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Abstract

Blind source separation (BSS) addresses the problem of separating multi­

channel signals observed by generally spatially separated sensors into their 

constituent underlying sources. The passage of these sources through an un­

known mixing medium results in these observed multichannel signals. This 

study focuses on BSS, with special emphasis on its application to the tem­

poromandibular joint disorder (TMD). TMD refers to all medical problems 

related to the temporomandibular joint (TMJ), which holds the lower jaw 

(mandible) and the temporal bone (skull). The overall objective of the work 

is to extract the two TM J sound sources generated by the two TMJs, from 

the bilateral recordings obtained from the auditory canals, so as to aid the 

clinician in diagnosis and planning treatment policies.

Firstly, the concept of ‘variable tap length’ is adopted in convolutive blind 

source separation. This relatively new concept has attracted attention in the 

field of adaptive signal processing, notably the least mean square (LMS) al­

gorithm, but has not yet been introduced in the context of blind signal 

separation. The flexibility of the tap length of the proposed approach allows 

for the optimum tap length to be found, thereby mitigating computational 

complexity or catering for fractional delays arising in source separation.

Secondly, a novel fixed point BSS algorithm based on Ferrante’s affine 

transformation is proposed. Ferrante’s affine transformation provides the 

freedom to select the eigenvalues of the Jacobi an matrix of the fixed point 

function and thereby improves the convergence properties of the fixed point 

iteration. Simulation studies demonstrate the improved convergence of the 

proposed approach compared to the well-known fixed point FastICA algo­

rithm.

Thirdly, the underdetermined blind source separation problem using a 

filtering approach is addressed. An extension of the FastICA algorithm is



devised which exploits the disparity in the kurtoses of the underlying sources 

to estimate the mixing matrix and thereafter achieves source recovery by em­

ploying the ^i-norm algorithm. Additionally, it will be shown that FastICA 

can also be utilised to extract the sources. Furthermore, it is illustrated how 

this scenario is particularly suitable for the separation of TMJ sounds.

Finally, estimation of fractional delays between the mixtures of the TMJ 

sources is proposed as a means for TM J separation. The estimation of 

fractional delays is shown to simplify the source separation to a  case of in­

stantaneous BSS. Then, the estimated delay allows for an alignment of the 

TMJ mixtures, thereby overcoming a  spacing constraint imposed by a well- 

known BSS technique, notably the DUET algorithm. The delay found from 

the TM J bilateral recordings corroborates with the range reported in the 

literature. Furthermore, TM J source localisation is also addressed as an aid 

to the dental specialist.
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Chapter 1

INTRODUCTION

1.1 Blind Source Separation

Blind source separation (BSS) is currently one of the most exciting areas of 

research in statistical signal processing and unsupervised machine learning 

due to its potential applications in various areas such as financial time series 

analysis, biomedical signal processing, and digital communications [7-10]. 

As the appellation ‘source separation’ suggests, it is concerned with the 

recovery of the underlying sources from a set of observations. These ob­

servations are generated when the sources Eire mixed through an unknown 

medium. However, the main appeal of BSS lies in the word ‘blind’, which 

points out that source separation has to be achieved without any training 

data. Instead, only weak assumptions regarding the sources and the un­

known medium are permitted.

The most common example to introduce BSS is the Cocktail Party Prob­

lem [8 ,11,12]. The setting is in a cocktail party, where many people are 

talking simultaneously. Yet, a listener in the party can discern the voice of 

a particular speaker from a myriad of other voices. This ability to select one 

voice in such an uncontrolled acoustic environment is possible, as the human 

brain learns how to exploit several physical factors such as the probability of 

recurring words, the accent of the speaker, the movement of the lips of the 

speaker, the distinction between male and female voices and so forth. This 

scenario illustrates both the aim and the properties of a BSS algorithm. The
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objective, as mentioned earlier, is to extract the unknown sources from their 

observed mixtures. To undertake such a task, the BSS algorithm must also 

be adaptive and operate in a blind fashion.

Unlike the human brain, most BSS algorithms rely on one modality (e.g. 

audio information), although a few bi-modal BSS algorithms have been pro­

posed (13-15]. Mimicking mother nature in this particular task is chal­

lenging, especially when one is faced with the computational complexity of 

processing video data, synchronising the video data with that of audio, and 

selection of the right criterion to correlate the visual information with au­

dio data. Therefore, the most practical and well-known algorithms have the 

same common denominator, i.e. uni-modality. But, this uni-modality and 

the ‘blindness’ of BSS implies that BSS techniques have to fully exploit the 

weak assumptions concerning the sources and the mixing environment.

One of these assumptions is the statistical independence of the sources, which 

lays the foundation for most BSS algorithms. The term for the operation of 

this family of algorithms is independent component analysis (ICA). ICA is 

a powerful statistical tool, that seeks to transform data into a set of signals 

that are mutually statistically independent. However, the BSS problem is 

even further complicated when there are fewer sensors than sources. In this 

case, a less realistic but practical assumption regarding the sources is gen­

erally made, i.e. sparse sources. The sparsity of the sources refers to the 

situation where only a given source is active for a particular time interval, 

thus enabling one to exploit the structure of the mixing process [1 1 ]. Subse­

quently, sparse component analysis (SCA) has appeared. SCA is generally 

a non-linear technique which converts data into a set of sparse signals. Both 

ICA and SCA are explained in further detail in the following chapter.

Blind source separation dates back to the work of Herault and Jutten in
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the French conference GRETSI in 1985 (16,17]. Since that time, blind 

source separation has had a wide range of applications ranging from geo­

physical exploration to genomics, making it a ‘hot’ topic within the signal 

processing and the machine learning communities [12,18]. In the sequel, 

BSS has evolved into three main classes, notably instantaneous, anechoic, 

and echoic/convolutive BSS. Whenever a high signal propagation velocity 

allows the assumption that the mixtures impinge on the sensors without 

any relative delay and there exists only single paths form the sources to 

sensors, it is termed instantaneous blind source separation. This arises in 

a number of biomedical applications, such as in electrocardiograms, elec­

troencephalograms, and magnetoencephalograms [9,19,20]. On the other 

hand, anechoic BSS can be seen as the intermediate situation between in­

stantaneous and convolutive/echoic BSS. It refers to the situation whereby 

a  delay is associated with each source in the mixtures X  through only direct 

paths. Examples of such a scenario are: a group of people talking in an 

open area, the acoustics in an anechoic chamber, Doppler frequency-shifts 

differing between mobile sensors and sources [2 1 ], and spatial shifts from 

reflections through window glass [22]. In echoic or convolutive BSS, each el­

ement of the mixing matrix A is in fact a linear filter to simulate multipaths 

from sources to sensors. In this case, the past as well as the present samples 

of the source signals contribute to the current mixture sample. Multipaths 

occur in communication systems and echoic chambers [5,17].

Nevertheless, several issues need to be addressed, such as in time-domain 

convolutive BSS where the optimum tap-length of the filters is unknown, 

underdetermined BSS where the number of sources is greater than the num­

ber of mixtures, and its potential application to the vast disciplines within 

biomedicine, e.g. its relevance in the context of temporomandibular sounds. 

All these three issues are addressed in this thesis, with the goal of improving 

existing BSS techniques and their applicability to monitoring TMD. Next,
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the relevance of BSS in the context of temporomandibular joint sounds is 

explained.

1.2 Temporomandibular Joint Disorder

The temporomandibular disorder encompasses most medical problems re­

lated to the region of the mandible (lower jaw) and the temporal bone. 

TMD is the most common non-dental related chronic source of oral-facial 

pain [23—25]. 75% of the USA population will at some time have some of 

the signs and symptoms of TMD [26], with a similar figure in the UK [23]. 

There are two well-known sounds generated by the temporomandibular joint 

(TMJ) of a TMD patient, namely click and crepitus. These TMJ signals clas­

sified into four classes (hard click, soft click, hard crepitus, and soft crepitus) 

are illustrated in Fig. 1.2, and the TMJ is shown in Fig. 1 .1 . It is noted 

that these classified TMJ sounds analysed in this thesis were obtained from 

the dental institute, Kings College London in the person of Prof. S. Dunne. 

There exist three main types of acoustic sensors for TMJ acquisition: piezo­

electric accelerometers, a special type of two channel stethoscopes and small 

condenser microphones. A comparison study of these sensors is given in [27]. 

In this work, a special two channel stethoscope connected to microphones 

as used in [27] was employed. However, it is noted that the TMJ sounds 

presented only for the last part of Chapter Six is recorded from a pair of 

microphones placed in the auditory canals of the patient. Throughout this 

thesis, the sampling frequency to record the TMJ sounds is understood to 

be 12 kHz. Generally, the click is related to the displacement of the disc 

which holds the mandible and the temporal bone, and hence conveys the 

dysfunction of the TMJ. Likewise, the crepitus suggests at the presence of a 

degenerative joint disease (e.g. osteoarthrosis). Furthermore, a ‘hard’ TMJ 

sound is generally associated with a matiue stage of the TMD, while a 

‘soft’ TMJ sound hints a mild TMD [23]. Therefore, poor detection of these
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sounds can lead to misdiagnosis of TMDs. A dental specialist has to differ­

entiate between the TM J sounds such as click, crepitus and noise produced 

by a ‘normal’ joint. Besides, the inherently subjective classification of these 

TMJ sounds makes it hard for the clinicians to determine the correct pathol­

ogy. This has led to controversy as pointed out in [23,28-30]. It was also 

highlighted in [31] that patients, who did not exhibit symptoms of TMD, 

suffered from this disorder, hence illustrating that the diagnosis of TMD can 

be quite challenging. Hence, there is a need for an objective and automated 

detection of these TMJ sources. To aid the dental specialist in making a 

prognosis of TMD, Guo et ai  proposed to utilise a BSS algorithm called 

Infomax to separate two mixtures of crepitus [1]. This was the only work on 

TMD in the context of BSS, prior to the work presented within this thesis.

1.3 Signal Processing Techniques for TMJ Sounds

There are three main approaches to analyse TM J sounds, notably classifi­

cation or characterisation of TM J sounds, TMJ source separation and lo-

F ig u re  1.1. The temporomandibular joint.
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Figure 1.2. From top to bottom: hard click, soft click, hard crepitus, and 
soft crepitus.

calisation. Most of the work on TM J has been undertaken in the context 

of TMJ classification. Prior to the study presented herein, only the work 

of Guo et al. addressed the problem of TMJ source separation [1]. On the 

other hand, a pair of studies by Widmalm et al. dealt with TM J localisa­

tion [32,33]. This has motivated the work presented herein. Thus, in this 

thesis, different scenarios of source separation of temporomandibular joint 

sounds are envisaged and simulated to demonstrate the potential of BSS 

techniques in this biomedical field. Furthermore, the last chapter of this 

thesis tackles the problem of TM J source localisation as a post-processing 

step to TM J separation from bilateral TMJ recordings. A brief review of 

these signal processing techniques is provided next.

1.3.1 Classification and characterisation of TMJ sounds

Due to the non-stationarity of the TM J sounds, there has been tremendous 

work on the time-frequency analysis of TMJ sounds for the purpose of clas­

sification [30,34-37]. These approaches are briefly reviewed in Chapter six.
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A more ‘primitive’ approach, i.e. the spectral analysis of the TMJ sources 

is more challenging to interpret due to the non-stationarity of the TMJ sig­

nals [6,27,38,39]. Nevertheless, the works of Gay & Bertolami, and Gallo 

et al. demonstrate that there is a significant difference between spectra of a 

normal TMJ and that of a defective TMJ [6,38,39]. In other words, the spec­

tra  of defective TMJ sounds consists of peaks at approximately 800 Hz or at 

higher frequencies, in contrast to the spectra of normal TMJ sounds, which 

are mainly below 800 Hz. These findings can be employed as benchmarks, 

whenever a normal TMJ sound is separated from a TMD sound source. 

Through the frequency analysis of TMJ sounds, Widmalm deduced that the 

best acquisition of the TMJ sounds can be performed by utilising micro­

phones located at the auditory canals [27]. Furthermore, Leader et al. and 

Watt tackled the TMJ classification from a quantitative perspective [40,41]. 

Watt examined the waveforms of TMJ sounds [41], while Leader et al. fused 

several features such as the number of sound events, energy in each sound 

event, and time interval between the sound events in each TMJ signals to 

categorise the TMJ sounds. Next, the work of Guo et al. is examined.

1.3.2 Source separation of TMJ sounds

The two TMJ joints generate two sound sources, while background noise such 

as noise generated by dental equipments, breathing of the patient, move­

ment of masticatory muscles, and the blood flow of the temporal artery can 

contribute to another acoustic source. Guo et al. addressed the source sep­

aration of crepitus [1]. They employed the convolutive Infomax algorithm 

proposed by Torkkola [17] to solve this particular BSS problem. This algo­

rithm was derived, based on the assumption that the sources are statistically 

independent. The Infomax was implemented via a feedback neural network 

shown in Fig. 1.3. This algorithm will be reviewed on the algorithmic level 

in the following chapter. In their work, Guo et al. considered the mixing 

model within the brain to be convolutive [1]. More specifically, they consid-
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ered the propagation of crepitus from the ipsi (originating) side to the contra 

(opposite) side to be characterised by multipaths. This intuitive assumption 

did not consider any physiological aspects of the human head and no existing 

literature review supports this convolutive model. The hypothesis of acous­

tic multipaths within the human head is plausible, although the acoustic 

attenuation within the brain reported in the literature suggests that these 

multipaths from one side of the head to the opposite side are negligible. The 

mixing model of the head is examined in greater detail in Chapter six of 

this thesis. Guo et al. then demonstrated that a particular synchronised 

peak present in both TMJ mixtures was attenuated in one of the extracted 

crepitus, while in the other crepitus, it was still present. Thereafter, they 

argued that the separation of crepitus sources has been achieved successfully. 

Firstly, this work illustrates that TMJ source separation can be achieved. 

Secondly, there is scope for more TMJ source separation scenarios, such as 

the separation of a normal TMJ sound from a click source. Thirdly, the fact 

that the convolutive mixing model was formulated rather intuitively leads
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to the following question: is the convolutive mixing model appropriate for 

TMJ BSS? The convolutive model is generally over-parameterised (due to 

the consideration of hundreds of delay units), when the mixing model in­

stead can be instantaneous or anechoic. Henceforth, instantaneous as well 

as anechoic mixing models for TMJ sounds are also addressed in this thesis.

1.3.3 Localisation of TMJ sounds

Widmalm et al. examined the particular case where a patient suffered from 

TMD at only one temporomandibular joint [32,33]. Therefore, the objec­

tive of their studies was to locate the defective joint, based on the bilateral 

recordings obtained from the auditory canals. The delay between the ipsi 

TMJ sound and the contra TMJ sound was calculated. This was estimated 

via the gradient of the phase between the two bilateral recordings. Accord­

ing to their studies, the delay was found to be in the range of 0 .2 -1 . 2  ms. 

This range illustrates that the acoustic medium of the human brain depends 

on the individual. Widmalm et al., however, did not consider the possibility 

that the recording on the contralateral side of the TMD is in fact a mixture 

of the ‘click’ and the sound produced by the normal joint. This possibility 

is supported by the fact that the normal TMJ also produces a sound, as 

investigated in [6,38,39]. Hence, one of the aims of this thesis is to consider 

such a scenario, i.e. the separation of click and normal TMJ sound from the 

bilateral recordings. Furthermore, localisation of the defective TMD joint is 

also addressed in this thesis.

1.3.4 Conclusions and objectives

In the light of the above survey on TMD from a signal processing perspective, 

it can be deduced that:

1 . The non-stationarity property exhibited by the TMJ signals can be 

exploited in TMJ source separation. This non-stationarity also implies 

the super-Gaussianity (as shown by Parra and Spence [8 ]) of the TMJ
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sources. Their proof is included in Appendix A.3. Thus, the super- 

Gaussianity of the TMJ sources can also be utilised as a statistical 

criterion to perform TMJ source separation.

2 . Several possibilities for TMJ BSS can be envisaged and simulated, 

because Guo et al. considered only the separation of crepitus sources. 

More precisely, instantaneous and anechoic mixing of TMJ sources 

are simulated. This is undertaken by the synthetic mixing of the ipsi- 

lateral TMJ sounds pertaining to a particular TMJ class, i.e. soft clicks 

& crepitus or hard clicks & crepitus. However, the ethical protocol for 

the acquisition of TMJ sounds has limited most of the work presented 

herein to synthetic mixing.

3. The localisation of the TMJ infected source, as a post-processing step 

to the separation of the TMJ sources is also addressed in this thesis, 

as an aid to the dental specialist.

1.4 Organisation of the thesis

Chapter two lays the foundation for blind source separation. The objec­

tive of this chapter is to introduce the techniques pertaining to BSS. These 

techniques are illustrated by the commented outlines of some well-known 

algorithms.

Chapter three proposes a variable tap length convolutive BSS algorithm. 

This concept has been adopted from the LMS algorithm. In contrast to the 

LMS algorithm, the proposed blind technique does not have a priori the ‘de­

sired’ signal to adaptively determine the optimum tap length. Therefore, the 

optimum tap length is defined as the minimum tap length that minimises the 

off-term elements of the covariance of the estimated sources. This adaptive 

property of the variable tap length approach opens a new field of research 

within the BSS area.

Chapter four applies Ferrante’s affine transformation to a fixed point
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algorithm to improve its convergence properties. Moreover, the transfor­

mation allows for the application of fixed point concepts such as attractive 

fixed point, or the contraction mapping theorem. In that respect, Chapter 

four analyses the convergence properties of the proposed fixed point BSS 

algorithm, which converges faster than the well-known fixed point FastICA 

algorithm.

Chapter five addresses a particular underdetermined TMJ BSS scenario. 

A filtering approach based on the FastICA algorithm is proposed to solve 

this particular TMJ separation scenario. The proposed approach is robust 

to noise modelled as a non-sparse source at a signal-to-noise ratio of 0 dB. 

It was found that the filtering of the mixtures attenuates one of the sources 

such that two sources can be estimated at a time, thereby enabling the full 

identification of the underdetermined BSS.

Chapter six presents two methodologies in incorporating fractional de­

lays in the context of TMJ separation. The first part reduces the anechoic 

source separation to an instantaneous separation, thereafter a conventional 

instantaneous BSS algorithm can be employed. The second part deals with 

the extraction of the sound source produced by a normal TMJ from a click 

source generated by am infected TMJ. Both parts address the problem of 

TMJ source localisation to pinpoint the location of each of the estimated 

sources.

The last chapter summarises the work presented herein and draws gen­

eral conclusions. It also suggests opportunities for future work.



Chapter 2

FUNDAMENTALS OF BLIND 

SOURCE SEPARATION

2.1 Problem Statement

The BSS problem is to recover the constituent sources s(t) from a given set 

of observed or mixture signals x(£), with minimum assumptions about the 

mixing medium and the underlying sources. In effect, the generative models 

are summarised in the Table 2.1 [11]:

Table 2 .1 . Generative mixing models for instantaneous, anechoic, and con­
volutive blind source separation.

Generative Mixing Model Mathematical Model
Instantaneous
Anechoic
Convolutive

x i ( t )  =  £ j = l  a i j s j ( ^ )  4" W

*»(*) =  £"= 1 O i j S j i t  -  T i j )  +  V i ( t )

x i ( t )  =  £ j = 1 £p = l a i j p s j { t  ~  T i j p )  +  V { ( t )

In this table i = 1 ,...,m , x»(t) denotes the ith  element of the mixture col­

umn vector x(t) G 9£m, Sj(t) denotes the j th element of the source column 

vector s (t) € 9ftn, Vi(t) denotes the ith element of the noise column vector 

v(£) G t denotes the discrete time index, and dijP is the attenuation 

element of the mixing matrix A corresponding to its ith  row, j  th  column, 

and its corresponding delay TjJp. In the context of TMJ source separation, 

the range of TijP corresponds to 2.4-14.4 samples at a sampling frequency 

of 1 2  kHz. The absence of subscript p in Oij implies that there is at most

12
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one delay. It is noteworthy to say that A is called the signal dictionary or 

basis matrix in the sparse component analysis (SCA) literature {18,42]. Note 

however, that i>»(£) corresponding to the additive noise of the ith  sensor is 

negligible in the context of the source separation of TMJs. In this work, it 

is reasonable to assume that A  is stationary, i.e. it does not vary with time. 

In the dipole source model ( [43] and the references therein), the stationarity 

of A leads to the fact that the sources have fixed locations and orientations. 

Similarly, in this work, it is assumed that the sources do not move. For 

example, in the context of TMD study, the sound sources are generated by 

the temporomandibular joints, which indeed are fixed in location.

The two main trends within the BSS community are to either investigate 

instantaneous or convolutive source separation. In theory, convolutive BSS 

algorithms should perform much better in an anechoic scenario, while the 

over-parameterisation of convolutive BSS with regard to the instantaneous 

BSS explains why instantaneous BSS is still an ongoing topic in the BSS 

area. Likewise, many instantaneous techniques have been extended to the 

anechoic case without too much effort [11,21,22,44-46]. Hence, the only 

techniques pertaining to these two main topics are discussed in this chapter. 

In Chapter six, however, an important algorithm is overviewed for anechoic 

BSS, namely the DUET algorithm [5]. On the basis of the generative mod­

els in Table 2.1, the source separation problem for the instantaneous and 

convolutive cases can be solved as follows:

Table 2.2. Unmixing models for instantaneous and convolutive BSS.
Unmixing Model Mathematical Model
Instantaneous
Convolutive

Vji*) = l

Vj(f) = S i= l £p = l wjipx i{t ~ Tjip)

where j  = l , . . . ,n , yj(t) denotes the j th  element of the estimated source 

column vector y(t), and WjiP is the gain element of the so-called separating
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or unmixing matrix W  corresponding to its j t h  row, tth  column, and its 

corresponding delay Tjip. On the other hand, the anechoic BSS does not 

offer a unified elegant solution. For instance, Yeredor estimates the mixing 

matrix and its corresponding delays via his non-orthogonal joint diagonal- 

isation approach [21, 22, 44], while Torkkola provides two solutions via a 

feedforward and a  feedback network in [46], and in the DUET algorithm, 

Yilmaz and Rickard perform source separation via binary masking. Next, 

the ambiguities inherent to the source separation problem are highlighted.

2.2 Indeterminancies of the Problem

There exists two indeterminancies inherent to BSS, namely the permutation 

and the scaling ambiguities. In other words,

1. The order of the recovered sources cannot be determined, mainly due 

to the ‘blindness’ of the problem, i.e. both the mixing matrix and the 

sources are unknown [7,12]. Thus, a change in the order of the recov­

ered sources also implies a permutation of the corresponding columns 

of the mixing matrix. Alternatively, this can be viewed as a change in 

the order of the terms for the outer summations in Table 2.1 does not 

affect the result of the summations.

2. From the following equation:

x(£) = (—a fc) ( 7 ksk(t)) +  ajSj{t) (2.2.1)
Ik  —

It is clear that an arbitrary multiplying factor 7 k to the kth source 

can be cancelled out by dividing the kth column of the mixing matrix 

by the same factor 7 *. This demonstrates that the sources can be 

estimated only up to a scaling constant.

Some researchers exploit the scaling ambiguity to simplify their algorithms, 

by enforcing the variances of the estimated sources to be unity [7,12,47].
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Moreover, it is noted that the scaling ambiguity also includes the sign am­

biguity, i.e. the BSS model will not be altered, if any of the sources is 

multiplied by -1. These ambiguities show that the separating matrix W  is 

not necessarily the exact inverse of the mixing matrix A. Instead,

W  = PAA* (2.2.2)

where the superscript (.)* denotes the pseudo-inverse to cater for over- 

determined BSS as well, P  is a permutation matrix, and A is a diagonal 

matrix to convey the scaling ambiguity.

2.3 Techniques for BSS

This section overviews two techniques, notably independent component anal­

ysis (ICA) and sparse component analysis (SCA) for BSS. ICA estimates 

statistically independent sources, whilst SCA recovers sparse sources. These 

will be discussed in more detail in the following two sections. ICA traces 

back to the early work of Herrault and Jutten [16], when the latter intro­

duced BSS to the signal processing community in 1985. This is why some 

researchers consider ICA and BSS as one entity, and use these two terms 

interchangeably. According to Hyvarinen et al. [7], it was Infomax pro­

posed by Bell and Sejnowski [48] that sparked much enthusiasm for this 

problem. However, prior to the formulation of SCA, ICA was limited to 

exactly-determined (i.e. equal number of sources and sensors, n  = m), and 

over-determined (i.e. more sensors than sources) cases [1 1 ].

Whenever the number of sensors is less than the number of sources, SCA is 

a more practical tool to separate the sources. In such cases, the number of 

active sources at each time instant should be generally at most equal to the 

number of sensors. This particular situation is termed as the sparsity of the 

sources. Therefore, the sparsity of the sources make the under-determined
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BSS a pseudo-determined BSS at a particular time instant. The sparsity 

of the sources can be enforced by selecting an appropriate domain such as 

the frequency domain, and the wavelet domain. In 2000, the work of Bofill 

and Zibulevsky [49] illustrated that SCA can solve under-determined BSS 

(UBSS) without too much difficulty. Consequently, SCA attracted much 

attention and attained a much wider audience. The concept of SCA was 

already applied in mid-1990’s, although it is not clear in the literature which 

work initiated SCA. Further details on the history of both ICA and SCA can 

be consulted from the following literature [7,8,11]. It should be stressed that 

most ICA and SCA algorithms do not cater for the noise V i ( t )  in the mixing 

models tabulated in Table 2.1. In other words, they perform source separa­

tion, without cancelling out the noise from the estimated sources as can be 

seen in Table 2.2. This is because the system is under-determined, if each 

Vi(t) the additive noise of the ith  sensor was considered as a source, making 

the BSS more complex and less tractable. Therefore, the common approach 

is to consider Vi(t) negligible, which is the case of TMJ source separation. In 

the following section, ICA is defined, illustrated by an instructive example 

of ICA, and concluded by a  survey on existing methods. Likewise for SCA 

in section 2.5.

