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SUMMARY

Diabetic retinopathy (DR) is the major cause of registerable blindness in the 
working population in Western countries. It has been proposed that the retina 
is subject to sub-clinical levels of tissue hypoxia prior to the development of 
DR, and that a rod-driven hypoxia during darkness may be a significant 
causal factor in its development.

The aim of this study was firstly to use the scotopic electroretinogram (ERG) 
in order to gain an objective measure of retinal function in subjects with 
diabetes mellitus (DM). Should there be a level of inner retinal hypoxia 
present this may be indirectly demonstrated by reduced oscillatory potential 
(OP) amplitudes, thought to arise predominantly from amacrine cells and 
known to be sensitive to vascular changes within the retina, and reduced b- 
wave amplitudes thought to arise predominantly from the bipolar cells of the 
inner retina. If hypoxia were present and reversable in the short term an 
increase in amplitude would be expected with oxygen (O2) inhalation.

ERGs were recorded from subjects with Type 2 DM both with and without 
retinopathy before, during and following O2 inhalation and compared to age- 
matched control subjects. No significant difference in amplitude was 
observed between subjects with DM and control subjects before O2 inhalation, 
however both b-wave and summed OP amplitudes were significantly 
increased following O2 inhalation in diabetic subjects with retinopathy, and 
OP3 significantly increased in subjects without retinopathy, yet remained 
unchanged in the control group.

The retinal O2 demand has been reported to halve in light conditions 
compared to darkness and it has therefore been proposed that patients with 
DM may benefit from sleeping with night-time illumination in order to reduce 
the level of rod activity, and thus metabolic demand on the retinal tissue, to 
reduce inner retinal hypoxia. The amount of light required to significantly 
reduce rod activity was investigated by means of a simultaneous cone-rod 
ERG in DM subjects with no retinopathy and control subjects. It was found 
that a background illumination level as little as 3.4lux was sufficient to 
significantly reduce rod activity in all subjects.
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The Retina

1. THE RETINA

Diabetic retinopathy is the major cause of registerable blindness in the 

working population in Western countries [Evans et al 1996]. This chapter will 

introduce the cells that make up the retinal tissue. Chapter 2 will then outline 

the physiology of diabetes mellitus (DM) and in particular its effects upon the 

retina. Chapter 3 introduces the electroretinogram (ERG), an objective 

method of assessing retinal function, with particular attention to the 

components of the ERG most affected by DM. Chapter 4 reviews retinal 

oxygenation in DM. Diabetic retinae are often thought to suffer from a level of 

sub-clinical hypoxia and Chapter 4 will outline current knowledge on the 

effects of oxygen inhalation on the retinal vasculature and visual function in 

subjects with DM.

Pigment 
epithelium L _ \ 

Kmrods
cones

outer limiting 
membrane 
Muller cells

horizontal 
cells 

bipolar 
cells

amacrine 
cells

ganglion 
cells

nerve fiber 
layer -

inner limiting 
membrane

»

Figure 1.1 Simple organisation of the retina [After Kolb et al 2004].
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The Retina

1.1 Anatomy of the Retina

The retina is the innermost layer of the eyeball and is approximately 0.5 mm 

thick. It is continuous with the optic nerve posteriorly and extends forward to 

the ora serrata where it becomes the epithelium of the ciliary body and the 

iris. The inner surface of the retina is in contact with the vitreous body and the 

outer surface with Bruchs membrane of the choroid.

The retina can be divided into several distinct layers according to the cell 

bodies and synapses contained within them. The cells that make up the 

retina are shown in Figure 1.1. The vertebrate retina contains three layers of 

nerve cell bodies, the outer nuclear layer, the inner nuclear layer and the 

ganglion cell layer, and two layers of synapses, the outer and inner plexiform 

layers. It is within the retina that light energy is transformed into a neural 

signal before being passed to the visual cortex of the brain.

1.2 The Retinal Pigment Epithelium

The retinal pigment epithelium (RPE) is formed from a single layer of 

pigmented cells extending from the margin of the optic nerve head (ONH) to 

the ora serrata. The basal ends of these cells rest on a basement membrane 

forming part of Bruchs membrane of the choroid. The apical ends have 

multiple microvilli which project between the outer segments of the rods and 

cones, thus providing some mechanical stability to the photoreceptors. 

Numerous melanin granules are contained within these cells and may extend 

into the microvilli. Adjacent cells are bound together by tight junctions though 

gap junctions are also present between cells.

The RPE performs several important functions [Nilsson 1985] which include 

the:

• Formation of the outer blood-retinal barrier between the choriocapillaris 

and the neural retina. The tight junctions between cells prevent the

2



The Retina

passage of large molecules or toxins from the systemic circulation to the 

photoreceptor layer.

• Phagocytosis of rod and cone outer segment discs.

• Metabolism of vitamin A (retinol), a molecule involved in 

phototransduction.

• Absorption of scattered light.

1.3 The Photoreceptor Laver and Outer Nuclear Laver

1.3.1 Densities of the Photoreceptors

The photoreceptor layer of the retina is comprised of the outer segments of 

the two types of photoreceptor cell, the rods and the cones. There are 

thought to be approximately 115 million rods in the retina and 6.5 million 

cones with the density of each type varying regionally across the retina, see 

Figure 1.2. Rods are absent at the fovea and their density increases towards 

the periphery reaching a maximum at 5mm (18°) from the centre of the fovea 

[Oesterberg 1935, Curcio et al 1990], Their density then slowly decreases 

towards the extreme periphery. Cone density is maximal at the fovea, 

decreasing towards a reasonably even density across the periphery [Curcio et 

al 1990]. No photoreceptors are present at the optic nerve head thus leading 

to a blind spot in the visual field of each eye.

cone peak 
rod peak I I |A

ods

cones
f tw a

f iC « N r« C lT rtn w s f< !C -5

Figure 1.2 Densities of the rods and cones across the retina [After Oesterberg 

1935],
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The Retina

1.3.2 Structure of the Photoreceptors

Each type of receptor consists of several defined regions, see Figure 1.3.

The outer segments, situated in the photoreceptor layer, contain the visual 

pigment. They are connected to the inner segment, containing the metabolic 

machinery, by a modified cilium. An outer fibre then connects this area to the 

cell body or perikaryon region situated in the outer nuclear layer, containing 

the nucleus of the cell, which is in turn connected to the synaptic terminal by 

means of an inner fibre [Pipe and Rapley 1997].

1.3.2.1 Outer Segments

The outer segments of the photoreceptors contain a series of double-folded 

membranous discs. These discs are freely stacked within the rod outer 

segment membrane, but in the cones are continuous with the cell membrane 

and formed by infoldings of the cell membrane of the outer segment. The 

visual photopigments are embedded within the membranes of these discs 

with each disc containing many thousands of visual pigment molecules [Pipe 

and Rapley 1997]. Rods contain the visual pigment rhodopsin and are 

maximally sensitive to blue-green light with peak wavelength sensitivity of 

496-500 nm. The cones also contain visual photopigments, similar in 

composition to rhodopsin, and are known as iodopsins. The cones can be 

divided into three groups based on the maximal wavelength sensitivity of the 

visual photopigment they contain. Those with a maximal sensitivity to long 

wavelength light, (peak sensitivity 564 nm), are known as L-cones or red 

cones. Those with a maximal sensitivity to medium wavelength light, (peak 

sensitivity 533 nm), are known as M-cones or green cones and those with a 

maximal sensitivity to short wavelength light, (peak sensitivity 437 nm) are 

known as S-cones or blue cones [Gouras 1984].

The membranous discs are formed at the base of the outer segments and 

move upwards towards the tip of the outer segment as new discs are formed 

below. The tips of the outer segments are pinched off and phagocytosed by 

the cells of the RPE in a diurnal cycle with the rod outer segment discs
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The Retina

maximally shed in the morning, at light onset, and the cone outer segment 

discs often at the end of the day at light offset [Besharse 1982].

1.3.2.2 Inner Segments

The inner segments of the rods are thinner than those of the cones, each 

having a diameter of 2 |jm and 5 |jm respectively [Pipe and Rapley 1997].

The outer segments of each are approximately 1.5 pm in diameter. However, 

at the fovea the cones have an inner segment diameter thinner than that of 

the rods at 1.5 pm, allowing dense packing of the cones in this area of the 

retina and thus greater visual discrimination.

The inner segments of the photoreceptors are comprised of two parts, the 

ellipsoid, closest to the outer segment, and the myoid, closest to the cell body 

of the photoreceptor. Opsin molecules are assembled in the inner segments 

of these cells before being passed to the discs of the outer segment where 

they form part of the visual photopigments. The other part of the rhodopsin 

molecule, retinal, is provided by the RPE via retinal binding proteins.

1.3.2.3 Synaptic Endings

The rod cells terminate in a round synapse known as a spherule, each 

containing many pre-synaptic vesicles. Each spherule contains a single 

round invagination formed by an infolding of the cell membrane [Pipe and 

Rapley 1997]. Here the rods may synapse with one to four rod bipolars, or 

horizontal cells, and up to seven processes fit within each spherule 

[Remington 1998].

The cones terminate in broad flattened hemispheres with up to twenty-five 

invaginations. Three processes may enter these forming a ‘triad’, the central 

element typically consisting of the dendritic terminal of an invaginating midget 

bipolar. The two lateral processes are dendritic terminals of horizontal cells. 

Cone pedicles have small projections which may contact neighbouring cone
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pedicles and rod spherules allowing for the transfer of information between 

the photoreceptors [Pipe and Rapley 1997],

CONE
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CELL BODY

OUTER NUCLEAR 
LAYER

OUTER PLEXIFORM LAYER
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SYNAPSE
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Figure 1.3 Schematic diagram of the photoreceptor cells.

1.3.3 Light Sensitivity of the Photoreceptors.

Rods provide the ability to see in scotopic conditions, (<0.003 cd.m'2) 

[Kalloniatis and Luu 2005]. Their sensitivity is so great that they are able to 

detect a single quantum of light, however they are much slower to respond to 

light stimulation than cones, maybe by as much as 1/10 second [MacLeod 

1972], Cones provide the ability to see in photopic conditions, (>3cdm'2) and 

at mesopic light levels, (0.003-3 cd.m'2) both rods and cones function 

[Kalloniatis and Luu 2005].

As conditions change from scotopic to photopic light levels there is a shift in 

the spectral sensitivity of the eye, known as the Purkinje shift. The relative 

luminosity curve of the rods peaks earlier than that of the cones, the peaks
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arising at 510 and 560 nm for the rods and cones respectively. Scotopic 

spectral sensitivity is higher than photopic spectral sensitivity at all but the 

longest wavelengths. At high levels of illumination the rod responses saturate 

and no longer increase as illumination levels continue to increase [Kalloniatis 

and Luu 2005].

It has been found that rod system sensitivity to increments begins to fall off 

rapidly with retinal illuminance levels of about 100 scotopic trolands. At about 

2,000-5,000 scotopic Trolands, corresponding to photopic luminances of 120- 

300 cd.m'2, the rod mechanism becomes saturated [Aguilar and Stiles 1954]. 

A later experiment found that using green LEDs through closed eyelids in 

humans a stimulus luminance of 10 cd.m'2 at the lid surface is sufficient to 

produce a reduction in the rod dark current, and thus lower the retinal oxygen 

demand of the rods [Arden et al 1999].

1.3.4 Phototransduction

In the dark, a steady current flows between the inner and outer segments of 

the photoreceptors known as the ‘dark current’. Sodium (Na+) ions flow freely 

down their electrochemical gradient into the outer segments of the 

photoreceptors through open cation channels. This partially depolarises the 

cell and maintains a high release of the neurotransmitter glutamate from the 

synaptic terminals of the receptor. This release of neurotransmitter is high in 

the dark and reduced by light, proportionally to the number of photons 

absorbed [Yau 1994]. This partial depolarisation leads to leakage of 

potassium (K+) ions from the inner segments and synaptic endings completing 

the loop of the circulating dark current. Internal Na+ and K+ concentrations 

are maintained by an ATP dependent Na+/K+ exchange pump [Baylor 1987]. 

As well as the influx of Na+ through the cation channels, calcium (Ca2+) ions 

also enter the outer segments and are released from the inner segments by 

means of a Na+/Ca2+ exchanger, forming a smaller proportion of the dark 

current [Yau 1994].
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Absorption of light causes hyperpolarisation of the cell membrane by indirectly 

closing the cation channels of the outer segments which are normally kept 

open by cyclic guanosine 3’-5’-monophosphate (cGMP). Photoisomerisation 

of rhodopsin molecules, embedded in the membranous discs of the outer 

segments, precipitates a series of reactions which result in a reduction of 

cGMP, closure of the cation channels and the dark current stops [Tovee 

1996].

When a photon of light is absorbed by a rhodopsin molecule the retinal 

component of the visual pigment is isomerised from an 11 -c/'s from to an all- 

trans form, freeing it from the opsin molecule. The protein then goes through 

a series of intermediate forms, one of which is the enzymatically active 

metarhodopsin II [Saari 2000]. Metarhodopsin II then binds to a disc 

membrane protein transducin. In its inactive state transducin is bound to a 

molecule of guanosine diphospahte (GDP). The association of 

metarhodopsin II leads to the exchange of the bound GDP for guanosine 

triphoshate (GTP), resulting in the activation of the transducin molecule [Fung 

et al 1990]. Activated transducin interacts with phosphodiesterase (PDE) and 

splits off its inhibitory subunits, and this complex then catalyses the hydrolysis 

of cGMP [Tovee 1996]. As the level of cGMP falls the cation channels of the 

outer segment close and the receptor hyperpolarises.

Metarhodopsin II is inactivated by phosphorylation which allows a protein 

called arrestin to compete with transducin for the metarhodopsin II which then 

inhibits further catalytic activity [Tovee 1996].

The transduction process leads to a fall in cGMP and cation channels close. 

This leads to a fall in intracellular Ca2+ since these ions can no longer enter 

the cell but are still being removed. Changing levels of intracellular Ca2+ are 

believed to act as a feedback mechanism speeding up the cells recovery from 

light stimulation and mediating light adaptation [Koutalos and Yau 1993]. The 

mechanism by which this occurs is still uncertain [Hurley et al 1993,

Kawamura 1993].
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1.4 The Inner Nuclear Laver

1.4.1 Bipolar Cells

The retinal bipolar cells synapse with the photoreceptors within the outer 

plexiform layer. Their cell bodies lie within the inner nuclear layer and their 

single axon is directed inwards towards the inner plexiform layer where they 

synapse with ganglion and amacrine cells. The bipolar cells can be classified 

according to their synaptic connections [Saude 1993]:

• Rod bipolar cells -  connect 15-30 rod cells with only 1-4 ganglion cells via 

amacrine cells.

• Flat or diffuse bipolar cells -  connect many cone cells with many ganglion 

cells.

• Midget bipolar cells -  connect a single cone with a single midget ganglion 

cell.

More rods converge onto a single rod bipolar than cones onto a single cone 

bipolar, thus the rod system trades acuity for sensitivity [Masland 2001a]. The 

rod bipolar does not synapse directly with ganglion cells but instead 

information is passed via specific amacrine cells.

The bipolar cells can also be classified as either excitatory or inhibitory with 

ON or OFF centre receptive field types. Excitatory bipolars become activated 

in the dark and are deactivated by light. Inhibitory bipolars are opposite to this 

being suppressed by dark conditions and activated by light [Nelson and Kolb 

1983],

1.4.2 Horizontal Cells

The horizontal cells, as their name suggests, transfer information in a 

horizontal manner across the retina. They are thought to perhaps be bi­

directional with one long process, sometimes termed the axon, and several
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long processes, sometimes termed the dendrites. Horizontal cells synapse 

with the photoreceptors, bipolar cells and with each other. When activated by 

a photoreceptor it is thought that they contact bipolar cells some distance 

away [Remington 1998] releasing an inhibitory neurotransmitter, gamma- 

aminobutyric acid (GABA), which is thought to sharpen contrast and increase 

spatial resolution [Snell and Lemp 1998].

1.5 The Inner Plexiform Laver

The inner plexiform layer (IPL) can be divided into two sublaminas. In 

sublamina 'a'the axons of OFF-centre bipolar cells end, and OFF-centre 

ganglion cells and OFF-centre amacrine cells branch. In sublamina f t ’ the 

axons of ON-centre bipolar cells end, and ON-centre ganglion and amacrine 

cells branch [Kolb et al 2004].

1.5.1 Amacrine Cells

The transfer of information from the bipolar cells to the ganglion cells is 

predominately via the amacrine cells. The amacrine cells synapse upon 

bipolar cells, other amacrines or ganglion cells. They are also thought to 

make reciprocal synapses to the bipolar cell axons from which they receive 

ribbon synapses [Kolb et al 2004]. This feed-back synapse to the bipolar cell 

within the IPL may provide a surround mechanism to the bipolar cell 

response.

There are thought to be at least 25 different morphological types of amacrine 

cell within the human retina [Kolb et al 1992]. They outnumber the horizontal 

cells by amounts ranging from 4:1 to 10:1 depending on the species [Masland 

2001a]. The classification of amacrine cell type are based upon their dendritic 

tree size (found to increase with eccentricity from the fovea), their branching 

characteristics and on the stratification of their dendrites within the IPL.

Some amacrine cells perform particularly specific functions. All amacrine 

cells act as a bridge between the rod pathway and the ganglion cells [Smith
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and Vardi 1995]. They are the most common type of amacrine cell in the 

mammalian retina and use the inhibitory amino acid glycine as a 

neurotransmitter. Dopaminergic amacrine cells are thought to control the 

sensitivity of many retinal neurons during light and dark adaptation [Masland 

2001b]. Starburst amacrine cells make excitatory cholinergic synapses on 

specific retinal ganglion cells, particularly those sensitive to moving stimuli. 

These neurons release both acetylcholine (Ach) and GABA and by feed­

forward excitation and/or inhibition are important for direction selectivity 

[Masland 2001a].

1.5.2 Interplexiform Cells

Interplexiform cells link the two plexiform layers of the retina, receiving 

synaptic input from the IPL and having synaptic output at the OPL. They 

receive input from amacrine cells and make synapses with rod and cone 

bipolar cell bodies and their dendrites [Remington 1998].

1.6 The Ganglion Cell Laver

1.6.1 Ganglion Cells

The ganglion cells are the final output neurons of the retina. They form a 

single layer across the majority of the retina though the number of layers 

increases from the periphery to the macula and decreases again towards the 

fovea where they are absent. They are classified according to cell size, 

dendritic field size and spread, which is known to increase with retinal 

eccentricity, and type of branching.

The most common type of ganglion cell is the midget ganglion cell, or P cell. 

This is a relatively small cell and projects to the parvocellular layer of the 

lateral geniculate body (LGN). They have the smallest dendritic trees at the 

fovea, though beyond 3mm eccentricity their dendritic tree size may be as 

large as 100pm [Dacey 1993]. At the fovea the P cells are connected to only
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one midget bipolar cell, which in turn may be connected to a single cone 

photoreceptor. Beyond the fovea they may receive input from more than one 

midget bipolar by virtue of their increased dendritic tree size thus providing 

some convergence of the visual signal [Gouras and Zrenner 1981]. The 

parvocellular system is thought to provide high levels of visual acuity and 

colour vision [Kolb et al 2004].

The M cells are ganglion cells which project to the magnocellular system, 

which provides information regarding luminance and movement, and are 

thought to be the parasol cells described by Polyak [1941], These cells have 

a larger spread of dendrites and thus larger receptive fields.

The remaining ganglion cells are designated G3 to G23. These cells vary by 

cell body size, dendritic tree size, branching characteristics and the location of 

dendrite termination [Remington 1998].

The ganglion cell axons are non-myelinated and run across the inner surface 

of the retina, forming the nerve fibre layer, and come together to leave the eye 

as the optic nerve. The optic nerve fibres pass through the sclera at the 

lamina cribosa at which point they become myelinated.

1.7 The Nerve Fibre Laver

This layer consists of the axons of the ganglion cells, neurogliei and 

astrocytes. In the nasal half of the retina the nerve fibres run in a radial 

pattern. Fibres originating in the central macula area form a thick pappillo- 

macular bundle which runs directly from the fovea to the temporal part of the 

disc. Fibres originating in the temporal periphery of the retina take a more 

arcuate course to the optic disc. Those fibres originating in the upper and 

lower quadrants form a well defined horizontal raphe running from the fovea 

to the temporal periphery.
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1.7.1 Glial Cells

1.7.1.1. Muller Cells

The Muller cells are long, narrow cells with long processes that extend across 

almost the entire neural retina from the outer limiting membrane to the inner 

limiting membrane. They fill in most of the space within the neural retina not 

occupied by neurons and subsidiary branches extend horizontally providing 

mechanical support to the neurons that they surround. They are also rich in 

glycogen and have an important nutritive role as well as supportive. Muller 

cells protect the retinal neurons from exposure to excess neurotransmitters 

such as glutamate and mop up neural waste such as carbon dioxide (CO2) 

and ammonia. They also control homeostasis within the retina by taking up 

extracellular K+ and redistributing it [Newman and Reichenbach 1996]. Muller 

cells are also believed to contribute to the generation of the electroretinogram 

(ERG) b-wave [Miller and Dowling 1970, Newman and Odette 1984], the slow 

P3 component of the ERG [Karwoski and Proenza 1977], and the scotopic 

threshold response (STR) [Frishman and Steinberg 1989], by their regulation 

of K+ distribution within the retina.

1.7.1.2 Astrocytes

Astrocytes consist of a flattened cell body with a series of fibrous radiating 

processes. They are found on the surface of bundles of ganglion cell axons, 

and sometimes on blood vessels running between the ganglion cell bundles, 

and are thought to form part of a blood-brain barrier [Zhang and Stone 1997], 

They too are rich in glycogen and may play a nutritive role.

1.7.1.3 Microglial Cells

Microglial cells may be found in every layer of the retina. They are believed to 

provide a macrophagic function following trauma to the retina where they 

phagocytose degenerating retinal neurons.
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1.8 The Rod Pathway

The rod photoreceptors are designed to mediate our vision under scotopic 

conditions and are so sensitive that they are able to reliably transduce 

information following the absorption of even a single photon. The classic rod 

pathway contains both specialised bipolar and amacrine cells, however the 

circuitry involved in the rod pathway is in part superimposed on existing cone 

circuitry [Kolb and Famiglietti 1974].

Both rods and cones are depolarised under dark conditions. Following an 

increase in light intensity both the rods and cones hyperpolarise and reduce 

their release of the neurotransmitter, glutamate. In mammals the rods are 

thought to synapse with a single type of bipolar cell, the rod ON-bipolar. The 

rod bipolar receives input from between 15 and 30 rod spherules. The rod 

bipolar depolarises and synapses with All and A17 amacrine cells. This 

passage of signal via the amacrine cells allows for both convergence and 

divergence of signals from many rods and rod bipolars [Kolb et al 2004],

The All amacrine cell is a small field bi-stratified cell, and A17 a wide-field cell. 

All amacrine cells respond to light with a depolarising, ON-centre response. 

These cells then excite the ON (depolarising) cone bipolar cells and inhibit 

OFF (hyperpolarising) cone bipolar cells. The signal is then passed from the 

ON bipolars to excite the ON ganglion cells and from the OFF bipolars to 

excite the OFF ganglion cells.

A17 amacrine cells also respond to light with a depolarising, ON-centre 

response. They are thought to receive input from approximately 1,000 rod 

bipolars and are not known to synapse with either ganglion cells or other 

amacrines. Instead they interconnect rod bipolars via reciprocal synapses 

and thus provide convergence of the rod signal over a wide retinal area, 

increasing our sensitivity in scotopic conditions [Kolb et al 2004].

Dopaminergic amacrine cells may also influence the rod pathway via chemical 

synapses with All and A17 in the inner plexiform layer. They may uncouple
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Alls across the retina and uncouple All from the cone bipolars in order to 

increase the receptive field size of ganglion cells [Kolb et al 2004].

A second rod pathway is also present in which rods are able to contact the 

cone ON and OFF bipolars at an early stage. This is possible due to electrical 

synapses along gap junctions between the rod and cone photoreceptor cells. 

These gap junctions allow the rods access to the cone ON and OFF bipolars 

and thence to ON and OFF ganglion cells [Nelson and Kolb 1983, Smith et al 

1986]. This duality of the rod system has been demonstrated with self­

cancellation of flicker signals both perceptually and in the human 

electroretinogram (ERG) with stimuli at high rod intensity levels near 15 Hz in 

frequency [Stockman et al 1991]. This suggests that two rod signals are 

processed within the retina with different speeds of transmission. The phase 

delay between the two signals at 15 Hz is approximately half a cycle and 

leads to the presence of two rod signals of opposite phase which cancel each 

other out via destructive interference. This second rod pathway is thought to 

be active at low mesopic intensity levels, and is reflected in the faster rod 

signal in the human ERG. The slower signal is believed to reflect 

transmission of the rod response via the rod bipolars and All amacrines, 

which is active at scotopic levels and saturates at approximately 1 scotopic 

troland (scot, td) [Stockman et al 1995].

A third pathway for rod signals through the retina has also been suggested 

[Soucy et al 1998, Hack et al 1999]. OFF-ganglion cell responses have been 

recorded in the coneless retina of a transgenic mouse whose primary rod 

pathway had been incapacitated pharmacologically. Since the second rod 

pathway relies on gap junctions between the rods and cones this is not 

occurring via this pathway due to the lack of cones. It is suggested that the 

survival of the OFF-response is due to a third rod pathway, perhaps 

connecting rods directly with OFF-bipolar cells [Soucy et al 1998]. This is 

supported by a later study which discovered a non-classical synaptic contact 

in the rodent retina where rod photoreceptors made synaptic contact with 

putative OFF-cone bipolar cells [Hack et al 1999]. It is, however, suggested 

that direct connections between rods and OFF-cone bipolars may be specific
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to smaller eyes of rodents but absent in larger eyes, e.g. those of cats, 

monkeys and humans, and depend on rodent eyes receiving on average 

more quanta than rods in larger eyes [Sharpe and Stockman 1999].

In summary it is possible that three pathways exist for transmitting rod signals 

in the retina. The first pathway involves passage of the signal from rods to 

rod bipolar cells, to All amacrine cells, to cone bipolar cells and finally to 

ganglion cells. The second involves direct transmission of the signal from 

rods to cones via gap junctions and then on to the ganglion cells via the cone 

bipolars. The third pathway may bypass the ON bipolar cells completely and 

rod photoreceptors may directly excite the OFF cone bipolars.
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2. DIABETES MELLITUS

Diabetes Mellitus (DM) is a group of metabolic diseases characterised by 

hyperglycaemia resulting from defects in insulin secretion, insulin action or 

both [The Expert Committee on the Diagnosis and Classification of Diabetes 

Mellitus 2003]. Several processes are involved in the development of DM and 

can range from the auto-immune destruction of the pancreatic p-cells of the 

islets of Langerhans with consequent insulin deficiency, to abnormalities that 

result in resistance to insulin action. The chronic hyperglycaemia apparent in 

DM is responsible for the three main pathologies noted in this disease: 

peripheral neuropathy, nephropathy and vascular disease.

2.1 Physiology of Diabetes Mellitus

The pancreas is comprised of exocrine and endocrine cells. The exocrine 

portion synthesises and secretes digestive enzymes into the duodenum, the 

first portion of the small intestine, in order to aid digestion of food. The 

endocrine cells also secrete hormones to aid food digestion along with a 

number of hormones involved in regulation of metabolism. The endocrine 

cells of the pancreas are clustered together in small groups and this 

appearance led to the name ‘pancreatic islets of Langerhans’, named by 

Laguesse in 1889 after their original describer [Patel 2000]. These islets are 

surrounded by small blood vessels into which their hormones are secreted. 

Blood glucose levels are largely regulated by two hormones, glucagon and 

insulin, which are respectively secreted by the a (A) and p (B) cells of the 

islets of Langerhans. There are approximately one million islets of 

Langerhans in the normal adult. These are made up of four main cell types, a 

(A), p (B), 5 (D) and pancreatic peptide (PP) cells.
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2.1.1 A cells

The A cells are the second most abundant cell type of the islets and produce 

glucagon. Glucagon promotes an increase in the sugar content of the blood 

by increasing the rate of glycogenolysis in the liver, i.e. the breakdown of 

glycogen, the principle form in which carbohydrate is stored in animal tissue. 

Insulin inhibits the release of glucagon, while glucagon stimulates insulin 

secretion. Glucagon secretion is stimulated by low levels of glucose in the 

blood and inhibited by high levels [Tortora and Grabowski 1992].

2.1.2 B cells

The B cells are the most abundant of the islet cells and make up the bulky 

core of each islet. They produce insulin, which regulates metabolism via 

control of circulating plasma glucose levels. Insulin is a small protein 

consisting of a chain of 21 amino acids linked by two disulfide (S-S) bridges to 

a chain of 30 amino acids. When glucose is required insulin facilitates its 

utilisation. When glucose levels become excessive insulin stimulates skeletal 

muscle fibres and liver cells to take up glucose from the blood and convert it 

into glycogen. It also inhibits the production of enzymes involved in 

glycogenolysis, e.g. glucagon, to prevent the breaking back down of glycogen. 

Insulin also acts on fat/adipose cells to stimulate the uptake of glucose and 

the synthesis of fat. The amount of insulin released by the normal B cell 

immediately increases as blood glucose rises [Tortora and Grabowski 1992].

In Type 2 DM there is a progressive deficit of insulin secretion and this may 

be due in part to a deficit in B-cell mass [Butler et al 2003, Ritzel et al 2006], 

which may be caused by increased B-cell apoptosis [Ritzel et al 2006].

2.1.3 D cells

The D cells produce somatostatin, which suppresses the secretion of both 

insulin and glucagons [Tortora and Grabowski 1992].
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2.1.4 PP cells

The PP cells synthesise pancreatic polypeptide whose function is as yet 

unknown [Tortora and Grabowski 1992].

2.2 The Role of Insulin

In DM the absence of, or resistance to, insulin results in a lack of uptake of 

glucose from the blood by skeletal muscle fibres and uncontrolled glucose 

output from the liver. This overall increase of glucose molecules in the 

bloodstream is termed hyperglycaemia. The actions and properties of insulin 

are summarised in Table 2.1.

Role of Insulin

Tissue Insulin Action

Skeletal Muscle Stimulation of glucose uptake from 

blood and conversion to glycogen 

(gluconeogenesis)

Stimulation of amino acid uptake from 

the blood and conversion to protein

Liver Stimulation of glucose uptake from 

blood and conversion to glycogen

Inhibition of breakdown of glycogen 

(glycogenolysis)

Fat Stimulation of glucose uptake from 

blood and synthesis of fat

Properties of Insulin

Secretion stimulated by High blood sugar

Glucagon

Secretion inhibited by Low blood sugar

Somatostatin

Table 2.1 Summary of role and properties of insulin.
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2.3 Systemic Complications of Diabetes Mellitus

2.3.1 Diabetic Neuropathy

Diabetic neuropathy may affect any part of the nervous system.

Complications may result from metabolic changes resulting in demyelination 

of nerve axons. Chronic peripheral neuropathy may result in a loss of touch, 

pain and temperature sensation. Subjects with diabetic peripheral neuropathy 

and vascular abnormalities are at high risk of diabetic foot ulceration, see 

Figure 2.1, with loss of sensation leading to periods of prolonged injury to the 

foot. Non-healing foot ulceration may lead to amputation and almost 50% of 

amputations not due to trauma are performed in diabetic patients [Boulton et 

al 1994], Regular visits to the podiatrist are advised in order to avoid this. 

Peripheral neuropathy may also cause muscle weakness and loss of reflexes, 

particularly at the ankle which may result in a change in gait.

Figure 2.1 Diabetic foot ulcer [Armstrong 

and Lavery 1998].

Diffuse motor neuropathy is suggested by widespread, painless muscle 

wasting and weakness. Focal neuropathies, often due to vascular damage, 

may result in isolated palsies of either cranial or peripheral nerves. Palsies of 

the 3rd or 6th cranial nerves are characteristic of diabetic focal neuropathy.

Subnormal corneal sensitivity has also been reported with DM [Schwarz 1974, 

Macrae et al 1982, Ruben 1994]. A recent study found no significant 

relationship between the reduction in corneal sensitivity and the disease
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duration, but did find a gradual reduction in sensitivity with age in both diabetic 

and non-diabetic subjects [Murphy et al 2004].

2.3.2 Diabetic Nephropathy

DM can also cause damage to the kidney, termed diabetic nephropathy. This 

generally involves sclerosis of internal kidney structures, particularly the 

glomerulus (the kidney membrane). The glomeruli provide the site of blood 

filtration and urine formation. As they are progressively destroyed filtration 

levels slow and protein may leak into the urine [Levine 2006]. Protein may be 

present in the urine for 5-10 years before other symptoms develop. The most 

serious long-term effect of diabetic nephropathy is kidney failure leading to 

end-stage renal disease. The subject will then require dialysis or a kidney 

transplant. Diabetic nephropathy is generally accompanied by other diabetic 

complications including hypertension, retinopathy and vascular damage, and 

is now known to be the principal cause of end stage renal disease in the 

western world [Russell 2006].

2.3.3 Vascular Disease

Diabetic vascular disease can be sub-divided into two groups, macro-vascular 

disease, affecting the larger blood vessels of the body, and micro-vascular 

disease, affecting the smaller blood vessels of the body.

Macro-vascular disease results in cardiac problems and increased blood 

pressure in diabetic subjects. Subjects with diabetes have a substantially 

increased risk of myocardial infarction, peripheral vascular disease, cerebro­

vascular disease and retinopathy. Poor glycaemic control, obesity, smoking, 

physical inactivity and insulin resistance are all risk factors for development of 

vascular disease.

Microvascular dysfunction is paramount in the development and progression 

of diabetic retinopathy, the major cause of blindness in the working population
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in the western world [Evans et al 1996]. This shall be discussed in more 

detail in section 2.7.

2.4 Diagnosis of Diabetes Mellitus

Three ways to diagnose diabetes are possible, and each must be confirmed 

on a subsequent day by any one of the three methods given [Expert 

Committee on the Diagnosis and Classification of Diabetes Mellitus 2003], 

which are outlined in Table 2.2.

1. Symptoms of diabetes plus casual plasma glucose concentration > 200mg/dl (11.1 

mmol/l). Casual is defined as any time of day without regard to time since last meal. The 

classic symptoms of diabetes include polyuria, polydipsia, and unexplained weight loss.

or

2. FPG> 126mg/dl (7.0mmol/l). Fasting is defined as no caloric intake for at least 8h.

or

3. 2-h PG>200mg/dl (11.1 mmol/l) during an OGTT. The test should be performed as 

described by WHO [World Health Organisation 1985], using a glucose load containing the 

equivalent of 75g anhydrous glucose dissolved in water.

In the absence of unequivocal hyperglycaemia with acute metabolic decompensation, these 

criteria should be confirmed by repeat testing on a different day. The third measure (OGTT) 

is not recommended for routine clinical use.

FPG = Fasting Plasma Glucose 

PG = Plasma Glucose 

OGTT = Oral Glucose Tolerance Test 

WHO = World Health Organisation

Table 2.2 Criteria for the diagnosis of diabetes mellitus [Expert Committee on 

the Diagnosis and Classification of Diabetes Mellitus 2003].

2.5 Incidence of Diabetes Mellitus

Approximately 1.8 million people in the UK, approximately 3% of the 

population, are known to have diabetes today and it is thought that a further 1 

million are currently undiagnosed [Diabetes UK 2006].
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2.6 Classification of Diabetes Mellitus

DM can be divided into two main groups, Type 1 DM and Type 2 DM, though 

there are other specific types. The current classification is based on 

recommendations by an expert committee of the American Diabetes 

Association (ADA) and a World Health Organisation (WHO) consultation 

group [American Diabetes Association 2006].

2.6.1 Type 1 Diabetes Mellitus

2.6.1.1 Aetiology

This form of diabetes results from a cellular-mediated auto-immune 

destruction of the pancreatic B cells, usually leading to absolute insulin 

deficiency. Type 1 DM is thought to be triggered by a variety of environmental 

factors in those with a genetic susceptibility to this auto-immune process, 

though in some individuals there is no known aetiology and it is then termed 

idiopathic Type 1 DM [American Diabetes Association 2006]. Environmental 

factors appear to be more important than genetic factors which can explain 

only 30-40% of total susceptibility [Williams 2004]. Environmental triggers 

include viruses, including mumps, cytomegalovirus and rubella, bovine serum 

albumin from cows’ milk and various toxins.

2.6.1.2 Prevalence

Type 1 DM accounts for between 7 and 10% of all diabetes with a population 

prevalence of 0.2 and 0.3% [Olefsky 1992], and shows no gender bias 

[Williams 2004].

2.6.1.3 Presentation

The symptoms of Type 1 DM have a relatively sudden onset although they 

generally become apparent when 80-85% of the B cells have been lost 

[Campbell and Lebovitz 1996]. These are outlined in Table 2.3. It appears
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predominantly in childhood hence the previous description of ‘juvenile-onset 

DM’, however it can develop at any age. Most individuals with Type 1 DM 

become dependent on insulin for survival hence another previous description 

of ‘insulin-dependent DM’.

Polyuria 

Polydipsia 

Polyphagia 

Weight Loss 

Muscular Weakness 

Blurred Vision 

Recurrent Infections 

Diabetic Ketoacidosis

Table 2.3 Symptoms of Type 1 DM.

2.6.1.4 Treatment

Type 1 DM is generally controlled via subcutaneous injections of insulin at 

specific times each day. A low-fat diet, along with regulated intake of 

carbohydrates distributed throughout the day, is also recommended in order 

to help control blood glucose levels. Insulin may be given intravenously or 

intramuscularly in an emergency.

Bovine and porcine insulin are used to treat Type 1 DM. Bovine insulin differs 

chemically from human insulin by three amino acid residues and porcine by 

only one. However, these are now being superseded by insulin with the same 

structure as human insulin, manufactured in vitro via recombinant DNA 

techniques [Waller et al 2001].

Insulin half-life in plasma is very short, generally 8-16 minutes, and in order to 

avoid the need for frequent injections it is formulated either in a soluble
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preparation or complexed with a different substance, protamine and/or zinc, to 

delay absorption from the injection site [Waller et al 2001].

Insulin analogues, e.g. Lispro, are chemical modifications of naturally 

occurring insulin. These act more rapidly than natural insulin but for a shorter 

time. In view of this they would generally be injected soon before the start of 

a meal [Rang et al 1999].

2.6.1.5 Prognosis

Before the introduction of insulin during the 1920s Type 1 DM was invariably 

fatal within a matter of months. With insulin treatment the risk of dying within 

10 years is approximately fourfold higher for subjects with Type 1 DM 

throughout adult life in comparison to their non-diabetic peers [Williams 2004].

The greatest difficulties facing the Type 1 DM subject are now chronic tissue 

and vascular damage which may lead to renal failure, myocardial infarction 

and stroke.

2.6.2 Type 2 Diabetes Mellitus

2.6.2.1 Aetiology

Type 2 DM occurs as a result of insulin resistance and some B cell failure, the 

latter causing a relative rather than absolute insulin deficiency but resulting in 

an inability to overcome the insulin resistance. The specific aetiologies of this 

form are not known but auto-immune destruction of B cells does not occur. 

Genetic factors appear to play a major role in the pathogenesis of Type 2 DM 

and studies of identical twins have shown concordance rates of almost 100%. 

Having a first-order relative with Type 2 DM increases an individual’s chance 

of developing it fivefold [Williams 2004, American Diabetes Association 2006]. 

Environmental factors which may play a role in the development of Type 2 DM 

include obesity, thought to increase insulin resistance, high carbohydrate diets 

and certain drugs [Campbell and Lebovitz 1996]. Obesity and physical
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inactivity are also important risk factors in the development of Type 2 DM 

[Williams 2004].

2.6.2.2 Prevalence

Type 2 DM is by far the most prevalent form of diabetes accounting for 

approximately 90-95% of all patients with DM [Gutteridge 1999, American 

Diabetes Association 2006]. It is thought to affect 2% of the Caucasian 

populations in most westernised countries, the prevalence increasing with age 

to 10% of those over 70 and there is a 3:2 male preponderance among 

subjects with Type 2 DM [Williams 2004].

2.6.2.3 Presentation

Type 2 DM is generally diagnosed in those over 40 years of age, hence its 

previous description of ‘mature-onset DM’. It is often of slow, insidious onset 

and the subject may not be aware of gradually increasing symptoms of 

polyuria, polydipsia and tiredness. Subjects are often obese with a family 

history of Type 2 DM. Insulin is not always required hence the previous 

classification of ‘non-insulin dependent DM’, though often insulin will be 

required to maintain stable blood glucose levels and thus the present 

classification was developed in order to avoid confusion [Expert Committee on 

the Diagnosis and Classification of Diabetes Mellitus 2003]. Table 2.4 lists 

the complications found in a group of 2,337 subjects newly diagnosed with 

Type 2 DM [UK Prospective Diabetes Study 1990].
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Complication % Subjects

Retinopathy 21

Abnormal ECG 18

Myocardial Infarct 2

Angina 3

Absent Foot Pulses 13

Hypertension 35

Albinuria 3

Table 2.4 Complications present in a group of newly diagnosed subjects with 

Type 2 DM [UK Prospective Diabetes Study 1990].

2.6.2.4 Treatment

Type 2 DM is generally managed by a combination of lifestyle changes and 

oral hypoglycaemic agents. Weight loss and controlled physical exercise is 

particularly important for the obese DM subject, and a controlled and 

balanced diet is encouraged in all cases. Intakes of fat, salt and refined sugar 

are generally kept to a minimum and alcohol intake should not exceed three 

units per day in men and two units per day in women. Smoking is 

discouraged in all cases since it greatly increases the risk of vascular disease.

Oral hypoglycaemic drugs include sulfonylureas, biguanides, 

thiazolidinediones and glucosidase inhibitors.

Sulfonylureas, e.g. gliclazide, act by stimulating insulin release from the 

pancreatic B cells, and thus require functioning islet cells. Biguanides, e.g. 

metformin, increase glucose uptake in skeletal muscle and increase hepatic 

gluconeogenesis. Metformin also suppresses appetite and can therefore be 

useful in the obese DM subject. Biguanides do not require functioning B cells. 

Thiazolidinediones, e.g. rosiglitazone, act by stimulating glucose utilisation in 

peripheral tissues, particularly fat cells, and suppress hepatic 

gluconeogenesis. Glucosidase inhibitors, e.g. acarbose, act by delaying
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carbohydrate absorption and thus reduce the postprandial increase in blood 

glucose levels. Like metformin this can be particularly helpful in the obese 

DM subject.

2.6.2.5 Prognosis

Life expectancy is shortened by up to a quarter in subjects with Type 2 DM 

presenting in their forties, with vascular disease being the main cause of 

death [Williams 2004].

2.6.3 Other Specific Types of Diabetes Mellitus

There are several other, less common, specific categories of diabetes and 

they are listed below [American Diabetes Association 2006].

• Genetic defects of the B cell/maturity-onset diabetes of the young (MODY)

• Genetic defects in insulin action

• Diseases of the exocrine pancreas

• Endocrinopathies

• Drug or chemical-induced diabetes

• Infections

• Uncommon forms of immune-mediated diabetes

• Other genetic syndromes associated with diabetes

• Gestational diabetes mellitus (GDM)

2.7 Diabetic Retinopathy

Diabetic retinopathy is a microvascular disorder affecting retinal capillary 

function. It is the major cause of registerable blindness in the working 

population in Western countries. This chapter will now review the 

histopathology and pathogenesis of diabetic retinopathy and some of its 

characteristic features.
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2.7.1 Histopathology of Diabetic Retinopathy

2.7.1.1 Structural Changes In Retinal Microvessels.

Two groups of structural changes occur to the capillary network in diabetic 

retinopathy, occlusion of the capillaries and leakage from the capillaries.

