
PRO VENANCE SUPPORT FOR
SERVICE-BASED INFRASTRUCTURE

Shrija Rajbhandari

School of Computer Science
Cardiff University

This thesis is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

April 2007

UMI Number: U 585009

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U 585009
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A bstract

Service-based architectures represent the next evolutionary step in the develop

ment of e-science, namely, the transformation of the Internet from a commercial mar

ketplace to a mechanism for sharing multidisciplinary scientific resources. Although

scientists in many disciplines have become increasingly reliant on distributed comput

ing technologies for data processing and dissemination, the record of the processing

history and origin of a data product, that is its data provenance, is often nonexistent,

incomplete or impossible to recover by potential users. This thesis aims to address

data provenance issues in service-based environments, particularly to answer how a

scientist who performs a workflow execution in such an environment can (1) docu

ment the data provenance for a data item created by the execution, and (2) use the

provenance documentation as a recipe to re-execute the workflow. This thesis pro

poses a provenance model for delivering data provenance support in a service-based

environment. Through the use of an example scenario of a scientific workflow in the

Astrophysics domain, we explore and identify components of the provenance model.

The provenance model proposes a technique to collect and record data provenance

for service-based workflow executions. The technique facilitates the collection of data

provenance of workflow execution at runtime. In order to record the collected data

provenance, the thesis also proposes a specification to represent provenance to de

scribe the processing history whereby a piece of data was derived. The thesis also

proposes query interfaces that allow recorded provenance to be queried, has formu

lated a technique to construct provenance graphs, and supports the re-execution of

past workflows. The provenance representation specification, the collection technique,

and the query interfaces have been used to implement a prototype system to demon-

Abstract iv

strate the proposed model. The thesis also experimentally evaluates the scalability

of the components implemented.

Contents

Title P a g e .. i
D ecla ra tion ... ii
A bstrac t... iii
Table of C onten ts... v
List of Figures... viii
List of T a b le s ... xi
Acknowledgments... xii

1 Introduction 1
1.1 Motivation... 1
1.2 Research Objectives and A p p ro ach .. 5
1.3 Research Contributions... 7
1.4 Outline of the T h e s is ... 8

2 Literature Review 10
2.1 Introduction.. 10
2.2 Provenance in Query-based Data Processing S y s tem s......................... 12
2.3 Provenance in Domain-Specific A pplications.. 18
2.4 Provenance Middleware and Provenance in

Other Application System s... 22
2.5 Granularity of Provenance... 25
2.6 Use and Benefits of P rovenance.. 26

2.6.1 Data Quality Benefits .. 26
2.6.2 Data Processing Benefits.. 28

2.7 Service Oriented Architecture and Provenance.................................... 32
2.7.1 Identifying Specific Tasks in a Provenance System 34
2.7.2 Provenance Web Services.. 36

2.8 Summary .. 40

3 Provenance Model for a Web Process 42
3.1 Introduction... 42

v

Contents vi

3.1.1 Architecture Contributions.. 44
3.2 An Example Scenario.. 46
3.3 Provenance Model ... 51

3.3.1 Identifying and Representing Provenance.................................. 54
3.3.2 Capturing and Recording Provenance.. 63
3.3.3 Provenance Querying and R easoning .. 67

3.4 S u m m a ry .. 70

4 Provenance Representation and Capture in SOAs 72
4.1 Introduction... 72
4.2 Provenance Modelling .. 74

4.2.1 Identifying the service-Provenance of a process 77
4.2.2 Identifying process-Provenance .. 78
4.2.3 Identifying service-Provenance.. 80
4.2.4 Identifying Data L ink... 84
4.2.5 Provenance Format (p-format).. 86

4.3 Provenance Collection S erv ice .. 87
4.3.1 Provenance Recording In terface ... 87

4.4 S u m m a ry .. 94

5 Provenance Querying and Analysis Tool 96
5.1 Introduction... 96
5.2 Process Provenance Query Interface... 97

5.2.1 Process Provenance Graph C onstruction 97
5.2.2 Process Re-Execution... 103

5.3 Provenance Reasoning Query In te rface ... 104
5.3.1 Query Data C om m and.. 106
5.3.2 Query Data F ilte r ... I l l

5.4 Summary .. 120

6 Provenance Prototype: Implementation 122
6.1 Introduction... 122
6.2 Architecture of the Provenance Collection S erv ice 123
6.3 Interface Implementation of the Provenance Query S e rv ice 130
6.4 S u m m a ry .. 135

7 Evaluation 137
7.1 Introduction... 137
7.2 Scalability of the Provenance Collection S e rv ice 139

7.2.1 Summary of S e t u p ... 140
7.3 Evaluation of the Provenance Query S e rv ice .. 153

7.3.1 Setup Sum m ary... 153

Contents__ vii

7.3.2 Workflow Re-execution by Simultaneous C lie n ts 159
7.4 S u m m a ry ... 161

8 Future Work and Conclusions 163
8.1 Research S um m ary ... 163
8.2 Research Contributions... 165
8.3 Research Directions... 168
8.4 Research Publications ... 171

Bibliography 172

A RDFS of Provenance Format 188

B service-Provenance XML Schema 192

C BPEL Workflow 193

List of Figures

1.1 An example of Bioclimatic Modelling workflow from [60].................... 3
1.2 The Living Document Concept ... 5

2.1 Architecture of Provenance Web Services.. 37

3.1 Simple Scenario Exam ple... 46
3.2 Provenance Model ... 52
3.3 Interaction between Engine and Web services 58
3.4 Expressed data flow of services.. 61
3.5 Interactions between Com ponents.. 65
3.6 Interactions between Query Com ponents.. 69

4.1 Data model mapped to RDF statements of subject-predicate-object form 74
4.2 RDFS data m odel... 75
4.3 Model for identifying service instance of a p rocess.............................. 77
4.4 Model for an abstract p ro c e ss ... 79
4.5 Model for identifying constituents of a service in s ta n c e 80
4.6 Model for service activity .. 81
4.7 Model for Service A c tiv ity .. 82
4.8 Model for the I/O m essages... 83
4.9 Model to identify the flow of d a t a .. 84
4.10 Model to identify input d a t a ... 85
4.11 Model to identify output d a t a .. 86
4.12 Asynchronous data collection for process ex ec u tio n 88
4.13 Service instance given by an RDF triple .. 90
4.14 RDF instance representing the p-format for sample process PR1 . . . 92
4.15 Representation of hasDataLink property in the p-format for sample

process P R 1 ... 93

viii

List of Figures__ ix

5.1 Representation of data links of service instances within a process in
stance by identifying each input and output for a service instance with
its source and target, respectively, and the data IDs.............................. 101

5.2 Provenance Reasoning Query ... 106
5.3 P-Format Source Model ... 110
5.4 Query Data Command M o d e l... I l l
5.5 Query 1 .. 113
5.6 Query 1 re su lt... 114
5.7 Query 2 .. 117
5.8 Query 2 re su lt... 118

6.1 Architecture of Prototype Implementation of the P C S 124
6.2 Interface for Process Invocation and Provenance Submission in the PCS 125
6.3 Architecture of the Prototype Implementation of the PQS 131
6.4 Interface in the PQS for querying process IDs displaying ten results at

a t i m e 133
6.5 Interface to re-execute a process.. 134

7.1 The Web services and workflow used to generate data provenance for
the experiments. The rectangular boxes denote the Web services im
plemented to demonstrate the Astrophysics Example Workflow from
the example scenario presented in Chapter 4. The arrows denote the
dataflow occurring in the workflow... 140

7.2 Setup of the components for Single Service... 141
7.3 Setup of the components for Composite S e rv ic e 142
7.4 Single Service Recording: Invocation Computation T i m e 145
7.5 Single Service Recording: Memory U sage.. 146
7.6 Single Service Recording: Approximate Time taken by PCS 147
7.7 Single Service Recording in Database: Invocation Computation Time 149
7.8 Composite Service Recording: Invocation Computation Time 150
7.9 Composite Service Recording:Memory U sage....................................... 151
7.10 Composite Service Recording: Invocation Computation Time 153
7.11 Setup and flow of data for the queries.. 154
7.12 Average query response time for two types of query as the retrieved

result set increases.. 156
7.13 Query result file size for two types of query as the retrieved resultset

increases... 156
7.14 Average query response time per client as the number of concurrent

clients performing the two kinds of query increases................... 158
7.15 Total response time for all the clients as the number of concurrent

clients performing the two kinds of query increases................... 158

List of Figures x

7.16 Average re-execution response time as the number of simultaneous
clients re-executing a past workflow increases.. 160

List of Tables

2.1 Major Provenance System s... 12
2.2 Provenance System Evaluation against a set of C rite ria 34

7.1 Input parameters used for each DustCloud service invocation and the
corresponding service-Provenance instance generated in a file which
has varying output data size... 143

7.2 Input parameters used (for DustCloud and Telescope services) for each
complex Astrophysics Workflow invocation and the corresponding service-
Provenance data generated by the Provenance Collector as an XML log
file... 144

Acknowledgm ents

I thank my first supervisor Professor David W. Walker for his help and advice

throughout the PhD process. I also like to thank him for his insightful comments and

feedbacks and for always being wonderfully positive of my work. He has always been

there whenever I needed any help. I am very grateful to him for reading my thesis

many times - despite his many professional commitments. I could not have completed

this thesis without his help.

I would like convey my most special gratitude to my second supervisor Professor

W.A Gray. He created an opportunity for me so I could do PhD in the School

of Computer Science, Cardiff University. I want to thank him for the opportunity,

because I could not have achieved it without his support and leadership.

I thank Dr. Omer Rana for being incredibly understanding and supportive during

my PhD write-up process.

I thank Dr. Ian Taylor for hiring me as a student researcher for the Triana project

that allowed me to undertake this research.

I owe many thanks to the administrative and technical staff of the School of

Computer Science, Cardiff University, particularly Mrs. Margaret Evans and Mrs.

Helen Williams for their support.

I thank my partner Vikas Deora for helping me and having confidence in me even

when I didn’t. I also like to thank him for taking good care of me during difficult

times.

Finally, I thank my father Shiva Rajbhandari and my mother Rupa Rajbhandari

and dedicate this achievement to them for their foremost support. Their blessings

and encouragement have enabled me to be positive.

Chapter 1

Introduction

1.1 M otivation

Multidisciplinary scientific research is often both data intensive and distributed.

Scientific investigation and processing relies as much on the effective broadcasting of

data between dispersed study sites and collaborating groups as on the conclusions of

written publications. In recent years, many scientists have become increasingly reliant

on distributed computing technologies as an essential part of their everyday research

for data processing and dissemination. Thus, the increasing trend towards the sharing

and communication of scientific data is evolving with the growing data processing

capabilities of computing research environments. This is contributing to an increase

in the propagation of data in various scientific disciplines. Increased transparency

in access to data has made researchers realize that the essential documentation of

derived scientific data shared online is often incomplete or inadequate. This makes

electronically published scientific journal articles the only source of annotations or

1

Chapter 1: Introduction 2

descriptions of the studies or experiments carried out to produce such scientific data.

Although the concept of sharing distributed scientific data and resources amongst

geographically distributed groups is not new, the increasing adoption of Service Ori

ented Architectures (SOA) based on Grid and Web Services [35, 48, 56] makes the

vision of automatic discovery, composition, and consumption of distributed resources

more realistic, and support the benefits of Internet standards and common infrastruc

ture to produce optimal efficiencies for intra- and inter-organization computing [54],

compared with traditional approaches. SOA technologies have made feasible the use

of distributed and heterogeneous resources for scientific disciplines, such as Bioinfor

matics [32], Astrophysics [75], and Earth Science [98]. Many research scientists make

use of such resources in their experimental workflows by using innovative workflow

management systems. The concept of workflow, applied to scientific computing, is

concerned with the movement of data and the execution of tasks (e.g., on distributed

resources) through a work process [106]. This describes how tasks are structured,

what their relative execution order is, and how data flows between tasks. An exam

ple is a computational experiment performed by a biodiversity scientist that allow

the prediction of how species will be distributed under changing climate [60]. In

Figure 1.1, given a set of locality data for a species, a climate preference profile is

produced by referring to present day climate data to produce a ‘climate envelope’.

This is then used with a specific selected Open Modeller (OM) algorithm by interpo

lating the climatic data at the points of locality of specimens producing a bioclimatic

model. Such distributions projected upon a world map allow the determination of

where a conservation priority area should be in the future for that species. When

Chapter 1: Introduction 3

Species
Locality

Collection

Climate
Layer

Collection

Query Open
Modeller (OM)

Algorithm

Create Bioclimatic
Model

Project Model on
a World Map

results

Figure 1.1: An example of Bioclimatic Modelling workflow from [60].

performing such workflows, scientists may wish to (1) reuse a workflow and data;

and, (2) at some point share the produced data with their fellow researchers. Usu

ally such data products are published with metadata that includes the format of the

data and a description of what the data represents. This helps researchers, as well

as others, to discover and access the archived data products. The appropriate use of

such derived scientific data, and the reuse of the workflows that generated the data,

relies on understanding the origin and the processing history of the data, that is its

provenance. Just as a genealogical chart provides documentation that reveals the an

cestry of an individual, the provenance of an item describes how it was derived from

its source. Data provenance refers to the documentation of the processing history of

the executed workflow that led to a particular data product.

A scientific article may be a part of the data provenance since it describes the

output data’s provenance, for example the methods by which such data has been

Chapter 1: Introduction 4

produced. Provenance can be considered in terms of the input dataset and the resul

tant data associated with a scientific process. Typically, researchers maintain private

records of provenance in the file structure, databases, and notebooks which are, in

many cases, sharable only by other members of the same organization or project.

Although derived data products may be publicly available, the scientific tools, pro

grams or processes, and the source data used, are normally not available for public

use. Journal articles may be the only public source of information about the origin

of a data product and how a particular result was obtained. We believe that such

published documents should be provenance-enabled, to allow scientific journal articles

to become partly dynamic. For example, somebody reading an article online would

be able to rerun a simulation for which results axe presented, possibly with different

input parameters, by clicking a button in the provenance-enabled article (see Fig

ure 1.2). The reader of the article can actually use such a capability to re-execute the

work, and view and evaluate the results produced on-the-fly, without being aware of

how the results have been re-created. We refer to such an interactive document as

a “Living Document” [103]. In order to make such a concept a reality, researchers

must furnish data products with a special type of metadata that provides an under

standing of the processing history that can be used to re-execute the process online.

Such metadata, once composed appropriately, provides a view of the processing chain

through which the data was derived, i.e., the data provenance.

This vision of a “Living Document” has motivated the research presented in this

dissertation. The aim is to capture, represent, and manage the provenance informa

tion for a data product so that the provenance can be used to provide a “recipe”

Chapter 1: Introduction 5

*► S tart- -[_Web Page

Published
results

I click

Display dynamic result

E n d - -

Experiment Workflow

Figure 1.2: The Living Document Concept

for future experiments relating to that data, and also enables the re-execution of the

scientific processes that originally created the data in a service-oriented framework.

1.2 R esearch O bjectives and Approach

The preceding discussion illustrates that data provenance is a set of important

information that needs to be retained in any scientific experiments in such a way that

it can be used to reproduce the original results. To make the “Living Document”

concept concrete, a provenance system that caters to a service-based environment is

needed. Thus, the objectives of this thesis include the achievement of the following

goals:

• The study of existing provenance systems in various scientific application do

mains.

• The application of provenance systems to workflow enactments in SO As.

Chapter 1: Introduction 6

• The investigation and design of methods to enable (l)automatic collection and

recording of data provenance for workflows in an SOA and (2)querying such

provenance for re-executions, and the evaluation of the proposed provenance

system

The first general purpose of this thesis consists of bibliographic research into

existing provenance systems in different domains. The study of different provenance

systems in different application domain with or without SOA techniques will provide

us with a general view of data provenance and provenance systems. The benefits

and use of data provenance need to be identified and analyzed in order to evaluate

provenance system requirements. This will encompass how a provenance system

would best fit within the conceptual vision of an SOA by presenting a provenance

system as a Web Service. This directs us to the main research objectives as follows:

1. To design a Provenance Model to represent the functionality for: (1) a prove

nance collection service, and (2) a provenance query service of a provenance

system in an SOA.

2. Modelling provenance (i.e., producing a provenance format or p-format) for the

structured representation of provenance for workflow executions in an SOA.

3. Use of the provenance collection service component to experiment with auto

mated techniques to collect and record the provenance of derived data from a

workflow execution.

4. Investigate methods to browse and query the provenance to be used in the

Chapter 1: Introduction 7

provenance query service for process re-execution and recreation of the process

ing chain.

5. Perform evaluations of the functionality of the provenance system to better

understand its performance and scalability.

In order to meet these objectives, we make use of the Web Services since it gives us

a suitable framework to achieve our purpose of enabling support for data provenance

in a service-based distributed environment. The work is presented with an example

workflow scenario that represents data analysis and processing in the Astrophysics

domain.

1.3 Research Contributions

The main focus of this thesis is to support data provenance by handling automatic

recording of composed Web Services executions, and to query such provenance to

recreate and re-execute the past process.

The primary contribution of this thesis is the provenance model which incorpo

rates provenance support within Web Services. The model consists of two service

components; data provenance (1) collection/recording and (2) querying. We identify

metadata that incorporates the provenance documentation, also showing that it is

possible to represent and record such provenance for a process execution in a way

that it can be queried to re-execute past workflows and construct a provenance graph

displaying the processing chain of the derived data. We also allow the intermediate

data of an executed workflow to be captured to support enhanced querying capabili

Chapter 1: Introduction 8

ties. By evaluating our approach, we have provided a scalable and structured way of

automatic collection and recording of data provenance that represents the processing

history of a process.

1.4 Outline of the Thesis

Chapter 2 details the study of existing provenance aware systems. In particu

lar, eight provenance systems have been analyzed. The analysis has resulted in the

identification of provenance requirements in various types of application processes

and domains. The analysis also out fines common benefits arising from the use of

data provenance in many application areas. Thus, this chapter first provides us with

the descriptions of different provenance systems before formulating our proposed ap

proach. Five of the provenance systems are also evaluated based on a set of criteria

(i.e., based on the system’s operational model and characteristics). Based on the

study carried out, this chapter also presents evaluations to propose a provenance sys

tem for an SOA environment. It presents a higher vision of a provenance support

framework within an SOA with the notion of exposing a provenance system as a Web

Service that can be consumed.

Chapter 3 describes our proposed provenance model based on an SOA. An example

scenario of a scientific workflow in the Astrophysics domain is presented to identify

and explain the components of the model in the preceding chapters. We identify

and describe different classifications for the representation of provenance in a way

that provides the processing chain that produced a piece of data. This chapter also

presents the high level interactions between the model components for capturing,

Chapter 1: Introduction 9

recording and querying data provenance.

Chapter 4 describes how the different classifications of the representation of prove

nance in the previous chapter can be modelled, i.e., we define the data structure used

to represent the classified types. Based on the modelled structures a common format

is produced that represents the documentation of a process that is recorded in the

provenance archive. Using the example scenario presented in chapter 3, a simple pro

cess is presented in this chapter to describe the provenance capturing and recording

mechanism with use of the presented provenance format.

Chapter 5 describes the querying component of our provenance model. The con

struction of the provenance graph and the re-execution of past processes are discussed.

This chapter also presents some examples of how different provenance questions can

be queried for with the proposed provenance format.

Chapter 6 presents the software implementation that provides the functionality

discussed in the previous chapters. This is followed by chapter 7 that provides an

evaluation of the scalability of the implementation of the provenance collection and

recording components. Both are illustrated using the enactments of the workflow

implementation of the example scenario described in chapter 3.

Finally, chapter 8 concludes this document by restating the main contributions of

this thesis and presents proposals for further work. A fist of related publications are

also included.

Chapter 2

Literature R eview

2.1 Introduction

The issue of data provenance is not a new problem, as is evident from the large

body of related research in the past few years and which has led to prototype sys

tems that archive and retrieve the provenance of processed data. Provenance-related

research in various scientific domains where usefulness of provenance is linked to the

granularity at which it is collected has notably increased in recent years [3, 84, 91,112].

This chapter provides a review and analysis of the importance and use of prove

nance in various domains and application areas. The criteria for this evaluation

are intended to facilitate a coherent understanding of the operations and interac

tions in the different classes of provenance-enabled models and systems. Table 2.1

summarizes eight major research projects on provenance-enabled systems with their

example domains, application type, and provenance applicability. In the literature,

some provenance systems axe domain-specific; some systems differ in terms of the

10

Chapter 2: Literature Review 11

granularity at which provenance is collected; and others are specific to a particular

application architecture, such as database systems and semantic search engines. In

reviewing the literature we categorize provenance in terms of:

1. Query-based Systems.

2. Domain-specific Systems.

3. Provenance Middleware.

This chapter provides a detailed discussion of provenance in the context of related

work. Furthermore, we discuss provenance granularity and the potential benefits of

provenance gathered through the evaluation of different provenance-enabled applica

tions and systems. The chapter is organized as follows. Sections 2.2, 2.3 and 2.4

discuss the relevant research that falls into the above three categories, respectively.

Section 2.6 outlines the importance of provenance and its use in fight of the literature

discussion. Section 2.7 presents a brief introduction to SOA and a comparative eval

uation of some of the relevant provenance systems in terms of their operational model

and characteristics. This survey highlights the finding that most current provenance

systems that cater to the SOA framework are either representative of a particular

domain application or inadequate in essential system characteristics. Section 2.7.1

discusses the key areas of development necessary for the establishment of a prove

nance system in the context of emerging technologies and standards for an SOA

environment. In particular, the entities involved in the development of a provenance

system, and the high level interactions between them, are identified.

Chapter 2: Literature Review 12

Domain Application
Process Type

Provenance Use and
Benefits

Chimera [1] Astrophysics Service-based
workflow enact
ment

Audit trail and data replica
tion

CMCS [2] Chemical Science Informatics-
based chemistry
research

Information about data
products and updates

ES3 [44] Earth Science Script-based
workflow enact
ment

Data lineage information

myGrid [3] Bioinformatics Service-based
workflow enact
ment

Re-enactment of workflows
and updates

PASOA [4] General Service-based
workflow enact
ment

Data lineage information
based on asserted causality
relationships

Inference
Web [104]

General Query-based in
information re
trieval

A form of justification and
placing some degree of trust
in the results

Tioga [11] General Database query Weak inversion to investi
gate faulty and anomalous
data

Trio [105] Earth Science Database query Update propagation and ef
ficient warehouse recovery

Table 2.1: Major Provenance Systems

2.2 Provenance in Query-based D ata Processing

Systems

Data Processing refers to the means by which processes consume and manipulate

data sources, in order to bring about the transformation of the data product. Prove

nance information for a data product revolves around the two main concepts; the

original data sources and the transformations that they underwent to generate the

Chapter 2: Literature Review 13

data product. In any systems architecture, data is always being consumed, processed,

transformed and copied. In query-based systems, provenance issues are focused on

tracing the provenance of data items where the data item is produced or retrieved by

querying data archives. The use of provenance in two different query-based systems

will now be summarized.

Provenance in D atabase System s

The purpose of lineage information about a data item is to find the source data that

produced it [108]. Provenance in database systems focuses on the problem of data

lineage. The problem of data lineage for a given data item can be summarized as

determining the original source data items from which the data item was derived, and

the processes by which it was produced [40]. The data lineage problem is relevant in

data warehousing systems where the source data goes through a series of transforma

tion steps during analysis and mining to perform data integration, and is modelled as

queries over multiple data sources. Cui and Widom [39] focus on tracing the lineage

information of materialized data views and general transformations of data items in

data warehouses stored in relational databases. A materialized view assembles or

represents data contained in other database tables and views, but unlike a database

view it contains actual data. In a data warehousing system, since the remote data is

cached at the warehouse, the remote data appears as local to the users of the ware

house. Queries are written in terms of materialized views to perform analysis on the

warehouse data. For example, consider an analyst wanting to build a warehouse table

listing computer products that had a significant sales jump in the last quarter. For

this, a complex query needs to be executed on specific warehouse data derived from,

Chapter 2: Literature Review 14

for example, Product and Order source tables. That is, the warehouse defines a ma

terialized view Sales Jump, where the view definition is expressed as an SQL query.

Using the source tables as inputs, the query performs a series of transformations to

produce the Sales Jump table, i.e., the result table. Cui and Widom’s work revolves

around developing lineage tracing algorithms that can automatically determine the

source data from tuples in the result table (a tuple is a row in the table, e.g., a row for

a product ‘Sony VAIO laptop’ in the Sales Jump table). They propose to do this by

storing additional relevant information from the query and using it for lineage tracing,

i.e., the lineage tracing algorithm uses stored information to execute lineage tracing

queries. Thus, the work focuses on a data item lineage derivation where view tuples

of interest can be traced down to the sources, e.g., tuples and tables [40]. These

lineage tracing algorithms are integrated as a part of the Trio [105] data model, an

extended relational DBMS.

Apart from lineage tracing of data items to their source, some important as

pects of fine-grained lineage tracing are described by Woodruff and Stonebraker [108].

Through fine-grained lineage tracing, their research glims to provide a capability for

scientists to identify and investigate the source of errors and anomalies in data items.

They particularly address the problem of tracing the origin of a single element in

large arrays of data that went through a series of transformation. For example, to

know which pixels of which images were used to construct a given image. Woodruff

and Stonebraker proposed methods that axe performed within a DBMS. This type of

fine-grained lineage processing has been implemented in the Tioga [11] database vi

sualization tool, which is built on top of POSTGRES DBMS with a “drag and drop”

Chapter 2: Literature Review 15

approach for programming and managing databases. To enable fine grained lineage

tracing, all the user-defined algorithms and their additional functions are registered

and stored in Tioga. The additional functions registered are the weak inversion and

verification functions that are processed within the DBMS to execute lineage queries.

An inversion approach similar to that described in [40] is adopted, and is termed the

weak inversion technique for lineage tracing. A weak inversion technique is intended

to provide an “approximate lineage” because not all the functions and algorithms are

completely invertible. This implies that the weak inversion function provides a flawed

but still useful mapping from the output of a given function to the database element

input. For functions that cannot be inverted without referring to input data, a veri

fication function with access to the input data for the original function is introduced

which is applied to the output data for further refinement and mapping.

Buneman et al. provide an assessment of the issues of data provenance and an

notation in shared and distributed scientific databases [29]. Scientific databases are

usually “curated” by adding annotations, classifications, and error correction through

human intervention. Some databases may contain data items that could be copies

of some source database or created by processing the source database. These data

sources are likely to be frequently updated. Buneman and his co-authors argue that

in this case, the curated source database could not notify other databases when up

dates to the source occur, nor could the databases that are copied or created from the

source be aware of any updates made to the source. Both the source and the copied

or created databases lack the ability to track the change histories, provide annotation

support, and broadcast such information across all records that are related in some

Chapter 2: Literature Review 16

way. Provenance and annotations are necessary in an environment in which data

are repeatedly copied and transformed, so the processed data items can be tracked

back to the curated source databases, as well as to propagate the annotations on the

derived data back to the source database [31]. In [29], the authors argue that such

shared scientific databases that change over time require coordination between the

interacting databases to maintain data consistency and traceability.

Buneman et al. [30] have defined two terms: “Why-Provenance” and “Where-

Provenance” . Why-Provenance is the data lineage that provides the reason a partic

ular data item was generated, and specifies what part of the database contributed to

its creation, i.e., a set of tuples, and why the source data is in the database. “ Where-

Provenance” is the location of the source data items that created the item of data.

Buneman et al. propose a deterministic data model that allows the unique identifica

tion of a piece of data through a path [27]. This model provides an explicit notion

of location that helps to describe the where-provenance. The authors have presented

research issues and limitations of provenance in current DBMS techniques, and dis

cuss them in terms of scientific databases in application domains such as molecular

biology, linguistics, and ecology where the provenance problem is a challenge.

Provenance in the Sem antic Web

Provenance, as it relates to the Web, refers to the explanation of the information

returned by a web application. The users are unaware of the sources from which the

information is derived. The provenance answers questions such as what sources were

used, when they were updated, if the information was derived and, if so, how it was

derived, and can the user rely on the sources. This type of information is needed to

Chapter 2: Literature Review 17

understand and trust the information [70].

McGuinness and Silva [71] point out the lack of support for provenance in the

current Semantic Web, and introduce the Inference Web (IW) that addresses the

problem of provenance by providing explanations of the answers queried over the Se

mantic Web. The Inference Web (IW) aims to provide an infrastructure by which the

query answers are made transparent, with explanations that describe the path that

derived the answers as users may obtain query answers from systems that manipulate

data and derive information that was implicit rather than explicit. [71] provides

various sets of requirements for the development of IW infrastructure, and [70] de

fines users of the IW, such as retrieval engines, hybrid programs such as crawlers,

merging ontologies and combining knowledge-based systems. The Inference Web pro

vides a Proof Markup Language (PML) based on the OWL specification to represent

knowledge provenance or meta-information of different sources used to derive a query

answer and derivation history [72]. A web-based registry for storing, manipulating

and returning such knowledge provenance and derivation history that is used to en

hance explanations is also presented and provides a set of APIs to convert the long

and complex PML to a short understandable explanation. A Semantic Web based

inference or search engine is used in support of the Inference Web that presents the

knowledge provenance and derivation history as proofs and explanations of any re

sponses to queries.

McGuiness and co-workers have extended their work on the Inference Web towards

the notion of trust and justification of the answers retrieved from the Web. They

argue that the source meta-information given with the retrieved answer, which is

Chapter 2: Literature Review 18

used to provide explanations, may not be enough to explain the processing steps that

generated the answer. In this case, the importance of the reasoning process used

to generate the answer, termed the knowledge process information, was recognized

[73]. Providing the answer with optimal additional information about the sources

that were used, the basis on which the answers were selected, and the process used

to generate the answers would be essential for the user to trust the answers. A trust

infrastructure IWTrust is introduced in [110] where the authors discuss how trust

values of the sources with the meta-information can provide a better justification and

trustworthiness of the answers generated on the Web.

2.3 Provenance in Domain-Specific Applications

Many research projects focusing on provenance seek to improve scientific collabo

ration by means of computing environments that capture a generic experiment. Such

provenance research usually caters to a specific domain and application system. In

the early 1990s, some of the major work on provenance was in the area of Geographic

Information Systems (GIS). Lanter [65] contributed to the design of a meta-database

for recording GIS procedures and retrieving the lineage of data products within GIS

applications. Knowing the quality of a result dataset is critical in GIS. This can be

determined via lineage tracing to the source dataset that was used to derive it [66].

This helps GIS users to determine the fitness of use of the data for their application.

The most important GIS operation is the overlay of different spatial data sets (e.g.,

stored in a database system) to produce a new data set. For example, a biologist

might want to determine what variables affect the population of dolphins [79]. A GIS

Chapter 2: Literature Review 19

enables information to be associated with a feature on a map and the creation of

new relationships that can determine the suitability of various sites for development,

evaluate environmental impacts, and so on. Lanter’s Lineage Information Program

(LIP) provides lineage tracing for GIS operations known as Arc/Info (where, ARC

handles where the features are on a map, while the INFO component handles the

feature descriptions and how each feature is related to others [45]) by examining user

input at the command line and from a graphical user interface. Lanter also explored

the use of data lineage to optimize the size of spatial databases [66], compare spa

tial analyses of GIS applications [67], and examine the propagation of error through

GIS applications [64]. Another system that incorporates lineage tracing for GIS

processes is the Geo-Opera workflow-based system [13]. In Geo-Opera, the data files

and transformations (GIS programs or scripts) are distributed and reside outside the

system. Such transformations, or external objects, are registered in the Geo-Opera

system before they are executed and tracked as task objects. The relationships be

tween internal task objects are obtained by using control flow connectors to set the

order of execution. The system provides lineage recording by using data attributes

to point to the latest inputs/outputs of a data transformation.

The Earth System Science Workbench (ESSW) [50] project , now called Earth

Science System Server (ES3), proposes a data storage and management infrastructure

which allows researchers to publish their large data sets from environmental models

and global satellite-derived image data [51]. The workbench provides a framework

for defining and collecting earth science metadata which is based on a conceptual core

composed of science objects. These are processes, processing steps, science models,

Chapter 2: Literature Review 20

inputs and outputs. In ES3, the meta-model is for tracking the documented processing

history of experiments or workflows (referred to as lineage metadata). The project has

built a client-server application called Lab Notebook that stores the lineage metadata

for experiment steps and their associated science objects. A scientist needs to define

metadata templates formed of DTD to define XML instance document to publish

science objects which are specific to ES3’s fixed set of science objects.

In ES3 the processing of data products, and the metadata and lineage recording,

is based on scripts. ES3 depends on the script writer to use the templates and

libraries to record the metadata for workflow runs. The data products are produced

via the scripts that transform the input data (i.e., binary files), where the input data

products and scripts are referred to as software objects. Each software object has

a uniquely identifiable metadata object, that contains the details about the software

object. The metadata objects exist separately from the software objects, so that

the same metadata objects can be referred to for different workflow invocations that

use the same software objects [23]. Thus, a metadata object corresponds to each

software object in a workflow invocation and produces a new data product for which

a metadata object is also created. The metadata objects about a workflow invocation

are recorded in an XML format in such a way that the lineage of a particular data

item can be traced through the parent-child relationships of metadata objects.

In [33], a scientific resource management (SRM) architecture is proposed for man

aging the distributed scientific resource metadata for an environmental system. Its

aim is mainly to publish scientific data and programs thereby making them available

on the web. Also the experiments, or the scientific workflow carried out using these

Chapter 2: Literature Review 21

programs, and the data need to be registered as well on the “experiments database”.

The architecture is currently considering the use of Web Services - publishing the

programs as Web Services and capturing experiment provenance by keeping track

of SOAP messages. The Scientific Publication Model (SPM)[34] is the meta-model

(schema) behind the SRM architecture, and is used to provide a semantic repre

sentation of scientific resources (data, programs), describing the programs and the

associated theory behind it as “the model”.

The Collaboratory for Multi-scale Chemical Science (CMCS) project provides a

multi-scale informatics toolkit that focuses on “on-demand” metadata creation to

support the collaborative management of data, metadata, and data relationships.

Generic tools have been developed in the CMCS project to view and browse prove

nance relationships, and use them for scope notifications and searches. CMCS uses

the Scientific Annotation Middleware (SAM) (see section 2.4) project tools for prove

nance management. There is no facility for the automated collection of provenance

from workflow execution in CMCS. The provenance, or lineage, is collected via DAV-

aware applications in the workflow, or entered manually by the scientists through a

web interface [74], and stored in the SAM repository. Provenance properties can be

queried from SAM using generic WebDAV [7] clients.

The myGrid project provides middleware application tools to support in silico

experiments in the biology domain modelled as workflows in a Web Service envi

ronment [3]. In silico experiments use databases and computational procedures,

rather then laboratory experiments. The middleware developed in myGrid is a set

of bioinformatics-specific scientific services that provide for data and computational

Chapter 2: Literature Review 22

analysis. myGrid includes resource discovery, semantic descriptions of services, work

flow enactment, and metadata and provenance management, thereby enabling the

execution of complex bioinformatics computations in a service-oriented environment,

and also addressing the semantic complexity of the domain. myGrid workflows are

written in an XML-based langauge called XScufl, and executed using the open source

FreeFlue/Taverna workflow engine [111].

2.4 Provenance Middleware and Provenance in

Other Application Systems

Chimera [49] is the GriPhyN Virtual Data System (VDS) that allows virtual data

products and procedures to be described, represented and discovered. Chimera sup

ports the capture and reuse of the lineage of derived data (“virtual data”) produced

by computations. It captures the lineage in the form of derivation steps for datasets,

and uses it for audit tracing, the comparison of datasets, and also to manage the

automatic and on-demand re-derivation of derived datasets. Chimera supports data-

intensive scientific analysis such as high energy physics simulations (for example, the

Compact Muon Solenoid experiment at CERN), the search for galaxy clusters in the

Sloan Digital Sky Survey [17], and genome analysis [91]. A set of web interfaces is

provided in [112] to interact with the Virtual Data System to query, reuse, share,

and trace the lineage of data products. This is being applied in a large collaborative

learning project called QuarkNet [19].

The VDS architecture is based on the Chimera Virtual Data Schema where

Chapter 2: Literature Review 23

transformation elements describe programs, and the arguments describe data in

put/output. It presents a high-level language, the Virtual Data Language (VDL),

that supports data definitions and query statements (for databases) for constructing

workflows as directed acyclic graphs (DAGs), and which, when executed on a Data

Grid, create a specific data product [49]. The VDL workflows are stored in a Virtual

Data Catalog (VDC). The invocations of these workflow procedures are also recorded

in the VDC with relevant runtime information about the process, and contain an

annotation schema to represent the provenance. The VDL is also used to query the

VDC to discover the lineage or computational pipeline that created a particular data

object. The main purpose of maintaining such a description is for tracking how the

data product was created, and to recreate the data product by recreating the DAG

of distributed computations that can then be submitted to the Grid.

The Scientific Annotation Middleware (SAM) is a set of components and services

that enable researchers, applications, problem solving environments (PSE) and soft

ware agents to create metadata and annotations about data objects, and to document

the semantic relationships between them [63]. SAM allows applications to encode

metadata within files or to manage metadata at the level of individual relationships,

as desired. An Electronic Laboratory Notebook (ELN) is used with the SAM to

develop an initial set of SAM-based notebook services to search and browse data

and provenance information about data (such as static texts, images, and dynamic

images), and also to add provenance about the data. The open source Electronic

Laboratory Notebook is a collaborative, distributed, web-based notebook system,

designed to provide researchers with a means to record and share their primary re

Chapter 2: Literature Review 24

search notes and data. This project’s aim is to enable the sharing of scientific records

among portals and problem-solving environments, software agents, scientific applica

tions, and electronic notebooks that includes annotations and data provenance about

the recoded scientific data.