2.4 Independent Component Analysis

2.4.1 Definition

Independent component analysis is a statistical approach designed to decom­

pose multivariate data into components that are as statistically independent 

as possible. In the literature [7,8,17], ICA normally refers to a linear trans­

form, i.e. the instantaneous BSS model. Nevertheless, within the same 

literature, some authors address convolutive BSS and implicitly convey the 

idea that these convolutive BSS algorithms form part of the ICA family. For 

simplicity in this thesis, ICA refers to the techniques which solve BSS based
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on the statistical independence of the sources assumption. In effect, ICA 

implies that the joint probability density function p(s(t)) of the sources can 

be factorised as:
n

p{s{t)) = (2.4.1)
3 = 1

where Pj{sj( t)) is the marginal distribution of the j  th  source. Furthermore, 

the statistical independence of the sources implies the uncorrelatedness of 

the sources, but the reverse is not necessarily true. As a pre-processing 

step, most ICA algorithms decorrelate the mixtures via spatial whitening, 

before optimising their separating criteria known as contrast/cost functions. 

This spatial whitening is achieved by employing the well-known principal 

component analysis (PCA), which is explained next.

Principal Component Analysis

In the context of BSS, PC A seeks to remove the cross-correlation between 

the observed signals, and ensuring that they have unit variance. It operates 

by finding the projections of the mixture data in orthogonal directions of 

maximum variances [7]. A vector z is said to be spatially white iff

E {z(t)zT{t) -  1} =  0 (2.4.2)

where E{.}  denotes the expectation operator and I  the identity matrix. The 

separating matrix, W  can be decomposed into two components, i.e.

W  =  U V  (2.4.3)

where V  is the whitening matrix and U  is a rotation matrix [50]. Assuming 

m = n, there are n 2 unknown parameters in W . PCA requires the n  diagonal 

elements of the covariance C z to be unity, and due to the symmetric property 

of Cz, it suffices that only (n2 — n) /2  of its off-terms to be zero. Therefore, 

spatial whiteness imposes 77(77 + l ) / 2  constraints. This leaves 77(77 — l ) / 2
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unknown parameters. Hence as Cardoso describes it, prewhitening only does 

half of the BSS job [50]. The whitening matrix V  can be computed as follows:

V  = Q“ 5E (2.4.4)

E is the eigenvector matrix of the covariance matrix of x, Cx. It projects the 

data into the n-dimensional source space. Q is a diagonal matrix storing the 

eigenvalues of C x. Q ~ 5 makes the projections have unit variance. However, 

it is important to notice that the whitening matrix V  is not unique because 

it can be pre-multiplied by an orthogonal matrix to obtain another version 

of V.

2.4.2 An illustrative example

In the previous subsection, it was mentioned that PCA does half of the 

job of ICA. The other half is to effectively find the rotation matrix U  in 

Eq. (2.4.3). In order to visualise how ICA performs, consider the following 

example: Two uniformly distributed sources si and S2 are mixed by the 

following matrix, at an angle 6 =  7r /4 :

A  =
cos (0) —2 sin(0 ) 1 1 - 2

sin(0 ) cos(0 ) ~ V 2 1 1

(2.4.5)

This mixing matrix is in effect a rotation of 45 degrees, followed by a stretch 

in the same direction of the horizontal line joining the point (1 ,1 ) and (-1 ,1 ) 

by a factor of 2/y/2. The upper left scatter plot of Fig. 2 . 1  shows that the 

two sources are independent. For example, whenever si is at its minimum 

value -1, S2  has several possible values. This means that the knowledge of 

the value of one of the sources does not give any information on the value 

of the other sources, demonstrating the statistical independence [51]. On 

the other hand, in the scatter plot of the mixtures x \  and X2 , whenever x\
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is at its m in im u m  value, there is only one corresponding value of X2 , hence 

illustrating their dependence. The lower left plot of Fig. 2.1 demonstrates 

that PCA reverses the stretching effect of the mixing matrix, while the final 

step of the ICA rotates back the whitened data z to yield y.

2.4.3 ICA approaches to BSS

ICA relies on fundamentally two factors: 1) A statistical criterion expressed 

in terms of a cost/contrast function C(y(t)), which requires to be either 

minimised or to be maximised, 2) An optimisation technique to carry out 

the minimisation or maximisation of the cost function.

Many researchers have focused mainly on formulating new cost functions to 

propose novel BSS algorithms. In doing so, it is common in the BSS commu­

nity to employ either the traditional steepest descent/ascent, or those more 

specific to the BSS field, such as the natural gradient algorithm (NGA) [52].
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F igure 2.1. Scatter plots of original sources (upper left), mixtures (upper 
right), whitened mixtures (lower left), recovered sources with ICA (lower 
right).
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The natural gradient can be expressed as:

V jv g a W  =  (2.4.6)

where C (y(t)) is the cost function to be either minimised or maximised, and 

is the natural gradient w.r.t. to separating matrix W . This gradi­

ent is derived based on the fact that the optimisation space is Riemannian 

or curved [52]. The concept of Riemannian is intrinsically related to differ­

ential geometry, which is the mathematics of curved space. The NGA has 

been shown to work more efficiently in terms of convergence than the nor­

mal gradient approach [52], and therefore it has been used extensively [47]. 

However, this thesis does not address the aspects regarding this algorithm 

or any other gradient-based approaches. Instead, fixed point iteration is the 

subject of Chapter four. This iterative optimisation technique can simply 

be summarised as:

Uk+i = f ( u k) (2-4.7)

where /( .)  is a function of Uk- It is noted that at the solution u

f{u) = u  (2.4.8)

and therefore, unlike gradient-based approaches, its performance does not 

depend on any step-size parameter. An example of a fixed point iteration 

for a logistic function is demonstrated in Fig. 2.2. This example is taken 

from Prof. Moon’s book [2]. Note that the fixed point iteration operates ex­

plicitly on the axis y =  f ( x )  = x. The fixed point is where logistic function 

intersects the axis y =  x, and is the point where the iteration terminates. 

Fixed point iteration whose theory is well-established has so far resulted in 

one prominent fixed point BSS algorithm, i.e. FastICA [7], although there 

exists derivatives of FastICA [53-55]. In the existing literature, there does

not seem to be any work which analyses such optimisation technique from
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F igu re  2 .2 . An example of fixed point iteration corresponding to the logistic 
function /(x )  =  2 x (l — x) taken from [2 ].

a fixed point theory perspective. Hyvarinen et al. improve the convergence 

of their FastICA algorithm by adopting Lagrange method to estimate the 

separating matrix W  [7], while Regalia and Kofidis examine the convexity 

of the contrast functions of FastICA [56]. Fixed point theory encompasses 

concepts such as attractive or repulsive fixed points, and theorems such as 

Contraction Mapping Theorem (CMT) [2,57]. These are included in Ap­

pendix A .l for clarity. Chapter four exploits these concepts to analyse a 

novel fixed point BSS algorithm.

Here, a survey on the statistical criteria employed by several ICA algorithms 

is provided.

• Many techniques such as second order blind identification (SOBI) [58], 

algorithm for multiple unknown signals extraction (AMUSE) [59] em­

ploy second order statistics to exploit the temporal structure of the 

sources, mainly the temporal correlation of the sources. While another 

class of second order techniques such as Parra’s algorithm [4] exploit 

the statistical non-stationaxity of the source signals. These techniques 

are particularly attractive, as they involve only second order statistics,
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which are computationally less intensive than the methods based on 

higher order statistics.

• Another class of ICA algorithms utilise higher order statistics to max­

imise the statistical independence. For example, the Joint Approxi­

mate Diagonalisation of Eigenmatrices (JADE) algorithm jointly di- 

agonalises a set of fourth-order cumulant matrices, such that the sum 

of squared cross-cumulants is minimised [60]. The reason why these 

algorithms employ higher order statistics lies in the fact the sources are 

statistically independent. In other words, uncorrelatedness at higher 

order statistics entails statistical independence, whilst uncorrelated­

ness at second order statistics does not imply independence, except if 

the sources are Gaussian [7].

• The last class of ICA algorithms are derived from an information- 

theoretic perspective. This family of ICA algorithms exploits concepts 

borrowed from information theory such as entropy, and mutual in­

formation. It is noted that two variables are said to be statistically 

independent, whenever their mutual information is zero [61]. Exam­

ples of this ICA category are the Infomax algorithm of Bell and Se- 

jnowski [48], which attempts to maximise the entropy of the estimated 

sources, and FastICA of Hyvarinen et al. that utilises differential en­

tropy, negentropy [7]. These two algorithms will be discussed in more 

detail later.

This concludes ICA, but well-established algorithms such as Infomax [48], 

FastICA [7], and that of Parra [4] will be examined in greater detail later. 

In the following section, SCA for BSS is explained. As mentioned in section 

2.3, it is a relatively new field compared to ICA. Therefore, the literature 

pertaining to SCA is not as structured as that of ICA and no textbook on 

the subject is yet available.
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2.5 Sparse Component Analysis

2.5.1 Definition

The fundamental assumption of sparse component analysis rests upon the 

sparsity of a multivariate data or that it can be sparsified by a given transfor­

mation such as Fourier-transform, wavelet transform, and so forth. Sparsity 

“implies” that most of the values of the sources are zero, with only a few 

sources taking significant values [62]. SCA estimates the basis vectors of the 

mixing matrix, by exploiting the geometric constraint entailed by sparsity. 

This geometric constraint can be viewed as follows: in a scatter plot of the 

mixtures x(£), the points he in the direction of the basis vectors of the mixing 

matrix. The next section visually demonstrates such a scenario. O’Grady 

et al. regarded this geometric constraint as the structure of the mixing 

matrix ‘appearing’ in the mixture signals [11]. BSS involves blind channel 

identification and source recovery. Most ICA algorithms regard these two 

problems as one indivisible operation by finding one separating matrix. On 

the other hand, SCA treats them as two distinct problems, while relaxing 

the statistical independence of the sources. Next, a typical example of SCA 

is illustrated.

2.5.2 An illustrative example

In this section, an instructive example of SCA is given to; 1) understand 

what the underlying principle behind SCA is and, 2) demonstrate how it 

can solve the under-determined BSS (i.e. more sources than sensors). Three 

uniformly distributed sparse sources si, S2 and S3 are mixed by the following 

matrix:
0 - 1  1 

1 1 1

A = (2.5.1)

In Fig. 2.3, the left plot demonstrates the scatter plot of the sparse sources. 

It is worth noting that sparsity is conveyed by the fact that there is no



Section 2.5. Sparse Component Analysis 24

overlap between the sources, as compared with the upper left plot of Fig. 

2.1. In other words, the samples of si in the x-axis overlap with the samples 

of S2  in the y-axis and S3 in the z-axis only at origin. This demonstrates a 

degree of dependence between the sources permitted in SC A, but not allowed 

in ICA. The right plot of Fig. 2.3 illustrates the scatter plot of the resulting 

mixtures. It is clear that the samples of si he in the direction of the first 

basis vector [0 1]T of the mixing matrix A. Similarly, this can be observed 

for S2 and S3 . This graph gives a good insight on how to estimate the mixing 

matrix, as well as separating the sources. The columns of the mixing matrix 

can be estimated by finding the directions of each of those three lines. Also, 

the source recovery can be achieved by clustering the samples pertaining to 

each of those lines. This example looks trivial. Nevertheless, this concept 

lays the foundation for most SCA algorithms, which are mostly designed to 

solve the under-determined BSS (UBSS).

F igure  2.3. The left plot illustrates the three dimensional scatter plot of 
the three uniformly distributed sources. Note the non-overlap structure of 
this plot due to the sparsity of the sources. The right plot demonstrates how 
the mixtures align in the direction of the basis vectors of the mixing matrix 
in the scatter plot of the mixtures.
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2.5.3 SCA approaches to BSS

As mentioned earlier, research within the SCA community does not enjoy 

the same maturity as ICA. Further to the previous section, most of SCA al­

gorithms attem pt to perform clustering on the mixture data to solve either 

partially (identification of mixing matrix only) or fully (estimation both 

mixing matrix and the sources) UBSS. For example, utilisation of tradi­

tional clustering algorithms such as C-Means (see Chapter seven [8 ]), and 

K-means in the DUET algorithm [5] has already been reported in the BSS 

literature. These two algorithms have also been modified for the purpose 

of SCA [8,63]. Furthermore, more advanced clustering techniques namely 

Gap-statistics and self splitting competitive learning have been proposed to 

solve UBSS in [64]. These two advanced clustering techniques enable blind 

detection of the number of active sources over a given time-frequency inter­

val. For source recovery only, it is common to use the l \  — norm minimisation 

algorithm [42,65-67]. It estimates the sparse sources by minimising their l \  — 

norm at a particular time instant. Nonetheless, it requires a priori the mix­

ing matrix. This algorithm is attractive mainly because it finds the sparsest 

solution and hence can solve the sparse UBSS. A more comprehensive survey 

can be found in [11]. Now, some of the most significant BSS algorithms are 

examined.

2.6 Protagonists in BSS

2.6.1 Infomax

A good starting point is to discuss an algorithm which exploits explicitly 

the statistical independence of the sources such as Infomax [48]. Bell and 

Sejnowski endeavour to maximise the statistical independence by minimis­

ing the mutual information between the source estimates. Two independent 

variables y\ and j/2 are said to be statistically independent, whenever their 

mutual information is zero [61]. The upper Venn diagram of Fig. 2.4 illus-
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«<Y2>

Figure 2.4. The upper Venn diagram shows the entropy relationships be­
tween two statistically independent variables y\ and y2. The lower Venn 
diagram corresponds to two dependent y\ and y2. I(y i,  1/2 ) denotes mutual 
information between y\ and y2; H{yi\yj) is conditional entropy of probability 
of yi, given yj5 where i ±  j; H{yk) corresponds to entropy of y*, for all k.

trates such a case. From this diagram, it is clear that

where H(yi\yj) denotes the conditional entropy of y», given yj, i ±  j ;  

H{yk) =  — E{\ogP(yk)}  is the entropy of yk V fc, with E{.} as the expec­

tation operator. In contrast to the upper diagram, the lower Venn diagram 

demonstrates the statistical dependence of two correlated variables y\ and 

j/ 2  through their intersection. The latter conveys their mutual information 

/(y i ,y 2). Eq. (2.6.1) no longer holds, but instead,

(2.6 .1)

H{Vi) ^  H (Vi\Vj)

=  H{yi\yj) + I(yi,yj)

(2 .6 .2)
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Alternatively, the above formula is equivalent to:

H(yj\yj)  =  - 1(yi,yj)
m a x im is e  m a x im is e  m in im is e

(2.6.3)

To achieve the statistical independence, the area under H{yi\yj) should be 

maximised in the lower Venn diagram of Fig. 2.4 to that of the upper 

diagram. Since mutual information is a non-negative value, with its mini­

mum possible value being zero, maximising H ( y i \ y j )  leads to minimisation 

of I ( y i , y j ) -  This implicitly corresponds to maximising the marginal entropy 

H(yi). Hence, the aim is to maximise the marginal entropies of the source 

estimates to attain statistical independence, thereby achieving separation. 

Similarly, the infomax of Tony and Bell endeavour to maximise the marginal 

entropies of the output ti* =  g(yi) of a non-linear neural network [48]. One 

way to achieve this is to ensure that the outputs of the neural network have 

approximately uniform distributions by applying sigmoidal-like non-linear 

functions <7(2/*), such as tanh(yj) and 1 / ( 1  -I- e~Vi) on the estimated sources 

y i .  To tackle the convolutive BSS, Torkkola proposed to use Infomax based 

on a feed-back neural network as follows [17]:

Lll L\2
2/i ( 0  =  Y l  “  p) +  ^ 2  wi2Py2{t -  p)

p = 0 p=l

L 2 2  L 2 1

2/2 ( 0  =  ^ 2 w 22pX2(t -  p) + ^ 2 w 2ipyi(t -  p) (2.6.4)
p=0 p= 1

where WijP denotes the corresponding separating filter coefficient, yj(t) de­

notes the 7 th  output at discrete time t ,  and X i ( t )  denotes the ith  convolutive 

mixture. The resulting increments to learn the parameters of the network
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can be summarised as

Awao oc $(yi(t))xi{t) +  1 / who

Awiip oc $(yi(t))xi(t - p )

Aw ijp oc ${yi{t))yj{t - p )  j ,  Vi, j , p

(2.6.5)

where $(y»(*)) =  d^jj) » noting that «»(*) =  p(y*(t)). Its derivation

has been included in Appendix A.2 . This example portrays a 2 x 2  convo­

lutive source separation, i.e. two sources and two mixtures. Nonetheless, it 

can be generalised to higher number of sources and mixtures, because the 

learning rule is local [17]. The only work on TMJ BSS employed convolu­

tive Infomax [1], and it motivates why this 2 x 2  BSS technique has been 

utilised. Furthermore, in this technique, the filter tap lengths were assumed 

to be constant and no adaptive technique was proposed to mitigate the com­

putational complexity entailed by long filter lengths. In fact, an adaptive 

variable tap length time-domain convolutive BSS allows to cater for frac­

tional tap lengths, which leads to longer filter lengths [6 8 ]. This issue is 

clearly addressed in the following chapter. Another way to achieve statisti­

cal independence is to consider the non-Gaussianity of the sources, which is 

the basis of FastICA explained in the following subsection.

2.6.2 FastICA

Now, a well-known instantaneous ICA algorithm is described. Another ap­

proach to maximise the statistical independence of the estimated sources is 

maximising non-Gaussianity. FastICA is inspired by the Central Limit The­

orem, in which the distribution of the sum of independent random variables 

tends towards a Gaussian distribution [7]. It is reasonable to assume that the 

distributions of the mixtures are closer to Gaussian distribution than that of 

any of the underlying sources. Thus, within the ICA community, the equiv­
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alence between non-Gaussianity and statistical independence is understood. 

As a result, the main limitation of this criterion is that at most one source 

can possess a Gaussian distribution. In fact, most ICA algorithms rely on 

this assumption. The aim of ICA algorithms is to maximise statistical inde­

pendence by ensuring uncorrelatedness at higher order statistics. However, 

if the sources are Gaussian, uncorrelatedness at second order statistics is 

equivalent to independence, which is not the aim of ICA [12]. Moreover, it 

is shown in Chapter five that non-Gaussian sources ensure the uniqueness of 

the BSS model.

The non-negative measure negentropy Neg(y) quantifies how much a random 

variable (r.v.) y deviates from Gaussianity and can be formulated as [7]:

Neg{y) = H{v) -  H(y)  (2.6.6)

where v  is a Gaussian r.v. of the same variance as y , and H{.) denotes the 

differential entropy. This measure of non-Gaussianity underpins the basis of 

FastICA. Due to the computational complexity of negentropy, Hyvarinen et 

al. proposed instead to use am approximation [7]:

A M s,) <x [£{G($/)} -  £{G ( , / ) } ] 2 (2.6.7)

where G(u) cam be either cosh(u) or — e"2/2. Tadring the derivative of (2.6.7) 

w.r.t. the separating vector w», corresponding to the ith  source yields:

Vwj = aE{zg(w fz )}  (2.6.8)

where a  = E{G(w?z)}  — E{G(v)},  w* corresponds to the separating vector, 

z is the whitened mixtures, amd g(.) the derivative of G(.). Then, Hyvarinen
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et al. suggested intuitively the following fixed point iteration:

Wi.fc+ 1  <- E{zg(w[tkz)} (2.6.9)

However, if the right-hand side term of equation (2.6.9) is examined carefully, 

it can be expressed as:

E{zg(  w fz)} = E{VAsg(yt)} (2.6.10)

where VA corresponds to the mixing matrix in the whitened space, s is the 

source vector, and g(yi) is the non-linear function on ith  estimated source 

t/t- It turns out that VA also corresponds to the transpose of the separating 

matrix [7]. On the other hand, calculation of E{sg(yi)} results in an element 

column vector. An element column vector can be defined as a vector that has 

a non-zero element at the ith  location and zero elsewhere. This follows from 

statistical independence of the sources, i.e. the cross-correlation between yi 

and Sj is zero , for j  i. Subsequently,

E{zg{vffz)}  = ywi  (2.6.11)

where 7  =  E{sig(yi)}, and thus it justifies the fixed point iteration in (2.6.9). 

However, the convergence of this fixed point iteration (2.6.9) is not satisfac­

tory [7]. It is shown analytically why it does not converge to the fixed point 

in Chapter four, subject to some conditions. Hence, Hyvarinen et al. pro­

posed to employ a Lagrangian approach to yield a convergent fixed point 

iteration as:

w i «- E{zg(w[z)}  -  E{g'{w fz)}w i (2 .6 .1 2 )

where </(.) is the derivative of g(.) w.r.t. to w*. FastICA has been exten­

sively utilised in biomedical signal processing [43,55,69-71]. Its popularity

within the biomedical BSS community stems from the fact that most natural
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signals are non-Gaussian (mainly super-Gaussian). This suggests that it can 

be a potential candidate for the separation of TMJ sounds.

FastICA has often been strongly linked with projection pursuit [7]. Pro­

jection pursuit is a statistical tool to determine the linear combination of 

a multivariate data, such that the new projected data reveals the most ‘in­

teresting’ direction. In the case of FastICA, the most interesting direction 

is in fact non-Gaussianity. As FastICA might sometimes fail to perform 

separation, owing to its bias towards maximal non-Gaussianity of the data, 

it is said to perform projection pursuit [7,8]. Now that examples of both 

an instantaneous BSS algorithm and a time-domain convolutive BSS have 

been given, Parra’s convolutive frequency-domain algorithm which exploits 

the non-stationarity of the sources is reviewed next.

2.6.3 Parra’s frequency domain algorithm for convolutive BSS

Parra and Spence showed that a non-stationary signal possesses a heavy-tail 

distribution (i.e. super-Gaussianity), and therefore they exploited the non- 

stationarity of the sources to maximise the statistical independence [8 ]. For 

the purpose of clarity, their proof is included in Appendix A.3. Consider 

firstly the covariance matrix of the mixtures for an instantaneous BSS as 

follows:

C x (t) = F{x(t )x(t)T }

= AB{s(t)s( t)T } A T +  C„

= A C 8A T + C„ (2.6.13)

where C x(t) denotes the covariance matrix of the mixtures x(£), likewise 

for the source and noise covariance matrices Cs(£) and C „(£). The non- 

stationarity of s(£) implies that Cs(£) ^  C s(£ -I- r). Due to the statistical 

independence assumption, C 8(t) and C „(t) are diagonal. Hence, source sep­
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aration can be achieved through the diagonalisation of multiple covariances 

C x(£ +  r) , taken a t different lags. Convolution in the time-domain trans­

lates to multiplication in the frequency domain. Therefore, Parra and Spence 

tackled convolutive BSS in the frequency domain so that they could apply 

the same concept to each frequency bin:

Cx(z) =  A (z )C a(z)AH (z) +  C„(z) (2.6.14)

where z  denotes the z-transform [4]. However, the process of applying ICA 

individually to each frequency bin poses a serious problem in terms of per­

mutation. For example, the first estimated source in one frequency bin does 

not necessarily correspond to the first estimated source in another frequency 

bin. Parra and Spence argued that this permutation problem can be solved 

by imposing a smoothness constraint on the unmixing filters. In other words, 

the unmixing filter length L <C Q, which is the discrete Fourier transform 

window length. According to Parra and Spence, this restricts the solu­

tions to be continuous in the frequency domain [4], and therefore mitigates 

the permutation problem. Till now, techniques pertaining to only exactly- 

determined BSS or overcomplete BSS have been overviewed. The next step 

is to illustrate examples of algorithms utilised to solve underdetermined BSS, 

specifically, SCA algorithms.

2.6.4 Implication of K-means clustering algorithm

In under-determined source separation, n > m  implies that there are less 

number of equations than variables. Thus, UBSS is an ill-posed problem. 

This ill-posed condition implies that the inverse of the mixing matrix A 

is not unique or may not exist. Therefore, the best that can be achieved 

is to estimate the mixing matrix A, and not the separating matrix W . 

The example given in 2.5.2 demonstrates that as a result of the sparsity 

of the sources, clustering can be performed to estimate the mixing matrix.
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In other words, the samples of the sources will lie in the direction of the 

columns of the mixing matrix. K-means clustering algorithm figures amongst 

the most conventional clustering methods, and thus has been utilised in 

SCA [5,11,18]. In this algorithm, it is assumed that the number of centroids, 

corresponding to the number of sources is known. Once these are initialised, 

K-means algorithm assigns samples of the mixture signals which are nearest 

to a particular cluster centroid, to that cluster [72]. It then updates the 

coordinates of the new centroid, which correspond to the mean distance 

between these samples and the centroid. This procedure is repeated until 

the coordinates of the centroid does not alter significantly. The caveat is 

that its performance depends on the initialisation. Thus, it is a common 

practice to employ the k-means algorithm a number of times on the same 

data and take the average of the centroids estimated from each application 

of the k-means algorithm. The resulting averaged centroids yield the mixing 

matrix. In the following sub-section, a more recent clustering technique that 

has been proposed to solve UBSS, is examined.

2.6.5 Li’s clustering UBSS technique

Li et al. proposed recently a clustering technique, which operates well, pro­

vided there exists only one active source over any given time instant [42]. 

Consider the following 2 x 3  UBSS scenario, whereby the sources are sparse:

X =  AS
■- 1 r- -] z 0 0 I

Za Kb Lc la
=

a b c
0 K 0 0

Zd Ke L f Id d e f
L L J 0 0 L 0

(2.6.15)

where X  is the mixture matrix, with each of its rows corresponding to a 

mixture signal, similarly for the sources S, and A is the mixing matrix. If 

the first row of X  is divided by its second row elementwise, then the following
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is obtained:

[a/d  b/e c / f  a / d ] (2.6.16)

The first and last element of the above row vector are identical, due to the 

fact that they both correspond to the active source si, at t =  1 and t =  4. 

Li et o/.’s algorithm detects those identical elements and cluster them into 

different classes. Each class yields an estimate of one of the columns of the 

mixing matrix. This technique is robust, as it only requires the sparsity of 

the sources to be satisfied for 1 0  % of the whole duration of the sources 

[42]. Furthermore, this technique does not need the active source to be ‘on’ 

uninterruptedly for an interval of time. Nonetheless, this technique needs 

the sparsity of the sources to be restricted to a single active source. Now 

that the two algorithms for the identification of the mixing matrix have been 

outlined, source recovery in UBSS is addressed in the following section.