2.7.1.1.1 Occlusion of the Retinal Capillaries

Occlusion of the retinal capillaries occurs due to a combination of the 

following factors:

1. Endothelial cell damage [Lawrenson 2000],

2. Thickening of the basement membrane of the vessel [Ashton 1974, 

Benson 1988, Lawrenson 2000],

3. Increase in blood platelet stickiness and aggregation of these cells. 

[Benson 1988],

4. Changes to red blood cells. [Benson 1988].

2.7.1.1.2 Capillary Leakage

The walls of the retinal vessels are formed from endothelial cells and 

pericytes. Pericytes are wrapped around the vessel wall, outside the 

endothelium, and are thought to give some structural integrity to the vessel 

wall. Pericytes may also play a role in regulating endothelial cell growth 

[D’Amore 1989]. It is thought that diabetic eyes may have a reduced number 

of pericytes in comparison to non-diabetic eyes and that this can result in 

areas of structural weakness. It is through these areas of weakness that 

blood and blood products can leak from the retinal vessels. The loss of 

pericytes is characteristically coupled with endothelial cell proliferations when 

exposed to elevated glucose levels [Ciulla et al 2002].

Capillary occlusion and leakage lead to many of the characteristic features of 

diabetic retinopathy that will be outlined later in this chapter.
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2.7.1.2 Biochemical Changes

2.7.1.2.1 The PolyolPathway

Hexose sugars, e.g. glucose and galactose, are converted into sugar alcohols 

via the polyol pathway. This metabolic pathway converts glucose to sorbitol 

and this conversion is catalysed by the enzyme aldose reductase. In 

normoglycaemia glucose is primarily metabolised by hexokinase, but in 

hyperglycaemia this pathway becomes saturated by the high levels of 

intracellular glucose and thus a higher proportion is metabolised via the polyol 

pathway [Lawrenson 2000]. In retinal capillaries the highest levels of aldose 

reductase have been observed within retinal pericytes and this increase in 

aldose reductase activity and sorbitol formation is thought to trigger pericyte 

degeneration [Robinson et al 1995]. Basement membrane thickening and 

endothelial proliferation may also be linked to this pathway [Robison et al 

1995, Lawrenson 1997].

2.7.1.2.2 Non Enzymatic Glycation

Non-enzymatic glycation involves the covalent attachment of glucose or other 

sugar molecules to proteins. In hyperglycaemia diabetics show higher levels 

of glycated haemoglobin (HbA1c), i.e. haemoglobin containing a bound sugar 

molecule, and this is monitored clinically as a measure of glycaemic control. 

Early glycation products can combine with each other to form cross-linked 

proteins called advanced glycation end products (AGE). AGEs accumulate 

with hyperglycaemia and AGE-modified collagen may be responsible for 

basement membrane thickening of the retinal capillaries [Benson et al 1988]. 

AGEs may also contribute to impaired blood flow and alterations in 

permeability of the retinal vasculature [Lawrenson 2000].
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2.7.1.3 Growth Factors and Neovascularisation

It is thought that retinal ischaemia and hypoxia initiate the release of an 

angiogenic signal within the retina that stimulates new vessel growth in order 

to form an alternative blood supply, and thus oxygen supply, to the existing 

compromised diabetic retinal vasculature [Ashton 1963]. The identity of this 

signal is still uncertain though recent studies investigating the vascular 

endothelial growth factor, VEGF, suggest that this may be a major factor in 

the pathogenesis of neovascularisation [Aiello 1997, Mathews et al 1997, 

Boulton et al 1998, Ishida et al 2000]. Levels of VEGF are increased in the 

diabetic retina and elevated VEGF has been associated with increased 

vascular permeability [Aiello 1997, Mathews et al 1997]. Several other 

angiogenic growth factors may also play a role in the proliferative stages of 

diabetic retinopathy including basic fibroblast factor, bFGF, and insulin-like 

growth factor, IGF, and it has been suggested that VEGF may work 

synergistically with these in initiating neovascularisation [Boulton et al 1998].

2.7.2 Features of Diabetic Retinopathy

2.7.2.1 Microaneurysms

Microaneurysms are often the earliest observable sign of diabetic retinopathy. 

They appear as small red dots approximately 10-100 pm in diameter and 

represent an area of weakness in the blood vessel wall where a small round 

cellular outgrowth of the wall occurs. Their aetiology is not completely 

understood, although pericyte loss may be a precipitating factor, either by 

creating a structural weakness at the point of loss, or via removal of their 

inhibitory control of endothelial proliferation [Lawrenson 1997], leading to a 

limited and localised proliferative response of endothelial cells at this point 

[Forrester et al 1993].
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2.7.2.2 Intraretinal Haemorrhages

Intraretinal haemorrhages occur as blood leaks through damaged areas of the 

retinal blood vessel wall. There are three types of haemorrhage, classified 

according to their appearance as dot, blot or flame. Dot haemorrhages are 

small and round and are often difficult to distinguish from microaneurysms. 

They are located in the outer plexiform and inner nuclear layers of the retina. 

Blot haemorrhages appear slightly larger with less distinct margins. They 

originate from the deeper capillary network and are located in the inner and 

outer plexiform layers. Flame haemorrhages occur in the nerve fibre layer 

giving them an almost striated appearance as the blood follows the pattern of 

the nerve fibre arrangement in this more superficial layer.

2.7.2.3 Hard Exudates

Hard exudates form primarily in the outer plexiform layer from leakage of 

plasma proteins from the retinal vessels, particularly lipoprotein. They appear 

as yellow-white waxy lesions of variable size. They are often seen in 

individual clusters or streaks, or may be found associated with retinal 

microaneurysms in circinate patterns around the focal point of leakage.

These may eventually reabsorb via phagocytosis but some long-term 

exudates can form a disciform-type scar.
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Figure 2.2 Circinate patterns of hard exudates [www.medweb2.bham.ac.uk 

2003].

2.7.2.4 Cotton Wool Spots

Cotton wool spots are so called due to their poorly defined white appearance 

and they occur in association with areas of non-perfused retina. They consist 

of swollen ganglion cell axons containing an accumulation of degenerated 

axoplasmic organelles. These areas of swelling are thought to be caused by 

obstruction of axoplasmic transport along ganglion cell axons [McLeod et al 

1977]. Large numbers of cotton wool spots indicate widespread retinal 

ischaemia.
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Figure 2.3 Cotton wool spots in pre-proliferative diabetic retinopathy 

[www.medweb2.bham.ac.uk 2003].

2.7.2.5 Retinal Oedema

The structural damage to the retinal vessels allows leakage of blood and 

blood products which then accumulate within the extracellular space. This 

may be localised i.e. focal leakage from a microaneurysm, or diffuse following 

extensive capillary dilatation and leakage. Should this leakage occur at the 

macula a significant reduction in vision will be apparent.

2.7.2.6 Intraretinal Microvascular Abnormalities / IRMA

IRMA consist of existing retinal capillaries that dilate and run between the 

retinal veins and arteries to bypass adjacent areas of capillary closure 

[Whitefield 1997]. They appear as areas of irregular vessel branching and 

may look like neovascularisation but lie in the deeper retinal layers, are less 

tortuous and are much less likely to haemorrhage. Since they lie within the 

retina they do not pose an immediate threat to vision but their presence 

indicates significant retinal ischaemia that warrants close monitoring.
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2.7.2.7 Venous Changes

In the pre-proliferative stage of diabetic retinopathy the retinal veins can show 

changes in their appearance. They can become dilated, tortuous and may 

form venous loops or beading which gives a sausage-string like appearance.

2.7.2.8 Neovascularisation

Neovascularisation occurs in the advanced stages of retinopathy as a feature 

of proliferative diabetic retinopathy. It is thought to be a response to tissue 

hypoxia [Ashton 1957]. New vessels begin to grow at the optic disc, NVD, or 

elsewhere on the retina, NVE. They tend to arise as endothelial proliferations, 

most often from the retinal veins. These new vessels are structurally weaker 

than existing retinal vessels and are prone to leakage and rupture. After 

crossing the inner limiting membrane these vessels grow between the retina 

and vitreous in the retro-hyaloid space and can even penetrate the vitreous 

gel [Lawrenson 1997]. Fibrous and glial tissue grows with the new vessels 

and is laid down between the retina and the vitreous. As this tissue contracts 

it may lead to retinal tears or detachments. Haemorrhage of the new vessels 

can also lead to pre-retinal haemorrhages within the retro-hyaloid space, or 

intra-gel haemorrhages within the vitreous gel, both of which will significantly 

impede both vision and examination of the fundus.
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Figure 2.4 New vessel growth in proliferative diabetic retinopathy 

[www.medweb2.bham.ac.uk 2003].

2.7.3 Classification of Diabetic Retinopathy

2.7.3.1 Background Retinopathy

In background retinopathy the retina exhibits signs of microvascular leakage, 

away from the macula. Features include haemorrhages, microaneurysms, 

hard exudates and retinal oedema.

Figure 2.5 Background retinopathy [www.medweb2.bham.ac.uk 2003].
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2.7.3.2 Pre-Proliferative Retinopathy

In the pre-proliferative stage of retinopathy there are signs of vascular 

occlusion, evidenced by cotton wool spots, and the retinal veins become 

irregular with the formation of venous loops and beading. There will also be 

increased retinal haemorrhages and cotton wool spots. IRMA may also be 

present at this stage.

2.7.3.3 Proliferative Retinopathy

In the proliferative stage of retinopathy retinal neovascularisation occurs in 

response to retinal hypoxia. This can occur at the disc, NVD, or elsewhere on 

the retina, NVE. Fibrous tissue is laid down between the retina and the 

vitreous as these new vessels progress which may lead to retinal tears or 

even detachment as described previously. Pre-retinal and intra-gel 

haemorrhages are also features of proliferative retinopathy.

New vessels may also begin to form on the iris, rubeosis iridis, and first 

become visible at the pupil margin. These may progress to form an extensive 

vascular network with scar tissue that can effectively block the anterior 

chamber angle. This will lead to a significant increase in the intraocular 

pressure, termed neovascular glaucoma, which can cause loss of vision as 

the central retinal artery and choroidal arteries may become occluded [Frank 

1995].
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Figure 2.6 Intra-gel haemorrhages from new vessels in proliferative 

retinopathy [www.medweb2.bham.ac.uk 2003].

2.7.3.4 Diabetic Maculopathv

Macular oedema is caused by leakage of blood and blood constituents 

following a breakdown of the blood-retinal barrier in this area. This oedema 

may be localised e.g. focal leakage from a microaneurysm, and the limit of 

oedema is often characterised by a ring of exudates forming a boundary 

around the swollen area. It may also be diffuse occupying the vast majority of 

the macula region and may take on a cystoid appearance. Any reduction in 

vision should arouse suspicion of macular oedema and thus warrant 

stereoscopic examination of this region.

There are 3 main types of maculopathy, classified according to the 

appearance on fundoscopy and fluorescein angiography [Steele 2003].

1. Exudative: focal or diffuse leakage, with or without exudates. 

Haemorrhages, microaneurysms and retinal thickening seen.

2. Ischaemic: Capillary closure resulting in ischaemia.

3. Mixed: Combination of exudative and ischaemic together.
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Treatment for clinically significant macular oedema is generally given with an 

argon laser applied to areas of vascular leakage and retinal thickening.

2.7.4 Grading of Diabetic Retinopathy

Diabetic retinopathy may be graded into distinct levels of severity. There are 

various grading systems available. In this study our findings will be graded 

according to a modified version of the Early Treatment of Diabetic 

Retinopathy Study, ETDRS, final retinopathy severity scale as outlined in 

Table 2.5 [ETDRS 1991b].

This grading system is an extension of the modified Airlie House Classification 

[ETDRS 1991a]. Seven standard photographic fields are assessed for the 

presence of the features of diabetic retinopathy and an overall grade assigned 

to each eye individually. Field 1 is centred on the optic disc, field 2 on the 

macula, field 3 is temporal to the macula and 4 to 7 are tangential to 

horizontal lines passing through the upper and lower poles of the optic disc 

and to a vertical line passing through its centre.

Fig 2.7 Seven standard fields of the Modified Airlie House Classification, 

shown for a right eye [ETDRS 1991a].

The ETDRS research group examined the power of each diabetic lesion, and 

combinations of lesions, to predict the progression to proliferative retinopathy 

in a five year clinical trial involving 3711 diabetic patients. Severity of IRMA,
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haemorrhages and/or microaneurysms, and venous beading were determined 

to be the most important factors, and on the basis of their findings a final 

retinopathy scale was developed. This scale ranges from absence of 

retinopathy to severe vitreous haemorrhage over 15 levels [ Table 2.5,

ETDRS 1991b].

In this study fundus photography was performed by the author along with 

fundoscopy in the test eye of all subjects. Three 45° photographs were taken. 

One centrally including the optic disc and macula area, and one each of the 

nasal and temporal retina along the horizontal axis.

2.7.5 Treatment of Proliferative Diabetic Retinopathy

In the case of proliferative DR laser photocoagulation may be used in order to 

prevent further neovascularisation. Areas of retinal non-perfusion or profuse 

leakage are first assessed by fluorescein angiography in order to determine 

the areas to be treated. An Argon laser is used to destroy areas of ischaemic 

retina in order to reduce the retinal oxygen demand and to remove the 

stimulus for new vessel growth. Focal/grid photocoagulation is used in focal 

areas of ischaemia. Pan-retinal photocoagulation is used in the case of 

diffuse retinal ischaemia. In this case approximately 2,000 burns are placed 

over the entire peripheral retina.

2.8 Summary

Diabetes mellitus is characterised by hyperglycaemia and is thought to affect 

2% of the Caucasian populations in most westernised countries. Diabetic 

retinopathy is the major cause of registerable blindness in the working 

population in western countries [Evans 1996]. Occlusion of the retinal 

capillaries and capillary leakage can result in microaneurysms, 

haemorrhages, exudates and new vessel growth which may lead to retinal 

detachments in some cases.
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Level Severity Definition

10 DR absent Microaneurysms and other characteristics absent.

14* DR questionable HE, SE or IRMA definite: microaneurysms absent.

15* DR questionable Haemorrhage! s) definite: microaneurysms absent.

20 Microaneurysms only Microaneurysms definite, other characteristics absent.

35** Mild NPDR One or more of the following: 

Venous loops > D/1;

SE, IRMA or VB=Q;

Retinal haemorrhages present;

HE > D/1;

SE > D/1

43 Moderate NPDR H/MA = M/4-5 to S/1;

Or IRMA = D/1-3 (not both)

47 Moderately severe NPDR Both L43 characteristics and or one (only) of the following: 

Irma = D4-5;

H/Ma = S/2-3;

VB >= D/1

53 Severe NPDR One or more of the following:

> 2 of the 3 L47 characteristics; 

H/Ma > S/4-5;

Irma > M/1;

VB > D/2-3

61 Mild PDR FPD or FPE present with NVD and NVE absent; 

Or NVE = D

65 Moderate PDR Either of the following:

(1) NVE >M/1 or NVD = D; and VH and PRH = A or Q

(2) VH or PRH = D and NVE < M/1 and NVD absent

71 High risk PDR Any of the following:

(1) VH or PRH > M/1;

(2) NVE > M/1 and VH or PRH > D/1;

(3) NVD = 2 and VH or PRH > D/1;

(4) NVD > M

75 High risk PDR NVD > M  and VH or PRH > D/1

81 Advanced PDR: NVD = cannot grade, or NVD < D and NVE = cannot grade in > 1 field and

Fundus partially obscured, centre absent in all others;

of macula attached. And retinal detachment at centre of macula < D.

85 Advanced PDR: VH = VS in fields 1 and 2;

Posterior fundus obscured, or 

centre of macula detached.

Or retinal detachment at centre of macula = D

90 Cannot grade, even sufficiently 

for level 81 or 85.

DR = diabetic retinopathy, HE = hard exudates, SE = soft exudates, IRM A = intraretinal microvascular abnormalities, NPDR = 

non proliferative DR, VB = venous beading, H/Ma = haemorrhages/microaneurysms, PDR = proliferative DR, NVE = new 

vessels elsewhere (>1DD from disc), N VD  = new vessels disc (within 1DD of disc margin), FPD = fibrous proliferations disc, 

FPE = fibrous proliferations elsewhere, VH  = vitreous haemorrhage, PRH = pre-retinal haemorrhage 

♦Levels 14 and 15 are not considered separate steps in the scale but are pooled with level 10 or 20 

* *  NPDR levels 35 and above all require presence of Mas

Severity categories for characteristics graded in multiple fields are of the form (maximum severity/extent), where maximum 

severity can be absent (A), questionable (Q), definitely present (D), moderate (M), severe (S), or very severe (VS), and extent is 

the number of fields at that severity level.

Table 2.5 ETDRS final retinopathy severity scale [ETDRS 1991b].
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3. THE ELECTRORETINOGRAM

The electroretinogram, ERG, is a graphical record of the summation of 

electrical responses of the retinal cells to light. These responses occur as ion 

currents, principally potassium and sodium, flow within the retina and changes 

in these currents occur with the onset and offset of light stimuli. As more is 

known regarding the origins of the components of the ERG the more useful 

this technique has become in the investigation of disorders affecting the 

retina, since it can provide a uniquely laminar distribution of retinal activity.

3.1 Granits Analysis

In 1933, Ragnar Granit carried out extensive investigations of the ERG in 

dark-adapted cats. He studied changes to the ERG under levels of 

deepening ether anaesthesia, and was able to isolate three components of 

the ERG, PI, Pll and Pill, which when summed together give the total ERG 

waveform [Weisinger et al 1996]. These components were labelled in order of 

their disappearance with deepening anaesthesia, PI being the first to 

disappear and Pill the last. These processes, described by Granit, are now 

conventionally termed the c-, b- and a-waves of the ERG.

£
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Figure 3.1 Components of the ERG identified by Granit, recorded from a cat in 

response to a two second light stimulus [Kolb et al 2003].
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The Pill process was subsequently found to consist of two components, the 

initial phase termed the fast Pill or receptor potential and the second more 

slowly developing phase termed the slow Pill. The leading edge of the fast 

Pill is the first to develop and forms the corneal negative a-wave. Its short 

latency indicated that it arose early in the chain of events and thus probably 

reflects the activity of the photoreceptor cells [De Rouck 1991].

The next to develop is the corneal positive Pll that, along with the slow Pill, 

forms the much larger b-wave. Granit believed the origin of the Pll lay in the 

neural pathway between receptors and ganglion cells and was correlated with 

optic nerve activity [De Rouck 1991].

The PI is the last process to develop and thus forms the c-wave.

3.2 The Early Receptor Potential

The early receptor potential is a rapid waveform, which occurs almost 

immediately following a bright light flash. It reflects the bleaching of 

photopigments in the outer segments of the photoreceptors. It consists of a 

small positive portion followed by a larger negative portion and is essentially 

complete by the time the a-wave begins.
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3.3 The a-wave

a-wave

Figure 3.2 The a-wave of the photopic ERG.

The a-wave also provides information about the photoreceptor region of the 

retina. The leading edge of the a-wave is a corneal negative response 

believed to reflect light-induced hyperpolarisation of the photoreceptors 

[Fishman 2001], and the rest of the a-wave may reflect a glial cell response to 

decreased potassium concentration in the photoreceptor region of the outer 

retina [Wachtmeister 1998]. Experiments on the monkey retina found that 

part of the photopic a-wave was abolished following injection of the glutamate 

analogue c/s-piperidine-2,3-dicarboxylic acid (PDA), known to block light 

responses of horizontal and hyperpolarising bipolar cells. This suggests that 

the a-wave may derive, in part, from activity post-synaptic to cone 

photoreceptors [Bush and Sieving 1994]. The a-wave occurs at 

approximately 15 ms after stimulus onset and peaks within 5ms [Weisinger et 

al 1996]. The a-wave latency has been shown to be determined solely by 

photoreceptor activity and any delay in a-wave latency would indicate a large 

area of photoreceptor damage [Qiu et al 2002]. The scotopic ERG a-wave 

reflects essentially rod photoreceptor cell activity [Fishman 2001].
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3.4 The b-wave

b-wave

Figure 3.3 The b-wave of the photopic ERG.

Following the a-wave a corneal-positive waveform is observed, the b-wave, 

which is thought to be generated by the depolarisation of ON-bipolar cells 

[Tian and Slaughter 1994, Xu and Karwoski 1994a,b, Hood and Birch 1996, 

Green et al 1999, Shiells and Falk 1999]. The b-wave was thought to reflect 

the activity of depolarising Muller cells in response to increased potassium 

concentration in the inner retina, and indirectly represent the activity of ON 

bipolar cells [Dick and Miller 1978, Wachtmeister 1998, Fishmann 2001], 

though other experimental work has suggested that a portion of the b-wave 

may arise from Muller cells but that a stronger direct contribution arises from 

the depolarising bipolars [Xu and Karwoski 1994a,b].

3.4.1 Characteristics of the b-wave

The b-wave recorded under standard photopic conditions has an implicit time 

of 31-38 ms and an amplitude of 132-320 pV [Fishmann 2001]. Under 

scotopic conditions, where a maximal rod response is recorded, both implicit 

time and amplitude increase to 33-54 ms and 489-908 pV respectively 

[Fishmann 2001].
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3.4.2 Origin of the b-wave

3.4.2.1 Current Source Density Analysis

Current source density (CSD) analysis of retinal field potentials was 

performed by Faber [1969], who identified a major current sink at the level of 

the OPL and a current source extending from the sink to the vitreal surface of 

the retina. He reasoned that this source sink pattern corresponded with 

current flow from Muller cells since they are the only retinal element to extend 

from the distal portion of the neural retina to the inner limiting membrane. 

More recent work by Xu and Karwoski [1994a] also looked at CSD analysis of 

retinal field potentials and identified a current sink for the b-wave at the OPL 

and a source at the IPL, corresponding to the anatomy of the bipolar cells.

3.4.2.2 Intracellular Recordings

Miller and Dowling [1970] recorded the intracellular responses of Muller cells 

in the mudpuppy retina. They found that light-induced Muller cell responses 

were always positive going and that these responses matched the ERG b- 

wave response at comparable flash intensities. The Muller cell response and 

b-wave were also found to be nearly identical in latency at all intensities. The 

similarity of these waveforms suggested that Muller cells may generate the fa- 

wave of the ERG and they propose that this may be due to a potassium ion 

(K+) regulated mechanism. Dick and Miller [1978] also looked at potassium 

activity within the mudpuppy retina. They found two sources of light evoked 

K+ increases. One was located proximally and pharmacological properties 

suggested a post-bipolar origin. Another was located in the distal retina with 

pharmacological properties indicating a post-receptor origin, probably a 

reflection of depolarising bipolar cells. They proposed that this bipolar cell 

activity caused a rise in K+ ions. Muller cells responded to this local increase 

in potassium and produced the extracellular currents that generate the fa- 

wave.
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3.4.2.3 Pharmacological Analysis

Analysis of the b-wave by Xu and Karwoski [1994b] suggested that a portion 

of the b-wave may originate from Muller cells, but that a stronger direct 

contribution from depolarising bipolar cells was likely. They found that in the 

presence of barium, Muller cell currents are blocked but the b-wave persists, 

suggesting that the b-wave may be produced directly by extracellular current 

flow from ON-bipolar cells. Tian and Slaughter [1995] looked at the effect of 

2-amino-4-phosphono butyrate (APB), known to selectively suppress the 

activity of the ON-bipolars, on the b-wave in the vertebrate retina. Using slow 

drug application of APB they compared the progressive effects on the 

response amplitudes of the ON-bipolar cells and the b-wave. A strong positive 

correlation was found between the two waveforms, thus lending further 

support for the ON-bipolars as the direct generators of the b-wave. Later 

studies have confirmed that the b-wave is eliminated in the presence of APB 

[Shiells and Falk1999, Green et al 1995] and actually increased in the 

presence of barium [Green et al 1999],

3.5 The Scotopic ERG

3.5.1 Features of the Scotopic ERG

The scotopic ERG is recorded under conditions of dark adaptation but 

contains both rod and cone components. The dominant component is 

however a rod response which leads to an increase in both b-wave amplitude 

and implicit time when compared to the photopic ERG. This can be explained 

by both the increased sensitivity of the rods in comparison to the cones, and 

by the greater number of rods than cones within the photoreceptor population 

[Fishman 2001]. The recommended recording conditions for the scotopic ERG 

shall be discussed in more detail in section 3.5.2.

The main rod pathway runs from rods to ganglion cells via specific rod 

bipolars and All amacrine cells. Muller cells also contribute to the dark 

adapted ERG as they respond to extracellular changes in K+ concentration.
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The relative contributions of both rods and cones to the scotopic ERG, and 

thus the form of the recorded ERG, can be influenced by the intensity, 

wavelength and frequency of the flash stimulus, along with th

the patient [Robson and Frishman 1999, Fishman 2001].

In the fully dark-adapted eye with a very dim flash stimulus a corneal negative 

deflection is recorded which peaks more than 100 ms after the flash. This 

response is known as the scotopic threshold response, STR, and is thought to 

arise iittitacnpafclBT^^ activation of amacrine and ganglion

cells [Aylward 1989, Robson and Frishman 1999]. The amplitude of the STR 

grows with increasing stimulus energy but saturates at fairly low levels, less 

than 100pV in cats [Robson and Frishman 1999].

As stimulus energy increases further an earlier positive wave appears, the b- 

wave, which represents primarily activation of the on-bipolar cells although 

other inner retinal cells may provide smaller positive contributions [Hood and 

Birch 1996, Robson and Frishman 1999]. It is the b-wave that dominates the 

ERG over most of its dynamic range. A further increase in stimulus energy 

reveals an earlier negative a-wave, which can grow to an amplitude several 

times greater than that of the saturated STR, and is thought to represent 

activity of the rods themselves [Robson and Frishman 1999].

3.5.2 Recording the Scotopic ERG

A scotopic response may be recorded following a period of dark adaptation. 

The International Society for Clinical Electrophysiology of Vision, ISCEV, 

recommends twenty minutes of dark adaptation, although this period may 

need to be extended if directly following photopic stimulation [Marmor et al 

2004]. The extent to which this period should be lengthened is dependent on 

the luminance and duration of the flash used. If recording a rod response it is 

advisable to perform this measurement before others since it is the most 

sensitive to light adaptation.
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When recording a rod response ISCEV standards recommend use of a dim 

white flash stimulus of strength 2.5 log units below that of the standard white 

flash, 1.5-3.0 cd.s.m'2, with a minimum inter-flash interval of 2 s. A blue 

stimulus is thought to be equally appropriate providing it is equated to the 

white standard [Marmor et al 2004].

3.5.3 The Scotopic ERG in Diabetes Mellitus

Several studies have looked at possible changes in the scotopic ERG as a 

result of diabetes mellitus, and the findings are summarised in Table 3.1.

In a group of Type 1 diabetic subjects with a minimum disease duration often 

years, significant correlations were found between the grade of retinopathy 

and the amplitude and latency of the STR. No significant correlation was 

observed between the grade of retinopathy and any parameters of the 

scotopic b-wave. The b-wave was recorded following 30 minutes of dark 

adaptation to a blue flash stimulus, frequency 1Hz. Recordings were made to 

a range of flash luminance 1-2 to 4.2 log units above the psychophysical 

threshold, increasing in 0.3 log unit steps and the maximum rod amplitude 

chosen by inspection of the traces. Significant correlations were also found 

between all of the individual amplitudes of the OPs, the summed amplitude of 

the OPs and the implicit times of OP1 and OP2. The STR, although 

correlated with the grade of retinopathy, did not correlate as strongly as the 

OPs [Aylward 1989].

A later study also found no significant difference in scotopic b-wave amplitude 

between a group of diabetic subjects (four Type 1 and ten Type 2), and a 

group of age-matched controls. Retinopathy levels ranged from no 

retinopathy to microaneurysms with one or more other non-proliferative 

lesions of mild to moderate degree. The scotopic b-wave was recorded 

following 40 minutes of dark adaptation to a low luminance blue flash. The 

diabetic group did show significantly delayed b-wave implicit times in 

comparison to the controls and it is thought that this delay may indicate the 

presence of early retinal changes [Holopigian et al 1992].
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Both delayed scotopic b-wave implicit time and a reduction in scotopic b-wave 

amplitude were observed in two groups of Type 1 juvenile diabetics when 

compared to age matched controls [Juen and Kieselbach 1990]. The groups 

consisted of patients with no retinopathy and background retinopathy, 

classified according to the ETDRS criteria. The reduction in b-wave amplitude 

and increase in implicit time were recorded to the highest flash energy, 0.25 J, 

in both groups. However, the scotopic ERG in this case was recorded after 

only fifteen minutes of dark adaptation, a shorter period than that 

recommended by ISCEV [Marmor et al 2004], directly following recording of a 

photopic ERG, and therefore does not represent a maximum rod response.

As these changes are present with no retinopathy this may suggest a role for 

the scotopic b-wave as an indicator of early functional changes in diabetes 

before retinopathy becomes apparent.

A more recent study of Type 1 juvenile diabetics confirmed this reduction in 

scotopic b-wave amplitude though no significant difference was found in fa- 

wave implicit time between the diabetic group and a group of age matched 

controls. This study looked at patients with no retinopathy or mild background 

retinopathy and recorded scotopic ERGs at two minute intervals during a 28.5 

minute dark adaptation period. The b-wave was recorded to blue flashes at 

1Hz delivered with an SLE stroboscope, lamp intensity 4, positioned 25cm in 

front of the patient. The b-wave amplitude was consistently smaller in the 

diabetic groups than that of the controls at equivalent times during the dark 

adaptation period, the smallest amplitudes being found in those with 

retinopathy [Papakostopoulos et al 1996].

It is possible that the difference in findings between the studies mentioned 

may, in part, be due to the different stimuli and recording conditions 

employed.

To summarise, these noted changes to the scotopic ERG with diabetes, and 

its relation to the level of retinopathy, suggests its use as an indicator of early 

retinal changes in diabetes, even before any visible retinopathy becomes 

apparent.
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Finding Study
B-wave amplitude significantly 
reduced in DM with no retinopathy 
and with mild BDR

Juen and Kieselbach 1990 
Papakostopoulos et al 1996

No significant change in b-wave 
amplitude in DM with no retinopathy 
and mild BDR

Holopigian et al 1992

B-wave implicit time significantly 
delayed in DM with no retinopathy 
and with mild BDR

Juen and Kieselbach 1990 
Holopigian et al 1992

No significant change in b-wave 
implicit time in DM with no retinopathy 
and mild BDR

Papakostopoulos et al 1996

Significant correlation found between 
level of retinopathy and both 
amplitude and latency of STR

Aylward 1989

No significant correlation between 
level of retinopathy and amplitude or 
latency of b-wave

Aylward 1989

Table 3.1 Summary of scotopic ERG findings in diabetes mellitus. 

3.6 The c-wave

c-wave

Figure 3.4 The c-wave of the photopic ERG.

The c-wave is a monophasic corneal positive response. It is thought to 

originate from transient hyperpolarisation at the apical surface of RPE cells 

following a light flash and hyperpolarisation of the distal end of Muller cell 

processes [Wachtmeister 1998, Fishman 2001].
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3.7 The OFF Response

The OFF response, or d-wave, is a small positive deflection which can be 

seen with longer duration stimuli in the photopic ERG. It signals light offset 

and may be generated by hyperpolarising bipolars and photoreceptor cells 

[Wachtmeister 1998].

3.8 The Oscillatory Potentials

The oscillatory potentials, OPs, were first reported as 4-6 small waves 

superimposed on the ascending limb of the b-wave [Cobb and Morton 1954]. 

The OPs are not always clearly distinguishable in the unfiltered ERG 

waveform and thus filtering techniques are commonly applied to enhance their 

appearance and amplitude. Optimal recording conditions for observation of 

the OPs shall be discussed shortly. Each OP is named in order of its 

appearance, i.e. the first in the series of wavelets is named OP1.

OP3

OP2 OP4

OP5OP1

Figure 3.5 Diagram of the retinal oscillatory potentials.

3.8.1 Characteristics of the OPs

3.8.1.1 Basic Characteristics of the OPs

The OPs are known to be of much higher frequency than the other ERG 

components. In humans they are considered to have a dominant frequency of 

between 100-160 Hz, which is considerably higher than that of the a and b- 

waves of approximately 25 Hz [Wachtmeister 1991]. OPs recorded at
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threshold have a high frequency of 160 Hz, but this frequency decreases to 

approximately 120 Hz with stronger stimuli on adaptation to increasing 

background illumination where cone sensitivity is higher than that of the rods 

[Wachtmeister 1973a]. They appear as rapid rhythmic sub-waves with a low 

and fairly uniform amplitude of approximately 30 pV [Cobb and Morton 1954].

The threshold of the OPs is approximately 2.5-3 log units higher than that of 

the b-wave and approximately the same as that of the a-wave [Algvere et al

1972].

3.8.1.2 Temporal Characteristics of the OPs

Temporal summation of the OPs has been investigated using stimuli of 

increasing duration under conditions of both weak and strong light adaptation. 

OP threshold was found to be the same for both short and long duration 

stimuli under conditions of strong light adaptation, however OP threshold was 

lower with longer duration stimuli under conditions of weak light adaptation 

and they were found to integrate temporally up to 400 ms. The b-wave 

showed temporal summation up to 10 ms under strong light adaptation and 

both a and b-waves showed temporal summation up to 40 ms under weak 

light adaptation. This difference in behaviour between the OPs and the other 

ERG components suggests a difference in their origin [Wachtmeister 1974b].

3.8.1.3 Spectral Characteristics of the OPs

Investigation of the OPs under conditions of light and dark adaptation with 

monochromatic stimuli has been performed to obtain relative spectral 

sensitivity values for the OPs. In light adapted eyes these values have been 

shown to approximate the CIE photopic luminosity function, and in dark 

adapted eyes to approximate the CIE scotopic luminosity function 

[Stodtmeister 1973]. A later experiment however found the spectral sensitivity 

of the OPs produced a composite curve with two peaks at 472 and 551 nm, 

and did not agree with the standard photopic or scotopic luminosity function
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[Wachtmeister 1974a]. No shift of relative sensitivity of the OPs to long 

wavelength stimulus on light adaptation, and thus no Purkinje shift, is evident 

[Wachtmeister 1974b]. A comparative higher sensitivity to the short 

wavelengths of the spectrum suggest a close relation to scotopic rod activity 

and the composite curve suggests that the OPs may be generated by a 

mechanism of rod and cone interactions [Wachtmeister 1974a]. The 

existence of separate rod and cone OPs has also been suggested [King- 

Smith et al 1986] with bright white flashes to a dark-adapted eye eliciting both 

a rod and a cone system contribution [Peachey et al 1987].

3.8.1.4 Adaotational Characteristics of the OPs

OPs have been found to be optimally recorded in the mesopic range of the 

dark adaptation curve, at the level at which a change from photopic to 

scotopic vision occurs [Wachtmeister 1973b]. It is at this adaptation level that 

OPs of low frequency and maximum energy are recorded [Algvere and 

Westbeck 1972].

Mesopic conditions can be induced by the use of conditioning flashes, by light 

adaptation to a steady background illumination or during a period of recovery 

in the dark following bright illumination [Wachtmeister 1998]. Under scotopic 

conditions no prominent OPs can be recorded in response to a single flash 

[Algvere and Westbeck 1972, Wachtmeister 1973b]. Under scotopic 

conditions a series of three flashes is generally used and the response 

recorded to the 3rd flash [Wachtmeister 1991]. The amplitudes and energy of 

the OPs are found to be maximal with an interstimulus interval of 30 s 

[Wachtmeister 1973b, Gjotterberg 1974]. When the interstimulus interval is 

longer than this the energy of the oscillations is low, and retinal sensitivity is 

below the level that corresponds to the rod-cone break, about 6 x 10'3 lux 

[Wachtmeister 1991]. This energy increases with a decrease in interstimulus 

interval, peaking at 30 s. At intervals of less than 30 s sensitivity lies above 

the rod-cone break and is determined solely by the cones. The interstimulus 

interval necessary to elicit a maximal response will however depend on the
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luminance of the flash. For bright 15 ms stimuli, about 5 x 104 photopic cd.m2, 

an interval of 30 s or 15 s is advised [Wachtmeister 1991].

After a period of dark adaptation the amplitude of the photopic ERG is known 

to increase when the subject is exposed to an adapting field. This effect is 

known as the light adaptation effect, LAE. A study investigating the effects of 

different lengths of dark adaptation on the LAE found that the LAE appears to 

have a differential impact on the individual OPs. An early rapid process 

appears to affect OP4 whose amplitude diminished significantly with a period 

of dark adaptation as short as two minutes. A second slower process, 

activated later in the dark adaptation process, appeared to affect OP2 and 

OP3 whose amplitudes decreased after a ten minute dark adaptation period 

[Benoit and Lachapelle 1995].

The sensitivity of the OPs decreases on adaptation to bright background 

illumination when the sensitivity of the cones is higher than that of the rods 

[Wachtmeister 1973a].

The peak latency vs flash luminance functions, LI, for OPs 1-4 show similar 

slopes at low levels of light adaptation. However, as adaptation increases the 

LI slopes of OP3 and OP4 flatten which may suggest a saturation of rod 

activity. No saturation effect is observed for OP1 and OP2 and this may 

suggest a reflection of cone activity [Coupland 1987a].

3.8.1.5 Pharmacological Characteristics of the OPs

Gamma amino butyric acid, GABA, and glycine are inhibitory synaptic 

transmitters thought to act within the inner plexiform layer of the retina. OPs 

of the mudpuppy retina are selectively depressed by these substances with 

the earlier OPs abolished at low concentrations and OP3-5 still present, with 

no appreciable change to the b-wave [Wachtmeister and Dowling 1978]. OPs 

are also differentially sensitive to GABA antagonists, bicuculline and 

picrotoxin, with OP1-3 abolished at lower concentrations than OP4-5, and 

again no appreciable change to the suprathreshold b-wave. Disruption of
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GABA mediated pathways may occur via saturation of GABA receptor sites or 

by blocking of these sites with bicuculline and picrotoxin [Wachtmeister 1980].

Glycine is known to selectively depress the OPs and the application of 

strychnine, a glycine antagonist, also abolishes the OPs. OP1 shows less 

sensitivity to strychnine at low concentrations but at high concentrations all 

OPs are abolished and the amplitude of the suprathreshold b-wave 

decreased. Disruption of glycine sensitive pathways may also occur via 

saturation or blocking of glycine receptors with glycine or strychnine 

respectively [Wachtmeister 1980]. The sensitivity of the OPs to these 

substances would suggest that the neural pathways involved in their 

generation are both GABA and glycine sensitive.

Cytopathological changes occurring within amacrine cells, in parallel to 

temporary loss of the OPs following intravitreal injection of glycine in the 

rabbit, may implicate these cells in the generation of the OPs [Korol et al 

1975].

The oscillatory potentials of the mudpuppy retina are usually selectively 

depressed by dopamine [Wachtmeister and Dowling 1978]. Haloperidol, a 

dopamine antagonist, also selectively depresses the OPs in low 

concentrations, the amplitude of the earlier OPs decreasing without any 

significant alteration of the later OPs. High concentrations of haloperidol 

significantly reduce the amplitudes of all the OPs along with the 

suprathreshold b-wave. This would suggest that OPs are abolished either by 

saturation of dopaminergic receptors or by blocking the effect of dopamine 

with haloperidol. This sensitivity to dopamine and its antagonist would 

suggest that dopaminergic neurons may be involved indirectly or directly in 

the generation of the OPs [Wachtmeister 1981a].

Acetylcholine and carbocholine are thought to act as excitatory 

neurotransmitters within the inner plexiform layer of the retina. Their 

application to the mudpuppy retina does not affect the OPs or the b-wave 

[Wachtmeister and Dowling 1978], suggesting that the OPs may primarily
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reflect inhibitory neuronal pathways and not excitatory pathways. In 

agreement with this view, blocking agents of the amino acids glutamate and 

aspartate, excitatory neurotransmitters thought to act within the outer 

plexiform layer between photoreceptors and second order neurons, decrease 

or abolish the OPs simultaneously with the b-wave. This lack of selective 

sensitivity of the OPs would suggest that glutamate or aspartate sensitive 

pathways are not directly involved in their generation. The OPs do however 

show differential sensitivity to glutamate which would suggest that this amino 

acid may be indirectly linked to their generation [Wachtmeister 1981a].

The excitatory amino acids kainic acid (KA), and N-methyl D-aspartate 

(NMDA), both cause a decrease in the amplitude of the OPs. KA is known to 

cause lesions of ganglion, amacrine and bipolar cell dendrites. NMDA was 

not shown to cause any specific structural changes and in the cat eye the 

decrease of the OPs with NMDA is reversible [Vaegan and Millar 1994].

p-alanine, an inhibitory amino acid, selectively and differentially suppresses 

the OPs with the earlier OPs, OP1-2, being more sensitive to this drug than 

the later ones, OP3-5, and with no change to the a and b-waves. This drug 

has been known to induce swelling in some amacrines of the rabbit retina. 

Valine, another inhibitory amino acid, does not affect the OPs or the 

amacrines. It would appear from these results that the activity of the 

amacrines may be linked to the neural activity generating the OPs 

[Wachtmeister 1981b].

Ethanol also has a differential and selective effect on the OPs, the later OPs, 

OP3-5, being more sensitive than the earlier ones [Wachtmeister 1981b]. 

Ethanol is also known to selectively abolish the off-component, d-wave, of the 

mudpuppy ERG. GABA is thought to be associated with ‘on’-pathways in the 

retina and the depolarising bipolars, while glycine is linked to ‘off’-pathways 

and the hyperpolarising bipolars. With the earlier OPs being more sensitive to 

disruption of GABA mediated pathways and later OPs being more sensitive to 

disruption of the glycine network and Ethanol it is thought that the earlier OPs
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may be related to the on-response and the later OPs to the off-response 

system [Wachtmeister 1981b].

To summarise, the OPs are selectively depressed by the inhibitory amino 

acids GABA, glycine and p-alanine, but are unaffected by the excitatory 

neurotransmitters acetylcholine and carbocholine, suggesting that the OPs 

primarily reflect inhibitory neuronal pathways and not excitatory pathways, p- 

alanine and glycine are also known to cause destructive changes in some 

amacrine cells whilst valine, another inhibitory neurotransmitter, does not. 

Valine does not depress the OPs suggesting that the amacrine cells may be 

involved in the generation of the OPs. Dopamine also selectively depresses 

the OPs implicating dopaminergic neurons in their generation. Ethanol and 

glycine are thought to be linked to off-response pathways in the retina and the 

later OPs are more sensitive to these substances. GABA is thought to be 

linked to on-response pathways and the earlier OPs are more sensitive to 

disruption of GABA mediated pathways, suggesting that the earlier OPs may 

be related to the on-response and the later OPs to the off-response system. 

These results also suggest a difference in origin of the OPs from the a and b- 

waves, and also of the individual oscillatory peaks.

3.8.2 Origin of the OPs

Depth profile experiments have been undertaken in order to locate the origin 

of the oscillatory potentials, the theory being that each component of the ERG 

should have maximum amplitude as an electrode passes the cells that 

generate it. In the cynomolgus monkey the OPs increase in amplitude until 

approximately 16% retinal depth. The photoreceptors or cells of the INL are 

thus unlikely generators [Brown 1968]. Clamping of the retinal circulation 

abolishes the OPs also making the photoreceptors and the cellular structures 

of the deeper retinal layers, e.g. horizontal cells, unlikely generators [Brown 

1968]. In the Rhesus monkey maximum amplitude was recorded at 25% 

retinal depth, centred upon the IPL [Ogden 1973]. The OPs have also been 

found to reverse their polarity with retinal depth in the mudpuppy retina, and
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thus are thought to represent radial flows of current within the retina. The 

individual OP peaks reverse at different retinal levels, in sequence, 

suggesting that a difference in neuronal origin may underlie each peak 

[Wachtmeister and Dowling 1978]. This view is supported by various 

pharmacological studies as outlined previously. The polarity of OP1 reverses 

at the border between the inner plexiform and inner nuclear layers, at the level 

of the amacrine cells [Wachtmeister and Dowling 1978]. Amacrine cells 

however are thought to represent tangential current flow rather than radial and 

as such questions their direct role in the generation of the OPs [Heynen et al 

1985, Wachtmeister and Dowling 1978]. The OPs are thought to be 

generated more proximally than the b-wave [Brown 1968, Ogden 1973, 

Heynen et al 1985, Wachtmeister and Dowling 1978] and a difference in origin 

between the OPs and the b-wave is again supported by pharmacological 

studies as outlined. It is thought from these depth profile studies that the 

bipolars, are the most likely generators of the OPs. This view would be 

supported since the bipolars receive inputs from rods and cones and this 

interaction of rod and cone mechanisms seems necessary to elicit the OPs 

[Wachtmeister 1974a, Peachy et al 1987], however the interplexiform cell 

should not be ruled out [Heynen et al 1985, Wachtmeister 1998].

