features. An approach

to semi-automatically integrating design and documentation data is proposed as a part

of context-aware product support systems development process.

Chapter 7 verifies and validates the research presented in chapters 4-6, by including

the descriptions of an integrated technology environment (PROSON) based on the

semantic models introduced in chapter 4, a product support system (PROGNOSIS)

developed according to the framework proposed in chapter 5, and an extended

context-aware version of PROSON that illustrates the research concepts described in

chapter 6.

Chapter 8 summarises the contributions made and the conclusions reached, the

limitations of this research, and suggests possible directions for further investigation

in related scientific areas.

6

CHAPTER 2

REVIEW OF PRODUCT SUPPORT SYSTEMS,

SEMANTIC TECHNOLOGIES AND ELECTRONIC

DOCUMENTATION MODELS

This chapter reviews technology approaches to providing electronic-based product

support information. First existing systems for electronic-based product support are

introduced. Particular attention is devoted to the features that differentiate them from

traditional paper based support and maintenance systems. The application of

knowledge engineering in product support systems is then reviewed within the

context of the latest semantic technologies developed for the Semantic web, with an

emphasis on the modelling and reasoning techniques being employed. The third part

of the review discusses electronic documentation in terms of the content models and

metadata used in e-training and e-leaming applications.

2.1 PRODUCT SUPPORT

2.1.1 Interactive electronic technical manuals

Product support consists of everything necessary to allow the continued use of a

product. Typical forms of support include installation, technical documentation,

maintenance, user training, product manuals, help lines, servicing, and equipment

upgrading (Goffin 1998; Pham et al. 2000).

7

One advanced approach to product support is that of Interactive Electronic Technical

Manuals (IETMs). IETMs build on the notion of Technical Manuals (TMs). TM is a

generic term for a document that explains how to use, maintain and handle a product

from its delivery to its disposal, and in addition gives any technical information that a

user is likely to need during the life of the product (BS4884-2 1993). Conventional

paper-based TMs, however, have led to the problems reported below (Wills et al.

2002; Crowder et al. 2001; Su et al. 1997):

• Large volumes of documents in a wide range of formats, which are highly cross-

referenced, resulting in time-consuming information acquisition.

• Widely dispersed documents with no immediate access and usability facilities.

• Difficult updating of documents leading to static, obsolete, and closed

information.

• Presentation of information from the technical writers’ viewpoint.

• Decontextualisation of information.

The NATO Continuous Acquisition and Life Cycle Support (CALS) initiative aimed

to increase the maintenance quality and operational readiness, reduce overheads and

improve the timeliness, by developing IETMs. An IETM is an interactive electronic

version of a technical manual that provides information about the diagnostics and

maintenance of complex mechanical systems of military or commercial nature (Boose

et al. 2003; Kraidli et al. 2003).

The U.S. Department of Defence (DoD) uses a scale of five classes of IETMs to

distinguish various levels of functionality offered. Classes I to III are electronically

8

viewable documents, ranging from page-based display (class I), to electronically

scrolling documents (class II), and linearly structured IETMs (class III) (Van Amstel

et al. 2000). Class IV IETMs are managed and authored directly via a database and

require the use of Standard Generalised Markup Language (SGML) as source format

(Boose et al. 2003). Class V IETMs support context sensitive navigation and optimise

viewing through context-sensitive content delivery. They also provide a number of

diagnostic services, by utilising intelligent diagnostics (Paul et al. 2003).

Su et al. (1997) state that the development process of an IETM should include

requirement analysis, data collection, display design (e.g. hypermedia editing), time

and resource planning, system integration analysis (e.g. integration with diagnostic

and expert systems), reuse studies, rapid prototyping (i.e. creation of a prototype),

multimedia selection, and testing/verifying the IETM.

IETMs utilise several technological advances in the areas of multimedia and

hypermedia technologies, knowledge engineering, virtual reality, and database

management (Wills et al. 2002) and have the following benefits over traditional

technical manuals (Paul et al. 2003; Crowder et al. 2001; Frost 1998).

• Reduced time required to diagnose appropriate maintenance/repair actions, as the

user is able to quickly locate the applicable technical information.

• Improved accuracy of maintenance diagnostics by utilising “smart” systems.

• Increased maintenance productivity, by empowering semi-skilled users and

novices and allowing skilled users to focus on complex tasks.

• Increased motivation, as they advance knowledge construction.

9

• Increase of maintenance reliability due to the availability of updated information

and exploitation of sensors.

• Reduced costs for printing, publishing, storage, and shipping.

2.1.2 Electronic performance support systems

Traditional training, which has been based on classroom instructions and treating

trainees as a homogeneous group, has several weaknesses that can be summarised as

follows (Ockerman et al. 1999; Raybould 1995; Bezanson 1995).

• Traditional training is geared towards increasing knowledge as opposed to

improving performance and is most often evaluated on learner satisfaction instead

of job performance.

• It is time-consuming and involves significant costs.

• It is done at a time other than when the employee needs to use the skill or

information.

• It is trainer-centred as opposed to learner-centred.

The above realisation led to the development of the performance support concept.

“Performance Support (PS) is a product or process attribute that aims to enhance user

performance, through a user interface and support environment that anticipates user

needs and supports them conveniently and effectively” (Bezanson 1995). The systems

that materialise PS are called Performance Support Systems or Electronic

Performance Support Systems (EPSSs). According to Joyce (2002), “an EPSS is an

electronic device which provides information, software tools, and procedural

knowledge, already available to the organisation, to an employee at their moment of

10

need, in order to enhance their performance of the task in hand”. The overall goal of

an EPSS is to provide the right information, at the right time, in the right place, in the

correct amount, and in the most efficient format (Forzese 1997).

There are different types of EPSSs that have been developed over the years. Benko

and Webster (1997) categorise them according to their integration with other

components and classify them as standalone EPSSs that are not integrated into the

target business application, integrated non-contextual EPSSs that are integrated into

the target business application but are not contextual, and integrated contextual EPSSs

that are integrated into the target business application and also offer contextual

support to the users.

There are three widely accepted design approaches to creating an EPSS. User-Centred

Design (UCD), minimalism, and Performance-Centred Design (PCD). UCD focuses

on understanding the needs of the user by involving users in every phase of the design

process, from establishing requirements through iterative testing and post-release

benchmark assessments (Mackenzie 2002). Minimalism aims to provide users with

some basic guidance in order to start performing real tasks immediately, while

allowing them to explore a system on their own (Mackenzie 2002; Forzese 1997). The

goal of PCD is to increase overall productivity within organisations by enabling

workers to complete meaningful tasks as soon as possible (Marion 2002). PCD should

make the systems consistent, and optimise what appears on the display, the system-

user interaction, the system’s behaviour, and the knowledge access and use (Gery

1995, Marion 2002).

11

Integral to the development of EPSSs has been the utilisation of advanced software

technologies. Multimedia, virtual reality and hypertext have been used for creating

user-oriented interfaces and systems (Cantando 1996). Knowledge engineering and

knowledge based systems have enabled the dissemination of expert knowledge

throughout the organisation (Raybould 2000). Information visualisation techniques,

collaborative filtering and software agents can individually aid in the decision making

and presentation processes (Quesenbery 2002).

EPSSs can provide the following benefits (Desmarais et al. 1997, Bastiaens 1999,

Cantando 1996).

• Enhanced productivity.

• Reduced training cost.

• Reduced learning time.

• Increased worker autonomy.

• Increased quality due to uniform work practices and knowledge capitalisation.

• Cost reductions because of less reliance on consultants.

• Increased customer satisfaction due to better and faster service support.

2.1.3 Intelligent product manuals

Intelligent Product Manuals (IPMs) are class V IETMs. IPMs are designed to allow

product users to utilise a product as easily, effectively and with as little additional care

as possible while minimising support costs for manufacturers and suppliers (Pham et

al. 2000). According to Pham et al. (1999a), “IPMs are computerised interactive

product support systems that use product life-cycle information, expert knowledge

12

and hypermedia to provide just-in-time support to the user during the life of the

product”.

IPMs use hypermedia, multimedia, and virtual reality for adapting the presentation to

individual needs, information and communications technologies (e.g. Web), and

knowledge based systems, for utilising product data as a primary source of

information, and concurrent engineering for integrating product data throughout the

life-cycle of the product (Pham et al. 1999b).

IPMs have all the potential advantages of IETMs and additionally have the following

beneficial characteristics (Pham et al. 1999a).

• Platform independence as their distribution is realised through WWW.

• Total integration of product support with product data, product life-cycle

information, expert knowledge, VR and hypermedia.

2.1.4 Maintenance systems

The trend toward increased automation has forced the managers to deploy

computerised maintenance systems to maintain the complex equipment and to keep

them in available state (Savsar 2006). These systems provide product support by

identifying faults at real-time and/or computing operational and maintenance costs.

However, the scope of these systems is different that the IETMs, EPSSs, and IPMs

described in previous sections because instead of focusing on the user interaction

aspects they are designed for product monitoring and fault identification (Gharbi et al.

2007). This means that user related dimensions that are in the focus of this work are

not researched in maintenance systems.

13

2.1.5 Discussion

The technologies reviewed in section 2.1 indicate that electronic-based support has a

number of advantages when compared to the paper-based one. Different approaches

to product support systems have been developed, which are often described in terms

of their purpose and features, enabling technology, development stages, and benefits.

The following can be noted.

1. Most of the research in this area indicates the complexity of the domain, since

knowledge is integrated from a number of engineering and non-engineering fields.

2. All technologies discussed share a lot of common characteristics although they

have evolved independently of each other.

3. The advances achieved in each research domain can be further exploited by

enabling the synergy between them. A formal approach towards developing a

unified product support framework is therefore required.

2.2 KNOWLEDGE ENGINEERING IN PRODUCT SUPPORT

SYSTEMS

2.2.1 Knowledge engineering vs. knowledge management in product support

Knowledge engineering can be defined as “the acquisition of knowledge in some

domain from one or more non-electronic sources, and its conversion into a form that

can be utilised by a computer to solve problems that, typically, can only be solved by

persons extensively knowledgeable in that domain” (Gonzalez and Dankel 1993).

14

The importance of integrating knowledge engineering practices into the development

of product support systems has been recognised by several researchers. Kabel and

Kiger (1997) state that “job tasks involved in the creation of knowledge are very

different than those traditionally expected from technical writers and educators” and a

systematic approach towards the effective development of knowledge is needed

(Setchi et al. 2005). Raybould (2000) says that knowledge and support resources

become increasingly integrated while “information systems are moving from the data

management age into the knowledge management age, in which...the database is

being augmented by a knowledge base”.

However, research has focused on the dissemination and distribution of knowledge

(knowledge management) rather than on modelling it and reasoning with it

(knowledge engineering). Representative knowledge management examples include

metadata-based Product Data Management (PDM) systems and languages (Ruland

and Spindler 1995, Burkett 2001) and performance-centred portals (Elsbemd 2001).

Only recently, the combination of structured, domain-specific and application-specific

models with intelligent reasoning techniques has received significant attention (Setchi

and Lagos 2005). As Stary and Stoiber (2003) note, “existing approaches lack

structured representation of performance data and mechanisms for transforming that

data into applicable knowledge”.

Recent interest in knowledge engineering is due to the following potential benefits to

product support (Brusilovsky and Cooper 2002, Coffey et al. 2003).

• Knowledge models are a natural way of formally representing the real world in a

form that can be processed by computers.

15

• Knowledge pertains the meaning of information and therefore decisions can be

more accurately formulated.

• Knowledge engineering has widely researched problem-solving and decision

making processes and has proved to be useful in practical applications.

• Knowledge management techniques can help in disseminating knowledge

throughout the organisation for faster learning and training.

Russell and Norvig (1995), however, state that the knowledge engineer must

understand well the application domain before representing the important objects and

relationships or deciding about the implementation of inference procedures. Sections

2.2.2 and 2.2.3 include a review of representation and inference techniques used in

product support.

2.2.2 Semantics-based technologies

2.2.2.1 Semantic Web

The Semantic Web is envisioned as an extension of the current web where, in addition

to being human-readable, documents are annotated with meta-information. This meta

information defines what the documents content is in a machine processable way. The

explicit representation of meta-information, accompanied by domain theories, will

enable a web that provides a qualitatively new level of service (Davies et al. 2003).

2.2.2.2 Ontologies

The term ontology was first used in philosophy. In that context, ontology is a theory

about the nature of existence or the kinds of being (Woolf 1981); as discipline

ontology studies such theories and its origin is from the Greek ontos (being). Artificial

16

intelligence and Web researchers have co-opted the term for their own jargon, and for

them ontology is a document of file that formally defines the relations among terms.

The most typical kind of ontology for the Web has taxonomy and a set of inference

rules (Bemers-Lee et al. 2001). Thus a piece of formally represented knowledge is

based on conceptualisation. Conceptualisation means that a number of objects,

concepts, relations and other entities can represent and express knowledge. An

explicit specification of this conceptualisation is called ontology (Gruber 1993).

Basic element of ontology development is the representation language that is used.

Most of the initial languages that were proposed, had a first order logic basis.

Nowadays, the Web Ontology Language (OWL), is an ontology language standard. It

is based on the following elements (W3C 2007).

• XML - provides a surface syntax for structured documents, but imposes no

semantic constraints on the meaning of these documents.

• XML Schema - is a language for restricting the structure of XML documents

and also extends XML with datatypes.

• RDF - is a datamodel for objects ("resources") and relations between them,

provides a simple semantics for this datamodel, which can be represented in

an XML syntax.

• RDF Schema - is a vocabulary for describing properties and classes of RDF

resources, with a semantics for generalization-hierarchies of such properties

and classes.

• OWL adds more vocabulary for describing properties and classes: among

others, relations between classes (e.g. disjointness), cardinality (e.g. "exactly

17

one"), equality, richer typing of properties, characteristics of properties (e.g.

symmetry), and enumerated classes.

2.2.3 Knowledge representation in product support systems

In knowledge system applications, domain knowledge is encoded by a wide variety of

knowledge representation techniques (Yao and Etzkom 2006). Such techniques may

utilise among others semantic networks, which indicate relations among concepts

(Khalifa and Liu 2006), frames, which include attribute-value pairs (Comet and Abu-

Hana 2005), objects, which except for the domain knowledge represent control

information (Bronson and Rosenthal 2006), and ontologies that facilitate knowledge

sharing and reuse (Davies et al. 2003).

In product support the need to represent the knowledge of the domain has only

recently been acknowledged. Developed models focus on user classifications, product

and/or task structures, and how these are integrated. For example, the adaptive

product manual developed by Pham and Setchi (2000) is based on using product, user

and task models. These models are integrated within a knowledge based system which

uses cases that represent previously solved situations.

A similar approach is adopted by Brusilovsky and Cooper (2002) who utilise

integrated domain, task, and user models supporting the maintenance of equipment.

The domain model represents the hierarchy of systems, subsystems and components,

while the task model includes maintenance tasks, sub-tasks and steps. The

components of the task hierarchy are connected to the components of the domain

model. The three models are integrated in an expert system.

18

Latest research in product support indicates a trend towards semantic data modelling.

For instance, Pham et al. (2003) employ a semantic data model to generate virtual

documentation. The model is based on data usage analysis, which abstracts the

intended purpose of the product and task data elements, and their functional

characteristics. McMahon et al. (2004) also propose the use of a system model that

includes concepts, constraints, and documents, and Setchi and Lagos (2006a) present

a methodology for authoring technical documentation based on identified semantics.

Stary and Stoiber (2003) report a model-based approach that allows to structure and

(de)compose a business process at hand into system functions and task-based user

interactions for performance support. Their conceptual framework includes task, user,

data, and interaction models that detail the organisation from different viewpoints.

2.2.4 Problem solving and reasoning techniques in product support

Research in Al has greatly benefited from using problem solving techniques (Dale

and Weems 2005). For example, divide and conquer and building block techniques

are employed in rule-based reasoning, where expert knowledge is represented using

rules (Kolodner 1993). Solving by analogy is utilised in Case-Based Reasoning

(CBR), which retains and reuses previous solutions generated by the system

(Gonzalez and Danker 1993). Means-ends analysis is used in Model-Based Reasoning

(MBR), which employs general knowledge about the application domain (Gonzalez

and Danker 1993). Each technique is applicable in different circumstances. Rule-

based technique is appropriate for applications that necessitate modular development

and uniform knowledge representation. Case-based reasoning is preferred in situations

where the domain is not well known but experiences can be easily used to enrich the

19

knowledge of the system. Model-based reasoning is used when the application

domain is well known and especially if its causality characteristics are thoroughly

understood (Kolodner 1993, Gonzalez and Danker 1993).

Studies show that the most common Al technique used is rule-based reasoning, which

is primarily employed in troubleshooting. Paul et al. (2003), utilise intelligent

diagnostics in combination with an IETM for supporting the operation of a radar

warning receiver. The role of the diagnostic tool is carried out by an expert system

that analyses faults and suggests corrective actions. Coffey et al. (2003) have also

developed a system that uses an expert system for providing training to electronics

technicians.

In addition, a number of researchers have used CBR for diagnosis and help-desk

applications. Foo et al. (2002) utilise CBR in combination with neural networks for

producing a help-desk-support environment, while Auriol et al. (1999) use a CBR

system in the troubleshooting of a welding robot.

Model-based reasoning has received less attention compared to the two previous

techniques. An example is the research of Brusilovsky and Cooper (2002), who

employ models for adapting the interface of a performance support system and

creating a problem solving engine. Gruber et al. (1997) have also used model-based

reasoning to document engineered systems in support of collaborative design and

simulation-based training.

Latest attempts focus on the integration of different reasoning techniques. For

instance, Pham and Setchi (2003) develop adaptive product manuals by combining

20

CBR for interpreting user’s requests and rules for adapting the generated documents.

In addition, Setchi and Lagos (2005) propose the use of a model and case-based

reasoning approach for creating electronic documentation.

2.2.5 Discussion

This section has reviewed knowledge engineering applications in product support in

terms of the knowledge being represented and the reasoning techniques that have been

utilised. The review has highlighted the following points.

1. There is a noticeable trend towards knowledge-based support delivery.

2. Knowledge engineering can be beneficial in the development of models or

reasoning algorithms for advanced support systems.

3. Although previous studies address the use of knowledge engineering practices in

product support, they do not follow a uniform approach towards the development

of their knowledge bases. As a result, a major limitation of the previous work is

the lack of design and knowledge reusability.

4. Existing approaches lack mechanisms for transforming product support data into

applicable knowledge.

5. Although most recent research approaches adopt a hybrid reasoning strategy by

applying combination of reasoning techniques, the application of multi-modal

reasoning in product support systems has not been thoroughly researched.

6. Most of the attempts till now are application oriented, although they share similar

characteristics in both modelling and inference phases.

21

2.3 CONTENT MODELS AND METADATA IN ELECTRONIC

DOCUMENTATION

2.3.1 Content models and components

Technical documentation and e-leaming are the main research areas where content

modelling design has been applied. Technical documentation has adopted paradigms

such as the Information Object, Information Block, and DITA, while e-leaming

involves the SCORM, CISCO RLO/RIO, Leamativity, and ALOCOM models, which

are largely based on the notion of the Learning Objects.

2.3.1.1 Information object

Tucker and Harvey (1997) define the Information Object (IO) as “a locution of

product data that describes one idea”, focusing on technical documentation.

According to Ranwez and Crampes (1999) and Vercoustre et al. (1997) the notion of

an IO advances reusability by segmenting the content of a virtual document into

information groups that can be related to each other and combined produce a Virtual

Document (VD).

Setchi (2000) extended the previous work by claiming that IO is “a data structure that

represents an identifiable and meaningful instance of information in a specific

presentation form”. Pham and Setchi (2003) and Lagos et al. (2005) view an IO as an

entity, which has structure, presentation, and semantics (meaning) clearly separated.

Pham et al. (2003) adopts a representation of the user’s purpose in terms of IO

attributes. Pasantonopoulos (2005) indicates that the use of IOs has several

advantages including information reuse and structuring, as well as conceptual

22

separation. Utilising these characteristics, Pasantonopoulos (2005) proposes that the

IO should be transformed from a static entity into a dynamic object with embedded

intelligence.

One of the main concerns in developing IOs has been their modular structure. Setchi

(2000) organised IOs into Information Elements according to their content, while

Huneiti (2004) clustered IOs based on their usage purpose. Preserving the semantic

distinctiveness of any related IO structures is necessary for enabling further reuse.

2.3.1.2 Information block

Horn (1999) introduced the concept of Information Blocks (IBs) as a basic component

of a structured writing approach. IBs replaced the paragraph as “basic units of subject

matter” and have been developed according to the following four main principles.

• The chunking principle, which states that all information should be grouped into

small, manageable units, called information blocks and information maps. Small

(in information blocks) is defined as usually not more than 7 plus or minus 2

sentences.

• The labelling principle, where each label describes a number of specific criteria

characterising every chunk and group of chunks.

• The relevance principle, which says that only information that relates to one main

point, based upon that information's purpose or function for the reader, should be

included in each chunk.

• The consistency principle, which asserts that for similar subject matters, similar

words, labels, formats, organizations, and sequences, should be used.

23

Horn (1999) has defined about 200 types of IBs including comment, definition,

description, diagram, and example, and argues that IBs in the domain of relatively

stable subject matter (such as product support documentation) can be sorted into

seven basic classifications, which are called information types and which are namely

procedure, process, concept, structure, classification, principle, and fact.

2.3.1.3 Darwin information typing architecture

The Darwin Information Typing Architecture (DITA) is an XML-based, end-to-end

architecture for authoring, producing, and delivering technical information (Day et al.

2005). Like Information Blocks, DITA consists of a set of design principles for

creating “information-types”. However, DITA is topic oriented, meaning that the

topic is the most abstract standard structure. Topic in DITA has no internal

hierarchical nesting but rather relies on sections that define or directly support it

(Hennum 2005).

Furthermore, the seven information types of IB are replaced by three other types in

DITA, which are namely the concept, reference, and task ones (OASIS DITA 2005).

• The concept provides background that helps readers understand essential

information about a product, interface, or task. Often, a concept is an extended

definition of a major abstraction such as a process or function. Conceptual

information may explain a product and how it fits into its category of products.

• Tasks are the essential building blocks for providing procedure information. A

task topic provides precise step-by-step instructions for performing a task.

24

• Reference topics are often used to cover subjects such as the commands in a

programming language and provide quick access to facts. Information needed for

deeper understanding of a reference topic or to perform related procedures should

be provided in a concept or task topic.

The above topics include the IB types (e.g. concept is an extended definition of a

process, application, etc) and can also be specialised in order to extend the generic

topics into new information types.

Verbert and Duval (2004) have compared DITA and IB and have identified the

following weaknesses and strengths. DITA has a very flexible architecture as it

permits any type of content structure to be defined but it is still under development

and unsupported by tools. Horn’s IBs are much further evolved and well documented

but they are mainly an authoring environment rather than an information architecture

like DITA (Namhan 2001).

2.3.1.4 Learning object

During the last few years e-leaming has been recognised as an internal part of lifelong

learning and training. It is defined as “the use of new multimedia technologies and the

Internet to improve the quality of learning by facilitating access to resources and

services, as well as remote exchange and collaboration” (COM 2001). The Learning

Object (LO) has been introduced as a way of reusing and repurposing e-leaming

content.

25

According to the Learning Object Metadata standard a learning object is “an entity,

digital or non-digital, that may be used for learning, education or training” (IEEE

LOM 2002). Although learning objects have been often regarded as traditional

documents, a number of recent approaches propose their fragmentation or

composition into other entities, in order to produce electronic resources that will serve

a learning purpose. As Duval and Hodgins (2003) claim, the IEEE LOM (2002)

definition allows for an extremely wide variety of granularities, a problem addressed

by the following content models.

2.3.1.5 Sharable content object reference model

The Sharable Content Object Reference Model (SCORM) content aggregation model

supports the process of creating, discovering and gathering simple learning assets, in

order to produce more complex learning resources (ADL 2004). The model has three

main components; Assets, Sharable Content Objects (SCO), and Content

Organisations. Assets are an electronic representation of media, such as text, images,

and sound that can be rendered by a Web client and presented to a learner. A SCO is a

collection of one or more assets. A Content Organization is a map that represents the

intended use of the content through structured units of instruction (Activities) and

relates the components to each other. The SCORM model proposes the use of meta

data (acquired from the IEEE LOM (2002) standard, which is discussed in a

subsequent section) for describing each of the SCORM content model components.

2.3.1.6 CISCO reusable learning object/reusable information object

The Reusable Information Object (RIO) Strategy has been introduced by CISCO

systems (CISCO 1999). An RIO is a granular, reusable chunk of information that is

26

media independent and 7 ± 2 RIOs compose a Reusable Learning Object (RLO). Each

RIO is composed in turn of content, practice, and assessment items and is built upon a

single objective, while it can be classified as either being a Concept, Fact, Process,

Principle or Procedure. A set of metadata is used to characterise each level of

components (e.g. Strand for the RLO denotes the major topic area).

2.3.1.7 Learnativity model

The Learnativity content model has been used to organise the content of e-Leaming

and knowledge management applications. It consists of the following levels (Wagner

2002); content assets that are raw media elements (e.g. a single sentence), information

objects that are sets of raw media elements (such objects could be based on Horn’s

IBs (Verbert and Duval 2004)), learning objects that organise the components based

on a single objective (more restricted sense than the definition of LOM given by the

IEEE), learning components that correspond to more conventional lessons and

chapters, and learning environments that refer to learning components wrapped with

additional functionality such as communication tools and peer-to-peer computing. The

learnativity model proposes general rules for assigning metadata to each of the levels

(e.g. contextual information should be added at the learning object level).

2.3.1.8 ALOCOM

ALOCoM is a general content ontology that defines a framework for LOs and their

components (Verbert and Duval 2004). The ALOCoM ontology distinguishes

between Content Fragments (CFs), Content Objects (COs) and Learning Objects

(LOs). Content fragments are learning content elements in their most basic form, like

text, audio and video. Content objects aggregate content fragments and add

27

navigation. Navigation elements enable structuring of content fragments in a content

object. For defining content object types, the DITA model has been used, including

except for the three general types (i.e. task, concept, reference) other building blocks

such as definitions, sections, paragraphs, lists and comments. Finally, LOs aggregate

content objects and add a learning objective.

ALOCoM is different than previous approaches because it defines an ontology for its

underlying content model. However, metadata for describing each content component

have not been defined yet, while the definition of more content object types is still

under development.

2.3.2 Metadata

Metadata (or data about data) is a set of elements used to describe a resource (Dublin

Core 2005a). For example a book can have metadata corresponding to the author, the

publication date, and the subject keywords. The more widely used metadata standards

in e-Leaming and electronic documentation are the IEEE LOM and Dublin Core ones.

2.3.2.1 IEEE learning object metadata

The IEEE Learning Object Metadata (LOM) standard includes simple and aggregate

data elements that can be at different levels of granularity, with grade 1-4 (described

by the Aggregation Level flag). The LOM has nine main categories as follows (IEEE

LOM 2002).

• The general category that has general information describing the LO such as a

Title and some Keywords.

28

• The lifecycle category that describes the history and current state of an LO with

metadata such as Version, Status, and Date.

• The meta-metadata category, which explains the metadata record itself (e.g.

Identifier flag describes a unique label for a metadata record).

• The technical category which identifies the Format, Size, Type and other relevant

hardware/software related data.

• The educational category that defines the role of the user within the learning

environment (e.g. Interactivity identifies whether the user is actively involved in

the learning process (for example with questionnaires) or just passively absorbs

information) and the learning Type of the LO (e.g. exercise). Other interesting

metadata used to characterise an individual within this category include the

Intended User Role (i.e. manager, educator, learner, etc.), the Context (i.e. higher

education, school, training, etc.), and Difficulty (i.e. easy, medium, difficult, etc.).

• The rights category defines the intellectual property rights (e.g. Cost).

• The relation category, which is used to describe the links between different LOs.

The most important metadata in this category are Kind (adopted from Dublin Core

and including isPartOf, references, hasPart, isRequiredBy, etc.) and Resource (i.e.

the target LO).

• The annotation category, that provides comments on the educational use of the LO

(e.g. Description specifies the content of the annotation).

• The classification category, which describes where the learning object falls within

a classification system. Some of the metadata defined in this category are Taxon

(i.e. a particular term within a taxonomy), Purpose (e.g. discipline, idea, pre

requisite), and Keyword (i.e. phrases descriptive of the LO).

29

2 3 .2.2 Dublin core

The Dublin Core Metadata is an element set for describing networked resources

(Dublin Core 2005b). The Dublin Core has defined an element set used to describe

the content of the resource (i.e. Title, Subject, and Description), the nature or genre of

the content of the resource (i.e. Type, for example “image”), its relation to other

resources (the same as Kind in the relation category in IEEE LOM), and other

administrative (e.g. Creator, Publisher, and Date) and rights related information (e.g.

Provenance, RightsHolder, etc.). One of the characteristics of the Dublin Core is that

it proposes the use of controlled vocabularies for defining the values of the introduced

metadata (no vocabulary is however presented since the standard addresses general

requirements).

2.3.3 Discussion

The need to replace the paragraph with other electronic documentation constructs has

initiated the development of a number of different document modelling approaches. In

this section, these are distinguished according to the content models and metadata

used to describe the documentation components. The following conclusions can be

derived from this overview.

1. The work on IBs and structured writing affirms that the traditional paragraph is

not appropriate as a construct of hypermedia documentation, especially in

structured areas like that of technical writing and product support.

2. Although, IOs and IBs share some common principles like modularity and

labelling, the rules in developing IBs are much more stringent than in the case of

IOs.

30

3. To the knowledge of the author, IO is the only documentation construct which has

structure, presentation, and semantics clearly separated.

4. Although a number of different content models have been proposed, there is a

great diversity between granularities and encoding formats. All these need to be

uniformly represented with a formal language.

5. DITA is one of the most popular content models nowadays.

6. There is a trend towards developing an ontology for electronic documents.

7. The study of the metadata models indicates that the value of metadata attributes

should be based on structured vocabularies of the domain.

8. Metadata specifications define documentation objects relations on a syntactical

rather than on a semantic level. This emphasises the fact that the semantics of the

relations between different documentation components should be further

researched.

31

CHAPTER 3

PRODUCT SUPPORT KNOWLEDGE

This chapter addresses the first objective of this work and focuses on defining product

support knowledge. The chapter analyses product support from a task-based point of

view and accordingly introduces the concept of a PRoduct Support System (PRSS).

Next it outlines the elements of product support knowledge and illustrates their

definitions. Finally, conclusions are discussed.

3.1 ANALYSIS OF PRODUCT SUPPORT

In this chapter, product support is analysed in terms of the tasks involved. A task is

defined as a strategy, which is followed in order to achieve a specific goal (Wielinga

et al. 1993) and could be decomposed into subtasks, and actions. An action is a

primitive operation needed for a task to take place. For example, repairing a product is

considered a task that includes subtasks like ‘locate’, ‘remove’, and ‘examine’ the

faulty part and actions such as ‘unscrew a bolt’. Therefore, a task can be represented

in a formal way as follows.

 ̂ (3-1)

where G is the goal of the task, fT denotes the transformation that takes place within

a task, Rt is the input to the task, and CT are the constraint(s) that are encountered at

32

different levels of granularity Y for reaching a specific goal. Granularity is the degree

to which a task can be decomposed in different subtasks, for achieving a goal.

Equation (3.1) shows that a task’s goal depends on the input that the transformation

process (i.e. transformation from resources to task outcomes) receives and to the

constraints that control it. The input of a task includes the resources available. The

optimal situation is to have all required resources available just-in-time and just-in-

place. In product support, these include tools, equipment, data, information,

personnel, facilities, computers, supplies, spare components, experience, skills and

knowledge. The input therefore can be represented as a number of sets {/£,,...,/£},

where each set stands for a different type of resource needed to achieve the goal.

R t — { R i , . . . , R p } p

where p is the number of the resources’ sets, for example, R} = tools,

R2 = equipment, R3 = knowledge, and so on. Each of these sets contains several

members that are needed to complete the task. Consequently, if rx = screwdriver,

r2 = hammer, r3 = spanner, etc., then Rx ={rlv ..,/*,}, where / denotes the number of

tools that are included in R}.

Therefore, a task can be redefined as follows.

G = M(Rl,...,Rp),CT,Y) (33)

where CT is a set representing the constraints ck.

CT - { ci,~-,ck} (3 4)

33

Typical constraints that need to be satisfied in product support include requirements

related to cost, quality and safety, as well as conformance to standards and

regulations.

The applicability of (3.3) will be illustrated with two examples of maintenance tasks

that show cases when product support is needed (Fig. 3.1).

Example 1: Corrective maintenance. Problem: flat tyre.

In order to insert a new tyre, several resources are needed like tools- Rx (e.g. spanner),

equipment - R2 (e.g. jack) and knowledge- R3 (skills to perform the task). If one of

these resources (e.g. R3) is missing, then the user will require support (e.g. user

manual) in order to fix the car. Additional knowledge is hence needed for completing

the task, which is provided by product support and according to equation 3.3 is

InsertTyre = (3.5)

Example 2: Preventive maintenance. Problem: worn out tyre.

The user may need to change the tyre, although it is not flat, because it is worn out.

The constraint in this case is the legal minimum thread depth of the main grooves of

car tyres - cx (in the UK and the EC, it is 1.6mm). The existing resource in this case

(the tyre- rx) does not satisfy the safety requirements. The delivery of a new tyre to the

user that is within the specified boundaries denotes again a product support task,

which according to equation 3.3 can be represented as follows.

ChangeTyre = f chmgeTyn (Rcompom„,s (tyre), CchmgeTyre (LawThreadDepth), Y) (3.6)

34

Resources needed
for task completion

R n

Product support
required

Existing resources

Figure 3.1. The need for product support

35

Statement 1: Product support is needed when there is a lack o f resources for

completing a task and/or when the existing resources do not satisfy specific control

constraint (s).

3.2 PRODUCT SUPPORT SYSTEMS

As mentioned in chapter 2, intelligent product manuals, interactive electronic

technical manuals, and electronic performance support systems are some of the forms

used to deliver product support to the end users. These systems utilise electronic

means and technologies (e.g. World Wide Web) in order to provide information to the

user.

However nowadays, effective product support requires more than just electronic-

based provision of information. Cliff (1999) claims that “information is not power but

organised information is strength, accurate information is essential and up-to-

date/new information is valuable”. In accordance, Pham et al. (2002) have defined

several requirements for an IPM to be effective including the ability of supporting

different categories of users in different activities and the availability of highly

accurate information. Furthermore, in a visionary paper on EPSSs in the 21st century,

Raybould (2000) argues that the convergence of knowledge engineering and

performance support is essential for information overload to be avoided.

In addition to the aforementioned characteristics, product support systems should

extend their features in order to enable the provision of accurate and up-to-date

information to the user in a coherent and personalised manner. Consequently, a

product support system can be defined as follows.

36

Definition 1. A PRoduct Support System (PRSS) is an electronic medium that aims to

compensate the lack o f knowledge o f the user in a particular subject or situation

related to a product by providing accurate and up-to-date information in a coherent

and personalised manner.

The implications of the last characteristic on the design of PRSSs are numerous.

1. Up-to-date information in a dynamic environment like that of product

development and exploitation means that the product support system has to be

integrated into the product lifecycle.

2. Accurate information can be provided only if the knowledge underlying

PRSSs is formally defined, rigidly structured, and semantically organised.

3. Coherency can be achieved if the domain knowledge is consistently

represented and its relation with product support is formally described.

4. Personalisation of delivery and presentation indicates that knowledge about

users and tasks should be modelled and included within the product support

system.

Nevertheless, as demonstrated in chapter 2, although current research addresses the

use of knowledge engineering practices in product support, requirements (1), (2), and

(3) have been only partially considered. It is believed that this could become an

obstacle in the nearest future when a new generation of much more complex and

highly customized products emerges. The rest of this chapter identifies the knowledge

contained within a knowledge-based PRSS as an aggregation of product, task, user,

and documentation knowledge.

37

3.3 DEFINITION OF PRODUCT SUPPORT KNOWLEDGE

3.3.1 Product support knowledge elements

The goal of any product support system is to deliver knowledge that is accurate,

applicable, reliable and user-tailored. In order to do that, it should be able to process

and analyse thorough, detailed and up-to-date knowledge of the domain of interest.

Consider the example of a novice user having to change a tyre. Two typical questions

that the product support system should be able to answer are:

• What tyre should be chosen?

• How should it be inserted?

Therefore the system should have knowledge about the products, tasks, and users

supported.

• Product. In this case, it is useful to know the characteristics and specifications of

both the vehicle and its tyres. For example, vehicle related information can be

utilised to specify the required tyre size (e.g. 21" tyre) and/or material (e.g.

rougher rubber compounds are needed for larger vehicles).

• Task. The series of actions that should be followed to insert a tyre can be realised,

as long as the initial and goal states are known and knowledge about each action

exists.

• User. The representation of the solution that the product support system delivers is

based on the knowledge it has about the user. If the user is novice, detailed static

images can be replaced or supported by animated multimedia (e.g. flash

38

animations) and examples. If the user is more experienced, a textual description of

the main steps would be sufficient.

As illustrated, the product support knowledge base should contain relevant knowledge

about the products, users, their tasks, and the way in which these are linked to each

other in product documentation (Fig. 3.2).

Statement 2: I f the knowledge available in a product support system is KPRSS, product

knowledge is Kp, user knowledge is Ku and task knowledge is Kt, then for the

product support system to be able to deliver efficient support, the following formal

requirement must be satisfied.

KpvKuvK,cKPSSS (3.5)

Recent research has developed approaches for modelling product support systems (i.e.

user-centred, task-centred, and performance-centred design). However, there are

currently no uniform definitions of product, task and user knowledge within this

application area. This section attempts to fill this gap.

3.3.2 Definition of knowledge

According to Webster (2006), Oxford (2006) and Cambridge (2006) dictionaries, the

word ‘knowledge’ has the following meanings:

• Perception; clear perception of fact, truth or duty.

39

Product's. Tas User
knowledge/ knowledg knowledge

Product y support / knowledge

Product support
virtual

documentation

Figure 3.2. Product support knowledge

• Apprehension, awareness, experience; Familiarity, awareness, or

understanding gained through experience or study.

• Learning; a branch of learning, a science.

• Information; the body of facts accumulated by mankind, specific information

about something, information acquired.

In the study of Kakabadse et al. (2003) knowledge is defined as “information put to

productive use”. That highlights the fact that knowledge is created and applied within

specific application context.

Plato’s definition of knowledge as “justified true belief’ (Plato 2006) and Yim’s et al.

(2004) as “awareness of the efficiency and effectiveness of different actions in

producing outcomes based on experience” emphasizes the highly subjective nature of

knowledge, the fact that it is normally based on individual perceptions.

Several researchers (Kakabadse 2003, Nonaka 1994, Gunnlaugsdottir 2003, Bose

2003, Liebowitz and Megbolugbe 2003) concentrate also on the transformation of

data into information, and then knowledge. Data is viewed as raw elements, which if

organised in explicit way, form information. Knowledge is created when the

information is structured according to certain purpose, context or perception.

Accordingly, Nonaka (1991) argues that Western management sees knowledge as

formal and systematic, captured in codified procedures (Belogun and Jenkins 2003).

Strengthening that opinion, Stefik (1995) states that “knowledge in terms of the

knowledge systems refers to the codified experience of agents”.

41

Following this discussion, information is viewed in this thesis as the building block of

knowledge, whether it is derived from direct or indirect experience, study, or learning.

However, the information acquired cannot be transformed into knowledge unless its

meaning is apprehended. This understanding is tightly related to the purpose, context

and beliefs within which knowledge is interpreted. Furthermore, the transformation of

information in knowledge depends on the cognitive abilities of the individual users.

The following working definition of knowledge is adopted in this work.

Definition 2. Knowledge is a specific semantic interpretation of information.

In the terminology of logic, “interpretation” is a mapping from statements to

conceptualisation. In this definition, “specific interpretation” means that knowledge is

context-dependent and therefore inherently different for each individual. “Semantic

interpretation” denotes that the mapping to conceptualisation is carried out using

semantics.

3.3.3 Product knowledge

Kaposi and Myers (2001) define a product in terms of its attributes and processes and

the interrelations between them, while others (e.g. Oxford dictionary (2006))

concentrate on its property of “being produced”.

Ahn and Chang (2004) concentrate on the distinction between product and process

and state that “in a knowledge intensive firm, product is the explicit output of the

value-adding activities or production”, describing product as the explicit outcome of a

42

process. In the product support area, products are both tangible (e.g. vehicle) and

intangible (e.g. software).

According to the above discussion, a product within product support is defined as

follows.

Definition 3. Product is an entity of interest created by a process (Kaposi and Myers
2001).

In the above definition the meaning of the word “entity” is adopted by ISO 8402

(1994) and is “that which can be individually defined or considered”.

To facilitate a product knowledge definition, the meaning of product data and

semantics is first considered, because product knowledge merges and extends the

notions of product data and semantics as it includes and relates both of them.

In accord with ISO 10303-1 (1994), product data is “a representation of information

about a product in a formal manner suitable for communication, interpretation, or

processing”. In addition, Petiot and Yannou (2004) claim that product semantics is

“the study of the symbolic qualities of man-made forms in the context of their use,

and application of this knowledge to industrial knowledge”.