2.6.6 t \ —norm minimisation algorithm

Source recovery in the context of underdetermined source separation sepa­

ration (UBSS) is quite challenging. Moreover, principal component analysis 

through whitening cannot be employed to solve ‘half’ of the BSS problem, 

as seen in section 2.4.2. This is because the rank of the spatial covariance 

matrix C x of the mixture signals is less than that of the source covariance 

matrix C8. Therefore, to compensate for the lack of availability of mixture 

signals, it is common to assume that the sources are sparse. One common 

approach is to assign each sample of the mixtures at a given instant to one 

of the sources. However, if more than one source is active over a given pe­

riod, then a  technique that partially assigns each data point of the mixtures 

to multiple sources is more suitable. The i \ —norm minimisation algorithm 

operates in this fashion [1 1 ], Mathematically, it can be written as:

min ||s(£)||i s.t. As(t)  = x(£) (2.6.17)
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where ||.||i denotes the i \ — norm, and the ‘ha t’ superscript (.) denotes the 

corresponding estimate. It is worth noting that this method forms part of 

the Unear programming techniques. As this algorithm does not depend on 

any statistics, it can be employed for data of short sample size such as in 

micro-arrays in genomics [18]. Furthermore, since it does not assume statis­

tical independence of the sources, it can be utiUsed potentially for correlated 

sources. Nevertheless, this technique requires the sources to be sufficiently 

sparse (at most ‘m’ active sources at a given time instant t) [73]. Addition­

ally, its prerequisite is the availability of the mixing matrix A or at least its 

estimate A.

Now that ICA and SCA have been reviewed and illustrated with examples 

of both techniques, performance measures for BSS employed in this thesis 

are defined next.

2.7 Performance Measures

Like most performance measures, the ones presented herein requires either 

the mixing matrix or the original source signals. Therefore, it restricts their 

usage to synthetic simulation, i.e. the sources are mixed synthetically in 

Monte Carlo trials run in MATLAB®. In cases whereby sources are ex­

tracted from real recordings, these are assessed against the estimates of 

convolutive Infomax, which has already been applied in the same context,

i.e. TMJ source separation. Furthermore, the spectra of the estimated TMJ 

sources are compared to the spectra of TMJ sources available from the ex­

isting literature, to verify whether or not successful separation has been 

achieved.

The performance index (PI) is the dominant measure of performance in 

BSS, however there exist other variants to cater for the need of convolutive
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or under-determined BSS. PI and its variants measure the quality of either 

the estimated separating matrix or the estimated mixing matrix. On the 

other hand, the classical mean square error (MSE) can be employed to mea­

sure the quality of the separation in terms of the estimated sources. A low 

value of those measures indicates good separation. In the context of audio 

BSS, Vincent et al. proposed recently a signal to interference ratio [74]. In 

contrast to the other measures, the higher the SIR, the better is the source 

separation. All these measures are defined in the following subsections. It is 

noted that in the context of ICA approaches, the statistical independence of 

the estimated sources can be quantified in terms of the mutual information. 

Thus, mutual information can also assist in analysing the performance of 

the ICA approaches.

2.7.1 The performance index for instantaneous BSS

The so-called global mixing-separating matrix is defined as G  =  WA. Prom

(2.2.2), it is clear that G  =  PA. Therefore, G accounts for the scaling 

and the permutation resulting from the separation procedure. G  can be 

utilised in a measure, which will be insensitive to permutations and scaling 

ambiguities. It is noteworthy to say that the minimum value of PI is zero, 

while its maximum value depends on the normalisation factor. However, PI 

is mainly used for comparison purposes, and therefore knowledge of these 

bounds is not crucial in assessing the performance of the BSS approaches. 

The performance index (PI) is such a measure and can be formulated as 

follows [1 2 ]:

" ^ g f g ^ - ^ l g ^ - 1} bi«
where gij is the ij th entry of the global matrix. It is assumed that the 

number of sources equals to the number of mixtures.
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2.7.2 The multichannel intersymbol interference for convolutive 

BSS

In the context of convolutive BSS, PI can be formulated as the multichannel 

intersymbol interference (MISI). It is defined as follows [75]:

M j g j  _  y -' Hj  H P — maxi,p l^ijpl Hi H P l^tjpl ~  maxt,p |Q»jpl

^  maxJjP |©ijp| maxi)P |©ijp|
(2.7.2)

where ©(2 ) =  a(z)w(z) denotes the global mixing-separating filter coeffi­

cient. Note the strong similarity between this performance measure and the 

performance index.

2.7.3 The performance measure for underdetermined BSS

The performance measure (PM)  provides an indication of the difference 

between A  and its estimated A  in the context of underdetermined BSS [76]. 

However, PM  requires both A and A to have unit norm columns. This 

index falls within 0 <  PM  < 1. PM  equals to 0 if A =  A P  where P  

is a permutation matrix. Therefore, the lower the PM, the better is the 

performance of the UBSS algorithm.

P M ( A, A) =  1 — ( sup | Ar A |ij +  sup | ATA |ii) (2.7.3)
zn i=i i Ln j =l *

2.7.4 Mean square error

Due to the scaling ambiguity, different BSS algorithms yield different scaled 

version of y*. For fair comparisons, all the estimated ICs are first normalised 

to unit variance, and then the sign of each source and its corresponding 

estimated IC is ensured to be the same. Thereafter, the MSE corresponding 

to the ith  source can be computed as:
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2.7.5 Signal to interference ratio

As TMJ sound separation falls under the category of audio BSS, the SIR 

proposed by Vincent et al. [74] is also considered in this thesis. It is defined 

in dB as [74]:

SIR = 101og1 0 l |S ‘" g etll22 (2.7.5)

where

t̂arget =  («*, S iW I N I 2 (2.7.6)

înterf =  ^   ̂(^t i Si')si' / 1111 (2.7.7)
iv*

and starget 5 einterf represent respectively the source of interest and the in­

terference introduced by the other sources. It is understood that (si,Sj) = 

Ylt=iSi{t)sj(t) denotes the inner product between the estimate of the ith  

source and the j th  source. Note that if the sources are mutually orthogonal, 

einterf <  ^target since si') ^  («<,«<)• This leads to a large value of

SIR, provided good estimates of the sources can be achieved.

2.7.6 Signal to noise ratio

The signal to noise ratio (SNR) is a well-known measure in signal enhance­

ment techniques to assess quantitatively the strength of the restored signals 

in the presence of noise. SNR with respect to the ith  source yi in the presence 

of the ith  noise u* can be defined as follows:

SNR=101ogloj j^ p  (2.7.8)

2.8 Conclusions

In this chapter an overview of BSS approaches has been provided. Both 

the generic mixing and separating models have been deployed in Tables 2 .1  

and 2.2 to demonstrate the BSS problem. The two main approaches of BSS 

have been discussed in sections 2.4 and 2.5. In the context of TMJ BSS,
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convolutive infomax has already been utilised by Guo et al. [1] and there­

fore, it has been illustrated in section 2.6.1. It has been pointed out that 

this particular time-domain convolutive BSS algorithm can be improved by 

adopting a variable tap length concept. This is the subject of the next chap­

ter. It has also been highlighted that although FastICA is a well-known 

fixed point BSS algorithm, there is a lack of analytic work on the conver­

gence of fixed point algorithms from a fixed point theory perspective. Hence, 

Chapter four formulates a fixed point algorithm, which coincides with Fas- 

tlCA. Thereafter, an analytic approach (based on fixed point concepts) of 

the formulated algorithm leads to an improved convergence to the solution. 

Furthermore, Chapter five extends FastICA to a 2 x 3 UBSS TMJ scenario 

and compares its estimates with SCA approaches presented in this chapter. 

Last but not least, BSS performed on real TMJ recordings is addressed in 

the last part of this thesis to demonstrate that BSS technique can be pow­

erful. This shows that although an optimum BSS technique is critical, an 

effective method can be proposed for special scenarios such as that of the 

temporomandibular joint sound mixing system.



Chapter 3

VARIABLE TAP LENGTH 

CONVOLUTIVE BLIND 

SOURCE SEPARATION

3.1 Introduction

The Infomax algorithm of Bell and Sejnowski has enjoyed much success in 

independent component analysis (ICA) and blind source separation (BSS). 

The main appeal of Infomax lies in its conceptual simplicity and intuitiv- 

ity [17]. This algorithm has been extended to the convolutive case by 

Torkkola, who details his approach in Chapter eight of [17]. Convolutive BSS 

figures amongst the ongoing trends in the BSS community, as modelling the 

acoustics of an echoic room still remains a challenge. The common approach 

to tackle such a problem is to treat the separation task in the frequency 

domain and thereby employ complex valued instantaneous ICA methods in 

each frequency bin. This approach suffers from a number of non-trivial issues 

such as permutation and scaling inconsistencies across the frequency bins. 

Although there has been much effort to address these issues [77-79], this is 

still an open problem. However, these ambiguities do not pose any signif­

icant problem to the time-domain approaches [17,80]. Nonetheless, it may 

be computationally lighter to perform the source separation in frequency 

domain as the convolutions with long filters in time-domain are translated

40
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to efficient multiplications in the frequency domain [17]. In the convolutive 

BSS model, the unmixing filter may be of fractional delays. Thus, whenever 

a fractional delay is encountered, a longer filter length than when there is no 

fractional delay is required [6 8 ]. Theoretically, the fractional delay can be 

modelled by the convolution of the signal to be delayed with a sine function, 

which is infinite in duration. It is reasonable to assume that fractional delays 

can arise in the convolutive source separation.

Therefore, the objective of this chapter is to determine the optimum 

tap length of time-domain convolutive Infomax as a means to alleviate such 

computational complexity or, to avoid under-estimation of the filter length 

whenever the problem of fractional delays arise in BSS. Finding the opti­

mum tap length can be achieved by adopting the fractional tap (FT) length 

described by Gong et al. in the LMS algorithm [81]. Indeed, the variable 

tap length concept is a relatively new idea, but has proved to be quite suc­

cessful [81-84]. In blind signal processing, this idea has been introduced 

recently in the context of blind deconvolution [85]. This concept has not yet 

been applied to blind signal separation and therefore constitutes the main 

contribution of the present work. Moreover, in the LMS technique, the de­

sired signal is known a priori, while the unsupervised nature of BSS makes 

the latter more challenging. Due to the statistical independence assumption 

of the sources, the optimum filter length is defined as the minimum filter 

length that minimises the off-diagonal terms of the covariance matrix of the 

sources s(f), which will be discussed in detail later.

The organisation of the chapter is as follows: in section 3.2, the frac­

tional tap length LMS of Gong et al. is reviewed [81]. Convolutive Infomax 

is overviewed in section 3.3. The variable tap length Infomax is formulated 

in section 3.4. Section 3.5 provides simulation results to support the advan­

tages of the new approach, followed by discussions in section 3.6. Section
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3.7 concludes this work.

3.2 Variable Tap Length LMS Algorithm

The LMS algorithm is an old and well established technique. Hence, it 

is assumed that the reader has sufficient knowledge of this technique, and 

therefore, the focus is on the variable filter length concept. Otherwise, the 

reader can refer to [8 6 - 8 8 ]. The FT variable tap length LMS algorithm aims 

at finding the minimum filter length as the optimum filter length that fulfils 

the following criterion C [81]:

C =  ?iL_)A - « i t ) < e  (3.2.1)

where denotes the expected squared error, the superscript ( . ) ^  denotes 

that the tap length to learn the coefficients is L, whilst the subscript (.)* 

refers to the case when only £ of the L  learned coefficients are employed. It 

is understood that A is a small positive integer, e is a small positive value 

determined by the system requirements, and that:

1 < A < I  < L  (3.2.2)

Eq. (3.2.1) can be satisfied even in the case of C < —e, which will be ex­

plained next. Firstly, let Lop* denotes the optimum tap length with the small­

est squared error between the desired signal and its estimate. 1 / ^ —(L—A) < 

Lopt ~ L implies that C < 0 , but if <C L, then C < — e. Hence, the 

philosophy that C  should be a small value is violated. Nevertheless, the 

definition of optimum L is considered as the minimum L  satisfying (3.2.1), 

and therefore the definition of the optimum tap length stands correct.

The next straightforward step is to apply the steepest descent to minimise
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C  with respect to the tap length If. Thus, the following can be obtained as:

AL) _  AL) 
sl-A (3.2.3)

where A is the leakage parameter to avoid over-estimation of L^t i  and /i is the 

stepsize of the update equation. It is noteworthy to say that lf{k) is likely to 

be fractional referring to the name fractional tap length LMS algorithm [81]. 

Nevertheless, the tap length L  employed in the LMS algorithm is not l/(k) 

due to its fractional nature. Instead, L  is updated only when a non-trivial 

change of lf(k) has occurred. Mathematically, this can be expressed as:

L{k +  1) =  < (3.2.4)

where [.J denotes the floor operator and 5 is a small positive integer. This 

concludes the variable tap length concept. For further details, refer to [81- 

84]. In the following section, an overview of the convolutive Infomax is given, 

in the context of speech processing.

3.3 Convolutive Infomax in Speech Processing

Before the convolutive Infomax [17] is introduced, it is important to exam­

ine the source signals, since the performance of BSS algorithms relies on the 

statistics of the sources. The temporal structure of speech does not allow us 

to make the assumption that the consecutive samples of speech are statis­

tically independent. In fact, Torkkola confirms this by the statement,‘Note 

that speech signals violate the assumption of samples being independent1 [89]. 

Therefore, the convolutive Infomax which performs source separation only, 

and not deconvolution, is considered. Although deconvolution cancels the 

echoes of the same speech signal from the estimated output of a BSS system, 

it also results in a whitened output. Hence, all the temporal dependencies
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are removed within the whitened output. This interferes with the temporal 

structure of the speech signal, resulting in its poor estimate. Next, the con­

volutive Infomax which performs only source separation is explained.

The convolutive Infomax proposed by Torkkola [17] uses a feedback net­

work, and its output y(t)  can be expressed as follows:

L \ \  L j 2

Vi(t) = ^ 2 w n Pxi(t  -  p) 4- Y w n M t  -  p)
p=0 p=0

L22 L21

V2{t) = Y ,  W22pX2(t -  p) +  Y  W21pVl(t -  P) (3.3.1)
p=0 p=0

where iu*jp denotes the corresponding separating filter coefficient, yj(t) de­

notes the j th estimated source at discrete time t, and X{(t) denotes the ith 

convolutive mixture. Let z  depict the ^-transform. As the filter coefficients 

wn(z)  and W2 2 (2) are not summed in the cross-branches of the network, 

they convey the deconvolution procedure. On the other hand, w\2{z) and 

W2 i(z) perform source separation by removing the redundancies from the 

feedback adjacent branch signals yi(z)  and 1/2(2) respectively [17]. On this 

basis, the solution for source separation is

wn{z) = 1 wi2(z) = - a i 2(z)a22 (z)~1

w22(z) = 1 w2i(z)  =  - a 2 i( 2 )an (z )" '1 (3.3.2)

where dij{z) denotes the corresponding mixing filter coefficient. This solu­

tion leads to yi(z) = a\i(z)si{z)  and 2/2 (2 ) =  a22(z)s2(z) [17]. In the sequel, 

the cross filter coefficients can be updated as follows:

WijP(k +  1) =  wijp{k) -  2rj(ui(t)yj (t -  p)) i ±  j  (3.3.3)
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where Ui(t) = tanh(t/t(£)), tanh(.) is the so-called non-linear function, and 77 

is the learning rate of the update. The derivation of the update is included 

in Appendix A.2 . In the next section, the variable tap length convolutive 

Infomax is proposed.

3.4 Variable Tap Length Convolutive Infomax

In Eq. (3.2.1), it is assumed that the desired signal for computation of the 

expected squared error between the desired signal and its estimate is 

accessible. In this case, however, the statistical independence assumption 

requires that the output covariance matrix Cy = E{y(t )y( t)T} tends to be 

diagonal. It is noted that y(t)= [7/i(t) V2 (t)]T and (.)T denotes the transpose 

operation. In the LMS algorithm, the objective is to minimise ^ L\  while 

here, the aim is to minimise the off-diagonal terms of Cy . Thus, the criterion

with the same notations as in (3.2.1), \\.\\f  denotes the Frobenius norm, and 

diag(Cy ) denotes a diagonal matrix with the diagonal elements of Cy . k  can 

be regarded as the sum of the square of the off-diagonal terms of Cy . To 

mitigate the computational complexity of updating the covariance matrix 

Cy, as one go from sample to sample, it is practical to employ the following:

C' is:

(3.4.1)

where

k = \\Cy -  diag(Cy )\\F (3.4.2)

Cy(k + l ) = ' , C y(k) + { l - - , ) R y (3.4.3)

where 7  is a forgetting factor less than unity and

Ry = (3.4.4)
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where the subscript (.)i:Af denotes the last M  new samples of y(t) of the In­

fomax algorithm. The resulting update equation for the convolutive Infomax 

regarding the fractional tap length is as follows:

l f (k  +  1) =  (l /{k) — A) — fi *<L) *(l)fv  r  rV L - A (3.4.5)

Eq. (3.3.1) shows that L 12 and L 2 1  can be potentially of different lengths. 

Chapter eight of [17] states that Torkkola considered L 12 and L21 to be equal. 

Likewise, similar assumption is made here. Although this assumption may 

not be necessarily true, it does not affect the effectiveness of the variable tap 

length approach. On the other hand, only one criterion has been utilised, 

and therefore, only ‘one’ L  can be altered. This aspect is subject to further 

research. Hence, the variable tap convolutive Infomax is summarised in the 

following resume.

Resume of variable tap length convolutive Infomax

1. Initialise L  and I f  with the same value.

2. Execute Eq. (3.3.1) for the first segment of M  samples, while updating 

the coefficients WijP(k) from sample to sample via Eq. (3.3.3).

3. Compute Cy corresponding to both and and update the

fractional length l/(k)  through Eq. (3.4.5)

For 1 =  M  +  1,..., T

4. Update the coefficient Wijp{k) via Eq. (3.3.3) and estimate the new 

samples y (£) =  [yi(t)y2{t)] from Eq. (3.3.1).

5. Update Cy corresponding to both and via (3.4.3).

6 . Compute the new values of I f  and L  respectively via Eqs. (3.4.5) and

(3.2.4).
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7. if i ^  ( T + 1), where T  is the number of samples of the signals, go back 

to step (4).

3.5 Simulations

In this section, the same simulation as Torkkola’s in [17] is considered for 

comparison purposes. In effect, it is a 2 x 2 speech separation problem where 

the mixing matrix is given as follows:

The filter length parameters were set as: L  = If  =  10, 5 =  2, and A =  3. 

As for the performance, the multichannel intersymbol interference (MISI) is 

used and defined as follows [75]:

ficient. Note the strong similarity between this performance measure and 

the performance index as given in [12]. In Fig. 3.1, the upper plot demon­

strates the performance of the proposed method, with convolutive Infomax 

of different filter lengths. The lower plot shows the sum of the off-terms of 

covariance of y  (£) for the corresponding filter length of Infomax. In this case, 

it is only the cross-correlation between yi(t) and y2 (t). Fig. 3.2 illustrates 

the resulting global filter coefficients of the proposed approach in the upper

0 1 1 (2:) =  1 -  0.4z" 25 +  0.2z - 45

0 1 2 (2 ) =  0.4* " 20 -  0.2z~28 +  0.1 z - 3 6

<221(2 ) =  0.52“ 10 +  0.3z~22 +  0.1 z~M

<222(2 ) =  1 -  0.3z ' 20 +  0 .2 z - 38

2 ^  maxjj, \Gijp\
maxjp |G"jjp|M I S I

t=i

j = 1

(3.5.1)

where G(z)  = a{z) * w(z)  denotes the global mixing-separating filter coef-



Section 3.6. Discussions 48

four plots. The lowest plot illustrates the evolution of the tap length of the 

proposed technique.

X10*

2000 4000 6000 8000 10000 12000 14000 16000
Sample number

— Tap length 10 
— Tap lenglti 20 

Tap lenglh 30 
-  -  -  Tap lenglh 50 

Tap length 60 
— Tap lenglh Variable

0  0.05

160002000 4000 6000 8000 10000 12000 14000
Sample number

Figure 3.1. The top most plot illustrates the superior performance of the 
proposed approach, compared to fixed tap length Infomax. The lower plot 
shows the cross-correlation between the two estimated sources. It is notewor­
thy to say that although Infomax minimises the cross-correlation between 
its outputs, MISI increases as the number of iterations increases. Effectively, 
this implies that increasing the statistical independence does not necessar­
ily improve the performance. It is noted that the final tap length of the 
proposed approach is 38.

3.6 Discussions

In Fig. 3.1, the lowest MISI achieved using the proposed approach indicates 

its superiority. Nonetheless, note the strong correlation between the perfor­

mance of the proposed approach and Infomax of tap length 60, 50 & 30. 

On the other hand, there is a significant difference in performance between 

the proposed approach and Infomax of tap length 10 & 20. The lower plot 

of Fig. 3.1 follows suit, i.e. the variable tap length Infomax estimates have

Tap lenglh 10 
Tap lenglh 20 
Tap lenglh 30 
Tap lenglh 50 
Tap lenglh 60 
Tap lenglh Variable
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F igure  3.2. The upper four plots illustrate the global mixing-separating ma­
trix G{j. They confirm the good performance of the proposed approach, due 
to the low magnitudes of G12 and G2 1 , compared to G n and G2 2- The lowest 
plot demonstrates that the tap length of the proposed approach reaches a 
steady state of approximately 40.

approximately similar cross-correlation as those of Infomax of tap length 60, 

50 & 30. It is noteworthy to say that although the cross-correlation between 

the outputs is minimised, the MISI increases, as the number of iterations in­

creases. Effectively, this implies that increasing the statistical independence 

does not necessarily improve the performance. Fig. 3.2 confirms the rea­

sonable performance of the proposed approach, due to the low magnitudes 

of G \ 2  and G2 1 , compared to G n and G2 2 - The lowest plot demonstrates 

that the tap length of the proposed approach reaches a steady state of ap­

proximately 40, with its final length being 38. Notice that this graph is not 

as ‘smooth’ compared to [81-83]. This ‘non-smoothness’ arises due to the 

non-stationarity of the speech signals, while in [81-83], the authors utilised 

stationary white Gaussian noise, instead of real signal sources. Moreover, the 

final tap length of 38 coefficients of the proposed approach is much smaller 

than the tap length of 100 coefficients employed by Torkkola [17]. Although,



Section 3.7. Conclusions 50

the same speech signals as those of Torkkola have not been employed, this 

difference in tap length is not negligible. Moreover, notice that a tap length 

of 30 coefficients will be computationally less intensive, while achieving a 

similar performance as the proposed approach. However, it is highlighted 

that the problem at hand is ‘blind’, and therefore a tap length of 38 is rea­

sonable enough. In fact, the separating filter length is expected to be near 

to that of 0 1 2 (2 ), which is indeed the case.

3.7 Conclusions

In this chapter, it has been shown how the concept of variable tap length can 

be applied to blind signal separation. To the author’s knowledge, this work 

has not yet been introduced in the existing literature. The results of this 

work look promising. Variable tap length assists in alleviating computational 

complexity of the time-domain convolutive BSS algorithms. The adaptive 

property can also prove useful, whenever the delay is fractional, which leads 

to a longer filter length than expected [6 8 ]. This work is still in its infancy, 

as there remains many issues to be addressed. One of these issues is to devise 

a technique to allow the tap length of each filter to be of different lengths. 

For example, another criterion can be used in parallel to the minimisation 

of the off-diagonal terms of the covariance such as kurtosis of the individual 

estimated sources. Another venue for future work is to apply the same 

concept to other convolutive time-domain BSS algorithms such as the natural 

gradient approach in [80].



Chapter 4

APPLICATION OF 

FERRANTE'S AFFINE 

TRANSFORMATION TO 

IMPROVE THE 

CONVERGENCE OF ICA 

FIXED POINT ITERATIONS

4.1 Introduction

Application of Ferrante’s affine transformation is proposed in this chapter 

to improve the convergence properties of fixed point iterations within an 

ICA algorithm. This ICA algorithm is based upon the generalised Gaussian 

distribution (GGD) and Ferrante’s affine transformation. Ferrante’s affine 

transformation provides the freedom to select the eigenvalues of the Jaco- 

bian matrix of the fixed point function and thereby improves the convergence 

properties of the fixed point iteration. The maximum likelihood estimator 

of the shape parameter a  has also been re-derived for the GGD assumption, 

subject to a unit variance constraint on the independent component (IC). At 

each step of the fixed point iteration an estimate of the unmixing vector to

51
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extract one source is first found, thereafter the shape parameter a  is updated 

by maximising the likelihood of the distribution of the estimated source with 

respect to a. These steps are repeated until convergence. An orthogonal- 

isation procedure is then adopted to allow the extraction procedure to be 

repeated for the next source. Simulation studies verify that the proposed ap­

proach has similar performance to the efficient variant of FastICA proposed 

by Koldovsky [53] in a 2 x 2 scenario in terms of mean-square-error (MSE) 

of the ICs and the performance index (PI) of the global mixing-separating 

matrix as applied to both synthetic and biomedical temporomandibular joint 

sound sources. However, the proposed approach requires only two iterations 

for convergence. Moreover, in simulation it is found that even when both 

sources are Gaussian distributed, the proposed approach achieves a good 

separation performance measured by both MSE and PI.

Exploitation of a fixed point iteration in ICA algorithms is quite common, 

highlighted by the fact that the optimisation of the well-known FastICA is 

performed through a form of fixed point iteration. In this study, such itera­

tions within a particular ICA algorithm are analysed. Hence, the objectives 

herein are to show that 1 ) the fixed point iteration in such a particular ICA 

algorithm which exploits the GGD is unstable, 2) Ferrante’s transformation 

can be exploited to formulate an ICA algorithm which overcomes instability 

at the fixed point, and 3) an associated maximum likelihood (ML) estimator 

of the shape parameter a  can be derived.

The organisation of this chapter is as follows: in the next section,the GGD is 

briefly described and it is shown that the stability of the fixed point iteration 

in a particular ICA algorithm relies on the source distribution. Thereafter, 

Ferrante’s transformation is utilised to provide an ICA algorithm with im­

proved convergence properties. Additionally, the global convergence of the 

resulting ICA algorithm by determining an optimum parameter A is illus­

trated. Next, a useful likelihood estimator of the shape parameter a  which 

is exploited within the source extraction procedure is derived. Section 4.6
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then provides two sets of simulation results: one with synthetic sources gen­

erated from GGDs, and the other one with temporomandibular joint sound 

(biomedical) sources. As FastICA [7] remains the dominant fixed point iter­

ation in BSS, its performance and that of its efficient variant [53] are com­

pared with the performance of the proposed algorithm. Finally, concluding 

remarks and discussions regarding the Ferrante method are presented in the 

last section of this chapter.

4.2 A fixed point ICA algorithm

4.2.1 The generalised Gaussian distribution

The generalised Gaussian distribution whose peakedness is steered by a 

shape parameter a , is a typical model to characterise source signals [90,91]. 

