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Abstract

Management of water quality is generally based on physically-based equations or 
hypotheses describing the behaviour of water bodies. In recent years models built on the 
basis of the availability of larger amounts of collected data are gaining popularity. This 
modelling approach can be called data driven modelling. Observational data represent 
specific knowledge, whereas a hypothesis represents a generalization of this knowledge 
that implies and characterizes all such observational data.

Traditionally deterministic numerical models have been used for predicting flow and water 
quality processes in inland and coastal basins. These models generally take a long time to 
run and cannot be used as on-line decision support tools, thereby enabling imminent 
threats to public health risk and flooding etc. to be predicted. In contrast, Data driven 
models are data intensive and there are some limitations in this approach. The 
extrapolation capability of data driven methods are a matter of conjecture. Furthermore, the 
extensive data required for building a data driven model can be time and resource 
consuming or for the case predicting the impact of a future development then the data is 
unlikely to exist.

The main objective of the study was to develop an integrated approach for rapid prediction 
of bathing water quality in estuarine and coastal waters. Faecal Coliforms (FC) were used 
as a water quality indicator and two of the most popular data mining techniques, namely, 
Genetic Programming (GP) and Artificial Neural Networks (ANNs) were used to predict the 
FC levels in a pilot basin. In order to provide enough data for training and testing the neural 
networks, a calibrated hydrodynamic and water quality model was used to generate input 
data for the neural networks. A novel non-linear data analysis technique, called the Gamma 
Test, was used to determine the data noise level and the number of data points required for 
developing smooth neural network models. Details are given of the data driven models, 
numerical models and the Gamma Test. Details are also given of a series experiments 
being undertaken to test data driven model performance for a different number of input 
parameters and time lags. The response time of the receiving water quality to the input 
boundary conditions obtained from the hydrodynamic model has been shown to be a useful 
knowledge for developing accurate and efficient neural networks.

It is known that a natural phenomenon like bacterial decay is affected by a whole host of 
parameters which can not be captured accurately using solely the deterministic models. 
Therefore, the data-driven approach has been investigated using field survey data collected 
in Cardiff Bay to investigate the relationship between bacterial decay and other parameters. 
Both of the GP and ANN models gave similar, if not better, predictions of the field data in 
comparison with the deterministic model, with the added benefit of almost instant prediction 
of the bacterial levels for this recreational water body.

The models have also been investigated using idealised and controlled laboratory data for 
the velocity distributions along compound channel reaches with idealised rods have located 
on the floodplain to replicate large vegetation (such as mangrove trees).

Keywords: Data-driven Model, Numerical models, Genetic Programming, Artificial neural 
networks, recreational water, vegetation, winGamma
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Chapter 1: Introduction

CHAPTER 1 
In tr o d u c tio n

1.1 Introduction

Today's major challenges for hydraulics engineers and water managers include: 

securing water for a varying degree of usage, protecting vital aquatic ecosystems and 

dealing with variability and uncertainty of water in space and time. The importance of 

clean, safe recreational bathing waters can not be any more overstated, with increasing 

numbers of people participating in recreational activities. Whether the water bodies are  

used for sport or relaxation, health or pleasure, there is something about the 

enjoyment, relaxation and sense of well-being derived from the experience of 

recreational water activities. Maintaining safe recreational waters requires a concerted 

effort from all stakeholders. From government regulatory authorities at all levels, to 

local businesses and industry, to beach managers, community members and 

recreational water users - all of these stakeholders have a role to play in helping keep 

the beaches clean and bathing waters safe.

Under the risk management approach to safe recreational water quality, an inspection 

of the bathing water area is first used to identify all of the potential sources of risk to 

human health and safety. Appropriate procedures or management actions are then 

introduced as barriers to reduce these risks. This concept is similar to the Multiple 

Barrier Approach (USEPA 2003) used in the management of safe drinking water 

supplies. Using this approach, compliance with the Guidelines becomes but one key 

piece of a larger picture of preventative risk management. For example, if an inspection 

of the bathing area has determined that the water quality results are poor following 

rainstorms, one action might be to restrict bather access immediately following periods 

of heavy rainfall. Knowing what the risks are, and how to manage them, is an important 

way to help ensure that recreational waters remain open for everyone to enjoy.

1



Chapter 1: Introduction

In recent years the health aspects of the recreational use of the aquatic environment 

has attracted increasing attention from members of the public, concerned professionals 

and regulatory agencies, and there has been increasing pressure to update legislation 

using improved epidemiological knowledge and more sophisticated managerial 

methods. The World Health Organisation (WHO) recognised the limitations of 

regulatory regimes for the microbiological quality of recreational water, based mainly on 

a percentage compliance with faecal indicator counts. For such a regulatory practice, 

management systems can only be retrospective, with actions taking place after 

humans have been exposed to the hazard. Additionally, waters are classified as safe 

or unsafe, where, in reality, there is a gradient of increasing severity, variety and 

frequency of health effects with increasing sewage pollution. As a result the W HO  

proposed new guidelines, known as the ‘Annapolis Protocol’ (WHO 1999), which looks 

towards an improved approach for the control of recreational water environments that 

better reflect health risks and provide enhanced scope for effective management 

intervention. The European Union have decided that bathing water quality should be 

monitored and tested in order to protect bathers from health risks and to preserve the 

aquatic environment from pollution. As needed by the guidelines, microbiological tests 

take place throughout the bathing season. However, there will always be time lapses 

between the sample being taken and the microbiological quality being known. At sites 

where water quality is known to be variable, or affected by short term water 

deterioration, this does little to inform the situation on any given day. Hence the current 

‘predict and protect’ approach is being promoted as a means of recreational bathing 

water management. This ‘predict and protect’ approach is an important development 

from the historically more reactive approach for EU designated bathing waters, where 

results are posted retrospectively and as they become available.

1.2 Current practices of Hydro-environmental Modelling

Traditionally, Scientists and engineers build mathematical/numerical models in order to 

analyse and better understand the behaviour of real world systems. A mathematical 

model of a natural system can be derived in a deductive manner, using the laws of 

physics which describe the conservation of mass, momentum and energy. The 

behaviour of a more general aquatic system can be simulated to a high degree of 

accuracy in terms of other kinds of mathematical representation, involving the most 

important biological and chemical processes occurring in the natural system.
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Establishing an acceptable model of an observed system is a challenging task that 

occupies a major portion of the mathematical modeller’s time. It involves observations 

and measurements of the system’s behaviour under various conditions, selecting a set 

of variables that are important for modelling, and formulating the model itself. The first 

milestone in the process of modelling a real-world system is the choice of the modelling 

formalism. Differential equations are one of the most widely accepted formalisms for 

modelling of dynamic systems, i.e., systems that change their state over time 

(Gershenfeld, 1999).

The next stage of the problem is concerned with transforming this point or interval 

representation into a distributed representation over an entire solution domain and for 

all time. Even for the simple mathematical representation of natural systems, bounded 

by a set of assumptions, the resulting expressions generally become almost impossible 

to be solved analytically, especially when the domain and the boundary conditions 

become complicated. Hence, the mathematical equations are represented in algebraic 

form to be solved using various numerical techniques. This has led to the extensive, 

and now almost universal, use of numerical methods to solve the governing equation, 

where arbitrary points and integral descriptions are extended to finite spatial 

descriptions. In doing so the differential terms in the governing equation are generally 

replaced by finite difference, finite element or finite volume representations of the 

various terms.

In managing bacterial water quality, individual pathogens are generally difficult and 

expensive to measure, hence for water quality studies it is therefore common practice 

to measure and/or model the levels of related indicator organisms. Historically 

deterministic numerical models have been used for predicting flow and water quality 

processes in coastal aquatic basins, with these models solving numerically the 

equations of mass (fluid and solute constituents) and momentum conservation. One 

such model is the DIVAST (Depth Integrated Velocities And Solute Transport) model 

as developed by Falconer (1976) and Lin and Falconer (1997). This model has been 

used in the current study.
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1.3 Problems Associated with Current Practice

The practice of numerical simulation of flows and other processes occurring in water 

has now matured into an established and efficient part of hydraulics. Numerical models 

are increasingly reliable in simulating the natural aquatic environment. Such models 

assist water managers in understanding the flow regime under certain condition to work 

out the affects of any future development, such as how the water quality downstream 

would be affected due to the development of a new housing estate etc. Therefore the 

need for numerical modelling in water resources management is unquestionable. At the 

same time, however, the models themselves often become very much extended. In 

many situations, given the divergence between the response-time requirements and 

the computational-time requirements of numerical models, these models cannot be 

used as on-line decision support tools. As mentioned in previous chapters, following 

the ‘predict and protect’ philosophy recreational water managers are in need of warning 

citizens in advance of any potential short term water quality deterioration.

The main motivation for this study therefore lies in overcoming the long computational 

times usually required for physically based computational or numerical models, 

particularly for long term management and/or planning. In most practical case studies 

the model requires a very large number of grid points to represent the problem domain 

with sufficient resolution to output better and more accurate simulations. Even if current 

day increased processing computer speeds are taken into account, such numerical 

models still require too much computational time with respect to real time forecasting. 

As a result such models in themselves are not ideal for providing assistance in making 

real time beach management decisions, such as in response to occurring rainfall radar 

information, or increased pollution loads upstream, and thereby aiding in predicting 

imminent potential threats to public health.

An alternative modelling approach, so called ‘data driven’ modelling, can be easily put 

in place with very little human intervention would be able to flag up any unusual event 

associated with expected high level of bacterial loads, posing a potential threat of 

health risks. Once trained, the model becomes a parametric description of the function 

being approximated, which can then be used for future predictions within a significantly
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lower time limit. As a result these techniques can be used for online decision making 

for practical scenarios, such as recreational water management.

1.4 Data Driven Modelling: an Alternative Approach

As opposed to the current practice of modelling based on a description of the physical 

or biochemical behaviour, the alternative approach is based on the analysis of all the 

data characterising the system under study. A model can be defined on the basis of 

connections between the system state variables (e.g. input, output and internal 

variables) with a limited knowledge of the details of the physical behaviour of the 

system. Such models are generally called data driven models. The emergence of new  

data sources and data analysis methods is allowing a new approach to the 

development and use of models for decision support and various management 

practices. Data driven modelling describes a process of model-building wherein models 

are created that fit the dynamics of the data rather than assuming a priori relationships 

among variables and their influence. Although more complex than their predecessors, 

the capabilities of these new data driven decision-support models make them 

potentially very powerful tools for prediction, function approximation and improving 

understanding of complex real world dynamics, while suggesting improved and more 

rapid decision alternatives.

During the last decade, due to the increasing availability of data, such models have 

become quite popular. The most popular technique by far is Artificial Neural Networks 

(ANNs) (Solomanite, 2002), but they are not the only technique. There are a wide 

range of machine learning techniques, such as decision trees, Bayesian methods 

fuzzy-rule based systems, support vector machines (SVM) and evolutionary algorithms, 

with all been successfully applied to model different civil engineering systems. In recent 

years data-driven models have been increasingly used for various types of water 

management studies. In this study, details are presented of the application of two 

popular data-driven modelling types, namely Artificial Neural Networks (ANNs) and 

Genetic Programming (GP), to predict the Faecal Coliform levels in estuarine and 

coastal waters and velocity distribution of an idealised flood channel.
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1.5 Integrated Modelling Approach

Data driven models are data intensive and the performance of these models very much 

depends on the quality of the data. Sufficient quality data are often a stumbling block 

for this approach, particularly as high frequency data collection over a prolonged period 

is a rarity in water quality monitoring as most the survey campaigns are either short 

term, with a high frequency, or carried out for longer terms with a low frequency. A well 

calibrated numerical model can provide as much data as needed for data driven model 

development. Another limitation of the data driven approach is the extrapolation ability, 

which is thought to be not common for the data driven models (Hettiarachchi et al. 

2005; Yin et al. 2003, Drecourt and Madsen, 2001, Minns and Hall, 1996). Therefore, if 

an extreme event is not presented in the training process of data driven models, then 

the model prediction for such a case would be less than reliable. It is not possible to 

make sure that events like 1 in 100 years occurrences can be included in the field data 

unless these situations really take place. The numerical models can simulate the affect 

of all extremities for a given water body, hence the model can be trained for all 

potential incidents. More importantly, the data on which the data driven models should 

be developed might not be sufficient or even exist as in cases when a future 

development is proposed such as construction of a new housing estate or land 

reclamation in coastal areas. Numerical models are flexible enough to easily 

accommodate all changes that might take place in the future. Therefore, it is desirable 

to integrate the benefits and positive aspects of both modelling approaches in any 

decision support system. The main objective of the study was therefore to develop an 

integrated approach for rapid prediction of bathing water quality in a large estuary, with 

the main water quality indicator being enteric bacteria.

1.6 Water Quality Indicators -  Enteric Bacteria

The measurement of the abundance of enteric bacteria (i.e. total coliform, faecal 

coliform and faecal streptococci) is one of the most commonly used methods to 

establish the quality of natural coastal and estuarine waters. These measured data 

very much form a part of coastal water quality management, as monitoring the enteric 

bacteria counts in the coastal environment is one of the key aspects of the EU Bathing 

Water Directive, and is especially important as a standard parameter for the usage of 

water against human pathogens in recreational waters.
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Research on the survival of enteric bacteria in the water environment has received 

considerable attention in recent years, primarily as the main indicator of water quality. 

Furthermore, the use of such data can be used to discover new relationships from the 

measured data, which would enable an on-line predictive model to be provided which 

would enable water managers to make day to day decisions leading to more effective 

control of water quality in coastal zones.

In past studies most effort has been concentrated on field investigations, laboratory 

studies or deterministic numerical modelling, but only limited studies have focused on 

deploying and developing data driven modelling techniques. Hence this study 

dedicated particular emphasis on applying data driven techniques for two different sets 

of problems, namely the water quality predictions in estuarine waters and velocity 

predictions in a vegetated compound channel.

1.7 Flow in Compound Channels with Vegetated Floodplains

Many rivers consist of a channel with adjacent floodplains. The bottom of the floodplain 

is generally higher and rougher than the bottom of the main channel, so that during 

flood events the river consists of a relatively deep channel and shallow floodplains, 

giving a so-called compound channel. Understanding the hydraulics of flow in a 

compound channel with vegetated floodplains is very important for determining the 

stage-discharge curve and for supporting the management of fluvial processes. Flow in 

a compound channel differs from that in a simple channel because at high discharges 

the water in a compound channel flows in an out-of-bank manner onto the adjoining 

floodplain. Because the shape of the cross section varies and the roughness of the 

main channel and the floodplains is very often different, the flow structure of a 

compound channel is usually very complex. Momentum transfer between the main 

channel and the floodplain generally decreases the discharge in the main channel, 

increases the discharge on the floodplain, and decreases the channel’s total discharge 

capacity. This has been called the “kinematic effect” (Yang et al, 2007).

Vegetation generally increases the flow resistance, changes the velocity distribution, 

and affects the discharge capacity and sediment transport rate in any riverine system. 

The experimental results of Huang et al. (1999, 2002) showed that the velocity in the
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main channel increased significantly after the floodplains were covered with vegetation. 

There are numerous research studies reported in the literature that are dedicated to the 

better understanding of the complex flow regime in such a complex ecosystem and 

research in this field is still very much ongoing. In this study, these new data driven 

modelling techniques have been applied to the complex and poorly understood 

phenomena of flow through idealised vegetation. The ability to predict, with improved 

accuracy, velocities within wetlands and other vegetated areas would be advantageous 

as these regions are increasingly being recognised for their natural flood alleviation 

properties. In this study, laboratory data collected in a flume, with steady flows over a  

deep channel and with relatively shallow vegetated floodplains were used to induce the 

formulation of expressions using a data driven discovery technique, namely genetic 

programming (GP). The Artificial Neural Network was also used in the same context, 

albeit purely as a velocity prediction tool.

1.8 Aim and Objectives of the Study

The primary aim of this study and thesis has been to investigate the use of 

conventional numerical models with the new paradigm of data driven modelling as part 

of a proposed integrated modelling practice. GP and ANNs were used to develop 

alternative and rapid simulation tools for predicting Faecal Coliform levels, which can 

offer advantages over traditional numerical models by providing decision support tools 

for day-to-day recreational water management. However, in order to investigate the 

capability of data driven models, prediction performances based purely on natural or 

laboratory data were undertaken to compare the scopes of GP and ANNs for water 

quality predictions. Such models were also studied using the deterministic models to 

provide data for training and analysing the data driven models.

In order to achieve these aims the following objectives have been paramount:

• Development of data driven models using synthetic data, field data and

laboratory data and assessing the range of variability in performance.

• Use of existing numerical models as data generators for scenarios where

insufficient or no field data are available to develop a data driven modelling tool.

The numerical model needed to be refined in order to incorporate decay
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parameters, to enable these parameters to be included in the development of 

the data driven models.

•  Use of numerical models to analyse the flow field and other hydrodynamic

characteristics in order to facilitate better performance of the data driven 

models.

•  Integrating conventional numerical modelling techniques with advanced hydro­

informatics techniques to offer a more practical approach to online decision 

making, especially when there are not enough data to develop a data driven 

model and not enough time to run a deterministic numerical model.

•  Use of advanced nonlinear data analysis tools for pre-processing and finding

the sensitivity of results to various input parameters.

•  Application of GP and ANN modelling tools to predict the water quality indicator 

levels at two different sites, namely the Ribble Estuary and Cardiff Bay.

• Application of GP and ANN modelling tools for predicting velocity distributions in 

an idealised compound channel with vegetated flood plains.

•  Comparisons of the performance of GP and ANN predictive tools for practical 

problems relating to water quality management.

1.9 Outline of the Thesis

The details of the study reported herein can be summarised as follows:

Chapter 1 presents a brief description of the needs of an alternative predictive tool in 

order to develop and apply the ‘predict and protect’ concept to bathing and recreational 

water quality management.

Chapter 2 describes the occurrence of pathogens in the environment, the concept of 

indicator organisms and discusses current legislation on water quality in further detail. 

A comprehensive literature review is then given, primarily focusing on investigating 

bacterial die-off factors in surface waters. The survey of peer reviewed papers and 

technical reports has been analysed to investigate the relationship between these 

variables and faecal indicator organism decay rates. This has led to the development 

of a series of functions which were applied to assist in the determination of suitable T90 

values for use in hydro-environmental deterministic models.
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Chapter 3 explains the governing equations of fluid flow and contaminant transport. 

These include the mass and momentum conservation equations in one-, two- and 

three-dimensional form. The advective-diffusion equation for solute transport is also 

explained. The important terms of the respective equations are briefly discussed.

Chapter 4 introduces two data driven modelling paradigms, namely: Genetic 

Programming (GP), based on the principles of evolutionary computing, and Artificial 

Neural Networks (ANNs), based on learning techniques similar to the human brain. 

The fundamentals of genetic programming have then been discussed, along with some 

currently popular artificial neural network variants.

Chapter 5 describes the model development using ANNs and GP to predict the faecal 

coliform levels in the Ribble Estuary. In order to provide sufficient data for training and 

testing the neural networks, a calibrated hydrodynamic and water quality model was 

used to generate input data for the neural networks. The hydrodynamic model has 

been refined to incorporate more parameters for bacterial decay. A novel non-linear 

data analysis technique, called the Gamma Test, was used to determine the data noise 

level and the number of data points required for developing smooth model results using 

the aforementioned techniques.

Chapter 6 provides details of the application of ANNs and GPs to the prediction of 

faecal coliform level predictions in Cardiff Bay, a freshwater body. The data used for 

the model development in this study were collected from routine maintenance surveys, 

undertaken by Cardiff Harbour Authority. The data for this study was also analysed 

using the Gamma Test.

Chapter 7 provides details of the velocity predictions in a compound channel with 

vegetated floodplains, using both GP and ANN techniques to analyse the data, 

acquired in the Hyder Hydraulics Laboratory. The models were then tested to check 

their accuracy of predicting velocity distributions across the channel for a range of 

hydrodynamic conditions.

Chapter 8 provides a summary of the studies and the main conclusions of the findings 

from this research programme, followed by recommendations for further study.
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CHAPTER 2
W a ter  Q u a lity  a n d  H ealth  E ffects

2.1 Pathogens

Micro-organisms can be found in both aquatic and terrestrial environments, and most 

perform important functions within their respective environments. Ecosystems rely on micro­

organism decomposers, which convert organic matter to nutrients that can then be used by 

plants and animals higher in the food chain. Humans and animals have micro-organisms 

resident in their digestive tracts and rely on them for digestion. These micro-organisms are 

then excreted in large numbers in faecal matter. A small percentage of these micro­

organisms have been linked to disease and often death. These disease causing micro­

organisms are known as pathogen.

Waterborne pathogens are disease-causing organisms, micro-organisms, viruses or 

protozoans that can be transmitted to people when they consume or come into contact with 

untreated or inadequately treated water. Generally these pathogens are present in human 

and animal faeces, and are deposited directly into water bodies by surface water flow and/or 

sub-surface water flow.

Urban pathogens are transported by storm water runoff, combined sewer overflows in many 

parts of the world and directly from wastewater treatment plants. Pathogenic micro­

organisms also originate from many animal species left on watersheds including wildlife, 

pets and agricultural animals. Rosen (2000) identified the following characteristics of 

waterborne pathogens of concern:

a) The organisms are shed into the environment in high numbers, or they are 

highly infectious to humans at low doses.

b) The organisms can survive and remain infectious in the environment for long 

periods, or they are highly resistant to water treatment
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c) Some kinds of bacterial pathogens can multiply outside of a host under 

favourable environmental conditions.

Human

Crops AerosolsShelfish

Sewage

Irrigation

Recreation Water Supply

Groundwater

Land Runoff Solid Waste

Rivers and lakesOceans and estuaries

Excreta from Humans

Figure 2.1: Routes of pathogens transmission

Once in a water body, pathogens infect humans through contaminated fish, selfish, skin 

contact, or ingestion of water. Figure 2.1, adapted from Bosch (1998) shows the pathogenic 

pathways to human.

A pathogen may be a bacteria protozoa, virus or fungi. The pathogens that are of most 

interest to aquatic related illnesses can be grouped into three subcategories -  bacteria, 

protozoa, and viruses.

Bacteria are microscopic, unicellular organisms that reproduce by binary fission. They exist 

either as free living organisms or as parasites. They play a fundamental role in the 

decomposition and stabilisation of organic mater and in biological sewage treatment 

processes. Not all bacteria are pathogenic, but pathogenic bacteria that can be found in 

surface waters are often classified as coming from warm-blooded animals. The USEPA  

(2002) assessed bacteria as one of the leading causes of impairment of surface waters. 

With increasing demands on water resources, the potential for contamination of water by

12



Chapter 2: W ater Quality and Health Effect

pathogenic enteric bacteria is likely to rise world-wide resulting in an increase in the 

outbreaks of waterborne disease.

Protozoa are also unicellular organisms that reproduce by binary fission. Pathogenic 

protozoans exist in the environment as cysts, protecting themselves from harsh conditions 

such as temperature and salinity. Once the cysts are ingested they hatch, grow and multiply, 

infecting the host with the associated disease. Ingestion of only a few Protozoa by human 

causes disease, as they reproduce rapidly inside a host organism.

Viruses are sub-microscopic infectious agents that require a host to survive. The virus has a 

nucleic acid core that is protected by a protein or lipoprotein shell that can determine what 

surface to which it will attach itself. Once inside the host the virus reproduces, manifesting 

the associated diseases. Viruses are excreted in the faeces of infected individuals. Enteric 

viruses can cause major threats to human health.

2.2 Health Effects

Rapid population growth and urban development have resulted in regional domestic sewage 

and urban runoff problems and beach contamination has become the focus of public safety 

concerns. Recreational waters generally contain a mixture of pathogenic and non- 

pathogenic micro-organisms. These micro-organisms may be derived from sewage 

effluents, the recreational population using the water (from defecation and/or shedding), 

livestock (cattle, sheep, etc.), industrial processes, farming activities, domestic animals 

(such as dogs) and wildlife. In addition, recreational waters may also contain free-living 

pathogenic micro-organisms. These sources can include pathogenic organisms that cause 

gastrointestinal infections following ingestion or infections of the upper respiratory tract, 

ears, eyes, nasal cavity and skin.

Since the 1950s epidemiological studies have investigated the relationship between health 

risk and swimming. The risk of the health problems associated with swimming is related to 

the micro-biological quality of the water and it increases with increasing pollution levels. 

Fleisher et al. (1996) reviewed 11 previously published major studies and found an 

increased risk of gastroenteritis among bathers relative to non bathers. Corbett et al. (1993) 

reported that swimmers are almost twice as likely as non-swimmers to report symptoms.
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Pruss (1998) presented Figure 2.2 which is adapted and updated from Pike et al. (1991) to 

show the predicted risk of illness to swimmers from adverse water quality. Swimming in 

contaminated marine and fresh recreational waters may result in a broad spectrum of 

illnesses, including: infections of the eyes, ears, skins, gastro-enteritis and upper respiratory 

tract diseases, although the definitions of these ailments and the associated risks have 

varied widely among studies.
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Figure 2.2: Predicted risks of illness in swimmers against bacterial count in marine water
(Pruss, 1998)

Available evidence suggests that the most frequent adverse health outcome associated with 

exposure to faecally contaminated recreational water is enteric illness, such as self-limiting 

gastroenteritis, which may often be of short duration and may not be formally recorded. 

Thus the infections and illnesses due to recreational water contact are difficult to detect 

through routine surveillance systems. Even where the illness may be more severe, it may 

still be difficult to attribute the illness to water exposure. Targeted epidemiological studies, 

however, have shown a number of adverse health outcomes (including gastrointestinal and 

respiratory infections) to be associated with faecally polluted recreational waters. The 

transmission of pathogens that can cause gastroenteritis is biologically plausible and is 

analogous to waterborne disease transmission in drinking-water, which is well documented.
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This can result in a significant burden of disease and economic loss. The number of micro­

organisms (dose) that may cause infection or disease depends upon the specific pathogen, 

the form in which it is encountered, the conditions of exposure and the host’s susceptibility 

and immune status. For viral and parasitic protozoan illnesses, this dose might be very few 

viable infectious units (Okhuysen et al., 1999). In reality, the body rarely experiences a 

single isolated encounter with a pathogen, and the effects of multiple and simultaneous 

pathogenic exposure is poorly understood (Esrey et al., 1985). The types and numbers of 

pathogens in sewage will differ depending on the incidence of disease and the carrier states 

in the contributing human and animal populations, and the seasonality of infections. Hence, 

numbers will vary greatly across different parts of the world and times of year.

Fleisher et al. (1998) conducted a study during the summers of 1989-1992 at four separate 

UK bathing locations where the water quality is judged acceptable under current USEPA  

and EU criteria. The result showed bathers to be at increased risk of gastroenteritis, acute 

febrile respiratory illness and ear and eye infections relative non bathers. They found the 

average duration of illness ranged from approximately 4 to 8 days. The percentage of study 

participants seeking medical treatment ranged from 4.2% to 22.2%, while the percentage 

reporting the loss of at least one day of normal daily activity ranged from 7.0% to 25.9%. 

The overall percentage of each illness that could be directly attributed to exposure to marine 

waters, contaminated with domestic sewage, ranged from 34.5% (for gastroenteritis) to 

65.8% (for ear infections).

Some of these studies have suggested that the health risk also exists in those bathing 

waters meeting the bacteriological criteria of the EU 76/160 Directive and other guidelines. 

Fleisher et al. (1998) also reported a large burden of illness occurring in marine waters 

meeting both the current USEPA and EU criterion governing marine bathing waters. Pruss 

(1998) reviewed 22 studies and found that increased risk of gastro-intestinal symptoms were 

reported in water quality values ranging from only a few counts/100ml to about 30 indicator 

counts/100ml. These values are low compared to the water quality frequently encountered 

in coastal recreational waters. These observations question the appropriateness of such 

criteria and if these results are confirmed in future studies; they should be taken into account 

in establishing recommended levels for bathing water compliance. However, the verification 

of accuracy of current guidelines is beyond the scope of the current study.
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2.3 Indicators Organisms

Indicators organisms are micro-organisms that denote faecal pollution and are detected at 

high numbers in polluted natural waters whenever pathogens are also present. The routine 

assessment of the sanitary quality of recreational waters is based on the analysis of these 

organisms.

The detection of pathogenic micro-organisms from a water sample is desirable to test the 

microbiological criterion for water quality, although many waterborne pathogens are difficult 

to detect in water samples, due to the fact that their presence is intermittent and at low 

levels. Also an optimal methodology for specific pathogen recovery may not yet have been 

developed.

In 1983, Cabelli listed several reasons why the use of indicators was a sound practice. 

These reasons remain sound today:

a) A large number of pathogenic bacteria and viruses are potentially present in 

municipal sewage, and each has its own probability of illness associated with a given 

dose;

b) Routine monitoring for each of the pathogens would be a Herculean task;

c) Enumeration methods for some of the more important pathogens are

unavailable (e.g., hepatitis, rotaviruses and parvo-like viruses), and for the rest are 

difficult;

d) Pathogen density data are difficult to interpret because the methodology 

generally is imprecise and inaccurate and there are too little data available of dose- 

response;

e) On theoretical grounds, the intent is not to index the presence of the

pathogen but rather its potential to be there in sufficient numbers to cause 

unacceptable health effects.

Snedecor (2003) described the criteria for an acceptable indicator organism as below

a) it must be part of the faecal-oral route
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b) be present in the same or higher numbers as the target organism,

c) exhibit similar survival characteristics, and

d) be easily detectable

Classically, the indicators most widely used are total coliforms, faecal coliforms and faecal 

streptococci.

The coliform bacteria group is found in the intestines of warm-blooded animals. The 

presence of these bacteria is an indication that pathogens from untreated or partially treated 

sewage or contaminated runoff may be found in the relevant aquatic system. The most 

common types of microbial indicators are described below:-

2.3.1 Total Coliforms

The total coliform group is a general group encompassing all coliform bacteria. The group is 

easier to test for, but does not make the distinction between coliforms coming from faecal 

matter of warm-blooded animal vis-a-vis those naturally present in the environment.

2.3.2 Faecal Coliforms

Faecal coliforms bacteria are a sub-group of total coliform bacteria. They are more closely 

related to faecal matter and do not readily replicate in the water environment. (DWAF, 1995) 

The presence of faecal pollution by warm-blooded animals indicates the possible presence 

of pathogens responsible for infections diseases.

A set volume of the sampled water is cultured on an m-FC agar at 44.5°C. Faecal coliform 

bacteria will produce blue colonies within 20 -  24 hours of incubation. The colonies are then 

counted and the results are given as colony counts per 100ml or colony forming units (CFU) 

per 100ml. (DWAF, 1996)

2.3.3 Escherichia coli (E. coli)

Escherichia coli (E. coli) is a member of the faecal coliform bacteria group. E.coli is used as 

an indicator because it is highly specific to faecal contamination from humans and warm­

blooded animals and because these bacteria cannot normally replicate in any natural water
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environment. (DWAF, 1995) The presence of faecal pollution by warm-blooded animals 

indicates the possible presence of pathogens responsible for infectious diseases.

As with faecal coliform bacteria, E. coli will produce blue colonies on an m-FC agar within 20 

-  24 hours of incubation at 44.5°C however only E.coli bacteria will test indole-positive at 

44.5°C, (DWAF, 1996) E. coli are enumerated as colony counts per 100 ml or CFU per 

100ml.

A few examples of bacterial pathogens whose presence are indicated by E. coli are: 

Salmonella spp., Shigella spp., Vibrio cholerae and pathogenic E.coli. These bacteria can 

cause diseases such as gastroenteritis, dysentery, cholera and typhoid fever. (DWAF, 

1996).

2.3.4 Enterococci: Faecal Streptococci

Enterococci (faecal streptococci) bacteria are used to indicate the presence of faecal 

pollution by warm-blooded animals, which could contain pathogens responsible for 

infectious diseases. They are the preferred indicators of faecal pollution in the marine 

environment, as they survive longer than coliform bacteria in the water columns and the 

sediments (DWAF, 1995).

The bacteria produce typical reddish colonies on an m-enterococcus agar after 48 hours 

incubation at 35°C (DWAF, 1996). These colonies are counted and the results are given as 

the number of colony counts per 100ml or CFU per 100ml.

A few examples of bacterial pathogens for which streptococci is an indicator of are: 

Salmonella spp., Shigella spp., Vibrio cholerae and pathogenic E. coli. These bacteria can 

cause diseases such as: gastroenteritis, dysentery, cholera and typhoid fever. (DWAF, 

1996).

2.4 Which is the Best Indicator?

In both marine and freshwater studies of the impact of faecal pollution on the health of 

recreational water users, several faecal index bacteria, including faecal streptococci and
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intestinal enterococci, have been used for describing water quality. These bacteria are not 

suggested as the causative agents of illnesses in swimmers, but appear to behave similarly 

to the actual faecally derived pathogens (Pruss, 1998).

From time to time it is suggested that the pathogens in the water column should be 

measured directly rather than measuring indicators which may not directly indicate or 

quantify the presence of pathogenic bacteria and viruses. This issue has probably existed 

since the time when the use of indicator organisms was first introduced.

Prieto et al. (2001) reported that the count of total coliforms is the best predictor as they 

observed a relationship between gastrointestinal and skin symptoms and the degree of 

pollution, by total pollution while faecal coliform and staphylococci were reported to be more 

suitable by some other investigators. Fleisher et al. (1996) found that faecal streptococci 

exposure was predictive of acute febrile respiratory illness, while faecal coliform exposure 

was more relevant for ear ailments. Pruss (1998) suggested that enterococci/faecal 

streptococci for both marine and freshwater and E. Coli for freshwater correlates best with 

the health outcomes. However, Davis et al (1977) suggested that the total coliform group did 

not constitute a reliable source of information as to the pollutant content or condition of a 

water source. Reliance on the coliform group created serious problems both in measuring 

environmental quality and in calculating risks to public health (Saylor et al 1975). Borrego et 

al (1987) observed that total coliform displays different relationships with salmonella in 

marine, fresh and estuarine zones and hence concluded that the absence of total coliform in 

fresh and estuarine water indicates that Salmonella is also absent, but this correlation is not 

valid in marine waters. In fact detection of Salmonella in waters where there is no total 

coliform is also reported by Dutka (1973), Fugate et al. (1975) and Mack (1977).

Faecal coliforms have been considered indicators of faecal pollution of waters due to their 

presence in faeces, their relation with the presence of enteric pathogens such as 

Salmonella, and because they are present in higher concentrations in polluted waters than 

pathogens (Dufour, 1977). Several authors have reported loss of recovery of faecal 

coliforms in seawater due to microbial die-off and to entry of the micro organisms into a 

viable, but non-culturable, state (Roszak and Colwell, 1987; Barcina et al., 1997). However, 

it has been suggested that these processes do not invalidate the use of faecal coliforms as 

indicators of a recent pollution in such environments (Elliot and Colwell, 1985).
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Faecal streptococci are considered by many authors to be a good indicator of Faecal 

pollution because they are more resistant than coliforms to environmental stress (Borrego et 

al., 1983; Philipp, 1991; Rees, 1993). Despite the opinion that faecal streptococci are rarely 

found in unpolluted environments (Rees, 1993), several studies seem to demonstrate that 

they can be found in other habitats (Geldreich and Kenner, 1969)

Dioniso et al (2002) found that for moderately-high levels of faecal pollution the best and 

most reliable indicators were faecal coliforms and E. coli, while for high concentration of 

faecal pollution the most appropriate indicators to detect the presence of pathogenic micro­

organisms were faecal streptococci and coliphages. The unreliability of traditional bacterial 

indicators led some authors to suggest that coliphages might serve as indicators for faecal 

pollution, or for water potability testing. Coliphages have also been included in the new 

promulgation of the EU guidelines (1984). Several authors have suggested that coliphages 

may be good indicators for both the viral and faecal pollution of the waters (Borrego et al., 

1987, 1990; Morinigo et al., 1992), on the basis of their viral nature and on their higher 

resistance to physicochemical factors in water.

However, there are still many questions concerning the effectiveness of the way in which 

water quality is measured and monitored; a number of environmental and physical factors 

may influence the usefulness of faecal bacteria as indicators.

Borrego et al. (1987) remained convinced that the absence of indicator species does not 

guarantee absolutely clean water. There are a host of possible reasons for indicator 

presence and pathogen absence or vice versa (Ashbolt et al., 2001). No single indicator or 

approach is likely to represent all the facets and issues associated with contamination of 

waterways with faecal matter.

2.5 Measurement of Faecal Coliform

Bacteria are single-celled organisms that can only be seen with the aid of a very powerful 

microscope. However, coliform bacteria form colonies as they multiply, which may grow 

large enough to be seen. By growing and counting colonies of coliform bacteria from a 

sample of water, it is possible to determine approximately how many bacteria were present 

originally.
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There are several ways coliform bacteria are grown and measured. Methods commonly 

used include the most probable number (MPN) method and the membrane filter (MF) 

method.

2.5.1 Most Probable Number Method (MPN)

In the MPN method, a "presumptive test" is performed first. A series of fermentation tubes 

that contain lauryl tryptose broth are inoculated with the water sample and incubated for 24 

hours at 35°C. Fermentation tubes are arranged in 3 or more rows, with 5 or 10 tubes per 

row, and with varying dilutions of the samples in the tubes. The fermentation tube contains 

an inverted tube to trap gases that are produced by the coliform bacteria. After 24 hours, the 

fermentation tube is examined for gas production. If there is no gas production, the samples 

are incubated for another 24 hours and re-examined. If gas production is observed at the 

end of 48 hours, then the presumptive test is positive and coliform bacteria are present in 

the sample. A "confirmed test" is then performed to determine whether or not faecal coliform 

bacteria are present. For the confirmed test, some of the contents of the fermentation tube 

are transferred with a sterile loop to a fermentation tube containing another broth. The 

sample is incubated in a water bath at 44 .5C  for 24 hours. Gas production in the 

fermentation tube after 24 hours is considered a positive reaction, indicating faecal coliform. 

Based on which dilutions showed positive for coliform and/or faecal coliform, a table of most 

probable numbers is used to estimate the coliform content of the sample. The results are 

reported as most probable number (MPN) of coliform per 100 ml (APHA, 1998).

2.5.2 Membrane Filter Method (MF).

The MF method is more rapid than the MPN method, but the results are not as reliable for 

samples that contain many non-coliform bacteria, high turbidity, and/or toxic substances 

such as metals or phenols. The water sample is filtered through a sterile membrane filter. 

The filter is transferred to a sterile petri dish and placed on a nutrient pad saturated with 

broth. The plates are inverted, placed in watertight plastic bags, and incubated in a water 

bath at 44.5°C for 24 hours. Colonies produced by faecal coliform bacteria are blue, and are 

counted using a microscope or magnifying lens. The faecal coliform density is recorded as 

the number of organisms per 100 ml. Sometimes the unit of colony producing units per 100 

millilitres of water (CPU/100 ml) is used; this is equal to the number of organisms per 100 

ml.
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2.6 Classification of Recreational Water Use

The W HO (2000) classified the degree of water contacts as the following groups: Whole- 

body contact, Incidental contact and No contact recreation. The overall basis of risk 

reduction strategy depends on broad classification of recreational activities. The degree of 

water contact directly influences the degree of contact with infectious and toxic agents and 

physical hazards found in water and therefore the likelihood of being injured or contracting 

illness.

