
FUNCTIONAL AND STRUCTURAL DESCRIPTORS

FOR SOFTWARE COMPONENT RETRIEVAL

Yuhanis Yusof

A thesis submitted to the

School of Computer Science, Cardiff University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

December 2007

UMI Number: U585000

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585000
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

FUNCTIONAL AND STRUCTURAL DESCRIPTORS

FOR SOFTWARE COMPONENT RETRIEVAL

Identifying appropriate software components in a repository is an important

task in software reuse; after all, components must be found before they can be

reused. Program source code — documents written in a computer program­

ming language — has the possibility to be a software component. Program

source code is a form of data, containing both structure and function; it is

therefore important to make use of this information in representing programs

in a software repository. Existing approaches in software component retrieval

systems focus on retrieving a component based on either its function or struc­

ture. Such an approach may not be suitable to users that require examples of

programs that illustrate a particular function and structure, there is therefore

a need for combining this information together. The objective of this research

is to build a software repository of Java programs, to facilitate the search and

selection of programs using the information about a program’s function and

structure. The hypothesis is that retrieval of program source code is better

undertaken using a combination of functional and structural descriptors rather

than using functional descriptors on their own.

This thesis presents a program retrieval and indexing model which can

be used in developing a source code retrieval system. The model reveals on

how functional and structural descriptors are identified and combined into a

single representation. The functional descriptors are identified by extracting

selected terms from program source code and a weighting scheme is adopted

to differentiate the importance of terms. As programs in the repository are

from open-source applications, extracting information that does not rely on

semantic terms would be beneficial, as these programs are written by various

developers with different programming background and experience. Structural

descriptors that comprise of information generated based on structural rela­

tionships, such as design patterns and software metrics, are extracted from a

program to be added as the program descriptor. The functional and struc­

tural descriptors are combined into a single index, known as a compound in­

dex, which is used as a program descriptor. The degree of similarity between

a given query and programs in a repository is identified using measurements

undertaken based on vector model and data distribution based approaches.

Lessons learned from the experiments undertaken reveals that programs re­

trieved using the proposed method are less complex and easy to maintain.

Furthermore, it is suggested that programs from different application domains

contain different trends in their software metrics.

ACKNOWLEDGMENTS

First, I am ever grateful to God, the Creator and the Guardian, and to

whom I owe my very existence. Second, I would like to express my deep

and sincere gratitude to my supervisor, Prof. Omer F. Rana, for his support

throughout the course of this thesis. I especially want to thank him for all the

time he took to read and re-read this thesis so as to make it as good as possible.

On the other hand, I also want to thank the people who served as evaluators

in the evaluation phases of my thesis; research students at the Cardiff School

of Computer Science.

On a different note, I am deeply indebted to my husband, Massudi Mah-

muddin, whose patient love enabled me to complete this work. Besides pursu­

ing his own PhD, he finds the time to help with the house chores; cook, clean,

and looking after our daughter. In addition, he also provides stimulating sug­

gestions and encouragement in all the time of research for and writing of this

thesis. I also want to thank my daughter, Fat in Nabihah Massudi, who is the

joy of my life, for letting Ibu to work on her thesis when she needed to do so.

Finally, a special thank you to my mum and dad, Siti Eshah Shariff and

Yusof Abd. Ghani, to whom I dedicate my work. I am thankful for their love

and best wishes, which despite of their physical absence have helped me in the

successful completion of my study in Cardiff University. Last but not least,

my special gratitude is due to my sister, my brothers and their families for

their loving support.

Yuhanis Yusof

December 2007

C o n t e n t s

Table of Contents vi

List of Figures x

List of Tables xii

1 INTRODUCTION 1
1.1 B ackground... 1
1.2 Research Problem .. 4

1.2.1 Why the Research is Im p o r ta n t .. 8
1.3 Research Hypothesis and Q uestions .. 9

1.3.1 Information E x trac tio n .. 10
1.3.2 Creating New R ep resen ta tio n ... 11
1.3.3 Supporting Program R etrieval... 11

1.4 Scope of the Research.. 12
1.5 Research C ontributions.. 12
1.6 Organization of the T h e s is .. 14
1.7 Origins of the C hapters.. 15

2 LITERATURE REVIEW 16
2.1 Software Component R etrieval.. 16

2.1.1 Function-based .. 19
2.1.2 Structure-based.. 25
2.1.3 Similarity Measurement using Distance M e a su re s 41

2.2 Software C lassification.. 45
2.2.1 C lassifiers.. 46

2.3 Conclusion... 48

vi

CONTENTS vii

3 WEIGHTED TERMS AS FUNCTIONAL DESCRIPTORS 50
3.1 Overview... 50
3.2 Terms as Functional D escriptors... 53

3.2.1 Extracting Relevant Terms based on Program Structure . . . 59
3.3 Weighted Functional Descriptors... 61
3.4 Similarity Measurement .. 64
3.5 Conclusion.. 68

4 DESIGN PATTERNS AS STRUCTURAL DESCRIPTORS 70
4.1 Overview... 70
4.2 Identification of Design P a tte rn s ... 72

4.2.1 Singleton ... 73
4.2.2 C om posite... 76
4.2.3 O bserver.. 81
4.2.4 Analysis of Design Pattern Detection in Java Packages 86
4.2.5 Analysis of Design Pattern Identification in Open-Source Ap­

plications ... 89
4.3 Design Patterns in Program R etrieval.. 93
4.4 Conclusion... 95

5 SOFTWARE METRICS AS STRUCTURAL DESCRIPTORS 97
5.1 Overview... 97
5.2 Program Classification into Application Domains 101

5.2.1 Program Classification using Testing Data S e t 108
5.3 Program Retrieval based on Terms and Application D o m a in 115
5.4 Conclusion... 121

6 COMBINING FUNCTIONAL AND STRUCTURAL
DESCRIPTORS 123
6.1 Model of Program Retrieval using a Combination Approach 124

6.1.1 Requirements of the Combination A p p ro ach 130
6.2 Experim ents.. 132

6.2.1 Evaluation of Program R etrieval... 133
6.2.2 Analysis of Program Retrieval Undertaken using Different Sim­

ilarity M easurem ents.. 135

CONTENTS viii

6.3 Conclusion... 142

7 EVALUATION AND DISCUSSION 144
7.1 Comparison with Other T o o ls ... 145
7.2 Objective Evaluations of the Retrieval S y s te m .. 146

7.2.1 Retrieval from Database Application Domain 148
7.2.2 Retrieval from Graphics Application D om ain.............................. 151
7.2.3 Analysis of Software Metrics in Programs Retrieved in the Ex­

periment .. 152
7.3 Empirical Evaluations of the Retrieval S y s te m .. 168

7.3.1 Subjects of E x p erim en ts .. 168
7.3.2 Structure of Experim ents.. 171
7.3.3 R esults... 172

7.4 Conclusion... 179

8 CONCLUSION AND FUTURE WORK 181
8.1 Conclusion... 181

8.1.1 Information E x trac tio n .. 182
8.1.2 Creating New R ep resen ta tio n ... 183
8.1.3 Supporting Program R etrieval... 184

8.2 Future W ork.. 186
8.2.1 Extending to a Higher S c a le .. 186
8.2.2 Supporting More Complicated Indexing and Retrieval Mecha­

nisms ... 188

Bibliography 190

Appendices 210

A J48 Decision Tree 210

B Statistical Result - Program Classification using Testing Data Set 214

C Statistical Result - Program Retrieval using Classified Programs 251

D MySQLDatabase.java 260

CONTENTS ix

E PickPhotosPanel.java 264

F Test Programs used for the Identification of Metric Trends 269

G Test Programs - Combined Domain 277

H Program Templates used as Search Queries 283

I Post-Experiments Questions and Evaluation Form 296

L is t o f F ig u r e s

1.1 Programming Task - Weather Reporting A p p lica tio n 9

2.1 Component Retrieval Model (in Mili et al.. 1995 [3 6])......................... 18
2.2 Method get V a lu e ... 35
2.3 Class ComboBoxEditor... 37
2.4 Class QueryReportResult.. 38

3.1 Components of a Java p ro g r a m .. 54

4.1 UML Diagram of Singleton P a t te r n .. 74
4.2 UML Diagram of Composite P a t t e r n ... 77
4.3 UML Diagram of Observer P a t t e r n .. 83
4.4 Ratio of Detected Design P a tte rn s ... 90

5.1 Classification Accuracy using 8 and 12 Independent Variables 103
5.2 Interpolated Precision at 11 Standard Recall Levels relative to Program

Classification into Application D o m a in ... 109
5.3 Interpolated Precision Recall Curve for Program Classification using

Testing Data S e t ... I l l

6.1 Model of Program Indexing and Retrieval using a Combination Approach 125
6.2 Database - P I ... 126
6.3 Database - P 2 ... 126

7.1 Software Metrics in Programs Retrieved using the Combination Ap­
proach for MySQLDatabase.java.. 150

7.2 Software Metrics in Programs Retrieved using the Combination Ap­
proach for PickPhotosPanel.java.. 153

x

LIST OF FIGURES xi

7.3 Average Values of Software Metrics in Programs Retrieved for MySQL-
D atabase.java.. 154

7.4 Average Values of Software Metrics in Programs Retrieved for Pick­
PhotosPanel.java ... 155

7.5 Software Metrics in Programs Classified as Good Retrieval for MySQL-
D atabase.java... 157

7.6 Software Metrics in Programs Classified as Good Retrieval for Pick­
PhotosPanel.java ... 158

7.7 Average Values of Software Metrics in Programs Classified as Good
Retrieval .. 159

7.8 Shapes of Graphs with Descriptive Statistics for Database and Graph­
ics Program s.. 162

7.9 Software Metrics in Database and Graphics Programs: Testing Data Set 165
7.10 Software Metrics in Programs of Combined Application Domain . . . 166
7.11 Average of Precision Scores for Six T a sk s ... 175

L is t o f T a b l e s

4.1 Number of Classes and Programs in Java Packages 86
4.2 Detection of Design Patterns in Java Packages....................................... 87
4.3 Precision Scores for Design Pattern Detection in Java Packages 88
4.4 Detection of Design Patterns in Open-Source A p p lica tions................. 91
4.5 Precision and Recall for Design Patterns Detection in Open-Source

A pplications... 92

5.1 Classification Function C oefficien ts.. 104
5.2 Classification Analysis based on 12 Independent Variables 107
5.3 Classification Accuracy: Testing Data Set ... 108
5.4 Classification Analysis on Testing Data S e t ... 110
5.5 Kruskal-Wallis Test Result Relative to Program Classification into

Database D om ain ... 113
5.6 ANOVA Test Results of Precision and Recall Scores............................. 114
5.7 Program Classification: Programs of Combined D om ain....................... 116
5.8 Examples of Q u e r ie s .. 117
5.9 Precision and Recall Scores for Queries 1 to 1 0 118
5.10 Average of Precision and Recall Scores for Four Retrieval Mechanisms 119
5.11 Kruskal-Wallis Test Result Relative to Program R etrieval.................... 120

6.1 Program-term M atrix .. 127
6.2 Program-structural M a tr ix .. 128
6.3 Precision and Recall Scores for the Top 10 P ro g ra m s 135
6.4 Precision and Recall Scores for the Top 20 P ro g ra m s 136
6.5 Average of Precision and Recall Scores for the Top 10 and 20 Programs 137
6.6 Test of Normality for Precision and Recall Scores for the Top 20 Programs 139

LIST OF TABLES xiii

6.7 ANOVA Test Result of Precision and Recall S c o re s 140
6.8 Post-Hoc Test for Multiple C om parisons.. 141

7.1 Precision Scores and Processing T im e ... 148
7.2 Classification of Top 10 Programs Retrieved for MySQLDatabase.java 151
7.3 Classification of Top 10 Programs Retrieved for PickPhotosPanel.java 152
7.4 Percentage of Increment and Reduction of Metric V a lu e s 161
7.5 Programming Knowledge and Expertise of S u b je c ts 170
7.6 Average of Precision Scores and Processing Time 173
7.7 Overall Result of Field Experiment on 10 Subjects 177

C h a p t e r 1

INTRODUCTION

1.1 Background

Software developers today need to create applications that are capable of providing

various functionality and this has to be done quickly in order to overcome the issues

of decreasing resources, time and budgets. Developing software that supports porta­

bility, flexibility, extensibility, and reliability is hard; developing high quality reusable

software components is even harder [1]. To facilitate software developers in achieving

such goals, software reuse, which is the process of developing software systems using

existing software artefacts, has been a popular topic of debate and discussion for over

30 years in the software community. Software artefacts include software products,

requirements and proposals, specifications, designs, program source code, program

output, user manuals and test suites. Anything that is produced from a software

development process can potentially be reused.

McClure [2] suggests that software artefacts have the possibility to be software

components. Software component retrieval is an important task in software reuse;

after all, components must be found before they can be reused. Based on existing

work in software component retrieval [3, 4, 5, 6, 7, 8], there are two types of retrieval:

1.1 Background 2

function-based and structure-based.

Given a query that describes what a required component should do. function-

based retrieval presents developers with software components that act similarly. This

means that the retrieved components illustrate the same function as that defined

in the query. For example, a developer may require a program source code that

illustrates the implementation of a solution to the Tower of Hanoi puzzle [9]. By

defining the developer’s query using the phrase Tower of Hanoi, a function-based

retrieval system presents them with relevant programs that contain all or part of

the search phrase. Similarity between the query and programs in the repository

are performed using the textual analysis approach [10, 11, 12, 3], which uses term

occurrences [13] to represent the function of a program. Nevertheless, various other

methods have been used in representing functionality of a software component and

these can be found in Chapter 2.

In contrast to function-based retrieval which identifies components that act sim­

ilarly. structure-based retrieval presents developers with components that look alike.

An example would be two distinct programs that illustrate factorial function using

different approaches, e.g. recursion and looping; even though they have the same

function, they have a different structure. Further elaboration on existing approaches

of software component retrieval that identifies structural similarity can be seen in

Chapter 2.

In most of the work undertaken in the area of software component retrieval, users

are presented with components that are objects written to a specification such as

Component Object Model (COM) [14], Java Beans [15], etc. It is only by adher­

ing to the specification that the object becomes a component and gains features like

reusability. Even though software component reuse has emerged strongly in software

engineering, software developers who intend to use these components are inevitably

1.1 Background 3

restricted to the specification of the interfaces provided and required. When this

information conflicts with developers’ requirements, reusing the component is either

impossible or requires the original system to be modified. Additionally, the developer

could introduce a component adaptor [16] or some other wrapper [16] between the

system and the component. As Holzle [17] shows, however, there are complications

when multiple components must communicate with each other while they are con­

tained within some form of wrapper object. Hence, as an alternative, developers tend

to be.opportunistic about reusing programs obtained from open-source applications.

This thesis employs the open-source program source code as the component that

may be retrieved from a software repository. Further in the thesis, the program source

code is referred to as a program and is defined as follows:

D efinition 1 A program is a single file containing segments of code statements that

have been written to follow a particular language structure. For example, a program

which has been written using the Java programming language, contains package and

import statements, a class header and its body, and a method header and its body.

As a greater number of software developers make their programs available, there

is a need to store such open-source applications into a repository, and facilitate search

through the repository. The work described in this thesis concerns the mechanism that

supports the search and selection of programs from a software repository containing

Java programs. Only programs written using Java programming language have been

included in the repository due to the popularity of the language [18], and to ensure

evaluation of the work can be performed adequately.

1.2 Research Problem 4

I.2 Research Problem

Existing approaches of function-based component retrieval [3, 4, 5, 6, 7, 8] use the

function of a component as the focal point of comparison between a given query

and components in a repository. Functionality of a component can be identified

using various methods and this includes textual analysis of software components [10,

II, 12] and textual description of software components [4, 19, 20, 5]. Nevertheless,

such methods concentrate only on the natural language text that exists in software

documentation and/or programs. Therefore, only well-documented software is best

suited for such retrieval methods. In the context of this thesis, what is meant by a

well-documented software is the following:

D efinition 2 A well-documented software contains programs that use meaningful

identifiers - identifiers are named based on their functionality. For example, a method

named add illustrates the operation of adding two numbers. A well-documented soft­

ware also includes software documentation (information describing the functionality

of the software, and the required input and the expected output), program documen­

tation (information explaining the functionality of classes and methods, and patterns

used in implementing the code) and user manual (information on how to use the

software).

This means that software that is not accompanied with a user manual, and/or doc­

umentation would not benefit from textual analysis and/or textual description that

are employed in function-based approaches. In addition, if a program is written using

identifier names that do not explicitly reflect its function, then retrieval undertaken

based on textual analysis and/or textual description may not present developers with

relevant results. Furthermore, an inherent problem with many of these approaches

[21. 19. 12. 22] is that they are based on constructing a specific domain model [12] or

1.2 Research Problem 5

vocabulary [21, 19], which restricts the scope and flexibility of their solutions. There­

fore, we need to support function-based retrieval by incorporating information that

does not rely on semantics of a component (i.e meaning of statements in program

source code or in software documentation).

Currently, there have been efforts to develop search engines specifically for retriev­

ing source code. These include Google code search [23] and the Koders search engine

[24], which make use of the term occurrences approach to represent the function of a

program. A particular program is presented to the user if terms defined in a query

occurred in code statements of the program. However. Google code search [23] does

not perform a search in comment statements written in the program. Comments are

a very useful index term within a program as they quite often adequately explain

the functionality of the classes and methods contained in an object oriented pro­

gram. This causes them to contain words that often would not be in the code itself.

Furthermore, in the Google code search [23], there is a lack of domain-knowledge as­

sociated with its queries. For example, if a user requires programs that implement a

connection to the SQL database, and the program should employ a particular design

pattern such as Observer, how can such requirements be represented as a query in

the Google code search? Another example would be the use of the term add as the

query for programs in a Google code search. This search would present users with a

very broad result; including how to add a record in a database, adding a panel into

a GUI component, and the assignment of a value to the variable add. If the required

program is from the application domain of Mathematics, i.e the term add is referred

to a mathematical operation, programs relating to other application domains would

not be useful.

Even though there has been work undertaken in retrieving components based on

their structure [25, 26, 27], this work does not embrace knowledge buried in a program,

1.2 Research Problem 6

such as design patterns that have used in developing the code itself. Existing work

focuses on using pattern matching symbols [25, 26] in determining similarity between a

source code query and programs in a repository. Such an approach may be beneficial

to software maintainers who need to identify particular segments of code (e.g. a

nested for) in an application, but would not help a developer whose intention is

to find examples of programs that have been written to follow a particular pattern

(e.g Observer design pattern). Furthermore, a pattern matching approach requires

additional knowledge on pattern languages [25, 26] prior to defining a query for the

source code.

Classification of programs into application domain would facilitate program re­

trieval as developers could identify useful programs quickly and easily [28]. As many

developers are now posting their applications in open-source development reposito­

ries [29, 30], there is a need to automate organization of programs in such reposito­

ries. It is common to classify programs into application domains such as database,

graphics, networking and security. Existing open-source repositories which incluck1

Sourceforge .net [29] and Freshmeat [30] classify a software into an application

domain by using natural language descriptions provided by the developer and in­

formation extracted from the software documentation. However, such an approach

may misclassify a software if it is not well-documented and/or is posted to the repos­

itory without relevant description by its developer. Nevertheless, neither existing

function-based nor structure-based retrieval approaches have employed appropriate

mechanisms to automate classification of components into application domains prior

to retrieval.

While existing component retrieval approaches [23, 24, 25, 26, 27] are based on

either the function or structure of a component, we are proposing to combine the two

types of retrieval. In order to do so. the work described in this thesis concerns the use

1.2 Research Problem 7

of two types of descriptors: functional and structural. These descriptors are defined

as follows:

D efinition 3 Functional descriptors consist of information extracted from a program

that represents the functionality of the program. This includes terms extracted from

the code and comment statements written in a program.

D efinition 4 Structural descriptors consist of structural information contained in

a program that illustrate relationships between properties of the program. This in­

cludes class inheritance, interface hierarchies, method invocations and dependencies,

parameters and return types, object creations, and variable access within a method.

In addition, information inferred using structural information such as design patterns

and software metrics are also considered as structural descriptors.

By identifying functional and structural descriptors contained in a search query

and programs in a software repository, software developers are not only presented

with programs that function appropriately but also illustrate the required structure.

Furthermore, no work has been undertaken in program retrieval that uses a com­

bination of functional and structural descriptors. With an efficient organization of

programs and the use of structural and functional descriptors, open-source applica­

tions stored in a software repository can be made better use of. By understanding

a program's function and structure, software developers are able to better adapt a

program for their own applications.

Our approach of combining functional and structural descriptors in representing

programs in a software repository can also be extended to retrieve programs of other

languages, such as C ++. Relevant parsers can be developed to extract functional

and structural descriptors from programs of different languages.

1.2 Research Problem 8

1.2.1 W hy the Research is Im portant

This research is important to help developers answer questions that arise prior to

retrieving relevant programs from a software repository. Such questions include, what

is the functionality of the program - what can be achieved when we execute the pro­

gram? and which application domain can we use the program for? For example, is

the program suitable for use in database applications? In addition, a developer might

notice that someone else’s code seems simpler and works better than theirs, and they

wonder how that particular developer achieves this simplicity. Therefore, a developer

whose intention is to use the retrieved programs as guidelines in developing their own

application may also like to know if the program has been written to follow a partic­

ular pattern. This raises questions such as Are there any design patterns employed in

the program? If so, what design patterns are they?. Furthermore, what if the devel­

oper is also concerned about software quality [31]. As a developer performs a search

and is presented with a list of programs that illustrate the required function, they are

most likely to adapt a program that illustrates less complexity (e.g. containing fewer

method dependencies).

Based on the programming task illustrated in Figure 1.1, a retrieval system which

presents programs that function as required and illustrate the desired structure is

best suited for those who have the knowledge of design patterns and are keen to

use the knowledge in developing the application. These developers may define their

query consisting of relevant terms and a particular design pattern. Based on their

knowledge, they are able to identify suitable design patterns to be employed in the

application by inferring structural information (i.e dependencies between Weather-

Reporter and TextReport) in the given task. Therefore, these developers may define

their query as: weather report application AND observer design pattern.

Nevertheless, developers with little knowledge of design patterns can still benefit

1.3 Research Hypothesis and Questions 9

Develop a weather reporting application W eatherReporter class that stores the lat­

est weather data on-screen, the weather is displayed by two classes: GraphicReport

(cloud, sun, rain icons) and TextReport (Temperature: 25C, Sunny). When

the weather changes, W eatherReporter sends updates to TextReport object and

GraphicReport object.

Figure 1.1 Programming Task - Weather Reporting Application

from the retrieval system. By using an existing program which they are currently

writing for the programming task as a search query, they may still be able to retrieve

relevant programs from a repository. Structural descriptors contained in the query

program will contribute to the identification of similar programs in the repository.

1.3 Research H ypothesis and Questions

This thesis argues that retrieval of programs is better undertaken using a combination

of structural and functional descriptors rather than using functional descriptors on

their own.

The research hypothesis will be verified by developing a program retrieval system

that is built upon open-source applications and that presents users with examples of

programs that illustrate similar structure and function as illustrated in the query pro­

gram. The research is structured around four central questions discussed in sections

1.3.1, 1.3.2 and 1.3.3. Performance of the program retrieval system is later evaluated

through (1) objective analysis and (2) subjective experiments. The objective analysis

involves measuring the processing time of the retrieval system upon receiving a search

query and identifying the importance of structural descriptors in supporting program

retrieval. On the other hand, in the subjective experiments, retrieval effectiveness

1.3 Research Hypothesis and Questions 10

of the proposed program retrieval system is analyzed through field experiments with

developers.

1.3.1 Information Extraction

Question 1: How can we extract information from a program that can be used

as functional or structural descriptors in a program retrieval system?

One of the first challenges that a retrieval system has to cope with is indexing the

programs contained in a repository. This is achieved by extracting relevant informa­

tion from a program to be used as the program descriptors. Open-source programs

typically contain irregularities as they are written by different developers with dif­

ferent programming background and experience. Examples of such irregularities are

identifier names used in a program that illustrate the content of the program and the

practice of writing a program following a particular pattern. Programs in the repos­

itory may use similar identifiers, nevertheless they are employed in different context

in the program. The challenge is to extract these identifiers and represent them (as

indices) based on their contexts. An additional challenge is to find (new) abstraction

information that is not explicitly available in the program (e.g design patterns) and

can be used to represent a program. Thus appropriate parsers are required to extract

different types of information that are explicitly or implicitly contained in a program.

1.3 Research Hypothesis and Questions 11

1.3.2 Creating N ew R epresentation

Question 2: How can we combine functional and structural descriptors of a

program to represent a query and programs in a repository?

Upon identifying functional and structural descriptors, how can this information be

integrated as a program descriptor? An issue that should be considered is the flex­

ibility of the proposed mechanism. It should be flexible enough so that additional

descriptors (functional and/or structural) can easily be incorporated into it.

1.3.3 Supporting Program Retrieval

Question 3: How can we use the information obtained in the first two questions

to support and improve program retrieval?

Several issues have to be addressed before the identified information in Question

1 can be used to improve program retrieval: how to deal with similar identifiers

that represent the different contexts of a program (e.g. variable name, class name)?

Also, what information can be inferred from structural information extracted from a

program? In order to identify the benefits of incorporating structural descriptors as

program descriptors, we need to perform relevant analysis on the programs retrieved

for a given query.

Question 4' How is similarity measurement undertaken between a query and the

program in a software repository?

The challenge is to identify measurements that can be used to determine similarity

between a query and programs in the repository, which have been represented using

1.4 Scope of the Research 12

the mechanism identified in Question 2. Prior to that, we need to identify how a

query for source code is defined.

1.4 Scope of the Research

Although this thesis is set in the context of software reuse, the work undertaken

is discussed based only on retrieval perspective, e.g how different retrieval indexing

(functional or combination of functional and structural) affects the performance of

a source code retrieval system. Issues related to whether the mechanisms used in

determining functional and structural descriptors are sufficient enough for a source

code retrieval system are not the focal point of the thesis. We are focusing to learn

if the combination of functional and structural descriptors would generate a better

retrieval when compared to using functional descriptors on their own.

The work in this thesis focuses on program written using the Java language. Func­

tional descriptors identified from a Java program are restricted to keywords extracted

based on a program structure. On the other hand, structural descriptors that were

used in this work are the design patterns, application domains and software metrics.

Three design patterns, namely Singleton, Composite and Observer, are identified us­

ing the proposed design pattern identification mechanism. Currently, only programs

from database and graphics domains are included in this work and the classification

of programs into application domains is performed based on their software metrics.

1.5 Research Contributions

Several of the results set this research apart from other related approaches. The

overall solution is general and applicable to a wide range of programming languages

1.5 Research Contributions 13

and application domains. The research proposes and validates a new model that

supports source code retrieval and is applicable to a wide range of programming

language. The experiments shows that this approach provides better support for

a number of programming tasks (e.g connecting to a database system, retrieving

data from a database and organizing a set of images contained in a folder). The

contributions of this thesis are as follows:

• A model for extracting functional and structural descriptors contained in a

program source code. These descriptors are identified separately and later com­

bined into a single representation which is known as a compound index. Such

an approach can be extended to include other descriptors as identified and/or

required by the user.

• A model for retrieving programs based on a user providing the requirements

of a program, in a form of a query program (i.e program source code). This

model includes how similarity between a query program and programs from a

repository is identified and how programs that are relevant to the search are

sorted in the retrieval hit list.

• A new way of identifying design patterns employed in programs contained in

a repository. The identification mechanism is solely based on structural rela­

tionships, hence it can easily be modified to be used on programs written using

programming languages other than Java. Moreover, the proposed mechanism

can be extended to identify other design patterns as elaborated by Gamma et.

a l [!] •

• Classification of programs into applications domains; database and graphics.

The classification is performed using software metrics contained in the program

1.6 Organization of the Thesis 14

and such an approach can be used to support program classification undertaken

based on semantic meanings.

1.6 Organization of the Thesis

Chapter 2 of this thesis presents a review of current work in the area of software

component retrieval. In particular, it focuses on component retrieval undertaken

using functional descriptors and structural descriptors on their own.

In Chapter 3, we describe the use of term occurrences, which are accompanied

by a weighting scheme to be used as query and program descriptors. Chapter 4

focuses on utilizing structural information contained in a program where we propose

the use of design patterns as structural descriptors of a program. In this chapter, we

demonstrate the identification of three design patterns contained in Java programs.

Chapter 5 illustrates how software metrics extracted from a program are used to

support program retrieval. The metrics are used to classify a program into appro­

priate application domain and to represent program reusability. It is demonstrated

later in the chapter that program retrieval that includes program classification, un­

dertaken based on software metrics, is better than the retrieval performed based only

on semantic terms.

Chapter 6 is central to this work, and gives details of how functional and struc­

tural descriptors identified in Chapters 3. 4 and 5 are incorporated into the program

retrieval system. We describe here how the similarity measurement is undertaken

between a query and programs in the repository.

Evaluation of the program retrieval system is described in Chapter 7, which also

includes empirical subjective evaluations. In addition, lessons learned from the eval­

uation are also presented and discussed in this chapter.

1.7 Origins of the Chapters 15

Chapter 8 concludes the thesis by summarizing the contributions made and dis­

cussing future research directions.

1.7 Origins of the Chapters

Parts of this thesis were published previously. Portions of Chapter 3 are based on the

work presented in Yusof and Rana [32]. Portions of Chapters 4 and 6 are extended

from Yusof and Rana [33] and Yusof and Rana [34]. Most of Chapter 5 contains the

content of an article submitted to the IEEE Software Engineering, which is currently

under review, and most of Chapter 6 are based on the work presented in Yusof and

Rana. [35].

C h a p t e r 2

LITERATURE REVIEW

The development of a system for retrieving programs from a software repository

involves an understanding of software component retrieval. Issues related to repre­

sentation of programs in the repository are described in this chapter since they form

the basis for the research described in the subsequent chapters. The general area of

research under investigation here is related to applications of functional and structural

descriptors to address software component retrieval tasks.

2.1 Software Component Retrieval

A component retrieval mechanism works in the following way, as described by Mili et

al. [3GJ(Figure 2.1): when faced with a programming task, the user understands it in

his or her own way, and then formulates a query, which may be as simple as a set of

keywords or as complex as specifications in a formal language. An example of this is

when a user wants to write a Java program to solve the Tower of Hanoi puzzle [9].

One possible way to represent a query for source code is by using a set of keywords,

such as Java program Tower of Hanoi In practice, this first process results in the

loss of information since the user is not always capable of exactly understanding the

16

2.1 Software Component Retrieval 17

problem, or being definite about the required problem solution or of encoding the

required solution in the query language. If the user is not aware of the different ways

of implementing the problem using the Java language, which includes recursive and

non-recursive solutions, then s/he will not include the required solution in the query.

Once a query has been generated, it is passed to the Matcher as shown in Figure

2.1, that is responsible for identifying similarity between the query and indices in the

code library. This process of classification (also known as indexing), may be manual

or automatic, and also results in the loss of information. This occurs because since

a component embodies various features, it is difficult to identify all of these features

and use them as code indices. For example, several pieces of information can be used

to represent the functionality of a component (functional descriptors), such as the

terms extracted from code statements, formal specifications of the component and

the sample of input/output data related to the component. However, if the indexing

is based only on a particular descriptor, for example sample of input/output data,

then a query that is represented using formal specifications may generates irrelevant

results. The search itself consists of comparing the query with the index and returning

the components that match the query. This information loss is the focus of all the

work in this area — representing a program based on information that is anticipated

to be included in a query.

An application may contain more than a single artefact (e.g program source code,

user manuals, design documentation). Perhaps the most well known reusable arte­

fact is the program source code. This is because it is the most up to date artefact.

Developers may have made many changes in programs in order to achieve the desired

functionality but these changes may not be reflected in the documentation included

in the application. Hence, programs demonstrate best what function the application

offers and how it is implemented. The common practice in existing retrieval systems

2.1 Software Component Retrieval 18

Problem
space

Problem space as
understood by

user

Query
space

Code
space(indices)

Components space

o
0

Problem
understanding

Encoder query
forrmiation

Matcher Encoder
indexing

Figure 2.1 Component Retrieval Model (in Mili et al., 1995 [36])

2.1 Software Component Retrieval 19

is to identify relevant programs based on their functionality. Therefore, a program

that is written to achieve a particular function (e.g adding two values) should be

represented by descriptors that abstract its most relevant functional (semantics) fea­

tures. Nevertheless, it should also be represented in a way that focuses on its relevant

structural (syntactic) features. This is because prior to software implementation,

developers tend to model the problem (programming task) using various modelling

tools (e.g UML [37]). Such a process generates structural features of the components

to be developed, for example, the relationships between two objects. A combination

of functional and structural descriptors (refer to Definitions 3 and 4 on page 7) to

represent programs in a repository would help developers to retrieve programs that il­

lustrate the required function and structure as modelled in the design documentation

(e.g entity relationship diagram (ERD)).

As existing source code retrieval systems such as Google code search [23] and

Koders search engine [24] only use functional descriptors in identifying similarity

between a query and programs in a repository, structural descriptors of a program

have not been utilized. Nevertheless, developers may require programs that illustrate

a particular function in a certain way. Developers should not only benefit from cutting

and pasting code statements from a program, other information embedded in the

code can also be reused. This can be achieved by including structural descriptors in

representing a program. Basili et al. [38] defined a reusable program as the realization

of some software development experience. Such an experience refers to the way how'

a problem solution is designed prior to implementation.

2.1.1 Function-based

In the literature, several efficient ways to retrieve various types of software components

have been found [39, 4. 40, 41, 42. 43, 44, 7]. We present related work on software

2.1 Software Component Retrieval 20

component retrieval based on functional and structural descriptors as defined in Def­

initions 3 and 4 on page 7. Approaches undertaken in software component retrieval

based on functional descriptors are identified as using the following methods:

Information retrieval: these are methods that depend on a textual analysis of soft­

ware components. Components are represented using text and relevant compo­

nents are identified by understanding the meanings of the text that represents

the component [10, 11, 12, 3, 45].

Descriptive: descriptive methods depend on abstract representation of the compo­

nents. Such representation includes the use of a set of keywords or a set of facet

definitions [4, 20, 46, 47, 48, 5]. In deriving a faceted classification scheme, the

objective is to create and structure a controlled vocabulary [49] that is stan­

dard not only for classifying but also for describing a component in a domain

specific collection. Retrieval of relevant components is undertaken by identi­

fying components that minimize some measure of distance to the user query

[39, 41, 50, 51, 7]. Given a query that describes some required features of a

component, the retrieval system retrieves components that most closely match

a description of the features.

Operational semantics: these methods depend on the operational semantics of the

software components. This means that components are represented bv how they

function. They exploit the executable nature of components by comparing the

input/output data specified by a search query to the one produced by stored

components [52, 53, 6].

Denotational semantics: these are methods that depend on the denotational se­

mantic definition of the software component. Denotational semantics is an

2.1 Software Component Retrieval 21

approach to formalizing the semantics of a component by constructing mathe­

matical objects (called denotations or meanings) which express the semantics

of these components. These methods proceed by identifying a semantic relation

between the user query and software components [54, 40, 43, 55, 56, 57, 42, 8],

Nevertheless, only work undertaken using information retrieval and descriptive

methods are elaborated upon in this thesis as the proposed program retrieval system

employs a similar approach to these methods.

Information retrieval methods

Related work in information retrieval methods and their applications to the domain

of software is of importance. The research that has been conducted on the specific use

of applying information retrieval methods to source code includes Fischer [11], Frakes

and Nejmeh [10] and Maarek et al. [12]. Notable is work by Maarek et al. on the use

of an information retrieval approach for automatically constructing software libraries.

Their method relies on a natural language description of software components and

search queries. The indexing process automatically extracts a set of indices that

define its profile based on uncontrolled vocabulary. The uncontrolled vocabulary, also

referred to as free-text analysis, consists in analyzing term frequencies in natural text

[58]. On the other hand, controlled vocabulary consists of terms that are established

in order to group similar components [49]. The idea of a controlled vocabulary is

to reduce the variability of expressions used to characterize the component being

indexed, e.g. by avoiding synonyms and remove ambiguity (homonyms). Such an

approach can be seen in the work undertaken by Prieto-Diaz [4] and Yang et al. [5]

described under the descriptive methods.

Because of the unlimited number of terms (uncontrolled vocabulary) used to rep­

resent a component, the search space in identifying relevant components is large.

2.1 Software Component Retrieval 22

hence generating a greater possibility of having false positive results. To overcome

such a problem, Lindig [3] proposes that a user incrementally specifies a set of key­

words that the searched components are required to have. Such an approach is based

on precalculated concepts of the library, which are natural pairs of component and

keyword sets. The concepts form a lattice of super and subconcepts and are obtained

by formal concept analysis [59].

Marcus et. al [45] employ the term occurrences approach to indicate domain

knowledge and concepts embedded in a program source code. Identifier names and

comments are extracted from the program before latent semantic indexing (LSI) [GO]

is performed. In addition to recording which keywords a program contains, the LSI

examines the program collection as a whole, to see which other programs contain some

of those same words. LSI considers programs that have many words in common to be

semantically close, and ones with few words in common to be semantically distant.

Similar to the work undertaken by Marcus et. al [45], we extract identifier names

from a program to represent the function of the program. In order to overcome

the drawback of using uncontrolled vocabulary (i.e large search space), we include

information on the program context for each of the extracted identifiers. Details of

the approach can be seen in Chapter 3.

Descriptive methods

Prieto-Diaz [4] extended the use of keywords into a multi-dimensional search space

through the use of a facet, consisting of a set of predefined keywords. There are

three steps involved in retrieving relevant software components. First, users need to

formulate the query and this is undertaken by selecting appropriate terms from a list

of provided terms (known as term space) for each facet in the classification. To solve

ambiguities, a thesaurus is designed by the researcher for each facet to make sure the

2.1 Software Component Retrieval 23

keyword matched can only be within the facet context. Examples of the facet might

be a function, object/item-type, and system-type. Thus, organizing a collection of

software components into n facets implies that a query into the search space of the

collection would be made up of an n-tuple of keywords with the 2th keyword drawn

from the term space of the 2th facet. To determine similarity between a query and

software components, a weighted conceptual graph [4] is used to measure closeness

according to the conceptual distance among terms in a facet. The third step is to

rank the retrieved components. The ranking subsystem is based on reuse related

metrics. This estimates, for each of the retrieved components, the relative effort it

would take to reuse the component, that is, the effort required to adapt and integrate

the component into the new system. Components requiring the least amount of effort

are ranked at the top of the retrieval list.

Building on the work undertaken by Prieto-Diaz [4], Yang et al. [5] focus on the

problem of how to determine the ranks of the components retrieved by users. Factors

which can influence the ranking are extracted and identified through the analysis of

an ER-Diagram of the facet-based component retrieval system. Faceted classification

and retrieval has proven to be very effective in retrieving suitable components from

repositories [4, 5], but the approach is labour intensive. The reason for this is the

need for deriving and defining terms by experts so that the terms can later be used in

representing concepts relevant to the facet. From this, it has also been learned that

faceted classification is more effective for domain-specific collections than for broad,

heterogeneous collections such as an open-source repository. Even though this method

is gaining increasing attention because it takes domain knowledge into account when

designing facets [7], there exists a major concern in designing the facets. If facets are

designed too simple or few, there will be too many components in the retrieval list,

which will require users to examine the components manually in order to determine

2.1 Software Component Retrieval 24

the relevant ones. On the other hand, if facets are designed to be too complex, it

is hard for users to understand them and hard for the repository administrator to

classify all components into different categories. Moreover, the process to classify

the components is susceptible to being subjective, so that two different people may

choose different keywords or facets to describe the same component. In this sense,

we employ automatic indexing to extract, from code and comment statements, terms

that describe a component.

In the work undertaken by Girardi and Ibrahim [47], an acquisition mechanism

automatically extracts from software documentations the knowledge needed to cata­

logue them in a software base. The system extracts lexical, syntactic and semantic

information and this knowledge is used to create a frame-based internal representa­

tion for the software component. The interpretation mechanism used for the analysis

of a software documentation does not pretend to understand the meaning of a de­

scription. It attempts to automatically acquire information to construct indexing

terms for a software documentation. The WordNet [61] lexicon is used to obtain

morphological information, grammatical categories of terms and lexical relationships

between terms. The software base contains a collection of frames, and each software

component (i.e software documentation) has a set of associated frames containing

the internal representation of its description along with other information associated

with the component (e.g program source code). The retrieval mechanism looks for and

selects components from the repository, based on the closeness between the frames

associated with a query and the software components. Closeness measures [62] are

derived from the semantic formalism and a conceptual distance between the terms

in the frames under comparison. Software components are scored according to their

closeness value with the user query. The ones with a score higher than a controlled

threshold become the retrieved software components.

2.1 Software Component Retrieval 25

Similar to the work undertaken by Girardi and Ibrahim [47], Gu et al. [48] also rep­

resent components to be stored in the repository using frames. They adopt a frame-

based representation and reasoning system, CREEK [63], which unifies component-

specific cases and general domain knowledge within a single representation system.

In CREEK, information describing the functionality of a component is represented

as concepts, and a concept takes the form of a frame-based structure, which consists

of a list of slots. A slot acts as a relation from the concept to a value related with

another concept. Viewed as a semantic network, a concept (frame) corresponds to

a node, and a relation (slot) corresponds to a link between nodes. Slot values have

types or roles, referred to as facets. Similar to the work undertaken by [4], such a

approach is also labour intensive as participation of an expert is required to design

the frame.

We are taking a similar approach to [4, 47] to represent functionality of compo­

nents by extracting relevant information from software components. Nevertheless,

our approach does not require the participation of an expert to design the facet and

determine suitable terms to be included in the term space. We employ program struc­

ture as the facets and use relevant terms extracted from a program as the term space

for the appropriate facet. Furthermore, we include a weighting scheme to illustrate

the importance of the facets. Elaboration on program structure and the weighting

scheme can be found in Chapter 3.

2.1.2 Structure-based

It is fair to say that most of existing software component retrievals identify rele­

vant components solely on the basis of their function: the system decides whether

to select a software component by matching the functional descriptors (refer to Def­

inition 3 on page 7) of the candidate component against desired functional features.

2.1 Software Component Retrieval 26

An alternative rationale is to select software components not on the basis of their

function but rather on the basis of their structure: the system selects a software com­

ponent whenever there is a reason to believe that a possible solution to the query has

the same structure as the software component under consideration. Function-based

retrieval is very important, as it can provide effective and precise retrieval results.

Unfortunately the semantics of a software component identified using information

retrieval and descriptive methods may be hard to determine if the software is not

well-documented (refer to Definition 2 on page 4). Therefore, an alternative to using

functional descriptors in retrieving relevant components from the software repository

would be beneficial. In addition, the software repository used in our work contains

applications obtained from open-source repositories. This means that:

• it is contributed to by various developers, each with a different style of writ­

ing programs. This includes not naming objects and methods based on the

functionality that they offer. In addition, the repository might also include ap­

plications that are not well-documented. If the accompanied documentation is

poor, how can the existing information retrieval and descriptive methods that

rely mainly on text description be used as program descriptors?

• it may contain an application that requires a different environment or platform.

With this in mind, the possibility of identifying the desired components us­

ing operational methods is lessened if developers do not have the appropriate

environment.

• there are possibilities that there is only program source code included in an

application. Since most of the developers do not include specification docu­

ments in the application to be stored in the repository, retrieval methods based

on denotational semantics are not suitable. In addition, most of the denota-

2.1 Software Component Retrieval 27

tional semantics approaches require a representation of the program in formal

language. Even though one could translate the appropriate repository contents

into a formal specification, it is unlikely to happen as such a process requires

additional effort especially if it is done manually. Furthermore, currently there

are no tools created to automate the translation process.

Programming Cliches

Over the past couple of decades, researchers have been investigating tools that can

help in the process of program understanding. One such tool attempts to recognize

common programming cliches. In this context, a cliche is a pattern that appears fre­

quently in many different programs (and possibly many different languages). Devel­

opers learn these patterns and use them to speed up the process of code construction:

when they need to produce some behaviour that matches a pattern, they do not need

to think about each line of code they write, but instead let their subconscious mem­

ory of the pattern generate the required statements. For example, developers have

probably already learnt the pattern for iterating through an array and can write such

behaviour quickly and reliably.

There are two types of programming cliches: general purpose cliches and specific-

domain cliches. The former refers to cliches that occur in programs throughout all

problem domains, such as iteration, while the latter are cliches that can be found only

in a particular domain. Typically, the specific domain cliches can be built on top of

the general purpose cliches. For example, such cliches can be found in programs that

sequentially simulate parallel systems. An elaboration of the example can be found

in the work undertaken by Wills [27].

Before any cliche can be retrieved by users, it needs to be identified. The recogni­

tion methods of programming cliches can be categorized into two categories: textual

2.1 Software Component Retrieval 28

analysis [64] and graph parsing [27]. In the latter work, GRASPR is used to trans­

late a program into a language-independent graphical representation (i.e flow graph).

The cliches and the relationship between them are encoded in graph grammar rules.

Before a program is translated into a flow graph, it is first translated into a Plan

Calculus representation [65]. The structure of this graph explicitly captures data and

control flow, as well as aggregate data structure accessors and constructors and re­

cursion. Later, the translation process encodes the plan into an attributed flow graph

representation [27]. Recognition of programming cliches is undertaken by parsing the

program graphical representation in accordance with the graph grammar encoding of

the cliches.

Thfc specification of a generic problem results in the creation of a problem schema

that is analogous to the notion of cliches in the Programmers’ Apprentice [64]. Waters

[64] used a variation of Ada’s procedure notation in representing cliches. Such a form

specifies the name of the cliche, and some declarations that define the important

features of the cliche, as well as the computation that corresponds to the cliche.

The cliches are stored in a library that is structured by the hierarchical generality

relation. Examples of cliches are FileEnumeration, which sequentially enumerates all

the records of a file and Simple Report, which produces a report from a file, according

to a predefined format. Retrieval is later undertaken by matching cliches’ names

against queries that are submitted using natural language. Building on this work,

other types of component retrieval based on such structural descriptors has been

undertaken. For example, Waters and Rich [66], later expanded the work done by

Waters [64] by implementing the idea in the Design Apprentice [67]. The knowledge

of the Design Apprentice is personified in its cliches for typical specifications, design

and hardware characteristics. Examples of these cliches include initializing a device, a

generic device driver and an interactive display device. While a cliche may represent

2.1 Software Component Retrieval 29

the implementation of a piece of an object, it does not illustrate the interaction of

the object with other objects, which may be depicted in a design documentation (e.g

Entity Relationship Diagram (ERD)). Therefore the existing methods [64, 66, 67] are

less useful for developers who are seeking for components that illustrate a similar

design as defined in their design documentation.

