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Abstract

The main aim o f the study described in this thesis is the development o f new anticancer 

agents. The first chapter is a general introduction to cancer, and the development of 

chemotherapy anticancer agents during the course of the years.

The following four chapters briefly introduce the biological targets in the authors study. 

Chapter Two describes a general introduction to tubulin and microtubules as anticancer 

targets. A discussion of those compounds most relevant to this thesis is provided. Chapter 

Three describes Signal Transducers and Activator o f Transcription 3 (STAT3) proteins, their 

role in cancer and the advances in the search of anticancer agent inhibitors o f the STAT3 

signalling pathway. Chapter Four focuses on the src homology 2 (SH2) domain containing 

tyrosine phosphatases SHP-2, a protein-tyrosine phosphatase implicated in pathogenesis of 

cancer and other human diseases. A brief discussion o f the SHP-2 inhibitors is provided. 

Chapter Five describes the role o f proteins Aurora kinases in cancer, promising targets for 

anticancer drug development, and the advances in the search o f their inhibitors targeting the 

kinase activity at the ATP binding site.

The following chapters (6-11) describe the authors own findings.

Chapter six focuses on the design and synthesis and biological evaluation of novel 

styrylchromones, styrylquinazolones, and quinazolones as inhibitors o f tubulin 

polymerization.

■Ri

Styrylchromones Styrylquinazolones Quinazolones

Two series o f isomeric styrylchromones were initially synthesized in order to establish the 

methoxy substitution pattern on the A ring favorable for optimal activity. The structure 

activity relationship on the B ring is also reported. Next, our strategy focused on identifying a 

chromone core replacement with improved potency. We directed our chemical efforts toward 

the synthesis o f novel styrylquinazoline analogs. The quinazoline core would also provide 

easy access to the preparation o f diverse sets o f A-substituted derivatives (methyl and ethyl 

derivatives).

Finally, a novel series o f quinazolines were synthesized as conformationally-restricted 

analogs o f chalcones. SAR was conducted around the quinazoline spacer between the aryl 

rings and systematically investigating the substituent effect in the B ring.



Among the synthesized compounds we selected those analogues showing significant 

cytotoxicity (generally defined as IC5 0  value < 1.5 pM), and evaluated for activity in vitro 

tubulin polymerization inhibition assay.

Chapter Seven focused on the identification of novel inhibitors o f STAT3 dimerization. 

Computational analyses led us to the development o f a T-shape model o f molecules that can

occupy the pTyr-binding pocket of STAT3 SH2 domain. The 

conjugate addition of nitromethane to a series o f amides and the 

reduction o f the nitro group were combined to give an easy route to 

the target T-shape molecules in a combinatorial fashion. The 

methodology was also extended to amides activated by a nitro group. 

c ° 2R observed a dramatic change in the course o f the reaction, which
Scaffold of T-shape molecules

afforded a mixture o f unexpected and unknown products, that each 

possessed an additional methylene group. A brief study into the mechanism was also 

conducted.

NH

Chapter Eight, Nine and Ten focuss on the development o f Aurora kinases and SHP-2 

inhibitors. Oxindole derivatives HL10581 and NSC117199 emerged as lead compounds from 

a high throughput screen for Aurora-A and SHP-2, respectively.

f  A  Chapter Eight describes the synthesis of

n^n h C' several derivatives o f HL10581 and

H° 3s ^ H° 3SY 'Y " S = n  NSC117199, directed to exploration of

h h SAR around the oxindole moiety to
HL10581, Aurora-A, (C50 1-5 uM NSC1,7199, SHP-2. ,C„ 47 uM d e t £ r m in e  t h e  s t r u c tu r a | f e a t u r e s  that are

responsible for the activity. Chapters nine and ten report the biological evaluation of 

oxindole derivatives as inhibitors SHP-2 and Aurora kinases, respectively
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1.0 Introduction

1.1 What is cancer?

The origin o f the word cancer is credited to the Greek physician Hippocrates (460-370 B.C.), 

considered the "Father o f Medicine." Hippocrates used the terms carcinos and carcinoma to 

describe non-ulcer forming and ulcer-forming tumors. In Greek these words refer to a crab, 

most likely applied to the disease because the finger-like spreading projections from a cancer 

called to mind the shape o f a crab. Carcinoma (cancer arising from epithelial cells) is the 

most common type o f cancer. Nowadays, cancer is defined a group o f diseases characterized 

by uncontrolled cell division and uncontrolled cell growth. The resulting mass, or tumor, can 

invade other tissues, either by direct growth into adjacent tissue (invasion) or by migration of 

cells to distant sites (metastasis). If the spread o f abnormal cells is not controlled, it can result 

in death. This unregulated growth is caused by a series o f acquired or inherited mutations to 

DNA within cells, damaging genetic information that define the cell functions and removing 

normal control o f cell division.

1.2 Social impact of cancer

Cancer is a disease o f worldwide importance because it is a major killer throughout human 

history. It is not a surprise that from the dawn of history doctors have written about cancer. 

Some o f the earliest evidence of cancer is found among fossilized bones tumor, human 

mummies in ancient Egypt, and ancient manuscripts. Early in the 20th century, the only 

curable cancers were small and localized enough to be completely removed by surgery. Later, 

radiation was used after surgery to control small tumor growths that were not surgically 

removed. Finally, chemotherapy was added to destroy small tumor growths that had spread 

beyond the reach o f the surgeon and radiotherapist.

Cancer is still a growing problem and represents a major health threat in most parts o f the 

world. Cancer killed 6.7 million people around the world in 2002 and this figure is expected 

to rise to 10.3 million in 2020. Total cancer has been rising steadily in the USA and EU up to 

the late 1980s. At the beginning o f 2000, tangible progress had been made, but a relatively 

little decrease o f cancer mortality had been achieved.1 Better prevention, screening and early 

diagnosis change in lifestyle (i.e. giving up tobacco smoking) have played a key part in 

leveling out the incidence and mortality rate for some cancers.2’3,4 Despite the expanding 

knowledge5 o f cancer and the number o f advanced available treatments such as surgery, 

chemotherapy and radiations, there is still a major gap between the efforts o f cancer research 

and the practical results achieved. In the 1970s the possibilities o f “conquering cancer” and
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“finding the cure” were surrounded by high expectations because o f the advances in cancer 

research and social impact of a disease like cancer, especially in view o f what had been 

achieved for other common diseases in the past. For instance, we can recall the enormous 

impact o f the advent o f antibiotics on the industrialized countries or the merit o f polio vaccine 

for disappearance o f poliomyelitis. Even if so relatively little seems to be achieved, we have 

to be aware that what we are facing is not a simple disease but, by definition, an array of 

diseases, each one has its own specificity. Even within the same tumor in the same patient not 

all the cells are similar and they present thousands of random mutations. These variables can 

affect the response to treatments.

Over the last four decades cancer research has also benefited o f a worldwide cooperation of 

many cancer-related organizations such as the International Union against Cancer (UICC), 

the World Health Organization (WHO) and the American Cancer Society, which has 

improved the capacity building for cancer organizations and the information exchange and 

delivery. Substantial investments have resulted in appreciable progress in our knowledge and 

understanding o f the mechanisms involved in tumor pathogenesis and progression. In the past 

5 years the completion of the human genome project and the advances of molecular biology 

have had a huge impact on cancer research and offered an enormous number o f novel 

potential therapeutic targets.6,7,8 Owing to a lack o f understanding o f the molecular 

mechanisms that drive oncogenesis, up to a few years ago the only mechanism available was 

cytotoxicity or inhibition o f cell proliferation. The current tendency in anticancer drug 

discovery is based on the concept that more selective and target orientated therapies can be 

developed by identifying the biological differences between normal and tumor cells. 

Hopefully the new smart target oriented therapies will change the life perspectives o f cancer 

patients granting a better quality life.6,7,8

1.3 Traditional treatments of cancer and chemotherapy

The major types o f treatment for cancer are surgery, radiation, and chemotherapy.

Surgery is one o f the main treatments for cancer. The Roman doctor Gallien first wrote about 

surgery as cancer treatment in the 2nd century. Over the centuries surgical treatments for 

cancer went through a slow process o f development and surgery was initially very primitive 

with many complications. The era o f surgery began with the discovery o f anesthesia in 1846 

and since then several surgical techniques have been developed and improved leading to the 

modem cancer surgery.
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At the beginning o f the twentieth century radiation became an important treatment modality 

from which cancer patients could benefit. Radiation therapy began with radium and with 

relatively low-voltage diagnostic machines. Although the current methods and the machines 

for delivery o f radiation therapy have dramatically improved allowing destruction of 

malignant tumors with great precision, nowadays radiation therapy is still limited by the 

severe side effects and a limited capacity to discriminate between healthy and tumour cells. 

Moreover, both radiation and surgery are not curative in cases o f advanced metastatic 

diseases.

For the majority o f the twentieth century, cancer research and drug discovery programs have 

focused on the identification and development of chemotherapeutic agents to treat and fight 

human cancers. The early stage o f chemotherapy history has been mainly characterized by 

accidental discovery or random screening o f natural or synthetic compounds using cell 

cytotoxicity assays.9 Unfortunately none of these compounds were particularly specific to the 

cancer cells. The conventional chemotherapy, also called cytotoxic therapy, has been based 

on the theory that rapidly proliferating and dividing cells are more sensitive to cytotoxic 

agents than normal cells. Most o f these drugs act by targeting DNA, tubulin or 

topoisomemerases and interfere with cell division. This has been the case of nitrogen 

mustard, platinum based compounds, taxanes, Vinca alkaloids, Camptothecins.

The era o f chemotherapy began in the 1940s with the first uses o f nitrogen mustards and folic 

acid antagonist drugs. During World War, the U.S Army was studying a number o f agents 

related to mustard gas in order to develop more effective agents and protective measures. In 

the course o f that work, a compound called nitrogen mustard or Chlormethine (2) was studied 

and found to have substantial activity against lymphoma (Figure l) .10,n Nitrogen mustard is 

an example in which an initial astute clinical observation and medicinal chemistry have 

together led to agents such as Chloambucil (3), Melphalan (4) still in clinical use today.12 

Chlormethine (2) is a derivative o f sulfur mustard gas (1) which was found to lower the 

white-blood-cell count but too toxic to be used as a therapeutic agent. The toxicity sulfur 

mustard gas (1) had been hypothesized to be related to its reactivity towards electron-rich 

groups such as the phosphates in nucleic acids under conditions present in the cells. Based on 

this theory Gilman designed and synthesized some less electrophilic derivatives by replacing 

the sulfur with a substituted nitrogen leading to new derivatives, Chlormethine (2) 

Chloambucil (3), Mephalan (4), having a decreased toxicity to normal cells.10,11 Due their 

ability to add alkyl groups to DNA under conditions present in cells, the sulfur mustard gas 

derivatives are generally referred to as “alkylating agents.
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Figure I. Structures o f  m ustards and their chem ical reaction with DNA.

Chlorambucil (3)

—N
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Melphalan (4)

DNA DNA

* / —  '
( 5 7  D N A *  R_Nv
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DNA

aziridinium ion aziridinium ion

With the discovery o f  nitrogen mustard, DNA became an unique target for cancer research. 

Design and development o f  analogues o f  metabolites needed by DNA to replicate or a cell to 

divide became an appealing strategy for anticancer therapy. For instance, Methotrexate (5), 

also known as anti-metabolite, was synthesized as analogue o f  folic acid, which is required 

for DNA metabolism (Figure 2). Methotrexate (5) acts as an antagonist to folic acid blocking 

a critical chemical reaction in the synthesis o f  thymidine, needed for DNA replication. A 

successful sub-class o f  anti-metabolites is the purine derivatives [e.g 6-Mercaptopurine (6), 

Purinethol®], therapeutic agents used to treat acute lymphatic leukemia (Figure 2). Purinethol 

masquerades as purine and becomes a building block o f  DNA preventing purines to become 

incorporated into DNA during cell division, stopping the normal development and 

proliferation.

Cisplatin (7) —“the penicillin o f  the cancer drugs”— represents another example in which an 

accidental discovery and chemistry led together to the development o f  a clinically useful 

anticancer agent (Figure 2). In the 1960s Rosenberg and co-workers observed that electrolysis 

products from a platinum electrode inhibited mitosis in Escherichia coli bacteria. A product 

o f  the reaction between the platinum electrodes a constituent o f  the culture medium [later 

determined to be cis-diaminedichloroplatinum(Il) (DDP) or cisplatin] was found to be 

responsible for the inhibition. Cisplatin, approved for clinical use by the United States Food 

and Drug Administration (FDA) in 1978, has been one o f  the most widely prescribed and one 

o f  the most effective treatments for many types o f  cancer such as testicular, ovarian, bladder,
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and lung and stomach cancer. It is believed to act by cross-linking DNA and interfering with 

cell's repair mechanism leading to cell's death.

F igure  2. Struc tures  o f  M e th o trex a te  (5). 6 -M e rca p to p u r in e  (6). and C’is-platin  (7). 

H,NL

Methotrexate 0  OH

OH

6 -Mercaptopurine (6)

SH

Cisplatin (7)

h 3 n  c i

Besides DNA, microtubules and tubulin have represented important pharmaceutical targets. A 

large group o f natural and synthetic products bind to different sites on tubulin or 

microtubules. By suppressing the microtubules dynamic, they block the mitosis and inhibit 

cell proliferation. Many o f these drugs (also known as antimitotic agents) are well established 

treatments of various cancer. At the present the clinical use o f agents targeted at tubulin is 

restricted to the vinca alkaloids [e.g Vincristine (8) and Vinblastine (9)],13 taxanes [e.g. 

Paclitxel (10)]14 (Figure 3). Both classes of compounds are based on complex and large 

natural products, emerged from the screening of extract of plants for cytotoxicity against 

cancer cell line.

F igure  3. Struc tures  o f  V incr is t ine  (8),  and  V inb las tine  (9), and  Pac li taxe l  (10).

Many o f the clinically effective drugs have been found to show their cytotoxicity through the 

stabilization of the topoisomerase (I or II)-DNA complex (also referred to as cleavage 

complex), forming ternary complexes (Figure 4). DNA topoisomerases are essential for DNA 

replication, transcription, chromosome segregation, and DNA recombination. Examples of 

topoisomerases inhibitors include Etoposide (11) (topoisomerase II), Teniposide (12) 

(topoisomerase II), Camptothecin derivatives such as Topotecan (13) (topoisomerase I),15 and 

Irinotecan (14) (topoisomerase I).15 The stability o f the ternary complex and the strenth of the

o
Vincristine (8 ), R = C 0 2 Me, R' = CHO 
Vinblastine (9), R = C0 2 Me, R' = Me Paclitaxel (10)
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binding result in the potency of the drugs16 but not in the selectivity o f the agents that target 

this process. In fact, similar drug-target molecular interaction occurs in diseased as well as 

normal cells resulting in a very high toxicity.

F igure  4. T o p o iso m e rase  I an d e  II poisons.

OH

HO HO,

MeO OMe N—OH

Etoposide (11), R = Me 
Teniposide (12), R = 2-Thienyl

O
Topotecan (13) Irinotecan (14)

As mentioned before, the current cancer research is moving from purely cytotoxic drugs 

(otherwise referred as to “hard” drugs) to molecular targeted therapies based on “soft” 

drugs7 17 acting specifically on tumor cells. Despite the new trend o f cancer research, the 

importance o f conventional established cytotoxics cannot be denied and they remain 

extensively used in the clinic to fight the most aggressive solid tumors. Significant efforts 

have been done in order to improve the tumor cell selectivity and the therapeutic index of the 

conventional cytotoxic agents and overcome drug resistance. DNA is still considered as an 

appealing target for the development o f selective anti cancer strategies.18 Further 

investigation o f the mode of action has shown that topoisomerase poisons exhibit a well- 

defined preference for a given DNA sequence. The toxic effects o f the individual drugs might 

be minimized by increasing their sequence selectivity. Among the possible approaches, an 

enhanced selectivity for tumor cells could be achieved by linking a cytotoxic drug to a DNA- 

recognition moiety. In this manner, the hybrid molecule would combine the DNA-targeting 

and damaging properties conferring higher DNA-affinity without altering the DNA-drug 

interaction.

New strategies for cancer research have focused on telomerase as a novel and selective DNA 

anticancer target. Telomerase catalyses the synthesis o f telomeric DNA, which comprises 

short repeat sequences at the end o f chromosomes. In mature somatic cells in human tissue 

were found undetectable or low telomerase activity, due to the fact that their telomeres 

become progressively shortened with successive round o f replication until they become 

critically short and the cell undergoes apoptosis.19
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Around 80% of human cancers escape from this growth arrest by re-activating telomerase but 

at diagnosis many cancers still have very short telomeres making them very vulnerable to the 

inhibition o f telomerase. Moreover, telomere maintenance is essential to the replication 

process in malignant cells and to the progression o f the disease. High level o f telomerase 

activity has been detected in tumor cells, which stabilize their telomeric ends by action of 

reverse transcriptase telomerases.

Identification of molecular inhibitors of telomerase activity might represent a useful strategy 

for treatment o f cancer. Given the low telomerase activity expressed in normal cells, 

telomerase-directed drugs should not interfere with healthy somatic cells. They are not 

expected to damage appreciably germ like cell, which have in general longer telomerase than 

cancer cells. The identification of agents capable of stabilizing a particular folded 

conformation of telomere (called G-quadruplex)20 which are not recognized by the template 

of telomerase, have been described as potential and promising approach.21’24 Antisense 

oligonucleotides strategies have also been investigated.25 26 Concerns about the possible 

limitations o f the telomerase inhibition have been raised. They are mainly related to the 

eventual drug resistance cancer cells can develop.6 Some tumours might be intrinsically 

resistant to telomerases based-drugs because not all the tumour types are characterized by 

detectable levels o f enzyme activity.

New interest in tubulin-binding agents has been recently stimulated by the discovery o f the 

vascular-damaging properties of Combretastatin A4 (15), a tubulin-depolymerizing agent 

(Figure 5). Tumor vasculature has become a valuable target for anticancer therapy27'29 due to 

its critical role in the process of tumor growth and metastasis. Cancer vessels are essential to 

supply a growing solid tumour with oxygen and nutrients and to remove toxic waste of the 

cellular metabolism. In order to ensure continued growth and development tumors must 

generate their own network of microvessels through the process o f angiogenesis.28,30 In 

addition, the tumour vasculature differs from the vasculature in normal tissue.28 These 

differences may open the path towards highly selective treatments of cancer.

Therapeutic vascular targeting has initially focused on the inhibition o f the angiogenesis.28,29 

The anti-angiogenic strategy has been supported by the discovery of specific vascular 

endothelial growth factors (VEGFs) - a  class of proteins responsible for the regulation of 

angiogenesis- and their receptors (VEGFRs).3132 Overexpression of VEGFs and VEGFRs in 

tumor cells is well documented.32 33 Disruption of the production and expression of these 

factors has been considered as a valuable tool for the inhibition of tumor growth and 

metastasis.34,35’37 Numerous are the drug discovery programs aimed at the development of
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inhibitors of VEGFs or their receptors. Many o f these agents are currently in various 

development stages or undergoing clinical trials.38 39

F igure  5. M ain  vascu la r  d is rup t ing  agen ts  (V D A s) .

OR

O
c h 2 c o 2h

OMe

Combretastatin A4 phosphate (15), R = H, FAA (17) 
CA4P (16), R = PO(PONa ) 2

NHCOCHNH,OH -HCI

Me y  O
Me CH2 C 0 2H

DMXXA (18)

OMe(x /

NHAc

OMe 
AVE8062 (19)

0 P 0 3 H2

ZD6126 (20)

The alternative approach to the anti-angiogenic strategy is the targeted destruction of the 

established tumor vessels network.40 The vascular disrupting agents (VDAs) cause the rapid 

and selective shutdown o f the tumor vasculature producing tumor death from ischemia and 

necrosis28 (Figure 5). At the present there two main types o f small molecules VDAs: tubulin- 

depolymerizing agents such as Combretastatin A4 (15) and combretastatin derivatives (Figure 

5), and other flavonoids, such as FAA (17) and DMXAA (18). Classical tubulin-binding 

agents colchicines and Vinca alkaloids were found to disrupt tumour vasculature at near toxic 

doses.41'43 In contrast, the combretastatins [CPA4 (Oxigene) (16), AVE8062 (19) 

(Ajjnomoto/Aventis) and ZD6126 (20) (Angiogene/AstaZeneca)], undergoing clinical trials, 

induce very quickly vascular shutdown at doses that are less than one tenth o f the maximum 

tolerated dose,44-48 selectively in tumor44,46 49 (Figure 5).

The antivascular effect o f these compounds appears to derive from their tubulin binding 

properties. The drugs cause the microtubules to depolymerize and the endothelial cells round­

up, blocking the blood flow through the tumour vascular network. This effect is mostly 

pronounced for agents that bind at the Colchicine binding site like Combretastatin A4.

1.4 The impact of modern biology and medicinal chemistry on cancer treatments

Prior to the genomic era chemotherapeutic agents have been discovered by chance or by 

inhibiting metabolic pathways crucial for cells division. The exact reverse strategies are being 

used by the current cancer research. A better understanding o f the cellular, molecular and
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genetic basis of cancer has led to the discovery of the key distinguishing features between 

normal and diseased cells. Modern biology has focused on understanding and studying o f the 

molecular pathways altered in cancer aiming at translating them into therapeutic strategies. 

Often the mode o f action of these cytotoxic agents has been elucidated after their anti-tumor 

activity had been established in clinical trials.

The novel target oriented therapies would allow to: a) hit the desired target reducing the 

effective concentration, b) react with a specific active site without interfering with other 

unrelated biological process increasing the therapeutic index, c) play with a wide 

concentration window to circumvent drug resistance.6

Currently the most promising investigation areas in the anticancer drug development6 7 18 50 8 

are focused on the generation of new and more specific and more effective agents that target 

DNA-associated process such as new cytotoxics and telomerase inhibitors, the process of 

angiogenesis and metastasis, and the cell signaling

1.4.1 Cell signaling

Cell signaling is part o f a complex system of communication that regulates the cell activities. 

Living cells are constantly exposed to a variety o f signals from their micro- and macro­

environments and their ability to respond to these signals is the basis of the cell functions. 

Some cell-to-cell communication requires direct cell-cell contact through gap junctions that 

connect their cytoplasm to the cytoplasm o f adjacent cells allowing different ions and 

molecules to pass freely. Many cell signals are carried by molecules called receptor ligands 

(e.g. hormones, cytokine, neurotransmitters and growth factors), released by one cell and 

move to make contact with another cell. The specificity o f signaling can be achieved and 

controlled if only specific cells can respond to a receptor ligand. Cells receive information 

from their environment through a class of protein called receptors located on the cell 

membrane or within the cytoplasm or cell nucleus. The formation o f the ligand-receptor 

complex results in the cellular response to the ligand. In some cases receptor activation 

caused by ligand binding to a receptor is directly coupled with the cell’s response. In some 

other cases the ligand-receptor interactions are not linked to the direct cell response. The 

transmission o f extra-cellular signals into their intra-cellular targets is mediated by a network 

o f interacting proteins that regulates a large number o f cellular processes. The set of 

biochemical reactions carried out by proteins or enzymes, induced by receptor activation are 

called signal transduction pathways. The sequential activation o f enzymes is also called a 

signaling cascade.
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Errors in the signal processing are responsible for diseases such as cancer, autoimmunity, and 

diabetes. The altered signaling responses are often critical distinguishing features between 

normal and tumour cells. There is a general consensus that signaling molecules actively 

engaged in the regulation of the tumour pathogenesis and progression could be potential 

targets for cancer therapy.7 18 51

1.4.2. Targeting tyrosine kinases: Imatinib Mesylate

Protein kinases are enzymes components of signal transduction pathways, playing different 

roles in normal physiological cell processes, such as control o f cell growth, metabolism, 

differentiation, and apoptosis. They comprise two major subfamilies, the protein 

serine/threonine kinases and protein tyrosine kinases. A kinase acts by transfering a 

phosphate group from ATP (adenosine 5'-triphosphate) and covalently attaching it to other 

proteins. The process is called phosphorylation. The interest in the tyrosine kinase pathways 

is due to the oncogenic role of protein kinases in cancer cells. Kinases have been initially 

targeted for validating the clinical effectiveness of the development o f signal transduction 

inhibitors as a new for anticancer strategy. A great enthusiasm around this research area has

been further raised by the discovery o f Imatinib 

Mesylate. Imatinib mesylate (Glivec®) (21) is an

agent that works by inhibiting a specific signaling

kinase instead of non-specifically inhibiting rapidly

dividing cells. It is a small molecule selective inhibitor o f bcr-abl fusion protein, a tyrosine

kinase enzyme (PTK), unique to leukemic cells and expressed at high level. Its tyrosine

discovery but is the result of application of a rational approach to identify chemical leads 

inhibitors of a specific target. Further chemistry-based design works on the lead compound 

were required to transform the lead molecule into a drug. Bcr-abl kinase gained a great 

interest as target for the design o f small molecules selective inhibitors, based on the 

hypothesis that the decrease o f the activity of bcr-abl kinase would contribute to induce a 

remission of the disease and have little effects on normal cells.

In 1988 Yaish and co-workers reported a class of compounds called tyrphostins as epidermal 

growth factor receptor kinase inhibitors55 providing the proof of principle that 

pharmacological inhibitors could target a specific tyrosine kinase. Buchdunger and co­

workers demonstrated that, an Abl protein-tyrosine kinase inhibitor o f the 2-

example of targeted therapy and the first anticancer

activity is essential for its ability to induce leukemia.53 54 Glivec was not a serendipitous

20



phenylaminopyrimidine family, identified from high throughput screen o f chemical 

libraries,56 57 induced the selective inhibition of the platelet-derived growth factor signal 

transduction pathways. The initial inhibitors were of low specificity and potency, but the 

inhibitory activity could be optimized by synthesizing and screening focused libraries o f 2- 

phenylaminopyrimidine derivatives. Imatinib emerged as the suitable candidate for 

preclinical development. Further studies o f the mode o f action revealed that Imatinib 

functions as a competitive inhibitor of ATP binding.58 Imatinib was approved by the United 

States Food and Drug Administration (FDA) in May 2001.

Many kinase inhibitors have completed the clinical trials and received the FDA marketing 

approval. The structures o f all kinase inhibitors (targeting the ATP binding site) currently in 

use are provided in Figure 6.

Figure  6. S truc tures  o f  all k inases  inh ib ito rs  in use.
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Sorafenib (25) Lapatinib (26) Gefitinib (27)

1.4.3. Protein-protein interactions as a target for anti-tumor agents

Protein-protein interactions play a central role in signal transduction pathways that regulate 

biological processes.59 Inappropriate protein-protein binding can lead to diseases such cancer 

and diabetes. It should not be surprising that protein-protein interactions represent attractive 

pharmaceutical targets60 and the identification o f small molecule inhibitors o f protein-protein 

interaction (SMPIIs) has become a promising field in drug discovery.61 Years ago a few 

description o f SMPIIs were reported in the literature. Unfortunately the development and 

design o f small molecules that can modulate the protein-protein binding has been 

problematic, owing to issues such as the lack o f well-defined binding pocket.6263,64,65
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Antibody (dominant negative proteins)-based antagonists, or medium-sized peptide were 

investigated as therapeutic agents. The prevailing medicinal chemistry and drug discovery 

perspective was that protein-protein interactions would be difficult to influence using small 

molecules.66

However, there have been important progresses in the field in recent years. The increasing 

number of publications reporting emerging classes of protein-protein interaction inhibitors 

and improved strategies employed for the discovery of small molecules modulators has

contributed to change this view.62 67 68 63 A recent success is the identification o f Nutlin-2

(28), an important inhibitor o f p53-MDM2 interaction. The discovery was claimed by 

Hoffman-La Roche Inc. in February 2004.69

Despite the enthusiastic expectations generated by the advances in understanding o f tumour 

pathogenesis and progress, it has been argued that the identification o f the clinical relevance

of the new molecular targets not always can be translated into a 

strategy with clinical utility.7 Not all the molecular targets are 

druggable or, in other words, it is often difficult and problematic 

the conversion of lead compounds into molecules with

pharmacological properties, otherwise called “drug-like,, 

molecules.70 71 Chene concluded his review published in January 

2004 on the inhibition o f the p53-MDM2 interaction and the targeting o f protein-protein 

interface72 highlighting how the difficulties accompanying the identification of small 

molecule modulators of protein-protein interactions might not be overcome despite the 

research efforts. At this moment, only a few drugs targeting p53 had been identified. The best 

compounds described in the literature, even if potent, were not druggable molecules. A month 

later the hope became reality by the discovery of new small “smart’' molecule inhibitors of 

p53-MDM2 interaction. These results gave new input and confidence to the search of 

modulators o f protein-protein interactions leading to the subsequent discovery o f novel 

protein-protein interaction modulators and validation o f their targets. These compounds may 

act either directly -  via inhibition at the protein-protein interface -  or indirectly -  via binding 

to an allosteric site and induction of conformational changes o f the target protein.61,67 73 

Selected examples o f small molecule protein-protein interaction inhibitors and their targets 

are illustated in Figure 7.

E tq

Nutlin-2 (28) OH
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F igure  7. Selec ted  ex am p les  o f  small  m o lecu le  p ro te in -pro te in  in teract ion  inhib i tors  and  the ir  targets .
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1.5 Conclusion

An understanding of cancer pathogenesis at cellular, molecular and genetic level has led to 

the discovery o f the key distinguishing features between normal and diseased cells, revealing 

a wide spectrum of new potential clinical targets for development of novel drug with 

enhanced potency and selectivity. Hopefully this information will be important in improving 

drug efficacy and in offering better life perspectives to cancer patients.
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2.0 Tubulin and microtubules as anticancer targets

2.1 Introduction

Chemotherapy has vastly improved the survival rates o f many cancers. A group of agents that 

has been particularly effective in the treatments of cancer are the tubulin-binding agents (also 

referred to as antimicrotubule agents). Tubulins are proteins that form microtubules, which 

are key components of the cellular cytoskeleton (structural network). Microtubules are 

important for diverse cellular functions including chromosome segregation during cell 

division (mitosis), cell structure, transport, signaling and motility. Given their primary role in 

mitosis, microtubules have represented an exciting target in the design o f anticancer drugs. 

Natural and synthetic agents are known to interact with tubulin. Well known examples 

include Paclitaxel (Taxol®) (10) (see Figure 3, Chapter 1) and Vinca alkaloids. These 

compounds disrupt the tubulin-microtubule equilibrium, causing an overall inhibition of cell 

division and cell death.

2.2 Biochemistry of tubulin, microtubules and mitotic spindle

Microtubules —  key components o f the cytoskeleton — are long, filamentous, tube shaped 

protein polymers that are essential in all eukaryotic cells. They are crucial in the development 

and maintenance of cell shape, in the transport of vesicles, mitochondria and other 

components throughout cells, in cell signalling, and in cell division and mitosis. Microtubules 

are composed o f two structurally similar protein subunits, namely a-tubulin and {3-tubulin. 

The a  and (3 tubulin are spherical proteins composed o f approximately 440 amino acids (50 

KDa). The series o f events through which the a-tubulin and P-tubulin come together to form 

an a -p  heterodimer is still not fully understood. Bound to these heterodimers are two 

molecules of guanosine triphosphate (GTP). One of these GTP molecules cannot be removed 

without denaturing the heterodimer when bound to the a-subunit (N-site). The other GTP 

molecule is freely exchangeable with unbound GTP when bound to the p-subunit (E-site). 

These heterodimers, in the presence of additional GTP and 37 °C, can combine in a head-to- 

tail arrangement at 80 A intervals to form a linear protofilament.74'77 A single microtubule is 

composed of thirteen protofilaments, forming a hollow structure o f ca 240 A diameter78 

(Figure 8).79 The functional diversity o f microtubules is achieved in several ways: through the 

binding o f various regulatory proteins, including microtubule associated proteins (MAPs), to 

soluble tubulin and to the microtubule surfaces and ends; by expression o f different tubulin 

isotypes, which have different functions; and through several post-translational modifications 

of tubulin.
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Figure 8.

u- and p-tubulin Microtubule nucleus Microtubule
heterodimers

The exact purpose of these MAPs is unclear, however microtubules form faster in their 

presence and the MAPs also appear to protect the microtubules from conditions and agents 

which induce depolymerization, namely low temperature and Ca2+ ions. Also associated with 

the microtubules are Microtubule Organizing Centres (MTOCs). These MTOCs form a focus 

for microtubule growth, and all the microtubules initially begin to grow from one o f these 

centres.80 Once formed, these complex protein tubes are not static. They exist in an 

equilibrium with dimers constantly adding to one end o f the microtubule [(+) end] and 

leaving at the other [(-) end]. This process of polymerization/depolymerization is referred to 

as dynamic instability. GTP hydrolysis at the exchangeable E-site is required to establish a 

flux o f subunits through the polymer, adding tubulin heterodimers to the “plus” end and 

dissociating heterodimers from “minus” end of the microtubules, resulting in microtubule 

destabilization.81,82

In non-dividing cells, microtubules organize the cytoplasm, position the nucleus and 

organelles and serve as the principal element o f flagella and cilia. Cell division is a complex 

process undertaken by the human body. During cell division, a large dynamic array o f 

microtubule, mitotic spindle, functions to physically segregate the duplicate chromosomes 

and to orient the plane of cleavage. If the microtubules in a tumor cell can be prevented from 

forming or decaying, the chromosomes cannot separate, the cell cannot reproduce and the 

tumor cannot grow.

2.3 Antimitotic agents

A large number o f substances are known to bind to tubulin and/or directly to tubulin in the 

microtubules, inhibiting cell proliferation by blocking mitosis. Therefore, microtubule- 

binding drugs are often referred to as antimitotic agents. Drugs binding to tubulin can be 

classified in two traditional categories according to their effect on tubulin-microtubule
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equilibrium. The microtubule-destabilizing agents such as the Vinca alkaloids [Vincristine (8 ) 

and Vinblastine (9) (see Figure 3, Chapter 1)] and Colchicine inhibit microtubule 

polymerization, disrupting the tubulin-microtubule equilibrium, decreasing the polymer mass, 

and causing an overall destruction o f microtubules. The microtubule-stabilizing agents 

disrupt the tubulin-microtubule equilibrium pushing the equilibrium towards the assembled 

microtubule and promoting microtubule polymerization. The lead compound o f the class of 

microtubule-stabilizing agents is the natural product Paclitaxel (Taxol®) (10) (see Figure 3, 

Chapter 1). A number o f reviews discuss the compounds that bind to tubulin and
n a on 04

microtubules. ’ ’ Here, a discussion of those compounds most relevant to this thesis is

provided. Inhibition o f Tubulin Polymerization will be abbreviated as ITP. 

Microtubule-binding drugs can also be grouped according to their binding site on tubulin. For 

instance, Paclitaxel is known to stabilize microtubules85 and the functional “Paclitaxel 

binding site” has been located on the (3-tubulin. 8 6  Drugs targeting the paclitaxel-binding site 

are known to act as microtubule-stabilizing agents . 7 4  The vinca domain and the colchicine 

sites are the other well established drug binding sites, located on the (3-tubulin. 7 4  Agents such 

as Vincristine (8 ), Vinblastine (9) clearly defined the vinca binding site. Molecules such as 

Podophyllotoxin (32), Combretastain A4 (15) (Figure 9) are known to occupy the Colchicine 

binding site and block microtubule formation . 7 4  A number o f these agents are effective 

anticancer drugs.

The clinical success o f several vinca alkaloids and taxanes for the 

treatment of human cancers has validated microtubules as a target and
OH

has encouraged the search for compounds sharing a similar mode of 

action.

Besides their ability to inhibit tumour cell proliferation, some
Podophyllotoxin (32)

microtubule-targeting agents display toxicity towards tumor 

vasculature, inducing occlusion of preexisting tumour blood vessels, producing tumour cell 

death from ischemia and necrosis . 2 8  Molecules such as the vinca domain agents such as 

Vincristine (8 ), and Vinblastine (9), the taxane agents8 7  and Combretastain A4 (15) have 

been shown to destroy neovasculature, but except for CA4, this effect is observed close to the 

maximum tolerated dose. Moreover, the anti vasculature effect is most pronounced for agents 

binding at the colchicine-binding site. The agents CPA4 (16) [a water soluble prodrug o f CA4 

(15)], AVE8062 (19) and ZD6126 (20), are all in Phase I/II clinical trials (see Figure 5, 

Chapter 1). The therapeutic effect o f these agents such as CA4P (16) appears to derive from 

their vasculature targeting properties and not antimitotic properties. This vasculature targeting

MeO

MeO

MeO
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approach has attracted several88 several research groups worldwide to undertake studies 

aimed at evaluating natural and synthetic products structurally related to CA4. A large 

number o f CA4 analogues have been prepared and evaluated for their cytotoxicity, 

antitubulin and anticancer properties. From a synthetic and medicinal chemistry perspective, 

the search and development of CA4 analogues has been encouraged by the simplicity of its 

structures and the enormous chemical diversity that can be introduced in a such simple 

template. The scaffold of CA4 presents three points of diversity amenable o f modification: 

the A ring, the linker, and the B ring (Figure 9).

F igu re  9. P o in ts o f  d iv e rs ity  o f  the  C A 4  (15).

IC6 0  (UP) 2.0 |iM 
IC5 0  (Colon 26) 18.0 nM 
EC5 0  (SKMEL5) 1 .4 x 1 0 ’4 hM 
IC5 0  (HCT-15) 1.7 nM 
IC5 0  (B16) 1.0 nM 
IC5 0  (K562) 4.3 nM 

Combretastatin A4 (15)

The trimethoxy substituted phenyl ring present in CA4 (15) is an important feature partly 

responsible for the cytotoxicity and the strong binding to tubulin. This chemical motif is also 

a recurrent feature o f other antitubulin agents (e.g. Podophyllotoxin, Colchicine). 

Replacement o f the meta methoxy group with a hydroxyl, 8 9  as well as the removal of the 

meta or para methoxy group9 0  resulted in a significant drop in potency. Loss o f activity was 

also observed when an unsubstituted phenyl ring was present. 9 0  Replacement of the methoxy 

groups with bulkier groups such as ethoxy was not tolerated . 91 Attempts to replace the 

trimethoxyphenyl ring with more lipophilic groups such as trimethylbenzene or naphthalene 

resulted in significant decrease of cytoxicity . 9 1 ,9 2

A detailed SAR has been conducted around the B ring . 8 4  The requirement of the para 

methoxy group for cytotoxicity has been established by Cushmann and coworkers . 9 0 ,9 3  Loss 

in activity was also observed for the para-ethoxy and para-propoxy derivatives . 9 0  Changing 

the position o f the methoxy group from para to meta position resulted in a dramatic loss of 

potency . 9 3 It has been suggested that the oxygen of the /?ora-methoxy group act as a hydrogen 

bond acceptor. Therefore its replacement with sulfur was not tolerated . 9 3  The comparable 

biological activity o f compounds 15 and 33 (Figure 10) reveals that the hydroxyl group is not 

essential. 9 0 ,9 3

linker
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Figure 10. A nalogues o f  CA 4 (15).
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33, EC5o (SKMEL5) 2 . 6  x 1 0' 4  jiM
IC50  (U P) 2.5 |iM

OMe

34,IC5 0  (Coton 26) 5.1 nM 
IC5 0  (ITP) 4.0 |iM
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35, EC 50  (SKMEL5) 1.4 x 10"4  fiM  36, IC 50  (U P ) > 1 0 0  (iM 37,IC 5 0  (HCT-15) 4.1 nM 
IC5 0  (ITP) 7.4 nM

Several replacement o f the phenolic moiety have been attempted in order to improve the 

metabolic stability o f CA4 (OH-F substitution) retaining the potency . 9 4  The OH—►NH2 

substitution proved to be successful furnishing compound 34 displaying an improved potency 

compared to CA4 (15).95 Moreover, replacement o f the hydroxyl group with a boronic acid9 6  

or azide9 7  appears to be tolerated. Finally, the replacement o f the B ring with naphthalene9 8  

and quinazoline" system proved to be successful.

Modification o f the olefinic linker has received major attention. It is believed that the spatial 

relationship between the two aromatic rings is an important feature that determines the ability 

to bind to tubulin, maximizing the interaction with the target. The Z configuration o f the 

double bond appears to be optimal for good activity . 9 3 ,1 0 0 ,1 0 1

Synthetic efforts have been directed towards the design o f linking groups capable of 

positioning the two aryl rings in a way that results in good activity. Reduction o f the double 

bonds afforded compound 359 0  (Figure 10) displaying modest antitubulin properties. The 

olefinic bridge appeared to be the most active linker.

Replacement o f olefinic bond with a single oxygen linker resulted in loss o f cytotoxicity and 

antitubulin activity due to the short distance between the rings . 9 0 ,1 0 2 ,1 0 3  The effect o f several 

other substitutions has been object o f detailed biological investigation. For instance, the 

CH—»NH or CH—>0 substitutions have been attempted affording compounds with some 

biological activity, although significantly decreased compared to CA4 . 9 0 ,1 0 3  The amide 36104 

(in which the amide acts as a bioisosteric replacement o f the alkene) displayed a dramatic loss 

in cytotoxicity and antitubulin activity, while the sulfonate group (compound 37) appeared to 

be well tolerated (Figure 31).
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Several analogues o f CA4 where the olefinic ring is replaced by a ring were also synthesized. 

These modifications provide c/s-locked analogues o f CA4, preventing combretastatin cis —► 

trans isomerization, but still maintaining the free rotation o f the two aromatic rings. 

Furthermore, the replacement o f the double bond linker with a ring may lead to potent CA4 

analogues possessing an optimum pharmacological profile. From a medicinal chemistry 

perspective, five-membered heterocycles compounds represented an attractive target. Among 

the synthesized compounds, (e.g. imidazole , 1 0 5 1,3-oxazole, 105 pyrazole , 105 triazole , 106  

furazan , 1 07 l(5H)-furanone , 10 8 diaryloxazolones, 10 9  2 -cyclopenten-l-one , 1 1 0  etc), most of 

them retain the cytotoxicity and antitubulin activity (Figure 11).

F igu re  11. A n a lo g o s  o f  c /s -res tr ic te d  C A 4  (15).

r=\

X JMeO y
OMe

OMe

38,IC 50 (H C T -15) 6 9  nM 
IC50 (ITP) 7.7 nM

N -I
M e O v ^ ^ j ^  N 

MeO'
OMe ^

OMe

3 9 JC50 (HCT-15) 28 nM

NH,

HN
MeO

MeO'

OMe ^
NH-

OMe

40,IC 50 (B16) 2.4 nM

Series o f benzophenones and related ketones were evaluated for cytotoxicity and their ability 

to inhibit tubulin polymerization. Lead compounds o f this series are phenstatin (41), and 

phenstatin phosphate (42) discovered and described by Pettit and coworkers111 (Figure 12). 

Independent studies led to the identification o f numerous benzophenones, structurally related 

to phenstatin (40) (e.g. compounds 43-46)112,113 exhibiting potent cytotoxicity and modest 

antitubulin properties.

F igu re  12. S tru c tu re  o f  b e n zo p h e n o n es  an d  k e to n es s tru c tu ra lly  re la te d  to  C A 4 (15 ).

•0P (0N a)2 MeO

MeO j  ^  O
OMe

42, IC 5 0  (OVCAR-3) 2 nM 
IC 5 0  (ITP) 21 HM

'OMe

IC5 0  (OVCAR-3) 2 nM 
ICso(ITP) 1.0 nM

OMe OMe
44, IC 5 0  (Hela/KB) 68 nM 45, IC 50  (Hela/KB) 29 nM 46, IC 50  (Hela/KB) 15nM

ICsq (ITP) 0.53 nM IC 50  (ITP) 0.99 fiM
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Within our own research group, significant cytotoxicity and antitubulin properties were 

observed for chalcones (Figure 13), an additional series o f compounds bearing a a , (3 

unsaturated linker where the two phenyl rings are separated by three atoms. The a-methyl- 

chalcone 4 7 1 1 4 1 1 5  (Figure 13) emerged as a potent from a detailed SAR studies , 1 1 6 ' 118 

conducted to further develop the initial lead 48, isolated from the Chinese herb Scutellaria 

barbata. The chalcone 47 displayed potent ability to inhibit tubulin assembly by binding the 

Colchicine-binding site o f tubulin . 11 4

F igu re  13. S tru c tu re  o f  c h a lco n e s  47  and  its an alo g s.

The X-ray crystal structure of 47 revealed that the carbon-oxygen and carbon-carbon double 

bonds are positioned trans relative to the C1-C2 single bond. Preliminary modeling and 

crystallographic studies led us to postulate that molecules adopting the s-trans conformation 

bind strongly to tubulin. The presence o f the carbonyl group also appeared to be essential for 

potency, presumably due to a hydrogen bond with Leu255 NH . 1 1 5 Related analogues of 

chalcone 47 have been synthesized to date. The fluorine analogue 4 9 9 4 1 1 5 1 1 9  was prepared to 

overcome the poor bioavailability o f 47, and avoid unwanted metabolic degradation. It 

showed less cytotoxicity than 47, but is still potent. Other examples include the amino 

derivative 5 0 1 1 7 1 2 0 1 2 3  and indoles 51124 found to be potent cytotoxic and good antitubulin 

agents. We also investigated the anti-tubulin activity o f numerous conformationally-restricted 

analogs of 47 (Figure 14).

47, IC 5 0  (K562) 0.2 nM 
IC 5 0  (ITP) 1.5 nM

48, IC 5 0  (K562) 60 |iM 49, IC5 0  (K562) 3 nM
IC5 0  (ITP) 0.65 |iM

50, IC 50  (K562) 11 nM 
ICgoOTP) 1.0 |iM

51, IC 5o(H E L A S 3) 0.7 nM 
IC5q(ITP) 1.0 mM
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F igu re  14. A u ro n es, co n fo rm a tio n a l ly -res tric ted  an a lo g s o f  47. 

O OMe
MeOMeO

MeO'MeO'
OMe OH OH

47 52, IC50(K562) 50 nM 
IC5 0  (ITP) 22

OMe
53, IC50(K562) 18|iM 

IC5 0  (ITP) >50 aM

OMe

A series of aurones were synthesized as conformationally-restricted analogues o f 47 and 

evaluated for cytotoxicity their antitubulin properties (Figure 14).125 The major goal o f this 

modification was to get an insight into the importance of the aryl ring orientation about the 

rotatable bond a and c in influencing the cytotoxicity and anti-tubulin properties (Figure 14). 

SAR studies revealed that the 5,6,7-trimethoxyphenyl moiety o f aurone 52 is optimum for 

relevant cytotoxicity and antitubulin activity. Loss o f potency was observed for the 4,5,6- 

trimethoxy isomer 53. However, the aurone derivatives were found to be significantly less 

active than chalcone 47, indicating the importance o f the rotational freedom around bond a. 

Several natural1 26 and synthetic flavones were evaluated for their tubulin-binding properties 

and cytotoxicity. The natural product 54 emerged as one o f the most active compounds 

(Figure 15).

F igu re  15. F lav o n es , co n fo rm a tio n a lly -re s tric te d  an a lo g s o f  47.

OH O O OMe O

54, ICsq (ITP) 0.8 (Wl 55, IC5 0  (K562) 40 nM 
IC50 (ITP) 25 mM

56, IC50 (K562) 22 nM 
IC50 (ITP) >50 nM

Synthetic derivative 55125 exhibited an enhanced potency compared to 54 (Figure 15). 

Moreover, the presence o f the 6,7,8-trimethoxy A ring appeared to be optimal for good 

activity as shown by the reduced potency of the corresponding 5,6,7-trimethoxy derivative 56 

(Figure 15). Many other analogues structurally related to flavones were synthesized and 

evaluated as potential tubulin binding agents. These include quinolones, 1 2 7 -1 3 0  

quinazolines , 1 3 1 -1 3 3  and naphthydyridones . 1 3 4 ,1 3 5
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2.4 Conclusion

In light o f the vascular-damaging properties o f the combretastatins, the potential of tubulin 

and microtubules in cancer therapy has been reevaluated. The investigation o f new and more 

potent compounds related to Combretastatin A4 (15) with improved pharmacological 

properties and agents binding to colchicine binding site has gained great interest yielding a 

large number o f promising compounds. Continued investigation o f how the microtubule- 

targeting agents exert their antiangiogenic activity is likely to lead to significant clinical 

advances in cancer treatment.
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3.0 STAT3: an attractive target for anticancer tharapy

3.1 Introduction

Signal transducers and activator o f transcription (STAT) proteins comprise a family of 

transcription factors that consist of seven members: STAT 1, 2, 3, 4, 5A, 5B, and 6 . 13 6 They 

are latent in the cytoplasm and participate in normal cellular events, such as differentiation, 

proliferation, cells survival, apoptosis and angiogenesis in response to cytokines, growth 

factors and hormones signaling . 1 3 7 ' 14 0

STAT3 is the transcription factor whose critical role in oncogenesis has been amply studied 

and described. STAT3 is activated by tyrosine phosphorylation (Tyr705). In contrast to 

normal signaling, in which STAT3 phosphorylation is transient and a tightly regulated 

process, aberrant constitutive activation of STAT3 has been detected in over a dozen o f types 

o f human cancers . 1 4 1 ,1 4 2  Several pieces o f evidence have been provided that persistently- 

activated STAT3 signaling contributes to disrupt normal physiological control and leads to 

oncogenic transformation. Studies have demonstrated that inhibition o f STAT3 signaling in 

tumour cells results in apoptosis, suppression o f angiogenesis and stimulation o f immune 

response . 1 4 3 ’ 1 45 It has been observed a dependence o f tumour cells on persistent STAT3 

activation and an increased sensitivity to STAT3 inhibition than normal cells. This has 

important implications for cancer therapy, providing the potential selectivity for tumour cell 

killing . 1 4 4 Keeping all these findings in mind STAT3 is believed to be a potential target for 

cancer therapy . 1 46

3.2 Background

STAT proteins are activated by a ligand receptor binding at the cell surface . 1 4 7 The class of 

ligands comprises a variety o f factors such as cytokines, growth factors, and hormones. The 

receptors are transmembrane proteins. When the receptor is bound to its ligand, its 

dimerization occurs. The dimerized receptors, unlike those with intrinsic tyrosine kinase 

activity, induce STAT tyrosine phosphorylation by recruiting the receptor-associated tyrosine 

kinase such as Janus kinases (JAKs) 1 4 8  or Src kinases family . 1 4 9 ,1 4 8  Other possible tyrosine 

kinases that can phosphorylate STATs are peptide growth factors receptors such as EGFRs 

(epidermal growth factors receptors). Once it has become activated, the JAK kinase causes 

the phosphorylation o f a specific tyrosine residue within the cytoplasmatic tail o f the receptor. 

This provides docking sites for the recruitment o f STATs which are activated by tyrosine 

phosphorylation. Phosphorylated proteins dimerize by reciprocal interaction o f their SH2
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domains and phosphotyrosine residues . 1 5 0 ,1 5 1 Dimerized STATs translocate to the nucleus , 152 

bind to a specific DNA sequence, and regulate gene expression1 5 3 ,1 4 4  (Figure 16).

F igure 16. N orm al and  on co g en ic  ST A T 3 sig n a lin g  pathw ay.

Growth Factor Receptors Cytokine Receptors
Non-Receptor 

k Tyrosine Kinases
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Proliferation. Survival. 
Angiogenesis, Oncogenesis

Bcl-»L, Cyclins D1/D2, 
c-Myc, Me 1-1, VEGF

Figure 17. X -ray o f  ST A T 3 d im er d isc lo sed  in 1998.
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Figure 18. SH2 dom ain dim erization interface o f  STAT3b protein.

F igu re  19. S tru c tu ra l b a sis  o f  ST A T 3 d im eriza tio n . T he  ST A T 3 

m o n o m ers m ake  co n tac t v ia  th e  p ro tru d in g  ch a in s  (red  and  y e llo w  

co lo u red ) b earin g  the  p -T yr705  resid u e  (g reen  co lo u red ).

Becker et al. in 1998 reported the first crystal structure o f a STAT3 protein bound to its DNA 

recognition site (SH2 domain) at 2.25 A resolution1 5 4 (Figure 17 and 18). The crystal 

structure provides insight into the structural basis o f STAT3 dimerization. As shown in 

Figure B, the STAT3 monomers make contact via the protruding chains (red and yellow 

coloured) bearing the p-Tyr705 residue (green coloured). Key information of the p-Tyr705 

binding cavity indicate that Lys591, Arg609, Ser611 and Ser613 are directed involved in the 

stabilization o f the p-Tyr705 phosphate by hydrogen bonding interactions (Figure 19).

STAT1 and STAT3 also contain a serine residue in the transactivation domain whose 

phosphorylation is required for further modulating their activity . 1 5 5 ' 1 5 9  In normal cells STATs 

activation is a transient process and within hours the activating signals decay and the STATs 

are exported back to the cytoplasm. Although some aspects o f the negative regulation have 

been elucidated, the overall mechanism by which the activating signals decay are not fully 

understood . 147 Several classes o f negative regulators recently discovered , 1 5 9 ,1 5 5  include SH2- 

containing protein tyrosine phosphates (SHP), the suppressor of cytokines signaling (SOCS) 

proteins, and the proteins inhibitors o f activated STATs (PIAS). STAT proteins can be 

divided into groups according to their physiological functions. Specifically, STAT3141 has
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been demonstrated to play a key role in the regulation o f different events including 

proliferation , 1 6 0 differentiation , 1 6 1 ' 163 and apoptosis . 1 6 4 ,1 6 5

3.3 STAT3 in oncogenesis

The credibility o f STAT3 as a valid target for drug discovery has been supported by the 

evidence that STAT3 alone contributes to the acquisition and progression o f malignant 

phenotype and its inhibition results in reversing the malignant phenotype . 14 2 Persistently 

activated STAT3 has been detected in many types o f cancers, including leukemia, 

lymphomas, carcinomas, and other solid tumours . 1 4 3 ,1 4 4 ,1 6 6 ,1 6 7  So far there has been no 

description o f natural occurring mutation o f STAT3 gene resulting in constitutive expression 

of STAT3 . 1 4 2 STAT3 oncogenic signaling is the result o f indirect effect o f mutation-induced 

changes in genes encoding for STAT3 activators or repressors.

Bromberg et al. provided the most compelling evidence for validation o f STAT3 as an 

anticancer drug target, demonstrating that while STAT3 is made constitutively active, is 

capable of oncogenic transformations . 1 6 8  Independent studies with antisense, gene therapy, 

RNA interference have confirmed that STAT3 signaling inhibition reduce tumour growth and 

induce apoptosis in cell lines and mouse models . 1 6 9 ’ 171

STAT31 4 1 ,1 4 4  plays its role in tumourgenesis through up-regulation o f genes encoding for 

apoptosis inhibitors (e.g Bcl-xL), cell-cycle regulators (e.g. cyclin Dj), and inducers of 

angiogenesis (e.g vascular endothelial growth factors-VEGF) (Figure 16). The role o f STAT3 

in regulating p53 (the so called “tumour suppressor”) expression and function has been 

investigated. A reduced p53 activity has been detected in many types o f cancer1 7 2  and 

experimental evidences have identified in STAT3 a mediator of p53 suppression . 173  

On the basis of these observations the inhibition of STAT3 signaling pathways is expected to 

result in downregulation o f the expression o f several oncoproteins and reactivation o f p53 

expression and function in diverse human cancers.

3.4 Targeting STAT3: strategies for drug discovery

Expanding understanding of the mechanism of constitutive STAT3 activation has provided a 

rational basis to target constitutive STAT3 signaling pathways. As shown in Figure 16, in the 

STAT3 pathways there are potential sites for intervention to induce disruption o f STAT3 

function. The strategies can be generally divided into direct or indirect. The indirect 

approaches focus on inhibiting the STAT3 pathways by targeting the upstream key activators 

or potentiating the negative regulators.
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Direct targeting o f STAT3 can be achieved by inhibiting its expression or disrupting different 

aspects of its function such as recruitment, phosphorylation, dimer formation, nuclear 

translocation, DNA binding, gene transcription.

Tyrphostins AG490 (57)

3.4.1 Indirect STAT3 targeting strategies

Given the success o f tyrosine kinases selective inhibitors as anticancer therapy, inhibition of 

tyrosine kinases activity upstream of STAT3 pathways has represented an appealing strategy 

to prevent aberrant STAT3 activation and related malignant transformation (Figure 16). Src 

and JAK families and EGFRs represent potential targets for drug discovery.

o For instance, Tyrphostins AG490 (57) is a specific and potent

JAK-2 protein tyrosine kinase inhibitor. Several studies have 

shown that AG490 reduces STAT3 DNA-binding activity1 7 4  and 

selectively inhibits leukemia cells growth in vivo and in vitro 

inducing apoptosis . 1 7 5 ' 1 77 Nam et al. have recently reported that indirubin derivatives such as 

E564 (59), E728 (60) and E804 (61) block constitutive STAT3 signaling in human breast and 

prostate cancer cells (Figure 20) . 1 7 8 In addition E804 has been identified as c-Src kinase 

inhibitor (IC5 0  = 0.43 pM) in vitro. Reduction o f phosphotyrosyl c-Src levels have been 

detected in cultured cells after E804 treatment. Tyrosyl phosphorylation o f STAT3 and 

constitutive STAT3/DNA binding activity were suppressed resulting in apoptosis. E804 was 

initially tested as a racemate. However, the two enantiomers, prepared and separately 

screened, showed a similar inhibition of phosphorylation o f Src and STAT3, suggesting that 

the configuration o f the chiral centre does not effect the binding to the target and the activity. 

Nam suggested the hypothesis that E804 as an ATP-mimic may bind to the ATP binding site 

o f the Src tyrosine kinase.

F igu re  20. S tru c tu re s o f  in d iru b in  an d  in d iru b in  deriv a tiv es.

Indirubin (58) E564 (59) R-, = (CH2)20(CH2)3OH, R2 = H 
E 728  (60) R, = H, R2 = OCH3

HO.

NH

E804 (61)

39



0H Antitumour properties o f the well known natural compound 

Resveratrol (62) associated with its ability to inhibit the

Src/STAT3 signaling pathway179 have been recently reported.

Resveratrol (6 2 ) Resveratrol inhibited Src tyrosine kinase activity and blocked

aberrant STAT3 activation in malignant cells inducing apoptosis. By contrast, cells treated 

with resveratrol, but lacking aberrant Stat3 activity, showed reversible growth arrest.

Targeting of serine kinases has been suggested as an additional therapeutic 

strategy143 based on the evidence that elevated serine kinase activity is 

associated with oncogenesis180 and increased levels of serine

phosphorylation o f STAT1 and STAT3 have been detected in chronic 

lymphocytic leukemia.181 Turkson et al. have demonstrated that pharmacological inhibition of 

serine phophorylation results in blockage o f transformation induced by Src oncoprotein182 

providing evidences for the potential o f serine kinases as targets for cancer therapy. So far 

there are no examples of systematic investigations o f specific serine kinases inhibitors that 

block STAT3 signaling pathway. However, in the screening o f a fungal extract Weidler and 

coworkers identified CPDHC (63), a cyclopentanone derivative, as an inhibitor o f the IL-6 

dependent JAK/STAT signaling cascade.183 Studies on the mode o f action revealed that 

CPDHC inhibits the JAK/STAT pathways involving the direct inhibition o f the Janus kinase

as well as an unidentified serine kinase responsible for the phosphorylation o f serine 727 of

STAT3.

Sebti and coworkers identified JSI-124 (Cucurbitacin I) (64), as a selective JAK-STAT3 

inhibitor (Figure 21). The discovery is based on the use of high throughput screening of the 

NCI Diversity Set o f 1,992 compounds.184 JSI-124 is a natural product isolated from different 

plants such as Cucurbitaceae and Cruciferae, used as a folk remedy for centuries in China and 

India. It has been demonstrated to suppress phosphotyrosine levels o f STAT3 and JAK-2 in 

many human cancer cell lines, and, as a consequence, reduce STAT3 DNA-binding activity 

and STAT3-mediated gene transcription resulting in the inhibition o f tumour growth. The 

mode o f action of JSI-124 has not been elucidated. Sebti et al. suggest that JSI-124 could 

promote the protein phosphatase activity o f SHPs or could activate suppressors o f cytokine 

signaling, STAT-induced STAT inhibitors, JAK-binding protein, and STAT3-interacting 

proteins. Further studies led to the discovery o f Cucurbitacin Q (65), which inhibits the 

activation o f STAT3 and induce apoptosis without inhibiting JAK2185 in A549 cells (a human 

non-small-cell lung carcinoma line) (Figure 21). The discoveries were used as probes to
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prove that suppression o f STAT3 activation, not JAK2 function, is more deleterious for 

tumour survival. This finding validated further STAT3 as a drug target to fight cancer.

F igu re 21. S tru c tu re s  o f  C u c u rb itac in  I (64 ) an d  C u cu rb itac in  Q  (65).

OH

HO

HO

'OH
HO.

JSI-124
Cucurbitacin I (64) Cucurbitacin Q (65)

Overexpression o f the EGFR (epidermal growth factor receptor) family has been detected in
1 8 A 1 R7 1 RRmany types o f cancer. ’ ’ The literature reports several studies validating the principle

that inhibition o f tyrosine kinase activity o f EGFR is effective in downregulating STAT 

signaling and tumour growth . 1 8 9  Employing specific tyrosine kinases inhibitors in targeting 

EGFR may constitute a viable approach for abrogation o f STAT3 activation. Disruption of 

the phosphorylation o f specific EGFR tyrosine residue by EGFR-specific peptide aptamers 

have been proved to result in inhibition of EGFR-mediated STAT3 activation . 1 9 0  An 

alternative strategy employs receptor or ligand antagonists, a class o f molecules that lack the 

intrinsic activating properties of the physiological ligand and possess higher affinity for 

receptor. It has been demonstrated that the aberrant IL- 6  cytokine signaling pathways is 

responsible for constitutive activation of STAT3 signaling and consequently, for the 

malignant progression o f multiple myeloma . 1 7 4 The “superantagonist”, Sant7, an IL - 6  variant, 

has been found to downregulate the constitutive STAT3 activation in myeloma cells1 74 and 

inhibit tumour growth1 9 1 ,1 9 2  by blocking the IL- 6  receptor activation . 1 9 3  Active research is 

currently ongoing in order to provide the preclinical rationale for clinical trials of Sant7 . 19 4  

Finally, antisense oligodeoxynucletide (ODN) strategy to degrade selectively STAT3 mRNA 

has been demonstrated to inhibit tumour growth in different cell lines . 1 9 5 ,1 9 6

3.4.2 Direct STAT3 targeting strategies

Dimerization is the key step in the STAT3 activation. After dimerization STAT3 translocates 

into the nucleus and binds to a specific DNA sequence inducing gene transcription. These 

three events, dimerization, translocation and DNA-binding, represent very appealing targets 

for inhibition of oncogenic STAT3 signaling pathways. Significant efforts have been done to
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identity phosphopeptides, peptidomimetics and small molecule inhibitors o f STAT3 and 

develop antisense strategies.

To interfere with STAT3 dimerization, ideal compounds should possess certain properties, 

including a strong affinity for STAT3 monomer that favors the generation o f a heterocomplex 

o f STAT3-compound over the STAT3-STAT3 dimer. 1 67 The association o f the compound 

with pre-existing dimers of STAT3 might: a) facilitate the dissociation o f STAT3 dimers and 

the preferential formation o f a heterodimeric complex involving STAT3 and compound; b) 

generate a heterotrimeric complex that would interfere with STAT3-dimer ability to bind to 

DNA . 1 67

A novel approach for disrupting the DNA binding o f STAT3 molecules relies on the use of 

G-quartet-oligodeoxynucleotides (GQ-ODNs) 1 9 7 as STAT3 inhibitors. GQ-ODNs have been 

shown to interact with the SH2 domains o f the STAT3 dimers in vitrol9S and in v/vo. 1 9 9 ,2 0 0  

Disrupters o f STAT3 dimerization could also be small peptides, small-peptide mimetics or 

small molecules that are specific for the SH2 sequence o f STAT3. The reported crystal 

structure of STAT3 dimers bound to DNA should provide insight for the design o f small 

molecule inhibitors targeted at the SH2 domain (Figure 17).

Identification o f phosphopeptides that bind to the SH2 domain o f STAT3 is an approach to 

target STAT3 pursued by several groups. Turkson et al. published the first example of 

development of phosphotyrosyl peptide STAT3 inhibitor targeted to the SH2 domain201. They 

investigated and demonstrated the ability o f the phosphopeptide PY*LKTK (where Y* 

represents phosphotyrosine) — derived from the native STAT3 amino acid sequence in the 

vicinity o f Tyr7 0 5  in the SH2-binding domain — to disrupt STAT3 activity in vitro. In vitro, 

PY*LKTK phosphopeptide inhibits STAT3/DNA binding activity with IC5 0  values of 235 

pM, binding to the SH2 domain of STAT3, disrupting the Tyr(P)-SH2 interactions that 

stabilize active STAT3:STAT3 dimers and forming inactive STAT3:PY*LKTK 

heterocomplex. Furthermore the presence of Tyr(P) in the peptide sequence was critical for 

reduction o f STAT3/DNA binding activity. Phosphopeptides PYLKTK and PFLKTK had no 

effect on STAT3/DNA binding activity at significant concentrations. Structure-activity 

studies o f PY*LKTK led to the identification of tripeptide derivatives PY*L and AY*L as 

inhibitors o f STAT3 activation and biological function.

In a similar fashion, Ren et al. tested a panel of peptides known to bind to SH2 domains of 

STAT3. The goal o f this study was the discovery o f a lead peptide for peptidomimetic drug 

development. A series o f tyrosyne-phosphorylated hexapeptides were evaluated for their 

ability to impede STAT3/DNA binding by disrupting receptor recruitment and/or
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STAT3:STAT3 dimer formation . 2 0 2  The most active compound showing great activity (IC5 0  

0.15 pM) was based on G pl30 amino acid sequence Y*LPQTV. The suggested mode of 

action is the destabilization o f STAT3:STAT3 dimer by direct Tyr7 0 5 -SH2 interaction.

The development o f phosphopeptides as clinically useful drugs is limited by their poor 

metabolic stability (or instability to peptidases and phosphatases), low bioavailability and low 

cellular permeability. Peptide medicinal chemistry has been actively engaged in developing 

strategies to produced modified peptides with reduced peptide character and “drug-like” 

properties reproducing or enhancing the activities o f the original peptide. Under this 

principle, Turkson and coworker pursued a semi-rational peptidomimetic approach aiming at 

generating a series of new inhibitors with a reduced peptide character. 2 0 3  

The tripeptide lead compounds, PY*L (IC5 0  182 pM, a  15, in vitro assay) and AY*L (IC5 0  

217 pM, cr 55, in vitro assay) previously discovered, were modified by substituting the 

proline and alanine residue by aromatic groups and replacing the peptide bond that is the 

NH2-terminal to the phosphotyrosine (P). The resulting series o f pepitodomimetics (of 

generic structural formula R’Y*L) were evaluated for their ability to disrupt STAT3/DNA

binding activity in vitro.

The most potent compounds obtained showed IC5 0  values that range 

between 75 and 38 pM. ISS610 (6 6 ) was chosen as representing
IS S 610  (66),
iCso=42̂ tM compound for cell studies to investigate its ability to reproduce the 

biological activity o f the phosphopeptide. It was found to inhibit constitutive STAT3 activity 

in different types of cells inducing cell growth inhibition and apoptosis. What is promising, 

however, is the fact that peptidomimetic approach can be undertaken to design relatively 

small peptidomimetics and, ultimately, small non-peptide inhibitors o f STAT3, that can be 

recognized by sites that bind to larger peptides.

Targeting protein-protein interaction has represented a hard and challenging goal to achieve 

for drug discovery. The identification of “drug-like” small molecule inhibitors o f protein- 

protein interactions and their function has proved difficult. However, in view of the 

increasing number o f publications reporting small-molecule inhibitors o f protein-protein 

interactions , 6 1 ,7 3  significant efforts have been made in pursuing the small molecule-based 

approach to target directly STAT3.

Computer-based screening strategy represents a valuable approach to identify small- 

molecules disrupting protein-protein interaction as a primary mode o f action. Knowledge of 

the three-dimensional structure of a target, obtained using X-ray crystallography provides a 

notable improvement for the rational design o f specific inhibitor molecules that target
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functionally important parts o f the structure. Moreover, the Protein Data Bank archive (PDB) 

of macromolecular structural data is freely available in the public domain providing a variety 

of tools for studying the structures of biological macromolecules and their relationships to 

sequence, function, and disease. Databases o f virtual libraries o f small molecules organic 

compounds (for which the three-dimensional structural models have been defined or could be 

generated from the 2D chemical structures by using the appropriate computational program) 

are also freely provide by the National Cancer Institute (NCI), or are commercially available 

from other chemical catalogs (i.e. Merck Index, Sigma-Aldrich). A fruitful application o f the 

increasing number o f structural data is the so-called in silico screening o f virtual libraries of 

compounds against a known structure of a protein target. The structure-based design can be 

used as a productive approach for generating initial leads with the advantage that the virtual 

libraries can contain a very large number o f compounds characterized by a high chemical 

diversity. Furthermore, drug-like2 0 4 ,7 0  and ADME (absorption, distribution, metabolism, 

excretion) features can be easily incorporated in the early in silico-screening stage o f the 

discovery cycle. Once the region targeted for docking is defined, molecular docking program 

can be used to predict the binding model and estimate the binding affinity o f the compounds. 

The best-scored compounds can be evaluated for their activity in vitro and in vivo.

The first report o f a low-molecular-weight compound inhibitor o f STAT3 function discovered 

through virtual database screening2 0 5  has been recently published. In this study a virtual 

library o f 429,000 compounds was screened by computational screening to identify potential 

small molecule inhibitors of STAT3. The crystal structure STAT3(3 solved in 2.25-A 

resolution (Figure 17, 18, and 19)154 (pdb ID code 1BG1) was used.

O f the 100 best-scored compounds selected as candidates for biological testing, STA-21 (67) 

showed a significant inhibition o f  STAT3 dimerization, DNA binding, nucleus translocation 

and STAT3-regulated antiapoptotic factors such as B c1-xl and cyclin D1 in breast carcinoma 

cells.

The phosphorylation o f STAT3 upstream regulators JAK2, Src, and 

EGF receptors were not affected by STA-21. STA-21 reduces the 

survival o f breast carcinoma cells with constitutive STAT3 signaling 

but has a minimal effect on the cells in which constitutive STAT3

Novel platinum (IV)-containing compounds have been also evaluated for their ability to 

disrupt STAT3 activity . 2 0 6  The platinum derivatives CPA-1 (6 8 ), CPA-3 (69), CPA-7 (70) 

and and platinum(IV) complex 71 exhibit inhibitory effect on in vitro STAT3-DNA binding

STA-21 (67)

signaling is absent.
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activity (IC5 0  = 5.0 pM, IC5 0  = 1.5 pM, and IC5 0  = 5.8 pM, IC5 0  = not reported, respectively) 

suggesting a direct interaction o f the platinum compounds with the protein. CPA-1 (6 8 ), 

CPA-7 (70), and the platinum(IV) complex 71 have been found to inhibit cell growth and 

induce apoptosis in malignant cells characterized by persistently active STAT3 (Figure 7) . 2 0 6

F igu re  22. S tru c tu res  o f  th e  p la tin u m  d eriv a tiv e s C PA -1 (68 ), C P A -3  (69 ), C P A -7  (70 ), an d  p la tin u m (IV ) 

co m p lex  71, an d  IS3 295  (72).
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CPA-1 (68) CPA-3 (69) CPA-7 (70) Platinum (IV) IS3 295 (72)
tetrachloride (71)

Cells that do not contain constitutive active STAT3 were marginally affected or were not 

affected by these compounds. CPA-7 (70) was the most potent compound in vitro, in the 

whole cells and induced inhibition o f STAT3 and tumour regression in the animal models. In 

contrast, absence o f inhibitory effect against STAT3 was observed for CPA-3 (69), which is a 

platinum (II) complex in vivo, indicating the possibility o f different modes o f action 

occurring in the cells for platinum (II) compounds. The influence of the oxidation state of 

platinum on the biological activity o f CPA-1 (6 8 ) and CPA-7 (70) needs to be addressed and 

further investigated. Further studies led to the identification o f a new platinum(IV) 

compound, IS3 295 (72), as a potent STAT3 inhibitor (Figure 22 ) . 2 0 7  In vitro DNA-binding 

assay IS3 295 inhibits STAT3 activated dimer with an IC50 o f 1.4 pM. Further experiments 

have shown that I S3 295 interacts with the inactive STAT3 monomer but lacks of inhibitory 

effect when the protein is pre-bound to DNA. In transformed cells the observed biological 

effect o f IS3 295 is the repression o f the expression, STAT3-mediated genes such as Bcl-xL, 

cyclin D, and VEGFs, blockade o f cell cycle progression and proliferation and induction of 

apoptosis. These findings suggest that the antitumour properties o f the platinum(IV) 

compounds 71 may derive from their anti-STAT3 activity. However the mode o f action has

not been elucidated and interactions with other 

% ^ - n / 0 C H 3  signaling proteins might contribute to the overall effect 

and cannot be excluded.

/ \ * 0H In the effort to discover novel small molecules
HO

inhibitors o f STAT3, Maloney et al. evaluated a library 

Phaeosphaeride a  (7 3 ) Phaeosphaeride b (74) of 10,000 compounds and natural product extracts and 

organic extracts of fungal culture for their ability to disrupt STAT3/DNA binding . 2 0 8  A fungal
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material extracted from plant samples collected in the Archbold Biological Station (Florida, 

USA), showed a potent activity against STAT3. The active ingredient of the fungal extract 

was isolated, characterized and identified as Phaeosphaeride A (73). Also the inactive 

diastereomer Phaeosphaeride B (74) was isolated and characterized. Phaeosphaeride A 

inhibits STAT3 with an IC5 0  o f 0.61 pM in the ELISA-based screen. Moreover, 

Phaeosphaeride A (73) induced inhibition o f cell growth with an IC5 0  o f 6.7 pM. The low 

micromolar activity may be due to the interaction with another target in the cell, confirmed by 

testing Phaeosphaeride A (73) using STAT3 independent cell lines.

Lee et al. reported flavopiridol ability to disrupt STAT3/DNA interaction and attenuate 

STAT3-directed transcription.

3.5 Conclusion

Given the general difficulty and the novelty of STAT3 as target and the importance of the 

progress made in the identification of small molecules inhibitor o f STAT3, this field of drug- 

discovery is likely to receive increased attention in the future and to stimulate challenging and 

competitive research.

In the context of the identification o f small molecule inhibitors of 

STAT3, recent studies by Lee et al. investigated the hypothesis that an 

alternative mode o f action o f potential experimental drug Flavopiridol 

(75) might involve disruption o f STAT3 transcription activity.
OH 0

Flavopiridol (7 5 ) Flavopiridol (75) is important cytotoxic agent evaluated in phase I and II 

clinical trials . 2 0 9 ,2 1 0

Experimental data initially indicated that flavopiridol inhibits cyclin-dependent kinases211 

inducing apoptosis in human cancer cell lines . 2 1 1 ,2 1 2  Based on their experimental evidence,
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4.0 Protein phosphatase SHP-2 as anticancer target

4.1 Introduction

Reversible tyrosine phosphorylation is a key mechanism by which signaling pathways are 

governed and regulated in eukaryotic cells. Protein tyrosine phosphatases (PTPs), which 

catalyse protein dephosphorylation, and tyrosine kinases (PTKs), responsible for 

phosphorylation, function as modulators o f tyrosine phosphorylation (Scheme 1).

S ch em e 1. P h o sp h o ry la tio n  an d  d e p h o sp h o ry la tio n  o f  ty rosine .

ATP ADP
Kinase

Phosphatase PhosphotyrosineTyrosine

0 = P - 0  H20
HO

It is well known that abnormal PTK activity due to mutations or overexpression results in 

oncogenic transformation, and inhibition of tyrosine kinase activity is now established 

anticancer therapy . 2 1 3  While some PTPs have been shown to act as tumour suppressors , 2 1 4  it 

has become more and more evident that deregulation of some tyrosine phosphatases activity 

is associated with tumourgenesis in different types of cancer. The src homology 2 (SH2) 

domain containing tyrosine phosphatases SHP-2 is a protein-tyrosine phosphatase implicated 

in pathogenesis o f human diseases including Noonan syndrome (NS ) , 2 1 5  Leopard
7 ] £ \ 'J \7  910  9 9 0

syndrome, ’ juvenile myelomonocytic leukemia (JMML), " and some adult 

leukemias . 22 1 The emerging oncogenic role of SHP-2 has led to its consideration as novel 

target for anticancer therapy offering the prospect o f its pharmacological inhibition. The 

discovery o f small molecule inhibitors o f SHP-2 activity has become a topic o f great interest 

in our research in order to provide pharmacologic agents and molecular probes for evaluation 

and validation o f SHP-2 as therapeutic target and for chemical biology studies of its function 

and signaling mechanism.

4.2 The structural and functional characteristics of SHP-2222

The SH2 domain-containing PTPs (SHPs) are small, highly conserved subfamily of cytosolic 

protein-tyrosine phophatases containing two types o f domains that can bind phosphotyrosine
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— SH2 and PTP. There are two SHPs present in vertebrates — SHP-1 and SHP-2. The 

structures o f  both SHP-1 and SHP-2 have been determ ined (Figure 23).223,224 SHPs have two 

SH2 dom ains at its N -term inus (N-SH2 and C-SH2), a central protein-tyrosine phosphatases 

(PTP) dom ain and a C-term inal tail containing two tyrosine-phosphorylation sites. SHP-2 

also has a proline-rich domain.

F ig u re  23. A ) A  sc h e m a tic  d ra w in g  sh o w in g  th e  se c o n d a ry  s tru c tu re  a n d  o rg a n iz a tio n  o f  th e  d o m a in s  in S H P -2 . 

T h e  N - a n d  C -S H 2  d o m a in s  a re  in y e llo w  an d  g re en ; th e  c a ta ly tic  P T P  d o m a in  is b lu e . B ) S c h e m a tic  d ra w in g  

sh o w in g  th e  se c o n d a ry  s tru c tu re  a n d  o rg a n iz a tio n  o f  th e  d o m a in s  in S H P -1 . T h e  N - a n d  C -S H 2  d o m a in s  a re  in 

b lu e  a n d  g re en ; th e  c a ta ly tic  P T P  d o m a in  is red .

Structural studies have suggested223 a model for SHPs catalytic regulation. SHPs have a low 

basal catalytic activity because o f  the “closed” dom ain rearrangem ent in w hich the tw o SH2 

dom ains contour around the phosphatase domain. The N -SH 2 dom ain is wedged into and 

binds to the PTP dom ain22̂  resulting in a “mutual allosteric inhibition” (the N -SH 2 inhibits 

the PTP domain and the PTP dom ain contorts the Tyr-P binding pocket o f  the N-SH2 on the 

opposite surface). The C-SH2 does not interact with the PTP dom ain and its conform ation is 

left unperturbed (Figure 24).

Interaction o f  the SHP-binding ligands (bisphosphorylated peptides containing two 

phosphotyrosine residues — one that can bind the C-SH2 and another that can bind the N- 

SH2) activates the enzym e. The phosphopeptide binding site o f  both SH2 dom ains are 

exposed on the surface o f  the m olecule, away from the phosphatase dom ain. The C-SH2 first 

binds to one o f  the Tyr-P residues o f  the bisphosphorylated ligand providing the binding 

energy and increasing the concentration o f  the ligand for the N-SH 2, which functions as an 

allosteric switch. Binding o f  the N-SH2 to the second site o f  the ligand results in a 

conform ational change and resolves the inhibitory interaction o f  the N-SH2 and the PTP

49



dom ain222 (Figure 24). A second regulatory mechanism proposed for SHPs activation implies 

the intram olecular binding o f  phosphorylated Tyr542 and Tyr 580 o f  the C-term inal tail to the 

N-SH2 and C-SH2 respectively. Once activated, SHPs recruit and dephosphorylate their 

substrate (Figure 24).222

F ig u re  24. a) S c h e m a tic  re p re se n ta tio n  o f  S H 2  a n d  P T P  d o m a in s , a n d  C  te rm in a l ta il o f  th e  S H P s . b ) P o ten tia l 

m ec h an ism  o f  S H P s re g u la tio n , x) In th e  f irs t m ec h an ism  S H P  is a c tiv a ted  by  a  S H P -b in d in g  p ro te in  (B P ) 

c o n ta in in g  tw o  p h o sp h o ty ro s in e  re s id u es  (p Y ). x x ) S H P  a c tiv a tio n  v ia  in tra m o le c u la r  b in d in g  o f  p h o sp h o ry la te d  

C -ta il re s id u es .

ActiveInactive

C-SH2
Y 542 Y 580

Y 542  Y 580

The catalytic or PTP loop (also known as signature motif) is a structural feature highly 

conserved among the PTPs. The PTP loop com prises 11 residues [(I/V)HCxAGxxR(S/T)G] 

(x = any am inoacid). Key conserved features o f  the SHP-2 PTP catalytic cleft include 

Cys459, the catalityc nucleophile. Several m ainchain amide groups in the PTP signature 

m otif form the phosphate binding cleft, which, together with Arg465, hydrogen-bond to the 

phosphate oxygens o f  bound substrate. The binding pocket is also characterized by the 

closure o f  the so-called “ WPD loop” upon ligand binding. On the near W PD loop there are
• • • 991

key residue such as Asp425, that functions as a genaral acid in the catalysis.

SHP-2 is a cysteine-dependent phosphatase (CDPs). It catalyses the hydrolysis o f  a 

phosphoester bond via a phospho-cysteine intermediate (Figure 25). W hen the substrate 

enters the binding site, conform ational changes occur in the W PD loop. The loop closes over 

the phenyl ring o f  the tyrosine residue, holding and positioning so that the nucleophilic attack 

occurs. The free cysteine nucleophile forms a bond with the phosphorus atom o f  the
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phosphate moiety, and the P-O bond linking the phosphate group to the tyrosine is protonated 

by Asp425. This will neutralized the tyrosine, free to diffuse away from the catalytic pocket. 

The phosphatase is removed from the cysteine via a nucleophilic attack of a water molecule, 

thus regenerating the active site for another dephosphorylation reaction.

Figure 25. M ech an ism  o f  ty ro s in e  d e p h o sp h o ry la tio n  by  S H P-2 .
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Although SHP-1 and SHP-2 share significant overall sequence identity (60% overall 

identity), it is generally accepted that they have distinct functions in cell signaling.

SHP-1, expressed primarily in hematopoietic epithelial cells, and has been shown to 

negatively regulate signaling transduction by dephosphorylation o f the appropriate substrate. 

Its function in different pathways has been amply studied and documented.

SHP-2 is expressed in most cell types. It has been recognized for its unique positive role in
000 00̂regulation o f Ras-Erk (extracellular signal-regulated kinase) pathway ’ (Figure 26) 

stimulated by epidermal growth factors and cytokines. Therefore, SHP-2 functions as a
OOfs OOQpositive regulator o f cell proliferation. ' Ras protein belongs to the superfamily o f small 

guanosine triphosphate hydrolases (GTPases) and is considered a crucial node for signaling 

routes controlling cell proliferation, differentiation, survival, migration, and metabolism.

Ras activation is induced by growth factors receptors acting through receptor tyrosine kinases 

(RTKs) (Figure 26). It is well understood that multiple pathways can lead to Ras activation. 

Following growth factor (GR) stimulation, RTKs trans-autophosphotylate on specific tyrosine 

residues, creating a binding site for diverse docking proteins containing SH2-domain . 2 2 5  

These include the proteins She and Grb2 and G abl. Mechanism o f Gabl activation involves 

phosphorylation on specific tyrosine residues. Once phosphorylated, Gabl recruits a series of 

SH2 domain-containing proteins that include SHP-2. Cunnick and coworkers reported that 

phosphotyrosine 627 and 659 o f Gabl constitute a bisphosphoryl tyrosine-based activation 

motif for binding and activation o f SHP-2 . 2 3 0  Moreover, a set o f independent data suggested
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that Gabl-SHP-2 interaction and SHP-2 PTP activity are necessary for Ras-Erk pathway 

activation by growth factors and cytokines . 2 2 2 2 3 0 ' 2 3 4  To date, SHP-2 function upstream from 

Ras has not elucidated and the biochemical model illustrating the physiological substrates 

linking SHP-2 to Ras remain to be established.

F ig u re  26. M odel fo r R as p a th w ay  a c tiv a tio n  d u rin g  E G F  stim u la tio n .

R eceptor tyrosine k in a ses (EGFR)

lab SHP-2
S o s  Grb2 > p Y -

Substrate(s)

Ras

01

4.3 SHP-2 in hum an cancer and diseases

Implication o f SHP-2 mutations in several human diseases has been amply documented. 

Mutations o f the human gene PTPN11, encoding SHP-2, have been detected in patients with 

juvenile (JMML) and childhood leukemias2 1 8  2 1 9  23̂  (the major Shp2-asssociated malignancy), 

Leopard Syndrome . 2 1 6  2 1 7  Noonan Syndrome (NS), a developmental disorder characterized by 

an abnormal face, webbed neck, proportionate short stature and cardiac abnormalities. 

Overexpression of SHP-2 appears to be implicated in leukemogenesis in adult human 

leukemia . 221 SHP-2 has been also associated with pathogenesis by Helicobacter pylori, the 

major cause o f gastric ulcer and carcinoma worldwide. ’ In gastric epithelial cells, the H. 

pylori virulence determinant, CagA protein, becomes tyrosyl phosphorylated, and recruits and
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activates SHP-2. Experimental evidences suggest that SHP-2 recruitment is indispensable for 

CagA ability to induce transformation o f gastric epithelial cells.

Many o f the disease-associated SHP-2 mutations effect the N-SH2/PTP domain interface and 

were demonstrated to disrupt the “mutual allosteric inhibition’' between the N-SH2 and PTP 

domain and lead to SHP-2 activation. Impairing the N-SH2/PTP inhibitory interaction 

results in an “activated” SHP-2 protein and increased basal activity. E76A is a severe 

mutation found in JMML, which results in total relief o f the allosteric inhibition o f the PTP 

domain by the N-SH2 (Figure 27).

F ig u re  27 . S H P -2  m u ta tio n  in  N o o n a n  sy n d ro m e  a n d  JM M L . i) D 6 1 G  m u ta tio n , ii) E 7 6 A  m u ta tio n , 

c) Normal individue (inactive) N oonan syn d rom e, JMML (active)

C-SH2 ■. m 
PTP Y542 Y580

C-SH2 N-SH2

PTP Y542 Y580

PTPN-SH2 Y542 Y580

A series o f recent publications have presented the experimental evidences o f  the implication 

o f SHP-2 mutations in leukemogenesis. ' In agreement with the above reported findings, 

bone marrow cells, transformed by PTPN11 mutants, showed an enhanced sensitivity to 

cytokines stimulation resulting in abnormal Ras activity . 2 3 9  2 4 0  Studies by Mohi et al. proved 

that, in order for SHP-2 mutants to induce aberrant Ras activation, Gab2/SHP-2 interaction is 

required. Together all these data and findings provide more evidences o f PTPN11 

oncogenicity and further support SHP-2 as therapeutic target for treatment o f cancer.

4.4 SHP-2 inhibitors as potential an ticancer drugs

SHP-2 represents an ideal candidate target for anticancer drug development as result o f the 

discovery o f its positive regulation o f the Ras/Erk signaling pathway and the identification o f 

oncogenic mutations o f SHP-2. The development o f PTP inhibitors as potential anticancer 

drugs has gained more and more interest due to the increasing number o f protein-tyrosine 

phosphatases with a proven or potential oncogenic role . 2 1 4 ,2 4 3  Significant and successful 

efforts have been made to identify potent and selective PTP inhibitors. The pool o f natural 

products has always represented a precious source o f compounds, but the increasing number
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of crystallographic data available has provided the tools for the structure-base design of 

inhibitors. 2 4 3  The identification o f small molecules inhibitors provides powerful tools to

determine whether protein tyrosine phosphatases are suitable candidates for drug 

development, or, in other words, to verify their “druggability”. Due to the novelty of the 

research field, potent inhibitors are lacking for SHP-2 and a few examples are reported in the 

literature. Cell penetrating small molecules would be extremely valuable reagents to probe 

the biological function of SHP-2 and would provide rational design parameters for potential 

inhibitors. A detailed understanding at molecular level o f SHP-2 and SHP-1 catalysis and 

substrate specificity is an indispensable requisite for the development of specific inhibitors. 

However, several studies offer the molecular basis for the development o f selective SHP-2 

inhibitors binding to the PTP catalytic cleft as a viable and successful strategy. The reported 

crystal structures o f tyrosine phosphateses SHP-1 and SHP-2 have provided the molecular 

information basilar for understanding the structural diversity between the catalytic cavity in 

SHP-2 and SHP-1 . 2 2 3 ,2 2 4  2 4 4  In addition, various experiments indicate that, although SH2 and 

PTP domains are both required for normal SHP-2 function, the PTP domain contributes

NSC87877 76 potently inhibited SHP-2 (IC5 0  = 0.318 ± 0.049 pM) selectively over diverse 

PTPs, but it seemed to have no selectivity between SHP-2 and SHP-1 (IC 5 0  = 0.355 ± 0.073 

pM).

In the design or identification of SHP-2 inhibitors the selectivity problem needs to be 

addressed. Several hits from the NCI Diversity Set, displayed selectivity between SHP-1 and 

SHP-2, indicating that development o f SHP-2 selective inhibitors should be possible. 

Computational studies also suggested that compound 76 binds to the SHP-2 PTP domain. 

Computer docking indicated that the B-ring sulfonic acid group forms a hydrogen bond with 

the NH-group of Arg465 residue located at the base o f the PTP domain2 4 7  (Figure 28).

The A-ring sulfonic acid forms hydrogen bonds with the side-chain NH3 group o f Lys280 and 

the side-chain NH2  group o f Asn281, PTP amino acid residues .2 4 7  The involvement of 

Lys280 and Asn281 in NSC87877 binding to SHP-2 was supported by further docking

substantially to the SHP-2 specificity in vivo.245

The first successful small molecule acting on SHP-2 to inhibit 

Erkl/2 activation has been recently reported in the literature . 2 4 6  

Our group with collaboration o f Dr Wu identified 8-hydroxy-7- 

(6-sulphonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid 

(NSC87877) (76) as a potent SHP-2 inhibitor by screening the 

National Cancer Institute Diversity Set.NSC 87877 (76)
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studies involving SHP-2 mutants SHP-2V280 and SHP-2RD (containing changes in the 

Lys280 and Asn281). An increase in the docking scores was observed. Compound 76 lower 

binding affinity for SHP-2 mutants was confirmed by increased IC5o values in vitro 

experiments (SHP-2V280 IC5 0  = 1 . 1 1 0  ± 0.136 pM, SHP-2RD IC5 0  = 1.087 ± 0.162 pM).

acids derivatives , 2 4 8 ,2 5 0 ' 2 5 2  malonic acid derivatives , 2 4 8 ,2 5 3 ' 2 5 5  sulfonic acids , 2 5 6 ,2 5 7  cinnamic 

acids , 2 4 8 ,2 5 8 ,2 5 9  tetrazole , 2 4 8  2 5 6  and oxamic acids . 2 4 8 ,2 6 0 ,2 6 1  In the development o f PTP 

inhibitors, the naphthyl-substituted or biphenyl compounds generally show the highest 

potency because o f the role played by hydrophobic interactions in the binding to the active

structure optimization could be conducted by replacing the diazo bond with its stable 

bioisosters such as sulfonamide and amide bond. The diazo bond represents a structural 

shortfall. It can be easily metabolized in the human body by enzymes generating the 

corresponding aniline. This could lead to loss o f activity or, perhaps, to an increased toxicity 

due to the properties o f the metabolites.

Unfortunately, the phosphate mimics constitute often highly-charged components o f the 

molecules and, due to the polarity, many PTP inhibitors lack membrane permeability limiting
O/IO m

their therapeutic utility. Huang and coworkers described a structure-base design o f  PTP IB 

phosphatase inhibitors which incorporates a phosphate mimic group, an aromatic ring 

imitating the aryl ring in the pTyr, and additional structural motifs that could enhance affinity 

and selectivity by interacting with the enzyme surface. Among the selected compounds 

subjected to docking studies, bis(4-trifluoromethylsulfonylphenyl)disulfide (77) was chosen 

as lead candidate. The lead optimization led to the identification o f suitable linkages to the 

replace the metabolically labile disulfide bond and indicated the easily chemically accessible

H 'H, 1.8 A

F ig u r e  28 . M o le c u la r  m o d e l o f  7 6  b in d in g  to  th e  S H P - 

2 P T P  d o m a in .

Arg

The aryl sulfonic acid group has been 

previously identified as pharmacophore o f 

various PTP inhibitors in vitro , 2 4 8 -2 4 9  It 

appears to interact with the PTP catalytic site 

acting as a mimic o f phosphate group in pTyr. 

Numerous and selective PTP inhibitors

containing phosphate mimicking moieties have been reported. These include phosphonic

site . 2 4 3  The hydroxyl group and the quinoline moiety may be critical for activity. Further
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trifluoromethyl sulfonamide group (—NHSO 2 CF3 ) as further neutral phosphate mimic (Figure 

29). Biochemical screening results showed that compound 77 (Figure 29) and its derivatives 

78 (Figure 30) have a significant inhibitory activity toward PTP IB and other phoshpateses 

including SHP-2 (Figure 29).

F ig u re  29 . S 0 2C F 3 an d  N H S 0 2C F 3 as u n c h a rg e d  p h o sp h a te  m im ic . L ead  c o m p o u n d  77.

SHP-2, IC50= 19 MM 
PTP 1 B, IC5 0  = 6 8  uM

The spatial relationship between the two aromatic rings appeared to be an important feature to 

determine a good binding affinity. The 1,4 or 1,3-di-substituted phenyl linkages have a key 

role to place the SO2CF3 groups in the appropriate position to maximize the interactions with 

the aminoacid residues resulting in a significant increase o f the activity as shown by 

compound 78 (Figure 30). Moreover, further SAR indicated that both SO2CF3 are essential 

for good activity (data not shown).

The two-site-binders constitute a well-explored template for development o f PTP selective 

inhibitors . 2 4 3  This approach is based on the discovery o f presence o f a second aryl-phosphate- 

binding site adjacent to the active site. This second site is less conserved among PTPs . 2 6 2  

Bidentated ligands binding the two sites may exhibit an enhanced activity and selectivity.

The trifluoromethyl sulfonyl and trifluoromethyl sulfonamides 78 possess a remarkable 

structural similarity to 76. It is tempting to suggest that they share a similar mode o f action, 

although crystallography studies and NSC87877-based SAR studies would be necessary to 

verity the hypothesis.

F ig u re  30 . —S 0 2C F 3 c o m p o u n d  78.

78

SHP-2, IC5 0  = 1.8 UM 
PTP1B, IC5 0  = 2.5 uM

Finally, targeting the SH2 domain has been suggested as feasible and useful option to achieve 

selectivity . 2 1 4  The blockade o f the SH2 domain-dependent protein-protein interaction has

f 3 c o 2s h n

n h s o 2 c f 3

*
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become a valuable strategy to prevent phosphorylated activated receptors from binding the 

SH2 domain o f signaling partners . 2 6 3 ,2 6 4

Unfortunately, early SHP1 and SHP-2 inhibitor designs relied on peptidic structures2 6 5 ,2 6 6  and 

there are no small molecules ligands of the SH2 domain reported in the literature.

4.5 Conclusion

The oncogenic gain-of-function mutations in SHP-2, indicate SHP-2 as potential anticancer 

target. It appears clear that, among the protein tyrosine phospatases, SHP-2 is beginning to 

move into the focus o f medicinal chemistry research and will most likely be a prime 

candidate for drug development. Although significant progress has been made toward an 

understanding o f SHP-2 biological function its involvement in the development o f diseases, 

continued studies should elucidate further its role in signal transduction pathways at 

satisfying levels and identify the signal downstream from SHP-2. Small molecule inhibitors 

are much needed as valuable tools for chemical and biological studies o f SHP-2 function and 

validation o f SHP-2 as a therapeutic target.
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5.0 Aurora kinases as targets for anticancer drug development

5.1 Introduction

In cellular division progression through M-phase is controlled by phosphorylation events 

performed by several serine/threonine kinases, known as mitotic kinases. Among this 

network of regulatory proteins, the three human homologues o f Aurora kinase (A, B, and C) 

have been amply investigated as they are essential for the execution of numerous mitotic 

events and required for genome integrity and stability. Studies have shown that Aurora A and 

B are frequently overexpressed in various cancer cells when compared to adjacent normal 

tissue, indicating their implication in cancer. 2 6 7  Aurora-A also acts as an oncogene and 

induces malignant transformation when overexpressed . 2 6 7  In recent years there has been great 

interest in developing small molecules inhibitors o f Aurora kinases as potential novel 

anticancer drugs.

5.2 Biological roles of the Aurora Kinases268'271

Proteins kinases are enzymes that catalyse the transfer o f orthophosphate residue (PO3 ) from 

adenosine-5’-triphosphate (ATP) to hydroxyl group o f a specific amino acid residue of their 

substrate targets. Protein kinases are classified, based on their substrate specificity, as 

serine/threonine and tyrosine kinases. The Aurora kinases comprise a family of 

serine/threonine kinases consist of three members — A, B and C — in vertebrate species. They 

participate in and regulated different mitotic events . 2 7 2  The overall homology between the 

three Auroras in human is about 60% at amino acid level, with their highly conserved N- 

terminal catalytic domain and a short C-terminal. 2 7 3  These two domains are linked together 

by a hinge region. The crystal structure of the C-terminal catalytic domain o f Aurora-A 

bound to adenosine has been recently determined (pdblmuo) (Figure 31) by X-ray 

diffraction 2 7 4  The adenosine residue binds in a deep hydrophobic cleft at the interface 

between the C- and N-terminal domains. Residues Glu211 and Ala213 o f the hinge region o f 

the kinase specifically hydrogen bond to the purine ring o f adenosine (Figure 31). The side 

chain o f the residue Trp277, located in the activation loop, binds to adenosine through 

specific hydrogen bonds (Figure 31). The active site cleft is bounded by a glycine-rich loop, 

which contains a consensus kinase sequence (Gly-x-Gly-xx-Gly) and the activation loop. The 

purine ring o f adenosine is positioned between the residue Leu263 and the hydrophibic 

surface of the glycine-rich loop (Leu 137, and V ail47) and Ala 160. Thr288, which is 

phosphorylated during the activation of Aurora-A is located in the activation loop.

59



F ig u r e  31 . T h e  o v e ra ll s tru c tu re  o f  th e  A u ro ra -A  a d en o s in e  c o m p le x 274. T h e  h in g e  re g io n , th e  g ly c in e -ric h  lo op , 

and  th e  a c tiv a tio n  loop  a re  c o lo u re d  in g reen , p in k , and  b lu e , re sp ec tiv e ly . R e s id u e s  G lu 2 1 1 an d  A la2 1 3  o f  th e  

h in g e  reg io n  o f  the  k in ase  sp e c if ic a lly  h y d ro g e n  b o n d  to  th e  p u rin e  r in g  o f  a d e n o s in e . T rp 2 7 7 , lo ca ted  in the  

ac tiv a tio n  loop , b in d s  to  a d e n o s in e  th ro u g h  sp e c if ic  h y d ro g e n  b o n d s .
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Although the catalytic domains o f the Aurora kinases are highly conserved, the Auroras are 

characterized by different substrate affinity, subcellular localization and associated activities. 

Their activities gradually increase at the S-phase to peak at the M-phase. The kinases are 

degraded by the proteasome upon exit from mitosis.

Aurora-A localizes to the centrosomes and to the spindle poles in mitosis. It is believed to be 

essential for the regulation o f several processes such as building the bipolar spindle, including 

centrosome maturation and separation. Aurora-A kinase activity is regulated by 

autophosphorylation o f Thr288 during G2/M phase upon interacting with its binding partner 

TPX2 (a protein playing a key role in spindle assembly), Ajuba, and HEF1 . 2 7 5 - 2 7 7  Aurora-A 

phosphorylates several proteins which are important in mitosis, including histone H3 on 

S eri0 . 2 7 8  2 7 9  Repression o f Aurora-A expression by genetic techniques has been shown to 

delay mitotic entry human cells276, and its overexpression can compromise the spindle check­

points2 8 0  and inhibit cytokinesis . 281

Aurora-B is a chromosomal passenger, a protein localizing to the centromeres in the early 

phase o f mitosis, but relocating to the spindle midzone following anaphase onset. It plays an 

essential role in chromosome segregation and cytokinesis. Aurora-B activation is triggered by 

authophosphorylation after association with its substrates INCENP and survivin . 2 8 2  2 8 3  During
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mitosis, Aurora-B is responsible for the phosphorylation o f histone H3 on both SerlO and 

Ser28 and of centromere protein A (CENP-A) on Ser7 . 2 8 4 ,2 8 5  These modifications appear to 

be required for proper chromosome dynamics during mitosis. Aurora-B kinase activity is 

also required for bipolar chromosome orientation and condensation. Little is known about 

Aurora-C functional role. It localizes to the spindle poles in the late stage of mitosis . 2 8 6

5.3 Aurora kinases and cancer

Association o f Aurora-kinases with cancer has been amply documented. Aurora-A and B and
267  268  •C are overexpressed in a wide range o f different in human tumours ’ . Overexpression of

the Aurora kinases is likely to be regulated by transcriptional activation and suppression of 

protein degradation or by gene amplification.

Importantly, there is much evidence that Aurora-A acts as an oncoprotein. Overexpression of
771 787Aurora-A has been often correlated to gene amplification in various malignant tumour. ’

In contrast, the gene encoding for Aurora-B is not amplified in human tumours.

The indication of the potential oncogenic role o f Aurora-A came with the observation that its
7A7 788overexpression induces malignant cell transformation. ’ Overexpression o f Aurora-A 

induces disruption o f cell-cycle checkpoints function such as the DNA-damage-induced G2
771 78Q 771checkpoint ’ and tetraploidization. Tetraploidization is a precursor o f aneuploidy, an 

abnormality in gene copy number, which is the most prevalent cell genomic alteration 

identified in tumours , 2 9 0  and related to cancer development. 29 1 Normal cells have a 

checkpoint (known as post-mitotic G1 checkpoint) that induces G1 arrest when cells become 

tetraploid. When Aurora-A is overexpressed in cells lacking the post-mitotic G1 checkpoint, 

tetraploid cells continue their cell cycle acquiring extra centrosomes and further chromosome 

instability. Aurora A is also mutated in certain cancers. It has been recently reported a 

correlation between Aurora-A and the tumour suppressor p53, suggesting its real connection 

to oncogenesis. Although only Aurora-A is considered an oncogene, cells overexpressing 

Aurora-B induced aggressive tumour and metastasis when implanted in nude mice .2 9 2 2 9 3  

Aurora-C function in tumourgenesis is presently unclear.

5.4 Aurora kinases inhibitors

In view o f their implication in tumorgenesis, the Auroras are promising targets for anticancer 

drug development. Disruption of their ability to interact with their binding partners could be 

one potential strategy to inhibiting their function. However, targeting protein-protein 

interaction has been demonstrated to be problematic and difficult to achieve. The Auroras are
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amenable to small molecule inhibition by targeting the kinase activity at the ATP binding 

site. This has been proven to be a feasible and successful approach. Inhibition o f Aurora 

kinases activity disrupts the cell cycle and block proliferation. Many inhibitors are now 

available. Hesperadin2 9 4  (79), VX680295 (80), and ZM4474392 9 6  (81) (Figure 32) represent 

the first generation small molecules inhibitors of Aurora kinases. They were designed from 

the Aurora-A crystal structure2 7 4  to target the catalytic domain o f the kinases and occupy the 

ATP binding-site.