2.6.1 Whole-body Contact Recreation

Whole-body contact recreation is determined by the fact that the full body is likely to come 

into contact with and ingest water during the activity. Such activities include: swimming, 

diving, water skiing, surfing, paddle skiing and wind surfing. The people that participate in 

these activities span a wide range of ages, from infants to the elderly. The health status of 

users may also vary. Citizens that are not completely healthy are still inclined to swim while 

citizens taking part in more strenuous activities, such as surfing, are more likely to be fit and 

healthy.

2.6.2 Incident Contact recreation

Intermediate-contact recreation occurs when only limbs are regularly wetted and in which 

greater contact, including swallowing water, is unusual. Such activities include boating, 

wading and angling. The age groups that participate in such activities vary from children to

the elderly and the health status of these individuals may also vary.

2.6.3 No Contact Recreation

Non-contact recreation involves recreation with no direct contact with the water and includes 

sightseeing, walking, horse riding, etc. These activities are predominantly concerned with 

the aesthetic appreciation of the water.

2.7 Current Guidelines for Water Quality Monitoring

In many fields of environmental health, guideline values are set at a level of exposure at

which no adverse health effects are expected to occur. National and international institutions
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have established several directives or guidelines to protect the environment and public 

health by reducing the pollution of bathing waters and by protecting such waters from further 

deterioration. These guidelines establish limits for the sanitary quality of recreational waters 

on the basis of the levels of indicator micro-organisms and of the absence of several 

pathogenic micro-organisms. Present regulatory schemes for the microbiological quality of 

recreational waters are primarily, or exclusively, based on the percentage compliance with 

faecal indicator counts.

However it should be noted that that there is no universally applicable risk management 

formula. “Acceptable” or “tolerable” excess disease rates are especially controversial 

because of the voluntary nature of recreational water exposure and the generally self- 

limiting nature of the most studied health outcomes (i.e. gastroenteritis, respiratory illness). 

Table 2.1, adopted from W HO  (2000), shows a detailed list of guideline values used across 

the world.

Among the most widely used guidelines are the W HO guideline and the Bathing W ater 

Directive (76/160/EEC) of the European Communities (EC). In 1998 the World Health 

Organization (WHO) organised an expert consultation to look into the adequacy and 

effectiveness of present approaches to monitoring and assessment, linked to effective 

management of microbiological hazards in coastal and freshwater recreational waters. The 

output of the meeting was the development of such an approach, which has become known

as the 'Annapolis Protocol'. The European Communities (EC) adopted the Bathing Water

Directive (76/160/EEC) which sets the mandatory and guideline microbiological standards 

for total coliforms and faecal coliforms, and guideline standards only for faecal streptococci.

The Environment agency in the UK monitors the quality of designated bathing waters in 

England and Wales against the regulations from the EC Bathing water Directive 

(76/160/EEC) There are two main sets of standards used for measuring bathing water 

quality: the minimum standard and the stricter guideline standard. All bathing waters must 

meet the minimum standard.

The mandatory (or imperative) standard, which should not be exceeded are

• 10,000 total coliforms per 100 ml of water

• 2,000 faecal coliforms per 100 ml of water
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Table 2.1: Examples of guidelines and standards for microbiological quality of water 
(number of organisms per 100 ml) (WHO, 2000)

Shellfish Harvesting Primary Contact Recreation Protection of Indigenous
Country Organism Reference

TC* FC** TC* FC** Other TC* FC**

Brazil 100%<100 80%< 5000m 80% <1000" BrazilMinisterio 
del Interior, 1976

Colombia 1000 200 Colombia, 
Ministerio de 
Salud, 1979

Cuba 1000* 200* 90% < 
400

Cuba, Ministerio 
de Salud, 1986

EC,b Europe 80% <500c
95% <10000d

80%<100e 
95% < 2000”

Faecal
streptococci 100* 
Salmonella 0/litred 
Enteroviruses 0 
PFU/ litred 
Enterococci 90% 
<100

EEC, 1976 
CEPOL, 1991

Ecuador 1000 200 Ecuador,
Ministerio de 
Salud Publica, 
1987

France, Israel <2000
80%<1000°

<500 Faecal
Streptococci < 100

CEPOL/UNEP,
1991

Japan 70 1000 Japan
Environment 
Agency, 1981

Mexico 70*
80%<230

80% < 1000' 
100%< 10000“

10000*
80%< 10000 
100%<20000

Mexico, SEDUE, 
1983

Peru 80% <1000 80% <200 
100% <1000

80% < 5000' 80% <1000' 80%<20000 80%<
4000

Peru, Ministerio 
de Salud, 1983

Poland E coli <1000 WHO, 1975
Puerto Rico 70"

80%<230
200"
80%<400

Puerto Rico, JCA 
1983

United Sates, 70° 80% <1000 |J 200*' California State
California 100% <10000k 90% <400' Water Resources 

Board, undated
United States, 14* 90%<43 Enterococci US EPA, 1986;
USEPA 35*(Marine) 

33*(fresh) E.coli 
126* (fresh)

Dufour and 
Ballentine, 1986

Former USSR E.coli < 100 WHO, 1977
UNEP/WHO 80%<10

100%<100
50%<100n
90%<1000"

WHO/UNEP,
1978

Uruguay < 500" <1000° WHO/UNEP,
1977

Venezuela 70* 14* 90%<43 
90%<230

90% <1000
100%<5000

90%<200 
100%<400

Venezuela, 1978

Yugoslavia 2000 DINAMA, 1998

* Total coliforms j Within a zone bounded by the shoreline and a distance of
•* Faecal or thermotolerant coliforms 1,000 feet from the shoreline or the 30 foot depth contour,
a Logarithmic average for a period of 30 days of at least 5 samples whichever is further from the shoreline

b. Minimum sampling frequency - fortnightly k. No sample taken during the verification period of 48 hours
c Guide should exceed 10,000 per 100 ml

d Mandatory I Period of 60 days

e Monthly Average m. "Satisfactory” waters, samples obtained in each of the
f At laest 5 samples per month preceding 5 weeks

9 Mini.u, 10 samples per month n. Geometric mean of at least 5 samples
h At least 5 samples taken sequentially from the waters in a given 

instance
0 Not to be exceeded in at elast 5 samples

i. Period of 30 days Source: Adepted from Salas (1998)
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In order for a bathing water to comply with the directive, 95% of the samples must meet 

these standards, plus other criteria.

The stricter guideline standards are those which should be achieved wherever possible, 

require:

•  No more than 500 total coliforms per 100 ml of water for at least 80% of the samples 

(i.e. 16 or more out of 20 samples)

• No more than 100 faecal coliforms per 100 ml of water in at least 80% of the 

samples (i.e. 16 or more out of 20 samples)

• No more then 100 faecal streptococci per 100 ml of water in at least 90% of the 

samples (i.e. 18 or more out of 20 samples)

The European Commission uses the stricter guideline standard to assess bathing waters 

across all member states.

As there is no universally applicable risk management formula available, the assessment of 

recreational water quality should be interpreted or modified in the light of regional and/or 

local factors. Such factors include the nature and seriousness of local endemic illness, 

population behaviour, exposure patterns, and socio-cultural, economic, environmental and 

technical aspects, as well as competing health risk from other diseases, including those that 

are not associated with recreational water.

Recreational water standards have had some success in driving cleanups, increasing public 

awareness, contributing to informed personal choice and contributing to public health 

benefits. These successes are difficult to quantify, but the need to control and minimise 

adverse health effects has been the principal concern of regulation. Present regulatory 

schemes for the microbiological quality of recreational waters are primarily or exclusively 

based on percentage compliance with faecal indicator counts. W HO (2000) identified a 

number of constraints in the current standards and guidelines as given below:

• Management actions are retrospective and can only be deployed after human 

exposure to the hazard.
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•  The risk to health is primarily from human excreta, the traditional indicators of which 

may also derive from other sources.

• There is poor inter-laboratory and international comparability of microbiological 

analytical data.

While beaches are classified as safe or unsafe, there is a gradient of increasing severity, 

variety and frequency of health effects with increasing sewage pollution and it is desirable to 

promote incremental improvements, prioritising "worst failures".

2.8 Die-off of Indicator Bacteria

Enteric bacteria, and specifically the faecal indicator bacteria, are typically used to measure 

the sanitary quality of water for recreational, industrial, agricultural and water supply 

purposes. They are released into the environment with faeces, and are then exposed to a 

variety of environmental conditions that eventually cause their death. The results of past 

studies suggested that the survival of bacteria may be effected by any one, or a combination 

of, various inter related environmental, physical, physio-chemical and biological factors 

such as: solar radiation , adsorption to particulate matter and sedimentation, temperature, 

pH, salinity, specific ion toxicity (e.g. NaCI, iodate, heavy metals), lack of nutrients, utilisation 

of bacteria food by protozoa and other predators, the competitive and antagonistic affect of 

other micro-organisms and algal toxins with varying magnitudes of importance . However, 

construction of the quantitative relationships between the decline in bacterial population and 

these factors has not always been successful, mostly because of unsuitable experimental 

arrangements, with incomplete reporting of important variables. It is noteworthy that from the 

literature it appears that most researchers have only looked at the bactericidal processes in 

sea water. Understandably coastal areas, being the main recreational bathing areas, are 

subjected to pollution due to discharge of sewage in marine waters, and hence raising 

concerns to public health.

2.8.1 Sunlight

Sunlight is a major factor for bacteria survival in sea water (Gameson and Saxon, 1967; 

Fujioka et al., 1981; Bellair et al. ,1977). Fujioka et al (1981) found that in the absence of 

sunlight bacteria survived for days while in presence of sunlight 90% of faecal coliform and 

faecal streptococci were inactivated within 30 to 90 minutes and 60 to 80 minutes
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respectively. They also found that the bactericidal effect of sunlight can penetrate into at 

least 3.3 m of clear sea water. A survey of the literature has indicated that solar radiation 

exerts a great influence on bacteria, bringing about their mortality at much higher rates 

compared to that of other relevant environmental factors.

Alkan et al (1995) suggested solar radiation is an important bactericidal factor, even for low 

levels of intensity of radiation, and turbid waters. They suggested that the influence of light is 

minimised when the least desired combination of the environmental conditions prevail, i.e. 

high turbidity preventing the penetration of light, high sewage content supporting bacterial 

life as well as contributing to turbidity, and the minimum degree of vertical mixing resulting in 

poor transportation of the bacteria to the upper layers of the water, where light penetration is 

more pronounced.

Solic and Krstulovic (1992) found that the response of the survival of FC was inversely 

proportional to solar radiation (Fig. 2.3) and the value of T90 decreased by about 40% for 

each 100 Wm'2 solar radiation increment. Figure 2.4 shows the relative decrease of solar 

radiation with depth, resulting in an increase of the T90 value. In their study solar radiation 

strongly affected the survival of FC in the first 30m below the surface. Below 30m, the effect 

of solar radiation was very weak because at that depth solar radiation accounted for only 

10% of the intensity at the surface.
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Figure 2.3: Effect of solar radiation on the survival of FC, Solic and Krstulovic (1992)
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A significant number of researches have also looked at which part of the solar spectrum is 

mainly responsible for bacterial decay. Gameson and Gould (1975), Chamberlin and 

Mitchell (1978), Fujioka et al (1981) and Solic and Krstulovic (1992) found that it is the 

visible, rather than the ultraviolet, light spectrum of sunlight which is primarily responsible for 

the bactericidal effect. In fact, visible wavelengths may take on particular significance in 

natural systems firstly because u.v. wavelengths represent a small (< 3%) fraction of total 

incident radiation (Jassby and Powell, 1975; Kirk, 1983) and secondly, u.v. radiation is 

rapidly attenuated in the water column, especially when dissolved organic matter is present 

(Jerlov, 1968, Kirk, 1983, Wetzel, 1983). Barcina et al. (1989) suggested that the inability of 

E.Coli cells to take up glucose due to the action of visible light could result in the loss of 

culterability in freshwater.
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Figure 2.4: Relative decrease of solar radiation depending on depth, Solic and Krstulovic
(1992)

Davies-Colley et al. (1994), found that the impact of UV-A and visible radiation in the 

sunlight is greater than that of UV-B radiation because the shorter wavelength of UV-B 

(290-320 nm) penetrates a much shorter distance into seawater.

However, Sinton et al. (1999) identified that all three components of the solar spectrum, 

namely UV-B (290-320 nm), UV-A (320-400 nm) and blue to green visible light (400- 550
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nm) are responsible for the bactericidal effect, although they also reported that at 

wavelengths above 329 nm, when photochemical mechanisms become more important, the 

overall mechanisms for inactivation of conforms is not very clear in seawater.

Gameson and Gould (1985) estimated that wavelengths lower than 370nm is responsible for 

about half the lethal effect of the sunlight. Davies and Evison (1991) found that the UV 

component of sunlight and high salinity act synergistically and result in a decrease in the 

number of culturable bacteria. They also carried out experiments on freshwater and 

observed that the effect of salinity on bacterial mortality is not evident unless exposed to 

light with a considerable UV component. They concluded that in fresh water the presence of 

UV absorbing substances (such as humic acid) protect cells from the possible damage to 

DNA by UV radiation and thereby extend survival.

While much of the published research has focused on the antibacterial role that solar UV 

radiation (200 to 400 nm) plays in solar disinfection of water, the purely thermal contribution 

of the solar germicidal action has not been studied in great detail. Joyce et al. (1996) 

observed that in water samples with turbidity higher than 200 nephelometric turbidity units 

(NTU), less than 1% of the total incident UV light penetrates further than a depth of 2 cm 

from the surface and thus can’t be expected to have a significant germicidal effect beyond 

this distance in the water column. They reached the conclusion that solar disinfection is 

feasible even for high-turbidity (200 NTU) water, that would not otherwise allow incident UV 

radiation to penetrate very far, provided that the water temperature exceeds 55 C giving 

credit to the thermal properties of the solar radiation.

Reed (1997) observed different rates of inactivation in aerobic and anaerobic water 

concluded that solar disinfection of water is only fully effective under aerobic conditions. A 

decrease of the toxic effect was observed when E. coli was exposed to visible light under 

anaerobic conditions (Gourmelon et al, 1994).

2.8.2 Temperature

Early observations showed that the rate of disappearance of coliform bacteria in rivers was 

greater in summer than in winter, which led investigators to pursue a relationship between 

the death rate coefficient and temperature. An inverse relationship between the survival of
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coliform bacteria and temperature has been reported by many researchers (McFeters and 

Stuart, 1972; Faust et al., 1975; Ayres and 1977, Solic and Krstulovic ,1992).

Wegelin et al. (1994) reported that the synergism of water temperatures above 55°C  

enhances the solar germicidal effect by a factor of approximately 2 for Streptococcus 

faecalis and E. coli. Flint (1987) observed a temperature-decay correlation based on 

laboratory studies with E Coli.

It has been found from some research studies that the effects of temperature become 

negligible in the presence of light, as the effects of sunlight override the effects of 

temperature (Alkan et al, 1995). Solic and Krstulovic (1992) found that the effect of 

temperature was obscured by the effect of sunlight up to a depth of 30 m, but below this 

depth temperature becomes more important as a factor controlling the survival of FC.

However, some researches drew different conclusions. Auer and Niehaus (1993) observed 

no significant relationship between coliform mortality and temperature. A number of 

investigators have reported a similar lack of dependence. Mitchell and Chamberlin (1978) 

cited work in the Ohio River by Frost and Streeter (1924), which demonstrated that total 

coliform death rates were virtually identical at 5 and 20°C. Moeller and Calkins (1980) also 

supported the fact that temperature has no significant effect on the decay of bacteria. Figure 

2.5 shows the different findings on dependence of survival of FC on temperature.

Some investigators have suggested that a relationship between temperature and nutrients 

may facade the temperature effect on death rates in laboratory experiments. Auer and 

Niehaus (1993) suggested that the rates of biochemical reactions, and thus microbial growth 

rates, tend to increase as temperatures rise. High growth rates place added demands on 

nutrient reserves, which may not be renewed in dilute and natural systems, leading to an 

increase in the death rate. This effect on the nutrient utilisation and variability of nutrient 

availability in natural systems may explain the observed discrepancy in temperature-death 

relationship.

2.8.3 Salinity

Many studies have shown the inactivation of E. coli is more rapid in saline waters than 

inactivation in fresh water. A review of the published literature (Mitchell and Morris, 1969,
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Faust et al., 1975; Fujioka et al., 1981) reveals that in most studies coliform bacteria were 

reported to survive for days in seawater. However, in some in situ studies these bacteria 

have been reported to be effectively inactivated within a few hours. The bactericidal effect of 

high salinity, probably caused by osmotic effects or by specific ion toxicity (Carlucci and 

Pramer, 1960), is reported in several other studies, such as Anderson et al. (1979); Ayres 

(1977), Carlucci and Pramer (1960) and Dutka (1984).
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Figure 2.5: Effect of temperature on decay of bacteria in onondaga lake (Auer et al. 1993)

Solic and Krstulovic (1992) observed an inverse relationship between FC survival and 

salinity concentrations in water (Fig. 2.7). They found that increasing salinity was more 

detrimental to FC survival at lower salinity (in the range of 7-15%o) than at higher salinity 

levels (in the range of 15-40%o). In the range of salinity from 7-15%o the value of T90

31



Chapter 2: Water Quality and Health Effect

decreased by about 55%o for each 5%o salinity increment, while in the range of salinity from 

15-40%o the value of T90 decreased only by 15%o salinity increment.

Some authors observed the greatest survival of E. coil at salinity levels between 5 and 15%o, 

and rapid mortality in fresh water and at upper salinity above 25%o (Ayres, 1977, Carlucci 

and Pramer, 1960).
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Figure 2.6: Survival of coliforms in marine and fresh waters (Adapted from Chamberlain and
Mitchell, 1978)

Dutka (1984) found that the bactericidal effect of salinity is greater in the presence of 

sunlight. Sunlight and salinity work together to produce complimentary results are greater 

than either can produce individually. Fujioka et al (1981) noted that sunlight, both direct and 

indirect, is more lethal in saline waters. Davies and Evison (1991) achieved similar results 

indicating that the effects of salinity are more pronounced in the presence of UV radiation 

and that the UV component of sunlight and high salinity levels act synergistically to cause a 

decrease in the number of culturable bacteria. Bordalo et al. (2002) observed overall 

survival rates were higher in low salinity water. Light had a further deleterious effect, since it
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accelerated the decay of faecal indicators, particularly in highly saline waters. They carried 

out their experiments in tropical estuarine water. Some authors stated that cells may be 

injured by solar light or salinity, but remains viable even though they are unable to form 

colonies.
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Figure 2.7: Effect of salinity (%o) on the survival of FC (Solic and Krstulovic, 1992)

2.8.4 Turbidity

The presence of suspended solids in the water column has been shown to increase the E. 

coli survival rates by limiting the affects of sunlight. Alkan et al (1995) documented the 

significant influence of sewage concentration, turbidity and vertical mixing have on E. coli 

inactivation in the presence of sunlight. Greater turbidity allows less light penetration, thus E. 

coli survive longer in turbid conditions; this suggests that the influence of light is minimized 

when the least desired combination of the environmental conditions prevail, i.e. high 

turbidity, high sewage content, and a minimal degree of vertical mixing (Alkan et al, 1995). 

Kay et al (2005) identified Turbidity as a dominant factor influencing decay when light and 

temperature remains constant. They observed that there is little difference between dark 

and irradiated T90 values above approximately 200 NTU. In fact work done by Joyce et al., 

1996 (Key et al. 2005) suggests that at turbidity > 200NTU, around 90% of the incident 

radiation is absorbed in the first centimetre of the optical path through the water column.
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Turbid water with a high suspended solid concentration provides a significant amount of 

suspended sediment particles with enough living surfaces for bacterial organisms. Past 

research has indicated that in natural turbid waters most of the bacterial organisms are 

found to be attached to suspended solids. Marshall (1978) indicated that bacteria readily 

absorbed to different kinds of interfaces, such as: liquid-solid, liquid-liquid, liquid-gas etc and 

most of the bcteria are attached to these surfaces. He also quoted the results from 

Jannasch (1956), who found that only 0.02% of the microbial population in the Nile River 

was planktonic (free living), with the remaining organisms being attached to mineral 

particulate materials. In an aquifer contaminated by treated sewage, 96.8-100% of the 

bacteria were found to be particle bound when enumerated by direct counting (acridine 

orange direct counting, AODC), as reported by Harvey et al. (1984). Also, Albrechtsen's 

(1994) research showed that most of the bacteria were attached to small particles and only 

0.01% of the total bacterial numbers were assessed to be free-living in the pore-water.
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Figure 2.8: Relationship of irradiated and dark T90 with suspended solids/turbidity (Kay et al.
2005)

2.8.5 Nutrient concentration

Several authors have mentioned the nutrient concentration, coupled with competition for 

nutrients, have a considerable influence on bacterial survival rates. Lim and Flint (1989) 

showed that increased survival times are dependent upon higher nutrient concentrations. In 

the presence of adequate nutrients and no competition, as water temperature increases
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there is a corresponding increase in the E. coli growth rates. High growth rates place added 

demands on nutrient reserves, leading to an increase in the death rate. It is believed that 

increased death rates at higher temperatures are a function of increased competition for 

nutrients by other organisms and increased predation. Rates of biochemical reactions, and 

thus microbial growth rates, tend to increase as temperatures rise. High growth rates place 

added demands on nutrient reserves, which may not be renewed in dilute, natural systems, 

leading to an increase in the death rate.

2.8.6 Sediment

Studies suggest sedimentation is a major mechanism responsible for the disappearance of 

faecal coliform from surface waters. Cells settle from the water column as discrete entities 

and as part of larger aggregates of faecal material, storm water debris and other suspended 

solids (Schillinger and Gannon, 1982). Sedimentation was considered to be one of the most 

important factors in E. coli removal and inactivation in a study undertaken by Auer and 

Niehaus (1993). They also noticed that 90.5% of the faecal coliform is associated with 

particles ranging from 0.45-10 pm. However, faecal coliform deposition was due solely to 

the depositional potential of each particle and is not a function of suspended solids 

concentration.

The interaction between particulate matter and bacteria has been the subject of much 

interest for two reasons: the protection affect afforded to bacteria by particulate matter and 

the potential for sedimentation. Other studies (Chamberlin and Mitchell, 1978: Gannon et al., 

1983) suggested that sedimentation may also be a major mechanism responsible for the 

disappearance of faecal coliform from surface waters. However, faecal coliform deposition is 

due solely to the depositional potential of each particle and is not a function of suspended 

solids concentrations (Milne et al, 1986).

While dealing with the sediment part of the decay equation care is needed in the analysis as 

bacteria in natural waters exist in two forms in terms of their interaction with sediments 

(Stapleton et al., 2007). Some of the bacteria exist as free-living bacteria that stay within the 

water column, while others may attach to the suspended particles. The free-living bacteria 

move with the flow, while the attached bacteria move with the suspended particles, which 

could settle out onto the bed sediment surface when the suspended particles deposit and
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also the turbulent flow can carry the particles with the attached bacteria to re-suspend into 

the overlying water. The free-living bacteria are also called free swimming bacteria.

Stapleton et al. (2007) found that, for natural waters 70%-99% bacteria exist as attached 

bacteria and the remaining 30%-1% bacteria as free swimming bacteria. It is thus 

understandable that due to the continuous bacterial deposition of bacteria organisms to the 

bed sediment, the populations of faecal bacteria on the bed sediment are, on average, 100- 

2000 times greater than the corresponding populations within the water columns.

2.8.7 pH

The affects of pH and predation were investigated in the literature. Faecal coliform, and 

specifically E. coli, were found to prefer a slightly more acidic environment, i.e. 5.0-7.0, while 

a pH of 8.0 or greater was found to have a negative impact on E.coli survival (Carlucci and 

Pramer, 1960). While pH does play a role in bacterial inactivation, the affects were found to 

be minor in comparison to other more dominant factors affecting bacterial survival.
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Figure 2.9: Effect of pH on decay rate ; left - Solic 1992, right -McFeters 1972

A review of published reports shows that the optimum pH for the survival of coliform bacteria 

ranges from 5.5-7.5 (McFeters and Stuart, 1972), and from 7-8 (Ayres, 1977). Solic and 

krustulovic (1992) had reduced the range to 6-7; although a pH value of 5 (Carlucci and 

Pramer, 1959) was also reported to be optimal. Solic and krstulovic (1992) observed that 

there was a slightly higher decrease in the T90 value for acid reactions (by about 40% for 

each value of pH) as compared with alkaline reactions (by about 30% for each value of pH),
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even though they conceded that in natural conditions pH was a less important factor in 

controlling the persistence of FC than other studied factors, due to the small pH variability of 

seawater.

2.8.8 Predation

Predation, either by viruses, bacteria or protozoans, is another ecological factor that may 

contribute to the removal of non-indigenous bacteria from the environment.

2.8.9 Rainfall

Rainfall can have a significant effect on indicator densities in recreational waters increasing 

the densities to high levels, because animal wastes are washed from forest land, pasture 

land and urban settlings, or because treatment plants are overwhelmed causing sewage to 

by-pass the treatment process. In either case, the effect of rainfall on beach water quality 

can be quite dramatic (Figure 2.10) (Calderon, 1990, from WHO 2000). The effect, 

illustrated in Figure 2.10, on a beach surrounded by forests, was very rapid and usually 

persisted for 1-2 days.
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Figure 2.10: Effect of rainfall on enterococci densities in bathing beach waters (Calderon,
1990)

The highly variable effect of rainfall on water quality can result in the frequent closing of 

beaches. The important question is whether high indicator levels that result from animal 

wastes carried to surface waters by rain water run-off, indicate the same level of risk to 

swimmers as would exist if the source of the indicators was a sewage treatment plant. There
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are conflicting reports in the literature with regard to risk associated with exposure to 

recreational water contaminated by animals.

2.9 Combined Effects of Different Decay Parameters

The literature review established the fact that the presence of sunlight was the major factor 

controlling the survival of faecal coliforms (FC) in seawater. The responses of FC survival to 

intensity of solar radiation, temperature and salinity were inversely proportional. The 

optimum pH for FC survival was between pH 6 and pH 7, with rapid decline both above and 

below these values. However, the interaction between these environmental factors was not 

considered in the majority of studies. Solic and Krustulovic (1992) investigated the combined 

effect of these factors, particularly the solar radiation-temperature and the solar radiation- 

salinity effect. They suggested as the increase of temperature and salinity is more 

detrimental to FC survival in the presence of sunlight, it may act synergistically with 

temperature or salinity. Many studies have shown that inactivation of E. coli is more rapid in 

saline waters than inactivation in fresh water (Carlucci and Pramer, 1960; Anderson et al, 

1979; Fujioka et al, 1981; Milne et al, 1989; Davies and Evison, 1991). Sunlight and salinity 

work together to produce complimentary results, which are stronger than either can produce 

alone (Darakas, 2002).

The experiments done by Solic and Krustulovic (1992) with two different temperatures in 

light and dark conditions supported the fact that solar radiation is more important than 

temperature as a factor responsible for FC decay in the marine environment (Fig. 2.11). The 

T90 value of FC was found to be about 27 times shorter in light, rather than in the dark, while 

the increase in temperature from 12-24°C (with this range corresponding to yearly 

oscillations of seawater temperature in the Adriatic Sea) was accompanied by a decrease in 

the T90 value of only 2.5 fold.

An increase of salinity from 10-35% caused relatively more rapid mortality of FC in sunlight 

than in dark conditions, suggesting that sunlight and salinity may have acted synergistically. 

This result was confirmed by the significant salinity-solar radiation interaction shown in 

Figure 2.12. The authors were convinced that the bactericidal effect of salinity is enhanced 

in the presence of sunlight. They suggested that salinity should be taken into consideration
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in determining the FC survival rate, particularly in areas with marked oscillations in salinity 

(e.g. estuarine waters).
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Figure 2.11: Survival of FC in the sunlight (A) and dark (B) at two different temperatures 
(23.8°C solid lines and 12.1°C dashed lines), (Solic and Krustulvoc 1992)

It is apparent from these results that solar radiation, temperature, and salinity interact to 

produce the most significant observed decline of FC in seawater. There are few studies 

reporting the combined effects of these different factors on the survival of coliform bacteria 

in seawater, in comparison to the number of such studies dealing with their separate (or 

individual) effects.

McCambridge and McMeekln (1981) found that naturally occurring microbial predators and 

solar radiation interact to produce part of the observed decline of sewage bacteria in 

estuarine water samples. That is, the decline in numbers of E. coli cells was found to be
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significantly greater in the presence of both naturally occurring microbial predators and solar 

radiation than when each of these factors was acting independently. The combined effect of 

water temperature, dissolved oxygen, and salinity on the survival of E. coli was studied 

using a multiple regression model (Faust et al., 1975). They found that temperature mostly 

affected E. coli survival, while dissolved oxygen and salinity affected bacterial survival to a 

much lesser degree.
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Figure 2.12: Survival of FC in sunlight (A) and in darkness (B) for two different salinities 
(35%o - solid lines and 10%o dashed lines), (Solic and Krustulvoc 1992)

2.10 H ydrological C onsiderations

Rivers contribute a significant proportion of the bacterial load to coastal bathing waters. In 

some regions, significant numbers of freshwater beaches are directly affected by river water 

quality. The bacterial concentration in river water is determined by faecal pollution from point 

sources and non-point or diffuse sources. Major point sources include sewage effluents, 

CSOs, industrial effluents and confined animal sources, such as feedlots. Non-point sources 

relate directly to agricultural activity within the watershed, and are influenced primarily by the
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type of livestock and its density. A significant contribution is also derived from urban 

surfaces.

The transport of microbial contaminants through the watershed to the river, and 

subsequently through the river system to the marine environment is controlled by the flow of 

water. Rainfall is a key influence on the concentrations of coliform in bathing waters. Faecal 

material is transported from the watershed surface to the river and changes in flow are 

determined by rainfall and by the hydrological characteristics of the basin (soils, bedrock, 

etc.) which therefore have a significant impact on the total flux of the transported microbes. 

In river water the decrease in bacterial concentrations downstream of a source, 

conventionally termed die-off, largely reflects the settlement or sedimentation of organisms 

to the river bed. In riverbed sediments, survival times are increased significantly and the 

bacteria are readily re-suspended when the river flow increases.

Wash-out and 
entrapment 
mechanisms 
dominate

co

e.g. river impacted by 
agricultural diffuse sourcescn

e.g. nver impacted by 
a large point source

Settlement 
and die-off 
mechanisms 
dominate

Bacterial concentration (organisms per 100 ml)

Figure 2.13: The relationship between river discharge and bacterial concentration (WHO,
2000)

All rivers demonstrate a close correlation between flow and bacterial concentration due to 

the increased supply of bacteria from watershed surfaces and some point sources (e.g. 

CSOs) during rainfall events (Figure 2.13).

The two curves represent hypothetical examples. In reality, all rivers will exhibit individual 

relationships depending on their hydrological characteristics and bacterial sources. The 

shape of the flow relationship will vary between different catchments and may also break
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down during prolonged high flows, if the store of organisms in the bed-sediments (or the 

catchments surface) is exhausted. This phenomenon, however, has only been documented 

for small streams dominated by diffuse inputs and is less likely to occur for major rivers with 

multiple point and non-point sources. The processes controlling the transport and fate of 

bacteria in watersheds are now well understood and river water bacteria concentrations can 

be modelled and predicted.

2.11 Source of Bacteria: Human or Animal?

Bacterial indicator organisms such as faecal coliforms have been used to test water samples 

for faecal pollution, but such indicators do not provide specific information on the particular 

source of pollution. These bacteria may be found in a variety of warm-blooded animals and 

are not unique to the human intestinal flora. Information on the human or animal origin of 

faecal pollution gives an indication of the types of pathogens that may be expected, or the 

risk of infection, and the treatment that may be required to control the transmission of 

disease.

One of the major problems in environmental monitoring of indicator bacteria is to determine 

whether the source of pollution is human or animal. Since the early 1900s there have been 

various attempts to develop methods that differentiate the source of faecal pollution. 

Traditionally, efforts have concentrated on determining faecal pollution of human origin. It is 

now also important to distinguish between animal sources of faecal pollution compared to as 

human source, since animals can carry potentially harmful human pathogens. If animals are 

the source of indicator organisms, then the control measures and management practices will 

be different.

There are microbiological and chemical approaches for identifying sources of faecal 

contamination. Microbiological approaches cover bacterial and viral indicators found in the 

intestines of warm-blooded animals. Chemical approaches cover natural by-products of 

human metabolism or human activity. Microbiological approaches include the measurement 

of the ratio of faecal coliforms to faecal streptococci, or total coliforms, the detection of 

bacteriophages of bacteroides fragilis HSP40 and some serotypes of specific RNA 

coliphages, antibiotic resistance analysis, ribotype analysis, rep-PCR DNA technique, and 

use of human enteric viruses. Chemical approaches include faecal sterol fingerprinting
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techniques and the presence of contaminants normally associated with sewage, such as 

detergents.

2.11.1 The Ratio of Faecal Coliforms (FC) to Faecal Streptococci (FS)

Human faecal material may be distinguishable from animal faecal material using an old 

method, the ratio of faecal coliforms to faecal streptococci (FC/FS). Faecal streptococci 

have received widespread acceptance as useful indicators of faecal pollution in natural 

aquatic ecosystem. Faecal streptococci are more abundant in animal faeces than in 

humans; in contrast, faecal coliforms are more abundant in human faeces than in animals 

(see Table 2.2 which is adapted and simplified from Gledrich 1978 and Pitt 1998). 

Therefore, the faecal coliform to faecal streptococci ratio has been used to differentiate 

human faecal contamination from that of other warm-blooded animals.

Table 2.2: Bacterial densities in warm-blooded animal faeces (Gledrich 1978 and Pitt 1998)

Source Faecal Coliform
(Avg. no. * 106 /gm wet
weight)

Faecal Streptococci 
(Avg. no. * 106 /gm wet 
weight)

FC/FS
Ratio

Human 13 3 4.33
Cats 7.9 27 0.29
Dogs 23 980 0.02
Cows 2.3 13 0.02
Sheep 16 38 0.42
Pig 3.3 84 0.03
Horse 0.126 6.3 0.02

A ratio of faecal coliform (FC) to faecal streptococci (FS) concentrations of four or greater is 

considered human faecal contamination, whereas a ratio of less than 0.7 suggests non­

human sources (Edwards et al. 1997). Feachem (1975) suggested that if a series of FC and 

FS concentrations are obtained through time, an improved estimate of the pollution sources 

could be obtained. A predominantly human source should exhibit an initially high (>4) ratio 

which should then fall, whereas a non-human source should exhibit an initially low ratio (0.7) 

which should subsequently rise (Table 2.3).

Many attempts have been made to use this ratio (i.e. FC:FS) to determine the source of 

faecal bacteria. For example, Jagals et al. (1995) showed that the ratio of faecal coliforms to
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faecal streptococci was close to unity in streams and rivers, which were upstream of urban 

settlements, and were exposed to faecal pollution predominantly of animal origin. However, 

downstream of urban settlements, which were exposed predominantly to human faecal 

pollution, the ratio increased to 3.5 to 4.7. Coyne and Howell (1994) measured the FC/FS  

ration for two watersheds typical of agricultural land use in Kentucky. They concluded that 

the FC/FS ratio suggested the probable source of faecal contamination, but they considered 

their conclusions to be tentative.

Table 2.3: Summary of faecal source related to FC:FS ratios (Feachem, 1975)

Initial
FC\FS ratio

Change through 
time of FCVFS

Probable 
faecal Source

> 4 Rise Uncertain
Fall Human

<0.7 Rise Non-human
Fall Uncertain

The application of this method is now considered unreliable due to the variable survival 

rates of faecal streptococci species. Fujioka et al (1981) suggested that the significance of 

the FC/FS ratio established under freshwater conditions should not be extrapolated to 

include the marine environment (i.e. seawater) where the decay rate for FC and FS varies 

significantly. Furthermore, the ratio is affected by the methods for enumerating faecal 

streptococci and by disinfection of wastewater. This method is an inexpensive and 

moderately complicated laboratory procedure. However, the result of this method taken 

alone must be quite carefully evaluated. If the method were used with some other methods, 

such as the detection of bacteriophages, the result will be more reliable.

If this ratio were reliable it would an inexpensive and practical method. Therefore, to use this 

method to provide information on possible faecal pollution source we have to consider its 

limits:

a) Sampling needs to occur soon after waste contamination (within 24 hours if 

possible) because the faecal bacteria may die off at different rates;

b) It becomes difficult to distinguish faecal streptococci in waters from faecal 

streptococci that are naturally present in soil and water when fewer than 100 faecal 

streptococci/100ml are present, and
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c) The water pH needs to be between 4 and 9 because faecal coliforms die off 

quicker than faecal streptococci in acid or alkaline water (Geldreich and 

Kenner, 1969; Coyne and Howell, 1994).

2.11.2 The Ratio of Faecal Coliforms (FC) to Total Coliforms (TC)

Faecal (thermotolerant) coliforms constitute a subset of total coliforms. These bacteria 

conform to all the criteria used to define total coliforms, but in addition they grow and 

ferment lactose with the production of gas and acid at 44.5 ± 0.2°C within the first 48 hours 

of incubation. The ratio of faecal coliforms to total coliforms (FC/TC) is used to show the 

percentage of the total coliforms comprising faecal coliforms, i.e., coming from the guts of 

warm-blooded animals. If the faecal to total coliforms ratio exceeds 0.1 (i.e. faecal coliforms 

comprise 10% or more of the total coliform group) then this suggests the presence of human 

faecal contamination.

Hiraishi et al., (1984) measured TC, FC, and BOD from the Tamagawa River and its 

tributaries in Tokyo. Geometric means of the faecal coliforms to total coliforms ratios ranged 

from 0.007 to 0.069 in streams, which were located on the upstream of human 

contamination sources, but downstream of human sources, the ratio ranged from 0.21 to 

0.26. Noble et. al., (2000) measured the FC/TC in a regional survey of the microbiological 

water quality along the shoreline of the Southern California coast. This method illustrates the 

possibility of faecal pollution but this method is not suitable for distinguishing human from 

animal-derived faecal matter. One of the shortcomings of this method is the potential growth 

of faecal coliforms in soils in tropical areas. As a result, its application in tropical areas is 

questionable. However, the method should not be discarded for topical areas, since it may 

be useful in conjunction with other methods.

Among others methds, the most frequently used and a well-tested method is genetic 

fingerprinting. Promising methods on the horizon include techniques using PCR, multiple 

antibiotic resistance, and bacteriophages. However, it should be noted that there is no easy, 

low cost, method for differentiating between human and non-human sources of bacterial 

contamination. No single indicator or approach is likely to represent all the facets and issues 

associated with contamination of waterways with faecal matter. At present, the best hope of 

distinguishing faecal pollution of human and animal origin is an appropriate combination of 

indicators. Statistical analyses of appropriate groups of methods offer the best possibility of
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identifying human sources. Unfortunately, relying on a combination of methods will probably 

require a longer period of analysis than relying on a single method

2.12 Modelling the Decay of Bacteria

The prediction of the evolution of microbiological pollution of seas, rivers and lakes, 

following the construction of sewage disposal outfalls, is one of the most pressing problems 

that environmental water engineers need to confront during the planning stage of such 

constructions. Enteric bacteria, and specifically faecal indicator bacteria, are typically used 

to measure the sanitary quality of water for recreational, industrial, agricultural and water 

supply purposes. The knowledge of enteric bacteria survival kinetics is very important for 

environmental scientists. This biological-biochemical phenomenon is affected by a large 

number of factors, as mentioned earlier. Extensive laboratory experiments and field 

investigations have been undertaken to discover the process of bacterial decay in water. 

