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“Even youths grow tired and weary, and youth men stumble and fall; but those who hope 
in the Lord will renew their strength. They will soar on wings like eagles; they will run 
and not grow weary, they will walk and not be faint.”

Isaiah 40:30-31
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Abstract
The aim of this study was to obtain a better understanding in the healing of 

LASlK-like flaps using an in vitro organ culture method in bovine corneas.

At early stages of the PhD, during protocol optimisation, a 5mm trephine was 

used to injure bovine corneas. At later stages a custom-made eye holder was used to 

induce LASIK-like incisions in corneas. Immunohistochemistry for a-smooth muscle 

actin (aSMA) and cytokeratin was used to monitor myofibroblast and epithelial cell 

expression, respectively, during the wound healing process. Additionally, the effect of 

certain cytokines (i.e. TNFa, Fas ligand, TGF-Pi and IL-la) was tested in terms of

corneal transparency, myofibroblast expression and tissue mechanical strength during the 

healing process. The later series of experiments was an attempt to manipulate and 

improve wound healing after LASIK. Healing in this in vitro system closely followed the 

effects that are already known from the literature. In addition, preliminary evidence on 

the cytokine corneas proved that there is a correlation between cytokine type and 

concentration with the effect in tissue transparency, extend of wound healing response 

and tissue mechanical strength.

X-ray diffraction also provided important information about collagen 

ultrastructural changes in the corneas during the healing process. Parameters such as 

fibrillar diameter, spacing, distribution and orientation were studied. Collagen fibrillar 

diameter and spacing remained constant for control corneas during the organ culture 

time-span, indicating that this in vitro system does not induce any swelling effects on the 

tissue. However, injured corneas became significantly swollen (p<0.05) during culture. 

Swelling effects were more severe in trephined corneas than in LASIK-like injured ones. 

However, collagen fibrillar diameter remained normal in the periphery of injured corneas, 

but it increased significantly in areas within and around the wound in trephined samples 

and in the flap incision site for LASIK-like ones. In both types of wounding, collagen 

orientation changes were observed and were associated with the process of creating the 

injury. However, in the case of trephine wounded corneas, tissue swelling and changes in 

collagen orientation reflected the processes of tissue repair. These differences will 

determine corneal stability and strength follow trauma and, possibly, refractive surgery.



The transparency of the cornea depends on both the collagen and the interstitial 

proteoglycans. In order to obtain a better insight in ultrastructural changes during the 

wound healing process molecular modelling techniques were used in order to construct a 

theoretical model for the core protein of biglycan. This molecule is a dermatan sulphate 

proteoglycan and its numbers increase up to seven times during wound healing. It is 

considerably larger than the rest of proteoglycans and molecular modelling also revealed 

numerous potential collagen interaction sites.



Table of contents

1. Introduction 1-26

1.1 The Cornea 1

1.1.1 Tear film 2

1.1.2 Epithelium 3

1.1.3 Bowman’s layer 4

1.1.4 Stroma 4

1.1.5 Descemet’s Membrane 6

1.1.6 Endothelium 7

1.2 Corneal Transparency 7

1.2.1 Collagen structure and organisation within the cornea 8

1.2.2 Proteoglycan structure, localisation and its role in corneal 10

transparency

1.2.3 Hydration of the Cornea 11

1.3 Corneal Shape Defects 12

1.4 Refractive Surgery 13

1.4.1 Radial Keratotomy (RK) 13

1.4.2 Photorefractive Keratectomy (PRK) 14

1.4.3 Laser in situ Keratomileusis (LASIK) 15

1.4.4 Laser Epithelial Keratomileusis (LASEK) 16

1.5 Wound healing 17

1.5.1 Corneal Wound Healing 17

1.5.2 Epithelial Wound Healing 18

1.5.3 Stromal Wound Healing 19

1.5.4 Synopsis of corneal wound healing 19

1.5.5 Proteoglycan and Matrix Metalloproteinase Alterations 20

during the Wound Healing Process

1.6 Introduction and theoretical background of techniques to be used 21

in this study

1.6.1 Organ culture 21

1.6.2 Light microscopy 22



1.6.3 Electron microscopy 22

1.6.4 X-ray diffraction 23

1.6.5 Molecular modelling 25

1.7 Aims and Objectives 25

2. Methods development of microscopy laboratory techniques 27-36

2.1 Organ Culture 27

2.2 Light Microscopy 28

2.2.1 Preparation of Frozen Sections 28

2.2.2 Preparation of wax sections and method development 29

2.2.3 Haematoxylin and Eosin Staining 30

2.2.4 Cytokeratin 3 and PAN cytokeratip immunostaining and 30

method development

2.2.5 a-smooth muscle actin immunostaining and method 32

development

2.3 Transmission Electron Microscopy (TEM) 34

2.3.1 Cuprolinic Blue fixation in a critical electrolyte condition 35

2.3.2 Sectioning 35

2.3.3 Staining of ultrathin sections 35

2.3.3.1 Uranyl Acetate (UA) / Lead Citrate Staining 35

2.3.3.2 Uranyl Acetate (UA) / Phosphotungstic Acid 35 

(PTA) Staining

2.3.4 Observing the samples under a TEM 36

3. Morphological and cellular assessment of LASIK-like wounded 37-S8

corneas

3.1 Introduction 37

3.2 Experimental design 38

3.3 Results 43

3.3.1 Haematoxylin and Eosin staining 43

3.3.2 Epithelial cells 48

3.3.3 Stromal cell numbers in LASIK-like injured corneas 51

3.3.4 Myofibroblast expression and cell numbers in LASIK-like 53



injured corneas

3.4 Discussion and conclusions 55

4. Association of myofibroblast induction with LASIK-flap adhesion 59-76

and corneal transparency

4.1 Introduction 59

4.2 Experimental design 60

4.3 Results 65

4.3.1 Evaluation of transparency, corneal mechanical 63

strength/flap adherence and myofibroblast cellular 

expression and cell counts

4.3.1.1 Control/untreated corneas 63

4.3.1.2 Tumour Necrosis Factor alpha (TNF-a) treated 66

corneas

4.3.1.3 Interleukin 1 alpha (IL-la) treated corneas 68

4.3.1.4 Fas Ligand (FasL) treated corneas 70

4.3.1.5 Transforming Growth Factor beta 1 (TGF-pi) 73

treated corneas

4.4 Discussion and conclusions 74

5. Investigation of collagen ultrastructure in normal, LASIK-like and 77-104 

trephine wounded corneas

5.1 Introduction 77

5.2 Methods 78

5.2.1 Sample preparation 78

5.2.2 X-ray diffraction 78

5.2.3 Data analysis for small angle x-ray scattering (SAXS) 80

5.2.4 Data analysis for wide angle x-ray scattering (WAXS) 83

5.2.5 Statistical analysis 85

5.2.6 Transmission electron microscopy (TEM) 86

5.3 Results 86

5.3.1 Small angle x-ray scattering (SAXS) 86



5.3.2 Transmission electron microscopy (TEM) 96

5.3.3 Wide angle x-ray scattering (WAXS) 97

5.4 Discussion and conclusions 102

6 Homology molecular modelling for the prediction of bovine corneal 105-117

core protein

6.1 Introduction 105

6.2 Materials and methods 107

6.2.1 Molecular Modelling 107

6.2.2 Sequence alignment 107

6.2.3 Homology modelling 107

6.2.4 Molecular dynamics (MD) simulations 108

6.3 Results 109

6.3.1 Sequence alignment 109

6.3.2 Secondary features and model evaluation 110

6.3.3 Molecular dynamics 111

6.3.4 Model evaluation 112

6.3.5 Comparison of the theoretical model to its crystal structure 114

6.4 Discussion and conclusions 116

7 General discussion 118-123

7.1 Future work 122

Appendices 124-171
Appendix 1: Nomenclature 125

Appendix 2: List of materials 128

Appendix 3: Solution preparation 130

Appendix 4: Raw data and statistics for stromal cells and myofibroblast 134

cell counts

Appendix 5: Raw data and statistics for the effect of growth factors in 138

LASIK-like injured corneas 

Appendix 6: Raw data and statistics for x-ray diffraction experiments 149



Carrington LM, Albon J, Anderson I, Kamma C and Boulton M (2006) 

Differential regulation of key stages in early corneal wound healing by TGF-beta 

isoforms and their inhibitors. Invest Ophthalmol Vis Sci 47: 1886-1894.

Bibliography



List of figures 

Figure 1.1: Anatomy of the cornea.
(Picture after www.northemvision.coni 2003)

Figure 1.2: Anterior (A), Middle (B) and Posterior (C) stromal keratocytes of a 

10-year old individual (Scale bar = 50 (am). (Picture after Poole 2003)

Figure 1.3: Proteoglycans present at the cornea. (Picture adapted from Zmuda- 

Trzebiatowska 1997)

Figure 1.4: Collagen fibrils are within a small range o f  distances from each 

Other. (Picture after Maurice 1957)

Figure 1.5: The structure of collagen at different levels. Three subunits of the a- 

helical protein (a) coil together to form a collagen fibre (b and c). In a collagen 

fibril (d) many fibres are stuck together and separated by 67nm from one another 

lengthwise. This feature produces the black patches in electron micrographs 

representing collagen fibres (e). Collagen fibrils form lamellae in tissues (f). 
(Picture after http://wwwfac.mcdaniel.edu/Chemistrv/CH3321JPGs/Proteins/Collagen.ipg 2003) 

Figure 1.6: Equation for cornea hydration. Wet weight is the initial corneal 

weight. Dry weight is the weight of the tissue after the whole water content is 

being removed.

Figure 1.7: In myopia light rays focus in front of the retina (A). In hyperopia 

light rays focus behind the retina (B). In astigmatism light rays do not focus at 

any one point, rather an area, resulting in a blurred distorted image (C). (Picture 

after www.northemvision.com 2003)

Figure 1.8: Overview of the corneal wound healing process.

Figure 1.9: Diagram of the organ culture model. (Picture after Foreman etal. 1996) 

Figure 1.10: Visual representation of the x-ray diffraction technique. A bundle 

of vertically arranged collagen fibrils produce meridional x-ray reflections, 

which are parallel to the fibril axes and equatorial reflections, which are 

perpendicular to the fibril axes. (Meek and Quantock 2001)

Figure 2.1: Diagram of the organ culture model. (Picture after Foreman et al. 1996) 

Figure 2.2: The Cryostat (Leica, UK)

http://www.northemvision.coni
http://wwwfac.mcdaniel.edu/Chemistrv/CH3321JPGs/Proteins/Collagen.ipg
http://www.northemvision.com


Figure 2.3: The Microtome (Leica, UK) 29

Figure 3.1: Control (A) and Wounded (B) bovine corneal samples in organ 38

culture for 24hrs (20x)

Figure 3.2: Diagram representing a trephine wounded cornea in organ culture. 39 

(Picture taken from Foreman et al. 1996)

Figure 3.3: The organ culture set up representing a control/uninjured cornea 39

(Picture adapted from Foreman et al 1996)

Figure 3.4: Corneal diagram with rectangular boxes (100x200pm) in six 41

positions denoting the location of the area assessed for quantitative total cell 

counts

Figure 3.5: Diagram representing a LASIK-like injured cornea indicating the 42

area of interest for counting total cells and aSMA positive cells.

Figure 3.6: Structure of a cross section in a central region of a normal/uninjured 43

bovine cornea. Bovine corneas lack Bowman’s layer.

Figure 3.7: Wound healing progress in trephined bovine corneas at different 44

time points. Light micrograph for 72hrs is a focused image in the right side of the 

wound that shows the formation of a thin layer of epithelium covering the site of 

injury. This layer becomes thicker at the 7th day after injury (Black arrows 

indicate the incision site).Scale bars: Ohrs and 7 days=25pm, 24hrs=100 pm, 

72hrs=50 pm.

Figure 3.8: LASIK-like injured bovine corneas in culture for up to one month. 46

LASIK-like flap immediately after wounding at Ohrs. Epithelial plug formation 

within 24hrs post-wounding. Incision still intact within the stroma at 1 and 4 

weeks after injury, respectively. Scale bars: 0 hrs=100pm, 24 hrs=100pm and 

30pm, 1 week= 100pm and 30pm, 4 weeks=25pm.

Figure 3.9: Epithelial cell expression in central region of control/uninjured 48

corneas (A and B). Limbal region of control/uninjured cornea (C). Negative 

control/ central corneal region (D). Yellow arrow indicates site of positive 

staining for cytokeratin in epithelial cell cytoplasm (Green-> Cytokeratin, 

Blue-> Biz-benzimide).

Figure 3.10: Epithelial cell expression LASIK-like injured corneas up to four 50



weeks after injury. Epithelial cells at the site of incision at Ohrs time-point (A).

The epithelial pug that was formed within 24hours after injury consisted of 

terminally differentiated epithelial cells. The epithelium also started to migrate 

towards the stroma covering gaps (B). The profile of the epithelial cellular 

behaviour remained the same after lweek (C) and 4 weeks (D) post wounding.

Figure 3.11: Myofibroblast cell expression in LASIK-like corneas. Positive 53

stained cells were first observed at the 1 week time-point (A) and they were 

present for the rest of the organ culture time span (B-D depict 2-4 weeks, 

respectively). aSMA staining was also positive in the limbal vessels of all 

corneas (E). Negative control (F) (Green-> aSMA, Blue-> Biz-benzimide).

Figure 3.12: Graph representing the increase in % myofibroblast population 54

over a four weeks period after injury in LASIK-like injured corneas. Error bars 

represent the standard error of mean (B).

Figure 4.1: The organ culture set up. (Picture adapted from Foreman et al. 1996) 61

Figure 4.2: Sample of the grids that were used to assess the transparency of 61

control and cytokine treated corneas.

Figure 4.3: Scale for assessing corneal transparency 62

Figure 4.4: Lloyd tensiometer set up (A) Each cornea was clamped on the two 63

metal arms (yellow arrows-upper arm 1, lower arm 2) of the tensiometer and was 

pulled apart in opposite vertical directions (red arrows) (B).

Figure 4.5: Diagram representing a LASIK-like injured cornea indicating the 64

area of interest for counting total cells and aSMA positive cells.

Figure 4.6: Graph showing the flap adherence of non-cytokine treated corneas 65

Figure 4.7: Graphs showing the effect of various concentrations of TNF-a on the 67

flap adhesion

Figure 4.8: Graphs showing the effect of various concentrations of TNF-a on 67

myofibroblast proliferation on the flap bed.

Figure 4.9: Graphs showing the effect of various concentrations of II-la  on the 69

flap adhesion

Figure 4.10: Graphs showing the effect of various concentrations of IL-la on 69

myofibroblast proliferation on the flap bed.



Figure 4.11: Graphs showing the effect of various concentrations of FasL on the 71 

flap adhesion

Figure 4.12: Graphs showing the effect of various concentrations of FasL on 72 

myofibroblast proliferation on the flap bed.

Figure 4.13: Graphs showing the effect of various concentrations of TGF-pi on 73 

the flap adhesion.

Figure 5.1: Aerial photo of the Synchrotron Radiation Source (SRS) in 77 

Daresbury, UK.
(Picture taken from http://esl.Dh.man.ac.uk/research/svnc/daresburvr.ipg 2007)

Figure 5.2: 18mm corneal circular area including the LASIK-like incision. For 79 

the wide angle x-ray diffraction experiments the whole area was scanned. For 

small angle experiments a cross section of the cornea (blue dashed line) was 

scanned (A). 18mm corneal circular area with a 5mm trephine wound in the 

middle. A cross section of the cornea was scanned (blue, dashed line) in order to 

observe interfibrillar spacing (1FS) and fibrillar diameter variation outside the 

wound, whereas the whole corneal button was scanned for wide-angle 

experiments (B).

Figure 5.3: A common intensity profile, first order collagen pointed out by 81

arrow (A) and a highly disordered pattern, where first order collagen peak 

appeared as a small shoulder (arrow in B). Both patterns were taken from a 

LASIK-like injured bovine cornea.

Figure 5.4: Part of the analysis for wide angle x-ray scattering. Initially, an x- 85 

ray scattering pattern that was created by passing a beam of X-rays through the 

cornea parallel to the optical axis (A). Intensity profiles of total and isotropic 

collagen X-ray scatter (B) and preferentially aligned collagen alone (C) as a 

function of angular position around the scatter pattern. Example of a polar plot 

(D). The size of the polar plot and its radial extent in any given direction 

represents the amount of collagen preferentially orientated in that direction 

(Picture taken by Hayes et al 2007).

Figure 5.5: Graphs representing Bragg fibrillar diameter and interfibrillar 86

spacing for control corneas over a time of two weeks in culture-Error bars

http://esl.Dh.man.ac.uk/research/svnc/daresburvr.ipg


represent standard of mean.

Figure 5.6: Bragg collagen diameter for control and trephine wounded corneas 87

for a two weeks organ culture time span (Fade blue area indicates the wound- 

Error bars represent standard of mean)

Figure 5.7: Collagen interfibrillar spacing for control and trephine wounded 89 

corneas for a two weeks organ culture time span (Fade blue area indicates the 

wound- Error bars represent standard of mean)

Figure 5.8: Graphs representing Bragg fibrillar diameter and interfibrillar 91

spacing for control corneas over a time of four weeks in culture- Error bars 

represent standard of mean.

Figure 5.9: Bragg collagen diameter for control and LASIK-like injured corneas 92 

for a four weeks organ culture time span- Error bars represent standard of mean.

Figure 5.10: Collagen interfibrillar spacing for control and LASIK-like injured 94

corneas for a four weeks organ culture time span. Error bars represent standard 

of mean Error bars represent standard of mean.

Figure 5.11: Electron micrographs, obtained using the critical electrolyte 96

method, representing area in mid and posterior stroma of trephine wounded 

corneas within 24hrs of injury (A). Control cornea in a posterior site of the 

stroma (B). Turquoise arrows point out the difference in size between 

proteoglycan molecules in injured and uninjured corneas.

Figure 5.12: Polar plot map showing the preferred orientation of fibrils in a 97

control bovine cornea. Fibrils tend to have a vertical preferred orientation (the 

map is switched 30 degrees anticlockwise off in vivo orientation). Plots have 

been scaled down by the factors shown in the colour key and metric scale is in 

millimeters-Courtesy of Dr S Hayes

Figure 5.13: Polar plot map showing the preferred orientation of fibrils in a 98 

centrally located 6.9><6.9mm area from a trephine wounded cornea over a two 

week culture time span (A-C). The wound was placed in the middle of the scan 

and the pictures depict trephine wounded corneas at Ohrs (A), 1 week (B) and 2 

weeks (C). Solid circle represents the size and approximate position of the 

wound. Plots have been scaled down by the factors shown in the colour key and



metric scale is in millimeters.

Figure 5.14: Polar plot maps of x-ray scatter (A-D) and contour maps of total 100 

collagen (E-H) showing the orientation and distribution, respectively, of fibrillar 

collagen across LASIK-like injured corneas at 1, 2, 3 and 4 week after injury.

The scan covered an area that included the whole of the flap as well as the hinge.

Plots have been scaled down by the factors shown in the colour key and metric 

scale is in millimeters.

Figure 6.1: Sequence alignment between biglycan core proteins of different 109 

species produced by the ClustalX program (A). Homology scores from sequence 

alignment between the sequences of biglycan core protein from different 

mammal species. Alignment scores were between 94-99% suggesting high 

homology and structural conservation of biglycan core protein throughout 

mammal species (B).

Figure 6.2: Sequence alignment between decorin (1XKU) and biglycan 110

produced by the ClustalX program. Homology score between the two proteins 

was 56.7%. (A) Secondary structure features prediction. Red: a-helical

secondary elements, Black: p-sheet pattern (B).

Figure 63: Ramachandran Plot. In both the template and the model, there are no 111 

residues in the disallowed regions of the ramachandran plot.

Figure 6.4: The model quickly reached a plateau, which is considered to be its 112

global energy minimum (Chart 1). A constant Hamiltonian value revealed that 

the molecular system was stable throughout the course of the molecular 

dynamics simulation (Chart 2).

Figure 6.5: The structure of biglycan superimposed with its template. 113

Reasonably high homology identity guaranteed the retention of the major 

secondary elements and shape. The above structure has been obtained after a 2 

nanosecond molecular dynamics simulation.

Figure 6.6: Proposed homology model for the structure of the biglycan core 114 

protein.

Figure 6.7: The structure of the homology model was very similar to the crystal 115 

structure. Superimposition of the two structures revealed the existence of two



loops at the surface of the molecule (indicated by turquoise arrows). Key: Green 

and aqua-^ a-helix and p-sheet, respectively, for the homology model; Red and 

yellow-> a-helix and p-sheet, respectively, for the crystal structure (A). The 

homology model of biglycan superimposed with the crystal structure of the same 

protein. Key: Yellow-^ X-ray structure, Red-> homology model (B).



List of tables

Table 1.1: The composition of the cornea. (Table after Hogan 1971)

Table 2.1: Solutions that used for the four different subgroups of slides.

Table 3.1: Total cell counts for stromal cells from different areas along the 

LASIK-like flap. For each time-point 3 corneas were used (For cell 

numbers/mm and also raw data please refer to Appendix 4).

Table 4.1: Number of corneal samples put in culture for each cytokine dilution 

for each time-point

Table 4.2: Mean force required to detach control non-cytokine treated corneas 

over a period of 4 weeks in culture.

Table 4.3: Visual transparency assessment of control non-cytokine treated 

corneas over a 4 week period in culture.

Table 4.4: Mean force required to detach TNF-a treated corneas over a period of 

4 weeks in culture.

Table 4.5: Visual transparency assessment of TNF- a treated corneas over a 4- 

week period in culture.

Table 4.6: Mean force required to detach IL-la treated corneas over a period of 

4 weeks in culture.

Table 4.7: Visual transparency assessment of IL-la treated corneas over a 4 

week period in culture.

Table 4.8: Mean force required to detach FasL treated corneas over a period of 4 

weeks in culture.

Table 4.9: Visual transparency assessment of FasL treated corneas over a 4 

week period in culture.

Table 4.10: Mean force required to detach TGF-pl treated corneas over a period 

of 4 weeks in culture.

Table 4.11: Visual transparency assessment of TGF-pi treated corneas over a 4 

week period in culture.

1

33

51

61

65

66

66

68

68

70

70

72

73

74



List of equations

Equation 5.1: Equation for the intensity distribution (I(Q)-^ integrated intensity 

distribution, F2-> fibril transform, E(Q)-> the fibril interface transform, B-> 

background scatter from background components, Q-> reciprocal space 

coordinate).

Equation 5.2: Equation for calculating collagen fibrillar diameter (d-> fibrillar 

diameter, M-> Braggs spacing of the subsidiary maximum)



1. Introduction

1.1 The Cornea

The cornea is a dome shaped transparent layer that is situated at the front of 

the eye globe. Its anterior part is covered by the tear film and its posterior side is in 

direct contact with the aqueous humor. Both the cornea and the tear film protect the 

eye from physical injury and from the invasion of pathogenic micro-organisms. The 

major function of the cornea is to refract and transmit light to the retina in order for 

visual function to occur.

The cornea consists mainly of epithelial cells, collagen, proteoglycans, 

keratocytes, water molecules and endothelial cells (Table 1.1). The organisation of 

collagen fibrils within the cornea and the lack of any vascular system make the cornea 

transparent. Corneal transparency is essential for normal visual function. Since there 

is no blood supply to the cornea, its oxygen is provided by the tear film and the 

metabolic requirements are provided by the aqueous humour.

Substance %

Water 78

Collagen 15

Other Proteins 5

Keratocytes 5

Keratan Sulphate 0.7

Chondroitin Sulphate 0.3

Salts 1

Table 1.1: The composition of the cornea.
(Table after Hogan 1971)

The cornea consists of five well-differentiated layers, i.e. the epithelium, 

Bowman’s layer, the stroma, Descemet’s membrane and the endothelium (Fig. 1.1).

1



Epithelium ——  

B asem en' •W #'lasem ent T l  » W r P i» l » r  f  t’ l ' r w
membrafi? ■ •/•*...; : •• •• ■:...... OX.

Bowman's •*" 
layer

Strom a-—— — —

—

D escem et's 
m em orane—

Endothelium

in atom y of Cornea

Figure 1.1: Anatomy of the cornea 
(Picture after www.northemvision.com 2003)

1.1.1 Tear film

The tear film is the superficial layer of the eye. Its anterior part is in direct 

contact with the air, whereas its posterior part is adjacent to the epithelial layer of the 

cornea. Initially it was proposed that the tear film consists of three layers: the lipid, 

the aqueous and the mucous layer (Wolf 1946). However, this was later challenged by 

(Dilly 1994) who proposed that the mucous and the aqueous layers are not discrete 

and they form a single layer. The same review also describes the tear film as a 

hydrated mucin gel with variable viscosity.

The lipid layer lies at the anterior side of the tear film and it prevents 

evaporation of the tear film and hence the cornea from the air. This layer is produced 

by the meibomian glands and the glands of Zeis and Mol. The aqueous portion is the 

major component of the tear film and it is produced by the main lacrimal glands and 

the accessory lacrimal glands such as the Krause and Wolffing glands. The mucous 

portion of the tear film is secreted by conjuctival goblet cells and it is a hydrophilic 

layer that covers and hydrates the anterior part of the cornea. The tears contain 

antimicrobial agents (i.e. lysozyme, lactoferrin and IgA) and hence the colonisation of 

potential pathogens is prevented (Azar 1997, Johnson and Murphy 2004).

2
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1.1.2 Epithelium

The comeal epithelium is a stratified, squamous, non-keratinised epithelium. 

In human, it is 5-6 cells thick (70pm) and it is subdivided into three different layers: 

the squamous, the wing and the basal cells.

The squamous cells are located at the anterior part of the epithelium. They are 

flat, polygonal cells that provide the cornea with a smooth surface (Saude 1993). 

What is more, these cells are joined with desmosomes and tight junctions. The tight 

junctions between the squamous cells make this layer a semipermeable membrane 

that controls the para-intracellular movement of substances and excess fluid from the 

tear film. Desmosomes between the cells provide the layer with even more adhesion. 

The existence of tight junctions and desmosomes make the epithelium difficult to 

penetrate and this feature of the squamous cells’ arrangement provides the cornea 

with protection against physical damage. Finally, the squamous cells have microvilli 

which attach to the tear film. These tiny projections keep the tear film in place.

The wing cells are flattened, polyhedral and they exist at the middle of the 

epithelium. In human cornea they are three layers thick and the cells are attached to 

each other with desmosomes and gap junctions. Wing cells are attached to the 

squamous cells and basal cells with desmosomes (Remington 1998).

The basal cells are one layer thick, located at the posterior surface of the 

epithelium and they are attached to each other via desmosomes and gap junctions. The 

basal cell layer is where mitosis of the epithelial cells takes place. After each mitotic 

division some of the basal cells differentiate to become middle and superficial cells 

(Azar 1997). Stem cells at the limbus are responsible for cell replacement and tissue 

regeneration. Basal cells have a completely different morphology from the cells of the 

squamous and wing layers since they have cubical or cylindrical forms with varying 

heights and rounded heads. The basal cells secrete the basement membrane that links 

the epithelium with the adjacent Bowman’s layer below by hemidesmosomes (Young 

et al 1994). Anchoring fibrils pass from these junctions through the Bowman’s layer 

to plaques of the extracellular matrix of the stroma. Finally, interdigitations and 

desmosomes link the basal cells with the wing cells above (Saude 1993). Corneal 

epithelial stem cells are located in the basal epithelial layer of the limbus. These cells 

are highly proliferative and are responsible for corneal epithelial cell proliferation and 

differentiation (Stepp and Zieske 2005).
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1.13 Bowman’s layer

Bowman’s layer is one of the acellular parts of the cornea and it is 8-14 pm 

thick. It originates from the mesenchymal cell processes of the superficial stroma 

during embryogenesis (Azar 1997). It consists mainly of randomly arranged collagen 

fibrils. Due to its acellular nature it is incapable of regenerating itself after injury. 

However, its existence seems not to be crucial for proper vision function since some 

mammalian species do not posses any Bowman’s layer at all. Probably its existence in 

the cornea is correlated with providing the tissue with an extra layer and hence 

providing it with resistance to mechanical strength.

1.1.4 Stroma

The stroma (or substantia propria) is located at the middle of the cornea and it 

is the thickest layer (500 pm-90% of overall corneal thickness in human). It consists 

mainly of collagen lamellae, keratocytes and proteoglycans. The stroma is difficult to 

regenerate after injury and hence it is likely to develop opacities after disturbance. 

Types I, III, V, VI, XII and XIV are the main collagens in the corneal stroma (Meek 

and Fullwood 2001). All collagen fibrils have a uniform diameter and regular spacing. 

This feature is essential for the maintenance of corneal transparency (section 1.2). 

Collagen fibrils in any one lamella run in a parallel direction whereas lamellae are at a 

certain angle to each other and parallel to the corneal surface. With the anterior 

stroma being an exemption, each lamella runs across the entire cornea, i.e. from 

limbus to limbus (Remington 1998).

Keratocytes are differentiated mesenchymal fibroblasts and they actively 

produce and secrete substances for the production, maintenance and repair of 

proteoglycans, collagen and keratocytes (Azar 1997, Green 2003). They are flattened 

cells. The morphology and the anatomy of keratocytes differ throughout the stroma 

and according to Poole et al (2003) the keratocytes of the corneal stroma in humans 

form three distinctive layers (Fig. 1.2). The anterior layer is adjacent to the epithelium 

and Bowman’s layer and it has a higher cell density than the bulk of the rest of the 

stroma. Keratocyte density tends to be the highest in the anterior 10% of the stroma 

(Patel et al. 2001). Additionally, although keratocytes in this layer have a poor 

lamellar organisation they form an extensive network of branching and 

interconnecting cell bodies. The central layer has the least keratocyte density and the 

cells have variable orientation. Finally, keratocytes in the posterior layer have
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distinctive morphology and they are denser than the cells at the central layer. 

Keratocyte cell bodies are larger and are connected by small cell processes (Poole 

2003).

Figure 1.2: Anterior (A), Middle (B) and Posterior (C) stromal keratocytes of a 10- 

year old individual (Scale bar = 50 pm).
(Picture after Poole 2003)

The ground substance of the stroma is made up of proteoglycans (Fig. 1.3). 

These are macromolecules composed of a protein core and a carbohydrate 

glycosaminoglycan (GAG) side chain. GAG’s are hydrophilic, negative charged 

molecules located at specific sites around each collagen fibril (Remington 1998). 

According to Zieske (2001) the corneal stroma contains two major classes of 

proteoglycans containing either keratan sulphate side chains or dermatan/chondroitin 

side chains. Lumican, keratocan and mimecan are the major keratan sulphate PG’s, 

whereas decorin is the major dermatan/chondroitin PG (Fig. 1.3). Another heparan 

sulphate PG is heparin which exists in the basement membrane (Zieske 2001).
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Figure 1.3: Proteoglycans present at the cornea 

(Picture adapted from Zmuda-Trzebiatowska 1997)

1.1.5 Descemet’s Membrane

Descemet’s membrane is an acellular membrane that lies between the stroma 

and the endothelium. It is 8- 10pm thick and consists of three layers. It is composed of 

type IV collagea glycine and hydroxyproline (Azar 1997). Descemet’s membrane is 

secreted by the endothelium, it is capable of regenerating itself after a disturbance, it 

has good antigenic properties and its thickness increases with age (Saude 1993).
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1.1.6 Endothelium

The endothelium comprises a single layer of cells. These cells are flattened, 

hexagonal in shape with oval nuclei. Tight junctions join the cells, whereas 

intercellular communication is maintained by gap junctions. The main function of the 

endothelium is the maintenance of corneal hydration and it also allows the passage of 

ions, glucose, amino acids and water from the aqueous humour to the cornea. Glucose 

and amino acids diffuse into the cornea through a leaky barrier that is formed by the 

endothelial adhesions. Water and ions are actively transported by the endothelial 

pump. The Na+/K+-ATP pump system is the most important for water/ion exchange. 

Endothelial cells rarely divide and they decrease in number with age (Remington 

1998). Cell loss is compensated by an increase in endothelial cell size (Azar 1997). In 

cases where the cell density falls below a critical minimum, corneal hydration 

increases causing loss of transparency and visual impairment.

1.2 Corneal transparency

Corneal transparency is an essential requirement for visual function to occur. 

It is mainly due to the collagen and proteoglycan organisation of the stroma. In order 

for corneal transparency to be established, stromal collagen fibrils need to have 

uniform spacing. Collagen spacing is mainly controlled by proteoglycans that fill the 

space between the fibrils. Therefore, the physical and chemical properties of 

proteoglycans play an important role in establishing and maintaining corneal 

transparency. In order for an object to be transparent it must fulfil two basic 

requirements (Meek 2002). Firstly, it must not absorb light. Although glycoproteins in 

the stromal ECM absorb light in the electromagnetic spectrum below 310nm vision is 

not affected. In fact the ultraviolet radiation is harmful for the tissues. In contrast, 

none of the components of the cornea absorbs light in the visible region of the 

spectrum. Secondly, a transparent object must not scatter light. According to 

(Freegard 1997) it is essential that as little light as possible should be scattered in the 

forward direction relative to that transmitted in order for a clear image to be formed. 

Several models have already been proposed in order to explain light scattering and 

corneal transparency. The simplest model introduced the theory of the uniform 

refractive index of all corneal components. It is assumed that spacing between 

particles is very much less than the wavelength of light and hence light cannot 

distinguish between the fibrils and the material between them. Therefore light passes
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through the tissue without any scattering. In this case, the medium is considered to 

have a uniform refractive index different from unity. This has the effect of slowing 

down the light, but there is no scattering of light away in the forward direction. 

However, this is not the case since it has been shown that there is a small amount of 

scattering per particle (Maurice 1957). Other models introduced theories such as the 

perfect crystal or perturbed lattice arrangement of fibrils. The most realistic model 

was introduced by Hart and Farrell (1969) and proposes that only a short-range order 

in the packing of the collagen fibrils is required for the appropriate destructive 

interference of scattered photons to occur. There is disorder in the packing of 

collagen, but all fibrils are within a small range of distances from each other (Meek 

2003).

Figure 1.4: Collagen fibrils are within a small range of distances from each other
(Picture after Maurice 1957).

1.2.1 Collagen structure and organisation within the cornea

The overall mechanical strength of a connective tissue depends on the 

interfibrillar interactions of collagen molecules and the interactions of collagen with 

proteoglycans and water (Cameron 2002). Collagen has a special amino acid 

composition. Its major feature is that one in every three amino acids is a glycine and it 

adopts a Gly-X-Y pattern, where usually X is a proline and Y a hydroxyproline. 

Consequently, collagen does not appear to have a typical a-helical or (3-sheet 

conformation. The collagen helix has a left hand twist instead of the right handed one 

that is adopted by typical a-helical structures. This is due to the existence of 

hydroxyproline within the protein structure. This amino acid has a tendency of
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inducing a left handed twist and because it appears in high frequency within the 

collagen structure it causes the whole helix to obtain a left handed twist. A collagen 

fibril consists of three parallel helices joined together with hydrogen bonds in a left 

handed twist (Fig. 1.5). According to Rainey and Goh (2002) collagen is either a 

homotripeptide or heterotripeptide with a repeating primary sequence of (Gly-X-Z)n, 

displaying characteristic peptide backbone dihedral angles. Furthermore, glycine has 

the smallest side chain of all amino acids and this causes the three chains to pack 

together very tightly (Woodhead-Galloway 1980).

Or*y*y

On*S*
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Figure 1.5: The structure of collagen at different levels. Three subunits of the a- 

helical protein (a) coil together to form a collagen fibre (b and c). In a collagen fibril 

(d) many fibres are stuck together and separated by 67nm from one another 

lengthwise. This feature produces the black and white patches in electron micrographs 

representing collagen fibres (e). Collagen fibrils form lamellae in tissues (f).
(Picture after http://wwwfac.mcdaniel.edii/Chemistrv/CH3321JPGs/Proteins/CoHagen.iDg 2003)

Collagen organisation within the stroma is essential for corneal transparency. 

Out of the 19 known collagen types, at least 10 of them are expressed in the adult 

mammalian cornea (i.e. Types I, III, IV, V, VI, VII, VIII, XII, XIII and XVII). Most 

collagen types are fibrillar, however types IV, VI and VII are nor fibril forming 

collagen types (Zieske 2001). Predominantly, types I (85%), III (10%) and V (5%) 

collagen are present in the human corneal stroma (Marshall 1991). All collagen types 

are classified into three superfamilies. Class 1 or banded fibrillar collagens and have 

the typical D-period fibril appearance. Types I, III and V which are predominantly
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present at the cornea are Class 1 collagens. Class 2 are fibril associated collagens with 

interrupted triple helices (FACIT). Such collagen types do not form fibrils by them 

selves but interact with fibrillar collagens. Types XII and XIV are Class 2 collagens. 