The role of ganglion cells in the generation of the OPs is as yet undetermined. 

Unilateral intracranial optic nerve sectioning of the Rhesus Monkey resulted in 

marked reductions of the oscillatory potentials in one animal and virtual 

absence in another two years following the procedure, suggesting that an 

intact optic nerve is required for full expression of these potentials [Ogden

1973]. An earlier experiment however found no change in the OPs of the 

rabbit seven months after optic nerve sectioning [Winkler 1972]. Kainic acid 

(KA), as mentioned previously is known to cause lesions of ganglion, 

amacrine and bipolar cell dendrites. It is thought that this neural toxicity from 

KA in cats, as with mammals, starts with the ganglion cells and spreads to the 

more distal retinal cells with increasing dose. In the cat KA has been found to 

reduce all ERGs with the order of susceptibility being OPs, then pattern ERGs 

and focal ERGs, then STRs and b-waves. The OPs were significantly 

reduced at low doses of KA, below the 25 nmol dose at which ganglion cell
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dendrites are selectively damaged, providing support for a role of ganglion 

cells in their generation [Vaegan and Millar 1994].

3.8.3 Recording the OPs

OPs of maximal energy are recorded during mesopic conditions, i.e. as the 

sensitivity of the eye changes from scotopic to photopic vision. In the dark 

adapted eye no prominent OPs can be recorded to a single flash [Algvere and 

Westbeck 1972], and the mesopic conditions required may be produced in the 

dark adapted eye by a series of flashes with the response recorded to the last 

flash [Wachtmeister 1991]. The first conditioning flashes operate by adapting 

the rod system contributions to the OPs so that those recorded to subsequent 

flashes result primarily from the cone system [Peachey et al 1987]. They may 

also be recorded by the use of a steady background illumination or during 

recovery in the dark following exposure to bright illumination [Wachtmeister 

1991]. When recording OPs in the dark adapted eye the International Society 

for Clinical Electrophysiology of Vision, ISCEV, recommend twenty minutes of 

dark adaptation as well as using other standard ERGs as ‘conditioning 

flashes’ [Marmor et al 2004].

As mentioned previously the luminosity functions of the OPs contains both 

photopic and scotopic maxima [Stodtmeister 1973, Wachtmeister 1974a]. In 

view of this a white stimulus is preferred to monochromatic stimuli. ISCEV 

also state that where white stimuli are produced by a combination of narrow 

band sources, e.g. red, green and blue LEDs, it must be ensured that their 

stimulus output is of equivalent luminance to the standard white flash for all 

conditions [Marmor and Zrenner 1999]. The threshold of the OPs is 

approximately 2-3 log units higher than that of the b-wave, and the energy 

and amplitude of the OPs increase linearly over a range of about 3 log units, 

thus a very strongstimulating light should be used, about 5 x 104 photopic 

cd.m'2 [Wachtmeister 1991].

With the use of a bright 15ms flash, i.e. about 75cd.s.m*2, an interstimulus 

interval of 30 s or 15 s is advised [Wachtmeister 1991]. This is both stronger
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and three times longer than the ISCEV standard flash. In order to standardise 

the response, ISCEV recommend that an interstimulus interval of 15 seconds, 

and a flash luminance of 1.5-3 cd.s.m'2, should be used [Marmor et al 2004].

Fourier analysis shows that the OPs have a dominant frequency of about 100- 

160 Hz. In order to enhance the amplitudes of the OPs and reduce the 

contribution of the a and b-waves a band pass filter is required, e.g. 80 to 500 

Hz [Wachtmeister 1991].

3.8.4 The OPs in Diabetes Mellitus

Many studies have looked at changes to the OPs in DM. The findings are 

summarised in Table 3.2.

The oscillatory potentials have been found to reflect disturbances in the retinal 

circulation [Speros and Price 1981, Holopigian et al 1992], and are often 

affected in the very early stages of diabetic retinopathy, and as such are 

useful in the objective evaluation of retinal function in diabetes mellitus. Many 

studies have reported a decrease in the amplitudes of the OPs and often a 

delay in their implicit times.

A reduction in oscillatory potential amplitudes have been observed in diabetic 

subjects, often before the presence of any visible retinopathy [Moschos et al 

1987, Van DerTorren and Van Lith 1989, Juen and Kieselbach 1990, 

Holopigian et al 1992], and with no change to the a and b-wave of the ERG 

[Simonsen 1980]. This reduction in amplitude increases progressively with 

increasing severity of retinopathy [Bresnick and Palta 1987b, Shirao et al

1991] and summed OP amplitude has been found to be a reliable predictor of 

the development of PDR [Simonsen 1980, Bresnick and Palta 1987a, Moscos 

et al 1987].

Simonsen [1980], studied a group of 137 diabetic subjects both with and 

without DR, aged 17-50 years, who had all been diagnosed with Type 1 

diabetes mellitus before the age of 40. OPs were recorded following 20
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minutes of dark adaptation to a 15 Hz flash of 100 ms duration and energy 0.6 

J. This flash duration is significantly longer than the standard flash 

recommended by ISCEV [Marmor et al 2004]. After the initial recording of the 

OPs, the subjects were re-examined after 6-8 years and 13-15 years. At the 

6-8 year examination, 54% of those who had initially presented with 

subnormal OP amplitudes, when compared to a group of healthy controls, had 

developed PDR. All of these subjects had disease duration of more than five 

years at the initial examination. No subjects with disease duration of less than 

five years at initial examination had developed PDR. Only 2% of those who 

initially presented with normal OP amplitudes had developed proliferative 

retinopathy, excluding those subjects whose PDR developed during 

pregnancy. After 13-15 years, 62% of those with initial subnormal OP 

amplitudes had developed PDR, compared to only 26% of those with normal 

OP amplitudes at the beginning. It was concluded that the summed OP 

amplitude is valuable in selecting those at risk of developing PDR in Type 1 

diabetes with disease duration of more than five years [Simonsen 1980].

Bresnick and Palta studied a group of 85 diabetic subjects aged between 20 

and 67 over a period of four years. Thirty-six patients had been diagnosed 

before the age of 30 and the remaining 49 patients beyond this age. Disease 

duration ranged between one to thirty years and 78 of these subjects were 

insulin dependent. OPs were recorded following 30 minutes of dark 

adaptation. The light stimulus used was a Honeywell Strobonar flash and 

neutral density filters were used to provide a series of stimuli at the following 

minus log relative intensity levels: 2.1, 1.6, 1.1 and 0.5. The summed 

amplitudes of the oscillatory potentials were found to be independent 

predictors of progression to severe PDR and were found to be as predictive 

as fluorescein angiography [Bresnick and Palta 1987a].

Moschos et al [1987] studied a group of 240 diabetic subjects also over a four 

year period. The mean age was 50 years and the mean disease duration 

exceeded 20 years. The subjects were divided into three groups at initial 

examination consisting of either no visible retinopathy, early background 

retinopathy or PDR with the existence of NVD or NVE. Here subjects were
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not dark adapted and a high intensity photic stimulus was used (2400 lux).

The oscillograph sweep velocity and gain used were 10 ms div. '1and 50 pV 

div. '1. They found that OP amplitudes were reduced even in eyes with no 

visible retinopathy and that this finding was more pronounced in eyes which 

subsequently developed neovascularisation. They also found that 

disturbances of the OPs were more marked, and occurred earlier, in subjects 

with juvenile diabetes.

More recently Vadala et al [2002] also conducted a long-term follow up, over 

ten years, in a group of 80 subjects with Type 1 diabetes mellitus. Photopic 

OPs were recorded following 5 minutes of light adaptation, shorter than that 

recommended by ISCEV, to a stimulus flash of 2.6cd.s.nT2 at 3 Hz. All 

subjects presented with no visible retinopathy and normal OP amplitudes at 

first examination. It was found that eyes with reduced OP amplitudes at follow 

up visits had a greater probability of developing diabetic retinopathy, but that 

subnormal OP amplitudes are not proof of concomitant visible vascular 

damage since some subjects who went on to develop background retinopathy 

maintained normal OP amplitudes. Wanger and Persson [1985] compared 

the OPs of Type 1 diabetic subjects with no retinopathy, some with 

background retinopathy and a group of healthy controls. Here OPs were 

recorded following 15 minutes of dark adaptation, a shorter period than that 

recommended by ISCEV, to stimulation with a Grass MS2 photostimulator at 

intensity setting 16 with a 30 s interstimulus interval. They found no 

significant differences in the amplitudes or implicit times of the OPs between 

the three groups and felt that OPs do not reveal retinal dysfunction before 

retinopathy can be detected by means of retinal biomicroscopy.

Other studies have reported an increase in the implicit times of the OPs in 

diabetic subjects. Van Der Torren and Mulder [1993] compared the OPs of 

healthy control subjects with those of diabetic subjects with no visible 

retinopathy and those with early diabetic retinopathy. The OPs were recorded 

to a 10 J single white flash. The implicit times of OP2 and OP3 were found to 

be significantly delayed in both groups of diabetic subjects, though no 

significant difference was found between the amplitudes of OP2 and OP3
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among the three groups. It was therefore concluded that the implicit times of 

OP2 and OP3 were better indicators of diabetic retinopathy than amplitude 

reductions.

A significant increase in the implicit time of OP1 has also been found in 

diabetic subjects with no visible retinopathy, along with a significant increase 

in the inter-peak interval between OP1 and OP2, when compared to healthy 

controls [Yoshida et al 1991]. OPs were recorded following 15 minutes of 

dark adaptation to a single 1 ms duration flash from a 25J xenon flashlamp.

No significant decrease in the summed amplitudes of the OPs was apparent. 

This selective increase in the implicit time of OP1 was also present before any 

changes in the blood-retinal permeability barrier, measured by vitreous 

fluorophotometry, became apparent. Shirao et al [1991] also observed a 

significant increase in the implicit time of OP1 in eyes with no visible 

retinopathy and this finding occurred more often than a significant decrease in 

the summed amplitudes of the OPs or significant increase in the inter-peak 

interval. However, it was found that the reduction in the summed amplitudes 

of the OPs was closely correlated with the severity of diabetic retinopathy. It 

was concluded that the implicit time of OP1 may be suitable for the early 

detection of diabetic retinopathy and that the summed amplitudes may be 

more useful for quantitative evaluation of the severity of retinal functional 

disorder.

A recent study looked at the OPs in a group of 132 subjects with DM with no, 

mild, moderate and severe retinopathy [Kizawa et al 2006]. The type of DM 

was not stated. The implicit times of the OPs were found to be slightly 

delayed in subjects without retinopathy when compared to the controls, 

though OP amplitudes were not reduced. With advancing retinopathy the 

amplitudes of the OPs were progressively reduced along with prolongation of 

the implicit times.

These findings contrast with a later study also looking at diabetic subjects with 

no retinopathy and early retinopathy. No significant delay was found in the 

implicit times of the OPs when compared to those of a group of healthy
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controls, and a uniform amplitude reduction of all the OPs was present in the 

diabetic group [Holopigian et al 1992]. This is also supported by another 

study in which no significant delay was found in the implicit times of diabetic 

subjects with no retinopathy [Coupland 1987b]. A reduction in amplitude was 

found in OP2 and OP3 of these subjects but only with stimuli of duration 20 

ms and luminance > 22 cd.rn'2. In those with background retinopathy a 

reduction in amplitude of all the OPs was present with flash luminances both 

above and below this level.

Kim et al [1998] found that a reduction in amplitude of the OPs occurred more 

frequently than delays in implicit times in diabetic subjects. They also found 

that OP2 may be of particular value in indicating retinal dysfunction prior to 

visible retinopathy on ophthalmoscopy. OPs were recorded following 20 

minutes of dark adaptation to a white ISCEV standard flash, luminance 1.86 

cd.s.m*2 with an interstimulus interval of 15 s. In diabetic subjects with no 

retinopathy the amplitude of OP2 was significantly reduced and the implicit 

time of OP2 significantly increased. In subjects with mild background 

retinopathy OP3 also became affected and both OP2 and OP3 were 

significantly impaired in both amplitude and timing. This contrasts with the 

findings of an earlier study by Li et al [1992] in which no significant difference 

in amplitude of OP2 was found between a group of healthy controls and a 

group of diabetic subjects with no retinopathy, however a significant reduction 

in amplitude of OP4 was apparent in this diabetic group. The implicit time of 

OP2 was significantly increased in a group of diabetic subjects with 

background retinopathy when compared to those with no retinopathy and the 

controls. Here the OPs were recorded to a flash brighter than that 

recommended by ISCEV of 3.7cd.s.m'2 with an interstimulus interval of 30s. 

This study also found that the total power of the OPs, calculated by integrating 

the power spectrum of each isolated OP, in light adaptation was significantly 

reduced even in those with no visible retinopathy.

In summary, many studies have looked at the OPs in subjects with DM and 

the results are sometimes contrasting. This may be due to many factors
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including the different population groups studied, the varying disease 

durations and amount of DR present and also to the different stimuli and 

recording conditions employed by each study. Of the papers reviewed, in 

most cases insufficient details of stimulus conditions were given to allow direct 

comparisons to be made. However, the OPs appear to be sensitive indicators 

of functional changes in the retina in diabetes mellitus even before retinopathy 

becomes visible. Disturbance of the OPs may indicate an increased risk for 

progression to proliferative retinopathy and the extent of disturbance may 

provide an objective quantitative measure of retinal functional disorder.

66



The Electroretinogram

Finding Study
Summed OP amplitudes significantly 
reduced with no retinopathy

Simonsen 1980
Moschos et al 1987
Van Der Torren and Van Lith 1989
Juen and Kieselbach 1990
Holopigian et al 1992

Total Power of OPs significantly 
reduced with no retinopathy

Li et al 1992

Eyes with no retinopathy which have 
significant reduction in summed OP 
amplitudes have greater probability of 
developing retinopathy.

Vadala et al 2002

Reduction in OP amplitude increases 
with increasing retinopathy

Bresnick and Palta 1987b 
Shirao et al 1991 
Kizawa et al 2006

OP amplitudes are a reliable predictor 
of progression to proliferative 
retinopathy

Simonsen 1980 
Bresnick and Palta 1987a 
Moschos et al 1987

OP4 amplitude significantly reduced 
in diabetic subjects with no 
retinopathy

Li et al 1992

No significant difference in OP 
amplitudes in diabetic subjects with 
no retinopathy and control subjects

Wangerand Persson 1985 
Van Der Torren and Mulder 1993

Implicit times of OP2 and OP3 
significantly delayed with no 
retinopathy

Van Der Torren and Mulder 1993

Implicit time of OP2 significantly 
delayed and amplitude of OP2 
significantly reduced with no 
retinopathy

Kim et al 1998

Implicit times of OP2 significantly 
delayed and amplitude of OP2 
significantly reduced with background 
retinopathy

Kim et al 1998

Implicit time of OP2 significantly 
delayed with background retinopathy, 
not with no retinopathy

Li et al 1992

Implicit time of OP1 significantly 
delayed with no retinopathy

Shirao et al 1991 
Yoshida et al 1991

No significant delay in OP implicit 
times with no retinopathy

Coupland 1985b 
Wanger and Persson 1985 
Holopigian et al 1992

Significant increase in interpeak 
interval between OP1 and OP2 with 
no retinopathy

Yoshida et al 1991

Table 3.2 Summary of oscillatory potential findings in diabetes mellitus.
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3.9 Summary

The electroretinogram can be used as an objective method of assessing 

retinal function in humans. Both the b-wave and the OPs of the ERG appear 

to be sensitive indicators of the effects of diabetes mellitus on the retina.
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4. RETINAL OXYGENATION IN DIABETES MELLITUS

Blood flow characteristics of the retinal vasculature are known to be affected by 

increased oxygen (O2) supply. Alterations to blood flow can produce changes 

in visual function, particularly when existing hypoxia is reduced, for example in 

diabetic retinae. This chapter outlines current knowledge of the effects oxygen 

inhalation on the retinal vasculature and visual function in man. This topic is of 

particular clinical interest at the moment as a recent study has shown that 

supplemental oxygen may decrease macular thickness in subjects with diabetic 

macular oedema, and improve visual acuity in some cases [Nguyen et al 2004]. 

Other studies have also shown improvements in colour vision [Dean et al 1997], 

contrast sensitivity [Harris et al 1996], and summed scotopic oscillatory potential 

amplitudes [Drasdo et al 2002], in subjects with diabetes with O2 inhalation.

This chapter will also outline current knowledge on the effects of illumination 

level on the retinal O2 consumption and blood flow.

4.1 The Retinal Blood Supply

All arteries of the eyeball originate from the ophthalmic artery (OA), which in 

turn devolves from the internal carotid artery. Likewise all major veins of the 

eye usually discharge into the ophthalmic vein. As the arteries extend they 

develop into arterioles which then supply blood to capillaries, the smallest of the 

blood vessels, which connect arterioles and venules allowing exchange of 

nutrients and waste. Both arteries and veins divide into two separate vascular 

systems before entering the eye, the retinal system and the ciliary system, 

which then remain separate within the globe.

The inner retina is supplied by the central retinal artery (CRA), arising from the 

ophthalmic artery, which enters the eye via the optic nerve head. The CRA 

divides into two equal superior and inferior branches which then divide again, 

into the superior and inferior temporal and nasal branches near the surface of 

the optic nerve head. Each branch then supplies a quadrant of the retina and
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there is no anastomosis between branches within each quadrant. The temporal 

branches of the CRA follow an arched course above and below the fovea 

centralis before passing to the ora serrata. The nasal branches follow a fairly 

straight course out to the periphery.

The branches of the CRA run within the nerve fibre layer (NFL), just below the 

internal limiting membrane. Since this membrane is transparent the vessels 

can be viewed directly on fundoscopy. The vessels form two networks of 

capillaries. The superficial layer lies in the NFL or ganglion cell layer, whilst the 

deeper network lies in the inner nuclear layer (INL), close to the outer plexiform 

layer (OPL) [Duke Elder and Wybar 1961, Remington 1998]. Arterial disease, 

such as vascular hypertension, is generally thought to affect the superficial layer 

of capillaries whilst venous disease such as DM is more likely to involve the 

inner nuclear layer capillaries [Newell and Ernest 1974]. The outer retinal layers 

beyond the OPL, i.e. the retinal pigment epithelium (RPE), and the 

photoreceptors, are avascular and are instead primarily nourished by the 

choroidal circulation.

The vascular bed of the choriocapillaris is made up from the short posterior 

ciliary arteries, again derived from the OA. These arteries penetrate the sclera 

and form a dense vascular layer adjacent to Bruchs membrane and the RPE. 

This layer is arranged in a lobular fashion at the posterior pole with alternating 

arterioles and venules, whilst at the periphery the arrangement becomes more 

spindle- or ladder shaped [Aim 1992]. Some of the short posterior arteries form 

a partial or complete vascular ring around the optic nerve known as the Circle of 

Zinn-Haller. The long posterior ciliary arteries typically form two branches, each 

supplying a sector of the nasal or temporal peripheral choroidal supply [Aim

1992]. Typically four or five vortex veins drain the choroid and pierce the sclera 

to join the ophthalmic vein.

A capillary free zone directly surrounds the retinal vessels and at the fovea 

there lies an area, approximately 0.5 mm in diameter, which is completely
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devoid of any retinal blood vessels. This allows transmission of light to the 

foveal photoreceptors without obstruction from a blood vessel.

4.1.1 Autoregulation

Autoregulation describes the ability of blood vessels to control the level of blood 

flow in accordance with the metabolic demands of the retinal tissue. The retinal 

vessels receive no autonomic innervation and thus are reliant on local factors to 

regulate retinal blood flow. The retinal blood vessel wall is comprised from a 

single layer of endothelial cells surrounded by intramural pericytes and a 

basement membrane. Pericytes are contractile cells and are known to respond 

to certain vasoactive agents, neurotransmitters and hormones as well as to 

local metabolic needs. When blood flow is inadequate the resulting 

hypercapnia, where levels of carbon dioxide (CO2) are increased above normal 

levels, and hypoxia, where O2 levels are subnormal, stimulate relaxation of the 

pericytes and thus the retinal vessels will dilate [Matsugi et al 1997]. Retinal 

pericytes are known to contract in response to hyperoxia, angiotensin II and 

high concentrations of endothelin-1 (ET-1) [Kohner 1993, Cai and Boulton 

2002].

4.1.2 Autoregulation in Diabetes Mellitus.

Autoregulation is reduced in the early stages of DM [Aim 1992]. In response to 

increased oxygen inhalation the retinal vessels would normally respond by 

vasoconstriction in order to control retinal blood flow. Hyperglycaemia has been 

shown to both increase retinal blood flow and interfere with retinal 

autoregulation [Kohner 1993, Kohner et al 1995].

In subjects with DM, there is a reduction in vasoconstriction with hyperoxia 

which may be due to the high glucose levels found in diabetes. Retinal 

pericytes are known to contract in response to hyperoxia, ET-1, a potent 

vasoconstrictor, and angiotensin II. The production of ET-1 by endothelial cells
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is decreased in the presence of high glucose levels [Kohner 1993]. 

Hyperglycaemia is linked to pericyte damage and loss, and damage to these 

cells will significantly disrupt retinal haemodynamics [Ciulla et al 2002]. An 

increasing loss of retinal pericytes will lead to capillary dilatation and 

consequently increased retinal blood flow. This hyperperfusion leads to 

increased sheer stress on the vessel wall, which can damage the vessel wall 

leading to capillary non-perfusion and thus retinal ischaemia. This may initiate 

the onset of proliferative retinopathy [Kohner 1993, Kohner et al 1995].

4.2 Retinal Vascular Effects of Hyperoxia

4.2.1 Retinal Vascular Effects of Hyperoxia in Normals

Inhalation of pure oxygen, is known to reduce retinal blood flow in the normal 

eye [Riva et al 1983, Grunwald et al 1984, Pakola and Grunwald 1993, 

Grunwald et al 1996, Rassam et al 1996, Langhans et al 1997, Kiss et al 2002, 

Luksch et al 2002], and it is thought that this may be secondary to constriction 

of the retinal vessels [Langhans et al 1997, Kiss et al 2002]. A significant 

reduction in retinal arterial diameter [Deutsch et al 1983, Fallon et al 1985, Kiss 

et al 2002, Luksch et al 2002], and retinal venous diameter [Deutsch et al 1983, 

Grunwald et al 1984, Fallon et al 1985, Hague et al 1988, Grunwald et al 1996, 

Kiss et al 2002, Luksch et al 2002], has been demonstrated. Most of this 

vasoconstrictive response has been shown to occur within the first five minutes 

of 100% O2 inhalation, thereafter vessel diameters remain stable [Kiss et al 

2002]. This vasoconstriction has also been shown to vary regionally with 

temporal vessels constricting more than those of the nasal retina [Rassam et al 

1996, Kiss et al 2002], though this difference has shown statistical significance 

only in the latter study. Likewise retinal blood flow showed a greater reduction 

the temporal circulation with hyperoxia [Rassam et al 1996], though this 

difference was not significant. However a more recent study has found a 

significant reduction in retinal blood flow in the inferior temporal retina when
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compared to that of the superior temporal retina with hyperoxia [Chung et al 

1999].

The control of retinal oxygen levels via changes in retinal vessel diameter may 

be attributed to autoregulation [Funk 1997], which operates to maintain total 

oxygen delivery to the retinal tissue at a constant level. Autoregulation is 

believed to occur within 1.5 minutes of pure oxygen breathing [Riva et al 1983]. 

It has also been demonstrated by a significant reduction in red blood cell 

velocity with hyperoxia, [Riva et al 1983, Pakola and Grunwald 1993, Rassam 

et al 1996, Grunwald et al 1996, Luksch et al 2002], slowed arteriovenous 

passage time of fluorescein dye [Harris et al 1996], and a reduction in leukocyte 

velocity in the perimacular capillary bed [Fallon et al 1985, Sponsel et al 1992,].

Hyperoxia has been reported to produce no change in the global response of 

choroidal blood flow [Kergoat and Faucher 1999], and no change in choroidal 

red blood cell velocity, flow or volume in the foveal region [Geiser et al 2000]. 

Conversely, fundus pulsation amplitudes at the macula, which have been 

shown to estimate local pulsatile ocular blood flow (POBF) [Schmetterer et al

1995], and are determined solely by the choroidal circulation are known to be 

significantly reduced with hyperoxia. They are further reduced at the optic disc 

where they are determined by both the choroidal and retinal circulation in an 

unknown ratio [Schmetterer et al 1996].

Ninety minutes of hyperbaric oxygen (HO) treatment has also been shown to 

constrict the retinal vessels. Inhalation of 100% O2 at 2.5 atmospheres 

absolute pressure (ATA) has been found to constrict the retinal arterioles by 

9.6% and venules by 20% of their size in air at ambient pressure. Ten minutes 

following the treatment much of this effect had reversed with the arteries dilating 

to 94.5% of their original diameter and the venules to 89% of their primary size 

[Vucetic et al 2004].
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Isocapnic hyperoxia, where levels of carbon dioxide (C02) are maintained at a 

constant level, has been shown to significantly reduce end diastolic velocity 

(EDV), and significantly increase resistance index (Rl), in the CRA of normal 

subjects [Evans et al 1997]. In this study, measurements were initiated after 

end tidal oxygen expiration levels had reached or exceeded 80%. This finding 

however is contradicted by a later study where five minutes of 100% 0 2 

inhalation had no effect on the peak systolic velocity (PSV) or EDV of either the 

CRA or short posterior ciliary arteries, whereas PSV, and EDV were 

significantly reduced in the OA indicative of reduced volumetric flow [Hosking et 

al 2004]. The absence of changes in the CRA and short posterior ciliary arteries 

was attributed to a concurrent reduction in intra-ocular pressure (IOP). The 

smaller calibre vessels are thought to be more sensitive to changes in IOP than 

larger vessels such as the ophthalmic artery, with a decrease in IOP leading to 

an increase in ocular perfusion pressure (OPP) and a resultant increase in 

blood flow [Findl et al 1997].

4.2.2 Retinal Vascular Effects of Hyperoxia in Diabetics

The significant decrease in retinal blood flow in normal subjects with hyperoxia 

has been found to be reduced in the diabetic eye where retinopathy is present 

[Grunwald et al 1984, Grunwald et al 1992]. Autoregulation has also been 

shown to be impaired in Type 1 diabetic subjects with no visible retinopathy, 

(mean disease duration 7 years) suggesting that it may be affected early in the 

disease process [Grunwald et al 1984]. This is supported by the significant 

delay in arteriovenous passage time of fluorescein dye with hyperoxia in a 

group of Type 1 diabetic subjects with minimal or no retinopathy when 

compared to control subjects [Harris et al 1996]. However, a later study showed 

no abnormalities in autoregulatory function in a group of Type 1 diabetic 

subjects with no visible retinopathy and disease duration less than four years. 

No significant difference in retinal blood flow, vasoconstriction of retinal veins or 

decrease in red blood cell velocity with hyperoxia was found between these 

subjects with DM and a control group, implying that impairment of
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autoregulation may be linked to the duration of disease [Grunwald et al 1996].

A significant correlation has been found between the degree of autoregulation 

and the severity of retinopathy, with autoregulation becoming further impaired 

as retinopathy progresses [Grunwald et al 1992],

Instigation of strict diabetic control does not appear to affect autoregulation in 

previously poorly controlled Type 1 diabetic subjects with retinopathy [Davies et 

al 1990, Grunwald et al 1994], and autoregulation has been shown to be the 

same under conditions of normoglycaemia and hyperglycaemia [Davies et al 

1990].

As mentioned previously, hyperoxia has been shown to affect retrobulbar blood 

flow in control subjects. In a group of Type 1 diabetic subjects, with no or 

minimal retinopathy, significant differences have been found between their 

response to hyperoxia and that of the control group. No change was apparent 

in PSV, EDV or Rl in the CRA of the diabetic group whereas the control 

subjects experience reduced blood flow in retrobulbar vessels during hyperoxia. 

This finding highlights the irregularities in vascular reactivity in the major blood 

vessels feeding the eye in diabetic subjects [Evans et al 1997].

The retinal vascular effects of hyperoxia are summarised in Table 4.1.
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Normals Diabetic Subjects
Retinal Blood Flow
Significantly reduced [Kiss et al 2002, Luksch 
et al 2002, Langhans et al 1997, Grunwald et al 
1996, Rassam et al 1996, Pakola and Grunwald 
1993, Grunwald et al 1984, Riva et al 1983]

Significantly less reduction in subjects 
with Type 1 DM with retinopathy than in 
normals [Grunwald et al 1992, Grunwald et al 
1984]
Not significantly different to normals with 
Type 1 DM and no retinopathy, disease 
duration < 4 years [Grunwald et al 1996]
Reduction significantly correlated to 
degree of retinopathy in subjects with 
Type 1 DM [Grunwald et al 1992]
No significant difference in reduction in 
subjects with Type 1 DM with retinopathy 
under conditions of normoglycaemia and 
hyperglycaemia [Grunwald et al 1994, Davies 
et al 1990]

Vasoconstriction
Significant reduction in arterial [Kiss et al 
2002, Luksch et al 2002, Langhans et al 1997, 
Fallon et al 1985, Deutsch et al 1983], and 
venous diameter [Kiss et al 2002, Luksch et al 
2002, Grunwald et al 1996, Hague et al 1988, 
Fallon et al 1985, Grunwald et al 1984, Deutsch et 
al 1983].

Significantly smaller reduction in
venous diameter in subjects with Type 1 
DM with retinopathy than in normals 
[Grunwald et al 1984].

Not significantly different to normals in 
subjects with Type 1 DM with no 
retinopathy, disease duration < 4 years 
[Grunwald et al 1996].
Arterial calibre not significantly different 
in subjects with Type 1 DM under 
conditions of normoglycaemia and 
hyperglycaemia [Davies et al 1990],

Red Blood Cell Velocity
Significantly reduced [Pakola and 
Grunwald 1993, Riva et al 1983],

No significant difference in subjects with 
Type 1 DM with no retinopathy and 
disease duration < 4 years, when 
compared to normals [Grunwald et al 1996],

Arteriovenous Passage Time of Fluorescein Dye
Significantly Slowed [Harris e ta l 1996]. Not significantly slowed in subjects with 

Type 1 DM [Harris et al 1996].
Retrobulbar Blood Flow
Reduced blood flow measured at the 
ophthalmic and central retinal artery 
[Hosking et al 2004, Evans et al 1997].

Not significantly altered in subjects with 
Type 1 DM measured at the ophthalmic 
and central retinal artery [Evans et al 1997],

Table 4.1 Summary of retinal vascular effects of hyperoxia in normals and in 

subjects with diabetes mellitus.
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4.3 Functional Effects of Hyperoxia

4.3.1 Functional Effects of Hyperoxia in Normals

Both contrast sensitivity [Harris et al 1996], and colour vision [Dean et al 1997], 

are known to be unaffected in normals under conditions of hyperoxia. No 

change in contrast sensitivity was observed in a group of twelve normal 

subjects following fifteen minutes of isocapnic hyperoxia [Harris et al 1996]. 

Likewise no change in colour thresholds was found in a group of twenty-seven 

normal subjects after five minutes of 100% oxygen inhalation through a 60% 

Ventimask [Dean et al 1997].

More recent studies have looked at changes to the scotopic electroretinogram 

(ERG) of normals in hyperoxia [Drasdo et al 2002, Faucher and Kergoat 2002]. 

In a group of eight subjects, b-wave amplitude and summed oscillatory potential 

(OP) amplitudes were recorded both before 0 2 inhalation and following two 

minutes of 100% 0 2 inhalation through a 60% Ventimask. Both were found to 

be unaltered during 0 2 inhalation [Drasdo et al 2002].

Another study looked at changes to the a-wave, b-wave and oscillatory potential 

amplitudes of the scotopic ERG in seventeen controls under conditions of 

hyperoxia. After a five minute period of 100% 0 2 inhalation the amplitudes of 

the a- and b-waves and all OPs, with the exception of the third OP (OP3), again 

remained unaltered [Faucher and Kergoat 2002]. The a-wave is known to reflect 

the activity of photoreceptors [Fishman et al 2001, Qiu et al 2002], and thus 

may be resistant to hyperoxia since choroidal blood flow has been shown to be 

unaffected by pure 0 2 breathing [Kergoat and Faucher 1999, Geiser et al 2000], 

and therefore photoreceptor activity should remain stable. The b-wave is 

believed to be generated by depolarisation of bipolar cells [Xu and Karwoski 

1994a, Xu and Karwoski 1994b, Tian and Slaughter 1995, Hood and Birch 

1996, Green and Kapousta-Bruneau 1999, Shiells and Falk 1999], and although 

the exact origin of the OPs is as yet unknown they are believed to be generated
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more proximally than the b-wave [Brown 1968, Ogden 1973, Wachtmeister and 

Dowling 1978, Heynen et al 1985, Kergoat and Tinjust 2004], and are known to 

be reliant on the retinal circulation [Brown 1968]. Maintenance of the b-wave 

amplitude and the majority of the OPs is therefore thought to arise via 

autoregulation of the inner retinal arterial network. The amplitude of OP3 

showed a significant increase during O2 inhalation of 33.5%. This difference in 

behaviour from the other OPs is suggested to arise from its different site of 

origin within the retina, and that it may represent an interaction between rod and 

cone system inputs [Faucher and Kergoat 2002].

It was also found that the latencies of all the OPs were unaffected by O2 

inhalation. The latency of the a- and b-waves also remained unaltered during 

the period of O2 breathing, but were found to be delayed ten minutes later. The 

reason for this is not clear although a sudden reduction in haemoglobin oxygen 

saturation (Sa02), and possibly also local retinal oxygen tension (P02) along 

with a transient swelling of the sub-retinal space following hyperoxia are each 

suggested as a possible cause [Faucher and Kergoat 2002].

The photopic ERG has been shown to be slightly more resistant to hyperoxia 

than components of the scotopic ERG [Kergoat and Tinjust 2004]. The delay 

observed in the latencies of the scotopic a- and b-waves ten minutes after a five 

minute period of O2 inhalation was not apparent following 0 2 inhalation in the 

photopic ERG. The amplitudes of the photopic a- and b-waves and all OPs 

were found to be unaltered both during and after five minutes of 100% O2 

inhalation in a group of eighteen normals. The latencies of the a- and b-waves, 

along with OP 1-3 also remained stable, however the latency of OP4 was 

delayed ten minutes after O2 inhalation was stopped. This sensitivity of OP4 in 

the photopic ERG, and OP3 of the scotopic ERG may suggest component 

specific elements within the OP complex with varying reactivity under altered 

vascular conditions.
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4.3.2 Functional Effects of Hyperoxia in Diabetes

Several functional effects of hyperoxia in diabetic subjects have previously been 

investigated and are summarised in Table 4.2 (see page 83).

Contrast sensitivity is known to be reduced in diabetic subjects when compared 

to age-matched controls. In a group of Type 1 diabetic subjects, with no or 

minimal retinopathy, hyperoxia has been shown to reverse this defect [Harris et 

al 1996]. In room air the diabetic group showed reduced contrast sensitivity at 

12 cycles per degree (cpd), and at 18 cpd when compared to the control group. 

These contrast sensitivity thresholds are shown in Figure 4.1. As previously 

described the diabetic group also show slowed arteriovenous passage time of 

fluorescein dye in comparison to the controls. 100% oxygen was added to a 

mixing chamber with small amounts of CO2 in order to maintain arterial CO2 at a 

constant level. This was then inhaled for fifteen minutes. The control group 

showed no alterations in their contrast sensitivity thresholds with hyperoxia, and 

their arteriovenous passage time slowed substantially thus keeping total oxygen 

delivery to the retina at a reasonably constant level. The diabetic group showed 

improved contrast sensitivity at 12 cpd with hyperoxia, eliminating the difference 

in sensitivity between the two groups. Hyperoxia did not significantly alter 

arteriovenous passage time suggesting a reduced autoregulatory capacity in 

this group. The improvement shown in contrast sensitivity in the diabetic 

subjects with hyperoxia suggests that some visual deficits may be reversible, 

and imply that retinal hypoxia may play a significant role in their development.
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Figure 4.1 Contrast sensitivity thresholds in controls and subjects with Type 1 

DM during hyperoxia [After Harris et al 1996].

Protan and tritan colour thresholds are known to be significantly higher in 

diabetic subjects when compared to controls. It has also been shown that these 

thresholds increase both with the level of diabetic retinopathy and the duration 

of disease. In a group of Type 1 diabetic subjects, with no or minimal 

retinopathy, it was found that these raised thresholds could be lowered during 

conditions of hyperoxia by inhalation of 100% O2 through a 60% Ventimask for 

a period of five minutes, see Figure 4.2. As mentioned previously no change in 

either the protan or tritan thresholds were apparent in the control group under 

identical conditions. Again this suggests that this visual deficit may be 

reversible in the early stages of diabetic eye disease and that retinal hypoxia 

may be a causative factor of colour vision defects in diabetes [Dean et al 1997].
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Figure 4.2 Colour vision thresholds in controls and subjects with Type 1 DM 

during hyperoxia [After Dean et al 1997].

A recent study looked at changes to the scotopic ERG with hyperoxia in a group 

of Type 2 diabetic subjects with no visible retinopathy [Drasdo et al 2002]. B- 

wave amplitudes and summed OP amplitudes were recorded simultaneously 

before O2 inhalation and repeated after two minutes of 100% 0 2 inhalation 

through a 60% Ventimask.

The protocol used for the Drasdo et al experiment [2002] was primarily 

designed to record a dark adaptation curve followed by the OPs. Subjects were 

pre-adapted at 950 cd.m'2 for 5 minutes and subsequently dark-adapted for 20 

minutes. Two white conditioning flashes (4.4 x 104 ph.td) of 6 ms and 12 ms 

duration were presented to and signals then recorded to four flashes of 12 ms 

duration presented 15 s apart and averaged offline.

Before 0 2 inhalation commenced the diabetic group showed significantly 

smaller summed OP amplitudes in relation to the control group. These 

amplitudes increased by 30% during 0 2 inhalation to a level not significantly
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different to that of the controls before oxygen, see Figure 4.3. The summed OP 

amplitude remained stable during O2 inhalation in the control group, suggesting 

that autoregulation is adequate in healthy individuals during dark adaptation but 

impaired in diabetic subjects with no visible retinopathy.

A small increase in b-wave amplitude of 4.8% was found in subjects with DM 

following the O2 inhalation which was not found to be significant. Control b- 

wave amplitudes also remained unaltered.
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Figure 4.3 Summed OP amplitudes in controls and subjects with Type 2 DM 

during hyperoxia [After Drasdo et al 2002].

A recent study also looked at the effects of hyperoxia upon dark adaptation 

thresholds in a group of twelve subjects with Type 1 DM and no, or minimal 

retinopathy [Kurtenbach et al 2006]. Rod thresholds measured following four 

minutes of room air inhalation were found to be significantly higher in these 

subjects when compared to a group of age-matched controls. However
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following four minutes of 100% O2 inhalation these thresholds lowered and rod 

sensitivity improved to a level not significantly different to that of the control 

group.
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Normals Diabetic Subjects
Contrast Sensitivity
No alteration in contrast sensitivity 
thresholds at 3 , 6 ,  12 or 18cpd [Harris et 
al 1996],

Significant improvement in 
contrast sensitivity at 12cpd in 
subjects with Type 1 DM and no, or 
minimal, retinopathy [Harris eta i 1996].

Colour Vision
Protan and tritan colour thresholds 
unaltered [Dean et al 1997].

Significant reduction in protan and 
tritan colour thresholds in subjects 
with Type 1 DM and no, or minimal, 
retinopathy [Dean et al 1997],

Rod Sensitivity
Rod sensitivity unaltered [Kurtenbach et ai 
2006]

Rod sensitivity improved in
subjects with Type 1 DM and no, or 
minimal retinopathy [Kurtenbach e ta l2006 ]

Scotopic Electroretinogram
a- [Faucher and Kergoat 2002] and b-wave 
[Drasdo et al 2002, Faucher and Kergoat 2002],
amplitudes unaffected 
a- and b-wave latencies delayed 
10mins after hyperoxia [Faucher and 
Kergoat 2002].
OP1, OP2, OP4 amplitudes 
unaffected [Faucher and Kergoat 2002],
OP3 amplitude increased [Faucher and 
Kergoat 2002].
OP 1-4 latencies unaffected [Faucher and 
Kergoat 2002].
Summed OP amplitude unaffected
[Drasdo et al 2002].

b-wave amplitude unaffected in 
subjects with Type 2 DM and no 
retinopathy [Drasdo et al 2002],

Summed OP amplitude increased
to level of normals before oxygen in 
subjects with Type 2 DM and no 
retinopathy [Drasdo et al 2002],

Photopic Electroretinogram
a- and b-wave amplitudes unaffected
[Kergoat and Tinjust 2004],
a- and b-wave latencies unaffected
[Kergoat and Tinjust 2004].
OP amplitudes unaffected [Kergoat and 
Tinjust 2004].
OP1-3 latencies unaffected [Kergoat and 
Tinjust 2004].
OP4 latency delayed 10 minutes after 
hyperoxia [Kergoat and Tinjust 2004].

Table 4.2 Summary of the functional effects of hyperoxia in normals and in 

subjects with diabetes mellitus.
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4.4 Effect of Illumination on Retinal O7 Consumption

In the early stages of diabetic retinopathy, changes to the retinal capillaries 

occur. There are endothelial cell changes along with a loss of pericytes from 

the vessel walls [Ciulla et al 2002]. The changes to these vessels, along with 

changes to the red blood cells and platelets, result in microaneurysms, capillary 

dropout and leakage and a level of local hypoxia within the tissue. It is this 

hypoxia within the retina that is believed to trigger the neovascularistaion 

observed in proliferative retinopathy [Ashton 1963]. In capillaries within the 

brain, which otherwise resemble retinal capillaries, only thickening of the basal 

membrane occurs and it has been suggested that local factors within the retina 

must be responsible for the changes observed in DR [Kern and Engerman

1996]. The main difference between retinal and brain tissue is the 

photoreceptors.

In subjects with DM, a lack of insulin and increased levels of blood glucose can 

cause abnormal glycation of some proteins, and increased metabolism via the 

polyol pathway. The high metabolic load on the retinal cells as a result of this is 

thought to trigger the development of DR [Lawrenson 1997, Lawrenson 2000]. 

Strict glycaemic control may delay the onset and slow the progression of 

diabetic retinopathy [Hansen et al 1990, DCCT 1993, UKPDS 1998]. However 

for severe background or pre-proliferative retinopathy, laser photocoagulation 

currently remains the only effective treatment.

It has recently been hypothesized that a rod-driven hypoxia within the retina is a 

significant contributory causal factor in the development of DR [Arden et al 

1998, Arden et al 2006]. The retina contains approximately 115 million rods 

[Curcio et al 1990]. The rods have a very high metabolic demand which allows 

them to signal the absorption of single light quanta. In darkness an ionic 

current, the ‘dark current’, flows between the inner and outer segments. The 

rods also shed and resynthesise the membranous discs of their outer segments 

each day [Besharse 1982]. This high level of metabolic activity requires a high
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blood supply. The photoreceptor layer is avascular and its 0 2 requirements are 

met via diffusion from the choroid. The inner layers of the retina are supplied by 

the retinal circulation. Experiments have found that in normal eyes retinal 

anoxia is present in dark adaptation [Linsenmeier 1986].