These efforts have produced a body of general qualitative knowledge (which cannot, 

however, easily be used by planning engineers) and a number of empirical formulae for the 

quantitative description of decay kinetics.

Bacterial decay rates were assumed to follow a first order decay model according to Chick’s 

Law, 1910 (Key et al., 2005):

—  = -k  ,C (2.1)
dt '

where

C = the enterococci concentration (cfu /100 ml),

t = the time (minutes), and

kt = the die off rate over time (/min).

This allows kt to be represented by the slope of the line of best-fit from least-squares 

regression of log10 transformed enterococci concentration (log10C) plotted against time (t). 

Thus, Tgo is calculated as (Key et al., 2005):
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(2.2)

Equation 2.1 is the longest established one for bacterial die off. However workers in the 

field recognize that Equation 2.1 does not in fact represent the actual process of decay of 

enteric bacteria disposed in natural waters. Orlob (1956) provided a general view of the 

various curves and the corresponding equation, which can be used for the calculation of 

enteric bacteria survival in natural waters. The disadvantage shared by these equations is 

that each of them has different empirical constants, so in each actual case the determination 

of the mathematical values of the constants demands expensive field investigations. This is 

why Equation 2.1, which contains only one constant, has been widely used for the last thirty 

years. In their review of modelling enteric bacterial die-off, Crane and Moore (1985) stated 

that first-order decay has been used with "moderate success" to describe bacterial die-off.

In order to avoid the expense of field investigations, there has been an attempt to define the 

coefficient k as a function of temperature, salinity, etc (Lantrip, 1983; Mancini, 1978; Mitchell 

and Chamberlin, 1978). However, this research has not produced such conclusive results 

that can be recommended for use by planning engineers (Grace, 1978).

Mancini (1978) and Crane and Moore (1985) described three commonly observed patterns 

of coliform die-off: first-order decay; bacterial growth followed by first-order die-off; and a 

die-off rate that changes with time.

Darakas and Hadjianghelou (1997) (Darakas, 2000) showed that the survival curves of E. 

coli in double logarithmic representation consisted of two phases, the maintenance phase 

and the decay phase. The duration of the maintenance phase provided a time scale for the 

decay phase and was contained as a parameter in the equation, which described the decay 

phase. The curve of the decay phase in a double logarithmic representation is a simple 

exponential curve. It is accurately described by Equation 2.3.

C = C0 fort < tE

(2.3)
for t > tE
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where

C = E.Coli concentration for t £ tE 

C0 = E.Coli concentration for t < tE 

t = time

tE = duration of the maintenance phase.

They have shown that this equation is applicable for a wide range of temperatures between 

4 °C and 37°C. It can be applied in the field of the quantitative description of the decay 

kinetics if the temperature is known. The duration of the maintenance phase tE) which is a 

parameter in Equation 2.3, also provide a time scale for the decay phase. The authors have 

presented the mean values of tE for different temperatures in the Table 2.4.

Canale et al. (1993) proposed a linear relationship between temperature and the death rate 

coefficient for modelling total coliform bacteria in Grand Traverse Bay, Lake Michigan. 

Laboratory studies of coliform death rates in Grand Traverse Bay (Gannon and Meier, 

unpublished data), used in developing this relationship, showed no difference in the death 

rate coefficient at 5, 10 and 15°C. The death rate coefficient increased in field 

measurements for temperature of 19°C, but this may have been due to the bactericidal 

effects of light (Auer and Niehaus, 1993).

Table 2.4: Maintenance phase duration (tE mean values)

Temperature (°C)

4 10 20 30 37

tE (mean, days) 4.4 13.6 7.0 2.9 0.5

Work done by Thomann and Mueller, 1987 (Auer and Niehaus, 1993) provided the basis for 

the development of an overall kinetic coefficient. They proposed the following equation for 

an overall kinetic coefficient

k  =  k d + k i +  k s (2.4)
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Where

kd = rate coefficient for death for dark conditions; including the effects of temperature, 

salinity, predation, etc (d'1)

kj = rate coefficient for death as mediated by irradiance (d'1), and

ks = rate coefficient for sedimentation loss (d'1).

Snedecor (2003) expanded and modified the terms used herein to include a nutrient 

component and a salinity component. They divided the dark death coefficient (kd) proposed

by Thomann and Mueller (1987) into two parts; kdt was defined as the rate of coefficient in

the dark (includes the effects of temperature) and a new coefficient term kds was added to 

reflect the rate coefficient for death in the dark and saline condition. An additional term, kn, 

was included to reflect the impacts of potential growth due to water nutrient concentration. 

Thus the overall kinetic equation becomes:

Harris et. al (2002) used the constant decay rates (T90) for day (6am to 6pm) and night (6pm 

to 6am) as 30 hours and 100 hours respectively. Bellair (1977) undertook a series of 

experiments that commenced at 6.30 am. Initially the rate of die-off was small, but it was 

found to increase rapidly, reaching a maximum around noon. Recorded values ranged from 

19h to 40h. This implies that inactivation rates also vary greatly, particularly over a diurnal 

cycle, with the rate of die-off at any period of the year being approximately proportional to 

the intensity of irradiance received by the sample (Gameson and Saxon 1967). Their 

experience revealed that the effect of sunlight on the mortality of faecal coliform die-off was 

related to the solar irradiance by a power law as given by

k = k« + k* + ki + ks + k „ (2.5)

(2.6)

Where

ks = the die-off or decay rate due to sunlight (day'1);

I = the irradiance (W/m2), a is a constant of proportionality, and
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p = the slope of the log10 plot of die-off against irradiance, I. 

a = the proportionality constant

The degree of penetration of sunlight into the water column has a significant effect on the 

bacterial die-off beneath the water surface. The turbidity of the water interferes with the light 

penetration through the water column and thus affects the bactericidal effectiveness of 

sunlight. Therefore, in more turbid waters, the bacteria survival time is increased, mainly 

because of the decreased effect of UV light, which is partially adsorbed by the suspended 

matter. The penetration, or conversely the extinction, of incoming solar radiation is usually 

described by introducing the extinction coefficient. This is proportional to the water depth, 

and may be calculated from solar radiation measurements taken at a range of water depths. 

Thus is represented by the Lambert (or Beer-Lambert) law, given as:

Iz = l 0e k-Z (2.7)

Where

l0 = the irradiance (solar intensity) at the surface (W/m2), 

lz = the irradiance at depth z (W/m2), 

z = the depth (m), and

ke = the vertical light extinction or attenuation coefficient (m'1).

Gameson and Gould (1975) (Harris 2002) reported that the effect of sunlight on coliform die­

off was additive and independent of temperature; die-off was expressed as the sum of die­

off for darkness, kd, and die-off due to sunlight, ks. Assuming that the total faecal coliform 

mortality rate, k, can be defined by a simple relationship, taking into account disappearance 

for dark and light mortality conditions, then

k = kd + k s (2.8)

Where

k = the total die-off rate (d'1),
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k<j = the die-off rate in darkness (d'1), and 

ks = the die-off rate due to sunlight (d‘1).

Mitchel and Chemberlin (1975) suggested that the die-off rate is related to depth, with an 

effective attenuation coefficient of about 0.22m'1; the rate proportional to light intensity; and 

die-off is essentially first order with respect to coliform concentration. The relationship could 

be formulated as:

Where

C = the concentration of coliform bacteria at time t and depth z, 

k = proportionality co-efficient,

l0 = is the light intensity just below the water surface which is generally a function of 

time and latitude, and

a = the effective attenuation coefficient.

Thomann and Mueller (1987) suggested that the principal components of the net decay rate 

can be written as

Where

kb= basic rate as a function of temperature, salinity, predation, 

kpdeath rate due to sunlight,

ks= net loss (or gain) due to the settling (or resuspension) and 

ka= after growth rate.

(2.9)

k = kb+ k , + k s - k i (2 .10)
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They have also compiled a table of reported overall decay rates for bacteria and viruses, 

based on data and results reported in the literature.

They suggested that the temperature effects are corrected according to the Streeter-Phelps 

formulation:

Where

kT = value of rate constant at local water temperature

k20 = value of rate constant at standard temperature (i.e. 20°C)

T = local water temperature

0 = empirical constant for bacterial decay, which is 1.07 according to them.

For the effect of sunlight they referred to the Gameson and Gould (1975) relationship, giving

Where

k|(t) =decay rate at surface

a= proportionality constant (from the data of Gameson and Gold (1975), a= 1) and 

l0(t) = surface solar radiation cal/cm2 hr

They also showed that the depth averaged sunlight decay rate was given as

Where H is the depth in metre over which the average is taken and Ke (m'1) is the vertical 

light extinction co-efficient.

(2 . 11)

k , ( t )  = a l0 ( t ) (2 . 12)

(2.13)
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Mancini, 1978 (Thomann and Mueller, 1987) has evaluated the available data to incorporate 

salinity, temperature and solar radiation. On the basis of Mancini’s work, and the depth 

averaged solar effects, Thomann and Mueller (1987), have deduced that:

K = [0.8 + 0.006 (%seawater)]  1.07(r_2O) + -  exp(-KeH )]  + ^ -  (2.14)
HKe H

where vs is the net loss rate of the particulate bacterial forms (in m/day), which can be 

positive, zero or negative depending on the degree of resuspension.

From the above discussion, two representations can be utilized to model bacteria die-off. 

The first and most simple model, uses the overall net loss rate K as the measure of bacterial 

kinetics and no attempt is made to describe the individual mechanism or kinetic structure. At 

most K is considered as a function of temperature. This simple model recognises that there 

may be considerable uncertainty in the input loads in certain problem contexts and that it is 

really not practical or meaningful to describe the decay kinetics in greater detail. The second 

level incorporates some principal kinetics discussed above. The increasing complexity of the 

formulation for K is worthwhile for situations where the input loads are known with some 

degree of confidence.

2.13 Summary

This chapter has outlined the occurrence of pathogens in the environment, the concept of 

the indicator organism and current and revised legislation. The findings of a comprehensive 

literature review to investigate bacterial die-off in surface waters are summarised, with 

important relationships being quoted to develop the link between environmental variables 

and faecal indicator organism decay rates. This has led to the development of a series of 

functions, which were found to assist in the determination of suitable T90 values for use in 

hydro-environmental models. Studies were reviewed of health risk assessment and the 

transmission potential for human populations. Overall, this chapter establishes the degree of 

complexity and uncertainty related to the modelling of bacterial decay, which justifies the 

introduction of data driven modelling approaches in this key field of water management.
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CHAPTER 3
Hy d r o -en vir o n m en ta l  M o d e llin g

3.1 Introduction

During the past few decades, significant progress has been made in research with 

regard to the environmental impact on the biosphere and related anthropogenic 

activities. The cause and effect relationships between pollutant sources and degrading 

quality of the environment (both air and water) are better understood through research 

with the use of mathematical models.

In order to investigate the fate of pollutants once discharged into a water body it is 

necessary to understand the physical processes that control the movement of the 

solute within the receiving waters. In particular, how it becomes diluted, dispersed and 

advected from the point of discharge.

This chapter examines the hydrodynamic processes which cause pollutants and 

natural substances to be mixed in the receiving waters and transported with the flow. 

The numerical modelling process proceeds by describing the physical system with a 

set of equations and conservation laws acting upon it. The set of numerical operations 

transform the description of the system at one time to a description at a later time, 

providing a prognosis of the projected variable or property. The solute dispersion model 

is able to assist in the management strategy, including for example the design, location 

of discharges and operational options of a water body, for a range of bathymetric, 

hydrodynamic and meteorological conditions. The same numerical model may be used 

for different estuaries by altering the bathymetry, boundary conditions and other 

parameters.
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3.2 Governing Equations for Hydrodynamic Process

Numerical modelling of flow is based on the principal of the conservation of laws mass 

and momentum within the body of fluid to be studied. In many cases, the flow is 

defined by the Reynolds equations, which describe the three dimensional turbulent 

motion of an incompressible fluid. For flows which show little variation in the vertical 

direction, it is appropriate to integrate these equations over depth of water, resulting in 

the simplified ‘two-dimensional depth-averaged’ equations of motion. When integrated 

over the depth, the equations governing fluid motion are as follows (Falconer, 1994, 

Falconer et al.,1999):

Conservation of mass:

Conservation of momentum:

dp dfipU dfipV
dt + dx + dy

= f q -  g H ^ -  + — C„Wx ^jw2 + W 2 -  
dx p v

(3.2)
gp-jp2 + q2 , L d 2p 82P d2q

. . n   O I O ^  _ o ' _ o ' -  —
H 2C2 dx2 dy2 dxdy

(3.3)
QQyJp2 + q2 , r \ d 2q 0 d2q d2p

n I G r\ I *  #5 '
H 2C2 dx2 dy2 dxdydx2

where

p (=UH), q(=VH) discharges per unit width in the x and y directions
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respectively (m3/s/m)

qm source discharge per unit horizontal area (m3/s/ m2)

U,V depth averaged velocity components in the x and y

directions respectively (m/s) defined as:

U = ^-$udz, /dz (3.4)

ft momentum correction factor for a non-uniform vertical

velocity profile.

f  Coriolis parameter due to earth’s rotation f  = 2coSin<p , with

co= angular rotation speed of the earth and q>= geographical 

angle of latitude; = 27r/(24 x 3600)

= 7 .2 7  x 10-5 radians/s, see Martin and McCutcheon(1999) 

and Kundu (1990),

g gravitational acceleration (=9.806 m/s2)

H total water depth = (r|+h) - see Figure (3.1),

r) water surface elevation above datum see Figure (3.1),

pa density of air (=  1.292 kg/m3),
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density of fluid (kg/m3)

Chezy roughness coefficient (m1/2/s)

air/fluid resistance coefficient (assumed to be 2.6x10'3 

Falconer, 1991)

depth averaged turbulent eddy viscosity (m2/s)

Further details of the derivation of continuity and momentum equations can be found in 

Kundu (1990), Versteeg and Malalasekara (1995) and Falconer (1994).

MWL

h

r Bed Level

Figure 3.1: Co-ordinate system for depth integrated equations 

3.3 M om entum  C orrection  Factor

For an assumed logarithmic vertical velocity profile, the momentum correction factor 

can be calculated using:
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(3.5)

Where k  = von Karman constant = 0.4. For a velocity profile defined by the seventh 

power law, the value of /?=1.016 and it is 1.20 for a quadratic velocity profile (Falconer 

and Chen, 1991).

3.3.1 W ind Effects

Wind exerts a drag force as it blows over the water surface. The shear stress at the air- 

water interface is calculated by assuming that it is proportional to the square of the 

wind speed at a particular height above the water surface. Various empirical formulae 

have been proposed to calculate the surface-water resistance coefficient, similar to that 

used to estimate for the drag coefficient in a turbulent flow field.

For the surface shear stress due to wind action, resolving forces horizontally for steady 

uniform flow gives for the x-direction:

where Cw-  air-water resistance coefficient and, W x and W y = wind velocity 

components in the x and y direction respectively.

For water bodies with a strong current, such as occurring in estuaries and rivers, then 

the wind stress is often small compared to the bottom shear stress. In contrast wind 

generally plays a prominent role in the open sea and in lakes (Falconer et al., 2001).

3.3.2 Bottom Friction

In most coastal, estuarine and river flow studies the bed shear stress is represented in 

the form of a quadratic friction law, based on a relationship derived for steady uniform 

open channel (Henderson, 1966). Thus, in the x-direction the bed shear stress can be 

written as:

P P
(3.6)
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rb _ gpyfp2 + q 2 
H 2C2

(3.7)

Bottom friction has a non-linear, retarding effect on the flow. The Chezy coefficient is a 

semi-empirical bottom friction coefficient, which was originally derived from a uniform 

flow condition in open channels. Under a rough turbulent flow condition and a 

logarithmic velocity profile, the Chezy bottom friction coefficient is assumed to be 

independent of the Reynolds number and varies only with the relative roughness of the 

bed and can be defined as follows (Henderson, 1966):

C = J ^  = -2y/8g log
12.0 H

(3.8)

Where ks = Nikuradse equivalent sand grain roughness, f = Darcy-Weisbach resistance 

coefficient.

Under transitional flow conditions, i.e. the Chezy coefficient varies with the Reynolds 

number. The corresponding Chezy coefficient can be obtained by using a slightly 

modified Colebrook-White equation of the form:

C = -2yf8g log,
12.OH fe g R e

(3.9)

Where, Re = Reynolds number

fluid.

4 | \ IU 2 + V 2 I
R. , and v= kinematic viscosity of

3.3.3 Turbulence

The turbulent shear stress refers to the flow resistance associated with random 

fluctuations in the fluid with regard to space and time. The momentum exchange 

brought about by turbulence causes the vertical velocity distribution to be more uniform
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than under laminar flow conditions. The turbulence model in this study applies 

Boussinesq’s approximation for the mean shear stress t0 in turbulent flow:

Where e = eddy viscosity, which is dependent on the turbulent characteristics of the 

flow and may be several orders of magnitude greater than the molecular viscosity 

(Falconer et al., 1999).

If the turbulent shear stress is dominated by bottom friction, a relationship between the 

Chezy coefficient and eddy viscosity exists. The depth averaged eddy viscosity may be 

calculated by using Fischer’s approximation to give:

e = Ce.U..H (3.11)

Where U. = bed shear velocity, as given as by:

J g ( u 2 + V 2)
-------------  (3.12)

Substituting Equation (3.12) into Equation (3.11) gives the eddy viscosity as:

£ = C' ^ g ( U 2 + V2) (3.13)

Where Ce = eddy viscosity coefficient, with Fischer’s (1979) suggestion of the eddy 

viscosity co-efficient Ce ~ 0.15 based on laboratory data. Values of Ce are frequently 

found to be much larger for actual tidal flows in estuaries and coastal waters; in this 

study Ce~ 1.00 has been used (Falconer et al., 2001)
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3.4 Governing Equation for Solute Transport Processes

When a cloud of dissolved or suspended material is released into receiving waters, the 

cloud propagates, dilutes and spreads as it moves with the flow due to the effects of 

advection, diffusion and dispersive transport processes. The advection refers to the 

transport of the material by the flow current, such as the tidal current in estuarine and 

coastal waters. Diffusion includes the scattering of particles by molecular and turbulent 

motion. The dispersion, as distinct from diffusion, is the dilution process associated 

with the stretching out and distortion of a cloud of solute in a non-uniform flow by the 

effect of the velocity shear and the consequential averaging of the flow distribution over 

the depth for the two-dimensional models (Smith, 1992).

For a horizontal or quasi-horizontal flow, the three dimensional solute mass balance 

equations can be integrated over the water depth to give the two-'dimensional depth 

integrated advective-diffusion equation (see Bedford, 1994)

dH(p dHU(f) dHV (f>
dt dx dy

_d_
dx

d_
dy

D H —  + D H —  
dx * dy

D H —  + D H —
** dx "  dy

+
(3.14)

HS„

Where (f>- depth averaged solute concentration (weight/volume) or temperature (°C),

Dxx, Dxy, Dyx, Dyy = depth averaged dispersion-diffusion co-efficient in the x and y 

direction, respectively (m2/s), which was shown (Preston, 1985; Holly, 1984) to be of 

the form:

(k,p2 + k,q2)J g  (k,U2 + k,V2)H  Jg

Cxjp2 + q2 C \ l i /2 + V2

Dyx D, =
( k , - k , ) p q 4 g  

C s j p  + q 2
(3.16)
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n (k,q2 + k ,p 2)J g  (k,V2 + k,U2) H j g

n =  = c 4 U ^  ( ]

In which k t and k t are the depth averaged longitudinal dispersion and lateral turbulent

diffusion co-efficient respectively and where kt= 5.93 and kt-  0.23 according to Elder 

(1959).

Ss summarises all of the other sources and sinks of the solute. Sources and sinks 

include discharges from outfalls and rivers as well as chemical and biological 

transformations.

In coastal and estuarine flows the water depth H  may vary rapidly, thus the 

monotonicity of the depth integrated concentration {</H) may be different from the 

monotonicity of the solute concentration ($ .Therefore, advective-diffusion equation

(3.14) needs to be rearranged as given by Wu and Falconer (1998).

3.5 Numerical Methods

The most widely used numerical method to solve the governing equations, which have 

been widely applied to fluid flow and solute transport, are the finite difference method, 

the finite element method and the finite volume method. The finite difference 

approximation is the oldest method applied to obtain the numerical solution of the 

differential equations, and the first application was developed by Euler in 1768 (Hirsch, 

1988). The finite difference method has been applied to two- and three-dimensional 

hydrodynamic and solute transport studies in estuarine and coastal waters by many 

researchers such as Yin et al. (2000), Zoppou et al. (2000), Shu and Chew (1998), 

Huang and Li (1997), Lin and Falconer (1997a, 1997b, 1995), Owens and Falconer 

(1987), Abbott and Basco (1989), Stelling et al. (1985) etc.

3.6 Finite Difference Method

Although the conservation of mass and momentum within any physical domain may be 

represented by the corresponding governing partial differential equations, these
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equations can be written in many different finite difference forms. Consequentially, for 

any given set of differential equation it is desirable to be able to compare and contrast 

these finite difference schemes so that the most appropriate representation of the 

governing differential equations can be applied. Approximations to the derivatives are 

obtained to replace the individual terms in governing differential equations. The 

following figure provides a schematisation of the steps required, and some of the key 

terms used to ensure that the results obtained are in fact a solution of the original 

partial differential equations.

Governing
Partial

Differential
Equation

— —  Discretization
System of 
A lgebraic 
Equations

Consistency mmm

Ins tab ility

Exact _  Convergence Approxim ate
Solutions as Ax, A t -> 0 Solutions

Figure 3.2: Overall procedure used to develop a CFD solution procedure

For the Finite difference representation of the Partial Differential Equations (PDEs) the 

approximations to the derivatives obtained above can be used to replace the individual 

terms in the partial differential equations. Figure 3.2 provides a schematic of the steps 

required, and some of the key terms used to ensure that the results obtained are in fact 

the solution of the original partial differential equation. Each of these new terms is 

defined below.

Accurate numerical methods for the partial differential equations require that the 

physical features of the PDE be reflected in the numerical solution algorithm. The 

selection of a particular finite difference approximation depends upon the physics of the 

problem being studied. In general, the type of PDE is crucial, and thus a determination
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of the type, i.e. elliptic, hyperbolic, or parabolic, is extremely important. The 

mathematical type of the PDE must be used to construct the numerical scheme for 

approximating partial derivatives. Some advanced methods obscure the relationship, 

but it must still exist.

In Figure 3.2, several important terms have been introduced which require definition 

and discussion including:

• discretisation

• consistency

• stability

• convergence

Before defining these terms, it is useful to consider the general wave equation given 

by:

du _ d2u 
~dt~a dxT

(3.18)

This equation can be discretised using a forward difference in time and central 

difference in space formulations following the grid schematisation shown in Figure 3.3.

i+1

i-1

n-1 n n+1

Figure 3.3: Grid nomenclatures for discritisation of wave equation
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The differential and finite difference form of the wave equation can be written

as:

< u cru u - a — - = —------
r t  r X '  A t

u a

P D E
(A x)‘

- 2 u" + u" , )  +

F D E

d 2U At d4u
—  +  a — r  
2 dt4

n (Axy
12

(3.19)

= 0

Truncation E rror

Where the superscript denotes time and the subscript denotes spatial location. In 

Equation (3.19) the partial differential equation is converted to the related finite

difference equation (FDE), giving a truncation of the form 0 (A f,A x2)

Discretisation is the process by which finite difference approximations are used to 

replace derivatives with an approximation at a discrete set of points (i.e. the mesh). 

This introduces an error, due to the truncation error arising from the finite difference 

approximation and any errors due to the treatment of the boundary conditions.

Consistency is defined as the substantiation that the finite-difference representation of 

a PDE is converges to the original PDE and its difference representation vanishes as 

the mesh is reduced in size.

Stability is defined as the criterion which assess the behaviour errors from any source 

(e.g. round-off, truncation) with time. For a scheme to be stable it is necessary for the 

errors to decay with time as indicated below:

errors grow —♦ scheme unstable

errors decay —> scheme stable

and
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• Stability is normally thought of as being associated with time marching 

problems.

• Stability requirements often dictate the allowable step sizes, such as for explicit

schemes where the governing are that — Jgh < 1.
Ax

• In many cases a stability analysis can be made to define the stability 

requirements.

Convergence is defined as where the solution of the FDEs approach the solution of 

the PDEs as the mesh is refined. In the case of a linear equation there is a theorem 

which proves that the numerical solution to the FDE is in fact the solution of the original 

partial differential equation provided that the scheme is both stable and consistent.

In practice, numerical experiments must be conducted to determine if the solution 

appears to converge with respect to mesh size. Machine capability and computing 

budget (time as well as money) dictate limits to the mesh size. Many results presented 

in the literature are not completely converged with respect to the mesh and grid 

independence is a key concern relating to many published papers.

For any finite difference scheme only a limited number of terms in the Taylor’s series 

expansion can be included, therefore an approximation error, known as truncation 

error, will be introduced when a differential equation is approximated by a Taylor’s 

series expansion. Since the hydrodynamic governing equations involve only first and 

second order derivatives, first and second order difference approximations of these 

derivatives will be shown here. For different approximations of the first and second 

order derivatives, various finite difference schemes can be found in Tannehill et al. 

(1997) and Abbott and Basco (1989).
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Forward
Difference

Backward
Difference'

Central
Difference

Ax Ax

Figure 3.4 : Geometrical interpretation of difference formulae for first order derivatives
(Hirsh, 1988)

3.6.1 Discritisation of the Governing Equations 

Discritisation of the Continuity Equation

In the hydrodynamic model used in this study, an alternating direction implicit finite 

difference scheme is used to solve the governing equations, where for the first half time 

step the terms in the x-direction are treated implicitly and the terms in the y direction 

are treated explicitly. The continuity equation (Eq. 3.1) can therefore be discretised as 

follows:

/  1
n + 2 n

'l.i ~ li.,
\

At
2

+

f  1
n + -

P 12 - P  12
V l +2'J 1 2 ’J J

Ax

q 1 - q
+ V 2 t J~2 J

Ay = Qr (3.20)

Where i, j = grid point location in the x- and y-directions respectively, subscripts n, 

n+1/2, n+1 represent variables evaluated at time levels t = n A t , t = (n + 1/2)A f and

t = (n + 1)At , respectively, where At represents the time-step for computations and n

is the time step number. Using a square grid then, i.e. Ax = A y , equation (3.20) can

be rewritten as :
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V<j2 = ~
At

2Ax

n+-
1 1n+-

>. 12 " P  12/ H . / /---, /
2 2

+ 9 1
'■1 + ~

\

- q n. 1 
'•7"2y

+ (3.21)

For the second half-time step, the terms in the y-direction are treated implicitly and the 

terms in the x-direction are treated explicitly. In this case, the continuity equation is 

discritised as:

r f ?  ~ V  j  2
V________________)_

Af
2

+
1 .

i + - . j2
~ P

2'J J

Ax
+

qn+\  - q n+\
i , j + -  i . j -

V 2 2 y
Ay = qr (3.22)

and for a square grid cell Equation (3.22) reads:

Pij Pi.j
At

2AX

1

1 .

'+2J
p } + q n* \  - q n+\

i — ,/ i .j - -
2 J 1 2 2 J

+ A t.qr
(3.23)

Equations (3.20) to (3.23) are fully centred in both time and space over a whole time 

step, giving a second order accurate solution.

Discritisation of the momentum conservation equations

The momentum equation in the x-direction, i.e. Equation (3.2), can be written in the 

same manner as the continuity equation. Therefore, for the first half time step:
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(  1 1 '\n ♦ /v -

P 12 ~ P 12,

V V_V;
At 2 Ax

+
Ay

= fq n
3 -H " 1 ,  1j

2

1+ .J 
2 2Ax

1 1 1 ^nt n - - n + - n - -
'7/+1./ +  P  + 1,y -  ^/.y 2 -  P.y 2

v y

Pa+ £ j lc ww kj w ;  + w ;  
p

(  1 1 An + -  A7--

p  12 -  p  12
/ * - , J  I +  - .J

V  2  2 J
p-4/ l  -

H \  .C \
i + ~ - j  i - r - zJ

, .H " ,

Ax'
\

+ u  , , + u

2 y 
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+ W  , - V "  , - V "  1 + \ / n
i j -  -  / , / +  -  /+1,y- /+1,y-

2 2 2

Where denotes a term that is updated by iteration as:

U =

U 2 

1 (
U 2 + u

for the first iteration,

for the 2nd and remaining iteration

In Equation (3.24), V  denotes a velocity value obtained 

corresponding values at surrounding grid points giving:

—  n
V V ' + V'

■ i.y 1

2

and P  denotes a value obtained from the upwind algorithm where

(3-24)

(3 .2 5 )

averaging the

(3 .2 6 )
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i • .1 1 
2

/-• .1 *1 2

if  V '\  >0,
' V

if  V '\  <0
(3.27)

Likewise, for the momentum equation in the y-direction, Equation (3.3) can be written 

for the second half time step as:

qn' \  - q [
2

At P
K v - K t

  2   2 ,  2 2 2 2

2 Ay Ax

g-H \

■fp 21

:.H

Ax‘

! ■ ! -

2 Ay
( 1

>.> ■ 1 - - i ■ 1,/2 /  2 / 1 . /  ■

+ u  * - u  * - u  * + u  \
1-1

(3.28)

Where \/, U and q have similar expression to those given in Equations (3.25) to (3.27)

1
except that the current time level is n + — instead of n.

To obtain the water elevation gradient for the first half-time step, the depth integrated 

continuity equation (3.21) and the momentum equation in the x-direction (3.24) are 

written for all grid nodes across the domain. For instance, Equation (3.24) is written at

f  • 1 - 1point I / — , j  I while Equation (3.23) is centred at point (i, j). These two equations can

be simplified to give:
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'-2'y ' V (3.29)
f/’t-- r/ + — n+ -

a2,7 ,;2 +62,a ,2 + c 2ln„,2l = d2l
' V

„ 1 1n+- n+-
Where U 2 and 7 2 are the unknown velocity and water elevation variables while a, 

b, c and d are coefficients obtained through arrangement of equations. If there is 

velocity boundary at two ends, and there are total ‘I’ grid squares in the x-direction for 

the jth row, then the number of unknown is (21- 1) in the whole domain for the same 

number of equations. The system of equations obtained can be expressed in a tri 

diagonal matrix as follows.

2 *^2 ^ 2

a, b, c,

0
*21-2 ^ 2/ -1 ^ 21-2 

^2/-1 ^2/-1

J

2J

K.J

u
1 2 '

n,,

(3.30)

21 -2

2̂/-1

The system of equations is solved by the Thomas algorithm.

By solving the system of equations given in Equation (3.30), the velocity component
1 1rtf- n+ -

U 2 and the water elevation 7 , 2 can be determined across the domain. Likewise, a
'V

similar system of equations is formed for the seconds half time step by discretising 

Equations (3.23) and (3.28), to solve for //,n+1 and \ / n+11 .
'•'+o
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3.6.2 Alternating Direction Implicit (ADI)

In this study, a particular discretisation of the governing hydrodynamic equations which 

is based upon the Alternating Direction Implicit (ADI) technique. This is the best 

example of a splitting technique that was first applied by Peaceman and Rachford 

(1955) and Fletcher (1991). The technique was then generalised by Douglas and Gunn 

(1964).

For the ADI technique, each time step is split into two half time steps (see Figure 3.5). 

Thus a two dimensional problem can be solved by considering only one dimension 

implicitly for each half time step, without solving the two dimensional matrix. On the first 

half time step the water elevation ( r j) and the V velocity component (or the unit width 

discharge q) are solved implicitly in the y-direction, with the other variables being 

represented explicitly. With the boundary conditions included, the resulting finite 

difference equations for each half time steps are solved using the method of Gauss 

elimination and back substitution (or the Thomas Algorithm).

j+i

j-1

Sweep in the x 
direction (constant 
grid space) during 
the first half time - 
steps)

j-1 i i+1

Sweep in the y direction (constant grid space) 
during the second half time -steps)

Figure 3.5: ADI implementation (Fletcher, 1991)
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There are two families of solution techniques for linear algebraic equations: direct 

methods and indirect or iterative methods. Simple examples of direct methods are 

Cramer’s matrix inversion method and Gaussian elimination. Jacobi and Gauss Seidel 

point by point methods are well known examples of iterative methods. These iterative 

methods are easy to implement in simple computer programs, but they can be slow to 

converge when the equation system is large. Hence they are not considered suitable 

for Computational Fluid Dynamic procedures. Thomas (1949) developed a technique 

for rapidly solving a tri-diagonal system that is now called the Thomas algorithm or the 

tri-diagonal matrix algorithm. It is computationally relatively efficient and has the 

advantage that it requires a minimum amount of storage (Versteeg and Malalasekara, 

1995). In this study, the Thomas algorithm is used to solve the algebraic equations.

3.6.3 Staggered Grid System

In applying the finite difference method to solve the equations of mass, momentum and 

convective-diffusion for estuarine studies there are a number of advantages in not 

representing all the of variables/7, U, V and S at the same grid points. The use of a 

space staggered system prevents the appearance of oscillatory solutions, which tends 

to arise for a collocated grid for space centred differences (Fletcher, 1991).

In the space staggered grid system, which is used in this study, the variables 

//(elevation) and ^(concentration) are located at the grid centre with the velocity 

components U, V or p, q (discharge per unit width in X and Y direction respectively) 

being located at the midpoint of the sides, as shown in Figure 3.6. The depths are 

specified directly at the velocity points so that twice as much bathymetric detail can be 

included in comparison with the traditional methods, further by locating the velocities 

and the depths at the same point then the fluxes of flow and concentration can be 

evaluated more accurately. Thus, this method allows bed topography to be represented 

more accurately, particularly for non linear bed variations and complicated bed profiles. 

However, in practice specification of bed topography is often restricted by the available 

data (Falconer et al., 2001).
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j+1

j

1

i-1 i+1i

X  water elevation above datum (n) and solute (S)

+  x-component discharge per unit width (p)

y-component discharge per unit width (q)

( 3  depth below datum (h)

Figure 3.6: Computational Space Staggered Grid System

The ADI scheme used in this study is basically second order accurate, both in time and 

space and with no stability constraints due to the time centred implicit structure of the 

technique. However, it has been recognised that the time step needs to be restricted so 

that reasonable computational accuracy can be achieved (Chen, 1992). A maximum 

Courant number (Cf) was suggested by Stelling et al. (1985) as:
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Cf = 2 A t l g H
1 1+

Ax2 A y ‘
4>/2 (3.31)

With the average depth being adopted for H. When 2-D solute transport equation is 

also solved for each half time step, then the choice of the time step should also 

consider the stability requirements for the solute transport equation.

3.7 Summary

The Numerical solution methods used in the model for this research study are reviewed 

briefly in this chapter. The governing equations were discretised using an appropriate 

numerical scheme for the hydrodynamic differential equations (i.e. continuity and 

momentum conservation). Boundary conditions for each case, solution procedures for 

the discreitsed equations and the interpolation technique for the velocity and sediment 

concentrations have been outlined.
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Chapter 4
Data D r iven  M o d e ll in g : 

G enetic  P r o g r a m m in g  and  A rtific ial  

N eural  N etw o r k

4.1 Data, Information and Knowledge

Data have been commonly seen a set of as simple facts that can be structured to 

become information. There are several variations of this widely adopted concept. The 

common idea is that data are something less than information and information is less 

than knowledge. Data are assumed to be simple isolated facts. When such facts are 

put into a context, and combined within a structure, then information emerges. When 

information is given a meaning by interpretation it, then information becomes 

knowledge.

Davenport and Prusak (1998) provided a comprehensive discussion of the differences 

between data, information and knowledge. They suggest that data are simply facts, 

records or transactions about some kind of event that has occurred; information adds 

value to the data by providing context and interpretation and encoding it into some kind 

of message.

Davenport and Prusak (1998) stated that:

Data is a set o f discrete, objective facts about events...Data describes only a 
part o f what happened; it provides no judgment or interpretation and no 
sustainable basis of action...Data says nothing about its own importance or 
relevance.

According to the authors, however, data turn into information as soon as it is given 

meaning. Information must inform, as outlined:
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it’s data that makes a difference...Unlike data, information has meaning ...Data  
becomes information when its creator adds meaning

Wurman (1989) viewed the hierarchy as

Data are facts and figures that have no inherent meaning, Information is data to 
which people assign meaning and Knowledge is data that people can apply in 
their lives.

Information is “data endowed with relevance and purpose” (Druker, 1995), or data that 

make a difference (King, 1993). Bourdeau and Couillard (1999) see information as the 

result of analysing and interpreting data-phrases or images that carry a meaning. Thus 

information is normally associated with meaning. Knowledge is information made 

actionable in a way that adds value to the enterprise (Vail, 1999).

Spiegler (2000) views the chain as “yesterdays data are today’s information and

tomorrow’s knowledge  If data becomes information when they add value in some

way, then information becomes knowledge when it adds insight, abstractive value, 

better understanding.”

Knowledge Discovery denotes the overall process of extracting high-level knowledge 

from low-level data, however the terms Data Mining and Knowledge Discovery are 

often used interchangeably. The rapidly emerging field of knowledge discovery has 

grown significantly in the past few years. This growth is driven by a mix of daunting 

practical needs and strong research interests. The technology for computing and 

storage has enabled people to collect and store information from a wide range of 

sources at rates that were, only a few years ago, considered unimaginable.

This chapter establishes the notion of data based modelling in context and then 

describes briefly two such types of data-based models namely: Genetic Programming 

(GP) models and Artificial Neural Networks (ANNs), which have been applied in 

various water management studies in this research project.
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4.2 Modelling: Knowledge of Processes and Data

A model is a theoretical framework that represents a ‘reality’ with a set of variables and 

a set of logical and quantitative relationships between them. The objective of modelling 

is to explain or to predict that ‘reality’. Models in this sense are constructed to enable 

reasoning within an idealized logical framework about these processes and are an 

important component of scientific theories. Modelling includes: studying the system, 

formulating/establishing the problem, experimentation/data collection, analysis of the 

experimental results/data, building the model, verifying the model with real life data. 

Traditionally , the term model is used in one of two senses (Solomatine 2002),

• A mathematical model based on the description of behaviour of a system or 

phenomenon under study.

• A physical or scaled model based on material components or objects.

Behavioural models based on mathematical descriptions are used widely. Traditional 

modelling of physical processes is often named physically-based modelling (or 

knowledge-driven modelling) since the model tries to explain the underlying processes. 

For this case the emphasis is on a theory, which demands that appropriate data be 

obtained through observation or experiment. In such an approach, the discovery 

process may be referred to as theory driven. Especially when a theory is expressed in 

mathematical form, theory-driven discovery may make extensive use of strong 

methods associated with mathematics and with the subject matter of the theory itself. 

An example of such a model is the hydrodynamic model DIVAST used in this research 

and based on the solution of the Navier-Stokes partial differential equations, solved 

numerically using finite-difference scheme, and used in this study.

Another approach is based on the analysis of data characterising the system under 

study. A model can then be developed on the basis of interactions between the system 

state variables. These models are referred to as data-driven models. Data-driven 

models possess the attractive property that they can be built up generically in the 

sense that no underlying physical, chemical laws etc. about the system variables need 

to be known. This concept relies on the data describing input and output 

characteristics, primarily employs Artificial Intelligence (Al) techniques and is based on 

a limited knowledge of the modelling process. Statistical models, such as linear
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regression, follow the same approach. These methods, take a body of data as its 

starting point and search for a set of generalisations, or a theory, to describe the data 

parsimoniously or even to explain it. Usually such a theory takes the form of a precise 

mathematical statement of the relations existing among the data. Thus they are able to 

make abstractions and generalizations of the process and often play a complementary 

role in physically-based models (Keijzer and Babovic 2000).

