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Abstract

In this work we present a variational algorithm to determine the parameters p,.(z) and €.(z) in

the Maxwell system
VX E+ku.H=0,

VxH-keE=0

in a body Q from boundary measurements of electromagnetic pairs (n X E,|aon,n X Hyulaq),
n=1,2,..., where n is the outer unit normal. We show that this inverse problem can be solved
by minimizing a positive functional G(m, ¢) and using a conjugate gradient scheme. Apart from
implementations with global boundary, we also consider the case of partial boundary, where we
have only data available on a subset I' C 0. Further do we develop uniqueness results, to show
that the given data (n x E,|sq,n X Hylsa), n=1,2,..., s a sufficient basis to solve the inverse
problem. We investigate the uniqueness properties of the inverse problem in the case of global
boundary data as well as in the case of partial boundary data. To show the effectivness and the
stability of our approach we present various numerical results with noisy data. Finally we outline
an alternative method, where one is only interested in recovering the support of the functions

-l —1lande — 1.
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1 Introduction

Since at least the time of the second world war many scientist have investigated the problem of
land-mine detection. In search of a solution to this challenging problem a combination of differ-
ing technologies which include ground penetrating radar, infrared imaging and eleétromagnetic
induction arrays have been used to try and produce a good detection system. These approaches
have produced partially successful results, especially in the case of landmines that were made up
of steel or similar materials. However in recent years landmines have become more sophisticated
and are often made from synthetic materials which makes them harder to detect by the above
technologies. We want to point out that apart from these engineering approaches methods from
other fields of research have been pursued as well. For example at the University of Montana,
Prof. Bromenshenk is training bees to find landmines. Another approach is the chemical demi-
ning of landmines, using the so-called Remote Explosive Scent Testing (REST), where the scent
of the chemicals inside landmines is transferred to the surface and then detected by dogs or rats.
Although these approaches are quite interesting, the main research is still focusing on engineering

approaches and especially electromagnetic imaging, which is the topic of this work.
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1.1 Landmine detection

Many groups have 'beamed’ electromagnetic energy at mine targets in the ground and collected
the scattered radiation. They have processed the data and detected mines. This has been done
from airborne platforms, for example the American REMIDS programme and through MINE-
SEEKER. It has also been done on ground based systems for example Portable Humanitarian
Mine Detector (PHMD). However these systems still need further development. Mathematicians
view this problem as an inverse problem, where one collects data on the surface of the earth
which is then used to get an image of the ground below. Usually ground penetrating radar
(GPR) is used to send electromagnetic waves into the ground. GPR works by transmitting
pulses of ultra high frequency radio waves that is transmitted into the ground via a transducer
or antenna. Most of these waves are absorbed by the ground (dissipated as heat energy), but a
small proportion of the injected waves is reflected and the reflected waves can be measured at the
surface with receiving antennas. Most GPR makes use only of measurements of the magnitude
of the electric field strength at the receiving antennas. This is effective if one only needs a vague
image of the subsurface, as in the detection of the position of known objects, like underground
‘cables and the like. If one is to detect objects like landmines, the imaging has to be much better.
These days it is possible for the receiving antennas to gather data on the electric field vector and
the inagnetic field vector or the magnetic flux density. The latter can for example be measured
with an accurate magnetometer. With these measurements we will show that we can determine

the electromagnetic properties of landmines and thus get an image of the subsurface. Electro-
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magnetic imaging is not only used for landmine detection, but has many other applications like
biomedical imaging, navigation, building restoration or airport security systems.

The mathematical model for electromagnetic waves is given by Maxwell’s equations.

V.- (e€) = p, (L11)
uH) _
vxe+ LD o, (1.1.2)
0(e€)
v XH—T—Ug-FJa, (113)
V- (uH) =0, ' (1.1.4)

where £ is the electric field, H the magnetic field, J, is the electric current density and p is
the charge density. To get an image of the subsurface we use boundary measurements to de-
termine the functions e(z), o(z) and p(z), which characterize the Maxwell system above, where
the permeability u and the permittivity e are strictly positive, bounded, scalar functions and the
conductivity o is bounded and non-negative. These three functions describe the electromagnetic
properties of the subsurface and thus are key to electromagnetic imaging.

In this work we develop the necessary mathematical tools for a variational algorithm to recover
these functions from boundary measurements. Further we present uniqueness and other theo-
retical results to show the well-posedness of the algorithm. Finally we present various numerical
results that show the effectiveness of our approach, especially when done in a parallel environ-
ment. Before we go into more detail on these things, we give a short outline on inverse and

ill-posed problems.
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1.2 Inverse and ill-posed problems

We start our discussion of inverse problems by the following definition used by Keller and Kirsch

(cf. [Kir96]).

Definition 1.1.
Two problems are inverse to each other if the formulation of each requires full or partial knowledge

of the solution of the other.

Usually one problem has been studied in more detail or is easier to solve than the other. This
one is then called the direct problem. A more rigorous distinction between the direct and the

inverse problem can be made if one considers the following definition due to Hadamard.

Definition 1.2 (well-posed problem).

A well-posed problem has the following three properties

(i) There exists a solution of the problem (ezistence).
(ii) There is at most one solution of the problem (uniqueness).

(iii) The solution depends continuously on the data (stability).

If one of the three properties of existence, uniqueness and stability of the solution fails to hold,
Hadamard called the problem ill-posed and of no physical interest. However these days many

important and interesting problems in science lead to ill-posed inverse problems, where the direct
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problems are well-posed. Given an inverse problem it is often possible to establish existence by
enlarging the solution set and uniqueness by reducing the solution set. However it is often very
difficult to numerically compute the solution of an inverse problem and it often requires a priori
knowledge about the solution of the inverse problem and a good numerical algorithm to establish
stability. We outline some of the typical uniqueness and stability problems by considering one

of the most famous inverse problems.

Example 1.3 (Electrical impedance tomography).
Let Q € R™ be a simply-connected bounded open set with a C*'-boundary and let p € L®(Q)

satisfy

p(z) > a >0, (1.2.1)

for some constant o.. We consider the elliptic equation
-V - (p(z)Vu) =0, Vzeq. (1.2.2)

If we have a given ® € H'Y/2(0§) the direct problem is to find a function u that satisfies (1.2.2)

in the weak sense and the boundary condition
ulgn = ®. (1.2.3)

Here ® may be interpreted as a voltage. This direct Dirichlet boundary value problem has been
studied in great detail and a very good mathematical theory for it exists. Before we introduce the

inverse problem we first define the so called voltage-to-current map or Dirichlet Neumann map.
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For each p satisfying (1.2.1) we can define
Ou
Ap® = P'a—nlan, (1.2.4)

where pg—:‘l is the so-called co-normal derivative of u on the boundary and is interpreted physically
as a current. The inverse problem can now be stated as follows: Given A, for some p, find p.
As with many inverse problems the main focus is to restore uniqueness and find a stable recovery
algorithm. The question of uniqueness for this inverse problem is more complicated. One of the
first results was established by Kohn and Vogelius for analytic p [KV84]. In 1987 Sylvester and
Uhlmann showed uniqueness for p € C11(2) in the case n > 3 [SU87] and Nachman later gave
a uniqueness proof for n = 2 [Nac96]. Recently it was shown by Astala and Pdivarinta that
uniqueness holds even for p € L*(Q), if n =2 [AP06].

Even more interesting than the question of unigqueness is the problem of stability. We give a short
ezample by Alessandrini that shows the instability of the EIT problem. Consider Q0 a unit disk

and set

l1+a, iff|z|<r<i,
p(z) =

1, otherwise.

Given an arbitrary

o0)= ) Pne™™ € H/2(5Q)

n=—oo

we get
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o0

Z 2+a(1+r2|"|) e,mg
5+ a(l — 7o)

(4,2)(6) =

bl

n=-—o00

(A, ®)(6) = Z In|@ e

n=-c0
and therefore

lm(A, ~ A)® =0, but lim|lp— 1] = o
This shows that the solution of the EIT problem does not continuously depend on the given data.
Thus one has to develop recovery algorithms to overcome this instability. This éan either be
done by using a general reqularization method (see for example [EHN96]) or by tmnsformz’hg the

inverse problem to another problem, for example a minimization problem (see [Kno98]).

In general the class of inverse problems associated with partial differential equations can be
described as in the following sketch. The direct problem is to find a function u, that satisfies the
equation
Lu=f

in an open, simply-connected set {2 € R with a smooth boundary and a boundary condition on
0f). Here L is a differential operator and f is a given function. If L is a second-order partial
differential operator with sufficiently smooth conditions and one chooses the correct space for f,
the Bounda.ry conditions and the solution u, this problem is well-posed. The inverse problem is
usually not to find the function f, but to find some properties, or all properties of the differential

operator L, given f and full or at least partial knowledge of the solution u. These problems are
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usually ill-posed as is the EIT problem. This is exactly the case if we consider electromagnetic
imaging as an inverse problem and as in the case of the EIT problem the two problems concerning

us are uniqueness of the solution and a stable recovery.

1.3 Electromagnetic imaging as an inverse problem

We have seen that in mathematical terms the problem of electromagnetic imaging is equivalent
to recover information about the coefficients y, € and ¢ in (1.1.1), (1.1.2), (1.1.3), (1.1.4). We
give a short outline of two possible approaches on how to do this. The first approéch relies on
performing a Fourier transformation of the system to get a time-harmonic system. The given
data consists of scattered waves from the buried object for different plane wave incident fields
with varying orientation and polarization. Secondly we present an approach where we apply
a Laplace transformation to Maxwell’s equations to obtain a time-independent and coercive
system. The data used in this approach is a collection of corresponding electric and magnetic
boundary measurements and we will transform the inverse problem to a minimization problem.
All the later results in this work are based on this approach.

We will use time-independent form in the following Paragraph. The derivations of these forms

is given in detail in Chapter 2 [Section 2.5].



1.3 Electromagnetic imaging as an inverse problem

1.3.1 The inverse problem as an inverse scattering problem

All results of this paragraph can be found in [CP92] or [CK98]. The scattering approach to

electromagnetic imaging is the most common approach these days.

The idea is to send an

incident field E; into the ground, which induces a scattered field E,. The asymptotic behaviour

of E, is characterized by the so-called far field pattern F., which can be measured above the

surface. Here we consider the so-called time-harmonic Maxwell system
V x E —iku.H =0,

V x H + ike, E = le

k

which we get via a Fourier transformation in time

—00

W(w) = L /oo e~ “iy(t)dt
(2)1/2
or by analyzing electromagnetic waves at a single frequency w. We set
E= 5(1)/2E7 H= #(1)/2-FI)

where E is the Fourier transform of £ and

The wavenumber k is given by

k= w €ollo.

(1.3.1)

(1.3.2)
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To simplify things a bit more we set F' = 0 and assume pu = yo in R® and define the refractive
index n(z) = ¢,(z) in accordance with the common notation in scattering theory. Thus we get

the system

VxE—ikH=0, VxH+iknE =0. (1.3.3)

We assume that m(z) := 1 — n(z) is compactly supported in R3. The direct scattering problem

associated with (1.3.3) is to find solutions E, H of (1.3.3) in the form
E=E'+E*, H=H+H’
where the incident fields E*, H* are given by

) . ) 1 .
Ei(z) = (d x p)e**?, H'(z) = EV x E'(z), (1.3.4)
with constant vectors p € R3, d € @ = {z : |z| = 1} and the scattered felds satisfy the

Silver-Miiller radiation condition
H xzt-FE=0|— |z| — o0 (1.3.5)
l I2 y b

uniformly for all directions & = lz_l This radiation condition is necessary to guarantee the well-
posedness of the direct scattering problem, since the system (1.3.3) is not coercive and thus the

behaviour of the electric and magnetic fields at infinity has to be controlled. The electric field

satisfies the second order equation

VXV xE-kKnE=0, (1.3.6)
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in R3 as well as the integral equation

E(z) =E¥(z) - K /D m(y)®(z, 1) E(y)dy

+ V/ -——1—E(y) -Vn(y)®(z,y)dy, z € R3, (1.3.7)
p My)
where
1 etklz—vl
- 1.3.
P(a,y) = g (1.38)

and D is the support of m. Equation (1.3.7) has a unique solution, which also satisfies the
equations (1.3.3), (1.3.4), (1.3.5) (see for example [CK98]). Of extreme importance to the inverse

scattering problem is the asymptotic behaviour of the scattered field E?,

g (&:d,p)+0 (= (1.3.9)
r oo ) ’p 7'2 ) 0.

Ei(z) =

where r = |z| and E, is the so-called far field pattern. In scattering applications the given data
for the inverse problem consists of the far field pattern E(%; d;, p;) for all directions d; in Q and

three basis vectors p; in R3. The far field pattern determines the index of refraction uniquely.

Theorem 1.4.

Let m = 1—n € C3(R3), where n is the refractive indez, let p;, i = 1,2,3 be three basis vectors
in R3, and let Q be the unit sphere in R3. Then n is uniquely determined by the electric far field
pattern Eo(%;d,p;) corresponding to the incident fields E*(z) = (d x p;)e**? for a fized wave

number k >0, d,Z € Q and i =1,2,3.

Proof.
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See [CP92][Theorem 4.1]. O

There are several methods available on how to determine information on the refractive index n
from the knowledge of the far field pattern E, in a stable way and there is still ongoing research
in this area. We refer the interested reader to the works of Kress (e.g. [Kre04])) Colton (e.g.
[CHPO03a], [CCMO04]) and Kirsch to get an overview over some of the methods available to solve
the inverse scattering problem. Especially the factorization method developed by Kirsch et. al.
(e.g. [Kir03], [Kir04], [GHK*05]) is interesting with respect to this work, since in Chapter 6 we

develop a factorization method for the case of given near field data.

1.3.2 The inverse problem as a variational problem

In this work we want to present an alternative to the scattering approach outlined above. In
many inverse problems for elliptic equa’-cions, variational algorithms are successfully used (see
[EHN96], [Kno98] or [BJKO05]). In this work we show that this can also be done in the case
of Maxwell’s equations. The main difference to the scattering approach is, that we work with
a coercive system, which we get via a Laplace transformation and that we use near field data
instead of far field data. As we will show in Chapter 2 (see (2.5.26), (2.5.27)) we can reduce
the system (1.1.1), (1.1.2), (1.1.3), (1.1.4) by applying a Laplace transformation with frequency

AeR,

() = /0 ” eyt
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to get the coercive system

V x E + kpH = 0, (1.3.10)

VxH-keE=—1F (1.3.11)

k
Here E denotes a scaled Laplace transform of £, i.e.
E=eé/2E, H=,u,(1,/ZI:I,

where E, H denote the Laplace transforms of £, H and €, and po are the constant values of e
and u outside of our given domain. The term F includes the influence of J, and p. The new

coefficients are

and the wavenumber £ is given by
k= )\\/60/.1,0.

As a result of the Laplace transformation, the time-independent system (1.3.10), (1.3.11) is a
coercive system. This is one of the differences between applying a Fourier transformation and
applying a Laplace transformation. In general coercive systems are better suited for a variational
approach to inverse problems, than non-coercive systems.

Note that k£ depends on the chosen frequency A of the Laplace transformation. Choosing a
different frequency gives different electromagnetic fields and thus different corresponding electric

and magnetic boundary measurements as data for the inverse problem. Mathematically the given
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data is represented by the so-called impedance map

Zyper(n X Hlag) = n X E|aq, (1.3.12)
or the so-called admittance map

Ay, es(n X Elgg) =n x Hlaq. (1.3.13)

This brings us to the sec;ond difference to the scattering approach. The data of the inverse
problem does not consist of far field data, but of near field data, given by Z,, .. or A, ... We will
see later (Theorem 3.3) that these maps uniquely identify the coefficients x4, and ¢,. Using the
coercivity of the system (1.3.10), (1.3.11) we are able to define a non-negative functional G(m,c) .
with a unique global minimum at m = p; ! and ¢ = ¢,. Thus we reduce the inverse problem to

a minimization problem.

1.4 OQutline of this thesis

The main topic of this work is the minimization approach outlined in Subsection 1.3.2 to recover
ur and €,. In Chapter 5 we show that it is not only possible to recover the functions u, and e,
by minimizing a non-negative functional G(m,c), but also that this can be done without any
constraints on the smoothness or the spatial dependence of the these coefficients.

However before we outline the variational approach, we first give an overview of the mathematical
tools needed for this analysis in Chapter 2. Then we present various uniqueness results for the

inverse problem in Chapter 3. We show that the inverse problem has a unique solution in the
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case of global boundary data and also present a partial uniqueness result in the case of local
boundary data. Finally we give a simple uniqueness result in the case of given interior data,
which is the basis of Chapter 4, where we explain the main idea of the variational approach
using interior data. We also present a range of numerical implementations for the case of global
boundary data as well as local boundary data, where we show the effectiveness of our variational
approach. Finally, Chapter 6, we discuss an alternative method to partially solve the inverse

problem of recovering u, and €, by using a so-called factorization method.
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2 Mathematical Preliminaries

In this section we present mathematical theorems, definitions and tools which we need for our
analysis of Maxwell’s equations. What we do not explain are the definitions of the standard
Sobolev spaces H°(f2), s € R, the corresponding trace spaces H"(9), r € R and the basic
properties of elliptic partial differential equations. For definitions and explanations of these.
we recommend any introductory book to partial differential equations, for example [Wlo87] or
[GT01]. Throughout this chapter we assume that ) is a bounded domain in R?® with a C1!-
boundary 9%, if not stated otherwise. We closely follow the books of Monk [Mon03][Chapter 3]
and Cessenat [Ces96][Chapter 2] in many parts of this chapter. We will not consider functional -
analysis and sepctral theory of unbounded operators, since this is not neccessary for this work.

Thus in the following symmetric will be equivalent to self-adjoint.

2.1 Fourier and Laplace transformations

When working with time-dependent partial differential equations two very important tools are
the Fourier and the Laplace transformation. Before we give a definition of these transformations

we first define the proper spaces in which the Fourier transformation acts.

17
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Definition 2.1 (Schwartz space).

We define the Schwartz space
SR = {f: f € C®(R"), sup |2°0*f(z)| < oo for all Multiindices o, B}. (2.1.1)
zeR™

Definition 2.2 (Tempered Distributions).

We call a functional T : S(R™) — R a tempered distribution if there is an N € Nand a C > 0
with

IT@I<C Y sup|P0%(z)], VyeSERT). (2.1.2)

18l Jal<N =R

The space of tempered Distributions is denoted by S'(R™)

For every function in the Schwartz space we can make the following definition.
Definition 2.3 (The Fourier Transform).
For every f € S(R™) we define
. 1 in
(FNQ) =10 = ez || S0 =dn, W e R, (213)
(2m)™/2 Jgn

the Fourier transform of f.

F is continuous linear and invertible. The inverse Fourier transform is given by

F06) = Gy [ Qe weere (21.4)

The Fourier transform F: S(R") — S(R™) can be extended to a linear and continuous operator
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from S'(R™) to S’(R™) by the definition
(FT)(p) = T(Fp), TeS(R™,pe SR,

Definition 2.4 (The Laplace Transform).

Ifu € L*(R,) then we define its Laplace transform to be
i(s) = / e~ *tu(t)dt. (2.1.5)
0

If the upper limit of the Integral in (2.1.5) is a finite number, we speak of a finite Laplace

transform.

2.2 Functional Analysis and Spectral Theory

Besides to specific results for Maxwell’s equations, we first need a few more general tools from

functional analysis.
Theorem 2.5 (Riesz-Schauder spectral theorem).

Let H be a Hilbert space and A: Hw— H a h’near, self-adjoint, compact operator. Then

(i) The spectrum o(A) C {\: |\ < ||A||} consists only of a finite number of eigenvalues or of

a sequence of eigenvalues A, with A, — 0 as n — oo.
(i) Each eigenspace is finite dimensional.

(iii) o(A) C R. The eigenspaces E()\,, A) corresponding to two distinct eigenvalues are mutually

orthogonal.
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(iv) For each z € H we have

Az = Z)\n(x, 23)2n,  2Zn € E(An, A).

A further concept that will be useful is the one of positivity.

Definition 2.6 (Positive operators in Hilbert spaces).

Let H be a Hilbert space and T a linear operator. We call T positive if

(Tz,z)y 20, VzeH.

Remark: Positive, self-adjoint operators have only positive eigenvalues.
The properties shown so far, were restricted to operators defined on Hilbert spaces. However
often we have operators defined on Banach spaces, which have similar properties to those defined

on Hilbert spaces.

Definition 2.7 (Dual Pairing).
Let X and Y be real Banach spaces. We call (-,-) : X x Y +— R a dual pairing between X and
Y if it is bilinear and

Vo e X\{0}, yeY (z,y) #0,
Vye Y\{0}, 3z e X (z,y) #0.
Often the dual pairing of two Banach spaces can be identified with the scalar product in a Hilbert

space. In this case extensions of operators in a Banach space to the Hilbert space prove to be

useful.
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Theorem 2.8.

Let X1, X, be Banach spaces, and H,, Hy be Hilbert spaces with continuous and dense embeddings
X:CH;,i=1,2. LetT: X; — X3 and T : X5 — X be two bounded linear operators such that
T and T' are adjoint to each other with respect to the inner products of Hy and Hy. Then T can

be extended to a bounded operator from Hy to Hy. Furthermore the following results hold.

(a) If X belongs to the point spectrum of T over X, then X belongs to the point spectrum of T

over H,.

(b) If T has a standard discrete spectrum over X, i.e. all points of the spectrum belong to the -
point spectrum with the possible exception of A = 0, bhe eigenfunctions of T in X, span -

in the sense of the norm of H, - the range of T'.

(c) If T is compact over X;, then T is compact over H.

Proof.

See [Lax54]. O

Corollary 2.9.
Let the conditions of the Theorem 2.8 hold. If H = H, = H,, X;, X, are reflexive Banach spaces
and T is compact over X, and self-adjoint with respect to the inner product of H, then T allows

a spectral decomposition

00

Tz = Z )‘n(x, ¢n>H¢m

n=1
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where the A, are the eigenvalues of T and ¢, the eigenfunctions.

Proof.

Follows from (b) and (c) in Theorem 2.8. O

Another crucial result for weak solutions of partial differential equations is the Sobolev embedding

theorem.

Theorem 2.10.

Let Q be bounded with a C¥*-boundary and s <r < k+ &, s,r € R.. Then the embedding
H*(Q)Cc H(R)

is compact. Now let M be a compact C**-manifold and s < r < k+ K, s,r € R,. Then the

embedding

H* (M) C H™(M)

s compact.

Proof.

See for example [W1087][Chapter 7]. a

2.3 Differential operators on the boundary

In our discussion of the inverse Maxwell problem, we have to work with differential operators

related to tangential vector fields on the boundary. For this we define the space of surface
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tangential vector fields in L2(89Q) b
L2(0Q) = {u € L*(00)*| n-u =0, a.e. on 00}, (2.3.1)

where here and thereafter we denote the unit outer normal by n. L2(89) equipped with the
standard L? norm is a Hilbert space. Next we define the so-called surface gradient, the surface

divergence and the surface scalar curl.

Definition 2.11.