Class 3 collagens have fibrillar structures, but they are not the same as Class 1 

collagens. Type VI is a Class3 collagen (Meek and Fullwood 2001).

Collagen fibrils within the bovine cornea have a diameter of 36 nm 

approximately and are parallel to one another forming the lamellae. Each lamella is 1- 

2 pm thick. Central regions in the human corneal stroma consist of about 200 stacked 

lamellae that run parallel to the corneal surface (Boote et al. 2006). Collagen fibrils 

within the cornea are packed in a short-range order. The axial periodicity corneal 

collagen is 65nm, slightly lower than in other collagenous tissues (e.g. tendon, 67nm) 

(Meek and Boote 2004). The average fibril diameter of corneal collagen in humans 

remains constant across the cornea; its value is in the region of 31nm and it can 

increase up to 34nm with age (Daxer et al. 1998, Meek and Boote 2004). Corneal 

proteoglycans lie in between the collagen fibrils assisting in the maintenance of 

normal interfibrillar spacing and therefore preserving transparency at the tissue. 

Under normal conditions in a transparent cornea the intermolecular spacing between 

the consituent molecules of a fibril is about 1.8nm (Malik et al. 1992, Meek and 

Boote 2004). In the peripheral cornea, collagen fibrils have a wider spacing than in 

central parts (Boote 2006). This is mainly due to the existence of chondroitin 

sulphate, a large PG, at the periphery. The corneal stroma has a tendency to swell 

easily since hydrophilic PGs attract water molecules (Freegard 1997). If the collagen 

arrangement within the corneal stroma is disrupted, light scattering might occur and 

therefore the cornea will not be transparent any more.

1.2.2 Proteoglycan structure, localisation and its role in corneal transparency

It is widely accepted that the properties of the extracellular matrix are highly 

correlated with its structural characteristics (Berthiaume et al. 1996, Fitton et al. 1998, 

Ranucci et al. 2000, Wu et al. 2003). The Extracellular Matrix (ECM) plays a key 

role in the maintenance and function of connective tissue and consists predominantly 

of collagen, proteoglycans, glycosaminoglycans and other minor proteins (Hocking 

1998).

Proteoglycans are macromolecules composed of a protein core and a 

carbohydrate glycosaminoglycan (GAG) side chain. GAG’s are highly hydrophilic,
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negatively charged molecules located at specific sites around each collagen fibril 

(Scott 1988) (Fig. 1.3). The core protein of a proteoglycan seems to be the most active 

part of the molecule and structurally it is a leucine zipper kind of protein that obtains a 

horse-shoe spatial arrangement. It interacts with the collagen fibrils and the 

extracellular matrix at specific sites. Consequently, they play an important role in 

corneal hydration. According to (Cintron 1989) the precise arrangement of PGs 

presumably reflects specific intermolecular interactions with collagens. Therefore, 

loss of PGs might cause alterations to the collagen organisation and hence to corneal 

transparency. For example, lumican, which is a keratan sulphate-containing 

proteoglycan, seems to play a key role in corneal transparency, since it is a key 

molecule in the neonatal development of the stromal matrix (Beecher et al. 2006) and 

it was also observed that mice homozygous for a null mutation in this molecule had 

opaque corneas ( Chakravarti et al. 1998, Quantock et al. 2001).

1.2.3 Hydration of the cornea

It should be taken into consideration that abnormal hydration of the cornea 

might cause serious disturbances in visual function. Corneal hydration is defined as 

the weight of water in the cornea divided by the dry weight of the tissue. Under 

normal conditions corneal hydration is around 3.2 and the tissue remains transparent 

(Hodson et al. 1991).

Wet _  weight -  Dry _  weight 
Dry weight

Figure 1.6: Equation for cornea hydration. Wet weight is the initial corneal weight. 

Dry weight is the weight of the tissue after the whole water content is being removed.

The mechanism by which the cornea maintains its level of hydration is called 

deturgescence. This is very important for comeal transparency and in healthy corneas 

there should be a constant proportion between solids and water (i.e. 22% solids to 

78% water) (Saude 1993). In cases where the endothelium is disturbed comeal 

hydration from the aqueous humour also becomes abnormal. Oedema or comeal 

swelling might appear, causing rearrangement of collagen fibrils in the stroma. The 

cornea becomes opaque and this might have severe implications in normal visual
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function. The force which the tissue swells is called swelling pressure and it is 

inversibly related to the hydration of the tissue (Hedbys and Dohlman 1963).

1.3 Corneal shape defects

Refractive errors in the eye are usually corrected by the use of the appropriate 

visual aids (e.g. spectacles or contact lenses). However, there are cases where the use 

of visual aids is inadequate and the refractive surgery approach is then preferred. The 

use of refractive surgery is considered in cases where the refractive error is minimized 

and hence the patient is able to use no spectacles or much smaller ones for their 

convenience. Additionally, refractive surgery might also be applied to patients who 

wish to eliminate completely their refractive error for their careers or jobs 

requirements or even for vanity.

The refractive power of the eye is predominantly determined by three 

variables: the refractive power of the cornea, the power of the lens and the length of 

the eye globe. Myopia or “near sightedness” is the most common refractive error 

(25% for Caucasians and 13% for African Americans) (Azar 1997). This condition 

occurs when the cornea is too steeply curved or the eye globe is too long. In this case, 

the light that enters the eye is focused in front of the retina (Fig. 1.6A). Patients 

suffering from myopia are unable to see clearly objects that are at a long distance.

Hyperopia or “far sightedness” affects almost 40% of the adult population, but 

is much less visually significant than myopia. Patients suffering from hyperopia are 

incapable of seeing clearly objects that are at a near distance. The great majority of 

young hyperopes regard themselves to be optically “normal”, but they may develop 

presbyopia and manifest hyperopia in their mid to late 30s (Azar 1997). In hyperopia 

light rays focus behind the retina (Fig. 1.6B) and the diffusion circles, which are 

formed result in a blurred and indistinctive image (Bores 2001). Hyperopia is a 

consequence of a too small eye globe or a too flattened cornea.

Almost 95% of the human population have some clinically detectable 

astigmatism. However, only a 3% - 15% has astigmatism greater than 2 diopters 

(Azar 1997). In this case, the radius of the curvature is not constant and the refractive 

powers varies across the cornea. People suffering from astigmatism have a blurred 

vision for objects situated in both near and long distance (Fig. 1.6C).
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Figure 1.7: In myopia light rays focus in front of the retina (A). In hyperopia light 

rays focus behind the retina (B). In astigmatism light rays do not focus at any one 

point, rather an area, resulting in a blurred distorted image (C).
(Picture after www.northemvision.com 2003)

1.4 Refractive surgery

Refractive surgery has been widely used for the correction of corneal shape 

defects. Refractive surgery originally involved incisions from a blade (i.e. radial 

keratotomy) but with technological developments excimer lasers are now widely used 

in order to reshape the cornea and correct various degrees of myopia and astigmatism. 

The excimer laser is an argon-fluoride gas combination, which is capable of creating a 

high-power ultraviolet light beam. Laser pulses are usually 193nm and they break 

organic molecular bonds. They also remove the tissue in the area of application, 

causing very little thermal damage to the rest of the adjacent tissues (Singerman and 

Coscas 1992). A number of different laser refractive procedures have been developed; 

most common of which are radial keratotomy (RK), photorefractive keratectomy 

(PRK), laser in situ keratomileusis (LASIK) and laser epithelial keratomileusis 

(LASER).

1.4.1 Radial keratotomy (RK)

In radial keratotomy, microscopic radial incisions are created in the cornea 

with the aid of an ultra-thin diamond scalpel. RK incisions weaken the outer cornea,
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so that it bulges forward slightly as a result there is flattening of the central cornea and 

a decrease of its refractive power. Experimental studies confirm that the deeper the 

incisions the more the cornea is centrally flattened postoperatively (Grimmett and 

Holland 1996). RK is recommended for 1.50 up to 5.00 diopters of myopia. Its 

advantages include minimal postoperative recovery time, not considerable pain, 

relatively low cost and it does not involve damage to the central cornea. 

Disadvantages include permanent weakening of the cornea, endothelial damage, 

possible infection, high rate of reoperation (up to 30%), regression, hyperopic shift 

and, for some patients, occasional fluctuation of vision and sensitivity to glare 

(Chaudhry 1999).

1.4.2 Photorefractive keratectomy (PRK)

In PRK the excimer laser (193nm) sculpts the cornea into a flatter shape to 

correct vision in myopia. Each pulse of laser energy disrupts the molecular bonds of 

the cornea and removes 0.2-0.3 pm of tissue. Most of the heat is dissipated into the air, 

and there is minimal thermal or radiation damage to the underlying tissue which 

remains structurally normal. The laser is programmed to remove more tissue centrally 

than peripherally for the correction of myopia. As a result, the central cornea is 

flattened and normal focus ability is obtained. Elliptical ablations are created for the 

correction of astigmatism. The laser beam quality and the frequency of the pulses 

administered are controlled by an algorithm (Fagerholm 2000).

PRK proved to be a more precise and a better technique than RK. PRK does 

not involve deep cuts into the cornea and therefore does not weaken the cornea 

(Chaudhry 1999).

PRK causes damage in the central cornea, includes considerable postoperative 

pain and longer recovery, due to the establishment of epithelial debridement after 

surgery (Shah 2001). Immediately after PRK the anterior part of the stroma is covered 

by a pseudomembrane (20-100nm thick). It is degraded by plasmin and MMPs within 

a few hours postoperatively (Corbett and Marshall 1996). In addition, disturbance of 

the comeal epithelium and Bowman's membrane may lead to an increase of the 

incidence of comeal haze and scarring. Another drawback is the risk of a decentred 

ablation, which can result in irregular astigmatism (Singerman and Coscas 1999).
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1.4.3 Laser in situ keratomileusis (LASIK)

In LASIK an automated microkeratome creates a thin layer of corneal tissue 

(flap) that covers the area to be sculpted by the laser. This flap allows for rapid 

recovery of vision and reduces discomfort after surgery. The flap is left hinged at one 

side, is lifted and placed aside. Then a computer-controlled excimer laser sculpts the 

underlying cornea, correcting the refractive error. The flap is repositioned without 

sutures and is secure after a few minutes so that a patch is not required. Visual 

recovery is typically rapid, and there is little or no postoperative pain (Azar and Farah 

1998). Additionally, LASIK is considered to be superior in efficacy and safety when 

compared to other popular refractive surgery procedures (Shortt et al. 2006).

The most important drawback of LASIK is that wound healing response is 

very poor and occurs only at the edge of the flap. A small increase in the expression 

of specific cytokines such as HGF and HGF-a is noted shortly after surgery at the flap 

edge. Proliferative cells of the epithelium release IL-lp, TGF-a and PDGF-BB, 

trigger keratocyte apoptosis in the stroma near the flap margins (Philipp 2003). ECM 

proteins such as fibrinogen and tenascin do not seem to appear after LASIK and hence 

the wound healing process depends only on the epithelial-stromal interaction. The 

strict localisation of fibrosis marginally at the flap edge, contrary to the minimal 

fibrosis below the entire flap, suggests that the LASIK interface never heals (Ivarsen 

2003). Also there is a decrease in keratocyte numbers and this loss of cell numbers is 

reported to continue up to 3yrs after surgery (Erie et al. 2006). Additionally, epithelial 

ingrowth results in haze and focal stromal loss at the flap margin (Perez-Santonja 

1998). After LASIK the cornea might be weakened, resulting in loss of its 

biomechanical stability. This causes postoperative keratoectasia and may have severe 

implications in visual function (Pallikaris et al. 2001). The incidence of ectasia after 

LASIK is not known precisely, but according to American Society of Cataract and 

Refractive Surgery (ASCRS 2003) has been estimated to be between 0.2-0.66% 

(Pallikaris et al. 2001). Ectasia can be defined as progressive non-inflammatory 

corneal thinning after surgery resulting in irregular topographic steepening and 

resultant irregular astigmatism (Chan and Boxer-Walcher 2006). However, it has been 

recently proposed that insights into the biomechanics and genetics of the cornea 

may help to further reduce the occurrence of corneal ectasia after LASIK 

(Rabinowitz 2006). In addition, recent studies suggest different approaches to
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enhance the healing response of LASIK flaps and therefore increase the 

mechanical stability of the tissue. Kymionis et al. (2006) proposes that “Intacs” 

implantation can be an effective approach in preventing post-LASIK ectasia and 

Abdelkader et al (2006) suggests that the addition of sutures in the corneal flap 

after LASIK appears to stimulate a stronger wound-healing response at the edge of 

the flap and therefore to improve the long-term stability of LASIK surgery in 

borderline thin corneas.

Late traumatic flap dislocations are rare but they have been reported in several 

cases (Melki 2000, Iskander 2001, Heickell 2004, Landau 2006). The limited 

peripheral wound healing response after LASIK is not usually enough to secure the 

flap and make it patent under mechanical or pressure stress (Crawford 2003). This is 

the reason why people who have had LASIK are disqualified from becoming pilots in 

combat aircraft jets in certain countries (Levy 2003). LASIK surgery may also induce 

epithelial defects to the cornea. Epithelial defects or erosion is seen in 1-3% of 

patients undergoing LASIK. This condition is mainly caused by the tangential 

shearing effect of friction caused by the movement of the microkeratome over the 

cornea. It should be taken into consideration that the epithelium in the superior cornea 

is hypoxic and hence more vulnerable. In rare cases the whole epithelium may slide as 

a sheet, denuding the whole flap. Patients who develop epithelial defects after LASIK 

are more susceptible to develop eye infections (Wilson 1998).

1.4.4 Laser epithelial keratomileusis (LASEK)

In this particular approach a thinner flap is created as the comeal epithelium is 

peeled off. In contrast with LASIK, a microkeratome is not used and the flap is 

created by chemical agents (i.e. alcohol). There are two basic types of LASEK flap: 

one with a superior hinge and the other nasal and temporal hinges. The epithelial 

basement membrane is delaminated using ethanol (18%) placed in an alcohol well for 

30 seconds and then washed off with balanced salt solutions (Shah and Kumar 2003). 

The hinged flap is lifted back and an excimer laser corrects the defect. LASEK is used 

for the correction of myopia, astigmatism and hyperopia. It is a relative new technique 

and it is considered as an alternative to PRK because it causes less haze and 

postoperative pain and as an alternative to LASIK because there are no interface 

problems and there is less tissue to recover after surgery. However, according to
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Litwak et al. (2002) LASEK did not result in faster visual rehabilitation than PRK in 

patients with low to moderate myopia. Indeed, LASIK proved to have a faster 

recovery time than LASEK.

1.5 Wound healing

Wound healing in general occurs in several different phases: acute 

inflammation, proliferative stage, angiogenesis and remodelling phase 

(epithelialisation) (Bale 2000). Blood loss (haemorrhage) after injury is eliminated 

through vasoconstriction and the coagulation cascades. The coagulation pathway 

results in the formation of a fibrin clot that seals the damaged blood vessels (Clark 

1993). Platelets degranulate and release cytokines (i.e. PDGF, PGF, TGF-p, EGF and 

IGF) that stimulate various leucocytes. Blood supply increases at the wound site 

(inflammation). Polymorphonuclear cells and monocytes attack pathogens at the 

wound site. During the proliferative stage, fibroblast number increases and 

myofibroblasts appear. Growth factors such as TGF-P, PDGF and EGF regulate the 

stimulation or the inhibition of the fibroblasts. The action of myofibroblasts is 

regulated by an autocrine pathway (Bale 2000). Subsequently, epithelial cells migrate 

over the surface of the wound and restore the epithelial barrier. New vessel formation 

and subsequent vascular restoration also occur during this phase. Finally, during the 

remodelling phase cell numbers return to normal levels. Granulation tissue replaces 

the fibrin clot within the wound. Mature granulation tissue produces a scar, but at the 

end it is covered by a viable epidermal surface (Iocono 1998).

1.5.1 Corneal Wound Healing

Wound healing in all body parts follows a similar pattern with local variations. 

In the cornea because of the lack of a vascular system, the inflammatory stage of 

wound repair and granulation are usually minimal or non-existent. In general, upon 

injury corneal epithelial cells and activated stromal fibroblasts secrete growth factors 

and cytokines that have paracrine and autocrine functions (Lim et al. 2003). Corneal 

repair might last up to several weeks after injury and the wound healing response in 

the cornea can differ for the various refractive surgery approaches discussed in 

Section 1.4.
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1.5.2 Epithelial Wound Healing

Comeal epithelia wound healing occurs in three stages: a) the latent phase, b) 

cell migration and adhesion and c) cell proliferation. The first phase occurs within 4 

to 6 hours after wounding. PMNs are derived from the tear fluid and they remove the 

necrotic tissue. After epithelial debridement basal cells start flattening and separating 

(Lu et al 2001). Hemidesmosomal attachments between the basal membrane and the 

basal cells disappear to approximately 70pm outward from the wound margin. The 

epithelium immediately adjacent to the wound exhibits lamellipodial and filopodial 

extensions. During cell migration and adhesion the extension of filopodia and 

lamellopodia is completed. Cell bodies become larger and they move forward. 

Finally, once the wound defect is completely covered hemidesmosomes are reformed 

(Steele 1999). During homeostasis and following injury to the comeal epithelium, the 

limbal stem cells divide to produce transient amplifying cells (TACs) that proliferate, 

migrate and differentiate into post mitotic cells (PMCs) and subsequently terminally 

differentiated cells (TDCs). The later ones replace lost cells in the wound area 

(Daniels and Khaw 2000).

Cytokines are also considered to have important roles in epithelial wound 

healing. The levels of IL-1 and IL-6 rise immediately after wounding and they initiate 

the cascade of epithelial wound healing events. IL-1 induces keratocyte growth Factor 

(KGF) and HGF expression in comeal fibroblasts, causing epithelial cell proliferation. 

KGF is a paracrine effector of comeal epithelial cells accelerating comeal epithelial 

cell growth (Wilson 1999). Cytokines such as the epidermal growth factor (EGF), 

KGF and HGF induce mitogenic activity and subsequent cell proliferation in comeal 

epithelial cells (Bansal and Veenashree 2001). In contrast, TGF-pl and TGF-p2 

inhibit and have no effect on epithelial cell proliferation, respectively (Carrington et 

al 2006). The relationships between EGF, KGF, HGF and TGF-p are thought to be 

responsible for comeal epithelial wound healing (Baldwin and Marshall 2002). HGF 

was found to have a delaying and KGF an accelerating effect on epithelial cell 

proliferation. It was also proposed that HGF causes the formation of an abnormal 

epithelium but also causes extensive differentiation of keratocytes into myofibroblasts 

(Carrington and Boulton 2005).
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1.5.3 Stromal wound healing

Shortly after wounding keratocytes undergo programmed death (i.e. 

apoptosis), phenotypic change and finally proliferation and migration (Helena 1998). 

These processes are stimulated by the presence of certain cytokines. Immediately after 

wounding keratocyte apoptosis occurs in areas below the epithelial wound. Apoptosis 

in the comeal stroma is triggered by IL-1 a, the Fas-Fas ligand and bone morphogenic 

protein 2 and 4 (Wilson and Kim 1998, Lim et al. 2003). However, a week after 

surgery keratocyte number is elevated rapidly. These remaining keratocytes start to 

undergo fibroblastic transformation into myofibroblasts with resulting expansion of 

the fibroblast population by mitosis after approximately 48 to 72 hours, which reaches 

its peak between three to six days, whilst new connective tissue is synthesised (Mohan 

2003). The new keratocytes are created by mitotic division of cells peripheral to the 

epithelial defect and they migrate into the wound. The activated fibroblasts under the 

influence of the TGF-p/CTGF system synthesise new extracellular matrix 

components (i.e. collagens, glycoproteins, proteoglycans) which form the scar tissue 

(Lim et al. 2003).

During wound healing chondroitin/dermatan sulphate levels increase 

significantly. Consequently, the newly synthesised collagen fibrils are larger in 

diameter than normal ones. This variation in collagen fibril diameter may cause 

disruption of comeal transparency and scarring. Initially, the extracellular matrix, 

which normally contains high levels of type IV collagen, laminin and proteoglycans 

(i.e. keratan sulphate, dermatan sulphate and heparan sulphate) is also disorganised 

(Ishizaki et al 1994, Saika 1998). Stromal remodelling is thought to be controlled, in 

part at least, by various MMPs, e.g. collagenase, stromelysin and gelatinase. Removal 

of damaged collagen fibres is performed by polymorphonuclear leukocytes. After 

almost two years, the lamellar collagen pattern is almost back to normal dimensions 

but with shorter and narrower lamellae. The strength of comeal scars never reaches 

that of uninjured comeal tissue (Steele 1999).

1.5.4 Synopsis of corneal wound healing

Shortly upon epithelial/stromal injury epithelial cells are believed to release 

IL-1 p towards the stroma. Stromal cells then release KGF that causes the stem cells in 

the limbal region to proliferate and differentiate into terminally differentiated
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epithelial cells. Myofibroblasts at the wound site in the stroma release HGF that acts 

as a chemoattractant for the newly formed epithelial cells. This causes the epithelial 

cell migration towards the wound site in order for the defect to be covered. Shortly 

after the epithelial cell migration is completed, apoptosis of stromal cells occurs in the 

stroma. Finally the remaining quiescent keratocytes transform into myofibroblasts and 

the stromal wound repair process is initiated (Fig. 1.7).
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Figure 1.8: Overview of the corneal wound healing process.

1.5.5 Proteoglycan and matrix metalloproteinase alterations during the wound 

healing process

Several weeks after laser surgery regions of the ECM at the wounded area 

contain large amounts of unusually large sized proteoglycan molecules (i.e. 

chondroitin/ dermatan sulphate). Additionally, keratan sulphate appears to be 

transiently undersulphated, whereas chondroitin/ dermatan sulphate oversulphated. In 

case of LASIK these alterations in the proteoglycan molecules occur in response to 

the insult that occurred in the stroma (Quantock et a l 2003).

Dermatan sulphate proteoglycans are small leucine rich proteins (SLRPs) with 

an ‘'arc’’ shaped spatial conformation and tend to form dimers. The amino-acid 

sequence of these proteins is characterised by long arrays of leucine-rich repeat motifs 

of about 24 amino acids in length (Jolles 1994). A feature that is of great interest 

about SLRPs is that they contain an amphipathic consensus sequence, with leucine as 

the predominant hydrophobic residue placed in conserved positions (Hocking 1998).
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Right after LASIK there is a dramatic reduction of a3 -  a6 type IV collagen 

chains in the epithelial basement membrane at the transected flap. This finding 

suggests that the LASIK flap acquires an early developmental character during 

remodelling, since this type of collagen is almost absent during human embryonic 

development. There are also great amounts of al -  a3 type IV collagen present. These 

alterations in type IV collagen may be caused by the selective activity of selected 

MMPs. Fibrosed areas of the anterior stroma appear to have increased levels of MMP- 

1 and MMP-2. These MMPs cause loss of the a3 -  a6 type IV collagen in the 

epithelial basement membrane. Extensive action of these certain MMPs and 

subsequent collagen IV loss might result on flap ectasia after LASIK (Maguen 2002).

1.6 Introduction and theoretical background of laboratory techniques to be 

used in this study

1.6.1 Organ culture

There are several models for studying corneal wound healing. However, the organ 

culture model that was introduced by Foreman et al. (1996) is one of the most 

representative. This is a simple air interface model in which full thickness re- 

epithelialisation of wounds occurs and it is possible to assess the role of growth 

factors in corneal wound healing (Fig. 1.8).

Excisional
trephine
wound

Comeal epithelium

Conjunctiva

Culture medium

Sclera

Figure 1.9: Diagram of the organ culture model. 

(Picture after Foreman 1996)

This method has various advantages over other methods that have been used 

for studying wound healing. Firstly, it is less expensive than in vivo studies and also it
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reduces using animal experiments. Secondly, it is more accurate and reliable than cell 

culture techniques since the whole organ is cultured and therefore various cell 

processes (i.e. wound healing) are mimicked more accurately. Finally, in submerged 

organ cultures, corneas appeared to have epithelial and stromal oedema and 

keratocyte deterioration (Foreman et al 1996).

Many studies have used successfully corneal organ culture techniques to study 

the wound healing process (Foreman et al 1996, Carrington and Boulton 2005, 

Carrington et a l 2006, Zhao et al 2006). However, it must be taken into 

consideration that an in vitro system lacks certain factors essential for the wound 

healing process. Such parameters are the absence of any tear cytokines, nerve 

responses and intraocular pressure fluctuations in response to injury. However, the 

lack of these parameters has not been an issue in previous in vitro corneal wound 

healing studies.

1.6.2 Light microscopy

In light microscopy visible light and lenses are used to magnify the specimens. 

Light microscopes can magnify up to 1500 times and have a resolution limit of about

0.2pm. There are six different types of light microscopy: dark field illumination, 

fluorescence microscopy, phase contrast, nomarski or differential interference 

contrast, polarised light microscopy and confocal (Reed 1998). Preparation of the 

tissue involves fixation, processing, sectioning and staining. Histological Staining 

(e.g. using Haematoxylin and Eosin stains) or immunostaining (using various 

antibodies) might be preferable for phase contrast microscopy.

1.6.3 Electron microscopy

In electron microscopy radiation at short wavelength in the form of an electron 

beam is used. The electrons are produced by a tungsten filament and are focused by 

electromagnets. In transmission electron microscopy (TEM) a very short wavelength 

beam of electrons is accelerated by an electric field. Finally the electron beam passes 

through the specimen. Then the image is formed on a fluorescent screen. A 

transmission electron microscope magnifies up to 200 000 times and has a resolution 

limit of lnm for biological specimens. It principally uses a fine electron beam, which 

is subsequently reflected from a metal-coated specimen surface. The secondary 

electrons that are generated from the specimen-surface impact are collected by a
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scintillation crystal that converts each electron impact into a flash of light. Each flash 

of light generated inside the crystal is then amplified by a photomultiplier and used to 

build up an image on a fluorescent screen. In histology, chemical agents called 

histological stains are applied to specimens in order to increase contrast and hence the 

resolution. Heavy metals are used for specimens for electron microscopy. In TEM 

contrast is enhanced by incorporating heavy metal salts into the specimens. In this 

case electron absorption is increased. Immunogold staining is preferred because gold 

is an electron dense element and more particularly, the use of antibodies allows 

specific molecules to be stained (Wilson and Walker 1997).

In TEM the tissue undergoes a fixation and embedding procedure. The tissue 

is initially submerged in a fixative solution (e.g. paraformaldehyde or glutaraldehyde). 

These solutions cross-link different protein groups within the tissue and preserve the 

structures. The second step of this procedure involves the staining of the tissue with 

certain heavy metals, in order for further electron contrast to be achieved. Cuprolinic 

Blue is extensively used for proteoglycan localisation experiments. This chemical 

complexes with negatively charged GAGs and it is later enhanced by the addition of 

tungstate groups (Scott and Stockwell 1967). Then the dehydration and infiltration 

step follows. In this case, the embedding medium replaces the water content of the 

tissue. Embedding media are water insoluble solutions. Epoxy resin is an embedding 

medium and provides support to the tissue when it finally stabilises (polymerises). 

Once the tissue has been embedded then ultrathin sections (less than 600A or 70-100 

nm) are obtained by using an ultramicrotome. Finally, the section undergoes further 

staining with a heavy metal salt solution (e.g. OSO4). This step is carried out in order 

to enhance contrast under the EM (Meek 1981).

1.6.4 X-ray diffraction

X-rays are electromagnetic radiation with typical photon energies in the range 

of 100 eV-100 keV. For diffraction experiments short wavelength x-rays (i.e. 1-120 

keV) are produced by either x-ray tubes or synchroton radiation.

In the current project synchroton x-ray radiation was used in order to map 

corneal collagens. Synchroton radiation is emitted by electrons or positrons travelling 

at close to the speed of light in a circular storage ring. The electron beam hits the 

tissue and the scattering pattern is related to the structural properties of the tissue. 

However, precise information about the structural properties of macromolecules
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cannot be obtained directly from x-rays, as there are no lenses to bend and focus the 

scattered x-rays. X-ray images have to further be reconstructed using computer 

analysis in order to obtain structural information of the scanned tissue (Hendrickson 

1986).

X-rays scatter through differing angles when they interact with biological 

tissues (Fig.: 1.10). Different levels of interference occur as a result and they are 

dependent on the degree of order in the structure. Perfect or near perfect order will 

produce true diffraction maxima. Less ordered structures would produce more diffuse 

interference maxima (i.e. x-ray reflections), which are being produced by the 

existence of many fibres. The series of reflections arising from a given periodic 

structure is numbered consequently from the centre of the pattern outward (Meek and 

Quantock 2001).

Figure 1.10: Visual representation of the x-ray diffraction technique. A 

bundle of vertically arranged collagen fibrils produce meridional x-ray reflections, 

which are parallel to the fibril axes and equatorial reflections and are perpendicular to 

the fibril axes (Meek and Quantock 2001)

X-ray scattering has been established as a very powerful experimental research 

tool for examining corneal ultrastucture (Meek and Quantock 2001, Boote et al. 

2005). The X-ray diffraction technique for generally measuring the interfibrillar 

spacing and diameter is proven to be more accurate than known TEM techniques. 

TEM is a time consuming, complex procedure and the whole processing and sample 

preparation compromises the physical state of the tissue. Consequently, electron
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micrographs underestimate the centre-to-centre distance of collagen fibrils (Fullwood 

and Meek 1993, Meek and Boote 2004). On the other hand x-ray diffraction 

techniques are less invasive to the tissue and with the improvement of technology is 

an effective technique that helps in the physical preservation of the tissue during data 

collection.

1.6.5 Molecular modelling

Molecular modelling is the computer aided prediction of the structure of 

behaviour of molecules. It is a fast growing and powerful technique that is used in 

the fields of computational chemistry (i.e. chemoinformatics), biology (i.e. 

bioinformatics) and materials science for the study of a range of small molecular 

structures to larger macromolecules and material assemblies. The use of 

computers and knowledge of programming is essential for molecular modeling 

methods. The benefit of molecular modelling is that it predicts the behaviour of 

molecular systems before trying experiments in the lab, saving time, money and 

effort in research.

Homology modeling or comparative modelling is the prediction of the 

structure of an unknown protein, based on information of its sequence and the 

structure of other known proteins that share similar sequence and functional 

aspects with the unknown protein. Comparative modelling exploits the structural 

similarities between proteins by constructing a three-dimensional structures of one 

or more related proteins (Leach 2001). Homology modelling is based on the 

simple principle that proteins with similar sequence tend to have similar three- 

dimensional structures (Chothia and Lesk 1986).

1.7 Aims and objectives

This project was based on the simple hypothesis that wound healing in the 

cornea is incomplete after LASIK surgery. The main aim was then set to identify why 

corneal wound healing is incomplete after LASIK. The objectives that were set in 

order to achieve this aim, were to develop an in vitro model for studying wound 

healing after LASIK, identify and test factors that affect wound healing, assess wound 

healing using histological analysis, mechanical strength testing and transparency

25



assessment. Finally, ultrastructural analysis was carried out by means of x-ray 

diffraction, transmission electron microscopy and molecular modelling.
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2. Method development for microscopy laboratory techniques

2.1 Organ Culture

Bovine eye globes were obtained from the Ciderford abattoir and transported 

to the laboratory on ice. Healthy eyes with clear/transparent corneas were processed 

for organ culture as previously described by Foreman et al (1996) within the same 

day of slaughter. Initially excess tissue was removed from the exterior of the eyes. 

The cleared eye globes were submerged in 25% (v/v with PBS) Betadine solution for 

3-5min to decontaminate the exterior of the eye globes and then washed with sterile 

PBS solution. The eyes were then dissected using a surgical blade and their corneas 

were isolated. Two different groups of corneas were cultured. Half of them were 

wounded (either trephined or in a LASIK-like manner) and half of them were 

unwounded and acted as controls. For trephine wounded corneas, a 5mm trephine was 

used. The wound extended half-way through the stroma and upon wounding the 5mm 

disc was excised. Trephine wounding was used in this project as a methodological 

development as well as a correlation to LASIK-like flaps. For LASIK-like incisions a 

custom made devise that was developed locally was used to create a stromal flap 

ranging 180-250nm in thickness. After the induction of the wounds the eyes were 

dissected, the corneas removed and the rest of the eye globe discarded. The posterior 

endothelial cavity of each cornea was filled with an agar-gelatin support gel (appendix 

III). As soon as the gel had set at RT the corneas were inverted and placed in a 60mm 

tissue culture dish (Fig. 2.1). Serum-free Trowells T8 medium containing antibiotics 

and fungizone (see appendix III) was placed into the dishes up to the limbal area to 

preserve the corneas during the culture period. The medium was replaced every four 

days during the culture period. 200pl of medium was dripped at certain times on the 

comeal surface twice every 24hrs throughout the duration of the experiment, in order 

to prevent the comeal surface from drying out.

27



( o rn r .il e p ith e liu m

Conjunctiva

( ulturr medium

Sclera

.\g»u co llap in

Figure 2.1: Diagram of the organ culture model. 

(Picture after Foreman et al. 1996)

2.2 Light Microscopy

2.2.1 Preparation of Frozen Sections

Corneas (n=16) were removed from the culture at different time-points (0, 1, 

3, 7, 14, 21 and 28 days) and they were bisected. Each half was placed in a foil 

mould, which was filled with Tissue-Tek OCT compound. The foil container was 

placed in pre-cooled iso-pentane solution and then placed in liquid nitrogen until the 

whole block had frozen. Frozen blocks were kept at -20°C.

Frozen blocks were trimmed and 7pm-thick sections were obtained using a 

cryostat (Fig.2.2). The sections were then transferred to SuperFrost Plus microscope 

slides and allowed to air-dry for l-4hrs at RT. The slides were submerged in ice-cold 

methanol for 5min and then left on the bench to air-dry for lOmin. Finally the slides 

were wrapped in aluminium foil and kept at -20°C until further processing.

Figure 2.2: The Cryostat (Leica, UK)
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2.2.2 Preparation of wax sections and method development

Corneas (n=16) were removed from the culture at different time-points (0, 1, 

3, 7, 14, 21 and 28 days) and they were fixed in 10% Neutral Buffered Formalin 

(NBF).

Approach No 1:

Fixed corneas were dehydrated by treating the samples with a series of 

increasing alcohol dilutions (50%, 70%, 90%, 100%, 100% - v/v with ddFbO) at 

60min intervals. Dehydrated samples were washed once with 50% chloroform (v/v 

with IMS) for 60min and twice with 100% chloroform. Finally, the corneas were 

embedded in paraffin wax.

Final protocol:

Steps were repeated as described above but changing two parameters:

1. The tissue was fixed in 10% NBF and processed within 48hrs.

2. Incubation times were eliminated to 30min instead of 60min.

Wax blocks were trimmed and 7pm-thick sections were obtained by using a 

microtome (Fig. 2.3). The sections were then placed in a water bath (almost 45 °C) 

and they were allowed to flatten. Finally, the sections were collected from the water 

bath by floating on to Histobond slides. The slides were allowed to dry overnight in a 

56°C oven.

Figure 2.3: The Microtome (leica, UK)
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2.2.3 Haematoxylin and Eosin Staining

Wax sections were passed through a series of xylene and alcohol solutions in 

order to dewax and rehydrate the sections. Initially, the slides were submerged twice 

in xylene solutions (5min each). Then the sections were passed through a decreasing 

series of alcohol dilutions (100%, 90%, 70%, 50% - lmin each). The slides were then 

washed briefly in tap water to remove excess alcohol. The sections were stained with 

filtered Harris’ Haematoxylin for 3min and washed under tap water. Subsequently, 

the sections were counterstained with Eosin for lmin. The slides were then washed 

with water very briefly and then passed through an increasing series of alcohol. 

Finally, the slides were immersed in xylene for lmin and then the sections were 

mounted with coverslips using Xylene-Mounting medium.

Frozen sections were removed from -20°C and they were let to cool down wrapped at 

aluminium foil at RT for 30min. Then they were counterstained with Haematoxylin 

and Eosin. Finally, the sections were mounted by using Hydromount.

2.2.4 Cytokeratin 3 and PAN cytokeratin immunostaining and method 

development

Several approaches were followed in order to optimise the protocol for 

immunohistochemistry. In all cases negative control samples were used. Negative 

controls were not treated with primary antibody.