Data-driven modelling uses results from such overlapping fields as data mining, 

artificial neural networks (ANNs), machine learning, evolutionary computations, rule- 

based type approaches, such as expert systems, fuzzy logic concepts, rule-induction 

and machine learning systems. Sometimes "hybrid models" are built which combine 

both types of these models. In this research study particular attention has been given 

to examining suitability of Genetic programming and Artificial Neural Networks 

approaches, as a supplement to the conventional behavioural models.

4.3 Model Induction from Data

One particular mode of data mining is that of model induction. Inferring models from 

data is a method of deducing a closed-form explanation based on observations. These 

observations, however, more often than not represent a limited source of information. 

The question emerges how such a limited flow of information from a physical system to 

the observer can result in the formation of a model that is complete, in the sense that it 

can account for the entire range of phenomena encountered within the physical system 

in question. The confidence in model performance can not be based on data alone, but 

might be achieved by grounding models in the domain so that appropriate semantic 

content is obtainable. This should be the ultimate goal of knowledge discovery.

The rapid advance in information processing systems in recent decades had directed 

engineering research towards the development of intelligent systems that can evolve 

models of natural phenomena automatically without any human intervention. In this 

respect, a wide range of machine learning techniques, like Decision Trees, Artificial 

Neural Networks, Bayesian methods, Fuzzy-Rule based systems and Evolutionary 

Algorithms, have been successfully applied to solve various problems, including a 

significant number of civil engineering and water resources modelling and management
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issues. These techniques have also shown their potential as an alternative approach to 

conventional modelling.

The goal of learning from examples is to find the general rule that created the specific 

examples, and this is achieved by trying out different model topology and related 

parameters. Of the various possible methods for model induction from data Genetic 

Programming (GP) and Artificial Neural Networks (ANNs) are reviewed in the rest of 

this chapter and the implementation of these new data mining and knowledge 

discovery processes are then shown to produce a valid management tool in the 

following chapters.

4.4 Genetic Programming

Genetic programming became a popular branch of Evolutionary Algorithms in the early 

1990s due primarily to the work by Koza (Koza 1992). Genetic Programming, as 

envisioned by Koza, does not process computer programs in the same way that human 

programmers would. There are no ASCII files, no countless data types that can be 

mixed, or no repulsive syntax with various special symbols that can be misplaced to 

produce a synthetically meaningless result. The standard genetic programming system 

operates using abstractions of computer programs. In the short time, since the 

publication of Koza’s 1992 book, over eight hundred GP papers have been published 

(Banzhaf et al., 1998). Researchers have devised many different systems that may 

fairly be called genetic programming -  system that use tree, linear and graph genomes; 

systems that use high crossover rates and mutation rates.

No exposition on Genetic Programming would be complete without some reference to 

the ideas which inspired them. The next section describes the very notion of 

evolutionary computation, before focusing on the details of Genetic Programming in the 

subsequent sections.

4.4.1 Evolutionary Computation

The principle of evolution is the primary unifying concept of biology, linking every 

organism together in a historical chain of events. Over many generations, random
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variation and natural selection have shaped the behaviour of individuals and species to 

fit the demands of their surroundings. Whilst evolution itself has no intrinsic purpose, it 

is capable of engineering solutions to the problem of survival that are unique to the 

circumstance of each individual. Harnessing the evolutionary process within a 

computer provides means for solving complex engineering problems that traditional 

algorithms have been unable to solve. Indeed, the field of evolutionary computation is 

one of the fastest growing areas of computer science and engineering, enabling the 

solution to be found for many problems that were previously unsolvable.

Evolutionary algorithms mimic the process of natural evolution, the driving process for 

the emergence of complex and well-adapted organic structures. Evolutionary 

Algorithms (EAs) are engines simulating grossly simplified processes occurring in 

nature and implemented in artificial media -  such as the computer.

Charles Darwin (1859) described a unifying view of the origin and further evolution of 

organisms in nature in his book The origin of species’ based on the principal of natural 

selection. He stated (Banzhaf et al., 1998):

....if variation useful to any organic being do occur, assuredly individuals thus 

characterized will have the best chance of being preserved in the struggle for 

life; and from the strong principal of in heritance they will tend to produce 

offspring similarly characterized. This principle o f preservation, I have called, for 

the sake o f brevity, Natural Selection (C. Darwin, 1859)

Using the same principle, Evolutionary Computation tackles difficult problems by 

evolving approximate solutions. Starting with a primordial diversity of random solutions, 

repeated variation and selection are applied to improve the accuracy of the solutions. 

The basic criterion for evolution to take place -  either in biology or through computers -  

have been summarized by Maynerd-Smith (Maynerd-Smith 1975) as-

Criterions of Heredity The copying process is highly dependable and offspring are 

similar to their parents.
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Criterion of Variability The copying process is not perfect and offspring are not 

exactly the same as their parents

Criterion of Fecundity A different number of off-spring resulted from different variants. 

Any specific variation has an effect on behaviour, and this behaviour has an effect on 

reproductive success.

Darwinian evolution uses the principles of competition, inheritance and variation within 

a population. These concepts are used to define a class of iterative improvement meta 

heuristic search methods. These methods, evolutionary algorithms, use a population of 

solutions and genetic operators to carry out searches. Specifically, the evolutionary 

algorithm employs the following items:

• A population of candidate solutions called individuals,

• A fitness function that evaluates and assigns each individual a score, or fitness 

value,

• Transformation operators that produce offspring individuals from parent 

individuals, implementing the concept of inheritance through stochastic 

variation, and

• A stochastic selection method for selecting individuals with better fitness to 

produce offspring.

The definition of the basic evolutionary algorithm is representation-free. It does not 

mention what form of solutions should be considered and, in effect, many 

representations are used in the field of evolutionary computation. Evolutionary 

algorithms are often categorised into four main branches (Babovic and Abbot 1997) 

that are mainly distinguishable by their commonly used representation and operators: 

Genetic Algorithms that use a bit-string and two-parent crossover, Evolutionary 

Strategies which use a real-valued vector and Gaussian mutation, Evolutionary 

Programming which employs a finite-state machine and mutation operators, and 

Genetic Programming which uses a computer program or executable structure and 

two-parent crossovers. Despite their differences, they share the same main ingredients 

as population of solutions, innovation operations, conservation operations, quality
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differentials and selection. These classifications represent common, or initial, 

implementations. Many implementations use components from different branches and 

make the classifications less accurate.

4.4.2 Fundamentals of Genetic Programming

Langdon and Poli (2002) summarised the theoretical foundations of genetic 

programming. Theories of evolutionary algorithms use abstract representations of the 

solution space, called schemata, to describe various components and behaviour of the 

algorithm. Holland's (1975) notion of schema for genetic algorithms was extended by 

Koza (1992) to include syntax trees. Syntax trees are the common representation in 

genetic programming, and these schemas were intended to represent trees that have 

common subtrees. In this case, subtrees represent functional codes that are combined 

over time to create better programs (Altenberg, 1994; Rosea and Ballard, 1996). Rosea 

(1997) defined a similar schema based on rooted trees, also using wildcards to allow 

for schema to represent templates.

The use of this flexible coding system allows the algorithm to perform structural 

optimisation. This can be useful for the solution of many engineering problems. For 

example, GP may be used to perform symbolic regression. While conventional 

regression seeks to optimise the parameters for a pre-specified model structure, with 

symbolic regression, the model structure and parameters are determined 

simultaneously. Similarly, the evolution of control algorithms, scheduling programs, 

structural design and signal processing algorithms can be viewed as structural 

optimisation problems suitable for GP. The basic features of GP are described in this 

section, with more details given in Banzhaf et al. (1998).

4.4.2.1 Terminals and Function

A parse tree is composed of terminals and functions, together known as nodes. 

Functions are inner nodes, while terminals are leafs of the tree. The terminals and 

functions play different roles. In general terms, terminals provide a value to the system 

and functions process a value already in the system.
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Input, constants and other zero-argument nodes are called terminals, or leafs, because 

they terminate a branch of a tree in tree based GP. In fact a terminal lies at the end of 

every branch of the tree structure. The notion is to use these terminals as inputs to the 

program, constant or function without argument. In either case, a terminal returns a 

numerical value without any need for take an input for itself. Another way of outlining 

this notion is that terminal nodes have an arity of zero. The arity of a node is the 

number of arguments it expects to receive.

The terminal set also includes constants. In typical tree based GP, a set of real 

numbered constants is chosen for the entire population at the beginning of the run. 

These constants do not change their value during the run. They are called random 

ephemeral constant and are represented by the symbol . Other constants may be 

constructed within programs by combining random ephemeral constants using 

arithmetic functions. On the other hand, in linear GP systems, the constant portion of 

the terminal set is consists of a number chosen randomly out of a range of real, or 

integers, constants and these constants may also experience mutation.

The function comprises statements, operators, and functions available to the GP  

system (Banzhaf et al., 1998) The function set may be application specific and may be 

selected to fit the problem domain. The range of available functions may be broad, 

including boolean functions, arithmetic functions, transcendental functions and variable 

assignment functions. In fact, it may use any construct that is available to any 

programming language.

The functions and terminal sets used in a GP run should be powerful enough to 

represent the solution of a problem. A function set consists of too few operators (say, 

addition only) will not solve many difficult problems. On the other hand too large a 

function set makes search for a solution harder. So a parsimonious approach to 

choosing a function is often advised in the literature. A similar approach is also 

effective in choosing the constant.

4.4.2.2 Representation of Solutions

The original formulations of genetic programming considered Lisp S-expressions as 

candidate solutions. The Lisp programming language is popular in artificial intelligence
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research, as it was designed for symbolic processing. S-expressions, or symbolic 

expressions, are the basic objects in Lisp and are naturally represented as syntax 

trees, where leaves represent terminals (variables or constants) and nodes represent 

functions. In genetic programming, to overcome typing related to passing arguments 

and function values to functions, it is standard practice to use a strongly-typed system 

(Montana, 1995), where variables and functions have the same type. Grammar-based 

genetic programming systems can easily use multiple types, but require a defined 

grammar and specialised operators (Whigham, 1995; Ryan et al., 1998). The  

evaluation of a syntax tree is performed as a depth-first walk of the tree. Before 

evaluating a node, each of its arguments must be evaluated first. Thus, one may think 

of the syntax tree evaluation algorithm as a recursive call on the root node of the tree, 

which in turn evaluates each of its children, typically from left to right. Function and 

terminal nodes return their values up the tree to their parent, where terminals can only 

return their value. In the domain of mathematical functions, the expression

((3 /(1  + 2)) + (-1 )) can be represented by an S-expression in prefix as 

(+ ( /(3 (+ (1 2 )) ) j  - l ) .  Which can be represented as a tree as-

The representation of candidate solutions in genetic programming is not limited to 

single syntax trees. Auxiliary data structures, such as memory arrays, are also used 

(Spector and Luke, 1996), as are data structures containing several syntax trees to 

represent one solution (Luke, 1998). The encapsulation of functions has been 

accomplished with automatically defined functions (Koza, 1994) or automatically

Figure 4.1: Tree representation
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defined macros (Spector, 1996). More recent advances have seen “architectural- 

altering” operators, loops and recursion (Koza et al., 1999).

4.4.2.3 Population and Initialisation

The first step of performing a GP run is to initialise the population. This means creating 

a variety of program structures for later evolution. The role of the population is to hold 

(the representation of) possible solutions. A population is a multi set of genotypes. The 

population forms the basic units of evolution. Individuals are static objects, not 

changing or adapting, it is the population that changes. Defining a population can be as 

simple as specifying how many individuals are present, provided representation exists. 

The diversity of a population is a measure of the number of different solutions present. 

No single measure of diversity exists. The number of different fitness values present, 

the number of different phenotypes present, or the number of different genotypes are 

among the popular measures for diversity.

Initialisation can be done in several ways. There are two different methods of initialising 

tree structures commonly in use. They are called full and grow methods (Koza, 1992). 

In the grow method, a primitive - be it a function or a terminal -  is selected at random, 

and as long as there are unresolved subtrees, then the process is repeated. When a 

predefined depth or size limit is reached, then only terminals are chosen.

If the terminal and functions allowable to the program tree is selected as 

T = {a,b,c,d,e} andF = { + , - ,x , / } , then one of the numerous possible trees could be as 

Figure 4.2.

In Figure 4.2 the branch that ends with input ‘a ’ has a depth of only three as choosing 

terminals is random throughout initialisation. Tree initialised methods therefore are 

more likely to be of an irregular shape.

On the other hand in the Full method, functions are chosen only until a node is at 

maximum depth, and then it chooses the terminals only. As a result every branch of 

the tree goes to its maximum depth. Figure 4.3 has been initialised with the full method 

with a maximum depth of three.
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Figure 4.2: Tree of maximum depth four initialised with the grow method

The above methods have their drawbacks as they could result in a uniform set of 

structure in initial populations as the routine is same for all individuals. But diversity is 

valuable for GP populations. To prevent this Koza (1992) devised the ramped half-n- 

half method. This method probabilistically selects between two recursive tree 

generating methods: Grow and Full. It is intended to enhance the population diversity 

from outset. An overview of alternative tree initialization routines and an empirical 

composition between those can be found in Luke and Panait (2001).

Figure 4.3: Tree of maximum depth three initialised with the full method
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4.4.2.4 Genetic Operators

An initialised population usually has a very low fitness. Evolution proceeds by 

transforming the initial population by the use of genetic operators. The three principal 

genetic operators are:

a) Crossover;

b) Mutation; and

c) Reproduction

Two basic operators are described here.

Crossover

The crossover operator combines the genetic material of two parents by swapping a 

part of one parent with a part of other. The mechanics of the subtree crossover method 

were initially described by Cramer (1985) and Koza (1992) and have been examined in 

detail in a variety of studies, e.g. (D'haeseleer, 1994; Luke and Spector,1998; Langdon, 

2000; Gathercole and Ross, 1996). The algorithm can be described as follows: two 

trees are selected from the population, a subtree in each tree is selected and the two 

subtrees are exchanged between the trees. Either one or both children are considered 

for the new population.

Subtree selection is done by assigning a uniform probability to all internal nodes and 

leaf nodes separately. Then, an internal node selection probability, usually set to 0.9, 

defines the frequency of leaves or subtrees selected for recombination. It may be 

noticed that, as trees grow in size, the probability of selecting subtrees grows near the 

leaves. This is because there are more nodes in these locations, giving them a higher 

cumulative probability of being selected.
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Before crossover

After crossover

Figure 4.4: The crossover operator acting on two parse trees (the branches to be
copied from each are circled)

Since in canonical genetic programming all functions and terminals return and expect 

the same type, any exchange of subtrees between two trees will be valid. Many 

possible variations of recombination exist. For example, Homologous and Size Fair
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crossover (Langdon, 2000) attempt to preserve tree structures and the size of 

exchanged subtrees. Other operators are described in (Langdon, 1998).

Mutation

Mutation operates on only one individual. Normally, after crossover has occurred, each 

child produced by crossover undergoes mutation with a low probability (Banzhaf et a l., 

1998). The probability of mutation is a parameter of run. However, a separate 

application of crossover and mutation is also possible.

When an individual is selected for mutation, one type of mutation operator in tree GP  

selects a point in the tree randomly and replaces the existing subtree at that point with 

a new randomly generated subtree. The new randomly generated subtree is created in 

the same way and subject to the same limitations (on depth or size) as programs in the 

initial population. The altered population is then placed back into the population. There 

are other types of mutations including single-node mutations and various forms of 

code-editing to remove unnecessary code from trees. The detail of these types is 

available in (Banzhaf et al., 1998). The reproduction operator copies an individual from 

one population to the next.

Subtree crossover tends to be the dominant operator in genetic programming, while 

mutation operators are often used at lower rates. Subtree mutation was investigated in 

comparison with subtree crossover in (Luke and Spector 1998).

4.4.2.5 Fitness and Selection

Selection is an essential process in EAs that removes individuals with a low fitness and 

drives the population towards better solutions. After the quality of an individual has 

been determined by applying a fitness function, a decision has to be made whether to 

apply genetic operators to that individual and whether to keep it in the population or 

allow it to be replaced. This task is called selection. The fitness function used in this 

study is the Root Mean Squared Error (RMSE) and Coefficient of Determination (CoD).
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The mathematical expressions for these functions are given in Chapter 5 (see 

Equations 5.1 and 5.2)

Selection defines how the algorithm updates the population from one iteration to the 

next and is responsible for the speed of evolution. In general, selection either replaces 

the entire population or only a fraction of it. The former approach is used in 

generational EAs whereas the latter is employed in steady-state EAs. There are a few  

major differences between the two approaches, with the most common selection 

algorithms being described below.

Tournament selection

Tournament selection is not based on competition within the full generation but a 

subset of population. In each tournament, the process picks a number of individuals, 

called the tournament size and is selected randomly. A selective competition then 

takes place and the individuals with the better fitness are then allowed to replace those 

of the worse individuals. In the smallest possible tournament two individuals compete. 

The better of the two is allowed to reproduce with mutation. The result of this 

reproduction is returned to the population, replacing the loser of the tournament.

The selection pressure in tournament selection is dictated by the tournament size. A 

small tournament causes a low selection pressure, with a large tournament size 

causing a high pressure. The selection pressure can be lowered by introducing 

stochastic winners in tournaments with two individuals. Hence, the fittest individual 

wins with probability p > 0.5. Typical values are p = 0.75 or p = 0.8. Setting p = 0.5 is 

equivalent to random selection.

Tournament selection is easy to implement, produces good results within short time, 

requires very little computing time, is controlled by only a few parameters and above all 

does not require a centralised fitness comparison between all individuals. For these 

reasons, tournament selection is probably nowadays the most commonly used 

selection operator.
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Proportional selection

Proportional selection assigns the probability of an individual’s survival according to the 

fitness of the individual. The probability is calculated by dividing the fitness of the 

individual by the fitness sum of the whole population, i.e., an individual’s chance of 

survival depends on its relative fitness to the other individuals. Each individual is 

assigned to a “slot” of the interval [0 ; 1] according to the individual’s probability of 

survival. An individual is selected if a random number of the interval [0; 1] is within its 

slot. This selection method is often illustrated as a biased roulette wheel, where the 

interval slots correspond to the slots of a roulette wheel and the “winners” are copied to 

the next generation. The drawback of proportional selection is that the selection 

pressure depends on the relative fitness of the individuals, instead of a parameter such 

as tournament size. In proportional selection, a few very good individuals can quickly 

take over the entire population, because they dominate a large part of the roulette 

wheel and are therefore frequently copied when the next generation is formed. For this 

reason, proportional selection is not as popular as it used to be.

Ranking selection

Ranking selection is a variant of proportional selection that deals with the uncontrolled 

selection pressure. It is based on the fitness order, into which the individuals can be 

sorted. In ranking selection, the selective superiority of an individual is determined by a 

fixed probability of survival according to its fitness rank. The ranking is obtained by 

sorting the individuals according to their fitness. Each individual is then assigned a 

probability of survival, which is determined by the used ranking scheme. The selection 

is performed using the roulette wheel approach.

The difficult part of applying ranking selection is to determine a good probability of 

survival for each rank. A scheme that is too generous towards low-fit solutions might 

slow down the convergence, while a scheme favouring the best individuals might lead 

to a premature loss of genetic diversity.

Steady-state selection

Evolutionary algorithms that are based on steady-state selection, also known as 

steady-state EAs, update only a small fraction of the population in every iteration. The 

evolutionary operators create A potential solutions from the parent population with size 

p. The (A + p.) individuals are then sorted and A individuals with the lowest fitness are
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discarded. Common values are p = 100 and A = 15. This approach is fundamentally 

different from tournament, proportional and ranking selection. In steady-state selection 

the populations are overlapping and all the surviving individuals are deterministically 

selected, which is only the case for the elite individuals in the other three selection 

techniques. The steady-state selection method is that used for the GP adopted in this 

thesis in most of the cases.

Manual selection

In some applications the quality of a solution is based on a subjective evaluation of 

issues that are hard or impossible to capture mathematically; for instance, the beauty 

of a design. Instead, the selection process can be handled by a human operator. The 

algorithm displays the current solutions and asks the operator to select a subset of the 

presented solution. The selected solutions are then used to create a new population 

and the process is repeated. Examples of manual selection include evolution of robot 

controllers, mixing of food-colours and more experimental applications in evolutionary 

art.

Stopping Criterion

The termination criterion is based upon the problem that is being solved. Normally, an 

exact solution cannot be obtained and so the search for a solution is complete after a 

certain number of generations have been performed. In the case of the time series 

model that is developed in this paper, an exact solution to the training data is neither 

desirable (since this would imply that the solution has been overly specialised) nor is it 

likely to occur. Hence, the solution that is accepted is the one with the best fitness after 

a fixed number of generations.

4.4.3 Dimensionally Aware Genetic Program

The standard GP is ignorant of the dimensionality of its terminals and as such can only 

produce dimensionally correct formulations if it is applied to problems composed of 

dimensionless numbers. However, given the symbolic nature of GP and its ability to 

manipulate the structure of functional relationships, the inclusion of units of 

measurement, and the information contained within them, is thought to result in 

improved search efficiency. The inclusion of dimensionality is termed as Dimensionally 

Aware Genetic Programming (DA GP) (Keijzer and Babovic, 1999) and differs from
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generally used evolutionary computing approaches, in that the raw observations are 

used together with their units of measurement. In the DA GP every node in the parse 

trees maintains a description of the units of the measurement associated with each 

terminal, with randomly generated constants allowed only as dimensionless quantities. 

The application of arithmetic functions on dimension-augmented terminals should be 

undertaken without violating the dimensional constraints. For example, adding metres 

to seconds renders a dimensionally incorrect result, whereas dividing metres by 

seconds gives the dimensionally correct expression for linear motion. In cases where 

dimensional correctness is not maintained additional functions are introduced in order 

to repair trees and guarantee closure. Further details of dimensionally aware genetic 

programming may be found in Keijzer and Babovic (1999).

4.5 Artificial Neural Networks

Artificial Neural Networks (ANNs), also referred to as Neural Networks, are a class of 

artificial intelligence algorithm that operate analogously to the biological process of a 

brain. Artificial Neural Networks are composed of a number of interconnected simple 

processing elements called neurons or nodes. Each node receives an input signal 

which is the total “information” from other nodes or external stimuli, processes it locally 

through an activation or transfer function, and produces a transformed output signal to 

other nodes or external outputs. The mathematical models are much simpler than their 

biological counterparts. It should be highlighted that not all ANNs are models of 

biological neurons. However the inspiration for the field of ANNs stems from the notion 

of producing a system of an artificial brain.

Although each individual neuron implements its function rather slowly and imperfectly, 

collectively a network can produce a surprising performance (Reilly and Cooper, 1990). 

This information processing characteristic makes ANNs a powerful computational 

device, able to learn from examples, and then to generalize to examples never before 

seen. In recent years ANNs have become extremely popular for prediction and 

forecasting in a number of areas, including finance, power generation, medicine, water 

resources and environmental science. Data classification (or grouping) and function 

approximation (or mapping) are among other common applications of ANNs.
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Although the concept of artificial neurons was first introduced in 1943 (McCulloch and 

Pitts, 1943), research into the application of ANNs has blossomed since the 

introduction of the back propagation training algorithm for Feedforward ANNs in 1986 

(Rumelhart et al., 1986). ANNs may thus be considered a fairly new tool in the field of 

prediction and forecasting.

4.5.1 Biological Inspiration of Artificial Neurons

The long course of evolution has given the human brain many desirable characteristics, 

such as massive parallelism, distributed representation and computation, learning 

ability, adaptivity, inherent contextual information processing, and fault tolerance. Thus 

the human brain has the ability to perform difficult operations and to recognise complex 

patterns, even if these patterns are distorted by ‘noise’. The particular ability of the 

brain to learn from experience without a predefined knowledge of the underlying 

physical relationship makes it an exceptionally flexible and powerful calculating device 

that researchers have long tried to mimic.

ANNs are not an exact computational representation of the human brain, but are 

merely inspired by the limited understanding of the activities that take place in the 

brain. The human brain consists of approximately 10 to 100 billion (1011) brain cells, 

known as neurons. These neurons are massively connected, with each neuron being 

connected to 103 to 104 other neurons. In total, the human brain contains approximately 

1014 to 1015 interconnections. When the brain performs a task, like recognising a 

pattern, a number of processing steps are undertaken, some delays are caused by the 

travel time of information between neurons, but the brain still has the ability to process 

steps within a second. On the other hand a single switching operation in a digital 

computer is of the order of magnitude of 1 nanosecond (10'9 sec) which is about 1 

million times faster than the response time of a biological neuron. Even with this 

capability most modern computers are still incapable of performing better then human 

brain for most cases. The brain compensates for the relatively slow switching speed by 

massively parallel configurations. The inspiration for ANNs therefore lies in the desire 

to mimic this functionality of the human brain on a computer which lacks the 

parallelism.
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Synapse

Axon

Cell body Axon

Dendrites

Figure 4.5: A sketch of biological neuron

Neurons (or nerve cells) are special biological cell that process information (see Figure 

4.5). They are composed of a cell body, or soma, and two types of out-reaching tree­

like branches: the axon and the dendrites. The cell body has a nucleus that contains 

information about hereditary traits and plasma that holds the molecular equipment for 

producing material needed by the neuron. A neuron receives signals (impulses) from 

other neurons through its dendrites (receivers) and transmits signals generated by its 

cell body along the axon (transmitter), which eventually branches into strands and sub 

strands. At the terminals of these strands are the synapses. A synapse is an 

elementary structure and functional unit between two neurons (an axon strand of one 

neuron and a dendrite of the other). When the impulse reaches the synapse’s terminal, 

certain chemicals called neurotransmitters are releases. The neurotransmitters diffuse 

across the synaptic gap, to enhance or inhibit, depending on the type of synapse and 

the receptor neuron’s own tendency to emit electrical impulses. Neurons communicate 

though short series of these pulses. The synapses’ effectiveness can be adjusted by 

the signals passing through it so that the synapses can learn from the activities in 

which they participate. For a more complete description on how biological neurons 

actually perform computations, reference is made to the work of Hopfield (1994).
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McCulloch and Pitts (1943) proposed a binary threshold unit as a computational model 

for an artificial neuron (see Figure 4.6), which stems from an extremely oversimplified 

description of the operation of biological neurons.

X l
W i

Xn

Figure 4.6: McCulloch and Pitts model of a neuron

This mathematical neuron computes a weighted sum of its n input signals, Xj where i = 

1, 2 ... n, and generates an output of one or zero, depending upon whether this sum is 

above or below a given threshold value, u. Mathematically,

y = 0
V  /=!

(4.1)

where 0 (q) is a unit step function and w, is the synapse weight associated with the fh 

input, when rj < 0, 6 [ r j ) - 0  and 6 ( r j )  = 1 otherwise. McCulloch and Pitts (1943)

showed how a synchronous assembly of these model neurons could compute any 

logical function for a suitable selection of weights.

Positive weights correspond to excitatory synapses, while negative weights model 

inhibitory ones. McCulloch and Pitts proved that in principle suitably chosen weights let 

a synchronous arrangement of such neurons perform universal computations. So as a 

crude analogy to biological neurons, connection weights represent synapses and the 

threshold function approximates the activity in a cell body or soma.
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This demonstrated the ability of these devices to be used for numerical computations 

also. In fact, the systems of model neurons provide a complete computational model 

capable, in principle, of performing the same computations that can be performed by 

any digital computer. The ability of these artificial neurons, however, is only a first step 

towards emulating the functionality of the human brain. One of the most fundamental 

properties of the human brain is its ability to learn from example. In case of artificial 

neuron, it learns through iterative adjustments of the weights, w, in order to perform a 

desired computation.

A learning process in the neural network context can be considered as the problem of 

updating network architecture and connection weights so that a network can efficiently 

perform a given task. The network usually must learn the connection weights from 

available training patterns, with performance being improved over time by iteratively 

updating the weights in the network.

4.5.2 Types of Neural Network

Neural networks generally consist of a number of interconnected processing elements 

(PEs) or neurons. How the inter neuron connections are made, and the way 

information flows through the network, determine the network architecture. How the 

strengths of the connections are adjusted or trained to minimize prediction errors is 

governed by its learning algorithm. Many different ANN models have been proposed 

since the 1980s, with Neural networks being classified according to their structure and 

learning algorithm (Pham and Liu, 1995).

4.5.2.1 Based on Network Structure

Feedforward network: In a Feedforward network the neurons are arranged in distinct 

layers. A signal flows from the input layer to the output layer through unidirectional 

connections. The neurons of one layer are connected only to the neurons of the next 

layers. Perhaps the most influential models are the multi-layer perceptrons (MLP) 

(Rumelhart and McClelland, 1986), radial-basis function networks (Park and Sandberg, 

1991), the learning vector quantisation (LVQ) network (Kohonen, 1989) and the group 

method of data handling (GMDH) network (Hectch-Nielson, 1990). Feedforward 

network can most naturally perform static mapping between the input and output
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space, i.e. the out put of a given instant is a function of the input of that instant (Pham  

and Liu, 1995). For dynamic systems mapping it needs to be treated explicitly 

(Krishnapura and Jutan, 1997; Gencay and Liu, 1996), which can be achieved by 

introducing lagged inputs.

Recurrent networks: In recurrent networks neurons of one layer can connect to the 

neurons of the next layer, the previous layer, same layer and even to themselves. 

Examples of recurrent networks include the Hopfield network (Hopfield, 1982), Elman 

network (Elman, 1990) and Jordan network (Jordan, 1986). Recurrent network have a 

dynamic memory and their output at a given instant reflect the current inputs, as well 

as previous inputs and outputs. Recurrent networks can model dynamic properties 

implicitly (Krishnapura and Jutan, 1997; Gencay and Li, 1996).

Based on Learning Algorithm

Networks are trained mainly by using two types of learning algorithms namely 

supervised and unsupervised learning algorithms. There is also a third type of learning 

algorithm, called reinforcement learning, however this can be regarded as a special 

form of supervised learning (Pham and Liu, 1995).

Supervised learning: In supervised learning training data contains examples of inputs 

along with the corresponding outputs and the network adjusts the strengths or weights 

of the interneuron connections according to the difference between the desired and 

actual network output corresponding to a given input. Examples of a supervised 

learning algorithm include: delta rule (Widro and Hoff, 1960), the generalised delta rule 

or back propagation algorithm (Rumelhart and McClelland, 1986) and the LVQ 

algorithm (Kohonen, 1989).

Unsupervised learning: Unsupervised learning is used in cases when learning (fitting 

of models) in this case cannot be guided by previously known classifications. It does 

not require the desired outputs to be known. The training dataset in this case contains 

input data only and the network adjusts the weights in reference to the input patterns. 

Unsupervised learning algorithms attempt to locate clusters in the input data based on 

similar features. Examples of unsupervised learning include the Kohonen Network 

(Kohonen, 1989), also known as Self-Organizing Feature Maps (SOFM) and
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Carpenter-Grossberg Adaptive Resonance Theory (ART) (Carpenter and Grossberg,

1988) competitive learning algorithms.

MLP is perhaps the most common type of artificial neural network. However Radial 

Basis Networks, Hopfield networks and Kohonen’s self organizing networks offer some 

advantages over MLP in some cases and have been widely used. The description of 

some common types of networks is given below.

4.5.3 Feedforward Network

An MLP is typically composed of several layers of nodes, where the nodes in one layer 

can be connected to nodes in the next layer, the previous layer, the same layer and 

even to themselves. This variety of MLP is called recurrent networks. Feedforward 

network is a type of MLP where the nodes in one layer are only connected to nodes in 

the next layer.

w

>  yk

Xm

Input Hidden Output
Layer Layer Layer

Figure 4.7: A typical Feedforward Network (MLP)
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In a Feedforward network the first layer is an input layer where external information is 

received. The last layer is an output layer where the problem solution is obtained. The 

input layer and output layer are separated by one or more layers, called the hidden 

layers. Figure 4.7 gives an example of the general structure of a Feedforward network 

with one hidden layer.

In this network there are M input nodes, N hidden nodes in the single hidden layer, and 

P output nodes. This can be expressed mathematically as:

where yk is the output from the k*h node of the output layer; x, is the input at the fh node 

of the input layer; wjk is the connection weight between } h node of the hidden layer and 

k!h node of the out put layer; vJj is the connection weight between fh node of the input 

layer and f h node of the hidden layer. o> and dk2 are the bias terms, and f x (•) and

/ 2(*) are activation functions.

For an explanatory or casual forecasting problem, the inputs to an ANN are usually the 

independent or predictor variables. The functional relationship estimated by the ANN 

can be written as

where x h x2, ..., xp are p independent variable. In this sense the neural network is 

functionally equivalent of a non linear regression model. On the other hand, for an 

extrapolative and time series forecasting problem, the inputs are typically past 

observations of the data series and the output is a future value. The ANN performs the 

following function mapping

(4.2)

y  = f ( x „ x  2, ...... , x p) (4.3)

y„\  p .....*y,-P) (4.4)
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where yt is the observation at time t. Thus the ANN is equivalent to the nonlinear 

autoregressive model for time series forecasting problems. It is also easy to 

incorporate both predictor variables and time-lagged observations into one ANN model.

4.5.4 Activation Function

Each hidden or output layer in a neural network receives values from input or adjacent 

layer. Each non-input unit in a neural network combines values that are fed into it via 

the connections from the units of a previous layer and they are combined to produce a  

single value called the net input. There is no standard term in the ANN literature for the 

function that combines these values. Generally linear vector to scalar combination 

functions are used in Feedforward networks. After the combination the scalar value is 

passed through a transfer function also known as an activation function. Activation 

functions for the hidden units are needed to introduce nonlinearity into the network that 

makes multilayer networks so powerful. Without nonlinearity, hidden units would not 

make nets any more powerful than just plain perceptrons. However, activation 

functions can be a linear function as well, in which case the net input is not 

transformed. The choice of transfer function may strongly influence the performance 

and complexity of a network.

This function typically falls into one of three categories:

•  linear (or ramp)

•  threshold

• sigmoid

For linear units, the output activity is proportional to the total weighted output. For 

threshold units, the outputs are set at one of two levels, depending on whether the total 

input is greater than or less than some threshold value. For sigmoid units, the output 

varies continuously but not linearly as the input changes. Sigmoid units bear a greater 

resemblance to real neurones than do linear or threshold units. The details of the most 

common transfer functions are given in Table 4.1.
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Table 4.1: Characteristics of common activation functions

Name Function Derivative Output Range

Linear function *
^ = i
dx

No Limit

Logistic Sigmoid l XiXII Oto 1

Tanh Sigmoid e - e  xy = xe + e

X1II
-&I-8

-1 to 1

Percepton or 

Hard Limit

fO, i f  less then threshold
y -  \

[1, if  not less then threshold

Not

Applicable

Oor 1

4.5.5 Back-Propagation Training Algorithm

The most popular algorithm for training Feedforward networks is ‘error back- 

propagation algorithm’. It is often referred to as back propagation training algorithm. 

The purpose of training is to adjust the network weights such that the network produces 

the desired output in response to the input patterns. During the training phase, any 

difference between network output and the target is treated as an error, with the 

purpose of the network being to minimise the error.

Consider a network with I number of input nodes, J number of hidden nodes and K 

number of output nodes as shown in Figure 4.7. Back propagation can be applied to 

any Feedforward network with differentiable transfer functions. Let us consider an input

vector x = (xh x2,  , x,) applied to the input layer, noting that the input layer does

not perform any operation upon the input signal but simply sends the input signal x, to
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the units of a hidden layer. The net input to the f h hidden unit for a given training 

pattern, p is

= Z hv v- +ft, <4 -5>
j

where is the weight of the connection from the fh input unit to th e /'7 hidden unit and 

Qj is a bias term. The output of this node can be written as

y j = f { sj )  (4 -6)

where the activation function /  is of any form as shown in Table 4.1.

Similarly the output from a unit k in the output layer is

yt = / ( * * )  (4.7)

where

Sk = Z MV->'y+ '9* <4 -8>
J

Updating the output layer units

The error measure E is defined as the total quadratic error for pattern p at the output 

units

£ 4 z k ->’<)2 <4-9>4 *=i

where d. is the desired output. It can now be written -
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dE _ dE dsk

dw# 8h
(4.10)

From Eq. (4.8) we see that the second factor is

_ 8
dWj t dwjk \  J

y, (4.11)

If we define

<>*=-
dE_
dsL

(4.12)

then.Eq. (4.10) becomes,

dE 
dw ,

= ~sky, (4.13)

By applying the principle gradient descent method, weights must be changed in 

proportion to the amount given by Eq. (4.13), i.e.

&Pwji = (4.14)

The factor // is called the learning rate parameter.

To calculate^, for each unit we can write Eq. (4.12) as

dE _ dE dyk 
dsk dyk dsk

(4.15)
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where it follows from the definition of E'from  Eq. (4.9) that

(4.16)

and from Eq. (4.7)

Syt _ s
8sk 8sk / ( • * * )  = / ' ( * * ) (4.17)

Hence Eq. (4.10) becomes

A  = ~ K - y k ) f ' { sk) (4.18)

Updating the hidden layer units

Similarly for the hidden unit

dE dE ds,

8wn 8st 8wv
(4.19)

From Eq. (4.5) we see that the second factor is

dSj d

d 'v„ v /
= x (4.20)

Hence, if we define
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then Eq. (4.19) becomes

dE = S , x ,  (4.22)
dw,

and the change of weight should be

Ar w'i = ^6i x< <4 '23)

To calculated,, for each unit we can write (4.21) as

S = (424)
' 8s, dy t dSj

and from Eq. (4.6) we get

oy

dSJ

And then we can write
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= - X < W  (4.26)
k

Substituting Equations (4.20) and (4.21) to Eq. (4.19), we get:

• W W X / W  <4 -2 7 >

Equations (4.15) and (4.27) gives a recursive procedure for computing S for all units in 

the network, which are then used to compute the weight changes according to Eq.

(4.16). This procedure is also called the generalised delta rule.

The application of generalised delta rule thus involves two phases. During the first 

phase, the input x„ is presented to the network and propagated forwards through the 

network to the output layer. Here the desired output, dk and the computed output^ are 

compared with each other and the error signal <5* from Eq. (4.15) and the corresponding 

weight adjustment from Eq. (4.14). In the second phase, this error is propagated 

backwards through the network to each intermediate layer. At each intermediate layer 

the error signal Sl is computed from Eq. (4.27) and the associated weight adjustment

from Eq. (4.23). For a network having more then a hidden layer, this process is 

repeated for every layers until an input layer is reached.

Momentum parameter

The learning procedure requires the weight change to be proportional to dE/dw. True 

gradient descent requires this to be infinitesimal. The constant of proportionality is the 

learning rate//. For practical purposes the learning rate is chosen to be as large as 

possible without leading to oscillation. One way to avoid oscillations at large values of 

v\ is to add a momentum term. The idea is to stabilise the weight trajectory by making 

the weight change a combination of a gradient-decreasing term plus a fraction of the 

previous weight change. With momentum the current weight change is a combination 

of a step down from negative gradient, plus a fraction 0<«<1  of the previous weight 

change. The weight update rule can be written as:
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A w ( t  +1) = Sw + a A w ( t ) (4.28)

where t indexes the presentation number and a  is a constant which determines the 

effect of the previous weight change.

