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Abstract

ABSTRACT

A new method for the monitoring o f filament lamps and low pressure discharge lamps has 

been developed. The new technique monitors the electrical characteristics of the lamp to 

provide real time analysis of the lamp’s condition, without the need for additional wires or 

expensive light sensors. The advent of low-cost microcontrollers developed for electrical 

metering applications means that not only is this technique technologically practical, it is 

also financially viable. The deployment of this technology, particularly in the case of UV 

water sterilizers, would improve safety and save the significant expense and environmental 

impact of unnecessary replacement lamps.
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Chapter 1 - Introduction

Nearly every aspect o f modem day life involves the use of electric lamps; from lamps used 

to light homes and offices to those used for directing traffic and lighting the road. They are 

all essential and whilst using completely different technologies, they share one inevitable 

feature, they will all fail. The time taken for each lamp to fail varies widely, from a few 

hours up to a few decades for some lamps, such as the recently launched range of induction 

lamps[i].

Depending on the task a lamp is performing, the consequences of failure can be 

surprisingly significant. For example, traffic lights failing unexpectedly can cause 

accidents and traffic congestion, a study in Finland found that accident rates at road 

junctions were over 3.5 times higher when traffic signals were out of operation^]; water 

sterilizers, which rely on UV lamps to remove the risk of illness caused by microbial 

contamination^], will not be effective if the lamp is failing or has failed.

It also makes good economic sense to be able to monitor lamps effectively. Often light 

fittings will be in inaccessible areas where maintenance is difficult, such as above a 

swimming pool or in the roof of a theatre. Knowing the condition of the lamps in such 

places means maintenance can be scheduled for the most appropriate time, such as during a 

period when the pool is drained, or in the case of a theatre, when the lighting rig is being 

set up for a show.

Currently, the most common way o f ensuring continued operation is to schedule routine 

replacement of the lamp. This is very costly and does not guarantee that a new lamp will 

not fail unexpectedly as the result o f a manufacturing defect. An alternative approach has
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Chapter 1 - Introduction

been to provide a standby lamp which is switched on when the first lamp fails; however 

this is not perfect, as there will be a time delay in switch over which, depending on the type 

of lamp and control gear used, can be significant. This method can significantly add to the 

size and cost of a light fitting due to the duplication of parts within it and relies upon the 

requisite reliability of sensing and switching.

A traditional method for estimating the remaining life o f a lamp is to measure how long it 

has been running for, using a device such as an hour meter; however this has a number of 

significant shortcomings

• The initial life expectancy quoted by the manufacturer is inherently inaccurate; 

some lamps may fail after a very short period o f time due to manufacturing defects, 

whilst others may last double their expected life, which can cause major errors in 

the predicted replacement time of the lamp. Figure 1 demonstrates the large 

variability in lamp life, it can be seen that whilst from the same batch, some 

fluorescent lamps may last as little as 5,000 hours, whilst some may last in excess 

of 16,000 hours.

100

>
E
3

60

2000 4000 6000 8000 10000 12000 14000 16000

Time (hours)

Figure 1 - Typical Fluorescent Lamp Survival Curve^j
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• A lot of lamps are dimmed, which will significantly affect their life expectancy. As 

the filament is run cooler, it evaporates at a slower rate, which means the lamp will 

usually last longer than if it were run at full power.

• Environmental factors, such as frequency of switching and vibration, are not 

accounted for.

A further, well established method of lamp monitoring is to monitor a parameter of the 

lamp, such as the operating current, so that when the filament breaks or the discharge 

ceases, an alarm is triggered. Patents using this technique date back decades, one 

particularly notable US patent was granted in 1987 for a system to monitor all the panel 

lamps in an elevator for failure, using a single current transducer^; although good for 

speeding up detection o f failed lamps, this technique is useless for the purpose of pre­

emptive maintenance.

Being able to monitor lighting installations in real time, so that the likelihood of lamp 

failures can be predicted, and maintenance scheduled accordingly, would be extremely 

beneficial from a both a safety and economic perspective. If a failure did occur, this could 

be detected immediately and reported to the end user, so that they are provided with 

sufficient information to decide whether to take immediate action or to use the information 

to optimise scheduled maintenance when the failure does not present a major problem.

The following research looks at how predictive lamp maintenance may be achieved for 

different lamp types. Chapter two begins with a look at the different lamp technologies
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that are currently in use and then goes on to discuss the present monitoring techniques and 

systems, together with some of their shortcomings.

In chapter three, filament lamps are focused upon as being an area where there is potential 

for improved condition monitoring. The chapter concludes by considering the ways in 

which impending failure could be detected.

Chapter four details the construction o f an automated test rig to enable continuous 

monitoring of the lamp characteristics as they burned in the lab, in order to try and identify 

failure indicative behaviour. Chapter five details a further experiment, that attempts to 

separate inherently faulty lamps before they are put into service, and concludes with a brief 

discussion of the findings.

Chapter six considers low pressure discharge lamps and focuses primarily on germicidal 

ultraviolet (UV) lamps as an area where condition monitoring could play a very important 

role. It concludes with a discussion of how failure could be detected in such lamps.

Chapter seven follows on with details of a series of experiments that were conducted in an 

attempt to identify impending failure characteristics. The experiments include monitoring 

the electrical discharge parameters of the lamp, electrode characteristics monitoring and, 

finally, accelerated ageing of a lamp to analyse its entire life behaviour from new until the 

point of failure.
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The discussion in chapter eight focuses on the general outcomes from all o f the 

experiments and looks at the future possibilities for both lighting technology and its 

associated monitoring systems. Finally, the conclusions drawn from this work are 

contained in chapter nine, together with details of what further work is needed to allow 

comprehensive monitoring of all lamp types.
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Chapter 2 -  Background Review

2.1 Lamp Types and Emerging Lamp Monitoring Technology

There are a large range of different lighting technologies in use today. The following 

sections consider how each of the different lamp technologies work, and report on the 

existing research into monitoring them effectively.

2.1.1 Filament Lamps

A typical filament lamp, as shown in Figure 2, consists of a thin coiled tungsten filament 

held up by a number o f intermediate molybdenum support wires and two nickel or nickel 

plated[7] wires at either end, which act as the connections to the filament. When current 

flows through the filament it is heated to around 2200°C[6], causing it to incandess. 

Tungsten is almost always used due to it having a “high melting point and relatively low 

rate of evaporation at high temperatures.”^] To stop the filament reacting with oxygen in 

the air and burning up prematurely, it is enclosed in a glass envelope which is either 

evacuated of air, or filled with an inert gas such as Argon.

support wires

screw thread contact

insulation 
electrical foot contact

Figure 2 Structure o f  a typical filament lamp[6]
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In a bulb which is evacuated, tungsten atoms which evaporate from the filament are 

deposited on the inside of the envelope, leading to reduced light output due to blackening 

of the glass as well as thinning of the filament due to the loss of Tungsten atoms. By 

filling the bulb with an inert gas such as Argon, many of the Tungsten atoms which 

evaporate off the filament collide with Argon atoms and rebound back onto the filament. 