Pattern Language

Santanul and Atul [25, 26] presented a framework in which pattern languages are used

to specify the required code features. The pattern language is derived by extending the

source programming language with pattern-matching symbols. SCRUPLE, a finite

state'machine-based program search tool implements the proposed framework. In

SCRUPLE [25], the extensions include a set of symbols that can be used as substitutes

for syntactic entities in the programming language. For example, a code statement

of x = x + 1 is represented as $v3 = $v3 + 1 in the proposed pattern language.

When a search specification is written using one or more of these symbols, it plays

the role of an abstract template that can potentially match different code fragments.

If no symbol is used, the specification consists only of constructs that are valid in the

programming language, which effectively makes it a valid code fragment in itself, and

hence leads to only precise matches. While this is a powerful method for maintainers

of large software projects, it lacks the common retrieval fuzziness where components

are relevant for a query, but do not necessarily match it. Additionally, the method

requires some training prior to usage, because its query language is not standard.

If a user fails to understand and use the pattern language effectively, s/he may be

presented with a limited set of code fragments or even worse, s/he may not get any

results at all.

2.1 Software Component Retrieval 30

Design Patterns

One of the characteristics of developing a reusable software component is to follow

existing standards so that it can later be used by not only the developer himself but by

other people who require components with the same capability. This includes patterns

which are devices that allow software developers to share knowledge about their

software design. In daily programming, developers encounter many problems that

have occurred, and will occur again. The question that may arise is how the developer

is going to solve it this time. Documenting patterns is one way that developers

can reuse and possibly share the information that they have learned about how it

is best to solve a particular problem (i.e programming task). Gamma et al. [1]

employs Alexander’s idea of explicitly describing implicit design knowledge and best

practices [68] in software design and such an approach has rapidly spread to various

scenes in software development. Like Alexander’s pattern language [68], a design

pattern is considered a well-formed language to represent software design. A design

pattern names, abstracts and identifies the key aspects of a common design structure

that can be used to develop a reusable program. Design patterns also identify the

participating classes and instances, their roles and collaborations, and the distribution

of responsibilities [1].

A design pattern is a way to pursue an intent - that uses classes and their methods

in an object-oriented language [69]. A description of design patterns can be found

in a documentation format such as described by Gamma et al. [1]. The authors

[1] presented 23 design patterns using a template containing of 13 characteristics -

Pattern Name and Classification, Intent, Also Known As, Motivation, Applicabil­

ity, Structure, Participants, Collaborations, Consequences, Implementation, Sample

Code, Known Uses and Related Patterns. Gamma et al. [1] claimed that the template

lends a uniform structure to the information, making design patterns easier to learn,

2.1 Software Component Retrieval 31

compare and use. Even though software developers can learn about the use of design

patterns through this documentation which includes examples of code fragments, they

may later have the problem of modifying the code to illustrate the required function

that suits a particular domain. As a retrieval system may be used as a learning tool,

we see the need of presenting users with programs that not only functioned appro­

priately but also illustrate the required design pattern. With this, the users can use

the retrieved programs as guidelines in creating their own applications.

A work conducted by Prechelt et al. [70] suggests the idea of using patterns in

developing an application can often result in components that are more easily main­

tained and modified. Given the frequency with which the need for modifications

arises in software development, the added flexibility that comes from using a pat­

tern seems to be a more optimized structure. Therefore, design patterns are clearly

a useful addition to the developer’s vocabulary and programming skill. Indeed, it

can be argued that even if design patterns are not widely employed in programs,

because of the complexity, simply studying them will itself encourage the develop­

ment of clearer thinking about design problem solution, and will convey some of the

benefits of experience. Even though design patterns are mostly likely to be used in

forward engineering process, such as when developers move from the design to the

implementation phase, they are equally important in the reverse engineering process.

In this thesis, reverse engineering is focused on the task of identifying design patterns

embedded in programs contained in an application.

Current approaches of design patterns detection can be categorized according to

the kind of analysis they perform: static [71, 72], dynamic [73, 74] or a combination of

static and dynamic [75]. Static analysis is performed by examining the code without

executing the program and such a process provides an understanding of the code

structure. On the other hand, dynamic analysis involves the execution of the analyzed

2.1 Software Component Retrieval 32

program. As open-source applications may require different execution environment

for it to be executed, the dynamic and a combination of static and dynamic analysis

in design pattern detection may not be suitable. Therefore, we only focus on existing

work that detect design patterns based on static analysis.

Most of the work undertaken using static analysis requires the analyzed program

to be represented in an intermediate form such as an abstract syntax tree (AST)

[76. 77. 78] or an American Standard Code for Information Interchange (ASCII)-based

representation [71, 72]. Using AST as the intermediate format, every source file is

entirely represented as a tree of AST nodes. The first step in SPQR [76] is to translate

the AST obtained by GNU Compiler Collection (GCC) [79] to a format recognized by

a theorem prover. GCC is an integrated distribution of compilers for several major

programming languages which currently includes C, C ++ , Objective-C, Objective-

C ++, Java, Fortran, and Ada. In SPQR , the gcctree2oml tool was included to read

a tree file and later produces an XML description of the object structure features. A

second tool, omlBotter then reads this XML description and produces a feature-rule

input file to the automated theorem prover, OTTER [80]. OTTER finds instances

of design patterns by inference based on pre-defined rules employed as denotational

semantics. This approach relies heavily on the accuracy of the information extracted

in the first stage. Although extracting structural relationships seems straightforward,

it is complicated by variations in the implementations of some relationships, such as

aggregation [78]. Thus, these approaches can result in higher false positive or false

negative rates.

The design pattern detection mechanism introduced in FUJABA [78] works on the

abstract syntax tree (AST) which is produced by the JavaCC source code parser [81].

The design pattern detection mechanism is based on graph grammars working on

the AST and the patterns to be detected are defined by graph transformation rules.

2.1 Software Component Retrieval 33

Each rule transforms a particular graph structure, i.e. a pattern or a subpattern, and

annotates it with an additional node to indicate the found design pattern instance

and additional edges to indicate the participants of this instance. All patterns and

structures are organized in a graph that shows the compositions of patterns and

substructures and builds a dependency hierarchy between them. It analyses the rules

applied to the AST, and also tries to apply the transformation rules of patterns which

depend on these rules.

Previous work [71, 72] has used a structural analysis of code structure to identify

design patterns defined by Gamma et al. [1]. Keller et al. [72] use the C ++ program

analysis system, GEN++ [82] to generate an American Standard Code for Informa­

tion Interchange (ASCII)-based representation of the relevant source code elements

(UML/CDIF Intermediate Source Model). They [72] adopt the CDIF transfer for­

mat [83] as the syntax and the UML metamodel 1.1 [37] as the semantic model of

the intermediate format. Keller et al. [72] extract structural relationships from the

C + + source code and stores this information in an object oriented database. How­

ever, their approach requires developers to manually group design elements, such as

classes, methods, attributes, or relationships to reflect a pattern.

The approaches [78, 76, 71, 72] discussed above are restricted to having an interme­

diate mechanism in detecting design patterns embedded in a program. They require

either translation of patterns [78] or programs under analysis [72] into a particular

representation.

Software Metrics

Software metrics can be classified as either product metrics or process metrics [84].

Process metrics are measures of the software development process, such as overall

development, type of methodology used, or the average level of experience of the

2.1 Software Component Retrieval 34

programming staff. On the other hand, product metrics are measures of the software

product (e.g program source code, software design, software documentation) at any

stage of software process, from requirements to installed systems. Product metrics

may measure the complexity of the software design, the size of the final program

(source code), or the number of pages of documentation produced. Examples of

product metrics are as follows:

1. Number of Modules (Nom) - modules in terms of a grouping of member func­

tions. For example, the C + + classes, Java classes and interfaces and Ada

packages are defined as modules.

2. Lines of Code (Loc) - this count follows the standard of counting non-blank,

non-comment lines of source code. Preprocessor lines are treated as blank.

In the context of this thesis, class and function declarations are counted, but

declarations of global data are ignored as such declarations(if the variables are

of the same type) can be made on a single line.

3. McCabes Cyclomatic Complexity (Mvg) - a measure of the decision complexity

of the functions that make up the program. The definition of this measure is that

it is the number of linearly independent routes through a directed acyclic graph

that maps the flow of control of a given code fragments. An analyzer counts this

by recording the number of distinct decision outcomes contained within each

function, which yields a good approximation to the formally defined version

of the measure. Cyclomatic Complexity essentially represents the number of

paths through a particular section of code, which in object-oriented languages

applies to methods. Cyclomatic Complexity’s equation from graph theory is

as follows: CC = E — N + P where E represents the number of edges on a

graph, N the number of nodes, and P the number of connected components.

2.1 Software Component Retrieval 35

Cyclomatic complexity can be explained as follows: every decision point in a

method (e.g i f , fo r, while, or case statement) is counted; additionally, one is

added for the method’s entry point, resulting in an integer-based measurement

denoting a method’s complexity. For example, the code fragments illustrated in

Figure 2.2 will yield a cyclomatic complexity value of 3. There are two decision

points: an i f and an e lse . Another value is obtained by adding the method's

entry point which automatically adds one. The less the complexity, the better.

More complexity means developers have more decision making and branching

occurring inside the code fragments. This makes it harder to test the function.

p u b lic in t getValueCint paraml) {

in t value * 0;

i f (paraml == 0) {

value = 4;

}
e lse {

value = 0 ; }

re tu rn v a lu e ; }

Figure 2.2 Method get Value

4. Depth of Inheritance Tree (Dit) - measures the depth of a class in the inheritance

tree. If the whole inheritance graph is a tree, then Dit is the path length from the

root to the class under investigation. This metric can be used to determine the

complexity of a class based on its ancestors, since a class with many ancestors

is likely to inherit much of the complexity of its ancestors.

2.1 Software Component Retrieval 36

5. Coupling Between Object (Cbo) - the use of another object’s methods or in­

stance variables. Since this creates dependencies between objects, the higher

the number, the greater the possibility that reusability of class may decrease.

When either one object uses another object, then both objects are said to be

coupled. One major source of coupling is that between a superclass and a sub­

class. A coupling is also introduced when a method or field in another class is

accessed, or when an object of another class is passed into or out of a method

iiivocation. The more independent a class is, the more likely it is that it will be

possible to reuse. When a class is coupled to another class, it becomes sensitive

to changes in that class, thereby making maintenance difficult. In addition, a

class that is overly dependent on other classes can be difficult to understand

and test in isolation. In the context of the work undertaken in this thesis, Cbo

is defined for classes and interfaces, constructors and methods. It counts the

number of reference types that are used in:

• field declarations

• formal parameters and return types

• throws declarations

• local variables

For example, the Cbo for class ComboBoxEditor which is illustrated in Figure

2.3 is 3: Component the return type for method getEditorComponent counts as

1, Object is counted as 2 since it is the return type for method get Item and it

is also the an argument for method setltem and ActionListener also counts

as 1 as i is the argument method addActionListener.

2.1 Software Component Retrieval 37

public in terface ComboBoxEditor {

public Component getEditorComponent();

public void setltem (0bject anObject);

public Object getltem O ;

public void se le c tA llO ;

public void addActionListener(ActionListener 1);

j __

Figure 2.3 Class ComboBoxEditor

6.' Weight Method per Class (Wmc) - the sum of a weighting function over the

functions of the module. The Wmc uses the nominal weight of 1 for each

function, and hence measures the number of functions; the larger the number

of methods in a Java class, the more complex the children will be because of

inheritance. A high number of methods will lessen the potential for class reuse

because the class is likely to become application specific. For example, the Wmc

for code fragments contained in class QueryReportResult, depicted in Figure

2.4, is 2 for Wmc - constructor QueryReportResult and method getTemplate

are counted as one respectively.

7. Fan-In measures the number of programs that pass information into the current

program. For a given program A, the Fan-In is the number of other programs

which use A. For example, the number of other programs (known as suppliers)

that pass information into the class ComboBoxEditor (known as client) in Figure

2.3 is equal to 3 - Component, Object and ActionListener. Three variants of

Fan-In are presented: a count restricted to the part of the interface that is

externally visible (Fivis), a count that implies that changes to the client must

2.1 Software Component Retrieval 38

public c la ss QueryReportResult extends V elocityResult {

public QueryReportResult() {

try{

velocityE ngine. i n i t () ;}

catch (Exception e) {

lo g .e r r o r (e); }

}
protected Template getTemplate(OgnlValueStack stack,

VelocityEngine v e lo c ity , Actionlnvocation invocation, String

location) throws Exception {

Action action ■ in vocation .getA ctionO ;

return super.getTem plate(stack, v e lo c ity , invocation, location);

}

}

F igure 2.4 Class QueryReportResult

2.1 Software Component Retrieval 39

be recompiled if the supplier’s definition changes (Ficon), and an inclusive count

(Fiincl) of Fivis and Ficon.

8. Fan-Out measures the number of programs that accept information from the

current program. For a given program A, the Fan-Out is the number of other

programs which A uses. Similar to Fan-In, three variants of Fan-Out are pre­

sented: a count restricted to the part of the interface that is externally visible

(Fovis), a count that implies that changes to the client must be recompiled if

the supplier’s definition changes (Focon), and an inclusive count (Foincl).

Reusability is the degree to which a component can be reused, and reduces the

software development cost bv enabling less writing and more assembly. How users can

detect which component is the most reusable among several components implement­

ing the same function, and how users can select components with higher reusability

are key issues. Therefore, existing studies measure the reusability of components in

order to realize the reuse of components effectively [85, 86]. In the work undertaken

by Caldiera and Basili [85], domain experts determine components that have reuse

potential according to their experience and knowledge. Nevertheless, they paid too

much attention to the component function and neglected the quality of components.

In the work undertaken by Lai and Yang [87], they proposed a combination of

several metrics to be used by experts in identifying high quality software components.

Their approach defined the software component as including design specification,

program, and related documentation. Software metrics that are to be used include

the McCabe’s Cyclomatic complexity (Mvg) [88], Halstead data structure metric [89],

nest ing level of program construct [90], test coverage [84], and coupling and cohesion

metrics [90]. To provide overall measurement of the reusable software component, Lai

and Yang [87] combine these metrics using a dynamically weighted linear combination

2.1 Software Component Retrieval 40

that allows the assignment of different weight values to the same metrics in different

situations.

Washizaki and Fukazawa [86] present metric values of the JavaBeans [15] com­

ponents that are selected by a user from the retrieval list. They include the Depth

of Inheritance TVee (Dit) [91] and SCCr [92] in helping a user to decide whether the

selected component is suitable to be adopted into the application s/he is working on.

Nevertheless, Washizaki and Fukazawa did not demonstrate if the metrics can be used

in identifying similarity between a search query and components in the repository.

Based on existing work in software metrics, reusing a software component with

high reuse potential and high quality contributes to improve software quality and

productivity [87, 86, 90]. With this in mind, we include software metrics, that mea­

sures the quality of a component, as structural descriptors of a program. In order

to identify the high quality programs from a software repository, discussion of the

measurable characteristics of reusable programs and their corresponding metrics is a

necessary step. Among the characteristics of a reusable program are the complexity

and coupling between objects [87].

Based on existing studies [87, 93. 94, 95]. in this research, we include six software

metrics to represent quality measurement of a complex program: Mvg, Wmc, Fan-

In (Fivis, Ficon) and Fan-Out (Fovis, Focon). The complexity of a program is a

measure of the effort required to understand the program and is usually based on

the control and data flow of the program. While opinion as to what construes code

complexity is quite subjective, over the years the software industry has largely agreed

that a highly complex code can be difficult for software developers to understand

and therefore is harder to maintain [93, 95]. Moreover, a highly complex code has a

high probability of containing defects. Various studies [96, 97] have suggested that

a Cyclomatic Complexity (Mvg) value of 10 or higher for a particular program is

2.1 Software Component Retrieval 41

considered complex.

Wmc is a predictor of how much time and effort is required to develop and maintain

a program. The higher the Wmc, the greater amount of testing is required and the

amount of maintenance is increased. Rosenberg et al. [93] suggest that an object

oriented class should have less than 20 functions, but up to 40 is acceptable. They

also claimed that with further analysis, programs with Wmc greater than 40 have a

low reliability [93].

The Fan-In and Fan-Out metrics maintain a count of the number of data flows

from and into a program plus the number of global data structures that the program

updates. The higher the values of these metrics (i.e Ficon, Fivis, Fovis, Focon) in a

particular program, then the more complex the program is [84].

In the process of implementing an object oriented application, developers need

to ensure that sets of classes are loosely coupled [98]. An application that is loosely

coupled implies the number of relationships among all classes in the application has

been kept to the minimum. If every object has a reference to every other object,

then there is high coupling, and this is undesirable because there is potentially too

much information flow between objects. Hence, low Cbo is desirable; this means that

objects work more independently of each other. Developers who are searching for

examples of programs to be reused, would benefit from retrieving programs with low

coupling - low coupling programs minimize the ripple effect where changes in one

program cause the necessity for changes in other programs.

2.1.3 Similarity M easurem ent using D istance Measures

Given a query that contains some desired features, retrieval of components that depict

the exact features may sometimes not be possible. Therefore, users are presented with

components that come closest (approximate retrieval) to providing these features.

2.1 Software Component Retrieval 42

Research have shown that software components and search queries are represented

using various representations: text [12], facet [4], graph [99] and formal specification

[40]. With such representations, one of the common methods to determine similarity

between components and a search query is through the use of distance measure. A

distance measure is a function that associates a non-negative numeric value with (a

pair of) sequences, with the idea that a short distance means greater similarity. Such

an approach expects that the outcome will either be an exact match [100] or (failing

an exact match) one or more approximate matches [100].

In the domain of component retrieval, there have been several approaches [7, 4, 20]

of distance measure and this includes the use of linear combinations [101], as in the

work undertaken by Girardi and Ibrahim [47], Spanoudakis and Constantopoulos

[102], and Sugumaran and Storey [7]. As mentioned in section 2.1.1, Girardi and

Ibrahim [47] represent software components in a descriptive manner (i.e frame-based).

The distance between a query and a software component is defined by a linear com­

bination of weighted terms, where each term corresponds to a slot of the frame [62].

The term associated to a given slot is the product of two factors: a weight, which

reflects the relative importance of the slot in defining the function of the asset: and

a similarity index, which reflects to what extent the slot of the query and the slot

of a component are similar. The weight is determined by the domain analyst who

stores the components in the library, while the similarity index is retrieved from the

WordNet [61], the natural language thesauri.

Sugumaran and Storey [7] present a semantic-based solution to component re­

trieval. The approach employs a domain ontology to provide semantics in refining

user queries expressed in natural language and in matching between a user query and

components in a repository. In identifying components that are relevant to a given

query, a distance measure proposed by Girardi and Ibrahim [62] is employed in the

2.1 Software Component Retrieval 43

retrieval system.

Spanoudakis and Constantopoulos [102] define a measure of structural distance

between queries and assets on the basis of an analysis of their TELOS representations.

The distance they introduce is a weighted linear combination of four functions which

reflect whether relevant entities in the query and a component are identical and to

what extent the query and the component have common attributes via their shared

subclasses and their shared super-classes.

Another example of identifying relevant components based on distance measure is

the work done bv Prieto-Daz [4] and Lucredio et al [20]. In the work undertaken by

Prieto-Daz, similarity between a query and software components in the repository is

undertaken by measuring closeness of the weighted conceptual graph [4] containing

terms described in a facet. Similar to the work by Prieto-Daz [4], Lucredio et. al [2 0]

also represent software component using facets. Nevertheless, they [20] proposed a K-

metric function which is based on number of insertions and removals (one substitution

counts as one removal followed by one insertion) of keywords that are needed in order

to make the keywords sets of the query equal to the keywords sets of a component in

the collection.

Vector Model

In addition to existing approaches of using distance measure in component retrieval,

we include the discussion on how vector model evaluates the degree of similarity of

the program P with regard to the query q using two calculations: Cosine Measure

and Euclidean Distance.

The cosine measure proposes to evaluate the degree of similarity of the program

P with regard to the query q as the correlation between the vectors P and q. This

correlation can be quantified, for instance, by the cosine of the angle between two

2.1 Software Component Retrieval 44

vectors. That is,

sim (P ,q) = (2 .1)
(vteT-iiW * (>/£?-! »£.)

where P is the program, q is the query, yi is the zth data in the P or q, and n is the

number of data in the query. Ranking for cosine measure is done from highest value

to the lowest value, i.e. highest cosine measure are placed first. If the angle between

the vectors is small they are said to be near each other and a small angle means a

high cosine value.

Euclidean distance, or simply ED, examines the root of square differences between

data of a pair of component and query. In mathematics, the Euclidean distance or

Euclidean metric is the distance between the two points that one would measure with

a ruler, which can be proven by repeated application of the Pythagorean theorem.

By using this formula and symbols defined in equation 2 .1 , the distance between a

program in a repository and a given query can be obtained using the following :

For the ED, ranking is done from lowest distance to highest distance, i.e. the

program with lowest ED is placed first.

D ata Distribution

The degree of similarity of the program P with regard to a given query q can also

be identified based on the distribution of data in P and q. In the context of this

thesis, data distribution is an information on how data in a software component

representation (e.g index) are distributed. An example of data distribution measures

is the skewness [103]. In order to determine similarity between two programs, the

n

distance{P, q) = . ^ (y t .p - yi,,)2 (2 .2)

2.2 Software Classification 45

distance between the data distribution measurement (e.g skewness) is determined.

Skewness characterizes the degree of asymmetry of a distribution around its mean

[103]. For a set of data containing yi, y2 , ..., y„, the formula for skewness is:

skewness = ----- (2.3)
(n — IJs '5

where y* is the ith data in the index, y is the mean, s is the standard deviation,

and n is the number of data that represents the program. The skewness for a normal

distribution is zero, and any symmetric data should have a skewness near zero. Neg­

ative values for the skewness indicate data that are skewed left and positive values

for the skewness indicate data that are skewed right. By skewed left, we mean that

the left tail is heavier than the right tail. Similarly, by skewed right we mean that

the right tail is heavier than the left tail.

2.2 Software Classification

Most of the applications stored in the open-source repository systems such as the

Sourceforge.net [29] and Freshmeat [30] are classified into various categories (e.g ap­

plication domain and programming language). If the applications in such sites are

correctly classified, retrieval of the required application would be greatly facilitated.

In order to reuse program source code, a user may need to manually analyse each

of the applications (that may contain more than one program) retrieved by the re­

trieval system. This is because the applications in these repositories are classified into

appropriate domains based on the overall description provided by the developers.

Retrieval of the relevant program source code can be made either by browsing

source code that are classified into application domains or by searching through post­

ing a specific search query that includes information on the desired program and

2.2 Software Classification 46

application domain. But how are the programs categorized? A developer attempting

to organize a collection of programs would most likely categorize the programs based

on information in the source code itself (e.g identifier names), some design specifica­

tions and the documentation provided with the program. But to understand which

application domain the program belongs to, it is very likely the developer would try

to gather natural language resources such as comments and ReadMe files. Informa­

tion in natural language are extracted from either external documentation such as

manuals and specifications or from internal documentation such as comments and

identifier names.

2.2.1 Classifiers

Ugurel et al. [28] classified programs into appropriate application domains and also

programming languages using three components, namely, feature extractors, vector-

izers and Support Vector Machine (SVM) [104] classifiers. Ugurel et al. [28] demon­

strate an SVM based approach to programming language and topic classification of

software programs. They trained the classifier with automatically extracted features

from the code, comments, and the ReadMe files (i.e. tokens in the code, words,

and lexical phrases in the comments and ReadMe files). The results imply that large

archive collections of mixed software components such as software documentation and

program source code can effectively be automatically classified and categorized. Nev­

ertheless, such approach is based on semantic terms extracted from documentation

associated with the program. Therefore the approach is only applicable to software

that are well-documented. To the knowledge of the researcher, there is no work un­

dertaken in program classification that is based solely on information contained in the

program source code. In addition, other than SVM, there is no other work that uses

machine learning techniques in classifying program source code into application do­

2.2 Software Classification 47

main. Examples of these techniques include the C4.5 [105] and K-nearest neighbour

(KNN) [106]:

The C4.5 [105] deserves special attention due to the fact that it presents the

result of research in machine learning that originated from the ID3 system [107].

Therefore, it has always be been the point of comparison for novel approaches in

machine learning approaches [108]. C4.5 builds decision trees from a set of training

data in the same way as ID3, using the concept of information entropy. The training

data is a set S = ■s1,s 2, ... of already classified samples. Each sample s* = x \ ,x 2 , ... is

a vector where x l %x2 represent attributes or features of the sample. The training

data is augmented with a vector C = c l,c 2 ,... where c l,c 2 , ... represent the class

(group) that each sample belongs to. C4.5 uses the fact that each attribute of the

data can be used to make a decision that splits the data into smaller subsets. C4.5

examines the normalized Information Gain (difference in entropy) that results from

choosing an attribute for splitting the data. The attribute with the highest normalized

information gain is the one used to make the decision. The algorithm then recurses

on the smaller sublists.

The K-nearest neighbour (KNN) [106] is one of the most popular algorithms for

text categorization [109]. Many researchers have found that the KNN algorithm

achieves very good performance in their experiments on various data sets [1 1 0 , 1 1 1 ,

112. 113]. It is an algorithm where the result of new instance query is classified

based on majority of K-nearest neighbor category. The purpose of this algorithm is

to classify a new object based on attributes and training samples. The classifiers do

not use any model to fit and only based on memory. Given a query point, we find K

number of objects or (training points) closest to the query point. The classification

is using majority vote among the classification of the K objects. K-Nearest neighbor

algorithm used neighborhood classification as the prediction value of the new query

2.3 Conclusion 48

instance.

On the other hand, the use of statistical analysis in the domain of retrieval have

shown promising results [114, 115, 116]. Such approaches include the use of Discrim­

inant function analysis and Linear regression. Discriminant function analysis (DA) is

used to determine which attributes in an object, which is under analysis, discriminate

between two or more naturally occurring categories. The model is built based on a

set of objects (training set) for which the categories are known. Based on the train­

ing set. the technique constructs a set of linear functions of the predictors, known as

discriminant functions, such that L = b \X \ + 62^ 2 -I- + bnxn + c , where the 6's are

discriminant coefficients, the x's are the object attributes and c is a constant. These

discriminant functions are used to predict the category of a new object with unknown

category. For a k category problem k discriminant functions are constructed. Given

a new object, all the k discriminant functions are evaluated and the object is assigned

to category i if the ith discriminant function has the highest value.

2.3 Conclusion

Most of the work undertaken in software component retrieval focuses on identifying

and employing information from a component to be used as functional descriptors.

This is due to the common practice of developers to specify a program’s function as

the search query. It has been demonstrated by earlier work [4, 10, 7, 45] that the use of

information (e.g terms) extracted from the software components (e.g program source

code) is beneficial in representing the functionality of the component. Nevertheless,

such an approach may not be applicable to software that are not well-documented.

Therefore, we need to include additional information, that does not stem from se­

mantic features, as a components’ descriptors. Examples of such information is the

2.3 Conclusion 49

design patterns and software metrics which can be identified by analyzing structure

relationships that exist in a program source code. Even though such information

could not illustrate the function of the program, nevertheless similarity between a

given query and the programs in a repository can be realized.

Existing structural descriptors for program retrieval (e.g language pattern and pro­

gramming cliches) are employed to retrieve specific code fragments. This means that

a user submits a portion of code that is later mapped to programs in the collection.

Programs that contain similar code fragments are presented to the user in the retrieval

list. However, since the software developers design their problem solving based on the

relationships between objects and methods, there is a need to have a retrieval system

that includes such relationships in identifying similarities between a given query and

components in a repository. This research differs from those taken in existing studies

in that we are interested to identify relevant programs using a combination of func­

tional and structural descriptors. We see the limited use of existing search engines

for this particular problem, as code search engines such as the Google code search

[23] and Koders search engine [24] provide support only for function-based retrieval.

Our intention is to extend the search process supported by such search engines by

including structural descriptors to represent programs in a repository. Information

on design patterns and software metrics are inferred from structural relationships

that exist in a program and later employed as structural descriptors. To represent

a program’s function, terms extracted from the code and comment statements are

employed as functional descriptors.

C h a p t e r 3

WEIGHTED TERMS AS
FUNCTIONAL DESCRIPTORS

Based on existing studies in software component retrieval [10, 4, 12, 5, 45], one of the

common approaches in identifying relevant components (e.g program) from a software

repository is using term occurrences - two components are considered to be similar

if they contain a similar set of keywords. In this chapter, we illustrate how relevant

terms are extracted from a program and later used as functional descriptors of the

program.

3.1 Overview

A developer attempting to understand the function of an application would most likely

analyse resources based on the source code itself, some design specifications and the

documentation provided with the software. Information written in a natural language

can be extracted from either external documentation such as user manuals and design

specifications or from internal documentation such as comment statements and file

names. This seems reasonable since algorithms depicted in design specifications do

not clearly reflect concepts contained in a program but comments and identifiers

50

3.1 Overview 51

do [117]. However, applications contained in open-source repositories [29, 30] may

not include external documentation which elaborate upon their functionalities, but

are always accompanied by program source code. Therefore, the functionality of

an application can only be identified based on information that are available in the

program.

As discussed in Chapter 2. various approaches have been used to represent the

function of a program and this includes the use of term occurrences. A typical example

of the term occurrences approach is the grep utility used by the UNIX manual system

[118]. This utility is used to look for a string pattern in one or more text files,

displaying lines that contain the desired pattern. This type of retrieval generates large

overheads in the time taken to generate the repository index. If such an approach is

employed in a program retrieval system as it is, all of the relevant text (e.g file name

and the Java keyword c la ss etc.) in each of the programs are included as indices.

This generates a very large index, and as the utility is not accompanied by additional

mechanism that helps to reduce the search space, searching for a specific term of a

particular program context (e.g class name) may generate a list of programs that are

irrelevant to the query.

The work described in this chapter is similar to the work undertaken by Maarek

et al. [12] and Lindig [3] as we employ uncontrolled vocabulary [12] to represent

functionality of a program. Such an approach was undertaken for two reasons, first,

the repository contains programs that are written by different developers with various

programming background, hence if controlled vocabulary [49] was employed, programs

that may be relevant to a given query but do not contain the pre-defined terms will

not be retrieved. The second reason was to build a repository index automatically.

If a controlled vocabulary was employed, participation of an expert in developing the

retrieval system is required to define sets of keywords that best describe or represent

3.1 Overview 52

concepts relevant to the domain of discourse.

In the context of this thesis, similarity between a given query and programs in a

repository is identified based on the existence of the terms defined in a query. For

example, if a query contains the term add, then programs containing the exact word

are considered similar to the query. As a program is written to follow a certain

structure, (e.g in Java programming language, a class is defined as consisting of a

package, import statements, methods etc.) incorporating information related to a

program structure (defined in Definition 5) into the term occurrences approach is

believed to contribute to a better program retrieval. By incorporating information on

the program structure, the drawback of using uncontrolled vocabulary (i.e unlimited

number of terms that generates a broad search space) is overcome.

D efinition 5 A program structure provides the components that make up a particular

language (e.g Java) program. This includes package and import statements, a class

header and its body, and a method header and its body.

One of the popular search engines (i.e Google) has introduced a specific search

engine, known as Google code search [23], for users to find examples of programs from

the web. However, the Google code search is primarily keyword-based, and there is a

lack of domain-knowledge associated with its queries. For example, if a user intends

to find a method that is able to calculate the sum of two numbers, he may define

a query that consist of the phrase method add or method sum. Upon receiving the

user’s query, the retrieval system presents the developer with programs that contain

both of the terms (method and add), followed by programs containing one of the

terms. Even though the system may present the developer with programs containing

both of the terms defined in the search query, these programs may not illustrate the

required domain. For example there is no code statement such as method add in a

3.2 Terms as Functional Descriptors 53

Java program. The method add is only reflected by the word add and not method

add as a whole word. With respect to this, terms occurring as a class name, method

name, package name or in comments should be treated differently.

The search process utilized in SourgeForge.net [29] and Freshmeat [30] also

makes use of keywords, and is based on the general descriptions given to each of the

applications stored in the repositories. Users of the repositories are presented with

applications that contain the terms defined in a search query. Nevertheless, neither of

these repositories [29, 30] performed program retrieval based on the different contexts

of a program, as elaborated in the example mentioned earlier (i.e method add). Our

intention is to extend the search process supported by such public domain software

repositories [29, 30] and existing code search engines [23, 24]; therefore we propose

terms extracted from program structure to be used as functional descriptors of a

program.

Similar to the grep utility, our retrieval system also works based on string match­

ing; nevertheless, we accompany the extracted terms with relevant weights. The

weighting scheme is employed to illustrate the importance of a term in representing

the function of a program. Details of the weighting scheme can seen in section 3.3 on

page 61. With the assumption that software developers are aware of which program

structure the search term refers to, the program retrieval system is able to present

the developers with relevant programs.

3.2 Terms as Functional Descriptors

A Java program consists of several components: class header, class body, method

header, method body, comments, packages, and import statements. An example of

a simple Java class is illustrated in Figure 3.1. Each of these components (illus-

3.2 Terms as Functional Descriptors 54

trated in Figure 3.1) plays a significant role in determining the functionality of a Java

program. In the context of this thesis, names extracted from these components (e.g

ActionExample) are referred as identifier names.

P ackage statem entpackage calculator; -
import java.io.*;
import javax.swing.*;
public class ActionExample extends JFrame; .
{ T

C lass header

//description of method body

public static void main)String args[]}
Method body

Import statem ent

C lass body

Method header

C om m ents (can be placed alm ost everywhere)

F igure 3.1 Components of a Java program

The use of a program in part depends on the documenting ability of the names used

for its identifiers [119]. Identifiers are the names of any packages, classes, methods

and variables defined in a program. Identifier names are one of the important sources

of information about program components, as they give an initial idea of the role of

each identifier in a program. From the work undertaken by Lindvall and Sandahl [120]

and Marcus and Maletic [121], we learned that meaningful identifiers are considered a

significant aid to understanding a program. For example, if a developer is analyzing a

database program, then a method named add contained in the program may indicate

the process of adding a new record into a database. Therefore, many of the developers

3.2 Terms as Functional Descriptors 55

are naming the identifiers according to their function [122].

In designing object oriented applications, developers identify the fundamental

objects of the problem domain for a given programming task. These objects are

then used as the class name, hence illustrating the functionality of the class; code

statements written in the class body are related to the object. Once developers

identified the main objects, they next define the internal nature of each object: its

attributes (variables) and behaviours (methods). Attributes model the variation that

is allowed among different objects and an object maintains a value for each of the

defined attributes. All of these pieces of information are represented in identifiers

defined in the program(s) of the application, hence reflecting their function.

File names and package names are very useful terms for indexing, as they provide

meaningful information about the file or files they represent. In a Java program,

the file name provides two types of information. The first is the name of the main

class in the file along with the name of its constructors (as these are all the same).

This provides a mechanism for determining the difference between a constructor and

a method when parsing, as a constructor is a method with the same name as the

filename (provided there is only one class per file). The second information the file

name provides is some indication of the content of the file, or in a Java program,

information about the content of the class or an indication of what the class does.

For example, one of the files in a repository is known as Database, java. From this,

we can determine the name of the class and constructors and deduce that the class

possibly involves a connection to a database, or contains operations for data stored

in a database. Besides using file names to indicate functionality, package names also

serve a similar purpose.

If an application consists of more than one object, similar objects can be grouped

together. It is good programming practice to group programs into packages of related

3.2 Terms as Functional Descriptors 56

classes, with each package in a separate directory [123]. This can be achieved with the

use of package statements. Similar to naming Java classes based on their function,

the package name also illustrate its function. Packages represent the way we organize

programs into different directories according to their functionality and usability, as

well as the category they should belong to. An example of packaging is the JDK

package from SUN [124]. The idea is that programs in one directory (or package)

would, have a different functionality from those of another directory. For example,

programs in the jav a . io package do something related to input/output, but programs

in the ja v a .n e t package give us a way to deal with the Network. In GUI applications,

it is quite common for us to see a directory with the name ui (user interface), meaning

that this directory keeps programs related to the presentation part of the application.

On the other hand, if we see a directory called engine, this stores programs related

to the core functionality of the application instead.

One of the ways a developer can use classes defined in a package is by using the

import keyword. For example, the statement import re p o s ito ry .d a ta . Database

allows developers to use the Database class, which is defined in the re p o s ito ry /d a ta

subdirectory. The import statement can be used to infer the functionality of a pro­

gram as it tells a developer which classes the program is relying on (apart from the

standard Java library classes) in order for it to function.

Just as file names and package names contain information about their content, the

names of methods and variables often provide information about their content or use.

Class methods take on the property of being public, private, or protected. All of these

names can be useful as they provide information about the functionality of a class. For

example, the file Database, java obviously can hold or contain information about a

database. We may also be interested in finding out what kind of behaviour an inst ance

of database object can perform. For example, if one of the database methods is

3.2 Terms as Functional Descriptors 57

connect, this could indicate that it establishes a connection to the database. However,

even more information may be determined from the fact that the method is private,

indicating that this method is only used within the database class and therefore has

a very specific purpose within this class.

Variables can also come under different categories. The most common and possibly

the most useful are class variables. These are variables contained within a class

that are separate from methods, and can therefore be used by any class method,

constructor, etc. These often have very descriptive names in order to define effectively

the information they hold. For this reason, they are an effective index term. However,

besides the name, they also contain other information. Class variables can be private,

public, or protected. This can indicate whether the variable is specific to this class

or if it is more general and therefore could be used by other classes. There are also

local method variables, which can only be used within the method in which they are

declared.

The final component to be included in the program structure is program com­

ments. As the work of Nurvitadhi et al. [117] reported a significant difference in

program understanding between programs with and without comments, we include

program comments as one of the program structure components to infer the function­

ality of a Java program. Comments are a very useful index term within a program

as they quite often adequately explain the functionality of the classes and methods.

This causes them to contain words that often would not be in the code itself. For

example, a developer may need to ensure that there is only a single creation of a

class instance. Therefore, s/he might include a comment statement such as created

only once in her/his program. There are three types of comments available within a

Java program: javadoc comments, method comments and inline comments. Javadoc

comments, separated with /** and **/ are structured comments that describe the

3.2 Terms as Functional Descriptors 58

functionality of a class or method in detail. This causes them to have a very specific

structure (and therefore are easier to extract/parse). The second type of comment

are method comments. These are more general comments, separated with /* and

*/. They can span multiple lines or single lines, and they are often used to explain

in more detail methods, constructors, variables, or large sections of code. They are

more difficult to parse as they are less structured then javadoc comments and in or­

der to index them some assumptions need to be made about the way they are laid

out (for example, there is always a space between the /* and the first letter of the

comment). The last type of comment is the inline comment. The inline comment is

denoted by / / and it has no ending symbol; instead, the comment simply ends when

the line does. This type of comment is a lot more specific than the first two types

of comments and usually describes some small section of code rather than a whole

method or constructor. After an analysis of Java programs relating to mathemati­

cal operations (programs contained in the Jama, JMP, Meditor, JNumeric and nMath

projects, which were obtained from S ourcefo rge .net [29]) it was found that even

though these comments can be very specific to a section, they may contain terms

that would be useful to index, so it was decided to index them in the implementation.

Common words such as a, the, an, etc. are removed from the comments, which greatly

reduces the amount of terms indexed for comments. In addition, object oriented pro­

gram commenting includes both a class-based comment that provides an overview

of a class and a method-based comment that gives information about the content of

a method. More specifically, a class-based comment is helpful in developing a high-

level knowledge of a program, such as the purpose of the class, what the class does,

or the interconnection between classes. On the other hand, a method-based comment

provides a more low-level understanding of the program, such as the purpose of the

method and implementation technique used.

3.2 Terms as Functional Descriptors 59

3.2.1 Extracting Relevant Terms based on Program Struc­

ture

In order to extract identifier names from program structure in the programs stored

in a software repository, we use the Java parser generator, Java Compiler Compiler

[tm] (JavaCC [tm]) [81] to create a JavaParser. JavaCC generates the following files:

• JavaCharStream. java represent the stream of input characters.

• Token. j ava represents a single input token

• TokenMgrError. java an error thrown from the token manager.

• ParseException. java an exception indicating that the input did not conform

to the parsers grammar.

• JavaParser .java the parser class.

• JavaParserTokenManager. java the token manager class.

• JavaParserConst ants .java an interface associating token classes with sym­

bolic names.

Instances of objects from all of the files generated by JavaCC are created in a pro­

gram named ParseFile. java. This Java program examines a given program, which

is under analysis, by using the created instances to parse the program and iden­

tifies eleven Java components: Javadoc Comment, Method Comment, Inline Com­

ment, Import statement, Package declaration, Class name, Superclass, Interface class,

Method names, Variable names and Filename. To achieve this, firstly an instance

of object JavaCharStream is created before using it to create the instance of type

JavaParserTokenManager. Then, an instance of object Token, (t), is created to hold

3.2 Terms as Functional Descriptors 60

the value of constants found in the character stream under analysis. For example if the

token, t , is a kind of IMPORT constant, t .k in d *■ Jav aP a rse rC o n s tan ts . IMPORT,

then the token following t is assumed to be class or package name. The pars­

ing includes other token types such as CLASS, PACKAGE, ABSTRACT, IMPLEMENTS,

IDENTIFIER, SINGLE-LINE.COMMENT, FORMAL.COMMENT, MULTI-LINE.COMMENT, PUBLIC,

PRIVATE, PROTECTED, SEMICOLON, COMMA, DOT, LPAREN and RPAREN. This process is un­

dertaken until a constant of type End of File (t . k ind *■ Jav aP arse rC o n stan ts . EOF)

is identified. Below are examples of assumptions made when the token is of a partic­

ular type:

• PACKAGE - token following t is assumed to be package name.

• CLASS - token following t is assumed to be class name.

• EXTENDS - token following t is assumed to be superclass name.

• IMPLEMENTS - token following t is assumed to be interface class name.

• ABSTRACT - the second token following t is assumed to be class name.

The collected information (i.e identifier name) is later used as functional descrip­

tors of the program which is under investigation. Prior to writing the extracted term

into an index file, we need to ensure tha t white space from both ends of the string

(term) have been removed. This has to be done to ensure string matching can be per­

formed effectively. It is also necessary to identify if the term s to be used for functional

descriptors are not of type Java keywords (e.g throw, int, char, float, abstract, class),

and are not of type stopwords. Stopwords are words tha t may be entered into a search

query but cannot be searched for as individual words. For example, if a developer is

searching for the string connect to database. the word to is a stopword. We created

a stopwords.txt file to include stopwords used by the Google search engine [125] and

3.3 Weighted Functional Descriptors 61

the Onix Text Retrieval Toolkit [126]. After ensuring that a term is not a Java stop-

word nor from the list in stopword.txt, only then the term is included in an index.txt

file. This file contains terms extracted from the programs in the repository and the

relevant information on terms (e.g file name of which the term is extracted from and

weight of the term). Related elaboration on the weighting schema is presented in the

next section.

3.3 W eighted Functional Descriptors

We make the following assumptions prior to developers submitting their query for

programs:

• Developers have some indication of the types of source code in which they are

interested. This could be in terms of the keywords they assume to be present

within such source code, or the likely method names that such source code

could contain. Although not likely to be valid in a general case, we have found

this assumption to hold true based on the existing source code archives such as

Sourceforge.net [29]. Perhaps one reason for this is that developers who offer

their source code for use by others often also attempt to describe their data

structures or method names with comments that could be relevant for others.

• Developers are familiar with the likely structure of the source code they are

trying to find. This may be particularly true for numerical approaches (where

nested loops are often used over arrays or similar data structures). Often many

programming languages are targeted towards the scientific computing commu­

nity which provides specialist support for such data structures (examples include

OpenMP and High Performance Fortran).

3.3 Weighted Functional Descriptors 62

As there are many terms that can be extracted from a program, we prioritize

these terms using the concept of weighted term frequency, which assigns high weights

to terms extracted from a certain component of a program (e.g identifier acting as a

class name) and low weights to terms obtained from other components of a program

(e.g comment). This is necessary for two reasons. The first is that search terms can

appear in a variety of areas in source code (i.e program structure), and depending on

where these terms occur, they have different meanings. For example, the same term

used for a class and a variable may have completely different meanings in each context.

Therefore,nn order to provide developers with relevant programs, the context in which

it is found needs to be determined and stored. The second is to allow a more advanced

form of ranking. For example, a program containing the search term as a class name

will be ranked on top of a program containing the term in its comment statements.

For this to work, it is necessary to assign a type to each term of the extracted terms -

types are derived from program components. Eleven types were determined by myself

in the end and this is based on the components of a program that appeared the most

in programs that we have stored in our repository. Nevertheless, determining these

types was actually a very difficult task as there are so many exceptions to the way

a program may be laid out. In order to simplify the process, it was assumed that a

program used standard conventions for layout and content, for example, the way a

javadoc comment is written. Below is a list of type of terms with their weights (i.e

provided in bracket()):

• Javadoc Comment (3): Javadoc Comments are specific to the Java language

and provide a means for a programmer to fully document his / her source code

as well as providing a means to generate an Application Programmer Interface'

(API) for the code using the javadoc tool that is bundled with the JDK.

3.3 Weighted Functional Descriptors 63

• Method Comment (1): If a comment is going to span across more than one line

then a multi-line comment should be used. These are often useful for providing

more in-depth information.

• Import statement (1): Import statements point to classes or packages that

should be made available for use within the current class. For example, in order

to use the java. applet .Applet class in a Java file, the class would have to be

imported via the import java.applet.A pplet; or import java .ap p let.*;

statement.

• Package declaration (1): If included, the package declaration must be the first

statement in the file. The package keyword is followed by a package name.

The package name is a series of elements separated by periods. Each period

separated element must correspond to a filesystem subdirectory under which

the class file is located. For example, if a class was declared to be in the

com. d a tab ase . gui package, it would be located in the com /database/gui/

subdirectory. Only one package declaration is allowed per .java file.

• Class (3): The class name.

• Extends (2): Class in which the existing class inherits (superclass).

• Implements (2): Indicates that a class contains methods for each of the opera­

tions specified by the interface.

• Method (2): A Java method is a set of Java statements which can be included

inside a Java class. Java methods are similar to functions or procedures in other

programming languages.

• Variable (2): Variables are data identifiers. Variables are used to refer to specific

values that are generated in a program - values that we want to keep around.

3.4 Similarity Measurement 64

Program data is often easier to understand and manipulate if each data has its

own name.

• Filename (3): If a pu b lic class is present, the class name must match the

filename. For example, if a source file contains a definition for a public class

Database, then the source file must be named Database.java. A source file may

contain any number of non-public class definitions.