In order to optimise the performance of the Feedforward network trained with back 

propagation algorithm, it is essential to have a good understanding the impact of step 

size on training (Dai and MacBeth, 1997 and Maier and Dandy 1998)

4.5.6 Radial Basis Function Network

Radial basis function networks (RBF) are another popular Feedforward network. The 

fundamental difference between MLP and radial basis functions is the way in which the 

hidden nodes combine with signals from preceding layers in the network. MLPs have 

one or more hidden layers, for which a combination function is the inner product of 

inputs and weights, with a bias being added. The activation function is usually logistic 

or tanh function. On the other hand RBF, have one hidden layer for which the 

combination function is dependent upon the position of data relative to some centre 

point, i.e.

where || || denotes some distance measure of x from the centre point w. The distance

measure is often chosen to be Euclidean, so that:

and the most commonly used combination function is a Gaussian function, i.e.

(4.29)

(4.30)

(4.31)
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where A is some constant.

Thus, unit j  gives a maximum response to the input vectors near w. As a result each 

hidden unit occupies a region in the input space centred upon wy. The idea is then to 

pave the input space with these receptive fields. If an input vector x lies in the middle of 

the receptive field for unit j, then only unit j  will be activated. If the input vector lies 

between two receptive field centres, then the network will make a smooth interpolation 

between the two units.

The output of the RBF network is a linear combination of the response function (4.31). 

This approach is guaranteed to produce a function that fits all data points as long as 

there is a basis function for each input. As the radial units of the hidden layer uses a 

Gaussian response surface which is nonlinear in nature, only one hidden layer is 

sufficient to model any shape of function.

Having one hidden unit for each input means that noisy data will also be a part of the 

model, which will affect the generalisation ability of the network. This can be improved 

by reducing the number of hidden units (Minns, 1998). The selection of the coefficient 

for the linear combination of basis function outputs is then a simple problem of linear 

optimisation, which will readily find a global optimum solution.

There are advantages of RBF networks over MLPs. Firstly, RBF networks can be 

trained faster, with the simple linear transfer in the output layer can be optimised by 

traditional linear modelling technique, which are fast and do not suffer from the problem 

of local minima. Secondly, as it can model any non linear function with a single hidden 

layer, there is no decision making needed to select the number of hidden layers. Minns 

(1998) found that RBFs offer a superior performance over MLPs while dealing with 

small input data. However, as the data set increased the generalisation property of 

RBFs deteriorated and they were subsequently out performed by the MLPs.

On the other hand according to Dibike’s (2002) observation RBF networks achieve a 

similar performance as Feedforward network in a lesser time period although they 

require more data to reach same level of accuracy.
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4.5.7 Kohonen Network

Kohonen Networks also known as Self Organising Feature Maps were introduced by 

Von der Malsburg (1973), and in their present form by Kohonen (1982). This network 

differs considerably from the Feedforward back propagation neural network. The main 

difference is that the Kohonen network is trained in an unsupervised mode. This means 

that the Kohonen network is presented with data, but the correct output that 

corresponds to those data are not specified. However it does not only differs in how it is 

trained but also how it recalls a pattern. The Kohonen neural network does not use any 

sort of activation function or any sort of a bias weight. Output from the Kohonen neural 

network does not consist of the output of several neurons. When a pattern is presented 

to a Kohonen network one of the output neurons are selected as winner. Often these 

winning neurons represent groups in the data that are presented to the Kohonen 

network.

The structure of a Kohonen network consists of an input layer and an output layer. A  

Kohonen network or self-organising feature map has two layers, an input buffer layer to 

receive the input pattern and an output layer (see Figure 4.8)

Output Layer

Input Layer (each nodes ieprsent each input 
parameter)

Figure 4.8: Kohonen Network

The neurons in the output layers are usually arranged into a regular two dimensional 

array. Each neuron in the output layer stores a weight vector (an array of weights), 

each of which corresponds to one of the inputs in the data.
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Each input neuron is connected to all output neurons, with the weights of the 

connections from the components of the reference vector being associated with the 

given output neuron. The learning process corresponds to repeatedly modifying the 

synaptic weights of all the connections in the system, in response to the input patterns 

and according to a prescribed rule until a steady configuration is achieved.

The basic components of the learning of a Kohonen network involve the following 

steps:

• Initialise the reference vectors of all out put neurons to small random values,

• Present a training input pattern,

• Determine a winning output pattern, i.e. the neurons whose reference vector

When presented with a new input pattern, each neuron calculates its activation level 

based on the following

where w, is the fh element of the weight vector and p, is the pth element of the input 

pattern. The neuron which is closest in Euclidian space to the new input pattern has the 

lowest activation level and is allowed to adjust its weights so that it is closer to the input 

pattern. Some of the nodes nearer to it also adjust their weight, the number of those 

neighbouring nodes is determined as the algorithm runs, beginning at all the nodes and 

decreasing linearly throughout the training process.

is closest to the input pattern

Update the reference vector of the winning neuron and those of its 

neighbours. These reference vectors are brought closer to the input vector. 

The adjustment is greatest for the reference vector of the winning neuron 

and decreases for the reference vectors of the neurons further away.

(4.32)
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The amount by which each neuron changes its weight vector is determined by the 

definition

Swl = - a ( w t - p , )  (4.33)

where a is the learning rate, which begins as specified by the user and decreases to 0 

as the algorithm runs, and Swt is the change in h> . This change is carried out for each 

element in the weight vector.

Kohonen network is a relatively simple network to construct, which can be trained very 

rapidly. However it also has its own limitations, as having only two layers, it can only be 

applied to linearly separable problems.

4.5.8 Hopfield Network

The Hopfield network consists of a set of N single layer neurons (Figure 4.9) in which 

each of the neurons are connected to all other neurons, which results in a recurrent 

network. The updates of the activation values of the neurons are asynchronous and 

independent of other neurons. All neurons are both input and output neurons and 

normally accept binary (0 or 1) and bipolar inputs (+1 or -1).

Figure 4.9 : Hopfield Network

The training of Hopfield network takes only one step, the weights Wy of the network 

being assigned directly as follows:
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(4.34)

0 where i = /v

In this expression w is the connection weight from neuron i to neuron j, and x■ (which

is either +1 or -1) is the th component of the training input pattern for class c, P  is the 

number of classes and N  is the number of neurons (or the number of components in 

the input pattern). It should be noted that in equation (4.34) w. = wJt and wlt = 0 ,  a set

of conditions that guarantee the stability of the network. Removing the restriction of 

bidirectional connections (i.e., w = w n) results in a system that is not guaranteed to 

settle to a stable state.

When the network experiences an unknown input pattern, the outputs are initially set 

equal to the components of the unknown pattern, i.e.

Starting with initial values, the network iterates according to the following equation until 

it reaches a minimum energy state, i.e. its output stabilise to constant values:-

y t (0) - x t \ < i  < N (4.35)

(4.36)

where /  is a hard limit function, defined as

(4.37)
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4.5.9 Modelling Issues

The idea behind ANN modelling is to identify the underlying relationship between the 

inputs and outputs. Ideally the function has to be smooth and continuous, so that a 

small change in input will give rise to a small change input. It is important the inputs 

have adequate information related to the target, so that a mathematical function can be 

achieved to relate outputs (with a desired degree of accuracy) to inputs, ANNs will not 

learn with a non existent function. Finding good inputs for ANN modelling and collecting 

sufficient training data take more time and effort then training the network. The major 

issues related to modelling using ANNs are discussed in the flowing sections.

4.5.9.1 Division of data

In ANN methodology, the available data set is generally subdivided into two or three 

parts, namely training, test and validation sets. The training sample is used for learning, 

that is, to fit the parameter weights of classifiers. Test samples are used only to assess 

the generalisation performance. If the test results are not good, then training should not 

be continued. If the testing confirms that the data are acceptable, the model can be 

further checked with the validation set. A Validation sample is also used to avoid the 

over fitting problem or to determine the stopping point of the training process (Weigned 

et. al. 1992).

There is no general rule for dividing data into training, test and validation sets. Several 

factors, such as the problem characteristics, the data type and the size of the available 

data, should be considered during making a decision. It is important to have both the 

training and test sets (also validation sets, if present) representing the population or the 

underlying mechanism. An inappropriate division of datasets will adversely affect the 

ANN performance adversely. ANNs are, generally, unable to extrapolate beyond the 

range of data used for training (Minns and Hall, 1996). Consequently, poor 

forecasts/predictions can be expected when the validation data contain values outside 

of the range of those used for training.

Literature offers little guidance in selecting the training and test datasets. Most authors 

select the sets based on the rule 90% - 10%, 80% - 20% or 70% -30% etc. Some 

chose the sets based on particular problems. Another closely related issue is the size
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of the dataset. No definite rule exists for the requirement of the size for a given 

problem. In general, for in any data driven method the larger the data set, the more 

accurate the results. Nam and Schaefer (1995) test the effect of different training 

sample size and found that as training sample size increases, then the performance of 

the ANN gets better.

4.5.9.2 Data pre-processing

In any modelling problem different input variables have different ranges. The 

contribution of an input will be heavily dependent on its variability, relative to other 

inputs. If one input has a range of 0 to 1, while another input has a range of 0 to 1 

million, then the contribution of the first input is more likely to be dwarfed by the second 

input. Data standardisation ensures that all variables receive equal attention during the 

training process. There is another issue related to the nature of transfer functions. The 

non linear transfer functions typically restrict possible outputs from a node to (0,1) or (-

1,1). Hence, the variables should be scaled in order to be commensurate with the limits 

of the activation functions used in the output layer (Minns and Hall, 1996). However, if 

the transfer functions in the output layer are linear then scaling is not strictly required 

(Karunanithi et al., 1994).

There are other benefits of scaling suggested in literature, such as meeting algorithm 

requirements (Sharda and Patil, 1992), facilitation of network learning (Srinivasan et 

al., 1994) and avoiding computational problems (Lapedes and Farber, 1988). It is 

important to note that the available data need to be divided into training, testing and 

validation subsets, before any data pre-processing is carried out (Burden et al., 1997). 

It is common to standardise each output to the same range, or the same standard 

deviation if there is a lack of better prior information. If some inputs are more important 

then others, then it may be better to scale the inputs such that the more important ones 

have larger variances and or/ranges (Neelakantan, 2005).

4.5.9.3 Determination of model inputs

The number of nodes in the input layer is fixed by the number of model inputs, whereas 

the number of nodes in the output layer equals the number of model outputs. The 

number of input variables corresponds to the number of input nodes used in the 

network. Hence, the selection of input is a part model construction process. There is no
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guideline to determine this number at present. Ideally, it would be intended that a 

minimal number of input parameters will unveil the features embedded in the data. Too 

few or too many numbers will affect either the learning or the prediction capability of the 

network. Selection of appropriate model inputs is extremely important for any prediction 

or forecasting problem. However, as the data driven approaches have the ability to 

determine which model inputs are critical there is no need for a ‘priori rationalisation 

about relationships between variables’ (Lachtermacher and Fuller, 1994). Presenting a 

large number of inputs to ANN models, and relying on the network to determine the 

critical model inputs usually increases network size. This has a number of 

disadvantages, such as decreasing processing speed and increasing the amount of 

data required to estimate the connection weights efficiently (Lachtermacher and Fuller, 

1994). The problem is exacerbated in time series applications, where appropriate lags 

have to be chosen for each of the input variables. Consequently, there are distinct 

advantages in using analytical techniques to help determine the inputs for multivariate 

ANN models. Many authors design experiments for selection of the number of input 

nodes while others adopt some empirical relationship. For example, Sharda and Patil 

(1992) used 12 inputs for monthly data and 4 for quarterly data. Recently, Genetic 

Algorithms have been increasingly in use for the optimal design of neural networks 

(Koza and Rice ,1991, Schiffmann et al., 1993).

The number of output nodes is relatively easy to specify as it is directly related to the 

problem being studied. For a time series forecasting problem, the number of output 

nodes often corresponds to the forecasting horizon.

4.5.9.4 Determination of network architecture

Network architecture determines how the information flows through the network, as 

well as the number of connection weights. Determination of appropriate network 

architecture is one of the most difficult, albeit important, tasks in the model building 

process.

Type of connection and degree of connectivity

Feedforward networks have traditionally been used for prediction and forecasting 

applications. For most of the forecasting, as well as other problems, networks are fully
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connected in that all nodes in one layer are only connected to all nodes in the next 

layer. However, it is possible to use partial connectivity (Chen et al., 1992).

Recurrent networks have also been recently proposed as an alternative, for example, 

Warner and Misra (1996), Khotanzad et al (1997) described Feedforward networks to 

perform well in comparison with recurrent networks in many practical applications. 

However it follows that Feedforward networks are special cases of recurrent networks.

Feedforward networks require dynamic systems to be treated explicitly while recurrent 

networks can model dynamical properties implicitly (Krishnapura and Jutan, 1997). In 

case of a Feedforward network, a dynamic system can be achieved by including 

lagged inputs. In current research legged inputs have been used to represent the 

dynamic system of bacterial decay.

Lin et al (1996) found that recurrent networks have difficulties in capturing long-term 

dependencies when inputs at high lags have a significant effect on network outputs. 

They also suggested that the inclusion of inputs at explicit time lags can improve the 

performance considerably in such cases. According to Masters (1993) the processing 

speeds of a Feedforward network ‘is among the fastest of all models currently in use’ 

(Masters, 1993). As for the advantage of using recurrent networks, they can handle 

moving average components (Connor et al., 1994), whereas Feedforward networks are 

unable to do so. Examples of different types of recurrent networks that have been used 

for time series applications include those proposed by Elman (1990); Williams and 

Zipser (1989); Krishnapura and Jutan (1997).

Network Geometry

Network geometry determines the number of hidden layers and chooses the number of 

nodes in each of these layers. However, it has also been suggested that during training 

it might be best to fix the number of nodes, rather than the number of hidden layers, 

and to optimise the connections between the nodes, as well as the connection weights 

associated with each connection (Kumar, 1993).
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The choice of the number of nodes in the hidden layers is a critical factor and hence 

the number of connection weights. If the balance between having sufficient free 

parameters (weights) to enable representation of the function to be approximated and 

having too many free parameters is not struck, then this may result in overtraining, with 

this issue having been discussed widely in the literature (Maren and Harston, 1990; 

Rojas, 1996). Smaller networks with a few hidden layers usually have better 

generalisation ability (Castellano et al., 1997, Neelakantan, 2005), require fewer 

physical resources (e.g. require less storage space), have higher processing speeds 

(during training and testing) and make rule extraction simpler (Towell et al., 1991). 

Bebis and Georgiopoulos (1994) reported that despite the fact that smaller network can 

be implemented on hardware more easily and economically, the error surface is more 

complicated and contains more local minima. Moreover the smaller networks generally 

need a large number of training samples to deliver good generalisation property.

Number of hidden layers plays an important role in capturing the pattern of data and 

performing non linear mapping. It has been shown that ANNs with one hidden layer is 

sufficient to approximate any complex nonlinear function (Hornik et al., 1989, Cybenko,

1989). However, in practice many functions are difficult to approximate with one hidden 

layer (Flood and Kartam, 1994). Barron (1994) suggested two hidden layers may 

provide more benefits to some of problems. There is quite a high variability in the 

number of nodes suggested by the various rules, however guidelines do not ensure 

optimal network geometry, where optimality is defined as the smallest network that 

adequately captures the relationship in the training data. Traditionally, optimal network 

geometries have been found by trial and error. More recently, a number of systematic 

approaches for determining optimal network geometries have been proposed, including 

pruning and constructive algorithms (see Bebis and Georgiopoulos, 1994). However, it 

must be stressed that the optimal network geometry is highly problem dependent.

4.6 Summery

The Management and control of water resources systems is traditionally based on 

mathematical models describing the behaviour of the natural process, with these 

models requiring a good understanding of the underlying processes. Recent 

developments in the field of data mining and knowledge discovery have introduced a
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whole new branch of data driven-modelling techniques. These techniques have also 

shown their potential as an alternative approach to conventional deterministic 

modelling. This chapter has briefly introduced two such types of data-based models 

namely: Genetic Programming (GP) models and Artificial Neural Networks (ANN), with 

a view to using these models as efficient alternatives to solve some of the various 

problems of water resources modelling and management discussed in subsequent 

chapters.

Data-driven modelling methods are increasingly being developed and used to gain 

information from data. They are especially useful when the data sets are large, and 

where it becomes impractical for any human to sort through the data to obtain further 

insights into the processes that have led to the data. Many data-rich problems can be 

solved by using novel data-driven models together with other techniques. Data mining 

methods are also being increasingly used to gain a greater understanding and 

knowledge from large data sets.

While physically based or process-based models are appealing to those who wish to 

better understand these natural processes, they clearly remain approximations of 

reality. In some water resources problem applications, the complexities of the real 

system are considerably greater than the complexities of the models built to simulate 

them. Hence, it should not be surprising that in some cases data-based models, which 

convert input variable values to output variable values in ways, which are not directly 

related to the processes, may produce more accurate results than physically-based 

models. When these models are used, they often produce results faster than their 

physical counterparts and as accurately or more so, but only within the range of values 

observed in the data used to build these models.
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Chapter 5
M o d el  D e v elo p m e n t  a n d  A pplication  to  

R ibble  Estu a r y

5.1 General Description

The Ribble Estuary discharges along the north-west coast of England, in Lancashire. 

At the mouth of the estuary there are two popular seaside resorts, namely Lytham St 

Anne’s and Southport, both designated bathing waters. The Fylde Coast, which is 

bounded between Fleetwood in the north and the Ribble Estuary in the south, includes 

Blackpool, one of the most famous beaches in England for tourism, and with an 

average of more than 17 million visitors per annum.

In order to improve the bathing water quality along the Fylde coast about £600 million 

was invested during the 1990s. New sewerage works and treatment plants were 

constructed along the Fylde coast and in the estuary. The improvements included 

upgrading the waste water treatment works at Clifton Marsh from primary treatment to 

include UV disinfection; reducing storm water discharges from the wastewater network 

by constructing 260 Ml of additional storage. These waste water treatment works 

contributed to a significant reduction in the input bacterial loads, and as a result the 

concentration of bacteria in the receiving coaster waters has been reduced. However, 

occasional high levels of Faecal Coliform (FC) counts have still been measured and, 

subsequently, the bathing waters under these conditions have failed to comply with the 

EU mandatory water quality standards. As a popular tourist attraction the bacteria 

concentration in the coastal area has to be monitored continuously in order to comply 

with the EC mandatory water quality standards.

A numerical modelling study was undertaken to establish the water quality of the EU 

designated bathing waters located at the mouth of the Ribble Estuary. A hydrodynamic 

and water quality model was used in that study. In order to reduce the possible
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inaccuracies caused by setting up the boundary conditions required by the numerical 

models, the upstream boundaries were set up at the tidal limits of the rivers Ribble, 

Darwen and Douglas (see Figure 5.1) and the downstream boundary was located 

around the 25 m depth contour in the Irish Sea. The model was verified using six sets 

of hydrodynamic and water quality data were collected during the winter period of 1998 

and the summer period of 1999 by the UK Environment Agency. The survey data 

included water depths, current speed and directions, salinity levels and concentrations 

of suspended solids, Faecal Coliforms and Total Coliforms, and Faecal Streptococci at 

all discharge sites, upstream river boundaries and four calibration sites (see Figure

5.1). At each site, a survey typically provided 25 data points for calibration. More 

details regarding this study may be found in Kashefipour et al (2002).

J  \»
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Blackpool
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Douglas River
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Figure 5.1: Fylde Coast and Ribble Estuary with its tributaries

122



Chapter 5: Model Development and Applications to Ribble Estuary

5.2 Methodology

All data mining activities are data intensive. They are truly useful only in situations 

where a considerable body of data exists. Unfortunately, in water quality monitoring an 

intensive survey of bacterial load for a water body is rarely available. Most of the 

survey campaign is carried out either as long term operations, collected at a low 

frequency (e.g. monthly) or at high frequencies but with the period of data collection 

being very short (e.g. a few days).

High frequency observations spanning longer terms are almost non existent. Even 

though the concentration of bacteria is measurable in a natural river and estuary, 

considering the amount of data needed to run a data driven method, such as Genetic 

Programming (GP) or Artificial Neural Networks (ANNs), is at the very least prohibitive 

in terms of effort and cost. Hence in this study the existing 2-dimensional hydrodynamic 

and water quality model has been used to generate the data. Such a numerical model 

employs all available knowledge about the decay of bacteria, the dispersion and 

diffusion of solutes, the influence of the tidal cycle and riverine inflows, all of which 

have an important role on the bacterial transport and die-off. Moreover the data 

generated from such a model can be used as a noise free approximation of the 

phenomenon under study. The main objective of this application was therefore to verify 

the employability of appropriate data mining technology rather than providing a 

deterministic solution to a particular problem. Taking the raw data from a deterministic 

numerical model allowed the study to focus on correctly predicting these data, and 

verifying the applicability of data mining technology in water quality model predictions 

for the basin. If the input data were collected from the field, then significant resources 

would be required in obtaining these data, which in this case would not add much to 

the research objective.

5.3 Numerical Model

In this study a depth integrated two-dimensional numerical model, namely, Depth 

Integrated Velocities and Solute Transport (DIVAST) was used to predict the bacterial 

indicator concentration distributions. DIVAST was developed for simulating the 

hydrodynamic, solute and sediment transport processes in estuarine and coastal
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waters. It has been calibrated and validated against many laboratory and practical field 

studies over the past 25 years. The hydrodynamic module of the model is based on the 

solution of the depth integrated Navier-Stokes equations and it includes the effects of: 

local acceleration, advective acceleration, earth’s rotation, pressure gradient, wind 

stress, bed resistance and turbulent shear stresses.

For the water quality module, the advective-diffusion equation (ADE) is solved for a 

range of water quality indicators, including:- salinity, total and faecal coliforms, 

biochemical oxygen demand, dissolved oxygen, the nitrogen and phosphorous cycles 

and algal growth. The ADE defines the dynamic distributions of the bacterial indicators 

due to the flow characteristics, diffusion processes and die-off rates. The Faecal 

coliform decay rates are expressed as a first order decay model according to Chick’s 

Law.

In current study DIVAST was modified to incorporate the effects of salinity and 

temperature and was verified against the field data collected during the study of 

Kashefipour et al. (2002). In general, good agreement was obtained between the 

model predictions and the measured data for both the hydrodynamic and water quality 

calibration studies. Predicted Faecal Coliform (FC) levels at 2 selected locations, e.g., 

7 Milepost and 11 Milepost were compared with the corresponding measured values 

for the field survey. The corresponding results are illustrated in Fig. 5.2.

The modified DIVAST model, used as a data generator, provided the convenience of 

fast data generation and an ability to produce results for any combination of boundary 

conditions. A number of DIVAST runs were performed to generate data for the model 

development with GP and ANN. The flow and concentration varied through the input 

files of DIVAST. The model itself calculated the salinity and concentration at the points 

previously mentioned at every time step.

The flow and concentration inputs from the rivers Ribble, Darwen and Douglas, at a 

given time were acquired from the input files and the corresponding salinity and water 

depths and FC concentrations at a particular location (e.g. 11 Milepost) were acquired 

from the model output. The flow and concentrations at the rivers, salinity and depth
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data at those particular locations have been used as input data, while the FC 

concentrations at those locations were used as target data.
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Figure 5.2: Comparison between predicted and measured faecal coliform 
concentrations for the survey on 19 May, 1999, in Ribble Estuary

It would have been ideal to use sunlight data as a parameter, especially since sunlight 

is an important factor for bacterial decay. However, no sunlight data were recorded 

during the original surveys and this parameter not be incorporated in the hydro 

dynamic model. As a result sunlight was also ignored for the current model 

development process. For a given boundary condition the model was run for 50 hours 

and the data were collected every 15 minutes. The dataset comprised the result from a 

total of 8 DIVAST runs. This data set will be referred to as the observed value for the 

remainder of this chapter.

In this study, the Faecal Coliform levels in the Ribble estuary have been modelled by 

using two data mining technique, namely:
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• Genetic Programming (GP) and

• Artificial Neural Networks (ANNs).

5.4 Model Evaluation Criteria

There are many different criteria for evaluating the outputs from a model. These criteria 

can be grouped into two categories: a graphical indicator group and a numerical 

measures group. For this study linear plots and scatter plots were used to represent 

the first group of criteria. Linear scale plots and scatter plots were produced from of the 

simulated and observed outputs. From the second group, two numeric error measures 

were selected, namely the root mean square error (RMSE) and the coefficient of 

determination (CoD).

Pearson’s correlation is a measure of the degree of linear relationship between two 

variables (Weiss and Hassett, 1987). The coefficient of determination (CoD) is the 

square of the correlation coefficient and can only have positive values ranging between 

1 for a perfect correlation (whether positive or negative) to 0 for a complete absence of 

correlation. The CoD gives the percentage of the explained variation compared to the 

total variation of the model. For example, if the CoD between X and Y is 0.55 (55%), it 

can be said that 55% of the variability of X is explained by the variability in Y (Weiss 

and Hassett, 1987). These two statistical measures is widely used for model 

evaluation, (see lliadis and Maris 2007, Cigizoglu 2005a, Choi et al. 2004, Linne et al. 

2000)

The definition of RMSE and CoD are given below:

R M S E  =
1

1(0,-s,r
N

(5.1)
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CoD =
£(o,-o)(s,-s)

i i(o,-o)2i ( s , - s )7
(5.2)

where:

Oj -  Observed or measured data;

Si -  Predicted or simulated data;

O - Mean value of the observed data;

S - Mean value of the simulated data; 

N -  Size of the data set

The RMSE value gives a quantitative indication of the model error; it measures the 

deviation of the forecasted value from the actual observed value. The CoD values 

represent the proportion of the variation in the data that has been explained by the 

regression line. The ideal value for RMSE is 0, for CoD is 1. Thus the all the model 

results in this study were analysed and assessed by visual inspection of the observed 

and modelled FC concentrations, as well as by their absolute RMSE and correlation 

coefficients.

As the model developed is intended to be used for day to day monitoring of 

recreational waters, another additional criterion was also included this particular study. 

In order to use GP and ANN type models for monitoring purposes it is more important 

to detect when the water quality fails to comply with the guideline compliance values 

which for the EU Bathing Water Directive is 2000 cfu/100ml. Lin et al (2003) employed 

this type of evaluation criterion by reporting the number of days when the observed and 

predicted FC concentrations exceeded the regulatory water quality standard. In this 

work the number of failed sample was reported for both the observed and predicted 

samples, as well as the number of occurrences when the failed sample was correctly 

predicted as failed.

Kim and Barros (2001) used the Threat Score (TS) to perform similar verification for 

flood forecasting. This is a dimensionless value which evaluates the performance of a
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model relative to some threshold value. The value of the coefficient ranges from 0 to 1 

When the model performs perfectly then the TS will be 1. The TS is defined as -

C P
TS = ---------- ^ ----------  (5.3)

Obs„ + Pre„ -  CPi v '

where

TS = Threat Score

Obsn = Number of observed sample more then 2000 cfu/100ml

Pren = Number of predicted sample more then 2000 cfu/100ml

CPn= Number of correct prediction, i.e. when both observed and predicted 

values are more then 2000 cfu/100ml

The threat score of the selected models are reported here only.

5.5 Data Analysis

Table 5.1 shows the statistical analysis of the data used for building the 

hydroinformatics models. Although varying numbers of input parameters were used for 

different experiments, only the important data statistics are presented in the table. It is 

interesting to note that FC levels at the target sites, i.e. 7 and 11 Mileposts ranges from 

101 to 105. This large variation is very much expected in such a complex natural 

domain; however, on the other hand it shows the degree of difficulty to model such 

phenomenon by a data driven model. The standard deviation is also in the range of 

104. This indicates how widely the data are spread particularly since there are no 

outliers in the dataset.

As the GP and ANNs are data driven, the quality of a model depends primarily on the 

quality of the data and hence, data analysis is very important prior to any model 

building operation. In the current study the nonlinear data analysis technique called the 

Gamma Test was used perform the data analysis.
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Table 5.1: Statistical analysis of the important data used

Ribble
Flow

Darwen
Flow

Douglas
Flow

FC in 
Ribble

FC in 
Darwen

FC in 
Douglas

FC in 11 
Milepost

FC in 7 
Milepost

Minimum 12.78 1.47 1.18 318.00 1100.00 5224.70 34.90 195.20

Maximum 108.88 17.70 10.20 4.49x105 2.57x105 3.4 x107 1.04x105 2.26x105

Mean 40.14 4.30 2.98 32597.11 28915.16 9.91x10s 9950.00 2.68x104

Median 33.05 3.79 2.59 4689.95 7660.00 5.6x104 1744.40 2904.00

Std. Dev.* 25.71 2.88 1.52 76288.85 48155.86 3.21x106 1.8x104 4.7x104

Gamma test examines the relationships between input and output datasets. Suppose 

there is a set of input-output observations of the form

{(x „y ,) | l < i < M )  (5.4)

where the inputs x  e  ; m are vectors confined to some closed bounded set c  e  ; "and, 

without loss of generality, the corresponding outputs > e ; are scalars. Rather than 

pre-suppose some particular parametric form for the underlying non-linear model it is 

considered that it belongs to some general class o f functions. In general terms the 

underlying relationship can be assumed of the form

y = f ( * ............* m) + r  <5-5>

where f  is a suitably smooth and unknown function that maps the components of the 

input vector x  to the output y and r is a stochastic variable which represents noise. The 

mean of the distribution of r  is assumed to be zero.

* S t a n d a r d  D e v i a t i o n
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Even though the underlying function /  is unknown, the Gamma test can estimate the

variance of r, va r(r) directly from the data. This estimate is called the Gamma statistic

and denoted by r . As the number of data samples increases, the Gamma statistic 

approaches an asymptotic value, which is the variance of noise on the particular 

output. For more details on the theory of Gamma statistic, reference is made to Evan 

and Jones (2002).

In Gamma Test the critical graph to look at first is the scatter plots and (S(p),y{p)) 

regression line. The scatter plot shows point pairs (<5,y) where6 is the squared distance

of an input (x) from one of its near neighbours. Figures 5.3 and 5.4 shows two such 

scatter plots. It can be seen from Figure 5.3 that an empty wedge appears at the top 

left corner of the graph. This indicates that the input data and output data are closely 

related, thus an underlying smooth model exist. On the other hand, there is no wedge 

at the top left corner in Figure 5.4 indicating a high level of noise in the data or there is 

no smooth underlying model.

Gamma Scatter Plot
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Figure 5.3: Scatter plot of polynomial equation y = x + x2 + x3 (empty ‘wedge’ at the top
left corner)
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Gamma Scatter Plot
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Figure 5.4: Scatter plot of polynomial equation y = x + x2 + x3 with random noise (no 
‘wedge’ at the top left corner, indicates difficulty or impossibility of finding a smooth

model)

The reliability of the r  statistic is determined by running a series of Gamma test for 

increasing M, to establish the size of data set required to produce a stable asymptote 

and thus indicates how much data is required to build a model with a mean squared 

error which approximates the estimated noise variance. This is known as an M-test.

M-test is a method to determine how the Gamma Statistic estimate varies as more data 

are used to compute it. Figures 5.5-5.6 show the Gamma Statistic obtained from 

running the M-test for both 7 Milepost and 11 Milepost for two different sets of data.

Figure 5.5 (a) is the result for 7 Milepost when the values of the flows, FC levels of 

three rivers at any time are provided along with the salinity and water depth of that 

time. Figure 5.5 (b) shows the result for the same location and with the same input 

parameters but with the FC levels being 9 hours later than that of the input data. The 

red line shows the possible asymptote.
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Figure 5.5: M Test performed on randomised scaled data at 7 Milepost: (a) with no time
lag information and (b) with 9 hr time lag

It can be seen from these 2 figures that the value of Gamma Statistic reduced 

significantly with the addition of the time lag information. This is due to the fact that that 

the travel time of contaminates from the upstream boundaries, particularly the Ribble 

river, to 7 Milepost is around 9 hours, so boundary information 9 hours in advance will 

have the most significant impact on the FC level at 7 Milepost. This can also be 

confirmed by plotting the numerical model results. From Figure 5.5 it can be seen that 

after 420 points the Gamma statistic is fairly stable, this means that an adequate model 

can be built using 420 or more data points. A very small value of Gamma Statistic 

indicates that the noise level in the data is low, indicating a smooth model can be 

developed.
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Figure 5.6: M Test performed on randomised scaled data at 11 Milepost: (a) with no 
time lag information and (b) with 11 hr time lag

A similar trend can be seen for 11 Milepost from Figure 5.6, in which a time lag of 11 

hours was used as found from the numerical model analysis. Again, the Gamma 

statistic becomes stable after about 420 data points.

5.6 FC modelling with GP

The software used for the GP simulations is called GPKernel (Genetic Programming 

Kernel). The code was developed by Maarten Keijzer and Vladan Babovic at the 

Danish Hydraulic Institute (DHI). GpKernel is a line-command program that looks for 

mathematical relations based on a set of input parameters, constants, operators, 

genetic parameters and on user-defined target(s). The genetic parameters, such as the
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size of the population, the number of generations to produce or time of run, different 

probabilities of mutations and genetic operations etc. can all be modified. The input 

data for the program were usually pre-processed according to the test structure agreed 

in advance. For the data pre-processing and post processing small self-written 

FORTRAN and/or MATLAB codes were used. Additional information on GPKernel can 

be found in the Users Manual (Aguilera, 2000).

Another genetic programming software tool, Discipulus (AIMLearning™ Technology 

2000) was also used in this study, mainly for finding out the impact of various 

parameters. Discipulus is a fast technique for automatic computerised modelling, using 

genetic programming, and has been used in many engineering and scientific 

applications.

General Strategy

The GP tests undertaken in this work can be divided into two parts. In the first part only 

the flow and concentrations in the rivers, salinity and depths at certain location were 

used as input parameters, while the target was the FC concentration at that location. 

The functional relationship can be stated as

y = f (x j) V ie 1,2,.........................................................  (5.6)

where y is the target and X| are inputs

The following experiments were carried out as part of the first GP test on data gathered 

from 11 Milepost and 7 Milepost respectively:

Experiment 1 -  In this experiment the inputs were flow and FC concentrations of 3 

rivers and salinity and depth of the location in question. The target was the FC at that 

location.

Experiment 2 -  In this experiment the same inputs were used as for the previous 

experiment, but change in concentration (dFC) was used as the target. Some
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literatures (e.g. Minns 1998) suggested use of the derivatives of targets instead of the 

absolute values. The FC concentration increment used as a target in the simulations 

was calculated as follows:

dFC ( t ) = F C (t)  - F C ( t  - 1) (5.7)

Experim ent 3 - In this experiment the logarithmic value of the FC concentrations was 

used, both for the inputs and target, instead of the absolute value or its derivative. This 

combination was chosen because the faecal coliform concentrations ranged from less 

then 35 cfu/100ml to more then 45,000,000. This parameter represented the small 

changes in the bacterial concentrations, when absolute concentrations were low. Since 

there were no significant differences between the minimum and maximum value for 

other parameters, they remained unchanged.

Hence, for experiments 1, 2 and 3 only 8 input parameters were used, which included 

flow and FC concentrations of the three rivers and the salinity and water depth at 7 

and 11 Mileposts respectively.

In the second part of this study the past values of the same parameters were also used 

for the model development in order to capture the time series nature of the problem. In 

this case the following experiments were undertaken.

Experiment 4 -  The previous simulation values of the flow (i.e. 3, 6, 12, 18 and 24 

hours before simulation), concentrations of the rivers and the current values of salinity 

and water depths at a certain location were used as input parameters, while the output 

were the values of the FC concentration at the same location. Hence, the functional 

relationships were represented as -

y f+l = 7(xJ,xJ_y.,salinity,depth} V / e 1,2,..... 6 Vy e 3,6,12,18,24 hr. (5.8)

where x1 are the flow and concentration values and y are the output values. The total 

number of inputs in this experiment were 48.

135



Chapter 5: Model Development and Applications to Ribble Estuary

Experiment 5- In this experiment previous value of the FC concentrations were also 

used as inputs in addition to the inputs used in experiment 4. The outputs remained the 

same. The functional relationship was described as

yt+l = f ( x it ,x it_j ,salinity,depth,yt_j) V /e l ,2 , ....6 V/ e 3,6,12,18,24 hr (5.9)

where x' are the inputs and yt are the outputs. The total number of inputs used was 53.

Experiment 6 -  In this experiment an attempt had been made to reduce the number of 

inputs from 53. For this task the Discipulus is used. In experiment 6, 37 inputs are 

selected for 7 Milepost and 40 inputs are selected for 11 Milepost based on the 

impact table produced by Discipulus.

For all the experiments the dataset was randomised for running all the experiment to 

make sure that there was no influence of one combination of data over the next 

combination, thus GP had to treat the every set data of data as stand alone 

combination.

Test Setup

The first three experiments were run for two tests, whereas Experiments 4 and 5 were 

run for three tests. A summary of all of the experiment run setup parameters for GP 

Kernel is provided in the Table 5.2.

In Table 5.2 p is the population size and X is the number of offspring to be produced. In

all runs a possibility for using random constants in the evolutionary process has been

utilised. No hypothesis proposed by the GP considered the dimensional equality and 

hence the experimental runs were not dimensionally constrained. The language is the 

set of mathematical operators that were specified before each of the runs. The number 

of records used in the training was 75% and the Evolution strategy was tournament 

(size 3) for first run of experiment 1, 2 and 3 and the first two runs of experiment 3 and 

4 while Elitist strategy was used for the last run for each experiment.
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Table 5.2: GPKernel set up parameters

No ID Run Experiment

No Time 
(min)

Objectives GP Parameters

p A,

Language

1 Exp. 1 1 3 720 CoD.RMSE 1000 1300 + ,- ,x ,/, sqrt

2 2 3 845 CoD.RMSE 1200 1000 x ,/,sqrt, pow

3 Exp. 2 1 3 953 CoD.RMSE 1000 1300 x ,/, sqrt

4 2 3 886 CoD.RMSE 1200 1000 x ,/,sqrt, pow

5 Exp. 3 1 3 1035 CoD.RMSE 1000 1300 x ,/, sqrt

6 2 3 1168 CoD.RMSE 1200 1000 x ,/,sqrt, pow

7 Exp. 4 1 2 1148 CoD.RMSE 600 900 x ,/, sqrt

8 2 2 1243 CoD.RMSE 650 850 x ,/,sqrt, pow

9 3 2 1056 CoD.RMSE 620 400 x ,/,sqrt, pow,exp

10 Exp. 5 1 2 1232 CoD.RMSE 600 900 x ,/, sqrt

11 2 2 1130 CoD.RMSE 650 850 x ,/,sqrt, pow

12 3 2 1272 CoD.RMSE 620 400 x ./.sqrt, pow,exp

Test Result and Analysis

The output of GPKernel is typically a file that contains the best expressions, along with 

the values of the objective functions, which the program has found during the 

evolutionary process. The objective values are calculated based on the 75% (as uses 

for training purpose) of the input data. The raw expressions from GPKernel are usually 

of the following form:

FC = ((((((( (sqrt (( (FC24 * FC3) * FC3) ) + ( (Qrib6 / Qdarl8) *
(FCrib * Qribl8))) / sqrt(FCrib)) + (((Qribl8 + s q r t ((FCdougl2 * 
(FCrib3 * Qribl8)))) / Qdarl2) + Qdougl8)) + ( ( ( (Qrib6 + FC24) / 
Qdarl2) / Qdarl8) + (Qdarl8 / FC12))) + Qdougl2) + (sqrt((Qdar12
+ FCrib)) / sal)) + (((FC24 + Qribl8) + Qrib6) / Qribl8)) / sal)

with the description of the variables being presented later in this chapter.