This reduces the problems of glass blackening and filament thining, and allows the 

filament to be run at higher temperatures, which increases the radiation efficacy. However, 

introducing the Argon gas also increases the thermal conduction between the filament and 

glass envelope, which reduces the overall efficacy of the lamp. “Generally, vacuum is 

advantageous for lower power lamps and gas filling for higher power lamps. The 

changeover occurs at about 15W for mains voltage lamps and at about 3W for miniature 

lamps, such as torch bulbs.” “Generally, household lamps are filled to just below 1 atm 

pressure with 90% argon and 10% nitrogen”.^  “Typical incandescent lamp life ranges 

from a few hundred to 1500 hours.”[g]

One variation of the filament lamp is the Halogen Lamp. Increasing the running 

temperature of a lamp filament drastically increases the operating efficiency of the lamp, 

however it also considerably reduces the life expectancy due to increased filament 

evaporation. To solve this problem, halogen lamps are filled with a gas from the halogen 

group. Providing the temperature is high enough, the gas combines with the Tungsten 

vapour and causes the Tungsten atoms to be redistributed on the filament. To keep the 

temperature inside the lamp high, the glass envelope is made as small as possible, which 

means it is very close to the filament and consequently gets very hot. If normal glass were
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used it would start to melt, so instead Quartz glass is used as it can withstand the very high 

temperatures involved.[9 ] “Some tungsten [halogen] lamps last more than 5000 hours.”[g]

Nearly all the existing monitoring systems for conventional filament and halogen lamps 

rely on detecting an interruption in current flow as a means of determining that a lamp has 

failed completely. These systems are often incorporated into high specification cars, such 

as the Jaguar XJ-Spoj. There appear to be no dedicated systems or devices for performing 

predictive lamp failure monitoring. One reason for this maybe that filament lamps are 

considered to be old technology, with fluorescent lighting and LED’s often being used to 

replace light bulbs; however many applications still rely on them, for example, the 

majority of stage lights in theatres still use them as the primary source of illumination. It is 

therefore considered that there would be merit in developing and deploying technology that 

would monitor such lamps and warn o f imminent failure.

2.1.2 Fluorescent Lamps

A typical fluorescent tube o f the type commonly found in offices and homes consists of a 

long thin glass tube, filled with a mixture of gasses and with two Tungsten filaments sealed 

in at either end of the tube, as shown in Figure 3, (an exception are cold cathode 

fluorescent lamps, which do not have any heaters as they rely on a higher starting voltage). 

The filaments are usually covered in a mixture of Barium, Strontium and Calcium oxides 

to aid thermionic emission at lower temperatures.p p The gas inside the lamp envelope 

normally consists of a mixture of Mercury vapour and Argon.p2]
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During a normal starting cycle, the two cathodes are usually heated for one to two seconds 

to release electrons. Once this has happened a large voltage is applied across the tube, 

which attracts the electrons to the other end of the tube, however due to the presence of 

large numbers of Argon atoms in the gas they collide with these first. When an electron 

with high enough velocity collides with an Argon atom, impact ionisation can occur. This 

results in the release o f more electrons, which in turn impact with more atoms, producing 

avalanche ionisation of the atoms. This leads to a rapidly increasing current flow through 

the tube which must be limited to prevent damage to the tube.

VISIBLE
LIGHT

ARGON GAS 
AHD MERCURY 
VAFORr.

ELECTRON FLOW

lVIOLET RAO (ATION
VISIBLE
LIGHT

Figure 3 Structure and operation of a typical fluorescent tube[i3]

Once the tube has ‘struck’, external control gear reduces the voltage across the tube to keep 

the current through the tube under control. By reducing the voltage across the tube, the 

electrons move away from the cathodes at a lower velocity; this means that the majority of 

the electrons leaving the cathode will have inadequate kinetic energy to cause ionisation of 

the atoms they collide with and hence the current is stabilised. As the tube warms up, the 

mercury turns into mercury vapour. When electrons strike the mercury vapour atoms they 

cause an electron to temporarily move to a higher energy orbit; when the electron returns 

to its original orbit a photon is emitted, which is how the light is generated.
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Approximately 65% of the light generated by the mercury atoms is at a wavelength of 

253.7nm while 10-20% is at a wavelength of 185nm[n], this means that the vast majority 

of light emitted is in the ultraviolet band and not visible to humans. To solve this problem 

the inside of the glass tube is coated with a thin layer of phosphors; the phosphor coating’s 

atoms absorb the uv light photon, causing an electron to jump to a higher energy orbit. 

When the electron returns to its original orbit a photon is emitted again; however due to 

small energy losses during this process the photon emitted is of a lower energy and hence 

longer wavelength than the one that was absorbed. By using different phosphor 

combinations, the UV light can be converted to light of a different wavelength; this can be 

seen in the various colour fluorescent lamps available on the market.

One variation on the fluorescent lamp is the germicidal UV lamp. The operating principle 

of the lamp is exactly the same as the fluorescent lamp, except that there is no phosphor 

coating on the inside o f the tube. Also the glass tube is made from quartz glass in order to 

let the UV light out, as normal soda-lime glass will block most UV emission. The result of 

these alterations is that the majority o f the light output is at 253.7nm (UV-C). Although 

not visible to the human eye, this wavelength is highly effective at deactivating the DNA 

of bacteria and viruses, preventing them from reproducing and causing disease.p4]

Traditional monitoring techniques for fluorescent lamps have been based around the idea 

of detecting whether a lamp has failed or not. However in most applications it would be 

useful to know how long a lamp has left before it needs replacing. Most people have 

experienced the frustration of an electrician calling to change a flickering fluorescent lamp 

in the office, only for one nearby to fail as well a day or two later; if the lamps were
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monitored better then all the ones near the end of their life could be changed at the same 

time, saving time and money.

In UV water treatment systems, lamps are routinely replaced to try and ensure they do not 

fail during use. Most UV treatment unit manufacturers recommend annual replacement! 15] 

and some systems, such as the Aquapro range, even have alarms in case the lamp does 

fail[i6j; however this is not a very satisfactory solution, as following a failure it could be 

anywhere from a few minutes to a few days before the lamp is changed and in that time 

harmful bacteria may go untreated. Some systems incorporate a second standby lamp, but 

this adds significantly to the cost o f the system. Knowing when a lamp is reaching the end 

of its life, based on its electrical characteristics, would enable it to be replaced before it 

fails altogether.

Considering the large number in use, it is surprising that there seems to be very little 

commercial activity in condition monitoring of conventional, heated cathode, fluorescent 

lamps. This may be because fluorescent lamps are inexpensive, as too are the fittings they 

are used in, so the cost o f any monitoring system has to be very low in order to make it 

economically viable. However the potential market, and hence the money that could be 

saved in both running costs and lamp costs if they are changed at the right time, means that 

there is potential for low cost monitoring to become popular. With the increasing concern 

over the disposal o f mercury, as highlighted by an American government article which 

instructs people to evacuate the room for 15 minutes and open all windows if a fluorescent 

lamp breaks[i7], it also makes sense to minimise the disposal of lamps by using them until
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just before they fail. The same monitoring technology could also be adapted for use in 

compact fluorescent lamps, which operate on the same principle.

In safety critical systems, such as UV sterilizers, the cost of any monitoring system is more 

of a secondary concern. Despite this, there is still limited commercial activity, which may 

well be because of the specialist nature of the market and the relatively small numbers in 

use.

One area of fluorescent lighting where there has been considerable activity is for cold 

cathode fluorescent lamps, as often used in LCD backlights in devices such as laptops. 

This is presumably due to the high value of the equipment they are used in. In a white 

paper for CEYX Technologies^], a control system for the cold cathode fluorescent lamps 

used in LCD backlighting is described that monitors the lamp current in order to enable the 

controller to maintain a consistent light level from the lamp. The controller also uses the 

lamp current to implement failure prediction using built in diagnostics.

There is clearly a lot o f potential for the condition monitoring of traditional heated cathode 

fluorescent lamps, providing appropriate technology can be developed to enable it to be 

done simply, cheaply and reliably.

2.1.3 HID (High Intensity Discharge) Lamps

A typical HID lamp consists of two tungsten electrodes housed in a fused quartz tube. 

Inside the quartz tube there is a mixture o f gas and metals. The gas is intended to allow the
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starting of the lamp whilst the metals take over light production once the temperature 

inside the tube is high enough for the metal to vaporise. The quartz tube is usually housed 

inside an outer glass envelope, which serves to contain any parts which might fly off when 

the inner quartz tube explodes at the end of its life, which is a fairly common occurance. 

The glass envelope is also used in most lamps to filter out the UV content of the light given 

out, which could otherwise cause skin and eye damage.