Based on the above weighting schema, a term t found in a filename is more

important than the same term found in a variable. This is due to the assumption

that the functionality and content of a file is reflected more by the name assigned to

the file than the variable.

The terms extracted from a program are known as weighted functional descrip­

tors and are used to represent the functionality of the program. Based on existing

work [4, 20, 46, 47, 48, 5], program retrieval performed using the weighted functional

descriptors can be considered similar to the descriptive methods (discussed in section

2.1.1 on page 22). This is similar to the practice of extracting relevant terms to be

employed in facets as undertaken by Prieto-Diaz [4]. The difference is that, in this

work, terms to be extracted are identified based on components of a program (e.g

import statements, class header, comments). Prieto-Diaz [4] employed a term as a

facet attribute while ignoring which context of a program the term is extracted from.

3.4 Similarity Measurement

To perform a similarity measurement between weighted functional descriptors ex­

tracted from a query and programs in a repository, we adopted the Levenshtein

distance measure [127]. Levenshtein distance (LD), which was developed in 1965 by

Vladimir Iosifovich Levenshtein, is a measure of the similarity between two strings,

3.4 Similarity Measurement 65

which we will refer to as the source string s and the target string t . The greater the

Levenshtein distance, the more different the strings are. The distance is the number

of deletions, insertions, or substitutions required to transform s into t . For example,

• If s is test and t is test, then LD(s, t) = 0, because no transformations are

needed. The strings are already identical.

• If s is test and t is tent, then LD(s, t) = 1, because one substitution (change s

to n) is sufficient to transform s into t .

The Levenshtein algorithm has been used in order to have a flexible retrieval system.

Comparing this to the similarity measurement employed in existing search engine such

as Google code search [23] and in an open-source repository such as SourceForge [29]

and Freshmeat [30], which are undertaken based on exact string matching, we expand

such an approach by allowing a difference of a pre-defined numbers of letters between

the analyzed strings. This is achieved by allowing the users to determine a threshold

value which acts as a cutting point in identifying similar string defined in the search

query and in a program. For example, if a user defines string t in a query and the

value 2 as the threshold value, then, only terms contained in source string s that

require the maximum of two substitutions in order to be transformed into the target

string, t , are considered to be similar to t . With this, the program retrieval system

would present users with not only the exact match but also with an approximate

match. The former result is obtained when there is an exact string matching between

a term in a query and functional descriptors of a program. On the other hand, an

approximate match presents users with programs that contain terms that may be

similar to the terms defined in the query. By allowing substitution, deletion and/or

addition of a number of letters in a term, the presented program retrieval system is

able to consider misspelled terms to be similar to the terms defined in a search query.

3.4 Similarity Measurement 66

Our retrieval system works by allowing a user to use a program as the search query.

The program may be an existing program that the user is working on based on a given

programming task or any other programs that the user feels able to represent his code

requirements. In order to identify programs that are relevant to the query program,

for each of the programs in the repository, we summed up the weights of the weighted

functional descriptors that were similar to the descriptors contained in the query

program. Programs from the repository with greater totals of values were ranked at

the top of the retrieval list. Later in this thesis, a retrieval list is termed a hit list

and is defined as follows:

D efinition 6 A hit list contains a lineup of programs that have been identified as

similar to a given query. A program listed on the top of the list is considered to be

most similar to a given query.

To illustrate how similarity between programs is identified, we mapped a query

program P(Q) against five programs (P (l), P(2), P(3), P(4), P(5)). In P{Q), there

are three terms identified as weighted functional descriptors: database, connect and

d isp lay . In this example, the similarity measure between the weighted functional

descriptors in P(Q) and P(i), is undertaken based on exact match [100] only. The

first search term consists of a filename and class name; the second and third terms

are of the method component. Hence, we obtained the value of 10 on summing

the weights of the descriptors in P(Q) - both of the terms database get the value

3 as they are from the filename and class name and both the term connect and

d isp lay are assigned the value 2 as they were identified to be method names. In the

below examples, P(i) represents the program under analysis while W(i) represents

the suinmed-up weights of descriptors in a particular program, i.

3.4 Similarity Measurement 67

P(Q) = {database, connect, display} —> W(Q) = {(3+3) + 2 + 2} = 10

P (l) = {database, connect, display} —► W(Pl) = {(3+3) + 2 + 1} = 9

P(2) = {display} - W{P2) = {(2+1)} = 3

P(3) = {connect, display} —» U '(P3) = {2 + 2} = 4

P(4) = {} — W{P4) = 0

P(5) = {database} —* W(P5) = {(3+3)} = 6

As the retrieval system ranks programs based on summation values of similar

terms, P (l) with W(Pl) = 9 is presented at the top of the list. This is followed by

P(5), P(3), P(2) and P(4).

Below, we illustrate another example, which is undertaken based on approximate

match [100]. This is achieved by defining the Levenshtein distance as being less or

equal to the value three, LD(s , t) < = 3. To illustrate how a similarity measure­

ment between programs is undertaken, we mapped the same query from the previous

example, P{Q), against five programs (P (ll) . P(22), P(33), P(44), P(55)) from the

repository. There are three terms used as weighted descriptors for program P(Q):

database, connect, and display. Only terms contained in P(i) that require at

the most three deletions, insertions, or substitutions in order to transform an existing

string s into the weighted functional descriptors for P(Q), t , are included as weighted

functional descriptors for the program. If P(i) contains several terms that are similar

to a term t, then the term with the similar weight or with the highest value of weight

is identified as an approximate match to t. For example, the search term connect

can be mapped against connected and connects. If connected is a variable name

and connects is found in Java doc comment, the latter string will be identified as

a relevant match to the search term connect. This is because the string connects

3.5 Conclusion 68

has the weight of 3 while connected is identified as 1. In the below program tuples,

only the strings identified as being an exact match or approximate match are included

for weighting calculation. For example, a total of ten identifier names (terms) were

extracted from program structure P (l l) . However, only three terms were included

for weighting calculation as the remainder of the seven terms require more than three

substitutions, insertions or deletions in order to transform them into the required

search terms.

P(Q) = {database, connect, display} —* W(Q) = {(3+3) + 2 + 2 = 10}

P (l l) = {database, connects, displays} —* IT (P ll) = {(3+3) + 3 + 1 = 10}

P(22) = {connected, displayed} —► \V(P22) = { 1 + 3 = 4}

P(33) = {connects, displays} —> W(P33) = { 3 + 1 = 4}

P(44) = {databases, displayed} —> W(P44) = { 3 + 3 = 6}

P(55) = {databases} —► W(P55) = {3 }

Based on the above itemized program tuples, the retrieval mechanism presents the

programs in the following descending order: P (l l) , P(44), P (22), P(33) and P(55).

Program P (l l) is presented as the most similar program when compared to P{Q).

This is followed by P(44) and P(55) which depict only a single term similar to P(Q)

and so are ranked on the bottom of the retrieval hit list of five programs.

3.5 Conclusion

In an open-source repository such as Sourceforge .net [29], retrieval is performed

based on keyword search performed on the description provided for the application

3.5 Conclusion 69

and/or the application’s name. As an application may contain more than one pro­

gram, users, whose intention is to reuse code statements, will then need to manually

examine the programs in the application to determine whether the programs contain

the required code. To help these users, we propose a retrieval system which employs

a similar approach. Nevertheless, our retrieval system is undertaken towards a repos­

itory of programs and presents users with programs that contain keywords of the

required context. The presented work employs a weighting scheme that differentiates

the functional descriptors (i.e identifier names) based on the context of the program.

With the assumption that the user of the repository is able to refine his search query,

for example, to determine which program context (e.g class, method, package) the

search term refers to, the retrieval system is able to facilitate users with specific code

requirements.

In addition, our program retrieval system provides flexibility in generating queries;

allowing the use of program as a query. This expands the capability of expressing

search requirements as developers use the existing program developed for a given

programming task as the query program. Such an approach delivers context-sensitive

information related to both the given programming task and the background knowl­

edge of the user. Relevant terms are extracted from the query program and are

later mapped against the weighted functional descriptors of each programs in the

repository.

C h a p t e r 4

DESIGN PATTERNS AS
STRUCTURAL DESCRIPTORS

In this chapter, we demonstrate the identification of design patterns in programs

that are obtained from open-source repositories. Information regarding the existence

of design patterns in a given program is later used as structural descriptors of the

program in a retrieval system.

4.1 Overview

Software developers find design patterns important for a number of reasons. First,

they give novice developers access to the best practices of more experienced devel­

opers. Second, they allow developers to think of their designs at higher levels of

abstraction; for example, instead of focusing on low-level details, such as how to use

inheritance, developers can approach complex systems as a collection of design pat­

terns that already make the best use of inheritance. That shift of focus to a higher

level of abstraction also provides a common vocabulary when software developers

discuss design.

Currently, users who intend to retrieve programs from a source code retrieval

70

4.1 Overview 71

system (e.g. Koders search engine [24] and Google code search [23]), would normally

create their search query using terms and a combination of Boolean commands such

as AND or OR. However, how do software developers (with the knowledge of design

patterns) search for programs that illustrate a particular function through the use of

a certain design pattern? For example, we may have a software developer who requires

examples of programs that create text rendering objects, which render data obtained

from the command line or a program. Furthermore, s/he would like to create the

objects by recursively composing similar objects. A fundamental question that arises

is how to represent such requirements in a keyword-based search engine such as in the

Goofgle code search or Koders. One possibility is by defining a query of text renderer

AND command line AND program AND recursive. Upon receiving such a query,

a keyword-based retrieval system may present the user with programs that contain

all of the required terms (text renderer, command line, program AND recursive).

This is followed by programs containing a combination of the required terms and

programs that contain either one of the terms. Even though the retrieval system may

be able to present users with programs containing terms defined in the search query,

the presented programs may not illustrate the required patterns (building objects by

recursively composing similar objects) as anticipated by the user.

If programs in a software repository contain explicit information on design patterns

in the code or comment statements (e.g Singleton pattern in the method comment),

then retrieval systems based on term occurrences may be sufficient in presenting users

with relevant programs. Otherwise, we need an additional mechanism that does not

rely on semantic meanings to identify design patterns embedded in a program. Below,

we provide examples of programming tasks that would benefit from having design

patterns as program descriptors.

4.2 Identification of Design Patterns 72

Exam ple 1: Implement a Logger object that will log events for all subsystems ac­

cording to the date and time. We cannot have more than one instance of Logger

in the application; otherwise, every time we log to a subsystem, a logger will be

created, hence generating duplication of information. The logger is accessed by

different objects throughout a software system, and therefore requires a global

point of access.

Exam ple 2: Implement a GUI system that has window objects which can contain

various GUI components such as buttons and text areas. The window also con­

tains container objects which can hold other components.

Exam ple 3: Implement a weather reporting application, Weather Reporter class,

that displays the latest weather data on-screen. The weather is displayed by

two classes: GraphicReport (cloud, sun, rain icons) and TextReport (Tempera­

ture: 25C, Sunny) . When the weather changes, Weather Reporter sends updates

to TextReport object and GraphicReport object.

4.2 Identification of Design Patterns

Our approach in identifying design patterns embedded in a program is similar to

the work undertaken by Keller et al. [72] — design patterns are detected based on

structural relationships that exist in a program. Nevertheless, our approach does not

require the code to be represented into an intermediate form prior to the design pat­

tern detection, as undertaken bv Keller et al. Our approach is based solely on parsing

the code and therefore does not require an additional mechanism (e.g language) prior

to detecting the pattern.

There are different ways of categorizing design patterns, depending on what they

do and when they should be applied. Gamma et al. [1] classify design patterns

4.2 Identification of Design Patterns 73

into three categories: creational, structural and behavioural. The creational patterns

are concerned with the process of object creation, while structural patterns deal

with the composition of objects. The behavioural patterns characterize the ways in

which objects interact and distribute responsibility. In this work, we include the

identification of Singleton, Composite and Observer design patterns representing the

three categories respectively. In order to identify these design patterns, we use the

same Java parser created for extracting weighted functional descriptors (elaborated

in section 3.2.1 on page 59). Relevant information that includes class inheritance,

interface and abstract classes, method invocation and method signature that include

the arguments and return type, variable declarations and the modification of its value

are identified by the parser. This information is later used to determine the existence

of a particular design pattern in a program.

4.2.1 Singleton

C reational — Singleton P a tte rn : the intention is to ensure a class has only one

instance and provides a global point of access to it.

Sometimes it is appropriate to have exactly one instance of a class: window man­

agers, print spoolers, and program systems are prototypical examples. Typically,

those types of objects — known as singletons — are accessed by disparate objects

throughout a software system, and therefore require a global point of access. The

UML diagram of a Singleton pattern is provided in Figure 4.1.

4.2 Identification of Design Patterns 74

C lie n t ------ • S in g le to n

Instance: Singleton

Singleton()
GetlnstanceQ : Singleton

Figure 4.1 UML Diagram of Singleton Pattern

The participants of the Singleton class (as depicted in Figure 4.1 are described as

follows:

• Client

- Clients access any instance of a Singleton only through the Instance method.

• Singleton

- Defines an Instance operation that lets clients access its unique instance.

Instance is a class operation.

- Responsible for creating and maintaining its own unique instance.

4.2 Identification of Design Patterns 75

The working context of Singleton design pattern is illustrated as below:

Suppose we need to write a class that an applet can use to ensure that no more than

one audio clip is played at a time. I f an applet contains two pieces of code that

independently play audio clips, then it is possible for both to be played at the same

time. When two audio clips play at the same time, the results depend on the platform.

The results may range from confusing, with users hearing both audio clips together, to

terrible, with the platform’s sound producing mechanism unable to cope with playing

two different audio clips at once. To avoid the undesirable situation of two audio

clips playing together at the same time, the class developer’s class code should stop

the previous audio clip before starting the new audio clip. A way to design a class to

implement this policy is to ensure that there is only one instance of the class shared

by all objects that use that class.

When implemented as the pattern recommends, a class will have direct control over

how many instances can be created. Developers ensure that the instance is easily

accessible (by many objects) bv defining the access modifier for the method accessing

the class instance as type public. Algorithm 1 describes how a Singleton pattern is

detected.

Based on the pseudo code described in Algorithm 1, we perform Singleton detec­

tion by identifying the access modifier for the constructor of a class. To ensure the

creation of only a single instance of a class, the constructor should be declared as ei­

ther private or protected. We then identify the existence of any method with a public

access modifier that returns a private member (variable) of the class. Upon identi­

fying these requirements, the particular class is classified as implementing Singleton

design pattern.

4.2 Identification of Design Patterns 76

A lgorithm 1 Detection of Singleton Pattern
1: Initialize an empty set, Y = {}

2: For each Java package Jp in the repository

3: For each Java program J f in Jp

4: For each class C in J f

5: Identify constructor k where (k.type = = private) V (k.type = = protected)

6: Identify existence of class variable v in C where (v.type = = private)

7: Identify existence of method m where (m.type = — public) and has v as the return argument

8: if k. v and in exist then

9: Y = Y u { J f)

10: end if

4.2.2 Com posite

S tru c tu ra l P a tte rn s — C om posite P a tte rn : allows users to treat individual

objects, and a composition of objects, uniformly, thereby leading to a recursive com­

position. The aggregation relationship is typically implemented as a reference from

the composite child class to a parent class and has a cardinality of 1-to-N. This is

shown in the UML diagram illustrated in Figure 4.2. The key to the Composite

pattern is an abstract class that represents both primitives and their containers.

4.2 Identification of Design Patterns 77

N

children

<>r-------------
 !________________
For all g in children

g.OperationQ

Figure 4.2 UML Diagram of Composite Pattern

Based on Figure 4.2, we identify the following:

• Component

- Declares the interface for objects in the composition.

- Implements default behavior for the interface common to all classes, as

appropriate.

- Declares an interface for accessing and managing its child components.

- (optional) defines an interface for accessing a components parent in the

recursive structure, and implements it if tha t is appropriate

• Leaf

- Represents leaf objects in the composition and a leaf has no children.

Client Component_________
Operation()

Add(Component)
Rem ove(Com ponent)

GetChildCint n)

Composite

Leaif
O p era t io n ()----

Add(Component)
Remove(Component)

GetChildCint n)
Operation()

4.2 Identification of Design Patterns 78

- Defines behavior for primitive objects in the composition.

• Composite

- Defines behavior for components having children

- Stores child components

- Implements child-related operations in the Component interface

- Implements child-related operations in the Component interface

• Client

- Manipulates objects in the composition through the Component interface.

A working context of Composite design pattern is illustrated below:

Suppose that we are writing a document formatting program. It formats characters

into lines of text organized into columns that are organized into pages. However, a

document may contain other elements. Columns and pages can contain frames that

can contain columns. Columns and frames and lines of text can contain images.

In our work, the rules used to detect the existence of Composite design pattern are

described in Algorithm 2 and Algorithm 3. We first initialize an empty set to store the

final result: pairs of Java program and its interface classes. For every Java package,

we identify its Java programs where in each of the programs, we may have at least

one Java class. Referring to step 5 in Algorithm 2, the usage of an interface class

is to be identified. Within the Java programming language, an interface keyword

is used by unrelated objects to interact with each other. Interface class is used to

define a protocol of behaviour that can be implemented by any class, anywhere in the

class hierarchy. It is useful for capturing similarity among unrelated classes without

4.2 Identification of Design Patterns 79

A lgorithm 2 Detection of Ordinary Composite Pattern

1: Initialize an empty set to store tuple of two elements, Y = {a, 6} where a is a

Java program and b is an interface class

2: For each package Jp in the repository

3: For each program J f in Jp

4: For each class C in J f

5: if C implements an interface class IC then

6: Identify method m in C that receives argument of type IC

7: if m exists then

8:' Y = Y \ j { J f , I C }

9: end if

10: end if

artificially forcing a class relationship, declaring methods that one or more classes

are expected to implement, or revealing an object’s programming interface without

revealing its class. Finally, upon identifying a Java class that implements an interface,

we then identify method(s) in which it uses interface as one of its method parameters.

In Algorithm 3, we describe the structural information required in identifying a

recursive Composite design pattern. The existence of such a pattern is identified by

locating an abstract class that implements an interface class. As depicted in step 6

in Algorithm 3, if there exist a class that inherits the abstract class located earlier,

and the class contains at least one method that implements methods defined in the

interface class, then the class is considered to be implementing a recursive Composite

design pattern.

4.2 Identification of Design Patterns 80

A lgorithm 3 Detection of Recursive Composite Pattern

1: Initialize an empty set to store a tuple of three elements, Y = {a, 6, c} where a is

a Java program, b is an interface class and c is an abstract class

2: for each package Jp in the repository do

3: for each program J f in Jp do

4: for each class C in J f do

5: if C is an abstract class AND C implements an interface class IC th e n

6: if subclass of C (i.e Csb) exists, and Csb contains methods that imple­

ments methods in IC th e n

7: Y = YU{Cs b , IF, C}

8 : end if

9: end if

10: end for

11: end for

12: end for

4.2 Identification of Design Patterns 81

4.2.3 Observer

Behavioral P a tte rn s — O bserver P a tte rn : defines a one-to-many dependency

between objects so that when one object changes state, all its dependents are notified

and updated automatically. A common side-effect of partitioning a system into a

collection of cooperating classes is the need to maintain consistency between related

objects. The key objects in the Observer pattern are Subject and Observer. A subject

may have any number of dependent observers and all observers are notified whenever

the subject undergoes a change in state. In response, each observer will query the

subject to synchronize its state with the subjects state. The Observer pattern can be

used in any of the following situations:

• When an abstraction has two aspects, one dependent on the other. Encap­

sulating these aspects in separate objects lets developers vary and reuse them

independently.

• When a change to one object requires changing others, and developers do not

know how many objects need to be changed.

• When an object should be able to notify other objects without making assump­

tions about who these objects axe.

Figure 4.3 illustrates the UML diagram of the Observer pattern. The participants

of Observer pattern depict the following criteria:

• Subject

- Knows its observers and any number of Observer objects may observe a

subject.

- Provides an interface for attaching and detaching Observer Objects.

4.2 Identification of Design Patterns 82

• Observer

- Defines an updating interface for objects that should be notified of changes

in a subject.

• Concrete Subject

- Stores a state of interest to Concrete Observer objects.

- Sends a notification to its observers when its state changes.

• Concrete Observer

- Maintains a reference to a Concrete Subject object.

- Stores state that should stay consistent with the subject state.

- Implements the Observer updating interface to keep its state consistent

with the subject state.

4.2 Identification of Design Patterns 83

observers

subject

For all o in observers
o->Update()

observer_state=
subject- >GetStateQ

Observer
UpdateQ

ConcreteObserver

observer s ta te
UpdateQ

Attach(Observer)
Detach(Observer)

NotifyQ — —

Subject

oncreteSu bject
G e t S t a t e Q
SetSta teQ

subjec t_s ta te

Figure 4.3 UML Diagram of Observer Pattern

A working context of Observer design pattern is illustrated as below:

Suppose we are developing a software application fo r a company that manufactures

smoke detectors, m otion sensors and other related security devices. A new line of

security devices is introduced that is able to send a signal to a security card that

can be installed in m ost computers. The hope is that companies that make security

m onitoring system s will integrate these devices and cards with their system s. We are

required to write an A P I that allows future custom ers to integrate their programs with

it easily so their programs will receive notifications from the security card. It m ust

work without forcing the custom ers to alter the architecture o f their existing software.

4.2 Identification of Design Patterns 84

In detecting the Observer pattern, we have to identify the observers, the object to

be observed, and the method(s) used to update any changes that need to be made.

In Algorithm 4, for each Java class in the project, the system will identify private

variable(s), which allows the value that it holds to be updated. These appropriate

Java classes will be stored in set S which we call the Subject. Then, also for each Java

class, we identify if the class inherits an abstract class (or more) — an abstract class

defines the identity of its descendants. In detecting this pattern, we should identify

the method overriding between a Java class and its superclass (i.e abstract class).

Next, we also need to identify that the class’s constructor uses at least one element

stored in set S to be one of its method arguments. If both the method overriding

and the constructor identification succeed, the system stores the related documents

in set Y — Java program, abstract class and subject program.

4.2 Identification of Design Patterns 85

A lgorithm 4 Detection of Observer Pattern

l: Initialize three empty sets, y = { } , £ = {} and I A B = {}

2: For each package Jp in the repository

3: For each program J f in Jp

4: For each class C in J f

5: Identify variable v where (v.type = private) and there exists a method that

updates value of v, then store C in set S

6: Identify existence of interface or abstract class and store the class in set IA B

7: if class C that implements or extends classes in set IA B exists then

8: Identify method overriding that exists between C and IAB^]

9: Identify constructor k in C which accepts element of set S as one of its argument

types and C is not one of the classes identified in {5}

10: end if

11: if Rule 8-9 are true th en

12: Y = Y U { J f J A B {il}

13: end if

4.2 Identification of Design Patterns 86

4.2.4 Analysis of D esign Pattern D etection in Java Packages

We tested the algorithms defined in the previous section on the Java.awt [128] and

JHotDraw [129] packages. These packages were included in the experiment because

they have been used in studies related to design pattern detection [130, 78, 77]. Table

4.1 shows the number of classes and programs contained in the packages. We ran our

experiment on a Windows XP (2002 Professional edition) personal computer running

on a 2.8GHz Intel processor with 1GB RAM.

Table 4.1 Number of Classes and Programs in Java Packages

Package Number of Classes Number of Programs

Java.awt 485 345

JHotDraw 464 484

Existing work on design pattern detection includes the FUJABA tool suite [78]

and the PTIDEJ [130]. The developers of FUJABA have tested the tool on the

Java.awt version 1.3 package and Niere et al. [78] reported only a constellation of

classes related to the java.awt.component. Furthermore, it has been reported that

FUJABA detects a lot of false positives in detecting design patterns in the Java.awt

package [131]. On the other hand, Gueheneuc and Jussien [130] neither specified

which version of the Java.awt package used in the test nor illustrated any detection

accuracy or performance results for PTIDEJ.

The recent work done in identifying design patterns in Java programs is discussed

by Shi and Olsson in [77, 132]. They proposed a tool named PINOT that is claimed

to be able to identify design patterns based on patterns described in Gamma et al. [1].

Based on the detection results obtained using PINOT (reported in [77, 132]), we

learned that the tool has not been able to identify the recursive composite design

4.2 Identification of Design Patterns 87

pattern, that is, composites with cycles. Our retrieval system identifies subclasses of

any class that implements design pattern to be relevant to the detection of design

patterns. For example, similar to PINOT , in the JHotDraw package, we identify

the A bstrac tF igu re .java as implementing Composite pattern. Nevertheless, we

also identify A ttrib u teF ig u re . jav a as implementing the same pattern as it inherits

the A bstractF igure class. Also, in the JHotDraw package, as the system identi­

fied AbstractTool as implementing Observer pattern, 13 other classes that inherit

AbstractTool were also identified as implementing the same pattern. As our purpose

of having design pattern detection in a retrieval system is to help users to retrieve

programs that illustrate the required design patterns, the identification of Java classes

(including subclasses) that employ a particular design pattern through the use inher­

itance would also be relevant to the users. This is because these classes may contain

similar function as defined in a query program.

Table 4.2 shows the number of programs implementing a particular design pattern

identified using the algorithms defined in section 4.2 and the results obtained using

PINOT [77, 132].

Table 4.2 Detection of Design Patterns in Java Packages

Pattern Java.awt JHotDraw

Our approach PINOT Our approach PINOT

Singleton 13 6 3 0

Composite 9 6 9 6

Observer 8 2 23 9

Based on literature which includes the work by Rijsbergen [133], Baeza-Yates

and Ribeiro-Neto [13], precision and recall for program retrieval are defined as in

Definitions 7 and 8. In the context of the present work, the results of design pattern

4.2 Identification of Design Patterns 88

detection are represented using the precision score.

Definition 7 Precision is the ratio of the number of relevant programs retrieved to

the total number of all (irrelevant and relevant) programs presented in a hit list (see

Definition 6 on page 66).

D efinition 8 Recall is the ratio of the number of relevant programs retrieved to the

total number of relevant programs in a repository.

Both precision and recall have a fixed range: 0.0 to 1.0 (or 0% to 100%). Our test

results were verified against a pattern discussion board [134] and by manual means.

The precision scores of the design pattern detection are presented in Table 4.3.

More than half of the programs identified to implement the three design patterns are

relevant. The precision score for detecting Singleton pattern in the JHotDraw package

was 100% while approximately 90% of the programs identified by the detector to

implement Composite and Observer pattern were relevant. A similar result was also

obtained when the design pattern detection was performed on the Java.awt package,

as the precision scores were all greater than 50%.

Table 4.3 Precision Scores for Design Pattern Detection in Java Packages

Pattern Java.awt JHotDraw

Singleton 0.667 1

Composite 0.77 0.889

Observer 0.625 0.87

4.2 Identification of Design Patterns 89

4.2.5 Analysis of Design Pattern Identification in O pen-Source

Applications

In this experiment, we used five Java applications obtained from Sourceforge.net

[29], representing different domains that include database, entertainment, scheduling

and communications. The applications included in the experiment are as follows:

• Borg, a calendar and task tracking system written with the purpose of providing

a month view, month-print, email reminders, popup reminders and a to do list.

The task tracker manages issues through various states of time.

• FreeGuide, a program used to develop a TV guide. It is able to download TV

listings from the Internet, view them off-line, create a personalised TV guide,

and allow users to choose their favorites programmes.

• Jtds, an open-source JDBC driver for Microsoft SQL Server and Sybase. It is

based on the work of the FreeTDS project and is currently the fastest complete

JDBC driver for SQL Server and Sybase.

• Kafenio, a WYSIWYG Editor for HTML Browsers that supports Java 1.3.

Kafenio is partly based on Howard Kistlers’ Ekit Editor.

• TvBrowser is a Java-based TV guide which is easily extendible using plugins.

It is designed to look like a paper based TV guide.

Using the algorithms defined in section 4.2, our design pattern detector identifies

69 out of 288 programs to have implemented design patterns. And, out of the 69

programs, 44 of them employed a Composite design pattern and 14 implemented the

Observer design pattern, while the remainder (i.e 11) was identified as employing the

Singleton pattern. A percentage ratio of the relevant programs is shown in Figure

4.4.

4.2 Identification of Design Patterns 90

11%

□ Observer
■ S ingleton

□ Com posite

Figure 4.4 Ratio of Detected Design Patterns

Based on da ta depicted in Figure 4.4, it is suggested tha t it is more common to

find the Composite design pattern rather than the Singleton or Observer in open-

source applications. This supports the idea tha t Composite design pattern is the core

abstraction behind successful recurring frameworks [135]. Based on our analysis on

the programs used in this experiment, software developers tend to develop an appli­

cation by treating combinations of objects uniformly. For example, in the FreeGuide

package, the developer created a catalogue of a TV programme by combining related

catalogues obtained from the internet. Our design pattern detector has identified

20% of the programs in this package to have employed the Composite design pattern.

The Singleton design pattern is found in the scheduling application, Borg. Borg

is classified under the scheduling domain as it a task tracking system that helps users

to organize their activities. In the Borg application, for example, there exist only a

4.2 Identification of Design Patterns 91

single C alendar instance and this is necessary in order to determine that schedules

(i.e events to be marked in the calendar) are not redundant. Based on the researcher’s

analysis, there are eight programs implementing the Singleton pattern in Borg and

the detector has managed to correctly identify 50% of it. On the other hand, there

is not any Singleton pattern found in the Jtds application which is considered jus

type database in the classification made by Sourceforge.net. This is because there

is no reason for a developer to control the creation of a class instance in a database*

application. For example, we may have more than one database connection in a

program — different connection for different use.

In Table 4.4, details of the detection results are presented in three columns: An­

swer Set (Ans), Retrieval Set (Ret) and Relevant Retrieval (AnsRet). The

Arts column contains the number of programs that have been identified (manually)

to implement a particular design pattern while the Ret column includes the num­

ber of programs identified by the proposed detector. Upon obtaining the two sets of

programs, we then determine programs that are listed in both sets and include the

information (number of programs) in the A nsR et column.

Table 4.4 Detection of Design Patterns in Open-Source Applications

Application # Programs Singleton Composite Observer I

Ans Ret AnsRet Ans Ret AnsRet Ans Ret AnsRet '

Borg 46 8 5 4 7 4 4 5 6 2

FreeGuide 72 1 1 1 17 14 14 0 0 0

Kafenio 54 3 2 2 14 10 9 5 5 5

TvBrowser 49 7 6 6 14 9 9 0 0 0

Jtds 67 0 0 0 10 7 6 0 0 0

Total 288 19 14 13 62 44 42 10 11 I

4.2 Identification of Design Patterns 92

The precision and recall scores for design pattern detection in open-source ap­

plications are presented in Table 4.5. These scores were generated based on data

depicted in Table 4.4. The empty column marked by — indicates that there is not

any precision or recall for the particular application since the application does not

employ any design patterns. Based on the analysis, our design pattern detector has

correctly identified 67% (i.e 44/62) of the Composite pattern embedded in the open-

source applications, hence generating an average recall of 0.65 which is approximate

to the recall (average) for detecting the Observer pattern, 0.7. On the other hand,

the average recall for detecting Singleton pattern was 0.71. We also discovered that

developers of the open-source applications (e.g FreeGuide and Kafenio) have not used

interface classes in employing the Composite design pattern, but instead they incorpo­

rate the pattern using inheritance relationships. Most of the methods inherited from

the superclass were override to include different behaviours of the class instance.

T able 4.5 Precision and Recall for Design Patterns Detection in Open-Source
Applications__

Application Singleton Composite Observer

Precision Recall Precision Recall Precision Recall

Borg 0.8 0.5 1 0.57 0.33 0.4

FreeGuide 1 1 1 0.82 - -

Kafenio 1 0.67 0.9 0.64 1 1

TvBrowser 1 0.86 1 0.64 - -

Jtds - - 0.85 0.6 - -

average 0.95 0.71 0.95 0.65 0.67 0.7

4.3 Design Patterns in Program Retrieval 93

4.3 Design Patterns in Program Retrieval

We proposed the use of design patterns as structural descriptors of programs con­

tained in a repository. Our program retrieval system make use of information on the

existence of design patterns in a program in identifying similarity between a query

and programs in the repository. Similar to work described in the previous chapter,

users of our retrieval system are allowed to use program as the search query. By doing

so. users are able to express their search requirements precisely; functional descriptors

based on a program context and structural descriptors based on structural relation­

ships. Our retrieval system assists users to develop applications that can be reused

in the future; function-based and/or structure-based. This is achieved by presenting

the users with programs that illustrate the required function (based on functional

descriptors elaborated in Chapter 3) and structure (i.e design patterns) which can be

used as programming examples. As one of the best ways of learning how to program is

by examining programming examples [136], users can modify the programs presented

by our retrieval system to fulfill the requirements in a given programming task.

In the process of designing an object oriented application, developers generate de­

tails of how objects should be created and managed, and how they should behave —

structural relationships between objects. This can be done using various modelling

tool which includes the UML [37] that provides different diagrams to model different

design requirements. Once this information has been identified, a developer may use

his/her existing program which was created based on a particular diagram (e.g Entity

Relationship Diagram (ERD)) as a search query to retrieve similar programs from a

software repository.

When retrieving programs that may contain a Singleton design pattern, develop­

ers are presented with code statements that control the creation of class instance.

4.3 Design Patterns in Program Retrieval 94

Sometimes, it is important for some classes to have exactly one instance, for ex­

ample, program system and print spooler. Java developers require the Composite

pattern because, often developers manipulate composites exactly the same way they

manipulate primitive objects. For example, graphic primitives such as lines or text

must be drawn, moved, and resized. However, developers also want to perform the

same operation on composites, such as drawings, that are composed of those primi­

tives. By retrieving programs tha t implement a Composite design pattern, developers

could use these programs as examples for them to develop groups of objects with the

same composition. On the other hand, programs that were implemented based on

an Observer design pattern illustrate a one-to-many dependency between objects —

when one object changes state, all of its dependents are notified and updated auto­

matically. Such programs may be useful to developers creating an application that

requires broadcasting utilities. For example, an instance of class Engine that allows

another instance. EngineMonitorTemperature. to monitor its operating temperature.

The EngineMonitorTemperature is responsible for monitoring the Engine’s operat­

ing temperature and act appropriately when the temperature exceeds the maximum

allowed temperature. It will do this without the Engine needing to do or know

anything about it.

In order to utilize design patterns as structural descriptors in a program retrieval

system, we use information on the structural relationships that illustrate a pattern

as a program index. This means that each of the programs under analysis is given

a tuple containing three indices; the first represents the Singleton, the second corre­

sponds to the Composite while the last indicates the Observer design pattern. These

indices represent numbers of structural relationships that illustrate a particular de­

sign pattern. The structural relationships were the rules presented in Algorithms 1.

2. 3 and 4 in section 4.2. For example, if P99 illustrates the Singleton design pattern

4.4 Conclusion 95

by obeying one of the three rules defined in Algorithm 1 (that is either step 5, 6 or 7

in the algorithm) then the program tuple for P99 would be {1, 0, 0}.

4.4 Conclusion

Design patterns are used as one of the program descriptors in order to assist devel­

opers in retrieving programs that employ the required design patterns. As existing

program retrieval systems such as the Google code search [23] and Koders search

engine [24] are solely based on keyword match, fulfilling search requirements that

includes design patterns would be difficult. This is due to the difficulties in identify­

ing code statements that explicitly depict existence of design patterns in a program

(e.g This class im plem ents Observer pa ttern). However, by analyzing the structural

relationships contained in a program, we are able to infer the existence of a particular

design pattern in the program. Such information is later used as program descrip­

tors and contributes to identifying programs that illustrate the required function and

structure as defined in a query program.

In this chapter, we have demonstrated the identification of programs that imple­

ment a particular design pattern (i.e Singleton. Composite and Observer). As the

software repository contains open-source applications that may require different ex­

ecution environment, the use of structural analysis in detecting design patterns in a

program is more practicable than the work undertaken based on dynamic analysis.

This is because dynamic analysis requires the application under analysis to be exe­

cuted and since open-source applications may require specific environments prior to

execution, such an approach is less practicable. In addition, compared to existing

work of design patterns detection [72, 78, 77], we include the identification of a re­

cursive Composite design pattern. Such detection identifies sub classes of any Java

4.4 Conclusion 96

class (super class) that implements a particular design pattern to be relevant to the

design pattern detection. This is an advantage since the sub classes may illustrate

a similar function as required by the user, while the super class does not. Each of

the identified design patterns in this work represents a different phase of managing

classes and object instance(s). Starting from how objects are created, followed by

how they are related and how they behave, a retrieval system that includes design

patterns as program descriptors can assist users in retrieving programs that imple­

ment the required design pattern. Even though the presented work does not include

the identification of all design patterns described by Gamma et al. [1], we see it as a

starting point in developing a program retrieval system that combines functional and

structural descriptors.

C h a p t e r 5

SOFTWARE METRICS AS
STRUCTURAL DESCRIPTORS

In this chapter, we describe the use of software metrics as structural descriptors in

retrieving relevant programs from a repository. Based on software metrics tha t are

automatically extracted from a program, the program is classified into either database

or graphics application domain.

5.1 Overview

Software reuse does not only mean use of existing codes, it also involves the organiza­

tion and use of conceptual information [137]. This includes organizing programs into

the programming language used, execution platform and application domain. Never­

theless, much of the work [29, 30] undertaken in organizing the programs is performed

manually and/or is based on natural language. For example, in SourceF orge.net

[29], classification of an application into the appropriate domain (e.g database, mul­

timedia, games and financial) is undertaken based on the description provided by its

developer. If such an approach is adopted into a program retrieval system, classifica­

tion of programs in the system could not be automated if relevant descriptions are not

97

5.1 Overview 98

available. In addition, program classification that is performed based on textual anal­

ysis of code statements [28] is not applicable if the programs are not well-documented

(the definition of well-documented is provided in Definition 2 on page 4). Therefore,

there is a need of methods that do not rely on textual analysis in classifying a pro­

gram into an application domain. There are two objectives in the work described

in this chapter: 1) to classify a program into an application domain (i.e database or

graphics) using structural information extracted from the program, and 2) to inves­

tigate whether program classification contributes to a better program retrieval. We

extend the approach used in SourceForge.net [29] and Freshmeat.net [30] by using

software metrics extracted from a program to determine the appropriate application

domain for the program.

We used programs obtained from SourceForge.net. which are then autom ati­

cally classified into application domains using the predictions made by Discriminant

Analysis (DA) [138], C4.5 decision tree [105] and k-nearest neighbour (KNN) [10G].

Related discussion on these classifiers have been presented in section 2.2.1 on page

46. In order to determine if program classification contributes to a better program re­

trieval, the term occurrences approach which is undertaken based on the context of a

program, as described in Chapter 3, is employed to represent the function of the pro­

gram. By using DA [138] which is based on statistical analysis, we can determine how

software metrics may be combined into a mathematical equation to predict the most

likely application domain of a program. On the other hand, the C4.5 [105] is included

in the experiment as it has always been the point of comparison for novel approaches

in machine learning [108]. In addition, the work undertaken by Lim et al. [139]

and Ganti et al. [140] showed that the C4.5 algorithm generates good classification

accuracy and is the fastest, among the compared algorithms (i.e Neural network and

k-nearest neighbor). As for the K-nearest neighbour (KNN) [N], it is chosen to be23

5.1 Overview 99

included in the experiment due to its algorithm that classifies an object (i.e program)

based on the classification of the object’s neighbourhood. With this, we can identify

if programs from the same domain contains similar metric values. Furthermore, as

our repository contains programs that were developed by different developers with

different styles of writing source code, the use of KNN which is robust to noisy data

(i.e outlier) and is an effective classifier for large data sets [141, 112, 111] would be

suitable.

We use the freeware C and C ++ Code Counter (CCCC) [142] to extract software

metrics from a program. CCCC is a source code analyzer tool that analyses C ++ and

Java programs and generates a report on various metrics of the code. At the time

of our research, CCCC extracted a total of 19 software metrics, nevertheless, only

twelve metrics were used in the experiment undertaken. The selection is made based

on the strength of relationship that exists between the metrics and the application

domain categorized in S ourceforge.net [29]. Such relationships are identified using

the Pearson correlation analysis [103] which describes the strength and direction of

a linear relationship between two continuous variables. According to Pallant [103],

a correlation of 0 indicates no relationship at all, a correlation of 1 .0 indicates a

perfect positive correlation, and a value of -1 .0 indicates a perfect negative correlation.

Regardless of the direction of the relationship (positive or negative), Cohen [143]

suggested that the value of Pearson correlation, r, is considered to be large (i.e strong)

if it is between 0.5 and 1.0. If r is in the range of 0.3 and 0.49, then it is considered

as medium, and, if r is equal or less than 0.29, then the correlation is considered to

be small. Based on this suggestion, only software metrics that depict a correlation

as low as 0.5 are chosen to be used as the independent variables in determining the

dependent variable (i.e application domain). The selected metrics are listed below

and details of these metrics can be found in section 2 .1 .2 on page 3 3 .

5.1 Overview 100

1. Number of Modules (Nom)

2 . Lines of Code (Loc)

3. McCabe’s Cyclomatic Complexity (Mvg)

4. Depth of Inheritance Tree (Dit)

5. Coupling Between Object Classes (Cbo)

6 . Weight Method per Class (Wmc)

7. Ficon

8 . Fivis

9. Fiincl

10. Focon

11. Fovis

12. Foincl

In this work, we are also making the assumption that program classification is

better undertaken using a small number of metrics. This is because such an approach

requires less information extraction. Therefore, from the twelve metrics, we exclude

metrics that depict r < 0.7. Such a value (i.e 0.7) was used as the cut-point, as Owen

and Jones [144] suggested that a strong relationship between two variables is depicted

by a correlation value higher than 0.7. Based on the suggestion, we include a second

experiment that uses metrics Nom. Mvg, Cbo, Wmc, Dit, Fivis, Ficon and Fiincl to

differentiate a database from graphics programs.

5.2 Program Classification into Application Domains 101

5.2 Program Classification into Application D o­

mains

In this work, programs from two application domains as classified in SourceForge. ne t

[29] were used: database and graphics. These programs were chosen as they depict

a similar function, that is data organization (e.g add, remove), but yet operate on

different types of data. Database programs organize text-based information such as

employee details in a personnel database system, while graphics programs focus on

the organization of graphical objects, for example, photo images. A program is clas­

sified under the category of database if the functionality of the program is related to

querying, storing, or managing (updating) information (i.e text-based) in a database.

In addition, programs that illustrates the process of connecting to a database system

are also categorized under the domain of database.

On the other hand, programs under the category of graphics should illustrate

the function of creating, modifying and/or storing images. These may include pro­

grams that, have collaboration tools (e.g whiteboard in Netmeeting), add captions

and descriptions to digital photograph collections, and/or provide utilities for the ma­

nipulation of graphic images (e.g resize, crop). In addition, programs that visualize

images contained in a given directory are also considered as graphics programs. It is

the intention of the experiment in this study to see how well the classifiers (i.e DA,

C4.5 and KNN) would do when trained on programs of distinct domains; database

programs deal with structured objects while graphics programs handle unstructured

objects.

To obtain the classifier models, we performed experiments on two data sets; train­

ing and testing. The training data set includes a total of 584 Java programs (371

database and 213 graphics) while the testing data set contains 236 Java programs.

5.2 Program Classification into Application Domains 102

The classifier models obtained during training process were later verified using the

testing data set. We used classifiers C4.5 and KNN which are provided by WEKA

[145] and DA was obtained using SPSS [146]. WEKA is a collection of machine learn­

ing algorithms for data mining tasks developed at the University of Waikato and is an

open-source software issued under GNU general Public license. In WEKA, the C4.5

decision tree is known as J48 while the KNN is known as an instance based neighbour

(IBk): Therefore, in this thesis, the results are reported using these names (C4.5 and

IBk). On the other hand, SPSS was used to generate a DA classifier model. In this

chapter, the experiment undertaken attempts to find evidence that the software met­

rics (i.e independent variables) contained in a program can be used to determine the

application domain (dependent variable) of the program. Furthermore, we intend to

learn if program classification is better undertaken using twelve metrics rather than

8 metrics.

Data presented in Figure 5.1 shows that the training models generated using

twelve independent variables produced a higher classification accuracy compared to

using eight variables. The classification accuracy is calculated based on the number

of correctly classified programs when compared to the classification undertaken in

Sourceforge.net [29]. In this experiment, a combination of 12 independent vari­

ables has helped the classifiers to differentiate better between the two categories of

programs. Based on the analysis performed on the programs, we learned that values

for certain metrics in the database and graphics programs are in the same range. For

example, one third (30%) of the programs in the repository contained Fivis that are

in the range of 5 to 10, and 40% of the programs contain the same Nom values, which

is 2. Therefore, the classifiers need a larger number of independent variables in dis­

criminating between the two types of programs. As the classifier models which were

generated using twelve metrics produced a higher classification accuracy compared to

5.2 Program Classification into Application Domains 103

90.2397

□ 8 variables

■ 12 variables

D A lbK-3 J48

Classifier

Figure 5.1 Classification Accuracy using 8 and 12 Independent Variables

the models based on eight metrics, further experiments undertaken in this work were

based on the twelve metrics models.

There were two sets of classification function coefficients used in developing a

DA classifier model and they are depicted in table 5.1. The DA model does not

include da ta from metrics Fiincl and Foincl due to similarities of values with metrics

Fivis and Fovis. Using this model, the classification of a program into an application

domain can be made using equations 5.1 and 5.2 which were generated based on

the coefficients depicted in Table 5.1. These equations generate classification scores

for the program.

5.2 Program Classification into Application Domains 104

Table 5.1 Classification Function Coefficients

Metric

Application Domain

Database Graphics

Loc -0 .0 0 1 0 .0 0 1

Mvg -0.007 -0 .0 0 2

Nom 0.007 -0.007

Wmc -0 .0 0 2 0.044

Dit 0.758 0.199

Cbo 0.044 0.031

Fivis 0 .1 1 2 0.066

Ficon -0.053 0.258

Fovis -1.375E-05 -6.952E-06

Focon -0 .0 0 1 -0 .0 0 1

Constant -1.299 -1.190

5.2 Program Classification into Application Domains 105

/{database} = (—0.001 * Loc) — (0.007 * Mvg) + (0.007 * N om)

-(0.002 * Wmc) + (0.758 * Dit) + (0.044 * Cbo) + (0.112 * Fivis)

-(0.053 * Ficon) - ((1.375E - 05) * Fovis) - (0.001 * Focon) - 1.299

(5.1)

/{graphics} = (0.001 * Loc) — (0.002 * Mvg) — (0.007 * Nom)

+(0.044 * Wmc) + (0.199 * Dit) + (0.031 * Cbo) + (0.066 * Fivis)

+(0.258 * Ficon) — ((6.9521? — 06) * Fovis) — (0.001 * Focon) — 1.190

(5.2)

Once the classification scores for a program have computed, the program is classified

belonging to the domain for which it has the highest classification score. For example,

the classification scores for program PI which contains metric values {55, 8 , 2, 6 . 1, 3.