Exploitation of a GGD model is very popular within the signal processing 

community, mainly due to its generic nature to model the source signals 

and its algebraic convenience. Moreover, with the shape parameter a  < 2 

of GGD, super-Gaussian/leptokurtic sources can be generated, while with 

a  > 2 , sub-Gaussian/playtykurtic distributions can be modelled. In the BSS 

area, Koldovsky et ad. [53], and Wang et ad. [54] incorporated independently 

variants of an adaptive score function based on a GGD assumption within the 

FastICA algorithm, while Waheed et al. [75] employed another variant of the 

GGD score function in the natural gradient algorithm. However, the focus 

of this study is not the GGD itself, but to analyse the convergence properties 

of the fixed point iteration within a particular ICA algorithm which exploits 

a GGD source model. The GGD family of distributions which is reviewed 

next, has the following form [92,93]:

p(si(t), a, a)  =  (4-2-1)

where Si(t) denotes the i-th source, a > 0  is the scale parameter, T(.) is 

known as the gamma function, and a  > 0 is the shape parameter. As for



Section 4.2. A fixed point ICA algorithm 54

y/P = y r(i/a ); it is merely a scaling factor which causes Var(si(t)) =  a2 

where Var{.) denotes variance. It is noted that in some GGD models, the 

factor y/P is omitted and therefore Var(si(t)) ^  a2 [90,91].

4.2.2 Derivation of the fixed point algorithm

In this study, the sources are assumed to be generalised Gaussian distributed. 

It is noteworthy to say that Mathis and Douglas made the same assumption 

in their work [92]. In order to derive one of the so-called separating vectors 

w i, the generic source Si(t) is substituted by its estimated one yi(t) in Eq.

(4.2.1) and the natural logarithm (In) is taken to obtain:

L M t U i . O i )  = 1n ( 2g^ ^ ) )  -  | (4.2.2)

It is common practice to impose some constraints on the scale of the esti­

mated sources (p. 238 [47]). This is possible due to the scaling ambiguity 

prevailing in BSS. Similarly, the scaling parameter <7* can be replaced by 

unity. Also, take note that the first term on the right hand side of (4.2.2) 

is independent of yi(t), and therefore the first term can be dropped. Since

(4.2.2) is maximised with respect to wt, the following cost function can be 

minimised:

c = 0ti,2\w(t)r
=  sgn{yi( t ) r ^ ‘/2y f ‘(t) (4.2.3)

using the fact that |y»(£)| =  sgn(yi(t))yi(t) where sgn(.) is the signum func­

tion. Note that a* > 0 implies /?ta ,//2  > 0. Hence, the latter can be separated 

from the absolute value |.|. If C is differentiated with respect to w*, the
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following is obtained

|£  =  a i ^ s g n i y m r ^ i t W )

= OLi0*i/2 sgn(yi{t))2<Xi- 1 |y ir<_1 (*)z(£) (4.2.4)

Since z (t)= VAs(t)  and taking the expectations w.r.t. yi(t) on both sides to 

yield,

E{^}  = aj/3f‘/2VA£{5Sn(yj(t))2“<-1|y<(t)r<-1S(t)} (4.2.5)

Assuming the statistical independence of the sources,

= a i f f ^ V A E i s g n i y i i t t f ^ ' ^ y i i t ^ ^ S i i f y e i  (4.2.6)

where Gj is the element column vector (of length n) that is 0  everywhere 

except 1 at the j th  location. For example, e3 =  [0 0 1 0 0]T. Since s*(t) =  

sgn(si(t))\si(t)\ and yi(t) & s*(t), (4.2.6) can be simplified to

E { § ^ }  =  * i0*il2\A E { s g n (y i(t))2a>\yi(t)\a<}ei (4.2.7)

Likewise, the next simplification follows:

sgniyiity^lyiit)]** = sgn(yi(t))aisgn(yi(t))ai\yi(t)\Qi 

= s g n i y i i t ^ y f ^ t )

=  l 2 / i ( * ) | Q <

(4.2.8)

Hence, the sgn(.) term can be dropped from (4.2.7) and E{sgn(yi(t)2ai)\yi(t)\ai} 

becomes i?{|?/j(£)|a‘}.

p/  ̂\
Using the formula E{\yi(t)\a'} = - p /iS  /?t~ 2 [92] along with the prop-

V Q ■ /
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erty T(a +  1) = ar(a), one can compute:

(4.2.9)

Substituting (4.2.9) into (4.2.7) after the above simplification, one can de­

duce that

It is crucial to see that the gradient yields one of the columns of the whitened

separating matrix W  as stated in pp. 192-194 of [7]. This in turn implies 

the following fixed point iteration /(w^*):

/ (w i)fc) : wi)fc+i «- aiff*i/2E{sgn{yi(t))\yi(t)\ai 1z(t)} (4.2.11)

with k denoting the kth  iteration. To clarify (4.2.11) the expected value of

(4.2.4) was computed, exploiting the fact that |yi(£)|a* =  sgn(yi{t))2ai\yi(t)\ai 

from (4.2.8) and that s^n(yi(t) ) _ 1  =  sgn(yi(t)). In general, this iteration 

is repeated until Wj^+i =  which means that the fixed point w* has

been reached, for / ( Wj) =  w*. On this basis, it would not be wise to take 

the steepest descent approach to minimise (4.2.3). This is because in such 

an optimisation technique, one hopes that the gradient goes to zero, as one 

approaches the desired point w*. Equation (4.2.10) shows that this is not the 

case, i.e. the gradient is unconditionally constant. Hence, the convergence 

cannot be ensured if the steepest descent is adopted. Note that Eq. (4.2.11) 

coincides with FastICA as (p. 188 [7]):

(4.2.10)

mixing matrix VA, which in fact corresponds to one of the rows v/J of the

witfc+i <- E{g(w lkz(t))z{t)} (4.2.12)

where the non-linear function g(.) is equal to sgn(yi(t))\yi(t)\ai x.

Next, the stability of the fixed point iteration /(w ^^) at the solution w i k =
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Wj is examined. To this end, the derivative of (4.2.11) is taken to compute 

the Jacobian matrix J (w i>fc) =  VWiifc/(w i)fc)|Wi fc=Wi:

J(w») =  «*(<*» -  l ) f f i/2E{sgn{yiai{t))\yi{t)\ai- 2z(t)z{t)T} 

aci(ai -  l)(3°‘i/2E{\yi(t)\ai~2z{t)z{t)T}

(4.2.13)

If diag(ei) denotes a diagonal matrix with the vector e* on the main diagonal, 

then by simplifying the expected value in (4.2.13), one can obtain

E{\yi{t)\ai~2z{t)z{t)T} = VAE{\yi(t)\ai}diag(ei)ATV T (4.2.14) 

Utilising (4.2.9), (4.2.13), and (4.2.14), one can deduce that

J(w i) =  (ai -  l)VAdiag(ei)ATVT (4.2.15)

= (aj — l)wjW^ (4.2.16)

But the matrix WjW^ is a rank one matrix with one unit eigenvalue due to 

the constraint w ^w* =  1 . Hence, there is one eigenvalue of the Jacobian 

matrix J(w») of the fixed point iteration /(w j) equal to (a* — 1) and the rest 

are zeroes. In terms of stability of a fixed point, note that it is asymptotically 

stable, provided that each eigenvalue of J(w^) is less than unity in magnitude 

(p. 247 [57]) or see Appendix A.I. However, it is clear that the dominant 

eigenvalue of J(w j) depends on the value of (a, — 1) and hence the stability 

depends on the distribution of the tth  source. In order to circumvent this, 

the affine transformation of the fixed point iteration proposed by Ferrante 

et al. is considered [94].
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4.3 Formulation of Ferrante’s affine transformation in BSS

The aim of Ferrante’s algorithm is to ensure that the fixed point iterations 

converge to the fixed point Wj, starting from a suitable neighbourhood of w, 

by applying an affine transformation to the fixed point algorithm / ( w ^ )  in 

hand [94]. This affine function p{wi,k, A) is given as:

p(wi>fc, A) =  wi>fc+i =  Wi +  A(wi)fe -  w i) (4.3.1)

=  Awi)fe +  (I  -  A)wi (4.3.2)

where w ^  is the kth iteration solution of p(wjt*_i, A) and w* is the fixed 

point to be estimated. In (4.3.1), the term (w ^  — Wj) can be considered as 

the error term. Hence, it would be wise to choose A to be a diagonal matrix 

with its diagonal elements less than unity in magnitude such that the error 

goes to zero, as k tends to infinity.

Thereafter, Ferrante et al. derived the first order approximation <z(wj) of

/(w j) by employing a Taylor series expansion and substituting w* by

The downfall of this substitution is the initialisation of Wj0 in the ‘neigh­

bourhood’ of Wj for convergence. It will be shown later how convergence can 

be achieved, and this initialisation issue can be overcome. Hence, the final 

Ferrante algorithm becomes:

p(wijjfc, A) = Aw f̂c + (I -  A)g(wijifc)

= Awi)fc + (I -  A)[I -  J(w i>fe)]- 1 [/(w i)fc) -  J (w i>fe)wi|fc]

(4.3.3)

As in [94], it is shown that the first-order ‘approximant’ q(v/i,k) at the point 

wt,fc =  Wj yields the fixed point. However, the proof derived herein is dif­

ferent from that of Ferrante due to this particular ICA formulation. In this 

approach, the constraint w fw j =  1 is imposed, and the expected value of
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J(w i) in (4.2.16) is considered, together with Woodbury’s identity. Based 

on a special case of this identity (p. 535 [47]),

a - 1 11V T  A - l

(A + uv 71) - 1 = A " 1 -  1 +  vr A - i u (4-3-4)

the inversion [I — J(wj)]-1 can be achieved. In the context of the proposed 

ICA algorithm, note that J(w j) =  (a  — l)wiW^ from (4.2.16). Thus in

(4.3.4), the followings can be replaced: A  with I, uvT with (a — l)wiW?\

and vTA -1u  with (a  — l)w^w*. Using the constraint w7 w, =  1 with

Woodbury’s identity, one can compute

[I -  J(w <) ] - 1 =  I +  ( a - 1)W<W'? (4.3.5)
I  — a

Employing (4.2.16), and (4.3.5) together with the fact that /(w*) =  w „ one 

can then obtain

g{wi) = [I — J(wj)]-1 [/(w j) — J(wj)wj]

=  [ 1 +  ( Q  X) W l W i  ]{wi - ( a -  l j w i w f w i ]
I  — a

=  ( a - X K w r
I  — a

= WX

(4.3.6)

Thus, it is clear that the formulation of Ferrante’s algorithm in BSS subject 

to the constraint w fw j =  1 yields a desired separating vector wx. Now, the 

properties of Ferrante’s algorithm are reviewed.

Theorem  1. The affine function (4.3.3) has the following two properties [94]:

p(wi? A) =  w» (4.3.7)
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dp = A V Wj (4.3.8)
W i,f c = W jdWt.fc

The proof of (4.3.7) is straightforward by using (4.3.1) and replacing = 

Wj. However, the second property can be proved after some algebraic ma­

nipulations as in [94]. A trivial yet useful way to prove (4.3.8) is to realise 

that Wj is a fixed point, and not a variable. By taking the derivative of

(4.3.2) with respect to the variable Wj jt, the second property can then be 

proved.

Property (4.3.8) permits one to set a priori the absolute value of the eigen­

values of A to be less than unity so that the fixed point is asymptotically 

stable (p. 247 [57]). Therefore, Ferrante’s algorithm has not only rendered 

the stability of the fixed point independent of the parameter ctj, as shown 

in Eq. (4.2.16), but has also given us the freedom to select the eigenvalues 

of the new J(wj) = k |wt fc=Wl =  A. This paves the way to determine the 

optimum A as follows.

4.4 Global convergence of fixed point Ferrante’s algorithm

In this section, the optimum A refers to the global convergence to the fixed 

point Wj. In fixed point theory, the conventional tool to prove convergence 

to a fixed point manifests itself in the shape of the contraction mapping 

theorem (CMT) [57]. This is reviewed briefly in the following paragraph.

4.4.1 Contraction mapping theorem

According to CMT, a vector function F (u) is a contraction within [wjG, w up] E 

Rn if [57], [2]:

• u g  [wj0, w up] e  Rn =» F(u) e  [w/o, w up]

• 3A < 1 E R+ subject to | | F ( u ) - F ( v ) ||2 < A||u—v | | 2 Vu,v G [w/0, wup]
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where | | . | | 2  denotes the Euclidean norm. The theory of CMT is now applied 

to prove the convergence of Ferrante’s algorithm in BSS.

4.4.2 The lower and upper bounds

Consider the closed region [w^/o, Wi)Up] over which the Ferrrante fixed point 

algorithm contracts (for further details of the contraction mapping theorem 

of fixed points, refer to pp. 245-246 [57] &; pp. 629-631 [2]). Likewise, the 

affine function p(w», A) in (4.3.1) needs to be proved to contract the upper 

and lower bounds of the closed region [w ^ , Wj>up]. To this end, the following 

pair of conditions have to be satisfied (p. 119 [57]):

wi,/o -  p(wi>fo, A) < 0  (4-4.1)

wi,up p(wj|tip, A) ^  0  (4.4.2)

In the first place, examine the lower bound condition (4.4.1) inline with

(4.3.1) and substitute w* with its estimate w*:

w ijlo -  [w» + A(wi)io -  w,)] <  0 

(I -  A)witlo -  (I -  A)wj < 0  

(I -  A)(wi>Zo -  Wi) <  0

(4.4.3)

For simplicity, consider the case where A = A is a scalar, subject to the 

constraints ( 1  — A) > 0 and ||w jffc| |2  =  1. The constraint (1  — A) > 0 is a

consequence of fixed point stability of theory of an attractive fixed point (p.

247 [57]), while ||wj jt| |2  =  1 is quite common in ICA to bound the solution. 

Taking the Euclidean norm on both sides of (4.4.3), it can be seen that

( 1 -  A)||(wijio-W i) ||2 < 0 (4.4.4)
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Examine the equality in (4.4.4), i.e.

( l -A ) ||(w i)io- w i)||2 « 0  (4.4.5)

For the condition (4.4.5) to be fulfilled, it is required that either W j^ =  w* 

or (1  — A) —► 0. Since one does not have control over the lower bound w ^ 0, 

because one does not know a priori the fixed point w*, therefore A has to be 

altered such that (1 — A) —■> 0 subject to the constraint (1 — A) > 0 . There­

fore, it can be deduced that the optimum A —► 1. A consequence of A —► 1 

on the upper bound (4.4.2) makes the latter equal to zero. Additionally, 

A —► 1 slows down the rate of convergence. This is clear from (4.3.1), and 

the fact that the error term is (w*^ — W j). In practice, A can be initialised 

to less but near unity and thereafter A can be switched to lower values to 

speed up the convergence in the neighbourhood of w*. How to determine 

the neighbourhood of w* remains an open problem and is subject to further 

investigation. Nevertheless, simulation studies show that the proposed ap­

proach requires two iterations for convergence. Thus, its rate of convergence 

does not pose any problem. On the basis of these theoretical aspects of 

Ferrante’s affine transformation, the implementation issues of the proposed 

algorithm are next addressed.

4.5 Implementation issues of Ferrante’s algorithm in BSS

4.5.1 The update equation

Recall that Ferrante’s algorithm is described as

A) =  Awiit + (1 -  A)[I -  J(w j|t))~‘ |/(w i,*) -  J(w jit)w j>/i;]

(4.5.1)

One may take the expected value of <z(wit*), that is, [I — J(w jtfc)]~1[/(w j)jk) — 

J (wt,fc)wt,fc] with respect to the random variables z(t)  and y(t) accordingly.
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This is due to the dependence of the Jacobian J(w jf*) and /(w*^) on these 

random variables. Consequently, the following might be erroneous to formu­

late:

•E{[I-J(w j,ifc)]~1[/(w ijifc)-J(wiit)wiik)} =  [ I -£ { J (w i|fc)}]“1[jB{/(wiifc)}-£;{J(Wi,jt)wi,fc}]

(4.5.2)

The statistical dependence between z(t) and y(t) involved in J(wijfc) and 

/ ( w*,fc) prohibits factorising out the expected values as in the right hand side 

term of the above expression. However, in demonstrating that q(vfi) = w» 

in (4.3.6), the expected values of J(w j) and /(w *) in (4.2.11) and (4.2.13) 

were assumed to be computed exactly. Hence, one can compute the right 

hand side term of (4.5.2) to estimate w*. To invert [I — £'{J(wj)fc)}]-1 , first 

consider (4.3.5) and substitute w* with Then, the term (a  — l)wjjfcW?’fc 

is replaced by the expected value of J(w j fc) w.r.t. Vi{t) in (4.2.13) to obtain

(I -  J (w i) ] -1 =  I +  (4.5.3)
2  — oci

Eqs. (4.2.11) and (4.2.13) can be utilised to calculate [^{/(w^fe)}—£?{J(wjifc)wj)fc}], 

as follows:

E { f{ w i>fc)} -  £ { J (w i)fc)wijfc}

= aiP*i/2E{sgn(yi(t))\yi(t)\ai 1z(t)} -  -  1 )0?i/2E{\yi(t)\ai 2 z(t) z(t)r wi>fc }

sgn(yi(t))\yi(t)\

= at(2 -  aOPf^Eisgnfoifflllyitt)!01* - ^ ) }

(4.5.4)
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Hence, the weight update equation of the final Ferrante BSS algorithm can 

be expressed as:

Wi,fc+i =  h{wi)fc, A) = Xwiik-\-ai{2-ai)0^i/2(l-X)E{sgn(yi{t))\yi{t)\ai~1z{t)}G

(4.5.5)

where
G _  rj +  Qi(Qi -  l)(3ai/2E{\yi(t)\ai- 2z(t)z(t)T} ^  5

2  — aii

Until now, it was assumed that the shape parameter a* can be accessed, 

whilst in BSS this is not available. Thus, determining a< blindly constitutes 

the topic of the next section.

4.5.2 Estimation of the shape parameter a

The update equation (4.5.5) requires the shape parameter a. Much work 

has already been undertaken to estimate a  [91,93,95]. Subsequently, the 

aim of this chapter is not to challenge such work, but to devise a pragmatic 

and robust estimator of a  to fulfil the need of Ferrante’s algorithm.

The most classic method is the maximum likelihood (ML) estimator which 

has been studied thoroughly and advocated by Varanasi [93]. Likewise, Vet- 

terli found experimentally that the ML estimator needs only three iterations 

for an accuracy of the order 10~ 6 [90]. In addition, the ML estimator still 

outperforms Song’s algorithm [91] and other techniques [93]. Furthermore, 

as for any ML estimator, it is asymptotically unbiased and efficient. The 

contribution here is to propose to use an ML estimator with the assumption 

<7 =  1 (the scaling ambiguity is exploited).

The same approach as Vetterli [90] is taken here to derive the shape param­

eter a. However, note that, the term v7? has been included as in (4.2.1) 

such that <7 2 =  Var{.), whilst in [90] the author omitted \f& and therefore 

<r2 =  Var(.)/(3. Hence, a can be accessed through the estimation of Var(.),
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without the a priori knowledge of a. On the other hand, the motivation 

that lies behind a  =  1 is to leapfrog its estimation which is irrelevant in 

BSS. Thus, after each iteration of (4.5.5), the variance of yi(t) is normalised 

to unity. Now, the ML estimator is derived.

Firstly, define the likelihood function of the signal vector u=[u(l)u(2)...u(t)..u(T)] 

having independent samples as

T
L(u; a, a) = log J Jp (u ( j) ;  <r, a) (4.5.7)

j =l

If Eq. (4.5.7) is differentiated with respect to a , then the following can be 

obtained (4.5.8). The derivation is provided in Appendix B,

J=1
(4.5.8)

where

dOj
da

—  O jjj (4.5.9)

F(3/a)
W(j)\

7j

(4.5.10)

and ^(z) =  T'(i)/T(i) is the digamma function. Therefore, (4.5.8) is equated 

to zero to determine a. However, a closed form solution does not exist, 

therefore consider:
dL(u; cr, a)h (a) =

da
(4.5.12)
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Employing the Newton-Raphson optimisation technique as in [90], one can 

find a  iteratively using:

a *+ i = a t ~ * S )  (4-s i 3 )

where

= T t  + Y P A  7 ? +  7$)]
j  = 1

(4.5.14)

^  + 3W 3/“) -  *(V«)) + ^(3>t(3/a)' -  *(l/a)'0

(4.5.15)

7 ' =  (M (3 /a ) '  -  *(X/o)A (4.5.16)

Similarly, ^ (.y  denotes the trigamma function and the derivation of h '(a) =
a2l

is also included in Appendix B. As the issues concerning the implemen­

tation of Ferrante’s algorithm have now been addressed, the overall algorithm 

can now be concluded.

4.5.3 Resume of the proposed approach

The proposed method based on Ferrante’s affine transformation is sum­

marised as:

1. Whiten the mixtures X to yield Z as shown in Chapter 2.

2. Initialise randomly w«, and set a  =  1 at iteration k=0. Furthermore, 

set the parameter A in (4.5.5) to 0.999 to satisfy the global convergence 

condition (4.4.5).

3. Compute the i-th estimated source vector y* =  w?fcZ.
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For th e  fc-th ite ra tio n :

4. Update w ^ :

Wi,A; =  Awj jt-i +  (1 -  A)g(wiife_i)

where

g(wi)fc) =  a itk(2 -  ai,Jt)/0“fcfc/2-E{spn(2/i (t))|?/i(t)|ai'fc-1z(t)}G

and

o  _  ,T “  V t f i k/2E{\yi(t)\a‘* -2mz(.t)T}C, _  [1 H------------------------------ ---------------------------
2  -  a itk

5. For i ^  1 , orthogonahze w ^  with respect to the previously estimated 

separating vectors Wj, where j  < i, by:

i - i
w»,fc =  Wiifc -  ^ (w ^ W j) w j  (4.5.17)

j=i

6 . Calculate y* and normalise y i to unit variance and w» by W t/||w i||2 -

7. Estimate by optimising the Newton-Raphson algorithm given in 

equation (4.5.13).

8 . If ai'k = then convergence is attained. Therefore at con­

vergence, the final estimated separating vector of the ith  source is 

Wj =  Wj fc. Otherwise, return to step 4.

For step 4, it is understood that the .£{.} values are replaced by their time- 

averages of y,, which denotes the i-th estimated source vector, and is appro­

priate for ergodic sources. On the other hand, the discrete time-instant t = 

k is considered. As for step 5, this avoids wj converging to the same solution 

as w j  [7]. Now that the resume of the proposed approach has been outlined,
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simulation studies are presented in the following section to demonstrate its 

efficacy and convergence.

4.6 Simulations

Ferrante’s algorithm is quite robust only for a 2 x 2 BSS scenario, i.e. two 

sources and two mixtures. Although the 2 x 2  BSS scenario might seem triv­

ial, Ferrante’s algorithm has similar performance to efficient FastICA [53], 

and outperforms FastICA [7] in most cases. Furthermore, simulation studies 

suggest that the proposed scheme has attractive convergence properties in 

terms of convergence rate, and its stability at convergence. An example of a 

2 x 2  noiseless BSS scenario by simulating BSS of temporomandibular joint 

(TMJ) sounds is provided. Consequently, two scenarios are presented: 1) 

two white noise sources synthetically generated from GGD, and 2) real TMJ 

sources were considered. 50 Monte Carlo simulations were run. For each 

scenario, a different mixing matrix A was generated randomly (elements 

from a standardised normal distribution). It can be claimed that due to the 

equivariance property of the noiseless BSS, i.e. the mixing matrix should 

have no effect on the resulting separation (p. 248 [7]). Thus, the synthetic 

sources for each Monte Carlo simulation were re-generated randomly. Both 

the mixing matrix and the synthetic sources were randomly re-generated in 

scenario one. For comparison purposes, the FastICA [7], which is the most 

well-known fixed point iteration for ICA, and its efficient variant [53] are 

taken as benchmarks. FastICA achieves statistical independence of the out­

puts by maximising the non-Gaussianity of the ICs. On the other hand, its 

efficient variant [53] employs FastICA as a preprocessing step to gain esti­

mates of the sources, and thereafter applies adaptive non-linear functions on 

each estimated IC and finally employing a refinement step to improve the 

results of the FastICA.

In terms of the performance measures for all three algorithms, the well-
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established mean-square-error (MSE) of the estimated ICs yj and the per­

formance index (PI) of the global mixing-separating matrix are considered. 

To monitor the convergence of each algorithm, a^k of y* is estimated af­

ter each update of in each scenario. This is illustrated in Fig. 4.1 for 

scenario one, and Figs. 4.2 & 4.3 for scenario two.

4.6.1 Scenario one: Sources generated from GGD

Table 4.1 summarises the results in terms of MSE when the sources were 

generated from the GGD, while Table 4.2 provides the results for the same 

corresponding experiments, but with PI as the performance measure. Fur­

thermore, a graph monitoring the values of for each algorithm is included 

for convergence analysis in Fig. 4.1. This graph corresponds to experiment 

one of Table 4.1 & 4.2.

4.6.2 Scenario two: The temporomandibular joint BSS

The scenario whereby TMJ sources are mixed linearly is simulated. A hard 

TMJ source normally refers to a mature stage of TMD of the corresponding 

joint, while the joint generating a soft TMJ sound source is not severely 

affected. In this scenario, such a situation is considered, i.e. when a hard 

TMJ source is mixed with a soft one. Table 4.3 provides two sets of results: 

one when click TMJ sources were considered, and the other one illustrating 

the crepitus BSS scenario in terms of MSE. Likewise, Table 4.4 provides the 

results for the same corresponding experiments as Table 4.3 with PI as the 

performance measure. Figs. 4.2 & 4.3 illustrate the progression of a» of click 

and crepitus ICs respectively.

Based on these simulation results, the performance of these algorithms is 

discussed next. In the sequel, the overall work based on Ferrante’s affine 

transformation is concluded.
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Table 4.1. Summary of the results when the sources were generated from 
the GGD. MSE stands for mean square error, while Super refers to super- 
Gaussian source, Gaus denotes Gaussian source, and Sub stands for sub- 
Gaussian source.