F igu re  32. F irst g en era tio n  sm all m o lecu le s  inh ib ito rs  o f  A u ro ra  k inases.
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Due to the fact that the catalytic domain of the three kinases is highly conserved, these drugs 

were expected to inhibit all three Auroras. Given the oncogenic role or the overexpression of 

the three kinases in tumours, targeting the all the members o f the Auroras family might not 

interfere with the therapeutic success. These first-generation small molecule inhibitors 

showed sufficient selectivity for Aurora family to analyze the phenotype deriving from 

inhibition o f these enzymes. Hesperadin (79) inhibits Aurora-B in vitro (IC5 0  value of 0.25 

pM), while exhibits more potency (0.02-0.1 juM) in cell based assays . 2 9 4  Hesperadin (79) has 

apparently not been tested against Aurora-A. The quinazoline derivative 81, identified as an 

ATP competitive inhibitor, in vitro, inhibits Aurora-A and B with IC5 0  values of 

approximately 100 nM . 2 9 6  VX680 (80) inhibits Aurora-A, B, and C, in vitro with inhibition 

constant 0.6, 18, and 4.6 nM, respectively. All three compounds inhibit phosphorylation of 

histone H3 on serine 10 and cytokinesis . 2 9 4 ' 2 9 6  However, the cells do not undergo a simple 

mitotic arrest, the cell cycle proceeds with normal timing, and entry and exit from mitosis are 

unaffected. This cell cycle progression without resulting cytokinesis induces tetraploid cells. 

Longer exposures reveal cell-line-dependent effects . 2 9 4 ' 2 9 6  Treated cells either continue to 

cycle without cytokinesis and become highly polyploid (and ultimately die undergoing 

apoptosis) or alternatively undergo cell cycle arrest. Moreover, VX-680 (80) displays potent
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antitumor activity in mice models, is well-tolerated preclinically, and has subsequently
295entered clinical development.

The unique effect on tumour cells, shown by Aurora kinases inhibitors, distinguishes their 

behavior from that of classic “antimitotic agents”, known to lead to mitotic arrest.

The phenotypes deriving from exposure of cells to these three inhibitors appear to be 

consistent with an inhibition o f Aurora-B, and do not resemble the effect reported for 

inhibition o f Aurora-A by genetic means. These observations raised the hypothesis that the 

kinase activity o f Aurora-A may not be important for its activity and may not represent an 

attractive target for drug discovery. Its biological role in mitosis is independent of its kinase 

activity.

It could be beneficial to develop selective inhibitors o f a particular Aurora kinase, rather than 

inhibitors of the whole family in order to elucidate which Aurora is responsible for the 

antitumour activity after drug treatment.

Development o f a number o f different chemical classes o f compounds inhibiting one or more 

of the Aurora kinases have been reported in the literature. The majority o f the medicinal 

chemists efforts have been initially focused on the inhibition of the Aurora-A as the most 

desirable mode of action.

VX680 (80) is a 4,6-di-aminopyrimidine emerged as Vertex’s most promising compound 

from a program aimed at identification of small molecules inhibitors o f Aurora kinases 

targeting the ATP-binding site. Vertex has also published a number o f patent applications 

describing novel series o f protein kinases inhibitors displaying the highest potency for 

Aurora-A, GSK3 and Src kinases2 9 7 ' 3 0 3

I I F ig u re  33. S tru c tu res  o f  V X 680  (8 0 ) an alo g u es .

A  ,NH A .NH
HN N HN N

Analogues o f VX680, based on the

C C u O  O C t s pyrimidinylaminopyrazole-scaffold have been designed

__ 0. and synthesized. Interesting examples emerged from
82 83

SAR studies, are compounds 82 and 83, which have an inhibitory constant < 0.1 pM for 

Aurora-A and 0.1-10 pM for GSK3 and Src kinases. (Figure 33)

Independent research conducted at Johnson and Johnson led to the identification o f a new 

class o f Aurora-A inhibitors based on pyrrolopyrimidine 84 (Figure 34) . 3 0 4  From in vitro 

screening of a compound collection, 84 emerged for its excellent level of Aurora-A enzyme 

inhibition (IC50 0.047 pM) as a potential lead compound for further development.
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Figure 34. Structure o f  pyrrolopyrim idine

H H deriv a tiv es.
,N . .NL / N\

^ n s _J N-0 N-y The synthesis and SAR led to the optimized

\  /  W / N analogue 85 (Figure 34) possessing sub-
84 85

nanomolar in vitro potency (IC5 0  0.0008 

pM), good kinase selectivity showing 90-, 250-, 389-, >1000-, 163-, >1000-, and > 1000-fold 

selectivity for Aurora-A over CDK1, IRK Src, PDGF, c-Met, P lkl, and FAC kinases, 

respectively. Aurora-B data have been not reported. Moreover, compound 85 inhibited the 

histone-H3 phosphorylation on SerlO (which is regarded as a marker of Aurora-B inhibition), 

and exhibited anti-proliferative activity against several tumour cell lines in the range.

Novel and potent Aurora-A and CDK2 kinases inhibitors have been designed based on the 3- 

amino-tetrahydropyrrolo[3,4-c]pyrazole scaffold, a versatile scaffold designed to target the 

ATP binding pocket o f protein kinases. In particular, the 3-aminopyrazole moiety forms 

hydrogen bonding interactions with the kinase hinge region o f the ATP pocket, whereas the 

5-substituent appears to enter the phosphate binding region (Scheme 2)

S ch em e 2. S ch em atic  rep re sen ta tio n  o f  the  -  

am in o  te tra h y d ro p y rro lo [3 ,4 -c ]p y raz o le  sca ffo ld  

in th e  k in ase  A T P  b in d in g  p ocket.

Development o f the pyrazole series led 

to the discovery o f compounds 

PHA680632305 (8 6 ), and compound3 0 6  

87, displaying high potency for Aurora-A and improved selectivity profile toward the 

inhibition of Aurora-A (Figure 35).

The X-ray crystal structure o f 8 6 , solved with the kinase domain o f Aurora-A, showed the 

expected hydrogen bonding interaction of the 3-aminopyrazole with the kinase hinge region, 

while the diethylphenylurea group is directed approximately perpendicular to the 

pyrrolopyrazole. Cell based assays identified compound 8 6  as a potent Aurora kinase 

inhibitor, able to block cell cycle progression and inhibit histone H3 phosphorylation on 

SerlO (which is regarded as a marker of Aurora-B inhibition) in HCT-116 cells 

(antiproliferative IC5 0  = 0.045 pM). Moreover, 8 6  displayed an antiproliferative effect 

(antiproliferative IC5 0  in the nanomolar range) on a wide range o f different cell lines. In the 

effort to optimize and increase the inhibitory potency in this series, Fancelli and coworkers

Phosphate binding region

N-R’

Kinase hinge region
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synthesized a small library of 5-phenylacetyl l,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole 

derivatives, leading to the identification of compound 87.

F igu re 35. S tru c tu res and  in vitro S A R  o f  3 -am in o -te trah y d ro p y rro lo [3 ,4 -c ]p y razo le  series .

OCK
/  HN'

8 6 , 1C5 0 (Aurora-A) = 0.027 uM 

IC5 0 (Aurora-B) = 0.135 nM 

IC5 0  (Aurora-C) = 0.120 uM

MeO'HN,

87, IC5 0  (Aurora-A) = 0.013 uM 

IC5 0 (Aurora-B) = 0.079 uM 

IC5 0  (Aurora-C) = 0.061 uM

This compound displays a remarkable Aurora-A and B inhibitory activity (Figure 35). It 

exhibited a potent antiproliferative effect on different cancer cell lines (IC5 0  value between 

28-140 nM) and induced a complete suppression o f histone H3 phosphorylation on Ser 10. 

Finally, 87 appeared to be efficacious in a range of tumour models. The binding mode was 

revealed by the X-ray crystal structure of Aurora-A solved in complex with 87. Based on the 

favorable in vitro and in vivo profile, compound 87 has been selected for evaluation as a 

potential anticancer agent and is currently under investigation in Phase I clinical studies.

A series of anilinoquinazolines, exemplified by compound 8 8 , emerged as potent and 

selective Aurora kinase inhibitors from the high throughput screening o f the AstraZeneca 

compound collection (Figure 36).

F igu re36 . S tru c tu re s o f  k in ase  inh ib ito rs  d ev elo p ed  by A straZ en eca .

^ ^ N H C O P h  / F

p  p HN v  Cl

J U  2  A /  ^H3 CO N H3 CO N

88 Iressa™ (89)

Compound 8 8  exhibits remarkable strucutures similarity with Iressa™ (89) (marketed by 

AstraZeneca), the first selective inhibitor of epidermal growth factor receptor (EGFR) 

tyrosine kinase. Iressa functions by binding to the adenosine triphosphate (ATP)-binding site 

of the enzyme, and, based on X-ray structural data, the quinazoline moiety binds into the
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adenine site with the N-l making a critical key interaction with the protein backbone. The 

same binding mode was expected and hypothesized for 8 8 .

The lead optimization o f 8 8  was firstly directed to the replacement o f the aniline core group 

with a range of six and five-membered heterocycles, conferring more hydrophilicity and 

increased potency to the second generation analogues. The 5-pyrimidine analogue 90 

achieved an increased inhibitory activity, exhibiting an excellent affinity for the Aurora 

kinases (Figure 37), and, attributable to a reduced lipophilicity, an improved plasma protein 

binding (data not shown). Compound 90 was also active in an MCF7 cellular proliferation 

assay (IC5 0  = 0.210 pM).

F igu re  37. In vitro A u ro ra  k in ase  inh ib ition  o f  6-m em b erd  ring  h e te ro cy c les  an a lo g u es  o f  co m p o u n d s 88.

K , - ^ / NHC0Ph

j £ j  XVnHCOPH X V ,  f \
HN HN S HN S ' 1

h 3 c o ^ v 4 n  h 3 c o ^ v 4 n  h 3 c o ^ A n  0 -

90, Aurora-A IC50 0.003 91, Aurora-A IC50 0.004 92, Aurora-A IC50 >0.001
Aurora-B IC50 0.001 |A/I Aurora-B IC50 0.042 jiM Aurora-B IC50 >0.001 nM

A series of analogues, containing five-membered heterocycles as novel linking groups, was 

prepared and evaluated for inhibitory potency.

The excellent affinity for Aurora kinases showed by compound 91, indicated that the 

substitutions were well tolerated, and suggested that the kinases have some flexibility in the 

selectivity pocket.

Further comfomational changes were introduced in the third generation library. The 

introduction of an extra methylene group between the amide carbonyl and the five-membered 

heterocycle ring gave compound 92 (Figure 37) with an increased potency as compared to the 

parent compound 8 8 . 3 0 8 ' 3 1 0

In a medicinal chemistry program aimed at the discovery o f potent and selective inhibitors of 

EGFR , 3 1 1 cyclopropanecarboxylic acid-(3-(4-(3-trifluoromethylphenylamino)-pyrimidin-2- 

ylamino)-phenyl)-amide (93) displayed a weak EGFR inhibitory activity (IC5 0  > 1000 pM), 

while strongly emerged as potent Aurora-A (IC5 0  > 42 nM ) . 3 1 2  The 2,4-anilinopyrimidine 

derivatives have been investigated as potent inhibitors o f tyrosine and serine/threonine kinase 

inhibitors . 3 1 3 ' 3 1 5  The crystal structure of Aurora-A complexed with 93 revealed a novel
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binding mode for the 2,4-dianilinopyrimidine core which could provide the basis for the

design of more potent and specific analogs o f 93. In particular, compound 93 adopts an s-cis 

conformation upon binding to Aurora-A. The dipyrimidine and aniline moieties bind in an 

adenine mimetic faschion, forming hydrogen bonding interactions with the kinase hinge 

region o f the ATP pocket, whereas the cyclopropylamide is oriented away from the active site 

and partially solvent exposed. The trifluoromethyl group interacts with the kinase phosphate- 

loop (p-loop) (Figure 38).

A review of the recent patent literature for the period
93

2006 to 2007 revealed how the search for Aurora 

kinases inhibitors has rapidly progressed as many o f the major pharmaceutical companies and

Kinase 
hinge region

F igu re  38. S tru c tu re  and  sch em a tic  re p re sen ta tio n  o f  

cy c lo p ro p an ecarb o x y lic  ac id -(3 -(4 -(3 -tr if lu o ro m e th y lp h e n y la m in o )-  

p y r im id in -2 -y lam in o )-p h en y l)-am id e  (91 ) in th e  k in ase  A T P

p-loop b in d in g  pocket.

academic institutes have shown a great interest in the field3 1 6 ' 32 1 A few examples o f Aurora 

kinase inhibitors are shown in Figure 39.

F igu re 39. S tru c tu res  o f  th e  A u ro ra  k in ase  inh ib ito rs em erg ed  from  th e  recen t p a ten t lite ra tu re .

F3C

N:

P̂ NH

94 95 96

EtHN

97 98 99
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In this contest, recent studies conducted at the Millenium Pharmeceutical Inc. laboratories led 

to the discovery o f MLN8054 (100) a benzodiazepine derivative, selective inhibitors of 

Aurora-A kinase . 3 2 2  MLN8054 (100) exhibited > 40-fold selectivity for Aurora-A over 

Aurora-B, and > 100-fold selectivity over a panel of 226 kinases (data not shown), and also 

inhibited proliferation of a battery of human cancer cell lines (IC50 values range from 0 . 1 1  to

o 1.43 pM). The phenotype emerged from was consistent

with the inhibition o f Auorara-A by genetic means. 

Treatment of tumour cells with MLN8054 (100) 

MLN8054 (1 0 0 ) resulted in inhibition o f Thr288 autophosphorylation,
IC50 (Aurora-A) 0.004
ic50 (Aurora-B) 0.172 delays G 2/M  progression, resulting in cell death through

apoptosis. MLN8054 (100) inhibited Aurora-A activity 

in HCT-116 tumour cells at 0.25 and 1 pM. No 

inhibition of the phosphorylation of histone H3 on 

serine 10 was measured or detected, demonstrating that Aurora-B was not inhibited at these

concentrations. Finally, MLN8054 (100) exhibited potent antitumor activity in mice models

and is currently in Phase I clinical trials.

5.5 Specificity

The potential therapeutic use of Aurora kinase inhibition has been based on the hypothesis 

that in non-proliferating cells (the most normal cells in the human body) Aurora kinases are 

only expressed and active during mitosis . 3 2 3 ,3 2 4  The identification o f Aurora inhibitors has 

provided valuable tools in support o f this hypothesis. Ditchfield and coworkers reported that 

non-proliferating cells were not affected by ZM447439 (81) treatment. 3 2 5  Moreover, tumour- 

growth inhibition or regression has been observed in nude mice bearing tumour xenografts in 

response to treatment with VX680 (80).325 VX680 (80) has been reported to be more toxic in 

rat models. At lmg/Kg/h dose level, neutrophil counts were partially suppressed by, and then 

returned to normal level when treatments were stopped. This indicated that bone-marrow 

stem cells, from which the neutrophils are derived, might be a target o f this drug. However 

this is the only reported effect and seems to be reversible . 3 2 5

5.6 Conclusion

Since the association between Aurora kinases and cancer made in 1998, a body of evidence 

has been acquired on their role in tumourgenesis. Considerable efforts have been dedicated to 

the identification o f Aurora kinases inhibitors to provide pharmacological tools to validate the
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Aurora kinases as drugable target in cancer therapy. Based on the encouraging in vitro and in 

vivo profiles, small molecule inhibitors of Aurora kinases are currently progressing into 

clinical trials. In the future, the clinical success o f these inhibitors may provide the 

compelling evidence that the inhibition o f the Aurora kinase family represents a new and 

effective approach for the treatment of cancer.
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6.0 Synthesis and evaluation of styrylchromones and quinazolines 

derivatives as cytotoxic and antitubulin agents

6 . 1  Introduction

Novel anticancer agents that target tumour vasculature as a consequence o f their anti-tubulin 

properties are one o f  the subjects o f a study described in this chapter. The importance o f 

tubulin as a target has been highlighted by the discovery that the clinical candidate 

Combretastatin A4 (15) (Figure 40) displays potent and selective toxicity326 towards tumor 

vasculature.45 Our interest in tumor targeting compounds focuses on compounds related to 15. 

A detailed structure-activity relationship (SAR) study conducted in our group led to the 

development o f CA4-like chalcones114 as inhibitors o f tubulin polymerization. The a-m ethyl 

chalcone 47 inhibits cancer cell growth at low concentrations [1C50 (K562) 0.2 nM]. Chalcone 

47 causes cell arrest at the G2/M point and binds to the colchicine-binding site more strongly 

than colchicine itself. It also inhibits tubulin polymerization (IC50 1.5 pM).

F ig u re  40. S tru c tu re s o f  C o m b re ta s ta tin  A 4 (15) and  ch a lco n e  47.

It is believed that the spatial relationship between the two aromatic rings is an important 

feature that determines their ability to bind to tubulin.100,101 The a,P-unsaturated carbonyl 

linker o f chalcone 47 allows positioning o f the aryl rings at an appropriate distance 

maximizing the interaction with the target. The X-ray crystal structure o f  47 revealed that the 

carbon-oxygen and carbon-carbon double bonds are positioned trans relative to the C1-C2 

single bond. Preliminary modeling and crystallographic studies led us to postulate that 

molecules adopting the s-trans conformation bind strongly to tubulin.117 

The chemical aspect o f the first part o f  the project is based on the styrylchromone natural 

product Hormothamnione (101) (Figure 41), isolated from the marine cryptophyte 

Chrysophaeum lay lor i.327

spacer
qjacer

OMe

Combretastatin A4 (15) 
IC5 0  (K562) 4.3 nM

47, s-trans conformer 
IC50(K562)0.2nM
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Figure 41. Structure o f  H orm otham nione (101).

Hormothamnione (101) is an exceptionally potent 

cytotoxin327’328 and it has been shown to be a potent cytotoxin to
OH

Hormothamnione (1 0 1 ) several human leukemia cell lines. While the mechanism o f

its cytotoxicity has not been fully characterized, it appears to operate via selective inhibition 

o f RNA synthesis.’27 Synthesis, cytotoxicity, and inhibitory effect on tubulin polymerization 

o f certain substituted styrylquinazolinones structurally related to Hormothamnione (101) have 

been previously reported in the literature (Figure 42).329’330

F ig u re  42. S A R  and  s tru c tu re s  o f  s ty ry lq u in azo lin o n es  102. 103, and  104.

(102), IC5 0  (L1210) 0.083 ^M, (103), IC50  (L1210) 0.0027 (104), IC5 0  (L1210) 0.64 uM,
IC5 0  (UP) 3.3 nM IC50  (UP) 2.0 IC5 0  (K562) 1.05 gM,

IC5 0  (U P) 2.0 gM

In particular compounds 102, and 103 displayed significant antitumour activity in vitro 

against L1210 murine leukemia cell lines [IC50 0.083 and, 0.0027 pM , respectively] as well 

as humar tumour xenografts. Inhibition o f microtubule formation appeared to be the 

mechanism o f action [IC50 (ITP) 3.3, and 2.0 pM, respectively].330 Interestingly, Jiang and 

coworkers report that compounds 102 and 103 showed only a weak effect on the colchicine
• • 330binding. However, to our best knowledge, no further studies elucidating the mechanism of 

action o f this class o f  compounds have been reported in the literature to date. It is clear that 

styrylquinazolinones and Hormothamnione (101) share a similar skeleton except for different 

heteroatoms (Figure 43).

F ig u re  43. H o rm o th am n io n e  (101) an d  q u in azo lin e  102. C o m m o n  fea tu res  are h ig h lig h ted  in red.

OH
Hormothamnione (101) (102)
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Moreover, Hormothamnione (101) possesses remarkable structural similarity to the 

chalcones, presenting structural features for an effective interaction with tubulin. We 

prepared series o f styrylchromones 109 (Table 1) and 113 (Table 2) and styrylquinazolinones 

123 (Table 3) related to Hormothamnione (101) and initially assessed them for cytotoxicity 

against K562 human chronic myelogenous leukemia. Subsequent studies on the effect of the 

most potent compounds on tubulin polymerization were performed. We have synthesized 

styrylchromones and quinazolines in which the styryl aryl group has been introduced and 

varied to produce “unnatural” analogues of hormothamniome. Our choice o f aryl groups 

includes groups that will improve the drug qualities of styrylchromones.

The second area o f research focused on the synthesis o f a new series o f quinazolines 127 

(Table 4) as conformationally-restricted analogs of 47 and the evaluated cytotoxicity and anti­

tubulin properties. Modifications around the a,p-unsaturated carbonyl linker o f chalcone 47 

have been previously attempted in our group and resulted in good biological activity. The 

major goal of these modifications was to get an insight into the importance o f the aryl ring 

orientation about the rotatable bond a and c in influencing the cytotoxicity and anti-tubulin 

properties (Figure 40). The anti-tubulin activity of numerous conformationally-restricted 

analogs of 47 has been amply investigated in our research group (e.g aurones , 125  

flavones,125’127). Synthesis, citotoxicity, and inhibition of tubulin polymerization o f various
1 O Q  1 "7 |  1 ‘3 '2

quinazoline derivatives have been previously described. ’ " Compound 105, despite its

low cytoxicity in a panel o f cancer cell lines, interestingly showed modest anti-tubulin

trimethoxy and 5,6,7-trimethoxy A phenyl ring is optimum for relevant cytotoxicity and 

antitubulin activity o f flavones and aurones, respectively (Figure 45) . 8 4

F igu re  45. S truc tu res, cy to to x ic ity , and  an titu b u lin  activ ity  o f  f lav o n es  55  and  56.

properties [IC5 0 (ITP) 6.5 jaM] (Figure 44) . 131

o F ig u re  44. S tru c tu re  o f  q u in azo lin o n e  105.

The trimethoxybenzene moiety has featured in other antitubulin 

105, ic50 (itp ) 6 . 5  jaM agents, and previous (SAR) revealed that the presence of the 6,7,8-

o OMe O

54, IC50 (K562) 0.04 |j.M 
ICgoOTP) 25 nM

56, IC50 (K562) 22 jaM 
IC50 (ITP) > 50 nM
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Based on these preliminary data, we designed and synthesized a focused library o f 6,7,8- 

trimethoxy quinazolines 127, conducting the SAR around the quinazoline spacer between the 

aryl rings and systematically investigating the substituent effect in the B ring.

6.2 Synthesis of styrylchromones, styrylquinazolines, and quinazolines derivatives

Styrylchromones 109 and 113 were initially synthesized in order to established the methoxy 

substitution pattern on the A ring favorable for optimal activity. The synthesis of 

styrylchromones 109 is depicted in Table 1. Treatment o f 3,4,5-trimethoxyphenol (106) with 

an equimolar amount but-2-ynoic acid in Eaton’s reagent (P2O5 in methansulfonic acid) 

afforded the ketone331 intermediate 107. 'H NMR analysis o f the crude reaction mixture 

revealed the formation of traces of chromone 108. From a practical perspective, the 

intermediate 107 was not purified and the crude material was directly stirred in dry acetone in 

presence of K2CO3, under reflux for 2 h, to provide the cyclized chromone331 108 in overall 

30% yield. Condensation of 108 with a series of substituted benzaldehydes furnished the 

desired library o f styrylchromones331 109 for biological assessment (Table 1). Our 

experiments, carried out in basic media (NaOMe in MeOH), occasionally provided long 

reaction times (1 to 4 days), depending on the reactivity o f the specific benzaldehydes 

employed. However, compounds o f the series 109 crystallized from the reaction mixture and 

were generally isolated in good to moderate yield as single trans isomer, as observed by their 

'H NMR spectra.

T ab le  1. S yn th esis  o f  s ty ry lch ro m o n es 109.

OMe 0  OMe O

OMe OMe 0
106 107 108,30% 109 a-k

Key: a) P2 0 5, M eS 0 3 H, but-2ynoic acid, Ar, rt, 5 h; b) Acetone, K2 C 0 3, Ar, 2 h, reflux; c) NaOMe/MeOH, ArCHO, 1-4 days, 80 °C.

E n try A r Y ie ld  108 109
109a 3 ,5 -(O M e)2C 6H 3 42%
109b 3 ,5 -(O B n )2C 6H 3 4 2 %
109c 2 ,5 -(O M e)2C 6H 3 36%
109d 2 ,4 ,5 -(O M e)2C 6H 2 30%
109e 4-C lC 6H4 4 4%
1 0 9 f 3-C lC 6H4 48%
109g 2-C lC 6H4 43%
109h 3 ,4 -C l2C 6H 3 45%
109i 2 ,4 -C l2C 6H 3 4 1%
109j 2 ,6 -C l2C 6H 3 42%
109k 4 - N 0 2C6H4 40%
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The series of styrylchromones 113 isomeric to 109 was prepared as illustrated in Table 2. The 

synthesis relies upon the use of benzaldehydes as latent phenols. First 2,3,4- 

trimethoxybenzaldehyde (110) was oxidised in excellent yield (94%) to 2,3,4- 

trimethoxyphenol (111) by hydrogen peroxide in acidic methanol3 3 2  (Table 2). Reaction of 

phenol 111 with but-2-ynoic acid in Eaton’s reagent gave the chromone331 112 (Table 2). The 

formation o f o-hydroxyarylethynyl ketone was not observed. The reaction was carried out at 

different temperatures (0 °C and room temperature) in order to investigate the product 

distribution and to improve the yield. In both cases only a poor yield (12%) o f chromone 112 

was isolated directly from the reaction mixture. However, this was sufficient for the 

preparation of a library o f styrylchromones. Using the same conditions reported above for the 

synthesis o f 109, we prepared derivatives3 31 113 (Table 2).

T ab le  2. S yn th esis  o f  sty ry lch ro m o n es 113.

CHO OH O O

Key: a) H2 0 2, H2 S 0 4, MeOH, rt, 3 h; b) P2 O5 , M eS 0 3 H, but-2-ynoic acid, Ar, rt, 5h; c) NaOMe/MeOH, ArCHO, 1-4 days, 80 °C

E ntry A r Y ie ld  112 —>113
113a 2 -C lC 6H4 59%
113b 3 -C lC 6H4 56%
113c 4 -C lC 6H4 58%
113d 2 ,4 -C l2C 6H 3 63%
113e 2 ,6 -C l2C 6H 3 6 5%
1 1 3 f 3 ,4 -C l2C 6H 3 68%
H 3 g 3 ,5 -(O M e)2C 6H3 37%
113h 2 ,5 -(O M e)2C 6H 3 3 4%
113i 2 ,4 ,5 -(O M e)2C 6H 2 3 7%

We also investigated an alternative route to the synthesis o f the key intermediate 112 aiming 

at improving the yield and simplifying the tedious purification by chromatography on silica 

gel. This would also allow us to speed up the preparation of the target molecules expanding 

our compound collection. A base-assisted one-pot cyclization o f various methoxy substituted 

2 -hydroxyacetophenone with easily available acylating reagents for the synthesis of 

chromones o f type 112 has been previously described in the literature. 3 3 3  This protocol had 

been successfully followed in our group for the synthesis of the chromone scaffolds and 

involves the “DBU cyclization o f 2-acetoxyacetophenones in pyridine. Unfortunately, the 

required starting material 2-hydroxy-3,4,5-trimethoxyacetophenone (116) is not
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commercially available. However, we thought that it could be easily obtained from phenol 

111 via sequential methylation , Friedel-Crafts acylation, and demethylation.

The phenol 111 was reacted with dimethyl sulfate in dry acetone in presence of excess 

potassium carbonate to give 114 in excellent yield3 3 4  (99%) (Scheme 3). A literature 

reported3 3 5  synthetic method [DCM, 0 °C, A1C13 (1.2 equiv) acyl chloride (1.1 equiv), 5 h] 

failed to provide the desired product 115 and the unreacted starting material was recovered. 

We investigated the effect of the temperature, carrying out the reaction at room temperature 

overnight. As shown by NMR spectra, a mixture o f unreacted starting material and 2,3,4 

trimethoxy phenol ( 1 1 1 ) was recovered.

S ch em e 3. S yn th esis  o f  112.

OH OMe OMe O OH O 0

OMe OMe OMe OMe OMe
111 114,99%  115,77%  116,54%  112,11%

OMe 
117, 84%

Key: a) Acetone, K2 C 0 3, Me2 S 0 4, Ar, 22 h, reflux; b) ZnCI2, Ac^O, CH3 N 0 2, Ar, 50 °C, 16 h; c) Benzene, AICI3, Ar, 5 
h, 80 °C; d) DBU, Py, Ac^O, 140 °C, Ar, overnight; e) DBU, Py, AcCI, 80 °C, Ar, overnight.

A comparable result and product distribution was noted when the reaction was performed at 

room temperature overnight using 3 equivalent of AICI3. We also attempted the reaction of 

114 with 1 equivalent of AICI3 and acetyl chloride, in DCM, at 40 °C. The reaction was 

carried out until complete consumption of the starting material, as mesaured by TLC. Careful 

analysis of the ]H NMR spectra of the crude material, revealed the formation of 2- 

hydroxyacetophenone 116. Indeed, the ortho-phenolic proton of the 2-hydroxyacetophenone 

system (11.42 ppm) resonates at low field, due to the intramolecular hydrogen bond with the 

oxygen of the adjacent carbonyl group. Unfortunately this reaction was not regioselective 

and formation of demethylated side-products was also detected by ’H NMR.

Finally, acetophenone 115 was obtained in a good yield (73%) reacting 114 in nitromethane, 

in presence of ZnCh, at 50 °C, under nitrogen and using acetic anhydride as acylating 

agent3 3 6  (Scheme 3). Switching the solvent to acetonitrile afforded unreacted starting material. 

In conclusion, the solvent-Lewis acid system appeared to play a critical role in influencing
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the reactivity of 114 towards the acylation over the demethylation and vice versa. In addition, 

more polar solvents are preferable. The demethylation , 3 3 5  carried out in benzene, in presence 

of AICI3 , at 80 °C, for 16 h, gave compound 116 in moderate yield (Scheme 3).

Ketone 116 was reacted with acyl chloride and DBU in anhydrous pyridine as solvent, at 80 

°C overnight. The cyclization did not occur, and ester 117 was recovered in 84% yield 

(Scheme 3). Ester 117 was obtained in comparable yield upon increasing the temperature to 

140 °C. Chromone 112 was isolated in 11% yield when an equimolar amount of ketone 116 

and acetic anhydride were reacted at 140 °C (Scheme 3). A longer reaction time (36 h), failed 

in providing a better yield.

Next, our strategy focused on identifying a chromone core replacement with improved 

potency. Mindful of the structural similarity shared by styrylchromones and 

styrylquinazolines (Figure 43), and of previous studies describing cytotoxicity and antitubulin 

properties of certain styrylquinazolines ’ (Figure 42), we directed our chemical strategy 

toward styrylquinazoline analogs 123 (Table 3). The quinazoline core would also provide 

easy access to the preparation of diverse sets of A-substituted derivatives through the 

synthesis o f the key intermediate 122 (Table 3, step c).

Treatment o f the methyl 2-nitro-3,4,5-trimethoxybenzoate (118) with tin(II) chloride in 

ethanol at 80 °C afforded the aminoester 119 (Table 3) . 3 3 7  The key intermediate 121 was 

prepared by basic hydrolysis3 3 8  o f 119, followed by cyclization3 3 9  with acetic anhydride at 

150 °C. The procedure for the synthesis of intermediates 122a and 122b is exemplified by the 

following reaction. Reaction o f 121 with methylamine or ethylamine followed by cyclization 

in acidic media (glacial acetic acid and concentrated sulfuric acid) afforded compound 122a 

and 122b, respectively. Compounds 122a and 122b were then reacted with a series of 

substituted benzaldehydes to give the desired library 123 according to the procedure 

previously described for compounds 109 and 113.
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T able  3. Syn th esis  o f  s ty ry lq u in azo lin es  123. 

R O
MeO MeO.MeO. MeO.

MeO'MeO' MeO'MeO'
OMe OMe OMe OMe

118, R = N 0 2, Ri = O M e-ia 93o/o 121,93%  122a, R, = Me, 55% 123a-r
 ̂ - ,« /  r  119- R = n h 2 - R 1 = OMe-J ’ 122b, R2  = Et, 67% 123s - i f

b, 75% L l2 0 ,  R = NH2, R1 = OH 1 2 3 t J T
f r  123u  

t~123v

Key: a) SnCI2, EtOH, 80 °C, 5 h; b) 50% aq. NaOH, 2-propanol, H2 0 ,  80 °C, 4 h; c) AcsO, 150 °C, 1h; d) THF, MeNH2  

or EtNH2, rt, 20 min, ACOH, 100 °C, 1h; e) NaOMe/MeOH, ArCHO, 1-4 days, 80 °C; f) 6  M HCI, MeOH, reflux, 45 min.

E ntry r 2 A r Y ie ld  122 -> 1 2 3
123a M e 3 -C1C6H4 30%
123b M e 4 -C lC 6H4 84%
123c M e 2 ,4 -C l2C 6H3 58%
123d M e 2 ,6 -C l2C 6H3 62%
123e M e 3 ,4 -C l2C 6H3 31%
1 2 3 f M e 3 ,5 -(O M e)2C 6H 3 75%
123g M e 2 ,5 -(O M e)2C 6H 3 57%
123h M e 2 ,4 ,6 -(O M e)2C6H 2 6 5%
123i M e 2 ,4 -(O M e)2C 6H 3 56%
123j M e 2 ,4 ,5 -(O M e)2C6H 2 51%
123k M e 3 ,4 ,5 -(O M e)2C 6H 2 3 8%
1231 E t 3 ,5 -(O M e)2C 6H 3 57%

123m E t 2 ,5 -(O M e)2C 6H 3 6 4%
123n Et 2 ,4 -(O M e)2C 6H3 12%
123o E t 2 ,4 ,5 -(O M e)2C 6H 2 4 9 %
123p Et 2 ,4 ,6 -(O M e)2C 6H 2 8 4%
123q Et 3 ,4 -C l2C 6H 3 20%
123r E t 4 -C lC 6H 4 5 7%
123s M e 3 ,5 -(O M O M )2C6H 3 34%
123t M e 3 ,5 -(O H )2C 6H 3 9 0 %
123u E t 3 ,5 -(O M O M )2C 6H 3 31%
123v E t 3 ,5 -(O H )2C 6H 3 9 5 %

The MOM-protected benzaldehyde (125) employed for the synthesis o f 123a and 123w is not 

commercially available and it was prepared by reacting 3,5-dihydroxybenzaldehyde (124) 

with MOM-chloride in DMF in presence of sodium hydride (Scheme 4).

S ch em e 4. S yn th esis  o f  b u ild in g  b lo ck  125.

HOw ^ / C H O  M OM O. ^ ŝ /C H O

^  -  M Key: a) NaH, DMF, Ar, 0 °C,
30 min, MOM-chloride, rt, 1h.

OH OMOM
124 125,91%

Moreover, compounds o f the series 127 crystallized from the reaction mixture and were 

generally isolated in good to moderate yield as single trans isomer, as determined from their 

*H NMR spectra. The MOM group was cleaved under mild acid condition to afford the target 

compounds 123o and 123z in excellent yields . 3 4 0
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Finally, 6,7,8-trimethoxy quinazolines 127 (Table 4) were synthesized as conformationally- 

restricted analogs of 47. SAR was conducted around the quinazoline spacer between the aryl 

rings and systematically investigating the substituent effect in the B ring. The effects o f the 

substitution on the quinazolinone N atom was also investigated. N-methyl (127e-h) 

derivatives were prepared as direct comparison to 47. To study the degree of steric bulk that 

could be tolerated vV-ethyl (127i-l) and A-propyl (127m-p) were also prepared.

Quinazolines 127 were synthesized according to the procedure reported in Table 4.

T ab le  4. S y n th esis o f  q u in azo lin es 127.

120 126a, R = H, Rt = H, 87% 127a-p
126b, R = OMe, Rt = H, 89% 127tH c
126c, R = H ,R 1 = OMe, 46% 1 2 7 ^
126d, R = OMe, Ri = OMe, 72%
126e, R = OBn, Rt = OMe, 62% "MZ7t

Key: a) Substituted benzoyl chloride, pyridine, rt, 1 h; b) RNH2, pyridine, pw, 150 °C, 30 min; c) H2, 1 0 %
Pd/C, THF, MeOH, rt, 3 h.

E ntry R Rr r 2 Y ie ld  126 —> 127
127a H H H 55%
127b O M e H H 68%
127c H O M e H 69%
127d O M e O M e H 57%
127e H H M e 47%
1 2 7 f O M e H M e 67%
127g H O M e M e 21%
127h O M e O M e M e 56%
127i H H E t 13%
127j O M e H E t 19%
127k H O M e E t 6%
1271 O M e O M e E t 28%

127m H H P r 4%
127n O M e H Pr 34%
127o H O M e P r 8%
127p O M e O M e P r 14%
127q O B n O M e H 68%
127r O H O M e H 95%
127s O B n O M e M e 74%
127t O H O M e M e 92%

The 3,4,5-trimethoxyanthranilic acid (120) was reacted with a range o f benzoyl chlorides to 

afford the desired intermediates 126.337 The benzyl-protected benzoyl chloride 131 was 

prepared by reacting 3-hydroxy-4-methoxybenzoic acid (128) with benzyl chloride to give 

ester 129. Saponification o f 129, followed by chlorination afforded the intermediate 131, 

which was used in the next step without further purification (Scheme 5). The synthesis of
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library 127 began with intermediate 126a, following the procedure reported for the synthesis 

of 122a and 122b. Complete consumption of the starting material was observed by TLC after 

the addition of methyl amine (aq, 40%). Heating the reaction mixture in glacial acetic acid in

crude material, an unknown compound was recovered, whose structure was thought to be B 

(Scheme 6 ). As shown in Scheme 5, the mechanism o f the quinazoline formation starts giving 

the intermediate B. Intramolecular nucleophilic attack followed by ring closure gives 

quinazoline C. The intermediate B deriving from the reaction o f 126a with methylamine 

appeared to be very stable under the conditions reported above. Therefore, harsher conditions 

were thought to be necessary to push the reaction toward the formation o f quinazole 127e.

Sch em e 5. S yn th esis  o f  bu ild ing  b lo ck  131.

Higher temperature was thought to be the possible key o f the success of the reaction. Pyridine 

was chosen as suitable medium to perform the reaction. We also believed that the reaction 

could be effected by microwave heating. Compounds 127 were synthesized according to the 

conditions reported in Table 4 and obtained in moderate yields for the A-H, A-methyl and 

derivatives. Significantly lower yield were observed for the A-ethyl and A-propyl analogues. 

Starting material was never recovered and or detected by TLC analysis or NMR 

spectroscopy. The reduced reactivity o f the A-ethyl and A-propyl analogues may be due to 

the enhanced steric hindrance of the substrate. Moreover, only traces of product formation 

were detected when the synthesis of the A-isopropyl analogue was attempted (data not 

shown). Finally, deprotection of compounds 127s and 127u was carried out under an 

atmospheric pressure of hydrogen to afford the corresponding hydroxyl compounds 127t and 

127v in excellent yields (Table 4).

presence o f concd H2 SO4 failed in affording quinazoline 127e. As viewed by 'H NMR of the

b Key: a) benzylchloride, K2C 0 3, DMF, Ar, rt, 
overnight; b) NaOH 5M, 2-propanol, H20 , 100 
°C, 3 h; c) DCM, oxalyl chloride, DMF, rt, 1h.

130, R = OBn, Rt =0H, 93%—i
131, R = O Bn.R 1 = CI c

S ch em e 6. M ech an ism  and  in te rm ed ia te  in th e  co n v ertio n  o f  126 to  127.

NH2MeQ O O
MeO.

MeO'
OMe

"Ar

MeO

MeO
OMe fl 

O
Ar

MeO

MeO
OMe

"Ar

A B C
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6.3 Biological results and discussion

All the synthesized compounds were tested in a preliminary MTT Cell Proliferation Assay in 

the K592 cell line as described by Edmondson et al. 341 The MTT assay measures the cell 

proliferation rate and conversely, when metabolic events lead to apoptosis or necrosis, the 

reduction in cell viability. The reduction of the yellow tetrazolium MTT (3-(4,5- 

dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) is a reliable way to examine cell 

proliferation. The tetrazolium salts is reduced by metabolically active cells, in part by the 

action of dehydrogenase enzymes to generate the resulting intracellular blue-formazan 

derivative (Scheme 7) which can be solubilized and the concentration determined by optical 

density at 570 nm. The IC5 0 value represents the concentration which results in a 50% 

inhibition in cell growth after 5 days incubation. Combretastatin A4 (15) and chalcone 47 

(also referred to as SD400) were used as positive controls.

Sch em e 7. P rim ary  reac tio n  in the  M T T  assay .

Ph
N N ^ S -'N  HN
> N , ; V Ph__________ _ T > n„ ; n
S n -N  n — (

Ph" Ph
Br

MTT0X MTTred
Tetrazolium salt Blue-formazan

Table 5 summarizes the cytotoxicity assay of styrylchromones 109, 113 and quinazoline 123. 

We initially evaluated the “methoxy substitution effect” on the A ring. As shown for the 

compounds series 109 and 113, we found that the 5-OMe dramatically decreased the activity. 

In contrast, the 6,7,8-trimethoxy A-ring arrangement exhibited the greatest cytotoxicity (e.g. 

compare 109c, 109f, to ll3 b , and 113h), resembling the same cytotoxicity trend observed for 

structurally related to aurones , 1 25 and flavones125 and therefore indicating potentially a 

common mode o f action.

The cell growth inhibition data of our library 113 indicated that 2,5-dimethoxy substitution on 

the B ring (113h, IC5 0  79.9 nM) gave rise to the most potent compound. Switching the 

methoxy group to the 3-position (113g) caused a significant decrease in cytotoxicity 

(approximately 5-fold), while introduction of an additional 4-OMe group resulted in loss of 

potency (113i, IC5 0  > 10 pM). Moderate cytotoxicity was also observed in the case of 

compounds 113a and 113b, bearing a chlorine group at the 2- and 3-position, respectively. 

The 4-C1 substitution resulted detrimental for good activity (113c). Furthermore, compounds 

113d, 113e and 113f, with dichlorobenzene ring, exhibited drastically reduced cytotoxicity.
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Having established the preliminary SAR of the B ring in the series 109 and 113, the 6,7,8- 

trimethoxyquinazoline moiety was examined as an alternative to the chromone scaffold and 

found to be less potent. To our delight, the cytotoxicity profile of series 123 well correlates to 

series 109 and 113, possibly indicating that a common mode o f action is operating. As typical 

results, compounds 123g and 123m are about 7-fold less cytotoxic than the corresponding 

chromone derivative 113h. Generally, substitution o f R with methyl or ethyl group does not 

affect the activity.

T ab le  5. C ell g ro w th  in h ib itio n  a g a in s t3 the  K 592  cell line.

E ntry R A r IC so d iM )
a109a - 3 ,5 -(O M e)2C 6H3 >10
a109b - 3 ,5 -(O B n )2C 6H 3 >10
a109c - 2 ,5 -(O M e)2C 6H 3 >10
a109d - 2 ,4 ,5 -(O M e)2C 6H2 >10
a109e - 4 -C lC 6H4 >10
a1 0 9 f - 3 -C lC 6H4 >10
a109g - 2 -C lC 6H 4 >10
a109h - 3 ,4 -C l2C 6H 3 >10
a109i - 2 ,4 -C l2C 6H3 >10
a109j - 2 ,6 -C l2C 6H3 >10
a10 9 k - 4 - N 0 2C 6H4, 40% >10
a113a - 2 -C lC 6H4 1
a113b - 3 -C lC 6H4 2.9
a113c - 4 -C lC 6H 4 >10
a113d - 2 ,4 -C l2C 6H 3 >10
a113e - 2 ,6 -C l2C 6H 3 >10
a1 1 3 f - 3 ,4 -C l2C 6H 3 >10
a113g - 3 ,5 -(O M e)2C 6H 3 0.39
a113h - 2 ,5 -(O M e)2C 6H 3 79 .9  nM
a113i - 2 ,4 ,5 -(O M e)2C 6H2 >10
a123a M e 3 -C lC 6H4 9.3
a123b M e 4 -C lC 6H 4 >10
b123c M e 2 ,4 -C l2C 6H 3 >10
a123d M e 2 ,6 -C l2C 6H 3 >10
b123e M e 3,4 -C l2C 6H 3 >10
b1 2 3 f M e 3 ,5 -(O M e)2C 6H 3 1.4
b123g M e 2 ,5 -(O M e)2C 6H 3 0 .59
b123h M e 2 ,4 ,6 -(O M e)2C 6H2 >10
b123i M e 2 ,4 -(O M e)2C 6H 3 8.5
b123j M e 2 ,4 ,5 -(O M e)2C 6H 2 >10
b123k M e 3 ,4 ,5 -(O M e)2C 6H 2 >10
c123t M e 3 ,5 -(O H )2C 6H 3 2
d1231 Et 3 ,5 -(O M e)2C 6H 3 4.49

d123m E t 2 ,5 -(O M e)2C 6H 3 0.45
d123n E t 2 ,4 -(O M e)2C 6H 3 4 .26
d123o E t 2 ,4 ,5 -(O M e)2C 6H2 >10
d123p E t 2 ,4 ,6 -(O M e)2C 6H2 >10
d123q E t 3 ,4 -C l2C 6H3 >10
d123r Et 4 -C lC 6H 4 >10
c123v Et 3 ,5 -(O H )2C 6H 3 1.8

K ey: a) C A 4 IC 50 5.6 nM ; b) C A 4 IC 506.4 nM ;
c) C A 4 i c 50 l . 54 nM ; d) C A 4 IC 50 1.19 nM .

109

OMe 

123, R = Me, Et
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A similar trend was observed in the subtitution pattern on the B ring o f series 123. The 2,5- 

dimethoxy substitutions in the B ring are critical for cytotoxicity (123g and 123m, IC5 0  0.59 

and 0.45 pM), while the 3,5-dimethoxy substitution results in drop in potency (123f and 1231 

I C 5 0  1.4 and 4.49 pM). Substitutions at the 4-position in the B ring are not tolerated or 

compromise the activity as shown by compounds 123b, 123i, 123t, and 123n. Trimethoxy 

substitution of B ring provides a reduction o f activity as illustrated by comparison of 

compounds, 123h and 123j, 123k and 123o and 123p. Replacement of methoxy groups with 

chlorine generally results in a significant drop in potency (compounds 123a-e, and 123q,r) 

The increased cytotoxicity o f compounds o f series 113, and 123 bearing methoxy substituent 

suggests that electron-donating groups might be favorable for cytotoxicity and a probable 

engagement of the oxygen as hydrogen bond acceptor. Moreover, the hydroxyl group appears 

to be well tolerated: compounds 123t and 123v exhibited a potency in the micromolar range 

comparable to that o f the corresponding methylated analogues 123f and 1231. It would 

appear that the hydroxyl group does not act as a hydrogen bond donor.

Table 6  summarizes the cytotoxicity assay of compounds o f series 127. Among the new 

compounds, 127c and 127r resulted as the only active ones (IC5 0  9.3 and 8.1 pM, 

respectively). Quinazoline 127r is significantly less active than chalcone 47 and the 

corresponding flavones 55 and 132125(Figure 46), providing further evidence that the 

conformational restriction of 47 about bond a and c results in lower cytotoxicity, and that the 

replacement of the a,|3-unsaturated moiety with the isosteric quinazoline ring to position the 

two aryl rings is not tolerated.

When R2 is substituted with methyl, ethyl or propyl group a drop in activity is observed as 

shown by compounds 127g, 127k, 127o, 127t. If this is due to an enhanced tubulin binding 

activity o f derivative 127c and 127t, the NH may be involved in a hydrogen bond interactions 

acting as hydrogen donor. Steric effects can also reduce the activity o f these compounds.

It has been previously reported8 4  that the presence para-methoxy group in the B ring is 

critical for the good activity o f CA4 analogues. In accordance, derivatives 127a, 127b, 

exhibited a decreased cytotoxicity. The detrimental role of the meta-methoxy group is also 

revealed by the loss of activity of compound 127d. The meta OMe-OH substitution proved to 

be successful for giving a compound (127t) of dramatically improved cytotoxicity. In 

agreement with Cushman’s seminal work , 8 4 the comparable potency of compounds 127c and 

127t highlights that the presence of the hydroxy group is important but not necessary for 

potency.
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T able  6. C ell g row th  in h ib itio n  a g a in s t3 the  K 592 cell line.

E ntry R R1 R2 IC ,n(U M )
127a H H H >10
127b O M e H H >10
127c H O M e H 9.3
127d O M e O M e H >10
127e H H M e >10
1 27f O M e H M e >10
127g H O M e M e >10
127h O M e O M e M e >10
127i H H E t >10
127j O M e H Et >10
127k H O M e E t >10
1271 O M e O M e E t >10

127m H H Pr >10
127n O M e H Pr >10
127o H O M e Pr >10
127p O M e O M e Pr >10
127q O B n O M e H >10
127r OH O M e H 8.1
127s O B n O M e M e >10
127t O H O M e M e >10

K ey: a) M T T  assay , 
SD 400  IC 50 2 .7nM

C ell L in e  K 562 , C A 4 IC 50 2.2 nM ,

MeO

MeOrY NV r R
OMe

127

F igu re 46. S tru c tu res and  in v itro  S A R  o f  flav o n es 55  and  132

132, ic50 (K562) 0.83 tiM55, IC50  (K562) 0.04 nM

Among the synthesized compounds we selected those analogues showing significant 

cytotoxicity (generally defined as IC5 0 value < 1.5 juM), and evaluated for activity in vitro 

tubulin polymerization inhibition assay. Samples were prepared directly in quartz cuvettes at 

0 °C and contained Mes buffer [(2-(morpholino)ethanesulfonic acid), EGTA (ethyleneglycol- 

Zus-(p-aminoethylether)-A,A,7V',A-tetraacetic acid), MgCh, distilled water, pH 6 .6 )], GTP 

(Guanosine 5’-triphosphate), tubulin, and the candidate drug (in DMSO). The tubulin/drug 

samples were immediately placed in a Varian Cary 300 Bio UV/visible spectrophotometer, 

preheated at 37 °C, alongside six blank samples containing Mes buffer and GTP. Recording 

the absorbance (A 350 nm) for a period of 20 minutes, the results were compared to the 

untreated control cells to evaluate the relative degree of change in optical density.

All the compounds were tested at one concentration (10 pM) and compared the % of tubulin 

assembly with CA4 at the same concentration (Table 7).
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T able  7. E ffec t upon  tu b u lin  b in d in g  for co m p o u n d s o f  se ries 113 and  123.

E ntry %  tu b u lin  assem b ly %  in h ib ition
113a 67 33
113b 110 -10
H 3 g 81 19
1 13h 62 38
1 23f 72 28
123g 82 18
123m 84 16
C A 4 14 86

D M SO 100 0

The lower antitubulin activity of the selected compounds correlated well with their reduced 

cytotoxic potency with respect to CA4. Although compound 113h determines cell growth 

inhibition in K562 cell line, its IC5 0 is about 14 times higher than that o f reference compound 

CA4 (15) (Table 5). Compound 113h may exert its inhibitory effect on cell growth through 

an interaction with different targets. Interestingly, compound 113b seems to promote tubulin 

assembly. However, further experiments are needed to determine whether its cytotoxocity is 

originated from an alternative mode of action. A detailed SAR and a detailed characterization 

of these compounds with tubulin need to be conducted in order to enhanced the cytotoxic 

activity and antitubulin properties of the styrylchromone and styrylquinazolinone derivatives 

and elucidate the mode of action.

6.4 Conclusion

Cytotox styrylchromones 109, and 113, and styrylquinazolinoes 123, related to 

Hormothamnione (101) and chalcone 47 have been investigated. Despite their lower potency 

compared to the initial lead 47, the cytotoxicity of these compounds appeared to be dependent 

on the substitution on the chromone and quinazolinone scaffold indicating that the 6,7,8- 

trimethoxy substitution is good for activity. The 2,5-dimethoxy substitution at the styryl-aryl 

terminus appeared to be critical for good cytotoxicity.

A new series of quinazolinones 127 was also prepared as conformationally-restricted analogs 

of 47 and the evaluated cytotoxicity and anti-tubulin properties. Quinazoline 127t is 

significantly less active than chalcone 47 and the corresponding flavones 55 and 132, 

providing further evidence that the conformational restriction of 47 about bond a and c results 

in lower cytotoxicity.
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7.0 Design and synthesis of potential inhibitors of STAT3 dimerization

7.1 Introduction

In the effort to discover novel potential inhibitors o f  STAT3 dim erization in a virtual 

screening mode, the NCI compound collection was docked into the pTyr-binding pocket o f  

STAT3 SH2 domain, derived from the X-ray crystal structure o f  pSTAT3 bound to a 

fragment o f  DNA (TGCATTTCCCGTA AA TCT) (pdb code IB G 1).154 The observed docking 

score relative to the native phosphopeptide sequence APY*LK was -1 1 .9  Kcal/mol. Docking 

o f  the native peptide also indicated a T-shape binding model (Figure 47).

F ig u re  47 . T h e  p e p tid e  fra g m e n t A P Y * L K  b o u n d  to  the  

p T y r-b in d in g  p o c k e t o f  S T A T 3 .

Relying upon com putational modeling o f  the native peptide, com putational analyses 

identified two com pounds NSC64859 and NSC59263 (Figure 48), which inhibit STAT3 

activity in vitro with IC5 0  values o f  96 and 72 juM, respectively. Both com pounds possess a 

benzoic acid group, which is capable o f  acting as a good phosphotyrosine mimic. The design 

o f  the first generation library was based on NSC64859, since it is arguable more drug-like. 

The synthesis o f  NSC59263 analogues will require significant protecting group m anipulation 

to control, the reactivity o f  the different hydroxyl groups.

F ig u re  48 . T h e  in itia l h its  N S C 6 4 8 5 9  an d  N S C 5 9 2 6 3  id en tif ied  from  th e  v ir tu a l sc ree n in g  o f  th e  N C I 

c o m p o u n d  c o llec tio n . T h e  fo u r p o in ts  o f  d iv e rs ity  o f  th e  N S C 6 4 8 5 9  sca ffo ld .

HO

OH

O OH

•OH,

HO. OH

OH

NSC64859
IC5 0  96 (iM, Docking score -9.8

OH
NSC59263

IC5 0  72 |̂ M, Docking score -9.7
Scaffold of NSC64859 analogs

The general scaffold o f  NSC64859 has four points o f  diversity: the carbonyl linker, the X 

linker, the arylsulfonylgroup and the arylamine m oiety (Figure 48). In these com pounds it is
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possible to vary the X linker by replacing X with O, N or CH 2 . Different amides can be

prepared by reacting with commercially available anilines, that were selected to have 

phosphatase mimicking group. The proposed structures were docked in a virtual screen and 

only the compounds with the higher docking scores were prepared. Docking o f the first 

library suggested two different modes o f binding o f the library members with the 

arylsulfonylgroup binding in either pockets A or B (Figure 49).

F ig u re  49 . C lu s te r  o v erlay  o f  all lib rary  

m em b ers d o ck ed  to  p T y r b in d in g  site.

The docking studies led us to the development o f the T-shape model o f molecules that can 

occupy both pockets A and B, thereby increasing their binding affinity (Figure 49). This 

design o f the virtual second-generation library is also supported by the binding mode o f the 

native peptide, although the site B is not occupied by the peptide. The structures were docked 

and the top docking compounds were selected for synthesis.

7.2 The synthesis of the T-shape model of molecules via conjugate addition of 

nitrom ethane

The T-shape model incorporates some o f the features o f GAB A (y-am ino butyricacid) 

analogues such as Gabapentin (133)342,343 and Baclofen (134),344 (Figure 50) clinical agents 

used in the treatment o f  several diseases GABA receptor-associated such as epilepsy, 

Huntington’s and Parkinson’s diseases, and other psychiatric disorders, such as anxiety and 

pain.
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Figure 50. Sharing features o f  the T-shape scaffold and the GAB A analogues.

NH

Scaffold of T-shape molecules

,NH2

, c o 2h

Gabapentin (133)

Cl

NH2

c o 2h

Baclofen (134)

Due to its pharmacological activity, many methods have been developed for the synthesis of 

GABA-analogue Baclofen (134).345'359 One of the most attractive methods (Scheme 1) for the 

construction o f Baclofen (134) involves the conjugate addition of nitromethane to the methyl 

4-chlorocinnamate (135) (Scheme 8 ) . 3 5 9 ' 3 6 3  The resulting y-nitroester 136 can be easily 

converted into the corresponding y-lactam 137 by reduction of the nitro group under an 

atmospheric pressure of hydrogen . 3 5 9 ' 361 Aqueous hydrochloric acid has been found to be 

effective to promote the y-lactam ring opening producing the desired product 134 as 

corresponding hydrochloride salt. 3 6 4

S ch em e 8. S y n the tic  ro u te  to  B aclo fen  (134). 

X0 2MeC H 3 N 0 2

Cl Cl

NO- NH

HCI

Pd/C

2  HCI 

C 0 2H

135 136 137 134

We envisioned that the T-shape molecules derived from 134 may be rapidly accessed via 

Boc-anhydride protection —► amide coupling —> deprotection —*• amide coupling synthetic 

sequence (Scheme 9). Compounds 140a, 140b, 140c, 141a and 141b were prepared from the 

commercially available (±) Baclofen (134) according to the route depicted in Scheme 9.
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S ch em e 9. S y n the tic  ro u te  to  ta rg e t co m p o u n d s 140 and  141.

NHBoc

COoH CONHAr

134, R = H "] a 84% 
138, R = BocH

139a, Ar = Ph, 47%
139b, Ar = 4 -C 0 2 EtPh, 72%

NH

CONHAr

Cl
140a, Ar = Ph, R-, = CH3, 6 6 %
140b, Ar = 4 -C 0 2 EtPh,R1 = CH3, 96%-i 

r  140c, Ar = 4 -C 0 2 EtPh, R-, = OPh, 65% d 
141a, Ar = 4 -C 0 2 HPh, Rt = CH3, 6 8 %^ 

^ 1 4 1  b, Ar = 4 -C 0 2 EtPh, Rt = OPh, 83%

Key: a) Boc^O, 1.4-dioxane, H2 0 , NaOH 1M, rt, 4 h; b) DMF, HATU, DIPEA, aniline or ethyl 4-aminobenzoate, 
rt, Ar, overnight; c) DCM, TFA, rt, 2 h, 4-phenoxybenzenesulfonyl chloride ortosyl chloride, K2 C 0 3, dioxane, 
H2 0 , rt, 2-3 h; d THF, MeOH, NaOH 1M, rt, overnight.

Although established, this approach did not meet our need of a general and straightforward 

synthetic route which would allow us to prepare the target T-shape molecules in a 

combinatorial fashion. Retrosynthetic analysis revealed there may be an alternative method of 

constructing the T-shape scaffold. This approach, which centered on the generation o f nitro 

derivative 144 as the key step for the preparation of 142 (Scheme 10), was particularly 

attractive. This synthetic strategy relied upon a Michael reaction o f nitromethane with 145, 

easily accessible by reacting acid chlorides with the appropriate anilines (Scheme 10).

S ch em e 10. A ltern a tiv e  re tro sy n th e tic  ap p ro ach  to  th e  syn th esis  o f  th e  sca ffo ld  o f  T -sh ap e  m o lecu les.

142, R = Me, Et 143, R = Me, Et 144, R = Me, Et 145, R = Me, Et

To our knowledge, a,(3-unsaturated esters, 3 5 4 ,3 6 0 "3 6 9  and nitroolefins3 7 0 ' 3 7 4  had been typically 

employed as substrates in the conjugate addition o f nitromethane, while no example has been 

reported on the Michael addition of nitromethane to amides, probably due to the fact that they 

are less reactive than a,[3-unsaturated esters and nitroolefins.

We envisioned that a better reactivity o f the electron-poor amides 145 toward the conjugate 

addition might derive from the activation of an electron-withdrawing carbonyl group on the 

phenyl ring at the amide-terminus (Scheme 10). Following this hypothesis, we undertook the 

investigation o f the conjugate addition of nitromethane to amides 145 and developed a 

versatile and efficient methodology. As a preliminary study, the substrates of choice were
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derivatives 145b, 145c, and 145r. Table 8  outlines the conditions followed for the synthesis 

of the amides 145. The two-step process involved first the conversion of the acid into the acid 

chloride using thionyl chloride , 3 7 5  followed by the coupling itself with the appropriate 

anilines3 7 6 "3 7 8  1 48a-g. Various substituted cinnamic acids were commercially (146c-f) 

available or easily prepared (146a,b) from the corresponding aromatic aldehydes by 

Knoevenagel condensation using malonic acid . 3 7 9

T ab le  8. S yn th esis  o f  acid  ch lo rid es 147 and  am id es 145.

O O
A r ^ ^ O H  Toluene. SOCI; Ar^ A c |

146a, Ar = 4 -C 02MePh 2h’ 1 0 0  °C 147a, Ar = 4 -C 0 2 MePh, 89% 
146b, Ar = 2-Np 147b, Ar = 2-Np, 97%
146c, Ar = 4 -N 02Ph 147c, Ar = 4 -N 0 2 Ph, 98%
146d, Ar = 4-CIPh 5 147d, Ar = 4-CIPh, 99%
146e, Ar = 4-OMePh 147e, Ar = 4-OMePh, 94%
146f, Ar = 3,4,5-(OMe)3Ph 147f, Ar = 3,4,5-(OMe)3 Ph, 92%

DCM, Py, rt
NHArCl NH.

148a-g

145a-s147a-g

S u b stra te S u b stra te A r Ri r 2 r 3 R4 P rod u ct Y ield
147a 148a 4 - C 0 2M ePh C 0 2M e H H H 145a 84%
147b 148b 2-N p H H C 0 2E t H 145b 80%
147b 148c 2-N p H OH C 0 2M e H 145c 79%
147c 148a 4 - N 0 2Ph C 0 2M e H H H 145d 72%
147c 148d 4 - N 0 2Ph H C 0 2M e H H 145e 80%
147c 148e 4 - N 0 2Ph H H C 0 2M e H 1 4 5 f 84%
147d 148a 4-C IPh C 0 2M e H H H 145g 84%
147d 148d 4-C IPh H C 0 2M e H H 145h 40%
147d 148 c 4-C IPh H H C 0 2M e H 145i 41%
147e 148a 4 -O M eP h C 0 2M e H H H 145j 86%
147e 148d 4 -O M eP h H C 0 2M e H H 145k 60%
147e 148e 4 -O M eP h H H C 0 2M e H 1451 72%
14 7 f 148a 3 ,4 ,5 -(O M e)3Ph C 0 2M e H H H 145m 96%
147g 148a Ph C 0 2M e H H H 145n 84%
147g 148d Ph H C 0 2M e H H 145o 66%
147g 148c Ph H H C 0 2M e H 145p 88%
147g 1 4 8 f Ph H H H H 145q 98%
147g" 148b Ph H H C 0 2E t H 145r -

147a 148g 4 - C 0 2M eP h n o 2 H H H 145s 93%
a) T he cru d e  m ateria l w as u sed  in the  nex t step  w ith o u t fu rth er p u rificatio n .

An examination of several conditions reported in the literature for the addition of 

nitromethane to a,|3-unsaturated carbonyls, revealed the “nitromethane-DBU” couple as the 

most suitable solvent-base system to investigate the reactivity o f our substrates. Our initial 

experiments, carried out employing 1.1 equiv of DBU at room temperature, provided long
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reaction times (Table 9, entries 1, 2, and 3). To investigate the effect o f the temperature, a 

series of experiments were performed in the microwave reactor under different conditions. 

When compound 145r was subjected to the reaction with nitromethane, after 15 min at 60 °C, 

33% conversion was observed by 'H NMR (Table 9, entries 4). The conversion could be 

dramatically increased when the reaction was conducted at 100 °C, with an improvement in 

the yield (Table 9, entries 5). The optimized conditions could be successfully applied to 

compounds 145b and 145c (Table 9, entry 6  and 7).

T ab le  9. C o n d itio n  o p tim iza tio n  o f  n itro m eth an e  add itio n  to  144.

f t  C H 3 NO2  ° 2

A r^ ^ N H A r ' ------------- * A
DBU

145 144

Entry* S u b stra te T (° C ) R eaction  T im e P ro d u ct %  C o n v ersio n ' Y ield
1 145r rt 2 days 144a 81% 57%
2 145b rt 3 days 144b 95% 46%
3 145c rt 3 days 144c 100% 55%
4 b 145r 60 °C 15 m in 144a 33% -
5 b 145r 100 °C 15 m in 144a 100% 68%
6 b 145b 100 °C 15 m in 144a 100% 70%
7 b 145c 100 °C 15 m in 144a 100% 55%
8 b 145q rt 4  days 144d 32% -
9 b 145q

U00vO 15 m in 144d 16% -
10 b 145q 100 °c 15 m in 144d 6 3% -
l l b 145q 100 °c 30 m in 144d 82% -
12 b 145q 150 °C 15 m in 144d 100% 50%

a) A ll th e  ex p erim en ts  w ere  c arried  ou t em p lo y in g  1.1 eq u iv a len t o f  D B U . b) T h e  ex p erim en ts  w ere  carried  ou t 

in the  B io tag e  m ic ro w av e  reac to r, c) %  C o n v ersio n  w as d e te rm in ed  by  ‘H N M R  sp ec tro sco p y .

The effect o f the electron-withdrawing group on the reactivity o f model compounds 145a, 

145b, and 145r was examined. As expected, when 3,A-diphenyl-acrylamide (145q) was 

reacted with nitromethane at room temperature, after 4 days a very low conversion was 

observed by !H NMR (Table 9, entry 8 ). Only 63% conversion could be noted under the 

optimized conditions (Table 9, entry 10). However, the complete conversion o f 144q into 

144d was proved to be achievable upon increasing the reaction time (Table 9, entry 11), or at 

elevated temperature (Table 9, entry 12).

A variety of amides were investigated under the optimized conditions, as summarized in 

Table 10. The reactivity of A-phenyl substituted amides bearing the methyl ester group at the 

ortho, meta, and para positions was examined. A broad range o f electron-withdrawing and 

electron-donating groups on the cinnamic acid-terminus of the amides, were well tolerated 

and good yields were observed in all the cases. Structures o f compounds 144e-n were

.XI.V  ~ I. I I I A
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confirmed by their spectroscopic data. In addition, structural confirmation of 144e (Figure 

51 A) and 1441 (Figure 5 IB) was carried out by single-crystal X-ray diffraction.

T a b le  10. M icro w av e-assis ted  n itro m eth an e  add ition  to  144.

E n try S u b s tr a te P ro d u c t Y ield
1 145g 144e 35%
2 145h 144f 7 7 %
3 145i 144g 71%
4 145j 144h 4 0 %
5 144k 144i 69%
6 1451 144j 57%
7 145m 144k 34%
8 145n 1441 51%
9 145o 144m 70%
10 145p 144n 81%

ArXlAr NHAr

145

NHAr'
144

Key: a) CH3 N 0 2, DBU, nw, 15 min, 100 °C.

F ig u re  51. (A ) X -ray  c rysta l s tru c tu re  o f  co m p o u n d  144e. (B ) X -ray  c rysta l stru c tu re  o f  co m p o u n d  1441.

This method was also extended to compound 145d-f activated by a nitro group (Table 11). 

We observed a dramatic change in the course o f the reaction, which afforded a mixture of 

unexpected and unknown products, that each possessed an additional methylene group. These 

were separated by column chromatography. The mass spectrometry [MS m/z (API-ES): 

found (M+H)+ 402], and the ]H and ,3C spectra led us to hypothesize the formation of 

compounds 149, 150, and 151 (Table 11) (Figure 53, and 54). The structural confirmation of 

149a and 149b was conducted by single-crystal X-ray diffraction (Figure 52A and 52B).
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T ab le  11. M icrow av e-assis ted  n itro m eth an e  add ition  to  145d-f.

NO-

NHNH

0 2N

145d-f 149a

NH
+

•C02Me
NO-

149b
150a 150b
151a 151b

Key. a) CH3 N 02, DBU, jiw, 15 min, 100 °C

E ntry Su bstra te P rod uct Y ield P rod uct Y ield
1 145d 149a 29% 149b 18%
2 145e 150a 12% 150b 35%
3 14 5 f 151a 10% 151b 20%

F igure 52. (A ) X -ray  c rysta l s truc tu re  o f  co m p o u n d  149a. (B ) X -ray  crystal stru c tu re  o f  co m p o u n d  149b.
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Figure 53. The 'H  N M R  (CDC13) spectrum  o f  149a.
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Figure 54. The 'H  N M R  (CDC13) spectrum  o f  149b.
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During our synthesis we neither isolated the nitroderivative 152 nor detected its formation 

(Figure 55). However, from the reaction o f 145d, we isolated an unexpected product 

(approximately 5%), whose structure we hypothesized to be either 153 or 154 (Figure 55).

F ig u re

Repetition o f the reaction o f 145d with nitromethane in presence o f DBU, in nitromethane at 

room temperature provided the same product mixture. Due to higher reactivity o f the 

substrate 145d toward the conjugate addition, we observed the total consumption o f the 

starting material after 12 h. To investigate whether the formation o f 152 was possible without 

an excess o f nitromethane, and to gain an insight into the reaction mechanism, we addressed

55. P o ten tia l in te rm e d ia te s  o f  th e  c o n ju g a te  a d d itio n  o f  n itro m e th a n e  to  1 4 5 d -f.

O Kl

C 0 2Me
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the possibility of performing the Michael addition in different solvent media, using less 

nitromethane. As a simple model, we studied the reaction o f 145o (Table 12). All the 

experiments were conducted in the microwave, at 100 °C, for 15 min. The investigation 

started with dichloroethane (DCE), as summarized in (Table 12). From the crude 'H NMR 

spectra, when using 6  equiv of nitromethane, no product formation was observed (Table 5, 

entry 2), and only 25% product formation was noted when using 20 equiv (Table 12, entry 4). 

Switching the solvent to THF afforded 50% conversion when 12 equiv o f nitromethane were 

used (Table 12, entry 5). However, employing CH3CN or DMF as solvents resulted in a 

complete consumption of starting material when 6  equiv o f nitromethane were employed 

(Table 12, entry 7 and 8 ).

T able  12. A ltern a tiv e  co n d itio n  fo r the  sy thesis o f  1441.

solvent, CH3 N 02, DBU

-C02Me

145o ^

E n try8 S o lven t c h 3n o 2 %  P ro d u ct11
1 D C E 2 equiv 0%
2 D C E 6 equiv 0%
3 D C E 12 equ iv traces
4 D C E 20 equ iv 25%
5 T H F 12 equ iv 50%
6 C H 3C N 3 equiv 50%
7 C H 3C N 6 equiv 100%
8 D M F 6 equiv 100%

a) A ll the  ex p erim en ts  w ere  co n d u cted  a t 0.8 M  co n cen tra tion , b) T h e  co n v ersio n  w as d e te rm in ed  by 'H  N M R  

spec troscopy .

We proceeded to investigate the reaction of 145d in DMF. As summarized in Table 13, no 

product formation was detected when employing 1 equiv of nitromethane. Reaction of 145d 

with 3 equiv of nitromethane afforded a reaction mixture of starting material and two 

unknown products in a ratio of 2:1:1 (Table 13, entry 4). When 6  equiv were used, ]H NMR 

investigation of the crude reaction revealed complete consumption o f the starting material and 

the presence of two unknown products, compound 149a and 149d in a ratio o f 2:2:1:1. 

Purification by column chromatography afforded a 1:1 mixture o f the two new isomeric 

products in 17% yield. Their structures were hypothesized to be derivatives 153 and 154 by 

analysis of the ]H NMR spectra and mass spectrometry of the mixture. Formation of 152 was 

never detected during these experiments (Table 13).
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Table 13. Product distribution o f  reaction o f  145d.

Ar NH
^ L ^ C 0 2Me'

u <

135d, Ar = 4 -NO2 C6 H4

Ar NH
GO2M6^ U ^ C 0 2Me +

U
153, Ar= 4-N 0 2 C6 H4  154, Ar = 4-N 0 2 C6 H4

n o 2

/ L ^ C 0 2Me + y  ^ L ^ C 0 2Me

a  n ° 2  0 ^
149a, Ar = 4 -N 0 2 C6 H4  149b, Ar = 4-N 0 2 C6 H4

Key a) DMF, CH3 N 0 2, DBU, nw, 15 min, 100 °C.

E ntry c h 3n o 2 %  P rod u ct 153 %  P ro d u ct 154 %  P rod u ct 149a %  P rod u ct 149b
1 0 equ iv 0% 0% 0% 0%
2 1 equ iv 10% 10% 0% 0%
3 3 equ iv 25% 25% 0% 0%
4 4 equ iv 40% 40% 0% 0%
5 6 equ iv 30% 30% 20% 20%

spectroscopy .

The reaction o f the isomeric mixture of 153 and 154 with nitromethane, in presence of DBU, 

carried out at 100°C, for 15 min in the microwave, afforded a mixture of compounds 154, 

149a and 149b (approximately ratio 1:2:1). These results strongly suggested that 153 and 154 

were the key reactive intermediates undergoing conjugate addition of nitromethane to form 

149a and 149b.

With these results in hand, we turned our attention to the structure confirmation o f the 

compounds 153 and 154, by preparing them through the routes depicted in Scheme 11 and 

12, respectively. A fast method for the preparation of aminal3 8 0  156 has been reported from 

the reaction of aromatic aldehyde 155 and piperidine in the presence o f potassium carbonate. 

The aminal 156 could be easily converted to the carboxylic acid 157 in reaction with 

methylmalonic in presence of pyridine381 (Scheme 11). Chlorination with thionyl chloride, 3 7 5  

followed by amide coupling with 2-methyl anthranilate provided compound 154. The 

assignment o f the trans configuration in 154 derives from NOE measurement at 400 MHz in 

CDCI3 nOe experiments did not show a correlation between the 2-methyl group and vinyl 

hydrogen of the a ,p  unsaturated system. The stereochemical determination of 154 was 

confirmed by single-crystal X-ray diffraction (Figure 56).
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Schem e 11. Synthetic route to 154.

0 o o
.CHO

a
-COoMe

155 156
158, R = CI 53% 154, 70%

Key: a) K2C 0 3, piperidine, Ar, rt, overnight; b) Pyridine, CH(CH3)(C 0 2H)2, Ar, 100 °C, 1 h; c) SOCI2, toluene, Ar, reflux, 2h; d) 
DCM, pyridine, 2-methyl anthranilate, Ar, rt, overnight.

F ig u re  56. X -ray  c rysta l stru c tu re  o f  co m p o u n d  154.

These were separated by column chromatography. The assignment o f  the trans configuration 

in 160 derives from NOE measurement at 400 MHz in C D C I3 .  NOe experiments did not show 

a correlation between the 2-methyl group and vinyl hydrogen o f  the a ,p  unsaturated system. 

The stereochemical determination o f 160 was confirmed by single-crystal X-ray structure 

(Figure 56). Esters 160 and 161 were saponified to the corresponding acids, and subsequently 

converted into the acids chloride 164 and 165, respectively.375 Amide coupling o f the 

resulting acid chlorides with 2-methyl anthranilate provided 153 and 166. Analysis and 

comparison o f the 'H NMR spectra revealed 153 as the compound whose formation was 

detected when 145d was initially reacted with nitromethane as the solvent at 100 °C for 15 

minutes in the microwave (Table 11, entry 1; Figure 55).

S ch em e  12. S y n the tic  ro u te  to  153 and  166.

In another sequence, the Horner-W adsworth- 

Emmonsj82 reaction o f  acetophenone 159 with 

triethyl phosphonoacetate afforded a 1:1 mixture 

o f the diastereoisomer 160 and 161 (Scheme 12).

159 u r  160, R = OEt, 29%  
'-►162, R = OH, 85% “] 

164, R = Cl, 94% -J c

. r  161, R = OEt, 17% 
'-►163, R = OH, 97% —| „ 

165, R = Cl, 98% -J c

d d

Key: a) DME, NaH, triethylphosphonoacetate, Ar, rt, overnight; b) EtOH, KOH 1.5M, reflux, 1 h; 
c) toluene, SOCI2, Ar, reflux, 2 h; d) DCM, pyridine, 2-methyl anthranilate, Ar, rt, overnight.
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Figure 57. X-ray crystal structure o f  com pound 160.

Finally, the reaction o f 154 with nitromethane 

was carried out in the microwave reactor at 100 

°C for 15 min, to afford a mixture o f starting 

material and 149b (approximately in a ratio o f  1:1). Reaction o f 153 and 166 with 

nitromethane was carried out in the microwave at 100 °C for 15 min, to afford, as expected, 

149a, showing that the stereochemistry does not effect the reactivity 153 and 166 toward the 

conjugate addition o f nitromethane.

Two mechanisms can be envisioned involving compounds 153 and 154 as the key reactive 

intermediates (Scheme 13). In path A, nitromethane adds to 167 in a conjugate fashion. 

Subsequent p-elimination o f nitrous acid affords the olefin 168. Conjugate addition o f a 

second molecule o f nitromethane to 168 gives 170.

We believe that the nitrophenyl moiety is critical for the reactivity o f our substrate 145 for 

various reasons. As direct results o f the inductive effect o f the nitro group, compounds 145d-f 

show an increased reactivity towards the conjugate addition o f nitromethane. Moreover, the 

acidifying effects o f the p-nitrophenyl moiety (with pKa value o f approximately -1 1.35),383 

make 152 a highly reactive species, which undergoes instant p-elimination, and play a key 

role in promoting the subsequent conjugate addition o f nitromethane to 168.

Preparation o f olefins via ionic process from aliphatic nitro compounds has been amply 

described in the literatu re/84 The nitro group at the p-position o f  an electron-withdrawing 

moiety readily undergoes P-elimination to afford alkenes upon treatment with base. The 

Michael addition o f nitromethane followed by the elimination o f HNO2, has been used widely 

as a successful strategy in the synthesis o f polyfunctionalized unsaturated carbonyl 

derivatives.384

To our best knowledge, while esters, aldehydes, ketones and sulfones more commonly 

employed for the p-elimination384 o f H N 02, such a role for the 4-nitropheyl group has not 

been previously described.

In Path B, as a direct results o f  its resonance effect, the nitro group would draw electrons 

from the C=C double bond decreasing the electron density in the a  carbon o f 167 and thereby 

increasing its electrophilicity and favoring the addition o f nitromethane to give 171. Due to 

the electron-withdrawing effect o f the nitrophenyl and the ester group, 171 is prone to 

undergo elimination o f  H N 0 2 and subsequent Michael addition to afford 174.
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S ch em e  13. P ro p o sed  m echan ism  fo r the  fo rm ation  o f  co m p o u n d s 149-151.

DBU + CH3 N 0 2  ------   + HDBU + CH2 N 0 2

Path A

o 2 n c h 2  ' \  O

A r ^ ^ N H

y
C 0 2Me 

167, Ar = 4-N 0 2 C6 H4

N 0 2 CH2  ‘

N 0 2  / I
DBU

NH
II X L ?

A T ^ ^ N H  _  A r ^ ^ ^ N H

C 0 2Me ^  C 0 2Me C 0 2Me

152, Ar = 4 -N 0 2 C6 H4  168, Ar = 4 -N 0 2 C6 H4  169, Ar = 4 -N 0 2 C6 H4

N 0 2

Path B

x iA r ^ ^ N H
S 0

A r s~'^NH

C 0 2Me v C 0 2Me

168, Ar = 4 -N 0 2 C6 H4  170, Ar = 4-N 0 2 C6 H4

A NH

y
0 2 NCH2  ' C 0 2Me

167, Ar = 4 -N 0 2 C6 H4

DBU

NH

171, Ar = 4 -N 0 2 C6 H4

NH NH

C 0 2Me

173, Ar = 4 -N 0 2 C6 H,172, Ar = 4 -N 0 2 C6 H,

NH

C 0 2Me

172, Ar = 4 -N 0 2 C6 H,

Ar NH

N 0 2  k s V
C 0 2Me 

174, Ar = 4 -N 0 2 C6 H4

To probe and better understand the role of the nitro substituent, analogues of 145d possessing 

alternate electron-withdrawing groups have been further explored. Replacing the nitro group 

in 145d by methyl ester (145a) markedly reduced its reactivity toward the de-nitration- 

Michael addition process. Under the microwave conditions at 100 °C, reaction of 145a with 

nitromethane afforded the 1,4 addition product 144o, and traces o f 175 were detected 

(Scheme 14). On heating at 150 °C (Scheme 14), 144o underwent denitration to afford 175, 

but no Michael addition occurred. This result suggested that the p-nitrophenyl moiety plays 

an important role in facilitating the p-elimination and the successive Michael addition, and
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appeared to have a remarkable and unique effect on the reactivity o f  the a-carbon toward the

conjugate addition. Moreover, we hypothesized that replacement o f the methyl ester with the 

nitro group at the amide terminus of 145a would propitiously activate it toward the 

denitration due to the strong acidifying effect of the nitro group. Even though inductive 

effects become less significant as the electron-withdrawing group gets further away from the 

negative charge, a very electronegative group such as the nitro group (twice as electron- 

withdrawing as the carbonyl group) might be once again critical for the reactivity of our 

substrate and influence the product distribution. The reaction o f 145t afforded 176 as the 

main product and only traces of 144p, and 177 were detected.

S ch em e  14. P ro d u c t d is trib u tio n  o f  reac tion  o f  145a  and  145t.

145t, Ar = C 0 2 MeC6 H4  176, Ar = C 0 2 MeC6 H4, 51% 144p, Ar = C 0 2 MeC6 H4, traces 177, Ar = C 0 2 MeC6 H4, traces

Key: a) CH3 N 0 2, DBU, Pw, 100 °C, 15 min; b) CH3 N 02, DBU, Pw, 150 °C, 15 min.

Finally, in an effort to expand the utility of our protocol to the synthesis of the T-shape 

scaffold, substrates 144a and 144b were converted into the corresponding amino compounds 

143a-b by reduction of the nitro group in presence of NaBFLj and N iCb . 3 8 5  For practical 

reasons, the intermediates 143a-b were not purified. Derivatization o f 143a-b under 

Schotten-Bauman conditions, followed by saponification afforded the final targets 178a-d in 

good overall yields (Scheme 15). Compound 178e was prepared via conjugate addition of 

nitromethane to the benzyl protected amide 179. Reduction of 179 to amino compound 143c 

and subsequent coupling with 4-phenoxybenzenesulfonyl chloride furnished the sulfonamide 

142e. Finally, hydrogenolysis followed by saponification afforded the final target molecule 

178e (Scheme 16).

C 02Me

145a, Ar = C 0 2 MeC6 H4  144o , Ar = C 0 2 MeC6 H4, 48% 175, Ar = C 0 2 MeC6 H4, traces

b, 41%
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Schem e 15. Synthesis o f  the T-shape m olecules 178.

C 0 2Et 0 2

H
144a, R = Ph, R, = N 0 2  - | 142a, R = Ph, Rt = Me, 65% 178a, R = Ph, R1 = Me, 85%

a 143a, R = Ph, R., = NH2 - J 142c, R = 2-Np, Rt = Me, 33% 178c, R = 2-N p, R-, = Me, 70%

= nu2 ~|
144b, R = 2-Np, Rt = N02 a 142b, R = Ph, = OPh, 77% 178b, R = Ph, R,  = OPh, 83%

= NH2 J
^  143b, R = 2-Np, Rt = NH2 142d, R = 2-Np, Rt = OPh, 77% 178d, R = 2-Np, Rt = OPh, 65%

Key: a) NiCI2, NaBH4, MeOH, THF, 0 °C, 15 min; b) 4-phenoxybenzenesulfonyl chloride or tosyl chloride, 
K2 C 0 3, dioxane, H2 0 , rt, 2-3 h; c) THF, MeOH, NaOH 1M, rt, overnight.

Sch em e 16. S y n the tic  rou te  to  co m p o u n d  178e.

,C 0 2Me H2 N. ^ \ . C 0 2Me

c X1.-OC, d
.C 02Me

OBn

145c, R = 2-Np-i 143c, R = 2-Np, 13% „ 7 m  r  142e’ R = 2 _NP’ R1 = 0P h
b 7 2 % r 179- R = 2 - N p J a ’ L 181, R = 2 -Np, R, = OPh f 5QQ/
b' L-180, R = 2-Np 178e, R = 2-Np, R, = O P h ^  ’ 5U/°

Key: a) DMF, K2 C 0 3, benzyl bromide; b) CH3 N 0 2, DBU, pw, 15 min, 100 °C; c) NiCI2, NaBH^, MeOH, THF, 0 °C, 15 
min; d) 4-phenoxybenzenesulfonyl chloride, K2 C 0 3, dioxane, H2 0 , rt, 3 h; e) MeOH, ammonium formate, 10% Pd/C, 
H2, 2 days; f) THF, MeOH, NaOH 1M, rt, overnight.

Our protocol provided a convenient entry to pyrrolidine 187 through the intermediacy of 186, 

obtained in excellent yield by treatment of 185 under olefmic metathesis condition using the 

second generation Grubb’s catalyst3 8 6  (Scheme 17). The pyrrolidine moiety is a drug-like 

scaffold that has featured in the design of peptidomimetics and small molecules as potential 

pharmacologic agents for the treatment of several diseases . 3 8 7 ' 3 9 0  In addition, the 

nitromethane motif o f 187 constitutes a unique branching point for further diversification, and 

the carbonyl motif itself is an important functionality, which provides an enormous scope for 

molecular design allowing the introduction of structural and chemical diversity.

Sch em e 17. S y n the tic  ro u te  to  p y rro lid in e  187.

NHBOC

186,92%  187,91%
Key: a) Boc^O, THF, Ar, reflux, 24 h; b) THF, NaH, allyl bromide, rt, 48 h; c) TFA, DCM, rt, 2 h; d) DCM, Et3 N, acryloyl 
chloride, Ar, rt, 4 h, e) Toluene, 2nd generation Grubb's catalyst, reflux, 1h; f) CH3 N 0 2, DBU, pw, 100 °C, 15 min.
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7.3 Biological results

Our primary aim was the synthesis o f  novel small molecules that can block STAT3 activation 

in vitro by interaction with STAT3 SH2 domain. The compounds were designed to bind to 

the SH2 domain o f  one STAT3 monomer, disrupting the dimerization. All the synthesized 

compounds were evaluated for their ability to disrupt active STAT3 determined by reduction 

in DNA binding activity, which can be measured by an electrophoretic shift assay (EMSA). 

Nuclear extract containing active STAT3 were incubated with different concentration o f  the
• • X)compounds, prior to incubation with P-labeled hSIE olinucleotide probe, and analyzed by 

EMSA. The ability o f  the compounds to disrupt active STAT3 was indirectly determined by 

measuring the level o f  STAT3- PDNA binding activity. Unfortunately, none o f the 

synthesized compounds retained the potency o f  interaction with and the disruption o f  STAT3 

activity as compared to the first hits NSC59263 and NSC64859, emerged from computational 

analyses.

In the context o f  the search o f inhibitors o f STAT3 activity, considerable efforts have been 

directed in our laboratories to the validation and establishm ent o f a robust fluorescent 

polarization assay (FP), suitable for HTS screening, which allows screening for small 

molecules that directly bind to the STAT3 SH2 domain and thereby inhibit its activity. The 

assay has been previously described by Schust and cow orkersf91 The basis o f  this assay is the 

binding o f  a fluorescein-labeled phosphopeptide (GY*PQTV) derived from the interleukin-6 

receptor subunit g p l30 to unphosphorylated STAT3 with Kd o f  150 nM. The fluorescence 

polarization is a powerful technique and more accurate then electrophoretic m ethods such as 

EMSA.

Free Bound Briefly, fluorescent polarization

m easurem ents are based on the 

assessm ent o f  the rotational 

motion o f  fluorescently labeled 

macromolecules. The

fluorophore attached to the small 

binding partner (e.g. GY*PQTV peptide) is exited by polarized light and the rotational speed 

o f a molecule in solution inversely correlates with its effective m olecular weight. Therefore, 

the fluorescence polarization o f  the unbound small binding partner will be low, and its 

binding to a larger binding partner (e.g. STAT3 monomer) will increase the polarization o f 

the emitted fluorescence. In summary, the assay will allow us the direct analysis o f  the ability 

o f  our library o f  compounds to bind the STAT3 SH2 domain.

Emit     Emit     Excite
.------ g>— IlG Y P O T ll  ---------© ----- r

ST A T 3
onom

S I VI 3
mrni'im
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7.4 Conclusion

In the search for novel small molecule disrupters o f STAT3 activity, a convenient microwave 

assisted conjugate addition of nitromethane to compounds 145 has been developed. The 

generality and applicability to a broad range of substrate makes the reaction valuable to 

provide useful nitrogen containing intermediates for the synthesis of druglike molecules such 

as 178 and 187. Moreover, the presence of the nitro group at the cinnamic acid-terminus of 

145d-f proved to be crucial for its unique reactivity toward the conjugate addition of 

nitromethane.
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8.0 Synthesis of oxindoie derivatives as potential inhibitors of Aurora 

kinases and SHP-2 phosphatase

8.1 Introduction

As part of our program toward the development of Aurora kinases and SHP-2 inhibitors, the 

oxindoie derivative HL10581 and NSC117199 emerged as a lead compounds from a high 

throughput screen for Aurora-A and SHP-2, respectively (Figure 58). We synthesized various 

series of oxindoie derivatives as potential inhibitors o f Aurora-A and SHP-2.

Figure 58. Struc tu re  o f  th e  in itial h its  H L 10581 and  N S C 117199 .

HL10581, Aurora-A, IC5 0  1-5 pM NSC117199, SHP-2, IC5 0  47 pM

8.2 Chemistry

We initially prepared the library o f sulfonamides 191 aimed at probing the role of the sulfonic 

acid group, the effect of incorporation of hydrophilic and hydrophobic alkyl and aryl groups 

at the 5-postion of HL10581 and NCS117199. Treatment of 5-isatinsulfonic acid sodium salt 

dihydrate (188) with POCI3, in tetramethylene sulfone at 60 °C afforded the key 

intermediate3 9 2  189 (Scheme 18).

S ch em e 18. Syn the tic  rou te  to  lib rary  191.

N-NHAr

188 199, 68% 190a-q 191ar a36
|-  190r, R2  = H 

d 190s, R2  = Me-*J d
^  190t, R2  = Et 

190u, R2  = Bn —

Key: a) POCI3, tetramethylene sulfone, 60°C , 4 h; b) NHRR.,, DIPEA, THF, rt, overnight; c) morpholine, DCM, Ar, rt, 3 h; 
d) Ethyl bromide or methyl iodide or benzyl bromide, DMF, NaH, Ar, rt, overnight; e) ArNHNH2, HCI 4M, EtOH, reflux, 5 h; f) 
ArNHNH2, HCI 4M, EtOH, pw, 120 °C , 15 min.

Scheme 18 outlines the conditions followed for the synthesis, of the sulfonamides 190a-u, 

according to a procedure previously reported by Lee and coworkers3 9 2  (Table 14). A-methyl 

(190s), A-ethyl (190t), and A-benzyl (190u) derivatives were synthesized by reaction of the
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parent compound 190r with NaH, followed by alkylation with the appropriate halides (Table 

14). Compounds 191ai-a3,a6,ai9-a2o were prepared by condensation of the amide precursors 

190a,b,j-p with the commercial 2 -nitrophenylhydrazine according to a protocol developed by 

Kuyper and coworkers of GlaxoSmithKline3 9 3  (Scheme 18, Table 15). We found that the 

condensation can be effected by the microwave heating, shortening significantly the reaction 

time to 15 min, and therefore meeting our need o f a straightforward synthetic route to the 

target molecules (Scheme 18). NMR spectroscopy was used for determining the purity the 

compounds. HPLC methods (typically two methods) were also developed to assess the purity 

of the most active compounds. Ensuring the quality of the compound collection is important 

to minimize both false positive and false negative biological data and to improve data quality.

T ab le  14. Syn thesis o f  in te rm ed ia tes  190.

E ntry R Ri r 2 Y ie ld  189 -► 190
190a H H H 47%

a190b H N, iV -D im ethylethyl H -
190c H Propyl H 45%
190d H /so -p ro p y l H 70%
190e H 2-M ethoxyethy l yl H 66%
190f H Sec-butyl H 30%

a190g H M orpho liny l H -
190h H T etrahydro fu rfu ry l H 66%
190i H Furfury l H 95%
190j H 2 -T h iophenem ethy l H 49%
190k H 3 -M ethoxy  benzyl H 54%
1901 H 4-M eth o x y b en zy l H 25%

190m M e B enzyl H 47%
a190n H 4 -(A m in o m eth y l)p y rid y l H -
190o H 2 -(A m in om ethy l)py ridy l H 58%
190p H 4 -C hlo robenzy l H 57%
190q H B enzyl H 64%
190r M e M e H 68%
190s M e M e M e 67%
190t M e M e Et 82%
190u M e M e B enzyl 29%
a) T he cru d e  m ateria l w as u sed  in the  n ex t step  w ith o u t fu rth er p u rificatio n .
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Table 15. Synthesis o f  hydrazones 191.

E ntry R R . R 2 A r Y ie ld  190 —>191
191ai H H H 2 - N 0 2C 6H4 58%
191a2 M e M e H 2 - N 0 2C 6H4 60%
191a3 M e M e M e 2 - N 0 2C 6H 4 3 6%
191a4 M e M e Et 2 - N 0 2C 6H4 63%
191a5 M e M e B enzyl 2 - N 0 2C 6H 4 2 1%
191a6 H N, A -D im eth y leth y  1 H 2 - N 0 2C 6H4 24%
191a7 H Propyl H 2 - N 0 2C 6H 4 56%
191a8 H /so -p ro p y l H 2 - N 0 2C 6H4 50%
191a9 H 2 -M ethoxyethy l H 2 - N 0 2C 6H 4 4 9%
191a10 H S ec-buty l H 2 - N 0 2C 6H 4 50%
1 9 1 a „ H M orpholiny l H 2 - N 0 2C 6H 4 56%
191a12 H T  etrahy  d ro fu rfu ry  1 H 2 - N 0 2C 6H 4 6 3%
1 91 a 13 H Fur fury  1 H 2 - N 0 2C 6H4 86%
1 91 a 14 H 2 -T h iophenem ethy l H 2 - N 0 2C 6H4 59%
1 9 1 a 15 H 3 -M ethoxy  benzyl H 2 - N 0 2C 6H 4 4 5%
1 9 1 a 16 H 4 -M ethoxybenzy l H 2 - N 0 2C 6H4 57%
1 9 1 a 17 M e B enzyl H 2 - N 0 2C 6H 4 54%
191a18 H 4-(A m in o m eth y l)p y rid y l H 2 - N 0 2C 6H 4 38%
1 9 1 a I9 H 2-(A m in o m eth y l)p y rid y l H 2 - N 0 2C 6H4 58%
191a10 H 4 -C h lo ro b en zy l H 2 - N 0 2C 6H 4 4 3%
191a2i H /so -p ro p y l H c 6h 5 48%
191 a22 H /so -p ro p y l H 1-Np 48%
191a23 H /so -p ro p y l H 2 - C 0 2H C 6H 4 68%
191a24 H H H 2 - C 0 2H C 6H 3 0%
191 a25 H 4 -C h lo robenzy l H 2 - C 0 2H C 6H 6 6%
191 a26 H /so -p ro p y l H 3 - C 0 2H C 6H 4 57%
191a27 H H H 3 - C 0 2H C 6H 4 58%
191a28 H 4-C hlo ro b en zy l H 3 - C 0 2H C 6H 4 55%
191a29 H /so -p ro p y l H 4 - C 0 2H C 6H 4 75%
191a30 H H H 4 - C 0 2H C 6H 4 53%
191a31 H 4 -C h lo ro b en zy l H 4 - C 0 2H C 6H 4 77%
191 a32 H H H 3 - N 0 2C 6H4 4 9%
191a33 H 4-C hlo ro b en zy l H 3 - N 0 2C 6H 4 6 8%
191a34 H H H 4 - N 0 2C 6H 4 59%
191 a35 H 4 -C h lo robenzy l H 4 - N 0 2C 6H4 74%
191 a36 H B enzyl H 2 - N 0 2C 6H 4 74%

Compounds 191a23 and 191a26 emerged as potent inhibitors of SHP-2 from the screening of 

library 191. The carboxylic acid moiety allowed us to introduction of structural and chemical 

diversity on phenylhydrazone moiety of 191a23 and 191a26 generating a new library of 

analogues 193 (Table 16) and further probing the role o f the carboxylic acid.

Table 16 illustrates the general method for the synthesis of the carboxamides 193a-t. The 

synthetic strategy, previously described by Bramson et al, , 3 9 4  relies upon the conversion of 

the acids 191a23 and 191a26 into the corresponding esters 192a and 192b by treatment with 

pentafluorophenyl trifluoroacetate. Coupling of the activated esters 192a and 192b with a 

range of primary and secondary amine under very mild conditions afforded the desired library 

193 (Table 16).
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Table 16. Synthesis o f  am ides 193.

HN

H

HN

H

.1
193a-i, R = 2-CONHRt 
193j-r, R = 3-CONHR1

r  191a23, R = 2-C 02H 
191a26, R = 3-C 02H 

L- 192a, R = 2-C 0 2 C6 F5, 78% I a 
192b, R = 3-C 0 2 C6 F5, 80%

Key: a) Pentafluorophenyl trifluoroacetate, pyridine, DMF, rt, Ar, 1.5 h; 
b) NHRR1t pyridine, CH3 CN, rt, Ar, overnight.

E ntry R  =  2 -C O N H R ,, R i = Y ield E ntry R  =  3 -C O N H R ,, R , = Y ield
193a Furfury l 47% 193j Furfury l 77%
193b H 38% 193k H 54%
193c D im ethy lam inoethy l 37% 1931 D im eth y lam in o eth y l 39%
193d 2-M eth o x y eth y l 49% 193m 2-M eth o x y eth y l 4 6%
193e B enzyl 84% 193n B enzyl 70%
1 9 3 f 2-(A m in o m eth y l)p y rid y l 37% 193o 2-(A m in o m e th y l)p y rid y l 70%
193g 2-M o rp h o lin -4 -y l-e th y l 67% 193p 2 -M o rp h o lin -4 -y l-e th y l 57%
193h M e 69% 193q M e 79%
193i Et 75% 193r Et 72%

We also studied the effects due to the replacement of the chlorine and nitro group of 

HL10581 and NSC117199, obtaining a library of novel isatins 194 (Table 17). The 

preparation of library 194 involved one-step condensation of 188 with a range of 

commercially available aromatic hydrazines in 30-93% yields (Table 17) and high purity. In 

order to overcome the poor solubility o f the 5-isatinsulfonic acid sodium salt (188) in ethanol, 

the reactions were carried out using aqueous HCI as co-solvent. Once again, microwave 

technology provided an efficient alternative to conventional heating allowing us to generate 

the desired library 184 in a combinatorial fashion.

T able 17. S yn thesis o f  h y d razo n es 194.

E n try A r Y ield
194a c 6h 5 87%
194b 2 -M eC 6H 4 75%
194c 2 ,6 -C l2C 6H 3 78%
194d 2-E tC 6H 4 30%
194e 2 -F C 6H4 93%
1 9 4 f 2-C F 3C 6H 4 87%
194g c 6f 5 51%

194h 1-Np 78%
194i 2 ,4 -C l2C 6H 3 69%
194j 2 ,5 -C l2C 6H 3 76%
194k 2 - C 0 2H C 6H 4 82%

H 03S

188

a or b H 03S

H
N"N
7 Ar 

O
N 
H

194a-k
Key: a) ArNHNH2, HCI 4M, EtOH, pw, 120 °C, 15 min; b) 2- 
(C 0 2 H)phenyl hydrazine, HCI 4M, EtOH, pw, 150 °C, 5 min

Compounds in the series 191, 193 were generally isolated as single isomer. Unfortunately, we 

have not been able to confirm this stereochemistry by X-ray crystallography. However, isatin

110



hydrazones have been previously reported394 to exist in the Z configuration, which is favored 

due to the intramolecular hydrogen bonding between the NH o f the hydrazone and the 

carbonyl group o f the oxindoie.

As viewed by 'H NMR (Figure 59), when isatin 188 was reacted with 2-hydrazinobenzoic 

acid at 120 °C for 15 minutes, compound 194k was obtained as an unexpected mixture o f E 

(minor) and Z (major) isomers. Performing the reaction under conventional heating afforded 

the same isomeric mixture. Due to its poor solubility in a wide range o f organic solvent, 

purification o f 194k by recrystallization or trituration proved to be difficult. To our delight, 

we found that 194k could be obtained and isolated as a single Z isomer by modifying the 

reaction condition (microwave heating, 150 °C, 5 min). The unusual reactivity o f the 2- 

carboxyphenyl hydrazine may be due to the presence o f the ortho carbonyl group competing 

with the carbonyl o f  the oxindoie in hydrogen bonding the NH o f the hydrazone, and 

therefore leading to a mixture o f two isomers.

F ig u re  59. 'H  N M R  (D M S O -d 6) o f  th e  isom eric  m ix tu re  o f  Z  and  E  194k.

C 0 2H

NH

HO;
► = 0

(Z )194k (£) 194k

lit.
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Subsequently, a focused library of enamines 199 and 200 was also prepared in order to assess 

the requirement of the hydrazone linker for optimal activity of derivatives 181. The synthetic 

route for the synthesis of 199 and 200 is depicted in Table 18. The 5-chlorosulfonyloxindole
395196 was prepared by treating the unsubstituted oxindoie 195 with chlorosulfonic acid at 70 

°C. Reaction of 196 with isopropylamine and 4-chlorobenzylamine afforded sulfonamides 

197a and 197b, respectively, in excellent yield and without the need for further purification. 

Treatment of 197a and 197b with 7V,A^-dimethylformamidedimethylacetal in DMF at room 

temperature followed by condensation of the resulting dimethylaminomethyleneoxindole 

188a and 188b with the appropriate aniline produced the required library 199 (Table 18). 

Finally, hydrolysis of 199a-g proceeded smoothly under microwave heating to give the 

corresponding acid 200a-c (Table 18).

T ab le  18. S y n thesis o f  en am in es 199 and  200.

NHAr

a 8 8 °/ T 195’ R =H 197a’ R1 = C H(CH3)2, 91% 198a, Rt =CH(CH3 ) 2  p  199a-g
° 196, R = S 0 2CI 197b, Rt = 4-CIPhCH2, 82% 198b, Rt = 4-CIPhCH2  C 200-a-c

Key: a) CIS03 H, CPC, 30 min, 70°C, 1.5 h; b) N H 2R t ,  DIPEA, THF, rt, overnight; c) /V,/V-dimethylformamide dimethylacetal,
DMF, rt, 1 h; d) M eS0 3 H, EtOH, substituted aniline, nw, 150 °C , 5 min; e) NaOH 1M, MeOH, ^w, 150 °C , 5 min.

E ntry R A r Y ield
199a /so -p ro p y l 2 - C 0 2M eC 6H4 59%
199b /so -p ro p y l 3 - C 0 2E tC 6H 4 4 7%
199c /so -p ro p y l 4 - C 0 2E tC 6H 4 4 3%
199d /so -p ro p y l 2 - N 0 2C 6H4 3 4%
199e 4 -C h lo robenzy l 2 - N 0 2C 6H 4 3 3%
1 9 9 f /so -p ro p y l c 6h 5 70%
199g /so -p ro p y l 1-Np 4 9%
200a /so -p ro p y l 2 - C 0 2H C 6H 4 9 2%
200b /so -p ro p y l 3 - C 0 2H C 6H 4 40%
200c /so -p ro p y l 4 - C 0 2H C 6H 4 33%

Compounds of the series 199 were isolated as single isomer as observed by their NMR. !H 

NMR spectra of compound 199d is reported as a typical example (Figure 60). Oxindoie 

enamines have been previously reported to exist in the Z configuration by Bramson et a l394 

Compounds 198a and 198b were obtained and reacted as a mixture of E and Z isomers. As 

shown in Scheme 19, the mechanism proceeds first by giving an enol intermediate. Now the 

double bond moves back into the original position expelling the leaving group. The new 

double bond has the Z configuration, and, presumably, the intramolecular hydrogen bonding 

between the NH of the hydrazone and the carbonyl group o f the oxindoie is the key 

interaction determining the stereochemistry (Scheme 19).
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Bramson394 and coworkers reported that confirmation o f  the stereochemistry o f their library 

o f enamines was achieved by observation o f a nuclear Overhauser effect between the 4- 

position proton o f the oxindoie ring system and the vinyl hydrogen o f the exocyclic 

methylene for 5-substituted oxindoie derivatives. Only in some analogs where a hydrogen 

bond acceptor (O or N) was introduced at the 4-position o f the oxindoie ring, allowing the 

formation o f an alternative hydrogen bond donor with the linker NH in the E configuration, 

compounds were collected as a mixture o f E and Z isomers as observed by ’H NMR.