3, 2, 2, 2 } are -0.29003 and -0.42501 for /{database} and /{graphics} respectively.

Since the value of /{database} is greater than /{graphics}, the DA model considers

PI as a database program.

In order to get the optimum classification result using a KNN model, we need

to choose the appropriate value of k, which is the number of nearest neighbour to a

program which is under analysis (query point). The choice of k is regarded as one of

the most important factors of the model that can strongly influence the classification

result [111]. A small value of k will lead to a large variance in predictions while

setting k to a large value may lead to a large model bias. Thus, k should be set to a

value large enough to minimize the probability of misclassification and small enough

(with respect to the number of cases in the sample) so that the k nearest points are

5.2 Program Classification into Application Domains 106

close enough to the query point. Thus, there is an optimal value for k that achieves

the right trade-off between the bias and the variance of the model. In our work, k

is given the value of 3 resulting from the process of estimating k using an algorithm

known as cross-validation [147]. Prior to obtaining the value, the KNN model has

been trained using value k ranging from 1 to 13. The undertaken experiment (based

on cross-validation) showed that by using k=3, we obtained the highest classification

accuracy.

A decision tree generated based on the J48 analysis is provided in Appendix A : De­

cision Tree - J4 8 . In measuring the effectiveness of the three classifiers, the question

is, have we classified the programs into their application domain or have we misclas-

sified some of the application domain?. A number of these measures are derivatives

of measurements from the information retrieval domain.

• falsePositives The number of incorrect classifications a category contains.

• Precision The ratio of the number of relevant programs classified to the total

number of irrelevant and relevant programs being classified.

• Recall The ratio of the number of relevant programs classified to the total

number of relevant programs in the category.

Tables 5.2(a) and 5.2(b) reveal the falsePositives, precision and recall scores

which were calculated after the program classification experiment was completed.

Data in Table 5.2(a) shows that J48 and IbK-3 have similar capabilities in identifying

database programs. This is shown by the recall scores depicted in table 5.2(a) which

shows that there is only a difference of 0.1 between the two classifiers. However,

J48 outperforms both DA and IbK-3 by 10% in the precision scores. Ninety two

percent (92%) of programs classified into the database domain, using the J48 model,

5.2 Program Classification into Application Domains 107

Table 5.2 Classification Analysis based on 12 Independent Variables

(a) Database

MEASUREMENT J48 IbK-3 DA

Precision

Recall

falsePositives

0.929

0.916

0 .1 2 2

0.882

0.927

0.216

0.837

0.593

0 .2 0 2

(b) Graphics

MEASUREMENT J48 IbK-3 DA

Precision

Recall

falsePositives

0.858

0.878

0.084

0.861

0.784

0.073

0.53

0.732

0.407

are actually relevant, hence generating the lowest falsePositives score, i.e 0 .1 2 2 .

Data in Table 5.2(b) shows that there is a reduction in the precision and recall

scores for J48 and IbK-3 when compared to the scores obtained for database programs.

On the other hand, the DA model generates a better classification then the one made

for database programs. An increment of approximately 15% in recall was achieved

by DA in classifying graphics programs compared to the database programs.

Based on the data depicted in Table 5.2 and in Figure 5.2, we learned that machine

learning classifiers outperformed the statistical-based classifier in classifying programs

contained in our repository. The recall scores depicted in Table 5.2 show that the

IbK-3 and J48 outperformed DA in classifying the programs. Such a result can be

accounted for by the similar metric values depicted in programs used in the undertaken

experiment. In this context, two metric values are considered similar if they are the

same (exact) or depicting a difference of two (the most). For example, if the Ficon

5.2 Program Classification into Application Domains 108

metric values in PI and P2 are 3 and 2 respectively, then the programs are considered

to have the similar metric values. The distance between programs with similar metric

values (when mapped into a vector space) is small, hence suggesting the IbK model,

which is based on neighbourhood classification, to classify the programs into a same

domain.

5.2.1 Program Classification using Testing D ata Set

The classifier models from the previous experiment were then used to classify a new set

of programs (testing data set) containing 136 Java programs. This data set contains 64

database and 72 graphics programs which were also obtained from Sourceforge.net

[29]. From the data depicted in table 5.3, it is noted that the classification accuracy

obtained using the three classifiers are in the range of 57% to 73%. Out of 136

programs, the IbK-3 has correctly classified 98 programs while 94 programs classified

by the J48 model was relevant. On the other hand, the DA has correctly classified

57% of the programs (i.e 78 out of 136).

Table 5.3 Classification Accuracy: Testing Data Set

M easurem ent J48 IbK -3 DA

Testing Data Set 70.149 73.134 57.46

In Tables 5.4(a) and 5.4(b), the precision, recall and falsePositives scores ob­

tained after completing the program classification experiment are provided. As ex­

pected (based on results obtained in the previous experiment), the IbK-3 model has

outperformed the DA and J48 in classifying programs into the application domains.

The average precision score for IbK-3 was 0.739 while J48 generated an average of

0.714. On the other hand DA generated an average of 0.581 and 0.567 for precision

5.2 Program Classification into Application Domains 109

100
90
80
70

o 60
50uo

20

0 10 20 30 40 50 60

Recall

J48
• lbK3

DA

(a) Database

100 -]

90 -
80 -
70 -

o 60 -
</> __ — 50 -
q_ 4 0 -

30 -
20 -

10 -

o«*

0 10 20 30 40 50

Recall

(b) Graphics

F igu re 5.2 Interpolated Precision a t 11 S tandard Recall Levels relative to
Program Classification into Application Domain

5.2 Program Classification into Application Domains 110

Table 5.4 Classification Analysis on Testing Data Set

(a) Database

Measurement J48 IbK-3 DA

Precision

Recall

falsePositives

0.762

0.75

0.239

0.797

0.797

0.203

0.607

0.578

0.393

(b) Graphics

Measurement J48 IbK-3 DA

Precision

Recall

falsePositives

0.667

0.639

0.406

0.681

0.653

0.347

0.556

0.557

0.444

and recall, respectively. The average recall scores for IbK-3 and J48 were 0.725 and

0.694, respectively.

The interpolated precision recall curve for the classification of database and graph­

ics programs are illustrated in Figures 5.3(a) and 5.3(b). Based on figure 5.3(a), we

noted that IbK-3 outperformed other classifiers in classifying database programs. This

is achieved by correctly classifying 51 out of 64 database programs, hence generating

a recall of approximately 80% (rounded). It is therefore supports the result obtained

earlier (refer to Table 5.4), which showed that the IbK-3 is a better classifier than the

DA or J48 in classifying database programs.

The interpolated precision recall curve that is depicted in Figure 5.3(b), illustrates

that IbK-3 has also out performed DA and J48 in classifying graphics programs. The

IbK-3 has correctly classified 65% of the graphics program compared to J48 which

correctly classified 64% of programs from the same domain.

5.2 Program Classification into Application Domains 111

I bK3
J48
DA

Recall

(a) Database

100

90

80

70

lbK 3
J48
D A

50

4 0

30

20

1 0

10 20 30 4 0 50 60 70
R e c a l l

(b) Graphics

Figure 5.3 Interpolated Precision Recall Curve for Program Classification
using Testing D ata Set

5.2 Program Classification into Application Domains 112

The precision and recall scores that are depicted in Table 5.4 suggest that the

IbK-3 is a better classifier than the J48 or DA. We investigate if the result is sup­

ported by statistical analysis. Successful evaluation of an experiment requires a valid

statistical methodology for judging whether measured differences between classifiers

can be considered statistically significant [148]. In normal English, significant means

important, while in Statistics significant means probably true (not due to chance).

Therefore when the result of the statistical test indicates significant it means that it

is probably true that there is a different in the measured scores between the distinct

classifiers. Prior to a statistical test, distribution of the data (determined using a

normality test) needs to be identified in order to determine which significance test

(parametric or non-parametric) is most suitable for the given set of data [103].

A normality test was performed using SPSS version 11.5 and based on the test

result, a separate analysis was required as the distribution of precision and recall

scores for database and graphics programs were different. Details of the normality test

(histogram and means plot) are depicted in Appendix B: Statistical Result - Program

Classification on Testing Data Set. The precision and recall scores obtained from

classification of database programs were not normally distributed, hence requiring

non-parametric test in determining whether measured differences between classifiers

can be considered statistically significant. On the other hand, the scores for graphics

programs have been identified to be normally distributed. Therefore, a parametric

test is required to determine significant different in precision and recall scores for

graphics programs.

The non-parametric Kruskal-Wallis test [103] was conducted to determine whether

there is significant different in precision and recall scores for database programs. Data

in Table 5.5(b) reveals that there is a significant different at a = 0.05 in the precision

and recall scores across the three classifiers. Such a value was used in the test as it

5.2 Program Classification into Application Domains 113

is one of the standard values used in a statistical test [103]. Both of the Asymp.Sig.

values for the precision and recall scores are 0 .0 0 0 which are less than the a value.

This indicates that there is a different in precision and recall scores across the J48,

DA and IbK-3.

When the data under analysis are not normally distributed, and the measurements

at best contain rank order information, then inspection of the mean ranks would

reveal which classifier is better than the others [103]. The mean ranks depicted in

table 5.5(a) reveals that the IbK-3, with 63.52 and 68.37 had the highest precision

and recall scores, with the DA reporting the lowest. Such a result indicates that the

IbK-3 is a better classifier compared to DA and J48.

Table 5.5 Kruskal-Wallis Test Result Relative to Program Classification into
Database Domain

(a) Mean Rank

Scores Classifier Mean Rank

Precision J48 50.22

IbK-3 63.52

DA 22.77

Recall J48 45.50

IbK-3 68.37

DA 22.63

(b) Test Statistics

Precision Recall

Chi-Square

df

Asymp.Sig.

38.146

2

0 .0 0 0

46.006

2

0 .0 0 0

5.2 Program Classification into Application Domains 114

In order to identify whether there is a significant different between classifiers in

precision and recall scores for graphics programs, we conducted a one-way between-

groups analysis of variance (one way ANOVA [103]). The statistical results depicted

in Table 5.6 indicate that the difference in precision and recall scores, obtained using

DA, J48 and IbK-3 are less significant at a = 0.05. This is depicted by Sig. values

of 0.879 for precision and 1 .0 0 for recall which were greater than the a value used

in the test, that is 0.05. Other information (i.e descriptive statistics) related to the

test is included in Appendix B: Statistical Result - Program Classification on Testing

Data Set.

Table 5.6 ANOVA Test Results of Precision and Recall Scores

ANOVA
Sum of
Squares df Mean Square F Sig.

PRE_GR Between Groups .005 2 .002 .129 .879
Within Groups 1.646 8 / .019
Total 1.651 89

REC_GR Between Groups .000 2 .000 .000 1.000
Within Groups 1.301 8 / .015
Total 1.301 89

5.3 Program Retrieval based on Terms and Application Domain 115

Programs of Combined Domain

In addition to the testing data set. the classifier models have also been used to classify

six programs that the researcher believes belong to both domains. This is because

the programs illustrate the characteristics of both domains. For example, programs

obtained from the Data Crow 2.12 project [29] organize data of type movie, book,

images and software (games and program). As they deal with different types of

data (structured and unstructured), the programs can be classified as database and

graphics programs. These programs were also obtained from Sourceforge.net [29].

Table 5.7 reveals the application domain of the programs which were predicted

using classifier models J48, IbK-3 and DA. In addition, the table also include classifi­

cation made by Sourceforge.net. Classifier J48 and IbK-3 have similarly classified

half of the programs into the graphics domain and the other half as type database.

Even though classifier DA has also classified three programs into the graphics domain,

nevertheless one of them is not the same program as classified by J48 and IbK-3. Both

classifiers J48 and IbK-3 categorize P3 into the database domain while DA classified

it as type graphics. On the other hand, DA classified P4 to be a database program

while J48 and IbK-3 classified it as a graphics program.

5.3 Program Retrieval based on Terms and Appli­

cation Domain

In this section, we investigate whether program retrieval can be improved if programs

are classified into application domains prior to retrieval. Given a query, retrieval

of relevant programs is performed using four mechanisms. The first mechanism in­

volves retrieving programs based on term occurrences as elaborated upon in section

5.3 Program Retrieval based on Terms and Application Domain 116

Table 5.7 Program Classification: Programs of Combined Domain

Program J48 IbK-3 DA Sourceforge.net

PI database database database database

P2 database database database database

P3 database database graphics graphics

P4 graphics graphics database internet

P5 graphics graphics graphics graphics

P6 graphics graphics graphics graphics

3.4 on page 64. Similar to the first mechanism, the second, third and fourth retrieval

mechanisms are also based on term similarities, but prior to retrieval, programs are

classified into application domains. The second retrieval mechanism classifies pro­

grams using the IbK-3 model, the third uses the J48 classifier model while the fourth

employs the DA model. The retrieval was performed on a repository containing 584

Java programs, which is the same set of programs used in the experiment elaborated

upon in section 5.2.

Given a query, we compare the precision and recall scores (defined as in Defini­

tions 7 and 8 on page 8 8) calculated based on the results obtained using the four

mechanisms. We later investigate whether there is a significant different in the mea­

sured scores between the mechanisms, also, we determined if classifying programs

into application domain improves the precision and/or recall.

A total of ten queries was used in the experiment and retrieval analysis was under­

taken for the first 25 programs presented in the hit list (refer to Definition 6 on page 6 6

for the definition of a hit list). Examples of queries posted to the retrieval system are

as defined in Table 5.8. Each query includes three types of information: (1) term (e.g

add), (2) context of the term in a program (e.g method) and (3) application domain

5.3 Program Retrieval based on Terms and Application Domain 117

of the required program (e.g database). The expected outcome from the retrieval is a

list of programs that contain the desired term, which is used in the required context,

and the programs are suitable to be used in the requested application domain.

Table 5.8 Examples of Queries

Query Term P ro g ra m C om ponen t A pplication D om ain

1 retrieve method database

2 thumbnail identifier graphics

3 photo identifier graphics

4 table method database

5 move method graphics

6 add method database

7 display method graphics

8 list method graphics

9 connect class database

10 get method database

Table 5.9 contains the precision and recall scores for program retrieval undertaken

using the different retrieval mechanisms. In this table, precision and recall scores for

the first mechanism is represented as U n c lass ified , the second by IbK-3, the third

by J48 while the fourth mechanism appears as DA. Based on data depicted in the

table, we can see that by classifying programs into application domains prior to

retrieval, we obtained a higher precision. The increase in precision can be seen when

Queries 1 , 5 , 6 , 7 and 10 were used in the experiment. This result can be explained

by the selection of terms used in defining a query, that is, if the query contains a

term that is common in both domains, then it is better to classify the programs

prior to retrieval. This is because if information on the application domain of the

5.3 Program Retrieval based on Terms and Application Domain 118

programs is not available, users are presented with programs containing the searched

term but may not illustrate the required context. For example, the term add defined

in Query 5 is a verb that can be seen as method names in both types of application

domains, database and graphics. We may have code statements of adding records

in a database program and statements of adding an image in a graphics program.

Therefore by classifying programs into application domain prior to program retrieval

would filter out programs that are from the irrelevant application domain.

Table 5.9 Precision and Recall Scores for Queries 1 to 10

Precision Recall

Query Unclassified IbK-3 J48 DA Unclassified J48 IbK-3 DA

1 0.72 1 1 0 .8 8 0.45 0.63 0.63 0.55

2 0.76 1 1 0 .8 8 0.61 0.81 0.81 0.71

3 0.84 0 .8 0 .8 8 0.72 0.44 0.42 0.46 0.38

4 1 1 0.96 0.76 0.48 0.48 0.46 0.37

5 0.72 1 1 0 .8 8 0.36 0.51 0.51 0.45

6 0.64 1 1 1 0.32 0.51 0.51 0.51

7 0 .6 8 0 .6 8 0 .8 0.76 0.59 0.57 0.69 0 .6 6

8 0.76 1 1 0 .8 8 0.39 0.51 0.51 0.45

9 0.92 0 .8 8 0 .8 8 0 .8 0.49 0.47 0.47 0.43

1 0 0.64 0.64 0.76 0.56 0.31 0.3 0.37 0.27

Based on the data depicted in Table 5.9, we present the average precision and re­

call scores in Table 5.10. Data in table 5.10 reveals that retrieval undertaken based on

program classification performed using the IbK-3 model generates the highest preci­

sion and recall. This is followed by classification made using the J48 and DA models.

On the other hand, retrieval performed without program classification generates the

5.3 Program Retrieval based on Terms and Application Domain 119

lowest average precision and recall scores.

Table 5.10 Average of Precision and Recall Scores for Four Retrieval Mech­
anisms ______________ ____________ _______ _______ _______

Measurements Unclassified IbK-3 J48 DA

Precision

Recall

0.7680

0.4440

0.9280

0.5420

0.900

0.5210

0.8120

0.4780

In order to identify whether there is statistically significant different in precision

and recall scores between different retrieval mechanisms, we performed the Kruskal-

Wallis test [103] since the scores were not normally distributed. Results of normality

test is included in Appendix C: Statistical Result - Program Retrieval using Classified

Programs. Based on the Kruskal-Wallis test performed using data depicted in Table

5.9, it is suggested that there is a significant different in precision scores across the

four retrieval mechanisms. This is shown by the data (output from the test) presented

in Table 5.11(b) which suggest that the significance level (Asymp.Sig.) for precision

scores was 0.02 (rounded). This is less than the c*=0.05, which is normally used in

statistical test [103]. To investigate which of the retrieval mechanisms had the highest

overall precision, the mean rank is taken into consideration. Based on data in Table

5.11(a), it is suggested that retrieval undertaken using classification made by IbK-3

had the highest precision, with the DA reposting the lowest. Details of the statistical

test are also included in Appendix C.

On the other hand, data depicted in Table 5.11(b) suggests that at a=0.05. dif­

ference in recall scores across the four retrieval mechanisms is less significant. This is

shown by the Asymp.Sig value for recall scores (i.e 0.250) which is greater than the

q value used in the experiment.

Existing work suggest that the success of a classification method can be deter-

5.3 Program Retrieval based on Terms and Application Domain 120

Table 5.11 Kruskal-Wallis Test Result Relative to Program Retrieval

(a) Moan Rank

Classifier Mean Rank

Precision Unclassified 12.95

J48 25.05

IbK-3 26.90

DA 17.10

Recall Unclassified 15.45

J48 23.40

IbK-3 24.70

DA 18.45

(b) Test Statistics

Precision Recall

Chi-Square

df

Asymp.Sig.

9.952

3

0.019

4.105

3

0.250

5 A Conclusion 121

mined by the proportion of programs that are correctly classified out of all relevant

programs [106, 113, 28]. Since the statistical results reveal that the difference in re­

call scores between DA, J48 and IbK-3 is less significant at a = 0.05), we conclude

that the capabilities of the classifiers in classifying programs into the relevant ap­

plication domains are similar. Therefore, we decided to use classifications made by

all three classifiers (J48, IbK-3 and DA) in our retrieval system. This means that,

given a program, there will be three classification results; one from each classifier.

However, we represent the classification results by indicating the portion of classifiers

that classify the program into a particular domain. In our program retrieval system,

information of the application domain of a program is represented as a tuple of two

indices. The first index represents the database domain while the second corresponds

to the graphics domain. If we have a program, P99, which has been classified into the

database domain by two out three classifiers, than the information on the programs

application domain would be {0.66, 0.33}. If all three classifiers have classified the

program as a database program then P99 would be represented as {1 , 0}.

5.4 Conclusion

We have demonstrated the use of software metrics in determining the application

domain of a program. Such an approach is beneficial in automating program classifi­

cation performed on applications that are not well-documented - definition for well-

documented is provided in Definition 2 on page 4. In the experiments undertaken,

the use of more metrics as the independent variables generates a better classification

result. Since the programs used in the undertaken experiment illustrate similar func­

tionalities (e.g add and delete), the classifiers require more metrics to differentiate

between a database and graphics programs. In addition, we have also demonstrated

5.4 Conclusion 122

that by classifying programs into application domains prior to program retrieval can

improve the precision and recall scores.

C h a p t e r 6

COMBINING FUNCTIONAL AND
STRUCTURAL
DESCRIPTORS

In this chapter, we demonstrate how to integrate data obtained from Chapters 3, 4,

and 5. into a single index. This index known as a compound index is used to represent

a search query and programs in a software repository. In the context of this thesis, a

compound index is defined as follows:

Definition 9 A compound index is an index containing several indices which includes

functional and structural descriptors. The elements of this index are represented using

continuous values (e.g 1, 4> 10, etc.) which indicate the importance of functional

descriptors, existence of design patterns and software metrics contained in a program,

and application domain of a program.

Based on the work undertaken by Mili et al. [1 0 0] and literature discussed in

section 2.1.3 on page 41, relevant components are retrieved by identifying components

that minimize some measure of distance to a user query. Such an approach expects

that the outcome will either be an exact match [1 0 0] or (failing an exact match)

one or more approximate matches [100]. As many studies [58, 149, 5, 150] have
123

6.1 Model of Program Retrieval using a Combination Approach 124

demonstrated the effectiveness of using vector model in presenting users with exact

and approximate matches, we investigate the use of this model in retrieving programs

that are similar to a given query. In this work, the vector model evaluates the degree

of similarity of a component P with regard to a query q using two calculations:

Cosine Measure and Euclidean Distance. Relevant formula used as the similarity

measurements can be seen in equations 2.1 and 2.2 described in section 2.1.3 on page

43. We also investigate the use of information on data distribution as the similarity

measurement for a program retrieval system. The idea is to identify whether programs

with similar data distribution illustrate similar function and structure. An elaboration

on similarity measurement based on data distribution can be seen in section 2.1.3 on

page 44.

6.1 Model of Program Retrieval using a Combina­

tion Approach

Figure 6.1 illustrates the model of program indexing and retrieval used in this work.

There are three types of information extraction performed on a program: function,

design patterns and software metrics.

The first extractor, namely D esc rip to r (as illustrated in Figure 6.1), creates a

functional index file consisting of a program-term matrix (refer to Definition 10). This

index file is updated whenever the repository receives new applications to be stored

or when there is a request to withdraw a particular application.

6.1 Model of Program Retrieval using a Combination Approach 125

Functional
Descnptors

Program

Structural
Descnptors

M ATCHER

INTEGRATOR

Design
Pattern

Descnptors

Software
Metrics

F ig u re 6.1 Model of Program Indexing and Retrieval using a Combination
Approach

6.1 Model of Program Retrieval using a Combination Approach 126

Definition 10 A program-term matrix contains rows corresponding to the programs

and columns corresponding to the weighted terms (refer discussion on page 61). For

instance if we have two (simple) programs, PI (Figure 6.2) and P2 (Figure 6.3):

public class Database {

public void connect (String connectString) throws DBException {

try { }

catch (Exception e) { } }

}

F ig u re 6 . 2 Database - P I

public class Database {

public void setDriver(String driver) throws DBException {

try { }

catch (Exception e) { } }

}

F ig u re 6.3 Database - P2

then a program-term matrix would be as follows:

The second extractor that is illustrated in Figure 6.1 is the Design P a ttern ,

and it is used to identify the existence of three design patterns in a program (as

elaborated upon in Chapter 4). The Software M etrics extractor, extracts twelve

software metrics (as demonstrated in Chapter 5) from a program and uses these

6.1 Model of Program Retrieval using a Combination Approach 127

Table 6.1 Program-term Matrix

database connect connectString setDriver driver

PI 3 2 2 0 0

P2 3 0 0 2 2

metrics to classify a program into the appropriate application domain (i.e database

or graphics). Information on the program’s application domain and seven software

metrics that represent program reusability (as discussed in section 2.1.2 on page 33)

are submitted to an In te g ra to r . The In te g ra to r will then combine this information

with that obtained from the Design P a tte rn and generate the following:

1 . confidence level of the existence of design patterns - (pi,p2 ,ps). The higher the

value of px in a program, and in this case the value of x is 1 to 3, the more

the program is believed (through the existence of structural relationships) to

employ a particular design pattern.

2 . confidence of classification of a program into appropriate application domain

- (di,d2)- The greater the value of d\ or d2 > the more a program is believed

(based on classification made by the classifiers) to be in a particular application

domain.

3. software metrics used in determining program complexity and reusability -

(m i,m2 ,m 3 , 7714, m5 ,m 6 , 7717). The fewer the value of mx jn a program, the

more reusable the program is.

Variable px comprises data on the existence of three design patterns, namely

Singleton(pi), Composite(p2) ^nd O bserver^). The second variable, dx, represents

information generated by application domain classifiers (i.e J48, IbK-3 and DA) that

6.1 Model of Program Retrieval using a Combination Approach 128

currently classify a given program into either database (di) or graphics (d2). Finally,

seven software metrics, m x where x is the value of 1 to 7, are used to represent the com­

plexity and reusability of a program. Details on these metrics have been discussed in

section 2.1.2 on page 33. All of this information is mapped into a program-structural

matrix which is later stored as a structural index file. In the context of this thesis,

such a matrix is defined as Definition 11. Similar to the functional index file, a struc­

tural index file is only created once and is updated whenever the repository receives

new applications to be stored or when there is a request to withdraw any particular

application.

D efinition 11 A program-structural matrix contains rows corresponding to the pro­

grams and columns corresponding to the structural descriptors. An example of such

a matrix is as follows:

Table 6.2 Program-structural Matrix

Pi P2 P3 d\ d 2 m \ ra2 m 3 m4 m5 m6

P3 2 0 3 1 0 0 8 7 0 0 7 1

P4 0 2 0 0 1 5 2 5 1 1 2 1

A program that is submitted to the retrieval system as a search query will undergo

the same process: the D escrip to r in Figure 6.1 extracts relevant terms from the pro­

gram and generates a program-term matrix for the query program. The In te g ra to r

integrates information on design patterns, application domain and software metrics,

which were identified by the Design P a tte rn and Software M etrics, of the pro­

gram. This information is then sent to the Matcher which combines them into a

compound index. This index is later known as a Query Compound Index (Qci).

6.1 Model of Program Retrieval using a Combination Approach 129

Definition 12 A query compound index is a compound index (refer to Definition 9)

that is created by analyzing a program submitted by a user to be used as the search

query.

For example: given a program, Q as the query, the In teg ra to r produced the

following compound index Qci = 3 ,2 ,2 ,2 ,0 ,3 ,1 ,0 ,0 ,8 ,7 ,0 ,0 ,7 ,1 . This index is built

upon the following:

W eighted te rm s (w): {3, 2, 2 } These values represent the three terms (e.g database,

connect, connectString) extracted from program Q.

Design p a tte rn (p): {2, 0, 3 } The three values in the tuple represent the exis­

tence of three design patterns in a program. For example, value 2 illustrates

that two of Singleton's rules have been fulfilled while the value 3 indicates that

there are three structural relationships in the program that illustrate existence

of Observer design pattern.

Topic C lassification (d): { 1, 0 } The values in this tuple depict how many of

the topic classifiers (elaborated upon in 5) have classified the program into

a particular application domain. The first indice in this tuple represents the

database domain while the second indice represents the graphics domain. Value

1 as indice number four of the compound index indicates that all three classifiers

have categorized the query as being in the database domain. If the value is 0.33,

then it indicates that only one out of three (i.e 1/3) classifiers have identified

the program as a database program.

P rogram R eusab ility (m): { 0, 8, 7, 0, 0, 7, 1 } The first two indices represent

the complexity of a program while the rest of the values are used in determining

the reusability of a given program. The first value represents Wmc and this is

6.1 Model of Program Retrieval using a Combination Approach 130

followed by Mvg. The third metrics is the Cbo and is followed by Fivis, Ficon,

Fovis and Focon. Details of these metrics can be seen in section 2.1.2 on 33.

Upon creating a Qci to represent a search query, the Matcher (illustrated in Figure

6.1) creates another program-term matrix. The matrix contains rows corresponding

to the programs in the repository and columns corresponding to the weighted terms

(e.g database, connect, connect String) found in the Qci. This matrix only includes

programs that contain term(s) as defined in the query program. For each of the

programs in the matrix, the Matcher combines the weighted terms, based on data in

the functional index file (i.e generated by the D escrip to r), with structural descriptors

defined in the structural index file, into a Program Compound Index (Pci). Similarity

between a Qci and each of the Pci, (Pcin), is determined in order to present a user

with relevant programs.

6.1.1 Requirements o f the C om bination Approach

In order to realize the proposed source code retrieval system (i.e combination ap­

proach). we are assuming that the search query is presented in the format of a pro­

gram. This means that a user may use his/her existing program, which is currently

developed for a programming task, as the search query. This partially completed

program (query program) acts as a template since the user’s search requirements

(function and structure) are depicted in the program. Such an approach is beneficial

to developers who have identified the required objects and/or how they interact for

a given programming task. The retrieval system will then identify programs (from

the repository) containing similar function and structure and include them in the

retrieval hit list.

As illustrated in Figure 6.1, in order to identify functional and structural descrip­

6.1 Model of Program Retrieval using a Combination Approach 131

tors depicted in a program or a query program, the retrieval system extracts three

types of data: terms, design patterns and software metrics. The first two data can

be obtained using parsers that extract terms based on program structure (as defined

in Definition 5 on page 52) and identify relationships that exist between properties

of the program (e.g method invocations and inheritance). On the other hand, soft­

ware metrics that are used to determine the program’s application domain and its

reusability are identified using the C and C + + Code Counter (CCCC) [142].

The identification of functional and structural descriptors as elaborated in Chap­

ters 3, 4 and 5 can be extended to cater larger number of programs which may

contain various design patterns and originate from several applications domains. Our

approach of using weighted terms as the functional descriptors of a program can easily

be integrated with existing methods of identifying semantic meanings. For example,

the mechanism can be integrated with WordNet [61] to obtain other the synonyms of

the extracted terms. This would increase the performance of the system as similarity

measurement is not restricted to string matching. Furthermore, if a developer intends

to have a domain-based repository, that is a collection of programs for a specific do­

main (e.g medical, finance), then the functional descriptors can be identified based

on a relevant ontology [151, 7].

Currently, the work described in this thesis focuses on identifying three design

patterns; Singleton, Composite and Observer. As the identification is made based on

structural relationships, it can later be extended to include other design patterns. For

example, in a Decorator pattern, we learn that there are additional responsibilities

attached dynamically to the Component object. Such a relationships can be used as

an indicator of the existence of Decorator pattern in a Java program. Furthermore,

our source code retrieval model can also be integrated with other design pattern

detection tools (e.g PINOT [77]). Information on design patterns, contained in a

6.2 Experiments 132

program, that have been detected by the tool can later be incorporated into the

compound index representing the program.

Based on the work discussed in Chapter 5, if programs from other domains (be­

sides database and graphics) are to be included in the repository, it is believed that

KNN would also able to generate an acceptable result (classification accuracy). This

assumption is made based on existing work [141] which has employed KNN to clas­

sify objects from a large number of categories. The average classification accuracy

obtained in the experiments performed using objects from 267 categories is approxi­

mately 71% [141]. As most of the existing open-source repositories [29, 30] categorize

their applications into less than 100 domains, the use of KNN in this context would

generate promising result. Furthermore, if programs from different domains are iden­

tified to illustrate different metric trends, than the use of KNN that groups together

objects having similar data is applicable.

6.2 Experiments

As discussed in Chapters 3, 4 and 5, we proposed to retrieve relevant programs using

functional and structural descriptors of a program: weighted terms, design patterns

and software metrics. In this section, similarity measurement between compound

indexes is performed using calculations undertaken based on vector model and data

distribution which have been explained in section 2.1.3 on page 41. All of the exper­

iments were performed on a repository that consists of 584 Java programs. Exper­

iments of program retrieval using distinct similarity measurements were conducted

based on:

• a set of queries

• a single query

6.2 Experiments 133

The first type of experiment requires a set of queries to be submitted to the

retrieval system. A total of ten programs were used as the search queries in the

experiment. These programs contain different amount of functional descriptors and

different software metric values. In addition, the query programs also illustrate dif­

ferent design patterns confidence levels of the existence of design patterns. Half of

the programs are from a database domain and the other half represent the graphics

domain.

To investigate whether one of the retrieval techniques (i.e program retrieval un­

dertaken using different similarity measurements) outperforms the other for the set of

queries, an analysis of individual query is included in the experiment. The relevance

of programs retrieved by the system and a list of programs that are relevant to a given

query (i.e answer set) were determined by the researcher, (i.e identifying programs

that the researcher thought to be relevant to a given query). The answer set of each

of the query used in the experiment is identified by determining similarity in terms of

(1) function, (2) design patterns and (3) application domain. As discussed in section

3.2 on page 53, identifier names contained in a program represent the functionality

of the program. If a program contains at least half of the functional descriptors iden­

tified in a query program, and the program also employs a similar design pattern(s)

as in the query program, than the program is considered to be relevant to the query.

In addition, the program should also comes from the same application domain as the

query program.

6.2.1 Evaluation o f Program Retrieval

In the experiments undertaken, performance of the retrieval system using different

similarity measurements was measured using the precision (refer to Definition 7) and

recall (refer to Definition 8) scores. The purpose of computing the recall and precision

6.2 Experiments 134

scores of the program retrieval system is to compare the three similarity measurements

to find the best one that can be used as the default similarity measurement in order

to automate program retrieval. The scores should not be taken as an absolutely

objective measurement of the effectiveness of similarity measurements (skewness, ED

and cosine measure) in a retrieval system because the scores were calculated based

on program retrieval performed on the existing repository.

The recall and precision are measures for the entire hit list (a hit list is defined as

Definition 6 on page 66). They do not account for the quality of ranking the programs

in the hit list. Developers want the retrieved programs to be ranked according to

their relevance to the query instead of just being returned as a set. The most relevant

programs must be in the top few programs returned for a query. Relevance ranking

can be measured by computing precision at different cut-off points (i.e precision at

n) [13]. Therefore, in the experiments undertaken, the results of program retrieval

are based on precision at a fixed document cut-off value (DCV).

Definition 13 A retrieval system employing a DCV examines only a fixed number

of programs (e.g n=10) for a given query and uses this information to compute a

precision and/or recall scores.

For example, if the top 10 programs are all relevant to the query and the next ten

are all non relevant, we have 100% precision at a cut off of 10 documents but a 50%

precision at a cut off of 20 documents. Relevance ranking in this hit list is good since

all relevant programs are above all the non relevant ones.

6.2 Experiments 135

Table 6.3 Precision and Recall Scores for the Top 10 Programs

Query # Relevant

Programs

Skewness Euclidean Distance Cosine Measure

Precision Recall Precision Recall Precision Recall

Q i 67 0.3 0.045 0.6 0.090 0.6 0.090

Q2 194 0.2 0.010 0.4 0.031 0.5 0.026

Q3 15 0.2 0.133 0.3 0.2 0.3 0.2

Q4 20 0.3 0.150 0.4 0.2 0.4 0.2

Q5 28 0.4 0.143 0.6 0.214 0.5 0.179

Q6 45 0.5 0.111 0.7 0.156 0.7 0.156

Q7 105 0.5 0.048 0.8 0.076 0.8 0.076

Q8 88 0.4 0.045 0.6 0.068 0.6 0.068

Q9 275 0.5 0.018 0.7 0.025 0.7 0.025

Q10 144 0.6 0.042 0.8 0.056 0.7 0.049

6.2.2 Analysis o f Program R etrieval U ndertaken using Dif­

ferent Sim ilarity M easurem ents

The precision and recall values obtained from the experiments undertaken are de­

picted in Table 6.3. The precision and recall were obtained using DCV=10, and the

calculation were based on number of relevant programs which were determined by

the researcher.

From the data depicted in Table 6.3, it can be seen that 9 out of 10 queries

undertaken using ED as the similarity measurement generated a precision greater or

at least similar to using the cosine measure. The highest precision (i.e 0.8) for program

retrieval was obtained when the ED and cosine measure were used as the similarity

measurements for Q7. In addition, by using ED as the similarity measurement, we

6.2 Experiments 136

Table 6.4 Precision and Recall Scores for the Top 20 Programs

Query Answer Set Skewness Euclidean Distance Cosine Measure

Precision Recall Precision Recall Precision Recall

Q i 67 0.35 0.104 0.75 0.224 0.7 0.209

Q2 194 0.4 0.041 0.5 0.052 0.6 0.062

Q3 15 0.25 0.333 0.35 0.467 0.4 0.533

Q4 20 0.25 0.250 0.6 0.6 0.6 0.6

Q5 28 0.4 0.286 0.75 0.536 0.75 0.536

Q6 45 0.6 0.267 0.8 0.356 0.7 0.311

Q7 105 0.65 0.124 0.9 0.171 0.85 0.162

Q8 88 0.5 0.114 0.8 0.182 0.75 0.170

Q9 275 0.65 0.047 0.8 0.058 0.8 0.058

Q10 144 0.7 0.097 0.85 0.118 0.8 0.111

also obtained the highest recall (i.e 0.214) in the experiment, and this is revealed

by the recall scores for Q5. The low scores in recall can be accounted for the small

value of DCV used in the experiment. If the DCV is smaller than the number of

relevant programs, it is difficult to obtain a recall score of one. For example, if only

five programs are examined and 50 relevant programs exist for a given query, then

the recall is only 0.1 (10%) even if all the programs examined are relevant. Hence,

this makes the search methods (i.e similarity measurements) appear much worse than

they actually are.

In order to determine if the precision and recall scores increase if a larger number

of retrieved programs is analyzed, the researcher included a retrieval analysis for the

top 20 programs (i.e DCV=20). The precision and recall scores for DCV=20 are

shown in Table 6.4.

6.2 Experiments 137

The average scores of precision and recall obtained in the analysis (i.e DCV=20),

together with the average scores for data depicted in Table 6.3 (i.e DCV=10) are

depicted in Table 6.5. The average precision obtained using ED has increased 20.3%

when DCV=20 was employed, while the retrieval undertaken using cosine measure

generated an improvement of 19.8% in its precision scores. Program retrieval per­

formed using the skewness as similarity measurement also shown an improvement.

Data in Table 6.5 also reveals that the average recall scores have increased more than

double when larger cut-off value is employed. The average recall when skewness,

ED and cosine measure were employed as the similarity measurements has increased

123.2%. 147.6% and 157.8% individually.

Table 6.5 Average of Precision and Recall Scores for the Top 10 and 20
Programs

Skewness Euclidean Distance Cosine Measure

Precision Recall Precision Recall Precision Recall

DCV=10

DCV=20

0.390

0.475

0.075

0.166

0.590

0.710

0.112

0.276

0.580

0.695

0.107

0.275

Data in Table 6.5 reveals that there is a small difference in the average precision

and recall scores between ED and the cosine measure. For DCV=20, the difference

in precision is 0.015 and for DCV=10, the difference is 0.01. As for the average

recall scores, the difference is 0.001 when DCV=20 and 0.005 when DCV=10. Even

though the difference is small, based on the experiment undertaken, the use of ED in

measuring similarity between a query and programs in the repository is shown to be

better than using skewness and cosine measure. Based on data depicted in Table 6.5,

the researcher concludes that it is better to use ED as the similarity measurement in

order to automate the proposed program retrieval system. This is because by using

6.2 Experiments 138

ED. we obtain a better precision and recall for the top 10 and 20 programs in the hit

list.

The decision of choosing ED rather than cosine measure or skewness as the simi­

larity measurement in the program retrieval system is also supported by the statistical

analysis. We need to verify the decision with statistical test since we may obtain the

same mean scores for the three retrieval techniques (i.e program retrieval performed

using different similarity measurements) if different query programs were used in the

experiment. If the mean scores were to be the same, we could not determine which

classifier generates a better result than the other. For example, if we have technique

A with the following data {0.7, 0.1, 0.1, 0.1} and technique B with {0.5, 0.3, 0.1, 0.1},

the mean scores (average) for these techniques are the same, that is 0.25. With such

values, we could not determine which retrieval techniques generates a better result.

Nevertheless, this can done by performing statistical test which includes measure­

ments performed on ranked data - measurement observations are converted to their

ranks in the overall data set: the smallest value gets a rank of 1, the next smallest

gets a rank of 2, and so on with tied ranks included where appropriate. Such an ap­

proach would represent method A as {4, 1.2, 1.2, 1.2) and B as {3, 2, 1.2, 1.2}. The

mean ranks for technique A and B would be 1.9 and 1.85 respectively. By using mean

ranks as the point of comparison, then the decision of which is a better similarity

measurements can be made.

As suggested by Hull [148], there is a need of a statistical methodology to deter­

mine whether measured differences between the retrieval methods can be considered

statistically significant. Prior to a statistical test, distribution of the data needs to

be identified in order to determine which significance test is most suitable for a given

set of precision and recall scores. This is done by performing a normality test on the

measured data. The normality test result as shown in Table 6.6 is obtained based

6.2 Experiments 139

on the precision and recall scores for DCV=20. The Sig. values 0.274, 0.082 and

0.189, and 0.146, 0.239 and 0.069, from the Shapiro-Wilk test [103] of normality are

greater than the a avlue used in this test, which is 0.05. Such results imply that it is

acceptable to assume that the precision and recall distributions for the skewness, ED

and cosine measure are normal, hence suggesting parametric test to be employed in

determining significant different in the scores across the similarity measurements. In

Table 6.6, the skewness, ED and cosine measure are represented as Class 1, 2 and 3.

Table 6.6 Test of Normality for Precision and Recall Scores for the Top 20
Programs

CLASS

---------------- a----------
Kolmogorov-Smimov Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

PRE 1 .172 10 .200T .909 10 .274

2 .291 10 .016 .863 10 .082

3 .215 10 .20(7 .894 10 .189

RECALL 1 .254 10 .066 .884 10 .146

2 .203 10 .20GT .903 10 .239

3 .225 10 .164 .856 10 .069

* This is a lower bound of the true significance.

Lilliefors Significance Correction

The researcher then performed the ANOVA test [103] to detect significant dif­

ference in the retrieval scores (i.e normally distributed) across multiple similarity

measurements. In implementing the test, our null hypothesis, H0} was that all the

6.2 Experiments 140

similarity measurements being tested were equivalent in terms of precision and recall.

If the p-value obtained in the test is less then the identified significance level, a,

we could conclude that, the similarity measurement were significantly different. In

this test, the a value is set to be 0.05 which is an acceptable value in any statistical

test [103]. Data depicted in Table 6.7 reveals that there was a statistically significant

difference in precision scores across the three similarity measurements as the p-value

which is represented as S ig . was 0.004. However, data in Table 6.7 does not reveal

which similarity measurement is different from which other similarity measurement.

The statistical significance of the differences between each pair of similarity measure­

ments is identified through a Post-Hoc test [103], the result of which is provided in

Table 6.8.

Table 6.7 ANOVA Test Result of Precision and Recall Scores

ANOVA

Sum of
Squares df Mean Square F Sig.

PRE Between Groups .346 2 .173 6.847 .004
Within Groups .683 27 .025
Total 1.029 29

RECALL Between Groups .080 2 .040 1.266 .298
Within Groups .852 27 .032
Total .932 29

6.2 Experiments 141

The symbol asterisks (*) next to the values depicted in the column Mean D ifference

in Table 6.8, indicates that the three similarity measurements being compared are sig­

nificantly different from one another at the p<0.05. The exact significance value is

given in the column labelled Sig. In this table, the similarity measurements are rep­

resented as Class 1 for skewness, 2 for ED and 3 for cosine measure. For the precision

scores, only class 1 and class 2, and class 1 and class 3 are identified as statisti­

cally significant different from one another. This means that there is a significant

difference in the scores between skewness and ED and between skewness and cosine

measure. Nevertheless, the difference in precision and recall scores between ED and

cosine measure is less significant at a = 0.05.

Table 6.8 Post-Hoc Test for Multiple Comparisons

Multiple Comparisons
Tukey HSD

Oependent Variable (1) CLASS (J) CLASS

Mean
Difference

M Std. Error Siq.
95% Confidence Interval

Lower Bound Upper Bound
PRE 1 2 -.23500* .071102 .007 -.41129 -.05871

3 22000* .071102 .012 -.39629 -.04371
2 1 .23500* .071102 .007 .05871 .41129

3 .01500 .071102 .976 -.16129 .19129
3 1 .22000* .071102 .012 .04371 .39629

2 -.01500 .071102 .976 -.19129 .16129
RECALL 1 2 -.11010 .079452 .362 -.30709 .08689

3 -.10890 079452 .370 -.30589 .08809
2 1 .11010 079452 .362 -.08689 30709

3 00120 .079452 1.000 -.19579 .19819
3 1 , .10890 .079452 .370 -.08809 .30589

2 -.00120 .079452 1.000 -.19819 .19579
* The mean difference is significant at the .05 level.

6.3 Conclusion 142

On the other hand, data in Tables 6.7 and 6.8 reveal that difference in recall scores

across the three similarity measurements is less significant at a = 0.05. As we are

assuming that the users of a program retrieval system may only examine the top n

programs presented in the hit list, significant different in recall scores between ED,

skewness and cosine measure is less useful compared to precision scores in selection

of similarity measurement.

6.3 Conclusion

Based on the results illustrated in Tables 6.3 and 6.5, it is suggested that it is bet­

ter to use Euclidean distance (ED) compared to the cosine measure and skewness in

identifying similarities between a query program and programs in the repository. In

addition, the statistical analysis result presented in Table 6.7 reveals that there is

a significant different in precision scores between the similarity measurements. The

result is somehow unexpected because it was assumed that similarity measurement

using the cosine measure would generate better retrieval results. This is because

many studies [58, 152, 149] have reported promising results when the cosine measures

was employed in identifying relevant objects (e.g text documents and software com­

ponents). On the other hand, our statistical analysis (refer to Table 6.8) supports

the work undertaken by Qian et al. [153] that reported the cosine measure works no

worse than ED in a retrieval system when recall is taken into consideration. Never­

theless, in order to automate the program retrieval system, the ED has been chosen

as the similarity measurement. This is based on the fact that it generated the high­

est precision and recall scores in the experiments undertaken using 10 and 20 as the

document cut-point value. In addition, the Sig value for precision and recall scores

between ED and skewness is smaller than the Sig value between cosine measure and

6.3 Conclusion 143

skewness. Such a result indicates that ED is better than cosine measure in classifying

programs into application domains.

w

C h a p t e r 7

EVALUATION AND DISCUSSION

This chapter presents the results of two types of evaluation conducted on the program

retrieval system. The first evaluation analyses the results obtained upon submitting

two types of search query, which involves database and graphics application domains.