The Collaboratory for Multi-scale Chemical Science (CMCS) research project is

one of the projects using the SAM for their pedigree implementation in Grid environ

ments [74]. The CMSC brings together leaders in scientific research and technological

development across multiple U.S Department of Energy (DOE) laboratories, other

government laboratories and academic institutions to develop an open “knowledge

grid” for multi-scale informatics-based chemistry research [97]. Provenance support

is provided by adding metadata to files stored in a SAM repository, and SAM also

provides configurable, automated metadata extraction and translation of uploaded

resources. SAM publishes messages of events whenever a resource is accessed or

modified in the SAM server under two topics, one for changes to the data or meta

data and one for queries (e.g., a request to view a particular resource) [95]. SAM acts

as an open storage system and does not stipulate any specific format for the data and

metadata it handles. Thus, it provides an open sharable tool to record resources gen

erated through, e.g., a PSE, and allows researchers to add different types of metadata

and annotations about the resources [59]. The provenance about the workflow, or

what procedures were invoked within the PSE to generate a particular data product,

can either be manually recorded by the PSE user or may be automatically gener

ated within the PSE and then recorded in SAM. Thus, SAM is a middleware storage

system and does not participate in the extraction of metadata during the workflow

Chapter 2: Literature Review 25

invocation within PSEs or applications.

A middleware system is presented in [89] based on an e-notebook abstraction.

The e-notebooks are distributed amongst the users in the research groups, and can

record data, and its derivation and transformations, directly via manual user input or

from connections to the instruments used. The data and provenance stored in an e-

notebook server is represented as a DAG which can be shared with other e-notebook

users. The DAG may have nodes representing multiple e-notebooks to show the

many individuals participating in a process. When creating a node in a DAG to

represent the derivation of a data item, the creator must digitally sign the node to

provide support for trust views and credential tracking. This e-notebook approach

to provenance recording, along with the users credential information, provides an

interesting way of assessing the data’s credibility.

2.5 Granularity of Provenance

In certain domains, the usefulness of provenance depends on the level of granu

larity of the process documentation which is collected by the system. Granularity

of documentation refers to the level of detail with which provenance is recorded. A

process here means any task performed whose lineage may be documented. In an ex

perimental process, if all the instructions about the scripts used are recorded then this

is a fine-grained documentation of the experimental process (compared with recording

only the name of the script).

In [108] and [69], fine-grained provenance is recorded about attributes or tuples

in a database that represents individual pixels or array elements, respectively. A

Chapter 2: Literature Review 26

technique is provided in [69] to trace the lineage in arbitrary array computations. An

algorithm called sub-pushdown is used that requires the operations or algorithms used

to produce a dataset to be described in terms of Array Manipulation Language(AML)

operations. The sub-pushdown algorithm has been implemented in a prototype ar

ray database system called ArrayDB. In this system, the provenance of an array in

ArrayDB can be retrieved. This answers fine-grain questions such as: what points in

the intermediate datasets A, J2 and / 3 contribute to a point in the derived dataset

A ?

2.6 U se and Benefits of Provenance

The motivation behind much research in the area of provenance is the benefits it

provides to users in the application system domain. Provenance support in scientific

computations allows, for example, the verification of derived data products, error

propagation, and is a source of information to ensure the integrity and quality of

data products. Based on the major benefits that provenance support provides in

different application domains, we now outline these benefits under two categories.

2.6.1 D ata Quality Benefits

The provenance of a data product can be used to estimate data quality and reliability

based on the process that produced the data and the source data used in its deriva

tion. A geographic metadata standard (that includes lineage specification) called the

Spatial Data Transfer Standard (SDTS) [90] was produced in 1992 for transferring

geospatial data between different application groups and geographic information sys

Chapter 2: Literature Review 27

tems (GIS). Here, the lineage information is attached to the data and transferred as

part of a data quality report. Such lineage information is provided so that potential

data users can be protected from faulty information and assumptions about the data

transformation process, and misinformation on the accuracy of measurements. The

propagation of source data errors through GIS data-transformation functions is the

focus of [99], which describes lineage-based quality enhancement tools that can be

used to improve the quality of derived data products. The issue of data quality be

comes more critical as errors introduced by faulty data or misconfigured instruments

can grow as they propagate to data derived from them. Errors made at a very low

level may never be identified once the data has been integrated and replicated many

times unless a detailed lineage is recorded.

In [18] a case is investigated in which the manipulation and misrepresentation

of genome data has resulted in research carried out using this faulty data to be

worthless. This formal investigation highlights the need for a data verification and

integrity system in the research community. Genome data are the protein, DNA

and RNA sequences that axe annotated by bioinformaticians in academia and public

research institutions to give meaning to the sequence data. The annotations are

usually performed by referring to the annotations of similar sequences. The source of

annotations is usually not recorded so any annotation error is likely to be propagated

throughout the database [24, 42, 62]. Lineage metadata about the data, such as

the transformations applied to create it or the source of its parent data, can assist

the data user in establishing the authenticity of the data and avoid low quality data

sources. It provides justification for using the data, enhances the interpretation of

Chapter 2: Literature Review 28

data, reduces false data precision, and broadcasts data reliability, accuracy, suitability

and currency.

2.6.2 D ata Processing Benefits

Using provenance to record the processing history can be beneficial in supporting

audit trails, data quality control, and the detection of error sources and faulty data

sources. This type of provenance also provides processing “recipes” that can be

modified to rerun results from a complete or partied process chain, or to compare the

analytical processes of two different experiments. This section describes the benefits

of provenance in supporting the management of data processing in the business and

scientific communities.

Audit Trails

Provenance serves as a means to perform an audit trial on a piece of data by

tracking the origins of the interrelationships between, and the transformations per

formed on, the data as it moves through distributed processing steps that may cross

organizational boundaries. Audit trails are essential for:

• Knowledge reten tion: Without provenance, every time a scientific research

project or contract ends, critical information is lost about what has been done

in terms of computational and laboratory-based research experiments. Such

information is important as a reference point for future research and for sharing

and using knowledge from the project. Provenance also helps in the version

management of data products. For example, provenance helps identify reasons

Chapter 2: Literature Review 29

for variations in different versions of data products derived from the same source

data at different times.

• Im pact analysis: Any changes in the algorithms used for a computational

experiment, or in a laboratory environment, can ripple across the entire pro

cedure. A provenance audit trail permits a big-picture view, and allows an

assessment of what must be done to accommodate this change. One recurring

use of provenance is to backtrack and locate the source data, or a point in the

process, that is the cause of errors found in derived data and apply relevant

corrections [53].

• Regulatory or industry requirements: Pharmaceutical companies must

guarantee data has not been corrupted moving from one system to another.

Provenance information is important particularly in patenting drug discoveries.

Financial organizations must establish auditing to trace the fate of every penny.

E-business service providers must protect the privacy of customers. Such cer

tainty is not possible without recording provenance and a comprehensive audit

trail.

Process Repetition Recipes

Provenance information containing the processing steps and the source data pro

vides a recipe to recreate a scientific workflow or experiment, and thereby to recreate a

data product. If the provenance record contains sufficient context information related

to the data’s collection and transformation, such as the algorithms and instruments

used and their configuration, it may be possible to repeat the data derivation proce

Chapter 2: Literature Review 30

dure. Repeatability requires the availability of resources similar to those used when

the original data was created. The derivation may be repeated to maintain the cur

rency of derived data when some of the source data changes, or if the processing

algorithms were modified or updated. It is possible to control such re-execution by

only repeating sections affected by the changes in data or operations [21]. Such recipes

generated from provenance information are also advantageous and convenient when

modified to suit the current processing needs and to rerun the process sequence [108].

Modifications made for the purpose of re-enactment can involve changes to instrument

configurations or to input parameters, or may use different source data to perform

a comparison or “what if” analysis. Re-execution also works in similar ways in the

maintenance of views in data warehousing systems, where following any changes in

source tuples, database views derived from underlying source tables and views need

to be updated [47]. In some cases it may be cost-effective to maintain provenance

for “on-the-fly” data replication, but in some cases the re-execution cost is too high

and time-consuming to justify the large amount of data processing.

In summary, provenance promotes the repeatability and reproducibility of experi

ments. Scientific experiments are often repeated, thus interesting results are generated

during more than one run of an experiment. A sufficiently detailed record of the data

derivation path, that includes large amounts of metadata and intermediate results,

would allow:

1. Other researchers to repeat and validate the experiment.

2. The author of the experiment to repeat the process with different configuration

parameters.

Chapter 2: Literature Review 31

In repeating a previously completed process, provenance could be used to apply

exactly the same methods, steps and resources, but supplying different configuration

parameters to process either the original data, or other input data. Reproducibility

of an experiment on the other hand is possible when exactly the same configurations

(original raw data from the same version of the database, same tools, same algorithms

and versions) are applied to produce the exactly the same results.

Informative documentation

Provenance is the documentation of a process, providing information on derived

data that can then be the basis for information discovery and sharing. Data of interest

can be located by queries on its provenance, and the effort of repeating a process can

be avoided if the same derivation has already been performed. Archiving annotations

along with provenance can help to interpret the data in the context it was intended,

especially for derived data that may be used some time in the future [61]. Annotations

by third party users of the data and its provenance could have added benefits in better

understanding the data and processing steps [21]. This gives a clear understanding

of data that is specific to the user’s application domain. Provenance can also be

browsed as a derivation tree, or in other graphical forms, and act as a starting point

for exploring other metadata about the data and processes.

Thus, the most obvious importance and use of data provenance is the dissemina

tion of knowledge. The ability to share the techniques and procedures of experiments

within a domain is valuable for scientists working in that domain. This gives research

scientists a new paradigm for sharing distributed scientific resources. Using the prove

Chapter 2: Literature Review 32

nance of past experiments to learn from history and apply best practice helps scientists

to design and analyze their own experiments. An example is a scenario taken from

the Centre for Proteomic Research [77], where multiple experiments with different

configurations are conducted to successfully identify proteins from a given sample.

Provenance of such experiments would ideally inform later experiments about the

sample material, by providing information on the configuration parameters of lab

oratory machines and the process that lead to the successful protein identification.

Furthermore, provenance contributes a great deal to scientists when sharing a result

dataset. For example, when a scientist would like to study a derived dataset, the

provenance on how, when, and by whom that data was produced is vital in assessing

the integrity of the dataset.

2.7 Service Oriented Architecture and Provenance

Service-based infrastructures are at an early stage of evolution and are emerging

as the next phase in supporting e-science and e-business. Such services are generally

referred to as e-services, where the main idea is to encapsulate an organization’s

functionality within an appropriate interface and advertise it as independent Web

Services [76]. Widely known as an SOA, this is an information systems architecture

that enables the creation of applications that are built by combining loosely-coupled

and interoperable services. The architecture is not tied to a specific technology and

may be implemented using a wide range of technologies including RPC, CORBA,

Web Services [35].

While in some cases a Web Service may be used in a stand-alone form, it is normal

Chapter 2: Literature Review 33

in the context of an SOA to combine and link several Web Services together to create a

new functionality in the form of a Web process or applications. Using such a composite

process supplies a desired outcome or encapsulates a business process. In the context

of e-science, desired outcomes could be large sets of statistical data. Due to the

distributed nature of the process of computation from a collection of information

resources and Web Services, it becomes hard to keep track of how and where a certain

piece of data has been derived. This creates the need for data provenance support in

Web process execution in SOA environments.

As provenance support in service-based infrastructure is a relatively new area,

to our knowledge there axe no current standards for data provenance support of

Web Services. With reference to the literature discussion presented, it would seem

that every research group involved in the evaluation and analysis of any provenance-

enabled, service-based workflow system makes use of provenance infrastructure that

is specific to the domain requirements and scenarios of that research project. It

appears highly unlikely that different groups follow a similar approach during the

system design and development process. Table 2.21 outlines the evaluation of some

of the provenance systems based on a set of criteria. The criteria are based on the

provenance systems’ operational model and characteristics. It can be seen that the

predominant approach adopted by them is not truly representative of a dynamic

framework, and some research lacks either domain independency in terms of their

provenance data model or support for workflow re-execution. The criteria are set

to achieve the requirements for the provenance system modelling and development

in this thesis. Those requirements will be elaborated in section 3.2. The research

1Here, yj means the criteria is present, X means the critera is not present and — is unknown

Chapter 2: Literature Review 34

C him era CM CS ES3 m yG rid PASOA
Service-Based V X X V V

Domain Independent X X X X V
Abstract Composing of Workflow y/ — V X

Run-Time Recording V — V V V
Workflow Re-Execution V X X V X

Table 2.2: Provenance System Evaluation against a set of Criteria

presented in this thesis intends to meet all the outlined criteria.

2.7.1 Identifying Specific Tasks in a Provenance System

Having specified the use and benefits of provenance and the criteria for designing

a Provenance System, the next step is to specify the tasks that the user wishes

to perform, aided by the provenance system. These tasks will describe explicitly

the nature of the interaction between the user and the system. The design and

development of the system will depend on the specific tasks that are defined for the

system. We present different representative tasks that the user of a provenance system

might wish to perform. These tasks will illustrate the components required in the

design of a framework for a provenance system, particularly to provide the basis for

supporting the living document concept introduced in chapter 1.

1. A user wants to retain all the experimental information to have a complete

historical record. The first and the most obvious task would be to record three

aspects of the experiment; a) the resultant data sets, b) the processing steps

that led to the result data sets and c) the original input data sets and param

eters used. For example, a scientist processing a raw image data set would

Chapter 2: Literature Review 35

not only want to record the result data, but also the metadata on ‘what’ and

‘where’ about the tools, algorithms, instrument configuration parameters, and

the raw image data used to generate the result. For example, these are needed

to perform any re-executions of the procedures.

2. A user wants to browse all recorded details of previously performed workflow

processes. For example, revisiting previous experiments would allow a bio-

informatician to compare various protein sequence results to draw some conclu

sions and learn from history.

3. A user would like to annotate workflows with human-readable descriptions of

an experiment and the conclusions that were drawn from it. For example, if an

experiment is performed with several rims with different input parameters or

with updated original data every time, then the scientist might like to highlight

such details in a written report that would be finked to the experiment.

4. A user wants to validate a workflow, and wants to know if the experiment

still produces appropriate results. For example, a scientist may come across

derivation path information of an experiment run by a third party and wants

to repeat the experiment to check its validity.

5. A user wants to run a workflow process a number of times with different sets

of configuration input parameters. For example, rerunning an experiment more

than once would allow the scientist to search for a desired result, or to analyse

the results of multiple experiments.

6. A user may want to reuse the methods and steps of a previous experiment to

Chapter 2: Literature Review 36

reproduce exactly the same results.

These tasks illustrate several ways in which users might interact with the prove

nance system. Among the above tasks the first is the primary one as it makes possible

the other subsequent tasks. Having identified the key tasks that the user will perform

with the system, the next section presents a high-level model that illustrates how the

Provenance System may operate in an SOA environment.

2.7.2 Provenance Web Services

Recent developments in Web Services are leading to the emergence of platforms

to support virtual communities of e-services on the Internet. Incorporating a Prove

nance System as a Web Service would be advantageous so the system can be used

as a Provenance Service that provides the necessary “provenance” functionalities for

scientists performing experiments in an SOA environment. This way a Provenance

Service may be used as any other Web Services that enables invocations of desired

Web Services and records the provenance of such invocations.

In order to illustrate the interaction of scientific users with the Provenance Service,

we present our high-level architecture of a provenance support framework in Fig. 2.1.

This service-oriented framework is characterized by a client being able to request

provenance services from several service providers that host provenance systems.

The approach illustrated in Fig. 2.1 provides a high level of flexibility in selecting

the desired provenance service that satisfies the client’s requirements. This view is

consistent with the use of Web Services for discovering services, and for interacting

between the client and the service providers. Thus, the model view assumes that

Chapter 2: Literature Review 37

Provenance
Service 1 Workflow

Engine

Web
Service

Discovery

Provenance
Service 2Client

Other Web
Services

Process
Composition

Figure 2.1: Architecture of Provenance Web Services

there are a number of service providers of provenance services for process execution,

and each provenance system is exposed as a Web Service. The interaction procedure

for this model is as follows.

1. The client discovers one or more Web Services from the service registry.

2. The client selects the Web Services based on its inputs and outputs.

3. All the selected services are then composed by the client using the process

composition specification language that best suits him or her.

4. Like any other Web Services, the Provenance Service is also advertised in the

registry for discovery. The service provider would advertise its Provenance

Service along with its functionality, information about the workflow engine,

and the version of the language specification it supports.

5. The client would discover all the available provenance services, and then select a

provenance service that matches their requirements, assuming that the selected

provenance service is trusted by the client. The provenance service and the

Chapter 2: Literature Review 38

client may exchange information regarding the authentication details to enable

security measures. This enables the provenance service to provide a personalized

view of process provenance for the client.

6. A client wishing to capture the provenance of his/her process execution submits

the file describing the Web Services composition to the provenance service.

7. The Provenance Service is responsible for:

(a) Interacting with the workflow engine for the execution of the composite

workflow.

(b) Capturing the provenance of the process execution.

(c) Recording the captured provenance of the process.

8. The Provenance Service returns the final result data of the execution with the

process’s unique identification number informing the client that the processing

task is complete.

9. The client is allowed to browse and query the recorded provenance of the pro

cesses that s/he previously executed.

10. The client is able to validate previously-run processes, the incorporated Web

Services, and the returned output data through re-execution of the process via

its provenance. The client can also change the input parameters of the process

during re-execution to perform “what-if” analyses.

The above model is a hypothetical illustration of the functioning of the provenance

system as a Web Service. Current research and development in SOAs has enabled this

Chapter 2: Literature Review 39

model by providing the functionality of the coordinating entities in the model, namely,

Web service discovery and interaction. This includes providing the infrastructure for

Web Services registries, e.g., UDDI [78], providing the service access interface Web

Service Description Language (WSDL) [100], and an interaction protocol, such as

SOAP [101] at the communication layer. For composing independent Web Services,

composition languages such as Service Workflow Language (SWFL) [57] and Business

Process Execution Language for Web Services (BPEL4WS) [16] are widely used.

There is also an emerging acknowledgment of the need for negotiation, trust, and

measuring Quality of Service (QoS) which could eventually be used in deciding which

service to select in such an environment [41].

Although this thesis assumes an SOA infrastructure, it does not intend to focus

on issues relating to service selection and discovery in the model, which are ade

quately addressed by the current research and developments in industry, academia

and standards organizations [8]. Instead, this thesis addresses the question of how

data provenance support can be enabled within an SOA by using its infrastructure

and technologies, and focuses on the Provenance Service. The research presented in

this thesis mainly focuses on the provenance modelling and interaction of the Prove

nance Service. Provenance modelling refers to identifying the types of provenance

required about processes in an SOA forming a provenance representation model. In

teraction refers to the methods by which the entities in the model communicate; (1)

mainly the clients, the Provenance Service, and the workflow engine with one an

other to perform provenance capture during workflow execution and, (2) within the

Provenance Service for recording and querying provenance about the processes and

Chapter 2: Literature Review 40

re-execution of past processes.

2.8 Summary

In this chapter we have discussed the current applications and operations of prove

nance systems. The importance and use of provenance is seen in various systems and

application domains ranging from databases, to the Semantic Web, to workflow appli

cations. Our evaluation of provenance systems, particularly for workflow application

systems, suggests that either (1) they do not represent a domain independent and

service-based operational model, or (2) they lack essential features, for example, the

ability to use the provenance to repeat a workflow. Thus, some service-based prove

nance systems do not cater for re-execution of workflows. The focus of this thesis is

to design a provenance system that provides a domain-independent provenance data

model and also caters for workflow re-execution functionality within a service-based

environment. We have identified specific functionality for designing the provenance

system and presented a model for provenance services that is consistent with the use

of Web Services in an SOA environment.

In the following chapters of this thesis we present a provenance model for provid

ing provenance support characterized by the capture and recording of the provenance

information about processes, and use of the provenance of past processes in differ

ent ways within an SOA environment. As identified in this chapter, the two major

issues of (a) modelling the representation of provenance, and (b) the interaction re

quirements for the Provenance Service to provide the provenance support must be

addressed to successfully and practically enable provenance support for processes in

Chapter 2: Literature Review 41

SOA. The next chapter presents our provenance model that defines the architecture

for a Provenance Service to provide such provenance support.

Chapter 3

Provenance M odel for a Web

Process

3.1 Introduction

In a service-oriented approach to distributed computing, application resources

are regarded as services available on the network that, in collaboration, provide a

comprehensive and flexible system solution. Web Services research has provided con

siderable advances towards the service-oriented vision by allowing Web Services to be

automatically discovered and dynamically bound across organizational boundaries. In

addition, by assembling these individual Web Services into complex workflows newer

and more useful Web processes can be created. Web Services composition is an in

creasingly important theme in research into SOA for Grid. Although research into

various issues relevant to Web Services and Grid computing has deepened, retaining

the data provenance of the dynamically assembled Web processes in such an open

42

Chapter 3: Provenance Model for a Web Process 43

environment has not been adequately addressed.

In a service-oriented environment, the provenance of a piece of resultant data

not only accounts for the transformations that occurred in the original data itself,

but also of all the processing steps that lead to the resultant data. Discovering and

composing individual Web Services together to form a composite service representing

a workflow process in a current SOA can lead to a situation where desired end results

are obtained from such dynamically formed Web processes, but the explanations of

how we ended up with such results remain unknown. Without the knowledge of how

resultant data is obtained, and what it represents, it is impossible to assess its usage

and importance. In such a situation it becomes important to capture and record the

provenance that leads to the derivation of resultant data that would, for an example,

allow a user to study his or her past actions. The data provenance consists of the

entire processing history. This includes the identification of the origin of the raw

data sets, information on instruments that generated or recorded the original data

and the parameters that were set, as well as all the processes that have been applied

in the transformation of such data sets. Most research work emphasizes the semi

automatic or manual recording of data provenance and usually the provenance models

are specific to domains and research projects, thus making it difficult to apply the

models and algorithms to other application areas or to offer more general support for

data provenance. The subject of exploiting the recorded data provenance is explored

only to the extent that is required by the domain research project. Thus, as discussed

in chapter 2, although the significance of data provenance is being realized in many

projects, there is currently very limited architectural level support for representing,

Chapter 3: Provenance Model for a Web Process 44

recording and exploiting data provenance.

From our vision of provenance Web Services discussed in section 2.7.2, we have

developed the architecture for a Provenance Service that we present in this chapter.

The architecture provides support for provenance in service-based environment, and

incorporates provenance capabilities consisting of two main functionalities:

• The ability to collect and archive adequate provenance about the transformation

of data occurring during invocation of Web Services, for example, a composite

service executed via a workflow engine.

• Allowing the recorded provenance to be accessible and viewable via generic

browsers and manipulated though query interfaces. The architecture presented

in this chapter focuses on the requirements of the provenance data for complex

Web process execution from a user perspective. For example, how is the prove

nance information about a process collected, represented and recorded, and how

is the provenance data queried and reasoned with? It provides the capabilities

that help users by preserving adequate process provenance information for 1)

tracing the derived data’s origin and 2) exploiting and manipulating provenance

in numerous ways, such as the recreation and re-execution of a process. Our

architecture also provides flexibility to cope with different domains without af

fecting the underlying provenance recording and representation mechanisms.

3.1.1 Architecture Contributions

1. Added support for provenance in Web Services environments by representing a

provenance service implementation which can be discovered and consumed like

Chapter 3: Provenance Model for a Web Process 45

any other Web Services.

2. A Provenance Collection Service (PCS) that is capable of capturing and record

ing the provenance of a Web process. The PCS is able to collect the provenance

of all Web Services involved in a Web process execution.

3. Modelled the representation of provenance for a Web process that is captured

by the PCS. A predefined structure (the provenance schema) is utilized by the

PCS in order to represent the captured process provenance and record it in

the provenance database. The recording mechanism depends on the predefined

structure.

4. A Provenance Query Service (PQS) has been added to the model that provides

ways to query the archived process provenance data, allowing the documented

provenance to be viewed and navigated.

5. The PQS can exploit the archived process provenance by allowing the re

execution of the entire process by means of its retrieved provenance. This

means that the PQS uses exactly the same services and data as used during

a prior process execution, allowing verification of previously run processes and

associated services and data. The PQS allows, for example, the performance of

“what if” styles of analysis on past processes. In addition to this, it provides

tools for recreation and analysis of a process, e.g., to verify if the data sent from

a sender is the same as the data received by the receiver.

Chapter 3: Provenance Model for a Web Process 46

3.2 An Exam ple Scenario

In this section we present an example scenario that clarifies the vision of prove

nance Web Services as discussed in section 2.7.2. We have mentioned earlier in

section 2.6 various examples to identify system goals, but here we put forward an

example scientific process scenario that demonstrates the use of a process provenance

service. This example process is a common scenario for many astronomy applications.

1) Take the Telescope measurement
parameters. Input a set of parameters
to the numerical models to produce a
system generated signal data.

■— L

3) Repeat this process with
different parameters till the
result output comparison
and analysis with real data
is satisfactory.

Observed Real
Data

2) Compare the result
from the process with
the real data sam ples.

D ust Cloud M ode T e le sco p e Model

FFT Algorithm FFT Algorithm

Convolution

nverse FFT

Figure 3.1: Simple Scenario Example

Astrophysicists seek to gain a better understanding of astronomical objects and

events by comparing observations with the output of advanced numerical models.

Many research activities in Astronomy and other scientific disciplines are centred on

Chapter 3: Provenance Model for a Web Process 47

issues such as data representation, storage, retrieval and reuse of data and analysis.

Figure 3.1 presents a simple scenario in the astrophysics domain, where an astro

physicist analyses sample data collected from a telescope. The observed data from the

telescope is usually stored in some file system. An example of the observed data are

the celestial infrared signals from bodies in space such as a dust cloud that surrounds

a region of star formation. These observed data are compared by the astrophysicist

with mathematical models that are intended to represent the observed astronomical

object. The scientists would like to use various algorithms to compute the numer

ical models and compare the results with the observed data. For instance, various

different parameters, such as density, are used as inputs to the dust cloud model to

generate the model data. This data is then convolved with the telescope “beam”.

This requires the Fourier transform of the model data and the telescope beam to

be formed using a Fast Fourier transform (FFT) algorithm [80]. The two FFTs are

then multiplied together in a pairwise fashion and the inverse Fourier transform is

computed to give the final convolution which is displayed in a graph. A scientist can

then compare the observed data with the convolved model (which is what would be

observed through the telescope if the astronomical object was as described by the

numerical model). If necessary the scientist can then modify the model parameters

and compute a new model output, convolve with the telescope beam and compare

again the numerical results with the observed data. Repetition like this with dif

ferent parameters in the model allows scientists to perform “what if” analyses and

comparing allows the scientist to progressively improve the fit between the data and

the model. Figure 3.1 shows all these complex mathematical models and operations

Chapter 3: Provenance Model for a Web Process 48

combined together, representing a processing step in the data analysis followed by an

astrophysicist.

This example produces several “provenance” requirements. In this regards, this

section will first discuss a simplified list of the provenance requirements and in the

following section the provenance model is presented that provides the functionality

to meet these requirements. The requirements are discussed as follows.

Process M odelling: In any process support system, one of the key questions is

how to express the experimental process or compose the different steps in some way.

Process composition in an SOA is possible in two ways:

1. Static composition: use a description language to express the experiment process

that can afterwards be executed to generate the intended result, for example

using BPEL4WS to describe a workflow for execution.

2. Dynamic composition: This involves selecting algorithms or models and execut

ing one step at a time by retaining outputs at each step. In this case, selecting

the next step in the process may be based on the scientist’s observation of the

output from the previous step.

Although dynamism is preferable in terms of composition flexibility, in the case of

a large-scale and time-consuming data analysis a structured process construction is

desirable. Also, without initial abstract construction of the experiment, support for

workflow reusability is lacking. Even though both ways of process composition are

effective for modelling with the provenance model, given the intrinsic modularity

of the experimental process, static composition is preferable as it provides additional

information through an abstract process description. The composition language must

Chapter 3: Provenance Model for a Web Process 49

be structured, allow nesting and facilitate reusability. In addition, and on account of

the complex execution environment, the language must provide support for controlled

data flow between different steps and exception handling. Exception handling means

a reliable mechanism must be provided to cope with any deviation from the prescribed

behaviour, for example, by aborting the execution of the entire process. The language

must allow the identification and registration of external objects and programs to

the corresponding workflow execution engine. In the case of the astronomical data

analysis experiment, both the algorithms and astronomical data will be distributed

resources that are external to the provenance system and the execution engine.

It is assumed that the algorithms for the mathematical models are distributed

individual Web Services advertised in a registry, i.e., a UDDI registry. With the help

of available tools these services can be found by querying the registry, and depending

on the requirements specific services are selected and used in the experimental pro

cess. As mentioned in section 2.7.2, the discovery procedure relies on several service

requirements and criteria. Discussion of this area is not in the scope of this disserta

tion. After finding the location of the services that are to be used, the next step is

to perform some form of composition of the individual Web Services.

Recording, Q uerying and Analysis Capabilities: The astronomical data

analysis process result is a derived data product that cannot be interpreted and

recreated without provenance information describing the processing steps used for its

creation and the initial data used in the process. This leads to the main problem of

lineage tracking. Recording such provenance information answers typical questions

such as “which algorithms are used by process W”, “which process uses algorithm X”,

Chapter 3: Provenance Model for a Web Process 50

“which dataset is used to get result Y” and “which result may change if the dataset Z is

updated”. In addition, given the abstract workflow description, a subsequent analysis

of the provenance information may be used to evaluate whether the abstract workflow

description has been adhered to. Operations to propagate changes are required in the

system so that any changes can be reflected by re-executing the process, producing

new sets or versions of results. In the case of the resources being distributed, it

is rarely possible to rely on an automatic notification of changes from the resource

providers. The only way to get information about any changes or updates is either by

checking this at set time intervals or only when re-execution of the past experiment

is triggered. The derived datasets are often large, so the system should support

separate archiving of the derived datasets from the processing steps, but link every

program/algorithm with pointers to its associated datasets. This would be truly

useful in efficient data management if functionality is provided to track and retrieve

data dependencies amongst different processes.

The existence of a common terminology becomes crucial in the astronomy do

main in order to understand the traced lineage of data produced by a third person.

Definitions of common terminologies are emerging within each domain, e.g., Gene

Ontology in the biology domain aims to provide a controlled vocabulary that can be

used to describe any organism [38]. Such vocabularies use synonyms and the ma

jority of terms have a textual definition stating references to its source. In the case

of the Astronomy community, Unified Content Descriptor (UCD) is one of the vo

cabularies that is used and defines many core astrophysics units, measurements and

concepts [12]. These efforts are likely to be advanced to converge into a standard

Chapter 3: Provenance Model for a Web Process 51

with the recent service-oriented research in this domain [25]. An agreed common ter

minology helps in designing analytical tools and it is very useful for these tools to be

available with descriptive vocabularies. Re-execution of a previous experiment could

result in problems, such as an algorithm/service (tool) being unavailable or moved,

preventing the re-execution task. To avoid this, it is desirable for the system to have a

mechanism first to identify semantically similar algorithms that could be used so the

re-execution could be completed, and secondly select the one with fixed constraints

such as high throughput. The latter could be based on the requirement of processing

larger datasets.

3.3 Provenance M odel

In this section, a provenance model is proposed that integrates the client-server

and Web Services models. The provenance model shown in Figure 3.2 is driven by the

provenance collection service (PCS) that uses a workflow execution engine to enact the

pre-defined workflow by invoking the Web Services in the concrete workflow descrip

tion. The PCS is exposed as a Web Service with a client GUI interface for workflow

invocation, and is able to capture and record the workflow metadata. Thus, by inte

grating the client-server and Web Services models, the provenance model endeavours

to facilitate the capture of the necessary provenance data during the execution of

a distributed workflow. The model also provides a structured way of representing

the captured process provenance, which is then recorded in the provenance database.

The Provenance Query Service (PQS) in the model is used to access the recorded pro

cess provenance, allowing users to exploit the provenance information in a number of

Chapter 3: Provenance Model for a Web Process 52

ways. A Provenance Server is a server machine that hosts both the PCS and the PQS.

The model assumes that a mix of client-server and Web Service approaches can lead

to more flexible mechanisms for provenance support in a distributed service-oriented

environment.

□ □
Web Services

Workflow
Engine

T
E
R
F
A
C
E

Provenance Server

PCS

PQS

Figure 3.2: Provenance Model

Provenance
Schema

Provenance
Database

At the conceptual level, the provenance model operates by capturing the prove

nance of a Web process that integrates various Web Services (composed and submitted

by a user) by interacting with the execution engine to gather the provenance infor

mation about the Web process execution. The operation of the model is shown with

the scientific example scenario illustrated in section 4.2. When the scientist wants

Chapter 3: Provenance Model for a Web Process 53

to run a composed process and capture its provenance and the data passing between

the services, s/he initializes the concrete workflow description using the PCS. The

PCS acts as an interface that interacts with the workflow engine and documents the

Web process execution. This assumes that the scientist has previously decided to use

a specific provenance service based on his/her requirements, the capabilities of the

provenance service, and the level of trustworthiness of the service provider.

We have presented an overview of a provenance model to support provenance

recording for process execution. This provenance model combines the best aspects

of the Web Services model and the client-server approach by incorporating a Web

Service framework within the provenance system. Usually the scientist is responsible

for documenting the experimental process manually while performing the experiment,

and storing the large amounts of data generated in each step of the process. However,

here the PCS and PQS in the provenance model provides the infrastructure necessary

to build a Web process provenance collector and gives the scientist an automated

provenance recording and utilization mechanism. The key to the successful operation

of our model is the ability to interact with the workflow engine and capture and

record the provenance during process execution, and providing the ability to exploit

the stored provenance. In the next subsection, the identified components of a process

documentation are outlined and the representation of the provenance of a process is

discussed. Following this, the capturing and recording capability in the provenance

model is discussed. Finally, the query interface for browsing the documented process,

and the various functionalities it provides, are described.

Chapter 3: Provenance Model for a Web Process 54

3.3.1 Identifying and Representing Provenance

In chapter 1, it was stated that the provenance of a piece of data is represented in

a computer system by appropriately documenting the process that led to its creation.

In this section, the key elements that form the representation of provenance in an

SOA are introduced; further refinement will ultimately lead to data types for prove

nance representation in chapter 4. The documentation or provenance information of

a process that led to a data product is categorized into three types: involved services,

data and passed parameters, and the data flow arrangement.

Involved Services: The provenance of the Web Services that are involved refers to

the syntactic metadata that provides information about the location, description

and access information for an instance of a service. Dynamic information such

as time of execution and the state of the hosting machine or environment could

also be part of the service instance’s related provenance. This also includes the

types of inputs the service accepts and the output it returns. In addition, it

could also entail static information on service providers, for example provider

name, provider profile, physical location and domain information. Capturing

provenance about the services involved in a Web process is largely dependent on

what information is made available by the service providers about its services

and whether they are accessible to a provenance service. The instances of

services involved in a Web process are related to the data that are transformed

during their invocation instances.

D a ta and passed param eters: This refers to the original data that are being sup

plied to appropriate services for transformation and the parameter values that

Chapter 3: Provenance Model for a Web Process 55

are passed. Data also refers to the intermediate results that are acquired from

all involved services interacting with each other. Considering the example sce

nario in section 3.2, the telescope data and the model-generated data are the

original data that are being transformed, whereas the telescope setting values

and other values needed for the model data generation are the parameter data

passed to the services. This refers to the messages that are consumed and gener

ated by the involved services during execution. Documenting the intermediate

data, e.g., the data generated by the FFT algorithms in the example may be

unnecessary for re-execution but it provides additional support, for example, to

identify the point of failure in case of an incomplete process.

D a ta Flow arrangem ent: This is the actual arrangement of the composed services

to form a Web process that could be executed to generate the final result.

The information about how the services are finked to create the Web process

determines how the data flows through the process to create the result. A

workflow description language or scripts can be used to describe aspects of

the Web process, i.e., describing the sequence of the service execution at an

abstract level. Thus the file containing the workflow description is important

and its storage location is metadata that needs to be retained. This provides

an “abstract” workflow description outlining which services must be involved

in a workflow execution and in which order they should be executed. The

abstract workflow description may contain constructs for conditional execution.

For example, say service A is expected to output an integer data item (when

executed) that is described with a variable dv\. Say two cases are specified

Chapter 3: Provenance Model for a Web Process 56

in the abstract process description for d v (a) if (dvi > 100), than execute a

succeeding service B , and (b) if (dvi < 100), than execute a succeeding service

C. Due to such conditions, during the actual execution either service B or C

would be executed depending on the output from A, i.e., the value of dvi.

It is important to extract a “concrete” workflow description specifying the par

ticular service instances that were used in a particular Web process enactment.

Capturing links or relationships between the service instances is possible by

capturing the provenance information in a standard format - thus, automati

cally providing a concrete workflow description. A simple way to build links is

by capturing the interactions between services via the actual dataflow occurring

during the workflow enactment.

We further categorize the three components above to provide specific definitions

that determine various provenance elements in SO As.

Definition (service-Provenance) The provenance information of service instances

that are associated with the process; the service-Provenance must include information

that allows each service instance to be uniquely identified.

Definition (process-Provenance) The documentation of a Web process that con

sists of one or more service-Provenance items from services involved in the process.

It also specifies the links between the service instances in the process. A process-

Provenance must include information that allows a process instance to be uniquely

identified.

Chapter 3: Provenance Model for a Web Process 57

The three components mentioned previously form the basis for identifying the

elements of the provenance representation for process execution. It should be noted

that a given process-Provenance provides a representation of multiple pieces of data

produced by the involved service instances that ultimately represents the final piece

of data or result of a process. When a process-Provenance is created and recorded,

it captures the steps in a process in three parts: (1) a process as a whole that may

contain an abstract workflow description and manually-entered information about

the workflow and required data or parameters, (2) instances of independent services

involved in the process and, (3) the dataflow during the interactions between the

services instances.

In the context of an SOA, messages axe sent from one service to another during

interactions. Capturing the messages that are being sent between the services in

a standard form allows the entire process for the computation of some data to be

represented. With such information one can verify, recreate, re-execute, compare

it with similar executions, and evaluate the captured concrete workflow against the

abstract workflow, i.e., to determine if the workflow was actually executed according

to the abstract description. Describing such messaging between service instances is

at the core of documenting the Web process.

In our model, the workflow engine is the mechanism for executing a Web process.

The interactions of the services that are present in the composite service described

by the abstract workflow occurs through the workflow engine. We assume that the

engine is responsible for interacting with each service as specified in the abstract

Chapter 3: Provenance Model for a Web Process 58

Service B

Service AEngine

Figure 3.3: Interaction between Engine and Web services

workflow description.