F ig u re  60. 'H  N M R  (D M S O -d 6) o f  co m p o u n d  199c.

H - 4

NH

HN

CH=C199c

"I----- '----- 1----- •----- 1"
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Schem e 19. M echanism  o f  the conjugate substitution.

N(CH3 ) 2 N(CH3 ) 2

formation of the enol intermediate

Nu .

expulsion o f the leaving group from the enol intermediate

Based on the reported data, the assignment of the configuration in 199 by observation o f a 

nuclear Overhauser effect between the 4-position proton and the vinyl hydrogen of the 

exocyclic methylene was attempted for our compounds. Surprisingly, nOe experiments did 

not show any correlation between what we believe to be the 4-hydrogen and vinyl hydrogen 

for any o f the library members (Figure 60). Indeed, attempts have being made to obtain the 

X-ray structures compounds 199, but without succeeding.

Finally, we examined the incorporation of the carboxylic acid moiety at the 5-position o f the 

oxindoie scaffold as alternative to the sulfonic acid functionality, aiming at improving the 

potency and cell permeability of the parent compounds HL10581, and NSC117199 and 194. 

Table 19 depicts the preparation of library 208. The Sandmeyer procedure has been reported 

as the most common method for the synthesis o f isatin derivatives . 3 9 4 ,3 9 6  We initially 

envisioned that the key isatin intermediate 203 might derive from the treatment of the 

commercially available methyl 4-aminobenzoate 201 with choral hydrate in presence of 

hydroxylamine (Scheme 20). However, purchasing the chloral hydrate (a schedule IV 

controlled substance) proved troublesome.

Schem e 20. T h e  S an d m ey er syn thesis.

M e O z C ^ ^ s . a M e O z C ^ ^ . ^.NOH b M e02C
O

O
NH2  ^ n a o  c

H H
201 202 203

Key: a) CI3 CCH(0H)2, H2NOH HCI, Na2 S 0 4; b) H2 S 0 4; c) H2 0 .

An alternative approach was adopted, providing an efficient access to the series 207, 208. The 

synthesis of 203 began methyl indole-5-carboxylate (204) (Scheme 21) following a literature
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reported procedure. 3 9 7  The reaction of 204 with Br2 in DMF afforded a crude mixture of 205 

and 204 in a ratio o f 3:1 (Figure 61). Treatment of the crude mixture with 1 equivalent NBS 

in 2 -propanol-H2 0  (95:5) afforded a crude mixture of 205 and the gem-dibromo derivative 

206 (Figure 62) suggesting that the complete conversion of 204 into 206 could be directly 

accomplished by treatment with NBS.

S ch em e  21. L ite ra tu re  reported  p ro cedure  fo r the  sy n th esis o f  206.

Me02C.

204 205 204 206

Key: a) Br2> DMF, rt, overnight; b) NBS, 2-propanol, 0°C, 30 min.

F ig u re  61. T he *H N M R  (D M SO -c^) spectrum  o f  c ru d e  205 from  reac tio n  o f  204  w ith  B r2 in D M F.

Me02C.

205 204

-0

1 * 1 <----- 1----------   1 « 1 ■ 1---------• 1 • 1 » 1-» 1 ■----------1 • 1 • 1------------« 1-------- » 1---' 1-------- « 1-------------  1-------
16 15 14 1 3 1 2  11 1 0 9  8 7 6 5 4 3 2 1 0 -1fl (ppm)

Conditions involving the direct use of NBS for the synthesis of gem-dibromo derivatives 

from the corresponding indoles have been previously reported in the literature. 3 9 7 ' 3 9 9

However, the preparation of analogues of 206 in this manner is often complicated by the

concomitant bromination of the aromatic ring depending on the substituents on the aromatic
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ring itself. We believed that in our specific case the electron-withdrawing nature o f the 

carboxylic ester group at the 5-position of 204, might propitiously deactivate the aromatic 

ring toward the bromination. This hypothesis proved to be correct and compound 206 could 

be prepared by reacting the 5 methyl indole-5-carboxylate (204) with 4 equivalent of NBS in 

2 -propanol-H2 0  (95:5) without detecting the formation of any side-products deriving from 

the bromination o f the aromatic ring (Scheme 21) (Figure 63). Isatin 203 could be obtained 

by hydrolysis o f 206 [microwave heating, MeOHiF^O (3:1), 150 °C, 5 min]. Condensation of 

203 with the commercially available 2-chlorophenylhydrazine, carried out with microwave 

heating at 150 °C, for 5 min in Me0 H:H2 0  (3:1), afforded the hydrazone 207a. We found 

that library 207 could be easily generated by condensing the gem-dibromo derivative 206  

with a range o f aryl hydrazines under microwave conditions (Scheme 8 , step b) (Table 19).

T able 19. Synthe tic  rou te  to  co m p o u n d s 203 , 207, 2 0 8 ,2 0 9 .

O N"NHAr

N -N H A r

H
203, 80%

key: a) NBS, 2-propanol, 0°C, 30 min; b) 2-Chlorophenylhydrazine, MeOH, H20 , pw, 150 °C , 5 min; c) NaOH 1M, MeOH, 
80 °C, 8 h; d) HCI 4M, pw, 150 °C , 5 min, ArNHNH2, pw, 150 °C , 5 min; e) MeOH, H20 , mw, 150 C, 5 min; f) 2- 
Chlorophenylhydrazine, MeOH, H20 , pw, 150 °C , 5 min; g) HCI 4M, pw, 150 X  , 5 min.

E ntry A r Yield®
207a 2-C lC 6H 3 66%
207b C 6H s 4 5%
207c 2 -C F j C 4 2%
207d 2 ,6 -C l2C 6H3 66%

208a 2-C IQ H 3 81%

208b c 6h 5 76%
208c 2 -F C 6H4 72%
208d 2-E tC 6H4 81%
208e 1-Np 80%

a) y ield  reported  for step  b and  step  d, S ch em e 5
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Figure 62. The ’H NM R (DMSO-d^) spectrum o f crude 206 from reaction o f 205 with 1 equiv o f NBS.
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F ig u re  63. The ‘H N M R  (D M S O -c y  spectrum  o f  pure  206 from  reaction  o f  204 w ith  4 equ ivalen t o f  NBS.
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We initially assumed that the mechanism of formation of 207 involved the conversion of 206  

into the keto product 203 followed by the condensation with the arylhydrazine. However, 

compound 207a was also obtained by reacting 207 and 2-chlorophenylhydrazine in 

anhydrous methanol. This suggests the possibility that the formation of 207a might occur via 

direct displacement of bromine by the hydrazine. Ester 207a was finally saponified in 

aqueous NaOH to give acid 208a. Aqueous hydrochloric acid was found to be effective to 

promote the hydrolysis of 206 producing the carboxylic acid 209. Acidic hydrolysis of gem- 

dibromo derivatives to afford the corresponding keto products has previously described in the
'i q /  '2Q '7

literature. ’ However, to our best knowledge, this is the first reported example of 

microwave-assisted hydrolysis. Prompted by the previous successful results, we also wanted 

to examine the possible development of a one-pot microwave protocol for the synthesis of the 

series 208. Unfortunately, reaction of 206 with 2-chlorophenylhydrazine in aqueous 

hydrochloric acid (microwave heating, 150 °C, 1 0  min) failed in producing 208a and pure 

207a was recovered. Presumably, under these conditions, the formation of the hydrazone 

proceeds faster than the ester hydrolysis causing the precipitation o f 207a from the reaction 

mixture due to its insolubility in aqueous HCI. Consistently with this hypothesis, when we 

reacted 207a with aqueous HCI at 150 °C for 5 min in the microwave, the pure starting 

material was recovered and no ester hydrolysis was observed. The alternative and versatile 

procedure we developed for the synthesis of 208 (Table 19) is exemplified by the following 

reaction. A mixture of 206 (0.149 mmol) in HCI (aq, 4M, 2 ml) was microwave-heated at 150 

°C for 5 min. After cooling to room temperature, 2-chlorohydrazine (0.149 mmol) was added 

to the reaction mixture, which was heated in the microwave at 150 °C for 5 min. After cooling 

to room temperature, the yellow precipitate was collected by filtration, washed with water ( 5  

ml), cold methanol ( 2  ml) and dried to afford pure 208a as a yellow solid (0 . 1 2 1  mmol, 81%) 

without further purification.
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9.0 Evaluation of oxindoie derivatives as SHP-2 inhibitors

9.1 Introduction

In the course of a medicinal chemistry program aimed at the identification of potential SHP-2 

inhibitors targeting the PTP domain of the protein, the oxindoie derivative NSC117199 

emerged as a lead compound of moderate potency (IC5 0  o f 47 juM) from a high throughput

screen of the NCI Diversity set, a library o f 1981 compounds.

The screen was conducted using a fluorogenic SHP-2 PTPase assay
N -N H  f*u2

H O aS^^^A  using a GST fusion protein of SHP-2 PTPase domain (GST-SHP-

°  2PTPase) and 6,8-difluoro-4-methylumbelliferyl phosphate

NSC117199 , s h p - 2  ic50 4 7  nM (DiFMUP) as a substrate . 4 0 0  The activities of the GST-fusion

human recombinant SHP-2PTP, was measured using 6,8-difluoro-4-methylumbelliferyl 

phosphate (DiFMUP), a fluorinated MUP derivative developed by Molecular Probes as 

substrate. In the primary reaction, DiFMUP is transformed into the corresponding fluorogenic 

hydrolysis product (DiFMU) 6,8-difluoro-4-methylumbelliferone upon dephosphorylation. 

Therefore, the enzyme activity is associated with in an increase in fluorescence sensitivity. 

Fluorescence emission from DiFMU is measured at 355/460 nm with a multiwell plate reader 

(Wallac Victor 1420 multilabel counter, Perkin Elmer Co) (Scheme 22).

S c h e m e  22. P rim ary  reac tio n  in the  D iF M U P  assay

OH
H , 0

phosphatase
H O - P - O .

OH
, 0

DiFMUP, non fluorescent DiFMU, fluorescent

We were intrigued by the discovery of the drug-like oxindoie scaffold as a new potential 

template for the design of SHP-2 inhibitors, and by the enormous chemical and structural 

diversity that could be introduced in the oxindoie scaffold in order to optimise the inhibitory 

activity of the initial lead. Therefore, we synthesized several derivatives of NSC117199 and 

initially evaluated them for their ability to inhibit SHP-2 activity using the DiFMUP in vitro 

assay. Here we report our lead optimization directed to exploration of SAR around the 

oxindoie moiety.
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9.2 Biological results

All the new synthesized compounds were evaluated in the fluorogenic DiFMUP assay for 

their ability to inhibit SHP-2 activity. In an effort to improve the potency and determine the 

structural features responsible for the activity, initial SAR studies were carried out in our 

laboratories to establish the effects o f the sulfonic acid group upon activity. We First 

examined the removal o f the sulfonic acid moiety in compounds NSC117199 to give 209 

(Figure 64).

F ig u re  64. S truc tu res and  in vitro SA R  o f  the  early  o x in d o ie  de riv a tiv es 20 9  and 210.

< p ^ -N 0 2

N"N H

H

209, SH P-2  IC5 0 > 100 aM 210, SH P -2  IC5 0 >100 nM

The loss o f activity o f derivative 209 revealed the critical role o f  the sulfonic acid moiety 

(Figure 64) in capturing important interactions leading to good activity. Moreover, the drop in 

potency o f derivative 210 ( I C 5 0  >100 jliM ) revealed that the nitro group at the ortho-position 

o f the phenylhydrazone moiety is favourable for optimal activity. The molecular model of 

NSC117199 docked to the SHP-2 PTP catalytic pocket suggested hydrogen bonding 

interactions with the amino acid residues crucial for the Shp-2 catalytic activity (Figure 65 

and 66). In fact, the nitro group o f  NSC117199 forms hydrogen bond to Arg465, the catalytic 

nucleophile Cys459, and Ser460 (Figure 66). The sulfonate group forms hydrogen bond to 

Arg362 and Lys364. The model also reveals a hydrogen bond between the indolinone NH 

and Asp425, that functions as a general acid in the catalysis o f the phosphotyrosine (Figure 

66).

F ig u re  65. N S C 1 17199 bound  to  SH P-2  PT P b in d in g  site.
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F ig u re  66. Schem atic  d o ck ing  m odes o f  N S C 1 17199 w ith  SH P-2.

H ^ NHH LyZ.364 / ' ' N H  "T.
NH

. o '  A Ser460 _
0 \  /  o Cys459

Q  %
/     HN

n - n n - °  m y
'/ H O.......

 H O

Arg362 H -N +

Arg465HN N
Asp425

NSC117199 docked to SHP-2

Keeping in mind these interactions in our design process, we synthesized a small library 194 

(Table 20) in order to determine the importance of nitro group for activity. As shown by 

compound 194a, removal of nitro group resulted in a dramatic loss of potency. We also 

studied the influence of the nitro group moiety through the incorporation of different 

substituents at the ortho-position of the hydrazone terminus of N S C 117199 (Table 20, entry 

194b, 194d, 194e, 194k). The derivatives bearing a methyl, ethyl, fluorine, trifluoromethyl 

group, exhibited a significant loss of inhibitory activity. A key component of the lead 

optimization process was the improvement of the drug-like properties o f the original hit, by 

replacing the nitro group with alternative functionalities that are metabolically stable and 

capable of capturing and perhaps enhancing the hydrogen bonding interaction to Arg465, 

Cys459, and Ser460. The nitro group is well known to be easily metabolized in the human 

body by enzymes generating the corresponding amine, and reactive nitroso derivatives .4 0 1 ,4 0 2  

This could lead to loss of activity or, perhaps, to an increased toxicity due to the properties of 

the metabolites.

The carboxylic acid group was thought to be an appropriate replacement. Furthermore, the 

carboxylic acid moiety has been previously reported as phosphate mimicking featuring in the 

design of many selective PTP inhibitors . 2 4 8 ,2 5 3 ’2 5 5 ,2 5 8 ' 2 6 0  Bis-carboxylic acids or bis-sulfonic 

acids have been previously described as templates for development o f PTP selective 

inhibitors and the spatial relationship between the two groups appeared to be an important 

feature to determine good binding affinity . 2 4 6 ,2 4 8 ,2 6 2  Unfortunately, this modification did not 

give rise to a better Shp2 activity for the oxindoie derivative 194k (Table 20).
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Table 20. In vitro  SAR o f  library 194.

E ntry A r SH P -2  IC 50  (g M )J____________________________________________  N̂ NHAr
194a C 6H 5 > 100
194b 2 -C H 3C 6H 4 > 100  [ I f  } = 0
194d 2 -C H 2C H 3C 6H 4 > 100
194e 2 -F C 6H 4 > 100
1 9 4 f 2 -C F 3C 6H4 33-100
194k  2 - C 0 2H C 6H4 > 100

194

Moreover, as emerged from concurrent work in our laboratories, loss in potency was 

observed in compound 211, where the sulfonic acid group of N SC 117199 was replaced with 

the carboxylic acid (Figure 67). Notably, the SO3 H-CO2 H substitution proved to be 

successful leading to compound 212, exhibiting a remarkable SHP-2 inhibition (Figure 67). 

Switching the carboxyl acid moiety to the meta-position (213) resulted in loss of potency 

(Figure 67). Although apparently contradictory, the difference in potency between 194k and 

212 may indicate the existence o f different binding modes. Conclusions cannot be drawn 

based on these preliminary results, but a deeper evaluation o f this class of compounds is 

needed in order to understand the mode of action. The X-ray structural determination of 

compound 212 bound to SHP-2 would be helpful in rationalizing its high potency and our 

apparently incongruent results.

F igure 67. S tru c tu res  and  S A R  o f  SH P-2  in h ib ito r 2 11 , 212 , and  213.

h o 2c

211 , SHP-2 IC5 0  >100 jiM 212, SHP-2 IC5 0  0.8 uM 213, SHP-2 IC5 0 15 |WI

Next, the library of sulfonamides 191 was prepared to investigate the effect of incorporation 

o f hydrophilic and hydrophobic alkyl and aryl groups (Table 21).

From this set of N SC 117199 derivatives, a significant increase in potency was observed for 

compounds 191ai, and 191a2o (IC5 0 11.9 and 4.4 pM, respectively). The SAR of the N- 

alkylsubstituted sulfonamide series 191 indicated that the introduction of hydrophobic groups 

such as a methyl (191a2), or propyl (191a7) group did not give rise to better Shp2 binding 

affinity. The A,A-dimethylamino derivative 191a2 exhibits a drastic drop in potency
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compared to compound 191aj, suggesting the possible engagement of the NH in important 

key hydrogen bonding interaction. The A-iso-propyl sulfonamide 191a# (IC5 0  49.6 pM) 

displayed comparable potency to the parent compound N S C 117199. However, presumably 

due to the increased bulk, loss of potency was observed when the isopropyl motif was 

replaced with the larger sec-buty\ group to afford compound 191aio. Incorporation of 

hydrophilic substituents such as A^V-dimethylethyl (191a6), 2-methoxyethyl (191a9), 

morpholinyl (191an), and tetrahydrofurfuryl (191ai2) groups resulted in loss of potency. A 

series of aromatic sulfonamides were also synthesized. The 4-(aminomethyl)pyridyl (191ais), 

2 -(aminomethyl)pyridyl (191ai9), furfuryl (191ai3), and 2 -thiophenemethyl (191ai4) 

derivatives were found to be inactive. Enhanced potency was observed for the 4- 

chlorobenzylsulfonamide 191a2o (IC5 0 10.12 pM). The para Cl—>OMe substitution was also 

studied (191ai6), but resulting in loss of potency. Switching the methoxy group from the 4- to 

the 3-position (191ais) did not give rise to better SHP-2 binding affinity. These findings 

generally indicated a tendency of the binding potency to increase concomitantly with the 

hydrophobicity. Loss in potency was also observed for the benzylsulfonamide (191a36). The 

size and hydrophobicity of the chlorine appears be pivotal, gaining favourable van der Waals 

interaction with hydrophobic residues in the PTP binding site. Moreover, A-methyl 

sulfonamide 191ai7 was not active, possibly suggesting that the sulfonamide NH may form 

hydrogen bond interactions critical for the protein/ligand affinity. However, the synthesis of a 

N-(4-chlorobenzyl)-N-methyl sulfonamide derivative would be necessary to verify the 

hypothesis. Additional studies to expand the SAR information are currently ongoing in our 

laboratories. Synthetic efforts are directed toward the synthesis of novel compounds 

containing various hydrophobic substituents at the 2-, 3-, and 4-positions of the benzyl 

mioety at the sulfonamide terminus o f 191a2o-
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Table 21. In vitro  SAR for the sulfonamides 191.

N^NHAr

R2

191

E ntry R Ri R  2 A r SH P -2  IC 50 (pM )

191a, H H H 2 - N 0 2C 6H 4 11.9
191a2 M e M e H 2 - N 0 2C6H 4 33-100
191a3 M e M e M e 2 - N 0 2C 6H 4 > 100
191a4 M e M e Et 2 - N 0 2C 6H 4 > 100
191as M e M e B enzyl 2 - N 0 2C 6H 4 > 100
191a6 H N, A -d im ethy lethy  1 H 2 - N 0 2C 6H 4 > 100
191a7 H Propyl H 2 - N 0 2C 6H 4 > 100
191a8 H A o-propyl H 2 - N 0 2C 6H 4 49.6
19 1a , H 2-M ethoxyethy l H 2 - N 0 2C 6H 4 > 100
19 1 a 10 H .Sec-butyl H 2 - N 0 2C 6H 4 > 100
191 a „ H M orpholiny l H 2 - N 0 2C 6H 4 > 100
1 9 1 a ,2 H T etrahydro fu rfu ry l H 2 - N 0 2C 6H 4 > 100
1 9 1 a ,3 H Furfuryl H 2 - N 0 2C 6H 4 > 100
1 9 1 a ,4 H 2-T h iophenem ethy l H 2 - N 0 2C 6H 4 > 100
1 9 1 a ,5 H 3-M ethoxybenzy l H 2 - N 0 2C 6H 4 > 100
1 9 1 a ,6 H 4 -M ethoxybenzy l H 2 - N 0 2C 6H 4 > 100
1 9 1 a ,7 M e B enzyl H 2 - N 0 2C 6H 4 > 100
1 9 1 a ,8 H 4-(A m in o m eth y l)p y rid y l H 2 - N 0 2C 6H 4 > 100
1 9 1 a ,9 H 2-(A m in o m eth y l)p y rid y l H 2 - N 0 2C 6H 4 33-100
191a20 H 4-C hlo robenzy l H 2 - N 0 2C 6H 4 4.4
191a36 H B enzyl H 2 - N 0 2C 6H 4 7 0%  inh ib ition  at 100 pM

With the SAR of the sulfonamide portion established, the subsequent lead optimization was 

directed to the enhancing the observed activities of the new leads 191ai, 191a2o, and 191a8 

(Table 22). IC5 0  values were systematically determined only for compounds that inhibit 100%

of SHP-2 phosphatase activity at 100 pM. Results from concurrent work in our labs, showed 

that replacement of the nitro group in compound 191ai, 191a2o, and 191a8 with chlorine 

resulted in loss of inhibitory potency (data not shown).

We first systematically evaluated the position of the nitro group on the phenylhydrazone 

moiety for compounds 191ai and 191a20. The analogues 191a32, 191a34, 191a33, and 191a35 

displayed a lower potency compared to the parent compounds, suggesting that the carboxylic 

acid in the meta position seems in general to be the favourable pattern (Table 22).
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Table 22. In vitro  SAR for the sulfonam ides 191.

N^NHAr

r 2
191

E n tr y R Ri r 2 A r S H P -2  IC 50 (pM )

191a2, H /so -p ro p y l H C 6H s > 100
191a23 H /50-propyl H 2 - C 0 2H C 6H 4 7.94
191a26 H /50-propyl H 3 - C 0 2H C 6H4 4.5
191 a29 H /50-propyl H 4 - C 0 2H C 6H4 4.5
191a32 H H H 3 - N 0 2C 6H 4 6 3 %  in h ib itio n  a t 100 pM
191a34 H H H 4 - N 0 2C 6H4 2 8 %  inh ib ition  a t 100 pM
191a24 H H H 2 - C 0 2H C 6H 4 19.7
191a27 H H H 3 - C 0 2H C 6H 4 12.4
191a30 H H H 4 - C 0 2H C 6H 4 27.5
191a33 H 4 -C hlo robenzy l H 3 - N 0 2C 6H4 4 8 %  inh ib ition  a t 100 pM
191a35 H 4 -C hlo robenzy l H 4 - N 0 2C 6H4 5 3%  inh ib ition  a t 100 pM
191a25 H 4 -C hlo robenzy l H 2 - C 0 2H C 6H 4 23.7
191a28 H 4 -C hlo robenzy l H 3 - C 0 2H C 6H 4 1.0
191a3i H 4 -C hlo robenzy l H 4 - C 0 2H C 6H 4 15.4

Replacement o f  the nitro group with the carboxylic acid group was also studied. Analogues 

191a24, 191a27, and 191a3o displayed a lower potency compared to the parent compounds 

191ai. (IC50 values o f  19.7, 12.4, and 27.5 pM, respectively). Finally, from the screening o f  

the second generation library, compound 191a28 emerged as a potent SHP-2 inhibitor (IC50 

1.0 pM). Substitution at the meta-position appeared to be optimal for good activity as shown 

by the significant low potency o f  the ortho and para-carboxylsulfonamides 191a25 and 191a3i 

(IC50 values o f  23.7, 15.4 pM, respectively). The NO 2 —► C 0 2H substitution proved to be 

successful for compound 191a8. The new analogue 191a23, and its positioned isomers 191a26 

and 191a29, exhibited much improved binding affinity (IC50 7.94, 4.5, and 4.5 pM, 

respectively). In addition, the analogue 191a2i with an unsubstituted arylgroup was not 

active. The requirement o f  the carboxylate may be due to its ability to capture important 

hydrogen-bonding interaction as well as acting more generally as a phosphate mimic.

Other work in our laboratories also suggests that the sulfonamide functionality is important 

for phosphatase inhibitory activity. A s shown in Figure 68, when compared to their 

sulfonamides counterparts, the analogous amides show reduced activity. This is probably due 

to the different conformational properties o f  amide bond (Figure 68). Distinct differences are 

the lower rotation barriers around the SN bond, and the tetrahedral geometry o f  the 

sulfonamide group in comparison to the planar arrangement o f  the amide bond, thus making 

the sulfonamides more flexible. These conformational properties lead to different hydrogen
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bonding behaviour. For instance, the N-H and C =0 o f a secondary carboxamide cannot 

interact simultaneously with a closely acceptor/donor pair. In contrast, the N-H and S=0 of a 

secondary sulfonamide can achieve this type of interaction. The introduction o f sulfonamide 

group increases polarity of a molecule and the hydrogen bond donor properties as a 

sulfonamide N-H is more acidic (Pka 11-12) than a carboxamide (Pka 15-16).403,404 Moreover, 

the weta-substitution pattern at the phenylhydrazone moiety appeared to be favourable for 

good activity, as displayed by the enhanced potency of derivative 215 compared to the 

isomeric 214.

F ig u re  68. S truc tu res and  S A R  o f  carb o x am id es 214-217 .

HN HN

214, SHP-2 IC50> 1 00 |iM 215, SHP-2 IC5 0  > 32.2 nM

216, SHP - 2  IC5 0  > 100 HM 217, SHP-2 IC5 0  > 100

Loss of SHP-2 inhibitory activity was also observed by replacing the hydrazone linker with a 

N-substituted exocyclic methylene at the 3-position (199c, 199e, 200a, 200b, 200c IC5 0  > 100 

pM), respectively (Table 23). This may suggest the involvement o f the possible engagement 

of the N in important key interactions and the requirement o f a hydrophilic linker for optimal 

activity. Replacement of the hydrazone linkage with with an enamine has been described in 

recent literature. A group from GlaxoSmithKline described a novel class o f CDK2 oxindole- 

based inhibitors containing hydrazone and enamine connection . 3 9 4  The replacement of the 

hydrazone linkage with an enamine strategy resulted inconsequential to enzyme binding, 

providing access to expanded diversity on phenyl ring at the enamine-terminus.
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Table 23. In vitro  SAR o f  library 199 and 200.

E ntry R Ri S H P -2  IC s„ (u M )
200a A o-propyl 2 - C 0 2H 33 -100
200b /50-p ropyl 3 - C 0 2H 33 -100
200c /50-p ropyl 4 - C 0 2H 33 -100
199d Iso-p ropyl 2 - N 0 2 > 100
199e 4 -C h lo robenzy l 2 - N 0 2 > 1 0 0

NH

HN

H
199-200

We also prepared a small library of primary amides 193, further developing compounds 

191a23 and 199a26, and further probing the role of the carboxylic acid (Table 24). The newly 

synthesized compounds displayed a dramatic loss o f potency regardless the hydrophobicity, 

hydrophilicity, or size o f the groups we introduced. Steric factors may play a key role in 

accommodating the larger substituents (e.g. furfuryl, benzyl, 2 -(aminomethyl)pyridyl, 2 - 

morpholin-4-yl-ethyl) inside the active site. However, not even small groups such as 

hydrogen were tolerated, further indicating that the carboxylic acid may interact with the PTP 

catalytic site acting as a mimic of the phosphate group in pTyr.

T ab le  24. In vitro S A R  o f  lib rary  193.

193a-i, R = 2-CONHR' 
193j-q, R = 3-CONHR'

E ntry R  =  2 -C O N H R !, R , =
SH P 2  

IC 50 (UM )
E ntry R  =  3 -C O N H R ,, R , =

SH P 2
IC S0(UM )

193a Furfury l 33-100 193j Furfuryl 33-100
193b H > 100 193k H 33-100
193c D im ethy lam inoethy l > 100 1931 D im eth y lam in o eth y l activato r
193d 2 -M ethoxyethy l > 100 193m 2-M eth o x y eth y l 42.3
193e B enzyl > 100 193n B enzyl > 100
1 93f 2-(A m in o m eth y l)p y rid y l 33-100 193o 2 -(A m in o m eth y l)p y rid y l 25.0
193g 2-M orp h o lin -4 -y l-e th y l > 100 193o 2-M o rp h o lin -4 -y l-e th y l > 100
193h M e > 100 193p M e > 100
193i Et > 100 193q Et > 100

9.3 Selectivity

A major goal of our study was to improve the SHP-2 activity o f the lead compound 

NSC117199, as well as SHP-2/SHP-1 selectivity. For the specificity test, we have also 

performed in vitro assay and examined the effect o f the activity on phosphatase PTP IB
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(Protein Phosphatase Receptor IB). As summarized in Table 25, compound 191ai and 191a28 

exhibited good selectivity for SHP-2 (approximately 9- and 14-fold, respectively). In all cases 

the compounds showed greater inhibitory properties for SHP-2 when compared to PTP1B.

T able  25. In v itro  se lec tiv ity  o f  com p o u n d s 191ai, 191a20, 191a27, and  191a28.

E ntry
SH P -2  IC 50 

(HM)
SH P-1 IC 50 

(HM)
P T P I B I C jo

(P M )
191a, 11.9 103.7 156.6
191a20 4.4 4 0 .9 9.8
191a27 4.5 15.7 37.1
191a28 1.0 14.2 4.4

In an effort to rationalize the great selectivity, sulfonamide 191aj was docked within the PTP- 

binding cleft of SHP-2 and SHP-1. For docking studies we employed the X-ray crystal 

structure o f full length SHP-22 2 3  (pdb 2SHP) determined at 2.0 A resolution and the X-ray 

crystal structure of catalytic domain PTPlc o f SHP-14 0 5  (pdb lfpr) determined at 2.0 A. For 

SHP-2, the N-SH2 domain was removed and then the 3D molecular model of 191ai was 

docked by GLIDE4 0 6  into the PTP binding site.

As shown in Figure 69 and 70, the model revealed distinct binding modes o f 191ai to SHP-2 

and SHP-1. For SHP2, compound 191ai is bound deep inside in the pocket. Two hydrogen 

bonds were formed between the sulfonamide functionality and SHP-2. Specifically, the 

sulfonamide oxygen was hydrogen-bonded with the backbone NH of Gly427 and the NH 

terminal o f Gln510 (2.43 and 1.93 A, respectively). The model also reveals that the 

orientation o f the ligand allows the formation o f a hydrogen bond between the NH of the 

hydrazone linker OH of Ser460 (2 . 2 2  A). Hydrogen bonds are also bridging the nitro O-atom 

and the oxindole O-atom to the OH of Ser460 (1.98 and 1.95 A, respectively). The strong 

interaction with Ser460 are presumably contributing towards the SHP-2 binding affinity of 

191ai and the SHP-2/SHP-1 selectivity. When docked to SHP-1 (Figure 69B and 70B), 

compound 191ai displayed a weaker binding affinity (-4.26 kcal) in its lowest energy pose. 

This may explain its selectivity toward SHP-2. For SHP-1, the docked structure of 191ai 

reveals that the o-nitrophenyl hydrazone functionality is buried inside the pocket, leaving the 

NH and the carbonyl of oxindole, and the O-atoms o f the sulfonamide pointing out exposed 

to the solvent area (Figure). The ligand makes contact to the enzyme surface through a 

hydrogen bond interaction between the nitro O-atom and Ala457 (2.95 A). The NH2 of the 

sulfonamide hydrogen bonds Asp421. The two different binding modes of 191aj may explain 

the greater SHP-2 binding affinity.
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F igure 69. Schematic docking modes o f  1 9 1 a i  with SHP-2 (A) and SH P-l(B ).

NH
NH

Gln510

NH Y- °

Gly277 >=O,

Ser460

HN

191a! docked to SHP-2 
Docking score -6.40

HN

B

Asp421

'H -N

191a! docked to SHP-1 
Docking score -4.28

F ig u re  70. (A ) 191a, bound  to  SH P-2 PT P b ind ing  site. (B ) 1 91a , bound  to  SH P-1 PT P  b ind ing  site. T he 

pro tein  surface o f  the  enzy m es is co lo red  acco rd in g  to  a tom ic charges. P ositively  ch arg ed  areas are co lo red  in 

blue and  negatively  charg ed  areas are  co lo red  in red.

9.4 Conclusion

In the search o f novel SHP-2 inhibitors, the oxindole derivative NSC117199 emerged as a 

lead compound from a high throughtput screen o f the NCI Diversity set. SAR studies around 

the oxindole scaffold led us to determine some o f the structural features o f NSC117199 that 

are responsible for the activity. Ultimately new more potent SHP-2 inhibitors were 

discovered also indicating the versatility o f the oxindole scaffolds as a valid template for 

development o f SHP-2 inhibitors. This has resulted in a 47-fold increase in activity against 

SHP-2. In addition high selectivity between SHP-1 and SHP-2 was observed for 191ai, and
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191a28 indicating that development of SHP-2 selective inhibitors could be achieved despite 

the overall sequence identity (60 % overall identity) shared by SHP-1 and SHP-2.

Finally, the mode of action of the most potent compounds still need to be fully addressed. 

Indeed, attempts are being made to obtain the X-ray structures of SHP-2 and the compounds. 

These inhibitors may represent valuable tools to further probe the biological function of SHP- 

2 and study the cell phenotype deriving from its pharmacological inhibition. In addition, they 

are suitable candidates for further optimization of activity and specificity.
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Chapter 10
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10.0 Evaluation of oxindole derivatives as Aurora kinases inhibitors

10.1 Introduction

As part o f our program toward the development o f Aurora kinases inhibitors, the oxindole 

derivative HL10581 emerged as a lead compound from a high throughput screen for Aurora- 

A (Figure 72). The oxindole moiety is a drug-like scaffold that has also featured in the design 

o f Cyclin-Dependent kinase 2 (CDK2) kinase, and Caspase 3 and 7 inhibitors.392,394 

Hesperadin (79), that shares an oxindole scaffold and the phenylanilino moiety, has been 

reported as a potent inhibitor o f Aurora-B294 (Figure 72). The lead optimization, directed to 

the exploration o f SAR around the oxindole scaffold, led us to the identification o f potent in 

vitro inhibitors o f Aurora-A and -B, showing nanomolar potency.

F ig u re  72. T he initial h it H L 10581  iden tified  from  th e  sc reen in g  co m p o u n d  lib rary  and H esperad in  (2). 

C om m on featu res are h igh lig h ted  in pink.

pheylanilino moiety

pheylanilino moiety

oxindole moiety

H H

HL10581, Aurora-A, IC5 0  1-5^M Hesperadin (79)

10.2 Biological results

After preliminary modification o f  derivative HL10581, compound 219, exhibiting 50% 

inhibition o f Aurora-A at 10 pM, was also identified as a hit for further investigation (Figure 

73). Moreover, in an effort to determine the structural features responsible for the activity, 

initial SAR studies were carried out to establish the requirements o f the sulfonic acid group 

m otif for optimal activity. We first examined the removal o f the sulfonic acid moiety from 

compounds HL10581 and HL1056 219 to give 220 and 209, respectively. The weak activity 

o f derivatives 219 and 209 revealed the critical role o f  the sulfonic acid moiety (Figure 73).
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F ig u re  73. S truc tu re  and  in vitro SA R  for the early  key o x in d o le  d e riv a tiv es analo g u es o f  H L 1 0 5 8 1 . T he va lues 

w ere  de te rm in ed  a t 10 jaM concen tra tion .

H 03S

Cl

219
50% inhibition;'Aurora-A

209
1 .8 % inhibitionAurora_A

220
1.3% inhibition.'Aurora-A

We began our work by preparing the library of sulfonamides 191 (Table 26) aimed at further 

probing the role o f the free sulfonic acid group, and the effect of incorporation o f hydrophilic 

and hydrophobic alkyl and aryl groups at the 5-postion o f HL10581 and 219 (Figure 72 and 

73). The library of sulfonamides 221 was previously synthesized in our laboratories. Here we 

report the biological results from both series 191 and 221. All the synthesized compounds 

were preliminary evaluated for their ability to inhibit Aurora-A activity at 100 pM and 10 pM 

using a fluorescence resonance energy transfer (FRET)-based Z ’-Lyte biochemical assay 

(Figure 74) . 4 0 7  This assay employs a coupled-enzyme format and uses the differential 

sensitivity of phosphorylated and nonphosphorylated peptides to chymotrypsin cleavage. In 

the primary reaction, the Aurora kinases phosphorylates a single serine or threonine residue in 

a synthetic FRET-peptide. This FRET-peptide is doubly labeled with a fluorophore at each 

end—coumarin (the FRET donor) on one end and fluorescein (the FRET acceptor) on the 

other—and also contains a single phosphorylation site which either overlaps with or lies 

adjacent to the proteolytic site. In the secondary reaction, a site-specific protease recognizes 

and cleaves the phosphorylated FRET-peptide. Cleavage disrupts FRET between the donor 

and acceptor fluorophores on the FRET-peptide, whereas uncleaved, phosphorylated FRET- 

peptides maintain FRET. Aurora kinase non-phosphorylated FRET-peptides cannot be 

cleaved by the chymotrypsin protease. Upon excitation of the donor fluorophore (coumarin) 

due to FRET, the uncleaved FRET-peptide yields a coumarin fluorescence signal (at 445 nm) 

and a fluorescein fluorescence signal (at 520 nm). Cleavage disrupts FRET and causes a 

decrease in the fluorescein fluorescence signal and a strong increase in the coumarin 

fluorescence signal. Therefore, the assay uses a ratiometric method, which calculates the ratio 

of donor emission to acceptor emission (the emission ratio) after excitation of the donor 

fluorophore at 400 nm, to quantitate reaction progress (Figure 74). The recombinant Aurora- 

A was incubated with synthetic FRET-peptide substrate in a kinase buffer containing 100 pM 

or 10 pM the compounds. Aurora inhibitor II (4-(4’-benzamidoanilino)6,7-

134



dimethoxyquinazoline) was used as positive control (Figure 74) (IC50 310 nM and 240 nM for 

Aurora A and B, respectively).

F ig u re  74. Schem atic  d iagram  o f  the  (F R E T )-b ased  Z ’-L y te  b iochem ical assay  and  the  A u ro ra  in h ib ito r 11. 

Primary reaction

FRET-peptide

Secondary reaction  

FRET-Ppeptide

Aurora 

ATP ADP

FRET-Ppeptide

MeO

MeO'

HN

Chymotrypsin
Aurora inhibitor II

IC50 values were systematically determined only for compounds that inhibit >85% o f Aurora- 

A kinase activity at 10 pM. Unfortunately, all the member o f the library exhibited a dramatic 

decrease in potency. As shown in Table 26 and 27, at 10 pM concentration, the % inhibition 

generally ranges between 5 and 11%, while compounds 191ai and 221k respectively inhibit 

45 and 31% o f Aurora-A kinase activity. Not even the introduction o f small groups such as 

hydrogen (191ai and 221b) and methyl (191a2 and 221a) was tolerated. These findings 

clearly suggested the important role o f the sulfonic acid moiety for good activity. Moreover, 

sulfonamides 191 and 221 may also assume different conformation leading to different 

binding modes, where the ligand/enzyme interactions are weaker resulting in loss o f potency. 

Notably, compounds 191ai, 191a8, 221b, approximately inhibit 76-79% o f Aurora-A kinase 

activity at 100 pM concentration.
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Table 26. In vitro  SAR for the sulfonamides 191.

'Ni
R

191

Entry R Ri r 2 Ar
Aurora-A % 
inhibition at 

100 uM

Aurora-A % 
inhibition at 10 

UM
191at H H H 2 - N 0 2C 6H 4 76 .2± 5 .7 44 .92±3.5
191a2 M e M e H 2 - N 0 2C 6H 4 53 .5± 5 .4 9.2±2 .6
191a3 M e M e M e 2 - N 0 2C 6H 4 0.2± 0 .9 5 .4±4 .0
191 a4 M e M e Et 2 - N 0 2C 6H 4 6.4± 6 .0 11.3±10.2
191 a5 M e M e B enzyl 2 - N 0 2C 6H 4 4.4±1 .2 6 .0±2 .6
191a6 H N, TV-dimethyl ethyl H 2 - N 0 2C 6H 4 36 .2± 24 .4 10.5±2.6
191a7 H Propyl H 2 - N 0 2C 6H 4 12.3±10.4 5.4±1 .9
191ag H /so-p ropy l H 2 - N 0 2C 6H 4 77 .1± 6 .8 8 .7±2.7
191a, H 2-M ethoxyethy l H 2 - N 0 2C 6H 4 3 .2± 3 .0 5.6±0 .9
191a10 H Sec-butyl H 2 - N 0 2C 6H 4 8.8±1 .4 6.2±0 .8
191a„ H M orpholiny l H 2 - N 0 2C 6H 4 9.6±5 .2 7.1±2 .7
191a12 H T  etrahydro fu rfu ry l H 2 - N 0 2C 6H 4 4 .1± 1 .4 5.1±3 .2
191a13 H Furfuryl H 2 - N 0 2C 6H 4 45.3±10.1 8.7±5.5
191a14 H 2 -T h iophenem ethy l H 2 - N 0 2C 6H 4 31.1±6 .5 7.7±6.1
191a15 H 3-M ethoxybenzy l H 2 - N 0 2C 6H 4 5.86± 1 .9 7 .1±1 .9
191a16 H 4-M ethoxybenzy l H 2 - N 0 2C 6H 4 5 .6 0± 2 .76 6 .1 1±2.6
191a17 M e B enzyl H 2 - N 0 2C 6H 4 3.8±2 .5 6 .3±3 .8
191alg H 4 -(A m in o m eth y l)p y rid y l H 2 - N 0 2C 6H 4 2 4 .8± 8 .4 3 .6±2 .2
191a19 H 2 -(A m in om ethy l)py ridy l H 2 - N 0 2C 6H 4 5 .7±2 .9 5.1±2 .4
191a20 H 4-C hlo robenzy l H 2 - N 0 2C 6H 4 24 .5± 5 .8 7 .1±3 .0
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Table 27. In vitro  SAR for the sulfonamides 221.

221

E ntry R Ri r 2 A r
A u ro ra -A  %  

in h ib ition  at 100  
UM

A u rora-A  %  
in h ib ition  at 10 

UM
221a M e M e H 2 -C lC 6H 4 10.0±3.7 2.8±3.1
221b H H H 2-C lC 6H 4 79.2±10.1 10.7±5.9
221c H 4-M eth o x y b en zy l H 2-C lC 6H 4 22.9±6 .3 7.6±2 .2
221d H 4 -C h lo robenzy l H 2 -C lC 6H 4 9 .7 ± 1 1.5 5 .4±2 .0
221e H 3 -M eth o x y b en zy  1 H 2 -C lC 6H 4 7.5±4.3 7.1±0.5
2 2 1 f H 2-T h io p h en em eth y l H 2 -C lC 6H 4 13.7±3.4 6.0±3.5
221g H 2-(A m in o m eth y l)p y rid y l H 2-C lC 6H 4 9 .5 ± 1 1.6 5.3±1.3
221h H F urfury l H 2 -C lC 6H 4 23 .3 ± 5 .2 7.5±3.3
221 i H Propyl H 2 -C lC 6H4 1.9±4.2 3.3±1 .7
22 l j H /so -p ro p y l H 2 -C lC 6H 4 17.5±2.5 6 .5±3 .6
221k H Furfu ry l H 2-C lC 6H4 57.3±22 .5 31.2±19.1
2211 H 2-M eth o x y eth y ly n H 2-C lC 6H 4 5.4±6.1 5.2±1.8

221m H S ec-buty l H 2-C lC 6H 4 4.8±3 .7 5.9±2.2
221n H T etrah y d ro fu rfu ry l H 2-C lC 6H 4 12.9±13.5 4 .24± 0 .27
221o H 4 -(A m in o m eth y l)p y rid y l H 2 -C lC 6H 4 4 4 .5± 7 .2 -2 .4±3.3
221p M e B enzyl H 2-C lC 6H 4 8.4±4 .8 6 .6±2 .0
221q H 3-(A m in o m eth y l)p y rid y l H 2 -C lC 6H 4 5.7±43.3 8.8±4 .9
221r H N, jV -dim ethylethyl H 2 -C lC 6H 4 17.2±7.4 1 1.3±2.1

The molecular model o f HL10581 binding to the Aurora-A ATP binding pocket suggested 

that introduction of hydrophobic and reasonably small substituents into the phenyl ring of the 

phenylhydrazone moiety could be well tolerated, and thereby increase the binding affinity. 

Based on the preliminary SAR and the docking studies, we synthesized a focused library of 

further oxindole derivatives 194 (Table 28). The major goals of the modifications were not 

only to increase the activity, but also to provide inhibitors with adequate cell permeability and 

high potency in cellular assays. Derivatives 194 were initially evaluated for their ability to 

inhibit Aurora-A activity. IC5 0 values were determined only for compounds that inhibit >85%

of Aurora-A kinase activity at 10 pM (Table 28). As predicted by the model, hydrophobic 

and relatively small group were well tolerated. In accordance, replacement of nitro and 

chlorine with the carboxylic acid motif resulted in a significant drop in potency (194k, IC50

>100 pM). Among several aromatic rings, the 2-chlorophenyl cannot be considered critical 

for the activity. In fact, removal of the chlorine resulted in the analogue 194a (IC5 0  2.5 pM) 

of potency comparable to the parent compound HL10581. As summarized in Table 28, 

several other replacements at the ortho-position were synthesized. Compound 194b, 194d,
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and 194e were found to maintain the same inhibitory activity, as well as the dichloro 

derivatives 194c, 194f, 194j. It is well known that, size-wise, fluorine is a good hydrogen 

mimic adding only limited steric demand at the enzyme site .4 0 8  Fluorination can also aid 

hydrophobic interaction between the drug and the binding site on the enzyme. A comparison 

of substituent effect revealed that replacement of the methyl by a trifluoromethyl group at the 

2-position resulted in a significant reduction in potency (194b versus 194f). A dramatic 

difference in activity also exists between the pentafluorophenyl derivative (194g) and 

compound 194a. To our delight, substitution with naphthyl group caused a significant 

increase in activity, yielding compound 194h as potent inhibitor of Aurora-A (IC5 0  0.540

pM).

T able  28. In vitro S A R  fo r the  early  key o x indo le  de riv a tiv es 194 and  208  an alo g u es o f  H L 10581 .

E ntry A r A u rora-A  IC 50 (pM )
194h 1-Np 0.540
194a c 6h 5 2.5

194b 2 -C H 3C 6H 4 3

194d 2 -C H 3C H 2C 6H 4 7

194e 2 -F C 6H 4 7

1 94f 2 -C F 3C 6H 4 35

194c 2 ,6 -C l2C 6H 3 8

194i 2 ,4 -C l2C 6H 3 5

194j 2 ,5 -C l2C 6H 3 3.6
194g C F6 5 100

194k 2 - C 0 2H C 6H 4 > 100
208e 1-Np 1
208b c 6h 5 10

20 8 d a 2-C H 3C H 2C 6H 4

2 0 8 ca 2 -F C 6H 4

2 0 8 a a 2- C IQ H 4

N-NHAr

N
H

194

N-NHAr
h° 2C ^ w ^

208

a) IC va lues w ere  d e te rm in ed  on ly  fo r co m p o u n d s th a t inh ib it > 8 5 %  o f  A u ro ra -A  k in ase  activ ity  a t 10 pM .

Further screening revealed that 194h inhibits Aurora-B (IC5 0  0.349 pM) activity in vitro. The 

sulfonic acid was also replaced with the carboxylic acid in the series of analogues 208. As 

shown in Table 27, the presence of the sulfonic acid is still critical for good activity and its 

replacement with the carboxylic acid results in a significant drop in potency. Modest 

inhibitory activity in the micromolar range was only observed for compound 208a, bearing a 

naphthyl at the hydrazone terminus. Carboxylic acids (R-CO2 H) are isosteres of sulfonic 

acids and share many properties in common, including the ability to act as hydrogen-bond 

acceptor. However, due to the presence of an additional oxygen, sulfonic acids are more 

acidic than carboxylic acids. This enhanced acidity results in an increased ionization at
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physiological pH and an increased H20  solubility, which may explain the greater potency of 

compounds 194h and 194a compared to 208e and 208b, respectively. However, the modest 

activity displayed by compound 208d, also highlights the significant contribution of the 

hydrophobic Van Der Waals interaction on binding.

194h was docked by GLIDE4 0 6  into the ATP binding site. For Aurora-A, the docked structure 

of 194h (Figure 75A and 76) reveals that the naphthyl group occupies the purine base 

hydrophobic pocket created by residues Ala273, Leul94, Vall47, Leu263, I le l39, Alal60, 

and Ala213 (Figure 77). The sulfonyl group is pointing out of the site forming a hydrogen 

bond to the Lysl41 (Figure 76). The model also reveals a hydrogen bond between the 

indolinone NH and Asp246. This interaction was considered optimal for activity.

For Aurora-B, the docked structure of 194h reveals that the sulfonyl group is in the phosphate 

binding region, leaving the naphthyl group pointing out (Figures 75B and 76). As shown in 

Figure 77, hydrogen bonds with Ala213, lie 184, and Glu211 are key interactions presumably 

contributing towards the Aurora-B binding affinity o f 194h. In addition the model reveals an 

important stabilization via a salt bridge between the sulfonate group and the imidazole group 

of His280. For the specificity test, we have performed in vitro assay and examined the effect 

on the activity of several serine/threonine kinases, such as PKA, SGK, and ROCK1. The 

results indicated that 194h selectively inhibits Aurora-A and -B  kinases. Moreover, rpm223 

did not exhibit inhibitory activity for SHP-2.

PHA-680626

The hydrazone 208h was docked within the ATP-binding pocket 

o f Aurora-A and Aurora-B (Figure 3). For docking studies we 

employed the X-ray crystal structure of human Aurora-A with 

ADP bound (pdb lmq4) determined at 1.90 A resolution4 0 9  and 

the X-ray crystal structure o f Aurora-B with PHA-680626 (pdb 

2j4z) bound determined at 2.00 A resolution . 3 0 6  The ADP and 

PHA-680626 were removed and then the 3D molecular model of
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F ig u re  75. M olecu lar m odel o f  194h b ind ing  to  the  A uro ra-A  (A ) and - B  (B ) A T P  b ind ing  pocket. T he pro tein  

surface o f  the  enzy m es is co lo red  acco rd in g  to  a tom ic charges. P o sitively  ch arged  areas are co lo red  in b lue  and 

negatively  charged  areas are co lo red  in red.

F ig u re  76. Schem atic  d o ck ing  m odes o f  194h w ith A uro ra-A  and  A u ro ra-B .

hydrophobic pocket

Leu210Ala273
Leu194 

VaH47  f  
Leu 26 3

Asn261

lie 139

Ala 160

P Lys141

lie 184

N—:
Ala213

Glu211

-N

stabilization via salt bridge
HN

His280

1 94h docked to Aurora A 1 94h docked to Aurora B

F ig u re  77. O verlay  o f  194h (co lo u red  in b lue) and A D P (co lo u red  in b row n) d o ck ed  to  A T P  b ind ing  site.

Lysl43

Iysl6i ^ ^

Ans261

GlyI40
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To examine the ability o f 194h to inhibit Aurora-A kinase inside cells, Aurora-A transfected 

NIH3T3 cells (mouse embryonic fibroblast cell line) were treated with 194h (15 juM). Aurora 

inhibitor II [AI-II (Calbiochem), 4-(4’-benzamidoanilino)6,7-dimethoxyquinazoline] was 

used as positive control. After 6 h o f the treatment, the cells were lysed and immunoblotted 

with anti-phospho-histone H3-Serl0 antibody. In addition, the treated cells were also stained 

with fluorescence-labeled phospho-histone H3-Serl0 antibody. The results showed the 

phosphorylation level o f histone H3-Serl0 was inhibited by 194h (Figure 78A and 78B). A 

similar phenotype has been previously described for other Aurora kinases inhibitors. In 

particular, phosphorylation o f histone H3 at SerlO is widely regarded as a marker o f  Aurora- 

13 inhibition.

F ig u re  78A  a n d  78B. E valuation  o f  com pound  194h in inh ib ition  o f  h istone  H 3 -S e r l0  pho sp h o ry la tio n  in intact 

cells. (A ) A uro ra-A  tran sfo rm ed  N IH 3T 3 cells w ere  trea ted  w ith  in d ica ted  co m p o u n d s (15 m M ) for 6 h and then 

im m unob lo tted  w ith  an ti-p h o sp h o -h isto n e  H 3 -S e rl0  an tibody . A u ro ra  in h ib ito r II [A I-II (C a lb io ch em ), 4- 

(4benzam id o an ilin o )6 ,7 -d im eth o x y q u in azo lin e] w as used  as p o sitiv e  con tro l (lan e  4 from  left). (B ) A urora-A  

transfo rm ed  N IH 3T 3  cells w ere  trea ted  w ith  ind icated  co m p o u n d  and  then  im m u n o -sta in ed  w ith  an ti-phospho- 

H 3 -S e rl0  an tibody . Y ellow  a rrow s ind ica te  the phosp h o -h isto n e  H 3 -S e rl0 .
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These preliminary data represent an encouraging starting point for a deeper evaluation o f this 

class o f compounds. We believe that rational designed and synthesized libraries based on 

194h can lead to the identification o f more potent inhibitors for Aurora-A and -B  and, 

therefore, enhance the selectivity. For instance, the model o f 194h docked to Aurora-A 

indicates that changes could be tolerated at the 6 and 7 position o f the indolinone ring.
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Furthermore, the model of 194h docked to Aurora-B, shows the naphthyl group pointing out 

of the ATP-binding site suggesting the possibility of further substitution and modification to 

the naphthyl group. Finally, the mode of action of 194h still needs to be fully addressed. 

Further studies are underway to confirm that in cells compound 194h acts as an Aurora 

kinases inhibitor. Moreover, the antiproliferative and antitumour effect of 194h will be 

assessed in a panel of different tumour cell lines.

In the second part o f our project, to more fully develop the initial SAR for series 191 and 221, 

we further expanded our library of sulfonamide 191 (Table 29). Compounds 191a24 and 

191a23 were synthesized and firstly evaluated for their ability to inhibit Aurora-A activity. In 

an effort to improve the drug-like features of our leads, the nitro group was replaced with the 

carboxylic acid also capable of acting as hydrogen bonding acceptor. Not only this 

modification was well tolerated, but gave rise to a better Aurora-A inhibition (Table 29). The 

results also indicated that the bulk and more hydrophobic isopropyl group is beneficial for 

potency (191a24 versus 191a23). We systematically evaluated the position of the carboxyl acid 

group on the phenylhydrazone moiety aiming at studying the “substituent position effect”. 

The new synthesized analogues 191a26 displayed an enhanced potency compared to the 

parent compounds 191a23, and its submicromolar potency suggested that the meta- 

substitution pattern is optimal in the hydrazone series. Since the previous identified inhibitor 

194h and 191a26 are structurally related, we synthesized derivative 191a22, replacing the 2- 

C0 2 Hphenyl group with the naphthyl group. As expected, the transformation resulted in loss 

of potency, also confirming the different binding modes for compounds 194h and 191a26- In 

191a26, the hydrazone group forms a nearly flat and rigid linker by forming an intramolecular 

hydrogen bond between the NH of the hydrazone and the carbonyl group of the oxindol 

(Figure 79). The replacement of hydrazone linker with a A-substituted exocyclic methylene at 

the 3-position in compounds 191a23, 191 a26 , was thought to be ideal to maintain the same 

rigid spacer connectivity between the oxindole moiety and the benzoic acid moiety without 

varying the spacer length.
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Table 29. In vitro SAR for the early key oxindole derivatives and 191 , 200, and, 199 analogues o f  H L10581.

0 2

R’-N'sI
R

X"NHAr

R R. A r
A u ro ra -A A u ro ra -B

E n try X
I C S0(p M ) IC 50 (p M

191a24 H H N 2 - C 0 2H C 6H4 25
191a23 H /50-propyl N 2 - C 0 2H C 6H 4 3.6
191a26 H /50 -p ropy l N 3 - C 0 2H C 6H 4 0 .127 8.02
200b H /50 -p ropy l C H 3 - C 0 2H C 6H 4 0.038 7.52
200c H /50 -p ropy l CH 4 - C 0 2H C 6H 4 0.020 0.064
200a H /50-propyl CH 2 - C 0 2H C 6H4 7
1 9 9 f H /50-propyl CH c 6h 5
199ga H /50-propyl CH 1-Np

191a22" H /50 -p ropy l N 1-Np
191a21“ H /50 -p ropy l N c 6h 4

a) IC 50 va lues w ere  de te rm in ed  on ly  fo r com pounds th a t inh ib it > 8 5 %  o f  A u ro ra -A  k inase  activ ity  a t 10 pM

F ig u re  79. (A ) 3D  rep resen ta tion  o f  hydrazone. (B ) 3D  rep resen ta tio n  o f  enam ine. (C ) O verlay  o f  th e  tw o 

represen tation .

An increased inhibition potency toward to Aurora-A and -B activity was observed for the new 

synthesized compounds 2 0 0 b and 2 0 0 c and 2 0 0 a, suggesting a preference to the more 

hydrophobic CH bridge over the N linker. Compounds 200b and 200c appear to be about 

2 0 0 -fold more potent than the corresponding hydrazone analogues 191a23 and 191a26, 

respectively. As shown in Table 29, analogues with para and meta subtitution pattern are in 

general of similar potency, and favourable for good activity (compare 2 0 0 b and 2 0 0 c versus 

200a). Moreover, the meta subtitution pattern appear to be critical for Aurora-A/-B selectivity 

as shown by compound 191a26and 200b (Table 29). The requirement of the carboxylic acid
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group for optimal binding activity was further proved by the loss o f potency of compounds 

199f and 191a22-

Further structure optimization and evaluation of the most promising compounds and further 

studies and analyses including cell-based assay and specificity test are underway. Finally, the 

mode of action o f the most potent compounds still needs to be fully addressed. Moreover, 

these inhibitors may represent valuable tools to further study the cell phenotype deriving from 

the pharmacological inhibition of Aurora-A and -B. In addition, they are suitable candidates 

for possible optimization of activity and specificity.

10.3 Conclusion

In the search of novel Aurora kinases, we identified several hits with micromolar potency. 

Using these hits as starting points, we performed a series o f SAR studies that determined the 

structural features responsible for optimal binding potency. Further lead optimization, 

directed to the exploration of SAR around the oxindole scaffold, led us to the identification of 

potent in vitro inhibitors of Aurora-A and -B, showing nanomolar potency. Finally, the mode 

of action of the most potent compounds still need to be fully addressed. Moreover these 

inhibitors may represent valuable tools to further study the cell phenotype deriving from the 

pharmacological inhibition of Aurora-A and -B. In addition, they are suitable candidates for 

possible optimization of activity and specificity.
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Chapter 11

145



11.0 Experimental

11.1 General Procedures and Instrumentation
Melting points were determined using on a Bamstead international melting point apparatus 
and remain uncorrected. !H NMR spectra were recorded on a Bruker WM400 (400 MHz) 
pulsed Fourier Transform spectrometer, and a VARIAN 400 MHz, with the 13C NMR spectra 
being recorded at 100 MHz. All coupling constants are measured in Hertz (Hz) and the 
chemical shifts (8 H and 8 c) are quoted in parts per million (ppm) relative to TMS ( 8  0), which 
is used as the internal standard. The chemial shift for 13C are referenced to the solvent used. 
The following abbreviations are used throughout, s = singlet, d = doublet, t = triplet, dd = 
doublet of doublets etc. The spectra are proton decaupled. Low resolution mass spectra were 
determined using a Fisons VG Platform II Quadrupole instrument and Agilent Technologies 
LC/MSD VL instrument. High resolution mass spectroscopy was carried out by the EPSRC 
national mass spectrometry service centre at Swansea University, as well as on an Agilent 
Technologies LC/MSD (ESI-TOF) instrument at the University of South Florida, and Agilent 
6210 LC/MS (ESI-TOF) at the Moffitt Cancer Centre and Research Institute. Column 
chromatography was performed using silica gel 60, 220-440 mesh (Apollo in the UK and 
Fisher in the US). Automated flash chromatography was conducted using a Flashmaster II 
system (Argonaut-Biotage), using Biotage silica cartridges. Thin layer chromatography waa 
performed using silica gel 60 F254 plates (Apollo in the UK and Fisher in the US), with 
observation under UV when necessary. Anhydrous solvents used as purchased: 
dichloromethane (anhydrous, 99.8% contains 50-150 ppm hydrocarbon as stabilizer from 
Aldrich), dimethyl formamide (anhydrous, 99.9% from Aldrich), tetrahydrofuran (anhydrous, 
99.9%, inhibitor free, Aldrich), acetonitrile (anhydrous, 99.8%, Aldrich), toluene (anhydrous, 
99.8%, Aldrich), methanol (anhydrous, 99.8%, Aldrich).

1 -(6-Hyd roxy-4,5,6-trimethoxy phenyl)-but-2-y n-1 -one (107)331
Phosphorus pentoxide (1.35 g) was added to methansulfonic acid (13.5 g) and the resultant 
mixture stirred at room temperature under argon until the phosphorus pentoxide was 
dissolved. But-2-ynoic-acid (0.227 g, 2.71 mmol) was then added, followed by an equimolar 
amount of 3,4,5-trimethoxyphenol (106) (0.50 g, 2.71 mmol). The reaction mixture was 
degassed under argon and then stirred at room temperature for 5h. Upon complete 
consumption of the staring material, the dark red reaction mixture was poured slowly into 
saturated sodium bicarbonate solution ( 1 0 0  ml for every 1 0  g o f methansulfonic acid), 
aqueous phase extracted with DCM (3 x 100 ml/10 g o f M eS0 3 H). The combined organic 
extracts were washed with brine, dried over M gS04, and the solvent removed under reduced 
pressure. Chromatography on silica gel (80:20 DCM/ethyl acetate 8/2, Rf 0.8) afforded pure 
ketone 107 (0.314 g, 1.25 mmol, 46%) as a yellow solid, mp 92-94 °C (lit331 92 °C). !H NMR
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(400 MHz, CDCI3) 8  2.11 (3H, s, CH3), 3.72 (3H, s, OCH3), 3.84 (3H, s, OCH3), 3.90 (3H, s, 

OCH3), 6.16 (1H ,, OH), 6.30 (1H, s, H-5).

5,6,7-Trimethoxy-2-methylchromen-4-one (108)331
l-(2-hydroxy-4,5,6-trimethoxyphenyl)-but-2-yn-l-one (107) (0.265 g, 1.06 mmol) was 
dissolved in dry acetone (12 ml) (the acetone was previously distilled over P2O5, under 
nitrogen), and anhydrous K2 C 0 3 (0.240 g, 1.79 mmol) was then added. The resulting mixture 
was heated at reflux for lh. The carbonate was removed via filtration. The filtrate was 
concentrated in vacuo. Chromatography on silica gel (70:30 DCM/ethyl acetate, Rf 0.3) 
afforded pure chromone 108 (0.159 g, 0.63 mmol, 60%) as a yellow solid, mp 96-99 °C (lit331 

99 °C). *H NMR (400 MHz, CDC13) 8  2.22 (3H, s, CH3), 3.82 (3H, s, OCH3) 3.86 (3H, s, 
OCH3 ), 3.87 (3H, s, OCH3 ), 5.94 (1H, s, H-2), 6.58 (3H, s, H-8 ).

Alternative route to chromenone 108331
Phosphorus pentoxide (13.57 g) was added to 10 g of methansulfonic acid (135.70 g) and the 
resultant mixture stirred at room temperature under argon until the phosphorus pentoxide was 
dissolved. But-2-ynoic-acid was (2.28 g, 27.12 mmol) then added. An equimolar amount of
3.4.5-trimethoxyphenol (106) (5.00 g, 27.12 mmol) was added immediately following the 
addition of the but-2 -ynoic-acid, the mixture was degassed under argon and was then stirred 
at room temperature for 5h. Upon complete consumption of the phenol, the dark red reaction 
mixture was poured slowly into saturated sodium bicarbonate solution ( 1 0 0  ml for every 1 0  g 
of methansulfonic acid). The product was extracted with DCM (3 x 100 ml/10 g o f M eS0 3H). 
The combined organic extracts were washed with brine, dried over MgSC>4 , and concentrated 
under reduced pressure. Following work up, the crude material (8.7 g) was dissolved in dry 
acetone (350 ml) (the acetone was distilled on P2 0 5, under nitrogen). Anhydrous K2 C 0 3 (8.00 
g, 58.0 mmol) was then added. The resulting mixture was heated at reflux for lh. The 
carbonate was removed via filtration. The filtrate was concentrated in vacuo. 
Chromatography on silica gel (80:20 DCM/ethyl acetate, Rf 0.3) afforded pure chromone 108 
(1.99 g, 7.96 mmol, 30%) as a yellow solid.

3.5-Bis(benzyloxy)benzaldehyde410 (222)
3.5-Dihydroxybenzaldehyde (0.123 g, 0.89 mmol) was dissolved in DMF (3 ml) at room 
temperature under Ar. K2 C 0 3 (0.738 g, 5.34 mmol, dried in oven at 120 °C overnight) and 
benzylbromide (0.335 g, 1.96 mmol) were added and the yellow reaction mixture was placed 
in an oil bath at 80 °C and stirred for 2 h. After cooling to room temperature, H20  ( 8  ml) was 
added, and the aqueous phase was extracted with ethyl acetate ( 3 x 4  ml). The combined 
organic extracts were washed with brine ( 8  ml), dried over Na2 SC>4 and the solvent removed 
under reduced pressure. Chromatography on silica gel (60:40 DCM/ethyl acetate, Rf 0.36) 
afforded the 3,5-bis(benzyloxy)benzaldehyde (222) (0.242 g,0.76 mmol, 85%) as a white
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solid, mp 71-73 °C (lit4"  80 °C). 'H NMR (400 MHz, CDCI3) 5.02 (4H, s, CH2), 6.79 (1H, t, 
J  2.4 Hz, H-4), 7.04 (2H, d, J  2.4 Hz, H-2 & H-6 ), 7.27-7.37 (10H, m, ArH) 9.82 (1H, s, 

CHO).

5.6.7-Trimethoxy-2-|2-(2,5-dimethoxyphenyl)ethenyllchromone (109c)331
A solution of 108 (0.135 g, 0.54 mmol) and 2,5-dimethoxybenzaldehyde (0.179 g, 1.08 
mmol) was stirred in presence of sodium methoxide (0.058 g, 1.08 mmol) in methanol (5 ml) 
at 80 °C for 24 h. After cooling to room temperature, pure product 109c (0.075 g, 0.19 mmol, 
35%) was collected as a yellow precipitate by filtration and dried in vacuo, mp 153-155 °C. 
]H NMR (CDC13) 5 3.76 (3H, s, OCH3), 3.83 (3H, s, OCH3), 3.84 (3H, s, OCH3), 3.90 (3H, s, 
OCH3), 3.93 (3H, s, OCH3), 6.11 (1H, s, H-2), 6.71 (1H, d, J  16.4 Hz, CH), 6.74 (1H, s, H-8 ),
6.82-6.83 (2H, m, ArH), 7.03 (1H, d, J2 .8  Hz, H-6 ’), 7.72 (1H, d, J  16.4 Hz, CH). 13C NMR 
(400 MHz, CDCI3) 5 56.24 (s) (OCH3), 56.57 (s) (OCH3), 56.72 (s) (OCH3), 62.42 (s) 
(OCH3), 62.55 (s) (OCH3), 96.70 (s) (CHCO), 111.79 (s) (CH, Ar), 112.80 (s) (CH, Ar),
113.10 (s) (C, Ar, 114.94 (s) (CH, Ar), 116.60 (s) (CH, Ar), 121.22 (s) (CH=CH), 125.13 (s) 
(CH, Ar), 131.33 (s) (CH=CH), 140.55 (s) (C, Ar), 152.73 (s) (C, Ar), 152.92 (s) (C, Ar), 
154.06 (s) (C, Ar), 154.75 (C, Ar), 158.01 (C, Ar), 160.41 (C, Ar), 177.72 (C=0 ). vmax 
(solidytcnf1) 1665 (st), 1578 (st), 1446 (st), 1421 (st), 1223 (st), 1119. MS m/z (API-ES): 
found 399 (M+H)+ (100%). HRMS m/z (API-ES): found 399.1472 (M+H)+, calculated for 
C2 2 H2 3 O7 399.1444; found 421.1268 (M+Na)+, calculated for C2 2 H2 2 NaC>7 421.1263.

5.6.7-Trimethoxy-2-[2-(3,5-dimethoxyphenyl)ethenyl]chromone (109a).331 This was 
prepared from 108 (0.144 g, 0.58 mmol) and 3,5-dimethoxybenzaldehyde (0.192 g. 1.15 
mmol) in a similar manner as described for preparation o f 109c, reaction time 48 h. 
Chromatography on silica gel (60:40 ethyl acetate/petroleum ether, Rf 0.30) afforded pure 
109a as a white solid (0.057 g, 0.14 mmol, 25%) mp 148-150 °C (lit33 1 148.5-151 °C). *H 
NMR (400 MHz, CDC13) 6  3.78 (6 H, s, OCH3), 3.84 (3H, s, OCH3), 3.90 (3H, s, OCH3), 3.92 
(3H, s, OCH3), 6.16 (1H, s, H-2), 6.42 (2H, t, J2A  Hz, H-4’), 6.63 (2H, d, J2A  Hz, H-2’ & 
H-6 ’), 6.63 (1H, d, J  16.0 Hz, CH), 6.72 (1H, s, H-8 ), 7.37 (1H, d, J  16.0 Hz, CH).

5.6.7-Trimethoxy-2-[2-[3,5-bis(benzyloxy)phenyl]ethenyl]chromone (109b).331 This was 
prepared from 98 (0.125 g, 0.50 mmol) and 3,5-bis(benzyloxy)benzaldehyde 222 (0.318 g,
1.0 mmol) in a similar manner as described for preparation of 109c, reaction time 24 h. 
Chromatography on silica gel (60:40 ethyl acetate/petroleum ether, Rf 0.26) afforded pure 
109b as a white solid (0.116 g, 0.21 mmol, 42%), mp 160-161 °C (lit331 165-165.5 °C). !H 
NMR (400 MHz, CDC13) 5 3.84 (3H, s, OCH3), 3.90 (3H, s, OCH3), 3.92 (3H, s, OCH3), 5.02 
(3H, s, CH2), 6.14 (1H, s, H-2), 6.58 (1H, s, H, H-8 ), 6.62 (1H, d, 15.2 Hz, CH), 6.71-6.73 
(3H, m, ArH), 7.26-7.38 (11H, m, ArH & CH).

148



5.6.7-Trimethoxy-2-[2-(2,4,5-dimethoxyphenyl)ethenylJchromone (109d). This was 

obtained as a yellow  solid (0.053 g, 0.12 mmol, 30%) from 108 (0.108 g, 0.43 mmol) and

2,4,5-trimethoxybenzaldehyde (0.169 g, 0.86 mmol) in a similar manner as described for 

preparation o f  109c, reaction time 24 h, mp 161-163 °C. 'H NM R (400 MHz, CDCI3) 5 3.93 

(3H, s, OCH3), 3.94 (3H, s, OCH3), 3.96 (3H, s, OCH3), 3.97 (3H, s, OCH3), 3.99 (3H, s, 

OCH3), 4.01 (3H, s, OCH3), 6.14 (1H, s, H-2), 6.56 (1H, s, H-8 ), 6.67 (1H, d, J  16.0 H, CH),

6.81 (1H, s, ArH), 7.08 (1H, s, ArH), 7.79 (1H, d, J  16.0 H, CH). 13C NM R (100 MHz, 

CDC135 56.47 (OCH3), 56.61 (OCH3), 56.84 (OCH3), 56.93 (OCH3), 61.93 (OCH3), 62.54 

(OCH3), 96.66 (CHCO), 97.31 (CH, Ar), 110.62 (CH, Ar), 110.87 (CH, Ar), 113.41 (C, 

Ar), 116.07 (C, Ar), 118.19 (CH=CH), 131.11 (CH=CH), 140.47 (C, Ar), 140.79 (C, Ar), 

151.96 (C, Ar), 152.89 (C, Ar), 153.68 (C, Ar), 154.74 (C, Ar), 157.91 (C, Ar), 161.02 

(C, Ar), 177.78 (C = 0). vmax (nujoiy^m '1) 1642 (st), 1599 (st), 1455 (st), 1416 (st), 1202 (st), 

1113 (st), 1026 (st). MS m/z (API-ES): found 429 (M +H)+ (100 %). HRMS m/z (API-ES): 

found 429.1574 (M +H)+, calculated for C23H25O8 429.1549

5.6.7-Trimethoxy-2-[2-(4-chlorophenyl)ethenyl]chromone (109e). This was obtained as a 

white solid (0.070 g, 0.188 mmol, 44%) from 108 (0.108 g, 0.43 mmol) and 4-

chlorobenzaldehyde (0 . 1 2 1  g, 0 . 8 6  mmol) in a similar manner as described for preparation o f  

109c, reaction time 12 h, mp 190-192 °C; 'H NM R (CDC13) 5 3.84 (3H, s, OCH3), 3.90 (3H, 

s, OCH3), 3.92 (3H, s, OCH3), 6.12 (1H, s, H-2), 6.63 (1H, d, J  16.0 Hz, CH), 6.71 (1H, s, H- 

8 ), 7.32 (2H, d, 8.0 Hz, 2 x CH), 7.40 (1H, d, J  16.0 Hz, CH), 7.43 (2H, d, 8.0 Hz, 2 x C). 13C 

NM R (100 MHz, CDCI3) 5 56.70 (OCH3), 61.95 (OCH3), 62.56 (OCH3), 96.50 (CHCO),

112.24 (CH, Ar), 113.47 (C, Ar), 120.96 (CH=CH), 129.05 (2 x CH, Ar), 129.62 (2 x C H ,

Ar), 134.01 (C, Ar), 134.81 (CH=CH), 135.84 (C, Ar), 140.65 (C, Ar), 152.98 (C, Ar),

154.66 (C, Ar), 158.17 (C, Ar), 159.50 (C, Ar), 177.57 (C =0); vmax (nujoiy^m '1) 2853 

(st), 1645 (sr), 1436 (st), 1375 (st). MS m/z (API-ES): found 373, (M 35C1+H)+ (100%), 375 

(M 37C1+H)+ (35%). HRMS m/z (API-ES): found 373.0841 (M +H)+, calculated for 

C20H 18CIO5 373.0843; found 395.0663 (M +Na)+, calculated for C2oHi7ClNaOs 395.0662.

5.6.7-Trimethoxy-2-[2-(3-chlorophenyl)ethenyl]chromone (109f). This was obtained as a 

white solid (0.093 g, 0.24 mmol, 48%) from 108 (0.130 g, 0.52 mmol) and 4-

chlorobenzaldehyde (0.146 g, 1.04 mmol) in a similar manner as described for preparation o f  

109c, reaction time 12 h, mp 195-197 °C. ]H NM R (400 MHz, CDC13) 5 3.94(3H, s, OCH3),

3.99 (3H, s, OCH3), 4.02 (3H, s, OCH3), 6.32 (1H, s, H-2), 6.76 (1H, d, J  16.0 Hz, CH), 6.81 

(1H, s, H -8 ), 7.37 (2H, m, ArH), 7.46 (1H, m, ArH), 7.49 (1H, d, J  16.0 Hz, CH), 7.57 (1H, s, 

ArH). 13C NM R (100 MHz, CDC13) 5 56.75 (OCH3), 61.85 (OCH3) 62.91 (OCH3), 96.89  

(CHCO), 112.13 (CH, Ar), 113.61 (C, Ar), 121.42, (CH=CH) 125.59 (CH, Ar), 127.39 

(CH, Ar), 129.30 (CH, Ar), 130.21 (CH, Ar), 131.04 (C, Ar), 132.07 (C, Ar), 133.88 (C, 

Ar), 134.24 (CH=CH), 140.57 (C, Ar), 151.10 (C, Ar), 154.98 (C, Ar), 158.36 (C, Ar),
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159.40 (C, Ar), 177.58 (C=0). vmax (nujoiyCcm'1) 2853 (st), 1649 (st), 1465 (st), 1378 (st). 
MS m/z (API-ES): found 373, (M3 5 C1+H)+ (100%), 375 (M3 7 C1+H)+ (30%). HRMS m/z 
(API-ES): found 373.0844 (M+H)+, calculated for C2oH18C105 373.0843; found 395.0664 
(M+Na)+, calculated for C2 oHi7 ClNa0 5  395.0662.

5.6.7-Trimethoxy-2-[2-(2-chlorophenyl)ethenyl]chromone (109g). This was obtained as a 
white solid (0.156 g, 0.41 mmol, 43%) from 108 (0.102 g, 0.40 mmol) and 4- 
chlorobenzaldehyde (0.114 g, 0.81 mmol) in a similar manner as described for preparation of 
109c, reaction time 12 h, mp 155-157 °C. *H NMR (400 MHz, CDC13) 5 3.85 (3H, s, OCH3),
3.90 (3H, s, OCH3), 3.93 (3H, s, OCH3), 6.15 (1H, s, H-2), 6.71 (1H, d, J  16.0 Hz, CH), 6.73 
(1H, s, H-8 ), 7.23-7.25 (2H, m, ArH), 7.36-7.43 (1H, m, ArH), 7.61-7.63 (1H, m, ArH), 7.85 
(1H, d, J  16.0 Hz, CH). 13C NMR (100 MHz, CDC13) 5 56.79 (OCH3), 61.95 (OCH3), 62.56 
(OCH3), 96.79 (CHCO), 112.64 (CH, Ar), 113.48 (C, Ar), 122.94 (CH=CH), 127.45 (CH, 
Ar), 127.61 (CH, Ar), 130.57 (CH, Ar), 130.84 (CH, Ar), 132.05 (CH=CH), 133.73 (C, 
Ar), 134.83 (C, Ar), 140.67 (C, Ar), 150.91 (C, Ar), 154.70 (C, Ar), 158.23 (C, Ar),
159.44 (C, Ar), 177.60 (C=0). vmax (nujol)/(cm_1) 2853 (st), 1654 (st), 1460 (st), 1378 (st). 
MS m/z (API-ES): found 373 (M3 5 C1+H)+ (100%), 375 (M3 7 C1+H)+ (30%). HRMS m/z (API- 

ES): found 373.0844 (M+H)+, calculated for C2 0 Hi8C1O5 373.0843; found 395.0663 
(M+Na)+, calculated for C2 oH1 7ClN a0 5 395.0662.

5.6.7-Trimethoxy-2-[2-(3,4-dichlorophenyl)ethenyl]chromone (109h). This was obtained as 
a yellow solid (0.094 g, 0.23 mmol, 45%) from 108 (0.127 g, 0.51 mmol) and 3,4- 
dichlorobenzaldehyde (0.178 g, 1.02 mmol) in a similar manner as described for preparation 
of 109c, reaction time 12 h, mp 221-223 °C. ’H NMR (400 MHz, CDC13) 5 3.93 (3H, s, 
OCH3), 3.99 (3H, s, OCH3), 4.01 (3H, s, OCH3), 6.24 (1H, s, H-2), 6.73 (1H, d, J  16.2 Hz, 
CH), 6.79 (1H, s, H-8 ), 7.12 (1H, dd, J2.5, 7.7 Hz, H-6 ’), 7.42 (1H, d, J  16.2 Hz, CH), 7.50 
(1H, 1H, d, J  7.7 Hz, H-5’) 7.67 (1H, 1H, d, J  2.5 Hz, H-2’). 13C NMR (100 MHz, 
CDC13) 5 56.07 (OCH3), 61.95 (OCH3), 62.58 (OCH3), 96.48 (CHCO), 112.70 (CH, Ar), 
113.05 (C, Ar), 122.19 (CH=CH), 126.75 (CH, Ar), 129.56 (CH, Ar), 131.32 (CH, Ar),
133.47 (CH=CH), 133.66 (C, Ar), 133.85 (C, Ar), 133.55 (C, Ar), 141.20 (C, Ar), 150.61 
(C,Ar), 154.62 (C, Ar), 158.25 (C, Ar), 159.00 (C, Ar), 177.47 (C=0). vmax (nujoiy^m '1) 
2853 (st), 1649 (st), 1465 (st), 1377 (st). MS m/z (API-ES): found 407 (M 3 5 C1+H)+ (100%), 
409 (M3 7 C1+H)+ (70%). HRMS mlz (API-ES): found 407.0415 (M+H)+, calculated for 
C2 0 Hi7 C12 O5 407.0453; found 429.0328 (M+Na)+, calculated for C2 oHi6 Cl2Na0 5  429.0272.

5.6.7-Trimethoxy-2-[2-(2,4-dichlorophenyl)ethenylJchromone (109i). This was obtained as a 
yellow solid (0.089 g, 0.22 mmol, 41%) from 108 (0.135 g, 0.54 mmol) and 2,4- 
dichlorobenzaldehyde (0.189 g, 1.08 mmol) in a similar manner as described for preparation 
of 109c, reaction time 12 h, mp 214-216 °C. JH NMR (400 MHz, CDC13) 5 3.85 (3H, s,
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OCH3), 3.90 (3H, s, OCHs), 3.93 (3H, s, OCH3), 6.18 (1H, s, H-2), 6.63 (1H, d, J  16.4 Hz, 

CH), 7.24 (1H, dd, J  2.0, 8 . 6  Hz, H -5’), 7.40 (1H, d, J 2 .0  Hz, H -3’), 7.55 (1H, d, J 8 . 6  Hz, 

H-6 ’), 7.77 (1H, d, J  16.4 Hz, CH). 13C NM R (100 MHz, CDC13) 6  56.79 (OCH3), 61.94  

(OCH3), 62.56 (OCH3), 96.65 (CHCO), 112.88 (CH, Ar), 113.48 (C, Ar), 123.35

(CH=CH), 128.07 (CH, Ar), 128.17 (CH, Ar), 130.37 (CH, Ar), 130.80 (CH, Ar), 132.34 

(CH=CH), 135.31 (C, Ar), 136.02 (C, Ar), 140.72 (C, Ar), 152.95 (C, Ar), 154.66 (C, Ar),

158.29 (C, Ar), 159.10 (C, Ar), 177.52 (C = 0). v max (nujoiy^m '1) 2853 (st), 1650 (st), 1488 

(st), 1356 (st). MS m/z (API-ES): found 407 (M 35C1+H)+ (100%), 409 (M 37C1+H)+ (70%). 

HRMS m/z (API-ES): found 407.0424 (M +H)+, calculated for C20H 17CI2O5 407.0453; found 

429.0258 (M +Na)+, calculated for C2oH16Cl2Na0 5  429.0272.

5.6.7-Trimethoxy-2-[2-(2,6-dichlorophenyl)ethenyl]chromone (109j). This was obtained as 

a white solid (0.066 g, 0.162 mmol, 41%) from 108 (0.100 g, 0.400 mmol) and 2,6- 

dichlorobenzaldehyde (0.140 g, 0.080 mmol) in a similar manner as described for preparation 

o f  109c, reaction time 12 h, mp 175-177 °C. ]H NM R (400 MHz, CDC13) 5 3.85 (3H, s, 

OCH3), 3.90 (3H, s, OCH3), 3.92 (3H, s, OCH3), 6.15 (1H, s, H-2), 6.72 (1H, s, H-8 ), 6.81 

(1H, d, J  16.6 Hz, CH), 7.13 (1H, t, J  8.4, Hz, H -4’), 7.32 (2H, d J 2.0 Hz, H -3’ & H 5’), 7.51 

(1H, d, J  16.6 Hz, CH). 13C NM R (100 MHz, CDC13) 5 56.77 (OCH3), 61.96, (OCH3), 62.56  

(OCH3), 96.69 (CHCO), 113.110 (C, Ar), 113.54 (CH, Ar), 128.97 (CH=CH), 129.26 (2 x 

CH, Ar), 129.28 (C, Ar), 129.87 (CH, Ar), 132.96 (C), 135.17 (CH=CH), 140.70 (C, Ar), 

152.95 (C, Ar), 154.72 (C, Ar), 158.26 (C, Ar), 158.84 (C, Ar), 177.59 (C =0). vmax 

(nujoiy^m '1) 2853 (st), 1651 (st), 1463 (st), 1377 (st). MS m/z (API-ES): found 407 

(M35C1+H)+ (100%), 409 (M 37C1+H)+ (70%). HRMS m/z (API-ES): found 407.0458 (M+H)+, 

calculated for C20H 17CI2O5 407.0453; found 429.0281 (M +Na)+, calculated for 

C2oH16Cl2Na05 429.0272.

5.6.7-Trimethoxy-2-[2-(4-nitrophenyl)ethenyl]chromone (109k). This was obtained as a 

yellow  solid (0.061 g, 0.160 mmol, 40%) from 108 (0.100 g, 0.40 mmol) and 4- 

nitrobenzaldehyde (0,120 g, 0.79 mmol) in a similar manner as described for preparation o f  

109c, reaction time 12 h, mp 187-189 °C. lH NM R (400 MHz, CDC13) 5 3.85 (3H, s, OCH3), 

3.91 (3H, s, OCH3), 3.93 (3H, s, OCH3), 6.18 (1H, s, H-2), 6.72 (1H, s, H-8 ), 6.80 (1H, d, J
16.0 Hz, CH), 7.49 (1H, d, J  16.0 Hz, CH), 7.65 (2H, d, J  8.7 Hz, 2 x  CH, Ar), 8.20 (2H, d, J  
8.7 Hz, 2 x CH, Ar). 13C NM R (100 MHz, CDC13) 8  56.74 (OCH3), 61.95 (OCH3), 62.57 

(OCH3), 96.50 (CHCO), 113.52 (CH, Ar), 124.70 (2 x CH, Ar), 128.42 (2 x CH, Ar),

133.33 (CH=CH), 140.82 (C, Ar), 141.70 (C, Ar), 148.33 (C, Ar), 153.02 (C, Ar), 154.62 

(C, Ar), 158.41 (C, Ar), 158.55 (C, Ar), 177.04 (C = 0). vmax (nujoiy^m '1) 2855 (st), 1630 

(st), 1480 (st), 1340 (st). MS m/z (API-ES): found 384 (M +H)+ (100%). HRMS m/z (API- 

ES): found 384.1087 (M +H)+, calculated for C2oHi8N 0 7 384.1083; found 406.0908 (M +Na)+, 

calculated C2oH]7N N a0 7  406.0903.
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2.3.4-Trimethoxyphenol (111)332
2.3.4-Trimethoxybenzaldehyde (110) (7.6 g, 38.73 mmol) and H2 O2  (aq, 33% solution ) (6.13 
g 19.57 mmol) were stirred in the presence of concd. H2 SO4  (0.77 ml) in methanol (80 ml) 
under nitrogen at room temperature for 1 h. Triethylamine (2 ml) was added, and the solvent 
removed under reduced pressure. Water (80 ml) was added and aqueous phase extracted with 
DCM (3 x 80 ml). The combined organic extracts were dried over MgSCU and concentrated 
under reduced pressure. Chromatography on silica gel (50:50 hexane/ethyl acetate, Rf 0.68) 
afforded pure 111 (6.74 g, 36.59 mmol, 94%) as an orange oil. ]H NMR (400 MHz, CDCI3 ) 5
3.74 (3H, s, OCH3 ), 3.82 (3H, s, OCH3), 3.88 (3H, s, OCH3), 5.32 (1H, bs, OH), 6.48 ( 1 H, d, 
J 9 2  Hz, ArH), 6.56 (1H, d ,J9 .2  H, ArH).

6.7.8-trimethoxy-2-methylchromen-4-one (112)
Phosphorus pentoxide (2.71 g) was added to methansulfonic acid (27.15 g) and the resultant 
mixture stirred at room temperature under argon until the phosphorus pentoxide was 
dissolved. But-2-ynoic-acid (0.457 g, 5.43 mmol) was then added, followed by an equimolar 
amount of 111 (1.01 g, 5.43 mmol). The reaction mixture was degassed under argon and then 
stirred at room temperature for 5h. Upon complete consumption of the staring material, the 
dark red reaction mixture was poured slowly into saturated sodium bicarbonate solution ( 1 0 0  

ml for every 10 g o f methansulfonic acid), and the aqueous phase extracted with DCM (3 x 
100 ml/10 g o fM eS 0 3 H). The combined organic extracts were washed with brine, dried over 
MgSC>4 , and the solvent removed under reduced pressure. Chromatography on silica gel 
(80:20 DCM/ethyl acetate, Rf 0.30) afforded pure chromone 112 (0.166 g, 0.664 mmol, 12%) 
as an orange solid, mp 94-99 °C. *H NMR (400 MHz, CDC13) 8  2.35 (3H, s, CH3), 3.87 (3H, 
s OCH3 ), 3.94 (3H, s, OCH3 ), 3.95 (3H, s, OCH3), 6.01 (1H, s, CH), 7.06 (1H, s, H-5). 13C 
NMR (100 MHz, CDCI3 ) 8  21.29 (CH3), 56.49 (OCH3), 60.89 (OCH3), 61.49 (OCH3),
100.52 (CHCO), 111.45 (CH, Ar), 112.78 (C, Ar), 141.09 (C, Ar), 153.02 (C, Ar), 155.09 
(C, Ar), 158.12 (C, Ar), 162.96 (C, Ar), 176.64 (C=0). vmax (nujoO^cm'1) 2865 (st), 1654 
(st), 1589 (st). MS m/z (API-ES): found 251 (M+ H)+ (100%). HRMS m/z (API-ES): found 
251.0918 (M+H)+, calculated for CnH^Os 251.0919

6.7.8-Trimethoxy-2-[2-(2-chlorophenyl)ethenylJchromone (113a). This was obtained as a 
yellow solid (0.083 g, 0.22 mmol, 59%) from 112 (0.094 g, 0.37 mmol) and 2- 
chlorobenzaldehyde (0,106 g, 1.24 mmol) in a similar manner as described for preparation of 
109c, reaction time 12 h, mp 151-153 °C. *H NMR (400 MHz, CDC13) 8  3.89 (3H, s, OCH3),
3.99 (3H, s, OCH3 ), 4.05 (3H, s, OCH3), 6.28 (1H, s, H-2), 6.74 (1H, d, J  16.0 Hz, CH), 7.23-
7.29 (3H, m), 7.29 (1H, s, H-5), 7.31-7.40 (1H, m, ArH), 7.64-7.67 (1H, m, ArH), 8.04 (1H, 
d, J  16.0 Hz, CH). 13C NMR (100 MHz, CDC13) 8  56.67 (OCH3), 61.93 (OCH3), 62.49 
(OCH3 ), 100.38 (CHCO), 110.82 (CH, Ar), 120.26 (C, Ar), 122.94 (CH=CH), 127.37 
(CH, Ar), 127.60 (CH, Ar), 130.61 (CH, Ar), 131.00 (CH, Ar), 132.85 (CH=CH), 133.49
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(C, Ar), 135.08 (C, Ar), 142.23 (C, Ar), 146.06 (C, Ar), 147.91 (C, Ar), 151.40 (C, Ar),

161.18 (C, Ar), 178.12 (C =0). vmax (solid)/(cm ') 2861(st), 1649 (st), 1463 (st), 1369 (st). 

MS m/z (API-ES): found 372 (M 35C1+H)+ (100%), 373 (M 37CI+H)+ (35%). HRMS m/z (API- 

ES): found 373.0847 (M + H )\ calculated for CsoIIisCIO, 373.0843; found 395.0667  

(M +Na)+, calculated for C2oHi7ClNa0 5  395.0662.

6.7.8-Trimethoxy-2-[2-(3-chlorophenyl)ethenyl]chromone (113b). This was obtained as a 

yellow solid (0.129 g, 0.34 mmol, 56%) from 101 (0.150 g, 0.61 mmol) and 3- 

chlorobenzaldehyde (0.174 g, 1.23 mmol) in a similar manner as described for preparation o f  

109c, reaction time 12 h, mp 161-162 °C. ]H NM R (400 MHz, CDCI3) 8  3.89 (3H, s, OCH3), 

3.98 (3H, s, OCH3), 4.03 (3H, s, OCH3), 6.25 (1H, s, H-2), 6.74 (1H, d, J  16.2 Hz, CH), 7.28- 

7.30 (3H, m, ArH), 7.38-7.41 (1H, m, ArH), 7.47 (1H, d, J  16.2 Hz, CH), 7.50 (1H, s, H-5). 

13C NM R (100 MHz, CDC13) 8  56.68 (OCH3), 61.89 (OCH3), 62.49 (OCH3), 100.45 

(CHCO), 110.83 (CH, Ar), 120.35 (C, Ar), 122.24 (CH=CH), 126.19 (CH, Ar), 127.83 

(CH, Ar), 130.02 (CH, Ar), 130.60 (CH, Ar), 135.32 (CH=CH), 135.40 (C, Ar), 137.24 

(C, Ar), 142.27 (C, Ar), 145.92 (C, Ar), 147.93 (C, Ar), 151.48 (C, Ar), 161.07 (C, Ar),

178.04 (C = 0). v max (solid)/(cm _1) 2848 (st), 1661 (st), 1443 (st), 1387 (st). MS m/z (API- 

ES): found 372 (M 35C1+H)+ (100%), 373 (M 37C1+H)+ (35%). HRMS m/z (API-ES): found 

373.0847 (M +H)+, calculated for C2oH18C 1 0 5  373.0843; found 395.0667 (M +Na)+, calculated 

for C2oH17ClNa0 5  395.0662.

6.7.8-Trimethoxy-2-[2-(4-chlorophenyl)ethenylJchromone (113c). This was obtained as a 

pink solid (0.060 g, 0.16 mmol, 58%) from 112 (0.068 g, 0.270 mmol) and 4- 

chlorobenzaldehyde (0.077 g, 0.55 mmol) in a similar manner as described for preparation o f  

109c, reaction time 12 h, mp 166-168 °C. *H NM R (400 MHz, CDCI3) 8  3.73 (3H, s, OCH3),

3.82 (3H, s, OCH3), 3.87 (3H, s, OCH3), 6.08 (1H, s, H-2), 6.55 (1H, d, J  16. 0 Hz, CH), 7.14 

(1H, s, H-5), 7.17 (2H, d, J8.2  Hz, 2 x CH, Ar), 7.30 (2H, d, J  8.2 Hz, 2 x CH, Ar), 7.33 (1H, 

d, J  16. 0 Hz, CH). ,3C NM R (100 MHz, CDC13) 8  56.66 (OCH3), 61.88 (OCH3), 62.49 

(OCH3), 100.46 (CHCO), 110.53 (CH, Ar), 120.32 (C, Ar), 121.35 (CH=CH), 129.21 (2 x 

CH, Ar), 129.62 (2 x CH, Ar), 133.90 (C, Ar), 135.54 (C, Ar), 136.01 (CH=CH), 142.25 

(C, Ar), 145.90 (C, Ar), 147.89 (C, Ar), 151.45 (C, Ar), 161.34 (C, Ar), 178.07 (C =0). 

Vmax (nujoiytcm '1) 2853 (st), 1662 (st), 1455 (st), 1378 (st). MS m/z (API-ES): found 372 

(M35C1+H)+ (100%), 373 (M37C1+H)+ (35%). HRMS m/z (API-ES): found 373.0845 (M+H)+, 

calculated for C20H 18CIO5 373.0843; found 395.0665 (M +Na)+, calculated for C2oHi7ClNaOs 

395.0662.

6.7.8-Trimethoxy-2-[2-(2,4-dichlorophenyl)ethenyl]chromone (113d). This was obtained as 

a white solid (0.032 g, 0.08 mmol, 63%) from 112 (0.032 g, 0.128 mmol) and 2,3- 

dichlorobenzaldehyde (0.044 g, 0.25 mmol) in a similar manner as described for preparation
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of 109c, reaction time 12 h, mp 175-177 °C. !H NMR (400 MHz, CDC13) 5 3.82 (3H, s, 
OCH3), 3.84 (3H, s, OCH3), 3.98 (3H, s, OCH3), 6.20 (1H, s, H-2), 6.65 (1H, d, J  16.0 Hz, 
CH), 7.18 (1H, dd, 72.2, 8 . 6  Hz, H-5’), 7.23 (1H, s, H-5), 7.35 (1H, d, J2 .2  Hz, H-3’), 7.52 
(1H, d, J  8 . 6  Hz, H-6 ’), 7.88 (1H, d, J  16.0 Hz, CH). 13C NMR (100 MHz, CDC13) 5 56.67 
(OCH3), 61.92 (OCH3), 62.47 (OCH3), 100.39 (CHCO), 111.06 (CH, Ar), 120.25
(CH=CH), 123.36 (C, Ar), 128.07 (2 x CH, Ar), 130.42 (CH, Ar), 131.56 (CH=CH), 
132.09, (C, Ar) 135.55 (C, Ar), 136.20 (C, Ar), 142.21 (C, Ar), 146.01 (C, Ar), 148.02 
(C, Ar), 151.46 (C, Ar), 160.83 (C, Ar), 178.05 (C=0). vmax (nujol)/(cm_1) 2854 (st), 1656 
(st), 1461 (st), 1375 (st). MS m/z (API-ES): found 407 (M3 5 C1+H)+ (100%), 408 (M3 7 C1+H)+ 
(70%). HRMS m/z (API-ES): found 407.0463 (M+H)+, calculated for C2 oH1 7Cl2 0 5  407.0453; 
found 429.0285 (M+Na)+, calculated for C2 oH1 6Cl2Na0 5  429.0272.

6.7.8-Trimethoxy-2-[2-(2,6-dichlorophenyl)ethenyl]chromone (113e). This was obtained as 

a white solid (0.067 g, 0.16 mmol, 65%) from 112 (0.063 g, 0.25 mmol) and 2,3- 
dichlorobenzaldehyde (0.088 g, 0.50 mmol) in a similar manner as described for preparation 
of 109c, reaction time 12 h, mp 182-184 °C. }H NMR (400 MHz, CDC13) 5 3.89 (3H, s, 
OCH3), 3.99 (3H, s, OCH3), 4.03 (3H, s, OCH3), 6.26 (1H, s, H-2), 6.95 (1H, d, J  16.4 Hz, 
CH), 7.14 (1H, t, J  8.2 Hz, H-4’), 7.30 (1H, s, H-5), 7.33 (2H, d, J 8.2 Hz, H-3’ & H-5’), 7.71 
(1H, d, J  16.4 Hz, CH). 13C NMR (100 MHz, CDC13) 5 56.66 (OCH3), 61.92 (OCH3), 62.48 
(OCH3), 100.41 (CHCO), 111.49 (CH, Ar), 120.31 (C, Ar), 128.95 (CH=CH), 129.33 (2 x 
CH, Ar), 129.98 (CH, Ar), 130.59 (CH=CH), 132.62 (C, Ar), 135.32 (C, Ar), 142.28 (C, 
Ar), 146.09 (C, Ar), 148.02 (C, Ar), 151.44 (C, Ar), 160.55 (C, Ar), 178.13 (C=0). vmax 
(nujol)/(cm_1) 2857 (st), 1653 (st), 1460 (st), 1380 (st). MS m/z (API-ES): found 407 
(M3 5 C1+H)+ (100%), 408 (M3 7 C1+H)+ (70%). HRMS m/z (API-ES): found 407.0465 (M+H)+, 
calculated for C2oHi7 C 12 0 5  407.0453; found 429.0291 (M+Na)+, calculated for 
C2 0 Hi6 Cl2NaO5 429.0272.

6.7.8-Trimethoxy-2-[2-(3,4-dichlorophenyl)ethenyl]chromone (113f). This was obtained as 
a white solid (0.056 g, 0.138 mmol, 87%) from 112 (0.040 g, 0.159 mmol) and 2,3- 
dichlorobenzaldehyde (0.055 g, 0.318 mmol) in a similar manner as described for preparation 
of 109c, reaction time 12 h, mp 188-190 °C. ]H NMR (400 MHz, CDC13) 5 3.89 (3H, s, 
OCH3), 3.98 (3H, s, OCH3), 4.03 (3H, s, OCH3), 6.25 (1H, s, H-2), 6.72 (1H, d, J  16.0 Hz, 
CH), 7.29 (1H, s, H-5), 7.34-7.36 (1H, m, ArH), 7.40-7.44 (2H, m, ArH & CH), 7.60 (1H, d,
1.2 Hz, H-2’). 13C NMR (100 MHz, CDC13) 5 56.68 (OCH3), 61.89 (OCH3), 62.50 (OCH3),
100.45 (CHCO), 111.03 (CH, Ar), 120.34 (C, Ar), 122.64 (CH=CH), 126.96 (CH, Ar),
129.62 (CH, Ar), 131.33 (CH, Ar), 133.71 (C, Ar), 133.98 (C, Ar), 134.16 (C, Ar), 135.47 
(CH=CH), 142.27 (C, Ar), 145.89 (C, Ar), 147.98 (C, Ar), 151.54 (C, Ar), 160.80 (C, Ar),
178.01 (C=0). vmax (nujol)/(cm_1) 2853 (st), 1656 (st), 1463 (st), 1375 (st). MS m/z (API- 
ES): found 407 (M3 5 C1+H)+ (100%), 408 (M3 7 C1+H)+ (70%). HRMS m/z (API-ES): found
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407.0453 (M +H)+, calculated for C20H 17CI2O5 407.0453; found 429.0275 (M +Na)+, 

calculated for C2oHi6Cl2Na0 5  429.0272.

6.7.8-Trimethoxy-2-[2-(3,5-dimethoxyphenyl)ethenyl]chromone (113g). This was obtained 

as a yellow  solid (0.093 g, 0.24 mmol, 37%) from 112 (0.158 g, 0.63 mmol) and 3,5- 

dimethoxybenzaldehyde (0 . 2 1 0  g, 1.26 mmol) in a similar manner as described for 

preparation o f  109c, reaction time 12 h, mp 183-185 °C. ]H NM R (400 MHz, CDCI3) 5 3.85 

(6 H, s, 2 x OCH3), 3.96 (3H, s, OCH3), 4.05 (3H, s, OCH3), 4.10 (3H, s, OCH3), 6.31 (1H, s, 

H-2), 6.50 (1H, t, J 2 2  Hz, H -4’), 6.72 (1H, d, J  2.2 Hz, H -2’ H-6 ’), 6.77 (1H, d, J  16 Hz, 

CH). 7.37 (1H, s, H-5), 7.53 (1H, d, J  16 Hz, CH) ,3C NM R (100 MHz, CDC13) 5 55.52 (2 x 

OCH3), 56.29 (OCH3), 61.51 (OCH3), 62.15 (OCH3), 100.07 (CHCO), 102.00 (CH, Ar), 

105.64 (2 x CH, Ar), 110.04 (CH, Ar), 119.97 (C, Ar), 120.92 (CH=CH), 136.65 

(CH=CH), 136.91 (C ,A r), 141.87 (C, Ar), 145.55 (C, Ar), 147.46 (C, Ar), 151.01 (C, Ar),

161.11 (C, Ar), 161.15 (C, Ar), 177.70 (C = 0). v max (so lid y^ m '1) 2930 (st), 1642 (st), 1603 

(st), 1585 (st), 1466 (st), 1424 (st), 1385 (st), 1194 (st), 1119 (st). MS m/z (API-ES): found 

399 (M +H)+ (100 %). HRMS m/z (API-ES): found 399.1442 (M +H)+, calculated for 

C22H23O7 399.1444.