Let p € H(99)3 and let the parametric representation of x € 99 locally be given by
T = (z1(u1,u2), T3 (ur, u2), z3(u1, up))".
Then the surface gradient is independet of the chosen parametric reprsentation and Vaqp €

L2(8Q) s given by

Op Oz
ij 9P
Vaﬂ rp= Z g 6ul auJ

where g¥ is the inverse of the matriz

An important property of Vaq p is that for differentiable functions in §

Op
(Vp)lsn = Veap + n

as well as

(n x Vp) x n = Vg p.

Having defined the surface gradient we can define the surface divergence Vpq- : LZ2(00) —
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H~1(89Q) by the duality relation

Vag"t)pd5=—/ v-VaqpdS, Vpe H(0R).

on a0

Finally the surface scalar curl Vagx : L2(0§2) — H~1(8R) is defined by using Stoke’s theorem

Vangpd.5'=—/ v-n x VaapdS, Vpe H(09).

0 0

By using the above definitions we see that for v € L2(8)) we have the relations

Vo X v=—Vsq- (n X ’U), Vaq v = Vsq X (n X 'U). (2.3.2)

2.4 The spaces H(div;?) and H(curl; )

In our analysis of Maxwell’s equations we consider functions with a square-integrable divergence.

Definition 2.12.

The space of functions with square-integrable divergence is defined as
H(div;Q) := {u € L*(Q)}| V-u € L*}(Q)}.
The associated graph norm is given by

1/
lullravay = (lluls@p + IV - ulixm) -

H(div; ) has the following properties.
Theorem 2.13.

H(div; Q) = closure of C®°(Q)® in the H(div; ) norm.
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Further the normal trace mapping ¥,(v) = v|aq - 1 on C®(Q)? can be continuously extended to
a mapping from H(div;Q) onto H~Y/2(09) and the following integration by parts formula holds

for all v € H(div; Q) and ¢ € H'(Q)

/Qv»V¢dm=—/S)V-v¢dx+/m'yn(v)¢d5.

Setting
Hy(div; Q) := closure of C3°(Q2)? in the H(div; ) norm,
gives
Hy(div; Q) = {v € H(div; Q)| 7a(v) = 0}.
Proof.

See [Mon03][Theorem 3.22, Theorem 3.24 and Theorem 3.25]. O

Apart from H(div; ) we also need the following space.
Definition 2.14.
We define the space of functions with curl in L3(Q) by
H(curl; Q) := {u| u € L*(Q)*, V xu € L*(Q)%},
with the associated graph norm

’ 1/2
lull ey = (lull 2y + IV X wllz2@s) Y
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Further we define the space

Hy(curl; Q) = {v € H(curl; Q)| n x v|sq = 0}.

Beside the space H(curl; 2) we also need spaces with more regularity.

Definition 2.15.

Let s € R. The spaces H*(curl;2) are defined as

He(curl; Q) := {u| u € H*(Q)®, V xue€ H*(Q)*}.

Before we present an integration by parts formula for functions in H(curl; 2) we must define the

appropriate trace spaces.

Definition 2.16.

Let s € R. We define the spaces
H*(div;00) = {u € H*(0Q)%, n-u=0, Vaq-u € H*(6Q)}, (2.4.1)

H*(curl; 09) = {u € H*(00)®, n-u=0, Vog X u € H(8Q)}. (2.4.2)

The spaces H~1/2(div; 89) and H~Y/?(curl; 82) are linked by duality.

Theorem 2.17.
The space HY/?(div; 0Q) is identified with the dual of H=Y/?(curl; 6Q), when we use L?(09) as
pivot space. The mapping v — nXv is an isomorphism from H~/2(div; Q) onto H~'/?(curl; 69),

with the inverse w — —mn X w.
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Proof.

See [Ces96][Section 2.4, Corollary 2 and Proposition 3]. O

Now we can define traces for functions in H(curl; Q).

Theorem 2.18.
We define the trace operators -y, : H(curl; ) — H~Y/2(div; Q) and yr : H(curl; Q)
H~12(curl; 69) by

7(v) = n X v|sq, yr(v) = (n X v|ga) X n.

These trace operators are continuous and onto. They are also continuous as operators from

H(curl; ) onto HY?(div; 8Q) and H/?(curl; 8Q) respectively.

Proof.

See [Ces96][Page 35 Theorem 4 and Page 37 Remark 5]. O

With the help of these trace spaces we get an integration by parts theorem for H(curl; Q).

Theorem 2.19.

Let u and v be elements of H(curl;2). Then the following integration by parts formula holds:

/ V xv(z) - u(z) dz = / v(z) -V x u(z) dz +/ Ye(v) - yr(u) dS. (2.4.3)
Q Q o9

Proof.

See for example [Mon03][Theorem 3.31]. | O
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2.5 Maxwell's equations

In this section we review the direct problem for Maxwell’s equations. Maxwell’s equations in

their time-dependent form are given by

oB
oD
V.-B=0. (2.5.4)

The vectors £ and H are called the electric and magnetic field. D and B are the electric dis-
placement and the magnetic induction (or magnetic flux density). J denotes the vector current
density function and p stands for the charge density. Equation (2.5.1) is known as Gauss’ law,
equation (2.5.2) is Faraday’s law, equation (2.5.3) is the modified Ampere’s law and equation
(2.5.4) expresses the fact the magnetic induction B is solenoidal.

These equations can be reduced to a system for £ and H only using so-called constitutive equa-
tions. These laws depend on the properties of the interior of the domain Q2. We consider a setting
where outside 2 we have a free space model and in the interior of {2 we have inhomogeneous but

isotropic materials. In a vacuum or free space the relations
D(z,t) = & (z,t), (2.5.5)

B(z,t) = poH(z,t) (2.5.6)
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hold, where uo and € are positive constants. u is called the magnetic permeability and e the

electric permittivity or dielectric constant. In inhomogeneous isotropic media the relations

D(z,t) = e(x)&(z, t), (2.5.7)
B(z,t) = p(z)H(z, t) (2.5.8)
J(z,t) = o(z)E(z, t) + Tu(z,t) (2.5.9)

hold, where the permeability u and the permittivity ¢ are strictly positive, bounded and scalar
functions and the conductivity o is bounded as well, however with lower bound 0. 7, is a given

applied current density. If not stated otherwise we make the following assumptions.
® ¢laq = €0, lan = o, olan =0, €0, o € Ry
®* 0<em<e(z)<em, 0<0(z) <om, 0 < pm < u(z) < v

o ¢ u, 0€C3N).

This leads to the following system

V- (e€) = p, (2.5.10)

vxeq 2B _ g (2.5.11)
ot

V x H— 6(55) =o€+ Ja, (2.5.12)

V- (uH) = 0. (2.5.13)
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Using a Fourier transform in time,

'fl:((d) = (—2%% [: e"i“’tu(t)dt

or analyzing electromagnetic waves at a single frequency w, we can reduce the time-dependent

problem to a time-harmonic problem

V. (eE) = %v (cE + J,), (2.5.14)

Vx E—iwuH =0, (2.5.15)

V x H +iwek — oE = J,, (2.5.16)
V. (uH) =0, (2.5.17)

where A stands for the Fourier transform of the time-dependent vector field A. In (2.5.14) we
have used the relation iwp = V - J which can be seen by taking the divergence of equation

(2.5.16). Following an approach by Colton and Kress [CK98], we define

A A~

E=¢&*E, H=ul?H

as well as the relative permittivity

and the relative permeability

Thus we get the following system
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V x E — ikp,H = 0, (2.5.18)
V x H + ike, E = ;EF, (2.5.19)

where the wavenumber k = w/€ofip and F' = ik,u(l,/ 2J.. Note that we get the divergence condi-
tions back, if we take the divergence of equations (2.5.18) and (2.5.19). Often one reduces the
above first-order system to a single second-order equation for either E or H. By solving (2.5.18)

for H and substituting this into (2.5.19) we get the equation
V x (u'V x E)—k*.E=F, in Q. (2.5.20)

To get a unique solution for the above equation in H (curl; 2) we have to apply either an electric

boundary condition

n x Elag = g € H™Y*(div; Q)

or a magnetic boundary condition

n x Hlon = %(v x E)|oa = h € H-2(div; 8Q).
As we will see later, one can easily find conditions for ¢, 4 and w under which the above boundary
value problems have a unique solution. The equation (2.5.20) has a major disadvantage for our
development of a variational algorithm to solve the inverse Maxwell problem: since k? is strictly

positive, we can easily see that equation (2.5.20) is not coercive. However the algorithms in

Chapter 4 and Chapter 5 depend on the coercivity of the underlying equation. This problem can
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be removed by imposing the initial conditions
Elt=0 =0, Ht=0 = (2.5.21)

on the time-dependent fields £ and H in (2.5.10) - (2.5.13). Given these homogeneous initial

conditions we can apply a Laplace transformation

() = /0 ~ ey (t)dt

with a real Laplace parameter A € Ry to (2.5.10) - (2.5.13). This yields

V. (E) = —%V (cE+ J,), (2.5.22)

V x E+ M\uH =0, (2.5.23)

V x H—XE - oE = J,, (2.5.24)
V. (uH) =0, (2.5.25)

where A stands now for the Laplace transform of the time-dependent vector field A. We set

E= e(l,/zE, H= “(1)/2[-:1

as well as
_ (.0 _E
67‘ 60 (€+ }\)1 /‘I‘T‘_IJ/O'
Now we get the system
Vx E+ku.H =0, (2.5.26)

V x H - ke,E = —%F, (2.5.27)
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where the wavenumber is defined as k = A\/€ppio and the right hand side is F' = —kué/ 2J.. If we

reduce this system to a second order equation for E we get the desired coercive equation
VX (u'Vx E)+keE=F, in Q. (2.5.28)

Apart from the desired properties for a variational algorithm to solve the corresponding inverse
problem, equation (2.5.28) also has the advantage that the forward problem has a unique solution
for every frequency A € R;. Furthermore we want to point out that in (2.5.26), (2.5.27) all
the quantities are real and thus given real boundary conditions, the solutions (E, H) of (2.5.26),
(2.5.27) are real as well. This will be very important in the derivation of our variational approach
to solve the inverse problem for (2.5.26), (2.5.27). Before we go into further details on this, we |
discuss the well-posedness of the forward problems for equations (2.5.28) and (2.5.20). For
equation (2.5.28) this can be done by using the famous Lax-Milgram Theorem. First we have to

give a rigorous definition of coercivity.

Definition 2.20.
Let H be a Hilbert space. A bilinear form a : H X H — R is called bounded if there ezists a
constant c¢; such that

la(u,v)| < allullllvll, Yu,ve H.
It is called coercive if there exists a number c; > 0 such that

a(u,u) 2 elull®, Vue€ H.

Using this definition we can state the Lax-Milgfam Theorem.
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Theorem 2.21 (Lax-Milgram).

Let a be a bounded, coercive bilinear form on a Hilbert space H. Then for every linear functional

F € H', there exists a unique element u such that
a(u,v) = F(v), YveH,
where H' is the dual space of H.

Proof.

See for example [GT01][Theorem 5.8]. O

Now we show that Maxwell’'s equations with electric or magnetic boundary conditions have

unique solutions in H(curl; Q). For simplicity we do this for a vanishing right-hand side F = 0.

Theorem 2.22.

Let F = 0. Equation (2.5.28) together with the electric boundary condition
n x E|gg = g € H/?(div; 09Q)
or a magnetic boundary condition
n x (V x E)|sq = h € H™?(div; Q) (2.5.29)
has a unique weak solution E € H(curl; ).

Proof.

We show that the corresponding bilinear form a(E,v) for the equation (2.5.28) in H(curl; Q) is
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given by

a(E,v) := /{;M;I(V x E,V xv)dz + szner(E,v)dx, E,v € H(curl; Q)

and that this form is coercive and bounded. In the case of a magnetic boundary condition
(2.5.29) this can be seen as follows. Multiplying equation (2.5.28) and performing an integration

by parts we get
0= /(V X (u 'V x E),v) dx + kz/e,(E,v)dx
Q Q
=/p,?1(V x E,V x v)dx + sz & (E,v)dzx
Q Q

+/ ((V x E),yr(v))dS, Vv e H(curl;Q).
a9
Therefore we have to solve
a(E,v) = ——/ (h,vr(v))dS, Vv € H{curl;Q).
o9

Since u! and €, have absolute upper and lower bounds (see the assumptions at the beginning
of this section) and k? is a positive number, a(u,v) is coercive and bounded. Thus the magnetic
boundary value problem has a unique solution due to the Lax-Milgram Theorem.

Fo; the electric boundary value problem this can be seen as follows. We take a function T such

that n x T|pq = g and then set S := E — T. The function S then satisfies

V x (u'V x 8) + k*.S=F, inQ,

nxS=0, ondf,
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where F := V x (u;'V x T) + k%¢,T. We can then solve
a(S,v) = /(F, v)dz, Vv € Hy(curl; ),
Q

which has a unique solution by the Lax-Milgram Theorem. O

Remark: Due to the symmetry of Maxwell’s equations, we see that if £ and H are solutions of

(2.5.26), (2.5.27) in H(curl;Q2), that these functions lie even in the space
H(curl®;Q) := {u € H(cur; Q)| V x u € H(curl; 2)}. (2.5.30)

In contrast to (2.5.28) the boundary value problem associated with equation (2.5.20) is not coer-
cive. Thus one needs to distinguish between the cases when w is a so-called magnetic resonance

and when not.

Definition 2.23 (Magnetic resonance).

Let E € Hy(curl; Q) and let (e,) = 0. Every & for which
(U7IV x E,\V X @) 12 — 6%, E,¢)12 =0, V¢ € Hy(curl; Q) (2.5.31)

does not have a unique solution is called a magnetic resonance or a cavity eigenvalue.

This definition characterizes exactly those values for which the boundary value problems associ-

ated with (2.5.20) do not have a unique solution.

Theorem 2.24.

The solutions of equation (2.5.82) have the following properties:
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(i) Corresponding to the eigenvalue k = 0 there is an infinite family of eigenfunctions.

(ii) There is an infinite discrete set of magnetic resonances k; > 0, j = 1,2,... and corre-
sponding eigenfunctions E; such that 0 < Ky < K < -++, as well as lim;_,, k; = 00 and

E; is orthogonal to E; with respect to the L? inner product if j # I.

Proof.

See [Mon03][Theorem 4.18]. 0

Now we can state the conditions for unique solvability of equation (2.5.32), if & is not a resonance. .

Theorem 2.25.

Suppose S(e,) = 0. Then if K is not a magnetic resonance, then
(u'V x E,V X @) 12 — K2, E, )12 = (F, )12, Ve € Hy(curl; Q) (2.5.32)

has a unique solution for every right-hand side F € L?(2)3.

Proof.

See [Mon03][Corollary 4.19]. O

So far we have only considered solutions of Maxwell’s equations in the space H (curl; Q). However
sometimes we need solutions with more regularity. In particular, we want to consider solutions

whose boundary values are in H'/2(div; 82). For this purpose we need the following definition.



38 2 Mathematical Preliminaries

Definition 2.26.

We define the space of H' functions with regular divergence of the tangential component as

HY, () = {u € H'(Q)| Von- (n x ulen) € HY/2(50)}.

The following result can be found in [Cos91] and is used in the analysis of inverse problems in

[PLE92] and [PE96].

Theorem 2.27.
Let n X E|gq € HY?(div;00) and let 02 be a CH1-boundary. Then the solutions of equations

(2.5.20) and (2.5.28) are elements of Hy,,_ ().

This yields the following corollary.

Corollary 2.28.

Let 8 be a CY'-boundary. Then the impedance map Z,, e, HY2(div; 8Q) — HY2(div; )
le'r,ﬁr (n X E'ag) =7 X Hlag

for the system (2.5.26), (2.5.27) is an isomorphism.

Proof.
The linearity of the map is obvious. The injectivity follows from the unique solvability of
Maxwell’s equaitons with electric boundary conditions in H'/2(div; 82) and the surjectivity from

the unique solvability for every magnetic boundary condition in H/2(div; 852). O
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The regularity in Theorem 2.27 is not confined to solutions of Maxwell’s equations, as can be

seen from the following more general result.

Theorem 2.29.

Let 092 be a CH-boundary and let u € L?(Q)?® satisfy
VxueL?Q)?® V-uelL?), nxuls e H'*00).

Then we have u € H'()3. The same result holds if we replace the condition n xulsq € HM?(6Q)

with n - nleg € HY2(69Q).

Proof.

See [Cos90] or [GRA6]. O

Besides regularity results for boundary value problems, we also need a regularity result on trans-

mission problems.

Theorem 2.30.
Suppose 0y and )y are two non-overlapping Lipschitz domains meeting at a common surface
T (with non-zero measure) such that Q; N Qy = . Suppose that uv; € H(curl; Q) and uy €

H(curl; ;) and define u € L2(2; N 2N ) by

uy, on,
u= (2.5.33)

U9, on Qz.

Then if n X uy|y =1 X up|y, we have u € H(curl; Q; NQ N E).
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Proof.

See [Mon03][Lemma 5.3]. O

Corollary 2.31.

Let the assumptions of Theorem 2.80 hold. Suppose further that for p.,e, € C3(S3 UQUT), uy
and uy satisfy the equation
V x (u'V x w) + kKleus =0, dn 4, i=1,2.
Then if n x (V x u1)|g = n x (V X up)|g, we have u € H(curl; 2; UQ UX) for
uy, on §Qy,

u= (2.5.34)

ug, on $s.

Proof.
We apply Theorem 2.30 to v; := V x u; which are elements of H(curl; ;) (see (2.5.30)) and set

vy, on £y,

vy, on §s.

Thus we get v € H(curl; Q; UQy UX). Since
VXV xu=p(Vut X V X u; + KPepu;), i=1,2

and V x v =V x V x u we see that u € H(curl;3; U, UL). 0

Besides these regularity results we also need a unique continuation result for Maxwell’s equations.
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Theorem 2.32.

Suppose §Y is an open, connected subdomain of Q. Suppose that u is a solution of
V x (u'V x u) + k*e;,u =0, in Q,

with €, and u, differentiable functions. If u vanishes on a ball of non-zero radius in Qy, then u

vanishes identically in Q.

Proof.

The proof is analogous to the proof of [Mon03][Theorem 4.13]. O

We also need the uniqueness of the Cauchy problem for Maxwell’s equations.

Theorem 2.33.

Let Q be a bounded domain in R® with C*'-boundary and let u be a solution of
V x (u7'V x u) + k*eu =0, in Q,
nxu=v(Vxu)=0, onT,

whefe I' C 99 is an open subset of Q. Then u = 0 in 2.

Proof.
This follows from a generalization of Holmgren’s theorem and is an application of Theorem

2.32. | 0
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2.6 Green's functions

Finally we devote a small section to the definition and properties of Green’s functions associated
with second-order differential operators. For proofs of the results stated below and a further
insight into Green’s function we refer the interested reader to any comprehensive reference on
partial differential equations (for example [W1o87]). As before we assume that @ C R" is open,
connected and has a C'!-boundary. Given a symmetric second order scalar differential operator

Lu(z) = =V - (A(z)Vu(z)) + c(z)u(z),

where c¢(x) is a scalar function, A(z) is a symmetric matrix for every z € §2, we want to define

the Green'’s function for the boundary value problem
Lu(z) = f(z), =€ (2.6.1)
Bu(z) =0, =z € 0. (2.6.2)

Here B describes a well-posed boundary condition. The corresponding Green’s function is then

defined as

=V, (AW)V,G(z,y)) + c¥)G(z,y) =6:(y), z,¥y€Q, (2.6.3)

B,G(z,y) =0, yeod, ze. (2.6.4)
The function G then has the following properties.

* G(z,y) = Gy, 2).
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e For f € L%(Q), the function

- [ c@wswa
Q

is a solution of the problem (2.6.1), (2.6.2).

In the case of a second order differential system we replace the operator L with

(Pu(z)); = — ZV (Cij(x)Vuji(z)) +ZQ,J z)uj(z), i=1,...,n,

j=1

where C(z) is now a symmetric fourth-order tensor and Q(z) is a symmetric matrix for every
z € §2. Again we want to define the Green’s function (or in this case the Green’s matrix) for the

boundary value problem
Pu(z) = f(z), z€Q, (2.6.5)
Bu(z) =0, =z €09, (2.6.6)

where again B describes a well-posed boundary condition. The corresponding Green’s matrix is

then defined as

—Zv ,Jyw,,(o*xy)+ZQ,,y>G<wa—a(y) z,y €Q, (2.6.7)

B,G(z,y) =0, yeodf, ze€. (2.6.8)

where G7 is the j-th column of G(z,y). The function G then has the following properties.

e G(z,y) = G(y,z)".
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e For f € L?(Q), the function
uw) = [ Gle. Wiy

is a solution of the problem (2.6.5), (2.6.6).

Finally we want to consider the special case of Maxwell’'s equations and the boundary value

problem
V x (u}(x)V x E(z)) + K¢, (z2)E(z) = F, z€Q, (2.6.9)
n(z) x E(z) =0, €. (2.6.10)
The corresponding Green’s matrix is then defined as the solution of
V Xy (47 W)V xy G(z,y)) + K6 (y)G(z,y) = da(¥)], 2,y €Q, (26.11)
n(y) x G(z,y) =0, ye€d, z€q. (2.6.12)

This ends our overview of the mathematical preliminaries we need for our analysis of the inverse
problem for Maxwell’s equations. In the next chapter we present several uniqueness results for

different kinds of given data.
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In this chapter we present uniqueness results for the inverse problems associated with equations
(2.5.20) and (2.5.28). However before we do this we give an outline of these inverse problems.

Throughout this chapter we make the following assumptions.
e (1 is a bounded domain in R3 with a C*!-boundary 69.
* ¢€laq = €0, plan = o, lan =0, €0, po € Ry
e 0<e,<e(xr)<enm,0<0(z)<om0<pm< ux) < puy.
o ¢ u,0€CN).

We make the last assumption out of convenience. For most results ¢, 4,0 € C3(Q) or even less

smoothness would be sufficient.

3.1 The inverse problem

In this section we discuss the inverse problems for Maxwell’s equations outlined in Chapter 1 in
more detail. Except for the case of given interior data, we will investigate inverse problems for

the equations (2.5.20) and (2.5.28), for the case of a vanishing right-hand side F = 0. Thus we

45
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consider either the system

V x E — ikp,H =0, (3.1.1)

V x H + ike,E = 0, (3.1.2)
withe,=é(e+%),pr=-“";or

V x E + kuH = 0, (3.1.3)

V x H — ke,E = 0, (3.1.4)

with &, = X (e +$), pr = £ The reason for this setting is, that in practical applications J,
and thus F' is often vanishing or can be controlled. From a mathematical point of view this is

convenient, since for a homogeneous right hand side the given data
Zyrer( X Elag) = n X Hlag

for the inverse problem, can be characterized by a linear map. Sometimes it is more convenient

to work with a single second order equation, so we often use the equations
V x (u'Vx E)—k*E=0, inQ (3.1.5)
or .