Figure 3.3 shows how the interactions occur through the exchange of messages

between the workflow engine (i.e., Engine) and the two services (i.e., remote Web

Services). Here, the numbers represents the sequence of the interactions. The fol

lowing three assumptions axe made; (1) the Engine is an interface point of access

to a composite service (based on an abstract workflow description) exposed by the

underlying engine, (2) the composite service itself is a Web Service with an operation

or function that is invoked by a user to execute the process and, (3) the composite

service consists of services A and B (any data in the message received during the

interaction with A may be sent to B is as specified by the abstract description). This

demonstrates that any flow of data between the independent services as described

in the abstract workflow description takes place through the engine, and no direct

interaction occurs between the services involved in the process. The input data in the

message sent to a service during an interaction may be processed and transformed to

some output data by the operation or function (e.g., op2 of service A in Figure 3.3)

Chapter 3: Provenance Model for a Web Process 59

of the service.

The above assumptions are used to describe the process-Provenance that consists

of a set of service-Provenance; where each of the service-Provenance describes the

service instance in terms of (1) Service activity and (2) Message contents. Using the

Figure 3.3 example, how the flow of data occurs in the process is also established and

described via the Data link.

Definition (Service activity) A service activity refers to the function or operation

that is being performed by a service instance to accomplish a particular task and any

other dynamic information linked to the instance of this operation, e.g., execution

time [109]. It may also contain static information, e.g., service ownership [86].

A service may be able to perform one or more functions or operations, but here

it is assumed that only one operation is used for a service instance. This is because

only one operation can be processed at a particular service invocation. Alternatively,

a service referred to in a process may be using other services that are hidden behind

that service. Capturing provenance from such hidden services may only be possible

if they are provenance-aware, i.e., able to record messages exchanged through some

mechanism to the provenance database. Service activity should contain information

such as whether the service was invoked successfully.

Definition (Message contents) This is the contents of the messages exchanged

between the instances of services. A message contents consists of messages that are

Chapter 3: Provenance Model for a Web Process 60

inputs received and outputs sent by a given service for its particular instance.

Which messages are captured depends on the application domain that is perform

ing the message exchanges. Usually the structure and data type of such messages are

specified in the service description and are application-specific. We do not intend to

define or identify the messages that are exchanged, but simply aim to capture and

retain a copy of the messages that are being exchanged between two services. So,

the message contents may have the copy of the input and output data for a service

instance. A service may send data that is too large or considered confidential. So,

instead of the actual data, the service may send a pointer or/and other information

about the data.

Definition (D ata link) This forms a part of the process-Provenance that specifies

the link between the service instances in the process to identify the flow of data between

the services.

Links (flows of data) are established by the information obtained during the invo

cations of services in the process. A particular input/output data item for a service

instance must be associated with information that uniquely identifies the data. For a

service instance; (1) data received (inputs) from a particular service is the “source”

of this data, and (2) data sent (outputs) to a particular service is the “target” of this

data. The inputs and outputs contained in the message content are identified for a

service instance. It is essential to have information that dictates the source and target

(e.g., URL addresses) of a particular input and output data item, respectively. Apart

Chapter 3: Provenance Model for a Web Process 61

from this, a unique identifier for each input and output is crucial when determining

the flow of data between the services.

Service A

Service B

—d a
E ngine. Service A

Service. B

Keys

d = data item
i = ID inserted for the
data item

Services Data Link Input dataset Output dataset
Engine DL1 di— ii + source(User);

dz= 12 + source(User);
di=i4 + source(Service B)

di=ii + target(Service A);
d2=i2 + target(Service B);
4̂=14 + target(User)

(^service A} DL2 di=ii + source(Engine) Qi=iIX targel^rvice^J)
C^ervice Bl) DL3 source(Sgrvice A}>>

dz—ii + source(Engine)
d4=U + target(Engine)

Figure 3.4: Expressed data flow of services

As mentioned earlier, the flow of data occurs via the engine through the processing

of the abstract workflow description and no direct interaction between the services

occurs. Figure 3.4 shows how the flow is data is determined. The left-hand side

of Figure 3.4 depicts the data in the message exchange that are sent during the

interactions in Figure 3.3. The right-hand side of Figure 3.4 depicts the actual flow

of data during the interactions of the services with the engine. Here, let op be the

specific operation or function at each service that may transform a particular input

data into a particular output data. A unique ID i is inserted to represent a data

d. For example, the input data d2 and d3 in an interaction between the Engine and

Service B on the left-hand side of Figure 3.4 has unique IDs i2 and i3 respectively.

Chapter 3: Provenance Model for a Web Process 62

This illustrates that in our model, we denote the flow of data through the in

formation that uniquely identifies that data, and this flow does not happen directly

through interactions between the two services. For example, d3 identified with ID is

is the data in the message sent from Service A to the Engine during an interaction,

but the flow of d3 occurs from Service A to B via the Engine, as is expressed in the

diagram on the right-hand side of Figure 3.4.

Figure 3.4 displays the ideal case in our model for purely functional services, which

do not maintain persistent state across invocations. The same approach generalises

to persistent services: the data in an output message can be a function of the data

received (input message) at that instance of the service invocation. In the lower part

of Figure 3.4, is a table with a symbolic representation of the data flow expressed

for each service’s invocation instance. For each service invocation instance, the data

link information consists of the uniquely identified input and output data with their

source and target, respectively.

Using such information, one can easily navigate through, or recreate, the flow of

data that occurred in a process. For example, to identify the data link of output data

ds to determine its flow from service A to service B; (1) the target address of the

output ds in service A instance is identified as the address of the service B instance

for that process, (2) search for the input data d3 with ID z3 in service B, and (3)

match the source address of input data d3 in service B with the address of the service

A instance. A detailed discussion of how the flow of data is represented is given in

section 5.2.1.

Chapter 3: Provenance Model for a Web Process 63

Hence, data link information in the process-Provenance denotes the flow of data

between the services, whereas message contents in the service-Provenance denotes

the actual content of all the input/output data for a service instance. Such flows of

data are the core elements to reconstruct functional data dependencies in an execu

tion. Thus, the service-Provenance captures the activity and state of services and the

content of messages, and the flow of data established in a process forms part of the

process-Provenance and is associated with the service instances.

3.3.2 Capturing and Recording Provenance

In this section, a conceptual discussion is presented of the PCS component in the

provenance model. Our model, partly based on the client-server model, captures and

records documentation about Web process invocations. The mechanism to capture

and record provenance is part of the client application and the workflow engine. This

means that the independent and distributed services that may be invoked within a

process are not concerned with the documentation of its interactions with the work

flow engine during its lifetime.

In chapter 2, the notion of a Provenance Service was introduced that eventually led

to the provenance model. The documentation of a single execution of a Web process,

stored in a provenance database, is handled by the PCS of a particular provenance

service. Utilizing a provenance service helps make a workflow engine “provenance

aware”.

Now, we discuss the main theme of the model of how the recording is achieved via

interactions between components. Figure 3.5 illustrates different components within

Chapter 3: Provenance Model for a Web Process 64

the model and the interactions that occur between them. The PCS can synchronously

process the recording of provenance information in the provenance database. Because

of the limited control over the workflow execution engine, the interaction between the

PCS and the engine is carried out in a synchronous manner, meaning that once

the engine starts to execute the submitted Web process, the recording program is

prevented from doing any processing until the current execution completes. In other

words, upon sending a message, the sender PCS waits until the receiving engine

processes it and returns the result of the process execution. The workflow engine

upon receiveing the request processes the inputs and it is assumed that the partner

Web Services are invoked synchronously based on the abstract process description.

The provenance model provides a GUI interface for the PCS component that

acts as an interface to instantiate the process execution, and in turn activates the

PCS to capture and record essential and reusable provenance information about the

process. The PCS component makes use of the predefined structure to represent such

provenance and records it in the provenance database.

Adopting the synchronous approach shown in Figure 3.5, the provenance of a Web

process is recorded in two phases.

• Initially the collection begins with the submission of data, input parameters,

the process script file, and the URI address of the composite process through

the GUI interface. The PCS is activated and creates a unique identifier for the

process that is recorded in the provenance database. The recording program

starts collecting information received via the interface, labels it appropriately,

and stores it in memory along with the unique process identifier. Then it sends

Chapter 3: Provenance Model for a Web Process 65

GUI Interface PCS Prpysnanfifi-Dalabagfi Workflow Engine Web Service

send (input data)

final result

invokeProcess(input data)

submitProcess(identifier)

H
process result

k------------
submitProcess(result) !

u
request(copy:messages)

send(copy:m essages)_______ i________

getProcess(identifier)
 >
sendProcess(identifier)

k-------------------
submit(provenance)

request:m essage

copy: m essa g e

response:m essage
k---------------------

«r
copyim essage

-►r1-

Figure 3.5: Interactions between Components

a message to the engine to start the execution of the process, along with all the

required inputs. The PCS then waits for the engine to return the result of the

process execution. Once the PCS receives the result from the workflow engine,

it stores the result in memory and then returns this result to the GUI interface.

With this event completed, an internal thread is triggered within the PCS that

starts recording the captured provenance in the provenance database for the

given unique process identifier.

Chapter 3: Provenance Model for a Web Process 66

• The result returned by the workflow engine is the final result of the process

that is executed. As discussed in section 3.3.1, the engine itself acts as a client

that interacts with and invokes autonomous services incorporated within the

abstract process description. The data that are exchanged between the engine

and the services for a process are the intermediate data that need to be captured

and recorded in the provenance database in the standard format. An engine

plug-in is deployed that functions as a middleware service consisting of (1) a

data collector that locally records a copy of all the messages that are exchanged

during the engine’s interactions with the services involved in a given process,

and (2) a collector interface that provides an interface to allow communication

between the engine and the PCS component, for example, for querying the

captured messages. Once the procedure of returning the final result to the GUI

interface and recording it in the provenance database is completed, the PCS

starts to query the middleware service residing in the engine for the copy of the

recorded messages. The message copies are sent by the middleware service to the

PCS. The PCS then (1) gets the most recent (last recorded) process identifier

from the provenance database, and (2) records such intermediate messages of

the process.

The provenance model uses a standard structure to represent process documenta

tion to determine the approach that will result in the most effective recording. The

above discussion illustrates the operation of the PCS component of the provenance

model that is involved in recording the process documentation. However, simply

recording the provenance may not be sufficient for a successful provenance model.

Chapter 3: Provenance Model for a Web Process 67

The effective exploitation of the recorded provenance is as essential as its existence.

Without mechanisms for exploiting provenance information, the question of why we

need to record provenance would remain unanswered. Consider the case where a

process is required to be re-executed to check the validity of a dataset generated in

the past. In this case, in order to perform re-execution for validation purposes the

provenance recorded during the original execution must be enough for this task to

succeed. When re-executing past processes, using exactly the same data, parameters

and services (provided by the recorded provenance data) may result in a different set

of outputs which may be, for example, due to modified algorithms or services. This

may lead to various uncertain conclusions. The ability to provide appropriate and

effective explanations of the results generated from the re-execution task would give

a basis for any further actions that need to be taken. For example, by comparing the

intermediate outputs generated from the re-execution task with the original records

of the process, one can identify which intermediate data differs, i.e., it identifies the

service/s that is affecting the final output during the re-execution. Thus, various rea

soning on the recorded provenance involves querying and comparing information that

provides a certain level of explanation. In the following section we formalize the query

interfaces within the provenance model. This facilitates the use of the provenance

model in using recorded provenance in different possible ways.

3.3.3 Provenance Querying and Reasoning

We discuss the ability to reason about and exploit the recorded provenance of

a Web process in the provenance model provided by the Provenance Query Service

Chapter 3: Provenance Model for a Web Process 68

(PQS). As discussed above, this in turn forms the basis for subsequent use of the

provenance information for a workflow execution. The PQS supports two query in

terfaces: (1) the process provenance query interface through which the contents of

an identified process-Provenance can be retrieved, and (2) the provenance reasoning

query interface which allows the querying user to retrieve the provenance of applica

tion entities. In this section.we introduce these two interfaces.

Process Provenance Query Interface

To retrieve the actual process provenance that makes up the provenance of a Web

process instance, the process provenance query interface is used. This interface gives

direct access to the process documentation contents, by allowing the querying user to

search over, and retrieve parts of, the process-Provenance. Provenance query results

include the related service-Provenance data keys.

The process provenance query interface allows the querying user to perform the

following operations:

• Retrieve the unique identifiers for all the process instances.

• Retrieve the contents of a process-Provenance for a given unique process iden

tifier.

• Retrieve all the service-Provenance recorded, based on the unique identifier of

a service.

• Retrieve all the dataflow in the service-Provenance recorded with a given unique

process identifier or a service identifier.

Chapter 3: Provenance Model for a Web Process 69

The actual results of the query depend on the contents of the provenance database

to which the query is sent, because the query will only return data contained in that

provenance database, and on the access control restrictions placed on the querying

user by the database. As the amount of data returned may be large in volume, the

process provenance query interface should allow for the iterative retrieval of query

results. By this mechanism, a querying user should be able to process the results in

manageable chunks.

queryRequest(data) send(queryRequest)

reply(queryResults)

getResultQ

result(data)

display mechanism

queryResults(data)

PQSGUI Interface Provenance Database

Figure 3.6: Interactions between Query Components

In addition to this, the process provenance query interface consists of a query

display mechanism to transform the process provenance query results and to display

them to the user in a way that they can most easily process. The three main meth

Chapter 3: Provenance Model for a Web Process 70

ods of displaying the queried process provenance results are provided based on the

previously discussed query operations: (1) simple and structured textual display, (2)

tree display, and (3) a graphical display for recreating the high level behaviour of the

process.

Figure 3.6 depicts the interactions of the PQS with other components when used

by the querying user. Temporary storage is created locally at the PQS during a query

to handle the large query results appropriately.

Ideally, the process provenance query interface should allow more than the above

minimum operations, so that queries can be used to search for and retrieve more

process-Provenance data meeting different criteria, e.g., to retrieve all identitiers and

descriptions of process-Provenance of a particular type. The process provenance query

interface is not more fully specified in this thesis because there are a range of query

languages already available that can be used to query a set of stored data, and the

ideal one, and the different types of queries, will depend on the application domain

and the format of the process-Provenance.

3.4 Summary

In this chapter we have presented a provenance model that is driven by two com

ponents that supports provenance requirements in a Service-Oriented Architecture.

The PCS component performs the collection of data provenance about Web process

enactments, and stores it in a provenance database using a predefined provenance

data structure. The PCS forms the basis for specifying provenance about the re

sults produced from executions of processes in a service-based environment. There is

Chapter 3: Provenance Model for a Web Process 71

an established need for documenting the processing history of datasets produced in

such an environment, and this is a significant contribution of the provenance model.

The Provenance Query Service (PQS) provides querying interfaces with respect to

the provenance structure. Existing work on provenance recording frameworks in a

Service-Oriented Architecture provides a more distributed recording and storage ap

proach [55] where the services interacting with each other are responsible for recording

their interactions. The way this work is being modelled based on interactions suffers

from the disadvantage of requiring the creation of a very complex query to retrieve

a provenance trace (i.e., a process provenance) or other simple information. This is

due to the lack of an indexing mechanism in their provenance information storage

system. Our model incorporates a simple provenance representation and recording

mechanism to support the application of simple and effective queries on the stored

provenance.

This chapter has presented the functioning and provenance representation strategy

for Web processes of the provenance model. We have discussed the interactions

between the components of our provenance model.

The question that we have not addressed thus far is how the identified provenance

representation about a process can be modelled, that is the data structure used to

define each type of provenance. Thus, in the next chapter we first present the prove

nance model to define types of provenance about a process to produce a provenance

structure, and then discuss the provenance collection process of the PCS that allo

cates the collected provenance to the appropriate provenance types defined in this

thesis.

Chapter 4

Provenance Representation and

Capture in SOAs

4.1 Introduction

In chapter 3 we presented our provenance model that consists of a service for

enabling the capture of provenance in a standard form during the enactment of a

workflow or process in a service-oriented environment. The provenance model sup

ports the need for provenance handling capabilities by;

• Identifying the architectural need for automation in capturing the provenance

of workflows enacted in an SOA.

• Using a standard form to represent and record the captured provenance.

• Using a combination of the client-server model and the web service model to

capture and record provenance.

72

Chapter 4- Provenance Representation and Capture in SO As 73

The provenance model addresses the need for capturing and recording provenance

in a Web services environment by providing mechanisms for capturing, representing

and recording the provenance of workflows in a standard way. The key to our model

is its ability to automatically and accurately capture the provenance information of

enacted workflows in a standard form so that the concrete description of a workflow

can be retrieved using the provenance information.

In section 3.3.1, the representation of provenance was discussed, and the notion of

service-Provenance was introduced and defined as the captured provenance informa

tion of a service instance that pertains to a process. In addition, process-Provenance

was defined as an instance of a process composed from one or more service instances.

Two different constituents of service-Provenance were identified: service activity and

message contents. As part of process-Provenance, data link was also identified. This

section considers how these representations of provenance can be modelled, i.e., the

data structure used to represent each type of provenance is defined. Based on the

data models, a common structure is produced to structure the documentation of a

process in the provenance database.

The provenance collecting and recording functionalities of the PCS are presented

using the provenance model. These components were discussed in chapter 3, which

also focused on their interactions.

This chapter is organised as follows. Section 4.2 presents the provenance model

that is used to represent process documentation in a standard format. Having pre

sented the provenance structure, Section 4.3 discusses how this structure is used when

collection and recording is performed for a running or executed process (discussed in

Chapter Provenance Representation and Capture in SO As 74

Chapter 3).

4.2 Provenance M odelling

It should be noted that, in general, models used to represent provenance could

be defined in different languages, such as XML or RDF [87]. To depict the models, we

adopt the graphical representation of RDF schema which is also the method we use

to encode the structure to represent the documentation of a process. The models are

explained with a simple example data model to illustrate the process documentation

structure and use of RDF schema.

hasServicelnstance.http://myExample.com/BpelProcess/PR1 http://myExample.com/DustCloudService
T

description description

^ n /G enerates dust cloud model data with a \
Example process) I specified density and distribution function j

 s such as Gaussian y

rdf:type

rdf: predicate

description description

/G enerates dust cloud model data with
specified density and distribution function
v such as Gaussian /

rdf: Statement

hasServicelnstancehttp://myExample.com/BpelProcess/PR1 http://myExample.com/DustCloudService

Figure 4.1: Data model mapped to RDF statements of subject-predicate-object form

Exam ple data model: The top half of Figure 4.1 presents a data model denot

ing the asserted provenance for an instance of a process with a service and related

descriptions. This can be mapped to an RDF model that is based upon the idea of mak

http://myExample.com/BpelProcess/PR1
http://myExample.com/DustCloudService
http://myExample.com/BpelProcess/PR1
http://myExample.com/DustCloudService

Chapter 4- Provenance Representation and Capture in SO As 75

ing statements about resources in the form of a subject-predicate-object expression,

called a triple in RDF terminology.

The subject of an RDF statement is a resource, possibly as named by a Uniform

Resource Identifier (URI). Some resources are unnamed and are called blank nodes

(Bnodes) or anonymous nodes. They are not directly identifiable. The predicate is

a resource as well, representing a relationship. The object is a resource or a Unicode

string literal. In the lower half of Figure 4.1, the above example data model is mapped

to a simple RDF statement stating that a service, named DustCloudService, has been

invoked within a process named PR1.

------► :instanceOf rdfs:Resource
------► :subClassO f

rdfs: C lass rdfs:Property

pd: processProvenance pd:servicelnstanceProfile pd:hasServicelnstance

pd:hasDatal_inkpd:DataLink pd:description

pd:serviceProvenance sd:description

hasS ervicelnstance

http://myExample.com/BpelProcess/PR1 http://myExample.com /DustCloudService

uri:PR1
tes dust cloud model data with a \ q 3

specified density and distribution j <J> <
function such as Gaussian J g

g
CL

Figure 4.2: RDFS data model

Figure 4.2 is a graphical illustration of the process documentation schema modelled

http://myExample.com/BpelProcess/PR1
http://myExample.com/DustCloudService

Chapter 4- Provenance Representation and Capture in SO As 76

using an RDFS data model. Here, the instance PR1 is defined to be of rdf:type

pd: processProvenance, the DustCloudService instance is of rdfitype sd: servicePr-

ovenance, and properties are defined such as pd:hasServicelnstance, where pd and

sd are prefixes used to identify the URI of the process documentation namespace.

Thus in RDF, an English statement could be identified using URIs to identify:

• A process instance, e.g., PR1, identified by http: //myExample. com/BpelProce

ss/PRl

• Kinds of things, e.g., process provenance, identified by pd:processProvenance

• Properties of those things, e.g., the service instance and description, identified

by pd:hasServicelnstance and sd:description, respectively.

• Values of those properties e.g., Generate dust cloud... as the value of the de

scription property of DustCloudService.

The same approach is applied to document a process which invokes more than one

service by applying the property pd:hasServicelnstance. To incorporate the link

established between the service instances based on the flow of data in the process, a

property pd:hasDataLink is defined. The data link information for a process is asso

ciated with the service instances. This is the initial structure in which all the models

that are described later in this section are contained, i.e., a number of properties are

described to structure the documentation of a process . The structure allows the iden

tification of the context in which provenance capture of a service invocation is made

and its association with a process. The structure organizes the service-Provenance

in a manner that allows the provenance of a piece of data to be retrieved. Thus, the

Chapter 4- Provenance Representation and Capture in SO As 77

_____________________<______________________ l~ uri: rdf:type r(^ : Property

f h ttp://w vw .cs.cf.ac.U k/user/S .R igbhim daii/provenance/processId J
P ~ l> < g p77wwwIc5.cfac :uK7u s e r /5.R a]bhandart/p rovenance/p ro ... P ~ H " rdfs: do: domain 3 00 p d :p rocessP roven an ce

“j un rdfs:range rdfs:Literal

[http://vvww.cs.cf.ac.uk/user/S.RajbharKJari/provenance/serviceId j
f̂ fflp-.ffwŵ .ts.bT.ic.UWVjtfero.KaibhandarVpfovenahcefiaf... p ĵ-J "" rJfsTd

rdf:type 3 -4 ^ ^ rdf:Property

:domain H un: sd:serviceProvenance

N un; rdfs:range 3 rdfs: Literal

_ [http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/hasServiceInstance J-
(UfOp://www.C8.cf.ac.uk/u»er/S.Rajt>handari/provenance /h ag ...p -

i ur rdf:type ^ rdf: Property

datatype „ |
“ _*J seq u en ce of services in the p rocess

- L rdfs:domain ur,; pd:servicelnstanceProfile

^ L rdfs:range pd: processProvenance

Figure 4.3: Model for identifying service instance of a process

captured provenance of a process is recorded in the provenance database using this

structure.

4.2.1 Identifying the service-Provenance of a process

Each service-Provenance is defined in the context of a service invocation associated

with a process. A service activity consists of the operation and state of a specific

service instance, the message contents consists of the details of the data received and

sent by a service instance, and the data link contains information that relates a service

to other services to which data flows. Therefore, in order to model different parts of

service-Provenance and process-Provenance, first a way to relate service-Provenance

to a process must be identified.

http://wvw.cs.cf.ac.Uk/user/S.Rigbhimdaii/provenance/processId
http://vvww.cs.cf.ac.uk/user/S.RajbharKJari/provenance/serviceId
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/hasServiceInstance
http://www.C8.cf.ac.uk/u%c2%bber/S.Rajt%3ehandari/provenance/hag...p-

Chapter 4: Provenance Representation and Capture in SOAs 78

In Figure 4.3, we specify our model for referring to a process by a pd ip rocessld

and a service as a sd :serv ice ld , both as RDF properties. A process-Provenance

is identified by the address (URI) of the process which sends and receives interac

tion messages with involved services and the pd: process Id. A particular invoked

service is related to the process through the relationship pd:hasServicelnstance.

The service-Provenance is identified by the service’s address (URI location) and the

sd :serv ice ld . An instance (in RDF triple form) of this data structure must be

present for a process instance and every service-Provenance captured and recorded in

the provenance database.

Definition (Process Identifier) A process identifier is a globally unique value for

identifying a given process instance.

D efinition (Service Identifier) A service identifier is a globally unique value for

identifying each service instance associated with a process.

The unique IDs are universally unique identifiers or UUID’s and are generated

using methods that format UUID’s according to DCE UUID convention [6].

4.2.2 Identifying process-Provenance

Before discussing the constituent parts of service instances pertaining to a process

that is being captured and recorded, the PCS must also retain the information about

the abstract process description and its creator. As discussed in Chapter 3, this meta

information is useful for matching the concrete process that is documented with the

abstract process.

This meta-information is defined as RDF properties that exist in the pd:process-

Chapter +[: Provenance Representation and Capture in SO As 79

r on rdf:typc rdf:Prop«rty

http://www.cs.tf.iK.Uk/user/S.Rajbhandari/provenance/creator j________
;/̂ W ^ lt.aJC.UIWWffS.KajBMhaan^rOVfehiHtt/CK... p - H Fdfs: domain 3— (/ pd:proce»sProvenance]

^ u' rdfs:range jffiL rdf«:Literal

rdf:typ« f_un rdf: Property

http://www.cs.tf.ac.Uk/user/S.Rajbhandari/provenance/creatorID j
pd: processProvenancerdfs: domain

rdfs: LiteralB u rdfs:range

8 un: rdf^ype p— _y rdf:Property

http://www.cs.cf.ac.Uk/user/S.Rajbhanderi/provenance/abstractProcessLocation I
-i m n-i—a ■■■ -Ji______i_____■ m------1-̂rdts: domain pd. processProvenance

(H un rdfsrrange 101 rdfs:Literal

Figure 4.4: Model for an abstract process

Provenance domain and have typed values, e.g., rdfs:range literal as depicted in

Figure 4.4. The pd: creator may consist of the name of the abstract process creator,

and p d : creator ID is the unique identity given to that creator. The p d : abstractPro-

cessLocation gives the location of the file containing the abstract description within

the provenance database. The instance of the abstract description must be recorded

separately in the provenance database when the process is instantiated by the PCS.

Note that a process instance itself is a composite service, and thus conforms to the

service-Provenance structure, particularly the sd: ServiceActivity and sd : Message-

Content s that are discussed below. Therefore, in addition to recording the process-

specific information, the PCS must also record provenance-specific information about

the process in the context of a service.

http://www.cs.tf.iK.Uk/user/S.Rajbhandari/provenance/creator
http://www.cs.tf.ac.Uk/user/S.Rajbhandari/provenance/creatorID
http://www.cs.cf.ac.Uk/user/S.Rajbhanderi/provenance/abstractProcessLocation

Chapter 4■ Provenance Representation and Capture in SO As 80

4.2.3 Identifying service-Provenance

As described in Chapter 3, the PCS must record (and may exchange with the

invoked services) provenance-specific information relating to a particular process and

its constituent services for the process documentation to be usable when querying. For

example, the PCS must use a unique identifier and the address of a service for certain

interactions with the service. For this purpose, such information can be created during

each service instantiation and a fink created to the corresponding process instance.

(http
r w

r'~- 1 ~ ' ' r - ' fj uri: rdf:type

http://wvm.cs.cf.ac.uk/user/S.Rajbhandari/provenance/ServiceActivity
://www.cs.efjie.uk/u«ef/S.R»jbh>ndaryprovenance/S«r... p-}-) ~ rdfs:label

00 rdfs:Class

datatype ,
“ - I serviceActivity

N U1 rdfs:subClassOf 3— sd:»erviceProvenance]

-r rdf:type

http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/MessageContents

[Wittp://www.ct.cf.ac.uk/u»er/S.Rajbhandartfprovenance/Me~ 110 rdfs:label

■®: rdfs:Class

datatype „ I
“ " j M esiageContents

L" un rdfs:subClassOf Kun sd:serviceProvenance

Figure 4.5: Model for identifying constituents of a service instance

A service instance contains an sdiservicelD and a number of properties that

are defined within two categories of service-Provenance. These two parts of service-

Provenance are defined as being of RDF type rdfs:class, and are sub-classes of sd: serv-

iceProvenance, as depicted in Figure 4.5.

Identifying Service A ctivity

The class sd: ServiceActivity contains properties to define the state and service-

specific static information for a particular service instance, such as the service interface

http://wvm.cs.cf.ac.uk/user/S.Rajbhandari/provenance/ServiceActivity
http://www.cs.efjie.uk/u%c2%abef/S.R%c2%bbjbh%3endaryprovenance/S%c2%abr
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/MessageContents
http://www.ct.cf.ac.uk/u%c2%bber/S.Rajbhandartfprovenance/Me~

Chapter 4- Provenance Representation and Capture in SO As 81

URL and the start and end times of an interaction. Figure 4.6 outlines the structure

for representing such static information. The sd:wsdlURL contains the location of

the service interface, sd:serviceName contains the name defined for that service,

and sd:serviceOperationName contains the operation executed in the context of

the service instance. It should be noted that a service may have more than one

operation but only one is invoked for a service instance, and the PCS must be able

to capture and record this.

_ r i rdf:type un: rdf: Property

http://www.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/serviceName
— -!! rdf»:domain fa— [sd:ServiceActivity

un rdfs.range * u" rdfs:Literal

rdf:type

http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/wsdlURL
nce/ws... p = - | " rdfs:domain

tvp

J"
Ufi: rdf:Property

un sd:ServiceActivity

h ur' rdfs:range un: rdfs:Literal

g l 0,1 r e t ype rdf:Property

I http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceOperationName [
f u r t t p : ' / www.cs.cf.ac.uk/user/S.RajbhandarJprovenance/ser... p - - j ' rdfs: domain sd: ServiceActivity

g ur rdfs:range 3— m rdfs:Literal

Figure 4.6: Model for service activity

The PCS must also capture the dynamic information, such as the time of the ser

vice invocation made by the engine and the time it received the response. In a similar

manner, this structure is defined as shown in Figure 4.7. The sd:serviceStatus

must be assigned a value based on the response by the workflow engine in its in

teraction with the service. This type of dynamic provenance information must also

be recorded for a process instance by mapping the structure in Figure 4.7 to the

http://www.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/serviceName
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/wsdlURL
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceOperationName
http://www.cs.cf.ac.uk/user/S.RajbhandarJprovenance/ser

Chapter 4: Provenance Representation and Capture in SOAs 82

pd:processProvenance domain.

*' - ______ ■ _ J _ : _ f i uri: rdfttype

http://www.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/startTime

un: rdfrProperty

UI1 rMSTromaln B f l ^ »d:Se(viceActivity]

rdfsrrange M S ^ rdfs:Literal

http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/endTime t
rdfs:d

rdf:type H t*** rdf: Property

domain 5 m sd:ServiceActivity

*“ ur rdfs:range

&

H jr rdf:type

rdfs:Literal

1,0 rdf: Property)

http://ww w.cs.cf .ac.uk/user/S.Rajbhandari/provenance/serviceStatus
ww.c>.6T.ac.uWu»et,fS-Kajbbahd*rflftr‘6Vfett&hfcd78fef... p -J—I " rdfs:domafn ^— p * 1 s d : ServiceActivity |

un: rdfs:range rdfs:Literal

Figure 4.7: Model for Service Activity

Identifying Message Contents

Each service instance consists of inputs and outputs that are contained in the

messages exchanged during the interactions with the workflow engine. As discussed in

Chapter 3, a reply from an interaction with a service may not contain the actual data

but a reference pointing to them. Thus, the message contents are modelled in such a

way to support the ability to include: (1) a copy of the actual messages exchanged,

for example, a SOAP message; and, (2) specific data within the messages to identify

the dataflow. This section discusses the former, which is mandatory (particularly

for a process where initial inputs and the final outputs are necessary, for example to

perform a what-if analysis using the process). Note that the copy of a SOAP message

http://www.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/startTime
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/endTime
http://www.cs.cf

Chapter 4' Provenance Representation and Capture in SO As 83

may also contain attachments. We are not concerned with processing the messages

but only to with retaining a copy

__ r J rdf:type

(http://vwwv.cs.tf.ac.uk/user/S.Rajbhandari/provenance/inputDataset
[~V<fHp:/Jwww.c«.cf-ac.uk/u»er/5.Kajbhandari/provenance/lnp... p - H "' rdfs:dom

^ rdfs:Property

s d : MessageC ontents

- rdfs:range 3— (p 1 rdf»:Resource

____________________________ ■ p i 00 rdf:type S B . 0" rdfs:Property

I http://vwvw.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/outputDataset L Z _____________________
f ~ ~ L ^ «d:MessageContents

1 u' rdfs:range 3—4 1jn; rdfs:Rcsource

[http:

B 1 J g f l un: rdMyP* rdf: Property

http://vwvw.cs.tf.ac.Uk/user/S.Rajbhandari/provenance/inputContent j
n ^ my^~c>.cf.ac.tJfc7Us«ffS.KdJbMnaawpreVMlBeMnp.„ H~M IJI rdfs.domaln g H P ' sd:M essageContents

N w rdfs:range rdfs: Literal

f urt: rdf:Property"■ ' - . Z rdLtype]

http://vwwv.cs.tf.ac.uk/user/S.Rajbhandari/provenance/outputContent j ~
'.cs.cf.ac.uk/useryS.Rajbhandari/provenance/out.. ft- - rdfs:domain p— sd:M essageContentsUfttp://www.(

S 00 rdfs:range H L rdfs:Literal

Figure 4.8: Model for the I/O messages

First inputs and outputs are defined for a service-Provenance as RDFS properties

sd: inputDataset and sd: outputDataset, contained in domain sd:messageContents

and with rdfs:range resource depicted as in Figure 4.8. Using a blank node each

is linked to the input and output messages for a service instance, whose struc

ture is depicted in Figure 4.8, where two RDFS properties sd: input Contents and

sd: outputContents are defined that have rdfs:ranges literal within the sd : Message-

Content s domain. The literals must contain values that are copies of the actual mes

sages exchanged for a service instance during its interactions with the engine. The

http://vwwv.cs.tf.ac.uk/user/S.Rajbhandari/provenance/inputDataset
http://vwvw.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/outputDataset
http://vwvw.cs.tf.ac.Uk/user/S.Rajbhandari/provenance/inputContent
http://vwwv.cs.tf.ac.uk/user/S.Rajbhandari/provenance/outputContent

Chapter 4-' Provenance Representation and Capture in SO As 84

same must also be defined for a process instance as the process itself is a composite

service that consists of input and output messages.

A__i i rdf.type

[http://www.cs.cf.ac.Uk/user/s.rajbhandari/provenance/inputSourceIs
(~l/fittp://www.c».cf.ac.uk/u8eri».rajbhandariiprovcnancefinpii-

3— rdf: Property

rdfs:domain pd: DataLink

00 rdfs:range rdfs: Literal

rdf: type

[http://www.cs.cf.ac.uk/user/s.rajbhandari/provenance/inputId V

(1*fttp://www.cg.cf.ac.uk/user/s.rajbhandarifprovenancefinpu...)3-{-| jtffs;

un rdf: Property

domain 3 - ^ ^ pd.DataLink

L u rdfs.range ufl rdfs:Literal

rdf.type

http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputTargetIs

lffltp://www.cs.cf.ac.uk/u»ertS Rajbhandari/provenancefout.. — rdfs:domain

m rdf:Property

pd:DataLink

1 rdfs: range ^ rdfs:Literal

r- ur rdftype b— j un rdfProperty

1 http://www.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/outputId
[Hfttp://www.c«.cf.ac.uk/u*er/S.Rajbhandari/provenance/out.. ■j ur rdfs:domain f — Lufl pd.DataLink

' ur rdfs range 3— un rdfs: Literal le------------------

Figure 4.9: Model to identify the flow of data

4.2.4 Identifying Data Link

The context information to identify the flow of data conforms to the inputs and

outputs of the service instance, and the structure is shown in Figures 4.9, 4.10 and

4.11. As discussed in section 3.3.1, for a service instance, a message received dur

ing an interaction with the engine may contain data inputs from different sources.

Section 3.3.1 also described how data flow can be determined from such information.

http://www.cs.cf.ac.Uk/user/s.rajbhandari/provenance/inputSourceIs
http://www.cs.cf.ac.uk/user/s.rajbhandari/provenance/inputId
http://www.cg.cf.ac.uk/user/s.rajbhandarifprovenancefinpu
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputTargetIs
http://www.cs.cf.ac.uk/u%c2%bbertS
http://www.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/outputId

Chapter 4- Provenance Representation and Capture in SO As 85

rdf:type un rdf: Property

J http://www.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/inputName
f l ^ f t t p : / /w w w .o.cf.ac.uk/uter/S.Rajbhandari/provenance/inp... p - - rdfs:domain 3— [»d:inputDataset

*- J" rdfs.range ur’: rdfs: Literal

rdf:type

httD://www.cs.cf.ac.uk/user/S.Raibhandari/provenance/inDutTvpe j
(~ l^ jttp ://www.ct.cf.ac.uk/user/S.Rajbhandari/provenance/inp... p -f~ l ur rdfsrdomain

^ rdf: Property

uri sd:lnputD ataset

rdfs:range un: rdfs:LKeral

rdf:type

http://w w w .cs.cf.ac.uk/user/S.Rajbhandari/provenance/inputValue

1,11 rdf:Property

tttp:/ftwww.cs.cf.ac.uli'user/5.Ra}bhandarUprovenance/inp... {3 -= j~ rdfs:domain J sd inputDataset

L - rdfs:range 3— rdfs:Literal

Figure 4.10: Model to identify input data

Each input in such a message must be identified with sd: inputName, s d : input Type

and sd: inputValue of domain sd: inputDataset depicted in Figure 4.10. The sd: in-

putValue must have the actual data or parameters of the input message. In order

to provide the data link, each input data must be identified with sd: input Id and

sd:inputSourcels of domain pd:DataLink (Figure 4.9). The sd:inputSourcels

must contain the address of the sender of the data and sd: input Id must have a unique

identifier for that data. Similarly for sd:outputValue, the sd:outputTargetls and

sd: out put Id must have the address of the data receiver and the unique key, respec

tively.