6.7.8-Trimethoxy-2-[2-(2,4,5-trimethoxyphenyl)ethenyl]chromone (113h). This was 

obtained as a yellow  solid (0.082 g, 0.19 mmol, 37%) from 112 (0.136 g, 0.54 mmol) and

2,4,5-trimethoxybenzaldehyde (0.213 g, 1.08 mmol) in a similar manner as described for 

preparation o f  109c, reaction time 12 h, mp 191-193 °C. !H NM R (250 MHz, CDCI3) 8  

3.94(3H, s, OCH3), 3.95 (6 H, s, 2 x OCH3), 3.96 (3H, s, OCH3), 3.97 (3H, s, OCH3), 4.06 

(3H, s, OCH3), 4.14 (3H, s, OCH3), 6.31 (1H, s, H-2), 6.55 (1H, s, ArH), 6.77 (1H, d, J  16.0 

Hz, CH ’), 7.09 (1H, s, ArH). 7.38 (1H, s, H-5), 7.99 (1H, d, J  16.0 Hz, CH) 13C NM R (100 

MHz, CDCI3) 5 56.07 (OCH3), 56.25 (OCH3), 56.51 (OCH3), 61.52 (2 x OCH3), 62.08 

(OCH3), 93.86 (CH, Ar), 100.03 (CHCO), 108.65 (CH, Ar), 110.02 (CH, Ar), 1115.56 (C, 

Ar), 117.73 (CH=CH), 119.96 (C, Ar), 131.56 (CH=CH), 141.79 (C, Ar), 143.39 (C, Ar),

145.54 (C, Ar), 147.17 (C, Ar), 150.76 (C, Ar), 151.76 (C, Ar), 153.47 (C, Ar), 162.52 

(C, Ar), 177.70 (C=0 ). vmax ( s o l i d ) / ^ ' 1) 2938 (st), 1637 (st), 1586 (st), 1468 (st), 1425 (st), 

1375 (st), 1210 (st), 1112 (st), 1026 (st). MS m/z (API-ES): found 429 (M+H)+ (100%). 

HRMS m/z (API-ES): found 429.1574 (M +H)+, calculated for C23H2 5 0 8 429.1549

6.7.8-Trimethoxy-2-[2-(2,5-dimethoxyphenyl)ethenyl]chromone (113i). This was obtained 

as a yellow  solid (0.073 g, 0.18 mmol, 34%) from 112 (0.135 g, 0.54 mmol) and 2,5- 

dimethoxybenzaldehyde (0.179 g, 1.08 mmol) in a similar manner as described for 

preparation o f  109c, reaction time 12 h, mp 145-148 °C. 'H NM R (250 MHz, CDCI3) 8  3.85 

(3H, s, OCH3), 3.91 (6 H, s, 2 x  OCH3), 3.97 (3H, s, OCH3), 4.07 (3H, s, OCH3), 4.13 (3H, s, 

OCH3), 6.34 (1H, s, H-2), 6.97-7.02 (3H, s, 2 x ArH & CH), 7.13 (1H, d, J  2.4 Hz, H-6 ’),
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7.39 (1H, s, H-5), 7.96 (1H, d, J  16.0 Hz, CH). ,3C NMR (100 MHz, CDC13) 5 55.88 
(OCH3), 56.23 (OCH3), 56.29 (OCH3), 61.55 (OCH3), 62.10 (OCH3), 100.03 (CHCO),
109.55 (CH, Ar), 112.44 (CH, Ar), 112.79 (CH, Ar), 116.42 (CH, Ar), 119.96 (C, Ar),

120.90 (CH=CH), 124.60 (C, Ar), 131.95 (CH=CH), 141.85 (C, Ar), 145.63 (C, Ar),
147.34 (C, Ar), 150.89 (C, Ar), 152.51 (C, Ar), 153.63 (C, Ar), 161.94 (C, Ar), 177.80 
(C=0). vmax (solid)/(cm ') 2943 (st), 1648 (st), 1631 (md), 1499 (st), 1463 (st), 1424 (st) 1227 
(st), 1026 (st). MS m/z (API-ES): found 399 (M+H)+ (100%). HRMS m/z (API-ES): found 
399.1472 (M+H)+, calculated for C2 2 H2 3 0 7 399.1444.

1.2.3.4- f  et ra m et ho \\bcnzene (114)334
2.3.4-Trimethoxy phenol (111) (6.4 g, 35 mmol) dimethyl sulphate (4.8 g, 38 mmol), K2 C 0 3 

(13 g, 94 mmol) in dry acetone (45 ml) was refluxed for 22h. The solvent was removed under 
reduced pressure and H20  (45 ml) was added. Pure 114 was collected by filtration and dried 
in vacuo (6 . 8  g, 34.32 mmol, yield 99%), mp (MeOH) 88-89 °C (lit3 3 4  91 °C). ]H NMR (400 
MHz, CDCls) 6  3.85 (6 H, s, OCH3), 3.93 (6 H, s, OCH3), 6.61 (2H, s, H-5 & H-6 ).

2,3,4,5-Tetramethoxyacetophenone (115)336
Acetic anhydride (17 g, 166.54 mmol) and ZnCl2 (45 g, 333 mmol) were added to a solution 
of 114 (11 g, 56.00 mmol) in nitromethane (240 ml). The reaction mixture was stirred at 50 
°C overnight under nitrogen. Water (150 ml) was added and the mixture was extracted with 
ethyl acetate (3 x 200 ml). The combined organic extracts were dried over MgSC>4 and the 
solvent removed under reduced pressure. Chromatography on silica gel (90:10 hexane/ethyl 
acetate, Rf 0.12) afforded 115 (9.8 g, 40.66 mmol, 77%) as a colourless oil. !H NMR (400 
MHz, CDC13) 5 2.57 (3H, s), 3.79 (3H, s), 3.84 (3H, s), 3.85 (3H s), 3.89 (3H, s), 7.00 (1H, 
s). MS m/z (API-ES): found 241 (M+H)+ (100 %).

2-Hydroxy-3,4,5-tetramethoxyacetophenone (116)335
A1C13 (5.21 g, 39.12 mmol,) was added portion wise to a stirred solution of 115 (9.4 g, 39.12 
mmol) in benzene (50 ml) at room temperature. Stirring was continued at 80 °C for 6 h. After 
cooling to room temperature, the reaction mixture was poured into ice-water (140 ml) 
containing concd HC1 (14 ml) and extracted with Et20  (200 ml). The organic phase was dried 
over MgSC>4 and the solvent removed under reduced pressure. Chromatography on silica gel 
(90:10 hexane/ethyl acetate, Rf 0.12) afforded pure phenol 116 (4.8 g, 21.14 mmol, 54%) as a 
yellow solid, mp 70-72 °C. *H NMR (CDC13) 5 2.52 (3H, s), 3.78 (3H, s), 3.85 (3H, s), 3.92 
(3H, s), 6.85 (1H, s), 11.42 (1H, s). MS m/z (API-ES): found 227 (M+H)+ (100%).

6-Acetyl-2,3,4-trimethoxy-phenyl acetate (117)
DBU (0.148 g, 1.02 mmol) was added to a solution o f 116 (0.100 g, 0.44 mmol) and acyl 
chloride (0.039 g, 0.51 mmol) in pyridine (1.1 ml). The resulting mixture was stirred at at 140
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°C overnight. After cooling to room temperature, the mixture was poured into HC1 (aq, 1 M, 

10 ml) and extracted with ethyl acetate (2 x 10 ml). The organic extracts were collected, 

dried over MgSC>4 and the solvent removed under reduced pressure to afford pure 117 as a 

yellow oil. ]H NM R (CDC13) 6  2.52 (3H, s), 2.80 (3H, s), 3.75 (3H, s), 3.83 (3H, s), 3.95 (3H, 

s), 6.89 ( 1 H, s). MS m/z (API-ES): found 269 (M+H)+ ( 1 0 0  %).

6,7,8-Trimethoxy-2-methylchromen-4-one (112)
DBU (0.148 g, 1.02 mmol) was added to a solution o f  116 (0.100 g, 0.442 mmol) and acetic 

anhydride (0.052 g, 0.508 mmol) in pyridine (1.1 ml). The resulting mixture was stirred at at 

140 °C overnight. After cooling to room temperature, the mixture was poured into HC1 (aq, 1 

M, 10 ml) and extracted with ethyl acetate ( 2 x 1 0  ml). The organic extracts were collected, 

dried over MgSC>4 and the solvent removed under reduced pressure. Chromatography on 

silica gel (80:20 DCM/ethyl acetate Rf 0.30) afforded pure chromenone 112 (0.012 g, 0.05 

mmol, 1 1 %) as a yellow  solid.

Methyl -2-amino-3,4,5-trimethoxybenzoate (119)
A solution o f  methyl-2-nitro-3,4,5-trimethoxybenzoate (118) (5.3 g, 19.54 mmol) and tin 

chloride dihydrate (22.7 g, 100.56 mmol) in ethanol (150 ml) was stirred at 80 °C for 4h 

under nitrogen. The solvent was removed under reduced pressure. The residue was treated 

with water (150 ml), made alkaline to pH 10 with NaOH, extracted with DCM (3 x 150 ml). 

The combined organic extracts were dried over MgSC>4 and the solvent evaporated in 
vacuum. Pure ester 119 was obtained as a yellow  oil (4.6 g, 19.08 mmol, 98%) without 

further purification. lH NM R (250 MHz, CDC13) 5 3.74 (3H, s, OCH3), 3.79 (6 H, s, OCH3), 

3.88 (3H, s, OCH3), 5.59 (2H, bs, NH2), 7.12 (1H, s, H-6 ); 13C NM R (100 MHz, CDC13) 5

31.49 (OCH3), 56.35 (OCH3), 60.27 (OCH3), 61.12 (OCH3), 104.69 (C, Ar), 108.19 

(CH, Ar), 139.53 (C, Ar), 140.27 (C, Ar), 143.43 (C, Ar), 147.33 (C, Ar), 168.05

(C =0).

2-Amino-3,4,5-trimethoxybenzoyc acid338(120)
A solution o f  methyl-2-amino-3,4,5-trimethoxybenzoate (119) (3.8 g, 15.76 mmol) in 2- 

propanol (18 ml) was charged with 2.5 g ( 31.25 mmol) o f  50% aqueous sodium hydroxide 

and 8  ml o f  water. The mixture was stirred at reflux for 4 h, and the solvent removed under 

reduced pressure. Pure acid 120 was obtained adjusting the pH to 4.5 with cone sulfuric acid 

and filtering the yellow  solid The compound was used and characterized as obtained without 

further purification (4.27 g, 11.89 mmol, 75%), mp 136-138 °C (lit412 138-140 °C). ]H NM R  

(400 MHz, CDCI3) 5 3.75 (3H, s, OCH3), 3.80 (3H, s, OCH3), 3.90 (3H, s, OCH3), 7.13 (1H, 

s, H-6 ).
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6.7.8-T rimethoxy-2-methyl-benzo[d] [l,3]oxazin-4-one (121)413
A solution o f  120 (1.7 g, 7.49 mmol) in acetic anhydride (5 ml) was stirred for lh  at 110-120 

°C, and the solvent was removed under reduced pressure. Pure oxazinone 121 was obtained 

after recrystallization from anhydrous ethyl acetate (1.76 g, 7.04 mmol, 94%), mp 129-131°C 

(lit414 134 °C). *H NM R (400 MHz, CDC13) 5 2.47 (3H, s, CH3), 3.88 (3H, s, OCH3), 3.96 

(3H, s, OCH3), 3.97 (3H, s, OCH3), 7.31 (1H, s, H-5).

6.7.8-Trimethoxy-2,3-dimethyI-3H-quinazolin-4-one (122a)
Methylamine (40% aq, 1.73 g 21.51 mmol) was added to a solution o f  121 (3.6 g, 14.34 

mmol) in THF (20 ml). The resulting mixture was stirred at room temperature for 20 minutes: 

the formation o f  a precipitate was observed. The solvent was removed under reduced 

pressure. The resulting residue was dissolved in glacial acetic acid (30 ml) and concd sulforic 

acid (2 drops) was added. The mixture was stirred for 1.15 h at 100 °C. The solvent was 

removed under reduced pressure. The residue was diluted with ethyl acetate (30 ml) and 

washed with a saturated aqueous solution o f  N aH C 0 3 (3 x 20 ml). The organic extracts were 

dried over MgSO* and the solvent removed under reduced pressure. Chromatography on 

silica gel (ethyl acetate, Rf 0.60) afforded pure 122a as a white solid (2.1 g, 7.95 mmol, 55%), 

mp 78-80 °C. *H NM R (400 MHz, CDC13) 5 2.56 (3H, s, CH3), 3.54 (3H, s, CH3) 3.88 (3H, s, 

OCH3), 3.93 (3H, s, OCH3), 3.98 (3H, s, OCH3), 7.34 (1H, s, H-5). 13C NM R (100 MHz, 

CDC13) 8  23.80 (CH3), 31.11 (CH3), 56.19 (OCH3), 61.31 (OCH3), 62.14 (OCH3), 101.58 

(CH, Ar), 116.25 (C, Ar), 137.27 (C, Ar), 147.16 (C, Ar), 147.41 (C, Ar), 152.24 (C, 

Ar), 153.61 (C=N), 161.79 (C =0). vmax (solid)/(cm_1) 1663 (st), 1597 (st), 1472 (st), 1427 

(st), 1375 (st), 1198 (st), 1150 (st), 1098 (st). MS m/z (API-ES): found 265 (M +H)+ (100%). 

HRMS m/z (API-ES): found 256.1187 (M+H), calculated for C i3H i7 0 4 N 2 265.1183.

3-Ethyl-6,7,8-trimethoxy-2-methyI-3H-quinazolin-4-one (I22b)
This was obtained from 121 (2.02 g, 8.1 mmol) and ethylamine (70% aq., 0.78 g, 12.12 

mmol) in a similar manner as described for preparation o f  122a. Chromatography on silica 

gel (ethyl acetate, Rf 0.68) afforded pure 122b a white solid (1.5 g, 5.39 mmol, 67%), mp 84- 

8 6  °C. ‘H NM R (400 MHz, CDCI3) 5 1.29 (3H, t, J  7.2 Hz, NCH 2CH3), 2.61 (3H, s, 

CH3), 3.89 (3H, s, OCH3) 3.94 (3H, s, OCH3), 3.99 (3H, s, OCH3), 4.10 (2H, q, J  1 2  Hz, 

NCH 2CH3), 7.35 (1H, s, H-5). 13C NM R (100 MHz, CDC13) 8  13.74 (NCH2CH3), 23.15 

(CH3), 39.63 (NCH2 CH3), 56.15 (OCH3), 61.30 (OCH3), 62.12 (OCH3), 101.48 (CH, Ar),

116.60 (C, Ar), 137.32 (C, Ar), 147.18 (C, Ar), 147.39 (C, Ar), 151.72 (C, Ar), 152.30 

(C=N), 161.35 (C O ) .  vmax (solid)/(cm '‘) 1664 (st), 1591 (st), 1470 (st), 1396 (st), 1377 

(st), 1095 (st). MS m/z (API-ES): found 279 (M+H)+ (100%). HRMS m/z (API-ES): found 

279.1339 (M+H)+, calculated for C u H O , ^  279.1338.
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2-[2-(3-Chlorophenyl)vitiyl]-6,7,8-trimethoxy-3-methyl-3H-quinazolin-4-one (123a). A
solution of 122a (0.290 g, 1.1 mmol) and 3 -chlorobenzaldehyde (0.232 g, 1.65 mmol) was 
stirred in presence of sodium methoxide (0.116 g, 2.2 mmol) in methanol (12 mL) at 80 °C 
for 24 h. After cooling to room temperature, pure product 123a (0.121 g, 0.327 mmol, 30 %) 
was collected as a yellow precipitate by filtration and dried in vacuo, mp 145-147°C. lH 
NMR (400 MHz, CDC13) 5 3.69 (3H, s, NCH3), 3.90 (3H, s, OCH3), 3.96 (3H, s, OCH3), 4.07 
(3H, s, OCH3 ), 7.03 (1H, d, J  15.6 Hz, CH), 7.20-7.27 (2H, m, ArH), 7.34-7.38 (2H, m, ArH), 
7.52 (1H, s, ArH) 7.86 (1H, d, J  15.6 Hz, CH). 13C NMR (100 MHz, CDC13) 5 30.81 
(NCH3), 56.30 (OCH3 ), 61.46 (OCH3), 62.57 (OCH3), 101.90 (CH, Ar), 116.74 (C, Ar), 
120.43 (CH=CH), 126.16 (CH, Ar), 127.33 (CH, Ar), 129.53 (CH, Ar), 130.19 (CH, 
Ar), 134.93 (C, Ar), 137.36 (C, Ar), 137.46 (C, Ar), 138.84 (CH=CH), 147.55 (C, Ar),
147.60 (C, Ar), 149.64 (C, Ar), 152.74 (C=N), 161.80 (C=0),. vmax ( s o l id ^ m '1) 1663 
(st), 1598 (st), 1484 (st), 1469 (st), 1425 (st), 1379 (st), 1198 (st), 1153 (st), 1098 (st). MS m/z 
(API-ES): found 387 (M 3 5 CI+H)+ (100%), 389 (M 3 7 C1+H)+ (35%). HRMS m/z (API-ES): 
found 387.1103 (M+H)+, calculated for C2 0 H2 0 N2 O4 CI 387.1103.

2-[2-(4-Chlorophenyl)vinyl]-6,7,8-trimethoxy-3-methyl-3H-quinazolin-4-one (123b). This 
was obtained as a yellow solid (0.363 g, 0.97 mmol, 84%) from 122a (0.307 g, 1.16 mmol) 
and 4-chlorobenzaldehyde (0.180 g, 1.28 mmol) in a similar manner as described for 
preparation of 123a, mp 154-156 °C. *H NMR (400 MHz, CDC13) 5 3.76 (3H, s, CH3), 3.97 
(3H, s, OCH3 ), 4.04 (3H, s, OCH3), 4.15 (3H, s, OCH3), 7.06 (1H, d, J  15.2 Hz, CH), 7.38 
(2H, d, J  8.4 Hz, 2 x CH, Ar), 7.45 (1H, s, H-5), 7.54 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.95 
(1H, d, J  15.2 Hz, CH). 13C NMR (100 MHz, CDC13) 5 30.74 (NCH3), 56.25 (OCH3), 61.43 
(OCH3 ), 62.53 (OCH3 ), 101.86 (CH,Ar), 116.58 (C, Ar), 119.56 (CH), 128.92 (2xC H , 
Ar), 129.15 (2xC H ,A r), 133.99 (C, Ar), 135.43 (C, Ar), 137.47 (C, Ar), 138.94 (CH),
147.49 (C, Ar), 147.55 (C, Ar), 149.61 (C, Ar), 152.63 (C=N), 161.76 (C=0). vmax
(solid)/(cm_1) 1663 (st), 1597 (st), 1544 (st), 1480 (st), 1468 (st), 1418 (st), 1373 (st), 1147 
(st), 1087 (st), 1033 (st), 971 (st), 816 (st). MS m/z (API-ES): found 387 (M 3 5 C1+H)+ 
(100%), 389 (M 3 7 C1+H)+ (35%). HRMS m/z (API-ES) found 387.1100 (M+H)+, calculated 
foC2 oH2 oN2 0 4Cl 387.1103.

2-[2-(2,4-Dichlorophenyl)vinyl]-6,7,8-trimethoxy-3-methyl-3H-quinazolin-4-one (123c).
This was obtained as a yellow solid (0.171 g, 0.41 mmol, 58%) from 122a (0.187 g, 0.71 
mmol) and 2.4-dichlorobenzaldehyde (0.149 g, 0.85 mmol) in a similar manner as described 
for preparation of 123a, mp 183-185 °C. !H NMR (400 MHz, CDC13) 8  3.87 (3H, s, NCH3), 
4.09 (3H, s, OCH3), 4.16 (3H, s, OCH3), 4.29 (3H, s, OCH3), 7.20 (1H, d, J  15.4 Hz, CH),
7.40 (1H, dd, J2 .0 , 8.4 Hz, H-5’), 7.56 (1H, s, H-5), 7.58 (1H, d, J  2.0 Hz, H-2’), 7.74 (1H, 
d, J  8.4 Hz, H-6 ’), 8.41 (1H, d, J  15.4 Hz, CH). 13C NMR (100 MHz, CDC13) 5 30.83 
(NCH3), 56.29 (OCH3 ), 61.48 (OCH3), 62.59 (OCH3), 101.81 (CH, Ar), 116.67 (C, Ar),
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122.13 (CH=CH), 127.56 (CH, Ar), 128.18 (CH, Ar), 130.06 (CH, Ar), 132.36 (C, Ar), 
135.23 (CH=CH), 135.61 (C, Ar), 137.42 (C, Ar), 147.54 (C, Ar), 147.62 (C, Ar),
149.25 (C, Ar), 152.80 (C=N), 161.75 (C=0). vmax (solidy^m '1) 1654 (st), 1594 (st), 
1543 (st), 1481 (st), 1413 (st), 1382 (st), 1202 (st), 1150 (st), 1094 (st). MS m/z (API-ES): 
found 421 (M 3 5 C1+H)+ (100%), 423 (M3 7 C1+H)+ (50%). HRMS m/z (API-ES) found 

421.0722 (M+H)+, calculated foC2 oHi9N2 0 4 Cl2 421.0716.

2-[2-(2,6-Dichlorophenyl) vinyl]6,7,8-trimethoxy-3-methyl-3H-quinazolin-4-one (122d).
This was prepared from 122a (0.226 g, 0.85 mmol) and 2,4-dichlorobenzaldehyde (0.165 g, 
0.94 mmol) in a similar manner as described for preparation of 123a. Chromatography on 
silica gel (50:50 hexane/ethyl acetate, Rf 0.63) afforded pure 122d as a yellow solid (0.224 g, 
0.53 mmol, 62%), mp 175-177 °C. 'H NMR (400 MHz, CDC13) 5 3.68 (3H, s, NCH3), 3.91 
(3H, s, OCH3), 3.98 (3H, s, OCH3), 4.13 (3H, s, OCH3), 7.13 (1H, t, J  8.0 Hz, H-4’), 7.32 
(1H, d, J  15.8 Hz, CH), 7.33 (2H, d, J  8.0 Hz, H-3’ & H-5’), 7.39 (1H, s, H-5), 8.05 (1H, d, J  
15.8 H, CH). 13C NMR (100 MHz, CDC13) 5 30.85 (NCH3), 56.29 (OCH3), 61.50 (OCH3),
62.65 (OCH3), 101.78 (CH, Ar), 116.76 (C, Ar), 127.54 (CH=CH), 128.97 (2 x CH, 
Ar), 129.46 (CH, Ar), 132.69 (C, Ar), 133.70 (C, Ar), 134.97 (CH=CH), 137.49 (C, 
Ar), 147.46 (C, Ar), 147.69 (C, Ar), 149.20 (C, Ar), 152.75 (C=N), 161.83 (C=0). vmax 
(solidytcm'1) 2938 (st), 1667 (st), 1414 (st), 1370 (st), 1145 (st), 1095 (st), 1033 (st), 973 
(st). MS m/z (API-ES): found 421 (M3 5 C1+H)+ (100%), 423 (M 3 7 C1+H)+ (35%). HRMS m/z 
(API-ES): found 421.0713 (M+H)+, calculated for C2 0 H]9N2 O4 Cl2 421.0716.

2-[2-(3,4-Dichlorophenyl)vinyl]-6,7,8-trimethoxy-3-methyl-3H-quinazolin-4-one (123e).
This was obtained as a yellow solid (0.05 lg, 0.123 mmol, 31%) from 122a (0.102 g, 0.39 
mmol) and 3,4-dichlorobenzaldehyde (0.081 g, 0.47 mmol) in a similar manner as described 
for preparation of 123a, mp 145-147 °C. !H NMR (400 MHz, CDC13) 5 3.82 (3H, s, NCH3),
4.02 (3H, s, OCH3), 4.08 (3H, s, OCH3), 4.19 (3H, s, OCH3), 7.14 (1H, d, J  15.3 Hz, CH), 
7.44-7.53 (3H, m, ArH), 7.74 (1H, d, J  1.7 Hz, H-2’), 7.94 (1H, d, J  15.3 Hz, CH). 13C NMR 
(100 MHz, CDC13) 8  30.79 (NCH3), 56.30 (OCH3), 61.45 (OCH3), 62.56 (OCH3), 101.91 
(CH,Ar), 116.70 (C, Ar), 120.79 (CH=CH), 126.93 (CH, Ar), 129.15 (CH, Ar), 130.90 
(CH, Ar), 133.22 (C, Ar), 133.45 (C, Ar), 135.57 (C, Ar), 137.39 (C, Ar), 137.68
(CH=CH), 147.56 (C, Ar), 147.62 (C, Ar), 149.24 (C, Ar), 152.83 (C=N), 161.72 (C=0). 
Vmax (solid)/(cm'1) 1662 (st), 1597 (st), 1545 (st), 1469 (st), 1372 (st), 1198 (st), 1147 (st), 
1094 (st). MS m/z (API-ES): found 421 (M3 5 C1+H)+ (100%), 423 (M3 7 C1+H)+ (50%). HRMS 
m/z (API-ES): found 421.0720 (M+H)+, calculated for C2 0 H19N 2 O4 Cl2  421.0716.

2-[2-(3,5-Dimethoxyphenyl)vinyl]-6,7,8-trimethoxy-3-methyl-3H-quinazolin-4-one (123f).
This was obtained as a yellow solid (0.176 g, 0.43 mmol, 75%) from 122a (0.148 g, 0.56 
mmol) and 3,5-dimethoxybenzaldehyde (0.122 g, 0.67 mmol) in a similar manner as
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described for preparation o f  123a, mp 153-155 °C. 'H NM R (400 MHz, CDCI3) 8  3.77 (3H, 

s, NCH3), 3.86 (6 H, s, OCH3), 3.99 (3H, s, OCH3), 4.05 (3H, s, OCH3), 4.17 (3H, s, OCH3),

6.51 (1H, t, 7 2 .4  Hz, H -4’), 6.76 (2H, d, 7 2 .4  Hz, H -2’ & H-6 ’), 7.08 (1H, d, 7  15.2 Hz, CH),

7.45 (1H, s, H-5), 7.93 (1H, d, 7  15.2 Hz, CH). 13C NM R (100 MHz, CDC13) 5 30.80

(NCH3), 55.50 (2 x OCH3), 56.28 (OCH3), 61.45 (OCH3), 62.57 (OCH3), 101.66 (CH, 

Ar), 101.87 (CH, Ar), 105.85 (2 x CH, Ar), 116.59 (C, Ar), 119.63 (CH=CH), 137.47 

(C, Ar), 137.58 (C, Ar), 140.44 (CH=CH), 147.52 (C, Ar), 147.56 (C, Ar), 149.79 (C, 

Ar), 152.59 (C, Ar), 161.08 (C=N), 161.86 (0 = 0 ) . vmax (solid)/(cm _1) 1654 (st), 1593 (st), 

1547 (st), 1457 (st), 1424 (st), 1413 (st), 1379 (st), 1342 (st), 1200 (st), 1146 (st), 1096 (st). 

MS m/z (API-ES): found 413 (M+H)+ (100%). HRMS m/z (API-ES): found 413.1705  

(M+H)+, calculated for C22H25N 2O6 413.1707.

2-[2-(2,5-Dimethoxyphenyl)vinyl]-6,7,8-trimethoxy-3-methyl-3H-quinazolin-4-one (123g).
This was obtained as a yellow  solid (0.135 g, 0.32 mmol, 57%) from 122a (0.151 g, 0.574 

mmol) and 2,5-dimethoxybenzaldehyde in a similar manner as described for preparation o f  

123a, mp 146-148 °C. lU NM R (400 MHz, CDC13) 5 3.77 (3H, s, NCH 3), 3.84 (3H, s, 

OCH3), 3.91 (3H, s, OCH3), 3.98 (3H, s, OCH3), 4.06 (3H, s, OCH3), 4.19 (3H, s, OCH3), 

6.91-6.96 (2H, m, H -3’ & H -4’), 7.13 (1H, d, 7  2.4 Hz, H-6 ’), 7.28 (1H, d, 7  15.4 Hz, CH),

7.47 (1H, s, H-5), 8.20 (1H, d, 7  15.4 Hz, CH). ,3C NM R (100 MHz, CDC13) 5 30.82

(NCH3), 55.87 (OCH3), 56.16 (OCH3), 56.27 (OCH3), 61.48 (OCH3), 62.57 (OCH3), 

101.76 (C H ,A r), 112.29 (CH, Ar), 114.43 (CH, Ar), 115.68 (C, Ar), 116.48 (CH, Ar), 

120.58 (CH=CH), 125.25 (C, Ar), 136.14 (CH=CH), 147.43 (C, Ar), 147.51 (C, Ar),

150.49 (C ,A r), 150.80 (C, Ar), 152.38 (C, Ar), 152.74 (C, Ar), 153.53 (C=N), 162.00 

(C =0). vmax (solid)/(cm '1) 1666 (st), 1590 (st), 1466 (st), 1418 (st), 1217 (st), 1145 (st), 1095 

(st), 1039 (st). MS (API-ES) m/z found 413 (M+H)+ (100%). HRMS m/z (API-ES): found 

413.1703 (M+H)+, calculated for C22H25N 2O6 413.1707.

6,7,8-Trimethoxy-3-methyl-2-[2‘(2,4,6-trimethoxyphenyl)vinyl]-3H-quinazolin-4-one 
(123h). This was obtained as a yellow  solid (0.130 g, 0.29 mmol, 65%) from 122a (0.120 g, 

0.45 mmol) and 2,4,6-trimethoxybenzaldehyde (0.107 g, 0.54 mmol) in a similar manner as 

described for preparation o f  123a, 138-140 °C. *H NM R (400 MHz, CDCI3) 5 3.75 (3H, s, 

NCH3), 3.88 (3H, s, OCH3), 3.94 (6 H, s, OCH3), 3.96 (3H, s, OCH3), 4.24 (3H, s, OCH3),

6.18 (2H, s, H -3’ & H -5’), 7.45 (1H, s, H-5), 7.53 (1H, d, 7  15.5 Hz, CH), 8.46 (1H, d, 7  15.5 

Hz, CH). I3C NM R (100 MHz, CDCb) 8  30.60 (NCH3), 55.39 (2 x OCH3), 55.91 (OCH3),

56.20 (OCH3 ), 61.47 (OCH3), 62.45 (OCH3), 90.58 (2 x CH, Ar), 101.61 (CH, Ar),

106.99 (C, Ar), 116.07 (C, Ar), 118.71 (CH=CH), 131.51 (CH=CH), 138.08 (C, Ar),

147.20 (C, Ar), 147.33 (C, Ar), 151.79 (C, Ar), 152.00 (C, Ar), 160.84 (C, Ar), 162.16 

(C=N), 162.28 (C=Q). Vmax (so lid y fcm 1) 1650 (st), 1599 (st), 1540 (st), 1416 (st), 1321 (st),
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1149 (st), 1097 (st), 1036 (st). MS m/z (API-ES): found 443 (M+H)+ (100%). HRMS m/z
(A PI-ES): found 443.1817 (M+H)+, calculated for C 2 3H2 7N 2O7 443.1813.

2-[2-(2,4-Dimethoxyphenyl)vinyl]-6,7,8-trimethoxy-3-methyl-3H-quinazolin-4-one (123i).

This was obtained as a yellow  solid (0.155 g, 0.37 mmol, 56%) from 122a (0.178 g, 0.67 

mmol) and 2,4-dimethoxybenzaldehyde (0.135 g, 0.81 mmol) in a similar manner as 

described for preparation o f  123a, mp 164-166 °C. *H N M R  (400 M H z ,  C D C I 3 )  8  3.67 (3H, 

s, N C H 3) ,  3.77 (3H, s, O C H 3) ,  3.85 (3H, s, O C H 3) ,  3.90 (3H, s, O C H 3) ,  3.96 (3H, s, O C H 3) ,

4.11 (3H, s, O C H 3 ) ,  6.43 (1H, d, J  2A  H z ,  H -3’), 6.47 (1H, dd, J  2A, 8.4 H z ,  H -5’), 7.12 

(1H, d, J  15.2 H z ,  C H ) ,  7.35 (1H, s, H-5), 7.43 (1H, d, J  8.4 H z ,  H-6 ’), 8.10 (1H, d, J  15.2 

H z ,  C H ) .  13C N M R  (100 M H z ,  C D C I 3 )  8  31.80 ( N C H 3) ,  55.37 ( O C H 3) ,  55.39 ( O C H 3) ,

56.24 ( O C H 3 ) ,  61.40 ( O C H 3 ) ,  62.31 ( O C H 3) ,  98.31 ( C H ,  Ar), 101.46 ( C H ,  Ar), 104.49 

( C H ,  Ar), 116.54 (C, Ar), 117.63 (C, Ar), 121.31 ( C H = C H ) ,  130.33 ( C H = C H ) ,  132.33 

( C H ,  Ar), 140.34 (C, Ar), 147.56 (C, Ar), 147.59 (C, Ar), 151.63 (C, Ar), 152.56 (C, 

Ar), 158.07 ( C ,  Ar), 161.24 ( C = N ) ,  162.04 ( C = 0) .  vmax (solidy^m *1) 1658 (st), 1602 (st), 

1585 (st), 1466 (st), 1420 (st), 1196 (st), 1146 (st), 1096 (st). M S  m/z (API-ES): found 413 

( M + H ) + (100%). H R M S  m/z (API-ES): found 413.1706 ( M + H ) + , calculated for C 2 2 H 2 5 N 2 O 6  

413.1707.

6.7.8-Trimethoxy-3-methyl-2-[2-(2,3,4‘trimethoxyphenyl)-vinyl]-3H-quinazolin-4-one 
(123j). This was obtained as a yellow  solid (0.208 g, 0.47 mmol, 51%) from 122a (0.245 g, 

0.92 mmol) and 2,3,4-trimethoxybenzaldehyde (0.218 g, 1.11 mmol) in a similar manner as 

described for preparation o f  123a, mp 148-150 °C. !H NM R (400 MHz, CDCI3) 8  3.68 (3H, 

s, NCH3), 3.84 (3H, s, OCH3), 3.85 (3H, s, OCH3), 3.90 (3H, , OCH3), 3.90 (3H, s, OCH3),

3.97 (3H, s, OCH3), 4.12 (3H, s, OCH3), 6 . 6 6  (1H, d, J  8 . 8  Hz, ArH), 7.14 (1H, d, J  15.4 Hz, 

CH), 7.24 (1H, d, J  8 . 8  Hz, ArH), 7.38 (1H, s, H-5), 8.06 (1H, d, J  15.4 Hz, CH). 13C NM R  

(100 MHz, CDCI3) 8  30.77 (NCH3), 56.09 (OCH3), 56.26 (OCH3), 60.99 (OCH3), 61.22  

(OCH3), 61.48 (OCH3), 62.49 (OCH3), 101.79 (CH, Ar), 107.61 (CH), 116.39 (C, Ar),

118.47 (CH), 122.64 (C, Ar), 123.76 (CH=CH), 135.94 (CH=CH), 137.78 (C, Ar),

142.53 (C, Ar), 147.20 (C, Ar), 147.44 (C, Ar), 150.60 (C, Ar), 152.29 (C, Ar), 153.13

(C, Ar), 154.99 (C=N), 162.04 (C = 0). vmax (so lid y^ m '1) 1658 (st), 1588 (st), 1463 (st), 

1415 (st), 1092 (st). MS m/z (API-ES): found 443 (M+H)+ (100%). HRMS m/z (API-ES): 

found 443.1817 (M+H)+, calculated foor C23H27N 2O7 443.1813.

6.7.8-Trimethoxy-3-methyl-2-[2-(3,4,5-trimethoxyphenyl)vinyl]-3H-quinazolin-4-one 
(123k). This was obtained as a yellow solid (0.0776 g, 0.17 mmol, 38%) from 122a (0.121 g, 

0.46 mmol) and 3,4,5-trimethoxybenzaldehyde (0.108 g, 0.55 mmol) in a similar manner as 

described for preparation o f  123a, mp 165-167 °C. ]H NM R (400 MHz, CDC13) 8  3.80 (3H, 

s, NCH3), 3.93 (3H, s, OCH3), 3.96 (6 H, s, OCH3), 4.00 (3H, s, OCH3), 4.06 (3H, s, OCH3),
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4.18 (3H, s, OCH3), 6 . 8 6  (2H, s, H -2’ & H-6 ’), 7.01 (1H, d, J  15.2 Hz, CH), 7.49 (1H, s, H- 

5), 7.96 (1H, d, J  15.2 Hz, CH). 13C NMR (100 MHz, CDC13) 5 30.85 (NCH3), 56.27 (2 x 

OCH3), 61.05 (OCH3), 61.45 (OCH3), 62.58 (OCH3), 101.88 (CH, Ar), 104.98 (2 x CH, 

Ar), 116.51 (C, Ar), 118.33 (CH=CH), 131.15 (C, Ar), 137.63 (C, Ar), 139.66 (C, Ar),

140.54 (CH=CH), 147.48 (C, Ar), 147.58 (C, Ar), 149.90 (C, Ar), 152.53 (C, Ar),

153.50 (C=N), 161.90 (C =0). vmax (so lidy^ m '1) 1665 (st), 1577 (st), 1471 (st), 1417 (st), 

1376 (st), 1331 (st), 1148 (st), 1126 (st), 1096 (st). MS m/z (API-ES): found 443 (M+H)+ 

(100%). HRMS m/z (API-ES): found 443.1817 (M +H)+, calculated for C23H27N 2O7 

443.1813.

2-[2-(3,5-Dimethoxyphenyl)vinyl]-3-ethyl-6,7,8-trimethoxy-3H-quinazolin-4-one (1231).

This was obtained as a yellow  solid (0.084 g, 0.19 mmol, 57%) from 122b (0.096 g, 0.346 

mmol) and 3,5-dimethoxybenzaldehyde (0.086 g, 0.52 mmol) in a similar manner as 

described for preparation o f  123a; reaction time 48 h, mp 168-17- °C. ]H NM R (400 MHz, 

CDCI3) 5 1.42 (3H, t, 7  7.2 Hz, NCH 2CH3), 3.86 (6 H, s, OCH3), 3.98 (3H, s, OCH3), 4.05 

(3H, s, OCH3), 4.17 (3H, s, OCH3), 4.34 (2H, q, J 7 .2  Hz, NCH2CH3), 6.51 (1H, t, J 2.0 Hz, 

H -4’), 6.76 (2H, d, J  2.0 Hz, H -2’ & H-6 ’), 7.06 (1H, d, J  15.2 Hz, CH), 7.47 (1H, s, H-5),

7.97 (1H, d, J  15.2 Hz, CH). 13C NM R (100 MHz, CDC13) 5 14.39 (NCH2CH3), 38.69 

(NCH2CH3), 55.48 (2 x OCH3), 56.23 (OCH3), 61.45 (OCH3), 62.57 (OCH3), 101.32 

(CH, Ar), 101.74 (CH, Ar), 105.87 (2 x CH, Ar), 116.76 (C, Ar), 119.44 (CH=CH),

137.56 (C, Ar), 137.61 (C, Ar), 140.54 (CH=CH), 147.48 (C, Ar), 147.52 (C, Ar),

149.29 (C, Ar), 152.52 (C, Ar), 161.04 (C=N), 161.41 (C = 0). v max (solidyfcm '1) 1668 

(st), 1589 (st), 1471 (st), 1414 (st), 1144 (st). MS m/z (API-ES): found 427 (M +H)+ (100%). 

HRMS m/z (API-ES): found 427.1888 (M+H)+ (100%), calculated for C23H27N 2O6

427.1869.

2-[2-(2,5-Dimethoxyphenyl-vinyl]-3-ethyl-6,7,8-trimethoxy-3H-quinazolin-4-one (123m ).

This was obtained as a yellow  solid (0.094 g, 0.22 mmol, 64%) from 122b (0.096 g, 0.34 

mmol) and 2,5-dimethoxybenzaldehyde (0.086 g, 0.52 mmol) in a similar manner as 

described for preparation o f  123a; reaction time 48 h, mp 170-172 °C. ’H NM R (400 MHz, 

CDCI3) 5  1.36 (3H, t, J  7.2 Hz, NCH2CH3), 3.76 (3H, s, OCH3), 3.82 (3H, s, OCH3), 3.90 

(3H, s, OCH3), 3.97 (3H, s, OCH3), 4.11 (3H, s, OCH3), 4.25 (2H, q, J 1 2  Hz, NCH2CH3),

6.82-6.84 (2H, m, ArH), 7.01-7.04 (1H, m ArH), 7.24 (1H, d, J  15.2 Hz, CH), 7.38 (1H, s, 

ArH), 8.12 (1H, d, J  15.2 Hz, CH). 13C NM R (100 MHz, CDC13) 6  14.28 (NCH2CH3), 38.78 

(NCH2CH3), 55.87 (OCH3), 56.14 (OCH3), 56.24 (OCH3), 61.49 (OCH3), 62.58 (OCH3),

101.67 (CH, Ar), 112.27 (CH, Ar), 114.89 (CH, Ar), 115.30 (CH, Ar), 116.68 (C, Ar),

120.61 (C, Ar), 125.39 (CH=CH), 136.34 (CH=CH), 137.78 (C, Ar), 147.42 (C, Ar),

147.49 (C, Ar), 150.01 (C, Ar), 152.34 (C, Ar), 152.76 (C, Ar), 153.51 (C=N), 161.57 

(C=Q). vmax (solid)/(cm '1) 1661 (st), 1586 (st), 1463 (st), 1423 (st), 1373 (st), 1218 (st), 1145
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(st), 1097 (st), 1042 (st). MS m/z (API-ES) found 427 (M+H)+ (100%). HRMS m/z (API-

ES): found 427.1664 (M+H)+, calculated for C2 3 H27N2 O6 427.1664.

2-[2-(2,4-Dimethoxyphenyl)vinyl]-3-ethyl-6,7,8-trimethoxy-3H-quinazolin-4-one (123n).

This was obtained as a yellow  solid (0.035 g, 0.0821 mmol, 12%) from 122b (0.188 g, 0.681 

mmol) and 2,4-dimethoxybenzaldehyde (0.169 g, 1.02 mmol) in a similar manner as 

described for preparation o f  123a; reaction time 48 h, mp 159-161 °C. ]H NM R (400 MHz, 

CDCI3) 5 1.45 (3H, t, J 1 2  Hz, NCH 2CH3), 3.88 (3H, s, OCH3), 3.93 (3H, s, OCH3), 3.98 

(3H, s, OCH3), 4.05 (3H, s, OCH3), 4.20 (3H, s, OCH3), 4.34 (2H, q, J 1 2  Hz, NCH 2CH3),

6.52 (1H, t, J 2 A  Hz, H -3’), 6.56 (1H, dd, J 2 .4 , 8 . 6  Hz, H -5’), 7.25 (1H, d, J  15.2 Hz, CH), 

7.46 (1H, s, H-5), 7.51 (1H, d, J 8 . 6  Hz, H-6 ’), 8.20 (1H, d, J  15.2 Hz, CH). 13C NM R (100 

MHz, CDCI3) 5 14.20 (NCH2CH3), 38.70 (NCH2CH3), 55.51 (OCH3), 55.60 (OCH3), 

56.22 (OCH3), 61.48 (OCH3), 62.53 (OCH3), 98.61 (CH, Ar), 101.64 (CH, Ar), 105.11 

(CH, Ar), 116.47 (C, Ar), 117.63 (CH=CH), 117.93 (C, Ar), 131.04 (CH, Ar), 136.50 

(CH=CH), 137.94 (C, Ar), 147.38 (C, Ar), 150.55 (C, Ar), 152.07 (C, Ar), 159.69 (C, 

Ar), 161.69 (C=N), 161.99 (C O ) .  vmax (so lidy^ m '1) 1668 (st), 1589 (st), 1463 (st), 1425 

(st), 1198 (st), 1147 (st), 1095 (st). MS m/z (API-ES): found 427 (M +H)+ (100%). HRMS m/z 
(API-ES): found 427.1866 (M+H)+(100%), calculated for C23H27N 2O6 427.1869.

3-Ethyl-6,7,8-trimethoxy-2-[2-(2,4,5-trimethoxyphenyl)vinyl]-3H-quinazolin-4-one (123o).

This was obtained as a yellow  solid (0.076 g, 0.17 mmol, 49%) from 122b (0.095 g, 0.34 

mmol) and 2,4,5-trimethoxybenzaldehyde (0.100 g, 0.51 mmol) in a similar manner as 

described for preparation o f  123a; reaction time 48 h, mp 181-183 °C. !H NM R (400 MHz, 

CDCI3) 8  1.37 (3H, t, J 1 2  Hz, NCH 2CH3), 3.84 (3H, s), 3.85 (3H, s, OCH3), 3.88 (3H, s, 

OCH3), 3.90 (3H, s, OCH3), 3.97 (3H, s, OCH3), 4.11 (3H, s, OCH3), 4.26 (2H, q, 7  7.2 Hz, 

NCH2CH3), 6.54 (1H, s, ArH), 6.98 (1H, s, ArH), 7.15 (1H, d, J  15.2 Hz, CH), 7.38 (1H, s, 

ArH), 7.62 (1H, d, J  15.2 Hz, CH). 13C NM R (100 MHz, CDC13) 5 14.21 (NCH 2CH3), 38.74 

(NCH2CH3), 56.10 (OCH3), 56.23 (OCH3), 56.39 (OCH3), 56.73 (OCH3), 61.48 (OCH3),

62.54 (OCH3), 97.03 (CH, Ar), 101.68 (CH, Ar), 112.82 (CH, Ar), 116.48 (C, Ar), 

117.86 (CH=CH), 136.36 (CH=CH), 137.92 (C, Ar), 143.13 (C, Ar), 147.37 (C, Ar), 

147.42 (C, Ar), 150.51 (C, Ar), 151.23 (C, Ar), 152.12 (C, Ar), 153.78 (C=N), 161.6 

(C =0). vmax (solid)/(cm'1) 1643 (st), 1536 (st), 1465 (st), 1293 (st), 1210 (st), 1027 (st). MS 

m/z (API-ES): found 452 (M+H)+ (100%). HRMS m/z (API-ES): found 452.1967 (M +H)+, 

calculated for C24H29N 2O7 452.1969.

3-Ethyl-6,7,8-trimethoxy-2-[2-(2,4,6-trimethoxyphenyl)vinyl]-3H-quinazolin-4-one (123p).

This was obtained as a yellow  solid (0.127 g, 0.28 mmol, 84%) from 122b (0.092 g, 0.33 

mmol) and 2,4,6-trimethoxybenzaldehyde (0.098 g, 0.50 mmol) in a similar manner as
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described for preparation o f  123a; reaction time 48 h, mp 188-190 °C. ]H NM R (400 MHz, 

CDC13) 5 1.44 (3H, t, y  7.2 Hz, NCH 2CH3), 3.87 (3H, s, OCH3), 3.92 (6 H, s, OCH3), 3.97 

(3H, s, OCH3), 4.04 (3H, s, OCH3), 4.23 (3H, s, OCH3), 4.33 (2H, q, y  7.2 Hz, NCH2CH3),

6.18 (2H, s, H -3’ & H -5’), 7.44 (1H, s, H-5), 7.56 (1H, d, J  15.6 Hz, CH), 8.46 (1H, d, J  15.6 

Hz, CH). 13C NM R (100 MHz, CDC13) 5 14.06 (NCH2CH3), 38.63 (NCH2CH3), 55.40 

(OCH3), 55.89 (2 xO C H 3), 56.17 (OCH3), 61.48 (OCH3), 62.47 (OCH3), 90.59 (2 x CH, 

Ar), 101.51 (CH, Ar), 107.08 (C, Ar), 116.27 (C, Ar), 118.74 (CH=CH), 131.46

(CH=CH), 138.12 (C, Ar), 147.18 (C, Ar), 147.31 (C, Ar), 151.46 (C, Ar), 151.75 (C, 

Ar), 160.77 (C, Ar), 161.85 (C=N), 162.07 (C =0). v max (solid)/(cm _1) 1650 (st), 1600 (st), 

1539 (st), 1453 (st), 1321 (st), 1147 (st), 1101 (st), 1040 (st). MS m/z (API-ES): found 457 

(M+H)+ (100%). HRMS m/z (API-ES): found 457.2006 (M +H)+ (100%), calculated for 

C24H29N 20 7 457.1975.

2-[2-(3,4-Dichlorophenyl)vinyl]-3-ethyl-6,7,8-trimethoxy-3H-quinazolin-4-one (123q). This 

was obtained as a yellow  solid (0.043 g, 0.09 mmol, 20%) from 122b (0.138 g, 0.49 mmol) 

and 3,4-dichlorobenzaldehyde (0.130 g, 0.75 mmol) in a similar manner as described for 

preparation o f  123a; reaction time 48 h, mp 157-159 °C. !H NM R (400 MHz, CDCI3) 8  1.37 

(3H, t, J  7.0 Hz, NCH 2CH3), 3.91 (3H, s, OCH3), 3.97 (3H, s, OCH3), 4.08 (3H, s, OCH3), 

4.27 (2H, q,J7.0  Hz, N C H ^C ^), 7.00 (1H, d, J  15.2 Hz, CH), 7.36-747 (3H, m, ArH), 7.62 

(1H, d, J  1.6 Hz, H -2’), 7.87 (1H, d, J  15.2 Hz, CH). I3C NM R (100 MHz, CDC13) 514.48 

(NCH2CH3), 38.74 (NCH2CH3), 56.27 (OCH3), 61.47 (OCH3), 62.57 (OCH3), 101.81 

(CH, Ar), 116.87 (C, Ar), 120.55 (CH=CH), 126.89 (CH, Ar), 129.11 (C, Ar), 133.20 

(CH, Ar), 133.39 (CH, Ar), 135.65, 137.42 (CH=CH), 137.92 (C, Ar), 147.53 (C, Ar),

147.10 (C, Ar), 148.80 (C, Ar), 152.79 (C, Ar), 161.30 (C=N), 167.80 (C = 0). v max 

(solid)/(cm'1) 1665 (st), 1597 (st), 1542 (st), 1479 (st), 1388 (st), 1146 (st), 1096 (st). MS m/z 
(APCI-MS): 435 [M+ H]+ (100%), MS m/z [M+H]+ (100 %) 435.0878. %). MS m/z (API- 

ES): found 435 (M 35C1+H)+ (100%), 437 (M 37C1+H)+ (70%). HRMS m/z (API-ES): found 

435.0878 (M+H)+, calculated for C20H20N 2O4Cl2 435.0873.

2-[2-(4-Chlorophenyl)vinyl]-3-ethyl-6,7,8-trimethoxy-3H-quinazolin-4-one (123r). This 

was obtained as a yellow solid (0.106 g, 0.26 mmol, 57%) from 122b (0.130 g, 0.47 mmol) 

and 4-chlorobenzaldehyde (0.098 g, 0.70 mmol) in a similar manner as described for 

preparation o f  123a; reaction time 48 h, mp 145-147 °C. *H NM R (400 MHz, CDC13) 8  1.45 

(3H, t, 7  7.1 Hz, NCH 2CH3), 4.02 (3H, s, OCH3), 4.05 (3H, s, OCH3), 4.17 (3H, s, OCH3), 

4.35 (2H, q, 7 7 .1  Hz, NCH2 CH3), 7.08 (1H, d, J  15.2 Hz, CH), 7.38 (2H, d, J 9.4 Hz, 2 x CH, 

Ar), 7.48 (1H, s, H-5), 7.58 (2H, d, J  9.4 Hz, 2 x CH, Ar), 8.01 (1H, d, J  15.2 Hz, CH). 13C 

NMR (100 MHz, CDCI3) 5 14.42 (NCH2CH3), 38.70 (NCH 2CH3), 56.25 (OCH3), 61.46 

(OCH3), 62.55 (OCH3), 101.77 (CH ,Ar), 116.78 (C, Ar), 119.35 (CH=CH), 128.90 (2 x 

CH, Ar) 129.17 (2 x CH, Ar), 134.09 (C, Ar), 135.38 (C, Ar), 137.55 (C, Ar), 139.16
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(CH=CH), 147.48 (C, Ar), 147.56 (C, Ar), 149.16 (C, Ar), 152.62 (C=N), 161.37

(C =0). vmaX (solid)/(cm _1) 1664 (st), 1469 (st), 1367 (st), 1146 (st), 1085 (st), 1035 (st). MS 

m/z (API-ES): found 401 (M 35C1+H)+ (100%), 403 (M 37C1+H)+ (35%). HRMS m/z (API- 
ES): found 401.1356 (M + H)+ (100%), calculated for C21H22N 2O4 401.1268.

3,5-Bis-(methoxymethoxy)benzaldehyde (125)
NaH (60% suspension in mineral oil, 0.072g, 1.794 mmol) was added to a solution o f  3,5- 

dihydroxybenzaldehyde (124) (0.116 g, 0.815 mmol) in DMF (5 ml) at room temperature 

under Ar at 0 °C. After stirring for 30 min and MOMchoride (0.144 g, 1.794 mmol) was 

added portion wise. The reaction mixture was stirred at romm temperature overnight and H2O 

(5 ml) was added. The aqueous phase was extracted with ethyl acetate ( 3 x 5  ml). The 

combined organic extracts were washed with brine (5ml), dried over N a2 SC>4 and the solvent 

removed under reduced pressure. Chromatography on silica gel (60:40 DCM/ethyl acetate, Rf 
0.54) afforded the 3,5-bis-(methoxymethoxy)benzaldehyde (125) (0.180 g, 0.800 mmol, 

98%) as a yellow  oil. lU NM R (400 MHz, CDC13) 3.98 (6 H, s, OCH3), 5.20 (4H, s, CH2),

6.65 (1H, t, J 2 .0  Hz, H-4), 7.03 (2H, d, J  2.0 Hz, H-2 & H-6 ), 9.79 (1H, s, CHO).

2-[2-(3,5-Bis-(methoxymethoxy)phenyl)-vinyl]-6,7,8-trimethoxy‘3-methyl-3H-quinazolin-
4-one (112s). This was obtained as a yellow  solid (0.192 g, 0.406 mmol, 34%) from 122a 
(0.313 g, 1.18 mmol) and 125 (0.291 g, 1.28 mmol) in a similar manner as described for 

preparation o f  123a, mp 200-202 °C. lH NM R (400 MHz, CDC13) 5 3.50 (6 H, s, 2 x OCH3),

3.75 (3H, s, NCH3), 3.97 (3H, s, OCH3), 4.03 (3H, s, OCH3), 4.14 (3H, s, OCH3), 5.19 (4H, s, 

2 x CH2), 6.77 (1H, s, H -4’), 6.94 (2H, d. J  1.6 Hz, H -2’ & H6 ’), 7.05 (1H, d, J  15.4 Hz, CH),

7.45 (1H, s, H-5), 7.90 (1H, d, J  15.4 Hz, CH). 13C NM R (100 MHz, CDC13) 5 31.04 

(NCH3), 56.38 (2 x OCH3), 56.49 (OCH3), 61.64 (OCH3), 62.79 (OCH3), 94.76 (2 x C H 2),

102.99 (CH, Ar), 106.30 (CH, Ar), 109.34 (2 x  CH, Ar), 116.83 (C, Ar), 120.06

(CH=CH), 137.81 (CH=CH), 137.89 (C, Ar), 140.35 (C, Ar), 147.79 (C, Ar), 149.95 

(C, Ar), 152.83 (C, Ar), 158.50 (C=N), 162.07 (C = 0). vmax ( s o l id ^ m '1) 1649 (st), 1597 

(st), 1471 (st), 1374 (st), 1143 (st), 1036 (st). MS m/z (API-ES): found 473 (M + H)+ (100%). 

HRMS (API-ES) m/z found 473.1923 (M+H)+, calculated for C24H29N20 8 473.1924.

2-[2-(3,5-Dihydroxyphenyl)vinyl]-6,7,8-trimethoxy-3-methyl-3H-quinazolin-4-one (123t) 
Compound 123s (0.163 g, 0.34 mmol) was suspended in methanol (5 ml), and HC1 (aq, 4M,

1.4 ml) was added. The reaction mixture was stirred at 80 °C for 45 minutes. After cooling to 

room temperature, the solvent was removed under reduced pressure. The resulting solid was 

was washed with water (10 ml), filtered, and dried under vaccum. Pure 123t was obtained as 

a yellow  solid (0.120 g, 0.31 mmol, 90%) without further purification, mp 232-234 °C, ’H 

NM R (400 MHz, CD 3OD) 5 3.77 (3H, s, NCH3), 4.02 (3H, s, OCH3), 4.03 (3H, s, OCH3),

4.13 (3H, s, OCH3), 6.44 (1H, t, J  1.8 Hz, H -4’), 6.72 (2H, d. J  1.8 Hz, H -2’ & H-6 ’), 7.21
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(1H, d, J  15.8 Hz, CH), 7.53 (1H, s, H-5), 7.65 (1H, d, J  15.8 Hz, CH). ,3C (DMS0-d6) 
8  31.10 (NCH3), 56.65 (OCH3), 61.60 (OCH3), 62.82 (OCH3), 102.20 (CH, Ar), 104.98 
(CH,Ar) 106.81 (2 x CH, Ar), 116.62 (C, Ar), 120.13 (CH=CH), 137.09 (C, Ar), 137.58 

(C, Ar), 140.85 (CH=CH), 147.62 (C, Ar), 147.76 (C, Ar), 151.09 (C, Ar), 152.77 (C, 
Ar), 159.41 (C=N), 161.26 (C=0). vmax (solid)/(cnT') 3521 (st), 3052 (st), 1695 (st), 1626 
(st), 1591 (st), 1476 (st), 1389 (st), 1161 (st). MS m/z (API-ES): found 383 (M-H)‘ (100%). 
HRMS m/z (API-ES) found 383.1248 (M-H)\ calculated for C2 0 H 19N2 O6  383.1243.

2-[2-(3,5-Bis(methoxymethoxy)phenyl)vinyl]-3-ethyl-6,7,8-trimethoxy-3H-quinazolin-4-one 
(123u). This was obtained as a yellow solid (0.127 g, 0.26 mmol, 31%) from 122b (0.215 g, 
0.83 mmol) and 125 (0.175 g, 0.77 mmol) in a similar manner as described for preparation of 
123a, mp 187-189 °C. ]H NMR (400 MHz, CDC13) 8  1.42 (3H, t, J 7 A  Hz, NCH2 CH3), 3.51 
(6 H, s, 2 x OCH3), 3.98 (3H, s, OCH3), 4.04 (3H, s, OCH3), 4.16 (3H, s, OCH3), 4.32 (2H, q, 
J  7.4 Hz, NCH2 CH 3), 5.21 (4H, s, 2 x CH2), 6.79 (1H, t, J  2.4 Hz, H-4’), 6.95 (2H, d. J  2.4 
Hz, H-2’ & H-6 ’), 7.05 (1H, d, J  15.4 Hz, CH), 7.46 (1H, s, H-5), 7.94 (1H, d, J  15.4 Hz, 
CH). 13C NMR (CDC13) 8  14.58 (NCH2 CH3), 38.92 (NCH2 CH3), 56.39 (2 x OCH3), 56.46 
(OCH3), 61.65 (OCH3), 62.79 (OCH3), 102.32 (CH, Ar), 104.91 (CH, Ar) 106.81 (2 x 
CH, Ar), 116.62 (C, Ar), 120.13 (C H C H ), 137.09 (C, Ar), 137.58 (C, Ar), 140.76 
(CH=CH), 147.69 (C, Ar), 147.72 (C, Ar), 151.013 (C, Ar), 152.75 (C, Ar), 159.45 
(C=N), 161.29 (C=0). vmax (solid)/(cm_1) 1653 (st), 1591 (st), 1467 (st), 1146 (st), 1029 (st). 
MS m/z (API-ES): found 487 (M+H)+ (100%). HRMS m/z (API-ES): found 487.2088 
(M+H)+, Calculated for C2 6H3oN208 487.2080.

2-[2-(3,5-Dihydroxyphenyl)vinyl]-3-ethyl-6,7,8-trimethoxy-3H-quinazolin-4-one (123v).
This was obtained as a yellow solid (0.037 g, 0.085 mmol, 95%) from 123u (0.047 g, 0.09 
mmol) in a similar manner as described for preparation o f 123t, mp 245-247 °C, !H NMR 
(400 MHz, CD3 OD) 8  1.38 (3H, t, J  7.2 Hz, N C H ^ fb ), 3.94 (3H, s, OCH3), 3.97 (3H, s, 
OCH3), 4.10 (3H, s, OCH3), 4.34 (2H, q ,J7 .2  Hz, N C j^C H ^, 6.31 (1H, t, J 2 .0  Hz, H-4’),
6.60 (2H, d. J 2.0 Hz, H-2’ & H-6 ’), 7.14 (1H, d, J  15.2 Hz, CH), 7.42 (1H, s, H-5), 7.77 (1H, 
d, 7  15.2 Hz, CH). I3C (DMSO-ds) 5 14.59 (NCII2 C1I3), 38.90 (NCH2 CH3), 56.63 (OCH3),
61.61 (OCH3), 62.82 (OCH3), 102.20 (CH, Ar), 104.98 (CH, Ar) 106.81 (2 x CH, Ar),
116.62 (C, Ar), 120.13 (CH=CH), 137.09 (C, Ar), 137.58 (C, Ar), 140.85 (CH=CH),
147.62 (C, Ar), 147.76 (C, Ar), 151.09 (C, Ar), 152.77 (C, Ar), 159.41 (C=N), 161.26 
(C=0). 8 . Vmax (solidMcm'1) 3462 (st), 3245 (st), 1635 (st), 1598 (st), 1469 (st), 1280 (st),
1146 (st). MS m/z (API-ES): found 397 (M-H)‘ (100%). HRMS m/z (API-ES): found 
397.1405 (M -H )', calculated for C 2 ]H2iN 206 397.1400.
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6.7.8-Trimethoxy-2-(3-methoxyphenyl)benzo[d][l,3]oxazin-4-one (126b)
3-Methoxybenzoyl chloride (0.195 g, 1.14 mmol) was added dropwise to a solution of 120 
(0.130 g, 0.57 mmol) in pyridine (4 ml) at 0 °C. The reaction mixture was stirred at room 
temperature for lh  and then poured into ice-water. The precipitate was filtered, washed with 
water (5 ml), and dried under vacuum. Pure 126b was obtained as a white solid (0.175 g, 
0.510 mmol, 89%), without further purification, mp 115-117 °C. ]H NMR (400 MHz, CDCI3 ) 
6  3.90 (3H, s, OCH3 ), 3.97 (3H, s, OCH3), 4.06 (3H,s, OCH3), 4.17 (3H, s, OCH3), 7.10 (1H, 
ddd, J  1.4, 2.7, 8.3 Hz, ArH), 7.41 (1H, t, J  8.3 Hz, ArH), 7.44 (1H, s, H-5), 7.81 (1H, t, J  1.4 
Hz, ArH), 7.91 (1H, dt, J  1.4, 8.3 Hz, ArH). 13C NMR (100 MHz, CDC13) 8  55.75 (OCH3),
56.65 (OCH3), 61.74 (OCH3), 63.02 (OCH3), 104.28 (CH, Ar), 112.62 (CH, Ar), 112.79 
(CH, Ar), 118.95 (CH, Ar), 120.84 (CH, Ar), 129.96 (C, Ar), 131.99 (C, Ar), 136.62 (C, 
Ar), 148.11 (C, Ar), 149.64 (C, Ar), 153.65 (C, Ar), 155.17 (C, Ar), 159.73 (C=N), 160.06 
(C=0). vmax (solidytcnf1) 2941 (md), 1760 (st), 1614 (st), 1482 (st), 1464 (st), 1363 (st), 
1281 (st), 1111 (st). MS m/z (API-ES): found 344 (M+H)+ (100%). HRMS m/z (API-ES): 
found 344.1154 (M+H)+, calculated for C 18H 18N 0 6 344.1134.

6.7.8-Trimethoxy-2-phenyl-benzo[d][l,3]oxazin-4-one (126a). This was obtained as yellow 
solid (0.849 g, 2.71 mmol, 78%) from 120 (0.800 g, 3.52 mmol) and benzoyl chloride (0.992 
g, 7.04 mmol) in a similar manner as described for preparation of 126b, mp 160-162 °C. ]H 

NMR (400 MHz, CDCI3) 8  3.98 (3H, s, OCH3), 4.07 (3H, s, OCH3), 4.18 (3H, s, OCH3),
7.45 (1H, s, H-5), 7.49-7.59 (3H, m, ArH), 8.31 (2H, dd, J  1.8, 6 . 8  Hz, ArH). 13C NMR (100 
MHz, CDCI3) 8  56.64 (OCH3), 61.74 (OCH3), 63.01 (OCH3), 104.26 (CH, Ar), 112.61 (C, 
Ar), 128.26 (2 x CH, Ar), 128.92 (2 x CH, Ar), 130.66 (C, Ar), 132.51 (CH, Ar), 136.68 
(C, Ar), 148.11 (C, Ar), 149.65 (C, Ar), 153.62 (C, Ar), 155.34 (C=N), 159.75
(C=0). vmax (solidytcnf1) 1746 (st), 1615 (md), 1473 (st), 1427 (md), 1358 (st), 1289 (md), 
1109 (st), 1013 (md), 846 (st), 764 (st), 700 (st), 685 (st). MS m/z (API-ES): found 314 
(M+H)+ (100%). HRMS m/z (API-ES): found 314.1053 (M+H)+, calculated for Ci7 Hi6N 0 5 

314.1028.

6.7.8-Trimethoxy-2-(4-methoxyphenyl)benzo[d][l,3]oxazin-4-one (126c). This was prepared 
from 120 (0.800 g, 3.52 mmol) and 3-methoxybezoyl chloride (1.20 g, 7.04 mmol) in a 
similar manner as described for preparation of 126b. Chromatography on silica gel (6:4 
hexane:ethyl acetate, Rf 0.35) afforded pure 126c as white solid (0.551 g, 1.60 mmol, 46%), 
mp 160-162 °C. 'H  NMR (400 MHz, CDC13) 8  3.90 (3 H, s, OCH3), 3.97 (3H, s, OCH3), 4.06 
(3H, s, 0 CH3 ), 4.16 (3H, s, OCH3), 7.00 (2H, d, J  9.2 Hz, 2 x CH, Ar), 7.42 (1H, s, H-5), 
8.26 (2H, d, J  9.2 Hz, 2 x CH, Ar). I3C NMR (100 MHz, CDCI3 ) 8  54.90 (OCH3), 55.43 
(OCH3 ), 60.71 (OCH3), 62.45 (OCH3 ), 101.49 (CH, Ar), 114.56 (2 x CH, Ar), 116.45 (C, 
Ar), 124.90 (C, Ar), 128.76 (2 x CH, Ar), 140.17 (C, Ar), 147.95 (C, Ar), 148.34 (C, Ar),
148.89 (C, Ar), 152.80 (C, Ar), 162.67 (C=N), 163.91 (C O ). vmax (solid)/(cm'') 3285
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(md), 1745 (st), 1667 (st), 1545 (st), 1417 (st), 1354 (st), 1265 (st), 1074 (st). MS m/z (API-

ES): found 344 (M+H)+ (100%). HRMS m/z (API-ES): found 344.1153 (M+H)+, calculated

for C i8H]8N 0 6 344.1134.

6,7,8-Trimethoxy-2-(3,4-dimethoxy-phenyl)-benzo[d][l,3]oxazin-4-one (126d). This was 

obtained as yellow solid (0.198 g, 0.53 mmol, 72%) from 120 (0.167 g, 0.73 mmol) and 3,4- 
dimethoxybezoyl chloride (0.295 g, 1.47 mmol) in a similar manner as described for 
preparation of 126b, mp 202-206 °C. !H NMR (400 MHz, CDCI3 ) 5 3.97 (3H, s, OCH3 ),
4.01 (3H, s, OCH3 ), 4.04 (3H, s, OCH3), 4.16 (3H, s, OCH3), 6.96 (1H, d, J  8 . 8  Hz, H-5’),
7.42 (1H, s, H-5), 7.79 (1H, d, J 2.0 Hz, H-2’), 7.95 (1H, d, J 2.0, 8 . 8  Hz, H-6 ’). 13C NMR 
( 1 0 0  MHz, CDCI3) 5 56.30 (OCH3), 56.34 (OCH3), 56.62 (OCH3), 61.74 (OCH3), 62.91 
(OCH3 ), 104.28 (CH, Ar), 110.54 (CH, Ar), 110.98 (CH, Ar), 112.26 (C, Ar), 122.34 (CH, 
Ar), 123.18 (C, Ar), 137.05 (C, Ar), 147.83 (C, Ar), 149.24 (C, Ar), 149.69 (C, Ar),
152.96 (C, Ar), 153.27 (C, Ar), 155.38 (C=N), 159.93 (C=0). vmax (solidy^m '1) 3383 
(md), 1736 (st), 1613 (st), 1512 (s t) , 1472 (st), 1450 (st), 1417 (st), 1360 (st), 1303 (st), 1267 
(st), 1112 (st), 1009 (st), 763 (st). MS m/z (API-ES): found 374 (M+H)+ (100%). HRMS m/z 
(API-ES): found 374.1268 (M+H)+, calculated for C 1 9H2 0NO7 374.1240.

Benzyl 3-benzyloxy-4-methoxybenzoate (129)415
Potassium carbonate (2.71 g, 19.62 mmol) and benzyl bromide (2.34 g, 13.73 mmol) were 
added to an ice-cooled solution of 3-hydroxy-4-methoxy benzoic acid (128) (1.1 g, 6.54 
mmol) in dry DMF (12 ml) under Ar. The reaction mixture was stirred overnight at room 
temperature. Water (15 ml) was added and the resulting mixture extracted with DCM (3 x 1 5  
ml). The combined organic extracts were dried (Na2 S0 4 ) and the solvent removed under 
reduced pressure. Chromatography on silica gel (8:2 hexane/ethyl acetate, Rf 0.40) afforded 
pure 129 as white solid (2.0 g, 5.74 mmol, 8 8  %), mp 6 6 - 8 8  °C. ]H NMR (400 MHz, CDCI3 ) 
5 3.93 (3H, s, OCH3 ), 5.17 (2H, s, CH2), 5.31 (2H, s, ArH), 6.89 (1H, d, 78.6  Hz, H-5), 7.25-
7.40 (10H, m, ArH), 7.62 (1H, d, 72.0 Hz, H-2), 7.72 (1H, dd, 72.0, 8 . 6  Hz, H-6 ).

3-Benzyl-4-methoxybenzoic acid (130)416
Sodium hydroxide (aq, 5N, 20 ml) was added to a solution o f 129 (1.6 g, 4.6 mmol) in 30 ml 
isopropanol. The reaction mixture was stirred at 100 °C for 3 h. Isopropanol was removed 
under reduced pressure. The remaining aqueous solution was acidified with conc. HC1 and 
extracted with DCM (3 x 30 ml). The combined organic extracts were dried over Na2 SC>4 and 
the solvent removed under reduced pressure. Chromatography on silica gel (6:4 hexane:ethyl 
acetate, Rf 0.31) gave pure 130 as white solid (1.1 g, 4.26 mmol, 92%), mp 170-172 °C. ]H 
NMR (400 MHz, CDC13) 5 3.95 (3H, s, OCH3), 5.19 (2H, s, CH2), 6.94 (1H, d, J  7.9 Hz, 
ArH), 7.37-7.48 ( 3H, m, ArH), 7.48 (2H, d, J  1.6 Hz, ArH), 7.65 (1H, d, J  1.9 Hz, H-2), 7.77 
(1H, dd, J 1.9, 8 . 6  Hz, H-6 ).
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2-(3-BenzyIoxy-4-methoxyphenyl)-6,7,8-trimethoxybenzo[d][lr3]oxazin-4-one (126e)
Oxalyl chloride (0.284 g, 1.95 mmol) was added drop wise to a solution of 120 (0.421 g, 1.63 
mmol) and dry DMF (2 drops) in dry DCM (15 ml) at 0 °C under Ar. The reaction mixture 
was stirred at 0 °C for 2 h. The solvent was removed under reduced pressure to give a yellow 
solid. The crude material was dissolved in pyridine (7 ml) and 120 (0.185 g, 0.81 mmol) was 
added at 0 °C. The reaction mixture was stirred at room temperature for lh. Water (10 ml) 
was added and the product was extracted with DCM (3 x 10 ml). The combined organic 
extracts were dried over Na2S 04 and the solvent removed under reduced pressure. 
Recrystalization from ethyl acetate afforded pure 126e as a yellow solid (0.229 g, 0.51 mmol, 
62 %), mp 145-147 °C. *H NMR (400 MHz, CDC13) 5 3.96 (3H, s, OCH3), 3.97 (3H, s, 
OCH3), 4.06 (3H, s, OCH3), 4.10 (3H, s, OCH3), 5.27 (2H, s, CH2), 6.98 (1H, d, J8 .4  Hz, Ar- 
H), 7.30-7.41 (4H, m, ArH), 7.50-7.52 (2H, m, ArH), 7.85 (1H, d, J  1.9 Hz, ArH), 7.93 (1H, 
dd, J  1.9, 8.4 Hz, ArH). 13C NMR (100 MHz, CDC13) 5 56.43 (OCH3), 56.75 (OCH3), 
61.70 (OCH3), 62.79 (OCH3), 71.38 (CH2), 101.68 (CH, Ar), 111.75 (CH, Ar), 112.69 
(CH, Ar), 116.99 (C, Ar), 120.30 (CH, Ar), 125.43 (C, Ar), 127.35 (2 x CH, Ar), 128.32 
(CH, Ar), 129.01 (2 x CH, Ar), 135.03 (C, Ar), 139.81 (C, Ar), 148.31 (C, Ar), 147.88 (C, 
Ar), 148.23 (C, Ar), 148.75 (C, Ar), 151.80 (C, Ar), 152.67 (C=N), 162.81 (C=0). vmax 
(solidy^m '1) 3132 (md), 1645 (st), 1580 (st), 1034 (st), 730 (st). MS m/z (API-ES): found 
450 (M+H)+ (100%). HRMS m/z (API-ES): found 450.1571 (M+H)+, calculated for 
C25H24NO7450.1553.

6,7,8-Trimethoxy-2-phenyl-3H-quinazolin-4-one (127a)
A mixture of 126a (0.119 g, 0.38 mmol) and aqueous ammonium hydroxde (0.041 g, 1.17 
mmol) in pyridine (2 ml) was heated in the microwave reactor at 140 °C for 30 min. After 
cooling to room temperature, the reaction mixture was poured in HC1 (aq, 1M, 10 ml) and 
extracted with ethyl acetate (2 x 15 ml). The organic extracts were collected, dried over 
Na2S 04 and the solvent was removed under reduced pressure. Chromatography on silica gel 
with (5:5 hexanes/ethyl acetate, Rf 0.32) afforded pure 127a (0.065 g, 0.20 mmol, 55%) as 
white solid, mp 231-233 °C. ]H NMR (400 MHz, CDC13) 5 4.00 (3H, s, OCH3), 4.06 (3H, s, 
OCH3), 4.18 (3H, s, OCH3), 7.50 (1H, s, H-5), 7.56 (3H, m, ArH), 8.05-8.08 (2H, m, Ar-H),
9.62 (1H, s, NH). 13C NMR (100 MHz, CDC13) 5 56.48 (OCH3), 61.71 (OCH3), 62.82 
(OCH3), 101.65 (CH, Ar), 117.14 (C, Ar), 127.14 (2 x CH, Ar), 129.24 (2 x CH, Ar),
131.68 (CH, Ar), 132.99 (C, Ar), 139.60 (C, Ar), 148.45 (C, Ar), 148.49 (C, Ar), 149.14 
(C, Ar), 153.07 (C=N), 162.86 (C=0). vmax (solidy^m '1) 2929 (md), 1661 (st), 1464 (st), 
1126 (st), 1074 (md), 684 (st). MS m/z (API-ES): found 313 (M+H)+ (100%). HRMS m/z 
(API-ES): found 313.1195 (M+H)+, calculated for Ci7H 17N20 4 313.1188.
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6.7.8-Trimethoxy-2-(3-methoxyphenyl)-3H-quinazolin-4-one (127b). This was prepared 
from 126b (0.152 g, 0.44 mmol) and aqueous ammonium hydroxide (0.079 g, 2.26 mmol) in 
a similar manner as described for preparation of 127a. Chromatography on silica gel (4:6 
hexanes/ethyl acetate, Rf 0.60) afforded 127b as a white solid (0.103 g, 0.30 mmol, 6 8 %), mp 
125-127 °C. ’H NMR (400 MHz, CDC13) 5 3.94 (3H, s, OCH3), 4.01 (3H, s, OCH3), 4.07 
(3H, s, OCH3), 4.19 (3H, s, OCH3), 7.09 (1H, dd, J  1.9, 8.3 Hz, ArH), 7.45 (1H, t, J8 .3  Hz, 
ArH), 7.51 (1H, s, H-5), 7.75 (1H, d, J  8.3 Hz, ArH), 7.82 (1H, t, J  1.9 Hz, ArH), 10.93 (1H, 
s, NH). 13C NMR (100 MHz, CDC13) 5 55.75 (OCH3), 56.40 (OCH3), 61.71 (OCH3), 62.82 
(OCH3), 101.56 (CH, Ar), 112.52 (CH, Ar), 117.17 (C, Ar), 117.63 (CH, Ar), 119.71 (CH, 
Ar), 130.19 (CH, Ar), 134.51 (C, Ar), 139.75 (C, Ar), 148.44 (C, Ar), 149.15 (C, Ar),
153.01 (C, Ar), 160.31 (C=N), 163.35 (C=0). vmax (solid)/(cm_1) 3145 (st), 1632b (st), 1446 
(st), 1089 (st), 611 (st). MS m/z (API-ES): found 343 (M+H)+ (100%). HRMS m/z (API-ES): 
found 343.1301 (M+H)+, calculated for C 18H 19N 2 O5 343.1294.

6.7.8-Trimethoxy-2-(4-methoxyphenyl)-3H-quinazolin-4-one (127c) This was prepared 
from 116c (0.063 g, 0.21 mmol) and aqueous ammonium hydroxide (0.037 g, 1.08 mmol) in 
a similar manner as described for preparation of 127a. Chromatography on silica gel (3:7 
hexanes/ethyl acetate, Rf 0.42) afforded 127c as a white solid (0.050 g, 0.14 mmol, 69%), mp 
191-193 °C. !H NMR (400 MHz, CDC13) 5 3.90 (3H, s, OCH3), 3.99 (3H, s, OCH3), 4.06 
(3H, s, OCH3), 4.18 (3H, s, OCH3), 7.04 (2H, d, J  9.0 Hz, 2 x CH, ArH), 7.48 (1H, s, H-5), 
8.09 (2H, d, J9 .0  Hz, 2 x CH, ArH), 10.17 (1H, s, NH). 13C NMR (100 MHz, CDC13) 5 55.67 
(OCH3), 56.43 (OCH3), 61.70 (OCH3), 62.75 (OCH3), 101.56 (CH, Ar), 114.45 (2 x CH, 
Ar), 116.77 (C, Ar), 125.49 (C, Ar), 128.98 (2 x CH, Ar), 140.05 (C, Ar), 148.22 (C, Ar), 
148.44 (C, Ar), 149.13 (C, Ar), 152.60 (C, Ar), 162.40 (C=N), 163.44 (C=0). vmax 
(solid)/(cm_1) 3280 (st), 1631 (st), 1414 (st), 1123 (st), 730 (st). MS m/z (API-ES): found 343 
(M+H)+ (100%). HRMS m/z (API-ES): found 343.1295 (M+H)+, calculated for C 1 8H 19N2 O5 

343.1294.

6.7.8-Trimethoxy-2-(3,4-dimethoxyphenyl)-3H-quinazolin-4-one (127d). This was prepared 
from 126d (0.180 g, 0.48 mmol) and aqueous ammonium hydroxide (0.086 g, 2.46 mmol) in 
a similar manner as described for preparation of 127a. Chromatography on silica gel (ethyl 
acetate, Rf 0.44) afforded 127d (0.103 g, 0.27 mmol, 57%) as a white solid, mp 206-208 °C. 
*H NMR (400 MHz, CDC13) 5 3.98 (3H, s, OCH3), 3.99 (3H, s, OCH3), 4.05 (3H, s, OCH3),
4.06 (3H, s, OCH3), 4.19 (3H, s, OCH3), 7.00 (1H, d, J  8.4 Hz, H-5’), 7.47 (1H, s, H-5), 7.68 
(1H, dd, J 2.0, 8.4 Hz, H-6 ’), 7.77 (1H, d, J2 .0  Hz, H-2’), 10.99 (1H, s, NH). 13C NMR (100 
MHz, CDC13) 5 56.27 (OCH3), 56.42 (2 x OCH3), 61.70 (OCH3), 62.72 (OCH3), 101.41 
(CH, Ar), 110.39 (CH, Ar), 111.22 (CH, Ar), 116.67 (C, Ar), 120.95 (CH, Ar), 125.65 (C, 
Ar), 139.94 (C, Ar), 148.16 (C, Ar), 148.48 (C, Ar), 149.37 (C, Ar), 149.42 (C, Ar),
152.07 (C, Ar), 152.71 (C=N), 163.79 (C=0). vmax (solidyfcm'1) 3163 (md), 1644 (st), 1457
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(st), 1122 (st), 1026 (st), 855 (st). MS m/z (API-ES): found 373 (M+H)+ (100%). HRMS m/z
(API-ES): found 373.1412 (M+H)+, calculated for Q 9H21N2 O6 373.1400.

6.7.8-Trimethoxy-2-phenyl-3-methyl-3H-quinazolin-4-one (127e). This was prepared from 

126a (0.206 g, 0.66 mmol) and methylamine (40% aq, 0.031 g, 1.01 mmol) in a similar 
manner as described for preparation o f 127a. Chromatography on silica gel (5:5, hexane/ethyl 
acetate, Rf 0.23) afforded pure 127e as a white solid (0.101 g, 0.31 mmol, 47%), mp 131-133 
°C. lU NMR (400 MHz, CDC13) 5 3.50 (3H, s, NCH3), 3.99 (3H, s, OCH3), 4.03 (3H, s, 
OCH3), 4.07 (3H, s, OCH3), 7.48-7.52 (4H, m, ArH), 7.56-7.60 (2H, m, Ar-H). ,3C NMR 
(100 MHz, CDC13) 5 34.66 (NCH3), 56.51 (OCH3), 61.60 (OCH3), 62.50 (OCH3), 101.72 
(CH, Ar), 116.86 (C, Ar), 128.68 (2 x CH, Ar), 128.82 (2 x CH, Ar), 130.07 (CH, Ar),
135.90 (C, Ar), 137.71 (C, Ar), 147.80 (C, Ar), 148.10 (C, Ar), 153.13 (C, Ar), 153.90 
(C=N), 162.56 (C=0). vmax (solidy^m -1) 1670 (st), 1557 (st), 1471 (st), 1413 (st), 1374 (st), 
1037 (st), 1034 (st). MS m/z (API-ES): found 327 (M+H)+ (100%). HRMS m/z (API-ES): 
found 327.1348 (M+H)+, calculated for C 18H 19N2 0 4  327.1345.

6.7.8-Trimethoxy-2-(3-methoxyphenyl)-3-methyl-3H-quinazolin-4-one (127f). This was 
prepared from 126b (0.128 g, 0.373 mmol) and methylamine (40% aq, 0.035 g, 1.14 mmol) 
in a similar manner as described for preparation of 127a. Chromatography on silica gel (3:7 
with hexane/ethyl acetate, Rf 0.40) afforded 127f as a white solid (0.089 g, 0.25 mmol, 67%), 
mp 139-141 °C. ]H NMR (400 MHz, CDC13) 8  3.50 (3H, s, NCH3), 3.86 (3H, s, OCH3), 3.99 
(3H, s, OCH3), 4.03 (3H, s, OCH3), 4.08 (3H, s, OCH3), 7.03 (1H, ddd, J  0.8, 2.8, 7.7 Hz, 
ArH), 7.10-7.14 (2H, m, ArH), 7.41 (1H, t, J l . l  Hz, ArH), 7.50 (1H, s, H-5). 13C NMR (100 
MHz, CDC13) 8  34.59 (NCH3), 55.68 (OCH3), 56.51 (OCH3), 61.60 (OCH3), 62.51 
(OCH3), 101.72 (CH, Ar), 114.42 (CH, Ar), 115.62 (CH, Ar), 116.92 (C, Ar), 120.88 
(CH, Ar), 129.97 (CH, Ar), 137.07 (C, Ar), 137.66 (C, Ar), 147.79 (C, Ar), 148.18 (C, 
Ar), 153.68 (C, Ar), 153.68 (C, Ar), 159.92 (C=N), 162.55 (C=0). vmax (solid)/(cm_1) 1663 
(st), 1593 (st), 1578 (st), 1563 (st), 1478 (st), 1420 (st), 1379 (st), 1251 (st), 1140 (st), 1094 
(st), 1026 (st). MS m/z (API-ES): found 357 (M+H)+ (100%). HRMS m/z (API-ES): found 
357.1463 (M+H)+, calculated for C 19H2 1N2 O5 357.145.

6.7.8-Trimethoxy-2-(4-methoxyphenyl)-3-methyl-3H-quinazolin-4-one (127g). This was 
prepared from 112c (0.135 g, 0.39 mmol) and methylamine (40% aq, 0.037 g, 1.20 mmol) in 
a similar manner as described for preparation of 127a. Chromatography on silica gel 
performed using the FlashMaster purification station (60:40 hexane/ethyl acetate) afforded 
pure 127g as a white solid (0.029 g, 0.081 mmol, 21%), mp 150-152 °C. ]H NMR (400 MHz, 
CDC13) 8  3.54 (3H, s, NCH3), 3.88 (3H, s, OCH3), 3.99 (3H, s, OCH3), 4.02 (3H, s, OCH3),
4.08 (3H, s, OCH3), 7.01 (2H, d, J9.2  Hz, 2 x CH, ArH), 7.48 (1H, s, H-5), 7.55 (2H, d, J9 .2  
Hz, 2 x CH, ArH). 13C NMR (100 MHz, CDC13) 8  34.74 (NCH3), 55.97 (OCH3), 56.38
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(OCH3), 61.64 (OCH3), 62.60 (OCH3), 101.58 (CH, Ar), 114.60 (2 x CH, Ar), 116.76 (C, 
Ar), 125.61 (C, Ar), 128.72 (2 x CH, Ar), 140.01 (C, Ar), 148.11 (C, Ar), 148.43 (C, Ar),
149.16 (C, Ar), 152.63 (C, Ar), 162.38 (C=N), 163.65 (C=0 ). vmax (solid)/(cm ') 2984 

(md), 1663 (st), 1583 (st), 1515 (st), 1465 (st), 1414 (st), 1377 (st), 1350 (st), 1253 (st), 1177 
(st), 1137 (st), 1090 (st). MS m/z (API-ES): found 357 (M+H)+ (100%). HRMS m/z (API- 
ES): found 357.1463 (M+H)+, calculated for C19H21N2O5 357.1450.

6.7.8-Trimethoxy-2-(3,4-dimethoxyphenyl)-3-methyl-3H-quinazolin-4-one (127h). This was 

prepared from 126d (0.189 g, 0.20 mmol) and methylamine (40% aq, 0.048 g, 1.55 mmol) in 
a similar manner as described for preparation of 127a. Chromatography on silica gel (3:7 
hexane/ethyl acetate, Rf 0.43) afforded pure 127h as a white solid (0.109 g, 0.28 mmol, 56%), 
mp 166-168 °C.1H NMR (400 MHz, CDC13) 5 3.47 (3H, s, NCH3), 3.86 (3H, s, OCH3), 3.88 
(3H, s, OCH3), 3.92 (3H, s, OCH3), 3.95 (3H, s, OCH3), 4.02 (3H, s, OCH3), 6.90 (1H, d, J
8.0 Hz, H-5’), 7.05 (1H, d, 72.0 Hz, H-2’), 7.09 (1H, dd, 72.0, 8.0 Hz, H-6’), 7.42 (1H, s, H- 
5). 13C NMR (100 MHz, CDC13) 5 34.86 (NCH3), 56.27 (OCH3), 56.33 (OCH3), 56.49 
(OCH3), 61.59 (OCH3), 62.46 (OCH3), 101.70 (CH, Ar), 111.25 (CH, Ar), 112.04 (CH, 
Ar), 116.75 (C, Ar), 121.74 (CH, Ar), 128.47 (C, Ar), 137.68 (C, Ar), 147.76 (C, Ar),
148.00 (C, Ar), 149.20 (C, Ar), 150.66 (C, Ar), 153.03 (C, Ar), 153.73 (C=N), 162.72 
(C=0). vmax (solidy^m '1) 1659 (st), 1603 (md), 1518 (st), 1468 (st), 1372 (st), 1261 (st), 
1240 (st), 1143 (st), 109 (st), 1064 (st). MS m/z (API-ES): found 387 (M+H)+ (100%). 
HRMS m/z (API-ES): found 387.1562 (M+H)+, calculated for C2oH23N206 387.1556.

6.7.8-Trimethoxy-2-phenyl-3-ethyl-3H-quinazolin-4-one (127i). This was prepared from 
126a (0.192 g, 0.63 mmol) ethyl amine (70% aq, 0.085 g, 1.89 mmol) in a similar manner as 
described for preparation of 127a. Chromatography on silica gel performed using the 
FlashMaster purification station (70:30 hexane/ethyl acetate) afforded pure 127i as a white 
solid (0.027 g, 0.081 mmol, 13%), mp 128-130 °C. *H NMR (400 MHz, CDC13) 5 1.21 (3H, 
t, J 7 .2  Hz, NCH2CH3 ), 3.99 (3H, s, OCH3), 4.02 (3H, s, OCH3), 4.05 (3H, s, OCH3), 4.02-
4.07 (2H, m, NCH^CH^, 7.48-7.55 (6H, m, ArH). 13C NMR (100 MHz, CDC13) 5 14.28 
(NCH2CH3), 56.48 (OCH3), 61.47 (OCH3), 62.50 (N C ^C H ^, 62.66 (OCH3), 101.39 
(CH, Ar), 117.26 (C, Ar), 127.23 (2 x CH, Ar), 129.36 (2 x CH, Ar), 131.81 (CH, Ar), 
132.80 (C, Ar), 139.50 (C, Ar), 148.35 (C, Ar), 148.55 (C, Ar), 149.23 (C, Ar), 153.15 
(C=N), 162.67 (C=0). vmax (solidyfcm'1) 3014 (md), 1654 (st), 1464 (st), 1134 (st), 
1123(md), 750 (st). MS m/z (API-ES): found 341 (M+H)+ (100%). HRMS m/z (API-ES): 
found 341.1525 (M+H)+, calculated for Ci9 H2 ]N2 0 4  341.1501.

6.7.8-Trimethoxy-2-(3-methoxyphenyl)-3-ethyl-3H-quinazolin-4-one (127j). This was 
prepared from 126b (0.183 g, 0.53 mmol) and ethylamine (70% aq, 0.073 g, 1.63 mmol) in a 
similar manner as described for preparation of 127a. Chromatography on silica gel performed
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using the FlashMaster purification station (70:30 hexane/ethyl acetate) afforded 127j as a 
white solid in (0.037 g, 0.100 mmol, 19%), mp 98-100 °C. ]H N M R  (400 M Hz, CDC13) 5 
1.22 (3H, t, J  7.2 Hz, N C H 2 CH 3 ), 3.86 (3H, s, O CH 3), 3.99 (3H, s, O CH 3), 4.02 (3H, s, 
O CH 3 ), 4.05 (3H, s, O CH 3 ), 4.03-4.07 (2H, m, N CH 2 C H 3 ), 7.03 (1H, ddd, J0 .8 , 2.8, 7.7 Hz, 

ArH), 7.10-7.14 (2H, m, ArH), 7.41 (1H, t, J  7.7 Hz, ArH), 7.50 (1H, s, H-5). 13C N M R  (100 
M Hz, C D C b) 5 14.32 (N CH 2 CH 3 ), 54.80 (O CH3), 56.32 (O CH 3), 61.88 (O C H 3), 62.34 
(NCH 2 CH 3 ), 62.49 (O CH 3 ), 101.55 (CH, Ar), 114.38 (CH, Ar), 115.65 (CH, Ar), 116.59 
(C, Ar), 120.76 (CH, Ar), 129.66 (CH, Ar), 137.13 (C, Ar), 137.71 (C, Ar), 147.67 (C, 
Ar), 148.10 (C, Ar), 153.64 (C, Ar), 153.71 (C, Ar), 156.00 (C=N), 162.31 (C = 0 ). vmax 
(solidytcnf1) 1621 (st), 1581 (st), 1565 (st), 1431 (st), 1251 (st), 1123 (st), 1075 (st). MS m/z 
(API-ES): found 371 (M +H)+ (100%). HRM S m/z (API-ES) found 371.1634 (M +H )+, 

calculated for C2 0 H2 3N 2 O5 371.1607

6.7.8-Trimethoxy-2-(4-methoxyphenyl)-3-ethyl-3H-quinazolin-4-one (127k). This was 
prepared from 126c (0.171 g, 0.49 mmol) and e ethylamine (70% aq, 0.069 g, 1.53 mmol) in 
a similar manner as described for preparation of 127a. Chromatography on silica gel 
performed using a FlashMaster purification station (65:35 hexane/ethyl acetate) afforded pure 
127k as a white solid (0.012 g, 0.032 mmol, 6 %), mp 127-129 °C. !H NMR (400 MHz, 
CDCI3) 5  1.22 (3H, t, J1 .2  Hz, NCH2CH3), 3.88 (3H, s, OCH3), 3.99 (3H, s, OCH3), 4.02 
(3H, s, OCH3), 4.06 (3 H, s, OCH3), 4.08 (2H, q, J7 .2  Hz, NCH2CH3), 7.00 (2H, d, J  9.2 Hz, 
2 x CH, Ar), 7.48 (2H, d, J  9.2 Hz, 2 x CH, Ar), 7.49 (1H, s, H-5). 13C NMR (100 MHz, 
CDCI3) 5  14.30 (NCH2CH3), 41.49 (OCH3), 55.64 (OCH3), 56.46 (OCH3), 61.59 (OCH3),

62.45 (NCH2CH3), 101.70 (CH, Ar), 114.10 (2 x CH, Ar), 117.19 (C, Ar), 128.64 (C, 
Ar), 129.94 (2 x CH, Ar), 137.66 (C, Ar), 147.75 (C, Ar), 148. 00 (C, Ar), 152.98 (C, 
Ar), 153.88 (C, Ar), 160.75 (C=N), 162.03 (C=0). vmax (solidy^m '1) 1666 (st), 1608 (md), 
1479 (st), 1251 (st), 1097 (st), 844 (st). MS m/z (API-ES): found 371 (M+H)+ (100%). 
HRMS m/z (API-ES): found 371.1618 (M+H)+, calculated for C2 0 H2 3 N2 O5 371.1607.

6.7.8-Trimethoxy-2-(3,4-dimethoxyphenyl)-3-ethyl-3H-quinazolin-4-one (1271). This was 
prepared from 126d (0.014 g, 0.30 mmol) and ethylamine (70% aq, 0.042 g, 0.93 mmol) in a 
similar manner as described for preparation of 127a. Chromatography on silica gel (3:7 
hexane/ethyl acetate, Rf 0.42) afforded pure 1271 as a white solid (0.034 g, 0.085 mmol, 
28%), mp 118-121 °C. ]H NMR (400 MHz, CDC13) 5 1.24 (3H, t, J7 .6  Hz, NCH2 CH3 ), 3.92 
(3H, s, OCH3 ), 3.95 (3H, s, OCH3), 3.99 (3H, s, OCH3), 4.02 (3H, s, OCH3), 4.06 (3H, s, 
OCH3 ), 4.07 (2H, q, J7.6  Hz, NCH2 CH3 ), 6.96 (1H, d, J  8.2 Hz, H-5’), 7.05 (1H, d, J 2.0 Hz. 
H-2’), 7.11 (1H, dd, J  2.0, 8.0 Hz, H-6 ’), 7.49 (1H, s, H-5). 13C NMR (100 MHz, CDC13) 
5 14.45 (NCH2 CH3 ), 56.31 (OCH3), 56.37 (OCH3), 56.53 (OCH3), 61.70 (OCH3), 62.43 
(NCH2 CH3 ), 62.51 (OCH3 ), 101.47 (CH, Ar), 111.15 (CH, Ar), 112.09 (CH, Ar), 116.70

(C, Ar), 121.60 (CH, Ar), 128.53 (C, Ar), 137.72 (C, Ar), 147.74 (C, Ar), 148.09 (C,

174



Ar), 149.43 (C, Ar), 150.66 (C, Ar), 153.10 (C, Ar), 154.02 (C=N), 162.65 (C=0). vmax 

(solidVCcm'1) 1666 (st), 1543 (st), 1450 (st), 1112 (st), 1054 (st), 1001 (st). MS m/z (API-ES): 
found 401 (M+H)+ (100%). HRMS m/z (API-ES): found 401.1720 (M+H)+, calculated for 

C2 1 H2 5N2 O6 401.1713.

6.7.8-Trimethoxy-2-phenyl-3-propyl-3H-quinazolin-4-one (127m). This was prepared from 
126a (0.186 g, 0.59 mmol) and isopropylamine (0.108 g, 1.83 mmol) in a similar manner as 
described for preparation of 117a. Chromatography on silica gel performed using a 
FlashMaster purification station (70:30 hexane/ethyl acetate) afforded afforded pure 127m as 
a white solid in (0.009 g, 0.025 mmol, 4%), mp 91-93 °C. NMR (400 MHz, CDCI3 ) 5 0.71 
(3H, t, J 7 .6  Hz, NCH2 CH2 CH3 ), 1.62 (2H, six, J  7.6 Hz, NCH2 CH2 CH3), 3.93-3.98 (2H, m, 
NCH2 CH2 CH3 ), 3.99 (3H, s, OCH3 ), 4.02 (3H, s, OCH3), (3H, s, OCH3), 7.47-7.54 (6 H, m, 
ArH). 13C NMR (100 MHz, CDC13) 5 11.37 (NCH2 CH2 CH3), 22.32 (NCH2 CH2 CH3), 47.71 
(NCH2 CH2 CH3 ), 56.46 (OCH3 ), 61.59 (OCH3), 62.46 (OCH3), 101.76 (CH, Ar), 117.25 
(C, Ar), 128.48 (2 x CH, Ar), 128.70 (2 x CH, Ar), 129.78 (CH, Ar), 136.14 (C, Ar),
137.58 (C, Ar), 147.78 (C, Ar), 148.07 (C, Ar), 153.10 (C, Ar), 154.04 (C=N), 162.01 
(C=0). vmax (solid)/(cm_1) 2987 (st), 1667 (st), 1543 (st), 1435 (st), 1234 (st), 1034 (md). MS 
m/z (API-ES): found 355 (M+H)+ (100%). HRMS m/z (API-ES): found 355.1698 (M+H)+, 
calculated for C2 0 H2 3 N2 O4  355.1658.

6.7.8-Trimethoxy-2-(3-methoxyphenyl)-3-propyl-3H-quinazolin-4-one (127n). This was 
prepared from 126b (0.197 g, 0.57 mmol) and isopropylamine (0.104 g, 1.76 mmol) in a 
similar manner as described for preparation of 127a. Chromatography on silica gel performed 
using the FlashMaster purification station (70:30 hexane/ethyl acetate) afforded pure 127n as 
a white solid (0.077 g, 0.20 mmol, 34%), mp 131-133°C. lU NMR (400 MHz, CDC 13) 5  0.78 
(3H, t, J  7.6 Hz, NCH2CH2CH3), 1.64 (2H, sextuplet, J  7.6 Hz, NCH2CH2CH3), 3.86 (3H, s, 
OCH3 s), 3.93-3.97 (2H, m, NCH2CH2CH3), 4.01 (3H, s, OCH3), 4.03 (3H, s, OCH3), 4.06 
(3H, s, OCH3), 7.02-7.09 (3H, m, ArH), 7.39 (1H, t, J 8 .0  Hz, ArH), 7.50 (1H, s, H-5). 13C 
NMR (100 PvJHz, CDCI3) 5  12.09 (NCH2CH2CH3), 21.98 (NCH2CH2CH3), 47.67 
(NCH2CH2CH3), 54.34 (OCH3), 56.54 (OCH3), 61.91 (OCH3), 62.32 (NCH2CH3), 62.54 
(OCH3), 101.62 (CH, Ar), 114.23 (CH, Ar), 115.76 (CH, Ar), 116.76 (C, Ar), 120.68 
(CH, Ar), 129.75 (CH, Ar), 137.19 (C, Ar), 137.77 (C, Ar), 147.76 (C, Ar), 148.14 (C, 
Ar), 153.59 (C, Ar), 153.82 (C, Ar), 156.06 (C=N), 162.54 (C=0). vmax (solid)/(cm_1) 2989 
(st), 1664 (st), 1543 (st), 1436 (st), 1178 (st). MS m/z (API-ES): found 385 (M+H)+ (100%). 
HRMS m/z (API-ES): found 385.1791 (M+H)+, calculated for C2iH25N20 5 385.1763.

6.7.8-Trimethoxy-2-(4-methoxyphenyl)-3-propyl-3H-quinazolin-4-one (127o). This was 
prepared from 126c (0.139 g, 0.40 mmol) and isopropylamine (0.073 g, 1.24 mmol) in a 
similar manner as described for preparation of 117a. Chromatography on silica gel performed
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using the FlashMaster purification station (65:35 hexane/ethyl acetate) afforded pure 127o as 
a white solid (0.007 g, 0.018 mmol, 5%), mp 134-136 °C. ]H NMR (400 MHz, CDC13) 
6  0.77 (3H, t, J  7.6 Hz, NCH2 CH2 CH3), 1.66 (2H, sextuplet, J  7.6 Hz, NCH2 CH2 CH3 ), 3.88 
(3H, s, OCH3 ), 3.98 (3H, s, OCH3), 4.02 (3H, s, OCH3), 3.98-4.02 (2H, m, NCH2 CH2 CH3 ),
4.06 (3H, s, OCH3 ), 6.99 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.47 (2H, d, J  8.4 Hz, 2 x CH, Ar),
7.48 ( 1 H, s, H-5). 13C NMR (100 MHz, CDC13) 5 11.18 (NCH2 CH2 CH3), 22.11 
(NCH2 CH2 CH3 ), 47.56 (NCH2 CH2 CH3), 55.41 (OCH3), 56.14 (OCH3), 61.37 (OCH3),
62.24 (OCH3 ), 101.55 (CH, Ar), 113.85 (2 x CH, Ar), 116.92 (C, Ar), 128.46 (C, Ar),
129.83 (2 xC H , Ar), 137.42 (C, Ar), 147.53 (C, Ar), 147.79 (C, Ar), 152.76 (C, Ar),
153.74 (C, Ar), 160.51 (C=N), 162.00 (C=0). vmax (solidy^m '1) 3109 (md), 1665 (st), 
1489 (st), 1234(st), 1045 (st). MS m/z (API-ES): found 385 (M+H)+ (100%). HRMS m/z 
(API-ES): found 385.1763 (M+H)+, calculated for C2 1 H2 5N2 O5 385.1763.