V x (u7'V x E) + k*¢,E =0, in Q, (3.1.6)

instead of the first order Maxwell systems. The standard inverse problems in the literature (see
[Mon03]{Chapter 14|, [PLE92], [PE96]) are associated with the equation (3.1.5). One of these

problems is the inverse scattering problem which we have shortly discussed in Section 1.3.1. If
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the given data consists of near field data, then one applies either an electric field or a magnetic
field on the boundary of the medium and measures the other. Thus the given data can be

characterized either by the so-called impedance map

Zyre(n X Hlpa) =1 X Elsq (3.1.7)
or the so-called admittance map

Ay, e.(n X Elon) = n X H|sq. (3.1.8)

Note that in the analogous case of elliptic equations, where the given data consists either of the
Dirichlet Neumann map or the Neumann Dirichlet map, these maps in general have different
smoothness properties. In the case of Maxwell’s equations there is no difference in smoothness

between Z, .. and A, .

Lemma 3.1.
Let k not be a magnetic resonance. Then the impedance map associated with equation (2.5.20)

Zprer » HY2(div; 6Q) — HY?(div; 09)

Zyer(n X Hlag) = n X Elan
is an isomorphism. Its inverse is the admittance map

A,;,,er(n x Elaq) = n x H|aq.

Proof.

See for example [PLE92]. | O
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Now we formulate the first inverse problem that we consider in this work.

Problem 3.2.

Suppose k is not a magnetic resonance. Given the impedance map Z,,, .. associated with equation

(2.5.20), recover the parameters €, and p, in

V x (u;'V x E) — k*¢,E = 0.

This problem has a unique solution.

Theorem 3.3.
Suppose k is not a magnetic resonance. Then the impedance map Z,, ., or A,, ., uniquely deter-

mines fr and €,.

Proof.

See for example [PLE92] or [PE96]. O

Although this result is encouraging, it is not a sufficient basis for a solution to the inverse problem
we consider in this work. First of all it requires global knowledge of the boundary data, which
in general is not available. Another problem is the one we have mentioned in Chapter 2, that
equation (3.1.5) does not induce a coercive bilinear form in H (curl; ) and therefore is not really
suited for a variational approach to the inverse problem. Thus in the next section we consider

the following problem.
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Problem 3.4.

Given the impedance map Z,, ., associated with equation (2.5.28), recover the parameters €, and
Ur I

V x (u7'V x E) + k*,E = 0.

Although the idea of the uniqueness proof for Problem 3.4 is the same as for Problem 3.2, there

are a few differences and therefore we present it here for the sake of completeness.

3.2 Global boundary data

We consider the Maxwell system

VxE+MH=M (3.2.1)

V x H — Xe,E = J, (3.2.2)

where A € Ry, and here ¢; = €+ %. Further we demand M, J € C*(Q) and that €qlga\ = €0 and
ga\g = Ho. We have made a slight change in notation for this subsection. This is mainly due to
the fact, that we want to consider a non-normalized first order system, instead of the normalized
second order system of the previous subsection. We do this to comply with the notation in

[PE96]. We show the following result.
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Theorem 3.5.

The impedance map

Zﬂ,eq(n X Hlag) =n X Elag

associated with the system (8.2.1), (8.2.2) uniquely determines the coefficients €4 and p.

Proof.

For the proof we define the scalar fields

1 1 '
v=1v.(uH-1im (3.2.4)
=V WM -
and work with the modified Maxwell equations
1_1 |
VXxFE—-—V=V+AuH=M, (3.2.5)
€ H
1.1
VXxH+-V—®—-)XE =J (3.2.6)
K €

Later we will see that for large k that we the solutions of the modified Maxwell’s equations are
solutions of the original Maxwell’s equations. This will be an essential feature of this proof. In

what fqllows we need the rescaled fields

e=¢/’E, h = u'?H, (3.2.7)
1 1
¢ = ——175'@, ) ’l/) = W\II, (3.2.8)
€qH €' 1
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and we set X = (@, e, h,¥). We further define the 8 x 8 operator

/0 V. 0 0\

P(V) =
0 -Vx 0 V
\0 0 V- 0
and the matrix
( 0 Vine,- 0 0 \
1| Vinpu 0 —Vlnpux 0
V=(k'—ﬁ‘,)18+§ ,
0 Vinegx 0 Vine,
\ 0 0 Vln p- 0 )

where k = A(eopo)'/? and k = A(e,u)/2. With this notation we get the following lemma.

Lemma 3.6. Let X be a solution of the modified Mazwell’s equations. Then
(PV)—k+V)X =F, (3.2.9)

where

1 2 1/2 1
F= (—WV-J,;N J,—ex* M, WV-M :

Although the proof is standard we give it here for the convenience of the reader.

Proof.

We show the above relation for the first two components. The other components follow then
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from the symmetry of the Maxwell system. For the first component we get

1
V-e—n¢+§Vlneq-e

=V (e?E) = Ae;?® + %’(e;/?E)
— V(2. E 4 2y . E — 712y E lJ Vqu
=V(e/* E+¢€/*V-E—¢; - (gq +3 )—|—261/2 :

q

The result now follows from the fact that
V- (6E) =V - (e2/2E) = Vel - (e/*E) + ¢,V - E + €}/*Vel/? - E.

The formula for the second component is easily seen from the following simple calculation.
Equation (3.2.6) is given by

1_1
VXxH+-=V=0—-)E=J
TR
Substituting the rescaled fields gives
V x (u"Y2h) + %vgl-(;ﬁ%) - )% =,
q
which is the same as

Vxh—%Vln,uxh+V¢+-;—V1n/,L¢—ne=p,l/2J. (3.2.10)

A crucial point of this proof, is the following lemma.
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Lemma 3.7.

The seemingly first-order operator
VP(V) - P(V)VT

s in our case a zeroth-order operator.

Proof.
We show this for the first two components. The other components follow again from symmetry.

First we note that

Vé+V xh
P(V)X =
-V xe+Vy
\ V)
and that
( 0 Vin p- 0 0 \
Vine, 0 ~Vinegx 0

VT=(]€—K:)18+%
0 Vinpx 0 Viny

\ 0 0 Vheg 0 )
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and thus

(k=kK)p+3iVinpu-e \
VT (k—k)e+3(VIined — Vine, x h)

(k—k)h+3(Vinp x e+ Vinpuyp)

\ (k—kK)Y+3iVine - h )
Therefore we get for the first component of (VP(V) — P(V)VT)X

(k—n)V-e+%V1neq-V¢+-21-Vlneq-v xh—-V-(k-k)e-— %V-(Vlnqub—Vlnqu x h)

=Vn-e——;-V-Vlneq¢.

For the second component we get

(k= ®)(Vo+V x h)+%V1n,uV-e— %vmu x (=V % e+ V)
—V((k—-n)qﬁ—i—-;-Vln,u-e) -V x ((k—-n)h+%(VInu x e+ Vinuy))
=Vn¢+anh+%Vlan«e—--;—Vlnux (—V x e+ V)
—-;—V(Vlnu»e)—%v X (Vinp x e+ Vinuyp).

Notice that

V(Vlnp-e)=—=(Vlnp-V)e—(e-V)Vinp —Vinp x (V xe)

and

Vx(Vinpxe)=(e-V)VIinpg— (Ving-V)e+VinuV-e+eV-Viny



3.2 Global boundary data 55

as well as

Vx(Vinpyp)=Vinpux Vy

and the result easily follows. O

We conclude

—(P(V)—k+V)P(V)+k—-VT)=-A+K +Q, (3.2.11)

where

Q=-VP(V)+ P(V)VT —k(V+VT)+VVT, (3.2.12)
Since we have already shown that @) is a zeroth-order operator, we can now define a so-called

generalized Sommerfield potential Y (see [PE96]) by
X=-(PV)+k-VT)Y. (3.2.13)
It follows from (3.2.11) that Y satisfies
(-A+K+Q)Y =F. (3.2.14)

In what follows we set M = J = 0 indicating ' = 0. We construct exponentially growing
solutions of (3.2.14) that will help us to show uniqueness for the inverse problem.

Let ¢ € C? with - ¢ = —k?. We set
Ge(z) = e¥?g¢(z), (3.2.15)

where
e

%@ = J ErreE ¢
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The fundamental solution G, of the modified Helmholtz equation was introduced by L.D. Fadeev

in 1960 [Fad66] and has some very useful properties. In what follows we need the weighted L2
space

B={f e P®): Il = [ 1+ 1f@)Pde < oo}, (3.2.16)
The following result can be found in [Nac88].

Lemma 3.8.

Let -1 <é < —%. Then it holds for every f € L? that

C
llge * Flls < mllflla,

where C' is independent of .

We want to construct a solution Y; of (3.2.14) with F' = 0 of the form
Yo = Yo — G¢ * (QY), (3.2.17)

where Y; ¢ is a solution of

(-A + k)Y, =0.

It follows from Lemma 3.8 that

Cll@
1ells < Yol + S0layy (32.18)

[q

Thus (3.2.17) has a unique solution by the Neumann series if || is large enough. To be more
specific on the form of Y;; we set

Yoc(z) = e %yoy,
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where yo,¢ is bounded with respect to ¢, i.e.

lvocll < CICI

and constant in z. The choice of Yy ¢ must be done in such a way that
X, = ~(P(V) + k= V)Y

gives a solution of the original Maxwell’s equations for large |{].

Lemma 3.9.

Assume that yoc € C® is bounded with respect to ¢, and

((P(i¢) + k)yo,c)r = ((P(5C) + k)yo,c)s = 0.

Then for large || we get

X( = (0, €¢, h(, O)T

Proof.

From equation (3.2.9) we know
' 1 1
V¢(+V X h( - Ke¢ + EVIn#¢C - §V1n,u X h( = 0.

Applying a divergence on both sides we get

1 1 1
A¢e — V- (kee) + EAlnp,(b( +§Vlnp,-V¢g +§Vlnp-v X he.

(3.2.19)



58 3 Uniqueness results

From (3.2.9) follows
1
V- (ker) =KV -e¢+ VK- € = 52¢<—n—2-Vlneq-e¢+Vn'e<
,. 1 1 1
= K°¢p¢ — EV Ine, - (kee) + EVIn €q - (kee) + EVln/.b - (keg)
= k% + %V Inp- (kee). (3.2.20)
Now we use (3.2.10) to conclude
1 1 1 .. 1
§Vlnu -V X he= ——2-Vlnu -V — ZlVlnul ¢ + §V1nu - (keg).
Combining (3.2.19) and (3.2.20) yields
2 1 1 2
A¢e — K°¢¢ + 5 Al pge — 7| Vinpl*gc =0

or

—Ad + KPp¢ + qp¢ = 0, (3.2.21)

where ¢ = (k¥ — k?) — 1Alnp+ ;[VInpf®. A similar equation can be derived for ;. From the

definition of Y, we have
Xe==(P(V)+k-VNY;
= —e<*((P(i€) + K)yac — (P +i€) + K)gc * (Que) — V7).
Now we set

Toc = —(P(i€) + k)yog,  Tag = (P(V +14¢) + k)ge * (Que) — V),
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which yields

Xe==(P(V)+ k= V)Y, = €“%(mo,c — Ts¢)-

Defining wo ¢ = (o)1 and w,¢ = (T5¢)1 We get
b = % (wo,¢ — wa)-
From the definition of w¢ = wo¢ — w, ¢ and (3.2.21) we can easily see that w satisfies
—Aw¢ — 2i¢ - Vwe + que = 0.
(Let the reader be reminded that ¢ - { = —k?). Thus we get the integral equation
w¢ = wo,c — g¢ * (qu)-

Since by our assumption wo¢ = —((P(i{) + k)yo,c)1 = 0 we get w, = 0 for || large enough. In

the same way we can show that 9 = 0 for |{| large enough. O

In light of the above lemma we take two constant vectors a and b and set
1, . . T
Yo, = m(—zg " a, ka'a kb) —"C ’ b) :

Yo,c obviously satisfies the conditions of Lemma 3.9. We further need an auxiliary complex vector

¢* such that

¢C=—k (=g

where £ € R3 is an arbitrary fixed vector.
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Now we define

where

From this definition it follows that

(P(V) + k)Yg, () = 0.

The crucial point in the final stage of this proof is the following calculation. From Lemma 3.8

we derive
[ Yo@) - Q@¥e(a)da
= [ 43+ Qluncdz + Oz, (3.2.22)
as well as

REORGACEE
= [ Yic@) - (A= )Y@
= [ Yo (P(V) = D(P(V) + B)¥;(a))da.
We set X, = —(P(V) + k)Y; = X, — VTY, integrate by parts and get
- [ Yoca) - (P(¥) - W) Xc(a)da

= [(P(9) + ¥ (@) - Xedo ~ [ Yila) - P(m) Xe(o)dS(o)
1Y) an
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- /a Yie(e) - P(m) X((@)dS @) (3.2.23)

since at the boundary we have X, = X,. Combining (3.2.22) and (3.2.23) and taking the limit

[¢] — oo gives

b(e) = lim [ V@) Pm)Xe()dS(@) = = [ 4745 - Qalumda, (3220

[¢l—o0 Jan

where

Yoo = lim Yo, = lim y3,.
T im0 Heo T Vs

The next step to show that the impedance map Z,, ., uniquely identifies u and ¢, is to show that
Z, ., determines the boundary values of X and thus D(¢) and Q. For this we note that for large
I¢] we get

P(n)=(n-e,nx he,—n x e, n-h)T.
To reconstruct the field components from Z, ., we derive a boundary integral equation involving

the operators
Ki(e)(@) = (o) nx | V.Gele—1) x o)iS@), = e on
and
De(@)o) = @) mx | V.Gele =) Vom - ol) = KGcle = 1)e)dSw), =€ 09,

where Vq- denotes the surface divergence. It is straightforward to extend these operators to

continuous operators

K., D¢: H(div;00)"? — H(div; 00)'/?
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(see [PLE92][Chapter 3]).

Theorem 3.10.
Let Z,., : H(div; 0Q)Y/2 — H(div; 00)'/? with Z, . (n x H) = n x E is known. Then n X h¢

satisfies the equation
1 1
-n X hc =n X ho|( + '———D<Z“,5 - K( (n X h,(-) (3225)
2 Ao !

Proof.

As before let us denote X, = —(P(V) + k)Y = X, — VTY,. Integrating by parts we obtain
Vo= [ Gela - 1)@ Yedy

- [ Gele - u)(a - ¥y

~ [ Gt~ )(P() - W)y

== (V) — 1) [ Ge =Xy~ | Gelo—)PMX)aSG).  (32:26)
Since on the boundary we have X, = X, and

X =—(P(V) + kYo — (P(V) + k)Y,

we get by applying P(V) + k to (3.2.26) for all z € R3\§) (note that (—A + k2)G; =0
for z #y)

X; = Xog + (P(V) + K) /a Gela—1)P(mX)dS (). (3.2.27)
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To get the desired integral equation we use the vector double layer potential

Swace)@) = [ G- p)ds)
Since for large [¢| we have X; = (0, ¢, h¢, 0)T equation (3.2.27) gives
V - Spag¢(n X he) + ESpage(n - e¢) =0,
e¢ = eo¢ + VSpage(n - €) — V X Sgayg o (n X ?C) + kn X he,
V- Spaqe(n X e¢) — kSpa\g (1 - h¢) =0,

h( = ho’( + VSR3\5,<(n . h() -V x Sks\ﬁ'c(n X hg) + kn x €. (3.2.28)

Since e, and h satisfy the scaled Maxwell’s equations in R¥\Q we have

1

kv,sg . (n X ec).

n'h<=—%n-V><e¢=

Substituting this into (3.2.28) and using that on 852 (see [CK98))
n X V(Seoae(@)) = 1 X (VSaon(0)) — sn x o,
we get
%n Xhe =nxhgc+ %n X (VSga\a ¢ Vo —k*Sgsyg,c) (X ec) —n X (V X Spay ¢ (m X Be)). (3.2.29)

The claim follows now from the definition of the impedance map Z, ., and the definition of the

operators D and K. O

Thus we get the term m X h, by solving equation (3.2.25). By applying standard arguments

one can check that the integral equation (3.2.25) has a unique solution (see [PLE92]). Having
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derived m X h¢ we get the remaining components of P(n)X, by
1/2
€0
nXxe = (g) Zye, (M X h),
1
n-e = —EVaQ . (n X h(),
n-he = ! Voa - Zye,(n X he)
(G )\#O an \€q <)
To identify ¢, and p we have to make sure that our choices of the vectors £ and ¢ (and hence ¢*)

guarantee the existence of y,, and y2,. For this we set
&= (Ie,0,0)7, ¢ =(i€/2,—(|€*/4 + R)Y2,i(R? + k)27,

where R is a real, positive parameter that controls the size of (. Letting R tend to infinity we

get

.1 o
(l/lCI)C - (= —\/3(0’ _1’7')

and thus the limits y, and y, exist and are given by

~

Yoo = (=i - a,0,0,—i - b), gk = —iP(().

‘So far we have neither specified a, b nor z. We choose a and b such that é -a =i, f -b=0 and

we let 2 = (0, a,0,0). Then
yio = —i(¢ - a,0,—( x a,0)T = (1,0, x a,0)".
A calculation of the matrix @ shows that Q;; =0, for 5 < j < 8 and we find from (3.2.24)

D(&) = Qu,1, (3.2.30)
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i.e. the given data determines the Fourier transform of the function @;,; and thus the function
itself. Analogously one shows that D(£) determines Qgg.

Since Q = ~VP(V) + P(V)VT = k(V + VT) + VVT a simple calculation gives
L L 2 2 _ 32
Q1’1=§V'v1n“+Z‘VInN| +(K/ —k?)

and

1 1
Qs = —2-V Vine, + ZIVlneq[2 + (k% — k?).

1/2 1/2
Setting u = ('53) and v = (f‘f) we get the equations

~(&v — K(1 - w)) = Qus, (3.2:31)
%(Au - Ku(1 — w)) = Qgg, (3.2.32)

which have unique solutions (see for example [PLE92]). This shows that the impedance map

Z, ¢, uniquely identifies y and ¢,. O

The above result is not always sufficient to show uniqueness for inverse problems arising in real
world problems. Often one has only partial boundary data available. If we are interested in
applications like landmine detection we must consider the case of local boundary data, since we

usually have only data available on the surface of the earth.
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3.3 Local boundary data

After giving a uniqueness result for global boundary data, we want to present a uniqueness result

for the inverse problem of the equation
V x (u7'V x E) + k%, E = 0, (3.3.1)

with only local boundary data. The result we show here is only a partial uniqueness result,
since we only show that local boundary data determines one coefficient uniquely if the other is
a known constant. In particular we will show the following. Let I’ C 952 be an open subset of

00 and let T = OQ\T. Then the set
C.. = {(n x Elsq,n x (V x E|r))| E € H'(curl;Q), E solves (3.3.1), n x E|p, =0} (3.3.2)

associated with equation (3.3.1) is sufficient to recover ¢, if u, = 1 in Q and e, = 1 in a

neighbourhood of the boundary. To be more precise we make the following assumptijons.

(al) pr =1in Q.

(a2) € =1 in Q\, where Q' cC Q has a CV!-boundary and is connected.

The idea behind this proof goes back to Ammari and Uhlmann [AU04]. Note that in Theorem
2.27 we have shown that under the assumptions of this chapter, E € H'(curl; ) is satisfied. We

show the following result in this section.

Theorem 3.11.
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Let assumptions (al) and (a2) hold. If we have two coefficients €1, €2 with Ce,, = C_,, then

it must also hold that €1 = €2 in Q.

Proof.

The proof of the above theorem is in several steps. First we show the following auxiliary result.

Lemma 3.12.

Let the assumptions (al) and (a2) hold. We set
AQ)={Ee H(cwr; Q)| VXV X E+k¢E=0, nx E=0 on T}

and

AQ) = {E € H(curl; Q)| V x V x E + k%¢,E = 0}.

Then A(Q) is dense in A(Q) with respect to the L*(¥') norm.

Proof.

Assume there is an element u € A(2), such that
/I(u,w)dx =0 Ywe AQ).
We will show that u has to vanish. Let G(z,y) be the Green matrix (see Section 2.6) for the
equation (3.3.1) in Q, i.e. G(z,y) solves
Vy x Vy x G(z,y) + e (y)G(z,y) = 6:(y), 2,y €Q, (3.3.3)

n(y) x G(z,y) =0, ye€d, ze€q.
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Given our regularity assumptions on €, and Q2 that every solution of the equation (3.3.1) satisfies

V - E € L*(Q). Thus we define an Operator L on the space Xy given by
Xn = {u € H(curl; Q) N H(div; Q)| n X u|sq = 0}

as L: Xy — L2(Q)3,

Lu:=V x V x u+ k?¢u.

The bilinear form associated with the operator L is then
a(u,v) == (V x 4,V X v) 2q)2 + k*(€,u, V) r2(qe.
The inverse L' : L2(Q)® — L?(Q2)? then gives the solution of
a(u,v) = (f,v) 23, Vv € Xn

and thus L™! is compact since Xy is compactly embedded in L?(Q2)® (see [Mon03][Theorem
3.49]). Therefore L~! has discrete spectrum and the associated Green’s function G(z,y) can be

written as

G(a,9) = 3 7 Unl@)Tn(o)" (3.3.4)

where u, and V¥, are the eigenvalues and eigenfunctions of the operator L. To see how the

differential operators and traces act on the components of the Green’s matrix G we look at the
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addends in (3.3.4) and apply the operators to the generic matrix

D1(y)@1(z) C1(y)P2(z) P1(y)Ps(z)

9(@Y) = | B(y)®1(z) Pa(y)Pa(z) Da(y)®s() | - (3.3.5)

P3(y)@1(z) P3(y)P2(x) P3(y)Pa(x)

We will denote the rows of g(z,y) by g1(z,y), 92(x,y) and gs(z,y) and the columns by ¢*(z, y),
g*(z,y) and g3(z,y). After transposing and then multiplying (3.3.3) with a w(y) € A(f2) on each

side, integrating over Q and replacing G¥(z,y) with ¢g*(z,y) we get
wi(z) = fn (Vy x Vy x g'(2,9), w¥)) + & (¥) (g (z,9), w(y))dy, i=1,2,3. (3.3.6)
For this analysis we will use the standard integration by parts formula
/(V X u,v)dzr = /(u,V X v)dz +/ (n X u,v)dS (3.3.7)
Q Q a9

instead of the more detailed formula (2.4.3). Thus if we apply an integration by parts to (3.3.6)

we get
wi(@) = [ (Vy x ¥, % 5@, ), w(w) + e:(0) 5"z, 1), ww))dy
= /Q (Vy x ¢'(z,9), Vy x w(y)) + e (y)(9" (z,v), w(y))dy

+ [(n) % (9, % 5@ ), w@)dSw)

= [ @0, 9y X ¥, x ) + e w)ie' (@), w) dy

=0

+ () % (7 x 6(2,),w()dS(0)
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+ / (n(y) X ¢'(z,1), V, x w(y))dS(y).