The structure defined differentiates data from different sources and targets con

tained in the input and output messages for that service instance. By querying

and matching this information, particularly sd: inputld and sd: inputSourcels with

http://www.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/inputName
http://www.o.cf.ac.uk/uter/S.Rajbhandari/provenance/inp
http://www.cs.cf.ac.uk/user/S.Raibhandari/provenance/inDutTvpe
http://www.ct.cf.ac.uk/user/S.Rajbhandari/provenance/inp
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/inputValue

Chapter 4 • ' Provenance Representation and Capture in SO As 86

r rdf:type

J http://www.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/outputName
[U i t t p : / / www.cs.cf.ac.ukJuser/S.RajbhandarLfprovenance/out.. f t -H ~ rdfs: domain

un: rdf: Property

un sd:outputOataset

- rdfs.range ^ ~^ jiun rdf»:Literal

|~j un rdf:type rdf: Property

J http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputType j

p ld t t tp : j /www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/out.. f t - rdfs: domain *

H rdfs:range

J h t t

rdf:type

http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputValue
l^ittp:/Avww.cs.cf.ac.utduser;S.Rajbhandari;'provenance;out.. ft-(-j rdfs:domain ^

4 u rdfs:range

an sd:outputOataset

rdfs:Literai

un: rdf: Property

sd:outputOataset

m rdfs: Literal

Figure 4.11: Model to identify output data

that of the other service instances sd: output Id and sd: outputTargetls, one can

determine the dataflow.

Thus, during recording, the PCS must use the same unique identifier for a data

item that is received from one service (source) and sent to another service (target).

From this the flow of the data can be identified. Specially for this purpose, such

information can be created during each service instantiation and the data flow link

identified by comparing the data in an input message with all data in the messages

received from previous invocations.

4.2.5 Provenance Format (p-format)

Up to this point the architecture has assumed that the Provenance Database

contains a collection of RDF statements defining the documentation of a process.

http://www.cs.cf.ac.Uk/user/S.Rajbhandari/provenance/outputName
http://www.cs.cf.ac.ukJuser/S.RajbhandarLfprovenance/out
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputType
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/out
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputValue

Chapter 4• Provenance Representation and Capture in SO As 87

This collection can be viewed as a structure, or format, that defines how different

service instances are related to a process instance, and identifies how a piece of data

is derived from a process. Different RDF properties represent process and service

instance-specific provenance information as predicates in RDF statements. These are

structured in such a way that all the properties fink the information collected to the

appropriate pd:processProvenance or sd:serviceProvenance domain. Thus, the

PCS must record in the Provenance Database the provenance format (p-format) that

depicts a process instance with all its linked statements.

4.3 Provenance Collection Service

In section 3.3.2 a middleware service was introduced, and the interactions of the

PCS components in collecting and recording the provenance of a web process were

discussed. This section discusses the recording functionalities of the PCS supported

by the provenance server and the collection process of the middleware service.

4.3.1 Provenance Recording Interface

The PCS consists of a provenance recording interface for recording the prove

nance collected about a process in the standard format in the Provenance Database.

As discussed in chapter 3, recording occurs in two phases on the client side where

provenance is collected. In the first phase, information about the process invocation

itself is collected. In the second phase, information about the invocations of the ser

vices involved in the process is collected. The PCS provides an interface that collects

manually entered data about a process, and also initiates the process execution. The

Chapter 4- Provenance Representation and Capture in SO As 88

PCS also collects and records the input data and the resultant data returned by the

process. For a process composed of services a middleware component named the

Provenance Collector gathers data about each service invocations.

Dust Cloud
(op1)

Workflow
Engine

PR1

Start?

F in isliL

Y
PR1 Invoke— i i

3 ' '
5 » - > i
(/>3
? -

LLLL

>8 J.
1C o
<2 o

II2 O
IQ.I

« -----

Service?’ Invocations te mporary log file
<?xml vereion=”1.0" encoding="UTF-8"’ >
<Seivice4nstances>
<servicelnstance>
<invokeStep>1 </invok6Step>
<seiviceld> Dus*CloudS«vioe:upid:A360FC50-4412-11DB-86A8-B697014E3974</seiv!celd>
<S«viceActivity>

<serviceName>DustCloudService</serv]ceName>
<wsdHJRL>http://192.168.0.3:8080/axis/seivices/DustCloud?wsdl</wsdlURL>
<serviceOperationName>add</sefviceOperat>onName>
<startTme>Thu Aug 24 22:04:50 BST 2006</startTime>
<endTime>Thu Aug 24 22:04:50 BST 2006</endTime>
<secviceStatus=complete</sefvreeStatus>

</SaviceAc0vjty>
<MessageContents>

<inputContent> <soapenv: Envelope xm hssoapenv-http://schemas.xmlsoap.org/soap/envelope/
xsoapenv Header><soapenvBody><ns1 add xmlns nsl=" http://myExample.userguide.samples

soapenv encodingSiyle=http://schemas.xmlsoap.org/soap/eneoding/"><ns1:iT href='»d0"/><ns1:i2 href='W dr'/x/
ns1 yValuesxmuKRef id='1d0"soapenc:root=D“ xmlns soapenc-http://schemas.xmlsoap.oig/soap/encoding/"
soapenv encodingStyle-'http://schemas.xmlsoap.org/8oap/encoding/'' xsi type='Xsd:string' xmlns xsi="http://
www.w3.org/2001/XMLSehema-instanceaga ussi an <jmultiRefxmultiRef id-Wl” soaper.c root=D''
xmlns soap^' c=http://schemas.xmlsoap.org/soap/encoding/ soapenv encodingStyle-http://schemas.xmlsoap.org/
soap/encoding/' xsi type-Xsd:double' xmlns x s - http://www.w3.org/2001/XMLSchema-instance>0.45</
multiRefxmultiRef id='1d2" soapenc roc»=D" xmlns soapen c=http.//schemas.xmlsoaporg/soap/encoding/'
soapenvencodingStyle-http://schemas.xmlsoap.org/soa|Vencoding/'' xsi:type='Xsd:int'' xmlns xsi=http://www.w3.0fg/
2001/XMLSchema-instance">20</multiRefx/soapenv:Bodyx/soapenvEnvelope>

</inputContent>
<outputContent><soapenv:Envelope xmlns soapenv="http://schemas.xmlsoap.org/soap/envelope/

"xsoapenvHeaderx5oapenv:Body><ns1 dustdoudResponse xmlnsns: = http://myEx am pie.userguide.samples
soapenv encod;ngStyle= http://schemas.xmboap.org/soap/encoding/">< dustdoodRetum xsi type-Xsd:string"
xmlns xsi= http://www.w3.org/2001/XMLSehema-
instance >01,0.49024574000068366.0.4889043679023782,0.4875640903574317,0.4862249183597379,0.4848868628
557862,0.4835499347445665.0.48221414487746783,0.480879,0.50405818636,0.4795460230426269,0.</
dustdoudRetum></ns1:dustdoudResponsex/soapenv:Bodyx/soapenvEnvelope>

</outputContent>
</MessageContents>
</servieelnstance>....
</Servjce4nstances>

Figure 4.12: Asynchronous data collection for process execution

The example process PR1 in Figure 4.12 consists of two services, DustCloud and

FFT, that expose operations (methods) opl and op2, respectively. Dust Cloud ser

vice takes one data set (consisting of three input parameters) and produces one data

set as output. The FFT service takes two data sets (where d2 is an input parameter

set in the abstract process) and produces one data set. The dataflow is represented

by an abstract process that is executed by the workflow engine. Each service is in

voked by the workflow engine and the flow of data is mediated through the engine.

All invocations and dataflow activities during the execution of a process occur at the

http://192.168.0.3:8080/axis/seivices/DustCloud?wsdl%3c/wsdlURL
http://schemas.xmlsoap.org/soap/envelope/
http://myExample.userguide.samples
http://schemas.xmlsoap.org/soap/eneoding/%22%3e%3cns1:iT
http://schemas.xmlsoap.oig/soap/encoding/
http://schemas.xmlsoap.org/8oap/encoding/''
http://www.w3.org/2001/XMLSehema-instanceaga
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/
http://www.w3.org/2001/XMLSchema-instance%3e0.45%3c/
http://schemas.xmlsoap.org/soa%7cVencoding/''
http://www.w3.0fg/
http://schemas.xmlsoap.org/soap/envelope/
http://myEx
http://schemas.xmboap.org/soap/encoding/%22%3e%3c
http://www.w3.org/2001/XMLSehema-

Chapter 4: Provenance Representation and Capture in SO As 89

boundaries that appear between the start and finish of the process depicted in Fig

ure 4.12. Figure 4.12 depicts a Provenance Collector that collects required data about

the invocations of a process execution. The Provenance Collector asynchronously col

lects the messages exchanged during service invocation and other data relevant to this

invocation. This is done by intercepting and instrumenting Web service requests and

responses and writing information about the Web services to a temporary local log

file. The temporary log file is generated for a particular process execution and con

sists of data for all service invocations for that process. The Provenance Collector

is implemented as an Axis handler that is installed into the Axis-based workflow en

gine (application server) that is hosting the monitored Web process. This handler is

given control when the engine client application invokes a Web service to capture the

intermediate data produced for the process.

The time dimension allows the temporal ordering of the service invocations as

they occur, and makes local log file construction independent of the order in which

the invocations are propagated by the Provenance Collector. In the absence of a

single globally synchronized clock, we determine the time dimension by associating

a logical time stamp which is a counter, called process invokeStep, as an element for

each invocation. The central workflow engine maintains this invokeStep and assigns

it for each service invocation event as it occurs. The invokeStep is an integer that

has no relation to the absolute time. Each process has a “logical clock” that starts at

0 and incremented by 1 on each service invocation event. This sequences the service

invocations in the process example in Figure 4.12 as PRl-DustCloud-FFT as seen

along the time axis of the invocation chain.

Chapter 4 ’ Provenance Representation and Capture in SO As 90

Xml element Value
invokeStep 1
serviceName DustCloudService
serviceld DustCloudService:upid:A360FC5£U
InputContents copy of the input m essage
OutputContents copy of the output m essage*--------

</nsl:yValues>
<id="idO" xsi:type=
<id“"idl" xsi:type=
<id”"id2"xsi:type='

■"xsd: string" Gaussian/>
;"xsd:double" 0.45/>
xsd:int" 20/>

<nsl:dustcloudResponse>
<dustcloudReturnxsi:type-"xsd:string”>01,0
.49024574000068366,0.4889043679023782,0.48
75640903574317.0.48 62249183597379,0.484886
8628557862.0.483549934744C/
dustcloudReturnx/nsl:dustcloudResponse>

Subject Property Object
uri:DustCloudService uri:serviceName DustCloudService
uri:DustCloudService uri:serviceld DustCloudService:upid:A360FC50..
uri:DustCloudService uri:haslO uri:MessageContents:DustCloudService
uri:MessageContents:DustCloudServie uri:lnputDataset uri:input#DustCloud
uri:MessageContents:DustCloudService uri:OutputDataset uri:output#DustCloud
uri:input#DustCloud uri:input_1 uri:DustCloud#input1
uri:input#DustCloud uri:input_2 uri:DustCloud#input2
uri:input#DustCloud uri:input_3 uri:DustCloud#input3
uri:output#DustCloud uri:output_1 uri:DustCloud#output1
uri:DustCloud#input1 uri:inputld DustCloud:D1
uri:DustCloud#input1 uri:lnputValue Gaussian
uri:DustCloud#input1 uri:lnputSourcels PR1 :upid:9E526E10-A22A-11DB
uri:DustCloud#output1 uri:outputld DustCloud:D3
uri:DustCloud#output1 uri:OutputValue 01.0.49024574000068366,0.488.......
uri:DustCloud#output1 uri:OutputTargetls FFTService:upid:A9418090-A22A..

Figure 4.13: Service instance given by an RDF triple

The format of the temporary log file conforms to the service-Provenance XML

Schema. The temporary log file is part of the process execution and is placed in a

web-accessible location or URL. The URL location is specified in the configuration file

of the engine to place the log file in the given URL. This is queried and interpreted

by the PCS in the provenance server to record its contents into the Provenance

Database using the provenance-format (see the RDF provenance model discussed

in section 4.2). Figure 4.13 shows how a service instance (i.e., DustCloud service)

captured in the temporary log file is summarized with RDF triples by the PCS. The

data contained in the copy of the messages (i.e., SOAP messages) received and sent are

processed by the PCS to uniquely identify the input and output data in the messages

(i.e., unique values in properties input Id and output Id for each input and output

Chapter 4: Provenance Representation and Capture in SO As 91

value). The inputSourcels and output Target Is RDF property values are identified

for inputs and outputs for the Dust Cloud service instance as shown in the lower table

of Figure 4.13. Here, three input parameters are identified in the request message

received by the Dust Cloud service and one output value is identified in the response

message. It is assumed that the source and target are assigned with the unique IDs

of the corresponding service instances, and any data or parameter whose source or

target is either a user or set in the abstract process is assigned with the process’s

unique ID. Such processing of the messages is necessary to identify the source and

target as there may be more then one captured source and target for the data in

the messages that aids in indicating the flow of data in the process execution. For

example, in Figure 4.12, for the FFT service, d2 and d3 are contained in a request

message. Here, the source of d2 is assigned with the process ID as this is set in the

abstract process and d3’s source is assigned as the Dust Cloud service ID as this is the

output data from the Dust Cloud service. The algorithm that enables this processing

of the messages in the XML log file is carried out as follows:

1. For every service instance in the XML log file, the data in the elements input-

Content and outputContent are processed to extract and identify the input and

output values in the messages. This assumes the Web services have only sim

ple/primitive data types. In case of an application specific message or complex

types, the copies of the entire messages or values in the elements inputCon-

tents and output Contents of the XML file are recoded as literal objects in RDF

statements.

2. Each input and output is assigned a unique ID associated with that service

Chapter 4- Provenance Representation and Capture in SO As 92

instance.

3. For each input value of a given service instance check if any preceding service

instances’ output value matches to identify the source of this input. Similarly,

the target for each output in a service instance is identified. This is performed

using simple string matching. The IDs of the input data are overwritten with

IDs of the matched preceding output values. If the input values does not match

any of the output values of the preceding service instances, then a default value

(i.e., process ID) is assigned as the source. The targets for outputs are also

determined in a similar manner.

http://myExample.com/BpelProcess/PR1 — urthasDataLink-

uri: hasServicel nstance

http://myExample.com/DustCloudService

uri:processld

/#R1:upid:9E526^\
\10-A22A-11DB. y

uri: hasServicel nstance
uri:PR1

i
http://m yExam ple.com /FFTService

urth'aslO un:s®rvicel 1̂/DustCloudService,
upid:A360FC50.y

FTService:upid
18090-A22A.

uri:serviceld

uri:M essageContents:DustCloudService

uri:inputContents
urtinputDatasit t ^icutputContenta

uri:M essageC ontents:FFTService

uri:input#DustCloud

^Copy of Input - ^ uri:outputDataset
V . me^?gge J(C opy of Output I

V m essage J 1
uri:output#DustCloud

uri:inputDataset ___urkoutputDateset

uri:input#FFT uri:output#FFT

i

uri:inputld
I uri:inputSourcels uri:outputl

Q̂ustCloud̂ J :inputldl J

/PR1:upid:S
y j 0-A22A-

9E526E\
11DB..y

ustCloud!'
D3 //FFTService: upidv,

i9418090-A22Ay

uri:outputlc
-j. iuitinputSourcels i uri:outputTarge«s

urijutputTargetls

/DustCloudService/
yupid:A360FC50y

DR1:upid:9E526^\
\10-A 22A -11DB. .y

Figure 4.14: RDF instance representing the p-format for sample process PR1

http://myExample.com/BpelProcess/PR1
http://myExample.com/DustCloudService
http://myExample.com/FFTService

Chapter 4- Provenance Representation and Capture in SO As 93

h ttp ://m yE xam ple.com /B pelP rocess/P R 1

uri:processld

/^R1:upid:9E526^
\10-A 22A -11 D B .y

uri.hasDataLink

J*
uri:PR1

-uri:hasDataLink- I— -uri-uri:hasDataLink-

1
http://m yE xam ple.com /D ustC loudService h ttp ://m yE xam p le.com /F F T S ervice

uri:inputld uri:outputld_ uri:inputl uri:outputld
^ ___ uri:inputSourcels I uri:outputTargetls \ uri:inputSourcels ^ uri:outputTargetls
P I a m / t X I v ---------- ------------ k '+ p I a i i /j X/6ustC loudN I ^

v - q l - 4 Z
PR1 :upid:9E526E

V 10-A22A-11DB..y

UStCIOUcF
D3

ustCloucP
D3 J . eustClou

D4

FFTService:upid:
\9A18090-A22A...

/DustCloudService
^upidA360FC5O.

/pR 1:upid:9E 526^
'x 10-A 22A -11D B .y

Figure 4.15: Representation of hasDataLink property in the p-format for sample
process PR1

The recording via the PCS is designed to be synchronous so that process-Provenance

and service-Provenance is recorded to the selected Provenance Database after the

completion of the process execution. The process-Provenance and its related service-

Provenance (or a p-format) are stored in the Provenance Database as an RDF “model”

identified with a unique name that is the same as the globally unique identifier cre

ated for that process. This allows, for a given unique model name, the p-format for

the process with that identifier to be retrieved. The Jena Semantic Web Toolkit [36]

for the Java platform was used to create and record such an RDF model representing

the p-format. In Figure 4.14 an RDF instance representing the provenance format

for a part of the example process PR1 (Figure 4.12) is depicted and shows how the

resources are connected with properties defining relationships between the two ser

vice instances. These statements represent the process-based view that can also be

http://myExample.com/BpelProcess/PR1
http://myExample.com/DustCloudService
http://myExample.com/FFTService

Chapter 4' Provenance Representation and Capture in SO As 94

related to a data-derivation view. The hasDataLink property is defined to establish

a direct map to the datasets of the service instances in the process. Figure 4.15 shows

how the hasDataLink is used in the p-format to provide a map to the datasets of

the services instance. Here, the RDF statements representing the datasets are not

repeated to assign the data fink for that process, but additional RDF statements are

created that map the data link for the process directly to the datasets. This allows

direct access to the necessary information when constructing the dataflow between

the services within the process.

4.4 Summary

This chapter first discussed our proposal to model the provenance of a service-

based application. We presented a model for how process-Provenance and service-

Provenance, and the data contained in them, can be identified, as well as a model of

dataflow that is separate from the interactions between the engine and the services.

The use of RDF triples was proposed, together with the vocabulary of properties

that expresses a process instance and the service instances contained in them, and

the relationships in intermediate data of the process instance. The complete struc

ture with the collection of RDF properties that facilitates the specifications of the

provenance data for a process is viewed as the provenance format or p-format. The

provenance format provides a common knowledge base to represent the provenance

about an enacted process so the PCS and PQS can utilize this common p-format for

recording and querying the provenance information, respectively. The RDF schemas

for both the service-Provenance and process-Provenance (i.e., p-format) are attached

Chapter 4■ Provenance Representation and Capture in SO As 95

as Appendix A, and have been checked using a trial version of Altova SemanticWorks

tool [15] for validity and well-formedness.

The PCS is also been discussed in this chapter, particularly the Provenance Col

lector that intercepts the intermediate data produced by service invocations for a

process execution and records them in a temporary XML log file. We demonstrated

with an example process how the XML log file is processed by the PCS to map the ser

vice instance data to RDF triples of p-format, and discussed formulating RDF triples

to represent the data link associated with the process. The service-Provenance XML

schema is attached as Appendix B of this thesis, and was created using the XMLSpy

tool [14].

In summary, we have presented a provenance representation model for an SOA

that is referred to as the p-format. We have also discussed the provenance recording

interface of the PCS component, focusing on the functionally of the Provenance Col

lector that collects service invocation logs for processes and how this is mapped to the

p-format standard that includes the data link information, so as to record it in the

Provenance Database. Having addressed the provenance representation standard and

recording needs in an SOA, we now focus on the provenance query requirements to use

the recorded provenance about processes by specifying the functional requirements of

the query interfaces of the PQS.

Chapter 5

Provenance Querying and A nalysis

Tool

5.1 Introduction

Chapter 4 discussed the Provenance Query Service (PQS), and introduced the

functionality of its query interfaces: (1) the process provenance query interface; and,

(2) the provenance reasoning query interface. In this section, the functional require

ments of the process provenance query interface and the provenance reasoning inter

face are specified. The query interface provides support to query RDF data using

SPARQL [43].

96

Chapter 5: Provenance Querying and Analysis Tool 97

5.2 Process Provenance Query Interface

The process provenance query interface is used to retrieve the documentation of a

process that makes up the provenance of a workflow result. The process provenance

query interface provides access for the user to perform two types of queries on the

selected provenance database:

• retrieve all the identifiers and descriptions for all the process provenance in the

provenance database.

• retrieve a process provenance with a specific identifier provided by the querying

user.

This allows a user to access globally unique identifiers and descriptions of all the

process instances present in the provenance database, so the user can identify and

retrieve the p-format for a specific process. The retrieved p-format provenance data

that describes a process instance can be used to:(l) construct a process provenance

graph to visualize previously executed process in a way that the querying user can

interpret appropriately; and, (2) re-execute the process to verify the result of the

execution instance for that process.

5.2.1 Process Provenance Graph Construction

Constructing a graph of activities after their occurrence is important because it

allows a user to reason about the high level behaviour of the workflow and the in

terconnection between services and data flow within and across a process. In this

section we describe the algorithm by which provenance graphs can be constructed

Chapter 5: Provenance Querying and Analysis Tool 98

from a p-format describing the series of tasks performed during a process instance.

The p-format that is queried with a given unique identifier is based on RDF triple

statements. Given access to the process execution instance containing all the state

ments (i.e., a process-Provenance and one or more service-Provenance instances), it

is possible for the PQS to construct the process graph for the execution. A process

graph reconstructed from provenance data may be represented as a directed acyclic

graph. The nodes of the process provenance graph are services and data sets form

the edges representing the dataflow (within the workflow engine and according to

the abstract process description). Thus, the edges, according to their direction ar

row, represent data consumed or produced by that service. Additional information

present in the service instances are represented as attributes of the nodes and edges.

Thus, the algorithm to construct a process provenance graph using the p-format is

similar to an algorithm used to construct a graph given a set of node-edge pairs. Given

a retrieved p-format for the process, the process provenance graph is constructed by

identifying the service instances and the data link between them (as formulated and

discussed in chapter 4). Suppose that, for a given process instance’s unique identifier,

we query a set of service-Provenance instances (S P I) and each service-Provenance

instance sp have a set of inputs I and outputs O as follows:

sp i = {sp1y 2, . . . , sp}

I = {spini, spin2, . . . , spinm} O = {spoti, spot2, . . . , spotQ}

where each sf(l < i < n) is a service instance that has spinj(1 < j < m) and

spotk(l < k < o) as the inputs and outputs respectively. For the purpose of con

structing the process provenance graph, a service instance sp and its inputs spin and

outputs spot are represented as follows:

Chapter 5: Provenance Querying and Analysis Tool 99

sp = (sn , sid, sw , sop)

spin = (inm , zt, iv, iid , isr) = (on, ot, ov, oid, otg)

where sn is the service name, sid is the unique identifier of the service, sw is the WSDL

location, and sop is the service operation. For each input of a service instance, inm

is the input name, it is the input type, iv is the actual input value, iid is the ID

for the input, and isr is the source of the input. Similarly, for the output, on is the

output name, ot is the output type, ov is the actual output value, oid is the ID for

the output, and otg is the target of the output. We refer to these components using

the notation, that is, sp.sn refers to the service name of sp and spin.inm refers

to an input name for the service instance sp.

Our task of constructing a process provenance graph from this information is a

two-step procedure. First, nodes (i.e., rectangular boxes) are constructed referring

to the service instances, and identified by service name and the other components.

Thereafter, edges are constructed corresponding to the nodes by referring to the

components of the inputs and outputs of the service instances. These two steps are

discussed as follows:

1. Construct graph nodes for all the sp. The process provenance graph algorithm

will first query all the service instances for a given process instance and create

nodes that are displayed as rectangular boxes with all the components of the

service instances. Constructing nodes is a straightforward process. The follow

ing procedure explains how this is performed by a part of the process graph

algorithm:

Chapter 5: Provenance Querying and Analysis Tool 100

variables: S P I = sf, • • •»s£}> Node,

1 SET Node to an empty set

2 FOR each sf (1 < i < n)

3 Node = createNode(s? .sn , s?.sid, s?.sw, s?.sop)

4 RETURN Node

The algorithm will first traverse the set of service instances and create a node

for each by attaching all its components, e.g., service ID that allows each node

to be uniquely identified (line 3). This process continues until all the nodes are

created.

2. Determine and construct graph edges connecting the nodes. In order to construct

the edges that connect the nodes (created in Step 1) to depict the high level

behaviour of the process, it is necessary to traverse the inputs and outputs of

each service instance. With reference to Figure 3.4 of chapter 3, we produce

Figure 5.1 as an example to explain this step. In Figure 5.1, the three service

instances are represented with their corresponding unique IDs. It is assumed

that the unique IDs of the service instances are used as the values to represent

the corresponding source of an input and target of an output. Consider the

service instance Service B uniquely identified with ID ServiceB_uid:3 and

having two spin (i.e., input data), d2 and d$. The inputs have spin.iid (i.e.,

input ID component) with values i2 and i3 respectively, and spin.sr (i.e., input

source component) values Engine_uid:l and ServiceA_uid:2, respectively.

Chapter 5: Provenance Querying and Analysis Tool 101

Engine_uid:1 ServiceA uid:2

ServiceB uid:3

target = ServiceB_uid:3
Id = /2

target = serviceB_uid:3

source = serviceA uid:2
Id = i3

source = Engine_uid:1
Id = i2

Figure 5.1: Representation of data links of service instances within a process instance
by identifying each input and output for a service instance with its source and target,
respectively, and the data IDs.

Each input’s components, specified in each service instance Node sp, are used to

determine which service instance Nodes created in Step 1 match as the source

of the input for that Node sp. This constructs a link between the two service

instance Nodes. That is, the process graph algorithm performs the following:

Chapter 5: Provenance Querying and Analysis Tool 102

variables: Node = {sf, sf, • • • > <$£}, I = {spin1, spm 2, . . . , spinm}, O = {spoti,

spot2, . . . , spot0},i£d<7e

1 SET Edge to an empty set

2 FOR each s? (1 < i < n) where, n= number of nodes

3 targetNode = getNode{^.sid, sf .sn)

4 FOR each s^inj (1 < j < m)

5 IF {s?inj.isr = = s?,.sid, 1 < ir < n }

6 THEN IF {{si-.sid = = sP,otkr.otg & s^irij.iid == s?,otk>.oid, 1 < A;' < o)}

7 THEN src = s?,.sid & trg = s^.sid

8 data = si^inj.iv

9 sour ceN ode = getNode(src, sj.sn)

10 E'dge = createEdge(sourceN ode, targetNode, data)

11 DISPLAY ATode & £d#e

12 STOP

where sPinj.isr = sP>.sid means that each input source value for a Node (£ar-

getNode in line 3) is compared with the sp.sid of all the Nodes and must be

equal to one of them (line 5). For example, if an input d3 of a particular service

Node ID = ServiceBjuid : 3 has source = serviceA.uid : 2, then a Node with

the ID serviceAjuid : 2 is selected at this stage as a source Node. Once a

matching source Node is selected, sp.sid = s^,otk>.otg and s^inj.iid = s%,otkt .oid

expresses the fact that the service ID and the input ID for that targetNode must

Chapter 5: Provenance Querying and Analysis Tool 103

be equal to one of the output target and ID values of the matched source Node

(line 6). For example, the input data d3 of the Node ID =ServiceB juid : 3

has input ID = i3, then the Node ID = serviceAjuid : 2’s output with target

= ServiceBjuid : 3 and ID = i3 confirms that the source of this input data is

Node with ID = serviceAjuid : 2. The edge is constructed with the identified

source and target nodes for that data (line 10). This is a fairly straightforward

process, assuming that the algorithm handles any duplicate edges that may

occur during the edge creation and display.

The above descriptions explain how a process graph is constructed with the prove

nance information structured using the p-format. A graphical representation of an

executed process created in such a way can be used for a visual comparison with the

abstract process description. This enables what was planned to be compared with

what actually happened after the enactment of a process. This is useful, particularly

when the abstract process description contains conditions such as switch, as discussed

in section 3.3.1.

5.2.2 Process Re-Execution

Re-execution is a way of verifying the data product derived from a process execu

tion. Re-execution of a past process mainly serves two purposes:

1. To verify if a result is still up-to-date, meaning whether the information in an

input data set used by the process has been updated with new data. In many

scientific domains existing data are updated in a database with new data based

on recent research findings. In this case, any results from experiments that

Chapter 5: Provenance Querying and Analysis Tool 104

were run using the old data may be considered worthless and execution with

the updated data becomes desirable in many cases. Such execution may be

recorded as a new run of an experiment. Re-execution will either verify the

original result, or generate a different result - indicating that an input data

set has changed. The provenance database can then be updated with the new

result data.

2. To perform a “what-if” style of analysis on the process by changing the input

parameters, and setting the algorithm inputs of the services, to investigate

interesting results.

In this section the way in which a process can be re-executed given its provenance

information is discussed. The re-execution can be performed based on the constructed

process provenance graph that defines the “actual” process or by making use of the

“abstract” process description. We propose the later as one of our aims is to analyze

the process with varying input parameters, which provides the flexibility to make use

of any conditions within the abstract process that may produce interesting results

from reruns. Such reruns may be recorded, if necessary, in order to produce a process

provenance graph for a high-level comparison of different runs (i.e., with different

input parameters) of the same process.

5.3 Provenance Reasoning Query Interface

The provenance reasoning query interface accepts a provenance reasoning query

request and responds with the provenance reasoning query results. A provenance

Chapter 5: Provenance Querying and Analysis Tool 105

reasoning query request defines a search for the provenance of an application element,

and the provenance reasoning query result represents provenance for invocations of

that element at different instants in time. The query results for an element must

be associated with a particular instant in time because the element may have been

invoked at a number of different times by different processes. For example, a service

element may have different provenance for its invocations within different workflow

enactments that happened at different times. For this reason, the provenance for an

element must start at a particular instant in time. Thus, the provenance database may

contain the records of various process instances with the same elements of different

instances. In our recording model, the p-format about a process enactment may

be recorded any time after completion of the process enactment. The time instants

recorded in the provenance database are the start time and the end time of the process

that was captured during its enactment.

Provenance reasoning query request consists of two parts: the query data command

and the query data filter, that are discussed as follows (as depicted in Figure 5.2):

Definition 6.1 (Query D ata C om m and) The query data command searches over

the contents of the provenance database in order to find the records of a specific el

ement for which the querying user wants to retrieve the provenance at a given instant.

Definition 6.2 (Query D ata F ilter) A query data filter is the set of criteria specified

by the querying user in order to include only the required information in the reasoning

query results. For example, specifying if any given element in a process provenance

Chapter 5: Provenance Querying and Analysis Tool 106

should be included in the query result, constrains the reasoning query results.

1 pqs:ProvenanceQueryService

pqs:ProvenanceReasoningQuery Eh- pqs:QueryDataCommand

pqs:QueryDataFilter

Figure 5.2: Provenance Reasoning Query

5.3.1 Query Data Command

The query data command allows provenance questions such as “What is the prove

nance of element service S at instant I?” to be posed to the provenance database. It

provides the user with an identification mechanism so the element is identified in a

way that the provenance database can interpret. From the perspective of the PQS, a

query data command defines a search for process-Provenance and service-Provenance

data items in RDF statements in the process documentation. A query data command

is made up of:

• A search over the p-format for the instances where an element may occur.

• A search over the contents of the process-Provenance or service-Provenance to

retrieve the data items which are the provenance records of the element.

All the RDF statements belonging to a process instance containing the process-

Provenance and its related service-Provenance are parts of the p-format represented

Chapter 5: Provenance Querying and Analysis Tool 107

as an RDF model in the provenance database. Thus, a single search over the p-format

can be performed to include any object or subject of RDF triples. The querying user

specifies each part of the search as follows:

Identifying Instan ts

Following the formulation of provenance in a system based on the service invoca

tion instances obtained from processing an abstract process, described in chapter 3,

there are ways in which to identify a recorded instant in the past:

• The instant at which a process is invoked.

• The instant at which a service is invoked.

These are apparent in the process-Provenance and service-Provenance of the p-format.

Note that there are one or more instances of a service and each is associated to a

process instant. The searches in the p-format are as follows:

• On the properties of a process-Provenance.

• On the properties of a service-Provenance associated with a process-Provenance.

The identities of the services involved in the invocation of a process are apparent

in the service ID, service name and WSDL URL properties of the service-Provenance.

The services’ association with a process is apparent through the hasServicelnstance

property.

Chapter 5: Provenance Querying and Analysis Tool 108

Identifying Data Items

The element for which the querying user wants to find the provenance must be

present in the process-Provenance or the service-Provenance in order for the PQS to

find it. The p-format defines the copies of the actual messages for a service instance

in the properties inputContents and output Contents, as discussed in section 4.2.3.

The element may not always be present as an exact copy of the data itself, but may

instead appear as a reference or be inferred by application-specific structures in the

p-format. For example, an application message may specify a filename to refer to a

data item contained in it, instead of the data itself, and the querying user may wish to

get the provenance of the data, rather than the file. It is therefore dependent on the

preferred query language the application uses to query application-specific messages.

The query data command includes a search over the contents of p-formats in the

database to retrieve the data items that comprise the documentation of the element.

This search is expressed in a particular query language. The PQS supports query

languages for the RDF data language, as RDF is our default data structure to docu

ment a process. However, application messages may have used a different format, so

the PCS may have recorded the data language of the actual messages differently. For

example, SOAP messages (in XML format) require a different query language, such

as X-Path [88], if it is necessary to retrieve application-specific information in the

messages. Therefore, a query data command may specify a query language mapping

between the data language used for a p-format and the data language required for

the search.

Chapter 5: Provenance Querying and Analysis Tool 109

Definition 6.3 (Q uery Language M apping) Query Language Mapping defines how

to transform one data language to another data language to support the search with

a given query language.

In our case, as the default data language used is RDF, any search with a query

language other then RDF is handled with a combination of queries, as discussed in

the next section. For example a search with an X-Path query langauge requires first

the relevant p-formats in the XML language to be retrieved, and then the search is

executed on this.

Com bination of Provenance Queries

Primarily a p-format represents a process instance that consists of process-Provenance

and its associated service-Provenance. A provenance database consists of one or more

p-formats defining different process instances. A query data command is a search for

an element within this provenance database. In many cases it may be appropriate to

express the query data command as a combination of provenance queries, i.e., results

from one provenance reasoning query are searched over by another provenance rea

soning query. The query data command is identified as the search to be performed

for a given element and the range of p-format or data over which it will search. This

data is referred to as the p-format source, and can have one of two possible forms, as

depicted in Figure 5.3.

• The contents of the provenance database that consist of process instances as

RDF models. That is, each RDF model is the provenance about a process

Chapter 5: Provenance Querying and Analysis Tool 110

represented in a p-format.

• The results of another provenance reasoning query that can be in the p-format

form of either RDF statements or XML.

Definition 6.4 (P-Form at Source) A p-format source is the expression of the data

over which a search for an element is executed.

P-Format

XML Element

pqs:PFormatSource pqs:RDFModel

Figure 5.3: P-Format Source Model

Query D ata Command Model

The model showing the query data command is presented in Figure 5.4. The

Search element specifies the search for any query element, in a chosen query language,

over the database for the data items within the p-formats that represent process

executions. There can be 0 to n numbers of query elements specified for the given

search. The P-Formatsource represents the set of p-formats over which the query

will be executed and this may be in either of the forms discussed previously. The

Chapter 5: Provenance Querying and Analysis Tool 111

QueryLanguageMapping specifies how the contents of the p-formats are mapped to

the data language for the search, particularly, when used for a provenance reasoning

query over the results of a previous query.

pqs:QueryDataCommand pqs:Search Query Element
0...n

pqs:QueryLanguageMapping RDF Element |

XML Element

pqs:PFormatSource

Figure 5.4: Query Data Command Model

5.3.2 Query Data Filter

The element identified by a query data command over a search in the provenance

database could be vast, and much of it may be irrelevant to a querying user. Therefore,

we need to allow the querying user to specify the scope of the provenance query, i.e.,

to define what documentation is relevant enough to be part of the results. This is the

purpose of the query data filter.

Provenance Reasoning Queries Exam ples

In order to answer provenance-related queries in our proposed RDF based prove

nance representation, we ask a set of provenance questions and determine the queries

Chapter 5: Provenance Querying and Analysis Tool 112

that return the provenance reasoning query results. The example process PR1 in Fig

ure 4.12 is mapped to Figure 5.1 depicting the process’s data links, where ServiceA

and ServiceB are DustCloud service and FFT service, respectively. The process in

stance or p-format from this example is used and a set of provenance questions, the

provenance reasoning query request and its results are as follows.

1) Retrieve the process that led to d4 (i.e., the processing steps th a t produced the

data d4).

• Input: the output data d4 s unique ID in a run of PR1.

• Output: a set of process runs and data that led the d4.

The query requires that all the invocation events and data that contribute to the

creation of d4 during the run of PR1, directly or indirectly, should also be returned,

rather than only those contribute directly. Thus, this query is realized in two steps:

Step 1: First get all unique models from the provenance database. For each model

containing RDF graphs of a process instance, match the given ID of d4 with the value

of property sd: output Id. Return the unique model name that satisfies the match.

Result: This returns the unique model name “PRl:upid:620-A841F-10671F3” cre

ated for process instance “uri:BpelProcess/PRl”.

Step 2 : The query is executed over the returned model by including the unique ID

of output d4. The following describes the query:

1. For a given unique ID of output d4, the service instance th a t produced the

output is identified. This is done by using the FILTER expression in the query.

Chapter 5: Provenance Querying and Analysis Tool 113

2. With the service instance identified, its inputDataset is retrieved that may

consist of one or more inputs. For each input, inputName, inputSourcels and

input Value are retrieved.

3. Consider the earlier assumption that the inputSourcels property consists of

the unique ID of the service instance that is the source of this input. By

comparing the unique IDs of each service instance (within the process) with the

value of the inputSourcels, the matching service instance for each input (i.e.,

the source of the input) is retrieved.

4. For each service instance retrieve the inputContents, outputContents, service

Name, and serviceOperationName. This query is shown below in Figure 5.5.