Micro-electrode studies have found significantly increased 0 2 consumption of 

the retina in the dark in monkeys [Stefansson et al 1983], cats [Linsenmeier 

1986, Linsenmeier and Braun 1992, Braun etal 1995], toads [Haugh-Scheidt et 

al 1995a, b] and rats [Cringle et al 2002, Yu and Cringle 2002]. Studies in the 

cat retina have found that during dark adaptation a minimum in 0 2 tension is 

found at retinal depths of 65-85%, corresponding to the level of the outer 

plexiform level, where it falls to almost OmmHg [Linsenmeier 1986]. It has also 

been shown that light reduced the 0 2 consumption of the cat and rat retina by 

approximately 50% of its dark adapted value [Linsenmeier 1986, Yu and Cringle 

2002]. However, in the macaque monkey a slightly higher minimum 0 2 tension 

of 9mmHg was found at 70% retinal depth in the dark, and light reduced the 0 2 

consumption of the retina by 16-36%. It was also found that during dark 

adaptation 90% of the 0 2 requirement of the photoreceptors was met by the 

choroid and 10% by the retinal circulation [Ahmed et al 1993]. Although in the 

cat retina dark adaptation rendered some regions of the outer retina anoxic 

[Linsenmeier 1986], this was not found to be the case in the rat retina. Under 

dark-adapted conditions increased 0 2 extraction occurred from both the 

choroidal capillaries, and also from the deep retinal capillary layer. Although the 

retinal capillaries do not penetrate the outer retinal layers they were able to 

create a sufficient 0 2 gradient to support the outer retina via 0 2 diffusion. Whilst 

this did not render the inner retina anoxic, which is supported vascularly by the 

deep retinal capillary layer, it may still leave it vulnerable to ischaemic insult 

where there is vascular disease [Yu and Cringle 2002].

A recent study in mice lends further support to the hypothesis that the high 

oxygen consumption of the rods leads to inner retinal hypoxia during dark 

adaptation [Gooyer et al 2006]. Retinae from rhodopsin knockout mice (Rho 7 )
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were evaluated along with those of wild-type (WT) control mice. Hypoxia was 

observed in the inner nuclear and ganglion cell layers of the WT retina and was 

significantly reduced in Rho'/_ mice. This hypoxia significantly increased in the 

WT mice during dark adaptation however it remained unaltered in the Rho'7' 

mice. This would suggest that photoreceptor loss reduces retinal oxygen usage 

and thus retinal hypoxia.

There is also evidence to support the hypothesis that rod driven anoxia triggers 

the development of DR. DR does not occur in patients with DM and retinitis 

pigmentosa, where rod outer segments are reduced [Arden 2001]. DR is also 

often successfully treated with pan-retinal photocoagulation which may simply 

destroy enough rods to lower the O2 demand [Yu and Cringle 2001]. As 

previously outlined, three months of supplemental O2 inhalation improved visual 

acuity and reduced macular thickness in subjects with diabetic macular oedema 

[Nguyen et al 2004]. This treatment provided less than 10% more oxygen to the 

retina and it is proposed that light adaptation during sleep could reduce the 

oxygen requirement of the retina by 50% and should therefore be at least as 

effective [Arden and Schlingemann 2005].

It has been proposed that if people with diabetes and no retinopathy were to 

sleep in light levels of 1-10 cd.m'2 that sufficient light would pass through the 

eyelids to protect against the development of DR by significantly lowering the 

level of O2 consumption of the rod photoreceptors [Arden 2001, Arden et al 

2005].

Although we do not know the effect of illumination level on O2 consumption in 

subjects with diabetes, it has been proposed that retinal O2 consumption 

significantly increases during hyperglycaemia [Tiedeman et al 1998].
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4.5 Effect of Illumination Level on Ocular Blood Flow

Retinal blood flow has been found to be initially reduced in subjects with DM 

before retinopathy develops [Kawagashi et al 1995, Bursell et al 1996]. As 

retinopathy develops a significant increase in blood flow has been observed 

[Patel et al 1992], which is sufficient to damage the vascular endothelial cells 

[Kohner 1993, Grunwald et al 1996]. However as the vascular endothelium is 

dysfunctional the retina may remain hypoxic even with increased blood flow 

[Porta 1996]. Pulsatile ocular blood flow has also been shown to be 

significantly reduced in subjects with DM and no retinopathy, and is found to 

reduce further as retinopathy progresses [Langham et al 1991].

4.5.1 Effect of Darkness on Human Retinal Blood Flow

Riva et al [1983] recorded a significant increase in retinal blood flow of 

approximately 67% in a group of three control subjects after only five minutes of 

dark adaptation using laser Doppler velocimetry (LDV). Following twenty 

minutes of dark adaptation retinal venous diameter had increased by 5% and 

red blood cell velocity by 65%. This increase in red blood cell velocity occurred 

quickly in darkness, plateaued within five minutes of dark adaptation, and 

persisted for as long as eighty minutes which was the longest period tested. 

However, it was found to be eliminated by eight minutes of 100% O2 inhalation. 

They concluded that the observed increase in retinal blood flow during darkness 

was primarily due to an increase in blood velocity rather than a change in vessel 

diameter. This is supported by a later study which also found no significant 

change in retinal vessel diameters under photopic and scotopic conditions 

[Barcsay et al 2003]. It was also concluded that the retina consumes more O2 

in darkness than light since this effect was eliminated by O2 inhalation, and that 

this increase in O2 consumption was presumably due to maintenance of the 

retinal dark current.

88



Retinal Oxygenation in Diabetes Mellitus

This finding is supported by another study [Feke et al 1983] where a 40-70% 

increase in retinal blood flow was observed using LDV in a group of three 

control subjects following thirty minutes of dark adaptation. Again it was felt that 

this increase in blood flow is linked to the increase in metabolic demand of the 

rod photoreceptors under scotopic conditions.

A later study looked at blood flow in the CRA and OA of control subjects in light 

and dark conditions using colour Doppler imaging. No significant changes were 

observed in systolic or diastolic flow velocities in the OA on changing from 

photopic to scotopic conditions, nor on returning to photopic conditions. In the 

CRA the systolic and diastolic flow velocities were markedly increased in 

darkness. After re-exposure to light, the systolic flow velocity decreased. It was 

concluded that darkness is associated with increased blood flow velocity in the 

CRA, presumably reflecting the increased retinal metabolic demands of the 

photoreceptors [Havelius et al 1999].

4.5.2 Effect of Darkness on Human Choroidal Blood Flow

Somewhat unexpectedly choroidal blood flow has been found to be reduced 

under conditions of darkness. This seems unusual given the large increase in 

O2 demand of the photoreceptors. Choroidal blood flow has been found to be 

significantly reduced by approximately 15% following twenty minutes of dark 

adaptation using laser Doppler flowmetry. This reduction was found to be 

reversible following just six minutes of re-light adaptation [Longo et al 2000],

This is supported by a later study which also found a significant 12-14% 

reduction in choroidal blood flow and ocular fundus pulsation amplitude 

following twenty minutes of dark adaptation, measured with laser Doppler 

flowmetry and laser interferometry respectively [Fuchsjager-Maryl et al 2001].

In this study a similar, but less pronounced, reduction of 8-10% of both 

parameters was also shown in the contralateral eye which was continuously 

exposed to light throughout. This suggests that choroidal perfusion rate is 

adapted to retinal illumination conditions by a neural control mechanism. A
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further pharmacological study has found that this effect is not controlled by 

muscarinic or p-receptor pathways in the choroid and the exact mechanism 

involved in this is as yet unknown [Fuchsjager-Maryl et al 2003].

4.6 Summary

Hyperoxia is believed to reduce retinal blood flow and constrict retinal vessels 

by means of autoregulation in normal subjects. In subjects with diabetes 

impairment of autoregulation reduces the haemodynamic effects of hyperoxia, 

and this level of impairment is believed to correlate with the severity of existing 

diabetic retinopathy. Diabetic subjects also do not appear to experience the 

reduced retrobulbar blood flow apparent in normal subjects with hyperoxia 

[Harris et al 1996, Evans et al 1997], again highlighting the irregularities in their 

vascular reactivity. These irregularities may be useful in order to increase 

perfusion of the inner retina with hyperoxia, which is often hypoxic in diabetic 

subjects.

Three months of oxygen inhalation has already been shown to reduce macular 

thickness in the case of diabetic macular oedema and in some cases improve 

visual acuity. This finding not only highlights the role of hypoxia in the 

development of macular oedema but suggests that inhalation therapy warrants 

further investigation regarding the treatment of this condition [Nguyen et al 

2004]. Oxygen inhalation has also been shown to improve levels of contrast 

sensitivity [Harris et al 1996], colour vision [Dean et al 1997], and scotopic 

oscillatory potential amplitudes [Drasdo et al 2002], with diabetes, again 

highlighting the detrimental effects of hypoxia on visual function in diabetic 

subjects.

It has been hypothesised a rod-driven hypoxia, due to the extremely high 

metabolic activity of the rods, may be a causal factor in the development of DR 

[Arden et al 1998, Arden et al 2006]. Studies of the dark-adapted cat retina 

have found a minimum O2 tension at the level of the outer plexiform level of

90



Retinal Oxygenation in Diabetes Mellitus

almost 0 mmHg [Linsenmeier 1986], and in monkeys it has been shown that in 

darkness the oxygen requirement of the photoreceptors is not met by the 

choroidal circulation alone, but 10% is drawn from the retinal circulation [Ahmed 

et al 1993]. Light has been shown to approximately halve the O2 consumption 

of the cat and rat retina [Linsenmeier 1986, Yu and Cringle 2002], and it has 

therefore been suggested that people with diabetes may benefit from sleeping 

under low levels of illumination [Arden 2001, Arden et al 2005].

Since O2 consumption increases so markedly under dark conditions an increase 

in ocular blood flow in the dark may also be expected. This has been shown to 

be true within the retinal circulation of control subjects [Feke et al 1983, Riva et 

al 1983, Havelius et al 1999], but somewhat unexpectedly not within the 

choroidal circulation where it has been shown to reduce [Longo et al 2000, 

Fuchsjager-Maryl et al 2001]. As yet the effect of illumination on retinal blood 

flow in subjects with DM is unknown.
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5. HYPOTHESES AND AIMS OF THE STUDY

Although there is extensive literature on diabetic retinopathy its evolution is 

still not fully understood. Capillary function is known to be affected throughout 

the body in DM but the development of uncontrolled vasculopathy confined to 

the retina needs to be explained [Wiedemann 1992, Aiello 1997].

It has been proposed that the retina is subject to sub-clinical levels of tissue 

hypoxia prior to the development of DR [Arend et al 1991, Linsenmeier et al 

1998]. It has also been hypothesized that it is a rod-driven hypoxia within the 

retina that may be a significant contributory causal factor in the development 

of DR [Arden et al 1998, Arden et al 2006]. The rods, which function at low 

light levels, have a very high metabolic demand and thus a markedly high 

level of O2 consumption. Autoregulation of blood flow is little more than 

adequate to cope with the O2 demand in the normal retina during dark 

adaptation [Arden et al 1998], and given the changes in the blood and 

capillary function in subjects with DM a sub-clinical tissue hypoxia seems 

inevitable. The retinal O2 demand is halved in light conditions [Linsenmeier 

1986], and thus it has been suggested that patients with DM may benefit from 

sleeping with night time illumination in order to slow the progression, or even 

prevent the development of DR [Arden et al 2006].

An objection to this hypothesis might be that the O2 supply for the rods is 

predominantly via diffusion from the choroidal circulation, and not from the 

retinal vascular system where retinopathy develops. Animal studies have 

found that during dark adaptation a minimum in O2 tension is found at retinal 

depths of 65-85%, corresponding to the level of the outer plexiform layer, 

which represents the watershed between the retinal and choroidal blood 

supply where it falls to almost OmmHg [Linsenmeier 1986]. It has also been 

found that during dark adaptation only 90% of the O2 requirement of the 

photoreceptors was met by the choroid and 10% was met by the retinal 

circulation [Ahmed et al 1993]. Induced hypoxia has also been shown to
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reduce the b-wave of the ERG in DM [Rimmer at al 1996], which is believed to 

reflect the activity of the bipolar cells within the inner retina.

The most direct demonstration of the role of hypoxia in the development of 

DR, could be provided if there was clear evidence of significant hypoxia in the 

tissues between the superficial and deep capillary networks of the central 

retinal circulation after dark adaptation in subjects with DM. A pilot study by 

our group supported the hypothesis that inner retinal hypoxia is present prior 

to the development of visible DR [Drasdo et al 2002]. OPs, which are highly 

sensitive indicators of activity in the proximal layers of the retina and reflect 

the functional efficiency of the inner retinal circulation [Holopigian et al 1992], 

were found to be reduced in summed amplitude in subjects with Type 2 DM 

without retinopathy, and these were increased during O2 inhalation to an 

amplitude that was not significantly different to that of the controls [Drasdo et 

al 2002].

5.1 Aims of the Study

This study will aim to investigate the following:

1. The effect of O2 inhalation upon retinal function by measuring scotopic 

b-waves and OPs in control subjects and DM subjects both with and 

without DR. The aim was to expand the number of patients from the 

pilot study. (Since the b-wave is believed to arise from bipolar cells it 

was felt that this may provide further information about inner retinal 

function along with the scotopic OPs. These investigations are 

presented in Chapters 7 and 8).

2. The minimum light level required to saturate rod activity, and thus 

reduce O2 consumption, within the retina by means of a simultaneous 

cone-rod ERG. (This investigation is described fully in Chapter 9).

3. The ocular blood flow during dark adaptation in subjects with DM by 

means of the OPs and pulsatile ocular blood flow amplitudes. (This is 

presented in Chapter 10).
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5.2 Hypotheses

1 a) Subjects with DM are believed to have retinal hypoxia causing OPs and 

scotopic b-waves with smaller amplitudes and prolonged implicit times.

1b) BDR will be associated with a further reduction in scotopic OP and b-wave 

amplitudes.

1c) Hypoxic retinae lack autoregulation and thus OP and b-wave amplitudes 

will increase with O2 inhalation.

2) It is expected that rod activity will become saturated with increasing levels 

of background illumination and thus the rod-b-wave of the simultaneous cone- 

rod ERG will be extinguished.

3) An increase in retinal blood flow is known to occur during dark adaptation in 

control subjects due to the increased metabolic demands of the retina. The 

effect of dark adaptation on blood flow in subjects with DM is as yet unknown 

though retinal blood flow may be expected to be lower than in control subjects 

if retinal autoregulation is impaired.
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6. EXPERIMENTAL TECHNIQUES

6.1 Electrophvsiology

As mentioned previously the retina will produce an electrical current in 

response to stimulation by a light source. In order to record this response 

special equipment is required and is outlined below.

6.1.1 Electrodes

6.1.1.1 Ground Electrode

Two skin electrodes are required for ERG recording, the ground electrode and 

the reference electrode. Nine mm silver chloride coated cup electrodes were 

used. The ground electrode was placed at an indifferent point and connected 

to the ground of the amplifier. The ground electrode was positioned on the 

forehead at the centre of the hairline. Its purpose is to reduce mains 

interference which can add large 50-60 Hz signals to the biological signals 

and hamper the recording of the desired response signal.

6.1.1.2 Reference Electrode

The reference electrode was placed near the orbital rim alongside the outer 

canthus. This completes the physiological circuit and provides a comparison 

for normal biological noise so that this is not confused as part of the desired 

response.

6.1.1.3 Active Electrode

The active electrode used was a Dawson Trick and Litzkow electrode 

[Dawson et al 1979], or DTL fibre. Although corneal contact lens electrodes 

are thought to be optimal for recording full-field flash ERGs they have several 

disadvantages in that they require corneal anaesthesia and may cause 

discomfort in prolonged recording sessions. Corneal abrasions are also
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possible. The DTL fibre consists of seven low-mass, fine nylon fibres, 50 pm 

in diameter, impregnated with silver which are intertwined in a helix to form a 

fine thread. The DTL fibre may be worn for long periods and causes minimal 

discomfort for subjects. It does not require corneal anaesthesia and is less 

likely to cause a corneal abrasion, which is especially important in diabetic 

subjects where healing rate may be slowed. The DTL fibre is disposable since 

it cannot be sterilised, so a new fibre is required for each patient. It has been 

shown to permit the recording of highly reproducible retinal potentials [Hebert 

et al 1999], and to be adequate to record the high frequency oscillatory 

potentials [Lachapelle et al 1993].

I

Figure 6.1 Electrodes and electrode gel used in recording the ERG.

6.1.2 Subject Preparation

6.1.2.1 IOP Measurement and Anterior Chamber Angle Assessment

To minimise the risk of closed angle glaucoma with pupillary dilatation the 

suitability of subjects was assessed by measurement of the intra-ocular 

pressure with a non-contact tonometer, and the anterior chamber angle depth 

using Van Herick’s technique [Doshi and Harvey 2003], Patients with shallow
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angles, Grade 0 and 1, or an intra ocular pressure >21 mmHg were excluded 

from the study.

6.1.2.2 Dilatation

The pupil of the test eye, assigned at random, was dilatated with 1 drop of 0.5 

or 1% Tropicamide to a minimum of 6 mm, unless otherwise stated. 1% 

Tropicamide was used in more heavily pigmented eyes in order to obtain 

maximal dilatation.

6.1.2.3 Skin Preparation

To ensure a good electrical connection, and to reduce electrical resistance of 

the skin, it was gently rubbed at the ground and reference electrode 

attachment areas with Nuprep (Medelec Medical Supplies), a suspension of 

silicone particles within a gel.

6.1.2.4 Electrode Attachment

The ground and reference silver chloride cup electrodes were filled with 

conductive electrode gel and secured to their relevant positions on the face 

with Blenderm insulating tape. The impedence of the electrodes was 

maintained below 5 Q in accordance with ISCEV standards [Marmor et al 

2004]. The DTL fibre was wrapped around a special holder and attached to a 

wire connected to the amplifier. The holder was secured to the side of the 

face with Blenderm insulating tape. With the patient looking upwards the 

remaining fibre was then draped in the lower fornix where it lay in contact with 

the bulbar conjunctiva. The end of the fibre was then secured to the side of 

the nose between two pieces of insulating tape so that it was not in direct 

contact with the skin.
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6.1.3 Averager

The averager used was a Medelec Sapphire" 4E system (Oxford Instruments, 

Old Woking, UK). This was used to acquire and process the responses 

obtained.

6.1.4 Stimulator

The stimulator used was a commercially available Mini-Ganzfeld LED 

stimulator (CH Electronics, Bromley, Kent, UK), see Figure 6.2. This was 

used to provide the necessary flash stimuli to the subject. The stimulator 

contains 5 LED channels whose wavelengths are shown below in Table 6.1. 

These LEDs can be manipulated in the domains of time and luminance.

Channel LED Colour Peak Wavelength (nm)

Channel 1 Red 655

Channel 2 Green 515

Channel 3 Blue 425

Channel 4 Amber 627

Channel 5 White 552 and 463

Table 6.1 LED wavelength values for LED stimulator.

The stimulator is designed to deliver square pulses of light rather than 

complex waveforms. Additional intensity control is provided by means of 

pulse width control, which is precisely variable over a range of microseconds 

to tens of seconds. The frequency of the waveform is controlled by means of 

a 3-position switch. High or low frequency ranges may be selected and, in the 

third position which selects the higher frequency range, the pulse width 

control is bypassed to provide a 50% duty cycle drive waveform.
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The groups of LEDS are mounted on a small planar circuit board with current 

limiting resistors. The circuit board is mounted at one end of an internally 

partially mirrored plastic tube (160 mm long x 50 mm diameter), with a 

diffusing screen approximately mid way along the tube and a hemispheric 

translucent diffuser mounted at the far end of the tube. An ‘eye cup’ is 

mounted at the end of the tube to assure patient comfort.

Figure 6.2 LED stimulator used in recording the ERG.

6.1.5 Patient Instruction

Following twenty minutes of dark adaptation, as recommended by ISCEV 

[Marmor et al 2004] for recording of the scotopic electroretinogram, the 

subject was instructed to hold the ganzfeld tube close to their eye in order to 

provide full-field stimulation. The non-test eye was patched. The subject was 

then advised to look into the tube during response recording, to try to keep 

their face muscles relaxed and to avoid blinking when requested. Signals 

larger than 2.5 x the input sensitivity were automatically rejected by the 

averager during data acquisition.

6.1.6 Photometer and Illuminance meter.

A Minolta LS-110 photometer (Minolta Camera Co., Japan) was used for all 

luminance measurements of the LED stimulator. Illuminance was measured 

using the Minolta Illuminance Meter T-1 (Minolta Camera Co., Japan).
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6.2 Visual Acuity

Distance Snellen visual acuity was recorded from the test eye of each subject 

prior to pupillary dilatation. All subjects had VA of 6/12 or better in the test 

eye.

6.3 Fundus Photography and Fundoscopy

Fundus photography was performed following pupil dilatation in the selected 

test eye of each patient at their first visit. This was carried out by the author at 

the end of the examination using a Topcon TRC-NW6S non-mydriatic digital 

camera (Topcon, Berkshire, UK). Three 45° photographs were taken in each 

case, one each of the central, nasal and temporal retina respectively. Indirect 

or direct ophthalmoscopy was also performed on the test eye of each subject 

at the end of the examination. If subsequent appointments occurred more 

than two months from the first then fundoscopy and/or fundus photography 

was repeated.

6.4 Arterial Oxygen Saturation

When equipment was available, arterial oxygen saturation was measured 

using a Biopac MP100 pulsoximeter (Biopac Systems, California, USA). The 

pulsoximeter measures beat by beat blood oxygen saturation level. Two 

wavelengths of light, 660 and 940 nm, are transmitted via LEDS through a 

pulsating vascular bed, in this case the finger, to a receiving photodiode. 

Oxygen saturated blood absorbs different fractions of light at different 

wavelengths compared to unsaturated blood. Accordingly the ratio of light 

absorbed can be used to calculate the ratio of oxygenated haemoglobin to 

total haemoglobin, which is then expressed as a percentage. The transmitter 

and receiver were taped either side of the subjects finger with Blenderm 

insulating tape and this finger was then wrapped in a thick black cloth to 

prevent light from escaping.
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6.5 Experimental Protocol

Subjects attended for two appointments usually within one month of each 

other. All investigations were carried out in the School of Optometry and 

Vision Sciences at Cardiff University. Ethical Committee approval for this 

study was provided by Bro Taf Local Research Ethics Committee, Cardiff, and 

the Human Science Ethical Committee of the School of Optometry and Vision 

Sciences, Cardiff University.

The experimental protocol for each visit is outlined in Table 6.2

Visit One Visit Two

History and symptoms

Visual acuity measurement

IOP measurement and anterior 

chamber angle assessment

IOP measurement

Pupillary dilatation Pupillary dilatation

Dark adaptation Dark adaptation

Recording of scotopic ERG and 

arterial oxygen saturation

Recording of scotopic OPs

Plasma glucose measurement Plasma glucose measurement

Fundus photography and fundoscopy

IOP measurement IOP measurement

Table 6.2 Experimental protocol for first and second visit.

6.6 Subject Selection

6.6.1 Subjects with Diabetes Mellitus

These subjects were recruited from the University Hospital of Wales and 

Llandough Hospital. The age, duration of diabetes, HbA1c, type of 

management and blood pressure was recorded from records of the most
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recent hospital visit. Records were only available for thirty-two of the thirty- 

nine diabetic subjects seen. Of these 78% had been seen at the hospital 

within six months of this study and only one subject had not been seen for 

over twelve months. Plasma glucose level was recorded at each visit using 

an Accu-Check Advantage blood glucose meter (Roche Diagnostics, Sussex 

UK). Exclusion criteria included patients with a previous history of any ocular 

condition other than diabetic retinopathy, family history of open angle 

glaucoma, amblyopia, epilepsy, cardiovascular or respiratory disorders or 

migraine.

Subjects were divided into two groups. Group one consisted of those 

subjects with no visible diabetic retinopathy (NDR) as assessed by fundus 

photography and fundoscopy and graded as level 10 ETDRS retinopathy 

scale (Table 2.5). Group two consisted of those subjects with mild to 

moderate background retinopathy (BDR) ranging from level 14-43 ETDRS 

retinopathy scale [ETDRS 1991a].

6.6.2 Control Subjects

A control group of healthy age-matched volunteers was recruited from 

spouses and students, staff and friends at University Hospital of Wales, 

Llandough Hospital and Cardiff University. Subjects with a family history of 

open angle glaucoma, ocular disorders, epilepsy, cardiovascular or 

respiratory disorders or migraine were excluded.

Three control subjects had a family history of Type 2 DM. All were regular 

control group participants in studies with the Diabetic Research Group Unit at 

Llandough Hospital and as such had all been regularly and recently checked 

for DM.

102



Experimental Techniques

6.7 Statistical Analysis

The analysis of data was carried using the SPSS 12.0 program according to 

the following requirements:

• Prior to carrying out statistical analysis of the results, the spread of 

data were investigated by interpretation of histograms, box-plots and 

Q-Q plots and using the Shapiro-Wilks test, to test for normality. In 

cases where data was found not to be normally distributed it was then 

log-transformed to improve the spread of normality and, if found to be 

normal, analysis was performed on these log-transformed data.

• To compare two different conditions on the same group of patients, the 

paired t-test was used to assess the significance when the data were 

normally distributed (or parametric). In cases in which the data were 

non-parametric the Wilcoxon signed ranks test was applied.

• When more than two conditions were being compared in the same 

group of subjects, the repeated measures analysis of variance (RM 

ANOVA) was used to look at differences across the groups of data, 

with suitable post-hoc tests to identify individual group differences.

• Comparisons of data involving the same conditions but different groups 

of subjects were carried out using the independent (or unpaired) t-test 

or Mann-Whitney test for parametric and non-parametric data 

respectively.

• To assess the degree of association between two variables in a single 

group, the correlation coefficient was measured. By plotting the two 

numerical variables against each other their linear correlation could be 

assessed. For parametric data the Pearson correlation coefficient was 

used and for non-parametric data the Spearmans rank correlation 

coefficient was used.

• On all charts error bars represent ±1 SE
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7. INVESTIGATION OF THE EFFECTS OF OXYGEN INHALATION ON THE

SCOTOPIC OPS 

7.1 Background to the Study

The OPs are believed to arise from the amacrine cells, located between the 

superficial and deep capillary networks of the retinal circulation. As outlined in 

Chapter 5 the aim of this study was to record OPs in order to investigate 

possible signs of hypoxia in the inner retinal layers, and, if found, to what 

extent its effects on retinal function may be reversed by O2 inhalation.

This study investigated the effect of five minutes of 0 2 inhalation on the 

scotopic OPs in subjects with DM. If inner retinal hypoxia were present in 

these subjects OP amplitudes may be expected to be initially depressed, and 

to increase in amplitude as hypoxia is reduced.

7.2 Protocol Development for the Scotopic OPs with O2 Inhalation

7.2.1 Preliminary Trials

The ISCEV standard for the flash luminance is 1.5-3 cd.s.m'2 [Marmor et al 

2004]. The luminance of the white LED was 1100 cd.m'2 and therefore to 

produce a flash luminance of 3 cd.s.m'2 a stimulus duration of 3 ms was 

required.

There was some concern that the output of the white LED may decrease over 

the length of the study. Should this occur it was not possible to increase the 

luminance of the white LED in order to ensure the output remained constant.

In view of this it was decided that OPs would also be recorded using a 

combination of the red, green and blue LEDs to produce a white flash, whose 

luminance could be altered if required. The luminance of these three LEDs at 

the second attenuation setting, attenuation 3, was measured with the 

photometer and found to be 490 cd.m'2. In order to produce a flash
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luminance of 3 cd.s.m'2 a stimulus duration of 6 ms was therefore required. 

The flashes were presented 15 seconds apart to the dilatated, 

dark-adapted eye in accordance with ISCEV standards [Marmor et al 2004].

The settings for recording the OPs are outlined in Table 7.1.

Parameter Setting

Time window (ms) 200

Low frequency filter (Hz) 100

High frequency filter (Hz) 1000

Sensitivity (pV) 50

Number of Sweeps 1

Field Size Ganzfeld

Peak Wavelength of Stimulation (nm) White Red, Green, Blue

552 and 463 655, 515, 425

Frequency of Stimulation (Hz) 1/15

Stimulus duration (ms) White Red, Green, Blue

3 6

Stimulus Intensity (cd.s.m'2) 3

Table 7.1 Settings for recording the oscillatory potentials.
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7.2.2 Stability Measurements of the OPs

Using the settings outlined above a series of eight sets of OPs were recorded 

from a 29 year old female subject, following 20 minutes dark adaptation, using 

both stimuli in order to investigate the number of conditioning flashes required 

for the response to be stable. A period of 5 minutes of dark adaptation was 

given between each series. Each flash was presented 15 seconds apart.

The outcomes of these experiments are shown in Figures 7.1 and 7.2.

100fW

20msec

Figure 7.1 Series of eight flashes presented in order to record OPs from a 29- 

year-old female subject using the white LED. OPs recorded to each single 

flash shown.
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lOO^iV

20msec

Figure 7.2 Series of eight flashes presented in order to record OPs from a 29- 

year-old female subject using the red, green and blue LEDs. OPs recorded to 

each single flash shown.

As shown in Figures 7.1 and 7.2, the OPs appear to stabilise following the first 

two flashes. In view of this, two conditioning flashes were presented to the 

subject, 15 seconds apart, before the first response was recorded.
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7.2.3 The Effect of Repeated Measurements upon the Scotopic OP 

Recordings

In order to determine the effect of O2 inhalation on the OPs, they were initially 

recorded at five minute intervals on five occasions over a period of twenty 

minutes. On each occasion, a series of four sets of OPs was required, 

following two conditioning flashes, and in order to do this, allowing for possible

stimulus rejection, it was felt that a three minute period to record the response

would be sufficient. To assess if any significant retinal adaptation effects 

occur in subjects who receive a greater number of flashes due to increased 

stimulus rejection, the following protocol was developed.

• 20 minutes dark adaptation

• Time 0 min: OPs recorded, Set 1

• Time 5 min: OPs recorded, Set 2.

• Time 10 min: OPs recorded, Set 3, flash stimulus running for a 3 minute 

period in total.

• Time 15 min: OPs recorded, Set 4, flash stimulus running for a 3 minute 

period in total.

• Time 20 min: OPs recorded, Set 5.

This procedure is outlined in Figure 7.3
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Time(mins)
0

3

5

8
10

13

15

18

20

/
Set 1

20minsdark
adaptation

Set 2 Set 3 Set 4

Flash stopped once 4 
responses recorded. 
Remainder of 3 minutes 
dark adaptation time.

4 responses recorded 
with flash running for 3 
minute period

Dark adaptation.

OPs recorded.

Figure 7.3 Protocol for repeated measurements of scotopic OPs.
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7.2.3.1 Measurement of OPs

When assessing individual OP amplitudes and implicit times the peak to 

trough method of OP measurement was used [Severns et al 1994]. This 

method is outlined in Figure 7.4 below

q  a = ascending limb OP2

b = descending limb O P2

Amplitude O P 2 = a + b

c = time used to record implicit time OP2

Figure 7.4 A typical OP signal demonstrating the peak to trough method of OP 

measurement.

In this investigation, summed OP amplitudes were calculated by adding the 

amplitudes of each ascending and descending limb of the first four individual 

OPs. The response to the two conditioning flashes were not recorded, and 

the following four OP responses recorded and averaged. This gave the 

summed OP amplitude for each of the five sets recorded in this experiment. 

Figure 7.5 shows the measurements taken to calculate the summed OP 

amplitude of each OP response. The amplitude of each red arrow was added 

together to give the final result.

110



Investigation of the Effects of Oxygen Inhalation on the Scotopic OPs

Conditioning Flash 

Conditioning Flash 

OP response 1 

OP response 2 

OP response 3 

OP response 4

Summed OPs (1 -4) = Set 1

SOpV

20ms

Figure 7.5 Diagram outlining the measurement of the summed OP amplitude.

7 .2 .3.2 Subject Group

The subject group consisted of 7 healthy controls, 2 male and 5 female with 

no history of ocular disease. Ages ranged from 24-31 years, mean age 26 

years (SD ±2.6). The test eye was assigned at random.
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7.2.3.3 Results

Group-averaged summed OP amplitudes are shown in Table 7.2 and Figure

7.6.

Set Num ber 1 2 3

(Continuous

Flash)

4

(Continuous

Flash)

5

W hite LED  

Sum m ed Am p (pV) 

(±S E )

156.5

(±17 .8 )

163.5

(±20 .3 )

166.9

(±21.9)

165.8

(±1 7 .6 )

166.7

(±18.4)

RGB LEDs  

Sum m ed Am p (pV) 

(±S E )

167.9

(±16 .9 )

169.7

(±18 .1 )

175.8

(±18.0)

173 .4

(±20 .0 )

170.8

(±10 .6 )

Table 7.2 Mean summed OP amplitudes recorded at five minute intervals.

250 -

I
•§  200 -13

Q.

1  150 -
CLO
■ §  100 -  

E|
W 50 - 
c  
00 <1)
5 0-

Set 1 Set 2 Set 3 Set 4 Set 5

Figure 7.6 Mean summed OP amplitudes of repeatability measurements of 

scotopic OPs.

With the white LED RM ANOVA found no significant change in summed OP 

amplitude across time, p=0.724. With the red, green and blue LEDs RM

■  W hite LED

■  RGB LED

112



Investigation of the Effects of Oxygen Inhalation on the Scotopic OPs

ANOVA again found no significant change in summed OP amplitude across 

time, p=0.894.

7.2.3.4 Conclusion

Since no significant difference was found between the five sets of OPs it was 

decided that the flash could be stopped once four OP responses had been 

obtained and did not need to be left running for the whole three minute period.

7.2.4 Effect of Length of Inhalation Period

At the beginning of this study a five minute O2 inhalation period was chosen 

since this had been used in previous work with positive results in subjects with 

DM [Dean et al 1997, Drasdo et al 2002]. In the early stages of this 

investigation, only a small change in OP amplitudes was apparent following 

the five minute inhalation period. In view of this, a fifteen minute inhalation 

period was investigated in a small group of control subjects and in a small 

group of DM subjects with NDR, and the results compared to their results with 

five minutes of O2 . No significant difference in OP amplitudes were found 

between the two inhalation periods and so it remained at five minutes for the 

main study.

Full details of this investigation can be found in Appendix 3.
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7.3 Final Protocol for the Investigation of the Effects of P2 Inhalation on 

the Scotopic OPs

The final protocol for the recording of the scotopic OPs with 0 2 inhalation is 

outlined below and shown in Figure 7.7. 100% 0 2 was provided through a 

60% Ventimask for a period of five minutes.

• 20 minutes dark adaptation

• Time 0 min: Record 4 responses (Baseline Response).

• Time 3 min: Begin 0 2 breathing

• Time 5 min: Record 4 responses (During 0 2).

• Time 8 min: Finish 0 2 breathing, remove mask.

• Time 10 min: Record 4 responses (2 min after mask removal).

• Time 15 min: Record 4 responses (7 min after mask removal).

• Time 20 min: Record 4 responses (12 min after mask removal).

OPs recorded at: Baseline During Q
2min after 

mask removal

7min after 

mask removal

12m in after 

mask removal

20m ins DA

3min 8min

Omin 5min 10min 15min 20m in

Figure 7.7 Final protocol for scotopic OPs.

Stimulus settings for recording the OPs can be found in section 7.2.1 and are 

given in Table 7.1. At this stage of the study, advice was finally received from 

the manufacturer of the LED stimulator that the output of the white LED would 

not change throughout the duration of this investigation, therefore the white 

stimulus was used on all occasions.
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7.3.1 Subject Groups

Subject characteristics are summarised in Table 7.3

7.3.1.1 Control Subjects

This group consisted of 21 control subjects, 9 female and 12 male, with no 

history of ocular disease. Ages ranged from 41-80 years, mean age 60.0 

years (SD ±10.8). The test eye was assigned at random.

7.3.1.2 Subjects with NDR

This group consisted of 23 subjects with Type 2 DM, 6 female and 17 male, 

with no visible retinopathy. Ages ranged from 55-72 years, mean age 62.3 

years (SD ±5.6). Disease duration ranged from 1.5-18 years, mean duration

7.3 years (SD ±4.8). The test eye was assigned at random.

7.3.1.3 Subjects with BDR

This group consisted of 14 subjects with Type 2 DM, all male, with 

background retinopathy. Retinopathy ranged from Level 14 of the ETDRS 

final retinopathy severity scale, i.e. hard exudates, soft exudates or IRMA 

definite: microaneurysms absent, to Level 43 i.e. presence of 4/5 moderate or 

1 severe haemorrhages/microaneurysms, or the definite presence of IRMA in 

1-3 places but not both. Ages ranged from 44-75 years, mean age 63.1 years 

(SD ±8.3). Disease duration ranged from 4-22 years, mean duration 11.7 

years (SD ±6.3). The test eye was assigned at random.
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Group Gender Age (yrs) Disease

Duration

(yrs)

Plasma

Glucose

Level

(mmol/L)

Management

Type

Retinopathy

Level

(ETDRS

Scale)

Control 99 

12 $

Mean 60 

(SD ±10.8)

Range

41-80

NDR O
fCD 

^

Mean 62.3 

(SD ±5.6)

Range

55-72

Mean 7.3 

(SD ±4.8)

Range

1.5-18

Mean 9.1 

(SD ±3.1)

Range

6.3-16.2

8=diet control 

8=oral 

hypoglycaemics 

3=insulin 

4=insulin + oral 

hypoglycaemics

23=L10

BDR 09

14

Mean 63.1 

(SD ±8.3)

Range

44-75

Mean 11.7 

(SD ±6.3)

Range

4-22

Mean 9.5 

(SD ±3.6)

Range

6.1-13.4

2=diet control 

5=oral 

hypoglycaemics 

4=insulin 

3=insulin + oral 

hypoglycaemics

4=L14

1=L35

9=L43

Table 7.3 Subject characteristics.
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7.3.2 Results

7.3.2.1 Analysis of Results

Some difficulties arose as to the choice of the most suitable statistical test for 

the analysis of these results across time with 0 2 inhalation. It was felt that a 

repeated measures ANOVA was the most appropriate test. Post hoc tests 

were done for the four comparisons of interest, i.e. the difference between 

baseline values and each of the following:

1. During O2 inhalation

2. Two minutes after mask removal

3. Seven minutes after mask removal

4. Twelve minutes after mask removal

Firstly, a RM ANOVA was performed then the paired samples t-tests were 

performed between baseline and each of the four time-points above and the 

p-values stated have been Bonferroni adjusted for four comparisons.
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7.3.2.2 Summed OP Amplitudes at Baseline

The group averaged summed OP amplitudes at baseline are shown in Table

7.4 and Figures 7.8 and 7.9. Four well-defined OPs are clearly shown for 

each group, as shown in Figure 7.8. Individual summed OP amplitudes are 

shown in Figure 7.10. The percentage of NDR and BDR subjects who fell 

below the control group mean amplitude at baseline are given in Table 7.5.

It was hypothesised that if hypoxia were present within the inner retinal layers 

in subjects with DM this may be reflected by reduced summed OP amplitudes. 

No significant difference was observed between the groups at baseline, 

p>0.05 (Bonferroni pairwise comparisons). The NDR group show the greatest 

summed OP amplitudes, followed by the control group with the BDR group 

showing the smallest amplitudes.

In the control group the summed OP amplitude at baseline was not found to 

be significantly correlated with age, p>0.05.

In subjects with DM, the summed OP amplitude was not found to be 

significantly correlated with age, disease duration or plasma glucose level at 

the time of recording, p>0.05. Summed OP amplitude at baseline was also 

not found to be correlated with HbA1c level, systolic blood pressure or 

diastolic blood pressure recorded at their most recent hospital visit, p>0.05. 

One way ANOVA also did not find a significant difference between summed 

OP amplitude and management when subjects were grouped according to 

their treatment type, i.e. diet alone, oral hypoglycaemics, insulin or insulin plus 

oral hypoglycaemics, p>0.05.

Multiple linear regression analysis was performed with the following 

explanatory variables:

• Subject age

• Disease duration

• Plasma glucose level
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• Systolic blood pressure

• Diastolic blood pressure

• Management type, grouped as a) diet control or oral hypoglycaemics or 

b) insulin or insulin plus oral hypoglycaemics

• Retinopathy grouped as a) no retinopathy or b) any retinopathy

None of the explanatory variables were found to be related to summed OP 

amplitude at baseline, p=0.619, and the adjusted R2 value of -0.071 indicates 

that only 7% of the variability in OPs could be explained by the regression 

model.
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Figure 7.8 Group-averaged summed OP amplitudes.
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7.3.2.3 Summed OP Amplitudes Across Time

Although the summed OP amplitudes increased in all groups following O2 

inhalation, no significant change was found across time in either the control, 

p=0.099, NDR, p=0.065, or BDR group, p=0.065 (RM ANOVA). All three 

groups show trends approaching significance (p<0.1).
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Group Baseline

Sum med O P Amplitudes (pV) 

During 0 2 2min After 7min After 12min After

Control Mean 132.4 129.2 140.7 142.8 145.7

SD 49.6 69.7 63.7 68.6 65.1

SE 10.8 15.2 13.9 15.0 14.2

NDR Mean 146.0 148.9 158.3 164.1 165.9

SD 50.0 43.2 60.2 60.0 72.2

SE 10.4 9.0 12.6 12.5 15.0

BDR Mean 115.4 123.4 137.7 133.2 148.0

SD 48.8 51.0 51.6 57.4 56.0

SE 13.0 13.6 13.8 15.3 15.0

Table 7.4 Group-averaged summed OP amplitudes across time with 0 2 

inhalation.

200.0 -  

180.0 - 

160.0 -

140.0 -

120.0 -  

100.0 -

80.0 - 

60.0 -

40.0 -

20.0 -  

0.0 -

Baseline During 0 2  2min after 7min after 12min after

■  Control

■  NDR 

□  BDR

Figure 7.9 Group-averaged summed OP amplitudes across time with 0 2 

inhalation.
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95% Q for Mean ■  Control
Mean BNDR
95% Q for Mean QBDR

350

300

% 250

200
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CLo
-o 150
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Baseline During 2 min 7 min 12 min

0 2 A fter After After

Figure 7.10 Individual summed OP amplitudes.

(Group mean and 95% confidence intervals for mean shown).

Percentage of subjects within group falling below the control group mean at

baseline (%)

Baseline During 0 2 2min After 7min After 12min After

NDR 53 43 30 30 35

BDR 271 79 50 71 36

Table 7.5 Percentage of subjects within each group falling below the control 

group mean summed OP amplitude at baseline.
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7.3.2.4 Percentage Change in Summed OP Amplitudes Across Time

The group averaged percentage change in summed OP amplitudes from 

baseline are shown in Table 7.6 and Figure 7.11.

Individual percentage change in amplitudes are also shown in Figure 7.12.

The control group show an overall reduction in summed OP amplitude during 

0 2 inhalation, the NDR group a small increase and the BDR group the largest 

percentage increase from baseline. Following 0 2 inhalation the BDR group 

show the largest percentage change in summed OP amplitude at each time- 

point followed by the NDR group, with the controls showing the smallest 

change in amplitude.

Both controls and subjects with NDR showed no significant difference in 

percentage change from baseline summed OP amplitude with 0 2 inhalation, 

p=0.087 and p=0.359 respectively (RM ANOVA) and no significant change 

from baseline was apparent with paired samples t-tests, p>0.05.

The BDR group did show a significant change in summed OP amplitude with 

0 2 inhalation, p=0.006 (RM ANOVA), and paired samples t-tests found a 

statistically significant increase in amplitude of 36.7% twelve minutes after 

mask removal, p=0.040, and a significant increase in amplitude of 25.1% two 

minutes after mask removal, p=0.024.
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% Change in Summed OP Amplitude From Baseline

Group During 0 2 2min After 7min After 12min After

Control Mean -7.4 +4.8 +7.0 +9.2

SD 34.9 31.2 27.4 33.1

SE 7.6 6.8 6.0 7.2

NDR Mean +1.3 +8.1 +10.0 +9.8
SD 29.3 43.6 37.7 41.5

SE 6.1 9.1 7.9 8.6

BDR Mean +11.3 + 25.1* +20.0 + 36.7*

SD 35.9 28.6 33.5 40.3

SE 9.6 7.6 9.0 10.8

Table 7.6 Percentage change in summed OP amplitudes across time with 0 2 

inhalation.

(Statistical significance, compared to baseline value within each group 

indicated by: * = p<0.05, paired samples t-test).

^  p<0.05, paired samples t-test

cp

□ Control 
ONDR
□ BDR

During 02 2min After 7min After 12min After

Figure 7.11 Percentage change in summed OP amplitude across time with 0 2 

inhalation.
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Figure 7.12 Individual percentage change in summed OP amplitude from 

baseline.

(Group mean and 95% confidence intervals for mean shown).

7.3.2.5 Summary of Summed OP Findings

Summed OPs were not found to be significantly different between the groups 

at baseline, however the BDR group showed the smallest summed OP 

amplitudes.

Summed OP amplitudes were not found to change significantly across time 

within any group.