=0

This yields
w@%iém@bﬂVyX¢@w»w@Ww@L i=1,2,3. (3.3.8)

We define

HY(curl;T) = {p € H?(curl; 8Q), p =0 on T}
and show that for any p € H'/?(curl; T") the function v defined by

w(@) = [(nlw) x (9, % @) p1))dS0), =123 (3.3.9)
is an element of A(Q). Thus we define v by (3.3.9) and show that this gives n x v|pe = 0.
To do this we first show that n(y) x V,x ‘almost’ commutes with n(z)x. The components of
n(z) x w(z), z € T satisfy
(n(z) x v(z)) =

na(2) / (n(y) x (Vy x ¢°(2,9)),p(®))dS(y) ~ ns(x) / (n(y) x (Vy x (z.9)), p))dSv),
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(n(z) x v(@))z =

na(z) [[(n(s) x (7, x 4'(@,0),p1)d50) = m(@) [ (n(s) (7, x 6*(2,)),p1)dS(0),

(n(z) x v(@))s =

n1(z) /F (n(y) x (Vy x ¢*(z,9)), p(y))dS(y) — na(z) /F (n(y) x (Vy x g*(z,9)),p(y))dS (y).
However (3.3.5) yields

n(y) x (Vy x ¢'(z,9)) = ®i(x)n(y) x (Vy x 8(y)), z#y

and therefore
(n(z) x v()): =
na(a)Bs(2) [ () x (V % 1), p)ASw) ~ na()Ba(a) [ (nw) x (7 x B0)),p0))dS W),
(n(z) x v(a))s =
na(@)1(2) [ () % (V x ), p)ASW) = ma()Bs(z) [ (nly) x (7 x 8(1),p1))dS(w)
(n(z) x v())s =
m(@)0a(a) [ (1) X (7 x 0)),50))d5) = ma(a)Bs(2) [ (nlw) x (7 x ), p1))d50)

Thus after setting

F= /<n(y> X (V x ®(y)), p())dS(¥)
r
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we get

n(z) x v(z) = (n(z) x &(z))F, zeT.

Since ® is an eigenfunction of L it satisfies
n(z) X ®(z)|sn =0

yielding

n(z) xv(z) =0, ze€T..

Therefore any w € A(Q) can be represented as

w(z) = /F n(y) x (Vy X Gz, 1) )p»)dS@w), z e,

for some p € H/?(curl;T"). Now using our assumption

(u,wydz =0, Yw € A(Q),
Q’

Fubini’s theorem and the symmetry of G (G(y,z)T = G(z,y)) we can conclude that

S ) x (9, x G, 0)ulz)do, o)y = 0, ¥p € VA (cur}T)

and therefore

,/9, n(z) x (Vo x G(z,y)")u(y)dy =0, VzeT.

Now we set

o) = | Gley ulwi.

(3.3.10)

Then v € H'(curl; Q) satisfies n X v|go = 0 and because of (3.3.10) also n x (V x v|p) = 0.
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Further v satisfies

u ifxe)
VxVxuv+klev=
0 if ze Q\&

By the unique continuation principle for Maxwell’s equations (Theorem 2.32) and the unique

solvability of the Cauchy problem (Theorem 2.33) we get v = 0 in Q\(¥ and thus
n X v|agr = n X (V X v|aqr) = 0.
Now we take the scalar product of both sides of
V xVu+kev=u

with u, integrate by parts and get

/,(u,u) = 0.

Thus ||u||z2(q;) = 0 and by the unique continuation principle we get u = 0 in Q. O

Before we show the main result we need another auxiliary result.

Lemma 3.13.

Let Q' cC Q, ¥ contain the support of €1 — €,,2. Let u; satisfy

V x V X u; + k% u; = 0, in Q, (3.3.11)

nXulp, =0, i=12.
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Further assume €,1 = €3 =1 in O\X and C.,, = C.,, (see (8.5.2)). Then

/ k*(€r1 — €r2)(us, ug)dz = 0. (3.3.12)

Proof.
Using integration by parts (2.4.3) we get

N k(€71 — €r2)(ur, ug)dz = /F('rt(V X u1),vr(u2)) — (%(V X uz), yr(w1))dS.
Now let v € H(curl; Q) be the unique solution of

V xV xv+k26,‘1v=0, in Q,
NnXv=mnXu,, on of.
From C,, = C,, we conclude that
nxvl, =0, nxvr=nXxur — nx((Vxv)r=nx(Vxu)lr.

Another integration by parts then gives

0= [ Bens = era)un,hdo = |09 x w0),20(0)) = ((V X 0}, 7w(u)dS

which proves the result. O

Now we extend €, with 1 to R\ and construct solutions of

VXxVxv+klev=0
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in R3 of the form

v; = @9 (e Pv+ Re, (2, 6)), 1=1,2, (3.3.13)

for |¢;| sufficiently large with R(-,¢;) € L2(R®), —1 < § < —1/2. See (3.2.16) for the definition

of LZ(R™). These solutions satisfy

C
Re... (-, Gl L2mey < el (3.3.14)

and v - v2 # 0. The existence of such solutions is for example shown in [PLE92][Lemma 2.4,
Theorem 2.5] and can also be shown using our calculations from Section 3.2 (see the solutions

X¢ in Section 3.2). We choose

_n, . J+l!
Cl—2+1‘ 2?
__n, . J-
C? 2+Z 21

withn-5=0,7-1=0,5-1=0and ||n|? - |7+ |lI|> = ¥*. Using Lemma 3.12 we can

approximate any v; € A(Q) by elements of A(Q) and thus
/Q,(er’l — €,2)(v1,v2)dx =0 (3.3.15)
Vu; € H(curl; Q) with V x V x v; + k%e,v; = 0. We substitute (3.3.13) into (3.3.15) and get
/Q (era— €2) (e (10 + R, (7,01)), €9 (65"°v2 + R, , (2, () dz = 0.
Létting lZ[| be big enough we get, due to (3.3.14),

/ (ens — ena) (€W 20y, @D ) g = 0
QI
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and thus

(v, Vz)/ (€1 — €rg)e @D e e 12224y = 0
o i
and therefore (because of (v, 12) # 0) we get

(era = €r2)ery "6 *(7) =0, Vi € R,
which means (e,1 — €2)e, 172¢-12(z) = 0 (f stands for the Fourier transform of f). Since
€. 11/ 26:’ 21/ ? > 0 we can conclude that

€r,1 = €r2.

This concludes the proof. 0O

The idea of the above proof can unfortunately not be used to show that local boundary data
determines two coefficients u, and €, uniquely. Nevertheless the result is encouraging and provides .
a sufficient theoretical basis to justify a variational algorithm using only local boundary data.

Since in the next chapter we want to outline the idea of our variational algorithm by using interior

data, we give a short discussion on the uniqueness of the inverse problem given interior data.

3.4 Interior data

Finally we present two results that show also interior data, i.e. one or more solutions of the

boundary value problem
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VX (u'VxE)+k?E=F, in, (3.4.1)

nx E=0, on N (3.4.2)

can uniquely determine one or both of the coefficients ., and €,. Since the main focus of this
thesis is not on interior data we do not state any comprehensive results, but just present two
results to show that the right kind of interior data identifies the coefficients uniquely. There are
not too many uniqueness results for parameter identification in the literature for given interior
data. Some results for elliptic equations can be found in [Ale86], [VK93] and [KY02].

Here we consider the weak formulation of (3.4.1), (3.4.2), i.e.
/u:l(v x B,V x &) dzx + / k*¢.(E,®)dz = /(F, ®)dz, V® € H(curl; Q). (3.4.3)
Q Q Q

If we assume that besides F' also u, is known and that the solution E is given, we see that the

unique identifiability of €, corresponds to the uniqueness of the solution of the integral equation
T(e,) = / K26, (E,®) dz =0, V& € H(curkQ). (3.4.4)
Q

Since H (curl; §2) is dense in L?(£2)3 we see immediately that (3.4.4) can only be true if k%¢, E = 0. |
Thus the unique solvability of (3.4.3) depends only on the properties of E. A sufficient condition

for uniqueness of the inverse problem is then given by the following theorem.

Theorem 3.14.

Let p, and F be known. Then if the solution E € H(curl; Q) has only positive entries, it uniquely
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tdentifies €.

Proof.

Since we have to consider the equation k%¢,E = 0, we see that due to the positivity of £ and k2,

this can only be true if ¢, = 0 and thus (3.4.4) has a unique solution. O

This result is of course very simplistic, however we have shown that given sufficient assumptions
on E, interior data uniquely identifies €,. Now we want to show, that in general one does not
have to impose positivity on E and that given several solutions E; we can expect to recover more
than one coefficient. For this we consider an anisotropic system. Let A;, 7 = 1,2, 3 be given and

let E* be given solutions of the equations
V % (u-H(2)V x Ei(z)) + ke, (z)Ei(z) = F, i=1,2,3, (3.4.5)
V x (57 Y (x)V x E(x)) + kZe.(z)E'(z) = F, i=1,2,3, (3.4.6)

where k; = A\;/fio€o and let p! and 7! be two diagonal matrices

p11 () 0 0 fai(z) 0 0
pr@) =1 0 e 0 | BE@=| 0 jgnE o
0 0 pas(=) 0 0 jss(z)

From (3.4.5), (3.4.6) we conclude

V x ((u7}(z) — 374 (2))V x E¥(z)) =0, i=1,2,3.
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Setting r = p11 — fi11, S = po2 — 22 and ¢ = u33 — fiz3 gives
T(BQE% - 83E%)
Vx| s(8:Ei —6,E:) | =0, i=1,2,3.

t(0,E3 — 0,E}).
We define

0 83E! —8,E} &E} — b,E}
A=10 8,E?-8,E? 8,E>—0,E2 |

0 8sE} — 8,E2 B,E} — 6,3

8EL — 8,E} 0 8,E} — 8,E}
B=|5E2—0,E2 0 &E2—,E? |

8:E3 — 0,E2 0 O,ES — 0,E}

8,E} — 83EL B,El —8;E! 0
C=|06,E2-8;E2 8E?—8:E? 0

0,E3 — B3E} O\ES — 85E3 0
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and
(03 — 02)(02E3 — 83E3) (01 — 03)(0sE} — 01E3) (82 — 01)(01E3 — B, EY)
D= | (3~ 8)(:5 ~ ER) (6 — 85) (O — HER) (85 — (O} — 0,ED)
(83 — 82)(02E3 — O5E3) (01 — 82)(0: B3 — D1E3) (82 — 81)(D1E — B.EY)
to get
Afia, + Biig, + Cilsy + Dt =0, in 9, (3.4.7)
Aloa = 0. (3.4.8)

Thus we have transformed the problem of the unique identifiability of the coefficient y, in (3.4.5)
to the unique solvability of the initial value problem (3.4.7), (3.4.8). This problem has of course

a unique solution if and only if 02 is not a characteristic. This yields the following theorem.

Theorem 3.15.
Let €, be known and assume we have three solutions E,-"con“esponding to three different frequencies
Xi, 1 =1,2,3 given. Then if the O is not a characteristic for the system (3.4.7), (3.4.8), the

coefficient p, is uniquely determined by the data E;, i = 1,2, 3.

Remark: In two dimensions one can easily derive explicit conditions under which 95 is not a
characteristic for systems of the form (3.4.7), (3.4.8) (see for example [CH89][Page 171]).

This ends our discussion of uniqueness results for the inverse problem for Maxwell’s equations.
Equipped with these results we will develop a variational algorithm to recover the coefficients

U and €, from global and local boundary data. However we first outline the idea behind this
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algorithm for given interior data.
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4 A variational algorithm using interior data

In this chapter we outline the basic idea for our variational algorithm to recover the functions
ur and €.. We do this using interior data, i.e. solutions E; of the boundary value problem

V x (u'V x E;)) + k2e,E; = F, in Q, (4.0.1)

nxE =0 ond, i=12...,M (4.0.2)

In the case of given boundary data we will use a similar approach, however the theoretical

framework will be more complex than in the case of interior data. Again we set k; = \;\/Iio€o,

M is a positive integer and A\; € Ry for ¢ = 1,2,..., M. We assume the coefficients u, and e,

satisfy the following conditions.
0<pm Spt(z)<pnm, 0<em<e(z)<em, z€. (4.0.3)

- We present a variational algorithm to recover u, and ¢, using a convex functional. Although this
setting is inadequate in the case of given boundary data, it shows the basic idea of our intended

approach. It further helps to point out the arising difficulties in the case of boundary data.

83
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4.1 The algorithm

Any reliable variational algorithm to recover the coefficients in Maxwell’s equations relies on the
unique identifiability of the desired parameters. We have shown in Theorem 3.14 and Theorem
3.15 that interior data in some cases identifies the coefficients uniquely. We assume throughout
this chapter that our given solutions identify the coefficients uniquely. Thus given M solutions

E; of (4.0.1) and (4.0.2) we define a functional H on the domain
Dy = {(m,c) € C}(Q) x CY(Q)] m|sa = clan = 1, m(z) and c(z) satisfy (4.0.3)}.

The condition (m,c) € C*() x C*(Q) is imposed to ensure that m and ¢ have a well-defined

trace. We set
G(m,c, \i) = / m||V x (E; — E[)|1? + klc||(B: — E™)|*dz, (4.1.1)
Q

where E]“¢ solves (4.0.1), (4.0.2) with u ' = m, €. = c and k; = \\/eopo, for i = 1,2,..., M.

To incorporate all the given data into a convex functional we set

M

H(m,c) = ZG(m,c, Ai)- (4.1.2)

i=1

The functional H(m, c¢) has two very important properties.

Theorem 4.1.

For all m,c € C*(Q) we have H(m,c) > 0. Given our assumption that the solutions E;, i =

1,2,..., M uniquely identify pr and €, it also holds that

H('rﬁ,c) =0 < (m,c) = (u', &)
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Proof.

The first property is obvious, since we have G(m, ¢, ;) > 0, 1 < ¢ < M. The second property
can be shown as follows. If H(m,c) = 0 v&;e have G(m,c,)\;) = 0, for 1 = 1,2,...,M. Thus
we have E; = E; " for all t = 1,2,..., M. However since the solutions E; uniquely identify the

coefficients u, and €, we get (m,c) = (u; !, €). O

The last theorem shows that the functional H is positive and has a unique global minimum. To
minimize H we have to make sure that we can calculate a proper descent direction and that there
are no other local minima than the global minimum. The first of these problems is addressed in

the next theorem.

Theorem 4.2.

The Gateauz derivative of H(m,c) in the direction (hum, hc), with hmlag = helog = 0, is given by

M
H'(m, ¢)[hm, he] = Z/th(llv x Ej|* = IV x ET|1%) + k2he(| Eil* — | E)*)da.
=1

Proof.
We show the above formula for a single term G(m,c, A) for a fixed Laplace parameter A. We

simply write G(m, c) instead of G(m, ¢, A). Thus we consider



86 4 A variational algorithm using interior data

G(m + 6hy, ¢+ bhe) — G(m,c) = .
/Qm[(v x (B — Em+ohmetthe)) . (7 x (B — Er+ohmctihe))
— (VX (E—-E™)) - (Vx(E—-E™))
+ K2((E — Em+ohmctthey | (B _ prtbhmctdhe) _ (B _ Em™e) . (E — E™e))
+ 8hm(V X (E — Emtéhmictéhe)) (7 x (E — E™+ohmctohey)
4 6k2hy(E — EmHohmctdhey (B _ prthmctdhc) g
Using the formula |a|? — [b]> = (a — b) - (a + b) we can rewrite the above expression as
G(m + 6hpm,c+ 6h) — G(m,c) =
/ MV x (Em+hmetthe _ pmey | §7 x (Emtdhmetshe _ pmic)
o)
—2mV X E -V x Emtihmetthe L omV x E-V x E™*
4 K2(EmHohmictShe _ pmicy . (Emtdhmctthe _ pmie)
— 2k%cE - Emtohmictéhe 4 ok2cF . E™°
4 6hon(V X (E — Em+ohmetthey) (G x (B — Er+ihmethey)

+ 5k2hc(E _ Em+5hm,c+6hc) . (E -~ Em+6hm,c+6hc) dzr.

An integration by parts (Theorem 2.19) yields
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G(m + 6hpy, ¢+ 6h;) — G(m,c) =
/Q (EmHShmetdhe _ pmey (V7 x (mV x (Em+ohmctthe _ gmey)
+ K2 EHihmctShe _ pmic)))
_2E - (V X (mV x (Em+hmetéhe _ pmey | g2q( protdhmetdhe _ pmecy))
4 6h(V X (E — Em™+ohmictéhe)y | (G x (B — E+ohmetohey)
+ 6k2h(E — Emtihmctthe) | (p _ pmtShmctohe) gy
Now we make use of the fact that Em+éhmic+éhe and E™c gatisfy equation (4.0.1) with u-! and
¢- replaced by m + §h,, and ¢+ dh, or m and c resp. and get
G(m + 6hpm,c+ 6he) — G(m,c) =
/ (Emthmctdhe _ Gmey (LN x (§hyV x EM+Ohmctohey _ g2p fmtShmetshey
Q
4 2E - (V X (6hV x EmHShmctdhe) 4 sg2p prm+ohmctohe)
+ 6hm(V X (E — Emtohmetthe)) (7 x (B — EmHohmctohe))
+ 6k2ho(E — Em+ShmctShey (B — protéhmetshe) g
Dividing by § and taking the limit 6 — 0 yields,
G (1, )P, he] = /9 2B - (V x (V' x E™h) 4 K2hE™®)

+ by (V % (E = E™®)) - (V % (E — E™°)) + k*h.(E — E™°) . (E — E™°) dx.
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Another integration by parts gives
G'(m, ¢)[hm, he] = /Q 2hmV X E -V x E'"" + 2k*h E - E™°)
+ hp(V % (B — E™®)) - (V x (E — E™°)) + k*h.(E — E™°) - (E — E™")dz.
Simplifying this expression yields
G'(m, c)hm, he] = /Q ha(IIV % El* = |V x E™¢|[?) + E*he(|E|* ~ | E™*||*)de.

This also gives the desired expression for H(m, c). O

To show that H has a single local minimum we calculate the second Géateaux derivative of H.

Theorem 4.3.
Let L}, ; be the inverse of the operator Lm ciu : V X (mV x u)+kfcu with the boundary condition
n X ulga = 0. Then if hmloa = helog = 0 and ly|oq = lc|on = 0 the second Gateaux derivative of

H is given by
M
H”(m, ) [(lns le), (hm, he)] = Z / 2Lr_rtfc,idi(lm’ le) - di(hom, he)dz
i=1 /0

where

di(lm, le) = V X (InV x E™) + K2l E™.

di(hm, he) is defined analogously.

Proof.
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Let 6 > 0. We use the fact that
=L ei B + Lint i 4810, 55 tolmetdle —
to get
Lo e E:n+5zm,c+atc — E™) = —V x (8lmV x E;'n+6lm,c+élc) — KA, E;n+6lm,c+6lc,

and conclude

m~+8lm,c+8lc m,e __ -1
Ei ’ - E'i. = "Lm,c,i

(V X (8l ¥ x EM+ometsley 4 p2g) pmtdimetsley
Thus we get for the functional G
G'(m + 6lm,c + 0l) (hm, he) — G'(m, ) (Bm, he) =
[V % B = [0 x Brfimet () 4 2he(( B — Bt )
~hm(|IV x E|? = |V x E™||?) — K*he(||E|f* - |E™||*)dz =
/ﬂ hm(V x E™ - (V x E™° — V x Emtimctile)
+V x EmHimettle | (7 x Bre Y x Ertimetile))
R (B — ([t e |?)
Now we integrate by parts and use the formula a? — b* = (a — b)(a + b) to get
G'(m + 8lm, c + 8lc)(hm, he) — G'(m, ) (hm, he)

/(Em,c _ Em+61m,c+61c) . (v X (hmv x Eme + V x Em+451m,c+dlc))
Q

+(Em,c _ Em+6¢-m,c+6lc) . (kZhC(Em,c + Em+6lm.c+6lc)) dz.

(4.1.3)

(4.1.4)
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Applying equation (4.1.4) yields
G'(m + 6lp, c + 6lc) (B, he) — G'(m, ) (A, Be) =
5/ L;{c(V % (lmV % Em+6lm,c+6lc) + kZlcEm+Jlm,c+¢Slc)_
Q

. (V X (hmv % (Em+6lm,c+51c + Em,t:)) + kZhC(Em+¢Slm,c+6lc + Em,c)) de.

If we now take the limit § — 0 we get the desired result. a

Since equation (4.0.1) is coercive, the operators L;}c,i are strictly positive. Thus the above
theorem shows, that the functional H does not only have a unique global minimum, but is
actually convex. Therefore we can apply a conjugate gradient method to minimize A and do not

have to worry about getting trapped in any local minimum.

4.2 Numerical implementations of the inverse problem for given interior data

In this section we present a few numerical implementations for given interior data, to show the
effectiveness of the approach outlined in the previous section. To minimize the functional H we

‘use a conjugate gradient scheme.

4.2.1 The Polak-Ribiere scheme

We present an abstract formulation of the descent algorithm on which we build our minimization
procedure. Given a function f : V +— R where V is some normed vector space the simplest

descent method is the following.
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e Start at a point Fp.

e Update the point P; by a new point P;y; as many times as needed, by minimizing the

function H(a) = f(P;, — aVf(F,)) and then set Py1 = P — amin Vf(F).

However this simple approach has some major drawbacks. If V' = R", then we can expand any

function f by its Taylor series

$) =10+ L5145 Za"’f +O(jaf*)

and therefore

1
f(z) m 5 (Az, 2)re — (b, Z)Rn + € (4.2.1)
with ¢ = £(0), b = =V f(z)|s=0, Aij = ‘—Z;—{é%lmo. The gradient of the approximation is then

Vf = Az — b. Now suppose we have started at a point o, and moved along a minimization
direction v = V f(zo) to a minimum, say at Z; = Zo + AminV f (o). Since ami, minimizes the

expression H(a) = f(zo + aV f(zo)) we can conclude
% r 0 T
0= =~ f(20+ aVf(20))la=amm = (VF(21)" 5 (20 + @V f(z0))lamamn = (VF(21)) 00
This shows that the new descent direction v; = f'(z;) is perpendicular to vo. Thus we get
0= -6(Vf) =0 Av,. (4.2.2)

In order not to ruin the descent from the direction vy, we would like the new descent direction v,
to be perpendicular to v; and vy. A good minimization procedure thus ensures that (4.2.2) holds

pairwise for the set of produced descent directions v;, i = 0,1,2,.... If the relation (4.2.2) holds
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pairwise for a set of vectors, the set is said to be conjugate. However this is not the case for the
steepest descent method. This problem leads to the so-called conjugate gradient methods. The
two most famous of these are the Fletcher-Reeves and the Polak-Ribiere methods. The Polak-
Ribiere scheme (as well as the Fletcher-Reeves method) is based on the results of the following

theorem (see [PTVF92](chapter 10]).

Theorem 4.4.
Let A be a symmetric positive definite matriz. Let gy be an arbitrary vector, set hg = go. For

1=1,2,... define the two sequences
gi+1 = gi — o Ahs, hit1 = giy1 + vih,

where v; and «; are defined as

g~ hi e = (gi+1 — g1) - gina
h - Ah;’ * 9i gi .

Then for all i # j,

9i-9; =0,  hi-Ah; =0.

'The calculation of the matrix A, can be avoided.