6, 7,8-Trimethoxy-2-(3,4-dimethoxy-phenyl)-3-propyl-3H-quinazolin-4-one (127p) This 
was prepared from 126d (0.167 g, 0.44 mmol) and isopropylamine (0.081 g, 1.37 mmol) in a 
similar manner as described for preparation of 127a. Chromatography on silica gel (4:6 
hexane/ethyl acetate, Rf 0.42) afforded pure 127p as a white solid (0.026 g, 0.062 mmol, 
14%), mp 119-121 °C. lU NMR (400 MHz, CDC13) 5 0.79 (3H, t, J 7 .8  Hz, NCH2 CH2 CH3 ),
1.63 (2H, sextuplet, J  7.8 Hz, NCH2 CH2 CH3 ), 3.92 (3H, s, OCH3), 3.95 (3H, s, OCH3), 3.99 
(3H, s, OCH3 ), 3.99-4.02 (2 H, m, NCH2 CH2 CH3 ), 4.02 (3H, s, 3H, s, OCH3), 4.07 (3H, s, 
OCH3 ), 6.96 (1H, d, J8 .2  Hz, H-5’), 7.04 (1H, d, J 2.0 Hz, H-2’), 7.10 (1H, dd, J 2.0, 8.2 Hz, 
H-6 ’), 7.49 (1H, s, H-5). 13C NMR (100 MHz, CDC13) 5 12.01 (NCH2 CH2 CH3), 21.89 
(NCH2 CH2 CH3 ), 47.78 (NCH2 CH2 CH3 ), 56.35 (OCH3), 56.41 (OCH3), 56.65 (OCH3),
61.43 (OCH3 ), 62.68 (OCH3), 101.73 (CH, Ar), 111.17 (CH, Ar), 112.13 (CH, Ar),
116.45 (C, Ar), 122.03 (CH, Ar), 128.42 (C, Ar), 137.89 (C, Ar), 148.02 (C, Ar),
148.15 (C, Ar), 150.15 (C, Ar), 150.58 (C, Ar), 153.17 (C, Ar), 153.94 (C=N), 162.76 
(C=0). vmax (solidytcm-1) 1645 (st), 1543 (st), 1487 (st), (st), 1113 (st), 1076 (st). MS m/z 
(API-ES): found 415 (M+H)+ (100%). HRMS m/z (API-ES): found 415.1868 (M+H)+, 
calculated for C2 2 H2 7N 2 O6 415.1869.

2-(3-Benzyloxy-4-methoxyphenyl)-6,7,8-trimethoxy-3H-quinazolin-4-one (127q). This was 
prepared from 126e (0.129 g, 0.28 mmol) and aqueous ammonium hydroxide (0.030 g, 0.86 
mmol) in a similar manner as described for preparation o f 127a. Chromatography on silica 
gel (7:3, DCM/ethyl acetate Rf 0.38) afforded pure 127q as a white solid (0.087 g, 0.19 
mmol, 6 8 %), mp 195-197 °C. 'H NMR (400 MHz, CDC13) 5 3.91 (3H, s, OCH3), 3.97 (3H, s, 
OCH3), 4.05 (3H, s, OCH3), 4.12 (3H, s, OCH3), 5.31 (2H, s, CH2), 7.01 ( 1 H, d, J8 .5  Hz, H- 
5’), 7.31 (1H, d, J 7.2 Hz, ArH), 7.36 (2H, t, J7 .2  Hz, Ar-H), 7.45 (1H, s, H-5), 7.56 (2H, d, J
7.2 Hz, ArH), 7.66 (1H, dd, J  1.6, 8.5 Hz, H-6 ’), 7.82 (1H, d, J  1.6 Hz, H-2’), 10.36 (1H, s, 
NH). 13C NMR (100 MHz, CDC13) 5 56.37 (OCH3), 56.41 (OCH3), 61.70 (OCH3), 62.75
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(OCH3), 71.34 (CH2), 101.67 (CH, Ar), 111.66 (CH, Ar), 112.78 (CH, Ar), 116.85 (C, 
Ar), 120.27 (CH, Ar), 125.55 (C, Ar), 127.55 (2 xC H , Ar), 128.28 (CH, Ar), 128.87 (2 x 
CH, Ar), 136.84 (C, Ar), 139.79 (C, Ar), 148.28 (C, Ar), 148.45 (C, Ar), 148.68 (C, Ar),
148.77 (C, Ar), 152.76 (C, Ar), 152.85 (C=N), 162.77 (C=0). vmax (solid)/(cm-') 3102 (st), 
1654 (st), 1501 (st), 1123 (st), 1022 (st). MS m/z (API-ES): found 449 (M+H)+ (100%). 
HRMS m/z (API-ES): found 449.1723 (M+H)+, calculated for C2 5 H2 4 N2 O6  449.1713.

2-(3-Hydroxy-4-methoxyphenyl)-6,7,8-trimethoxy-3H-quinazolin-4-oiie (127r)
A mixture o f 127q (0.071 g, 0.158 mmol) and 10% Pd/C (0,0071 g) in THF (5 mL) and 
methanol (5 mL) was stirred at room temperature under H2 for 4 h. The solution was filtered 
through a celite bed and the solvent removed under reduced pressure to give pure 127r as a 
white solid (0.054 g, 0.150 mmol, 95 %), mp 234-236 °C. !H NMR (400 MHz, CD3 OD) 5 
3.94 (3H, s, OCH3 ), 3.96 (3H, s, OCH3), 3.98 (3H, s, OCH3), 4.11 (3H, s, OCH3), 7.07 ( 1 H, 
d, JS.4  Hz, H-5’), 7.46 (1H, s, H-5), 7.56 (1H, dd, J2 .4 , 8.4 Hz, H-6 ’), 7.61 (1H, d, J2 A  Hz, 
H-2’). 13C NMR (100 MHz, DMSO-d6) 5 56.37 (OCH3), 56.60 (OCH3), 61.57 (OCH3), 
62.75 (OCH3 ), 101.83 (CH, Ar), 112.18 (CH, Ar), 115.30 (CH, Ar), 117.44 (C, Ar),
119.58 (CH, Ar), 126.01 (C, Ar), 139.29 (C, Ar), 147.16 (C, Ar), 147.83 (C, Ar),
148.43 (C, Ar), 150.07 (C, Ar), 151.18 (C, Ar), 152.46 (C=N), 162.40 (C=0). vmax 
(solid)/(cm_1) 1665 (st), 1570 (st), 1469 (st), 1421 (st), 1290 (st), 1210 (st), 1129 (st), 1076 
(st), 1032 (st), 8 6 6  (st), 800 (st). MS m/z (API-ES): found 359 (M+H)+ (100%). HRMS m/z 
(API-ES): found 359.1231 (M+H)+, calculated for Ci8H19N206 359.1243.

2-(3-Benzyloxy-4-methoxyphenyl)-6,7,8-trimethoxy-3-methyl-3H-quinazolin-4-one (127s).
This was prepared from 126e (0.222 g, 0.49 mmol) and methylamine (40% aq, 0.046 g, 1.48 
mmol) in a similar manner as described for preparation of 127a. Chromatography on silica 
(9:1 DCM/ethyl acetate, Rf 0.46) afforded 127s as a white solid (0.169 g, 0.36 mmol, 74%), 
mp 150-152 °C. lU NMR (400 MHz, CDC13) 5 3.33 (3H, s, NCH3), 3.97 (3H, s, OCH3), 3.98 
(3H, s, OCH3 ), 4.01 (3H, s, OCH3), 4.03 (3H, s, OCH3), 5.22 (2H, s, CH2), 6.99 (1H, d, J8.0  
Hz, H-5’), 7.04 (1H, d, J  1 . 6  Hz, H-2’), 7.17-7.19 (1H, m, ArH), 7.31 (1H, d, J7 .0  Hz, ArH),
7.36 (2H, t, J 7 .0  Hz, ArH), 7.41-7.46 (3H, m, ArH). 13C NMR (100 MHz, CDC13) 8  34.62 
(NCH3), 56.36 (OCH3 ), 56.50 (OCH3), 61.26 (OCH3), 62.50 (OCH3), 71.39 (CH2), 101.67 

(CH, Ar), 111.68 (CH, Ar), 114.95 (CH, Ar), 116.72 (C, Ar), 122.48 (CH, Ar), 127.26 
(2 x CH, Ar), 128.36 (CH, Ar), 128.92 (2 x CH, Ar), 136.92 (C, Ar), 137.67 (C, Ar), 
147.73 (C, Ar), 147.91 (C, Ar), 147.98 (C, Ar), 151.38 (C, Ar), 153.00 (C, Ar), 153.58 
(C=N), 162.72 (C=0). vmax (solidHcm '1) 2991 (mdO, 1667 9st), 1501 (st), 1132 (st), 1102 

(st), 801 (st). MS m/z (API-ES): found 463 (M+H)+ (100%). HRMS m/z (API-ES): found 
463.1920 (M+H)+, calculated for C2 6 H2 7 N2 0 6  463.1869.
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2-(3-Hydroxy-4-methoxyphenyl)-6,7,8-trimethoxy-3-methyl-3H-quinazolin-4-one (127t).

This was obtained as a white solid (0.110 g, 0.29 mmol, 92%) from 127s (0.149 g, 0.32 g 
mmol) in a similar manner as described for preparation of 127r, mp 183-185 °C.1H NMR 
(400 MHz, CDC13) 5 3.52 (3H, s), 3.93 (3H, s), 3.98 (3H, s), 4.02 (3H, s), 4.07 (3H, s), 6.24 
(1H, s), 6.92 (1H, d, J  8.5 Hz, H-5’), 7.08 (1H, dd, J2 .4 , 8.5 Hz, H-6 ’), 7.12 (1H, d, J2.4  Hz, 
H-2’), 7.48 (1H, s, H-5). 13C NMR (100 MHz, CDC13) 5 34.77 (NCH3), 56.27 (OCH3), 
56.50 (OCH3), 61.59 (OCH3 ), 62.49 (OCH3), 101.70 (CH, Ar), 110.72 (CH, Ar), 115.36 
(CH,Ar), 116.75 (C, Ar), 121.04 (CH, Ar), 128.84 (C, Ar), 137.66 (C, Ar), 145.87 (C, 
Ar), 147.77 (C, Ar), 148.00 (C, Ar), 148.32 (C, Ar), 153.03 (C, Ar), 153.78 (C=N), 
162.69 (C=0). vmax (solidytcnT1) 3243 (st), 1653 (st), 1586 (st), 1512 (st), 1484 (st), 1440 
(st), 1371 (st), 1344 (st), 1288 (st), 1242 (st), 1136 (st). MS m/z (API-ES): found 373 (M+H)+ 
(100%). HRMS m/z (API-ES): found 373.1402 (M+H)+, calculated for C 19H2 1N2 O6  

373.1400.

4-BenzyIoxycarbonyIamino-3-(4-chIoro-phenyl)-butyric acid (138)417
t-Butyl dicarbonate (5.32 g, 24.41 mmol) was added to a stirred solution o f Baclofen (134) 
(5.20 g, 24.41 mmol) and NaOH 1M (73 ml) in water (73 ml) and 1,4- dioxane (73 ml) at 0 
°C. After stirring for 4 h at room temperature, a 10 % aqueous solution of citric acid was 
added until pH 3. The formed white solid was filtered, washed with water (50 ml) and dried. 
Pure 138 was obtained without further purification (6.43 g, 20.56 mmol, 84%), mp 139-141 
°C. !H NMR (400 MHz, CD3 OD) 5 1.37 (9H, s, C(CHfh). 2.50 (1H, dd, J  8 .8 , 15.2 Hz, CH, 
CH2 CHCH2 CO), 2 . 6 6  (1H, dd, J  5.0, 15.4 Hz, CH, CH2 CHCH2 CO), 3.12-3.27 (3H, m, 
CH2 CHCH2 CO), 7.22 (2 H, d, J8 .4  Hz, 2 x Ar-H), 7.27 (2H, d, J8 .4  Hz, 2 x Ar-H). 13C NMR 
(100 MHz, CDCI3 ) 5 28.84 (C(CH3)s), 39.52 (CH2 CHCH2 CO), 41.99 (CH2 CHCH2 CO), 
45.88 (CH2 CHCH2 CO), 78.25 (C(CH3)3), 128.70 (2 x CH, Ar), 130.34 (2 x CH, Ar),
131.59 (C, Ar), 142.08 (C, Ar), 156.26 (C=0), 173.80 (C=0). vmax (solidy^m '1) 3290 
(md), 1699 (st), 1638 (md), 1398 (md).

Benzyl [2-(4-Chloro-phenyl)-3-phenylcarbamoyl-propyI]-carbamate (139a)
2-(7-Aza-lH-benzotriazole-l-Yl)-l, 1, 3, 3-tetramethyluronium hexafluorophosphate
(HATU) (0.315 g, 0.9087 mmol) and diisopropylamine (0.340 g, 2.63 mmol) were added to a 
solution o f 138 (0.206 g, 0.657 mmol) and aniline (0.051 g, 0.548 mmol) in dry DMF (5 ml) 
at room temperature under Ar. After stirring overnight at room temperature, water (10 mL) 
was added and the reaction mixture was extracted with ethyl acetate (2 x 1 5  ml). The organic 
extracts were collected, dried over Na2 SC>4 and the solvent removed under reduced pressure. 
Chromatography on silica gel (70:30 hexane/ethyl acetate, Rf 0.30) afforded 139a as a white 
solid (0.120 g, 0.307 mol, 47%), mp 165-167 °C. !H NMR (400 MHz, CDCI3 ) 5 1.43 (9H, s, 
C(CH3)3), 2.55 (1H, dd, J  5.0, 13.8 Hz, CH, CH2CHCH2 CO), 2.75 (1H, dd, J8 .4 , 13.6 Hz, 
CH, CH2 CHCH2 CO), 3.16-3.39 (2H, m, 2 x CH, CH2 CHCH2 CO), 3.52-3.57 (1H, m,
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CH2 CHCH2 CO), 4.60 (1H, bs, NHCOOC(CH3)3), 7.07-7.13 (3H, m, ArH), 7.29-7.32 (4H, m, 
ArH), 7.54 (2H, d, J  8.4 Hz, 2 x CH, Ar), 8.61 (1H, bs, NH). 13C NMR (400 MHz, CDCh) 
8  28.54 (CCCHih). 41.70 (CH2 CHCH2CO), 42.78 (CH2 CHCH2CO), 45.12 
(CH2 CHCH2CO), 80.30 (C(CH3)3), 120.08 (2 x CH, Ar), 124.38 (2 x CH, Ar), 129.10 (2 x 
CH, Ar), 129.14 (2 x CH, Ar), 129.30 (CH, Ar), 133.10 (C, Ar), 138.36 (C, Ar), 140.49 
(C, Ar), 157.22 (C O ), 169.82 ( C = 0 ) .v _  (solid)/(cm'‘) 3323 (st), 1640 (st), 1614 (st), 
1220 (st), 1118 (st). MS m/z (API-ES): found 389 (M+H)+ (100%), 391 (M3 7 C+H)+ (35%). 
HRMS m/z (API-ES): found 389.1628 (M+H)+, calculated for C2 ,H2 6 C1N2 0 3 389.1632

Ethyl 4-[4-benzyloxycarbonylamino-3-(4-chloro-phenyl)-butyrylamino]-benzoate (139b).
The compound was prepared from 138 (2.4 g, 7.6 mmol) and ethyl-4-aminobenzoate (1.26 g,
7.66 mmol) in a similar manner as described for preparation of 139a. Chromatography on 
silica gel (70:30 hexanes/ethyl acetate, Rf 0.20) gave 139b as a brown solid (2.54 g, 5.52 
mmol, 72%), mp 145-147 °C. *H NMR (400 MHz, CD3 OD) 5 1.35 (9H, s, C(C H ^ ). 1.35 
(3H, t, J 6 . 8  Hz, CH2 CH3), 2.63 (1H, dd, J 8 .6 , 14.6 Hz, CH, CH2 CHCH2 CO), 2.77 (1H, dd, J
6.2, 14.6 Hz, CH, CH2 CHCH2 CO), 3.35-3.40 (1H, m, CH2 CHCH2 CO), 4.31 (2H, q, J7 .2  Hz, 
CH2 CH3 ), 7.14 (2H, d, J  8.4 Hz, 2 x Ar-H), 7.24 (2H, d, J  8.4 Hz, 2 x Ar-H), 7.28 (2H, d, J
8 . 6  Hz, 2 x Ar-H), 7.57 (2H, d, J  8 . 8  Hz, 2 x Ar-H), 7.91 (2H, d, J  8 . 6  Hz, 2 x Ar-H), 7.91 
(2H, d, J  8 . 8  Hz, 2 x Ar-H). 13C NMR (100 MHz, CDC13) 5 14.56 (CH2 CH3), 28.56 
(C(CH3)3), 40.92 (CH2 CHCH2 CO), 42.77 (CH2 CHCH2 CO), 45.97 (CH2 CHCH2 CO), 61.04 
(C(CH3)3), 80.56 (CH2 CH3 ), 119.07 (2 x CH, Ar), 125.90 (C, Ar), 129.08 (2 x CH, Ar), 
129.17 (2xC H ,A r), 130.90 (2 x CH, Ar), 133.17 (C, Ar), 140.35 (C, Ar), 142.65 (C, Ar),
157.54 (C=0), 166.47 (C=0), 170.32 (C=0). vmax (so lidy^m '1) 3353 (md), 1685 (st), 1685 
(st), 1661 (st), 1524 (st), 1273 (st), 1249 (st), 1188 (st), 769 (md). MS m/z (API-ES): found 
461 (M3 5 C+H)+ (100%), 463 (M3 7 C+H)+ (30%). HRMS m/z (API-ES): found 461.1841 
(M+H)+, calculated for C2 4 H3 0 CIN2 O5 461.1843

3-(4-Chloro-phenyl)-N-phenyl-4-(toluene-4-sulfonylamino)-butyramide (140a)
A solution of 139a (0.106 g, 0.271 mmol) in D C M  (2 ml) and TFA (2 ml) was stirred for 2 h 
at room temperature, and the solvent removed under reduced pressure. The crude material 
was dissolved in l , 4 -dioxane:H2 0  1:1 (5 ml) and K 2 C O 3  (0.225 g, 1.63 mmol, 6  eq) was 
added followed by tosyl chloride (0.056 g, 0.298 mmol, 1.1 eq). After stirring for 2 h at room 
temperature, the removed under reduced pressure. Water (10 ml) was added and the 
precipitae was separated by filtration and dried in vacuo. Pure 140a was as a white solid 
obtained without further purification (0.079 g, 0.179 mmol, 6 6 %), mp 200-202 °C. ]H NMR 
(400 M H z ,  C D 3 O D )  8  2.39 (3H, s, C H 3 ) ,  2.56 (1H, dd, J9 .2 , 14.4 H z ,  C H ,  C H 2 C H C H 2 C O ) ,

2.77 (1H, dd, J  6 .8 , 14.4 H z ,  C H ,  C H 2 C H C H 2 C O ) ,  3.06 (1H, dd, J  8.2, 13.0 H z ,  C H ,  

C H 2 C H C H 2 C O ) ,  3.15 (1H, dd, J  6 .8 , 13.2 H z ,  C H ,  C H 2 C H C H 2 C O )  7.03-7.07 (1H, m, ArH),
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7.15 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.21-7.26 (4H, s, ArH), 7.29 (2H, d, J  8.4 Hz, 2 x CH, 
Ar), 7.36-7.38 (2H, m, ArH), 7.62 (2H, d, J  8.4 Hz, 2 x CH, Ar). 13C NMR (400 MHz, 
DMSO-d6) 5 21.63 (Ar-CH3), 40.73 (CH2CO), 41.87 (CH2CHCH2), 48.13 (CH2NH), 
119.79 (2 x CH, Ar), 123.80 (CH, Ar), 127.14 (2 x CH, Ar), 128.80 (2 x CH, Ar), 129.29 
(2 x CH, Ar), 130.23 (2 x CH, Ar), 130.36 (2 x CH, Ar), 131.80 (C, Ar), 138.14 (C, Ar),
139.64 (C, Ar), 141.53 (C, Ar), 143.20 (C, Ar), 169.81 (C O ). vmax (solid)/(cm-1) 3340 
(md) (N-H), 3141 (md) (N-H), 1665 (st) (C O ), 1598 (st), 1547 (st), 1493 (md), 1444 (st), 
1154 (st), 1087 (md). MS m/z (API-ES): found 443 (M+H)+ (100%). HRMS m/z (API-ES): 
found 443.1210 (M+H)+, calculated for C23H24C1N20 3S 443.1196.

Ethyl 4-[3-(4-chloro-phenyl)-4-(toluene-4-sulfonylamino)-butyrylamino]-benzoate (140b).
This was obtained as a white solid (0.125 g, 0.240 mmol, 96%) from 139b (0.115 g, 0.250 
mmol) and tosyl chloride (0.048 g, 0.250 mmol) in a similar manner as described for 
preparation o f 140a, mp 187-189 °C. lU NMR (400 MHz, CD3OD) 5 1.36 (3H, t, J 12  Hz, 
C H ^ fh ) , 2.39 (3H, s, C fb), 2.60 (1H, dd, J  8.8, 14.8 Hz, CH, C ^ C H O ^ C O ), 2.82 (1H, 
dd, J  6.0, 14.8 Hz, CH, C H ^H C l^C O ), 3.06 (1H, dd, J8 .0 , 13.2 Hz, CH, CfhCH O ^CO ), 
3.14 (1H, dd, J6 .8 , 13.2 Hz, CH, C f^C H C H ^O ) 4.32 (2H, q, J 7.2 Hz, CfhCH:*), 7.15 (2H, 
d, J  8.6 Hz, 2 x CH, Ar), 7.22 (2H, d, J  8.6 Hz, 2 x CH, Ar), 7.29 (2H, d, J  8.4 Hz), 7.54 (2H, 
d, J  8.8 Hz), 7.62 (2H, d, J  8.4 Hz), 7.91 (2H, d, J  9.2 Hz). 13C NMR (400 MHz, DMSO-d6) 
5 14.88 (CH2CH3), 21.62 (CH3), 40.74 (CH2CHCH2CO), 41.76 (CH2CHCH2CO), 48.25 
(CH2CHCH2CO), 61.08 (CH2CH3), 119.06 (2 x CH, Ar), 124.78 (C, Ar), 127.34 (2 x CH, 
Ar), 128.83 (2 x CH, Ar), 130.23 (2 x CH, Ar), 130.36 (2 x CH, Ar), 130.84 (2 x CH, Ar),
131.83 (C, Ar), 138.15 (C, Ar), 141.42 (C, Ar), 143.20 (C, Ar), 143.95 (C, Ar), 165.98 
(C=0), 170.47 (C=0). vmax (solid)/(cm_1) 3320 (md), 3292 (md), 1712 (st) (C=0), 1677 (st) 
(C=0), 1598 (md), 1540 (st), 1315 (st), 1272 (st), 1149 (st), 1104 (st). MS m/z (API-ES): 
found 515 (M+H)+ (100%). HRMS m/z (API-ES): found 515.1411 (M+H)+, calculated for 
C26H28C1N20 5S 515.1407.

Ethyl 4-[3-(4-chloro-phenyl)-4-(4-phenoxybenzenesulfonylamino)butyrylamino]benzoate 
(140c). This was obtained as a white solid (0.119 g, 0.201 mmol, 65%) from 140b (0.141 g, 
0.307 mmol) and 4-phenoxybenzenesulfonyl chloride (0.082 g, 0.307 mmol) in a similar 
manner as described for preparation of 140a, mp 154-156 °C. !H NMR (400 MHz, CD3OD) 5
1.36 (3H, t, J6 .8  Hz, CU2 Clh), 2.60 (1H, dd, J8 .0 , 14.8 Hz, CH, CH^HCThCO), 2.82 (1H, 
dd, J  6.0, 14.8 Hz, CH, C ^ C H O ^ C O ), 3.09 (1H, dd, J  7.8, 13.4 Hz, CH, CH^HCHsCO),
3.16 (1H, dd, J 6.4, 13.2 Hz, CH, CHhCHCH^O), 4.32 (2H, q, J 7.2 Hz, CHgCHi), 6.99 (2H, 
d, J  8.0 Hz, 2 x CH, Ar), 7.06-7.08 (1H, m, ArH), 7.18 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.18 
(2H, d, J  8.4 Hz, 2 x CH, Ar), 7.19-7.24 (2H, m), 7.56 (2H, d, J  8.8 Hz), 7.72 (2H, d, J  8.0 
Hz), 7.91 (2H, d, J  8.8 Hz). 13C NMR (100 MHz, CDC13) d 14.55 (CH2CH3), 40.49
(CH2CHCH2CO), 41.48 (CH2CHCH2CO), 46.69 (CH2CHCH2CO), 61.10 (CH2CH3),
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117.91 (2 x C H , Ar), 119.70 (2 x CH, Ar), 120.56 (2 x CH, Ar), 125.31 (CH, Ar), 129.12 
(2 x CH, Ar), 129.32 (2 x CH, Ar), 129.39 (2 x CH, Ar), 130.43 (2 x CH, Ar), 130.98 (2 x 
CH, Ar), 133.12 (C, Ar), 133.61 (C, Ar), 139.28, (C, Ar), 141.97 (C, Ar), 155.15 (C, Ar),
162.06 (C, Ar), 162.06, (C, Ar)., 166.31 (C=0), 169.90 (C=0). vmax (solidVCcm'1) . MS m/z 
(API-ES): found 593 (M+H)+ (100%). HRMS m/z (API-ES): found 593.1513 (M+H)+, 
calculated for C3 1 H3 0 CIN2 O6 S 593.1513.

4-[3-(4-ChlorophenyI)-4-(toluene-4-suIfonylamino)butyrylamino]benzoic acid (141a)
A solution of 140b (0.023 g, 0.044 mmol) in methanol (1 ml) and THF (1 ml) was stirred in 
presence o f NaOH 1M (1 ml) overnight at room temeprature. The solution remaining was 
concentrated in vacuo. HC1 1M (1 ml) was added and the formed white solid was filtered, 
washed with water (5 ml) and dried. The pure compound 141a was obtained without further 
purification (0.015 g, 0.030 mmol, 6 8  %), mp 250-252 °C. ]H NMR (400 MHz, CD3OD) 8  

2.39 (3H, s, CH3), 2.60 (1H, dd, J  8 .8 , 14.8 Hz, CH, CH2 CHCH2 CO), 2.82 (1H, dd, J6 .4 ,
14.8 Hz, CH, CH2 CHCH2 CO), 3.06 (1H, dd, J  8.0, 13.2 Hz, CH, CH2 CHCH2 CO), 3.14 (1H, 
dd, J  6 .8 , 13.2 Hz, CH, CH2 CHCH2 CO), 7.16 (2H, d, J  8 . 8  Hz), 7.23 (2H, d, J  8 . 8  Hz, 2 x 
CH, Ar), 7.29 (2H, d, J8 .2  Hz, 2 x CH, Ar), 7.54 (2H, d, J9.2  Hz, 2 x CH, Ar), 7.62 (2H, d, J
8.2 Hz), 7.92 (2H, d, J 9 .0  Hz, 2 x CH, Ar). 13C NMR (100 MHz, DMSO-d6) 5 21.62 (CH3),
40.81 (CH2 CHCH2 CO), 41.76 (CH2 CHCH2 CO), 48.08 (CH2 CHCH2 CO), 118.95 (2 x CH, 
Ar), 125.69 (C, Ar), 127.13 (2 x CH, Ar), 128.83 (2 x CH, Ar), 130.24 (2 x CH, Ar),
130.36 (C, Ar), 131.00 (2 x CH, Ar), 138.10 (C, Ar), 141.42 (C, Ar), 143.22 (C, Ar),
143.64 (C, Ar), 167.56 (C O ), 170.39 (C=0). vmax (solidy^m*1) 1864 (st), 1665 (st), 1653 
(st), 1604 (st), 1519 (st), 1455 (st), 1324 (st), 1290 (st), 1164 (st), 1151 (st). MS m/z (API- 
ES): found 485 (M-H)‘ (100%). HRMS m/z (API-ES): found 485.0935 (M-H)\ calculated for 
C2 4 H2 2 CIN2 O5 S 485.0938.

4-[3-(4-chlorophenyl)-4-(4-phenoxybenzenesulfonylamino)butyrylamino]-benzoic acid 
(141b). A solution of 140c (0.065 g, 0.107 mmol) in methanol (1.5 ml) and THF (1.5 ml) was 
stirred in presence of NaOH 1M (1 ml) for 2 h at 80 °C. After cooling to room temperature, 
the solution remaining was concentrated in vacuo. HC1 1M (1.5 ml) was added and the 
formed white solid was filtered, washed with water (10 ml) and dried. The pure compound 
141b was obtained without further need for purification (0.050 g, 0.088 mmol, 83 %), mp 
119-121 °C. 'H  NMR (400 MHz, CD3 OD) 5 2.61 (1H, dd, J  8.4, 14.8 Hz, CH, 
CH2 CHCH2 CO), 2.82 (1H, dd, /6 .0 ,  14.8 Hz, CH, CH2 CHCH2 CO), 3.09 (1H, dd, J7 .8 , 13.4 
Hz, CH, CH2 CHCH2 CO), 3.16 (1H, dd, J  6.4, 13.2 Hz, CH, CH2 CHCH2 CO), 6.99 (2H, d, J
9.0 Hz, 2 x CH, Ar), 7.06-7.08 (2H, m, ArH), 7.17-7.24 (5H, m, ArH), 7.47.44 (2H, m, ArH), 
7.54 (2H, d, J  9.2 Hz, 2 x CH, Ar), 7.72 (2H, d, J9 .0  Hz, 2 x CH, Ar), 7.91 (2H, d, J  9.2 Hz, 
2 x CH, Ar). 13C NMR (100 MHz, CD3 OD) 5 40.59 (CH2 CHCH2 CO), 42.01 
(CH2 CHCH2 CO), 47.61 (CH2 CHCH2 CO), 117.41 (2 x C H , Ar), 118.97 (C, Ar), 120.13 (2
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X CH, Ar), 124.80 (CH, Ar), 125.76 (C, Ar), 128.43 (2 x CH, Ar), 129.09 (2 x CH, Ar),
129.36 (2 xC H , Ar), 130.12 (2 x CH, Ar), 130.53 (C, Ar), 132.57 (C, Ar), 134.32 (C, Ar), 
140.20,142.87 (C, Ar), 155.55 (C, Ar), 161.61 (C, Ar), 168.22 (C=0), 171.80 (C O ). 
vmax (solid)/(cm_1) 3359 (st), 1686 (st), 1595 (st), 1530 (st), 1487 (st), 1410 (md), 1318 (md), 
1246 (st), 1150 (st), 1092 (md). MS m/z (API-ES): found 563 (M-H)‘ (100%). HRMS m/z 
(API-ES): found 563.1043 (M-H)', calculated for C2 9 H2 4 CIN2 O6 S 563.1044.

(2s)-3-(2-Naphthyl)propenoic acid (146b)379
Malonic acid (7.6 g, 72.7 mmol, 2.2 eq) was added to a solution of 2-naphthaldehyde (5.1 g,
32.7 mmol) in pyridine (40 ml) and the mixture was stirred at 100 °C overnight. After cooling 
to room temperature, the reaction mixture was poured into 2N HC1 (200 ml). The white 
precipitate was filtered, washed with water (50 ml) and dried. Pure acid was obtained after 
recrystallization from ethanol as a white solid (4.0 g, 20.2 mmol, 62%), mp 204-206 °C (lit3 7 9  

207-208 °C). ]H NMR (400 MHz, DMSO-d6) 8  6.64 (1H, d, J  16.0 Hz, CH), 7.53-7.55 (2H, 
m, ArH), 7.73 (1H, d, J  16.0 Hz, CH), 7.84-7.93 (4H, m, 4 x CH, ArH), 8.16 (1H, s, CH, 
ArH) 12.43 (1H, bs, OH).

Methyl (E)-4-(2-Carboxy-vinyl)-benzoate (146a).379 This was obtained as a yellow solid 
(0.621 g, 3.11 mmol, 34%) from benzaldehyde (1.562 g, 9.51 mmol) and malonic acid 
(2.177g, 20.92 mmol, 2.2 equiv) in a similar manner as described for preparation of 146b, mp 
259-261 °C (lit4 1 8  246-247 °C). !H NMR (400 MHz, DMSO-d6) 8  3.84 (3H, s, OCH3), 6.64 
(1H, d, J  16.0 Hz, CH), 7.62 (1H, d, J  16.0 Hz, CH), 7.82 (1H, d, J8 .4  Hz, 2 x CH, Ar), 7.94 
(1H, d, JS.4  Hz, 2 x CH, Ar), 12.60 (1H, s, OH).

(2s)-3-(2-Naphthyl)propenoyl chloride (147b)375
Thionyl chloride (10 ml) was added to a suspension o f 146a (3.4 g, 18.6 mmol) in anhydrous 
toluene (40 ml) at room temperature under Ar. The reaction mixture was stirred at 100 °C for 
2 h. The solvent was removed under reduced pressure to provide a white solid (3.9 g, 18.05 
mmol, 97%). The acid chloride was used in the next step without further purification.

Methyl (E)-4-(2-chlorocarbonyl-vinyl)benzoate (147a). This was obtained as a yellow solid 
(0.589 g, 2.629 mmol, 89%) from corresponding acid 146a (0.612 g, 2.956 mmol) in a similar 
manner as described for preparation of 147b. The acid chloride was used in the next step 
without further purification.

4-Nitrocinnamoyl chloride (147c). This was obtained as a yellow solid (4.2 g, 19.90 mmol, 
98%) from corresponding acid 146c (3.9 g, 20.19 mmol) in a similar manner as described for 
preparation o f 147b. The acid chloride was used in the next step without further purification.
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4-Chlorocinnamoyl chloride (147d). This was obtained as an off-white solid (1.94 g, 10.20 
mmol, 99%) from corresponding acid 146d (1.76 g, 10.22 mmol) in a similar manner as 
described for preparation of 147b. The acid chloride was used in the next step without further 
purification.

4-Methoxycinnamoyl chloride (147e). This was obtained as a yellow solid (3.2 g, 16.32 
mmol, 94%) from corresponding acid 146e (3.1 g, 17.39 mmol) in a similar manner as 
described for preparation of 147b. The acid chloride was used in the next step without further 
purification.

3,4,5-Trimethoxycinnamoyl chloride (147f). This was obtained as a yellow solid (1.753 g, 
6.84 mmol, 92%) from corresponding acid 146f (1.762 g, 7.40 mmol) in a similar manner as 
described for preparation of 147b. The acid chloride was used in the next step without further 
purification.

Methyl 4-amino-2-hydroxybenzoate (148c)376,377
A solution of 4-amino-2-hydroxybenzoic acid (4-aminosalicylic acid) (2.5 g, 16.3 mmol) and 
concentrated sulfuric acid (3.5 ml) in methanol (50 ml) was heated under reflux overnight. 
After addition o f saturated sodium bicarbonate solution (until the evolution of CO2 ceased) 
the reaction mixture was filtered. The filtrate was washed with water (50 ml), dried under 
vacuum to afford methyl 4-amino-2-hydroxybenzoate (148c) as a pale brown solid (1.72 g,
10.3 mmol, 63%), mp 110-112 °C (lit4 1 9  197 °C). *H NMR (400 MHz, DMSO-d6) 5 3.76 (3H, 
s, OCH3 ), 5.96 (1H, d, J  2.3 Hz, CH-3), 6.09 (1H, dd, J2 .3 , 8.9, Hz, CH-5), 6.12 (2H, bs, 
NH2), 7.42 (1H, d, J  8.9 Hz, CH-6 ), 10.74 (1H, s, OH).

Methyl 4-aminobenzoate (148e)378
Thionyl chloride ( 6  ml, 1.5 eq) was added dropwise over 20 min to a stirred solution of 4- 
aminobenzoic acid (5.7 g, 41.6 mmol) in methanol (200 ml) under ice-cooling. The mixture 
was stirred at room temperature overnight. The methanol was removed under reduce pressure. 
The resultant residue was diluted with ethyl acetate (200 ml) and then a saturated sodium 
bicarbonate solution (200 ml) was added to the solution. The aqueous phase was separated 
and extracted with ethyl acetate (200 ml). The organic extracts were collected, dried over 
Na2 S0 4 , and the solvent removed under reduced pressure to afford the ester 148e in pure 
form (4.7 g, 31.1 mmol, 77%) as an off-white solid, mp 105-107 °C (lit4 2 0  107-110 °C). *H 
NMR (400 MHz, CDC13) 5 3.85 (3H, s, OCH3), 4.05 (2H, s, NH2), 6.64 (2H, d, J9 .0  Hz, 2 x 
CH, Ar), 7.85 (2H, d, J9 .0  Hz, 2 x CH, Ar).
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Methyl 3-aminobenzoate (148d).378 This was obtained as brown oil (4.4 g, 29.13 mmol, 
75%) from the corresponding 3-aminobenzoic acid (5.3 g, 38.68 mmol) in a similar manner 
as described for preparation o f 148e. ]H NMR (400 MHz, CDCI3) 8 3.78 (2H, bs, NH2 ), 3.89 
(3H, s, OCH3), 6.85 (1H, ddd, J  1.0, 2.4, 7.7 Hz, ArH), 7.21 (1H, t, 77.7 Hz, ArH), 7.35 (1H, 
m, ArH), 7.41-7.43 (1H, m, ArH).

Methyl 2-[3-(4-chlorophenyl)acryloylamino]benzoate (145g)
Anhydrous pyridine (0.227 g, 2.88 mmol, 1.2 eq) and methyl anthranilate 148a (0.365 g, 2.40 
mmol) were added to a solution of 4-chlorocinnamoyl chloride (147d) (0.458 g, 2.40 mmol) 
in anhydrous DCM (15 ml) under Ar. The reaction mixture was stirred at room temperature 
overnight and the mixture was poured in 2N HC1 (20 ml). The product was extracted with 
DCM (2 x 20 ml), dried over Na2 SC>4 and the solvent removed under reduced pressure. The 
pure compound 145g was obtained after trituration with cold methanol (10 ml) as a white 
solid (0.617 g, 2.02 mmol, 84%), mp 122-124 °C. ]H NMR (400 MHz, CDC13) 8  3.96 (3H, s, 
OCH3 ), 6.59 (1H, d, J  15.6 Hz, CH), 7.09-7.14 (1H, m, ArH), 7.37 (2H, d, <78.6 Hz, 2 x CH, 
Ar), 7.52 (2H, d, J  8 . 6  Hz, 2 x CH, Ar), 7.53-7.61 (1H, m, ArH), 7.70 (1H, d, J  15.6 Hz, 
CH), 8.0 (1H, dd, J  1.2, 8.0 Hz, ArH), 8 . 8 6  (1H, dd, J  1.2, 8.0 Hz, ArH), 11.40 (1H, bs, NH). 
13C NMR (100 MHz, CDC13) 8  52.64 (OCH3), 115.14 (C, Ar), 120.81 (CH, Ar), 122.76 
(CH), 122.90 (CH, Ar), 129.35 (2 x CH, Ar), 129.45 (2 x CH, Ar), 131.12 (CH, Ar),
133.40 (C, Ar), 135.03 (CH, Ar), 136.06 (C, Ar), 141.07 (CH), 141.97 (C, Ar), 164.39 (C, 
Ar), 169.19 (C=0). vmax (solid)/(cm_1) 3302 (md), 1697 (st), 1683 (st), 1628 (st), 1604 (md), 
1589 (st), 1528 (st), 1433 (st), 1254 (st), 1155 (md), 1086 (md). MS m/z (API-ES): found 316 
(M3 5 C1+H)+ (100%), 318 (M3 7 C1+H)+ (35%). HRMS m/z (API-ES): found 316.0734 (M+H)+ 
( 1 0 0 %), calculated for C 1 7H]5 C 1N 0 3  316.0740.

Methyl 4-[2-(2-carboxylphenylcarbamoyl)vinyl]benzoate (145a). This was obtained as a 
white solid (0.306 g, 0.902 mol, 84%) from corresponding acid chloride 147a (0.240 g, 1.071 
mmol) and aniline 148a (0.178 g, 1.187 mmol) in a similar manner as described for 
preparation o f 145g, mp 146-148 °C. *H NMR (400 MHz, CDC13) 8 3.93 (3H, s, OCH3), 3.96 
(3H, s, OCH3), 6.70 (1H, d, J  15.6 Hz, CH), 7.10-714 (1H, m, ArH), 7.57-7.62 (1H, m, ArH),
7.64 (2H, d, JS .4  Hz, ArH), 7.77 (1H, d, J  15.6 Hz, CH), 8.05-8.08 (3H, m, ArH), 8.86 (1H, 
dd, J  1.0, 8.5Hz, ArH), 11.45 (1H, s, NH). 13C NMR (100 MHz, CDC13) 8 52.49 (OCH3),

52.68 (OCH3), 115.19 (C, Ar), 120.82 (CH, Ar), 123.02 (CH), 124.55 (CH, Ar), 128.13 
(CH, Ar), 130.31v (CH, Ar), 131.14 (CH, Ar), 131.10 (C, Ar), 135.05 (CH, Ar), 139.16 (C, 
Ar), 141.09 (CH), 141.89 (C, Ar), 164.11 (C=0), 166,75 (C=0), 169.19 (C=0). vmax 
(solidy^m '1) 3266 (st), 1710 (st), 1677 (st), 1620 (st), 1605 (st), 1590 (st), 1527 (st), 1446 
(st), 1434 (st), 1256 (st). MS m/z (API-ES): found 340 (M+H)+ (100%). HRMS m/z (API- 
ES): found 340.1183 (M+H)+, calculated for Ci9Hi8N 0 5 340.1185.
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Ethyl 4-(3-naphthalen-2-yl-acryloylamino)benzoate (145b). This was obtained from the 
corresponding acid chloride 147b (0.757 g, 3.50 mmol) and aniline 148g (0.577 g, 3.50 
mmol) in a similar manner as described for preparation of 145g. After stirring overnight at 
room temperature, the white precipitate was filtered, washed with DCM (10 ml) and dried 
vacuum to give the amide 145b (0.960 g, 2.78 mmol, 80%) as a white solid, mp 173-175 °C. 
!H NMR (400 MHz, DMSO-d6) 5 1.30 (3H, t, J  7.2 Hz, CH2 CH3), 4.28 (2H, t, J  12  Hz, 
CH2 CH3 ), 6.97 (1H, d, J  15.4 Hz, CH), 7.54-7.57 (2H, m, ArH), 7.7 (1H, d, J  15.4 Hz, CH),
7.77 (1H, dd, J  1.6, 9.2 Hz, CH, Ar), 7.84 (2H, d, J  8 . 8  Hz, 2 x CH, Ar), 7.93-7.97 (5H, m, 
ArH), 8.15 (1H, s, ArH), 10.58 (1H, bs, NH). 13C NMR (100 MHz, DMSO-d6) 5 14.88 
(CH2 CH3 ), 61.09 , (CH2 CH3), 119.30 (2 x CH, Ar), 122.91 (CH), 124.18 (CH, Ar), 124.99 
(C, Ar), 127.47 (CH, Ar), 127.83 (CH, Ar), 128.38 (CH, Ar), 129.09 (CH, Ar), 129.36 
(CH, Ar), 130.05 (CH, Ar), 130.98 (CH, Ar), 132.82 (C, Ar), 133.68 (C, Ar), 134.26 (C, 
Ar), 141.64 (CH), 144.33 (C, Ar), 164.69 (C=0), 166.01 (C=0). vmax (solidy^m '1) 3357 
(st), 1702 (st), 1660 (st), 1619 (st), 1607 (st), 1591 (st), 1521 (st), 1403 (st), 1282 (st). MS m/z 
(API-ES): found 346 (M+H)+ (100%). HRMS m/z (API-ES): found 346.1443 (M+H)+ 
( 1 0 0 %), calculated for C2 2 H2 0 NO 3 346.1440.

Methyl 2-hydroxy-4-(3-naphthalen-2-yl-acryloylamino)benzoate (145c). This was obtained 
from corresponding acid chloride 147b (0.320 g, 1.48 mmol) and aniline 148b (0.247 g, 1.48 
mmol) in a similar manner as described for preparation of 145g. After stirring overnight at 
room temperature, the white solid was filtered, washed with DCM (10 ml) and dried under 
vacuum to give the amide 145c (0.400 g, 1.15 mmol, 79%) as an off-white solid, mp 210-212 
°C. *H NMR (400 MHz, DMSO-d6) 8  3.86 (3H, s, OCH3), 6.31 (1H, d, J  15.6 Hz, CH), 7.17 
(1H, dd, J  1.8, 8 . 8  Hz, H-6 ’), 7.53 (1H, d, J  1.8 Hz, H-2’), 7.54-7.57 (2H, m, ArH), 7.74-7.79 
(3H, m, ArH), 7.92-7.99 (3H, m, Ar), 8.15 (1H, s, ArH), 10.54 (1H, s, NH), 10.65 (1H, s, 
OH). 13C NMR (100 MHz, DMSO-d6) 5 52.01 (OCH3), 106.95 (CH, Ar), 108.27 (C, Ar), 
111.30 (CH, Ar), 122.78 (CH), 124.21 (CH, Ar), 127.54 (CH, Ar), 127.92 (CH, Ar),
128.40 (CH, Ar), 129.12 (CH, Ar), 129.39 (CH, Ar), 130.12 (CH, Ar), 131.56 (CH, Ar),
132.76 (C, Ar), 133.67 (C, Ar), 134.30 (C, Ar), 141.91 (CH), 146.35 (C, Ar), 161.91 (C, 
Ar), 164.84 (C=0), 169.70 (C=0). vmax (solidy^m '1) 3352 (st), 1692 (st), 1662 (st), 1622 
(st), 1597 (st), 1507 (st), 1445 (st), 1362 (st), 1265 (st), 1188(st), 1143 (st), 1095 (st). MS m/z 
(API-ES): found 346 (M-H)' (100%). HRMS m/z (API-ES): found 346.1088 (M-H)'
(100%), calculated for C2 iHi6N 0 4  346.1079.

Methyl 2-[3-(4-nitrophenyl)acryloylamino]benzoate (145d). This was obtained from 
corresponding acid chloride 147c (0429 g, 2.033 mmol) and aniline 148a (0.306 g, 2.033 
mmol) in a similar manner as described for preparation of 145g. After stirring overnight at 
room temperature, the yellow precipitate was filtered, washed with DCM (10 ml) and dried 
under vacuum to give the amide 145d (0.479 g, 1.47 mmol, 72%) as a yellow solid, mp 223-
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225 °C. !H NMR (400 MHz, DMSO-d6) 5 3.86 (3H, s, OCH3), 7.15 (1H, d, J  15.6 Hz, CH), 
7.21-7.25 (1H, m, ArH), 7.61-7.64 (1H, m, ArH), 7.71 (1H, d, J  15.6 Hz, CH), 7.94 (1H, dd, 
J  1.6, 7.2 Hz, ArH), 8.0 (2H, d, J  8.0 Hz, 2 x CH, Ar), 8.25 (2H, d, J  8 . 8  Hz, 2 x CH, Ar),
8.35 (1H, d, J  8.0 Hz, ArH), 10.90 (1H, bs, NH). 13C NMR (100 MHz, DMSO-d6) 6  53.17 
(OCH3), 118.93 (CH, Ar), 122.29 (C, Ar), 124.43 (CH, Ar), 124.73 (2 x CH, Ar), 127.19 
(CH), 129.91 (2 x C H , Ar), 131.27 (CH, Ar), 134.63 (CH, Ar), 139.55 (CH), 140.01 (C, 
Ar), 141.71 (C,Ar), 148.49 (C, Ar), 163.85 (C=0), 168.16 (C=0). vmax (solidy^m '1) 3264 
(md), 1689 (st), 1675 (st), 1588 (st), 1500 (st), 1444 (md), 1314 (st), 1235 (st). MS m/z (API- 
ES): found 327 (M+H)+ (100%). HRMS m/z (API-ES): found 327.0978 (M+H)+ (100 %), 
calculated for C 1 7H 15N 2 O5 327.0981.

Methyl 3-[3-(4-nitrophenyl)acryloylamino]benzoate (145e). This was obtained from 
corresponding acid chloride 147c (0.660 g, 3.12 mmol) and aniline 148d (0.471 g, 3.12 
mmol) in a similar manner as described for preparation o f 145g. After stirring overnight at 
room temperature, the yellow precipitate was filtered, washed with DCM (10 ml) and dried 
under vacuum to give the amide 1435e (0.810 g, 2.48 mmol, 80%) as a yellow solid, mp 224- 
225 °C. !H NMR (400 MHz, DMSO-d6) 8  3.85 (3H, s, OCH3), 6.98 (1H, d, J  16.0 Hz, CH), 
7.49 (1H, t, J1.9  Hz, ArH), 7.66 (1H, d, J1.9  Hz, CH, Ar), 7.70 (1H, d, J  16.0 Hz, CH), 7.88 
(2H, d, J  8.4 Hz, 2 x CH, Ar), 7.94 (1H, dd, J  1.0, 7.9 Hz, ArH), 8.28 (2H, d, J 8 .4  Hz, 2 x 
CH, Ar), 8.35 (1H, s, ArH), 10.65 (1H, bs, NH). 13C NMR (100 MHz, DMSO-d6) 5 52.90 
(OCH3), 120.45 (CH, Ar), 124.38 (CH, Ar), 124.86 (4 x CH, Ar), 126.88 (CH), 129.50 
(CH,Ar), 130.04 (CH, Ar), 130.87 (CH, Ar), 138.79 (CH), 140.08 (C, Ar), 141.83 (C, Ar), 
148.38 (C, Ar), 163.75 (C=0), 166.72 (C=0). vmax (solidy^m '1) 3370 (st), 1713 (st), 1686 
(st), 1591 (st), 1544 (st), 1428 (st), 1337 (st), 1227 (st). MS m/z (API-ES): found 327 
(M+H)+ (100%). HRMS m/z (API-ES): found 327.0984 (M+H)+ (100%), calculated for 
Ci7H15N205 327.0981.

Methyl 4-[3-(4-nitrophenyl)acryloylamino]benzoate (145f). This was obtained from 
corresponding acid chloride 147c (0.325 g, 1.54 mmol) and aniline 148e (0.232 g, 1.54 
mmol) in a similar manner as described for preparation o f 145g. After stirring overnight at 
room temperature, the yellow precipitate was filtered, washed with DCM (10 ml) and dried 
under vacuum to give the amide 145f (0.421 g, 1.29 mmol, 84%) as a yellow solid, mp 252- 
254 °C. *H NMR (400 MHz, DMSO-d6) 5 3.81 (3H, s, OCH3), 7.01 (1H, d, J  15.6 Hz, CH),
7.72 (1H, d, J  15.6 Hz, CH), 7.82 (2H, d, J9 .2  Hz, 2 x CH, Ar), 7.89 (2H, d, J 8 .7  Hz, 2 x 
CH, Ar), 7.96 (2H, d, J8 .7  Hz, 2 x CH, Ar), 8.28 (2H, d, J 9 2  Hz, 2 x CH, Ar), 10.69 (1H, s, 
NH). 13C NMR (100 MHz, DMSO-d6) 5 52.40 (OCH3), 119.46 (2 x CH, Ar), 124.88 (4 x 
CH, Ar), 125.00 (C, Ar), 126.78 (CH), 129.58 (2 x CH, Ar), 131.07 (2 x CH, Ar), 139.20 
(CH), 141.76 (C, Ar), 144.05 (C, Ar), 148.46 (C, Ar), 163.98 (C=Q), 166.47 (C=Q). vmax
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(solidVCcm-1) 3319 (st), 1694 (md), 1678 (st), 1590 (st), 1509 (st), 1403 (st), 1371 (st), 1340 
(st), 1319 (st), 1283 (st), 1161 (st) ,1112 (st). MS m/z (API-ES): found 327 (M+H)+ (100%). 
HRMS m/z (API-ES): found 327.0977 (M+H)+, calculated for Ci7 H 15N2 0 5  327.0981.

Methyl 3-[3-(4-chlorophenyl)acryloylamino]benzoate (145h). This was obtained as a white 
solid (0.489g, 1.98 mml, 40%) from corresponding acid chloride 147d (0.688 g, 3.82 mmol) 
and aniline 148d (0.576 g, 3.82 mmol) in a similar manner as described for preparation of 
145g, mp 156-158 °C. *H NMR (400 MHz, CDC13) 5 3.91 (3H, s, OCH3), 6.53 (1H, d, J  15.6 
Hz, CH), 7.36 (2H, d, J  8.6 Hz, 2 x CH, Ar), 7.44 (1H, t, J  7.8 Hz, ArH), 7.46 (2H, d, J  8.6 
Hz, 2 x CH, Ar), 7.57 (1H, s, NH), 7.72 (1H, d, J  15.6 Hz, CH), 7.81 (1H, d, J7 .8  Hz, ArH),
8.02 (1H, bd, J  7.8 Hz, ArH), 8.12 (1H, s, ArH). 13C NMR (100 MHz, CDC13) 5 52.51 
(OCH3), 121.22 (CH), 121.43 (CH, Ar), 124.88 (CH, Ar), 125.71 (CH, Ar), 129.31 (4 x 
CH, Ar), 129.47 (CH, Ar), 131.08 (C, Ar), 133.15 (C, Ar), 136.14 (C, Ar), 138.60 (C, Ar), 
141.51 (CH), 164.52 (C=0), 167.02 (C=0). vmax (solidy^m '1) 3279 (st), 1715 (s t) , 1659 
(st), 1626 (st), 1555 (st), 1488 (st), 1281 (st). MS m/z (API-ES): found 316 (M35C1+H)+ 
(100%), 318 (M37C1+H)+ (70%). HRMS m/z (API-ES): found 316.0738 [M+H]+ (100%), 
calculated for Ci7H15C1N03 316.0740.

Methyl 4-[3-(4-chlorophenyl)acryloylamino]benzoate (145i). This was obtained as a white 
solid (0.230 g, 0.75 mmol, 41%) from corresponding acid chloride 147d (0.354 g, 1.86 
mmol) and aniline 148e (0.281 g, 1.86 mmol) in a similar manner as described for preparation 
of 145g, mp 193-195 °C. *H NMR (400 MHz, CDC13) 5 3.91 (3H, s, OCH3), 6.52 (1H, d, J
16.2 Hz, CH), 7.37 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.47 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.49 
(1H, s, NH), 7.70 (2H, d, J  8.8 Hz, 2 x CH, Ar), 7.73 (1H, d, J  16.2 Hz, CH), 8.04 (2H, d, J
8.8 Hz, 2 x CH, Ar). 13C NMR (100 MHz, CDC13) 5 52.29 (OCH3), 119.25 (2 x CH, Ar),
121.00 (CH), 126.07 (C, Ar), 129.42 (2 x CH, Ar), 129.46 (2 x CH, Ar), 131.14 (2 x CH, 
Ar), 133.07 (C, Ar), 136.41 (C, Ar), 142.20 (CH Ar), 142.30 (C, Ar), 163.94 (C=0),
166.78 (C=0). vmax (so lidy^m '1) 3269 ,1716 (st), 1654 (st), 1621 (st), 1590 (md), 1522 (st), 
1489 (md), 1434 (md), 1403 (md), 1331 (md), 1273 (st). MS m/z (API-ES): found 316 
(M35C1+H)+ (100%), 318 (M37C1+H)+ (35%). HRMS m/z (API-ES): found 316.0740 (M+H)+ 
(100%), calculated for C ,7Hi5C1N03 316.0740.

Methyl 2-[3-(4-methoxyphenyl)acryloylamino]benzoate (145j). This was obtained as a off- 
white solid (0.900 g, 2.89 mmol, 86%) from corresponding acid chloride 147e (0.655 g, 3.34 
mmol) and aniline 148a (0.505 g, 3.34 mmol) in a similar manner as described for 
preparation of 145g, mp 99-101 °C. JH NMR (400 MHz, CDC13) 5 3.85 (3H, s, OCH3), 3.95 
(3H, s, OCH3), (1H, s, J  15.8 Hz, CH), 6.92 (2H, d, J 9 .0  Hz, 2 x CH, Ar), 7.07-7.11 (1H, m, 
ArH), 7.48 (2H, d, J  9.0 Hz, 2 x CH, Ar), 7.55-760 (1H, m, ArH), 7.71 (1H, d, J  15.8 Hz,
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CH), 8.05 (1H, dd, J  1.3, 8.5 Hz, ArH), 8.87 (1H, dd, J  1.3, 8.5 Hz, ArH), 11.31 (1H, bs, 
NH). 13C NMR (100 MHz, CDC13) 5 52.55 (OCH3), 55.55 (OCH3), 114.50 (2 x CH, Ar),
114.97 (C, Ar), 119.73 (CH), 120.71 (CH, Ar), 122.55 (CH, Ar), 127.60 (C, Ar), 129.89 
(2xC H , Ar), 131.07 (CH, Ar), 134.90 (CH, Ar), 142.09 (CH), 142.24 (C, Ar), 161.38 (C, 
Ar), 165.02 (C=0), 169.10 (C=0). vmax ( s o l i d ) / ^ 1) 3255 (md), 1695 (st), 1673 (st), 1626 
(st), 1600 (st), 1584 (st), 1509 (st), 1434 (st), 1251 (st). MS m/z (API-ES): found 312 
(M+H)+ (100%). HRMS m/z (API-ES): found 312.1234 (M+H)+ (100%), calculated for 

Ci8H ,8N04 312.1236.

Methyl 3-[3-(4-methoxyphenyl)acryloylamino]benzoate (145k). This was obtained as a 
white solid (0.600 g, 1.92 mmol, 60%) from corresponding acid chloride 147e (0.637 g, 3.25 
mmol) and aniline 148d (0.490 g, 3.25 mmol) in a similar manner as described for 
preparation of 145g, mp 145-146 °C. 'H NMR (400 MHz, CDC13) 6 3.84 (3H, s, OCH3), 3.91 
(3H, s, OCH3), 6.43 (1H, d, J  15.2 Hz, CH), 6.90 (2H, d, J  8.6 Hz, 2 x CH, Ar), 7.42 (1H, t, J
7.3 Hz, ArH), 7.48 (2H, d, J  8.6 Hz, 2 x CH, Ar), 7.55 (1H, bs, NH), 7.73 (1H, d, J  15.2 Hz, 
CH), 7.79 (1H, d, J7 .3  Hz, ArH), 8.03 (1H, bd, J  7.3 Hz, ArH) 8.12 (1H, s, ArH). 13C NMR 
(100 MHz, CDC13) 5 52.46 (OCH3), 55.61 (OCH3), 114.56 (2 x CH, Ar), 118.15 (CH),
120.97 (CH, Ar), 124.68 (CH, Ar), 125.50 (CH, Ar), 127.42 (C, Ar), 129.45 (CH, Ar), 
129.86 (2 xC H , Ar), 131.12 (C, Ar), 138.66 (C, Ar), 142.77 (CH), 161.48 (C, Ar), 164.77 
(C=0), 166.97 (C=0). vmax (solidy^m '1) 3280 (md), 1719 (st), 1657 (st), 1599 (st), 1542 
(st), 1253 (st), 1281 (st), 1172 (st). MS m/z (API-ES): found 312 (M+H)+ (100%). HRMS 
m/z (API-ES): found 312.1228 (M+H)+ (100%), calculated for Ci8Hi8N 0 4312.1236.

Methyl 4-[3-(4-methoxyphenyl)acryloylamino]benzoate (1451). This was obtained as a white 
solid (0.403 g, 1.29 mmol, 72%) from corresponding acid chloride 147e (0.355 g, 1.81 mmol) 
and aniline 148e (0.273 g, 1.81 mmol) in a similar manner as described for preparation of 
145g mp 179-181 °C. *H NMR (400 MHz, CDC13) 5 3.84 (3H, s, OCH3), 3.90 (3H, s, OCH3),
6.42 (1H, d, J  14.8 Hz, CH), 6.90 (2H, d, J  8.8 Hz, 2 x CH, Ar), 7.48 (2H, d, J  8.8 Hz, 2 x 
CH, Ar), 7.55 (1H, bs, NH), 7.71 (2H, d, J  8.6 Hz, 2 x CH, Ar), 7.74 (1H, d, J  14.8 Hz, CH),
8.03 (2H, d, J  8.6 Hz, 2 x CH, Ar). 13C NMR (100 MHz, CDC13) 5 52.24 (OCH3), 55.62 
(OCH3), 114.62 (2 x CH, Ar), 117.96 (CH), 119.14 (2 x CH, Ar), 125.76 (C, Ar), 127.31 
(C, Ar), 129.94 (2 x CH, Ar), 131.12 (2 x CH, Ar), 142.62 (C, Ar), 143.25 (CH), 161.62 
(C, Ar), 164.64 (C=0), 166.86 (C=0). vmax (solidy^m '1) 3160 (md), 1706 (st), 1653 (st), 
1602 (st), 1590 (st), 1506 (st), 1403 (st), 1276 (st). MS m/z (API-ES): found 312 (M+H)+ 
(100%). HRMS m/z (API-ES): found 312.1239 (M+H)+ (100%), calculated for Ci8H18N 04 
312.1236.

Methyl 2-[3-(3,4,5-trimethoxyphenyl)acryloylamino]benzoate (145m). This was obtained as 
a yellow solid (0.462 g, 1.24 mmol, 96%) from corresponding acid chloride 145f (0.332, 1.29
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mmol) and aniline 148a (0.215, 1.42 mmol) in a similar manner as described for preparation 
of 145g, mp 149-150 °C. !H NMR (400 MHz, CDC13) 8 3.82 (3H, s, OCH3), 3.86 (6H, s, 
OCH3), 3.90 (3H, s, OCH3), 6.46 (1H, d, 7  15.6 Hz, CH), 7.02-7.07 (1H, m, ArH), 7.50-7.55 
(1H, m, ArH), 7.61 (1H, d, .715.6 Hz, CH), 8.00 (1H, dd, 7,1.2, 8.2 Hz, ArH), 8.81 (1H, dd,7
1.2, 8.2 Hz), 11.26 (1H, s, NH). 13C NMR (100 MHz, CDC13) 8 51.37 (OCH3), 55.22 (2 x
OCH3), 59.95 (OCH3), 104.23 (2 xCH , Ar), 113.80 (C, Ar), 119.62 (CH, Ar), 120.02 (CH, 
Ar), 121.53 (CH), 129.16 (C, Ar), 129.87 (CH, Ar), 133.78 (CH, Ar), 138.85 (C, Ar), 
140.85 (C„ Ar), 141.40 (CH), 152.40 (C, Ar), 163.42 (C=0), 168.02 (C=0). vmax
(solidytcm'1) 3260 (st), 1681 (st), 1582 (st), 1531 (st), 1505 (st), 1450 (st), 1427 (st), 1414
(st), 1236 (st), 1150 (st). MS m/z (API-ES): found 372 (M+H)+ (100%). HRMS m/z (API- 
ES): found 221.0803 (M-CgHgNC^)*, calculated for Ci2 H ] 3 0 4  221.0814; found 743.2811 
(2M+H)+, calculated for C4oH43N20,2 743.2816; found 372.1430 (M+H)+, calculated for 
C2 0 H2 2NO6  372.1447; found 765.2621 (2M+Na)+, calculated for C ^ ^ N z O u N a  765.2635.

Methyl 2-(3-phenylacryloylamino)benzoate (145n). This was obtained as a white solid 
(0.700 g, 2.49 mmol, 84%) from corresponding acid chloride 147g (0.493 g, 2.96 mmol) and 
aniline 148a (0.448 g, 2.96 mmol) in a similar manner as described for preparation of 145g, 
mp 93-95 °C. ]H NMR (400 MHz, CDC13) 8 3.69 (3H, s, OCH3), 6.63 (1H, d, 7  15.8 Hz, 
CH), 7.08-7.13 (1H, m, ArH), 7.26-7.42 (3H, m, ArH), 7.56-7.60 (3H, m, ArH), 7.76 (1H, d, 
7  15.8 Hz, CH), 8.06 (1H, dd, 7  1.2, 8.4 Hz, ArH), 8.90 (1H, dd, 7  1.2, 8.4 Hz, ArH), 11.38 
(1H, bs, NH). 13C NMR (100 MHz, CDC13) 8 52.61 (OCH3), 115.12 (C, Ar), 120.81 (CH, 
Ar), 122.25 (CH), 122.78 (CH, Ar), 128.30 (2 x CH, Ar), 129.08 (2 x CH, Ar). 130.21 
(CH,Ar), 131.10 (CH, Ar), 134.91 (C, Ar), 135.00 (CH, Ar), 142.08 (C, Ar), 142.49 (CH),
164.72 (C=0), 169.16' (C=0). vmax ( s o l i d ) / ^ 1) 3263 (md), 1687 (st), 1604 (st), 1434 (st). 
MS m/z (API-ES): found 282 (M+H)+ (100%). HRMS m/z (API-ES): found 282.1125 
(M+H)+ (100%), calculated for Ci7Hi6N 0 3 282.1130.

Methyl 3-(3-phenylacryloylamino)benzoate (145o). This was obtained as a white solid 
(0.545 g, 1.91 mmol, 66%) from corresponding acid chloride 137g (0.479 g, 2.88 mol) and 
aniline 148d (0.434 g, 2.88 mmol) in a similar manner as described for preparation of 145g, 
mp 151-153 °C. ]H NMR (400 MHz, CDC13) 8 3.92 (3H, s, OCH3), 6.53 (1H, d, 7  15.4 Hz, 
CH), 7.38-7.42 (4H, m, ArH), 7.44 (1H, t, 77 .9  Hz, ArH), 7.50 (1H, bs, NH), 7.53-7.76 (1H, 
m, ArH), 7.78 (1H, d, 7  15.4 Hz, CH), 7.81 (1H, d, 7  7.9 Hz, ArH), 8.03 (1H, bd, 7  7.9 Hz, 
ArH), 8.12 (1H, s, ArH). 13C NMR (100 MHz, CDC13) 8 52.48 (OCH3), 120.67 (CH),
121.02 (CH, Ar), 124.73 (CH, Ar), 125.66 (CH, Ar), 128.23 (2xC H ,A r), 129.13 (2xC H , 
Ar), 129.48 (CH, Ar), 130.35 (CH, Ar), 131.15 (C, Ar), 134.69 (C, Ar), 138.52 (C, Ar), 
143.13 (CH), 164.43 (C=0), 166.97 (C=0). vmax ( s o l i d ) / ^ 1) 3250 (st), 1721 (st), 1658 
(st), 1618 (st), 1547 (st), 1484 (st), 1347 (st), 1276 (st), 1178 (st). MS m/z (API-ES): found
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282 (M+H)+ (100%). HRMS m/z (API-ES): found 282.1129 (M+H)+ (100%), calculated for

C i7H 16N 0 3 282.1130.

Methyl 4-(3-phenylacryloylamino)benzoate (148p). This was obtained as a pink solid (0.499 
g, 1.77 mmol, 88%) from corresponding acid chloride 147g (0.336, 2.02 mmol) and aniline 
148e (0.30 g, 2.02 mmol) in a similar manner as described for preparation of 145g, mp 176- 
178 °C. ]H NMR (400 MHz, CDC13) 5 3.90 (3H, s, OCH3), 6.59 (1H, d, J  15.6 Hz, CH), 
7.36-7.39 (3H, m, ArH), 7.49-7.52 (2H, m, ArH), 7.73 (2H, d, J  8.8 Hz, 2 x CH, Ar), 7.81 
(1H, d, J  15.6 Hz, CH), 7.83 (1H, bs, NH), 8.02 (2H, d, J 8 . 8  Hz, 2 x CH, Ar). 13C NMR (100 
MHz, CDC13) 5 52.27 (OCH3), 119.28 (2 x CH, Ar), 120.57 (CH), 125.89 (C, Ar), 128.27 
(2 x CH, Ar), 129.16 (2 x CH, Ar), 130.47 (CH, Ar), 131.12 (2 x CH, Ar), 134.60 (C, Ar),
142.55 (C, Ar), 143.52 (CH), 164.42 (C=0), 166.88 (C=0). vmax (solidy^m '1) 3383 (md), 
1707 (st), 1670 (st), 1623 (st), 1606 (st), 1590 (st), 1519 (st), 1404 (st), 1275 (st). MS m/z 
(API-ES): found 282 (M+H)+ (100%). HRMS m/z (API-ES): found 282.1129 (M+H)+
(100%), calculated for C17Hi6N 0 3 282.1130.

3,N-diphenylacrylamide (145q). This was obtained as a white solid (1.45 g, 6.48 mmol, 
98%) from corresponding acid chloride 147g (1.10 g, 6.60 mmol) and aniline 148f (0.614 g,
6.60 mmol) in a similar manner as described for preparation o f 145g, mp 148-150 °C (lit421 
154-156 °C). ]H NMR (400 MHz, CDC13) 5 6.55 (1H, d, J  15.4 Hz, CH), 7.14 (1H, t, J 7 .6  
Hz, ArH), 7.48 (6H, m, ArH), 7.53 (2H, m, ArH), 7.62 (2H, bd, J  7.6 Hz, ArH), 7.76 (1H, d, 
J  15.4 Hz, CH).

Methyl 4-(3-phenylacryloylamino)benzoate (145r). This was obtained as a white solid from 
corresponding acid chloride 147g (1.1 g, 6.62 mmol) and aniline 148b (1.10 g, 6.62 mmol) in 
a similar manner as described for preparation of 145g. The crude was used in the next step 
without further purification.

Methyl 4-[2-(2-nitrophenylcarbamoyl)vinyI]benzoate (145s). This was obtained as a yellow 
solid (0.189 g, 0.579 mmol, 93%) from corresponding acid chloride 147a (0.140 g, 0.625 
mmol) and aniline 148g (0.095 g, 0.688 mmol) in a similar manner as described for 
preparation o f 145g, mpl73-175 °C. !H NMR (400 MHz, CDC13) 8 3.88 (3H, s, OCH3), 6.64 
(1H, d, J  15.6 Hz, CH), 7.14-7.18 (1H. m, ArH), 7.59 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.62-
7.66 (1H, s, ArH), 7.72 (2H, d, J  15.6 Hz, CH), 8.02 (1H, d, J8 .4  Hz, 2 x CH, Ar), 8.20 (1H, 
dd, J  1.3, 8.5 Hz, ArH), 8.88 (1H, dd, J  1.3, 8.5 Hz, ArH), 10.62 (1H, s, NH). 13C NMR (100 
MHz, CDC13) 5 52.45 (OCH3), 116.21 (C, Ar), 122.14 (CH, Ar), 123.12 (CH), 124.48 
(CH, Ar), 129.04 (CH, Ar), 130.77 (CH, Ar), 131.12 (CH, Ar), 133.56 (C, Ar), 135.32 
(CH, Ar), 140.05 (C, Ar), 141.47 (CH), 141.98 (C, Ar), 166,75 (C=0), 170.05 (C=0). vmax 
(solidytcnf1) 3370 (st), 1711 (st), 1688 (st), 1605 (st), 1581 (st), 1494 (st), 1340 (st), 1316
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(st), 1268 (st), 1105 (st). MS m/z (API-ES): found 327 (M+H)+ (100%). HRMS m/z (API- 
ES): found 327.0961 (M+H)+, calculated for C n H ^ O s  327.0981; found 189.0539 (M- 
C8 H8N 0 2)+, calculated for C 1 1H9 O3 189.0552; found (M+Na)+ 349.0787, calculated for 
Ci7 Hi4 N2 0 5 Na 349.0800; found 675.1683 (2M+Na)+, calculated for C3 4 H2 8N4 0 ioNa 
675.1703.

Methyl 2-(4-nitro-3-phenylbutyrylamino)benzoate (1441)
A mixture o f 145n (0.227 g, 0.796 mmol), DBU (0.145 g, 0.955 mmol) in nitromethane (5 
mL), was stirred in the microwave reactor at 100 °C for 15 min. After cooling to room 
temperature, the reaction mixture was poured into HC1 (aq, 1M, 10 ml). The product 
extracted with ethyl acetate ( 2 x 1 5  ml), dried over Na2 S0 4  and the solvent removed under 
reduced pressure. Chromatography on silica gel using the FlashMaster 3 purification station 
(80:20 hexanes/ethyl acetate, Rf 0.20) afforded 1441 (0.140 g, 0.460 mmol, 51%) as off-white 
solid, mp 104-106 °C. lU NMR (400 MHz, CDC13) 5 2.85 (1H, dd, J  7.2, 15.2 Hz, CH, 
NO2 CH2 CHCH2 CO), 2.91 (1H, dd, J  7.2, 15.2 Hz, CH, NO2 CH2 CHCH2 CO), 3.98 (3H, m, 
OCH3 ), 4.13 (1H, quint, J  7.3 Hz, CH, N 0 2 CH2 CHCH2 C0), 4.72 (1H, dd, J  8.4, 12.7 Hz, 
CH, NO2 CH2 CHCH2 CO), 4.86 (1H, dd, J  6 .6 , 12.7 Hz, CH, NO2 CH2 CHCH2 CO), 7.06-7.10 
(1H, m, ArH), 7.23-7.34 (5H, m, ArH), 7.49-7.54 (1H, m, ArH), 8.00 (1H, dd, J  1.4, 8.3 Hz, 
ArH), 8.00 (1H, d, J8 .3  Hz, ArH), 11.12 (1H, bs, NH). 13C NMR (100 MHz, CDC13) 5 40.64 
(CH2, NO2 CH2 CHCH2 CO), 41.71 (CH, NO2 CH2 CHCH2 CO), 52.63 (OCH3), 76.64 (CH2, 
N 0 2 CH2 CHCH2 C 0), 115.20 (C, Ar), 120.63 (CH, Ar), 123.07 (CH, Ar), 127.61 (2 x CH, 
Ar), 128.17 (2 x C H ,  Ar), 129.31 (CH, Ar), 131.04 (CH, Ar), 134.92 (CH, Ar), 138.76 (C, 
Ar), 141.21 (C, Ar), 168.77 (C=0), 168.93 (C=0). vmax (solidy^m '1) 3268 (st), 1684 (st), 
1544 (st), 1448 (md), 1428 (md), 1258 (st). MS m/z (API-ES): found 343 (M+H)+ (100%). 
HRMS m/z (API-ES): found 343.1294 (M+H)+ (100%), calculated for Ci8H19N2 0 5  343.1294.

Ethyl 4-(4-nitro-3-phenylbutyrylamino)benzoate (144a). This was prepared from 
corresponding amide 145r (1.340 g, 4.44 mmol) in a similar manner as described for 
preparation of 1441. Chromatography on silica gel (7:3 hexanes/ethyl acetate, Rf 0.20) 
afforded 144a (0.980 g, 2.75 mmol, 62%) as a yellow oil. !H NMR (400 MHz, CDCI3 ) 8  1.37 
(3H, t, J 1 A  Hz, CH2 CH3 ), 2.79 (1H, dd,J7.2, 15.2 Hz, CH, N 0 2 CH2 CHCI^C0), 2.86 (1H, 
dd, J  7.2, 15.2 Hz, CH, NO2 CH2 CHCH2 CO), 4.07 (1H, quint, J  7.2 Hz, CH, 
NO2 CH2 CHCH2 CO), 4.34 (2H, q, J  7.4 Hz, CH2 CH3 ), 4.72 (1H, dd, J  7.8, 12.6 Hz, CH, 
NO2 CH2 CHCH2 CO), 4.83 (1H, dd, J  6.4, 12.4 Hz, CH, NO2 CH2 CHCH2 CO), 7.21 (1H, bs, 
NH), 7.22-7.30 (2H, m, ArH), 7.27-7.36 (3H, m, ArH), 7.47 (2H, d, J  8 . 8  Hz, 2 x CH, Ar),
7.96 (2H, d, J  8 . 8  Hz, 2 x CH, Ar). 13C NMR (400 MHz, CDC13) 5 14.55 (CH2 CH3), 40.67 
(CH2, N 0 2 CH2 CHCH2 C0), 40.93 (CH2, NO2 CH2 CHCH2 CO), 61.20 (CH2 CH3), 79.50
(NO2 CH2 CHCH2 CO), 119.17 (2 x CH, Ar), 126.54 (C, Ar), 127.53 (2 x CH, Ar), 128.45 
(CH, Ar), 129.48 (2 x CH, Ar), 130.98 (2 x CH, Ar), 138.51 (C, Ar), 141.60 (C, Ar),
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166.30 (C =0), 168.39 (C =0). vmax (solidVCcm'1) 3254 (st), 1664 (st), 1535 (st), 1426 (md),

1236 (st). MS m/z (API-ES): found 357 (M+H)+ (100%). HRMS m/z (API-ES): found

357.1344 (M+H)+ (100%), calculated for C ,9 H2 1N 2 0 5  357.1450.

Ethyl 4-(3-naphthalen-2-yl-4-nitrobutyrylamino)benzoate (144b). This was prepared from 
corresponding amide 145b (0.995 g, 2.88 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed using the FlashMaster 3 
purification station (75:25 hexanes/ethyl acetate, Rf 0.20) afforded 144b (0.819 g, 2.017 
mmol, 70%) as a yellow oil. NMR (400 MHz, DMSO-d6) 6 1.26 (3H, t, J  7.4 Hz, 
CH2CH3 ), 2.85-2.96 (2H, m, 2 x CH, N 0 2CH2CHCH2C0), 4.10 (1H, quint, J  8.0 Hz, CH, 
N 0 2CH2CHCH2C 0), 4.23 (1H, q, J  7.4 Hz, CH2 CH3), 5.04 (1H, dd, J  9.0, 13.0 Hz, CH, 
N 0 2CH2CHCH2C 0), 5.12 (1H, dd, J 5.2, 12.0, Hz, CH, N 0 2CH2CHCH2C0), 7.45-7.48 (2H, 
m, ArH), 7.54 (1H, dd, J  1.6, 8.8 Hz, ArH), 7.62 (2H, d, J  8.8 Hz, 2 x CH, Ar), 7.82-7.87 
(6H, m, ArH) 10.33 (1H, bs, NH). 13C NMR (400 MHz, CDC13) 5 14.52 (CH2CH3), 40.75 
(N 02CH2CHCH2C 0), 40.79 (N 02CH2CHCH2C0), 61.21 (CH2CH3), 79.48
(N 02CH2CHCH2C 0), 119.21 (2 x CH, Ar), 124.97 (CH, Ar), 126.43 (CH, Ar), 126.65 (C, 
Ar), 126.78 (CH, Ar), 126.87 (CH, Ar), 127.92 (CH, Ar), 128.04 (CH, Ar), 129.37 (CH, 
Ar), 130.94 (2 x CH, Ar), 133.11 (C, Ar), 133.59 (C, Ar), 135.89 (C, Ar), 141.68 (C, Ar),
166.37 (C=0), 168.54 (C=0). vmax (solidy^m '1) 3255 (st), 1676 (st), 1539 (st), 1365 (md), 
1245 (st). MS m/z (API-ES): found 407 (M+H)+ (100%). HRMS m/z (API-ES): found 
407.1607 (M+H)+ (100%), calculated for C23H23N30 7 407.1607.

Methyl 2-hydroxy-4-(3-naphthalen-2-yl-4-nitro-3-butyrylamino)benzoate (144c). This was 
prepared from corresponding amide 145c (0.750 g, 2.16 mmol) in a similar manner as 
described for preparation of 1441. Chromatography on silica gel (70:30 hexanes/ethyl acetate, 
Rf 0.22) afforded 144c (0.467 g, 1.14 mmol, 55%) as a white solid, 145-147 °C. ]H NMR 
(400 MHz, DMSO-d6) 5 2.86 (1H, dd, J  7.6, 15.6 Hz, CH, N 0 2CH2CHCH2C0), 2.92 (1H, 
dd, J6 .4 , 15.2 Hz, CH, N 0 2CH2CHCH2C0), 3.81 (3H, s, OCH3), 4.09 (1H, quint, J  7.6 Hz, 
CH, N 0 2CH2CHCH2C0), 5.04 (1H, dd, J  9.2, 13.2 Hz, CH, N 0 2CH2CHCH2C0), 5.09 (1H, 
dd, J  5.8, 13.0 Hz, CH, N O ^f^CH CH sC O ), 6.97 (1H, dd, J  1.8, 8.8 Hz, H-2), 7.28 (1H, d, J
1.8 Hz, H-6), 7.46-749 (2H, m, ArH), 7.53 (1H, dd, J  1.6, 8.4 Hz, ArH), 7.65 (1H, d, J  8.8 
Hz, H-3), 7.81-7.87 (4H, m, ArH), 10.27 (1H, bs, NH), 10.55 (1H, s, OH). 13C NMR (400 
MHz, DMSO-d6) 5 40.35 (N 02CH2CHCH2C0), 40.84 (N 02CH2CHCH2C0), 52.87 
(OCH3), 80.16 (N 02CH2CHCH2C0), 106.79 (CH, Ar), 108.15 (C, Ar), 111.06 (CH, Ar),
126.37 (CH, Ar), 127.66 (CH, Ar), 126.97 (CH, Ar), 127.12 (CH, Ar), 128.18 (CH, Ar),
128.24 (CH, Ar), 128.83 (CH, Ar), 131.44 (CH, Ar), 132.94 (C, Ar), 133.54 (C, Ar),
137.83 (C, Ar), 145.90 (C, Ar), 161.81 (C, Ar), 169.61 (C=0), 169.98 (C=0). vmax 
(solidytcnf1) 3380 (md), 1698 (st), 1667 (st), 1597 (st), 1544 (st), 1541 (st), 1190 (st), 1151
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(st). MS m/z (API-ES): found 409 (M+H)+ (100%). HRMS m/z (API-ES): found 409.1402

(M+H)+, calculated for C2 2 H2 1N 2O 6 409.1400.

Methyl 2-[3-(4-chlorophenyl)-4-nitrobutyrylamino]benzoate (144e). This was prepared from 
the corresponding amide 145g (0.209 g, 0.680 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed by the Flash Master 3 
purification station (80:20 hexanes/ethyl acetate, Rf 0.26) afforded 144e (0.088 g, 0.234 
mmol, 35%) as an off-white solid, mp 105-107 °C. *H NMR 400 MHz, (CDCI3 ) 5 2.84 (1H, 
dd, J  7.4, 14.6 Hz, CH, NO2 CH2 CHCH2 CO), 2.89 (1H, dd, J  7.4, 14.6 Hz, CH, 
NO2 CH2 CHCH2 CO), 3.91 (3H, s, OCH3 ), 4.12 (1H, quint, J  7.3 Hz, CH,
NO2 CH2 CHCH2 CO), 4.69 (1H, dd, J 8 .8 , 12.7 Hz, CH, NO2 CH2 CHCH2 CO), 4.84 (1H, dd, J
6.2, 12.7 Hz, CH, NO 2 CH2 CHCH2 CO), 7.07-7.11 (1H, m, ArH), 7.22 (2H, d, J 8 . 8  Hz, 2 x 
CH, Ar), 7.30 (2H, d, J 8 . 8  Hz, 2 x CH, Ar), 7.50-7.54 (1H, m, ArH), 8.01 (1H, dd, J  1.4, 8.3 
Hz, ArH), 8.59 (1H, d, J  8.3 Hz, ArH), 11.12 (1H, bs, NH). 13C NMR (100 MHz, CDC13) 
5 40.03 (CH2, N 0 2 CH2 CHCH2 C0), 41.55 (CH, N 0 2 CH2 CHCH2 C0), 52.65 (OCH3), 79.39 
(CH2, NO2 CH2 CHCH2 CO), 115.20 (C, Ar), 120.62 (CH, Ar), 123.17 (CH, Ar), 129.05 (2 x 
CH, Ar), 129.50 (2 x CH, Ar), 131.08 (CH, Ar), 134.06 (C, Ar), 134.95 (CH, Ar), 137.24 
(C, Ar), 141.13 (C, Ar), 168.34 (C=0), 168.97 (C=0). vmax (solidy^m '1) 3275 (md), 
1691(st), 1545 (st), 1524 (st), 1447 (md), 1430 (md), 1268 (md), 1256 (st). MS m/z (API- 
ES): found 377 (M3 5 C1+H)+ (100%), 379 (M3 7 C1+H)+ (40%). HRMS m/z (API-ES): found 
377.0909 (M+H)+ (100%), calculated for C 1 8Hi8 C 1N 2 0 5  377.0904.

Methyl 3-[3-(4-chlorophenyl)-4-nitrobutyrylamino]benzoate (144f). This was prepared from 
corresponding amide 145h (0.160 g, 0.524 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed using the FlashMaster 3 
purification station (70:30 hexanes/ethyl acetate) afforded 144f (0.136 g, 0.400 mmol, 77%) 
as a yellow oil. ]H NMR (400 MHz, CDC13) 5 2.77 (1H, dd, J  7.6, 15.2 Hz, CH, 
NO2 CH2 CHCH2 CO), 2.85 (1H, dd, J  7.2, 15.2 Hz, CH, NO2 CH2 CHCH2 CO), 3.88 (3H, s, 
OCH3 ), 4.08 (1H, quint, J  7.8 Hz, CH, N 0 2 CH2 CHCH2 C0), 4.69 (1H, dd, J  8.0, 12.6 Hz, 
CH, NO2 CH2 CHCH2 CO), 4.81 (1H, dd, J  6.6, 12.6 Hz, CH, NO 2 CH2 CHCH2 CO), 7.16 (2H, 
d, J  8 . 6  Hz, 2 x CH, Ar), 7.27 (2H, d, J  8 . 6  Hz, 2 x CH, Ar) 7.36 (1H, t, J  7.6 Hz, ArH), 7.76 
(2H, d, J  8.4 Hz, ArH), 7.87 (1H, s, NH), 7.94 (1H, s, ArH). 13C NMR (100 MHz, CDC13) 
5 40.07 (CH2, N 0 2 CH2 CHCH2 C0), 40.36 (CH, N 0 2 CH2 CHCH2 C0), 52.67 (OCH3), 79.39 
(CH2, NO2 CH2 CHCH2 CO), 121.31 (CH, Ar), 125.09 (CH, Ar), 126.06 (CH, Ar), 128,98 (2 
x CH, Ar), 129.48 (2 x CH, Ar), 129.53 (CH, Ar), 130.98 (C, Ar), 134.17 (C, Ar), 137.10 
(C, Ar), 137.73 (C, Ar), 167.19 (C=0), 168.81 (C=0). vmax (o iiy^m '1) 3326 (md), 2954 
(st), 2924 (st), 1716 (st), 1670 (st), 1547 (st), 1431 (st), 1291 (st). MS m/z (API-ES): found 
394 (M3 5 C1+NH4)+ (100%), 377 (M3 5 C1+H)+ (5%). HRMS m/z (API-ES): found (M+H)+
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377.0903, calculated for C18H 18C1N20 5 377.0904; found (M+NH4)+ 394.1174, calculated for 
C ,8H2iC 1N 30 5  394.1170.

Methyl 4-[3-(4-chlorophenyl)-4-nitrobutyrylamino]benzoate (144g). This was prepared from 
corresponding amide 145i (0.152 g, 0.498 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed by the Flash Master 3 
purification station (70:30 hexanes/ethyl acetate, Rf 0.16) afforded 144g (0.131 g, 0.350 
mmol, 71%) as an off-white solid, mp 114-116 °C. lH NMR (400 MHz, CDC13) 8 2.76 (1H, 
dd, J  7.1, 15.5 Hz, CH, N 0 2CH2CHCH2C0), 2.83 (1H, dd, J  7.1, 15.5 Hz, CH, 
N 0 2CH2CHCH2C0), 3.88 (3H, s, OCH3), 4.06 (1H, quint, J  7.2 Hz, CH,
N 0 2CH2CHCH2C0), 4.67 (1H, dd, J8 .0 , 12.7 Hz, CH, N O ^H aC H C H ^O ), 4.81 (1H, dd, J
6.6, 12.7 Hz, CH, N 0 2CH2CHCH2C0), 7.15 (2H, d, J8 .2  Hz, 2 x CH, Ar), 7.27 (2H, d, J8 .2  
Hz, 2 x CH, Ar), 7.50 (2H, d, J  8.6 Hz, 2 x CH, Ar), 7.92 (1H, bs, NH), 7.94 (2H, t, J  8.6 Hz, 
2 x CH, Ar). 13C NMR (100 MHz, CDC13) 8 39.95 (CH2, N 0 2CH2CHCH2C0), 40.45 (CH, 
N 0 2CH2CHCH2C0), 52.37 (OCH3), 79.37 (CH, N 0 2CH2CHCH2C0), 119.31 (2xCH,Ar) ,  
126.11 (C, Ar), 128.94 (2 x CH, Ar), 129.57 (2 x CH, Ar), 131.03 (2 x CH, Ar), 134.21 
(C, Ar), 137.10 (C, Ar), 141.84 (C, Ar), 166.91 (C=0), 168.37 (C=0). vmax (solidy^m ’1) 
3340 (md), 1700 (st), 1669 (st), 1553 (st), 1514 (st), 1407 (md), 1280 (st). MS m/z (API-ES): 
found 377 (M35C1+H)+ (100%), 379 (M37C1+H)+ (35%). HRMS m/z (API-ES): found 
377.0902 (M+H)+ (100%), calculated for C]8H18C1N20 5 377.0904.

Methyl 2-[3-(4-methoxyphenyl)-4-nitrobutyrylamino]benzoate (144h). This was prepared 
from corresponding amide 145j (0.176 g, 0.565 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed by the Flash Master 3 
purification station (80:20 hexanes/ethyl acetate, Rf 0.20) afforded 144h (0.084 g, 0.226 
mmol, 40%) as a off-white solid, 81-83 °C. *H NMR (400 MHz, CDC13) 8 2.82 (1H, dd, J  
7.4, 15.2 Hz, CH, N 0 2CH2CHCH2C0), 2.88 (1H, dd, J  7.4, 15.2 Hz, CH,
N 0 2CH2CHCH2C 0), 3.76 (3H, m, OCH3), 3.19 (3H, s, OCH3), 4.08 (1H, quint, J  7.3 Hz, 
CH, N 0 2CH2CHCH2C 0), 4.67 (1H, dd, JS.4, 12.5 Hz, CH, N 0 2CH2CHCH2C0), 4.82 (1H, 
dd, J  6.6, 12.5 Hz, CH, N 0 2CH2CHCH2C0), 6.84 (2H, d, J  8.8 Hz, 2 x CH, Ar), 7.06-7.10 
(1H, m, ArH), 7.19 (2H, d, J  8.8 Hz, 2 x CH, Ar), 7.50-7.54 (1H, m, ArH), 8.00 (1H, dd, J
1.2, 8.2 Hz, ArH), 8.61 (1H, dd, J  1.2, 8.2 Hz, ArH), 11.10 (1H, bs, NH).13C NMR (100 
MHz, CDC13) 8 40.02 (CH2, N 0 2CH2CHCH2C0), 41.93 (CH, N 0 2CH2CHCH2C0), 52.62 
(OCH3), 55.44 (OCH3), 79.91 (CH2, N 0 2CH2CHCH2C0), 114.67 (2 x CH, Ar), 115.22 (C, 
Ar), 120.65 (CH, Ar), 123.08 (CH, Ar), 128.68 (2 x CH, Ar), 130.59 (C, Ar), 131.03 (CH, 
Ar), 134.90 (CH, Ar), 141.20 (C, Ar), 159.37 (C=0), 168.93 (C=0). vmax ( s o l id ) /^ '1) 
3272 (md), 1698 (st), 1681 (st), 1603 (md), 1687 (md), 1545 (st), 1514 (st), 1447 (md), 1431 
(md), 1250 (st). MS m/z (API-ES): found 373 (M+H)+ (100%). HRMS m/z (API-ES): found 
373.1399 (M+H)+ (100 %), calculated for Ci9H21N20 6 373.1400.

194



Methyl 3-[3-(4-methoxyphenyl)-4-nitrobutyrylamino]benzoate (144i). This was prepared 
from corresponding amide 145k (0.156 g, 0.500 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed performed using the 
FlashMaster 3 purification station (80:20 hexanes/ethyl acetate) afforded 144i (0.129 g, 0.346 
mmol, 69%) as a yellow oil. *H NMR (400 MHz, CDC13) 8  2.75 (1H, dd, J 1 2 ,  15.2 Hz, CH, 
N 0 2 CH2 CHCH2 C0 ), 2.82 (1H, dd, J  7.4, 15.0 Hz, CH, N 0 2 CH2 CHCH2 C0 ), 3.74 (3H, s, 
OCH3), 3.86 (3H, s), 4.03 (1H, quint, J 7.3 Hz, CH, N 0 2 CH2 CHCH2 C0), 4.65 (1H, dd, J7 .8 ,
12.6 Hz, CH, N 0 2 CH2 CHCH2 C0 ), 4.77 (1H, dd, J  6 .8 , 12.4 Hz, CH, N0 2CH2 CHCH2 C0 ),
6.81 (2H, d, J  8 . 6  Hz, 2 x CH, ArH), 7.12 (2H, d, J 8 . 6  Hz, 2 x CH, ArH) 7.33 (1H, t, J7.6  
Hz, ArH), 7.74 (2H, d, J7 .6  Hz, ArH), 7.94-7.95 (2H, m, CH, ArH, & NH). 13C NMR (100 
MHz, CDC13) 8  40.07 (CH2, N 0 2 CH2 CHCH2 C0), 40.75 (CH, N 0 2 CH2 CHCH2 C0), 52.55 
(OCH3), 55.45 (OCH3), 79.90 (CH2, N 0 2 CH2 CHCH2 C0), 114.71 (2 x CH, Ar), 121.22 
(CH, Ar), 124.95 (CH, Ar), 125.81 (CH, Ar), 128.62 (2 x CH, Ar), 129.36 (CH, Ar),
130.44 (C, Ar), 130.96 (C, Ar), 137.97 (C, Ar), 159.43 (C, Ar), 167.06 (C=0), 169.07 
(C=0). vmax (solidytcrn1) 3323 (md), 1718 (st), 1668 (st), 1547 (st), 1513 (st), 1439 (st), 
1297 (st), 1249 (st). MS m/z (API-ES): found 390 (M+NH4)+ (100%), 373 (M+H)+ (40%). 
HRMS m/z (API-ES): found 373.1397 (M+H)+, calculated for Ci9 H2 iN2 0 6  373.1400; found 
390.1675 (M+NH4)+, calculated for C]9H2 4 N306 390.1665.

Methyl 4-[3-(4-methoxyphenyl)-4-nitrobutyrylamino]benzoate (144j). This was prepared 
from corresponding amide 1451 (0.189 g, 0.607 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed using the FlashMaster 3 
purification station (70:30 hexanes/ethyl acetate, Rf 0.15) to give 144j (0.146 g, 0.400 mmol, 
57%) as an off-white solid, mp 89-91 °C. *H NMR (400 MHz, CDC13) 8  2.75 (1H, dd, J  6.9,
15.1 Hz, CH, NOzCHzCHCH^CO), 2.84 (1H, dd, J6 .9 , 15.1 Hz, CH, N 0 2 CH2 CHCH2 C0 ),
3.76 (3H, s, OCH3), 3.88 (3H, s, OCH3), 4.06 (1H, quint, J 7.3 Hz, CH, N 0 2 CH2 CHCH2 C0),
4.67 (1H, dd, J  7.6, 12.4 Hz, CH, N0 2 CH2 CHCH2 C0 ), 4.76 (1H, dd, J  6.4, 12.4 Hz, CH, 
N 0 2 CH2 CHCH2 C0 ), 6.85 (2H, d, J 8 . 6  Hz, 2 x CH, Ar), 7.15 (2H, d, J 8 . 6  Hz, 2 x CH, Ar),
7.48 (2H, d, J  8 . 6  Hz, 2 x CH, Ar), 7.49 (1H, bs, NH), 7.96 (2H, d, J  8 . 6  Hz, 2 x CH, Ar). 
13C NMR (100 MHz, CDC13) 8  40.00 (CH2, N 0 2 CH2 CHCH2 C0), 40.90 (CH,
N 0 2 CH2 CHCH2 C 0), 52.33 (OCH3), 55.47 (OCH3), 79.87 (CH2, N 0 2 CH2 CHCH2 C0),
114.78 (2 x CH, Ar), 119.30 (2 x CH, Ar), 126.00 (C, Ar), 128.59 (2 x CH, Ar), 130.35 
(C, Ar), 130.98 (2 x CH, Ar), 141.95 (C, Ar), 159.48 (C, Ar), 166.90 (C=0), 168.83 
(C=0). vmax (solidy^m "1) 3327 (md), 1707 (st), 1658 (st), 1548 (st), 1516 (st), 1279 (st). MS 
m/z (API-ES): found 473 (M+H)+ (100%). HRMS m/z (API-ES): found 373.1404 (M+H)+ 
( 1 0 0 %), calculated for Ci9 H2 1 N2 0 6  373.1400.
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Methyl 2-f4-nitro-3-(3,4,5-trimethoxyphenyl)butyrylamino]benzoate (144k). This was 
prepared from corresponding amide 145m (0.120 g, .0323 mmol) in a similar manner as 
described for preparation o f 1441. Chromatography on silica gel performed using FlashMaster 
3 purification station (60:40 hexanes/ethyl acetate) afforded 144k (0.048 g, O.lllmmol, 34%) 
as an off white solid, 130-132 °C. *H NMR (400 MHz, CDC13) 8  2.81 (1H, dd, J  15.0, 7.4 Hz, 
CH, NO2 CH2 CHCH2 CO), 2.86 (1H, dd, J  15.2, 7.2 Hz, CH, NO2 CH2 CHCH2 CO), 3.76 (3H, 
s, OCH3 ), 3.80 (6 H, s, OCH3 ), 3.88 (3H, s, OCH3), 4.01-4.11 (1H, m, CH, 
N 0 2 CH2 CHCH2 C 0), 4.71 (1H, dd, J  12.8, 8.4 Hz, CH, NO2 CH2 CHCH2 CO), 4.82 (1H, dd, J
12.6, 6 . 6  Hz, CH, NO 2 CH2 CHCH2 CO), 6.44 (2H, s, H-2’ & H-6 ’), 7.05-7.09 (1H, m, ArH),
7.49 (1H, m, ArH), 7.98 (1H, dd, J  1.4, 7.9 Hz), 8.60 (1H, d, J1 .9  Hz), 11.08 (1H, s, NH). 
13C NMR (100 MHz, CDC13) 8  41.15 (N 0 2 CH2 CHCH2 C 0), 42.07 (N 0 2 CH2 CHCH2C0),
52.61 (OCH3 ), 56.21 (2 x OCH3 ), 60.96 (OCH3), 79.54 (N 0 2 CH2 CHCH2 C0), 104.53 (2 x 
CH, Ar), 115.11 (C, Ar), 120.50 (CH, Ar), 123.11 (CH, Ar), 131.08 (CH, Ar), 134.17,
134.91 (CH, Ar), 137.73 (C, Ar), 141.18 (C, Ar), 153.75 (C, Ar), 168.73 (C=0), 168.90 
(C=0). vmax (solidV ^m '1) 3265 (md), 1702 (st), 1680 (st), 1589 (st), 1680 (st), 1589 (st), 
1541 (st), 1448 (st), 1429 (st), 1259 (st), 1238 (st), 1123 (st). MS m/z (API-ES): found 433 
(M+H)+ (100%). HRMS m/z (API-ES): found 433.1598 (M+H)+, calculated for C2 1 H2 5N2 O8 

433.1611; found 887.2939 (2M+Na)+, calculated for C42H4 gN4 0 i6Na 887.2963.

Methyl 3-(4-nitro-3-phenylbu.tyrylamino)benzoate (144m). This was prepared from 
corresponding amide 145o (0.148 g, 0.519 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed using the FlashMaster 3 
purification station (70:30 hexanes/ethyl acetate) afforded 144m (0.126 g, 0.368 mmol, 70%) 
as an off-white solid, mp 103-105 °C. !H NMR (400 MHz, CDC13) 8  2.78 (1H, dd, J 7.6, 15.2 
Hz, CH, NO 2 CH2 CHCH2 CO), 2.84 (1H, dd, J7 .4 , 15.7 Hz, CH, NO2 CH2 CHCH2 CO), 3.86 
(3H, s, OCH3 ), 4.06 (1H, quint, J  7.4 Hz, CH, N 0 2 CH2 CHCH2 C0), 4.69 (1H, dd, /8 .0 , 12.4 
Hz, CH, NO 2 CH2 CHCH2 CO), 4.81 (1H, dd, J  6.4, 12.8 Hz, CH, NO2 CH2 CHCH2 CO), 7.29-
7.35 (6 H, m, 5 x CH, Ar, & NH), 7.73 (2H, t, J  8.0 Hz, 2 x CH, Ar), 7.92 (2H, s, ArH). 13C 
NMR (100 MHz, CDCI3 ) 8  40.64 (CH2, N 0 2 CH2 CHCH2 C0), 40.73 (CH,
NO2 CH2 CHCH2 CO), 52.59 (OCH3 ), 79.61 (CH2, N 0 2 CH2 CHCH2 C0), 121.26 (CH, Ar),
125.01 (CH,Ar), 125.91 (CH, Ar), 127.54 (2 x CH, Ar), 128.34 (CH, Ar), 129.05 (2xC H , 
Ar), 130.98 (C, Ar), 137.85 (C, Ar), 138.60 (C, Ar), 167.04 (C=0), 168.95 (C=0). vmax 
(solidytcnf1) 3337 (md), 1704 (st), 1683 (st), 1591 (st), 1431 (st). MS m/z (API-ES): found 
360 (M+NH4)+ (100%), 343 (M+H)+(30%). HRMS m/z (API-ES): found 343.12942 (M+H)+, 
calculated for C 1 8H 19N 2 O5 343.1294; found (M+NH4 )+ 360.1564, calculated for C 18H2 2N3 O5 

360.1559.

Methyl 4-(4-nitro-3-phenylbutyrylamino)benzoate (145n). This was prepared from 
corresponding amide 145p (0.234, 0.832 mmol) in a similar manner as described for
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preparation of 1441. Chromatography on silica gel performed by the FlashMaster 3 
purification station (80:20 hexanes/ethyl acetate, Rf 0.17) afforded 144n (0.231 g, 0.675 
mmol, 81%) as an off-white solid, mp 93-95 °C. *H NMR (400 MHz, CDC13) 5 2.80 (1H, dd, 
J  7.0, 15.2 Hz, CH, NO2 CH2 CHCH2 CO), 2.88 (1H, dd, J  7.8, 15.2 Hz, CH, 
NO2 CH2 CHCH2 CO), 3.89 (3H, s, OCH3 ), 4.08 (1H, quint, J  7.2 Hz, CH,
NO2 CH2 CHCH2 CO), 4.73 (1H, dd, J  7.6, 12.5 Hz, CH, NO2 CH 2CHCH2 CO), 4.85 (1H, dd, J
6 .6 , 12.5 Hz, CH, NO 2 CH2 CHCH2 CO), 7.25 (H, d, J1.2  Hz, CH, Ar), 7.28-7.37 (H, m, CH, 
Ar), 7.40 (1H, bs, NH), 7.47 (2H, d, JS.S Hz, 2 x CH, Ar), 7.94 (2H, t, J 8 . 8  Hz, 2 x CH, Ar). 
13C NMR (100 MHz, CDC13) 5 40.67 (CH2, N 0 2 CH2 CHCH2 C0), 40.91 (CH,
N 0 2 CH2 CHCH2 C 0), 52.31 (OCH3 ), 79.51 (CH2; NO2 CH2 CHCH2 CO), 119.23 (2 x CH, 
Ar), 126.18 (C, Ar), 127.53 (2 x CH, Ar), 128.45 (CH, Ar), 129.48 (2 x CH, Ar), 131.03 
(2 x CH, Ar), 138.50 (C, Ar), 141.70 (C, Ar), 166.77 (C=0), 168.45 (C=0). vmax 
(solidy^m '1). 3360 (st), 1707 (st), 1671 (st), 1595 (md), 1541 (st), 1513 (st), 1273 (st), 1246 
(md). MS m/z (API-ES): found 343 (M+H)+ (100%). HRMS m/z (API-ES): found 343.1298 
(M+H)+, calculated for C 1 8H 1 9N2 0 5  343.1294.