Approach No 1:

7pm frozen sections were fixed in acetone for lOmin and left on bench to air 

dry for another 5min. Sections were incubated with 0.6% hydrogen peroxide in 

Methanol for 5min. The slides were subsequently treated with 0.1 mg/ml Trypsin 

containing solution for 30min at 37 °C. Then, the slides were treated with 0.1% (v/v) 

Triton xlOO for 30min at 37°C. The slides were incubated with 20% goat serum for 

20min at RT. The serum was tapped off the slides and cytokeratin (ICN Biomedicals) 

primary Ab (1/100) was applied to slides for 60min at RT. The slides were incubated 

with goat mouse-IgG biotinylated secondary Ab (1/50) for lhr at RT and then the 

staining was developed with diaminobenzidine (DAB). Between each step three PBS 

washes were taking place. The sections were dehydrated and mounted using Xylene- 

Mounting medium (DPX) and the slides were kept at RT.
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Approach No 2:

Same as above, but frozen sections were left on bench to air dry for l-4hrs 

before fixing in acetone and two different dilutions of cytokeratin primary Ab was 

used (i.e. 1/100 and 1/200). Additionally, PBS washes were performed on the slides 

and wash time was extended to lOminutes each wash, in order to eliminate hassle to 

the tissue and avoid epithelium detachment from the underlying stroma.

Approach No 3:

Same as above but slides were left on bench to airdry overnight before the 

acetone fixation and PAN cytokeratin (1/25, 1/50, 1/100) as well as cytokeratin 3 

(1/100) were used as a primary Abs.

Approach No 4:

7 pm frozen sections left on bench to air-dry overnight and fixed with acetone 

as described before. Endogenous peroxidase activity was blocked by treating the 

slides with 0.6% hydrogen peroxide for 5min. Sections were washed briefly with 

ddtkO and washed with PBS (DAKO, pH 7) on the slide for lOmin. 20% goat serum 

was applied to the sections for 20min. The serum was subsequently tapped off the 

slides and PAN Cytokeratin primary Ab (1/25, 1/50, 1/100) was applied overnight at 

4°C. The slides were then incubated with AlexaFluor® goat mouse-IgG at 1/1000 

dilution for 2hrs in the dark at RT. The sections were mounted using Hydromount. 

The slides were then wrapped in aluminium foil, left at 4°C O/N or at -20°C for a 

longer period. Between each step three PBS washes were taking place.

Approach No 5:

Same as above, but slides were incubated with 10 mg/ml Proteinase K buffer 

for 20min at 37°C.

Approach No 6-Final optimised protocol:

7pm wax sections were wax cleared and rehydrated. Sections were incubated 

with 3% hydrogen peroxide in ddH20 for 5min in order to block endogenous 

peroxidase activity within the tissue. The slides were subsequently treated with 

0.1 mg/ml Trypsin containing solution for 30min at 37°C. Then, the slides were treated 

with 0.1% (v/v) Triton xlOO for 30min at 37°C in order to achieve further antigen 

retrieval. The slides were incubated with 20% goat serum for 20min at RT. The serum 

was tapped off the slides and cytokeratin (ICN Biomedicals) primary Ab (1/100) was 

applied to slides for 60min at RT. The slides were incubated with goat mouse-IgG
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biotinylated secondary Ab (1/50) for lhr at RT and then the staining was developed 

with diaminobenzidine (DAB). Between each step three PBS washes were taking 

place. The sections were dehydrated and mounted using Xylene-Mounting medium 

(DPX) and the slides were kept at RT.

2.2.5 a-smooth muscle actin immunostaining and method development 

Approach No 1:

Monoclonal a-smooth muscle actin antibody was purchased from Sigma (A 

2547). Initially 7pm frozen sections were used. Sections were left on bench overnight 

in order to achieve better adhesion of the tissue onto the SuperFrost slides. All slides 

were then fixed in cold acetone for lOmin and subsequently were left on bench to air 

dry for another lOmin. Half of the slides that would be stained with peroxidase were 

treated with 0.6% Hydrogen Peroxide in methanol for 5min in order to avoid 

background staining caused by any peroxidase activity within the tissue. Meanwhile, 

the rest of the slides that would be treated with AlexaFluor secondary were kept in 

PBS. Although 1/400 dilution (i.e. 5pg/ml) of the primary Ab was suggested as 

optimum by sigma 1/200 was used as well. All slides were incubated with the primary 

Ab at 4°C overnight. Negative control slides were treated with 25% goat serum. For 

the peroxidase staining the slides were incubated with goat mouse-IgG biotinylated at 

1/50 dilution for lhr at RT and then the staining was developed with 

diaminobenzidine (DAB). The sections were mounted using Xylene-Mounting 

medium (DPX) and the slides were kept at RT. For the fluorescent staining the slides 

were incubated with AlexaFluor® 488 goat mouse-IgG at 1/1000 dilution for 2hrs in 

the dark at RT. The sections were mounted using Hydromount. The slides were then 

wrapped in aluminium foil, left at 4°C O/N or at -20°C for a longer period. Between 

each step three PBS washes were taking place.

Approach No 2:

7pm wax sections were wax cleared and dehydrated as previously described. 

Slides were divided in two groups and subsequently in four subgroups (Table 2.1). 

Half of the slides were treated with 0.1 mg/ml Trypsin containing solution for 35min 

at 37°C and the remaining half of the slides were treated with 20pg/ml Proteinase K 

containing solution for 35min at 37°C.
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Subgroup Approach

A Block with 20% Goat serum in PBS for 20 min

B 0.2% BSA in PBS used for Ab dilutions

C 0.05% Tween 20 in PBS for Ab dilutions & washes

D Plain PBS

Table 2.1: Solutions that used for the four different subgroups of slides.

The slides were then treated with primary Ab (1/200) at 4°C overnight. 

Negative control slides were treated with 25% goat serum in plain PBS. The 

following day were incubated with AlexaFluor® 488 goat mouse-IgG at 1/1000 

dilution for 2hrs in the dark at RT. The sections were mounted using Hydromount. 

The slides were then wrapped in aluminium foil, left at 4°C O/N or at -20°C for a 

longer period. Between each step three PBS washes were taking place.

Approach No 3:

7pm wax sections were wax cleared and dehydrated as previously described. 

The slides were treated with 20pg/ml Proteinase K containing solution for 20min at 

37°C and washed with PBS. All sections were incubated with 20% goat serum for 

20min at RT. Goat serum was tapped off the slides and primary Ab dilutions were 

applied. Half of the slides were treated with primary Ab (1/200 or 1/400) diluted in 

0.05% Tween 20, 0.2% BSA, PBS. The other half of the slides were treated with 

primary Ab (1/200 or 1/400) diluted in 0.05% Tween 20, PBS. Primary Ab incubation 

was left overnight at 4°C. Negative control slides were treated with 25% goat serum 

in plain PBS. The following day sections were incubated with AlexaFluor® 488 goat 

mouse-IgG (1/1000) diluted in either 0.05% Tween 20, 0.2% BSA, PBS or 0.05% 

Tween 20, PBS for 2hrs in the dark at RT. The sections were mounted using 

Hydromount. The slides were then wrapped in aluminium foil, left at 4°C O/N or at - 

20°C for a longer period. Between each step three 0.05% Tween 20, 0.2% BSA, PBS 

or 0.05% Tween 20, PBS washes were taking place.

Approach No 4-Final optimised protocol:

7 pm wax sections were wax cleared and dehydrated. Sections were incubated 

with 20%goat serum for 20min at RT. Goat serum was tapped off the slides and 

primary Ab dilutions were applied. The slides were treated with primary Ab (1/400 or
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1/800) diluted in 0.05% Tween 20, 0.2% BSA, PBS at 4°C overnight. The following 

day sections were incubated with AlexaFluor® 488 goat mouse-IgG (1/1000) diluted 

in 0.05% Tween 20, 0.2% BSA for 2hrs in the dark at RT. The sections were mounted 

using Hydromount. The slides were then wrapped in aluminium foil, left at 4°C O/N 

or at -20°C for a longer period. Between each step three 0.05% Tween 20, 0.2% BSA, 

PBS washes were taking place.

2.3 Transmission Electron Microscopy (TEM)

2.3.1 Cuprolinic Blue fixation in a critical electrolyte condition 

Approach No 1:

Sixteen corneas from the organ culture were fixed with 4% PFA and they 

stored at 4°C. The tissue was cut into 25mm2 cubes and the samples washed with PBS 

and treated with 0.05% Cuprolinic Blue buffer overnight at RT. The tissue was then 

washed with three changes of 2.5 % glutaraldehyde solution for 15min. Subsequently, 

the samples were incubated with three changes of both 0.5% sodium tunsgate buffer 

for 15min and with 0.5% sodium tunsgate in 50% ethanol for 15min. The tissue then 

was dehydrated by passing it through of a series of increasing alcohol concentrations 

(50%, 70%, 90%, 100%, 100%, 100% v/v with ddH20 -  15min each). The samples 

were incubated with 1:1, 2:1, 3:1 Resin:Ethanol solutions for lhr with each resin 

dilution. Then, the samples were incubated with 100% resin for 8hrs for three times. 

Finally, the tissue was placed in small container and incubated with 100% resin in a 

70 °C oven for 8hr.

Approach No 2- Final optimised protocol:

Sixteen corneas from the organ culture were fixed with 4% PFA and they 

stored at 4°C. The tissue was cut into 25mm2 cubes and the samples washed with PBS 

and treated with 0.05% Cuprolinic Blue buffer for almost 24hrs at RT. The tissue 

blocks then were washed with three 15min washes of 2.5 % glutaraldehyde. 

Subsequently, the samples were incubated with three changes of both 0.5% sodium 

tunsgate buffer for 15min and with 0.5% sodium tunsgate in 50% ethanol for 15 min. 

The tissue then was dehydrated by passing it through a series of a series of increasing 

alcohol concentrations (50%, 70%, 90%, 100%, 100%, 100% v/v with ddH20- 15min 

each). The tissue was then incubated with propylene oxide for 15min twice. The 

samples were subsequently incubated with 1:1 medium Epon Resin: Propylene Oxide 

solution for lhr. Tissue blocks were then incubated with pure medium Epon Resin for
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lhr, twice. At this point, the lids of the vials were removed in order to allow any 

remaining propylene oxide to evaporate from within the tissue. The tissue was 

incubated with fresh 100% medium Epon Resin overnight at RT. The next day the 

tissue was incubated in 100% medium Epon Resin for 6hrs. The resin was renewed 

twice during the 6hr period. At the end of the six-hour resin incubation the tissue was 

placed in small container and incubated with 100% medium epon resin in a 60°C oven 

for 48 hrs.

2.3.2 Sectioning

Sections of 80nm thickness were obtained by using a Reichert-jung Ultracut E 

Ultramicrotome. The sections were placed on a 3mm copper grid and allowed to air 

dry.

2.3.3 Staining of ultrathin sections

2.3.3.1 Uranyl Acetate (UA) / Lead Citrate Staining

The grids were placed face down on a drop of 2% Uranyl Acetate (UA) for 

15min. Then, each grid was passed over 5 drops ddthO in order for the sections to be 

washed. They were blotted on filter paper in order to remove excess water. The grid 

was then placed on 2% lead citrate for lOmin. Finally, the sections were washed five 

times with distilled H2O.

2.33.2 Uranyl Acetate (UA) / PTA Staining

UA and PTA containing vials were centrifuged at 14,000 for 5min at RT. 

Meanwhile, two sheets of filter paper were placed on the bench and soaked with 

ddFhO. Parafilm pieces were placed on the filter papers. Copper grids were placed on 

top of 1% PTA solution drops and left to stand at RT for lOmin. Sections were 

washed with five 3min washes of filtered ddFbO. Sufficient amount of ddFhO was 

applied in a Petri dish until the surface of the dish was covered. A piece of paraffin 

was placed into the Petri dish and the grids were placed on drops of UA. The Petri 

dish was transferred in a 45°C oven and the tissue was incubated with the UA for lhr. 

Finally, the sections were washed five times with distilled H2O as described before.
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2.3.4 Observing the samples under a TEM

The samples were observed under a JEOL 1010 transmission electron 

microscope (TEM) at 80kV. The images of the corneal stroma were taken at various 

magnifications. Electron micrographs were obtained using a Kodak Megaplus 3.0 

digital camera, which was attached to the electron microscope.
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3. Morphological and cellular assessment of LASIK-like injured corneas

3.1 Introduction

Trephine injured corneas were used as a preliminary to the study of the wound 

healing response in LASIK-like injured corneas. The extent and the severity of the 

wound healing response in the cornea depend on the cause of injury. A surgical 

trephine causes a circular wound that can either extend half way or all the way 

through the cornea. Once the trephined corneal disc is removed a severe injury is 

induced in the cornea and an intense wound healing response is caused. However, 

LASIK-like injuries are not so severe and therefore wound healing response events 

tend to be milder.

In order to understand the cellular behaviour in trephined and LASIK-like 

injured corneas the expression of various intracellular proteins within the tissue was 

monitored. Such proteins include the cytokeratins (CKs) and a-smooth muscle actin 

(aSMA). Both types of proteins are part of the cytoskeleton, serving different 

functions to the cells that express them.

Cytokeratins are intermediate filaments. The principal function of the 

intermediate filaments is to reinforce cells by distributing tensile powers. Cytokeratin 

(CK) nos. 3, 5 and 12 are the most abundant ones in the adult cornea and they are 

expressed uniformly all over the tissue. CK 12 forms a heterodimer with CK3 in the 

cornea, whereas CK5 forms homodimers. CKs 4, 14, 15 and 19 are also present in 

minor amounts. Additionally, CK 4 is expressed only in the upper corneal epithelial 

cells from about the third layer upwards and CK 19 expression is restricted to the 

peripheral regions of the corneal epithelium (Kasper et al. 1988).

Actin filaments are 8nm wide and they are thinner and more flexible that other 

cytoskeleton components and therefore this type of filaments is a characteristic of 

highly motile cells (Alberts 1994). In the cornea myofibroblasts occur after the 

transformation of corneal keratocytes (Mohan 2003) after wounding and they express 

a-smooth muscle actin (aSMA). The main role of myofibroblasts in the wound 

healing process is to modify the composition of the extracellular matrix, by producing 

new components and subsequent scaring and wound contraction (Wilson 1998).

In the current study the cellular expression in both the corneal epithelium and 

stroma was monitored. Epithelial cell response is immediate after injury (Wilson 

1999) whereas the stromal wound healing process is slower and occurs when the 

epithelial one is upon completion (Mohan 2003). In the current study a major part of
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the immunohistochemical analysis focused on the LASIK-like injured corneas only 

because similar experiments have already been performed extensively in the past in 

trephine wounded bovine corneas (Carrington and Boulton 2005, Carrington et al. 

2006). Stromal wound healing response is impaired in LASIK (Pallikaris et al. 2001, 

Ivarsen and Moller-Pedersen 2003, Phillip et al. 2003) and therefore a significant part 

of this study was focused on the expression and cell population variation of stromal 

cells. The aim of this study was to gain a better understanding of both the epithelial 

and stromal wound healing response in the cornea after LASIK-like incisions.

3.2 Experimental design

3.2.1 Organ Culture

Bovine corneas were organ cultured as detailed in section 2.3.1.

Trephine wounded corneas

B
Figure 3.1: Control (A) and Wounded (B) bovine corneal samples in organ culture

for 24hrs (20x)

Two different groups of corneas (n=32) were cultured. Sixteen were centrally 

wounded with a 5mm biopsy punch and sixteen were unwounded and acted as 

controls (Fig. 3.1 and 3.2). The depth of the trephine wound was extending half way 

through the corneal stroma. The trephined disc was excised using a surgical blade and 

the corneas were cultured for 0, 1,3, and 7 days. At the end of each culture period 

control and wounded corneas were cut in half and processed into wax. During the 

organ culture the eyes were observed under a microscope in order to monitor the 

progress and the quality of the culture. The progress of the wound healing was 

monitored under the microscope, as was the occasional presence of contaminating 

micro-organisms.
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Excisional 
trephine 
wound

Comeal epithelium

Conjunctiva 

Culture medium

Sclera

Agar/collagen

Figure 3.2: Diagram representing a trephine wounded cornea in organ culture 

(Picture taken from Foreman et al. 1996)

LASIK-like injured corneas

Two different groups of corneas (n=48) were cultured. Twenty four were 

wounded in a LASIK-like fashion using the custom made eye holder (section 2.2.2). 

Twenty four corneas were unwounded and acted as controls (Fig. 3.3). The corneas 

were cultured for 0, 1 and 3 days, 1, 2, 3, 4 weeks. At the end of each culture period 

three control and three wounded corneas were fixed in 10% neutral buffered formalin 

and wax embedded. Control corneas were cut into halves before fixation, whereas 

LASIK-like corneas were trimmed close to the flap area before fixation.

( om ral epithelium

Conjunctiva 

Culture medium

Sclera

Agpi collagen

Figure 3.3: The organ culture set up representing a control/uninjured cornea 

(Picture adapted from Foreman et al. 1996)
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3.2.2 Wax embedding and tissue sectioning

Each trephine wounded cornea was cut into half exactly at the middle of the 

wound before fixation in 10% Neutral Buffered Formalin. LASIK-like and trephine 

injured corneas were embedded in paraffin wax perpendicular to the surface of the 

wax pot. Tissue blocks were left in 4°C overnight before attempting to cut sections. 

Each wax block containing a trephine wounded cornea was clamped on the 

microtome in such a way that a cross section of the cornea extending from limbus to 

limbus, including the wound would be obtained. Each block was trimmed and a series 

of 10pm thick sections was obtained. Each block containing a LASIK-like injured 

cornea was then clamped on the microtome in such a way that a cross section would 

be obtained, cutting from the flap hinge towards the flap edge. The wax block was 

then trimmed until the tread in the middle of the flap was obvious. Finally, a series of 

10pm thick corneal cross sections were cut from the middle of the flap. Series of 

10pm thick corneal cross sections from central regions of control/uninjured corneas 

were also obtained. The sections were floated as described in section 2.3.2.3 and 

collected using SuperFrost slides for better tissue adhesion. Slides were then 

incubated overnight in a 56°C oven.

3.2.3 Haematoxylin and Eosin staining

Haematoxylin and Eosin staining was performed in trephined, LASIK-like 

injured and control corneas as described in section 2.3.2.5.

3.2.4 Immunohistochemistry

Immunohistochemistry using anti aSMA (Sigma) and PAN-Cytokeratin 

(DAKO) was performed in LASIK-like injured and control corneas as described in 

section 2.3.2.7. Anti aSMA immunostaining was not performed in trephine wounded 

corneas, because it has been done before by Carrington et al (2006).

3.2.5 Cell counts

3.2.5.1 Total cell counts and statistics

LASIK-like (n=24) and control (n=24) corneal cross sections were dewaxed 

and dehydrated as described in sect.2.3.2.4. Samples had been in culture for 0, 1 and 3
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days, 1, 2, 3, 4 weeks. The sections were then mounted with hydromount mountant 

containing lpg/ml of bisbenzimide solution. Slides were then placed on the viewing 

stage of a fluorescent microscope (Olympus, UK). Colour photographs were taken at 

lOx magnification using the SPOT software package and a digital camera (Leica), 

which was attached to the microscope. A scale bar was also included in the image. A 

scale bar was then transferred to the CorelDrawl 1® software package and transparent 

rectangular boxes of 100x200pm were constructed. Six images were taken from each 

corneal sample; above and below the incision site, above and below the incision at the 

equidistance and above and below the incision at the flap edge (Fig. 3.4). Cell counts 

of total cells were made by opening the light micrographs in the ImagePro Plus 

software package and pasting the 100x200pm box on the picture. For each time-point 

three control sections and three LASIK-like injured samples were photographed, in 

order for the subsequent statistical analysis to be viable.

Incision site Equidistance Flap edge Bovine
cornea

LASIK-like
incision 100x200pm  box

Figure 3.4: Corneal diagram with rectangular boxes (100x200pm) in six positions 
denoting the location of the area assessed for quantitative total cell counts

The statistical analysis was carried out in SPSS 11. The data was checked for 

normality and one-way ANOVA and paired t-test were performed in order to check 

the differences in numbers between the different time-points and various locations.

3.2.5.2 Myofibroblast cell counts and statistics

LASIK-like (n=12) and control (n=12) corneal cross sections were dewaxed 

and dehydrated as previously described (sect. 2.3.2.4). Corneal samples that had been 

in culture for 0, 1, 2, 3, 4 weeks were stained with anti aSMA as previously described 

(section 2.3.2.7). Slides were then placed on the viewing stage of a fluorescent 

microscope (Leica, UK). Colour photographs of a stromal area proximal to the 

epithelial plug and below the incision were taken at 20x magnification using the 

FW400 (Leica) software package (Fig. 3.5). Images were captured using a digital 

camera (Leica), which was attached to the microscope. Blue (i.e. total cells) and green
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(i.e. positive cells) composite pictures were saved separately. Cell counts of total and 

positive stained cells were done by transferring the light micrographs to the ImagePro 

Plus software package. For each sample the whole of the picture was selected and cell 

counts were performed using the software options. For each time-point three control 

sections and three LASIK-like injured samples were photographed, in order for the 

subsequent statistical analysis to be viable.

Figure 3.5: Diagram representing a LASIK-like injured cornea indicating the area of 

interest for counting total cells and aSMA positive cells.

The statistical analysis was carried out in SPSS 11. Using the positive and the 

total cell numbers the percentage of aSMA positive cells was calculated. The data 

was then checked for normality and Kruskal-Wallis and Mann-Whitney median tests 

were performed in order to check the increase in the percentage of positive aSMA 

cells during the culture period.

Area o f 
interest

Bovine
cornea

LASIK-like
incision
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3.3 Results

3.3.1 Haematoxylin and Eosin staining 

Control/uninjured corneas

Epithelium

Stxoma

Deecemet’s membrane

Endothelium

Figure 3.6: Structure of a cross section in a central region of a normal/uninjured 
bovine cornea. Bovine corneas lack Bowman’s layer. Scale bar 100|im.

A normal bovine cornea at time-point 0 hrs is depicted at Fig. 3.6. There are 

only four distinctive layers present since the bovine species do not possess any 

Bowman’s layer.
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Trephine wounded corneas

Figure 3.7: Wound healing progress in trephined bovine corneas at different time 

points. Light micrograph for 72hrs is a focused image in the right side of the wound 

that shows the formation of a thin layer of epithelium covering the site of injury. This 

layer becomes thicker at the 7th day after injury (Black arrows indicate the incision 

site).Scale bars: Ohrs and 7 days=25pm, 24hrs=100 pm, 72hrs=50 pm.
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Haematoxylin and Eosin counterstaining was applied to wax sections in order 

to observe the morphological changes that occur in bovine corneas during the wound 

healing process (Fig. 3.7). At 0 hrs it can be seen that there are some stromal gaps at 

the wound edge. These gaps are filled within the first 24 hrs of the culture. However, 

it is expected to observe a stromal wound healing response at these sites although the 

overlaying epithelium is not injured. At the same time point (i.e. 24 hrs) the 

epithelium at the edge of the wound starts to build up. At the third day of the culture 

the epithelium still migrates from the edges of the wound towards the centre of the 

wounded area. Finally, by the seventh day complete re-epithelialisation is observed. 

The epithelium at the wounded area is thicker than the rest of the cornea and it fills 

the stromal gap that was created initially.
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LASIK-like injured corneas

0 hours

24 hours

Figure 3.8: LASIK-like injured bovine corneas in culture for up to one month. 
LASIK-like flap immediately after wounding at Ohrs. Epithelial plug formation within 

24hrs post-wounding. Incision still intact within the stroma at 1 and 4 weeks after
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injury, respectively. Scale bars: 0 hrs= 100pm, 24 hrs= 100pm and 30pm, 1 
week= 100pm and 30pm, 4 weeks=25pm.

Using a surgical blade a LASIK-like flap was induced in bovine corneas 

cutting initially the epithelial interface, proceeding into the stroma parallel to the 

cross-sectional plane of the cornea (Figure 3.8 Ohrs). The induction of the flap 

disrupted severely the epithelium at the incision site and stromal gaps were created as 

the scar was extending within the mid stroma. The depth of the flap was around 180- 

250pm. Immediately after wounding epithelial cells migrated towards the site of 

injury. An epithelial plug was created at the incision site. The epithelium in this area 

was obviously thicker than the epithelium across the rest of the cornea (Figure 3.8 

24hrs). By 24hrs complete re-epithelialisation had occurred and epithelial cells 

covered the stromal gap that was created initially at the incision site. By 1 to 4 weeks 

the epithelium still migrated towards the stromal gaps (Figure 3.8 1 and 4 weeks). 

The incision was still obvious within the stroma even at areas proximal to the 

epithelial plug, suggesting minimal or non existent stromal wound healing response.
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3.3.2 Epithelial cells

Control/uninjured corneas

Figure 3.9: Epithelial cell expression in central region of control/uninjured corneas 
(A and B). Limbal region of control/uninjured cornea (C). Negative control/ central 
corneal region (D). Yellow arrow indicates site of positive staining for cytokeratin in 

epithelial cell cytoplasm (Green-> Cytokeratin, Blue-> Biz-benzimide).

In order to assess epithelial cell expression during the wound healing process a 

two step indirect immunostaining method was performed using a PAN Cytokeratin 

primary antibody (DAKO). The PAN Cytokeratin antibody is a cocktail of two 

primary monoclonal antibodies (i.e. AE1 and AE3 clones) and stains cytokeratin 

isoforms 1-8, 10, 13-16 and 19. Cytokeratins are a diverse family of intermediate 

filaments that are expressed in epithelial cell cytoplasms. Cytokeratin is only being 

expressed in terminally differentiated epithelial cells and therefore it is considered as 

a marker for differentiation. In Fig. 3.9 positive staining within the cytoplasm of 

corneal epithelial cells is obvious. In central regions of normal corneas it is also 

apparent that cell population at the upper layers of the epithelium is less dense than 

that in the suprabasal epithelium. Additionally, there is no positive staining for
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cytokeratin at the basal epithelium in the limbal area (Fig. 3.9C). This was expected, 

as it is believed that the stem cell population of the cornea is based in this area.
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LASIK-like injured corneas

Figure 3.10: Epithelial cell expression LASIK-like injured corneas up to four weeks 
after injury. Epithelial cells at the site of incision at Ohrs time-point (A). The epithelial 
pug that was formed within 24hours after injury consisted of terminally differentiated 

epithelial cells. The epithelium also started to migrate towards the stroma covering 
gaps (B). The profile of the epithelial cellular behaviour remained the same after 

lweek (C) and 4 weeks (D) after wounding.

The epithelial plug that was created at the incision site consisted of terminally 

differentiated epithelial cells at all time-points, as there was positive staining for 

cytokeratin. The epithelium at the incision site consisted of differentiated epithelial 

cells soon after injury (Figure 3.1 OB). Epithelial cells migrated towards the stroma in 

order to fill gaps that were created after injury. They kept migrating until the end of 

the culture period as the epithelial plug at the 4weeks time point is considerably 

bigger compared to the epithelial plug of earlier time-points.
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3.3.3 Stromal cells numbers in LASIK-like injured corneas

Days in 
culture

Incision site 
No of cells No of cells 
above ± SD below ± SD

Corneal periphery control 
(No of cells ±SD)

0 10 ±3.1 14 ±5.7 15 ±2.2
1 22 ±8.5 23 ±10.9 16 ±6.2
3 14 ±6.0 14 ±2.5 19 ±2.9
7 12 ±3.3 15 ±3.7 14 ±3.3
14 16 ±4.5 15 ±3.1 15 ±1.7
21 12 ±1.2 11 ±2.5 16 ±6.2
28 13 ±1.6 25 ±2.5 19 ±2.9

Days in 
culture

Equidistance 
No of cells No of cells Equidistance control 

(No of cells ± SD)above ± SD below ± SD
0 12 ±4.1 10 ±2.6 19 ±2.8
1 23 ±2.5 21 ±6.2 15 ±2.1
3 11 ±2.1 14 ±1.2 15 ±1.2
7 10 ±1.7 12 ±0.9 10 ±3.1
14 11 ±3.7 11 ±2.2 19 ±2.8
21 11 ±0.8 11 ±0.5 15 ±2.1
28 7 ±0.8 8 ±0.5 15 ±1.2

Days in 
culture

Flap edge 
No of cells No of cells 
above ± SD below ± SD

Mid Cornea control 
(No of cells ±SD)

0 12 ±3.3 16 ±2.3 19 ±2.9
1 20 ±5.4 16 ±7.1 17 ±1.4
3 15 ±5.4 17 ±2.9 18 ±1.7
7 12 ±3.4 14 ±3.3 10 ±1.4
14 13 ±2.4 12 ±4.2 19 ±2.9
21 9 ±0.8 10 ±0.5 17 ±1.4
28 7 ±0.8 8 ±1.2 18 ±1.7

Table 3.1: Total cell counts for stromal cells from different areas along the LASIK- 
like flap. For each time-point 3 corneas were used (For cell numbers/mm2 and also

raw data please refer to Appendix 4).

Significant differences in cell numbers above and bellow the incision counts at 

the incision site at lwk (0.035) and 4wks (p=0.05) were observed. In specific, cell 

numbers were higher below the scar at the incision site.

Comparison of cell counts in wounded corneas against controls revealed the 

following observations.

1. Ohrs significant decrease in equidistance below (p=0.027)
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2. lwk significant decrease in equidistance above (p=0.025)

3. 2wks significant decrease in equidistance below (p=0.034)

4. 3wks significant decrease in “edge” region (p=0.005)

5. 4wks significant decrease in “equidistance” and “edge” regions

(p=0.003 and p=0.001, respectively)
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3.3.4 Myofibroblast expression and cell numbers in LASIK-like injured 

corneas

Figure 3.11: Myofibroblast cell expression in LASIK-like corneas. Positive stained 
cells were first observed at the 1 week time-point (A) and they were present for the 

rest of the organ culture time span (B-D depict 2-4 weeks, respectively). aSMA 
staining was also positive in the limbal vessels of all corneas (E). Negative control (F) 

(Green-> aSMA, Blue-> Biz-benzimide).

aSMA positive staining in LASIK-like injured corneas confirmed the presence 

of myofibroblasts in scar tissue. Staining was negative at 0, 1 and 3 days after injury. 

aSMA positive staining became evident at the 1 week time-point and it remained 

obvious at later time-points of the organ culture. During all the time-points that 

positive aSMA was observed, myofibroblast expression was only present in a stromal 

area proximal to the epithelial plug. There was no staining at all in stromal areas close 

to the middle or the edge of the flap.

Positive staining was also observed in the limbal vessels of all corneas, both 

injured and uninjured ones (Fig. 3.1 IE). This was expected as actin filaments are 

known to surround blood vessels and therefore staining in the limbus for aSMA was 

considered as a positive control for this series of experiments.
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Figure 3.12: Graph representing the increase in % myofibroblast population over a 
four weeks period after injury in LASIK-like injured corneas. Error bars represent the

standard error of mean (B).

According to the statistical analysis, the myofibroblast population was 

increasing from the first week after injury. Specifically, the Kruskal-Wallis test 

revealed that there were significant increases in the percentage of positive stained 

cells between 0 and lweek, 1 and 2 weeks and 2 and 3 weeks (p=0.011). There was 

not a significant change between the 3rd and 4th week percentages suggesting that the 

myofibroblast population gradually increases during the first three weeks after injury 

and then it tends to stabilise. The data was further analysed by performing Mann- 

Whitney median tests that provided with a p value of 0.001. This outcome confirms 

that the observed response in myofibroblast population increases as the independent 

variable (i.e. time) increases.

54



3.4 Discussion and conclusions

The organ culture model that was used for this study has been described 

before by Foreman et al (1996). Several models can be used in order to assess wound 

healing (i.e. cell culture, in vivo studies or submerged organ cultures). However, this 

simple air-interface organ culture model is preferable for monitoring wound healing 

in this study. It is relatively accurate since the whole cornea is cultured including the 

limbal area and therefore architecture, cellular interaction and wound healing are 

mimicked more accurately than simple cell culture. The bovine species was chosen 

for this study, since bovine corneas are readily available and commercially cheap to 

obtain. Additionally, the tissue has the appropriate size and makes handling in the 

laboratory more efficient. Moreover, in terms of ethical considerations, the use of 

bovine tissue does not raise any ethical issues that human tissue would do. However, 

the bovine species is not as ideal as it can be difficult to find appropriate antibodies 

for immunohistochemistry and the bovine genome is not fully elucidated.

In this study the wound healing process was monitored for several weeks and 

in agreement with Foreman et al (1996) complete re-epithelialisation in trephine 

wounded cultured bovine corneas occurred within the first 72 hrs post wounding. 

While re-epithelialisation could be visualized, it was sometimes more difficult to 

interpret following sectioning. In some micrographs, even at 7 days, the epithelium 

had detached from the wound surface and in some cases it had fallen off. This artefact 

represents weak adhesion between the new epithelium and the underlying stromal 

surface and a requirement of further optimization of the wax embedding and 

sectioning technique. Furthermore, it should be taken into consideration that the 

bovine cornea does not possess a Bowman’s layer and therefore the connection 

between the epithelium and stroma might be weaker, compared to other species which 

posses a Bowman’s layer. The wax embedding procedure had to be optimized for the 

bovine cornea, since extensive treatment of the corneas with the neutral buffered 

formalin buffer, chloroform and paraffin wax had made them rigid and it was 

impossible to produce full length sections of the cornea without the sections tending 

to break or fold up.

Total cell numbers tend to be significantly decreased at later stages of the 

organ culture time span. In the current study, total stromal cell numbers remain 

decreased until the end of the organ culture period. This leads to the conclusion that
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cell numbers decrease possibly because of the occurrence of apoptosis as a natural 

response to injury. However, the fact that cell numbers do not increase indicates that 

there is no cellular proliferation, supporting the existence of a poor wound healing 

response in LASIK-like incisions.

Total cell counts in stromal cells revealed that there was a significant increase 

in the cell density at the incision site, below the incision, at 1 and 4 weeks. Later 

experiments confirmed the existence of myofibroblasts in this area. Additionally, at 

Ohrs there was a significant decrease in cell numbers at the equidistance region below 

the incision. This observation might be due to the fact that the blade mechanically 

removed cells during the induction of the injury in the stroma. Between the 1 and 4 

weeks time-points there is a variation in cell numbers along the flap, as there is a 

significant decrease in cell density when injured corneas are compared to control 

ones. According to Wilson and Kim (1998) keratocytes in a wounded area undergo 

cell shrinkage and subsequent apoptosis. Additionally, according to previous studies 

the stromal response to refractive surgery is characterised by a reduction in size and 

density of keratocyte cell bodies, and by migration of the remaining keratocytes to 

repopulate the areas in which cell density has decreased (Rajan et al 2005). What 

causes keratocyte loss around the wound area right after wounding is still unclear. 

This might be a homeostatic internal response from living organisms. Besides, it has 

been proposed by Wilson et al (1997) that this might be a defence mechanism in order 

to prevent the passage of viral material into the eye when a wound occurs. According 

to Zieske et al (2001) cell proliferation and the appearance of myofibroblasts in a 

wounded cornea occurs 24-48hrs post wounding. The same report also supports that 

myofibroblast transformation might take up to one month to become apparent, 

whereas they do not regress even one year after wounding. The fact that the remaining 

keratocytes tend to repopulate low cell density areas instead of transforming into 

myofibroblasts, explains the fact that the stromal wound healing response is impaired 

in the stroma after LASIK.

In PRK, the wound healing response in the stroma takes place at the stroma- 

epithelium interface as a result of interaction of a number of cytokines that are 

released by the injured epithelium (Marshall et al 1988, Wilson et al 1999, Rajan et 

al 2005). In the case of LASIK, the epithelium is only injured at the incision site and 

therefore the stromal wound healing response takes place in areas proximal to the 

incision site, leaving central areas of the flap intact. Keratocyte apoptosis only takes
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place in a zone approximately 50pm anterior and 50pm posterior to the incision in 

stromal areas close to the epithelial plug (Helena et al. 1998, Wilson et al. 2001, 

Mohan et al. 2003, Dawson et al. 2005).

Attempts to optimize immunostaining for CK 3 were unsuccessful despite the 

fact that CK3 is prominent in the comeal epithelium. This may reflect a problem with 

the antibody of species difference. It was therefore decided to use a PAN Anti- 

Cytokeratin Ab which reacted with a wide range of cytokeratin isoforms. Cytokeratin 

(CK) nos. 3, 5 and 12 are the most abundant ones in the adult cornea and they are 

expressed uniformly all over the tissue. The PAN Cytokeratin Ab that was used for 

this study does not stain for CK 12. However, CK 12 forms a heterodimer with CK3 

in the cornea and therefore after staining CK3, CK12 is also co-localized. CKs nos 4, 

14, 15 and 19 are also present in minor amounts. In light micrographs for cytokeratin 

it is obvious that the staining is denser at the upper part of the epithelium. It should be 

taken into consideration that CK 4 is expressed only in the upper comeal epithelial 

cells from about the third layer upwards. Additionally, CK 19 expression is restricted 

to the peripheral regions of the comeal epithelium (Kasper et al 1988). Therefore, the 

existence of additional CK isoforms in the upper levels of the comeal epithelium 

makes CK immunostaining denser along the periphery.