The second evaluation studies empirically how well our system supports program

retrieval through field experiments with developers. The purpose of the empirical

studies of our retrieval system was not to analyze the quality of programs used as

search queries, but to analyze whether a combination of functional and structural

descriptors could increase the retrieval effectiveness, compared to using functional

descriptors on their own. The empirical studies attempted to answer the following

questions:

• Are developers able to reuse unknown programs with the support of our retrieval

system?

• Is the compound index (refer to Definition 9 on page 123) that is built upon

a combination of functional and structural descriptors capable of retrieving

programs relevant to the query for source code?

• Does a developer’s programming experience contribute to the identification of

144

7.1 Comparison with Other Tools 145

relevant programs in a hit list that has been generated by the retrieval system

upon receiving a query? (hit list is described as Definition 6 on page 66.) For ex­

ample, is there any relationship between programming experience and precision

of retrieval?

7.1 Comparison with Other Tools

Our retrieval approach concerns the use of functional and structural descriptors (refer

to Definitions 3 and 4 on page 7) in representing a program. It is similar to other

work that is related to source code retrieval such as Google code search [23], Koders

search engine [24] and SCRUPLE [25]. However, they [23, 24, 25] focus on using

functional and structural descriptors on their own, hence programs presented to the

users only contain either the required function or structure. In addition, comparing

our approach to [23, 24, 25] which involves searching for code samples that match a

specified regular expression [24], our approach identifies information that may not be

explicitly available in a program (e.g design patterns and software metrics).

We consider the work undertaken in this research similar to the Koders search

engine [24], as the same mechanism is used to identify functional descriptors. Identifier

names extracted from a program are used as functional descriptors of the program

and two terms are considered to be similar if their syntax matches (as elaborated

upon in section 3.4 on page 64) and are from the same context in a program (e.g

class name, method name, etc). Below are examples of search queries handled in

the Koders search engine which can also be used for retrieving programs using our

retrieval system:

• Search for classes whose name contains <search term>.

• Search for methods whose name contains <search term>.

7.2 Objective Evaluations of the Retrieval System 146

• Search for interfaces whose name contains <search term>.

• Search for files whose name contains <filenam.e> .

• Search for classes named <Default> with a method named <PageInit>.

In addition to the above search queries, our approach includes the use of struc­

tural descriptors (refer to Definition 4 on 7) in identifying similarity between a query

program and programs in a repository. The importance of including such informa­

tion has been elaborated upon in section 1.2.1 on page 8, and is further supported

by the undertaken experiments which are elaborated upon in section 7.2 and 7.3. In

order to determine whether the combination of structural and functional descriptors

increase the effectiveness of program retrieval, precision and retrieval evaluation is

performed based on two hit lists. The first list contains programs that have been

retrieved based on functional descriptors (functional approach), while the second list

contains programs retrieved based on functional and structural descriptors (combina­

tion approach). The retrieval mechanism which is similar to the one used in Koders

search engine [24] is employed as the functional approach, and our approach of com­

bining functional and structural descriptors represents the combination approach.

The experiments undertaken were used to investigate if program retrieval is better

undertaken using the combination approach rather than the functional approach.

7.2 Objective Evaluations of the Retrieval System

This section describes the analysis performed by the retrieval system based on a

search query from the user. Our experimentation platform consists of a PC (Pentium

4, 1.00GB memory) running under a Windows XP Professional environment (version

2002) and during the experiment there were no other tasks running on the PC. Based

7.2 Objective Evaluations of the Retrieval System 147

on the elaboration made in section 6.1 on page 124, the combination approach uses

a compound index to combine the functional and structural descriptors into a single

index. It took a total of 6 hours and 43 minutes to build the functional and structural

index files (refer to section 6.1 for elaboration on contents of the files). All of the

experiments were performed on a repository of 90.6MB (size on disk), that consists

of 9320 Java programs obtained from Sourceforge.net [29] - 4670 programs were

from the database category and 4650 programs were from the graphics category.

While measuring recall (defined in Definition 8 on page 88), requires assessing the

entire repository to determine a set of relevant programs when given a query, precision

which is defined in Definition 7 on page 88, requires assessment of a fixed number of

programs only. Since our software repository was not pre-assessed, that is, we have

not determined programs that are relevant to a given query, we decided to focus on

precision scores rather than recall. Result analysis (i.e precision) is undertaken based

on a document cut-off value (DCV) — DCV is described in Definition 13 on page

134. Based on the given definition, only the first n programs that were presented in

the hit list were analyzed. Such an approach is employed since a user of a software

repository might be willing to examine only a fixed number of programs presented in

the hit list [148]. Similar to existing work [154, 155, 156], a DCV=10 is employed in

the retrieval analysis.

In Table 7.1, we present the precision (refer to Definition 7 on page 88) scores

that are calculated based on the top 10 programs presented in the retrieval hit list.

In addition, data in Figure 7.1 also reveals the processing times for the two queries

submitted to the retrieval system during objective evaluation. In the context of

this chapter, processing time is the duration (measured in milliseconds (ms)) of the

retrieval system to generate a hit list upon receiving a source code query.

Referring to the data depicted in Table 7.1, there are two precision scores for

7.2 Objective Evaluations of the Retrieval System 148

Table 7.1 Precision Scores and Processing Time

Functional approach Combination approach

Query Precision Time(ms) Precision Time(ms)

MySQLDatabase.java 0.1 835 0.4 1141

PickPhotosPanel.java 0.2 880 0.3 1188

each query. One is obtained from retrieval undertaken based on functional descrip­

tors (functional approach), and the other is based on program retrieval performed

using a combination of functional and structural descriptors (combination approach).

Elaboration on the results is presented in sections 7.2.1 and 7.2.2.

7.2.1 Retrieval from Database Application D om ain

The first query submitted to the system requires programs that illustrate instances of

the Observer design pattern. As for the functional criteria, the query emphasizes how

to connect to a SQL database. The required programs must also determine whether

or not the user has the appropriate JDBC driver loader, and whether the database

connection could be authorized. A program known as MySQLDatabase.java is used

as the search query (included in Appendix D: MySQLDatabase.java).

Data in Table 7.1 shows that there is an improvement in precision when the

retrieval system employed the combination approach. The precision has doubled,

that is from 0.1 to 0.4. Even though it took a longer time to generate a hit list

when the combination approach was employed, the extra time was caused by the

need of identifying structural descriptors in the query, and creating the appropriate

compound indices (i.e Qci and Pci) as elaborated upon in section 6.1 on page 124.

Using funct ional descriptors as the only representation of a program, retrieval for a

7.2 Objective Evaluations of the Retrieval System 149

query th a t contains functional and structural requirements is rather difficult. This can

be accounted for the lack of code statements and/or comment statements in a program

that explicitly depict the existence of a particular design pattern (e.g variable named

Observer or comment statement such as This class implements the Observer pattern).

In addition, based on existing work on design pattern detection [132, 78, 76], textual

analysis on code and comment statements is not applicable as software developers only

describe the function of a program or method in these statements and not the design

patterns used in the program. Nevertheless, design patterns can be identified by

analyzing the structural relationships (e.g method dependencies and class hierarchies)

that exist in a program [72]. As our retrieval system includes information on the

existence of design patterns in a program (refer to section 4.2 on page 4.2), along

with the functional descriptors of the program, retrieval for a query that contains

functional and structural requirements generated a better precision compared to the

functional approach.

Given MySQLDatabase. java as the search query, four out of ten programs in the

hit list generated using the combination approach depict the required function and

structure. In Figure 7.1, the programs represented as P2, P4, P5 and P7 were identified

as being the most relevant programs that implement the Observer design pattern in

creating a JDBC database connection. The graph in this figure is plotted based on

metric values of the programs and details of the metrics can be found in section 2.1.2

on page 33.

In Table 7.2, we classified all of the ten programs presented in the hit list (com­

bination approach) into three categories. The first category, “Good”, contained pro­

grams that fulfilled both types of requirements; structural and functional. The second

category, “Relevant”, contained programs that fulfilled either the functional or struc­

tural requirements while the “Bad” contained programs that did not match the search

I

7.2 Objective Evaluations o f the Retrieval System 150

18

16

14
</> . _
« 12

5 10

£ 8

S 6
4

2
0

Wmc Cbo Fows Focon FMs Ficon

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10

Software Metrics

F igure 7.1 Software Metrics in Programs Retrieved using the Combination
Approach for MySQLDatabase.java

7.2 Objective Evaluations of the Retrieval System 151

requirements at all. Program P9 was identified as irrelevant as it led an error in

reading data from a database, which did not relate to the required function. Further­

more, based on the researchers’ analysis, there was no design pattern employed in the

program.

Table 7.2 Classification of Top 10 Programs Retrieved for MySQL-
Database.ja v a _________ ______________________ ______

Good R elevant B ad

P2, P4, P5 and P7 PI, P3, P6, P8 and P10 P9

7.2.2 Retrieval from Graphics A pplication D om ain

In this section we analyze the top ten programs when given P ickPhotosPanel. java

as the query. This program is included in Appendix E: PickPhotosPanel.java. The

search query requires programs that illustrate a panel component, PickPhotosPanel,

that allows the user to configure where images are currently stored. Whenever a user

identifies the location of the images, the PickPhotosPanel object notifies two objects

(publishManager and photoSource) that use information of the location. Therefore,

the Java class to be developed should define an implementation of a one-to-many

dependency relationship, that is between PickPhotosPanel and publishManager,

and with photoSource, so that when the panel component changes state, the other

objects that rely on the panel component are notified and updated automatically.

Similar to the result obtained from the first query (MySQLDatabase.java), data

in Table 7.1 also reveals that precision increased when the system employed the

combination approach. It took 1188 milliseconds for a hit list to be generated using the

combination approach, while only 880 milliseconds when the functional approach was

employed. Nevertheless, the precision was improved by 50% when program retrieval

7.2 Objective Evaluations of the Retrieval System 152

was undertaken using the combination approach. Three out of ten programs in the

combination approach hit list depict similar function and structure as identified in

the search query. Similar to the classification of programs as undertaken in the

previous section (section 7.2.1), programs retrieved for PickPhotosPanel. jav a are

also classified into three categories: “Good”, “Relevant”and “Bad” .

Table 7.3 Classification of Top 10 Programs Retrieved for PickPhoto­
sPanel . java___

G ood R elevant B ad

PI, P3 and P5 P2, P4, P6, P7 and P10 P8 and P9

Table 7.3 reveals that PI, P3 and P5 are identified to be relevant to the query,

both in terms of function and structure. Program P6 and P10 illustrate the required

function while P2. P4 and P7 illustrate the required structure. On the other hand,

program P8 and P9 are not relevant to graphics applications as they both illustrate

a text reporting function which does not relate to organization of images. Structural

descriptors (i.e software metrics) of the programs presented in the hit list are shown

in Figure 7.2.

7.2.3 Analysis of Software M etrics in Program s R etrieved in

the Experiment

Using the metric values in programs depicted in Figures 7.1 and 7.2, we illustrate

the average values of software metrics contained in the programs in Figures 7.3 and

7.4. Elaboration on the metrics that were used to plot the graphs can be found

in section 2.1.2 on page 33. Comparing the average values of software metrics in

programs retrieved using different approaches (combination approach and functional

approach), we learned that by including structural descriptors (i.e in the combination

7.2 Objective Evaluations o f the Retrieval System 153

1
Mvg Wmc Cbo Fovis Focon Fivis Ficon

Software Metrics

- ^ P 1

P2
-*-P3
— P4
— P5

P6
— P7
— P8
— P9
+ P10

F igure 7.2 Software Metrics in Programs Retrieved using the Combination
Approach for PickPhotosPanel .java

7.2 Objective Evaluations o f the Retrieval System 154

approach) to represent programs, developers are presented w ith programs tha t depict

fewer couplings (i.e less Cbo) and less complexity (i.e less Mvg). As noted in o ther

studies [87, 86], retrieving programs tha t are reusable and of high quality is beneficial

for software developers. Therefore, as Cbo and Mvg indicate the reusability and

quality of a program [84, 91, 87, 86], it is better for developers to (re)use program s

with fewer coupling (i.e Cbo) and less complex (i.e Mvg).

14 -|

Combination approach
Functional approach

^ ^ C?° ^ ^

Softw are M etrics

F ig u re 7.3 Average Values of Software Metrics in Program s Retrieved for
MySQLDatabase.java

The graphs in Figure 7.3 and 7.4 are generated based on software m etrics of

all the programs retrieved using either the functional or the com bination approach.

Since a user may only (re)use programs th a t s /h e identified to be most relevant

to the given query, in Figure 7.5, we illustrate the software metrics of program s

th a t have been classified into ‘'Good”category for query M ySQLDatabase.java. A

7.2 Objective Evaluations o f the Retrieval System 155

25 -i

20 -

<u
£ 15
</>o
« 10

5 -

Combination approach
Functional approach

< < ° < ^ c r <<v v ?

Softw are M etrics

F ig u re 7.4 Average Values of Software Metrics in Program s Retrieved for
PickPhotosPanel.java

7.2 Objective Evaluations of the Retrieval System 156

comparison between Figures 7.5(a) and 7.5(b) shows that programs retrieved using

the combination approach contain software metrics with lower values, when compared

to programs retrieved using the functional approach. This is shown in the metrics

Wmc, Cbo, Fovis and Fivis. However, Program P2 depicted in both Figure 7.5(a)

and 7.5(b) are the same program.

Figure 7.6 illustrates the software metrics of programs that have been classified

into the “Good”category for query PickPhotosPanel. java. Program P5 depicted in

Figure 7.6(a) is the same program as depicted by P3 in Figure 7.6(b). It can clearly

be seen that metric Mvg in PI and P4 in Figure 7.6(a) are less than Mvg contained in

P3 in Figure 7.6(b). This suggest that it is better for software developers to adapt P3

or P4 as the programs depict less complexity. Therefore, graphs illustrated in Figures

7.6 and 7.5 support the findings inferred from Figures 7.3 and 7.4, that programs

identified based on functional and structural descriptors are more reusable than pro­

grams retrieved using the functional approach. Elaboration on the characteristics of

a reusable program can be found in section 2.1.2 on page 33.

Software Metrics in Different Application Domains

Another lesson learned from using structural descriptors in the program retrieval

system is the use of software metrics in discriminating programs from a different

application domain (i.e database and graphics). The graph in Figure 7.7 shows that

programs of database and graphics application domains illustrate different trends in

their metric values (Mvg, Wmc and Cbo). In this analysis, comparison is undertaken

as the increment or reduction of values when two metrics are compared between each

other. For example, if metric X is 20 and metric Y is 25, then it is suggested that there

is an increment of 25% (i.e (25-20)/20 * 100) in metric values when X is compared

against Y, and there is a reduction of 20% (i.e (20-25)/25 * 100) in metric values if

7.2 Objective Evaluations o f the Retrieval System 157

30 n

25 -

20 -

P2
P4
P5
P7

Cbo Fovis Focon Fivis
S o ftw are M etrics

Wmc FiconMvg

(a) Combination approach

30

25 -

20

3TO»■

C b oMvg W m c Fovis Focon F i v i s F i co n

Software Metrics

(b) Functional approach

F ig u re 7.5 Software Metrics in Program s Classified as Good Retrieval for
M ySQLDatabase.java

7.2 Objective Evaluations o f the Retrieval System 158

30 -i

25 -

20 -

1 9

<&>

Cbo Fovis Focon FivisWmc FiconMvg
Software Metrics

P1
—- P 4
—- P5

(a) Combination approach

30

25

20</>■
■
* 15

Mvg W m c C b o F ovis F o c o n F i v i s F ico n
Software Metrics

(b) Functional approach

F ig u re 7.6 Software Metrics in Program s Classified as Good Retrieval for
P ick P hotos Panel. j ava

7.2 Objective Evaluations o f the Retrieval System 159

X is 25 and Y is 20.

The graph illustrated in Figure 7.7 shows th a t there is an increment in W m c

when compared to Mvg for the database program (i.e metric W mc is 2250% bigger

than metric Mvg). However, the graphic program shows a different trend; there is

a reduction in the metric values when W mc is com pared to Mvg (i.e m etric W m c is

17.78% smaller than metric Mvg).

— Database
-■-Graphics

Mvg Wmc Cbo Fovis Focon Fivis Ficon

Software Metrics

F ig u re 7.7 Average Values of Software Metrics in Program s Classified as
Good Retrieval

In addition, Figure 7.7 also reveals th a t the trend between metrics W m c and Cbo

differ for programs from different application dom ains (database and graphics). The

graphic program contains Cbo th a t is 8.11% bigger th an Wmc, while the database

program contains Cbo that is 17% smaller than Wmc.

Referring back to Figures 7.1 and 7.2, they also show th a t database and graphics

7.2 Objective Evaluations of the Retrieval System 160

programs illustrate different trends in their metric values. All of the programs in Fig­

ure 7.1 contain Wmc that is bigger than Mvg. In addition, nine out of ten programs

contain Cbo that is smaller than Wmc. On the other hand, graphics programs illus­

trated in Figure 7.2 depict a different trend. Seven out of ten programs illustrated in

the figure contain Wmc that is smaller than Mvg and Cbo.

In order to identify if such trends exist in all of the programs, we analyzed metrics

Mvg, Wmc and Cbo in each of the programs contained in the repository. We learned

that 79.50% of the graphics programs in the repository depict a similar trend to the

one illustrated in Figure 7.7, that is their Wmc metrics are smaller than the Mvg

and Cbo. Similarly, 3238 out of 4670 database programs or 69.34% of the database

programs depict a similar trend to the one illustrated in Figure 7.7 — contain Wmc

that is bigger than Mvg and Cbo.

In Table 7.4, we present the trends for all programs contained in the repository.

Data in column Mvg.Wmc depicts the range of increment (+) or reduction (—) in

metric values when Mvg is compared against Wmc. For graphics programs, there

is a reduction of 5.56 to 94.4% in metric values while database programs depicted

an increment of 3.33 to 1300% in metric values. Data in column Wmc.Cbo in Table

7.4 represents the range of increment or reduction in metric values when Wmc is

compared against Cbo. For graphics programs, there is an increment of 7.14 to 400%

while for database programs there is a reduction of 4 to 86.67% in the metric values.

For example, there is a graphic program in the metrics, we learned that there is a

reduction of 50% (i.e (4-8)/8 * 100) when Mvg is compared against Wmc, and an

increment of 150% (i.e (10-4)/4 * 100) when Wmc is compared against Cbo.

The other example, which is from the database domain, is a program with 20. 23

and 14 for Mvg, Wmc and Cbo respectively. Based on these metrics, we can see that

there is an increment of 15% (i.e (23-20)/20 * 100) when Wmc is compared against

7.2 Objective Evaluations of the Retrieval System 161

Mvg. On the other hand, there is a reduction of 39.13% (i.e (14-23)/23 * 100) in the

metric values when Cbo is compared against Wmc.

Table 7.4 Percentage of Increment and Reduction of Metric Values

Application Domain Mvg_Wmc Wmc.Cbo

Database

Graphics

(+) 3.33 - 1300%

(-) 5.56 - 94.4%

(-) 4 - 86.67%

(+) 7.14 - 400%

Based on the analysis of the trends and the graphs in Figures 7.1, 7.2 and 7.7,

we noticed that the database and graphics programs illustrate different shapes of line

graphs. We represent the graphs in those figures as the one presented in Figure 7.8.

Software metrics (i.e Mvg, Wmc and Cbo) contained in a database program would

illustrate a similar shape of line graph as the graph shown in Figure 7.8(a). On the

other hand, a graphic program would illustrate a graph that is similar to the graph

in Figure 7.8(b). Based on these figures, it is suggested that metric trends that exists

between Mvg and Wmc, and between Wmc and Cbo contribute to discriminate a

database from graphics programs. With this, we obtained the following classification

function:

f (x ,y ,z) = *
1 if 0 < x < m i , 0 < z < m 2 , max(x, z) < y < m 3

2 if 0 < x < rii, 1 < z < ri2,y < m in(x, 2), 0 < y < n3

where 1 is database, 2 is graphics, x is Mvg, y is Wmc and z is Cbo. In addition,

based on the programs in our repository, m\ = 49, m 2 = 30, m 3 = 51, ri\ = 392,

712 = 61 and n3 = 55.

In addition to the analysis of trends in a program, descriptive statistics (i.e max­

imum, mean and minimum values) of metrics Mvg, Wmc and Cbo for programs

7.2 Objective Evaluations of the Retrieval System 162

308 40Mm>
J±
*
m

S.34.S

VAftnc CboM/g
Software M etrics

(a) Database

,12.5
3

• I

Cbo
Software Metrics

(b) Graphics

Figure 7.8 Shapes of Graphs with Descriptive Statistics for Database and
Graphics Programs

7.2 Objective Evaluations of the Retrieval System 163

contained in the repository (depicted in Figure 7.8) reveal that graphics programs

are more complex than database programs. As mentioned in section 2.1.2, program

complexity can be measured using Mvg. The mean value of Mvg (i.e 25) for graphics

programs is six times bigger than the mean for database programs (i.e 4.5). In ad­

dition, the maximum value of Mvg (i.e 392) for graphics programs is eight times the

maximum value of database programs (i.e 49). Figure 7.8 also reveals that graphics

programs are tightly coupled compared to database programs - the mean value of

Cbo in graphics programs (i.e 12.5) is doubled the value in database programs (i.e

5.3).

In order to validate the use of Equation 7.1 in program classification, we extract the

relevant metrics from a set of new programs. This new data set contains ten programs;

five of each domain (database and graphics). These programs obtained from the

Sourceforge.net [29] were not initially included in the repository. For reference,

examples of the programs are included in Appendix F: Test Programs used for the

Identification of Metric Trends. A graph depicting metric values of the programs is

illustrated in Figure 7.9. As the metric values of the programs (except P3 in Figure

7.9(a)) are all included in the range as defined for database and graphics programs

(Equation 7.1), the plotted graphs are similar to the one illustrated in Figure 7.8.

For example, based on the classification function, P5 in Figure 7.9(b) with Mvg=12,

Wmc=5 and C bo= ll fulfilled the requirements of a graphics programs. The Mvg

value in the program is smaller than 392, the value of Cbo is between 1 and 61 and

the value of Wmc is smaller than the minimum value between Mvg and Cbo (i.e

m in(M vg}Cbo)) and it is between 0 and 55. PI in Figure 7.9(a) is considered as a

database program, similar to the classification undertaken by S ourcefo rge .net [29].

This is because it’s Wmc value is larger than the maximum value between Mvg and

Cbo (i.e 9), the Mvg is smaller than 49 and the Cbo is smaller than 30. Program

7.2 Objective Evaluations of the Retrieval System 164

P3 depicted in Figure 7.9(a) contains Wmc that is larger than the value suggested

in the classification function, that is 51. However, the values of metric Mvg and

Cbo are in the range defined in the function. Based on the researchers’ analysis, the

program contains a large number of functions, hence resulting Wmc=83. As software

developers may include as many functions as they like in a program, such practice is

not common since it would caused difficulties in maintaining and/or understanding

thq program. Nevertheless, the graph plotted based on the metric values of the

program is similar to the one illustrated in Figure 7.8(a), hence suggesting that it is

a database program.

In addition, we also include programs which can be classified into both applica­

tion domains. These are the same programs used in experiment undertaken in section

5.2.1 on page 115. The programs depict the function of organizing various data type

(images, audio, XML documents and text) in a database. For reference, we include

the programs in Appendix G: Test Programs of Combined Domain. Figure 7.10 illus­

trates the graphs plotted using metrics Mvg, Wmc and Cbo of the programs. Based

on Equation 7.1, program P2 in the figure fulfilled the requirements of a database

program while P6 is considered as a graphic program. Based on the analysis, P2

illustrates the function of a keyword search performed in an image database while

P6 illustrates the function of connecting to a database and managing the objects in

the database. Objects in this database is represented in a tree representation, hence

suggesting it to be considered as type graphics. Nevertheless, it is also acceptable

to classify the program into the database domain as it illustrates the function of

database connection. In addition, the graphs of P2 depict a similar pattern to the

graph in Figure 7.8(a) while P6 is similar to the graph illustrated in Figure 7.8(b).

As for PI, even though the plotted graph is similar to the one presented in Figure

7.8(a), its Cbo value is greater than the maximum value suggested for a database

7.2 Objective Evaluations o f the Retrieval System 165

1 0 0 n

80 -

60 -

•e 40 -

20 -

W m c C b oMvg

12P1
-----P 2

83 19P 3
P 4

4214 22-----P 5
Software Metrics

(a) Database

100 -|

8 0 -

* 4 0 -

U -
Mvg W m c C b o

— P1 17 8 16
— P 2 34 11 21

— P 3 8 4 4
P 4 6 5 12

-----P 5 12 5 11
Software Metrics

(b) Graphics

F igu re 7.9 Software M etrics in D atabase and Graphics Program s: Testing
D ata Set

7.2 Objective Evaluations o f the Retrieval System 166

250

200 -

(A*>
<T5
>
O

150 -

100 -<D5
50 -

Mvg Cbo
42P1 36

P2
148P3 35
198 119P4 28
134 28P5
38P6

Software Metrics

F ig u re 7.10 Software Metrics in Program s of Combined A pplication Domain

7.2 Objective Evaluations of the Retrieval System 167

program (in the classification function). Such a trend is accounted for the pro­

grams’ function that uses two types of information, textual and images, contained

in a database. Hence, resulting a larger value of CBO as the object to be created (i.e

tshirt) relies on various other objects (image, textual description).

On the other hand, the graphs illustrated by P3, P4 and P5 in Figure 7.10 do

not illustrate a similar pattern to neither of the graphs in Figure 7.8. The values of

Wmc in P3, P4 and P5 are smaller than Mvg, hence generating a pattern that is

similar to the first half of the graph in Figure 7.8(b). On the other hand, the Wmc

in P3, P4 and P5 are bigger than Cbo, hence generating a pattern that is similar to

the second half of the graph in Figure 7.8(a). Based on the classification function,

these programs could not be classify into neither of the domains as the metric values

in the programs only fulfilled portions of the function. The metric values in P3 are

all smaller than the maximum values suggested for a graphic program. For example,

Mvg=148 is smaller than 392, Cbo=13 is smaller than 61 and Wmc=35 is smaller

than 55. However, the Wmc is larger than Cbo, hence violating the rule y < m in (x , z)

that is the value of Wmc is less than or equal to the minimum value between Mvg

and Cbo. Such a trend can also be seen in P4 and P5.

However, based on the analysis made by the researcher, P3 is considered to be a

graphic program as it contains a larger number of functions (i.e methods) dealing with

images and audio than functions handling textual information. On the other hand, P4

that illustrates the function of managing XML documents can be considered as type

database as its methods focus on textual information rather visual images. Similarly,

P5 is also considered by the researcher to be a database program. This is because the

program focuses on string matching in creating a query for an image database. Each

of the images stored in the database is provided with a textual description, and in P5

the images are retrieved based on keyword match performed on these descriptions.

7.3 Empirical Evaluations of the Retrieval System 168

7.3 Empirical Evaluations of the Retrieval System

To identify the effectiveness of our retrieval system in supporting program retrieval

and program reuse, subjective evaluation experiments were conducted. The objective

of the evaluation was two-fold: (1) to verify that a combination of functional and

structural descriptors generates better retrieval than using functional descriptors on

their own, and, (2) to identify whether the retrieved programs can be (re)used to

develop the required program (based on a given programming task). The objectives

were achieved through the use of an information retrieval measurement, that is, preci­

sion. The identified measurement indicates which retrieval mechanism is better than

the other, and represents the possibility of the retrieved programs to be adapted into

the working context (i.e a given programming task). The higher the precision, the

better a retrieval mechanism is, and there is a bigger chance that the user would

reuse the program(s) in developing a program for the given task. The structure of

the experiments is described in the following section, which is then followed by the

findings.

7.3.1 Subjects of Experim ents

Subjects were recruited from post-graduate students from the School of Computer

Science, covering Year 1 to Year 3. Because the goal of the retrieval system was to

present programs to developers based on a particular task, only students who already

had programming knowledge and experience were recruited as subjects. Furthermore,

because the system is a prototype that at the moment only handles Java programs,

a basic knowledge of Java programming language was also required so that subjects

could easily create a suitable query based on the task given and later would be better

able to evaluate programs in the hit list.

7.3 Empirical Evaluations of the Retrieval System 169

Ten subjects voluntarily participated in the evaluation experiments. This number

doubles the number of subjects involved in evaluating a retrieval system as under­

taken by Ye [156]. All but three subjects were using another language as their main

programming language. Nevertheless, they had been writing programs using the

Java language. The subjects’ expertise in Java programming varied, ranging from

beginner to expert level. All of them knew the syntax of Java well; the difference of

their expertise came from the range of reusable components they knew (classes and

methods in API libraries). Table 7.5 summarizes their background knowledge about

programming in general and Java in particular.

Table 7.5 Programming Knowledge and Expertise of Subjects
(a) Subject 1 to 5

S ubject S I S2 S3 S4 S5
Years of general programming 15 7 10 10 6
Current major programming language Java C ++ Java Java Java
Years of Java programming 2 1 6 6 4
Frequency in Java programming daily daily daily daily daily
Frequency in acting as system analyst(1-never, 5-always) 5 1 4 5 5
Self evaluation of Java expertise (1-beginner, 5-master) 2 4 4 3 3
Self evaluation of knowledge in designing problem solving 1 3 1 2 1
Self evaluation of knowledge in software metrics 2 1 1 1 2

(b) Subject 6 to 10

Sub ject S6 S7 S8 S9 S10
Years of general programming 7 2 13 8 4
Current major programming language Java C ++ Java C ++ C ++
Years of Java programming 6 3 5 7 3
Frequency in Java programming daily daily daily daily daily
Frequency in acting as system analyst(1-never, 5-always) 4 3 5 3 1
Self evaluation of Java expertise (1-beginner, 5-master) 4 2 4 4 3
Self evaluation of knowledge in designing problem solving 3 1 2 2 2
Self evaluation of knowledge in software metrics 2 3 2 3 3

7.3
Em

pirical Evaluations
of

the
Retrieval System

170

7.3 Empirical Evaluations of the Retrieval System 171

7.3.2 Structure of Experim ents

Programming Tasks

Because the subjects were volunteers, large and time-consuming tasks were not very

suitable. The experiments used programming tasks similar to the typical assignments

of a programming language course, which could be implemented with several met hods

in about 20 to 60 minutes. The following tasks were used in the experiments.

Task 1: Write a class for formatting text to be used in database applications. The

class should include the creation of a single instance that uses a string that has

been passed to it as the text to be formatted. Upon receiving the string, it must

notify other objects that rely on the changes it has made towards the string.

Task 2: Write a class to retrieve data from a database. The data are to be nested

into radio or checkbox button in a database application. To motivate reuse,

minimum couplings between objects should be considered in the coding.

Task 3: Write a class that creates connection to an SQL database. Once the con­

nection has been made, the object should notify object ReadData to retrieve

data from the database.

Task 4: Write a program that depicts GUI utility methods to be used in graphics

applications. This should include 1) creation of a thumbnail version of the given

Buf f eredlmage, 2) reading and saving an image from/to a file. Also ensure that

you restrict instantiation of a class to one object.

Task 5: Write a panel component that allows the user to configure where images

are currently stored. The class defines an implementation of a one-to-many

dependency between a subject object and any number of observer objects so

7.3 Empirical Evaluations of the Retrieval System 172

that when the subject object changes state, all its observer objects are notified

and updated automatically.

Task 6: The class to be written should be able to organize and manage photos in a

.collection. Such an organization should manipulate composite objects in exactly

the same way primitive objects are manipulated.

All of the tasks could be implemented with different combinations of program struc­

tures. Therefore, these tasks allowed us to observe how the delivery of the system

matched the given tasks. For each programming task, we provide a program tem­

plate as a guideline in developing the program. The subjects later modify the program

based on their programming experience and use it as the search query. In Appendix

H: Program Templates Used as Search Queries, we include examples of program tem­

plates (for the programming tasks) used in this experiment.

7.3.3 Results

In this section, we present findings obtained from the empirical experiments under­

taken. A group of 10 people were asked to use the system and retrieval effectiveness

was measured using precision that was obtained at DCV=10 - DCV is described in

Definition 13 on page 134. The analysis of the precision required each subject to

determine if each of the retrieved programs were relevant to the search query. Re­

call measurement was not undertaken in the retrieval analysis since in order to build

an answer set, subjects were required to analyze each of the programs in the collec­

tion and determine whether it fulfilled the task requirements. Considering that the

subjects were volunteers, such an activity would be time consuming.

Eight of the subjects were given two tasks, one from each application domain

(Database and Graphics). The other two subjects had only one task each. In total,

7.3 Empirical Evaluations of the Retrieval System 173

there were 18 queries submitted to the retrieval system during the experiment -

nine queries of database tasks (Task 1, 2 and 3) and nine queries of graphics tasks

(Task 4, 5 and 6). Upon submitting a query, the user would receive two hit lists;

the first contains programs identified based only on functional descriptors while the

second contains programs identified using a combination of functional and structural

descriptors.

Table 7.6 Average of Precision Scores and Processing Time

Application Domain Functional approach Combination approach

Precision Time(ms) Precision Time(ms)

All queries 0.172 890 0.450 1190

Database queries 0.122 879 0.467 1184

Graphics queries 0.222 900 0.433 1195

Table 7.6 presents a summary of the results obtained from the experimental

evaluation. Data in the table includes average values of precision and processing time

for both types of queries, Database and Graphics. In addition, data in the table

also reveals the average values of precision and processing time for all of the queries

submitted to the system. It took an average of 1190 milliseconds to generate a single

hit list using the combination of functional and structural descriptors. However, less

times is taken to generate a hit list using functional descriptors. Even though the

approach of combining functional and structural descriptors requires more processing

time, it is well worth as the average precision for a single query is increased from 0.172

to 0.450. In a similar to such improvement, an average precision for a single query

of type graphics was raised from 0.122 to 0.467 while for a query of type database,

the precision was up to 0.467 from as low as 0.122. Even though these precisions are

less than 0.7 which we assumed to be successful, the retrieved programs are shown

7.3 Empirical Evaluations of the Retrieval System 174

to have the required structure as identified in the programming task. Nevertheless,

such a result (precision < 0.7) is partly caused by the approach we took in identifying

similarity between functional descriptors of a query and programs in the repository.

As the Levenshtein (refer to section 3.4 on page 64) threshold value has been set to 2,

functional descriptors of programs in the repository that can be identified as similar

to functional descriptors of the query are restricted. For example, referring to Task

3 as in section 7.3.2, the identifier dbConnectionName presence as a class variable in

DbGet Connect ion. java is not identified to be relevant to one of the terms identified

in the search query (i.e Get Connection) as the distance between these strings is more

than 2. Nevertheless, when the programs were analyzed manually, these identifiers

were shown to illustrate similar functions.

Based on data depicted in Table 7.6, we also learned that queries originating from

the graphics domain requires longer processing time. When the functional approach

was employed, the average processing time for a database query is 879 milliseconds

while a graphic query requires additional of 21 milliseconds. Similar to the pattern,

retrieval for a graphic query performed using the combination approach requires 1195

milliseconds compared to the database query which only needed 1184 milliseconds.

This can be reasoned by the complexity of the programs used as the search query.

The graphics programs contain a larger number of methods and they also illustrate

various structural relationships (e.g method invocations).

An average precision for each of the six tasks that were given to the subjects

are depicted in Figure 7.11. The biggest difference of precision was obtained when

the subjects were given Task 1 as the programming task. By using a combination

of functional and structural descriptors, the precision was increased from 0.2 to 0.7,

which is more than triple. Based on data depicted in Figure 7.11 and Table 7.6, it

was learned that such an approach benefits tasks of Database more than of Graphics.

7.3 Empirical Evaluations o f the Retrieval System 175

0.80

0.60

0.40

0.20

U.UU -
1 2 3 4 5 6

■ Functional approach 0.20 0.07 0.10 0.17 0.20 0.30
■ Combination approach 0.70 0.30 0.40 0.47 0.30 0.53

Task

F ig u re 7.11 Average of Precision Scores for Six Tasks

7.3 Empirical Evaluations o f the Retrieval System 176

Table 7.7 details the findings of the experiment. Values in each column of the

table are defined as follows while the post-experiment questions and an example of

subject feedback form for the undertaken experiment are provided in Appendix I:

Subjects Feedback

S ubject The subjects who participated in the experiment.

Task The task that was given to the subject.

P rec is ion .F Ratio of retrieved programs based on functional descriptors, that are

relevant to the subject’s query program.

Time_F Processing time taken before a list of programs (based on functional de­

scriptors) is presented to the user (measured in milliseconds)

Precision_FS Ratio of retrieved programs based on a combination of functional and

structural descriptors, tha t are relevant to the subject’s query program.

Time_FS Processing time taken before a list of programs (based on a combination

of functional and structural descriptors) is presented to the user (measured in

milliseconds)

SatisfactionJFS Subject’s satisfaction towards the retrieved programs (based on a

combination of functional and structural descriptors) using the 5-point Likert-

scale [157] (1-not satisfied at all to 5-very satisfied)

Based on the data depicted in Table 7.5 on page 170 and the data of using a

combination of functional and structural descriptors in Table 7.7, we present findings

that are related to the subject’s background. This finding was supported by statistical

analysis which was undertaken using data depicted in Table 7.5 on page 170 and in

Table 7.7. The Pearson correlation coefficient [103], r, was employed to determine

7.3 Empirical Evaluations of the Retrieval System 177

Table 7.7 Overall Result of Field Experiment on 10 Subjects

Task S ub jec t Precision_F T im eJF Precision_FS Time_FS Satisfaction_FS

1 SI 0.3 875 0.8 1178 3

1
S 5 .

0.3 865 0.8 1180 4

1 S9 0 871 0.5 1175 3

2 S3 0.1 924 0.2 1225 4

2 S4 0 924 0.3 1224 3

2 S8 0.1 923 0.4 1225 4

3 S6 0 832 0.5 1142 3

3 S10 0.3 835 0.5 1141 3

3 S2 0 868 0.2 1170 2

4 SI 0.3 860 0.8 1163 4

4 S5 0.2 879 0.5 1163 3

4 S8 0 864 0.1 1165 4

5 S3 0.2 880 0.3 1188 4

5 S4 0.2 881 0.3 1188 2

5 S9 0.2 880 0.3 1188 4

6 S6 0 950 0.6 1235 3

6 S7 0.8 965 0.8 1239 3

6 S10 0.1 949 0.2 1231
l

3

7.3 Empirical Evaluations of the Retrieval System 178

the direction and strength of the linear relationship between two continuous variables

(e.g Precision_FS and Java expertise) and we obtained the following:

1. There was a strong negative correlation (r=-0.638) between precision of pro­

grams delivered (as measured by Precision_FS) and Java skill (as measured by

Java expertise), [p<0.1], with high levels of precision associated with lower lev­

els of Java skill. The result is obtained using a = 0.1. The higher Java skill a

subject has, the less prec ision is obtained in retrieving relevant programs. One

possible explanation is that developers with a better knowledge of Java pro­

gramming skill tend to be more specific in determining what is relevant when

given a task. Therefore, they easily disregard programs that they believe are

not significant to the problem context.

2. There was a medium negative correlation (r=-0.422) between precision of pro­

grams delivered (as measured by Precision_FS) and years of Java programming

(as measured by years of Java programming), with medium levels of precision

associated with medium levels of years of Java programming. The statistical

test is based on a = 0.1. The less experience (measured using number of years)

a subject has in using Java as a programming language, the more a medium

precision is obtained in retrieving relevant programs. This may be due to the

practice of having a higher number of programs as programming examples if

a subject is new to a programming language. Therefore, these subjects easily

identify programs to be relevant to the given programming task.

3. There was a medium correlation between frequency in analyzing a problem prior

to writing the code (measured as frequency in acting as the system analyst) and

satisfaction with the delivered programs (measured as Satisfaction_FS). Such

a finding is illustrated in the correlation analysis between the two variables.

7.4 Conclusion 179

Statistical analysis has revealed a correlation of r=0.410 at a = 0.1 between

the two variables. We learned that a subject that has moderate experience

in problem solving tended to be moderately satisfied by the retrieval system.

One possible reason is tha t with experience in problem solving, a developer can

identify programs that are suitable to be adapted into the application at-hand.

7.4 Conclusion

In this chapter, we have presented evaluations performed in order to evaluate the

proposed retrieval system. Based on the experiments undertaken, it is noted that

the proposed approach of combining functional and structural descriptors is better

than the approach of using functional descriptors on their own. Furthermore, the

combination approach has been able to present users with programs that illustrate

the required function and structure. We obtained approximately 50% precision in

both the objective and subjective evaluations, and based on existing studies [45,

7] the precision can be made better if additional mechanisms (e.g Latent Semantic

Indexing [45] and ontology-based [7]) are employed to identify functional descriptors

of a program.

Software metrics are intended to measure software quality characteristics quanti­

tatively. Among several quality characteristics, reusability is particularly important

when reusing software components. The findings of the objective evaluation which is

described in section 7.2.3 indicates that the presented programs of the combination

approach illustrate less complexity. Program complexity is contributed to by various

factors and they include the number of linearly independent routes through a directed

acyclic graph that maps the flow of control of a subprogram (Mvg), the number of

methods defined in a program (Wmc) and the measure of interdependence between

7.4 Conclusion 180

methods in a program (Cbo). By using programs that illustrate the required func­

tion, and contain small values of Mvg, Wmc and Cbo, as programming examples,

developers are able to develop their own application that depict better quality.

In addition, we also learned tha t there is a difference of trends (shown by the

different shapes of graphs) in software metrics for database and graphics programs.

Based on the experiments undertaken, it is noted that database programs contain

greater value of Wmc when compared to metrics Mvg and Cbo. On the other hand,

metric Wmc for graphics program s are smaller than metrics Mvg and Cbo. For

programs that depict the features of database and graphics domain, they illustrate a

combination trend in the m etric values.

C h a p t e r 8

CONCLUSION AND FUTURE
WORK

In the introduction to this thesis, we posed a number of questions concerning the

use of a combination of functional and structural descriptors that support program

retrieval from a software repository. In this chapter, we will reflect on these questions,

describe how the various chapters contribute to answering each questions and draw

some conclusions.

8.1 Conclusion

Reusing existing software components is one way of building software. By reuse,

developers can avoid repetitive work and focus on the unique features of the new

system. However, the problem is how software developers can know that they are

doing something that others have done many times before. As one developer said

[158]:

/ could be creating a method that does exactly the same thing somebody else does...even

though we have access to each others code. We might call them different names and

we might have a bit different way of doing it, but were still doing the same thing.

181

8.1 Conclusion 182

This has been the central question investigated in this thesis. The main contribu­

tions of this thesis include: (1) a combination of functional and structural descriptors

in identifying relevant programs from a software repository, (2) a mechanism (i.e

compound index) that can be used to integrate descriptors of a program, (3) the use

of software metrics in classifying a program into an application domain, and (4) the

detection and use of design patterns as structural descriptors in a program retrieval

system.

8.1.1 Inform ation E xtraction

Question 1: How can we extract information from a program that can be used

as functional or structural descriptors in a program retrieval system?

One of the first steps in a software retrieval system is indexing components in the

repository: the automated extraction of information from program source code. In

Chapter 1, we argue that this step is hindered by the typical irregularities that oc­

cur in program source code (e.g identifier names and design patterns) which make

it hard to parse the program for its function and structure. Hence, we suggested to

provide additional information for the identifier names extracted from the program

and use the structural relationships that are contained in a program to infer existence

of design patterns in the program. In Chapter 3, we illustrated how relevant terms

were extracted from the different contexts of a program and used as functional de­

scriptors. Each descriptor were given appropriate weight to indicate its importance

in the program. In order to make use of information that is not explicitly available in

a program, in Chapters 4 and 5, we elaborated on how to use structural relationships

that exist in a program as program descriptors. In Chapter 4, this information has

been used to identify existence of design patterns Singleton, Composite and Observer

8.1 Conclusion 183

in a program, while in Chapter 5 we employed the information to classify the program

into an application domain.

Another contribution of this thesis that relates to information extraction, is ex­

tending the retrieval system as an active component repository [156], In general,

information systems that just offer software artefacts (e.g program, software docu­

mentation) to a user are of little use because they ignore the users’ working context.

The working context consists of the task acted upon and the user acting. The chal­

lenge of implementing an active information system is to deliver context-sensitive

information related to both the task at hand and the background knowledge of the

user. Needs for reusable programs are not determined before programming starts,

as most current component retrieval repository systems have assumed; they arise in

the middle of the programming process [159]. In as much as developers are using

keywords and/or phrases to represent search requirements, for example as in Google

code search [23], it has been shown in this thesis that it is possible for component

repository systems to capture the requirements by utilizing information available in

existing programs that are developed for a given task. In Chapters 6 and 7, the

experiments undertaken were all based on programs as the search queries.

8.1.2 Creating N ew R epresentation

Question 2: How can we combine functional and structural descriptors of a

program to represent a query and programs in a repository?

In Chapter 6, wc introduced a new mechanism that integrates information that was

extracted from Chapter 3, 4 and 5. We have demonstrated the use of a compound

index to integrate information on the function and structure of a program. As the

functional descriptors represent what a component does, structural descriptors sym­

8.1 Conclusion 184

bolize structural relationships that exist in achieving the function. Therefore, an

integrated index of functional and structural descriptors represents a component bet­

ter, compared to using either the functional or structural descriptors on their own.

The compound index is flexible, as the number of functional and structural descrip­

tors used to represent a query and/or a component is not fixed. It can be expanded

to include other information tha t relates to a component, such as the software archi­

tecture (structural descriptors) and the sample of input/output for the component

(functional descriptors). In addition, the index is generated automatically by the

retrieval system and therefore is economical, as it does not require the involvement

of a human (expert) such as in a faceted approach [160].

8.1.3 Supporting Program R etrieval

Question 3: How can we use the information obtained in the first two questions

to support and improve program retrieval?

An issue that arises when combining functional and structural descriptors is the signif­

icant of using structural descriptors in identifying relevant program retrieval. One of

the benefits that has been gained by using structural descriptors is the automation of

program classification into an appropriate application domain. The work undertaken

has been demonstrated in Chapter 5 and it includes the classification of programs

into a database or graphics domain based on software metrics contained in the pro­

gram. Details on these metrics can seen in section 2.1.2 on page 33. Results of the

experiments undertaken in Chapter 5 have shown that by classifying programs into

application domains, retrieval of relevant programs can be improved. In addition, in

Chapter 7, we learned that the database and graphics programs illustrate different

shapes of graphs (line graphs). Based on the existing programs in the repository, we

8.1 Conclusion 185

obtained two classifications functions that can be used to determine the application

domain of a program. These functions (Equation 7.1) were elaborated upon in section

7.2.3 on page 156.