O uter Bulb

—- Arc Tube

Ceramic 
/  Base

I I
Figure 4 Metal Halide Lamp[i9]

The starting procedure for the lamp is similar to a cold cathode fluorescent tube. A high 

voltage is applied across the lamp which causes avalanche ionisation of the gas atoms in 

the tube; the lamp ballast then drops the voltage across the tube to regulate the current 

through the lamp. As the gas in the tube heats up, the metal particles vaporise and when 

the metal atoms are struck by an electron they emit light. This process can take a few
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minutes to occur, and can be observed by the changing intensity and colour of the light 

given off by the lamp as it heats up.

There are many different types of gas and metal combinations available in HID lamps, 

each producing a different colour of light. One of the earliest HID lamps was the Mercury 

vapour lamp, which produced a blue/green tinted light output, while today Metal Halide 

lamps are very popular due to their near natural light colour, a typical example is shown in 

figure 4. Common applications of HID lamps are in multimedia projectors, car headlights, 

outdoor lighting and shop lighting, where their bright, efficient, small size and near white 

light makes them an ideal choice.

Perhaps not surprisingly, there has been a lot of interest in monitoring these types of lamps, 

primarily due to their use in expensive multimedia projectors, and also due to the 

possibility of lamp explosion at failure.

In 1996, Osram Sylvania Inc were granted a patent for a “Ballast containing protection 

circuit for detecting rectification o f arc discharge lamp”[20]- This device measures the DC 

voltage component which develops across the lamp as it approaches the end of its life, and 

disables the inverter before the cathodes are overheated.

The Hewlett Packard Company were granted a patent in 2002 for an invention which 

“provides an end-of-life notification signal, indicating that the arc lamp bulb should be 

replaced, close to the end of the useful life of the arc lamp bulb, but before the bulb
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actually bums out. The threshold property value is chosen to correspond to a point in the 

life of the arc lamp bulb that precedes the actual bum out of the bulb.”[2 i]

Koninkl Philips Electronics were granted a patent in 2003 for a device which monitors gas 

discharge lamps. “A warning signal is generated when a test value is measured which 

corresponds to a clear reduction in the lamp voltage, for the purpose of better predicting 

the life of the lamps and the risk of explosion.”^ ]

In 2004 a patent application by the BENQ Corporation was published, one of the claims 

being “A projector capable of detecting remaining lifetime of the light source lamp therein, 

comprising: an image projection device having a light source lamp with a pair of lamp 

electrodes; a detection device for detecting a voltage across the lamp electrodes; an 

analogue-to-digital converter for converting the voltage to a digital value; and a control 

unit for comparing the digital value with a relational table to calculate the remaining 

lifetime of the lamp.”[2 3]

From all the patents found and reviewed, it is clear that a lot of work has been done on 

detecting the imminent end of life o f discharge lamps, particularly those used in projectors. 

However the first three patents do not discuss determining the actual remaining lamp life at 

any particular time; rather, they concentrate on setting thresholds based on an individual, 

or combination of, lamp parameters, to warn the user when the lamp is about to expire and 

shut it off before the lamp explodes. The final patent application (BENQ) does discuss a 

device for measuring the remaining lamp life at any point in time, and displaying it each 

time at start up for the user to see. However it is clear that the primary focus of the work

Page 17



Chapter 2 -  Background Review

has been for projector lamps, which is normally a stand alone application. It is clear, from 

these patents, that there is considerable commercial interest in the condition monitoring of 

HID lamps and although there are some improvements still to be made, developments are 

being made very quickly in this area of condition monitoring.

2.1.4 SID (Static Induction Discharge) Lamps

The electrodes in discharge lamps are one o f the major factors in limiting the life of the 

lamp. Induction lamps, however, do not have any. As a result of this a typical induction 

lamp such as the 55W Philips QL lamp has a guaranteed life of 60,000 hourS[2 4]. The 

lamps work by using an RF power coupler, which consists of a coil wound on a ferrite rod; 

this rod fits inside a cavity in the bottom of the lamp. The energy is transferred through the 

glass wall o f the bulb by electromagnetic induction, where it excites mercury vapour 

within the bulb to generate UV light, which is then converted to visible light by the 

phosphors on the inside surface o f the lamp in the same way as in the fluorescent tube.

The lamp requires a special ballast to provide RF power to the RF coupler. The ballast 

must provide a high voltage to the coil when starting the lamp and then drop the power 

supplied once the lamp is running.
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HF Generator HF Power Coupler Discharge Vessel

Figure 5 Philips QL Induction Lamp System^]

At the moment there appears to be no information available on condition monitoring 

techniques for lamps of this type, this is presumably due to two main reasons; firstly the 

lamps are very new technology and so the numbers installed are low compared with other 

types of lighting; hence the demand for condition monitoring is low. Secondly the lamp 

has a very long life, which means obtaining data on the characteristics of the lamp over its 

lifetime would be very time consuming. As replacement of the lamp is so infrequent it is 

possible the lamp may not even be the most frequently replaced part of the system, as the 

electronic ballast used to drive the lamps could cause a significant percentage of failures 

itself, which would be very hard to predict. Consequently developing a monitoring system 

for this type of lamp is probably not cost effective or practical until the lamp is in more 

widespread use, and more data is available about it.
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2.1.5 LED (Light Emitting Diode) Lamps

As the name suggests, an LED is a semiconductor diode which emits light when forward 

biased. A large range of different wavelengths are available, ranging from ultra violet, 

through the visible spectrum, to infra red. Traditionally LED’s were only low power 

devices, used for user interfaces. However due to major improvements in efficiency and 

power, they can now be found in torches, stage lights as shown in Figure 6, traffic lights 

and even some room lights.

Figure 6 RGB LED Colour mixing PAR can [26]

There appears to be little or no existing information in either traditional journal papers or 

on the internet regarding condition monitoring techniques for LED lamps. Although 

LED’s are not new, their use as major light sources is, and consequently the numbers in 

use are comparatively few, with most being used for specialist applications such as traffic 

lights and torches. The reason for there not being much interest in condition monitoring of 

LED lamps is almost certainly the same as for SID (Static Induction Discharge) lamps.
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2.2 Emerging Lamp Monitoring Systems

A few advanced monitoring systems for outdoor lighting installations have recently 

become commercially available, and are described in the following sections.

2.2.1 Philips Lighting

One of the most recent, and arguably most comprehensive systems, is one advertised by 

Philips in their “Telemanagement solutions in outdoor lighting” brochure^]. Philips 

currently supply two systems, called Starsense and Telesense, which both allow greater 

control and monitoring o f outdoor lighting installations than was previously possible.

Remote
M onitoring

Segm ent
Controller

Power Line C om m unication Phone Line /  Internet
OLC = Outdoor Lighting Controller

Figure 7 Philips Telemanagement Architecture
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Both systems revolve around each light being fitted with special electronic control gear 

which provides dimming control of each discharge lamp. The electronic ballast also 

monitors the discharge lamp’s inner electrical parameters to accurately predict when the 

lamp is about to fail, thus enabling efficient and timely replacement of the lamp. The 

systems are claimed to provide significant cost savings by enabling lamps to be dimmed to 

the required light level depending on the time of day, weather and age of the lamps, etc. 

They also remove the need to employ people to scout for failed lamps.

Figure 8  Philips LFC7050 Segment Controller^]

The Starsense system features comprehensive functionality to allow it to interact with 

traffic management systems and geographical information systems, this makes it ideal for 

larger installations such as motorways and large interchanges. The Telesense system has a 

simpler architecture and is intended for stand alone street lighting applications only. With 

both systems there is a Segment Controller (SC), as shown in figure 8 , for each group of 

lights. The SC communicates via the power lines with the Outdoor Luminaire Controller 

(OLC) installed in every luminaire. It is the OLC which monitors the lamp and controls its
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dimming level under the command of the SC. The SC in turn communicates with the 

monitoring PC at the control centre via a phone line or the internet.