However, when looking at percentage change in summed OP amplitude from 

baseline, a significant increase across time was found within the BDR group, 

p=0.006 (RM ANOVA) paired samples t-tests found a significant 36.7%
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increase twelve minutes after mask removal, p=0.020 and a significant 25.1% 

increase two minutes after mask removal, p=0.024.

7.3.2.6 Individual OP Amplitudes at Baseline

At baseline only the amplitude of OP1 was found to be significantly reduced in 

the BDR group when compared to the NDR group, see Figure 7.13.

There were no significant differences in the amplitudes of OP2, OP3 or OP4 

among the groups at baseline.

^  p<0.05 Bonferroni pairwise comparisons

5  50

Baseline During 02 2min After 7min After 12min
After

Figure 7.13 Group-averaged OP1 amplitudes.

7.3.2.7 Individual OP Amplitudes Across Time

□ Control
□ NDR
□ BDR

Group averaged individual OP amplitudes are given in Table 7.7 and Figure 
7.14.
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7.3.2.7.1 OP1

In some cases the situation arose where RM ANOVA found a significant 

change in amplitude with O2 inhalation status, however paired samples t-tests 

did not find significant differences between amplitudes. OP1 amplitude was 

found to increase significantly across time with O2 inhalation in the BDR group 

only, p=0.041 (RM ANOVA), but no significant increase from baseline was 

apparent with paired samples t-tests, p>0.05.

The increase with O2 inhalation reduced the difference in amplitude of OP1 

between the BDR group and the NDR group which was apparent at baseline, 

and no significant difference was apparent between the groups either during 

or following O2 inhalation, p>0.05 (Bonferroni pairwise comparisons).

7.3.2.7.2 0P2

OP2 was found to change significantly across time with O2 inhalation in the 

control group, p=0.020 (RM ANOVA). However no significant change from 

baseline was apparent with paired samples t-tests, p>0.05.

In the BDR group paired samples t-tests found a significantly increased OP2 

amplitude from baseline two minutes after mask removal, p=0.016.

7.3.2.7.3 0P3

OP3 amplitude was found to increase significantly across time with O2 

inhalation in the NDR group only, p=0.005 (RM ANOVA). Paired samples t- 

tests found significantly increased amplitude from baseline seven minutes 

after mask removal in this group, p=0.020.

7.3.2.7.4 OP4

OP4 amplitude did not change across time with O2 inhalation in any group, 

p>0.05 (RM ANOVA and paired samples t-tests).
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Amplitude OP1 (pV)
Group Baseline During O2 2min After 7min After 12min After

Control Mean 29.4 28.8 27.4 31.2 28.5
SD 11.1 15.8 11.5 13.2 11.8

SE 2.4 3.4 2.5 2.9 2.6

NDR Mean 31.4 32.1 31.7 32.5 33.3
SD 8.4 6.8 11.0 9.5 14.8

SE 1.8 1.4 2.3 2.0 3.1

BDR Mean 21.8 28.9 27.4 27.0 29.2
SD 8.6 12.3 8.2 8.2 10.2

SE 2.3 3.3 2.2 2.2 2.7

Amplitude OP2 (pV)

Control Mean 46.9 46.5 52.6 51.4 57.2
SD 19.3 28.4 28.3 29.8 30.8

SE 4.2 6.2 6.2 6.5 6.7

NDR Mean 54.2 49.8 52.9 56.8 58.6
SD 21.8 20.5 23.9 26.2 30.7

SE 4.5 4.3 5.0 5.5 6.4

BDR Mean 40.3 41.6 50.3* 49.1 53.2
SD 19.2 19.0 20.3 21.0 25.7
SE 5.1 5.1 5.4 5.6 6.9

Amplitude OP3 (pV)

Control Mean 36.4 33.2 38.8 39.1 38.0
SD 17.5 20.9 21.4 21.6 22.4

SE 3.8 4.6 4.7 4.7 4.9

NDR Mean 40.7 41.2 45.8 51.0* 47.4
SD 20.6 16.6 19.5 21.9 23.0

SE 4.3 3.5 4.1 4.6 4.8

BDR Mean 34.3 33.3 39.0 37.0 41.5
SD 16.0 15.5 19.1 21.1 20.9

SE 4.3 4.1 5.1 5.6 5.6

Amplitude OP4 (pV)

Control Mean 20.4 23.2 20.6 22.0 21.9
SD 9.6 14.8 10.5 11.5 10.5

SE 2.1 3.2 2.3 2.5 2.3

NDR Mean 23.5 23.5 25.2 25.6 25.0
SD 11.7 7.4 11.2 12.9 11.3

SE 2.4 1.5 2.3 2.7 2.4

BDR Mean 19.0 19.6 21.1 20.1 24.2
SD 9.4 9.8 10.5 10.9 7.6

SE 2.5 2.6 2.8 2.9 2.0

Table 7.7 Group-averaged individual OP amplitudes across time with 0 2

inhalation. (Statistical significance, compared to baseline value within each group indicated by: * = p<0.05, 

paired samples t-test).
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Figure 7.14 Group-averaged individual OP amplitudes (OP1-4) across time.

130



Investigation of the Effects of Oxygen Inhalation on the Scotopic OPs

7.3.2.8 Individual OP Implicit Times at Baseline

It was hypothesised that should inner retinal hypoxia be present in subjects 

with DM this may be reflected by a delay in OP implicit times.

No significant difference in implicit time was found between the groups at 

baseline for any of the four OPs.

7.3.2.9 Individual OP Implicit Times Across Time

Individual OP implicit times across time with O2 inhalation are shown in Table 

7.8 and Figure 7.15.

In the control group RM ANOVA found no significant change in implicit time 

across time for any of the OPs, p>0.05. However, a paired samples t-test 

found a significant delay in OP1 implicit time seven minutes after mask 

removal when compared to baseline.

No significant change was observed across time for any of the OPs in either 

the NDR or BDR group, p>0.05 (RM ANOVA, paired samples t-tests).
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Implicit Time OP1 (ms)
Group Baseline During O2 2min After 7min After 12min After

Control Mean 19.5 17.5 18.0 20.0* 18.7
SD 1.7 6.0 4.6 1.8 4.6

SE 0.4 1.3 1.0 0.4 1.0

NDR Mean 19.8 19.7 19.1 19.6 19.1
SD 0.7 0.6 4.2 1.1 4.2

SE 0.1 0.1 0.9 0.2 0.9

BDR Mean 20.9 20.7 20.8 21.1 21.4
SD 2.6 2.7 2.0 2.3 2.3

SE 0.7 0.7 0.5 0.6 0.6

Implicit Time OP2 (ms)

Control Mean 27.1 24.6 25.8 27.1 26.0
SD 3.7 8.7 6.8 2.8 6.6

SE 0.8 1.9 1.5 0.6 1.4

NDR Mean 28.3 28.0 26.7 27.3 26.7
SD 1.8 1.5 5.9 2.1 6.0

SE 0.4 0.3 1.2 0.4 1.3

BDR Mean 28.2 28.2 28.5 28.7 28.7
SD 2.0 2.0 2.1 2.6 2.1

SE 0.5 0.5 0.6 0.7 0.6

Implicit Time OP3 ims)

Control Mean 33.1 29.6 31.6 33.8 31.7
SD 3.4 10.3 7.8 3.9 7.7

SE 0.7 2.2 1.7 0.9 1.7

NDR Mean 33.9 33.5 31.9 33.3 32.0
SD 2.2 1.3 7.0 1.5 7.1

SE 0.5 0.3 1.5 0.3 1.5

BDR Mean 34.0 33.6 33.8 34.3 34.0
SD 1.5 1.5 1.5 1.9 1.5

SE 0.4 0.4 0.4 0.5 0.4

Impl cit Time O P4 1ms)

Control Mean 40.5 36.2 38.1 40.9 38.3
SD 4.2 12.5 9.4 4.0 9.2

SE 0.9 2.7 2.1 0.9 2.0

NDR Mean 38.6 40.4 38.5 38.3 38.8
SD 8.6 1.6 8.5 8.5 8.6

SE 1.8 0.3 1.8 1.8 1.8

BDR Mean 40.9 40.6 40.9 41.1 41.0
SD 1.6 1.5 1.5 1.8 1.6

SE 0.4 0.4 0.4 0.5 0.4

Table 7.8 Group-averaged individual OP implicit times across time with O2

inhalation. (Statistical significance, compared to baseline value within each group indicated by: * = p<0.05, 

paired samples t-test).
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☆  p<0.05 paired samples t-test
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Figure 7.15 Group-averaged individual OP implicit times across time.
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7.3.3 Summary of Significant Findings

RM ANOVA Paired samples t-tests

Percentage Change in Summed OP Amplitudes Across Time

BDRs Significant change across time,

p=0.006

Significant 25.1% increase from 

baseline 2 min after mask removal 

(p=0.024).

Significant 36.7% increase from 

baseline 12min after mask removal,

p=.020

OP1 Across Time

Controls No significant change

Implicit time delayed 7min after 

mask removal, p=0.048

BDRs

Significant change in amplitude 

across time, p=0.041 No significant change

OP2 Across Time

Controls

Significant change in amplitude 

across time, p=0.020 No significant change

BDRs No significant change

Significant increase in amplitude 

2min after mask removal, p=0.016

OP3 Across Time

NDRs

Significant change in amplitude 

across time, p=0.005

Significant increase in amplitude 

7min after mask removal, p=0.020

Table 7.9 Summary of OP changes with O2 inhalation.
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7.3.4 Arterial Oxygen Saturation

Unfortunately, due to equipment failure, measurement of arterial O2 saturation 

(Sa02) was only possible on a small sample of subjects. Subject 

characteristics are given in Table 7.10.

Group Gender Age (yrs) Disease
Duration

(yrs)

Plasma
Glucose

Level
(mmol/L)

Management
Type

Retinopathy
Level

(ETDRS
Scale)

Control 1?

2 c ?

Mean 58 
(SD ±11.5)

Range
45-67

NDR 3 ?

3 c ?

Mean 61.2 
(SD ±1.9)

Range
59-64

Mean 9.2 
(SD ±5.9)

Range
3-18

Mean 9.9 
(SD ±4.2)

Range
6.3-15.6

1=diet control 
1 =oral 

hypoglycaemics 
2=insulin 

2=insulin + oral 
hypoglycaemics

6=L10

BDR o ?

5 c ?

Mean 58 
(SD ±8.5)

Range
44-65

Mean 10.2 
(SD ±5.6)

Range
4-18

Mean 6.3 

(SD ±0.6)

Range 
5.7-6.9

1 =diet control 
2=oral 

hypoglycaemics 
2=insulin 

0=insulin + oral 
hypoglycaemics

2=L14
3=L43

Table 7.10 Subject characteristics.

Mean group-averaged arterial Sa02 in the twenty-three minutes before, the 

five minutes during and the twelve minutes following 0 2 inhalation are shown 

in Table 7.11 and Figure 7.16. It can be seen that Sa02 begins to rise within 

approximately two minutes of inhalation, increases by 1-2% and peaks 

approximately two minutes following the end of the inhalation period, returning 

to baseline within about five minutes of the end of inhalation. It therefore does 

not correlate with OP amplitudes which continued to increase with O2 

inhalation up to twelve minutes after mask removal.
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No significant difference in SaC>2 was found between the groups at any point, 

p>0.05 (Bonferroni pairwise comparisons).

Group Sa02 Before 

Inhalation (%)

Sa02 During 

Inhalation (%)

Sa02 After Inhalation

(%)

Control Mean 94.8 96.5 93.6

SD 1.4 0.4 4.7
SE 0.8 0.2 2.7

NDR Mean 95.3 96.2 95.1

SD 0.6 1.1 1.6
SE 0.3 0.4 0.7

BDR Mean 95.0 96.5 96.0

SD 1.3 0.6 0.9
SE 0.6 0.3 0.4

Table 7.11 Group-averaged Sa02 before, during and following 0 2 inhalation.
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Figure 7.16 Group-averaged Sa02 before, during and following 0 2 inhalation.
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7.3.5 Discussion

It has been proposed that the retina is subject to sub-clinical levels of tissue 

hypoxia prior to the development of DR [Arend et al 1991, Linsenmeier et al 

1998]. Autoregulation of blood flow in the normal retina is little more than 

adequate to cope with the high 0 2 demand of the retina during dark 

adaptation [Arden at al 1998]. In subjects with DM autoregulation is known to 

be impaired [Aim 1992], and changes in the blood and capillary function may 

then lead to hypoxia within the inner retinal tissue. If hypoxia were present in 

the tissues between the superficial and deep capillary networks of the central 

retinal circulation after dark adaptation in subjects with DM, this may be 

indicated by reduced OP amplitudes which are known to reflect the functional 

efficiency of the inner retinal circulation [Holopigian et al 1992].

Previous studies have found reduced summed OP amplitudes in subjects with 

DM and no visible retinopathy [Simonsen 1980, Moschos et al 1987, Van Der 

Torren and Van Lith 1989, Juen and Kieselbech 1990, Holopigian et al 1992, 

Drasdo et al 2002] and suggest that this may be a useful indicator of early 

retinal changes in DM even before retinopathy becomes apparent. In this 

study no significant difference in summed OP amplitude, or individual OP 

amplitudes, was found between the NDR subjects and the controls. This is a 

similar finding to that reported previously in two earlier studies [Wanger and 

Persson 1985, Van Der Torren and Mulder 1993]. In fact, on average, higher 

summed OP amplitudes, though not significantly so, were found in subjects 

with NDR than control subjects. This finding has been observed previously in 

a group of subjects with Type 1 DM with either NDR or mild BDR [Simonsen 

1980], where the hypernormal oscillatory potential observed excluded the 

development of proliferative retinopathy within the next six to eight years. 

Previous studies have also shown that the reduction in summed OP amplitude 

in subjects with DM increases with increasing severity of retinopathy [Bresnick 

and Palta 1987b, Shirao et al 1991]. Our results lend support to these 

findings since subjects with BDR had the smallest summed OP amplitudes of 

the three groups at baseline, however this did not reach statistical 

significance.
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Whilst the average summed OP amplitude was slightly higher in the NDR 

group than the controls, some individual subjects within the group did show 

initially depressed amplitudes. NDR subjects with initially depressed summed 

OP amplitudes were investigated to see if they showed the greatest increases 

with O2 inhalation but this was not found to be the case. Likewise when 

examining those NDR subjects with initially depressed amplitudes no 

similarities were apparent between the subject characteristics i.e. disease 

duration, management type, plasma glucose etc.

No significant difference in OP implicit times was observed between control 

subjects and either of the diabetic subject groups. This has also been 

reported previously, although again these studies only examined diabetic 

subjects with no retinopathy [Coupland 1985b, Wanger and Persson 1985, 

Holopigian et al 1992].

Drasdo et al [2002] found the significantly reduced summed OP amplitude 

observed in NDR subjects increased to the level of the control group at 

baseline following two minutes of O2 inhalation. In this study following O2 

inhalation the greatest increase in summed OP amplitude was apparent in the 

BDR group, followed by the NDR group with the least effect visible in the 

control group. O2 was not expected to affect control group amplitudes since 

autoregulation should compensate for the increased O2 by reducing retinal 

blood flow [Riva et al 1983, Grunwald et al 1984, Kiss et al 2002, Luksch et al 

2002]. In subjects with DM, where autoregulation has been found to be 

impaired, an increase in summed OP amplitude may be expected as any 

inner retinal hypoxia is reduced. These results may indirectly reflect a level of 

hypoxia within the retinae of subjects with DM, since OPs are known to reflect 

inner retinal function and summed OP amplitude increased significantly 

following O2 inhalation in subjects with BDR and the OP3 amplitude 

significantly increased following O2 inhalation in subjects with NDR.

This study found differing results to that of Drasdo et al [2002] in subjects with 

NDR. This may be explained by the fact that 11 of the 23 subjects displayed 

summed OP amplitudes falling above the control group mean summed OP
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amplitude at baseline. This may suggest that these subjects are at less risk of 

developing retinopathy than those subjects with depressed OP amplitudes 

[Simenson 1980], and as such it may be presumed that the retinae may 

therefore be less hypoxic. In the Drasdo et al study [2002] the subject group 

exhibited initially depressed OP amplitudes. This suggests that this group of 

subjects were more at risk of developing retinopathy and the retinae were in a 

more hypoxic state. If this were the case a greater effect with O2 inhalation 

would be expected.

The amplitudes of OP1 and OP2 were found to increase significantly with O2 

inhalation in subjects with BDR. Interestingly the amplitude of these two OPs 

have been found to be significantly reduced following induced systemic 

hypoxia in healthy individuals [Janaky et al 2007]. In their study fourteen 

healthy male subjects were exposed for fifteen minutes to a simulated altitude 

of 5500m in order to induce systemic hypoxia. ERGs were recorded before, 

immediately following and twenty minutes after the hypoxic exposure. No 

significant changes were observed in either the a or b-waves of the ERG 

however OP1 and OP2 were found to be significantly reduced in amplitude 

immediately after the hypoxic exposure. These results again highlight the 

high sensitivity of the OPs towards circulatory and/or hypoxic challenges 

[Janaky et al 2007]. The increase in OP amplitudes observed in the current 

study may be explained by a reduction of inner retinal hypoxia with O2 

inhalation.

The retinal structures underlying the origin of the OPs are a subject of 

controversy. Since rod function has been found to be impaired in subjects 

with DM even before the development of significant retinopathy [Henson and 

North 1979, Greenstein et al 1993], and it is believed that the high metabolic 

demands of the rod photoreceptors may cause a level of hypoxia within the 

normal retina under dark adaptation, it may be expected that the rod- 

dominated OPs would be more affected by O2 inhalation than the cone- 

dominated OPs. The OPs are believed to be generated by a mechanism of 

rod and cone interactions [King-Smith et al 1986, Peachey et al 1987] with the 

cone system influencing the earlier OPs (OP1-2) and the rod system
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influencing the later OPs (OP3-4) [Lachapelle et al 1983, Coupland 1987a, 

Janaky et al 1996]. It is therefore unclear why in this study the earlier OPs 

appear to be more affected by O2 inhalation in subjects with BDR, however 

another study did suggest that the earlier OPs may be more rod-dominated 

than the later OPs [Wang et al 2001].

The values of arterial O2 saturation found in this study are lower than that 

found in a previous study [Faucher and Kergoat 2002]. Normal arterial O2 

saturation is known to vary between 94-100% [www.webmd.com 2007]. 

Faucher and Kergoat [2002] found an average level of 98.1% before 

breathing 100% O2 for five minutes, which rose to 99.4% during the inhalation 

period in a group of thirty-five control subjects. The differences between the 

two studies may be due to the fact that their subjects were considerably 

younger with an age range of 19-26 years and a mean age of 22.3yrs, and 

arterial O2 saturation is known to reduce with age [Cerveri et al 1995].

The arterial O2 saturation measurements were taken from the subjects’ 

fingertip and therefore does not directly indicate the level of oxygenation 

within the retinal tissue. A review of the literature did not reveal how long the 

increase in inspired O2 would take to reach the retinal tissue. From personal 

communication with a local anaesthetist [Dr Jim Stewart] it was felt that it 

would take some time for the increase in inspired O2 to result in an increase of 

oxygenation to the tissue and, though dependent on many factors, subtle 

changes in previously hypoxic retinas may take ten to fifteen minutes from the 

initial increase in inspired O2 . This may explain the increases observed in OP 

amplitudes two, seven and twelve minutes after mask removal.

In summary the results of this study did reflect signs of inner retinal hypoxia in 

subjects with DM, with an increase in OP amplitudes observed following O2 

inhalation.
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7.4 General Summary

This chapter aimed to investigate the possible presence of hypoxia in subjects 

with DM in the retinal tissue between the superficial and deep capillary 

networks of the central retinal circulation, lying in the nerve fibre and inner 

nuclear layers respectively, following dark adaptation. This may be indicated 

by reduced OP amplitudes in these subjects. OP amplitudes were found to 

be smallest in subjects with visible retinopathy and both summed OP 

amplitudes and the amplitudes of OP1 and OP2 were found to significantly 

increase following O2 inhalation in thus group. OP3 was also found to 

significantly increase with O2 inhalation in the NDR group. These increases 

may reflect a reduction of inner retinal hypoxia in these subjects with 0 2 

inhalation.
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8. INVESTIGATION OF THE EFFECTS OF OXYGEN INHALATION ON THE
SCOTOPIC B-WAVE 

8.1 Aim of the Study

The aim of this study was to investigate signs of possible hypoxia in the inner 

retina of subjects with DM which may be indicated by reduced b-wave 

amplitudes, believed to reflect the activity of the bipolar cells.

This study investigated the effect of five minutes of O2 inhalation on the 

scotopic b-wave in subjects with DM. If inner retinal hypoxia were present in 

these subjects, an increase in b-wave amplitudes may be expected as the 

hypoxia is reduced.

8.2 Preliminary Trials of the Scotopic ERG

The technique used to elicit the scotopic (dim flash) ERG is based on that 

previously used by our department in the investigation of visual deficits in 

dyslexia as reported by Greatrex and Drasdo [1998]. The stimulus used was 

a dim flash provided by green LEDs, 0.027 cd.m'2, peak wavelength 565 nm 

at 1.3 Hz. The b-wave elicited by a bright flash used by Drasdo et al [2002] 

contained contributions from both the rod and cone systems, and since the 

rod system is known to be more vulnerable to hypoxia in subjects with DM a 

scotopic ERG may offer a better reflection of rod-driven hypoxia.

In order to be more compliant with ISCEV standards the stimulus duration 

was shortened from 400 ms to 5 ms [Marmor et al 2004]. The ISCEV 

standard stimulus is a dim white flash of strength 2.5 log units below the 

standard flash of 1.5-3 cd.s.m'2 [Marmor et al 2004], and the stimulus used fell 

within this recommended luminance range. A minimum interval of two 

seconds between flashes is also advised [Marmor et al 2004], and thus the 

frequency of stimulation was changed from 1.3 to 0.5 Hz. The final settings 

are outlined in Table 8.1 and were used on all occasions unless otherwise 

stated.
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Parameter Setting

Time window (ms) 500

Low frequency filter (Hz) 1

High frequency filter (Hz) 100

Sensitivity (pV) 100

Number of Sweeps 8

Field Size Ganzfeld

Peak Wavelength of Stimulation (nm) 515

Frequency of Stimulation (Hz) 0.5

Stimulus duration (ms) 5

Stimulus Intensity (cd.s.mz) 0.0012

Table 8.1 Final settings for the scotopic ERG.

8.3 Protocol Development for the Scotopic ERG with O? Inhalation

8.3.1 The Effect of Repeated Measurements of the Scotopic ERG

It was intended that ERGs should be recorded before, during and after five 

minutes of O2 inhalation. A total of five sets of measurements would be 

recorded at five minute intervals. As some subjects may have a higher rate of 

stimulus rejection, due to unwanted blinks etc, enough time had to be allowed 

to obtain eight responses. It was felt that a period of three minutes would be 

long enough to record the required number of responses.

In the event of multiple stimulus rejection, the situation may arise where some 

subjects are actually receiving more flashes than others in order to obtain 

eight desired responses, and thus their retinal adaptation may be different. In 

order to keep the level of adaptation the same for each subject the flash could 

be left running for the whole of the three minute recording period. To 

investigate whether or not this was necessary and whether or not adaptational 

effects were likely to occur the following experiment was carried out (similar to 

that in Chapter 7):
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• 20 minutes dark adaptation

• Time 0 min: 1st set of responses recorded, Trace 1.

• Time 5 min: 2nd set of responses recorded, Trace 2.

• Time 10 min: 3rd set of responses recorded, Trace 3, flash stimulus 

running for a 3 minute period in total.

• Time 15 min: 4th set of responses recorded, Trace 4, flash stimulus 

running for a 3 minute period in total.

• Time 20 min: 5th set of responses recorded, Trace 5.

This procedure is summarised in Figure 8.1

Time (mins) 

0 10

i
Set 1 Set 2

20minsdark
adaptation

i , i Flash stopped once 8 
responses recorded. 
Remainder of 3 minutes 
dark adaptation time.

8 responses recorded 
with flash running for 3 
minute period

Set 3

15 20
3

/ /  1

8

l_ I± — 1— ---------------------------------- 1

Set 4 Set 5

Dark adaptation. 

B-wave recorded.

Figure 8.1 Protocol for repeated measurements of the scotopic ERG.

These data were then analysed to determine if any significant adaptational 

effects had occurred.
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8.3.1.1 Subject Group

The subject group consisted of 8 healthy controls, 2 male and 6 female, with 

no history of ocular disease. Ages ranged from 24-31 years, mean age 26 

years (SD ±3.6). The test eye was assigned at random and pupils dilatated.

8.3.1.2 Results

B-wave amplitudes were measured from trough to peak as indicated by the 

red arrow in Figure 8.2. Results for the mean b-wave amplitude are given in 

Table 8.2 and Figure 8.3.

a = b-wave amplitude

b = tim e used to record

b-wave implicit time

Figure 8.2 A typical b-wave signal demonstrating the measurement of b-wave 

amplitude.
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Trace Number 1 2 3

(Continuous

Flash)

4

(Continuous

Flash)

5

Mean Amp (pV) 78.8 77.4 84.7 87.3 91.5

(±SE) (±6.9) (±7.9) (±8.0) (±11.5) (±6.9)

Table 8.2 Mean b-wave amplitudes of repeated measurements of scotopic 

ERG.

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

Figure 8.3 Mean b-wave amplitudes of repeatability measurements of 

scotopic ERG.

RM ANOVA found no significant change in b-wave amplitude across time, 

p=0.303.

8.3.1.3 Conclusion

Since no significant difference was found between any of the five traces it was 

decided that the flash could be stopped once eight responses had been 

obtained and did not need to be left running for the whole three minute period.
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8.3.2 Effect of Length of Inhalation Period

As in Chapter 7, a five minute O2 inhalation period was chosen since this had 

been used in previous work with positive results in subjects with DM [Dean et 

al 1997, Drasdo et al 2002]. Again in the early stages of this investigation 

only a small change in b-wave amplitudes were apparent following the five 

minute inhalation period. A fifteen minute inhalation period was investigated 

in a small group of control subjects and a small group of DM subjects with 

NDR, and the results compared to those with five minutes of 0 2. No 

significant difference in b-wave amplitudes were found between the two 

inhalation periods and so it again remained at five minutes for the main study. 

Full details of this can be found in Appendix 5.
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8.4 Final Protocol for the Investigation of the Effects of O? Inhalation on 

the Scotopic B-wave

The protocol for the recording of the scotopic ERG with 0 2 inhalation, similar 

to that for recording the OPs in Chapter 7, is outlined below and shown in 

Figure 8.4. Subjects inhaled 100% 0 2 through a 60% Ventimask for a period 

of 5 minutes.

• 20 minutes dark adaptation

• Time 0 min: Record response, stop flash. (Baseline Response).

• Time 3 min: Begin 0 2 breathing

• Time 5 min: Record response, stop flash. (During 0 2).

• Time 8 min: Finish 0 2 breathing, mask removed.

• Time 10 min: Record response, stop flash. (2 min after mask removal).

• Time 15 min: Record response, stop flash. (7 min after mask removal).

• Time 20 min: Record response, stop flash. (12 min after mask 

removal).

B-wave recorded at: Baseline During Q
2min after 

mask removal

7min after 

mask removal

12m in after 

mask removal

20m ins DA

3min 8min

Omin 5min 10min 15min 20m in

Figure 8.4 Final protocol for the scotopic ERG.
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8.4.1 Subject Group

Subject group characteristics are summarised in Table 8.3

8.4.1.1 Control Subjects

This group consisted of 24 control subjects, 10 female and 14 male, with no 

history of ocular disease. Ages ranged from 41-80 years, mean age 60.0 

years (SD ±10.6). The test eye was assigned at random.

8.4.1.2 Subjects with NDR

This group consisted of 25 subjects with Type 2 DM, 7 female and 18 male, 

with no visible retinopathy. Ages ranged from 53-72 years, mean age 62.3 

years (SD ±6.0). Disease duration ranged from 1.5-18 years, mean duration

7.7 years (SD ±4.8). The test eye was assigned at random.

8.4.1.3 Subjects with BDR

This group consisted of 14 subjects with Type 2 DM, 1 female and 13 male, 

with background retinopathy. Retinopathy ranged from Level 14 of the 

ETDRS final retinopathy severity scale, i.e. hard exudates, soft exudates or 

IRMA definite: microaneurysms absent, to Level 43 i.e. presence of 4/5 

moderate or 1 severe haemorrhages/microaneurysms, or the definite 

presence of IRMA in 1-3 places but not both. Ages ranged from 44-75 years, 

mean age 62.2 years (SD ±7.9). Disease duration ranged from 4-22 years, 

mean duration 11.0 years (SD ±5.9). The test eye was assigned at random.
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Group Gender Age (yrs) Disease

Duration

(yrs)

Plasma

Glucose

Level

(mmol/L)

Management

Type

Retinopathy

Level

(ETDRS

Scale)

Control Of 
*o 

o 
^

Mean 60 

(SD ±10.6)

Range

41-80

NDR 7 $  

18 cJ

Mean 62.3 

(SD ±6.0)

Range

53-72

Mean 7.7 

(SD ±4.8)

Range

1.5-18

Mean 8.8 

(SD ±3.6)

Range

5.2-17.8

7=diet control 

9=oral 

hypoglycaemics 

3=insulin 

6=insulin + oral 

hypoglycaemics

25=L10

BDR
1 $

13 c?

Mean 62.2 

(SD ±7.9)

Range

44-75

Mean 11.0 

(SD ±5.9)

Range

4-22

Mean 10.3 

(SD ±4.1)

Range

4.8-18.0

2=diet control 

5=oral 

hypoglycaemics 

3=insulin 

4=insulin + oral 

hypoglycaemics

4=L14

1=L35

9=L43

Table 8.3 Subject characteristics.
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8.4.2 Results

8.4.2.1 Analysis of Results

In this study the results have again been analysed two ways, as in Chapter 7. 

Firstly, a RM ANOVA was performed. Secondly, paired samples t-tests were 

performed between baseline and each of the four time-points tested and the 

p-values stated have been Bonferroni adjusted for four comparisons.

8.4.2.2 B-wave Amplitudes at Baseline

The group averaged b-wave amplitudes can be seen in the traces of Figure 

8.5. Well defined b-waves can be seen for each group at each of the time- 

points tested. Group-averaged b-wave amplitudes are shown in Table 8.4 

and Figure 8.6. The percentage of NDR and BDR subjects falling below the 

control group mean amplitude at baseline are given in Table 8.5.

Individual amplitudes are also shown in Figure 8.7

At baseline the control group showed the largest b-wave amplitude, followed 

by subjects with NDR, and BDR subjects showed the smallest amplitude. 

However there was no significant difference in amplitude between the groups, 

p>0.05 (Bonferroni pairwise comparisons).

In the control group, the b-wave amplitude at baseline was not found to be 

significantly correlated with age, p>0.05. In subjects with DM the b-wave 

amplitude was also found not to be significantly correlated with age, disease 

duration or plasma glucose level at the time of testing, p>0.05. No significant 

correlation was found between b-wave amplitude and HbA1c level or diastolic 

blood pressure recorded at their most recent hospital visit, p>0.05.

One way ANOVA found no significant difference in b-wave amplitudes 

between subjects with DM when grouped according to their management type
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p>0.05, i.e. diet-controlled, oral hypoglycaemics, insulin or insulin plus oral 

hypoglycaemics.

A significant correlation was found between baseline b-wave amplitude in 

subjects with DM and systolic blood pressure recorded at their most recent 

hospital visit, r=-0.396, p=0.027, with amplitudes decreasing with increasing 

blood pressure.

Multiple linear regression analysis was performed with the following 

explanatory variables:

• Subject age

• Disease duration

• Plasma glucose level

• Systolic blood pressure

• Diastolic blood pressure

• Management type, grouped as a) diet control or oral hypoglycaemics or 

b) insulin or insulin plus oral hypoglycaemics

• Retinopathy grouped as a) no retinopathy or b) any retinopathy

None of the explanatory variables were found to be related to b-wave 

amplitude at baseline, p=0.290.
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Figure 8.5 Group-averaged b-wave traces.
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8.4.2.3 B-wave Amplitudes Across Time

The control group and NDR group showed no significant change in b-wave 

amplitude across time with O2 inhalation, p=0.249 and p=0.077 respectively 

(RM ANOVA). Paired samples t-tests also found no significant change in 

either group at any time, p>0.05.

A significant change in amplitude was found across time in subjects with BDR, 

p=0.002 (RM ANOVA), and paired samples t-tests found significantly larger 

amplitudes than baseline twelve minutes after mask removal p=0.044.
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Group Baseline

B-wave Amplitudes (pV)

During 0 2 2min After 7min After 12min After

Control Mean 111.7 112.4 113.9 119.1 118.1

SD 34.2 52.5 41.0 46.0 51.8

SE 7.0 10.7 8.4 9.4 10.6

NDR Mean 108.0 108.5 114.4 117.4 116.4

SD 35.8 46.3 42.4 41.5 45.6

SE 7.2 9.3 8.5 8.3 9.1

BDR Mean 90.4 93.1 102.0 104.0 105.4*

SD 30.6 30.6 34.4 34.0 29.3

SE 8.2 8.2 9.2 9.1 7.8

Table 8.4 B-wave amplitudes across time with O2 inhalation.

(Statistical significance, compared to baseline value within each group 

indicated by: * = p<0.05, paired samples t-test).

^  p<0.05, paired samples t-test 

☆

140 -i

■  Control

■  NDR  

□  BDR

Baseline During 0 2  2min after 7min after 12min after

Figure 8.6 B-wave amplitudes across time with 0 2 inhalation.
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95% Cl for Mean ■  Control
Mean ■  NDR
95% Cl for Mean □  BDR

300

250

200

150

100

50

0
Baseline During 2 min 7 min 12 min

0 2 After After After

Figure 8.7 Individual b-wave amplitudes.

(Group mean and 95% confidence intervals for mean shown)

Percentage of subjects within group falling below the control group m ean at

baseline (% )

Baseline During 0 2 2min After 7min After 12min After

NDR 44 60 48 48 48

BDR 79 79 71 71 71

Table 8.5 Percentage of subjects within each group falling below the control 

group mean b-wave amplitude at baseline.
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8.4.2.4 Percentage Change in B-wave Amplitude Across Time

The group-averaged percentage change in b-wave amplitudes from baseline 

are shown in Table 8.6 and Figure 8.8.

Individual percentage change in amplitude are also shown in Figure 8.9.

Both control and NDR subjects show an overall reduction in b-wave amplitude 

during O2 inhalation whereas BDR amplitudes increased. Following O2 

inhalation the BDR group show the largest percentage change in amplitude at 

each time-point followed by the NDR group, with the controls showing the 

smallest change in amplitude.

Control subjects showed no significant difference in percentage change from 

baseline b-wave amplitude during or following O2 inhalation, p=0>0.05 (RM 

ANOVA, paired samples t-tests).

The NDR group also showed no significant change in amplitude from baseline 

with O2 inhalation, p>0.05 (RM ANOVA, paired samples t-tests).

The BDR group did show a significant change in amplitude with O2 inhalation, 

p=0.001 (RM ANOVA), and paired samples t-tests found a statistically 

significant increase in amplitude of 21.3% twelve minutes after mask removal,

p=0.016.
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% Change in B-wave Amplitude From Baseline

Group During 0 2 2min After 7min After 12min After

Control Mean -2.8 +1.3 +6.3 +5.3

SD 25.1 15.1 19.5 25.0

SE 5.1 3.1 4.0 5.1

NDR Mean -1.1 +5.9 +10 .3 +8.2

SD 22.1 15.0 19.1 24.1

SE 4.4 3.0 3.8 4.8

BDR Mean +4.8 +14.8 +18 .3 +21.3*

SD 20.2 23.6 28.2 22.9

SE 5.4 6.3 7.5 6.1

Table 8.6 Percentage change in b-wave amplitudes across time with O2 

inhalation.

(Statistical significance, compared to baseline value within each group 

indicated by: *= p<0.05, paired samples t-test).

^  p<0.05, paired samples t-tests,

£  signficant difference from baseline.

I 30 n ^
CD -r

E 25 To
*5 20-  T r ~
- O

■  Control

■  N D R  

□  BDR

2min after 7min after 12min after

Figure 8.8 Percentage change in b-wave amplitudes across time with 0 2 

inhalation.
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95% Q  for Mean □  Control
Mean □  NDR
95% Cl for Mean □  BDR

100

80 -

60

40 -

20

-20

-60

-80

Duri ng 2 min 7 min 12 min

0 2 After After After

Figure 8.9 Individual percentage change in b-wave amplitude from baseline. 

(Group mean and 95% confidence intervals for mean shown)
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8.4.2.5 B-wave Implicit Time

B-wave implicit time, and percentage change in b-wave implicit time, was not 

found to be significantly different from baseline at any time in any group. 

Implicit times and percentage changes are given in Table 8.7. For further 

details please see Appendix 4.

In control subjects the b-wave implicit time was not found to be significantly 

correlated with age.

In subjects with DM a significant correlation was found between b-wave 

implicit time and age, r=0.327, p=0.042, with implicit time increasing with age. 

This finding has been noted previously in normal subjects [Birch and 

Anderson 1992, Kergoat et al 2001].

No significant correlation was found between b-wave implicit time and disease 

duration or plasma glucose level at the time of recording, p>0.05. Also no 

significant correlation was found between b-wave implicit time and HbA1c 

level, systolic or diastolic blood pressure recorded at their most recent 

hospital visit p>0.05. One way ANOVA also found no significant difference in 

b-wave implicit time when grouped according to their management type, 

p>0.05

B-wave implicit times did not change significantly across time with 0 2 

inhalation in any group, p>0.05 (RM ANOVA, paired samples t-tests).
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B-wave Implicit tim e (m s)

Group Baseline During 0 2 2min After 7min After 12min After

Control Mean 50.0 49 .8 49 .0 4 9 .5 4 9 .8

SD 4.7 4.5 5.9 4.3 4.8

SE 1.0 0.9 1.2 0.9 1.0

N DR Mean 49.7 49.5 50.8 50.4 51 .6

SD 5.5 5.5 4.8 5.3 4.0

SE 1.1 1.1 1.0 1.1 0.8

BDR Mean 48.0 49.7 4 9 .5 51.3 51.4

SD 6.7 6.2 5.8 6.9 4.1

SE 1.8 1.7 1.5 1.8 1.1

% Change B-wave Implicit time From Baseline

Group Baseline During 0 2 2min After 7min After 12m in After

Control Mean -0.1 -1.7 -0 .7 -0.1

SD NA 8.5 10.2 6.6 6.6

SE 1.7 2.1 1.4 1.3

NDR Mean +0.6 +3.2 +2.2 +5.2

SD NA 13.0 13.0 11.4 16.1

SE 2.6 2.6 2.3 3.2

BDR Mean +4.9 +4.4 +8 .3 +8 .8

SD NA 17.4 15.3 18.8 16.3

SE 4.7 4.1 5.0 4.4

Table 8.7 B-wave implicit times and percentage change in b-wave implicit 

times across time with O2 inhalation.
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8.4.3 Summary of Significant Findings

RM ANOVA Paired Samples T-Test

B-wave Amplitudes Across Time

BDRs

Significant change across time

p=0.002

Significantly higher amplitude 

12min (p=0.044) after mask removal.

Percentage Change in B-Wave Amplitudes Across Time

BDRs

Significant change across time,

p=0.001

Significant 21.3% 12min after mask 

removal,

p=0.016

Table 8.8 Summary of significant b-wave changes with O2 inhalation.

8.4.4 Arterial Oxygen saturation

As mentioned in the previous chapter, measurement of arterial O2 saturation 

(Sa02) was only possible on a small sample of subjects. Subject 

characteristics are given in Table 8.9.

162



Investigation of the Effects of Oxygen Inhalation on the Scotopic B-wave

Group Gender Age (yrs) Disease

Duration

(yrs)

Plasma

Glucose

Level

(mmol/L)

Management

Type

Retinopathy

Level

(ETDRS

Scale)

Control 3 ?

3 3

Mean 56.8 

(SD ±10.9)

Range

41-67

NDR 3 ?

5 c?

Mean 61 

(SD ±3.4)

Range

59-64

Mean 8.3 

(SD ±5.4)

Range

3-18

Mean 8.7 

(SD ±4.4)

Range

6.1-17.8

2=diet control 

1 =oral 

hypoglycaemics 

2=insulin 

3=insulin + oral 

hypoglycaemics

8=L10

BDR 0 $

3c?

Mean 57 

(SD ±11.4)

Range

44-65

Mean 7.7 

(SD ±4.7)

Range

4-13

Mean 9.2 

(SD ±7.6)

Range

4.9-18

1 =diet control 

0=oral 

hypoglycaemics 

2=insulin 

0=insulin + oral 

hypoglycaemics

2=L14

1=L43

Table 8.9 Subject characteristics.

Mean group-averaged arterial SaC>2 in the twenty-three minutes before, the 

five minutes during and the twelve minutes following O2 inhalation are shown 

in Table 8.10 and Figure 8.10. As in the previous chapter it can be seen that 

SaC>2 begins to rise within approximately two minutes of inhalation, increases 

by about 1% and peaks approximately two minutes following the end of the 

inhalation period, returning to baseline within about five minutes of the end of 

inhalation. It therefore does not correlate with b-wave amplitude which 

continued to increase with O2 inhalation up to seven minutes after mask 

removal.

No significant difference in Sa02 was found between the groups before, 

during or after O2 inhalation, p>0.05 (Bonferroni pairwise comparisons).
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Group Sa02 Before 

Inhalation (%)

Sa02 During 

Inhalation (%)

Sa02 After Inhalation

(%)
Control Mean 94.7 95.4 95.6

SD 1.3 1.0 1.6

SE 0.5 0.4 0.7

NDR Mean 95.2 96.1 95.6

SD 1.0 0.8 0.8

SE 0.3 0.3 0.3

BDR Mean 95.4 96.3 96.1

SD 0.9 0.6 1.2

SE 0.5 0.3 0.7

Table 8.10 Group-averaged S a02 before, during and following 0 2 inhalation.
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Figure 8.10 Group-averaged S a02 before, during and following 0 2 inhalation
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8.4.5 Discussion

It is known that the autoregulation of blood flow in the normal retina is little 

more than adequate to cope with the high O2 demand of the retina during dark 

adaptation [Arden at al 1998]. In subjects with DM this situation becomes 

more worrying since autoregulation is known to be impaired and changes in 

the blood saturation and capillary function are likely to lead to a level of sub- 

clinical hypoxia within the inner retinal tissue.

As expected, the control group showed the highest b-wave amplitudes, 

followed by the NDR group with the BDR group showing the smallest 

amplitudes. Induced hypoxia has been shown to reduce the b-wave of the 

ERG in subjects with DM [Rimmer et al 1996]. If hypoxia was present in the 

inner retinal layers of our subjects with DM this may be reflected by a smaller 

b-wave amplitude, which is believed to reflect the activity of the bipolar cells.

It is likely that a greater degree of hypoxia is present in those with more 

advanced retinopathy. However, the differences observed in b-wave 

amplitude between each group were not found to be statistically significant. 

Earlier studies have found significantly reduced b-wave amplitudes in subjects 

with Type 1 DM and no, or minimal background, retinopathy [Juen and 

Kieselbech 1990, Papakostopoulos et al 1996], which suggested its use as an 

indicator of early retinal changes in subjects with DM. The difference in 

results may be explained by that, in both studies, all subjects had Type 1 DM 

and all were receiving insulin, whereas in the present study all subjects had 

Type 2 DM and only nine subjects were receiving insulin. Disease duration 

was similar between the earlier studies and the present study however in the 

present study DM subjects were considerably older.

However, in another study of subjects with both Type 1 and Type 2 DM, with 

no or minimal BDR, no significant difference in b-wave amplitude was found 

when compared to a control group [Holopigian et al 1992]. Management type 

was not stated so the number of patients receiving insulin is unknown. In this 

study b-wave amplitudes in the BDR group were not different to the control 

group amplitudes at any point. The difference in findings between the studies
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may be explained by the fact that those subjects with Type 1 DM are known to 

be more at risk of developing retinopathy [Klein et al 1984a,b] than those with 

Type 2 DM, and as such their retinae are likely to be in a more hypoxic state. 

This may be reflected by a reduction in b-wave amplitudes.