SELECT ?id ?outid ?inputSource ?inputName ?inputValue TsourceService ?sName ?sOperation ?wsdl
?inputContents ?outputContents
WHERE {?service <http: //users. cs. cf.ac.uk/S. Rajbhandari/provenance/serviceProvenance#serviceId> ?id.
?service <http://users.cs-cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#hasIO> ?io.
?io <http://users.cs.cf .ac. uk/S. Raj bhandari/provenance/service Provenance #output Dataset> ?out.
?out ?rdf ?o
FILTER {?rdf != "http://www.w3.Org/1999/02/22-rdf-syntax-ns#type").
?o <http://user s .cs. cf.ac. uk/S. Raj bhandari/provenance/process Provenance #outputId> ?outid
FILTER (?outid = M̂yFFTServlce:upid:E3568A90-A4BF-1U8HBBS# " * € £ 2 3 ^ 8 .
?io <http://users .cs - cf.ac. uk/S. Raj bhandari/provenance/serviceProvenance#inputDataset> ?in.
?in ?rdfin ?i
FILTER (?rdfin != "http://www.w3.Org/1999/02/22-rdf-syntax-ns#type") .
?i <http: / / users. cs. cf. ac. uk/S. Raj bhandar i/provenance/processProvenance#inputSourceI s>
?inputSource.
?i <http://users.cs.cf.ac.Uk/S.Rajbhandari/provenance/processProvenance#inputId> ?inputid.
?i <http: / / users. cs. cf. ac. uk/S. Raj bhandar i/provenance/serviceProvenance#inputName> TinputName.
?i <http://users.cs.cf.ac.Uk/S.Rajbhandari/provenance/serviceProvenance#inputValue> ? input Value.
?ser <http: //users. cs. cf. ac. uk/S. Raj bhandar i/provenance/serviceProvenance#serviceId> ?sid
FILTER (?sid = ?inputSource).
?ser <http://users.cs.cf .ac. uk/S. Raj bhandar i/provenance/serviceProvenance#:has> ?sourceService.
TsourceService <http://users.cs.cf.ac.Uk/S.Rajbhandari/provenance/serviceProvenance#serviceName>
TsName.
TsourceService <http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/
serviceProvenance#serviceOperationName> TsOperation.
TsourceService <http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#wsdlURL> Twsdl.
Tser <http: //users. cs. cf. ac. uk/S. Raj bhandar i/provenance/service Provenance #hasIO> TserlO.
TserlO <http://users.cs.cf.ac.Uk/S.Rajbhandari/provenance/serviceProvenance#inputContents>
TinputContents.
TserlO <http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#outputContents>
ToutputContents.}___

Figure 5.5: Query 1

http://users.cs-cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance%23hasIO
http://users.cs.cf%20.ac.%20uk/S.%20Raj%20bhandari/provenance/service%20Provenance%20%23output%20Dataset
http://www.w3.Org/1999/02/22-rdf-syntax-ns%23type
http://user%20s%20.cs.%20cf.ac.%20uk/S.%20Raj%20bhandari/provenance/process%20Provenance%20%23outputId
http://users%20.cs%20-%20cf.ac.%20uk/S.%20Raj%20bhandari/provenance/serviceProvenance%23inputDataset
http://www.w3.Org/1999/02/22-rdf-syntax-ns%23type
http://users.cs.cf.ac.Uk/S.Rajbhandari/provenance/processProvenance%23inputId
http://users.cs.cf.ac.Uk/S.Rajbhandari/provenance/serviceProvenance%23inputValue
http://users.cs.cf%20.ac.%20uk/S.%20Raj%20bhandar%20i/provenance/serviceProvenance%23:has
http://users.cs.cf.ac.Uk/S.Rajbhandari/provenance/serviceProvenance%23serviceName
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/%e2%80%a8serviceProvenance%23serviceOperationName
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/%e2%80%a8serviceProvenance%23serviceOperationName
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance%23wsdlURL
http://users.cs.cf.ac.Uk/S.Rajbhandari/provenance/serviceProvenance%23inputContents
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance%23outputContents

Chapter 5: Provenance Querying and Analysis Tool 114

Result: As shown below, this query returns two service instances (sources of inputs

for the output with ID d4, of MyFFTService) and the input data MyFFTService

consumed to produce d4. This also includes all the information specified in the query.

Note that, in the query result in Figure 5.6, the input Value is large, so only part of

the data is kept.

<?xml version="l.0"?><sparql>
<results>
<result>

<id>MyFFTService: upid: E3568A90-A4 BF-11DB-BE9F-C425A662CAA6</id>
<Outid>MvFFTService; upid:E3568A90-A4BF-H D B -BE9F-C425A662CAA6/003</outid>
<inputSource>DustCloudServiceService : upid: DF63A580-A4BF-llDB-BE9F-817CF9F549A6</inputSource>
<inputName>ydata</inputName>
<inputValue>0. 0,6.00320089007198E-5, 2.54 960961747574 4E-4, 9.1816952501032. .</inputValue>
<sourceService uri="http://users.cs.cf.ac.uk/S.Raj bhandari/provenance/

serviceProvenance#ServiceActivity:DustCloudServiceService/l"/>
<sName>DustCloudServiceService</sName>
<sOperation>yValues</sOperation>
<wsdl>http: //localhost: 8080/axis/services/DustCloud</wsdl>
<inputContents>DustCloudService input SOAP message</inputGontents>
<outputContents>DustCloudService output SOAP message</outputContents>

</result>
<result>

<id>MyFFTService:upid:E3568A90-A4BF-HDB-BE9F-C425A662CAA6</id>
<outid>MyFFTService: upid: E3568A90-A4 BF-1 lDB-BE9F-C425A662CAA6/003</out id>

= ^inputSource>convolveProcess:upid:DA60FE20-A4BF-llDB-BE9F-AB8C2F088E53</inputSource>
<inputName>isign</inputName>
<inputValue>l</inputValue>
<sourceService uri="http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/

serviceProvenance#ServiceActivity: My Process Provider-PRl/0"/>
<sName>MyProcessProvider-PRl</sName>
<sOperation>runProcess</sOperation>
<wsdl>http: //signal .org/wsdl/MyClient-Test</wsdl>
<inputContentsx/inputContents>
<outputContentsx/outputContents>

</result>
</results>

</sparql>

Figure 5.6: Query 1 result

The result of query 1 shows only the two input sources and information about

these sources. Thus, this query answers only part of the provenance question, which

can easily be rectified by extending the query 1 to retrieve the input dataset of these

sources, and the sources of these retrieve inputs, and so forth. Such a query would

return a large dataset, and the way results are presented is repetitive and hard to

http://users.cs.cf.ac.uk/S.Raj
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/

Chapter 5: Provenance Querying and Analysis Tool 115

understand. Thus, a similar second query, that uses one of the input sources data

from the query 1 result, is executed as follows:

PREFIX rdf: <http://www.w3.Org/1999/02/22-rdf-syntax-ns#>
PREFIX sd: <http://users.cs.cf.ac.uk/S.Raj bhandari/provenance/serviceProvenance#>
PREFIX pd: <http://users.cs.cf.ac.uk/S.Raj bhandari/provenance/processProvenance#>
PREFIX j . 1: <http://users.cs.cf.ac.uk/S.Raj bhandari/provenance/service Provenance#:>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?id TinputSource TinputName ?inputid ?inputValue
WHERE {
?service <http: //users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#serviceId> ?id.
FILTER (?id - "DustCloudServiceService:upid:DF63A580-A4BF-llDB-BE9F-817CF9F549A6") .
?service <http: //users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#hasI0> ?io.
?io <http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#inputDataset> ?in.
?in Trdfin ?i
FILTER (?rdfin != "http://www.w3.Org/1999/02/22-rdf-syntax-ns#type").
?i <http: //users. cs. cf. ac. uk/S. Ra jbhandari/provenance/processProvenance#inputSourceIs>
TinputSource.
?i <http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/processProvenance#inputId> Tinputid.
?i <http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#inputName> TinputName.
?i <http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#inputValue> TinputValue.

This query retrieves the input dataset for the service instance with inputSour

cels DustCloudServiceService : upid : DF63A580 — AABF — 11DB — B E9F —

817CF9F549A6 (the output of which is one of the inputs to MyFFTService). The

result of this query is shown below, where three inputs are retrieved.

<?xml version="l.0"?>
<sparql>

<results>
<result>

<id>DustCloudServiceService:upid:DF63A580-A4BF-llDB-BE9F-817CF9F549A6</id>
<inputSource>convolveProcess:upid:DA60FE2 0-A4BF-llDB-BE9F-AB8C2F088E53</inputSource>
<inputName>n</inputName>
<inputid>DustCloudServiceService:upid:DF63A580-A4BF-11DB-BE9F-817CF9F549A6/001</inputid>
<inputValue>30</inputValue>

</result>
<result>

<id>DustCloudServiceService:upid:DF63A580-A4BF-11DB-BE9F-817CF9F549A6</id>
<inputSource>convolveProcess:upid:DA60FE20-A4BF-llDB-BE9F-AB8C2F088E53</inputSource>
<inputName>densityType</inputName>
<inputid>DustCloudServiceService:upid:DF63A580-A4BF-11DB-BE9F-817CF9F549A6/002</inputid>
<inputValue>gaus s ian</inputValue>

</result>
<result>

<id>DustCloudServiceService:upid:DF63A580-A4BF-llDB-BE9F-817CF9F549A6</id>
<inputSource>convolveProcess:upid:DA60FE20-A4BF-11DB-BE9F-AB8C2F088E53</inputSource>
<inputName>widthParameter</inputName>
<inputid>DustCloudServiceService:upid:DF63A580-A4BF-HDB-BE9F-817CF9F54 9A6/003</inputid>
<inputValue>0.3</inputValue>

</result>
</results>

</sparql>_____

http://www.w3.Org/1999/02/22-rdf-syntax-ns%23
http://users.cs.cf.ac.uk/S.Raj%20bhandari/provenance/serviceProvenance%23
http://users.cs.cf.ac.uk/S.Raj%20bhandari/provenance/processProvenance%23
http://users.cs.cf.ac.uk/S.Raj%20bhandari/provenance/service%20Provenance%23:
http://www.w3.org/2000/01/rdf-schema%23
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance%23inputDataset
http://www.w3.Org/1999/02/22-rdf-syntax-ns%23type
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/processProvenance%23inputId
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance%23inputName
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance%23inputValue

Chapter 5: Provenance Querying and Analysis Tool 116

The input’s source information in this result can be used to perform another simi

lar query. Such a succession of queries ends when there is no input source information

in the retrieved result. Performing such queries enables a step by step approach for

tracing a derived output to its preceding service instances based on input source

information.

Note, in answering query 1 in cases when only the output name is provided (e.g.,

fftResult), we constrain the scope of the query within a particular workflow run PR1

in order to avoid presenting too many results, although this can be easily adapted for

querying over the whole provenance repository, when a result is produced by runs of

different processes.

2) Retrieve the process that led to d4, excluding everything prior to DustCloudService.

• Input: The unique ID of output data d4 and the scope of the query to exclude

all the provenance that is prior to DustCloudService.

• Output: All the data generated for the service instances after the DustCloud

Service instance.

As in the first step of query 1, after the particular process instance is found, the result

provenance is constrained to exclude service instances prior to “DustCloudService” .

The query is described as follows:

1. For the given output d4’s ID get the inputName and input Value for that service

instance and also retrieve the input sources of the input data.

2. Filter the input sources (service instances) to get their serviceName.

Chapter 5: Provenance Querying and Analysis Tool 117

3. For the given service instances retrieve the relevant data and the input sources.

This includes the service instance that has the name “DustCloudServiceSer-

vice”.

4. If the retrieved input sources of a service instance are “false” (i.e., the property

does not exist), or if the service instance has the name “DustCloudService” ,

then go to 5 else go to 6.

5. Query ends.

6. Perform a similar query as described in step 3 with the retrieve input sources

of the service instance.

The query 2 below shows steps 1 and 2 in the above query description.

SELECT DISTINCT ?service ?inputSource ?inputName ?inputValue ?inputSourceName
WHERE {
?service <http://users.cs.cf.ac.uk/S.Raj bhandari/provenance/serviceProvenance#hasI0> ?io.
?io <http://users.cs.cf.ac.uk/S. Raj bhandari/provenance/serviceProvenance#outputDataset> ?out.
?out ?rdf ?o
FILTER (?rdf != "http://www.w3.Org/1999/02/22-rdf-syntax-ns#type").
?o <http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/processProvenance#outputId>
"MyFFTService : upid: E3568A90-A4BF-11DB-BE9F-C4 2 5A662CAA6/003" .
?io <http://users.cs.cf.ac.uk/S. Raj bhandari /provena nee / se rvi ce P rove nan ce # input Dataset > ?in .
?in ?rdfin ?i
FILTER (?rdfin != "http://www.w3.Org/1999/02/22-rdf-syntax-ns#type").
?i <http://use rs.es.cf.ac.uk/S. Raj bhandar i /provenance/process Provenance # input Source I s>
?inputSource.
?i <http://users.es.cf.ac.uk/S. Ra j bhandar i /provena nee/service Prove nance# input Name > ? input Name .
?i <http://users.cs.cf.ac.uk/S. Ra j bhandar i/provenance/service Provenance# input Value> ? inpu t Value .

?sl <http://use rs.es.cf.ac.uk/S. Raj bhandari / provenance/service Prove nance #se rvi celd> ?sl Id
FILTER (?slld = ?inputSource) .
?sl <http://users.es. cf.ac. uk/S. Raj bhandar i/prove nance/service Prove nance# :has> ?slLink.
IslLink <http://users.cs.cf.ac.uk/S.Raj bhandari/provenance/serviceProvenance#serviceName>
?inputSourceName.}

Figure 5.7: Query 2

Result: This query results in one service instance “MyFFTService” and the relevant

input data with its corresponding sources. The input sources’ serviceName values

http://users.cs.cf.ac.uk/S.Raj%20bhandari/provenance/serviceProvenance%23hasI0
http://users.cs.cf.ac.uk/S.%20Raj%20bhandari/provenance/serviceProvenance%23outputDataset
http://www.w3.Org/1999/02/22-rdf-syntax-ns%23type
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/processProvenance%23outputId
http://users.cs.cf.ac.uk/S.%20Raj%20bhandari%20/provena%20nee%20/%20se%20rvi%20ce%20P%20rove%20nan%20ce%20%23%20input%20Dataset
http://www.w3.Org/1999/02/22-rdf-syntax-ns%23type
http://use%20rs.es.cf.ac.uk/S.%20Raj%20bhandar%20i%20/provenance/process%20Provenance%20%23%20input%20Source%20I%20s
http://users.es.cf.ac.uk/S.%20Ra%20j%20bhandar%20i%20/provena%20nee/service%20Prove%20nance%23%20input%20Name
http://users.cs.cf.ac.uk/S.%20Ra%20j%20bhandar%20i/provenance/service%20Provenance%23%20input%20Value
http://use%20rs.es.cf.ac.uk/S.%20Raj%20bhandari%20/%20provenance/service%20Prove%20nance%20%23se%20rvi%20celd
http://users.es.%20cf.ac.%20uk/S.%20Raj%20bhandar%20i/prove%20nance/service%20Prove%20nance%23%20:has
http://users.cs.cf.ac.uk/S.Raj%20bhandari/provenance/serviceProvenance%23serviceName

Chapter 5: Provenance Querying and Analysis Tool 118

<?xml version="l.0"?>
<sparql>

<results>
<result>

<service uri="http://localhost:8080/axis/services/MyFFT/MyFFTService:upid:E3568A90-A4BF-11DB-
BE9F-C425A662CAA6"/>
i N <inputSource>DustCloudServiceService:upid:DF63A580-A4BF-11DB-BE9F-817CF9F549A6</inputSource>

<inputName>ydata</inputName>
<inputValue>0.0,6.00320089007198E-5,2.549609617475744E-4,9.18169525010325E-4,.,</inputValue>
< i nput Sou r ceName >DustC.loudSe_rvi ceServi ce< / i nput SourceName >

</result>
<result>

<service uri="http://localhost:8080/axis/services/MyFFT/MyFFTService:upid:E3568A90-A4BF-11DB-
BE9F-C425A662CAA6"/>
i -§> <inputSource>convolveProcess:upid:DA60FE20-A4BF-llDB-BE9F-AB8C2F088E53</inputSource>

<inputNarae>isign</inputNaine>
<inputValue>l</inputValue>
<inputSourceName>MyProcessProvider</inputSourceName>

</result>
</results>

</sparql>

Figure 5.8: Query 2 result

are also retrieved from query 2 (Figure 5.7). The results are shown in Figure 5.8.

Using the two retrieved input sources information (see Figure 5.8) from the query 2

result, a second query is performed as follows.

PREFIX rdf: <http://www.w3.Org/1999/02/22-rdf-syntax-ns#>
PREFIX sd: chttp://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#>
PREFIX pd: <http://users.cs.cf.ac.Uk/S.Rajbhandari/provenance/processProvenance#>
PREFIX j.1: <http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#:>
PREFIX rdfs: <http://www.w3.Org/2000/01/rdf-schema#>
SELECT ?id ?inputSource ?inputName ?inputValue
WHERE {
?service <http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#serviceId> ?id.
FILTER (?id = »PustCloudServiceSeryice:upid:DF€3A580-MBf,-llDB-BE$F-817CF9F549A6" I I
"COnvolVeProcess; mafdi DA6QFE2Q-A4BF-11DB—BE9F-AB8 C2 FO 8 8 E5 3 ") .

?service <http: //users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#hasIO> ?io.
?io <http: / /users. cs. cf. ac .uk/S. Ra j bhandari/provenance/serviceProvenance#input Dataset> ?in.
?in ?rdfin ?i
FILTER (?rdfin != "http://www.w3.Org/1999/02/22-rdf-syntax-ns#type").
?i <http: / /users .cs.cf. ac. uk/S. Raj bhandari/provenance/serviceProvenance# inputName> ?inputName.
?i <http: / /users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance#inputValue> ?inputValue.
OPTIONAL {?i <http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/processProvenance#inputSourceIs>
?inputSource}.}

This query satisfies step 3 of the query description. This query gives an option to

retrieve inputSourcels, so the absence of input source information for any service

instance will be known. The result of this query is as follows.

http://localhost:8080/axis/services/MyFFT/MyFFTService:upid:E3568A90-A4BF-11DB-
http://localhost:8080/axis/services/MyFFT/MyFFTService:upid:E3568A90-A4BF-11DB-
http://www.w3.Org/1999/02/22-rdf-syntax-ns%23
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance%23
http://users.cs.cf.ac.Uk/S.Rajbhandari/provenance/processProvenance%23
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance%23:
http://www.w3.Org/2000/01/rdf-schema%23
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/serviceProvenance%23serviceId
http://www.w3.Org/1999/02/22-rdf-syntax-ns%23type
http://users.cs.cf.ac.uk/S.Rajbhandari/provenance/processProvenance%23inputSourceIs

Chapter 5: Provenance Querying and Analysis Tool 119

<sparql>
<results>
<result>

<id>convolveProcess: upid: DA60FE20-A4BF-llDB-BE9F-AB8C2F088E53</id>
cinputSource bound="false"/>
<inputName>densityDC</inputName>
<inputValue>gaussiari</inputValue>

</result>
<result>

<id>convolveProcess : upid:DA60FE20-A4BF-11DB-BE9F-AB8C2F088E53</id>
<inputSource bound="false"/>
<inputName>widthDC</inputName>
<inputValue>0.3</inputValue>

</result>
<result>

<id>convolveProcess: upid:DA60FE20-A4BF-1lDB-BE9F-AB8C2F088E53</id>
<inputSource bound="false"/>
<inputName>points</inputName>
<inputValue>60</inputValue>

</result>
<result>

<id>ConvolveProcess: upid: DA60FE20-A4 BF-1 lDB-BE9F-AB8C2F088E53</id>
CinputSource bound="false"/>
<inputName>pointsDC</inputName>
<inputValue>30</inputValue>

</result>
<result>

<id>ConvolveProcess: upid: DA60FE20-A4BF-llDB-BE9F-AB8C2F088E53</id>
<inputSource bound="false"/>
<inputName>type</inputName>
<inputValue>sine</inputValue>

</result> ____________ _____

<result>
<id>DustCloudServiceService iupid: DF63A580-A4BF-11DB-BE9F-817CF9 F54 9A6</ jd>
<inputSource>convoiveProcess :upid: DA60FE26-A4BF-1 IDB-BE9F-AB8C2F088E53</inputSource>
<inputName>n</inputName>
<inputValue>30</inputValue>

</result>
<result>

<id>DustCloudServiceService:upid:DF63A580-A4BF-llDB-BE9F-817CF9F549A6</id>
<inputSource>convolveProcess:upid: DA60FE20-A4BF-llDB-BE9F-AB8C2F088E53</inputSource>
<inputName>densityType</inputName>
<inputValue>gaussian</inputValue>

</result>
<result>
<id>DustCloudServiceService: upid: DF63A580-A4 BF-1 lDB-BE9F-817CF9F54 9A6</id>
<inputSource>convolveProcess:upid:DA60FE20-A4BF-llDB-BE9F-AB8C2F088E53</inputSource>
<inputName>widthParameter</inputName>
<inputValue>0.3</inputValue>

</result>
</results>

</sparql>___

The result lists the inputs of the two service instances. It shows that the input

source information for the service instance “convolveProcess” is not present, and the

name of the other one is “DustCloudService”. Any service instance before Dust

CloudService is not needed. Thus, this query satisfies step 4 of the query description

to answer this provenance question. The example queries illustrate that, answering

Chapter 5: Provenance Querying and Analysis Tool 120

provenance questions can require the execution of more then one query.

5.4 Summary

In this chapter we have discussed the functional requirements of a Provenance

Query Service (PQS) whose query interfaces support querying the provenance doc

umentation about processes stored as p-formats. An algorithm for constructing a

process provenance graph has also been presented that mainly utilizes the properties

described for inputs and outputs for service instances to construct the data links that

exist between services instances for a process. A process re-execution tool is also

discussed in this chapter. The provenance graph construction tool provides a means

of displaying the high level behaviour of an executed process. The re-execution tool

helps in verifying the process and the results, and allows the performance of what-if

analyses on the process by enabling the entry of different input parameters during

reruns. The combination of these two tools enables scientists to verify past processes

as well as to compare different runs of the same process visually.

We also discussed the provenance reasoning query interface that models how the

content of selected p-formats can be retrieved. The interface describes how the prove

nance reasoning query request to search for any element in the p-format is formed.

The provenance reasoning query interface provides support for RDF and XML query

languages namely, SPARQL [43] for RDF and, X-Query[102] and X-Path [88] for

XML. A query langauge mapping and the combination of provenance queries are in

troduced to enable searches for an element that requires (1) execution of more than

one query, and (2) use of both RDF and XML query languages when necessary. We

Chapter 5: Provenance Querying and Analysis Tool 121

also presented some example queries using the SPARQL query language to demon

strate how a particular data item whose provenance is described as a p-format can be

successfully traced to its sources, or how it was derived. That is, the service instance

and the input data consumed by this service instance to produce this data item, and

the preceding service instances whose outputs were used as the inputs to this service

instance.

In summary, this chapter provides a comprehensive model for querying prove

nance and a strategy for (1) tracing the provenance of data items by utilizing the

stored provenance information (i.e., p-format) about processes executed in an SOA

environment, and (2) exploiting stored provenance information about past processes

to re-create process behaviour, and to re-execute them to verify results and analyze

the process.

In order to demonstrate the application of our p-format in the context of the PCS

and PQS components, we have implemented a prototype provenance system in an

SOA environment. We have implemented the automated collection and recording of

provenance about processes that uses the p-format and interfaces to support querying

of the recorded provenance. The architecture and implementation of this prototype

are presented in chapter 6. We have thus far presented the theoretical models to

provide support for provenance in an SOA environment. Chapter 6 and chapter 7

present the implementations and experimental evaluation of the developed model.

Chapter 6

Provenance Prototype:

Im plem entation

6.1 Introduction

The preceding chapters in this thesis have presented the theoretical aspects of

our research, namely, the Provenance Model, the collection of data provenance and

the format for recording provenance, and the querying capabilities needed to enable

provenance support in a service-oriented environment. This chapter presents the im

plementation of the Prototype Provenance System in a service-based environment.

The prototype encompasses the concepts developed in this research and validates the

feasibility of the implementation of the models proposed in this thesis. It demon

strates the ability of the Provenance Collection Service and the provenance format

to support automatic recording of data provenance in a standard format for a com

posed Web process execution. It also provides interfaces for querying, re-execution

122

Chapter 6: Provenance Prototype: Implementation 123

and provenance graph construction. The implementation provides the basis for ex

perimental validation and analysis of the provenance recording techniques and the

Provenance Model that will be discussed in Chapter 8.

This chapter is organized as follows. In Section 6.2, the architecture and oper

ation of our Prototype Provenance System is presented. This section discusses the

implementation of the components that support the provenance collection and the p-

format which was described earlier in Chapters 4 and 5. These components primarily

include the Provenance Collector, the Provenance Recorder, and the Workflow En

gine. Section 6.3 presents the implementation of the query interface, and the tools for

provenance graph construction and workflow re-execution (described in Chapters 4

and 5).

6.2 Architecture of the Provenance Collection Ser

vice

This section presents the architecture (shown in Figure 6.1) and operations of our

prototype implementation of the Provenance Service for the collection and recording

of the provenance of a Web process execution in service-oriented environment. It

should be noted that a service-oriented environment typically has multiple service

providers hosting different provenance services. Our implementation is a prototype

system that provides a Provenance Service as a proof-of-concept.

The prototype consists of the following components:

• MySQL Database. This component stores the provenance documentation that

Chapter 6: Provenance Prototype: Implementation 124

Provenance Service Host

ActiveBPEL iDynamic
Service Invoker W orkflow Engine!

C lien t

Provenance
RDFS

Provenance
Recorder

MySQL
Database

] PCS components

1

Provenance
Collector

*1
I Web Service
I Implementation
1

1
Temporary

Log file

Figure 6.1: Architecture of Prototype Implementation of the PCS

is captured automatically at runtime from process executions. In our imple

mentation a mySQL relational database system server [5] is used for storing

the RDF triples represented by the p-format, i.e., the RDF schema discussed in

Chapter 4 and specified in Appendix A.

• ActiveBPEL Workflow Engine. The ActiveBPEL engine [9] is an open-source

implementation of a Business Process Execution Language (BPEL) [16] engine,

written in Java. It reads BPEL process definitions (and other inputs such as

WSDL [100] files) and creates representations of BPEL processes. BPEL is an

XML language for describing business process behaviour based on Web services.

The ActiveBPEL engine is used to deploy and invoke the workflows created

using the BPEL standard. The ActiveBPEL engine supports the invocation of

deployed BPEL processes as Web services.

Chapter 6: Provenance Prototype: Implementation 125

O ' 0http://localhost:8O8O/ProvenanceTool/ v • -

8 8 ' \~ p Search * • ► * a e

w 0 Service invoke and Query ^

Provenance Tool

Home

Invoke

Query

Query Re-run

Invoke Submit

Invoke Workflow and Subm it Provenance

P rovenance D atabase D etails:
mySQL Database URL: jdbc:mysql://localhost/provenancedb

User Name: shrqa________________________________

Password: ******

In vok e Workflow:
Workflow Location: http^/192.168.0.4:8080/axis/sefvicea/D ustC l

Workflow Descnption: dust cloud i

Submit R eset

WSDL: ht!p://192.168.0.4:8080/axis/services/DustCloud?wsdl

D escrip tion : dust doud model

O peration N am e: yValues

Enter input va lu es for the given In pu t Types:

d en sityT yp e(c lass java.lang.S tring): gaussian

w idthP aram eter(double):

n (in t):

getinputs

invoke

In p u t 1:
In p u t 2:
In p u t 3:

O u tp u t (yV aluesR eturn):

gau ssia n
0.22
100

0 . 0 , 1 . 9 4 8 5 5 8 5 9 8 7 0 3 2 2 4 E - 9 , 5 . 0 7 7 7 9 5 5 4 1 9 2 3 2 3 2 E -
9 , 1 . 1 7 3 6 2 2 8 3 8 1 0 2 5 7 0 8 E - 8 , 2 . 5 9 1 8 2 4 2 9 9 4 1 3 6 4 2 3 E -
8 , 5 . 5 7 2 2 7 9 6 9 7 8 2 5 6 9 3 E - 8 , 1 . 1 7 3 4 9 0 3 6 5 7 3 3 8 4 7 1 E -
7 , 2 . 4 2 6 2 2 0 0 0 2 5 3 9 5 2 5 E - 7 , 4 . 9 2 9 1 € 1 4 0 1 2 0 8 6 9 6 E -
7 , 9 . 8 4 3 9 2 1 0 8 4 0 8 9 5 4 7 E - 7 , 1 . 9 3 2 7 8 5 6 3 5 0 0 4 4 4 5 3 E -

Fignre 6.2: Interface for Process Invocation and Provenance Submission in the PCS

Chapter 6: Provenance Prototype: Implementation 126

• Dynamic Service Invoker. A web interface is provided that allows users to enter

the location of the abstract description of a single or composite Web service that

they wish to invoke. The Web service’s WSDL document from this location is

processed and HTML forms are automatically generated based on the inputs and

available operations described in the WSDL. Thus, by selecting an operation

and entering the input parameters, the Web service is executed and the result

is returned to the user. This implementation provides a general user interface

for invoking single or composite Web services, and during which the Provenance

Collector and the Provenance Recorder, discussed later in this section, are used.

The operation of this component involves dynamic invocation of Web services

and provenance submission via the interface shown in Figure 6.2. The interface

is implemented using Java Service Pages (JSP) [94]. The Apache Web Service

Invocation Framework (WSIF) [83] is used to enable the dynamic invocation

of Web services. The framework allows maximum flexibility by interacting

with abstract representations of Web services through their WSDL description

instead of working directly with the different SOAP messaging framework APIs

[81, 85], and is independent of how the Web service is implemented. The Web

and XML Services Utility Library (WS/XSUL) [46] is an extended WSIF API

that may be used in our implementation to include support for complex data

types (defined using XML Schemas) in WSDL.

• Provenance Collector. The Provenance Collector applies the interactions dis

cussed in Chapter 4 to record the invocations of the services involved in the

process in a temporary log file. The log file is structured in a standard way by

Chapter 6: Provenance Prototype: Implementation 127

using XML tags (see Appendix B for service-Provenance XML schema) defined

as properties in the service-Provenance RDF schema. This is implemented us

ing client-side Axis handler [82] APIs to log SOAP messages associated with

service invocations.

The Provenance Collector (PC) is deployed with the ActiveBPEL workflow

engine in the Apache Tomcat Server (V5.5.12) [96] in order to intercept and log

the intermediate messages of the services involved in an enacted process. The

Provenance Collector is activated from within the engine so the engine acts as

the client sending messages for invoking services. Thus, the PC processes each

service’s outgoing message first and then the incoming message. A logical clock

is also implemented that increases by integer value 1 each time the Provenance

Collector is called as a result of a service invocation. This determines, for a

given process enactment (occurring in the engine), how many services were

invoked and in what order. It saves the logs as an XML file on the server

side and the URL location of this file may be sent in the SOAP header to the

client that enacted the process. The Provenance Collector for the engine is an

added optional functionality that captures intermediate data for a process. The

Provenance Collector is also used within the Dynamic Service Invoker, together

with the Provenance Recorder, to record the initial inputs and the final output

for a process enactment.

• Provenance Recorder. The Provenance Recorder uses the provenance RDFS,

or p-format, presented in Chapter 4 to generate process documentation. For

a process execution instance, the process documentation or data provenance

Chapter 6: Provenance Prototype: Implementation 128

generated is uniquely identified in the database. This component primarily

provides two methods:

1. To generate and record RDF triples describing the process-Provenance

that includes the inputs and the final output (using service-Provenance

properties) for a process returning the unique process ID.

2. To generate and record the service-Provenance for the service instances

and the data-links in the process-Provenance. This is done by processing

the temporary log (XML file) and the BPEL document of the enacted

process.

The first method is mandatory, whereas the second is used only when the Prove

nance Collector at the workflow engine end is activated, i.e., it returns the XML

file location in the SOAP header of the process’s response SOAP message. By

processing the XML file containing service instances for a process and using

Jena APIs [36], RDF triples of service-Provenance instances are created and

stored with process-Provenance as a Jena model in the database. A Jena model

is identified by a model name in the database to which the RDF triples are allo

cated. A unique process ID is created and stored as the model name to identify

a process instance and, hence, all the RDF triples describing the provenance

documentation for that process.

To summarize, the implementation involves the integration of the following tech

nologies and languages: Java [92], Jena - a Semantic Web framework for Java, Re

source Description Framework (RDF) [87], Apache Axis [82] to implement Java Web

Chapter 6: Provenance Prototype: Implementation 129

services, the Business Process Execution Language (BPEL4WS) standard, and the

ActiveBPEL workflow engine [9]. The primary language used was Java. RDF was

used to represent the provenance from an enacted process, based on an RDF schema

(p-format). The Provenance Recorder used the Jena packages, which provide an API

and tool for automating the mapping between the RDF triples of the captured prove

nance and mySQL database objects. The API handles all the details of RDF parsing

and formatting, and the structure of the RDF storage within the database.

The algorithms required for the Astrophysics example workflow presented in Chap

ter 4 were implemented according to the details in [80], and deployed as Axis Web

services. An abstract BPEL process description was created using the ActiveBPEL

designer [10] (BPEL development environment) depicted in Appendix C. The BPEL

process description specifies what the process can do and the inputs and outputs of

each of the parties (i.e., Web services) involved, but does not describe how anything

gets done, i.e., it does not reveal their internal behaviour. This BPEL document is

deployed in the ActiveBPEL workflow engine and executed using dynamic service

invocation to experimentally validate the provenance model presented in Chapter 4.

This concludes the discussion of the operation of the different components of

the Provenance Collection Service that has been developed to perform the actual

collection and recording of provenance for process enactments in a service-oriented

environment. The implementation and operation of the Provenance Query Service

will now be presented in Section 6.3.

Chapter 6: Provenance Prototype: Implementation 130

6.3 Interface Im plem entation of the Provenance

Query Service

This section discusses the implementation and operation of the Provenance Query

Service (PQS). This is a part of the Provenance Service that has been developed to

enable the querying and exploitation of data provenance. Furthermore, the PQS sup

ports the re-execution and re-creation of past workflows to facilitate the verification of

their results, and allows “what-if” analyses to be carried out on the process instances.

The languages and tools used in the implementation of the PQS include Java,

JSP and Jena. The SPARQL Query Language for RDF [43] is a query language for

extracting information from RDF graphs or triples. SPARQL is used for running

both standalone queries and to programmatically call Jena’s SPARQL capabilities

directly. SPARQL queries were created and executed with Jena via the jena. query

package by passing in the Query String to execute and the Jena Model to run it

against. Because the data for the query is provided programmatically, the query

does not need a FROM clause. The PQS has been developed with web interfaces to

perform different queries, re-execution and visual re-creation of processes stored as

RDF triples in the Provenance Database. The PQS implementation architecture is

depicted in Figure 6.3

The components of the PQS are as follows:

• Query Processor. The Query Processor contains different set query tasks that

enable simple data provenance queries. The Query Processor uses the methods

that implement the Query Result Format to provide query results in four dif-

Chapter 6: Provenance Prototype: Implementation 131

Provenance Service Host ---- N.

Provenance Database
Connector = MySQL

Database

Iz
Query Processor /I--- is Query Result

N— 'I/ Format

Iz Iz
Process Process

Re-Execution Re-Creation

I I PQS com ponents

Figure 6.3: Architecture of the Prototype Implementation of the PQS

ferent formats: plain text, RDF triple, RDF/XML, and tree view. The Query

Processor can perform the following query tasks, which are presented as links

in the web interface:

— Query all the process IDs. This task is responsible for initiating the

database connection and querying the process IDs that represent process

instances stored as Jena models in the database. A mechanism is provided

to query only ten IDs at a time and a link is given to return the next ten

IDs, and so forth. Each ID has a hyperlink which when clicked returns the

XML/RDF view of that particular process instance. The web interface is

depicted in Figure 6.4.

— Query with a given process ID. This interface allows the user to enter the

Chapter 6: Provenance Prototype: Implementation 132

process ID to get the data provenance for that particular process. The

user can select the format to view the returned result, which demonstrates

the use of the Query Result Format component.

— Query with SPARQL. This interface allows users to pass a SPARQL query

string in two ways: (1) for a particular process ID or model, and (2) for

executing the query on all the process instances present in the Provenance

Database. The primary objective of this implementation is to facilitate

experimental studies of the performance of different queries with an in

creasing amount of provenance data in the database. These experimental

results are presented and analyzed in Chapter 8.

• Provenance Database Connector. This component uses the request sent through

the web interface to build a connection with the mySQL database that contains

the data provenance as RDF triples. The connection object is given to the

Query Processor.

• Process Re-execution. The Process Re-execution component uses the query

task (that retrieves process instances) determined by the Query Processor to

re-execute a particular process. Web interfaces have been developed to display

the process location, the original inputs and generated output for the process.