Methyl 2-[5-nitro-3-(4-nitrophenyl)pentanoylamino]benzoate (149a). This was prepared 
from corresponding amide 145d (0.246 g, 0.754 mmol) in a similar manner as described for 
preparation of 1441. Chromatography on silica gel performed by the Flash Master 3 
purification station (80:20 hexanes/ethyl acetate, Rf 0.18) afforded 149a (0.087 g, 0.217 
mmol, 29%) as an off-white solid, mp 80-82 °C. !H NMR (400 MHz, CDCI3 ) 5 2.34-2.40 
( 1 H, m, CH, NO2 CH2 CH2 CHCH2 ), 2.59-2.64 (1H, m, CH, NO 2 CH2 CH2 CHCH2 ), 2.79 (1H, 
dd, J  7.6, 14.8 Hz, CH, NO2 CH2 CH2 CHCH2 ), 2.86 ( 1 H, dd, J  6 .8 , 15.2 Hz, CH, 
NO2 CH2 CH2 CHCH2 ), 3.48-3.55 (1H, m, CH, NO2 CH2 CH2 CHCH2 ), 3.90 (3H, s, OCH3),
4.23-4.28 (2H, m, 2 x CH, NO2 CH2 CH2 CHCH2 ), 7.06-7.10 (1H, m, ArH), 7.46 (2H, d, J8.8  
Hz, 2 x CH, Ar), 7.49-7.53 (1H, m, ArH), 7.99 (1H, dd, J  1.1, 8.18 Hz, ArH), 8.19 (2H, d, J
8 . 8  Hz, 2 x CH, Ar), 8.56 (1H, dd, J  1.1, 8.1 H, ArH), 11.09 (1H, bs, NH), mp 80-82 °C. 13C 
NMR (100 MHz, CDCI3 ) 5 32.99 (CH2), 39.52 (NO2 CH2 CH2 CHCH2 ), 44.99 (CH2), 52.65 
(OCH3 ), 73.41 (NO2 CH2 CH2 CHCH2 ), 115.11 (C, Ar), 120.55 (CH, Ar), 123.16 (CH, Ar), 
124.51 (2 x CH, Ar), 128.73 (2 x CH, Ar), 131.10 (CH, Ar), 134.98 (CH, Ar), 141.12 (C, 
Ar), 147.52 (C, Ar), 149.26 (C, Ar), 168.58 (C=0), 169.02 (C=0). vmax (solidy^m '1) 3260 
(md), 1689 (st), 1673 (st), 1589 (st), 1549 (st), 1516 (st), 1449 (st), 1431 (st), 1345 (st), 1315 
(st), 1263 (st), 1238 (st). MS m/z (API-ES): found 402 (M+H)+ (100%). HRMS m/z (API- 
ES): found 402.1307 (M+H)+, calculated for C 1 9H2 0N3 O7 402.1301.

Methyl 2-[4-nitro-3-(4-nitrophenyl)pentanoylamino]benzoate (149b). This was prepared 
from corresponding amide 145d (0.246 g, 0.754 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed by the FlashMaster 3 
purification station (80:20 hexanes/ethyl acetate, Rf 0.27) afforded 149b (0.055 g, 0.137
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mmol, 18%) as a off-white solid, mp 74-76 °C. ]H NMR (400 MHz, CDC13) 5 2.29-2.38 (1H, 
m, CH, N 0 2 CH2 CH2CHC0), 2.43-2.52 (1H, m, CH, N 0 2 CH2 CH2CHC0), 2.75-2.83 (1H, m, 
CH, N 0 2 CH2 CH2 CHC0), 3.00 (1H, dd, J 5.6, 13.6 Hz, CH, N 0 2 CH2 CH2 CI^), 3.17 (1H, dd, 
J  9.0, 14.4 Hz, CH, N 0 2 CH2 CH2 CH2 ), 3.85 (3H, m, OCH3), 4.42-4.57 (2H, m, 2 x CH, 
NOzCFhCH^HCO), 7.09-7.13 (1H, m, ArH), 7.37 (2H, d, J 8 . 6  Hz, 2 x CH, Ar), 7.52-7.56 
(1H, m, ArH), 7.98 (1H, dd, J  1.3, 8.3 Hz, ArH), 8.10 (2H, d, J  8 . 6  Hz, 2 x CH, ArH), 8.53 
(1H, dd, J  1.3, 8.3 Hz, ArH), 11.04 (1H, bs, NH). 13C NMR (100 MHz, CDC13) 529.85 
(CH2), 39.22 (CH2), 48.07 (N 0 2 CH2 CH2 CHC0), 52.66 (OCH3), 73.32
(N 0 2 CH2 CH2 CHC0), 115.39 (C, Ar), 120.62 (CH, Ar), 123.54 (CH, Ar), 124.10 (2xC H , 
Ar), 130.09 (2 xC H , Ar), 131.17 (CH, Ar), 134.92 (CH, Ar), 140.61 (C, Ar), 145.92 (C, 
Ar), 147.20 (C, Ar), 168.71 (C=0), 171.27 (C-O). vmax (solid)/(cm_1) 3237 (md), 1684 (st), 
1670 (st), 1606 (st), 1589 (st), 1551 (st), 1517 (st), 1446 (st), 1429 (st), 1344 (st), 1267 (st). 
MS m/z (API-ES): found 402 (M+H)+ (100%). HRMS m/z (API-ES): found 402.1302
(M+H)+, calculated for C i9H2oN30 7 402.1301.

Methyl 3-[5-nitro-3-(4-nitrophenyl)pentanoylamino]benzoate (150a). This was prepared 
from corresponding amide 145e (0.151 g, 0.463 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed using the FlashMaster 3 
purification station (70:30 hexanes/ethyl acetate) afforded 150a (0.023 g, 0.057 mmol, 12%) 
as a yellow solid, mp 125-127 °C. ]H NMR (400 MHz, CDC13) 5 2.31-2.40 (1H, m, CH, 
N 0 2 CH2 CH2CHCH2 C 0), 2.57-2.66 (1H, m, CH, N 0 2 CH2 C1^CHCH2 C0), 2.72 (1H, dd, J
8.0, 15.2 Hz, CH, N 0 2 CH2 CH2 CHCH2 C0 ), 2.81 (1H, dd, J  6 .8 , 15.2 Hz, CH, 
N 0 2 CH2 CH2 CHCH2 C 0 ), 3.44-3.55 (1H, m, CH, N 0 2 CH2 CH2 CHCH2 C0), 3.89 (3H, s, 
OCH3), 4.25 (2H, t, J  7.6 Hz, CH2, N0 2 CH2 CH2 CHCH2 C0 ), 7.36 (1H, t, J  7.6 Hz, ArH), 
7.42 (2H, d, J  8 . 8  Hz, 2 x CH, Ar, 7.56 (1H, s, ArH), 7.74-7.77 (2H, m, ArH), 7.92 (1H, bs, 
NH), 8.18 (2H, d, J  8.4 Hz, 2 x CH, Ar). 13C NMR (100 MHz, CDC13) 5 32.86 (CH2), 39.44 
(N 0 2 CH2 CH2 CHCH2 C0), 43.85 (CH2), 52.57 (OCH3), 73.41 (N 0 2 CH2 CH2 CHCH2 C0), 
121.03 (CH, Ar), 124.56 (2 x C H , Ar), 124.76 (CH, Ar), 125.98 (CH, Ar), 128.70 (2xC H , 
Ar), 129.50 (CH, Ar), 131.14 (C, Ar), 137.70 (C, Ar), 147.55 (C, Ar), 149.22 (C, Ar), 
166.86 (C=0), 168.34 (C=0). vmax (solidyfcm'1) 1672 (st), 1589 (st), 1549 (st), 1516 (st), 
1345 (st), 1315 (st), 1263 (st), 1088 (st), 858 (st), 760 (st), 697 (st). MS m/z (API-ES): found 
419 (M+NH4)+ (100 %). HRMS m/z (API-ES): found 402.1295 (M+H)+, calculated for 
Ci9H2 oN3 0 7  402.1301; found 419.1561 (M+NH4)+, calculated for Ci9 H2 3N4 0 7 419.1567.

Methyl 3-[4-nitro-2-(4-nitrobenzyl)butyrylamino]benzoate (150b). This was prepared from 
corresponding amide 145e (0.151 g, 0.463 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed using the FlashMaster 3 
purification station (70:30 hexanes/ethyl acetate) afforded 140b (0.066 g, 0.164 mmol, 35%) 
as a yellow solid, mp 131-133 °C. lH NMR (400 MHz, CDC13) 5 2.28-2.36 (1H, m, CH,
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N 0 2 CH2 CH2CHC0), 2.39-2.48 (1H, m, CH, N 0 2 CH2 CH2CHC0), 2.73-2.82 (1H, m, CH, 
N 0 2 CH2 CH2 CHC0), 2.95 (1H, dd, /5 .4 , 13.4 Hz, CH, N 0 2 CH2 CH2 CHCH2 ), 3.17 (1H, dd, J
9.2, 13.2 Hz, CH, N 0 2 CH2 CH2 CHCH2 ), 3.86 (3H, s, CH, OCH3 ), 4.45-4.59 (2H, m, 2 x CH, 
N0 2 CH2 CH2 CHCH2), 7.33-7.38 (3H, m, ArH), 7.74 (2H, t, J  8.0 Hz, ArH), 7.89 (1H, s, 
ArH), 7.93 (1H, s, NH), 8.08 (2H, d, J  8.4 Hz, 2 x CH, ArH). 13C NMR (100 MHz, CDC13) 
6  30.22 (CH2), 39.01 (CH2), 46.81 (N 0 2 CH2 CH2 CHC0), 52.58 (OCH3), 73.70
(N 0 2 CH2 CH2 CHC0), 121.27 (CH, Ar), 124.10 (2 x CH, Ar), 124.98 (CH, Ar), 126.20 
(CH, Ar), 129.47 (CH, Ar), 130.07 (2 x CH, Ar), 131.06 (C, Ar), 137.48 (C, Ar), 146.13 
(C, Ar), 147.15 (C, Ar), 166.88 (C=0), 171.27 (C=0). vmax (solid)/(cm_1) 1684 (st), 1671 
(st), 1551 (st), 1516 (st), 1447 (st), 1430 (st), 1345 (st), 1235 (st), 756 (st). MS m/z (API-ES): 
found 419 (M+NH4)+ (100%). HRMS m/z (API-ES): found 402.1301 (M+H)+, calculated for 
Ci9 H2 oN3 0 7 402.1301; found 419.1570 (M+NH4)+, calculated for C 1 9H2 3N4 0 7 419.1567.

Methyl 4-[5-nitro-3-(4-nitrophenyl)pentanoylamino]benzoate (151a). This was prepared 
from corresponding amide 145f (0.211 g, 0.647 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed using the FlashMaster 3 
purification station (80:20 hexanes/ethyl acetate) afforded 151a (0.025 g, 0.062 mmol, 10%) 
as an off-white solid, mp 158-160 °C. lH NMR (400 MHz, CDC13) 6  2.24-2.33 (1H, m, CH, 
N 0 2 CH2 CH2CHCH2), 2.52-2.60 (1H, m, CH, N 0 2 CH2 CH2CHCH2), 2.64-2.77 (2H, m, CH, 
N0 2 CH2 CH2 CHCH2 ), 2.42-3.49 (1H, m, CH, N 0 2 CH2 CH2 CHCH2), 4.18 (2H, t, J  7.6 Hz, 
CH, N 0 2 CH2 CH2 CHCH2), 7.25 (1H, s, ArH), 7.36 (2H, d, J8 .2  Hz, 2 x CH, Ar), 7.42 (2H, d, 
J  8 . 8  Hz, 2 x CH, Ar), 7.90 (2H, d, J  8.2 H, 2 x CH, Ar), 8.14 (2H, d, J  8 . 8  Hz, 2 x CH, Ar). 
13C NMR (100 MHz, CDCI3 ) 6  32.89 (CH2), 39.31 (CH2), 44.04 (CH), 52.33 (OCH3),
73.35 (N02CH 2 CH2 CHCH2 C 0), 119.12 (2 x CH, Ar), 124.62 (2 x CH, Ar), 128.68 (2 x 
CH, Ar), 131.10 (2 x CH, Ar), 141.49 (C, Ar), 147.62 (C, Ar), 149.04 (C, Ar), 166.64 
(C=0), 168.05 (C=0). vmax (solid)/(cm_1) 3248 (md), 1755 (st), 1641 (st), 1542 (st), 1560 
(st), 1321 (st), 1255 (st). MS m/z (API-ES): found 402 (M+H)+ (100%). HRMS m/z (API- 
ES): found 402.1301 (M+H)+, calculated for C i9H2oN30 7 402.1301; found 419.1570 
(M+NH4)+, calculated for Ci9 H2 3 N4 0 7 419.1567.

Methyl 4-[4-Nitro-2-(4-nitrobenzyl)butyrylamino]benzoate (151b). This was prepared from 
corresponding amide 145f (0.211 g, 0.647 mmol) in a similar manner as described for 
preparation of 1441. Chromatography on silica gel performed using the FlashMaster 3 
purification station (80:20 hexanes/ethyl acetate) afforded 151b (0.051 g, 0.127 mmol, 20%) 
as an off-white solid, mp 150-152 °C. ]H NMR (400 MHz, CDC13) 5 2.26-2.36 (1H, m, CH, 
N 0 2 CH2 CH2CHCO), 2.39-2.48 (1H, m, CH, N 0 2 CH2 CH2CHC0), 2.73-2.82 (1H, m, CH, 
N 0 2 CH2 CH2 CHC0), 2.95 (1H, dd, 75.4, 13.8 Hz, CH, N O ^H sC H ^H C H ^), 3.19 (1H, dd, J
9.4, 13.4 Hz, CH, N 0 2 CH2 CH2 CHCH2 ), 3.88 (3H, s, OCH3), 4.44-53 (1H, m, CH, 
N0 2 CH2 CH2 CHCH2), 4.54-4.59 (1H, m, CH, N 0 2 CH2 CH2 CHCH2), 7.35 (2H, d, J9.Q Hz, 2
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X CH, Ar), 7.48 (2H, d, J  8 . 6  Hz, 2 x CH, Ar), 7.86 (1H, bs, NH), 7.92 (2H, d, J  9.0 Hz, 2 x 
CH, Ar), 8.59 (2H, d, J  8 . 6  Hz, 2 x CH, Ar). 13C NMR (100 MHz, CDC13) 5 30.39 (CH2), 
38.90 (CH2), 47.06 (CH), 52.37 (OCH3), 73.68 (N 0 2 CH2 CH2 CHC0), 119.41 (2 x CH, 
Ar), 124.17 (2 x CH, Ar), 126.53 (C, Ar), 130.04 (2 x CH, Ar), 131.04 (2 x CH, Ar),
141.29 (C, Ar), 145.94 (C, Ar), 147.23 (C, Ar), 166.72 (C=0), 171.17 (CK)). vmax 
(solidWcm*1) 3292 (md), 1710 (st), 1660 (st), 1552 (st), 1520 (st), 1342 (st), 1277 (st). MS 
m/z (API-ES): found 419 (M+NH4)+ (100%), 402 (M+H)+ (40%). HRMS m/z (API-ES): 
found 402.13018 (M+H)+, calculated for Ci9 H2 0N 3 O7 402.1302; found 419.1571 (M+ NH4 )+, 
calculated for C]9 H2 3 N4 0 7 419.1567.

4-Nitro-3^V-diphenylbutyramide (144d).
A mixture o f 145q (0.089 g, 0.399 mmol), DBU (0.066 g, 0.438 mmol) in nitromethane (3 
ml), was stirred in the microwave reactor at 150 °C for 15 min. After cooling to room 
temperature, the reaction mixture was poured into HC1 (aq, 1M, 5 ml). The product was 
extracted with ethyl acetate ( 2 x 1 0  ml), dried over Na2 S 0 4  and the solvent removed under 
reduced pressure. Chromatography on silica gel performed using the FlashMaster 3 
purification station (70:30 hexanes/ethyl acetate) afforded 144d (0.055 g, 0.193 mmol, 49%) 
as a yellow solid, mp 123-124 °C. ]H NMR (400 MHz, CDC13) 5 2.72 (1H, dd, 7  7.2, 14.8 
Hz, CH, N 0 2 CH2 CHCH2 C0 ), 2.79 (1H, dd, 7  7.4, 15.0 Hz, CH, N 0 2 CH2 CHCH2 C0 ), 4.06 
(1H, quint, 7  7.2 Hz, CH, N 0 2 CH2 CHCH2 C0), 4.70 (1H, dd, 7  7.8, 12.6 Hz, CH, 
N0 2 CH2 CHCH2 C0 ), 4.82 (1H, dd, J  6.6, 12.6 Hz, CH, N 0 2 CH2 CHCH2 C0 ), 7.09 (1H, t, 7
7.6 Hz, ArH), 7.21-7.37 (9H, m, 8  x CH, ArH, & NH).13C NMR (100 MHz, CDC13) 5 40.81 
(N 0 2 CH2 CHCH2 C 0), 40.84 (N 0 2 CH2 CHCH2 C0), 79.56 (N 0 2 CH2 CHCH2 C0), 120.37 (2 
x CH, Ar), 124.95 (CH, Ar), 127.57 (2 x CH, Ar), 128.33 (CH, Ar), 129.25 (2 x CH, Ar), 
129.41 (2 x CH, Ar), 137.48 (C, Ar), 138.70 (C, Ar), 168.26 (C=0). vmax (solid)/(cm_1) 
3351 (md), 1654 (st), 1598 (st), 1553 (st), 1524 (st), 1496 (st), 1440 (st), 1384 (st), 752 (st), 
693 (st). MS m/z (API-ES): found 285 (M+H)+ (100%). HRMS m/z (API-ES): found 
285.1240 (M+H)+, calculated for Ci6H,7N20 3285.1239.

2-Methyl-3-(4-nitrophenyl)acrylic acid (157).380’381
Potassium carbonate (0.319 g, 1.73 mmol) was added to a solution of 4-nitro benzaldehyde 
(155) (0.285 g, 1.88 mmol) and dry piperidine (0.431 g, 5.07 mmol) in dry DCM (5 ml) under 
Ar at room temperature. The reaction mixture was stirred overnight at room temperature. The 
excess of K2 C 0 3 was filtered and washed with DCM (5 ml). The filtrate was collected and 
the solvent removed under reduced pressure. Pyridine (2 ml) and malonic acid (0.444 g, 3.76 
mmol) were added to the oil residue and the reaction mixture was stirred for lh  at 100 °C 
under Ar. After cooling to room temperature, HC1 (aq, 1M, 10 ml) was added and the 
precipitate was filtered, washed with water (10 ml) and dried under vacuum. The acid 157
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was obtained as a yellow solid (0.205 g, 0.989 mmol, 53%) and was used in the next step 

without further purification.

2-Methyl-3-(4-nitrophenyl)acryloyl chloride (158). This was obtained as a yellow solid 
(0.200 g, 0.888 mmol, 90%) from corresponding acid 157 (0.205 g, 0.990 g) in a similar 
manner as described for preparation of 147b. The acid chloride was used in the next step 
without further purification.

Methyl 2-[2-methyl-3-(4-nitrophenyl)acryloylamino]benzoate (154). This was obtained as a 
yellow solid (0.207 g, 0.608 mmol, 70%) from corresponding acid chloride 158 (0.200 g, 
0.888 mmol) and aniline 148a (0.149 g, 0.986 ml) in a similar manner as described for 
preparation o f 145g, mp 230-232 °C. *H NMR (400 MHz, CDC13) 6  2.21 (3H, d, J  1.2 Hz, 
CH3), 3.88 (3H, s, OCH3), 7.05-7.09 (1H, m, ArH), 7.48 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.51-
7.56 (3H, m, 2 x CH, ArH, H-3), 8.01 (1H, dd, J  1.4, 8.3 Hz, ArH), 8.20 (2H, d, J8 .4  Hz, 2 x 
CH, Ar), 8.78 (1H, d, J8 .3  Hz, ArH), 11.69 (1H, s, NH). 1 3C N M R (100 MHz, CDC13) 14.63 
(CH3), 52.74 (OCH3), 115.51 (C, Ar), 120.79 (CH), 123.13 (CH), 123.88 (2 x CH, Ar),
130.39 (2 xC H , Ar), 131.23 (CH), 133.36 (CH), 135.08 (CH), 136.32 (C, Ar), 141.75 (C, 
Ar), 143.13 (C, Ar), 147.28 (C, Ar), 167.15 (C=0), 169.21 (C=0). vmax (solidy^m '1) 3625 
(st), 1689 (st), 1671 (st), 1608 (st), 1589 (st), 1534 (st), 1445 (st), 1339 (st), 1258 (st), 1236 
(st). MS m/z (API-ES): found 341 (M+H)+ (100%). HRMS m/z (API-ES): found 341.1124 
(M+H)+, calculated for C 1 8H 17N2 O5 341.1137; found 190.0495 (M-C8H8 0 2N)+, calculated for 
CioH8N 0 3 190.0504; found 363.0939 (M+Na)+, calculated for Ci8Hi6N2C>5Na 363.0957.

(E)-3-(4-Nitrophenyl)but-2-enoic acid (160) and (Z)-3-(4-Nitrophenyl)but-2-enoic acid 
(161).382 1.2-Dimethoxyethanetriethylphosphono acetate (1.59 g, 7.11 mmol) was added 
dropwise to a suspension o f NaH (60% suspension in mineral oil, 0.187 g, 7.82 mmol) in 
anhydrous THF (10 ml) at 0 °C under Ar. After the gas evolution ceased, 4- 
nitroacetophenone 159 (1.068 g, 6.46 mmol) was added portionwise. The reaction mixture 
was stirred at room temperature under Ar overnight. The solvent was removed under reduced 
pressure. Ammonium chloride (aq, sat. solution, 20 ml) was added and the mixture was 
extracted with ethyl acetate (2 x 60 ml). The organic extracts were collected, dried over 
Na2 S0 4 , and the solvent removed under reduced pressure. Chromatography on silica gel 
performed by the Flash Master 3 purification station (90:10 hexanes/ethyl acetate) afforded 
160 (0.435 g, 1.85 mmol, 29%) as a white solid and 161 (0.257 g, 1.09 mmol, 17%) as a 
colourless oil.
160. mp 124-125 °C. *H NMR (400 MHz, CDC13) 6  1.32 (3H, t, J 1 A  Hz, CH2 CH3), 2.58 
(3H, d, J  1.4 Hz, CH3), 4.23 (3H, q, J  7.1 Hz, CH^CH^, 6.18 (1H, d, J  1.4 Hz, 
CH3CHCONH), 7.61 (2H, d, J 9 .2  Hz, 2 x CH, Ar), 8.23 (2H, d, J 9 .2  Hz, 2 x CH, Ar). 13C 
NMR (100 MHz, DMSO-d6) 5 14.51 (CH2 CH3), 18.15 (CH3), 60.52 (CH2 CH3), 120.39
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(CH), 124.03 (2 x CH,Ar), 127.46 (2 x CH, Ar), 148.82 (C, Ar), 152.91 (C, Ar), 166.33 
(C=0). vmax (solidyCcm'1) 1711 (st), 1632 (st), 1595 (st), 1512 (st), 1340 (st), 1275 (st), 1178 
(st), 1041 (st), 847 (st). MS m/z (API-ES): found 236 (M+H)+ (100%). HRMS m/z (API-ES): 
found 236.0909 (M+H)+, calculated for C 1 2H 14N0 4  236.0923.
161. ]H NMR (400 MHz, CDC13) 5 1.11 (3H, t, J  7.3 Hz, CH2 CH3 ), 2.19 (3H, d, J  1.6 Hz, 
CH3), 4.23 (3H, q, J  7.3 Hz, CfhCHs), 6.00 (1H, d, J  1.6 Hz, CH3 CHCONH), 7.34 (2H, d, J
8.4 Hz, 2 x CH, Ar), 8.22 (2H, d, J  8.4 Hz, 2 x CH, Ar). 13C NMR (100 MHz, DMSO-d6) 
5 14.20 (CH2 CH3), 27.04 (CH3), 60.37 (CH2 CH3), 119.59 (CH), 123.57 (2 x CH, Ar),
128.01 (2 xC H ,A r), 148.25 (C,Ar), 153.49 (C,Ar), 165.36 (C=0). vmax (o iiy^m '1) 1719 
(st), 1596 (st), 1517 (st), 1343 (st), 1233 (st), 1160 (st), 1044 (st), 853 (st). MS m/z (API-ES): 
found 236 (M+H)+ (100%). HRMS m/z (API-ES): found 236.0906 (M+H)+, calculated for 
Ci2 H ]4N 0 4  236.0923.

3-(4-Nitrophenyl)-but-2-enoic acid (162).382 A solution o f 160 (0.396 g, 1.68 mmol) in 
ethanol (2 ml) was stirred in presence of KOH (aq, 1.5 M, 0.227 ml) at 100 °C for lh. The 
solvent was removed under reduced pressure HC1 (aq, 1M, 5 ml) was added and the white 
precipitate was filtered, washed with water (5 ml) and dried under vacuum. Pure 162 was 
obtained as a yellow solid (0.297 g, 1.43 mmol, 85%) without further purification, mp 157- 
159 °C. lU NMR (400 MHz, CDC13) 5 2.62 (3H, d, J  1.6 Hz, CH3), 6.22 (1H, d, J  1.6 Hz, 
CH3 CCHCONH), 7.63 (2H, d, J9 .0  Hz, 2 x CH, Ar), 8.25 (2H, d, J  9.0 Hz, 2 x CH, Ar). vmax 
(solidytcnf1) 2969 (st), 1690 (st), 1622 (st), 1597 (st), 1515 (st), 1341 (st), 1279 (st), 1216 
(st). MS m/z (API-ES): found 206 (M-H)* (100%). HRMS m/z (API-ES): found 206.0449 
(M+H)+, calculated for Ci0 H8NO4  206.0453.

3-(4-Nitrophenyl)-but-2-enoic acid (163). This was obtained as a yellow solid (0.176 g, 0.85 
mmol, 97%) from corresponding ester 161 (0.206 g, 1.36 mmol) in a similar manner as 
described for preparation of 162, The crude acid was used in the next step without further 
purification.

3-(4-Nitrophenyl)but-2-enoyl chloride (164) This was obtained as a yellow solid (0.287 g,
1.27 mmol, 94%) from corresponding acid 162 (0.282 g, 1.36 mmol) in a similar manner as 
described for preparation of 147b. The acid chloride was used in the next step without further 
purification.

3-(4-Nilrophenyl)bul-2-enoyl chloride (165)34. This was obtained as a yellow oil (0.182 g, 
0.808 mmol, 98%) from corresponding acid 163 (0.166 g, 0.821 mmol) in a similar manner as 
described for preparation o f 147b. The acid chloride was used in the next step without further 
purification.
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Methyl 2-[3-(4-nitrophenyl)but-2-enoylamino]benzoate (153). This was obtained as a yellow 
solid (0.275 g, 0.808 mmol, 6 6 %) from corresponding acid chloride 164 (0.277 g, 1.23 mmol) 
and aniline 148a (0.204 g, 1.35 mmol) in a similar manner as described for preparation of 
145g, mp 229-230 °C. ]H NMR (400 MHz, CDC13) 5 2.59 (3H, d, J  1.2 Hz, CH3), 3.86 (3H, 
s, OCH3), 6.23 (1H, d, J  1.2 Hz, CH3 CCHCONH), 7.03-7.07 (1H, m, ArH), 7.49-7.54 (1H, 
m, ArH), 7.58 (2H, d, JS.S  Hz, 2 x CH, ArH), 7.99 (1H, dd, J  1.6, 8.4 Hz, ArH), 8.18 (2H, d, 
J 8 . 8  Hz, 2 x CH, ArH), 8.76 (1H, d, J8 .4  Hz, ArH), 11.27 (1H, s, NH). 13C NMR (100 MHz, 
CDC13) 8  18.09 (CH3), 52.64 (OCH3), 115.09 (C, Ar), 120.53 (CH, Ar), 122.96 (CH, Ar),
123.85 (CH, Ar), 124.02 (2 x CH, Ar), 127.48 (2 x CH, Ar), 131.71 (CH, Ar), 134.98 (CH, 
Ar), 141.86 (C, Ar), 148.00 (C, Ar), 149.19 (C, Ar), 150.81 (C, Ar), 164.68 (C=0), 169.13 
(C=0). vmax (solidytcnT1) 3259 (st), 1671 (st), 1600 (st), 1513 (st), 1445 (st), 1433 (st), 1342 
(st), 1257 (st). MS m/z (API-ES): found 341 (M+H)+ (100%). HRMS m/z (API-ES): found 
found 341.1135 (M+H)+, calculated for C 1 8H 17N2 O5 341.1137.

Methyl 2-[3-(4-nitrophenyl)but-2-enoylaino]benzoate (166). This was obtained as a yellow 
solid (0.077 g, 0.226 mmol, 26%) from corresponding acid chloride 165 (0.182 g, 0.879 
mmol) and aniline 148a (0.146 mmol, 0.966 mmol) in a similar manner as described for 
preparation o f 145g. Chromatography on silica gel performed by the Flash Master 3 
purification station (60:40 hexanes/ethyl acetate) afforded 166 (0.077 g, 0.226 mmol, 26%) as 
a yellow solid, mp 225-227 °C. ]H NMR (400 MHz, CDC13) 5 2.23 (3H, d, J  1.2 Hz, CH3),
3.89 (3H, s, O CH3), 6.16 (1H, d, J  1.2 Hz, CH3 CCHCONH), 7.02-7.07 (1H, m, ArH), 7.42-
7.47 (3H, m, ArH), 7.98 (1H, dd, J  1.6, 8.2 Hz, ArH), 8.02 (2H, d, J  8.9 Hz, 2 x CH, ArH),
8.57 (1H, d, J 8 .2  Hz, ArH), 11.08 (1H, s, NH). 13C NMR (100 MHz, CDC13) 6  26.75 (CH3),
52.52 (OCH3), 115.04 (C, Ar), 120.64 (CH), 122.90 (CH), 123.55 (CH), 123.66 (2 x CH, 
Ar), 128.32 (2 x CH, Ar), 131.04 (CH), 134.85 (CH), 141.50 (C, Ar), 147.40 (C, Ar), 
148.05 (C, Ar), 149.87 (C, Ar), 163.86 (C=0), 168.89 (C=0). vmax (solidy^m '1) 3312 (st), 
3300 (st), 1700 (st), 1684 (st), 1587 (st), 1508 (st), 1426 (st), 1343 (st), 1259 (st), 1238 (st), 
1177 (st), 1161 (st), 1086 (st). MS m/z (API-ES): found 341 (M+H)+ (100%). HRMS m/z 
(API-ES): found 341.1123 (M+H)+, calculated for Ci8 H 17N2 0 5  341.1137, found 190.0494 
(M-C8H 8 0 2 N)+, calculated for CioH8N 0 3 190.0504; found 703.2007 (2M+Na)+, calculated 
for C3 6H3 2N4 0,oNa 703.2016.

Methyl 4-(l-nitromethyl-2-carboxylphenylcarbamoyl-ethyl)-benzoate (144o). This was 
prepared from corresponding amide 145a (0.081 g, 0.238 mmol) in a similar manner as 
described for preparation o f 1441. Chromatography on silica gel using the FlashMaster 3 
purification station (80:20 hexanes/ethyl acetate) afforded 144o (0.046 g, 0.115 mmol, 48%) 
as a yellow solid, mp 189-190 °C. ]H NMR (400 MHz, CDC13) 5 2.86 (1H, dd, J7 .4 , 15.6 
Hz, CH, N 0 2 CH2 CHCH2 C0 ), 2.93 (1H, dd, J  7.4, 15.6 Hz, CH, N0 2 CH2 CHCH2 C0 ), 3.89 
(1H, s, OCH3), 3.91 (1H, s, OCH3), 4.20 (1H, quint, J  7.2 Hz, CH, N 0 2 CH2 CHCH2 C0), 4.74
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(1H, dd, J  12.8, 8.4 Hz, CH, NO2 CH2 CHCH2 CO), 4.88 (1H, dd, J  12.8, 6.0 Hz, CH, 
NO2 CH2 CHCH2 CO), 7.07-7.11 (1H, m, ArH), 7.37 (1H, d, J8 .4  Hz, ArH), 7.50-7.54 (1H, m, 
ArH), 7.93 (3H, m, ArH), 8.59 (1H, dd, J  0.8, 8.4 Hz, ArH), 11.15 (1H, s, NH). 13C NMR 
(100 MHz, CDCI3 ) 8  40.50 , (NO2 CH2 CHCH2 CO), 41.34 , (NO2 CH2 CHCH2CO), 52.39 , 
(OCH3 ), 52.66 , (OCH3 ), 79.18 , (NO2 CH2 CHCH2 CO), 115.17 (C, Ar), 120.60 (CH, Ar), 
123.18 (CH, Ar), 127.78 (2 x CH, Ar), 130.10 (C, Ar), 130.60 (2 x CH, Ar), 131.07 (CH, 
Ar), 134.97 (CH, Ar), 141.11 (C, Ar), 143.87 (C, Ar), 166.74 (C O ), 168.24 (C O ),
168.98 (C O ). vmax (oil)/(cm_1) 3259 (st), 2952 (st), 2922 (st), 1723 (st), 1702 (st), 1681 (st), 
1601 (st), 1588 (st), 1551 (st), 1528 (st), 1432 (st), 1258 (st). MS m/z (API-ES): found 401 
(M+H)+ (100%). HRMS m/z (API-ES): found 401.1341 (M+H)+, calculated for C2 0 H2 1N2 O7 

401.1349.

Methyl 4-(l-methyl-2-carboxyphenylcarbamoyl-vinyl)-benzoate (175). This was prepared 
from 144o (0.011 g, 0.0275 mmol) in a similar manner as described for preparation of 144d. 
Chromatography on silica gel performed by the FlashMaster 3 purification station (80:20 
hexanes/ethyl acetate) afforded 165 (0.004 g, 0.011 mmol, 41%) as a yellow oil. !H NMR 
(400 MHz, CDCI3 ) 5 2.58 (3H, d, J  1.2 Hz, CH3), 3.88 (3H, s, OCH3), 3.89 (1H, s, OCH3), 
6.21 (1H, d, J  1.2 Hz, CH3 CCHCONH), 7.01-7.05 (1H, m, ArH), 7.48-7.53 (3H, m, ArH),
7.98 (2H, d, J 8 .4  Hz, 2 x CH, Ar), 8.77 (1H, dd, J 0.8, 8.4 Hz, ArH), 11.20 (1H, s, NH). 13C 
NMR (100 MHz, CDCI3 ) 5 17.99 (CH3), 52.88 (OCH3), 116.10 (C, Ar), 121.34 (CH, Ar),
123.01 (CH,Ar), 123.70 (CH, Ar), 124.14 (2 x CH, Ar), 127.65 (2 x CH, Ar), 131.67 (CH, 
Ar), 135.01 (CH, Ar), 141.93 (C, Ar), 147.90 (C, Ar), 149.22 (C, Ar), 150.76 (C, Ar),
163.78 (C=0), 168.11 (C=0), 169.18. vmax (o iiy^m '1) 3279 (st), 1755 (st), 1677 (st), 1688 
(st), 1645 (st), 1590 (st), 1531 (st), 1435 (st), 1474 (st), 1236 (st). MS m/z (API-ES): found 
354 (M+H)+ (100%). HRMS m/z (API-ES): found 354.1339 (M+H)+, calculated for 
calculated for C2 0 H2 0 NO 5 354.1341

Methyl 4-[l-methyl-2-(2-nitrophenylcarbamoyl)vinyl]benzoate (176). This was prepared 
from corresponding amide 145s (0.085 g, 0.260 mmol) in a similar manner as described for 
preparation o f 1441. Chromatography on silica gel performed using the FlashMaster 3 
purification station (80:20 hexanes/ethyl acetate) afforded 145s (0.046 g, 0.132 mmol, 51%) 
as a off white solid, mp 227-229 °C. *H NMR (400 MHz, CDC13) 5 2.58 (3H, s, CH3), 3.87 
(3H, s, OCH3 ), 6.20 (1H, s, CH3 CCHCONH), 7.12 (1H, t, J 1 A  Hz, ArH), 7.49 (2H, d , J 1 2  
Hz, 2 x CH, Ar), 7.60 (1H, t, J 7 .4  Hz), 7.99 (2H, d , J 7 2  Hz, 2 x CH, Ar), 8.16 (1H, d, J 7.4 
Hz), 8.89 (1H, d, J 1 A  Hz), 10.45 (1H, s, NH). 13C NMR (100 MHz, CDC13) 5 18.35, (CH3),
52.49 , (OCH3 ), 121.47 (CH), 122.30 (CH), 123.41 (CH), 126.07 (CH), 126.58 (2 x CH, 
Ar), 130.11 (2 x C H , Ar), 130.78 (C, Ar), 135.45 (C, Ar), 136.16 (C, Ar), 136.52 (CH),
147.77 (C ,Ar), 154.55 (C, Ar), 164.95 (C=0), 166.76 (C=0). vmax (solidy^m '1) 3359 (st), 
2958 (st), 2924 (st), 1714 (st), 1691 (st), 1604 (st), 1584 (st), 1496 (st), 1427 (st), 1335 (st),
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1278 (st), 1265 (st), 1153 (st), 1144 (st). MS m/z (API-ES): found 341 (M+H)+ (100%). 
HRMS m/z (API-ES): found 341.1120 (M+H)+, calculated for C igH n^O s 341.1137; found 
203.0696 (M-C6 H5 0 2N 2 )+, calculated for C^HnOs 203.0708; found 703.2007 (2M+Na)+, 
calculated for C3 6 H3 2N4 0 ioNa 303.2016.

Ethyl 4-(4-amino-3-phenylbutyrylamino)benzoate (143a)385
To a stirred solution o f 144a (0.749 g, 2.10 mmol) and NiCl2 -6 H2 0  (1.99 g, 8.40 mmol) in 
methanol (10 ml) NaBH 4  (0.719 g, 18.93 mmol) was added portionwise over 20 min at 0 C. 
After stirring for 15 at room temperature, the solvent was removed under reduced pressure. 
Water (20 ml) and ethyl acetate (40 ml) were added to the solid residue. The resulting 
mixture was filtered through a celite bed which was washed with ethyl acetate (20 ml). After 
collecting the filtrate, the organic phase was separated, dried over Na2 S0 4  and the solvent 
removed under reduced pressure to afford 143a as an off white solid (0.596 g, 1.83 mmol, 
87%). The crude compound used in the next step without further purification.

Ethyl 4-(4-amino-3-naphthalen-2-yl-butyrylamino)benzoate (143b). This was obtained as a 
yellow solid (0.819 g, 2.178 mmol, 89%) from 144b (0.995 g, 2.450 mmol) in a similar 
manner as described for preparation o f 143a. The crude compound used in the next step 
without further purification.

Ethyl 4-[3-phenyl-4-(toluene-4-sulfonylamino)butyrylamino]benzoate (142a)
Potassium carbonate (0.325 g, 2.35 mmol) was added to a solution of 143a (0.128 g, 0.392 
mmol) in 1,4 -dioxane/H2 0  1:1 (5 mL) and followed by tosyl chloride (0.074 g, 0.392 mmol) 
at room temperature. After stirring for 2 h at room temperature, the resulting mixture was 
evaporated in vacuo to dryness. Water (10 ml) was added and the formed white solid was 
separated by filtration and dried in vacuo. Pure 142a was obtained as an off-white solid 
(0.122 g, 0.254 mmol, 65%) without further purification, mp 135-137 °C. !H NMR (400 
MHz, CD3OD) 1.36 (3H, t, J  7.2 Hz, CH2CH3), 2.39 (3H, s, CH3), 2.63 (1H, dd, J  8 .6 , 14.6 
Hz, CH, CH2CHCH2CO), 2.85 (1H, dd, J  6.2, 15.0 Hz, CH, CH2CHCH2CO), 3.05 (1H, dd, J
7.4, 13.0 Hz, CH, CH2CHCH2CO), 3.12 (1H, dd, J  6 .8 , 11.8 Hz, CH, CH2CHCH2CO), 4.32 
(2H, q, J 12  Hz, CH2CH3), 7.17-7.19 (3H, m, ArH), 7.23-7.27 (2H, m, ArH), 7.31 (2H, d, J
8.4 Hz, 2 x CH, Ar), 7.54 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.65 (2H, d, J  8.4 Hz, 2 x CH, Ar),
7.90 (2H, d, J  8.4 Hz, 2 x CH, Ar). 13C NMR (100 MHz, CDC 13) 14.57 (CH2CH3), 21.73 
(CH3), 40.65 (CH2CHCH2CO), 42.04 (CH2CHCH2CO), 47.77 (CH2CHCH2CO), 61.07 
(CH2CH3), 119.15 (CH, Ar), 127.14 (2 x CH, Ar), 127.75 (2 x CH, Ar), 127.77 (2 x CH, 

Ar), 129.29 (2 x CH, Ar), 130.07 (2 x CH, Ar), 130.94 (2 x CH, Ar), 136.79 (C, Ar),
140.74 (C, Ar), 142.12 (C, Ar), 143.97 (C, Ar), 166.36 (C=0), 170.24 (C=0). vmax 
(solidytcnf1) 3324 (st), 3191 (md), 1707 (st), 1675 (st), 1597 (st), 1534 (st), 1270 (st), 1157
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(st), 1105 (st). MS m/z (API-ES): found 481 (M +H)' (100 %). HRMS m/z (API-ES): found

481.18010 (M +H)+, calculated for C26H 29N 2O5 S 481.1797.

Ethyl 4-[4-(4-phenoxybenzenesulfonylamino)-3-phenylbutyrylamino]benzoate (142b). This 
was obtained as a off white solid (0.182 g, 0.326 mmol, 77%) from 133a (0.137 g, 0.420 
mmol) and 4-phenoxybenzenesulfonyl chloride (0.112 g, 0.420 mmol) in a similar manner as 
described for preparation o f 142a, mp 147-149 °C. !H NMR (400 MHz, CD3 OD) 5 1.36 (3H, 
t, J7 .2  Hz, CH2 CH3 ), 2.63 (1H, dd, J  8.4, 14.8 Hz, CH, CH2 CHCH2 CO), 2.84 (1H, dd, J7 .4 ,
13.2 Hz, CH, CH2 CHCH2 CO), 3.09 (1H, dd,J7.2,  12.8 Hz, CH, CH2 CHCH2 CO), 3.16 (1H, 
dd, J7 .2 , 12.4 Hz, CH, CH2 CHCH2 CO), 4.31 (2H, q, J  7.2 Hz, CH2 CH3), 7.00 (2H, d, J8.0 
Hz, 2 x CH, Ar), 7.06 (2H, dd, J0.8,  8 . 8  Hz, Ar), 7.18-7.26 (6 H, m), 7.39-7.43 (2H, m, ArH), 
7.54 (2H, d, J  8 . 8  Hz, 2 x CH, Ar), 7.73 (2H, d, J  8 . 8  Hz, 2 x CH, Ar), 7.89 (2H, d, J  8.0 Hz, 
2 x CH, Ar). 13C NMR (100 MHz, CDC13) 14.57 (CH2 CH3), 40.73 (CH2 CHCH2CO), 42.06 
(CH2 CHCH2 CO), 47.80 (CH2 CHCH2 CO), 61.07 (CH2 CH3 ), 117.92 (2 x CH, Ar), 119.15 
(CH, Ar), 120.52 (2 x CH, Ar), 125.25 (CH, Ar), 127.75 (CH, Ar), 127.80 (CH, Ar), 
129.32 (2 x CH, Ar), 129.35 (2 x CH, Ar), 130.41 (2 x CH, Ar), 130.95 (2 x CH, Ar),
133.27 (C, Ar), 140.74 (C, Ar), 142.08 (C, Ar), 155.23 (C, Ar), 161.95 (C, Ar), 166.34 
(C=0), 170.20 (C=0). vmax (solid)/(cm'1) 3322 (st), 1702 (st), 1596 (st), 1532 (st), 1487 (st), 
1407 (st), 1274 (md), 1243 (st), 1151 (st), 1104 (md), 695 (st). MS m/z (API-ES): found 559 
(M+H)+ (100%). HRMS m/z (API-ES): found 559.1906 (M+H)+, calculated for C3 1 H3 1N2 O6 S 
559.1903.

Ethyl 4-[3-naphthalen-2-yl‘4-(toluene-4-sulfonylamino)butyrylamino]benzoate (142c). This 
was obtained as an off white solid (0.058 g, 0.109 mmol, 33%) from 143b (0.138 g, 0.375 
mmol) in a similar manner as described for preparation of 142a, mp 122-124°C. ’H N M R 
(400 MHz, CD3 OD) 5 1.34 (3H, t, J 1 2  Hz, CH2 CH3 ), 2.34 (3H, s, CH3), 2.73 (1H, dd, J8 .2 ,
14.6 Hz, CH, CH2 CHCH2 CO), 2.92 (1H, dd, J6 .4 , 14.8 Hz, CH, CH2 CHCH2 CO), 3.19 (1H, 
dd, J  7.8, 13.4 Hz, CH, CH2 CHCH2 CO), 3.17-3.28 (1H, m, CH, CH2 CHCH2 CO), 3.47-3.52 
(1H, m, CH, CH2 CHCH2 CO), 4.30 (2H, q, J1.2  Hz, CH2 CH3 ), 7.19 (2H, d, J 8 . 6  Hz, 2 x CH, 
Ar), 7.32 (1H, dd, J  1.4, 8 . 6  Hz, ArH), 7.40-7.45 (2H, m, ArH), 7.51 (2H, d, J  8 . 6  Hz, 2 x 
CH, Ar), 7.59 (2H, d, J  8 . 6  Hz, 2 X CH, Ar), 7.60 (1H, s, ArH), 7.73-7.79 (3H, m, ArH), 7.90 
(2H, d, J  8 . 6  Hz, 2 x CH, Ar). 13C NMR (100 MHz, CD3 OD) 5 14.55 (CH2 CH3), 21.54 
(CH3), 40.45 (CH2 CHCH2 CO), 42.56 (CH2 CHCH2 CO), 48.31 (CH2 CHCH2 CO), 59.98 
(CH2 CH3 ), 118.95 (2 x CH, Ar), 125.63 (C, Ar), 127.22 (2 x CH, Ar), 127.51 (CH, Ar),
128.40 (2 x CH, Ar), 129.07 (2 x CH, Ar), 130.33 (2 x CH, Ar), 130.98 (2 x CH, Ar),
137.09 (C, Ar), 142.55 (C, Ar), 143.23 (C, Ar), 143.70 (C, Ar), 167.96 (C=0), 170.14 
(C=0). vmax (so lidy^m '1) 2958 (md), 1706 (st), 1596 (st), 1531 (st), 1273 (st), 1171 (st), 
1152 (st), 1105 (st), 1020 (st). MS m/z (API-ES): found 531 (M+H)+ (100%). HRMS m/z 
(API-ES): found 531.19624 (M+H)+, calculated for C3 0 H3 1 N2 O 5 S 531.1954.
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Ethyl 4-[3-naphthalen-2-yl-4-(4-phenoxybenzenesulfonylamino)butyrylamino]benzoate 
(142d). This was obtained as a white solid in (0.100 g, 0.164 mmol, 73%) from 143b in a 
similar manner as described for preparation of 142a, mp 141-143 °C. NMR (400 MHz, 
CD3OD) 5 1.34 (3H, t, J  7.2 Hz, CH2 CH3 ), 2.75 (1H, dd, J  8.4, 14.8 Hz, CH, 
CH2 CHCH2 CO), 2.92 (1H, dd, J  6 .6 , 15.0 Hz, CH, CH2 CHCH2 CO), 3.25-3.29 (2H, m, 2 x 
CH, CH2 CHCH2 CO), 3.34-3.53 (1H, m, CH, CH2 CHCH2 CO) 4.30 (2H, q, J  12  Hz, 
CH2 CH3 ), 6.61 (2H, d, J  9.2 H, 2 x CH, Ar), 7.05 (2H, dd, J  1.3, 8.7 Hz, ArH), 7.20-7.23 
(1H, m, ArH, ArH), 7.34 (1H, dd, J  1.3, 8.7 Hz, ArH), 7.40-7.45 (4H, m, ArH), 7.54 (2H, d, J
8 . 8  Hz, 2 x CH, Ar), 6.64 (1H, bs, ArH), 7.67 (2H, d, J  8 . 8  Hz, 2 x CH, Ar), 7.75-7.90 (3H, 
m, ArH), 7.87 (2H, d, J9 .2  Hz, 2 x CH, Ar). 13C NMR (100 MHz, CDC13) 14.55 (CH2 CH3),
40.68 (CH2 CHCH2 CO), 42.12 (CH2 CHCH2 CO), 47.84 (CH2 CHCH2 CO), 61.05 (CH2 CH3),
117.89 (2xC H ,A r), 119.19 (CH, Ar), 120.51 (2 x CH, Ar), 125.22 (CH, Ar), 125.67 (CH, 
Ar), 126.21 (CH, Ar), 126.35 (CH, Ar), 126.53 (C, Ar), 126.73 (CH, Ar), 127.85 (CH, 
Ar), 127.96 (CH, Ar), 129.09 (2 x CH, Ar), 129.83 (2 x CH, Ar), 130.39 (2 x CH, Ar),
130.90 (2 x CH, Ar), 132.85 (C, Ar), 133.27 (C, Ar), 133.61 (C, Ar), 138.16 (C, Ar), 
142.13 (C, Ar), 155.24 (C, Ar), 161.90 (C, Ar), 166.34 (C O ), 170.26 (C O ). vmax 
(solidytcnT1) 1707 (st), 1596 (st), 1531 (st), 1486 (st), 1275 (st), 1243 (st), 1151 (st), 1098 
(st). MS m/z (API-ES): found 609 (M+H)+ (100%). HRMS m/z (API-ES): found 609.2058 
(M+H)+, calculated for C3 5 H3 3N 2 O6 S 609.2059.

4-[3-Phenyl-4-(toluene-4-sulfonylamino)butyrylamino]benzoic acid (178a)
A solution of 142a (0.106 g, 0.220 mmol) in methanol (3 ml) and THF (3 ml) was stirred in 
presence o f NaOH (aq, 1M, 1 ml) at room temperature overnight. The solvent was removed 
under reduced pressure. HC1 (aq, 1M, 1.5 ml) was added and the precipitate was filtered, 
washed with water (5 ml) and dried under vacuum. Pure acid 178a was obtained as a white 
solid (0.085 g, 0.188 mmol, 85%) without further purification, mp 225-227 °C. *H NMR (400 
MHz, CD3 OD) 5 2.39 (3H, s, CH3), 2.62 (1H, dd, J8 .4 , 14.8 Hz, CH, CH2 CHCH2 CO), 2.35 
(1H, dd, J  6 .6 , 14.6 Hz, CH, CH2 CHCH2 CO), 3.05 (1H, dd, J  8.0, 13.0 Hz, CH, 
CH2 CHCH2 CO), 3.12 (1H, dd, .77.2, 12.8 Hz, CH, CH2 CHCH2 CO), 7.16-7.19 (3H, m, ArH),
7.24-7.27 (2H, m, ArH), 7.30 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.53 (2H, d, J  8.4 Hz, 2 x CH, 
Ar), 7.65 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.91 (2H, d, J  9.2 Hz, 2 x CH, A r). 13C NMR (100 
MHz, DMSO-ds) 5 21.61 (CH3), 40.65 (CH2 CHCH2 CO), 42.32 (CH2 CHCH2 CO), 48.33 
(CH2 CHCH2CO), 118.95 (2 xC H , Ar), 125.61 (C, Ar), 127.18 (2 x CH, Ar), 127.26 (CH, 
Ar), 128.38 (2 x CH, Ar), 128.96 (2 x CH, Ar), 130.02 (2 x CH, Ar), 130.98 (2 x CH, Ar),
138.09 (C, Ar), 142.47 (C, Ar), 143.22 (C, Ar), 143.72 (C, Ar), 167.55 (C O ), 170.64 
(C=0). vmax (solidytcnf1) 3316 (md), 3277 (md), 1668 (st), 1595 (st), 1531 (st), 1408 (st), 
1317 (st), 1254 (st), 1152 (st). MS m/z (API-ES): found 451 (M-H)' (100%), HRMS m/z 
(API-ES): found 451.1334 (M-H)', calculated for C2 4 H2 3N 2 0 5S 451.1328.
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4-[4-(4-Phenoxybenzenesulfonylamino)-3-phenylbuiyrylaminoJbenzoic acid (178b). This 
was obtained as a white solid (0.120 g, 0.226 mmol, 83%) from 142b (0.152, 0.272 mmol) in 
a similar manner as described for preparation o f 178a, mp 187-189 °C. NMR (400 MHz, 
CD3 OD) 5 2.63 (1H, dd, J  8 .8 , 14.8 Hz, CH, CH2 CHCH2 CO), 2.84 (1H, dd, J  6.6, 14.6 Hz, 
CH, CH2 CHCH2 CO), 3.09 (1H, dd, 77.8, 13.0 Hz, CH, CH2 CHCH2 CO), 3.16 (1H, dd, 76.8,
12.8 Hz, CH, CH2 CHCH2 CO), 7.00 (2H, d, J  8 . 8  Hz, 2 x CH, Ar), 7.06 (2H, dd, J  1.2, 8.4 
Hz, ArH), 7.16-7.28 (6 H, m, ArH), 7.39-743 (2H, m, ArH), 7.53 (2H, d, J  8 . 6  Hz, 2 x CH, 
Ar), 7.73 (2H, d, J  8 . 6  Hz, 2 x CH, Ar), 7.90 (2H, d, J  8 . 8  Hz, 2 x CH, Ar). 13C NMR (100 
MHz, CD3OD) 40.86 (CH2 CHCH2 CO), 42.63 (CH2 CHCH2 CO), 47.85 (CH2 CHCH2 CO),
117.47 (2 x CH, Ar), 119.00 (2 x CH, Ar), 120.09 (2 x CH, Ar), 124.77 (CH, Ar), 125.74 
(C, Ar), 126.70 (CH, Ar), 127.66 (2 x CH, Ar), 128.46 (2 x CH, Ar), 129.12 (2 x CH, Ar),
130.10 (2 x C H , Ar), 130.49 (2 x CH, Ar), 134.36 (C, Ar), 141.39 (C, Ar), 142.91 (C, Ar),
155.62 (C, Ar), 161.59 (C, Ar), 168.23 (C=0), 171.43 (C=0). vmax (solidy^m '1) 3060 (st), 
1681 (st), 1596 (st), 1585 (st), 1487 (st), 1318 (st), 1294 (st), 1251 (st), 1151 (st). MS m/z 
(API-ES): found 529 (M-H)' (100%). HRMS m/z (API-ES): found 529.1433 (M-H)', 
calculated for C2 9 H2 5 N2 O6 S 529.1433.

4-[3-Naphthalen-2-yl-4-(4-phenoxy-benzenesulfonylamino)-butyrylamino]-benzoic acid 
(178d). This was obtained as a white solid (0.052 g, 0.090mmol, 70%) from 142d (0.079 g, 
0.129 mmol) in a similar manner as described for preparation of 178a, mp 183-184 °C. !H 
NMR (400 MHz, CD 3 OD) 5 2.65 (1H, dd, 78.4, 14.8 H, CH,CH2 CHCH2 CO), 2.82 (1H, dd, 7
6 .8 , 14.8 Hz, CH, CH2 CHCH2 CO), 3.11-3.20 (2H, m, CH, CH2 CHCH2 CO), 3.40-3.44 (1H, 
m, CH, CH2 CHCH2 CO), 6.81 (2H, d, 7  8.4 Hz, 2 x CH, Ar), 6.94-6.96 (2H, m, ArH), 7.10- 
7.14 (1H, m, ArH), 7.25 (1H, dd, 7  1.6, 8 . 8  Hz, ArH), 7.29-7.35 (4H, m, ArH), 7.41 (2H, d, 7
8 . 8  Hz, 2 x CH, Ar), 7.54 (1H, bs, ArH), 7.58 (2H, d, 7  8 . 8  Hz, 2 x CH, Ar), 7.65-7.68 (3H, 
m, ArH), 7.78 (2H, d, 7  8.4 Hz, 2 x CH, Ar) . 13C NMR (100 MHz, CD3 OD) 40.82 
(CH2 CHCH2 CO), 42.70 (CH2 CHCH2 CO), 47.90 (CH2 CHCH2 CO), 117.34 (2 x CH, Ar),
119.00 (2 x CH, Ar), 120.115 (2 x CH, Ar), 124.76 (CH, Ar), 125.53 (CH, Ar), 125.66 
(CH, Ar), 125.91 (CH, Ar), 126.54 (CH, Ar), 127.39 (2 x CH, Ar), 127.53 (CH, Ar),
128.12 (CH, Ar), 129.06 (2 x CH, Ar), 130.09 (2 x CH, Ar), 130.51 (CH, Ar), 132.92 (C, 
Ar), 133.74 (C, Ar), 134.38 (C, Ar), 138.80 (C, Ar), 142.80 (C, Ar), 155.55 (C, Ar), 
161.50 (C=0), 171.36 (C=0). vmax (solidy^m '1) 3061 (st), 1683 (st), 1599 (st), 1584 (st), 
1514 (st), 1486 (st), 1304 (st), 1240 (st), 1147 (st). MS m/z (API-ES): found 579 (M-H)' 
(100%), HRMS m/z (API-ES): found 579.1586 (M-H)', calculated for C3 3 H2 7 N2 O6 S 
579.1590.

4-[3-Naphthalen-2-yl-4-(toluene-4-sulfonylamino)-butyrylamino]-benzoic acid (178c).
This was obtained as a white solid (0.021 g, 0.042 mmol, 65%) from 142c (0.034 g, 0.064
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mmol) in a similar manner as described for preparation of 142a, mp 169-171 °C. *H NMR 
(400 MHz, CD3 OD) 8  2.34 (3H, s, CH3), 2.73 (1H, dd, J  8.2, 14.6 Hz, CH, CH2 CHCH2 CO), 
2.91 (1H, dd, J  6.4, 14.8 Hz, CH, CH2 CHCH2 CO), 3.20 (1H, dd, J  7.6, 12.8 Hz, CH, 
CH2 CHCH2 CO), 3.25-3.29 (1H, m, CH, CH2 CHCH2 CO), 3.47-3.53 (1H, m, CH, 
CH2 CHCH2 CO), 7.19 (2H, d, J  8 . 6  Hz, 2 x CH, Ar), 7.32 (1H, dd, J  1.6, 8 . 8  Hz, ArH), 7.39- 
7.45 (2H, m, ArH), 7.51 (2H, d, J 9 .0  Hz, 2 x CH, Ar), 7.59 (2H, d, *79.0 Hz, 2 x CH, ArH), 
7.60 (1H, s, ArH), 7.73-7.79 (3H, m, ArH), 7.88 (2H, d, J  8 . 6  Hz, 2 x CH, Ar). 13C NMR 
(100 MHz, DMSO-d6) 8  21.60 (CH3), 40.88 (CH2 CHCH2 CO), 42.52 (CH2 CHCH2 CO), 
48.31 (CH2 CHCH2 CO), 118.92 (2 x CH, Ar), 125.73 (C, Ar), 126.20 (CH, Ar), 126.65 
(CH, Ar), 126.88 (CH, Ar), 126.95 (CH, Ar), 127.13 (2 x CH, Ar), 128.09 (CH, Ar), 
128.20 (CH, Ar), 128.41 (CH, Ar), 130.18 (2 x CH, Ar), 130.95 (2 x CH, Ar), 132.73 (C, 
Ar), 133.62 (C, Ar), 138.16 (C, Ar), 140.03 (C, Ar), 143.15 (C, Ar), 143.67 (C, Ar),
167.57 (C=0), 170.61 (C=0). vmax (solidy^m -1) 1680 (st), 1595 (st), 1530 (st), 1408 (st), 
1305 (st), 1252 (st), 1152 (st). MS m/z (API-ES): found 501 (M-H)' (100%). HRMS m/z 
(API-ES): found 501.14831 (M-H)', calculated for C2 8 H2 5 N2 O5 S 501.1484.

Methyl 2-Benzyloxy-4-(3-naphthalen-2-yl-4-nitrobutyrylamino)benzoate (180). Benzyl 
bromide (0.236 g, 1.38 mmol) and K2 C0 3 (0.190 g, 1.38 mmol) were added to a stirred 
solution of 145c (0.400 g, 1.15 mmol) in anhydrous DMF (7 ml) under Ar. The reaction 
mixture was stirred at room temperature overnight and the mixture was poured in water (15 
ml). The product was extracted with ethyl acetate (2 x 1 5  ml), dried over Na2 SC>4 and the 
solvent removed under reduced pressure. The resulting crude material was dissolved in 
nitromethane (7 ml) and heated in the microwave reactor at 100 °C for 15 min in presence of 
DBU (0.192 g, 1.27 mmol). After cooling to room temperature, the reaction mixture was 
poured into HC1 (aq, 1M, 10 ml). The product was extracted with ethyl acetate (2 x 1 5  ml), 
dried over Na2 SC>4 and the solvent removed under reduced pressure. Chromatography on 
silica gel (60:40 hexanes/ethyl acetate, Rf 0.45) afforded 180 (0.413 g, 0.83 mmol, 72%) as a 
yellow oil. ]H NMR (400 MHz, CDC13) 8  2.88 (1H, dd, J  6 .8 , 15.6 Hz, CH, 
NO2 CH2 CHCH2 CO), 2.96 (1H, dd, J  72, 15.2 Hz, CH, NO 2 CH2 CHCH2 CO), 3.86 (3H, s, 
CH, OCH3), 4.26 (1H, quint, J  7.1 Hz, CH, N 0 2 CH2 CHCH2 C0), 4.83 (1H, dd, J  7.4, 12.6 
Hz, CH, NO 2 CH2 CHCH2 CO), 4.93 (1H, dd, J 6 .8 , 12.4 Hz, CH, NO2 CH2 CHCH2 CO), 5.10 
(2H, s, CH2), 6.71 (1H, dd, J  2.0, 8 . 8  Hz, H-6 ’), 7.13 (1H, bs, ArH), 7.28-7.32 (1H, m, ArH), 
7.36-7.39 (3H, m, ArH), 7.47-7.52 (5H, m, ArH), 7.71 (1H, bs, NH), 7.77-7.86 (4H, m, ArH). 
13C NMR (400 MHz, CDC13) 8  40.68 (N 0 2 CH2 CHCH2 C0), 40.81 (N 0 2 CH2 CHCH2 C0),
52.15 (OCH3), 70.70 (N 0 2 CH2 CHCH2 C0), 79.44 (CH2), 101.39 (CH, Ar), 111.15 (CH, 
Ar), 115.91 (CH, Ar), 124.94 (CH, Ar), 126.67 (CH, Ar), 126.79, 126.89 (CH, Ar), 127.22 
(2 x CH, Ar), 127.93 (2 x CH, Ar), 128.05 (CH, Ar), 128.79 (CH, Ar), 128.72 (CH, Ar),
129.39 (CH, Ar), 133.11 (C, Ar), 133.60 (C, Ar), 135.89 (C, Ar), 136.54 (C, Ar), 142.68 
(C, Ar), 159.61 (C, Ar), 166.42 (C=Q), 168.57 (C=Q). vmax (solidy^m '1) 1688 (st), 1650
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(st), 1597, 1532 (st), 1513 (st), 1182 (st), 1132 (st). MS m/z (API-ES): found 409 (M+H)+

(100%). HRMS m. MS m/z (API-ES): found 499 (M+H)+ (100%). HRMS m/z (API-ES, pos):

found 499.1862 (M+H)+, calculated for C2 9H27N 2O 6 499.1869.

Methyl 4-(4-amino-3-naphthalen-2-ylbutyrylamino)-2-benzyloxybenzoate (143c). This was 
obtained as a white solid (0.050 g, 0.106 mmol, 13%) from 180 (0.386 g, 0.795 mmol) a 
similar manner as described for preparation of 143a. The crude compound was taken to the 
next step without further purification.

Methyl 2-benzyloxy-4-[3-naphthalen-2-yl-4-(4-
phenoxybenzenesulfonylamino)butyrylamino]-benzoate (142e). This was obtained as an off 
white solid (0.023 g, 0.032 mmol, 36%) from 143c (0.043 g, 0.091 mmol) in a similar manner 
as described for preparation of 142 a. The crude was used in the next step without further 
purification.

Methyl 2-hydroxy-4-[3-naphthalen-2-yl-4-(4-
phenoxybenzenesulfonylamino)butyrylamino]-benzoate (181). A solution of 142e (0.023 g, 
0.032 mmol) in methanol (1 ml) was stirred in presence of ammonium formate (0.089 g) and 
10% Pd/C (0.023 g), under H2 , at room temperature for 2 days. The solution was then filtered 
through a celite bed and the solvent removed under reduced pressure to afford 141 (0.014 g, 
0.0230 mmol, 70%) as yellow solid, which was used in the next step without further 
purification.

2-Hydroxy-4-[3-naphthalen-2-yl-4-(4-
phenoxybenzenesulfonylamino)butyrylaminoJbenzoic acid (178e). This was obtained as an 
off-white solid (0.0063 g, 0.011 mmol, 50%) from 181 (0.013 g, 0.021 mmol) in a similar 
manner as described for preparation o f 142a, mp 153-155 °C. !H NMR (400 MHz, CD3 OD) 5 
2.63 (1H, dd, J  14.6, 8.2 Hz, CH, CH2 CHCH2 CO), 2.86 (1H, dd, J  15.0, 6 . 6  Hz, CH, 
CH2 CHCH2 CO), 3.13 (1H, dd, J  13.2, 7.6 Hz, CH, CH2 CHCH2 CO), 3.37-3.48 (1H, m, CH, 
CH2 CHCH2 CO), 6.77-6.83 (3H, m, ArH), 6.94-6.96 (2H, m, ArH), 7.08-7.14 (2H, m, ArH),
7.24 (1H, dd, J  1.6, 8.4 Hz, ArH), 7.29-7.35 (4H, m, ArH), 7.53 (1H, bs, ArH), 7.57-7.60 
(1H, m, ArH), 7.66-7.69 (3H, m, ArH), 9.80 (1H, bs, ArH). 13C NMR (400 MHz, CD3OD) 
5 40.59 (CH2 CHCH2 CO), 42.67 (CH2 CHCH2 CO, 47.72 (CH2 CHCH2 CO), 106.81 (CH, 
Ar), 110.12 (CH, Ar), 117.35 (2 x CH, Ar), 120.12 (2 x CH, Ar), 124.75 (CH, Ar), 125.52 
(CH, Ar), 125.67 (CH, Ar), 125.90 (CH, Ar), 126.55 (CH, Ar), 127.39 (CH, Ar), 127.55 
(CH, Ar), 128.13 (CH, Ar), 129.06 (2 x CH, Ar), 130.09 (2 x CH, Ar), 131.03 (CH, Ar),
132.90 (C, Ar), 133.74 (C, Ar), 134.34 (C, Ar), 138.82 (C, Ar), 143.81 (C, Ar), 155.54 
(C, Ar), 161.50 (C, Ar), 162.34 (C=Q), 171.32 (C=Q). vmax (solidy^m '1) 3253 (st), 1641
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(st), 1632 (st), 1565 (md), 1524 (st), 1291 (st), 1165 (st). MS m/z (API-ES): found 595 (M- 
H)' (100%). HRMS m/z (API-ES): found 595.1537 (M-H)', calculated for C33H27N2O7S 

595.1539.

4-tert-Butoxycarbonylaminobenzoic acid ethyl ester (183)422
t-B(12.68 g, 58.1 mmol) was added to a solution o f ethyl-4amino benzoate (182) (4 g, 24.21 
mmol) in dry THF (20 ml) at rt under Ar. The reaction mixture was heated to reflux for 24 h. 
The solution remaining was evaporated in vacuo to dryness. Citric acid (aq, sat. solution, 20 
ml) was added and the mixture was extracted with ethyl acetate (2 x 60 ml). The organic 
extracts were collected, dried over Na2 SC>4 , and the solvent removed under reduced pressure. 
The pure compound 183 was obtained after trituration with a solution (20 ml) of ethyl 
acetate:hexanes 1:9 as a white solid (4.2 g, 16 mmol, 67%), mp 141-143 °C. 'H NMR (400 
MHz, CDCI3) 5 1.38 (3H, t, J  7.6 Hz, CH2CH3), 1.54 (9H, s, C(CH3)3), 4.35 (2 H, q, 77.2 Hz, 
CH2CH3), 6.67 (1H, bs, NH), 7.42 (2 H, d, J  8 . 8  Hz, 2 x CH, Ar), 7.97 (2 H, d, J  8 . 8  Hz, 2 x 
CH, Ar).

4-(Allyl-tert-butoxycarbonylamino)benzoic acid ethyl ester (184)
Sodium hydride (60% dispersion in mineral oil, 1.2 g, 29.2 mmol) was placed under Ar in a 
100 ml two-necked flask, washed with dry THF ( 2 x 7  ml), and suspended in dry THF (20 
ml). The mixture was cooled to 0 °C and 183 (2.4 g, 9.13 mmol) was added portionwise. 
After stirring for 15 min at room temperature, a solution of allyl bromide (2.64 g, 21.9 mmol,
2.4 eq) in dry THF (10 ml) was added drop wise. After stirring at room temperature for 48 h, 
the resulting mixture was quenched by slow dropwise addition o f water ( 1 0  ml), and the 
resulting mixture was extracted with ethyl acetate (2 x 30 ml). The organic extracts were 
collected, dried over Na2 SC>4 and the solvent was evaporated to dryness. Hexane (50 ml) was 
added and the formed white solid was separated by filtration. The filtrate was evaporated in 
vacuo to give the pure product as a yellow oil (1.6 g, 5.28 mmol, 58%). *H NMR (400 MHz, 
CDCI3 ) 5 1.38 (3H, t, /  7.2 Hz, CH2 CH3 ), 1.46 (9H, s, QCH^h), 4.26 (1H, t, J  1.6 Hz, CH, 
NCH2 CHCH2 ), 4.28 (1H, t , J  1.6 Hz, CH, NHCH2 CHCH2 ), 4.36 (2H, q, J 7 .2  Hz, CH2 CH3), 
5.13-5.14 (1H, m, CH, NCH 2 CHCH2 ), 5.15-5.18 ( 1 H, m, CH, NCH2 CHCFh), 5.91 (1H, qt, J
5.2, 9.0 Hz, CH, NCH2 CHCH2 ), 7.32 (2H, d, J  8 . 6  Hz, 2 x CH, Ar), 7.98 (2H, d, J  8 . 6  Hz, 2 x 
CH, Ar). 13C NMR (100 MHz, CDC13) 5 14.55 (CH2 CH3), 29.57 (Q C H ^ ), 52.73
(NCH2 CHCH2 ), 61.10 (CH2 CH3 ), 81.28 29.91 (C(CHs)3 ), 116.76 (NCH2 CHCH2), 125.34 
(NCH2 CHCH2 ), 127.33 (C, Ar), 130.21 (2 x CH, Ar), 134.16 (2 x CH, Ar), 147.23 (C), 
154.09 (C=0), 166.36 (C=0). vmax (o iiy^m '1) 2925 (md), 1703 (st), 1606 (st), 1366 (st), 
1271 (st), 1169 (st), 1148 (st), 1103 (st). MS m/z (API-ES): found 306 (M+H)+ (100%). 
HRMS m/z (API-ES): found 306.1703 (M+H)+, calculated for Q 7 H2 4 NO4  306.1705
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Ethyl 4-(acryloylallylamino)benzoate (185)
To a solution of 184 (1.23 g, 4.07 mmol) in DCM (10 ml) TFA (10 ml) was added. After 
stirring for 2  h at room temperature, the solvent was distilled under reduced pressure to give a 
brown oil. The crude allylamine was dissolved as obtained in dry DCM (20 ml) under Ar. 
Triethylamine (1.650 g, 16.31mmol) was added followed by acryloyl chloride (0.405 g, 4.48 
mmol) at room temperature. After stirring for 4 h at room temperature, the resulting mixture 
was quenched with water (10 ml) and extracted with DCM (2 x 20 ml). The organic extracts 
were collected, dried over Na2 SC>4 and the solvent was removed under reduced pressure. 
Chromatography on silica gel (80:20 hexane:ethyl acetate, Rf 0.28) afforded 185 as a yellow 
oil (0.467 g, 1.8 mol, 45%). ]H NMR (400 MHz, CDC13) 5 1.40 (3H, t, 7  7.0 Hz, CH2 CH3 ),
4.39 (2H, d, 77 .0  Hz, CI^CHs), 4.41-4.43 (2H, m, 2 x CH, NCH2 CHCH2 ), 5.08-5.16 (2H, m, 
2 x CH, NCH2 CHCH2 ), 5.58 (1H, dd, J  1.8, 13.2 Hz, COCHCH2 ), 5.88 (1H, qt, 76.2, 9.0 Hz, 
CH, NCH2 CHCH2 ), 6.04 (1H, dd, 7  10.0, 16.8 Hz, COCHCH2), 6.41 ( 1 H, dd, 72.0, 16.8 Hz, 
CH, COCHCH2 ), 7.23 (2H, d, 7  8.4 Hz, 2 x CH, Ar), 8.07 (2H, d, 7  8.4 Hz, 2 x CH, Ar). 13C 
NMR (100 MHz, CDCI3 ) 6  14.53 (CH2 CH3 ), 52.47 (NCH2 CHCH2), 61.47 (CH2 CH3),
118.36 (NCH2 CHCH2 ), 127.96 (2 xC H , Ar), 128.65 (COCHCH2), 128.72 (NCH2 CHCH2),
129.86 (C, Ar), 131.01 (2 x CH, Ar), 132.90 (COCHCH2), 146.24 (C, Ar), 165.29 (C O ),
165.92 (C O ) . vmax (oil)Z(cm'1) 2981 (st), 1714 (st), 1660 (st), 1603 (st), 1403 (st), 1271 (st), 
1101 (st). MS m/z (API-ES): found 260 (M+H)+ (100%). HRMS m/z (API-ES): found 
260.1287 (M+H)+, calculated for C i5 H]8N 0 3 260.1287.

Ethyl 4-(2-oxo-2,5-dihydropyrrol-l-yI)benzoate (186)386
To a solution o f 185 (0.057 g, 0.22 mmol) in dry toluene (11 ml) Grubbs catalyst (2nd 
generation, 0.0093 g, 0.0110 mmol, 5 mol %) was added at room temperature under Ar. After 
stirring for 1 h at 80 °C, the solvent was removed under reduced pressure. Chromatography 
on silica gel using the FlashMaster 3 purification station (60:40 hexane:ethyl acetate) 
afforded 186 as an off white solid (0.047 g, 0.20 mmol, 92%), mp 72-74 °C. !H NMR (400 
MHz, CDCI3 ) 5 1.39 (3H, t, 76 .8  Hz, CH2 CH3 ), 4.37 (2H, d, 76 .8  Hz, CH2 CH3 ), 4.49 (2H, t,
71.8 Hz, NCH2 CHCHCO), 6.30 (1H, dt, 7  1.8, 6.0 Hz, NCH2 CHCHCO), 7.23 (1H, dt, 71.8,
6.0 Hz, NCH2 CHCHCO), 7.32 (2H, d, 7  9.2 Hz, 2 x CH, Ar), 8.06 (2H, d, 7  8 . 8  Hz, 2 x CH, 
Ar). 13C NMR (100 MHz, CDC13) 6  14.58 (CH2 CH3), 53.13 (NCH2 CHCHCO), 61.09 
(CH2 CH3 ), 117.58 (2 x CH, Ar), 125.86 (C, Ar), 129.55 (NCH2 CHCHCO), 131.04 (2 x 
CH, Ar), 142.87 (NCH2 CHCHCO), 143.20 (C, Ar), 166.37 (C=0), 170.53 (C=0). vmax 
(solidy^m '1) 2990 (md), 1733 (st), 1652 (st), 1507 (st), 1365 (st), 1222 (st). MS m/z (API- 
ES): found 232 (M+H)+ (100%). HRMS m/z (API-ES): found 232.0971 (M+H)+, calculated 
for C,3 H 14N 0 3  232.0974.

Methyl 4-(4-nitromethyl-2-oxopyrrolidin-l-yl)benzoate (187). This was prepared from 
corresponding amide 186 (0.039 g, 0.168 mmol) in a similar manner as described for
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preparation o f 1441. Pure 187 was obtained as a yellow oil without purification (0.045 g, 
0.154 mmol, 91%). lU NMR (400 MHz, CDC13) 5 1.39 (1H, t, J7.2  Hz, CH2 CH3), 2.47 (1H, 
dd, J  7.6, 17.6 Hz, CH, H-3’), 2.91 (1H, dd, J 8 .8 , 17.2 Hz, CH, H-3’), 3.31 (1H, septuplet, J
7.4 Hz, CH, H-4’), 3.75 (1H, dd, J 6.6, 9.8 Hz, CH, H-5’), 4.15 (1H, dd, J7 .8 , 10.2 Hz, CH, 
H-5’), 4.38 (1H, q, J1.2  Hz, CH2 CH3 ), 4.55 (1H, dd, J 7.8, 13.0 Hz, CH, CH2N 0 2), 4.60 (1H, 
dd, J 6.6, 13.4 Hz, CH 2N 0 2), 7.67 (2H, d, J9.2  Hz, 2 x CH, Ar), 8.04 (2H, d, J9 .2  Hz, 2 x 
CH, Ar). 13C NMR (100 MHz, CDC13) 5 14.55 (CH2 CH3 ), 29.75 (CHCH2N 0 2), 36.23 
(CH2), 51.53 (CH2), 61.25 (CH2 CH3 ), 76.94 (CHCH2 N 0 2), 119.05 (2 x CH, Ar), 126.87 
(C, Ar), 130.79 (2 x CH, Ar), 142.55 (C, Ar), 166.20 (C=0), 171.64 (C=0). vmax (oil)/(cm‘ 
’) 2981 (md), 1699 (st), 1605 (st), 1549 (st), 1270 (st). MS m/z (API-ES): found 293 (M+H)+ 
(100%). HRMS m/z (API-ES): found 293.1136 (M+H)+, calculated for Ci4 Hi7N2 0 5 

293.1137.

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonyl chloride (189)392
Phosphorus oxychloride (27.17 g, 177.2 mmol) was added to a mixture of 5-isatinsulfonic 
acid sodium salt dihydrate (188) (10.1 g, 35.5 mmol) in of tetramethylene sulfone (50 ml). 
The resulting mixture was stirred at 60 °C for 3 h. After cooling to 0 °C, water (120 ml) was 
added. The green precipitate was filtered, dissolved in ethyl acetate (200 ml) and washed with 
water (150 ml). The organic extracts were collected, dried over Na2 S 04, filtered and the 
solvent removed under reduced pressure to provide a green solid. The pure compound 179 
was obtained after recrystallization from ethyl acetate/hexane 1:1 as yellow solid (5.9 g, 21.1 
mmol, 6 8  %), mp 200-202 °C. ]H NMR (400 MHz, CDCI3/CD 3CN 1:1) 5 7.22 (1H, d, <7 8.4 
Hz, H-7), 8.16 (1H, d, J 2 .0  Hz, H-4), 8.23 (1H, dd, J 2.0 8.4Hz, H-6 ), 9.47 (1H, s, NH).

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid dimethylamide (190r)392
A mixture o f dimethylamine (2M solution in THF) (0.334 ml, 0.668 mmol) and DIPEA 
(0.139 g, 1.02 mmol) was added to a solution of 189 (0.126 g, 0.514 mmol) in anhydrous 
THF (4 ml) at 0 °C under Ar. The reaction mixture was stirred overnight at room temperature, 
and the mixture was poured into water (5 ml). The product was extracted with ethyl acetate (3 
x 10 ml). The organic extracts were collected, dried over Na2 S 0 4  and the solvent removed 
under reduced pressure. The pure compound 190r was obtained after trituration with ethyl 
acetate (5 ml) as a yellow solid (0.90 g, 0.354 mmol, 6 8 %), mp 150-152 °C ]H NMR (400 
MHz, DMSO-d6) 5 2.60 (6 H, s, N(CH3)2), 7.09 (1H, d, J  8.3 Hz, H-7), 7.68 (1H, d, J2 .0  Hz, 
H-4), 7.91 (1H, dd, J  8.3, 2.0 Hz, H-6 ), 11.44 (1H, s, NH). vmax (solidM cnf1) 3288 (md), 
1783 (md), 1746 (st), 1705 (s t) , 1623 (st), 1323 (st), 1135 (st), 1048 (st). MS m/z (API-ES): 
found 355 (M+H)+ (100%). HRMS m/z (API-ES): found 255.0443 (M+H)+, calculated for 
C,oHn N20 4S 255.0440.
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2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfoniamide (190a). This was obtained from 189 
(0.229 g, 0.946 mmol) and ammonia (2 M solution in ethanol) (0.603 ml, 1.21 mmol) in a 
similar manner as described for preparation of 190r. The pure compound 190a was obtained 
after trituration with ethyl acetate as a yellow solid (0.099 g, 0.458 mmol, 47%), mp 200 °C 
(dec). NMR (400 MHz, DMSO-d6) 5 7.02 (1H, d, J  8.2 Hz, H-7), 7.38 (2H, s, NH2), 7.82 
(1H, d, J  1.8 Hz, H-4), 7.95 (1H, dd, J  1.8, 8.2 Hz, H-6 ), 11.35 (1H, s, NH). 13C NMR (100 
MHz, DMSO-d6) 6  112.90 (CH, Ar), 118.50 (C, Ar), 122.44 (CH, Ar), 135.74 (CH, Ar),
139.13 (C, Ar), 153.34 (C, Ar), 160.26 (C=0), 184.00 (C=0). vmax (solidy^m '1) 3282 
(md), 3120 (md), 1765 (md), 1747 (st), 1704 (st) (C=0), 1624 (st), 1343 (st), 1113 (st), 998 
(st). MS m/z (API-ES): found 227 (M+H)+ (100%). HRMS m/z (API-ES): found 227.0125 
(M+H)+, calculated for C 8H7 N2 O4 S 227.0127.

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid (2-dimethylamino-ethyl)amide (190b)
This was obtained from 189 (0.218 g, 0.889 mmol) and A,A-dimethylethylenediamine (0.101 
g, 1.156 mmol) in a similar manner as described for preparation of 190r. The crude product 
was used in the next step without further purification.

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acidpropylamide (190c). This was obtained as 
from 189 (0.256 g, 1.044 mmol) and propylamine (0.080 g, 1.358 mmol) in a similar manner 
as described for preparation o f 190r. The pure compound 190c was obtained after trituration 
with ethyl acetate as a yellow solid (0.125 g, 0.460 mmol, 45%), mp 242-244 °C. *H NMR 
(400 MHz, DMSO-d6) 6  0.77 (3H, t, J  7.4 Hz, CH2 CH2 CH3 ), 1.39 (2H, sex, J  1.2 Hz, 
CH2 CH2 CH3 ), 2.65 (2H, q, J  6.7 Hz, CH2 CH2 CH3 ), 7.04 (1H, d, J  8.4 Hz, H-7), 7.58 (1H, t, J
6.0 Hz, HNSO2 ), 7.75 (1H, d, J  1.8 Hz, H-4), 7.92 (1H, dd, J  1.8, 8.4 Hz, H-6 ), 11.38 (1H, s, 
NH). 13C NMR (400 MHz, DMSO-d6) 5 11.84 (CH2 CH2 CH3), 23.04 (CH2 CH2 CH3), 45.02 
(CH2 CH2 CH3 ), 113.14 (CH, Ar), 118.78 (C, Ar), 123.09 (CH, Ar), 135.40 (C, Ar), 136.71 
(CH, Ar), 153.73 (C, Ar), 160.21 (C=0), 183.86 (C=0). vmax (solidy^m '1) 3289 (md), 
3119 (md), 1766 (md), 1747 (st), 1707 (st), 1620 (st), 1319 (st), 1150 (st), 1064 (st). MS m/z 
(API-ES): found 269 (M+H)+ (100%). HRMS m/z (API-ES): found 269.0591 (M+H)+, 
calculated for C 1 1H 1 3N 2 O4 S 269.0596.

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid isopropylamide (190d). This was obtained 
from 189 (0.320 g, 1.306 mmol) and isopropylamine (0.100 g, 1.698 mmol) in a similar 
manner as described for preparation of 190r. The pure compound 190r was obtained after 
trituration with ethyl acetate as a yellow solid (0.244 g, 0.910 mmol, 70%), mp 184-186 °C. 
]H NMR (400 MHz, DMSO-d6) 5 0.94 (6 H, d, 76 .8  Hz, CHfCHOA 3.11 (1H, sept, 76.8 Hz, 
CH(CH3)2), 7.04 ( 1 H, d, 7  8.2 Hz, H-7), 7.58 (1H, d, 7  7.2 Hz, HNS02), 7.77 (1H, d, 7  1.8 
Hz, H-4), 7.94 (1H, dd, 7  1.8, 8.2 Hz, H-6 ), 11.38 (1H, s, NH). 13C NMR (400 MHz, DMSO- 
d6) 6  23.90 (CH(CH3 )aX 45.99 (CH(CH3)2), 113.15 (CH, Ar), 118.73 (C, Ar), 123.00 (CH,
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Ar), 136.53 (CH, Ar), 136.55 (C, Ar), 153.57 (C, Ar), 160.20 (C=0), 183.90 (C=0). vmax 
(solid)/(cmf]) 3294 (md), 3115 (md), 1764 (md), 1748 (st), 1706 (st), 1619 (st), 1322 (st), 
1114 (st), 1063 (st), 980 (st). MS m/z (API-ES): found 269 (M+H)+ (100%). HRMS m/z 
(API-ES): found 269.0594 (M+H)+, calculated for CnHnNsC^S 269.0596.

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid (2-methoxy-ethyl)amide (190e). This was 
obtained from 189 (0.308 g, 1.257 mmol) and 2-methoxyethylamine (0.103 g, 1.382 mmol) in 
a similar manner as described for preparation o f 190r. The pure compound 190e was obtained 
after trituration with ethyl acetate:DCM (1:3, v/v) as a yellow solid (0.221 g, 0.778 mmol, 
62%), mp 120 °C (dec). ’H NMR (400 MHz, DMSO-d6): 5 2.87 (2H, q, J  5.6 Hz, 
CH2 CH2 OCH3 ), 3.14 (3H, S, OCH3 ), 3.28 (2H, t, J5 .8  Hz, CH2 CH2 OCH3 ), 7.04 (1H, d, J8 .3  
Hz, H-7), 7.75 (1H, t, J 6 .0  Hz, H N S02), 7.78 (1H, d, J  1.7 Hz, H-4), 7.93 (1H, dd, J  1.7, 8.3 
Hz, H-6 ), 11.38 (1H, s, NH).13C NMR (400 MHz, DMSO-d6) 5 42.86 (CH2 CH2OCH), 58.56 
(OCH3 ), 71.15 (CH2 CH2 OCH3 ), 113.08 (CH,Ar), 118.69 (C, Ar), 123.22 (CH, Ar), 135.49 
(C, Ar), 136.73 (CH, Ar), 153.75 (C, Ar), 160.21 (C=0), 183.88 (C=0). vmax (solidy^m '1) 
3275 (md), 3119 (md), 1765 (md), 1746 (st), 1706 (st), 1619 (st), 1316 (st), 1147 (st), 1122 
(st), 1062 (st). MS m/z (API-ES): found 285 (M+H)+ (100%). HRMS m/z (API-ES): found 
285.0544 (M+H)+, calculated for CnHnNzOsS 285.0545

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid sec-butylamide (190f). This was obtained 
from 189 (0.23 g, 0.951 mmol) and sec-butylamine (0.076 g, 1.046 mmol) in a similar 
manner as described for preparation of 190r. The pure compound 190f was obtained after 
trituration with ethyl acetate as a yellow solid (0.080 g, 0.283 mmol, 30%), mp 208-210 °C. 
*H NMR (400 MHz, DMSO-d6): 6  0.71 (3H, t, J  7.6 Hz, NCHCH2 CH3 ), 0.87 (3H, d, J  6 . 8  

Hz, NCHCH 3 ), 1.29 (2H, quint, t, J  7.2 Hz, NCHCH2 CH3 ), 3.01 (1H, quint, J  6.7 Hz, 
NCHCH2 CH3 ), 7.03 (1H, d, J8 .2  Hz, H-7), 7.53 (1H, d, J7.2  Hz, H N S02), 7.75 (1H, s, H-4), 
7.93 (1H, d, J  8.2 Hz, H-6 ), 11.36 (1H, s, NH). MS m/z (API-ES): found 283 (M+H)+ 
(100%). HRMS m/z (API-ES): found 283.0749 (M+H)+, calculated for C ^ H ^ C ^ S  
283.0753.

5-(Morpholine-4-sulfonyl)-lH-indole-2,3-dione (190g)395
A solution o f 189 (0.211 g, 0.861 mmol) and morpholine (0.187 g, 2.139 mmol, 2.5 eq), in 
anhydrous DCM (7 ml) and anhydrous chloroform (1 ml) was stirred for 3h at room 
temperature under Ar. The yellow precipitate was collected by filtration and dried under 
vacuum. The crude product was used in the next step without further purification.

2.3-Dioxo-2,3-dihydro-1 H-indole-5-sulfonic acid (tetrahydrofuran-2-ylmethyl)amide 
(190h). This was obtained from 189 (0.236 g, 0.960 mmol) and tetrahydrofurfurylamine 
(0.107 g, 1.05 mmol) in a similar manner as described for preparation of 190r. The pure
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compound 190h was obtained after trituration with ethyl acetate ethyl acetate/hexane (3:2 
v/v) as a yellow solid (0.199 g, 0.633 mmol, 6 6 %), mp 180 °C (dec). NMR (400 MHz, 
DMSO-d6) 5 1.46-1.53 (1H, m), 1.69-1.85 (3H, m), 2.69-2.78 (2H, m), 3.51-3.67 (2H, m), 

3.74-3.80 (1H, m), 7.04 (1H, d, J 8 .0  Hz, H-7), 7.74 (1H, t, J  6.2 Hz, N H S02), 7.79 (1H, d, J
1.8 Hz, H-4), 7.93 (1H, dd, J  1.8, 8.2 Hz, H-6 ), 11.38 (1H, s, NH). 13C NMR (100 MHz, 

DMSO-d6) 5 25.76 (OCH2 CH2 ), 29.0 (NCH2 CH(CH2 )0 ), 47.21 (NCH2 CHO), 67.97
(OCH2 CH2), 77.60 (NCH2 CHO) 113.09 (CH, Ar), 118.70 (C, Ar), 123.25 (CH, Ar), 135.49 

(C, Ar), 136.75 (CH, Ar), 153.75 (C, Ar), 160.21 (C=0), 183.89 (C=0). vmax (so lidy^m '1) 

3161 (md), 1766 (md), 1747 (st), 1707 (st), 1619 (st), 1316 (st), 1062 (st). MS m/z (API-ES): 

found 311 (M+H)+ (100%). HRMS m/z (API-ES): found 311.0700 (M+H)+, calculated for 
C i3 H 15N 2 05S 311.0702

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid (furan-2-ylmethyl)amide (190i). This was 

obtained from 189 (0.292 g, 1.191 mmol) and furfurylamine (0.127 g, 1.311 mmol) in a 

similar manner as described for preparation o f 190r. The pure compound 190i was obtained 
after trituration with ethyl acetate ethyl acetate/hexane 3:2 as a yellow solid (0.349 g, 1.140 
mmol, 95%), mp 120 °C (dec). *H NMR (400 MHz, DMSO-d6) 5 3.98 (2H, d, J  6.0 Hz, 
CH2), 6.17 (1H, d, J  2.6 Hz, CH, Ar), 6.27 (1H, dd, J  1.2, 2.6 Hz, CH, Ar), 6.99 (1H, d, J  8.5 

Hz, H-7), 7.45 (1H, dd, J  1.2, 2.6 Hz, CH, Ar), 7.71 (1H, d, J  1.9 Hz, H-4), 7.88 (1H, dd, J
I.9, 8.5 Hz, H-6 ), 8.18 (1H, t, J  6.0 Hz, H N S02), 11.40 (1H, s, NH). 13C NMR (400 MHz, 

DMSO-d6) 5 39.96 (CH2), 108.84 (CH, Ar), 111.06 (CH, Ar), 113.06 (CH, Ar), 118.51 (C, 
Ar), 123.30 (CH, Ar), 135.54 (C, Ar), 136.79 (CH, Ar), 143.28 (CH, Ar), 150.93 (C, Ar),
153.74 (C, Ar), 160.17 (C=0), 183.86 (C=0). vmax (so lidy^m '1) 3270 (md), 3114 (md), 

1766 (md), 1746 (st), 1706 (st), 1619 (st), 1321 (st), 1148 (st), 1064 (md), 726 (st). MS m/z 
(API-ES): found 307 (M+H)+ (100%). HRMS m/z (API-ES): found 307.0386 (M+H)+, 

calculated for C b H h ^ O sS  307.0389.

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid (thiophen-2-ylmethyl)amide (190j). This 
was obtained from 189 (0.202 g, 0.824 mmol) and 2-thiophenemethylamine (0.121 g, 1.071 

mmol) in a similar manner as described for preparation of 190r. The pure compound 190j 
was obtained after trituration with ethyl acetate as a yellow solid (0.129 g, 0.400 mmol, 49%), 
mp 180 °C (dec). *H NMR (400 MHz, DMSO-d6) 5 4.16 (2H, d, J  6.1 Hz, CH2), 6 .8 6 -6 . 8 8  

(2H, m, H-3’ & H-5’) 7.02 (1H, d, J  8.2 Hz, H-7), 7.37 (1H, dd, J2 .0 , 4.4 Hz, H-4’), 7.74 
(1H, d, J 2 .0  Hz, H-4), 7.92 (1H, dd, J2 .0 , 8.2, 2.0 Hz, H-6 ), 8.27 (1H, t, J6 .1  Hz, H N S02),

II.40  (1H, s, NH). 13C NMR (100 MHz, DMSO-d6) 6  46.80 (CH2), 113.10 (CH, Ar),
118.61 (C, Ar), 123.30 (CH, Ar), 126.46 (CH, Ar), 126.86 (CH, Ar), 127.37 (CH, Ar),
135.41 (C, Ar), 136.82 (C, Ar), 140.99 (CH, Ar), 153.78 (C, Ar), 160.18 (C=0), 183.77 

(C=Q). vmax (so lidy^m '1) 3267 (md), 3120 (md), 1771 (md), 1745 (st), 1705 (st), 1617 (st),
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1319 (st), 1145 (st), 1053 (md), 750 (st). MS m/z (API-ES): found 323 (M+H)+ (100%).

HRMS m/z (A PI-ES): found 323.0157 (M+H)+, calculated for C i3HiiN 204S2 323.0160

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid 3-methoxybenzylamide (190k). This was 
obtained from 189 (0.206 g, 1.093 mmol) and 3-methoxybenzylamine (0.149 g, 1.093 mmol) 
in a similar manner as described for preparation of 190r. The pure compound 190k was 
obtained after trituration with ethyl acetate as a yellow (0.157 g, 0.453 mmol, 54%), mp 215- 
217 °C. ’H NMR (400 MHz, DMSO-d6) 5 3.65 (3H, s, OCH3), 3.95 (2H, d, J 6 . 6  Hz, CH2), 
6.72- 6.77 (3H, m, ArH), 6.98 (1H, d, <7 8.2 Hz, H-7), 7.11-715 (1H, m, ArH), 7.68 (1H, d, J
1.6 Hz, H-4), 7.89 (1H, dd, J  1.6, 8.2, Hz, H-6 ), 8.15 (1H, t, J  6 . 6  Hz, H NS02), 11.39 (1H, s, 
NH). 13C NMR (100 MHz, DMSO-d6) 5 46.80 (CH2), 55.60 (OCH3), 113.05 (CH, Ar),
113.26 (CH, Ar), 113.79 (CH, Ar), 118.48 (C, Ar), 120.52 (CH, Ar), 123.27 (CH, Ar),
129.99 (CH, Ar), 135.64 (C, Ar), 136.78 (C, Ar), 139.42 (CH, Ar), 153.65 (C, Ar), 159.83 
(C, Ar), 160.15 (C=0), 183.73 (C=0). vmax (so lid y ^ m 1) 3274 (md), 3116 (md), 1761 (md), 
1744(st), 1705 (st), 1619 (st), 1489 (st), 1319 (st), 1147 (st), 852 (st). MS m/z (API-ES): 
found 374 (M+H)+ (100%). HRMS m/z (API-ES): found 374.0700 (M+H)+, calculated for 
Ci6 H 15N 2 0 5S 347.0702.

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid 4-methoxybenzylamide (1901). This was 
obtained from 189 (0.203 g, 0.828 mmol) and 4-methoxybenzylamine (0.147 g, 1.077 mmol) 
in a similar manner as described for preparation o f 190r. The pure compound 1901 was 
obtained after trituration ethyl acetate as a yellow solid (0.072 g, 0.120 mmol, 25%), mp 230 
°C (dec). l¥L NMR (400 MHz, DMSO-d6) 5 3.66 (3H, s, OCH3), 3.89 (2H, d, J6 .1  Hz, CH2),
6.77 (2H, d, J 8 . 8  Hz, 2 x CH, Ar), 6.98 (1H, d, J8 .0  Hz, H-7), 7.08 (2H, d, J 8 . 8  Hz, 2 x CH, 
Ar), 7.65 (1H, d, J  2.0 Hz, H-4), 7.88 (1H, dd, J  8.0, 2.0 Hz, H-6 ), 8.06 (1H, t, J  6.1 Hz, 
HNS02), 11.39 (1H, s, NH). 13C NMR (100 MHz, DMSO-d6) 5 46.43 (CH2), 55.69 
(OCH3), 113.05 (CH, Ar), 114.29 (2 x CH, Ar), 118.52 (C, Ar), 123.30 (CH, Ar), 129.72 
(2xC H ,A r), 129.57 (C, Ar), 135.73 (CH, Ar), 136.79 (C, Ar), 153.63 (C, Ar), 159.12 (C, 
Ar), 160.17 (C=0), 183.78 (C=0). vmax (so lidy^m '1) 3270 (md), 3114 (md), 1763 (md), 
1745(st), 1707 (st), 1618 (st), 1493 (st), 1319 (st), 1148 (st), 850 (st). MS m/z (API-ES): 
found 374 (M+H)+ (100%). HRMS m/z (API-ES): found 374.0699 (M+H)+, calculated for 
Ci6 Hi5N 2 0 5S 347.0702.

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid benzylmethylamide (190m). This was 
obtained from 189 (0.227 g, 0.926 mmol) and A-methylbenzylamine (0.145 g, 1.203 mmol) 
in a similar manner as described for preparation o f 190r. The pure compound 190m was 
obtained after trituration with ethyl acetate as a yellow solid (0.155 g, 0.469 mmol, 47%), mp 
170-172 °C. ’H NMR (400 MHz, DMSO-d6) 5 2.53 (3H, s, NCH3), 4.13 (2H, s, CH2), 7.10 
(1H, d, J  8.4 Hz, H-7), 7.25-7.37 (5H, m, ArH), 7.79 (1H, d, J  1,9 Hz, H-4), 8.01 (1H, dd, J
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8.4, 1.9 Hz, H-6 ). 13C NMR (100 MHz, DMSO-d6) 5 35.17 (CH3), 54.01 (CH2), 113.52
(CH, Ar), 118.90 (C, Ar), 123.87 (CH, Ar), 128.42 (CH, Ar), 128.84 (2 x CH, Ar), 129.28 
(2 x CH, Ar), 131.71 (C, Ar), 136.62 (C, Ar), 137.53 (CH, Ar), 154.35 (C, Ar), 160.14 
(C=0), 183.65 (C=0). vmax (solidytcm '1) 3124 (md), 1763 (md), 1746 (st), 1707 (st), 1629 
(st), 1312 (st), 1154 (st), 780 (st). MS m/z (API-ES): found 331 (M+H)+ (100%). HRMS m/z 
(API-ES): found 331.0751 (M+H)+, calculated for C 16H 15N2 O4 S 331.0753.

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid (pyridin-4-ylmethyl)amide (190n). This 
was obtained from 189 (0.225 g, 0.918 mmol) and 4-(aminomethyl)pyridine (0.129 g, 1.193 
mmol) in a similar manner as described for preparation o f 190n. The crude was used in the 
next step without further purification.

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid (pyridin-2-ylmethyl)amide (198o). This 
was obtained from 189 (0.205 g, 0.836 mmol) and 2-(aminomethyl)pyridine (0.200 g, 1.877 
mmol) in a similar manner as described for preparation of 190r. The pure compound 190o 
was obtained after trituration with ethyl acetate as a yellow solid (0.145 g, 0.457 mmol, 58%), 
mp 140 °C (dec). 'H  NMR (400 MHz, DMSO-d6) 5 4.06 (2H, d, J 6 .2  Hz, CH2), 6.99 (1H, d, 
J S A  Hz, H-7), 7.19-7.22 (1H, m, ArH), 7.32 (1H, d, J l . l  Hz, ArH), 7.70 (1H, td, J  1.7, 7.7 
Hz, ArH), 7.74 (1H, d, J 2.0 Hz, H-4), 7.91 (1H, dd, J 2.0, 8.4 Hz, H-6 ), 8.28 (1H, t, J6 .2  Hz, 
HNS02), 8.39-8.40 (1H, m, ArH), 11.39 (1H, s, NH). 13C NMR (100 MHz, DMSO-d6) 5 
48.64 (CH2), 113.05 (CH, Ar), 118.62 (C, Ar), 122.48 (CH, Ar), 123.09 (CH, Ar), 123.34 
(CH, Ar), 135.39 (C, Ar), 136.84 (CH, Ar), 137.44 (CH, Ar), 148.48 (CH, Ar), 153.75 (C, 
Ar), 157.51 (C, Ar), 160.19 (C=0), 183.78 (C=0). vmax (so lidy^m '1) 3132 (md), 1755 
(md), 1731 (st), 1699 (st), 1621 (st), 1322 (st), 1201 (st), 743 (st). MS m/z (API-ES): found 
318 (M+H)+ (100%). HRMS m/z (API-ES): found 318.0547 (M+H)+, calculated for 
Ci4 Hi2 N 3 0 4S 318.0549

2.3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid 4-chlorobenzylamide (190p). This was 
obtained from 189 (0.121 g, 0.869 mmol) and 4-chlorobenzylamine (0.159 g, 1.130 mmol) in 
a similar manner as described for preparation of 190r. The pure compound 190p was 
obtained after trituration with ethyl acetate as a yellow solid (0.175 g, 0.502 mmol, 57%), mp 
250 °C (dec). ]H NMR (400 MHz, DMSO-d6) 5 3.97 (2H, d, J  6.2 Hz, CH2), 7.00 (1H, d, J
8.1 Hz, H-7), 7.20 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.29 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.68 
(1H, d, J  1.9 Hz, H-4), 7.89 (1H, dd, J  8.1, 1.9 Hz, H-6 ), 8.22 (1H, t, J  6.2 Hz, HNS02),
11.41 (1H, s, NH). 13C NMR (100 MHz, DMSO-d6) 6  46.08 (CH2), 113.10 (CH, Ar),
118.57 (C, Ar), 123.24 (CH, Ar), 128.85 (2 x CH, Ar), 130.20 (2 x CH, Ar), 132.40 (C, 
Ar), 135.52 (C, Ar), 136.76 (C, Ar), 137.12 (CH, Ar), 153.75 (C, Ar), 160.15 (C=0), 
183.72 (C=0). vmax (solidytcm '1) 3283 (md), 3124 (md), 1767 (md), 1739 (st), 1705 (st), 
1623 (st), 1330 (st), 1113 (st), 904 (st). MS m/z (API-ES): found 351 (M3 5 C+H)+ (100%),
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353 (M37C+H)+ (100%). HRMS m/z (API-ES): 351.0204 (M+H)+, calculated for

C ]5Hi2ClN2 04S 351.0206.