The histological evaluation of LASIK-like injured corneas revealed a rapid 

epithelial wound healing response and a rather delayed stromal repair. A plug was 

created at the site of injury and covered the stromal gaps at the incision site. This plug 

was later confirmed to consist of terminally differentiated epithelial cells indicating a 

rapid epithelial wound healing response. Although the epithelial plug was created 

very quickly after injury, epithelial cells carried on migrating towards the stroma even 

at later stages of the organ culture time span, as the epithelial wound healing response 

is known to reach completion at approximately 1 month after injury.

It appears that the epithelium possibly has an evolutionary mechanism for 

smoothing the anterior surface of the cornea in cases where it is disrupted by various 

external factors, such as injury. According to Dawson et al. (2005b) mild focal or 

moderate, diffuse stromal loss can be compensated with hypotropic or hypertropic 

epithelial cell adjustments. This response takes place only at the basal epithelial cells, 

but the reason is yet unknown. In the case of the LASIK-like injuries studied in the 

present work, the epithelium was obviously thicker than normal at the incision site.
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Myofibroblast expression was only observed in an area underneath the 

epithelial plug in LASIK-like injured corneas. Cell density was increasing during the 

first three weeks after injury, but it seemed to stabilise after this period. These 

findings confirmed a minor stromal wound healing response that was only observed in 

an area close to the stromal-epithelial interface. During the 4week organ culture time 

span there was not any evident stromal wound healing response either in the middle of 

the flap or at the hinge area. Additionally, histology also confirmed that the incision 

within the stroma was still intact by the end of the organ culture period. aSMA 

staining was negative in these areas confirming the absence of any active 

myofibroblasts. A likely explanation for this could be the absence of certain cytokines 

that are being released by the epithelium in response to injury and transform quiescent 

keratocytes into myofibroblasts. The epithelium that lies above the middle of the flap 

or the hinge is not injured and cytokines that are released by the epithelium at the 

incision site might not be able physically to reach areas deeper in the stroma towards 

central flap areas.

In conclusion, this in vitro model closely mimics the cellular events observed 

in previous studies in vivo. Within 24hrs after inducing a LASIK-like injury a normal 

epithelial repair was observed and confirmed. In contrast, impaired stromal wound 

healing was observed, as myofibroblast expression was only present in the stromal 

area at the incision site. The myofibroblast phenotype was totally absent in stromal 

areas towards the middle or the edge of the LASIK-like flap. The histological 

evaluation of LASIK-like corneas also confirmed that the scar was still intact within 

the stroma even 4 weeks after injury. These observations are very important in real 

time LASIK as impaired wound healing makes the flap unstable and prone to 

decentration or detachment, raising serious concerns regarding the safety and long 

term stability of LASIK.
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4. Association of myofibroblast induction with LASIK-flap adhesion and

corneal transparency

4.1 Introduction

Cytokines are known to play a key role in cellular proliferation and 

differentiation in biological tissues (Wilson et al 2003). On many occasions growth 

factors are being used for medical purposes in order to heal or improve certain 

conditions. For example, NGF has been successfully used for the treatment of 

neurotrophic and autoimmune corneal ulcers (Lambiase et al 2000).

Considering refractive surgery, one of the major drawbacks of LASIK is that 

the flap is being reported not to heal completely even after several years 

postoperatively (Ivarsen 2003). ECM proteins such as fibrinogen and tenascin do not 

seem to appear after LASIK and hence the wound healing process depends only on 

the epithelial-stromal interaction. The strict localisation of fibrosis marginally at the 

flap edge, contrary to the minimal fibrosis below the entire flap, suggests that the 

LASIK interface never heals (Ivarsen 2003). The limited peripheral wound healing 

response after LASIK is not usually enough to secure the flap and make it resistant to 

dislocation under mechanical stress (Crawford 2003). Myofibroblast expression was 

only observed in stromal areas proximal to the epithelial plug (Chapter 3). The fact 

that there was no myofibroblast phenotype expressed at the bed of the flap leads to the 

assumption that cytokines that are released from the epithelium do not physically 

reach areas at the bed of the flap. Therefore, a series of experiments was designed in 

order to supply the flap with certain cytokines in various dilutions and monitor the 

wound healing response in culture for up to four weeks.

The effectiveness of the cytokines that were applied to the corneas was 

assessed at initial stages by judging the mechanical strength and transparency of the 

samples. Considering the fact that the cornea is the major refractive part of the eye, 

any biological or mechanical alteration in the tissue will influence optical 

performance. Maintenance of transparency in any attempt to improve wound healing 

in LASIK flaps is a very important issue, as the further objective is the maintenance 

of a normal visual function. In addition, enhancing the wound healing response in 

LASIK flaps aims to increase the mechanical strength of the corneas and therefore 

avoid any keratectasia.
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Four cytokines were selected and applied at the flap interface (i.e. TNF-a, IL- 

la, Fas-ligand and TGF-Pi). It has already been proposed that cultured corneal 

keratocytes exposed to TNF-a have increased cellular proliferation in the stroma 

(Mohan et al. 2000). Hong et al. (2001) suggested that human IL -la induced 

apoptosis in human corneal keratocytes. Fas-ligand (Wilson et al. 1996) and TGF-pi 

induce apoptosis to comeal keratocytes. However, to date there has not been any 

experimental evidence to support the amount of these factors required in order for 

apoptosis to be triggered in keratocytes. A series of various dilutions of these proteins 

was applied to the tissue to investigate the effect of these cytokines on tissue wound 

healing, increase in mechanical strength and the maintenance of comeal transparency.

4.2 Experimental design

4.2.1 Organ Culture

Bovine corneas were organ cultured as detailed in section 2.3.1. Three 

different groups of corneas (n=304) were cultured (Table 4.1). Two hundred and 

eighty eight (288) were wounded in a LASIK-like fashion using the custom made eye 

holder (section 2.2.2). Thirty two (32) samples were treated with carrier solution 

(PBS/BSA or HC1/BSA). Two hundred and fifty six (256) corneas were treated with 

cytokine solution (i.e. TNF-a, IL-la, FasL and TGF-pi/R&D Systems) in various 

dilutions (i.e. 0.1, 10, 50 and lOOng/ml). The corneas were cultured for 1, 2, 3 and 4 

weeks. Four corneas were put in culture for each cytokine dilution for each time point. 

Sixteen corneas were not wounded and acted as controls (Fig. 4.1). At the end of each 

culture all samples were fixed in 10% neutral buffered formalin and processed into 

wax. Control corneas were cut into halves before fixation, whereas LASIK-like 

corneas were trimmed close to the flap area before fixation.
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No of corneas in culture

Control PBS/BSA HC1/BSA TNF-a IL-la Fas-ligand TGF-p,

.S g
5  s

1 4 4 4 16 16 16 16

2 4 4 4 16 16 16 16
o —« 3
£  W

3 4 4 4 16 16 16 16

4 4 4 4 16 16 16 16

Total 16 16 16 64 64 64 64

Table 4.1: Number of corneal samples put in culture for each cytokine dilution for

each time-point

C om p.il e p ith e liu m

Conjunctiva 

Culture medium

Sclera

AgnrcoUapm

Figure 4.1: The organ culture set up.

(Picture adapted from Foreman et al. 1996)

4.2.2 Evaluation of transparency

Organ culture Petri dishes were placed on a grid (Fig. 4.2). Corneal 

transparency was assessed by three independent observers each time.

Figure 4.2: Sample of the grids that were used to assess the transparency of control

and cytokine treated corneas.
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Comeal samples were characterized for their transparency based on a scale of 

0 (the control sample that remained clear at all times) to 100% (when the cornea is 

opaque) (Fig. 4.3).

0%

Clear M oderately Cloudy M oderate O paque
Cloudy O paque

Figure 4.3: Scale for assessing comeal transparency

4.2.3 Assessment of mechanical strength/adhesion of the flap

A Lloyd instruments tensiometer (Lloyd Instruments Ltd, Hampshire, UK) 

was used in order to assess the extent of adhesion of the flap. The “pull to break” test 

was performed. In this method, the cornea was clamped on the machine by gluing 

equal size of cardboard paper in exactly opposite sites and the anterior (middle of 

flap) and posterior cornea. It was then pulled in opposite vertical directions until the 

flap was lifted and detached (Fig. 4.4B). The upper arm of the machine was clamped 

on the middle of the flap on the anterior of the cornea whereas the lower arm was 

clamped on the exact opposite position on the posterior part of the cornea. This test 

measured the force that was required to break the flap. The data was recorded using a 

Nexygen 4.1 software package and it was stored in an MS Windows operated 

workstation (Fig. 4.4A).

Once a complete set of data was recorded, a non-parametric statistical analysis 

(i.e. Kruskal-Walis) was performed in SPSS. Three samples were used for each 

sample dilution at each time-point in order for the statistical analysis to be viable.

100%
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Figure 4.4: Lloyd tensiometer set up (A) Each cornea was clamped on the two metal 

arms (yellow arrows-upper arm 1, lower arm 2) of the tensiometer and was pulled 

apart in opposite vertical directions (red arrows) (B).

4.2.4 Wax embedding and tissue sectioning

LASIK-like injured corneas were embedded in paraffin wax perpendicular to 

the surface of the wax pot. Before processing a thread was placed at the hinged part in 

the middle of the flap. Tissue blocks were left in 4°C overnight before attempting to 

cut sections. Each block containing a LASIK-like injured cornea was then clamped on 

the microtome in such a way that a cross section would be obtained, cutting from the 

flap hinge towards the flap edge. The wax block was then trimmed until the thread in 

the middle of the flap was obvious. Finally, a series of 10pm thick corneal cross 

sections were cut from the middle of the flap. Series of 10pm thick corneal cross 

sections from central regions of control/uninjured corneas were also obtained. The
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sections were floated as described in section 2.3.2.3 and collected using SuperFrost 

slides for better tissue adhesion. Slides were then incubated overnight in a 56°C oven.

4.2.5 Immunohistochemistry

Immunohistochemistry using anti aSMA was performed in LASIK-like 

injured and control corneas as described in section 2.3.2.7.

4.2.6 Myofibroblast cell counts and statistics

LASIK-like (n=12) and control (n=12) corneal cross sections were dewaxed 

and dehydrated as previously described (section 2.3.2.4). Corneal samples that had 

been in culture for 0, 1, 2, 3, 4 weeks were stained with anti aSMA as previously 

described (section 2.3.2.7) and counterstained with biz-benzimide to identify nuclei. 

Slides were then placed on the viewing stage of a fluorescent microscope (Leica, 

UK). Colour photographs of a stromal area proximal to the epithelial plug and below 

the incision were taken at 20x magnification using the FW400 (Leica) software 

package (Fig. 4.2.5.1). Images were captured using a digital camera (Leica), which 

was attached to the microscope. Blue (i.e. total cells) and green (i.e. aSMA positive 

cells) composite pictures were saved separately. Cell counts of total and positive 

stained cells were made by transferring the light micrographs to the ImagePro Plus 

software package. For each sample, the whole of the picture was selected and cell 

counts were performed using the software options. For each time-point, three control 

sections and three LASIK-like injured samples were photographed, in order for the 

subsequent statistical analysis to be viable.
Area o f  Bovine
interest cornea

LASIK-like
incision

Figure 4.5: Diagram representing a LASIK-like injured cornea indicating the area of 

interest, in the flap bed, for counting total cells and aSMA positive cells.

The statistical analysis was carried out in SPSS 11. Using the aSMA positive 

and the total cell numbers, the percentage of aSMA positive cells was calculated. The
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data was then checked for normality and Kruskal-Wallis and Mann-Whitney tests 

were performed in order to check the increase in the percentage of positive aSMA 

cells during the culture period.

4.3 Results

4.3.1 Evaluation of transparency, corneal mechanical strength/flap adherence 

and myofibroblast cellular expression and density in response to exogenous 

factors

4.3.1.1 Control/untreated corneas

At preliminary stages of the experiment, corneas were left in culture over a 

period of four weeks. The samples were injured in a LASIK-like fashion and left 

untreated without any cytokine solution. The wound healing response was monitored 

during this time.

Time in culture (weeks)
Mean force required 
for flap detachment 
(Newton)

0 hours 0.04500

1 week 0.03733

2 weeks 0.04433

3 weeks 0.05100

4 weeks 0.05500

Table 4.2: Mean force required to detach control non-cytokine treated corneas over a
period of 4 weeks in culture.

I *■-<u u

00 1.00 2 00 3.00 4 00

Time in culture (weeks)
Figure 4.6: Graph showing the flap adherence of non-cytokine treated corneas
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The mean force that was required to detach the flap in non-cytokine treated 

corneas increases gradually over the four week culture time span (Fig. 4.6). However, 

statistics proved that there are not significant differences in mean force values 

between 0 and 4 weeks (p>0.05). Therefore it can be concluded that flap adherence is 

still poor 4 weeks after injury, an observation that is in accordance with mid-stromal 

or LASIK like injuries.
PBS/
BSA

0 hours Clear

1 week Clear

2 weeks Clear

3 weeks Clear

4 weeks Clear

Table 4.3: Visual transparency assessment of control non-cytokine treated corneas
over a 4 week period in culture.

LASIK like injured, non-cytokine treated corneas acted as controls when 

compared to cytokine treated corneas. However, control corneas maintained their 

transparency at all times during the organ culture period confirming the integrity and 

reliability of the culture technique.

4.3.1.2 Tumour Necrosis Factor alpha (TNF-a) treated corneas

TNF-a caused an effect on the treated corneas as various concentrations of the 

cytokine increased adherence and cloudiness to the tissue (Tables 4.4 and 4.5)

Mean force required to pull the flap 
apart (N)

TNF-a
Concentration

(ng/ml)
0.1 10 50 100

0 hours 0.04867 0.04867 0.04867 0.04867
1 week 0.06900 0.08767 0.09433 0.08067

2 weeks 0.07567 0.09433 0.09667 0.08467
3 weeks 0.08367 0.09667 0.09800 0.09467
4 weeks 0.07200 0.10000 0.11133 0.10067

Table 4.4: Mean force required to detach TNF-a treated corneas over a period of
4weeks in culture.
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Figure 4.7: Graphs showing the effect of various concentrations of TNF-a on the flap
adhesion

The mean force required for flap detachment increased rapidly during the first 

week in culture and then it kept increasing gradually (Fig. 4.7). The same pattern is 

observed in all four dilutions with little differences between each one of them. Flap 

adherence kept increasing with a slower rate (i.e. significant increase every two weeks 

for most of the samples; p>0.05).

0.1 ng/ml 10 ng/ml 50 ng/ml 100 ng/ml

1 1 ) 1  I I  S 3  S 3
00 1 00 2 00 3.00 4 00 1 00 2 00 3 00 4 00 1 00 2.00 3 00 4 00 1 00 2.00 3 00 4 00

Time in culture (Weeks)

Figure 4.8: Graphs showing the effect of various concentrations of TNF-a on 
myofibroblast proliferation on the flap bed.

Both 0.1 and 10 ng/ml of TNF-a caused an immediate increase in 

myofibroblast population on the flap bed, but cell numbers do not increase 

significantly (p>0.05) for the rest of the organ culture time span. However, 50ng/ml 

and lOOng/ml caused a gradual, significant increase (p<0.05) in myofibroblast 

population (Fig. 4.8).
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0.1 ng/ml lOng/ml 50ng/ml lOOng/ml

1 week Moderate
Cloudy Cloudy Cloudy Moderate

Cloudy

a■
fa

2
weeks

Moderate
Cloudy Cloudy Cloudy Moderate

Cloudy
z
H 3

weeks
Moderate
Cloudy

Moderate
Cloudy Cloudy Cloudy

4
weeks

Moderate
Cloudy

Moderate
Cloudy Cloudy Cloudy

Table 4.5: Visual transparency assessment of TNF- a treated corneas over a 4 week
period in culture.

Mid range concentrations of TNF-a (i.e. lOng/ml and 50ng/ml) caused severe 

cloudiness in the corneas during the early stages of the organ culture (Table 4.5). 

Lower concentration of the cytokine caused a moderate effect on comeal 

transparency. However, lOOng/ml triggered a mild effect on the corneas, which 

became more severe at later stages of the organ culture period.

43 .13  Interleukin 1 alpha (IL-la) treated corneas

IL-la caused a relatively mild effect on the treated corneas. However, in some 

cases the cytokine caused a significant effect on the flap adhesion in the treated 

corneas.

Mean force required to pull the 
flap apart (N)

IL-la
Concentration

(ng/ml)
0.1 10 50 100

0 hours 0.04867 0.04867 0.04867 0.04867
1 week 0.06733 0.07333 0.08500 0.08200

2 weeks 0.07200 0.07400 0.09067 0.10100
3 weeks 0.07833 0.08667 0.09200 0.10733
4 weeks 0.08733 0.09033 0.10667 0.10500

Table 4.6: Mean force required to detach IL-la treated corneas over a period of 4
weeks in culture.
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Figure 4.9: Graphs showing the effect of various concentrations of Il-la on the flap
adhesion

In lower IL-la concentrations (i.e. 0.1 ng/ml and 10 ng/ml), flap detachment 

was not significantly increased when compared to control during the first week in 

culture after injury. IL-la had a relatively mild effect in treated corneas and, for the 

0.1 ng/ml dilution, there was no significant increase in the mean force required for flap 

detachment (p>0.05). Additionally, at lOng/ml there was also no significant increase 

during the first two weeks in culture. However, there is a significant increase in the 

mean force that was required for flap detachment between the second and the third 

week after injury. The value of the mean force seems to stabilise after the third week 

after injury.

0.1 ng/ml 10 ng/ml 50 ng/ml 100 ng/ml

00 100 200 300 400 100 200 300 400 100 200 300 400 1 00 200 3.00 400

Time in culture (Weeks)

Figure 4.10: Graphs showing the effect of various concentrations of IL-la on 
myofibroblast proliferation on the flap bed.
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All concentrations had a gradual effect on the increase of myofibroblast 

population and all of them caused a significant increase at certain time points of the 

organ culture time span (Fig. 4.10).

O.lng/ml lOng/ml 50ng/ml lOOng/ml

1 week Moderate
Cloudy

Moderate
Cloudy Cloudy Cloudy

a
2

weeks
Moderate
Cloudy

Moderate
Cloudy Cloudy Cloudy

3
weeks

Moderate
Cloudy

Moderate
Cloudy Cloudy Cloudy

4
weeks

Moderate
Cloudy

Moderate
Cloudy Cloudy Cloudy

Table 4.7: Visual transparency assessment of IL-la treated corneas over a 4 week
period in culture.

Only high concentrations of IL -la  caused severe opacities in the corneas. 

Lower concentrations caused a moderate effect on the clarity of the treated corneas 

(Table 4.7).

4.3.1.4 Fas Ligand (FasL) treated corneas

Fas-ligand had the mildest effect among the four cytokines that were applied 

to the LASIK like injured corneas.

Mean force required to pull the flap 
apart (N)

FasL
Concentration

(ng/ml)
0.1 10 50 100

0 hours 0.04867 0.04867 0.04867 0.04867
1 week 0.06900 0.07133 0.07300 0.08400

2 weeks 0.07567 0.07133 0.06867 0.09800
3 weeks 0.08367 0.07050 0.07050 0.10200
4 weeks 0.07200 0.07800 0.07300 0.10200

Table 4.8: Mean force required to detach FasL treated corneas over a period of 4
weeks in culture.
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Figure 4.11: Graphs showing the effect of various concentrations of FasL on the flap
adhesion

Low concentrations of the cytokine (i.e. 0.1 and 10 ng/ml) caused a significant 

increase in the mean force that it is required for flap detachment when compared to 

control untreated samples as shown in the graphs (Fig. 4.11). However, for these 

concentrations mean force values do not increase significant for the treated samples 

from 0 to 4 weeks after injury, as p value was too low (p>0.05). This a common 

statistical and in this case it will be considered that low concentrations of FasL do not 

increase significantly the mean force that it is required for flap detachment and 

therefore this concentration of the cytokine does not contribute to the improvement of 

flap adherence in LASIK-like corneal injuries. Higher concentrations of the cytokine, 

50ng/ml and lOOng/ml, caused a statistically significant increase in the mean force 

that it is required for flap detachment during the second and the third week after 

injury respectively (p<0.05, Fig. 4.11). However, it was observed that there was not 

any further increase in mean force values thereafter. For example, in 50ng/ml samples 

there is a rapid increase in flap adherence during the first two weeks after injury. It 

then tends to stabilise towards the end of the organ culture time span (Fig. 4.11). For 

the 1 OOng/ml samples flap adherence increases during the first week, tends to stabilise 

and then it increases again during the third week after injury.

0.1 ng/ml 10 ng/ml

i

50 ng/ml 100 ng/ml

9
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Figure 4.12: Graphs showing the effect of various concentrations of FasL on 
myofibroblast proliferation on the flap bed.

0.1 ng/ml of FasL did not cause any significant increase in myofibroblast 

population during the four week culture time span (p>0.05, Fig. 4.12). lOng/ml 

caused a significant increase in myofibroblast cell numbers between the second and 

the third week after injury (p<0.05). 50 and 100 ng/ml samples had a more significant 

effect in the increase of cell numbers towards early and late stages of the organ 

culture, respectively (p<0.05).

0.1 ng/ml lOng/ml 50ng/ml lOOng/ml

1 week Moderate
Cloudy

Moderate
Cloudy Cloudy Moderate

Cloudy
•oc 2 Moderate Moderate Cloudy Moderate50£ weeks Cloudy Cloudy Cloudy
J
«u.

3
weeks

Moderate
Cloudy

Moderate
Cloudy Cloudy Cloudy

4
weeks

Moderate
Cloudy

Moderate
Cloudy Cloudy Cloudy

Table 4.9: Visual transparency assessment of FasL treated corneas over a 4 week
period in culture.

FasL caused moderate opacities when it was applied at low dilutions in injured 

corneas (Table 4.9). 50ng/ml had the most severe effect in the clarity of the treated 

corneas, as it caused cloudiness in the corneas during the whole of the organ culture 

time span. Finally, lOOng/ml had a milder effect than the previous concentration as 

significant cloudiness was observed in the corneas after the third week in culture.
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4.3.1.5 Transforming Growth Factor beta 1 (TGF-Pi) treated corneas

TGF-Pi caused the most severe effect on the treated corneas. Treated corneas 

appeared to be severely cloudy and although they seemed to be rather fragile when 

handling, a great amount of force was needed to be applied in order for the flap to be 

detached. Samples that processed for immunohistochemistry did not produced any 

significant results, as there were only random cellular nuclei present and signs of 

deterioration to the issue.

Mean force required to pull the 
flap apart (N)

TGF-pi
Concentration

(ng/ml)
0.1 10 50 100

0 hours 0.04867 0.04867 0.04867 N/A
1 week 0.07100 0.07467 0.13800 N/A

2 weeks 0.06733 0.09000 0.13967 N/A
3 weeks 0.07733 0.12200 N/A N/A
4 weeks 0.08400 0.13800 N/A N/A

Table 4.10: Mean force required to detach TGF-pi treated corneas over a period of 4
weeks in culture.

0.1 ng/ml 10 ng/ml 50 ng/ml

m  —

1 I S S I  t  I I  3 1 3 3
00 1.00 2.00 3 00 4.00 1.00 2.00 3.00 4.00 .00 1.00 2.00

Time in culture (Weeks)
Figure 4.13: Graphs showing the effect of various concentrations of TGF-Pi on the

flap adhesion.

0.1 ng/ml and 50ng/ml of the cytokine caused a gradual increase in the flap 

adherence. The effect of the cytokine was more rapid in the 1 Ong/ml treated samples 

as flap adherence kept increasing significantly every single week.
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0.1 ng/ml lOng/ml 50ng/ml lOOng/ml

col1
to
O
H

1 week Moderate
Cloudy

Moderate
Cloudy

Moderate
Opaque Opaque

2
weeks

Moderate
Cloudy

Moderate
Cloudy

Moderate
Opaque Opaque

3
weeks

Moderate
Cloudy

Moderate
Opaque Opaque Opaque

4
weeks

Moderate
Cloudy

Moderate
Opaque Opaque Opaque

Table 4.11: Visual transparency assessment of TGF-Pi treated corneas over a 4 week
period in culture.

TGF-lp had the strongest effect on the corneas, as higher concentrations of the 

cytokine caused severe opacities and signs of deterioration to the tissue.

4.4 Discussion and conclusions

The main aim of this experimental set up was to enhance the appearance of 

myofibroblats in the stroma of injured corneas. This was achieved by treating injured 

corneas with growth factors that are known to cause either apoptosis (i.e. TNF-a, IL- 

la, FasL) or myofibroblast transformation (TGF-pi) to quiescent keratocytes in the 

comeal stroma.

Several studies have so far investigated the effect of growth factors in 

keratocytes within the comeal stroma, confirming that several cytokines can trigger 

cytokine-mediated apoptosis in fibroblasts (Wilson et al. 1996 (a and b), Fini 1999, 

Mohan et al. 2000, Jester and Ho-Chang 2003). Additionally, it is also known that 

subsequent to apoptosis, keratocytes transform into myofibroblasts (Wilson et al 

1996). In the current study TNF-a, IL-la and FasL caused significant increases in the 

myofibroblast population. In Chapter 3 the myofibroblast population in plain LASIK- 

like injured corneas reached a maximum of approximately 63%. However, in cytokine 

treated corneas, myofibroblast population clearly became denser and reached up to 

80% for some of the dilutions of FasL and IL-la. TNF-a also caused an increase in 

myofibroblast cell numbers (max~70%) but it was not as intense as the effect that IL- 

la  and FasL had. There is no myofibroblast data for TGF-pi as stained samples had 

signs of deterioration of the tissue. Physically the tissue itself had visual signs of 

deterioration as it was extremely cloudy and fragile at the periphery. The preparation 

of the tissue was repeated several times and it always seemed to have the same
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appearance. These observations lead to the conclusion that applying TGF-P directly 

onto the corneal stroma in such concentrations (i.e. 0.1, 10, 50 and 100 ng/ml) can be 

rather toxic for the tissue itself. The main role of TGF-p i is to induce the 

transformation of keratocytes to myofibroblasts (Wilson et al 1996). Given that the 

quantity and the concentration of the applied cytokine were high, it triggered a very 

intense response in cell transformation. This disrupted the balance within the tissue 

that had fatal effects for the treated corneas.

All four cytokines applied to LASIK-like corneas in the current study increased 

significantly the flap adherence. However, flap adherence did not increase 

significantly for non-cytokine treated samples over the 4 week organ culture time 

span. This confirms that 4 weeks after injury flap recovery is poor and the cornea very 

unstable. However, previous studies have revealed that LASIK flap adhesion 

increases significantly 3 months after surgery (Kim et al. 2006). All concentrations of 

TNF-a, IL-la and TGF-Pi caused significant increase in flap adherence. FasL had the 

mildest effect as lower concentrations of the cytokine did not cause any significant 

increase in flap adherence. However, TGF-Pi caused the maximum flap adherence 

among the four cytokines that were used. TGF-P i had the most severe effect in the 

corneas in all the assessments that were made, mainly because this cytokine has an 

immediate effect in myofibroblast transformation (Carrington et al 2005). In fact, it 

has already been proposed that dilutions as low as 15 ng/ml of TGF-pi are known to 

cause maximal expression of aSMA in treated keratocytes (Micera et al 2006). 

Additionally, according to Saika (2004) wound healing problems in the cornea can be 

treated by manipulating TGF-p signals. The findings of the current study and the 

suggestions in the literature imply that the application of TGF-P i can be ideal for 

increasing flap adherence and therefore corneal stability in LASIK-like injured 

corneas. However, a smaller quantity of the cytokine in a lower dilution is clearly 

required.

Samples that were characterised with the same visual assessment in terms of 

transparency (i.e. clear, moderately cloudy, etc) seem to have similar values of flap 

pulling forces as well as myofibroblast increases. This observation implies that there 

might be a possible correlation between the degree of transparency, hence 

myofibroblast expression and the extent of flap adherence. Therefore, the application 

of certain cytokines for the improvement of flap adherence might be useful in further 

medical practice It is obvious that different, lower dilutions need to be applied in
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order to avoid compromising the clarity of the corneas, a vital feature for the function 

of the tissue. Therefore, it is possible to improve flap adherence using these cytokines, 

but this is achieved at the expense of comeal clarity. Maintaining comeal 

transparency is essential for a normal visual function to occur. Therefore, it is 

important to determine an optimal correlation between cytokine type/dilution and 

improved flap adherence.
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5. Investigation of collagen ultrastructure in normal, LASIK-like and trephine 

wounded corneas

5.1 Introduction

X-ray diffraction experiments have been widely used to gain important information 

about the ultrastructure of connective tissue. In the current study synchrotron radiation 
was used (Daresbury Laboratories, UK- Fig. 5.1) to obtain information about the 

structure of collagen within the cornea following trephine and LASIK-like wounding and 
healing in the culture system.

Accelerating an electron beam within a magnetic field to the speed of light 
produces synchrotron radiation. A series of magnets is used in order to bend the electron 

beam and accelerate it into a circular shape. As they pass these “bending” magnets, the 

path of the electrons is deflected and they emit an intense beam of light, known as 
synchrotron radiation. The beam has the shape of a cone in front of the electron. The 
spectrum of synchrotron radiation covers the part of the electromagnetic spectrum from 

infra-red through to gamma-rays (Margaritondo 1988, Meek and Quantock 2001).

Figure 5.1: Aerial photo of the Synchrotron Radiation Source (SRS) in Daresbury, UK 

(Picture taken from http://es 1 .ph.man.ac.uk/research/svnc/daresburvr.jpg)

Synchrotron radiation is much more intense than common laboratory radiation 

sources and therefore it enables scientists to run experiments in a relatively short time and 

hence obtain readings from multiple samples. This is also very important as the tissue is 

not exposed for a long time and therefore there are minimal degradation effects on the
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samples.

For convenience, x-rays are passed through the entire thickness of the cornea, 

parallel to the optical axis. The x-ray beam has a finite cross-section so x-ray diffraction 

yields the average values of ultrastructural parameters by averaging the whole depth of 

the area of the cornea that is examined. By scanning across the tissue, patterns from each 

position allow spatial variations in these structural parameters to be mapped and to be 

compared between wounded and unwounded tissues.

5.2 Methods 

5.2.1 Sample preparation

Bovine corneas were wounded (either trephined or in a LASIK-like fashion) and 

organ cultured as previously described (section 2.1). Unwounded clear corneas were also 

organ cultured and were used as controls. Corneal samples were removed from the organ 

culture at various time points (i.e. 0, 1, 2, 3 and 4 weeks), wrapped in Clingfilm and 

immediately frozen in liquid N2 . Samples were then kept at -80°C until they were 

transferred to Synchrotron Radiation Source (Daresbury, UK); freezing does not affect 

the structural parameters being measured (Fullwood and Meek 1994). While transferring 

to the SRS stations samples were kept in an isothermic box containing dry ice and placed 

in a -80°C freezer upon arrival. The samples were finally thawed before exposed to the x- 

ray beam.

5.2.2 X-ray diffraction

LASIK-like and trephine wounded and unwounded control corneas were scanned 

at stations 2.1 and 14.1 in Daresbury SRS (Fig: 5.1). Station 2.1 (small angle), has a long 

camera and this allows us to measure parameters such as the centre to centre collagen 

inter fibrillar spacing (IFS) and fibrillar diameter. The set up in station 14.1 (wide angle), 

is suitable for measuring molecular parameters of collagen such as direction and 

distribution.
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X-ray beam
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LASIK-like
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18mm trephined 
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Figure 5.2: 18mm corneal circular area including the LASIK-like incision. For the wide 

angle x-ray diffraction experiments the whole area was scanned. For small angle 

experiments a cross section of the cornea (blue dashed line) was scanned (A). 18mm 

corneal circular area with a 5mm trephine wound in the middle. A cross section of the 

cornea was scanned (blue, dashed line) in order to observe interfibrillar spacing (IFS) and 

fibrillar diameter variation outside the wound, whereas the whole corneal button was 

scanned for wide-angle experiments (B).

During data collection all samples were wrapped in cling film and placed in an 

airtight Perspex/Mylar chamber in order to prevent dehydration of the tissue. X-rays were 

passed through the anterior corneal face, parallel to the optical axis, and the small and 

wide angle diffraction patterns recorded on a detector situated behind the specimen. 

Before data collection the x-ray beam had to be located. This was achieved by exposing a 

piece of green x-ray sensitive paper that was mounted on graph paper and placed in the 

sample holder for 10 sec. A red dot was created by the x-ray beam on the green paper and 

with the use of the attached graph paper the exact position of the x-ray beam was located.

Small angle x-ray scattering (SAXS) was performed in station 2.1 at the UK 

Synchrotron Radiation Source (Daresbury laboratories) using an evacuated camera of 

length 8.25m and a focused monochromatic beam x-ray beam (k=0.154nm). These series 

of experiments were performed in order to measure fibrillar diameter and spacing as 

previously described by Meek and Quantock (2001). The x-ray patterns were recorded at 

different positions across the cornea as shown in Fig. 5.2. For trephine wounded samples 

point 0,0 was placed right in the middle of the wound and 9mm scans were performed 

towards the periphery on either sides. The LASIK-like samples were scanned in a similar
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manner, by positioning point 0,0 in the flap incision and extending 11mm towards the 

nasal and 6mm towards the temporal regions of the corneal button. The size of the beam 

was 1mm2, the step size was 1mm and the exposure time was 90sec.

Wide angle x-ray scattering (WAXS) was performed in station 14.1. at the UK 

Synchrotron Radiation Source (Daresbury laboratories). This method was used to map 

the collagen distribution and orientation across the cornea as described by 

Aghamohammadzadeh et al. (2004). The whole of the 18mm corneal button was scanned 

using a 1mm2 beam, at 1mm steps, with exposure time of 30sec. A lead backstop was 

positioned between the detector and the sample in order to stop any undeviated rays. The 

ion chamber was placed in between the incident x-ray beam and the specimen.

5.2.3 Data analysis for SAXS

Data analysis for SAXS experiments was performed using a Unix based graphics 

program (Fit2D, produced by Dr Hamersley, ESRF, Grenoble, France) and Windows 

based programs (StatSoft Statistica and Microsoft Excel).

Initially, each data file was normalised against the appropriate ion chamber 

reading in order to compensate for any beam current decay during data collection. Then, 

the detector response pattern was removed from each normalised image to obviate 

systematic error caused by the detector’s non-uniform response. An intensity profile of 

the x-ray pattern was then created by taking a vertical centrally located transect of the 

pattern. The intensity pattern was then folded in the middle of the pattern, as it is 

symmetrical, to increase the signal/noise ratio. The scatter intensity (I) was then 

multiplied by the radial position (R); because only a small sample of the pattern was 

used, the integrated intensity distribution profile and therefore the use of a linear scan 

across the x-ray pattern, had to be corrected.

Bragg’s law states:

nX = 2Msin0

where n is the order of diffraction, X is the wavelength of the radiation, M is the Bragg 

spacing and 20 is the scattering angle. The size of the structure that causes the scattering 

is therefore inversely related to the scattering angle. At this stage of the analysis, the 

intensity distribution is described as a function of radial distance (R ) from the centre of

80



the pattern in pixels. The first step, therefore, was to calibrate the system and this was 
done using the 67nm meridional reflection from wet rat-tail tendon. Because the patterns 
were obtained at very low angles, the small angle approximation could be used, whereby 

sin 0 » tan 0 » 0. With this approximation, one can obtain the Bragg spacing 

corresponding to the interfibrillar spacing using:

M = 67 x Rrtj/ Rc?
where Rc is the position of the interfibrillar peak in the corneal x-ray pattern and RRTt is 

the position of the first order in the meridional pattern from rat tail tendon. Collagen 
fibrils are thought to be arranged with liquid-like packing, so the Bragg spacing is 

multiplied by the factor 1.12 to obtain the interfibrillar spacing (Worthington and Inouye 
1985, Meek and Quantock 2001).
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Figure 5.3: A common intensity profile, first order collagen pointed out by arrow (A) 

and a highly disordered pattern, where first order collagen peak appeared as a small 
shoulder (arrow in B). Both patterns were taken from a LASIK-like injured bovine

cornea.
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Figure 5.3 shows intensity profiles from two adjacent areas in a LASIK-like 

injured cornea; the second graph represents the incision site. X-ray intensity is plotted 

against the reciprocal space co-ordinate Q (=1/M). The first peak arises from the 

interference function and the subsidiary peak from the fibril transform (Meek and 

Quantock 2001). A sharp first peak indicates ordered collagen whereas a diffuse peak or 

shoulder indicates a more disordered packing. Equation 5.1 is the mathematical basis of 

Figure 5.3 showing how the observed intensity I(Q), the fibril transform, and the 

interference function due to the fibril packing E(Q), are related

I(Q)=F2 E(Q)+B

Equation 5.1 Equation for the intensity distribution (I(Q)-> integrated intensity 

distribution, F2-> fibril transform, E(Q)-> the fibril interference function, B-> 

background scatter from other tissue components, Q-> reciprocal space coordinate).