The main contribution of this research is the use of functional and structural

descriptors in presenting software developers with relevant programs. It has been

identified in Chapter 7 (through objective and subjective analysis) that by using

the combination approach, precision in program retrieval has been increased when

compared to using functional descriptors on their own. Furthermore, by combining

functional and structural descriptors, developers are presented with programs that

are simple (less complex) but yet illustrating the required function. As mentioned in

much software maintenance literature such as Scotto et al. [161] and Lehman et al.

[162], it is easier to understand and maintain applications that show less complexity.

Thus, by using programs with smaller values of Mvg, Wmc and Cbo as programming

examples, developers are able to create an application of their own with the required

function, and at the same time the application is also easy to maintain.

Question 4 : How is similarity measurement undertaken between a query and the

program in a software repository?

Upon proposing the use of a compound index to integrate functional and structural

descriptors of a program, there is a need to identify how similarity measurement be­

tween a compound index of a query and of a program from the repository is to be

performed. In Chapter 6, we demonstrate experiments involving two types of simi­

larity measurements: vector model and data distribution. The use of the former was

to investigate if programs having similar data distribution are to illustrate similar

function and structure. That is, we would like to learn whether programs having

the same order of indices can be considered similar. On the other hand, the latter

8.2 Future Work 186

measurement was used to discover if similarity between two programs are identified

better by treating them as vectors. It is shown in Chapter 6 that by using Euclidean

distance (ED) to compute the degree of similarity between programs, higher preci­

sion and recall have been obtained, when compared to using the cosine measure and

skewness.

8.2 Future Work

While this research proved tha t it is better to retrieve programs by using the com­

bination of functional and structural descriptors rather than focusing on functional

descriptors only, many additional areas th a t need to be resolved have been identi­

fied. These can be broadly classified into th e areas of tool improvements, domain

expansion, and suitable similarity measurements.

8.2.1 E xtending to a H igher S ca le

The identification of reusable programs in object-oriented open-source applications

can be automated to a high degree. Through careful attention to knowledge extrac­

tion and metrics analysis, tools can be built th a t will present sufficient information to

the user to enable the user to make an intelligent reuse choice. The assumption that

a combination of functional and structural descriptors of a program can provide suf­

ficient information to support the selection of programs from a repository has proven

valid. While many other application domains are yet to be explored, the domain used

in this research was acceptable to give a degree of confidence in extendability to other

domains. Furthermore, other software metrics could be extracted from a program,

which can later be used in classifying programs into application domains other than

database and graphics. We would then be able to identify other metric trends that

8.2 Future Work 187

may exist in programs from different application domains (e.g financial, scheduling

etc.). In addition, with a greater number of software metrics extracted from a pro­

gram, we would be better able to estimate the quality of the retrieved programs.

The gathering of information about potential reusable software components is quite

doable. However, the metrics used to assess software reusability are currently very

subjective and much work needs to be done to quantify and improve this assessment

process.

Elements of a compound index that act as query and program descriptors in the

combination retrieval system can be easily expanded by including more structural

data that is extracted from search queries and programs in a repository. For example,

besides identifying Singleton, Composite and Observer design patterns in a program,

several other design patterns as described by Gamma et al. [1] can be identified

and incorporated into the compound index. The trade-off between flexibility and

complexity that arises from generality in using design patterns is another issue that

clearly needs to be explored more fully. Perhaps, information regarding the cost of

adapting a program into the application in context would also be valuable information

that would help users of the repository in selecting relevant programs.

Furthermore, other promising means of functional descriptors can be employed.

These include incorporating a thesaurus (e.g Wordnet [61]) that identifies synonyms

of terms extracted from a program. With this, the function of a program is better

represented as several terms can be used to represent a single function.

8.2 Future Work 188

8.2.2 Supporting M ore C om plicated Indexing and Retrieval

M echanism s

How well a software component retrieval system such as the proposed combination

based retrieval system can deliver relevant programs depends on how well it can

capture the programming task from existing information provided by the user. The

proposed system has tried to capture the task based on the existing program written

by the developer. The structure relationships that exist in a program are revealed

through design patterns and software metrics. However, there may be other informa­

tion that can be utilized, for example the software architecture [163, 164].

As a greater number of indices are incorporated into the compound index, a

similarity measurement that includes weighting schema can also be introduced. This

is to help users to rank the importance of descriptors used in identifying the most

relevant programs. If a developer requires examples of programs that illustrate a

particular design pattern but does not emphasize the function of the program, then

higher weight can be given to the indices representing a design pattern. With such

an approach, the retrieval system will be more flexible as it can easily be modified to

represent a users' search requirements and preferences.

The program retrieval system can also explore the affinity of programs to deliver

relevant programs. The affinity of two programs is the likelihood that two programs

will be used in the same application. The repository system can deliver programs that

have a high affinity with the programs used by programmers in their current applica­

tion. For example, if a developer shows his interest towards a particular program that

has been retrieved from a search, the retrieval system will then present him with pro-

gram(s) that are closely related to it. There are two possible approaches to computing

the affinity of two programs: coupling-based or statistics-based. The coupling-based

8.2 Future- Work 189

approach looks at how tightly two programs are structurally connected. Two com­

ponents are more likely to appear together if they both access common data, or if

the data type output by one program is the same as the data type input by another.

The statistics based approach looks at how often two programs appear together in a

single application. Such co-occurrence information could be obtained in a way similar

to the automatic thesaurus construction in information retrieval systems by treating

programs as documents.

B i b l i o g r a p h y

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat­

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Read­

ing, Massachusetts, 1995.

[2] Carma McClure. The Three Rs Of Software Automation: Reengineering Repos­

itory Reusability. Prentice Hall, 1992.

[3] Christian Lindig. Concept-based component retrieval. In J. Kohler,

F. Giunchiglia, C. Green, and C. Walther, editors, Working Notes of the IJCAI-

95 Workshop: Formal Approaches to the Reuse of Plans, Proofs, and Programs,

pages 21-25, 1995.

[4] Ruben Prieto-Diaz. Implementing faceted classification for software reuse. Com­

munications of ACM , 34(5):88—97, May 1991.

[5] Yong Yang, Weishi Zhang, Xiuguo Zhang, and Jinyu Shi. A weighted ranking

algorithm for facet-based component retrieval system. In A C ST’06: Proceedings

of the 2nd I A S T ED International Conference on Advances in Computer Science

and Technology, pages 274-279, Anaheim, CA, USA, 2006. ACTA Press.

[6] Hongjian Niu and Young Park. An execution-based retrieval of object-oriented

components. In ACM-SE 37: Proceedings of the 37th Annual Southeast Regional

Conference, page 18, New York, NY, USA, 1999. ACM Press.
190

BIBLIOGRAPHY 191

[7] Vijayan Sugumaran and Veda C. Storey. A semantic-based approach to compo­

nent retrieval. The DATA BASE for Advances in Information Systems, 34(3):8-

24, 2003.

[8] Yunwen Ye and Gerhard Fischer. Supporting reuse by delivering task-relevant

and personalized information. In ICSE 2002: Proceedings of the 24th Inter­

national Conference on Software Engineering, pages 513-523, New York, NY,

USA, 2002. ACM Press.

[9] Tower of hanoi. http://www.cut-the-knot.org/recurrence/hanoi.shtml. last ac­

cessed on September 12, 2007.

[10] William B. Frakes and B. A. Nejmeh. Software reuse through information

retrieval. SIGIR Forum, 21(l-2):30-36, 1987.

[11] Gerhard Fischer, Scott Henninger, and David Redmiles. Cognitive tools for

locating and comprehending software objects for reuse. In Proceedings of the

13th International Conference on Software Engineering, pages 318-328, Austin,

Texas, United States, 1991.

[12] Yoelle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. Guru: Information

retrieval for reuse. In P.Hall, editor, Landmark Contributions in Software Reuse

and Reverse Engineering, Uni-com Seminars. 1994.

[13] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modem Information Retrieval.

Addison Wesley, January 1999.

[14] Microsoft. Com: Component object model technologies. http://www.microsoft.

com/com/default.mspx. last accessed on September 12, 2007.

http://www.cut-the-knot.org/recurrence/hanoi.shtml
http://www.microsoft

BIBLIOGRAPHY 192

[15] Java beans. http://java.sun.com /products/javabeans/. last accessed on

September 12, 2007.

[16] Daniel M. Yellin and Robert E. Strom. Protocol specifications and component

adaptors. ACM Transactions Programming Language Systems, 19(2) :292-333,

1997.

[17] Urs Holzle. Integrating independently-developed components in object-oriented

languages, In ECO OP '93: Proceedings of the 7th European Conference

on Object-Oriented Programming, pages 36-56, London, UK, 1993. Springer-

Verlag.

[18] TIOBE Software. Tiobe programming community index for march 2007. http:

/ / www.tiobe.com /tpci.htm , 2007. last accessed on September 12, 2007.

[19] Rosario Girardi. Classification and Retrieval of Software through their Descrip­

tion in Natural Language. Phd thesis, Computer Science Department, Univer­

sity of Geneva, 1995.

[20] Daniel Lucredio, Alan Gavioli, Antonio F. do Prado, and Mauro Biajiz. Compo­

nent retrieval using metric indexing. In Proceedings IEEE International Confer­

ence on Information Reuse and Integration (IR I2004), pages 79-84, Las Vegas,

November 8-10 2004. IEEE Systems, man and Cybernetics Society.

[21] Davor Cubranic, Gail C. Murphy, Janice Singer, and Kellogg S. Booth. Hipikat:

A project memory for software development. IEEE Transactions on Software

Engineering, 31(6):446-465, June 2005.

[22] Andrian Marcus. Semantic Driven Program Analysis. PhD thesis, School of

Computer Science, Kent State University, August 2003.

http://java.sun.com/products/javabeans/
http://www.tiobe.com/tpci.htm

BIBLIOGRAPHY 193

[23] Google code search, http://www.google.com/codesearch. last accessed on

September 12, 2007.

[24] Koders search engine, http://www.koders.com /. last accessed on September

12, 2007.

[25] Paul Santanul and Prakash Atul. A framework for source code search using

program patterns. IEEE Transactions on Software Engineering, 20(6):463-475,

1994.

[26] Santanu Paul. Scruple: a reengineer’s tool for source code search. In Proceedings

of the 1992 Conference of the Centre for Advanced Studies on Collaborative

Research, pages 329-346. IBM Press, 1992.

[27] Linda Mary Wills. Automated program recognition by graph parsing. Master’s

thesis, Massachusetts Institute of Technology, 1992.

[28] Secil Ugurel, Robert Krovetz, and C. Lee Giles. W hat’s the code?: Automatic

classification of source code archives. In Proceedings of the 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 632-

638. ACM Press, 2002.

[29] Sourceforge. http://sourceforge.net/. last accessed on September 12, 2007.

[30] Freshmeat. h ttp ://freshm eat.net/. last accessed on September 12, 2007.

[31] Norman E. Fenton and Martin Neil. Software metrics: roadmap. In ICSE ’00:

Proceedings of the Conference on The Future of Software Engineering, pages

357-370, New York, NY, USA, 2000. ACM Press.

[32] Yuhanis Yusof and Omer F. Rana. Template mining in source code digital

libraries. In Proceedings of the International Workshop on Mining Software

http://www.google.com/codesearch
http://www.koders.com/
http://sourceforge.net/
http://freshmeat.net/

BIBLIOGRAPHY 194

Repositories, 26th International Conference on Software Engineering, pages

122-126, Edinburgh, UK, 2004.

[33] Yuhanis Yusof and Omer F. Rana. Supporting program indexing and query­

ing in source code digital libraries. In Brian Henderson-Sellers and Michael

Winikoff, editors, Proceedings of the 7th International Workshop on Agent-

Oriented Information Systems, co-located with the F ourth International Con­

ference on Autonomous Agents and Multi-Agent System s(AAM AS05), pages

34-41, Utrecht, The Netherlands, 2005.

[34] Yuhanis Yusof and Omer F. Rana. Supporting program indexing and query­

ing in sourqe code digital libraries, revised selected p a p e rs . In Manuel Kolp,

Paolo Bresciani, Brian Henderson-Sellers, and Michael W inikoff, editors, Agent-

Oriented Information Systems III, volume 3529 of Lecture Notes in Computer

Science, pages 275-290. Springer, 2006.

[35] Yuhanis Yusof and Omer F. Rana. Integration of descrip tors for software

component retrieval. In 2nd International Conference on Knowledge Science,

Engineering and Management (accepted), Lecture N otes in Computer Science.

Springer, November 2007.

[36] Hafedh Mili, Fatma Mili, and Ali Mili. Reusing software: Issues and research

directions. IEEE Transactions on Software Engineering, 21(6):528-562, June

1995.

[37] Uml documentation, http://um lcenter.visual-paradigm .com /. last accessed on

September 12, 2007.

[38] Victor R. Basili, Gianluigi Caldiera, and H. Dieter R om bach. The Experience

Factory, pages 469-476. John Wiley and Sons, Inc, 1994.

http://umlcenter.visual-paradigm.com/

BIBLIOGRAPHY 195

[39] Eduardo Ostertag, James Hendler, Rubn Prieto Daz, and Christine Braun.

Computing similarity in a reuse system: An al-based approach. ACM Transac­

tions on Software Engineering and Methodology (TOSEM), l(3):205-228, 1992.

[40] Johann Schumann and Bernd Fischer. Nora/hammr: Making deduction-based

software component retrieval practical. In Proceedings of the 1997 International

Conference on Automated Software Engineering(A S E ’97), pages 246-254, Lake

Tahoe, CA, 1997.

[41] John Penix and Perry Alexander. Using formal specifications for component

retrieval and reuse. In Proceedings of the 31st Hawaii International Conference

on System Sciences, pages 356-365, 1998.

[42] Bernd Fischer. Deduction-Based Software Component Retrieval. PhD thesis,

Faculty of Mathematics and Informatics, University of Passau, Germany, June

2001.

[43] Sathit Nakkrasae and Peraphon Sophatsathit. A formal approach for specifi­

cation and classification of software components. In Proceedings of the 1 4 th

International Conference on Software Engineering and Knowledge Engineering,

pages 773-780. ACM Press, New York, 2002.

[44] Hafedh Mili, Estelle Ah-Ki. Robert Godin, and Hamid Mcheick. An experiment

in software component retrieval. Information and Software Technology, 45:633-

649, 2003.

[45] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I. Maletic.

An information retrieval approach to concept location in source code. In

WCRE ’04-' Proceedings of the 11th Working Conference on Reverse Engineer-

BIBLIOGRAPHY 196

ing (W C RE’04), pages 214-223, Washington, DC, USA, 2004. IEEE Computer

Society.

[46] R, T. Mittermeir and W. Rossak. Software bases and software archives: alter­

natives to support software reuse. In ACM ’87: Proceedings of the 1987 Fall

Joint Computer Conference on Exploring Technology: Today and Tomorrow,

pages 21-28, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[47] M. R. Girardi and B. Ibrahim. Automatic indexing of software artifacts. In

Proceedings o f 3rd. International Conference on Software Reuse, pages 24-32,

Rio de Janeiro, Brazil, 1994.

[48] Mingyang Gu, Agnar Aamodt, and Xin Tong. Component retrieval using con­

versational case-based reasoning, pages 259-271, 2005.

[49] James C. French, Allison L. Powell, Fredric C. Gey, and Natalia Perelman.

Exploiting a controlled vocabulary to improve collection selection and retrieval

effectiveness. In CIKM ’01: Proceedings of the 10th International Conference

on Information and Knowledge Management, pages 199-206, 2001.

[50] M. R. Girardi and B. Ibrahim. Using english to retrieve software. Journal of

System Software, 30(3):249-270, 1995.

[51] Lamia Labed Jilani, Jules Desharnais, Marc Frappier, Rym Mili, and Ali Mili.

Retrieving software components that minimize adaptation effort. In Automated

Software Engineering, pages 255-277, 1997.

[52] Steven Atkinson and Roger Duke. A methodology for behavioural retrieval from

class libraries. Technical Report 94-28, Software Verification Research Centre,

Department of Computer Science, The University of Queensland, Australia,

September 1994.

BIBLIOGRAPHY 197

[53] Andy Podgurski and Lynn Pierce. Retrieving reusable software by sampling

behavior. ACM Transactions Software Engineering Methodology, 2(3):286-303,

1993.

[54] Dewayne E. Perry and Steven S. Popovitch. Inquire: Predicate-based use and

reuse. In Proceedings of the 8th Knowledge-Based Software Engineering Con­

ference, pages 144-151, September 1993.

[55] Ali Mili, Rym Mili, and Roland T. Mittermeir. Storing and retrieving soft­

ware components: A refinement based system. IEEE Transactions on Software

Engineering. 23(7) :445-460, July 1994.

[56] Amy Moormann Zaremski and Jeannette M. Wing. Signature matching: A

key to reuse. In Proceedings of SIGSOFT, pages 7-10, Los Angeles, California,

1993.

[57] Luqi and Jiang Guo. Toward automated retrieval for a software component

repository. In Proceedings of ECBS IEEE Conference and Workshop Engineer­

ing of Computer-Based Systems, pages 99-105, March 1999.

[58] Gerard Salton and M. E. Lesk. Computer evaluation of indexing and text

processing. Journal of the ACM, 15(1):8—36, 1968.

[59] Rudolf Wille. Restructuring lattice theory: an approach based on hierarchies

of concepts. In I. Rival, editor. Ordered Sets, pages 445-470. Reidel, 1982.

[60] Scott Deerwester, Susan T. Dumais, George W. Furnas, and Thomas K. Lan-

dauer. Indexing by latent semantic analysis. Journal of the American Society

for Information Science, pages 391-407, 1990.

BIBLIOGRAPHY 198

[61] Christiane Fellbaum, editor. WordNet. An electronic lexical database. Cam­

bridge, MA: MIT Press;. 1998.

[62] M. R. Girardi and Bertrand Ibrahim. A similarity measure for retrieving soft­

ware artifacts. In The 6 th International Conference on Software Engineering

and Knowledge Engineering (SE K E ’94), pages 478-485, Jurmala, Latvia, 1994.

[63] A. Aamodt. A knowledge representation system for integration of general and

casespecific knowledge. In Proceedings from IEEE TAI-94, International Con­

ference on Tools with Artificial Intelligence, pages 836-839, 1994.

[64] Richard C. Waters. The programmer’s apprentice: a session with kbemacs.

IEEE Transactions on Software Engineering, 11(11):1296—1320, 1985.

[65] Charles Rich. Inspection methods in programming: Cliches and plans. Technical

report, Cambridge, MA, USA, 1987.

[66] Charles Rich and Richard C. Waters. The programmer’s apprentice: A research

overview. Computer, 21(11): 10—25, 1988.

[67] Richard C. Waters and Yang Meng Tan. Toward a design apprentice: supporting

reuse and evolution in software design. SIGSOFT Software Engineering Notes,

16(2):33-34, 1991.

[68] Christopher Alexander. The Timeless Way of Building. Oxford University

Press, 1979.

[69] Steven John Metsker. Design Patterns Java Workbook. Addison-Wesley, 2002.

[70] Lutz Prechelt. Functionality versus practicality: Employing existing tools for

recovering structural design patterns. Journal of Universal Computer Science,

4(12):866-882, 1998.

BIBLIOGRAPHY 199

[71] Jagdish Bansiya. Automating design-pattern identification: D P++ is a tool for

C ++ programs. Dr. Dobb’s Journal, 1998.

[72] Rudolf K. Keller, Reinhard Schauer, Sebastien Robitaille, and Patrick Page.

Pattern-based reverse-engineering of design components. In Proceedings of the

21st International Conference on Software Engineering, pages 226-235, Los

Angeles, California, 1999.

[73] Lothar Wendehals. Improving design pattern instance recognition by dynamic

analysis. In Proceedings of the ICSE Workshop on Dynamic Analysis (WODA),

pages 29-32. IEEE Computer Society Press, May 2003.

[74] D.M. Shawky, S.K. Abd-El-Hafiz, and A. L. El-Sedeek. A dynamic approach

for the identification of object-oriented design patterns. In Peter Kokol, editor,

Software Engineering, Innsbruck, Austria, February 2005.

[75] Niklas Pettersson. Measuring precision for static and dynamic design pattern

recognition as a function of coverage. In WODA ’05: Proceedings of the 3rd

International Workshop on Dynamic Analysis, pages 1-7, New York, NY, USA,

2005. ACM Press.

[76] Jason McC. Smith and David Stotts. Spqr: Flexible automated design pattern

extraction from source code. In Proceedings 18th IEEE International Conference

on Automated Software Engineering, pages 215-224, October 2003.

[77] Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns for

high performance computing. In Workshop on Patterns in High Performance

Computing, University of Illinois at Urbana-Champaign, 2005.

BIBLIOGRAPHY 200

[78] Jorg Niere, Wilhelm Schfer, Jrg P. Wadsack, Lothar Wendehals, and Jim Welsh.

Towards pattern-based design recovery. In Proceedings of the 24th International

Conference on Software Engineering, pages 338-348. ACM Press, 2002.

[79] Gcc. Gcc, the gnu compiler collection, http://gcc.gnu.org/. last accessed on

September 12, 2007.

[80] William W.McCune. O TTER 3.0 Reference Manual and Guide, 1994.

[81] SUN. java.net. http://javacc.dev.java.net/. last accessed on September 12,

2007.

[82] Premkumar T. Devanbu. Genoa: a customizable language- and front-end in­

dependent code analyzer. In ICSE ’92: Proceedings of the 1 4 th International

Conference on Software Engineering, pages 307-317, New York, NY, USA, 1992.

ACM Press.

[83] Oscar Nierstrasz, Sander Tichelaar, and Serge Demeyer. Cdif as the interchange

format between reengineering tools. In OOPSLA ’98 Workshop, Vancouver,

October 1998.

[84] Norman E Fenton. Software Metrics: A Rigorous Approach. Chapman & Hall,

1994.

[85] Gianluigi Caldiera and Victor R. Basili. Identifying and qualifying reusable

software components. Computer, 24(2):61-70, 1991.

[86] Hironori Washizaki and Yoshiaki Fukazawa. Software Reuse: Methods, Tech­

niques and Tools, chapter Component-Extraction-Based Search System for

Object-Oriented Programs, pages 254-263. Lecture Notes in Computer Sci­

ence. Springer Berlin / Heidelberg, 2004.

http://gcc.gnu.org/
http://javacc.dev.java.net/

BIBLIOGRAPHY 201

[87] Sen-Tarng Lai and Chien-Chiao Yang. A software metric combination model

for software reuse. In APSEC ’98: Proceedings of the 5th Asia Pacific Soft­

ware Engineering Conference, pages 70-77, Washington, DC, USA, 1998. IEEE

Computer Society.

[88] Thomas J. McCabe. A complexity measure. IEEE Transactions Software Eng.,

2(4):308-320, 1976.

[89] Halstead M.H. Elements of Software Science. Elsevier, New York, 1977.

[90] Richard E. Fairley. Software Engineering Concepts. McGraw-Hill, Inc., New

York, NY, USA, 1986.

[91] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented

design. IEEE Transactions on Software Engineering, 20(6):476-493, June 1994.

[92] Hironori Washizaki, Hirokazu Yamamoto, and Yoshiaki Fukazawa. A metrics

suite for measuring reusability of software components. In METRICS ’03: Pro­

ceedings of the 9th International Symposium on Software Metrics, pages 211-

223, Washington, DC, USA, 2003. IEEE Computer Society.

[93] Linda Rosenberg, Ted Hammer, and Jack Shaw. Software metrics and reliability.

In Proceedings of the 9th International Symposium, Germany, 1998.

[94] Octavian Paul Rotaru and Marian Dobre. Reusability metrics for software

components. In The third AC S/IEE E International Conference on Computer

System and applications, pages 24-31, Cairo,Egypt, 2005.

[95] Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality: The elu­

sive target. IEEE Software, 13(1):12—21, January 1996.

BIBLIOGRAPHY 202

[96] Andrew Glover. Code improvement through cyclomatic complexity, h ttp ://

www.onjava.com/pub/a/onjava/2004/06/16/ecunittest.html. last accessed on

September 12, 2007.

[97] Apache Maven Project. Metrics, http://maven.apache.org/reference/metrics.

html. last accessed on September 12, 2007.

[98] Arthur J. Riel. Object-Oriented Deisgn Heuristics. Addison-Wesley Longman

Publishing, 1996.

[99] Khaled M. Hammouda and Mohamed S. Kamel. Phrase-based document simi­

larity based on an index graph model. In 2002 IEEE International Conference

on Data Mining (ICDM'02), pages 203-210, Maebashi City, Japan, December

2002.

[100] A. Mili, R. Mili. and R. T. Mittermeir. A survey of software reuse libraries.

Annals of Software Engineering. 5:349 -414, 1998.

[101] Wikipedia encyclopedia. Linear combination, http://en.wikipedia.org/wiki/

Linear.combination. last accessed on September 12, 2007.

[102] George Spanoudakis and Panos Constantopoulos. Measuring similarity between

software artifacts. In Proceedings of the 6 th International Conference on Soft­

ware Engineering and Knowledge Engineering, pages 387-394, Skokie, 1994.

[103] Julie Pallant. SPSS Survival Manual, chapter 6, pages 53-54. Open University

Press, 2004.

[104] DTREG Software For Predictive Modeling and Forecasting. Svm - support

vector machines, http://www.dtreg.com/svm.htm. last accessed on September

12, 2007.

http://www.onjava.com/pub/a/onjava/2004/06/16/ecunittest.html
http://maven.apache.org/reference/metrics
http://en.wikipedia.org/wiki/
http://www.dtreg.com/svm.htm

BIBLIOGRAPHY 203

[105] J. Ross Quinlan. C4-5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

[106] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, IT-13(l):21-27, 1967.

[107] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81—106.

[108] Salvatore Ruggieri. Efficient c4.5. IEEE Transactions on Knowledge and Data

Engineering. 14(2):438-444. 2002.

[109] Christopher D. Manning and Hinrich Schutze. Foundations of Statistical Natural

Language Processing. The MIT Press, 1st edition edition, June 1999.

[110] Yiming Yang and Xin Liu. A re-examination of text categorization methods. In

SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR confer­

ence on Research and development in information retrieval, pages 42-49, New

York, NY, USA, 1999. ACM Press.

[111] Wei Li and Harry Delugach. Software metrics and application domain complex­

ity. In Fourth Asia-Pasific Software Engineering and International Computer

Science Conference, pages 513-514, 1997.

[112] Oh-Woog Kwon and Jong-Hveok Lee. Text categorization based on k-nearest

neighbor approach for web site classification. Information Processing Manage­

ment, 39(l):25-44. 2003.

[113] Eui-Hong (Sam) Han, George Karypis, and Vipin Kumar. Text categoriza­

tion using weight adjusted k -nearest neighbor classification. Lecture Notes in

Computer Science, 2035:53-59, 2001.

BIBLIOGRAPHY 204

[114] Qi Tian, Ying Wu, and Thomas S. Huang. Incorporate discriminant analysis

with EM algorithm in image retrieval. In IEEE International Conference on

Multimedia and Expo(I). pages 299-302, 2000.

[115] Daniel L. Swets and Juyang Weng. Hierarchical discriminant analysis for image

retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,

21(5):386-401, 1999.

[116] Kien-Ping Chung and Chun Che Pun. A hierarchical nonparametric discrimi­

nant analysis approach for a content-based image retrieval system. In ICEBE

’05: Proceedings of the IEEE International Conference on e-Business Engineer­

ing, pages 346-351, Washington, DC, USA, 2005. IEEE Computer Society.

[117] Eriko Nurvitadhi, Wing Wah Leung, and Curtis Cook. Do class comments

aid java program understanding. In 33rd ASEE/IEEE Frontiers in Education

Conference, pages 13-17, November 5-8 2003.

[118] UNIX. Unix programmer’s manual, http://cm.bell-labs.com/cm/cs/who/dmi7

lstEdinan.html. last accessed on September 12, 2007.

[119] Bruno Caprile and Paolo Tonella. Nomen est omen:analyzing the language

of function identifiers. In Proceedings of the Working Conference on Reverse

Engineering, W CRE’99, pages 112-122, Atlanta, Georgia, USA, October 1999.

[120] Mikael Lindvall and Kristian Sandahl. Practical implications of traceability.

Software Practice Experience, 26(10): 1161-1180, 1996.

[121] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-source-

code traceability links using latent semantic indexing. In ICSE ’03: Proceedings

of the 25th International Conference on Software Engineering. pages 125 135.

Washington. DC, USA, 2003. IEEE Computer Society.

http://cm.bell-labs.com/cm/cs/who/dmi7

BIBLIOGRAPHY 205

[122] Harold Rodriguez. Tips for linux. http://www.codecoffee.com/tipsforlinux/

articles2/043.html. last accessed on September 12, 2007.

[123] Bruce Eckel. Thinking in Java. Prentice Hall, 2002.

[124] SUN. Jdk. http://java.sun.com/javase/downloads/index.jsp. last accessed on

September 12, 2007.

[125] Google, http://www.google.com. last accessed on September 12, 2007.

[126] Stopword list, http://www.lextek.coni/nianuals/onix/stopwordsl.html. last ac­

cessed on September 12, 2007.

[127] Thierry Lecroq. Sequence comparison, http://www-igm.univ-mlv.fr/~lecroq/

seqcomp/. last accessed on September 12, 2007.

[128] SUN Microsystems. Awt the sun java abstract window toolkit, http://java.sun.

com/products/jdk/awt. last accessed on September 12, 2007.

[129] Jhotdraw as open-source project, http://www.jhotdraw.org/. last accessed on

September 12, 2007.

[130] Yann-Gael Gueheneuc and Narendra Jussien. Using explanations for design

patterns identification. In Proceedings of IJCAV01 Workshop on Modelling and

Solving Problems with Constraints, pages 57-64, August 2001.

[131] Claudia Raibulet and Francesca Arcelli. Program comprehension and design

pattern detection: An experience report. In The international workshop on

Object-Oriented Reengineering, Nantes, France, July 2006.

[132] Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns from

java source code. In ASE '06: Proceedings of the 21st IEEE International Con-

http://www.codecoffee.com/tipsforlinux/
http://java.sun.com/javase/downloads/index.jsp
http://www.google.com
http://www.lextek.coni/nianuals/onix/stopwordsl.html
http://www-igm.univ-mlv.fr/~lecroq/
http://java.sun
http://www.jhotdraw.org/

BIBLIOGRAPHY 206

fcrence on Automated Software Engineering (ASE'06), pages 123-134, Wash­

ington, DC, USA, 2006. IEEE Computer Society.

[133] C.J. Van Rijsbergen. Information Retrieval, chapter 6, pages 65-132. Butter-

worths, 1975.

[134] Pattern stories:java awt. http://wiki.cs.uiuc.edu/PatternStories/JavaAW T.

last accessed on September 12, 2007.

[135] Dirk Riehle. Composite design patterns. In Proceedings of the 1997 Conference

on Object-Oriented Programming Systems, Languages and Applications (OOP-

SLA ’97'), pages 218-228, 1997.

[136] John R. Anderson, Robert Farell, and Ron Sauers. Learning to program in lisp.

Cognitive Science, 8:87-130, 1984.

[137] Richard Creps, Mark A. Simos, and Ruben Prieto-Diaz. The stars concep­

tual framework for reuse processes, software technology for adaptable, reliable

systems (stars). Technical report, DARPA, 1992.

[138] William R. Klecka. Discriminant Analysis. Sage Publications, first edition

edition, 1980.

[139] Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. A comparison of prediction

accuracy, complexity, and training time of thirty-three old and new classification

algorithms. Machine Learning, 40(3):203-228, 2000.

[140] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. Mining very

large databases. Computer, 32(8):38-45, 1999.

[141] Hans-Peter Kriegel, Alexey Pryakhin, and Matthias Schubert. Database Sys­

tems for Advanced Applications. chapter Multi-represented kNN-Classifieation

http://wiki.cs.uiuc.edu/PatternStories/JavaAWT

BIBLIOGRAPHY 207

for Large Class Sets, pages 511-522. Lecture Notes in Computer Science.

Springer Berlin / Heidelberg, May 2005.

[142] Tim Littlefair. CCCC — C and C + + code counter. http://cccc.sourceforge.

net/, last accessed on September 12, 2007.

[143] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Hillsdale,

NJ. 2nd edition edition, 1998.

[144] Frank Owen and Ron Jones. Statistics. Trans-Atlantic Publications, 4th edition

edition, 1994.

[145] University of Waikato. Weka. http://www.cs.waikato.ac.nz/ml/weka. last ac­

cessed on September 12, 2007.

[146] Spss. http://www.spss.com. last accessed on September 12, 2007.

[147] Christophet M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni­

versity Press, USA, 1996.

[148] David Hull. Using statistical testing in the evaluation of retrieval experiments.

In SIGIR ’93: Proceedings of the 16th Annual International ACM SIGIR Con­

ference on Research and Development in Information Retrieval, pages 329-338,

New York, NY. USA, 1993. ACM Press.

[149] C. T. Yu and Gerard Salton. Precision weighting - an effective automatic in­

dexing method. Journal of the ACM , 23(l):76-88, January 1976.

[150] Holger Billhardt, Daniel Borrajo, and Victor Maojo. A context vector model

for information retrieval. Journal of American Society Information Science

Technology, 53(3):236-249, 2002.

http://cccc.sourceforge
http://www.cs.waikato.ac.nz/ml/weka
http://www.spss.com

BIBLIOGRAPHY 208

[151] John F. Sowa. Ontology, metadata, and semiotics. In ICCS ’00: Proceedings

of the Linguistic on Conceptual Structures, pages 55-81, London, UK, ‘2000.

Springer-Verlag.

[152] Gerard Salton and C. S. Yang, on the specification of term values in automatic

indexing. Journal of Documentation, 29:351-372, 1973.

[153] Gang Qian, Shamik Sural, Yuelong Gu, and Sakti Pramanik. Similarity between

euclidean and cosine angle distance for nearest neighbor queries. In SAC ’04:

Proceedings of the 2004 ACM Symposium on Applied Computing, pages 1232—

1237, New York, NY, USA, 2004. ACM Press.

[154] Rabia Gulcin Demirci, Vildan Kismir, and Yiltan Bitirim. An evaluation of

popular search engines on finding turkish documents. In Proceedings of the 2nd

International Conference on Internet and Web Applications and Services, pages

61-70, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[155] Ian Soboroff, Charles Nicholas, and Patrick Cahan. Ranking retrieval systems

without relevance judgments. In SIGIR *01: Proceedings of the 2 4 th annual

international ACM SIGIR conference on Research and development in infor­

mation retrieval pages 66-73, New York, NY, USA, 2001. ACM Press.

[156] Yunwen Ye. Supporting Component-Based Software Development with Active

Component Repository Systems. Phd thesis, Department of Computer Science,

University of Colorado, 2001.

[157] Stanley L. Sclove. Notes on liker scales, http://www.uic.edu/classes/idsc/

ids270sls/likert.htm, 2001. last accessed on September 12, 2007.

[158] Robert G. Fichman and Chris F. Kemerer. Object technology and reuse:

Lessons from early adopters. Computer, 30(10):47-59, 1997.

http://www.uic.edu/classes/idsc/

BIBLIOGRAPHY 209

[159] Arun Sen. The role of opportunism in the software design reuse process. IEEE

Transactions on Software Engineering, 23(7):418-436, 1997.

[160] Ruben Prieto-Diaz. Domain analysis: An introduction. ACM SIGSOFT Soft­

ware Engineering Notes, 15(2):47-54, April 1990.

[161] Marco Scotto, Alberto Sillitti, Giancarlo Succi, and Tullio Vernazza. A rela­

tional approach to software metrics. In SAC *04: Proceedings of the 2004 ACM

Symposium on Applied Computing, pages 1536-1540. New York, NY, USA,

2004. ACM Press.

[162] M.M. Lehman, D.E. Perry, and J.F. Ramil. Implications of evolution metrics

on software maintenance. International conference on software maintenance,

pages 208-217, 1998.

[163] David Garlan and Mary Shaw. An introduction to software architecture. Ad­

vances in Software Engineering and Knowledge Engineering, 1:1-40, 1993.

[164] Nenad Medvidovic and Richard N. Taylor. A classification and comparison

framework for software architecture description languages. IEEE Transactions

Softw. Eng., 26(l):70-93, 2000.

A p p e n d i x A

J 4 8 D e c is io n T r e e

210

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 - M 2
Relation: metricsDatabaseGraphicsWekal2attr_NO_LOC2
Instances: 584
Attributes: 13

LOC
MVG
COM
WMC1
DIT

• CBO
Fivis
Ficon
Fiincl
vis
con
inc
CLASS

Test mode: evaluate on training data

=== Classifier model (full training set) ===

J4 8 pruned tree

DIT <= 2
| COM <= 3
| | Ficon <= 1
| j | Fivis <= 1

i l l COM <= 0
j j j j | WMC1 <= 1: 1 (3.0)
| | | j | WMC1 > 1: 2 (2.0)
| j j | COM > 0: 1 (2.0)
| j j Fivis > 1
| | | | LOC <= 29
| j j j | Fivis <= 2: 2 (41.0/1.0)
| j j | j Fivis > 2
I I I I I | COM <= 1
| | | | | | | WMC1 <= 2: 1 (5.0/1.0)
| | | j j j j WMC1 > 2: 2 (2.0)
| | j j j j COM > 1: 2 (2.0)
| | | | LOC > 29
I I I I I DIT <« 1
| | | | | | COM <= 1: 2 (11.0/1.0)
I I I I I | COM > 1
| j | j | | | MVG <= 3: 1 (8.0/1.0)
| j j | j j j MVG > 3: 2 (4.0)
| | j | j DIT > 1: 1 (4.0)
j | Ficon > 1 : 1 (8.0/1 . 0)
j COM > 3
j | DIT <= 1
| | j COM <= 129
j | j | con <= 0
| | | | | MVG <= 3
I j | j j | Ficon <= 2
I I I I I I | COM <= 20

| | | | vis <= 4
I j j j | Fivis <= 2
I I I I I I DIT <= 0
I I I I I I I WMC1 <= 2
| | | j | | | | LOC <= 25: 1 (7.0)
| | | | j | j | LOC > 25: 2 (3.0)
j j | j j j | WMC1 > 2 : 2 (3.0/1.0)
| I j j j j DIT > 0: 2 (17.0/3.0)
| | | | | Fivis > 2
I I I I I | WMC1 < = 2: 1 (23.0/1.0)
| j j j j j WMC1 > 2
| | | j | j | CBO <= 4: 2 (2.0)
I I I I I I I CBO > 4
I j | | j j j | COM < = 13
I | j | | | | | | MVG <= 1: 1 (3.0)
I I I I I I I I | MVG > 1
I | | | | | | | j | WMC1 < = 4 : 1 (3.0)
I j j j j j j j j j WMC1 > 4: 2 (2.0)
| | | | | j | | COM > 13: 2 (4.0/1.0)
| | j | vis > 4: 2 (13.0/2.0)
j j j COM > 20
j j j | WMC1 <= 4: 1 (19.0)
j j j j WMC1 > 4
j j j | | LOC <= 153
j j | j j | LOC < = 1 4 : 2 (2.0)
| | | I j I LOC > 14: 1 (46.0/7.0)
| j j | | LOC > 153: 2 (5.0/1.0)
j j Ficon > 2: 1 (8.0)
j MVG > 3
j | DIT <= 0
| j | CBO <= 5: 2 (29.0/12.0)
| | | CBO > 5: 1 (34.0/7.0)
I j DIT > 0
j j | Fivis <= 7
t i l l Ficon <= 2
I | I I I COM <= 24
| | | | | | LOC <= 130: 2 (16.0/1.0)
| j j j j j LOC > 130: 1 (4.0/1.0)
j | j j j COM > 24
| j | j j | WMC1 <= 3: 1 (5.0)
I I I I I I WMC1 > 3
| | | j | j | Ficon <= 1
I I I I I | | I Fivis <= 5
| | | | | | | | | WMC1 <= 7: 2 (4.0)
I I I I I I I I I WMC1 > 7
| j | | | j | j | | vis <= 4: 1 (3.0)
j j | j j j j j | j vis > 4: 2 (3.0)
| | | | | | | | Fivis > 5: 1 (9.0/2.0)
I I I I I I I Ficon > 1
| | | | | | | | Fivis <= 6: 1 (2.0)
| | | j | j j | Fivis > 6: 2 (2.0)
| | j j Ficon > 2 : 1 (3.0)
| j j Fivis > 7: 2 (40.0/7.0)
con > 0
| WMC1 <= 5: 1 (8.0)
j WMC1 > 5
j | LOC <= 56: 2 (4.0)

| | | | | | LOC > 56: 1 (7.0/1.0)
| j j COM > 129
j j j | Ficon < = 1 : 1 (23.0)
| j j j Ficon > 1
| | | | | COM <= 225: 2 (2.0)
| | j | j COM > 2 2 5 : 1 (2.0)
j j DIT > 1
| I I WMCl <= 13: 1 (63.0/4.0)
j j | WMCl > 13
j | | | vis <= 256: 2 (5.0/1.0)
| | | j vis > 256: 1 (4.0)
DIT > 2 : 1 (60.0)

Number of Leaves : 51

Size of the tree 101

A p p e n d i x B

S t a t is t ic a l R e s u l t - P r o g r a m
C l a s s if ic a t io n u s in g T e s t in g D ata
S e t

214

xplore

LASS.DB

Case Processing Summary

CLASS_DB

Cases
Valid Missina Total

N Percent N Percent N Percent
PRE. bB 1 48 100.0% 0 .0% 48 100.0%

2 51 100.0% 0 .0% 51 100.0%
3 37 100.0% 0 .0% 37 100.0%

REC.DB 1 48 100.0% 0 .0% 48 100.0%
2 51 100.0% 0 .0% 51 100.0%
3 37 100.0% 0 .0% 37 100.0%

Descriptives

CLASS.DB Statistic Std. Error
PRE_DB 1 Mean .8066267 .01172527

95% Confidence Interval Lower Bound .7830385
for Mean Upper Bound

.8302149

5% Trimmed Mean .8004831
Median .7777800
Variance .007
Std. Deviation .08123507
Minimum .71429
Maximum 1.00000
Range .28571
Interquartile Range .0363775
Skewness 1.715 .343
Kurtosis 1.665 .674

2 Mean .8356439 .00997456
95% Confidence Interval Lower Bound .8156094
for Mean Upper Bound

.8556784

5% Trimmed Mean .8303594
Median .8055600
Variance .005
Std. Deviation .07123258
Minimum .76190
Maximum 1.00000
Range .23810
Interquartile Range .0730200
Skewness 1.478 .333
Kurtosis .930 .656

Descriptives

CLASS_DB Statistic Std. Error
PRE_DB 3 ' Mean .5642641 .02809635

95% Confidence Interval Lower Bound .5072820
for Mean Upper Bound

.6212461

5% Trimmed Mean .5521125
Median .5227300
Variance .029
Std. Deviation .17090340
Minimum .33333
Maximum 1.00000
Range .66667
Interquartile Range .1374550
Skewness 1.700 .388
Kurtosis 2.571 .759

REC.DB 1 Mean .3828150 .03157383
95% Confidence Interval Lower Bound .3192966
for Mean Upper Bound

.4463334

5% Trimmed Mean .3828150
Median .3828150
Variance .048
Std. Deviation .21874991
Minimum .01563
Maximum .75000
Range .73437
Interquartile Range .3828150
Skewness .000 .343
Kurtosis -1.200 .674

2 Mean .4062525 .03252603
95% Confidence Interval Lower Bound .3409221
for Mean Upper Bound

.4715830

5% Trimmed Mean .4062525
Median .4062500
Variance .054
Std. Deviation .23228232
Minimum .01563
Maximum .79688
Range .78125
Interquartile Range .4062500
Skewness .000 .333
Kurtosis -1.200 .656

Descriptives

CLASS_DB Statistic Std. Error
REC_DB 3 Mean .2968750 .02780489

95% Confidence Interval Lower Bound .2404841
for Mean Upper Bound

.3532659

5% Trimmed Mean .2968750
Median .2968750
Variance .029
Std. Deviation .16913055
Minimum .01563
Maximum .57813
Range .56250
Interquartile Range .2968750
Skewness .000 .388
Kurtosis -1.200 .759

Tests of Normality

Kolmoaorov-Smirnov3 Shapiro-Wilk
CLASS.DB Statistic df Sig. Statistic df Sig.

PRE_DB 1 .326 48 .000 .695 48 .000
2 .282 51 .000 .746 51 .000
3 .253 37 .000 .778 37 .000

REC.DB 1 .065 48 .200* .956 48 .068
2 .065 51 .200* .956 51 .054
3 .067 37 .200* .956 37 .156

V This is a lower bound of the true significance,
a. Lilliefors Significance Correction

PRE_DB

Histograms

Page 3

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Histogram

For CLASS_DB=1
30

Std. Dev = .08
Mean = .807
N = 48.00

.725 .775 .825 .875 .925 .975
.750 .800 .850 .900 .950 1.000

PRE DB

Histogram

For CLASS DB= 2
30

20 -

.750 .800 .850 .900 .950

Std. Dev = .07
Mean = .836
N = 51.00

1.000
.775 .825

PRE DB

.875 .925 .975

Page 4

Histogram

For CLASS_DB=3

>>Oc
CD3CT
<D
U-

.44
.38 .50 .63 .75 .88 1.00

PRE_DB

Stem-and-Leaf Plots

PRE_DB S t e m - a n d - L e a f P l o t f o r
CLASS_DB= 1

Frequency Stem & L e a f

1 . 0 0 71
1 . 0 0 72
1 . 0 0 73
1 . 0 0 74
6 . 0 0 75
8 . 0 0 76
7 . 0 0 77
8 . 0 0 78
3 . 0 0 79
3 . 0 0 80
9 . 0 0 E x t r e m e s

4
7
9
0
0 0 0 7 8 8
0 1 4 4 6 6 9 9
1 25 5 7 7 7
0 1 2 3 5 5 5 7
125
003
(> = . 8 7 5)

Stem w i d t h :
Each l e a f :

. 0 1 0 0 0
1 c a s e (s)

PRE_DB S t e m - a n d - L e a f P l o t f o r
CLASS_DB= 2

Frequency Stem & L e a f

1 8 . 0 0
2 0 . 0 0

00
00

6 . 0 0 E x t r e m e s

6 6 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 3
678
0012
(> = 1 . 0 0)

Std. Dev = .17
Mean = .56
N = 37.00

Page 5

Stem w i d t h :
Each l e a f :

.10000
1 c a s e (s)

PRE_DB S t e m - a n d - L e a f P l o t f o r
CLASS_DB= 3

Frequency Stem & L e a f

1 . 0 0 3 . 3
2 . 0 0 3 . 69
4 . 0 0 4 . 0224
6 . 0 0 4 . 6 6 6 7 8 8
8 . 0 0 5 . 0 0 0 0 1 2 3 4
6 . 0 0 5 . 5 6 7 8 8 9
6 . 0 0 6 . 0 0 1 1 2 2
4 . 0 0 E x t r e m e s (> = 1 . 0 0)

Stem w i d t h : . 1 0 0 0 0
Each l e a f : 1 c a s e (s)

Normal Q-Q Plots

Normal Q-Q Plot of PRE_DB

For CLASS_DB=1

1.0 -

.5-

0 .0 -

7 .8 .9 L0 l!l

Observed Value

"O<D
O0>aX
LU

-.5-

- 1.0 -

-1.5-

- 2 .0 -

-2-5.
.6

Ex
pe

ct
ed

N

or
m

al

Ex
pe

ct
ed

N

or
m

al

Normal Q-Q Plot of PRE_DB

For CLASS_DB=2
2

1 -

0<

*11

-2-j

-3j__________ ^
.6 .7

Observed Value

Normal Q-Q Plot of PRE_DB

For CLASS_DB=3
2.0

1.5-

6 .8 1.0 1.