Earlier studies have also found a delay in b-wave implicit time in subjects with 

DM and no, or minimal, BDR when compared to controls [Juen and 

Kieselbech 1990, Holopigian et al 1992]. As with the study by 

Papakostopoulos et al [1996], this investigation found that b-wave implicit time 

was not significantly different among the groups.

Following O2 inhalation only the BDR group showed an increase in b-wave 

amplitude. O2 inhalation would not be expected to affect control group 

amplitudes since autoregulation should compensate for the increased O2 by 

reducing retinal blood flow. In subjects with DM, where autoregulation has 

been found to be impaired, an increase in b-wave amplitude might indicate 

that inner retinal hypoxia was reduced. These results provide support for this 

hypothesis with the significant increase in b-wave amplitudes in those 

subjects with visible retinopathy. Earlier work by our research group also 

found a significant increase in b-wave amplitude in a small group of subjects 

with Type 2 DM and NDR (n=7) following five minutes of O2 inhalation, two 

minutes after mask removal [Chiti 2001].

It may be expected that those NDR subjects with the smallest b-wave 

amplitudes at baseline may have a greater degree of inner retinal hypoxia, 

and therefore may show the greatest increase with 0 2 inhalation. NDR 

subjects with initially low b-wave amplitudes were investigated and this was 

not found to be the case. Those DM subjects with initially low b-wave 

amplitudes were also investigated for similarities in subject characteristics i.e. 

disease duration, plasma glucose level, management type etc, however none 

were found.

As in Chapter 7 the arterial 0 2 saturation measurements were taken from the 

subjects’ fingertip and therefore do not directly indicate the level of
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oxygenation within the retinal tissue. From personal communication with a 

local anaesthetist it was felt that it would take some time for the increase in 

inspired O2 to result in an increase of oxygenation to the tissue and subtle 

changes in previously hypoxic retinas may take ten to fifteen minutes from the 

initial increase in inspired O2 . This may explain the increase observed in b- 

wave amplitude twelve minutes after mask removal, and may explain why 

they had not increased during inhalation as not enough time from breathing 

the O2 had elapsed.

B-wave implicit time did not appear to be affected by O2 inhalation in either 

group in this study. This was also found to be the case in previous work by 

our research group [Chiti 2001].

8.5 General Summary

This chapter aimed to investigate the effect of O2 inhalation upon retinal 

function in subjects with DM. This study does provide support for the 

suggestion of inner retinal hypoxia during dark adaptation in subjects with DM 

and visible background retinopathy since a significant increase in b-wave 

amplitude was found in subjects with BDR following O2 inhalation.
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9. INVESTIGATION OF THE OPTIMUM LIGHT LEVEL REQUIRED TO 

SUPPRESS THE ROD RESPONSE

9.1 Aim of the Study

It has been proposed by Arden [2001] that a reduction in rod activity, and thus 

lower metabolic demands, may avoid the rod driven hypoxia which could trigger 
the development of DR, see Chapter 4 section 4.4. The aim of this study was 

therefore to use electrophysiological techniques to investigate the amount of light 

required to suppress the rod response whilst mimicking conditions of sleep.

9.2 Preliminary Trials

In order to find a suitable technique to investigate the optimum light level required 

to suppress the rod response two preliminary trials were conducted. Firstly, 

stimulus duration and luminance required in order to gain a good rod response 

were investigated. Secondly, the techniques for the introduction of background 

illumination whilst mimicking conditions of sleep were investigated.

9.2.1 Stimulus Duration and Luminance

The use of a dim red stimulus in the dark adapted eye has been shown to 

produce a simultaneous ERG recording from the rods and cones, with a phase 

difference since the rods respond more slowly than the cones [Carr and Siegel 

1982]. The technique used in the current study was based on one previously 

employed by our group in the investigation of visual deficits in dyslexia [Greatrex 

and Drasdo 1998]. The original settings used for this are outlined in Table 9.1
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Parameter Setting

Time window (ms) 500

Low frequency filter (Hz) 1

High frequency filter (Hz) 100

Sensitivity (pV) 100

Number of Sweeps 8

Field Size Ganzfeld

Wavelength of Stimulation (nm) 655

Frequency of Stimulation (Hz) 1.3

Stimulus duration (ms) 400

Stimulus Luminance (cd.m'2) 1.3875, 2.41, 5.915

Table 9.1 Original settings for the cone-rod ERG.

In order to bring the settings outlined in Table 9.1 nearer to ISCEV 

recommendations for flash ERGs it was decided to investigate the use of a 5 ms 
flash. The luminance of the LEDS required to produce the above luminance 

levels for flash durations of both 5 ms and 400 ms were calculated and measured 

for the LED stimulator with a photometer. It was not possible to produce the 

highest of the three levels with the LED stimulator in Table 9.1 with the 5 ms 
flash duration.

Following twenty minutes of dark adaptation, a luminance-response series was 

produced with the two lowest stimulus intensities and 5 ms flash duration, and 
with three stimulus intensities and 400 ms flash duration. The LED stimulator was 

held directly over the eye. A four minute gap was given between the recordings 
at each luminance. It has been previously shown that the retinal sensitivity will 

return to baseline within this time and thus any adaptation effects avoided 
[Greatrex 1999]. An example of the traces is shown in Figure 9.1
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Cone
Response

Rod
Response

0.555cd.s.nrr2, 5ms flash 

0.964cd.s.nrr2, 5ms flash 

1.3875cd.nr2, 400ms flash 

2.41 cd.nrr2, 400ms flash 

5.915cd.nr2, 400ms flash

50 pV

20ms

Figure 9.1 Luminance-response series of the cone-rod ERG from a 24 year-old 

male subject with dilatated pupils.

As shown above the 400 ms flash did not provide as good a separation of the 

cone response and rod response as the 5 ms flash, which showed particularly 

good separation at the lower luminance level. In view of this, further luminance- 

response series were constructed at lower luminance levels for both the 5 ms 

and 400 ms flash on a small group of subjects. The stimulus intensities used are 

given in Table 9.2.

9.2.1.1 Method

Pupils were dilatated to a minimum of 6 mm diameter with 0.5% Tropicamide. 

Subjects were then dark-adapted for twenty minutes before recording the first 
response. A series of cone-rod ERGs were then recorded with the 5ms duration 

flash beginning with the lowest luminance level. This was then repeated with the
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400ms flash. Four minutes of dark adaptation were given between each ERG 
recording.

Luminance Level for 5msec Flash 

Duration (cd.s.m'2)
Onset Luminance Setting for 

400msec Flash Duration (cd.m'2)
0.022 0.1625

0.095 0.26

0.135 0.3675
0.175 0.47

0.264 -

Table 9.2 Stimulus intensities used to record the cone-rod ERG.

9.2.1.2 Subject Group

The subject group consisted of 7 healthy controls, 2 male, 5 female, aged 20-29 

years, mean age 24.1 years (SD ±3.1). The test eye was assigned at random.
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9.2.1.3 Results

The group averaged traces for the 5 ms and 400 ms flash are shown in Figures

9.2 and 9.3 respectively.

50(jV U
50ms

Figure 9.2 Group-averaged cone-rod ERGs, 5 ms flash duration.

50pV

u
50ms

Figure 9.3 Group-averaged cone-rod ERGS, 400 ms flash duration.
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9.2.1.4 Conclusion

The 5 ms flash duration proved to provide the best separation of the cone-rod 
response in all cases. It was also found to be subjectively much more 

comfortable for the subject than the 400 ms flash. It was therefore decided that 

the 5ms flash duration would be used on all subsequent investigations.

9.2.2 Recording the Cone Rod ERG Whilst Mimicking Conditions of Sleep 

and Introduction of Background Illumination

9.2.2.1 Investigation of Response Through Closed Eyelids

In order to mimic conditions of sleep it was decided that dilatation of the pupil 

would no longer be carried out for this experiment. It was also necessary for the 

stimulus to be presented to the eye through closed eyelids. Initial recordings 

through closed eyelids appeared to be very noisy making it almost impossible to 

view the desired signal. It was felt that this may be due to muscle activity in the 
eyelids whilst voluntarily trying to keep them gently closed. In order to avoid this, 

subjects were instructed to very gently hold down their upper eyelid with their 

finger towards the outer canthus and aiming to avoid unnecessary pressure on 

the eyeball. This proved effective in reducing the unwanted noise and a clear 

response could be obtained.

It has been estimated that approximately 5-10% of red light is transmitted 

through the eyelids [Mosely et al 1988, Ando and Kripke 1996]. In view of this it 

was felt that the luminance may need to be increased in order to produce a good 

response. This did not prove to be the case in initial trials on three subjects and 
good separation of the cone and rod components was apparent even at the lower 

luminance levels, as shown in Figure 9.4.
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Cone Rod 
Response Response

0.264cd.s.nrr2, 5ms flash

0.095cd.s.rrr2, 5ms flash

0.175cd.s.rrr2, 5ms flash

0.620cd.s.rrr2, 5ms flash

20pV

100ms

Figure 9.4 Luminance-response series for 5 ms flash from a 48 year-old female 

subject through closed eyelids and without pupil dilation.

9.2.2.2 Introduction of Background Illumination

9.2.2.2.1 Equipment Used

From the previous experiment it can be seen that a well-defined cone-rod 

response can be obtained with the 5 ms flash duration in closed eyes with natural 

pupils, and the best separation was apparent with a stimulus intensity of 0.264 

cd.s.m'2.

The aim of this experiment was to determine the lowest level of background 

illumination necessary to reduce or eliminate the rod response. In order to 

investigate the levels of diffuse background light required to saturate or 

significantly reduce rod activity, an angle poise lamp, fitted with a diffusing 
screen, was placed behind the LED stimulator, as shown in Figure 9.5. In order 

to prevent the LED stimulator blocking background light from the lamp it was
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necessary for the LED stimulator to be held 5 cm in front of the subjects’ eyelid 

rather than directly over the eyelid. The luminance of the flash was adjusted to 

provide equivalent stimulus luminance at 5 cm from the eye and this was found 

to be true at stimulus intensity 1.21 cd.s.rrf2.

The angle poise was then placed behind the LED stimulator at a distance of 

approximately 70 cm from the subjects’ eye. The illuminance from the angle 

poise was then reduced by means of a combination of 0.3, 0.6 and 0.9 neutral 

density filters placed over the diffusing screen. This provided a range of 

illuminance between approximately 0.8 and 30 lux.

Angle Poise Lamp ND Filters LED Stimulator
Fitted With Diffusing

70cm

Figure 9.5 Equipment set up to investigate the effect of background illumination 

on the rod response.

5cm
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92.2.2.2 Method of ERG Recording

Following twenty minutes dark adaptation a cone-rod response was obtained 
with the stimulator at a distance of 5 cm from the subjects’ eye, stimulus 

luminance of 1.21 cd.s.m'2, and no background illumination. The lowest level of 
background illumination was then introduced and the subject was allowed to 

adapt to this light level, with eyes still closed, for five minutes. A second 

response was then recorded. The background illumination was then increased 

and again five minutes allowed for light adaptation. This procedure was repeated 

with increasing levels of background illumination until the rod response had been 

eliminated or a level of 30 lux had been reached.

9.2.2.2.3 Subject Group

The subject group consisted of 7 healthy controls, 1 male and 6 female, with no 
history of ocular disease. Ages ranged from 24-48 years and the mean age was 

29 years (SD ±8.9). The test eye was assigned at random.

9.2.2.2.4 Results

A background illumination level of 30 lux or less was sufficient to saturate or 
significantly reduce the rod response in all subjects, whilst leaving the cone 

response intact, though results within the group are widely variable. One subject 

showed rod suppression with as little as 0.8 lux. Two showed suppression at 4 

lux, two at 14 lux, one at 30 lux and another only a significant reduction, but not 
full suppression, at 30 lux.

An example of the cone-rod responses is shown in Figure 9.6.

176



Investigation of the Optimum Light Level Required to Suppress the Rod Response

0 lux

0.8 lux

1 lux

4 lux

14 lux

Cone Rod Response
Response Eliminated

IOOjliV

100ms

Figure 9.6 Cone-rod ERGs recorded from a 24 year-old female subject with 

increasing background illumination. Level of background illumination is given 

beside each trace.

9.2.2.2.4 Discussion

Good separation of the cone and rod responses was obtained using the 

technique described through closed eyelids and with natural pupils. A 

background illumination level of 30 lux or less was sufficient to saturate or 

significantly reduce the rod response, whilst leaving the cone response intact.

However, the results within the group were widely variable and it was felt that this 

may in part be due to the equipment used. Difficulties arose in keeping the
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angle-poise lamp at an exact distance of 70 cm from the patient. Moreover, it 

was unlikely that the LED stimulator remained at exactly 5 cm from the subjects’ 
eye for each recording. In view of this it was decided that employing the LED 
stimulator to produce the background illumination and the stimulus 

simultaneously would be preferable. This also provided an opportunity to alter 

the wavelength of the background illumination. It was decided that the green 

LED may provide the best background for these recordings since white light may 

attenuate both the rod and the cone response more than green light, and 

therefore not be able to show as clear a depression of the rod response as the 
background illumination increased. The settings on the LED stimulator allowed 

provision of a good range of illuminance at the eyelid, as well as a completely 

dark-adapted response.

Initial recordings on control subjects showed less variable responses with the 

green background and the highest stimulus intensity setting on inspection of the 
traces. The final settings for the cone-rod ERG are given in Table 9.3.
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Parameter Setting

Time window (ms) 500

Low frequency filter (Hz) 1

High frequency filter (Hz) 100

Sensitivity (pV) 100

Number of Sweeps 24

Field Size Ganzfeld

Peak Wavelength of Stimulation (nm) 655

Frequency of Stimulation (Hz) 1.3

Stimulus duration (ms) 5

Stimulus Flash Luminance Setting 

(cd.s.m2)

1.21

Peak Wavelength of Background 

(nm)

515

Illuminance Levels at Eyelid (lux) 0, 0.7, 3.4, 15.1, 62.4

Table 9.3 Final settings for recording the cone-rod ERG.

9.3 Final Protocol

Subjects were dark-adapted for thirty minutes. Initially some subjects showed no 

definite cone-rod response after twenty minutes of dark adaptation and it was felt 

that a further ten minutes of dark adaptation may improve this.

Cone-rod ERGs were then recorded as outlined in Table 9.3. A total of thirty-two 

flashes were recorded as four groups of eight on separate channels. Signal to 
noise ratio often proved variable and therefore three sets were chosen and 

averaged off-line. Responses were recorded through closed eyelids, with natural 

pupils, with the subject gently holding shut the upper lid as previously described.
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Subjects were then adapted to the lowest intensity background for five minutes 

before recording the next response. This was repeated for each of the 

subsequent backgrounds in ascending order of intensity.

9.3.1 Subject Group

9.3.1.1 Control Subjects

This group consisted of 11 healthy controls, 7 female and 4 male, with no history 

of ocular disease. Ages ranged from 39-72 years, mean age 54.8 years (SD 

±10.0). The test eye was assigned at random.

9.3.1.2 Subjects with DM

This group consisted of 10 subjects with Type 2 DM, 4 female and 6 male with no 

visible retinopathy. Ages ranged from 57-72 years, mean age 65.3 years (SD 

±5.2 ). Disease duration ranged from 2.5-12 years, mean duration 6.4 years (SD 

±3.0 ). The test eye was assigned at random.

9.3.2 Results

The individual and group averaged rod b-wave amplitudes are given in Table 9.4 

and can be seen in Figures 9.7 and 9.8.

Within the NDR group subjects showed a mean reduction in rod b-wave 

amplitude from their fully dark-adapted response of 34% (±10.8) at 0.7 lux, 57% 

(±10.2) at 3.4 lux, 72% (±10.6) at 15.1 lux and 97% (±3.0) at 62.4 lux. As can be 
seen in Figure 9.7 results within the group were again quite variable. Subject 

DM1 was the only subject with DM to show full rod suppression at just 3.4 lux. All 

subjects, except DM3 and DM4, showed a significant reduction in rod response 

at 3.4 lux. Subject DM2 also appeared to show full rod suppression at 3.4 lux
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however a small rod response can be observed again at 15.1 lux. Three more 

subjects, DM6, DM8 and DM9 showed full suppression at 15.1 lux and all bar 
one subject, DM10, showed full suppression at 62.4 lux.

As can be seen in the group averaged trace it would appear that 3.4 lux is 

enough to significantly reduce the rod response in the subjects with DM, where it 

is less than half the amplitude of the fully dark-adapted response. This is 

supported by the results of a RM ANOVA where a significant change with 

background illumination was found, p<0.001. Bonferroni pairwise comparisons 

found that the reduction at 0.7 lux of background illumination was not statistically 

significant, p=0.126, however the further reduction in rod b-wave amplitude with

3.4 lux, 15.1 lux and 62.4 lux were all found to be statistically significant, 
p=0.004, p=0.001 and p<0.001 respectively.

Any correlation between the fully dark-adapted rod b-wave amplitude and the 

duration of DM was assessed using Pearson’s correlation, and none was found, 

r= -0.001, p=0.998. Any correlation with age was also assessed and again none 
was found, r=0.218, p=0.545. Also the amount of light required to suppress the 

rod response was not found to correlate with either duration of DM, r=0.506, 

p=0.165, or with age, r=0.302, p=0.429.

In general, the rod response appeared to saturate with lower levels of 

background illumination in the control group than the NDR group. Within the 
control group subjects showed a mean reduction in rod b-wave amplitude from 

their fully dark-adapted response of 39% (±12.3) at 0.7 lux, 84% (±4.8) at 3.4 lux, 

97% (±2.1) at 15.1 lux and 98% (±2.3%) at 62.4 lux. One subject, C6 showed full 

rod suppression with as little as 0.7 lux. A further 5 subjects, C2, C3, C4, C6 and 
C10 showed full suppression at 3.4 lux. Those remaining all showed a greater 

than 60% reduction in their rod b-wave amplitude at this level. At 15.1 lux only 

two subjects, C7 and C8, still had some rod response remaining though both
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showed a greater than 80% reduction in amplitude and at 62.4 lux only C7 had a 

small rod response remaining.

As with the NDR group 3.4 lux appears to be sufficient in either suppressing or 

significantly reducing the rod response. Again this is supported by the results of 
a RM ANOVA where a significant reduction in rod b-wave amplitude with 

increasing background illumination was found, p<0.001. Significant reductions in 
rod b-wave amplitude were found with 3.4 lux, 15.1 lux and 62.4 lux, p<0.001 in 

all 3 cases.

Again no correlation was found between the subjects age and the amplitude of 

the fully dark-adapted b-wave using Pearson’s correlation, r= -0.379, p=0.263. 

The amount of light required to suppress the rod response was also found not to 
correlate with age, r=-0.497, p=0.143.

There was no significant difference in amplitude between the groups at any light 

level, p>0.05 (Bonferroni pairwise comparisons).

In summary, a light level of 3.4 lux at the closed eyelid appears to be sufficient in 

significantly reducing the rod response in all subjects.
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Subject Age (yrs) Disease Rod b-wave amplitudes (pV)

Duration

(yrs)

0 lux 0.7 lux 3.4 lux 15.1 lux 62.4 lux

DM1 72 3 36.2 20.8 0 0 0

DM2 63 2.5 15.9 8.64 0 2.19 0

DM3 61 10 15.4 18.9 13.9 11.8 0

DM4 72 7 12.5 14.5 10.9 9.28 0

DM5 66 7 9.43 9.26 6.32 6.97 0

DM6 60 4 11.4 5.87 2.28 0 0

DM7 68 7 14.7 5.67 6.62 3.6 0

DM8 64 5 26.7 16.9 15.1 0 0

DM9 57 12 32.1 12.5 12 0 0

DM10 70 6 47 10.5 13.9 9.23 13.9

Group 65.3 6.4 22.1 12.4 8.1 4.3 1.4

Mean

(±SE)

(±1.6) (±0.9) (±4.0) (±1.7) (±1-9) (±1.5) (±1.4)

C1 55 NA 24.6 6.95 7.76 0 0

C2 41 NA 18.9 18.8 0 0 0

C3 63 NA 9.17 6.19 0 0 0

C4 62 NA 8.34 8.31 0 0 0

C5 72 NA 15.2 21.1 4.45 0 0

C6 64 NA 14.9 0 0 0 0

C7 55 NA 23.6 10 5.53 4 .28 6.03

C8 39 NA 29.3 23.6 10.5 4.8 0

C9 51 NA 36.2 15.3 12.8 0 0

C10 51 NA 12.6 6.15 0 0 0

C11 50 NA 78.3 17.6 16.7 0 0

Group 54.8 NA 24.6 12.2 5.2 0.8 0.5

Mean
(±SE)

(±3.0) (±6.0) (±2.3) (±1.8) (±0.6) (±0.5)

Table 9.4 Rod b-wave amplitudes with increasing levels of background 

illumination.
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Figure 9.7 Individual and group-averaged cone-rod ERGs from subjects with NDR with increasing background illumination

Investigation 
of 

the 
O

ptim
um

 
Light 

Level R
equired 

to 
Suppress 

the 
Rod 

R
espo

nse



20(jV ^__

50ms
62.4IUX

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

G A v

0.7luxOlux 3.4lux 15.1lux

Figure 9.8 Individual and group-averaged cone-rod ERGs from control subjects with increasing background illumination
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9.3.3 Discussion

A light level of 3.4 lux on a closed eyelid appears to be sufficient to significantly 
reduce the rod response in all subjects. This light level corresponds to a stimulus 

luminance of 2.41 cd.m'2 for the LED stimulator. This finding is consistent with 
previous work by Arden [2001] which suggests that if people with diabetes were 

to sleep in light levels of 1-10 cd.m'2 sufficient light would pass through the 

eyelids to potentially protect against the development of DR by significantly 

reducing the O2 consumption of the rod photoreceptors.

It is interesting to note that the two subjects with DM who showed the earliest full 

rod suppression with just 3.4 lux also had the smallest disease duration within the 

group.

As can be seen from Figures 9.7 and 9.8 responses within each group were quite 

variable. This may be expected since the amount of light reaching the retina 

would be affected by variations in the following factors:
1. Pupil size through closed lids.
2. Pigmentation variation in the skin. All subjects were Caucasian.

3. Eyelid thickness.

4. Any rotation of the eye with Bells phenomenon through closed lids.

5. Subjects may have blocked their pupil area with their finger.

However, from this study it is clear that low levels of background illumination are 

sufficient in significantly reducing the rod b-wave in all subjects, and it is 
assumed that this corresponds to a significant reduction in O2 consumption within 

the retina. If it were to be recommended that subjects with DM were to sleep in 

these light levels in order to prevent progression or delay the onset of DR, it is 

necessary that other physiological consequences of this are fully understood.
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It has been suggested that light exposure at night within the first two years of life 

may be a causal factor in the development of myopia. Quinn et al [1999] 

reported a strong association between ambient light exposure during sleep at 

night, and that the relationship between refraction and night-time light was dose- 

dependent, in a group of 479 children attending an out-patients ophthalmology 

clinic. This study, however, did not control for parental myopia and many studies 

since have shown no link between light exposure at night and myopia 

development [Zadnik et al 2000, Gwiazda et al 2000, Saw et al 2001, Saw et al 

2002, Guggenheim et al 2003].

A recent study in Japan found that alternating-shift work is a significant 

independent risk-factor the development of diabetes mellitus [Suwazono et al 

2006]. Increased incidence of high blood pressure, sleep disorders and stress 

have also been reported in night-shift and alternating-shift workers when 

compared to day-shift workers [Boggild and Knutsson 1999, Knutsson 2003].

Melatonin is secreted by the pineal gland and its secretion is known to peak 

during the night. Exposure to light at night has been shown to suppress the 

production of melatonin [McIntyre et al 1989b, Reiter 1991]. Melatonin is known 

to have oncostatic actions and the most prominent mechanisms proposed to 

explain this are its antimiotic and antioxidant activity [Brzezinski 1997], as well as 

potential modulations of some cell cycle lengths [Mediavilla et al 1999].

Blask et al [1999] also described circadian stage-dependent interactions between 

melatonin and fatty acid metabolism which have been associated with inhibition 

of carcinogenic tumour growth in rats. It has been proposed that exposure to 

light at night may not only reduce the oncostatic actions of melatonin by its 
reduced production, but may increase the risk of breast cancer in women. The 

decrease in melatonin production led to a rise in levels of reproductive hormones 
such as oestrogens, thereby stimulating the growth of hormone-sensitive tumours 

in the breast [Davis et al 2001]. Observational studies using night-shift work as a
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surrogate for light at night show fairly strong evidence for a relationship between 

this and breast cancer risk [Tynes et al 1996, Davis et al 2001, Schernhammer 

and Schulmeister 2004a,b]. A later study however found no association between 
night shift work and an increased risk of breast cancer amongst a group of 

women in Long Island, USA. Interestingly though they did find an increased risk 

in those women who reported rising frequently during the week and turning on 

lights multiple times during the night [O’Leary et al 2006].

Exposure to light at night may also increase the risk of other cancers within the 

body. A significantly elevated risk of colorectal cancer has also been reported in 

a group of female nurses who had worked for more than fifteen years on rotating 

night shifts than those who had never worked on a rotating shift [Schernhammer 

et al 2003].

This study has shown that a light level of 3.4 lux is sufficient to significantly 

reduce the rod response. This level of light would not be sufficient to suppress 

the release of melatonin which requires levels of 350 lux or greater [McIntyre et al 

1989a, Mayeda et al 1998]. It has also been shown that short wavelength light 

has the greatest effect on suppression of melatonin [Thapan et al 2001, Wright 
and Lack 2001].

If sleeping under low levels of background illumination were to be recommended 
to subjects with DM, it is important that all the physiological and psychological 

consequences of this are fully understood. Possible intermittent illumination for 

short periods during the night, or illumination only on a few nights a week could 
be investigated as potential treatment, but it is clear that further research into the 

effects of this is required.
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9.4 General Summary

A background illumination level of 3.4 lux was sufficient in significantly reducing 

the rod response in all subjects, which is believed to correspond to a significant 

reduction in O2 consumption within the retina. As it is hypothesised that hypoxia 
triggers the development of DR, sleeping under low levels of background 

illumination may be beneficial for subjects with DM by delaying the development, 

or slowing the progression of DR. However, since light exposure at night may 

have other detrimental physiological and psychological consequences, further 

investigation is required before this could be recommended as a treatment for 

subjects with DM.
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10. INVESTIGATION OF OCULAR BLOOD FLOW FOLLOWING LIGHT AND
DARK ADAPTATION

10.1 Aim of the Study

In normal healthy subjects retinal blood flow is known to increase in scotopic 
conditions (see Chapter 4, section 4.5.1), but it is not known if this is also true in 

subjects with DM. The original aim of this study was to assess the effects of light 

and dark adaptation on retinal and ocular blood flow directly using the Heidelberg 

Retinal Flowmeter (HRF) and pulsatile ocular blood flow (POBF) respectively, 

and indirectly by recording photopic and scotopic OPs, in both control subjects 

and subjects with DM and no visible retinopathy. Unfortunately it was not 
possible to measure retinal blood flow by means of the HRF due to persistent 

equipment failure.

10.2 Preliminary Trial

POBF reflects a combination of retinal and choroidal blood flow, predominantly 

the choroidal blood flow which is responsible for 85% of the total blood flow 

[Langham et al 1989]. Pulsatile variation in IOP is due to the systolic bolus of 

blood entering the choroidal circulation. The OBF system (OBF Labs, UK) 
measures this pulsatile component of ocular blood flow. The IOP is monitored 

continuously and the pressure pulse wave form recorded by a modified 

pneumotonometer. This waveform is then converted to a volume pulse by a 
computerised system.

10.2.1 Repeatability of POBF Measurements

Since more than one measure of POBF would be recorded it was first necessary 

to determine whether or not it was repeatable over consecutive measurements.
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10.2.1.1 Subject Group

The subject group consisted of 9 healthy controls, 3 female and 6 male, with no 

history of ocular disease. Ages ranged from 21-63 years, mean age 31 years 
(±13.5 SD). The test eye was assigned at random.

10.2.1.2 Method

POBF was measured using the Langham OBF Tonometer (OBF Labs, UK) 

subsequent to the cornea being anesthetised with 0.5% proxymetacaine. 

Measurements were carried out by a single trained optometrist and the integrity 
of the cornea checked following recordings with the instillation of 0.25% 
fluorescein sodium stain.

Subjects were instructed to sit for five minutes before measurements 

commenced to reduce the effects of any changes in blood pressure following 

exercise [Lanzi et al 1996]. POBF was then recorded in normal room light 

conditions at time 0 min, 2 min, 7 min and 17 min.

10.2.1.3 Results

Time (min) 0 2 7 17

Mean POBF (pl/min) 
(±SE)

818.8
(±104.6)

823.9
(±97.2)

764.4
(±92.9)

801.0
(±97.3)

Table 10.1 Repeatability measurements of POBF overtime.

RM ANOVA found no significant change in POBF over time, p=0.132.
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10.2.1.4 Conclusion

The measurements of POBF were found to be repeatable over time. This is in 
agreement with previous work where POBF measurement with the OBF 

tonometer has proven to be a repeatable, reliable technique [Spraul et al 1995, 
Massey et al 1996, Yang 1997].

10.3 Final Protocol

• Pupils dilatated to a minimum of 5.5 mm diameter with 1 drop of 1% 

Tropicamide.

• Subjects were light adapted using the LED stimulator to a white light, 

intensity 1090 cd.m'2for five minutes

• Photopic OPs recorded monocularly to four white flashes, intensity 3 
cd.s.m'2, 3 ms duration at 1.5 s intervals (ISCEV standard).

• POBF was recorded once in the same eye using the POBF tonometer 

(OBF Labs UK Ltd) and a hand-held adaptor.

• Subjects were then dark adapted for twenty minutes.

• POBF recorded again with the use of long wavelength dim illumination.

• Scotopic OPs were recorded monocularly to six white flashes, 3 cd.s.m'2, 

3 ms duration at 15 s intervals (ISCEV standard), with the first two flashes 
treated as conditioning flashes.

• Subjects were then light adapted again to a white background, intensity 
1090 cd.m'2, for five minutes.

• Photopic OPs and POBF measurements repeated.

• Plasma glucose levels were recorded at the end of the visit.
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10.3.1 Subject Groups

10.3.1.1 Control Subjects

This group consisted of 7 healthy, age-matched control subjects, 4 female and 3 

male, with no history of ocular disease. Ages ranged from 49-72 years, mean 

age 61 years (SD ±10.2). The test eye was assigned at random.

10.3.1.2 Subjects with DM

This group consisted of 9 subjects with Type 2 DM, 2 female and 7 male, with no 

visible retinopathy. Ages ranged from 56-74 years, mean age 65 years (SD 

±5.2). Disease duration ranged from 3-18 years, mean duration 8.4 years (SD 
±6 .0 ).

There was no significant difference in age between the groups, p=0.381.

10.3.2 Results

10.3.2.1 POBF Results

The mean POBF was greater in the DM group than the controls, but not 

significantly so, p>0.05.

POBF showed an increase of 9.1% following dark adaptation in the control 
group, and a further increase of 2.1% following re-light adaptation. These 

changes were not significant, p=0.081 RM ANOVA, see Figure 10.1 and Table 
10.2 .

It was only possible to record POBF in six of the nine subjects with DM. In these 

subjects, POBF showed a similar increase of 10.9% following dark adaptation,
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but also decreased by 10.4% following re-light adaptation. Again, these changes 

were not significant, p=0.448 RM ANOVA, see Figure 10.1 and Table 10.2.

There was no significant difference in POBF between the two groups at any of 

the three time points, p>0.05.

In subjects with DM no correlation was found between baseline POBF and age, 

r=-0.070, p=0.895, or between baseline POBF and plasma glucose level, 

r=0.143, p=0.787. However, a significant positive correlation was found between 

POBF and disease duration, r=0.986, p<0.01, see Figure 10.2.
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Group POBF Light (pl/min) POBF Dark (pl/min) POBF Light (pl/min)
(±SE) (±SE) (±SE)

Control 777.9 849.0 866.4
(±95.0) (±78.0) (±91.6)

NDR 881.9 978.0 876.5
(±118.8) (±109.5) (±110.5)

Table 10.2 POBF results following light and dark adaptation.
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Figure 10.1 POBF results following light and dark adaptation.
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Figure 10.2 Relationship between POBF and duration of DM.
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10.3.2.2 OP Results

OPs showed an increase in summed OP amplitude of 4% following dark 
adaptation in the control group. They then decreased by 9.3% following re-light 

adaptation, however these changes were not statistically significant, p=0.877 RM 
ANOVA, see Figures 10.3, 10.5 and Table 10.3.

In subjects with DM a greater increase in summed OP amplitude of 22.6% 

following dark adaptation was found. They too decreased following re-light 
adaptation by 31%, see Figures 10.4, 10.5 and Table 10.4. These changes were 

found to be significant, p=0.012 RM ANOVA. Bonferroni pairwise comparisons 

found no significant increase in summed OP amplitude from photopic to scotopic 

conditions p=0.314, though found the decrease in amplitude from scotopic back 
to photopic conditions statistically significant, p=0.036.

There was no significant difference in amplitude between the two groups at any 

of the three time points, p>0.05 (Bonferroni pairwise comparisons).

In subjects with DM no significant correlation was found between either the 

scotopic or photopic amplitudes with POBF, age, plasma glucose level or 

disease duration, p>0.05.
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Photopic 1

Scotopic

Photopic 2

15ms

Figure 10.3 Group averaged summed OP amplitudes in the control group.
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Figure 10.4 Group averaged summed OP amplitudes in subjects with DM.
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Group Summed OP Amp 

Light (pV) 
(±SE)

Summed OP Amp 

Dark (pV) 
(±SE)

Summed OP Amp 

Light (pV) 
(±SE)

Control 129.4 134.5 122.0
(±5.3) (±20.6) (±8.9)

NDR 120.1 147.2 101.6
(±10.0) (±15.2) (±9.7)

Table 10.3 Summed OP amplitudes following light and dark adaptation.

ir

■  Control

■  NDR

Light Dark Light

Figure 10.5 Summed OP amplitudes following light and dark adaptation.
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10.3.3 Discussion

POBF showed no significant change in either group between conditions of light 
and dark. POBF was found to be larger in scotopic conditions and decrease 

following light adaptation in the NDR group, a pattern similar to that found with 

the OPs, though these changes were not significant. POBF is thought to reflect 
both the choroidal and retinal circulation. Previous studies have shown that 

choroidal flow decreases following dark adaptation in control subjects and returns 

to normal following six to ten minutes of light adaptation [Longo et al 2000, 

Fuchsjager-Maryl et al 2001]. The non-significant increase observed in POBF 

under scotopic conditions may therefore suggest an increase in retinal rather 
than choroidal blood flow.

As expected scotopic OPs were found to be larger than photopic OPs and 

significantly so in the NDR group. This is primarily due to the increased rod 

contribution under scotopic conditions but may also indirectly reflect an increase 

in inner retinal flow during conditions of darkness, potentially due to an increase 
in O2 demand of the photoreceptors.

10.4 General Summary

From this study it appears that ocular blood flow may increase in the dark in 

subjects with DM and no visible retinopathy, however the small number of 
subjects make it difficult to draw any definite conclusions. Further study of the 

retinal blood flow in subjects with DM is required, potentially using Laser Doppler 

Flowmetry to gain a more direct measure of retinal blood flow under both 

photopic and scotopic conditions. Subjects with BDR were difficult to recruit for 
this investigation but it would be useful to extend this investigation to include 
them to see if there is any difference in response.
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11. GENERAL DISCUSSION. CONCLUSIONS AND FUTURE WORK

11.1 General Discussion

The first aim of this study was to use the ERG in order to gain an objective 

measure of retinal function in subjects with DM. Diabetic retinopathy is the 

major cause of registerable blindness in the working population in Western 

countries [Evans 1996]. It has been proposed that in DM a sub-clinical level 

of tissue hypoxia is present within the retina prior to the development of DR 

[Arend et al 1991, Linsenmeier et al 1998] and it is believed that this hypoxia 

may be a causal factor in the development of some functional visual defects in 

subjects with DM. Contrast sensitivity [Harris et al 1996], colour vision [Dean 

et al 1997] and summed OPs [Drasdo et al 2002] have all found to be reduced 

in subjects with DM with no or minimal retinopathy, and have been shown to 

be reversible with O2 inhalation.

There are thought to be approximately 115 million rods within the human 

retina which function at low light levels. They have a very high metabolic 

demand and, as such, have a markedly high level of O2 consumption. 

Autoregulation of retinal blood flow is little more than adequate to cope with 

the 0 2 demand of the normal retina during dark adaptation [Arden et al 1998] 

and, since subjects with DM are known to often have changes to their blood 

and capillary function, it seems likely that a sub-clinical tissue hypoxia may 

develop during darkness.

Chapters 7 and 8 investigated the effects of 0 2 inhalation upon the ERG 

following dark adaptation. If inner retinal hypoxia were present in subjects 

with DM following dark adaptation, this may be reflected by reduced OP 

amplitudes, thought to arise mainly from the amacrine cells of the inner retina 

[Holpigian et al 1992, Wachtmeister 1998], and by reduced b-wave 

amplitudes or delayed b-wave implicit times, believed to reflect the activity of 

the bipolar cells [Green et al 1995, Shiells and Falk 1999].
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In Chapter 7 no significant difference was found in either summed or 

individual OP amplitudes between subjects with DM, either with or without 

retinopathy, and the age-matched control group. Previous studies have 

shown reduced OP amplitudes in subjects with DM [Simonsen 1980, Moschos 

et al 1987, Van Der Torren and Van Lith 1989, Juen and Kieselbech 1990, 

Holopigian et al 1992, Drasdo et al 2002], however some other studies have 

shown no difference in OP amplitudes between subjects with DM and no 

visible retinopathy and age^matched controls [Wanger and Persson 1985,

Van Der Torren and Mulder 1993].

In this investigation higher mean summed OP amplitudes, though not 

significantly so, were found in the NDR group compared with the control group 

mean. This finding has been observed previously in a group of subjects with 

Type 1 DM with either NDR or mild BDR [Simonsen 1980], where it was found 

that the hypernormal oscillatory potential observed excluded the development 

of proliferative retinopathy within the next six to eight years.

No significant difference in OP implicit times was observed between control 

subjects and either of the diabetic subject groups, which has also been 

reported previously [Coupland 1985b, Wanger and Persson 1985, Holopigian 

et al 1992].

Summed OP amplitude did not increase significantly in subjects with NDR 

following O2 inhalation, which differs from the findings of Drasdo et al [2002]. 

This may be explained by the fact that 11 of the 23 subjects with NDR 

displayed summed OP amplitudes falling above the control group mean 

amplitude at baseline. This may suggest that these subjects were at less risk 

of developing retinopathy than those subjects with depressed OP amplitudes 

[Simenson 1980], and as such it may be presumed that the retinae may 

therefore be less hypoxic. In the Drasdo et al study [2002] the subject group 

exhibited initially depressed OP amplitudes which suggests that this group of 

subjects were more at risk of developing retinopathy and the retinae were in a 

more hypoxic state. If this were the case, a greater effect with O2 inhalation 

would be expected.
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O2 inhalation was not expected to affect the control group OP amplitudes 

since retinal autoregulation should compensate for the extra O2 by reducing 

retinal blood flow and this investigation found that they did not change 

significantly. In subjects with DM, where autoregulation has been found to be 

impaired, an increase in summed OP amplitude was expected as any inner 

retinal hypoxia is reduced. Subjects with BDR on average showed lower OP 

amplitudes compared with the control group but not significantly so. The 

results from this study may indirectly reflect a level of hypoxia within the 

retinae of subjects with DM, since OPs are known to reflect inner retinal 

function and summed OP amplitude increased significantly following O2 

inhalation in subjects with BDR. Also, OP3 amplitude, which is believed to 

have a more dominant rod contribution [Lachapelle et al 1983, Coupland 

1987a], significantly increased following O2 inhalation in subjects with NDR.

The amplitudes of OP1 and OP2 were found to increase significantly with O2 

inhalation in subjects with BDR. This may not have been expected since the 

earlier OPs are believed to be cone-dominated and the later OPs rod- 

dominated [Lachapelle et al 1983, Coupland et al 1987a, Janaky et al 1996], 

however this is subject to some controversy [Wang et al 2001].

In Chapter 8, no significant difference was observed in either b-wave 

amplitude or implicit time between subjects with DM, either with or without 

retinopathy, and the age-matched control group. Again results from previous 

studies are mixed. Some have shown reduced b-wave amplitudes [Juen and 

Kieselbach 1990, Papkostopoulos et al 1996] and delayed b-wave implicit 

times [Juen and Kieselbach 1990, Holopigian et al 1992] in subjects with DM 

and no or minimal BDR when compared to controls. Others have shown no 

difference in b-wave amplitude [Holopigian et al 1992] or implicit time 

[Papkostopoulos et al 1996] in subjects with DM and no or minimal BDR when 

compared to controls. In this investigation control subjects showed the 

highest b-wave amplitudes, followed by the NDR group with the BDR group 

showing the smallest amplitudes, however the difference in amplitudes of the 

diabetic groups were not significant.
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Following O2 inhalation, the greatest increase in b-wave amplitude was 

apparent in the BDR group, followed by the NDR group with the least effect 

visible in the control group. O2 inhalation was not expected to affect control 

group amplitudes since autoregulation should compensate for the extra O2 by 

reducing retinal blood flow. In subjects with DM, where autoregulation has 

been found to be impaired, the increase in b-wave amplitude may indicate 

that any inner retinal hypoxia was reduced. These results provide support for 

this hypothesis with the significant increase in b-wave amplitudes in those 

subjects with visible retinopathy.

Since it has been hypothesised that a rod-driven hypoxia may be a significant 

contributory causal factor in the development of DR [Arden at al 1998], and 

that subjects with DM may benefit from sleeping with night-time illumination 

[Arden et al 2006], the amount of background light required to saturate rod 

activity within the human retina was investigated. In Chapter 9, by means of a 

simultaneous cone-rod ERG, it was found that a light level of just 3.4 lux was 

sufficient in either saturating or significantly reducing the rod response in 

subjects with DM and no visible retinopathy. This level is consistent with 

previous work by Arden [2001] who suggests that if subjects with DM were to 

sleep in levels of 1-10 cd.m'2 sufficient light would pass through the eyelids to 

protect against the development of DR. This level of 3.4 lux is not sufficient to 

suppress the release of melatonin [McIntyre et al 1989a, Mayeda et al 1998] 

and therefore should not be associated with an increased risk of cancers 

which have been reported amongst night-shift workers [Tynes et al 1996,

Davis et al 2001, Schernhammer et al 2003, Schernhammer and 

Schulmeister 2004a,b,].

Retinal blood flow is known to increase in healthy subjects following dark 

adaptation which is thought to reflect the increased metabolic demands of the 

photoreceptors [Feke et al 1983, Riva et al 1983, Flavelius et al 1999]. 

Surprisingly choroidal blood flow has been shown to decrease in darkness 

[Longo et al 2000, Fuchsjager-Maryl et al 2001]. Chapter 10 aimed to 

investigate ocular blood flow following dark adaptation in subjects with DM.

As expected, scotopic OPs were found to be significantly larger than photopic
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OPs in subjects with DM and no visible retinopathy. POBF was also found to 

be larger in scotopic conditions than photopic but not significantly so and the 

increase observed was similar to that of the control subjects. Since POBF is 

thought to reflect both the choroidal and retinal circulation it is presumed that 

the increase observed in POBF is associated with an increase in retinal rather 

than choroidal blood flow.

11.2 Conclusions

Scotopic OPs and b-wave were not found to be significantly reduced in 

amplitude, or delayed in implicit time, in subjects with DM, both with and 

without retinopathy when compared to age-matched control subjects.

Both scotopic OP and b-wave amplitudes were found to increase significantly 

following O2 inhalation in subjects with DM and BDR, and OP3 in subjects 

with NDR, which lends support to the suggestion of inner retinal hypoxia 

during dark adaptation in these subjects.

A background illumination level of 3.4 lux is sufficient in saturating or 

significantly reducing rod activity in subjects with DM and no visible 

retinopathy.