Theorem 4.5.
Lgt 9i and h; be defined as in the above theorem. Suppose we have g; = —V f(P;) for some point
P, where f is of the form (4.2.1). If we proceed from P; along the direction h; to the minimum

point Py and set g;4; = =V f(P,-H), then gi41 is the same as would have been constructed by
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the procedure in the above theorem.

4.2.2 The Neuberger gradient

To apply the Polak-Ribiere scheme to H, we must calculate the gradient of H. From the formula

of the Gateaux derivative we see that the L2-gradient for the functional H is given by,
TNV x Bill? = |V x BT

M REN - |1 EM1?)

One of the major error sources in steepest descent methods, is that the updated function after

VH(m,c) =

a descent step, does not continue to lie in the domain Dy anymore. In our case this presents
a major problem. The update direction of (m,c) must vanish on the boundary of (2, since the

coefficients (m,c) € Dg have to satisfy the conditions m|sq = 1, c|ag = 1. However the terms

M M
Z IV x Eif|* = |V x E™|1%), Zk? (HE:® - N E™%)

do not vanish on O in general. We overcome this problem by using a H} gradient ¢ (or Sobolev
gradient) (see [Neu97]) for the update direction of (m,c). We use the following definition of the

H; gradient.

Lemma 4.6.

The H} gradient ¥ = (O, 9.) is the solution of
M
—AOp + O =D VX E|* = |V x ™|, inQ (4.2.3)
i=1

M
~AY+ 9. =Y KB’ - |1E™)P), inQ

i=1
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ﬁmlaﬂ = 19:'69 =0.

Proof.

We have to show that the Hj gradient 9 satisfies
H'(m, ¢) (hrmy he) = (8, (A, he)) mrycays-
An integration by parts gives
(9, (B ) 3 e = /Q oo + Dohe dz + fg V9, - Vho + VO, - Vheds
= /9 Imhm + Fchedr — /Q A9y by, + Ichedx

= H'(m, ¢)(hm, h)-

Therefore we can see, that the H} gradient ¥ is a proper descent direction.

Remark: ¥ behaves like a preconditioned version of VH(m,c), as can be seen from its defi-
“nition. Thus the entries of ¥ belong to Hj. This makes it easier on the one hand to recover

smooth functions with the H} gradient than with the L?-gradient. However it could be a slight

disadvantage to use the H} gradient to recover discontinuous functions. In the one-dimensional

case of the inverse spectral problem for the Sturm-Liouville equation, this is certainly the case

(see [BSKMO3]). However in the case of Maxwell’s equations we do not have any experimental

evidence to support this.
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4.2.3 Regularization

To guarantee a stable recovery of the coefficients u, and ¢, under noise, a regularization of
some kind is usually necessary. We do not implement any classical regularization schemes like
Tikhonov regularization or similar methods. However we regularize the update of m and c after
each descent step, to ensure m and c lie still in Dg. In particular this means that the updated
values of m and ¢ have to stay positive. This is one characteristic of the ill-posedness of our
problem, since if m or ¢ is not positive definite anymore, we loose the coercivity in our Maxwell
system (4.0.1). This would not only affect the numerical stability of our solver, but also ruin
the basis of our variational algorithm itself. We control this problem by cutting off the values
of m and c after each iteration, if they are below a certain cut-off value. This is justified on
physical grounds by the usual presence of earlier measurements of data which allows one to
establish a minimum for coefficients to be recovered. We are thus getting a better condition for
our algorithm and making it well-posed. The slight disadvantage of introducing a cut-off value
is that our algorithm is not a real descent algorithm anymore, but an iterative algorithm and we
are not descending that fast. However this is a small price to pay, if we get a stable minimization

procedure. In our calculations we always chose a cut-off value between 0.4 and 0.5.

4.2.4 The stopping criterion

An important issue is that of a stopping criterion for our algorithm. Since H(m, c) tends to zero,

one might suggest to stop the algorithm if the value of H(m, ¢) is small enough. However this is
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not a sufficient criterion since we have no guarantee that if H(m, c) is below a certain value, then
the recovered coefficients must be good approximations. Especially in the presence of noise, the
minimal value of H(m,c) need not be zero any longer and therefore the above criterion would
certainly fail. Another criterion is to measure the norm of the L?-gradient and if it is small
enough, to abort the algorithm since the function H(m, c) has only one local minima. In general
one cannot be sure that the gradient does not have a small norm away from the local minima.
Nevertheless in this case we know that if H(m, ¢) tends to zero, the corresponding solutions E,, .
tend to the given data E;, i = 1 <1 < M. Since the solutions E,,.; depend continuously on m

and ¢, we can expect satisfactory results, if the difference

Z By — Eill? (4.2.4)

is sufficiently small. Since this is basically the second entry of the L2-gradient, a small norm of
the L2-gradient also guarantees that the difference of (4.2.4) is small and thus is a good stopping

criterion.

4.2.5 The implementation

The data for the implementation of the inverse problem with interior data, consists of M solutions
E;, 1 <1i < M, of the equation (4.0.1). We construct the data by solving M boundary value
problems with the real coefficients u, and €,. All the implementations are done on the cube
Q = [-1,1]3. We also did an implementation were we constructed the data by solving a time-

dependent system and applying M finite Laplace transformations. This added about 1% of extra



4.2 Numerical implementations of the inverse problem for given interior data 97

noise to the data. All our computations are done on single PC with a 3.6 GHz processor and
2GB Ram or on parallel Linux system with 7 2.8 GHz processors and 1 GB Ram. A parallel
implementation is the logical way forward since there is natural parallelism in the algorithm. We
use a simple remote login setup to connect within the network and solved the arising forward
problems in each iteration in parallel. We then save the solutions of these problems to files and
load them on a single PC to process them further. Due to the remote login, the saving and loading
of the solutions proves to be the most time-expensive part of the parallel implementation and
we have to admit that with a more sophisticated parallelization than ours, this could probably
be done in a much more efficient way. Nevertheless our implementation is enough to show the

effectiveness and the quality of our approach.

Parallel implementation

If one has M solutions F;, 1 < 1 < M given, then the natural choice is to use a system with M pro- '
cessors. However since our resources are a bit limited we uée 21 solutions E; and implement the al-

gorithm on a network with 7 processors. We use Comsol Multiphysics (http://www.comsol.com)

to solve the various direct problems for Maxwell’s equations to obtain the solutions E;“° in every

step of our descent algorithm. Comsol Multiphysics allows a 3D implementation of our Maxwell

systems with magnetic or electric boundary conditions. An advantage of Comsol Multiphysics is

the easy and straightforward scripting language Comsol Script, which is similar to Matlab and

véry easy to implement. Comsol Multiphysics also allows the user to solve a time-dependent

system, so that we can create our data by solving a time-dependent system and then just do M


http://www.comsol.com
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Laplace transformations to obtain the solutions E;, 1 <i¢ < M.

The frequency

We choose our Laplace parameters );, such that the wavenumber k; = \;,/Zg€o is in the interval
0.8 < k; < 3. The choice of the frequency is quite important, especially in the case of given
boundary data, discussed in Chapter 5. A higher frequency usually gives a better resolution of the
recovered image. The problem is that if it is too high, the direct problem of Maxwell’s equations
becomes numerically unstable. Remember that k = \,/fio€; and consider an application (for
example in land-mine detection) in which the background medium is soil. Then the values for
the permeability and the permittivity in the background medium are

o = 1.26 * 10‘6-;/72-, €0 = 8.85 10—12ﬁ_

This yields k£ = 3;1’},—_3. Thus the frequencies \; chosen for our computations were approximately

240 — 900 MHz, which is realistic if for example ground penetrating radar is used.

Finite elements

In the case of interior data we use a finite element mesh with 21624 tetrahedra. In this case
it is sufficient to use linear elements on the tetrahedra. However as we will see later, in the
case of given boundary data it is better to use a mesh with quadratic elements. The numerical
derivatives arising to get V x E;“° are computed with a finite difference scheme in Comsol
Multiphysics which uses central differences. In the case of given boundary data, especially with

noise, this is rather problematic, since differentiating itself is an inverse problem and then simple
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numerical differentiation techniques are often not sufficient. In this case one has to make sure
that the algorithm is stable under noise or/and use better differentiation techniques (see for

example [KW95]). All integrations are done by Simpson’s quadrature rule.

The descent

The line minimization in each descent step should be done by a proper line minimization function
like *Brent’ in [PTVF92][Chapter 10]. However this proved to be not efficient in our case. The
problem here is, that for each line minimization we would need about 8 — 10 iterations and thus
we have to compute the gradient VH(m, c) 8—10 times. This is not feasible on a single computer.
Even on a small parallel network this proves inefficient and we developed a heuristic choice of the
length a of each descent step. For this we used our experience from the implementation of the
inverse problem for elasticity systems ([BJK05]). Here we have seen that length of the descent
steps does not change significantly anymore after a certain amount of iterations. Thus we start |
with a ‘good’ guess for the length o and reduce it if we do not minimize the fur;ctional anymore
or increase it if the minimization is not fast enough anymore. In the next section we show a few

implementations using interior data.

4.2.6 Results given interior data

In this section we present some numerical results for the recovered Maxwell coefficients p, and
€~ using interior data. We present implementations for the case of smooth and discontinuous

functions. In all implementations we used 21 given solutions E;. We rescaled our system for
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these implementations such that firldu = er|an = 0.5 instead of 1. In our first implementation
we consider the case of a known »r = 0.5 and try to recover er. We apply a white noise of 3% to

the data. The function we try to recover is

CriW = (x| ~ 1)(*2 - 1)(®3 - !)2+ 0-5-

The pictures in Figure 4.1 and Figure 4.2 show the true and recovered functions at x3= 0. We
see that the recovery procedure is quite effective and the form as well as the amplitude of the

coefficient are approximated quite well.

Figure 4.1: True er)i at x3= 0
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Figure 4.2: Computed ei at x3= 0, 100 iterations, L2-error = 0.041
In our next implementation we give up the rather unrealistic assumption of smooth coefficients

and try to recover a discontinuous er with known jir = 0.5. Again we apply a noise of 3%.

/

2.0, if|rci] < 0.5, ;2 1< 0-5 and [x3| < 0.5,
erp(z) = <

0.5, otherwise.

The Figures 4.3 and 4.4 show the true function and the recovered coefficient at x3=0. Again we

Figure 4.3: True er2 at x3= 0
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Figure 4.4: Computed erji2 at x§ = 0, 100 iterations, L2-error = 0.167

can see that not only the support of the coefficient but also the general shape are approximated
quite well. The higher L2-error is due to the lack of smoothness in the coefficient and thus to be
expected. Finally we look into the recovery of the coefficient /ir as well. Again we recover the
function /

2.0, if [xi] < 0.5, x21 < 0.5 and [g3] < 0.5,

0.5, otherwise.
We added a noise of 5%. The slight problem we had with this implementation was, that with
linear finite elements, the computation of V x g™ in each descent step introduced additional
noise in each step. Nevertheless this was a good opportunity to see if our method still produces
satisfying results, even with this amount of noise. As before we look at the recovered function
at xz = 0. The results are quite remarkable. One can see from the Figures 4.5 and 4.6 that the

recovery is still very convincing, even with this level of noise in the data.

With these results we end our discussion of variational methods using interior data. We have
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Figure 4.5: True fir at x3= 0

Figure 4.6: Computed fi7 at x3 = 0, 80 iterations, L2-error = 0.126
seen that we can recover the coefficients in Maxwell’s equations using interior data. These results
are still satisfying, even under a high level of white noise. In the next chapter we will present
a variational formulation to solve the inverse problem for Maxwell’s equations using boundary

data.
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5 Variational algorithms for given boundary data

After showing the idea of a variational algorithm for given interior data in the previous section,

we present a procedure when only boundary data is available.

5.1 The variational algorithm for given boundary data

In this section we outline the variational algorithm to solve the inverse Maxwell problem. Again

we consider the system
VX E+kuH=0,

VxH-keE=0
and the corresponding second order equation
V x (u;'V x E) + k*¢,E =0, in Q.
The coefficients u, and €, satisfy the conditions

O<pm Sp'(x)<pm, 0<em<e(r)<ey, T€Q

105

(5.1.1)

(5.1.2)

(5.1.3)

(5.1.4)
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and k = A\/lo€o. Our aim is to recover the parameters u, and ¢, in (5.1.3) from the knowledge

of the impedance map

Zﬂmﬁr(n X Hlaﬂ) =nX Elaﬂa (515)

or the admittance map

Ay er(n X Elog) = n X Hlaq. (5.1.6)
In what follows we will use the equivalent maps
Zpper (N X Hl|ag) = (n %X (V x H)|aa) x n =~vp(V x H), (6.1.7)
or the admittance map
Ay . (N X Elag) = (n x (V x E)laq) X n =vr(V x E). (5.1.8)

We already know from Theorem 3.5 that Z, ., (and thus A, . ) uniquely identifies y, and e,.

Given the map A,, .. we now define a functional G on the domain
D¢ = {(m,c) € C*() x C*(Q)| m|sa = claq =1, m(z) and c(z) satisfy (5.1.4)}.  (5.1.9)
Let @1, d2,... be a basis of H~1/2(div; 82). We set
G(m,c) = i&n /s; m||V x (E™ — E™)|12 + K2c||(E™° — E™°)||%dx, (5.1.10)
n=1

where the 6, > 0 are chosen such that the series converges. E™° solves (5.1.3) with p;! = m,
& = c and n x E™|sq = ¢,. E™° is the solution of (5.1.3) with 47! = m and ¢, = ¢ and

vr(V x E™®)|sq = A, . ¢n. As in the previous chapter the functional G(m,c) is non-negative.
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Theorem 5.1.

For all m,c € Dg we have G(m,c) > 0 as well as

G(m,c) =0 < (m,c) = (u ', ¢).

Proof.
The first property is obvious. If G(m, c) = 0 we have E™¢ = E™¢, for all n € N and they satisfy

the same boundary conditions. Thus we have
Ap-1.(n x E7P¢) = vp(V x EJ¢) = vyp(V % Eme) = Ay er®n = Ay, . (0 X BT,

for all n € N and thus

Am-te = Ay e

Due to the uniqueness property of Theorem 3.5 we get (m,c) = (u}, €). O

As in the case of interior data, we can find a closed form expression for the Gateaux derivative

of G.

Theorem 5.2.

The Gateauz derivative of G(m,c) in the direction (hm, he), with hylag = helag = 0, is given by

G'(m,C)[hm, he] = > On fnhm(HV X Bpe|? = IV x Epeli®) + K*he (|| BR°I* — || E~|%)da.
n=1

Proof. -
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We consider

G(m + 6hm, c+ 6h.) — G(m,c) =

i 911/ m[(v x (Em+5hm,c+6hc _ Em+6hm,c+6hc)) . (v x (Em+6h,m,¢:+¢5h,J _ E~vm+6hm,c+5hc))
n=1 Q

— (V% (B = Bpe) - (V x (B — Ep)]

+ kzc((Em+5hm,c+6hc _ E"m+6hm,c+6hc) . (Em+6hm,c+6hc - Em+6hm,c+6hc)

— (B — E°) - (Bp© — Ep)

+ (Shm(v x (Em+6hm,c+6hc _ Em+6hm,c+6hc)) . (V x (Em+5hm,c+6hc _ Em+6'hm,c+5hc))

+ 5k2hc(E;n+6hm’c+6hc _ E‘;n+5hm,c+6hc) . (E:ln+6hm,c+6h¢ _ E:7.+6hm,c+6hc) dr.
Using the formula |a]? — |b]> = (a — b) - (a + b) we can rewrite the above expression as

G(m + hm,c + 8he) — G(m, c) =

o .
S 6n [[(V x ((Btometshe - pe) — (Bpesimesshe _ fmey))
n=1 2

. m(v % ((E;;n+6hm,c+6hc + ETT,C) _ (E;n+6hm,c+6hc + Ef:ln,c)))
+ ckZ((Em+6hm,c+5hc _ Em,c) _ (E’"vm+<5h,,,.,c+<$h.c _ Em,e)).
. ((Em+5hm,c+5hc + Em,c) _ (Em+6hm,C+6hc + E'm,c)))

+ 5hm(v % (E;n+6hm,c+6hc _ E1T+6hm,c+6hc)) . (v % (E;n+6hm,c+3hc — E;n+6hm,c+6hc))

+ 5k2hc(E,T+5h’"’c+6hc _ E7r:1+6hm,c+6hc) . (E;rln+5hm,c+6hc _ ET'T+6hm,c+6hc) dr.
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Now we apply the integration by parts formula (2.19) and get

G(m + 6hpm,c+ 6h,) — G(m,c) =

0 0 /‘(Em+6hm,c+6hc _ Em,c) R (V X (mv < (Em+6hmrc+6hc + Eme — Em+5hm,c+6hc _ Em’c)))
Z: " ™ n n n n n
n=1 Q

_ (E,T+5hm’c+6h‘ + E:ln,c _ szm+6hm,c+6hc _ E;n,c) . (V X (mv x (E;r:z-(—dhm,c—i—éhc _ E,T’c)))dm

b | (BT~ Bpe) (om(mV x (et 4 Ee - Fpisimershe - fre))as

=0

+/ 7t(E7T+6hm’c+6h° + E;T,c _ E”nrr:t+6hm,c+6hc _ E;T’c) . ,yT(mv x (E'rln+6hm,c+6hc _ E:ln,c)) ds
BQ N w4

=0

+ '/Q kzc((E,T+‘5h""°+6h° _ E:z,c) _ (E;n+5hm,c+6hc — E,,T’c))~
. ((E;’Ln'-l'(;hmyc‘i'&hc + EZ’%C) _ (E'Zi+6hmyc+6hc + E;n:c)))

+ 6hm(V x (E-;n+6hm,c+6hc _ E"-gz+6hm,c+5hc)) . (V % (E,T+6h'"’c+5h° _ E"vr-rln,+6hm.c+6hc))

+ szhc(E,T+5hm’c+6hc _ E,T+6h’"’c+6hc) . (E;n+6hm,c+5hc _ Egz+c5hm,c+6hc) dr.

We make use of the fact that Emtohmctdhe  prmtéhm.ctéhe gpnd e fome satisfy equation (5.1.3
n n n n

with p! and €, replaced by m + h,, and ¢ + 8k, or m and c resp. and get

G(m + 6hm, ¢+ 6h;) — G(m,c) =

f): 2 / (Eqtohmetthe _ pmey . (=¥ x (6hynV x (Emtohmetbhe _ pm+shmctihe))
n n n m n n
n=1 2

- k2( c+0 h'c)( E'T+6hm,c+6hc _ E;n+6hm,c+6hc))

+ (E;n+6h“'"’c+6hc _ E.,T’c) . (-—C(E;T"c - E"gm,c))
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_ ( E;n+5hm,c+6hc + E::;,c _ E;n+6hm,c+5h,c _ E‘;nc) . (—V x ( ShmV % Evrrln+5hm,c+5hc)
— k2(c + 6he) B hmictohe) gy

_ ( E::z-q—éh,,.,c+<5hC + E,T’c _ Errzn+6hm’c+5hc _ E":Ln,c) . ( c E;;n,c)

+ k¢ ( E;:z+6hm,c+5hc ~ E™) — ( E:Ln+6hm,c+6hc _ E::z,c))

- E;n+5hm,c+6hc + Eme) — ( E"v;n+6hm,c+6hc + Eg;,c)))

+ Jhm(V x (ETT+6hm,c+6hc _ E'ﬁ:;n+6hm,c+5hc)) . (v x (E.,T+6hm’c+6h° _ Eﬂ;n-&-&hm,cﬁ-&hc))

+4 k2 hc ( E;;n-#éhm,c-l-éhc _ E7T+6M,c+6hc) . ( E;u+5hm,c+5hc - E;n+6hm,c+6h¢ ) dr.

As the sum over all terms with the factor ¢ add up to 0 we get

G(m + 6hm, c + 0he) — G(m,c) =
ign/(E:z+6hm,c+6hc _ E‘VT’C) . (-—V X (5hmV % (E‘r?+ls’7rfn,c+5hc _ E1T+6hm,c+6h¢))
n=1 Y
_ Jkiﬁc(Em+6hm’c+dh° _ E"tm+6hm,c+6hc))
n n
_ ( E;ﬂ+5hm;C+5hc + ng,c _ Ev::t+5h,,,,c+5h¢ _ ErTc) . (—V % ( ShyV X E':ln‘l'(shm,c""dhc)
— k2 he E'm+6hm,c+5hc)

+ 5hm(V X (E7r:c+6hm,c+6hc _ E,T+6hm’c+5h°)) . (V x (E,T+6h’"’c+5h° _ E,T+Jhm’c+6hc))

+ 5k2hc(E7T+5h’"’c+6h° _ E1'rlrz+6hm,c+6hc) . (E;71+5fhn,c+5hc _ E;n+6hm’c+éh°) dz.

After another integration by parts we get
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G(m + 8hy,c+ 6h,) — G(m,c) =
5i 6, / (V % ( E71:z+6hm,c+6hc _ E;n,c)) A (—V % ( Err:t+6hm,c+6hc _ Efv;n+5hm,c+6hc)))
n=1 2
— (Emtohmictéhe _ pmic)) . (k2p (Emohmetohe _ frmtdhmctohe))
— (V x (Er+ohmetshe 4 pme _ pmtéhmetshe _ fmey) . (_p, 7 x Em+Shmictohe)
— (Emtohmetéhe 4 pme _ fmtShmetéhe _ fmic)y | (2 frme-Shmctdhe))
+ hm(V x ( E7T+6hm,c+6hc — E'7r:z+6hm,c+6hc)) . (V x ( E:1+6hm,c+6hc _ E:ln+5hm,c+5hc))

+ k2 hc( E:;fl'f'lshm-C"'(shc _ E711n+6hmyc+6hc ) . ( E:;n‘}'lshm)C’f’Jhc _ E':ln+5h"“c+5h° ) dz.

We divide the term above by 4 and let 6 — 0 to get

G(m + SRy, ¢ + 6he) — G(m,c)

i 5
=3 6, / (V x (B = E)) - (=V x (B — 7))

— Bh(Bpe = Bpe))(Bpe — Bpe))

=0

—(V x (2E™° — 2E™°)) - (=hnV x E,)
— (2E™°¢ — 2E™°)) - (=k2h E™°))dx
+ h(V X (B¢ — ET)) - (V x (BT — ET°))

+ Kho(Ep* — E7°) - (B° — E°) da.
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After reordering the terms we get

%in’(l) G(m + dhpy,c -tsdhc) — G(m,c)

=" 6n [ hnl(V X BRP = |V x ER?) + o BR<P ~ |BT?) o
Q

The above theorem enables us to calculate the L2-gradient of G(m,¢) in a closed form. We can

also calculate the second Gateaux derivative of G.

Theorem 5.3 (Second Gateaux derivative of G).
Let L}, be the inverse of the operator

Lu:V x (mV X u) + k*cu,

with the boundary condition m X ulsp = 0 and f};fc the inverse of L given yr(V X u)|ag = 0.

Then if hm|og = helag = 0 and l,)on = IcJan = 0 the second Giteauz derivative of G is given by
G" (&) (b L) (o )] Ze [ 2Rl 1), )

—<(L;1,}cdﬂ(lm’ L)), @n(hm, he))) dz,

where

dn(lmy 1) = V X (ImV x E™) + k2 E™°,

and

Ga(lmy 1) = V % (I V x E™€) 4 k21 Eme,
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dn(hm, he), and dp(hm, he) are defined analogously.