Expt
no

Sources OCi MSE x H H  
Fast

MSE xlO - 4  

Efficient Fast
MSE xlO - 5  

Ferrante
1 Super 0.5 0.208 0 .0 2 0 0.4175

Sub 5 0.237 0.127 0.4175
2 Super 0.5 0.146 0.026 0.420

Gaus 2 0.149 0.171 0.420
3 Super 0.5 0.192 0.019 0.681

Super 1 .2 0.194 0.172 0.972
4 Sub 3 0.067 0.282 0.446

Sub 5 0.7539 0.184 0.446
5 Sub 5 0.223 0.247 0.468

Gaus 2 0.253 0.400 0.468
6 Gaus 2 - 1680 2.73

Gaus 2 - 1680 2.64

Table 4.2. Summary of the results when the sources were generated from 
the GGD. PI stands for Performance Index, while Super refers to super- 
Gaussian source, Gaus denotes Gaussian source, and Sub stands for sub- 
Gaussian source.

Expt
no

Sources PI xlO - 4  

Fast
PI xlO" 5 

Efficient Fast
PI xlO - 6 

Ferrante

1

Super
Sub 4.45 1.46 8.35

2

Super
Gaus 2.96 1.96 8.40

3
Super
Super 3.86 1.91 16.5

4
Sub
Sub 1.43 4.66 8.92

5
Sub

Gaus 4.78 6.47 9.36

6

Gaus
Gaus 45250 9.33
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Table 4.3. Summary of the results when TMJ sources were considered. 
MSE denotes mean square error, with H elk as hard click, S elk as soft click, 
H ere as hard crepitus, and S ere as soft crepitus.

Expt
no

Sources MSE
Fast

MSE 
Efficient Fast

MSE
Ferrante

1 H elk 
S elk

0.11
0.25

0.837 xlO-6 
0.293 xlO "6

0.890 xlO "6 
0.461 x l0 “6

0.834 xlO-6 
0.293 xlO-6

2 H ere 
S ere

0.68
0.57

0.326 xlO-3 
0.155 xlO "3

0.326 xlO "3 
0.010 x lO '3

0.181 xlO"4 
0.230 xlO”4

Table 4.4. Summary of the results when TMJ sources were considered. PI 
denotes performance index, with H elk as hard click, S elk as soft click, H 
ere as hard crepitus, and S ere as soft crepitus.

Expt
no

Sources PI
Fast

PI
Efficient Fast

PI
Ferrante

1 H elk 
S elk 1.11 xlO "8 1.97 xlO "7 8.99 xlO-9

2 H ere 
S ere 4.75 xlO-4 3.29 xlO-4 3.50 x l0~ 5

No of iterations

Figure 4.1. From top to bottom: progression of the shape parameter a  
of the super-Gaussian IC, followed by tha t of the sub-Gaussian source from 
experiment one of table 4.1. Both ICs were synthetically generated from 
GGD. Note that Ferrante’s algorithm requires two iterations for convergence, 
whilst efficient FastICA and FastICA have similar convergence with more 
number of iterations. Also, notice the stability of all three algorithms at 
convergence, i.e. there are no fluctuations at the steady state.
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£
— Tinea,

ts- — -

No of iterations

Figure 4.2. From top to bottom: progression of the shape parameter a  of 
the hard click, followed by that of the soft click from experiment one of table 
4.2. Note that Ferrante’s algorithm requires two iterations for convergence, 
whilst efficient FastICA and FastICA have similar convergence with more 
number of iterations. Regarding a i ,  FastICA suffers from a slight instability 
between iteration 3 & 5. The closeness of a i  to zero might explain this 
observation.

0----1 i  t 1---- 1----1----
— Fenante

—  Efficient Fast

No of iterations

Figure 4.3. From top to bottom: progression of the shape parameter a of 
the hard crepitus, followed by that of the soft crepitus from experiment one 
of table 4.2. Notice that Qj of Ferrante’s algorithm has always been initialised 
to unity, while the a* of estimates of both FastICA and its efficient variant 
in the first iteration is much closer to the true value. Nonetheless, note 
that Ferrante’s algorithm requires two iterations for convergence, whilst the 
efficient FastICA and FastICA have similar convergence with more number 
of iterations.
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Figure 4.4. From top to bottom: hard click, soft click, hard crepitus and 
soft crepitus. Note that the click is active for short and distinct periods, 
while the crepitus is a more noise-like signal.

4.7 Discussion and concluding remarks

As expected, the efficient variant of FastICA has outperformed the original 

FastICA in most cases except for the click BSS scenario in terms of MSE. 

In the first three experiments of scenario one, both efficient FastICA and 

the proposed approach have similar performance in extracting the super- 

Gaussian source. By ‘similar performance’, it is meant that the performance 

measure is of the same order of magnitude. Regarding the same three experi­

ments, the proposed approach performs slightly better than efficient FastICA 

in extracting the second component. It may be argued that this algorithm al­

ready assumes that the sources are generated from GGD. Nonetheless, in the 

case of the second scenario (table 4.4), the proposed algorithm still performs 

slightly better than efficient FastICA. On the other hand, consider the sixth 

experiment (expt no 6) of the first scenario in Table 4.1, where both sources 

are Gaussian. The results of FastICA for this particular experiment have 

been omitted because in some Monte Carlo runs, FastICA did not converge 

to any fixed point. In ICA, due to the statistical independence assumption,
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it is known that there must be at most one Gaussian source. This explains 

why FastICA did not converge to any fixed point in some cases, while the 

performance of efficient FastICA is quite poor. In contrast to FastICA, the 

convergence of its efficient variant is achieved due to a test of saddle points 

on the estimated solution. If this test is positive, the separating matrix W  

is then rotated and is subsequently utilised by efficient FastICA to find the 

‘correct’ solution as the author argues [53]. It is noteworthy to say that the 

proposed approach still provides a good performance. In deriving the algo­

rithm, the only steps where it is assumed statistical independence are in Eqs.

(4.2.6) and (4.2.14). However, the main assumption regarding the sources 

is their GGDs as in [92]. This assumption might explain why the proposed 

algorithm is still quite robust when both sources are Gaussian. Moreover, 

experiment six in Table 4 .1  highlights the fact that even when both sources 

have similar distribution (i.e. they both have equal a*), the proposed algo­

rithm is quite robust. It can be shown that it has similar performance for 

other values of a , when c*i =  oc2 - In the case of click, note that all three 

algorithms have excellent performances. One of the main reason for this is 

due to the fact the click itself is sparse, i.e. its magnitude is approximately 

zero most of the time, which means that there is no effective mixing of the 

two clicks when both clicks are temporally ‘off’ (i.e. zero magnitude). For 

this particular case, note that MSE suggests that all three algorithms have 

similar performance, but PI suggests otherwise as shown in tables 4.3 & 4.4 

respectively. MSE might be misleading, because the clicks are highly sparse 

as seen in Fig. 4.4. Therefore, the active periods of the clicks accounts for 

most of the MSE, while the PI is independent of the nature of the signal 

and hence it provides a better indication as a performance measure. Addi­

tionally, the TMD BSS scenario demonstrates that even though the sources 

are not generated from GGD, the proposed algorithm has still a reasonable 

performance. The main drawback of the algorithm is its robustness only for 

a 2 x 2 BSS scenario. This is open to discussion and therefore needs further
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investigation.

Nevertheless, the main focus of this study was not to derive a better BSS 

algorithm than FastICA or its efficient variant, but to demonstrate that by 

analysing the convergence properties of a fixed point ICA algorithm, one can 

render an unstable algorithm stable. Ferrante’s affine transform offers cer­

tainly one of the solutions. In fact, it is confirmed that the proposed method 

requires only two iterations for convergence for all the presented simulations 

(as seen in Figs. 4.1, 4.2, and 4.3). A slow convergence was expected because 

the rate of convergence decreases as A —> 1 [94]. The A was set to 0.999. 

In Ferrante’s work, w* does not depend on any other variables. But in the 

proposed algorithm, w* implicitly relies on yi whose distribution has been 

exploited in the form of i?{J(wj)} and £{/(w j)} . This extra information 

might explain why the approach converges in only two iterations. Further­

more, Ferrante assumed that w^o was initialised in the neighbourhood of w* 

for convergence. In section 4.4.2, this difficulty was circumvented, i.e. the 

a priori knowledge of the neighbourhood of w* by selecting an appropriate 

A to satisfy the convergence condition (4.4.5). From Figs. 4.1, 4.2, and 4.3, 

also note the stability of all three algorithms at convergence, i.e. there are 

no fluctuations of a* at the steady state.

In conclusion, Ferrante’s algorithm can offer an alternative to overcome 

the instability of fixed point ICA algorithms. The fixed point algorithm 

in (4.2.11) is very similar to that of FastICA as in (4.2.12). Likewise, it was 

shown that the stability of (4.2.11) relies on the distribution of the sources 

as in (4.2.16), while the author of FastICA found the instability of FastICA 

in the form of (4.2.12) (p. 188 [7]). Subsequently, he applied a Lagrangian 

approach to overcome this instability. In contrast to his approach, the con­

traction mapping and concepts such as attractive fixed points (p. 247 [57]) 

have been applied to analyse this instability. Last but not least, the ML 

estimator of the shape parameter a* has been re-derived, which might be 

useful for other BSS algorithms where this parameter is required.



Chapter 5

UNDERDETERMINED BLIND 

IDENTIFICATION OF TMJ 

SOURCES

5.1 Introduction

In this chapter, a particular 2 x 3  underdetermined blind source separation 

problem using a filtering approach is addressed. More specifically, the case 

where a pair of temporomandibular joint (TMJ) sparse sound sources prevail 

in the presence of a third non-sparse source modelled as noise is considered. 

If the number of mixtures is less than the number of sources, the problem 

is termed underdetermined BSS (UBSS). Firstly, it is required to identify 

the mixing matrix A of size m  x n, and thereafter source extraction is per­

formed to solve fully UBSS. However, UBSS is quite a challenging task since 

1 ) n > m  implies that there are less number of equations than variables, 

and therefore an UBSS is an ill-posed problem, and 2) no explicit a priori 

knowledge of A and the sources is available. Therefore, many researchers 

have focused solely on the identification of A as in [96], [97], [98]. In this 

chapter, an extension of FastICA algorithm, which exploits the disparity 

in the kurtoses of the underlying super-Gaussian sources to estimate the 

mixing matrix is proposed. This algorithm is coined as UBSS FastICA. Fur­

thermore, it is demonstrated how effective such source extraction approach

76
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can be.

Due to the empirical formulation of UBSS FastICA, it will be examined why 

such filtering approach would lead to estimation of the non-sparse source. 

To this end, the objective of the second part of this chapter is to provide 

an extensive set of simulations to demonstrate why this filtering approach 

fully solve this particular underdetermined blind identification. The shape 

parameter a  of the generalised Gaussian distribution (GGD) is employed 

as a measure of sparseness and Gaussianity. This shape parameter a  was 

also utilised to illustrate the convergence of this filtering approach and the 

sub-Gaussian effect of the filter on the mixtures. Moreover, the cases where 

the noise source is modelled as either sub-Gaussian or Gaussian are also con­

sidered as an extension of the first part of this chapter. Simulation studies 

show that this filtering approach is robust and performs well in this partic­

ular TMJ UBSS application.

Hence, the objectives of this study are to 1) address the 2 x 3  underde­

termined blind source separation in the context of TMJ signals 2) demon­

strate why linear filtering does not alter the structure of A prior to ICA, 3) 

investigate the effect of considering different degrees of Gaussianity of the 

non-sparse source on identification of A, 4) demonstrate the relationship 

between sparsity and the degree of Gaussianity of the sources, and 5) illus­

trate how the pre-filtering approach leads to the identification of the column 

of A corresponding to the non-sparse source, which thereby results in full 

identification of the underdetermined mixing matrix.

Likewise, the organisation of this chapter is as follows; section 5.2 defines 

and provides discussions regarding the following concepts exploited in this 

study: sparsity, sparseness, and super-Gaussianity. Then, the assumptions 

made in this work are listed, and their explanations follow suit. Similarly,
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section 5.4 demonstrates why linear filtering is possible prior to ICA. Sec­

tion 5.5 outlines the proposed UBSS FastICA approach. This is followed by 

some simulation studies in section 5.6. The first part of this section assesses 

the performance of UBSS FastICA algorithm against two other algorithms, 

namely the k-means clustering algorithm [8,72] and the algorithm of Li et 

al. [42] for the identification of the mixing matrix. As for the source recon­

struction stage, the t \  — norm minimisation algorithm [42] is compared with 

the proposed approach. The second part of the simulation section comprises 

of a set of extensive simulations to demonstrate the robustness of UBSS 

FastICA, subject to different conditions. Subsequently, discussions regard­

ing the simulation results are provided in section 5.7 and this chapter is 

concluded in section 5.8.

5.2 Sparsity, sparseness and super-Gaussianity

Sparsity (or disjointness) in this work refers to the situation where a rel­

atively small number of source signals are active over any particular time 

interval. For the case of a single active source, sparsity can be mathemati­

cally described as

(si(£); i  = 1 , ...,n} 

where V t  3 k  G 1, ...,n  where |sfc(£)| »  |Sj(t) | (5.2.1)

and for j   ̂k  S j ( t ) «  0 

where Sfc(£) is a given source signal and S j ( t )  is another source signal.

On the other hand, the degree of sparseness of a source signal depends on 

the number of occurrences of its samples being zero or approximately zero. 

In [62], the authors refer to a sparse signal if the magnitude of most of its 

samples is zero or near zero, with only a few sample entries taking significant 

values. It is noteworthy to highlight that this statement strongly correlates
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with the nature of an impulsive signal as described in [47]. This is because 

an impulsive signed consists of only a few high peaks of short duration. Ci- 

chocki classified a signal as impulsive if 0 < a  < 1 (p. 245 [47]), where a  is 

the shape parameter of the generalised Gaussian distribution (GGD). On the 

other hand, He et al. categorised a signal to be sparse if its corresponding 

shape parameter a  is less than two [99]. For the purpose of clarity, GGD is 

re-defined as follows [92,93]:

p(Si(t),a, a) = (5-2-2)

where Si(t) denotes the i-th source, o  > 0  is the scale parameter, T(.) is 

known as the gamma function, and a  > 0 is the shape parameter. As for 

y/P =  if is merely a scaling factor which causes Var(si(t)) = a2

where Var(.) denotes variance.

Recall that a signal is said to be Gaussian distributed if a  =  2. How­

ever when the shape parameter a  of a signal is less than two, it has a 

super-Gaussian or leptokurtic distribution, while with a > 2, it has a sub- 

Gaussian/playtykurtic distribution [7]. Hence, He et cd. suggested the equiv­

alence between a super-Gaussian signal and a sparse signal. However, the 

strong similarity between the impulsiveness definition and that of sparseness 

given by Pearlmutter [62] suggests that the latter was more restrictive in his 

definition of sparseness, i.e. 0 < a < 1. In effect, for the sparsity condition

(5.2.1) to be fulfilled, the sparseness definition of Pearlmutter seems more 

appropriate. This is because as a  tends to zero, the probability of the signal 

to be of zero magnitude increases as was shown in [99]. Therefore, a signal 

is referred to as sparse if 0 < a < 1. Next, the assumptions made in this 

work are explained.
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5.3 Assumptions made in the proposed UBSS FastICA approach

In this section, the hypotheses required for the underdetermined blind iden­

tification of A are listed below. Moreover, these assumptions are supported 

by sufficient explanations for the purpose of clarity.

A l)  All source signals are statistically independent and super-Gaussian. 

A2) The columns of the mixing matrix A are pairwise linearly independent. 

A3) Considering the three sources as si(t), S2 (t), and s^(t),

kurt(si(t)), kurt(s2 {t)) kurt(s3 (t)) where kurt(.) denotes kurtosis.

A4) The two highly super-Gaussian source signals si(t) and S2 (t) are sparse.

The statistical independence assumption made by A l is simply the cor­

nerstone of ICA utilised in this work. Based on pp. 306-313 in [100], this 

section explains and justifies assumptions A l and A 2 . The non-Gaussianity 

assumption in A l and A 2 , along with the implicit assumption that the 

number of sources is known, guarantees the uniqueness of the model x(£) 

=  A s(£) [96]. By the term ‘uniqueness’, it is meant that x(£) does not 

have two non-equivalent representations [100]. Two representations, i.e. 

x(£)=A s(f)=Bq(f) are referred to as non-equivalent if every column of A is 

not proportional to any column B and vice-versa. Further to this, lem m a 

10.2.4 of [100] is given as follows:

Consider x(£) to be a two-dimensional random vector, x(t)=[xi(f) X2 (£)] 

with two representations:

xi(t) =  ansi(£) -I-... -I- aijSn(t)

X2 (0 =  a2isi(t) +  ... +  a2jSn{t)

(5.3.1)
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xi(t) = bn qi{t) +  ... 4- bijqk(t) 

x 2{t) = b2 iqi{t) + ... +  b2jqk{t)

(5.3.2)

where si(t),...,sn(t) and qi{t),...,qk(t) are sets of independent random vari­

ables (r.vs.). If the j th column of A  is not proportional to any other of its 

tth  column (j ^  i) or to any column of B, then Sj(t) is Gaussian distributed. 

Its proof can be found in p. 309 of [100].

Likewise, theo rem  10.3.5 in [100] states that:

If s i (£),...,s„(£) are non-Gaussian, then x(£) has a unique structure with re­

spect to the given number of variables s(£), i.e. if x(t)=Bq(£), where the 

order/size of B is the same as A, then A and B are equivalent. As for the 

proof, assume there are two nonequivalent representations with the same 

number of variables, x(£)=As(£)=Bq(£). Then by lem m a 10.2.4, some of 

the variables are Gaussian, which contradicts the non-Gaussian assumption.

Moreover, theo rem  10.3.8 [100] states that, provided the variables s (£) 

are non-Gaussian and the columns of A are linearly independent, then the 

model x(£)=As(£) is unique for the specified number of variables. P roof: 

By theo rem  10.3.5, when s(£) are non-Gaussian, it is deduced from the Eq. 

x(£)=As(£)=Bq(t) that A and B are equivalent. In the sequel, x(£)=As(£) 

and x(£)=Bq(£) can be two representations of x(£). Due to the linear inde­

pendence of the columns of A, (ATA) is non-singular and therefore invert­

ible. Hence, s(t) =  (ATA )- 1ATx(£) and q(£) =  (Ar A )- 1ATx(£) are equal, 

which concludes the proof.

T heorem s 10.3.5 and 10.3.8 which imply the non-Gaussianity assump­

tion A l  together with the implicit knowledge of the number of sources,
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and the linear independence of the columns of A guarantees the uniqueness 

of the model x(£)=As(£). However, it should be stressed that the model 

x(£)=As(£) is still unique if there is at most one Gaussian source. This 

statement follows from the corollary of theorem  10.3.6 [100] and from 

th e o re m  5 of [101].

As FastICA maximises the non-Gaussianity of the estimated ICs, it is found 

that FastICA focuses on the highly non-Gaussian ICs, and not the IC whose 

distribution is closer to Gaussian, whenever assumption A3 is satisfied. This 

solves partially the identification of the mixing matrix. Assumption A4 en­

sures that the filtering preprocessing step of UBSS FastICA assists in the 

identification of the weakly non-Gaussian source, thereby completing the 

full identification of A. Additionally, it is noted that A3 implicitly implies 

A4 which will be explained as follows. The kurtosis kurt(si(t)) which is a 

measure of the ‘peakedness’ of the probability distribution of s*(£) can be 

defined as [102]:

where E{.} stands for the expected value. If kurt(si(t)) =  0, then S{(t) is 

referred to as Gaussian, while kurt(si(t)) > 0 implies that S{(t) has a super- 

Gaussian distribution. Otherwise, Si(t) is known as sub-Gaussian. As the 

rth  moment of a signal with GGD can be expressed as follows [92]:

Then, Eq. (5.3.3) can be formulated in terms of a  using (5.3.4) as:

Thus, kurt(si(t)) can be plotted as a function of a  as shown in Fig. 5.1. 

Notice that the kurtosis has a large value when 0 < a  < 1. This in turn

(5.3.3)

(5.3.4)

r(£)r(-M
kurt{si{t)) =  ■; 2 3 a -  3

r  ( a )
(5.3.5)



Section 5.4. Why is moving average filtering possible prior to  ICA 83

a

Figure 5.1. Kurtosis as a function of a. Note that when a  >  2, kurtosis < 
0 for the sub-Gaussian case and the rate of change of kurtosis is much lower 
for the sub-Gaussian case than for of the super-Gaussian case (a < 2).

implies the highly super-Gaussianity of Si(t) for 0 < a  < 1. Recall that 

a source signal is referred to as sparse if 0 < a < 1. Thus, as A3 states 

that there are two highly super-Gaussian sources, it implies their sparseness 

(A4) as well. Hence, it is stressed that the equivalence between A3 and A4 

is not straightforward without the formulation of equation (5.3.5) plotted in 

Fig. 5.1. As mentioned earlier, UBSS FastICA consists of a preprocessing 

filtering step, prior to ICA. In the following section, it will be shown why 

ICA model is still valid, even after filtering.

5.4 Why is moving average filtering possible prior to ICA

This section is based on pp. 264-265 in [7] to demonstrate that the ICA 

model in terms of the structure of A still stands after applying moving 

average filtering elementwise on the mixtures x(£). This is clear from the 

following equation:

X' = XF = ASF = AS' (5.4.1)

where X ' =  [x'(l) • • • x'(£) • • • x'(T)], S' =  [s'(l) • • • s'(t) • • • s'(T)] and F, 

which conveys the filtering operation matrixwise, will have the following
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form if the filter length M is 3 [7]: 

/

F  =

.. .  1 1 1 0 0 0 0 0

1 . . .  0 1 1 1 0 0 0 0
M . . .  0 0 1 1 1 0 0 0

. . .  0 0 0 1 1 1 0 0

V /

(5.4.2)

Since the independent sources s*(t) are filtered elementwise by F, the result­

ing S i ( t y  sure not linear mixtures of S { ( t ) .  Thus, Eq. (5.4.1) demonstrates 

that filtering does not have suiy effect on A, while the elementwise nature 

of Eq. (5.4.2) shows that the filtered sources Si(t)' still enjoy statistical in­

dependence. In the fight of the above background, the UBSS FastICA can 

now be outlined as follows.

5.5 Development of UBSS FastICA algorithm

1. Firstly, the two columns of the mixing matrix A corresponding to the 

two highly super-Gaussism sources are estimated by employing Fas­

tICA [7]. This is achieved by maximising the negentropy (Neg(.)) of 

the linear combination of the pair of mixtures:

arg sup (Neg(wiXi(t) + W2X2(t))j (5.5.1)
W \ , tU 2  '  '

where w =  [wi,W2 \, which is one of the rows of the separating matrix 

W . The second row of W  is estimated by (5.5.1), but followed by a 

deflationary orthogonalisation. The key observation is that in UBSS
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FastICA will focus on the high kurtosis sources (assumption A3). The 

two columns of A  are estimated by inverting W . The two TMJ sources 

can be estimated by y (t) =  Wx(£). Prior to using FastICA, prepro­

cessing the mixtures with median filtering with a small window of 3 

samples to yield f(£)=[fi(£) f2 (£)]T assists in attenuating the effects of 

the outliers to which FastICA is sensitive.

2. Next, the task is to estimate the third column corresponding to the 

non-sparse source. Temporally mean filter f*(£) with a window size 

greater than twice the duration of the maximum period Pmax during 

which the two highly super-Gaussian sources are active. Fig. 5.3 

shows these active periods. Although the window size is not known 

a priori, a large window can be used (assumption A4). The mean 

filtering mitigates the two highly super-Gaussian source signals in both 

mixtures. Mean filtering of the signal f*(£) to yield gi(t) is achieved as 

follows:

super-Gaussian source signals are active. Note the predominance of 

these two source signals in the mixture signals. Similarly, the con­

verse is true when these highly super-Gaussian sources are not active. 

Hence, the averaging operation widens the active periods of the two 

highly super-Gaussian sources (in the mixture signals), while suppress­

ing their amplitudes. Note the absence of high amplitudes (with re­

spect to the TMJ sources) in the noise signal, resulting in a lower effect 

of the mean filtering on the noise signal. Now, the noise source pre­

dominates in the mixture signals.

fc=t—M+l

M denotes the window size. Consider the periods when the two highly
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3. Apply FastICA to estimate the third column of A  pertaining to the 

weakly super-Gaussian source signal. However, FastICA may fail to 

estimate the column of A corresponding to the weakly super-Gaussian 

source because of its equivalence to projection pursuit (PP) [7]. Thus, 

two ICs are estimated, instead of one. The column corresponding to 

the IC with the minimum kurtosis is selected on the basis of A3 to 

form the last column of the estimated A, i.e. A.

4. Apply the l \ — norm algorithm [73] to extract the source signals by 

minimising the following cost function:

n

m in 'y ^  ]st(t)| s.t. As(t) =  x(t) (5.5.3)
*=i

5. Alternatively, FastICA can be utilised to perform source extraction. 

Begin by eliminating the mean-filtering effect (5.5.4) from the IC with 

the minimum kurtosis (from step 3) to obtain the estimate of the least 

super-Gaussian source. However, there is still a significant contribution 

of the most super-Gaussian source as seen in the first noise estimate 

in Fig. 5.6.

t—l
fi(t) = Mgj(t)-  y , f‘W  i = 1’2 (5-5-4)

k=t-M+l

Note that (5.5.4) does the opposite of (5.5.2), with the same notations 

for the purpose of clarity. To strengthen the presence of the source with 

the maximum kurtosis as the independent component, any two distinct 

scaled version of the source with the maximum kurtosis can be added. 

Applying FastICA to the two new mixtures improves the estimate of 

the weakly super-Gaussian source. See the first two plots of Fig. 5.6. 

This step is optional if one desires to fully solve the UBSS. However, 

the prime objective of this study is to extract the TMJ sources. The
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highly non-Gaussian sources are estimated from step 1.

For the purpose of clarity, the overall UBSS FastICA is summarised in the 

following flowchart in Fig. 5.2.

mixturesx(t)Median Filter

9(t)

y_a(t), a3

y_a(t)

y1(t), y2(t), a1, a2

a3

Estimated ICsY=[ y1(t); y2(t); y3(t) J1

Mixing matrixA =[a1 a2 a 3]

Remove m ean filtering effect via 
Eq. (5.5.4)

Pick IC with min kurtosis and its 
corresponding column

Apply FastICA tog(t)

Apply FastICA

Pick IC with min kurtosis

Mean filtering f(t) via Eq. (5.5.2) Apply FastICA tof(t)

Figure 5.2. Flowchart describing UBSS FastICA procedure.