At this stage, the analysis is carried out in a Windows environment using StatSoft 

Statistica 6 and Microsfot Excel. Each data file for each 1mm that was scanned was 

processed separately. The data was opened initially in Statistica and each Statistica file 

was linked to an Excel spreadsheet that contained the Bessel function.

The individual steps involved in obtaining the interfibrillar spacings and fibril 

diameters from the corrected intensity distribution are as follows:

The background scatter, B, was assumed to follow a simple power law. A linear 

background (LOGBK) was therefore generated from the natural log graph of IR against 

Q. The linear background was then anti-logged (ANTILOGB) and subtracted from the 

image profile graph of IR against Q to form a new intensity profile (IR_B). After 

removing this diffuse x-ray scatter, only the peaks associated with the low angle 

reflections of the cornea remained.

Collagen fibrils can be considered as non-ending cylindrical structures. Scattering 

from such cylinders (the fibril transform) takes the mathematical form of a 1st order 

Bessel function. This has a low broad peak as a subsidiary maximum that appears close to 

the 3rd order of the collagen meridional reflection. In order to calculate the fibril diameter,
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a Bessel function graph was plotted superimposed on the IR_B vs Q graph. The program 

allowed the height and position of the Bessel peak to be adjusted to achieve the best fit 

with the IR_B graph. The first maximum in a Bessel function appears at a distance that it 

is inversely related to collagen fibrillar diameter (d). Considering the fact that the 

distance of the Bessel peak is inversely proportional to the Braggs spacing (M) in its 

maximum, there is a simple relationship between M and d and using the following 

equation (Eq. 5.1) it is possible to calculate the fibril diameter of collagen.

, 0 S.14ATa =  2 x -----------
2n

Equation 5.2: Equation for calculating collagen fibrillar diameter (d, fibril diameter; M, 

Bragg spacing of the subsidiary maximum)

5.2.4 Data analysis for WAXS

Data analysis for WAXS experiments was performed using a Unix based graphics 

program (Fit2D, produced by Dr Hamersley, ESRF, Grenoble, France) and Windows 

based programs (Microsoft Excel and Media Cybernetics Optimas 6.5).

In order to correct the beam current decay during data collection an x-ray 

intensity value was calculated by multiplying the average ion reading from each exposure 

by the exposure time in sec (i.e. 30sec). This value was then used to normalise the 

corneal x-ray pattern.

Each of the 200-400 lamellae in the path of the x-ray beam produces an 

equatorial diffraction pattern (Meek and Quantock 2001). Because lamellae occur at all 

angles within the plane of the cornea, this pattern appears as a number of concentric 

circles that span out from the centre of the pattern. The centre of the pattern and the 

intensity of 120 circles for bovine corneas were determined using Optimas 6.5 in the 

current study.

In brief, each circular diffraction pattern was divided into 256 equal sectors and 

the average intensity was calculated for each one of them. Then, the integrated intensity 

was plotted as a function of radial distance from the centre of the pattern for each sector 

producing 256 graphs. Background scatter varies with radial distance from the centre of
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the pattern and it had to be removed. A power law curve was fitted to either side of the 

collagen peak on the plot of scattering intensity versus radial distance for each pattern 

resulting to the subtraction of the fitted curve from the original data and therefore the 

removal of the background scatter (Daxer and Fratzl 1997).

A single intensity value from each point of the circumference of the collagen 

reflection was obtained by integrating radially all the 256 normalised plots. The profile of 

collagen x-ray scatter intensity relative to radial position was then converted to a profile 

of collagen x-ray scatter to angular position around the x-ray diffraction circular pattern. 

The profiling started at 3 o’clock position of the circular pattern and carried on in an 

anticlockwise direction (covering 0-360 degrees). At this stage, the area below the graph 

line represents the total collagen mass, which consists of both collagen lying in all 

directions (isotropic collagen) and fibrillar collagen with a preferred orientation (aligned 

collagen) (Fig. 5.4B). The index of orientation is then the ratio between the scattering of 

preferentially aligned collagen and the total scattering of collagen.

During the last stage of the analysis polar plots were created in order to have a 

visual, more comprehensive representation of the actual orientation of collagen, as well 

as its relative quantity towards a given direction of preferred orientation. The scattering 

from isotropically orientated collagen was removed leaving just the aligned collagen 

scatter relative to angular position (Fig. 5.4C). The data for the aligned collagen was then 

shifted along the x-axis by 90°, as x-rays once they hit the collagen they scatter at right 

angles to the direction of the fibril axis. A new graph was then created showing the 

preferentially aligned scatter intensity versus the angle of molecular orientation. This data 

was also plotted in Microsoft Excel as a propeller-shaped 360° polar plot. A polar plot 

represents the preferred orientation of collagen towards a given direction in a particular 

point of the tissue. The maximum dimension of a polar plot is representative of the 

amount of fibrils in a given direction.

Total scatter from each diffraction pattern was found by integrating the area under 

the scattering intensity versus rotation angle graph (Figure 5.4B). This was done for the 

collagen diffraction maxima from each scattering pattern, resulting in a matrix of 32 * 36 

intensity values. These data were displayed as a contour plot using Microsoft Excel 

software. A contour plot displaying total scatter from only the preferentially aligned
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collagen was produced in the same way, except that only the preferentially aligned scatter 

(unshaded region in Fig. 5.4B) was integrated.

5.2.5 Statistical analysis

All statistical analysis was performed using the statistics software package SPSS. 

Three samples of control and wounded corneas were used for each time-point. Initially all 

data was tested for its normality and then a one-way ANOVA test was performed 

between control and wounded corneas for each different scan (points between -9 to 9 for 

trephined wounded corneas and -6 to 11 for LASIK-like ones). Finally, an independent t- 

test was used in order to compare overall the data between wounded and control corneas 

for each time point.

■g 785 A ligned scatter

Isotropic scatter

<*ngle of orientation (degrees)

Figure 5.4: Part of the analysis for wide angle x-ray scattering. Initially, an x-ray 

scattering pattern that was created by passing a beam of X-rays through the cornea 

parallel to the optical axis (A). Intensity profiles of total and isotropic collagen X-ray 

scatter (B) and preferentially aligned collagen alone (C) as a function of angular position 

around the scatter pattern. Example of a polar plot (D). The size of the polar plot and its 

radial extent in any given direction represents the amount of collagen preferentially 

orientated in that direction (Picture taken from Hayes et al. 2007).
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5.2.6 Transmission electron microscopy (TEM)
TEM was used in this project purely to visualise the ultrastructure of the bovine 

corneal stroma. The procedure was performed as previously described in chapter 2.

5.3 Results

5.3.1 Small angle x-ray scattering (SAXS)

Trephine wounded corneas

Fibrillar diameter and IFS in control corneas

Neither fibrillar diameter nor IFS was affected by the culture system and both 

these variables remain constant during the organ culture time-span (Fig. 5.5). The IFS 

increased slightly during the third week in culture.
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Figure 5.5: Graphs representing Bragg fibril diameter (A) and interfibrillar spacing (B) 

for control corneas over a time of two weeks in culture- Error bars represent standard

error of mean.
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Figure 5.6: Collagen fibril diameter for control and trephine wounded corneas for a two 
weeks organ culture time span (Pale blue area indicates the position of the wound- Error

bars represent standard error of mean)
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Collagen diameter was not affected at the time of injury. However, it increased during the 

first and second week in culture (p<0.05) in a progressive manner (Fig.5.6). The collagen 

diameter was affected in wounded corneas in an area within and around the wound but 

remained within normal values in the periphery of injured corneas (p>0.05).
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Figure 5.7: Collagen interfibrillar spacing for control and trephine wounded corneas for
a two weeks organ culture time span (Pale blue area indicates the position of the wound- 

Error bars represent standard error of mean)
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IFS increased in wounded corneas during the first week after injury and it 

remained high during the second week in culture (p<0.05).
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Figure 5.8: Graphs representing fibril diameter and interfibrillar spacing for control corneas over a time of four weeks in culture-

Error bars represent standard error of mean.

Neither fibril diameter nor IFS was affected by the culture system and both these variables remained constant during the 

organ culture time-span (Fig. 5.8).
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Figure 5.9: Collagen diameter for control and LASIK-like injured corneas for a four 

weeks organ culture time span (incision site for LASIK-like flap at 0,0- Error bars

represent standard error of mean)
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Collagen diameter increased after the first week in culture (p<0.05) in a progressive 

manner (Fig.5.9) in an area in and around the incision site only. Collagen diameter 

remained within normal values in the periphery of injured corneas (p>0.05) and mid flap 

areas.
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Figure 5.10: Interfibrillar spacing for control and LASIK-like injured corneas for a four 

weeks organ culture time span (incision site for LASIK-like flap at 0,0- Error bars

represent standard error of mean)
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Collagen interfibrillar spacing increased in injured corneas during the organ 

culture time span and provided that this was not the case with the corresponding controls, 

it can be concluded that corneas swell during the wound healing process. The 

interfibrillar spacing did not show a consistent change at the incision site, but that was a 

sign of the high disorder of the tissue in this specific area.



5.3.2 Transmission electron microscopy (TEM)

Ohrs control
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Figure 5.11: Electron micrographs, obtained using the critical electrolyte method, 
representing area in mid and posterior stroma of trephine wounded corneas within 24hrs 
of injury (A). Control cornea in a posterior site of the stroma (B). Turquoise arrows point 

out the difference in size between proteoglycan molecules in injured and uninjured
corneas.

Shortly after injury abnormally large proteoglycan molecules appear in an area 
proximal to the trephine wound. There is an obvious difference in the size of the 

proteoglycans found in mid stroma of injured corneas and the ones found in control 
corneas (Fig. 5.11 A and B).
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5.3.3 Wide angle X-ray scattering (WAXS)

Control cornea
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Figure 5.12: Polar plot map showing the preferred orientation of fibrils in a control

bovine cornea. Fibrils tend to have a vertical preferred orientation (the map is switched
30 degrees anticlockwise off in vivo orientation). Plots have been scaled down by the

factors shown in the colour key and metric scale is in millimeters-Courtesy of Dr S Hayes

Collagen fibrils in bovine corneas tend to have a vertical preferred orientation in a 
major part of the tissue. However in the periphery of the cornea this pattern obtains a 

circular orientation.
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Trephine wounded corneas
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Figure 5.13: Polar plot map showing the preferred orientation of fibrils in a centrally 

located 6.9><6.9mm area from a trephine wounded cornea over a two week culture time 

span (A-C). The wound was placed in the middle of the scan and the pictures depict 
trephine wounded corneas at Ohrs (A), 1 week (B) and 2 weeks (C). Solid circle
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represents the size and approximate position of the wound. Plots have been scaled down

by the factors shown in the colour key and metric scale is in millimeters.

Fibrils tend to maintain the uniaxial arrangement in a major part of the cornea at 

Ohrs (Fig. 5.13A), although a circular proffered orientation is also formed in the middle 

of the wound area. This circular preferred orientation in the middle of the wound is also 

observed at later time-points (Fig. 5.13B-C). Collagen fibrils form a radial arrangement 

both outside and inside the wound area at 1 and 2 weeks (Fig. 5.13B-C).
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LASIK-like wounded corneas
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Figure 5.14: Polar plot maps of x-ray scatter (A-D) and contour maps of total collagen 
(E-H) showing the orientation and distribution, respectively, of fibrillar collagen across 

LASIK-like injured corneas at 1, 2, 3 and 4 week after injury. The scan covered an area
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that included the whole of the flap as well as the hinge. Plots have been scaled down by

the factors shown in the colour key and metric scale is in millimeters.

Circular collagen arrangement in the periphery of the corneas was maintained 

throughout the culture time span, but collagen seemed to be fairly disorganized within the 

flap area (Fig. 5.14A-D-> 1-4 weeks, respectively). Total collagen scatter was less in the 

incision area during the whole of the organ culture time (Fig 5.14E-H-M-4 weeks, 

respectively)
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5.4 Discussion and conclusions
The present study revealed important information about the collagen 

ultrastructural changes in bovine corneas shortly after injury. Fibril diameter increased 

during the first week in culture and it kept increasing in a progressive manner for the rest 

of the organ culture time span showing that a stromal repair process had been in progress. 

Fibril diameter in trephined corneas increased in an area within the wound but also in an 

area beyond the wound margin of about 1mm. The interfibrillar spacing increased 

throughout the whole of the corneal buttons within a week after injury and it kept 

increasing during the rest of the organ culture time. However, in trephine wounded 

corneas the interfibrillar spacing was increased compared to the corresponding controls, 

but the spacing was lower in the middle of the tissue, at the wound area, than the 

periphery. According to Connon and Meek (2004) the presence of a disorganized fibril 

arrangement inhibits the normal swelling of the scar tissue, and therefore interfibrillar 

spacing remained reduced in full-penetrating corneal wounds in rabbits. The extent of 

swelling in injured corneas was more severe in trephine-wounded samples than in 

LASIK-like ones. What is more, at the incision site in LASIK-like corneas, the 

interfibrillar spacing was lower than the rest of the cornea. According to Rawe et al 

(1994) the gradual reduction in the spread of interfibrillar spacing is possibly related 

to the progressive decrease in the light scattered from the tissue as the wound heals. 

McCally et a l (2007) suggest that the wound site in fully penetrating wounds in 

rabbit corneas continues to scatter a significant amount of light even 4.5years after 

wounding. The unusual pattern that was observed in the IR_B versus Q graph during 

data analysis in scans from the incision site also indicates a high level of disorder at 

the incision site, a finding that supports even more the fact that collagen fibrils were 

highly disordered at the incision site.

Upon injury, for trephined samples, the whole 5mm was excised and the corneas 

were left to heal in culture. On the contrary, in LASIK-like samples, the comeal stroma 

was sliced and the flap was repositioned back in place. Therefore, the trephine wounding 

is a more severe kind of injury that effectively disrupts the whole homeostasis of the 

tissue, by thinning the cornea and exposing a considerable amount of the stromal surface 

to the air. Provided that a considerable area of the stroma was exposed without having the
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barrier of the epithelium to control water uptake from the environment and also having an 

immediate and intense wound healing response naturally from the tissue itself in order to 

recover the piece that was removed, swelling effects are a lot more severe for trephine 

wounds than other more gentle methods of injury (i.e. LASIK-like ones). Additionally, 

the appearance of high numbers of larger proteoglycan molecules within the extracellular 

matrix during the repair process is already reported in the literature (Funderburgh et al. 

1998), but also large proteoglycan molecules were visually obvious in the present study 

in electron micrographs taken from the wound bed. The existence of these molecules also 

contributes to swelling effects during the wound healing process in the cornea.

Polar plot maps revealed a strong tendency of the collagen fibrils in trephine- 

wounded corneas to form a circular pattern within the wound but, because this happens 

from the moment of injury, it is considered to be an artefact caused by the need to pull 

upwards on the trephined button in order to cut it away from the underlying stroma. 

However, the cornea outside the wound is not affected by artefact, and the 

arrangement that was observed at later stages of the culture period is a result of the 

healing process and a response of the tissue upon wounding.

The polar plots from the trephined wounds were noted to become smaller 

outside the wound area as the wounds healed (Figures 5.13 B and C). This 

phenomenon is due to swelling that occurred in the tissue during wound healing. The 

effect was not observed in LASIK-like wounds because the extent of the wound healing, 

and hence the swelling, was not so pronounced. Figures 5.13 B and C also revealed a 

radical re-alignment of collagen in trephine wounded samples, with collagen fibrils 

bending towards the wound area in the middle of the tissue at later stages of the organ 

culture. It is likely that this specific collagen arrangement is the result of wound 

contraction that occurs during the wound healing process though it could occur as a 

natural response of the tissue to reinforce the central area of the cornea that became 

considerably thinner upon wounding with the trephine. Unlike trephine-wounds, the 

LASIK-like wounds showed no clear evidence of wound contraction, probably 

because the stromal wound-healing response is minimal and is restricted to the flap 

periphery (Perez-Santoja 1998, Ivarsen 2003, Phillipp 2003).
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In the LASIK-like injured corneas collagen orientation did not adopt such a 

critical pattern as it did in the trephine-wounded ones. After injury, the collagen 

seemed to be highly disorganized and appeared to have a completely different pattern 

within the flap area compared to the control/uninjured sample. This suggests that the 

process of creating then repositioning the flap, at least in the bovine cornea, distorts 

the collagen lamellae. X-ray diffraction provides averaged data throughout the 

comeal thickness, so we cannot say if the distortion is in the flap, the bed, or both. 

However, it is likely to be in the flap, as this is the part that was displaced during the 

induction of the wound.

However, it must be taken into consideration that an in vitro system lacks certain 

factors present in a live organism. Such parameters are the absence of nerve responses 

and intraocular pressure fluctuations in response to injury that potentially can affect the 

mechanical properties of the tissue. However, the lack of these parameters has not been 

an issue in previous in vitro comeal wound healing studies (Carrington and Boulton 

2005, Carrington et al. 2006, Zhao et al. 2006) and, in particular, this has not been related 

to the orientation of collagen.

In conclusion, the extent of the wound healing response in the cornea depends on 

the type of injury. In the present study, the events of the repair process were more 

dramatic in trephine-wounded samples than in LASIK-like ones, because the first type of 

injury is more severe than the latter one. In trephine injured corneas collagen fibrils had a 

preferred orientation pattern to form a ring within and around the wound area. However, 

this might be induced upon wounding with the circular 5mm trephine. In LASIK-like 

ones collagen fibrils tend to form a pattern that follows the incision. This pattern appears 

at the third week after injury and becomes more apparent at the fourth week. It can also 

be concluded that the observations and the conclusions drawn in the present study are not 

artefacts of the in vitro system that was used. The ultrastructure of the tissue was clearly 

not affected in control corneas that remained normal without any swelling effects during 

the 4week organ culture time-span.
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6. Homology-based molecular modelling of the bovine corneal biglycan core

protein

6.1 Introduction

Collagen/Proteoglycan interactions within the extracellular matrix (ECM) play a 

key role in the maintenance and function of connective tissue. ECM consists 

predominantly of collagen, proteoglycans and other minor proteins (Hockin et al 

1998). For instance, corneal transparency is an essential requirement in order for visual 

function to occur and it is maintained due to the collagen and proteoglycan organisation 

within the corneal stroma. Collagen spacing is mainly controlled by proteoglycans that 

establish ionic interactions with the collagen fibrils within the stroma and fill the space 

between the fibrils. Therefore, the physical and chemical properties of proteoglycans 

play an important role in establishing and maintaining corneal transparency.

The ground substance of the corneal extracellular matrix is made up of 

proteoglycans. Proteoglycans are macromolecules composed of a protein core and a 

carbohydrate glycosaminoglycan (GAG) side chain. GAG’s are highly hydrophilic, 

negatively charged molecules located at specific sites around each collagen fibril (Scott 

and Haigh 1996, Remington 1998). The core protein of a proteoglycan seems to be the 

most active part of the molecule, since it interacts with the collagen fibrils and the 

extracellular matrix at specific sites. According to Cintron et al (1989) the precise 

arrangement of PGs presumably reflects specific intermolecular interactions with 

collagens. Therefore, loss of PGs might cause alterations to the collagen organisation 

and hence to connective tissue stability. According to Cintron et al (1989) the precise 

arrangement of PGs presumably reflects specific intermolecular interactions with 

collagens. Therefore, loss of PGs might cause alterations to the collagen organisation 

and hence to corneal transparency.

The corneal stroma contains two major classes of proteoglycans containing 

either keratan sulphate side chains or dermatan/chondroitin sulphate side chains (Zieske

2001). Lumican, keratocan and mimecan are the major keratan sulphate PG’s, whereas 

decorin and biglycan are dermatan/chondroitin PGs. Keratan sulphate is the major 

glycosaminoglycan in healthy corneal stroma, whereas dermatan/chondroitin sulphate 

molecule levels are lower under normal conditions. However, upon wounding 

dermatan/chondroitin sulphate content increases during tissue remodelling. 

Specifically, decorin levels increase by twofold, whereas biglycan increases seven 

times during the wound healing process (Funderburgh et al 1998).
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Dermatan sulphate proteoglycans are small leucine rich proteins (SLRPs) with 

an “arc” shaped spatial conformation and tend to form dimers. The amino-acid 

sequence of these proteins is characterised by long arrays of leucine-rich repeat motifs 

of about 24 amino acids in length (Jolles 1994). A feature that is of great interest about 

SLRPs is that they contain an amphipathic consensus sequence, with leucine as the 

predominant hydrophobic residue placed in conserved positions (Hocking et al 1998). 

This pattern is highly likely to be involved with protein-protein or protein lipid 

interactions (Krantz et al 1991). With respect to collagen/proteoglycan interactions 

several theories have been proposed to date, with the majority of them suggesting the 

idea that interactions with collagen are being established at the inner site of the 

“horseshoe” shaped molecule (Weber et al 1996, Vesentini et al 2005). Bearing in 

mind that the concave surface is involved in a high-affinity dimer interaction, this 

theory is now being debated (Scott et al 2006, Vesentini et a l  2006). However, it 

should be taken into consideration that there might be a dimer-to-monomer transition of 

proteoglycans in collagen/proteoglycan interactions. For example, dermatan sulphate 

proteoglycans bind collagen as a dimer, conservation analysis across class I SLRPs 

revealed a clustering of partially conserved residues on the sugar-free surface of LRRs 

IV-VI, a region that has been implicated in collagen binding. This theory though has 

yet to be confirmed by further biochemical studies (Scott et al 2004).

Biglycan is a dermatan sulphate proteoglycan and it receives its name because it 

is substituted more often with two glycosaminoglycan chains at the N-terminus (Kresse 

et al 1994, Naito 2005). It is expressed in a variety of epithelial tissues throughout the 

body, such as the lung, spleen, bone, liver, cartilage, tendon, skin, kidney, heart, sclera 

and cornea (Wegrowski et al 1995, Hocking et al 1998, Watson and Young 2004). 

Biglycan interacts with fibrillar collagen and based on immunohistochemical analysis it 

has been proven that the core protein of the proteoglycan interacts directly with the 

collagen fibril (Schonherr et al 1995).

In this study the 3D structure of the core protein of biglycan was determined by 

means of homology based molecular modelling. Descent from a common ancestor, i.e. 

homology, can be hypothesised when similar properties are detected in biological 

objects (Grishin 2001). It is also widely accepted that statistically significant homology 

detected from the sequence alone reflects descent from a common ancestor (Aravid and 

Koonin 1999). Comparative homology-based modelling is based on the observation
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that sequence correlation above a certain proportion implies structural similarity. Thus, 

a protein of a known structure and sequence can be used as a template for the 

construction of a 3D model of another protein with a sequence similar to the template 

(D’Alfonso et al 2001). Additionally, it should be taken into consideration that 

structure is conserved to a much greater extent than sequence and that there is a limited 

number of backbone motifs (Chothia 1992, Baxevanis and Ouellette 2001). A relative 

minimum percentage of homology between two protein sequences that can ensure the 

construction of a reliable model is >40% (MOE 2005). Template and model homology 

sequences identity that greater than 50% normally have 90% or more of the individual 

structures within the common cores and an RMSD (root mean square) value smaller 

than lA, ensuring reliability of the proposed model (Chothia and Lesk 1986). The aim 

of this chapter is to predict the 3-dimensional structure of the core protein of the bovine 

corneal biglycan molecule.

6.2 Materials and methods

6.2.1 Molecular Modelling

All calculations were performed on a dual Pentium 4 workstation running Linux 

and using the Molecular Operating Environment (MOE) 2005.03 software package 

developed by Chemical Computing Group (Montreal, Canada).

6.2.2 Sequence alignment

The amino acid sequence of biglycan was obtained from the protein database 

from NCBI (http://www.ncbi.nlm.nih.gov/protein) (gi|30315664). The PSI-BLAST 

algorithm was used to identify homologous structures for biglycan by searching the 

structural database of protein sequences in the Protein Data Bank (PDB) (Berman HM

2002). The crystal structure of decorin (PDB code 1XKU) (resolution 1.5 A) was 

selected as template structures for homology modelling of the biglycan protein. The 

selection of these structures was based on the highest sequence similarity (56.7% 

similarity). Sequence alignments were created with ClustalW (Thompson 1994).

6.2.3 Homology modelling

The homology model was constructed using MOE version 2005.03. As 

indicated above, the homology model of biglycan was based on the crystal structure of
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1XKU, which shares 56.7% similarity with the sequence of biglycan. The first 

requirement in the construction of a biglycan model structure is a multiple sequence 

alignment against its template. The sequence alignment is based on identifying 

structurally conserved regions (SCRs) common between the model and the template. 

An initial 3D structure of biglycan was obtained by transferring the backbone 

coordinates from the template residues to the corresponding residues of biglycan, 

except for several variable regions (LOOPs). To construct the structural variable 

regions, a loop-searching and generating algorithm over the databank of known crystal 

structures was used from within MOE. Through the procedure mentioned above, an 

initial 3D model was thus completed. The quality of this model was examined by 

WHATCHECK and ProCheck. The three-dimensional model was subjected to 

molecular mechanics energy minimization calculations using the updated MMFF94x 

and Amber algorithms implemented in MOE. The refinement of the homology model 

was carried out through energy minimization: 500 iterations of steepest descent (SD) 

calculation were performed and then the conjugated gradient (CG) calculation was 

carried out until achieving 0.1 kcal/mol A-1 of convergence on the gradient.

6.2.4 Molecular dynamics (MD) simulations

MD simulations were performed using MOE version 2005.03 and its built-in 

Molecular Dynamics module using an NVT ensemble. The protein was solvated in a 

cubic periodic box containing water molecules in order to perform simulations in an 

aqueous environment. Firstly, the model structure was refined by adding all hydrogen 

atoms and subsequent energy minimization with the MMFF94x molecular mechanics 

module of MOE to ensure overall neutrality of the simulated system. The time step was 

2 fs and all simulations were conducted at 300 K.

The model was first equilibrated for 100 ps keeping the whole protein fixed to 

allow the water molecules to relax. A subsequent lOOps of equilibration with the 

protein backbone fixed was carried out. After the equilibration phase, we obtained 1 ns 

MD trajectory for the biglycan model. Additionally, in order to assess the structural 

stability of the protein, 500 pico-second snapshots of the molecular dynamics 

simulation trajectory were taken. This revealed 9 conformations that were 

superimposed together. Each snapshot conformation was coloured with its unique 

colour.
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Finally, a conjugate gradient energy minimization of the full protein was 

performed until the root mean-square (rms) gradient energy was lower than 

0.001 kcal/mol A-1. In this step, the quality of the initial model was improved. After the 

optimization procedure, the structure was checked again by ProCheck.

6.3 Results

6.3.1 Sequence alignment

The sequence that was modelled into a 3D molecule in this study was the 

bovine biglycan core protein. A comparison between the sequences of this protein from 

various mammalian species revealed high homology (Fig. 6.IB).
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Figure 6.1: Sequence alignment between biglycan core proteins of different 

species produced by the ClustalX program (A). Homology scores from sequence 

alignment between the sequences of biglycan core protein from different mammal 

species. Alignment scores were between 94-99% suggesting high homology and 

structural conservation of biglycan core protein throughout mammal species (B).
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Additionally, biglycan protein sequence is the same size in many mammal 

species (Fig. 6.1). Sequence alignment between decorin and biglycan core protein 

sequences revealed a high homology score (i.e. 56.7%) (Fig. 6.2A).

1XKU GPVCPFRCQCHLRWQCSDLGLEKVPKDLPPDTALLDLQNNKITEIKDGDFKNLKNLHTL
Biglycan SAMCPFGCHCHLRWQCSDLGLKAVPKEISPDTTLLDLQNNDISELRKDDFKGLQHLYAL

1XKU I LINNKI SKI SPGAFAP LVK LERLY LSKNQ LKE LPEKMPKT LQE LRVHENEITKVRKSVF
Biglycan VLVNNKISKIHEKAFSPLRK LQKLYISKNHLCEIPPNLPSSLVELRIHDNRIRKVPKGVF

1XKU NGLNQMIWELGTNPLKSSGIENGAFQGMKKLSYIRIADTNITTIPQGLPPSLTELHLDG
Biglycan SG LRNMNCIEMGGNPLENSGFE PGAFDGL-KLNYLRI SEAKLTGI PKDLPET LNELHLDH

1XKU NKITKVDAAS LKGLNN LAKLGLSFNSI SAVDNGS LANTPH LRELH LNNNK LVKVPGGLAD
Biglycan NKIQAIE LEDLLRYSKLYRLGLGHNQIRMIENGSLSF LPT LRELHLDNNKLSRVPAGLPD

1XKU HKYIQWYLHNNNISAIGSNDFCPPGYNTKKASYSGVSLFSNPVQYWEIQPSTFRCVYVR
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B i g l y c a n VNNKIS HEKAFSPLRKLQ ISKNHLCEIPPNLPSSLV IHDNRIRKVPKGVF

1XKU NGLNQMI LGTNPLKSSGIENGAFQGMKKLS IADTNITTIPQGLPPSLT LDG
B i g l y c a n SGLRNMN MGGNPLENS GFEPGAFDGL- KLN ISEAKLTGIPKDLPETLN LDH
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B i g l y c a n NKIQ ELEDLLRYSKLY LGHNQIR ENGSLSFLPTLR LDNNKLSRVPAGLPD

1XKU HKYIQ LHNNNISAIGSNDFCPPGYNTKKAS YS LFSNPVQYWEIQPSTFRCVYVR
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Figure 6.2: Sequence alignment between decorin (1XKU) and biglycan produced by 

the ClustalX program. Homology score between the two proteins was 56.7%. (A) 

Secondary structure features prediction. Red: a-helical secondary elements, Black: 13-

sheet pattern (B).

6.3.2 Secondary features and model evaluation

The P-sheet pattern has been completely conserved between the model and the 

template. On the other hand the template’s a-helix distribution was not exactly assigned 

to the model. There are 3 a-helical secondary elements missing from the model, when 

compared to the template (Fig. 6.2B).
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The ProCheck/WHATCHECK evaluation of the model revealed that 95% of its 

residues were found in the core regions and another 5% in the allowed regions of the 

Ramachandran plot (Fig. 6.3).

■hm h  h
Figure 6.3: Ramachandran Plot. In both the template and the model, there are no 

residues in the disallowed regions of the ramachandran plot.

The amino acid sequences of the first 20 amino acids at the N-terminus of 

biglycan and decorin are different. In biglycan, two GAG chains are attached to Ser5 

and Serll at the N-terminus whereas in decorin only one chain is attached to Ser4 

(Scott 2004).

6.3.3 Molecular dynamics

The Molecular Dynamics functions that were used in the present simulations 

solve the equations of motion for a molecular system and store the resulting trajectory 

information to a database. These functions depend on the current state of the system, in 

particular, the force field, the potential setup and the current restraint configuration.

The molecular dynamics simulation serves two purposes in the current study. 

Firstly after 4 ns the protein is completely relaxed and close to its global energetic 

minimum (Fig. 6.4, chart 1). Secondly, the extended molecular dynamics simulation 

does impose a serious structural test to the folding stability of the model. It was proved 

firstly from the energy graph and secondly from the Hamiltonian graph that the energy 

of the system was reduced while its structure was conserved during the MD simulation 

(Fig. 6.4, chart 2). The Hamiltonian is the value of the full (extended system) at time t.
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In a properly functioning simulation, this quantity is conserved at all times (although 

fluctuations will be present). Drift in hamiltonian value (H) is evidence of too large a 

time step.

chart 1. Energy plot vs time
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Figure 6.4: The model quickly reached a plateau, which is considered to be its global 

energy minimum (Chart 1). A constant Hamiltonian value revealed that the molecular 

system was stable throughout the course of the molecular dynamics simulation (Chart

2).

The evaluation for the structural stability of biglycan model showed that the 

inner cliff of the protein, where the parallel P-sheet motif is found, is much more stable 

than the rest of the protein. Visual investigation of the 9 conformations revealed that the 

inner region of the protein (p-sheet motif) is not as colourful as the rest of the protein 

(Data not shown). That proves that the P-sheet motif of the biglycan protein is a very 

stable and conserved motif, whose residues are energetically and conformationally 

more stable than the rest residues of the protein.

6.3.4 Model evaluation
Superimposition of biglycan proposed model to decorin crystal structure 

revealed obvious similarity in the spatial arrangement as well as the structural motives 

of both proteins (Fig. 6.5).
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Figure 6.5: The structure of biglycan superimposed with its template. Reasonably high 

homology identity guaranteed the retention of the major secondary elements and shape.

The above structure has been obtained after a 2 nanosecond molecular dynamics

simulation.

Also, the proposed model for biglycan appears to obtain an “arc” shape spatial 

arrangement, which is in consistency with the rest of the RSLPs (Fig. 6.6). The inner 

cliff of the protein consists of parallel p-sheets made mainly of hydrophobic amino 

acids.
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Figure 6.6: Proposed homology model for the structure of the biglycan core protein.

6.3.5 Comparison of theoretical model to its crystal structure

The crystal structure of biglycan has recently been released (Scott 2006) and a 

comparison of the homology model with the x-ray structure was performed. The 

secondary elements of the structure (i.e. a-helices and p-sheets) were found to be highly 

similar. The main differences between the model and the x-ray data lie in two extra a- 

helical loops the homology model has on its outer surface between residues 206-207 

and 248-250, respectively (Fig. 6.7A). The areas of interest, such as the inner cliff of 

the protein and N- and C- terminal regions were the same between the two molecules. 

Superimposition of the two models revealed an RMSD of 1.32A (Figure 6.7B).



B

Figure 6.7: The structure of the homology model was very similar to the crystal 

structure. Superimposition of the two structures revealed the existence of two loops at 

the surface of the molecule (indicated by turquoise arrows). Key: Green and aqua-> a- 

helix and P-sheet, respectively, for the homology model; Red and yellow-> a-helix and 

P-sheet, respectively, for the crystal structure (A). The homology model of biglycan 

superimposed with the crystal structure of the same protein. Key: Yellow-> X-ray 

structure, Red-> homology model (B).
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6.4 Discussion and conclusions

The sequence of biglycan is highly conserved among higher mammalian 

species, a common characteristic of SLRPs. In addition to high homology scores (Fig. 

IB) biglycan sequences from different mammalian species have the same size (Fig. 1). 

This observation suggests that biglycan structure and hence function is very similar in 

epithelial tissues of various mammals. Therefore, biglycan serves the same function to 

the different species. Additionally, biglycan and decorin share a high homology 

between their sequences. These proteins belong to the same family of proteoglycans, 

type I dermatan sulphate. Although their function differs structurally they share 

structural similarities. In previous studies it has been observed that decorin is involved 

with collagen fibrilogenesis, whereas biglycan is not. Additionally, decorin is released 

by keratocytes, whereas biglycan is the result of myofibroblast activity in epithelial 

tissues (Funderburgh 2001, Funderburgh 2003 )

It was also observed that the inner cavity of the “arc” shaped molecule consists 

mainly of hydrophobic amino acids, whereas the outer surface of the molecule 

consisted of hydrophilic amino acids. This explains the arc shape of the molecule, as an 

adaptive response to “hide” these amino acids in aqueous biological environments. 

Additionally, parallel p-sheets are known to have a tighter spatial arrangement than 

antiparallel p-sheets (Zubai 1998). This shape obtained for biglycan is consistent with 

the rest of the known SLRPs.

Findings confirm that a possible interaction site for the collagen fibrils is the 

inner cavity of the arc-shaped molecule. This is supported by three different arguments. 

Firstly, by structurally evaluating the model of biglycan, it appears that it has the 

correct dimensions to accommodate a collagen fibril (Scott 1996). Secondly, the 

presence of hydrophobic residues implies they must be covered by a second molecule 

to avoid exposure to the aqueous phase. Thirdly, the inner cavity of the biglycan model 

is a beta-sheet motif, which is highly conserved among other collagen interacting 

proteins of the same families. That is shown in the alignment between the template and 

the model too.

A preliminary data investigation of the relevant literature, combined with the 

findings of this study, poses important questions such as: how does biglycan interact 

with collagen fibrils? The proposed patterns of interaction can be investigated in a 

future protein-protein docking / interaction in silico investigation. Biglycan and 

collagen can be imported to the MOE docking algorithm and after the final interaction

116



conformations are obtained and the stability and biological viability of the system can 

be verified by means of Molecular Dynamics. A separate MD simulation will be 

performed for each viable docking conformation and the various energies will be 

compared. Finally, a mode of association and interaction will be suggested. However, 

the means of technology that are currently available are not powerful enough to 

simulate a whole collagen fibril.