2,3-Dioxo-2,3-dihydro-lH-indole-5-sulfonic acid benzylamide (190q). This was obtained 
from 189 (0.553 g, 2.350 mmol) and benzylamine (0.326 g, 3.051 mmol) in a similar manner 
as described for preparation o f 190r. The pure compound 190q was obtained after trituration 
with ethyl acetate as an orange solid (0.545 g, 1.735 mmol, 74%), mp 225-227 °C. ]H NMR 
(400 MHz, DMSO-d6) 8  3.96 (2H, d, J  5.6 Hz, CH2), 7.01 (1H, d, J  8.0 Hz, H-7), 7.20-7.25 
(5H, m, ArH), 7.73 (1H, s, H-4), 7.93 (1H, d, J  8.0 Hz, H-6 ), 8.17 (1H, bt, J5.6 Hz, NHS02),
11.41 (1H, s, NH). 13C NMR (100 MHz, DMSO-d6) 5 46.83 (CH2), 113.1 (CH, Ar), 118.61 
(C, Ar), 123.26 (CH, Ar), 127.81 (CH, Ar), 128.33 (2 x CH, Ar), 128.94 (2 x CH, Ar),
135.52 (C, Ar), 136.79 (CH, Ar), 138.00 (C, Ar), 153.71 (C, Ar), 160.17 (C=0), 183.77 
(C=0). vmax (so lidy^m '1) 3265 (st), 3122 (md), 1764 (md), 1739 (st), 1705 (st), 1628 (st), 
1323 (st), 1152 (st), 785 (st). MS m/z (API-ES): found 317 (M+H)+ (100%). HRMS m/z 
(API-ES): 317.0593 (M+H)+, calculated for Ci5H 13N2 0 4S 317.0596.

l-Ethyl-2,3-dioxo-2,3-dihydro-lH-indole-5-sulfonic acid dimethylamide (190t)
Ethyl bromide (0.173 g, 1.592 mmol) was added to a solution of 190r (0.043 g, 0.169 mmol 
0.160 g) and NaH (60% suspension in mineral oil, 0.0101 g, 0.253 mmol) in anhydrous DMF 
(1 ml) at room temperature under Ar. After stirring overnight at room temperature under Ar, 
the reaction mixture was poured into water (4 ml). The mixture was extracted with ethyl 
acetate ( 3 x 1 0  ml), dried over Na2 S 0 4  and the solvent was distilled under reduced pressure. 
Chromatography on silica gel (60:40 hexanes/ethyl acetate, Rf 0.40) afforded 190t as a red 
solid (0039 g, 0.138 mmol, 82%), mp 165-167 °C. *H NMR (400 MHz, CDC13) 5 2.71 (3H, t, 
J 12  Hz, CU2CH3), 2.74 (6 H, s, N(CH3)2), 3.84 (2H, q, J7 .2  Hz, CH2 CHA. 7.06 (1H, d, J8 .0  
Hz, H-7), 7.97 (1H, d, J  1.8 Hz, H-4), 8.02 (1H, dd, J  1.8, 8.0 Hz, H-6 ). 13C NMR (400 MHz, 
CDC13) 8  12.72 (CH2 CH3), 35.69 (2 x CH3), 38.07 (CH2 CH3), 110.50 (CH, Ar), 117.66 
(C, Ar), 124.99 (CH, Ar), 131.96 (C, Ar), 137.91 (CH, Ar), 153.69 (C, Ar), 157.63
(C O ), 182.37 (C O ) . vmax (so lidy^m '1) 1771 (md), 1732 (st), 1707(st), 1619 (st), 1317 (st), 
1138 (st), 1023 (st). MS m/z (API-ES): found 283 (M+H)+ (100%). HRMS m/z (API-ES): 
283.0748 (M+H)+, calculated for Ci2 Hi5N 2 0 4S 283.0753.

l-Methyl-2,3-dioxo-2,3-dihydro-lH-indole-5-sulfonic acid dimethylamide (190s). This was 
obtained from 190r (0.092 g, 0.362 mmol) and iodomethane (0.102 g, 0.742 mmol) in a 
similar manner as described for preparation of 190t. The compound was purified via 
chromatography on silica gel (hexanes/ethyl acetate 7:3) to give 190s as a red solid (0.065 g, 
0.242 g, 67%), mp 190-192 °C. ]H NMR (400 MHz, CDC13) 8  2.74 (6 H, s, N(CH3)2), 3.33 
(3H, s, NCH3), 7.08 (1H, d, J  8.2 Hz, H-7), 7.98 (1H, d, J  2.0 Hz, H-4), 8.05 (1H, dd, J  2.0,
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8.2 Hz. H-6 ). 13C NMR (100 MHz, CDC13) 6  25.62 (CH3), 36.83 (2 x CH3), 109.30 (CH, 
Ar), 116.26 (C, Ar), 123.51 (CH, Ar), 130.86 (C, Ar), 136.72 (CH, Ar), 153.15 (C, Ar),
156.76 (C=0), 180.80 (C=0). vmax (solid)/(cm_1) 1774 (md), 1738 (st), 1706 (st), 1619 (st), 
1321 (st), 1138 (st), 1020 (st). MS m/z (API-ES): found,269 (M+H)+ (100%). HRMS m/z 
(API-ES): 269.0593 (M+H)+, calculated for C i,H 1 3N2 0 4S 269.0596.

l-Benzyl-2,3-dioxo-2,3-dihydro-lH-indole-5-sulfonic acid dimethylamide (190u). This was 
obtained from 190r (0.093 g, 0.366 mmol) and benzylbromide (0.187 g, 1.098 mmol) in a 
similar manner as described for preparation o f 190t. The compound was purified via 
chromatography on silica gel (hexanes/ethyl acetate 6:4) to give 190u as a red solid (0.036 g, 
0.104 mmol, 29%), mp 152-154 °C. *H NMR (400 MHz, CDC13) 8  2.71 (6 H, s, N(CHOA
4.98 (2H, s, CH2), 6.94 (1H, d, J 8 .0  Hz, H-7), 7.33-7.40 (5H, m, 5 x CH, Ar), 7.91 (1H, dd, J
2.0, 8.0 Hz, H-6 ), 7.98 (1H, d, J  2.0 Hz, H-4). 13C NMR (100 MHz, CDC13) 8  38.04 (2 x 
CH3), 44.70 (CH2), 111.55 (CH, Ar), 117.73 (C, Ar), 124.86 (CH, Ar), 127.77 (2 x CH, 
Ar), 128.79 (2 x CH, Ar), 129.50 (CH, Ar), 132.27 (C, Ar), 133.96 (C, Ar), 137.78 (CH, 
Ar), 153.65 (C, Ar), 158.03 (C=0), 182.01 (C=0). vmax (solid)/(cm_1) 1773 (md), 1732 (st), 
1706 (st), 1624 (st), 1319 (st), 1138 (st), 1032 (st). MS m/z (API-ES): found 345 (M+H)+ 
(100%). HRMS m/z (API-ES): 345.0905 (M+H)+, calculated for C ,7 Hi7 N2 0 4S 345.0909.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid dimethylamide 
(191a2)
A solution o f 190r (0.09 g, 0.354 mmol) and 2-nitrophenylhydrazine (0.059 g, 0.389 mmol,
I.1 eq) in ethanol ( 8  ml) was stirred for 4 h at 80 °C in presence o f HC1 (aq 4M, 4 drops). 
Pure compound was obtained by filtration and dried in vacuo (0.083 g, 0.213 mmol, 60%), 
mp > 300 °C. *H NMR (400 MHz, DMSO-d6) 8  2.62 (6 H, s, N(CH3)2), 7.16 (1H, d, J8 .2  Hz, 
H-7), 7.22-7.24 (1H, m, ArH), 7.76 (1H, dd, J2 .0 , 8.2 Hz, H-6 ), 7.81 (1H, t, J1.9  Hz, ArH),
7.96 (1H, d, J 2 .0  Hz, H-4), 8.23 (1H, dd, J  1.4, 7.9 Hz, ArH), 8.32 (1H, d, J  7.9 Hz, ArH),
II.62 (1H, s, HNCO), 14.25 (1H, s, HNN). 13C NMR (100 MHz, DMSO-d6) 8  38.36 (2 x 
CH3), 111.85 (CH, Ar), 116.92 (CH, Ar), 119.65 (CH, Ar), 121.63 (C, Ar), 122.93 (CH, 
Ar), 126.44 (CH, Ar), 128.96 (C, Ar), 130.60 (CH, Ar), 132.39 (C, Ar), 133.90 (C, Ar),
137.23 (CH, Ar), 139.56 (C, Ar), 145.28 (C=N), 163.15 (C=0). vmax (solidy^m '1) 3182 
(md), 1702 (md), 1613 (st) (C=0), 1567 (st), 1496 (st), 1332 (st), 1149 (st), 1120 (md). MS 
m/z (API-ES): found 390 (M+H)+(100%). HRMS m/z (API-ES): found 390.0871 (M+H)+, 
calculated for C 1 6H 16N 5 O5 S 390.0872; found 407.1139, (M+NH4)+, calculated for 
C 16H 19N605S 407.1138.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonicamide (191 a j). This 
was obtained as a yellow solid (0.090 g, 0.250 mmol, 58%) from 190a (0.097 g, 0.429 mmol) 
and 2-nitrophenylhydrazine (0.072 g, 0.472 mmol) in a similar manner as described for
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preparation o f 191a2, mp > 300 °C. *H NMR (400 MHz, DMSO-d6) 5 7.03 (1H, d, J  8.2 Hz, 
H-7), 7.19-7.24 (1H, m, ArH), 7.30 (2H, s, NH2), 111  (1H, dd, J  1.8, 8.2 Hz, H-6 ), 7.81-785 
(1H, m, ArH), 8.07 (1H, d, J  1.8 Hz, H-4), 8.21-8.24 (2H, m, ArH), 11.53 (1H, s, HNCO),
14.24 (1H, s, HNN). 13C NMR (400 MHz, DMSO-d6) 5 111.44 (CH, Ar), 116.54 (CH, Ar),
118.15 (CH, Ar), 121.23 (C, Ar), 122.84 (C, Ar), 126.61 (CH, Ar), 128.64 (C, Ar), 132.87 
(C, Ar), 133.94 (CH, Ar), 137.31 (CH, Ar), 138.83 (CH, Ar), 139.69 (C, Ar), 144.32 (C, 
Ar), 163.35 (C=0). vmax (so lidy^m '1) 3431 (md), 3313 (md), 3182 (md), 1693 (st), 1615 
(md), 1573 (md), 1494 (md), 1339 (st), 1156 (st). MS m/z (API-ES): found 379 (M+NH4)+ 
(100%). HRMS m/z (API-ES): found 379.0818 (M+NH4)+, calculated for Ci4 Hi5N6 0 5S 
379.0825.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid (pyridin-2- 
ylmethyl)amide (191aic>). This was obtained as a yellow solid (0.095 g, 0.210 mmol, 58%) 
from 190o (0.115 g, 0.361 mmol) and 2-nitrophenylhydrazine (0.061 g, 0.389 mmol) in a 
similar manner as described for preparation of 191a2, mp 275 °C (dec). !H NMR (400 MHz, 
DMSO-d6) 5 4.08 (2H, d, J 6.2 Hz, CH2), 7.07 (1H, d, J8 .1  Hz, H-7), 7.22 (2H, m, ArH) 7.35 
(1H, d, J 7 .6  Hz, ArH), 7.70 (1H, dt, J 2.0, 7.6 Hz, ArH), 7.73 (1H, dd, J  1.9, 8.1 Hz, H-6 ), 
7.83 (1H, m, ArH), 7.99 (1H, d, J  1.9 Hz, H-4), 8.20 (1H, t, J  6.2 Hz, H NS02), 8.22-8.26 
(2H, m, ArH), 8.39-8.40 (1H, m, ArH), 11.56 (1H, s, HNCO), 14.23 (1H, s, HNN). 13C NMR 
(100 MHz, DMSO-d6) 8  46.68 (CH2), 111.58 (CH, Ar), 116.67 (CH, Ar), 118.97 (CH, Ar),
121.41 (C, Ar), 122.44 (CH, Ar), 122.87 (CH, Ar), 123.06 (CH, Ar), 126.57 (CH, Ar),
129.68 (CH, Ar), 132.63 (C, Ar), 133.94 (C, Ar), 134.93 (C, Ar), 137.29 (CH, Ar), 137.39 
(CH, Ar), 137.67 (C, Ar), 144.76 (C, Ar), 149.38 (CH, Ar), 157.73 (C=N), 163.27 (C=0). 
vmax (solidytcnT1) 3274 (md), 1697 (md), 1609 (md), 1559 (md), 1492 (st), 1334 (st), 1148 
(st), 733 (st). MS m/z (API-ES): found 453 (M+H)+ (100%). HRMS m/z (API-ES): found 
453.0980 (M+H)+, calculated for C2 oHi7N6 0 5S 453.0981.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole’5-sulfonic acid benzyl- 
methylamide (191ai7). This was obtained as a yellow solid (0.105 g, 0.225 mmol, 54%) 
from 190m (0.140 g, 0.424 mmol) and 2-nitrophenylhydrazine (0.071 g, 0.466 mmol) in a 
similar manner as described for preparation of 191a2, mp 296-296 °C. !H NMR (400 MHz, 
DMSO-d6) 5 2.55 (3H, s, CH3), 4.15 (2H, s, CH2), 7.17 (1H, d, J  8.5 Hz, H-7), 7.21 (1H, m, 
ArH), 7.27-7.32 (5H, m, ArH), 7.78-7.82 (2H, m, ArH), 8.01 (1H, d, J  1.5 Hz, H-4), 8.23 
(1H, dd, J  1.5, 8.5 Hz, H-6 ), 8.39 (1H, m, ArH), 11.63 (1H, s, HNCO), 14.26 (1H, s, HNN). 
,3C NMR (100 MHz, DMSO-d6) 5 35.24 (CH3), 54.07 (CH2), 111.98 (CH, Ar), 117.07 
(CH,Ar), 119.51 (CH, Ar), 121.82 (C, Ar), 123.01 (CH, Ar), 126.52 (CH, Ar), 128.39 (2 x 
CH, Ar), 128.92 (2 x CH, Ar), 129.26 (2 x CH, Ar), 130.36 (CH, Ar), 131.21 (C, Ar), 
132.43 (C, Ar), 134.02 (C, Ar), 136.79 (2 x CH, Ar), 137.27 (C, Ar), 139.65 (C, Ar),
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145.28 (C=N), 163.24 (C = 0). MS m/z (API-ES): found 466 (M+H)+ (100%). HRMS m/z
(API-ES): found 466.1180 (M+H)+, calculated for C 2 2 H2 0N 5O 5 S 466.1185.

3-[(2-Nitrophenyl)hydrazonoJ-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid 3- 
methoxybenzylamide (191ais). This was obtained as a yellow solid (0.092 g, 0.179 mmol, 
45%) from 190k (0.141 g, 0.407 mmol) and 2-nitrophenylhydrazine (0.068 g, 0.448 mmol) in 
a similar manner as described for preparation of 191a2, mp 265-267 °C. !H NMR (400 MHz, 
DMSO-d6) 6  3.62 (3H, s, OCH3), 3.94 (2H, d, J  6.2 Hz, CH2), 6.70 (1H, dd, J  8.0, 2 Hz, 
ArH), 6.75-6.78 (2H, m, ArH), 7.05 (1H, d, J  8.1 Hz, H-7), 7.12 (1H, t, 7  8.0 Hz, ArH), 7.19-
7.23 (1H, m, ArH), 7.71 (1H, dd, J  1.7, 8.1 Hz, H-6 ), 7.81 (1H, td, J 8 .0  Hz, ArH), 7.94 (1H, 
d, J  1.7 Hz, H-4), 8.07 (1H, t, J  6.2 Hz, H N S02), 8.22 (2H, m, 2 x CH, Ar), 11.55 (1H, s, 
HNCO), 14.23 (1H, s, HNN). I3C NMR (100 MHz, DMSO-d6) 6  46.83 (CH2), 55.58
(OCH3 ), 111.59 (CH, Ar), 113.32 (CH, Ar), 113.69 (CH, Ar), 116.67 (CH, Ar), 118.97 
(CH, Ar), 120.47 (CH, Ar), 121.37 (C, Ar), 122.88 (C, Ar), 126.57 (C, Ar), 129.62 (C, 
Ar), 129.91 (CH, Ar), 132.61 (CH, Ar), 133.97 (C, Ar), 135.20 (C, Ar), 137.27 (CH, Ar),
139.67 (CH, Ar), 139.71 (C, Ar), 144.68 (CH, Ar), 159.84 (C=N), 163.28 (C=0). vmax 
(solid)/(cm_1) 3150 (md), 1692 (md), 1613 (md), 1565 (md), 1490 (st), 1419 (md), 1323 (md), 
1308 (md), 1262 (md), 1140 (st), 854 (md), 781 (st), 724 (st), 692 (st). MS m/z (API-ES): 
found 499 (M+NH4)+ (100%). HRMS m/z (API-ES): found 499.1392 (M+NH4)+, calculated 
for C2 2 H2 9 N6 O6 S 499.1400.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid 4-
methoxybenzylamide (191ai6). This was obtained as a yellow solid (0.051 g, 0.103 mmol, 
57%) from 1901 (0.063 g, 0182 mmol) and 2-nitrophenylhydrazine (0.030 g, 0.200 mmol) in 
a similar manner as described for preparation of 191a2, mp 261-263 °C. !H NMR (400 MHz, 
DMSO-d6) 6  3.62 (3H, s, OCH3), 3.89 (2H, d, J 6 .4  Hz, CH2), 6.75 (2H, d, J 8 . 8  Hz, 2 x CH, 
Ar), 7.04 (1H, d, J  8.2 Hz, H-7), 7.06 (2H, d, J  8 . 8  Hz, 2 x CH, Ar), 7.19 (1H, t, J  7.8 Hz, 
ArH), 7.70 (1H, dd, J  1.6, 8.2 Hz, H-6 ), 7.80 (1H, t, / 7 .8  Hz, Ar), 7.91 (1H, s, H-4), 7.96 
(1H, t, J  6.4 Hz, HNSO2 ), 8.20-8.23 (2H, m, ArH), 11.53 (1H, s, HNCO), 14.22 (1H, s, 
HNN). 13C NMR (100 MHz, DMSO-d6) 5 46.44 (CH2), 55.67 (OCH3), 111.59 (CH, Ar), 
114.25 ( 2 x CH,  Ar), 116.68 (CH, Ar), 118.98 (CH, Ar), 121.38 (C, Ar), 122.88 (CH, Ar),
126.58 (CH, Ar), 129.62 (CH, Ar), 129.69 (2 x CH, Ar), 129.99 (C, Ar), 132.66 (C, Ar),
133.96 (C, Ar), 135.25 (C, Ar), 137.31 (CH, Ar), 139.69 (C, Ar), 144.65 (C, Ar), 159.10 
(C=N), 163.29 (C=0). Vmax (solid)/(cm_1) 3285 (st), 3154 (md), 1689 (md), 1610 (st), 1491 
(st), 1342 (md), 1307 (st), 1189 (st). MS m/z (API-ES): found 499 (M+NH4)+ (100%). 
HRMS m/z (API-ES): found 499.1387 (M+NH4)+, calculated for C22H29N60 6S 499.1400.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid 4-
chlorobenzylamide (191a2s). This was obtained as a yellow solid (0.082 g, 0.169 mmol, 43%)
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from 190p (0.137 g, 0.393 mmol) and 2-nitrophenylhydrazine (0.066 g, 0.433 mmol) in a 
similar manner as described for preparation of 191a2, mp > 300 °C. NMR (400 MHz, 
DMSO-d6) 5 3.98 (2H, d, J  6.4 Hz, CH2), 7.06 (1H, d, J  8.1 Hz, H-7), 7.23-7.27 (5H, m, 
ArH), 7.70 (1H, dd, J  1.7, 8.1 Hz, H-6 ), 7.82 (1H, t, J  8.4 Hz, ArH), 7.90 (1H, d, J  1.7 Hz, H- 
4), 8.13 (1H, t, J 6 .4  Hz, H N S02), 8.23 (2H, m, ArH), 11.56 (1H, s, HNCO), 14.23 (1H, s, 
HNN). 13C NMR (100 MHz, DMSO-d6) 6  46.14 (CH2), 111.62 (CH, Ar), 116.69 (CH, Ar),
118.94 (CH, Ar), 121.39 (C, Ar), 122.89 (CH, Ar), 126.58 (CH, Ar), 128.78 (2 x CH, Ar),
129.59 (CH, Ar), 130.18 (2 x CH, Ar), 132.38 (C, Ar), 132.58 (C, Ar), 133.95 (C, Ar),
135.11 (C, Ar), 137.32 (C, Ar), 137.34 (CH, Ar), 139.69 (C, Ar), 144.73 , (C=N), 163.26 , 
(C=0). vmax (solidytcnf1) 3337 (md), 1611 (st), 1566 (st), 1492 (st), 1319 (st), 1208 (md), 
1147 (st), 1121 (st), 1073 (st), 828 (st). MS m/z (API-ES): found 503 (M3 5 C+NH4)+ (100%), 
505 (M3 7 C+NH4) (35%). HRMS m/z (API-ES): found 503.0894 (M+NH4)+, calculated for 
C2 ]H2 0 ClN6 O5S 503.0904; found 486.0626 (M+H)+, calculated for C2 iH 16N5 0 5S 486.0639.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid (thiophen-2- 
ylmethyl)amide (191ai4). This was obtained as a yellow solid (0.090 g, 0.169 mmol, 59%) 
from 190j (0.107 g, 0.133 mmol) and 2-nitrophenylhydrazine (0.055 g, 0.366 mmol) in a 
similar manner as described for preparation of 191a2, mp 270 °C (dec). !H NMR (400 MHz, 
DMSO-d6) 5 4.16 (2H, d, J 6 .4  Hz, CH2), 6.86-6.87 (2H, m), 7.08 (1H, d, J8 .4  Hz, H-7), 7.20 
(1H, t, J  8.0 Hz, ArH), 7.35 (1H, d, J4 .0  Hz, ArH), 7.74 (1H, d, J 8.0 Hz, ArH), 7.81 (1H, t, J
8.0 Hz, ArH), 8.00 (1H, s, ArH), 8.16-8.24 (3H, m, 2 x CH, Ar & H NS02), 11.56 (1H, s, 
HNCO), 14.23 (1H, s, HNN). 13C NMR (100 MHz , DMSO-d6) 5 42.08 (CH2), 111.66 (CH, 
Ar), 116.68 (CH, Ar), 118.98 (CH, Ar), 121.47 (C, Ar), 122.89 (CH, Ar), 126.37 (CH, 
Ar), 126.57 (CH, Ar), 126.76 (CH, Ar), 127.35 (CH, Ar), 129.68 (CH, Ar), 132.63 (C, 
Ar), 133.97 (C, Ar), 134.98 (C, Ar), 137.29 (CH, Ar), 139.67 (C, Ar), 141.31 (C, Ar),
144.80 (C=N), 163.29 (C=0). vmax (so lidy^m '1) 1684 (md), 1615 (md), 1559 (md), 1492 
(st), 1157 (st), 789 (st). MS m/z (API-ES): found 475 (M+NH4)+ (100%). HRMS m/z (API- 
ES): found 475.0852 (M+NH4)+, calculated for Ci9 H 19N6 0 5 S2  475.0858.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid (pyridin-4- 
ylmethyl)amide (191aig). This was obtained as a yellow solid (0.012 g, 0.256 mmol, 38%) 
from 190n (0.022 g, 0.069 mmol) and 2-nitrophenylhydrazine (0.011 g, 0.076 mmol) in a 
similar manner as described for preparation of 191a2, mp 279-281 °C. *H NMR (400 MHz, 
DMSO-d6) 5 4.30 (2H, d, J  6.0 Hz, CH2), 7.10 (1H, d, J7.2  Hz, H-7), 7.22 (1H, t, J  8.4 Hz, 
ArH), 7.75 (1H, d, J 7.2Hz, H-6 ), 7.79-783 (3H, m, ArH), 8.02 (1H, s, H-4), 8.22-8.25 (2H, 
m, ArH), 8.53 (1H, t, J  6.0 Hz, H NS02), 8.75 (1H, d, J  5.8 Hz, 2 x CH, Ar), 11.65 (1H, s, 
HNCO), 14.24 (1H, s, HNN). 13C NMR (100 MHz, DMSO-d6) 5 45.68 (CH2), 111.79 (CH, 
Ar), 116.73 (CH, Ar), 118.95 (CH, Ar), 121.59 (2 x C, Ar), 123.01 (CH, Ar), 124.58 (CH, 
Ar), 124.98 (2 x CH, Ar), 126.62 (CH, Ar), 129.71 (C, Ar), 132.51 (CH, Ar), 134.54 (C,
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Ar), 137.29 (C, Ar), 138.95 (CH, Ar), 139.64 (C, Ar), 144.75 (C, Ar), 145.02 , (C=N),
163.29 , (C=0). vmax (solid)/(cm_1) 3283 (md), 1681 (md), 1613 (md), 1484 (st), 1334 (st), 
1112 (st), 782 (st). MS m/z (API-ES): found 453 (M+H)+ (100%). HRMS m/z (API-ES): 
found 453.0978 (M+H)+, calculated for C2 oH17N6 0 5 S 453.0981.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid (2- 
dimethylaminoethyl)amide (191a6). This was obtained as a yellow solid (0.018 g, 0.041 
mmol, 24%) from 190b (0.050 g, 0.168 mmol) and 2-nitrophenylhydrazine (0.028 g, 0.185 
mmol) in a similar manner as described for preparation of 191a2, mp 180 °C (dec). *H NMR 
(400 MHz, DMSO-d6) 5 2.74 (3H, s, NCH3), 2.75 (3H, s, NCH3), 3.07-3.13 (4H, m, 
CH2 CH2 ), 7.14 (1H, d, J  8.3 Hz, H-7), 7.20-7.24 (1H, m, ArH), 7.78 (1H, dd, J  1.8, 8.3 Hz, 
H-6 ), 7.79-7.83 (1H, m, ArH), 7.96-7.98 (1H, m, HNSO2 ), 8.06 (1H, d, J  1.8 Hz, H-4), 8.22-
8.26 (2H, m, ArH), 11.66 (1H, s, HNCO), 14.25 (1H, s, HNN). 13C NMR (100 MHz, DMSO- 
d6) 8  37.97 (NHCH2 CH2), 45.84 W C H ^ ,  58.81 (NHCH2 CH2), 111.14 (CH, Ar), 116.54 
(CH, Ar), 118.87 (CH, Ar), 121.46 (C, Ar), 122.91 (CH, Ar), 126.67 (CH, Ar), 129.63 
(CH, Ar), 132.72 (C, Ar), 133.95 (C, Ar), 134.98 (C, Ar), 137.34 (CH, Ar), 139.69 (C, 
Ar), 144.73 (C=N), 163.34 (C=0). vmax (solid)/(cm_1) 3275 (md), 1676 (md), 1603 (md), 
1476 (st), 1051 (st). MS m/z (API-ES): found 433 (M+H)+. HRMS m/z (API-ES): found 
433.1293 (M+H)+, calculated for C 1 8H2 1 N 6 0 5S 433.1294.

l-Methyl-3-/(2-nitro-pheny/)-hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid 
dimethylamide (191a3).This was obtained as a yellow solid (0.022 g, 0,054 mmol, 36%) from 
190s (0.040 g, 0.149 mmol) and 2-nitrophenylhydrazine (0.025 g, 0.164 mol) in a similar 
manner as described for preparation o f 191a2, mp > 300 °C. ]H NMR (400 MHz, DMSO-d6 ) 
5 5 2.62 (6 H, s, N(CH3)2), 3.32 (3H, s, NCH3), 7.20-7.25 (1H, m, ArH), 7.39 (1H, d, J  8.4 
Hz, H-7), 7.78 (1H, dd, J  1.6, 8.4 Hz, ArH), 7.79-7.83 (1H, m, ArH), 7.99 (1H, d, J  1.6 Hz, 
H-4), 8.23 (1H, dd, J  1.6, 8.4 Hz, H-6 ), 8.33 (1H, d, J 8 .4  Hz, ArH), 14.25 (1H, s, HNN). 13C 
NMR (100 MHz, DMSO-d6) 525.67 (CH3), 38.34 (2 x CH3), 111.89 (CH, Ar), 116.87 
(CH,Ar), 119.58 (CH, Ar), 121.71 (C, Ar), 122.72 (CH, Ar), 126.56 (CH, Ar), 128.93 (C, 
Ar), 130.73 (CH, Ar), 132.25 (C, Ar), 133.96 (C, Ar), 137.47 (CH, Ar), 139.60 (C, Ar),
145.37 (C=N), 163.28 (C=0). vmax (solid)/(cm_1) 1624 (st) , 1546 (st), 1478 (st), 1357 (st), 
111 6 (st). MS m/z (API-ES): found 404 (M+H)+ (100%). HRMS m/z (API-ES): found 
404.1034 (M+H)+, calculated for QyHigNsOsS 404.1029.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid (furan-2- 
ylmethyl)amide (191ai3)
A mixture o f 190i (0.040 g, 0.114 mmol) 2-nitrophenylhydrazine (0.021 g, 0.126 mmol) and 
HC1 (aq 4 M, 2 drops) in ethanol (3 mL) was heated in the CEM microwave at 120 °C for 15 
min. After cooling to room temperature, pure product 191ai3 was collected as an orange
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precipitate by filtration and dried in vacuo (0.048 g, 0.099 mmol, 8 6 %), mp 245 °C (dec). !H 
NMR (400 MHz, DMSO-d6) 5 3.99 (2H, d, 76 .0  Hz, CH2), 6.17 (1H, dd, 70.8, 3.2 Hz, ArH),
6.28 (1H, dd, 7  2.0, 3.2 Hz, ArH), 7.07 (1H, d, 7  8.2 Hz, H-7), 7.19-7.24 (1H, m, ArH), 7.46 
(1H, dd, 70 .8 , 1.6 Hz, ArH), 7.71 (1H, dd, 7  1.6, 8.2 Hz, H-6 ), 7.80-7.84 (1H, m, ArH), 7.98 
(1H, d, 7  1.6 Hz, H-4), 8.08 (1H, t, 76 .0  Hz, H NS02), 8.22-8.26 (2H, m, ArH), 11.55 (1H, s, 
NHCO), 14.24 (1H, s, NNH) . 13C NMR (100 MHz, DMSO-d6) 5 40.01 (CH2), 108.69 (CH, 
Ar), 111.07 (CH, Ar), 111.55 (CH, Ar), 116.66 (CH, Ar), 118.93 (CH, Ar), 121.39 (C, 
Ar), 122.87 (CH, Ar), 126.57 (CH, Ar), 129.62 (CH, Ar), 132.66 (C, Ar), 133.95 (C, Ar),
135.03 (C, Ar), 137.28 (CH, Ar), 139.67 (C, Ar), 143.20 (CH, Ar), 144.71 (C, Ar), 151.18 
(C=N), 163.29 (C=0). vmax (so lidy^m '1) 3620 (md), 3178 (md), 1686 (md), 1614 (md), 
1558 (md), 1489 (st), 1340 (md), 1147 (st). MS m/z (API-ES): found 459 (M+NH4)+ (100%). 
HRMS m/z (API-ES): found 459.1082 (M+NH4)+, calculated for Ci9 H 19N 6 0 6 S 459.1087.

3-[(3-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonicamide (191a32). This 
was obtained as a yellow solid (0.041 g, 0.113 mmol, 49%) from I90a (0.053 g, 0.234 mmol) 
and 3-nitrophenylhydrazine (0.039 g, 0.257 mmol) in a similar manner as described for 
preparation o f 191ai3, mp > 300 °C. !H NMR (400 MHz, DMSO-de) 5 7.05 (1H, d, 7  8.0 Hz, 
H-7), 7.30 (2H, s, NH2), 7.64 (1H, t, 7  8.2 Hz, ArH), 7.72 (1H, dd, 7  1.6, 8.0 Hz, H-6 ), 8.87 
(1H, d, 7  8.2 Hz, ArH), 8.93 (1H, d, 7  8.2 Hz, ArH), 8.00 (1H, s, H-4), 8.61-8.37 (1H, m, 
ArH), 11.44 (1H, s, HNCO), 12.76 (1H, s, HNN). 13C NMR (400 MHz, DMSO-d6) 8  109.32 
(CH, Ar), 111.07 (CH, Ar), 117.36 (CH, Ar), 117.95 (CH, Ar), 121.64 (C, Ar), 121.76 
(CH, Ar), 127.61 (CH, Ar), 129.29 (C, Ar), 131.46 (CH, Ar), 138.63 (C, Ar), 143.43 (C, 
Ar), 144.60 (C, Ar), 149.46 (C=N), 163.51 (C=0). vmax (solid)/(cnf!) 3445 (md), 3321 
(md), 1675 (st), 1623(md), 1563 (st), 1373 (st), 1142 (st). MS m/z (API-ES): found 362 
(M+H)+ (100%). HRMS m/z (API-ES): found 362.0557 (M+H)+, calculated for Ci4 H 12N5 0 5S 
362.0559.

3-[43-Nitrophenyl)hydrazonoJ-2-oxo-2,3-dihydro-lH-indole-5-sulfonicamide (191a34). This 
was obtained as a yellow solid (0.049 g, 0.135 mmol, 59%) from 190a (0.052 g, 0.230 mmol) 
and 4-nitrophenylhydrazine (0.038 g, 0.253 mmol) in a similar manner as described for 
preparation o f 191a13, mp > 300 °C. lU NMR (400 MHz, DMSO-d6) 5 7.06 (1H, d, 7  8.4 Hz, 
H-7), 7.30 (2H, s, NH2), 7.68 (1H, d, 79 .2  Hz, 2 x CH, ArH), 7.72 (1H, dd, 7  1.8, 8.4 Hz, H-
6 ), 7.75 (1H, d, 7  1.8 Hz, ArH), 8.24 (1H, d, 7  9.2 Hz, ArH), 8.00 (1H, s, H-4), 11.49 (1H, s, 
HNCO), 12.83 (1H, s, HNN). 13C NMR (100 MHz, DMSO-d6) 5 111.28 (CH, Ar), 115.10 
(2 x CH, Ar), 117.75 (CH, Ar), 121.48 (C, Ar), 126.40 (2 x CH, Ar), 128.22 (CH, Ar),
131.17 (C, Ar), 138.77 (C, Ar), 142.67 (C, Ar), 143.92 (C, Ar), 148.75 (C=N), 163.49 
(C=0). Vmax (so lidy^m '1) 3452 (md), 3319 (md), 1686 (st), 1645 (st), 1521 (md), 1388 (st), 
1196 (st). MS m/z (API-ES): found 362 (M+H)+ (100%). HRMS m/z (API-ES): found 
362.0558 (M+H)+, calculated for C 1 4Hi2N5 0 5S 362.0559.

225



3-[(3-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid 4-
chlorobenzylamide (191a33). This was obtained as a yellow solid (0.046 g, 0.950 mmol, 6 8 %) 
from 190p (0.049 g, 0.140 mmol) and 3-nitrophenylhydrazine (0.023 g, 0.154 mmol) in a 
similar manner as described for preparation of 191ai3, mp > 300 °C. 'H NMR (400 MHz, 
DMSO-d6) 5 3.97 (2H, d, J 6.6 Hz, CH2), 7.03 (1H, d, J 8.4 Hz, H-7), 7.23 (2H, d, J8 .4  Hz, 2 
x CH, ArH), 7.27 (2H, d, <7 8.4 Hz, 2 x CH, ArH), 7.59-7.66 (2H, m, ArH), 7.83 (1H, s, H-4),
7.86 (1H, d, J 8 .0  Hz, ArH), 7.96 (1H, d, J 8.4 Hz, ArH), 8.15 (1H, t, J6.6  Hz, HNS02), 8.37 
(1H, s, ArH), 11.46 (1H, s, HNCO), 12.77 (1H, s, HNN). 13C NMR (100 MHz, DMSO-d6) 
546.13 (CH2), 109.47 (CH, Ar), 111.23 (CH, Ar), 118.00 (CH, Ar), 118.06 (CH, Ar),
121.65 (CH, Ar) 121.95 (C, Ar), 128.65 (CH, Ar), 128.75 (2 x CH, Ar), 129.03 (C, Ar),
130.16 (2 x CH, Ar), 131.46 (C, Ar), 132.37 (C, Ar), 134.82 (C, Ar), 137.34 (C, Ar),
143.86 (C, Ar), 144.59 (C, Ar), 149.25 (C=N), 163.46 (C=0). vmax (solidy^m '1) 1623 (st), 
1531 (st), 1480 (st), 1321 (st), 1147 (st), 1145 (st), 1068 (st). MS m/z (API-ES): found 486 
(M3 5 C+H)+ (100%), 488 (M3 7 C+H)+ (35%). HRMS m/z (API-ES): found 486.0639 (M+H)+, 
calculated for C2 iHi6 N 5 0 5 S 486.0639.

3-[(4-Nitrophenyl)hydrazonoJ-2-oxo-2,3-dihydro-l H-indole-5-sulfonic acid 4-
chlorobenzylamide (191a35). This was obtained as a yellow solid (0.043 g, 0.099 mmmol, 
74%) from 190p (0.047 g, 0.134 mmol) and 4-nitrophenylhydrazine (0.022 g, 0.147 mmol) in 
a similar manner as described for preparation o f 191ai3, mp > °C. *H NMR (400 MHz, 
DMSO-d6) 5 3.98 (2H, d, J 6 .2  Hz, CH2), 7.04 (1H, d, J8 .0  Hz, H-7), 7.27 (2H, d, JS.4  Hz, 2 
x CH, ArH), 7.27 (2H, d, J  8.4 Hz, 2 x CH, ArH), 7.67-7.71 (3H, m, ArH), 7.84 (1H, s, J  1.6 
Hz, H-4), 8.14 (1H, t, J6 .2  Hz, H N S02), 8.25 (2H, d, J  9.2 Hz, 2 x CH, ArH), 11.51 (1H, s, 
HNCO), 12.82 (1H, s, HNN). 13C NMR (100 MHz, DMSO-d6) 5 46.15 (CH2), 111.45 (CH, 
Ar), 115.13 (2 x CH, Ar), 118.50 (CH, Ar), 121.24 (C, Ar), 126.33 (2 x CH, Ar), 128.76 
(2 x CH, Ar), 129.16 (CH, Ar), 130.16 (2 x CH, Ar), 130.85 (C, Ar), 132.38 (C, Ar),
135.01 (C, Ar), 137.31 (C, Ar), 142.68 (C, Ar), 144.31 (C, Ar), 148.67 (C=N), 163.43 
(C=0). vmax (so lidy^m '1) 1612 (st), 1566 (st), 1434 (st), 1356 (st), 1112 (st), 1156 (st), 781 
(st). MS m/z (API-ES): found 486 (M3 5 C+H)+ (100%), 488 (M3 7 C+H)+ (35%). HRMS m/z 
(API-ES): found 486.0638 (M+H)+, calculated for C^HieNsOsS 486.0639.

3-[(2-Nitrophenyl)hydrazono/-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid benzylamide 
(191a36). This was obtained as a yellow solid (0.104 g, 0.230 mmol, 74%) from 190q (0.098 
g, 0.310 mmol) and 2-nitrophenylhydrazine (0.052 g, 0.341 mmol) in a similar manner as 
described for preparation o f 191aj3, mp 286 °C (dec). !H NMR (400 MHz, DMSO-d6 ) 8  3.98 
(2H, d, J  6 . 6  Hz, CH2), 7.09 (1H, d, J  8.4 Hz, H-7), 7.17-7.28 (6 H, m, ArH), 7.75 (1H, dd, J
1.6, 8.4 Hz, H-6 ), 7.82 (1H, t, J  7.8 Hz, ArH), 8.00 (1H, s, H-4), 8.09 (1H, t, J  6 . 6  Hz, 
HNS02), 8.22-8.26 (2H, m, ArH), 11.58 (1H, s, HNCO), 14.25 (1H, s, HNN). 13C NMR (100 
MHz, DMSO-d6) 5 46.85 (CH2), 111.66 (CH, Ar), 116.79 (CH, Ar) 118.95 (CH, Ar),
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121.45 (C, Ar), 122.89 (CH, Ar), 126.58 (CH, Ar), 127.80 (2 x CH, Ar), 128.31 (2xC H , 
Ar), 128.90 (2 x CH, Ar), 129.64 (CH, Ar), 132.64 (C, Ar), 133.96 (C, Ar), 135.09 (C, 
Ar), 137.29 (2 x CH, Ar), 138.27 (C, Ar), 139.67 (C, Ar), 144.73 (C=N), 163.29 (C=0). 
Vmax (solid)/(cm_1) 1623 (st), 1536 (st), 1442 (st), 1326 (st), 1131 (md), 845 (st). MS m/z 
(API-ES): found 452 (M+H)+ (100%). HRMS m/z (API-ES): found 452.1046 (M+H)+, 
calculated for C2 iH 1 8N 5 0 5 S 452.1029.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid isopropylamide 
(191ag). This was obtained as a yellow solid (0.034 g, 0.074 mmol50%) from 190d (0.047 g, 
0.173 mmol) and 2-nitrophenylhydrazine (0.029 g, 0.192 mmol) in a similar manner as 
described for preparation o f 191ai3, mp 285 °C (dec). ]H NMR (400 MHz, DMSO-de) 5 0.94 
(6 H, d, J  6.4 Hz, CH(CH^V). 7.10 (1H, d, J  8.3 Hz, H-7), 7.19-7.23 (1H, m, ArH), 7.49 (1H, 
d, J7 .2  Hz, H N S02), 7.75 (1H, dd, J  1.7, 8.3 Hz, H-6 ), 7.80-7.83 (1H, m, ArH), 8.02 (1H, d, 
J  1.7 Hz, H-4), 8.21-8.24 (2H, m, ArH), 11.55 (1H, s, NHCO), 14.23 (1H, s, NNH). 13C 
NMR (100 MHz, DMSO-d6) 5 23.90 (CH(CH3)2), 45.93 (CH(CH3)2), 111.71 (CH, Ar),
116.68 (CH, Ar), 118.76 (CH, Ar), 121.42 (C, Ar), 122.89 (CH, Ar), 126.59 (C, Ar), 
129.74 (CH, Ar), 132.75 (CH, Ar), 133.97 (CH, Ar), 136.28 (C, Ar), 137.31 (CH, Ar), 
139.67 (C, Ar), 144.63 (C=N), 163.29 (C=0). vmax (solidyfcm'1) 3295 (md), 1692 (md), 
1614 (md), 1553 (md), 1490 (st), 1340 (md), 1314 (md), 1153 (st), 1138 (st), 1072 (md). MS 
m/z (API-ES): found 421 (M+NH4)+ (100%), 404 (M+H)+ (80%). HRMS m/z (API-ES): 
found 421.1285 (M+NH4)+, calculated for Ci7 H2 1N 6 0 5S 421.1294; found 404.1016 (M+H)+, 
calculatd for Ci7 H ,8N 5 0 5S 404.1029.

3-[(2-Nitrophenyl)-hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid propylamide 
(191a7). This was obtained as a yellow solid (0.034 g, 0.084 mmol, 56%) from 190c (0.02 g, 
0.156 mmol) and 2-nitrophenylhydrazine (0.026 g, 0.172 mmol) in a similar manner as 
described for preparation o f 191ai3, mp 277-279 °C. *H NMR (400 MHz, DMSO-d6) 5 0.78 
(3H, t, J7 .2  Hz, CH2 CH2 CH3 ), 1.37 (2H, sex, J  7.3 Hz, CH2 CH2 CH3), 2.67 (2H, q, J  6.4 Hz, 
CH2 CH2 CH3), 7.10 (1H, d, J  8.0 Hz, H-7), 7.21 (1H, t, J7 .6  Hz, ArH), 7.48 (1H, t, J5.6  Hz, 
HNS02), 7.73 (1H, d, J  7.6 Hz, ArH), 7.81 (1H, t, J 7 .6  Hz, ArH), 8.01 (1H, s, H-4), 8.21-
8.24 (2H, m, ArH), 7.92 (1H, dd, J2 .0 , 8.4, Hz, H-6 ), 11.55 (1H, s, NHCO) 14.23 (1H, s, 
NNH). 13C NMR (100 MHz, DMSO-d6) 5 11.87 (CH2 CH2 CH3), 23.80 (CH2 CH2 CH3), 45.07 
(CH2 CH2 CH3), 111.68 (CH, Ar), 116.67 (CH, Ar), 118.84 (CH, Ar), 121.50 (C, Ar),
122.88 (CH, Ar), 126.57 (CH, Ar), 129.61 (CH, Ar), 132.71 (C, Ar), 133.96 (C, Ar),
134.98 (C, Ar), 137.29 (CH, Ar), 139.67 (C, Ar), 144.72 (C=N), 163.29 (C=0). vmax 
(solid)/(cm_1) 3363 (md), 3296 (md), 3252 (md), 1693 (md), 1680 (md), 1613 (md), 1570 (st), 
1491 (st), 1321 (md), 1296 (md), 1143 (st), 1072 (md). MS m/z (API-ES): found 421 
(M+NH4)+ (100%), 404 (M+H)+ (60%). MS m/z (API-ES): found 404 (M+H)+ (100%).

227



HRMS m/z (A PI-ES): found 421.1287, (M+NH4)+, calculated for C 17H21N 6O5S 421.1294,

found 404.1014 (M +H)+, calculated for C i7H i8N 5 0 5 S 404.1029.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid (2- 
methoxyethyl)amide (191ac>). This was obtained as a yellow solid (0.035 g, 0.835 mmol, 
49%) from 190e (0.050 g, 0.176 mmol) and 2-nitrophenylhydrazine in a similar manner as 
described for preparation o f 191ai3, mp 252-254 °C. ]H NMR (400 MHz, DMSO-d6) 8  2.89 
(2H, q, J  6.0 Hz, CH2 CH 2 OCH3 ), 3.14 (3H, s, OCH3), 7.10 (1H, d, J 8 .4  Hz, H-7), 7.19-7.23 
(1H, m, ArH), 7.65 (1H, t, J  6.0 Hz, H NS02), 7.74 (1H, dd, y  2.0, 8.0 Hz, H-6 ), 7.80-7.84 
(1H, m, ArH), 8.03 (1H, d, J 2 .0  Hz, H-4), 8.21-8.25 (2H, m, ArH), 11.57 (1H, s, NHCO),
14.24 ( 1 H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 42.90 (CH2 CH2 OCH3), 58.58 
(OCH3 ), 71.23 (CH2 CH2 OCH3 ), 111.16 (CH, Ar), 116.64 (CH, Ar), 118.90 (CH, Ar),
121.45 (C, Ar), 122.84 (CH, Ar), 126.55 (CH, Ar), 129.60 (CH, Ar), 132.70 (C, Ar),
133.92 (C, Ar), 135.03 (C, Ar), 137.25 (CH, Ar), 139.66 (C, Ar), 144.75 (C=N), 163.28 
(C=0). vmax (so lid)/(cm 1) 3287 (md), 1691 (md), 1612 (md), 1554 (md), 1491 (st), 1315 
(md), 1073 (st). MS m/z (API-ES): found 420 (M+H)+(100%), 437 (M+NH4)+(40%). HRMS 
m/z (API-ES): found 437.1243 (M+NH4), calculted for Ci7 H2 iN6 0 6 S 437.1243; found 
420.0979 (M+H)+, calculated for C i7 Hi8N 5 0 6S 420.0978.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid
(tetrahydrofuran-2-ylmethyl)amide (191ai2). This was obtained as a yellow solid (0.057 g, 
0.126 mmol, 63%) yield from 190h (0.065 g, 0.200 mmol) and 2-nitrophenylhydrazine (0.034 
g, 0.227 mmol) in a similar manner as described for preparation o f 191ai3, mp 285-287 °C. 
'H NMR (400 MHz, DMSO-d6) 5 1.47-1.55 (1H, m), 1.73-1.75 (2H, m), 1.79-1.85 (1H, m),
2.75 (2H, t, J  5.6 Hz), 3.54 (1H, q, J  7.6 Hz), 3.65 (1H, q, J  7.2 Hz), 3.79 (1H, quint, J  5.6 
Hz), 7.10 (1H, d, J8 .2  Hz, H-7), 7.21 (1H, t, 77 .6  Hz, ArH), 7.66 (1H, t, J1.6 Hz, ArH), 7.74 
(1H, d, J  8.2 Hz, H-6 ), 7.80-7.83 (1H, m, ArH), 8.03 (1H, s, H-4), 8.22-8.25 (2H, m, ArH),
11.56 (1H, s, NHCO), 14.24 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 25.76 (CH2),
29.10 (CH2), 47.28 (CH2), 67.97 (CH2), 77.68 (CH), 111.63 (CH Ar), 116.67 (CHAr),
118.92 (CH Ar), 121.45 (C Ar), 122.87 (CH Ar), 126.57 (CH Ar), 129.62 (CH A r),
132.73 (C A r), 133.96 (C A r), 135.09 (C A r), 137.28 (CH Ar), 139.67 (C A r), 144.74 
(C=N), 163.29 (C=0). vmax (solidy^m -1) 3244 (md), 3154 (md), 1690 (md), 1612 (md), 
1510 (md), 1488 (st), 1330 (md), 1149 (st). MS m/z (API-ES): found 446 (M+H)+ (100%). 
HRMS m/z (API-ES): found 463.1398 (M+NH4)+, calculated for C^H^NeOeS 463.1400; 
found: 446.1138 (M+H)+, calculated for Ci9 H20N5O6 S 446.1134.

3-[(2-Nitrophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid sec-butylamide 
(191aio). This was obtained as a yellow solid (0.026 g, 0.062 mmol, 50%) from 190f (0.035 
g, 0.124 mmol) and 2-nitrophenylhydrazine (0.020 g, 0.136 mmol) in a similar manner as
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described for preparation o f 191ai3, mp 289-291 °C. *H NMR (400 MHz, DMSO-d6) 8  0.70 
(3H, t, J  7.6 Hz, NCHCH 2 CH3 ), 0.86 (3H, d, J  6.4 Hz, NCHCH3 ), 1.29 (2H, quint, J 12  
Hz, NCHCH2 CH 3 ), 3.04 (1H, quint, J  12  Hz, NCHCH 2 CH3), 7.10 (1H, d, J  8.4 Hz, H-7),
7.21 (1H, t, J  8.4 Hz, ArH), 7.43 (1H, d, J 1 2  Hz, HNSQ2), 7.75 (1H, dd, J  1.6, 8.4 Hz, H-6 ), 
7.82 (1H, t, J  8.4 Hz, ArH), 8.02 (1H, s, H-4), 8.23-8.24 (1H, s, ArH), 11.55 (1H, s, NHCO),
14.24 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 10.75 (CH3), 21.31 (CH3), 30.28 
(CH), 51.36 (CH2), 111.68 (CH, Ar), 116.69 (CH, Ar), 118.73 (CH, Ar), 121.35 (C, Ar),
122.88 (CH, Ar), 126.58 (CH, Ar), 129.44 (CH, Ar), 132.76 (C, Ar), 133.98 (C, Ar),
136.59 (C, Ar), 137.30 (CH, Ar), 139.69 (C, Ar), 144.57 (C=N), 163.29 (C=0). vmax 
(solidyfcm'1) 3285 (md), 1691 (md), 1614 (md), 1552 (md), 1489 (st), 1313 (md), 1151 (st), 
1136 (st), 1071 (md). MS m/z (API-ES): found 418 (M+H)+ (100%), 435 (M+NH4)+ (60%). 
HRMS m/z (API-ES): found 435.1448 (M+NH4)+, calculated for C 1 7H2 1N6 06S 435.1451; 
found 418.1181, calculated for Ci8H2oN5 0 5S 418.1185.

l-Ethyl-3-[(2-nitro-phenyl)-hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid 
dimethylamide (191a4). This was obtained as a yellow solid (0.021 g, 0.0503 mmol, 62%) 
from 190t (0.023 g, 0.081 mmol) and 2-nitrophenylhydrazine (0.012 g, 0.0815 mmol) in a 
similar manner as described for preparation o f 191ai3, mp 289-291 °C. !H NMR (400 MHz, 
DMSO-d6) 5 1.23 (3H, t, J 12  Hz, CH9 CHO. 2.63 (6 H, s, N(CH3)2), 3.88 (2H, q, J 12  Hz, 
CH2 CH3), 7.22 (1H, t, 7  7.9 Hz, H-7), 7.76-7.82 (2H, m, ArH), 7.99 (1H, s, H-4), 7.76-7.82 
(1H, m, ArH), 8.22 (1H, d, J  1.4 Hz, H-6 ), 8.32 (1H, d, J  7.9 Hz, ArH), 14.24 (1H, s, NNH). 
,3C NMR (100 MHz, DMSO-d6) 5 13.43 (CH2 CH3), 35.11 (CH2 CH3), 38.03 (2 x CH3),
110.72 (CH, Ar), 117.04 (CH, Ar), 119.43 (CH, Ar), 121.41 (C, Ar), 123.14 (CH, Ar), 
126.54 (CH, Ar), 129.49 (C, Ar), 130.54 (CH, Ar), 131.61 (C, Ar), 134.09 (C, Ar), 137.31 
(CH, Ar), 139.50 (C, Ar), 145.34 (C=N), 161.21 (C=0). vmax (so lidy^m '1) 1690 (md), 
1607 (md), 1566 (md), 1499 (md), 1336 (st), 1181 (md), 1142 (st), 1112 (ms). MS m/z (API- 
ES): found 418 (M+H)+ (100%). HRMS m/z (API-ES): found 435.1448 (M+NH4)+, 
calculated for Ci7 H2 iN606S 435.1451; found 418.1180 (M+H)+, calculated for C 1 8H 20N 5 O5 S: 
418.1185.

5-(Morpholine-4-sulfonyl)-3-[(,2-nitrophenyl)hydrazono]-l,3-dihydro-indol-2-one (191 an).
This was obtained as a yellow solid (0.040 g, 0.089 mmol, 56%) from 190g (0.050 g, 0.159 
mmol) and 2-nitrophenylhydrazine (0.024 g, 0.156 mmol) in a similar manner as described 
for preparation o f  191ai3, mp > 300 °C. !H NMR (400 MHz, DMSO-d6 ) 5 2.87 (4H, s, 2 x 
CH2), 3.62 (4H, s, 2 x CH2), 7.17 (1H, d, J  8.4 Hz, H-7), 7.21 (1H, t, J  8.1 Hz, ArH), 7.68 
(1H, d, J  8.4 Hz, H-6 ), 7.80 (1H, t, J  8.1 Hz, ArH), 7.94 (1H, s, H-4), 8.22 (1H, d, J  8.1 Hz, 
ArH), 8.31 (1H, d, J8 .1  Hz, ArH), 11.65 (1H, s, NHCO), 14.25 (1H, s, NNH). 13CNM R(100 
MHz, DMSO-d6) 6  46.64 (2 x CH2), 65.96 (2 x CH2), 111.93 (CH, Ar), 116.94 (CH, Ar),
119.76 (CH, Ar), 121.77 (C, Ar), 122.99 (CH, Ar), 126.50 (CH, Ar), 128.54 (C, Ar),
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130.73 (CH, Ar), 132.36 (C, Ar), 133.98 (C, Ar), 137.23 (CH, Ar), 139.56 (C, Ar), 145.57 
(C=N), 163.21 (C=0). vmax (solid)/(cm_1) 3267 (md), 1702 (st), 1615 (st), 1572 (st), 1490 
(stO, 1344 (stO, 1292 (st), 1149 (st), 1076 (st), 940 (st). MS m/z (API-ES): found 499 
(M+NH4)+ (100%). HRMS m/z (API-ES): found 449.1240 (M+NH4)+, calculated for 
C 18H2 iN6 0 6 S 449.1243; found: 432.0974 (M+H)+, calculated for C]8H 17N5 0 6 S: 432.0978.

1-Benzyl-3-[(2-nitro-phenyl)-hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid 
dimethylamide (191as). This was obtained as a yellow solid (0.010 g, 0.020 mmol, 21%) 
from 190u (0.034 g, 0.098 mmol) and 2-nitrophenylhydrazine (0.015 g, 0.098 mmol) in a 
similar manner as described for preparation o f 191ai3, mp 149-151 °C. !H NMR (400 MHz, 
DMSO-d6) 5 2.69 (6 H, s, N(CHAA 5.19 (2 H, s, CH2), 7.26-7.33 (3H, m, Ar), 7.37 (2H, t, J  
7.6 Hz, ArH), 7.48 (2H, d, J  7.6 Hz, ArH), 7.77 (1H, d, J  8.0 Hz, H-6 ), 7.85 (1H, t, J  7.6 Hz, 
H-5’), 8.01 (1H, s, H-4), 8.30 (1H, d, J  8 . 8  Hz, CH, Ar), 8.41 (1H, d, J  8 . 8  Hz, CH, Ar),
14.26 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 38.23 (2 x CH3), 44.67 (CH2),
111.72 (CH, Ar), 116.73 (CH, Ar), 117.80 (C, Ar), 119.67 (CH, Ar), 121.82 (C, Ar),
122.59 (CH, Ar), 124.83 (CH, Ar), 126.48 (CH, Ar), 127.62 (2 x CH, Ar), 128.81 (2 x 
CH, Ar), 128.86 (C, Ar), 130.17 (CH, Ar), 132.22 (C, Ar), 133.84 (C, Ar), 137.62 (CH, 
Ar), 139.60 (C, Ar), 145.21 (C=N), 163.32 (C=0). vmax (solid)/(cm_1) 1693 (md), 1608 
(md), 1568 (md), 1496 (st), 1330 (st), 1153 (st). MS m/z (API-ES): found 480 (M+H)+ 
(100%). HRMS m/z (API-ES): found 480.1289 (M+H)+, calculated for C2 3 H2 2 N 5 0 5S 
480.1342.

2-[N'-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)-hydrazino]benzoic acid 
(191a23). This was obtained as a yellow solid (0.038 g, 0.086 mmol, 6 8 %) from 190d (0.034 
g, 0.126 mmol) and 2-carboxylphenylhydrazine (0.026 g, 0.139 mmol) in a similar manner as 
described for preparation o f 191ai3, mp 270 °C (dec). *H NMR (400 MHz, DMSO-d6 ) 8  0.93 
(6 H, d, J 6 .4 Hz, CH(CHAA. 7.06 (1H, d, Z8.0 Hz, H-7), 7.11 (1H, t, y  7.6 Hz, ArH), 7.45 
(1H, d, J  7.6 Hz, H N S02), 7.63-7.70 (2H, m, ArH), 8.93-7.97 (2H, m, ArH), 8.04 (1H, d, J
8.0 Hz, ArH), 11.31 (1H, s, NHCO), 14.45 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 
523.91 (CHtCHAA. 45.91 (CH(CH3)2), 111.19 (CH, Ar), 114.76 (CH, Ar), 114.83, 117.91 
(CH, Ar), 122.21 (C, Ar), 122.73 (CH, Ar), 128.32 (C, Ar), 129.49 (C, Ar), 132.03 (CH, 
Ar), 135.18 (CH, Ar), 135.83 (C, Ar) , 143.81 (C, Ar) , 145.10 (C=N), 162.89 (C=0),
168.90 (C=0). vmax (solidyfcm"1) 3277 (st), 1689 (md), 1558 (md), 1498 (md), 1154 (st). MS 
m/z (API-ES): found 403 (M+H)+ (100%). HRMS m/z (API-ES): found 403.1066 (M+H)+, 
calculated for C i8 H i9N4OsS 403.1076.

2-[N’-(2-Oxo-5-sulfamoyl-l,2-dihydro-indoI-3-ylidene) hydrazinojbenzoic acid (191 a24).
This was obtained as a yellow solid (0.025 g, 0.053 mmol, 30%) from 190a (0.047 g, 0.207 
mmol) and 2-carboxylphenylhydrazine (0.039 g, .0207 mmol) in a similar manner as
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described for preparation of 191ai3, mp > 300 °C. *H NMR (400 MHz, DMSO-d6 ) 5 7.05 
(1H, d, J  8.1 Hz, H-7), 7.11 (1H, t, J  8.0 Hz, ArH), 7.27 (2H, s, NH2), 7.65 (1H, t, J  8.4 Hz, 
ArH), 7.71 (1H, dd, J  1.8, 8.1 Hz, H-6 ), 7.89 (1H, dd, J  1.6, 8.0 Hz, ArH), 8.02-8.04 (2H, m, 
ArH), 11.35 (1H, s, NHCO), 14.26 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 110.95 
(CH, Ar), 114.74 (CH, Ar), 117.36 (CH, Ar) 122.02 (CH, Ar), 122.69 (C, Ar), 127.74 
(CH, Ar), 129.64 (C, Ar), 132.05 (CH, Ar), 135.20 (CH, Ar), 138.44 (C, Ar), 143.55 (C, 
Ar), 145.15 (C=N), 162.94 (C=0), 168.90 (C=0). vmax (so lidy^m '1) 3307 (st), 3252 (st), 
1691 (st), 1565 (st), 1496 (st), 1321 (st), 1147 (st). MS m/z (API-ES): found 359 (M-H)\ 
HRMS mlz (API-ES): found 359.0452 (M-H)\ calculated for C 1 5H]2 N4 0 5S 359.0450.

2-[Nr-[5-(4-Chloro-benzylsulfamoyl)-2-oxo-l,2-dihydro-indol-3-ylidene/hydrazine/benzoic 
acid (191a25). This was obtained as a yellow solid (0.029 g, 0.055 mmol, 6 6 %) from 190p 
(0.029 mmol) and 2-carboxylphenylhydrazine (0.015 g, 0.083 mmol) in a similar manner as 
described for preparation o f 191ao, mp 290-292 °C. ]H NMR (400 MHz, DMSO-d6 ) 5 3.97 
(2H, d, J  6.0 Hz, CH2), 7.03 (1H, d, J 8 .0  Hz, H-7), 7.10-7.14 (1H, m, ArH), 7.23 (2H, d, J
8.4 Hz, 2 x CH, Ar), 7.27 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.64-7.67 (2H, m, H N S0 2  & ArH),
7.87 (1H, d, J  1.6 Hz, H-4), 7.95 (1H, dd, J  1.6, 8.0 Hz, H-6 ), 8.04-8.10 (2H, m, ArH), 11.31 
(1H, s, NHCO), 14.26 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 46.13 (CH2), 111.11 
, (CH, Ar), 114.78 , (CH, Ar), 114.86 , (C, Ar), 118.07 , (CH, Ar), 122.22 , (CH, Ar), 122.76 , 
(C, Ar), 128.16 , (CH, Ar), 128.77 (2 x CH, Ar), 129.35 , (C, Ar), 130.16 (2 x CH, Ar),
132.04 , (C, Ar), 132.35 , (CH, Ar), 134.62 , (CH, Ar), 135.20 , (C, Ar), 137.41 , (C, Ar),

143.94 , (C, Ar), 145.13 (C=N), 162.88 (C=0), 168.91 (C=0). vmax (solid)/(cm_1) 3236 
(md), 1682 (md), 1500 (md), 1145 (st). MS m/z (API-ES): found 483 (M 3 5 C1-H)‘ (100%), 

485 (M 3 7 C1-H)- (35%). HRMS m/z (API-ES): found: 483.0517(M-H)‘, calculated for 
C2 2H 1 7C1N405S 483.0530.

3-(Phenylhydrazono)-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid isopropylamide 
(191a2i). This was obtained as a yellow solid (0.031 g, 0.086 mmol, 48%) from 190d (0.048 
g, 0179 mmol) and phenylhydrazine (0.019 g, 0.179 mmol) in a similar manner as described 
for preparation o f 181ai3, mp 267-269 °C. *H NMR (400 MHz, DMSO-d6) 5 0.93 (6H, d, J
6.8 Hz, CHfC H ^A  3.18-3.23 (1H, m, CH(CH3)2), 7.05-7.09 (2H, m, H-7 & ArH), 7.36-7.40 
(2H, m, ArH), 7.45 (3H, m, 2 x ArH & H N S02), 7.63-7.70 (2H, m, ArH), 7.66 (1H, d, J  1.7,
8.1 Hz, H-6), 7.92 (1H, d, J  1.7 Hz, H-4), 11.40 (1H, s, NHCO), 12.73 (1H, s, NNH). 13C 
NMR (100 MHz, DMSO-d6) 5 23.90 , (CHfCHOA  45.90 , (CH(CH3)2), 111.18 , (CH, Ar),
115.26 , (2 x CH, Ar), 117.29 , (CH, Ar), 122.26 , (CH, Ar), 124.26 , (C, Ar), 127.05 , (C, 
Ar), 127.61 , (CH, Ar), 130.23 , (2 x CH, Ar), 130.73 , (C, Ar), 135.85 , (C, Ar), 142.92 , 
(C=N), 163.86 (C=0). vmax (solid)/(cm_1) 3288 (md), 3164 (md), 1680 (st), 1551 (st), 1168 
(md), 1135 (md), 1120 (md). MS m/z (API-ES): found 359 (M+H)+ (100%). HRMS m/z 
(API-ES): found 359.1169 (M+H)+, calculated for C ,7 H 1 9N4 0 3S 359.1178.
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3-[N'-(5-Isopropylsulfamoyl-2-ox()-l,2-dihydro-indol-3-ylidene)hydrazino]benzoic acid 
(191a26). This was obtained as a yellow solid (0.062 g, 0.154 mmol, 57%) from 190d (0.075 
g, 0.297 mmol) and 3-carboxylphenylhydrazine (0.047 g, 0.307 mmol) in a similar manner as 
described for preparation of 191ai3, mp 275 °C (dec). lH NMR (400 MHz, DMSO-d6 ) 5 0.93 

(6 H, d, J 6 . 8  Hz, CHfCHrbT 3.21 ( 1 H, sept, J  6 . 8  Hz, CH(CH3)2), 7.05 ( 1 H, d, J  8.4 Hz, H-
7), 7.47-7.51 (2H, m, H N S02& ArH), 7.45 (1H, d, J8 .0  Hz, ArH), 7.67-7.70 (3H, m, ArH),
7.92 (1H, d, J  2.0 Hz, H-4), 8.05-8.06 (1H, m, ArH), 11.43 (1H, s, NHCO), 12.76 (1H, s, 
NNH). 13C NMR (100 MHz, DMSO-d6) 5 23.88 (CH(C H ^ ). 45.88 (CH(CH3)2), 111.18 
(CH, Ar), 115.36 (CH, Ar), 117.44 (CH, Ar), 119.75 (CH, Ar), 122.20 (CH, Ar), 124.74 
(C, Ar), 127.90 (CH, Ar), 127.97 (C, Ar), 130.43 (C, Ar), 132.79 (CH, Ar), 135.89 (C, 
Ar), 143.24 (C, Ar), 143.30 (C=N), 163.76 (C=0), 167.72 (C=0). vmax (so lidy^m '1) 3285 
(md), 1682 (st), 1553 (st), 1464 (md), 1295 (md), 1168 (st), 1121 (md). MS m/z (API-ES): 
found 403 (M+H)+ (100%). HRMS m/z (API-ES): found 403.1095 (M+H)+, calculated for 
Q g H ^ O s S  403.1076.

3-/Nf-(2-Oxo-5-sulfamoyl-l,2-dihydro-indol-3-ylidene) hydrazinojbenzoic acid (191 a27). 
This was obtained as a yellow solid (0.048 g, 0.134 mmol, 58%) from 190a (0.052 g, 0.253 
mmol) and 3-carboxylphenylhydrazine (0.038 g, 0.253 mmol) in a similar manner as 
described for preparation o f 191ai3, mp > 300 °C. *H NMR (400 MHz, DMSO-d6 ) 5 7.05 
(1H, d, J  8.4 Hz, H-7), 7.29 (2H, s, NH2), 7.49 (1H, t, J8 .0  Hz, ArH), 7.63 (1H, d, J 7 .6  Hz, 
ArH), 7.67-7.71 (2H, m, ArH), 7.98 (1H, d, J  2.0 Hz, H-4), 8.06 (1H, s, ArH), 10.40 (1H, s, 
HNCO), 12.76 (1H, s, HNN), 13.12 (1H, s, C 0 2 H). 13C NMR (400 MHz, DMSO-d6) 
5 110.96 (CH, Ar), 115.33 (CH, Ar), 116.93 (CH, Ar), 119.78 (CH, Ar), 121.98 (CH, Ar),
124.69 (C, Ar), 127.06 (C, Ar), 128.00 (CH, Ar), 130.45 (C, Ar), 132.80 (CH, Ar), 138.53 
(C, Ar), 142.94 (C, Ar), 143.36 (C=N), 163.78 (C=0), 167.71 (C=0). vmax (solidy^m -1) 
3343 (st), 3224 (st), 1685 (st), 1557 (st), 1496 (st), 1339 (st), 1153 (st). MS m/z (API-ES): 
found 359 (M-H)‘ (100%). HRMS m/z (API-ES): found 359.0469 (M-H)', calculated for 
C ^ H n N ^ sS  359.0450.

4-[N'-(2-Oxo-5-sulfamoyl-l,2-dihydro-indol-3-ylidene) hydrazinojbenzoic acid (191 a30).
This was obtained as a yellow solid (0.044 g, 0.122 mmol, 53%) from 190a (0.053 g, 0.234 
mmol) and 4-carboxylphenylhydrazine (0.039 g, 0.257 mmol) in a similar manner as 
described for preparation o f 191a!3, mp > 300 °C. !H NMR (400 MHz, DMSO-de) 5 7.05 
(1H, d, /8 .4  Hz, H-7), 7.28 (2H, s, NH2), 7.55 (2H, d, J 8 . 6  Hz, 2 x CH, ArH), 7.72 (1H, d, J
1.6, 8.4 Hz, ArH), (2H, d, J 8 . 6  Hz, 2 x CH, ArH), 8.00 (1H, d, J  1.6 Hz, H-4), 10.44 (1H, s, 
HNCO), 12.74 (1H, s, C 0 2 H), 12.76 (1H, s, HNN). 13C NMR (100 MHz, DMSO-d6) 
5 111.12 (CH, Ar), 114.71 (2 x CH, Ar), 117.27 (CH, Ar), 121.75 (C, Ar), 125.69 (C, Ar),
127.49 (C, Ar), 129.19 (CH, Ar), 131.79 (2 x CH, Ar), 138.64 (C, Ar), 143.29 (C, Ar),
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146.62 (C=N), 163.75 ( C O ) ,  167.56 (C = 0). vmax (solidyCcm'1) 3315 (st), 3221 (st), 1686

(st), 1543 (st), 1496 (st), 1337 (st), 1112 (st). MS m/z (A PI-ES): found 359 (M -H )'(100%).

HRMS m/z (API-ES): found 359.0467 (M-H)', calculated for C ^ H n N ^ s S  359.0450.

3-[N'-[5-(4-Chloro-benzylsulfamoyl)-2-oxo-lj2-dihydro-indol-3-ylidene]hydrazine]benzoic 
acid (191a28). This was obtained as a yellow solid (0.043 g, 0.088 mmol, 55%) from I90p 
(0.056 g, 0.160 mmol) and 3-carboxylphenylhydrazine (0.026 g, 0.176 mmol) in a similar 
manner as described for preparation of 191ai3, mp > 300 °C. ]H NMR (400 MHz, DMSO-d6 ) 
5 3.96 (2H, d, J 6.4 Hz, CH2), 7.03 (1H, d, J8 .0  Hz, H-7), 7.23 (2H, d, J  8.4 Hz, 2 x CH, Ar),
7.28 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.49 (1H, d, J  7.8 Hz, ArH), 7.64-7.65 (2H, m, ArH), 
7.70-7.72 (1H, m, ArH), 7.81 (1H, s, H-4), 7.06 (1H, s, ArH), 8.16 (1H, t, J  6.4 Hz, H NS02),
11.44 (1H, s, NHCO), 12.76 (1H, s, NNH), 13.14 (1H, bs, C 0 2 H). 13C NMR (100 MHz, 
DMSO-d6) 5 46.12 (CH2), 111.12 (CH, Ar), 115.46 (CH, Ar), 117.59 (CH, Ar), 119.77 
(CH, Ar), 122.19 (C, Ar), 124.76 (CH, Ar), 127.77 (C, Ar), 128.14 (CH, Ar), 128.75 (2 x 
CH, Ar), 130.45 (2 x CH, Ar), 130.46 (CH, Ar), 132.65 (C, Ar), 132.82 (C, Ar), 134.68 
(C, Ar), 137.36 (C, Ar), 143.36 (C, Ar), 143.77 (C=N), 163.74 (C O ) ,  167.72 (C O ) . vmax 
(solid)/(cm_1) 3209 (st), 1661 (st), 1523 (md), 1147 (st). MS m/z (API-ES): found 483 (M-H)' 
(100%). HRMS m/z (API-ES): found 483.0436 (M-H)', calculated for Q O ^ O s S C l  
483.0530.

4-[N,-[5-(4-Chloro-benzylsulfamoyl)-2-oxo-l,2-dihydro-indol-3-y/idene/hydrazine/benzoic 
acid (191a3i). This was obtained as a yellow solid (0.051 g, 0.105 mmol, 77%) from 190p 
(0.048 g, 0.137 mmol) and 4-carboxylphenylhydrazine (0.022 g, 0.150 mmol) in a similar 
manner as described for preparation of 191ai3, mp > 300 °C. ]H NMR (400 MHz, DMSO-d6 ) 
5 3.97 (2H, d, J6 .3  Hz, CH2), 7.03 (1H, d, J7 .8  Hz, H-7), 7.23 (2H, d, J 8 . 6  Hz, 2 x CH, Ar),
7.28 (2H, d, J 8 . 6  Hz, 2 x CH, Ar), 7.57 (2H, d, J 8 . 8  Hz, 2 x CH, Ar), 7.66 (1H, dd, J  1.6, 7.8 
Hz, H-6 ), 7.84 (1H, d, J  1.6 Hz, H-4), 7.94 (2H, d, / 8 . 8  Hz, 2 x CH, Ar), 8.13 (1H, t, J  6.3 
Hz, H N S02), 11.44 (1H, s, NHCO), 12.76 (1H, s, NNH), 13.14 (1H, bs, C 0 2 H). 13C NMR 
(100 MHz, DMSO-d6) 5 46.12, 11.29, 114.79, 117.96, 121.94, 125.73, 128.76, 128.92, 
130.15, 131.79, 131.82, 132.34, 134.82, 137.34, 143.71, 146.61 (C=N), 163.68 (C=0), 
167.57 (C O ) . vmax (solid)/(cm*1) 3221 (st), 1685 (st), 1545 (st), 1143 (st). MS m/z (API- 
ES): found 483 (M -H )'(100%). HRMS m/z (API-ES): found 483.0437 (M-H)', calculated for 
C2 2 H 16N405 SC1 483.0530.

4-lN f-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)hydrazino]benzoic acid 
(191a29). This was obtained as a yellow solid (0.046 g, 0.114 mmol, 75%) from I90d (0.039 
g, 0.152 mmol) and 4-carboxylphenylhydrazine (0.023 g, 0.152 mmol) in a similar manner as 
described for preparation of 191ai3, mp 290 °C (dec). 'H  NMR (400 MHz, DMSO-d6 ) 5 0.93 
(6 H, d, J  6.0 Hz, CH(CH3 )2), 7.07 (1H, d, J  8.0 Hz, H-7), 7.48 (1H, d, J  7.2 Hz, H NS02),
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7.56 (1H, d, 7  8.0 Hz, 2 x CH, Ar), 7.70 (1H, d, 78 .0  Hz, H-6 ), 7.94 (2H, d, 78.0  Hz, 2 x CH, 
Ar), 7.95 (1H, m, H-4), 11.47 (1H, s, NHCO), 12.74 (1H, bs, C 0 2 H). 12.77 (1H, s, NNH). 
,3C NMR (100 MHz, DMSO-d6) 5 23.91 (CHfCHOA 45.90 (CH(CH3)2), 111.35 (CH, Ar),
114.77 (2 x CH, Ar), 117.83 (CH, Ar), 121.95 (C, Ar), 125.72 (C, Ar), 128.35 (C, Ar),
129.08 (CH, Ar), 131.78 (2 x CH, Ar), 136.02 (C, Ar), 143.59 (C, Ar), 146.57 (C, Ar),
163.70 (C=N), 167.56 (C O ). vmax (so lidy^m '1) 3263 (md), 1695 (st), 1535 (st), 1443 (st), 
1145 (st), 1112 (md). MS m/z (API-ES): found 401 (M -H )'(100%). HRMS m/z (API-ES): 
found 401.0848 (M-H)', calculated for C 1 8H 17N 4 O5 S 401.0920.

3-(Naphthyl-hydrazono)-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid isopropylamide 
(191a22). This was obtained as a red solid (45%) from 190d and 1-naphthylhydrazine in a 
similar manner as described for preparation o f 191ai3, mp 215-217 °C. *H NMR (400 MHz, 

DMSO-d6) 5 0.95 (6 H, d, 76 .8  Hz, CH(CHVb). 3.13-3.27 (1H, m, CH(CH3)2), 7.13 (1H, d, J
8.4 Hz, H-7), 7.49 (1H, d, J  7.2 Hz, N H S02), 7.58 (1H, d, 7  7.9 Hz, ArH), 7.61 (1H, d, J  8.4 
Hz, ArH), 7.64-7.72 (3H, m, 2 x ArH & H-6 ), 7.87 (1H, d, J  7.9 Hz, ArH), 7.89 (1H, d, J  7.9 

Hz, ArH), 7.99-8.01 (2H, m, 2 x ArH & H-4), 11.62 (1H, s, NHCO), 13.78 (1H, s, NNH). 13C 
NMR (100 MHz, DMSO-d6) 5 23.92 (CH(CHOA 45.93 (CH(CH3)2), 109.73 (CH, Ar),
111.52 (CH, Ar), 117.64 (CH, Ar), 119.75 (CH, Ar), 121.85 (C, Ar ), 122.39 (C, Ar),
124.01 (CH, Ar), 127.20 (CH, Ar), 127.36 (CH, Ar), 127.96 (CH, Ar), 129.20 (C, Ar),
129.50 (CH, Ar), 134.45 (C, Ar), 136.10 (C, Ar), 137.11 (C, Ar), 143.12 (C=N), 164.67 
(C=0). vmax (solid)/(cm_1) 3259 (md), 3167 (md), 1675 (md), 1561 (st), 1321 (md), 1195 (st), 
1155 (st), 1070 (md), 1006 (md), 825 (st), 782 (st), 766 (st). MS m/z (API-ES): found 409 
(M+H)+(100%). HRMS m/z (API-ES): found 409.1324 (M+H)+, calculated for C2 1 H2 1N4 0 3S 
409.1334.

2-[N'-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)hydrazino]benzoic acid 
pentafluorophenyl ester (192a)394
Anhydrous pyridine (0.362 g, 4.59 mmol) and pentafluorophenyltrifluoro acetate (1.28 g,
4.59 mmol) were added to a solution of 191a23 (1.23 g, 3.06 mmol) in anhydrous in DMF (15 
ml) at room temperature under Ar. The reaction mixture was stirred for 1 h at room 
temperature. Pentafluorophenyltrifluoro acetate (0.325 g, 1.16 mmol) and anhydrous pyridine 

(0.204 g, 2.58 mmol) were added. The reaction mixture was stirred for 30 min and poured 
into water (20 ml). The product was extracted with ethyl acetate (3 x 40 ml), dried over 
Na2 S 0 4  and the solvent removed under reduced pressure to provide a yellow solid. The pure 
compound 192a was obtained after trituration with a solution ethyl acetate/hexane (3:7, 40 
ml) as a yellow solid (1.40 g, 3.38 mmol, 78%), mp 190-192 °C. ]H NMR (400 MHz, 
DMSO-d6) 5 0.93 (6 H, d, 76 .8  Hz, CH(CHrb), 3.19-3.24 (1H, m, CH(CH3)2), 7.07 (1H, d, J
8.4 Hz, H-7), 7.25 (1H, t, 7  7.6 Hz, ArH), 7.48 (1H, d, 7  6 . 8  Hz, H N S02), 7.72 (1H, d, 7  8.4 
Hz, ArH), 7.86 (1H, t, 7  7.6 Hz, ArH), 8.00 (1H, s, ArH), 8.18 (1H, d, 7  8.4 Hz, ArH), 8.23
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(1H, d, J  7.6 Hz, ArH), 11.44 (1H, s, NHCO), 13.97 (1H, s, NNH). 13C NMR (100 MHz, 
DMSO-d6) 5 23.95 (CH(CH.W). 46.01 (CH(CHVb). 111.32 (CH, Ar), 114.43 (CH, Ar),
114.85 (CH, Ar), 118,03 (CH, Ar), 122.24 (C, Ar), 122.88 (CH, Ar), 128.25 (C, Ar),
129.86 (C, Ar), 131.91 (CH, Ar), 134.67-135.54 (m) (CF), 135.18 (CH, Ar), 136.06 (C, 
Ar), 135.56-136.96 (m) (2 x CF), 141.02-142.12 (m) (2 x CF), 143.76 (C, Ar) , 144,96 
(C=N), 162.54 (C=0), 170.03 (C=0). vmax (solid)/(cm-') 1672 (st), 1598 (st), 1467 (st), 1234 
(md), 1154 (st). MS m/z (API-ES): found 569 (M+H)+ (100%). HRMS m/z (API-ES): found 
569.0915 (M+H)+, calculated for C2 4 Hi8 F5N4 0 5S 569.0918.

3-[Nf-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)hydrazino]benzoic acid 
pentafluorophenyl ester (192b). This was obtained as a yellow solid (1.22 g, 2,086 mmol, 

80%) from 191a26 (1.05 g, 2.911 mmol) and pentafluorophenyltrifluoro acetate (0.877 g, 
3.134 mmol) in a similar manner as described for preparation o f 192a. 'H NMR (400 MHz, 

DMSO-d6) 0.93 (6 H, d, J  6 . 6  Hz, CH(C H ^ ) . 3.16-3.21 (1H, m, CH(CH3)2), 7.07 (1H, d, J
8.0 Hz, H-7), 7.47 (1H, t, J  6.6 Hz, N H S02), 7.63-7.70 (2H, m, ArH), 7.85 (1H, d, J 8 .0  Hz, 
ArH), 7.93-7.97 (2H, m, ArH), 8.29 (1H, s, ArH), 11.45 (1H, s, NHCO), 12.81 (1H, s, NNH). 
13C NMR (100 MHz, DMSO-d6) 5 23.79 (CH(CH.W). 45.79 (CH(CH3)2), 110.97 (CH, Ar),
114.87 (CH, Ar), 117.32 (CH, Ar), 120.23 (CH, Ar), 121.92 (CH, Ar), 124.32 (C, Ar),
127.90 (CH, Ar), 128.02 (C, Ar), 130.67 (C, Ar), 132.74 (CH, Ar), 134.32-135.12 (m) 
(CF), 136.01 (C, Ar), 135.23-136.58 (m) (2 x CF), 141.99-142.67 (m) (2 x CF), 143.34 (C, 
Ar), 144.12 (C=N), 163.34 (C=0), 168.23 (C=0). vmax (so lidy^m '1) 1656 (st), 1591 (st), 
1487 (md), 1204 (md), 1032 (md). MS m/z (API-ES): found 569 (M+H)+(100%). HRMS m/z 
(API-ES): found 569.0917 (M+H)+, calculated for C ^ H ^ N ^ s S  569.0918

A-Furan-2-ylmethyl-2-[A^-(5-isopropyIsulfamoyl-2-oxo-l,2-dihydro-indol-
3ylidene)hydrazino]benzamide(193a)394
Anhydrous pyridine (0.030 g, 0.379 mmol) and furfurylamine (0.038 g, 0.390 mmol) were 
added to a solution o f 192a (0.155 g, 0.264 mmol) anhydrous in acetonitrile (20 ml) at room 
temperature under Ar. The reaction mixture was stirred overnight at room temperature. The 
solvent was removed under reduced pressure to provide a yellow solid. The pure compound 
193a was obtained after trituration with acetone (7 ml) as a brown solid, mp 253-255 °C. ]H 
NMR (400 MHz, DMSO-d6) 8  0.94 (6 H, d, J  6 . 8  Hz, CH ^H sjb), 3.19-3.22 (1H, m, 
CH(CH3)2), 4.49 (2H, d, J 5.4 Hz, CH2), 6.31 (1H, d, J 3 .2  Hz, ArH), 6.39, 6.4 (1H, m, ArH),
7.05 (1H, d, J  8.2 Hz, H-7), 7.12 (1H, t, J1 .6  Hz, ArH), 7.45 (1H, d, J 7 .2  Hz, N H S02), 7.56-
7.60 (2H, m, ArH), 7.68 (1H, d, J 8 .2  Hz, H-6 ), 7.80 (1H, d, J 7 .6  Hz, ArH), 7.95 (1H. s, H- 
4), 8.01 (1H, d, J  7.6 Hz, ArH), 9.17 (1H, d, J  5.4 Hz, CONHCH2), 11.29 (1H, s, NHCO),
14.10 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 8  23.92 (CHtCHOA 36.63 (CH2),
45.89 (CH(CH3)2), 107.68 (CH, Ar), 111.05 (CH, Ar), 111.24 (CH, Ar), 115.22 (CH, Ar),
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117.65 (CH, Ar), 118.60 (CH, Ar), 122.41 (C, Ar), 122.80 (C, Ar), 128.70 (C, Ar), 129.03 
(CH, Ar), 133.42 (CH, Ar), 135.70 (C, Ar), 136.50 (C, Ar), 142.77 (CH, Ar), 143.59 (CH, 
Ar), 143.79 (C=N), 152.79 (CH, Ar), 162.74 (C=0), 167.83 (C=0). vmax (soHd^cm -1) 
3271 (md), 1678 (md), 1616 (md), 1509 (st), 1330 (md), 1185 (md), 1157 (st). MS m/z (API- 
ES): found 482 (M+H)+ (100%). HRMS m/z (API-ES): found 482.1489 (M+H)+, calculated 

for C2 3 H2 4 N 5 O 5 S 482.1498.

2-[N,-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)hydrazino]benzamide 
(193b). This was obtained as a yellow solid (0.040 g, 0.099 mmol, 38%) from 192a (0.155 g, 

0.264 mmol) and ammonia (2M solution in ethanol) (0.198 ml, 0.396 mmol) in a similar 
manner as described for preparation o f 193a, mp 291-293 °C. ]H NMR (400 MHz, DMSO- 

d6) 6  0.93 (6 H, d, 76 .4  Hz, C H tC H ^ , 3.89-3.23 (1H, m, CH(CH3)2), 7.03 (1H, d, 78 .0  Hz, 
H-7), 7.07 (1H, t, 77 .6  Hz, ArH), 7.44 (1H, d, 7  7.2 Hz, N H S02), 7.56 (1H, t, J  7.6 Hz, ArH), 
7.58 (1H, bs, CONH), 7.66 (1H, dd, J  1.4, 8.0 Hz, H-6 ), 7.78 (1H, d, J  7.6 Hz, ArH), 7.94 
(1H, d, J 1.4 Hz, H-4), 8.00 (1H, d, J  7.6 Hz, ArH), 8.16 (1H, bs, CONH), 11.13 (1H, s, 
NHCO), 14.42 (1H, s, NNH). ,3C NMR (100 MHz, DMSO-d6) 5 23.92 (CH(CH3)2), 45.88 
(CH(CH3)2), 110.99 (CH, Ar), 115.03 (CH, Ar), 117.59 (C, Ar), 118.59 (CH, Ar), 122.48 
(C, Ar), 122.69 (CH, Ar), 127.93 (CH, Ar), 128.48 (C, Ar), 129.42 (CH, Ar), 133.36 (CH, 
Ar), 135.64 (C, Ar), 143.52 (C, Ar), 144.01 (C=N), 162.71 (C=0), 170.29 (C=0). vmax 

(solid)/(cm_1). vmax (solidyfcm '1) 3172 (md), 1612 (md), 1557 (md), 1498 (st), 1386 (md), 
1297 (md), 117 (st). MS m/z (API-ES): found 402 (M+H)+ (100%), found 385 (M-NH2)+ 
(30%). HRMS m/z (API-ES): found 402.1227 (M+H)+, calculated for C ,8 H2 oN5 0 4S 
402.1236.

N- (2-Dimethylaminoethyl)-2-[N - (5-isopropylsulfamoyl-2-oxo-1,2-dihydro-indo 1-3- 
ylidene)hydrazino]benzamide (193c). This was obtained as a yellow solid (0.042 g, 0.088 
mmol, 37%) from 192a (0.138 g, 0.235 mmol) and A,A-dimethylethylenediamine (0.031 g, 
0.352 mmol) in a similar manner as described for preparation o f 193a, mp 250-252 °C. !H 
NMR (400 MHz, DMSO-d6) 5 0.93 (6 H, d, 7  6.4 Hz, 2.17 (6 H, s, N ^ H ^ ,
2.40 (2H, t, 7  6 . 8  Hz, CONHCH2 CH2 ), 3.16-3.24 ( 1 H, m, CH(CH3)2), 7.04 (1H, d, 7  8.2 Hz, 
H-7), 7.11 (1H, t, 77 .8  Hz, ArH), 7.44 (1H, d, 77 .2  Hz, N H S02), 7.55 (1H, t, 77 .8  Hz, ArH), 
7.66 (1H, d, 7  8.2 Hz, H-6 ), 7.73 (1H, d, 7  7.8 Hz, ArH), 7.94 (1H, d, J 1.6 Hz, H-4), 8.00 
(1H, d, 77 .8  Hz, ArH), 8.59 (1H, bs, CONH), 11.24 (1H, s, NHCO), 14.25 (1H, s, NNH). 13C 

NMR (400 MHz, DMSO-d6) 5 23.92 (CH(CH3)2), 37.97 (CONHCH2 CH2), 45.91
(N(CH3)2 ), 45.88 (CH(CH3)2), 58.63 (CONHCH2 CH2), 111.01 (CH, Ar), 115.12 (CH,
Ar), 117.56 (C, Ar), 119.30 (CH, Ar), 122.48 (C, Ar), 122.79 (CH, Ar), 127.90 (CH, 
Ar), 128.48 (C, Ar), 128.87 (CH, Ar), 133.12 (CH, Ar), 135.64 (C, Ar), 143.49 (C, Ar),

143.61 (C=N), 162.73 (C=0), 167.77 (C=0). vmax (solid)/(cm_1) 3284 (st), 1679 (st), 1632 
(st), 1514 (st), 1456 (md), 1329 (md), 1176 (st), 1156 (st). MS m/z (API-ES): found 473
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(M+H)+(100%). HRMS m/z (API-ES): found 473.1975 (M+H)+, calculated for C22H29N60 4S

473.1971.

2-[N'-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)-hydrazino]-N-(2- 
methoxyethyl)benzamide (193d). This was obtained as a yellow solid (0.046 g, 0.100 mmol, 
49%) from 192a (0.123 g, 0.205 mmol) and 2-methoxyethylamine (0.023 g, 0.314 mmol) in 
a similar manner as described for preparation o f 193a, mp 287-289 °C. *H NMR (400 MHz, 
DMSO-d6) 5 0.93 (6 H, d, J  6.4 Hz, C H tC H ^), 3.18-3.23 ( 1 H, m, CH(CH3)2), 3.26 (3H, s, 
OCH3), 3.42-3.47 (4H, m, COCH2 CH2 ), 7.04 (1H, d, J  8.4 Hz, H-7), 7.11 (1H, t, J  7.8 Hz, 
ArH), 7.44 (1H, d, J  6 . 8  Hz, N H S02), 7.56 (1H, t, J  7.8 Hz, ArH), 7.66 (1H, d, J  8.4. Hz, H-
6 ), 7.75 (1H, d, J 7 .8  Hz, ArH), 7.94 (1H, s, H-4), 7.99 (1H, d, J7 .8  Hz, ArH), 8.72 (1H, bs, 
CONH), 11.28 (1H, s, NHCO), 14.28 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 23.91 
(CH(CH3)2), 39.59 (CONHCH2 CH2 ), 45.89 (CH(CH3)2), 58.62 (CONHCH2 CH2), 111.01 
(CH, Ar), 70.96 (OCH3), 111.04 (CH, Ar), 115.14 (CH, Ar), 117.61 (CH, Ar), 119.04 (C, 
Ar), 122.43 (C, Ar), 122.79 (CH, Ar), 127.96 (CH, Ar), 128.56 (C, Ar), 128.91 (CH, Ar), 
133.20 (CH, Ar), 135.67 (C, Ar), 143.54 (C, Ar), 143.59 (C=N), 162.75 (C=0), 167.98 
(C=0). vmax (solid)/(cm_1) 3274 (st), 1679 (st), 1634 (md), 1511 (st), 1455 (md), 1511 (st), 
1328 (md), 1180 (md), 1154 (st), 1116 (st). MS m/z (API-ES): found 460 (M+H)+ (100%). 
HRMS m/z (API-ES): found 460.1652 (M+H)+, calculated for C2 1 H2 6 N 5 O 5 S 460.1655.

N-Benzyl-2-[Nf-(5-isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-
ylidene)hydrazino]benzamide (193e). This was obtained as a yellow solid (0.068 g, 0.084 
mmol, 84%) from 192a (0.096 g, 0.163 mmol) and benzylamine (0.026 g, 0.244 mmol) in a 
similar manner as described for preparation o f 193a, mp 275-277 °C. *H NMR (400 MHz, 
DMSO-d6) 5 0.93 (6 H, d, J 6 . 8  Hz, C H ^ H ^ ,  3.19-3.22 (1H, m, CH(CH3)2), 4.50 (2 H, d, J
5.2 Hz, CH2), 7.04 (1H, d, J  8.2 Hz, H-7), 7.13 (1H, t, J  7.6 Hz, ArH), 7.21-7.24 (1H, m, 
ArH), 7.30-7.34 (4H, m, ArH), 7.45 (1H, d, J 6 . 8  Hz, N H S02), 7.58 (1H, t, 7  7.6 Hz, ArH),
7.68 (1H, d, J  8.2 Hz, H-6 ), 7.84 (1H, d, J  7.6 Hz, ArH), 7.95 (1H, s, H-4), 8.02 (1H, d, J  7.6 
Hz, ArH), 9.24 (1H, bs, CONH), 11.28 (1H, s, NHCO), 14.32 (1H, s, NNH). 13C NMR (100 
MHz, DMSO-d6) 5 23.91 ICHfCH^A. 43.09 (CH2), 45.89 (CH(CH3)2), 111.05 (CH, Ar),
115.23 (CH, Ar), 117.63 (CH, Ar), 118.87 (C, Ar), 122.42 (C, Ar), 122.86 (CH, Ar),
127.51 (CH, Ar), 127.88 (2 x CH, Ar), 127.99 (CH, Ar), 128.65 (C, Ar), 128.92 (CH, Ar),
129.03 (2 xC H , Ar), 133.35 (CH, Ar), 135.68 (C, Ar), 140.02 (C, Ar), 143.57 (C, Ar),

143.75 (C=N), 162.75 (C=0), 167.89 (C=0). vmax (soIid)/(cm_1) 3267 (md), 1681 (st), 1635 
(st), 1500 (st), 1319 (stO, 1182 (st), 11.59 (st). MS m/z (API-ES): found 492 (M+H)+(100%). 
HRMS m/z (API-ES): found 492.1698 (M+H)+, calculated for C2 5 H2 6 N 5 O4 S 492.1706.

2-[N,-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)hydrazino]-N-pyridin-3- 
ylmethylbenzamide (193f). This was obtained as a yellow solid (0.066 g, 0.130 mmol, 37%)
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from 192a (0.139 g, 0.236 mmol) and 3-(aminomethyl)pyridine in a similar manner as 
described for preparation o f 193a, mp 210 °C (dec). 'H NMR (400 MHz, DMSO-d6 ) 5 0.93 

(6 H, d, J  7.0 Hz, CH(CH3 )2 ), 4.53 (1H, d, J 5 .8  Hz, CH2), 7.07 (1H, d, J 8 . 6  Hz, H-7), 7.23 
(1H, t, 7  5.9 Hz, N H S02), 7.39-7.42 (1H, m, ArH), 7.46 (1H, d, J  7.6 Hz, ArH), 7.61 (1H, d, J
7.6 Hz, ArH), 7.68 (1H, dd, J  1.4, 8 . 6  Hz, H-6 ), 7.78-7.83 (3H, m, ArH), 7.99 (1H, s, H-4),
8.14 (1H, d, J  7.6 Hz, ArH), 8.43 (1H, m, ArH), 8.61 (1H, s, ArH), 9.29 (1H, t, J  5.8 Hz, 
CONH), 11.35 (1H, s, NHCO), 14.25 (1H, s, NNH). ,3C NMR (100 MHz, DMSO-d6) 5 23.91 
(CH(CH3)2), 40.92 (CH2), 45.90 (CH(CH3)2), 111.48 (CH, Ar), 115.24 (CH, Ar), 117.66 
(CH, Ar), 118.65 (C, Ar), 122.39 (C, Ar), 122.85 (CH, Ar), 124.46 (CH, Ar), 128.01 (CH, 
Ar), 128.73 (C, Ar), 128.96 (CH, Ar), 133.47 (CH, Ar), 135.70 (C, Ar), 136.44 (CH, Ar),
143.59 (C, Ar), 143.79 (C=N), 148.39 (CH, Ar), 149.00 (CH, Ar), 163.77 (C=0), 168.09 
(C=0). vmax (solidytcm '1) 3274 (st), 1697 (md), 1502 (st), 1453 (md), 1287 (ms), 1155 (st). 
MS m/z (API-ES): found 493 (M+H)+ (100%). HRMS m/z (API-ES): found 493.1649 
(M+H)+, calculated for C2 4 H2 5 N6 0 4 S 493.1658.

2-[N,-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-yUdene)hydrazino]-N-(2- 
morpholin-4-yl-ethyl)benzamide (193g). This was obtained as a yellow solid (0.050 g, 0.097 
mmol, 67%) from 192a (0.165 g, 0.281 mmol) and 2-morpholin-4-yl-ethylamine (0.054 g, 
0.412 mmol) in a similar manner as described for preparation o f 193a, mp 220 °C (dec). !H 
NMR (400 MHz, DMSO-d6) 5 0.93 (6 H, d, J  6 . 8  Hz, C H tC H ^), 3.18-3.23 (1H, m, 
CH(CH3)2), 3.58 (4H, bs, 2 x CH2) 7.04 (1H, d, J 8 .4  Hz, H-7), 7.13 (1H, t, J 7 .6  Hz, ArH),
7.45 (1H, d, J7 .2  Hz, N H S02), 7.57 (1H, t, J 7.6 Hz, ArH), 7.67 (1H, d, J 8.4 Hz, H-6 ), 7.84 
(1H, d, J7 .6  Hz, ArH), 7.94 (1H, s, H-4), 8.02 (1H, d, J 7.6 Hz, ArH), 8 . 6 8  (1H, bs, CONH),
11.29 (1H, s, NHCO), 14.23 (1H, s, NNH). ,3C NMR (100 MHz, DMSO-d6) 5 23.83 
(CH(CH3}2), 37.35 (CH2), 45.79 (CH(CH3)2), 53.76 (2 x CH2), 58.09 (CH2), 66.83 (2 x 
CH2), 111.16 (CH, Ar), 113.64 (CH, Ar), 117.45 (CH, Ar), 117.87 (CH, Ar), 122.23 (C, 
Ar), 122.82 (CH, Ar), 127.54 (C, Ar), 128.03 (CH, Ar), 130.39 (CH, Ar), 136.04 (C, Ar),
136.46 (C, Ar), 143.23 (C, Ar), 143.34 (C=N), 163.84 (C=0), 167.58 (C=0). vmax 
(solidyfcm '1) 3315 (md), 1692 (md), 1629 (md), 1500 (st), 1300 (md), 1156 (st), 1116 (st). 
MS m/z (API-ES): found 515 (M+H)+ (100%). HRMS m/z (API-ES): found 515.2070 
(M+H)+, calculated for C2 4 H3 1 N 6 0 5S 515.2077.

2-[N,-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)hydrazino]-N- 
methylbenzamide (193h). This was obtained as a yellow solid (0.056 g, 0.134 mmol, 69%) 
from 192a (0.114 g, 0.194 mmol) and methylamine (40% solution in water) (0.025 ml, 0.291 
mmol) in a similar manner as described for preparation o f 193a, mp 185 °C (dec). JH NMR 
(400 MHz, DMSO-d6) 5 0.93 (6 H, d, J  6 . 8  Hz, C H tC H ^), 2.79 (3H, d, J 4 .4  Hz, HNCfh), 
3.19-3.25 (1H, m, CH(CH3)2), 7.04 (1H, d, J8 .1  Hz, H-7), 7.11 (1H, t, J 8 .0  Hz, ArH), 7.44 
(1H, d, J  6 . 8  Hz, N H S02), 7.56 (1H, t, J  8.0 Hz, ArH), 7.67 (1H, d, J  1.7, 8.1 Hz, H-6 ), 7.73
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(1H, d, J  8.0 Hz, ArH), 7.94 (1H, d, J  1.7 Hz, H-4), 8.00 (1H, d, J  8.0 Hz, ArH), 8.63 (1H, 
bq, J  4.4 Hz, HNCH3), 11.31 (1H, s, NHCO), 14.32 (1H, s, NNH). 13C NMR (100 MHz, 
DMSO-d6) 5 23.83 (CH(CH^)?), 26.87 (CH3), 45.81 (CH(CH3)2), 111.09 (CH, Ar), 113.53 
(CH, Ar), 117.46 (CH, Ar), 117.73 (CH, Ar), 122.21 (C, Ar), 122.85 (CH, Ar), 127.63 (C, 
Ar), 127.81 (CH, Ar), 130.45 (CH, Ar), 136.03 (C, Ar), 136.56 (C, Ar), 143.15 (C, Ar),
143.18 (C=N), 163.65 (C=0), 166.79 (C=0). vmax (so lidy^m '1) 1687 (md), 1615 (md), 
1499 (st), 1298 (md), 1155 (st). MS m/z (API-ES): found 416 (M+H)+ (100%). HRMS m/z 
(API-ES): found 416.1385 (M+H)+, calculated for Q 9 H2 2 N 5 O4 S 416.1392.

N-Ethyl-2-[Nf-(5-isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-
ylidene)hydrazino]benzamide (193i).This was obtained as a yellow solid (0.089 g, 0.207 
mmol, 75%) from 192a (0.162 g, 0.275 mmol) and methylamine (70% solution in water) 
(0.033 ml, 0.413 mmol) in a similar manner as described for preparation o f 193a, mp 290 °C 

(dec). !H NMR (400 MHz, DMSO-d6) 5 0.93 (6 H, d, J6A  Hz, C H ^ H ^ ) ,  1.13 (3H, t, J 7.0 
Hz, HNCH2 CH3 ), 3.19-3.25 (1H, m, CH(CH3)2), 7.04 (1H, d, J  8.2 Hz, H-7), 7.11 (1H, t, J 
7 A Hz, ArH), 7.44 (1H, d, J 1.2 Hz, N H S02), 7.55 (1H, t, J  7.8 Hz, ArH), 7.67 (1H, d, J  1.8,
8.2 Hz, H-6 ), 7.74 (1H, d, J 7 .2  Hz, ArH), 7.94 (1H, d, J  1.8 Hz, H-4), 8.00 (1H, d, J8.0 Hz, 
ArH), 8 . 6 6  (1H, t, J  5.4 Hz, HNCH2 CH3), 11.27 (1H, s, NHCO), 14.28 (1H, s, NNH). 13C 
NMR (100 MHz, DMSO-d6) 5 15.31 (HNCH2 CH3), 23.91 (CH(CH3)2), 34.70
(HNCH2 CH3), 45.88 (CH(CH3)2), 111.02 (CH, Ar), 115.11 (CH, Ar), 117.59 (CH, Ar),
119.38 (C, Ar), 122.46 (C, Ar). 122.78 (CH, Ar), 127.92 (CH, Ar), 128.48 (C, Ar), 128.84 
(CH, Ar), 133.04 (CH, Ar), 135.66 (C, Ar), 143.53 (C=N), 162.75 (C=0), 167.62 (C=0). 
vmax (solidytcm '1) 1683 (st), 1625 (md), 1491 (st), 1309 (md), 1139 (st). MS m/z (API-ES): 
found 430 (M+H)+ (100%). HRMS m/z (API-ES): found 430.1538 (M+H)+, calculated for 
C2 oH2 4N5 0 4S 430.1549.