Ahn and Chang (2004) analyse product knowledge from the perspective of business

performance and classify product knowledge into tacit and explicit, claiming that

“tacit product knowledge is product-specific know-how that cannot be easily

expressed and it resides on the human brain. Explicit product knowledge is the

43

knowledge accumulated in a knowledge repository...product knowledge tends to be

object-oriented, focused on a specific product”.

Definition 4. Product knowledge is a formal, temporal representation of the specific
semantic interpretation of information, associated with an entity of interest created by
a process.

Or

Product knowledge is a formal, temporal representation of the knowledge related to
the product.

The representation of information should be formal, as it has to be suitable for

communication, interpretation, or processing, as required by ISO 10303-1 (1994).

Moreover, it should be temporal, because it is valid only for a specific instance or

period of time during which the information remains unchanged. Valid means that the

information is within certain correct boundaries.

3.3.4 Task knowledge

A product support system should be able to advise the user on the sequence of actions

or the strategy that should be followed to reach a specified goal. The definition of a

task given by Wielinga et al. (1993) is adopted in this study as it reflects the above

description.

Definition 5. Task is a strategy, which is followed in order to achieve a specific goal
(Wielinga et al. 1993).

44

Liebowitz and Megbolugbe (2003) also describe tasks in terms of their goals and

sequence of actions. So, they claim that “task knowledge describes which goal(s) an

application pursues and how these goals can be realised through decomposition into

tasks and inferences”. In the same manner, task knowledge for a product support

system is defined as follows.

Definition 6. Task knowledge is a formal, temporal representation of the specific
semantic interpretation of information, which defines a strategy followed to achieve a
specific goal

Or

Task knowledge is a formal, temporal representation of the knowledge related to the
task

3.3.5 User knowledge

Several definitions for the word “user” can be found in the literature. Their common

characteristic is that they are all system oriented. This means that they are formed

according to a reference system and its expected utilisation. As far as a product

system is considered, user and user knowledge are defined as follows.

Definition 7. User refers to any person, group or functional unit that directly
interacts with a system.

Definition 8. User knowledge is a formal, temporal representation of the specific
semantic interpretation of information, associated with a person, group or functional
unit that directly interacts with a system.

45

Or

User knowledge is a formal, temporal representation of the knowledge related to the
user.

3.3.6 Product support virtual document

Product support knowledge is composed by product, task, and user knowledge and the

understanding of the way in which these are integrated with each other in a product

support system. The integration is achieved through product support electronic-based

documentation.

One of the main reasons for the success of electronic-based documentation is its

ability of re-purposing its components according to the requirements. For example, in

many cases a paragraph or a sentence can be reused by copying and pasting in

different documents. However, it is possible to reuse documentation elements in a

more sophisticated way if accessing and processing them at run-time is possible. In

order to do that, a flexible and dynamic but also rigid and formal underlying model of

product support virtual documents is needed. As a first step towards that the notion of

a product support virtual document is defined in the remaining of this section.

The Oxford dictionary (2006) describes a document as “a piece of written, printed, or

electronic matter that provides information or evidence”, which means that there are

two important aspects of a document.

• The means by which it is created (i.e. written, printed, or electronic).

• The purpose of its existence (i.e. it provides information or evidence).

46

In addition Gruber et al. (1997) has defined a Virtual Document (VD) as “a

hypermedia document that is generated on demand from underlying information

sources, in response to user (reader) input”. Gruber therefore, defines a VD as a

specialisation of a document by elaborating on the matter utilised (i.e. hypermedia or

virtual) and on the generation approach (i.e. on demand from underlying information

resources). Furthermore, a Product Support Virtual Document (PSVD) is a VD that

has the constraint of providing information related to a product. A PSVD is defined

therefore, as follows.

Definition 9. A product support virtual document is a piece of hypermedia that is
generated on demand from underlying information sources, in response to user
(reader) input, and provides information or evidence related to a product.

The definitions given in this section are summarised in Table 3.1.

3.4 SUMMARY AND CONCLUSIONS

This chapter suggests that the first step towards developing product support that is up-

to-date, accurate, coherent, and personalised is to define the knowledge contained

within a product support system. The task-based analysis of product support

performed in the chapter revealed the direct relationship of product support with the

lack of resources for performing a task. Having that as a starting point a product

support system has been defined as a medium that aims to compensate the lack of

user’s knowledge. This viewpoint transforms the complex problem of creating a

Product Support System (PRSS) into the more manageable goal of developing a

knowledge-based platform for product support.

47

Table 3.1. Definitions related to product support knowledge

Term Definition

Knowledge Knowledge is a specific semantic
interpretation of information.

Product Product is an entity of interest created by
a process (Kaposi and Myers 2001)

Product knowledge

Product knowledge is a formal, temporal
representation of the specific semantic
interpretation of information, associated
with an entity of interest created by a
process.

Task
Task is a strategy, which is followed in
order to achieve a specific goal (Wielinga
1993).

Task knowledge

Task knowledge is a formal, temporal
representation of the specific semantic
interpretation of information, which
defines a strategy followed to achieve a
specific goal.

User
User refers to any person, group or
functional unit that directly interacts with
a system.

User knowledge

User knowledge is a formal, temporal
representation of the specific semantic
interpretation of information, associated
with a person, group or functional unit
that directly interacts with a system.

Product support virtual document

A product support virtual document is a
piece of hypermedia that is generated on
demand from underlying information
sources, in response to user (reader)
input, and provides information or
evidence related to a product.

48

The analysis and design of a knowledge-based system follows the natural order of

defining the knowledge required, modelling it with a platform-independent way, and

identifying and applying appropriate reasoning techniques. As a result product support

knowledge related definitions have been examined and unified by identifying their

key characteristics for a product support system. Product support knowledge is

identified as a synthesis of product, task, and user knowledge. It is shown that product

support virtual documentation forms the link between the different product support

knowledge elements and is the medium that enables provision of user-tailored product

support related information to the user. The explicit description of product support

knowledge elements enables the modular development of knowledge-based systems

construction.

The investigation of the definitions found in the literature illustrates that knowledge is

captured in terms of specific semantics. Therefore, semantically rich modelling and

representation of product support knowledge is an essential part of product support

system creation.

49

CHAPTER 4

SEMANTIC MODELLING OF PRODUCT SUPPORT

KNOWLEDGE

This chapter addresses the second objective of this research. It introduces specialised

notions (i.e. knowledge-specifier, and arc) for describing product support knowledge.

These notions are used to construct the architectural and functional models of product,

task, and user knowledge. Next, product support virtual documentation is represented

by means of an ontology that integrates the aforementioned models with the

documentation components.

4.1 SCOPE

Traditionally information design included two distinct views for building systems, the

user and computer ones. The user view refers to the definition of data in the form of

reports and screens that aid individuals to do specific tasks. The computer view is

described in terms of file structures for storage and retrieval. The need for advanced

flexibility in system design however led the ANSI/X3/SPARC Study Group on

Database Management Systems to decide that a conceptual definition of data is

needed. That advanced the development of semantic modelling techniques, which

define the meaning of symbols and expressions (Stefik 1995). The semantic models

developed define how the stored symbols relate to the real world.

50

As explained in the previous chapter, the process of developing a product support

system is similar to that of implementing a knowledge-based system, where semantic

models are used to guide the generation of the knowledge base.

The objective of this chapter is to provide common means of communicating the

knowledge needed in developing product support systems knowledge bases. In order

to do that, the following challenges have to be faced.

• Identify the notions that can be used to represent product support knowledge (e.g.

concept, relation) and analyse their semantics.

• Identify and model the relations between different documentation components.

• Define the relation between documentation and product, task, and user

knowledge, and the way that these can be combined in order to enable the delivery

of accurate and up-to-date information to the user.

4.2 PRODUCT SUPPORT KNOWLEDGE MODEL

4.2.1 Architectural model

The architectural model is a formal representation of the structure of supported

products, tasks, and users. It is application-independent and aims to organise data in a

way that ensures homogeneity and validity of the resulting information. In this work

data is considered a symbolic representation of facts with meanings. For example, the

symbolic representation of a “telephone number” could be numerous variable digit

numbers. In product support, raw data includes CAD models, bills of materials,

drawings, assembly sequences, and user attributes. Part of the architectural model,

depicted in Fig. 4.1, are the squares named “Product”, “Assembly”, “Subassembly”,

51

“Part”, and “Task”, as well as their associations. The squares in Fig. 4.1 represent

concepts. Placing a square within a bigger one represents an “is-a” relation. The

connectors between different concept hierarchies are represented either with bold

straight lines or as bold curved lines. The straight lines that link the black squares

(instances) are connectors linking different instances. THING (the most abstract

concept) is the root concept. Ontologies are used due to the formality and richness of

ontology-based modelling. This approach takes advantage of some widely accepted

notions in KE, such as concept, instance, and relation.

Concept is a class of objects from the real world that have certain properties in

common (Stuckenschmidt and Van Harmelen 2005). Take the example of having

several different cars such as Ford Mondeo, BMW 330i, and Peugeot 206 ((A) in Fig.

4.1!). All of them can be described by the general term “car” (B), which includes the

characteristics that all of them share.

Instance is something that specifies a concept by illustrating a real world object that

belongs to that concept, such as Peugeot 206 (A) for the notion of cars.

Relation is an attribute shared by objects in the subject domain that links and/or

constrains them. There are two basic ontologically based relations, generalisation and

specialisation. For example “car is-a vehicle” (C) is a generalisation type of relation.

Associating different concepts with the “is-a” relation and developing abstraction

hierarchies is not enough in the case of a product support system. A relation that

‘ For simplicity, all references using capital letters in the rest of section 4.2 relate to Fig. 4.1.

52

\ ProrluctTyp«*

o = g □ □
□ C_rE3 □
□ □ C T O
O

A-Peugeot 206
B-Car
C-Car is-a vehicle

D-Product
E-Assembly
F-Product has Assembly

G-ProductType
H-ComplexProduct
I-Clutch

J-Task
K-Subassembly
L-Part

>KS

(Connects Oma)
EL±I

I g | -..... I ;C<mdi QttStS)

Dotted Bold

Do tied Bold

Dotted Bold

QKS-MmeMmd* 2trpes;

-—*<► Conc*pC: comecfow CwwtMiSMte

E l m iis u r tj* : fCenrwte Ous«)
Bold- Straight

E l t -■>—| laiSuWsjsrtte! {O m ess Ctese)
Bold Straight

—«cf>

[7 \ . - j -*5?Ws (C w ees Cusses'

«✓ Class

V Instance

System Class

✓ Knowledge
Specifier

rZvKts utteSt: Caŵ -WMtence "Swd

j7 j-O -} r&isitnttet Straight

Straight

Straight

Figure 4.1. A fragment o f the developed knowledge base

53

connects different hierarchies is also needed. For example “Product” (D) and

“Assembly” (E) are linked with the “Product has Assembly” relation (F). In this case

“Product” is defined as the commodity sold to the user and supported by the system,

while “Assembly” is a part of the “Product”. The connection described above is an

aggregation relation.

Aggregation relations are used to link different concepts and their instances.

Syntactically aggregation relations have the values “has”, “is-composed-of’, “is-

realised-with”, and “has-doc-element”, according to the knowledge base elements

they relate. In the rest of this work all aggregation relations are referred to as

connectors. Connectors can link instances that belong to different hierarchies, only if

the concepts to which these instances belong are included within the hierarchies and

the hierarchies are also linked with connectors. Connectors can only link information

structures that describe the knowledge within a specific area (e.g. product). They

cannot link the product model to the task model, the task model to the user model, the

product model to the user model, etc.

The structural components described above enable the composition of the

architectural model, as shown in Fig. 4.1.

4.2.2 Functional model

The functional model is a formal representation of the relations and attributes of the

supported products, tasks, and users that aims to put the structured information into

productive use, within the context of product support. Using the functional model, the

54

presented architectural model is enriched by employing two new notions, knowledge-
specifier and arc, which can be further used in defining predicates, rules, and cases.

Knowledge-specifier is a property that is considered significant within the application

domain (i.e. product support) and therefore is represented as a concept. For example,

it may be useful to know whether a product is complex or not, since that can define

the way in which the product support is adapted. Therefore, a knowledge-specifier

called “ProductType” (G), which defines product’s complexity, is introduced. The

level of the product support is determined using reasoning techniques that include

“ProductType”, such as Predicate 1.

((ProductType = complex) AND (User = novice) AND
(Task = complex)) => ProductSupport = detailed
Predicate 1. Knowledge-specifier within a predicate

Predicate 1 states that if the product is complex, the user is novice and the task is

complex, then the product support solution should be detailed.

Arc is a relation that links the knowledge-specifiers with other concepts. For example,

“ComplexProduct” (H) can refer to concept “car” and “clutch” (I). Furthermore,

knowledge-specifiers and arcs are used to relate different knowledge areas. In Fig.4.1,

the task knowledge (part of which is the task (J)) is related to the product knowledge

(composed by product, assembly, subassembly, and part concepts) via

“ProductType”. The knowledge-specifier (“ProductType”) is shown as a rounded

square and the arcs that link it to the other concepts are represented by bold dotted

lines. The arcs in this case establish a constraint expressed by Predicate 2.

55

Arc (ProductType, Task) = false => ProductSupport = null
Predicate 2. Arc within a predicate

Predicate 2 states that if there is no arc between the knowledge-specifier and the task,

then the product support system should not present a solution to the user. This

corresponds to the case when both the product and task are too complex for the user

and (s)he would not be able to perform the task even with the help of the system (e.g.

assembling a car). Such a situation is considered a safety hazard and should not be

allowed. More complex predicates can be developed that take in consideration the

status of the user and relate it to the above arc, which decides the kind of support

given (see Predicate 3).

((Arc (ProductType, Task) =true) AND (ProductType = complex)
AND (User = novice) AND (Task =complex))
^ ProductSupport = detailed

Predicate 3. Arc and knowledge-specifier within a predicate

The notions introduced enable the creation of the system’s functional model. The

combination of the architectural and functional models results in the development of

the system’s knowledge model.

4.3 PRODUCT SUPPORT ELECTRONIC DOCUMENTATION

4.3.1 Product support electronic documentation components

Electronic documentation is one of the most important parts of a product support

system. However, in order to associate the documentation with the rest of the product

56

support knowledge a model that delineates the documentation elements, metadata, and

semantics has to be introduced. The notion of the Information Object (10) has been

widely used in product support (Pham and Setchi 2003, Pasantonopoulos 2005) and is

therefore selected in this work. In addition, the IOs need to be organised into a

structure that will enable direct interfacing with the rest of the product support

knowledge in an organised manner. The notion of Information Object Cluster (IOC) is

introduced for that purpose, as explained in section 4.3.1.2. Fig. 4.2 illustrates an

abstract model that outlines virtual documentation components and their relations.

The IOs, IOCs, and VDs can be related to each other with structural and referential

relations. Structural relations constitute the structure of the hypermedia. For example,

a template that includes a title at the top of a hypermedia document, the main content

in the middle and a conclusion at the end, defines structural relations among the title,

main content, and conclusions sections. Referential relations define cross-reference

linkage criteria. For example, links between different hypermedia pages are

considered referential relations.

4.3.1.1 Information object

An Information Object is a finer grained element of a virtual document. It is defined

as “a data structure that represents an identifiable and meaningful instance of

information in a specific presentation form” (Setchi 2000). An IO can therefore be a

picture that illustrates a part of a product or a textual description. In this study IOs are

characterised according to their form, behaviour, type, level of detail, and theme.

57

Legend

m

Referential
relation

Structural
relation

Information
Object Cluster

Information
Object

Virtual
Document

Figure 4.2. Model o f virtual documentation components and their relations

58

1. Form indicates whether the 10 is text, image, animation, video, audio, or a virtual

reality model.

2. The 10 can have two forms of behaviour, namely static or dynamic. Static

behaviour indicates that the content of the 10 does not change (e.g. the definition of

a clutch). Dynamic behaviour means that the content of the 10 changes at run-time,

according to the attribute of the real world object it describes. For example, the

content of an 10 that describes a clutch as large or small should change according

to the value of the attribute that describes the size of the clutch.

3. Type defines whether the 10 is part of an explanation, description, definition, etc.

4. Level of detail describes the way in which an IO presents content (i.e. detailed vs.

concise).

5. Theme identifies the concept that the 10 refers to (e.g. clutch).

4.3.1.2 Information object cluster

The notion of Information Object Cluster (IOC) is introduced, as a means of

organising IOs. An IOC is defined as a 2-tuple IOC:=({IO}, Sioc) where {10} is a set

of IOs sharing a common property that are arranged in a structure Sioc- Sioc defines

the hierarchical order in which the IOs are included within an IOC.

Theme, level of detail, and type are used to identify all the IOs that belong to the same

IOC. For example, if a query involves the concept of a clutch and is initiated by a user

identified by the system as “novice”, the selected IOC will contain IOs that have as a

theme “clutch”, level of detail value for novice users (e.g. “detailed”) and types that

are included when the user is novice, such as “explanation” and “comment”.

59

The IOC’s model (Fig. 4.3) contains three different IOC categories; product IOC, task
IOC, and reference. Product IOC is chosen according to the theme of the query and is

related to a concept (derived from the product ontology) in the knowledge base that

describes a product component. Task IOC is accordingly mapped to a task that is

obtained from the task ontology. Reference represents system data oriented

information that can be used to instantiate elements (e.g. the unique ID of a concept

within the knowledge base that can be used by the technical writer in order to identify

which documentation element needs to be manually redefined).

Fig. 4.3 demonstrates that the Sioc is different for each of the three different classes of

IOCs. In the case of a product IOC the order of the IOs types is as follows: definition,

description, explanation, comment, and example. A task IOC includes the procedure,

explanation, comment, and example types. The reference involves facts, data, and

numbers. Sioc also conforms to presentation rules (e.g. illustrations should be

presented in conjunction with their relevant text so as to be seen at the same time as

the text is read) (BS4884-2 1993, BS4899-2 1992).

4.3.1.3 Product support virtual document

A Virtual Document (VD) is generated by aggregating IOCs and is defined as a 2-

tuple VD:=({IOC}, S v d) where {IOC} is a set of IOCs sharing a common property

and which are logically organised, with a structure (S v d) , for composing a document

(VD). S v d defines the hierarchical order in which the IOCs are included within a

document. The IOCs are selected and organised according to their theme, level of

detail, and type, as follows.

60

r>
o

o

H
Z

n
n

z
o

n

►<
**

o
o

m
h

 >
n

T Product,
O Task, Usi

Comment

Procedure

ExampleComment

Explanation

Explanation

Example

Description

Definition

Information Object Cluster

Reference Task
IOC

Product
IOC

Level of detail.
Theme. Type

Define and
describe the

task

Define and
describe the

product
Instantiate

Facts
Data

Numbers

Task

Figure 4.3. Information object cluster's model

61

1. Theme configuration. The combination of different themes that is required within

the same document. For example a document about the installation of a clutch, has

two major themes, which are the task ‘Install’ and the product ‘Clutch’. IOCs that

relate to the clutch installation are therefore required in order to develop a virtual

document for the user.

2. Level of detail selection. The level of detail of the document is directly related to

the user model. The level of detail of the selected IOs depends on the user category

(e.g. for novice user detailed IOs are presented).

3. Type ordering. The type category defines the order in which the IOCs are

presented in the document. For example, a title should be at the top, before a

description. Fig. 4.4 presents an example structure of a virtual document where the

types follow the order TITLE, INTRODUCTION, BODY, PRODUCT IOC, TASK
IOC, and LINKS.

The aforementioned segmentation of a virtual document advances the reuse of

information (i.e. reuse of IOs and IOCs) for generating different documents and

enables easy access to the documentation components since content and structure are

separate. For example, the definition of a clutch can be re-used in all different

documents, which include the clutch IOC.

4.3.2 Incorporating product support documentation and knowledge

The knowledge base of a product support system comprises the knowledge model

(section 4.2), populated with instances and their relations, and the product support

62

PRODUCT
SUPPORT
VIRTUAL

DOCUMENT

TITLE

INTRODUCTION

BODY

LINKS

COMPONENTS

EXPLANATION

REFERENCE

REFERENCE

COMMENT

EXAMPLE

COMMENT

EXAMPLE

RESULTS

SUBTASKS

PRODUCT IOC

DEFINITION

DESCRIPTION

EXPLANATION

PROCEDURE

TASK IOC

PREREQUISITES

Figure 4.4. Structure o f a product support virtual document

63

virtual document model (4.3). Although both of these models have been described,

their association has not been explicitly defined.

The Information Object Cluster’s model (Fig. 4.3) indicates the direct relation of

IOCs to elements of the knowledge base, as illustrated in Table 4.1 and introduced in

4.3.1.2. Furthermore, the IOs are related to at least one slot of a concept that is

included in the knowledge base. Different IOs can relate to the same slot (e.g. an

image that describes the “number of disks” slot is different than a piece of text that

refers to the same slot).

The user model is employed to represent the user characteristics and use them as

parameters that define the level of detail of the presented IOC.

The product support virtual document is created automatically at run-time by

combining IOCs. Once created, it is stored and can be retrieved at a later stage if the

same query is repeated.

4.3.3 Semantics of the product support documentation model

Product support documentation elements are described by associating them with

knowledge base elements, which in turn are formally defined. To this end, semantic

implications, which according to Sanchez and Sicilia (2004) are runtime commitments

(i.e. constraints that have to be satisfied), are projected on the documentation

elements.

64

Table 4.1. Documentation and knowledge base elements

Documentation
element Knowledge element

Information Object
Cluster Concept

Product IOC

• Mapped to a concept that represents a supported
product.

• Related to a specific user stereotype by utilising user
characteristics as input parameters for defining the
level of detail and themes.

Task IOC

• Mapped to a concept that represents the task that the
user wants to perform.

• Related to a specific user stereotype by utilising user
characteristics as input parameters for defining the
level of detail and themes.

Reference Related to the concept’s instantiation (the concept
represents either a product or a task).

Information Object Slot

Any Mapped to a slot that belongs to the concept described
by its corresponding Information Object Cluster.

65

4.3.3.1 Abstraction (generalisation/specialisation)

Generalisation and specialisation, which are described below, are very often

considered inverse relations. However, both of them can be used to induce the notion

of abstraction in the design of a product support virtual document by hiding

knowledge details, which the system cannot provide or in which the user is not

interested. This entails that an abstracted concept includes more information than any

of its specialisations but includes less particulars.

• Generalisation
Assuming the information represented by source concepts Si, ..., S„ is respectively

Dsi, ..., Dsn and the information represented by target concept T is D t, then

generalisation is a l...n:l relation between the source concepts and the target

concept that satisfies the following:

• Specialisation
Assuming the information represented by target concepts Tj, T„ is respectively

D ti, ..., Dm and the information represented by source concept S is Ds, then

specialisation is a l:l...n relation between the source concept and the target

concepts, that satisfies the following:

(4.1)

Dsi c D t , ..., Dsn c D j (4.2)

Dsi v ... u DSn £ Dt (4.3)

66

5- »-> Th ..., Tn (4.4)

D n c D s, . . . , Dfn C ^ 5

D tv u ... u Djj, S Z)s

(4.5)

(4.6)

Based on the aforementioned discussion abstraction can be the enabler for satisfying

one of the most important requirements for creating a product support virtual

document, which is availability. Availability stands for the ability of the system to

provide a resource (in this case an IOC) that has be used in order to answer a user’s

question. If for example a question Q requires an information object cluster A, the

following can occur.

1. Information object cluster A is effectively available with all needed details

included in its body (all requested information objects are also available).

This is the optimum case where all resources are available just-in-time and

just-in-place.

2. Information object cluster^ is effectively available without all needed details

included in its body (not all requested information objects are available). This

possibility will be discussed in more detail in the next section. It can be

mentioned however, that a virtual document model can be created even

without all information objects being available.

3. Information object cluster A is not effectively available. In this case,

abstraction, as described in this study, can be utilised for delivering an IOC,

67

B, which does not contain all required details but provides (at least

temporarily until a more detailed solution becomes available) a more general

view of the concepts that the query involves. The abstracted IOC B (IOC

mapped to the super-concept of the concept that is related with A) represents

more information than the requested IOC A (including the information that A
represents) but in smaller detail. Therefore, B should be considered only as a

temporary solution, which should be eventually replaced with A.

Except for the implications that abstraction has on availability, it also constrains the

type and the level of detail of the abstracted IOC that is delivered to the user. These

should have the same value for both the abstracted and requested IOCs. For example

if A should include the 10 types “definition” and “description” with level of detail

“detailed” then B should have the same values for these attributes. This is a

consequence of the unchanged user classification, which defines and level of detail of

the IOC, while the theme (related to the task or product concept) is adjusted.

4.3.3.2 Connector

The connector can take several values as explained in section 4.2.1, including has,
which is used to describe the relation between product components and their

aggregates, is-composed-of which is used to characterise the relation between

subtasks and their aggregates, is-realised-with, which is reserved for context-domain

aggregation relations, and has-doc-element, which expresses the connections between

the elements of a product support virtual document and their aggregates. Connector

therefore according to its syntactic value (e.g. has as opposed to is-composed-of) can

68

be utilised differently by the system. However, independently of its syntactics it

retains common semantics for all its different types.

In product support documentation (in terms of the model presented in this study) the

connector expresses the ability of an IOC A that is mapped to a concept Sj to contain

IOCs that are linked to a concept Tj, when Tj is a component of Sj (i.e. they are

associated with a connector). For example, if A describes the concept “clutch”, IOC B
the concept “housing”, and IOC C a “bolt”, then A could contain B, which in turn

could include C. This association has immediate effect in the case when an IOC A
(mapped to concept Si) is not effectively available or its description part is missing,

since it can be created as an aggregation of the IOCs that are related to the component

concepts of Si. However, in order to form a complete description of A not only

components’ IOCs are needed but also knowledge about the components’

connections, in order to form Si, is required. Hence, a description that is based only on

the connector relation should be considered only a temporary solution, which should

be eventually replaced by a manually elaborated version of A.

Connector imposes the same constraint on the type and level of detail of an

aggregated IOC as generalisation does on an abstracted IOC, meaning that both of the

aforementioned attributes should have the same values for both aggregated and

requested IOC. However, when compared to an abstracted IOC a major difference of

the aggregate IOC is that the theme does not change.

In addition, although a component’s IOC C can be a part of several composite IOCs

(advancing reuse), if all the concepts that relate to the aggregated IOCs are deleted

(e.g. product components and/or products can become obsolete) and no new concepts

69

are related to C’s mapped concept, then C is considered redundant and should be also

deleted.

Connectors between instances determine the availability of IOs. For example, within

an IOC that represents a disk clutch there are IOs that are mapped to the attribute

“num berofdisks”. If this attribute takes the value “1” then IOs that describe a

single-disk clutch are required and in particular IOs that stand for the single disk

clutch instances. Alternatively, if the value is “2” IOs for double-disk clutches (and

instances) are required. However, if instances of double-disk clutches are not included

in the knowledge base (either because they were never created or have been deleted),

IOs that relate to them become also redundant.

Nevertheless, in the current environment that advances production of complex and

customised products, instances alter continuously, which means that IOs need also to

be added, removed, or changed constantly. The manual labour and effort for

responding to such requirements could be excessive. Therefore an automated way is

sought for creating IOs. The attribute that states whether an 10 is dynamic along with

connectors can be used as enablers of such an approach. The dynamic state if an 10 is

utilised for producing IOs that have abstracted bodies. For example, if three IOs form

the following sentence, “(101 —► Turbo-type disk clutch) (102 —> 2 disks) (103 —► its

version number is 0234)” then instead of designing the above IOs as normal textual

fragments, they are designed as follows “(101 —> [Type] disk clutch) (102 —►

[number] disks) (103 —*> its version number is [versionnumber])”. [Type], [number],

and [version number] are the dynamic parts of the IO, which are filled according to

the values of the current instance. The range of the dynamic parts is determined either

by the allowed value given to the attribute at the concept-level (constraints set on slot

70

value) or by the identified values of the instances retained in the knowledge base. The

notion of abstracted IOs signifies that the same 10 can answer several queries, as long

as the changes reflect differences in the 10’s dynamic parts.

4.3.3.3 Arc

The arc associates task and product concepts to knowledge-specifiers defining

parameters such as “product is complex” (section 4.2.2). This means that an arc can

be used to define the type and/or level of detail of the IOC/IO (if any of the defined

parameters are utilised in document adaptation process). Furthermore, the IOC/IO can

be either available or unavailable according to the passed parameters. For example, if

an IOC should not be presented in any case to the user because of a safety critical

parameter (e.g. the product is too complex for any user to maintain) then the IOC is

not created.

4.3.3.4 Knowledge-specifier

Except for the relations the knowledge-specifier also imposes constraints on IOCs,

since it forms a parameter that defines the presentation of an IOC as explained in the

previous paragraph (see arc).

As described in this section the association between documentation and knowledge

base elements has several implications on product support virtual documentation.

These are summarised in Table 4.2.

71

Table 4.2. Effects on availability, level o f detail, type, and theme o f IOCs and IOs

from the semantic analysis o f knowledge base constructs

Knowledge base element Documentation element

Relation Concept Information Object
Cluster

Information Object

Generalisation/
Specialisation
(Abstraction)

Abstracted IOC —>
Queries can be
answered by
abstracting requested
but unavailable IOCs;
Level of detail and
Type remain unaltered;
Theme changes.

-

Connector Aggregate IOC —►
Queries can be
answered by providing
the components of the
requested but
unavailable IOCs;
Level of detail, Type,
and Theme remain
unchanged but the
themes of aggregate
IOCs are also included.

Abstracted 10 —>
Queries can be
answered by utilising
the dynamicity of
IOs in order to
design them as
abstracted elements;
Theme, Level of
detail, and Type
remain unchanged.

Arc Defines if an IOC/IO should be available
according to safety constraints; Level of detail
and type are determined from the parameters
passed through arc; Theme remains the same.

Knowledge-
specifier

Defines if an IOC/IO should be available
according to the constraints or parameters it
represents; Level of detail and type are also
determined; Theme remains unchanged.

72

4.4 SUMMARY AND CONCLUSIONS

This chapter advocates the development of knowledge-based Product Support

Systems (PRSS) by semantically modelling and formally describing the knowledge

that should be contained within the knowledge base of a PRSS. An architectural

model is developed with the objective of organising data in a way that ensures

homogeneity and validity of the resulting information, which is followed by a

functional model that aims to facilitate the productive use of the structured

information. Specialised notions are introduced (knowledge-specifier and arc) for

formalising the acquired knowledge and applying it in the context of product support.

Product support virtual documentation is identified as an aggregation of entities called

Information Objects (IOs). A new documentation concept is introduced called

Information Object Cluster (IOC). IOC aggregates a number of IOs and advances

meaningful reusability by being related to domain-specific concepts. This form of

semantics-based assignment enables the view of a product support virtual document

as a modular unit that contains several reusable IOs and IOCs, which are directly

linked with the architectural and functional models.

The knowledge model introduced in this chapter is based on an ontology that can be

shared and reused by product support systems. It introduces the structural components

needed, the links between them, and establishes their usability. The developed

ontology facilitates interoperability and seamless content exchange between product

support and other knowledge intensive fields (i.e. product, task, user, and

documentation modeling) by representing the elements of knowledge in a machine

73

processable way. Furthermore, it advances the provision of adaptive support (as

illustrated with the predicates).

The semantic description of documentation elements and their direct relation with

ontology concepts and slots has direct implication on IOs and IOCs. The effects

include constrained values for specific qualitative attributes (i.e. type and level of

detail), and facilitation of automatic transformation of content for display online.

The ontology-based representation of product support knowledge and the delineation

of its underlying semantics enable the unification of the knowledge base component

of a PRSS. This forms a natural step towards the creation of a framework for

knowledge-based product support systems.

74

CHAPTER 5

A KNOWLEDGE ENGINEERING FRAMEWORK FOR

PRODUCT SUPPORT SYSTEMS

This chapter addresses the third objective of this research. To do that, the synergy

between product support, problem solving, and knowledge engineering is first studied

and a structured problem solving approach is proposed that integrates product support

systems and artificial intelligence techniques. The approach includes defining and

classifying product support problems, selecting different reasoning techniques for

different types of problems, and introducing a multi-modal strategy that combines

case- and model-based reasoning. A framework based on that approach is also

introduced..

5.1 A PROBLEM SOLVING PERSPECTIVE ON PRODUCT

SUPPORT SYSTEMS

5.1.1 Problem solving and product support

Product support may be needed in different circumstances. These may range from

situations that involve performing repetitive routine actions by following simple

instructions, to cases requiring decision making. The demand for product support

decreases when the operations that have to take place have been repeated for several

times by the same user(s) within the same circumstances. In contrast, if a new

75

sequence of actions has to be designed or if a user has never performed a certain task

before, then he/she will need more support.

The aforementioned distinction resembles having expert or novice users. Numerous

studies have been conducted on changes in performance that occur as an individual is

transformed progressively from a novice to an expert (Kahney 1992). Experiments

that were carried out (Kahney 1992, Gunzelmann 2003), revealed that experts not

only have more knowledge on particular subject areas compared to novices, but they

also follow different problem solving strategies and represent problems differently.

The efficiency with which humans can solve even complex problems in relatively

little time indicates that the reasoning mechanism of a product support system should

resemble the operation of the human mind. Therefore, as with humans, problem

representation and solution generation should be reconfigured according to the kind of

problem that the PRSS is asked to solve (i.e. previously solved or new problem).

The differentiation between (i) attempting to solve new problems, and (ii) recalling

previously solved problems and reusing/adapting their solutions, has also been widely

addressed in the medical and human-interaction domains. For instance, MacMullin

and Taylor (1984) define problems as familiar and new patterns while Gray (2001)

distinguishes problems into new or unique, and previously solved ones. As Fig. 5.1

shows, the occurrence of a previously solved problem only requires reusing

knowledge generated in previous cases, while attempting to solve new problems,

involves both knowledge acquisition and knowledge creation. This shows that a

76

Problem

Solved New

Problem
solving
process

Knowledge
creation

Knowledge
acquisition

Not
needed

V,Existing solution
is directly

mapped to the
problem

Related
knowledge is

combined ^ \

Related
knowledge is

acquired

Complexity of process increases

Figure 5.1. Association between problem solving and types of problems

11

product support system should provide solutions for both types of problems, and

enable operations in support of both knowledge acquisition and knowledge creation.

However, before the problem solving process can commence, problem recognition is

required. Gray (2001) describes a knowledge management framework where the

detection of a problem precedes the solution process. Liao (2002) focuses on new

problems and claims that the initial state of problem solving is to assess the current

situation i.e. problem contextual description, and Bigus and Bigus (2001) claim,

“knowing what problem you are trying to solve is one of the elementary maxims for

AI”. In order to enable problem discovery product support problems are defined and

consequently classified in the next section.

5.1.2 Product support problems

5.1.2.1 Product support problem definition

The knowledge that a product support system should deliver to the user is tightly

linked to the query performed. There are two basic qualities that characterise a query,

namely its content and context. The content is going to be relevant to the product that

is supported and/or the task that the user wants to perform, while the context is

determined according the user characteristics and the system’s usage. The query

therefore should contain what is needed (elements of knowledge that are missing),

why it is needed and under what circumstances (context).The given definition of a

Product Support Problem (PSP) contains all the identified elements and is represented

as follows.

78

Definition 10. Product Support Problem (PSP) is a 4-tuple PSP := (MOD, HYP,

CON, OBS) where:

• MOD is a finite set that represents the product and task models in relation to

the IOCs and IOs that form the documents.

• HYP is a finite set of combinations of elements of MOD representing possible

documentation hypotheses.

• CON is the context that characterises the problem and contains the User Model

(UM) in combination with the usage purpose.

• OBS represents the observations acquired by the current query and are mapped

to elements of MOD and CON.

Definition 10 identifies PSPs as a specialisation of diagnostic problems, since a

product support system recognises and solves PSPs in terms of the IOs and IOCs

involved. Therefore, the problem solving process includes identifying that there is a

fault (e.g. PSVD asked does not exist) recognising the type of fault (e.g. difference in

configuration or missing 10, IOC), and choosing a strategy to be followed (e.g.

provide the missing documentation element). Portinale et al. (2004) have expressed

the outcome of a diagnosis process in relation to the observations acquired from a

related query. Adapting that description a Product Support Solution (PSS) is defined

as follows.

Definition 11. Given a product support problem PSP := (MOD, HYP, CON, OBS)

and a set o f observations OB c OBS, then valid hypotheses are represented by

VHczHYP if and only if, MOD u CONkj VH\- OB. Product Support Solution (PSS)

79

can be every hypothesis h(y) e VH. Best solutions are considered the ones for which

OB=OBS. A PSS can take several forms, including explanations, instructions,

warnings, and descriptions, which are delivered through documents.

Take the example of two typical scenarios in product support systems. In the first

scenario the user asks for help from the system because a fault has been identified to

the operation of the product. In that case the MOD includes behavioural aspects of the

product (behavioural model) and how these are associated with the task that the user

should perform in order to fix the fault, as well as relevant documentation. The

context is set to the user’s class (e.g. novice). OB will include the fault provided by

the user (part of MOD) and the context in which this fault has been identified (part of

CON). VH will be the set of hypotheses that correspond to that problem.

In the second scenario the user requests more information about the product without

providing a fault. MOD in that case includes the tasks for which this information is

useful and a structural model of the product, in relation to IOCs and IOs. CON is

again relevant to the user type while the purpose can be determined from the usage of

the system (e.g. tool used). OB contains all the information that the user has provided

in the given context via the query (i.e. more information-product-user type). VH will

be again the inferences best matching the given problem.

5.1.2.2 Problem classification

In line with problem solving theory, PSPs are classified as previously solved/same,

similar, and new ones.

80

Previously solved/same PSPs include problems that have exactly the same set of

OBS. In that case VH can be reused for delivering an appropriate solution.

Similar PSPs are problems for which the set of new observations is not exactly the

same as earlier ones but the differences can be compensated by changing IOs and/or

individual IOCs. For example, consider a case where a user has already asked for

information on installing a two disk clutch and the new query concerns installing a

three disk clutch, in the same context. The only thing that changes is the number of

steps that have to be repeated. If an 10 corresponds to the description of each step in

the two-disk clutch installation process, then another 10 has to be added that depicts

the extra information. Therefore, a single IOC is changed by adding the extra 10 and

modifying IOC’s structure accordingly. In such cases, previous solutions are easily

adapted.

New PSPs occur when the diversity between earlier observations and new ones,

requires changing IOCs as well as their associations. For instance, if a user requires a

description of a transaxle and there is only a description of a clutch, based on previous

experiences, then the IOC that describes the clutch cannot be efficiently adapted in

order to create the IOC that corresponds to the transaxle.

5.1.3 Problem solving approach

The problem solving process includes identifying the relevant elements of the

modelled knowledge (see chapter 4) and mapping them to the corresponding IOCs

and IOs for producing the most appropriate document, in accordance with the OBS

81

set. As depicted in Fig. 5.1, depending on the problem, the process should combine

knowledge acquisition and creation procedures.

Knowledge acquisition in the presence of previously solved problems

The aim in this situation is to find a way to acquire solutions without repeating the

reasoning process each time a query, same to a previous one, occurs. This means that

reasoning from scratch is not desirable and therefore rule-based reasoning is excluded.

Moreover, in order to establish that one PSP is the same as another, specific

knowledge about each problem has to be compared. Since model-based reasoning

focuses on general knowledge, case-based reasoning is deemed as the most

appropriate technique in this scenario. Case-based reasoning caches old situations and

solutions, avoiding reasoning from scratch and reducing the time needed for

delivering a solution.

The representation of cases follows a problem-solution pair structure, where the

features that each case includes correspond to elements of the product, task, user, and

purpose models. The solutions are pre-calculated.

Knowledge adaptation in the presence of similar problems

Case-based reasoning provides means for reasoning by analogy and therefore

adapting solutions according to previous experiences. This feature is highly utilised

here, by substituting IOs with new ones that reflect the changes. IOs correspond to

specific features of each case. The general knowledge that is contained in the case

base is extended and the adapted case forms a new problem-solution pair.

82

Knowledge creation in the presence of new problems

The existence of a new problem that has little or no similarity to previous experiences

cannot be easily managed by CBR alone. In this case a multi-modal reasoning

strategy is adopted.

General knowledge about the application domains (e.g. product domain), is utilised

supporting the case-based reasoning component. Models include features of the cases

while they generalise cases’ specific knowledge. For example, if the new query

includes transaxle as a main component while previous experiences refer only to

clutch, the model-based reasoning engine can search and find, that according to the

general knowledge about the domain, both of them are considered as assemblies of a

car, therefore, adopting the same structure of clutch’s document is a possible solution.

The structure of IOCs depends on the similarities between the clutch and the transaxle

(e.g. both of them are developed as a combination of different parts) and the

transaxle’s attributes (retrieved from the product model) can define different IOs.

The difference in the solving process of different kinds of problems is depicted in Fig.

5.2, which is based on the main steps of the case-based reasoning cycle (Aamodt and

Nygard 1995), and illustrates that the reasoning approach is a hybrid of case-based

(main technique) and model-based reasoning (secondary technique). The stages of the

process when a previously solved problem is detected (Fig. 5.2 (A)) include retrieving

relevant cases, reusing them, presenting the best match as a proposed solution,

evaluating this solution, and retaining it in the knowledge-base. If the problem is

similar to a previous one (Fig. 5.2 (B)), an extra stage (i.e. solution adaptation) is

needed, where case-based reasoning adaptation techniques can be utilised. Fig. 5.2

83

Same problem

RETRIEVE

RETAIN REUSE

Case-base

EVALUATE

Evaluated solution Proposed solution

Similar problem

RETRIEVE

Evaluated solution
REUSERETAIN

Case-base

EVALUATE REVISE

Adapted solution Proposed solution

Models’
enrichment

New problem

I
RETREVE

Model-based
diagnosis

Evaluated solution
RETAIN

EVALUATE

Proposed solution

Model-based
configuration

Generated solution

Figure 5.2. Solving approach for different kinds of product support problems

84

(C) shows the solving process for a new problem. Model-based reasoning is employed

for identifying new problems (model-based diagnosis), and configuring the generated

documents (model-based configuration) based on the product support virtual

documentation model. Enrichment of the models employed is also possible.