Ocular blood flow appears to increase in subjects with DM in darkness, 

presumably due to the increased metabolic demand of the photoreceptors, 

however these changes were not found to be significant

11.3 Future Work

It may be interesting to investigate the effects of carbogen inhalation on 

scotopic OPs and b-waves in subjects with DM. As described hyperoxia is 

believed to significantly reduce blood flow in the human retina and this is 

believed to be secondary to vasoconstriction of the retinal vessels. It is 

thought that the addition of CO2 may reduce the vasoconstrictive effects of 

hyperoxia [Hickam and Frayser 1966], and as such a hyperoxic-hypercapnic
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gas mixture such as carbogen, usually 5% C 02 + 95% 0 2, may be more 

effective in oxygenating the retinal circulation than inhalation of 0 2 alone. A 

recent study found no change in a-wave or OP 1-4 amplitudes with 

hypercapnia however b-wave and OP5 amplitudes have been shown to 

decrease ten minutes after a ten minute carbogen inhalation period in normal 

subjects [Faucher and Kergoat 2002]. As yet the effects of carbogen 

inhalation on visual function in subjects with DM are unknown. It may be that 

it will produce the same effects as inhalation of 0 2 alone since subjects with 

DM have been shown to display a reduced vasoconstrictive response to 

hyperoxia when compared to control subjects [Grunwald et al 1984].

Previous work in monkeys has found that retinal oxygen consumption 

continues increasing with increasing dark adaptation for up to one hour 

[Stefansson et al 1983]. A review of the literature did not reveal a longer 

testing period than this. In subjects with DM, as the retinal oxygen 

consumption continues to increase, the retina itself is likely to become 

increasingly hypoxic. It is unknown exactly how long this would continue for. 

In this study, OP and b-wave measurements were taken following twenty 

minutes of dark adaptation and the findings of the above study would suggest 

that the retina continued to get more hypoxic beyond this time. It would be of 

interest to investigate whether or not this is the case with prolonged dark- 

adaptation over several hours, and OP or b-wave amplitudes may reflect 

signs of any increase in hypoxia during this time.

Chapter 9 investigated the optimum light level required to saturate the rod- 

response of the simultaneous cone-rod ERG in control subjects and DM 

subjects with no visible retinopathy. It would be interesting to extend this 

investigation to subjects with DM who have already developed visible 

retinopathy, which was not possible here due to problems with recruitment. 

Since rod function is known to be affected in DM it may be that a different 

amount of light is required as retinopathy progresses.

In Chapter 9 ERGs were recorded following just thirty minutes of dark 

adaptation. Following sleep, the retina may well be more hypoxic after much
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longer periods in the dark. It would also be of interest to investigate the 

amount of light required to suppress rod activity after a longer period of dark 

adaptation where presumably the retina is under a greater degree of hypoxic 

stress.

In Chapter 10 OP and POBF amplitudes were used to investigate retinal 

blood flow under photopic and scotopic conditions in subjects with DM. LDV 

investigations of retinal blood flow would be very useful in gaining a more 

direct measure of retinal blood flow under both photopic and scotopic 

conditions. Again, it would also be interesting to investigate whether this is 

affected by increased diabetic retinopathy.
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Subject Characteristics

Appendix 1

Subject Characteristics

This appendix contains the characteristics of the control subjects and subjects 

with DM who participated in this study.

Abbreviations used are as follows:

• NDR: diabetic subject with no retinopathy

• BDR: diabetic subject with background retinopathy

• Mgmt: management

• BP: blood pressure

• Ret: retinopathy

• M: male

• F: female

Management type is divided into the following categories:

• 1 = diet control

• 2 = oral hypoglycaemics

• 3 = insulin

• 4 = insulin + oral hypoglycaemics

Plasma glucose was recorded at both the Study One visit and the Study 

Three visit. They are reported as Study One result / Study Three result.

237



Subject Characteristics

1a: Control Subject Characteristics

Subject ID Gender Age (yrs)

JH F 49

MG F 79

GO M 80

CG M 71

DJ M 70

JC M 52

HC M 53

MC F 51

RW M 64

BA M 51

BV F 71

PH F 72

RB F 53

SS M 63

CS F 61

RC M 65

TH M 54

MB M 50

BH M 62

PG F 67

RM M 45

PG2 F 62

DJ2 M 64

LH F 53

PM M 41

RE M 63

RN F 51

SH F 49

Table A1.1 Control subject characteristics
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Subject Characteristics

1b: NDR Subject Characteristics

Subject

ID

Gender Age

(yrs)

Disease

Duration

(yrs)

Mgmt

Type

Systolic

BP

(mmHg)

Diastolic

BP

(mmHg)

Hbalc

(%)

Plasma

Glucose

(mmol/L)

JG M 65 5 2 - - - 10.6/10.8

HP M 55 12 2 - - - 7.6/8.0

CA M 70 7 1 130 76 7.1 6.8/7.1

AB M 64 1.5 2 115 69 7.1 5.215.2

AD M 61 1.5 1 142 82 5.9 5.6/-

TD M 72 10 2 152 76 5.9 12.4/8.3

RF M 55 18 3 157 77 6.5 10.8/12.2

CJ M 55 2 1 134 87 4.3 12.1/-

PG3 F 69 5 4 148 90 6.6 7.1/-

PD M 70 5 4 162 76 7.5 -/5.8

EC F 69 9 2 163 70 6.9 16.2/9.2

AJ M 56 6 2 163 101 6.2 6.9/6.9

SP F 62 4 1 150 83 7.1 9.8/10.0

PM M 56 11 2 154 94 8.5 9.2/15.5

GM F 53 5 2 107 63 6.8 -/6.8

PM2 M 62 18 4 136 84 7.3 15.6/13.3

JC2 M 64 5 4 153 97 7.7 6.3/6.1

CP M 55 8 1 119 79 5.9 6.5/5.9

HT M 72 3 1 106 60 6.7 8.2/9.8

JW F 59 3 1 130 53 6.2 -/5.8

AT F 61 10 3 122 80 10.2 -/17.8

SW F 59 14 3 144 85 6.4 10.3/6.5

WP M 66 3 2 140 89 5.7 6.716.2

RY M 64 6.5 4 - - - -/-

RC M 62 5 4 133 81 5.5 7.4/8.1

Table A1.2 NDR Subject Characteristics
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Subject Characteristics

1c: BDR Subject Characteristics

Subject

ID

Gender Age

(yrs)

Disease

Duration

(yrs)

Mgmt

Type

Systolic

BP

(mmHg)

Diastolic

BP

(mmHg)

Hbalc

(%)

Ret

Level

Plasma

Glucose

(mmol/L)

GL M 67 9 1 180 102 6.6 35 6.1/6.9

DJ3 M 64 18 4 150 85 6 14 -Z6.6

RG M 65 22 3 152 84 7.3 14 13.4/9.6

DJ4 M 62 6 1 137 90 5.6 14 5.7/4.9

WM M 72 16 4 141 65 8.1 43 16.3/12.9

RF2 M 55 10 4 142 87 8.5 43 11.2/11.4

JD F 57 18 4 - - 8.8 43 -/-

CD M 63 18 2 166 92 9.4 43 -/17.0

RS M 56 10 2 72 10 7.2 43 6.7/11.0

KB M 75 4 2 - - - 43 11.3/9.6

TJ M 58 8 2 - - - 43 -/9.8

GH M 75 21 3 - - - 43 8.9/-

RJ M 62 5 2 - - - 43 12.0/12.0

VB M 65 13 3 178 91 7.8 43 5.8/18.0

KW M 44 4 3 123 93 6.5 14 6.9/4.8

Table A1.3 BDR subject characteristics
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OP Measurements

Appendix 2 

OP Measurements

2a: Control Summed OP Amplitudes

Subject ID Baseline

(MV)

During 0 2 

(MV)

2min After 

(MV)

7min After 

(MV)

12min After 

(MV)

JH 106.2 105.7 132.0 111.9 123.6

MG 145.3 172.4 131.0 56.6 126.8

GO 113.7 109.6 125.4 121.2 97.1

DJ 89.7 81.5 89.8 84.5 93.2

JC 83.8 77.0 100.3 111.0 122.4

MC 176.5 129.6 194.4 177.2 178.0

RW 76.9 0 0 48.1 0

BA 192.8 196.9 252.4 231.2 248.2

BV 191.1 207.9 181.6 261.4 257.2

PH 57.6 0 50.2 56.0 65.3

CS 143.4 98.9 160.3 132.6 180.3

SS 132.3 113.2 117.1 110.7 121.6

TH 118.0 128.6 109.6 117.5 111.0

MB 114.8 148 164.9 153.2 164.3

BH 95.9 115.8 113.2 113.6 122.7

PG 201 210.6 220.6 230.9 223.1

RM 153.9 161.4 151 197.1 200.3

PG2 117.4 141.4 104.0 134.2 119.2

DJ2 124.9 100.5 131.7 104.0 111.3

LH 260.2 313.4 283.4 305.1 254.7

PM 84.2 101.0 141.6 140.5 138.7

Table A2.1 Control subject summed OP amplitudes with 5 minutes of O2 

inhalation.
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OP Measurements

2b: NDR Summed OP Amplitudes

Subject ID Baseline

(MV)

During 0 2 

(MV)

2min After 

(MV)

7min After 

(MV)

12min After 

(MV)

JG 120.5 108.4 133.1 164.4 167.4

HP 92.3 123.5 140.4 111.4 114.0

CA 188.6 137.0 182.9 209 207.2

TD 125.9 127.5 129.0 146.9 143.1

AB 105.7 103.8 125.2 117.7 121.4

AD 122.4 132.2 166.3 145.9 146.8

RF 188 162.2 175.1 178.9 187.1

CJ 159.9 178.4 157.5 163.9 231.8

PG3 247.3 256.6 258.1 258.3 288.7

EC 112.0 118.5 129.9 118.6 111.6

AJ 186.8 166.3 177.2 165.3 170.6

SP 95.6 117.6 147.3 138.4 155.6

PM2 134.2 139.0 163.9 153.6 160.4

PM3 226.9 208.1 202.6 237.5 256.2

JC2 91.5 134.4 177.4 143.9 146.7

CP 115.2 160.4 141.5 103.6 86.2

HT 160.4 170.3 209.7 205.5 231.0

JW 151.7 103.7 0 73.2 0

AT 254.4 232.9 259.2 299.2 304.6

SW 116.8 143.3 103.4 210.3 115.3

WP 72.3 78.8 74.3 92.7 89.3

RY 126.8 126.4 118 83.3 123.8

RC 161.7 195 269.7 254 256.5

Table A2.2 NDR subject summed OP amplitudes with 5 minutes of O2 

inhalation.
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Op Measurements

2c: BDR Summed OP Am plitudes

Subject ID Baseline

(MV)

During 0 2 

(MV)

2min After 

(MV)

7min After 

(MV)

12min After 

(MV)
GL 81.2 90.4 110.3 102.0 132.5

DJ3 176.6 149.2 149.5 98.5 131.5

RG 124.2 60.1 124.8 201.5 228.5

DJ4 115.4 107.6 141.6 125.3 100.2

WM 116.2 120.2 177.0 148.9 163.1

RF2 199.1 188.1 254.7 236.6 250

CD 39.5 32.5 66.6 41.2 71.6

RS 92.5 113.5 150.8 117.6 173.7

KB 120.8 120.1 129.6 130.5 165.9

TJ 145.4 189.9 194.6 232.2 206.5

GH 62.4 74.4 67 71.2 79.2

RJ 81.4 158.3 130.7 146.7 150.2

VB 69.8 115.3 72.6 83.8 71.0

KW 190.8 207.9 158.4 128.1 148.3

Table A2.3 BDR subject summed OP amplitudes with 5 minutes of 0 2 

inhalation.
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OP Measurements

2c: BDR Summed OP Amplitudes

Subject ID Baseline

(MV)

During 0 2 

(MV)

2min After 

(MV)

7min After 

(MV)

12min After 

(MV)

GL 81.2 90.4 110.3 102.0 132.5

DJ3 176.6 149.2 149.5 98.5 131.5

RG 124.2 60.1 124.8 201.5 228.5

DJ4 115.4 107.6 141.6 125.3 100.2

WM 116.2 120.2 177.0 148.9 163.1

RF2 199.1 188.1 254.7 236.6 250

CD 39.5 32.5 66.6 41.2 71.6

RS 92.5 113.5 150.8 117.6 173.7

KB 120.8 120.1 129.6 130.5 165.9

TJ 145.4 189.9 194.6 232.2 206.5

GH 62.4 74.4 67 71.2 79.2

RJ 81.4 158.3 130.7 146.7 150.2

VB 69.8 115.3 72.6 83.8 71.0

KW 190.8 207.9 158.4 128.1 148.3

Table A2.3 BDR subject summed OP amplitudes with 5 minutes of O2 

inhalation.
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OP Measurements

2d: Control Individual OP Amplitudes and Implicit Times 

OP1 = amplitude of OP1, OP2 = amplitude of OP2, IT1 = implicit time of OP1 

etc.

Subject

ID

Parameter Baseline During 0 2 2min After 7min After 12min

After

JH OP1 35.2 36.1 29.2 35.9 27.1

OP2 50.3 37.5 37.1 49.2 43.1

OP3 24.9 22.8 19.1 36.0 29.0

OP4 13.2 9.8 20.2 11.0 12.6

IT1 20 18.8 20 19.8 20

IT2 26.6 28.4 26 26.4 26.4

IT3 29.6 30.6 31 31 31.2

IT4 37.8 37 37.2 37.2 38.6

MG OP1 28.2 35.7 18.6 16.0 22.6

OP2 42.5 67.7 72 7.6 34.6

OP3 44.4 28.6 28.8 27.1 40.8

OP4 30.2 40.4 11.6 6.0 28.8

IT1 19.6 20 20.4 20.8 19.6

IT2 27.6 33.6 33.6 26.6 28.2

IT3 33 40 39.8 34 33.6

IT4 39.6 49 48.2 42 39.8

GO OP1 36.5 25.8 16.5 37.2 19.6

OP2 31.7 47.5 34.9 43.2 61.8

OP3 30.4 28 51.5 26.2 6.6

OP4 15.1 58.8 22.7 13.9 18.4

IT1 18.8 20 10.8 19.8 21.2

IT2 20 29.6 20.4 29.8 34.2

IT3 34.6 34 30 35 38.8

IT4 40 41 34.4 43.2 42

DJ OP1 6.9 16.2 10.1 6.3 9.0

OP2 26 20.0 25.7 23 25.8

OP3 41.3 29.7 34.8 37.0 32.6

OP4 15.5 15.5 19.2 18.2 25.8

IT1 14.6 14 16.6 16 14.6

IT2 19.6 19 21 20.2 19.6

IT3 27.4 27.2 29.2 29 28.6
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OP Measurements

IT4 34.8 31.8 32 32.6 32.6

JC OP1 17.1 13.1 18.7 23.7 24.6

OP2 36.2 32.3 47.9 55.2 58.2

OP3 10.4 10.4 10.2 13 15.7

OP4 20.1 21.3 23.5 19.1 26.9

IT1 21.8 21.2 20.8 20.6 20.4

IT2 34 33.2 32.8 32.6 32.6

IT3 39.4 39.2 39.4 38.8 39.6

IT4 45.2 45.6 46.4 43.8 46.4

MC OP1 33.1 28.5 34.2 32.5 32

OP2 65.5 43.5 64.8 66.8 65.7

OP3 47 29.2 59.2 45.4 52.1

OP4 30.9 28.4 36.2 32.5 28.2

IT1 19 19.2 20 19.8 19.4

IT2 25.8 26 26 26 25.8

IT3 32 32.4 32 32.2 32.2

IT4 40.2 39 39.4 39.2 39.2

RW OP1 17.3 0 0 13.4 0

OP2 34.1 0 0 10.0 0

OP3 16.7 0 0 17.8 0

OP4 8.8 0 0 7.0 0

IT1 23 - - 26 -

IT2 35.8 - - 34.4 -

IT3 41.4 - - 47.8 -

IT4 55.2 - - 54.2 -

BA OP1 28.5 24.0 41.1 32.6 28.5

OP2 74.9 82.3 98.6 85.3 103.6

OP3 50.7 50.4 67.8 70.8 70.1

OP4 38.7 39.9 44.9 42.5 46

IT1 19.6 20.2 19.2 20 19.4

IT2 28 27.6 27.6 26.8 26.8

IT3 33.2 33.2 33 32.4 32.6

IT4 40.6 39.8 39.8 40.6 40.6

BV OP1 41.7 49 37.2 48.8 45.8

OP2 65 69.6 68.2 96.8 109.7

OP3 56.4 63.1 50.1 79.1 76.1

OP4 28 26.2 26.1 36.7 25.6

IT1 19.4 19.6 19 19.4 19.4

IT2 28 27.8 27.6 27.4 27.2
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OP Measurements

IT3 33 32.8 32.8 32.8 32.6

IT4 38.8 38.4 39 38.8 39.2

PH OP1 10.7 0 9.5 7.9 11.5

OP2 14.8 0 13.5 13.1 22.4

OP3 15.0 0 12.6 17.6 14.5

OP4 17.2 0 14.5 17.5 16.9

IT1 22.6 0 19 22.6 22.2

IT2 31.4 0 35 29 30.6

IT3 37.4 0 39.4 38 36.8

IT4 45.2 0 44.8 44.2 46

CS OP1 21.8 17.3 20.2 21.9 26.9

OP2 51.6 31.6 60.7 48 64.1

OP3 43 26.9 50.1 35.1 55.9

OP4 27 23.1 29.3 27.6 33.4

IT1 20 19.6 20.6 20 20

IT2 26.6 26.6 26.2 26.2 26.2

IT3 33.2 32.6 32.8 32.6 32.8

IT4 40.4 41.2 40.4 39.8 41

SS OP1 23.8 18.6 25.2 24.6 20.7

OP2 45.4 45.8 44.2 42 48.5

OP3 49.9 42.8 38.2 34.8 48.4

OP4 13.2 6.0 9.5 93 4.0

IT1 19.8 19.4 19.8 20.6 22.4

IT2 27 27.4 26.6 27.2 27.8

IT3 34.2 34.2 33.6 34.4 34.8

IT4 42.4 39.2 40.6 42.8 38.4

TH OP1 39.9 38.9 38.8 44.1 40.4

OP2 35.4 33.0 30.5 31.2 29.6

OP3 33.9 31.4 28.4 27.1 27.5

OP4 8.9 25.3 11.9 15.1 13.5

IT1 18.8 19.4 19.2 19.4 19.6

IT2 24.4 26.2 26.4 26.6 26.4

IT3 30.4 30.2 31 31.2 31.2

IT4 38.4 34.6 37.2 37.4 38.4

MB OP1 22.0 28.2 30.7 24.9 30.7

OP2 43.1 47.4 57.4 47.5 54.3

OP3 30.4 38 48.1 46.4 49.3

OP4 19.3 34.4 28.7 34.4 30

IT1 19 18.6 19.2 19.2 19.2
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IT2 29.4 28.4 28.4 28.2 28.4

IT3 34.2 33 33.4 33.6 33.2

IT4 41 40.4 40.8 40.8 39.8

BH OP1 36.8 38.1 35.9 42 41.4

OP2 28.9 34.5 36.6 35.8 43.9

OP3 20.8 31.3 26.2 26.4 20.6

OP4 9.4 12.0 14.5 9.5 16.8

IT1 18.8 19.2 19.2 19.2 19

IT2 25.8 25.2 25.4 25.6 26

IT3 27.8 30.2 30.2 30.8 30.8

IT4 35 37.4 38.6 38 38.8

PG OP1 36.8 45 39.2 41.3 42.5

OP2 76.1 75.4 87.8 92.8 96.4

OP3 58.8 64 63.4 69.4 60.7

OP4 29.3 26.2 30.2 27.4 23.5

IT1 20 20 20 20 20.2

IT2 27.2 27.4 27.4 27.6 27.4

IT3 33.2 33.6 33.4 33.4 33.4

IT4 40.6 40.8 40.6 41 41

RM OP1 29.9 26.6 32.4 43.3 38

OP2 52.1 63.4 56.8 73.1 86.2

OP3 45.2 48.5 40.8 52.4 49

OP4 26.7 22.9 21 28.3 27.1

IT1 20.2 20.8 19.4 20 19.4

IT2 26.8 27.2 27.4 26 26.2

IT3 32.8 32.8 33.4 32.6 32.4

IT4 40 39.8 40.4 39.8 40.2

PG2 OP1 46.8 53 34.3 42.6 34.4

OP2 31.0 33.3 35.9 42.7 45.6

OP3 22.7 24.4 20.9 27.3 22.5

OP4 16.9 30.7 12.8 21.5 16.8

IT1 18.4 19.2 18.6 19.4 18.4

IT2 25.2 24.6 26.2 25 26.4

IT3 28.6 28.8 32.4 32.2 32

IT4 40 41.4 40.2 38.8 40

DJ2 OP1 33.5 24.0 29.2 28.2 31.3

OP2 50.3 48.4 55 40.3 46.1

OP3 31 23.4 34 23.6 23.7

OP4 10.1 4.7 13.5 11.8 10.2
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IT1 19.8 20.2 19.4 19.4 19.8

IT2 26.6 26.2 27 26.2 26.6

IT3 33.6 32.6 32.6 32.4 32

IT4 39.8 41.8 41 40.4 39

LH OP1 48.2 61.2 38.2 53.7 31.6

OP2 94.4 127.6 123.8 123.1 119.3

OP3 78.8 86.8 90.1 89.2 77.5

OP4 38.8 37.8 31.3 39.1 26.3

IT1 18.4 19.2 18.6 18.8 18

IT2 25.4 25.2 25.2 25 25.2

IT3 32 31.8 32 32.2 32.4

IT4 39 42 40.2 42.4 40.8

PM OP1 23.2 25.7 35.9 34.3 40.2

OP2 36.1 35.2 52.8 52.3 42.6

OP3 13.1 17.2 40.9 19.6 26.1

OP4 11.7 22.9 12.0 34.3 29.9

IT1 18.8 19.4 18.8 19.4 20.2

IT2 27.4 28 26.2 27 27.6

IT3 33.2 33 32.2 32.4 34

IT4 37.4 40 38.4 41.2 41.6

Table A2.4 Control subject individual OP amplitudes (pV) and implicit times 

(ms) with 5 minutes of O2 inhalation.
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OP Measurements

2e: NDR Individual OP Amplitudes and Implicit Times

Subject

ID

Parameter Baseline During 0 2 2min After 7min After 12min

After

JG OP1 32.4 30.9 29.9 40.6 41.5

OP2 47.6 35.2 60.6 53.4 54.1

OP3 25.7 25.5 31.4 41.6 47.7

OP4 14.9 16.8 11.2 28.8 24.1

IT1 20 19.6 19.8 19.6 20

IT2 27.6 28 28 28 31.6

IT3 33.4 34 33.6 34 34.6

IT4 38.4 40.6 40.2 40 41.2

HP OP1 28.9 30 35.7 25.8 29.9

OP2 44.2 41.4 37.8 31.4 33.5

OP3 7.8 28.5 39 33.8 29

OP4 11.4 23.5 27.9 20.5 21.6

IT1 20.2 19.2 19.6 19.6 19.4

IT2 28.8 27 28.2 26.4 26.4

IT3 36.8 31 31.8 31.6 32.2

IT4 38.4 37.6 37.8 37.2 38

CA OP1 36.4 33.9 33.2 38.2 38.7

OP2 39.8 17.1 19.1 32.4 27.0

OP3 24.0 40.2 34.3 33.7 39

OP4 21.2 14.5 17.2 20.9 13

IT1 19.8 19.8 19.6 20.2 20.6

IT2 30.6 26.2 28 28.4 28

IT3 33.8 32.8 33.6 34.8 33.8

IT4 41.2 42.6 40.2 40.8 42

TD OP1 28.8 27.4 38.3 22.2 26.6

OP2 39.6 43.4 45.1 53.8 46.3

OP3 32.5 39.3 56.8 45.6 45

OP4 21.5 22.1 26.1 24.3 28.9

IT1 18.8 18.8 19.2 20 19.4

IT2 26.4 26 26.6 26 26

IT3 31.2 31 31.6 31 31.4

IT4 37.8 37.2 38 37.4 38

AB OP1 30.4 32.1 28.4 30.4 30.1

OP2 37.4 38.8 46.5 53.8 53.3
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OP3 36.5 37.8 39.3 41.6 39.5

OP4 21.6 18.8 14.8 21.1 20.2

IT1 19.6 19.4 19.2 20.4 19.6

IT2 27.8 29 28.2 28.2 27.8

IT3 33.8 33.8 34.4 34.6 34

IT4 40.8 41 40.8 41.4 41.6

AD OP1 32.6 27.6 36.6 47.2 36.3

OP2 73.7 40.3 61.2 67.9 67.5

OP3 56 44 53.5 60.3 68.3

OP4 26.3 25.1 31.6 33.6 35.1

IT1 19.4 19.8 20.4 19.4 19.8

IT2 28.2 29.2 28.6 27.8 27.8

IT3 34.2 34.4 33.6 33.6 33.8

IT4 41.6 41.4 40.6 40.8 41.4

RF OP1 36.6 34.8 37 33.9 31.2

OP2 62.3 54.3 57.9 58 65.4

OP3 58.8 47.2 48 54.6 60.2

OP4 30.3 25.9 32.2 32.4 30.3

IT1 19 19.2 19.4 19.2 19.6

IT2 26.2 26 26.2 26.2 26.2

IT3 31.4 31.2 31.6 31.8 31.8

IT4 37 37.6 37.2 37.6 38.2

CJ OP1 39.6 39 35 32 56.3

OP2 50.4 61.2 57.5 52.7 80.3

OP3 47.9 60 42.8 51.7 67.4

OP4 22 18.2 22.2 27.5 27.8

IT1 20.6 20 20.4 21 20

IT2 27.6 28.6 28.6 28.2 27.8

IT3 35.2 34.6 35.2 34.4 35

IT4 43 44.6 43.8 42.6 43.6

PG3 OP1 38.5 39.4 40.9 38.5 43.6

OP2 98.7 96.6 103.7 111.2 123.1

OP3 77.7 89.4 81.6 79.7 96.2

OP4 32.4 31.2 31.9 28.9 25.8

IT1 20.4 20.2 20.4 20.2 20.4

IT2 27 26.6 26.8 26.6 27.2

IT3 32.6 32.4 32.6 32.4 32.4

IT4 39.6 39.4 40 39.8 39.8

EC OP1 24.5 30.3 24.4 26.9 18.7
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OP Measurements

OP2 38.0 35.3 49.4 42.3 40.8

OP3 28.6 31.1 37.4 31.4 33.8

OP4 20.6 21.8 18.8 18.0 18.4

IT1 19.6 19.4 19.4 19.8 20

IT2 28.4 28.2 28.4 28.2 28.4

IT3 33.6 33.8 33.8 33.8 33.8

IT4 39.6 40 40.8 41 40.4

AJ OP1 27.8 42.6 40.6 33.5 40

OP2 41.2 58.1 40.6 37.7 36.3

OP3 62.3 40.4 59 55.5 54.3

OP4 53.5 25.2 37 38.6 40

IT1 20.4 19.6 20 19 19.6

IT2 26.4 26.8 26.2 27.2 27.6

IT3 32.4 33.6 32.8 32.8 32.4

IT4 39.4 39.6 39.6 39.4 39.4

SP OP1 22.1 21.9 27.5 23.7 27.6

OP2 55.2 41.2 54.9 48.5 56.9

OP3 18.3 34.3 35.8 41 48.2

OP4 0 20.2 28.8 25.2 22.9

IT1 19.4 21 20 20 19.8

IT2 33.4 28 27.6 27.4 28.2

IT3 41.6 33.6 33.8 33.8 34.2

IT4 0 41.6 41.4 41.6 41.2

PM2 OP1 24.1 37.3 38.2 30.9 35.9

OP2 54.5 35.7 58.0 62.7 62

OP3 38 19.1 39.7 43 42.1

OP4 17.6 30.2 28.0 17.0 20.4

IT1 20.4 20 20.4 20 20.4

IT2 28.4 30.4 29 29.2 27.6

IT3 32.4 34.4 33.4 33.4 33.4

IT4 38.2 39.8 39.6 39.2 38.4

PM3 OP1 34.2 32.7 37.1 39.1 24

OP2 73.9 68 81.7 87.8 80

OP3 62.5 64.8 72.7 81.4 73.7

OP4 37.5 37.1 46 47.9 49.2

IT1 202 20.2 20.2 19.4 20.2

IT2 28 28.2 27.4 27 27.6

IT3 33.2 33.6 33.4 33 33.2

IT4 40 39.8 39.4 39.6 39.4
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JC2 OP1 16.4 18.1 24.7 16.9 20.6

OP2 20.9 31.8 44.4 36.8 44

OP3 26.5 49.9 67.1 49.3 41.5

OP4 27.8 35 41.2 40.9 40.6

IT1 21 20.6 21 21.2 21.2

IT2 29.6 30.4 29 29 28.6

IT3 35.8 34.6 34.8 35.4 34.8

IT4 41.4 41.4 42 42.6 42.4

CP OP1 17.4 33.3 24.2 24.6 18.9

OP2 61.1 72.6 51.9 41.2 32.3

OP3 29.6 26.9 30.5 27 21.6

OP4 7.0 27.6 3.9 10.7 13.5

IT1 20 19.4 21.6 21 20.8

IT2 30.2 29.8 30.6 30.4 31.6

IT3 35.2 34.6 34.8 35 35.2

IT4 42 39.8 40.8 39.6 41

HT OP1 42 31.7 45.4 50.7 58.2

OP2 56.6 71.9 79.4 76.6 94.3

OP3 40.5 46.6 60.5 68.3 53

OP4 21.3 20.1 24.4 9.9 25.5

IT1 20 20.8 19.6 19.6 19.2

IT2 28.4 27.6 27.4 26.6 27.4

IT3 34.2 33.8 33.8 33.4 33.6

IT4 41.2 42.2 42.6 39 43.2

JW OP1 41.6 24.4 0 30.4 0

OP2 45.2 27.2 0 19.0 0

OP3 34.7 35.3 0 23.8 0

OP4 30.4 16.7 0 0 0

IT1 18.6 19.2 0 18.8 0

IT2 28.8 28.6 0 26.6 0

IT3 33.2 34 0 29.6 0

IT4 40.6 40.4 0 0 0

AT OP1 44 43.5 56.5 49.2 64.1

OP2 96.8 97.2 103.1 121.2 132

OP3 78.8 62.7 68.1 84.1 73.4

OP4 34.8 29.5 31.5 44.7 35.1

IT1 18.4 18.6 19.2 19 18.6

IT2 27.8 27.4 27.6 27 26.6

IT3 33 33.4 33 33 33
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IT4 40.4 40.4 39.2 40 40.4

s w OP1 31.1 34 28.8 25.9 26.9

OP2 42.7 51.1 35.3 60 44.9

OP3 24.5 43 28.6 87.2 30.4

OP4 18.5 15.2 10.7 37.2 13.1

IT 1 20 19.8 19.8 15.8 20.2

IT2 26.8 26.2 27.2 19.4 27.6

IT3 32.4 33 32.8 31.8 33.8

IT4 40.6 40.6 38.8 39 40.4

WP OP1 16.0 18.7 18.3 25.7 14.2

OP2 29.5 33.7 26.6 33.8 43.0

OP3 19.9 20.1 19.1 19.0 19.2

OP4 7.0 6.4 10.3 14.3 13

IT1 20.4 19 19.6 20.2 19.6

IT2 29.4 29.2 29 29 29.2

IT3 33 33.6 34 33.8 33.2

IT4 41.4 40.6 42.6 41 40.4

RY OP1 36.4 36.5 21.5 19.0 43.3

OP2 35.5 44.6 42.2 31.8 40.5

OP3 27.5 19.0 36 27.4 21.6

OP4 27.5 26.3 18.3 5.1 18.4

IT1 19.6 19.4 20.8 19 20.4

IT2 30.2 30.2 28 29.6 30

IT3 34.6 36.4 33.6 35.6 34.4

IT4 45 40.8 40.8 43.8 41.8

RC OP1 41.3 37.2 26.1 43.3 39.7

OP2 101.1 49.2 60.6 92.4 91

OP3 78.7 41.8 72.7 92.7 84.6

OP4 35.4 33.5 35.6 41.3 38.7

IT1 19 19.4 19 18.4 19.4

IT2 25.4 26 26.4 25.4 25.6

IT3 32.4 32 32.4 32.2 32.2

IT4 39.8 39.4 38.8 38.4 39.6

Table A2.5 NDR subject individual OP amplitudes (pV) and implicit times 

(ms) with 5 minutes of O2 inhalation.
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OP Measurements

2f: BDR Individual OP Amplitudes and Implicit Times

Subject

ID

Parameter Baseline During 0 2 2min After 7min After 12min

After

GL OP1 24.6 25.1 30.9 28.7 33.5

OP2 26.3 26.0 32.3 35.5 37.4

OP3 23.9 25.8 28.2 22.4 37.6

OP4 6.4 13.5 19.0 15.4 24

IT1 19.2 19.2 19.2 19.2 19.4

IT2 26.4 27.2 26.2 25.8 29.4

IT3 32.2 32.2 32.2 32 32.8

IT4 40.2 40.2 39.6 37.8 40

DJ3 OP1 30 36.4 32.7 23.7 39.5

OP2 64.2 62.1 63.4 41.4 40.4

OP3 49.8 29.0 33.3 23.0 29.4

OP4 32.6 21.8 20.1 10.5 22.2

IT1 20.4 20.2 20.4 20.8 20.2

IT2 29.2 29.6 30.8 30.2 31.2

IT3 34 34.4 34.2 34.6 34

IT4 41.4 41.4 42.4 41.4 42.8

RG OP1 24.1 12.6 21.9 31.4 33.8

OP2 29.2 22.3 49.2 71.3 83.1

OP3 43.9 15.8 32 67.5 79.6

OP4 27 9.3 21.7 31.3 32

IT1 20 20.8 19.4 19.4 21.2

IT2 28.8 29.8 28.6 28.2 27.4

IT3 34 34.6 33.8 34.2 33.4

IT4 40.2 40.4 40.4 41 41

DJ4 OP1 29 28.9 32.2 29.1 24.1

OP2 42.4 37.3 54 49.4 38.2

OP3 26.7 25.3 34.3 31.7 25

OP4 17.4 16.1 21.1 15.1 12.9

IT1 19.4 19.6 20.6 20.8 21

IT2 27 26.8 27.6 27.6 27.6

IT3 32.4 33.4 33.2 33.2 33

IT4 38 39 39.8 39.4 38.6
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WM OP1 19.1 35.6 42 31 30.0

OP2 57.9 40.2 74.9 58.9 65.7

OP3 27.9 34.1 46.9 38.3 46.7

OP4 11.4 10.3 13.2 20.7 20.7

IT 1 21.2 21.4 21 21 21.2

IT2 28.2 28 28.2 28.4 28.8

IT3 35.4 35 35.4 35 35.8

IT4 43 45 43.2 45.2 43.6

RF2 OP1 28.3 46.9 34 35.1 40.1

OP2 72.6 65.9 93.6 91.9 110.1

OP3 65.5 47.1 81.5 70.5 72.2

OP4 32.7 28.2 45.6 39.1 27.6

IT 1 19.6 19.4 20.4 19.6 19

IT2 27.2 27.4 27 26.6 26.4

IT3 32.6 32.4 32.4 32.4 32.2

IT4 39.4 39.4 39 39 39.2

CD OP1 7.9 11.1 16.1 15.6 15.4

OP2 13.1 7.7 13.3 12.4 15.6

OP3 14.8 9.6 27.6 5.4 18.5

OP4 3.8 4.1 9.5 7.9 22

IT1 29.4 29.8 27.4 28.8 27

IT2 34 33.2 31.4 35.4 34.2

IT3 38 36.8 35.8 37.4 37.8

IT4 41.4 39.6 43 42.8 43.8

RS OP1 21.0 23.3 28.8 24.1 44.5

OP2 34.7 41.0 51.7 40.8 66.1

OP3 22.8 27.8 49.1 37.8 43.2

OP4 14.0 21.3 21.2 15.0 19.9

IT1 21 19.6 19.6 21 19.8

IT2 30 29.6 28.6 29.6 29.2

IT3 34.2 34.6 33.4 34.4 34.8

IT4 44.2 39.4 40.8 41.4 40.8

KB 1 OP1 25.0 30.6 36.1 28.3 23.0

OP2 40 39.1 50.4 56.7 62.7

OP3 33 34.4 26.4 33.9 4.4

OP4 22.8 16 16.7 11.6 30.8

IT1 19.8 20.4 20.2 21.2 21.6

IT2 27.4 27 27.2 27.2 28.2

IT3 33.2 33.4 33.8 33.8 33
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IT4 39.8 39.8 39 39.8 40.8

TJ OP1 30.5 30 29.6 44 35.3

OP2 40.7 53.5 57.3 73.2 66.5

OP3 46.5 66.2 70.6 76.7 71.6

OP4 27.7 40.2 37.1 38.3 33.1

IT1 20.2 19.8 19.8 20 20.6

IT2 27.2 27.2 27.6 26.6 27.2

IT3 33 33.2 33.2 33.4 33.4

IT4 40 40.4 40.4 41 40.4

GH OP1 6.8 14.2 14.2 15.7 14.0

OP2 23.3 30.6 34.5 29.3 36.6

OP3 18.5 18.1 10.0 16.5 17.5

OP4 13.8 11.4 8.4 9.6 11.1

IT1 19.2 20.6 20 21.2 21.4

IT2 28.8 29.8 29.2 29.6 29.2

IT3 34.6 33.6 32 34.4 24.6

IT4 41.4 42.2 40.6 41.6 40.2

RJ OP1 13.7 43.8 25 33.3 39

OP2 25.8 51.1 49.1 59.5 57.8

OP3 22.1 36.4 35.8 29.4 30.9

OP4 19.7 26.9 20.9 24.5 22.6

IT1 20.4 20.2 20.4 20.8 20

IT2 27.4 27.4 28 28.2 28.2

IT3 35.4 34.2 33.8 34 33.2

IT4 42.8 40.8 39.4 42 40.6

VB OP1 12.5 18.1 15.9 15.2 18.6

OP2 22.1 27.7 24.9 34.7 14.5

OP3 25.0 39.5 21.2 22.7 16.5

OP4 10.2 30 10.5 11.2 21.3

IT1 22.8 18.6 21.4 20.4 26

IT2 28.4 26.4 33.4 32.4 29

IT3 34 30.6 37.4 39.2 34.8

IT4 40.8 40.8 43.2 42.2 39.8

KW OP1 33.3 47.7 24.2 22.3 17.8

OP2 71.3 78.5 55.3 32.1 49.7

OP3 60.1 56.5 49 42.7 42.9

OP4 26.1 25.2 29.9 31 38.9

IT1 19.6 19.8 21 21.4 21.4

IT2 25.4 25 25.8 26.4 25.8

256



OP Measurements

IT3 32.8 32.6 33 32.8 33.6

IT4 40.6 40.2 41.4 41 42.2

Table A2.6 BDR subject individual OP amplitudes (pV) and implicit times (ms) 

with 5 minutes of 0 2 inhalation.
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OP Measurements with 15 minutes 0 2

Appendix 3 

OP Measurements With 15 minutes O2

3a: Control and NDR Group Characteristics

Group No. of Subjects Gender Age (years) Disease Duration 

(years)

Control 7 3 ? Range 39-71 -

4 c ? Mean 54.4 (±10.2SD)

NDR 7 3 ? Range 56-73 Range 2-19

4 c ? Mean 65.1 (±6.0) Mean 8.9 (±5.5SD)

Table A3.1 Control and NDR group characteristics
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OP Measurements with 15 minutes 0 2

3b: Summed OP Am plitudes with 5 minutes and 15 minutes of O? inhalation

Baseline During

o 2

Control Sut 

During

o 2

>jects

During

o 2

2min

After

7min

After

12min

After

5min

0 2

Mean

SD

SE

116.5

36.0

13.6

129.9

42.4

16.0

133.4

31.4  

11.9

147.1

52.8

20.0

148.1

51.2

19.4

15min

o 2

Mean

SD

SE

119.3

40.5

15.3

129.6

61.1

23.1

127.4

53.1

20.1

131.5

51.9

19.6

128.7

49.3

18.6

137.4

51.8

19.6

141.7

63.4

24.0.

P 0.892 0.990 0.834 0.736 0.839

Baseline During

o 2

NDR Subj 

During

o 2

ects

During

o 2

2min

After

7min

After

12min

After

5min

o 2

Mean

SD

SE

174.6 

62.4

23.6

166.6

55.5

21.0

188.3

51.3

19.4

196.7

62.2

23.5

204.7

67.0

25.3

15min

o 2

Mean

SD

SE

162.8

54.6

20.6

158.9

65.5

24.8

170.1

53.7

20.3

165.9

38.6

14.6

178.4

48.6

18.4

186.1

56.0

21.1

196.6

45.5

17.2

P 0.714 0.817 0.719 0.745 0.794

Table A3.2 Summed OP amplitudes across time with 5 minutes and 15 

minutes of O2 inhalation. 
(p-values shown for Bonferroni pairwise comparisons between 5 minutes of 

0 2 inhalation results and 15 minutes of 0 2 inhalation results).
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OP Measurements with 15 minutes 0 2

3c: Percentage Change in Summed OP Amplitudes with 5 minutes and 15

m inutes o f O? Inhalation

Control Subjects

During During During 2min 7min 12min

Oz 0 2 0 2 After After After

5min Mean +11.2 +18.9 +27.0 +28.6

0 2 SD 12.9 29.5 22.9 25.6

SE 4.9 11.2 8.6 9.7

15min Mean +5.7 +5.4 +9.9 +7.9 +14.9 +16.5

0 2 SD 27.0 19.1 19.3 15.6 11.1 17.6

SE 10.2 7.2 7.3 5.9 4.2 6.6

P 0.638 0.402 0.235 0.320

NDR Subjects

During During During 2min 7min 12min

0 2 0 2 0 2 After After After

5m in Mean -1.9 +12.7 +15.5 +20.3

0 2 SD 16.3 23.0 15.5 20.0

SE 6.2 8.7 5.9 7.6

15min Mean -4.1 +5.2 +6.2 +14.7 +20.2 +29.1

0 2 SD 12.6 12.5 18.1 25.3 32.4 40.3

SE 4.8 4.7 6.9 9.5 12.2 15.2

P 0.784 0.882 0.740 0.615

Table A3.3 Percentage change in summed OP amplitudes across time with 5 

minutes and 15 minutes of O2 inhalation. 