2.2.2 IEI (Integrated Equipment & Instrumentation)

A very similar system is presented in a paper written by R. Seevaratnam of Integrated 

Equipment & Instrumentation titled “Street and Public Light Monitoring System 

(SPL)”[2 9j. The system incorporates a Basic Signalling Module (BSM) in each luminaire 

which communicates via the power line with a data logger module housed with the power 

distribution board; from here data is sent back to a central computer via a telephone line, 

fibre optic cable or wireless modem.

The system enables remote switching o f the luminaire and dimming if the ballast supports 

it. As well as control, the system also provides feedback on fault conditions, including 

lamp failure, inefficient lamp running and the door of the lamppost being open. A 

database on the central computer keeps track of every switching cycle of each lamp, 

together with any faults that have been detected. The detection of inefficient lamp 

operation also gives the user the option of replacing lamps before they fail.

2.2.3 Mayrise Systems

One of the products on offer from Mayrise Systems is a software management system 

designed to help manage the operation and maintenance of street lighting installations. 

This system has also been integrated with remote monitoring systems from two different 

manufacturers to provide a complete management solution.
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Antennae

Light Level Sensor

Standard NEMA Connection
Figure 9 Royce Thompson Oasis 2000 Modulepo]

The first monitoring system, from Royce Thompson Ltd, uses RF units, shown in figure 9, 

that replace the photocells in luminaries. “The Oasis 2000 RF can dim electronic ballasts 

according to timetables or road conditions and also monitors street lighting to give desktop 

maintenance reports/’po] The system utilizes a street level cluster controller which 

downloads timetables from the central computer and modifies the dimming levels of the 

lamps accordingly.

The second monitoring system, called ‘Lightmaster’, which is produced by Mayflower 

Intelligent Management Systems, also uses a RF module to replace photocells. This 

system works by using sub-master controllers to control a number of individual lights each, 

and then master controllers to control the sub-master controllers, which can control up to 

32,000 nodes[3 ij. The master controllers can be linked to a central computer through radio, 

existing wide area networks or GSM.pi]
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The Mayrise system is reported as currently being implemented and used by a number of 

local authorities in the UK.

2.2.4 Harvard Engineering

The LeafNut system developed by Harvard Engineering is another wireless street lighting 

control system. Each luminaire is fitted with a Harvard electronic dimming ballast which 

is connected to a wireless device called the LeafNode unit, which is designed to replace the 

photocell on top o f the lantern. To control the LeafNode units, a BranchNode unit is 

required; this is a slightly larger device than the LeafNode units, but is still able to be 

mounted on top of a lantern. The BranchNode communicates with the LeafNodes via an 

8 6 8  MHz wireless network and can control up to 256 LeafNode units within a one 

kilometre range. A main server, called the TrunkNode, communicates with the 

BranchNode units by GSM mobile phone or by using a GPRS system; it also hosts the web 

interface, which allows control and monitoring of the system. A system diagram is shown 

in figure 1 0 .

Up to eight different dimming profiles can be handled by the system to suit different 

locations; this enables lamps to operate at reduced light levels during the night for 

example, when fewer cars are on the road. Should communication be lost with a LeafNode 

unit, it will continue switching and dimming the lamp using the same schedule as from the 

day before. As well as allowing centralised control using time profiles or a web based 

solar clock control, the lamps can also be controlled by a photocell installed in every 

BranchNode.
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Figure 10:- LeafNut System  Overview[32]

As well as controlling lamps, the LeafNut system also provides comprehensive monitoring 

capabilities; it can monitor each lighting unit for efficiency, predicted lamp life, ballast 

condition and energy consumption. The system can even stop lamps cycling when they 

reach end of life, by detecting the cycling and then running the lamp at 75% power until 

there is opportunity for it to be replaced.

The LeafNut system is believed, by the manufacturer, to be “the only monitoring control 

system that links directly to the micro-processor in the ballast and can therefore accurately 

predict lamp failure.”^ ]
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2.2.5 Telensa Ltd

The PLANet™ (Public Lighting Active Network) system by Telensa Ltd is designed to 

enable the remote control, monitoring and metering of public lighting installations. As 

shown in figure 11, the system is made up of four key components; Outstations, Base 

Stations, the Central System and the User Interface. Each light is fitted with a radio device 

(Outstation) that controls and monitors the light it is attached to. Each of the outstations 

communicates with the nearest basestation via a Ultra-Narrow Band (UNB) radio link.

A Base Station consist o f two parts, a controller module and a radio module. The radio 

module is mounted at the top o f a lighting column or building, while the controller unit is 

housed in the bottom of a lighting column. The controller unit connects to the Central 

System via an ADSL telephone line or a GSM/GPRS connection if a phone line is not 

available. A light meter is mounted next to the radio module, which measures the ambient 

light at dusk and dawn and the controller then instructs the outstations to switch 

accordingly.

The Central System server communicates with each of the Base Stations, hosts and 

administers the system database and acts as a web server for the user interface. As the user 

interface is web based, there is no client software to install and the system can run securely 

using a standard web browser. Using the system, lamps can be programmed to switch or 

dim according to combinations of time and local light level. The system also provides 

remote monitoring o f lamp failures, mains supply metering and lamp electrical parameters 

such as power factor.
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Figure 11:- PLANet™ System Overview^]

Although similar to the LeafNut system, the manufacturer argues that “It is the first 

solution of its kind that provides a full range of control, monitoring and metering at a price 

that makes adoption on all lights economically viable”^ .  This is primarily due to the 

systems ability to integrate with old lighting hardware via a plug in photocell replacement 

module. The consequence of this flexibility however is that, unlike LeafNut, the system 

cannot predict lamp failures.
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2.2.6 Archnet Technology Ltd

The system offered by Archnet Technology Ltd[35] operates on a similar basis to the 

systems previously described, at the time of writing there is no sign of provision for lamp 

failure prediction, only detection. The system is currently available for monitoring street 

and campus lighting and features a device connected to each lamp which monitors its 

current draw to detect when it fails. Each lamp device communicates via the power lines 

to a power line modem which then conveys the information back to a central pc via either 

the internet or a GPRS (General Packet Radio Service) modem. Information can also be 

sent to the lamp module to switch the lamp on or off as desired.

2.2.7 Fortran Traffic Systems Ltd

The Naztec Lamp Monitoring System by Fortran Traffic Systems Ltd[36] uses precision 

current transformers to monitor the current drawn by each lamp in the traffic lights at a 

traffic intersection. By detecting the failure of any lamp quickly, a replacement can be 

arranged before an accident occurs. Although the system can detect an intermittently 

failing lamp, it appears to have no predictive failure abilities.

Precision C urrent Transform er

Lamp Monitoring PCB

Figure 12 Naztec Lamp Monitoring System^]
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2.3 Summary

Following consideration by the author of the current state of monitoring of the different 

lamp types, together with looking at the systems which are currently available on the 

market, it is clear that considerable work has been undertaken; however most of this work 

has been looking at HID lamps and devices for incorporation into projectors to warn the 

user of impending lamp failure and to protect them from exploding lamps. Very little work 

has been done on fluorescent lamps and filament lamps. This is not perhaps surprising, as 

the products which use HID lamps are usually expensive, and hence can accommodate the 

extra financial burden of a monitoring system. However the full benefit o f lamp 

monitoring has yet to be realised, as HID lamps only make up a small fraction of UK lamp 

sales, as shown in table 1 .

Lamp type Lamp sales (millions) Percentage of total sales

Filament (GLS) 323 74.7
Fluorescent tubes 54 12.5
Halogen 26 6 . 0

Compact fluorescent 24 5.5
High intensity discharge 5.5 1.3

Table 1 : - Lamp sales by UK Lighting Industry Federation members in 2 0 0 2 ^ 7]

It is clear that the work on monitoring HID lamps will have had very little impact on the 

overall lighting market, since they make up some 1.3% of total UK sales.