5.2 A KNOWLEDGE-LEVEL VIEW OF A FRAMEWORK FOR

PRODUCT SUPPORT SYSTEMS

5.2.1 General framework structure and operation

The framework comprises four different spaces, which are namely the data, problem,

hypothesis, and solution spaces, which are further explained in subsequent sections.

The architecture of the framework is sequential, meaning that each space is involved

in the process, when its preceding space has completed its operations. The sequential

structure of the framework is enhanced with several feedback paths, which enable

other advanced operations to take place, such as knowledge creation (Fig. 5.3).

The operation of the framework is a hybrid of loosely and tightly coupled processes.

The data and problem spaces are tightly coupled, because knowledge from both

spaces is used in order to generate hypotheses. Moreover, the feedback path that is

initiated after a solution is derived updates them both. On the other hand, the

hypothesis and solution spaces are loosely coupled, as the operations taking place

within each one, are independent from operations happening in other spaces. This

means that although each space serves a specific purpose, the existence of

collaboration and communication between the different spaces is intensive and

frequent, as the ultimate goal is to reach an optimal solution.

85

Solution spaceD ata space Problem space Hypothesis space

Solution validation
operations

Knowledge pre
processing operations

Problem mapping
operations

Hypothesis forming
operations

Generate
hypothesesKnowledge models

Task
model

User
model

Identify
problems

Evaluate
solutions

Rank
hypotheses

Product
model

Document
model

Problem-solution pairs
Problem-solution pairs

Knowledge bases
Problem Solution

Problem

Task knowledge base
Problem Solution SolutionProblem

Product knowledge base

Problem Solution SolutionUser knowledge base Problem

Computational model
Document knowledge base

/----------- > Legend
•MM.

v J *0^ Q %
Knowledgebase Process Operation problem/solution proble.Xh.tion Algorithm

Figure 5.3. Knowledge-engineering framework for product support systems (knowledge-level view)

The operation of the framework can be segmented into the following major phases.

• Pre-processing of related knowledge (knowledge accumulation and

representation).

• Evaluation of input/query related data (problem identification).

• Generation of hypotheses.

• Validation of the solution.

The pre-processing stage starts with accumulation of data that describe the domains of

interest (e.g. product, task, and user) and leads to the creation of relevant knowledge

bases (see chapter 4). The framework utilises users’ queries as stimuli to identify

product support problems and classify them. In the case that the problem has occurred

again under the same conditions, then through the problem-solution pairs, the solution

is automatically derived and presented to the user. In any other scenario solution

hypotheses are generated and evaluated/ranked according to previous experiences of

problem-solution definitions.

The hypothesis with the highest score is advanced as the candidate solution, to the

solution space, which acts as the interface between the system and the external

environment. Solution validation is achieved by communicating the results to the user

and receiving feedback. In the event of positive feedback the latest problem-solution

pair is stored. Means for modifying existing cases descriptions have to be also

supplied, as a response to the possibility of negative feedback. However, in both cases

the outcome is creating new knowledge.

87

The operation of the framework is summarised in the pseudo-algorithm shown in Fig.

5.4. The algorithm illustrates the resemblance of the framework’s operation with the

problem solving approach that was proposed in the previous section. Establishing this

similarity means that each space of the framework should contain resources that

enable the integration of a case-based with a model-based reasoning system.

Accordingly, each space of the framework is further delineated in the following

sections.

5.2.2 Data space

The data space includes the knowledge bases that correspond to the product, task,

user, and document knowledge areas (see chapter 4). These are formed with the

instantiation of the following models.

• Product model. Categorises products into product families, according to their

features and component relations.

• Task model. Classifies tasks in terms of the goal pursued and the actions

involved.

• User model. Differentiates users in relation to their knowledge, skills, and

experiences.

• Document model. Formalises the notion of a product support virtual document

and identifies the documentation constituents, as well as their relations.

88

IF (an identified product support problem)
THEN

IF (product support problem previously solved)
DO (retrieve the corresponding solution and deliver it to the user)

ELSE IF (product support problem similar)
DO (retrieve existing solutions and utilise them as hypotheses) AND
DO (rank similarity of hypotheses according to the problem) AND
DO (choose one of the hypotheses) AND
DO (adapt the hypothesis to form an adapted product support
solution and deliver it to the user))

ELSE
DO (retrieve existing solutions) AND
DO (rank similarity of existing solutions to the current problem
based on domain and behavioural models)
DO (choose one of the existing solutions)
DO (generate hypotheses based on domain and behavioural models
and the aspects of the chosen solution)
DO (choose one of the hypotheses)
DO (generate the solution)

IF (solution is accepted)
THEN (final product support solution reached)

DO (store new problem-solution pair)
ELSE

DO (return reasoning process failed)
DO (hypothesis refinement) AND
DO (store modified hypothesis) AND
DO (repeat process)

Figure 5.4. Algorithm describing the operation of the framework

89

5.2.3 Problem space

The problem space incorporates knowledge about the product support problems that

have occurred in previous problem solving iterations. These problems are literally

considered as problem-solution pairs, as they are directly linked to solutions that exist

in the solution space. The problem-solution pairs are represented by cases. Only the

problem part of each case is regarded as active in the problem space.

5.2.3.1 Representing product support problems with cases

The problem part of a case encodes the state of the product support domain and

environment as reasoning begins. Thus, the problem representation should have

sufficient detail, in order to be able to judge the applicability of an existing case in a

current situation. Both problem structure and content are designed towards this

attainment.

Problem structure

Attribute-value pairs are a common description of case-based problems with the

advantage of simplicity, preciseness, and controllability (Kolodner 1993) (important

characteristics for a system used from different groups of users e.g. novice in

information or web technologies). For example, the attribute “No_Disks”, which is

used to describe automotive clutches, can be paired with the value “2”. The

assignment indicates that the problem refers to double-disk clutches.

A product support system should enable the user to specify the level of significance

that different attributes have in particular situations; therefore an importance factor

(weight) is also added in the problem representation.

90

Another consideration is the facilitation of enhanced expressiveness, which is related

to the “vagueness” quality. The natural technique of capturing non-explicit

requirements is the addition of fuzziness into the system. That can be achieved by the

augmentation of the problem description with fuzzy search terms (e.g. “greater than”).

Fuzzy logic provides a simple way to arrive at a definite conclusion using vague,

ambiguous, imprecise, noisy, or missing input information. Fuzzy inference rules may

be expressed in terms such as “If the room gets hotter, spin the fan blades faster”

where the temperature of the room and speed of the fan’s blades are both imprecisely

(fuzzily) defined quantities, and “hotter”’ and “faster” are both fuzzy terms (Wang

and Lin 2007).

Problem content

The content of a case-based problem contains the goals to be achieved, the situation

description, and the constraints to be satisfied.

The goals are separated in three groups. According to the definition of a product

support problem the most abstract goal is to execute diagnosis (explicitly related with

the use of a product support system), which does not have to be included in the

problem description. For example, identifying that specific parts of required product

support virtual documentation are missing and utilising the means to fix this problem

belongs in this category.

At the next group the purpose of the user is delineated, into three classes, which are

information retrieval, diagnosis, and explanation (or expert advice). These can be

implicitly identified, according to the usage of the system. They indicate the type of

91

information the user requires for the supported products and tasks. For example, the

query “Loud bang or chattering is heard as vehicle vibrates” belongs to the current

group since its goal is to diagnose the behaviour of the supported product, while “give

more information on clutches” relates to information retrieval.

The last group differentiates between educational (i.e. knowledge enrichment) and

performance (i.e. increased efficiency) objectives.

The situation components give descriptive information about the targeted

characteristics that the solution should reflect. For example the dimension1

“Moment_of_Inertia” with value “55.814”, depicts information about the performance

of a clutch. However, although desirable, respecting the restrictions set by such

descriptors is not deemed necessary for delivering a solution. Such features (i.e.

variable-level) are therefore set to contain either highly dynamic values (e.g. the value

of the moment of inertia theoretically can range from 0, in case the product doesn’t

have any mass or radius, to several hundreds depending on the supported clutches) or

static values (i.e. class-level features) that have not been included in the query (e.g. if

the query is “more information on clutches” then whether the clutch contains a

synchroniser or not should not disallow the presentation of a product support

document for clutches). The notions of variable-level and class-level features will be

further elaborated in the next section.

The constraints are conditions set on goals that have to be met in any acceptable

solution. For example one of the goals is to diagnose the documentation constituents

1 According to Kolodner (1993) the terms descriptor and feature refer to the attribute-value pair, while

dimension stands for the attribute part of the pair only.

92

needed and deliver them (through a product support virtual document) to the user. If

the query asks for more information on transaxles, then the presented product support

virtual document should include such information, otherwise the system fails. Class-

level and contextual features that are engaged in the query form constraints.

Contextual features describe the user’s category and goal. Tables 5.1 and 5.2

represent the structure and content of case-based product support problem

descriptions.

5.2.3.2 Integrating case-based product support problem descriptions and

ontologies

One of the major limitations of traditional attribute-value pair representations of cases

is the fact that there is no relation between the different pairs. In this study the

aforementioned drawback is leveraged by means of modifying the weight of each

feature. However, since the CBR knowledge is most of the time stored in text format

having no identified links between a large number of attribute-value pairs can

influence the performance of a system in case retrieval, indexing, and adaptation.

The proposed solution is semantically disambiguating the features by assigning them

to components of product support knowledge bases and ontologies. The mapping is

achieved in two levels, the concept and instance ones.

• At the concept level the dimension of a feature is mapped to either a concept

or a slot. For example, the attribute “Assembly” is assigned to the assembly

concept in the product knowledge base, while the dimension

“Moment_of_Inertia” represents the same information as the corresponding

93

Table 5.1. Structure o f a case-based product support problem

Structure

Dimension Weight Scale Search Term Value

Table 5. 2. Content o f a case-based product support problem

Documentation
Diagnosis (diagnostic task

related to the product support
problem definition)

Information Retrieval

Goal Product/Task

Diagnosis (diagnostic task
related to the tool chosen by

the user (i.e. usage of
system))

Explanation (Expert Advice)

Content
Context

Education

Performance

Situation
Variable-level features All

Class-level features Not included in query

Class-level features Included in query

Constraints
Context

Goal (purpose of the user as
defined in the goal part of the

case)

User

94

slot. The aforementioned allocation has the following repercussions.

• The descriptors of the cases are associated with each other according to the

relations of the corresponding knowledge models elements. For example, the

dimension “No_of_Disks” is related to the concept “Clutch” with the relation

“isslo t”, which means that the value of the “Assembly” feature has to be

“Clutch”, when the descriptor “No_of_Disks” belongs to the case, setting

restrictions on the validity of cases. In natural language this can be expressed

as “The assembly clutch has number of disks (value)”.

• The features can be classified according to the range of values they can have

or the frequency with which their values are expected to change. Dimensions

that denote slots are expected to demonstrate dynamism (e.g. “No_of_Disks”

can change frequently within the range specified by the knowledge base),

while concept-based descriptors tend to be more static and predictable (e.g.

“Assembly” can have only pre-specified values that correspond to concepts in

the knowledge base). The former group of features is called variable-level
while the latter is named class-level. Class-level features are selected

according to the represented domains and their values are always concepts.

The distinction described above indicates that separate stegies are required for

accommodating modifications in variable-level and class-level features.

• The sets of attribute-value pairs can be linked to different documentation

components. As explained in chapter 4, concepts are described by Information

Object Clusters (IOCs), while Information Objects (IOs) are mapped to slots

of the knowledge base. Naturally, since variable level features are related to

slots of the knowledge base they are also described by IOs and class-level

descriptors by IOCs. The identified associations between ontology-based

components, case related descriptors, and product support virtual

documentation elements are demonstrated in Fig. 5.5.

• Class-level features represent a more complex documentation module than

variable-level ones. This means that the modification of class-level descriptors

requires a lot of computational resources and knowledge-intensive techniques,

in order to produce a support document. On the other hand changing variable-

level descriptors is less important since they are mapped to the smallest

documentation constituent (i.e. 10). This distinction is signified by the weights

assigned to each group. Consequently, class-level features should have a

bigger weight factor than variable-level ones, unless otherwise explicitly

defined by the user.

At the instance level the cases contained in the case base represent combination of

instances included in the knowledge base, meaning that the cases can be validated

against existing instances. For example, if two features of a case are “Assembly” and

“No of Disks” with respective values “Clutch” and “2”, then instances of the concept

clutch with 2 disks should exist in the knowledge base. Variable-level descriptors are

directly related with the validity of cases, since they are the ones used to instantiate

concepts.

5.2.4 The hypothesis space

In the hypothesis space, the reasoning operations take place, which are enabled by a

set of computational models. These include case retrieval and adaptation, as well as

model-based generation algorithms.

96

Problem
Class-level

AttributeOntology elements
Domain

Cases
Value

Concept
Mappec ‘

Slot
Variable-level

AttributeInstance

Value

Related t<j>
Mapped to (case

component
mapped to
ontology

component)
Information
Object

Information
Object Cluster

Related to
(documentation

component related
to ontology
component)Legend

Documentation
component

Documentation components
Ontology

component

Case component

Figure 5.5. Associations between ontology elements, case-based product support

problem constituents, and documentation components

97

5.2.4.1 Case retrieval

Case retrieval can be examined in terms of the utilised matching and ranking

procedures, which in turn involve the processes of finding correspondences between

the cases, computing the degree of match of corresponding values, and assigning or

computing the degree of importance of the dimensions (Kolodner 1993).

Functional correspondence (i.e. when case predicate clauses are defined functionally)

is one of the simplest methods and gives comparatively good results if the

representational level is well designed. In this study, the functional roles are well

defined and simple comparison of values that correspond to the same dimension is

feasible. Matching therefore is based on functional similarity.

A weighted ranking method is required in order to enable the users to input the degree

of importance for dimensions. The weighted Euclidean method has proved to perform

better than other techniques for certain applications (Mendes et al. 2002). In this

technique all features of the cases are represented as vectors. The following formula

describes the weighted Euclidean distance.

In (5.1) D stands for distance, w, depicts the weight of the descriptor i, q, the target

query, and c, the compared case.

For example, assume that there are two cases in the case base cl and c2 with the

following descriptors and values adi Clutch_size=10cm and bci: Clutch_weight=3kg

and ad' Clutch_size=12cm and bC2' Clutch_weight=2kg. and the target query t

(5.1)

98

requires a clutch with at: Clutch_size=llcm and Clutch_weight=2.5kg and the weight

descriptor is more important than the size descriptor by a factor of 2 and 1

respectively then equation 5.1 can be used as follows.

Dcl = Wr,,.^ „r„(Clutch size,-Clutch sizer,) +

w<m (Clutch _ weight, - Clutch _weight a)2 (5.2)

= Vl(l 1 - 10)2 + 2(2.5 - 3)2 = Vl + 0.5 = -JT.5

Dcl = w ciu,ch_sizAClutch_size, - C lu tch s ize c l) 2 +

w ci<«ch_weighi(Clutch_weightl - C lu tch w e ig h tc7)2 (5.3)

= V l(H -1 2)2 +2(2.5-2 .5)2 =V l

According to (5.2) and (5.3) Dc2 < Dcl, which means that c2 will be ranked higher

than cl.

5.2.4.2 Case-based adaptation

In section 5.1.2 product support problems have been classified into previously solved,

similar, and new ones. Previously solved PSPs should exhibit 100% correspondence

with the current query. The case-based description of similar PSPs on the other hand

can differentiate from existing solutions in two aspects.

• Variable-level descriptors can have different values. For example, “radius” is a

dynamic characteristic, which requires a solution modification when changed

from 2.2 cm to 3.4 cm that reflects the current situation. Most of the times

such a variation doesn’t affect the structure of the presented Product Support

99

Virtual Document (PSVD). However, the range of the changed value should

be within the boundaries set in the product support related ontologies.

• Class-level descriptors may be also altered. Case-based adaptation is

employed in such a case if the Information Object Cluster that substitutes an

existing solution’s IOC, has the same functional role and is pre-composed or

can be composed at run-time (IOs are available). For example an IOC that

describes the flywheel of a clutch has the same role as an IOC depicting a

countershaft (both are clutch subassemblies). In the case that both of them are

available and the countershaft IOC is required to be included in the solution

instead of the flywheel IOC, then case-based adaptation can be applied.

For each of the aforementioned scenarios a different substitution technique is utilised.

Parameter adjustment is utilised for enabling adaptation based on modified

variable-level descriptors. This technique is one of the most popular for interpolating

values in a new solution based on those from an old one, since changes in parameters

of an old solution are made in response to differences between problem specifications.

A two-step process is therefore followed. First, the variable-level feature differences

are identified and extracted. Then, specialised adjustment heuristics, which capture

the relationships between problem features and solution parameters, are applied to the

old solution to create the adapted one. For example, a solution on a PSP that asks for

more information on “Clutch” with “N oD isks” 3 can be derived from a case that

contains a description for “No Disks” 2, based on the heuristics shown in Fig. 5.6 and

100

IF the goal is information retrieval AND learning THENIF the class-level feature values have remained unchanged FORnumerical and non- numerical

Figure 5.7. Conditn

Figure 5.6. Specialised adjustment heuristics for
parameter adjustment

IF “No Disks” 1, description d AND image i.ELSE IF “No Disks ” 2, description dl,d2 AND image il, i2, i3.ELSE IF “No Disks ” x description x-d2 AND image il, d*i2, i3. ” descriptor

101

5.7. As illustrated, a list of parameter adjustment heuristics is maintained, and under

specific circumstances a number of these heuristics is utilised, by implementing the

required comparisons. This method is followed in order to avoid an exhaustive search

of all possible comparisons, as the range and depth of the product support domain

may be prohibitive for such an approach.

Reinstantiation is used when a new IOC needs to fill the role of an old IOC. This

becomes possible by selecting an old solution (possibly the best match) and

employing role bindings for creating an adapted solution. Reinstatiation is feasible

because of the ontology-based framework with which product support problems are

related (see section 5.2.3.2) that makes the roles between different features

semantically distinguishable. Thus, the problem representation except for designating

the functional roles of its descriptors indicates role correspondences based on the

comparison of included dimensions. This means that according to the goal that has to

be achieved old problems and solutions can be abstracted. For example the two cases

illustrated in Fig. 5.8 involve requesting information about a flywheel and a

countershaft (according to the bindings between the ontology and the case base

“flywheel” and “countershaft” are both specialisations of the subassembly concept

and therefore semantically equivalent for the case reasoner) and can be used to

abstract the problem of asking information about subassemblies, as shown in the right

part of the figure.

5.2.4.3 Model-based generation

Model-based reasoning is utilised in the case that a class-level descriptor that is

included in the query, doesn’t correspond to an existing IOC. The process has three

102

OLD CASE: INFORMATION ONFLYWH!
Goal: Information retrieval, learning
User Inexperienced
Situation description:

Product: Car
Assembly: Clutch
Subassembly . Flywheel
Part : Bolts
Weight: 3.14kg
Material: Carbon
Task: Describe

Solution:
CfcjectFlywheel

find Flywheel IOC
structure flywheel IOC:

Figure 5.8. Example of the representation ofproblems
and solutions

103

main stages. Initially the missing IOC is identified, then an automated computational

model is utilised to locate the knowledge needed to automatically create the IOC, and

finally the generated information is configured for delivering a PSVD to the user.

Diagnosis is the first step of the overall reasoning process. The final goal of this step

is to isolate the fault to a single component or to a Least Replaceable Unit (LRU).

Since the repair is action is to construct a new IOC, the LRU denotes an IOC,

although it is in turn composed of smaller constituents (i.e. IOs). Identifying the

omitted IOC is a matter of exploring the model of a case description and connecting it

to the ontology-based knowledge models (see section 5.2.3.2).

Once the required LRU is mapped to an ontology component, the configuration

process starts by automatically creating an IOC based on the relations defined in the

knowledge base. More specifically, the generalisation relation (“is-a”) is utilised in

providing information that covers the queried domains, while aggregation and

reference relations are employed to compose required IOCs.

For example, if an IOC that corresponds to a transaxle is needed but no such

description is available, then aggregation relations are exploited to find the assemblies

and parts with which a transaxle is developed. Each assembly, part, and interface is

individually used to portray the description of a transaxle. In the case that transaxle is

not recognised as an internal part of the model, its dimension (i.e. assembly) is

utilised as the transaxle’s abstracted concept, which can deliver more information

based on the general qualities that characterise the domain (e.g. transaxle is-a

assembly and therefore the definition of assemblies is true for transaxles as well).

104

A component-based model is therefore adopted where the structural description of the

products and tasks is supplied by the knowledge base, while the behaviour is

simulated through the relations of the ontology-based concepts.

The search in the knowledge base is exhaustive (i.e. all aggregation and abstraction

relations are used) and several different hypotheses are formed. Each of them is

created as a combination of the information retrieved from different concepts. A

candidate solution covers the query (e.g. transaxle description) and is consistent with

all requirements (e.g. other assemblies are not included within the IOC). Candidate

solutions are ranked according to a specialisation of the parsimony rule (i.e. if a

composite solution is a data subset of another one, then the smallest set is selected).

For example, a transaxle has a number of subassemblies, which in turn have a number

of parts. At least two hypotheses are formed in such a case. The first one has data

about the subassemblies only, while the second one about both subassemblies and

parts. If the IOCs that describe the subassemblies have been manually pre-composed

then the former hypothesis is selected otherwise the latter one is chosen.

Configuration models are employed to merge the IOCs and generate the product

support virtual document. From the documentation ontology, the modules of a PSVD

are recognised as being IOCs and IOs. The IOCs created with Model-Based

Reasoning (MBR) are based on less elaborate resources than the ones in case-based

reasoning, since MBR is used when no manually pre-composed or automatically

adapted constituents can be used to create the PSVD.

2 The assumption is that the most elaborate or “best” solutions (PSVDs) are the ones that are manually
developed by a technical writer or in which the automated processes are minimal (i.e. value substitution
(part of parameter adjustment) is only required).

105

Therefore, the general structure of previous PSVDs is used as the arrangement model

(see section 4.2). For example, a PSVD that describes a transaxle includes a title, an

introduction and a body. The body should include the IOC describing the transaxle,

which can be substituted by the compositional solution developed and selected in the

previous stages.

Fig. 5.9 illustrates the three different kinds of product support virtual documents that

can be automatically generated. Case-based reasoning is used when the document is

adapted and there are enough resources (i.e. IOCs) to create the new document

automatically. That document is considered the best solution of the three because

enough information is available to construct the PSVD.

The aggregation-based approach is utilised when there is information in the ontology-

based model that can be used to compose the required IOC, according to the relations

between different concepts. That approach is preferred to the abstraction-based one

because enough information can be retrieved by the model to compose a solution at

run-time. However, it should be manually edited and validated at a later stage.

The abstraction-based approach identifies information related to the required IOCs by

analysing relations to more abstract concepts than the ones needed. The information

that is provided to the user with this approach refers to a relevant concept and not the

one required. It is therefore the least desirable of the three approaches introduced in

this study and is used only if information cannot be retrieved either from the case-

based or the ontology-based model (aggregation-based approach).

106

5.2.5 The solution space

The solution space contains information about the product support virtual documents

that have been derived throughout previous problem solving iterations and includes

the following.

• Unique Identifiers (UIs) for every PSVD. Each UI is comprised of the

concepts and slots that were involved in the problem specification and solution

generation.

Goal- User-
Product-Productlnstantiation-
Assembly-Assemblylnstantiation-
Subassembly-Subassemblylnstantiation-
Part-Partlnstantiation-
Task-Subtask-Action

All instantiations denote the existence of a number of variable-level features

(or ontology slots). The parts of the UI that do not have any value are filled

with “null” or “0”.

• Status Identifiers (Sis) for every PSVD. Each SI can take the values

“validated” or “not validated”, indicating whether a solution has been

manually validated. The ones that have not been validated are removed after a

period of time.

A tool is also provided for modifying or validating the case descriptions used as

hypotheses except for the solutions themselves. The tool is only accessible to

authorised users.

107

TITLE

INTRODUCTION

Product support virtual document
structure with case-based reasoning

Product support virtual document
structure with model-based reasoning
(aggregation-based approach)

Product support virtual document
structure with model-based reasoning
(abstraction-based approach)

ABSTRACTED IOC

BODY

ASSEMBLY IOC

BODY

BODY

PART IOC

ABSTRACTED IOC ABSTRACTED IOC

INTRODUCTION

TITLE

SUBASSEMBLY IOC

PART IOC

TITLE

ABSTRACTED IOC

SUBASSEMBLY IOC

INTRODUCTION

Figure 5.9. Difference in structure o f a product support virtual document using case-

based reasoning and model-based reasoning

108

5.3 SUMMARY AND CONCLUSIONS

The work described in this chapter formalises the development of a product support

system based on knowledge engineering techniques.

In that context a structured approach is presented that advances product support by

segmenting the development phase of the system’s inference mechanism into small

manageable steps. These include determining the kind of product support problems

that the system is expected to handle, and selecting accordingly the reasoning

technique that should be followed. The types of product support problems

predetermine the situations with which the product support system should be able to

cope with. The multi-modal reasoning strategy proposed enables the system to

respond to a variety of user queries since case-based reasoning is utilised in providing

accurate and personalised information while model-based reasoning is used to

compensate for the lack of documentation resources. The conducted analysis denotes

a correlation between problem solving and product support.

The approach is further utilised in combination with the ontologies presented in

chapter 4 to develop a framework for product support systems. The structure of the

framework is based on four spaces; the data, problem, hypothesis, and solution ones.

The data space includes relevant knowledge bases while the problem space contains

the representation of product support problems in the form of cases. These cases are

semantically analysed by mapping their dimensions to ontology-based components.

The proposed integration of case-based reasoning with ontologies enables case-based

adaptation (reinstantiation) and model-based generation to be applied in the

hypothesis space.

109

CHAPTER 6

CONTEXT-AWARE PRODUCT SUPPORT SYSTEMS

This chapter advocates the view that product support could be substantially enhanced

by developing context-aware PRoduct Support Systems (PRSSs) where the context of

use is modelled through a set of context-related attributes and interactions. Towards

this attainment, the chapter presents a formal, ontology-based model of context-aware

PRSSs that integrates knowledge about users, their activities, environment, and

physical constraints. Next, a context-related adaptation method is introduced that

utilises defined documentation attributes and task structures. An ontology-based

approach is also proposed to semi-automatically integrating design data into product

support according to internal stimuli. The objective is to transform a product support

system in a responsive entity able to adapt to different situations.

6.1 CONCEPTUAL ANALYSIS OF A CONTEXT-AWARE

PRODUCT SUPPORT SYSTEM

6.1.1 Scope

A Product Support System (PRSS) aims to alleviate the lack of knowledge of the user

in a particular subject or situation related to a supported product by providing user-

tailored information just-in-time and just-in-place. Researchers in this field have

utilised the Internet and digital technologies as enablers of achieving the “just-in-

time” and “just-in-place” requirements. User-tailored delivery on the other hand has

been one of the main themes for several years in fields such user interfaces design,

110

human-computer interaction and web-based systems. However, personalisation (i.e.

the ability to deliver information that most closely corresponds to an individual’s

profile) has been largely based on reasoning techniques that utilise solely user

characteristics as a resource. The adaptation process has been therefore considered as

independent of the time, place, and intention of the user.

Recently context has received attention as a way of representing different situations in

a universe of discourse. It has been mainly used in mobile applications where location

is a very important aspect towards achieving personalisation. Attempts to use other

context information as well have increased over the last few years (Baldauf et al.

2004). The increasingly widespread use of context in different applications indicates

the trend towards adaptive information delivery. However, to date the integration

between domain and context knowledge in the field of support systems has been

limited to the representation of user characteristics.

The main assumptions underlying this work are two. First, in addition to user specific

data, context should include other data used to characterise a situation such as time.

Second, domain and context knowledge can be integrated within a PRSS and utilised

to generate context-tailored information. The objective is to transform product

support systems into a medium that not only offers just-in-time support but also

enables users to improve their skills by acquiring context-specific information.

6.1.2 Definition of a context-aware product support system

Several definitions describing context have been proposed in the literature. In this

work context is regarded as “any information that can be used to characterise the

111

situation of entities (i.e. whether a person, place or object) that are considered relevant

to the interaction between a user and an application, including the user and the

application themselves” (Dey 2001).

Context-aware systems are designed as the means of allowing operational autonomy

by accurately recognising the context and determining the appropriate action to be

taken (Erickson 2002). As a result automatic contextual reconfiguration and context-

triggered actions are core categories in context-aware applications (Schilit et al.

1994). The following definition summarises the goal of Context-Aware PRSSs.

Definition 12: Context-Aware PRSSs are knowledge-based PRSSs that can monitor

internal or external stimuli, identify contextual changes, and adapt their operation in

order to generate context-specific information.

6.1.3 Conceptual model of a context-aware PRSS

As illustrated in Fig. 6.1., context-aware PRSSs are viewed as an extension of

knowledge-based ones (discussed in previous chapters), with an extra subsystem

called Context Manager and an added Sensors Layer. The main components of the

Context Manager include the Context Processing Module, the Context Knowledge

Base (<Context KB), and the Adaptation Module.

The Sensors Layer contains several sensors. The word “sensor” in this study refers

mainly to software used to monitor internal and external stimuli. External stimuli are

factors that characterise the system’s environment, the user, the user’s environment,

and the interaction between the user and the system. Internal stimuli are all the

112

Sensors
layer

Context Manager

Context
Processing

Module

Environment

Sensor 1

Device Sensor2 Context KB

Sensor n
Adaptation

ModuleSupported
Product

Knowledge-based PRSS

Inference
ModuleDocument

KB

Domain KB Case Base

Figure 6. 1. The concept of context-aware PRSSs

Display
>

113

changes happening internally to the system, such as variations in domain information.

Sensing information is captured explicitly (e.g. questionnaires) and implicitly (e.g. use

of the system) while sensors operation is either automatic or semi-automatic (e.g.

sensing is initiated by the user with the use of a system’s function). For example, a

programme that monitors the key strokes of the user and transmits them to the system

is a type of a software sensor.

The sensors layer is used to gather all contextual data. Some of this data is directly

stored in the Context KB (e.g. administrative data such as the name of the user).

However, most of the acquired contextual data is too primitive to be used directly.

The Context Processing Module converts such data into meaningful contextual

information. Take the example of having data about user’s years of experience and

job function. Individually, this data has no effect on the system’s operation.

Nevertheless, their combination can identify whether a user is experienced in

performing a specific job function and therefore be classified as an expert in related

operations. That can have an immediate effect on the way information is delivered to

him (e.g. remove introductory material).

The Context KB retains all contextual data according to a formal model. This context

model needs to define and store relevant data in a machine processable form enabling

the exchange of contextual information within a PRSS. Ontology-based

representations are therefore used. Except for building a consensus between

researchers ontologies are considered a very promising instrument for modelling

contextual information due to their high and formal expressiveness and the

possibilities for applying ontology reasoning techniques (Baldauf et al. 2004).The

114

Adaptation Module retrieves the contextual characteristics retained in the Context

KB and adapts information delivery accordingly. More information on this operation

will be given in subsequent sections.

6.2 MODELLING CONTEXT

6.2.1 General ontology of context for product support systems

The aim of Context-Aware PRSSs is to deliver context-specific information to the

user to support him/her in all tasks related to a product. The development of a PRSS is

therefore highly interdisciplinary requiring the integration of several application areas

including computer science, knowledge engineering, product design, and technical

writing. Detailed context information represented in a formal way should be provided

to facilitate the aforementioned integration, as well as application adaptation and

context-specific delivery. The following four models are utilised in order to achieve

this objective.

■ Activity Model (or Purpose Model) (AM), which is a finite set {ai, a2 , ..., an}

where each at stands for a specific activity i.e. purpose of using the system. In

this study two main abstract activities are included, which are ‘perform’ and

Team’.

■ User Model (UM), which is a finite set {ui, U2 , ..., Uk} where each w,

represents a user stereotype. Different user stereotypes have diverse

characteristics, indicating that different types of information should be

provided to each user.

115

■ Physical Model (PM), which is a finite set {pi, P2 , pm} where each pi

stands for any hardware or software related property, such as the operating

system or the graphics card memory. The Physical model designates the

medium used to deliver information and can be used to support automatic code

conversions between different formats.

■ Environment Model (EM), which is a finite set {ei, e2 , ..., en} where each

element represents other environmental conditions (e.g. light conditions,

location). EM specifies characteristics that are important in user interface

optimisation. For example, differences in light conditions may trigger the

brightness in the monitor to change accordingly.

A context instantiation Q, is denoted by the aggregation of the aforementioned

models’ instantiations and can be represented as <aj, uj, pj, Q[>. In this study UM and

AM are utilised to illustrate the notion of context-aware product support systems

while PM and EM are not extensively analysed since distributed, service-based, and

mobile PRSSs (where physical and environmental conditions frequently change) are

not within the scope of this work. However, in order to create an extensible

representation all models are included in the context ontology, as shown in Fig. 6.2.

The main concepts that originate the creation of the context ontology are depicted in

Fig. 6.2 in the form of shadowed boxes. The Physical configuration of a device is

regarded as a compositional concept, which can be largely defined according to its

Software and Hardware aggregates (normal boxes in Fig. 6.2). Each of these concepts

can in turn be described using the specialisation relation, as in the case of Hardware,

which can be further classified into Core Component, Storage Device, and Peripheral

116

CoreComponent

i s-a

StorageDevice Penpheral usesPeripheral

ls"a usesPhysical

H ardw are

hasHardware

Physical

hasSo ftware

Is-a
Software <

hasEnvironment

performsActivity

Is-a ► Context_Entity Is-a- -I Activity

hasLighting► Environment

hasTime
hasLocation

Time ._c c a t i c c Lighting

hasTemperature

J
Figure 6. 2. Part o f the context ontology

117

concepts. Peripherals are utilised by the user in order to access the physical device.

Consequently, Peripheral is linked with the User concept with the relation

usesPeripheral, which enables the system to adapt its display accordingly (e.g. if a

small monitor is only supported as in mobiles, the resolution of words can change

accordingly). The usesPhysical relation between the User and the Peripheral concepts

indicates that there is a link between the user and the physical device specifications.

A physical component (e.g. the PRSS) should be able to sense the environment and

capture any external stimuli directly related to its behaviour. For example, if someone

uses the PRSS in a noisy environment, the audio multimedia components of the

support content may be disabled and be reactivated once the user moves to quiet

surroundings. There are numerous factors that can define the Environment concept,

which are represented as its aggregates. These include Time (very important for

expressing temporal relations), Location (one of the most significant features in

mobile and service-oriented applications), Lighting, and Noise. Several more can be

included (e.g. humidity) but the enumeration of more environmental conditions is not

within the scope of this work. The Environment is not linked directly to the User but

to the Physical concept because as Preuveneers et al. (2004) argue “the environment

is always sensed through a device. By explicitly specifying this, it is possible to

reason about several properties of the sensed environment that require knowledge of

the measuring device, e.g. accuracy.” In the following sections the creation of the

activity and user models is discussed.

6.2.2 Activity context

The Activity concept is utilised to describe the user’s intention. Utilising Activity

118

performance support and e-Leaming techniques can be integrated within the context

of a single product support system to achieve performance and learning goals. In this

study Learn and Perform are used to signify the difference between those goals. As

shown in Fig. 6.3, the User is directly linked to the Activity with the relation

performs A ctivity, which suggests that context information is only relevant if it enables

adaptation according to user goals.

Activity is also connected to Task through the spatial relation isRealisedWith. Task

(represented in a grey box because it is part of the domain knowledge) includes a

number of subtasks and actions (i.e. is the most elementary step of a task) that a user

may want to be supported for (e.g. installation, and design). It is therefore viewed as

an aggregation of the Subtask and Action concepts.

The activity model is used to develop particular configurations of the task model

according to the variations in the activity selection. For example, as illustrated in Fig.

6.3 (b), if the ‘Learn’ activity is selected, the task model includes the ‘Describe’,

‘Promote’, ‘Assess’, ‘Design’, and ‘Plan’ tasks and their corresponding subtasks. On

the other hand, if the ‘Perform’ activity is selected, the task model is (re)configured

and contains the ‘Design’, ‘Plan’, ‘Operate’, ‘Inspect’, and ‘Install’ tasks, as well as

their corresponding subtasks. Each configuration of the task model is defined through

the IsRealisedWith relation. For instance, using McCarthy’s (1993) formalization, the

relation ‘IsRealisedWith’ between the ‘Learn’ activity and the ‘Describe’ task, is

equivalent to the following.

cO: ist (C ac tiv ity O eam), “describe is a task”) (6.1)

119

IsRealisedWith Is-a Is-a

hasSubtask
hasSubtask

hasAction perform sActivity

Perform Learn

Action

Task

Subtask Activity

User

(a)

ACTIVITY

TASK

Learn Perform

IsR ealised W ith IsR ealised W ith

Describe DesignP ro m o te Plan Operate Inspect Install

SUBTASK Obtain Metric Equation TheoreticalMetricAnaJysis

SUBTASK Multiply Add

CaIculate_Metrics Analyse_Metrics

Insert Remove

(b)

Figure 6.3. Relation between the context (activity model) and domain knowledge (task

model)

120

(1) asserts that it is true in the context of the activity “Learn” that “Describe” is a task.

cO is considered as the outer context of a product support system1. As illustrated in

Fig. 6.3(b), some tasks may be related to different contexts at different times (e.g.

‘Design’). In such cases, the generated documents should reflect the contextual

difference by including the elements that are related to the current activity context.

6.2.3 User context

The user is in the focus of product support. In case that a PRSS is not accepted by the

users, regardless of the technology used, it cannot be considered successful. As a

result, users’ characterisation is one of the most critical stages in the creation of a

Context-A ware PRSS.

Fig. 6.4 shows the place of the User concept within the context ontology. User always

interacts with the system via a software application, as indicated by the

usesApplication relation and he/she visits a Context-Aware PRSS in order to perform

a specific Activity (see section 6.2.2). Furthermore, the user can be described

according to the Role assigned to him (i.e. normal user, local administrator, and

administrator), his/her Profile (i.e. name, age, and sex) and Characteristics.

Role and Profile are useful only for administrative purposes. On the other hand,

Characteristics includes data used as parameters throughout the computation of the

user’s information needs. For example, an “expert” characterisation will indicate the

ability of the user to understand technical information included in a document.

1 McCarthy (1993) argues that every context has an outer context.

121

Is-a

hasRole

hasProfile

hasOimension

Is-a
hasEnvtronment

Is-a

hasTime

Profile

Receptivity

Role

Internal Time ExtemalTime

Spebaisabon

Application

Expertise

Characteiisbcs

Acbvity

User

Physical

Figure 6. 4. User context concept

122

Expertise, Specialisation and Receptivity are identified as the main user features

directly related to a PRSS.

The attributes defining Specialisation include the education level, the training type,

the job title, the project type, and the project role. Expertise is determined based on

the years of profession, the training time, the overall number of past completed

projects and the number of past relevant projects. Contrary to Specialisation and

Expertise, which are used to capture explicit knowledge about the user (i.e.

knowledge that the user can express and quantify), Receptivity focuses on implicit

knowledge. That is characteristics that the user cannot express or is not aware of.

Attributes such as the number of visits, the average time of visits, the repetitiveness of

queries, the average time between visits, and the tools used can be treated as

indications of user’s behaviour and knowledge.

6.2.4 Context and ontology-based representation of knowledge in context-

aware product support systems

A context-aware product support system contains knowledge about the domain (task

and product models), the context (e.g. activity model, user model) and the

documentation elements. In order to advance interoperability between these different

areas and product support, an ontology that formalizes the aforementioned knowledge

has been developed. A part of the ontology is illustrated in Fig. 6.5.

The ontology can be described according to the product, task, context, and document

models it includes.

123

CONTEXT

:USER
SUBSTEREOTYPE

:USER
STEREOTYPE

:USER

:IO

TASK

: SUB ACTIVITY

:ACTIVITY

PRODUCT

THING

IOC

ACTION
PRODUCT
SPECIFIC

PRODUCT
FAMILY

ASSEMBLY

SUBASSEMBLY

.SUBTASK

PART

KNOWLEDGE
SPECIFIER

TYPE

DOCUMENT

Legend

Concept Is-a Has
 ►
IsRealised

With
IsRelatedTo IsMappedTo Fill Parameter

Figure 6.5. Part of the ontology for context-aware product support systems
Context of use
AM-Perform
UM-Notice

Context of use:
AM-Leam
UM-Novice

Context-A ware Virtual Document I Context-Aware Virtual Document 4

Context-Aware Virt tal Document 2

FNr ^ ;

Context-Aware Virtual Document 3
Context-A wart Virtt lent 5

o+-q

Outer context: Product Support System

□
Context Context-Aware

Virtual Document

Legend

Information
Object Cluster

o
Information

Object
Presentation

Order

Bold shapes indicate
reuse of information

Context-based
link

Figure 6. 6. Model of context-aware virtual documents and their relations

124

• The product model represents the structure of the product. All its concepts are

mapped to Information Object Clusters (IOCs) as explained in the rest of the

section. IOC has been defined (see chapter 4), as a documentation element that is

semantically distinguishable and related to the concepts describing supported

products and tasks. It contains smaller elements called Information Objects (IOs)

as shown in Fig. 6.5. Concepts “:PRODUCT SPECIFIC” and “:ASSEMBLY” are

linked to the concept “:TYPE”. This is a specialisation of “:KNOWLEDGE

SPECIFIER”, which abstracts all concepts that represent domain significant

properties. For example, the type of an assembly, i.e. whether it is considered as

complex or not, affects the generation of a document (see chapter 4).