Previous studies suggest a collagen binding domain both in the C- and N- 

terminal regions of the core protein of decorin ( Scott et al. 2004, McEwan 2006). Data 

suggest a collagen binding site at the N-terminal half of the decorin core protein. The 

importance of amino acids 125-158 of the mature core protein is further supported by 

the finding that these amino acids are likely to be on the surface of the molecule 

according to computer modelling and antibody-binding studies (Scott, 2004).

In conclusion, the comparison between the proposed theoretical model for 

biglycan and the recently released x-ray structure for the same protein revealed high 

similarities between the two proteins. The low RMSD value confirms the accuracy of 

the theoretical model as well as the reliability of the homology methods and algorithms 

that were used for the current study.

117



7. General discussion
Wound healing is a complex process that, especially in the ocular surface, 

demands to be performed in such a way that the clarity of the tissue is not being 

compromised in the long term. The extent and severity of the wound healing response in 

the cornea clearly depend on the type of injury. In the present study the repair process in 

bovine corneas after trephine wounding and LASIK-like incisions was closely 

investigated. The cellular expression of the tissue during wound healing was investigated 

by monitoring epithelial cell and myofibroblast expression. However, in normal comeal 

tissue there are other cell types expressed such as the quiescent keratocytes, limbal stem 

cells of the epithelium, bone marrow derived cells in the stroma and the endothelial cells. 

Keratocytes are the main cell type in the stroma. Limbal stem cells are located at the 

basal layer of the comeal epithelium in the limbus and they differentiate and proliferate in 

epithelial cells in order to recover the comeal surface upon injury (Wilson 1999). The 

existence of bone marrow derived keratocytes that give rise to either bone marrow 

haemopoetic stem cells or major histo-compatibility complex (MHC) class II 

macrophages has also been confirmed (Sosnova et al. 2005). Lastly, the endothelial cells 

form a layer over the posterior part of the tissue providing regulation of fluid uptake in 

the cornea.

In vitro models have become increasingly popular in studying the short term 

effects of comeal wound healing (Richard et al. 1991, May et al. 2004, Zhao et al. 2006). 

In the current study, a simple air interface organ culture method was used (Foreman et al. 

1996) as this culture system achieves excellent re-epithelialisation (Foreman et al. 1996, 

Zhao et al. 2006). Additionally, it doesn’t appear to induce any swelling effects to the 

tissue, as comeal thickness remains stable during the maximum term of culture (i.e. 4 

weeks) (Carrington, personal communication 2004). In the current study, swelling effects 

in the cultured corneas were monitored by measuring the interfibrillar spacing of 

control/uninjured bovine corneas (Chapter 5). During the four weeks in culture 

interfibrillar spacing increased only slightly indicating that there were no swelling effects 

induced in the tissue by the culture system. This observation confirmed the reliability of 

this organ culture method for the in vitro study of wound healing in comeal tissue, as it 

keeps the endothelial barrier intact and fully functional.
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The external surface of the human body (i.e. skin, ocular surface) consists of 

stratified squamus epithelium that protects and provides a physical barrier from the 

external environment. Part of the immunohistochemical investigation in this study 

focused in the expression of epithelial cells in the cornea after injury (Chapter 3). In 

LASIK-like incisions the epithelium reacted rapidly at the incision, forming an epithelial 

plug that covered stromal gaps in the stroma. At later stages of the organ culture this plug 

had a tendency to increase in size and also epithelial cells migrated towards inner parts of 

the stroma. Positive cytokeratin staining confirmed the cell type of these cells as 

cytokeratins 3, 5 and 12 are known cells markers for corneal epithelial cells (Kasper et al. 

1988). This is a common observation in LASIK, known as epithelial ingrowth that is 

often associated with haze and diffuse lamellar keratitis (Vesaluoma et al. 2000).

In this study it was observed that stromal wound healing response events were more 

severe for trephine injured corneas than LASIK-like ones. Cellular expression for 

myofibroblasts and tissue swelling were more obvious in trephine-wounded corneas than 

in LASIK-like samples (Chapters 3 and 5). Stromal swelling is a part of the wound 

healing process and it was estimated by determining the interfibrillar spacing of collagen 

fibrils. Comeal hydration and therefore swelling is monitored by the epithelium/ 

endothelium barriers and also the extracellular matrix components of the stroma (i.e. 

proteoglycans, cells). It was noted to be extensive in trephine wounded corneas within a 

short period of time after injury. Swelling occurred in LASIK-like corneas as well but it 

was not so extensive. During wound healing there is a series of events that take place in 

both the comeal stroma and the epithelium and cause swelling to the tissue as part of a 

normal repair process. Initially, cytokines released by the epithelium (i.e. IL-lp) cause 

stromal cell transformation into myofibroblasts and subsequent proliferation (Wilson 

2002). Secondly, during the wound healing process elevated numbers of abnormally large 

proteoglycans appear in the extracellular matrix (Fundeburgh et al. 1998). This was also 

confirmed by transmission electron microscopy (Chapter 5) and the molecular modelling 

study (Chapter 6).

The three dimensional structure of biglycan was constructed in silico. Proteoglycan 

molecules play a key role in comeal hydration, hence swelling, and their levels are 

affected in pathologic situations (Funderburgh 1998, Funderburgh 2001). In particular,
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biglycan, a dermatan sulphate proteoglycan, levels increase seven fold during the healing 

process (Funderburgh 1998). The present study revealed that the core protein of biglycan 

appears to be highly reactive with numerous potential interaction sites throughout the 

molecule, for the formation of dimers and also with collagen. This, physically increases 

the water uptake in the cornea and considering the dramatic increase in protein levels 

during wound healing, as proteoglycans are highly hydrophilic water uptake in the tissue 

increases also. Biglycan molecules exist in between the collagen fibrils and when they are 

hyper-hydrated they increase the collagen interfibrillar spacing inducing swelling effects. 

However, in the current study fibrillar spacing was increased not only at areas proximal 

to the wound but throughout the whole cornea, implying a disruption of the function of 

the endothelial barrier. Nevertheless, it needs to be considered that water uptake in the 

cornea is also increased during the wound healing process, as the energy requirements of 

the tissue increase.

All the above events take place in the injured cornea regardless of the type of injury. 

However, it has been reported that the function of the endothelium is compromised after 

severe injury (Edelhauser 2000). Kim et al. (1997) proposed that during ablation it is 

crucial to leave a residual stromal thickness of 200pm above the corneal endothelium that 

should not be ablated to protect the corneal endothelial structure and barrier function. 

According to Edelhauser (2000) LASIK doesn’t affect the endothelial architecture as the 

flap is normally 160pm thick and the flap bed is thicker than 200pm. In the same study 

laser ablation was also performed in corneas that caused a deeper, more severe type of 

injury that left less than 200pm of residual stroma above the endothelium. In this case it 

was observed a loss of the hexagonal morphology in cells and the endothelial barrier 

function was also compromised. Therefore, in the present study, swelling was not as 

extensive in LASIK-like incisions, as the function of the endothelium was not seriously 

affected by the injury. In trephine wounds swelling was extensive, indicating that the 

severity of the injury had impaired the function of the endothelial barrier.

In scar tissue, fibrils in newly deposited collagen are thicker than normal (Connon 

2004) and that is the reason that fibrillar diameters were found to increase in the wound 

area or the incision site in the injured corneas in the present work. In trephine wounded 

corneas, fibril diameter was also affected in an area of about 1mm around the wound

120



(Chapter 5). This could be explained by the results in Chapter 3, where histology revealed 

that the stromal area under normal epithelium proximal to the trephine wound was also 

affected by the cut. In addition, cytokines by the injured epithelium affect a stromal area 

under non-affected epithelium, close to the wounded area. In LASIK-like corneas, 

fibrillar diameter increased only around and at the incision site, finding that it is 

consistent with the findings from immunohistochemistry. Additionally, histology/cell 

counts revealed a decrease in the flap bed in LASIK-like injured corneas, an observation 

that it is consistent to previous studies (Ivarsen 2004). a-smooth muscle actin was 

positive in a stromal area close to the incision site only, indicating the existence of active 

myofibroblasts in this area only. There were no signs of myofibroblast expression 

anywhere in the flap bed. Therefore, it was concluded that cytokines released by the 

epithelium play a crucial role in the initiation of the stromal wound healing response. 

Subsequently, it was assumed that in the case of LASIK-like incisions the cytokines 

released by the epithelium could only reach a stromal area at the incision site, where the 

adjacent epithelium was being injured.

In the current study an attempt was made to improve the wound healing response in 

the cornea (Chapter 4). In the past the effects of UV radiation has been applied to cause 

collagen cross linking in the corneal stroma and therefore improve the wound healing 

response (Nagy et al. 1997). However, in this project it was already obvious that 

epithelial cytokines could not physically reach stromal areas further inside the flap. 

Therefore, a series of different cytokines (i.e. TNF-a, IL-la, FasL and TGF-pl) were 

tested in LASIK-like injured corneas and their effect on transparency, myofibroblast 

proliferation and tissue mechanical strength was monitored for up to four weeks in 

culture. It was observed that there might be a possible correlation between the extent of 

transparency, hence myofibroblast expression, and the extent of flap adherence. 

However, it was obvious that the stronger the effect of the cytokine in flap adherence the 

more the clarity of the corneas was compromised. This is mainly to the fact that the more 

severe the wound healing response becomes under the effects of cytokines, the more 

swelling occurs to the tissue. In addition, myofibroblast cell numbers were also noted to 

increase in all cytokine treated corneas. Corneal crystallins are expressed in lower levels 

in myofibroblasts during wound repair, and this is reported to be associated with a loss of
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cell transparency (Stramer and Fini 2004, Jester et al. 1999). These findings imply that 

further investigation is needed in order to find an optimum relationship between using the 

appropriate quantity and type of cytokine to secure the flap, but still maintain the clarity 

of the cornea.

7.1 Future work

The x-ray diffraction technique in general averages out the parameters it is 

measuring throughout the depth of the area that it is scanned. Considering that the 

changes in the interfibrillar spacing were very weak for the LASIK-like corneas it would 

be worth, in the future, to take slices of injured corneas from certain depths of the tissue 

and scan them separately. Additionally, it would be very interesting to scan separately the 

upper flap and the flap bed in order to see in which part fibrillar diameter and 

interfibrillar spacing changes more severely.

In the current study wide angle x-ray diffraction experiments revealed remarkable 

collagen orientation patterns in wounded corneas. This is an observation made for the 

first time and it is important in providing us with information about the structure and the 

stability of the tissue during wound healing. However, the factors that cause the change in 

collagen orientation are still unknown. Multi-photon confocal microscopy utilising 

second harmonic imaging is a new technique that allows individual collagen fibrils or 

bundles of fibrils to be visualised. It would be useful to use this method to see the 

direction of fibrils in specific points in the tissue and therefore discover the factors that 

affect collagen orientation during wound healing.

The series of experiments that tested the effect of various growth factors in the 

cornea proved that there is a correlation between the type/quantity of growth factors and 

their influence on the effectiveness of the wound healing response and the maintenance 

of the transparency of the tissue. So far it was shown that growth factors improve the 

healing of the tissue, but in all cases the transparency was compromised. Therefore, a 

series of weaker growth factor solutions should be used in order to see if the clarity of the 

cornea can be retained.
Corneal transparency is compromised during wound healing. One of the basics of 

corneal transparency is collagen-proteoglycan interactions. Therefore, in order to gain a
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better understanding of corneal wound healing, it is needed to gain a better insight in 

tissue ultrastructure and specifically collagen-proteoglycan interactions. Theoretical 

techniques and specifically molecular modelling can be a valuable tool in the prediction 

of interactions between molecules of the extracellular matrix. However, to date, 

processing power is insufficient to be able to simulate a whole collagen fibril. In the 

future, with the development of technology, this might be an achievable task that could 

save scientists a lot of time and effort in performing long laboratory based experiments.
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APPENDICES



Appendix 1 - Nomenclature

Symbol used for abbreviation

ctSMA

Ab

ASCRS

ATP

BSA

CK

D

DAB

ddH20

Dp

ECM

EGF

EM

FACIT

FasL

d

FITC

GAG

Gly

H&E

HGF

hrs

I

IF

IgA

IgG

IL

IVCM

KGF

Original Term

a-Smooth Muscle Actin 

Antibody 

American Society of Cataract and 

Refractive Surgery 

Adenosine Triphosphate 

Bovine Serum Albumin 

Cytokeratin 

Collagen periodicity 

Deaminobenzidine 

Double distilled Water 

Diopter 

Extracellular matrix 

Epidermal Growth Factor 

Electron Microscopy 

Fibril Associated Collagens with 

Interrupted Triple helices 

Fas Ligandx 

Collagen fibril diameter 

Fluorescein Isothiocyanate 

Glycosaminoglycan 

Glycine 

Haematoxylin and Eosin 

Hepatocyte Growth Factor 

Hours 

X-ray scatter intensity 

Intermediate Filament 

Immunoglobulin A 

Immunoglobulin 

Interleukin 

In vitro Confocal Microscopy 

Keratocyte Growth Factor
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kV Kilovolt

LASEK Laser Epithelial Keratomileusis

LASIK Laser in situ Keratomileusis

MD Molecular Dynamics

mg Milligram

min Minutes

MM Molecular Mechanics

MMP Matrix Metalloproteinase

N Newton

NBF Neutral Buffer Formalin

nm Nanometre

0/N Overnight

°C Degrees centigrade

PBS Phosphate Buffer Saline

PDGF Platelet-Derived Growth Factor

PFA Paraformaldehyde

PG Proteoglycan

PGF Prostaglandin F

PMN Polymorphonuclear

PRK

R

Photoreffactive Keratectomy 

Radial position/distance from the centre 

of an x-ray scattempattem

RK Radial Keratotomy

RMSD Root Mean Square Deviation

RT Room Temperature

SAXS Small Angle X-ray Scattering

SLRP Small Leucine Rich Proteins

TAC Transient Amplified Cell

TDC Terminally Differentiated Cell

TEM Transmission Electron Microscopy

TGF Transforming Growth Factor

Ua Uranil Acetate

WAXS Wide Angle X-ray Scattering
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X-Ray Diffraction 

Microliter 

Micrometer



Appendix 2- List of materials

Material Supplier

0.2 pm filters Fisher

Acetone BDH

Alexa Fluor® 488 Goat anti-mouse IgG 

(H+L) 2° Ab 

Anti a-smooth muscle actin

Molecular Probes 

Sigma

Anti-Cytokeratin 3 ICN

Anti-PAN Cytokeratin DAKO

Anti-Vimentin Sigma

Betadine AAH

Bovine Serum Albumin Sigma

Calcium Chloride BDH

Chloroform BDH

DAB Sigma

Disodium Hydrogen Orthophosphate Gibco

Eagle’s Minimal Essential Medium Gibco

Eosin BDH

Ethanol BDH

Forceps Fisher

Formaldehyde BDH

Formalin BDH

Fungizone Gibco

Goat anti-mouse IgG Biotinylated 2° Ab DAKO

Goat Serum Sigma

Haematoxylin BDH

HC1 Sigma

Human recombinant FasL R&D Systems

Human recombinant TGF-pl R&D Systems

Human recombinant IL-la R&D Systems

Human recombinant TNF-a R&D Systems

Hydrogen Peroxide Sigma

Hydromount BDH
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Methanol BDH

Microtome Disposable Blade Lamb

Paraffin Wax Lamb

Potassium Chloride BDH

Potassium Orthophosphate BDH

Proteinase K Qiagen

Resin Kit Agar

Scalpel blades Fisher

Sodium Chloride BDH

SuperFrost Plus Slides BDH

Tissue-Tek OCT compound Agar

Triton X-100 Sigma

Trypsin Sigma

Xylene BDH



Appendix 3 - Solution preparation 

Solutions for the organ culture 

Agar/Gelatin

2 g Agar 

2 g Gelatin 

200 ml ddH20  

Autoclave

Place agar, gelatine and ddH20  quantities into a 300ml bottle and autoclave at 120°C 

for 20mins.

Agar/Gelatin Support

200 ml Agar/Gelatin 

20 ml lOxMEM

10 ml 7.4% sodium bicarbonate 

2 ml Antibiotics 

1 ml Fungazone

Heat agar/gelatin mixture using the microwave in low power. Filter (0.2 pm) the rest 

of the solutions into the agar gelatin solution and mix.

Trowells T8 Medium

500 ml Trowels T8 

5 ml Antibiotics 

5 ml Fungizone

Filter (0.2 pm) the antibiotics and the fungizone into the Trowells T8 bottle.

7.4% Sodium Bicarbonate

22.2 g Sodium Bicarbonate 

300 ml ddH20

Mix until dissolved at RT.
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25% (v/v) Betadine Solution

100 ml Betadine 

400 ml ddH20

Mix and shake well before use.

Buffers and Solutions for Immunohistochemistrv 

PBS (IX)

40 g NaCl 

l gKCl

5.75 g Na2HP04 

1 g KH2P04 

5 1 distilled H20

10% NBF

60 ml Na2HP04 

40 ml KH2P04 

900 ml dd H20

Take 900 ml of the above mixture and add 100 ml formaldehyde.

9 g NaCl 

Adjust pH to 6.8

Trypsin Buffer (0.1 mg/ ml)

0.675 g TRIS

80 ml ddH20

0.1 g CaCl2.2H20

Adjust Ph to 7.8 with IN HC1

Bring up to volume (100ml) with ddH20

10 mg of Trypsin

0.6% H20 2

0.4 ml 30% H20 2 

19.6 ml Methanol
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3% H20 2

2 ml 30% H20 2

18 ml ddH20

Buffers and solutions for cytokine treated corneas

PBS, 0.1% BSA

0.05g BSA

50ml PBS

Mix and filter through a 45 pm filter

4mM HCL, 0.1% BSA

0.05g BSA

50ml 4mM HC1

Mix and filter through a 45 pm filter

Human recombinant TNF-a

100pg/ml-> lOOpg of protein in 1ml PBS, 0.1% BSA stock solution 1 

100ng/ml-> lpl of stock solution 1 in 1ml PBS, 0.1%BSA solution A 

50ng/ml-> 500pl solution A in 500|nl PBS, 0.1%BSA 

10ng/ml-> lOpl solution A in 90pl PBS, 0.1%BSA 

0.1ng/ml-> lpl solution A in 1ml PBS, 0.1%BSA

Human recombinant IL-la

2pg/ml-> 2pg of protein in 1ml PBS, 0.1% BSA stock solution 2 

100ng/ml-> 5 pi of stock solution 2 in 95 pi PBS, 0.1%BSA solution B 

50ng/ml-> 30pl solution B in 30pl PBS, 0.1%BSA 

10ng/ml-> lOpl solution B in 90pl PBS, 0.1%BSA 

0.1ng/ml-> lpl solution B in 1ml PBS, 0.1%BSA

Human recombinant FasL

10pg/ml-> 5 pg of protein in 500pl PBS, 0.1% BSA stock solution 3 

100ng/ml-> lOpl of stock solution 3 in 1ml PBS, 0.1%BSA solution C 

50ng/ml-> lOOpl solution B in lOOpl PBS, 0.1%BSA 

10ng/ml-> lOpl solution B in 90pl PBS, 0.1%BSA 

0.1ng/ml-> lp l solution B in 1ml PBS, 0.1%BSA

132



Human recombinant TGF-pi

ljig/ml-> 1 pg of protein in 1ml HC1, 0.1% BSA stock solution 4 

100ng/ml-> lOOpl of stock solution 4 in 900pl HC1, 0.1%BSA solution D 

50ng/mI-> lOOpl solution B in lOOpl HC1, 0.1%BSA 

10ng/ml-> lOpl solution B in 90pl HC1, 0.1%BSA 

0.1ng/ml-> lpl solution B in 1ml HC1, 0.1%BSA

Buffers and solutions for TEM 

4% PFA

8 gPFA

100 ml IX PBS

Stir and heat for 1 hr

Add NaOH drop wise until the solution becomes clear.

Filter through a 0.5 pm filter.

Adjust pH to 7.4

Freeze aliquots for further use.

Before use, defrost aliquot and dilute it with equal volume of IX PBS.

Cuprolinic Blue stain

1.05 g MgCb in 20 ml ddH20

0.1025 g Sodium Acetate in 20 ml ddH20

Mix the above solutions

3 ml Glutamine

7 ml ddH20

Take 20 ml of the above buffer and add 0.01 g Cuprolinic Blue.
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Appendix 4: Raw data and statistics for stromal cells and myofibroblast cell 

counts

Stromal cells

Cornea
Number

Number of keratocytes in 
control cornea

Cornea
Number

Number of keratocytes in control 
cornea

0 hrs
Limbus

(1)
Equidistant

(2)

Mid
Cornea

(3) 2 weeks
Limbus

(1)
Equidistant

(2)

Mid
Cornea

_ (3)
1 12 21 23 1 13 21 23
2 17 21 18 2 17 21 18
3 16 15 16 3 16 15 16

24 hrs 3 weeks
1 15 15 19 1 15 15 19
2 24 17 16 2 24 17 16
3 9 12 16 3 9 12 16

72 hrs 4 weeks
1 22 16 16 1 22 16 16
2 15 15 20 2 15 15 20
3 20 13 17 3 20 13 17

7 days
1 13 8 11
2 10 7 8
3 18 14 11

Table 1: Raw data for stromal cell counts in control corneas
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Cornea Incision Site (1) Equidistant (2) Flap Edge (3)
Ohrs Above Below Above Below Above Below

1 6 22 7 6 8 18
2 13 10 12 11 12 18
3 12 10 17 12 16 13

p value 1 0.155 0.827 0.1 17
p value2 0.155 0.827 1.117 0.027 0.088 0.374

24hrs Above Below Above Below Above Below
1 34 38 26 20 13 9
2 19 16 22 14 26 26
3 14 14 20 29 21 14

p value 1 0.027 O.C188 0.3 74
p value2 0.442 0.240 0.703 0.198 0.486 0.903

72hrs Above Below Above Below Above Below
1 20 15 14 16 21 21
2 17 11 11 13 16 16
3 6 17 9 14 8 14

p value 1 0.5 O.C147 0.211
p value2 0.380 0.162 0.121 0.802 0.539 0.795
lweek Above Below Above Below Above Below

1 8 11 8 13 9 10
2 12 14 12 11 17 18
3 16 20 11 11 11 14

p value 1 0.4^12 0.41-93 O.C)25
p value2 0.638 0.725 0.025 0.431 0.421 0.187
2 weeks Above Below Above Below Above Below

1 22 18 11 13 16 13
2 13 17 6 8 11 6
3 12 11 15 12 11 16

p value 1 0.45 0.43 0.3

00

p value2 1.00 0.927 0.064 0.034 0.076 0.113
3 weeks Above Below Above Below Above Below

1 12 12 10 12 11 10
2 10 8 11 11 8 8
3 13 14 12 11 9 11

p value 1 0.371 0.371 0.371
p value2 0.385 0.377 0.079 0.089 0.05 0.05
4 weeks Above Below Above Below Above Below

1 13 26 8 8 8 8
2 15 22 6 9 7 6
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3 11 | 28 7 I 8 6 1 9
p value 1 0.026 0.135 0.317
p value2 0.065 | 0.081 0.003 | 0.002 0.001 | 0.003

Table 2: Raw data and student’s t-test results comparing the number of cells at

specific sites in the stroma above and below the incision in LASIK-like wounded 

corneas, p value 1 comparison between cell numbers above and above the incision

in the same cornea, p value2-> against controls

Days in 
culture

Incision site 
No of cells No of cells 
above/mm2 below/mm2

Corneal periphery control 
(No of cells /mm2)

0 500.00 700.00 750.00
1 1100.00 1150.00 800.00
3 700.00 700.00 950.00
7 600.00 750.00 700.00
14 800.00 750.00 750.00
21 600.00 550.00 800.00
28 650.00 1250.00 950.00

Days in 
culture

Equidistance 
No of cells No of cells Equidistance control (No of 

cells/mm2)above/mm below/mm
0 600.00 500.00 950.00
1 1150.00 1050.00 750.00
3 550.00 700.00 750.00
7 500.00 600.00 500.00
14 550.00 550.00 950.00
21 550.00 550.00 750.00
28 350.00 400.00 750.00

Days in Flap edge Mid Cornea control (No ofculture No of cells No of cells cells/mm2)above/mm2 below/mm2
0 600.00 800.00 950.00
1 1000.00 800.00 850.00
3 750.00 850.00 900.00
7 600.00 700.00 500.00
14 650.00 600.00 950.00
21 450.00 500.00 850.00
28 350.00 400.00 900.00

Table 3: Total cell counts/mm for stromal cells from different areas along the
LASIK-like flap.
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Myofibroblasts

Timepoint (weeks)
aSMA positive 

cells
Total cells %of positive cells

0 0.00 0.00 0.00

0 0.00 0.00 0.00

0 0.00 0.00 0.00

1 8.00 33.00 24.24

1 10.00 36.00 27.78

1 9.00 38.00 23.68

2 14.00 43.00 32.56

2 15.00 45.00 33.33

2 13.00 42.00 30.95

3 28.00 43.00 65.12

3 27.00 48.00 56.25

3 30.00 45.00 66.67

4 24.00 47.00 51.06

4 34.00 50.00 68.00

4 40.00 58.00 68.97

Table 4: Raw data for myofibroblast cell counts

Test Statistics?’6

PERCENT
Chi-Square
df
Asymp. Sig.

9.462
3

.024

Test Statistics?

PERCENT
N 12
Median 42.1986
Chi-Square 12.000®
df 3
Asymp. Sig. .007

a. Kruskal Wallis Test
b. Grouping Variable: TIMEPOIN

Figure 1: Results for Kruskal 
Wallis test for myofibroblast cell 
counts

a- 8 cells (100.0%) have expected frequencies less 
than 5. The minimum expected cell frequency is 1.5.

b. Grouping Variable: TIMEPOIN

Figure 2: Results for median test for 

myofibroblast cell counts
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Appendix §: Raw data and statistics for the effect of growth factors in LASIK- 

like injured corneas 

Mechanical strength

Control samples

Time in 

culture 

(weeks)

Force

(10_1N)

0 0.35

0 0.60

0 0.40

1 0.37

1 0.42

1 0.33

2 0.39

2 0.50

2 0.44

3 0.41

3 0.55

3 0.57

4 0.49

4 0.61

4 0.55

Table 5: Raw data for force required to detach the flap in a control/non cytokine

treated LASIK-like corneas.
Test Statistics^

Test Statistic^’1*

LSK
Chi-Square 5.952
df 4
Asymp. Sig. .203

LSK
N 15
Median .4400
Chi-Square 6.964a
df 4
Asymp. Sig. .138

a - Kruskal Wallis Test a. 10 cells (100.0%) have expected frequencies less
b. Grouping Variable: TIME ,han * 'The minimum expected cell frequency is 1.4

b- Grouping Variable: TIME

Figure 3: Kruskal Wallis statistical test Figure 4: Median statistical test results
results
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TNF-a treated corneas

Force (10'*N)

Time in 

Culture weeks
0.1ng/ml lOng/ml 50ng/ml lOOng/ml

0 0.35 0.35 0.35 0.35

0 0.60 0.60 0.60 0.60

0 0.51 0.51 0.51 0.51

1 0.65 0.85 0.91 0.75

1 0.70 0.90 0.95 0.81

1 0.72 0.88 0.97 0.86

2 0.78 0.92 0.98 0.80

2 0.73 0.95 0.93 0.86

2 0.76 0.96 0.99 0.88

3 0.77 0.91 0.97 0.93

3 0.85 0.99 0.98 0.95

3 0.89 1.00 0.99 0.96

4 0.62 0.99 1.01 0.91

4 0.83 0.97 1.13 0.99

4 0.71 1.04 1.20 1.12

Table 6: Raw data for force required to detach the flap in a TNF-a treated LASIK-

like corneas.
Test Statistic^’1*

C0.1 C10 C50 C100
Chi-Square 10.900 11.930 11.972 12.380
df 4 4 4 4
Asymp. Sig. .028 .018 .018 .015

a Kruskal Wallis Test
b. Grouping Variable: TIME

Fiaiirp! Si K niskal W allis  statistical test results
Test Statistic^

C0.1 C10 C50 C100
N 15 15 15 15
Median .7200 .9200 .9700 .8600
Chi-Square 12.3218 9.643a 9.643a 12.321a
df 4 4 4 4
Asymp. Sig. .015 .047 .047 .015

a- 10 cells (100.0%) have expected frequencies less than 5. The minimum 
expected cell frequency is 1.4.

b. Grouping Variable: TIME

Figure 6: Kruskal Wallis statistical test results
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IL-la treated corneas

Force (10‘N)

Time in 

Culture weeks
0.1ng/ml lOng/ml 50ng/ml lOOng/ml

0 0.35 0.35 0.35 0.35

0 0.60 0.60 0.60 0.60

0 0.51 0.51 0.51 0.51

1 0.61 0.61 0.81 0.66

1 0.75 0.95 0.88 1.00

1 0.66 0.64 0.86 0.80

2 0.66 0.75 0.90 1.01

2 0.78 0.70 0.90 0.99

2 0.72 0.77 0.92 1.03

3 0.70 0.82 0.78 1.07

3 0.85 0.90 1.05 1.10

3 0.80 0.88 0.93 1.05

4 0.90 0.78 1.15 1.15

4 0.75 1.01 0.99 1.00

4 0.97 0.92 1.06 1.00

Table 7: Raw data for force required to detach the flap in an IL-la treated LASIK-

like corneas. 
Test Statistics?’1*

C0.1 C10 C50 C100
Chi-Square 10.429 9.733 11.253 11.012
df 4 4 4 4
Asymp. Sig. .034 .045 .024 .026

a. Kruskal Wallis Test

b- Grouping Variable: TIME 
Figure 3: Kruskal Wallis statistical test results

Test Statistics c

C0.1 C10 C50 C100
N 15 15 15 15
Median .7200 .7700 .9000 1.0000
Chi-Square 6.964a 12.321s 9.444b 9.444b
df 4 4 4 4
Asymp. Sig. .138 .015 .051 .051

a. 10 cells (100.0%) have expected frequencies less than 
5. The minimum expected cell frequency is 1.4.

b. 10 cells (100.0%) have expected frequencies less than 
5. The minimum expected cell frequency is 1.2.

Figure 8: Median statistical test results
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FasL treated corneas

Force (10'N)

Time in 

Culture weeks
O.lng/ml 10ng/ml 50ng/ml lOOng/ml

0 0.35 0.35 0.35 0.35

0 0.60 0.60 0.60 0.60

0 0.51 0.51 0.51 0.51

1 0.66 0.67 0.90 0.63

1 0.78 0.77 0.79 0.76

1 0.70 0.75 0.83 0.80

2 0.67 0.76 0.95 0.80

2 0.76 0.62 0.99 0.71

2 0.71 0.68 1.00 0.75

3 0.80 0.80 0.98 0.90

3 0.61 0.61 1.06 0.99

3 0.61 0.75 1.02 1.00

4 0.70 0.75 1.00 1.05

4 0.81 0.66 0.99 0.90

4 0.83 0.78 1.07 1.10

Table 8: Raw cata for force required to detach the flap in a FasL treated LASIK-like

corneas. 
Test Statistics8’6

C0.1 C10 C50 C100
Chi-Square 8.113 7.084 11.474 12.327
df 4 4 4 4
Asymp. Sig. .088 .132 .022 .015

a Kruskal Wallis Test
b. Grouping Variable: TIME

Figure 9: Kruskal Wallis statistical test results
Test Statistics?

C0.1 C10 C50 C100
N 14 15 15 15
Median .7000 .6800 .9800 .8000
Chi-Square 3.792* 4.286b 9.643b 15.000c
df 4 4 4 4
Asymp. Sig. .435 .369 .047 .005

a- 10 cells (100.0%) have expected frequencies less than 5. The minimum 
expected cell frequency is .9.

b. 10 cells (100.0%) have expected frequencies less than 5. The minimum 
expected cell frequency is 1.4.

c. 10 cells (100.0%) have expected frequencies less than 5. The minimum 
expected cell frequency is 1.2.

d. Grouping Variable: TIME
Figure 10: Median statistical test results
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TGF-Bi treated corneas

Force (10 'N)

Time in 

Culture weeks
0.1ng/ml lOng/ml 50ng/ml lOOng/ml

0 0.35 0.35 0.35 N/A

0 0.60 0.60 0.60 N/A

0 0.51 0.51 0.51 N/A

1 0.77 0.69 1.42 N/A

1 0.66 0.80 1.17 N/A

1 0.70 0.75 1.55 N/A

2 0.76 0.89 1.38 N/A

2 0.61 0.91 1.21 N/A

2 0.65 0.90 1.60 N/A

3 0.80 1.20 N/A N/A

3 0.77 1.21 N/A N/A

3 0.75 1.25 N/A N/A

4 0.71 1.29 N/A N/A

4 0.90 1.35 N/A N/A

4 0.91 1.50 N/A N/A

Table 9: Raw data for force required to detach the flap in a TGF-pi treated LASIK-

like corneas.
Test Statistics8,5

C0.1 C10 C50
Chi-Square 10.160 13.500 5.422
df 4 4 2
Asymp. Sig. .038 .009 .066

a- Kruskal Wallis Test
b. Grouping Variable: TIME 

Figure 11: Kruskal Wallis statistical test results

Test Statistics c

C0.1 C10 C50
N 15 15 9
Median .7100 .9000 1.2100
Chi-Square 6.964a 12.321s 3.600b
df 4 4 2
Asymp. Sig. .138 .015 .165

3- 10 cells (100.0%) have expected frequencies less than 
5. The minimum expected cell frequency is 1.4.

b. 6 cells (.0%) have expected frequencies less than 5. The 
minimum expected cell frequency is 1.3.

c. Grouping Variable: TIME

Figure 12: Median statistical test results



Cell counts

Control samples

-> Please refer to Appendix 4-Myofibroblast cell counts



TNF-a treated corneas

Myofibroblast population

Time in 

Culture 

weeks

O.lng/ml lOng/ml 50ng/ml lOOng/ml

+ T % + T % + T % + T %

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 28 73 38 30 77 39 41 80 51 25 78 32

1 40 74 54 38 76 50 50 83 60 35 81 43

1 30 71 42 39 80 49 36 65 55 27 75 36

2 45 80 56 42 81 52 43 83 52 43 82 52

2 40 77 52 46 83 55 29 72 40 49 90 54

2 43 82 52 36 82 44 50 73 68 49 96 51

3 50 88 57 38 79 48 53 91 58 56 98 57

3 56 93 60 55 86 64 56 93 60 58 99 59

3 53 95 56 42 73 58 52 89 58 53 94 56

4 60 93 65 45 70 64 60 110 55 75 120 63

4 66 93 71 39 89 44 54 106 51 79 118 67

4 69 98 70 48 75 64 59 99 60 77 120 64

Table 0: Raw data for c langes in myofibroblast population in TNF-a treatec

LASIK-like corneas (+-> positivevely stained cells for aSMA, T t o t a l  cell counts, 

% -> % of myofibroblasts put of total cell population).