1.0̂

.5-

0 .0 -

-.5-

- 1 .0 -

-1.5-

-2.o;

Observed Value

Detrended Normal Q-Q Plots

De
v

fro
m

No
rm

al

De
v

fro
m

N
or

m
al

Detrended Normal Q-Q Plot of PRE_DB

For CLASS_DB= 1
1.0

.5-

o.o- ----- ----------------------

.7 .8 9 1T0 1.1

Observed Value

Detrended Normal Q-Q Plot of PRE_DB

For CLASS_DB=2

0 .0 -

-.5-

-1.0^ t t t____________ j
.7 .8 .9 7!cT 1.1

Observed Value

Page 8

Detrended Normal Q-Q Plot of PRE DB

For CLASS DB= 3
1.5

1.0-

.5

0.0-

-.5-
><l)

Q *1.0

.3 .4 .5

Observed Value

.6 .7 .8 1.0 1.1

1.2-

1.0

.8-

.6-

.4-CQ
O
ul
£ .2.

N 48

1

CLASS DB

010a

37

3

REC_DB

Histograms

Page 9

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Histogram

For CLASS DB= 1
5 7

4

3

2

■ Std. Dev = .22
I Mean = .38
I N = 48.00

1

■
.13

0
0.00 .25 .38 .50 .63 .75

.06 .19 .31 .44 .56 .69

REC_DB

Histogram

For CLASS_DB= 2
5

I Std. Dev = .23
I Mean = .41
I N = 51.00

.06 .19 .31 .44 .56 .69 .81

REC_DB

Page 10

Histogram

For CLASS_DB=3
5 --------------------------

W M i':'*

.25 .31.13 .19

Std. Dev = .17
Mean = .30

■ N = 37.00
.44 .50 .56

REC DB

Stem-and-Leaf Plots

REC_DB S t e m - a n d - L e a f P l o t f o r
:lass DB= 1

[uency Stem Sc. L e a f

6 . 0 0 0 . 1 3 4 6 7 9
6 . 0 0 1 . 0 2 4 5 7 8
7 . 0 0 2 . 0 1 3 5 6 8 9
6 . 0 0 3 . 1 2 4 5 7 9
6 . 0 0 4 . 0 2 3 5 6 8
7 .00 5 . 0 1 3 4 6 7 9
6 . 0 0 6 . 0 2 4 5 7 8
4 . 0 0 7 . 0 1 3 5

Stem w i d t h :
Each l e a f :

.10000
1 c a s e (s)

7REC_DB S t e m - a n d - L e a f P l o t f o r
:lass_db= 2

n e n c y Stem & L e a f

6 . 0 0 0 . 1 3 4 6 7 9
6 . 0 0 1 . 0 2 4 5 7 8
7 . 0 0 2 . 0 1 3 5 6 8 9
6 . 0 0 3 . 1 2 4 5 7 9
6 . 0 0 4 . 0 2 3 5 6 8
7 .00 5 . 0 1 3 4 6 7 9
6 . 0 0 6 . 0 2 4 5 7 8
7 . 0 0 7 . 0 1 3 5 6 8 9

Page 11

Stem w i d t h :
Each l e a f :

. 1 0 0 0 0
1 c a s e (s)

REC_DB S t e m - a n d - L e a f P l o t f o r
CLASS_DB= 3

Frequency Stem & L e a f

3 . 0 0 0 . 134
3 . 0 0 0 . 679
3 . 0 0 1 . 024
3 . 0 0 .1 . 578
3 . 0 0 2 . 013
4 . 00 2 . 5689
3 . 0 0 3 . 124
3 . 00 3 . 579
3 . 00 4 . 023
3 . 00 4 . 568
4 . 0 0 5 . 0 1 3 4
2 . 0 0 5 . 67

Stem w i d t h : . 1 0 0 0 0
Each l e a f : 1 c a s e (s)

Normal Q-Q Plots

Normal Q-Q Plot of REC_DB

For CLASS_DB= 1
3-

2-

1 -

_ 0-
03
E

I
•o<d
o -2- 0)CL

-.2 o!o .2 .4 .6

Observed Value

Ex
pe

cte
d

No
rm

al

Ex
pe

cte
d

N
or

m
al

Normal Q-Q Plot of REC_DB

For CLASS_DB= 2

2-

1 -

0-

-11

-2-

-3_________ t_________ r_______ t____________t__________ t________ |
-.2 o!o .2 .4 .6 .8 1.0

Observed Value

Normal Q-Q Plot of REC_DB

For CLASS_DB=3
2-

1 -

OX) .1 .2 .3 .4 .5 .6 .7

Observed Value

Detrended Normal Q-Q Plots

De
v

fro
m

No
rm

al

De
v

fro
m

N
or

m
al

Detrended Normal Q-Q Plot of REC_DB

For CLASS_DB= 1

.2-

-.2-

-.4 r_________ t_______________ J
0.0 2 .4 .6 .8

Observed Value

Detrended Normal Q-Q Plot of REC_DB

For CLASS_DB=2
.4-

.2-

-.2-

0 0 .2 .4 .6 .8 1.0

Observed Value

Page 14

Detrended Normal Q-Q Plot of REC_DB

For CLASS_DB=3
.3

.2-

.1 -

Observed Value

1.0-

.8-

.6-

.4-

.2

Q 0 . 0 -

o
UJcr -.2.

N

Explore

CLASSJ

Page 15

48 51 37

1 2 3

CLASS_DB

Case Processing Summary

CLASS.GR

C ases
Valid Missing Total

N Percent N Percent N Percent
1 .. 46 100.0% 0 .0% 46 100.0%
2 47 100.0% 0 .0% 47 100.0%
3 40 100.0% 0 .0% 40 100.0%

REC_GR 1 46 100.0% 0 .0% 46 100.0%
2 47 100.0% 0 .0% 47 100.0%
3 40 100.0% 0 .0% 40 100.0%

Descriptives

CLASS.GR Statistic Std. Error
PRE_GR 1 Mean .6132896 .00908953

95% Confidence Interval Lower Bound .5949823
for Mean Upper Bound

.6315968

5% Trimmed Mean .6208150
Median .6339700
Variance .004
Std. Deviation .06164821
Minimum .37500
Maximum .67347
Range .29847
Interquartile Range .0721100
Skewness -2.003 .350
Kurtosis 4.714 .688

2 Mean .6868857 .00906457
95% Confidence Interval Lower Bound .6686397
for Mean Upper Bound

.7051318

5% Trimmed Mean .6932214
Median .6969700
Variance .004
Std. Deviation .06214357
Minimum .50000
Maximum .76271
Range .26271
Interquartile Range .0434000
Skewness -1.920 .347
Kurtosis 3.708 .681

Descriptives

CLASS_GR Statistic Std. Error
PRE_GR 3 Mean .5229163 .01197952

95% Confidence Interval Lower Bound .4986854
for Mean Upper Bound

.5471471

5% Trimmed Mean .5327069
Median .5513700
Variance .006
Std. Deviation .07576512
Minimum .25000
Maximum .57895
Range .32895
Interquartile Range .0294400
Skewness -2.358 .374
Kurtosis 4.903 .733

RECJ3R 1 Mean .3263889 .02748687
95% Confidence Interval Lower Bound .2710275
for Mean Upper Bound

.3817503

5% Trimmed Mean .3263888
Median .3263850
Variance .035
Std. Deviation .18642501
Minimum .01389
Maximum .63889
Range .62500
Interquartile Range .3263850
Skewness .000 .350
Kurtosis -1.200 .688

2 Mean .3333334 .02777776
95% Confidence Interval Lower Bound .2774197
for Mean Upper Bound

.3892471

5% Trimmed Mean .3333332
Median .3333300
Variance .036
Std. Deviation .19043471
Minimum .01389
Maximum .65278
Range .63889
Interquartile Range .3333300
Skewness .000 .347
Kurtosis -1.200 .681

Page 17

Descrlptives

CLASS_GR Statistic Std. Error
REC_GR 3 Mean .2847222 .02567254

95% Confidence Interval Lower Bound .2327946
for Mean Upper Bound

.3366498

5% Trimmed Mean .2847222
Median .2847222
Variance .026
Std. Deviation .16236739
Minimum .01389
Maximum .55556
Range .54167
Interquartile Range .2847222
Skewness .000 .374
Kurtosis -1.200 .733

Tests of Normality

Kolmooorov-Smirnov3 Shaoiro-Wilk
CLASS.GR Statistic df Sig. Statistic df Sig.

PR E JjR 1 .181 46 .001 .793 46 .000
2 .245 47 .000 .776 47 .000
3 .334 40 .000 .621 40 .000

RECJ3R 1 .066 46 .200* .956 46 .079
2 .065 47 .200* .956 47 .073
3 .067 40 .200* .956 40 .124

*. This is a lower bound of the true significance,
a. Lilliefors Significance Correction

PRE GR

Histograms

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Histogram

For CLASS_GR= 1
16
14-

12-

10

8

6

4

2
0

.525 .575 .625
.400 .450 .500 .550 .600 .650

PRE GR

Histogram

For CLASS_GR= 2
14

12-

10-

8i

6-j

4-I

1 -
.500 .550 .600 .650 .700 .750

.525 .575 .625 .675 .725 .775

PRE_GR

Std. Dev = .06
Mean = .613
N = 46.00

Std. Dev = .06
Mean = .687
N = 47.00

Page 19

Histogram

For CLASS_GR= 3

Std. Dev = .08
Mean = .523
N = 40.00mm mm mm .

.250 .300 .350 .400 .450 .500 .550
.275 .325 .375 .425 .475 .525 .575

PRE_GR

Stem-and-Leaf Plots

PRE_GR S t e m - a n d - L e a f P l o t f o r
CLASS_GR= 1

Frequency Stem Sc L ea f

2 . 0 0 E x t r e m e s

■'3*VII

2 . 0 0 5 . 00
. 0 0 5

2 . 0 0 5 . 45
3 . 0 0 5 . 667
4 . 0 0 5 . 8889
6 . 0 0 6 . 0 01 11 1
7 . 0 0 6 . 22 23 333

1 1 . 0 0 6 . 4 4 4 4 4 4 5 5 5 5 5
9 . 0 0 6 . 6 6 6 6 6 6 6 6 7

Stem w i d t h : .1 0 0 0 0
Each l e a f : 1 c a s e (s)

PRE_GR S t e m - a n d - L e a f P l o t f o r
CLASS_GR= 2

Frequ enc y Stem Sc L e a f

5 . 0 0 E xt rem es

o<£>VII

1 . 0 0 6 . 3
.0 0 6 .

5 . 0 0 6 . 66667
1 4 . 0 0 6 . 8 8 8 8 8 8 8 8 9 9 9 9 9 9

8 . 0 0 7 . 0 0 0 0 1 1 1 1
8 . 0 0 7 . 2 2 2 2 2 2 3 3

5 . 0 0 7 . 44 555
1 . 0 0 7 . 6

Stem w i d t h : . 1 0 0 0 0
Each l e a f : 1 c a s e (s)

PRE_GR St em -
CLASS_GR= 3

a n d - L e a f P l o t f o r

F r e q u e n c y Stem & L e a f

6 . 0 0 E x t r e m e s (= < . 4 6 2)
1 . 0 0 50 . 0
1 . 0 0 51 . 5
2 . 0 0 52 . 99
1 . 0 0 53 . 3
7 . 0 0 54 . 1 2 3 3 5 8 9

1 2 . 0 0 55 . 0 1 1 1 5 5 5 5 5 7 8 9
7 . 0 0 56 . 0 0 2 5 5 7 9
3 .0 0 57 . 168

Stem w i d t h : . 0 1 0 0 0
Each l e a f : 1 c a s e (s)

Normal Q-Q Plots

Normal Q-Q Plot of PRE_GR

For CLASS_GR= 1
3

03
E

-O
£o
CD
CLX
LU

2 -

11

0-

-2

-3
.5 .7

Observed Value

Page 21

Ex
pe

ct
ed

N

or
m

al

Ex
pe

ct
ed

N

or
m

al

Normal Q-Q Plot of PRE_GR

For CLASS_GR= 2

o-

-1 -

.4 .5 .6 .7

Observed Value

Normal Q-Q Plot of PRE_GR

For CLASS_GFt= 3
3 ----------

2-

1 -

0-

-1 -

-2-

2 .3 .4 .5 .6

Observed Value

Detrended Normal Q-Q Plots

Page 22

De
v

fro
m

N
or

m
al

De

v
fro

m
N

or
m

al

Detrended Normal Q-Q Plot of PR E _G R

For CLASS_GR= 1

0.0 - - -----------------

-.5-

- 1 .0 -

 ------------------- r —--------------------------- t -----------------------------------1------------------------------ 1
.3 .4 .5 .6 .7

Observed Value

Detrended Normal Q-Q Plot of PRE_GR

For CLASS_GR= 2

.5-

0.04--- --------------------

•4 1----------- — ------------- r-------- r -
.4 .5 .6 .7 .8

Observed Value

Page 23

Detrended Normal Q-Q Plot of P R E _G R

For CLASS_GR= 3
1.0 —

.5

0 .0 - :---

_ --5-03
E
o - 1 . 0 -

E
2 -1.5-
>
CDQ -2.0 . _t_________ r__________ r_

.2 .3 .4 .5

Observed Value

oc
Oi
L U
cc
Q.

.7-

.6 -

.5-

.4-

.3-

46

1

052

051

*80

47

2

99

• 98

+ 97
* 96

95

40

3

CLASS GR

REC_GR

Histogram s

Page 24

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

f

Histogram

For CLASS GR= 1

■I wm

•.tS2

.63

I Std. Dev = .19
Mean = .33
N = 46.00

REC GR

Histogram

For CLASS GR=2

vitm Std. Dev = .19
Mean = .33
N = 47.00

.06 .19 .31 .44 .56

REC GR

Page 25

f

Histogram

For CLASS_GR= 3
6

0.00 .06 .13 .19 .25 .31 .38 .44 .50 .56

REC_GR

Stem-and-Leaf Plots

REC_GR S t e m - a n d - L e a f P l o t f o r
CLASS GR= 1

F r e q u e n c y Stem & L e a f

7 . 0 0
00
00

7 . 0 0
7 . 0 0
8 . 00
3 . 00

1 2 4 5 6 8 9
1 2 3 5 6 8 9
0 2 3 5 6 7 9
0 1 3 4 6 7 8
0 1 3 4 5 7 8
0 1 2 4 5 6 8 9
123

Stem w i d t h :
Ea c h l e a f :

. 1 0 0 0 0
1 c a s e (s)

REC_GR S t e m - a n d - L e a f P l o t f o r
CLASS GR= 2

F r e q u e n c y Stem & L e a f

7 . 0 0 0 . 1 2 4 5 6 8 9
7 . 0 0 1 . 1 2 3 5 6 8 9
7 . 0 0 2 . 0 2 3 5 6 7 9
7 . 0 0 3 . 0 1 3 4 6 7 8
7 . 0 0 4 . 0 1 3 4 5 7 8
8 . 0 0 5 . 0 1 2 4 5 6 8 9
4 . 0 0 6 . 1235

St em w i d t h : . 1 0 0 0 0
E a c h l e a f : 1 c a s e (s)

Std. Dev = .16
Mean - .28
N = 40.00

Page 26

REC_GR S t e m - a n d - L e a f P l o t f o r
CLASS_GR= 3

F r e q u e n c y Stem Sc L e a f

3 .00 0 . 124
4 .00 0 . 5689
3 . 0 0 1 . 123
4 . 00 1 . 5689
3 . 00 2 . 023
4 . 0 0 2 . 5679
4 . 0 0 3 . 0134
3 . 0 0 3 . 678
4 . 0 0 4 . 0134
3 . 00 4 . 578
4 . 0 0 5 . 0 124
1 . 00 5 . 5

S te m w i d t h : . 1 0 0 0 0
E a c h l e a f : 1 c a s e (s)

Normal Q-Q Plots

Normal Q-Q Plot of REC_GR

For CLASS_GR= 1

2 -

<DaxLU -3 . r _______ ,___________
-.2 0.0 .2 .4

Observed Value

Ex
pe

ct
ed

No

rm
al

Ex

pe
ct

ed

N
or

m
al

Normal Q-Q Plot of REC_GR

For CLASS_GR= 2
 :-----------------------------------

2-

1 -

0 -

•1 -

- 2 -

- 3 , t t t <
-.2 0.0 .2 .4 .6 .8

Observed Value

Normal Q-Q Plot of REC_GR

For CLASS_GR= 3
3-

2 -

1 -

0 -

-1 -

- 2 -

-3. t_____| t ^
-.1 o!o .1 .2 .3 .4 .5 .6

Observed Value

Detrended Normal Q-Q Plots

Page 28

De
v

fro
m

No
rm

al

De
v

fro
m

N
or

m
al

Detrended Normal Q-Q Plot of REC_GR

For CLASS_GR= 1

.3-

.2 -

. 1 -

0.0 --

- . 1 -

- . 2 -

*.3-

-.4
----------------------------- 1--------- T------------------------------ 1------------------------------1-------------------------------?------------------------------- 1-------------------------------

0.0 .1 .2 .3 .4 .5 .6 .7

Observed Value

Detrended Normal Q-Q Plot of REC_GR

For CLASS_GR= 2

- ■ 2 J

-.4
0.0 A .2 .3 .4 .5 .6 .7

Observed Value

Page 29

Detrended Normal Q-

For CLASS_GR= 3

03
E
oz
Eo
>
CD
Q

.4

.3-

.2 -

.1 -

0 .0 -

- . 1 -

- .2 -

-.3-

-.4
0.0 .1 .2

Observed Value

.7-

.6-

.5-

.4-

.3-

.2-

.1 -
a :
o i 0.0-
o
LU
CC -.1,

46

1

CLASSJ3R

NPar T e s t s

Kruskal-Wallis Test

Ranks

CLASS.DB N Mean Rank
p re _ d 6 1 48 70.35

2 51 95.37
3 37 29.05
Total 136

Test Stati8tics*,b

PRE.DB
Chi-Square
df
Asymp. Sig.

61.017
2

.000
a. Kruskal Wallis Test
b. Grouping Variable: CLASS_DB

NPar Tests

Kruskal-Wallis Test
Ranks

CLASS DB N Mean Rank
PRE_6k 1 48 63.97

2 51 92.88
3 34 32.46
Total 133

Test Statistics**1*

PRE.GR
Chi-Square
df
Asymp. Sig.

50.649
2

.000
a. Kruskal Wallis Test
b. Grouping Variable: CLASS_DB

Oneway

Descriptives
REC_DB

95% Confidence Interval for
Mean

N Mean Std. Deviation Std. Error Lower Bound Upper Bound
1 48 .3828150 .21874991 .03157383 .3192966 .4463334
2 51 .4062525 .23228232 .03252603 .3409221 .4715830
3 37 .2968750 .16913055 .02780489 .2404841 .3532659
Total 136 .3682233 .21514663 .01844867 .3317376 .4047091

Descriptives
REC_DB

Minimum Maximum
1
2
3
Total

.01563

.01563

.01563

.01563

.75000

.79688

.57813

.79688

Test of Homogeneity of Variances
REC_DB

Levene
Statistic df1 df2 Sig.

3.035 2 133 .051

ANOVA
REC_DB

Sum of
Squares df Mean Square F Sig.

Between Groups .272 2 .136 3.030 .052
Within Groups 5.977 133 .045
Total 6.249 135

Post Hoc Tests
Multiple Comparisons

Dependent Variable: REC_DB
Tukey HSD

(I) CLASS_DB (J) CLASS_DB

Mean
Difference

(l-J) Std. Error Sig.
95% Confidence Interval

Lower Bound Upper Bound
1 2 -.0234375 .04262965 .847 -.1244802 .0776051

3 .0859400 .04637542 .157 -.0239810 .1958610
2 1 .0234375 .04262965 .847 -.0776051 .1244802

3 .1093775* .04577783 .048 .0008730 .2178821
3 1 -.0859400 .04637542 .157 -.1958610 .0239810

2 -.1093775* .04577783 .048 -.2178821 -.0008730
*. The mean difference is significant at the .05 level.

Homogeneous Subsets

Page 32

REC_DB
Tukey HSDa b

Subset for,alpha = .05
CLASS_DB N 1 2
3 37 .2968750
1 48 .3828150 .3828150
2 51 .4062525
Sig. .139 .861

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 44.465.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Means Plots

.42

.40-

.38-

.36-

.34-
CO
Q|
o -32-
L D
0C
O .30-
cCO
CD
2 28

1 2 3

CLASS_DB

Oneway

Descriptives

REC_GR

N Mean Std. Deviation Std. Error

95% Confidence Interval for
Mean

Lower Bound Upper Bound
1 46 .3263889 .18642501 .02748687 .2710275 .3817503
2 47 .3333334 .19043471 .02777776 .2774197 .3892471
3 40 .2847222 .16236739 .02567254 .2327946 .3366498
Total 133 .3163116 .18087579 .01568392 .2852873 .3473360

Page 33

Descriptives
REC.GR

Minimum Maximum
1
2
3
Total

.01389

.01389

.01389

.01389

.63889

.65278

.55556

.65278

Teat of Homogeneity of Variances
REC_GR

Levene
Statistic df1 df2 S ia

.885 2 130 .415

ANOVA
REC_GR

Sum of
Squares df Mean Square F Siq.

Between Groups .058 2 .029 .888 .414
Within Groups 4.260 130 .033
Total 4.319 132

Post Hoc Tests
Multiple Comparisons

Dependent Variable: REC_GR
Tukey HSD

(I) CLASS.GR (J) CLASS.GR

Mean
Difference

0-J) Std. Error Sig.
95% Confidence Interval

Lower Bound Upper Bound
1 2 -.0069445 .03754592 .981 -.0959607 .0820717

3 .0416667 .03913717 .538 -.0511221 .1344555
2 1 .0069445 .03754592 .981 -.0820717 .0959607

3 .0486112 .03894304 .427 -.0437174 .1409397
3 1 -.0416667 .03913717 .538 -.1344555 .0511221

2 -.0486112 .03894304 .427 -.1409397 .0437174

Homogeneous Subsets

Page 34

RECJ3R
Tukey HSDab

Subset for
alpha =

.05
CLASS GR N 1
3 40 .2847222
1 46 .3263889
2 47 .3333334
Sig. .420

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 44.107.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Means Plots

.34

.33-

.32-

.31

CC
O .30-

cc

c
CD
^ .28 i_____________________________t_____________________________

1 2 3

CLASS_GR

Page 35

f

A p p e n d i x C

S t a t is t ic a l R e s u l t - P r o g r a m
R e t r ie v a l u s in g C l a s s if ie d
P r o g r a m s

251

Appendix C : Statistical Result -
Program Retrieval using Classified Programs

NPar Tests

Kruskal-Wallis Test
Ranks

CLASS N Mean Rank
PRE 1 10 12.95

2 10 25.05
3 10 26.90
4 10 17.10
Total 40

Test Statistics*’b

PRE
Chi-Square 9.952
df 3
Asymp. Sig. .019

a. Kruskal Wallis Test
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test
Ranks

CLASS N Mean Rank Sum of Ranks
PRE 1 10 7.95 79.50

2 10 13.05 130.50
Total 20

Test Statistic8b

PRE
Mann-Whitney tl
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed
Sig.)]

24.500
79.500
-1.975

.048

.052®

a. Not corrected for ties.
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test

Ranks

CLASS N Mean Rank Sum of Ranks
PRE 1 10 6.95 69.50

3 10 14.05 140.50
Total 20

Test Statistics*

PRE
Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1 -tailed
Sig.)]

14.500
69.500
-2.727

.006

.005®

a. Not corrected for ties.
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test
Ranks

CLASS N Mean Rank Sum of Ranks
prI= 1 10 9.05 90.50

4 10 11.95 119.50
Total 20

Test Statistics*

PRE
Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed
Sig.)]

35.500
90.500
-1.107

.268

.280®

a. Not corrected for ties.
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test
Ranks

CLASS N Mean Rank Sum of Ranks
2 10 10.45 104.50
3 10 10.55 105.50
Total 20

Test Statistics6

PRE
Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1 -tailed
Sig.)]

49.500
104.500

-.041
.967

.971®

a. Not corrected for ties.
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test
Ranks

CLASS N Mean Rank Sum of Ranks
PRE 2 10 12.55 125.50

4 10 8.45 84.50
Total 20

Test Statistics6

PRE
Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed
Sig.)]

29.500
84.500
-1.597

.110

.123®

a. Not corrected for ties.
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test
Ranks

CLASS N Mean Rank Sum of Ranks
10 13.30 133.00

4 10 7.70 77.00
Total 20

Test Statistics6

PRE
Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1 -tailed
Sig.)]

22.000
77.000
-2.179

.029

.035®

a. Not corrected for ties.
b. Grouping Variable: CLASS

NPar Tests

Kruskal-Wallis Test
Ranks

CLASS N Mean Rank
PRE 1 10 12.95

2 10 25.05
3 10 26.90
4 10 17.10
Total 40

RECALL 1 10 15.45
2 10 23.40
3 10 24.70
4 10 18.45
Total 40

Test Statistics*,b

PRE RECALL
Chi-Square 9.952 4.105
df 3 3
Asymp. Sig. .019 .250

a. Kruskal Wallis Test
b. Grouping Variable: CLASS

NPar Tests

Kruskal-Wallis Test

Ranks

CLASS N Mean Rank
RECALL 1 10 15.45

2 10 23.40
3 10 24.70
4 10 18.45
Total 40

Test Statistics*’*

RECALL
£hi-£quare 4.105
df 3
Asymp. Sig. .250

a. Kruskal Wallis Test
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test

Ranks

CLASS N Mean Rank Sum of Ranks
RECALL 1 10 8.65 86.50

2 10 12.35 123.50
Total 20

Test Statistics6

RECALL
Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed
Sig.)I

31.500
86.500
-1.401

.161

.165®

a. Not corrected for ties.
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test

Ranks

CLASS N Mean Rank Sum of Ranks
RECALL 1 10 8.00 80.00

3 10 13.00 130.00
Total 20

Test Stati8ticsb

RECALL
Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed
Sig.)l

25.000
80.000
-1.893

.058

.063*

a. Not corrected for ties.
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test

Ranks

CLASS N Mean Rank Sum of Ranks
r K E ll 1 10 9.80 98.00

4 10 11.20 112.00
Total 20

Test Statistics11

RECALL
Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1 -tailed
Sig.)]

43.000
98.000

-.530
.596

.6313

• a. Not corrected for ties,
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test

Ranks

CLASS N Mean Rank Sum of Ranks
R E O T L 2 10 10.40 104.00

3 10 10.60 106.00
Total 20

Test Statisticsb

RECALL
Mann-Whitney U
Wilcoxon W
2
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed
Sig.)]

49.000
104.000

-.077
.939

.971®

a. Not corrected for ties.
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test

Ranks

CLASS N Mean Rank Sum of Ranks
RECALL 2 10 11.65 116.50

4 10 9.35 93.50
Total 20

Test Statisticsb

RECALL
Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1 -tailed
Sig.)]

38.500
93.500

-.873
.383

.393®

.a. Not corrected for ties,
b. Grouping Variable: CLASS

NPar Tests

Mann-Whitney Test

Ranks

CLASS N Mean Rank Sum of Ranks
Reca ll 3 10 12.10 121.00

4 10 8.90 89.00
Total 20

Test Statistics1*

RECALL
Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1 -tailed
Sig.)]

34.000
89.000
-1.215

.224

.247®

a. Not corrected for ties.
b. Grouping Variable: CLASS

A p p e n d i x D

M y S Q L D a t a b a s e .ja v a

260

MySQLDatabase.java (05/Jan/2008

155 public String getUserlDI)
156 {
157 return user;
158 }
159
160
161162 /**
16 3 * Qreturn does this account have dba granted to it?
164 public boolean isDBA()
165 {
166 boolean DBARole = false;167
168 try
169 {
17 0 ResultSet rs = getStatement().executeQuery
171 ("select GRANTED_ROLE from USER_ROLE_PRIVS");
172 // where USERNAME = +user.toUpperCase()+"'") ;
173 while (rs.nextO)
174 {
175 String role = rs .getString ("GRANTED_ROLE"). toUpperCase () ;
17 6 if (role.equals("DBA"))
177 DBARole = true;
178 }
179 }
180 catch (Exception e)
181 {
182 DBARole = false;
183 }
184 return DBARole;
185 }
186 * /
187
188 ///
189 // Private Methods
190 ///
191
192
193
194 ///
195 //
196 ///
197
198
199 / / the various mysql -specific objects
200 public static final int ROOT = 0;
201 public static final int SCHEMA = 1;
202 public static final int COLUMN = 9;
203
204 public static final int TABLEGROUP = 30
205 public static final int TABLE = 31
206 public static final int TABLEINFO = 32
207 public static final int TABLEDATA = 33
208 public static final int TABLECOLS = 34
209
210 protected String driver = "org.gjt.mm.mysql.Driver";
211 protected Table table;
212
213 private String user;
214 private String password;
215 private String dbname;
216 private String host;
2i'; private String port;
218 }
219

3 of 3

A p p e n d i x E

P ic k P h o t o s P a n e l .ja v a

264

PickPhotosPanel.java f 05/Jan/2008
1
2 import java.util.*;
3 import java.io.*;
4 import javax.swing.*;
5 import java.awt.*;
6 import java.awt.event.*;7
8 public class PickPhotosPanel
9 extends javax.swing.JPanel
10 implements WizardPanel, ItemListener
U {
12
13 /** Creates new form PickFilesPanel */
14 public PickPhotosPanel(PublishManager publishManager) {
15 this .publishManager = publishManager;
16 initComponents ();
11 ((FileSelector)pnlFileSelector) .addltemListener (this);
18 spScroll.getHorizontalScrollBar{).setUnitIncrement(16);
19 spScroll.getVerticalScrollBar() . setUnitlncrement (16);20 }
21
22 /** This method is called from within the constructor to
23 * initialize the form.
24 * WARNING: Do NOT modify this code. The content of this method is
25 * always regenerated by the FormEditor.
26 * /
27 private void initComponents() {//GEN-BEGIN:initComponents
28 lblTitle = new javax.swing.JLabel();
29 pnlContents = new javax.swing.JPanel();
30 tplnstructions = new javax.swing.JTextPane();
31 pnlCenter = new javax.swing.JPanel();
32 spScroll = new javax.swing.JScrollPane();
33 pnlFileSelector = new FileSelector (true);
34
35 pnlControls = new javax.swing.JPanel();
36 btnRefresh = new javax.swing. JButton() ;
37 btnBrowse = new javax.swing.JButton();
38 tpChoiceDescription = new javax. swing .JTextPane () ;
39
40 setLayout(new java.awt.BorderLayout()) ;
41
42 setBackground(java.awt .Color .white) ;
43 lblTitle.setText("Pick Photos");
44 lblTitle. setForeground (new java.awt .Color (0, 153, 153));
45 lblTitle.setFont (new java.awt.Font ("SansSerif", 1, 14));
46 lblTitle.setBorder(new javax.swing.border.EmptyBorder(new

java.awt.Insets(3, 3, 3, 3)));
47 add(lblTitle, java.awt.BorderLayout.NORTH);
48
4 9 pnlContents . setLayout (new j ava . awt. Gr idBagLayout ()) ;
50 java.awt.GridBagConstraints gridBagConstraintsl;
51
52 pnlContents. setBackground (java. awt .Color .white) ;
53 tplnstructions.setEditable(false) ;
54 tplnstructions.setFont(new java.awt.Font("SansSerif", 0, 12));
55 tplnstructions.setText("Choose the folder containing all the pictures you

want to publish. To expand a folder, double-click on it.");
56 gridBagConstraintsl = new java.awt.GridBagConstraints();
57 gridBagConstraintsl.gridwidth = java.awt.GridBagConstraints.REMAINDER;
58 gridBagConstraintsl. fill = java.awt.GridBagConstraints.HORIZONTAL;
59 gridBagConstraintsl.anchor = java.awt.GridBagConstraints.NORTHWEST,•
60 gridBagConstraintsl.weightx = 1.0;
61 pnlContents.add(tplnstructions, gridBagConstraintsl);
62
63 pnlCenter.setLayout(new java.awt.BorderLayout());
64
65 spScroll.addComponentListener(new java.awt.event.ComponentAdapter() {
66 public void component Res i zed (java. awt. event. ComponentEvent evt) {
67 spScrollComponentResized(evt);
68 }
69 }) ;
70
71 pnlFileSelector.setBackground(java.awt.Color.white);
72 spScroll. setViewportView(pnlFileSelector) ;
73
74 pnlCenter.add(spScroll, java.awt.BorderLayout.CENTER) ;
75

1 of 4

PickPhotosPanel.java 05/Jan/2008

76 gridBagConstraintsl = new java.awt.GridBagConstraints();
77 gridBagConstraintsl.gridwidth = java.awt.GridBagConstraints.REMAINDER;
78 gridBagConstraintsl.fill = java.awt.GridBagConstraints.BOTH;
79 gridBagConstraintsl.insets = new java.awt.Insets(20, 40, 20, 40);
80 gridBagConstraintsl.anchor = java.awt.GridBagConstraints.NORTHWEST;
81 gridBagConstraintsl.weighty = 1.0;
82 pnlContents.add(pnlCenter, gridBagConstraintsl);
83
84 pnlControls.setBackground(java.awt.Color.white) ;
85 btnRefresh.setToolTipText ("Refresh the contents of the selected folder.");
86 btnRef resh. setFont (new java. awt. Font ("SansSerif", 0, 12));
87 btnRefresh.setText("Refresh Folder");
88 btnRefresh.addActionListener(new java.awt.event.ActionListener() {
89 public void actionPerformed(java.awt.event.ActionEvent evt) {
90 btnRefreshActionPerformed(evt);
91 }
92 }) ;
93
94 pnlControls.add(btnRefresh);
95
96 btnBrowse. setToolTipText ("Browse for folders");
97 btnBrowse.setFont (new java.awt .Font ("SansSerif", 0, 12));
98 btnBrowse.setText("Browse...");
99 btnBrowse. addActionListener (new java. awt .event. ActionListener () {
100 public void actionPerformed(java.awt.event.ActionEvent evt) {
101 btnBrowseActionPerformed (evt) ;
102 }
103 });
104
105 pnlControls.add(btnBrowse);
106
107 gridBagConstraintsl = new java. awt .GridBagConstraints () ;
108 gridBagConstraintsl. gridwidth = java.awt.GridBagConstraints.REMAINDER;
109 gridBagConstraintsl. fill = java . awt .GridBagConstraints . HORIZONTAL;
110 gridBagConstraintsl.weightx = 1.0;
111 pnlContents. add (pnlControls, gridBagConstraintsl);
112
113 tpChoiceDescription.setEditable(false) ;
114 tpChoiceDescription. setFont (new j ava. awt. Font ("SansSerif", 0, 12));
115 tpChoiceDescription. setText ("Selection: None\n\n");
116 gridBagConstraintsl = new java. awt .GridBagConstraints () ;
117 gridBagConstraintsl. gridwidth = java.awt.GridBagConstraints.REMAINDER;
118 gridBagConstraintsl. fill = j ava. awt. GridBagConstraints. HORIZONTAL;
119 gridBagConstraintsl. insets = new java.awt. Insets (15, 0, 15, 0) ;
120 gridBagConstraintsl.anchor = java.awt.GridBagConstraints.NORTHWEST;
121 pnlContents. add (tpChoiceDescription, gridBagConstraintsl);
122
123 add (pnlContents, java. awt. BorderLayout. CENTER) ;
124
125 }//GEN-END:initComponents
126
127 private void btnBrowseActionPerformed(java.awt.event.ActionEvent evt)

{//GEN- FIRST: even t _b t nBr ows eAc tionPerfo rmed
128 // Get the parent frame:
129 Container parent = this;
130 while(!((parent = parent.getParent()) instanceof JFrame));
131
132 FileDialog fileDialog = new FileDialog((Frame)parent,
133 "Browse for Photos Folder", FileDialog.LOAD);
134 // If the user has a directory selected, use that directory.
135 // If not, then try to use the directory from the photo source.
136 i ! Otherwise, let it use whatever directory it sees fit.
137 if(selectedDirectory != null) {138 fileDialog.setDirectory(selectedDirectory.getAbsolutePath ());
139)
140 else {141 File sourceDir = publishManager. getPhotoSource () . getSourceDir () ;
142 if(sourceDir != null) {143 fileDialog.setDirectory(sourceDir.getAbsolutePath());
144 }
145 }
146 fileDialog.setModal(true);
147 fileDialog.setVisible(true);
148149 String directory = fileDialog.getDirectory();
150 String filename = fileDialog.getFileO;
1 -i 'f I - f i 1 o n A m o I =r m i l 1 ̂ /

2 of 4

PickPhotosPanel.java 05/Jan/2008

152 File result = new File(directory, filename);
153 if(!result.isDirectory()) {
154 result = result.getParentFile() ,-
155 }
156 // First, set selectedDirectory. Then, try to set it in the
157 // tree. In case the tree setting fails, make sure we still
158 // have the desired directory selected.
159 tryDirectory(result);
160 ((FileSelector)pnlFileSelector).setSelectedFile(result);161 tryDirectory(result);
162 }
163 } //GEN-LAST :event_btnBrowseActionPerformed
164
165 private void btnRefreshActionPerformed(java.awt.event.ActionEvent evt)

{/ /GEN-FIRST: event_btnRefreshAct ionPerformed
166 ((FileSelector)pnlFileSelector).refreshSelection();
167 } //GEN-LAST: event_btnRefreshActionPerformed
168
169 private void spScrollComponentResized(java.awt.event.ComponentEvent evt)

{/ /GEN-FIRST: event_spScrollComponentResized
170 ((FileSelector)pnlFileSelector).scrollToSelection();
171 } //GEN-LAST: event_spScrollComponentResized
172
173
174 // Variables declaration - do not modify//GEN-BEGIN: variables
175 private javax.swing.JLabel lblTitle;
176 private javax.swing.JPanel pnlContents;
177 private javax.swing.JTextPane tplnstructions;
178 private javax.swing.JPanel pnlCenter;
179 private javax.swing.JScrollPane spScroll;
180 private javax.swing.JPanel pnlFileSelector;
181 private javax.swing.JPanel pnlControls;
182 private javax.swing.JButton btnRefresh;
183 private javax.swing.JButton btnBrowse;
184 private javax.swing.JTextPane tpChoiceDescription;
185 // End of variables declaration//GEN-END:variables
186
187 private PublishManager publishManager;
188 private File selectedDirectory;
189 private PhotoSource tempPhotoSource = new PhotoSource();
190
191 //We remember this value in case the user clicks back and
192 // changes the directory. We want to warn that captions may be lost.
193 private File lastSelectedDirectory = null;
194
195 /**
196 * Final directory selection
197 */
198 private void selectDirectory(File dir) {
199 selectedDirectory = dir;200 PhotoSource source = publishManager.getPhotoSource() ;
201 source.scanDirectory(selectedDirectory);
202 Settings.getlnstance().setProperty(
203 Constants.DEFAULT_INPUT_DIR,
204 dir.getAbsolutePath());
205 }
206207 /**
208 * Try this directory, before officially selecting it
209 */
210 private void tryDirectory(File dir) {
211 selectedDirectory = dir;212 tempPhotoSource.scanDirectory (selectedDirectory);
213 updateGUI();
214 }
215216 /** Returns true if all required data was filled in for this panel.
217
218 public boolean isSatisfied() {219 int numPhotos = tempPhotoSource.getPhotos().size();
220 return numPhotos > 0;
221 }
222 / * * Called when the panel is shown to the user
223 */
224 public void showPanel() {225 File dir = publishManager.getPhotoSource().getSourceDir () ;
226 ((FileSelector)pnlFileSelector).setSelectedFile(dir);

3 of 4

PickPhotosPanel.java 05/Jan/2008
227 tryDixectory(dir);
228 }
229 /** Called when the panel is hidden from the user
230 */
231 public void hidePanel(boolean forwardDirection) throws

CannotChangePanelException
232 {
233 if((lastSelectedDirectory != null) &&
234 ! lastSelectedDirectory.equals(selectedDirectory))
2 3 3 {
236 java.awt.Toolkit.getDefaultToolkit().beep();
237 int result = JOptionPane.showConfirmDialog(this,
238 "By changing the selected directory, you will lose\n" +
239 "any captions or other changes made before.\n\n" +
240 "Are you sure you wish to change your selection?\n",
241 "Warning", JOptionPane.YES_NO_OPTION,
242 JOpt ionPane. WARNING_MESSAGE) ;
24 3 switch(result) {
244 case JOptionPane.YES_OPTION:
24 5 // everything is okay - continue.
24 6 break;
247 case JOptionPane.NO_OPTION:
248 ((FileSelector)pnlFileSelector).setSelectedFile(
24 9 lastSelectedDirectory);
2 50 throw new CannotChangePanelException();
251 }
252 }
253 if(forwardDirection) {
254 lastSelectedDirectory = selectedDirectory;
255 }
2 56 selectDirectory(selectedDirectory);
257 }
258
259 public void itemStateChanged (java. awt .event. ItemEvent itemEvent) {
260 tryDirectory((File)itemEvent.getltem ());
261 }
262
263 private void updateGUlO {
264 if(selectedDirectory == null) {
265 tpChoiceDescription.setText("Selection: None\n\n");
266 btnRefresh.setEnabled(false);
267 }
268 else {
269 btnRefresh.setEnabled(true);
27 0 // Update UI:
271 int numPhotos = tempPhotoSource.getPhotos().size() ;
27 2 tpChoiceDescription.setText(273 "Selection: " + selectedDirectory.getAbsolutePath() + "\n\n" +
27 4 "Found " + numPhotos +
27 5 " photo" + ((numPhotos != 1) ? "s" : "") +
276 " in this folder.");
277 }
278 }
279 }
280

4 of 4

f

A p p e n d i x F

T e s t P r o g r a m s u s e d f o r t h e
I d e n t if ic a t io n o f M e t r i c T r e n d s

269

Database.java 05/Jan/2008
1
2 package voji.db;
3 import java.lang.*;
4 import java.util.*;
5 import java.io.*;
6 import java.sql.*;
7 import voji.utils.*;
8
9 /*
10 * CLASS Database
11 * /

12 public class Database
13 {
14 /*
15 * vector of all database listeners
16 */
17 private static Vector listeners=new Vector();
18
19 /*
20 * add a database listener
21 * /
22 public static void addDatabaseListener(DatabaseListener listener)23 {
24 /* add listener to vector of listeners */
25 listeners.add(listener);
26
27 /* initialize listener if necessary */
28 if (getConnection()!=null)
29 {
30 try { listener.databaseChanged () ; }
31 catch (Exception ex) {}
32 }
33)
34
35 /*
36 * let all listeners know that the database has been changed
37 */
38 protected static void fireDatabaseChanged()
39 {
40 /* call databaseChanged() of all listeners */
41 for (Iterator i=listeners.iterator();i.hasNext();)
42 {
43 try { ((DatabaseListener)i .next()).databaseChanged(); }
44 catch (Exception ex) {}
45 }
46 }
47
48 /*
49 * current connection
50 */
51 private static Connection connection;
52
53 /*
54 * current statement
55 */
56 private static Statement statement;
57
58 /*
59 * connect to another database
60 */61 public static void connect(Connection newConnection) throws SQLException
62 {
63 /* set connection */
64 connection=newConnection;
65
66 /* create statement */
67 statement=createStatement();
6869 /* let all listeners know that the database has been changed */
70 fireDatabaseChanged();
71 }
72
73 /*
74 * connect to another database
75 */76 public static void connect(String driver,String url,String user,
77 String password)

1 of 3

Database.java 05/Jan/2008

78 throws ClassNotFoundException,SQLException
79 {
80 /* load driver * /
81 if (driver!=null) Class.forName(driver);
82
83 /* set connection */
84 connect(DriverManager.getConnection(url,user,password)) ;
85 }
86
87 /*
88 * connect to another database
89 V90 public static void connect(String url.String user,String password)
91 throws SQLException
92 {
93 /* set connection * /
94 connect (DriverManager. getConnection (url, user, password)) ;
95 }
96
97 /*
98 * connect to another database
99 */
100 public static void connect(Properties info)
101 throws ClassNotFoundException, SQLException
102 {
103 /* set connection */
104 connect (info.getProperty ("voji .db.driver"),
105 info.getProperty("voji.db.url") ,
106 info.getProperty("voji.db.user"),
107 info.getProperty ("voji .db.password")) ;
108 }
109
110 / *
111 * get current connection
112 * /
113 public static Connection getConnection()
114 {
115 /* return current connection */
116 return connection;
117 }
118
119 /*
120 * create statement
121 * /
122 public static Statement createStatement() throws SQLException
123 {
124 /* create statement from current connection */
125 return getConnection().createStatement () ;
126 }
127
128 /*
129 * prepare statement
130 */
131 public static PreparedStatement prepareStatement(String sql)
132 throws SQLException
133 {
134 /* prepare statement from current connection */
135 return getConnection () .prepareStatement (sql) ;
136 }
137
138 /*
139 * prepare call
140 */141 public static CallableStatement prepareCall(String sql) throws SQLException
142 {
143 /* prepare call from current connection * /
144 return getConnection().prepareCall (sql) ;
145 }
146147 /*
148 * execute query
149 */150 public static ResultSet executeQuery(String sql) throws SQLException
151 {
152 /* execute query at created statement */
153 return statement.executeQuery(sql);
154 }

2 of 3

Database.java 05/Jan/2008

155
156 /*
157 * execute update
158 */
159 public static int executeUpdate(String sql) throws SQLException
160 {
161 /* execute update at created statement */
162 return statement.executeUpdate(sql);
163 }
164 }
165

3 of 3

SQLToken.java 05/Jan/2008
1
2 package sma11sql.database;
3
4
5 class SQLToken{
6 int value;
7 int offset; // start offset des tokens im SQL
8 int length; // Lange des Tokens
9 String name;
10
11 SQLToken (int value, int tokenstart, int tokenEnd){
12 this.value = value;
13 this.offset * tokenStart;
14 this.length * tokenEnd-tokenStart;
15 }
16
17 /**
18 * Constructor used for quoted strings
19 */
20 SQLToken (String name, int value, int tokenStart, int tokenEnd){
21 this.value = value;
22 this.offset = tokenStart;
23 this.length = tokenEnd-tokenStart;
24 this.name = name;
25 }
26
27 String getName(char[] sql){
28 if (name != null) return name;
29 return new String(sql, offset, length);
30)
31 }
32

1 of 1

SimpleCurve.java 05/Jan/2008
1
2 import java.awt.Color;
3
4 import jcckit.graphic.ClippingShape;
5 import jcckit.graphic.GraphPoint;
6 import jcckit.graphic.GraphicalComposite;
7 import jcckit.graphic.GraphicalElement;
8 import jcckit.graphic.LineAttributes;
9 import jcckit.graphic.Polygon;
10 import jcckit.graphic.ShapeAttributes;
11 import jcckit.util.ConfigParameters;
12 import jcckit.util.Factory;
13
14 /**
15 * A simple curve is the basic implementation of the {©link Curve) interface.
16 *
17 * ©author Franz-Josef Elmer
18 */
19 public class SimpleCurve implements Curve {
20 /** Configuration parameter key. */
21 public static final String SYMBOL_FACTORY_KEY = "symbolFactory",
22 WITH_LINE_KEY = "withLine",
23 SOFT_CLIPPING_KEY = "softClipping",
24 LINE_ATTRIBUTES_KEY = "lineAttributes",
2 5 INITIAL_HINT_FOR_NEXT_POINT_KEY
26 = "initialHintForNextPoint";
27 private final ClippingShape _clippingShape;
28 private final SymbolFactory _symbolFactory;
29 private final GraphicalComposite _symbols;
30 private final GraphicalComposite _completeCurve;
31 private final GraphicalElement _legendSymbol;
32 private final Hint _initialHintForNextPoint;
33 private final Polygon _curve;
34 private final boolean _softClipping;
35 private Hint _hintForNextPoint;
36
37 /**
38 * Creates a new curve. The parameter <tt>config</tt> contains:
39 * <table border=l cellpadding=5>
40 * <tr><th>Key & Default Value</th><th>Type</th><th>Mandatory</th>
41 * <th>Description</th></tr>
42 * <tr><td><tt>initialHintForNextPoint = null</tt></td>
43 * <td><tt>ConfigParameters</ttx/td><td>no</td>
44 * <td>Definition of an initial {©link Hint) for the first curve point.
45 * </tdx/tr>
46 * <trxtd><tt>lineAttributes = </tt>a {©link ShapeAttributes)
47 * instances with default values and line colors based on48 * the formula <tt>Color.getHSBColor(curveIndex/6,1,0.8)</tt></td>
49 * <tdxtt>Conf igParameters</ttx/tdxtd>no</td>
50 * <td>Configuration parameters of an instances of
51 * {©link jcckit.graphic.GraphicAttributes) for the
52 * {©link Polygon Polygons) connecting curve points.</tdx/tr>
53 * <tr><td><tt>symbolFactory = null</tt></td>
54 * <td><tt>Conf igParameters</ttx/td><td>no</td>
55 * <td>Configuration parameters defining an instances of
56 * {©link SymbolFactory) for the {©link Symbol Symbols)
57 * decorating curve points.</td></tr>
58 * <tr><td><tt>softClipping = true</tt></td>
59 * <td><tt>boolean</ttx/td><td>no</td>
60 * <td>If <tt>true</tt> no explicit clipping takes
61 * place but the symbol is not drawn if the corresponding curve
62 * point is outside the axis box.