5.6 Simulations

The performance measure (PM)  for the underdetermined BSS as described 

in Chapter two, is employed here. The scenario where TMJ sounds are 

the mixtures of click, crepitus, and a non-sparse source modelled as noise
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is considered. Fig. 5.3 shows the sources: the weakly super-Gaussian noise, 

click and crepitus from top to bottom. The kurtoses of click, and crepitus 

(recorded from the ipsi side of the TMD infected joint) are respectively 23.7 

and 14.4.

5.6.1 Underdetermined blind source separation

In this section, the non-sparse source is modelled with Laplacian distribution

p (s) = 5̂'6'^

where the variance a2 = 2A2 and the mean / i  =  6. The A  matrix (generated 

randomly from a standardised normal distribution) used in this study is 

given below:

0.8999 -0.9158 0.5984

-0.4360 0.4017 -0.8012

The performance of the extended FastICA algorithm was measured against

1 j r'•[_____ ,___fcfiveFencdsX̂
• u i u 1

cV 
2

c  a o 5
• U  1 U ! 23

Time/no of samples ,«*

Figure 5.3. The three source signals namely: the super-Gaussian noise, the 
click and the crepitus. The SNR ratio is 6 dB. Note the sparsity of the click 
(middle plot) where the click occurs in the three excitation regions. The 
same observation can be made for the crepitus signal (last plot).

T-- - - - - - - - - - - 1- - - - - - - - - - - - 1-- - - - - - - - - - - I- - - - - - - - - - - -

• - H 4 — *1
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the K-means clustering [8,72] (which relies on minimisation of the distance
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between the data points and the assigned centres of the clusters) and the 

algorithm of Li et al. [42] (that scans for the sparse regions of the signals 

and clusters these regions to estimate the mixing matrix) in terms of SNR. 

This is shown in Fig. 5.4. Fig. 5.5 illustrates the source estimates when 

the i \ —norm minimisation algorithm in Eq. (5.5.3) was employed for source 

reconstruction. Also, Fig. 5.6 visually demonstrates the potential of the 

extended FastICA algorithm to extract the sources.

0.14

Extended Fasfica0.12
— Kmeans

• 0.1

f  0.04

0.02

0 10 155 20
SNR/dB

Figure  5.4. The performance measure of the extended FastICA scheme 
plotted in and that of the k-means clustering in against SNR in dB. 
The algorithm of Li et al. failed to estimate the mixing matrix A.

5.6.2 Robust blind identification of mixing matrix

In this section, the simulation studies presented herein demonstrate how the 

filtering UBSS FastICA approach performs under different conditions via an 

extensive set of Monte Carlo trials. The conditions considered were: the 

signal to noise Ratio (SNR), the degree of Gaussianity of the noise, and the 

filter length. Likewise, the three distributions utilised in this study were 

Laplace, normal, and uniform to convey respectively the super-Gaussianity, 

Gaussianity and sub-Gaussianity nature of the non-sparse source. Further­

more, the evolution of a  was monitored to assess the convergence of UBSS
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Figure 5.5. i \ —norm estimates of the three source signals. From top to 
bottom: Estimate of noise, click, and crepitus. The SNR ratio is 6 dB. 
Note the prominent artifacts pointed by the arrows in both click and noise 
estimates.
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Figure 5.6. UBSS FastICA estimates of the three source signals. From top 
to bottom: Estimate of noise of step 4, final estimate of noise, click, and 
crepitus. The SNR ratio is 6 dB. Note the significant presence of the click 
(most super-Gaussian source) in the first estimate of the noise.

UBSS Fastica source estimates
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FastlCA.

For each simulation where one condition was varied, 20 independent Monte 

Carlo trials were run and averaged to provide the graphs in Figs. 5.8-5.12. 

However, prior to the assessment of the performance of UBSS FastlCA, the 

effect of the filter length on the mixtures x(£) is investigated in terms of their 

Gaussianity via the GGD shape parameter a. This is illustrated in Fig. 5.7.

In Figs. 5.8 &: 5.9, the performance of UBSS FastlCA is assessed, as SNR and 

filter length were varied. Note that for each simulation, noise was considered 

as the non-sparse source whose distribution ranged from super-Gaussian to 

sub-Gaussian.

Moreover Figs. 5.10 - 5.12 illustrate the convergence of UBSS FastlCA via 

the evolution of a* of the estimated ICs at SNR= OdB. The true values a, 

of the ICs are also included for comparison purposes.

5.7 Discussion

5.7.1 Underdetermined blind source separation

From Fig. 5.4, it is evident that the maximum PM  of the k-means algorithm 

is less than 0.14 which demonstrates its reasonable performance. However, 

its performance fluctuates due to its dependency on its initialisation upon 

which its convergence relies. On the other hand, UBSS FastlCA algorithm 

outperforms k-means. This is indicated by its much lower performance mea­

sure. The Li et al. algorithm [42] failed to estimate A, probably because 

the super-Gaussian noise source is always active. One of the assumptions of 

Li et al. is sparsity with respect to all the three signals. As for the source 

reconstruction stage, t \ —norm minimisation algorithm does yield reasonable 

source estimates, especially the problem at hand is an underdetermined one.
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Figure 5.7. Effect of filter length on the degree of Gaussianity of the 
mixtures for super-Gaussian, Gaussian, and sub-Gaussian noise (from top 
to bottom) at 0 dB. It is noteworthy to say that at the maximum filter 
length of M =  20,000 samples, a  > 5. In other words, the mixtures are still 
sub-Gaussian. However, prior to pre-filtering of the mixtures, a < 1. This 
explains why without filtering, FastlCA focuses on the TMJ sources, while 
pre-filtering leads to the non-sparseness of the mixtures and consequently 
estimate the non-sparse noise instead of the sparse TMJ sources.

0 2 4 6 J 10 12 14 16 16 20
SNR/dB

Figure 5.8. Performance measure versus signal to noise ratio (SNR) in dB 
when super-Gaussian, Gaussian and sub-Gaussian noises were considered. 
Note the much better performance measure of the sub-Gaussian noise case. 
This is because pre-filtering leads to the non-sparseness/sub-Gaussianity of 
the mixtures as seen in Fig. 5.7. Therefore their distributions are much 
closer to that of the sub-Gaussian noise.
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Figure 5.9. Performance measure as a function of filter length at 0 dB 
when super-Gaussian, Gaussian and sub-Gaussian noises were considered. 
Note the much better performance measure of the sub-Gaussian noise case. 
In fact, the moving average pre-filtering leads to the non-sparseness/sub- 
Gaussianity of the mixtures as seen in Fig. 5.7 . Therefore the distributions 
of the mixtures are much closer to the sub-Gaussian noise.
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Figure 5.10. Convergence graph: Evolution of ct at 0 dB when super- 
Gaussian noise was considered.
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Figure 5.11. Convergence graph: Evolution of a  at 0 dB when Gaussian 
noise was considered.

15

8

No of iterabobns

F igure 5.12. Convergence graph: Evolution of ct at 0 dB when sub- 
Gaussian noise was considered. Note the closeness of the ctj of the esti­
mated TMJ sources with those of the original TMJ, compared to the super- 
Gaussian and Gaussian noise cases in Fig. 5.10 & 5.11 respectively.



Section 5.7. Discussion 95

Nevertheless, there remain some significant artifacts (as shown in Fig. 5.5). 

On the other hand, Fig. 5.6 shows that UBSS FastlCA estimates do not 

contain such prominent artifacts. It is noteworthy to say that both TMJ 

estimates of t \ —norm minimisation algorithm and UBSS FastlCA contain 

artifacts of the noise source. However, it is possible to annihilate signifi­

cantly the noise component, by employing a Wiener filter (which requires a 

priori knowledge of SNR) as proposed in [103]. However, noise cancellation 

using this signal enhancement approach is not the subject of this thesis and 

therefore will not be discussed herein.

5.7.2 Robust blind identification of mixing matrix

In the first place, note the sub-Gaussianity effect on the mixtures x(t) by 

moving average filtering in Fig. 5.7. However prior to filtering, a  of the 

mixtures was less than unity and therefore the signals were highly super- 

Gaussian and sparse. It was intuitively stated that the filtering process sup­

pressed the two highly super-Gaussian sources in the mixtures and therefore 

the non-sparse noise was more prominent in x(£). In section 5.2, it was 

deduced that when a > 1, the signal is non-sparse. On this basis, it is re­

affirmed that the filtering suppresses the two highly super-Gaussian sparse 

sources. This is because the moving average has altered the nature of the 

mixtures from highly super-Gaussian to sub-Gaussian or equivalently from 

sparse to non-sparse. On the other hand, it is clear from Fig. 5.7 that as the 

filter length M increases, both mixtures tend to have Gaussian distribution 

due to the central limit theorem. Nonetheless, it is worth noting that at 

the maximum filter length of M = 20,000 samples, a  > 5 indicates that the 

mixtures are still sub-Gaussian.

With regard to the PM  against SNR shown in Fig. 5.8, notice the maximum 

value of PM is of order 10~3. This demonstrates the good performance of 

UBSS FastlCA in all the three scenarios. Observe the much better perfor­
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mance of the sub-Gaussian case. Further to the discussion in the previous 

paragraph, this was expected, due to the sub-Gaussian/ non-sparse effect of 

the filter on the mixtures. Additionally, all three curves have a minimum at 

SNR=10 dB. However, this is not obvious for the sub-Gaussian case from 

Fig. 5.8 due to its much lower performance measure (of magnitude of order 

10-5 ). The minimum at 10 dB arises due to the following: the higher the 

SNR, the better the estimation of the two columns of A  pertaining to the 

two TMJ sources and vice-versa for the noise. These explain that the best 

performance is mid-way between 0 dB and 20 dB.

Next, the performance of UBSS FastlCA in terms of the filter length in 

Fig. 5.9 is discussed. However, prior to this discussion, examine Fig. 5.7. 

This figure might be misleading due to the high magnitude of a  in the sense 

of the degree of sub-Gaussianity, which can be explained as follows. Fig. 5.1 

demonstrates that for the sub-Gaussian case (i.e. a > 2) the kurtosis does 

not change exponentially as it does for a < 2. For example, the difference 

between the kurtoses corresponding to a  =  3 and a — 400 is not significant 

(i.e. difference «  0.6). Hence, the degree of sub-Gaussianity from a > 2 

to a  =  400 does not change significantly. In other words, the filter length 

does not alter the degree of sub-Gaussianity of the mixtures significantly. 

From Fig. 5.9, note that the filter length does not have any significant effect 

on the performance measure (all three curves are approximately unvaried). 

Based on the previous discussion, such trend was expected. Moreover, the 

superior performance of the sub-Gaussian case is again highlighted.

Last but not least, the convergence of UBSS FastlCA in terms of a  is ex­

amined, when super-Gaussian, Gaussian and sub-Gaussian noises are con­

sidered in Figs. 5.10, 5.11, Sz 5.12 respectively. From these plots, the most 

striking curve (topmost) belongs to the estimated noise. From Figs. 5.10 

& 5.11, the estimated noise converges to sub-Gaussianity as a > 2. This
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contradicts the super-Gaussianity and Gaussianity nature of the noise con­

sidered. Nevertheless from Eq. (5.4.1), it can be deduced that the filtered 

ICs S' are estimated, instead of the original S. As discussed previously, the 

moving average filtering process in this particular TMJ UBSS accounts for 

this sub-Gaussian/ non-sparse effect. On the other hand, if the convergence 

of the estimated TMJ IGs (i.e. click and crepitus) is inspected, it is clear 

that in all cases, they converge to a < 1 (i.e. highly super-Gaussianity). The 

reason why they do not converge to the true values is probably due to the 

low SNR of 0 dB. Again, it is emphasized the much better performance of 

sub-Gaussian case in Fig. 5.12. This is illustrated by the closeness of the ai 

of the estimated TMJ ICs to those of the true ones in Fig. 5.12, compared 

to those in Figs. 5.10 & 5.11.

5.8 Conclusions

This study has shown how filtering can assist in solving the underdeter­

mined blind source separation in the context of TMJ sounds. The common 

approach is to exploit the structure of the mixtures as a result of sparsity 

of the sources, such as the k-means and the algorithm of Li [42]. This ob­

servation was also noted in the literature survey on sparse and non-sparse 

BSS [11]. On the other hand, UBSS FastlCA algorithm takes advantage of 

both the sparsity and the statistical properties of the source signals. In that 

respect, UBSS FastlCA algorithm is more efficient in its solutions than the 

k-means and Li’s algorithms. The main idea of this study is that provided a 

linear transform is applied to the mixture signals to suppress certain source 

signals within the mixtures, the prevalence of others can be accentuated. 

However, the challenge remains in finding more optimum linear transforms 

that perform source signals attenuation within the mixture signals.

Furthermore, the role of sparsity in this empirical study was investigated
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via the shape parameter a  of the generalised Gaussian distribution. A close 

relationship between this parameter, the sparseness of a signal, and conse­

quently the sparsity situation in this particular TMJ UBSS was noted. It 

was implicitly explained the subtle difference between sparsity and sparse­

ness. It was deduced that a highly super-Gaussian signal, i.e. a < 1 is 

likely to be sparse in section 5.2. Furthermore, it was demonstrated why the 

ICA model still stands after pre-filtering in equation (5.4.1) in terms of the 

statistical independence of the new IC S' and the unaltered structure of A.

In the simulation studies, it was deduced that the moving average filter has 

a sub-Gaussian/non-sparse effect on these particular TMJ mixtures x(t). 

Consequently, the sub-Gaussian noise TMJ UBSS outperformed the other 

scenarios, i.e. when super-Gaussian and Gaussian noises were considered. 

However, the performances in all three scenarios were good due to their per­

formance measure being of order 10-3 or less. Eq. (5.4.1) demonstrates why 

the estimated noise does not converge to the original ones in Figs. 5.10 & 

5.11. It was intuitively stated that the filter suppressed the two sparse TMJ 

sources. In the sequel, the non-sparse noise pre-dominates in the filtered 

mixtures. This is evident from the sub-Gaussian/non-sparse effect of the 

filter in Fig. 5.7.



Chapter 6

DELAY ESTIMATION FOR 

SOURCE SEPARATION AND 

LOCALISATION OF TMJ 

SOUNDS

6.1 Introduction

In this chapter, the mixing system within the head is modelled as anechoic. 

The legitimacy of this model will be supported by a survey on the literature 

related to the acoustic properties of the head. The focus of the first part of 

this chapter rests upon simulated anechoic mixing of crepitus signals, while 

the second study investigates TMJ source separation on bilaterally recorded 

TMJ sounds, whereby the mixing process reflects that of the human head.

As mentioned above, the first part comprises of the synthetic anechoic mix­

ing of the ipsi TMJ sounds to simulate the TMJ BSS scenario. It is shown 

how the inherent fractional delay between a pair of TMJ sound sources can 

be estimated by time localised sparse component analysis. Likewise, short 

active periods of only one source can be blindly tracked within the mixtures 

using mutual information (MI). In effect, these active periods will assist in 

estimating the delay by employing the modified versions of either the max­

99
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imum likelihood (ML) delay estimator or the mixed modulated Lagrange 

explicit time delay estimator (MMLETDE). Thereafter, a strategy based on 

delaying the mixtures to solve the blind source separation of TMJ sources 

is considered. Simulation studies support the improvement of the proposed 

approach when applied to these artificially mixed TMJ sound signals. In 

particular, in terms of the orthogonally projected signal-to-interference ra­

tio (SIR) defined by Vincent et al. [74], there is at least 10 dB improvement 

over the methods of Parra and Yilmaz & Rickard [4,5].

The second part of this chapter in section 6.4 deals more specifically with 

the real TMJ recordings. In particular, patients with only one TMD affected 

joint generating ‘clicks’ are examined. The possibility that the TMJ record­

ings are in fact mixtures of the click source (generated from the TMD joint) 

and the TMJ sound source (produced by the other healthy/normal TMJ) 

is considered. The non-stationary nature of the TMJ signals is exploited 

by employing the DUET (degenerate un-mixing estimation technique) algo­

rithm [5] as a time-frequency approach to separate the sources. As the DUET 

algorithm requires the sensors to be closely spaced, which is not satisfied by 

our recording setup, the delay between the recorded TMJ sounds has to be 

estimated to perform an alignment of the mixtures. Thus, the proposed ex­

tension of DUET enables for arbitrary separation of the sensors. It is also 

shown that DUET outperforms the convolutive Infomax algorithm in this 

particular TMJ source separation scenario. The spectra of both separated 

TMJ sources with the proposed method are comparable to those available 

in the existing literature. In addition, examination of both spectra suggests 

that the click source has a better audible prominence than the healthy TMJ 

source. Furthermore, the problem of source localisation is addressed. This 

can be achieved automatically by detecting the sign of the proposed mutual 

information estimator which exhibits a maximum at the delay between the 

two mixtures.
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This chapter is concluded in section 6.5. As a result, the localised sepa­

rated TMJ sources can be of great clinical value to dental specialists.

6.2 The anechoic model

Mathematically, the model of the observed sound measurements is repre­

sented as:

where Xi(t) is the *th TMJ mixture signal and V{(t) represents additive zero 

mean white Gaussian noise at discrete time t for * =  1, 2. The parame­

ters aij are the attenuation coefficients and Sij are generally the non-integer 

time delays associated with the path from the j th  source to the ith  sensor 

(microphone). Likewise, the mixing matrix A can be defined as:

accuracy in modelling, 5^ is considered to be fractional since the exact head 

size, and speed of sound in the tissue differ from person to person.

Modelling the acoustic properties of the human head remains an open prob­

lem. The geometrical structure of the skull, coupled with the fact that the 

human head comprises soft tissue, layered bone, and brain tissue, has made 

it impossible to date to achieve an analytical solution of the acoustic proper­

ties of the brain. Also, due to ethical reasons, direct measurements in a living 

human being is hardly possible [104], Guo et al. made the assumption that 

the acoustic propagation model of the head was convolutive, in the context 

of TMJ source separation [1]. This intuitive assumption did not consider

2

(6.2.1)

(6.2.2)

where z 1 denotes the unit delay. These delays are in terms of samples. For
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any physiological aspects of the human head and no existing literature re­

view supports this convolutive model. The existence of acoustic multipaths 

within the human head is plausible, yet the acoustic attenuation within the 

brain reported in the literature suggests that these multipaths from one side 

of the head to the opposite side are negligible. Hence, an anechoic model of 

the head is reasonable due to the following arguments:

• Widmalm et al. demonstrated in their study that a contra (opposite 

side of the TMD joint) TMJ sound was a delayed version of its ipsi 

(same side of the TMD joint) TMJ sound by only one lag [33]. This 

supports the fact that there is at most one ‘effective’ acoustic path 

across the skull.

• Furthermore, the higher frequencies (i.e. greater than 1200Hz) of 

the ipsi TMJ sound were found to be severely attenuated [27] when 

it propagated to the contra side, which corroborates with the findings 

in [104]. Moreover, the spectrum of TMJ sounds has a bandwidth of 20- 

3200 Hz [27], [40]. Hence, most of the energy content of the propagated 

TMJ sound is severely attenuated. This is clear by comparing the 

spectrum of the contra and the ipsi TMJ sounds in Fig. 6 in [27]. This 

remark, regarding the significant loss across the human head, is also in 

agreement with the study of O’brien et al., which indicated an acoustic 

loss of approximately 33dB [105]. On this basis, the assumption of 

multipaths of the ipsi TMJ source to the contra side is questionable 

due to the significant energy loss of the ipsi TMJ source.

• In the illustrations of [1], there is no evidence of reverberations. In 

fact, Figs. 1, 6, & 7 of [1] suggest that there is only one lag. Further­

more, Guo et al. stated in section 1.3 of their paper that “When two 

channels show similar waveforms, with one lagging and attenuated to 

some degree, it can be concluded that the lagging signal is in fact the 

propagated version of the other signal” . This supports the idea of Guo
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et al. that the TMJ sound recorded from the contra side constitutes 

one lagged version of the ipsi TMJ source.

In the sequel, the reasonable assumption that there is ultimately one ‘effec­

tive’ acoustic path from one side of the head to the other side, considering 

the other possible paths to be negligible is made herein. Furthermore, simu­

lation studies on non-synthetically mixed TMJ sounds verify the validity of 

the anechoic model in the second part of this chapter.

6.3 Delay estimation in time localised sparse component analysis 

of TMJ sounds

In the anechoic model (6.2.2), Jn  = 6 2 2  = d and J21 =  ^12 =  d +  D, due to 

the symmetric geometry of the human head; d is the time for a TMJ source 

to reach to its ipsi (same side of the head) sensor, D is the differential time 

interval between the two contra (opposite sides of the head) sources. In this 

section, time localised sparse component analysis is employed to determine 

the differential delay D in the synthetic anechoic mixtures. Note that d is 

not required in estimation of the sources as will be shown in section 6.3.5 

and therefore the estimation of d is not considered in this work. The main 

hypothesis made is that there is at least one time interval during which only 

one source is active.

The organisation of the study on synthetically mixed anechoic TMJ sounds 

is as follows; in the next section the MMLETDE and ML delay estimators 

are briefly reviewed and their modified versions are proposed. In addition, 

sparse component analysis is employed here not to solve the underdetermined 

BSS, but to assist in the estimation of the differential delay D. Section 6.3.3 

illustrates how mutual information (MI) can assist in identifying blindly the 

active period of a source from the mixture signals. The scaling and the sign 

ambiguities of the sources are tackled in order to estimate the delay. Prior
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to simulation studies, an outline of a procedure to reconstruct the sources 

is given. Section 6.3.6 compares the performance of the proposed algorithm 

against algorithms such as that of Parra [4], which exploits the nonsta- 

tionarity of the sources (convolutive modelling), and DUET of Yilmaz and 

Rickard [5], which performs time-frequency masking (anechoic modelling). 

As Vincent et al. [74], the orthogonally projected SIR is employed as a mea­

sure of audio source separation performance. Finally, the conclusions are 

made in section 6.3.7.

6.3.1 Background on fractional delay estimators

For discrete time signals, whenever a signal s( t) is delayed by a non-integer 

delay D, the computation of the subsample between s(i-|D j) and s(£-[DJ- 

1), where [.J denotes the floor operation, is required. To approximate this 

non-integer delay, s(£-D) can be fomulated as [3]:

OO

s(t — D) =  sinc(k-D) s(t — k) (6.3.1)
k=—oo

Appendix C.l demonstrates why s(t) is convolved with a delayed sine func­

tion to yield s(t — D). However, Eq. (6.3.1) implies an infinite number of 

samples to achieve this non-integer delay D. The well-known Lagrange inter­

polation finite impulse response (FIR) filter, h(k), which approximates this 

sine function is defined as:

Mb .

h(k) = J J  - — * i ^ k  (6.3.2)
rC %

t= -M a

where either Ma = M& = L/2 when L is even, or Ma = (L — l)/2 , M& = 

(L + l)/2  when L is odd, and L =  round(2D) is the order of the filter, where 

round(a:) denotes rounding x to the nearest integer [3]. Appendix C .l also 

illustrates how Lagrange interpolation formula (6.3.2) can approximate the 

ideal transfer function (i.e. sine function) of a delay system.
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Based on the least mean square error principle, the MMLETDE can be 

summarised as follows [3]:

Mb
error(Z) = s(t — D) — ^  

k=-M a

where

u = k -  D{1)

and

{ k=Mb n
error(Z) ^  9 (y)s(t — k) > (6.3.4)

k=-M a '

where
ff(l/) =  ^ ^ c ^ M - s i n c M  _ jusiac{^

and

Note that h(k) is the estimate of (6.3.2) when D is substituted with D  and I 

denotes the Zth iteration of the algorithm. In practice, an initial value D{0) 

is chosen to be zero and, (6.3.3) h  (6.3.4) axe repeated until convergence. 

From (6.3.3), it can be seen that Lagrange interpolation FIR filter coefficients 

h(A;) are modulated by eJun; where u; is an arbitrary angular frequency. It 

is reasonable to remove from (6.3.3) with regard to its verification in 

the appendix C.2 [3]. The performances of the original MMLETDE and 

its modified version in Fig. 6.1 are compared by using second order auto­

regressive filtered white noises (to approximate the TMJ signals) with the 

delay D =  0.83. From this simulation (left plot of Fig. 6.1), it is clear that 

the original MMLETDE reaches its steady state at around 1000th iteration, 

while the modified one converges at about 1500th iteration. However, the 

original MMLETDE results in D = 0.8141, whereas the modified one leads

(h{h)e?“vJ s { t - k) (6.3.3)
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to D = 0.83. The right plot of Fig. 6.1 shows similar convergence of both 

algorithms when the step-size of the modified MMLETDE is /x =  0.1, while 

for the original MMLETDE it is /x = 0.05. It should be noted that both 

algorithms perform similarly for other values of D.

• Oi

Q Oi

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

 ModMUHLETOE

 Original MMLETDE

 Acksi delay

No of iterations No of iterations

Figure 6.1. The left plot compares the performance of the MMLETDE [3] 
and the modified version when d — 0.83 and /x =  0.05 for both algorithms. 
Note that the original MMLETDE has a quicker convergence to the steady 
state, but has a bias ~  0.0159. The right plot demonstrates similar conver­
gence of both algorithms, when /x =  0.05 is utilised for the original MM­
LETDE and /x = 0.1 for the modified one.

The maximum likelihood delay estimator derived in [106] leads to a delay 

estimation of the form:

D =  argmax(s(£ — D), s(t — D)) (6.3.5)
D

where max(s(£—D), s(t—D )) corresponds to maximising the cross-correlation 

between s(t — D) and s(t — D). Note that in this case the delay must be in­

teger and therefore, this estimator cannot be used in its present form for the 

estimation of fractional delay. Therefore, it is required to substitute s(t — D) 

Ylk=-Ma s (t -  &) and the MI between s(t — D) and s(t — D ) is
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maximised instead of the cross-correlation, i.e.:

k=Mb
D  =  arg max 11 (s(t  — D), ^  h(k)s(t — k)

k=-M a
(6.3.6)

where /(.) is the mathematical notation of MI. The correlation delay estima­

tor method is compared with that of MI in Fig. 6.2 on the basis of artificially 

constructed second order autoregressive-filtered white noise signals (to ap­

proximate the TMJ signals) with known inter-signal delay. For a fair compar­

ison, the correlation delay estimator was also modified to be able to estimate 

the fractional delay by substituting s(t — D) with Ylk=-Ma s (̂  — &) in 

Eq. (6.3.5). The absolute error between the delay estimates and the true 

value of D=0.83 was obtained for each signal-to-noise ratio (SNR) value by 

averaging over 20 independent Monte Carlo simulation runs. Fig. 6.2 shows 

that the maximization of the MI algorithm yields a consistently better esti­

mate of the fractional delay. From this point, whenever the ML estimator is

009

-A -  Mutual M a ns io n  metnd 
I  C ofreiaion m etiod10.07

004

0.01

■AAAAAAAAAAAAAAAÂ

SNR/dB

Figure 6.2. Performance of the cross-correlation maximization algorithm 
and that of the mutual information maximization in terms of their absolute 
error as a function of SNR when D = 0.83.

referred to, the MI maximisation method is implied. Likewise, MMLEDTE 

is used to depict the simplified/modified MMLEDTE. Having introduced
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the background on fractional delay estimation, the degree of sparsity of the 

TMJ sounds are next examined.