Test Statistics?’13

C0.1 C10 C50 C100
Chi-Square 12.791 8.494 7.621 13.597
df 4 4 4 4
Asymp. Sig. .012 .075 .106 .009

a. Kruskal Wallis Test
b. Grouping Variable: TIMEPOIN

Figure 13: Kruskal Wallis statistical test results
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Test Statistics^

C0.1 C10 C50 C100
N 15 15 15 15
Median 54.0541 48.7500 54.5455 52.4390
Chi-Square 12.321® 4.286® 6.964® 12.321®
df 4 4 4 4
Asymp. Sig. .015 .369 .138 .015

a- 10 cells (100.0%) have expected frequencies less than 
5. The minimum expected cell frequency is 1.4.

b. Grouping Variable: TIMEPOIN

Figure 14: Median statistical test results 
IL-la treated corneas

Myofibroblast population

Time in 

Culture 

weeks

O.lng/ml lOng/ml 50ng/ml lOOng/ml

+ T % + T % + T % + T %

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 21 50 42 21 82 26 42 55 76 54 92 59

1 15 24 63 25 69 36 35 45 78 61 102 60

1 25 38 66 11 45 24 48 50 96 42 86 49

2 29 58 50 32 65 49 50 75 67 66 110 60

2 35 56 63 36 70 51 51 80 64 68 115 59

2 36 60 60 35 69 51 59 87 68 75 109 69

3 40 75 53 50 80 63 65 90 72 80 116 69

3 45 77 58 55 83 66 70 93 75 76 106 72

3 52 76 68 57 81 70 69 89 78 90 118 76

4 60 80 75 78 90 87 80 110 73 89 123 72

4 63 75 84 66 96 69 92 109 84 96 125 77

4 72 90 80 85 100 85 78 96 81 85 130 65

Table 11: Raw data for changes in myofibroblast population in TNF-a treated 

LASIK-like corneas (+-> positivevely stained cells for aSMA, T->total cell counts, 

% -> % of myofibroblasts put of total cell population).
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Test Statistics?’15

C0.1 C10 C50 C100
Chi-Square 10.956 13.329 11.818 12.187
df 4 4 4 4
Asymp. Sig. .027 .010 .019 .016

a. Kruskal Wallis Test
b. Grouping Variable: TIMEPOIN

Figure 15: Kruskal Wallis statistical test results

Test Statistics^

C0.1 C10 C50 C100
N 15 15 15 15
Median 60.0000 50.7246 72.7273 60.0000
Chi-Square 6.964a 12.3213 9.643a 12.3213
df 4 4 4 4
Asymp. Sig. .138 .015 .047 .015

a- 10 cells (100.0%) have expected frequencies less than 
5. The minimum expected cell frequency is 1.4.

b. Grouping Variable: TIMEPOIN

Figure 16: Median statistical test results



FasL treated corneas

Myofibroblast population

Time in 

Culture 

weeks

O.lng/ml lOng/ml 50ng/ml lOOng/ml

+ T % + T % + T % + T %

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 9 27 33 11 32 34 15 35 43 20 40 50

1 8 30 27 13 38 34 16 33 48 18 41 44

1 11 29 38 16 35 46 18 31 58 27 42 64

2 12 35 34 15 35 43 21 42 50 25 52 48

2 15 40 38 13 39 33 29 38 76 27 53 51

2 11 38 29 18 40 45 25 36 69 28 59 47

3 14 45 31 20 38 53 30 50 60 29 75 39

3 15 48 31 23 42 55 32 55 58 26 63 41

3 12 45 27 19 41 46 34 58 59 30 69 43

4 16 53 30 18 46 39 39 65 60 50 80 63

4 18 60 30 20 55 36 40 69 58 55 81 68

4 20 58 34 25 53 47 45 71 63 61 79 77

Table 12: Raw data for changes in myofibroblast population in TNF-a treatec 

LASIK-like corneas (+-> positivevely stained cells for aSMA, T->total cell counts, 

% -> % of myofibroblasts put of total cell population).

Test Statistics?'b

C0.1 C10 C50 C100
Chi-Square 7.509 10.643 9.964 12.523
df 4 4 4 4
Asymp. Sig. .111 .031 .041 .014

a- Kruskal Wallis Test 
b. Grouping Variable: TIMEPOIN

Figure 17: Kruskal Wallis statistical test results
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Test Statistics^

C0.1 C10 C50 C100
N 15 15 15 15
Median 30.1887 39.1304 58.0645 47.4576
Chi-Square 4.286a 6.964a 9.643a 9.643a
df 4 4 4 4
Asymp. Sig. .369 .138 .047 .047

a. 10 cells (100.0%) have expected frequencies less than 
5. The minimum expected cell frequency is 1.4.

b. Grouping Variable: TIMEPOIN 

Figure 18: Median statistical test results



Appendix 6: Raw data and statistics for x-ray diffraction experiments

Trephine wounded corneas 

Controls

Independent Samples Test
Levene's Test for 

Equality of Variances t-test for Equality of Means

F Sig. t df Sig. (2-tailed)
Mean

Difference
Std. Error 
Difference

95% Confidence 
Interval of the 

Difference
Lower Upper

C2WKSIFS Equal variances 
assumed 
Equal variances 
not assumed

16.000 .016 -1.000

-1.000

4

2.000

.374

.423

-.3333

-.3333

.33333

.33333

-1.25882

-1.76755

.59215

1.10088

A
Independent Samples Test

Levene's Test for 
Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

C1WKIFS Equal variances 
assumed 16.000 .016 1.000 4 .374 .0600 .06000 -.10659 .22659

Equal variances 
not assumed 1.000 2.000 .423 .0600 .06000 -.19816 .31816

B

Figure 19: Independent sample t-test comparing IFS in control corneas. Ohrs and
1 weeks (A) and Ohrs and 2weeks (B)
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Ohrs

Position of 

scan

Control

Fd

Trephine 

wounded Fd

Control

IFS

Trephine 

wounded Fd

-9.00 36.98 36.22 67.58 67.59

-9.00 34.82 36.10 67.59 67.43

-9.00 36.88 35.27 67.56 67.52

-8.00 35.50 36.10 67.42 67.10

-8.00 35.27 35.98 67.20 67.65

-8.00 35.98 35.50 67.30 67.42

-7.00 35.98 36.22 67.43 67.01

-7.00 35.98 35.98 66.87 67.56

-7.00 36.22 35.98 66.44 67.47

-6.00 36.10 36.22 66.22 67.00

-6.00 35.62 35.74 66.70 67.76

-6.00 36.46 36.10 67.00 67.15

-5.00 35.74 35.74 66.75 67.00

-5.00 35.62 35.50 66.60 66.99

-5.00 36.59 36.10 66.21 66.72

-4.00 35.74 36.10 66.97 66.74

-4.00 35.34 35.74 67.04 67.25

-4.00 36.46 36.22 66.01 66.57

-3.00 35.98 35.98 65.67 67.24

-3.00 35.74 35.27 66.52 67.36

-3.00 36.22 35.98 65.65 65.65

-2.00 35.74 35.74 65.82 65.51

-2.00 35.50 35.50 65.59 65.59

-2.00 36.34 36.10 65.22 65.80

-1.00 35.39 35.74 65.65 65.31

-1.00 35.74 35.39 65.81 65.72

-1.00 36.59 35.74 65.02 65.60

0.00 35.86 35.86 65.61 65.30

0.00 35.50 35.16 65.53 65.42
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0.00 36.46 35.86 65.02 65.59

1.00 35.98 35.74 65.66 65.72

1.00 35.74 35.86 65.32 65.59

1.00 36.71 35.62 65.42 65.42

2.00 35.62 38.18 65.89 66.76

2.00 35.50 35.62 66.76 66.05

2.00 36.84 35.62 66.56 66.56

3.00 35.74 35.74 66.55 67.00

3.00 35.74 36.10 66.53 67.10

3.00 36.84 35.50 66.93 66.93

4.00 35.98 35.50 66.88 67.01

4.00 35.74 35.98 66.65 67.05

4.00 36.96 35.74 66.93 66.93

5.00 35.74 35.74 67.10 67.20

5.00 35.50 35.74 66.59 67.26

5.00 36.84 35.86 66.67 66.67

6.00 35.98 35.74 66.78 66.98

6.00 35.86 36.46 66.40 67.21

6.00 36.71 35.98 66.72 66.72

7.00 35.86 35.87 67.10 67.20

7.00 35.50 35.86 66.64 66.78

7.00 36.46 38.18 66.37 66.37

8.00 36.22 35.62 67.10 67.25

8.00 35.39 36.22 67.25 67.54

8.00 36.84 36.62 67.46 67.46

9.00 34.74 35.74 67.15 67.50

9.00 34.70 35.98 67.16 67.87

9.00 36.22 38.20 67.32 67.32

Table 13: Raw data for fibril diameter (Fd) and interfibrillar spacing (IFS) for
trephine wounded corneas and their corresponding controls at Ohrs.
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ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROL Between Groups 3.070 18 .171 .454 .963
Within Groups 14.281 38 .376
Total 17.351 56

TWOHRS Between Groups 5.293 18 .294 .752 .738
Within Groups 14.867 38 .391
Total 20.160 56

Figure 20: One-way ANOVA statistical test results comparing fibril diameter
according to the position of scan

ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROLI Between Groups 23.822 18 1.323 12.302 .000
Within Groups 4.088 38 .108
Total 27.909 56

TREPHINE Between Groups 26.839 18 1.491 13.568 .000
Within Groups 4.176 38 .110
Total 31.015 56

Figure 21: One-way ANOVA statistical test results comparing interfibrillar spacing
according to the position of scan

Independent Samples Test
Levene's Test for 

Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of trie 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

DBRAd&S Equal variances 
assumed 1.329 .252 .024 112 .981 .0026 .10840 -.21216 .21742

Equal variances 
not assumed .024 111.375 .981 .0026 .10840 -.21217 .21743

Figure 22: Independent sample T-test comparing fibril diameter according to type
(i.e. wounded/unwounded)

Independent Samples Test

Levene's Test for 
Eaualitv of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

IFS Equal variances 
assumed .175 .676 -1.754 112 .082 -.2382 .13587 -.50745 .03096

Equal variances 
not assumed -1.754 111.690 .082 -.2382 .13587 -.50746 .03097

Figure 23: Independent sample T-test comparing interfibrillar spacing
according to type (i.e. wounded/unwounded)
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lweek

Position of 

scan

Control

Fd

Trephine 

wounded Fd

Control

IFS

Trephine 

wounded Fd

-9.00 36.65 36.16 67.96 80.00

-9.00 35.47 36.68 67.59 77.38

-9.00 36.14 36.22 67.56 79.23

-8.00 35.98 35.78 67.55 80.00

-8.00 36.89 36.22 67.22 78.83

-8.00 35.65 36.46 67.30 78.94

-7.00 36.90 36.38 66.93 78.00

-7.00 35.45 36.22 67.02 76.66

-7.00 35.98 35.98 66.44 77.38

-6.00 36.64 35.74 67.50 79.00

-6.00 35.62 35.98 67.06 78.92

-6.00 36.14 35.62 67.00 78.67

-5.00 36.46 35.74 67.01 76.76

-5.00 35.98 35.50 66.06 76.10

-5.00 35.74 35.74 66.21 76.24

-4.00 36.22 35.74 66.58 75.75

-4.00 36.22 35.97 67.04 75.05

-4.00 35.14 36.22 67.50 75.00

-3.00 36.59 40.86 66.23 76.67

-3.00 35.74 40.22 66.56 76.65

-3.00 35.27 38.88 66.88 73.49

-2.00 36.22 40.34 65.98 74.24

-2.00 35.50 40.71 66.04 75.54

-2.00 35.16 39.88 66.02 73.49

-1.00 35.50 40.00 65.98 72.19

-1.00 36.00 40.16 66.21 74.23

-1.00 35.27 38.87 66.45 72.19

0.00 35.22 39.00 66.00 74.42

0.00 35.12 37.27 66.67 75.54
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0.00 35.50 38.74 65.20 73.17

1.00 36.39 40.86 66.45 76.01

1.00 35.74 40.22 65.55 75.77

1.00 36.42 39.49 65.35 75.06

2.00 37.00 39.71 65.99 74.22

2.00 35.50 40.44 66.28 74.02

2.00 36.71 39.87 66.21 75.67

3.00 36.14 38.82 67.68 76.56

3.00 36.48 37.74 66.23 75.02

3.00 36.96 40.00 67.03 75.62

4.00 36.46 35.98 66.68 76.77

4.00 35.97 35.74 66.67 75.54

4.00 36.84 35.84 66.24 76.63

5.00 35.98 35.74 66.48 77.75

5.00 35.74 35.68 67.05 78.31

5.00 36.59 35.59 66.98 77.96

6.00 36.16 35.62 66.95 77.00

6.00 35.62 36.46 66.78 77.22

6.00 36.46 35.85 66.73 77.66

7.00 35.85 35.62 67.10 79.00

7.00 35.62 35.97 67.28 79.29

7.00 35.98 36.14 67.20 79.75

8.00 36.46 35.62 68.45 79.34

8.00 35.62 36.22 67.42 80.14

8.00 36.22 36.40 67.53 78.28

9.00 35.85 35.50 66.82 79.36

9.00 35.50 36.10 67.27 72.98

9.00 36.10 36.37 67.93 74.26

Table 14: Raw data for fibril diameter (Fd) and interfibrillar spacing (IFS) for
trephine wounded corneas and their corresponding controls at lweek.
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ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROL Between Groups 5.035 18 .280 1.101 .388
Within Groups 9.656 38 .254
Total 14.692 56

TREPHINE Between Groups 188.741 18 10.486 36.567 .000
Within Groups 10.897 38 .287
Total 199.637 56

Figure 24: One-way ANOVA statistical test results comparing fibril diameter
according to the position of scan

ANOVA
Sum of 

Squares df Mean Square F Sig.
CONTROLI Between Groups 18.567 18 1.031 6.254 .000

Within Groups 6.267 38 .165
Total 24.834 56

TREPHI_A Between Groups 204.434 18 11.357 8.656 .000
Within Groups 49.861 38 1.312
Total 254.295 56

Figure 25: One-way ANOVA statistical test results comparing interfibrillar spacing
according to the position of scan

Independent Samples Test
Levene's Test for 

Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

DBRAGGS Equal variances 
assumed 134.747 .000 -5.020 112 .000 -1.3009 .25912 -1.81430 -.78746

Equal variances 
not assumed -5.020 64.198 .000 -1.3009 .25912 -1.81851 -.78325

Figure 26: Independent sample T-test comparing fibril diameter according to type
(i.e. wounded/unwounded)

Independent Samples Test

Levene's Test for 
Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

IFS Equal variances 
assumed 55.764 .000 -33.155 112 .000 -9.8043 .29571 -10.39023 -9.21840

Equal variances 
not assumed -33.155 66.834 .000 -9.8043 .29571 -10.39459 -9.21404

Figure 27: Independent sample T-test comparing interfibrillar spacing according to
type (i.e. wounded/unwounded)
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2weeks

Position of 

scan

Control

Fd

Trephine 

wounded Fd

Control

IFS

Trephine 

wounded Fd

-9.00 36.22 36.34 67.46 82.00

-9.00 36.10 36.77 67.29 80.95

-9.00 36.03 36.48 67.57 79.67

-8.00 35.55 35.50 67.26 81.02

-8.00 36.10 36.42 67.33 80.00

-8.00 36.28 35.98 67.43 79.66

-7.00 36.28 35.74 67.15 78.96

-7.00 35.75 35.50 67.10 79.00

-7.00 36.22 35.39 67.04 79.86

-6.00 35.66 35.39 67.05 78.28

-6.00 35.62 35.49 67.12 78.34

-6.00 36.10 36.01 67.09 79.86

-5.00 35.75 35.50 67.01 79.24

-5.00 35.49 35.39 67.01 79.66

-5.00 36.22 36.01 66.71 79.86

-4.00 36.10 35.62 67.05 78.26

-4.00 35.78 35.49 67.40 78.39

-4.00 35.98 35.79 67.03 77.96

-3.00 35.84 35.39 67.00 77.24

-3.00 35.68 35.68 67.02 78.03

-3.00 35.74 36.14 67.00 77.96

-2.00 35.86 39.84 66.50 78.29

-2.00 35.50 42.00 66.74 76.25

-2.00 35.86 43.88 67.00 75.27

-1.00 35.49 42.24 66.94 78.24

-1.00 35.86 42.79 67.21 78.00

-1.00 35.98 41.98 66.65 77.96

0.00 35.74 38.29 66.73 78.06

0.00 35.49 38.64 66.57 76.24
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0.00 35.50 40.02 67.00 77.96

1.00 35.74 41.24 66.45 77.96

1.00 35.62 41.35 66.45 77.88

1.00 35.86 42.00 66.85 79.43

2.00 35.49 42.00 67.07 77.96

2.00 35.74 42.42 66.53 78.00

2.00 35.78 42.74 66.91 78.24

3.00 35.86 42.42 66.91 79.42

3.00 35.62 42.71 67.00 78.98

3.00 36.10 41.52 67.01 79.58

4.00 35.98 42.28 66.98 79.27

4.00 35.78 35.04 66.78 77.86

4.00 35.96 34.37 66.78 78.07

5.00 35.86 34.15 67.00 79.86

5.00 35.78 34.59 67.05 79.64

5.00 36.10 35.27 67.03 79.24

6.00 36.00 35.50 66.98 79.00

6.00 35.98 35.38 66.76 78.95

6.00 35.86 35.50 67.01 79.86

7.00 35.78 35.39 67.10 79.96

7.00 35.27 35.27 67.46 79.00

7.00 36.00 35.78 67.55 80.01

8.00 36.01 35.27 67.68 81.86

8.00 35.98 35.42 67.34 79.35

8.00 36.18 35.78 67.45 79.35

9.00 36.20 35.74 67:34 82.00

9.00 36.18 36.14 67;00 79.98

9.00 36.10 36.48 67.00 81.03

Table 15: Raw data for fibril diameter (Fd) and interfibrillar spacing (IFS) for
trephine wounded corneas and their corresponding controls at 2weeks.
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ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROL Between Groups 1.435 18 .080 1.675 .089
Within Groups 1.808 38 .048
Total 3.243 56

TREPHINE Between Groups 450.410 18 25.023 18.075 .000
Within Groups 52.606 38 1.384
Total 503.016 56

Figure 28: One-way ANOVA statistical test results comparing fibril diameter
according to the position of scan

ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROLI Between Groups 3.249 18 .181 5.870 .000
Within Groups 1.169 38 .031
Total 4.418 56

TREPHI_A Between Groups 74.152 18 4.120 6.538 .000
Within Groups 23.943 38 .630
Total 98.094 56

Figure 29: One-way ANOVA statistical test results comparing interfibrillar spacing
according to the position of scan

Independent Samples Test
Levene's Test for 

Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

DBRAGGS Equal variances 
assumed 189.240 .000 -4.342 112 .000 -1.7277 .39787 -2.51605 -.93939

Equal variances 
not assumed -4.342 56.940 .000 -1.7277 .39787 -2.52446 -.93098

Figure 30: Independent sample T-test comparing interfibrillar spacing according to
type (i.e. wounded/unwounded)

Independent Samples Test

Levene's Test for 
Eaualitv of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

IFS Equal variances 
assumed 51.842 .000 -66.695 112 .000 -11.9523 .17921 -12.30736 -11.59720

Equal variances 
not assumed -66.695 61.034 .000 -11.9523 .17921 -12.31062 -11.59394

Figure 31: Independent sample T-test comparing interfibrillar spacing according to
type (i.e. wounded/unwounded)
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LASIK-like injured corneas

Controls

Independent Samples Test
Levene's Test for

Equality of Variances t-test for Eaualitv of Means
95% Confidence

Interval of the
Mean Std. Error Difference

F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
C1WKIFS Equal variances 

assumed 4.119 .112 .391 4 .716 .1667 .42592 -1.01589 1.34922
Equal variances 
not assumed .391 2.196 .730 .1667 .42592 -1.51803 1.85136

C2WKSIFS Equal variances 
assumed 244 .648 .513 4 .635 .1667 .32462 -.73462 1.06795
Equal variances 
not assumed .513 3.513 .638 .1667 .32462 -.78607 1.11940

A
Independent Samples Test

Levene's Test for 
Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

C1WKIFS Equal variances 
assumed 4.119 .112 .391 4 .716 .1667 .42592 -1.01589 1.34922
Equal variances 
not assumed .391 2.196 .730 .1667 .42592 -1.51803 1.85136

C3WKSIFS Equal variances 
assumed 3.479 .136 -.030 4 .977 -.0067 .22010 -.61776 .60443
Equal variances 
not assumed -.030 2.878 .978 -.0067 .22010 -.72420 .71087

B
Independent Samples Test

Levene's Test for 
Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

C1WKIFS Equal variances 
assumed 4.119 .112 .391 4 .716 .1667 .42592 -1.01589 1.34922
Equal variances 
not assumed .391 2.196 .730 .1667 .42592 -1.51803 1.85136

C4WKSIFS Equal variances 
assumed 1.247 .327 -.242 4 .821 -.0633 .26202 -.79082 .66416
Equal variances 
not assumed -.242 3.447 .823 -.0633 .26202 -.83925 .71258

c

Figure 32: Independent sample t-test comparing IFS in control corneas. 1 weeks and 
2weeks (A), lweek and 2weeks (B), lweek and 3 weeks (C)
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lweek

Position of 

scan

Control

Fd

Trephine 

wounded Fd

Control

IFS

Trephine 

wounded Fd

11.00 36.66 36.66 67.97 74.00

11.00 35.48 36.34 67.88 73.89

11.00 36.00 36.57 67.66 73.96

10.00 36.29 35.92 67.55 73.75

10.00 36.54 35.57 67.22 73.89

10.00 35.65 36.16 67.32 73.65

9.00 36.24 36.48 66.93 73.05

9.00 36.33 36.23 66.75 73.25

9.00 35.74 36.00 66.24 73.68

8.00 36.00 35.74 67.50 73.00

8.00 35.57 35.93 67.66 72.92

8.00 36.01 35.57 67.00 73.67

7.00 35.69 35.74 67.01 73.74

7.00 35.98 35.57 66.96 73.01

7.00 35.57 35.74 66.81 73.24

6.00 35.93 35.57 66.75 72.95

6.00 36.00 35.93 67.04 72.24

6.00 35.69 35.34 67.30 72.00

5.00 35.88 35.36 66.23 72.15

5.00 35.69 35.00 66.96 72.24

5.00 35.27 35.88 66.81 72.67

4.00 35.98 35.74 66.00 72.24

4.00 35.93 35.93 66.04 72.55

4.00 35.74 35.74 66.23 72.15

3.00 35.50 35.57 66.00 72.19

3.00 35.74 35.26 66.04 72.24

3.00 35.27 35.00 66.23 72.19

2.00 35.22 35.74 66.00 72.55

2.00 35.23 35.93 66.75 72.24
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2.00 35.57 36.00 66.23 72.19

1.00 35.69 37.69 66.23 72.95

1.00 35.74 37.27 66.75 73.00

1.00 35.98 37.28 66.35 72.88

.00 36.34 37.69 66.00 76.35

.00 35.50 37.72 66.23 75.25

.00 35.21 37.00 66.21 74.61

-1.00 35.24 35.57 66.00 72.15

-1.00 35.57 36.00 66.23 72.02

-1.00 35.93 36.23 67.03 72.55

-2.00 35.74 35.98 66.68 72.19

-2.00 35.97 35.74 66.67 72.24

-2.00 35.83 35.86 66.23 72.74

-3.00 35.93 35.57 66.48 72.74

-3.00 35.74 35.68 66.00 72.24

-3.00 35.65 35.57 66.98 72.95

-4.00 35.24 35.67 66.95 72.68

-4.00 35.57 35.74 66.78 72.94

-4.00 35.69 35.93 66.75 72.64

-5.00 35.85 35.64 67.10 73.00

-5.00 35.64 35.93 67.03 73.65

-5.00 35.93 36.00 66.98 73.25

-6.00 36.00 35.64 68.45 73.68

-6.00 35.98 36.03 67.03 73.89

-6.00 36.04 35.74 67.53 73.96

2.00 35.23 35.93 66.75 72.24

2.00 35.57 36.00 66.23 72.19

1.00 35.69 37.69 66.23 72.95

Table 16: Raw data for fibril diameter (Fd) and interfibrillar spacing (IFS) for
LASIK-like injured corneas and their corresponding controls at lweek.
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ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROL Between Groups 2.488 17 .146 1.643 .103
Within Groups 3.206 36 .089
Total 5.694 53

LSK Between Groups 18.054 17 1.062 18.030 .000
Within Groups 2.121 36 .059
Total 20.175 53

Figure 33: One-way ANOVA statistical test results comparing fibril diameter
according to the position of scan

ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROLI Between Groups 14.258 17 .839 7.795 .000
Within Groups 3.873 36 .108
Total 18.131 53

LSKIFS Between Groups 35.319 17 2.078 18.090 .000
Within Groups 4.135 36 .115
Total 39.454 53

Figure 34: One-way ANOVA statistical test results comparing interfibrillar spacing
according to the position of scan

Independent Samples Test
Levene's Test for 

Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

DBRAGGS Equal variances 
assumed 6.779 .011 -2.141 106 .035 -.2035 .09507 -.39201 -.01503
Equal variances 
not assumed -2.141 80.709 .035 -.2035 .09507 -.39269 -.01435

Figure 35: Independent sample T-test comparing fibril diameter according to type
(i.e. wounded/unwounded)

Independent Samples Test

Levene's Test for 
Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

IFS Equal variances 
assumed 4.457 .037 -44.166 106 .000 -6.2649 .14185 -6.54610 -5.98365

Equal variances 
not assumed -44.166 93.218 .000 -6.2649 .14185 -6.54654 -5.98320

Figure 36: Independent sample T-test comparing interfibrillar spacing according to
type (i.e. wounded/unwounded)
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2weeks

Position of 

scan

Control

Fd

Trephine 

wounded Fd

Control

IFS

Trephine 

wounded Fd

11.00 36.26 36.36 67.98 76.23

11.00 35.37 36.24 67.56 75.89

11.00 36.05 35.92 67.05 76.98

10.00 36.18 36.00 67.35 75.74

10.00 36.43 35.57 67.55 75.89

10.00 35.65 36.06 67.00 76.36

9.00 36.23 35.93 67.23 76.05

9.00 36.33 36.26 67.33 76.23

9.00 35.74 36.00 67.00 75.89

8.00 36.00 35.57 67.00 75.00

8.00 35.57 35.74 67.56 75.95

8.00 36.05 35.45 67.00 75.74

7.00 35.65 36.04 67.00 75.74

7.00 36.05 35.74 66.96 75.01

7.00 35.65 35.57 67.03 75.74

6.00 36.00 35.57 66.75 75.95

6.00 36.00 36.00 67.04 75.24

6.00 35.65 35.93 67.35 75.00

5.00 35.74 35.69 67.23 75.24

5.00 35.65 36.04 67.00 75.24

5.00 35.37 35.74 67.01 75.74

4.00 36.00 35.57 67.00 75.24

4.00 36.00 35.69 67.04 75.78

4.00 35.54 35.45 67.23 75.01

3.00 35.57 35.69 67.00 75.24

3.00 35.74 35.54 67.04 75.89

3.00 35.16 35.57 67.23 75.18

2.00 35.24 35.93 67.00 75.68

2.00 35.37 36.00 66.96 75.24
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2.00 35.67 36.04 67.23 75.18

1.00 35.69 37.00 67.23 75.95

1.00 35.74 37.33 66.75 75.00

1.00 36.00 37.25 67.00 75.89

.00 36.00 37.15 67.00 68.40

.00 35.57 37.25 67.23 69.85

.00 35.24 37.00 67.35 69.12

-1.00 35.24 35.57 67.00 75.47

-1.00 35.57 36.01 67.23 75.68

-1.00 36.00 36.23 67.03 75.89

-2.00 35.74 36.00 66.96 75.24

-2.00 36.00 35.69 66.75 75.89

-2.00 35.74 35.77 67.23 75.24

-3.00 36.00 35.57 67.45 75.78

-3.00 35.74 35.69 67.00 75.24

-3.00 35.74 35.57 66.96 75.95

-4.00 35.24 35.34 66.95 75.68

-4.00 35.57 35.77 66.78 75.89

-4.00 35.57 36.00 67.00 75.68

-5.00 35.74 35.69 67.10 75.00

-5.00 35.57 35.93 67.03 75.64

-5.00 36.00 36.00 67.00 76.00

-6.00 36.00 36.29 67.56 75.68

-6.00 36.05 36.00 67.00 75.89

-6.00 35.74 35.57 67.53 76.00

2.00 36.26 36.36 67.98 76.23

2.00 35.37 36.24 67.56 75.89

1.00 36.05 35.92 67:05 76.98

Table 17: Raw data for fibril diameter (Fd) and interfibrillar spacing (IFS) for
LASIK-like injured corneas and their corresponding controls at 2weeks.
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ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROL Between Groups 2.007 17 .118 1.565 .127
Within Groups 2.716 36 .075
Total 4.723 53

LSK Between Groups 10.985 17 .646 14.482 .000
Within Groups 1.606 36 .045
Total 12.591 53

Figure 37: One-way ANOVA statistical test results comparing fibril diameter
according to the position of scan

ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROLI Between Groups 1.162 17 .068 1.310 .241
Within Groups 1.878 36 .052
Total 3.041 53

LSKIFS Between Groups 124.496 17 7.323 43.704 .000
Within Groups 6.032 36 .168
Total 130.528 53

Figure 38: One-way ANOVA statistical test results comparing interfibrillar spacing
according to the position of scan

Independent Samples Test
Levene's Test for 

Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

DBRAddS Equal variances 
assumed 3.502 .064 -2.659 106 .009 -.2069 .07778 -.36106 -.05265

Equal variances 
not assumed -2.659 87.855 .009 -.2069 .07778 -.36143 -.05228

Figure 39: Independent sample T-test comparing fibril diameter according to type
(i.e. wounded/unwounded)

Independent Samples Test

Levene's Test for 
Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

IFS q̂ual variances 
assumed 9.669 .002 -37.760 106 .000 -8.1574 .21603 -8.58574 -7.72913

Equal variances 
not assumed -37.760 55.468 .000 -8.1574 .21603 -8.59029 -7.72458

Figure 40: Independent sample T-test comparing interfibrillar spacing according to
type (i.e. wounded/unwounded)

165



3weeks

Position of 

scan

Control

Fd

Trephine 

wounded Fd

Control

IFS

Trephine 

wounded Fd

11.00 36.33 36.23 67.56 77.22

11.00 35.57 36.98 67.29 77.02

11.00 36.05 35.88 67.26 77.33

10.00 36.28 35.57 67.57 77.00

10.00 36.33 35.69 67.03 76.98

10.00 35.57 36.00 67.33 76.56

9.00 36.33 36.16 67.05 76.05

9.00 36.33 35.93 67.35 76.23

9.00 35.74 35.74 67.00 76.79

8.00 36.00 36.00 67.05 76.17

8.00 35.57 35.57 67.22 75.95

8.00 36.00 35.74 67.00 76.78

7.00 35.57 36.00 67.05 76.77

7.00 36.00 35.57 67.25 76.00

7.00 35.75 35.69 67.35 76.74

6.00 36.00 35.57 67.05 76.68

6.00 36.06 36.00 67.35 76.24

6.00 35.57 35.93 67.57 76.00

5.00 35.74 35.69 67.00 76.24

5.00 35.65 36.00 67.05 76.74

5.00 35.57 35.75 67.22 76.77

4.00 36.00 35.57 66.74 76.24

4.00 36.05 35.69 66.67 76.78

4.00 35.57 35.48 67.00 76.00

3.00 35.75 35.74 67.00 76.24

3.00 35.74 35.57 67.22 76.89

3.00 35.26 35.69 66.67 76.28

2.00 35.24 35.93 66.73 76.78

2.00 35.57 36.05 66.67 76.24
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2.00 35.75 36.10 67.00 76.78

1.00 35.75 36.98 66.35 76.00

1.00 35.69 37.00 66.45 76.05

1.00 36.00 37.88 66.67 76.29

.00 36.00 37.00 67.00 71.36

.00 35.57 37.35 66.53 69.11

.00 35.29 37.01 67.00 71.37

-1.00 35.26 36.00 67.00 76.47

-1.00 35.57 35.57 67.05 76.69

-1.00 36.00 36.33 67.01 76.89

-2.00 35.75 35.78 67.00 76.89

-2.00 36.00 36.00 67.05 76.24

-2.00 35.75 35.74 66.78 76.33

-3.00 36.00 35.69 67.00 76.24

-3.00 35.75 35.57 67.05 76.74

-3.00 35.57 35.74 67.03 75.95

-4.00 35.29 35.27 66.98 75.68

-4.00 35.57 35.74 66.76 76.89

-4.00 35.93 35.69 67.05 76.00

-5.00 35.74 36.01 67.15 76.30

-5.00 35.57 35.93 67.58 76.64

-5.00 36.00 36.01 67.23 76.00

-6.00 36.05 36.17 67.58 77.00

-6.00 36.23 35.74 66.98 77.24

-6.00 35.75 36.00 67.57 77.35

2.00 36.33 36.23 67.56 77.22

2.00 35.57 36.98 67.29 77.02

1.00 36.05 35.88 67.26 77.33

Table 17: Raw data for fibril diameter (Fd) and interfibrillar spacing (IFS) for
LASIK-like injured corneas and their corresponding controls at 3weeks.
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ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROL Between Groups 1.593 17 .094 1.192 .319
Within Groups 2.831 36 .079
Total 4.424 53

LSK Between Groups 11.690 17 .688 10.281 .000
Within Groups 2.408 36 .067
Total 14.099 53

Figure 41: One-way ANOVA statistical test results comparing fibril diameter
according to the position of scan

ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROLI Between Groups 2.926 17 .172 4.377 .000
Within Groups 1.416 36 .039
Total 4.342 53

LSKIFS Between Groups 103.458 17 6.086 28.963 .000
Within Groups 7.564 36 .210
Total 111.022 53

Figure 42: One-way ANOVA statistical test results comparing interfibrillar spacing
according to the position of scan

Independent Samples Test
Levene's Test for 

Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

DBRAGGS Equal variances 
assumed 3.803 .054 -2.461 106 .015 -.1980 .08045 -.35746 -.03847
Equal variances 
not assumed -2.461 83.280 * .016 -.1980 .08045 -.35796 -.03796

Figure 43: Independent sample T-test comparing fibril diameter according to type
(i.e. wounded/unwounded)

Independent Samples Test

Levene's Test for 
Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

IFS Equal variances 
assumed 8.388 .005 -45.478 106 .000 -9.1307 .20077 -9.52879 -8.73269

Equal variances 
not assumed -45.478 57.139 .000 -9.1307 .20077 -9.53276 -8.72873

Figure 44: Independent sample T-test comparing fibril interfibrillar spacing to type
(i.e. wounded/unwounded)
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4weeks

Position of 

scan

Control

Fd

Trephine 

wounded Fd

Control

IFS

Trephine 

wounded Fd

11.00 36.28 36.33 67.66 78.17

11.00 36.00 36.76 67.24 77.89

11.00 35.57 35.93 67.22 78.00

10.00 36.28 35.69 67.57 77.94

10.00 36.23 35.57 67.03 77.89

10.00 35.57 36.01 67.34 77.76

9.00 35.74 35.93 67.05 77.05

9.00 36.23 36.00 67.35 77.24

9.00 36.06 35.77 67.00 77.68

8.00 35.57 35.77 67.05 77.24

8.00 36.00 36.00 67.22 77.89

8.00 36.06 35.57 67.00 77.76

7.00 35.75 35.69 67.05 77.05

7.00 35.57 35.74 67.25 77.24

7.00 36.00 35.93 67.35 77.68

6.00 35.57 35.57 67.05 77.24

6.00 36.06 36.00 67.35 77.55

6.00 35.75 35.93 67.57 77.05

5.00 35.69 35.69 67.00 77.24

5.00 35.57 36.05 67.05 77.76

5.00 35.74 35.74 67.22 77.68

4.00 36.05 35.57 66.74 77.24

4.00 35.57 35.69 66.67 77.00

4.00 36.00 35.74 67.00 77.68

3.00 35.74 35.57 67.00 77.25

3.00 35.69 35.93 67.22 77.89

3.00 35.16 35.69 66.67 77.24

2.00 35.06 35.93 66.73 77.00

2.00 35.74 36.04 66.67 77.68
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2.00 35.57 36.19 67.00 77.07

1.00 35.69 37.00 66.35 77.00

1.00 35.57 37.76 66.45 77.15

1.00 36.05 38.00 66.67 77.28

.00 35.57 37.66 67.00 68.40

.00 36.00 37.76 66.53 71.36

.00 35.16 38.00 67.00 69.85

-1.00 35.16 37.00 67.00 77.48

-1.00 36.00 37.05 67.05 77.68

-1.00 35.75 36.98 67.01 77.76

-2.00 35.57 36.77 67.00 77.68

-2.00 36.05 36.00 67.05 77.34

-2.00 35.57 36.30 66.78 77.24

-3.00 35.69 35.69 67.01 77.74

-3.00 35.74 35.77 67.15 77.69

-3.00 35.57 35.57 67.03 77.93

-4.00 35.16 35.77 67.00 77.89

-4.00 35.69 35.69 66.76 77.68

-4.00 35.74 35.57 67.05 77.34

-5.00 35.57 36.00 67.49 77.00

-5.00 36.04 35.98 67.58 77.74

-5.00 35.93 36.00 67.23 77.05

-6.00 36.05 36.33 67.69 77.00

-6.00 36.29 36.00 67.00 77.24

-6.00 35.93 36.05 67.62 77.35

2.00 36.28 36.33 67.66 78.17

2.00 36.00 36.76 67.24 77.89

1.00 35.57 35.93 67.22 78.00

Table 18: Raw data for fibril diameter (Fd) and interfibrillar spacing (IFS) for
LASIK-like injured corneas and their corresponding controls at 4weeks.
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ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROL Between Groups 1.734 17 .102 1.193 .318
Within Groups 3.078 36 .085
Total 4.812 53

LSK Between Groups 21.624 17 1.272 23.929 .000
Within Groups 1.914 36 .053
Total 23.538 53

Figure 45: One-way ANOVA statistical test results comparing fibril diameter
according to the position of scan

ANOVA

Sum of 
Squares df Mean Square F Sig.