With this in mind, it is the authors opinion that further research is required on the condition 

monitoring of filament lamps (including halogen lamps), which make up 80.7% of the total 

UK market, and fluorescent lamps (including compact fluorescent lamps), which account
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for 18%, so that accurate estimates of the remaining lamp life can be determined. Once 

this has been achieved, work needs to be done to see how the information gathered from 

individual lamps can be processed and used to form a collective picture, for the end user, 

o f the condition of an entire lighting system, containing many different types of lamp.
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3.1 Traditional Filament Lamp Testing and Monitoring Techniques

Predicting when a filament lamp will fail is a very difficult task. Two approaches can be 

taken; additional testing could be developed for when the lamp is manufactured, so that the 

rated life could be adjusted for each individual lamp; alternatively the lamp could be 

monitored while in use, this method having the added advantage of being able to take into 

account the conditions o f use the lamp is exposed to, but it is likely to be more expensive 

due to the installation of hardware with every lamp.

Quality control at a filament lamp factory usually relies on sampled lamp testing. Lamps 

of the type being tested are put on a test rig and run until they bum out. BSEN 60064:1996 

specifies that a minimum sample o f 50 lamps is required.^] The arithmetic mean of the 

times they burned for is then taken as the rated average life.[3 9] During mass production 

the quality of the lamps leaving the factory is checked by taking random samples from 

batches and seeing if on average they last as long as the rated burning hours of the lamp. 

Often, the lamps are run at abnormally high voltages to shorten their life and provide quick 

results, the expected life under normal conditions can then be extrapolated from this with 

reasonable accuracy.[4 0 ]

Batch sampling however does not prevent faulty lamps leaving the factory and being 

installed as, although the average life o f the lamps will be tested, that does not mean that 

every lamp will last that long. The fact that it is an average implies that a substantial 

number of lamps will fail before then. This also means that scheduling lamp replacement 

based on the rated lamp life may well lead to lamps failing before they are replaced.
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Another test procedure which can be performed after the lamp is manufactured is to bum 

the lamp in for a set period. This helps reduce the infant mortality rate of the lamps, but it 

does have problems. The time taken to perform a thorough bum-in is considerable in a 

production environment and burning the filament for long periods means it is weaker when 

the lamp has to be shipped out of the factory. It also reduces the lamp life by however long 

the bum-in period was. For these reasons factory bum-in is seldom done on regular 

filament lamps.[4 i]

Some installations make use o f hour meters to record how long the lamp has been on for. 

However hour meters do not take account of whether the lamp has been dimmed or how 

many times it has been switched on and off, so the reading is inherently flawed. Even 

ignoring the effects of switching frequency and dimming, the approach is still inaccurate as 

the actual life of each lamp may vary greatly from the average life stated by the 

manufacturer due to manufacturing tolerances and possible defects introduced when the 

lamp was made. In the opinion o f the author, a new approach is needed, so that lamp 

failure can be predicted and replacement can be undertaken before the lamp actually fails.

There are many reasons for why a lamp may fail during use; these are considered, together 

with possible detection methods, in the following sections.
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3.2 Detecting Defective Lamp Construction

The construction of a GLS light bulb can be divided up into four key stages. Fabrication of 

the filament and support structures (which include the central glass column), fabrication 

and attachment o f the glass bulb envelope, evacuation of the glass envelope followed by 

the introduction of the final filling gas and finally attachment of the electrical connections 

cap. The four stages shall now be considered in more detail, together with possible defects 

that may occur and ways in which they may be detected.

Glass bulb

Tungsten filament

Lead wire

Molybdenum 
filament supports

Dumetwire

Glass pinch

Fuse sleeve 
(ballotini filled)

Exhaust tube

Fuse

Cement

Lead wire

Cap

Soldered contacts

Figure 13:- Diagram o f  a typical GLS lamp.|42 |

Page 35



Chapter 3 -  Filament Lamps -  Detecting Failure

3.2.1 Filament and Support Structures

Filament Wire

The filament o f virtually every lamp manufactured today is made of tungsten due to its 

relatively high melting point and low evaporation rate; it also features a higher emissivity 

in the visible wavelength range than in the infrared range, which for a standard light bulb is 

desirable. When tungsten was first used for making lamp filaments, it was pressed into 

shape; however this meant it was brittle and could not be bent afterwards. In 1909 William 

Coolidge developed a process for making ductile tungsten in wire form.[4 3 ]

“Tungsten used for filament manufacture is extracted from ores containing the minerals 

scheelite, CaWC>4 , and wolframite (FeMn)W 0 4 . The ore concentrates are chemically 

treated to produce pure tungsten trioxide, WO3 , from which the metallic powder is 

obtained by a high temperature reduction with hydrogen.”[4 4 ] Prior to reduction with 

hydrogen, small quantities of additives are blended with the tungsten trioxide, these 

dopants which are usually a combination o f potassium silicate and aluminium oxide and 

are more commonly known as ‘AKS’ dopants. The dopants are added to promote 

elongated grain growth when the filament is first heated up above its recrystalization 

temperature, thus making the filament stronger and less likely to sag. The effect on the 

grain structure can be seen in Figure 14. “The powder is subsequently pressed into bars 

and the tungsten densified by sintering at temperatures approaching 3000°C. Further 

densification occurs during fabrication into rods by hot rolling and swaging operations, 

after which the tungsten is progressively drawn into wire of the required diameter.”^ ]
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Figure 14: - Microstructure o f  tungsten wires: (left) after drawing, (right) re-crystallized wire doped with alkali silicate. X 200(45]

It is clear from the description of how the tunsten wire is produced that great care has to be 

taken to prevent impurities and flaws being introduced into the wire. A flaw in the 

filament wire such as a nick or stretch or a small localised contamination of an element 

such as carbon or iron, could lead to a localised hot spot in the filament which would 

dramatically shorten the lamp’s life.

A fault such as this would be very difficult to detect from measuring the electrical 

characteristics, as the resistance change caused by the nick, stretch or localised 

contamination would be very small indeed. However a visual inspection whilst the
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filament is glowing a dull red could be attempted to reveal any severe hot spots. This sort 

o f testing would have to be undertaken on the production line, as the equipment required to 

do it automatically would be prohibitively complicated and too expensive to include in the 

vast majority o f lamp monitoring systems.

A mistake during the addition of the doping additives could also leave the filament weak 

and prone to sagging. Once again this would be very difficult to detect with a monitoring 

system.

Filament Formation

The primary factors effecting the selection o f the length and diameter of a filament wire 

are the desired operating voltage, current draw, light output, vibration resistance and lamp 

life. As the filament for mains voltage lamps usually needs to be quite long, the tungsten 

wire is wound on a mandrel to produce a coiled filament which takes up significantly less 

space than if the wire were left straight. Another advantage of coiling the filament is 

efficiency, as thermal loss from the filament is reduced and the overall efficiency of the 

lamp is greatly improved. Many lamps feature ‘coiled coils’, where the coiled tungsten 

wire is wrapped around another mandrel, this second coiling has the effect o f reducing the 

overall filament length o f a typical 40W GLS lamp by about 50%[7] while increasing its 

efficiency by around 2 0 %[7 | for the same life. A disadvantage of double coiled coil lamps 

is that they are more prone to shock and vibration damage than their single coil 

counterparts. Once the filament has been coiled, it is heat treated to remove internal 

stresses and to re-crystallize the tungsten wire. “Extreme accuracy in coil geometry and
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dimensions is essential since the performance o f a filament is very sensitive to parameters 

such as wire diameter, pitch and the coil length and diameter”.[4 4]

Detecting flaws in filament formation after manufacture would be quite challenging. If the 

wrong diameter wire has been used, or the filament has been cut too short due to the 

automated manufacturing process, then it would be likely that the whole batch would be 

affected and it would be picked up quickly as a result of random sample testing. 