• The task model contains the tasks, subtasks, and actions that are supported, where

action is the most elementary step of a task. All are mapped respectively to

Information Object Clusters and are related to “:TYPE”. Furthermore, the task

model is configured according to its relation to the activity model (see section

6 .2 .2).

• The context model includes the activity and user models (more models are

included in context as explained in previous sections). Both models are related to

the DOCUMENT” concept with the relation “FillParameter”, which denotes that

the characteristics of the user and the activity are passed as adaptation parameters

to the document. Furthermore, the activity model also defines the variations of the

task model.

• The document model embodies the structure of a context-aware virtual document.

As illustrated in Fig. 6.6, each virtual document is composed of a number of IOs

and IOCs. These are connected to each other with different relations including

125

their presentation order, hypertext, and context-related links. Virtual documents

generated in different contexts may have differences in both content and

presentation. For example, in Fig. 6.6 the difference in context is signified by

having different values for the Activity Model (AM). However, all documents are

contained within the outer context of a PRSS. Bolded shapes in the figure indicate

that the same documentation elements are reused to create different documents.

The “IsMappedTo” relation included in Fig. 6.5 defines the content by mapping

each IOC to a different concept. Moreover, each slot (or each attribute) of a

concept, is mapped to at least one IO. The document that is generated includes all

the IOCs, and therefore concepts, that the query requires. The context of use is

passed to the document as a set of parameters, as explained in the next section.

6.3 ADAPTATION APPROACH

6.3.1 Correlation between context, tasks, and product support documentation

In her work on adaptive product manuals, Pham and Setchi (2003) has identified and

summarised the strong correlation that exists between users, tasks and support

documentation (Fig. 6.7). That is extended for context-aware product support systems,

as illustrated in Fig. 6.7. In adaptive manuals the main contextual information

included the user profile while in this study involves the models discussed in section

6.2. That results in the following differences.

• The learning and task performing activities are not integrated, since the user can

achieve both (i.e. learning and performing goals) by selecting the activity context

he/she prefers. The content is then adapted accordingly by utilising different

126

Dom ain inform ation

Structure

Task

The structure of the
retrieved document has
to reflect the logical
sequencing of user’s
step-by-step actions.

Content The retrieved
information has to be
mapped to the task
context.

Information presentation
has to correspond to the
context and has to
illustrate the task
visually.

C ontext inform ation

Adaptive systems

User

The topology of the
retrieved virtual
document has to be
suitable for the user’s
mental model

User learning and task
performing activities
have to be integrated by
providing information
with different levels of
detail to different users

Information presentation
has to correspond to the
perceptual capabilities
of the user

Context-aware systems

Context

The topology of the
retrieved virtual
document has to be
suitable for the user’s
mental model and
supported activity.

User activities are
explicitly distinguished
by providing different
documentation elements
(i.e. offering just-in-time
support or enabling
users to improve their
skill set by acquiring
new knowledge). The
detail level of displayed
information is adapted
tor different groups of
users. Location and time
are used to define the
content of information
components.

Information presentation
lias to correspond to the
perceptual capabilities
of the user, the
specifications of the
hardware and software
used, and the
environmental
conditions (e.g. light,
sound).

Figure 6. 7. Correlation between task, context and product support documentation and comparison with adaptive systems

127

documentation elements. The adaptation process is still however also related to

the user.

• The location and time can also be used to define to content of the product support

documents. For example, the service centres that a system should propose to a

driver should be tailored to his/her current location. Location and time are mostly

significant in mobile, distributed, and services related systems.

• The form or presentation of the document is not only adapted according to the

user’s characteristics and perceptual model but also in relation to environmental

attributes such as current light and sound conditions. For example, being in a

noisy environment should trigger volume increase for audio components.

6.3.2 Adaptation method

6.3.2.1 Qualifications assessment

The parameters that define human behaviour are still undetermined and uncounted.

Therefore, assuming that a product support system has a finite number of users, which

is gradually increasing, the number of their features approaches infinity. If a set

C = {x,: 1 < / < c) consists of all the characteristics required to fully describe the users of

a PRSS then |C| -» oo . The overgrowth of set C can cause redundancy of data, time-

consuming reasoning, and difficulties in knowledge elicitation.

A solution to the above problem can be based on the analysis given by Morakis et al.

(2003) on the mathematical nature of hierarchy trees in information security, which is

adapted for the current requirements as follows. There is a relation on set C with

symbol R and cltc2,c3 e C for which the following is satisfied.

128

Ct Res (6.2)

c,/?c2 =>c2/?c,, V c,,c2 g C (6.3)

(c,/?c2 and c2/?c3)=>c,/?c3 , V c ,,c2,c 3 e C (6.4)

Then is referred to as an equivalence relation and is denoted by ‘ ~ Equivalence

relations provide a method of classing together all the elements that are related to each

other. The equivalence class of an element c, e C is defined as the following subset.

(6.5) indicates that it is possible to enumerate a small representative number of user

characteristics relevant to the application domain and relate them to other user

attributes through equivalence relations (e.g. generalisation is an equivalence

relation). For example, in this study the qualifications of the users are assessed

according to the user context ontology described in section 6.2.3. As a result, user

attributes can be grouped according to the specialisation, expertise, and receptivity

characteristics. User groups can accordingly be formed based on the aforementioned

characteristics. For example, a user can belong to a group that is characterised by

values “specialised” and “inexperienced”. The user qualifications model is created as

the following non empty set.

£ = {[c,] : ! < /< / } (6.6)

(6.6) means that E represents the vertices of a directed graph consisted of all defined

equivalence classes. The edges of this graph are defined by the following set.

[c, 1 = {x e C : x ~ c,} (6.5)

129

^ = { ([c ,] , [c2]) e r x ^ : [c 1]/?[c2]} (6.7)

(6.7) stands for different user groups that are linked to each other with equivalence

relations. For example, the user group “specialised” and “inexperienced” is related to

the group “specialised” with a generalisation relation. The relations between different

groups create an acyclic directed graph which has n vertices (groups) and n -1 edges

(equivalence relations between groups). Stereotypical classification of users has

proved to be useful in several fields and superior to direct personalisation in

information filtering (Kuflik et al. 2003).

6.3.2.2 Content adaptation

In order to create a context-tailored document the following parameters are employed.

• Context parameters including user’s stereotype group defined through

qualifications assessment, selected activity, environmental and physical

conditions.

• Documentation elements attributes including their form (i.e. text, image, etc.),

type (i.e. explanation, description, etc.), and level of detail (i.e. detailed and

concise).

The content is adapted by mapping different documentation elements attributes to

different context instantiations. Table 6.1 shows the values of three different

documentation attributes and Table 6.2 illustrates their usage for learn and perform

activities and different user contexts. For example, in a scenario where an expert-

specialised user wants to perform a task the attributes of the elements contained in the

130

Table 6. 1. Documentation element attributes

Documentation Element Attributes

Type Form Level of Detail
Definition (DEF) Text (TX) Detailed (D)

Fact (FAC) Image (IM) Concise (C)

Information (INF) Animation (AN)

Rule of thumb (ROT) Video (VD)

Explanation (EXP) Audio (AD)

Description (DES)

Example (EXA)

Recommendation (REC)

Comment (COM)

Warning (WAR)

Table 6. 2. Documentation element attributes for different contexts
Qualification level

Expert-
Specialised

Intermediate-
Intermediate

Novice-
Unspecialised

Activity

Learn DEF-FAC-
WAR-TX-IM-

C

DEF-DES-
FAC-WAR-

ROT-TX-IM-
VD-AD-D

DEF-DES-
WAR-ROT-
INF-TX-AN-

VD-AD-D

Perform DEF-FAC-
WAR-TX-IM-

C

DEF-FAC-
WAR-ROT-

REC-TX-IM-
VD-AU-D

DEF-INF-
WAR-ROT-
EXA-EXP-

REC-TX-IM-
AN-VD-AD-D

131

generated document should include definitions and facts, be limited to text and still

images with concise level of detail.

As exemplified, the more specialised, expert, and receptive the user is considered the

less clarification items such as explanations, rules-of-thumb, and comments are

included in the generated and adapted documents. Furthermore multimedia and in

particular animations and video are targeted towards inexperienced, unspecialised,

and unreceptive audiences.

Learn and perform activities also require different content. For example, for novice-

unspecialised users rules-of-thumb with examples are preferred in performing

(considered more practically oriented approach) than only rules-of-thumb (considered

more theoretically related approach).

6.4 RESPONDING TO INTERNAL STIMULI - INTEGRATING

PRODUCT DESIGN AND SUPPORT DOCUMENTATION

DATA

6.4.1 Product data

Domain knowledge is primarily synthesised from data related to the supported

products and tasks. Although the structure of the tasks does not change very

frequently, the life-cycle of the products introduced in the market is shortened

continuously by either updating or modifying parts of them. In order to be able to

respond to internal stimuli, these changes have to be captured as early as possible at

132

the design stage, where the data is produced from CAD/CAM tools, and be

propagated to the product support one.

Most of the approaches towards database storage of CAD models (a solid or surface

one) include representing the model in neutral format (such as IGES or ISO 10303,

the Standard for the Exchange of Product model data, commonly referred to as

STEP), and create images or volume/voxel representations. Design databases also

typically contain images (drawings), and unstructured text (documentation) (Szykman

2001). Product knowledge is however continuously evolving, which results in

excessive growth of the design databases contents and in problematic storage and

retrieval of design data.

In the approach presented in this study, the knowledge base of the product support

system contains a formal and generic description of product knowledge, the product

ontology. Such a representation allows a product to exist in the absence of any

specified geometrical characteristics at multiple levels of abstraction simultaneously,

since it allows not only models of physical entities but also there abstracted concepts

to be depicted. For example, a clutch can be modelled as a single entity at one level

and as collection of components at another.

The support of conceptual abstractions at different levels allows the product ontology

to be mapped to the design data irrespectively of the product’s complexity and

structure (i.e. it can be as simple as a single part).

In addition, the existence of an ontology lessens the ambiguities that can occur when

multiple terms are used to mean the same things or when the same term is used with

133

multiple meanings, as in the case of distributed design data. The existence of a formal

and shared dictionary (ontology) enables the association of the product support

system’s knowledge base with the design data, as explained in the following sections.

6.4.2 Required resources

The approach introduced in this section for integrating the knowledge base of a

product support system and the design data, is based on the following resources.

• The product model (and ontology) is based on the structure of a product and

its fragmentation into assemblies, subassemblies, and parts. Therefore,

function and low-level technical characteristics (e.g. features) are not essential

in this study. The main source for deriving the product’s architecture is the

Bill Of Materials (BOM).

• The slots in the model describe the attributes of the product’s components (e.g.

volume, size, etc.). Consequently, data derived from the models that describe

these attributes are required. These can be produced very easily with a

CAD/CAM system’s analysis tools.

• The STEP files can be used to produce drawings, figures, and other

multimedia except for textual descriptions. Furthermore STEP is a standard

that contains information for both artefacts and documents (identification,

versioning, structures, approvals, authorization, project, work order, requests,

effectiveness, classification and properties) (Gao et al. 2003). The majority of

the current CAD/CAM systems are able of creating STEP representations of

the product design models.

134

6.4.3 Integration approach

6.4.3.1 Overall approach

The overall approach (Fig. 6.8) has three stages. First, data derived from the

document base (where the design files are stored) are combined with information

from the knowledge base in order to produce an integrated model based on the

represented domain knowledge.

The second stage utilises information acquired from cases that describe different

situations (based on previous experiences) and therefore may contain different

product instantiations. Case-based knowledge is integrated with data derived from

design-related data files (i.e. files created with CAD/CAM analysis tools describing

attributes such as centre of gravity, mass, volume, material, etc.), as explained in

section 6.4.3.3.

In the third stage the case that has been created is compared against the ontology that

represents the domain. For example, if the new case expresses a situation where a

space shuttle is depicted as the main product, while a product within the ontology

must belong to one of the following categories: car, bus, lorry (meaning that the

domain is restricted to automotive industry applications), the case is not considered

valid for the specific universe of discourse. The inconsistency in this case is the value

of the feature that stands for the product concept and has to be replaced with valid

data. Inconsistencies can be characterised as syntactic and semantic ones. Syntactic

problems include data types irregularities (e.g. the mass of a product should be a

number with several decimal points and not a character) and values out of boundaries

(e.g. restrictions on volume range), while examples of semantic conflicts include

135

Start

Integrate with
domain knowledge

Integration
validated
by expert

Expert
recommends
modifications

Is integration
valid? No

Yes

Integrate with
case knowledge

Integration
validated
by expert

Expert
recommends
modifications

Is integration
valid? No

Yes

Compare defined
case with ontology

Identify
inconsistencies

Is the case
valid? No

Yes
DataProcess

Replace
Inconsistencies
with valid data

New case
defined

Manual
operation Display

New case
stored in case

base
Stored
dataManual input

erm inator^

Legendfor flowcharts
Decision

Stop

Figure 6. 8. Overall approach

136

contradictions with concept definitions (e.g. according to the ontology a concept has

to be related with an aggregation relation “Has” with at least one “part” in order to be

defined as “product”) and relations (e.g. a car can be a “product” within the domain of

“automotive applications” only if it is related with the “subassembly” wheels with an

aggregation relation, which denotes that all cars should have wheels).

The integration stages incorporate feedback paths that lead to the user (only users

classified as experts are allowed to recommend changes, in order to avoid pitfalls),

disseminating control over the integration process between the user and the system

itself.

6.4.3.2 Integration of product design data with the knowledge base

Fig. 6.9 illustrates the approach followed for integrating product design data with the

knowledge base. Initially the STEP files are used in order to create the BOM file(s)

(this can be done with any CAD/CAM tool). For example, the abstracted form of a

BOM file created by Pro/Engineer is shown in Figure 6.10(b), where « N A M E _ ...»

substitutes the name of the assembly, subassembly, or part defined by the designer.

The BOM is constructed from a STEP file, as illustrated in Fig. 6.10 (Fig. 6.10(a)

contains a very small part of a STEP file). In the example, the

«N A M E_SU B A SS_2» and «NA M E_SUBASS_3» are included in both files,

while in BOM they are related to each other with the aggregation relation (denoted by

“«N A M E_SU B A SS_2» contains «N A M E_SU BA SS_3»”). A Product

Data Management (PDM) system or a simple directory structure can be used to store

and manage those files. The user then chooses the BOM file on which the process will

be based.

137

Start

Choose
file

STEP files

Parse STEP files <-

Bill of
Materials

(BOM)

Parse BOM

Determine root
node of product

structure

Construct product
tree

Map product tree
to knowledge

base (KB)
concepts

Present Expert
recommends
product tree

mapping

Is the mapping
correct?

Yes

Store product
structure

End

Figure 6. 9. Integration with domain knowledge

138

JWM4*ppot»ucT_r>m»n tio h_shapb,-pi.<«».u m y .

<4 «<MAME_SUBA S S J»» w*hr* **<t to ««WAMB.SimASS_J> * JG6UJ \

«36153» AX2 S_PlACIMQIT_3DC/0« 1» »«151 .XW152L
M3615««tflDCT ASSEMBLY USAOE OCCUFWD»CnW\'tU»l *i«it*)yr<h«jB**K|>':Al4<5y.
*4*440/62*50j).

Assem bly «NAHE_ASS»
1 Sub-As**si>jb.ly
4 P a r t
1 Sub-Ass eatbly

c o n tu n s :
<<fWtE_SSUBASS l'>
•“‘■MMtl PART_l>v
<-<NAMX SUBASS 2 »

Sub-Ai*«*0>ly < <MAM_SUBASS_i » c o r t a u t : ;
1 P a r t «NAftE PART 1>>
4 P a r t «NMtE~PART*~2>»

Sub-A ssaab ly <<NTUflS_SUBASS 2 » c o n ta in s :
1 Sub-Ass satbly « S W JkSS_3»
2 P a r t <<KAKS PART 3>>

d ib -A sse a b ly < <HAME_SIBASS 3 » c o n ta in s :
1 P a r t « H U tI PART_2>>
1 P a r t <<HMtE~PART 4>»

Su»*»ary o f p a r t s fo r assem bly
BPAKIHC- SYSTEH:

1 “ P a r t «HAMX PART l> >
4 P a r t «HMtE~PART~2»
1 P a r t «KM fg PART*"3>>

(b)

JKCEUPT
FAMILY

PttlFIC

ASSEMBLY

(c)

initial] * WJUSUMSL Y JJV iL

sepaate M V T jr iX T m SLOCK

WHILE slo c k exist
take next SLOCK
WHILE text inSLOCKtxiSte

IF XSSSMSIY
place A.S.S4MSLY mSOOT nod e

IF StQUSSSMZir
IF U ’SASXJMStr found before

tetiieve SVSASSiMSl Y JJY S l o f the LVSMSJMSLY
increase SUXASSSMSLYJJYMl

ELSE
place SV*x$$XM»tY\n SVSutsSKMStr JJ tY S l node

IF SALT
PL ACEAdtriH LSAF MODE

NOT USED

I
NAME ASS

I
NAME SUBASSJ
NAKE'SUBASS 2

I
HAKE SUBASS 3

I
NAME PART 1
NAME~PART~2
NAME~PART"3
N A N E'PA RT 4

(e)

Figure 6. 10. Transforming a STEP file into an ontology-based product structure

139

The selected file is parsed in order to identify the structure of the product that is

described by the BOM (the relations of between the different product components are

aggregation relations in accordance with the Knowledge Base (KB)) and map KB

concepts to the nodes of the structure. As illustrated by the pseudocode of the parsing

algorithm (Fig.6.10(c)) the text of the selected file is segmented into several blocks of

text. Each of these blocks represents a tree that includes a root node and leafs. The

value of the artefact that contains all others is assigned to the root node. By processing

all blocks of text and recording the relative position of one root node to another, a

generic tree of the product components is created. Each node of the produced tree is

assigned to a concept of the ontology that represents the product structure. For

example in Fig. 6.10, «N A M E_SU B A SS_3» is recognised as a direct component

of «N A M E_SU B A SS_2», and therefore, in accordance with the ontology model, it

is allocated as a subassembly of the assembly «NAM E_SUBASS_2». The concept

“:PRODUCT_FAMILY” has the default value “:NOT_USED ” because it represents a

conceptual abstraction of real world products (e.g. a conceptual abstraction of a car is

the family of four wheel vehicles), which BOM should not contain.

The allocation of the concepts is presented to the expert user. In case the result is

deemed incorrect, the user can manually define the product structure or change any

other parameters (i.e. different STEP file, different BOM file) and repeat the process

again. Otherwise, the product structure is stored in a new case.

6.4.3.3 Integration of product design data with the case base

The second stage of the integration approach (Fig. 6.11) requires the selection of an

existing case, on which the creation of a new case (and therefore new knowledge) is

140

based. The STEP files are utilised again in order to produce Data Files (DFs). An

example template of a DF, as generated with Pro/Engineer’s analysis tools, is shown

in Fig. 6.12(a). The illustrated part contains information about the volume (in bold),

surface area, average density, and mass product attributes among others. In Fig.

6.12(b) a case is displayed as the aggregation of features, their datatypes (e.g. String,

double, etc.), and their values. In this example, one of the features represents the

attribute “volume”, which is also contained in the DF.

Once both the DF and case are selected, they are processed by the system. Based on

the features included in the case the DF file is parsed (process “parse DF” in Fig.

6.11), in order to find relevant information. The parsing algorithm (Fig. 6.12(c))

retrieves the names of the case features and compares them with the text included in

the DF. All the values of the matching words are retrieved (as a value is taken the

number that is assigned to each word) and stored. In the next step, the feature values

of the new case are filled with the data from the DF. For example, in Fig. 6.12(d) the

value of the feature « V O L U M E » is replaced with «V A L U E _1» , which is

acquired from the DF. All the other features retain the values of the initially selected

case (e.g. «FEATURE_ 1 » has «V A L U E _F _1» , «FE A T U R E _2» has

«V A L U E _F _2», etc.).

The new case is presented to the expert user, who verifies its validity and is able to

manually replace any of the values (the inserted values are checked against the

ontology, as explained in section 6.4.3.1). The case, if validated, is stored in the case

base.

141

Start

Choose
case

Choose
file

Parse STEP files

Data file
(DF)

Parse DF

' r

Determine product
attributes included

in data files

1f

Attach product
attributes to case

features

Is all the required
data included in DF?

STEP files

-No- Old case
features

Present
mapping

Is the mapping
correct?

' f

L
Assign old case

features' values to
new case features

unpopulated by
DF

r

Expert
recommends

values of case
features

Create new case

Figure 6. 11. Integration with case knowledge

142

«‘FEATURE l»» “ FEATURE 2»» ««FEATURE_3»> “ VOLUME»»
“ TYPE F i»» “ TYPE F>» “ TYPE F 3»> “ TYPE_F_4>»
“ V alue_f>» “ V alue_f>> <«value_f_3»» *«valuej_4*»

(b)

UtlU akM ATTkS vrtj TOfJ

t«k« FiXTVUl

WHILE WVTjiXTexists
tike next UM
WHILE tettinLNFesiJtt

t«fce wou>
WHILE FUTvmtM

IF WOKOvcyetches nATVktS
add WOkDJ'jtlUt ttiATTUtVTtJTOki

(C)

4
“ FEATURE 1>* “ FEATURE 2»» “ FEATURE 3»»
“ TYPE F_l»> “ TYPEJF 2*» “ TYPE FJ»>
“ VALUE_F_l»» “ VALUE_F_2*» “ VALUE_F_3>»

(d)

“ VOLUME*»
“ TYPE F 4»
“ VALUE l»»

Figure 6. 12. Utilising a data file to create a new case

VOLUME* «<VALII 1»
SURFACE AREA* <‘VALUE >»
AVERAGE DENSITY « *<VALUE> »
mas;* **value_4*>

CEHTFROFGRAVITY wills “ NAME ASS»> opcwfcntW fnm*
X Y 2 *«VALUE_X>» « VALUE, Y»» “ VALUE _2> *

WERUAwstiiKipKtte “ NAME ASS^eootdutAt Sut» tfOUND*
MNA2j
INERTIA TEHSC*
IxxIxyTx: * *VALUE_Uz*»-“ VALUE,}*?** -“ VALUEJ*»»
1>* IyvIys-* 'VALUEJy*>> <«VALUEJyy*> •<*VALUEJys>»

(a)

143

6.4.3.4 Supporting facilities

The integration approach introduced in the previous sections involves manual input

and user feedback in several validation steps. To be able to recommend modifications

on the automatically generated results, in-depth experience and up-to-date knowledge

need to be readily available. Consequently, only users classified as experts are able to

access this knowledge generation tool.

However, expertise alone is not enough as products and trends are continuously

evolving. The addition of facilities that enable collaboration and access to information

resources is necessary. A context-aware product support system supports these

operations throughout the whole integration process by incorporating a range of

visualisation environments and applications that allow access to design data

(including STEP and BOM files) and the knowledge base at run-time.

6.5 SUMMARY AND CONCLUSIONS

Till today, adaptation in product support systems has been solely based on user

models, delivering insufficiently adapted information. This chapter introduces the

concept of context-aware product support systems, which are needed to meet the

requirements of the user.

To facilitate the development of such systems, a context ontology is proposed that

includes four basic models the activity, user, environment, and physical ones. The

environment and physical models are particularly important in mobile and distributed

applications. Utilising the activity model, performance support and e-Leaming

techniques can be integrated within the context of a single product support system to

144

achieve both performance and learning goals for the first time. Through the activity

model, the task model (domain knowledge) can be reconfigured according to user

needs. As a result, the user model is not considered independent of the other context

models, creating a holistic view of different situations to which the system needs to

react.

Context-specific content adaptation is achieved by adjusting the type, form, and level-

of-detail documentation element attributes in different context instantiations.

Furthermore, the delivered information is modified to reflect the configuration of the

task model and the information describing supported products. It is therefore shown

that knowledge about the context, the universe of discourse (including products and

tasks), and documentation can be integrated to transform a product support system in

a responsive entity able to adapt to different situations described with context-specific

attributes.

The idea that both the external and internal stimuli can influence information delivery

has been also introduced in this chapter. To illustrate this concept, an approach to

automatically use design based data in product support is proposed. The approach

utilises the concepts of ontology, case-based reasoning and their inter-relations in

order to create new product support knowledge. This step presents an important

contribution towards the semi-automatic integration of the design and product support

stages of the product lifecycle.

145

CHAPTER 7

VERIFICATION AND VALIDATION

This chapter presents case studies that are used to validate the theories introduced in

previous chapters and provide verification results based on different application

scenarios.

7.1 SEMANTIC PRODUCT SUPPORT ENVIRONMENT:
PROSON

7.1.1 PROSON environment

The technology solution developed in this work is called PROSON (PROduct Support

ONtology). PROSON is based on the conceptual model of product support knowledge

organisation and the methodology for PRSSs knowledge-base development

introduced in chapter 4.

7.1.1.1 PROSON technical specification

As part of the methodology validation, clutch systems for automotive applications

have been modelled. For reasons of copyright, the values of concepts’ slots have been

slightly modified but are deemed representative of general configurations. To keep the

analysis manageable, a limited account of clutch characteristics (slots) and

subassemblies (concepts connected to clutch with connector “has”) is considered here

as illustrated in Table 7.1.

146

Table 7.1. Clutch subassemblies and attributes considered in the case study
Abstract concept (Assembly)

Concrete concept linked to “assembly” with the “is-a” relation (Clutch)

Cover Plate

Pressure Plate
Concepts connected to Housing
clutch with a connector

(Subassemblies) Flywheel

Countershaft

Synchroniser

Assembly ID
(Integer: 5342-8998)

AssemblyMaterial
(String: aluminium, carbon, magnesium)

Assembly_Model
(String: e.g. 4.5 Carbon Drive Ti)

Slots of clutch
Assembly Moment Of Inertia

(Double: 52.255-95.904)
(Attributes) Assembly Radius

(Double: 3.55-4.42)

Assembly_Type
(String: e.g. Cone, Conical Disk, Disk, Hydraulic)

AssemblyWeight
(Double: 5.6-15.0)

hasSubAssemblies
(Concept: Subassemblies)

147

PROSON has been developed on the Windows platform. Four types of files are

created after project initiation as follows.

• .pins has examples of the code for the knowledge base instances and constraints

(Appendix A).

• .pont contains small part the code for the classes and their slots (ontology)

(Appendix B).

• .pprj includes some of the code for the user interface of the project (Appendix C).

• .jsp (or Java Server Pages) contain the code that defines Information Objects,

Information Object Clusters and Virtual Documents (small annotated parts are

included in Appendix D).

The knowledge base, documentation components, and the general software technical

specification are summarised in Table 7.2.

7.1.1.2 PROSON enabling technologies and tools

The following enabling technologies and tools have been used in this case study.

• Java 1.5.0_05 - a programming language to create the IOs, IOCs, and

integrate them with the ontology.

• JCreator LE 2.5 (Stcherbatchenko 2005 et al.) - a software programming tool

used to develop the .jsp files for the case study.

148

Table 7.2. Technical specification o f the developed system components

(System indicates knowledge base components and software created by the tool itself

and documentation components related to the ontology, while direct stands for

knowledge base components and software coded by the author of this thesis).

TECHNICAL SPECIFICATION

Knowledge base
element

System Direct Total
Classes 15 147 162

Slots 34 110 144
Facets 10 0 10

Instances 0 369 369
Frames 59 626 685

Documentation
element

Information
Objects 116 232 348

Information
Object Clusters 32 52 84

Total 148 284 432

Software file Ins

(Ins-lines of code)

.pins Ins

(instances)
1234 2145 3379

.pont Ins

(ontology)
0 1772 1772

.pprj Ins

(user interface)
1184 0 1184

.jsp Ins 0 782 782
Total Ins 2418 4699 7117

g if jpeg, .bmp,
fa s h 0 53 53

149

• COOL - a programming language (CLIPS object-oriented version) that is used

as the frame-based ontology’s representation language.

• JBoss 2.0 - an application server to support the publishing process.

• Protege 3.0 (Crubezy et al. 2005) - a free, open source ontology editor and

knowledge-base framework that is based on Java and provides a foundation

for customised knowledge-based applications. It supports frames, extensible

Markup Language (XML) Schema (Fallside and Walmsley 2004), Resource

Description Framework Schema (RDFS) (Brickley and Guha 2004) and the

Web Ontology Language (OWL) (McGuinness and Van Harmelen 2004),

which currently serves as the ontology standard proposed by the World Wide

Web Consortium (W3C) community. Protege 3.0 therefore provides a plug-

and-play environment that makes it a flexible base for application

development. The following Protege 3.0 plug-ins have been employed in this

study:

• The Onto Viz Tab (Sintek 2005a) allows the visualisation of

Protege ontologies.

• The Protege-OWL plug-in (Knublauch et al. 2004), which is an

extension supporting the creation and management of OWL-based

ontologies.

• The Protege Axiom Language (PAL) Constraints Tab (Yeh et al.

2003), which is a front end for the constraints system.

• The RDF backend (Sintek 2005b), which facilitates the creation,

import, and management of RDF(S) files.

150

• The Jambalaya Tab Widget (Storey et al. 2002) is a plug-in created

for Protege, which uses SHriMP to visualize regular Protege and

OWL knowledge-bases. SHriMP (Simple Hierarchical Multi-

Perspective) (Rayside et al. 2003) is a domain-independent

visualisation technique designed to enhance how people browse

and explore complex information spaces.

• Apache Tomcat 4.1.31 (Bakore et al. 2004) - a servlet container that is

used in the official Reference Implementation for the Java Servlet and Java

Server Pages technologies.

• Web browsers for PCs including Mozilla Firefox 1 and Internet Explorer 6

for displaying the developed product support virtual documentation

components.

7.1.2 PROSON development

In accordance with the models presented in this chapter, PROSON is based on

conventional frame ontology, thus making it accessible to a range of legacy

applications. This means that PROSON can be exchanged as a static and complete

information structure to third parties.

During the development of PROSON, several textbooks and formal resources were

used as the general knowledge skeleton, which when organised and refined formed

the knowledge base (Appendix E).

151

7.1.2.1 Architectural model development

As illustrated in Fig. 7.1, the clutch concept is connected to super and sub-concepts

with the “is-a” relation.

In the figure “CLUTCH” 1 includes the code “is-a Assembly”, which denotes that

clutch’s immediate super-concept is “ASSEMBLY”. The highest level of abstraction

is represented by concept “THING”.

Connectors that express the “has” relation between “CAR”, “CLUTCH”, and

“COUNTERSHAFT” have also been developed (Fig. 7.1). The range of the connector

between the first two concepts is set to include all sub-concepts of “ASSEMBLY”

including itself.

This means that all assemblies that are included in the knowledge base are car

components. In the case of the latter two concepts, the connector is much more

focused indicating several less abstract (compared to “ASSEMBLY”) concepts such

as “COUNTERSHAFT”, which signifies that the subassemblies included in the

knowledge base describe other assemblies of the car except for the clutch (e.g.

transmission).

The role of the concepts is either “Concrete” or “Abstract”. For example “CLUTCH”

is concrete as illustrated from the CLIPS line “role concrete”. This means that

“CLUTCH” contains direct instances as opposed to “ASSEMBLY”.

1 For this section, text in the form “CAPITALS” denotes a concept while “Italics ” refers to a code
fragment.

152

I 'Product" concept ‘AssemNy" concept "Subassembly" concept

(defclass Product" an entity of interest
created by a process."

(js-a THING)
(role abstract)

"FouiWheeh/ehide' concept

(defclass Fourwneei vemcie a conveyance
that transports people or objects with 4
w heels"

Ci s-a Product)
(role abstract)

Is-a (Abstraction
semantics)

(defclass Assembly "a part of the whole product and a group of
machine pi rts that fit together to form a self-contained u n it"

(is-1THING)
(ro e abstract)
(sir gle-slot Assembly_Matenal

(type STRING)
(cardinality 0 1)
(creatc-accessor read-write))

(defclass Subassembly
(i s-a THING)
(role abstract)

"CAR" concept

(defclass Car "4-wheeled motor veh:
propelled by an internal combustion

(is-a FourWheelV chicle)
(role concrete)
(multislot has Assemblies#—

(type INSTANCE)
;+ (adlowed-classes Assembly)

(create-accessor read-write)))

Connector
(Aggregation

semantics)

(defclass |utch "Clutch" concept
(is-a Assembly)
(role concrete)
(single-slot ID

(type STRING)
;+ (cardinality 0 1)

(create-accessor read-wnte))
(multislot hasSubAssemblies

(type INS
;+ ^(aHfi^Ted-classes CoverPlate PresurePlate Housing Flywheel
Counter sh aft Syn chroni ser)

(create-accessor read-wnte))

(single-slot Connector-dependence
(type SYMBOL)
(allowed-values FALSE TRUE)
(default TRUE)

;+ (cardinality 0 1)
(create-accessor read-write)))

"CountershaftM concept

(defclass£ountershaft "also called a jackshaft,
^hrt'soUd, short round shaft is used for the
transmission of power from a motor to a working
part."

(is-a Subassembly)
(role concrete)
(single-slot ID

(type STRING)
,+ (cardinality 0 1)

(create-accessor read-write))
(single-slot hasP arts In stance

(type INSTANCE)
(allowed-cl asses Bolt Screw Ring■ +

Washer)
• + (cardinality 0 1)

(create-accessor read-write)))

Figure 7.1. CLIPS code that describes small part of the architectural model for “Clutch ” assembly

153

7.1.2.2 Functional model development

Fig. 7.2 illustrates a small part of the functional model that includes the knowledge-

specifier “PRODUCT_TYPE” and its sub-concept “COMPLEX_PRODUCT”, which

in turn is related to “CLUTCH” and “SERVICE” with arcs.

“COMPLEXPRODUCT” qualitatively characterises a product as complex or not.

This is decided according to quantifiable measures, which are described by the slots

“depthOfProduct”, “breadthOfProduct”, and “numberOfOperations”. The complexity

of a product is contained in the slot “complexityMagnitude” and is calculated

according to Benton and Svistrava’s equation (1993). Based on that,

“depthOfProduct” is the number of levels in a product, “breadthOfProduct” is the

number of components at a level, and “numberOfOperations” refers to the stages of

work. The complexity is then calculated according to the following equation,

Cl - Sx fixrj, where Cl is the product complexity, 8 the depth of the product, ft the

breadth of the product, and // the number of operations.

“COMPLEX PRODUCT” is related to “CLUTCH” via the arc that is defined with

the following code “single-slot relatedToAssemblies” and its range includes a number

of assemblies i.e. “allowed-parents Clutch Transaxle Transmission”. Furthermore,

through the arc “single-slot relatedToTasks” the knowledge-specifier

“COMPLEX PRODUCT” is related to combinations of specific assemblies and tasks

(i.e. service, maintain, and inspect), which means that instances of the allowed

assemblies can be considered as complex only if one of the aforementioned tasks is

performed.

154

Identical
instances

”P roductType" concept

write))

ate-access or
relatedToX^
e SYMBOL]

Instam e o f "Clutch"
— y ------------

([N ikos_Instance_12] o f Clutch

(Assem bly_ID 8925)
(A ssem bly_M atenal " carbon")
(A ssem bly_M odel "4.5 Pro Senes")
(Assembly_MomentH-of:bInertia 62.637)
(Assem bly_Radius 4 .06)
(A ssem bly_T ype "jaw/claw")
(A ssem bly_W eight 7 6)
(hasSubAssem bli es

tfNiko s User s ch ang e d_In s tan c e_ 3 0 040])
((ID "4.5 Pro Senes V I 8925"))

Instance of 'ComplexProduct’

Instance-o f

([N ikosU serschanged_Instance_ 10015] o f ComplexProduct

(breadthOfProduct 6)
(com plexityM agm tude 24)
(depthCXProduct 2)
(M odel "4.5 IVoSeries")
(ID "4.5 ProSeries V I 8925")
(numberOfOperations 2)
(relatedToAssem blies Clutch)
(relatedToTasks M aintain))

"Clutch* concept "Service " concept

Service
(is -a Task)
(role concrete))

(defclass ProductType
(is-a Type)
(role abstract)
(single-slot M odel

(type STRING)
;+ (cardinality 0 1)

(create-accessor read-write))

(defclass

(role
(sm ille-slot

(type
(cardinality 0
(create-accessor re (drfcU s.C om pleK Prostac.

O s-. ProductType) Knowledge-
(role concrete)
(single-slot depthOfProduct S p e c i f i e r

(type INTEGER)
(range 2 % 3FVARIABLE)
(cardinality 0 1))

(single-slot breadthOfProduct
(type INTEGER)
(range 5 % 3FVARIABLE)
(cardinality 0 1))

(single-slot numberOfOperations
(type INTEGER)
(range 2 % 3FVAR IABLE)
(cardinality 0 1))

compl exityM agnitu de
INTEGER)

% 3FVARIABLE)
0 1)

v~ . __ or read-write))
(single-slot ‘ ‘

(ty p e ---------------- ^
(allowed-parents Clutch Tjransaxle Transm ission)
(cardinality 0 1)
(create-accessor___

(s ingl e - si ot r elat e dT oT asks
(type SYM BO L)
(allowed-parents Service M aintain Inspect)
(cardinality 1 1)
(create-accessor read-write))

Figure 7.2. CLIPS code that describes small part of the functional model for “Clutch ” assembly

155

“[Nikos Instance 12] of Clutch” which is an instance of “CLUTCH” represents the

same assembly as “Nikos Userschangedjnstance l 0015 of ComplexProduct”,

although defined in a different manner i.e. the former includes values for “CLUTCH”

slots and the latter for “COMPLEX PRODUCT” slots. This is indicated by the

unique identifier “7D 4.5 Pro Series VI 8925”.

7.1.2.3 Product support documentation development

Fig. 7.3 illustrates a part of the documentation ontology developed using the Protege

ontology editor. The ontology contains two main concepts: “DOCUMENT” and

“DOCUMENTATIONCOMPONENT”. The IOC and 10 concepts are included at

lower abstraction levels. Their slots are displayed in the right part of the page,

reflecting the model of a product support virtual document (section 4.2). For example,

the slots of IOC include the “expressiveness” (i.e. level of detail), and “theme”

attributes, as well as the “ComponentID” one, which denotes a unique identifier for

the IOC, “hasIO”, which is a connector that relates the IOC to IOs, and “TypeOrder”

which represents the order of the different types included in the IOC.

Fig. 7.4 demonstrates the modelling of an IOC and the related IOs within the

knowledge base. The IOC’s slots (i.e. attributes) are shown in the figure (e.g.

“ComponentID” and “Theme”) while the set of IOs that are parts of this IOC are

included in the “hasIO” frame. Two of these IOs are shown as separate boxes

presenting their attributes (e.g. “Behaviour”, “Form”). For example, one of these IOs

has dynamic “Behaviour” and its “Form” has the value image. The same 10 is also

presented in each codified form (only HTML is used in this case) and when it is

included in the product support electronic document presented to the user.

156

Cl*

Assembly
Subassem bly

Activities

ProductC
T as! Concept
R eference

Inforn

Name Cardinality
m) Document ID required single
■I E x p ress iv en ess required multipie String
■ h a s JO C required single Instance of InformationObiectCluster
•1 Theme required single C lass with su p e rc la s s D escribe or A s s e s s or
■ ThenteConfigurationCompleteness single Boolean
■) TypeOrder multiple String

8

Name C ard in a lity 1
| - i ComponentO required single String
■ m i E x p ress iv en ess required multipie String
1 - hasIO single Instance of InformationObiect
| -) Theme single C lass with s u p e rc la s s D escribe or A s s e s s or
| — TypeOrder multiple String

Name Cardinality J Z ~
■■) ComponentO required single String

E x p ress iv en ess required multiple String
h) hasIO single Instance of InformationObiect
>i) Tlieme required single C lass with su p e rc la s s Prockjct or
1*1) TypeOrder multiple (0:5) String
■ TypeOidei C om pleteness single Boolean

T tn i ip l r te S lo ts
Name C ardinaUty

*■ Behaviour required single String
(—) ComponentO required single String
i /m) Expi e s s iv e n e s s required multiple String
—I Form single String
(—) Theme single C lass w ith su p erc la ss Descr ibe or A s s e s s or
m m TypeiO single String
■■ TypetO jS single String

Figure 7.3. Product support documentation model

157

7 9 5 8 9 8 3 5 2 2 5 4 7 2 / (Instance of lnlr*<i.dtkw>0»>i«&|

C tss* H k i o i h i

THUG

SVSTB4-CLASS
TosJ

0 Product
Assernbfy

Subasseiitty

Part
Actrvties

Q Actions

Type
• SUtos*

Utd
Document

▼ i DocumentabonConipcnert

▼ < '."iluaDocunartalioo
▼ ' Product Support

htornrahofiCX

ProdudC
TasiCon

Pef«t«nc

htormabonOt

Static

A V ♦ ♦ X •
♦ 23454535765865736

♦ 346544387684568

♦ 43436677768766736

' ♦ 4364567686638368

♦ 457356838358658

♦ 54276582286653846

♦ 5464568684564346

♦ 5472576867853657S87 50

♦ 547

♦ 5476

5743436584864234

♦ 5686583568786538

785898352254725

lyp̂OS

1 ContponeidiO fc«tM<c’ ivene** • A ■ 11

54765267638628962 Concise

CompMe

✓ TypeOrderConrpietsness

A • • __ JSfrWC—

• CUcti ________' ’ Definition -

~

MsretO
♦ 795898352254722

♦ 795898352254723

♦ 795868352254724

795898352254725

♦ 795898352254726

795898352254727

Behavioui

Dynanac

Con̂ionoriUO
795898352254727

Tyfi®tO S

m tto_Ost s

Trim
Inrage

T.rt**0
Descrptron

CendM
COMMM

lujMMtlrtueu

TypotO

Description

Condaa
 PM

V<IMG height-393
src«”EfcperiencedDescribeClutch files/double disk clutch explcxied view.jpg"
width-642 X/Ti
<P align-center>Double-disk exploded</'FONT></P>

Figure 7.4. Product support virtual documentation creation using PROSON

158

7.2 KNOWLEDGE-BASED PRODUCT SUPPORT SYSTEM:

PROGNOSIS

7.2.1 PROGNOSIS environment

The technology solution developed is called PROGNOSIS. PROGNOSIS is based on

the conceptual problem solving model of product support systems and the knowledge

engineering framework for PRSSs presented in chapter 5.