CONTROLI Between Groups 3.263 17 .192 4.572 .000
Within Groups 1.511 36 .042
Total 4.774 53

LSKIFS Between Groups 167.076 17 9.828 50.817 .000
Within Groups 6.962 36 .193
Total 174.039 53

Figure 46: One-way ANOVA statistical test results comparing interfibrillar spacing
according to the position of scan

Independent Samples Test
Levene's Test for 

Equality of Variances t-test for Eaualitv of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Siq. t df Siq. (2̂ tailed) Difference Difference Lower Upper

DBRAGGS Equal variances 
assumed 16.220 .000 -3.965 106 .000 -.3946 .09953 -.59195 -.19731

Equal variances 
not assumed -3.965 73.800 .000 -.3946 .09953 -.59295 -.19631

Figure 47: Independent sample T-test comparing fibril diameter according to type
(i.e. wounded/unwounded)

Independent Samples Test

Levene's Test for 
Equality of Variances t-test for Equality of Means

Mean Std. Error

95% Confidence 
Interval of the 

Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

IPS Equal variances 
assumed 7.017 .009 -39.940 106 .000 -9.9832 .24996 -10.47877 -9.48764

Equal variances 
not assumed -39.940 55.906 .000 -9.9832 .24996 -10.48395 -9.48246

Figure 48: Independent sample T-test comparing interfibrillar spacing according to
type (i.e. wounded/unwounded)
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Differential Regulation o f Key Stages in  Early Corneal 
Wound Healing by TGF-0 Isoform s and Their Inhibitors
Louise M. Carrington,12 Julie A lbon,12 Ian Anderson ,3 Christina K am m a,12 an d  
Mike Boulton1,2

Purpose. Inhibition of TGF-0 reduces myofibroblast differenti
ation and fibrosis in the cornea. Determining the actions of 
distinct TGF-0 isoforms and their inhibitors during early cor
neal wound healing is an essential step in guiding therapeutic 
intervention.
Methods. Bovine serum-free comeal cell and wounded organ 
cultures were challenged with a range of concentrations of 
TGF-0,, -02, and -03; IL-10; and neutralizing human monoclonal 
antibodies (mAbs) against TGF-0, (CAT-192) or -02, (CAT-152). 
Cultures were assessed for re-epithelialization, proliferation 
(cell counts and cresyl violet assay), morphology (histologic 
examination), repopulation of the area under the wound, and 
myofibroblast transformation (a-smooth muscle actin) be
tween 0 and 5 days.
Results. TGF-01 delayed re-epithelialization, increased repopu
lation of the stroma, increased keratocyte proliferation and was 
the only isoform to promote myofibroblast differentiation. The 
anti-TGF-01 mAb, CAT-192 promoted re-epithelialization and 
reduced repopulation of the stroma. Exogenous TGF-03 had 
little effect on re-epithelialization but reduced repopulation of 
the stroma. IL-10 promoted comeal re-epithelialization at low  
doses but inhibited this response at high doses. Stromal re
population was prevented by all doses of IL-10. TGF-02 or the 
anti-TGF-02 mAb, CAT-152 had little effect on any repair pa
rameter.
Conclusions. The results confirm TGF-0, as the principal iso
form in comeal wound healing and suggest that inhibition of 
the action of TGF-0, can promote comeal wound healing. 
Treatment with the anti-TGF-0, mAb CAT-192 accelerates cor
neal re-epithelialization but reduces cell repopulation of the 
stroma. The cytokines TGF-03 and IL-10 have opposing actions 
to that of TGF-01. (Invest Ophthalmol Vis Sci. 2006;47: 
1886 -1894) DOI: 10.1 l67/iovs.05-0635
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TGF-0 has been established as a major regulator of wound 
healing in most species and tissues, including the cor

nea.1-3 To date, TGF-0, and -02 have been localized to both the 
comeal epithelium and stroma, and both are constituents of 
the tear fluid (Vesaluoma M, et al. IOVS 1996;37:ARVO Abstract 
3912).4-9 Although mRNA of the 03 isoform has been isolated 
from whole rat corneas at very low levels, its tissue location is 
unclear, and the protein has yet to be detected in the non- 
pathologic cornea.6,10

The TGF0 receptors RI and RII are located in epithelial, 
stromal, and endothelial layers of the cornea.11-13 RI and RII 
are present predominantly in the basal layer of comeal epithe
lial cells, with receptor density increasing proximal to the 
limbus in many species, including humans. The nonsignaling 
TGF0-RIII (0-glycan receptor) has been located on both the 
epithelium and endothelium in vivo, but appears to be absent 
in keratocytes in vivo.11

As with many other growth factor signaling systems the 
levels and spatial location of each component in the TGF-0 
system alters dramatically after a comeal wound. All three 
isoforms are present in the comeal epithelium,414"16 and cor
neal epithelial cells in culture release TGF-0, and -02.17,18 
TGF-02 is reported to be more strongly expressed than the 
other two isoforms4 and throughout wound healing after PRK 
and TGF-0,, -02, and -03 are present in the comeal epitheli
um.19 In stromal cells TGF-0 is upregulated,15 but isoforms 
cannot be detected immunohistochemically until 2 days after 
PRK, when rounded cells in the ablated area express all three 
isoforms. TGF-0,, -02, and -03 expression is delayed in spindle 
shaped fibroblasts until 10 days after PRK. Expression of all 
three isoforms returns to normal after 30 days. In addition, 
levels o f TGF-0, in the tear film increase dramatically (Vesa
luoma M, et al. IOVS 1996;37:ARVO Abstract 3912). Of partic
ular interest is the finding that topical administration of 1 D ll,  
a TGF-0,-, -02-, and -03-neutralizing antibody, to rabbit corneas 
after PRK and lamellar keratectomy wounds, results in a reduc
tion in the appearance of myofibroblasts, and substantially 
decreases the incidence of haze in rabbits.2'3 Taken together, 
this indicates a pivotal role for the TGF-0 system in comeal 
maintenance and wound repair.

The TGF-0 superfamily is a structurally related group of 
bioactive ubiquitous proteins with diverse and pleiotropic ac
tivities. TGF-01 and -02 share 80% sequence homology but can 
have opposite actions on biological processes such as prolifer
ation, migration, and differentiation.1 The role of the various 
isoforms of TGF-0 in comeal wound healing is not fully under
stood, and therefore optimal treatment may rely on selective 
inhibition of one or more TGF-0 isoforms. To manipulate the 
cytokine environment of the healing cornea after either trauma 
or elective surgery, it is necessary to understand the actions of 
each TGF-0 isoform. It appears increasingly likely that the 
events occurring within the earliest stages of comeal wound 
healing alter prognosis.2 3 Herein, we describe the very differ
ent actions of the three TGF-0 isoforms in early comeal wound- 
healing events and their inhibition by human isoform-specific 
neutralizing antibodies. The action of the cytokine IL-10, a 
potential antagonist of TGF-0, was also evaluated. The results
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of the study have been reported in part in abstract form 
(Carrington LM, et al. IOVS 2001;42:ARVO Abstract 5018).

M e t h o d s  

Cell Culture
Nonactivated bovine keratocytes were cultured based on established 
methods.3 20 In brief, the epithelial and endothelial layers were scraped 
from the stroma which was incubated in 2 mg/mL collagenase (wt/vol 
RPMI at 37°C; Invitrogen-Gibco, Paisley, Scotland, UK) overnight at 
37°C. Isolated cells were plated at 1 x  104 cells/well (24-well plate) in 
1 mL of serum-free RPMI containing nonessential amino acids (Invitro
gen-Gibco), glutamine, antibiotics, amphotericin B. Cultures were 
maintained in medium at 37°C in a standard 5% C 0 2-95% air atmo
sphere for 48 hours, to allow attachment. Medium was replaced with 
fresh medium containing 0.1, 1, or lOng/mL TGF/31, -{52, or -/3, or IL-10 
(R&D, Abingdon, UK). Diluents were used as the control: 10 pL of 
phosphate buffered saline (PBS) containing 0.1% BSA and 0.01 M HC1 
(TGF-/3 isoform diluent) or 10 pL of PBS containing 0.1% BSA (IL-10 
diluent). All treatments were applied in triplicate for up to 5 days in 
culture, and experiments were performed at least three times.

Organ Culture
Bovine corneas were centrally wounded with a 5-mm trephine, as 
previously described,21 and the disc of epithelial-stromal tissue within 
the wound was excised. Sterile, serum-free DMEM containing 1% agar

and 1% gelatin (BDH, Poole, UK) was used as a support, and serum-free 
Trowell’s T8 medium (Invitrogen-Gibco) containing antibiotics, am
photericin B, and glutamine was added to the dish to a level just below 
the limbal region. Twice daily, 100 pL of fresh serum-free T8 medium 
was pipetted onto the surface of the cornea containing 1, 10, or 100 
ng/mL TGF/3,, -/32, or -/33 or IL-10 (R&D Systems); or neutralizing mAb 
against either active hTGF/3, (CAT-192; 0.1 nM-10 pM human IgG4; 
Cambridge Antibody Technology, Cambridge, UK); or hTGFj32 (CAT- 
152; 10 pM human IgG4; Cambridge Antibody Technology); or 10 p i  
of PBS containing 0.1% BSA (IL-10 and neutralizing antibody diluent) or 
10 pL of PBS containing 0.1% BSA, and 0.01 M HC1 (TGF-/3 isoform 
diluent). Cultures were maintained in serum-free T8 medium for up to 
5 days (n = 6, per time, per treatment).

Re-epithelialization
Re-epithelialization was assessed as previously described,20,21 by using 
captured macroimages of the wound area, where both the original 
wound cut and the leading edge of the epithelium could be seen. 
Re-epithelialization was expressed as the percentage of the original 
wound area that was re-covered.

M orphologic Assessm ent o f Epithelium
Wounded and unwounded corneas were fixed overnight in 10% neu
tral buffered formalin (NBF), processed into wax. Seven-micrometer 
sections were stained with Harris hematoxylin and eosin.

a 100

s 80

I 601
| 40r 20
b
* 0

control
1ng/ml TGF-p, 
10ng/ml TGF-P 
lOOng/ml TGF-P 
•nti-TGF-P,

time after wounding (hr)

100

80-

60-

control
1ng/ml TGF-p, 
10ng/ml TGF-p, 
100ng/ml TGF-p,

1209672480 24

time after wounding (hr)

control
Ing/ml TGF- p2 
10ng/ml TGF- p, 
100ng/ml TGF-p2 
■nt»-TGF-p2

24 48 72 96

time after wounding (hr)
100

80

60-

control 
1ng/mi IL-10 
10ng/ml IL-10 
100ng/ml IL-10

720 24 48 96 120
time after wounding (hr)

Figure 1. Percentage re-epithelialization of bovine comeal trephine wounds treated with 100 pL of serum-free medium twice daily, containing 
1% growth factor diluent (PBS+0.1% BSA+HCL) or 1, 10, or 100 ng/mL (a) TGF-/3, and 10 pM neutralizing mAb against hTGF-j3,, (b) TGF-/32 and 
10 pM neutralizing mAb against hTGF-02, (c) TGF-/3,, or (d) IL-10. Each point represents the average of at least six corneas ± SEM. Significant 
differences were determined by Student’s f-test *P <  0.05, **P < 0.01.
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Assessm ent o f Proliferation in  Cell Culture Using 
the Cresyl Violet Assay
Briefly, cells were fixed in 70% ethanol for 10 minutes at room tem
perature and incubated with a 0.5% solution of cresyl violet (BDH) for 
1 minute at room temperature. After washing with PBS, acetic acid 
(33%, vol/vol ddH20 )  was added to the wells to elute the dye. The 
absorbance of the wells was read at 540 nm, with an ELISA reader, and 
wells containing 33% acetic acid were used as a blank.

Stromal Cell Density beneath the W ound
Corneas were fixed in 10% NBF overnight and processed into wax. 
Seven-micrometer sections were floated and incubated in 1 /xg/mL 
bisbenzimide solution (Sigma-Aldrich, Poole, UK) for 10 minutes. Im
ages of stained sections were captured, and the number of nuclei in the 
area 100 pun below the wound surface was analyzed (ImagePro Plus 
software; Media Cybernetics, Silver Spring, MD).

complete cover was established at 48 hours, corresponding to 
a re-epithelialization rate of 2.11% ± 0.1% h-1 (P <  0.05 
compared with the rate observed in vehicle-treated controls, 
1.56% ± 0.07% h-1 , Fig. lb). In a separate experiment the 
concentration-response for CAT-192 was evaluated at a single 
time point. CAT-192 (10 ng/mL-100 pig/mL) applied to 
wounded corneas resulted in a concentration-related enhance
ment of comeal re-epithelialization measured at 40 hours, with 
a calculated EC5Q of 0.51 ptg/mL (0.23-1.10, 95% confidence 
limits; n =  12, Fig. 2). Neither CAT-152 or a null control IgG4 
had a significant effect on the rate of re-epithelialization (Figs. 
lb, 2)

IL-10 exhibited a pleiotropic effect on re-epithelialization 
(Fig. Id): 1 ng/mL had no effect, 10 ng/mL increased re- 
epithelialization, and 100 ng/mL decreased re-epithelialization 
(without apparent cytotoxicity using the trypan blue assay, 
data not shown).

Identification o f M yofibroblasts
Cultured cells were fixed at 0, 1, 2, 3, 4, and 5 days after treatment in 
1% paraformaldehyde for 5 minutes. Comeal organ cultures were snap 
frozen in liquid nitrogen at 0, 1, 2, 3, and 5 days after treatment; 
embedded in optimal cutting temperature compound (OCT); and sec
tioned at 5-fun intervals. Cultures and sections were pretreated with
0.1% Triton-X-100 for 20 minutes, incubated with a monoclonal anti-a 
smooth muscle actin antibody (Sigma-Aldrich) for 2 hours followed by 
an Alexafluor 488<onjugated goat anti-mouse IgG (Invitrogen, Eugene, 
OR) for 1 hour. Counterstaining of nuclei was obtained using bis
benzimide solution incubation for 10 minutes. Cell cultures were also 
costained with TRITC-conjugated phalloidin (5 /xg/mL in PBS; Sigma- 
Aldrich) for 2 hours, to identify F-actin.

Statistical Analysis
Cell counts beneath the wound were compared by using the nonpara- 
metric Mann-Whitney test. Proliferation was compared with unpaired, 
two-way Wests (Prism 3.0; GraphPad Software, San Diego, CA) Comeal 
re-epithelialization was compared at each time point using either the 
Kruskal-Wallis test (nonparametric ANOVA) with Dunn’s post test or 
Mann-Whitney test, as appropriate. The rate of re-epithelialization was 
assessed with a least-squares regression function of data between 24 
and 48 hours and was expressed as the percentage of the wound area 
re-epithelialized in 1 hour. The calculated ECso for CAT-192 in the 
re-epithelialization assay is indicated as the geometric mean with asso
ciated 95% confidence limits.

R e sults

Epithelial Wound Healing
Re-epithelialization followed a pattern similar to that previ
ously described for this organ culture model.20,21 Epithelial 
migration commenced within 12 hours after wounding, and, 
by 72-hours, wounds had completely re-epithelialized for cor
neas treated with medium alone or medium containing diluent 
(Fig. 1). The rate of re-epithelialization was calculated to be 
1.56% ± 0.07% h_1.

Comeal reepithelialization was differentially sensitive to 
the three TGF-/3 isoforms tested. TGF-/3, was the most potent 
inhibitor of reepithelialization, inhibition was greatest at 100 
ng/mL and halved the rate of reepithelialization compared 
with the control (0.71% ± 0.3% h-1 ; P  <  0.05). The rate of 
reepithelialization for corneas treated with TGF-/32 or -03 was 
similar to that for the control (P >  0.05), except that TGF-/32 at 
100 ng/mL caused a small delay in reepithelialization at 72 
hours (Figs. lb, lc).

Administration of CAT-192 (100 /xg/mL) resulted in an ac
celerated rate of regrowth of the comeal epithelium such that

Epithelial M orphology
Epithelial morphology during reepithelialization in control 
corneas and those receiving diluent was similar to that previ
ously described for this model20,21 and as depicted in Figure 3- 
Initial rounding off and retraction of the epithelium from the 
wound site at 4 hours was followed by migration onto the 
denuded stroma at 12 hours with the leading edge of the 
epithelium one cell deep, with no obvious stratification. Migra
tion continued across the wound, with the leading edge of 
epithelium increased to 3 to 4 cells and slight hypercellularity 
at the original wound edge evident. By 72 hours, wound 
closure had occurred with the epithelium at the closure site 
thinner and less differentiated than the distal epithelium. After 
5 days in culture the entire epithelium within the wound site
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Figure 2. Dose response to CAT-192 during comeal re-epithelializa
tion after an excisional trephine wound. The EC50 for CAT 192 was 0.51 
mg/mL (95% Cl, 0.23-1.10; n = 12). Data are expressed as the per
centage change in re-epithelialization of the vehicle-treated control 
group. Dotted lines: SEM of the vehicle control group data. A null IgG4 
antibody control group (CAT-001, n = 6) was included. Each point 
represents the mean; vertical bars, SEM. The effect of the different 
doses of CAT-192 was compared with control treatment using the 
Kruskal-Wallis and Dunn tests. *P <  0.01.
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Figure 3- Epithelial morphology of 
wounded corneas at various stages of 
re-epithelialization. Unwounded bo
vine corneas (a) contained 8 to 10 
layers of cells within the epithelium 
and 1 to 2 layers of desquamating, 
flattened superficial epithelial cells 
(black arrow). Corneas that had un
dergone wounding with a trephine, 
showed clean, sharply cut edges (b) 
through the epithelium immediately 
after wounding (black arrow), stro
mal cutting was less defined (grey 
arrow). Four hours after wounding
(c), the epithelium had retracted 
from the cut edge of the stroma 
0black arrow). As the epithelium mi
grated across the denuded stroma
(d), the epithelium over the comer 
of the original cut (black arrow) had 
thinned to one to three layers deep, 
whereas hypercellularity was often 
observed within the wound’s edge 
(white arrow), (e) The leading edge 
of the epithelium had lost stratifica
tion and become one to two cells 
deep (black arrow). By 120 hours 
(f), stratification of the healed epithe
lium was evident with a slight thick
ening compared with unwounded 
corneas. Scale bar, 100 pun.

exhibited good stratification, although slight th ickening o f  the  
epithelium  within the w ound area w as com m on.

M orphologic differences w ere observed in corneas treated 
with TGF-jS, (Fig. 4). This included considerable thinning o f  
the epithelium  in the w ound site at all tim e poin ts and was 
more pronounced in the corneas receiving 100 ng/m L TGF-/3, 
(Fig. 4b). Stratification o f  the epithelium  m igrating into the  
w ound w as always evident, although the layers w ere  thinner 
than those in control corneas. By 120 hours, re-epithelialization  
was com plete, confirm ing the results o f  m acroscopic im age 
analysis. Corneas treated w ith  the anti-TGF /3, antibody CAT- 
192 w ere similar to the control, although the epithelium  ap
peared slightly thinner (Figs. 4c , 4d).

Corneas receiving 1 ng/mL TGF-/32 sh o w ed  a retraction o f  
the w ound edge that w as not observed at higher concentra
tions (Fig. 4e). Thinning o f  the epithelium  w as particularly 
obvious at 100 ng/mL, especially at the interface betw een  
w ounded and unw ounded stroma. By 4 8  hours in culture, 
hypercellularity was evident at all TGF-/32 concentrations, w ith  
sparse populations o f  cell nuclei in the superficial layers and 
loss o f stratification correlated w ith  increasing d oses o f  TGF-/32, 
and at 100 ng/mL no obvious basal cells or superficial ep ithe
lium w ere observed. Patches o f  acellularity w ere  observed  
within the epithelium  (Fig. 40- By 120 hours in culture all 
w ounds had closed, stratification o f  the epithelium  w as poor in 
corneas treated w ith higher d oses o f  TGF-/3,. Corneas receiving  
a neutralizing antibody against TGF-/32, CAT-152, sh ow ed  mor

phologic features similar to those observed in the control 
corneas (Fig. 4g, 4h).

TGF-/33, at all doses, show ed considerable epithelial retrac
tion from the w ou nd edge at 4 hours and som e cellular debris 
(Fig. 4i). M orphology o f the epithelium  w as reasonably normal 
w ith som e thinning toward the epithelial edge in corneas 
treated w ith higher doses. By 24 hours, migration into the 
w ound had begun but w as less advanced than in the control. 
Hypercellularity and extrem e thinning o f  the epithelium  was 
evident at the w ound edge and stratification, as indicated by 
lack o f  colum nar cells in Fig 4j, becam e less evident with  
increasing TGF-/33 concentrations. By 120 hours in culture, the 
epithelium  had an increased thickness throughout the wound, 
com pared w ith the control (Fig. 4j).

IL-10 produced contrasting results, depending on dose. At 4 
hours after w ounding 1 ng/mL IL-10 show ed neither retraction 
nor migration, but the epithelium  was thinned to three to four 
cell layers, 10 ng/mL resulted in extrem e thinning o f  the 
leading edge o f the epithelium  and som e retraction, whereas 
100 ng/mL prom pted migration o f a very thin leading edge into 
the w ound area (Fig. 4k). At 24 and 48 hours, apart from 
degree o f  migration, epithelial m orphology was similar for all 
three doses o f IL-10. Stratification w as not evident at the lead
ing edge and hypercellularity was evident at the original 
w ound margin. By 72 hours, differentiation o f  cells was evident 
but not confined to obvious layers, and basal cells w ere diffi
cult to distinguish; 1-ng/mL-treated corneas demonstrated an
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stratification w as seen in corneas treated w ith all three doses 
(Fig. 41).4 hours 120 hours

F i g u r e  4 .  Epithelial morphology after trephine wounding 4 ( a ,  c ,  e ,  
g ,  i, k )  and 120 ( b ,  d ,  f , h ,  j ,  1) hours after treatment with 100 ng/mL 
TGF-0, ( a ,  b )  or anti-TGF-0, ( c ,  d ) ;  TGF-02 ( e ,  10 ng/mL; f ,  1 ng/mL; 
white arrow, an area apparently devoid of nuclei) or anti-TGF-0, (g, 
h ) ;  100 ng/mL TGF-0, ( i ,  j ;  black arrow: cellular debris and retraction 
of epithelium from the wound edge, white arrow) ; or IL-10 ( k ,  100 
ng/mL; 1, 10 ng/mL). Scale bar, 100 p,M.

even epithelium  within the w ound area w ith  som e disruption  
o f the layering, whereas both 10 and 100 ng/m L produced  
hypercellularity at the w ound edges and a thinning o f  the  
epithelium  at the site o f  w ound closure. At 120 hours, good

Keratocyte Proliferation
K era to cy te  C ell C ulture. Bovine keratocytes in serum-free 

cell culture retained a stellate m orphology similar to that seen  
in vivo, forming a m onolayer w ith interconnecting processes. 
The initial seeding density o f 1 X 104 cells per w ell, resulted in 
a preconfluent culture; how ever, after 2 days in culture the  
num ber o f  cells had increased to approxim ately 4 X 104 cells 
per w ell and the keratocytes had extended long processes 
toward each other, forming a network. The culture conditions 
allow ed low-level proliferation o f keratocytes throughout the 5 
days o f experim entation (Fig. 5). Twenty-four hours after the 
m edium  w as changed, the number o f keratocytes had in
creased to 7.3 ±  0.1 X 104 cells and continued to increase, 
reaching 1.8 ±  0.2 X 10s cells at 120 hours. Diluents had no  
effect on  keratocyte proliferation.

TGF-0, had no significant effect on keratocyte numbers at 
either 1 or 10 ng/mL. However, at 0.1 ng/mL, TGF-0, more 
than doubled the num ber o f  keratocytes at 120 hours o f cul
ture com pared w ith  the control (P  <  0.001; Fig. 5a). Other 
isoform s had no effect on  keratocyte proliferation at the con
centrations tested (Fig. 5b, 5c).

All three concentrations o f IL-10 stimulated keratocyte pro
liferation in cell culture, w ith  the cell num ber doubling com 
pared w ith  the control (P <  0.011; Fig. 5d). The proliferative 
response appeared to be initiated earlier in cultures treated 
w ith  10 ng/mL IL-10.

T rep h in e -W o u n d e d  C o rn ea s. The num ber o f keratocytes 
decreased to 56% ±  2% com pared w ith  unwounded control 
corneas im m ediately after wounding, and a maximum reduc
tion to  33% ±  15% w as measured 4 hours after wounding. 
Thereafter, the num ber o f keratocytes gradually increased in 
the w ound area, and, by 120 hours, the number o f  cells be
neath the w ound had increased to 60% ±  7.5% o f that in 
unw ounded corneas (Fig. 6).

The TGF-0 isoform s prom pted very different repopulation 
behavior. In agreem ent w ith the results from keratocyte cell 
culture, the increase in cells under the w ound w as evident only 
in corneas treated w ith the low est concentration o f TGF-0, (1 
ng/mL), w here, by 4 and 120 hours, the repopulation o f cells 
under the w ound had increased from 33% ±  1.5% to 83% ±  
4.0%, respectively, o f  the unwounded control (Fig. 6a). In 
contrast, the TGF-0, neutralizing mAb CAT-192 dramatically 
decreased keratocyte numbers at all tim e points, compared  
w ith the control (Fig. 6a). TGF-03 significantly decreased the 
cell density under the w ound at all concentrations tested (Fig. 
6c). Similarly, addition o f IL-10 decreased the number o f cells 
beneath the w ound (Fig. 6d). Neither TGF-0, nor CAT-152 had 
a significant effect on this response (Fig. 6b).

Myofibroblast Differentiation
Keratocytes cultures maintained in m edium alone or plus di
luent retained a stellate m orphology and w ere a-sm ooth mus
cle  actin negative. 0-Actin was located perinuclearly and 
throughout the cytoplasm with no obvious stress fiber bundles 
(Fig. 7a). O f all the factors tested in cell culture, only high-dose 
TGF-0, prom pted the differentiation o f  keratocytes into myo
fibroblasts. Prominent stress fibers w ere obvious w hen cells 
w ere stained w ith phalloidin, the cells lost their stellate shape 
and elongated into spindles (Fig. 7b). More than half o f  the 
cells staining positive for a sm ooth m uscle actin w hich ap
peared to be organized in bundles similar to the 0-actin fila
ments.

Only very occasional cells, if any, w ere a-sm ooth muscle 
actin positive in control cornea organ cultures (Figs. 7e) with
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F ig u r e  5. The effect of (a) TGF-/3,, (b) TGF-02, ( c )  TGF-03, and (d) IL-10 on the number of keratocytes in serum-free cell culture assessed using 
the cresyl violet assay. Each point is the average of three experiments of triplicate wells. Error bars, SEM. Data were analyzed using the Students 
/-test. *P < 0.05; **P < 0.01.

the ex cep tion  o f  cells surrounding the lum en o f  b lo o d  v esse ls  
in the com eal lim bus (Figs. 7c , 7d). Very occasionally , isolated  
cells w ere  evident in the area under the w o u n d  after re- 
epithelialization had occurred. M yofibroblasts becam e evident 
in the stroma o f  corneas treated w ith  100 ng/m L  o f  TGF-/3, 
(Figs. If). These w ere located  in the area directly  under the  
w ound, w ith in  the upper 150 /im  o f  th e  strom a at th e  ed g e  o f  
the w ou nd  face, w ith  isolated cells (<1%  o f  strom al cells)  
appearing at 72 hours after w ounding. At 120 hours, the  
num ber o f  a-sm ooth m uscle  a ctin -p ositive  cells  had signifi
cantly increased to  65.97%  ±  13-57%, com pared  w ith  control 
corneas at the sam e tim e point (P <  0 .0 0 1 ). T he strom al cells  
o f  corneas treated w ith  CAT-192 (anti-TGF-0,), TGF-/33 or IL-10 
had no obvious a-sm ooth m uscle  actin p ositive  ce lls  at any  
tim e point.

D iscussion

W e present ev idence that TGF-0 isoform s differentially regu
late several key events in early c o m ea l w o u n d  healing. TGF-0, 
appeared to be the m ost active c o m ea l isoform  and w a s  able to  
delay re-epithelialization, increase proliferation o f  keratocytes, 
enhance repopulation o f  th e  per iw ou n d  area, and p rom ote  
myofibroblast transformation. M oreover, neutralization o f  en 
dogenously produced TGF-0, after treatm ent w ith  the anti- 
TGF-0, mAb, CAT-192, m ediated an e ffec t o p p o site  the re
sponse to  exogen ously  added TG F-0,. In contrast to  th e  TGF-0, 
isoform, TGF-03 reduced th e  keratocyte repopulation  o f  the  
periw ound area. TGF-02 or neutralization o f  TGF-02 w ith  the  
selective antibody CAT-152 had little e ffect o n  c o m ea l w ou n d  
healing.

T he effects o f  TGF-0, reported in this study concur w ith  the  
findings o f  other investigators in various species. First, TGF-0, 
w as the on ly  factor capable o f  inducing a-sm ooth m uscle actin 
exp ression  in stromal cells in cell and organ culture, a well- 
docu m en ted  p h en om en on .3,22 Second, TGF-0, increased the  
num ber o f  cells under the w ou n d  in w ou nd ed , organ-cultured 
corneas, a finding in com m on w ith  reports in the literature 
involving rabbits.3 Third, a neutralizing antibody against the  
active form o f  TGF-0,, inhibits the s lo w  repopulation o f  stro
mal cells  under the w ou n d  as previously sh ow n  after laser 
keratectom y.23 Although not exam ined in this study, it is likely 
that th ese  even ts are, at least in part, m ediated via connective  
tissue grow th  factor.24

TGF-03 inhibited not only the repopulation o f  the stroma 
observed  in the control but also decreased the num ber o f  cells 
b e lo w  that seen  at any tim e poin t in untreated corneas. O f 
note, neutralizing TGF-03 had no effect, either on  the num ber 
o f  cells beneath the w ou n d  or the expression  o f  laminin and 
fibronectin in the cornea,23 and thus may act by inhibiting the  
action o f  endogenou s TGF-0, as occurs during w ou nd  healing 
in the skin.25 TGF-03 knockout m ice dem onstrate scarring in 
the fetal stage that does not occur after w ounding in the  
wild-type equivalent,26 and it appears that the ratio o f  TGF-0, 
to  -03 is critical in determ ining the ex ten t o f  fibrosis. Thus, 
TGF-03 may be a candidate for therapeutic interventions, es
pecially  because it had no detrimental e ffect on  com eal re
epithelialization in this study.

M oller-Pedersen et al. 2 have reported that a pan neutraliz
ing antibody (1 D 1 1) able to  block all isoform s o f  TGF0 reduced  
keratocyte activation and transformation and inhibited stromal 
fibrosis in a rabbit m odel o f  PRK. H ow ever, in this rabbit
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F ig u r e  6 .  The effect of (a) TGF-0, and anti-TGF-0,, (b) TGF-/32 and anti-TGF-02, ( c )  TGF-03, and (d) IL-10 on the number o f keratocytes beneath 
a trephine wound in organ-cultured corneas between 0 and 120 hours after wounding. Points represent the average number of cells under the 
wound as a percentage of the number at a comparable depth in that unwounded control. Each point is the average of six corneas per treatment 
and error bars, SEM. Data were analyzed using the Kruskal-Wallis test (*P <  0.05; **P <  0.01). Significance symbols for 4-hour time points are not 
shown due to lack of space.

m odel, the regrowth o f  the strom a w as un affected  by pan  
isoform  neutralization w ith  1D11. Our results su ggest that 
w h ile  neutralizing TGF-0, may b e  im portant in p reven tin g  
fibrosis, the neutralization o f  TGF-03 may w e ll b e  agonistic  to  
TGF-0! action. O ne may postulate that the b est o u tco m e  (o f  a 
single agent) w ou ld  be selective  neutralization o f  TG F-0,, and  
this could  be achieved w ith  the hum an m on oclon a l antibody  
CAT-192. This approach may reduce fibrosis, keratocyte trans
formation (and hence  light-reflective keratocytes), as w e ll as 
repopulation o f  the stroma. Rapid re-epithelialization w o u ld  
also limit additional stromal trauma. This approach w o u ld  be  
w orthy o f  study in a m odel system  su ch  as experim en ta l PRK.

IL-10 is classically regarded as a p o ten t anti-inflammatory 
cytokine and m ost studies into its fun ction  and e ffec t have  
centered on this prem ise. This study is th e  first to  report th e  
effect o f  IL-10 on co m ea l w o u n d  healing. IL-10 w a s seen  to  
have a pleiotropic effect o n  the ep ithelium , increasing re
epithelialization at 10 ng/mL, but suppressing w o u n d  coverage  
at 100 ng/mL.

Sources for I H 0  include TH2 c e lls27 and m o n o cy tes ,28 b oth  
o f  w h ich  should have no  access  to  th e  corn ea  in non path olog ic  
situations. IL-10 mRNA has b een  isolated  from  the corneas o f  
m ice both before and after alkali b u m s29 and in hum ans during 
com eal transplant surgery.30 C om eal epithelia l cells  are a likely  
candidate, as the epithelia o f  o th er  organs includ ing skin pro
duce IL-10.31-33 Previous studies have sh o w n  that IL-10 treat

m ent can reduce the m igration o f  T-cells and neutrophils into 
H SV-l-infected m ouse corneas,34 reduce HLA-DR expression  
o n  co m ea l cells  and infiltrating leukocytes o f  hum an herpetic  
strom al keratitis sp ec im en s,35 and decrease com ea l opacifica
tion  in H SV-l-infected BALB/c m ice .34,36 All o f  these  in vivo 
experim en ts w ere  perform ed in the presen ce  o f  a functioning  
im m une system  and w ere  characterized by im m une cell infil
tration o f  the cornea, w h ich  could  have m ediated the effects o f  
IL-10 o n  th e  co m ea l cells. The current study is therefore the  
first to  sh o w  that co m ea l cells, in the absence o f  lym phocytes, 
can respond to  IL-10 treatm ent and as such  provides com pel
ling ev id en ce  that the cornea contains the IL-10 receptor. 
Indeed, the upregulation o f  IL-10 Rc mRNA expression has 
b een  identified in corneas after excim er laser injury.37

Little is k n ow n about the m echanism  by w h ich  IL-10 regu
lates epithelial cells and fibroblasts. IL-10 has been  sh ow n to  
have antagonistic effects to  the actions o f  TGF-0,38 although  
h o w  this is achieved is unclear. IL-10 has been  show n to 
m odulate extracellular matrix com ponents by downregulating  
type I collagen  expression  and upregulating collagenase and 
stom elysin mRNA in hum an skin fibroblasts39; reducing con
stitutive and transforming grow th factor-0-stimulated, type I 
collagen mRNA expression  in hum an lung fibroblast cells40; 
and dow nregulating the biosynthesis o f  fibrinogen in sm ooth  
m uscle cells ,41 all o f  w h ich  may contribute to modulation o f  
fibrosis.
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F i g u r e  7 .  a-Smooth muscle actin 
staining in myofibroblasts. In serum- 
free cell culture, untreated kerato
cytes did not express a-smooth mus
cle actin (not shown); however, 
serum-treated cultures ( a )  developed 
a-smooth actin expression appar
ently within stress fibers in groups of 
cells after 5 days, commonly these 
cells were overlying the initial mono
layer. In cultures treated with 10 
ng/mL TGF-/3,, ~50% of cells ex
pressed a-smooth muscle actin after 
5 days ( b ) .  Untreated wounded bo
vine corneas, except for the limbal 
vasculature (arrow  denotes blood 
vessel), which acted as an internal 
positive control (c), shown at higher 
magnification in ( d ) ,  were negative 
for a-smooth muscle actin (e). Cor
neas treated with 100 ng/mL TGF-P, 
for 5 days contained cells within the 
stroma, immediately beneath the 
wound site, that expressed a-smooth 
muscle actin ( f ) ,  indicating the pres
ence of myofibroblasts (arrowy  
Scale bar: ( a ,  b )  50 p.m; (c) 100 /zm; 
( d )  20 /zm; (e) 40 /zm.

Our study confirms the primary role o f  the /3, isoform  o f  
TGF during com eal w ound healing. Furthermore, it identifies 
I H 0  and TGF-P, as potential therapeutic regulators o f  com ea l  
repair and the prevention o f  fibrosis. It is also likely that early 
application o f treatment w ill be essential to  m inim ize adverse  
healing and optim ize repair. A postoperative indication such as 
com eal refractive surgery could be benefited  by this type o f  
biological therapy.
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