BSEN60064:1995 recommends a sample size o f 100 lamps, and states that no more than 

12 lamps may have a wattage in excess o f 104% of the rated wattage plus 0.5W.[46] It also 

sets limits for the minimum allowable luminous flux.[4 7]

As an alternative to batch testing, a simple resistance test could be performed and the result 

compared to the average reading obtained from a number of good lamps. However, 

detecting errors in coil pitch and diameter which did not affect the overall wire length 

would be very difficult indeed. One way of detecting these errors may be to measure 

filament resistance while the lamp is powered; if thermal losses are increased due to the 

filament geometry then in theory the filament should be running cooler and its resistance 

should be lower. However the change in resistance is likely to be quite small and therefore 

very hard to detect.

Filament Mounting

The filament is usually mounted using a series of support wires in addition to the two 

electrical connection wires at either end. The support wires are made of Molybdenum, due
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to its very high melting temperature (2623°C[4g]). The electrical connections at either end 

of the filament also usually serve as the end support wires and are usually made of nickel 

or are nickel plated and are folded over the filament to clamp it. These wires are then 

welded onto short lengths of Dumet wire which pass through the glass pinch to the outside 

of the lamp. “Dumet is a composite material consisting of a central core of 42-58% nickel- 

iron alloy sheathed with copper which constitutes about 25% by weight of the complete 

wire. The surface of the wire is coated with sodium borate which prevents the formation 

of spongy cuprous oxide during sealing and also enables the wire to be more easily 

‘wetted’ by the glass. As a result o f its composite structure, the thermal expansion 

coefficient of the wire is different in the axial and radial directions. In the radial direction 

it matches that o f the glass, whilst in the axial direction it is less than that o f the glass. 

Consequently to avoid dangerous axial tensile stress in the glass the seal is not completely 

annealed, but cooled at a rate such that, at room temperature, it exhibits axial compressive 

stress. The stress is limited by keeping the wire diameter below 0.8mm.”[4 9]

Occasionally, one o f the supporting wires may break off and cause the filament to collapse. 

This problem was observed on one o f the lamp samples during an initial experiment. 

However, apart from a visual inspection to ensure the support wires protrude well into the 

glass button, there is no way to test their security once the bulb is assembled as this fault 

will have no effect on the electrical characteristics of the lamp until it suddenly fails. The 

only exception to this is if the filament collapses back on itself. In this case the lamp 

becomes excessively bright and the current draw increases dramatically, which could be 

picked up relatively easily by a monitoring system. A machine vision system for
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inspecting the assembly of light bulb filaments, such as that proposed by Wen C. Linjsoj, is 

unlikely to be able to see how far the supporting wires protrude into the glass button.

The electrical connections to the ends of the filament are usually made by folding over the 

ends o f the lead wires to clamp the filament. If this is not clamped with sufficient force the 

filament will arc at the connection point, overheat and fail, or just slip out altogether. If the 

clamping force is too high then the filament may be partially severed and will once again 

over heat and fail at this point. Detecting this sort of fault once the bulb has been 

manufactured would be very difficult indeed as it would have no discemable effect on the 

electrical characteristics if it is over crimped, and if it is under clamped then any arcing is 

likely to be highly intermittent. A visual inspection at low heat may reveal the problem as 

a localised hot spot, but this is not guaranteed. Arcing caused by under clamping would be 

detectable by a lamp monitoring system, as the lamp current would fluctuate significantly 

over time.

If the Dumet wire was not fused into the glass pinch seal correctly, then one of two 

problems may occur; either a slow gas leak may develop around the seal, or the glass pinch 

seal may shatter, causing a rapid loss o f gas and immediate failure of the lamp. Virtually 

any fault with the glass pinch seal is not going to be detectable from the electrical 

characteristics o f the lamp on the production line. A monitoring system based on the 

electrical characteristics of the lamp is also not going to be able to detect any cracking of 

the glass seal before the gas starts to escape. A slow leak however will allow small 

amounts of air into the lamp, which will cause the filament to slowly bum away, which 

should be detectable from monitoring the current draw of the lamp.
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3.2.2 Glass Envelope

The glass envelope o f the lamp is made by blowing molten glass into a rotating mould 

which has been sprayed with water. The resulting steam cushion gives a smooth shiny 

finish to the lamp, whilst the rotating mould ensures there are no seam marks. The outer 

envelope is usually made from soda-lime silicate glass, whilst the internal supports and 

pinch seal are usually made from lead-alkali silicate glass due to its higher electrical 

resistivity and lower softening temperature, meaning it has a longer working time. The 

two components are then assembled and fused together. Once the lamp has been 

evacuated and the final filling gas introduced, the exhaust tube is heated and sealed off.

Failures of the glass envelope caused by manufacturing defects are unusual but can occur. 

Small defects in the glass envelope such as scratches introduce stresses in the glass when it 

warms up and cools down, which can lead to the glass envelope cracking or even 

shattering. This type of failure is particularly serious, as i f  the lamp is suspended from a 

ceiling lamp holder then the glass bulb may fall down, leaving broken glass over the floor 

and two live wires sticking out o f the lamp holder. Unfortunately defects like this are very 

difficult to detect at the factory as the defect is usually very small. Additionally, since it 

will have no effect on the electrical characteristics of the lamp until the glass envelope 

breaks, it would be virtually impossible to detect it with a monitoring system. Fortunately 

failures of this type are rare.

3.2.3 Gas Filling

Once the glass components of the lamp are assembled, the join is fused together and the 

only route left open to the outside world is via the evacuation tube at the bottom. Initially
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a vacuum pump is attached to this pipe to evacuate the air from within the lamp, then the 

final filling gas is let back in to the lamp. For GLS lamps, argon is usually used as the 

filling gas, however krypton is often used for small torch bulbs. The filling gas serves to 

surpress physical processes such as evaporation and sputtering. In general, increasing the 

gas density decreases the filament surface temperature and increases the number of atomic 

collisions with atoms trying to leave the filament, which leads to a reduction in the number 

o f atoms leaving the filament. There is a consequence however, as the thermal conduction 

o f the argon gas increases the loss of filament heat, which reduces the overall efficiency of 

the lamp. Nitrogen, which has good arc-quenching abilities, is often added to the gas mix 

to prevent arcing between metal structures at different potentials within the lamp. Due to 

the high operating temperatures o f the components within a filament lamp, oxidation and 

carburisation processes (which would take weeks at room temperature) can occur very 

quickly. To avoid this, gasses such as “oxygen, carbon monoxide and dioxide, 

hydrocarbons and water vapour” must be excluded from the lamp[4 9], which is often 

achieved through the use o f ‘getters’ after the lamp has been sealed off. ‘Getters’ are 

materials which are “used to remove gaseous impurities retained after the lamp bulbs or 

tubes have been sealed.”[5 i] Red phosphorous is commonly used in filament lamps to 

remove any traces o f oxygen or water vapour after the lamp is sealed off; it is usually 

applied to the filament, so that when the filament is powered for the first time it is activated 

and generates phosphorus vapour.

If air is left inside the glass envelope or the glass evacuation point is not correctly sealed 

allowing air to leak in, then the life o f the filament will be dramatically reduced. Typically 

any leak will quickly lead to the gaseous contents of the lamp being replaced completely
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with air and under these circumstances the filament will bum out within a few seconds, 

which could be detected by any short test cycle. If some air is left inside when the lamp is 

made however, then depending on how much is inside, the lamp may well survive the 

initial filament bum as the oxygen inside the lamp is used up by the getter and the burning 

filament. However this will mean that as the getter has not been fully effective in 

removing all the oxygen, the filament will be weakened and will probably fail prematurely 

when the lamp is put into use. In theory this should be detectable by measuring the change 

in resistance of the filament when the lamp is powered for the very first time.

3.2.4 Electrical Connections

The lamp cap is fitted once the lamp has been gassed and the evacuation tube sealed off. 