N-Furan-2-ylmethyl-3-[N'-(5-isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3- 
ylidene)hydrazino]benzamide (193j). This was obtained as a yellow solid (0.072 g, 0.149 
mmol, 77%) from 192b (0.114 g, 0.194 mmol) and furfurylamine (0.028 g, 0.291 mmol) in a 
similar manner as described for preparation o f 193a, mp 230 °C (dec). NMR (400 MHz, 
DMSO-d6) 5 0.93 (6 H, d, / 6 . 8  Hz, CH(CH3)2), 3.16-3.23 (1H, s, CH(CH3)2), 4.50 (1H, d, J
5.5 Hz, CH2), 6.29 (1H, d, J 2 .8  Hz, ArH), 6.38-6.40 (1H, m, ArH), 7.07 (1H, d, J8 .2  Hz, H-
7), 7.46-7.50 (2H, m, ArH & N H S02), 7.55-7.57 (2H, m, ArH), 7.63 (1H, d, /8 .4  Hz, ArH),
7.68 (1H, dd, J  1.5, 8.2 Hz, H-6 ), 7.94 (1H, d, J  1.5 Hz, H-4), 7.96 (1H, s, ArH), 8.45 (1H, d, 
J  4.3 Hz, ArH), 8.55 (1H, s, ArH), 9.05 (1H, t, J  5.5 Hz, CONH), 11.44 (1H, s, NHCO),
12.80 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 23.89 (CHfCHOA. 36.80 (CH2),
45.89 (CH(CH3)2), 107.64 (CH, Ar), 111.18 (CH, Ar), 111.23 (CH, Ar), 113.97 (CH, Ar),
117.52 (CH, Ar), 118.00 (CH, Ar), 122.144 (C, Ar), 122.87 (C, Ar), 127.72 (C, Ar),
127.89 (CH, Ar), 130.24 (CH, Ar), 135.91 (C, Ar), 136.18 (C, Ar), 142.71 (CH, Ar),
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143.05 (CH, Ar), 143.15 (C=N), 153.01 (CH, Ar), 163.91 (C=0), 166.39 (C=0). vmax 
(so lidy^m '1) 3400 (md), 3273 (md), 1694 (st), 1555 (st), 1304 (st), 1240 (md), 1136 (st), 
1068 (st). MS m/z (API-ES): found 482 (M+H)+ (100%). HRMS m/z (API-ES): found 

482.1489 (M+H)+, calculated for C2 3 H2 4 N 5 O5 S 482.1498.

3-[Nf-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)hydrazino]benzamide 
(193k). This was obtained as a yellow solid (0.045 g, 0.112 mmol, 54%) from 192b (0.123 g, 
0.209 mmol) and ammonia (2M in ethanol) (0.157 ml, 0.314 mmol) in a similar manner as 

described for preparation o f 193a, mp 250 °C (dec). ]H NMR (400 MHz, DMSO-d6 ) 5 0.93 
(6 H, d, J 6.0 Hz, CH(CH3}2 ), 3.19-3.23 (1H, m, CH(CH3)2), 7.03 (1H, d, J  8.3 Hz, H-7), 7.44 
(1H, t, J  7.8 Hz, ArH), 7.44 (1H, bs, CONH), 7.49 (1H, d, J  7.8 Hz, ArH), 7.56 (1H, d, J 7 .8  

Hz, ArH), 7.61 (1H, d, J 7 .8  Hz, ArH), 7.68 (1H, dd, J  1.4, 8.3 Hz, H-6 ), 7.95 (1H, d, J  1.4 
Hz, H-4), 7.96 (1H, s, ArH), 8.05 (1H, bs, CONH), 11.43 (1H, s, NHCO), 12.79 (1H, s, 

NNH). ,3C NMR (100 MHz, DMSO-d6) 5 23.89 (CH(CHOA. 45.88 (CH(CH3)2), 111.22 
(CH, Ar), 114.10 (CH, Ar), 117.49 (CH, Ar), 118.02 (CH, Ar), 122.18 (C, Ar), 123.04 
(CH, Ar), 127.63 (C, Ar), 127.88 (CH, Ar), 130.15 (CH, Ar), 135.91 (C, Ar), 136.39 (C, 
Ar), 143.01 (C, Ar), 143.12 (C=N), 163.90 (C=0), 168.21 (C=0). vmax (solidy^m*1) 1698 
(st), 1642 (md), 1564 (st), 1234 (md), 1161 (st), 1122 (st), 1074 (md). MS m/z (API-ES): 
found 402 (M+H)+ (100%). HRMS m/z (API-ES): found 402.1234 (M+H)+, calculated for 
C 1 8H2 0 N 5 O4 S 402.1236.

N-(2-Dimethylamino-ethyl)-3-[Nf-(5-isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3- 
ylidene)hydrazino]benzamide (1931). This was obtained as a yellow solid (0.043 g, 0.091 
mmol, 39%) from 192b (0.137 g, 0.350 mmol) and A,A-dimethylethylenediamine (0.030 g, 
0.350 mmol) in a similar manner as described for preparation o f 193a, mp 260-262 °C. !H 
NMR (400 MHz, DMSO-d6) 5 0.93 (6 H, d, J  6.4 Hz, C H tC H ^ , 2.19 (6 H, s, N ^ H ^ ,  
2.42 (2H, t, J  6 . 6  Hz, CONHCH2 CH2 ), 3.17-3.24 ( 1 H, m, CH(CH3)2), 7.07 (1H, d, J  8.4 Hz, 
H-7), 7.43-7.53 (3H, m, 2 x ArH & N H S02), 7.62 (1H, d, J  8.0 Hz, ArH), 7.68 (1H, dd, J
1.6, 8.4 Hz, H-6 ), 7.92 (1H, s, ArH), 7.95 (1H, d, J  1.8 Hz, H-4), 8.47 (1H, t, J  5.4 Hz, 
CONH), 11.45 (1H, s, NHCO), 12.80 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 23.90 

(CH(CHOA 38.06 (CH2), 45.85 (N(CH fbl. 45.98 (CH(CH3)2), 58.77 (CH2), 111.25 (CH, 
Ar), 113.83 (CH, Ar), 117.49 (CH, Ar), 117.79 (CH, Ar), 122.13 (C, Ar), 122.72 (CH, 
Ar), 127.69 (C, Ar), 127.88 (CH, Ar), 130.19 (CH, Ar), 135.92 (C, Ar), 136.62 (C, Ar),
143.01 (C, Ar), 143.14 (C=N), 163.92 (C=0), 166.40 (C=0). vmax (so lidy^m '1) 3403 
(md), 3283 (md), 1696 (st), 1636 (md), 1554 (st), 1492 (md), 1309 (st), 1157 (st), 1136 (st), 
1068 (st). MS m/z (API-ES): found 473 (M+H)+ (100%). HRMS m/z (API-ES): found 
473.1976 (M+H)+, calculated for C2 2 H2 9 N 6 O4 S 473.1971.
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3-[Nf-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)hydrazino]-N-(2- 
methoxyethyl)benzamide (193m). This was obtained as a yellow solid (0.050 g, 0.108 mmol, 
46%) from 192b (0.140 g, 0.238 mmol) and 2-methoxyethylamine (0.026 g, 0.357 mmol) in 
a similar manner as described for preparation of 193a, mp 275-277 °C. 'H NMR (400 MHz, 
DMSO-d6) 5 0.93 (6 H, d, J  5.6 Hz, CHtCFhk), 3.26 (3H, s, OCH2), 3.39-3.45 (4H, m, 
COCH2 CH2), 7.08 (1H, d, J  8.2 Hz, H-7), 7.44-7.55 (3H, m, 2 x ArH & NHSO2 ), 7.62 (1H, 
d, J  7.6 Hz, ArH), 7.69 (1H, dd, J  8.2 Hz, H-6 ), 7.95 (2H, s, ArH & H-4), 8.61 (1H, bs, 

CONH), 11.44 (1H, s, NHCO), 12.81 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 23.89 
(CHfCHAA. 45.89 (CH(CH3)2), 58.61 (OCH3), 71.11 (CH2), 111.24 (CH, Ar), 113.88 
(CH, Ar), 117.50 (CH, Ar), 117.83 (CH, Ar), 122.13 (C, Ar), 122.78 (CH, Ar), 127.68 (C, 

Ar), 127.88 (CH, Ar), 130.20 (CH, Ar), 135.91 (C, Ar), 136.48 (C, Ar), 143.01 (C, Ar),

143.12 (C=N), 163.91 (C O ), 166.55 (C=0). vmax (solid)/(cm_1) 3404 (md), 3277 (md), 
1694 (st), 1638 (md), 1555 (st), 1490 (md), 1309 (st), 1242 (md), 1156 (st), 1135 (st). MS m/z 
(API-ES): found 460 (M+H)+ (100%). HRMS m/z (API-ES): found 460.1649 (M +H )\ 
calculated for C2 1 H2 6 N 5 O 5 S 460.1655.

N-Benzyl-3-[N'-(5-isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-
ylidene)hydrazino]benzamide (193n). This was obtained as a yellow solid (0.079 g, 0.160 
mmol, 70%) from 192b (0.136 g, 0.231 mmol) and benzylamine (0.037 g, 0.347 mmol) in a 
similar manner as described for preparation o f 193a, mp 286-288 °C. !H NMR (400 MHz, 
DMSO-d6) 5 0.93 (6 H, d, J  7.2 Hz, CH^HsJb), 3.16-3.25 ( 1 H, s, CH(CH3)2), 4.48 ( 1 H, d, J
5.7 Hz, CH2), 7.07 (1H, d, J 8 .2  Hz, H-7), 7.22-7.25 (1H, m, ArH), 7.29-7.33 (4H, m, ArH), 
7.45-7.50 (2H, m, 2 x ArH & N H S02), 7.59 (1H, d, J  8.0 Hz, ArH), 7.64 (1H, d, J  8.0 Hz, 
ArH), 7.69 (1H, dd, J  1.7, 8.2 Hz, H-6 ), 7.95 (1H, d, J  1.7 Hz, H-4), 7.98 (1H, s, ArH), 9.13 
(1H, t, J  5.7 Hz, CONH), 11.44 (1H, s, NHCO), 12.81 (1H, s, NNH). 13C NMR (100 MHz, 

DMSO-d6) 5 23.90 (CHCCH^h), 43.41 (CH2), 45.89 (CH(CHfb). 111.23 (CH, Ar), 113.96 
(CH, Ar), 117.52 (CH, Ar), 117.93 (CH, Ar), 122.15 (C, Ar), 122.82 (CH, Ar), 127.44 
(CH, Ar), 127.72 (C, Ar), 127.89 (CH, Ar), 127.95 (2 x CH, Ar), 128.98 (2 x CH, Ar), 
130.27 (CH, Ar), 135.94 (C, Ar), 136.42 (C, Ar), 140.27 (C, Ar), 143.07 (C, Ar), 143.15 
(C=N), 163.92 (C O ) , 166.52 (C O ) . vmax (so lidy^m '1) 3402 (md), 3274 (md), 1697 (st), 
1554 (st), 1303 (st), 1155 (st), 1135 (st), 1068 (st). MS m/z (API-ES): found 492 (M+H)+ 
(100%). HRMS m/z (API-ES): found 492.1691 (M+H)+, calculated for C2 5 H2 6 N 5 O4 S 
492.1706.

3-lN'-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)hydrazino]-N-pyridin-3- 
ylmeihylbenzamide (193o). This was obtained as a yellow solid (0.060 g, 0.121 mmol, 70%) 
from 192b (0.102 g, 0.173 mmol) and 3-(aminomethyl)pyridine (0.028 g, 0.260 mmol) in a 
similar manner as described for preparation o f 193a, mp 260 °C (dec). 'H NMR (400 MHz, 
DMSO-d6) 5 0.93 (6 H, d, J  6 . 8  Hz, C H tC H ^), 3.16-3.25 (1H, s, CH(CH3)2), 4.50 (1H, d, J
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5.8 Hz, CH2), 7.07 (1H, d, J 8 .3  Hz, H-7), 7.35 (1H, dd, J4 .3 , 7.7 Hz, H-6 ), 7.43-7.50 (2H, 
m, ArH & N H S02), 7.57 (1H, d, J 8.0 Hz, ArH), 7.64 (1H, d, J 8 .0  Hz, ArH), 7.68 (1H, dd, J
1.5, 8.3 Hz, H-6 ), 7.73 (1H, d, J l . l  Hz, ArH), 7.94 (1H, d, J  1.5 Hz, H-4), 7.96 (1H, s, ArH),
8.45 (1H, d, J4 .3  Hz, ArH), 8.55 (1H, s, ArH), 9.18 (1H, t, J 5 .8  Hz, CONH), 11.43 (1H, s, 
NHCO), 12.81 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 23.90 (CH(CH3)2), 41.19 

(CH2)„ 45.88 (CH(CH3)2), 111.23 (CH, Ar), 113.93 (CH, Ar), 117.50 (CH, Ar), 118.07 
(CH,Ar), 122.13 (C, Ar), 122.80 (CH, Ar), 124.20 (CH, Ar), 127.74 (C, Ar), 127.91 (CH, 
Ar), 130.31 (CH, Ar), 135.72 (CH, Ar), 135.87 (C, Ar), 135.91 (C, Ar), 136.19 (C, Ar),
143.10 (C, Ar), 143.15 (C=N), 148.80 (CH, Ar), 149.56 (CH, Ar), 163.89 (C=0), 166.68 
(C=0). vmax (solid)/(cm'') 3178 (md), 1695 (st), 1638 (md), 1552 (st), 1487 (md), 1301 (st), 
1242 (md), 1156 (st), 1118 (st), 1070 (st). MS m/z (API-ES): found 493 (M+H)+ (100%). 
HRMS m/z (API-ES): found 493.1655 (M+H)+, calculated for C2 4 H2 5 N 6 0 4S 493.1658.

3-[Nf-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)hydrazino]-N-(2- 
morpholin-4-yl-ethyl)benzamide (193p). This was obtained as a yellow solid (0.060 g, 0.116 
mmol, 57%) from 192b (0.130 g, 0.204 mmol) and 2-morpholin-4-yl-ethylamine (0.039 g, 
0.306 mmol) in a similar manner as described for preparation o f 193a, mp 270 °C (dec). ]H 
NMR (400 MHz, DMSO-d6) 5 0.93 (6 H, d, J  6.4 Hz, C H ^ H ^ ) ,  2.41 (4H, bs, 2 x CH2), 
3.16-3.23 (1H, s, CH(CH3)2), 3.56 (4H, t, J  4A  Hz, 2 x CH2), 4.50 (1H, d, J 5 .5  Hz, CH2),
7.07 (1H, d, J  8.4 Hz, H-7), 7.43-7.52 (3H, m, 2 x ArH & N H S02), 7.61 (1H, d, J  8.0 Hz, 
ArH), 7.68 (1H, dd, J  1.6, 8.4 Hz, H-6 ), 7.91 (1H, s, ArH), 7.94 (1H, d, J  1.6 Hz, H-4), 9.05 
(1H, t, J  5.6 Hz, CONH), 11.44 (1H, s, NHCO), 12.81 (1H, s, NNH). 13C NMR (100 MHz, 
DMSO-d6) 5 23.90 (CHfCHAA 37.29 (CH2), 45.88 (CH(CH3)2), 53.98 (2 x CH2), 58.00 
(CH2), 66.87 (2 x C H 2), 111.25 (CH, Ar), 113.80 (CH, Ar), 117.48 (CH, Ar), 117.82 (CH, 
Ar), 122.13 (C, Ar), 122.70 (CH, Ar), 127.69 (C, Ar), 127.88 (CH, Ar), 130.21 (CH, Ar),
135.91 (C, Ar), 136.65 (C, Ar), 143.02 (C, Ar), 143.14 (C=N), 163.91 (C=0), 166.46 
(C=0). vmax (solid)/(cm'1) 3411 (md), 3399 (md), 1695 (st), 1636 (md), 1555 (st), 1492 (md), 
1301 (st), 1164 (st), 1115 (st), 1068 (st). MS m/z (API-ES): found 515 (M+H)+ (100%). 
HRMS m/z (API-ES): found 515.2071 (M+H)+, calculated for C2 4 H3 iN 6 0 5S 515.2077.

3-[N,-(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidene)hydrazinoJ-N- 
methylbenzamide (193q). This was obtained as a yellow solid (0.069 g, 0.172 mmol, 79%) 
from 192b (0.127 g, 0.216 mmol) and methylamine (40% solution in water) (0.028 ml, 0.324 
mmol) in a similar manner as described for preparation o f 193a, mp > 300 °C. lU NMR (400 
MHz, DMSO-d6) 5 0.93 (6 H, d, J  6.0 Hz, C H ^ H ^ ) ,  2.79 (3H, d, J  4.4 Hz, NCH3), 3.16-
3.24 (1H, s, CH(CH3)2), 7.07 (1H, d, J  8.2 Hz, H-7), 7.43-752 (3H, m, 2 x ArH & N HS02),
7.60 (1H, d, J  7.6 Hz, ArH), 7.68 (1H, dd, J  1.4, 8.2 Hz, H-6 ), 7.92 (1H, s, ArH), 7.95 (1H, d, 
J  1.4 Hz, H-4), 8.52 (1H, bq, J 4 .4  Hz, CONH), 11.44 (1H, s, NHCO), 12.81 (1H, s, NNH). 
I3C NMR (100 MHz, DMSO-d6) 8  23.90 (CH(CH^V). 26.98 (CH3), 45.88 (CH(CH3)2),
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111.23 (CH, Ar), 113.68 (CH, Ar), 117.50 (CH, Ar), 117.80 (CH, Ar), 122.15 (C, Ar),
122.62 (CH, Ar), 127.68 (C, Ar), 127.88 (CH, Ar), 130.21 (CH, Ar), 135.93 (C, Ar),

136.65 (C, Ar), 143.06 (C, Ar), 143.13 (C=N), 163.91 (C=0), 166.94 (C=0). vmax
(solid)/(cm'') 1667 (st), 1548 (st), 1467 (st), 1310 (md), 1143 (st). MS m/z (API-ES): found 
416 (M+H)+ (100%). HRMS m/z (API-ES): found 416.1389 (M+H)+, calculated for 

C 1 9H2 2 N 5 O4 S 416.1392.

N-Ethyl-3-fN'-(5-isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-
ylidene)hydrazino]benzamide (193r). This was obtained as a yellow solid (0.061, 0.154 
mmol, 72%) from 192b (0.126 g, 0.214 mmol) and ethylamine (60% solution in water) 
(0.026 ml, 0.312 mmol) in a similar manner as described for preparation of 193a, mp > 300 
°C. ’H NMR (400 MHz, DMSO-d6) 8  0.93 (6 H, d, J  6.0 Hz, CH(CH3^ ), 1.12 (3H, t, J  7.0 
Hz, NCH2 CH3 ), 7.07 (1H, d, J8 .2  Hz, H-7), 7.43-753 (3H, m, 2 x ArH & N H S02), 7.61 (1H, 
d, J  6 . 8  Hz, ArH), 7.68 (1H, dd, J  8.2 Hz, H-6 ), 7.92 (1H, s, ArH), 7.95 (1H, s, H-4), 8.54 
(1H, bs, CONH), 11.44 (1H, s, NHCO), 12.81 (1H, s, NNH). 13C NMR (100 MHz, DMSO- 

d6) 5 15.44 (CH2 CH3 ), 23.90 (CH(CH3}2 ), 34.81 (CH2 CH 3 ), 45.89 (CH(CH3)2), 111.22 
(CH, Ar), 113.82 (CH, Ar), 117.49 (CH, Ar), 117.69 (CH, Ar), 122.15 (C, Ar), 122.71 
(CH, Ar), 127.66 (C, Ar), 127.87 (CH, Ar), 130.16 (CH, Ar), 135.93 (C, Ar), 136.79 (C, 
Ar), 142.99 (C, Ar), 143.12 (C=N), 163.92 (C=0), 166.21 (C=0). vmax (solid)/(cm_1) 3396 
(md), 3269 (md), 1692 (st), 1613 (md), 1560 (st), 1538 (st), 1489 (md), 1299 (st), 1150 (st), 
1070 (st). MS m/z (API-ES): found 430 (M+H)+ (100%). HRMS m/z (API-ES): found 
430.1546 (M+H)+, calculated for C2 0 H2 4 N 5 O4 S 430.1549.

2-Oxo-3-(phenylhydrazono)-2,3-dihydro-lH-indole-5-sulfonic acid (193a)
A mixture o f 5-isatinsulfonic acid sodium salt dihydrate (188) (0.092 g, 0.3216 mmol) 
phenylhydrazine (0.052 g, 0.048 mmol, 1.5 eq) and HC1 (aq 4M, 0.8 ml) in ethanol (3 mL) 
was heated in the CEM microwave at 120 °C for 15 min. The mixture was cooled to room 
temperature, the yellow precipitate was collected by filtration and dried, to give the pure 
compound (0.080 g, 0.280 mmol, 87%), mp > 300 °C. ’H NMR (400 MHz, DMSO-d6) 8  6.83 
(1H, d, J  8.0 Hz, H-7), 7.01-7.04 (1H, m, H-4’), 7.35 (2H, t, J  8.4 Hz, H-4’ & H-6 ’), 7.43 
(2H, dd, J  1.2, 8.4 Hz, H-3’ & H-5’), 7.48 (1H, dd, J  1.6, 8.0 Hz, H-6 ), 7.74 (1H, d, J  1.6 Hz, 
H-4), 11.07 (1H, s, NHCO), 12.67 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 8  110.12 
(CH, Ar), 114.86 (2 x CH, Ar), 116.80 (CH, Ar), 120.98 (C, Ar), 123.66 (CH, Ar), 126.72 
(CH, Ar), 128.26 (C, Ar), 130.21 (2 x CH, Ar), 140.41 (C, Ar), 143.19 (C, Ar), 143.25 

(C=N), 164.10 (C=0). vmax (solidytcnf1) 3536 (md), 3401 (md), 3174 (md), 1697 (md), 
1549 (st), 1492 (md), 1184 (st), 1099 (st), 1036 (st). MS m/z (API-ES): found 316 (M-H)' 
(100%). HRMS m/z (API-ES) found 316.0399 (M-H)', calculated for C 1 4H 10N 3 O4 S 
316.0392.
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2-Oxo-3-[(2-methylphenylhydrazono)]-2,3-dihydro-lH-indole-5-sulfonic acid (194b). This 

was obtained as a yellow solid (0.072 g, 0.240 mmol75%) from 5-isatinsulfonic acid sodium 
salt dihydrate (188) (0.092 g, 0.321 mmol) and 2-methylphenylhydrazine (0.076 g, 0.482 
mmol) in a similar manner as described for preparation of 194a, mp > 300 °C. *H NMR (400 
MHz, DMSO-d6) 5 2.26 (3H, s, CH3), 6.87 (1H, d, J  8.1 Hz, H-7), 6.95 (1H, t, J  7.5 Hz, 
ArH), 7.21 (1H, d, J1.5  Hz, ArH), 7.25 (1H, t, 7  7.5 Hz, ArH), 7.50 (1H, dd, J  1.4, 8.1 Hz, H- 
6 ), 7.70 (1H, d, J7 .5  Hz, ArH), 7.77 (1H, s, H-4), 11.07 (1H, s, NHCO), 12.67 (1H, s, NNH). 
13C NMR (100 MHz, DMSO-d6) 5 17.05 (ArCH3), 110.29 (CH, Ar), 113.05 (CH, Ar),
116.85 (CH, Ar), 120.76 (C, Ar), 123.22 (CH, Ar), 123.33 (C, Ar), 126.79 (CH, Ar),
128.10 (CH, Ar), 129.11 (C, Ar), 131.45 (CH, Ar), 140.38 (C, Ar), 140.95 (C, Ar), 143.21 
(C=N), 164.53 (C=0). vmax (solidytcm '1) 3402 (md), 1671 (md), 1552 (st), 1185 (st), 1094 
(st), 1030 (st). MS m/z (API-ES): found 330 (M-H)' (100%). HRMS m/z (API-ES): found 
330.0560 (M-H)', calculated for C 1 5H 12N 3 0 4 S 330.0549.

2-Oxo-3-[(2,6-dichlorophenylhydrazono)]-2,3-dihydro-lH-indole-5-sulfonic acid (194c).
This was obtained as a yellow solid (0.078 g, 0.220 mmol, 78%) from 5-isatinsulfonic acid 
sodium salt dihydrate (188) (0.081 g, 0.283 mmol) and 2,6-dichlorophenylhydrazine (0.090 g, 
0.424 mmol) in a similar manner as described for preparation o f 194a, mp > 300 °C. ]H NMR 
(400 MHz, DMSO-d6) 5 6 . 8 6  (1H, d, J  S.4 Hz, H-7), 7.17 (1H, t, J  7.8 Hz, H-4’), 7.52 (1H, 
dd, J  1.6, 8.4 Hz, H-6 ), 7.55 (2H, d, J  7.8 Hz, H-3’ & H-5’), 7.64 (1H, s, H-4), 11.21 (1H, s, 
NHCO), 12.70 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 110.41 (CH, Ar), 117.62 
(CH, Ar), 120.45 (C, Ar), 125.97 (C, Ar), 126.45 (CH, Ar), 127.61 (CH, Ar), 130.57 (2 x 
CH, Ar), 130.78 (C, Ar), 136.44 (C, Ar), 140.97 (C, Ar), 143.53 (C=N), 163.99 (C=0). 
vmax (solid)Z(cm'1) 3422 (md), 1684 (md), 1618 (md), 1572 (md), 1559 (md), 1161 (st), 1098 
(st), 1031 (st). MS m/z (API-ES): found 383.9 (M 3 5 C1-H)' (100%), 385.9 (M 37C1-H)'(70%). 
HRMS m/z (API-ES): found 383.9619 (M-H)', calculated for C n H g C ^ N ^ S  383.9613.

2-Oxo-3-[(2-ethylphenylhydrazono)]-2,3-dihydro-lH-indole-5-sulfonic acid (194d). This 
was obtained as a yellow solid (0.030 g, 0.095 mmol, 30%) from 5-isatinsulfonic acid sodium 
salt dihydrate (188) (0.083 g, 0.482 mmol) and 2-ethylphenylhydrazine (0.092 g, 0.321 
mmol) in a similar manner as described for preparation of 194a, mp > 300 °C. ]H NMR (400 
MHz, DMSO-d6) 5 1.23 (3H, t, J  7.4 Hz, CU2 CR3), 2.63 (2H, q, J  1A  Hz, CH?CHO. 6 . 8 6  

(1H, d, J8 .1  Hz, H-7), 6.98-7.01 (1H, m, ArH), 7.21 (1H, d, J7 .8  Hz, ArH), 7.26 (1H, t, J7 .8  
Hz, ArH), 7.49 (1H, dd, J  1.8, 8.1 Hz, H-6 ), 7.72 (1H, d, J  7.8 Hz, ArH), 7.76 (1H, d, /  1.8 
Hz, H-4), 11.13 (1H, s, NHCO), 13.03 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 
6  14.25 (CHsCHb), 23.90 (CH?CHf). 110.24 (CH, Ar), 113.46 (CH, Ar), 116.79 (CH, Ar),
120.74 (C, Ar), 123.61 (CH, Ar), 126.70 (CH, Ar), 128.14 (CH, Ar), 129.08 (C, Ar), 
129.15 (C, Ar), 129.71 (CH, Ar), 140.24 (C, Ar), 140.30 (C, Ar), 143.52 (C=N), 164.54 
(C=0). vmax (so lidy^m '1) 3188 (md), 1672 (md), 1552 (st), 1186 (st), 1099 (st), 1036 (st).
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MS m/z (API-ES): found 344 (M -H)' (100%). HRMS m/z (API-ES): found: 344.0717 (M -H)'

, calculated for C 16H 14N 3O4 S: 344.0705.

2-Oxo-3-[(2-fluorophenylhydrazono)]-2,3-dihydro-lH-indole-5-sulfonic acid (I94e). This 
was obtained as a yellow solid (0.088 g, 0.290 mmol, 93%) from 5-isatinsulfonic acid sodium 
salt dihydrate (188) (0.090 g, 0.314 mmol) and 2-fluorophenylhydrazine (0.076 g, 0.471 
mmol) in a similar manner as described for preparation o f 194a, mp > 300 °C. !H NMR (400 
MHz, DMSO-d6) 5 6 . 8 6  (1H, d, J  8.1 Hz, H-7), 7.00-7.06 (1H, m, ArH), 7.25 (1H, t, J  7.6 
Hz, ArH), 7.27-7.32 (1H, m, ArH), 7.52 (1H, dd, J  1.4, 8.1 Hz, H-6 ), 7.76-7.81 (2H, m, ArH),

11.21 (1H, s, NHCO), 12.85 (1H, d, J  1.6 Hz, NNH). 19F NMR (400 MHz, DMSO-d6) 5 -
135.59 (ArF). 13C NMR (100 MHz, DMSO-d6) 5 110.40 (CH, Ar), 115.10 (CH, Ar), 116.27 
(d) (CH-3’, J  16.8 Hz), 117.27 (CH, Ar), 120 43 (C, Ar), 123.66 (d), (CH-6 ’, /  7.4 Hz), 
126.31 (d), (CH-4’, J  2.9 Hz), 130.72 (C, Ar), 130.35 (d) (C -l’, J 9 .5  Hz), 140.83 (C, Ar), 

143.50 , (C=N), 150.73 (d) (CF, J  239.6 Hz), 164.51 , (C=0). vmax (solidytcm '1) 3493 (md), 
3430 (md), 1687 (md), 1618 (md), 1556 (md), 1260 (md), 1176 (st), 1094 (st), 1028 (st). MS 

m/z (API-ES): found 333.9 (M-H)' (100%). HRMS m/z (API-ES): found 334.0310 (M-H)', 
calculated for C 1 4H 1 0N 3 O4 S 334.0298.

2-Oxo-3-[(2-trifluoromethylphenylhydrazono)]-2,3-dihydro-lH-indole-5-sulfonic acid 
(194f). This was obtained as a yellow solid (0.095 g, 0.269 mmol, 87%) from 5-isatinsulfonic 
acid sodium salt dihydrate (188) (0.088g g, 0.307 mmol) and 2-
trifluoromethylphenylhydrazine (0.081 g, 0.461 mmol) in a similar manner as described for 
preparation o f 194a, mp > 300 °C. *H NMR (400 MHz, DMSO-d6) 5 6.87 (1H, d, J  8.3 Hz, 
H-7), 7.18 (1H, t, J  8.2 Hz, ArH), 7.53 (1H, dd, J  1.5, 8.3 Hz, H-6 ), 7.65-7.71 (2H, m, 2 x 
ArH), 7.79 (1H, d, J  1.5 Hz, H-4), 8.02 (1H, t, J 8 .2  Hz, ArH), 11.21 (1H, s, NHCO), 13.22 

(1H, s, NNH). 19F NMR (400 MHz, DMSO-d6) 5 -60.66 (CF3). 13C NMR (100 MHz, 
DMSO-d6) 5 110.59 (CH, Ar), 113.89 (q), (C -2 \ J  30.0 Hz), 115.49 , (CH, Ar), 117.62 , 
(CH, Ar), 120.29 (C, Ar), 122.98 , (CH, Ar), 124.91 (q), (CF3, J  260.3 Hz), 127.05 (q), (CH- 
3’, J  5.9 Hz), 127.91 , (CH, Ar), 131.74 , (C, Ar), 134.96 , (C, Ar), 140.05 (C, Ar), 141.41 , 
(C, Ar), 143.48 , (C=N), 164.31 , (C=0). vmax (so lidy^m '1) 3392 (md), 1687 (md), 1590 
(md), 1567 (md), 1460 (md), 1323 (md), 1160 (st), 1096 (st), 1030 (st). MS m/z (API-ES): 

found 384 (M-H)' (100%). HRMS m/z (A PI-ES): found 384.0279 (M-H)', calculated for 
C 1 5H 1 9F3N 3 0 4S 384.0266.

2-Oxo-3-(pentafluorophenylhydrazono)-2,3-dihydro-lH-indole-5-sulfonic acid (194g). 
This was obtained as a yellow solid (0.54 g, 0.144 mmol, 51%) from 5-isatinsulfonic acid 
sodium salt dihydrate (188) (0.081 g, 0.0.283 mmol) and pentafluoromethylphenylhydrazine 
(0.084 g, 0.424 mmol) in a similar manner as described for preparation o f 194a, mp > 300 °C. 
]H NMR (400 MHz, DMSO-d6) 5 6.87 (1H, d, J  7.9 Hz, H-7), 7.53 (1H, dd, J  1.7, 7.9 Hz, H-
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6 ), 7.64 (1H, d, J  1.7 Hz, H-4), 11.28 (1H, s, NHCO), 12.52 (1H, s, NNH). 19F NMR (400 
MHz, DMSO-d6) 5 -165.45 (IF, t, J -2 4 .4  Hz, F-4’), (-166.80)-(-163.69) (2F, m, F-3’ & F-5- 
‘), 155.80 (2F, d, J  -24.4 Hz, F-2’ & F-6 ’). 13C NMR (100 MHz, DMSO-d6) 5 110.65 (CH, 
Ar), 135.30-136.69 (m) (CF), 137.14-137.13 (m) (2 x CF), , 139.41-140.30 (m) (2 x CF), 
117.48 (CH, Ar), 119.45 (C, Ar), 128.211 (CH, Ar), 133.08 (C, Ar), 141.40 (C, Ar),
143.74 (C=N), 164.11 (C=0). vmax (so lidy^m '1) 3464 (md), 1689 (md), 1523 (st), 1180 (st), 
1096 (st), 1030 (st). MS m/z (API-ES): found 405.9 (M-H)’ (100%). HRMS m/z (API-ES): 
found 405.9935 (M-H)’, calculated for C 1 4H,6 F5N 3 0 4 S 405.9921.

3-(Naphthalen-l-ylhydrazono)-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid (194h). This 
was obtained as a red solid (0.085 g, 0.253 mmol, 78%) from 5-isatinsulfonic acid sodium 
salt dihydrate (188) (0.092 g, 0.0.321 mmol) and 1-naphthylhydrazine (0.093 g, 0.482 mmol) 
in a similar manner as described for preparation o f 194a, mp > 300 °C. ’H NMR (400 MHz, 
DMSO-d6) 5 6.89 (1H, d, J  8.4 Hz, H-7), 7.52-7.60 (3H, m, 3 x ArH), 7.63-7.68 (2H, m, 
ArH), 7.83-7.90 (3H, m, ArH), 7.98 (1H, d, J8 .0 , ArH), 11.29 (1H, s, NHCO), 13.73 (1H, s, 
NNH). 13C NMR (100 MHz, DMSO-d6) 5 109.23 (CH, Ar), 110.42 (CH, Ar), 117.13 (CH, 
Ar), 119.67 (CH, Ar), 120.61 (C, Ar), 122.28 (C, Ar), 123.35 (CH, Ar), 127.11 (CH, Ar),
127.17 (CH, Ar), 127.18 (CH, Ar), 127.33 (CH, Ar), 129.47 (CH, Ar), 130.41 (C, Ar),
134.47 (C, Ar), 137.67 (C, Ar), 140.61 (C, Ar), 143.56 (C=N), 164.82 (C=0). vmax 
(solidy^m ’1) 3433 (md), 1674 (md), 1616 (md), 1560 (st), 1398 (md), 1185 (st), 1158 (st), 
1098 (st), 1029 (st). MS m/z (API-ES): found 366 (M-H)’ (100%). HRMS m/z (API-ES): 
found 366.0555 (M-H)', calculated for C 1 8H 12N 3 O4 S 366.0549.

2-Oxo-3-[(2,4-dichlorophenylhydrazono)]-2,3-dihydro-lH-indole-5-sulfonic acid (194i). 
This was obtained as a yellow solid (0.061 g, 0.172 mmol, 69%) from 5-isatinsulfonic acid 
sodium salt dihydrate (188) (0.071 g, 0.248 mmol) and 2,4-dichlorophenylhydrazine (0.079 g, 
0.372 mmol) in a similar manner as described for preparation o f 194a, mp > 300 °C. ]H NMR 

(400 MHz, DMSO-d6) 6 6.86 (1H, d, J8 .3  Hz, H-7), 7.43 (1H, dd, J2 .2 , 8.8 Hz, H-5’), 7.53 
(1H, dd, J  1.7, 8.3 Hz, H-6), 7.67 (1H, d, J 2 .2  Hz, H-3’), 7.79 (1H, d, J  1.7 Hz, H-4), 7.84 
(1H, d, J  8.8 Hz, H-6’), 11.24 (1H, s, NHCO), 13.00 (1H, s, NNH). 13C NMR (100 MHz, 
DMSO-d6) 8 105.00 (CH, Ar), 110.48 (CH, Ar), 116.15 (C, Ar), 117.56 (CH, Ar), 119.42 
(C, Ar), 120.81 (CH, Ar), 126.76 (C, Ar), 127.84 (CH, Ar), 129.49 (C, Ar), 129.57 (C, 
Ar), 131.75 (CH, Ar), 138.71 (C, Ar), 141.87 (C=N), 164.33 (C=0). vmax (solidy^m ’1) 
3445 (md), 1678 (md), 1575 (md), 1509 (md), 1182 (st), 1097 (st), 1033 (md). MS m/z (API- 
ES): found 383.9 (M 35C1-H)’ (100%), 385.9 (M 37C1-H)’ (70%). HRMS m/z (API-ES): found 
383.9619 (M-H)', calculated for C 1 4H9 CI2 N 3 O4 S: 383.9613.

2-Oxo-3-[(2,5-dichlorophenylhydrazono)]-2,3-dihydro-lH-indole-5-sulfonic acid (194j). 
This was obtained as a yellow solid (0.083 g, 0.235 mmol, 76%) from 5-isatinsulfonic acid
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sodium salt dihydrate (188) (0.088 g, 0307 mmol) and 2,5-dichlorophenylhydrazine (0.098 g, 
0.460 mmol) in a similar manner as described for preparation of 194a, mp > 300 °C. ]H NMR 
(400 MHz, DMSO-d6) 5 6.87 (1H, d, J  7.8 Hz, H-7), 7.08 (1H, dd, J  2.5, 8.5 Hz, H-4’), 7.52 
(1H, d, J  8.5 Hz, H-3’), 7.55 (1H, dd, J  1.4, 7.8 Hz, H-6 ), 7.70 (1H, d, J 2 .5  Hz, H-6 ’), 7.82 
(1H, d, J  1.4 Hz, H-4), 11.26 (1H, s, NHCO), 13.00 (1H, s, NNH). 13C NMR (100 MHz, 
DMSO-d6) 5 110.56 (CH, Ar), 114.15 (CH, Ar), 117.38 (C, Ar), 117.86 (CH, Ar), 120.12 
(C, Ar), 123.30 (CH, Ar), 128.09 (CH, Ar), 131.73 (CH, Ar), 132.28 (C, Ar), 134.04 (C, 
Ar), 140.61 (C, Ar), 141.50 (C, Ar), 143.50 (C=N), 164.32 (C=0). vmax (so lidy^m '1) 3454 
(md), 1684 (md), 1568 (md), 1226 (st), 1164 (st), 1094 (st), 1029 (st). MS m/z (API-ES): 

found 383.9 (M 3 5 C1-H)' (100%), 385.9 (M 3 7 C1-H)' (70%). HRMS m/z (API-ES): found 
383.9618 (M-H)', calculated for C 1 4H9C 12 N 3 0 4 S 383.9613.

2-[N,-(2-Oxo-5-sulfo-l,2-dihydro-indol-3-ylidene)hydrazino]benzoic acid (194k)
A mixture o f 5-isatinsulfonic acid sodium salt dihydrate (188) (0.112 g, 0.391 mmol) 2- 
carboxylphenylhydrazine (0.052 g, 0.048 mmol) and HC1 (aq 4M, 0.7 ml) in ethanol (3 mL) 
was heated in the CEM microwave at 180 °C for 5 min. The reaction mixture was cooled to 
room temperature, and the yellow precipitate was collected by filtration and dried., to give 
pure 194k (0.116 g, 0.321 mmol, 82%), mp > 300 °C. ]H NMR (400 MHz, DMSO-d6) 5 6.82 
(1H, d, J  8.3 Hz, H-7), 7.05 (1H, t, J  7.8 Hz, ArH), 7.49 (1H, dd, J  1.5, 8.3 Hz, H-6 ), 7.59- 
7.63 (1H, m, ArH), 7.77 (1H, d, J  1.5 Hz, H-4), 7.91 (1H, dd, J  1.8, 7.8 Hz, ArH), 7.77 (1H, 
d, J  7.8 Hz, ArH), 11.96 (1H, s, NHCO), 13.73 (1H, s, COOH), 14.15 (1H, s, NNH). 13C 
NMR (100 MHz, DMSO-d6) 5 110.11 (CH, Ar), 114.34 (C, Ar), 114.67 (CH, Ar), 117.37 
(CH, Ar), 120.99 (C, Ar), 122.13 (CH, Ar), 127.42 (CH, Ar), 130.67 (C, Ar), 131.97 (CH, 

Ar), 135.23 (CH, Ar), 141.27 (C, Ar), 143.15 (C, Ar), 145.45 (C=N), 163.07 (C=0),
168.91 (C=0). vmax (solid)/(cm_1) 3185 (md), 1705 (md), 1688 (md), 1513 (md), 1503 (md), 
1227 (st), 1183 (st), 1154 (st), 1094 (st), 1035 (st). MS m/z (API-ES): found 360 (M-H)' 
(100%). HRMS m/z (API-ES): found: 360.0297 (M-H)', calculated for Ci5 H 10N3 O6S 
360.0290.

2-Oxo-2,3-dihydro-lH-indole-5-sulfonyf chloride (196)395
Oxindole (195) (5.5 g, 41.30 mmol) was added portionwise to chlorosulfonic acid (50 ml) 
maintaining the temperature below 30 °C during the addition. After the addition the reaction 
mixture was stirred at room temperature for 1.5 h and then at 70 °C for 1 h. After cooling to 
room temperature, the reaction mixture was poured into ice-water ( 2 0 0  ml) and the pink 
precipitate was filtered, washed with water (50 ml) and dried, to give pure 196 (8.4 g, 36.36 
mmol, 8 8  %), mp 280-282 °C. ’H NMR (400 MHz, CD3 CN) 5 3.59 (2H, s, CH2), 7.10 (1H, d, 
J  8.7 Hz, H-7), 7.92 (1H, s, H-4), 7.95 (1H, dd, J2.2, 8.7 Hz, H-6 ), 8.95 (1H, s, NH).
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2-Oxo-2,3-dihydro-lH-indole-5-sulfonic acid isopropylamide (197a). This was obtained 
from 196 (0.600 g, 2.597 mmol) and isopropylamine (0.184 g, 0.265 mmol) in a similar 
manner as described for preparation o f 190r. The pure compound was obtained as a pink 
solid (0.600 g, 2.360 mmol, 91%) without further purification, mp 233-235 °C. 'H NMR (400 
MHz, DMSO-d6) 5 0.92 (6 H, d, J 8 . 8  Hz, CH(C H ^ ). 3.15 (1H, sext, J  6.6 Hz, CH(CH3)2),
6.92 (1H, d, J8 .3  Hz, H-7), 7.38 (1H, d, J 6 . 6  Hz, N H S02), 7.58 (1H, s, H-4), 7.61 (1H, dd, J  
2.2, 8.3 Hz, H-6 ), 10.74 (1H, s, NH).

2-Oxo-2,3-dihydro-lH-indole-5-sulfonic acid 4-chloro-benzylamide (197b). This was 
obtained from 196 (0.370 g, 1.60 mmol) and 4-chlorobenzylamine (0.271 g, 1.922 mmol) in a 
similar manner as described for preparation o f 190r. The pure compound was obtained as a 
pink solid (0.442 g, 1.315 mmol, 82%) without further purification, mp 145-147 °C. !H NMR 
(400 MHz, DMSO-d6) 5 3.53 (2H, s, CH2), 3.92 (2H, s, NCH2), 6.90 (1H, d, J8 .0  Hz, H-7),
7.21 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.30 (2H, d, J  8.4 Hz, 2 x CH, Ar), 7.41 (1H, s, N H S02),
7.51 (1H, s, H-4), 7.61 (1H, d, J  8.0 Hz, H-6 ). 13C NMR (100 MHz, DMSO-d6) 5 36.23 
(CH2), 46.07 (NCH2), 109.55 (CH, Ar), 123.47 (CH, Ar), 127.22 (C, Ar), 127.85 (CH, 
Ar), 128.76 (2 x CH, Ar), 130.13 (2 x CH, Ar), 132.29 (C, Ar), 133.74 (C, Ar), 137.52 (C, 

Ar), 148.03 (C, Ar), 177.11 (C=0). vmax (so lidy^m ’1) 3149 (md), 1686 (st), 1617 (md), 
1478 (md), 1329 (md), 1149 (st). MS m/z (API-ES): found 337 (M 3 5 C+H)+(100%), 339 
(M 3 7 C+H)+(35%) HRMS m/z (API-ES): found 337.0411 (M+H)+, calculated for 
Ci5H]4 ClN2 0 3S 337.0414.

3-Dimethylaminomethylene-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid isopropylamide 
(188a)394
A solution o f 197a (1.50 g g, 5.90 mmol) and A,A-dimethylformamidedimethylacetal (1.129 
g, 7.67 mmol) in DMF (10 ml) was stirred for 1 h at room temperature. Water (20 ml) was 
added and the product extracted with ethyl acetate ( 3 x 1 0  ml). The organic extracts were 
collected, dried over Na2 S 0 4  and the solvent evaporated under reduced pressure to give a 
yellow solid (1.098 g, 3.55 mmol, 60%), which was used in the next step without further 
purification.

3-Dimethylaminomethylene-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid 4-
chlorobenzylamide (198b). This was obtained from 197b (0.208 g, 0.619 mmol) and N,N- 
dimethylformamide dimethylacetal (0.118 g, 0.137 mmol) in a similar manner as described 
for preparation o f 198a. The crude (0.188 g, 0.480 mmol, 78%) was used in next step without 
further purification.
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2-[(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidenemethyl)amino]benzoic acid 

methyl ester (199a)
A mixture of 198a (0.260 g, 0.841 mmol) methyl -2-aminobenzoate (148a) (0.139 g, 0.925 

mmol) and methansulfonic acid (0.088 g, 0.925 mmol) in ethanol (5 mL) was heated in the 
microwave at 150 °C for 5 min. The reaction mixture was cooled to 0 °C, and the orange 
precipitate was collected by filtration and dried, to give pure 199a (0.207 g, 0.498 mmol, 59 
%), mp 283-285 °C. ]H NMR (400 MHz, DMSO-d6) 5 0.93 (6 H, d, J  6 . 8  Hz, C H ^ H ^ ) ,  
3.21-3.26 (1H, m, CH(CH3)2), 3.92 (1H, s, OCH3), 6.97 (1H, d, J7.9  Hz, H-7), 7.16 (1H, t, J
8.0 Hz, ArH), 7.25 (1H, d, J  7.6 Hz, H N S02), 7.48 (1H, dd, J  1.7, 7.9 Hz, H-6 ), 7.64-7.69 
(1H, m, CH, Ar), 7.98 (1H, dd, J  1.4, 8.0 Hz, ArH), 8.01 (1H, d, J 8 .0  Hz, ArH), 8.20 (1H, d, 
J  1.7 Hz, H-4), 8.89 (1H, d, J  12.2 Hz, C=CHNH), 10.83 (1H, s, 1H, NHCO), 12.39 (1H, d, J
12.2 Hz, C=CHNH). 13C NMR (100 MHz, DMSO-d6) 5 23.96 (CH(CH3)2), 45.75
(CH(CH3)2), 52.54 (OCH3), 101.50 (C, Ar), 109.53 (CH, Ar), 116.01 (CH, Ar), 117.00 
(C ,Ar), 117.15 (CH,Ar), 123.01 (CH, Ar), 123.98 (CH, Ar), 125.17 (C, Ar), 132.56 (CH, 
Ar), 134.03 (C, Ar), 134.80 (CH, Ar), 138.37 (CH, Ar), 141.04 (C, Ar), 143.45 (C=N), 
169.84 (C=0), 170.01 (C=0). vmax (so lidy^m '1) 3256 (md), 1681 (st), 1617 (md), 1583 (st), 
1430 (md), 1362 (md), 1300 (md), 1254 (st), 1193 (st), 1137 (st), 1119 (st), 1071 (st), 1008 
(md). MS m/z (API-ES): found 416 (M+H)+(100%). HRMS m/z (API-ES): found 416.1276 
(M+H)+, calculated for C2 0 H2 2 N3 O5S 416.1280.

3-[(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidenemethyl)amino]benzoic acid 
ethyl ester (199b). This was obtained as a yellow solid (0.130 g, 0.303 mmol, 47%) from 
198a (0.199 g, 0.644 mmol) and ethyl-3-aminobenzoate (0.106 g, 0.644 mmol) in a similar 
manner as described for preparation o f 199a, mp 242-244 °C. ]H NMR (400 MHz, DMSO- 
d6) 5 0.92 (6 H, d, J  6.4 Hz, C H tC H ^ , 1.33 (3H, t, J 7 .0  Hz, C H ^ fh ) ,  3.13-3.27 (1H, m, 
CH(CH3)2), 4.33 (2H, q, J 7 .0  Hz, CH2 CH3), 6.98 (1H, d, J7 .9  Hz, H-7), 7.25 (1H, d, J7.6  
Hz, H N S02), 7.48 (1H, dd, J  1.7, 7.9 Hz, H-6 ), 7.51 (1H, t, J 8 .0  Hz, ArH), 7.65 (1H, d, J8 .0  
Hz, ArH), 7.74 (1H, dd, J  1.8, 8.0 Hz, ArH), 7.97 (1H, s, ArH), 8.14 (1H, d, J  1.7 Hz, H-4),
8.93 (1H, d, J  13.2 Hz, C=CHNH), 10.90 (1H, d, J  13.2 Hz, C=CHNH), 10.92 (1H, s, 1H, s, 

NHCO). 13C NMR (100 MHz, DMSO-d6) 5 14.87 (CH2 CH3), 23.96 (CH(CH3)2), 45.75 
(CH2 CH3), 61.67 (CH(CH3)2), 99.93 (C, Ar), 109.77 (CH, Ar), 116.84 (CH, Ar), 117.44 
(CH, Ar), 121.55 (CH, Ar), 123,67 (CH, Ar), 124.63 (CH, Ar), 124.95 (C, Ar), 130.70 
(CH, Ar), 132.10 (C, Ar), 134.38 (C, Ar), 140.74 (C, Ar), 140.76 (CH, Ar), 140.91 (C, 

Ar), 166.10 (C=0), 170.66 (C=0). vmax (so lidy^m '1) 3262 (md), 3128 (md), 1722 (md), 
1671 (st), 1654 (st), 1584 (st), 1311 (md), 1281 (st), 1199 (st). MS m/z (API-ES): found 430 
(M+H)+(100%). HRMS m/z (API-ES): found 430.1435 (M+H)+, calculated for C2 1 H2 3 N3 0 5S 
430.1437.
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4-[(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidenemethyl)amino]benzoic acid 
ethyl ester (199c). This was obtained as a yellow solid (0.057 g, 0.132 mmol, 43%) from 
198a (0.098 g, 0.317 mmol) and ethyl -4-aminobenzoate (0.052 g, 0.317 mmol) in a similar 
manner as described for preparation of 199a, mp 273-275 °C.'H NMR (400 MHz, DMSO-d6 ) 
5 0.93 (6 H, d, J  6.4 Hz, C H tC H ^), 1.30 (3H, t, J  7.2 Hz, CH2 CH3 ), 3.20-3.26 (1H, m, 
CH(CH3)2), 4.28 (2H, q, J  7.2 Hz, CH2 CH 3 ), 6.99 (1H, d, J  7.9 Hz, H-7), 7.27 (1H, d ,J  7.2 
Hz, HNSO2 ), 7.49 (1H, dd, J  1.7, 7.9 Hz, H-6 ), 7.57 (2H, d, J 8 . 8  Hz, 2 x CH, Ar), 7.93 (2H, 
d, J  8 . 8  Hz, 2 x CH, Ar), 8.15 (1H, d, J  1.7 Hz, H-4), 8.93 (1H, d, J  12.6 Hz, C=CHNH),
10.90 (1H, d, J  12.6 Hz, C=CHNH), 10.97 (1H, s, 1H, s, NHCO). 13C NMR (100 MHz, 
DMSO-d6) 5 14.91 (CH2 CH3 ), 23.97 (CHfCHO?). 45.77 (CH2 CH3 ), 61.19 (CH(CH3)2),
101.14 (C, Ar), 109.96 (CH, Ar), 116.56 (2 x CH, Ar), 117.08 (CH, Ar), 124.12 (CH, Ar),
124.66 (C, Ar), 124.89 (C, Ar), 131.57 (2 x CH, Ar), 134.57 (C, Ar), 139.71 (CH, Ar),
140.60 (C, Ar), 144.49 (C, Ar), 165.90 (C=0), 170.65 (C=0). vmax (solidy^m '1) 3291 (st), 
1693 (st), 1670 (st), 1641 (st), 1601 (st), 1274 (st), 1178 (st), 1152 (st), 1109 (st). MS m/z 
(API-ES): found 430 (M+H)+ (100%). HRMS m/z (API-ES): found 430.1432 (M+H)+, 
calculated for C2 1 H2 4 N 3 O5 S 430.1437.

3-[(2-Nitrophenylamino)methylenej-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid
isopropylamide (199d). This was obtained as a orange solid (0.088 g, 0.218 mmol, 34%) 
from 198a (0.203 g, 0.656 mmol) and 2-nitroaniline (0.090 g, 0.656 mmol) in a similar 
manner as described for preparation o f 199a, mp 295 °C (dec). ]H NMR (400 MHz, DMSO- 
d6) 5 0.93 (6 H, d, J  6 . 8  Hz, C H tC H ^), 7.01 (1H, d, J  8.2 Hz, H-7), 7.23 (1H, t, J  8.5 Hz, 
ArH), 7.30 (1H, d, J 6 . 8  Hz, H NS02), 7.53 (1H, dd, J  1.6, 8.2 Hz, H-6 ), 7.80 (1H, t, J8 .5  Hz, 
ArH), 8.15 (1H, d, J8 .5  Hz, ArH), 8.22 (1H, s, H-4), 8.23 (1H, d, J 8.5 Hz, ArH), 8.99 (1H, 
d, J  12.0 Hz, C=CHNH), 10.98 (1H, s, NHCO), 10.90 (1H, d, J  12.0 Hz, C=CHNH). 13C 
NMR (100 MHz, DMSO-d6) 5 23.97 CHfCHOA 45.80 (CH(CH3)2), 104.20 (C, Ar), 110.14 
(CH, Ar), 117.78 (CH, Ar), 117.81 (CH, Ar), 123.17 (CH, Ar), 124.30 (C, Ar), 124.98 
(CH, Ar), 127.00 (CH, Ar), 134.72 (C, Ar), 135.96 (C, Ar), 136.87 (CH, Ar), 137.07 (C, 
Ar), 137.76 (CH, Ar), 141.44 (C, Ar), 170.07 (C O ) . vmax (so lidy^m '1) 3454 (md), 3283 
(st), 1689 (st), 1671 (st), 1597 (st), 1578 (st), 1512 (st), 1336 (st), 1169 (st). MS m/z (API- 
ES): found 403 (M+H)+ (100%). HRMS m/z (API-ES): found: 430.1070 (M+H)+, calculated 
for C 1 8H 19N4 O 5 S 403.1076.

3-[(2-NitrophenylaminomethyleneJ-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid 4- 
chlorobenzylamide (199e). This was obtained as an orange solid (0.046 g, 0.106 mmol, 
33%) from 198b (0.097 g, 0.322 mmol) and 2-nitroaniline (0.045 g, 0.322 mmol) in a similar 
manner as described for preparation of 199a, mp 250 °C (dec). 'H NMR (400 MHz, DMSO- 
d6) 5 3.98 (2H, d, J  6.4 Hz, CH2), 7.00 (1H, d, J 8 .4  Hz, H-7), 7.20-7.32 (6 H, m), 7.53 (1H, 
dd, J  1.6, 8.4 Hz, ArH), 7.82 (1H, t, J  8.0 Hz, ArH), 7.95 (1H, t, J  6.6 Hz, ArH), 8.15 (1H, d,
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J  8.4 Hz, ArH), 8.19 (1H, d, J  1.6 Hz, H-4), 8.24 (1H, dd, J  1.4, 8 . 6  Hz, CH-6 ), 8.98 (1H, d, J
12.2 Hz, C=CHNH), 11.05 (1H, s, NHCO), 12.51 (1H, d, J  12.2 Hz, C=CHNH). 13C NMR 
(100 MHz, DMSO-d6) 8  46.14 (NCH2), 105.60 (C, Ar), 109.53 (CH, Ar), 117.56 (CH, Ar),
117.67 (CH, Ar), 123.53 (CH, Ar), 124.32 (C, Ar), 127.00 (CH, Ar), 127.06 (C, Ar),
127.71 (CH, Ar), 128.43 (2 x CH, Ar), 130.34 (2 x CH, Ar), 131.98 (C, Ar), 133.53 (C, 
Ar), 134.74 (CH, Ar), 137.58 (C, Ar), 138.12 (CH, Ar), 144.80 (C, Ar), 170.09 (C=0). 
vmax (solid)/(cm_1) 3244 (st), 1685 (st), 1599 (st), 1509 (st), 1339 (st), 1319 (st), 1197 (st), 
1147 (st). MS m/z (API-ES): found 485 (M 3 5 C+H)+ (100%). HRMS m/z (API-ES): found 
485.0677 (M+H)+, calculated for C2 2 H 1 8C 1N4 0 5 S 485.0686.

3-[(phenylamino)-methylene]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid isopropylamide 
(199f) This was obtained as a orange solid (0.040 g, 0.111 mmol, 70%) from 198a (0.049 g, 
0.159 mmol) and aniline (0.015 g, 0.161 mmol) in a similar manner as described for 
preparation o f 199a, mp 298-300 °C. *H NMR (400 MHz, DMSO-d6) 5 0.93 (6 H, d, J  6.0 
Hz, CH(CH3 )2 ), 3.19-3.27 (1H, m, CH(CH3)2), 6.98 (1H, d, J 8 .0  Hz, H-7), 7.09 (1H, t, J  7.2 
Hz, H-4’), 7.24 (1H, d, J7.6 Hz, H N S02), 7.36-7.40 (2H, m, H-3’ & H-5’), 7.44-7.47 (3H, m, 
ArH), 8.11 (1H, d, J  2.0 Hz, H-4), 8 . 8 8  (1H, d, J  12.8 Hz, C=CHNH), 10.79 (1H, d, J  12.8 

Hz, C=CHNH), 10.89 (1H, s, NHCO). 13C NMR (100 MHz, DMSO-d6) 5 23.97 CHtCHAA
45.75 (CH(CH3)2), 99.12 (C, Ar), 109.71 (CH, Ar), 116.51 (2 x CH, Ar), 116.98 (CH, Ar), 
123.35 (C, Ar), 124.29 (CH, Ar), 125.08 (C, Ar), 130.32 (2 x CH, Ar), 134.31 (C, Ar),
140.03 (CH, Ar), 140.35 (C, Ar), 140.93 (C, Ar), 170.68 (C=0). vmax (solid)/(cm-') 3474 
(md), 1680 (st), 1617 (md), 1597 (md), 1583 (st), 1483 (md), 1305 (st), 1277 (st), 1202 (md), 
1134 (st), 1072 (st), 1013 (st). MS m/z (API-ES): found 358 (M+H)+ (100%). HRMS m/z 
(API-ES): found 358.1222 (M+H)+, calculated for C i8 H2 0 N 3 O3S 358.1225.

3-[(Naphthylamino)-methylene]-2-oxo-2,3-dihydro-lH-indole-5-sulfonic acid
isopropylamide (199g) This was obtained as a orange solid (0.032 g, 0.078 mmol, 49%) from 
198a (0.059 g, 0.159 mmol) and 1-naphthylamine (0.023 g, 0.160 mmol) in a similar manner 
as described for preparation o f 199a, mp >300 °C. 'H  NMR (400 MHz, DMSO-d6 ) 5 0.94 

(6 H, d, J  6 . 8  Hz, CHtCHsjb), 3.21-3.27 (1H, m, CH(CH3)2), 7.05 (1H, d, J 8 .4  Hz, H-7), 7.28 
(1H, d, J 12  Hz, H N S02), 7.50 (1H, dd, J  1.8, 8.4 Hz, H-6 ), 7.55-7.61 (2H, m, ArH), 7.63-
7.73 (1H, m, ArH), 7.86 (1H, d, J 7 .9  Hz, ArH), 8.00 (1H, d, J 7 .9  Hz, ArH), 8.03 (1H, d, J
7.9 Hz, ArH), 8.17 (1H, d, J  1.8 Hz, H-4), 9.18 (1H, d, J  12.0 Hz, C=CHNH), 11.06 (1H, s, 

NHCO), 11.90 (1H, d, J  12.0 Hz, C=CHNH). 13C NMR (100 MHz, DMSO-d6) 8  23.98 
C H t O l ^ ,  45.78 (CH(CH3)2), 100.41 (C, Ar), 110.04 (CH, Ar), 111.40 (CH, Ar), 116.78 
(CH, Ar), 120.22 (C, Ar), 123.60 (CH, Ar), 124.18 (CH, Ar), 124.36 (CH, Ar), 124.74 (C, 
Ar), 126.90 (CH, Ar), 127.33 (C, Ar), 127.61 (C, Ar), 129.50 (C, Ar), 134.53 (CH, Ar),
134.59 (C, Ar), 135.58 (CH, Ar), 140.08 (CH, Ar), 141.72, 171.42 (C=0). vmax (solid)/(cm‘ 
j) 1684 (st), 1623 (md), 1579 (st), 1483 (md), 1324 (st), 1221 (st), 1145 (st), 1021 (st). MS
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m/z (API-ES): found 408 (M +H)+ (100%). HRMS m/z (API-ES): found 408.1378 (M +H)+,

calculated for C 2 2 H 2 2 N 3 O 3 S  408.1382.

2-[(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidenemethyl)amino]benzoic acid 
(200a)
A suspension of 199a (0.155 g, 0.3734 mmol) in methanol (1 mL) and NaOH 1M (1 ml) was 
heated in the microwave at 150 °C for 5 min. The reaction mixture was cooled to 0 °C, and 
the solvent distilled under reduced pressure and HC1 (aq 4M, 5 ml) added. The orange 
precipitate was collected by filtration, washed with water ( 1 0  ml) and dried, to give pure 200a 

(0.139 g, 0.346 mmol, 92 %), mp > 300 °C. ]H NMR (400 MHz, DMSO-d6) 5 0.93 (6 H, d, J
6.4 Hz, CH(CH3 }2 ), 3.20-3.26 (1H, m, CH(CH3)2), 6.96 (1H, d, J  8.1 Hz, H-7), 7.13 (1H, t, J
7.8 Hz, ArH), 7.24 (1H, d, J  6 . 8  Hz, HNSO2 ), 7.47 (1H, dd, J  1.8, 8.1 Hz, H-6 ), 7.95-8.00 
(2H, m, ArH), 8.19 (1H, s, H-4), 8 . 8 6  (1H, d, J  12.8 Hz, O C H N H ), 10.76 (1H, s, NHCO),

12.56 (1H, d, J  12.8 Hz, C=CHNH). 13C NMR (100 MHz, DMSO-d6) 5 23.96 (CH(CH3)2),
45.77 (CH(CH3)2), 101.71 (C, Ar), 109.61 (CH, Ar), 115.96 (CH, Ar), 116.78 (C, Ar),
116.99 (CH, Ar), 122.91 (CH, Ar), 123.99 (CH, Ar), 125.17 (C, Ar), 132.36 (CH, Ar),
134.26 (C, Ar), 134.92 (CH, Ar), 138.32 (CH, Ar), 140.93 (C, Ar), 142.53 (C=N), 168.84 
(C=0), 169.65 (C=0). vmax (solid)Z(cm'1) 3274 (md), 1680 (st), 1637 (st), 1588 (st), 1459 
(st), 1364 (md), 1314 (st), 1278 (st), 1249 (st), 1135 (st), 1115 (st), 1071 (md), 993 (md), 747 
(st), 726 (st). MS m/z (API-ES): found 402 (M+H)+ (100%). HRMS m/z (API-ES): found 
402.1116 (M+H)+, calculated for C 1 9H2 0 N 3 O5 S 402.1124.

3-[(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidenemethyl) amino]benzoic acid 
(200b). This was obtained as an orange solid (0.032 g, 0.798 mmol, 40%) from 199b (0.087 
g, 0.202 mmol) in a similar manner as described for preparation o f 200a, mp 290 °C (dec). *H 
NMR (400 MHz, DMSO-d6) 5 0.92 (6 H, d, J  6.4 Hz, CH^HsJb), 3.13-3.27 (1H, m, 
CH(CH3)2), 6.98 (1H, d, J  8.4 Hz, H-7), 7.24 (1H, d,J7 .2  Hz, H N S02), 7.46 (1H, dd, J  1.6,
8.4 Hz, H-6 ), 7.49 (1H, t, J  7.6 Hz, CH, Ar), 7.63 (1H, d, J  8.0 Hz, ArH), 7.69 (1H, d, J  8.4 
Hz, ArH), 7.97 (1H, s, ArH), 8.15 (1H, s, H-4), 8.94 (1H, d, J  11.8 Hz, C=CHNH), 10.90 
(1H, d, *711.8 Hz, C=CHNH), 10.91 (1H, s, 1H, s, NHCO), 13.13 (1H, bs, COOH). 13CN M R 
(100 MHz, DMSO-d6) 5 23.96 (CH(CH3)2), 45.76 (CH(CH3)2), 109.76 (CH, Ar), 116.82 
(CH, Ar), 117.39 (CH, Ar), 121.43 (CH, Ar), 123.60 (CH, Ar), 124.89 (CH, Ar), 130.57 
(CH, Ar), 140.84 (CH, Ar). vmax (so lidy^m '1) 3269 (md), 1678 (st), 1645 (st), 1572 (st), 
1459 (st), 1243 (st), 1119 (st), 1057 (md), 984 (md), 779 (st), 734 (st). MS m/z (API-ES): 
found 402 (M+H)+ (100%). HRMS m/z (API-ES): found 402.1114 (M+H)+, calculated for 
Ci9 H2 0 N3 O5S 402.1124.

4-[(5-Isopropylsulfamoyl-2-oxo-l,2-dihydro-indol-3-ylidenemethyl)amino]benzoic acid 
(200c). This was obtained as an orange solid (0.028 g, 0.698 mmol, 33%) from 199c (0.091
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mmol, 0 . 2 1 2  mmol) in a similar manner as described for preparation of 200a, mp > 300 °C. 
]H NMR (400 MHz, DMSO-d6) 5 0.93 (6 H, d, J  6.4 Hz, CHCCH^), 6.99 (1H, d, J  8.1 Hz, 
H-7), 7.27 (1H, d, J 1 2  Hz, H N S02), 7.47 (1H, dd, J  1.8, 8.1 Hz, H-6 ), 7.55 (2H, d, J 8 . 8  Hz, 
2 x CH, Ar), 7.93 (2H, d, J  8 . 8  Hz, 2 x CH, Ar), 8.16 (1H, s, H-4), 8.94 (1H, d, J  12.2 Hz, 
C=CHNH), 10.89 (1H, d, J  12.2 Hz, C=CHNH), 10.96 (1H, s, NHCO), 12.78 (1H, bs, 
COOH). 13C NMR (100 MHz, DMSO-d6) 5 23.98 (CH(CH3)2), 45,77 (CH(CH3)2), 101.95 
(C, Ar), 109.55 (CH, Ar), 116.48 (2 x CH, Ar), 117.03 (C, Ar), 123.33 (CH, Ar), 124.72 

(CH, Ar), 125.85 (C, Ar), 127.66 (C, Ar), 131.75 (2 x CH, Ar), 139.85 (C, Ar), 140.56 
(CH, Ar), 144.21 (C=N), 167.47 (C=0), 170.64 (C=0). vmax (solid)/(cm'1) 3265 (md), 1676 
(st), 1642 (st), 1556 (st), 1457 (st), 1314 (st), 1265 (st), 1109 (st), 801 (st), 756 (st). MS m/z 
(API-ES): found 402 (M+H)+ (100%). HRMS m/z (API-ES): found 402.1119 (M+H)+, 

calculated for Ci9 H2 oN3OsS 402.1124.

3-Bromo-lH-indole-5-carboxylic acid methyl ester (205)397
A solution o f Br2  (13.41g, 74.91 mmol) in DMF (2 ml) was added dropwise to a solution of 5- 
methylindole-2-carboxilate (204) (0.225 g, 1.28 mmol) in DMF (5 ml) at room temperature. 
The reaction mixture was stirred overnight. Water (10 ml) was added and the mixture was 
extracted with ethyl acetate (2 x 10 ml). The organic extracts were collected, dried over 
Na2 SC>4 , filtered and the solvent removed under reduced pressure to afford an orange solid. 

The crude material was used in the next step without further purification.

3.3-Dibromo-2-oxo-2,3-dihydro-lH-indole-5-carboxylic acid methyl ester (206)397 
N-Bromosuccinimide (0.318 g, 1.842 mmol) was added portionwise within 30 min to a 

solution of 205 (0.234 g, 0,92 mmol) in isopropanol (350 ml) under Ar. The reaction mixture 
was then stirred for 1 h. The solvent was removed under reduced pressure and the solid 
residue was triturated with cold acetone (10 ml) to give pure 206 as a yellow solid (0.125 g, 
0.359 mmol, 40%), mp > 300 °C. *H NMR (400 MHz, DMSO-d6) 5 3.86 (3H, s, OCH3), 7.05 
(1H, d, J  8.2 Hz, H-7), 7.96 (1H, dd, J  1.6, 8.2 Hz, H-6 ), 8.05 (1H, s, H-4), 11.71 (1H, s, NH). 
13C NMR (100 MHz, DMSO-d6) 5 52.92 (OCH3), 111.96 (CH, Ar), 125.37 (C, Ar), 126.83 
(CH, Ar), 132.08 (C, Ar), 134.15 (CH, Ar), 143.28 (C, Ar), 165.88 (C=0), 171.27 (CBr2). 
vmax (solidytcnf1) 3125 (md), 1745 (st), 1698 (st), 1622 (st), 1432 (st), 1280 (st), 1251 (st), 
1190 (st), 1127 (st), 985 (md), 941 (md), 845 (st), 809 (st), 757 (st). MS m/z (API-ES): found 
(M+H)+(100%).

3.3-Dibromo-2-oxo-2,3-dihydro-lH-indole-5-carboxylic acid methyl ester (206)
N-Bromosuccinimide (13.41 g, 74.91 mmol) was added portionwise to a solution of 5- 
methylindole-2-carboxylate (204) (4.5 g, 25.71 mmol) in isopropanol (350 ml) within 45 
minutes under Ar at room temperature. After the addition, the solvent was removed under
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reduced pressure and the solid residue was triturated with cold acetone (150 ml) to give the 
pure product as a yellow solid (4.9 g, 14.08 mmol, 55%).

2,3-Dioxo-2,3-dihydro-lH-indole-5-carboxylic acid methyl ester (203)
A mixture of 206 (0.055 g, 0.1580 mmol) in methanol (3 ml) and water (1 ml) was heated in 

the CEM microwave at 150 °C for 5 min. After cooling to room temperature, the orange 
precipitate was collected by filtration and dried under vacuum. Pure 203 was obtained 
without further purification (0.026 g, 0.1262 mmol, 80%), mp 248-250 °C. NMR (400 
MHz, DMSO-d6) 5 3.81 (3H, s, OCH3), 7.00 (1H, d, J8 .2  Hz, H-7), 7.90 (1H, d, J  1.8 Hz, H- 
4), 8.13 (1H, dd, J  1.8, 8.2 Hz, H-6 ), 11.40 (1H, s, NH). ,3C NMR (100 MHz, DMSO-d6) 
8  52.53 (OCH3), 112.46 (CH, Ar), 118.58 (C, Ar), 125.57 (C, Ar), 125.81 (CH, Ar), 
139.78 (CH, Ar), 154.46 (C, Ar), 160.49 (C=0), 166.17 (C=0), 184.34 (C=0). vmax 
(solidytcnf1) 3280 (md), 1723 (st), 1706 (st), 1662(st), 1634 (st), 1432 (st), 1218 (st), 1105 
(st), 978 (st). MS m/z (API-ES): found 206 (M+H)+ (100%). HRMS m/z (API-ES): found 
206.0450 (M+H)+, calculated for Ci0 H8NO 4  206.0453.

3-[(2-ChIorophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-carboxylic acid methyl 
ester (207a)
A mixture of 206 (0.025 g, 0.0.0718 mmol) and 2-chlorohydrazine (0.013 g, 0.0718 mmol) in 
methanol (1.6 ml) and water (0.4 ml) was heated in the CEM microwave at 150 °C for 5 min. 
After cooling to room temperature, the precipitate was collected by filtration and dried in 
vacuo, to give pure 207a (0.016 g, 0.047 mmol, 6 6  %) as an orange solid, mp 278-280 °C. *H 
NMR (400 MHz, DMSO-d6) 8  3.84 (3H, s, OCH3), 7.36-7.09 (1H, m, ArH), 7.04 (1H, d, J
8.2 Hz, H-7), 7.38-7.43 (1H, m, ArH), 7.50 (1H, dd, J  1.3, 8.2 Hz, ArH), 7.86 (1H, dd, J  1.6,
8.2 Hz, H-6), 7.91 (1H, dd, J  1.3, 8.2 Hz, ArH), 8.11 (1H, d, J  1.6 Hz, H-4), 11.47 (1H, s, 
NHCO), 12.96 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 8 52.65 (OCH3), 111.33 , 
(CH, Ar), 115.15 , (CH, Ar), 119.11 , (C, Ar), 120.40 , (CH, Ar), 121.41 , (C, Ar), 124.02 , 
(C, Ar), 124.38 , (CH, Ar), 129.30 , (CH, Ar), 129.95 , (C, Ar), 130.24 , (CH, Ar), 131.38 , 
(CH, Ar), 139.14 , (C, Ar), 144.74 , (C=N), 164.23 (C=0), 166.63 (C=0). vmax (so lidy^m '1) 
3622 (md), 1687 (st), 1617 (md), 1549 (st), 1285 (st), 1247 (st), 1186 (st), 744 (st), 678 (st). 
MS m/z (API-ES): found 330 (M+H)+ (100%). HRMS m/z (API-ES): found 330.0644 
(M+H)+, calculated for C16Hi3C1N30 3 330.0645.

3-(Phenylhydrazono-2-oxo-2,3-dihydro-lH-indole-5-carboxylic acid methyl ester (207b).
This was obtained as a yellow solid (0.016 g, 0.054 mmol, 45%) from 196 (0.045 g, 0.129 

mmol) and phenylhydrazine (0.013 g, 0.129 mmol) in a similar manner as described for 
preparation of 207a, mp 245-247 °C. 'H NMR (400 MHz, DMSO-d6) 8  3.83 (3H, s, OCH3), 
7.00 (1H, d, J  8.2 Hz, H-7), 7.06 (1H, t, J l . l  Hz, H-4’), 7.37 (2H, t, J  7.7 Hz, H-3’ & H-5’), 
7.47 (2H, d, J  7.7 Hz, H-2’ & H-6 ’), 7.86 (1H, dd, J  1.6, 8.2 Hz, H-6 ), 8.05 (1H, s, H-4),
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II.38 (1H, s, NHCO), 12.69 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 52.65 
(OCH3), 111.10 (CH, Ar), 115.17 (2 x CH, Ar), 119.81 (CH, Ar), 122.09 (C, Ar), 123.83 
(CH, Ar), 124.07 (C, Ar), 127.20 (C, Ar), 130.18 (2 x CH, Ar), 130.64 (CH, Ar), 142.98 

(C, Ar), 144.12 , (C=N), 163.98 , (C=0), 166.80 , (C=0). vmax (soHd^cm -1) 3279 (md), 1701 
(md), 1684 (md), 1559 (st), 1286 (md), 1250 (st), 1184 (md). MS m/z (API-ES): found 296 
(M+H)+ (100%). HRMS m/z (API-ES): found 296.1035 (M+H)+, calculated for C 1 6H 14N 3 O3 

296.1035.

3-[(2-Trifluoromethylphenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-carboxylic acid 
methyl ester (207c). This was obtained as a yellow solid (0.019 g, 0.052 mmol, 42%) from 
206 (0.043 g, 0.123 mmol) and 2-trifluoromethylphenylhydrazine (0.021 g, 0.123 mmol) in a 
similar manner as described for preparation o f 197a, mp 269-271 °C. 'H NMR (400 MHz, 
DMSO-d6) 5 3.84 (3H, s, OCH3), 7.04 (1H, d, J  8.1 Hz, H-7), 7.21 ( 1 H, t, J  7.8 Hz, ArH), 
7.66-7.73 (2H, m, ArH), 7.92 (1H, dd, J  1.4, 8.1 Hz, H-6 ), 8.04 (1H, d, 77 .8  Hz, ArH), 8.11 
(1H, d, J  1.4 Hz, H-4), 11.53 (1H, s, NHCO), 13.20 (1H, s, NNH). 19F NMR (400 MHz, 
DMSO-d6) 5 -60.53 (CF3). ,3C NMR (100 MHz, DMSO-d6) 5 52.73 (OCH3), 111.55 (CH, 
Ar), 114.14 (q), (C -2 \ 7  30.1 Hz), 115.79 (CH, Ar), 120.68 (CH, Ar), 121.36 (C, Ar), 

123.39 (CH, Ar), 124.20 (C, Ar), 124.87 (q), (CF3, 7  271.1 Hz), 127.10 (q) (CH-3’, 7  5.2 
Hz), 130.84 (C, Ar), 131.82 (CH, Ar), 134.97 (C, Ar), 140.41 (C, Ar), 145.12 (C=N), 

164.31 (C O ), 166.64 (C O ) . vmax (so lidy^m '1) 1716 (md), 1687 (md), 1569 (st), 1244 (st), 
1107 (st), 765 (st). MS m/z (API-ES): found 364 (M+H)+ (100%). HRMS m/z (API-ES): 
found 364.0904 (M+H)+, calculated for C 1 7H 1 3F3N 3 O3 364.0909.

3-[(2,6-Dichlorophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-carboxylic acid methyl 
ester (208d). This was obtained as a yellow solid (0.024 g, 0.059 mmol, 6 6 %) from 206 
(0.033 g, 0.094 mmol) and 2,6-dichlorophenylhydrazine (0.020 g, 0.094 mmol) in a similar 
manner as described for preparation o f 206, mp 255-257 °C. *H NMR (400 MHz, DMSO-d6 ) 
5 3.81 (3H, s, OCH3), 7.03 (1H, d, 78 .4  Hz, H-7), 7.20 (1H, t, 78 .3  Hz, H-4’), 7.55 (1H, d, 7
8.3 Hz, H-3’ & H-5’), 7.89 (1H, dd, 7  1.4, 8.4 Hz, H-6 ), 7.94 (1H, d, 7  1.4 Hz, H-4), 11.50 
(1H, s, NHCO), 12.67 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 52.70 (OCH3),

III.41  (CH, Ar), 120.08 (CH, Ar), 121.58 (C, Ar), 124.07 (C, Ar), 126.66 (CH, Ar), 
127.01 (C, Ar), 129.67 (C, Ar), 130.51 (2 x CH, Ar), 131.50 (CH, Ar), 136.35 (C, Ar), 
144.74 (C=N), 163.89 (C=0), 166.62 (C=0). vmax (so lidy^m -1) 3257 (st), 1705 (st), 1683 
(st), 1621 (st), 1573 (st), 1408 (st), 1294 (st), 1254 (st), 1240 (st), 1158 (md), 769 (st). MS 
m/z (API-ES): found 364 (M+H)+ (100%). HRMS m/z (API-ES): found 364.0251 (M+H)+, 
calculated for C 1 6H 1 2CI2N 3 O3 364.0256.
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2,3-Dioxo-2,3-dihydro-lH-indole-5-carboxylic acid (209)
A mixture o f 206 (0.173 g, 0.497 mmol) in HC1 (aq 4 M, 5 ml) was heated in the CEM 
microwave at 150 °C for 5 min. After cooling to room temperature, the orange precipitate 
was collected by filtration and dried to afford pure 209 without further purification (0.055 g, 
0.290 mmol, 58%), mp 295-297 °C. *H NMR (400 MHz, DMSO-d6) 5 6.97 (1H, d, J  8.2 Hz, 
H-7), 7.89 (1H, d, J  1.8 Hz, H-4), 8.12 (1H, dd, J  1.8, 8.2 Hz, H-6 ), 11.35 (1H, s, NH), 13.03 
(1H, bs, C 0 2 H). 13C NMR (100 MHz, DMSO-d6) 5 112.80 (CH, Ar), 118.56 (C, Ar), 125.75 
(C,Ar), 125.80 (CH, Ar), 139.83 (CH, Ar), 154.52 (C, Ar), 160.40 (C=0), 166.11 (C=0), 
184.18 (C=0). vmax (solidytcnf1) 3068 (st), 2993 (st), 1740 (st), 1702 (st), 1675 (st), 1616 
(st), 1405 (st), 1250 (st), 1220 (st), 1119 (st), 930 (st), 865 (st), 748 (st). MS m/z (API-ES): 
found 190 (M-H)' (100%). HRMS m/z (API-ES): found 190.0138 (M-H)', calculated for 

C9 H4 NO4  190.0140.

3-[(2-Chlorophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-carboxylic acid (208a)
A mixture of 208 (0.052 g, 0.149 mmol) in HC1 (aq 4M, 2 ml) was heated in the CEM 
microwave at 150 °C for 5 min. After cooling to room temperature, 2-chlorohydrazine (0.026 
g, 0.149 mmol) was added to the reaction mixture, which was heated in the microwave at 150 
°C for 5 min. After cooling to room temperature, the yellow precipitate was collected by 
filtration, washed with water (5 ml), cold methanol (2 ml) and dried in vacuo, to give pure 
hydrazone 208a (0.039 g, 0.121 mmol, 81%), mp > 300 °C. *H NMR (400 MHz, DMSO-d6) 
8  7.02 (1H, d, J  8.4 Hz, H-7), 7.06 (1H, t, J  7.8 Hz, ArH), 7.39 (1H, t, J  7.8 Hz, ArH), 7.49 
(1H, d, J  7.8 Hz, ArH), 7.85-7.90 (2H, m, ArH), 8.11 (1H, s, H-4), 11.49 (1H, s, NHCO), 
12.83 (1H, bs, C 0 2 H), 13.03 (1H, s, NNH). 13C NMR (100 MHz, DMSO-d6) 8  111.26 (CH, 
Ar), 115.17 (CH, Ar), 119.08 (CH, Ar), 120.75 (C, Ar), 121.33 (C, Ar), 124.40 (C, Ar),
125.26 (CH, Ar), 129.36 (CH, Ar), 130.22 (CH, Ar), 130.29 (C, Ar), 131.64 (CH, Ar), 

139.22 (C, Ar), 144.52 (C=N), 164.33 (C=0), 167.75 (C O ) . vmax (solid)/(cm-1) 3167 
(md), 3024 (st), 1737 (st), 1687 (st), 1616 (st), 1552 (st), 1421 (md), 1293 (st), 1232 (md), 
1205 (md), 1189 (md), 1123 (md), 747 (st), 680 (st). MS m/z (API-ES): found 313.9 (M 3 5 C1- 
H)' (100%), 316 (M 3 7 C1-H)- (70%). HRMS m/z (API-ES): found 314.0344 (M-H)', 
calculated for C 1 5H9 CIN3 O3 314.0332.

3-[(2-Chlorophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-carboxylic acid (208a)
A suspension of 207a (0.019 g, 0.051 mmol) in methanol (4 mL) and NaOH 1M (1 ml) was 
heated at 80 °C for 8  h. The reaction mixture was cooled to 0 °C, and the solvent distilled 
under reduced pressure and HC1 (aq 4M, 5 ml) added. The orange precipitate was collected 
by filtration, washed with water (5 ml) and dried, to give pure 208a (0.010 g, 0.031 mmol, 61 
%).
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3-(Phenylhydrazono)-2-oxo-2,3-dihydro-lH-indole-5-carboxylic acid (208b). This was 
obtained as a yellow solid (0.035 g, 0.121 mmol, 76%) from 206 (0.056 g, 0.160 mmol) and 
phenylhydrazine in a similar manner as described for preparation o f 208a, mp 294-296 °C. 'H 
NMR (400 MHz, DMSO-d6) 5 6.99 (1H, d, J  8.2 Hz, H-7), 7.05 (1H, t, J  7.8 Hz, H-4’), 7.36 
(2H, t, 77 .8  Hz, H-3’ & H-5’), 7.47 (2H, d, J 7.8 Hz, H-2’ & H-6 ’), 7.86 (1H, d, J 8.2 Hz, H- 
6 ), 8.07 (1H, s, H-4), 11.35 (1H, s, NHCO), 12.69 (1H, s, NNH), 12.77 (1H, s, C 0 2 H). 13C 
NMR (100 MHz, DMSO-d6) 6  110.94 (CH, Ar), 115.11 (2 x CH, Ar), 120.11 (CH, Ar), 
121.95 (C, Ar), 124.00 (CH, Ar), 125.01 (C, Ar), 127.39 (C, Ar), 130.18 (2 x CH, Ar), 
130.81 (CH, Ar), 143.02 (C, Ar), 143.86 (C=N), 164.03 (C=0), 167.87 (C=0). vmax 
(solid)/(cm_1) 3147 (md), 1682 (st), 1614 (st), 1551 (st), 1421 (md), 1290 (st), 1263 (st), 1253 
(st), 1189 (st), 1122 (md), 751 (st), 689 (st). MS m/z (API-ES): found 282 (M+H)+ (100%). 

HRMS m/z (API-ES): found: 282.0875 (M+H)+, calculated for C 1 5H 12N3 O3 282.0779.

3-[(2-Fluorophenyl)hydrazono]-2-oxo-2,3-dihydro-lH-indole-5-carboxylic acid (208c).
This was obtained as a yellow solid (0.021 g, 0.070 mmol, 72%) from 206 (0.034 g, 0.097 
mmol) and 2-fluorophenylhydrazine (0.015 g, 0.097 mmol) in a similar manner as described 
for preparation o f 208a, mp > 300 °C. *H NMR (400 MHz, DMSO-d6) 6  7.03 (1H, d, J  8.1 
Hz, H-7), 7.04-7.09 (1H, m, ArH), 7.25 (1H, t, 7  7.8 Hz, ArH), 7.32 (1H, dd, 7  8.2, 11.4 Hz, 
ArH), 7.52 (1H, t, 7  8.0 Hz, ArH), 7.89 (1H, dd, 7  1.8, 8.1 Hz, H-6 ), 8.11 (1H, s, H-4), 11.49 
(1H, s, NHCO), 12.86 (2H, bs, NNH, C 0 2 H). 19F NMR (400 MHz, DMSO-d6) 5 -135.44 (F). 
13C NMR (100 MHz, DMSO-d6) 5 111.23 (CH, Ar), 115.23 (CH, Ar), 116.32 (d) (CH-3’, 7  
17.6 Hz), 120.61 (C, Ar), 121.39 (CH, Ar), 124.03 (d), (CH-4’, 7  7.3 Hz), 125.25 (C, Ar), 
126.28 (d) (CH-6 ’, 7 3 .7  Hz), 129.88 (C, Ar) 131.15 (d) ( C - l \  79 .5  Hz), 131.48 (CH, Ar), 

144.30 (C=N), 150.81 (d) (CF, 7240.3 Hz), 164.51 (C=0), 167.76 (C=0).vmax (solid)/(cm‘ 
’) 3180 (md), 1689 (st), 1616 (st), 1557 (st), 1420 (md), 1293 (st), 1263 (st), 1201 (st). MS 
m/z (API-ES): found 298 (M-H)' (100%). HRMS m/z (API-ES): found: 298.0639 (M-H)', 
calculated for C 1 5H9 FN3 O3 298.0628.

3-[(2-Ethylphenyl)hydrazonoJ-2-oxo-2,3-dihydro-lH-indole-5-carboxylic acid (208d). This 
was obtained as a yellow solid (0.023 g, 0.071 mmol, 65%) from 206 (0.040 g, 0.114 mmol) 
and 2-ethylphenylhydrazine (0.019 g, 0.114 mmol) in a similar manner as described for 
preparation o f 208a, mp 300 °C (dec). ]H NMR (400 MHz, DMSO-d6 ) 6  1.23 (3H, t, 7  7.6 
Hz, CH?CHV). 2.64 (2H, q, 7  7.6 Hz, CH9 CHO. 7.01-7.04 (1H, m, ArH), 7.03 (1H, d, 7  8.3 
Hz, H-7), 7.23 (1H, d, 7  7.6 Hz, ArH), 7.28 (1H, t, 7  7.6 Hz, ArH), 7.75 (1H, d, 7  7.6 Hz, 
ArH), 7.87 (1H, dd, 7  1.8, 8.3 Hz, H-6 ), 8.09 (1H, s, H-4), 11.43 (1H, s, NHCO), 13.05 (1H, 
s, NNH). 13C NMR (100 MHz, DMSO-d6) 5 14.27 (CH2 CFb), 23.87 (CH9 CHO. 111.18 
(CH, Ar), 113.71 (CH, Ar), 120.13 (CH, Ar), 121.73 (CH, Ar), 124.00 (C, Ar), 125.11 
(CH, Ar), 128.10 (C, Ar), 128.22 (CH, Ar), 129.42 (C, Ar), 129.77 (CH, Ar), 130.82 (C, 
Ar), 140.08 (C, Ar), 143.76 (C=N), 164.54 (C=0), 167.87 (C=0). vmax (so lidy^m '1) 3015
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(md), 1737 (st), 1675 (md), 1617 (md), 1557 (md), 1454 (md), 1420 (md), 1365 (st), 1229

(st), 1216 (st), 1200 (st). MS m/z (API-ES): found 308 (M -H)' (100%). HRMS m/z (API-ES):

found 308.1044 (M-H)', calculated^ for C 17H 14N 3O 3 308.1035.

3-(Naphthalen-l-yl-hydrazono)-2-oxo-2,3’dihydro-lH-indole-5-carboxylic acid (208e). 
This was obtained as a orange solid (0.027 g, 0.081 mmol, 80%) from 206 (0.036 g, 0.103 
mmol) and 1-naphthylhydrazine (0.020 g, 0.103 mmol) in a similar manner as described for 
preparation o f 208a, mp > 300 °C. ’H NMR (400 MHz, DMSO-d6) 6  7.04 (1H, d, J  8.4 Hz, 
H-7), 7.54-7.6 (5H, m, 5 x CH, Ar), 7.87-7.94 (3H, m, 3 x CH, Ar), 7.96 (1H, d, J  7.8 Hz, 
ArH), 7.94 (1H, s, H-4), 11.54 (1H, s, NHCO), 13.71 (1H, s, NNH). 13C NMR (100 MHz, 
DMSO-d6) 5 109.55 (CH, Ar), 111.24 (CH, Ar), 119.61 (CH, Ar), 120.44 (CH, Ar), 121.57 
(C, Ar), 122.32 (C, Ar), 123.72 (CH, Ar), 125.25 (C, Ar), 127.14 (C, Ar), 127.22 (CH, 
Ar), 127.27 (CH, Ar), 129.47 (CH, Ar), 129.53 (CH, Ar), 131.17 (CH, Ar), 134.44 (C, 
Ar), 137.44 (C, Ar), 144.06 (C=N), 164.80 (C=0), 167.83 (C=0). vmax (solid)/(cm-1) 3146 
(md), 3117 (md), 1671 (st), 1614 (st), 1569 (st), 1402 (md), 1294 (md), 1259 (md), 1216 
(md), 1198 (st), 782 (md), 763 (st). MS m/z (API-ES): found 332 (M+H)+ (100%). HRMS 
m/z (API-ES): found 332.1015 (M+H)+, calculated for Q 9 HMN3 O3 332.1035.
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Appendix

C rystal data and structure refinem ent for com pound 154.

E m pirica l fo rm ula  
Fo rm u la  w e ig h t 
T em p era tu re  
W aveleng th  
C rysta l system  
Space  g roup  
U nit cell d im en sio n s

V olum e
Z
D ensity  (calcu la ted )
A b so rp tio n  co effic ien t 
F (000)
C rysta l size
T h eta  ran g e  fo r d a ta  co llec tio n  
Index  ranges 
R eflec tio n s co llec ted  
In d ep en d en t re flec tio n s 
C o m p le ten ess to  th e ta  =  25 .0 0 ° 
A b so rp tio n  co rrec tio n  
M ax. and  m in. tran sm iss io n  
R efin em en t m eth o d  
D ata  /  re stra in ts  /  p a ram ete rs  
G o o d n ess-o f-fit on  F^
Final R  ind ices [I> 2sigm a(I)]
R  ind ices (all da ta)
L arg est d iff. p eak  and  ho le

C i g H i 6N 2 0 5

340.33 
100(2) K 
0 .71073  A 
M o n o clin ic  
P2( 1 )/c
a =  2 8 .0 2 (3 ) A, a =  90°. 
b = 8 .3 28(7 ) A, p =  9 2 .4 1 4 (1 7 )° . 
c = 2 6 .5 1 (2 ) A, y = 90°.
617 9 (9 ) A3 
16
1.463 M g /m 3 
0 .108  m m '1 
2848
0 .60  x 0 .25 x 0.15 mm^
0.73 to  2 5 .00°.
-3 3 < = h < = 3 0 , -8 < = k < = 9 , -10<=1<=31 
14303
10208 [R (in t) =  0 .0922]
9 3 .9  %
S A D A B S
1.000 and  0 .560
F u ll-m a trix  lea st-sq u a res on  F 2
1 0 2 0 8 / 0 / 9 0 2
0 .944
R, = 0 .1 0 2 3 , w R 2 =  0 .2253  
R, = 0 .2 377 , w R 2 =  0 .3025  
0 .416  and  -0 .3 9 4  e. A '3

C ry sta l d ata  and  stru c tu re  re fin em en t fo r  co m p o u n d  160.

E m pirica l fo rm u la  
F o rm u la  w e ig h t 
T em p era tu re  
W av e len g th  
C rysta l system  
Space g roup  
U nit cell d im en sio n s

V olum e
Z
D en sity  (ca lcu la ted )
A b so rp tio n  co effic ien t 
F (000)
C rysta l size
T h eta  range  for d a ta  co llec tio n  
Index  ranges 
R eflec tio n s co llec ted  
In d ep en d en t re flec tio n s 
C o m p le ten ess to  th e ta  =  25 .13° 
A b so rp tio n  co rrec tio n  
M ax. and  m in. tran sm iss io n

C,2 h 13n o 4
235.23 
100(2) K 
0 .71073  A 
M o noclin ic  
P 2 ( l) /n
a =  3 .8 311(7 ) A, a =  90°. 
b =  13 .934(3) A, p =  9 1 .5 4 9 (4 )° . 
c =  21 .340(4^ A, y = 90°.
1138.8(4) A 
4
1.372 M g/m 3 
0 .104  m m '1 
496
0 .30  x 0 .2 0  x 0 .10  m m 3 
1.75 to  25 .13°.
-4 < = h < = 3 , -1 6 < = k < =  14, -25<=1<=25 
5657
2028  [R (in t) = 0 .0305]
99.2  %
SA D A B S
1.000 and 0 .668
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R efin em en t m eth o d
D ata  /  re stra in ts  /  param ete rs
G o o d n ess-o f-fit on
Final R  ind ices [I> 2sigm a(I)]
R in d ices (all data)
L arg est diff. peak  an d  ho le

C ry sta l data  and  stru ctu re  refin em en t for

E m pirica l fo rm ula  
F o rm u la  w e ig h t 
T em p era tu re  
W av e len g th  
C rysta l system  
Space  group  
U nit cell d im en sio n s

V o lu m e
Z
D ensity  (calcu la ted )
A b so rp tio n  co effic ien t 
F (000)
C rysta l size
T h eta  ran g e  fo r d a ta  co llec tio n  
Index ranges 
R eflectio n s co llec ted  
Ind ep en d en t re flec tio n s 
C o m p le ten ess to  th e ta  = 25 .03°
A b so rp tio n  co rrec tio n  
M ax. and  m in . tran sm iss io n  
R efin em en t m eth o d  
D ata  /  re stra in ts  /  p a ram ete rs  
G o o d n ess-o f-fit on  F^
Final R  in d ices [I> 2sigm a(I)J 
R  ind ices (all data)
L arg est diff. p eak  and  ho le

C rysta l d ata  and  stru c tu re  re fin em en t fo r

E m pirica l fo rm ula  
F o rm u la  w e ig h t 
T em p era tu re  
W av eleng th  
C rysta l system  
Space g roup  
U nit cell d im en sio n s

V olum e
Z
D ensity  (calcu la ted ) 
A b so rp tio n  co effic ien t 
F (000)
C rysta l size
T h eta  range  for d a ta  co llec tio n  
Index  ranges 
R eflec tio n s co llected

F u ll-m atrix  least-sq u ares on F 2
2 0 2 8 / 0  / 154
1.063
R, = 0 .0 4 6 9 , w R2 = 0 .1 1 4 4  
R, = 0 .0588 , w R 2 = 0.1231 
0 .273 and -0 .1 8 6 e . A '3

c I8h 18n 2o 5
342 .34  
100(2) K 
0 .71073  A 
O rth o rh o m b ic  
Pbca
a  = 15 .070(2) A, a =  90°. 
b =  1 0 .2 193(15) A, p=  90°. 
c = 2 1 .4 6 2 (3 ) A, y = 90°.
3 3 0 5 .2 (8 ) A '3 
8
1.376 M g /m 3 
0.102 mm'1 
1440
0 .4 0 x 0 .2 0 x 0 .1 5  m m 3 
1.90 to  25 .03°.
-1 7 < = h < = 1 7 , -1 2 < = k < =  12, -23<=1<=25 
15775
2919  [R (in t) =  0 .0705]
99 .8  %
SA D A B S
1.000 and  0 .797
F u ll-m atrix  least-sq u ares on  F 2
2 9 1 9 / 0 / 2 2 9
0 .975
R, =  0 .0532 , w R 2 = 0 .1215  
R , = 0 .0 7 9 2 , w R 2 =  0 .1 3 4 4  
0 .219  and  -0 .2 0 2  e. A '3

C 18H 17C1N2O s 
376 .79  
100(2) K 
0.71073  A 
O rth o rh o m b ic  
Pbca
a = 15 .6372(18) A, <x= 90°. 
b =  10 .4205(12) A, p =  90°. 
c = 21 .6 2 8 (3 ) A, y = 90°.
3 5 2 4 .2 (7 ) A '3 
8
1.420 M g /m 3 
0 .249  m m '1 
1568
0 .20  x 0 .15 x 0 .12 m m 3 
1.88 to  25 .05°.
-1 8< = h< =  16, -1 2 < = k < =  12, -25<=1<=25 
16750
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In d ep en d en t re flec tio n s 
C o m p le ten ess  to  th e ta  = 25 .05°
A b so rp tio n  co rrec tio n
M ax. and  m in . tran sm iss io n
R efin em en t m ethod
D ata  /  re stra in ts  /  p a ram ete rs
G o o d n ess-o f-fit on
F inal R  in d ices [I> 2sigm a(I)]
R  in d ices (all data)
L arg est d iff. p eak  an d  ho le

C ry sta l d ata  and  stru ctu re  refin em en t for  149a.

E m pirical fo rm ula  
F orm ula  w eigh t 
T em p era tu re  
W aveleng th  
C rysta l system  
Space g roup  
U nit cell d im en sio n s

V olum e
Z
D ensity  (calcu la ted )
A b so rp tio n  co effic ien t 
F (000)
C rysta l size
T heta  range  for d a ta  co llec tio n  
Index  ranges 
R eflectio n s co llec ted  
In d ep en d en t re flec tio n s 
C o m p le ten ess to  th e ta  =  25 .0 6 °
A b so rp tio n  co rrec tio n  
M ax. and m in. tran sm iss io n  
R efin em en t m eth o d  
D ata  /  re stra in ts  /  p a ram ete rs  
G o o d n ess-o f-fit on F^
Final R  in d ices [I>2sigm a(I)J 
R  in d ices (all data)
L arg est d iff. peak  and  ho le

C rysta l d ata  and  stru c tu re  refin em en t for  149b.

E m pirica l fo rm ula  
F o rm u la  w e ig h t 
T em p era tu re  
W aveleng th  
C rysta l system  
Space  g roup  
U nit cell d im en sio n s

V olum e
Z
D ensity  (ca lcu la ted ) 
A b so rp tio n  co effic ien t 
F (000)

3123 [R (in t) = 0 .0367]
99 .9  %
SA D A B S
1.000 and  0 .744
F u ll-m atrix  least-sq u ares on F 2
3123 / 0 / 2 3 8
0.945
R, =  0 .0390 , w R 2 = 0 .0979  
R , = 0 .0 4 8 3 , w R 2 = 0 .1 0 3 7  
0 .307  and -0 .1 8 0  e. A'3

C 1 9 H 1 9 N 3 O 7

401 .3 7  
100(2) K 
0 .71073  A 
M o n o clin ic  
P2( 1 )/c
a = 23 .4 7 0 (3 ) A, <x= 90°. 
b = 1 0 .5529(15) A, p= 9 8 .4 1 8 (3 )° . 
c =  7 .6 8 4 1 (1 1 ) A, y =  90°.
1882.7(5) A'3 
4
1.416 M g /m 3 
0 .110  m m '1 
840
0 .35 x 0.25 x 0 .18  m m 3 
0 .88  to  25 .06°.
-2 7 < = h < = 2 4 , -1 2 < = k < = 9 , -9<=1<=8 
9156
3333 [R (in t) =  0 .0393]
99 .7  %
SA D A B S
1.000 and  0 .785
F u ll-m atrix  least-sq u ares on F 2
3333 / 0 / 2 6 2
1.139
R, = 0 .0 9 3 7 , w R 2 = 0 .2417  
R , = 0 .1 2 1 1 , w R 2 =  0 .2596  
0 .665  and  -0 .316  e. A '3

C 19H 19N3 o 7
4 0 1 .37  
100(2) K 
0 .71073  A 
M o n o clin ic  
P2( 1 )/n
a = 13 .0842(15) A, a =  90°. 
b = 8 .4 7 4 9 (1 0 ) A, p= 103 .139(2)°. 
c =  17 .211(2) A, y = 90°.
1858 .5(4) A'3 
4
1.434 M g/m 3 
0.111 m m '1 
840

272



C rysta l size
T heta  range  for d a ta  co llection
Index  ranges
R eflec tio n s co llec ted
In d ependen t re flec tio n s
C o m p le ten ess to  th e ta  = 25 .08°
A b so rp tio n  co rrec tion
M ax. and  m in . tran sm iss io n
R efin em en t m eth o d
D ata / re stra in ts  /  p a ram ete rs
G o o d n ess-o f-fit on
Final R in d ices [I> 2sigm a(I)]
R  ind ices (all data)
L arg est d iff. peak  and  ho le

0 .40  x 0 .20  x 0 .20  m m 3
1.77 to  25 .08°.
-1 5 < = h < = 7 , -1 0 < = k < = 1 0 , -20<=1<=20 
9104
3287  [R (in t) = 0 .0273]
99.4  %
S A D A B S
1.000 and  0 .687
F u ll-m atrix  least-sq u ares on F 2
3 2 8 7 / 0 / 2 6 5
0.951
R, = 0 .0 4 0 9 , w R 2 = 0 .1 0 2 0  
R, = 0 .0 4 8 2 , w R 2 = 0 .1072  
0 .297  and -0 .2 3 6  e. A '3