7.2.1.1 PROGNOSIS technical specification

The ontologies and knowledge bases developed in section 7.1 (PROSON) are utilised

as the backbone of PROGNOSIS. Additional components such as the case base and

the reasoning engine are developed on Windows platform and are represented by the

following types of files.

• Java includes the code for the reasoning engine, login authentication, and the

links between framework modules.

• Jsp contains the implementation for the system, query, and case-based

reasoning interfaces.

• .txt files represent the case bases developed within the system.

A summary of PROGNOSIS technical specification is listed in Table 7.3. The

illustrated numbers are only indicative, since PSVDs are automatically created

throughout the operation of the system.

159

Table 7.3.Technical specification o f PROGNOSIS system components

(System keyword indicates software created by the tool itself while the direct

keyword stands for software created by the developer manually).

TECHNICAL SPECIFICATION

Software file Ins System Direct Total
Java Ins 5399 4464 9863

(Ins-Iines of code) Jsp Ins 1527 3044 4571
Total Ins 6926 7508 14434

160

7.2.1.2 PROGNOSIS enabling technologies and tools

Besides the tools and technologies utilised in the previous section the following tool

was also employed in this work.

• FreeCBR - a case-based reasoning tool used to match and rank existing cases

(Johanson 2005). Several characteristics and tools were added to the basic

FreeCBR application, including adaptation mechanisms, validation

mechanisms, and links to the product, task, and user knowledge bases.

7.2.2 PROGNOSIS system architecture

The PROGNOSIS system comprises a number of separate components. It has been

designed using scalable Web-based language standards (e.g. XHTML, JSP, CLIPS,

RDF(S)). Its modular architecture (Fig. 7.5) includes three independent layers.

• The Knowledge Base Layer, which contains the product, documentation, task,

and user knowledge bases, as well as the case and file system bases. These can

be accessed by the administrators or knowledge engineers/managers through

specialised interfaces. Manipulation tools are provided for editing,

maintaining, troubleshooting, and querying all knowledge bases, including

Protege editor and FreeCBR.

• The Logic Layer, which contains the algorithms for reusing, adapting, and

generating new product support virtual documents. Three main groups of

internal processes are also managed by the logic layer. User administration,

authentication, and registering procedures are regulated by a program called

LoginHandler (Appendix F). The ApplicationController (Appendix G) realises

161

PROSONPROSON PROGNOSIS

File System

|l«cYAwlY«*(d*

Browse
IlM I

Knowledge Base

Product Documentation
Logic Search

d V * 0 Navigation
ControlCase-based match

ranking algori
—i—-— —"• iff —•*

Case-based adaf
algorithm

Case base

Queryion
Task User

Model
Validatealgorithm

PROGNOSIS

System and Tools Interfaces Internet/Intranet

Knowledge base
browser

PROGNOSIS Webbrowser

System userKnowledge engineer/manager

Figure 7.5. PROGNOSIS system architecture

162

connections between the different layers, the case base-knowledge base-file

system modules, and the diverse tools offered from the user interface. The

KnowledgeBaseWrapper (Appendix H) except for traversing through the

knowledge contained in the Knowledge Base Layer it also explores the

information that needs to be extracted. As illustrated the operational

configuration of the system’s functional units for solving a product support

problem is selected in the logic layer. The algorithms are developed in Java,

utilising JavaBeans and servlets. The Apache web-server, JBoss application

server and Apache’s Tomcat servlet container are employed to control the

continuous fluctuations resulting from the changing demands of the users.

• The Navigation Control Layer encompasses browsing, search, querying, and

validating applications that are used by PROGNOSIS end-users to access the

knowledge contained in the system, in the form of product support virtual

documents. Multiple end-users are able to access the PROGNOSIS interface

in parallel with standard web-browsers. This layer has the form of a thin client

that employs Java Server Page and servlet technologies.

One of the most important characteristics of PROGNOSIS architecture is its

modularity. Major elements of the system such as its knowledge and case bases are

interchangeable as long as they are based on the same ontologies. That is because

PROGNOSIS is based on the knowledge based product support framework presented

in this chapter, as illustrated in the following sections.

163

7.2.2.1 PROGNOSIS data space

The data space corresponds mainly to PROGNOSIS Knowledge Base Layer. Details

of the constructs and structure of the knowledge included in this space (i.e. PROSON)

can be found in section 7.1. Appendix I illustrates an integrated view of a part of

PROSON in combination with the case-base introduced in the current chapter.

12.2.2 PROGNOSIS problem space

Fig. 7.6 illustrates the process of implicitly identifying the user’s goal in

PROGNOSIS. As explained in section 5.2.3, once the user logs in PROGNOSIS (Fig

7.6(A)), the diagnosis goal is set. The first page (Fig. 7.6(B)) enables the user to either

browse through existing pre-composed documents (Fig. 7.6(C)) or use one of the

query tools located at the right frame of the page (Fig. 7.6(D)). These tools serve the

information retrieval, diagnosis, and explanation functions. Each of them includes

several cases contained in different case bases in order to retain the modular nature of

the system (example cases can be found in Appendix J). However, the structure of the

cases is homogeneous following the order shown in Fig. 7.6(E). In the leftmost cells

the dimensions are described (i.e. “Activity” and “Action”). The next columns allow

the selection of weights (i.e. “5”), search algorithms (i.e. “Fuzzy linear”, “Inverted”),

search terms (i.e. “=”), and appropriate feature values (e.g. “Learn”).

Fig. 7.7 depicts the connection between the PROSON knowledge-base and the case-

based tools. In this scenario, the user requires more information about the

countershaft. In PROSON the structure of the product is partly described through the

subassembly concept, which in turn includes the countershaft concept. Therefore,

“countershaft” is a value of the descriptor “SUBASSEMBLY” (part of the case base)

164

Pro ♦ Gnosis
K n o v l td g r B ased P ro d u c t S upport System

Hsu* rum yt*r Lopn None. ?»mroid. PIN to leg m
A rc o u iit ')

3 - » . r -

Diagnosis

(C) □
Lk:

P atron d

LOON 1

Information Retrieval

Search ToolDiagnosis

Troubleshooter

Expert AgWjOf

 -i "v— r-a fi-t

Explanation

Performance or Educational

ACTIVITY [Stnng] r [Furry Imoor J r Inverted F I -E_
~ j

ACTION [Stnng] r | Furry r Inverted |» j j UM
Perform

Figure 7.6 Identifying goals by system usage

165

PRODUCTSPECIFIC [String]

A SSE M B L Y [Stnng]

SU B A SSE M B L Y [Stnng]

P / RT [Stnng]

As >embly_Matenal [Stnng]

| Assembly |
rOcTi

Clutch slots

| Fuzzy linear]T] P Inverted

| F u z z y l i n e a r — 3

| F u z z y l l n t a r |

I F u z z y l i n e a r - ~ " ~ V |
. — ~ *~

| F u z z y l i n e a r » 1

I- Inverted f~- ___

I” Inverted ' f - 3

r — 3 7*P Inverted

P Inverted

C a r 1]
C lu tc h

i h a f t T]

3
A lu m in iu m - 1

 I I________

C Housing
€ Synchroniser

► < Plate Assembly
C Flywheel

► O Part
► O Activities
► O Actions
► O Type

• Subtasl
► O User
► © Document
► 41 DocumentationComponent

S u p e r c la s se s
Assembly

1 e m p l a r . e S l o t s

Marne Cardinality Type

A A *
Otlier Facets

Assembly _ID single
^■0 Assembly J/laterial single

} Assembly Jvtodel single
1 Assembly Jvtomert of Ineitia single
1 Assembly _Radius single

)(■*) Assembly _Type single
1 Assembly _Weight single

M Connector-dependence single
(tat) hasSubAssemblies multiple

Integer
String /
String /
Float /
Float / ' /
String /
Float /

/
Boolean defauft-true
Instance of Covet Plate or Prest

h a s S u b A s s e m b l ie s (in s t a n c e o f :$TANOAftD*SLOT I

ll.im e /
--LPlJii

T em plate Value ^ '* * *

h asS u b A ssem b lie s

Value Type
////

Instance / '

A llow ed Class*

/

,* /k «r i»
Flvwheel //
Count er shaft *
Syncla 61 ils<ri

at least

D efault V a lu e s A M ■* ■

Cm diiiality

□ required

^ multiple at most A • *
Assembly

Figure 7.7. Connection between concepts in PROSON knowledge base and concept-level features in PROGNOSIS

166

that is used to express the same information as the subassembly concept in the

ontology. The clutch concept (linked to the assembly ontology concept with the

generalisation relation is-a) is related to countershaft via the aggregation relation

hasSubAssemblies, which means that the countershaft is part of the clutch in

automotive systems (indicated by the feature with dimension “PRODUCTSPECIFIC”

and value “Car”). In the scenario conveyed by the illustrated case, the

“AssemblyMaterial” descriptor (related to the Assembly Material slot) has the value

“aluminium”, denoting that the clutch is made out of aluminium.

1.2,23 PROGNOSIS hypothesis space

Matching and ranking the relevance of different cases according to the query is the

first process taking place in the hypothesis space. That is based on the engine included

in FreeCBR, which utilises the Euclidean distance algorithm discussed in section

5.2.4.1.

The selection of simple retrieval, case-based adaptation or model-based generation

depends on the cases retrieved. Fig. 7.8(A) illustrates an example of a pre-composed

document that describes the clutch assembly. The first picture included in Fig. 7.8(A)

corresponds to single-disk clutches while the second picture portrays double-disk

clutches. Fig. 7.8(B) shows a scenario where the user asks for a description of single

disk clutch. That is expressed by the highlighted row in Fig. 7.8(B), which is one of

the retrieved cases that match the user’s query. The resultant virtual document

includes only the documentation components related to single-disk clutches such as

the related pictures and facts (denoted by the arrows), produced with parameter

adjustment heuristics.

167

J jS J*J
PRODUCTSPECIHC ASSEMBLY SUBASSEMBLY P A R I Subassembly_Material of

disks
Me L* Slew 6>&
#► G ettrig S tarted . L atw t Mead

3Co-̂ le

null carbon

—

Clutch null

The clutrh m ostly en coun tered 13 the rmgle-diik one

Pro 4b Gnosis

- 5 X

<Ji • - ££ ^,N | hUp/.W<l»V*«»*xt.* <*.«OSO*.f̂ aMAfar«t>»«iewr*JFewtt*<a«**rwl(Csr*MwMO«o<Wri.nr»***u* _»J

* (3 r:- c s««h * 0 <**«

DESCRIPTION O F A C AR

A car a a four wheel vehicle This model a called BMW - 3 ?0i Its volume a 6 09t>9332e 00
Therefore it a considered as a large one

Its CAD-generated troage is Austrated below More nfonnabon u nchided m the CAD viewer

| Done

Figure 7.8. Case-based adaptation

Hit
number

Searched values

Results

1 1000
f su b m t '' I

168

__

The next scenario involves a user who requests a description for the body of a car.

The query can be satisfied by replacing the Clutch concept from the previous case

with the Body concept (represented by the values of the “ASSEMBLY” dimension in

the cases) since both of them are considered specialisations of the Assembly concept

in the product ontology (Fig. 7.7). Reinstantiation is therefore utilised and the IOC

related to the Clutch is replaced by the IOC describing the Body of a car, in order to

respond to the changes between the previous and current selected cases. The resultant

document is shown in Fig. 7.8(C).

A rather similar query is examined in the following setting where the user presumably

asks for the description of a transaxle. However, in this scenario there is no pre

composed IOC corresponding to the Transaxle concept. This means that the IOC and

PSVD content has to be created according to information generated based on the

ontology-related models. A simple solution is to utilise the aggregation relations, as

discussed earlier, between the subassemblies and parts that compose a transaxle

additionally to other information found in the slots of each concept and the

information extracted from the generalisation relations. For example, in Fig. 7.9 the

text describing the Housing concept is a combination of its relation to the

Subassembly concept (i.e. “A housing is a Cls(SubassembIy, FrameID(l: 10133))”),

and to the parts Screw, Pin, Spring, etc. (“Has Screw, Pin, Spring, Washer, Bolt

parts”). Furthermore, the definition of Housing is included in the Documentation slot

and used in the generated document. As illustrated, the produced document follows

the basic structure of a PSVD having title (“DESCRIPTION OF A TRANSAXLE”)

and introduction (“In four wheel vehicles and specifically in cars”) related to the

features of the case and the themes of the PSVD (i.e. Describe, Transaxle). The body

169

CJ*ss«s ■■ Slots Z Forms ♦ Instances * Queries © Janrtwrteya Ortova C S) ProWem Sdvng MethoJs

. ̂ «
• F rog

r i m H t e i t t t h y ; • x ■
h * ic

► S/STfM-CLASS
► O Tati
► O Product
► O lu tin U y
▼ O Subassembly

• Ccurtershafe
• Housng
• Synchroniser

Housing in s ta n c e of STA IO A B D -ClA SS)

Heme OtKUmeutnUotl
a protective cover deigned to contain or
support a mechanical component

Concrete •

I ernpixto Slots
name

)■! Connect or-dependence;

i hasPartslnstanceC

ho*PartsIn stonce2 (m v tan ie of STANDARD-SLOT)

Cardnatty Type
sngte Boolean «aiue‘ false

cngle Instance o(Screw or Pm or Spr
-IQlx|i

Heme
hasP art sin stance;

U erum entrtien t e m p l e t e Virtue P. M ■ ■

mstance

A tf e w r itC I

• Screw
• Pin
9 Spring

M w nw m Maximum

C ediurtity

repur ed

nxrthple

fewer s e Slot

at least

at most

JL - -
']

t__ _____

Vjibie* A * ■ m

Domain A • • '

O d e s c r i p t t o n o f a t r a n s a x l e

In Four wheel vehicles and specifically in cars

A transaxle is a Cls(Assembly, FrameID(l 10079)) . combines the functionality of the
transmission, the differential and the drive axle into a single unit Transaxles are near universal in
all automobile configurations that have the engine placed at the same end o f the car as the driven
wheels the front-wheel drive, rear wheel drive and mid-engmed arrangements Has Housing.
Countershaft subassemblies io_>ovr*

A housing is a Cls(Subassembly, FrameID(l 10133)) , a protective cover designed to contain or

A countershaft is a Cls(Subassembly. FrameED(l 10133)) , also called a jackshaft. this solid,
short round shaft is used for the transmission o f power from a motor to a working part Has Bolt.
Screw. Ring, W asher parts io_ia»«c*

A pin is a Cls(Part, FrameID(1 1 0 1 6 0)) , cylindrical tumblers consisting o f two parts that are held
m place by springs, when they are aligned with a key the bolt can be thrown io_ta*c«

A nng is a Cls(Part. Fram eID(l 10160)) , a ngid circular band o f metal or w ood or other
materia] used for holding or fastening or hanging or pullingio_iu»up*

A spnng is a Cls(Part, FrameED(l 10160)) . a device on the suspension system to cushion and
absorb shocks and bumps and to keep the vehicle level on turns After the stress or pressure
exerted by the flexing o f the spring has been removed, the spnng returns to its original state The
spnng does this by first absorbing and then releasing a certain amount o f energy The form o f
spnng may be leaf springs, coil springs, torsion bars, or a combination o f these io_ia.i**

Figure 7.9. Model-based generation

170

of the document is a composition of subassembly and part related IOCs. Frame IDs

are included in this initial version of the document in order to indicate the IOCs that

need to be manually edited at a later stage.

The assumption is that model-based generated solutions are going to become fewer as

more documentation components are developed by the technical writers and case-

based adaptation will become more important. Other scenarios of case-based

adaptation and model-based generation can be found in Appendix K.

7.2.2.4 PROGNOSIS solution space

This space contains the created documents and a tool aiding in validation and new

case creation. More information can be found in Appendix L.

7.3 CONTEXT-AWARE PROGNOSIS

7.3.1 Environment and enabling technologies

Context-awareness and the approach proposed in this study are illustrated through a

case study that involves PROSON ontology (see section 7.1) and PROGNOSIS (see

section 7.2). In addition to presented enabling technologies, Pro-Engineer (PTC 1998)

has been used to create, process, and manipulate design files (i.e. STEP) and

NSViewer (STEPSTONE 2006) to reconstruct and view STEP-based representations.

Furthermore, GIMP and QuickScreenCapture have been utilised in capturing and

processing the images created from the design files, in order to make them

understandable for non-specialists.

171

7.3.2 Context-based adaptation in PROGNOSIS

7.3.2.1 Ontology-based context model

Fig. 7.10 illustrates a small part of the code (in CLIPS) used to create the context

ontology. The root concept for all context related concepts is

“CONTEXT_ENTITY” 2. “USER” 3 and “PHYSICAL” are the specialisations of

“CONTEXTENTITY” as signified by the relation “is-a Context Entity”. “USER”

has slots that describe two other relation types, which are the aggregation and

dependency ones.

The “hasCharacteristic” aggregation relation links “USER” with the

“CHARACTERISTIC” concept and its instances. The cardinality of

“hasCharacteristic” is denoted as “multislot”, which means that a user can have

several characteristics. These are taken from instances of the concepts

“EXPERTISE”, “SPECIALISATION”, and “RECEPTIVITY” (designated by the

code “allowed-classes Expertise Specialisation Receptivity”). These instances are

created by populating the slots of each of the concepts with appropriate values

(Appendix M). For example, “EXPERTISE” has slots to describe the training

single-slot TrainingTime”), the past projects that the individual has participated

(“single-slot PastProjects”), the ones that are relevant to the current project (“single-
slot PastRelatedProjects”), and the number of years that the user is working on such

tasks (“single-slot ProfessionYears”).

2 For the rest of this section, text in the form “CAPITALS” denotes a concept while ‘‘‘‘Italics ” refers to a
code fragment.
3 “USER” in Fig. 7.10 denotes an abstract entity defined by the system in order to store the knowledge
base. It has nothing to do with “User”, which is the concept that represents the users of the system.

172

Context Entity (defclass Context Entity
(is-aUSER)
(rok abstract))

Physical(defclass Physical
(i s- a C ontext_Entity)
(jole abstract)
(m ulti d ot hasS oft ware

(comm ent “Aggregation relation")
(type SYM BOL)
(allowed- parents Softwar e)
(cardinality 1 ^VARIABLJ
(create-accessor r^iiKwite))

(m ulti d ot hasH ar dwaN
(comment “Aggregationrelation fot hardware^
(type SYM BOL)
(allowed-parents Hardware)
(cardnahty 1 7VARIABLE)
(create-accessor read-wntej "

(defclass H aidw ae Hardware
(is-a USER)
(role abstract))

User (defclass User
(is-a ContextJEntity)
(tok abstract)
(multislot hasRole

(type SYMBOL)
;+• (alfowd-parentsRok)

(cardinality 1 ?V ARIAI
(create-accessor reyktJnte))

(multislot uarsPenphere
(type SYMiOL)
(allowed-parents PenpKeral)
(cardinality 1 ^VARIABLE)
(ere ate-accessor read-wnte)) >

(single-dot hasPtofiie
(type INSTANCE)
(albwed-classes Fh<
(cardinality 1 1)
(create-accessor; ad-wnte))

(defclass Penpheral "The components that ere used to add
functionality and make PC s m ore practical "

(is-a Hardware)
(role abstract)
(a n # e-slot brand

Peripheral

(multislot hasCharacteristic
(type INSTANCE)

-+ (alfowed-classes Expertise
Specialisation Receptivity)

________________ (create-accessor read-wnte))

Quantum etc.")

,+

efcl ass Char acten sir c Characteristic
(is-a USER)
(role concrete))

a
(defcU ss Expttiise Expertise

(is-a Characteristic)
(role concrete)
(angle- s l« TramingTime

(type STRING)
(cardinalityO 1)
(create-accessor read-wnte))

(angle- dot P astProjects
(type STRING)
(cardinalityO 1)
(create-accessor read-wnte))

(single- dot Pr ofesdonY ear s
(type STRING)
(cardinalityO 1)
(create- accessor read-wnte))

(angle- dot P astRelatedProjects
(type STRING)
(cardinalityO 1)

__________(create-accessor read-write)))

(com m ent "The brand o f the component like

(type STRING)
(cardnalttyO 1)
(create-accessor re ad-write)))_______________

'defclass Monitor "The component that i s used
as the computer display"

(is-a Peripheral)
(role concrete)
(single- dot m ax_resolutron_verUcal

+ (comment "Themaximum
resolution that the the card can generate in the
horizontal domain, measured inp»x els ')

(type INTEGER)
(range 200 %3FVARIABLE)

+ (cardinalityO 1)
(create-accessor read-wnte))

Monitor

Figure 7. 10. Part of the context ontology in PROGNOSIS

173

The “usesPeripheral” dependency relation connects “USER” with the

“PERIPHERAL” concept, which in turn is related to “PERIPHERAL” through

generalisation (“is-a Hardware”) and aggregation relations (“hasHardware” in

“defclass Physical). One of the peripherals that is continuously used from people is

the computer monitor (i.e. “MONITOR”). More code fragments describing the

context ontology can be found in Appendix N.

13.2.2 Adaptive information delivery

To facilitate comparison between different contexts, it is assumed that two types of

users, experienced and inexperienced, are interested in either designing a clutch

(perform activity) or acquiring more information about clutch design (learn activity).

The differences identified between traditional learning and performing applications

are summarised in Appendix O. PROGNOSIS, the prototype system presented in

section 7.2 and extended with context models to provide context-specific information,

is used to enable users to pose queries and retrieve solutions adapted to their needs

(shown in Fig. 7.11-7.14). Several documentation types are utilised in this study as

listed in Table 7.4, to illustrate the differences between different use cases (more

scenarios can be found in Appendix P).

CASE ONE (Fig. 7.11), involves an inexperienced user who is performing the task of

designing a clutch. The presented information includes information, rules-of- thumb,

and warnings. The goal, constraints metrics, metric attributes, and calculations are

specific to the supported product, which in this case is the “clutch”. Example metrics

are the torque and moment of inertia of the clutch. Furthermore, tools that can be used

174

Table 7. 4. Symbols used in case study

Symbo
Information ■

i

Rule-of-thumb □
Warning

f•

Documentation Definition No Symbol
type Description D

Assignment
A

Case study
C

Fact No Symbol

175

H» U S OW> rentUtt Took H « *
| g taas.fltaeaiWe.lirW.rfecm.eoaosaewCTin,

>U> U*'»ad. £ zi
m)Weiiikrtt»>'»«Was«e^at»r K*«i <«***_£] J > « i urto

3

Pro »■ Gnosis

» Determinr w hat dutch is intended to accomplish

befo re ttartmg w ork on the design o f * clutch, get fanahar with what o expected f r t o the clutch to accotEqshah by T o r< |tie T l a l l 'm i l l r i l b y M a te
anafysmxg the reqt&xesnena of the client.

V iJenufy jf-'ctaJ zequaetnstits and airatnuon*

I H e rr n maid that clutch may ha»e special regulatory r equaementa or eavroamencal limitations posed by a
government body of the cheat
A t t e s t s clutch has been dbafiowed becam e o f eswronmentai requirements

t M ake prckisrw ry t jku lahuns of diameter. malarial. p r t i i 'a c . and number of Asks

ITI H a rr in nur.d that ihr material mOuences the fin non far lor. the pressure u Inked a n h ihr micntman bang prea
and the nurol.ei o f duke increases the torque and a u ra o f Inertia

d Anaiyae the layout for forcer, streste*. and temperature

FTL h d - M ake aura that the parti «n | perform satisfactorily by comparing with the rrarumum or maximum knits

e F rv u e the design and make final calculabona o f dir t<xque, Moment o f Inertia by Plate d u tch

■Tha torque gnms Ih* pow er tramrwuted to tnmsnncsioo

i The bigger torque the better

1 The nruJlrr the moment o f ̂ »ertj* the better

■Pmp+rfumctionimg o f clutch implies the ability m do the required job dependably and well

Give the u ser as much as you possibly can in the clutch, rather than try to get by with the beantst

i T u frh : (a ln i l a io i

Clutch pUse outer
diameter, nun

Clutth plate uifw r
ckemeter.mm 1

Coefficient o f r
ifcetioft

Miountan permitted

Number o f friction
*ur£*cci

Answer ^ a m u D dutch torque. Nm.

jl

T o r q n r l 'i a u e m it te d b y « 'o u e
C h u c k : C a lc u la to r

I Be cartful to consider retry important factor, ithick should rightfully influence the design o f clutch.

a Proper functioning

Clutch plate other
character, mat

Clutch plate nrier
thametm. man

Coe&aeut o f
Sic non

Maximum pensstied
krang pieaaure.
Nfmmi

Angle o f cone

C oloiote f

Answer ■ Maximum clutch torque. N otI-------
□SI

V iocd rtra

Figure 7.11. Case 1: An inexperienced user designs a clutch (perform activity)
Nr ft* emm **or«« Took
O'" - * '

rlilxi*1 3

F r u 70 G n o s i s

tic—

T ie procedure nchsdes the following slept
a Eretermine w hat du tch u intended to ai:onqjhsh
b IJeijsfy tpectnl sequaesnents and kmtaaona
c M ake prehnanary calculations o f diameter, material p r ttn jre . and number o f daks
d Analyse the layout for forces, n e s se s , and temperature
e Seuise the design and make final ■iakulattons o f ihr torque. Moment o f Inertia by Plate Ckach

W m Consider
sa Froporfunctioning
k Coot
c. Lubrication
d. lim e o f manufacture and assembly,
r Strength and rigidity o f parts.
/ . H ear o f ,a r t s
g. Ease V terrier and replacing parts.
h. Proportion of parts.
DO

-CBxh'-pliS-SSr
Aasneier. run

Coefficient o f
file u on

Maxmaen penrsae d
kang pressure.
H/mo2
Number of fist awl r
rarfiacet

t«*s

3

ItElMCN OF A tX C T C H

In four wheel eehicles and specfficaly at c a rt an automotive clutch coanects and ducoonects the mace and manual
nansm siioc o r transaxle The clutch a lo w t file engagement o f a aptamng engine to a n o n -sp ran g transmission by
tcnlrolk<g the skppage betw een thorn Bl

The d u k d utch is wmulua o f amer dumemr. d. and outer dum eter. L , which a p ressed onto a manag Ask through tom e
agency SI

Calculate

Answer - Manmtaa dutch torque. N m

T o r q u e T ia u s m i t t e d b y f. 'n u e
C h i t r h : < a lm la r o t

Clutch plate outer r -
Aameter, mm

Clutch plate mner t -
Aarueter, rum

C oeS cw ato f r -
Sicnon

Maximum pcm«ste<I
bung pressure.
Nfimn2

Angle o f cone:

Calculeta

Answer - Maximum dutch torque. N m

□S3
M a r s M o m e n t o f In m l ia :
C a l m l a t o r

d u tc h dbk
■Aameter, m

M ass of Ask. lb

i^ tia e l ktsarat

Figure 7.12. Case 2: An experienced user designs a clutch (perform activity)

176

t u &dt \W * Fowgr&as ?0C*

Q m • *' £] 5-rcn '• » * " * # '* * * ' ^ ' d j. T 1

is to obtwn a brge totqtie capa,:ity A ksa.hunl.igr is the nrr.etsdy uf p low ing a i trge sxiidfotcr to boH the Ark
together el the note the chitch is engage i

H The pUtr ckach should be constructed n such a way that tha large axul fotce exerted on the dirks is not transmuted
to the theft end therefore doesn't have to held by the be snags

i>
 A plate <kk dutch has ite axir o f rotation perpendkuLir to the contacting stvfhces

P ro 'B - (Jnosis

*1

gepnutm aine properties t j
contacting mate Halt operating ary.

.. Coefficient M i u o u a
* V 'M . of ft., 0 .0 „ « « ,

« l * i t t n u e pa

pss kP«

ISO 1030
300 2070M olded 0 25-0 45

a

Sts*
I t is po tab le to pond out a procedure for clutch that anil prove to be helpful to the begs rung dcnpici

The procedure todudrt the following steps

a Cftuim the Torque T p o f the chad,

T o r new. akgned tfcrfc the tot<pie Tp is
Tp=<2fa*I>*Cio* ro*re r.*n* r0> 3fro«ro-n t .)
where m a the coefficient of thcnca. f> the anal force, ro the outer radust, n the inner radrur

I *-* The table givet the coefficient o f fitcnon for several taatenab whan rubbing aaamst smooth can iron or steel under
jky cooddtocs

Woven 0 25-0 45 50-
100

345-
690

STiueietl
M etal 0 15-045 150

300
1030
2070

Oust 0 3 0 -0 50 0-Id 55-95

W eed 0 20-0 30 (jo-
90

345-
620

Cars
nun.
h u d
steel

0 15-0.25 100-
250 1720

am

j The aoai force P * ir&aflv needed

♦leave floraeFigure 7.13. Case 3: An inexperienced user requests more information on clutchdesign (learn activity) v miMamwufur.r:. sum .in.r.gf.r: ts r:Kir— • ■ , - c wJAlJSi
♦ :

Oto- ■ ■ .3 • I
Wtewa | r « v ; * - e : s o o e . s , i J. .Amen,

«?• an
uUu-VeWreaem ^ awiwWVaNdul -J (£!■»

V
 T he fit am jd .\u .ia g e of the jia te -iek to& sttuction has m ihe pof«b«k£y » f using a Luge num bei o f dicks together so
ac tv obiABa a Large r-.rque c JpJcctty A dL advantage u the necessity o f feovKkrtg a la rg e a n a l force to h->ld tf.e -iiak
together a l the un.e the c h a d , is engaged

J H Th- platr duaeh should be constructed m such a way that the large anal force exerted on the «iuk-* »* not transnauted
to the shaft and therefore doesn't have to held by the beam#*

P ro # G nosis . A pla te S sk . d u tc h fear its xxts o f rotation perpendicu lar to the contacting rurtV fl

MM

T l
•" User

j—|}vTSS.̂1
A tb s u u M s h 4 M r . i l

1>«»W
T h e p r o s * A rc includes the foBowxig steps

> O b ta in the T orque T r o f th e d u tc h

T o r new aligned disk dre tor,{tie T p i r
T p -(2 * n i* P |,* < iv * rvtrv n - * - n)V3*<r.*V»-n *rO
where m is the coetHoent ot tncuon. Pp the smal force, ru Use outer rem it. n me inner rakur

\ \c tiv ity
context-

context-

SJ CD

d .
1 ii*K!.SSl±r

• D o . -----

Figure 7.14. Case 4: An experienced user requests more information on clutch design(learn activity)

177

to ease the design process are provided, such as the torque calculator contained in the

right frame of the product support virtual document.

In CASE TWO (Fig. 7.12) all clarification documentation types (i.e. information,

rules-of-thumb) are removed since the information is delivered to an experienced user

that wants to perform the same task (i.e. design a clutch). As a result only definitions,

facts (text with no symbol attached), and warnings are included in the presented

document. The highlighted part in the document describes the process of designing a

clutch and therefore includes all subtasks. Since the user is experienced, these are

portrayed as a list (used only as reference to remind to the expert all subtasks that

have to be accomplished). In this case, the task process is configured as follows:

Determine goal —► Identify constraints —► Make preliminary calculations of metrics

—► Analyze layout of metric attributes —» Revise and make final calculations of

metrics.

In CASE THREE (Fig. 7.13), the task —► subtask structure of the design task shown in

the previous case is modified to correspond to the change of the activity from

“performing” to “learning”. The new structure is as follows; obtain the main metric

equation —► obtain other metrics equations that exist within the initial equation —►

present theoretical aspects of these equations —► evaluation. Furthermore,

documentation types that aid in user understanding are added, like descriptions,

assignments, and case studies. The “performance tools” (i.e. calculator) are replaced

by “learning tools” (i.e. summarization table) located in the right frame of Fig. 7.13).

CASE FOUR (Fig. 7.14), corresponds to an experienced user seeking for more

information on clutch design (i.e. user “experienced”, activity “learning”).

178

Information documentation types are therefore removed while other types that are

contained within both cases have different levels of detail (e.g. the pictorial

description of a clutch is more concise for an experienced user). The highlighted part

of Fig. 7.14 shows the “context-change” buttons, which enable the user to change

context at run-time and access documents belonging to another context instantiation,

formulating a highly interactive experience.

7.3.3 Responding to internal stimuli in PROGNOSIS

Fig. 7.15 illustrates a scenario in which a case is created based on the data retrieved

from CAD related files (other scenarios can be found in Appendix Q). In this

example, the user decides to structure the case based on the STEP file produced

during the design of a driving axle (parts of this file can be found in Appendix R).

Part of the product’s BOM is shown in Fig. 7.15 (a) (other tested BOM files can be

found in Appendix S). Fig. 7.15 (b) shows the screen that enables the user to choose

different BOM files (by clicking the “VERIFY CHOSEN FILE” button) and/or use

any of the supporting facilities (see Appendix T).

Parsing the BOM file selected by the user as input (see Appendix U for a part of the

parsing code), the system constructs a tree of the product and categorises its

components according to the PROGNOSIS ontology. This means that the

classification distinguishes between products, assemblies, subassemblies, and parts.

Fig. 7.15 (c) demonstrates the recommendation of the system for the current setting.

179

DEFINE PRODUCT STRUCTURE

(c)

(b)

[dfrvinq_axle_rear bom.1

VERIFY CHOSEN RLE j

inside b o m l ^

OPENBOM I

pipes.esm sip _3J

OPEN CAD FILE [

| inside bom 1 ^

WEB RELATED RESULTS

OPEN KNOWLEDGE BASE

E CONFERENCE

DRIVING. AXLE.REAR
(FRODUCTSPEOFtCjJ

HUBREAR
| ASSEMBLY 3

694120 000000
TRANSMISSION

|SUBASSEMBLY
619920 010002
6I99_010004
6199,010006
6199,010008
6199_010010
6203,000016
6203 050001 .
6224_000004 ^
6224_010001
6224 010002
6224,030001

6224,2,000007
BLOW_OFF_VALVE

BOLTM16X80
BOLT,M8X16

BRAKE CYLINDER
BRAKE DISK
BRAKE, SHOE

CONNECT_MECHANISIM
_______ NUT M14_______

<«*)

JaL
A ssem b ly DRIVIHG_AXLE REAR c o n t a in s

1 S u b -A ssem b ly SUB_REAR
1 P ar t WHEEL
8 P a r t WASHER.C22
8 P a r t 6 1 9 9 ,0 1 0 0 1 0

S u b -A ssem b ly HUB_REAR c o n t a in s
1 F art 619920 010002
8 P a r t 61 9 9 _ 0 1 0 0 0 6
1 P a r t 6203 050001
1 P a r t 6203 000016
3 P a r t BOLT.M16X80

12 P a r t B0LT_N8X16
4 P a r t SCREU_H8XS0
4 P a r t VASHER_M8
4 P a r t NUT M8
1 P a r t 6224 010001
1 S u b -A ssem b ly 694120 000000
8 P a r t 6199 010008
• P a r t NUT_M14
1 S u b -A ssem b ly TRANSMISSION
1 P a r t 6199 010004

S u b -A ssem b ly 6 9 4 1 2 0 .0 0 0 0 0 0 c o n t a in s
1 P a r t BRAKEJDISK
1 P a r t
1 P a r t
1 P a r t
1 P a r t

BRAKE_SHOE
CONNECT.HECHANISUi
BRAKE_CYLINDER
BLOU OFF VALVE

PRODUCTSFECIFTC | DRMNG_AXIE_REAR

ASSEMBLY | h u b _ r e a r z \

SUBASSEMBLY | 694120,000000

PART 1619920,01000: H

Sub assembly _M at erial (kevlar

No. of disks F~ (e)

ProduetSpecificVoluine |6 0969332e00

VOLVKE * 6 0969332e+00 HK'3
SURFACE APEA * 1 066624Se*02 KM‘2
AVERAGE DENSITY * 1 .OOOOQOOe+OO POUND KM 3

V 0W P W 1 m w__________

(f)
-- N / * ------------

1 29 29 Unspecified Nada null null keviar 3
SUBMIT j _

[Unspecified] is a Cli(Fc>urWlwelVehic!e.Yn>meID(l 10142)'«o.»»«.

A Four-Wheel-VehicSe « a Cb(Product FrameIB(lT014])). a conveyance that transports
people or objects with A wheels

Example Four-Wheel-Vehicle shown below

(g)

4
4 alternate* «Mc*

Legend
Process

Figure 7.15. Case creation in PROGNOSIS using CAD related files

180

As shown, “DRIVINGAXLEREAR which is an assembly in the BOM file, is

recognised as a product since it is the root component in the file. Accordingly,

“HUB REAR” being directly related to the “DRIVING AXLE REAR” (i.e. being in

the same text block and related with the “Sub-Assembly” keyword to

“DRIVING AXLE REAR”) is located in the “ASSEMBLY” level, while the

“TRANSMISSION” being a direct subassembly of “HUB REAR” is recognised as a

“SUBASSEMBLY” by the system, and so on. Although this step is fully automatic,

the results can be manually modified by the user, meaning that the aforementioned

components can be assigned at any level (however some validity constraints are

applicable such as one that does not allow all components to be allocated at the same

level).

Fig. 7.15 (d) includes a fragment of the constructed case. The features related to the

product components are defined in the previous step (in this scenario it is assumed

that the structure proposed by the system is accepted). The rest of the features are

filled either with values that are retrieved from data files (e.g. files containing data

about the mass and other attributes of the product produced using STEP data

(examples of data files can be found in Appendix V)) or from the initially chosen

case. For example the feature “ProductSpecificVolume” is filled with the value

acquired from the DF shown in Fig. 7.15 (e). On the other hand, since no attributes

matching the features “Subassembly_material” and “No. of disks” are found in the

DFs, these “inherit” their values from the case on which they are based (in this

scenario the values are correspondingly kevlar and 3). Similar to the previous step, the

values of the resultant features can be manually modified by the expert.

181

As illustrated in Fig. 7.15 (f), the case stored in the case base is different than the one

submitted by the user. That is because the submitted case is checked against the

knowledge base and ontology that describes products. In this example, the values of

the features “PRODUCTSPECIFIC” and “ASSEMBLY” are considered invalid and

therefore are replaced by system keywords (e.g. “Unspecified”), which indicate that

there is an error with these features. However, the case is retained in the case base

although another expert has to change and validate it before being removed. The

product support virtual document created at the end of the process is shown in Fig.

7.15(g).

7.4 CONCLUSIONS

Two product support environments have been developed, PROSON and

PROGNOSIS, to illustrate the applicability of the proposed approaches.

The semantic models presented in chapter 4, have been integrated into PROSON. The

development of such an environment illustrates that documentation objects can be

reused in a meaningful way for producing new documents by mapping them to

ontology components and representing them using ontology-based language..

The framework introduced in chapter 5, is used as the skeleton of PROGNOSIS. Its

inference mechanism corresponds to the reasoning approach introduced and its

modules relate to the spaces of the framework. The scenarios presented illustrate that

changes in the domain knowledge are instantly reflected in the solutions that are

delivered to the user, by reusing existing documentation components or automatically

creating them. This framework ensures that the frequent changes expected when

182

dealing with much more complex and highly customised products are instantly

propagated into product support documentation.

PROGNOSIS has been further extended according to the ideas described in chapter 6.

The context ontology has been used to acquire context attributes including user profile

and usage purpose and to adapt automatically generated documents to specific

requirements. Internal stimuli have been used to update documentation objects from

design data with minimal intervention from an expert. This work also illustrates that

STEP contains data that can be automatically transformed in a form suitable for

developing product support virtual documents.

183

CHAPTER 8

CONTRIBUTIONS, CONCLUSIONS, LIMITATIONS AND

FUTURE WORK

This chapter summarises the contributions made and conclusions reached and

suggests possible directions for further research.

8.1 CONTRIBUTIONS

The main contribution of this research is the development of a context-aware

knowledge engineering framework for product support. This work is a step towards

the new paradigm of context-specific “just-in-time” knowledge delivery that would

enable corporate knowledge to be captured and delivered to users and developers of

online training systems when, where and in the form they need it. The specific

contributions are summarised below.