As well as providing a convenient means o f connecting power to the lamp, the cap also 

serves to protect the rather fragile evacuation tube from damage. The cap is made from 

either brass or aluminium and is cemented onto the bottom of the lamp. GLS lamps 

usually come with either a bayonett cap or Edison screw cap. The bayonett cap has two 

(sometimes three) pins which stick out o f the side o f the cap to hold the lamp in the 

lampholder. On the bottom of the cap there is an opaque glass disc upon which two brass 

contacts are mounted. The wires from the lamp are fed through the holes in the glass disc 

and the contacts are then covered in solder. A similar process happens with Edison screw 

lamp caps, except there is only one terminal on the bottom as the cap itself forms the other 

terminal.
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Figure 15: - Bayonet cap (left) Edison screw cap (right) [52]

A fuse is usually fitted in the wires which go from the lamp cap to the bulb itself, this may 

take the form of two lengths o f thin wire or a single Ballotini fuse in one of the wires. A 

Ballotini fuse is a thin piece o f wire housed in a thin glass tube which is filled with tiny 

arc-quenching glass balls before the two ends are sealed. The fuse is designed to melt if 

the filament collapses on itself and causes a short, or if a plasma arc occurs when the 

filament breaks.

Cracking of the glass insulator in the lamp base, the base becoming detached, pins falling 

out or a break in the wiring inside the cap may stop the lamp working; these are not very 

common causes of failure, and whilst the wiring would be tested by a short test cycle, 

cracking of the lamp base and the base falling off will depend a lot on what lamp holder is 

used and how the lamp is handled, so can not be easily tested. As contact resistance is 

likely to increase if the base becomes broken or deformed, a monitoring system may detect 

this problem before the lamp fails as an increase in measured lamp resistance or as a 

fluctuating lamp current reading if arcing occurs as a result of the damaged contacts or an 

intermittent wire joint.
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3.3 Detecting Environmental Failure Causes

Clearly, external causes o f failure cannot be taken into account when the lamp is tested at 

the factory, as they will not be known. The only way to take account of their effect on 

lamp life is through a suitable monitoring system.

3.3.1 Over Voltage

Over voltage will cause a higher filament temperature which will cause the light output to 

increase and the filament to evaporate quicker, shortening the life of the lamp. Extreme 

over voltage will cause the filament to evaporate immediately. Detecting over voltage 

should be an easy task for any monitoring system that monitors the lamp supply voltage. 

However estimating its effect on the life o f the lamp would require comparison with data 

on how the lamp life is affected with voltage for that lamp.

3.3.2 Vibration

Vibration will reduce the life o f most lamps, its main effect is to cause metal fatigue o f the 

filament, especially at the points where it is in contact with support wires or lead wires. 

The filament will then eventually fracture at one o f these points, either as a result o f further 

vibration or, alternatively, filament movement when it is next turned on from cold. The 

point o f fatigue may also partially fracture, leading to a hot spot forming and inevitable 

failure. Lamps which are designed for use in high vibration environments usually have 

one or many of a number of features: a thicker filament, a single coil filament design, 

extra supports, a cooler filament design temperature. Detecting vibration in a monitoring 

system would be very difficult as it is unlikely to have a discemable effect on the electrical
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characteristics of the lamp. The use of a separate vibration sensor could provide a rather 

costly solution.

3.3.3 Temperature

A high ambient temperature will reduce the thermal loss from the filament through the 

glass wall, which will lead to the filament running hotter than normal which would in turn 

lead to an increased rate of evaporation; this should be detectable from the increasing 

filament resistance. If the ambient temperature is much too high, then the glass wall may 

soften, causing a change in gas pressure within the lamp or even a hole to form. A change 

in gas pressure may be detectable from the rate of filament evaporation. However the 

effect is likely to be very small and a hole suddenly forming would be very difficult to 

anticipate.

3.3.4 Thermal Shock

If water comes into contact with the glass wall o f a hot lamp, the glass will usually shatter, 

allowing air in. Clearly this sort o f failure would not be predictable with any monitoring 

system.

3.4 Predicting Failure Due to Usage

All filament lamps will eventually fail with use, which is currently an unavoidable 

consequence of using a filament to produce light. The cause of usage-related failure is 

almost always due to breakage of the filament as a result of excessive thinning, which is
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evident from the fact that halogen lamps consistently last longer as a result of their reduced 

filament evaporation.[5 4] The rate of filament evaporation is strongly linked to the 

filament temperature. If an area o f the filament is hotter than the rest, then that area will 

thin quicker, which will increase its resistance and cause it to become hotter still. This run­

away situation is called a hot-spot and will eventually cause the filament to fail at that 

point. “The in-homogeneities usually considered as causes of initial spots are constrictions 

in the wire and variations in electrical resistivity, in emissivity or in filament geometry.”^ ]  

Filament supports and connecting wires conduct heat away from the filament, and 

consequently cause the areas o f the filament in contact with them to run cooler, which can 

also be a cause of hotspots forming in the middle of unsupported regions of the filament. 

As well as hotspots, the filament may also fail as a result of overall thinning causing it to 

be become too weak to withstand small environmental vibrations or the sudden filament 

movement caused at switch on by thermal expansion and the magnetic field generated by 

the high inrush current.

By whichever method it happens, failure due to usage is almost always caused by filament 

thinning, either along the entire length o f the filament or at a particular point on the 

filament. “Most lamp failures are of the ‘simple’ type, in which the filament simply bums 

through and then arcs at its weakest poin t/’̂ ]  Any thinning of the filament should lead to 

an increase in the resistance o f the lamp which, although small, should be measurable. 

Monitoring the resistance of the lamp as it ages should in theory mean it is possible to 

track the thinning of the filament and therefore get a more accurate prediction of when the 

lamp needs replacing.
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Table 2 shows a summary of the different possible causes of failure identified in this 

chapter, together with possible detection methods.

Having looked at the ways in which a lamp can fail, it is apparent that although some of 

the possible causes may not be detectable (such as some of the possible manufacturing 

defects or some environmental factors), the most frequent cause of failure (i.e. filament 

thinning) should be able to be monitored by measuring the filament resistance as the lamp 

ages. The following chapters discuss the experiments which were carried out in order to 

test this theory and work towards developing improved filament lamp monitoring 

techniques.
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Cause of Failure Possible Detection Methods

Filament flaws
A nick, stretch or sm all 
localised contam ination

•  Visual detection by looking for hot spots whilst g low ing  dull red. 
This w ould have to be done on the production line as the equipm ent 
to do it autom atically w ould be too expensive to use in m onitoring  
system s.

Filament geometry
W ire diameter, pitch, coil 
length and diameter

•  Sim ple cold  resistance check for incorrect length or gauge wire.
•  Hot resistance check to reveal if  the filament is running cooler as a 

result o f  increased thermal loss due to poor coil geom etry, the 
difference is likely  to be small and therefore hard to detect.

Filament mounting
M olybdenum  support 
w ires

•  Visual inspection at factory o f  support wires.
•  M onitoring for sudden changes in filament resistance during use if  

filam ent co llap ses on itself.

Filament
connections

•  M onitoring current draw for rapid fluctuations that are indicative o f  
an arcing connection.

•  V isual detection by looking for hot spots at the connections whilst 
filam ent is g low in g  dull red. This w ould have to be done on the 
production line as the equipm ent to do it autom atically w ould be too 
expensive to use in m onitoring system s.

Glass pinch seal &  

Glass envelope 
failures

•  M onitoring filam ent resistance for increases caused by the filament 
burning as a result o f  a slow  leak.

•  Im possible to predict a rapid leak caused by cracking.

Gas filling errors •  M onitoring filam ent resistance closely  when the lamp is powered for 
the first tim e. The resistance change during first use w ould indicate 
how  m uch the filam ent had burned as a result o f  air being left inside.

Electrical cap 
connections

•  Check resistance o f  lamp to confirm continuity.
•  M onitor current draw for rapid fluctuations that are indicative o f  an 

arcing connection.
•  Cracking o f  the glass insulator, pins falling out or the cap becom ing  

detached may show  up as a bad connection when m onitoring the 
lamp current, but it is more likely this w ould be undetectable until the 
point o f  failure.