6.3.2 Sparsity of TMJ sources

Sparsity (or disjointness) in this work refers to the situation where a rel­

atively small number of source signals are active over any particular time 

interval. For the case of a single active source, sparsity can be mathemati­

cally described as

(si(£); i = 1,..., n}

where V t 3 k € 1,..., n where |s*;(£)| »  |Sj(t)| (6.3.7)

and for j  ^  k Sj(t) «  0

where sjt(t) is a given source signal and Sj(t) is another source signal. The 

time-ffequency approach in [5] is adopted to demonstrate that clicks are 

much sparser than crepitus by comparing Fig. 6.3 and Fig. 6.4. From these 

figures, the sparsity assumption in (6.3.7) might be reasonable for clicks, but 

it does not hold for crepitus. Therefore, the sparsity condition is satisfied

only for a short time interval, i.e. Ti < t < T 2 , with regard to the crepitus

signals. Hence it is referred to as time localised sparse component analysis. 

In the following section, the ranges of values over which the delays d and D 

might vary are examined based on the physiological aspect of the brain and 

the sampling frequency.

The mixing model as given in equation (6.2.1) in the noise free context 

may be expanded as:

xi(t) =  ansi(£ -  d) +  ai2 S2 {t -  d -  D) (6.3.8)

x2{t) = a2\Si(t — d — D) +  a22 S2 {t -  d) (6.3.9)

and motivate physical constraints on the values of d and D. The mean width
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Figure 6.3. The time-frequency {t, / )  plots of clicks. From top to bottom: 
soft click |s i ( t , / ) |,  hard click |s2 ( t , / ) |,  and \si(t, f ) s 2 (t, f)\ .  From the last 
plot, the sparsity of clicks due to the absence of the high magnitude (white 
regions) is evident.

of the brain is 0.16 m as in [107], while in [108] it is considered as 0.14 

m. As a compromise, the mean value of the brain width is taken as 0.15 

m. Given the speed of sound within the brain is 1505-1612 ms- 1  (p. 19

[109]), the differential lag D corresponds approximately to the range of 0.93 — 

1.00 x 10- 4  s, while due to the proximity of the microphone to the ipsi TMJ 

source, d can be considered negligible. In terms of the number of samples, 

D corresponds to the range of 1.1-1.2 samples, with a sampling frequency 

of 12 kHz. However, the accuracy for this range of D relies on the exact 

adjustment of the sampling frequency to the size of the head. Therefore, 

these assumptions are relaxed to account for the changes in the head size as 

well as the distance from the sources, and these are considered instead for 

simulation purposes:

0 < d < 0.5 0.8 < D < 1.5 (6.3.10)
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Figure 6.4. The time-frequency (t, f )  plots of crepitus. From top to bot­
tom: soft crepitus |« i( t ,/) |,  hard crepitus \s2 ( t , f )\ ,  and |si(t, f ) s 2 {t, f)\. 
From the bottom plot, it is obvious that the sparsity of crepitus is not as 
clear as that of clicks due to the presence of the high magnitudes (white re­
gions). Hence, time localised sparse component analysis will zoom in those 
regions which satisfy (6.3.7).

Next, the detection of the time interval during which a single sound source 

is active in the TMJ mixtures is explained.

6.3.3 Blind detection of the active periods of a single source

If only one source prevails in both mixtures during a time interval, the MI 

between the two mixture signals for that segment is greater than that of 

the other segments. Since D > 0, it can be deduced that the likelihood 

function (ML estimator) cannot exhibit a maximum at D=0. Otherwise, 

it is obvious that during this period (Ti < t <  T 2 ) both sources exist. 

Hence, these criteria are employed to blindly detect those regions where the 

sparsity condition is satisfied. Fig. 6.5 shows the locations (detected by 

means of these two criteria) where only one source prevails in the mixtures 

of crepitus. However, even with successful detection of those regions, there 

are still some issues (i.e. scaling and sign ambiguities inherent to BSS) that
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Figure 6.5. The two upper plots show the mixtures (xl and x2), with the 
locations of the segments (where the sparsity condition is satisfied) being 
encircled. In the two lower plots, those segments of the mixtures whose 
mutual information is maximum are zoomed in. Note that the scale and the 
sign are different for these segments.

need to be addressed prior to the estimation of the fractional delay.

6.3.4 Scaling and sign ambiguities

To employ MMLEDTE for estimation of the differential delay D, the al­

gorithm requires that both the original signal and its delayed version are 

accessible. However the mixing process alters the scale and sign of the es­

timated sources, as shown in the two lower plots of Fig. 6.5. For example, 

a\jSj{t — d) and a.2jSj(t — d -  D) are available when only the j th source is 

active within a particular time period in the mixture signals. It is required 

to solve this scaling problem since the MMLETDE assumes the input to the 

delay system to be s(t) and the delayed signal to be s(t — D). To tackle the 

scaling problem, the variances of the segments of the mixture signals (where 

the sparsity condition (6.3.7) is satisfied) are normalised to unity. On the 

other hand, if the cross-correlation between the mixtures is negative, the
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sign of one of the mixtures is simply altered to ensure both s(t — d) and 

s{t — d — D ) are of the same sign.

6.3.5 The delaying strategy

In this section, it is shown that by delaying one of the mixtures, the sources 

can be estimated by employing the well-known FastICA algorithm [7]. This 

is a heuristic approach developed for this particular two-sensor problem.

For a  brief review of FastICA, consider the case where there are two mixture 

signals x(£) =  [ici(t) x 2(i)]T- FastICA maximizes the negentropy of x(£), 

more precisely argm ax t t ) lj t [ ,2 ^Neg(wiXi(t)  +  u>2 £2 (£)))• It linearly combines 

the mixtures in order to produce independent components (ICs) in its out­

put, y(£). The separated j th  IC yj{t)  is expected to resemble one of the 

sources. Given the differential delay D between the sources, x\  (t — D) is 

utilised instead of xi(t )  to calculate yi(t).  Therefore, FastICA executes the 

following expression:

arg max fNeg(u;ia;i(£ — D) +  W2 X2 (t))\ (6.3.11)
Wl,W2 \  /

Expanding the arguments of equation (6.3.11), one can obtain

yi(t)  =  wix \{ t  -  D) +  w2x 2(t)

= wi (ansi(£  — d — D) +  a i2s2(£ — d — 2D)j  -f 

w2 (a 2 isi(* — d -  D) +  a22s2(t -  d)j 

= si(t  -  d -  D) (anw i -I- 0 2 1 ^ 2)  +
V----------   /

a

iu\a\2S2 (t -  d -  2D) +  w2a22s2(t -  d) (6.3.12)N---------------------- j  ,
0i>2 (t-d)

where a  =  an iu i +  a2\w2 and (3 = wia\2 +  w2a22. It can be shown, through 

simulation studies, that optimising (6.3.11) yields a  «  0 and that (3 9 6  0.
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Then, yi{t)  «  S2(t-d-2D) +  S2 (t-d) (up to a  scaling factor). For simplicity, 

yi{t) can be considered to be approximately as (3s2(t — d) as the maximum 

value of 2D is three samples, which can be considered to  be negligible at a 

sampling frequency of 12kHz. However, the focus here is to achieve sepa­

ration of the two TM J sources, and not deconvolution. On the other hand, 

Eq. (6.3.11) can be regarded as:

arg min fN eg(asi(t — d — D)) \  (6.3.13)
W \,XV2 \  /

From Eq. (6.3.12), to have a good approximation of S2 (t — d), the most 

im portant term  is to optimise argm in tt,1)U,2 ^Neg(asi(£ — d — D ) ) j , which 

can be shown to be minimised successfully by FastICA through simulation 

studies.

At this point, recall that yi( t)  «  j3s2(t — d). The second IC t/2 (£) is a  poor 

approximation of the second source. FastICA will compute another vector 

W5 orthogonal to wa, while maximising (6.3.11).

V2 (t) = s i ( t - d - D )  (an tu i +  0 2 1 ^ 2 )  +

ai2W\S2(t — d — 2D) +  a22W2S2{t — d) (6.3.14)

Recall tha t the mixture signal x \  (t) was delayed by D samples such that 

x\{ t  — D) was employed as the input to the FastICA algorithm. In other 

words, si(£ — d) has also delayed by D samples in x\(t ).  This causes the 

alignment of si (t  — d — D)  in both mixture signals, i.e. x\( t )  and X2 (t). 

Due to this alignment, FastICA can optimise equation (6.3.13). However, in 

estimating s\ ( t  -  d — D), FastICA has to perform:

arg min ( Neg(tuiai2 S2 (t — d — 2D) +  w2a22S2 {t — d)))  (6.3.15)
W i , W 2  \  /

The misalignment of S2 (t — d — 2D) and S2 {t — d) in minimising Neg(.) in 

(6.3.15) leads to a poor approximation of s\(t — d — D). The condition that
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(3 «  0 must be satisfied in order to achieve a good estimation of si( t — d —D), 

whilst a  reflects the scaling ambiguity of Si(t — d — D). In short, the mis­

alignment of S2 {t — d — 2D) and S2 (t — d) in (6.3.15) will not necessarily 

satisfy the condition /? «  0.

L ocalisation of th e  sources: It is desirable to inform the clinician which 

source corresponds to which TMJ (i.e. left or right). It was just deduced 

that by delaying xi(t)  by D samples, S2 (t) can be estimated, and not si(t). 

However equation (6.3.8) demonstrates that S2 {t) is the contra (opposite 

side) source to x\(t). Therefore, this solves the localisation problem, since it 

is known which auditory canal corresponds to the sensor for recording xi(t).

The overall source separation algorithm can be outlined as follows.

For * =  1,2

1. Compute the differential delay D by ML or MMLETDE estimators as 

in Eq. (6.3.6) and Eqs. (6.3.3) & (6.3.4),

2. Delay Xj(£) by D,

3. Employ FastICA to maximise arg maxW l j W 2  ^Neg(wiXi(t—D)+WjXj(t))j,  

where i ^ j , j  € {1,2},

4. If i =  1, denote the pair of independent components (ICs) as y\{t) and 

2/2 (£), otherwise denote the ICs as 2/a(£) and ys{t)

5. Estimate the MI between yi(t)  & yA(t), yi(t)  & 2/b(0> 2/2 (t) & 2m(0> 

and y2 (t) & 2/s(0>

6. Pick the pair with minimum MI as the estimated sources, due to the 

statistical independence assumption of the sources.

It is understood that the selected IC from the set {yi(t), 2/2 W} corresponds 

to the same side of the head as X2 (t), and hence the selected IC from the set
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{VA{t), VB(t)} is on the contra side.

6.3.6 Simulations

The following scenario is considered: The patient is suffering from osteoarthro­

sis [23]. Hence, crepitus is present. It is assumed that one temporomandibu­

lar joint is more ‘damaged’ than the other, thus giving rise to the soft and 

hard TMJ sources. These TMJ sources (when measured separately) were 

mixed synthetically by a randomly generated A:

( 0.9198z-015 —0.2381z~154 ^

0.4418z" l54 0.9574z"015

Thus, d=0.15 and D=1.39. In the first place, the improved ML estimator 

as a function of D is illustrated in Fig. 6.6 in the noise-free context. Fur­

thermore, Parra’s algorithm [4], the time-frequency approach of Yilmaz and 

Rickard [5], and the proposed approach are compared in terms of SIR (signal- 

to-interference ratio) as SNR varies in the upper plot of Fig. 6.7. Also, the 

corresponding absolute errors between D of ML and that of MMLEDTE 

estimators are monitored. The values of the errors and those of SIRs were 

obtained by averaging 20 independent simulation runs.

6.3.7 Discussion and concluding remarks

Fig. 6.6 shows that the ML estimator exhibits a maximum near D=1.39 (the 

estimated delay between the sources D =  1.38). On the other hand, the 

upper plot of Fig. 6.7 clearly demonstrates the superiority of the proposed 

method with the delay estimates of the modified ML and MMLEDTE es­

timators due to its higher SIR. The much lower performance of Yilmaz & 

Rickard’s algorithm [5] is due to its reliance on k-means clustering (which
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F igure 6.6. Mutual information between the two mixture signals as a func­
tion of the delay D when sparsity condition (6.3.7) is satisfied. As expected, 
it has a peak near the true value D=1.39 (D =  1.38).

in turn depends on the disjointness of the source components in the time- 

frequency domain and the initialisation of A). Parra’s algorithm which en­

joys a relatively good SIR > 60 dB, uses a long filter length (owing to its 

frequency approach). This suggests that the filter length of its separating 

matrix is longer than what is required, which leads to an increase in the 

level of interference. However notice that due to the orthogonal projections 

in evaluating SIR proposed by Vincent et al [74], it leads to a significant 

difference (~  10 dB) between the proposed method and that of Parra [4]. 

Also, it is noted that the BSS delay technique with ML estimator D enjoys 

a better performance compared to one with MMLETDE D. The lower plot 

of Fig. 6.7 which demonstrates the lower values of errors of ML estimator 

D compared to those of MMLEDTE explains the better performance of the 

BSS algorithm with ML estimator D. Finally, the error of the ML estimator 

D in Fig. 6.7 is greater than that in Fig. 6.2. This discrepancy can be due to 

the fact that the original delayed signal and the undelayed signal are not ac-
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Figure 6.7. The upper plot shows the performances of Parra’s algorithm [4], 
time-frequency approach of Ozgur [5], and the proposed method in terms of 
signal-to-noise (SNR) ratio against signal-to-interference ratio (SIR). The 
differential delay D=1.39. The lower plot shows the corresponding values 
of the absolute errors of ML and MMLETDE estimators D. The error of 
ML estimator D < error of the MMLETDE explains why the SIR of ML 
estimator > SIR of MMLETDE.

cessible, but the normalized segments of the mixtures are utilised. Besides, 

synthetically generated low pass signals in Fig. 6.2 were used, while here in 

Fig. 6.7 mixed TMJ signals are considered.

6.4 Separation and localisation of clicks and normal TMJ sound

In contrast to the previous study, TMJ BSS is not simulated here via syn­

thetic mixing of TMJ sounds. In other words, source separation on the 

bilaterally recorded pair of TMJ sounds is attempted. In particular, the 

case where there is only one defective TMD joint, with the other joint as a 

healthy/normal one is considered. This scenario has already been addressed 

by Widmalm et al. [32,33]. However, these researchers regarded the ‘echo’ 

recorded on the contra (opposite) side of the TMD joint as the lagged ver­

sion of the TMD source. In this work, the possibility that this echo can in
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fact be a mixture of the TMD source and the sound produced by the normal 

TMJ is investigated.

In this work, the main assumptions made Eire 1) all the source signals are 

statistically non-stationary and sparse in the time-frequency domain; and 2) 

the mixing model (6.2.1) holds with mixing matrix A (6.2.2).

The aim here is to address the problem of source separation of real TMJ 

sources. In the first part of this chapter, TMJ source separation prob­

lem by simulating an anechoic model of the head was addressed; while in 

Chapter four, the mixing model was an instantaneous and underdetermined 

one. These studies were however carried out based on a synthetic mix­

ing of the TMJ sources. Guo et al. separated the biologically-mixed TMJ 

sources by modelling the acoustic mixing system of the head as a convo- 

lutive one [1]. However, there exists one fundamental issue which has not 

been addressed by any of these three studies, i.e. the statistical dependence 

of the TMJ sources. Whenever a person chews, both joints operate in a 

synchronous fashion. Therefore the statistical independence assumption of 

the TMJ sources is questionable. In contrast to these approaches, a time- 

frequency masking approach is adopted to perform source separation on the 

biologically-mixed TMJ sounds. This approach is more suitable for this par­

ticular source separation, as the statistical independence of the sources is 

not assumed. The extensive literature on the time-frequency analysis of the 

TMJ signals also supports this approach and it will be discussed in the next 

section [34], [35], [36], [37], [110].

The organisation of this second part of the chapter is as follows; in the 

next section an overview of the works on the temporomandibular disorder 

using time-frequency analysis is given. This is followed by a brief background 

on the DUET algorithm and in particular, one of its non-trivial constraint
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will be addressed and circumvented. This section is closed with the sum­

mary of the proposed source separation procedure. Thereafter, experimental 

results are presented to verify the effectiveness of the source separation tech­

nique. Subsequently, concluding remarks on the estimated TMJ sources are 

provided in section 6.4.5.

6.4.1 Time-Frequency analysis of TMJ sounds

Several time-frequency (T-F) analysis methods have already been performed 

(with TM J sounds) mainly for classification purposes [34], [35], [36], [37],

[110]. The success of these T-F approaches for classification of TM J signals 

stems mainly from the statistical non-stationarity nature of TMJ sounds. 

Hence, as many researchers argue, these approaches pick up features that 

are not seen in the waveforms or in conventional power spectra [35], [110],

[111]. Many of these approaches have their pros and cons. For example, 

the reduced interference distribution (RID) of the Cohen’s T-F family does 

not guarantee a  non-negative distribution, while suppresssing interference 

and cross terms [35]. On the other hand, the main appeal of the short 

time Fourier transform (STFT) is its simplicity to use, but it does not yield 

a high time-frequency resolution. However, the time-frequency resolution 

of the STFT can be improved via the evolutionary spectrum proposed by 

Akan et al. [35]. Throughout this study, the short time Fourier transform 

is utilised to perform the time-frequency analysis of the TMJ sounds due to 

its simplicity. Nevertheless, it is understood that the focus here is not to 

discuss the optimum T-F approach, but to demonstrate that the statistical 

non-stationarity property of the TMJ sources can be exploited to solve BSS. 

Hence, the well known DUET algorithm which achieves source separation 

via T-F binary masking is employed in this study. In the following section, 

an overview of the DUET algorithm together with an explanation of how to 

accommodate this algorithm in the context of TMJ BSS are given.
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6.4.2 The DUET algorithm in the context of TMJ BSS

It is noted th a t this section is based on the materials provided in [33] and 

[5]. The main hypothesis implied by the DUET approach is the W-disjoint 

orthogonality [5]. This concept can be viewed as sparsity which in turn is 

defined in section 6.3.2. Here, however, sparsity is analysed in the time- 

frequency domain and the two sources are click sound source, generated from 

a TMD joint, and a ‘normal’ TM J sound from that of the free-TMD joint. 

Gay et al. and Gallo et al. found that most of the energy of a ‘normal’ TMJ 

sound was centered below 800 Hz [6,39], while TMD joint sounds exhibited 

peaks greater than 800 Hz, see for instance Fig. 5 in [6]. Furthermore, 

the time interval between the ipsi and contra sources contributes to the 

sparse combination of the two TMJ sources. On this basis, the reasonable 

hypothesis tha t the TMD source does not overlap the ‘TMD-free’ source 

in the time-frequency domain is made. Furthermore, Yilmaz and Rickard 

demonstrated the robustness of their DUET technique even when the speech 

sources satisfy a  weakened version of W-disjoint orthogonality condition. 

Due to this sparsity assumption of only a single active source in a particular 

time-frequency (£, / )  interval, the estimate of the j th  source is

Sj{t, f )  =  Bj(t,  f )xi{t ,  f )  (6.4.1)

where the binary mask is defined as

=  1 if |S j(£ ,/)l >  |s/fc(£,/)l J V  *

=  0 otherwise

(6.4.2)

To establish which source is active within a particular (£, / )  interval or equiv­

alently determination of the binary mask, the following can be performed.
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In the time-frequency domain, the mixing model can be expressed as

* 1  (*,/)
X 2 ( t ,  f )

a n z  <Ju ai2Z 

a2iz-521 0 2 2 Z

—812

— 8 2 2

si{t , / )  

S2(t, / )
(6.4.3)

Due to the sparsity assumption, there is at most one active source in a 

particular (£, / )  interval. Consider all (£, / )  intervals where only the j th  

source prevails as Uj := {(£, / )  : Bj(t ,  f )  =  1} and the following ratio

*2 (*, / )
xi(t,  f )

Regarding all the (£, / )  intervals within Uj, it is clear that this ratio is

(6.4.4)

(6.4.5)

where a* = 0 2 »/ait, =  6 2 1  — 6 u, and u  =  2 nf.  This ratio can then be

utilised to determine aj  = \R.2 i ( t , f ) \  and Sj =  —(l/u))ZR.2 i(t, /) , where |.| 

and Z denote respectively, the magnitude and the phase. These two features,

i.e. aj  and Sj, computed over the entire time-frequency domain, can then 

be used to compute two cluster centers corresponding to the two sources. 

The clustering procedure can be performed by the k-means algorithm [72]. 

Thus, a (t, f )  interval pertaining to a particular active source is equivalent 

to its membership to the corresponding cluster center. On this basis, the 

binary mask can be determined to estimate the source via (6.4.1). Next, a 

non-trivial constraint imposed by the DUET algorithm is examined.

DUET requires the sensor spacing to be less than the distance the TMJ 

sound travels within one sample, if Fs  = 2 /max, where Fs and /max de­

note respectively the sampling frequency and the maximum frequency of the 

source signal. This situation is impossible to implement for when the sensors 

are placed in the auditory canals. Mathematically, the constraint C  can be
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expressed as [5]:

C* — l^ /m ax T d m ax I ^  ^ (6.4.6)

where a>/max =  27r/max and Tdmax is the maximum time lag determined by 

the microphone spacing [5]. We can also express (6.4.6) as

W ith reference to the work of Widmalm in (33], Tdmax of the TMJ sounds 

within the brain was found to be in the range of 0.2-1.2 ms, while rwmax =  

1/(2 x 3200) =  0.16 ms, assuming / max =  3200H z. As the sampling fre­

quency employed in this study is 12 kHz, r^max corresponds to 2.4 - 14.4 

samples and rwmax =  1.9 samples. Likewise, the fact that TMJ signals 

are oversampled by a factor of approximately 2, i.e. ( F s / /max) ~  22 also 

explains why the delay between the microphones should be less than two 

samples. Therefore, the constraint of DUET is not fulfilled in this particular 

TMJ BSS scenario. Since one does not have access to rwmax) which depends 

on the maximum frequency / max present in the sources, one cannot alter its 

value. However, T<fmax, which is governed by the ‘spacing’ between the two 

sensors, can be made to be approximately to zero. Equivalently, the delay 

introduced by this ‘spacing’ is simply the delay between the two mixtures. 

This delay can be cancelled, if one of the mixtures is delayed by r<jmax. As 

Widmalm showed in his work [33], the TMD joint sound propagates to the 

contra side in r j max and he considered this contra laterally recorded ‘echo’ 

as the delayed version of the TMD joint sound. Subsequently, the mixture 

recorded in the auditory canal of the TMD side is delayed. The determina­

tion of which side of the face corresponds to the TMD joint can be achieved 

by examining the sign of the delay Tdmax which will be discussed next.

(6.4.7)

L ocalisation  o f th e  sources: As mentioned before, it is desirable to in­
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form the clinician which source corresponds to which TMJ (i.e. left or right). 

Mutual information (MI) can be utilised as a measure of similarity between 

one estimated source and a mixture. For example, source s\(t) is considered 

to be on the same side as x\(t)  if MI(si(£),Xi(£))>MI(si(£),X2 (t)), otherwise 

Si(t) is located on the adjacent side. Therefore, this solves the localisation 

problem, since the clinician knows in which auditory canal he has placed the 

sensor for recording xi(t)  or X2 (t). In the following section, the overall algo­

rithm, which is similar to the source separation procedure given in section

6.3.5 is outlined for the purpose of clarity.

6.4.3 Summary of the delay strategy

1. In the first place, consider for the moment that x\(t)  corresponds to 

the TMD joint side,

2. Compute the delay D of X2 (£) relative to x\(t)  by utilizing the modified 

delay estimator ML estimator (6.3.6),

3. If D> 0, then x\  (t) corresponds in fact to the TMD side and denote 

it as xtmd(*)> otherwise x\(t)  corresponds to the contra side of the 

TMD and label it as x n < m T M D ( t ) -

4. Delay xtmd(^) by D. This can be achieved via (6.3.1),

5. Apply DUET algorithm to xtmd(^-D) and xnonTMD(0 to compute 

-ft2i(f, / )  bi Eq. (6.4.5) over the entire time-frequency domain and 

cluster these (£, / )  intervals into two classes of a j  and S j .  From this 

clustering procedure, the binary mask B j ( t , f )  pertaining to the j t h  

source can be built. As a  result, yi(t)  and Jft(£) will be estimated via 

the binary mask (6.4.1),

6. Estimate the MI between yi(t)  & x n o n T M D ( t ) >  and yi(t)  & xtmd(£),

7. If M I[y i(t) , ^TMD(t) J > Ml( yi(£), xnonTMD(*)), then yi{t) is the



Section 6.4. Separation and localisation of clicks and normal TM J sound 124

estimate of the TMD source and y2 (t) is the estimate of the non-TMD 

source, and vice-versa.

6.4.4 Experimental results

The experimental results presented herein follows from the data recorded 

on a patient with his left TMJ generating ‘clicks on closure’, at a sampling 

frequency of 12 kHz, similar to the sampling frequency used by Sano et 

al. [31]. For comparison purposes, the source estimates of Infomax are also 

included [1]. In this section, EDUET is used to denote the proposed method, 

while DUET refers to the original DUET approach. In this section, EDUET 

is used to denote the proposed method, while DUET refers to the original 

DUET approach.