These data are placed in an automatically generated form that is used for the

re-execution task. The form consists of two buttons:

1. The re-execute button is for enabling re-execution of the process with the

same input parameters and performs a check to determine if the original

Chapter 6: Provenance Prototype: Implementation 133

Provenance Tool

Home

Invoke

(Query

Query the Provenance Database

I Query all the Process IDs

I Query with a given Process I[

I Query with SPARQL

List Of P ro cess ID s in th e P roven an ce D a ta b a se

RDF/XML V iew of:
ID: con v o lv e _ P rocess:u p id :D 43D 46C 0

</rdf sSeq>
<rd£(Description rdt:about=“ht

sdt inputName-"dl">
<sdtinputType>class java.lan
<sdt inputvalue>0.0,6.0032008

</rdf »Description>
<rdftseq rdftabout-"http*//use

<rdftli rdfiresource-"httpt/
</rdf(Seq>
<rdf(Description rdf(about="ht

pd(endTime-H00(27(18;20-Dec
sd(serviceName-"telescopeDa
sd (serv i ceOperat ionName-"te
sd (serv icePortTypeN ante- •'
sd; startTime- "00:27(09; 20-DteiT=,200g

Click on th e ID Links to view P roven an ce o f A P rocess:

1 .testW ork flow X :u p id :92A 97270-7E 30-llD B -B 95D ~A 8C 7146046A 0
2 .testW ork flow l:u p id :0B 82C B 60-7E 31-llD B -8E C 0-A B 26917F 4E 0A
3 .te stW o rk flo w l:u p id ;2 C 7 7 6 1 0 0 -7 E 3 1 -llD B -B 8 0 C -D A lF D 7 7 1 B 9 7 F
4 .convolve P rocess:up id :85C A 33D 0-8F B 7-llD B -A 556-B F 595A 9D B 401
5 .convolye Proce sse d :& 6 2 2 3 0 9 0 -8 F B 8 -11 P B :9E9Q:DFAB 1 7.9E 0414
S .convolve Process:up id :D 7D D 4A 80-8FB 8-llD S-9A B 4-E 7E C C 49A 76C C
7 .cpnvolye P r^ e^ :u p id :F 5 C E 16 0 0 -8 F B 8 -liP B -9 9 2 2 -B 0 6 8 9 4 2 8 F 9 A E
8 .convolve P ro cess :u p id :D 4 3 D 4 6 C 0 -8 F C 0 -llD B -9 A ll-A 8 5 5 4 7 B F 3 F 7 F
9 .convolve P ro cess:u p id :E 0 9 9 F 3 0 0 -8 F C 0 -llD B -9 7 C E -D 0 8 1 7 2 4 B 0 3 1 F

N ext 10 >

<sd(servicePortTypeNamespace>http(//localhost(8 0 8 0/axis/services/telescopteData</sd(
< sd : wsdlURL>http: / /localhost: 808 0/axis/services/telescopeData</sd : wsdlURL.

</rdf(Descriptions J
<rdf (Description rdf (about-“http (//users, cs. cf.ac. uk/S .Rajbhandari/provenance/service

pd(endTime«"00(27(20;20-Dec-2006" /■
sd (serv i ceName-"PowerOf 2Serv i ce“
sd(servi ceOperationName-"points'* J

Figure 6.4: Interface in the PQS for querying process IDs displaying ten results at a
time

Chapter 6: Provenance Prototype: Implementation 134

Provenance Tool

Home

Invoke

Query

2 4 con vo lve P ro cess :u p id :2 0 4 7 3 9 1 0 -9 1 6 3 -1 _1 D B -B 8 8 8 -B 7 8 0 3 2 3 9 6 2 6 9
2 5 /con vo lve P rocess:up id : 1 3 1 E 0 2 2 0 -9 1 7 0 -1 1 D B -9 7 27-F 289467A D C D 4

■con vo lve Process;u
7 .con vo lve P rocess:m

2 8 .c o n volve P rocess:u
2 9 .co nvo lv e Prpcess:u

Query Re run R e-E xecu te

________________ ID: co n v o lv e P ro cess:i

Invoke Submit
RDF/XML View o f th is
<rdf:RDF

xmlns:sd=“http:
xralns:pd=“http:
xmlnssrdf="http

 xmlnst i.o="http

R e-E xecute P rocess Result

Process ID:
Process Location:

convolve_Process: upid: 204
http ://localhost:8080/acti

Process Operation ,
Name: Conv

Process ID:

Process Location:
Process Operation
Name:

convofve_Process:upid:20473910-9163-11DB-B888-B7

http://localhost:8080/active-bpei/services/MyProcessPro

Conv

List of Services in the Process:
Service instance!.: h ttp ://loca lh ost:8080/ax is/serv ices/D u stC lou d
Service instance2: h ttp ://loca lh ost:8080 /ax is/serv ices/te lescop eD ata
Service instance3: h ttp://localhost:8080/axis/services/P ow erO fT w o
Service instance4: h ttp ://loca lh ost:8080/ax is/serv ices/P ad Z ero
Service instance5: http://localhost:8080/axis/services/M yFF T
Service instance6: h ttp ://loca lh ost:8080 /ax is/serv ices/con vo lve

List of Inputs for the process: (Edit Inpu ts in th e te x t box es for *W hat if
Analysis)
I n p U t: d e n s i t y T y t> e (c l a s s
j a v a . b n g . S t n n g)

Input: w d t h P a r a m e t e r

(d o u b l e)

Input:n(mt) 30

Input:n u m b e r O f P o m t s (n t) 60
Input : T y p e (d a s s ^
j a v a . l a n g . S t r i n g)

gaussian

0.3

Output:

Output for the Process:
3 . 8 5 5 0 6 4 1 3 1 3 0 1 5 4 7 5 , 4 . 4 2 6 7 2 3 0 4 9 0 2 - t -

Jli
What-* A nalysis

Original Output: 3 . 8 5 5 0 6 4 1 3 1 3 0 1 5 4 7 5 , 4 . 4 2 6 7 2 3 0 4 9 0 2 I
< >

Output from the R e-execution of the Process:

3 . 8 5 5 0 6 4 1 3 1 3 0 1 5 4 7 5 , 4 . 4 2 6 7 2 3 0 4 9 0 2 C
< >

Current Output:

Re- execution The R e-execution ou tpu t g en era ted is th e sa m e a s th e original
Result: output.

the Outputs to Compare

Figure 6.5: Interface to re-execute a process

http://localhost:8080/acti
http://localhost:8080/active-bpei/services/MyProcessPro
http://localhost:8080/axis/services/DustCloud
http://localhost:8080/axis/services/telescopeData
http://localhost:8080/axis/services/PowerOfTwo
http://localhost:8080/axis/services/PadZero
http://localhost:8080/axis/services/MyFFT
http://localhost:8080/axis/services/convolve

Chapter 6: Provenance Prototype: Implementation 135

output matches the currently generated output for verification purposes.

2. The What-if Analysis button is used to perform the re-execution of the

process with changed input parameters.

The implementation was validated using the stored process instances of the

Astrophysics workflow example introduced in Chapter 4. The output of the

example process can be visualized as a graph plot. This was done using the

third-party PlotWS [52] service. PlotWS is an Axis-based Web service for

drawing graphs, which has been implemented as a wrapper around gnuplot [107]

and exposes a subset of gnuplot’s functionality. A form-based web interface was

incorporated as shown in Figure 6.5, where the Plot the Outputs to Compare

button can be used to view both the original and current outputs, and returns

two 2D graphs (SVG images) to enable a visual comparison of the two outputs.

The What-if Analysis has the same interface as that shown in Figure 6.5 for

plotting graphs, but without the function to match the outputs.

6.4 Summary

This chapter has presented the implementation of a prototype provenance service

that incorporates the collection and querying of data provenance for workflow en

actments in a service-oriented environment. The implementation demonstrates the

feasibility of the provenance representation language, and the interactions of the com

ponents and SOA technologies to support processes such as collecting, recording and

query manipulation of data provenance. This chapter has also discussed the im

Chapter 6: Provenance Prototype: Implementation 136

plementation and operation of the Provenance Service that has been developed to

demonstrate the Provenance Model and its components and features, including the

automated recording of data provenance during process execution. The Provenance

Service provides an appropriate basis for experimental validation of the concepts

developed in this thesis, including the performance and scalability of provenance

recording and querying as the size of the Provenance Database grows, as well as the

re-execution of the queried processes.

Chapter 7

Evaluation

7.1 Introduction

The implementation of our Provenance System and its main components were

presented in Chapter 6. The Provenance System incorporates the conceptual Prove

nance Model presented in this thesis to enable provenance support in service-oriented

environments. The system is based on an SOA infrastructure and includes a record

ing mechanism for automatic collection and storage of data provenance about process

executions, and query interface tools to perform the re-execution and re-creation of

workflows to aid in the verification of past processes and to perform “what-if’ style

analyses. The Provenance Model proposed in Chapter 4 aims to support the col

lection of data provenance, and the querying and re-execution of process executions

by using a combination of client-server and Web service models. The PCS performs

dynamic invocation of processes, and the collection and recording of data provenance

about such invocations. Recording data provenance is important from the perspective

137

Chapter 7: Evaluation 138

of the notion of a “Living Document”, introduced in Chapter 1, since re-execution

of a recorded process enables clients to view and evaluate process results produced

on-the-fly. The Provenance Model’s PCS and PQS are therefore implicitly targeted

towards providing functionalities to conform to the notion of a living document. In

order to support the recording of data provenance in a structured form, data prove

nance representation formats were modelled and collection mechanisms and compo

nent interactions were proposed in Chapter 4. A collection and query mechanism

for recording data provenance about the execution of a service-based workflow (i.e.,

in an SO A environment), and the re-execution of such recorded workflows, respec

tively, were developed. The questions that need to be addressed in the context of the

mechanisms in the proposed model are:

• Scalability of the PCS. The scalability of the PCS for collection and recording

data provenance is important to process execution, since the collection of data

provenance is active at run-time and recorded in the database. Good scalability

would reflect the PCS’s ability to handle the collection of data provenance for

complex workflows with minimal execution overhead.

• Performance of re-execution in the PQS. The PQS component can be used to

query the data provenance of an enacted process in order to re-execute it. In

such cases, it is important to establish that the query tasks result in reasonable

performance (measured by the response time) as the number of concurrent

clients increases.

The provenance system has been implemented to enable the experimental eval

uation of the above issues, and thereby to analyze the Provenance Model embodied

Chapter 7: Evaluation 139

in the PCS and the PQS. The Provenance System was implemented with supporting

user interfaces for the PCS and PQS. Thus, to evaluate these two components in

terms of the issues discussed above, in this chapter experiments are conducted that

use a set of client applications and the results axe analysed.

This chapter is organized as follows. In Section 7.2 the experimental evaluation

of the scalability of the collection and recording of data provenance in the PCS is

presented. In Section 7.3 the experimental evaluation of the performance of query

re-execution is presented. First experimental results are presented that compare the

process running time when the provenance collection and recording functions are

used with the running time without these functions. Then the experimental results

of clients concurrently querying and re-executing processes are presented in order to

analyse the performance of the PQS component. Finally, Section 7.4 concludes this

chapter.

7.2 Scalability of the Provenance Collection Ser

vice

The primary purpose of this experiment is to show empirically that, by using

the PCS component, data provenance about a process executing in a service-oriented

environment can be scalably collected and recorded. The two workflow scenarios used

in the evaluation axe described and presented in Figure 7.1.

Chapter 7: Evaluation 140

(1) Single Sen/ice Process:

Input Parameter ‘number of points' is increased for
each 30 successive invocation test to generate
larger output data by the dust doud algorithm.

Input
Parameters

Dust Cloud
Service

„ Output
Data

(2) Composite Service (process with 9 Services):
Input Parameters number of points’ for both the Dust
Cloud and Telescope service is increased for each 30
successive invocation test to generate larger final output
data by the workflow.

> PadZero
Service

FFT
Service

Final
Output
Data

Convolve
Service

Input <
Parameters

T elescope
Service

FFT
Service

PadZero
Service

Dust Cloud
Service

PowerOfTwo
Sen/ice

Inverse FFT
Service

Figure 7.1: The Web services and workflow used to generate data provenance for the
experiments. The rectangular boxes denote the Web services implemented to demon
strate the Astrophysics Example Workflow from the example scenario presented in
Chapter 4. The arrows denote the dataflow occurring in the workflow.

7.2.1 Summary of Setup

This section presents a summary of the setup for the experiments. The com

ponents of the Provenance Service Eire deployed on a laptop running Windows XP

with service pack 2 with an Intel Pentium M processor operating at 1.7Ghz, and

lGbytes of memory. The components include the PCS, the ActiveBPEL engine de

ployed in an Apache Tomcat 5.1 server, and the mySQL database server. The client

applications that activate the PCS to collect and record provenance also run on the

same machine. The Web service implementations for the experiments are deployed

on a separate Windows XP desktop PC with an Intel Pentium processor operating

at 2.80Ghz, and 512Mbytes of memory. The two machines are connected through

GigaBit Ethernet.

Experiments were performed to evaluate the performance of the provenance record-

Chapter 7: Evaluation 141

Host machine

| PCS components

Client
l Web
■Services

MySOL
Database

server

Provenance
Collector

File System

Application Server

Figure 7.2: Setup of the components for Single Service

ing code of the PCS for documenting provenance of process executions using the

process scenarios depicted in Figure 7.1. The scenarios are based on algorithms and

mathematical models from the Astrophysics domain, and an example scenario is dis

cussed in Chapter 4. The PCS was used with two setups of the components: (1)

without the engine as shown in Figure 7.2 for single service and (2) with the Ac-

tiveBPEL engine as shown in Figure 7.3 for composite service.

1. Single Service. In this experiment a single service, such as the DustCloud ser

vice (Figure 7.1(1)), is invoked and its provenance recorded at run-time in (a)

the file system and (b) the Provenance Database (i.e., the mySQL database).

Chapter 7: Evaluation 142

■ PCS components

Client
l Web
'Services

Provenance
Collector

ActiveBPEL
Workflow Engine

Tem porary
Log file

Application Server
Host machine

Figure 7.3: Setup of the components for Composite Service

The record of a single service invocation consists of only an instance of the

service-Provenance. The experiment to record provenance to the file system is

performed by creating an instance of the service-Provenance RDF file for each

service invocation. This is done to demonstrate the approximate collection times

of service-Provenance instances compared with the service invocation instances

when provenance is not collected. The DustCloud algorithm takes input pa

rameters and uses APIs from Java Math and the Java 2D Graph Package [26]

to generate output data with X and Y data points that may be plotted as a

graph. In order to get variation in the results of the tests performed, the Dust

Cloud service’s input parameter (the number of points) is increased for each

test producing a service-Provenance record. This increases the total invocation

time due to the increasing processing time taken by the service to produce out

put of increasing size. For example, if the number of points input is 100, the

Chapter 7: Evaluation 143

Input Parameter Generated File Size (Kbytes)

400 19

800 34

1200 48

1600 66

2000 82

2400 97

Table 7.1: Input parameters used for each Dust Cloud service invocation and the cor
responding service-Provenance instance generated in a file which has varying output
data size.

DustCloud service produces an output array of 200 data points (i.e., 100 times

2), and the values depend on the width input parameter. Table 7.1 shows the

data used to perform the tests.

The tests to evaluate the performance of recording service invocations in the

mySQL database is performed by increasing the number of service-Provenance

instances in the database. For this experiment, the invocation tests are per

formed with fixed input parameters for the DustCloud service such that each

test returns an instance of service-Provenance with a record size of 7 Kbytes.

2. Composite Service. A complex workflow composed of nine Web services (Fig

ure 7.1(2)) representing a scenario in the Astrophysics domain has been de

veloped to test the performance of the Provenance Collection Service. The

implementations of the Web services described in the composite service in Fig

ure 7.1(2) are used, and an abstract workflow constructed using BPEL4WS

(abstract because the Web services implementations are not embedded in the

Chapter 7: Evaluation 144

Input Parameters Generated File Size (M bytes)

400/400 0.44

800/600 0.51

1200/600 1.23

1600/600 1.42

2000/600 1.89

Table 7.2: Input parameters used (for DustCloud and Telescope services) for each
complex Astrophysics Workflow invocation and the corresponding service-Provenance
data generated by the Provenance Collector as an XML log file.

BPEL document which only provides references through the WSDL interfaces).

The BPEL document, and the WSDL documents for the Web services, are de

ployed in the activeBPEL engine that provides an accessible WSDL interface

for the Astrophysics Example Workflow (AEW) as a composite service. This

AEW BPEL document is attached as Appendix C of this thesis. A Provenance

Collector component (discussed in Section 4.3) is deployed within the engine

to collect provenance about the Web service instances invoked by the engine.

The invocation record of a composite service, such as the AEW, consists of

an instance of process-Provenance and nine service-Provenance instances. The

service-Provenance data for a process are collected by the Provenance Collector

asynchronously in an XML file as a temporary log. After completion of a given

process invocation, the XML file is then processed by the PCS to be recorded

as service-Provenance instances (i.e., in RDF) in the MySQL database. Similar

to the single service case, the AEW invocations are performed to collect and

record the provenance at run-time, both in the file system and in a mySQL

Chapter 7: Evaluation 145

database. The tests are performed to demonstrate the approximate collection

times of the process-Provenance instances compared with the AEW process in

vocation times when the Provenance Collector component is not active in the

engine. Table 7.2 shows the data used to perform the tests and the size of the

XML file generated for each test.

Benchmarks were performed, and the time measured to process the recording code

of the PCS with various execution tests for both single service and complex service

scenarios.

4
Total tim e with PCS
Total tim e w ithout PCS

3

o ^
ro <u
o ^ 2
— £a> iz
LJ r~

1

0
40 0 800 1200 1600 2000 2 4 0 0

Number of Points in th e input Param eter o f th e Service

Figure 7.4: Single Service Recording: Invocation Computation Time

R esults: Single Service Scenario

The results obtained for the experiments that recorded the provenance for the

single service case in the file system and the mySQL database are now presented.

For the experiments performed with the file system, the results are shown as graphs

Chapter 7: Evaluation 146

(in Figures 7.4 and 7.5) that illustrate the total time taken, and memory usage to

invoke the DustCloud service, when (1) service-Provenance is actively being collected

and recorded at run-time, and (2) no provenance is collected and recorded. For each

graph, the x-axis shows the value of the number of points parameter passed to the

DustCloud service. The y-axis in Figure 7.4 denotes the total invocation response

time (i.e., the time taken from sending a request to receiving the result back) and the

y-axis in Figure 7.5 denotes the total memory usage for the service invocations for

different tests. The client applications that perform the invocation tests are set up

so that the recorded service-Provenance data does not persist across multiple runs.

That is, each invocation generates a new file, so there is no recording time overhead

(which may occur if recording in a storage system with increasing data).

250
Memory u sage with PCS
Memory u sage w ithout PCS

& 5 1 5 0 -

s §
>■ 4-1
o Sioo -

50 -

400 800 1200 1600 2000 2 4 0 0
Number o f Points in th e input Param eter o f th e Service

Figure 7.5: Single Service Recording: Memory Usage

Each point plotted in the graphs represents the average time of 30 successive

service invocation tests. Each set of 30 successive invocation tests was carried out

Chapter 7: Evaluation 147

with the given input number of points both with and without recording provenance.

As the size of the data output for each test increases with the increasing number of

points input (Table 7.1), the corresponding amount of memory used to collect and

record this also increases as shown in Figure 7.5. The memory usage represents the

amount of heap memory used by the Java Virtual Machine executing the recording

code of the PCS. The values has been collected using Java Management extension

(JMX) [93]. The graph shows a linear trend as is expected for the problem size used

in the tests.

0 .4

c0
<u

4-*

0.29
0.26<u

£ — F 8 0.22

0.16
0.14

Q.Q.
<
2oH

4 0 0 800 1200 1600 2000 2 4 0 0

Number of Points in th e input Param eter of th e Service

Figure 7.6: Single Service Recording: Approximate Time taken by PCS

In Figure 7.4, the two curves, indicating service invocation response times with

and without recording provenance, rise in parallel and the increase is because the

service’s processing time is increasing. The difference between the response times (in

seconds) plotted in these two curves is shown in Figure 7.6, where the x-axis denotes

the number of points, as shown in Table 7.1. This provides the approximate times

Chapter 7: Evaluation 148

taken by the PCS to record service-Provenance instances as RDF files. As expected,

the approximate times or overhead time taken by the PCS increases with the increas

ing number of points but the increment is negligible since the amount of data to record

is not that large. In a real world application, the overhead of using the PCS may de

pend on the size and amount of the input and output data to be recorded but not the

processing time of the services used. For example, a scientific application might in

volve the evaluation of a multidimensional Fourier transform. This consists of a series

of one-dimensional FFTs, each of which is of few hundred or thousand points. Thus,

this problem size considered here in the composite service (Figure 7.1(2)) represents

a one-dimensional FFT service used in the Fourier transformation of data generated

from the DustCloud service. Doing a full 2 or 3 dimensional problem would make the

FFT calculation take longer. However, because the processing time for an TV-points

FFT is O(NlogN) and the time to move data in and out of the FFT service is O(N),

then increasing the problem size would increase the time spent in the FFT service

relative to the time spent moving data between services, the workflow engine, and the

PCS. Thus, the overhead for recording provenance will be small for larger problems

as well.

The second experiment for single service provenance recording was performed

using the MySQL database (used as the Provenance Database). These results are

shown in the graph in Figure 7.7, which shows the total response time to invoke the

DustCloud service and record the provenance about the invocations, as the size of

the service-Provenance in the database increases. The x-axis shows the number of

service-Provenance records (instances) present in the database. The y-axis denotes

Chapter 7: Evaluation 149

4 .2
Total tim e with proven an ce recording
Total tim e w ithout proven an ce recording

r 3.8 -

2.8
50 150 200 25 0100 30 0

Number o f serv ice-P roven an ce R ecords

Figure 7.7: Single Service Recording in Database: Invocation Computation Time

the total time to invoke the service and record an instance of service-Provenance.

Each value plotted in the graph represents the average value of 30 successive service

invocation tests. Each of the 30 successive invocation tests was carried out for the

total number of existing service-Provenance records in the database shown on the

x-axis. The recording of provenance for a single service invocation in the database

shows a steady increase with respect to the increasing number of database records.

The additional time incurred with recording in the database is partly due to time

taken to connect to the database, open and update the Jena model, used to store

provenance data in RDF format.

Results: Com posite Service Scenario

The results obtained from the experiments performed using the complex Astro

physics Example Workflow will now be discussed. The response times results for AEW

Chapter 7: Evaluation 150

invocations, and the corresponsing memory usage for this scenario are presented in

Figures 7.8 and 7.9, respectively, when (1) the Provenance Collector deployed in the

engine is actively recording copies of the messages exchanged during the interactions

between the engine and the Web services, and other relevant provenance information

in an XML file as a temporary log; and, (2) the Provenance Collector is inactive so

that no provenance data are logged. The x-axis shows the number of points passed

as input parameters to the AEW composite service (n /m means there are n points in

the DustCloud model and m points in the telescope model). The y-axis in Figure 7.8

denotes the total response time and the y-axis in Figure 7.9 is the total memory usage

for the AEW invocations for different tests. In the invocation tests the data collected

in the XML file does not persist across multiple tests. That is, in the initial stage of

every test run, the database is empty or a new temporary XML file is created to log

provenance for each process invocation.

Total tim e with PCS
Total tim e w ithout PCS

,9 20 -

4 0 0 /4 0 0 8 0 0 /6 0 0 1 2 0 0 /6 0 0 1 6 0 0 /6 0 0 2 0 0 0 /6 0 0

Number of Points in th e input Param eters of th e Serv ices.

Figure 7.8: Composite Service Recording: Invocation Computation Time

Chapter 7: Evaluation 151

2.4
Memory usage with PCS
Memory u sage without PCS

1.8cn >
ro c
VI H ^ 3 d) y)

> * 1.2

0
4 0 0 /4 0 0 8 0 0 /6 0 0 1 2 0 0 /6 0 0 1 6 0 0 /6 0 0 2 0 0 0 /6 0 0

Number of Points in the input Param eters o f th e Services

Figure 7.9: Composite Service Recording:Memory Usage

As in the single service evaluation, each value plotted represents the average of

30 successive AEW invocation tests. Each set of 30 successive tests was carried

out with and without the collection of intermediate data (i.e., SOAP messages)

by the Provenance Collector. The tests are performed with the number of points

input parameters presented in Table 7.2. The increase in the response time at points

1200/600 is as expected because the problem size inputs to each of the FFT services

in the AEW is 4026 points compared to 1056 points in the preceeding tests. It can be

observed that the curves indicate a negligible effect on the total response time for the

AEW invocations when the Provenance Collector is actively logging the provenance

about all the service invocations. The corresponding memory usage in Figure 7.9

is the heap memory of the Java Virtual Machine collected using JMX with Java’s

garbbage collector active. The memory usage is largly dependent on the workflow

engine requirements. The tomcat server where the engine is deployed also requires

certain memory to run which is not included in this graph. The workflow engine

Chapter 7: Evaluation 152

requires a certain minimum memory to run a given workflow and the memory usage

without PCS shows the miminum amount of memory used to execute the AEW as

shown in the Figure 7.9. This memory requirement will however fluctuate based on

the amount of data or problem size moving between the services and the engine as

discussed earlier. Memory usage with the PCS support is also shown. The results are

as expected, the memory usage is linear with increase in complexity of the problem.

The difference in the response times in seconds between the two curves is plotted

in Fig. 7.10, which gives the approximate time taken by the Provenance Collector

to intercept and collect data about Web service invocations in the engine for the

AEW process. Here, the x-axis denotes the number of points of the input parameters

(Table 7.2). This provides the approximate time or overhead incurred by adding the

PCS support. The results in this graph indicate that the time taken by PCS increases

with the increasing number of points or problem size as expected. The negative

and positive error bars are also plotted for each points indicating the minimum and

maximum approximate times.

It should be noted that the recording of the service-Provenance instances and the

data links using the p-format occur after the invocation of the AEW composite service

is completed and the final result is returned. Instead of the logging approach that has

been adopted, if the Provenance Collector recorded the service-Provenance instances

in RDF during the run-time of the AEW invocation, the response times would be

larger, judging by the considerably higher time to record service-Provenance for a

single service invocation depicted in Figure 7.6.

Chapter 7: Evaluation 153

0 .8 5

0.6
8 0 0 /6 0 0 1 2 0 0 /6 0 0 1 6 0 0 /6 0 0 2 0 0 0 /6 0 04 0 0 /4 0 0

Number of Points in the input Param eters o f th e Serv ices

Figure 7.10: Composite Service Recording: Invocation Computation Time

7.3 Evaluation of the Provenance Q uery Service

This section presents experiments that show the affects of clients simultaneously

performing various provenance queries and process re-executions using the Provenance

Query Service. The experiments also demonstrate how the performance of the PQS

varies as the size of the provenance records retrieved increases, and this is shown with

various queries. The experiments investigate the scalability of the PQS.

7.3.1 Setup Summary

The hardware and software setup is the same as in Section 7.2.1. The client

applications implemented to demonstrate simultaneous use scenarios, that exercise

the components of the PQS, run on the same machine as the PCS. The PQS is

evaluated using the p-format records of the composite service of the Astrophysics

Example Workflow (AEW) presented in Fig. 7.1(2). The process instances in p-

Chapter 7: Evaluation 154

format are stored as RDF statements using the Jena API as Jena models in the

mySQL database, based on a default Jena2 database schema [37]. Each Jena model

or record stored in the database is given a name which is the unique Process ID. The

queries are performed by using an API called ARQ, a SPARQL Processor for Jena.

This API allows SPARQL [43] queries to be made on an instance of the Dataset Java

class constructed using a Dataset Factory Java object. A Dataset construct represents

a default RDF graph and zero or more named graphs. A client application is created

that queries the existing named Jena models in the database, and represents them as

named graphs of the Dataset object to execute the SPARQL queries over the models

representing process instances. Figure 7.11 shows the setup and flow of data for the

queries for the following experiments.

Host machine

PQS

Client/s
Jena API

SPARQL 4
Jena

models

MySQL
Database

server

Figure 7.11: Setup and flow of data for the queries

The Size of the Results of a Provenance Q uery

This experiment measures the query response time as the number of provenance

records retrieved increases. The experiments are performed with two queries on the

Chapter 7: Evaluation 155

Provenance Database that is loaded with 200 instances of AEW enactments. Each

AEW instance has one process-Provenance and ten service-Provenance instances.

Thus, the provenance database simply consists of 200 process-Provenance and 2000

service-Provenance instances. A web client interface (presented in Chapter 7) is

provided to query for one or more provenance records using the SPARQL query

language. Using this client interface, two types of query, that specify RDF properties

of (1) pd:processId and (2) sd:serviceld, were performed to retrieve a provenance query

result, each as an XML document. The query performed with the RDF property

pd:processId retrieves all the RDF statements of a matching process instance record,

consisting of a process-Provenance and 10 service-Provenance instances. The service

ID query retrieves only the service-Provenance instances as literal values, including

service activity and message contents. For each type of query, the client executes the

query once to retrieve a query result. The client fetches between 1 and 100 process

instances, or Jena models, out of the 200 available to perform the query over the

dataset. Each type of query is averaged over 30 trial runs, and the query response

time and the corresponding query results file size for each trial are plotted as depicted

in Figures 7.12 and 7.13, respectively.

The x-axis in the graphs shows the number of Jena models the single client re

trieves from the database over which the queries are performed. The y-axis in Fig

ure 7.12 shows the average response time. The bar graphs in Figure 7.13 represent

the query result sizes for each of the corresponding query experiments. It can be seen

from the graphs that the query response time plot for the query on service ID shows

a linear trend beyond 15 retrieved result sets, the curve elevates giving an average

Chapter 7: Evaluation 156

Avg Q uery RT (serv ice ID)
Avg Q uery RT (p ro cess ID)

40

20

3 7 15 30 60 8 0 100

Total N um ber of R etrieved R esu ltS ets

Figure 7.12: Average query response time for two types of query as the retrieved
result set increases.

□ Query result size (serv ice ID)
■ Query result size (p rocess ID)

3 7 15 30 60 8 0 10 0
Total N um ber o f R etrieved R esu ltS ets

Figure 7.13: Query result file size for two types of query as the retrieved resultset
increases.

Chapter 7: Evaluation 157

response time of 14.45 seconds and beyond this point till 100 models shows a gradual

rise giving response time of 46.98 seconds. Note that the service ID query type’s

average query response time is slightly higher then that of the process ID. This is

because of the way the service ID query type is constructed which takes more time to

process. The query result size for the query type with process ID is higher compared

with that of the service ID query type. This is because the process ID query type

retrieves all the RDF triples with URIs for the process instances, whereas the service

ID query type retrieves only the RDF literal values of the service instances, making

the file size smaller. It can be noticed that the response time is high for the amount

of data queried in the tests. This is because of the lack of optimization of SPAPQL

and also the indexing mechamism of Jena is not optimal.

Simultaneous Querying by Clients

This experiment measures the average query response time as the number of con

current clients querying the Provenance Database for provenance records increases.

This is performed to evaluate the scalability of the PQS as the number of simultaneous

querying clients increases from 1 to 32. The two types of query used in the previous

section are performed with ten Jena models. Thus, the querying client application

retrieves 10 process-Provenance and 100 service-Provenance instances, respectively.

Both types of query are executed over ten models for an increasing number of si

multaneous querying clients. Each query is averaged over 30 trial runs for the given

number of concurrent querying clients. The experimental results are presented in

Figures 7.14 and 7.15.

Chapter 7: Evaluation 158

■ Avg query RT (serv ice ID)

□ Avg query RT (p r o c e ss ID)

1 3 5 8 10 16 20 26 32
Total Num ber o f Concurrent C lients

Figure 7.14: Average query response time per client as the number of concurrent
clients performing the two kinds of query increases.

3600
Total query RT (serv ice ID)

Total query RT (p r o c e ss ID)

2700 -

u i s—'

0) —
O ' u

jn * 900 -

1 3 5 8 10 16 20 26 32

Total N um ber of C oncurrent C lients

Figure 7.15: Total response time for all the clients as the number of concurrent clients
performing the two kinds of query increases.

Chapter 7: Evaluation 159

The x-axis in both the graphs shows the number of simultaneous querying clients.

The y-axis in Figure 7.14 denotes the average response time for each querying client as

the number of concurrent clients increases along the x-axis. The y-axis in Figure 7.15

denotes the total response time for all the simultaneous clients. This is the total time

to complete 30 iterations in the line graph accordingly scaled by 30 times compared to

the y-axis in Figure 7.14. The two plots show the total response times for the two types

of query and the bar charts represent the average query response time for each client

as the number of simultaneous clients increases. From the results it can be observed

that the plot shows a linear trend as the number of querying clients increases beyond

10, taking an average of 33.72 seconds and 92.05 seconds to retrieve the provenance

trace given the process ID for 10 and 32 clients respectively. The results for the

query with service ID similarly indicates that the query component within the PQS

has good scalability when the number of simultaneous clients increases. As in the

previous experiment, the response time is high because of using SPARQL.

7.3.2 Workflow Re-execution by Sim ultaneous Clients

This experiment evaluates the scalability of the re-execution of the queried work

flow instance records, which is part of the PQS. This is performed to demonstrate

the scalability of the re-execution code and the workflow engine as the number of

simulatenous clients re-executing increases from 1 to 70. The example workflow in

stance is queried from the provenance database first for its re-execution by the clients.

The re-execution of the AEW is performed with the same input parameters for each

client. Here, only the response time of the re-execution task is taken into account.

Chapter 7: Evaluation 160

Each re-execution response time is averaged over 30 trials for the given number of

simultaneous clients. The hardware and network configuration and the setup used

for the experiment is the same as described in section 7.2.1 and in Figure 7.3, only

the PCS is not included here.
3000100

A verage tim e per client
Total tim e for all clients

-- 1800 « 8, <U w£ 60

•£ -
- 1200 3 £

" ID
* 0)40 -

<u **-

-- 60020 -

1 5 10 30 50 60 70
Number of Simultaneous Re-executing Clients

Figure 7.16: Average re-execution response time as the number of simultaneous clients
re-executing a past workflow increases.

The results of this experiment are presented in Figure 7.16, which shows the

average re-execution response time along the left y-axis as the number of simultaneous

clients increases along the x-axis. The times are averaged over 30 iterations and the

total time for all the clients to complete the 30 iterations is shown on the right y-

axis. The PQS timings show a sub-linear trend as the number of clients increases

beyond 10, taking an average of 15.32 seconds and 86.11 seconds, respectively, to re

execute the queried workflow on 10 and 70 clients. As seen from the graph, the slope

decreases as the number of clients goes beyond ten, which may be due to the operating

system or the machine hosting the workflow engine reaching its threshold. Thus, the

response time for re-execution is highly dependent on the hosting environment of the

Chapter 7: Evaluation 161

workflow engine and the Web services. During the 30 iterations of re-execution for the

increasing number of clients, no errors were encountered, which shows the stability

and reliability of the activeBPEL engine that was used in the experiments.

7.4 Summary

This chapter has presented experimental results that validate the theoretical con

cepts proposed in this thesis. It has been shown that the automated techniques

developed to collect and record the provenance of process enactments in a service-

oriented environment are effective and scalable, thereby establishing the validity of

these techniques for use in capturing and storing provenance. The consequence of

intercepting the process invocation by the Provenance Collection Service component

has been experimentally established, and it has been shown that the increase in the

response time of the process invocation is negligible. In real world cases, this en

ables the use of larger problem sizes to be handled effectively by the PCS. Also the

experiment conducted for the asynchronous recording of the collected provenance in

formation in the database indicates reasonable performance. The results obtained

from the Provenance Query Service experiments have established the good scalability

and performance of the PQS component particularly for simultaneous clients query

ing and re-executing the processes. Due to the lack of optimization of SPARQL, the

response time is high for the given result datasets. This problem can easily be solved

by using appropriate SQL queries on the mySQL database.

The experimental results have therefore established that the primary components

of our provenance model satisfy the requirements of a data provenance facility in a

Chapter 1: Evaluation 162

service-oriented environment. The proposed provenance model has been evaluated

with a real scientific workflow example, and it has been demonstrated that it facil

itates the capture and recording of data provenance for process invocations, so that

past processes can be re-executed and verified. This brings the thesis to its conclud

ing chapter where the contribution of this research will be summarised, and future

directions of our work will be outlined.

Chapter 8

Future Work and Conclusions

8.1 Research Summary

The research presented in this thesis has focussed on addressing the specific re

quirements of the data provenance of Web processes in service-oriented environments.

The emergence of the Service-Oriented Architecture (SOA) paradigm as the domi

nant infrastructure for e-service delivery, and the realization that support for data

provenance is both necessary and viable for SOAs, has resulted recently in significant

research interest in data provenance support in SOAs. Discussion in the data prove

nance research community (see for example [22, 28]) has revealed that numerous

researchers in a variety of scientific disciplines are recognizing the importance of pro

viding provenance for their dedicated data products to research partners and/or other

potential data users. These discussions have also revealed the relevance of different

application-level views of provenance, and demonstrate that operational systems to

achieve provenance-aware applications are not yet common. A recent provenance

163

Chapter 8: Future Work and Conclusions 164

workshop [20] has reported on provenance research being conducted that is inspired

by previous research that relates to both provenance and workflow. Very little re

search has contributed towards providing a provenance-aware framework in a service-

based environment - most work has focused on workflow applications with provenance

tracking facilities for scientific domains.

In an open, large-scale and distributed environment of the type used in numer

ous disciplines of modern computational science, a provenance system helps scientific

users to trace and evaluate research results of interest. In an SO A, there is a signifi

cant distinction between the abstract workflow document (or workflow specification)

and the provenance document about the results produced from the invocation of that

workflow. The work presented in this thesis has sought to elucidate the interrelations

and differences between these two concepts, so that the system designed to support

provenance tracing in an SOA is generic and well-suited to the needs of research

scientists using a service-based infrastructure in their everyday computational inves

tigations. This thesis has proposed a model to provide support for provenance in

service-based environments, and has advanced the state-of-the-art by realizing the

necessity of a generic and simple provenance system for use by research scientists.

This thesis has focused on addressing the constraints imposed on scientists who need

to retain a history of their computations when interacting in service-based environ

ments.

This chapter concludes the thesis by summarizing the research contributions of

this work in Section 8.2, and outlining the future directions that we intend to pursue

in Section 8.3.

Chapter 8: Future Work and Conclusions 165

8.2 Research Contributions

The primary theme of this thesis is concerned with how researchers performing

scientific experiments in a service-based environment can best compose and express

data provenance for their new scientific data products, and how to query and reuse

them. This thesis has contributed to the state-of-the-art of provenance support in

service-oriented environments in a broad and non domain-specific way. This section

presents the precise research contributions of this thesis with reference to the research

objectives posed in Chapter 1. These contributions are as follows:

• Development of the provenance architectural model The thesis has proposed a

provenance model that supports the requirements of a data provenance facil

ity for distributed, service-based workflows. These requirements are to provide

a capability for capturing and storing data provenance, and for querying, ex

ploiting and reusing the captured provenance information. The provenance

model combines features of the widely-used Web service and client-server mod

els, which facilitates the exposure of parts of the PCS and PQS components of

the provenance model as Web services.