1. Definition of product support knowledge.

Product support knowledge is defined as a synthesis of product, task, and user

knowledge. Product support virtual documentation forms the link between the

different product support knowledge elements and is the medium that enables

provision of user-tailored product support related information to the user.

2. Knowledge model of Product Support Systems (PRSSs).

The knowledge model is developed as a formal representation of the structure,

relations, and attributes of the product support domain. It enables the development of

184

PRSSs knowledge bases and is used with the objective of organising data in a way

that ensures homogeneity and validity of the resulting information when used for

product support.

3. Conceptual model of a product support virtual document.

Product support virtual documentation is defined as an aggregation of entities called

Information Objects (IOs). A new documentation concept is introduced called

Information Object Cluster (IOC). IOC aggregates a number of IOs and is linked to

concepts of the domain knowledge. The runtime commitments/constraints related to a

product support virtual document are analysed in terms of the semantic relations of its

components (i.e. IOs and IOCs).

4. Problem solving approach to developing PRSSs.

The problem solving approach includes determining the kind of product support

problems that the system is expected to handle, and selecting accordingly the

reasoning technique that should be followed. This approach is based on a multi-modal

reasoning strategy that facilitates the generation of responses to a variety of user

queries since case-based reasoning is utilised in providing personalised information

while model-based reasoning is used to compensate for the lack of documentation

resources.

5. Knowledge engineering framework for PRSSs.

The structure of the developed framework is based on four spaces: the data, problem,

hypothesis, and solution spaces. The data space includes the knowledge bases that

contain product, task, user, and documentation related knowledge. The problem space

incorporates knowledge about the product support problems that have occurred in

185

previous problem solving iterations in terms of problem-solution pairs. The problem-

solution pairs are represented by cases. The hypothesis space includes the case-based

adaptation and model-based generation algorithms and the solution space contains

information about the product support virtual documents that have been derived

throughout previous problem solving iterations.

6. Conceptual model of context-aware PRSSs.

The conceptual model of context-aware PRSSs that is introduced extends the

knowledge engineering framework (contribution 5). It includes a component that

manages context-related information and a layer that captures internal and external

stimuli.

7. Ontology of context for PRSSs.

The developed ontology of context includes four basic models: activity, user,

environment, and physical models. The activity model is used to identify the purpose

of visiting the PRSS (i.e. learn or perform). The user model represents users’

characteristics and attributes. The environment and physical models include

environmental features and the specifications of the system’s hardware and software.

In this ontology, the user model is integrated with the other context models, creating a

holistic view of different situations to which the system needs to react.

8. Approach for integrating product design and support documentation data.

The integration approach proposed in this research is based on the idea that both the

external and internal stimuli influence information delivery. The approach utilises the

concepts of ontology, case-based reasoning and their inter-relations to create new

product support knowledge from design data.

186

8.2 CONCLUSIONS

1. Traditional product support applications have a limited ability of adapting to the

user’s needs and responding to unforeseen situations.

2. Knowledge-based techniques have been used recently in developing training and

support related applications but most of these attempts have been application-

oriented.

3. The complex problem of creating a PRSS can be addressed by solving a more

manageable goal of developing a knowledge-based platform for product support.

4. The development of an ontology-based model for representing the knowledge

base of a PRSS facilitates interoperability and seamless content exchange between

product support and other knowledge intensive fields (i.e. product, task, user, and

documentation modeling) by representing knowledge in a machine-processable

way.

5. The specification of product support problems and the active response to them by

reusing, adapting or generating new information is among the most essential

aspects of responsive product support.

6. A multi-modal reasoning strategy that utilises case and model-based reasoning can

be employed to automatically develop product support information for every

product support situation.

7. A knowledge-engineering framework can be used to uniformly represent product

support systems and their components.

187

8. Effective knowledge delivery depends not only on user’s characteristics but also

on user’s goals, environmental and device related features. These form the context

of a PRSS.

9. Knowledge about the product support domain and context can be integrated and

incorporated in the design of informative, effective, and expressive

representations of context-specific support information.

10. Changes in product design data can be automatically translated into new product

support documentation data by utilising the semantic-based representation of

product support cases and product documentation components.

8.3 LIMITATIONS

The method used to rank the cases is based on the approach adopted by the FreeCBR

tool, which uses the Euclidean distance algorithm. However, that algorithm cannot

support adequately fuzzy searches in natural language based queries.

The solutions provided to the user are automatically generated, which poses some risk

of delivering an incorrect result. In this work no metrics are proposed for calculating

that risk.

The operation of the framework includes the selection of a hypothesis and its delivery

to the user. The selection process is based on the cases ranking provided by CBR and

on manual selection in the current prototype. Hypothesis selection could be improved

by using learning algorithms that can utilise previous iterations and user preferences.

188

The documents generated by the system are not evaluated in this prototype. The

reason is that no metrics have been devised for calculating the quality of technical

documents in quantifiable terms. Usability studies could be used to acquire the

opinions of expert and novice users, however, professional resources (i.e. graphics,

videos, interactive maps, etc.) should be used in such a case.

8.4 FUTURE WORK

Currently the input for the querying tool is based on controlled text interfaces. Natural

language processing could be utilised to offer to the users a more natural way of

expressing their needs.

In this work adaptive knowledge delivery has been demonstrated in terms of simple

techniques that illustrated the applicability of the proposed approaches. More complex

methods can be used to perform content adaptation.

The product support system used to demonstrate the research conducted in this project

is developed on a PC system. However, software embedded on the supported device

or on a mobile platform (e.g. PDA) is another promising area where the framework

could be tested.

In this research, product design data is retrieved by STEP data once this has been

transformed into ASCII files. One of the future steps will be to integrate the document

model and ontology within the STEP standard and make it an integral part of product

data.

189

The proposed enhancements are based on some technical aspects of the current

project. However, the work presented in this thesis stimulates research in other

scientific areas, as well.

A possible research direction is using the same documentation models and testing

their applicability in situations that are not related to product support but to other

areas such as e-govemment and e-education.

Adaptive knowledge delivery could be further improved by developing mental models

of human cognition and perception, as well as increasing the levels of adaptation. This

would enable adaptation to different learning and task performance styles.

The automatic generation of electronic documentation raises the need for automatic

evaluation of the delivered information. A step towards that direction would be the

development of quantifiable measures and methodologies that indicate the

appropriateness of electronic documents in different situations.

190

APPENDIX A
Examples of instances of the PROSON-based KB

1. Clutch instance

([Nikos_Instance_12] of Clutch

(Assembly_ID 8925)
(Assembly_Material "carbon")
(Assembly Model "4.5 Pro Series")
(Assembly_Moment+of+Inertia 62.637)
(AssemblyRadius 4.06)
(Assembly_Type "jaw/claw")
(Assembly_Weight 7.6)
(hasSubAssemblies [NikosUserschanged_Instance_30040])
(ID "4.5 Pro Series VI 8925")
(No Disks 0))

2. IO instance

([NikosUserschanged2_Instance_10] of InformationObject

(Behaviour "Static")
(ComponentID "47425475574772")
(Expressiveness "Detailed")
(Form "Text")
(Theme Clutch)
(TypelO "Explanation")
(TypelO S [No_Disks]))

3. Reference instance

([NikosUserschanged2_Instance_10000] of Reference

(ComponentID "1432458724573474256")
(Expressiveness "Technical")
(hasIO [NikosUserschanged2_Instance_l 0246])
(Theme %3ASTANDARD-CLASS)
(TypeOrder "Data"))

4. Task-based product support virtual document instance

([NikosUserschanged2_Instance_10001] of TaskBasedPSVD

(DocumentID "6533264586548635628665365")
(Expressiveness "Detailed")
(has_IOC [NikosUserschanged2_Instance_l 0345])

191

(ProductReference [NikosUserschanged_Instance_30039])
(Theme Design)
(ThemeConfigurationCompleteness TRUE)
(TypeOrder

"Title"
"Introduction"
"Body"
"TaskConcept"
"Procedure"
"Prerequisites"
"Subtasks"
"Reference"
"Results"
"Explanation"
"Comment"
"Example"))

5. Product-based product support virtual document instance

([NikosUserschanged2_Instance_10002] of ProductBasedPSVD

(DocumentID "45734768244864867476")
(Expressiveness

"Detailed"
"Partial"
"Technical")

(has_IOC [NikosUserschanged2_Instance_l 0308])
(TaskReference Describe)
(ThemeConfigurationCompleteness TRUE)
(TypeOrder

"Title"
"Introduction"
"Body"
" ProductConcept"
"Definition"
"Description"))

6. IOC instance

([NikosUserschanged2_Instance_10328] of ProductConcept

(ComponentID "56743436584864234")
(Expressiveness

"Detailed"
"Partial")

(hasIO
[NikosUserschanged2_Instance_20008]
[N ikosU serschanged2_Instance_20009]
[NikosU serschanged2_Instance_20006]
[NikosUserschanged2_Instance_20007]

192

[NikosUserschanged2_Instance_l 0215])
(Theme Clutch)
(TypeOrder

"Definition"
"Description"
"Explanation"
"Comment"
"Example")

(TypeOrderCompleteness TRUE))

7. Pressure plate instance

([NikosUserschanged_Instance_40018] of PresurePlate

(hasParts
[NikosUserschanged_Instance_40019]
[NikosUserschanged_Instance_40020])

(ID "Pressure Ultraweight 428")
(Subassembly_ID 428)
(Subassembly_Material "carbon")
(Subassembly Model "Pressure_Ultraweight")
(Subassembly_Moment+of+Inertia 22.224)
(Subassembly_Radius 3.67)
(Subassembly_Type "diaphragm")
(Subassembly Weight 3.3))

193

APPENDIX B
Examples of classes and slots of the PROSON-based

KB

Examples of slots related to product support virtual documentation

1. Description of the theme slot

(single-slot Theme
(type SYMBOL)

;+ (allowed-parents Describe Assess Assemble Inspect Schedule
Promote Operate Install Launch Maintain Support Plan Service
Three+Wheel+V ehicle T wo+Wheel+V ehicle F our Wheel V ehicle Car
Bus Lorry Truck Transmission Transaxle Body Clutch
AutomotiveTransmission Countershaft Plate Assembly Flywheel
Synchroniser Housing PresurePlate CoverPlate Screw Bearing Button
Bolt Disk Pin Lever Cone Spring Capscrew Ring Washer Plate Nut
Retaining_bolt Diaph spring Pressure_spring Adjusting_screw
Lock_Nut Pivot_Ring Retaining capscrew Intemal cone Pilot_bearing
Driving_plate Driven_plate Friction_plate Backplate Subtask Actions
Attach Insert Screw 1 Put Remove Turn Assembly Design)

;+ (cardinality 0 1)
(create-accessor read-write))

2. Description of the has IOC connector

(multislot hasIO C
;+ (comment "Defines the IOCs included in the Product Support Virtual
Document")

(type INSTANCE)
;+ (allowed-classes InformationObjectCluster)

(cardinality 1 7VARIABLE)
(create-accessor read-write))

Examples of slots related to the user knowledge

3. Description of the Training time slot

(single-slot TrainingTime
(type STRING)

;+ (cardinality 0 1)
(create-accessor read-write))

4. Description of the username slot

(single-slot Username
(type STRING)

194

;+ (cardinality 0 1)
(create-accessor read-write))

Examples of slots related to the product knowledge

5. Description of the product weight slot

(single-slot ProductWeight
(type FLOAT)

;+ (cardinality 0 1)
(create-accessor read-write))

6. Description of the complexity magnitude slot in the Knowledge specifier

(single-slot complexityMagnitude
(type INTEGER)
(range 20 %3FVARIABLE)

;+ (cardinality 0 1)
(create-accessor read-write))

7. Description of the has-parts connector

(multislot hasParts
(type INSTANCE)

;+ (allowed-classes Part)
(create-accessor read-write))

Examples of concepts

8. Description of the task concept

(defclass Task
(is-a USER)
(role abstract)
(single-slot IsComposedOfSubtask

(type INSTANCE)
;+ (allowed-classes Subtask)
;+ (cardinality 0 1)

(create-accessor read-write)))

9. Description of the assembly concept

(defclass Assembly "a part of the whole product and a group of machine parts that fit
together to form a self-contained unit."

(is-a USER)
(role abstract)
(multislot hasSubAssemblies

(type INSTANCE)
;+ (allowed-classes CoverPlate PresurePlate Housing Flywheel
Countershaft Synchroniser)

195

(create-accessor read-write))
(single-slot Assembly_Model

(type STRING)
(cardinality 0 1)
(create-accessor read-write))

(single-slot AssemblyType
(type STRING)
(cardinality 0 1)
(create-accessor read-write))

(single-slot Assembly_ID
(type INTEGER)
(cardinality 0 1)
(create-accessor read-write))

(single-slot Assembly_Material
(type STRING)
(cardinality 0 1)
(create-accessor read-write))

(single-slot hasSubAssembly
(type INSTANCE)
(allowed-classes Subassembly)
(cardinality 0 1)
(create-accessor read-write)))

APPENDIX C
Example of the CLIPS code describing protege

interface

([BROWSER_SLOT_NAMES] of Property_List

(properties
[NikosUserschanged2_ProjectKB_Instance_125]
[N ikosU serschanged2_Proj ectKB_Instance_ 126]
[N ikosU serschanged2_Proj ectKB_Instance_ 127]
[NikosUserschanged2_ProjectKB_Instance_128]
[N ikosU serschanged2_Proj ectKB_Instance_ 129]
[NikosUserschanged2_ProjectKB_Instance_l 30]
[NikosUserschanged2_ProjectKB_Instance_l 31]
[NikosUserschanged2_ProjectKB_Instance_132]
[N ikosU serschanged2_Proj ectKB_Instance_ 133]
[NikosUserschanged2_ProjectKB_Instance_134]
[NikosUserschanged2_Proj ectK B Instancel 35]

([CLSES TAB] of Widget

(ishidden FALSE)
(label "Classes")
(property_list [Nikos_ProjectKB_Instance_l 0097])
(widget_class_name "edu.stanford.smi.protege.widget.ClsesTab"))

([FORMS TAB] of Widget

(is_hidden FALSE)
(label "Forms")
(property list [Nikos_ProjectKB_Instance_l 0133])
(widget_cl£iss_name "edu.stanford.smi.protege.widget.FormsTab"))

([INSTANCE ANNOTATION FORM WIDGET] of Widget

(height 476)
(is_hidden FALSE)
(name ":INSTANCE-ANNOTATION")
(property_list [KB 083170_Instance_33])
(widget_class_name "edu.stanford.smi.protege.widget.FormWidget")
(width 603)
(xO)
(y o))

197

APPENDIX D
Examples of IOCs, IOs, and PSVD

Information Objects

• Java Server pages format

1. Textual description of a disk clutch with 2 disks for experienced users
<P align=left>The

double-disk clutch has one extra driven disk and one more intermediate
driving plate when compared to the single-disk.</P>

2. Multimedia description of a disk clutch with 1 disk for experienced users
<IMG height=349

src="ExperiencedDescribeClutch_files/single disk clutch.jpg"
width=547></P>

<P align=center>Single-disk clutch</P>

3. Textual description of a disk clutch with 1 disk for experienced users
<P>The clutch mostly encountered is the single-disk one.</P>

4. Textual description of a disk clutch with multiple disks for experienced users
<P align=left> The <%=disks%>-disk clutch has <%=(disksNumber-l)%> extra
driven disks and

<%=(disksNumber-l)%> more intermediate driving plates when
compared to the sigle-disk.</P>

5. Textual definition of a disk clutch for experienced users
B>A clutch is a coupling that connects or

disconnect driving and driven parts of a driving mechanism.</P>

6. Textual definition of a disk clutch for inexperienced users
B>A clutch is a coupling that connects or

disconnect driving and driven parts of a driving mechanism.</P>
<P>An automotive clutch connects and disconnects the engine and

hand-shifted transmission or transaxle.

7. Comment of a disk clutch for inexperienced users
The clutch in cars, is located

between the back of the engine and the front of the transmission.</P>
<P>

8. Textual explanation of a disk clutch for inexperienced users
<P>Clutches are useful in devices with two rotating shafts. The clutch

locks the two shafts together, so that they can spin at the same speed or

198

decouples them, in order to spin at different speed.</P>

9. Multimedia (Flash) explanation o f a disk clutch for inexperienced
users

O B JEC T

codeBase=http://download.macromedia.com/pub/shockwave/cabs/flash/swfl ash.cab#
version=4,0,2,0

height=301 width=354 classid=clsid:D27CDB6E-AE6D-l lcf-96B8-
444553540000><PARAM NAME="movie"
VALUE="http://static.howstuffworks.com/flash/clutch-fig2.swf'><PARAM
NAME="quality" VALUE="high">

<embed
src="http://static.howstuffworks.com/flash/clutch-fig2.swf' quality=high

pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?Pl_Prod
_V ersion=ShockwaveFlash"

type="application/x-shockwave-flash" width="354" height="30T'>
</embed> </OBJECT>

10. Multimedia (Flash) example o f a disk clutch for inexperienced users
O B JE C T

codeBase=http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#
version=4,0,2,0

height=400 width=450 classid=clsid:D27CDB6E-AE6D-l lcf-96B8-
444553540000><P ARAM NAME=,,movie,,
V ALUE="http ://static. howstuffworks. com/flash/clutch-fig3. sw f’><P ARAM
NAME="quality" VALUE="high">

<embed src="http://static.howstuffworks.com/flash/clutch-fig3.swf'
quality=high

pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?Pl_Prod
_Version=ShockwaveFlash"

type="application/x-shockwave-flash" width="450" height="400"></embed>
</OBJECT>
Exploded view of car

clutch

• Other formats
1. Multimedia description o f a disk clutch with 1 disk for experienced

users

2. Multimedia comment o f a disk clutch for inexperienced users

199

http://download.macromedia.com/pub/shockwave/cabs/flash/swfl
http://static.howstuffworks.com/flash/clutch-fig2.swf'%3e%3cPARAM
http://static.howstuffworks.com/flash/clutch-fig2.swf'
http://www.macromedia.com/shockwave/download/index.cgi?Pl_Prod
http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab%23
http://static.howstuffworks.com/flash/clutch-fig3.swf'
http://www.macromedia.com/shockwave/download/index.cgi?Pl_Prod

3. Multimedia example o f a disk clutch for inexperienced users

4. Multimedia explanation o f a pressure plate adjustment for
inexperienced users

Information Object Cluster

• Java Server pages format

1. Disk clutch related IOC
O B JE C T

<%//Taking the number of disks as a parameter%>
<% String disks = request.getParameter("No_Disks");

disks.toString();

char leftBracket =
char rightBracket =
char empty = '

String disksNew = disks.replace(rightBracket, empty);
disksNew = disksNew.replace(leftBracket, empty);
disksNew = disksNew.replaceAll("A\\s+","");
disksNew = disksNew.replaceAll("\\s+$","");

int disksNumber = Integer.valueOf(disksNew).intValue();
%>

<P>The disks in this case are :
<%=disks

2 0 0

%>

<%//Using the Information Objects%>
<%if (disks.equals("[l]")){
%>

<%StringBuffer get = new StringBuffer();
if (USER.equals ("Inexperienced"))
get.add("Single-disk clutch textual definition.jsp");
get.add("Single-disk clutch textual.jsp");
get.add("Single-disk clutch describe multimedia.jsp");%>

<%}
if (disks.equals("[2]")){
%>

<%StringBuffer get2 = new StringBuffer();
if (USER.equals ("Inexperienced"))
get2.add("double-disk clutch textual definition.jsp");
get2.add("double-disk clutch describe textual.jsp");
get2.add("double-disk describe multimedia.jsp");%>

<% }
if (disksNumber > 2){

%>

<%StringBuffer get2 = new StringBuffer();
if (USER.equals ("Inexperienced"))
get2.add("multiple-disk clutch textual definition.jsp");
get2.add("multiple-disk clutch describe textual.jsp");
get2.add("multiple-disk clutch describe multimedia.jsp");%>

Product support virtual document

• Java Server pages format

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE></TITLE>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-7">
<META content="MSHTML 6.00.2800.1491" name=GENERATOR></HEAD>
<BODY bgColor=#faebd7>
<FORM action=http://MEC 1503.engi.cf.ac.uk:8080/Nikos/servlet/LoginHandler
method=post>
<TABLE height-'100%" width="100%" border=l>

<TBODY>
<TR width-T00%">

201

http://MEC

<TD width="20%" bgColor=#e6dfcf>

<CENTER><HR><H2>Pro <IMG height=15
src="spin_files/spin.gif' width=20>
Gnosis</H2><HR>

</TD>
<TD width="60%"><!-- prosthetis edw —>

<P align=left>The system is in learning
mode</P>

<H1 align=center>DESCRIPTI0N OF A
CLUTCH</H 1 >

<P align=left>Clutches can be found in many things that are probably used
everyday, such as chainsaw, cordless drills and cars.</P>
<P><IMG height=32 src="InexperiencedDescribeClutch_files/definition.bmp"
width=32 name=Definition> A clutch is a coupling that connects or
disconnect driving and driven parts of a driving mechanism.</P>
<P>An automotive clutch connects and disconnects the engine and
hand-shifted transmission or transaxle. The clutch in cars, is located
between the back of the engine and the front of the transmission.</P>
<P>
C E N T E R xIM G height=300
src="InexperiencedDescribeClutch_files/diagram of car showing clutch

location.jpg"
width=400></CENTER>
<?></?>
<DIV align=center>Location of clutch

</DIV>
<P>Clutches are useful in devices with two rotating shafts. The clutch
locks the two shafts together, so that they can spin at the same speed or
decouples them, in order to spin at different speed.</P>
<P align=center>
OBJECT

codeBase=http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#
version=4,0,2,0

height=301 width=354 classid=clsid:D27CDB6E-AE6D-l lcf-96B8-
444553540000><P ARAM NAME="movie"
VALUE="http://static.howstuffworks.com/flash/clutch-fig2.swf'><P ARAM
NAME="quality" VALUE="high">

<embed
src="http://static.howstuffworks.com/flash/clutch-fig2.swf' quality=high

pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?Pl_Prod
_V ersion=ShockwaveFlash"

type-’application/x-shockwave-flash" width="354" height="301">
</embed> </OBJECT>
Basic
clutch</P>

202

http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab%23
http://static.howstuffworks.com/flash/clutch-fig2.swf'%3e%3cP
http://static.howstuffworks.com/flash/clutch-fig2.swf'
http://www.macromedia.com/shockwave/download/index.cgi?Pl_Prod

<P><IMG height=32 src="InexperiencedDescribeClutch_files/useful_info.bmp"
width=32> <I>In a car, a clutch is needed in order to connect the engine
shaft and the wheel shaft. This connection enables the car to move or stop
independently of whether the engine is stopped or not.</I></P>
<P><IMG height=32 src="InexperiencedDescribeClutch_files/subparts.bmp"
width=32> The main components of a clutch include the pressure plate, the
studs, the diaphagram spring (or coil-spring), the throw-out bearing, the
clutch housing, the release fork, and the bell housing.</P>
<P>
<CENTER>
OBJECT

codeBase=http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#
version=4,0,2,0

height=400 width=450 classid=clsid:D27CDB6E-AE6D-l lcf-96B8-
444553540000><P ARAM NAME="movie"
VALUE="http://static.howstuffworks.com/flash/clutch-fig3.swf'><P ARAM
NAME=" quality" VALUE="high">

<embed src="http://static.howstuffworks.com/flash/clutch-fig3.swf'
quality=high

pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?Pl_Prod
_V ersion=ShockwaveFlash"

type="application/x-shockwave-flash" width="450" height="400"></embed>
</OBJECT>
Exploded view of car

clutch
</CENTER>
<?></?>
<P></P></TD>

<TD width="20%"
bgColor=#e6dfcf></TD></TR></TBODY></TABLE></FORM></BODY></HTML
>

203

http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab%23
http://static.howstuffworks.com/flash/clutch-fig3.swf'%3e%3cP
http://static.howstuffworks.com/flash/clutch-fig3.swf'
http://www.macromedia.com/shockwave/download/index.cgi?Pl_Prod

APPENDIX E
The knowledge base

&* en*a **<«.« tink a *

a & E * * . ! » * iu *S
Omm »i«i S Fora ♦ hflmcn 3XIH1 Ortovc <-> Pretax- Sol.I*) htottxx:!

• N M M X ta v J ; I I * aM anc o* .11 V €J*C W l«Il

-iQ I XI

< & p r o t £ g i

> ♦
▼ O fteOutl

v r> ft»aVUhe«r.«Mcto
• Or
• True*
• But
• tonry
TT**eV*»*al -«rfc*

C fWeMtoelv***
▼ « ammi*,

■:■ CfcACh
» T<«u<ti

> *u<*isclfreTransinessx»
•

!* 1> Subassen**
• Courserttort
« How**
i? 5**1*«*C*<

T O ft*t AaSffi**.
• CO*«f
«*a*a

* Rywnaei
Port

►* 6al
• » S**»>9

►• fineft tru

l>-x. <#f ur-.

| ferKTMhl «t*r»
Mw

la<A* aewiaa, JD
C«K<itMAy 9£g

be- Asssn*V.M»««
H *««btyJ40AH AH*
m ASS MNy.Motnfirt 0« ITW1n *rflN hmi

«R AsMMily/sAa n ta
-m AtaaaiNy.Tvpe Wfll* * " 9
■a »*>• floal
Jati Connecter •aependtnce v * e Boctem
W fvMOÛ A*MntA«s n*** Instance of C*v*fftrf* dr Pi **»...
aejtaaftftAMtnMy ksaisnoa of dJwueotay
aao w-gle om*
aanc.Cras « * • neger

A A * t * *» «r

Figure E. 1. The product ontology with the clutch concept selected
■Bosmssamc^

Classes *K jWi 3 f orms ♦ Instances * wSuenet

«1SI.S3p̂rotigt
WotTem Jdvr>3 Met "03*

• >»<rtUaarcctianoal?
..* • * X ;

CawpteAodua
4m

tnttonoa *t STAtCAflD-ClASS) X * x
> ♦* *

• Screwl C3r.yk»ffitiHkta 1
• ft*
« Mae*

▼ OT̂ e \c«utrm+ i▼ ̂Product! *»
Co«**6«r»wAj(i ft A « * «

<» SmpteProduct
▼ O TwaType

Nawe
■ hOiPreaurt **• «♦*«

cum FacMs
■MuK

▼ • AnsMic mi«MjnK20
• HySe* Mtfs rttgn aaniwM-2

• v k-gferuetonal PHI—* *V*
• Hyfcrrt *«9

* <U*aei «■ w>*rtrOfQperst<cnt iwrtrwum-2
|ft <- Uaw "■ **«d &A*s«ncftet »egie Class *«h tupercact CUch o
pt i Document « :eMwirolVert>Jcta regured e» Ossa w*h Cor « T-.

▼ O MftriDocunwr* aa rettetfToratf s I'eourco tr Class yrfh tgarcen
▼ <3 ĉsJuAA#jpo*r/rtuc*Dc>cu»Hnr |

vt- T«eeMM«>8xt>
* ProMucttaaedPS.D

v - vttuaCKXMwrtafconCooixiwi

▼ # Waw Mory'.totactUiswi
if> Prot*xK*s«o«|*
• lasKoncet*
$ ftrterefioe

A MotaMwnObtecl
*

- ■

Figure E. 2. Part of the task ontology (actions), knowledge-specifiers (with ComplexProduct concept highlighted) and documentation ontology

204

' DecunwrlaunnConiponere □
TWl IV User

D ecm vnt

Product

FourWheelVshicPO □
FneduetType

□ O
O - J -1— V *Comtf *Trt»Jucl d » D esert*AcHom

Assent* „ O O
ProOlKtSUKXMty'inualOotUOWI*□ ■ -

□ vClutch

□

SuMSMfim

irlonnM vnOteeci
■ Bc«

OP«.t 4 □
□□ CP

□
y inHinnaiionOOHcltkist-ir

, D 003w m jm
° c

n D d

TaafrBaiwaPSYO
n

Figure E. 3. Visualisation of a small part of the knowledge base (including relationsand instances)
- Task

D— « THING

Desert* q
a« Sit.t-jsk

□
o a u o o s

O

User
a

R w » <

Product□
- B u s FourSM reelVchicle

O ', o . ^* 0 4
A s s e n t*

D
' <a r t r i

* Clutch

° °

C T y p *
□

& P toduclT yp*
□

* ComplexProduct

■ Hutto*_dt*_ciuten
□

DoUtle dtak.ckich
"□

* SrH)l«_dhA_cMch
Driven_pW* Baekpl.**

V P

SubawernMy
O

- 9*
I t c n w

D
A djusthtkscrew

O.

m Count* shod * H/usmp

* Flywheel

* Bad
- D llv lnfljstate

• Frtctcnjlat*
□

,
. PiaWArwntwf Synchroniser

P °
A ReUnina.boH

“ '•; s DocumantallonCPirponont

Docurnem * Vlhu3tOocum*.ta>»nCo.npon»nt

• Vrti«j®oihjfhrtJuc:oit.pcirtU«tualD(>cufiwi»5(l&nC«rp«)»rt

i C a .* iP ia t» “ P io su ro P W e U
q O ProductSupporMituiOncment v irtrWfcJironOtprct° ?>• PiodutBaeedPSyDratlBasedPS'v'D

O n

i etc litter

i-Reference i Tasj'Concept

Figure E. 4. Visualisation of a part of the knowledge base subclasses (includingrelations)

205

□

a n a □

CD □ a □

T
om ia □

□ n

□ □ n o n □

□ o g g n m □ e d d e d d □ □ E m x r
: ! *■ if\Mml'

w f

□ E D

#

□ co co nrnn

inm n mil

m

Figure E. 5. Visualisation o f the knowledge base as a tree (only is-a and instance-of
relations are included)

206

APPENDIX F
LoginHandler

1. Checks the user’s “account”, “password” and “pin” parameters for
validity and sets the login flag to true or false

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

HttpSession session = req.getSession();

res.setContentType(’’text/html");
PrintWriter out = res.getWriter();
Calendar time=Calendar.getInstance();

System.err.println("”);
System.err.println(’’###");
System.err.println("## IN LOGIN SERVLET ");
System.err.println ("###”);
System.err.println("’’);
System.err.println('’''+time.getTime());

// Get the user’s account number, password, and pin
String account = req.getParameter(”account");
String password = req.getParameter(”password”);
String pin = req.getParameter("pin");

// Check the name and password for validity
if (!allowUser(account, password, pin, session)) {

res.sendRedirect("http://MEC 1503.engi.cf.ac.uk: 8080/Nikos/servlet/nick.LoginHandl
er”);

// if login fails invalidate session
session. invalidate();

}
else {
// Valid login. Make a note in the session object.
session.putValue("logon.isDone", account); // initialise username
session.putValue("ApplicationStateFlag", ’’LOGIN"); // initialise

applications state
session.putValue("UMStateFlag", "IS_SET"); // initialise user-model state
System.err.println("value se t................... ");
String Uaccount = (String) session.getValue("logon.isDone’’);
System.err.println("in Login Uname:"+Uaccount);
System.err.println("Login redirecting @:"+time.getTime());

207

http://MEC

2. Retrieves the login, password, and pin parameters from the session, which
were set according to the values found in the knowledge base.

protected boolean allowUser(String LoginName, String password, String pin,
HttpSession sess) {

KnowledgeBaseWrapper kbw= new KnowledgeBaseWrapper();
result=kbw.process(LoginName,password,pin);
System.out.println("result:"+result);
if(result.equals("Experienced")||result.equals("Inexperienced")) {

sess.putValue("USER",result);
return true;

}
else

return false;

}

public void init() throws ServletException {

}

208

APPENDIX G
ApplicationController

1. Code to take session parameters and specifically the value of the
parameter “SUBMIT”, which holds the browsing trail of the user (from
the browsing tool)

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

HttpSession session = req.getSession();
Calendar time=Calendar.getInstance();
String parameter=req. getParameter(" State");
System.out.println("Request:"+req);
System.out.println('f State: "+parameter);

// INITIALISE SERVLET
res. setContentT ype(" text/html");
ServletOutputStream out = res.getOutputStream();
Enumeration e =req.getParameterNames();
while(e.hasMoreElements()){

System.out.println(e.nextElementO);
}
boolean BooleanVolume = false;

String showParameter = req. getParameter(" SUBMIT");

if(parameter.equals("Task")) {
String parameter 1 =req.getParameter("ActivityChoise");
System.out.println("ActivityChoise:"+parameterl);
session, set Attribute(" ACTIVITY", parameterl);

res.sendRedirect("http://MEC 1503 .engi.cf.ac.uk: 8080/Nikos/Task.jsp");
}

2. Component that takes the “CBR” parameters, checks if a precomposed
solution exists and records the required time
if(parameter.equals("CBR")) {

String parameterl 3=req.getParameter("Present");
System.out.println("Present:"+parameterl4);

KnowledgeBase Wrapper kbwclses = new
KnowledgeBaseWrapper();

if(showParameter.equals(" SUBMIT")) {

209

http://MEC

long startTime = System.currentTimeMillis();

if (checkIfPageExists(parameterl 3)=true){
res.sendRedirect("http://MEC 1503 .engi.cf.ac.uk: 8080/F
reeCBR4/"+parameterl4+".jsp?Disks="+parameter20+"
&ProductModel="+parameter29+"&ProductSpecificVo
lume="+parameter44);

long stopTime = System.currentTimeMillis();
long runTime = stopTime - startTime;
System.out.println("Run time: " + runTime);

}
3. If a pre-composed solution doesn’t exist start creating a document. The

retrieval starting IOC is portrayed in the code below.
else {

try {

char leftBracket = '[';
char rightBracket =
char empty = ’ ';

char comma =
char bulletPoints =

StringBuffer call = new StringBufferQ;

/////////////////////////Start IOC///////////////////////////
StringBuffer callStart = new StringBuffer ("");

KnowledgeBaseWrapper referenceURIStart = new KnowledgeBaseWrapper();

LinkedList referenceURIStartComp = new LinkedList ();

referenceURIStartComp.add((referenceURIStart.getReferenceIDStart("Refere
nce")).toString());

String kbwReferenceURIStartComp= new String
(referenceURIStartComp.toStringO);

kbwReferenceURIStartComp =
kbwReferenceURIStartComp.replace(rightBracket, empty);
kbwReferenceURIStartComp =
kbwReferenceURIStartComp.replace(leftBracket, empty);
kbwReferenceURIStartComp =
kbwReferenceURIStartComp.replaceAll("A\\s+","");

210

http://MEC

kbwReferenceURIStartComp =
kb wReferenceURI StartComp. replace All("\\s+$ ","");

//System.out.println("The reference is :"+kbwReferenceURIStartComp);

File URIaddressStart = new File(kbwReferenceURIStartComp);

String URIallStart=getContentsOfFile(URIaddressStart).toString();

/ / * * * * jj^s 0£gtart reference relevant URIs iOs*******/
public LinkedList getReferenceIDStartIO(String match) {// Add As
Argument The Previous Choise From The Specific Product Menu
//String match = new String("Carlf);

LinkedList list = new LinkedList(kb.getCls(match).getDirectInstances());

//System.out.println("");
System.out.println("ID of reference is

LinkedList output = new LinkedList();

for(int k=0; k<list.size(); k++) {
LinkedList slotList= new LinkedList(((Instance)list.get(k)).getOwnSlots());

for(int j=0; j<slotList.size(); j++) {
if(((Slot)slotList.get(j)).getName().equals("ComponentID")){

if(((Instance)list.get(k)).getOwnSlotValue((Slot)slotList
.get(j)).equals(" 1245252353243")) {

for (int n=0; n<slotList.size(); n++){
if(((Slot)slotList.get(n)).getName().equals("URIn)){

output.add(((Instance)list.get(k)).getOwnSlotValue((Slot)slotList.get(n)));
}

}
}

}
}

}

return output;

4. Passing parameters to different classes and algorithms according to the
tool used

else if (showParameter.equals("Add case")){
res.sendRedirect("http://MEC1503.engi.cf.ac.uk:8080/FreeCBR2/page3.jsp?Produ
ctSpecificNew=n+parameter53+M&AssemblyNew="+parameter54+"&Subassemb
lyNew=',+parameter55+,,&FirstIndication="+parameter56+"&SecondIndication="

211

http://MEC1503.engi.cf.ac.uk:8080/FreeCBR2/page3.jsp?Produ

+parameter57+"&RecognisedProblem="+parameter58+"&RelatedReason="+para
meter59+"&ProposedSolution="+parameter60+"&IndexSearchTerms="+paramet
er61);
}

212

APPENDIX H
KnowledgeBaseW rapper

1. Get concepts related by slot type (according to the concept selected by the
user

/*
* Get Related By Slot Type of Extraction
*/

public LinkedList getActionMenu(String match) { // Add As Argument The
Previous Choise From The Activity Menu

Cls clsl = kb.getCls(match);

LinkedList list = new LinkedList(clsl.getDirectTemplateSlots());

int x = list.size();

LinkedList HstOfClasses = new LinkedList();

if(x>0)
listOfClasses.addAll(((Slot)list.get(0)).getAllowedClses());

System.out.println("");
System.out.println(" Action Menu

LinkedList output = new LinkedList();

for(int k=0; k<listOfClasses.size(); k++)
output.add(((Cls)listOfClasses.get(k)).getName());

return output;

2. Get slots related to specific instance
/*

* Get Class Instances Related to Specific InstanceType of Extraction
*/
// Add As Argument The Previous Choice From The Product Model menu and
the choice from the assembly menu

public LinkedList getPartModelMenu(String PartType, String match) {
//= new String("Bolt");
//= new String("Ford Hewland 164501");

213

System.out.println(" ");
System.out.println("Part Model Menu:");
LinkedList list = new
LinkedList(kb.getMatchingReferences(match, 100));
//System.out.println(list);

LinkedList slotList= new
LinkedList(((Instance)((Reference)list.get(0)).getFrame()).getOwnSlot
sO);
//System.out.println(slotList);
LinkedList parts = new LinkedList();
for(int j=0; j<slotList.size(); j++) {

if(((Slot)slotList.get(j)).getName().equals("hasParts")) {

//System.out.println(((Instance)((Reference)list.get(0)).getFrame()));
//System.out.println((Slot)slotList.get(j));

parts.addAll(((Instance)((Reference)list.get(0)).getFrame()).getOwnSlotValue
s((Slot)slotList.get(j)));

}
}

LinkedList selectedPartsOfType = new LinkedList();
for(int m=0; m<parts.size(); m++) {

if(((Instance)parts.get(m)).getDirectType().getName().equals(PartType))
selectedPartsOfType.add(parts.get(m));

}

LinkedList output = new LinkedList();

for(int j=0; j<selectedPartsOfType.size(); j++) {
LinkedList slotList2= new

LinkedList(((Instance)selectedPartsOfType.get(j)).getOwnSlots());
//System.out.println(slotList2);
for(int a=0; a<slotList2.size(); a++) {

if(((Slot)slotList2.get(a)).getName().equals("ID"))

output.add(((Instance)selectedPartsOfType.get(j)).getOwnSlotValue((Slot)slot
List2.get(a)));

}
}
return output;

}

3. Get instances related to specific instance type
/*

* Get Class Instances Related to Specific InstanceType of Extraction
*/

// Add As Argument The Previous Choice From The Product Model menu and
the choice from the assembly menu

214

public LinkedList getPartMenu(String match) {
// String match = new String(,!Ford Hewland 164501");

System.out.println(" ");
System.out.println("Part Menu:");
LinkedList list = new

LinkedList(kb.getMatchingReferences(match, 100));
//System.out.println(list);
LinkedList slotList= new

LinkedList(((Instance)((Reference)list.get(0)).getFrame()).getOwnSlots());
//System.out.println(slotList);
LinkedList parts = new LinkedList();
for(int j=0; j<slotList.size(); j++) {

if(((Slot)slotList.get(j)).getName().equals("hasParts")) {

//System.out.println(((Instance)((Reference)list.get(0)).getFrame()));
//System.out.println((Slot)slotList.get(j));

parts.addAll(((Instance)((Reference)list.get(0)).getFrame()).getOwnSlotValue
s((Slot)slotList.get(j)));

}
}

LinkedList output = new LinkedListO;

for(int k=0; k<parts.size(); k++) {

output.add(((Instance)parts.get(k)).getDirectType().getName());
}
return output;

}

215

APPENDIX I
Integrated view of PROSON and case base

Activities/tasks
ontology

«1«<
o ~

D
OA4.scf»O

C jiC 4

Mmtbmr «f <*%m+ m <**♦ t**«

r*«%

THSW

S. Suvc- f
o a
a

Q

o**wne%O
♦ CtsW'

o

C a se b a se

<3

v ?«**»*« v<*efr

♦ W
► • ********

tVM>
$ timiwR

a

a *****
WWWdNi
« **6***Wnifa*
* DMiMi

>*rt
► *§M
•* # iMry

*nrW»

Product ontology

Users
ontology

■* t ■*~+r*r+)mt: <niB»»<n;

• 0«Ws_*«IC_mACh
D

> SO>MM<n.4f
Cl

Integrated
Knowledge Base

' > <*’■

* C «J n ts t s ro d
a

<& f tl-AfWS!

a
c

♦"K.VW4J
O

a

a

a

* O *H**a 1

o

>S
a

«> n s M t u r t f "Ml-k w * . '

Context
ontology

« CsntfHi**
a

° .