Fig. 6.8 illustrates a peak value of mutual information at D=10.3 samples, 

when the relative delay between the two TM J sounds was measured. In 

the upper plot of Fig. 6.9, the mixtures are plotted and the two lower plots 

zoom in on the prominent peaks of both TM J sounds. Fig. 6.10 presents the 

estimates of the proposed approach EDUET in the upper two plots, while 

the lower two plots portray the estimates of Infomax. Fig. 6.11 illustrates 

the estimated sources by DUET algorithm. On the other hand, Fig. 6.12 

illustrates the spectra of the TM J mixtures in the left plot and the right plot 

shows respectively the spectra of the estimated TMJ sources for comparison 

purposes.
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F ig u re  6.8. Mutual information between the two mixture signals as a 
function of the delay D. It has a peak at D=10.3 which corresponds to 
the lag between the prominent peaks of the two mixtures. These peaks are 
highlighted with the aid of arrows in Fig. 6.9.
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The lower two plots illustrate the estimates of convolutive Infomax [1]. The 
arrows point the components present in both estimates of Infomax, indicat­
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F igu re  6.11. Estimated sources using DUET algorithm without alignment 
of the mixtures; the clicks, pointed out by arrows, can be viewed in the 
estimated S2 {t) as the normal TMJ sound.
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F ig u re  6.12. The spectra via the Welch power spectral density method 
of the TMJ mixtures in the left-hand plot and of the estimated EDUET 
sources in the right-hand plot. Take notice of the closeness of the two TMJ 
mixtures spectra for the interval from 800 Hz to 1500 Hz, indicating that the 
click is present in both TMJ sounds. Also, it is noteworthy to say that the 
spectrum of S2 (t) is severely attenuated for frequencies greater than 800 Hz 
compared with that of s\(t), suggesting the successful extraction of the clicks 
from the right TMJ sound. Note the strong similarity between the spectra 
of the estimated sources and Fig. 5 in [6] where the authors compared the 
spectrum of a ‘normal’ TMJ sound with that of click sounds.
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6.4.5 Discussion and concluding remarks

Fig. 6.8 shows tha t the time delay estimator exhibits a maximum at D=10.3 

samples which corresponds to the delay between the two TMJ sounds. This 

delay is equivalent to 0.86 ms and within the range of 0.2-1.2 ms found by 

Widmalm et al. [33]. From the topmost plot of Fig. 6.9, the synchronicity of 

two TMJ sounds is evident. If the prominent peaks of the TMJ sounds are 

zoomed in on the lower two plots, it is clear that the right TM J sound lags the 

left TMJ sound. This confirms that it is the left TMJ that generates clicks, 

as expected. On the other hand, the upper two plots of Fig. 6.10 illustrate 

the estimated EDUET sources by the proposed approach. The signed si(£) 

is evidently the click source, while the absence of those promiment peaks in 

5 2 (f) suggests that it is in fact the sound produced by the healthy/normal 

joint. In the same figure, both estimates of convolutive Infomax contain 

components of click as pointed out by the arrows in the lower two plots. 

The measured MI between the two TM J mixtures, the Infomax estimates, 

the DUET estimates, and the EDUET estimates were 0.594, 0.445, 0.0257, 

and 0.540 respectively. The lower values of mutual information between the 

pair of Infomax estimates and between the DUET estimates show that Info­

max and DUET achieves a better degree of statistical independence between 

their respective estimates than the EDUET approach. Nevertheless, both 

Infomax and DUET estimates still contain components of click as shown in 

Fig. 6.10 and 6.11. Now, examine the spectrum of the TMJ sound mixtures 

in the left-hand plot of Fig. 6.12.

Since it is the right TMJ which is ‘normal’, its spectrum is expected to 

have a similar shape to that of a ‘normal’ TMJ illustrated in Fig. 5 of [6] 

and in the only figure of [39], which is indeed the case. However, note the 

closeness of the right TMJ spectrum with that of the left TMJ spectrum 

from the range of about 800 Hz to 1500 Hz. This indicates that the right
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TMJ spectrum is in fact contaminated with the clicks from the left TMJ. 

This was evident in the study of Widmalm et al. [32], [33]. Likewise, the 

spectra of the estimated sources are compared in the right-hand plot of Fig. 

6.12. As expected, the spectrum of S2 (t) (considered as the healthy TMJ 

sound) is severely attenuated above 800 Hz which can also be observed in 

Fig. 5 of [6] and in the only figure of [39] for the case of a ‘normal’ TMJ 

sound. Similarly, the spectrum of S\(t) in the proximity of 1kHz is much 

higher than S2 (t), indicating that s\(t)  corresponds to the sound generated 

by the TMD side. The human ear is most sensitive to the frequency range of 

1000 - 3200 Hz. Therefore, Fig. 6.12 indicates that si(t)  considered as the 

click source, has a better audible prominence as compared to S2 (t) generated 

by the ‘normal’ joint. Therefore, this successful separation and localisation 

of TM J sources can be of great clinical value to the dental specialists.

6.5 Conclusions

In the first part of this chapter, sparsity of the crepitus in time domain was 

exploited to estimate the differential time D between TMJ sources, while in 

the last part, sparsity of the sources in time-frequency domain was employed 

for clustering (t, f )  intervals pertaining to a particular source. However, both 

lead to the same objective, i.e. separation of the TMJ sources. In the last 

part of section 6.3.2, it was deduced that based on speed of sound within the 

brain, mean width of the brain, and the sampling frequency used, the lag D 

was approximately 0.1 ms. In contrast to this, the study on the separation 

of click and ‘healthy’ TM J sources indicates that this lag corresponds to 0.86 

ms, which is well within the range of 0.2-1.2 ms found by Widmalm et al. [33]. 

This discrepancy from the two studies presented in this chapter does show 

that there is a  difference between theory and practice. However, the lower 

limit of D found by Widmalm, i.e. 0.2 ms is in close range to the theoretical 

one, i.e. 0.1 ms. Another major discrepancy between the two studies is
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in the performances of DUET algorithm in the two scenarios. In the first 

part of this chapter, DUET yields a poor performance on the synthetically 

mixed crepitus sources, while in the second part, DUET separates the click 

source from the healthy TM J source. This was expected, as it was already 

acknowledged in the literature that click and the ‘healthy’ TMJ source have 

quite dissimilar spectra [6,39]. On the other hand, the strong similarity of 

the soft and hard crepitus sources’ spectra explains the poor performance of 

the DUET algorithm.



Chapter 7

CONCLUSIONS AND 

FURTHER RESEARCH

7.1 Summary and Conclusions

This study has presented novel methodologies to improve the existing BSS 

techniques. These can be summarised as follows:

1. A variable tap length for convolutive time domain Infomax algorithm.

2. Application of Ferrante's affine transformation to improve the conver­

gence properties of fixed point iteration for a particular ICA algorithm.

3. Filtering as a preprocessing step to extend the FastICA algorithm to 

the underdetermined BSS.

4. Exploitation of fractional delays to solve BSS of TMJ sounds.

The first contribution has provided a stepping stone in terms of a novel 

topic for the BSS community to indulge in. The flexibility of the variable 

tap length will hopefully attract more researchers to dedicate themselves 

to time-domain convolutive algorithms. These algorithms are generally dis­

missed by the BSS community, due to the more efficient frequency domain 

approaches. The variable tap length concept is likely to have a major impact 

in applications where thousands of taps of the filters are required.

The second contribution has shed light on how to apply fixed point con-
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cepts such as attractive fixed point and contraction mapping theorem to 

fixed point ICA algorithms. The philosophy behind this contribution is to 

demonstrate the applicability of fixed point theory in BSS and should be 

applied more rigorously to BSS algorithms. The independence of fixed point 

iterations from the learning step-size (to which gradient approaches are vul­

nerable) further advocates its usage.

The third contribution illustrates how a pre-processing filtering of the mix­

ture signals can prove to be useful in solving underdetermined cases. In this 

contribution, it was shown how filtering attenuates the presence of certain 

sources within the mixtures, thus allowing the identification of the other 

sources. This is analogous to the concept of sparsification, whereby the data 

are projected in a  ‘sparse’ domain. It is crucial tha t the sources are sparse 

within a particular interval in the sparse domain. As a result, underdeter­

mined BSS reduces to a more tractable exactly-determined BSS model. In 

fact, underdetermined BSS currently figures amongst the hot topics. The 

enthusiasm shown for this topic is unlikely to wane off, due to the challenge 

posed by its ill-conditioned nature, and its practical applicability.

The fourth contribution tackles fractional delays arising in source separa­

tion. Modelling a fractional delay theoretically implies the convolution of 

the signal to be delayed with an infinitely long delayed sine function. There­

fore, correct estimation of the fractional delay is crucial in optimising an 

appropriate filter length, to be as short as possible. This will circumvent 

thousands of taps often needed to implement the fractional delay.

On the forefront of TM J source separation, it can be deduced that the mix­

ing model within the human head is closer to an anechoic model than a 

convolutive model. Although instantaneous TMJ BSS has been simulated, 

it has been confirmed that the non-stationarity or the non-Gaussianity can
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be exploited. In that respect, the simulation of instantaneous BSS has been 

instructive. In Chapter six, the delay found from the bilateral recordings 

of TMJ signals corroborates with the delay range reported by Widmalm et 

al. [33]. Additionally, the spectra of the estimated sources are comparable 

to those reported in the literature [6,38,39]. These indicate that successful 

extraction of the TM J sources has been achieved. This novel extension to 

DUET allows for an arbitrary spacing of the sensors, which might have other 

potential applications such as in speech source separation. Furthermore, Yil- 

maz and Rickard demonstrated tha t DUET had a  reasonable performance in 

a convolutive scenario where the reverberation was 500 ms and five sources 

were present (underdetermined source separation) [5]. In contrast to this 

scenario, firstly, it is unlikely tha t the reverberation within the head is as 

long as 500 ms, secondly, it is known a priori that there are only two sources 

(exactly determined source separation). Hence, the scenario presented herein 

is ‘simpler’ and justifies the use of the DUET in the separation of the TMJ 

sources. In conclusion, the non-stationarity of the TMJ signals has to be 

exploited in a non-statistical fashion due to the synchronised mechanism 

of the two joints. Effectively, this means that the statistical independence 

of the sources might not be a  suitable assumption for TMJ source separation.

Last but not least, the human factor is not to be excluded in the consid­

eration of the work undertaken herein. The ethical protocols to record the 

database on a  more diverse scale have limited this study to mostly syn­

thetic simulations. The research fields of dentistry and signal processing 

are unfortunately two distinct bodies. The lack of mutual cooperation and 

understanding between the workers in the two disciplines is one of the numer­

ous examples to illustrate why subjects such as telemedicine, or automated 

prognosis have failed to launch.
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7.2 Future works

Many opportunities for future research await to be explored. W ith regard 

to the variable tap length, only one tap length is varied in the convolutive 

Infomax algorithm. This can possibly be extended to multiple variable tap 

lengths, and achieved through the measurement of a non-Gaussian criterion 

of each estimated source. Optimising each tap length in accordance with 

maximisation of the non-Gaussianity of individual estimated sources looks 

to be an optimistic avenue. Furthermore, the concept of variable tap length 

is by no means restricted to convolutive Infomax. Indeed, it can be applied 

to other time domain convolutive algorithms such as the natural gradient 

approach described in [80].

Ferrante’s affine transformation has numerous avenues for development. The 

algorithm proposed in Chapter four should be further examined and ex­

tended to the case of a higher number of sources. Coupled with this, it 

can be improved to cater for convolutive BSS. This can be undertaken by 

employing the feedback network, following the approach of Torrkola for the 

convolutive Infomax algorithm. Moreover, the proposed approach can also 

be employed in parallel with SCA such that it estimates the active sources 

over a given interval of time, provided the number of active sources does 

not exceed the number of mixture signals. It will then potentially have the 

capability to solve the underdetermined BSS.

The Unear filtering UBSS approach in Chapter five has been utilised in the 

context of TMJ BSS, and therefore leaves room for other applications for 

which similar conditions arise. However, the main challenge remains in find­

ing more optimum linear transforms tha t perform source attenuation within 

the mixture signals in the time domain, thereby reducing the number of 

active sources. These Unear transforms can then compete against sparsifica-
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tion methods, which project the data into its ‘sparse’ domain.

Finally, TM J source separation on a more wider database looks promising, 

provided the ethical approval is granted, and not stalled. The non-invasive 

acquisition of TM J signals should not in theory pose a problem. Research 

assertiveness should be encouraged, when it comes to those administrative 

issues. As for blind source separation itself, in my opinion, it has attained 

its ceiling. Although BSS research has been carried out over two decades, 

there has not been a significant breakthrough in this field. BSS researchers 

should start thinking outside the ‘box’. The reliance on the intelligence of 

computers via programming has partly limited BSS research. Nowadays, 

its main innovations he in its application rather than on the algorithmic 

level. As mentioned in the introduction, the capability of the human brain 

to signed process multimodal data, together with its independent learning 

ability explains why it remains as the most reliable BSS solver. Thus, BSS 

researchers must comprehend how the brain operates, rather than indulge 

in formulating mathematically elegant algorithms. For example, the hierar­

chical temporal memory (HTM) approach [112], which mimics the learning 

process of the brain can play a significant role in BSS.



Appendix A

CONCEPTS AND 

DERIVATIONS FOR BLIND 

SOURCE SEPARATION

A .l Fixed Point Theorems

The materials presented in this section are based on [57] and [2].

A.1.1 Types of Fixed point

1. A fixed point u  of a function /( .)  is said to be asym pto tica lly  s tab le  

o r a ttra c tiv e , if

lim / ( u fc) =  u  V u* G ©(u)
k—*oo

where O(u) denotes the neighbourhood of the fixed point u. The 

magnitude of each of the eigenvalues of the Jacobian J  of /( .)  a t u  is 

less than unity.

2. A fixed point u  of a function /( .)  is said to be repulsive, if eigenvalues 

of J  of /( .)  are less than unity in magnitude a t u.

3. A fixed point u  of a function /( .)  is said to be sadd le po in t, if some 

of its eigenvalues of J  of /( .)  are less than unity and some are greater 

than unity in magnitude at u.
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A. 1.2 Contraction mapping theorem

Theorem G.1.2. (57]: Consider M  be a closed subsect of Rn such that

(i) / ( .)  : Af -  Af

(ii)3 a  < 1 such that | |/(u )  — /(v ) | |  <  a |]u  — v ||, Vu, v  G M

then the fixed point iteration u*;+i =  / ( u/t) converges to the unique fixed 

point u, for any initial value uo G M .

A.2 Derivation of Convolutive Infomax

The relationship between pdfs of the mixture signals /(x )  and the outputs 

of the neural network / ( u) is [48]

'<“> = 551  (A21)

where det stands for determinant, and J is the Jacobian matrix of the net­

work, more precisely:

J  =
dui du\ 
d x \  d x2

<hi2 chi? 
d x \  d x2

(A.2.2)

The determinant of J  can be found as

dui du2 dui du2 , , det J  =  —   ------^ ^ — =  u xu2D  (A.2.3)
O X  i  O X  2 O X  2 d x  i

where

~ dyi dy2  dyi dy2  , dui .
D - — —  - - - - - - - - -      =  WU0W220 ui ~~ "q 1 = 1 ,2

uXj vX2 9 x 2 9 x i 9y%

It turns out that D  is the determinant of the instantaneous separating matrix 

W . Since it is desired to maximise the output entropy H{u) by employing
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(A.2.1), it can be expressed as:

2
H  (u) =  £ { J ] lo g |u '|}  +  £{logD } + ff(x) (A.2.4)

t=l

Taking the stochastic gradient of (A.2.4), and thereby dropping the expecta­

tion operator E{.}, the adaptation rule for each separating matrix coefficient 

can be derived. For example, the gradient w.r.t. tuno:

2 1 du', 1 dD

where

Vtwno — T o ,  *— *” ~n ------ (A.2.5)Uj C/ttfno D owiio

du[ _  du[ dui dyi _  ,
dwno dui dyi dwno Vl UlXl

dvZ} _  dv^ du2 dy2 _  Q
dwno du2 dy2 dwno

dD a \ 9  d9^Vi)= W2 2 0  and $(y») =
dwno u dm  dyi

where Ui = g{yi). Subsequently, the resulting increments can be generalised 

as

Awao oc <&{yi(t))xi{t) -I- 1 /woo 

Aw iip oc $(yi(t))xi(t - p )

Aw ijp cx $(yi(t))yj(t -  p) i ^ j ,  V i,j,p

(A.2.6)

A.3 Equivalence between non-stationarity and super-Gaussianity

Consider the non-stationary signal x(t) as:

(A.3.1)
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where u(t) is a  zero-mean stationary stochastic process, statistically inde­

pendent from K,(t), which is a scaling factor variable over time. The objective 

is to demonstrate that the kurtosis of the stationary process u(t) is always 

less than tha t of the non-stationary x(t), except in the following case. If 

the scaling factor is generated from a degenerate pdf, i.e. p(tc) =  <5(k — £), 

then kurt(x(t)) =  kurt(u(t)), for any arbitrary constant p. Kurtosis kurt(.) 

which measures the thickness of the distribution can be defined as [102]:

kurt{x{t)) =  (A.3.2)

Due to  the statistical independence between u(t) and /c(t), the kurtosis of 

x(t)  can be factorised as follows [8]:

kurt(x{t)) =  kurt(u (t)) (A.3.3)

If the scaling factor n(t) is a positive r.v., then the following holds:

roo
I [k2 —  £2]2 p (k ) cLk >  0 (A.3.4)

Jo

where p(.) refers to pdf. Equality holds only when the integrand vanishes 

everywhere, i.e. iff p(n) vanishes, except for k 2  =  f 2. Therefore, the distri­

bution must be degenerate, i.e. p(n) = 6 (k — £), if equality holds for (A.3.4). 

It can be re-written as:

J [ k 4 -  2 K2e2 + f1] p ( k )  dK = E{k4} -  2 E{k?}(2 +f* > 0 (A.3.5)

This has a minimum at £ =  E{tc2}1/2. Substituting this yields
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From this equation, it is clear that

kurt(x (t)) =  kurt(u(t)) > kurt(u(t)) (A.3.7)

This concludes the proof of Parra and Spence to demonstrate the super- 

Gaussianity of a  non-stationary process [8].



Appendix B

AN ML ESTIMATOR FOR 

SHAPE PARAMETER OF 

THE GENERALISED 

GAUSSIAN DISTRIBUTION

The same approach as Vetterli [90] is adopted to derive the shape param­

eter a , but with <7 =  1. Define the likelihood function of the signal vector 

u —[u(l)u(2)...u(t)..u(T)] having independent samples as

T
L(u; <7, a) =  log <7, a) (B.0.1)

j = i

The likelihood L{.) for one sample is derived for simplicity, noting that 

L =  YlJ= l L{j)- Prom (4.2.1), one can show that

l o g ( r ( l / a ) )  +  - l o g ( r ( 3 / a ) )
V

O;
(B.0.2)

Taking the derivative of (B.0.2), one obtains

dL{u{j)\t7, a) 
da

tf(3/a )^ (1 /a )
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where ^ (.)  is the digamma function and

(B.0.4)

0 =
r(3/a)
r(l/a)J

To determine ^  requires the functional power rule as follows

[ F 7  =  F r[F ' _  +  r 'log(F)] (B.0.5)

where it is differentiated with respect to r  and (.)' denotes the derivative

of (.) with respect to r. For the case of one have F  = i/SS and

r = a:

d 6_
da
—  = F r lF '

rr(3/a)
{ 2 [r(l/a)J

1 (T (3 /a ) l“/2
“ 2 [r(l/a) j

-1 -  J*(3r(l/a)r(3/a)' -  r(3/a)r(l/a)')
r ( i / a ) 2

* ( l / a ) - 3 * ( 3 / a )  , /'IW a )'*
 a   \r (T 7 “ ) / J

+ 2 l0g

Thus, substituting (B.0.6) into (B.0.4), it is clear that

dOj
da

=

o ,

|-*(l/a)-3#(3/a) , - v
[ -----------5-------------- g ( j w ^ ) +iogKi)|}

(B.0.7)

r(3/a)\ l
r ( l / a ) ; /

(B.0.6)
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Since differentiation is a linear process, one can then express the derivative 

(B.0.1) by using (B.0.3):

TdL(u;<r,a) _  dL(u(j);cr, a)
da da

j =i

= T d p j
“  da
3 = i

(B.0.8)

Now, the second derivative of (B.0.1) can be obtained. From the equation 

(B.0.8), the derivative of £ is first determined .

&  = ~ h  ~ K S W 3/q) ■ * (1/a)) -  -  *d /« )'» )

=  ^3 (  -  a  + 3 (* (3 /a ) -  * ( l /o ) )  + ^ ( 3 » ( 3 /a ) '  -  * ( l /a ) ' ) )

(B.0.9)

Letting 7j =  1 5  |~*(Va)-3*(3/Q) +  iog +  log \u(j)\ J ,  it can then

be differentiated to obtain as

<h± = I  ( $(?*&/<*)' ~ *(!/<*)') ~  (*(!/<») ~  3 ^ (3 /a ))  _  J _ (3Vw 3 /a ) _  
da 2 \  a2 a2

=  ^ ( 9 * ( 3 / a ) ' - * ( l / a ) ' )

As it is known that dO j/d a  = Oj'yj from (B.0.7), one can then take its 

second derivative:

P Q ,  =  a 0 i „ .  +  o .»2 i
da 2  da  3 3 da

= Ojinij+ij)

*(!/<»)))

(B.0.10)

(B.0.11)
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Similarly as in deriving (B.0.8), one can find its second derivative 

g = 7 ?  + f ; iO j(7? +  7')l
J =1

(B.0.12)

where and 7 can be obtained from (B.0.9) and (B.0.10) respectively. 

It is noteworthy to say that computing recurring terms such as 7 *, and O* 

once for each iteration together with the implementation of look up tables 

of T(.), '£(.) and ^ ( .y  functions renders the algorithm computationally real­

isable.



Appendix C

DELAY ESTIMATION

C .l Derivation of the fractional FIR filter

For the sake of completeness, this section has been included to firstly jus­

tify the convolution of s(£) with a delayed sine function in Eq. (6.3.1) and 

secondly to highlight the equivalence between Lagrange interpolation and 

discrete FIR filter with transfer function H{ePu>) to approximate the ideal 

transfer function 7fj(i(eJta,) of a delay fine with delay D. In the sequel, the 

materials provided here are based on the work of Vesa Valimaki [68]. Con­

sider x(t)  to be input, and y{t) =  x(t — D) as the output of a delay system

with delay D. Using the time-shifting property of the Fourier transform, it

is clear that

y(w) =  e - '“Dx(u,) (C.1.1)

Hence, the transfer function of the delay system is

H - M  =  =  e~’aD (C.1.2)

By taking the inverse discrete-time Fourier transform of Eq. (C.1.2) and 

using the identity 2 js in0  =  e?e — e~jd, the delayed sine function as the 

transfer function of the delay system is obtained

—  r  e~iu}De?“kdu) = sine(fc -  D) (C.1.3)
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After the justification of using the sine function in Eq. (6.3.1), the equiva­

lence between the fractional delay FIR filter used to approximate the non- 

integer delay and the Lagrange interpolation formula is now demonstrated. 

For this section only, the indexing of vectors starts with zero. The error 

£(eJ™) between H{e?w) and is defined in the frequency domain as

follows:

£(<*>) =
L

=  J 2 h{k )e - i“ k -  e - i “D
k=0

(C.1.4)

The ith  derivative of Eq. (C.1.4) w.r.t. uj is then set to zero and is evaluated 

at u) =  0, for t=0,..., L.

For z=0,
L L

£ m *) - 1 = 0  <=> £ > ( * )  = 1 (C.1.5)
fc=0 k= 0

For i= l ,
L

~^2jkh{k)+jD = 0 <=> J 2 k h (k ) = D (C L 6 )
k—0 k=0

For i=2,

-J2k2h(k) + D2 = 0  ^2k2h(k) = D2 (C.l.7)
k=0 fc=0

All the (L-fl) equations obtained from the (L+1) derivatives of Eq. (C.1.4) 

can be summarised as

L
kiHk) = & i=0,l,2,...,L (C.l.8)

k —0
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Matrixwise, Eq. (C.1.8) can be expressed as

D h  =  d (C.l.9)

where

D  =

0° 1° 2 ° .. . L°

o1 l 1 21 L 1

o2 l 2 22 L2

0 L 1 L 2 l  . .. L l

(C.1.10)

h  =  [h{0) h (l) h{2) . . .  h(L)]T 

d  =  [1 D D 2 . . .  D l ]t

(C.l.11) 

(C.l.12)

Note tha t the matrix D  is a Vandermonde matrix whose determinant det(D) 

can be easily determined by

det(D ) =  J ]  (d2 J - d 2 ,i)
l<i<j<L+l

(C.l.13)

where d ij is the element of the matrix D  in its tth  row and j th  column. 

The kth  coefficient h(k) of the FIR filter in the column vector h  can be 

computed, by applying Cramer’s rule. Denote D/ as the matrix D  but with 

its Zth column replaced by the column vector d  and l= k+ 1. According to 

Cramer’s rule, h(k) can be determined as

h{k) =
det(Dz)
det(D)

(C.l.14)

Similarly as in Eq. (C .l.13), det(Dj) can be computed in the same fashion. 

Both det(D) and det(D/) have common terms, i.e. {d2 yi~ d 2 j )  when i , j  ^  k. 

These common terms will cancel out in Eq. (C .l. 14) and therefore h(k) can
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be simplified as

(C.l.15)

Eq. (C .l. 15) demonstrates that the FIR delay filter is in fact the well-known 

Lagrange interpolation formula.

C.2 Verification of the modified MMLEDTE

From Eq. (6.3.1), the sine function is replaced by the Lagrange interpolator 

FIR coeficients h(k) to yield

W ithout loss of generality, assume a complex spectral envelope of s(£), i.e.

(C.2.1)
fc=—Ma

A t) :

(C.2.2)

such that

s(t) = s '(t) e ^ (C.2.3)

Thus

s{t - D )  = s'(t -  D ) ^ " 0* (C.2.4)

Also

(C.2.5)
fc=—M,
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Substituting (C.2.5) into (C.2.4), the following can be obtained

Mb
s ( t - D ) = (  h { k )s '( t- k ) \e > ^ t- D  ̂ (C.2.6)

'  fc=—Ma '

=  (  V  h { k ) s \ t - k ) ] e ? ,* t- k+k- D) (C.2.7)
'  fc=-Ma '

M b

=  2 2  h(k) A t  -  fc)ej^ t~k\ ei^ k- D) (C.2.8)
k=-M a  s(t-k)

Comparing (C.2.1) and (C.2.8), it is clear that

M b M b

^ 2  h ( k ) s ( t - k ) =  2 2  “  *)eMfc_D)
fc=-Ma k=-Ma

This shows tha t the term ePu k̂~D  ̂ can be dropped from Eq. (6.3.3).
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