• Development of a provenance format for representing the data provenance of

workflow executions in an SO A. Although there are standards to represent the

provenance of a document, such as the Dublin Core [58], there is no Web Services

standard for representing provenance information, especially for services and

process enactments. Some existing provenance representation techniques are

either domain-specific or technically too complex [84]. For example, the model

Chapter 8: Future Work and Conclusions 166

presented in [84] is based on records about interactions between services. Here,

provenance assertions about interactions are required to be recorded by all the

involved services based on the unique identifiers of the interactions generated

and passed between the services. There are different identifiers about various

provenance assertions that require in depth learning to understand and use

the recording mechanism and to perform queries. This thesis has proposed

a provenance representation model, called p-format, that is simple to learn,

expand, and adapt. The extensibility and flexibility of the p-format is due to the

RDF data structure that has been used, which enables the creation of the new

vocabulary needed to add additional meaningful provenance information with

little or no change in the PCS and PQS components. The p-format is designed,

in particular, to structure provenance for atomic and composite services, and for

the data links that occur between the services of a composite service execution.

Thus, the p-format facilitates the structuring and retrieval of the provenance

for a piece of data in a way that is meaningful and interpretable by humans.

• Development of a PCS with automated capturing and recording of data prove

nance. Scientific research by its nature often involves complex computational

processing of sensitive and large-scale data sets in a distributed environment.

This necessitates a mechanism for collecting provenance in an SOA with minimal

impact on the total time to process the complex computation. This disserta

tion has developed a provenance collection mechanism that intercept and logs

provenance information at different service invocation points in the execution

of a composite process. The logs for a process execution are processed follow

Chapter 8: Future Work and Conclusions 167

ing the completion of the execution, to record the provenance in the Prove

nance Database according to the provenance format. The time expended on

assigning and recording provenance information in the database does not sig

nificantly burden the process enactment itself. Existing provenance support in

SOAs addresses provenance recording but does not focus on the need to record

provenance with little user interaction and execution overhead. This thesis has

developed the PCS component to automatically collect and record provenance

for process enactments. In order to support implementations, logs are provided

as XML documents which can then be processed by the PCS for asynchronous

provenance recording.

• Development of the PQS for querying, re-execution, and re-creation of work

flows. This thesis has also developed the PQS component that provides the

ability to query and reuse the recorded data provenance of process executions.

The PQS component provides interfaces to retrieve process instances. In ad

dition, the interface supports the re-execution of processes with different in

put parameters. Existing provenance research work in SOAs also has provided

querying tools, but few deal with re-execution of previous workflows, and those

that do are either application-specific or do not cater for a service-based environ

ment. This thesis provides a mechanism for the re-execution of past processes

that fulfills the requirements of research scientists to verify results and to per

form what-if analysis on the processes. This assumed that the required services

exists during re-execution.

• Experimental evaluations of the PCS and PQS. Finally, the PCS and PQS com-

Chapter 8: Future Work and Conclusions 168

ponents of our provenance model have been evaluated, and experimental results

have been presented and analyzed.

The above discussion has highlighted the principal contributions of this thesis.

Future directions of this research work will now be briefly discussed.

8.3 Research Directions

The previous section has described the primary contributions of our research, and

this section concludes the thesis by outlining areas for future work.

The dissertation has focussed on modelling, recording and querying the provenance

of workflow enactments in a service-based environment. Motivated by the idea of a

“Living Document” as introduced in Chapter 1, we have considered the recording of

provenance, such that the captured provenance enables re-execution of past workflows.

At the start of the re-execution of a past workflow problems may arise from services

being unavailable, moved, or no longer existing at that point in time, thereby causing

the re-execution to fail. Enhancing the re-execution model to tackle such problems

by searching for, and selecting, a similar service (i.e., one that performs the same

operation), and substituting it in the workflow to be re-executed, is being considered.

The approach to searching may be closely related to the increasingly active area of

semantic-based service description, discovery, and matching. We intend to study the

searching and matching of semantically described services, and develop an integrated

approach to provide a way to handle re-execution failures caused by unavailable,

moved or terminated services. We also intend to consider the notion of “smart” re

execution, where only the services whose inputs are changed are re-executed in the

Chapter 8: Future Work and Conclusions 169

workflow. This is valuable for scientists investigating larger workflows as it reduces

the re-execution time, and subsumes the concept of checkpointing. To incorporate

this requires the workflow engine to interpret the provenance data, which therefore

requires further investigation.

While part of the work in this thesis is specific to re-execution of past workflows,

a future extension to provide re-execution without using BPEL may be considered.

Although the PCS was utilized in Section 7.2 to record provenance of a service invo

cation without using BPEL, a further investigation on the provenance data model is

required in this case to see how re-execution could be supported.

Future development of the PCS for automatic provenance recording will move in

the direction of creating APIs for recording data provenance directly by the researcher

performing the experiments. This makes it easier for researchers to directly use the

data provenance recording functionality. This would help to include additional infor

mation, for example causality relationships, by manual assertions as some information

may not be automatically recorded and interpreted. This approach would comple

ment the trend toward increasing online propagation of scientific data by providing

data provenance consisting of human-understandable details to explain the workflow

process that led to a particular piece of data.

The implementation presented to re-create workflows using a graphical display

provides a high-level view of what happened to produce some piece of data. Applying

this as a tool to enable researchers to place some degree of trust in the produced

data is being considered. In our implementation of the PQS we have experimented

with multiple aspects of exploiting data provenance. We intend to investigate how

Chapter 8: Future Work and Conclusions 170

trust in an enacted workflow may be established and modelled with respect to data

provenance.

Data provenance has thus far been the method of choice to enhance scientific

workflows or applications that deal with the production of data with added scientific

value. On one hand, the distributed Web-based approaches adopted by researchers

focus on supporting the needs of many researchers in setting up an infrastructure

for sharing scientific data and meta-data in order to propagate scientific resources.

However, service-based adaptation of scientific workflows has the potential to bring

data provenance infrastructure of the type presented here to a level at which scientific

data could be verified by re-executing the workflow that produced that data. This

benefits researchers trying to study published works by giving greater insight into the

research of others, and by bringing new opportunities and challenges to the research

community. Future extensions of our research on provenance support for service-based

scientific workflows will focus on the exploitation of data provenance. One future focus

will be the investigation of better ways to automatically generate the data provenance

of workflows in order to capture richer semantics that would help a later search for a

method to solve a particular problem. For example, given a set of data provenance

of workflows, it would be interesting to solve provenance questions like, how can a

system discover or synthesize a workflow if the only input the user provides is a desired

outcome (that may only be formed by combining parts of workflow recipes and data

from enacted workflows [68]).

Chapter 8: Future Work and Conclusions 171

8.4 Research Publications

Different aspects of this research have been validated and presented in the pro

ceedings of peer reviewed international conferences:

• Shrija Rajbhandari and David W. Walker. Support for Provenance in a Service-

based Computing Grid. In Proceedings of UK e-Science All Hands Meeting,

Notthingham, U.K., 2004.

• Shrija Rajbhandari and David W. Walker. Incorporating Provenance in Service

Oriented Architecture. In Proceedings of 2nd International Conference on Next

Generation Web Services Practices (NWeSP), Seoul, South Korea, 2006.

Bibliography

[1] ATLAS Chimera, http://grid.uchicago.edu/atlaschimera/, 2004.

[2] Collaboratory for Multi-Scale Chemical Science, http://cmcs.org/home.php,

2004.

[3] my Grid Project, http://www.mygrid.org.uk/, 2004.

[4] Provenance Aware Service Oriented Architecture (PASOA) Project.

http://www.pasoa.org/, 2004.

[5] MySQL Database Server, http://www.mysql.com/, 2005.

[6] Universally Unique Identifier (UUID). http://en.wikipedia.org/wiki/UUID,

2006.

[7] Web-based Distributed Authoring and Versioning (WebDAV).

http://www.webdav.org/, 2006.

[8] The World Wide Web Consortium (W3C), http://www.w3.org/, 2007.

[9] Active Endpoints, Inc. ActiveBPEL open source engine. http://www.active-

endpoints.com/active-bpel-engine-overview.htm, 2005.

172

http://grid.uchicago.edu/atlaschimera/
http://cmcs.org/home.php
http://www.mygrid.org.uk/
http://www.pasoa.org/
http://www.mysql.com/
http://en.wikipedia.org/wiki/UUID
http://www.webdav.org/
http://www.w3.org/
http://www.active-

Bibliography 173

[10] Active Endpoints, Inc. ActiveBPEL designer. http://www.active-

endpoints.com/active-bpel-designer.htm, 2006.

[11] Alexander Aiken, Jolly Chen, Michael Stonebraker, and Allison Woodruff.

Tioga-2: A direct manipulation database visualization environment. In IEEE

Proceedings for 12th International Conference on Data Engineering, 1996.

[12] International Virtual Observatory Affiance. An IVOA Standard for Unified

Content Descriptor. http://www.ivoa.net/Documents/latest/UCD.html, 2005.

[13] Gustavo Alonso and Claus Hagen. Geo-Opera: Workflow Concepts for Spatial

Processes. In Proceedings of GIS/LIS Conference, pages 144-153, 1997.

[14] Altova. Altova XMLSpy 2007, the industry-standard XML editor.

http://www.altova.com, 2007.

[15] Altova. SemanticWorks 2007, visual semantic web tool.

http://www.altova.com/downloadtrialsemanticworks.html, 2007.

[16] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,

Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug

Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana.

Business process execution language for web services (BPEL4WS).

ftp:/ /www6.software.ibm.com/software/developer/library/ws-bpel.pdf, 2005.

[17] James Annis, Yong Zhao, Jens Voeckler, Michael Wilde, Steve Kent, and Ian

Foster. Applying chimera virtual data concepts to cluster finding in the sloan

http://www.active-
http://www.ivoa.net/Documents/latest/UCD.html
http://www.altova.com
http://www.altova.com/downloadtrialsemanticworks.html
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

Bibliography 174

sky survey. In Supercomputing ’02: Proceedings of the 2002 ACM/IEEE con

ference on Supercomputing, pages 1-14, Los Alamitos, CA, USA, 2002. IEEE

Computer Society Press.

[18] M Beasley, S Datta, H Kogelnik, H Kroemer, and D Monroe. Report of the

investigation committee on the possibility of scientific misconduct in the work

of hendrik schon and co-authors. In Technical report, 2002.

[19] Marjorie Berdeen, Eric Gilbert, Thomas Jordan, Paul Nepywoda, Elizabeth

Quigg, Michael Wilde, and Yong Zhao. The quarknet/grid collaborative learn

ing e-lab. In Second International Workshop on collaborative and learning Ap

plications of Grid Technology and Grid Education, 2005.

[20] Dave Berry, Peter Buneman, Ian Foster, and James Frew. Proceedings

of the international provenance and annotation workshop (IPAW 2006).

http://www.ipaw.info/ipaw06/proceedings.html, Chicago, Illinois, May 2006.

[21] Dave Berry, Peter Buneman, Michael Wilde, , and Yannis Ioannidis. Work

shop on data provenance and annotation, December 2003. National e-Science

Institute, Edinburgh.

[22] Dave Berry, Peter Buneman, Michael Wilde, and Yannis Ioannidis. Workshop

on data provenance and annotation, http://wrww.nesc.ac.uk/esi/events/304/,

December 2003.

[23] Rajendra Bose and James Frew. Composing lineage metadata with xml for

custom satellite-derived data products. In 16th International Conference on

http://www.ipaw.info/ipaw06/proceedings.html
http://wrww.nesc.ac.uk/esi/events/304/

Bibliography 175

Scientific and Statistical Database Management (SSDBM’04), Santorini Island,

Greece, 21-23 June 2004.

[24] S.E Brenner. Errors in genome annotation. In Trends in Genetics, volume 15,

pages 132-133, 1999.

[25] D.O Briukhov, L.A Kalinichenko, and V.N Zakharov. Diversity of domain de

scriptions in natural science:virtual observatory as a case study. In Proceedings

of the 7th Russian Conference on Digital Libraries (RCDL 2005), Yaroslavl,

Russia, 2005.

[26] Leigh Brookshaw. Java 2D graph package.

http://www.sci.usq.edu.au/staff/leighb/graph/, 2006.

[27] Peter Buneman, Alin Deutsch, and Wang-Chiew Tan. A deterministic model

for semistructured data. In Workshop on Query Processing for Semistructured

Data and Non-Standard Data Formats, pages 14-19, 1999.

[28] Peter Buneman and Ian Foster. Workshop on Data Derivation and Provenance.

http://www-fp.mcs.anl.gov/ foster/provenance/, Chicago, October 17-18, 2002.

[29] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Data provenance:

Some basic issues. In Foundations of Software Technology and Theoretical Com

puter Science, volume 1974 / 2000, page 87, New Delhi, India, December 2000.

Lecture Notes in Computer Science PubUsher:Springer-Verlag.

[30] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A

characterization of data provenance. In International Conference on Database

http://www.sci.usq.edu.au/staff/leighb/graph/
http://www-fp.mcs.anl.gov/

Bibliography 176

Theory (ICDT 2001), volume 1973 / 2001, pages 316-330. Lecture Notes in

Computer Science Publisher:Springer-Verlag, January 2001.

[31] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. On propagation

of deletions and annotations through views. In PODS ’02: Proceedings of

the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, pages 150-158, New York, NY, USA, 2002. ACM Press.

[32] Nicola Cannata, Flavio Corradini, and Emanuela Merelli. A resourceomic grid

for bioinformatics. Future Generation Computer System, 23(3):510-516, 2007.

[33] Maria Claudia Cavalcanti, Marta Mattoso, Maria Luiza Campos, Eric Simon,

and Francois Llirbat. An architecture for managing distributed scientific re

sources. In 14th International Conference on Scientific and Statistical Database

Management (SSDBM), 2002.

[34] Maria Cludia Cavalcanti, Marta Mattoso, Maria Luiza Campos, Francois Llir

bat, and Eric Simon. Sharing scientific models in environmental applications.

In SAC ’02: Proceedings of the 2002 ACM symposium on Applied computing,

pages 453-457, New York, NY, USA, 2002. ACM Press.

[35] Kishore Channabasavaiah, Kerrie Holley, and Edward Tuggle. Migrat

ing to a service-oriented architecture, ibm developerworks. http://www-

128.ibm.com/developerworks/library/ws-migratesoa/, December, 2003.

[36] Hewlett-Packard Development Company. Jena a semantic web framework for

java. http://jena.sourceforge.net/, 2004.

http://www-
http://jena.sourceforge.net/

Bibliography 177

[37] Hewlett-Packard Development Company. Jena2 database interface - database

layout. http://jena.sourceforge.net/DB/layout.html, 2004.

[38] The Gene Ontology Consortium. Gene ontology database,

http: / / www.geneontology.org/.

[39] Y. Cui and J. Widom. Practical lineage tracing in data warehouses. In Pro

ceedings of the 16th International Conference on Data Engineering (ICDE’OO),

San Diego, California, February 2000.

[40] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of

view data in a warehousing environment. In ACM Transactions on Database

Systems, volume 25, pages 179-227, June 2000.

[41] Vikas Deora, J Shao, W. A Gray, and N. J Niddian. Modelling quality of

service in service oriented computing. In Second IEEE International Sympo

sium on Service-Oriented System Engineering (SOSE’06), pages 95-101. IEEE

Computer Society, November 2006.

[42] D Devos and A Valencia. Intrinsic errors in genome annotation. In Trends in

Genetics, volume 17, pages 429-131, 2001.

[43] W3C Working Draft. SPARQL query language for RDF.

http://www.w3.org/TR/rdf-sparql-query/, 4 October 2006.

[44] University of California Environmental Information Laboratory. The Earth Sys

tem Science Server (ES3). http://essw.bren.ucsb.edu/projects/proj-essw.htm,

2004.

http://jena.sourceforge.net/DB/layout.html
http://www.geneontology.org/
http://www.w3.org/TR/rdf-sparql-query/
http://essw.bren.ucsb.edu/projects/proj-essw.htm

Bibliography 178

[45] Environmental System Research Institute, Inc. Understanding GIS-

the Arc/Info method. http://www.ciesin.columbia.edu/docs/005-331/005-

331.html, 1992.

[46] Extreme Lab, Indiana University. Web and XML Services Utility Li

brary (WS/XSUL). http://www.extreme.indiana.edu/xgws/xsul/, 2004.

[47] Hao Fan. Tracing data lineage using automed schema transformation path

ways. In BNCOD 19: Proceedings of the 19th British National Conference on

Databases, pages 50-53, London, UK, 2002. Springer-Verlag.

[48] Ian T. Foster. The anatomy of the grid: Enabling scalable virtual organizations.

In First IEEE International Symposium on Cluster Computing and the Grid

(CCGrid 2001), pages 6-7, Brisbane, Australia, May 15-18 2001.

[49] Ian T. Foster, Jens-S. Vockler, Michael Wilde, and Yong Zhao. Chimera: A

virtual data system for representing, querying, and automating data deriva

tion. In 14th International Conference on Scientific and Statistical Database

Management (SSDBM), pages 37-46, 2002.

[50] James Frew and Rajendra Bose. Earth science workbench: A data manage

ment infrastructure for earth science products. In SSDBM ’01: Proceedings of

the Thirteenth International Conference on Scientific and Statistical Database

Management, pages 180-189, Washington, DC, USA, July 18-20 2001.

[51] James Frew and Jeff Dozier. Data management for earth system science. SIG-

http://www.ciesin.columbia.edu/docs/005-331/005-
http://www.extreme.indiana.edu/xgws/xsul/

Bibliography 179

MOD Record (ACM Special Interest Group on Management of Data), 26(1):27-

31, 1997.

[52] G-Hydroflex. PlotWS, Southampton regional e-science centre,

http: / / www. sot on .ac.uk/ ghydflex / plotws /, 2006.

[53] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian-

Augustin Saita. Improving data cleaning quality using a data lineage facility.

In Design and Management of Data Warehouses, page 3, 2001.

[54] Dan Gisolfi. Web service architecture: Part 1.

http: / / www.ibm.com / developerworks / webservices/library/ws-arcl /, April

2001.

[55] Paul Groth, Simon Miles, and Luc Moreau. Preserv: Provenance recording

for services. In Simon J. Cox and David W. Walker, editors, Proceedings of

the UK e-Science All Hands Meeting 2005, published on CD, Nottingham, UK,

September 2005.

[56] W3C Working Group. Web services architecture. http://www.w3.org/TR/ws-

arch/, February 2004.

[57] Yan Huang. Service workflow language (swfl).

http://users.cs.cf.ac.uk/Yan.Huang/GridWF/SWFL.htm, 2003.

[58] Dublin Core Metadata Initiative. Dublin Core Metadata Element Set, Version

1.1. http://dublincore.org/documents/dces/, 2006.

http://www.ibm.com
http://www.w3.org/TR/ws-
http://users.cs.cf.ac.uk/Yan.Huang/GridWF/SWFL.htm
http://dublincore.org/documents/dces/

Bibliography 180

[59] James D Myers Jens Schwidder, Tara Talbott. Bootstrapping to a semantic grid.

In Proceedings of the Semantic Infrastructure for Grid Computing Applications

Workshop at IEEE/ACM International Symposium on Cluster Computing and

the Grid CCGRID 2005, May 9-12 2005.

[60] A. Jones, R. White, N. Pittas, W. Gray, T. Sutton, X. Xu, O. Bromley,

N. Caithness, F. Bisby, N. Fiddian, M. Scoble, A. Culham, and P.Williams.

BiodiversityWorld: An architecture for an extensible virtual laboratory for

analysing biodiversity patterns. In UK e-Science All Hands Meeting, EPSRC,

pages 759-765, Nottingham, UK, September 2003.

[61] J.Zhao, C.A. Goble, M. Greenwood, C. Wroe, and R. Stevens. Annotating, link

ing and browsing provenance logs for e-science. In 1st Workshop on Semantic

Web Technologies for Searching and Retrieving Scientific Data in conjunction

with 2nd International Semantic Web Conference, 20th October 2003.

[62] Peter Karp. What we do not know about sequence analysis and sequence

databases. In Bioinformatics, pages 753 - 754, 1998.

[63] Pacific Northwest National Laboratory. Scientific Annotation Middleware

(SAM), http://collaboratory.emsl.pnl.gov/software/sam/, 2006.

[64] D.P. Lanter. A lineage meta-database program for propagating error in ge

ographic information systems. In Proceedings of GIS/LIS Conference, pages

144-153, 1990.

http://collaboratory.emsl.pnl.gov/software/sam/

Bibliography 181

[65] D.P. Lanter. Design of a lineage-based meta-database for gis. In Cartography

and Geographic Information Systems, pages 255-261, 1991.

[66] D.P. Lanter. A lineage meta-database approach toward spatial analytic

database optimization. In Cartography and Geographic Information Systems,

pages 112-121, 1993.

[67] D.P. Lanter. Comparision of spatial analytic applications of GIS. In Environ

mental information management and analysis;echosystem to globel scales, pages

413-425, 1994.

[68] Shalil Majithia, David W. Walker, and W.A. Gray. Automated composition

of semantic grid services. In Proceedings of UK e-Science All Hands Meeting,

Notthingham, U.K., 2004.

[69] Arunprasad P. Marathe. Tracing lineage of array data. In Proceedings of Thir

teenth International Conference on Scientific and Statistical Database Manage

ment SSDBM, pages 69 - 78, 18-20 July 2001.

[70] Deborah L. McGuinness and Paulo Pinheiro da Silva. Inference web: Portable

and shareable explanations for question answering. In Proceedings of the Ameri

can Association for Artificial Intelligence, Spring Symposium Workshop on New

Directions for Question Answering, pages 67-71. AAAI Press, March 2003.

[71] Deborah L. McGuinness and Paulo Pinheiro da Silva. Infrastructure for web

explanations. In Proceedings of 2nd International Semantic Web Conference

(ISWC2003), pages 113-129. Springer, October 2003.

Bibliography 182

[72] Deborah L. McGuinness and Paulo Pinheiro da Silva. Explaining answers from

the semantic web: The inferenceweb approach. In Journal of Web Semantics,

volume 1, pages 397-413, October 2004.

[73] Deborah L. McGuinness and Paulo Pinheiro da Silva. Trusting answers from

web applications. In Mark T. May bury, editor, New Directions in Question

Answering. AAAI/MIT Press, October 2004.

[74] James D. Myers, Carmen Pancerella, C Lansing, Schuchardt K.L, and B Di-

dier. Multi-scale science: supporting emerging practice with semantically de

rived provenance. In ISW C 2003 Workshop: Semantic Web Technologies for

Searching and Retrieving Scientific Data, October 20 2003.

[75] Grid Physics Network. GriPhyN Project, http://www.griphyn.org/, 2006.

[76] University of Chicago. Open grid services architecture (OGSA).

http://www.globus.org/ogsa/, 2007.

[77] University of Southampton. Centre for proteomic research.

http://www.proteome.soton.ac.uk/, 2004.

[78] OASIS Open. Universal Description Discovery and Integration (UDDI) Speci

fication Version 3. http://uddi.org, 2006.

[79] G Scott Owen. Geographical Information Systems (GIS).

http: / / www.siggraph.org/education / materials/HyperVis / applicat / gis / gis.htm,

1999.

http://www.griphyn.org/
http://www.globus.org/ogsa/
http://www.proteome.soton.ac.uk/
http://uddi.org
http://www.siggraph.org/education

Bibliography 183

[80] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-

terling. Numerical Recipes in C:The Art of Scientific Computing. Cambridge

University Press, West Sussex, England, 1992.

[81] Apache Web Service Project. Apache SOAP (WS-SOAP).

http://ws.apache.org/soap/, 2003.

[82] Apache Web Service Project. Axis, http://ws.apache.org/axis/, 2004.

[83] Apache Web Service Project. Web Services Invocation Framework (WSIF).

http://ws.apache.org/wsif/, 2004.

[84] EU Provenance Project. Enabling and supporting provenance in grids for com

plex problems. http://gridprovenance.org, 2006.

[85] SOAP Lite Project. SOAP::Lite. http://www.soaplite.com/, 2005.

[86] Shrija Rajbhandari, Ali Shaikh Ali, Ian Wootten, and Omer.F Rana. Evaluating

provenance-based trust for scientific workflows. In Sixth IEEE International

Symposium on Cluster Computation and the Grid(CCGrid06), pages 365-372,

Singapore, May 2006.

[87] W3C RDF Core Working Group. Resource Description Framework (RDF).

http://www.w3.org/RDF/, 2004.

[88] W3C Recommendation. XML Path Language (XPath) 2.0.

http://www.w3.org/TR/xpath, 2007.

http://ws.apache.org/soap/
http://ws.apache.org/axis/
http://ws.apache.org/wsif/
http://gridprovenance.org
http://www.soaplite.com/
http://www.w3.org/RDF/
http://www.w3.org/TR/xpath

Bibliography 184

[89] P. Ruth, D. Xu, B. K. Bhargava, , and F. Regnier. E-notebook middleware for

acccountability and reputation based trust in distributed data sharing commu

nities. In Proceedings on 2nd International Conference on Trust Management,

Oxford, UK, 2004. LNCS Springer.

[90] Spatial Data Transfer Standard (SDTS). U.S. geological survey,

http:/ /mcmcweb.er.usgs.gov/sdts/SDTS_standard_nov97/partlbl2.html, 2001.

[91] D. Sulakhe, A. Rodriguez, M. D’Souza, M. Wilde, V. Nefedova, I. Foster, and

N. Maltsev. GNARE: an environment for grid-based high-throughput genome

analysis. In Cluster Computing and the Grid, CCGrid 2005 IEEE International

Symposium on, pages 455-462. IEEE International Press, 2005.

[92] Sun Microsystems, Inc. Java 2 Software Development Kit (J2SDK).

http://java.sun.com/, 2005.

[93] Sun Microsystems, Inc. Java Management extension,

http:/ /java.sun.com/products/JavaManagement/, 2005.

[94] Sun Microsystems, Inc , Sun Developer Network(SDN). JavaServer Pages (JSP)

technology 2.0. http://java.sun.com/products/jsp/, 2003.

[95] Tara Talbott, Michael Peterson, Jens Schwidder, and James D. Myers. Adapting

the electronic laboratory notebook for the semantic era. In Proceedings of the

2005 International Symposium on Collaborative Technologies and Systems (CTS

2005), May 15-20 2005.

http://mcmcweb.er.usgs.gov/sdts/SDTS_standard_nov97/partlbl2.html
http://java.sun.com/
http://java.sun.com/products/JavaManagement/
http://java.sun.com/products/jsp/

Bibliography 185

[96] The Apache Software Foundation. Apache Tomcat, http://tomcat.apache.org/,

2006.

[97] The National Collaboratories Program, U.S. Department of Energy. Collabo-

ratory for Multi-Scale Chemical Science (CSMC). http://cmcs.org/index.php,

2005.

[98] EGEE User and Application Portal. E arth science application, http://www.eu-

egee.org/.

[99] H. Veregin and Peter D.Lanter. Data-quality enhancement techniques in layer-

based geographic information systems. In Computers, Environment and Urban

Systems, pages 23-36, 1995.

[100] World Wide Web Consortium (W3C). Web Services Descriptipn Lan-

guage(WSDL)l.l. http://www.w3.org/TR/wsdl, 15 March, 2001.

[101] World Wide Web Consortium (W3C). SOAP version 1.2 specification, messag

ing framework. http://www.w3.org/TR/soapl2-partl/, 24 June, 2003.

[102] W3C Recommendation. XQuery 1.0: An XML Query Language,

http://www.w3.org/TR/xquery/, 2007.

[103] D. W. Walker, M. Li, O. F. Rana, M. S. Shields, and Y. Huang. The soft

ware architecture of a distributed problem-solving environment. Concurrency:

Practice and Experience, 12(15): 1455-1480, December 2000.

[104] Inference Web. Semantic Web infrastructure for provenance and justification.

http://www.inference-web.org/, 2006.

http://tomcat.apache.org/
http://cmcs.org/index.php
http://www.eu-
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soapl2-partl/
http://www.w3.org/TR/xquery/
http://www.inference-web.org/

Bibliography 186

[105] Jennifer Widom. Trio: A system for integrated management of data, accu

racy, and lineage. In Second Biennial Conference on Innovative Data Systems

Research (CIDR/, pages 262-276, January 2005.

[106] Wikipedia. Workflow defination. http://en.wikipedia.org/wiki/Workflow.

[107] Thomas Williams, Colin Kelley, Russell Lang, Dave Kotz, John Campbella,

Gershon Elber, and Alexander Woo. Gnuplot. http://www.gnuplot.info/, 2006.

[108] Allison Woodruff and Michael Stonebraker. Supporting fine-grained lineage in a

database visualization environment. In IEEE Proceedings for 13th International

conference on Data Engineering, 1997.

[109] Ian Wootten, Shrija Rajbhandari, and Omer Rana. Automatic assertion of

actor state in service oriented architectures. In IEEE International Conference

on Web Services), Salt Lake City, Utah, USA, July 2007.

[110] Ilya Zaihrayeu, Paulo Pinheiro da Silva, and Deborah L. McGuinness. Iwtrust:

Improving user trust in answers from the web. In Proceedings of 3rd Interna

tional Conference on Trust Management (iTrust2005), Rocquencourt, France,

October 2005. Springer.

[111] Jun Zhao, Carole Goble, Robert Stevens, and Sean Bechhofer. Semantically

linking and browsing provenance logs for e-science. In Proc. of the 1st Interna

tional Conference on Semantics of a Networked World, pages 155-176, Paris,

France, January 2004.

[112] Yong Zhao, Michael Wilde, Ian Foster, Jens Voeckler, James Dobson, Eric

http://en.wikipedia.org/wiki/Workflow
http://www.gnuplot.info/

Bibliography 187

Gilbert, Thomas Jordan, and Elizabeth Quigg. Virtual data grid middleware

services for data-intensive science. In Concurrency and Computation: Practice

and Experience, pages 455-462, 2005.

Appendix A

RDFS of Provenance Format

This Appendix shows the rdf schema to structure a web process.

<rdf:RDF xml:base="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance#" xmlns:pd="http://
www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance#'' xmlns:rdf-'http://www.w3.org/1999/02/22-rdf-syntax-ns#''
xmlns:rdfs=,,http://www.w3.org/2000/01/rdf-schema#u xmlns:sd="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/
serviceProvenance#">
<!--Provenance for a Process instance -->

<rdfs:Class rdf:about=”http://www.cs.cf.ac.uk/user/s.rajbhandari/provenance/processProvenance,,>
<rdfs:label>pd</rdfs:label>

</rdfs:Class>
<!-- Service Instance Profile -->

<rdfs:Class rdf:about="http://www.cs.cf.ac.uk/user/s.rajbhandari/provenance/servicelnstanceProfile">
<rdfs:label>servicelnstanceProfile</rdfs:label>

</rdfs:Class>
<rdfs:Class rdf:about="DataLink’’>

<rdfs:label>dataLink</rdfs:label>
<rdfs:subClassOf rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/

processProvenance#processProvenance'7>
</rdfs:Class>

<!~ Presenting a profile, of web services if provided is a composite service->
<rdf:Property rdf:about="presents">

<rdfs:domain rdf:resource-’pd:processProvenance7>
<rdfs:range rdf:resource=”pd:servicelnstanceProfile7>

</rdf:Property>
<rdf:Property rdf:about=“presentedBy">

<rdfs:domain rdf:resource="pd:servicelnstanceProfile7>
<rdfs:range rdf:resource-'pd:processProvenance7>

</rdf:Property>
<rdf:Property rdf:about=”hasServicelnstance">

<rdfs:comment>sequence of services in the process</rdfs:comment>
<rdfs:domain rdf:resource="pd:servicelnstanceProfile7>
<rdfs:range rdf:resource-'pd:processProvenance7>

</rdf:Property>
<rdf:Property rdf:about="hasDataLink">

<rdfs:domain rdf:resource="pd:DataLink7>
<rdfs:range rdf:resource=Hpd:processProvenance7>

</rdf:Property>

188

http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance%23
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance%23''
http://www.w3.org/1999/02/22-rdf-syntax-ns%23''
http://www.w3.org/2000/01/rdf-schema%23u
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/
http://www.cs.cf.ac.uk/user/s.rajbhandari/provenance/processProvenance
http://www.cs.cf.ac.uk/user/s.rajbhandari/provenance/servicelnstanceProfile
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/

Appendix A: RDFS of Provenance Format 189

<rdf:Property rdf:about="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processld">
<rdfs:domain rdf:resource="pd:processProvenance7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="processDescription">

<rdfs:domain rdf:resource="pd:processProvenance7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about=Bhttp://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/abstractProcessLocationB>

<rdfs:domain rdf:resource="pd:processProvenance7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="startTime”>

<rdfs:domain rdf:resource="pd:processProvenance7>
<rdfs:range rdf:resource=”http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="endTime">

<rdfs:domain rdf:resource="pd:processProvenance7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="status">

<rdfs:domain rdf:resource="pd:processProvenance7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#LiterarV>

</rdf:Property>
<rdf:Property rdf:about=’'creatorlD">

<rdfs:domain rdf:resource=,'pd:processProvenance7>
<rdfs:range rdf:resource=,,http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="creator">

<rdfs:domain rdf:resource="pd:processProvenance7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#LiterarV>

</rdf:Property> </rdf:RDF>

<rdf:RDF xml:base=Bhttp://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#B xmlns:pd=Bhttp://www.cs.cf.ac.uk/
user/S.Rajbhandari/provenance/processProvenance#" xmlns:profileHierarchy="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provena
nce/profileHierarchy#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#" xmlns:sd="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#B>

<rdfs:Class rdf:about=BserviceProvenanceB>
<rdfs:label>serviceProvenance</rdfs:label>
<rdfs:subClassOf rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenanceprocessProvenance#servicelnstanceProfile7

>
</rdfs:Class>
<rdfs:Class rdf:about="ServiceActivityB>

<rdfs:label>serviceActivity</rdfs:label>
<rdfs:subClassOf rdf:resource=Bhttp:/Awww.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#serviceProvenance7

>

</rdfs:Class>
<rdfs:Class rdf:about=BMessageContents">

<rdfs:label>MessageContents</rdfs:label>
<rdfs:subClassOf rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#serviceProvenance7

>
</rdfs:Class>
<rdfs:Class rdf:about=BDataFlow">

<rdfs:label>DataFlow</rdfs:iabel>
<rdfs:subClassOf rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#serviceProvenance7

>
</rdfs:Class>
<rdf:Property rdf:about=Bhttp://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceldB>

<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#serviceProvenance7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#LiteralB/>

</rdf:Property>

http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processld
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/abstractProcessLocationB
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.w3.org/2000/01/rdf-schema%23LiterarV
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.w3.org/2000/01/rdf-schema%23LiterarV
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23B
http://www.cs.cf.ac.uk/
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provena
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23B
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenanceprocessProvenance%23servicelnstanceProfile7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23serviceProvenance7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23serviceProvenance7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23serviceProvenance7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceldB
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23serviceProvenance7
http://www.w3.org/2000/01/rdf-schema%23LiteralB/

Appendix A: RDFS of Provenance Format 190

< !—

Service Activity- metadata
—>

<rdf:Property rdf:about="startTime">
<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#ServiceActivity7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf: Property rdf:about="endTime”>

<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#ServiceActivity"/>
<rdfs:range rdf:resource=Bhttp://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf: Property rdf:about="serviceName">

<rdfs:domain rdf:resource="sd:ServiceActivity7>
<rdfs:range rdf:resource=Bhttp://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="serviceNamespace">

<rdfs:domain rdf:resource="sd:ServiceActivity7>
<rdfs:range rdf:resource=Bhttp://www.w3.org/2000/10/XMLschema.xsd#Literal7>

</rdf:Property>
<rdf:Property rdf:about="wsdlURL">

<rdfs:domain rdf:resource=Bsd:ServiceActivityB/>
<rdfs:range rdf:resource=Bhttp://www.w3.org/2000/01/rdf-schema#LiteralB/>

</rdf:Property>
<rdf:Property rdf:about=BserviceOperationName">

<rdfs:domain rdf:resource="sd:ServiceActivityB/>
<rdfs:range rdf:resource=Bhttp://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about=BservicePortTypeName">

<rdfs:domain rdf:resource="sd:ServiceActivity7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf: Property rdf:about="serviceStatus">

<rdfs:domain rdf:resource="sd:ServiceActivityB/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>

http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23ServiceActivity7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23ServiceActivity%22/
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.w3.org/2000/10/XMLschema.xsd%23Literal7
http://www.w3.org/2000/01/rdf-schema%23LiteralB/
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.w3.org/2000/01/rdf-schema%23Literal7

Appendix A : RDFS of Provenance Format 191

<!—

input Dataset and output Dataset
—>

<rdfs: Property rdf:about="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/inputDataset''>
<rdfs:domain rdf:resource="sd:MessageContents'7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource7>
<!— <rdfs:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Seq" /> —>

</rdfs:Property>
<rdf: Property rdf:about="inputName">

<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#inputDataset'7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf: Property rdf:about="inputType”>

<rdfs:domain rdf:resource=“http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#inputDataset7>
<rdfs:range rdf:resource=”http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="inputValue">

<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#inputDataset7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf: Property rdf:about="inputContents">

<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#inputDataset7>
<rdfs:range rdf:resource=”http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdfs: Property rdf:about="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputDataset">

<rdfs:domain rdf:resource="sd:MessageContents7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource7>

</rdfs:Property>
<rdf:Property rdf:about="outputName">

<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#outputDataset7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="outputType">

<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#outputDataset7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="outputValue">

<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#outputDataset7>
<rdfs: range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="outputContents°>

<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance#inputDataset7>
<rdfs:range rdf:resource=“http://www.w3.org/2000/01/rdf-schema#Literar7>

</rdf:Property>

< !—

To provide the data flow link between the services instances in the workflow, we link the input and output data of this service
with the source and target of those data received and send to.
—>

<rdf:Property rdf:about=”http://www.cs.cf.ac.uk/user/s.rajbhandari/provenance/inputSourcels">
<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance#DataLink7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="http://www.cs.cf.ac.uk/user/s.rajbhandari/provenance/inputld">

<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance#DataLink7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal7>

</rdf:Property>
<rdf:Property rdf:about="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputTargetls">

<rdfs:domain rdf:resource=”http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance#DataLink7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literar/>

</rdf:Property>
<rdf:Property rdf:about="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputld">

<rdfs:domain rdf:resource="http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance#DataLink7>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literar/>

</rdf:Property>
</rdf:RDF>

http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/inputDataset''
http://www.w3.org/2000/01/rdf-schema%23Resource7
http://www.w3.org/2000/01/rdf-schema%23Seq
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23inputDataset'7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23inputDataset7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23inputDataset7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23inputDataset7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputDataset
http://www.w3.org/2000/01/rdf-schema%23Resource7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23outputDataset7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23outputDataset7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23outputDataset7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/serviceProvenance%23inputDataset7
http://www.w3.org/2000/01/rdf-schema%23Literar7
http://www.cs.cf.ac.uk/user/s.rajbhandari/provenance/inputSourcels
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance%23DataLink7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.cs.cf.ac.uk/user/s.rajbhandari/provenance/inputld
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance%23DataLink7
http://www.w3.org/2000/01/rdf-schema%23Literal7
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputTargetls
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance%23DataLink7
http://www.w3.org/2000/01/rdf-schema%23Literar/
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/outputld
http://www.cs.cf.ac.uk/user/S.Rajbhandari/provenance/processProvenance%23DataLink7
http://www.w3.org/2000/01/rdf-schema%23Literar/

Appendix B

service-Provenance XML Schema

<?xml version="1.0'' encoding="UTF-8”?>
<!-- edited with XMLSpy v2007 sp2 (http://www.altova.com) —>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchem a" xmlns:soapenv=”http://schemas.xmlsoap.org/soap/enveloper
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance" elementFormDefault="qualified” attributeFormDefault="unqualified">

<xs:element name=”Service-lnstances">
<xs:annotation>

<xs:documentation>Service Instances data recored for a process</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="servicelnstance">

<xs :complexType>
<xs:sequence>

<xs:element name=MinvokeStep" type="xs:integer7>
<xs:element nam e-'serviceld” type="xs:string" minOccurs="07>
<xs:element name=”ServiceActivity">

<xs:complexType>
<xs:sequence>

<xs:element name="serviceName“ type="xs:string” minOccurs="07>
<xs:element name="wsdlURL" type="xs:string" minOccurs="07>
<xs:element name="serviceOperationName" type="xs:string" minOccurs="07>
<xs:element name="startTime" type="xs:string7>
<xs:element name="endTime" type=”xs:string7>
<xs:element nam e=“elapsed" type="xs:string” minOccurs=”07>
<xs:element name="serviceStatus" type="xs:string7>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="MessageContentsH>

<xs:complexType>
<xs:sequence>

<xs:element name="outputContent" type="xs:anyType7>
<xs:element name="inputContent" type="xs:anyType7>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

192

http://www.altova.com
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/enveloper
http://www.w3.org/2001/XMLSchema-instance

Appendix C

BP EL Workflow

This Appendix shows the example workflow constructed using BPEL.