O o

• DcCjKSVf! " •' ■8’'*' sO^rApr*.*

V V titUiCttf»*WMcict<i4e85«TI'»Jw«ic< iinrxrtjKrrstxtwv*
a o

«8WM
* ❖ vysjtHZtfrtHn*

05***!
• & ctC

a

V » -»***-***►** , fV«i<0̂ v»' 4~* ̂ .Jo*

9 *MK«w«ce
♦ Wmrw

* *

Documents
ontology

#*sN««8Cs *T »s^i!n«s«

Figure I. I. Integrated knowledge base o f PROGNOSIS

216

APPENDIX J
Example cases

1. Information retrieval

Dimensions
PRODUCTSPECIFICASSEMBLY SUBASSEMBLY PART

SubassemblyMaterial No. o f disks Subassembly_Radius(inches)
Subassembly_Weight(lbs) Subassembly_Moment o f Inertia(in-lb*lb)
Part Weight(lbs) Part_Material AssemblyMaterial
AssemblyRadius(inches) Assembly_Weight(lbs)
PRODUCTMODEL ASSEMBLYMODEL SUBASSEMBLYMODEL
PARTMODEL Product ID Assembly_ID SubassemblylD
PartID Assembly_Type Subassembly_Type
Assembly_Moment o f Inertia(in-lb*lb) TASK ACTIVITY ACTION
PRODUCT ProductSpecificVolume

Data structures
String String String String String Int Float Float Float

String String Float Float String String String String Int
Int String String Float String String String String String

Float
Int Int

Values
Car Clutch housing pilot_bearing steel 1 5.2 5.4 0.0

0.756 steel carbon 4.16 6.8 Ford Focus 4.5 Pro Series
Housing Pro Pilot s 15463 8345 134 198342 jaw/claw
semifloating 58.84 Describe Learn null Four-Wheel-Vehicle
3.45

Truck Clutch cover_plate bearingsteel 2 4.0 4.3 34.4 0.645
steel aluminium 3.88 10.3 MAN 4.5 Optimum-V
Cover_Steel B Steel 75634 8634 256 293842 hydraulic
front 77.53 Promote Learn null Four-Wheel-Vehicle 324.234

Bus Clutch pressure_plate release levers steel 2 4.22 3.7 32.94
0.032 aluminium aluminium 3.8 11.9 Mercedes_S 4.5 V-

Drive Pressure Steel RL_Lightweight 34521 8967 444 938472
hydraulic coil spring 85.918 Support Learn null Four-

Wheel-Vehicle 322.2

Lorry Clutch flywheel bolt
aluminium magnesium
FlywheelLightweight
hydraulic Type_IV

Wheel-Vehicle 3.46

iron 3 4.35 2.3
3.87 10.5 MAN_New
Bolt Pro 73456 5342
78.628 Assess Perform

21.76 0.0042
5.5 Pro Series
563 847329
null Four-

217

2. Diagnosis

Dimensions
Product Assembly Subassembly Firstlndication Second_Indication

Recognised Problem Related Reason Proposed Solution
IndexSearch T erms

Data structures
String String String String String String String String String

Values
car clutch clutch linkage Engine speed rises rapidly on acceleration, while the
vehicle gradually increases in speed N/A clutchslippage wear of
clutch lining replace clutch lining PerformlnstallnullFour-Wheel-
Vehiclecamullclutchnullclutchlinkagenullnullnull

car clutch clutch linkage Engine runs momentarily even with the clutch pedal
fully released N/A clutch_slippage improper clutch adjustment

adjust clutch linkage PerformServicenullFour-Wheel-
Vehiclecamullclutchnullclutch_linkagenullnullnull

car clutch clutch_release_mechanism Engine speed rises rapidly on
acceleration, while the vehicle gradually increases in speed Engine runs
momentarily even with the clutch pedal fully released clutch slippage

release mechanism has rusted, bent, sticking or damaged components
replace release mechanism PerformlnstallnullFour-Wheel-

Vehiclecamullclutchnullbearingmountnullnullnull

3. Expert advice

Dimensions
Purpose Product Assembly Material No. o f Disks

Radius(inches)Weight(lb) Moment_of_Inertia (in-lb* lb)

Data structures
String String String String Int Float Float Float

Values
MaximisePerformance car clutch carbon 2 4.16 6.8 58.84

Average (Recommended) car clutch aluminium 2 3.84 10.8
79.62

Standard car clutch aluminium 3 3.75 12.4 87.2

Maximise_Reliability car clutch magnesium 3 3.76 12.7
89.77

218

APPENDIX K
Other scenarios

J S J * i

~3

219

»er<«Nc&«f!

Figure K. 1. Double disk clutch
n , £<* go Sookirwki lo o k tjrip

^ | t*tcTlmKlVa •na.d.ac _£j © Qo [.

OttVfl 9 v tn d . l*<»t Hm A w i

va » j(ie - | 3 C 5m A * B Option.
T he disk* in tfais case are [6J

Pro ♦. Gnosis

T he [6]-d u k clutch tuu S extra dnven disks and 5 mere intermediate driving plates when
com pared to the ag je -d a k

MS

r * y * \ -

Figure K. 2. Six-disk clutch

1. Case based adaptation
zssssE sm aaam m m B B m s

Ete C<* View So Bookmarks Took t « p

\ J 3 * f y ‘ t ' j http:Jftiiacl503.anql cf.sc.ufc-'8080/FrecCBmA.eamt>«trt>er«JFoi>whacl VattdeCartWi* 330iQutdr»Jrik*iu>x<nJ _£j Q Co [. .

^ Gatunq Started L i latest Haadnas

C o ^ c . I 3 T c Search * B Options

□DESCRIPTION OF A CLUTCH

□ A n autom otive clutch connects and duconnects the engine and manual transmission o r transaxle The
clutch allows die engagem ent o f a spinning engine to a non-spinning transmission by controlling die slippage
b e tw e e n them

The disks m this case are {2]

Pro S Gnosis

T h e doub le-d isk d u tch has one extra driven disk and one m ore intermediate dnving plate w hen com pared
to the single-disk

awKMt

ixacnvwHEEi
astsvtcfi wsc PftssavtE

SHATESOe

E22SISSBHH1
E»e E<* 5C«« fio 6oo(wai+j Loots tjefp

O • ft? ' r ' | http.//me<1503.eo9 c#.*c.iJt80B0/NfciK/web/Le«fri£)WCTt)erK^<xr-Whe«(v»NdfC»BMW_Z4Ojtch5.S'V-OveciresJi.

Getung Started i. . Latest Headbnes

Ca>,«1c • I 3 * B Cpbons

□DESCRIPTIO N OF A CLUTCH

In lo u r w h e e l vehicles an d specifically m ca rs Q a n automotive clutch connects and disconnects
the engine a n d m anual transm ission o r transaxle T he clutch allows die engagem ent o f a spinning
engine to a non-sp inning transm ission b y controlling the slippage b etw een them T he d u tc h mostly
e n c o u n te re d is the s ing le-d isk one

F o r th e re q u e s te d ca r. w hich is the B M W 2 4 the co rresponding clutch is the N orm al-R acing
v ersion o f th e 5 5 P ro . a s sh o w n below .

Pro 4L Gnosis

O <50 f~

jdfil *J

5 5 N a n u l Rat ixg vrrsU n

hM»://n>otl503.eng|.tf.ac.i*;8080/Fie9CBR4tMoreInfol.)sp

Figure K. 3. Clutch for BMW Z4 (Normal-racing version)

Ho E<* f e « 50 Bookmarks loots tleks

< J i * I s (h t tp - . /M » c l5 0 3 .e n o l.c f .a c .^ :9 0 e o y N k « A « b A ^ a rr t) e s c rb e n JF o u -W h e e t-V e t« 5 e C w B IW .a W n e C U c h 5 .5 S .if lh tw^ 3 ® ®°

^ Gettng Started t . Latest M e*Jn«

d o ^ lc •) 3 t Search • Q options

□ d e s c r i p t i o n o f a c l u t c h

Pro »■ Gnosis

In four w h eel vehicles an d specifically m ca rs Q a n autom otive d u tc h connects an d disconnects
the engine an d m anual transm ission o r transaxle T he d u tch allows the engagem ent o f a spinning
engine to a non-sp inn ing transm ission b y controlling the slippage b etw een them. T he clutch m o shy
en c o u n te re d is the sing le-d isk one

F o r the r e q u e s te d ca r. w hich is the B M W A lpm e d ie co rresponding clutch is the Lightweiht

vers ion o f th e 5 .5 P ro , a s show n b e lo w

tfrmm

_
-

Dona

Figure K. 4. Clutch for BMWAlpine (Lightweight version)

2 2 0

2. Model-based generation
 ~ ____
rte cdt yiew <jo Bookmarks look Heb

V i * . v ,N | NUp:/A«ecl503 cn^.d.oc.uk:6080/NI(ot/«Mb/PerfonTi!nspoctnJFov-VMwe>'VeNcleCarfiHW-330iTroraa)()enAxintA>i jjj] Q Go f~ T "

^ Getting Started latest MredUe*

3

fte t<*> Si*" SO godvnarts rook tMp

■ ^Ti • ' , ' (http:/imecl503.enff.rf.ac lioaCBO/Mkoj/web/learrlrescrtrenutTXr-vrtieel-VehideCarBMW^-33UNadanul^ilnulnulnuK -] Q Go | ~

^ Getting Stvted . . latest Headknes

G» igk - | 3 (s*«dl * B _______________

O hm rwMt ti ta l n n

Pro J* Gnosis □
--------------------------------------- i— |

In fo u r w heel vehicles a n d specifically in cars

[N a d a J is a C ls(A s*em bly, F ra m e ID (M 0 0 6 2))io > * « .

This assem bly family is a a p a r t o f the w hole p ro d u c t and a group o f m achine p a rts that f t
to g e th e r to form a self-contained unit io j m p

Done

Figure K. 6. Concept that does not exist in the knowledge base but in a case
(assembly that does not exist but the IOC for assemblies is precomposed)

e - | " 3 C Search * 0 Options

INSPECTING A TRANSAXLE

In four w heel vehicles an d specifically in ca rs

STEP 1

In sp e c t transaxle b y inspecting ea ch o f H ousing . C ountershaft subassem blies

jsiEP 2:

In sp e c t H ousing b y inspecting ea ch o f S c re w , P in , S pnng. W a sh er. B o lt parts

iSTEP 3:

In s p e c t S c re w b y check ing fo r alteration in helical g rooves

IN T E R M E D IA T E S T E P

In sp e c t P m b y checking each cylindrical tum bler

IN T E R M E D IA T E S T E P

In s p e c t S p ring b y check ing fo r alteration on surfaces o r ru s t

□IN T E R M E D IA T E ST E P:

In sp e c t W a sh e r b y checking fo r alteration m the surfaces

(STEP 7:

In sp e c t B o h b y checking fo r alteration m w ren ch o r so ck e t

http://inecl503.engi.d.aCA*.B0e0Aakos/web/l«arTiC)Mcr*)eniilFocr-WheehV»hicliC«rWW-33aClutchnulraJnJnulriullne«petienced.)sp

Figure K. 5. Inspecting a transaxle (based on behaviour model)

O'SorSlaflrefoK

2 2 1

http://inecl503.engi.d.aCA*.B0e0Aakos/web/l%c2%abarTiC)Mcr*)eniilFocr-WheehV%c2%bbhicliC%c2%abrWW-33aClutchnulraJnJnulriullne%c2%abpetienced.)sp

Me E<* *ew fio Bookmarks Tools tjdp

$ i T 0 ' I http://ineclS03.engl.tf.ac.uk;8C]eG/Nkos/»rttAeamOescribenJRit»-WtieelVehdeunspecAe*MW_Alp«neNade5.5-tjd jj] G Go) „

Getting Started u . Latest Headhnes

Co ..>• - , * C Search - g Options

B ack h o e ' \ 3

Pro Gnosis

Done

T ra c to r

S t i c k

□

Bucket /
B o o m

S tab ilize r L eg s L o a d e r

T racer

T h e p ro d u c t family re p re se n ts an entity o f in tere st c re a te d b y a p ro c ess

[N a d a J is a C ls (A rse m b ly . F ra m e ID (l 1 0 0 6 2)) io jb *»

T his a sse m b ly family is a a p a r t o f the w hole p ro d u c t an d a group o f m achine parts th a t fit
to g e th e r to fo rm a se lf-co n ta in ed unit io_faa*»

F o r th e re q u e s te d ca r, w hich is the B M W Alpine the co rrespond ing clutch is the Ligfitweiht

v e rs io n o f th e 5 .5 P ro , as sh o w n below .

ate!m

Figure K. 7. Concept that does not exist in the knowledge base but in a case
(assembly that does not exist but the IOC for assemblies is NOT precomposed)

2 2 2

http://ineclS03.engl.tf.ac.uk;8C%5deG/Nkos/%c2%bbrttAeamOescribenJRit%c2%bb-WtieelVehdeunspecAe*MW_Alp%c2%abneNade5.5-tjd

APPENDIX L
The case creation and validation tool

Hte « t t yitw » Boorinarts roots rfeb

■mifljji

. ’ • v ,> | h n p :/l* » tia» .«no i.< f.«c .iiuaoO IV F r»oC I» t/p iige2 .pp

^ d s t tn a S H r te J la te s t H ee d n es

G o ^ i e . | •* 1 ' > C Search * [ej Options

A ssem blyM om ent.

95 904

59 375

55.054

<2.0

4J
Done

Describe Leam hull

Plan Leam hull

PRODUCT Pro durtSp e rifle Volume

? 7

Four-Whrel-Vehtcle Adopt case Create case using CAD data j3453.6 | [Add easet]

Four-'Wheel-Vehsele 9 64 Add case Adopt case Creme case using CAD data j

Four-Wheel-Velucle 8.4 Add case Adopt cose Create case using CAD data (

Four-Wheel-Vehide 7 Add case Adopt case Create case using CAD data |

--------------------|± I

Figure L. 1. Selecting the case creation and validation tool by clicking on “Add case ”
or “Adapt case “Add case ” permits the modification o f static and dynamic features,

while the “Adapt case ” only dynamic features.
sJ.9i.Hj

H* L<*. & BooWks look deb

, ' | http:l/inecl503.«n*.if .•CA*.80e0ffr«r3*s/p^3 w ’ProductS p ^H C »)aa« « « t^C lu tch]6 6 u b « s« T iM K P '« & 50 j ~
+ dotting S tarted Latest Headtres

o>sfc-r~ ”3 1 C Soarth * Q ty tttm

Adding new case in CBR search

EEZ
(dutch

| alum inium

[Tm
(375

PRODUCTSPECIFIC

ASSEMBLY

SUBASSEMBLY

PART

Subassembly M ateria]

No. or disks

Sub assembly _Radius0nrhes)

Subassembly Weight(lbs)

Subassembly _M omBIlt ° f Inertia(in-lh *lb) [3? 136

Part_Weight(Ibs) (0 0012

Part_M aterial

Assembly M alarial

A ssem hlyR adius (inches)

Assembly Weinht(lbs)

PRODUCTM ODEL

ASSEM BLYM ODEI.

SUBASSEM BLYM ODEL

PARTM ODEL

Product_ID

Assembly_ID

Done

|pressure_plate

|tock_nut

|olun
[magnesium

(H8
|Sert_lbiro

($.5 Pro Series

|Pressun>JJgM«etght
[lNuL P to

(68354

[5342 A
Figure L. 2. The values o f the new case are based on previous cases

223

APPENDIX M
User attributes’ values and weights

Table M. 1. Characteristics, their attributes, and values (weights)

Characteristic Attribute Attribute
weight Value Value

Weight
Classroom Instruction 2

Training Type 4 Hands-on Practice 3
Both of the above 4
None of the above 1

High School 1
Technical School 2
Post-secondary 3

Education 2 College 4
Higher 5

Postgraduate Taught 6
Postgraduate Research 7

Specialisation Mechanic 4

Job Title 8 Service Technician 3
Manager 2

User 1
Repair 2

Project Type 3 Assemble 3
Research 4

None of the above 1
Worker 2

Project Place 4 Supervisor 3
Managing supervisor 4

None of the above 1
Experience Graduate (<1) 1

Years o f
Profession

Trainee (<2) 2
4 Professional (2-12) 8

Experienced
professional (>12) 12

Low (months<6) 2

Training Time 2 Average(6-24) 3
High(>24) 5

None of the above 1
Low (<4) 2

Past Projects 3 Average (4-24) 4
High (>24) 8

None of the above 1
Past Related 5 Low (<1) 2

Projects Average (1-4) 6
High(>4) 10

224

None o f the above 1
None (<2) 6

Number o f 2 Few (2-10) 4
visits Average (10-30) 2

A lot (>30) 1

Average visit
time

Low (<10 minutes) 6
2 Average (10-20) 4

High (>20) 2
Receptivity Time between

visits

Low (<60 minutes) 6
2 Average 4

High 2

Repetitiveness
o f query

Low (<4) 6
8 Average (4-8) 4

High (>8) 2

Tool used 2 Browsing 1
Searching 2

225

APPENDIX N
Context ontology (CLIPS)

Activities and tasks

1. Activities concept
(defclass Activities

(is-a ContextEntity)
(role abstract)
(single-slot IsRealisedWith

(type INSTANCE)
;+ (allowed-classes Task)
;'+ (cardinality 0 1)

(create-accessor read-write)))

2. Learn activity concept
(defclass Learn

(is-a Activities)
(role concrete)
(multislot hasLeamingTasks

(type INSTANCE)
;+ (allowed-classes Describe Plan Support Assess Promote Launch
Schedule Design)

(create-accessor read-write)))

3. Perform activity concept
(defclass Perform

(is-a Activities)
(role concrete)
(multislot hasPerformTasks

(type INSTANCE)
;+ (allowed-classes Assemble Operate Maintain Inspect Service Install
Design)

(create-accessor read-write)))

4. Task concept
(defclass Task

(is-a USER)
(role abstract)
(single-slot IsComposedOfSubtask

(type INSTANCE)
;+ (allowed-classes Subtask)
;+ (cardinality 0 1)

(create-accessor read-write))
(single-slot hasSubtask

(type INSTANCE)
;+ (allowed-classes Subtask)

226

;+ (cardinality 0 1)
(create-accessor read-write)))

5. Design task concept
(defclass Design

(is-a Task)
(role concrete))

6. Determine goal task concept
(defclass DetermineGoal

(is-a Subtask)
(role concrete)
(single-slot hasSubtask

(type INSTANCE)
;+ (allowed-classes Subtask)
;+ (cardinality 0 1)

(create-accessor read-write)))

7. Install task concept
(defclass Install

(is-a Task)
(role concrete)
(single-slot hasActionsInstall2

(type INSTANCE)
;+ (allowed-classes)
;+ (cardinality 0 1)

(create-accessor read-write)))

Physical context

8. Input Devices concept
(defclass Input+Device "Devices that feed data into the computer that have not been
included to the system in other classes."

(is-a Peripheral)
(role concrete)
(single-slot type

;+ (comment "Whether the device is a hub, a router, a switch etc.")
(type STRING)

;+ (cardinality 0 1)
(create-accessor read-write))

(single-slot interface type
;+ (comment "The way the component is connected to the computer.")

(type STRING)
;+ (cardinality 0 1)

(create-accessor read-write)))

9. Scanner concept
(defclass Scanner "A device that can read text or illustrations printed on paper and
translate the information into a form the computer can use."

(is-a Peripheral)

227

(role concrete)
(single-slot automatic_load

;+ (comment "Automatic load is supported.")
(type SYMBOL)
(allowed-values FALSE TRUE)

;+ (cardinality 0 1)
(create-accessor read-write))

(single-slot m axresolutionhorizontal
;+ (comment "The maximum resolution that the card can generate in the
vertical domain, measured in pixels.")

(type INTEGER)
(range 400 %3FVARIABLE)

;+ (cardinality 0 1)
(create-accessor read-write))

(single-slot colourresolution
;+ (comment "The supported colour resolution in bits.")

(type INTEGER)
(range 16 %3FVARIABLE)

;+ (cardinality 0 1)
(create-accessor read-write))

(single-slot type
;+ (comment "Whether the device is a hub, a router, a switch etc.")

(type STRING)
;+ (cardinality 0 1)

(create-accessor read-write))

10. CoreComponent concept
(defclass CoreComponent "The components that are inside the cover o f the computer
and absolutely necessary for data processing."

(is-a Hardware)
(role abstract)
(single-slot model

;+ (comment "Product-line, model or combination o f these two, as
provided by the manufacturer, wherever available.")

(type STRING)
;+ (cardinality 0 1)

(create-accessor read-write))
(single-slot brand

;+ (comment "The brand o f the component like Quantum etc.")
(type STRING)

;+ (cardinality 0 1)
(create-accessor read-write)))

11. NetworkingHardware concept
(defclass NetworkingHardware "The component that is used to connect the computer
with other computers."

(is-a CoreComponent)
(role abstract))

12. Network Interface Card concept

228

(defclass NIC "NIC (Network Interface Card) is a computer circuit (board or card)
that connects the PC to other computers."

(is-a NetworkingHardware)
(role concrete)
(single-slot datatransferrate

;+ (comment "The rate in which the data is tranferred through the
component.")

(type FLOAT)
(range 0.0 %3FVARIABLE)

;+ (cardinality 0 1)
(create-accessor read-write))

(single-slot interface_type
;+ (comment "The way the component is connected to the computer.")

(type STRING)
;+ (cardinality 0 1)

(create-accessor read-write))
(single-slot m axim um indoorrange

;+ (comment "The distance that the component can be used away from
the PC, measured in metres.")

(type STRING)
;+ (cardinality 0 1)

(create-accessor read-write))
(single-slot OS compatibility

;+ (comment "With which operating systems the card is compatible.")
(type STRING)

;+ (cardinality 11)
(create-accessor read-write))

(single-slot networkingconnectiontype
;+ (comment "The protocol(s) that is (are) used for network
connections.")

(type STRING)
;+ (cardinality 11)

(create-accessor read-write)))

229

APPENDIX O
Learning and performing activities in traditional

systems and in context-aware product support
Table O. 1. Differences between performance support, e-Learning, and context-aware

product support

Features Performance
support

E-learning Context-aware product
support (Learning
activity)

Goal Enhance
performance by
providing a work
context aligned to
user’s task and
skills

Enable the
acquisition o f
‘richer’ knowledge
states and/or
improved skill set

Enhance task
performance and
improve skill set

Content Material for
current query

All material covered All material related to
current query

Content
structure

Query-related
conceptual model

Subject-related
conceptual model

Product/Task related
conceptual model

Content
association

Question-based
methodology

Lessons with
associated tests

Question-based
methodology

Content
identification

User-based Instructor-based User-based

Flow of
content

Random-parallel
flow

Sequential flow Random-parallel flow
with sequential structure

Temporal
association

Just-in-time Scheduled Just-in-time/Scheduled

Practical
examples

Real case-studies
with real issues

Artificial/Incomplete
case-studies

Real case-studies with
real issues

Assessment
strategy

On-the-job
performance
(apply)

Tests
(remember)

Tests and projects

Supporting
mechanisms

Integrated with
system

Outside resources Integrated with system

Collaboration Contact with
peers and experts

Contact with peers
and instructor

Contact with peers and
experts

Knowledge
level

User is able to
apply the acquired
knowledge to
solve particular
problem

Learner acquires
knowledge and
understands its
fundamentals and
the underlying
reasoning process

User/Learner is able to
successfully understand
related complex
problems and apply
acquired knowledge.

230

APPENDIX P
Content adaptation scenarios

1. Learn activity

.jJJLliSi

['Bite

Figure P. 1. Describing a clutch for an experienced user (concise descriptions, still
images, and facts compose the document in this scenario)

‘l i

Figure P. 2. Describing a clutch for an inexperienced user (detailed descriptions,
animations, and clarifications such as rules-of-thumb form the document)

231

3* GP 6ot**h»to Zook bte

^ '^ 1 (; >t<j,-.llimclsa3ertrxfjr>*.aotnpmni:ienl\enrCemttend=aa<t*eet v*w t*:irtn*i-m c\tr)vtn*ilr*tnl j j

♦ (Xtng SaftaJ I . Latent

isL j In a car, a clutch u needed vt order to connect the engine ehgft and the wheel thgft.
Ths connection enable.1 the car to move or stop independentfy q f whether the engine is
stopped or noL

The mam components o f a dutch include the pressure plate. the studs, the Aaphagram
sprmg (or cod-spnttg). the thrcw-vUt bearing, the clutch housing, the release fork, and the bell
housing.

0 so

Click hero
te put the

Clutch P lat*
in Piece!

Fk fdt « • 4l fc**™rV» To* d*>

^3 * f [~ MtoifSMclttfl aea.d ac *eixn/Ff<«»»sAMiTS*to<><n«M-«h^yeMiC««nw-xncUdn*s*<iniJn>i ju O do j , .

♦ stwtari . I e r e HMdm

C » ylc - | 3 i* * » th - H opmns

ODESCKHTION OF A CLUTCH

□ A n automotive clutch connects and disconnects the engnr and manual transmuoon or
transasde. The clutch allows the engagement of a spuming engne to a non-spmmng transmission
by controlling the slippage between diem

The disks m this case are [1]

The dutch mostly encountered is the single-disk one.

Pro * Gnosis

2. Perform activity

^ | http;//inecl5tl3.engrcfac.uk 80t5G/FreeC8M/PerfcrTiilngalr«JFo<e-WheebVehideC«rt!WV^J30iCkjtclriiJnulriilnulrtdl j J © Go | ■„

^ Gettsva Started . . . Latest HeaJnes

I t • | ^ 5 w h • 0 Orbors

□IN ST A LLIN G OF A CLUTCH zJ

□ T h e &*t s te p is to a ttac h th e bu tton b tyw heel to die flexplate on the b a c k o f the crankshaft and
to rq u e it in to p la c e

■I W hile tertfuing he sure to have a stable andfixed support tool fo r putting the
crankshaft.

□ T h e in side o f th e clu tch assem b ly conta ins [1] s ep a ra te clutch d isks and their correspond ing
flo a te r d isks th a t a re san d w ic h ed to g e th e r inside the housing an d a clutch co v e r that is on the
fro n t

T h e re a re 2 en d -c lu tch d isk s th a t g o o n ea ch side o f the assem bly an d centre dwks tha t go in the

Pro» Gnosis mddle Q |
■
■ H The end-disks need to be installed so that the splinned centre extends outward
from the middle.

□ T h e a s se m b le d clu tch is p la c e d o n to the bo lts extending from the b u tto n flyw heel T h en the
s ta r te r rm g ts a lso s lip p e d o n to the s tuds

I n a nutshell d ie o p e ra tio n s fo llo w ed are

H A tta c h flyw heel to the flex p la te -> A ssem ble clutch (insert end clutch <hsk-> floater
d is k -> e n d c lu tch d isk - o h o u sm g -^ c o v e r)-» P la ce clu tch on flyw heel b o lts-> P u t starte r ring on the

s tu d s -> S c r e w th e bo lts

I W hen the clutch assembly is in place check the clearance between the throw-out
hearina and the front of the transmission, zJ

Figure P. 3. Installing a clutch fo r an experienced-receptive user (a lot o f text that
includes warnings and facts)

R T T ' I n ' i 1
t*o fedt vjew Go Bookmarks loots tjetp

& • ‘ > ’ & Is f t*tp://ma<lS03.en®.cf .ac.iio8Cieo/Fiee<3n4/PerfarmInstahisjfrour-â ieei-vsSsttaCaraMW-330iCaachniAaAiiAi»gnig J*] © Go |

xtnj Stated , latest HeaAnm
Co. • | -• C Search - Q options

zJ
I N S T A I X I N G A C L U T C H

In four wheel vehicles and tpecificjlly m cars dutches can be found m many things that are
probably used everyday, such as chaaisaw. cordless dnSs and cars

KM
A clutch is a coupling that connects or disconnect dnving and driven parts of a

driving mechanism.

An automotive dutch connects and disconnects the engine and hand-shifted transmission or
transaxle The clutch in cars, is located between the back o f the engine and the front of the
transmission

Lacaliaa •fclvlcli v |

Done

Figure P. 4. Installing a clutch fo r an inexperienced-unreceptive user (big clear
pictures including clarification types)

232

APPENDIX Q
CAD based integration scenarios

1. Integrating car assembly

wmmmwE ?, ^iSJxj
E* £d* Vte*. Bookmarks loots Help

C 3 " O ' ’ & \ l) !- http;//meclS03 engi.cf.ac.uk:B080/FfeeCW(4/page2.>sp

^ Getting started U . latest Headhies

3 © Go | ,

C<K$lc . | _*] . C Search - 0 Opbons

° m P a r t_ W m e h t(lb s) F a r t _ M a t e r i a l A s s e m b ly _ M a t e r i a l A s s e m b ly _ R a d iu s (in rh e s) A is e m h ly _ W e ig h t(lb s) P R O D U C T M O D E L A S S E M B L Y M O D E]

/ S t a r t] ; -L1? J 3 WWJom ... »| adj Context-awar... | APPOCiK T-C... | g g Xraatur - [U... j gjCetafcra_______ j I «£. ? Hrefox

Figure Q. 1. Select the case

| car_asm.bom.1

VERIFY CHOSEN FILE I

| car_Qsm bom.1

OPEN BOM

" 3car_asm_full.stp

OPEN CAD FILE

car asm.bom.1

WEB RELATED RESULTS

OPEN KNOWLEDGE BASE

E CONFERENCE

Figure Q. 2. Select the file and operation

8 4 E - 4 inull a sb e s to s 3 6 9 8

■ ---------- u.--- 1

B M W -3 30i H a r d N w

8 4 E - 4 nuB a sb e s to s 3 6 9.8 B M W -3301 H a rd N e w

8 .4 E -4 null s te e l 3 6 9 .8

F...... “ ' I

B M W -3301 H a rd N e w

8 4 E - 4 s te e l s t e d £ 9 8 B M W -3 3 0 t null

I - f

233

DEFINE PRODUCT STRUCTURE]

C A R A SM
| PRODUCTSPECIFIC d

C A R A S M 2
| ASSEMBLY d

null
(p a r t I

BODYl_3
CHASSIS1_2

WHEEL_9
|SUBASSEMBLY d

Figure Q. 3. Validate the product structure

F k £ « f w So Bookmarks Tools t**>

^ M j x j

j http./fmecl503.an».cf,ac.ulc90eQlFre<iCBRVpaoe7.lsp?PToduct5oec*lc-CAR_ASWtstAss<!Oibly-CW.ASM_2%20ar - 1 © Go | ,

^ GettUg Started _ „ latest tteedrtes

G O hlle - I z l t c Se»cb • B Opbons

a

¥
F
F

P R O D U C T S P E C IF T C

A S S E M B L Y

S U B A S S E M B L Y

P A R T

S u b a s s e m b l y M a t e r i a l

N o . o f d is k s

S u b a s s e m b ly _ R a d in s (in e h e s)

S u b a s s e m b ly _ W e ig h t(lb s)

S u b a s s e m b ly _ M u m e n t o f I n e r t ia (in - lb * lb) |23 6

P a r t_ W e ig h t(lb s) fs.4E

P a r t_ M a te r i a l [null

A s s e m b ly _ M a te r i a l

A s s e m b ly R a d iu s (in ch e s)

A s s e m b ly _ W e ig h t(lb s)

P R O D U C T M O D E L

A S S E M B L Y M O D E L

S U B A S S E M B L Y M O D E L

P A R T M O D E L

P ro d u c t_ H >

A s s e m b ly _1D

S u b a s s e m h ly _ ID

P a r t I D

|C A R _A SM z }
| CAR_ASM_2 z l
j DClOYl _3 3

[esbestoe

F
F
|BMW-330i

|HerdNew

|™i
|nuH

[2222“

& ««omKlv T%i
D m

a
Figure Q. 4. Validate the values o f the new case’s features

234

f ie E<*t flew Go 6'**"'*+* Toots gdp

V i * : —^ ' j tttp7/m aclS03.en* rf'»cuk8aeo/Fre<K»SA^T€«scrt«nu»^-Whe«t-V«hk^«retW -?30tBo<V>JtntJnufc> jlr^ ^ Q Go

Gettrg Started . Latest Headnes

Go gje . | ~ 3 v‘ C Search * Q Options

DESCRIPTION OF A CAR

A c a r is a four w h eel vehic le T his m o d el is ca lled B M W -3 3 0 i Its volume is 6 0 9 6 9 3 3 2 e 00
T h e re fo re it is c o n s id e re d a s a large one

Its C A D -g e n e ra te d im age is illustra ted b e lo w M o re inform ation is included in fee C A D view er

CAD-(eaera*4 image ef a car.

Done

Figure Q. 5. Generated product support document based on CAD data

Pro 7* Gnosis

jdaLLsi

235

APPENDIX R
Part of driving axle design data in STEP

1. Administrative data including the file type and name, its author (“scenl”) and

schema used.

ISO-10303-21;

HEADER;

FILE_DESCRIPTION(("),'2; 1');

FILE_NAME('DRIVING_AXLE_REAR_ASM','2006-03-16T',('scenl'),("),

'PRO/ENGINEER BY PARAMETRIC TECHNOLOGY CORPORATION,

2004460',

'PRO/ENGINEER BY PARAMETRIC TECHNOLOGY CORPORATION,

2004460’,");

FILE_SCHEMA(('CONFIG_CONTROL_DESIGN'));

ENDSEC;

DATA;

2. Geometrical data.

#2=CARTESIAN_POINT(",(O.EO,O.EO,O.EO));

#3=DIRECTION(",(O.EO,O.EO,-LEO));

#4=DIRECTION(",(-1.EO,O.EO,O.EO));

#5=AXIS2_PLACEMENT_3D(",#2,#3,#4);

#7=DIRECTION(",(2.258904820183E-1,0.E0,-9.741527037039E-1));

#8=VECTOR(",#7,7.083078426786E1);

#882=EDGE_LOOP(",(#876,#877,#879,#881));

#883=FACE_OUTER_BOUND(",#882,.F.);

#884=ADVANCED_FACE(",(#883),#874,.T.);

236

3. Defining the units of attributes such as length.

#1699=(LENGTH_UNIT()NAMED_UNIT(*)SI_UNIT(.MILLI.,.METRE.));

1700=LENGTH_MEASURE_W1TH_UNIT(LENGTH_MEASURE(2.54E 1),# 1699)

5

1701 =(CONVERSION_B A SE D U N IT ('INCH',# 1700)LENGTH_UNIT()N AMED_

UNIT(#1698));

#1702=DIMENSIONAL_EXPONENTS(O.EO,O.EO,O.EO,O.EO,O.EO,O.EO,O.EO);

1703=(NAMED_UNIT(*)PLANE_ANGLE_UNIT()SI_UNIT($,.RADIAN.));

1704=PLANE_ANGLE_MEASURE_WITH_UNIT(PLANE_ANGLE_MEASURE(

1.745329251994E-2),

#1703);

1705=(CONVERSION_B ASED_UNIT(,DEGREEf,#1704)NAMED_UNIT(# 1702)P

L A N E A N G L E U N IT (

));

#1706=(NAMED_UNIT(*)SI_UNIT($,.STERADIAN.)SOLID_ANGLE_UNIT0);

4. Defining that “619920_010002” is a subassembly of “HUB_REAR” and their

relative placement.

#1726=NEXT_ASSEMBLY_USAGE_OCCURRENCE('OVNext assembly

relationship',

'619920 010002', #45159,# 1720,$);

#1727=PRODUCT_DEFINITION_SHAPE('Placement #0',

'Placement o f 619920 010002 with respect to HUB_REAR_ASM',#1726);

#1736=AXIS2_PLACEMENT_3D(",#1733,#1734,#1735);

237

APPENDIX S
Three BOM tested files

The test data is chosen w ith the objective o f having a representative sample for

different scenarios. These include having: one intermediate level between the

assembly (root) and parts nodes (scenario 1), no intermediate levels between assembly

and parts nodes (scenario 2), all intermediate levels between assembly and part nodes

(scenario 3 and the one presented in chapter 6).

1. “CAR_ASM” has no subassemblies.

Assembly C A R A S M contains:

1 Sub-Assembly CAR A SM 2

Sub-Assembly CAR_ASM _2 contains:

1 Part CHASSIS 1_2

4 Part W H E E L 9

1 Part BODY 1 3

Summary o f parts for assem bly CAR ASM:

1 Part CHASSIS 1_2

4 Part WHEEL 9

1 Part BODY1 3

2. “INSIDE” has only parts.

Assembly INSIDE contains:
1 Part 02060101 1
4 Part 020005 1
1 Part 020500 1
2 Part 020601 1
4 Part W ASHER M8
5 Part BOLT M 8X35
1 Part N U T M8
4 Part BOLT_M 10X25
4 Part W ASHER_M 10
4 Part N U T M10
1 Part 020004 1

Summary o f parts for assembly INSIDE:

238

1 Part 02060101 1
4 Part 020005 1
1 Part 020500 1
2 Part 020601 1
4 Part WASHER M8
5 Part BOLT M8X35
1 Part NUT M8
4 Part BOLT M l0X25
4 Part WASHER M10
4 Part NUT M10
1 Part 020004 1

3. “BRAKING_SYSTEM” has assemblies, subassemblies, and parts.

Assembly BRAKING_SYSTEM contains:
1 Sub-Assembly INSIDE
1 Sub-Assembly OUTSIDE
4 Part W A S H E R M 10
4 Part BOLT_M 10X25
1 Part A X IS 10X 28
1 Sub-Assembly PIPES

Sub-Assembly INSIDE contains:
1 Part 02060101 1
4 Part 020005 1
1 Part 020500 1
2 Part 020601 1
4 Part WASHER M8
5 Part BOLT M8X35
1 Part NUT M8
4 Part BOLT M l0X25
4 Part WASHER M10
4 Part NUT M10
1 Part 020004 1

Sub-Assembly OUTSIDE contains:
1 Part o K> O <1 o 0 1

1 Part AMPLIFIER
1 Part DUST BOOT
2 Part NUT M10
1 Part A1130
3 Part WASHER M10
3 Part BOLT M l0X25
1 Part ADAPTER
1 Part 020006 1

239

Sub-Assembly PIPES contains:
1 Sub-Assembly 020900
2 Part A1531
1 Sub-Assembly 021000
1 Part 020002
7 Part A 1463
1 Part 020001
1 Part HOSE
1 Sub-Assembly 020400
1 Part 020003
1 Sub-Assembly 020100
1 Sub-Assembly 020100 1
1 Sub-Assembly 020800 1
1 Sub-Assembly 020800

Sub-Assembly 020900 contains:
1 Part 020901
1 Part 020102
1 Part A 1463

Sub-Assembly 021000 contains:
1 Part 021001
1 Part 020102

Sub-Assembly 020400 contains:
1 Part 020401
1 Part 020102

Sub-Assembly 020100 contains:
1 Part 020101
2 Part 020102

Sub-Assembly 020100 1 contains:
1 Part 020101 1
2 Part 020102

Sub-Assembly 020800_1 contains:
1 Part 020801 1
2 Part 020102

Sub-Assembly 020800 contains:
1 Part 020801
1 Part 020802

Summary o f parts for assembly BRAKINGSYSTEM :
1 Part 02060101 1
4 Part 020005_1
1 Part 020500 1
2 Part 020601_1
4 Part W ASH ERM 8
5 Part BO LTM 8X35
I Part NUT M8

II Part BOLT_M 10X25
11 Part WASHER M 10
6 Part NUT M10
1 Part 020004 1
1 Part 020700 1
1 Part AMPLIFIER
1 Part DUST BOOT
1 Part A1130
1 Part ADAPTER
1 Part 020006 1
1 Part AXIS 10X28
1 Part 020901
9 Part 020102
8 Part A1463
2 Part A1531
1 Part 021001
1 Part 020002
1 Part 020001
1 Part HOSE
1 Part 020401
1 Part 020003
1 Part 020101
1 Part 020101 1
1 Part 020801 1
1 Part 020801
1 Part 020802

241

APPENDIX T
Supporting facilities for the integration approach

The supporting facilities incorporated in PROGNOSIS include the following (see also

Fig. T.l).