Proof.

Let § > 0. We use the fact that

, 8lmctdle
—Lm,cE«,T € + Lm+6lm,c+61cEm+ mietole — 0

to get

Lm’c(Em+5lm,c+ch _ E::;,c) =_VY X ((”mv x Em+élm,c+6lc) _ k2lcEm+élm,c+ch.

We conclude

E-m+<$lm,c+6lc _ E;n,c — —L;:c(v X (6lmV % Em+élm,c+6lc) + kzélcEm”l""”‘”c).

Now

G'(m + 0l ¢+ 8le)(hm, he) — G'(m, €) (R, he)

o0
_ Zﬁn/ hn([|V % ETHmetble|2 || x Brtoimetsie|2)
n=1 Q

+ k2hc(“Em+Jlm,c+élc”2 _ ”E"'m+6lm,c+6la”2)
— h(IV % E©|? = |V x EP<|?) — Ehe(| Egel® — | Epe|?)da

o0
=Y [ hn(V % B (V x Bprimetic - ¥ x B
Q

n=1

4+ VvV x E,T+6lm’c+6l° B (V X E:;n+6lm,c+6lc —V x E,T’c)

— V x E™e . (V x Emtoimettle _ g 5 fme)

(5.1.11)

(5.1.12)
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£V x Bmtiimetle (G 5 frtiimetile _ g fmcy)
+ kP ho((|| Bt Simoetole| |2 — || Eptimetsie|2 — || B2 4 || B ) da.
We integrate by parts and use the formula a® — % = (a — b)(a + b) to get
G'(m + 8ly, ¢ + 6lc) (hm, he) — G' (M, ) (hm, he)
_ i /Q (Emiimetdle _ Eme) . (7 x (h,V x (Em+ometdle 4 gmeyy)
n=1
_ (E;n+6lm,c+61c _ E;Zz,c) . (V % (hmV X (E:ln+6lm,c+élc + El;n,c)))
+ (EmHometSle _ pmiey | (g2 (EmtSimetdle 4 pmicy)
—( E";rln-i-élm,c-i-élc _ E-:an) N k2 he( Errrln+6lm,c+élc + E~Z‘lc)) dz.
From equation (5.1.12) we get
G'(m + blm, ¢ + 8lc) (hm, he) — G'(m, ) (hm, he)

=4 Z / L;SC(V X (I V x Emtotmetsle) 4 2] pmedlmctoley,
s )

. (v % (hmv X (EZL+61m,c+6{c + E;n,c)) + kzhc(E,T+5lm'c+61° + Errzn’c))
_ Z—l (V X‘ (va % E‘|m+61m,c+61¢) + k,2lcEm+61m,c+6lc)'

. (v x (hmV % (E'::l-f-élm,c*ﬁlc + E"v:z,c)) + kth(E31+51m,c+ch + E":’n,c» dz.

Taking the limit § — 0 yields the desired result. O

This result is slightly discouraging, since compared with the case of interior data, the functional G



5.2 Essential convexity 115

is generally not convex. However for a successful minimization procedure the following property

is sufficient.

Definition 5.4.

Let X be a Banach space. We call a non-negative functional F' : X — R essentially convez if it

satisfies

F'(z)h=0, Vhe X < F(z)=0.

We investigate the convexity properties of G in the next section.

5.2 Essential convexity

In this section we show that there is a lot of reason to believe that the functional G in the last
section is essentially convex. Unfortunately we are not able to show the essential convexity of G .

itself, but we show the essential convexity of a related functional.

5.2.1 Indication of essential convexity of G

In this subsection we present a result which is useful for numerical purposes. We consider the
equation (5.1.3)

VX u'VxE)+ke¢E=0 inQ
and the corresponding admittance map (5.1.8)

Ay er (1 X Elaq) = vr(V X E),
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which we consider as a map from H/2(div; 8Q) — H'/?(curl; 8). Theorem 2.28 states that the
operator A, .. describes a well-defined isomorphism. A, ., is even coercive as can be seen from

the result below.

Theorem 5.5.
Let 7Y () > pm > 0 and €.(x) > €. Then A, ., : HY/2(div; 0Q) — H2(curl; 89) is a positive

operator with respect to the L2-inner product.

Proof.

Let E be the solution of (5.1.3) and boundary condition

n X Elag = f
Then
| et1sds = [ (9 x B) u(BY)dS
2q 80
= /,u;’l(Vx E,V x E)dx—/(v x (u7'V x E), E)dz
Q Q
_ /#;wv < E,V x E)dz + / K?e,(E, E)dz
Q Q
2 d||Ellb(eurinn
where d := min{k%en, tim}- O

One can also show the following monotonicity result.
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Lemma 5.6.

Let p,, 11 > é and €.1 > €. Then the operator
All'r,lycr,l - Aur,z,er,z

s non-negative.

Proof.

Let E; be the solution of (5.1.3) with u,; and €.;, ¢ = 1,2 instead of p, and €, and boundary
condition

n X Eiaq = f.
Then
[ Brnsraf = B - £5 =
/ﬂu;,;(v X By, V x Br) = (V % (u1V x Ey), Ey)da
- /Q,,L;,;w X By, V x By) — (V x (ulV x Ey), Ey)de =
/ﬂ UMY x By, V x By) + Ky (Ey, Br)da — /Q UEMY X B,V x Ey) + Keso( By, Ep)da =
/9 UV % By, V X By) + Rena (B, i) do + =}V X Ea, V % Ey) — Keng(Es, Es)da

—/2[1,;%(VXEz,VXE1>d$—2/M;%<VXE2,VXEg—-vXE1>d£ZI.
Q . Ja

—

-~
=a

By an integration by parts we can easily see that

a = —2/(V X (u:’%v X Eg),Ez - E1>dl‘ = 2/ k267,2<E2,E2 - El>dl‘
Q Q
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and thus
| Brnsirs = Muacra) - S =
/Qp,;}w X B1,V x Ey) + Keny(Br, Br) — 2471V x Ba, V x Ey)
— 2k%e,22(Ep, E) + pr3(V X B3, V X Ey) + K2er5(Ea, E») da.
Since
€r1(E1, E1) — 2¢r2(E, En) + €,2(Ea, Ep) >
€r2(F1, E1) — 2€,2(En, E1) + €,2(F2, E2) > 0
and

Lp;}(v x E1,V X Ey) ~ 2,u;’§(§7 x Ep,V x Ej) +u,_,21(V X B3,V x Ep)dx =
/Q lira”*V X Bal? = 2{(psrs”*V % En, pyV x Eg) + prt(V x By, V x Ey) dz =
/ﬂllu;&”v x By — tra~1/2V x B[ + p7HV x By, V x B) — p; 3V x B,V x Ey) dz
> [ it = i)V % BV x By e 2 0

the result follows. O

Let G be defined as in (5.1.10). We know from Theorem 5.2 that the L2-gradient of G is given

by

(VG(m, )= 6a(IlV x Ep©l = |V x E7|?), (5.2.1)

n=1
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oo
(VG(m, )2 = Y K6n(|E7el® = | E7<|I?). (5.2.2)
n=1
Now we can show the following result.

Lemma 5.7.

1

IfVG(m,c) = 0 and m < p;! as well as ¢ < €, (orm > p=* as well as ¢ > €,) then we also

have G(m,c) = 0 and thus m = u;! as well as c = ¢,.

Proof.

If VG(m,c) = 0 then we also have m(VG(m,c))1 = ¢(VG(m,c)), = 0 . Thus we also have
0= ZGn/Qm(IIV x Epel® — |V x Epel?) + Ke(I Be|® — | E7<||?)da.
n=1

After an integration by parts we get

0= 6, / (n x E™ 4p(V x E™)) — (n x E™ 4p(V x E™°)) dS
ne1 Jo9
o
= Z en/ (Am‘l,c - Aﬂr,erA;,,l——l,cA#r,ér)¢n ' ¢n dS)
n=1 oa

where we used that A;ll_l Ny =n x E,’{"“|ag. One easily sees that
Am-l,c - Ap.-,»,erA,—nl—l’c Lr€r — (Am"l,c - A#r,er)(A;Ll‘l,c + A;rl,er)Au»r,Cr'

We know that AL, and A}!

1 are strictly positive as well as Ay, .. Now if m > pu, then

€r

A1 — Ay, ¢, is non-negative and thus

(A-m‘-l,c - Al-l-mﬁr)(A;l—l’c + A;,-l,e,»)Aur,Er
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is non-negative and because of 0, > 0, for all n € N we have
(Am-te = Mprer AT+ A2 Wb ) =0 forn=1,2,....
Since the ¢, are an orthonormal basis and H'/?(div; Q) is dense in L2(092), we get
(Am-1,c — A#,,C,)(A:nl_l’c + A A e =0
However because A;l.l,c, Ajl, and A, . are strictly positive we get

Am"l:c = Aﬂ'nCr

which means

-1
m=p, C=E¢€n.

Although this result is encouraging it is is certainly not enough to guarantee a successful numer-
ical recovery of the coefficients u, and €, since we cannot expect to approximate the coefficients
w1 and €, strictly from below or above. To show that there is a lot of reason to believe that G
is essentially convex we show that if we replace the sum in the definition of G by a supremum,

the functional is essentially convex.
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5.2.2 Essential convexity for a supremum functional

Now we show that a related functional of G is essentially convex. For this we will use the

impedance map, i.e. the inverse of the admittance map. Given the map

AL HY?(curl; 8Q) — HY/?(div; Q)

r€r

we define a new functional on Dg x H'/?(curl; 09) (see (5.1.9) for a definition of Dg). Let

f € HY?(curl; 6Q). We set
Glm,c, ) = / ml|V x (E™ — BP9 + Rel|(BP — E™)|2 d,

where E7"° solves (5.1.3) with u;! = m and ¢, = c and n x E}*’|sg = A}, f. E}"'C is the

solution of (5.1.3), with u=! = m and ¢, = ¢ and yp(V x E™|5q) = f. We define the functional

H by
H(m,c) = sup G(m,c, f). (5.2.3)
IF<1
As before we assume that
0<pim S (z) < pipry, 0<ém<e(x)<em, =€ (5.2.4)

Before we prove any results about the functional H, we need some auxiliary results.

Lemma 5.8.

The map A3}, is symmetric, with respect to the L?-inner product.

Proof.
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We consider solutions u and v of (5.1.3) with
y(Vxu)=f r(Vxv)=g.
We get
[ 01 fi9) = (7,072 505 =
[ 1,727 x ) = (7 x w),7(w))dS =
/nu;l(v ¥ u, V X ) = (1, V % (1='V x v))de
- /ﬂ;gl(v X 4,V X v) + (V x (4=1V x ), v)dz =

/ ke, (u, v) — k%e. (v, u) dz = 0.
)

In the following we put a condition on p, and e, which will be crucial in the further analysis.

" Condition 5.9.

Let i, 6 € C3(Q). Let further ¥ CC Q be simply-connected. We assume that in Q\CV the

coefficients €, and yu, are constants and equal to 1, i.e.
pr(z) =1, &(z) =1, Vzre Q\57

and that S contains the support of p. — 1 and €, — 1.

With this condition we can prove the following result.
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Lemma 5.10.

The map A3}, — AT is compact.

Proof.
For this proof we factorize A7}, — A[} as
G(L - L).
Here G : H/?(curl; 0QY) — H/?(div; 8Q) is defined as
Gy =1 X v|sq,
where v is a solution of
VxVxv+Ekv=0, inQ\{, (5.2.5)
yr(V x vlaar) =¥, v7(V X v|aq) = 0. (5.2.6)

The Operator L is given by

Lf =vr(V x uylaar),

where u solves (5.1.3) and u, denotes the trace from Q\€. The operator Ly is defined analogously
by

Lof = vr(V x (uo)+|or),
where uy solves (5.1.3) with u, and €, replaced by 1 and 1. It is easy to see that L — L,

is a bounded operator. This follows from the well-posedness of the boundary value problem

associated with (5.1.3) and the continuity of the trace operator. To show the compactness of
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A7, — A7} we show that G is compact. For this we choose a domain Q" with ' C 2, 0" C

Hr,€r

and C®-boundary 99”. Then we decompose G as G = G2G;. The operators G; and G, are
defined as

Gy : HY?(curl; 8Y') — H?*(curl; 89")
with
G1yp = 7r(V X vlsqr),
where v is a solution of (5.2.5), (5.2.6) in Q\&’ and
Gy : HY*(curl; Q") — HY*(div; 8Q)

with

Gz(,o =n X u|39,

where u solves the boundary value problem (5.2.5), (5.2.6) in 2\Q” with boundary data ¢ instead
of Q\{ and 1+ respectively. It is easy to see that G; and G, are bounded and we can even show

that G, is compact. This follows from the fact that a solution of

VxVxv+kiv=0 in O\

is also a solution of
~Av+ kv =0, in Q\Q.

Since the above equation is elliptic we can get local regularity results (see Theorem 4.17 in
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[McL00]) to show that v € H*(U) for every open set U such that U C O\ and 89" C U and
any s € R. Thus the trace yr(V x v) € H*(curl; Q") for any s € R and the compactness follows

now from the Sobolev embedding theorem (Theorem 2.10). O

Corollary 5.11.

Let a(z) and B(x) satisfy the condition 5.9. Then the map

-1 -1
A”’"ye‘r - Aasﬁ
15 compact.
Proof.
Note that

-1 -1 _ A-1 -1 -1 -1
A — Do =M — A1 — A+ AL

We want to show that the functional H in (5.2.3) is essentially convex. After an integration by

parts we get
G(m,c, f) = /a Q(w(E}" © = EP9),yr(V x (B — E}©))) = /8 A Runef (5.2.7)
where
R’m,c = (A;rl,er - A;}c)Am,C(A;rl,er - A;l.],.c)

Note that R, . is a non-negative, compact and symmetric operator with respect to the L2-inner

product. The non-negativity follows from Theorem 5.5 and the symmetry and compactness
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follow from Lemma 5.8 and Corollary 5.11. By applying Theorem 2.8 and Corollary 2.9 we see

that R, allows a spectral decomposition in L?(82) and thus

H(m,c) = sup G(m,c, f) = G(m, ¢, fme) = Ame = | Bmcll, (5:2.8)

where A\, . is the largest eigenvalue of R,, . and fy, . is the corresponding normalized eigenvector.
The Gateaux derivative of the functional H is similar to the Gateaux derivative of the functional
G of the previous subsection.

Theorem 5.12.

For hy,, h, € L*®(Q) with h,, = h, = 0 in a neighbourhood of 9§} we have

H'(m, ¢)[hm, he] = /th(IIV x ERCl? = IV x ERCN) + hek® (| ERCNP = I BRI dz. (5.2.9)

Proof.

The proof is quite technical. The interested reader can find it in the appendix A.1. O

We do not show that if we have H'(m, ¢)[hm, h¢] = 0 for all Ay, h, € L®(Q2) with A, = h, =0in

a neighbourhood of 992 we also have H(m,c) = 0. Instead we show a slightly weaker version. If

(VH(m, o)) = |V x EF,

m,c

I =1V x EZ, I =0,
(VH(m, o) = |EF, |* - |1 EF, |I* =0
then
H(m,c)=0.

Before we show this, we need a few auxiliary results.
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Lemma 5.13.

Let hm, he € L®(2). Let ET™° be the solution of (5.1.3) and boundary condition
n X E}n,(:'aﬂ = A;rl)frf
and E‘}”’c the solution of equation (5.1.3) with boundary condition
mn X (V x Ef*|aq)|an = f-

Then for any fized f € H/?(curl; 052) we have

()

: 1 m+ehm,c m,c
- m,C __ 3 — P
1_1_{% c (Ef E_f ) Myhm, )

where u = P, p,. ¢ is the unique solution of the boundary value problem
V x (mV xu)+cu= =V x (h,V x E{™), inQ,

n Xulag‘—‘o.

(i)

1
lim -
e—0 g

(En}n+ahm,c _ E";n,c) = Pm,hm,f;
where u = Ism,hm, 7 1s the unique solution of the boundary value problem

V x (mV xu)+cu=-V x (hnyV X E‘}"’c), in Q,

mn x (V X ulaq) X = —hnpn X (V X ulsq) X n.
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. 1 m,c+ehe m,c
i (274 — EP) = P,
where u = Py, ¢ is the unique solution of the boundary value problem
V x (mV x u) +cu=—hE{™, inQ,
n X ulgq = 0.
(iv)
. 1 - set+ehe Fm,C >,
l%E(E}n _Ef )=chhc,f’
where u = Py, 5 is the unique solution of the boundary value problem
V x (mV X u) + cu = —th’}“’c, in Q,
mn x (V X ulag) x n = 0.
Proof.

The proofs are standard and therefore omitted. A similar proof can be found in [Jai04][Lemma

3.2.10]. O

We point out that in the above Lemma we did not demand h.,)aq = helsqg = 0.
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Lemma 5.14.
For f € HY?*(curl; 8Q) and m,c € D¢ we define T s : HY/?(curl; 0Q) — L'(Q) x L(Q) by

(V x B,V x E™¢) —(V x B[,V x Em«)
Tm,c,f(g) = _ ~
(E}n,c, E;n,c) — (E;n’c, E;z,c)

Then Ty, ¢ : L®(Q) x L*®(Q) — HY?(div; 69) is given by
T:m,c,f(hm) h’C) = A;:,Gr (hm’Yt(v X E;n) + m’YT(v X Pm)h'm)f)) + V X Pcyhmf + 'Yt(Pm,hm,f + Pmahmyf)

and

() Te fme(fme) = VH(m);

(ii) for any g € HY?(curl; Q) and m,c € Dg we have T*

m,c,g

(m,c) = B(g), where

B=A7 Amc ALt —ADL.

Hr€r
(iii) B is symmetric with respect to the L?-inner product.

(1)

HY2(curl; 8Q) = R(T} . 1) ® N(Tpez)-

Proof.

We have

| /Q Ty 1(9) [Py el =

/9 h(V X EP*°,V x EP©).— han(V x ET*°,V x E™)dz
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b [ AP, Bp) — hulBpe, Bpeyde =

/m(’Yt(E;n’C), b ¥ (V X EF)) = (W (ET), hynyr(V x E7))dS

+ L (Bg,V X (hmV x ET"%) 4+ h ET) — ( E;n,c, V x (hnV X E;n,C) + hy E}n,c> dz =
/m(’ft(E;n’c)a hmyr(V % E}"’C)) — (fyt(Eg"C), A yr (VX E}n,c»ds

+ /Q(E;"»c’ —V X (MV X Prpniz) = CPrpmg — V. X (MV X Pyop z) = cPap s)dz

- A(E;n’c, -V x (mV X Pm,hm,f) - C]Sm’hm,f -V x (mV X Isc,hc,f) - C.lsc,hc,f) dz.

An integration by parts gives
[ T (@)t el =
L B, e (9 x BP) = (B, (¥ x E))as
= [ (B mU(Y X Prpg)) = (e ), (T X P S
- /6 Q<7T(E;,""”), mY(V X Popes)) = (vr(E7%), me(V X Pep,))dS
- /n (BT, cPmpf + CPenes) + (B, cPrp s + cPop s)d
- /Q m(V X E7"°,V X Pups+V X Pepog) = m(V X BT,V X Prp i +V x By, 5) da.

Since yr(V X Pyp, ;) = 0 implies 1,V x Py, s) = 0 (see 2.17) and Ye(Prhm,f) = % (Prpe,s) = 0
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we get after a further integration by parts
[ Tns @)l hlde =
[ B ), b (9 % BP) = ((E), eV x E))dS
— | n (B (Y X Prap)) = O (E), (¥ X P ))dS
= [ rEpe)mul¥ x Ponep)as
+ /m«%(ﬁm,h,,,,f + Pop g),myr(V x E)) dS.
Since —hmyr(V x ET*¢) = myr(V X P, ) and
(r(EF") mye(V X P, s +V X Pope ) = —(0(Eg"), mYr(V X Prjim,f + V X Pep 5)
we get
[ Tncr (@)l hlda = |
[ OB hattr(V % )+ m10(V X Prp + 9 % Popo S
+ /an(m%(v X E7), % (Prhn,f + Pepers))dS =
/a N9, 129 % BF) + MUV X Prps +V % Pape 1)
| B O Py + Pre S =
/ T2 (hm, he)g dS.
a0

Property (i) is obvious, property (ii) follows from the fact that Py m; = Pecs = 0 and Ism,m, FF

P..; = —ET° by definition. The symmetry of B is obvious. To prove (iv) we consider a
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9 € R(T}, . ;)" Then for all hy, he € L™ we get

/Q T ()l Belde = /a (0, T Py he))dS =

If we choose hym = $gn 0 (Trnef(9))1, he = Sgn © (Tme,5(9))2 We get ||Time,r(9)]|> = 0. Thus

R(T}, . )" C N(Timcs)- The reverse inclusion is trivial and thus we get (iv). O

Theorem 5.15 (Essential convexity of H).
Let VH(m,c) =0 (as on Page 126) in 2 and let m = c = 1 in a neighbourhood of OS2, then we

have H(m,c) = 0.

Proof.
Let @ denote the orthogonal projection from H/?(curl; 8Q) onto N(Tmcfm,.) and I — Q the

projection onto R(T};, S, .)- Since m = p- ! in a neighbourhood of 92 the operator B is compact

since we can write B as
B = (Am,c - APar,Er)(A_ + A’;c,- €r A;y-l,ér'

'Again we apply Corollary 2.9 to get an eigensystem for B in L?(8Q). Thus by the Hilbert-
Schmidt theorem it has an eigensystem where the eigenvector f; correspond to the eigenvalues
p; and span the range of @) and the set g; corresponds to the the eigenvalues \; that span the

range of I — Q. Consequently if we set fc = > oufi +>_ ;9; then

BQfme=B (Z Oéifi) = picifi = Q(Bfm)-
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So for all g € H/?(curl; 8Q) we get
0_/Tmcfch mcg(m C) (mcdx—/ Q mcgmc) mc,fma(mic)
- [ @B(9): BUnddS = [ g BQBfn.
£ £
Thus we have BQB fr,. = 0 and therefore (QB)2f, . = 0 and hence
| QBine: BQinedS = | QBfme: QBfneds =0
80 a0

and thus

QB fm,c=0. (5.2.10)

Next for all g € H'/?(curl; 6) we have (I — Q)T . ,(m,c) = Ty, ;. (hm, he) for some hp,h. €

L*(82). Since T, fyn . (frm,e) = VH(m,c) = 0 we get

0= [ (b ) Tz = [ T gy s FnelS = [ (1= QT (m, &) FinedlS
and because of
| U= QT5ey,0) fmedS = [ (1= QB) - S = [ g BU = Q)fmcds
for all g € H2(curl; ), we get
Bfe = BQfme=0.