These expressions can be inserted directly into a MATLAB file and used for any 

calculations, but it has to be simplified for easier analysis, with the simplification being
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done mainly manually. The following steps have been undertaken to evaluate the test 

results produced by GPKernel:

i. Choose the best expression from GPKernel based on CoD and RMSE.

ii. Insert into a self-written MATLAB file and calculate the predicted FC 

concentrations, RMSE and CoD using the entire data set.

iii. Save the observed and calculated (predicted) FC concentrations into a file

iv. Generate plots using this result, and finally

v. Simplify the expression

For the first set of experiments the result are presented in Table 5.3. To obtain the 

RMSE value for Experiment 3, the result is converted from a logarithmic value. The 

result shows that the prediction of FC was not efficient when no information about its 

previous time steps was included in the GP. It was very difficult to fit the variation over 

such a large range without including the time series data during the model build up. 

Hence, it was decided to undertake the second part of the experiments, which contain 

experiments 5 and 6 respectively.

Table 5.3: Statistical analysis of results obtained using GP models for Part 1

Experiment 11 Milepost 7 Milepost

CoD RMSE CoD RMSE

Exp.1 0.4405 97535 0.4905 107735

Exp. 2 0.4930 82315 0.4347 115125

Exp. 3 0.4750 85964 0.4150 119964

In these the experiments the data for all the input parameters was included from 3 to 

24 hours before a certain time, with the data being provided in 3 to 6 hr interval 

alongside the current values. Hence, the GP now has some information about how the 

values were reached to a certain level over an interval of time. However, in the first 

experiment (Experiment 4), only the time series values of inputs were presented to GP. 

A total of 48 input parameters were used for this experiment. The results of two best 

GP solutions are presented in Table 5.4.
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Table 5.4: Statistical analysis of the results obtained from GP models for Experiment 4
(Part 2)

Milepost Run

Statistical measures Number of failed sample

CoD RMSE Obs. Model SE

7 1 0.8941 15413 339 509 326

2 0.8782 16532 339 339 285

11 1 0.8968 5821 346 561 346

2 0.8990 8757 346 561 346

In this table the number of samples, which are greater then 2000cfu/100ml have been 

identified as failed samples as this is the imperative guideline level in EU Directive. SE 

in the leftmost column of the table stands for the same event. When some event is 

spotted as ‘failed’ in both observed and modelled data then this is termed as same 

event failure.

As can be seen from Table 5.4, the statistical measures had been improved 

significantly and the model was capable of picking up the failed samples with a good 

level of precision. At 11 Milepost all failed sample had been successfully detected, 

although it had identified more then 150 samples to be failed. These cases are termed 

as false positive. Clearly the model was over predicting and hence a little too 

conservative. However, the model is less conservative for 7 Milepost (run 2) and it had 

failed to identify a number of failed samples. The cases where observed samples are 

more than the guideline value, but the model predicts as less the guideline can be 

termed as false negative. Overall, there had been a significant improvement but there 

was still scope for further improvements.

A subsequent trial (Experiment 5) was carried out to improve further on the result 

obtained above. In this experiment the past observations of the FC was also included
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as part of input data. Total number of input in this case was 53, which are shown in 

Table 5.5.

Table 5.5: Statistical analysis of the results obtained from GP models for Experiment 5

Milepost Run

Statistical measures Number of failed sample

CoD RMSE Obs Model SE

7 1 0.9277 12759 339 409 301

2 0.9204 13386 339 480 333

11 1 0.9190 5158 346 484 329

2 0.9299 4797 346 462 323

As can be seen from Table 5.5, the statistical measures had been further improved and 

the models in general were over predicting, but to a lower extent then before. As a 

result the number of false positives predicted by the model had been reduced. 

However, the model failed to identify a number of observed failed. Overall, this result is 

encouraging, although the the number of parameters used in this experiment would 

generally be regarded as too many. In Experiment 6 an attempt had been made to 

reduce the number of parameters.

As described in section 5.4.1, the GP software Discipulus was used to reduce the 

number of inputs. The GP had been run for 150 generations and had evaluated around 

109 possible solutions. When runs were completed, Discipulus produced a detailed 

report on the importance of the various inputs, called the Input Impacts. The input 

impacts are shown in Table 5.6.

Form this table the less important input parameters were determined. The less frequent 

inputs were then eliminated to reduce the number of input parameters. 40 inputs were 

selected for the 11 Milepost after eliminating any parameters that were less than 20%  

frequent in the best 30 programs. For the 7 Milepost, inputs that were less than 15% 

frequent were eliminated with 36 parameters remaining for further use.
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Table 5.6: Impact and frequency of inputs in best GP programs

Milepost 11 Milepost 7

V Variable Description F Av Max F Av Max

v [0 0 ] R ib b le  F lo w 0  2 0 0 0 1 0 .0 1 0  1 3 0  0 0 OOO

v[01J D a rw e n  F lo w 0  0 7 0 0 0 0  0 0 0  17 0 .0 0 0.01

v [0 2 ] D o u g la s  F lo w 0 2 0 0  01 0  01 0 2 0 0  01 0 0 1

v [0 3 ] F C  at R ib b le 0 2 3 0  2 0 0 .3 2 0 .2 3 0  8 8 0 9 5

v[0 4 ] F C  at D a rw e n 0  2 7 0  5 7 0 .8 0 0 0 3 0 .0 0 0 .0 0

v [0 5 ] F C  a t D o u g la s 0 .0 3 0  0 0 0 .0 0 0  3 0 0  0 2 0 1 0

v [0 6 ] S alin ity 0  8 0 0  2 4 0 .4 3 0  9 0 0  3 0 0 6 8

v [0 7 ] D e p th  a t loca tio n 0  5 3 0  11 0 .3 5 0 .4 7 0  19 0 .2 8

v [0 8 ] R ib b le  F lo w  p re c e d in g  3  hours 0 0 7 0  0 0 0  0 0 0  1 0 0 0 0 0 0 0

v [0 9 ] D a rw e n  F lo w  p re c e d in g  3  hours 0  10 0 .0 0 0  0 0 0  4 0 0  13 0 .4 5

v [1 0 ] D o u g la s  F lo w  p re c e d in g  3  hours 0  10 0 .0 0 0  0 0 0  2 0 0  01 0.01

v[1 1 ] F C  a t R ib b le  p re c e d in g  3  hours 0  13 0  0 0 0  0 0 0  2 0 0  4 3 0 .5 3

v[1 2 ] F C  at D a rw e n  p re c e d in g  3  h ours 0 2 7 0 6 7 0 6 9 0  4 3 0 .0 8 0 .1 5

v[1 3 ] F C  a t D o u g la s  p re c e d in g  3  h ours 0 0 7 0  0 0 0  0 0 0  17 0  01 0 0 2

v [14 ] S a lin ity  p re c e d in g  3  hours 0  0 0 0 .0 0 0  0 0 0 .1 7 0  0 0 0  0 0

v [15 ] W a te r  D e p th  p re c e d in g  3  hours 0 .1 7 0 .0 1 0  01 0  0 0 0  0 0 0 .0 0

v [16 ] R ib b le  F lo w  p re c e d in g  6  hours 0 6 3 0 0 4 0  0 9 0  3 0 0  0 0 0 0 1

v [1 7 ] D a rw e n  F lo w  p re c e d in g  6  h ours 0  2 7 0 0 0 0  01 0  4 0 0  0 2 0  0 8

v[1 8 ] D o u g la s  F lo w  p re c e d in g  6  hours 0  3 0 0  0 8 0  11 0 .2 3 0 .0 0 0  0 0

v[1 9 ] F C  a t R ib b le  p re c e d in g  6  h ours 0 2 0 0 0 5 0  0 5 0 .4 0 0  2 9 0 .6 2

v[2 0 ] F C  a t D a rw e n  p re c e d in g  6  h ours 0  3 0 0  4 6 0  8 9 0  7 0 0  2 4 0  4 6

v[21 ] F C  at D o u g la s  p re c e d in g  6  h ours 0  0 3 0  0 0 0  0 0 0  3 3 0 0 5 0  0 9

v[22 ] S alin ity  p re c e d in g  6  hours 0  6 0 0 .0 4 0 .0 6 0  37 0  0 2 0 .0 4

v[2 3 ] W a te r  D e p th  p re c e d in g  6  hours 0  0 3 0  0 0 0  0 0 0 .1 7 0  0 2 0 0 3

v[2 4 ] R ib b le  F lo w  p re c e d in g  12  hours 0  07 0 0 0 0  0 0 0  3 3 0  0 9 0  19

v [25 ] D a rw e n  F lo w  p re c e d in g  1 2  hours 0 .6 0 0 .0 3 0  0 7 0  2 3 0  0 0 0 0 0

v [26 ] D o u g la s  F lo w  p re c e d in g  12  hours 0  37 0  01 0  0 9 0  2 7 OOO 0 0 0

v[27 ] F C  at R ib b le  p re c e d in g  12 hours 0  6 0 0 .2 6 0 .3 4 0 .3 0 0  0 9 0 .1 8

v[28 ] F C  a t D a rw e n  p re c e d in g  12 hours 0 .5 7 0 .1 3 0  2 6 0  9 3 0  3 2 0  5 2

v [29 ] F C  at D o u g la s  p re c e d in g  1 2  hours 0 .7 0 0 .0 5 0  1 3 0  17 0 0 2 0 0 2

v[30 ] S a lin ity  p re c e d in g  12  hours 0 .1 7 0 .0 1 0  0 2 0  3 0 0 0 0 0 0 0

v[31 ] W a te r  D e p th  p re c e d in g  12  hours 0 .3 0 0  0 7 0  0 9 0  10 0 .0 0 0 0 1

v[3 2 ] R ib b le  F lo w  p re c e d in g  18 hours 1 .0 0 0  2 5 0  4 5 0 .3 7 0 0 6 0 2 0

v[3 3 ] D a rw e n  F lo w  p re c e d in g  1 8  hours 0  37 0  0 2 0  0 2 0  2 7 0 .0 0 0  0 0

v[3 4 ] D o u g la s  F lo w  p re c e d in g  18  hours 0  2 0 0  0 0 0  0 0 0 .3 7 0  0 0 0  01

v [35 ] F C  at R ib b le  p re c e d in g  18  hours 0  0 7 0  0 0 0 .0 0 0  13 0 0 3 0 0 4

v [36 ] F C  at D a rw e n  p reced in g  18 hours 0 2 7 0  0 5 0  0 8 0  0 0 0 0 0 0 0 0

v (37 ] F C  at D o u g la s  p re c e d in g  18 hours 0 0 0 0  0 0 0  0 0 0  10 0 0 0 0 0 0

v[38 ] S alin ity  p re c e d in g  1 8  hours 0  2 7 0  0 0 0  0 0 0 .1 3 0 .0 0 0 01

v[39 ] W a te r  D e p th  p re c e d in g  18  hours 0  17 0  01 0.01 0 2 0 0  11 0 34

v (40 ] R ib b le  F lo w  p re c e d in g  2 4  hours 0  57 0 01 0 .1 6 0  4 0 0 01 0 0 3

v [4 1 ] D a rw e n  F lo w  p re c e d in g  2 4  hours 0  2 0 0  14 0.51 0  2 0 0  11 0 17

v [42 ] D o u g la s  F lo w  p re c e d in g  2 4  hours 0  3 3 0  0 3 0  0 9 0 .1 7 0 0 0 0 0 0

v[43 ] F C  at R ib b le  p re c e d in g  2 4  hours 0  4 3 0 .0 3 0  0 6 0 .3 3 0 2 1 0 4 3

v[44 ] F C  at D a rw e n  p re c e d in g  2 4  hours 0  2 3 0 .0 4 0 .1 8 0 .0 0 0 0 0 OOO
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Milepost 11 Milepost 7

V Variable Description F Av Max F Av Max

v [4 5 ] F C  a t D o u g la s  p re c e d in g  2 4  hours 0 0 3 0 .0 0 0 .0 0 0 .2 0 0 .0 2 0  0 3

v [4 6 ) S a lin ity  p re c e d in g  2 4  hours 0 0 0 0 0 0 0  0 0 0  13 0 0 0 0 0 0

v [4 7 ) W a te r  D e p th  p re c e d in g  2 4  hours 0  0 0 0 .0 0 0  0 0 0  2 3 0  11 0  17

v [4 8 ] F C  a t m ilep o st p re c e d in g  3  H o u rs 0  7 3 0 0 8 0  12 0  4 3 0 .0 5 0 .0 8

v[4 9 ) F C  at m ilep o st p re c e d in g  6  H o u rs 0 .0 7 0  0 0 0 0 0 0  8 0 0 0 2 0 0 6

v [5 0 ] F C  at m ilep o st P re c e d in g  12  H o u rs 0  3 7 0 0 2 0 .0 9 0 .3 0 0 .0 0 0 0 1

v [5 1 ] F C  a t m ilep o st P re c e d in g  1 8  H o u rs 0  13 0 0 4 0  17 0 7 7 0 .0 3 0  10

v [5 2 ] F C  a t m ile p o s t P re c e d in g  2 4  H o u rs 0 2 7 0 0 1 0 .0 1 0 .3 3 0 0 4 0  17

where V = Variable input

F = Frequency, percentage of best 30 programs containing inputs

Av = Average effect of removing all instances of inputs from best 30 programs

Table 5.7 gives the results of Experiment 6 and shows that the statistical analysis for 

both the mileposts had been improved significantly.

Table 5.7: Statistical analysis of the results obtained from GP models for Experiment 6

Statistical measures Number of failed sample

Milepost Run CoD RMSE R2 Obs. Model SE

7 1 0.9295 12762 0.9399 339 406 301

2 0.9395 11667 0.9401 339 390 298

11 1 0.9398 4445 0.9422 346 433 329

2 0.9365 4521 0.9399 346 495 340

The GP model also detected even less failed samples in comparison with that of 

experiment 5. However, the problem of failing to spot some of the failed sample was 

still present. These comparisons indicated at this stage that there is a trade off between 

avoiding over prediction and identifying the maximum number of failed samples. It had 

been evaluated that if the output obtained from experiment 6 was increased by 10% 

then it was possible to pick up 99% of the failed sample. If these models are applied to 

a real life situation then it is the environmental managers’ decision to decide how to 

approach the problem.
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GP produces an expression for every model it proposes. As these expressions are very 

complex in nature only one the best performing equations are given here for each of 

the locations. For 7 Milepost the expression produced from Experiment 6 run 2 is as 

below:

where:

<p7 = FC concentration at 7 Milepost at certain time t

Vimnu ~ FC concentration at 7 Milepost at time t-24 hr

<A*24 = FC concentration at Ribble boundary at time t-24 hr

Vdrt = FC concentration at Darwen boundary at time t-9 hr

VdR9 = FC concentration at Douglas boundary at time t -9 hr 

tpd 24 = FC concentration at Douglas boundary at time t-24 hr 

Qrb\% ~ Flow at Ribble boundary at time t-18 hr

Qrb24 = Flow at Ribble boundary at time t-24 hr

5 = salinity at 7 Milepost at time t

This expression can be supported theoretically. It shows that if the FC levels in the

rivers increases then the FC levels at 7 Milepost are also increased. Furthermore, the

flow in the rivers has a positive correlation with the concentration at 7 Milepost, with 

increasing salinity values leading to reduction in the FC concentrations.

The expression produced for 7 Milepost shows that a reduction in the water depth 

leads to increased FC concentrations. These are supported in the literature, with the 

result obtained using this expression being shown in Figure 5.7 and 5.8.

/

I ..[ ) X 8 ,  i• ^ +Vdr9 (5.10)
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The equation for 11 Milepost produced by GP in Experiment 6, Run 1 is as follows:

.  1
«W  = I+ -

(
1 + ( Pdr\ \ 1^24

Q d g \

VrblA , . Qrb

W

Vh*,™ + <?W* + -;— ;— 77 + "77   , f X +'
18

v 5+^/18+(512) d^^s +  d j +̂ /18) s + dxh ^
(5.11)

where:

iPwmp -  FC concentration at 11 Milepost at time t 

(P\\mp2A ~ FC concentration at 11 Milepost at time t-24 hr 

Vrbu ~ FC concentration at Ribble boundary at time t-24 hr 

Warn ~ FC concentration at Darwen boundary at time t-11 hr

(pdKn = FC concentration at Douglas boundary at time t-11 hr

Qrh\%= Flow at Ribble boundary at time t-18 hr 

fi/s18= Flow at Douglas boundary at time t-18 hr 

s = salinity at 11 Milepost at time t 

.vl2 = salinity at 11 Milepost at time t-12

dy = water depth at 11 Milepost at time t-3 

dls = water depth at 11 Milepost at time t-18

The result produced using this equation are shown in Figures 5.9 and 5.10. According 

to this expression the FC levels and the flow in rivers have a positive correlation with 

concentration in 11 Milepost while salinity and water depth an inverse relation.
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Figure 5.8: Scatter plot for observed and GP predicted FC levels at 7 Milepost
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The performances of the best models for predictions are shown in Table 5.8. As can be 

seen from this table, the models have the ability to predict 70% occurrences correctly 

when the water quality fails to comply with EU guideline. The higher number of false 

positives compared to false negatives indicates that the models tend to overestimate 

value when the FC levels are below the EU imperative guideline value of 2000 

count/100ml. This should be considered during model application and setting tolerance 

for false predictions.

Table 5.8: Statistical analysis of the result obtained from the models developed using

GP

Location CoD RMSE TS False +ve (%) False -ve (%)

7 Milepost 0.9395 11667 0.691 15.04 12.09

11 Milepost 0.9398 4445 0.731 43.06 4.91

5.7 FC modelling with ANN

Neural networks are increasingly being used for prediction and forecasting various 

water resource variables. In this study ANN is used to predict the FC concentration at 

various locations in Ribble estuary. The software package used to develop the neural 

network model is Neural Network Toolbox in MATLAB version 7.1 release 14, 

developed by The MathWorks, Inc. The Neural Network Toolbox extends MATLAB with 

tools for designing, implementing, visualizing, and simulating neural networks. The 

Neural Network Toolbox provides comprehensive support for many proven network 

paradigms. Comprehensive information about the Neural Networks Toolbox is available 

in the Neural Network Toolbox User’s Guide (2006).
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General Strategy

For the Neural Networks modelling, the flow discharges and concentrations at the 

rivers, salinity and depth data at boundaries have been used as input data, while the 

FC concentrations at the 2 selected locations were used as target data. The data were 

normalised for ANN model construction. The specifications of the rivers and the 

variables are listed in Table 5.9.

Table 5.9: Variable specifications used for ANNs

Variables Symbol

Flow at Ribble River Qrib

Flow at Darween River Qdar

Flow at Douglas river Qdoug

FC at Ribble River FCrib

FC at Darween River FCdar

FC at Douglas River FCdoug

Water depth at 7Milepost Dep7MP

Salinity at 7 Milepost Sal7MP

Water depth at 11 Milepost Dep11MP

Salinity at 11 Milepost Sad 1MP

Test Setup

The 3 rivers are the main contributors of FC in the whole estuary while the transport of 

FC to the estuary depends on, among other factors, velocity or flow of the rivers. 

Hence the FC levels and the flow of the three rivers were included as input for neural 

network model building. It was considered that the transport of FC is also heavily 

affected by the water level at the tidal boundary in the estuary; therefore the water 

depth on the location in question was also included as an input. Salinity level was also 

included as an input as salinity has a detrimental effect on the FC survival. It would 

have been ideal to use sunlight data as a parameter, especially since sunlight is an 

important factor for bacterial decay. However, as mentioned earlier, no sunlight data
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were recoded during the original surveys and this parameter could not be incorporated 

in the hydrodynamic model. As a result the sunlight was also ignored for the neural 

networks.

The data were divided into three subgroups, including training, validation and testing. 

The training data were used to find optimal set of connection weights, the validation 

data were used to verify the trained network, and the testing data set was used to test 

the true generalisation capability of the model. However, in the literature testing data 

set and validation data set is used interchangeably. The way these sub division is used 

can have significant influence on the model performance. In this study the data set was 

divided in a way so that all of the patterns were presented in the calibration set. Finally 

it was ensured that the ranges of all input parameters were roughly the same in the 

three subsets. To obtain this goal the data order were randomised by sorting the 

contiguous block of data using a sequence of random numbers.

A total of 840 data points were used. According to the results from Gamma Test, 1/2 of 

the data were used as training set while 1/4 each used for validation and test dataset. 

The statistical parameters of the training, validation and test data is shown in Table 

5.10.

It can be seen that the training set contains maximum values of most of the 

parameters. This is important as some literature suggests ANNs have a poor 

extrapolation ability, which could result in a sub-optimal model.

After dividing the data into 3 subsets the data were then transformed. In the past, it has 

been commonly been perceived that data standardisation is not necessary for ANN 

models. However, more recent studies claimed that generally data standardisation 

improves neural network’s performance. The input variables were selected according 

to the possible relationships between the bacterial concentrations and those variables. 

In this study 4 different experiments have been carried out based on different 

combination of parameters. In order to avoid over-training the noise values obtained 

result from Gamma Test RMS error were used as the stopping criteria.
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Feed forward network was used with back propagation learning algorithm. The number 

of hidden layer in the network had an effect on network performance. A complex 

network with too many hidden layers may reduce the generalisation ability and it has 

been shown that ANNs with one hidden layer can approximate any function, given that 

sufficient degrees of freedom (i.e. connection weights) are provided (e.g. Hornik et a l., 

1989). The number of nodes in hidden layer was determined through trial and error.

Table 5.10: Statistics of the training, validation and test data sets after data division

Qrib Qdar Qdoug FCrib FCdar FCdoug Sal Dep

Training Dataset

Mean 51.92 5.19 3.28 40,117 29,607 1,401,337 10.75 3.89

Min 14.46 1.63 1.51 364 272 5,228 1.06 1.02

Max 134.24 17.58 9.97 449,000 257,000 34,000,000 23.82 6.75

Std Dev 35.73 3.43 1.59 88,458 49,261 4,344,983 7.53 1.92

Validation Dataset

Mean 47.70 5.27 3.42 34,069 29,259 724,573 10.60 3.69

Min 14.41 1.62 1.52 348 1,178 5,228 1.06 1.08

Max 133.98 17.70 10.20 405,000 237,000 19,500,000 23.66 6.76

Std Dev 32.40 3.69 1.89 80,444 48,883 2,345,617 7.66 1.95

Test Dataset

Mean 45.70 5.25 3.24 23,535 25,043 1,166,961 11.68 4.04

Min 14.41 1.63 1.51 364 1,360 5,408 1.14 1.08

Max 132.33 17.70 9.23 300,000 248,000 27,600,000 23.71 6.77

Std Dev 30.85 3.62 1.49 56,085 44,514 3,713,009 7.29 1.90

Four different experiments were carried out for this study. The parameters used in 

these experiments are listed in Table 5.11. The first experiment was carried out with 

only 8 parameters as inputs which were the flow and FC concentration levels at the 

upstream boundaries of the 3 rivers and the salinity level and depth predicted at the 

sites in question. The target was the FC at that location. The second experiment used 

the same input parameters but the FC and Flow values used were 9 and 11 hrs before
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for 7 Milepost and 11 Milepost respectively. As mentioned earlier these are the 

receiving water response times, or time lags. It has already been known from the 

Gamma test that the time lag information improves the performance of the networks. 

Therefore two sets of experiment were carried out to quantify the impact of including 

this information on the neural network performance.

In Experiment 3 time series (i.e. 3, 6, 12, 18 and 24 hours before) values of input 

parameters were used as input parameters, while the output were the values of the FC  

concentration. The previous value of the FC concentrations in the locations (7 Milepost 

or 11 Milepost) were also used as inputs, thus the total number of inputs used in this 

case is 53. In Experiment 4, time lag information was used and the number of input 

parameters was reduced to 27.

Test Result and Analysis

The accuracy of the model predictions was evaluated using the Root Mean Square 

(RMS) error and the coefficient of determination (CoD). The RMS error measures the 

deviation of the predicted FC values from the observed values. The CoD values 

represent the extent to which the observed and predicted FC concentrations “varying 

together”, i.e., whether a positive correlation exists. This is an analysis tool for 

examining whether large values of predicted FC tend to be associated with large 

observed FC values, and vice versa.

Table 5.12 shows the summary of the simulation results for the experimental runs. It 

can be seen from Table 5.12 that generally the statistical indexes obtained from the 

testing dataset are very close to those of the validation dataset, which indicates a good 

generalisation ability of the neural networks used in this study. This is primarily due to 

the fact that the noise level in the input data, which was predicted from the Gamma 

Test, was used as the stopping criterion in training the ANNs. In this way, the over­

training problem, which often makes the ANN testing results significantly worse than 

the validation results, had been avoided.
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Table 5.11: Parameters used for ANN models

Site Exp. No. of Description 
para­
meters

7MP 1 8 Qrib, Qdar, Qdoug, FCrib, FCdar, FCdoug, Dep7MP, Sal7MP

2 8 Qrib-9, Qdar-9, Qdoug-9, FCrib-9, FCdar-9, FCdoug-9, Dep7MP-9, Sal7MP-9,

3 53 Qrib, Qdar, Qdoug, FCrib, FCdar, FCdoug, Dep7MP, Sal7MP,

Qrib-3, Qdar-3, Qdoug-3, FCrib-3, FCdar-3, FCdoug-3, Dep7MP-3, Sal7MP-3,

Qrib-6, Qdar-6, Qdoug-6, FCrib-6, FCdar-6, FCdoug-6, Dep7MP-6, Sal7MP-6,

Qrib-9, Qdar-9, Qdoug-9, FCrib-9, FCdar-9, FCdoug-9, Dep7MP-9, Sal7MP-9,

Qrib-12, Qdar-12, Qdoug-12, FCrib-12, FCdar-12, FCdoug-12, Dep7-12, Sal7MP-12, 

Qrib-18, Qdar-18, Qdoug-18, FCrib-18, FCdar-18, FCdoug-18, Dep7-18, Sal7MP-18, 

FC7MP-3, FC7MP-6, FC7MP-12, FC7M P-18

4 27 Qrib-9, Qdar-9, Qdoug-9, FCrib-9, FCdar-9, FCdoug-9, Dep7MP-9, Sal7MP-9,

Qrib-10, Qdar-10, Qdoug-10, FCrib-10, FCdar-10, FCdoug-10, Dep7MP-10, Sal7MP-10,

Qrib-14, Qdar-14, Qdoug-14, FCrib-14, FCdar-14, FCdoug-14, Dep7MP-14, Sal7MP-14, 

FC7MP-6, FC7MP-8, FC7MP-10  

11MP 1 8 Qrib, Qdar, Qdoug, FCrib, FCdar, FCdoug, Dep11MP, S a il 1MP

2 8 Qrib-11, Qdar-11, Qdoug-11, FCrib-11, FCdar-11, FCdoug-11, Dep11M P-11, Sad 1M P -11

3 53 Qrib, Qdar, Qdoug, FCrib, FCdar, FCdoug, Dep11MP, S a il 1MP,

Qrib-3, Qdar-3, Qdoug-3, FCrib-3, FCdar-3, FCdoug-3, Dep11MP-3, Sail 1MP-3,

Qrib-6, Qdar-6, Qdoug-6, FCrib-6, FCdar-6, FCdoug-6, Dep11MP-6, Sal11MP-6,

Qrib-9, Qdar-9, Qdoug-9, FCrib-9, FCdar-9, FCdoug-9, Dep11MP-9, Sal11MP-9,

Qrib-12, Qdar-12, Qdoug-12, FCrib-12, FCdar-12, FCdoug-12, Dep11MP-12, Sal11MP-12,

Qrib-18, Qdar-18, Qdoug-18, FCrib-18, FCdar-18, FCdoug-18, Dep11MP-18, Sal11MP-18,

FC11MP-3, FC11MP-6, FC11MP-12, FC11M P-18

4 27 Qrib-11, Q dar-11, Qdoug-11, FCrib-11, FCdar-11, FCdoug-11, Dep11 M P-11, Sail 1 M P -11,

Qrib-12, Qdar-12, Qdoug-12, FCrib-12, FCdar-12, FCdoug-12, Dep11MP-12, Sal11MP-12, 

Qrib-14, Qdar-14, Qdoug-14, FCrib-14, FCdar-14, FCdoug-14, Dep11MP-14, Sal11MP-14, 

FC11MP-6, FC11MP-8, FC11M P-10

As the neural networks were intended to be used as a tool for day to day monitoring of 

bathing water quality, a comparison between the neural networks predicted number of 

failed samples and the observed (by numerical model) numbers was made.

f The numbers ‘-3’, ‘-6’ etc are used to refer to the values at 3 and 6 hours before, respectively.
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It can be seen from Table 5.12 that the CoD correlation is relatively high and the RMS  

error is reasonably low in all cases. For example, for training and validation the 

correlation coefficient ranges from 82.9% (Experiment 1, 11 Milepost) to 99.6%  

(Experiment 3, 11 Milepost). For model testing, in which unseen data were used, the 

correlation coefficient ranges from 82.1% (Experiment 1, 7 Milepost) to 95.3%  

(Experiment 4, 11 Milepost). The maximum RMS error is 18666 (Experiment 1, 7 

Milepost), which is less than 2% of the maximum FC concentration level.

ANN model performance improved with an increasing number of input parameters. 

The RMS errors obtained from Experiment 3 are smaller than those obtained from 

Experiment 1 and the number of predicted failed samples resulting from Experiment 3 

is closer to the observation than that resulting from Experiment 1. Similarly, the 

predictions obtained from Experiment 4 are significantly better than those obtained 

from Experiment 2. Good correlations were obtained between the predictions made by 

the neural networks and the observed FC values, see Figures 5.12 and 5.14.

From Table 5.12 it can be seen that the predicted FC concentration level varies from 

103 to 105, which shows a similar degree of variation in the FC level as found in 

observed data. However, the neural networks generally over-predict at low FC 

concentration levels, while under-predict at very high concentration levels, see Figures 

5.11 and 5.13. In particular, the neural networks over-predict when the FC 

concentration levels are around 2000cfu/100ml. For the day to day water quality 

management, such predictions will be slightly conservative.

It can also be seen from Table 5.12 that the model results obtained from Experiment 4 

are generally similar to those obtained from Experiments 3, even though the number of 

input parameters used in Experiments 4 was only half of that used in the Experiment 3. 

The testing CoD values obtained from Experiment 4 are slightly higher than those from 

Experiment 3, but the average CoD values are both over 90%. On the other hand, the 

number of currently predicted failed samples from Experimental 4 is slightly lower that 

that from Experiment 3, with the average error from both experiments being lower than 

10%.
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Table 5.12: Statistical analysis of the result obtained from models developed by ANNs

Statistical measures Number of failed sample

CoD RMSE observed ANN SE

Experiment 1:

7 Milepost

Training 0.936 11959 168 186 129

Validation 0.877 18666 89 101 72

Testing 0.821 17072 82 110 75

11 Milepost

Training 0.957 4031 176 208 162

Validation 0.829 7069 91 164 91

Testing 0.869 5735 79 107 75

Experiment 2:

7 Milepost

Training 0.948 10802 168 186 129

Validation 0.914 15608 89 106 77

Testing 0.889 14343 82 91 56

11 Milepost

Training 0.989 2024 176 180 169

Validation 0.933 4428 91 153 89

Testing 0.881 5474 79 117 77

Experiment 3:

7 Milepost

Training 0.992 4043 168 194 162

Validation 0.947 12256 89 92 77

Testing 0.926 10927 82 87 75

11 Milepost

Training 0.996 1144 176 179 171

Validation 0.942 4122 91 152 90

Testing 0.885 5371 79 102 79
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Experiment 4:

7 Milepost

Training 0.994 3664 168 195 157

Validation 0.949 12005 89 97 76

Testing 0.928 10790 82 84 72

11 Milepost

Training 0.994 1439 176 178 173

Validation 0.944 4042 91 135 91

Testing 0.953 3435 79 107 74

Thus in constructing the ANN models if consideration is given to the hydrodynamic 

process, the number of input parameters can be significantly reduced. Also, all of the 

input data used in Experimental 4 are collected at least 6 hours before the prediction 

time. This is very useful for bathing water managers to give forward warning to 

potential visitors.

5.8 Comparison between GP and ANN Models

Unlike ANNs, GPs are not a purely black box models as they offers some symbolic 

expression, as a result it is easy to understand how a GP has come up with certain 

result. However, there are number of research projects ongoing (e.g. Setiono et al, 

2002) where the objective is to extract an expression of the models developed by using 

ANNs. It is widely believed that ANNs are more efficient to deal with data with noise, 

although it worth noting that there is no noise present in the datasets used for this 

study, which is contrary to the real life measured datasets.
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Figure 5.12: Scatter plot for ANN test data set for 7 Milepost
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It would be unrealistic and flawed to judge the performance of GP and ANN based on 

the tests undertaken in this research. Firstly, there are different varieties of both GP 

and ANNs, and the varieties used in this study are in no way exhaustive. The results 

obtained herein might be improved by using another version of a GP or ANN and/or 

using different values for the various GP and ANN parameters. Secondly, it is not 

possible to compare the results obtained above directly as they were applied for 

different conditions in terms of training and testing data. Therefore, it was decided that 

the models developed above should be compared to verify their performance gains 

against an independent data set. The results are shown in Figure 5.15 and 5.16.
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Figure 5.15: FC predictions by ANN for 7 Milepost on the test data time series
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Figure 5.16: FC predictions by GP for 7 Milepost on the test data time series
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From the plots it is clear that ANN model produced better prediction of the data 

although it also offered some negative values while the observed values were very low. 

Another aspect worth mentioning is the time needed for model development. The GP 

was run for around 12-21 hours to produce the results obtained while it took only 

around 10 minutes to obtain the results from the ANN models. However, once the 

model was developed it was faster to obtain results using the GP expressions 

compared to obtaining the results using the neural network models.

5.9 Summary

Modelling with ANNs and GPs is a relatively new approach being applied to the difficult 

problem of predicting FC concentrations in recreational waters. Contrary to 

conventional hydrodynam ic models, GP and ANN models are black box models, in the 

sense that they do not need any physical insight to the problem in question at least to 

the same extent as a determ inistic model. Although in practice some physical insight of 

the domain is necessary to supply the GP or ANN with all of the information necessary 

and at the same time avoiding any redundancy in the supplied data. One advantage o f 

GP models are that they propose some symbolic expressions which offer some clues 

of the physical process, but it is generally very difficult to propose a physical model 

based on the GP model. It is also important to use real life data for data driven model 

development. The data used in this study was synthetic and fully noise free data, whilst 

in real life even a one day dataset would not be perfect. It would be interesting to see 

how the model reacts with the data including noise.

It is accepted that the black-box models, in general, do not work very well outside the 

conditions used for their development and calibration. A deterministic model can 

provide the necessary data to cover the whole range of possible cases. The results 

from this study have shown that these models are useful operational tools and possibly 

the only option for forecasting cases where there may be insufficient time available to 

run a hydrodynamic model. The development and application of such models as 

decision support tools could be a great benefit to environment managers and engineers 

involved in managing the safe use of bathing and recreational waters
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Chapter 6
M o d el  D e v elo p m e n t  a n d  A pplications  to  

C a r d iff  B ay

6.1 Cardiff Bay Study

During the 1920s the Port of Cardiff was one of the largest trading ports in the UK. 

However with the decline in the coal mining and steel industry the port also 

experienced a prolonged period of decline. A  massive urban regeneration of the docks 

area was seen as the most appropriate means of reviving the southerly part of Cardiff. 

A plan to construct a 1,4km long tidal exclusion barrage across the mouth of Cardiff 

Bay was considered as the focal point of this regeneration and was given Royal Assent 

in 1993. A freshwater lake, with a plan surface area of about 200 hectares, has been 

created following the construction of the barrage.

Cardiff Bay encompasses the estuaries of the Taff and Ely, which have contributing 

catchment areas of 512km 2 and 163km2, respectively. Before impoundment the mean 

spring tidal range was 11.1m, with the estuary having the second highest tidal range in 

the world. The barrage impounds the rivers Taff and Ely at around 4.8m A.O.D. (above 

Ordnance Datum), which is close to the mean high water level (Edwards, 1997 and 

Jones, 1994). The creation of the bay has enhanced opportunities for sailing and 

recreational water use. Although major sewage and other outfalls have been diverted 

from discharging directly into the impounded waters, there are still inputs of sewage, 

industrial effluent and land drainage from the river catchments and there are 

discharges from some combined sewer overflows (CSOs) during high rainfall 

conditions (Hill et al., 1996).

Cardiff Bay is not currently designated a bathing water and therefore is not required to 

comply with the standards outlined in the EU Bathing W ater Directive (Council of the 

European Communities, 1976). However, the waters are used significantly for a mix of
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recreational uses, such as canoeing and sailing. Cardiff Harbour Authority (CHA), part 

of Cardiff City Council, has been responsible for monitoring the water quality and 

managing environmental operations within Cardiff Bay and the Harbour Limits since its 

formation in April 2000; this task has been undertaken by a specialist W ater Quality 

team. Although the main responsibility of CHA is compliance with the Cardiff Bay 

Barrage Act 1993, i.e. maintaining dissolved oxygen levels of at least 5 mg/l, data are 

also collected for a range of water quality indicators such as dissolved oxygen, 

temperature, pH, conductivity and turbidity. The water quality team also samples the 

bay and river waters tw ice per week, to assess the bacteriological content in terms of 

Escherichia coli, total coliforms and faecal streptococci. River flow, wind speed and air 

temperature data are made available by the Environment Agency Wales and the 

Central Climate Unit of the Meteorological (Met) Office.

6.2 Previous Modelling Studies

A number of modelling studies have previously been undertaken of Cardiff Bay, pre 

impoundment, by Delft Hydraulics, Hydraulics Research and by Hyder Consulting Ltd 

using the Delft Hydraulics, Delft3D modelling software. Hydraulics Research 

constructed a three-dimensional model with a relatively fine vertical resolution, but a 

coarse horizontal resolution, to investigate sediment oxygen demand (SOD). Delft 

Hydraulics constructed a single box model of the impoundment and concentrated on 

the main processes contributing to oxygen supply and demand (Hyder Consulting Ltd 

1997). The study undertaken by Hyder Consulting Ltd, using the Delft Hydraulics 

Delft3D modelling software, was to examine the potential for compliance with the 

Cardiff Bay Barrage Act (1993). The Barrage Act requires the dissolved oxygen levels 

in the Bay to be maintained at/or above 5mg/l in all places and at all times. As a result 

an aeration system has been installed to ensure this standard is maintained.

As detailed in Chapter 3 individual pathogens are generally difficult and expensive to 

measure and, therefore, in water quality studies it is common practice to measure 

and/or model the levels of related indicator organisms. Numerical model based on 

solving the solute transport and kinetic equations are used by governmental bodies, 

consultants and water companies for the prediction of the distributions of bacterial 

concentrations, particularly for assessing compliance with the EU Bathing Water
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Directive (EU 1976). However these models can require some time to set-up, 

particularly when detailed bathymetric and boundary condition data must be obtained.