■ “OPEN BOM” - opens a BOM file with an appropriate application

■ “OPEN CAD FILE” - calls the visualisation tool linked with the management

of STEP files

■ “WEB RELATED RESULTS” - initiates a search on the Web and acquires

information relating to the represented product

■ “OPEN KNOWLEDGE BASE” - displays the knowledge base of

PROGNOSIS related to product analysis with an appropriate application

■ “E-CONFERENCE” - commences e-conference tools (such as NetMeeting) to
enable collaboration between different experts

242

assembly bram :«_s «-stcm co n ta in s : »]
1 Sub-Assembly INSIDE —
1 Sub-Assembly OUTSIDE
4 Part WA5HER_*10
4 Part eoi.T_Ki.oy2 5
I Part AXISU0X28
1 sub-Assembly PIPES

Sub-Assembly xwsioe c o n ta in s :
1 Part O20b0101„l
4 Part ©20005-1
1. Part 020500_1
2 Part 020601.1
4 Part *ASHE»_H8
5 Part BOLTJ-I8X35
1 Part NUT_H8
4 Part 8OtTjaX0x25
4 Part *A5hEP„M10
4 Part NUT _M1Q
1 Part 020004 _1 ,

sub-Assembly OUTSIDE co n ta in s :
1 Part 020700 J l
1 Part APHPtlPIEfi
1 Part OUST_BOOT
2 Part NUT_M10
1 Part A1X30
J Part WASHER_H1Q
S Part eocT_^xox2J
X Part ADAPTER
X Part 0?0006_X

Sub-Assembly pipe s co n ta in s :
X Sub-Assembly
2 Part AX53X
X sub-assembly 02X000
X Part 020002
7 Part A1483
X Part 020001
X Part HOSE
X Sub-Assembly 0204 00
X Part 020003
X Sub-Assembly 020100
X Sub-Assembly 020100.1
X Sub-Assembly 020800_1
X Sub-Assembly 020800

«f ___ i A

Fite View Tools Help

OIWING_AXL E _RE AJTASM, DRFVlNG_AXlE_RtAI
B O g t t B U

Log

f breking_systefn boml j»j

VERIFY CHOSEN F5LE I

p c
OPEN BOM

OPEN CAD FILE

 7m

WEB RELATED RESULTS

| ̂ E_CONFERgs^ j j

k itw ihebuAmg system ypu need? *
Ntkdaoi Lagos

yet. jpeeiheaSions are (see votanej

Message.
JsendNe$TEP203

5]
Send To

i....3
Chet A not active

P ' S L f ’ * & *

Ck> <gk - |x.Subsystem

attribute steering steering.
attribute brakjng_sy«em brakwg_sy»?«n.
attribute suspension suspension,
attribute dimensions dimensions .
attribute stnng tjres,
attribute eleet_equipment e5ect_equtpment,
attribute wqgfets_c apatites weij$rts_c apace
attribute performance performance.
attribute fuel_c oosumpbc-n fuel_consumptiot
attribute string price.
>;
interface engine
(some semtstrucfured cardef xml

Figure T. 1. Supporting facilities fo r the integration process

243

APPENDIX U
P art of parsing algorithm

1. Method to get the file, separate the text in blocks, and read each block

static public String getContentsFileSub (File aFile) {
StringBuffer contents = new StringBuffer();
StringBuffer contents3 = new StringBuffer();
StringBuffer contents4 = new StringBuffer();
String line3=null;

BufferedReader input = null;
try {

input = new BufferedReader(new FileReader(aFile));
String line = null;
while ((line = input.readLine()) != null){

contents.append(line);
if (line.length()=0){

contents.append("$");
}
contents. append(Sy stem. getProperty(" line, separator”));

}
//System.out.println ("The contents are "+ contents);
String[] st = (contents.toString()).split("\\s”);

String[] temp = (contents3.toString()).split(”\\s”);

//String[] temp2 = new String [2000];

int symbol = 0;
for (int x=0; x<st.length; x++){

if (st[x].equals(”$”)){
symbol++;

}

if ((symbol<4)&&(st[x].equals(InBlockText))){
contents4.append(st[x+2]);
contents4.append(” ”);
//temp2 [x]=st[x+2];

}
else if ((symbol>=4)&&(st[x].equals(OutofBlockText))){

if (st[x+2].equals(keyword)){
System.out.println ("Not correct");

244

}
else {

contents3 .append(st[x+2]);
contents3.append(" ");

}

}
else{

line3 = contents.substring(121,131);

}
}

} catch (FileNotFoundException ex) {
ex.printStackTrace();

}
catch (IOException ex){
ex.printStackTrace();

}
finally {
try {

if (input != null) {
//flush and close both "input" and its underlying FileReader
input. close();

}
}
catch (IOException ex) {

ex.printStackTrace();
}

}

return contents4.toString();
}

245

2. Class to compare stored values and classify them as existing or not, storing
them in an index for fast retrieval.

package nick;

import java.io.*;
import java.util.*;

public class searcher
{

private static long [] indexes;

private static class tem pdata
{

public final String text;
public final long startsat;

public temp_data(String t, long 1)
{

text = t;
startsa t = 1;

};
};
private static class tem pcm p implements Comparator
{

public int compare(Object ol,Object o2)
{

return ((tem pdata)ol).text.compareTo(
((temp_data)o2).text);

>;

};
/** creats index table. This method has high peak memory usage but it is

easy to optimize it.*/
public static void buildIndex(RandomAccessFile file)throws Exception
{

List temp = new LinkedList();
String st;
long p = file.getFilePointer();
while((st = file.readLine())!=null)
{

temp.add(
new temp_data(st,p)
);

p = file.getFilePointer();
};
Collections.sort(temp,new tempcmpO);
indexes = new long [temp. size()];
int i=0;
for(Iterator I=temp.iterator();I.hasNext();i++)

246

{
temp data tt = ((temp_data)I.next());
System.out.println("indexing :"+tt.text+" ["+tt.starts_at+"]");

indexes [i] =tt. startsat;
};

};
/** returns position at which text starts or -1 if not found */
public static long find(String text,RandomAccessFile file)throws Exception
{

int ncp = indexes.length/2;
int n = 2;
int cp;
do{

cp = ncp;
file.seek(indexes[cp]);
String tt = file.readLine();

System.out.println(,fcomparing with "+tt);
int cmpr = text.compareTo(tt);
if (cmpr==0)

return indexes[cp];
else
if (cmpr>0)

ncp = cp+(indexes. length / (l« n)) ;
else

ncp = cp-(indexes.length / (l» n)) ;
n++;

}while(ncp!=cp);
return -1;

};

public static void Primary (String args [])throws Exception
{

RandomAccessFile f = new RandomAccessFile(args[0],'Y');
buildlndex(f);
for(int i=l;i<args.length;i++)
{
System.out.println("searching for \""+args[i]+"\"");
System.out.println("found at:"+find(args[i],f));
}
f.close();

};

247

APPENDIX V
Data files examples

1. Braking system

VOLUME = 2.6639375e+06 INCHA3
SURFACE AREA = 8.5076725e+05 INCHA2
AVERAGE DENSITY = 8.4867902e+00 POUND / INCHA3
MASS = 2.2608278e+07 POUND

CENTER OF GRAVITY with respect to BRAKINGSYSTEM coordinate frame:
X Y Z -1.1508418e+02-4.6106796e+01 -2.5495884e+00 INCH

INERTIA with respect to BRAKING SYSTEM coordinate frame: (POUND *
INCHA2)

INERTIA TENSOR:
Ixxlxylxz 4.6586006e+l 1 2.8334606e+ll 2.5657460e+10
Iyx Iyy Iyz 2.8334606e+l 1 2.1799930e+12 -8.8027032e+08
Izxlzylzz 2.5657460e+10-8.8027032e+08 2.3536163e+12

INERTIA at CENTER OF GRAVITY with respect to BRAKING SYSTEM
coordinate frame: (POUND * INCHA2)

INERTIA TENSOR:
Ixxlxylxz 4.1765159e+l 1 4.0330927e+l 1 3.2291120e+10
Iyx Iyy Iyz 4.0330927e+l 1 1.8804137e+12 1.7774086e+09
Izxlzylzz 3.2291120e+10 1.7774086e+09 2.0061224e+12

PRINCIPAL MOMENTS OF INERTIA: (POUND * INCHA2)
II 12 13 3.1326069e+l 1 1.9805855e+12 2.0103415e+12

ROTATION MATRIX from BRAKING SYSTEM orientation to PRINCIPAL
AXES:

0.96829 0.22721 0.10389
-0.24917 0.90857 0.33529
-0.01821 -0.35054 0.93637

ROTATION ANGLES from BRAKING SYSTEM orientation to PRINCIPAL
AXES (degrees):
angles about x y z -19.701 5.963 -13.206

RADII OF GYRATION with respect to PRINCIPAL AXES:
R1 R2 R3 1.1771158e+02 2.9598047e+02 2.9819556e+02 INCH

248

MASS PROPERTIES OF COMPONENTS OF THE ASSEMBLY
(in assembly units and the _BRAKING_SYSTEM coordinate frame)

DENSITY MASS C.G.: X Y Z

INSIDE MATERIAL: UNKNOWN
8.61284e+00 1.14192e+07 -7.35899e+01 -8.37503e+00 -3.08152e+00

OUTSIDE MATERIAL: UNKNOWN
9.08783e+00 9.74055e+06-2.51668e+02-4.03928e+01 -2.37410e+00

W ASHERM10 MATERIAL: UNKNOWN
2.00000e+00 6.95245e+02 -1.54723e+02 -1.48810e+01 5.46317e+01

W ASHERM 10 MATERIAL: UNKNOWN
2.00000e+00 6.95245e+02 -1.75244e+02 -7.12626e+01 5.46317e+01

WASHER_M10 MATERIAL: UNKNOWN
2.00000e+00 6.95245e+02-1.54723e+02-1.48810e+01 -5.53683e+01

WASHER_M10 MATERIAL: UNKNOWN
2.00000e+00 6.95245e+02-1.75244e+02-7.12626e+01 -5.53683e+01

BOLT_M 10X25 MATERIAL: UNKNOWN
9.00000e+00 3.35776e+04-1.58196e+02-1.36169e+01 -5.50000e+01

BOLT_M 10X25 MATERIAL: UNKNOWN
9.00000e+00 3.35776e+04-1.78717e+02-6.99985e+01 -5.50000e+01

B O L T M 10X25 MATERIAL: UNKNOWN
9.00000e+00 3.35776e+04-1.78717e+02-6.99985e+01 5.50000e+01

BOLT_M 10X25 MATERIAL: UNKNOWN
9.00000e+00 3.35776e+04-1.58196e+02-1.36169e+01 5.50000e+01

AXIS_10X28 MATERIAL: UNKNOWN
5.00000e+00 1.36369e+04-4.88141e+01 -4.03554e+01 2.12353e+00

PIPES MATERIAL: UNKNOWN
5.24912e+00 1.29776e+06 5.49887e+02 -4.21515e+02 4.96217e-01

2. Truck data

VOLUME = 6.8572298e+09 MMA3
SURFACE AREA = 6.9530871e+07 MMA2
AVERAGE DENSITY = 4.6355666e+02 POUND / MMA3
MASS = 3.1787146e+12 POUND

CENTER OF GRAVITY with respect to TRUCK2 coordinate frame:
X Y Z 1.6737096e+03 9.5000968e+02 7.6710179e+02 MM

INERTIA with respect to _TRUCK2 coordinate frame: (POUND * MMA2)

INERTIA TENSOR:
Ixx Ixy Ixz 6.5886787e+18 -5.0543125e+18 -3.7172951e+18
Iyx Iyy Iyz -5.0543125e+l 8 1.5364885e+19 -2.3165015e+18
Izx Izy Izz -3.7172951e+18 -2.3165015e+18 1.6022707e+19

INERTIA at CENTER OF GRAVITY with respect to _TRUCK2 coordinate frame:
(POUND * MMA2)

249

INERTIA TENSOR:
Ixxlxylxz 1.8493312e+18 -2.8231730e+13 3.6387437e+17
Iyx Iyy Iyz -2.8231730e+13 4.5898408e+18 0.0000000e+00
Izxlzylzz 3.6387437e+17 0.0000000e+00 4.2493133e+18

PRINCIPAL MOMENTS OF INERTIA: (POUND * MMA2)
II 12 13 1.7953752e+18 4.3032693e+18 4.5898408e+18

ROTATION MATRIX from _TRUCK2 orientation to PRINCIPAL AXES:
0.98918 0.14668 0.00001
0.00001 0.00001 - 1.00000

-0.14668 0.98918 0.00001

ROTATION ANGLES from _TRUCK2 orientation to PRINCIPAL AXES (degrees):
angles about x y z 89.999 0.000 -8.434

RADII OF GYRATION with respect to PRINCIPAL AXES:
R1 R2 R3 7.5153956e+02 1.1635190e+03 1.2016363e+03 MM

MASS PROPERTIES OF COMPONENTS OF THE ASSEMBLY
(in assembly units and the TRUCK2 coordinate frame)

DENSITY MASS C.G.: X Y Z

FRONT-CHASSIS-29-4 MATERIAL:
UNKNOWN

5.00000e+02 3.12668e+ll 6.00409e+02 9.50000e+02
CAB-20-3 MATERIAL:

6.00000e+02 1.37513e+12 1.26413e+03 9.50003e+02
REAR-25-4 MATERIAL:

3.49092e+02 9.74559e+ll 2.83130e+03 9.50027e+02
WHEEL-8-4 MATERIAL:

4.39000e+02 1.10231e+ll 2.00000e+02 1.56571e+02
WHEEL-8-4 MATERIAL:

4.39000e+02 1.10231e+ll 2.00000e+02 1.74343e+03
ARMS-6-5 MATERIAL:

6.54780e+02 7.19945e+10-1.96446e+02 9.50000e+02
VERRIN-1 MATERIAL:

3.41982e+02 9.51385e+08 2.51178e+02 5.21059e+02
VERRIN-1 MATERIAL:

3.41982e+02 9.51385e+08 2.51178e+02 1.37894e+03
FORK-6-5 MATERIAL:

5.40000e+01 1.53427e+09-4.53346e+02 9.50000e+02
WHEEL-8-4 MATERIAL:

4.39000e+02 1.10231e+ll 2.74500e+03 8.65707e+01
WHEEL-8-4 MATERIAL:

4.39000e+02 1.10231e+ll 2.74500e+03 1.81343e+03

3.40529e+02
UNKNOWN

1.27891e+03
UNKNOWN

4.79500e+02
UNKNOWN

5.50000e+01
UNKNOWN

5.50000e+01
UNKNOWN

1.12991e+03
UNKNOWN

5.65116e+02
UNKNOWN

5.65116e+02
UNKNOWN

2.49902e+02
UNKNOWN

5.00000e+01
UNKNOWN

5.00000e+01

250

References

1. Aamodt, A. and Nygard, M. 1995. Different roles and mutual dependencies of

data, information, and knowledge- An AI perspective on their integration. Data

and Knowledge Engineering, 16 (3), pp. 191-222.

2. ADL (Advanced Distributed Learning). 2004. SCORM-Sharable content object

reference model, 2nd edition-Overview. URL:

http://www.adlnet.gov/scorm/historv/2004/index.cfm (Last accessed: 15/12/2005).

3. Ahn, J.H. and Chang, J.G. 2004. Assessing the contribution of knowledge to

business performance: the KP3 methodology. Decision Support Systems, 36 (4),

pp. 403-416.

4. Auriol, E., Crowder, R. M., McKendrick, R., Rowe, R., and Knudsen. T. 1999.

Integrating case-based reasoning and hypermedia documentation: an application

for the diagnosis of a welding robot at Odense steel shipyard. Engineering

Applications of AI, 12 (6), pp. 691-703.

5. Bakore, A., Galbraith, B., Wiggers, C., Eaves, J., Li, S., and Chopra, V. 2004.

Professional Apache Tomcat 5, Wiley Publishing Inc., Indianapolis.

6. Baldauf, M., Dustdar, S., and Rosenberg, F. 2004. A survey on context aware

systems. International Journal of Ad Hoc and Ubiquitous Computing,

Forthcoming. URL: http://citeseer.ist.psu.edu/baldauf04survev.html (Last

accessed: 28/09/2006).

251

http://www.adlnet.gov/scorm/historv/2004/index.cfm
http://citeseer.ist.psu.edu/baldauf04survev.html

7. Bastiaens, T. J. 1999. Assessing an electronic performance support system for the

analysis of jobs and tasks. International Journal of Training and Development, 3

(1), pp. 54-61.

8. Belogun, J. and Jenkins, M. 2003. Re-conceiving change management: A

knowledge-based perspective. European Management Journal, 21 (2), pp.247-257.

9. Benko, S. and Webster, S. 1997. Preparing for EPSS projects. Communications of

the ACM, 40 (7), pp. 60-63.

10. Benton, W.C. and Srivastava, R. 1993 Product structure complexity and inventory

storage capacity on the performance of a multi-level manufacturing system.

International Journal of Production Research, 11 (31), pp. 2531-2545.

11.Bezanson, W. R. 1995. Performance support: Online, integrated documentation

and training. ACM Proceedings, Savannah, Georgia, USA, pp. 1-10.

12. Bigus, J.P. and Bigus, J. 2001. Constructing Intelligent Agents Using Java. 2nd

edition. John Wiley & Sons, New York.

13. Bose, R. 2003. Knowledge management-enabled health care management systems:

capabilities, infrastructure, and decision support. Expert Systems with

Applications, 24 (1), pp.59-71.

14. Boose, M. L., Shema, D. B., and Baum, L. S. 2003. A scalable solution for

integrating illustrated parts drawings into a class IV interactive electronic

252

technical manual. Proceedings of the Seventh International Conference on

Document Analysis and Recognition (ICDAR ’03). IEEE Computer Society.

15. Brickley, D. and Guha, R. V. 2004. RDF Vocabulary Description Language 1.0:

RDF Schema. (Eds). McBride, B., W3C Recommendation. URL:

http://www.w3.org/TR/rdf-schema/ (Last accessed: 10/12/2005).

16. Bronson, G. J. and Rosenthal, D. 2006. Object-oriented program development

using Java: a class-centred approach. Thomson Course Technology.

17. Brusilovsky, P. and Cooper, D. W. 2002. Domain, task, and user models for an

adaptive hypermedia performance support system. Proceedings of the Intelligent

User Interfaces (IUI ’02), pp. 23-30.

18. BS 4884-2. 1993. Technical Manuals, Part 2: Guide to Content (London: British

Standards Institution).

19. BS 4899-2. 1992. Guide to User’s Requirements for Technical Manuals (Based on

the Principles of BS 4884). Part 2: Presentation (London: British Standards

Institution).

20. Burkett, W. C. 2001. Product data markup language: a new paradigm for product

data exchange and integration. Computer-Aided Design, 33 (7), pp. 489-500.

21. Cambridge English Dictionary, 2006. URL: http://dictionarv.cambridge.org/ (Last

accessed: 09/01/2006).

253

http://www.w3.org/TR/rdf-schema/
http://dictionarv.cambridge.org/

22. Cantando, M. 1996. Vision 2000: Multimedia electronic performance support.

Special Interest Group on design of Communication Conference (SIGDOC ’96),

pp. 111-114.

23. CISCO Systems. 1999. Reusable information object strategy-Definition, creation

overview, and guidelines, version 3.0. URL:

http://www.cisco.com/warp/public/779/ibs/solutions/leaming/whitepapers/el cisc

o rio.pdf#search=%22CISCO%20Reusable%20Information%200biect%22

(Least accessed: 28/09/2006).

24. Cliff, S. 1999. Information is power? Envisioning the Minnesota public internet -

public service and community information and interaction in the public interest.

Information for Change conference, St. Paul, Minnesota.

25. Coffey, J. W., Canas, A. J., Hill, G., Carff, R., Reichherzer, T., and Suri, N. 2003.

Knowledge modelling and the creation of El-Tech: a performance support and

training system for electronic technicians. Expert Systems with Applications, 25

(4), pp. 483-492.

26. COM2001 (Commission of the European Communities). 2001. The eLearning

action plan: Designing tomorrow’s education. Communication for the

Commission to the Council and the European Parliament, Brussels, pp. 1-19.

27. Comet, R. and Abu Hanna, A. 2005. Description logic-based methods for auditing

frame-based medical terminological systems. Artificial Intelligence in Medicine,

34 (3), pp. 201-217.

254

http://www.cisco.com/warp/public/779/ibs/solutions/leaming/whitepapers/el

28. Crowder, R., Sim, Y. W., Wills, G., and Greenough, R. 2001. A review of the

benefits of using hypermedia manuals. Hypertext and Hypermedia conference

(HT ’01), pp. 245-246.

29. Crubezy, M., O’Connor, M. J., Buckeridge, D. L., Pincus, S. S., and Musen, M. A.

2005. Ontology-centered syndromic surveillance for bioterrorism. IEEE

Intelligent Systems, 20 (5), pp. 26-35.

30. Dale, N. and Weems, C. 2005. Programming and Problem Solving with C++ (4th

edition). Jones and Bartlett, Massachusetts.

31. Day, D., Priestley, M., and Schell, D. 2005. Introduction to the Darwin

Information Typing Architecture. URL: httn://www-

128.ibm.com/developerworks/xml/librarv/x-dital/ (Last accessed: 28/09/2006).

32. Davies, J., Fensel, D., and Van Harmelen, F. 2003. Towards the Semantic Web-

Ontology-driven knowledge management. John Wiley & Sons.

33. Desmarais, M. C., Leclair, R., Fiset, J. Y., and Talbi, H. 1997. Cost-justifying

electronic performance support systems. Communications of the ACM, 40 (7), pp.

39-48.

34. Dey, A.K. 2001. Understanding and using context. Personal and Ubiquitous

Computing, 5 (1), pp. 4-7.

255

35. Dublin Core. 2005a. Using Dublin Core. URL:

http://dublincore.org/documents/usageguide/ (Last accessed: 28/09/2006).

36. Dublin Core. 2005b. DCMI Abstract Model. URL:

http://dublincore.org/documents/abstract-model/ (Last accessed: 28/09/2006).

37. Duval, E. and Hodgins, W. 2003. A LOM research agenda. Proceedings of the

twelfth international conference on World Wide Web, pp. 1 -9.

38. Elsbemd, G. 2001. Performance-centered portals. Performance Improvement, 40

(10), pp. 24-29.

39. Erickson, T. 2002. Some Problems with the notion of context-aware computing.

Communications of the ACM, 45 (2), pp. 102-104.

40. Fallside, D. C. and Walmsley, P. 2004. XML Schema Part 0: Primer Second

Edition. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema-0/

(Last accessed: 10/12/2005).

41. Foo, S., Hui, S. C., and Leong, P. C. 2002. Web-based intelligent helpdesk-

support environment. International Journal of Systems Science, 33 (6), pp. 389-

402.

42. Forzese, A. C. 1997. How do performance support and minimalist systems

designers consider audience?: Some design tools for user-focused systems. IPCC

’97 Proceedings. IEEE Crossroads in Communication, pp. 167-180.

256

http://dublincore.org/documents/usageguide/
http://dublincore.org/documents/abstract-model/
http://www.w3.org/TR/xmlschema-0/

43. Frost, A. 1998. Interactive electronic technical manual research study.

Proceedings of the IEEE Aerospace and Electronics Conference (NAECON ’98),

pp. 80-87.

44. Gao, J.X., Aziz, H., Maropoulos, P.G., and Cheng, W.M. 2003. Application of

product data management technologies for enterprise integration. International

Journal of Computer Integrated Manufacturing, 16 (7-8), pp. 491-500.

45. Gery, G. 1995. Attributes and behaviors of performance-centered systems.

Performance Improvement Quarterly, 8 (1), pp. 47-93.

46. Gharbi, A., Kenne, J. P., and Beit, M. 2007. Optimal safety stocks and preventive

maintenance periods in unreliable manufacturing systems. International Journal of

Production Economics, 107 (2), pp. 422-434.

47. Goffin, K. 1998. Evaluating customer support during new product development-

an exploratory study. Journal of Production Innovation Management, 15 (1), pp.

42-56.

48. Gonzalez, A. J. and Dankel, D. D. 1993. The engineering of knowledge-based

systems: Theory and Practice. Prentice Hall. USA.

49. Gray, P.H. 2001. A problem-solving perspective on knowledge management

practices. Decision Support Systems, 31 (1), pp. 87-102.

257

50. Gruber, T. R., Vemuri, S., and Rice, J. 1997. Model-based virtual document

generation. International Journal of Human Computer Studies, 46 (6), pp. 687-

706.

51. Gunnlaugsdottir, J. 2003. Seek and you will find, share and you will benefit:

organising knowledge using groupware systems. International Journal of

Information Management, 23 (5), pp.363-380.

52. Gunzelmann, G., Anderson, J.R. 2003. Problem-solving: Increased planning with

practice. Cognitive Systems Research, 4 (1), pp. 57-76.

53. Hennum, E. 2005. Specialising domains in DITA. URL: http://www-

128.ibm.com/developerworks/xml/librarv/x-dita5/ (Last accessed: 28/09/2006).

54. Horn, R. 1999. Two approaches to modularity: Comparing the STOP approach

with structured writing. Journal of computer documentation, 23 (3), pp. 87-95.

55. Huneiti, A. M. 2004. Hypermedia-based performance support systems for the

Web. Ph.D Thesis, Cardiff University.

56. IEEE LOM. 2002. Draft standard for learning object metadata. URL:

http://ltsc.ieee.org/wgl2/files/LOM 1484 12 1 vl Final Draft.pdf#search=%22

IEEE%20LQM%22 (Last accessed: 28/09/2006).

57. ISO 8402: 1994. 1994. Quality Management and Quality Assurance. Vocabulary

of the ISO 9000 Quality Standard.

258

http://www-
http://ltsc.ieee.org/wgl2/files/LOM

58. ISO 10303-1: 1994. 1994. Industrial Automation Systems and Integration-Product

Data Representation and Exchange. Part 1: Overview and Fundamental Principles,

TCI84/ SC 4, ISO.

59. Johanson L. 2003. FreeCBR documentation. URL:

http://freecbr.sourceforge.net/aDi 1.1.2/ (Last accessed: 10/12/2005).

60. Joyce, D. A. 2002. Electronic performance support for royal navy technicians-a

new paradigm for engineering training? Engineering Education 2002: Professional

Engineering Scenarios (Ref. No. 2002/056), IEE, 2 (3-4), pp. 36/1-36/6.

61.Kabel, M. A. and Kiger, R. 1997. Convergence of knowledge engineering and

electronic performance support systems. Professional Communication Conference

(IPCC ’97). IEEE Crossroads in Communication, pp. 45-51.

62. Kahney, H. 1992. Problem solving-current issues, 2nd edition. Open Guides to

Psychology, Open University Press, McGraw Hill, London.

63. Kakabadse, N. K., Kakabadse, A., and Kouzmin, A. 2003. Reviewing the

knowledge management literature: Towards a taxonomy. Journal of Knowledge

Management, 7 (4), pp.75-91.

64. Kaposi, A. and Myers, M. 2001. Systems for All. Imperial College Press, London.

259

http://freecbr.sourceforge.net/aDi

65. Khalifa, M. and Liu, V. 2006. Semantic network representation of computer-

mediated discussions: Conceptual facilitation form and knowledge acquisition.

Omega, In Press.

66. Knublauch, H., Fergerson, R. W., Noy, N. F., Musen, M. A. 2004. The Protege

OWL plugin: An open development environment for semantic web applications.

Third International Semantic Web Conference - ISWC 2004, Hiroshima, Japan.

67. Kolodner, J. Case-Based Reasoning. Morgan Kaufmann, San Mateo, 1993.

68. Kraidli, R., Ammar, H., Reynolds, D., and Copen, G. 2003. Adaptive electronic

technical manuals. Computer Systems and Applications. Book of Abstracts.

International Conference on ACS/IEEE.

69. Kuflik, T., Shapira, B., and Shoval, P. 2003. Stereotype-based versus personal-

based filtering rules in information filtering systems. Journal of the American

Society for Information Science and Technology, 54 (3), pp. 243-250.

70. Lagos, N., Setchi, R. M., and Dimov, S. S. 2005. Towards the integration of

performance support and e-Leaming: Context-aware product support systems,

(Eds). Meersman, R., Tari, Z., and Herrero, P., Lecture Notes in Computer

Science (LNCS), 3762, pp. 1149 - 1158.

71. Liao, S.H. 2002. Problem solving and knowledge inertia. Expert Systems with

Applications. 22 (1), pp. 21-31

260

72. Liebowitz, J. and Megbolugbe, I. 2003. A set of frameworks to aid the project

manager in conceptualising and implementing knowledge management initiatives.

International Journal of Project Management, 21 (3), pp.189-198.

73. Mackenzie, C. 2002. The need for a Design Lexicon: Examining minimalist,

performance-centered and user-centered design. Technical Communication, 49

(4), pp. 405-410.

74. MacMullin, S. E. and Taylor, R. S. 1984. Problem dimensions and information

traits. Information Society, 3 (1), pp. 91-111.

75. Marion, C. 2002. Attributes of Performance-Centered Systems: What can we learn

from five years of EPSS/PCD competition award winners?. Technical

Communication, 49 (4), pp. 428-443.

76. Matheiu, V. 2001. Product Services: From a service supporting the product to a

service supporting the client. Journal of Business and Industrial Marketing, 16 (1),

pp. 39-58.

77. McCarthy, J. 1993. Notes on Formalizing Context. Proceedings of the 23rd

Artificial Intelligence International Joint Conference (AI IJCAI’93), Chambery,

France, pp. 555-560.

78. McGuinness, D. L. and Van Harmelen, F. 2004. OWL Web Ontology Language

Overview. W3C Recommendation. URL: http://www.w3.org/TR/owl-features/

(Last accessed: 10/12/2005).

261

http://www.w3.org/TR/owl-features/

79. McMahon, C., Lowe, A., Culley, S., Corderoy, M., Crossland, R., Shah, T., and

Stewart, D. 2004. Waypoint: An integrated search and retrieval system for

engineering documents. Journal of Computing and Information Science in

Engineering, 4 (4), pp. 329-338.

80. Mendes, E., Mosley, N., and Watson, I. 2002. A comparison of case-based

reasoning approaches. Proceedings of 11th International Conference on World

Wide Web, pp. 272-280.

81. Morakis, E., Vidalis, S., and Blyth, A. 2003. Measuring vulnerabilities and their

exploitation cycle. Information Security Technical Report, 8 (4), pp. 45-55.

82. Namahn. 2001. Darwin Information Typing Architecture (DITA), a research note

by Namahn. URL: http://www.namahn.com/resources/documents/note-DITA.pdf

(Last accessed: 28/09/2006).

83.Nonaka, I. 1991. The knowledge creating company. Harvard Business Review,

pp.96-104.

84. Nonaka, I. 1994. A dynamic theory of organisational knowledge creation.

Organisation Science, 5 (1), pp. 14-37.

85. OASIS DITA. 2005. OASIS Darwin Information Typing Architecture (DITA)

architectural specification vl.0. URL: http://xml.coverpages.org/DITAvlO-QS-

ArchSpec20050509.pdf (Last accessed: 28/09/2006).

262

http://www.namahn.com/resources/documents/note-DITA.pdf
http://xml.coverpages.org/DITAvlO-QS-

86. Ockerman, J. J., Najjar, L. J., and Thomson, J. C. 1999. FAST: future technology

for today’s industry. Computers in Industry, 38 (1), pp. 53-64.

87. Oxford English Dictionary 2nd edition, 2006. URL: http://dictionarv.oed.com/

(Last accessed: 09/01/2006).

88. Pasantonopoulos, C. 2005. Automatic construction of virtual technical

documentation. Thesis submitted to Manufacturing Engineering Centre (MEC),

Cardiff University.

89. Paul, C., Zeiler, G., and Nolan, M. 2003. Integrated support system for the self

protection system. IEEE Systems Readiness Technology Conference Proceedings

(AUTOTESCON 2003), pp. 155-160.

90. Petiot, J.F. and Yannou, B. 2004. Measuring consumer perceptions for a better

comprehension, specification, and assessment of product semantics. International

Journal of Industrial Ergonomics, 33 (6), pp. 507-525.

91. Pham, D. T., Dimov, S. S., and Huneiti, A. M. 2003. Semantic data model for

product support systems. IEEE International Conference on Industrial Informatics

(INDIN 2003), pp. 279-285.

92. Pham, D. T., Dimov, S. S., and Peat, B. J. 2000. Intelligent product manuals.

Proceedings of the Institution of Mechanical Engineers IMechE, 214 (B), pp. 411-

419.

263

http://dictionarv.oed.com/

93. Pham, D. T., Dimov, S. S., and Setchi, R. M. 1999a. Intelligent product manuals.

Proceedings of the Institution of Mechanical Engineers IMechE, 213 (I), pp. 65-

76.

94. Pham, D. T., Dimov, S. S., and Setchi, R. M. 1999b. Concurrent Engineering: a

tool for collaborative working. Human Systems Management, 18 (3-4), pp. 213-

224.

95. Pham, D. T. and Setchi, R. M. 2000. Adaptive Product Manuals. Proceedings of

the Institution of Mechanical Engineers IMechE, 214 (C), pp. 1013-1018.

96. Pham, D. T. and Setchi, R. M. 2003. Case-based generation of adaptive product

manuals. Proceedings of the Institution of Mechanical Engineers, 217 (B), pp.

313-322.

97. Pham, D. T., Setchi, R. M., and Dimov, S. S. 2002. Enhanced product support

through intelligent product manuals. International Journal of Systems Science, 33

(6), pp. 433-449.

98. Plato on Knowledge in the Theaetetus, Stanford Encyclopedia of Philosophy.

2006. URL: http://plato.stanford.edu/entries/plato-theaetetus/ (Last accessed:

09/01/2006).

99. Portinale, L., Magro, D., and Torasso, P. 2004. Multi-modal diagnosis combining

case-based and model-based reasoning: a formal and experimental analysis.

Artificial Intelligence. 158 (2), pp. 109-153.

264

http://plato.stanford.edu/entries/plato-theaetetus/

100. Prekop, P. and Burnett, M. 2003. Activities, context and ubiquitous

computing. Computer Communications, 26 (11), pp. 1168-1176.

101. Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P.,

Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., and De Bosschere, K. 2004.

Towards an extensible context ontology for ambient intelligence. In:

Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (Eds.). Ambient Intelligence.

Lecture Notes in Computer Science, 3295, pp. 148-159.

102. PTC. 1998. Pro/Engineer Online Books, Parametric Technology Corporation,

Waltham, MA, USA.

103. Quesenbery, W. 2002. Who is in control? The logic underlying the intelligent

technologies used in performance support. Technical Communication, 49 (4), pp.

449-457.

104. Ranwez, S. and Crampes, M. 1999. Conceptual documents and hypertext

documents are two different forms of virtual document. Workshop on Virtual

Documents, Hypertext Functionality and the Web, In: 8th International World

Wide Web Conference, Toronto, Canada.

105. Raybould, B. 1995. Performance support engineering: an emerging

development methodology for enabling organisational learning. Performance

Improvement Quarterly, 8(1), pp. 7-22.

265

106. Raybould, B. 2000. Building performance-centered web-based systems,

information systems and knowledge management systems, in the 21st century.

Performance Improvement, 39 (6), pp. 32-39.

107. Rayside, D., Litoiu, M., Storey, M. A., Best, C., and Lintem, R. 2003.

Visualizing flow diagrams in Websphere studio using SHriMP views (visualizing

flow diagrams). Information Systems Frontiers, 5 (2), pp. 161-174.

108. Ruland, D. and Spindler, T. 1995. Integration of product and design data using

a metadata- and a rule-based approach. Computer Integrated Manufacturing

Systems, 8 (3), pp. 211-221.

109. Russell, S. and Norvig, P. 1995. Artificial Intelligence-A modem approach. In:

Artificial Intelligence Series, Prentice Hall.

110. Sanchez, S. and Sicilia, M. A. 2004. On the semantics of aggregation and

generalisation in Learning Object contracts. Proceedings of the IEEE International

Conference on Advanced Learning Technologies (ICALT’04). IEEE Computer

Society, pp. 425 - 429.

111. Savsar, M. 2006. Effects of maintenance policies on the productivity of

flexible manufacturing cells. Omega-The International Journal of Management

Science, 34 (3), pp. 274-282.

266

112. Schilit, B. N., Adams, N. I., and Want, R. 1994. Context-aware computing

applications. Proceedings of the Workshop on Mobile Computing Systems and

Applications, pp. 85-90.

113. SEMTA-Science, Engineering, Manufacturing Technologies Alliance. 2004.

Aerospace Sector Skills Agreement: Stage 1. Consultation Draft: Aerospace SSA.

114. Setchi, R. M. 2000. Enhanced product support through intelligent product

manuals. Thesis submitted to Cardiff School of Engineering, University of Wales

Cardiff.

115. Setchi, R. M., Huneiti, A. M., and Pasantonopoulos, C. 2006. The evolution of

intelligent product support. Proceedings of the 5th CIRP International Seminar on

intelligent computation in manufacturing engineering (CIRP ICME ’06), 5, pp.

639-644, Ischia, Italy.

116. Setchi, R. M. and Lagos, N. 2005. A problem solving approach to the

development of product support systems. Proceedings of the 1st I*PROMS

Virtual International Conference on Intelligent Production Machines and Systems

(IPROMS 2005), 4-15 July 2005, Cardiff, UK, pp. 79-84.

117. Setchi, R. M. and Lagos, N. 2006a. Semantic-based authoring of technical

documentation. World Automation Congress 2006 (WAC2006) - 10th

International Symposium on Manufacturing and Applications (ISOMA 2006),

Budapest, Hungary.

267

118. Setchi, R. M. and Lagos, N. 2006b. Context modelling for product support

systems. Acta Mechanica Slovaca, 2 (A), pp. 425-434.

119. Setchi, R. M., Lagos, N., and Dimov, S. S. 2005. Semantic modelling of

product support knowledge. Proceedings of the 1st I*PROMS Virtual

International Conference on Intelligent Production Machines and Systems

(IPROMS 2005), 4-15 July 2005, Cardiff, UK, pp. 275-281.

120. Sintek, M.2005a. OntoViz documentation.

URL: http://protege.stanford.edu/plugins/ontoviz/ontoviz.html (Last accessed:

10/12/2005).

121. Sintek, M. 2005b. RDF Backend.

URL: http://protege.stanford.edu/plugins/rdf (Last accessed: 10/12/2005).

122. Stary, C. and Stoiber, S. 2003. Model-based electronic performance support.

Lecture Notes in Computer Science. (Eds.) J. A. Jorge, N. J. Nunes, J. Falcao e

Cunha. 2844, pp. 258-272.

123. Stcherbatchenko, A., Prantl, F., and Levin, S. 2005. JCreator 2.5 Help. Xinox

software.

124. Stefik, M. 1995 Introduction to Knowledge Systems. Morgan Kaufmann

Publishers, London.

268

http://protege.stanford.edu/plugins/ontoviz/ontoviz.html
http://protege.stanford.edu/plugins/rdf

125. STEPSTONE. 2006. NSViewer Help. URL:

http ://www.microcad.co. i p/N S V iewerSTEP-E/products/ (Last accessed:

02/01/2006).

126. Storey, M. A., Noy, N. F., Musen, M., Best, C., and Fergerson, R. 2002.

Jambalaya: an interactive environment for exploring ontologies. International

Conference on Intelligent User Interfaces, pp. 239.

127. Stuckenschmidt, H. and Van Harmelen, F. 2005. Information sharing on the

semantic web. In: Advanced Information and knowledge processing series.

Springer.

128. Su, L. P., Bosco, C. D., and England, W. 1997. Application of new

information technology to DOD legacy paper technical manuals. IEEE

Proceedings of the Autotestcon conference (AUTOTESTCON ’97), pp. 18-22.

129. Szykman, S., Sriram, R.D., and Regli, W.C. 2001. The role of knowledge in

next-generation product development systems. Journal of Computing and

Information Science in Engineering, 1 (1), pp. 3-11.

130. Tucker, H. and Harvey, B. 1997. SGML documentation objects within the

STEP environment. SGML Europe '97, Barcelona, Spain. URL:

http://www.eccnet.com/papers/step.html (Last accessed: 27/09/2006).

269

http://www.microcad.co
http://www.eccnet.com/papers/step.html

131. Van Amstel, P., Van der Eijk, P., Haasdijk, E., and Kuilman, D. 2000. An

interchange format for cross-media personalised publishing. Computer Networks,

33 (1-6), pp. 179-195.

132. Verbert, K. and Duval, E. 2004. Towards a global architecture for learning

objects: a comparative analysis of learning object content models. Proceedings of

the World Conference on Educational Multimedia, Hypermedia and

Telecommunications (ED-MEDIA 2004), pp. 202-209.

133. Vercoustre, A. M., Dell'Oro, J., and Hills, B., 1997, Reuse of information

through virtual documents. Second Australian Document Computing Symposium,

Melbourne, Australia, pp. 55-64.

134. Wagner, E. D. 2002. Steps to creating a content strategy for your organisation.

The e-Leaming Developers Journal. URL:

http://www.elearningguild.eom/pdf72/102902MGT-

H.pdf#search=%22Steps%20to%20creating%20a%20content%20strategy%20for

%20your%20organisation%22 (Last accessed: 28/09/2006).

135. Waldeck, E. N. and Lefakis, Z. N. 2005 HR perceptions and the provision of

workforce training in an AMT environment: An empirical study. Omega, 35 (2),

pp. 161-172.

136. Wang, K. J. and Lin, Y. S. 2007. Resource allocation by genetic algorithm

with fuzzy inference. Expert Systems with Applications, 33 (4), pp. 1025-1035.

270

http://www.elearningguild.eom/pdf72/102902MGT-

137. Webster Online Dictionary, 2006. URL: http ://www.websters-online-

dictionarv.org/ (Last accessed: 09/01/2006).

138. Wielinga, B., Schreiber, G., and Breuker, J. 1993. Modelling Expertise. In:

KADS: A principled approach to knowledge-based system development. XI, pp.

21-47, G. Schreiber, B. Wielinga, J. Breuker, Eds. New York: Academic.

139. Wills, G., Sim, Y. W., Crowder, R., and Hall, W. 2002. Open hypermedia for

product support. International Journal of Systems Science, 33 (6), pp. 421-432.

140. Yao, H. and Etzkom, L. 2006. Automated conversion between different

knowledge representation formats. Knowledge Based Systems, 19 (6), pp. 404-

, 412.

141. Yeh, I., Karp, P. D., Noy, N. F., and Altman, R. B. 2003. Knowledge

acquisition, consistency checking and concurrency control for Gene Ontology

(GO). Bioinformatics, 19 (2), pp. 241-248.

142. Yim, N. H., Kim, S. H., Kim, H. W., and Kwahk, K. Y. 2004. Knowledge

based decision making on higher level strategic concerns: system dynamics

approach. Expert Systems with Applications, 27 (1), pp. 143-158.

271