From (5.2.10) we conclude

Bfme=0. (5.2.11)
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Now we set A 1= Ap, CA e, and get

(A* = I) fme =0 (5.2.12)
Using
Rpcfme = Bfme+ 2(Ane = ALl o) fme = Amefmec
we get
(Mgl = A5V Fme = 22 fre
Consequently
HmE) = Mme = [ (1= Wfme 0k = Nl imedS = [ (1= M- 25 S,

If Am,c > 0 then from fr, - fm,e =1 and (5.2.12) it follows that
/ (A + I)fm,c : fm,c =0.
an
A further application of (5.2.12) gives
(A2 = T4+ 2(A+ D)) fme fm,edS = / (A+I)?fme fmedS=0.
a0 a0

This leads to the important relation

Afm,c = _fm,c: A;:cfm,c = p,r,erfmc (5213)
Therefore we get

)‘m,c = H(m7 C) = /Z?Q(I - A)fm,c . (A_ - A;,Ie,)fm,cds

=2 f (AZL fne = AZL ) - fomedS
N
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=—4 / AL fme fmedS < 0.
a9

which is a contradiction. O

So although we cannot show at the moment that the functional G defined in (5.1.10) is essentially
convex, we have seen that if we replace the sum in the definition of G with a supremum, the
functional becomes ‘almost’ essentially convex. Thus we deem it likely that G itself is essentially
convex. This assumption is also supported by numerical experiments.

We present a numerical recovery procedure for the coefficients u, and €, in Section 5.4. Before

we do this we show another important result for the functional G.

5.3 Further results for the functional G

Finally we show that if G (as defined in (5.1.10) tends to zero, the corresponding admittance
maps tend to the given data. We first define the appropriate norm for which we want to show

convergence.

Definition 5.16.

We define the norm || - ||s as

[|Alle = sup AR gr-1/2(curjo0)-
O:9=Y" Bn®n,|B|<0

Now we can show the following.

Theorem 5.17.
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Suppose we have a sequence (my, ct)ten i Dg. If then G(my,¢;) — 0 ast — oo, then also

[ — Aprelle = 0.

mt_l,q
Proof.
G(m¢,c;) — 0 as t — oo implies that
ke ~
Zgn“E’th’Ct - E:Lm,q”%{(curl;ﬂ) —0 as t— o0 (531)
n=1
From the trace theorem (Theorem 2.18), we get
”’Yt(E;nt,Ct - E?’“)”H—l/ﬂ(div;an) < C”E;an,q - Eg%,c‘tllil(curl;ﬂ) (532)
for some constant C. If follows from the definition of ET*¢ and E™ that
W(Ego® — Epec) = (I - Ar_nt,CgAlir,Gr)¢n' (5.3.3)
Therefore we can conclude, that

oo
Z gn”(I - A;Lt,CtAﬂrr,ff’)¢n”i]—l/z(div;aﬂ) —0 as t— oo.
n=1

Since the sequence (my, ;) converges, it is bounded. Consequently the ||App, ||y are uniformly

bounded and from the identity,

— -1
Amt,ct - A#r;er - Amt,Ce(I - Am;,ctAlimer)

we get
oo
Z 9n||(Ame,Cc - Anr,fr)‘f’n“f’-l-l/?(div;an) — 0.
n=1

The result now follows from the definition of the norm || - ||e. O
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5.4 Numerical Implementation

In this section we present several results to show that our approach is also effective in the case of
given boundary data. First we present a few results with global boundary data, where we either
recover one or two coefficients. Then we also show results with local boundary data. In all our
calculations we use synthetic data. However we never use any clean data, but always data with

at least 3% white noise.

5.4.1 The implementation

As with given interior data, we minimize the functional G(m,c) by a conjugate gradient algo-
rithm. As before we need a Neuberger gradient instead of the L?-gradient, since we require m
and c not to change on the boundary. Since we have shown that there is reason to believe that
G(m,c) is essentially convex, we do not have to change the general structure of the a,lgorithm.v
Our given data consists of electric - magnetic boundary value pairs (n x E,|r, yr(V X E),|r),
1< n < N, where N is a finite number and T" is either equal to Q2 or an open subset thereof. In
all our computations we chose Q = [—0.5,0.5]3. If we use more than one Laplace transformation
we get M sets of electric-magnetic boundary value pairs for each frequency A;, 1 < j < M.
We either produce these pairs by choosing time-dependent boundary conditions, solving the
corresponding Maxwell systems in Comsol Multiphysics and applying M finite Laplace transfor-
mations, or we choose time-independent boundary conditions and then solve the corresponding

time-independent Maxwell systems with frequencies A;, 1 < j < M. As in the case of interior
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data we use frequencies between 240 MHz and 900 MHz. In all our calculations we specify mag-
netic boundary conditions on I and compute the corresponding electric boundary conditions.
We use either polynomials up to degree four or trigonometric functions to specify the magnetic
data on I'. Apart from different given data and a different gradient we need only a different stop-
ping rule to minimize G(m,c). Since we have shown in Theorem 5.16 that the data converges

uniformly as G(m, ¢) tends to zero, we suggest the following stopping rule.
o Check if the norm of the L2-gradient VG(m, c) is below a certain value.

e If (i) is true, check whether the difference between the given (n x Eijr,v7(V x E;)|r)

boundary data and the current data (n x EM™¢|r, yr(V x EM™°)|r) is sufficiently small.

We do not finish all iterations, since we are mainly interested to check whether our approach
is effective and often this can often already be seen after a certain amount of iterations. The
reason for this was, that a complete recovery of the coefficients could last up to 6 days on a
single PC and up to 3 on a parallel system. One reason for this is that the algorithm itself
is expensive, especially since we did the computations in 3D and had to use quadratic finite
elements. We first tried to implement the algorithm using linear elements. However this proved
to be insufficient, since especially the computations of derivatives on the boundary of 2 was
unsatisfactory in this case. Other reasons for the long computation times are certainly that
although Comsol Multiphysics is a very good software, it is certainly not as fast as a solver

specially designed for our coercive Maxwell system. The main reason however is that as in the
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case of interior data we used a very simple parallel implementation with remote logins. This is by
no means the most efficient way to implement a parallel version of our algorithm and we believe
that with a more sophisticated method, the computation time could be reduced significantly.
Our implementations proved to be sufficient to show that our method works very well and that
even in the case of data prescribed only on one face of the cube [—0.5,0.5]%, we can recover the
coefficients u, and e,. Thus although the algorithm is too expensive for any applications at the

moment this might change with better hardware in the future.

5.4.2 Numerical results using global boundary data

As in the case of interior data we use synthetic boundary data for our implementations. As
before we have a certain amount of noise in the data between 3% and 10%. However as can
be seen from the following results, the noise does not ruin the recovery of the coefficients. We
mainly try to recover discontinuous functions here, since in most applications this is the case.
The first implementation is not done in parallel but on a single pc. We recover only ¢, here and

set p, = 0.5. The true ¢, is given by

2.0, if |IE1| < 0.3, I(le < 0.3 and I.’Z’3| < 0.3,
e,.,l(a:) =

0.5, otherwise.
We use 7 electric-magnetic boundary value pairs and one frequency A such that k% = 1. We
apply a noise of 3%. We see that after a 100 iterations that the shape of the function is well

approximated and also the overall quality of the recovery is sufficient as can be seen from the
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L2-error.

Figure 5.1: True er,i at xz = 0.

Figure 5.2: Computed er# at xz —0, 100 iterations, L2-error = 0.114
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Our second implementation was done in parallel. Again we set /ir = 0.5, but this time we recover
a function with two bumps instead of one. As before we use 7 electric-magnetic pairs and only

a single frequency A such that k2= 1. We apply a noise of 3%.
1.5, if 0.1 <x1 <04, 0.1 <x2< 04 and [x3| < 04,
er2¢{x) = ~1:0) if 0.4 <xi <-0.1, -0.1 <x2< 0.4 and |s3] <04,

0.5, otherwise.

We see that we recover both bumps nicely and that the L2-error is also satisfactory. This is quite

encouraging, since it shows that we can also recover two objects at a time.

Figure 5.3: True er)2 at X3 = 0.
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Figure 5.4: Computed en2 at x3= 0, 500 iterations, L2-error = 0.106
In our next implementation we show that it is possible to recover both coefficients /ir and er at

the same time. We apply a noise of 5% to our data and try to recover the following coefficients.
1.5, if0.1 <xi <04,0.1<x2< 0.4 and |x3| < 04,
= 1o, if—04<x|< —0.1, 0.1 <x2< 04 and |x3|<04,

0.5, otherwise.

2.0, ifwxil < 0.3, x21 < 0.3 and [m31< 0.3,
HrAx) = <

0.5, otherwise.
As one can see from the Figures 5.6 and 5.8, the recovery of lir is by no means as good as the
recovery of er. However this is due to the fact, that the components of VG(m, c) needed for the

update of m in every iteration, involve the computation of V X Em,c and V X E m,c. Since we
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only use central differences to compute derivatives and noisy data, this is no surprise. Still the

pictures show that the recovery works.

Figure 5.5: True &3 at X3 = 0.

Figure 5.6: Computed er3 at x3 = 0, 460 iterations, L2-error = 0.102
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Figure 5.7: True fir)3 at x3=0.

Figure 5.8: Computed /*.)3 at x3 = 0, 460 iterations, L2-error = 0.297

We see that even with a great amount of noise and without any sophisticated numerical dif-

ferentiation algorithms our approach produces satisfactory results, even if both coefficients are
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unknown. Now we want to investigate the more realistic case of given local boundary data.

5.4.3 Numerical results using local boundary data

In this section we apply the same algorithm as before, however we apply the data only on one
face of the cube [—0.5,0.5]% at 3 = 0.5. On the other faces we apply the perfectly conducting
electric boundary condition n x E = 0. Although a perfectly conducting boundary condition is
suitable for a lot of applications in electromagnetic imaging, it is for example not suitable for
the detection of buried objects like landmines. For these problems it is more realistic to apply
symmetric, periodic or some kind of absorbing boundary condition on the other faces. However it
is not straightforward to implement these boundary conditions in Comsol Multiphysics and thus
we choose simply perfectly conducting boundary conditions. Even though we have a uniqueness
result in the case of local boundary data (see Theorem 3.11), we can’t expect the recovered
coefficients to be of the same c;uality as in the case of global boundary data. The main rule
for inverse problems is that the better your data is, the better is your solution. Thus we first
consider the recovery of a simple smooth function to see if the method works in principle. We

set ur = 0.5 and try to recover the coefficient
— (2 2
€ra = (z°—1)(y* — 1)+ 0.5.

We apply a noise of 6%. Since we apply the data on the top of the cube [—0.5,0.5]® we expect the
recovery to be better closer to the face z3 = 0.5. Thus we consider projections at three different

levels. We see in Figure 5.10 that we get a good approximation to the true coefficient, however
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Figure 5.9: True erj4.

Figure 5.10: Computed e .« at = 0.35, 50 iterations, L 2-error = 0.02
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Figure 5.11: Computed erd at x3 = 0.23, 50 iterations

Figure 5.12: Computed e-: at x3 = 0, 50 iterations
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with a few small errors. At the lower levels the recovery is smoother, however we can see in
Figure 5.12 that the height of the recovered function there is not as good as at the projections
closer to the data. This is not surprising, since we expect the recovery to be much better closer
to the given data. The small errors close to the data can be explained by the fact, that the
noise in the data has a bigger effect the closer we are to the top face. Next we try to recover a

discontinuous function. We set
4

1.5, if0.1<z; <04, 0.1< 2, <04 and |zs] < 0.4,
€r5(2) = 910, if —0.4<z; < 0.1, 0.1 <z < 0.4 and |23 < 0.4,

0.5, otherwise.

\

and apply a noise of 6%. Again we look at the recovered function at three different levels. Now
this is even more interesting since we have big discontinuity at z3 = 0.4. We see in Figure 5.14
that the height of the true function is approximated best the closer we are to the top face. We
also see that the discontinuity has quite some effect on the recovery of the function. However
one has to look at these pictures from a three-dimensional perspective. We can see then that a
- bit further away from the discontinuity the recovery looks much smoother, although the height is
not as good. All in all, considering the little amount of data we used, the quite high level of noise

and the fact that the recovered function is discontinuous, the recovery is still quite convincing.
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Figure 5.13: True ens for 0.4 > x5 > —0.4

Figure 5.14: Computed eis at :5 = 0.35, 120 iterations, L2-error = 0.172

149
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Figure 5.15: Computed en5 at x3= 0.23, 120 iterations

Figure 5.16: Computed e?) at x3 = 0, 120 iterations
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We confirm these results with another implementation for a discontinuous function. This time

we apply a noise of 8%.

1.2

b

if Ja:1] < 0.28, fa’l < 0.28 and [E3| < 0.4,

0.5, otherwise.

As before we consider the recovered function at three different levels. We see the same effects

Figure 5.17: True en6 for 0.4 > x3 > —0.4

as we had with the earlier implementation. The function is best approximated the closer we
are to the top surface. However there the discontinuouty has quite some effect on the recovered

function and it does not look as smooth as the projections further away from the top surface.
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Figure 5.18: Computed a8 at x3=0.35, 100 iterations, L2-error = 0.109

Figure 5.19: Computed e at x3 = 0.23, 100 iterations
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Figure 5.20: Computed erj6 at x3 = 0, 100 iterations
Finally we present an implementation for the case of two unknown coefficients. We try to recover
the coefficients

1.0, if [#i] < 0.28, 1x21 < 0.28 and |x3| < 0.4,

Cr,7(x) = <

0.5, otherwise.

and

My = [x2~ 1)(p2~ 1)+ 0.5.

Again we apply a noise of 8%. We see that as before we can approximate the function er quite
well even after only 150 iterations. The convergence is again the faster the closer the projection
is to the given data.  As we have seen in Figure 5.7 and Figure 5.8, the recovery of fir works, but

is slightly unsatisfactory, due to the error we get in the computation of the functions V x g .
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Figure 5.21: True & for 0.4 >Xx3> —0.4

Figure 5.22: Computed ej at x3 = 0.35, 150 iterations, L2-error = 0.124
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Figure 5.23: Computed erj7 at X3 = 0.23, 150 iterations

Figure 5.24: Computed ee7 at = 0, 150 iterations
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Figure 5.25: True firj for 0.4 > £3> —0.4

Figure 5.26: Computed fi>7 at «3 = 0.35, 150 iterations, L2-error = 0.048
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Figure 5.27: Computed /izj at x§ = 0.23, 150 iterations

Figure 5.28: Computed firj at x8 = 0, 150 iterations

157
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and V x E™¢. Nevertheless we see that the recovery works well, even in the case of two unknown
coefficients.

We have shown that the variational algorithm outlined in the first three sections of this chapter
produces satisfactory results of the recovered functions €, and p,.. As to be expected the results
were a lot better in the case of global boundary data. However even in the case of local bound-
ary data, the method produced convincing results, especially in the case of only one unknown
coefficient. As mentioned it is certainly desirable to implement this method in a more efficient
parallel environment to improve the quality of the recovery as well as to reduce the computation
time.

In the next chapter we discuss an alternative approach to the inverse problem, where we develop

a direct method to compute the support of the functions ;! — 1 and €, — 1.
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We have seen in the last chapter, that a successful recovery of the coefficients u, and €, can be
achieved even under the presence of noise. However we have also seen that this is a very time-
intensive process. Although this might be overcome in the future by the use of better hardware, it
is still unsatisfactory at the moment. To detect a buried object it is often enough just to determine
the support of the coefficients y, and €,. In the last few years two of the most promising methods
to emerge to solve these problems are the Linear Sampling Method [CCM04], [CHP03b] and the
so called Factorization method [Kir03], [Kir04], [GHK*05]. We want to point out especially
the works [Kir04] and [GHK™05] since they deal with inverse problems for Maxwell’s equations,

however in a different form and using different data than in the present work.

6.1 Introduction

We want to develop a factorization method to determine the support of €, — 1 and p;' — 1 in

the equation

V x (u7'(z)V x E) + k%, (z)E =0, in B, (6.1.1)

where B is a domain in R3. As before we make the following assumptions.

159
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e B is a bounded domain in R® with a C'!-boundary 8B.

o 0<pim Sp;(x)<pm, 0<eém<e(z)<ey, z€B.
Furthermore we assume p,.(z) = ¢.(z) = 1, for all x € 0B and outside of B. We already know
from Theorem 3.5 that the impedance map Z : H~%/?(curl; 8B) — H~'/?(div;8B)

Z(y(VxE)=nxE, ondB

uniquely identifies the coefficients u,. and ¢,. To ensure a clear notation, we write Z instead of
Z,,. in this chapter. We can expect u;! # 1 or €, # 1 only in regions where a disturbance of
the background medium is located. The basic idea behind the factorization method is to make

use of some sort of symmetric or self-adjoint factorization
Y = GSG*, (6.1.2)

where Y is the measured data, S is a symmetric or self-adjoint operator and the operator G
stores the information of the support of the wanted coefficients. The operators G and G* are
either adjoint or at least dual to each other. In this chapter we consider only bounded operators

and therefore symmetry is equivalent to self-adjointness. This leads to the following setting.

6.2 The Factorization

We consider the electric boundary value problem

V x (u;'V x E) + k*¢,E =0, in B, (6.2.1)
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yr(V x E)|s = f € H"/?(curl; 8B) (6.2.2)
and the corresponding impedance map Z : H~'/?(curl; 8B) — H~'/?(div; 8B)
Zf=nxE, on 0B. (6.2.3)

We assume that u! and €, are of the form

pr () = (6.2.4)

1, z € B\Q
e (x) = (6.2.5)
1+e6(z), ze€.

Here ) denotes a domain with a C!-boundary such that § C B and B\Q is connected. For

the factorization methad we define the electric field Ey as the solution of the boundary value

problem
V XV x Ey+kE;=0, in B, (6.2.6)
vr(V x Eo)los = f € H™Y?(curl; 8B) (6.2.7)
and the corresponding impedance map Z, : H~Y/?(curl; 8B) — H~'/?(div; 0B) by
Zof =n x Ey, on OB. (6.2.8)

We know from Chapter 2 that both boundary value problems (6.2.1), (6.2.2) and (6.2.6), (6.2.7)

have unique solutions in H (curl; B) and we know from Lemma 2.28 that Z and Z; are well-defined
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isomorphisms. Further we know from Theorem 2.17 that H~'/?(curl; B) and H~'/?(div;0B)
are dual to each other and from Theorems 5.8 and 5.10 that the map Z — Z; is self-adjoint and
compact. We want to make use of a factorization of Z — Zy to determine the domain 2. In order

to do this we define the operators
G : H™Y?(curl; 8Q) — H~Y%(div;0B), T : H Y/%(div;80) — H?*(curl; 0Q).
We set G = n X Alyp, where A € H(curl; B\Q), with n x A|sp € H~'/?(div; B) solves
VxVxA+kA=0, inB\Q (6.2.9)
yr(VxA)=1, on 82, mxA=0on 0B. (6.2.10)
We set Th = ~p(V x Cy), on 8Q where C € H(curl; B\Q) N H(curl; ) and C solves the
transmission problem
VX (u7'V x C) +k*¢.C =0 in B\8Q, ~7(V xC)=0 on 8B, (6.2.11)
(VX Cy) —yr(VXC.)=0o0n 892, nx(Ci)—nx(C-)=~hon Q. (6.2.12)
Here C, denotes the trace from the exterior and C_ the trace from the interior of 2. Both the
problems (6.2.9), (6.2.10) and (6.2.11), (6.2.12) have unique solutions. For (6.2.9), (6.2.10) this
follows from Theorem 2.22. Uniqueness for (6.2.11), (6.2.12) can easily be seen as follows. If
Th =0, then by (6.2.12) and Corollary 2.31 we have C € H(curl; B). Therefore C is the unique

solution of (6.2.1), (6.2.2) in H(curl; B) with f = 0, which implies C = 0 and thus h = 0. To

show existence we use the variational formulation of the transmission problem, which is to find
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C € H(curl; B\Q) N H(curl; Q) with n x Clop € H~V/2(div;8B) and n x (C}) —n x (C_)=h
such that

/,u;‘(v x C,V X @) + k%¢.(C,p)dx = 0, Vo € H(curl; B).

Q

Existence now follows from the Lax-Milgram Theorem 2.21. We also need the operator
To : H™Y?(div; Q) — H™?(curl; 69),

which is defined in the same way as T', but with p! and €, replaced by 1. Before we present a

factorization of the map Z — Z,, we need a few auxiliary results.

Theorem 6.1.

G is compact and one-to-one with dense range. Furthermore the adjoint of G is given by G* :

H~12(curl; 8B) — H~Y2(div; 8Q) with G*¢ = nx D, on 09, where D € H(curl; B\Q) satisfies
VxVxD+k*D=0. in B\Q,

yr(V x D) =0 on 89, ~r(V xD)=¢ on 0B.
Proof.

We first show the form of G*. Using the duality of H~'/?(curl; Q) and H~'/%(div; Q) and

H™/*(curl;0B) and H~'/2(div;0B) resp. we get

(GY, )12 — (¥, G )2 =

/ {(%(4),yr(V x D))dS + / (vr(V x A), n(D))dS.
9B : an

An integration by parts gives
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(Gwv (P>L2 - ('l,b,G*gD>L2 =

/ (Vx AV x D)dz—
B\Q B\l

N -~ W
a =0

(A, V x V x Ddx+/ (7(A),yr(V x D))dS
Joa

S/

(VxV x A D)z +/ (yr(V x A),%(D))dS .
B\f1 8B ,

b =0

We have a = b and thus

—/ (Vx D,V x Aydz+
B\

NS ~

(G, 8)12 — (1, G*6) 12 = /B 4 =KD) = (K4,D) =0.

The compactness of G was already shown in the proof of Theorem 5.10. Injectivity of G is

equivalent to the uniqueness of the Cauchy problem for the equation
VxVxA+k2A=0, in B\Q,

yr(VxA)=0, on 0B, nxA=00B

which follows from Theorem 2.33. The density of G is equivalent to the injectivity of G* which

again follows from the uniqueness of the Cauchy problem. O

The next theorem is important for the factorization of Z — Zj.

Theorem 6.2.

Let pi(z) > a >0 and e1(z) =2 a > 0 or uy(z) < B <0 and &(z) < B < 0 for some o, B € R.
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Then there exists a ¢ € Ry such that
((T - To)h, h)Lz Z c”h”H“l/z(div;aQ)? Vh S H_1/2(diV; 89), (6213)
or

((To - T)h, h>L2 Z c”h”H-l/Q(div;BQ)’ Vh € H“l/z(div; 39) (6214)

TESP.