Data driven models, such as Artificial Neural Networks (ANNs), have been widely used 

in non-linear time series modelling of multivariate signal processing and controls, and 

in recent years there have been a number of successful applications in water 

management, for example Minns (1998) and DiBike et al (1999). Lin et al (2003) have 

recently applied ANNs to predict the compliance of coastal waters along the coastline 

of Firth of Clyde, Scotland, with the EU Bathing W ater Directive (EU BWD).

Although not an EU designated bathing water, Cardiff Harbour Authority is collecting 

large quantities of water quality data for the Cardiff Bay impoundment relating to 

recreational water use. In the current study, Artificial Neural Networks (ANNs) and 

Genetic Programming (GP) have been used to predict the Faecal Coliform (FC) 

concentration levels at two specific location using the data collected within Cardiff Bay 

and the contributing rivers. Genetic Programming is able to generate symbolic non­

linear regressions for the input output relationships. The development of a decision 

making tool that is able to predict the water quality and its variability will be of great 

benefit to the management and operation of Cardiff Bay, enhancing opportunities for 

safe recreational water use.

6.3 Data Availability

There are several continuous monitoring stations deployed around the Bay and the 

Rivers Taff and Ely. These stations operate continuously, measuring parameters such 

as: dissolved oxygen, temperature, pH, conductivity and turbidity. The water quality 

data collected is telemetered back to the Harbour Authority office via radio. The water 

quality team ensure the continual operation and maintenance of these stations. Depth 

profiling is carried out at a number of sites throughout the bay in parallel with 

monitoring water quality. The equipment used records general water quality indicators 

such as: dissolved oxygen (% saturation and mg/l), turbidity, conductivity, salinity, pH, 

temperature and depth. The Harbour Authority also carries out routine sampling of the 

bay and river waters for a number of key determinants, such as: biochemical oxygen 

demand, nitrogen, nitrates, ammonia, phosphorous, suspended solids and some
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metals. Figure 6.1 and Table 6.1 detail the location of the sites where this monitoring 

work is regularly undertaken. The W ater Quality team also samples the bay and river 

waters once a week, to assess the bacteriological content. The water samples are 

analysed for the presence of the eschericia coli, total coliforms and faecal streptococci. 

Less frequently, the water is analysed for the presence of enterovirus, Cryptosporidium 

and salmonella. As mentioned earlier, Cardiff Bay is not a designated bathing water; 

however, the EU BWD standards are the only currently available measure o f 

bacteriological quality for recreational waters and are being used by Cardiff Harbour 

Authority as a guide for public information.

Table 6.1: Locations and data availability at different sites

Site
No

Position

Easting (m) Northing 

(m)

Bacterio­
logical

Samples

Depth
Profiling

Continuous
monitoring

General
Water

quality

1 317811.32 176170.21 X X X

2 318037.16 175415.25 X

3 318560.85 174610.46 X X

4 318238.61 173869.03 X X X

5 318930.4 173571.09 X X X

6 319302.12 173830.79 X X X

8 319135.53 173350.31 X

9 318330.9 173128.38 X X X

10 318904.64 173076.21 X X X

15 318491.12 172466.15 X X X

16 318440.98 172583.18 X X X

17 317368.25 173133.96 X X

18 316935.41 173860.48 X

19 316024.05 175106.62 X X X
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Figure 6.1: Schematic diagram of Cardiff Bay sampling locations

Data from Cardiff Bay Harbour Authority (CHA) was provided from the period of the

beginning of summer 2001 (1/5/01) to the end of first quarter 2005 (30/3/05). The data

provided was as follows:

• Bacteriological W ater Quality - Samples from Cardiff Bay and the rivers Taff 

and Ely was collected on average twice per week to assess the bacteriological 

content. The water samples were analysed for the presence of faecal coliform 

and Escherichia coli (E. coli).

• Water Quality - Measurements were taken using continuous monitors in the bay 

(former tidal rivers). The measurements included dissolved oxygen (% 

saturation and mg/l), turbidity, conductivity, salinity, pH, temperature and depth.

• Meteorological Data -  Data were collected at the CHA station and included:

total daily radiation; maximum radiation over 5 minute intervals; radiation at

mid-day; modal wind direction; mean wind speed; and, maximum wind speed

• River Taff and Ely flow data -  The rivers were gauged at 15 minute intervals at

Black weir for River Taff and former Arjo wiggins weir on River Ely, with the
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data being provided by the W ater Resources Section of Environment Agency 

Wales.

The bacteriological results for summer 2002 were excluded from the current study as 

there was a problem with the analysed data. CHA changed the laboratory that 

undertook the analysis of the bacteriological samples at the beginning of April 2002. 

The samples were analysed using a different type of media developed for testing 

potable water, where the presence or absence was more important than the actual 

number. Also chemicals were added to help stressed bacteria recover, thus further 

biasing the results. This problem was rectified towards the end of the summer of 2002, 

thus the data for the whole period has been excluded. In addition, during the summer 

months, CHA removed the turbidity probe from some sites and replaced it with a 

chlorophyll monitor. Where turbidity measurements were not a continuous annual (or 

summer/winter) record the readings were discarded.

6.4 Model Evaluation Criterion

The model evaluation in this study was carried out using the coefficient of 

determination (CoD) and the root mean squared error (RMSE). The error measurement 

consists of an analysis of the error between the observed and predicted values. The 

overall performance of trained neural networks can be judged with respect to criterion 

such as CoD. This coefficient is independent of the scale of data used and is useful in 

assessing goodness of fit of the model (Dawson and Wilby, 1999). CoD ranges from 0 

at the worst case to +1 for a perfect correlation. RMSE were used to show a 

quantitative indication of the model error; which measures the deviation of the 

forecasted value from the actual observed value.

As the model developed herein is intended to be used for day-to-day monitoring of 

recreational waters, another additional criterion is also used for this particular study. In 

order to use these models for monitoring purposes it is more important to detect when 

the water quality fails to comply with the guideline threshold values, for example, the 

EU imperative limit of 2000 cfu/100ml. Lin et al. (2003) employed this type of evaluation 

criterion by reporting the number of days when the observed and predicted FC 

concentrations exceeded the regulatory water quality standard. In this study the
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number of failed samples is reported, for both the observed and predicted sample as 

well as the number of occurrences when the failed sample was correctly predicted as 

failed.

6.5 Data Pre-processing

The data were first scanned for sensor malfunctions, missing values or data entry 

errors. In some cases these data errors continue for significant intervals. Their cause is 

unknown, but could be due to sensor failure or periods of routine maintenance. It was

apparent that the data would have to be cleaned to reduce the effect of faulty sensor

readings prior to analysis or modelling. The measurements that were significantly 

different from the previous reading, taken at the same site, were identified as ‘incorrect 

measurement’. A simple threshold algorithm (twice the standard deviation of each time 

series), designed to operate in real-time when future sensor values would not be 

known, was used to correct obviously faulty readings by replacing them with their last 

known reliable value. This routine is effective with time-series values that can be 

expected to change relatively smoothly over time. It is obviously inappropriate for the 

FC concentrations, where the values were effectively discontinuous, and no attempt 

was made to adjust the FC data. For most cases where there were single missing 

values the data cleaning procedure provided a simple and effective approximation. A  

disadvantage of this technique occurs when a string of missing values are assigned the 

last valid measured value. For long strings this algorithm would in all likelihood produce 

increasingly inaccurate approximations.

6.6 Data Analysis

The non linear data analysis tool winGamma was used for the data analysis. The brief 

description of winGamma is given in Chapter 5. A simple Gamma test was run with 

pmax =10 (where pmax is the number of near neighbour, the prescribed value is 10). 

The result obtained is given in Table 6.2. The Gamma statistic is actually the vertical 

intercept of the regression line in Figure 6.2. This is the estimated variance of the 

errors for any smooth model built on the data. Table 6.3 shows that the unsealed 

values of r  is 662894.9. This means that any smooth model built on unsealed data will 

have a standard deviation of the prediction error of approximately 815. In considering
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the range of the output (FC concentrations) data [3, 32000], then this corresponds to 

about 2.54% of the range.

Table 6.2: Result of Gamma test for unsealed and scaled data

Unsealed Scaled

Gamma 662894.9 0.048079

Gradient 0.065911 0.15184

V-Ratio 0.014876 0.048316

Near Neighbours 7 7

Start Vector 1 1

Unique Points 230 230

Evaluated Output 1 1

Zero Nearest Neighbours 0 0

Lower 95%  Confidence 0 0

Upper 95%  Confidence 0 0
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Figure 6.2: Scatter plot and regression line for the dataset used to build the model
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gamma

Figure 6.3: 3-D histogram for the dataset used to build the model

In the Gamma Test the critical graph is the scatter plots and the (<5(p),y(p)) regression 

line. The scatter plot shows point pairs (6,y),  where 6 is the squared distance of an 

input (x) from one of its near neighbours and y is one half of the squared distance 

between two corresponding scalar output (y) values. The points to which the regression 

line is fitted are calculated by finding the mean <5(p)of <5 and the mean y(p) of y , 

where p refers to the first nearest neighbour (p=1), second nearest neighbour (p=2) 

and so on, up to the maximum number of near neighbours (pmax) which is set by the 

user.

Another important measure of data predictability is the Vratio, which is defined as 

GammaA/ar (output). It indicates how well the output can be modelled by a smooth 

function. A Vratio close to zero indicates a high degree of predictability of a particular 

output. Vratio is a better parameter to look at as it is independent of the output range. 

In this case the Vratio of 0.0148 indicates difficulty in the model prediction due to the 

presence of noise. Jones (2001) reported a Vratio of 0.0007 as an indicator of low 

noise presence. This observation is reinforced by the scatter plot in Fig 6.2. However 

the 3-D histogram in Fig 6.3 shows that the majority of the data are in good agreement. 

For model building purposes the noise was not removed as it might eliminate some 

useful information that would otherwise influence the output captured in the input.
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For model building purposes the noise was not removed as it might eliminate some 

useful information that would otherwise influence the output captured in the input.

For the model building purpose it is important to know how quickly the estimate 

returned by the algorithm will stabilise to a close approximation of the noise variance. 

One simple method for quantifying this parameter is to compute the r  statistic fo r 

increasing M. By plotting the r  values over M it can be seen whether the graph appears 

to be approaching a stable asymptote.

Performing an M-test prior to model building can establish whether there is sufficient 

data to get a reliable r  estimate. The fact that the graph has stabilised indicates that we 

have enough information (i.e. data) to estimate accurately the noise and so to construct 

a feasible surface, with the performance corresponding to the measured noise level. 

The Gamma test itself provides the criterion for ceasing training of a non-parametric 

model, such as a neural network. This is based on the idea that one criterion of a good 

model is that when tested on unseen data it can be expected to produce a root mean 

squared error (RMSE) which is the same as (or close to) the true or estimated noise 

variance of r associated with the data. Figure 6.4 shows the result of M tests performed 

for different combination the data at Site 9. It can be seen that r  value did not reach 

asymptotic value when no FC data were provided (Figure 6.4(a)). It improves with the 

addition of FC data (Figure 6.4(b)) and Improves even further when the maximum 

values of some decay parameters were included (Figure 6.4(c)).

6.7 Model Inputs

It was initially intended to develop a model which would be able to predict the FC 

concentration at certain points within Cardiff Bay, without having any priori knowledge 

regarding the concentration levels at any point across the whole modelling domain. 

However, the M test results obtained during data analysis made it clear that it is not 

possible to build such a model without offering any FC data to the ANN. As a result the 

FC concentrations for Taff and Ely, at Black weir for River Taff (Site 1) and former Arjo 

wiggins weir on River Ely (Site 19) respectively, were also included in the data set. This 

data did improve M Test result, however, as the velocity in the rivers are generally very 

low, there is always a possibility that a significant fraction of the FC might decay by the
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considered for the model development. For the individual tests different numbers of 

combinations of inputs were used to find out the most efficient combination. The list of 

the inputs included:-

• Flow data: The average flow for the preceding 24 hr for the Taff and Ely (2 

parameters)

0.3
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(C)

Figure 6.4: M Test performed on randomised scaled data, red line corresponds to the 
potential r  value for FC at site 9: (a) when no FC data were provided (b) with FC data 

and (c) with FC data and maximum values of some decay parameters

• FC data: FC concentrations at Sites 1 and 3 (on river Taff) and 16 and 19 (at 

river Ely) (4 parameters)
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• FC data: FC concentrations at Sites 1 and 3 (on river Taff) and 16 and 19 (at 

river Ely) (4 parameters)

• Meteorological data: The daily total radiation, maximum radiation and average 

rainfall. The average and maximum radiation and average rainfall for the 

previous 6 hr was also provided. (6 parameters)

• Water quality data: Average and maximum daily temperature, turbidity, pH and

dissolved oxygen. It was intended to use these values at the target locations 

(Site 5 and Site 9) but all data for these locations were unavailable. Therefore 

the values at Site 4 and Site 10 were used instead. (16 parameters).

• Water depth average for preceding 24 hr at sites 4 and 10 (2 parameters).

6.8 Data Division

Once the input and output variables were defined, it was convenient to classify the 

complete data set into two categories: dry and wet, depending on the flow volumes for 

each quarter. All three data subdivisions contained same proportion of data from each 

period which was ensured for the analysis. The M test results previously indicated that 

at least 150 data were needed to build a model. To achieve this criterion 4 data points 

out of every 6 were assigned for training purpose. Finally, 157 data points were 

included in the training dataset and 38 data points included in validation and test data 

set.

6.9 Model Development using GP

6.9.1 Test Setup

The model development using Genetic Programming (GP) for the prediction of the FC 

levels, at Sites 5 and 9 in Cardiff Bay was undertaken using the academic version of a 

genetic programming software tool, namely Discipulus (AIMLearning™ Technology 

2000). Discipulus is a fast technique for automatic computerised modelling using 

genetic programming and has been used in many engineering and scientific 

applications. It produces high precision models independently built from the data 

supplied. It has the advantage of being self-tuning and self-parametising. Once the tool
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has been set-up and run, the output produces the details the performance of the best 

programs and allows the user to edit, optimise and simplify, via the interactive 

evaluator, the expressions developed through the program.

Two sets of solutions are produced in Discipulus, namely the best team and the best 

program. Team solutions are a combination of the best programs in the project, which 

frequently perform better that the individual program solutions. It evolves Pentium 

machine code for either numerical function fitting or binary classification problems, or 

runs on all Windows operating systems.

The GP parameters that had been looked at were the crossover rate, mutation rate, 

population size, instruction set and distribution of the initial program sizes, termination 

criteria, and parsimony pressure (i.e. fitness advantages for smaller programs). Table

6.3 shows the values used for the various GP parameters. These values were obtained 

after running a number of tests.

Table 6.3: Values of the GP parameters

Parameters Value

p o p u la t io n  s i z e 500

M u t a t io n  r a t e 0.85

c r o s s o v e r  r a t e 0.50

p a r s i m o n y  p r e s s u r e 0 . 2 0

H o m o l o g o u s  c r o s s o v e r 0.90

B lo c k  m u t a t io n  r a t e 0.30

In s t r u c t io n  m u t a t i o n  r a t e 0.25

N u m b e r  o f  d e m e s 1 0

C r o s s  o v e r  b e t w e e n  d e m e s 0

M ig r a t io n  r a t e 1

As can be seen from Table 6.3, a high value for homologus crossover had been used 

for the GP runs. Homologous crossover is a recombination between equal length
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program fragments in the same positions, in each parent. This reduces the tendency o f 

evolved programs to become larger without correlated fitness improvements.

Discipulus has an option of using multiple groups of relatively isolated populations, 

known as demes (Banzhaf et al. 1998). This feature allows migrations between 

adjacent demes in a ring topology. Though sometimes demes produce better solutions, 

their main advantages are in supporting parallel computation or in increasing 

population diversity. Discipulus, however, does not support multiple processors and 

does not provide easy access to individuals in different demes. In this study this feature 

has been tested for several experiments but no convincing evidence was found that it 

improves the results, therefore this facility was not used for subsequent runs.

The inputs used for GP model building were flows in the two rivers, FC concentrations 

at 4 sites (namely, Sites 1,3, 16 and 19), temperature, dissolved oxygen, pH, turbidity 

and water depth at Sites 4 and 10. The maximum and average solar radiation were 

also included in the inputs. The output or target remained evaluating the FC at Sites 5 

and 9 as before.

6.9.2 Test Results

As mentioned earlier, Discipulus produces two solutions for each problem; one relates 

to the best GP program and the other to the best team of solutions. Figure 6.5 and 

Table 6.4 show the individual best program and the team selection that have produced 

best results. It can be seen that the difference of the performance between the best 

team and the best program was minimal in this case, therefore for the sake of simplicity 

the best program solution had been accepted as the GP solution.

The evolved program for both the best program and best teams can be seen as 

machine code. Figure 6.6 shows part of the evolved program for Site 5. It can be seen 

that the evolved code is rather incomprehensible.
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Figure 6.5: Correlation between measured and GP predicted FC Concentration (best
program and best team)

However, it does give an indication of which input parameters were used frequently 

and what operation had been performed with these parameters. A better representation 

of the relative importance of the input parameters can be found from the impact table, 

which is provided in Table 6.5 and Figure 6.7.

Table 6.4: Performance of best GP program and best team

Site Subset

Best Team  

RMSE CoD

Best Program 

RMSE CoD

Training 0.217 0.949 0.253 0.932

Site 5 Validation 0.242 0.935 0.284 0.913

Test 0.327 0.863 0.389 0.809

Training 0.266 0.933 0.326 0.900

Site 9 Validation 0.327 0.893 0.342 0.884

Test 0.427 0.785 0.447 0.756
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From Table 6.4 it can be seen that, the CoD is relatively high and RMS errors are 

reasonably low in all experiments. For example, for training and validation the 

correlation coefficient ranges from 88.4% (Site 9) to 94.9%. (Site 5). The model 

performance on test data (the correlation coefficient) ranges from 75.6% (Site 9) to 

80.9% (Site 5).

Figure 6.7 shows that the FC concentrations (parameters 1-4) had the most dominant 

effect, which is a reasonable result as they were the main contributors of FC in the 

domain. It can be seen that while the other parameters had been used in a similar 

frequency, their overall impact on the model out was very low. It suggests these 

parameters have been used to perform the fine tuning of the model and improve the 

model accuracy.

f [0] -=f[1];
cflag=(f[0] < f [1]);
f [1] +=f[0];
f [1] / = f [ 0] ;
f [0] / = - ! . 924433708190918f;
f [0] /=-l.907608032226563f;
f [0] *=v[0];
f [0] /=v[2];
f [1] *=f[0];
cflag=(f [0] < f [0]);
f [0] =sqrt(f [0]);
tmp= f [1] ; f [1]= f [0] ; f [0]=tmp;
f [0] = sqrt(f [ 0] ) ;
if (cflag) f [0] = f [1];
f [0] *=f [ l];
if (cflag) f [0] = f [0];
f [ 0 ]-=f[i];
f [ 0 ]-=v[2];
f [1] *=f[0];

Figure 6.6: G enerated expression for FC prediction at Site 5
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Table 6.5 : Impact of input parameters in the best GP programs

Site 5 Site 9

V F Av Max F Av Max Variable Description

1 0.50 0.16 0.81 0.63 0.05 0.21 FC concentrations at site 1

2 0.23 0.13 0.76 0.83 0.22 0.89 FC concentrations at site 3

3 1.00 0.46 0.76 1.00 0.72 0.90 FC concentrations at site 16

4 0.57 0.11 0.42 0.37 0.05 0.17 FC concentrations at site 19

5 0.20 0.07 0.14 0.23 0.02 0.02 Average Flow at Taff

6 0.23 0.03 0.09 0.60 0.05 0.18 Average Flow at Ely

7 0.83 0.03 0.07 0.17 0.05 0.07 Average Radiation

8 0.47 0.03 0.06 0.17 0.01 0.02 Maximum Radiation

9 0.13 0.03 0.05 0.23 0.05 0.05 Average Temperature at Site 4

10 0.43 0.02 0.05 0.30 0.01 0.01 Average DO at Site 4

11 0.07 0.04 0.04 0.10 0.00 0.00 Average pH at Site 4

12 0.03 0.04 0.04 0.40 0.03 0.07 Average Turbidity at Site 4

13 0.43 0.02 0.04 0.20 0.04 0.07 Average Depth at Site 4

14 0.07 0.01 0.01 0.13 0.00 0.00 Average Temperature at Site 10

15 0.03 0.00 0.00 0.17 0.00 0.00 Average DO at Site 10

16 0.00 0.00 0.00 0.27 0.04 0.11 Average pH at Site 10

17 0.00 0.00 0.00 0.03 0.00 0.00 Average Turbidity at Site 10

18 0.00 0.00 0.00 0.17 0.02 0.02 Average Depth at Site 10

Where V = Variable input

F = Frequency, percentage of best 30 programs containing input

Av = Average effect of removing all instances of input form best 30 programs

Max = Maximum effect of removing all instances of input form best 30 programs

* All average values and maximum radiation are taken for preceding 24 hours
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Figure 6.7: Impact of different parameters on the FC levels at Sites 5 and site 
9. (a) frequency of the parameter within best 30 program (b) average impact 
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As for the water quality parameters, Site 4 values were more influential than those at 

Site 10. Whilst Site 4 values had an impact on the FC levels of both of the target 

locations, water quality at Site 10 did not affect the FC levels (i.e. decay) at Site 5. As 

Site 10 is further downstream of Site 5 this result would have been expected anyway.

Among other parameters sunlight (variables 7 and 8) had a more prominent impact and 

was used frequently, showing sunlight as the most important factor of bacterial decay.

Figure 6.7 (b, c) also shows that the FC levels at Site 9 were more sensitive to the 

water depth. This finding can be explained by the fact that Site 9 was in the shallower 

region, where the water level fluctuations might result in a situation when solar 

irradiation penetrated most, if not the whole, of the water column. On the other hand 

Site 5 being in the deeper water (i.e. Figures 6.17 and 6.18 shows the water depth in 

Cardiff Bay), there was always a region where solar irradiation never reached part of 

the water column ensuring a more favourable environment, irrespective of the water 

level in the domain.

It is also clear that the flow in the rivers Taff and Ely were more influential in the FC 

levels at Sites 5 and 9 respectively. However, while the Taff flow had some affect on 

the FC at Site 9, flow in Ely had relatively little impact on the FC levels at Site 5.

Figure 6.8 to 6.11 show the line graph and scatter plots of the best results produced by 

the GP, for both Sites 5 and 9. It can be seen that the predicted values are well in 

agreement with the observed values.

Table 6.6 shows the performance of the GP models for detecting the samples which 

were above the EC Bathing W ater Directive imperative value of 2000 cfu/100ml. It can 

be seen that most of the failed samples were detected by the GP models. The 

percentage of samples identified wrongly ranged from 0 - 30%, however it should be 

noted that that the number of failed samples was very low for this experiment, which 

resulted in a high percentage of errors.

178



Chapter 6: Model Development and Applications to Cardiff Bay

6

O b s e r v e d
P r e d ic te d5

4

3

2

1

0
0 20 4 0 6 0 8 0 100 120 1 4 0 1 6 0

Data S equence

(a)

6

O b s e r v e d
P r e d ic te d5

4

3

2

1

0
8 0

Data S equence

Figure 6.8: Observed and GP predicted FC concentrations (logarithmic value) at Site 5 
fo r : (a) training, and (b) validation (1-38) and test (39-76) dataset
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Figure 6.10: Observed and GP predicted FC concentrations (logarithmic value) at Site 
9 for: (a) training and (b) validation (1-38) and test (39-76) dataset
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Figure 6.11: Comparison of GP predicted and measured FC concentrations at Site 9
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Table 6.6: Performance of GP models for detecting failed sample

Observed Model SE False

+ve

False -ve

Site 5

Training 42 44 39 11.36% 7.14%

Validation 10 8 8 0% 20%

Test 11 10 9 18.18% 20%

Site 9

Training 45 43 39 10.25% 13.33%

Validation 12 10 10 0% 16.67%

Test 8 10 7 30% 12.5%

6.10 Model Development using ANN

6.10.1 Test Setup

ANNs in this study were developed using the Neural Network Toolbox in Matlab 7.0, a 

commercially available software package. The type of ANN used in this study was 

Feedforward network. The sequential and concurrent inputs were applied to a static 

network without any delay or feed back. The internal parameters of the ANN that were 

manipulated included: number of hidden layers, transfer functions, input-output 

scaling, learning algorithm, and training rate. ANN training was performed using the 

default values for rest of the parameters in the package.

A multi-layer feed forward network had been used, with only one hidden layer as it had 

been shown that one hidden layer can approximate any function (Hornik et al. 1989). 

Four different types of training algorithm were examined. Among the training algorithms 

that have been tested, the Levenberg-Marquardt Back Propagation algorithm delivered 

the best results.
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In order to avoid overfitting, the early stopping method was used. In this technique the 

available data are divided into three subsets. The first subset is the training set, which 

is used for computing the gradient and updating the network weights and biases. The 

second subset is the validation set. The error for the validation set is monitored during 

the training process. The validation error will normally decrease during the initial phase 

of training, as does the training set error. However, when the network begins to overfit 

the data, the error for the validation set will typically begin to rise. When the validation 

error increases for a specified number of iterations, the training is stopped, and the 

weights and biases at the minimum of the validation error are returned. While the early 

stopping method being applied for Levenberg-Marquardt Back Propagation algorithm, 

some training parameters were set to a prescribed value (e.g., momentum terms, mu 

as 1, mu_dec as 0.8 and m u jn c  as 1.5) (Demuth and Beale, 2003) so that 

convergence is relatively slow. The network goal is selected as RMSE = 0.05 as 

achieved during Gamma analysis. The ANNs were trained starting from 20 different 

initial networks, randomly initialised, with the best performing network on training data 

being chosen as the trained network. A tan-sigmoidal unit was chosen for the hidden 

layer after a series of run using other functions with a linear transfer function always 

being used in the output layer.

The scaling of the network inputs and targets is done by normalisation, based on the 

mean and standard deviation of the dataset. The inputs and targets have been 

normalised in such a way that they will have zero mean and a unit standard deviation. 

The outputs of the model are then converted back into their original scale. The number 

of nodes in the hidden layer is determined by trial and error. Figure 6.12 shows that 10 

hidden nodes provided the best RMSE for site 5.

It should be noted that 7 hidden layers produces the lowest validation error, however 

as 10 hidden nodes produces same level of RMSE for both Test and Validation 

dataset, it offers better generalisation.

Han (2002) ( Han et al., 2007) proposed the following relationship for number of hidden 

layers:
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Number of hidden nodes = (Number of input neurons + Number of input neurons) x 2
3

Following this relationship there should be 13 (considering 19 inputs and 1 target) 

neurons in this case. It can be seen that 13 hidden nodes does not produce the best 

result, however further investigation is needed before making a conclusive comment on 

Han’s work.

0.6
TestTraining Validaion

UJw
O'

10 155 7 13

Number of Nodes in Hidden layer

Figure 6.12: The Effect of hidden nodes on network performance 

6.10.2 Network Inputs

Selection of the inputs is a very important aspect of building a successful network 

model. This is to avoid costly data collection, to eliminate unwanted impacts of 

irrelevant data and to build a simple model. This is referred to as part of the complexity 

regularisation problem. The primary criterion of complexity regularisation problem 

involves selection of an appropriate number of inputs and hidden neurons for a 

network. Among the input parameters stated in section 6.7 different input combinations 

were tested. These combinations are described as experiments and details are given 

below:

Experiment 1: FC data for 4 sites (Sites 1, 3,16 and 19), daily average flow of rivers 

Taff and Ely (2 nos), daily average radiation, maximum radiation (2 nos) and daily 

average temperature, dissolved oxygen, pH, turbidity and water depth for Site 4 and 10
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( 2 x 5  nos). All these input values were taken for the preceding 24 hr. Therefore a total 

of 18 parameters were used.

Experiment 2: This test was designed to minimise the number of FC inputs for model 

development. Therefore only FC dataset for site 1 and 19 were used, while the other 

inputs remained the same as for Experiment 1. The total number of inputs was 16.

Experiment 3: This experiment was the same as Experiment 2. The only change 

made was to the FC data. Sites 1 and 19 were far away from the bay domain and the 

flow in the river was generally very low. Therefore there was a possibility that a 

significant part of the FC at the sites upstream decayed significantly before reaching 

the bay. To examine if this possibly was significant it was decided to use the FC level 

of two sites further downstream along the rivers, hence FC data at Sites 3 and 16 were 

also used.

Experiment 4: This test experiment was intended to make the model more compact, 

thereby offering minimal input data to the neural net. From chapter 2, it can be seen 

that solar radiation and temperature were the most important factors affecting bacterial 

decay, particularly in a relatively small and freshwater body such as Cardiff Bay. 

Therefore apart from the flows in the two rivers and the FC levels at the boundary 

(Sites 3 and 16) the daily average and maximum solar radiation and daily average 

temperatures were included in this test. It must be stressed that all inputs values were 

taken for the preceding 24 hours. The total number of inputs in this test was 7.

6.10.3 Test Results

The results obtained from the ANNs are shown in Table 6.7. It can be seen that, 

generally the statistical indexes obtained from the testing dataset are very close to 

those of the validation dataset, which indicates a good generalisation ability of the 

neural networks used in this study. This is primarily due to the fact that the noise level 

in the input data, which was predicted from the Gamma Test, was used as the stopping 

criterion in training the ANNs. In this way, the over-training problem, which often makes 

the ANN testing results significantly worse than the validation results, has been 

avoided.
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From Table 6.7 it can be seen that, the CoD is relatively high and RMS error is 

reasonably low in all experiments. For example, for training and validation the 

correlation coefficient ranges from 74.6% (Experiment 2, Site 9) to 91.3%. (Experiment 

4, Site 9). It can be seen that the model worked best on the training data set. However, 

for the model performance it is important to check how the models work on test data 

set which had been unseen to the model during model construction process. For model 

testing, the correlation coefficient ranges from 53.7% (Experiment 2, Site 9) to 84.6% 

(Experiment 1, Site 5).

For Site 5, Experiment 1 thus produced the best result, while Experiment 4 produced 

the best result for Site 9. This indicated that the water quality (i.e. turbidity, pH, DO) 

and water depth played a more significant role on bacterial decay for Site 5 than they 

did for Site 9.

A performance enhancement in the range of 20 to 45% (of CoD) from Experiment 2 to 

Experiment 3 can be seen. This shows that a significant portion of bacteria died off 

before reaching the bay from those upstream sites, in comparison to those from sites 3 

and 16. As this decay process can not be captured entirely by the neural net, more 

decay therefore leads to inferior results.

Figures 6.13 and 6.15 show the best results for both sites, which includes line plot for 

the training, validation and test datasets. Figures 6.14 and 6.16 show the correlation 

between the observed and predicted FC concentrations.

Finally, for the best results the number of failed samples was determined for the 

observed and predicted FC for both sites (Table 6.8). It can be seen that the models 

can successfully determine the occurrence as to when FC concentrations exceed the 

EU imperative value.
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Table 6.7 Statistical analysis of the results obtained from different ANN models

Site 5 Site 9

RMSE CoD RMSE CoD

Experiment 1

Training 0.292 0.9127 0.374 0.869

Validation 0.359 0.871 0.368 0.863

Test 0.361 0.846 0.487 0.723

Experiment 2

Training 0.4619 0.765 0.508 0.767

Validation 0.475 0.747 0.527 0.746

Test 0.532 0.647 0.636 0.537

Experiment 3

Training 0.374 0.850 0.451 0.828

Validation 0.444 0.788 0.457 0.802

Test 0.425 0.768 0.464 0.741

Experiment 4

Training 0.311 0.893 0.304 0.913

Validation 0.353 0.859 0.448 0.801

Test 0.452 0.740 0.458 0.750

Table 6.8: Performance of ANN models for detecting failed sample

Observed Model SE False +ve False -ve

Site 5

Training 42 45 41 8.89% 2.38%

Validation 10 12 10 16.67% 0%

Test 11 10 10 0% 9.09%

Site 9

Training 45 45 42 6.67% 6.67%

Validation 12 14 10 28.57% 16.67%

Test 8 10 7 30% 12.5%
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Figure 6.13: Observed and ANN predicted FC concentrations (logarithmic value) at Site 
5 for: (a) Training and (b) Validation (1-38) and Test (39-76) dataset
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Figure 6.14: Comparison of ANN predicted and measured FC concentration at Site 5
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Figure 6.15: Observed and ANN predicted FC concentrations (logarithmic value) at Site 

9 for: (a) Training and (b) Validation (1-38) and Test (39-78) dataset
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Figure 6.16: Comparison of ANN predicted and measured FC concentration at Site 9
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Figure 6.17: Velocity distribution in Cardiff Bay under average flow conditions at the
boundary (Taff 20m3/s and Ely 4m3/s)
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Figure 6.18: Velocity distribution in Cardiff Bay under a higher flow conditions at the 
boundary (Taff 40m3/s and Ely 12m3/sec)
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However, when GPkernel, the software used in Chapter 5, was used, a series o f 

expressions were generated. As these models performed less well then those reported 

in this chapter, they were not reported herein. Another advantage of GP is that there 

are less parameters (i.e. population size, crossover and mutation probability) in the GP 

compared to those in ANNs, where many heuristic parameters like network type, 

number of layers, nodes, training algorithm, activation function etc have included. It 

thus alleviates the problem of identifying the large number of parameters necessary for 

model optimisation.

On the other hand ANNs are much faster than GP and more robust. As ANNs gradually 

changes the weight of the nodes during the learning process, getting few weight wrong 

does not have such a significant impact on the overall solution, making ANNs more 

robust and fault tolerant.

6.12 Limitations and Uncertainties

The model predicts the FC concentrations at certain locations, given FC levels at 

nearby locations. The model performance deteriorates as those known locations are 

further away from the target location. If the model is supplied with FC levels at some 

locations, then at a certain time it can predict the FC levels at some target locations at 

that time. From a practical viewpoint this might not provide a significant advantage in 

terms of forward prediction since, if the FC levels at the known locations are already 

available there is no reason to know the FC levels of the target sites, unless there is 

some accessibility problem. These models do not produce future predictions as was 

the case for the Ribble estuary in Chapter 5. This is entirely due to the lack of FC data 

availability in a time series form. The data was collected once a week but it is highly 

unlikely to have any affect on the data for another week, hence these data were treated 

as discrete patterns, instead of a time series data input. As a result due to the absence 

of a time series for FC levels at Sites 5 and 9 it was not possible to build a data driven 

model to predict FC levels as shown in Chapter 5 for Ribble estuary and using 

synthetic data. However, the current study shows the possibility and extent to which the 

data driven model can handle relatively random natural phenomenon such as FC 

levels. The exercise undertaken in this chapter shows the capability of ANN and GP to 

handle noisy data from a natural environment and to predict an unknown value. Hence,
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it should be possible to develop a model able to predict a time series with a similar 

level of accuracy.

Carabin et al (2001) reported that bacteriological analysis of environmental samples 

often provides imprecise estimates of the number of colonies, especially when the 

number is small. Considering this level of limitations of bacterial count, the accuracy 

level of the prediction obtained by the data driven models are reasonably good.

Another contentious issue related to such data driven models is that they produce a 

whole host of solutions for the same problem domain. The reason for the creation o f 

different models is due partially to the stochastic nature of GP and ANN inputs and due 

to the multiple optimal solutions to the model-fitting problem.

6.13 Summary

The study details the application of ANNs to the problem of FC level predictions in a 

natural water body. A non linear data analysis tool, namely winGamma was used to 

assess the data quality prior to model building. It also helped in determining two 

heuristic aspects of the neural network model building, particularly when to cease the 

training of neural net and how much data were needed for building a smooth model. 

This study showed that the neural networks and genetic programming models could be 

successfully applied to predict FC levels when other approaches cannot succeed, due 

to the uncertainty and the complicated environmental interaction for bacterial decay. 

Different test cases were investigated in order to asses their ability and relative 

performance in encapsulating the site-specific knowledge and data necessary to 

reproduce the spatial distribution of FC observed in a modelled area.
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7.1 Introduction

Proper modelling of flow resistance and conveyance capacity of wetlands and 

vegetated floodplains is very important for river and wetland management. Over the 

years, wetland areas have been treated as potential sites for agricultural or industrial 

development. In many developing countries, and particularly in areas of mangrove 

forestation, the destruction of these wetlands has been undertaken for land 

reclamation, shrimp farming, timber and chemical production. However, in recent years 

there have been a number of devastating floods world-wide and engineers and 

environmental managers are increasingly promoting the restoration or recreation of 

vegetated zones as a form of natural protection.

It has been found that in general vegetation increases the flow resistance in rivers, 

changes the back water profile and influence sediment transport and deposition (Yen, 

2002). Vegetation induces natural flood alleviation as both the biomass and root 

systems produce turbulence and reduce the mean flow, thus decreasing the flow 

energy and attenuating flood flows to provide a naturally integrated flood protection 

system. Vegetation also acts to stabilise banks, helping to maintain deep channels and 

thus protecting the coastline and floodplains. However, wetlands remain one of the 

most complex and poorly understood ecosystems in terms of water management 

(Harris et al 2003). Current interest in the construction and restoration of wetlands has 

led to the need to understand the physical, chemical and biological processes that 

control such ecosystems.
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7.2 Vegetation in Channels

Flow vegetation interaction is a complex process, and research in this area has led to 

significant simplifications in practical applications. Conventional approaches use 

standard reference publications, such as Chow (1959) and Barnes (1967), to select a  

roughness coefficient or employ a simple semi-empirical method for their estimation. 

Recently, attempts have been made to develop physically based models and to relate 

resistance to the measurable characteristics of vegetation and flow. Though significant 

advances have been made in the field, the effects of vegetation on flow resistance are 

still not fully understood (Tsihrintzis 2001).

Previous research in the area of vegetated floodplains has primarily focused on the 

adaptation of theory driven resistance equations, such as the Manning or Chezy 

equations. As a result although improvements have been made in the analysis to some 

degree, the resistance due to form drag has been coupled directly to the bed 

resistance. This is not the most comprehensive method of dealing with the problem, as 

vegetation, particularly surface piercing and flexible vegetation, is independent of the 

bed shear and therefore acts separately. Chow (1959) gave a comprehensive list of 

typical values for Manning’s n values incorporating various factors like surface 

roughness, vegetation, sediment transport, channel irregularity etc.

A majority of subsequent research on vegetative flow resistance is based on theory 

and experiments with rigid cylindrical elements. Li and Shen (1973) studied the effects 

of tall non-submerged vegetation on flow resistance by investigating the wake caused 

by various cylinder set-ups. Experimental results indicated that different patterns or 

groupings of cylinders significantly affected flow rates. This wake correction approach 

was incorporated into the methods of Jordanova and James (2003). Li and Shen 

(1973) identified four factors that need to be considered in determining the drag 

coefficient: 1) the effects of open-channel turbulence; 2) the effect of a non uniform 

velocity profile; 3) the free surface effects; and 4) the effect of blockage. Petryk and 

Bosmajian (1975) formulated an approach that would calculate the Manning coefficient 

and also include the vegetation drag coefficient. They calculated the drag force and 

related this to the shear stress. They estimated Manning’s n as a function of hydraulic 

radius and vegetation density for non-submerged rigid vegetation. Pasche and Rouve
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(1985) and Nepf (1999) investigated the wake caused by various cylinder set-ups 

resulting in methods to determine drag coefficients for single plants in a group and as a  

separated friction factor of the vegetation.

Kadlec (1989) developed a coupled equation for the friction slope of a channel based 

on the Mannings equation modified for laminar flow, thereby employing a Reynolds 

dependent equation. His work was inspired from the fact that most of the previous 

research was based on turbulent flow, whereas for the case of overland flows the 

slopes and depths are frequently not large enough to meet the turbulence criterion.