(p-values shown for Bonferroni pairwise comparisons between 5 minutes of 

O2 inhalation results and 15 minutes of O2 inhalation results).
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OP Measurements with 15 minutes 0 2
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OP Measurements with 15 minutes 0 2
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OP Measurements with 15 minutes 0 2

3d: Individual OP Am plitudes with 5 and 15 minutes of O? Inhalation

Amplitude OP1 (pV)

Control Subjects

Baseline During

o 2

During

o 2

During

o 2

2min

After

7min

After

12min

After

5min Mean 32.3 34.8 32.1 36.3 34.7

o 2 SD 11.4 13.8 6.8 9.6 7.8
SE 4.3 5.2 2.6 3.6 2.9

15min Mean 29.2 31.5 32.2 28.5 27.7 30.0 31.3

o 2 SD 5.8 9.3 9.8 12.8 12.7 12.6 14.5

SE 2.2 3.5 3.7 4.8 4.8 4.8 5.5

P 0.541 0.610 0.441 0.309 0.594

NDR Subjec ts

5min Mean 34.1 32.6 38.6 36.1 38.3

o 2 SD 11.1 7.5 9.0 10.5 12.9

SE 4.2 2.8 3.4 4.0 4.9

15min Mean 34.2 31.3 33.4 32.9 33.4 34.9 32.2

o 2 SD 11.1 12.2 10.8 10.2 9.9 10.9 9.8

SE 4.2 4.6 4.1 3.8 3.7 4.1 3.7

P 0.993 0.811 0.329 0.838 0.337

Amp itude OP2 (pV)

Control Subjects

Baseline During During During 2min 7min 12min

o 2 o 2 o 2 After After After

5min Mean 42.4 41.2 47.1 53.5 54.7

o 2 SD 11.8 13.6 13.4 20.6 25.9

SE 4.4 5.1 5.1 7.8 9.8

15min Mean 37.1 40.7 43.3 41.9 43.8 45.3 45.9

o 2 SD 18.3 27.2 24.9 23.6 23.4 24.1 27.4

SE 6.9 10.3 9.4 8.9 8.8 9.1 10.3

P 0.528 0.964 0.751 0.504 0.549

N DR Subjec S

5min Mean 66.6 55.7 63.6 70.4 74.0

o 2 SD 24.5 30.2 30.6 33.2 39.1

SE 9.3 11.4 11.5 12.5 14.8

15min Mean 58.9 58.3 62.7 61.3 67.9 72.1 73.8

o 2 SD 22.2 32.2 26.4 18.6 22.0 26.7 22.8

SE 8.4 12.1 10.0 7.0 8.3 10.1 8.6

3 0.549 0.881 0.766 0.919 H 0.990

Amp itude OP3 (pV)
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OP Measurements with 15 minutes 0 2

Control Subjects

Baseline During During During 2min 7min 12min

0 2 0 2 0 2 After After After

5min Mean 27.4 29.6 31.1 35.5 35.2

0 2 SD 15.3 17.3 15.5 22.0 20.8

SE 5.8 6.5 5.8 8.3 7.9

15min Mean 34.9 38.7 33.5 37.0 38.6 39.4 39.8

0 2 SD 21.2 26.2 18.9 25.2 14.4 17.1 21.4

SE 8.0 9.9 7.2 9.5 5.5 6.5 8.1

P 0.462 0.457 0.368 0.719 0.686

N DR Subjec ts

5min Mean 49.4 51.0 54.0 57.0 61.5

0 2 SD 24.8 19.2 17.0 19.1 19.8

SE 9.4 7.3 6.4 7.2 7.5

15min Mean 45.3 45.7 48.8 46.7 50.5 50.7 57.2

0 2 SD 17.5 16.5 15.4 12.1 13.8 15.0 12.5

SE 6.6 6.2 5.8 4.6 5.2 5.7 4.7

P 0.726 0.592 0.680 0.504 0.641

Amp itude OP4 (pV)

Control Subjects

Baseline During During During 2min 7min 12min

0 2 0 2 o 2 After After After

5min Mean 16.9 24.4 19.3 24.6 22.2

0 2 SD 6.4 7.8 7.1 10.4 7.6

SE 2.4 3.0 2.7 3.9 2.9

15min Mean 19.1 18.6 19.9 24.0 18.5 22.8 24.5

0 2 SD 8.2 10.3 6.5 6.0 8.6 6.8 9.0

SE 3.1 3.9 2.5 2.3 3.3 2.6 3.4

P 0.581 0.265 0.858 0.705 0.606

5min Mean 23.8 24.1 28.5 30.0 27.3

0 2 SD 11.7 5.7 5.4 7.9 7.7

SE 4.4 2.2 2.1 3.0 2.9

15min Mean 24.9 23.5 24.0 24.9 26.6 28.4 33.3

0 2 SD 10.2 7.0 6.8 5.3 7.8 6.9 5.3

SE 3.9 2.6 2.6 2.0 2.9 2.6 2.0

P 0.856 0.881 0.601 0.697 0.113

Table A3.4 Individual OP amplitudes across time with 5 minutes and 15 

minutes of O2 inhalation. 
(p-values shown for Bonferroni pairwise comparisons between 5 minutes of 

0 2 inhalation results and 15 minutes of 0 2 inhalation results).
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OP Measurements with 15 minutes 0 2

3e: In d iv id ua l Control Subject Summed OP Amplitudes with 15 m inutes of O?

Inha la tion

Subject

ID

Baseline

(MV)

During

o 2

(MV)

During

o 2

(MV)

During

o 2

(MV)

2min

After

(MV)

7min

After

(MV)

12min

After

(MV)
JH 83.5 96.1 105.6 97.1 106.1 107.8 103.4

MB 140.8 202.4 181.7 164.6 155.8 148.5 169.5

BV 184.5 208.8 210.3 226.9 224.5 238.4 264.6

TH 96.8 106.8 100 116.5 113.5 111.8 117.8

JC 88.5 47.1 67.0 67.8 81.7 100.7 99.6

PM 86.0 89.3 83.4 110.0 87.4 100.7 99.6

PG2 155.1 156.5 143.8 137.7 131.8 164.0 159.3

Table A 3.5  Control subject summed OP amplitudes with 15 minutes of 0 2 

inhalation. 

3f: Individual NDR Subject Summed OP Amplitudes with 15 minutes of O? 

Inhalation

Subject

ID

Baseline

(MV)

During

o 2

(MV)

During

o 2

(MV)

During

o 2

(MV)

2min

After

(MV)

7min

After

(MV)

12min

After

(MV)

TD 153 152.5 181.2 180.1 173.2 198.7 198.2

AD 113.5 124.0 110.3 114.7 134.8 138.9 142.6

PG3 199.5 183.7 196.8 193.2 199.7 213.9 239.6

CA 172.1 147.5 217.4 165.5 155.6 144.9 163.1

RF 177.2 162.8 179.6 181.9 178.1 165.6 187.8

AT 245 279.2 223.5 213.5 274.5 295.2 273

SP 79.4 62.5 82.1 112.4 133.0 145.7 171.7

Table A3.6 NDR subject summed OP amplitudes with 15 minutes of 0 2 

inhalation.
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OP Measurements with 15 minutes 0 2

3g: Individual Control Subject Individual OP Amplitudes with 15 minutes of O?

Inhalation

OP1 Amplitude (pV)

Subject

ID

Baseline

(MV)

During

o 2
(MV)

During

o 2

(MV)

During

o 2

(MV)

2min

After

(MV)

7min

After

(MV)

12min

After

(MV)

JH 35.3 32.6 31.6 34.5 8.1 9.2 8.2

MB 22.3 36 27.5 37.3 21.8 26.8 28.4

BV 36.6 40.1 42.5 40.9 44 42.7 47.5

TH 33.1 39.9 36.2 37.8 42.3 41.7 42

JC 24.2 13.1 13.3 17.1 20.9 21.1 16.9

PM 28.4 31 33.0 25.6 24.9 27 33.5

PG2 24.8 28.1 41.1 6.5 32.2 41.3 42.9

OP2 Amp itude (pV)

JH 29.8 34.8 41.6 33.6 38.8 34.0 32.5

MB 59.8 70.4 66.2 56.8 58.1 48.2 63.3

BV 66.5 84.9 84 87.3 85.5 94.9 99.7

TH 18.9 23.4 23.5 37.7 25 26.0 29.0

JC 28.8 9.8 16.3 15.0 24.9 27.6 18.9

PM 26.1 23.4 23.5 27.9 21.3 33.8 37.2

PG2 29.7 37.9 47.8 35.3 53.1 52.8 41.0

OP3 Amp itude (pV)

JH 8.7 11.5 10.0 4.9 41.8 46.2 44.3

MB 38.7 57.3 58.2 45.2 45.5 44.6 53.3

BV 51.8 58.1 58.6 67.7 65.3 71.5 74.3

TH 33.8 34.1 29.9 28.1 31.2 23.3 26.3

JC 18.0 8.7 19.4 15.2 25.2 25.2 23.1

PM 22.8 23.8 22.0 27.3 23 25.7 10.6

PG2 70.7 77.6 36.3 70.5 38.1 39.2 47

OP4 Amp itude (pV)

JH 16.9 17.2 22.4 23.9 17.5 18.5 18.5

MB 20.1 38.7 29.8 25.3 30.4 28.9 24.5

BV 29.6 25.7 25.2 31 29.7 29.3 43.1

TH 11.1 9.3 10.4 12.9 15.0 20.8 20.4

JC 17.5 15.6 18.0 20.6 10.7 17.0 18.6

PM 8.7 11.2 14.9 29.1 18.2 14.2 18.3
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OP Measurements with 15 minutes 0 2

PG2 29.9 12.9 18.6 25.4 8.3 30.7 28.4

Table A3.7 Control Individual OP amplitudes with 15 minutes of O2 inhalation. 

3h: Individual NDR Subject Individual OP Amplitudes with 15 minutes of O? 

Inhalation

OP1 Amplitude (pV)

Subject

ID

Baseline

(MV)

During

o 2

(MV)

During

o 2

(MV)

During

o 2

(MV)

2min

After

(MV)

7min

After

(MV)

12min

After

(MV)
TD 31.1 31.4 33.1 36.4 33.9 38.4 37.9

AD 24.7 23.3 26.2 22.9 25.6 34 20

PG3 36.1 32.2 40.6 32.9 26.3 31.9 37.9

CA 48.7 34.2 41.1 39.1 33.6 31.7 28.2

RF 26.6 30.9 33.7 35.3 33.7 29.8 26

AT 49.6 53.7 45.6 47 54.2 56.9 48.8

SP 22.5 13.6 13.6 16.7 26.7 21.9 26.4

OP2 Amp itude (pV)

TD 59.6 55.7 75.7 72.6 73.9 74.4 82.5

AD 33.7 36.6 23.7 38.8 46.8 53.6 43.7

PG3 78.8 74.9 77.7 85.9 78.6 90.1 94

CA 60.9 44.6 84.5 55.6 55.9 50.8 56.4

RF 55.8 55.2 58.6 61.5 65.8 57 65.7

AT 92.5 120.2 88.8 77.3 108.6 123.6 109.5

SP 30.8 20.7 29.6 37.7 45.7 55.2 64.9

OP3 Amp itude (pV)

TD 40.9 47.2 51.7 49.4 48.5 59.8 53.6

AD 34.8 39.2 36.3 33.7 41.9 33.4 50.6

PG3 60.5 53.3 58.8 57 63.6 61.7 69.1

CA 42.3 44.7 58.9 41 41.2 35.8 42.8

RF 58.5 50.7 56.2 54.7 54.6 47.9 59.4

AT 65.1 69.8 60.4 61.6 71.7 74 77.8

SP 15.1 15.3 19.3 29.8 32.2 42.1 47.4

OP4 Amp itude (pV)

TD 21.4 18.2 20.7 21.7 16.9 26.1 24.2

AD 20.3 24.9 15.3 19.3 20.5 17.9 28.3

PG3 24.1 23.3 19.7 17.4 31.2 30.2 38.6
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OP Measurements with 15 minutes 0 2

CA 20.2 24.1 32.9 29.8 24.9 26.6 35.7

RF 39.3 26 31.1 30.4 24.0 30.9 36.7

AT 37.8 35.5 28.7 27.6 40 40.7 36.9

SP 10.9 12.9 19.7 28.2 28.4 26.5 33

Table A3.8 NDR Individual OP amplitudes with 15 minutes of 0 2 inhalation.

3i: Individual Control Subject Individual OP Implicit Times with 15 minutes of 

O? Inhalation

OP1 Implicit Time (ms)

Subject

ID

Baseline

(MV)

During

o 2

(MV)

During

o 2

(MV)

During

o 2

(MV)

2min

After

(MV)

7min

After

(MV)

12min

After

(MV)

JH 20.2 19.6 20.2 20.8 12.8 12.2 14.4

MB 19 19 18.8 19.4 20 19.6 19.2

BV 19.2 19.4 20 19.4 19.8 19.8 20

TH 20 19.2 19.6 19.6 19.2 19.6 19.8

JC 21.4 23.4 20.8 21.6 20.2 19.8 21.2

PM 21 19.8 20 20.6 21 20 20

PG2 18.4 11.8 19.2 13.4 18.8 19.8 19.6

OP2 Implicit Time (ms

JH 26.2 26.6 26.4 26.8 20.2 18.8 19.6

MB 28.8 28 28.4 28.4 28.4 28.6 27.8

BV 27.6 27.4 27.6 27.4 27.4 27.2 27.4

TH 24 24 24.6 24.8 24.4 26.6 26

JC 30.2 32.4 28.8 29 28.6 28.4 29.6

PM 26.8 26.4 27.6 27.2 27.6 26.6 28.2

PG2 23.6 18.8 26.8 19.2 27.2 25.8 25.2

OP3 Implicit Time (ms

JH 28.2 28 28.4 28.6 25.8 27 26.6

MB 34.4 33.2 33.2 33.4 33.2 33.8 33.2

BV 33 32.6 32.6 32.4 32.8 32.4 32.6

TH 30.8 30 28.6 31 30.8 28.8 31.2

JC 34.2 36.2 33.6 34 33.2 33.4 33.6

PM 31.4 32.6 33.2 32.8 33.8 32.2 34

PG2 31.2 31 33.4 28.8 34.2 32.4 32.4

OP4 Implicit Time (ms;

268



OP Measurements with 15 minutes 0 2

JH 30.4 31.8 31.2 30.8 31.2 30.8 31

MB 40.8 40.8 40.6 41.6 41.2 41.6 41.4

BV 38.8 38.4 38 39 38.4 39 39.2

TH 38.2 38.4 36 38 38.4 38.2 38.6

JC 41.2 45.2 39.4 39.6 39.8 39.6 39.8

PM 38.6 38 39.6 38.2 38.6 39.8 38.4

PG2 45.6 50.6 46.4 40.8 42.8 39.8 39.6

Table A3.9 Control Individual OP Implicit Times with 15 minutes of 0 2 

inhalation. 

3i: Individual NDR Subject Individual OP Implicit Times with 15 minutes of O? 

Inhalation

OP1 Implicit Time (ms)

Subject

ID

Baseline

(MV)

During

o 2

(MV)

During

o 2

(MV)

During

o 2

(MV)

2min

After

(MV)

7min

After

(MV)

12min

After

(MV)

TD 19.6 20.2 20.8 20 20 19.6 19.4

AD 18.8 19.4 19 20 19.4 19.8 19

PG3 19.8 20.2 20 19.8 20.2 20.2 19.4

CA 19.2 19.4 18.8 19.6 19.4 19.6 19.4

RF 20 19.2 19.2 19.2 19.2 19.4 20

AT 18.6 18.2 19 19 19 18.8 18.6

SP 19.6 19.6 19.8 19.4 20 19.6 19.8

OP2 Implicit Time (ms

TD 28.2 28.4 28.2 27.8 28.2 28.2 27.8

AD 25.8 25.4 24.6 26.8 26.4 25.6 24.6

PG3 27 26.8 27 27 27 26.8 26.4

CA 27 28.4 27 28.4 28.6 28.4 27.2

RF 26 26 26.2 26.2 26.2 26 25.8

AT 26.8 26.6 27.2 27 27 26.4 26.4

SP 28.6 29.8 29 28.4 28 27.8 27.6

OP3 Implici t Time (ms

TD 34.8 34.6 34.4 34.2 34 34.4 34.2

AD 31 31.2 31.2 31.4 31.2 31.2 31.2

PG3 32.4 32.2 32.2 32.2 32.2 32.4 32.2

CA 32.8 32.8 32.6 33.6 33.2 33 32.8
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OP Measurements with 15 minutes 0 2

RF 31.4 31.2 31.6 31.6 31.4 31.8 31.4

AT 32.8 32.2 32.8 33.4 33 32.6 32.6

SP 34.4 33.8 34.2 34.2 34 34 34

OP4 Implici t Time (ms

TD 41.8 42.6 42.2 41.8 42.8 42 42.2

AD 37.2 37.2 37.2 37.4 37.2 37.6 37.2

PG3 39.8 39.6 39.6 39.4 39.2 40 40.4

CA 39.4 38.6 39 39.2 39.6 39.6 39.4

RF 37.4 37.2 37.6 37.6 38.2 38.2 37.2

AT 39.6 38.8 39.8 39.6 40 39.2 39

SP 39.2 41.4 41.4 41.8 41.4 42.2 41.2

Table A3.10 NDR Individual OP Implicit Times with 15 minutes of O2 

inhalation.
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B-wave Measurements

Appendix 4 

B-wave Measurements

4a: Control Subject B-wave Amplitudes

Subject ID Baseline

(MV)

During 0 2 

(MV)

2min After 

(MV)

7min After 

(MV)

12min After 

(MV)

JH 134 146 158 164 161

MG 93.7 85.4 100 85.7 94.8

GO 186 262 241 235 270

CG 139 152 135 141 234

DJ 84.3 85.6 96.7 93.2 101

JC 85.7 41.3 75.8 103 103

HC 38.9 24.8 29 49 54.9

MC 184 145 130 219 177

RW 119 135 125 119 103

BA 113 106 122 113 112

BV 111 96.9 104 97.7 108

PH 71.2 44.2 63 57.4 53.6

RB 115 133 124 125 90.5

CS 85.9 51.5 95.6 86.6 60.4

RC 85.8 104 97.7 117 126

TH 109 110 136 110 119

MB 79.8 77.3 82.1 73.1 79.8

BH 119 105 108 111 102

PG 133 118 142 124 138

RM 125 186 117 104 96.8

PG2 89.5 112 93 142 93.4

DJ2 130 129 99.1 110 113

LH 155 179 172 196 160

PM 93 68.4 86.9 82 83.1

Table A4.1 Control subject b-wave amplitudes with 5 minutes of 0 2 inhalation.
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B-wave Measurements

4b: NDR Subject B-wave Am plitudes

Subject ID Baseline

(MV)

During 0 2 

(MV)

2min After 

(MV)

7min After 

(MV)

12min After 

(MV)
JG 132 105 153 172 201

HP 120 134 142 130 126

CA 150 136 176 162 184

AB 168 190 178 179 184

AD 29.9 36.6 36.3 45.3 26.9

TD 82 78.2 71.4 78.5 76.4

RF 115 135 132 148 129

CJ 158 151 128 125 113

PG3 153 188 188 181 173

PD 76.8 93 82.7 87.2 89.8

EC 117 111 128 124 126

AJ 79.6 69.3 84.8 109 86.9

SP 122 143 132 134 144

PM2 96.7 67.9 75.3 77 53.9

GM 94.8 96.6 86.1 106 84.9

PM3 98.1 117 117 115 129

JC2 57.9 41.8 49.5 60.8 69.3

CP 118 108 106 113 103

HT 57.3 22.7 63.4 77.3 97.4

JW 74.5 78 84.5 61.7 87.5

AT 170 200 183 201 199

SW 120 99.3 114 109 114

WP 84.1 97.9 97.2 85.4 81.7

RY 114 72.4 100 101 89

RC 112 140 153 154 141

Table A4.2 NDR subject b-wave amplitudes with 5 minutes of O2 inhalation.
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B-wave Measurements

4c: BDR Subject B-wave Amplitudes

Subject ID Baseline

(MV)

During 0 2 

(MV)

2min After 

(MV)

7min After 

(MV)

12min After 

(MV)

GL 67.1 90.5 77.4 86.6 80.1

DJ3 134 102 104 107 110

RG 76.6 81.2 90.9 97.2 89

DJ4 98.1 90.7 104 90.4 93.9

WM 79.5 91.4 103 141 119

RF2 122 134 166 151 176

JD 82.2 85.5 99.6 92.5 102

CD 44.1 62.7 66.6 75.3 72.6

RS 95.2 90.9 101 102 112

KB 57.5 57.4 81.1 68.1 79.2

TJ 99.1 102 120 107 103

RJ 102 122 116 117 109

VB 56.7 37.2 34.7 45.5 76.7

KW 151 156 164 175 153

Table A4.3 BDR subject b-wave amplitudes with 5 minutes of O2 inhalation.
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B-wave Measurements

4d: Control Subject B-wave Implicit Times

Subject ID Baseline

(ms)

During 0 2 

(ms)

2min After 

(ms)

7min After 

(ms)

12min After 

(ms)

JH 45 47.5 48 41.5 48

MG 45.5 52.5 48.5 49 52

GO 46 45.5 45.5 43 44

CG 57.5 55.5 54 56.5 52

DJ 50.5 48 45 49 48

JC 52.5 53 55 51.5 54

HC 59 60 65 57.5 53

MC 44 47.5 43.5 44.5 44

RW 52.5 54.5 51.5 51.5 54.5

BA 50 47.5 51.5 54 47.5

BV 55 54 53.5 53.5 54

PH 47.5 55.5 51 48.5 58.5

RB 53.5 50.5 51 51.5 51

CS 47 49 49.5 46 54.5

RC 49.5 46.5 50.5 49 51.5

TH 46.5 45 45.5 47 46

MB 53.5 54.5 54.5 56.5 54

BH 50 49 50 48.5 48

PG 49.5 50 49.5 48.5 49

RM 47 41 34.5 45 46.5

PG2 43 48.5 47.5 52 38

DJ2 51 50.5 48.5 49.5 49

LH 45 42.5 43.5 44.5 43

PM 59.5 46 39.5 50.5 55.5

Table A4.4 Control subject b-wave implicit times with 5 minutes of O2 

inhalation.
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B-wave Measurements

4e: NDR Subject B-wave Implicit Times

Subject ID Baseline

(ms)

During 0 2 

(ms)

2min After 

(ms)

7min After 

(ms)

12min After 

(ms)

JG 50.5 48.5 57.5 55 54.5

HP 50.5 44 36 43 47

CA 50.5 54.5 51.5 50 50.5

AB 52 51 53 52.5 53

AD 43.5 53 52.5 48 44

TD 51.5 52 51 52 55

RF 50.5 48.5 49 48.5 49

CJ 52 47 48.5 49 49.5

PG3 48 45 46 45.5 46.5

PD 53.5 55 54.5 53.5 54.5

EC 54.5 50.5 54.5 53 53

AJ 42.5 42.5 44 49.5 48

SP 51 53.5 54 51.5 52

PM2 49.5 46 53 59.5 52.5

GM 39 45.5 51 55 53

PM3 49 48 50 49.5 49.5

JC2 56.5 39.5 59.5 57 55

CP 60 56.5 57 56 56

HT 52 66 53.5 54.5 52

JW 35.5 47 49.5 36 60.5

AT 47 46.5 46 45.5 45.5

SW 51 49.5 50.5 43 49.5

WP 51 49.5 50.5 43 49.5

RY 58 55.5 52 56.5 59

RC 47 46 47.5 47 49.5

Table A4.5 NDR subject b-wave implicit times with 5 minutes of O2 inhalation.
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B-wave Measurements

4f: BDR Subject B-wave Implicit Times

Subject ID Baseline

(ms)

During 0 2 

(ms)

2min After 

(ms)

7min After 

(ms)

12min After 

(ms)

GL 54.5 51.5 48.5 47.5 53

DJ3 58 54 53.5 53.5 55.5

RG 52.5 46.5 51 52 51

DJ4 52 50 51 50.5 51

WM 41 43.5 37.5 38 43

RF2 40 48 51.5 44.5 50

JD 51 53 54.5 57 54

CD 40.5 58.5 57.5 58 57.5

RS 45 40.5 49.5 54.5 48.5

KB 55 52.5 52.5 54 52

TJ 38.5 41.5 40 47 53.5

RJ 55.5 54 54 54.5 54

VB 44 60.5 50.5 64.5 53

KW 44.5 42 42 42.5 43.5

Table A4.6 BDR subject b-wave implicit times with 5 minutes of O2 inhalation.
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B-wave Measurements

4q: Group-averaged B-wave Implicit Times and Percentage Change Across 

Time

B-wave Implicit time (ms)

Group Baseline During 0 2 2min After 7min After 12min After

Control Mean 50.0 49.8 49.0 49.5 49.8
SD 4.7 4.5 5.9 4.3 4.8

SE 1.0 0.9 1.2 0.9 1.0

NDR Mean 49.7 49.5 50.8 50.4 51.6

SD 5.5 5.5 4.8 5.3 4.0

SE 1.1 1.1 1.0 1.1 0.8

BDR Mean 48.0 49.7 49.5 51.3 51.4

SD 6.7 6.2 5.8 6.9 4.1

SE 1.8 1.7 1.5 1.8 1.1

%  Change B-wave Implicit time From Baseline

Group Baseline During 0 2 2min After 7min After 12min After

Control Mean -0.1 -1.7 -0.7 -0.1

SD NA 8.5 10.2 6.6 6.6

SE 1.7 2.1 1.4 1.3

NDR Mean +0.6 +3.2 +2.2 +5.2

SD NA 13.0 13.0 11.4 16.1

SE 2.6 2.6 2.3 3.2

BDR Mean +4.9 +4.4 +8.3 +8.8

SD NA 17.4 15.3 18.8 16.3

SE 4.7 4.1 5.0 4.4

Table A4.7 B-wave implicit times and percentage change in b-wave implicit 

times across time with O2 inhalation.
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B-wave Measurements
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B-wave Measurements with 15 minutes 0 2

Appendix 5

B-wave Measurements With 15 minutes O2

5a: Control and NDR Group Characteristics

Group No. of Subjects Gender Age (years) Disease Duration 

(years)

Control 7 1 ? Range 52-72 -

6 J Mean 61.9 (±8.2SD)

NDR 7 3 ? Range 55-72 Range 3-12

4c? Mean 64.9 (±6.9) Mean 6.3(±3.1SD)

Table A5.1 Control and NDR group characteristics
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B-wave Measurements with 15 minutes 0 2

5b: B-wave Am plitudes with 5 minutes and 15 minutes of O? Inhalation

Control Subjects

Baseline During During During 2min 7min 12min

o2 o2 o2 After After After

5min Mean 106.0 108.1 110.9 115.9 124.2

0 2 SD 21.1 37.1 21.1 15.4 49.6

SE 8.0 14.0 8.0 5.8 18.8

15min Mean 87.0 92.6 85.6 85.0 90.3 71.7 85.2

o2 SD 26.5 24.2 27.3 27.5 31.5 30.8 20.5

SE 10.0 9.2 10.3 10.4 11.9 11.6 7.8

P 0.165 0.372 0.177 0.005 0.079

NDR Subjects

Baseline During During During 2min 7min 12min

o2 o2 o2 After After After

5min Mean 111.6 110.4 127.3 132.5 136.3

o2 SD 32.4 53.3 41.8 35.6 40.3

SE 12.3 20.1 15.8 13.4 15.2

15min Mean 123.7 126.0 129.5 131.6 143.2 138.0 148.3

o2 SD 52.3 65.2 63.3 65.8 72.5 63.2 69.5

SE 19.8 24.6 23.9 24.9 27.4 23.9 26.3

P 0.612 0.634 0.625 0.843 0.701

Table A5.2 B-wave amplitudes across time with 5 minutes and 15 minutes of 

O2 inhalation. 

(p-values shown for Bonferroni pairwise comparisons between 5 minutes of 

0 2 inhalation results and 15 minutes of 0 2 inhalation results).
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B-wave Measurements with 15 minutes 0 2

5c: Percentage Change in B-wave Amplitude with 5 minutes and 15 minutes

of O? Inhalation

Control Subjects

During During During 2min 7min 12min

o2 o2 o2 After After After

5min Mean +0.5 +5.0 +11.0 +17.1

0 2 SD 24.8 9.4 13.3 32.3
SE 9.4 3.5 5.0 12.2

15min Mean +7.7 +1.7 +3.4 +11.1 -14.0 +3.5

o2 SD 9.1 29.3 35.7 40.0 32.0 29.7

SE 3.4 11.1 13.5 15.1 12.1 11.2

P 0.557 0.365 0.086 0.212

NDR Subjects

During During During 2min 7min 12min

o2 o2 o2 After After After

5min Mean -6.7 +13.1 +20.7 +25.0

o2 SD 28.6 6.0 13.2 25.5

SE 10.8 2.3 5.0 9.6

15min Mean -0.9 +3.7 +6.0 + 13.1 +11.5 +19.4

o2 SD 21.6 17.6 19.2 11.7 19.2 25.4

SE 8.2 6.7 7.3 4.4 7.3 9.6

P 0.803 0.957 0.283 0.787

Table A5.3 Percentage change in b-wave amplitudes across time with 5 

minutes and 15 minutes of O2 inhalation. 

(p-values shown for Bonferroni pairwise comparisons between 5 minutes of 

0 2 inhalation results and 15 minutes of O2 inhalation results).
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B-wave Measurements with 15 minutes 0 2
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B-wave Measurements with 15 minutes 0 2
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B-wave Measurements with 15 minutes 0 2

5d: B-wave Implicit Times, and Percentage Change in Implicit Time with 5

minutes and 15 m inutes o f O? Inhalation

B -w ave Im plic it T im e (m s)

Control Subjects

Baseline During During During 2min 7min 12min

o2 o2 o2 After After After

5min Mean 52.3 50.8 51.2 51.9 51.2

o2 SD 2.7 3.6 3.2 2.7 2.7

SE 1.0 1.4 1.2 1.0 1.0
15min Mean 53.4 51.1 53.1 56.0 55.7 59.1* 56.1

o2 SD 5.1 6.0 8.2 8.0 6.5 7.5 7.4

SE 1.9 2.3 3.1 3.0 2.5 2.9 2.8
P 0.611 0.894 0.126 0.035 0.128

NDR Subjects

Baseline During During During 2min 7min 12min

o2 0 2 0 2 After After After

5min Mean 49.9 50.0 49.4 50.3 50.4

o2 SD 3.8 8.0 7.6 4.6 3.2

SE 1.4 3.0 2.9 1.7 1.2
15min Mean 49.3 49.1 50.4 49.1 49.0 50.0 49.1

o2 SD 6.2 9.0 6.8 6.6 7.5 8.7 6.9

SE 2.3 3.4 2.5 2.5 2.8 3.3 2.6
P 0.838 0.842 0.931 0.940 0.644

Percentage C hange in B-wave Im plic it T im e from  B aseline (%)

Control Subjects

Baseline During During During 2min 7min 12min

02 o2 o2 After After After

5min Mean - -2.9 -2.0 -0.8 -1.9

0 2 SD 3.8 5.6 4.0 5.4

SE 1.4 2.1 1.5 2.0
15min Mean - -4.4 -1.1 +5.1 +4.6 +10.5 +4.7

0 2 SD 4.9 8.1 13.4 11.1 7.9 6.2
SE 1.9 3.1 5.1 4.2 3.0 2.4

P 0.488 0.167 0.002 0.093

NDR Subjects

Baseline During During During 2min 7min 12min

02 02 o2 After After After

5min Mean - +0.2 -1.0 +1.2 +1.4

o2 SD 13.0 13.4 10.2 6.9

SE 5.0 5.1 3.8 2.6
15min Mean - -0.5 +2.3 -0.4 -0.9 +1.1 -0.3

02 SD 11.6 2.6 3.8 5.0 7.6 7.9

SE 4.4 1.0 1.4 1.9 2.9 3.0

) 0.915 0.987 0.978 0.677
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B-wave Measurements with 15 minutes 0 2

Table A5.4 Control and NDR group-averaged b-wave implicit times, and 

percentage change in implicit time, across time with O2 inhalation, (p-values 

shown for Bonferroni pairwise comparisons between 5 minutes of O2 

inhalation results and 15 minutes of 0 2 inhalation results).

5e: Individual Control Subject B-wave Amplitudes

Subject

ID

Baseline

(MV)

During

o 2

(MV)

During

o 2

(MV)

During

o 2

(MV)

2min

After

(MV)

7min

After

(MV)

12min

After

(MV)

BA 122 128 124 116 126 119 109

RC 67.1 66.9 44.6 99.7 94 61.6 63.1

RW 83.2 95.6 94.1 76.7 91.3 53.2 83.1

DJ 87.2 97.6 108 112 114 96.3 103

CG 72.3 85.9 93.9 91.7 109 90.8 106

RB 54.4 60.2 66.1 51 62 46 67

JC 123 114 68.4 48.2 35.9 34.7 65.4

Table A5.5 Control subject b-wave amplitudes with 15 minutes of 0 2 

inhalation.

5f: Individual NDR Subject B-wave Amplitudes

Subject

ID

Baseline

(MV)

During

o 2

(MV)

During

o 2
(MV)

During

o 2

(MV)

2min

After

(MV)

7min

After

(MV)

12min

After

(MV)

JG 64.1 42.2 56.9 62.3 68.5 65.5 58.8

EC 128 110 130 131 128 130 105

SP 172 163 161 142 231 181 219

AJ 101 94.5 83.5 85.7 105 83.7 154

HP 105 140 113 126 117 144 123

HT 82.6 87.1 110 107 93.6 110 118

PG3 213 245 252 267 259 252 260

Table A5.6 NDR subject b-wave amplitudes with 15 minutes of O2 inhalation.
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B-wave Measurements with 15 minutes 0 2

5a: Individual Control Subject B-wave Implicit Times

Subject

ID

Baseline

(ms)

D uring

o 2
(ms)

During

o 2
(ms)

During

o 2
(ms)

2min

A fte r

(ms)

7min

A fte r

(ms)

12min

A fter

(ms)

BA 43 39.5 37 51 50.5 49 44.5

RC 56.5 49.5 56 46 51.5 64.5 63

RW 54 53 56 55.5 54 63.5 55

DJ 52 49 50 51.5 50 50 51

CG 53.5 55 53.5 54.5 57 55 52.5

RB 58.5 57.5 55.5 65.5 58.5 67 62

JC 56.5 54.5 63.5 68 68.5 64.5 64.5

Table A5.7 Control subject b-wave implicit times with 15 minutes of O2 

inhalation. 

5h: Individual NDR Subject B-wave Implicit Times

Subject

ID

Baseline

(ms)

During

o 2
(ms)

During

o 2
(ms)

During

o 2
(ms)

2m in

A fte r

(ms)

7m in

A fte r

(ms)

12min

A fte r

(ms)

JG 54 63.5 55.5 57.5 56.5 63 60.5

EC 55.5 53 59 54 53.5 56.5 54

SP 51.5 54 53.5 52 52.5 52.5 51.5

AJ 50 39.5 50.5 47.5 52 47 44.5

HP 38 39 39 38.5 34.5 36 41

HT 52 51.5 51 51 50 50.5 49

PG3 44 43 44.5 43 44 44.5 43

Table A5.8 NDR subject b-wave implicit times with 15 minutes of O2 

inhalation.
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OPs and POBF During Light and Dark Adaptation

Appendix 6 
OPs and POBF During Light and Dark Adaptation

6a: Photopic and Scotopic Summed OP Amplitudes During Light and Dark 
Adaptation

C ontro l Subjects
Subject ID P hotop ic  OPs 

(MV)
S cotop ic  OPs 

(MV)
Photopic OPs 

(MV)
CG 115.1 107.3 119.6
PG 128.6 177.0 130.7
RE 146.9 60.9 91.6
RN 113.8 84.9 141
BV 119.3 135.1 88.4
BA 146.7 216.7 135.9
SH 135.6 159.9 146.9

NDR Subjects
JG 116.7 109.5 156.8

PM3 178.1 193 119.1
PG3 119.1 160.7 97.9
AB 132.0 196.1 93.9
SP 95.3 88.4 89.5
AD 116.6 103.8 61.3
JC2 90.1 207.9 122.2
TD 83.9 109.8 67.3
RF 149.1 155.6 106.5

Table A6.1 Summed OP amplitudes during light and dark adaptation

6b: POBF During Light and Dark Adaptation

C ontro l Sub jects
Subject ID POBF L igh t 

(pl/m in)
POBF Dark 

(p l/m in)
POBF L igh t 

(p l/m in)
CG 794 923 857
PG 962 926 835
RE 543 588 630
RN 1225 1124 1277
BV 726 850 1015
BA 492 558 545
SH 703 974 906

NDR Subjects
JG 864 1086 1083

PM3 - - -

PG3 899 763 664
AB - - -

SP 584 602 777
AD 555 910 541
JC2 - - -

TD 1321 1209 1268
RF 1068 1298 926

Table A6.2 POBF during light and dark adaptation
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Appendix 7 

Supporting Publications

7a: Poster presentation at the British Congress of Optometry and Vision 

Science, Aston University. Birmingham. UK. 2003

Design of an Electrophvsiological Technique Able to Investigate the 
Optimum Light Level Required to Suppress the Rod System.
J.A.Cumiskey, K.E.Mortlock, R.V.North, N.Drasdo
School of Optometry and Vision Sciences, Cardiff University, U.K.

Purpose: It has been hypothesised by Arden et al (1998) that retinal hypoxia 
due to the high oxygen consumption of rod photoreceptors during dark 
adaptation may be a significant factor in the development of diabetic 
retinopathy. It has therefore been suggested that in order to reduce the 
oxygen demand to the retina subjects with diabetes may benefit from sleeping 
with the lights on. We report the development of an electrophysiological 
technique, employing the simultaneous cone-rod electroretinogram, to 
investigate further the optimum light level required to suppress the rods.

Methods: Electroretinograms were recorded monocularly using DTL fibres 
from 7 healthy controls, mean age 24yrs (range 21-48). Signals were 
amplified, averaged and band-pass filtered using a Medelec Sapphire" 4E 
system. To obtain optimum separation of the cone and rod responses, a red 
(peak 655nm) 5msec flash, was presented at 1.3Hz over a range of stimulus 
intensities (0.022-0.264cdsm'2), following 20mins dark adaptation and with 
pupil dilation. In order to mimic conditions of sleep, this was repeated through 
closed eyelids and without pupil dilation. Finally, background illumination was 
increased in order to determine the optimum level required to saturate the rod 
response.

Results: Our technique elicits a clear response from the cone and rod 
systems simultaneously in the dark adapted eyes of a group of control 
subjects. Dim ambient illumination suppressed the rod response, whilst the 
cone response remained intact.

Conclusions: From our preliminary data it appears that levels of 30lux or 
less saturate or significantly reduce the rod response, which is presumed to 
be associated with a marked reduction in oxygen demand.
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Supporting Publications

7b: Poster presentation at the ISCEV meeting. Glasgow. UK. 2005

Electrophvsiological Investigation Into the Effects of Light and Dark on 
the Retinal Blood Flow in Diabetes Mellitus.
CumiskeyJA1, PerrottRL1, Drasdo N \ Owens DR2, North RV1 
1 School o f Optometry and Vision Science, Cardiff University, Cardiff, UK.
2School o f Medicine, Cardiff University, Cardiff, UK

Purpose:
Retinal blood flow increases during periods of darkness, presumably due to 
the high oxygen demand from the photoreceptors. However it is not known 
whether this occurs in subjects with diabetes mellitus (DM), where there are 
known to be changes in autoregulation of the retinal blood vessels. Therefore 
the aim of this study is to investigate the retinal blood flow directly using 
pulsatile ocular blood flowmeter (POBF), and the Heidelberg Retinal 
Flowmeter (HRF), and indirectly by recording oscillatory potentials (OPs) in 
the dark adapted diabetic eye.

Methods:
Scotopic OPs are to be recorded in a group of 8 control subjects, and 8 
subjects with Type II DM with no retinopathy (NDR), after a period of 20 
minutes dark adaptation. Signals will be amplified, averaged and band-pass 
filtered (100-1000Hz) using a Medelec Sapphire" 4E system. They will be 
recorded to 6 white flashes, 3ms duration, intensity 3cdsm'2 (ISCEV 
standard), at 15s intervals with the first 2 treated as conditioning flashes. 
Photopic OPs will then be recorded after 10 minutes light adaptation to a 
white background, intensity 3cdsm"2, to 4 white flashes of 3ms duration and 
intensity 3cdsm‘2 at 1.5s intervals (ISCEV standard). Ocular and retinal blood 
flow will be assessed under photopic and scotopic conditions by means of the 
POBF (OBF Labs, UK), and the HRF (Heidelberg Engineering GmbH, 
Germany), respectively.

Preliminary results are still to be collected and will be presented in full at the 
meeting.
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7 c: Poster presentation at the ARVO annual general meeting. Fort 

Lauderdale. Florida, USA. 2005

Electrophvsioloqical Investigation of the Effects of Systemic Oxygen 
Inhalation on the Oscillatory Potentials and Scotopic B-Wave in 
Diabetes Mellitus.
Cumiskey J, Drasdo N, Owens DR, North RV
School o f Optometry and Vision Sciences, Cardiff University, King Edward VII 
Avenue, Cardiff, CF10 3NB, UK.

Purpose:The oscillatory potentials (OPs) are known to reflect inner retinal 
function and have been found to be reduced in subjects with diabetes mellitus 
(DM). The scotopic b-wave is thought to reflect primarily the activity of the rod 
bipolars and has also been found to be reduced in DM. Since retinal hypoxia 
has been implicated in abnormalities of visual function we investigated the 
effect of 5 minutes of systemic oxygen (O2) inhalation on the OPs and 
scotopic b-wave in subjects with DM.

Methods:Fifteen subjects with Type II DM, mean disease duration 8yrs, with 
no diabetic retinopathy (NDR), mean age 62yrs (SD 6.0), were compared to a 
group of 15 age-matched controls, mean age 62yrs (SD 10.6). OPs were 
recorded monocularly after 20mins dark adaptation to 6 white flashes, 
intensity 3cdsm'2 (ISCEV standard), 3ms duration at 15s intervals (first two 
flashes treated as conditioning flashes). This was then repeated: a) after 
2mins of 100% O2 inhalation through a 60% Ventimask, b) 2mins, c) 7 mins 
and d) 12mins after removal of the mask. The scotopic b-wave was recorded 
monocularly (n =17 NDR, n=18 controls), after 20mins dark adaptation at the 
same time points to a 5ms green flash (peak 515nm), intensity 0.0012cdsm'2 
(ISCEV standard), at 0.5Hz.

Results:Q? inhalation increased the summed OP amplitude with a significant 
increase of 12% and 19% from baseline at 7 and 12mins after removal of the 
mask respectively using Bonferroni pairwise comparisons (p<0.001 RM 
ANOVA). No significant change in summed amplitude was found in the 
controls (p=0.154). An increase in amplitude was also observed for the 
scotopic b-wave, of 10% and 8% in the NDR group at these respective time 
points, though this did not reach significance using the RM ANOVA.

Conclusion:Q? inhalation significantly increased the summed amplitude of 
the OPs in NDR subjects while control subject amplitudes remained stable. 
The scotopic b-wave amplitude increased for both groups though not 
significantly in this experiment. The increase in summed OP amplitude with 
O2 inhalation supports the suggestion of impaired retinal autoregulation in 
subjects with DM even when no retinopathy is apparent, and suggests that 
tissue hypoxia may be present in the surface layers of the retina in these 
subjects.
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7d: Poster presentation at the ISCEV meeting. Fontevraude. France. 2006

The Effects of Hyperoxia on the Scotopic ERG in Patients With Diabetes 
Mellitus.
Cumiskey J1, Drasdo N1, Owens DR2, North RV1
1 School o f Optometry and Vision Sciences, Cardiff University, Cardiff, UK 
2School o f Medicine, Cardiff University, Cardiff, UK

PURPOSE: Both the oscillatory potentials (OPs) and scotopic b-wave have 
been found to be reduced in diabetes mellitus (DM) with retinal hypoxia 
implicated as a possible cause. We investigated the effects of systemic 
hyperoxia on these in subjects with and without diabetic retinopathy. 
METHODS: OPs: 22 Type 2 DM subjects with no visible retinopathy (NDR), 
mean age 62yrs (SD10.6), 11 Type 2 DM with background retinopathy (BDR), 
mean age 65yrs (SD 7.0) and 21 controls, mean age 60yrs (SD10.8), were 
recruited. OPs were recorded after 20mins dark-adaptation to ISCEV 
standards. Subjects inhaled 100% oxygen (0 2) for 5mins through a 60% 
Ventimask. This procedure was repeated: a) after 2mins of 0 2 inhalation and 
b) 2mins, c) 7mins and d) 12mins after mask removal.
B-wave: The b-wave was recorded in 24 NDR subjects, mean age 62yrs (SD 
6.0), 11 BDR subjects, mean age 63yrs (SD 6.5), and in 24 controls mean 
age 60 yrs (SD 10.6), after 20mins dark-adaptation to ISCEV standards. It 
was then recorded both during and after 5mins of 0 2 inhalation as described 
above.
RESULTS:OPs: Hyperoxia increased summed OP amplitudes in the BDR 
group with a significant increase of 40.9% 12min after mask removal 
(Bonferroni pairwise comparisons, p<0.001 RM ANOVA). Non significant 
increases in amplitude were found in both the control (p=0.08), and the NDR 
group (p=0.57).
B-wave: A significant increase in b-wave amplitude was also observed for 
the BDR group (p<0.001 RM ANOVA), though increases of 20.3%, 22.4% and 
23.2% at 2, 7 and 12min after mask removal respectively did not reach 
significance with Bonferroni pairwise comparisons. Non-significant increases 
were found in the control (p=0.33), and the NDR group (p=0.10).
COMMENTS: Hyperoxia significantly increased summed OP and scotopic b- 
wave amplitudes in BDR subjects, which supports the suggestion of impaired 
retinal autoregulation and the presence of tissue hypoxia in the inner retinal 
layers of these subjects.
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