Proof. Let ui(z) > o > 0 and €;(z) > o > 0. Then
(Th,h)r2 — (Toh,h)r2 =
/m(WT(V x C1),1(Ct = C-)) = {v7(V x Co+), 1(Co,+ — Co,-))dS.
Integration by parts yields
(Th, h)LQ - (T()h, h)Lz =
—/(V x (utV x C),C) — Y (Vx C,V x C)dz
Q
+/(V x V X C(),Co) - (V X Co,v X Co)d(l?
Q
-/ (V x (u'V x C),C) — pyH(V x C,V x C)dz
B\Q
+/ (VXVXC(),CQ)“(VXCO,VXCQ)CL’E=
B\$1
—/<v x (UIV x C),C) — u=N(V x C,V x C) dz
B

+/<vXVXCo,Co>—<VXC(),VXCQ)dIE=
B
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AWMQCHmexCNxCMmiéﬁxh%%HVX%NxC&m=
/Bkze,(C, C) — k*(Cy, Co)dz + /B,u:l(V x C,V x C) = (V x Cy, V x Cp) dz.
A few simple calculations give
(Th, k)2 — (Toh, h) 2 =
AWMQ@—W@ﬂMM—L%VM%VM%—@Mx
+/B;/,,‘1<V X C,V x C) —2(V x C,V x Cp) + (V x Cp,V x Co)dz =
/B K2e,(C, C) — k%(Co, Co)dz + /B 22(Co, Co — C) dz
+/Bu,‘1(v x C,V x C)—2(V x C,V x Cq) +(V xCp,V x Cp)dx =
/;3 K2e.(C, C) + k*(Co, Co)dx — 2k*(Cy, C) dx
+/B,LL,‘1(V x C,V xC) —2(V x C,V x Cp) +(V x Cp,V x Cp) dx. )
Using €; > a > 0, the first integral can be estimated by
/B K2(1+ €)(C, C) + K(Cy, Co)dz — 2k*(Co, C) dz =
/B e1(C, CY dz + /B RC = Coll? de = |l
With u; > a > 0 we get for the second integral
/B(l + NV xC,VxC)=2(VxC,VxCo)+(VxCpyV x Coldz =

/ 1|V x G + |V x C =V x CollPdz 2 al|V x Cllzaayp.
A ,
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So altogether we get

<Th7h‘> - (Toh, h) 2 a”CHH(cuﬂ;Q)-

To show the coercivity of T — Tp in H~'/?(div; 8Q) we argue as follows. If (T — Ty)h,h) = 0,
then by the above inequality we have C =0in . Thus n X (VX C;)=nx(VxC_.)=0on

a9, giving C = 0 in B\ as well. Thus we get h = n x Cy —n x C_ = 0. This shows that
(T = To)h,h) =0>0, Vh#0.
Now assume we have a bounded sequence h; in H~/?(div; Q) such that
sl e-12(@ivio) = 1, and (T = To)h, k) — 0, j— oo.
Then C; — 0 in @ and thus n x (V x Cj4) = n x (V x C;_) — 0, yielding as above that

n x C; 4 —n x Cj_ =— 0 and thus h; — 0, which is a contradiction. O

We can also show that T" and Tj are self-adjoint.

Theorem 6.3.

The operators T and Ty are self-adjoint.

Proof.
We show it just for T, the calculation for T is the same. Let Th = yr(V x C;) and let F be the

solution corresponding to the transmission problem (6.2.11), (6.2.12) for g instead of h. Then
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<Th7g>L2 - <h> T9>L2 =

/8 (Y X C), u(Fy — F-)dS - /a (4 = C),72(Y x Fy))ds.

An integration by parts and the transmission conditions in (6.2.11) and (6.2.12) give
{Th,g)r2 — (R, Tg) 12 =
[ (O (¥ % F)) = ({9 x o), w(F-))aS
+/B\§—(V xVxCF)+(VxC,VxF) da:+/aB(fyT(v x C), 1 (F))dS

+ [ (CVxVxF)—(VxFVxC) dz-—/ (ve(V % F),%(C))dS =
B\Q aB

_KXC,F)dz + / (v (V x C), %(F))dS

B\D 8B

- [ R(C R da= [ (V% F)u(Ci)as =
B\Q 8B

/8 (¥ % C) ul(F)) = (12(V x F), %(C))dS =

/(-v X (U= x C), F) + (u=1V x O,V x F) do
B

+/(V>< (u7IV x F),C) — (u'V x F,V x C) dz = 0.
B

Equipped with these results we can prove the desired factorization.
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Theorem 6.4.

The following factorization holds:

Z — Zy = G(T - Ty)G". (6.2.15)

Proof.
We have already seen in the proof of Lemma 5.10, that we can write
Z — Zy = G(L — Ly),
where L : H~/2(curl; 8B) — H~/?(curl; 89) is given by
Lf =v1(V x E4|aq),
where E solves (6.2.1), (6.2.2) and L, by
Lof = vr(V X (Eo)+|on),

where Ej solves (6.2.6), (6.2.7). Two integration by parts show that the adjoint of L is given by
L* : H-?(div; Q) — H~'2(div;8B) with Lh = n x C|sp, where C solves (6.2.11), (6.2.12).
Thus we get

L*h=GTh, Lih=GT,

implying

L—Lo= (T — Tp)G",

and therefore
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Z — Zo=G(L - Ly) = G(T — To)G".

This factorization is the main tool for the determination of .

6.3 Determination of 2

The idea behind the factorization method is to prove that the range of G determines Q. If one
can additionally show that the ranges of G and Z — Z; or for example GY/? and (Z — Z)/?
coincide then one has shown that the given data, determines €2 and one also gets a direct method
to determine all of 2. We show hére only that the range of G determines §2 and thus using the
factorization (6.2.15), that the given data determines a subset 2; of €. We do this because at
the moment we have no proof that the range of G and Z — Z; coincide.

The task is now to construct singular solutions of (6.1.1) to characterize Q. For this we need a

fundamental solution of

VxVxE+KE=0. (6.3.1)

We note that the fundamental solution of the equation

—~AE+KE=0 (6.3.2)
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is given by g(z,y)I, where I is the identity matrix in R® and

e—Fllz=l

g@w=_ﬂﬁfm~ (6.3.3)
Using the relation
VxVxE=-AE+VV . E,
we can conclude that the fundamental solution for (6.3.1) is given by
2(2,) = 95,1 = 15 V4Vy - (9@ 1)), (634
To construct the magnetic Maxwell function M(z,y) we set
fu(@) = 70(Vz x @(z,y)).
For a fixed y let E, be the unique solution of (6.1.1) with boundary condition
(VX Ey) = fy-
Now we set
M(z,y) = ®(z,y) — Ey(z). (6.3.5)
M (z,y) inherits the singular behaviour of ®(z,y) i.e. we have
tm [z, ) | = oo. (6:39)
Let b be a unit vector in R3. We set
wy(z) = M(z,y)b, =z on OB. (6.3.7)

Now we show the following.



172 6 A factorization method

Theorem 6.5.

Let o, be defined by (6.3.7) for y € B. Then ¢, belongs to the range of G if and only if y € Q.

Proof.

If y € Q, then obviously, Gy = ¢, for ¢ = M(z,y)b on 02. Now we consider the case y ¢ €.
Assume that Gy = ¢, for some ¢ € H~/?(curl; 8Q). By A € H(curl; B\Q) we denote the
corresponding solution of (6.2.9), (6.2.10). We set E = M (x,y)b in B\Q. From y7(V x E) =
0=1r(V x A) and n x Alsp = ¢y = n x E|sp and the uniqueness of the Cauchy problem, we
conclude that E = A in B\{Q U b.(y)} for every € > 0, where b.(y) is the ball around y with

radius €. However due to the fact that A solves the equation
—AA+Kk*A, in B\{QUb(y)},

we can conclude from standard regularity estimates for elliptic system (see [McLO0O][Theorem
4.17]) that A has to be continuous on every subset U CC B\Q. Therefore we get || A= < c for

some constant ¢ on be,(y) for a distinct £9. But this leads to a contradiction since
|Ellge — 00, asz—y

and therefore || E||z~ > ¢ in bs(y) for a § < &5. Thus E and A cannot coincide on B\{QUbs(y)}.

This completes the proof. 0O

We know from the factorization (6.2.15), that

R(Z - Zy) € R(G) C H~'%(div; 6B) (6.3.8)
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where R denotes the range of the operator. We also know that these embeddings are dense. In

this respect the next result is quite encouraging.

Corollary 6.6.

Let o, be defined by (6.3.7) for y € B. Then if p, belongs to the range of Z — Zo we have y € Q.

This shows that we can guarantee to find a subset ; C 2 with the given data. The corollary
also provides a method to solve the inverse problem. One defines the functions ¢, for every

y € B and then defines
our ¥a)2)
W(y) : (§ : ‘PT’A : ) : (6.3.9)

where (A, %) is an eigensystem of Z — Z,. The function W is then the characteristic function
of Q;. We will not present any implementations of this method here, however we would like to
refer the interested reader to works where similar methods for inverse scattering problems have
been implemented successfully (see for example [KR00], [GKO02], [GHK*05]).

Remark: To show that all of  is determined by the range of Z — Z;, we would have to show
that the range of Z — Z, and G coincide. That this might be the case is supported by Theorem
6.2, where we have shown that T — T; is an isomorphism if y;(z) > a@ > 0 and ¢(z) > a > 0
holds.

Indeed if we could show that Z — Zy and S := T — T;, have well-defined square roots in L?(6B)

and L2(0Q) resp. we could argue as follows. Note that with well-defined square roots we get the
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decomposition
(Z = Z0)"*((Z ~ Zo)*)" = G(SV/)"SY2G" = (G(5/%)")(G(8V/*)")" (6.3.10)
With this decomposition we can make use of the following theorem.

Theorem 6.7.
Let Hy, and Hy be Hilbert spaces, A : Hy — Hy, G : Hy — H; and B : Hy — H; be real, linear

and bounded operators with

A=G"'BG

and let the following conditions hold:

e GG is one-to-one and compact.

e B is coercive and thus an isomorphism.
Then the ranges of the operators AY? and of G* coincide.

Proof.

See [Kir04][Theorem 2.4]. 0

An application of Theorem 6.7 then yields that the ranges of the operators (Z — Z;)'/? and
G(SY?)* coincide. The problem with this approach is, that now we would like to argue that
S1/2 is an isomorphism from L2(8€) to H~'/?(curl; 8). However this cannot be done, since

H=12(curl; 8Q) and H~/2(div; 0S2) are not even proper subspaces of LZ(0S2) and thus we cannot
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guarantee that S'/2? is well-defined. Even if we could do that, it would not be guaranteed that
S'/2 is an isomorphism.
An alternative idea for this approach is to define the square root of S and Z — Z, simply via the

functional calculus, i.e.
1
1/2 _ V112

where § is a simple, closed, smooth curve surrounding the spectrum o (.5) in a clockwise direction.
Since S and Z — Z, are positive operators, this is certainly well-defined. However the problem in
this case again would be to determine the range of 5'/2, which implies that as before we cannot
guarantee that S/2 is an isomorphism.

This ends our discussion of a factorization for Maxwell’s equations given near field boundary
data. In the last chapter of this work we look at possible extensions and open questions of ﬁhis

work.
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7 Open Questions

7.1 Theoretical problems and extensions

Since many applications rely on partial boundary data, an improvement of the result in Theorem

3.11 is of great interest.

Problem 7.1.
Show that partial boundary on a subset ' C 9Q uniquely identifies both coefficients u, and €, in
V x E + ku.H =0,

V x H-ke,E=0.

Since the idea behind the proof of Theorem 3.11 cannot be used for this problem, a different
approach has to be researched to solve this problem.
Another open question is to show that the range of Z — Z; and G in Chapter 6 coincide, or that

at least the range of G is completely determined by Z — Z,.

177
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Problem 7.2.

Show that the range of the operator G in Chapter 6 is determined by the operator Z — Z.

Apart from these theoretical questions we also present a few ideas for future numerical extensions.

7.2 Numerical improvements

As we have mentioned in Chapter 4 and Chapter 5, the time needed to recover the functions p,
and €, using our variational algorithm is not satisfactory at the moment. Therefore the following

things could be done to improve this.

Problem 7.3.
To improve the computational time of the variational algorithm presented in Chapter 5 we suggest

the following.
e The use of a Mazwell solver written especially for the coercive system

VxE+ku.H=0,

V x H—-keE=0.

o A parallel implementation on a cluster consisting of M parallel cpus, given M electric mag-
netic boundary values pairs (n X E,,n X Hy). In particular an advanced parallel algorithm
without any remote logins and saving and loading of intermediate results should improve the

“computation time of the recovery.
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To improve the quality of the recovered functions a better numerical differentiation algorithm to
compute the terms V x E”¢ and V x E™¢ in each iteration is needed to recover the function
. Since this is more expensive than using central differences, this should be done using a good

parallel implementation like the one outlined above.

Finally a project for the near future is to implement the factorization method discussed in

Chapter 6.

Problem 7.4.
Design a numerical implementation of the factorization method in Chapter 6 to recover the
support of the functions u;' —1 and e, — 1 in

V x E+ ku.H =0,

V x H — ke, E = 0.
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A Appendix

A.1 Proof of Theorem 5.12

To proof the form of the Fréchet derivative we first need an auxiliary result.

Lemma A.l.

Suppose (m,c) € Dg and (hm, he) € L®(Q) x L®(Q) with small enough norm. Then we have

lIR’n+hm,C+hc - R’m,c” S K”(hm, hc)”Lm-

Proof.

First note that
R7n+hm,c+hc - R’m,c = A;,l,e,.(Am+hm,c+hc el Am,c)A;,.l,er -+ (A;L{*'hyn,c+hc - —}c)‘
Now for any f,g € HY?(curl; 69),
/ AI-—"rlyCr (Am+hm,c+hc - Am:C)A;rl,e,-f g dS =
30
(Am+hm,c+hc - Am,c)A;l I A;rl,e,g ds =

rs€r
an

/a'Q 'YT(V % (E}n+hm,c+hc _ E}TL,C)) R ,Yt(E;n,c) ds. (All)

181
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Also
/8 Q(A;Lhm,cm — A )f-gdS = /a . p(ETHhmethe — BT0) . 4p(V x (EM°))dS.  (A1.2)
To estimate the terms in (A.1.1) and (A.1.2) we multiply the identity
Y x (mV x (E}rl+hm,c+hc — EP) + C(Evfn+nm,c+hc — ET)
= =V X (hyV x (Epthmethey) _ p Eprimethe  (A1.3)
with (E}"+h’"’°+hc — E7°) and integrate over {2 to obtain
/Qm|v % (E}n+hm,c+hc — EPO) + C|E}n+hm,c+hc — EPfdz =
_ /Q b,V X E}n+hm,c+hc LV x E}n+hm,c+hc ~ E])do
- /Q hEpthmethe  (Eprthmethe _ BT dg, (A.1.4)
Using (5.2.4) and the continuous dependence of E™ on m and ¢ we get
| ETtrmete || geune) < Kill Byl meunn) < KallAz e 9llm-1/2ave0) (A.1.5)
< Kal|gll g2 curtson)
and
”(E}nmm’ﬁhc — B muniy < Ks||(Am, Be)ll oo | EZ || B curtir) (A.1.6)

< K4“(hm’ h'C)”L""(Q)z”f”Hl/z(curl;BQ)’

where the K;, 1 < i < 4 do not depend on h with similar estimates for the solutions E’g*'*hm’c’fhc

and (E7*tmethe — 7). Using the trace estimates, equation (A.1.4) and the boundedness of
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m + hm and ¢ + h, we conclude

llye(V x (BFtrmette — B || s/ eunony < CTIV x (EFTP™he — B || i(cung)

< C’||l*3}"+h""°+hc — E\| #(cunn)
and
V(B ) mr-1/2(aivs00) = I8t 9l -1/2@@ivion) < 1AL e Mgl a-1/2aiv;a0)-
Now we can estimate the term in (A.1.1) by
I/aQ VT(E?+hm’C+h°— T (Ey) dS| < CKal|AL  MF 22 curon) |91 er-1/2(aivio0y | (Bms he) | Lo (@2

We can estimate (A.1.2) in a similar fashion. O
Now we show the Fréchet differentiability of H.

Proof. Let €, be the eigenspace for the largest eigenvalue Ay, . > 0 of Ry, .. From the above

lemma and [Kat76][Theorem 2.14, page 203] we get for any (hy,, he) € L%(Q) x L*(Q)
S(R'm+hm,c+hc’ Rm,C) < ||R4n+hm,0+hc - Rm,cn < K”(hrnv hC)”L""a (A-1-7)

where K does not depend on (hy,, h.) and 8(Rumthp ct+he» Rm,c) Tepresents the gap of the operators

Rinthmcthe and R e defined by
5(-R'm+hm,c+hc - Rfm,c) = ma}C{J(Rn;+hm,¢+hc, Rﬂ)c)’ J(Rn,c,Rm+hm,c+hc)}’

where §(Romthm,cthes Bme) = 6(Gmthm,cther Fmic)- Here Gmyn, ceh, is the graph of the operator
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Rt hm,c+he and for closed linear manifolds M and N, the metric (M, N) is given by
6(M,N) = sup dist(f,N),
feSm
where Sy = {f € M : ||f]| = 1} (see [Kat76|[page 197]). Since Apc = || Rm,c|| we have
[ Amthmethe = Amel = | Rmthmethell = [ Bmelll < | Rmthmethe = Bmell- (A.1.8)
Now we take fmc € Emc With |[fmc|| = 1 and project it onto Emihm,cthe:
fme = gmeh t Fmcns (A.1.9)
where gmcn € En ., and [, .y € Emihmerh.- Then
(Ronthmyethe = Amtham,cthe) fme = (Rmthm,cthe — Bme) fre = Amthmetrhe — Amie) fmie
and thus
(Rinthp crhe = Amthon,cthe)Gmoeh = (Rmahm,cthe — Bmie) fme = (Amahmetrhe — Amie) fmie (A.l.lO)

On &, the operator (Rmthm,cthe = Amthm,cth,) i boundedly invertible and if we denote the

spectrum of Rtk cthel €L, by ¥, then by a standard property of the spectrum we get

- . 2
”(Rm+hm,C+hc - )‘m+hm,c+hc)|g$l . h" = 1/(d15t(>‘m+hm,C+hc, E)) = 1/(’\m+hm,<:+hc - A’fn?{-hm,ﬂ-hc)’

where /\sﬂ_ h,c+he dEDOtES the second largest eigenvalue of Ry ih,, c+he- SiNCE Attt cthe — Ame —
0, for ||(Am, he)|| — O by (A.1.8) and Lemma A.1 it follows from (A.1.7) and [Kat76][Theorem

3.1, page 208] that

2) 2
A""7"+'h"f71.)c'l'h'l'l - A'En—f-hm,c-i-hc Z Am,c - )"Sn,)c
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for all (hm, h.) with small enough norm. Thus we infer from (A.1.10) for all (hy, h.) with small

enough norm that

”gm,c,h.” S K”(hmyhc)”’ (A’l'll)

where K is independent of (hy, hc). Since for small enough (A, h.) we have f, ., # 0 we can
set frmen = H%&fl'l as well as ||gmcnl|l = sinf, where 0 < 8 < 7/2. Then frcn € Emthmcthes
|l frm.erll = 1, and noting that (2/7)8 < sinf < 6 for 0 < 0 < 7/2 we get

. . 7'.2 ) 71.2
“fm,c,h - m,c,h” =1- ”fm,c,h” =1- 0089 S -g-Sll’lze = —8_”9"1‘0,}7»”2' (A112)

Let fm, be an arbitrary, fixed and normalized eigenvector of Ry, . corresponding to the eigenvalue

Am,c. Note that
(H(m + hm,c+ hc) - H(m, C))fm,c,h. = ()‘m+hm,6+hc - Am,C)fm,c,h
= (Rﬁn,c - )\m,c)(fm,c,h - fm,c) + (R’rn+hm,6+hc - R‘m,c)fm,c,h

Multiplying this identity with f,, ., integrating over 0§ and noting that by the symmetry of

(Rm,c — Am,c) the inner product (Rm, — Amoe) (fmen — fmie) fm,c €quals 0, we get
H(m + hm,c+ he) — H(m,c) = (A.1.13)
Owmttmerne = me) [ 2,04 =
an
(R»m+hm,c+h,c - Rm,c)fm,c . fm,c as
80
- ()\m+hm,c+hc - /\m,c) /60(fm,c,h - fm,c) N fm,c ds

+ ,/aQ(Rn+hm’c+hc - }%m,c) (fm,c,h - fm,c) : fm,c as (A.1.14)
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From (A.1.11), (A.1.12) we can conclude that

”fm,c,h - fm,cn < ”fm,c,h - :n,,c,h“ + ”9m,c,h“ = O(”(h'm’ hC)”) (A-1-15)

Thus for the Fréchet differentiability of H(m,c) we only need the following estimate. It follows

from (A.1.1) and (A.1.2)

/Cm(Rm+hm,c+hc — R o) fme - frmedS =
[ (@ x (BRmethe - BRe)) w(BR) dS
+ / Y (EFHimethe — EC) . yp(V x EPC)dS =
on
/9 =V x (mV x (BRIt — BRe)) - Bt 4+mV x (BT — BRR) -V x BRf do
- /Q V x (mV x B (BEptimethe — ETe) 4 mV x EC -V x (EfHmethe — BT dg.
Now using relation (A.1.3) we get
aQ(Rvn+hm,c+hc — Rye)fme  fmedS =
/Q (V % (hmV X ( E}n+hm,c+hc)) +h, E}n+hm,c+hc) BT da
+ [ elBpimette - Be) - BRS do
b [ (B - ) 9 x PR de
4 [ CBpe - (Bt — B +mV x BtV x (Bt — B do =

/ hmV % (E}n+hm,c+hc) .V X E;r:icc + hCE}n+hm,c+hc . E}:"’:i dr
Q
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+ / cERS - (Bfthmethe _ ETv ) dg
Q : 1 m,c

+ /Q mV x EfC .V x (Efthmethe - ETC) dg

fm.e

m,c fm,c

+ /Q CE}':;?C . (E}chhm’c-*-hc - E}?fc) +mV X E.‘;""r:cc .V X (E;’l+hm,c+hc _ pme ) dx
Since %(E}'T‘::‘"“”h” — E7°) = 0 on 8Q we get after another integration by parts
/ (an+hm,c+hc - }zm,c)fm,c ‘ fm,c s =
a0
/ hmv % (E}n+hm,C+hc) .V X E";:l':cc + hCE}n+hm,c+h¢ . En:,':cc dx
9] ! B
+ /Q CE;::?C . (E’}'}:ﬂhm’”hc - E’}':ncc) +mV x E}':ncc -V x (E;f::""’c"’hc - E}:‘ncc) dr =
m~+hm,c+he m,c mthm,cthe  pm,c
Q : :
+ / (V x (mV x (EJthmethe _ Ee )) 4 o(Efimethe — ET1)) . BT da,
Q
since yr(V X (E;f::chm’“h‘ - E}’:fc)) = 0 on 8N. Using relation (A.1.3) once more we conclude
/ (an+hm,c+hc - R'm,c)fm,c . fm,c dS =
an
/ hmv x (E;n‘i‘hm»(:-i-hc) . V X E;_::'cc + th}TL+hm,c+hc . Evy::,cc d.'L'
Q
+ /s;(___v < (hmV % (E}:Ln-t-chm,c+hc)) _ thn:n-I‘-chm,C-f-hc) . E}r;:f:c dr =
/ hnV X (EJhmethe) G x ERC 4 h BRI mee . BT do
Q

I hm; hc I 3 - +hm1 +hc ” ) p—
- /Q hmV X (Epimethe)g o E7C 4 hoEL e BD° dg =

|l % (BT + helE7F
Q .



— B[V X B [2 = Rl B + O( (b ) o) 4

by (A.1.6) and an analogous estimate for E}':n"c Together with (A.1.15) the result follows. O
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