Naot et al. (1996) investigated the flow in a compound channel with a vegetated 

floodplain which included the shading effects of multiple cylinder wakes on the velocity 

distributions. They developed two equations calculating the degree of shading, one for 

aligned cylinders:

Where Dt = average vegetation diameter, D Sa and Dsr are shading factors and S -  

averaged spacing = My[pt , where pt =averaged vegetation density.

Wu et al. (2001) introduced the term porosity (0) to take care of the blockage effect on 

the water flowing through vegetation. They defined porosity as

(7.1)

and another for a randomly arranged distribution of cylinders:

(7.2)

(7.3)
4
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A considerable amount of research has also been carried out in developing resistance 

laws for channels with flexible vegetation (Kouwen and Unny 1973, Temple et al. 1987, 

Kouwen and Fathi-Moghadam 2000), and various combinations (Sokolov 1980). 

Recently, several studies have focused on velocity profiles and turbulent characteristics 

of vegetated channels (Naot et al. 1996, Nepf 1999, Lopez and Garcia 2001). In 

addition, an increased interest in the application of various bioengineering techniques 

has prompted several studies covering the hydraulic aspects related to this activity.

Overall, an abundance of studies, however, is based on laboratory experiments with 

simple artificial roughness (in uniform flow), whereas in reality natural vegetation 

exhibits a wide variety of forms and flexibility. In hydraulic analysis, non-submerged 

and submerged conditions are typically distinguished, since flow phenomena become 

more complicated when the flow depth exceeds the height of plants (Stone and Shen 

2002). In addition, two types of vegetation are usually defined namely: rigid (normally 

woody plants) and flexible (herbaceous plants). The complexity and advances made in 

the substantial amount research that has been undertaken have prompted various 

researchers to pursue the data driven route.

Harris et al (2003) carried out for velocity predictions in vegetated channels, while 

Babovic et al. (2005), Keijzer et al. (2005) and Baptist et al. (2006) described the 

process of induction of equation for the vegetation induced roughness. However, in all 

of these research studies they used Genetic programming was used as the Hydro 

informatics tool. The work presented in this chapter utilises both Genetic Programming 

and Artificial Neural Network for velocity prediction in a compound channel.

The laboratory data, detailed later in this chapter, were originally collected for the 

development of an existing numerical model, DIVAST (Falconer et al. 2001) and bears 

a number of similarities to the research studies undertaken by Naot et al. (1996) and 

Jarvela (2002).

7.3 C o m p ound  O p en  C h an n e l

During extreme events, flows often overtop the main channel so as to use the wider 

carrying and storage capacity of the floodplain. Even in the absence of vegetation there
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is a significant increase in the complexity of the flow behaviour once overbank flow has 

occurred. When over the bank flow occurs, special consideration is required in terms of 

analysing the interaction between the main channel and floodplain flows, the proportion 

of flow between sub areas, differences in roughness between the main channel and the 

floodplain, the significant variation in the resistance parameters with depth and flow 

regimes, the distribution of boundary shear stresses, the use of the hydraulic radius in 

calculations, the effects of vegetation on retarding the flow, the sediment transport 

rates and over bank flow in meandering channels (Knight, 2001).

Naot et al (1993) listed three mechanisms that dominate the flow pattern in a 

compound open-channel. At each intersection between the floodplain and the main 

channel a pair of longitudinal vortices is formed with intensity similar to that of the 

vortices formed at the corners of rectangular channels. In addition, an intensive vortex 

pair was experimentally shown by Tominaga et al. (1989) and Tominaga and Nezu 

(1991) at the flood-plain threshold, with one vortex on the floodplain and the second 

one on the main channel. This pair of vortices controls the interactions between the 

floodplain and the main channel. The third mechanism was noted by Reece (1976) and 

Naot and Rodi (1982) (Naot et al., 1993) and they suggested that the turbulent eddies 

do not have sufficient energy to breach the water surface and therefore break down to 

smaller vortices, redistributing the velocity fluctuations. These two additional 

interactions, introduced by Naot and Rodi (1982) (Naot et al., 1993) into an algebraic 

stress model, showed a substantial effect on the longitudinal vortices.

Different hydraulic conditions prevail in the river and on the floodplain, with the mean 

velocity in the main channel and on the floodplain being very different. Flow in the main 

channel exerts a pulling or accelerating force on the flow over the floodplain, which 

naturally generates a dragging or decelerating force on the flow in the main channel, 

this leads to the transfer of momentum between the channel section and the floodplain. 

Momentum transfer between the main channel and the floodplain decreases the 

discharge in the main channel and increases the discharge on the floodplain, ending up 

in decreasing the total discharge capacity of the channel (Helmio, 2002). The 

introduction of vegetation onto the floodplain offers additional resistance, this is known 

to reduce the velocity and increase the turbulence (Kadlec, 1990).
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7.4 Experimental Setup

The study makes use of experimental flume data collected to investigate flow 

conditions over vegetated floodplains. A physical laboratory model was constructed in 

the Hyder Hydraulics Laboratory at Cardiff University to investigate the flow conditions 

over vegetated floodplains in a compound channel. This was carried out as part of a 

research programme undertaken by Westwater (2001). The model consisted of a 

recirculating flume, with steady flows over a deep channel and with relatively shallow 

vegetated floodplains on either side. Figure 7.1 shows the upstream end of the 

laboratory flume looking in a downstream direction. The prototype was scaled up using 

Froud’s scaling law, in order to maintain similar characteristics to those found in 

mangrove forests. Although the model was developed based around the data for 

mangrove forests, it focused on a generalised case of vegetated roughness. The 

vegetation was simulated using non-submerged, rigid, water surface piercing elements. 

Cylindrical wooden dowels of 8, 12, 18 and 25mm diameters were used as vegetation. 

Arranging these dowels in different configurations resulted in densities of:- 122.2, 200 

and 366.7 dowels /m2.

Figure 7.1: Laboratory model of compound channel with vegetated floodplain
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Only the density or the cylinder size was varied for each experimental run. Data were 

collected at a several cross-sections along the flume, which were selected to provide 

the best spread of data. Figure 7.3 shows the location of the sampling sections. 

Velocity data were collected using an acoustic doppler velocimeter (ADV), Further 

details of the experimental data collection may be found in Westwater (2001).

7.5 Data Analysis

A total of 960 data values were available for use that had been collected from 5 

different sections, for different combinations of vegetation diameters and densities. 

Figure 7.4 shows two typical velocity profiles measured across different sections. It can 

be seen that the data collected from section 2 are significantly different from those 

collected over other sections. Section 2 was at the very beginning of vegetated 

floodplain, hence the flow was not developed at this section. It was decided to discard 

the data collected from this section from further consideration. It can be seen from 

Figure 7.3 that the channel was symmetrical to the central line, which resulted more or 

less in a symmetrical velocity profile (Figure 7.4). To exploit this fact, the data from the 

left hand side of the centre line was used for model development and the right hand 

side data were used as unseen data for model verification.

The data analysis was carried out using the non linear data analysis tool winGamma 

described in Chapter 5. The result of the Gamma test is given in Table 7.1. An 

estimated Gamma statistic = 0.00013 indicates a moderate noise level as does Vratio ~ 

0.0208. The Gamma tests also indicated that smooth models built on this data will have 

standard deviation of prediction error Vo.00013 = 0.011 on unsealed data.

The M charts in Figure 7.2 shows that there are sufficient data available for building a 

smooth model from the whole data set (i.e. floodplain and main channel together and 

the main channel). However, the performance of the model generated from the whole 

data set should be better then that of the main channel, as evident from the higher 

T value for the latter. Figure 7.2 (c) shows that the l~ value merely reached an 

asymptotic value with the available data which indicates that, an addition of more data 

would possibly improve the model.
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Table 7.1: Result of the Gamma test on the whole data, including the main channel and
floodplain

Unsealed Scaled

Gamma 0.00013 0.00007

Gradient 0.020827 0.039186

Standard Error 0.000682 0.000688

V-Ratio 0.293394 0.086266

Near Neighbours 10 4

Start Vector 1 1

Unique Points 336 336

7.6 Model Inputs

As mentioned previously, the dimensionless parameters D Sa, D S r  and 0 were included 

represent the shading factor and blockage effects respectively. The dimensional 

parameters included were the diameter (Dt), density of the cylinders (pt), the distance 

from the beginning of the floodplain of a point along the direction of flow (x), the 

distance from centreline of the channel across a section (y), the width of the main 

channel and floodplain (W mc and W fp) respectively, the flow in the channel (Q) and Area 

of flow (A). The target out put was the measured velocity in the laboratory (V).

In order to facilitate the dimensional correctness of the induced equation in the GP 

experiments, some dimensionless ratios were included in the experiments. The 

dimensionless ratios were defined as follows:
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Y =n, r  .|

W + Wfo2 wc tp
(7.6)

K
h' = J T

(7.7)

hfp and hmc are water depth at floodplain main channel respectively.
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Figure 7.2: M test performed on randomised data, red lines corresponds to the 
potential V value for: (a) main channel and floodplain together (b) main channel (c)

floodplain
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Figure 7.3: Sketch o f laboratory flum e, showing location of sampling cross-sections

204



Chapter 7: Velocity Predictions for Compound Channel Flows with Vegetated Floodplains

20

- - S - 2  
■— S-3

- - S-5
-  S-6

20 60 80 
Distance from left (cm )
40 100 120

18 T~

- - S - 2
►— S-3
—  S-4
- - S-5 
- S - 6

o ' 12

40 60 80 
Distance from left (cm)

100 120

Figure 7.4: Velocity distribution for: (a) 12 mm dia at 366.7/m2 and (b) 9 mm dia at 
100/m2. The dots in section 3 show the location of the sampling points across the

section

7.7 Model Evaluation C riterion

The root mean squared error (RMSE), the coefficient of determination (CoD) were used 

for the model evaluation. The definition and range of the potential values for these 

parameters was previously described in Chapter 5.

7.8 Model D evelopm ent using G enetic  Program m ing

The GP software used in this study was GPKernel developed by DHI water and 

Environment and was described in Chapter 5. For the first experiment all of the data 

were used in their original dimensional form. All inputs described in the previous 

sections were used, other than the dimensionless ratios (i.e. Eq 7.4 to 7.7). Initially the 

whole dataset was used to train the GP with the target parameter being the velocity

205



Chapter 7: Velocity Predictions for Compound Channel Flows with Vegetated Floodplains

measured at different sections. The function set was (+ ,- ,* , / ,V ~ ,e \x 2,log(x)). The

objective function was to find the minimum Root Mean Square error (RMSE) with a  

compact expression which is defined as the Fitness per node in GPkernel. The relevant 

GP parameters and their chosen values providing the best result are shown in Table 

7.2. A high cross over rate and lager population size lead to a good exploration of the 

search space of GP solutions and elitism helped to preserve best solution evolved in 

the previous generation. The parameters maximum initial tree size and maximum tree 

size stand for the maximum size of the tree of the GP tree of the initial population and 

of the population of the subsequent generations, respectively.

Table 7.2: Values of GP parameters

Parameter Value Parameter Value

Maximum initial tree size 45 Number of generation to run 1000 or 500

Maximum tree size 25 or 35 Number of children 1000

Tournament size 3 Training percentage 100%
75%

or

Population size 1000 Crossover rate 0.9

Number of Experiment 120 Mutation rate 0.08

Breeding method Tournament Constant probability 0.3

Elitism used Yes Swap mutation rate 0.3

From a series of runs it was observed that the larger initial population size give better 

results which could be because it leads to a better initial exploration of search space. 

The values of maximum initial size and maximum size are thus constrained to 45 and 

25 respectively. The restriction was necessary as the GP had a tendency to evolve 

uncontrollably, which deteriorated the compactness of the generated expression. 15 

different GP runs were performed with each using a different initial seed.

For the maximum length of the parse tree two techniques were tested. For the first set 

of experiments the maximum length of parse tree was chosen to 25. This ensured the 

parsimony of the generated expression, as well as avoid overfitting. In the second 

approach a cross validation subset was introduced and hence the maximum length of 

the tree could be increased without the problem of overfitting. However, this increase in 

tree size could not guarantee parsimony of the expression. Table 7.2 shows the GP 

parameters related to the first and second approach respectively.
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The best produced expression for the first experiment to predict the velocity on both the 

floodplain and the main channel was as below:

(y + e)|y + ̂  + ^
(7.8)

0.2

0.15

TJ
-o
£

Q .

0.05

0.15 0.20 0.05 0.1

Observed

Figure 7.5: Scatter plot for velocity using expression 7.8

This expression showed a very high positive correlation, but it was not dimensionally 

correct. Moreover, the distribution of the laboratory data showed the presence of two 

distinct clusters of velocities, one for the higher velocities in the main channel and the 

other for the lower velocities of the floodplains, respectively. This result was also 

evident from Figure 7.4.

The next stage of the model development was to separate the dataset into two groups, 

allowing the GP to generate two expressions for the main channel and the floodplain.
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The dimensionless ratios described in Equations 7.4 - 7.7 were included as input 

parameters in this stage to aid in the generation of dimensionally correct expressions. 

As the number of inputs increased for this case, the maximum tree size is reduced to 

20 to ensure that the number of inputs selected for the generated expression remained 

more of less same as equation 7.8, which maintained the parsimony of the 

expressions. To maintain the dimensional correctness an objective function was also 

included to check the unit error, in addition to the RMSE and fitness per node as used 

before. The expression that performed best for the main channel was -

D + 3 X + Vs r n

D .  +  X ,

( X . X r )

( D s +  X r ) S

Q

A
(7.9)

The best performing expression for the floodplain was given by-

V fp  =
DSXr Q

2 Y 2Y 2 +  2 D Y 2 + D I  A
(7.10)

where Ds is the shading factor (either DSa or DSr).

Both the velocity prediction for the floodplain and the main channel showed good 

correlation (see Figures 7.6 and 7.8), however it can be seen from Figure 7.9 that 

velocity in the floodplain was under predicted, especially in the region of high velocity. 

Figure 7.4 shows that the higher velocities in the floodplain were mostly in the region 

between the floodplain and the main channel. The velocity was influenced by 

momentum transfer nearer to the main channel. However, no input parameters used in 

the model development could capture these effects. In order to verify these 

assumption, the velocities of more then 0.8 m/sec were discarded from the data set, as 

from the study of the whole dataset it was found that the most of the velocities recorded 

above 0.8m/s were recorded near the edge of the floodplain which were subjected to a 

complex flow regime.
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Figure 7.6: Scatter plot for main channel velocity using expression 7.9
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Figure 7.7: Velocity prediction for main channel using expression 7.9
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Figure 7.8: Scatter plot for floodplain velocity using expression 7.10
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Figure 7.9: Velocity prediction for floodplain using Expression 7.10
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Keeping all other parameters the same as before, the best performing expression was 

found to be:

The scatter plot for this expression is shown in Figure 7.10. Table 7.3 shows the 

summary of the results of GP expressions. It can be seen for the table, the CoD 

correlations are relatively high and RMS errors are low in all cases. It is shown that 

when the dimensional correctness was ignored GP produced better result with 98.16%  

correlation. This is contrary to the observation made by Harris et al. (2003). When the 

dimensional correctness was introduced through the dimensionless ratios, the GP 

result for the main channel was significantly better than the floodplain. As described 

before, the data of floodplains that were collected from the edge of the flood were left 

out for the final GP experiment which generated the expression 7.11. It can be seen 

from Table 7.3 that other statistical measures were also improved in using the 

expression 7.11. This showed the importance of including some means of incorporating 

the complex flow field nearer to the main channel.

/

y

(7.11)

Table 7.3 Statistical analysis of results obtained using GP models

CoD RMSE

Floodplain and Main channel (Eq.7.8) 0.9816 0.00045

Main Channel (Eq. 7.9) 0.9522 0.00087

Floodplain (Eq. 7.10) 0.8251 0.00230

Floodplain (Eq. 7.11) 0.8612 0.00193
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Figure 7.10: Scatter plot for floodplain velocity using expression 7.11
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Figure 7.11: Velocity prediction for floodplain using modified Expression 7.11 

7.9 Velocity  Prediction using AN N

Traditionally Feedforward network is almost exclusively used for prediction and 

forecasting (Maier and Dandy, 2000). Lin et al. (2003) used this type of network for 

water quality prediction. Han et al. (2007) reported that Feedforward network with one 

hidden layer to be the most popular form of neural network. In current research project, 

the Feedforward network was used exclusively in Chapters 5 and 6. However, the
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other variants of Neural Network have also been studied by different authors. Bowden 

et al (2005) used Generalized Regression Neural Network (GRNN) to forecast Blue- 

green algae levels in water body. For some other studies that used GRNN, reference 

can be made to Cigizoglu, (2005a, 2005b), Keifa (1998) and Cigizoglu and Murat 

(2004).

The generalized regression neural network (GRNN) proposed by Specht (1991) does 

not require an iterative training procedure as in the back-propagation method, but 

approximates any arbitrary function between the input and output vectors, drawing the 

function estimate directly from the training data. Furthermore, it is consistent; that is, as 

the training set size becomes large, the estimation error approaches zero, with only 

mild restrictions on the function. Details of the GRNN are presented by Specht (1991),

This study analyzes the performance of Feedforward network and GRNN in velocity 

prediction of the data collected from laboratory that was used for previous section in 

model development using Genetic programming.

A third variant of neural network, namely the Radial Basis Function Neural Networks 

(RBF), was also used in his study. RBF was also used in various engineering problems 

(see Jayawardena and Fernando, 1998, Gontar and Hatziargyriou, 2001, Chang et al., 

2001 and Cigizoglu and Murat, 2004). A description of RBF network can be found in 

Chapter 4.

The Neural Network toolbox for MATLAB 7.0 was used for model development in this 

study. The inputs that were used in the model development for the model development 

for dimensionally floodplain and main channel, floodplain and main channel 

respectively were used in the all the models described here.

In Feedforward network, a network with one hidden layer was chosen The number of 

hidden nodes was chosen by trial and error, although in many cases it was found to 

meet the rule of thumb given in Han (2002) (Han et al. 2007). i.e.
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Number of hidden nodes = (number of inputs + number of outputs) *2/3

For the training of the networks Gradient descent back propagation or 

LevenbergMarquardt back propagation was used. Hyperbolic tangent sigmoid transfer 

function or log sigmoid transfer functions were used in the hidden layer. To ensure 

good generalisation early stopping was used, along with a limit of the maximum 

number epoch and goal set in the terms of RMS error. Maximum epoch used was 500  

after trial and error. The RMS error was set as the Gamma value found during the data 

analysis.

As the Feedforward models used the sigmoid function, of which the output values lie in 

the interval [0,1], all the input values were transformed into the interval [0.05, 0.95], 

instead of [0,1] because the logistic activation function approaches 0 and 1 

asymptotically when the variable approaches negative infinity and positive infinity, 

respectively. For the case of a tan-sigmoid transfer function being used the range is set 

to [-0.95, 0.95] to match the range of transfer function which is [-1, 1],

Radial basis networks consist of three layers: an input layer, a hidden radial basis layer 

an output linear layer. In the model applied in this study a radial basis network was 

iteratively created one neuron at a time. Neurons were added to the network until the 

sum-squared error falls beneath an error goal or a maximum number of neurons have 

been reached. RBFs are determined dynamically and automatically and only one 

parameter which is the spread has to be assigned for model development.

A GRNN configuration consists of four layers. The input units are in the first layer, the 

second layer has the pattern units, the outputs of this layer are passed on to the 

summation units in the third layer, and the final layer covers the output units. Only the 

biases (spread) are to be given in the model development process. The spread 

parameters were found simply by trial and error for both the RBF and GRNN models.

The statistical measures of the model produced using all three ANN methods are 

shown in Table 7.4. It can be seen from the table that the CoD correlation is relatively 

high and RMS error is reasonably low in all cases. For example, the correlation 

coefficient ranged from 78.6% (Feedforward network for floodplain) to 93.8% (GRNN 

for the floodplain and main channel). GRNN produced the worst result of all while
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modelling the velocities in floodplain. As experienced with the GP models the best 

result is produced for the main channel and the floodplain when the dimensional 

correctness was ignored. The prediction for the floodplain was found to be most difficult 

with all 3 types of ANNs which was also the case for the GP models. The maximum 

RMS error was 0.0037 which is less the 4% of the range of velocity data.

Table 7.4: Statistical analysis of result obtained using ANN models

CoD RMSE

Floodplain and Main channel

Feedforward 0.879 0.00099

GRNN 0.938 0.00080

RBF 0.848 0.00121

Main Channel

Feedforward 0.888 0.00115

GRNN 0.757 0.00273

RBF 0.829 0.00176

Floodplain

Feedforward 0.786 0.0035

GRNN 0.656 0.0037

RBF 0.806 0.0032

As for the comparison among three types of ANNs none of them consistently 

outperformed the others for all three cases. Therefore in terms of the performance they 

all are more or less similar. However, it was found that Feedforward network and RBF 

resulted in negative velocities for some low velocities. However, this problem was 

found in GRNN simulations. This observation coincided with that of Cigizoglu and 

Muart (2004) who indicated that this might be due to the fact that GRNN simulations 

are bounded by the minimum and maximum of the data value. As no goal was provided 

in GRNN it did not converge to the poor solutions corresponding to the local minima of
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simulations were needed in order to obtain the best Feedforward network as the 

models performance was very sensitive to the randomly assigned initial weight values. 

As a result the model development was relatively slower in Feedforward network than 

the other two types. The scatter plots of the best ANN results are shown in Figures 

7.12 to 7.14.
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Figure 7.14: Scatter plot for ANN predicted velocity in floodplain

These plots show that the predicted data are in good agreement with the observed 

data.

7.10 A nalysis  o f R esu lts  and D iscussion

It is clear from the model results that both GP and ANN perform better for the data 

collected along the main channel. The results for flow over the floodplain show a higher 

degree of scattering which is due to the complexity of flow around the vegetation. The 

presence of vegetation restricted the placing of the ADV probe to some extent, which 

might have also led to data correction errors as well. The complexity of the flow is due 

to the complex wake structure in the lee of cylinders, resulting in an increased 

turbulence. Both GP and ANN tended to under predict the higher velocities along the 

floodplain which indicates that the accelerating effect of the main channel was missing 

during the model developments.

The GP expressions (7.10 -7.12) showed that the arrangement of the vegetation (as 

well as the vegetation density and diameter) was important along with the location of 

the vegetation in the channel. These expressions showed that hydrodynamic behaviour 

of the vegetated compound channel largely depended on the parameter describing the

■ ♦

♦ ♦ ♦

. * U

♦ ♦, 

♦ ♦♦ ♦♦♦ ♦ ,

♦
♦ ♦

♦♦
♦ ♦♦ ♦ ♦ 

♦
♦ •*

♦ * V  *
♦

♦
♦
♦

• / &

W ?

.♦  ♦♦ 
►

217



Chapter 7: Velocity Predictions for Compound Channel Flows with Vegetated Floodplains

shading factor and blockage effects due to the vegetation. This conclusion was 

supported by the work of Naot et al. (1996) and Wu et al. (2001).

In comparing the of performance the GP models for all three cases, better results were 

obtained than for those produced by ANN, which is contrary to the findings for the 

Ribble and Cardiff Bay Models. The obvious difference of the dataset used in this study 

from the other two has that the one major parameter that controlled the flow regime i.e. 

the momentum transfer, was not well represented during the learning process. The 

momentum transfer phenomenon and its interaction with vegetation presence was 

reported to be very important for the flow regime in these case, which was discussed in 

the previous sections. The only parameter that was used in the model development 

was the distance across the channel which could be weakly related to momentum 

transfer was the distance across the channel. However, the sharp and irregular 

changes in the velocity profile across the section indicated that this distance alone 

could not adequately represent the effect of momentum transfer.

7.11 Summary

It is shown that while experimental science formed a basis for the description of 

physical phenomena, through the data collection, the knowledge discovery software 

system, using genetic programming, was able to guide a search for an accurate 

formulation for the phenomenon under study. Genetic Programming and Artificial 

Neural Networks have been applied to predict the velocities in a compound channel 

with vegetated floodplain. Both of the hydro informatics tools produced a reasonably 

good prediction however it was shown that with improved representation of the 

underlying system in the model development parameters, the performance of the 

model could be improved further. It was found that Feedforward, GRNN and RBF 

neural networks produce more or less similar results. However, GRNN did not provide 

physically non plausible estimations (negative values). In was also found that both the 

RBF and GRNN were faster than Feedforward networks.
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CHAPTER 8

C o n c l u s io n s

8.1 Review and Conclusions

Historically deterministic numerical models have been used for predicting flow and 

water quality processes in aquatic basins, with these models solving numerically the 

equations of mass (fluid and constituent) and momentum conservation. Such numerical 

models have proved to be very useful tools for simulation of various scenarios 

generally predicting variables with a high level of accuracy. They are very good for long 

term planning, risk assessment or option assessments. For example, if a land 

reclamation is planned in a coastal area or a barrage is to be built across a channel, 

the numerical models can easily simulate the effect of these proposed interventions in 

the natural environment. However the main problem of this types of models are that 

they take a long time to run and can not generally be used as online decision support 

tools. Hence, these models can not be effectively used for predicting imminent threats 

to public health in recreational waters or an imminent flood risk whereas timely 

predictions are the essence of the of predict and protect W HO philosophy .

A data driven model can offer an alternative and faster approach for predicting such 

threats as these cited above. However, data driven models have their own limitations. 

Firstly, they need a large amount of quality (i.e. noise free) data which might be time 

and resource consuming. Secondly, as the data driven models lack extrapolation 

capacity, they can only be used reliably for prediction as long as all the causative 

parameters are within the range scenarios presented during the model development. 

Therefore if an extreme event is not present in the training data, then the reliance on 

data driven models for that extremity would be very risky and resulting some unreliable 

prediction. Thirdly, data driven models can not predict the effect of a future 

development, such as a barrage or land reclamation, on water quality or flooding

219



Chapter 8: Conclusion

probability. A  numerical model can readily accommodate such aspects as bad level 

changes due to a land reclamation or possible barrage construction, thereby enough 

data can be generated with the potential development scenarios through building a 

data driven model.

The main objective of this thesis was therefore to develop an integrated modelling 

approach, focused on studying bathing water quality modelling in large estuaries. The 

ability of data driven techniques to simulate widely varying natural data with noise 

presence were also examined through the development of models based entirely on 

field data for study, and on laboratory data in another study. In this research two of the 

most popular data driven modelling techniques, namely Artificia l Neural Networks 

(ANNs) and Genetic Programming (GP) have been investigated extensively to study 

their suitability as a prediction tool for water quality and pollution management. These 

two data mining techniques have been applied for water quality predictions for 

recreational water quality management and also for predicting the velocity distribution 

in vegetated compound channels.

The analysis of data fo r suitability of model building has been carried out using an 

advanced non-linear data analysis technique, namely the Gamma test. The Gamma 

test is shown to estimate accurately from the available input/output data the best 

achievable performance characteristics of a smooth data model. It enabled the model 

developer to predict the best achievable performance of the model, without the time 

consuming necessity of estimating this empirically by creating, training and testing a 

number of networks. The Gamma test also estimates the noise level and establishes 

whether a smooth model can be built corresponding to the measured noise level. The 

Gamma test itself provided the criterion for ceasing training of a heuristic model, such 

as a neural network. This is based on the concept that one criterion of a good model, 

when tested using unseen data, can be expected to produce a root mean squared 

error, which is the same (or close to) the true or estimated noise variance associated 

with the data. The Gamma test used in this study was found to answer two important 

issues for ANN model construction, namely: (i) specification of the number of data 

points required for building a smooth model, which in turn helps divide the data set into 

training, test and validation subsets, and (ii) specification of the stopping criterion in
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training a neural network. The latter is shown to be effective in preventing a network 

from over training.

In the integrated model development exercise, a determ inistic numerical model, namely 

DIVAST, has been used to simulate a whole host of scenarios that included some 

extreme conditions that can be possibly expected in the study area. The use of a 

deterministic model as a data generator ensured that the training process of data 

driven models included all extremes, as a result the question of extrapolation by data 

driven models can be indirectly addressed. The determ inistic models were also used to 

indicate the response time of the receiving water quality to the upstream boundary 

conditions (e.g. in Ribble estuary), which were found to be very useful for selection o f 

input parameters for the data driven models. Once a the potential response time was 

known for the water body then Gamma tests were undertaken to determine the 

effective input combinations more precisely. Thus a combination of deterministic 

models and Gamma tests were found to ascertain the input selection for the data 

driven models. In the present study it was shown that with this information being used 

for model construction, a network can achieve a sim ilar level of performance to those 

networks with twice the number of input parameters.

The deterministic model was also used for verifying the input-output relations delivered 

by the data driven models (e.g. Cardiff Bay Study). As numerical models are flexible 

they can be run for various conditions to verify the affects and weight of input 

parameters, identified through the data driven models, and which will enhance 

confidence in the data driven models.

As for the modelling studies with Genetic Programming (GP) it was found that if 

dimensional correctness was considered as an objective for model development then 

the model performance deteriorated. This was due to the fact that adding 

dimensionality in the evolution o f generations reduces the search space. It was 

therefore desirable not to include dimensionality for purely predicting purposes. 

However, the dimensional correctness of the generated expression was achieved 

through the introduction of some dimensionless ratios as shown in Chapter 7. Another 

issue observed in the generated expressions was that they were generally very 

complicated and at times contained higher degrees of polynomials. A preferential bias
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had been added in the GP program used in this study, so that the search space was 

reduced but inform ation about parsimony is not lost. It was not very efficient in 

returning a parsimonious expression which was representative of all important input 

parameters.

The modelling with Artificia l Neural Networks showed that, the use of deterministic 

model and Gamma analysis prior to model development helped find the models inputs, 

stopping criterion and data division, all of which were usually determined heuristically. 

Different variants o f the ANNs were not shown to deliver significant and/or consistent, 

performance benefit in the problems studied in this research.

ANNs were found to perform better than GPs in predicting water quality parameters, 

whereas in predicting the velocities for the compound channel study then the GP model 

outperformed the ANN models. However, for a given dataset, whichever method 

performed best was found to do so consistently for any combination of input and output 

datasets for that study. By their very nature GPs will supply a symbolic-algebraic 

relationship between the measured data through the process of evolution and 

competition between all possible solution expressions. ANNs on the other hand will 

usually find a relationship between the input and output data, but then the resulting 

relationships can only be represented sub-symbolically and are therefore essentially 

‘hidden’ from the user. It is worth mentioning that there is a stark difference in the data 

range used in some of the problems studied. In first case the Faecal Coliform levels in 

the Ribble were of the order of 106, whereas for the velocity predictions in the estuary 

the range of data were within generally less than 1 m/s. However, in the literature 

review, there are no indications found to suggest that ANNs perform better than GPs 

for certain ranges of data or vice versa. In this context, the effect of variability and the 

range of data would constitute the subject matter for a separate research study.

The notion of bacterial level predictions based on data can be argued. However, if the 

uncertainly and inaccuracy involved in bacterial count of a field sample and the 

acceptable degree of accuracy of a numerical model are considered as for the case of 

Ribble then the accuracy levels demonstrated in this study by data driven models can 

be justifiably accepted w ithout argument.
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Data driven models were also developed and tested for on laboratory data which were 

collected in a flume, for steady flows occurring over a relatively deep channel and w ith 

relatively shallow vegetated floodplains. The velocity data were used to test the scope 

for using both ANNs and GPs to predict the velocity data. However, one important part 

of this study was to induce the formulation of expressions for the resistance using GPs, 

which could then be used to improve on the complex frictional representations in 2-D 

deterministic models. The flow structure and velocity distribution in the vegetated flood 

plain was very different from that for the in-bank flow  condition, due to lateral 

momentum exchange (van Prooijen et al, 2005). In order to determine the stage 

discharge relationship for a compound channel the transverse profile of the streamwise 

velocity in the mixing region needed to be known. A 3-D numerical model can simulate 

the complicated flow pattern in such flow  environments. However, such models are 

time and resource consuming; therefore any formulation that can be used in a 2-D 

model would be more practical for current hydro-environmental impact assessment 

studies. The performance of a GP model is reported for two variations of the GP. The 

reported results of the experiments were found to be encouraging.

Although ANNs have many attractive features, they suffer from some limitations. The 

issue of choosing the optimal network architecture is very much subjective. The user 

has to pre-determine the structure of the ANN network and the training algorithms. On 

the other hand GPs can optim ise both the structure of the model and the parameters.

In Chapter 5 the ability of GPs and ANNs to perform forward predictions of faecal 

coliform levels in estuarine waters has been demonstrated. This would be very useful 

for real-time water quality predictions on a day to day water management basis. In this 

study the numerical model has been used to generate data simulating a wide range of 

possible scenarios for the Ribble estuary. This integrated approach is particularly 

helpful as the extrapolation capability of data driven methods is not very reliable. As a 

result if all possible extreme events are included in the data set, then the model can be 

more reliable and useful. It can be seen that the expressions generated by GP 

approaches contain some dimensionally incorrect forms, such as salinity being added 

to water depth, however these form ally incorrect expressions can give some 

meaningful information. More importantly, imposing dimensionality into the equation
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reduces the search options for GPs significantly, which in turn affects the model 

performance.

For the case of the Ribble Estuary study numerical models were also used to  

determine the response time, at different locations in the receiving water, to the water 

quality conditions at the boundary. A  knowledge of response time of the receiving water 

quality relative to the upstream boundary condition is very useful in constructing a data 

driven model. In Chapter 5 it has been shown that with this information being used fo r 

model construction, networks can achieve a sim ilar level of performance to those o f 

networks with twice as much input information. This further strengthens the view that 

the application of data driven models need proper preparation of the exercises, i.e. an 

analysis of logical relationships between dependent and independent variables and the 

choice of variables. Numerical models can play an important role in terms of the 

selection of input parameters and establishing the relationship between model inputs 

and outputs. The knowledge response time is also important in specifying the forward 

prediction window, which is crucial in the provision of data and information for bathing 

water managers. In particular, for day to day water management, the most important 

information required is whether the Faecal Coliform levels at certain day are above or 

below some threshold value. In that respect the data driven models have been shown 

to be an encouraging development of current management regime.

The main findings of the study can therefore be summarised as given below:

• Data driven models can offer a fast and reliable alternative to the traditional 

numerical modelling approaches in day to day recreational water management. 

In the current age of ‘predict and protect’ regulatory regime concepts the idea o f 

using such models are even more encouraging. These models require very little 

human intervention, yet can flag up any potential water quality deterioration 

along designated bathing water beaches. Once such a system is in operation it 

is possible to retrain the models periodically with the latest data.

• None of the data driven techniques studied herein, namely GP and ANNs, 

performed constantly better then the other. There may be a role for muti-model 

systems, using both GP and ANNs, perhaps with related but different sets of
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input combinations. The user may have a grater degree of confidence in model 

predictions if more than one model flags up the same events.

• An integrated approach to modelling that includes both the conventional 

numerical models and the data driven models should be seriously considered, 

at least during the model building phase of the data driven models. In order to  

provide sufficient data points for training and testing of the data driven models 

a calibrated hydrodynamic and water quality model can be used to generate 

input data.

• The knowledge on the response time of the receiving water quality to the 

upstream boundary conditions is very useful in the development of data driven 

models. In the present study it was shown that with this information being used 

for model construction, a network can achieve the sim ilar level of performance 

to those networks with twice the number of input parameters. The numerical 

models were shown to be very useful for identifying the response time. The 

knowledge on the response time is also useful for making forward predictions. 

This is crucial for bathing water managers to give warning to potential visitors.

• Data driven models were also shown to predict the velocities in a compound 

channel with vegetated flood plains. In a sim ilar manner the water levels can be 

predicted in flood plains in order to deliver early flood warnings. The faster 

output of data driven models compared to the numerical models can offer some 

valuable time gain for flood preparedness. The GP models induce the 

formulation of expressions for the vegetation resistance which provided 

valuable insight into the complex flow nature and with an improved model 

induction could then be used to improve on the complex frictional 

representations in 2-D determ inistic models.

• The data analysis technique used in this study provided answers to address two 

important issues for ANN model construction, i.e. the specification of a 

minimum number of data points required for building a smooth model, and the 

specification of stopping criterion in training a neural network. The stopping 

criterion thus used was found to be effective in improving the generalisation
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capability of ANNs. The data analysis technique was also useful for the data 

division for both GP and ANNs.

8.2 Recommendations for Further Study 

Additional data collection

As seen in Chapters 6 and 7 the data available for model development had limitations. 

The data available for Cardiff Bay were collected only once a week, hence the data set 

could not be presented in a time series manner. As a result of this limitation the model 

could only predict bacterial concentrations at unsampled sites of interest by using 

known water quality data at other locations and at the same time. An intensive data 

collection programme, with a higher frequency, would allow the development of a more 

accurate real-time prediction tool for Cardiff bay.

For the velocity predictions for the flume data, the vertical distribution of the stream 

wise and transverse velocity directions for various depths could be measured, which 

would offer more information about the vortex motion and the corresponding form drag 

and interaction with the bed friction, both on the floodplain and main channel, and also 

at the interface. The water level should be varied in any future tests, as it has been 

shown in the literature that changes in the depth ratio (i.e the ratio of the flood plain 

water depth to the main channel depth) have a differential influence on the velocities 

along the flood plain and in the main channel. Alternatively, a 3-D numerical model, 

which would include a higher order turbulence model, such as the k - z  model, could 

be used to predict more accurately the complicated shear interface between the 

channel and flood plain. Such a model would be ideal for generating data. These data 

could then be used for model induction using a GP model.

Model induction with Genetic Programming

As found in this study GP models can formulate expressions relating the input 

parameters to the output results which give a reasonable insight into the processes 

being considered. However, the generated expressions are generally very complicated 

and at times contain higher degrees of polynomials. A preferential bias has been added
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in the GP program to ensure the parsimony of the expression; however in such casea 

the generated expressions are not representative of all input parameters. The addition 

of some criterion which forces the GP model to include all of the important parameters, 

and at the same time maintains the parsimony, would be helpful. In order to exploit the 

full potential of model induction capability, the dimensional correctness has to be 

included without constricting the search space.

Modelling the Bacterial decay

In modelling the Faecal Coliform levels in a water body, a constant decay rate is 

usually used in estimating the natural mortality of pathogens, with a constant being 

added in the source term of the advective diffusion equation. In the current study a 

formulation is used to accommodate the salinity and temperature effects. To simulate 

the effects of solar radiation a constant decay rate is used, but the value is different for 

day and night. It would be very useful to develop a GP expression containing all of the 

major decay rate variable parameters. In order to simulate the exact effect of the 

variables experiments could be carried out, in a controlled laboratory environment, 

where solar radiation can be varied with a sunlight simulator and turbidity can be varied 

by mixing different amounts of fine particulate matter. Other parameters can also be 

varied. Such a formulation would be extremely useful for improving the bacterial 

predictions using numerical models.

Predicting Gastroenteritis Rates and W aterborne Outbreaks

On a slightly different note data driven models can be used to predict the disease 

burden in various cases. As for example, waterborne Gastroenteritis might spread even 

in cities with modern water treatm ent facilities. Traditional public health surveillance 

methods rely on detection and reporting of specific pathogens in clinical specimens and 

have significant limitations in detection the outbreaks of disease rapidly and effectively. 

Data driven models incorporating weather data, demographic pattern, public and 

school holidays, disease incidence etc. would be able to flag potential health risks 

before it takes place.
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