63 * If <tt>false</tt> the symbol is
64 * drawn in any case but it may be clipped by the axis box.
65 * Soft-clipping should be set to <tt>false</tt> if the
66 * symbols are not located around the curve point (like for bars).
67 * </tdx/tr>
68 * <tr><td><tt>withLine = true</tt></td>
69 * <td><tt>boolean</tt></td><td>no</td>
70 * <td>If <tt>true</tt> curve points are connected by a
71 * {©link jcckit.graphic.Polygon).</td></tr>
72 * </table>
73 * ©param config Configuration parameters described above.
74 * ©param curvelndex Index of this curve in the collection of curves
75 * defining a {©link Plot).
76 * ©param numberOfCurves Number of curves in this collection.
77 * ©param ClippingShape Clipping shape. Can be <tt>null</tt>.

1 of 3

SimpleCurve.java 05/Jan/2008
78 * ©param-legend Legend. Will be used to calculate the legend symbol.
79 * ©throws IllegalArgumentException if <tt>symbolFactory == null</tt> and
80 * <tt>withLine == false</tt>.
81
82 */
83 public SimpleCurve(ConfigParameters config, int curvelndex,
84 int numberOfCurves, ClippingShape ClippingShape,85 Legend legend) {
86 .symbolFactory = (SymbolFactory) Factory.createOrGet (
87 config.getNode(SYMBOL.FACTORY.KEY) , null);
88 boolean withLine = config.getBoolean(WITH_LINE__KEY, true);
89 LineAttributes lineAttributes = (LineAttributes) Factory.createOrGet(
90 config. getNode (LINE.ATTRIBUTES.KEY) ,
91 new ShapeAttributes(null, Color.getHSBColor((curvelndex % 6) / 6f,
92 If, 0. 8f),
93 0, null));
94 if (.symbolFactory != null | | withLine) {
95 .ClippingShape = ClippingShape;
96 .completeCurve = new GraphicalComposite(null);
97 if (withLine) {
98 GraphicalComposite container = new GraphicalComposite(ClippingShape);
99 .curve = new Polygon(lineAttributes, false);
100 container.addElement(.curve);
101 .completeCurve.addElement (container) ;
102 } else {
103 .curve = null;
104 }
105 _softClipping = config.getBoolean(SOFT.CLIPPING.KEY, true);
106 if (.symbolFactory != null) {
107 .symbols = new GraphicalComposi te (_sof tClipping ? null
108 : ClippingShape);
109 .completeCurve.addElement (.symbols) ;
110 } else {
111 .symbols = null;
112 }
113 } else (
114 throw new IllegalArgumentException(
115 "Either a SymbolFactory must exist or withLines == true.");
116 }
117 .hintForNextPoint = .initialHintForNext Point
118 = (Hint) Factory.createOrGet(
119 config.getNode(INITIAL.HINT.FOR.NEXT.POINT.KEY), null);
120 .legendSymbol = legend.createSymbol(curvelndex, numberOfCurves,
121 .symbolFactory, withLine,
122 lineAttributes);
123 }
124
125 /**
126 * Returns the graphical representation of a curve.
127 * ©return always the same instance.
128 */
129 public GraphicalElement getViewO {
130 return .completeCurve;
131 }
132
133 /** Returns the legend symbol. */
134 public GraphicalElement getLegendSymbol () {
135 return .legendSymbol;
136 }
137138 /** Appends a new point to the curve if inside the clipping shape. */
139 public Hint addPoint(GraphPoint point, Hint hintFromPreviousCurve) {
140 if (.curve != null) {
141 .curve.addPoint(point) ;
142 }
14 3 Hint hintForNextCurve = hintFromPreviousCurve;
144 if (.symbolFactory != null) {145 Symbol symbol = .symbolFactory.createSymbol(point, .hintForNextPoint,
146 hintFromPreviousCurve);
147 if (.ClippingShape == null || !.softClipping
148 || .ClippingShape.islnside(point)) {
149 .symbols .addElement (symbol .getSymbol ()) ;
150 }151 .hintForNextPoint = symbol. getHintForNextPoint () ;
152 hintForNextCurve = symbol. getHintForNextCurve ();
153 }
154 return hintForNextCurve;

2 Of 3

SimpleCurve.java 05/Jan/2008

156
157 public void removeA11Points() {
158 if (_curve != null) {
159 _curve.removeAllPoints();
160 }
161 if (_symbols != null) {
162 _symbols.removeAllElements();
163 }
164 .hintForNextPoint = _initialHintForNextPoint;165 }
166 } 167

3 of 3

A p p e n d i x G

T e s t P r o g r a m s - C o m b i n e d
D o m a in

277

DatabaseManager.java 05/Jan/2008
1 package net.sf.dc.db; *
2
3 import java.sql.Connection;
4 import java.sql.DriverManager;
5 import java.sql.ResultSet;
6 import java.sql.SQLException;
7 import java.sql.Statement;
8 import java.util.ArrayList;
9 import java.util.Collection;
10 import java.util.Iterator;
11
12 import net.sf.dc.console.dialogs.MessageBox;
13 import net.sf.dc.core.DataCrow;
14 import net.sf.dc.core.Repository;
15 import net.sf.dc.core.data.DataFilter;
16 import net.sf.dc.core.data.DataFilterOptions;
17 import net.sf.dc.core.data.DataManager;
18 import net.sf.dc.core.modules.IChildModule;
19 import net.sf.dc.core.objects.DcObject;
20 import net.sf.dc.messages.Messages;
21 import net.sf.dc.settings.DcSettings;
22 import net.sf.dc.wf.WorkFlow;
23 import net.sf.dc.wf.requests.IRequest;
24 import net.sf.dc.wf.requests.Requested lection;
25 import net. sf .dc .wf. requests . SynchronizeWithManagerRequest;
26
27 public class DatabaseManager {
28
29 public static DcDatabase db = null;
30 public static boolean isServerClientMode = false;
31
32 public static void initialize() {
33 db = new DcDatabase0;
34
35 Connection connection = null;
36 while (connection == null) {
37 connection = getConnection () ;
38 }
39
40 try {
41 db.initiliaze(connection);
42 } catch (Exception exp) {
43 Messages. add ("Could not find or connect to the database!",

Messages,_ERROR);
44 Messages.add(exp);
45 new MessageBox ("Could not find or connect to the database!",

MessageBox._ERROR);
46 }47 }
48
49 public static int getQueueSize() {
50 return db.getQueueSize();
51 }
52
53 public static void applySettings () {
54 db.setDbProperies(getConnection ()) ;
55 }
56
57 public static void closeDatabases(boolean compact) {
58 try {
59 if (db != null) {60 Connection connection = getConnection();
61 Statement stmt = connection.createStatement();
62
63 if (!isServerClientMode) {
64 if (compact)65 stmt.executeUpdate("SHUTDOWN COMPACT") ;
66 else67 stmt.executeUpdate("SHUTDOWN");
68 }
69
70 connection.close();
71 }
72 } catch (Exception exp) {
7 3 Messages.add(exp);
74 }
75 }
■7 A

1 of 4

DatabaseManager.java 05/Jan/2008
78 try { '
79 String name = db.getName();
80

Class. forName (DcSettings .getValueAsString (Repository. settings. stDatabaseDriver))
81
82 String address;
83 if (name.startsWith("//") || name.startsWithC'WW")) {
84 isServerClientMode = true;
85 address = "jdbc:hsqldb:hsql:" + name;
86 > else {
87 isServerClientMode = false;
88 address = "jdbc:hsqldb:" + DataCrow.baseDir + "data/" + name;
89 }
90
91 Connection connection = DriverManager.getConnection(address, "SA",

" ") ;
92 connection. setAutoCommit (true) ;
93
94 return connection;
95 } catch (Exception exp) {
96 Messages.add(exp);
97 new MessageBox(exp.getMessage(), MessageBox._ERR0R);
98)
99
100 System.exit(1);
101 return null;
102 }
103
104 public static ResultSet runQueryDirectUnclosed(String sQuery, boolean

silent) throws Exception {
105 if (!silent)
106 Messages.add(sQuery, Messages._QUERY);107
108 Connection connection = getConnection();
109 Statement stmt = connection.createStatement();
110 return stmt .executeQuery (sQuery) ;
H I)112
113 public static Collection runQueryDirect(String sQuery, boolean catchErrors,

boolean logQuery) throws Exception {
114 Collection data = null;
115 try {
116 Connection connection = getConnection();
117 Statement stmt = connection.createStatement();
118 ResultSet result = stmt.executeQuery(sQuery);
119 data * new WorkFlow().convertToDCObjects(result);
120
121 result.close();
122 stmt.close();
123 connection.close();
124 } catch (SQLException sqlExp) {
125 if (IsqlExp.getMessage().equals("No ResultSet was produced")) {
126 if (catchErrors)
127 Messages.add(sqlExp);
128 else
129 throw sqlExp;
130 }
131 }
132
133 if (logQuery)
134 Messages.add(sQuery, Messages,_QUERY);
135
136 return data;
137 }
138
139 public static Collection runQueryDirect(String sQuery, boolean logQuery) {
140 Collection objects = null;
141
142 try {
143 objects = runQueryDirect(sQuery, true, logQuery);
144 } catch (Exception exp) {
145 Messages.add(exp);
146 }
147
148 return objects;
149 }
150
1 r*M i V>1 S r* c h a ♦* i c* P n l 1 o r 11“ i r>r> r i i rt O i i air\rT^ i r o r t* / D p D K i o/"* t- H r n l o a m 1 r\rrC),\ i o n ; N f

2 of 4

DatabaseManager.java 05/Jan/2008
152 Query query = new Query(Query._SELECT, dco, null, null);
153 Messages.add(query.getQueries()[0], Messages._QUERY);
154 return runQueryDirect(query.getQueries()[0], logQuery);
155 }
156
157 public static Collection runQueryDirect(Query query, boolean logQuery) {
158 Collection data = new ArrayListO;
159 for (int i = 0? i < query.getQueries().length; i++) {
160 String qry = query.getQueries()[i];
161 if (qry != null) {
162 Collection c = runQueryDirect(qry, logQuery);
163 if (c != null) data.addAll(c);
164)
165 }
166
167 RequestCollection rc = query.getRequestors();
168 if (rc != null) {
169 IRequestU requests = rc.getRequests();
170 for (int i = 0; i < requests.length; i++) {
171 requests[i].execute(data);
172 }
173 }
174
175 return data;
176 }
177
178 public static void updateValues(DcObject dco) {
179 boolean isChanged = dco.isChanged();
180 if (isChanged) {
183 Query query = new Query(Query._UPDATE, dco, null,

dco.getRequests())?
182
183 if (dco.isBatch())
184 query.setBatch(dco.isEndOfBatch ()) ;
185
186 query.setSilence(dco.getSilenceO) ;
187 db.addQuery(query);
188 }
189
190 Collection c = dco.getChildren();
191 Collection children = new ArrayListO;
192 children.addAll(c)?
193 int counter = 1;
194 for (Iterator iter = children.iterator(); iter.hasNext(); counter++) {
195 DcObject child = (DcObject) iter.nextO;
196 if (child.isChanged()) {197
198 child.addRequest(new SynchronizeWithManagerRequest(
199 SynchronizeWithManagerRequest._UPDATE, child));
200
201 boolean exists = false;
202 if (child.getID() != null && child.getID().length() > 0) {
203 DcObject childTest = child.getModule().getDcObject() ;
204 childTest.setValue(DcObject._ID, child.getlDO) ;
205 Collection objects = runQueryDirect(childTest, true);
206 exists = objects.size() > 0?
207)
208
209 Query query?
210 if (!exists)211 query = new Query(Query._INSERT, child, null,

chi Id.getRequests());
212 else213 query = new Query(Query._UPDATE, child, null,

child.getRequests());
214
215 if (!isChanged) {216 query.setBatch(counter == children.size()) ;
217 query.setSilence(counter != children.size()) ;
218 } else {
219 query.setSilence(true);
220 }
221 db.addQuery(query);
222 }
223)
224)
225
00 & nnhl i ct*ah t r tto inGorh\/alnoc (nrHhn orh \ /

3 O f 4

DatabaseManager.java 05/Jan/2008

229 *
230 Query query = new Query (Query. ...INSERT, dco, null, dco.getRequests()) ;
231 if (dco.isBatch())
2 32 query.setBatch(dco.isEndOfBatch());
233
234 query.setSilence(dco.getSilence());
235 db.addQuery(query);
236
237 Collection children = dco.getChildren();
238 for (Iterator iter = children.iterator(); iter.hasNext();) {
239 DcObject child = (DcObject) iter.nextO;
2 4 0
241 child.addRequest (new SynchronizeWithManagerRequest (
242 SynchronizeWithManagerRequest._ADD, child));
243
244 child.setValue(child.getParentReferenceFieldlndex() , dco.getlDO) ;
245 query = new Query (Query ._INSERT, child, null, child.getRequests());
246 query.setSilence(true);
247 db.addQuery(query);
248 }
249)
250
251 public static void deleteValues(DcObject dco) {
252 Query query = new Query (Query. _DELETE, dco, null, dco. getRequests ()) ;
253 if (dco.isBatch())
254 query.setBatch(dco.isEndOfBatch());
255
256 if (dco.getModule().getChildModule() != null) {
257
258 }
259
260 query.setSilence(dco.getSilence());
2 61 db.addQuery(query);
262)
2 63
264
265 public static boolean uniqueValues(DcObject o, boolean isUpdate) {
266 if (o.hasPrimaryKey() && !(o.getModule() instanceof IChildModule)) {
267 boolean hasRequiredFields = false;
268 DcObject dco = o.getModule().getDcObject();
269
270 int[] fields = o.getFieldlndices();
271 for (int i = 0 ; i < fields.length; i++) {
272 int field = fields[i];
273 if (o.isRequired{field)) {
274 hasRequiredFields = true;
275 dco.setValue(field, o.getValue(field));
276 }
277 }
278
279 if (hasRequiredFields) {
280 DataFilterOptions dfo = new DataFilterOptions(null, true, true);
281 DataFilter df = new DataFilter(o.getModule().getlndex(), dco,

dfo) ;
282 DcObjectU Objects = DataManager .get (o.getModule () .getlndex () ,

df) ;
283
2 84 int count = 0;
285 for (int i = 0; i < objects.length; i++) {
286 count = !isUpdate || lobjects[i].getID().equals(o.getID()) ?

count + 1 : count;287 }
288
2 89 if (count > 0)
290 return false;
291 }
292)
293 return true;
294)
295 }
296
297

4 of 4

JimSearchProvider.java 05/Jan/2008

1 package au.com.lastweekend.jim;
2
3 import java.util.Set;
4
5 import au.com.lastweekend.jim.imagebase.ImageBase;
6 import au.com.lastweekend.jim.imagebase.KeywordProvider;
7 import au. com. lastweekend.j im.imagebase.query.CombinationCondi tion;
8 import au.com.lastweekend.jim.ui.ImageSearchResultsModel;
9 import au .com. lastweekend. j im.ui . SearchKeywordProvider;
10 import au.com.lastweekend.jim.ui.SearchProvider;
11
12 / * *
13 * ©author grant01astweekend.com.au
14 * ©version $Id: JimSearchProvider.java,v 1.3 2006/03/01 09:52:49 ggardner Exp $
15 */
16 public class JimSearchProvider implements SearchProvider {17
18 private KeywordProvider _keywordProvider;
19 private JimContext _jimContext;
20
21 public JimSearchProvider(JimContext jimContext) {
22
23 _jimContext = jimContext;
24 }
25
26 /*
27 * @see au.com. lastweekend. jim.ui . SearchProvider#getKeywordProvider ()
28 */
29 public KeywordProvider getKeywordProvider() {
30
31 if (_keywordProvider == null) {
32 _keywordProvider = new

SearchKeywordProvider(_j imContext.getlmageBase());
33
34 }
35 return _keywordProvider;
36 }
37
38 /*
39 * @see au.com. lastweekend. jim.ui . SearchProvidertdoSearch (boolean,

java.util.Set)
40 */
41 public void doSearch(boolean andMatch, Set<String> .selectedKeywords) {
42
43 ImageBase imageBase = _jimContext.getlmageBase0;
44 CombinationCondition condition =

imageBase.getCombinationCondition(andMatch);
45 for (String keyword : selectedKeywords) {
46 condition.add(imageBase.getEqualsCondition("keywords“,keyword));47 }
48
49 _jimContext.getJimPort().addContactSheet(new

ImageSearchResultsModel(condition, _jimContext));
50 }
51
52
53 }
54

1 of 1

A p p e n d i x H

P r o g r a m T e m p l a t e s u s e d a s
S e a r c h Q u e r ie s

283

TablelnfoPanel.java 05/Jan/2008
1
2 . . * import j ava.awt.*;
3 import j ava.awt.event.*;
4 import j ava.sql.*;
5 import j avax.swing.*;
6 import j avax.swing.border.*;
7 import j avax.swing.table.TableColumnModel;
8
q

import java.util.*;
10 / * *
11 * view a table's information and attributes
12 ★
13 * /

14
15 public class TablelnfoPanel extends JPanel
16 {17
18 public TablelnfoPanel(MySQLTreeNode Node, MySQLDatabase Conn)
19 {20 setLayout(new BorderLayout());
21 setBorder(BorderFactory.createEtchedBorder()) ;
22 connection = Conn;
23 node = Node;
24
25 add ("North", getInfoPanel()) ;
26 add ("Center", new JSeparator()) ;
27 add("South", getUpdatePanel());
28
29 }30
31 ///
32 // public methods
33 ///
34
35 / * *
36 it

37 * /
38 public Insets getlnsetsO
39 {40 return new Insets(8 , 8 , 8 , 8) ;
41 }
42
43 /**
44 * alters the table
45 */
46 public void UpdateTable ()47 {48 String query;
49
50 query =
51 “alter table \ "" + owner+“\ " .\ " "+tableName+” \ " MAX_TRANS "+maxTrans.getText(,
52 " PCT_FREE "+pctFree.getText() +" PCT_USED "+pctUsed.getText() +" STORAGE("+
53 "NEXT "+next .getText () +" K PCTINCREASE " +pctlncrease.getText () + " MAXEXTENTS
54
c r

maxExt.getText() + ") " ;
0 j
56 }57
58
59 /// ////////////
60 // private methods
61 /
62
63
64 / * *
65 * create a new panel containing the table's information
66 * /
67
68 private JPanel getlnfoPanel()
69 {70 tablespace = new JTextField(20);
71 tablespace.setEditable(false);
72 petIncrease = new NumericTextField(20);
73 pctlncrease.setEditable(false) ;
74 pctFree = new NumericTextField(5);
75 pctFree.setEditable(false);

76 pctUsed = new NumericTextField(5) ;

77 pctUsed.setEditable(false);

1 of 4

TablelnfoPanel.java 05/Jan/2008
78 initial = new NumericTextField(15);
79 initial.setEditable(false); »
80 next = new NumericTextField(10);
81 next.setEditable(false);
82 minExt = new NumericTextField(10);
83 minExt.setEditable(false);
84 maxExt = new NumericTextField (10);
85 maxExt.setEditable(false);
86 iniTrans = new NumericTextField(10);
87 iniTrans.setEditable(false);
88 maxTrans = new NumericTextField(10);
89 maxTrans.setEditable(false);
90
91 JPanel infoPanel = new JPanel();92
93 infoPanel.setLayout(new GridLayout(0,2,3,3));94
95 infoPanel.add(new JLabel("Tablespace Name: "));
96 infoPanel.add(tablespace);
97 infoPanel.add(new JLabel("Percent Increased: "));
98 infoPanel.add(pctlncrease);
99 infoPanel.add(new JLabel("Percent Free: ”));
100 infoPanel.add(pctFree);
101 infoPanel.add(new JLabel("Percent Used: "));
102 infoPanel.add(pctUsed);
103 infoPanel.add(new JLabel("Initial Extent (KB):"));
104 infoPanel.add(initial);
105 infoPanel.add(new JLabel("Next Extent (KB): "));
106 infoPanel.add(next);
107 infoPanel.add(new JLabel("Min Extents: "));
108 infoPanel.add(minExt);
109 infoPanel.add(new JLabel("Max Extents: "));
110 infoPanel.add(maxExt);
111 infoPanel.add(new JLabel("Intial Transactions:"));
112 infoPanel.add(iniTrans);
113 infoPanel.add(new JLabel("Max Transactions: "));
114 infoPanel.add(maxTrans);
115
116 tableName = node.getParent().toString();
117 owner = node.getOwner();
118 String query = null;
119 query = "select OWNER, TABLE_NAME, TABLESPACE_NAME, PCT_FREE, " +
120 " PCTJJSED, INI_TRANS, MAX_TRANS, INITIAL_EXTENT, NEXT_EXTENT, " +
121 "MIN_EXTENTS, MAX_EXTENTS,PCT_INCREASE,FREELISTS," +
122 "FREELIST_GROUPS,LOGGING,BACKED_UP,NUM_ROWS," +
123 "BLOCKS, EMPTY_BLOCKS, AVG_SPACE, CHAIN_CNT, AVG_ROW_LEN, " +
124 " AVG_SPACE_FREELIST_BLOCKS, NUM_FREELIST_BLOCKS, DEGREE, " +
125 “ INSTANCES,CACHE,TABLE_LOCK,SAMPLE_SIZE,LAST_ANALYZ ED," +
126 "PARTITIONED,IOT_TYPE,NESTED from ALL_TABLES " +
127 "where TABLE_NAME= + tableName + "’ and OWNER = ’" +
12 8 owner +
129
130 try
131 {
132 ResultSet rs = connection.executeQuery(query);
133 if (rs.next())
134 {
135 tablespace.setText(rs.getString("TABLESPACE_NAME"));
136 pctlncrease.setText(Integer.toString(rs.getlnt("PCT_INCREASE")));
137 pctFree.setText(Integer.toString(rs.getlnt("PCT_FREE")));
138 pctUsed.setText(Integer.toString(rs.getlnt("PCT_USED")));139 initial.setText(Integer.toString(rs.getlnt("INITIAL_EXTENT") / 1024));
140 next.setText(Integer.toString(rs.getlnt("NEXT_EXTENT") / 1024));
141 minExt.setText(Integer.toString(rs.getlnt("MINJEXTENTS")));
142 maxExt.setText(Integer.toString(rs.getlnt("MAX_EXTENTS")));
143 iniTrans.setText(Integer.toString(rs.getlnt("INI_TRANS")));
144 maxTrans.setText(Integer.toString(rs.getInt("MAX_TRANS")));
145 rs.close();
146 }147 }
148 catch (Exception argh)
149 {
150 MessageBox.showDebug(argh.getMessage());
151 }
152
153 return infoPanel;
154 }

2 of 4

TablelnfoPanel.java 05/Jan/2008
155
157 /**
158 * create'a new update panel for the table
159 */
160
161 private JPanel getUpdatePanel()
162 {
163 return new UpdatePnlO;
164 }
165
166
167
168 ///
169 // inner classes
170 ///
171
172
17 3 class UpdatePnl extends JPanel
174 {
175 JCheckBox editable;
176 JPanel pnl = new JPanel();
177 JSeparator sep = new JSeparator();
178 JButton update = new JButtonO;
179
180 public UpdatePnlO
181 {
182 update.setEnabled(false);
183 pnl.setLayout(new FlowLayout(FlowLayout.CENTER));
184 super.setLayout(new BorderLayout(0,5));
185 update.setToolTipText ("Update Table Settings");
186 update.setText ("Update Table");
187 update.addActionListener (new ActionListener ()
188 {
189 public void actionPerformed (ActionEvent evt)
190 (
191 UpdateTable();
192 }
193 });
194
195
196 editable = new JCheckBox("Editable?");
197 editable.addltemListener(new ItemListener ()
198 {
199 public void itemstateChanged(ItemEvent e)
200 {
201 if (e.getStateChange() == ItemEvent.DESELECTED)
202 {
203 pctlncrease.setEditable(false);
204 pctFree.setEditable(false);
205 pctUsed.setEditable(false);
206 next.setEditable(false);
207 minExt.setEditable(false);
208 maxExt.setEditable(false);
209 maxTrans.setEditable(false);
210 update.setEnabled(false);
211 }
212 else
213 {
214 pctlncrease.setEditable(true);
215 pctFree.setEditable(true);216 pctUsed.setEditable(true);
217 next.setEditable(true);
218 minExt.setEditable(true);
219 maxExt.setEditable(true);
220 maxTrans.setEditable(true);
221 update.setEnabled(true);
222 }
223 }
224 });
225
226 super.add(sep, "North");
227 super.add(pnl, "Center");
228 pnl.add(editable);
229 pnl.add(update);
230 }
231 }

3 of 4

TablelnfoPanel.java 05/Jan/2008

232
233
234 protected. String tableName;
235 protected String owner;
236 protected JTextField tablespace;
237 protected NumericTextField pctFree;
238 protected NumericTextField pctUsed;
239 protected NumericTextField pctlncrease;
240 protected NumericTextField initial;
241 protected NumericTextField next;
242 protected NumericTextField minExt;
243 protected NumericTextField maxExt;
244 protected NumericTextField iniTrans;
245 protected NumericTextField maxTrans;
246 protected MySQLDatabase connection;
247 protected MySQLTreeNode node;
248 }
249

4 of 4

JdaiPhotoFile.java 05/Jan/2008
1 import j ava.io.*;
2 import java.util.Map; ,
3 import java.util.Map.Entry;
4
CL

import j ava.awt.Image;
J
6
7

public class JdaiPhotoFile implements JdaiPhoto {/
8 private JdaiSection section;
9 private String id;
10 private String fileName;
11 private EXIFInfo exif;
12 private JdaiProgressListener progress;
13
14 private static LRUCache cache = new LRUCache(150);
15
16 private static class LRUCache extends java.util.LinkedHashMap {17 private int maxsize;
18 protected boolean removeEldestEntry(Entry eldest) {
19 return sizeO >= maxsize;
20 }21 public LRUCache(int maxsize) {
22 super(maxsize * 4 / 3 + 1 , 0.75f, true);
23 this.maxsize = maxsize;
24 }25 }26
27 public JdaiPhotoFile(JdaiSection section, String id, String fileName) {
28 this.section = section;
29 this.id = id;
30 this.fileName = fileName;
31 }32
33 public JdaiSection getSectionO {
34 return section;
35)
36
37 public String getldO {
38 return id;
39 }40
41 ! * *
42 * Get a thumbnail of the photo as a Bufferedlmage for displaying.
43 */
44 public Image getThumbnail() throws JdaiReadException {
45 Image image = null;
46 if (cache.containsKey(fileName)) {47 image = (Image) cache.get(fileName);
48 } else {
49 setupExif();
50 if (exif.hasThumbnail()) {
51 try {
52 image = exif.getThumbnail();
53 } catch (IOException e) {
54 throw new JdaiReadException(e.getMessage());
55 }56 } else {
57 File thumbFile = new File(fileName + ".thm");
58 if (thumbFile.exists()) {
59 image = JdailmageHelpers.readJpegFile(thumbFile);
60 } else {
61 image = getlmage(160, 160);62 try (
63 JdailmageHelpers.writeJpegFile(image, thumbFile);
64 } catch (JdaiWriteException e) {
65 }66 }67 }68 int rotation = getSection().getlnfoStore().getRotation(this);
69 image = JdailmageHelpers.rotate(image, rotation);
70 cache.put(fileName, image);71 }72 return image;
73 }74
75 j ★ ★

76 * Refresh the thumbnail of this photo. Is a thumbnail has not been loaded
77 * this method does nothing - otherwise it tells the photo to reload the

1 of 4

JdaiPhotoFile.java 05/Jan/2008
78 * thumnail next time it's needed.79 */ f
80 public void refreshThumbnail() {
81 if (cache.containsKey(fileName))
82 cache.remove(fileName);
83)
84
85 /**
86 * Get the photo itself as an Image for displaying.
87 * ©return The image.
88 * ©exception JdaiReadException Thrown when image could not be read.
89 */
90 public Image getlmageO throws JdaiReadException {
91 return getlmage(0, 0);
92 }
93
94 /**
95 * Get the photo itself as an Image for displaying. This
96 * method supports resizing the image in a bounding box (the image
97 * is never enlarged).
98 * ©param width Maximum width of the image
99 * ©param height Maximum height of the image
100 * ©return The image.
101 * ©exception JdaiReadException Thrown when image could not be read.
102 * /
103 public Image getlmage(int width, int height) throws JdaiReadException {
104 Image result = JdailmageHelpers.readJpegFile(new File(fileName), width,

height, progress);
105
106 int rotation = getSection().getlnfoStore().getRotation(this);107
108 result = JdailmageHelpers.rotate(result, rotation);
109 return result;
110 }
111
112 / * *

113 * Compare to another photo (sort).
114 * ©param o The other photo.
115 * ©return The compare value (see Comparable interface)
116 */
117 public int compareTo(Object o) {
118 int result;
119 if ((result = section.compareTo(((JdaiPhoto) o).getSection())) == 0)
120 result = id.compareTo(((JdaiPhoto) o).getId());
121 return result;
122 }
123
124 public boolean equals(Object o) {
125 if (o == null)
126 return false;
127 return compareTo(o) == 0;
128 }
129
130 /**
131 * Get a readable string representation of the photo.
132 * ©return The string representation.
133 */
134 public String toString() {
135 return getldO;
136 }137
138 /**
139 * Copy to another file-based photo.
140 * ©param other The photo to copy to.
141 */
142 public void copyTo(JdaiPhoto other) throws JdaiReadException,

JdaiWriteException {
143 if (other instanceof JdaiPhotoFile) {
144 JdaiPhotoFile o = (JdaiPhotoFile) other;
145 try {
146 FilelnputStream in = new FileInputStream(new File(fileName));
147 FileOutputStream out = new FileOutputStream(new

File(o.fileName));
148 byte[] buf = new byte[1024];
149 int c;
150 while ((c = in.read(buf)) != -1)
151 out.write(buf, 0, c);
1 i n r l n c o f l •

2 of 4

JdaiPhotoFile.java 05/Jan/2008

154 } catch (FileNotFoundException e) {
155 throw (new JdaiReadException(e.getMepsage()));
156 . } catch (IOException e) {
157 throw (new JdaiWriteException(e.getMessage()));
158 }
159 JdaiPhotoInfoStore isl = getSection().getlnfoStore();
160 JdaiPhotoInfoStore is2 = o.getSection().getlnfoStore();
161 int r;
162 if ((r = isl.getRotation(this)) != JdaiPhotoInfoStore.NORTH)
163 is2.setRotation(other, r);
164 String s;
165 if (!(s = isl.getCaption(this)).equals(""))
166 is2.setCaption(other, s);
167 if {!(s — isl.getKeywords(this)).equals(""))
168 is2.setKeywords(other, s);
169 }
170 }
171
172 public void delete() throws JdaiReadException, JdaiWriteException {
173 File photoFile = new File(fileName);
174 if (!photoFile.delete()) throw new JdaiWriteException("Unable to delete

file: " + fileName);
175 getSectionO .getlnfoStore () .deletelnfo (this) ;
176 }177
178 /**
179 * Get meta information from the photo (e.g. EXIF from digital camera

photos).
180 * ©return A Map of String, String pairs of metadata.
181 */
182 public Map getMetalnfo() {
183 Map infoMap;
184 setupExifO;
185 infoMap = exif.getEXIFMetaData();
186 infoMap.put ("Id", getldO);
187 return infoMap;
188 }
189
190 private void setupExifO {
191 if (exif == null) {
192 exif = new EXIFInfotnew File(fileName));
193 }
194 }
195
196 /**
197 * Get meta information from the photo (e.g. EXIF from digital camera

photos).
198 * ©return An HTML String with pretty-printed metadata.
199 */
200 public String getMetalnfoHtml() {
201 Map infoMap = getMetalnfo();
202 StringU fieldList = EXIFInfo.getFieldList();
203 StringBuffer infoStrBuf = new StringBuffer();
204 infoStrBuf.append("<table cellspacing=0 cellpadding=0>");
205
206 for (int i = 0; i < fieldList.length; i++) (
207 String key = fieldList[i];
208 if (infoMap.containsKey(key)) {
209 infoStrBuf.append(“<tr><td><font

face=\"Helvetica,Arial,sans-serif\" size=\"-1\">");
210

infoStrBuf.append(JdaiGuiHelpers.escapeHtml(EXIFInfo.getFieldName(key)) +
":fcnbsp;");

211 infoStrBuf.append("</td><td><font
face=\"Helvetica,Arial,sans-serif\" size=\"-1\">");212 infoStrBuf.append(JdaiGuiHelpers.escapeHtml((String)
infoMap.get(key)));213 infoStrBuf.append("</tdx/tr>");

214)
215 }
216 infoStrBuf.append("</table>");
217 return infoStrBuf.toString();
218 }
219
220
2 2 1 / * *222 * Sets which listener should receive info about progress of reads

*

3 of 4

JdaiPhotoFile.java 05/Jan/2008

227 this.progress = progress;
228 }
229 }
230

4 of 4

QueryData.java 05/Jan/2008

1 public class QueryData extends EmbeddedData
2 implements javax.servlet.jsp.tagext.TryCatchFinaliy {
3 private static Log logCat = LogFactory.getLog(QueryData.class.getNameO);
4
5 private String query;
6
7 public void setQuery(String query) {
8 this.query = query;
9 }
10
11
12 public String getQueryO {
13 return query;
14 }
15
16
17 public void doCatch(Throwable t) throws Throwable {
18 throw t;
19 }
20
21
22 public void doFinallyO {
23 query = null;
24 super .doFinallyO ;
25 }
26
27
28 protected List fetchData(Connection con) throws SQLException {
29 logCat. info ("about to execute user defined query:" + query);
30
31 ResultSetVector rsv = null;
32 PreparedStatement ps = con.prepareStatement (query) ;
33
34 try {
35 rsv = new ResultSetVector ();
36
37 HttpServletRequest request = (HttpServletRequest) pageContext
38 .getRequest();
39 DbEventlnterceptorData data = new DbEventlnterceptorData (request,
40 getConfigO, con, null);
41 data. setAttribute (DbEventlnterceptorData. PAGECONTEXT,
42 pageContext);
43 rsv.addResultSet(data, ps.executeQuery());
44 } finally {
45 ps.closeO; // #JP Jun 27, 2001
46 }
47
48 return formatEmbeddedResultRows(rsv);
49 }
50 }
51

1 of 1

PictureApplication.java 05/Jan/2008

1
2 import javax.swing.*;
3 import j ava.awt. *; f
4 import j ava met .URL;
5 import java.io.*;
6 import j ava.awt.event.*;
7
89 public class PictureApplication {
10 /* General Application variables */
11 private PictureApplet myApplet;
12 private Container myContentPane;
13 private PicturePanel myPanel;
14 private PictureControls myControls;
15 private int paramWidth, paramHeight;
16 private int actualWidth, actualHeight;
17 private URL baseURL;
18 private ActionListener myTimerListener;
19 private Timer myTimer;
20
21 /* Pictures variables */
22 private BufferedReader pictureListReader;
23 private String pictureListFile;
24 private Picture picturesU;
25 private Image currentlmage, offscreenlmage;
26 private int nbPictures, currentPosition;
27 private final int MAX_IMAGES = 2048;
28 private PictureWorker pictureWorker;
29
30 public void init(PictureApplet applet) {
31 int i = 0;
32 String fileListt] = new String[MAX_IMAGES];
33 myApplet = applet;
34
35 paramWidth = Integer.parselnt(myApplet.getParameter("width"));
36 paramHeight = Integer.parselnt(myApplet.getParameter("height"));
37 pictureListFile = myApplet.getParameter("pictureList");
38 myContentPane = myApplet.getContentPane();
39
40 baseURL = myApplet.getCodeBase ();
41 try {
42 pictureListReader = new Buf feredReader (new

InputStreamReader (getURL(baseURL, pictureListFile) . openStream())) ;
43 while((fileList[i++] = pictureListReader.readLine()) != null) {}
44 }
45 catch (Exception e) {}
46
47 nbPictures = i - 1;
48 currentPosition = 0;
49
50 pictures = new Picture[MAX_IMAGES];
51 for(i =0; i < nbPictures; i++) {
52 picturesfi] = new Picture(getURL(baseURL, fileList[i]));
53)
54
55 myContentPane.add("North”, myControls = new PictureControls(this)) ;
56 myContentPane.add(myPanel = new PicturePanel(this));
57
58 myTimerListener = new ActionListener() {
59 public void actionPerformed(ActionEvent evt) {
60 pictureWorker = new PictureWorker();
61 pictureWorker.start();
62 }
63 };
64 myTimer = new Timer(1000, myTimerListener);
65 myTimer.start();
66
67 myControls.hidePreviousButton();
68 myControls.hideNextButton();
69 }
70
7 1 / *
72 * Scales the original image to fit in the applet window and writes it
73 * on an offscreen buffer
74 */
75 private void createOffscreenlmage() {
76 float ratio;

1 of 3

PictureApplication.java 05/Jan/2008

77 float iw, ih;
78 Graphics big; f
79 Graphics2D big2D;
80
81 big » offscreenlmage.getGraphics();
82 big2D = (Graphics2D) big;
83 big2D.clearRect(0,0,actualWidth,actualHeight);
84
85 currentlmage = pictures[currentPosition].getlmage();
86
87 iw = (float)currentImage.getwidth(myPanel);
88 ih = (float)currentlmage.getHeight(myPanel);
89 ratio = iw / ih;
90
91 if (actualHeight * ratio > actualWidth) {
92 big.drawlmage(currentlmage, 0, 0, actualWidth,

(int)(actualWidth/ratio), myPanel);
93 }
94 else {
95 iw = (int)(actualHeight*ratio);
96 big.drawlmage(currentImage, (int)((actualWidth - iw)/2), 0,(int)iw,

actualHeight, myPanel);
97 }
98 }
99
100 public Image getOffscreenlmage {) {
101 return offscreenlmage;
102 }
103
104 public PicturePanel getPanel () {
105 return myPanel;
106 }107
108 public void previousPicture() {
109 if (currentPosition ==0) {
110 currentPosition = nbPictures - 1;
111)112 else currentPosition--;
113 setButtons();
114 createOffscreenlmage();
115 myPanel.repaint();
116 }
117
118 public void nextPicture() {
119 if (currentPosition == nbPictures - 1) {
120 currentPosition = 0;
121 }
122 else currentPosition++;
123 setButtons();
124 createOf fscreenlmage (),-
125 myPanel.repaint{);
126 }
127
128 public void start() {
129 actualWidth = paramWidth;
130 actualHeight = paramHeight - myControls.getHeight() ;
131
132 offscreenlmage = myPanel.createlmage(actualWidth, actualHeight);
133 createOffscreenlmage();
134 myPanel.repaint();
135 }
136
137 private URL getURL(URL CodeBase, String file) {
138 URL url = null;
139 try {
140 url = new URL(CodeBase, file);
141 }
142 catch (java.net.MaiformedURLException e) {
143 System.out.printIn("Couldn't create image: "
144 + "badly specified URL");
14 5 return null;
146 }
147 return url;
148 }
149
150 public URL getURL(String file) {
151 return getURL(baseURL, file);

2 of 3

PictureApplica t ion.j ava 05/Jan/2008
152 }153
154 public void setButtons() {
155 if (currentPosition != nbPictures - 1) {
156 if (pictures[currentPosition + 1].isFinishedLoading()) {157 myControls.showNextButton();
158 }159 else {
160 myControls.hideNextButton();
161 }162 }
163 else {
164 if (pictures[0].isFinishedLoading()) {165 myControls.showNextButton();166 }167 else {
168 pictures[0].getlmage();169 myControls.hideNextButton{);170 }171 }172
173 if (currentPosition ==0) {
174 if (pictures[nbPictures - 1].isFinishedLoading()) {175 myControls.showPreviousButton();176 }177 else {
178 pictures[nbPictures - 1].getlmage();179 myControls.hidePreviousButton();180 }181 }182 else {
183 if (pictures[currentPosition - 1].isFinishedLoading{)) {184 myControls.showPreviousButton();185 }186 else {187 myControls.hidePreviousButton();188 }189 }190 }191
192 /*
193 ★ A thread to always keep the previous image194 ★ in memory and preload next images so the wait time is not195 * too dramatic :-)196 */197 private class PictureWorker extends SwingWorker {
198 private final int NB_PICTURES = 5; // to look ahead199 public Object construct() {
200 int i ;
201 int start=0, stop=nbPictures;
202 if (currentPosition == nbPictures - 1) start = 1;
203 if (currentPosition == 0) stop = nbPictures - 1;204
205 if (currentPosition > 0) pictures[currentPosition - 1] .getlmage
206207 for(i = currentPosition; i < currentPosition + NB_PICTURES; i++!
208 if (i < stop) {209 pictures[i].getlmage();
210 }
211 }
212 ford = currentPosition + NB_PICTURES; i < stop; i++) (213 pictures[i].delete();214 }215 ford = start; i < (currentPosition - 1); i + +) (
216 pictures[i].delete();217 }218 setButtons();219
220 return null;
221 }
222
223 public void finished() {224 }225 };226 };227

3 of 3

f

A p p e n d i x I

P o s t - E x p e r i m e n t s Q u e s t i o n s a n d
E v a l u a t io n F o r m

296

Questions Asked in the Post-Experiment

Name(optional):.. Year of Study:

1. How many years have you been writing source code program ?_______________

2. What is your current major programming language?_________________

3. When did you start learning Java? How often do you program with

it?___

4. What did you think your programming level/skill in Java is, on a scale from

1 (beginner) to 5(master)?_________

5. During most of your time developing application, how often do you also act as the

system analysis, responsible for problem solving? Rate yourself using rating scale

of 1 (never) to 5(all the tim e)._________

6. Do you have any knowledge on designing problem solving, specifically using

design patterns? If so, given a rating scale l(no knowledge at all) to 5(master),

how do you rate yourself? _________

7. Based on the scale of l(no knowledge at all) to 5(master), how do you rate

yourself on the knowledge of software metrics (eg: couplings between objects,

weighted methods per class?__________

8. Based on the given task and using rating scale of l(not satisfied at all) to 5(very

satisfied), how satisfied are you with the delivered programs?__________

TASK: Pick Photo Panel

• Panel that allows the user to configure where the photos are currently stored.
• Implements one-to-many dependency between a subject object and any number

of observer objects so that when the subject object changes state, all its observer
objects are notified and updated automatically.

PROGRAMS
(Combination Approach)

RELEVANCY
(tick V where appropriate)

R ank/O rder of
Relevant Program s

(Precision)

RenameAndDescribePanel

FullScreen

SummaryPanel

Worker

PickOutputPanel

UnformattedTextHandler

SlideShow

JasperReportServlet

LineReportServletAbstract

AppAnisS