<?xml version="1,0” encoding="UTF-8"?>
<!—

BPEL Process Definition
Edited using ActiveBPEL(tm) Designer Version 2 .1 .0 (http://www.active-endpoints.com)
—>

<!-- FFT convolution WorkFlow example - generated with the help of oracle bpel designer -->
<process xmlns="http://schemas.xm lsoap.org/ws/2003/03/business-process/" xmlns:DCService="http ://131.251.49.136:8080/
axis/services/DustCloud" xmlns:MyFFT="http://131.2 5 1 .4 9 .1 36:8080/axis/services/M yFFT" xmlns:PadZero="http://
131.251.49.136:8080/axis/services/PadZero" xm lns:PowerOfTw o="http ://131.251.49.136:8080/axis/services/PowerO fTwo"
xmlns:bpws="http;//schemas.xmlsoap.org/ws/2003/03/business-process/'' xmlns:convolve="http://131.251.49.136:8080/axis/
services/convolve" xmlns:ora="http://schemas.oracle.com /xpath/extension" xmlns:telescopeData=”http://
131.251.49.136:8080/axis/services/telescopeData" xmlns:tns="http://signal.org/wsdl/MyClient-Test” xmlns:xsd="http://
ww w.w3.org/2001/XM LSchem a" nam e-'M ySignalProcess" suppressJo inFailure-’yes” targetNam espace="http://signal.org/
wsdl/MySignalProcessing">

<partnerLinks>
<!-- The ’client’ role represents the requester of this service. - >
<partnerLink m yRole-'MyProcessProvider" nam e=”Client” partnerLinkType="tns:ClientLink'7>
<partnerLink name="DustCloudService" partnerLinkType="tns:DustCloudServiceLink"

partnerRole="DustCloudServiceProvider'7>
<partnerLink nam e-'TelescopeD ata" partnerLinkType="tns:telescopeDataLink’’ partnerRole=’’telescopeDataProvider"/>
<partnerLink nam e=’’PowerOfTwo" partnerLinkType="tns:PowerOf2Link" partnerRole="PowerOf2Provider7>
<partnerLink name="PadWithZero” partnerLinkType="tns:padZeroLink" partnerRole="padZeroProvider'7>
<partnerLink name=''FFTService" partnerLinkType=''tns:MyFFTLink’’ partnerRole=”MyFFTProvider"/>
<partnerLink name="ConvolveService" partnerLinkType="tns:convolveLink” partnerRole="convolveProvider"/>

</partnerLinks>

193

http://www.active-endpoints.com
http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://131.251.49.136:8080/
http://131.251.49.136:8080/axis/services/MyFFT
http://131.251.49.136:8080/axis/services/PowerOfTwo
http://131.251.49.136:8080/axis/
http://schemas.oracle.com/xpath/extension
http://signal.org/wsdl/MyClient-Test%e2%80%9d
http://www.w3.org/2001/XMLSchema
http://signal.org/

Appendix C: BPEL Workflow 194

<variables>
<!-- Reference to the m essage that will be returned to the requester -->
<variable m essageType=”tns:ClientRequest" nam e="userRequest'7>
<variable m essageType-'D C S erviceiyV aluesR equest" nam e="inputDC 7>
<variable m essageType="DCService:yValuesResponse" nam e="outputDC 7>
<variable m essageType="telescopeData:telDataRequest" n a m e-'in p u tT E L 7 >
<variable m essageType=',telescopeData:telDataResponse" nam e="outputTEL7>
<variable m essageType=”Pow erOfTwo:pointsRequest” nam e= ”inputPO Tw o7>
<variable m essageType="PowerOfTwo:pointsResponse" nam e="outputPO Tw o7>
cvariable m essageType=“PadZero:zeroPadedD ataR equest" nam e="inputZeropad17>
<variable m essageType="PadZero:zeroPadedDataResponse" nam e="outputZeropad17>
<variable m essageType="PadZero:zeroPadedDataRequest" nam e="inputZeropad27>
<variable m essageType="PadZero:zeroPadedDataResponse" nam e="outputZeropad27>
<variable m essageType="M yFFT:realFTRequest" nam e="inputFFT 17 >
<variable m essageType="M yFFT:realFTR esponsen nam e="outputFFT17>
<variable m essageType="M yFFT:realFTRequest" nam e="inpu tFFT27>
<variable m essageType=''M yFFT:realFTResponse” nam e="outputFFT27>
<variable messageType="convolve:ConvRequest" nam e="inputConvolve7>
<variable m essageType="convolve:ConvResponse” nam e="outputConvolve7>
<variable m essageType="M yFFT:realFTRequest" nam e="inpu tFFT37>
<variable m essageType-'M yFFT:realFTR esponse" nam e= ”outputFFT37>
<variable m essageType=”tns:CiientResponse" n am e-'u s e rR e s p o n s e 7 >

</variables>

< ! - = - >

<!-- O R C H E S TR A TIO N LO GIC - >
<!-- Set of activities coordinating the flow of m essages across the -->
<!-- services integrated within this business process -->
< ! — = ~ >

<!-- Start of main sequence ~ >
<sequence nam e=BP R r >

<!-- Receive input from requester. -->
<receive create lnstance-'yes” nam e="receiveRequest" operation="runProcess" partnerL ink-'C lient”

portType="tns:ProcessClientPT" variable="userRequest7>
<!-- S TA R T O F FLOW-1 === D U S T C LO U D A N D T E L E S C O P E ~ >
<flow>

<sequence name="S1-DustCloud',>
<assign name="DCInput1 -DensityType”>

<copy>
<from part="densityDC,' variab le="userR equest7>
<to part-'densityType" variable="inputDC7>

</copy>
</assign>
<assign nam e-'D C Input2-W idth">

<copy>
<from part-'w idthD C " variable="userRequest"/>
<to part=”widthParameter" variab le="inputDC7>

</copy>
</assign>
<assign nam e="DCInput3-Num OfPoints”>

<copy>
<from part=”pointsDC" variable="userRequest7>
<to part="n" variable=”inputDC7>

</copy>
</assign>
<invoke inputVariable-'inputDC" nam e="invoke-DustCloudService" operation="yValues" outputVariable-'outputDC "

partnerLink="DustCloudService" portType="DCService:DustC loudService7>
</sequence>

<sequence name="S2-Telescope">
<assign nam e=''S IG Input1-W aveType’'>

<copy>
<from part-'w aveType" variable="userRequest7>
<to part=,'Type" variable=”inputTEL7>

</copy>
</assign>

Appendix C: BPEL Workflow 195

<assign nam e="SIGInput2-Num OfPoints">
<copy>

<from part="points" variable="userRequest7>
<to part=''n“ variable="inputTEL7>

</copy>
</assign>
<invoke inputVariable=”inputTEL" nam e="invoke-TelescopeService" operation=”telData" outputVariable="outputTEL"

partnerLink="TelescopeDatau portType="telescopeData:telescopeData7>
</sequence>

</flow>
< ! - END O F FLOW-1 - >
<!— C O P Y O U TP U T FR O M FLO W 1== T O = = P O W E R O F T W O C O D E - >

<assign name="assignData1 -OutputDustCloud-to-PowerOfTwo">
<copy>

<from part="yValuesRetum’' variable=''outputDC7>
<to p a rt= "d r variable="inputPOTwo7>

</copy>
</assign>
<assign nam e=nassignData2-OutputTelescope-to-PowerO fTwo">

<copy>
<from part-'telDataReturn" variable="outputTEL7>
<to part="d2" variable="inputPOTwo7>

</copy>
</assign>
<invoke inputVariable="inputPOTwo" nam e=“invokePow erO fTwoService" o p e ra tio n -’points"

outputVariable=“outputPOTwo" partnerLink=,,Pow erO fTw o‘, portType="PowerO fTwo:PowerOf27>
<!-- C O P Y O U TP U T (IN T V A LU E) TO == Z E R O P A D W S ~ >
<!-- START FLOW -2 == PAD W ITH Z E R O A N D F F T T H E O U T P U T ~ >
<flow name="flow-2">

<!— SEQ U EN CE-1 -->
<sequence nam e="S3-FFTService-seq 1 ”>

<assign nam e="O utputPOT-To-ZEROPAD1 ">
<copy>

<from part=”pointsRetum" variab le="outputPOTw o7>
<to part="points” variable="inputZeropad17>

</copy>
</assign>
<assign nam e-'O utputD ustC loud-To-ZPT'>

<copy>
<from part="yValuesReturn” variable="outputDC7>
<to part="d" variable="inputZeropad17>

</copy>
</assign>
<invoke inputVariable-'inputZeropadT' nam e="invoke-ZeropadServiceT' operation="zeroPadedData"

outputVariable="outputZeropad1“ partnerLink="PadW ithZero" portType="PadZero:padZero7>
<assign nam e="assign-0utputZP1 -To -FFT 1 “>

<copy>
<from p a r t - ’zeroPadedDataReturn" variab le="outputZeropad17>
<to part=“ydataM variab le="inputFFT17>

</copy>
</assign>
<assign name="FFTisign 1 -from -expression">

<copy>
<from expression="17>
<to part="isign" variable="inputFFT 1 "/>

</copy>
</assign>
<invoke inputV ariable-'inputFFT I" nam e="invoke-FFTS erviceT' operation="realFT" outputVariable="outputFFT1"

partnerLink="FFTService" portType="M yFFT:M yFFT7>
</sequence>

<!— S E Q U E N C E -2 - >
<sequence nam e="S4-FFTService-seq2">

<assign nam e="O utputPO T-To-ZER O PA D 2">
<copy>

<from part="pointsRetum" variable="outputPOTw o7>
<to part="points” v a r ia b le -’inputZeropad27>

</copy>

Appendix C: BPEL Workflow 196

</assign>
<assign nam e="OutputTelescope-To-ZP2">

<copy>
<from part=''telDataReturn" variable="outputTEL7>
<to p a r t - ’d" variable="inputZeropad27>

</copy>
</assign>
<invoke inputVariabIe="inputZeropad2" nam e="invoke-ZeropadService2" operation=”2eroPadedData"

outputVariable=''outputZeropad2" partnerLink="PadW ithZero" portType="PadZero:padZero7>
<assign nam e="assign-O utputZP2-To-FFT2”>

<copy>
<from part="zeroPadedDataReturn" variab le="outputZeropad27>
<to part=”ydata” variab le="inputFFT27>

</copy>
</assign>
<assign nam e-'FFTisign2-from -expression">

<copy>
<from e xp re s s io n -T '/>
<to part="isign” variable="inputFFT27>

</copy>
</assign>
<invoke inputVariable="inputFFT2" nam e="invoke-FFTS ervice2” operation="realFT‘' outputVariable="outputFFT2"

partnerLink="FFTService" portType="M yFFT:M yFFT7>
</sequence>

</flow>
<!— END OF FLOW -2 ~>

<assign nam e=”FFT1ToConvolve">
<copy>

<from part=',realFTReturnK variable="outputFFT 17 >
<to part="fft1" variable="inputConvoive7>

</copy>
</assign>
<assign name="FFT2ToConvolve“>

<copy>
<from part="realFTRetum" variable=”ou tputFFT27>
<to part-'fft2" variable="inputConvolve7>

</copy>
</assign>
<invoke inputVariable=,,inputConvolve” nam e= ‘‘invoke-ConvolveService" operation="Conv"

outputVariable-'outputConvolve" partnerL ink-'ConvolveService" portType="convolve:convolve7>
<assign name="ConvolveTolnvFFT">

<copy>
<from part=,,ConvReturn” variable=''outputConvolve7>
<to part-'ydata" variable="inputFFT37>

</copy>
</assign>
<assign nam e=“isignTolnvFFT">

<copy>
<from expression="-17>
<to part="isign" variable=”inputFFT37>

</copy>
</assign>
<invoke inputVariable="inputFFT3" n a m e - ’invoke-lnverseFFTService" operation="realFT" outputVariable="outputFFT3"

partnerLink=”FFTService" portType="M yFFT:M yFFT7>
<!— map the final output to the output the user expects -->
<assign name="finalToClient”>

<copy>
<from part=''realFTReturn" variable="outputFFT37>
<to part-'finalRetum " variable="userResponse7>

</copy>
</assign>
< ! - respond to the user -->
<reply name="replyResponse‘' operation="runProcess" partnerLink="Client" portType="tns:ProcessClientPT"

variable="userResponse7>
</sequence>

</process>

Appendix C: BPEL Workflow 197

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetl\lam espace="h ttp : //1 3 1 .1 2 5 .4 9 .1368080/axis/serv ices/D ustC loud"
xmlns= "h ttp ://sch em as.xm lsoap .org /w sd l/" xm lns:apachesoap="h ttp ://xm l.apache.org/xm i-soap"
xmlns:impl="h ttp ://131 .125 .49 .136 :8080 /ax is/serv ices /D u stC lou d "
xmlns:intf="h ttp ://1 31 .125 .49 .136 :8080 /ax is/serv ices /D u stC lou d "
xm lns:soapenc="h ttp ://sch em a s, xm lsoap .org/soap /encoding/"
xmlns:wsdl="h ttp ://sch em as. xm lsoap.org/w sdl/"
xmlns:wsdlsoap="h ttp ://sch em a s. xm lsoap.org/w sdl/soap/"
xm lns:xsd="http://w w w .w 3.org/2001/X M L Schem a">

<wsdl: types />
<w sdl:m essage nam e="yValuesResponse">

<wsdl:part name="yValuesReturn" type="xsd:string" />
< /w sd l:m essage>
<w sdl:m essage nam e="yV aluesRequest">

<wsdl:part name="densityType" type="xsd:string" />
<wsdl:part name="widthParameter" type="xsd:double" />
<wsdl:part name="n" type="xsd:int" />

< /w sd l:m essage>
<wsdl:portType nam e="DustCloudService">
<w sdloperation name="yValues" parameterOrder="densityType widthParameter n">
<wsdl:input m essage="im pl:yV aluesRequest" name="yValuesRequest" />
<wsdl:output m essage="im pl:yV aluesR esponse" name="yValuesResponse" />
</wsdl: operation >
</wsdl:portType>
<wsdi:binding name="DustCloudSoapBinding" type="impl:DustCloudService">
<wsdlsoap:binding style="rpc" transport="h ttp ://sch em a s.xm lsoap .org/soap /http" />
<w sdloperation name="yValues">

<wsdlsoap:operation soapAction="" />
< w sdl: input name="yValuesRequest">

<wsdlsoap:body encodingStyle="h ttp ://sch em a s .xm lsoap .org/soap /en cod ing/"
nam espace="h ttp ://1 3 1 .125 .49 .136 :8080 /ax is /serv ices /D u stC lou d " use="encoded" />
</wsdl:input>

<wsdl:output nam e="yVaiuesResponse">
<wsdlsoap:body encodingStyle="h ttp ://sch em a s .xm lsoap .org/soap /encoding/"

nam espace="h ttp ://1 31 .125 .49 .136 :8080 /ax is /serv ices /D u stC lou d " use="encoded" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

< wsdl:service nam e="DustCloudServiceService">
<wsdl:port binding="impl:DustCloudSoapBinding" name="DustCloud">
<wsdlsoap:address location = "h ttp : //1 3 1 .1 2 5 .4 9 .1 3 6 :8080/axis/services/D ustC loud" />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

http://131.125.49.1368080/axis/services/DustCloud
http://schemas.xmlsoap.org/wsdl/
http://xml.apache.org/xmi-soap
http://131.125.49.136:8080/axis/services/DustCloud
http://131.125.49.136:8080/axis/services/DustCloud
http://schemas
http://schemas
http://schemas
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/encoding/
http://131.125.49.136:8080/axis/services/DustCloud
http://schemas.xmlsoap.org/soap/encoding/
http://131.125.49.136:8080/axis/services/DustCloud
http://131.125.49.136:8080/axis/services/DustCloud

Appendix C: BPEL Workflow 198

<?xml version="1.0" encoding="UTF-8" ?>
< wsdl -.definitions targetN am espace="h ttp ://1 3 1 .1 2 5 .4 9 .1 3 6 :8 0 8 0 /a x is /serv ices /te lesco p eD a ta "
xm lns="http ://sch em as.xm lsoap.org/w sdl/" xm lns:apachesoap="h ttp ://xm l.apache.org /xm l-soap"
xmlns:impl="h ttp ://131 .125 .49 .136 :8080 /ax is/serv ices /te lescop eD ata"
xm lns:intf="h ttp ://131 .125 .49 .136 :8080 /ax is/serv ices/te lescop eD ata"
xm lns:soapenc="http-.//schem as.xm lsoap.org/soap/encoding/"
xm lns:wsdl="http ://sch em as.xm lsoap.org/w sdl/"
xm lns:w sdlsoap="h ttp ://sch em as.xm lsoap.org/w sdl/soap/"
xm lns:xsd="http://www.w3.org/2001/XM LSchem a">
<w sdl:types />
< w sdl: m essage name="telDataResponse">

<wsdl:part name="telDataReturn" type="xsd:string" />
< /w sd l:m essage>
< w sdl: m essage name="telDataRequest">

<wsdl:part name="n" type="xsd:int" />
<wsdl:part name="Type" type="xsd:string" />

< /w sd l:m essage>
<wsdl:portType name="telescopeData">

<wsdl:operation name="telData" parameterOrder="n Type">
<wsdl:input message="impl:telDataRequest" name="telDataRequest" />
<wsdl:output message="im pl:telDataResponse" name="telDataResponse" />

</wsdl:operation>
</wsdl:portType>
< wsdl:binding name="telescopeDataSoapBinding" type="im pl:telescopeData">

<wsdlsoap:binding style="rpc" transport="http://schem as.xm lsoap .org/soap /http" />
< wsdl operation name="telData">
<wsdlsoap:operation soapAction="" />
<wsdl:input name="telDataRequest">

<w sdlsoap:body encodingStyle="h ttp ://schem as.xm lsoap.org/soap/encoding/"
nam espace="h ttp ://1 3 1 .1 2 5 .4 9 .136:8080/axis/serv ices/telescopeD ata" use="encoded" />

</w sdi:input>
<w sdl:output name="telDataResponse">

<w sdlsoap:body encodingStyle="h ttp ://sch em as.xm lsoap.org/soap/encoding/"
nam espace="h ttp ://1 3 1 .1 2 5 .4 9 .136:8080/ax is/serv ices/telescopeD ata" use="encoded" />

</w sdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service nam e="telescopeDataService">
<wsdl:port binding="impl:telescopeDataSoapBinding" nam e="telescopeData">
<wsdlsoap:address location = "h ttp ://1 3 1 .125 .4 9 .1 3 6 :8080 /ax is/serv ices/te lescop eD ata" />
</wsdl:port>

</w sdl:service>
</wsdl:definitions>

http://131.125.49.136:8080/axis/services/telescopeData
http://schemas.xmlsoap.org/wsdl/
http://xml.apache.org/xml-soap
http://131.125.49.136:8080/axis/services/telescopeData
http://131.125.49.136:8080/axis/services/telescopeData
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/encoding/
http://131.125.49.136:8080/axis/services/telescopeData
http://schemas.xmlsoap.org/soap/encoding/
http://131.125.49.136:8080/axis/services/telescopeData
http://131.125.49.136:8080/axis/services/telescopeData

Appendix C: BPEL Workflow 199

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetN am espace="h ttp ://1 3 1 .1 2 5 .4 9 .1 3 6 :8080/axis/services/Pow erO fT w o"
xm lns="http ://sch em as.xm lsoap.org/w sdl/" xm lns:apachesoap="h ttp ://xm l.apache.org/xm l-soap"
xmlns:impl="http://131.125.49 .136:8080/ax is/serv ices/P ow erO fT w o"
xm lns:intf="h ttp ://1 3 1 .1 2 5 .4 9 .136:8080/axis/services/Pow erO fT w o"
xm lns:soapenc="http-.//schem as.xm lsoap.org/soap/encoding/"
xm lns:wsdl="h ttp ://sch em as.xm lsoap.org/w sdI/"
xm lns:w sdlsoap="http ://sch em as.xm lsoap.org/w sdl/soap/"
xm lns:xsd="http://ww w.w 3.org/2001/XM LSchem a">
<w sdl:types />

<wsdl: m essage name="pointsResponse">
<wsdl:part name="pointsReturn" type="xsd:int" />
< /w sd l:m essage>

<w sdl:m essage name="pointsRequest">
<wsdl:part nam e="dl" type="xsd:string" />
<wsdl:part name="d2" type="xsd:string" />

< /w sd l:m essage>
<wsdl:portType name="PowerOf2">
<wsdl:operation name="points" parameterOrder="dl d2">

<wsdl:input message="im pl:pointsRequest" name="pointsRequest" />
<wsdl:output m essage="im pl:pointsResponse" name="pointsResponse" />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="PowerOfTwoSoapBinding" type="impl:PowerOf2">

<wsdlsoap:binding style="rpc" transport="h ttp ://sch em as.xm lsoap .org/soap /http" />
< wsdl:operation nam e="points"xw sdlsoap:operation soapAction="" />

<wsdl:input name="pointsRequest">
<w sdlsoap:body encodingStyle="http ://sch em as.xm lsoap .org/soap /encoding/"
nam espace="http://131.125.49 .136:8080/axis/serv ices/P ow erO fT w o" use="encoded" />

</w sdl:input>
<w sdl:output name="pointsResponse">

<w sdlsoap:body encodingStyle="http ://schem as.xm lsoap .org/soap /encoding/"
nam espace="http://131.125 .49 .136:8080/axis/serv ices/P ow erO fT w o" use="encoded" />

</w sdl:output>
</wsdl: operation >

</wsdl:binding>
<wsdl:service name="PowerOf2Service">
<wsdl:port binding="impl:PowerOfTwoSoapBinding" name="PowerOfTwo">
<wsdlsoap:address location="h ttp ://131 .125 .49 .136:8080/ax is/serv ices/P ow erO fT w o" />

</wsdl:port>
</wsdl: service >

</wsdl:definitions>

http://131.125.49.136:8080/axis/services/PowerOfTwo
http://schemas.xmlsoap.org/wsdl/
http://xml.apache.org/xml-soap
http://131.125.49.136:8080/axis/services/PowerOfTwo
http://131.125.49.136:8080/axis/services/PowerOfTwo
http://schemas.xmlsoap.org/wsdI/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/encoding/
http://131.125.49.136:8080/axis/services/PowerOfTwo
http://schemas.xmlsoap.org/soap/encoding/
http://131.125.49.136:8080/axis/services/PowerOfTwo
http://131.125.49.136:8080/axis/services/PowerOfTwo

Appendix C: BPEL Workflow 200

<?xml version="1.0" encoding="UTF-8" ?>
< wsdl defin itions targetN am espace="h ttp ://131 .125 .49 .136 :8080 /ax is/serv ices /P ad Z ero"
xm lns="h ttp ://sch em as.xm lsoap.org/w sdl/" xm lns:apachesoap="h ttp ://xm l.ap ache.org/xm l-soap"
xmlns:impl = "h ttp ://1 3 1 .1 2 5 .4 9 .1 3 6 :8080/axis/services/P adZ ero"
xmlns:intif="h ttp ://1 3 1 .1 2 5 .4 9 .136:8080/axis/services/P adZ ero"
xm lns:soapenc= "http ://schem as.xm lsoap .org/soap /encoding/"
xm lns:w sdl="h ttp ://sch em as. xmlsoap.org/wsdl/"
xm lns:w sdlsoap="http ://sch em as.xm lsoap.org/w sdl/soap/"
xm lns:xsd="http://ww w.w 3.org/2001/XM LSchem a">
<w sdl:types />

< w sdl:m essage name="zeroPadedDataRequest">
<wsdl:part name="d" type="xsd:string" />
<wsdl:part name="points" type="xsd:int" />

< /w sd l:m essage>
<wsdl: m essage name="zeroPadedDataResponse">

<wsdl:part name="zeroPadedDataReturn" type="xsd:string" />
< /w sd l:m essage>
<wsdl:portType name="padZero">
<wsdl:operation name="zeroPadedData" parameterOrder="d points">
<wsdl:input message="impl:zeroPadedDataRequest" name="zeroPadedDataRequest" />
<wsdl:output message="impl:zeroPadedDataResponse" name="zeroPadedDataResponse" />

</wsdl: operation >
</wsdl:portType>

<wsdl: binding name="PadZeroSoapBinding" type="impl:padZero">
<wsdlsoap:binding style="rpc" transport="http ://schem as.xm lsoap .org/soap /http" />

<wsdl:operation name="zeroPadedData">
<wsdlsoap:operation soapAction="" />

<wsdl:input name="zeroPadedDataRequest">
<w sdlsoap:body encodingStyle="h ttp ://schem as.xm lsoap .org/soap /encoding/"

nam espace="h ttp ://1 3 1 .1 2 5 .4 9 .1 3 6 :8080/axis/services/P adZ ero" use="encoded" />
</wsdl:input>
<wsdl:output nam e="zeroPadedDataResponse">
<w sdlsoap:body encodingStyle=h ttp ://schem as.xm lsoap.org/soap/encoding/

nam espace="h ttp ://1 3 1 .1 2 5 .4 9 .1 3 6 :8080/axis/services/P adZ ero" use="encoded"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>
< wsdl:service name="padZeroService">

<wsdl:port binding="impl:PadZeroSoapBinding" name="PadZero">
<w sdlsoap:address location="h ttp ://131 .125 .49 .136 :8080 /ax is/serv ices/P ad Z ero" />

</wsdl:port>
</w sdl:service>

</wsdl:definitions>

http://131.125.49.136:8080/axis/services/PadZero
http://schemas.xmlsoap.org/wsdl/
http://xml.apache.org/xml-soap
http://131.125.49.136:8080/axis/services/PadZero
http://131.125.49.136:8080/axis/services/PadZero
http://schemas.xmlsoap.org/soap/encoding/
http://schemas
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/encoding/
http://131.125.49.136:8080/axis/services/PadZero
http://schemas.xmlsoap.org/soap/encoding/
http://131.125.49.136:8080/axis/services/PadZero
http://131.125.49.136:8080/axis/services/PadZero

Appendix C: BPEL Workflow 201

<?xml version="1.0" encoding="UTF-8" ?>
< wsdl definitions targetNam espace="http://localhost:8080/axis/services/M yFFT"
xm lns="http ://schem as.xm lsoap .org/w sd l/" xm lns:apachesoap="http://xm l.ap ache.org /xm l-soap"
xmlns:impl="http://localhost:8080/axis/services/M yFFT"
xmlns:intf="http://localhost:8080/axis/services/M yFFT"
xm lns:soapenc="http ://sch em as.xm lsoap.org/soap/encoding/"
xm lns:w sdl="http://schem as.xm lsoap.org/w sd I/"
xmlns: wsdlsoap="http ://sch em as. xm lsoap.org/wsdl/soap/"
xm lns:xsd="http://www.w3.org/2001/XM LSchem a">

<w sdl:types />
<w sdl:m essage name="realFTResponse">

<wsdl:part name="realFTReturn" type="xsd:string" />
</w sd l:m essage>
< w sdl:m essage name="realFTRequest">

<wsdl:part name="isign" type="xsd:int" />
<wsdl:part name="ydata" type="xsd:string" />

</w sd l:m essage>
<wsdl:portType name="MyFFT">
<wsdl:operation name="realFT" parameterOrder="isign ydata">

<wsdl:input message="impl:realFTRequest" name="realFTRequest" />
<wsdl:output message="impl:realFTResponse" name="realFTResponse" />

</wsdl: operation >
</wsdl:portType>
<wsdl:binding name="MyFFTSoapBinding" type="impl:MyFFT">

<wsdlsoap:binding style="rpc" transport="http://schem as.xm lsoap .org/soap /http" />
<wsdl:operation nam e="realFT"xw sdlsoap:operation soapAction="" />

<wsdl:input name="realFTRequest">
<w sdlsoap:body encodingStyle="h ttp://schem as.xm lsoap .org/soap /encoding/"

nam espace="http://localhost:8080/axis/services/M yFFT" use="encoded" />
</wsdl:input>

<wsdl:output name="realFTResponse">
<w sdlsoap:body encodingStyle="http://schem as.xm lsoap .org/soap /encoding/"

nam espace="http://localhost:8080/axis/services/M yFFT" use="encoded" />
</wsdl:output>

</wsdl: operation >
</wsdl:binding>

<wsdl:service name="MyFFTService">
<wsdl:port binding = "impl:MyFFTSoapBinding" name="MyFFT">

<wsdlsoap:address location="http://localhost:8080/axis/services/M yFFT" />
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

http://localhost:8080/axis/services/MyFFT
http://schemas.xmlsoap.org/wsdl/
http://xml.apache.org/xml-soap
http://localhost:8080/axis/services/MyFFT
http://localhost:8080/axis/services/MyFFT
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/wsd
http://schemas
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/encoding/
http://localhost:8080/axis/services/MyFFT
http://schemas.xmlsoap.org/soap/encoding/
http://localhost:8080/axis/services/MyFFT
http://localhost:8080/axis/services/MyFFT

Appendix C: BPEL Workflow 202

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions targetN am espace="h ttp ://1 3 1 .1 2 5 .4 9 .1 3 6 :8 0 8 0 /a x is/serv ices /co n v o lv e"
xm lns="http ://sch em as.xm isoap.org/w sdl/" xm lns:apachesoap="http ://xm l.apache.org/xm l-soap "
xmlns:impl="h ttp ://131 .125 .49 .136 :8080 /ax is/serv ices /con vo lve"
xm lns:intf="h ttp ://131 .125 .49 .136 :8080 /ax is/serv ices/con vo lve"
xm lns:soapenc="http://schem as.xm lsoap .org/soap /encoding/"
xmlns: wsdl = "http://schem as.xm lsoap .org/w sd l/"
xm lns:wsdlsoap="http ://sch em as.xm lsoap.org/w sdl/soap/"
xm lns:xsd = "http://www.w3.org/2001/XM LSchem a">
<w sdl:types />
< w sdl: m essage name="ConvRequest">

<wsdl:part name="fftl" type="xsd:string" />
<wsdl:part name="fft2" type="xsd:string" />

< /w sd l:m essage>
< w sdl:m essage name="ConvResponse">

<wsdl:part name="ConvReturn" type="xsd:string" />
< /w sd l:m essage>
<wsdl:portType name="convolve">

<w sdloperation name="Conv" parameterOrder="fftl fft2">
<wsdl:input message="impl:ConvRequest" name="ConvRequest" />
<wsdl:output message="impl:ConvResponse" name="ConvResponse" />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="convolveSoapBinding" type="impl:convolve">

<wsdlsoap:binding style="rpc" transport="http ://schem as.xm lsoap .org/soap /http" />
<wsdl:operation name="Conv">

<wsdlsoap:operation soapAction="" />
<wsdl: input name="ConvRequest">

<w sdlsoap:body encodingStyle="http ://sch em as.xm lsoap .org/soap /encoding/"
nam espace="h ttp ://1 3 1 .1 2 5 .4 9 .136:8080/ax is/serv ices/convolve" use="encoded" />
</wsdl:input>

< wsdl:output name="ConvResponse">
<w sdlsoap:body encodingStyle="http ://schem as.xm lsoap .org/soap /encoding/"

nam espace="h ttp ://131 .125 .49 .136 :8080 /ax is/serv ices /con vo lve" use="encoded" />
</w sdl:output>
</wsdl:operation>
</wsdl:binding>

< w sdl: service name="convolveService" >
<wsdl:port binding="impl:convolveSoapBinding" name="convolve">
<wsdlsoap:address location="h ttp ://1 3 1 .1 2 5 .4 9 .1 3 6 :8080 /ax is/serv ices/con vo lve" />

</wsdl:port>
</w sdl:service>

</wsdl:definitions>

http://131.125.49.136:8080/axis/services/convolve
http://schemas.xmisoap.org/wsdl/
http://xml.apache.org/xml-soap
http://131.125.49.136:8080/axis/services/convolve
http://131.125.49.136:8080/axis/services/convolve
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/soap/encoding/
http://131.125.49.136:8080/axis/services/convolve
http://schemas.xmlsoap.org/soap/encoding/
http://131.125.49.136:8080/axis/services/convolve
http://131.125.49.136:8080/axis/services/convolve

Appendix C: BPEL Workflow 203

: Sequence h>j : Assign inputs and outputs j ; Process reply

f * , Receive process request

r t ; Invoke Web service PRI

Flow

frjjf Sl-DustOoud

^ DustCloudService

-♦ assgnDatal-OutputOustGoud-Co-PowerOfTwo

ass)gnData2-OutputTeiescope-to-PowerOfTwo

rwokePowerOfT woSetMce

flow-2

S3-FFTSer\nce-s*ql
mvoke-FFTServicel

S4-FFTService-seq2
1 nvoke-FFTServ<e2

SA-FFTSerwce...
FFTlToConvOlve

-*• O utputPO T -T o-Z E R O P AD 1 ' O utpu tP O T -T o-Z E R O P A D 2

- ♦ ' FFT2ToConvok'e

O u tp u t T e ie sc o p e -T o -2 P 2& O u tp u tD u stC to u d -T o -Z P l

(% j nvoke-Convok'eServrce

' ConvoVeToInvFFT

-♦ assgn-OutputZP2-To-FFT2■+ sssx jn -O u tp u tZ P ’ -T o-FFT l

-*■ ‘ sqnToInvfFT

FFTsign2-from-express»n' FFTsjgnl-from-expresson

< l > nvoke-lnverseFFTServtce

Appendix C: BPEL Workflow 204

Sequence Assign inputs and outputs

Receive process request

' Invoke Web service

reeeiveRequest

•'♦Row

■ SIDustOoud

DustOoud Service

<assign name="assignDatal-OutputDustCloud-to-PowerOfTwo">
<copy>

<£rora part="yValuesReturn" variable="outputDC"/>
<to part="dl” variable=”inputPOTwoH/>

</copy>
</assign>
<assign name”"assignData2-OutputTelescope-to-PcwerOfTwo">

<copy>
<from part="telDataReturn" variable="outputTEL"/>
<to part="d2" variable”"inputPOTwo"/>

</copy>
</assign>

<invoke inputVariable=“inputPOTwo" name=”irivoke Powe rO fTwoSe rv i ce"
ope rat ion-=“poi n ts " outputvar iable=" ou tputPOlwo"
partnerLink="PowerOfTwo" portType="PowerOfTwo:PowerOf2"/>

' assgnData 1 -OutputDustCtoud -to-PowerOfTwo

assiQnData2-OutputTelescope-to-PowerOfTwo

I
(% , nvokePowerOfTwoService

i _
^ flow-2

S3-FfTService-seql
° <*.. n voke-FFTSetvice 1

S4-FFTSetvice-seq2
3 rvoke-FFTService2

.
‘ FFTlToConvolve

‘ FFT2ToCorrvotve

(I) rvoke-ConvotveService

ConvotveToInvfFT

■♦ ‘ sgnTolnvFFT

<*> rivoke-InverseFFTServi

<assign narae=”FFTlToConvolve">
<copy>

<from part="reaiFTRet'jrn" variable="outputFFTl"/>
<to part="fftl" variable="inputConvolve"/>

</copy>
</assign>
<assign name="FFT2ToConvolve">

<copy>
<from part”"realFTReturn" variable="outputFFT2"/>
<to part="fft2" variable”"inputConvolve"/>

</copy>
</assign>
<invoke inputVariable="inputConvolve" name="invoke-ConvolveService"
operation=”Conv" outputvar iable="out.putConvolve"
partnerLink="ConvolveService" portType="convolve:convolve"/>

♦ ' finarroOent

reptyResponse

i i