Over voltage •  M ains voltage m onitoring should make this detectable.

Vibration •  A vibration sensor could be positioned near the lamp, but this would  
be costly  and impractical for most system s.

High ambient 
temperature

•  M onitoring o f  the ambient temperature would make this detectable.

Thermal shock
e.g. Water hitting lamp

•  C om pletely unpredictable.

Usage •  M onitor hot filam ent resistance for signs o f  age related thinning  
leading to an increase in resistance.

T a b le  2: - M e th o d s  for  p red ic t in g  fila m en t lam p fa ilu re
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One of the most common filament lamps currently in use is the GLS filament lamp, which 

can be found in virtually every home in Britain. Its popularity is mainly due to its low 

purchase cost and small size. For this reason it was decided to conduct the filament lamp 

monitoring experiments on domestic GLS lamps. GLS filament lamps typically have an 

average life expectancy of 1000 hourS[56j, which meant that manually monitoring during 

the experiment would have been a very difficult and time consuming task. What was 

needed was an automated test rig which would allow regular measurements to be taken and 

stored on computer. It also became apparent that in order to get enough samples tested in a 

reasonable time frame, the test rig would have to be able to test multiple lamps at the same 

time; it would also have to be highly configurable so that it could be adapted for use with 

other experiments that may follow. The cost o f the test rig was not a major concern as 

only one had to be constructed. However when designing a monitoring system to deploy 

in the real world it would clearly be o f critical importance to keep the cost to a minimum.

4.1 Hardware Design

4.1.1 Current and Voltage Monitoring

It was anticipated that as the filament aged there would be a gradual increase in resistance 

due to the filament slowly evaporating and becoming thinner. This in theory should cause 

a decrease in the current drawn by the lamp which would mean less power is being 

consumed by the lamp; which should also therefore lead to a reduction in overall lamp 

temperature and light output. It was desirable therefore to have the ability to monitor lamp
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current, temperature and light ouput as well as the mains supply voltage, so that the effects 

of mains voltage fluctuation on the readings could be accounted for.

As the decrease in filament current was likely to be very small, the instrument measuring it 

needed to be sensitive; it also needed to have a computer interface so that the readings 

from it could be stored by the computer. The Voltech PM 100 Power Analyser (Figure 16) 

was chosen to fulfil this role; it has a 0.1% basic accuracy and can measure voltage, 

current, power and power factor, as well as many other measurements. It also has an 

optional RS232 interface which allows full control of the instrument. Although at this 

stage it was unnessecary to be able to measure power factor, it was felt that this may be a 

useful feature when looking at other lamp types such as discharge lamps.

Figure 16:- Voltech PM 100 Power Analyser^]

Due to the power analyser costing over one thousand pounds it would not have been 

economical to buy one for each lamp that was on test. Instead a method of switching the 

power analyser between the lamps was required, which would not cause an interruption to 

the power going to the lamp. This was acheived by using two relays per lamp channel, one
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to feed power to the lamp direct from the mains supply, the other to feed power to the lamp 

via the power analyser. Figure 17 shows the wiring diagram for this.

L

oo

2.2k 12.2k

2.2k 2.2k

N

Figure 17:- Wiring Diagram for the power Analyser and one lamp channel

Looking at figure 17, it can be seen that closing either relay will turn the lamp on; however 

in order to get a current reading for one individual lamp, relay A must be closed and relay 

B must be open; the A relays on all the other lamp channels must also be open, otherwise 

an incorrect reading will occur. The normal mode of operation when all the lamps are on 

is as follows. Relay B is already closed for all the lamps, keeping them powered; relay A 

is then closed for the channel being measured, connecting the lamp to the power analyser, 

relay B for that channel then opens so the only source o f power to the lamp is through the 

power analyser. The power reading is then obtained and recorded by the computer. Relay 

B is then closed to bypass the power analyser before relay A is opened to disconnect the
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lamp from the power analyser; the power analyser is then available for use with another 

channel. Each relay was controlled via a BC182L transistor with a diode fitted across the 

relay coil to prevent transient voltage damage to the transistor. An LED and current 

limiting resistor were also fitted across each relay coil to show which relays were on and 

hence help diagnose any problems. The value of the current limiting resistor connected to 

the base of the transistor was selected so that the relay could be controlled from a 5V input. 

Figure 18 shows the completed relay interface board, which was designed and 

manufactured by the author for this work. It is housed in a plastic enclosure for safety 

reasons. Further information, including the PCB layout, can be found in appendix A.

Figure 18:- Photograph o f the completed relay interface board

Since the computer needs to be able to control the switching of the relays in order to switch 

lamps on and off according to the test cycle and to take readings using the power analyser,
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a way of connecting the relays to the computer was required. The standard parallel port 

has eight data pins and four output control pins which could all be used as outputs to 

control the relays. However this would only allow the operation of six lamps at a time. An 

alternative solution was adopted which used an external USB interface device called a 

“LabJack U12”, as shown in figure 19.

Figure 19:- LabJack U12 USB Data Acquisition Device^]

The Labjack U12, a product manufactured by the LabJack Corporation, is a USB Data 

Acquisition Device with eight 12 bit analogue inputs, 2 analogue outputs and 20 digital I/O 

lines. It costs under one hundred pounds and comes with a well documented Dynamic 

Link Library (DLL) which can be loaded and used in most computer programming 

languages. As well as providing many more I/O lines than the parallel port, the analogue 

inputs also provided a convenient interface for measuring the relative light output and 

temperature of each lamp.
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4.1.2 Light Level Monitoring

In order to measure the light output from each lamp, a light sensor for each lamp was 

required as the sensor could not easily be moved between the lamps automatically. 

Calibrated light sensors tend to be very expensive; however the sensor did not need to be 

calibrated or accurate as it was trying to record a trend in the light level rather than the 

actual light level itself, so as long as the reading could be compared with the one taken 

when the lamp was first used, then that would be sufficient. A suitable light sensor was 

sourced, the IS474 made by Sharp, which had an integrated current amplifier to provide an 

output current signal which is linearly proportional to the light incident on the sensor. To 

convert this current signal to a voltage suitable for connecting to the Labjack analogue 

interface should have just required a simple resistor connected between the output and 

ground; however the impedance of the labjack analogue inputs was low enough that it 

would have a significant effect on the level o f the signal, so the signal was first passed 

through a high impedance operational amplifier (op-amp) to ensure that the signal would 

not be inadvertantly attenuated. As well as buffering the signal, the amplifier was also 

used to increase its magnitude by a factor of 10, so that the signal would use the full 

voltage range of the LabJack analogue input and hence improve the resolution of the 

quantised signal. The circuit for this is shown in Figure 20.

The op-amp chosen was the LM324N quad op-amp due to its high input impedance and its 

ability to run off a single polarity voltage supply whilst still maintaining an output swing 

capable of reaching zero volts.
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IS474
LM324N

Figure 20:- Circuit for Measuring Lamp Light Output for One Lamp Channel

As well as measuring the light given off by each lamp, the sensor will also pick up 

background illumination; the effects o f this can be minimised by mounting the sensor as 

close to the lamp as possible or by shielding the sensor so that it only picks up the light 

coming from the lamp. Since the glass envelopes of filament lamps become very hot 

during use, and the IS474 sensor is made of plastic, it was not practical to mount the sensor 

close to the lamp. Instead, the lamps were housed in closed bottom metal cylinders and a 

glass rod was placed adjacent to the lamp and passed through a small hole made in the 

bottom of the cylinder so it sat on top of the sensor and acted as a light guide. When the 

system was tested the light readings were very low, it was found that the readings were 

higher if the glass rods were omitted and the light allowed to shine directly on the sensor 

positioned beneath the hole. Consequently, all the glass rods were removed. Figure 21 

shows the lamp housing arrangement and positioning of the light sensor.
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Figure 2 1 Lamp Housing with Light Sensor Circled

Clearly the positioning of the sensor and the shield around the lamp will effect the light 

level reading obtained, however as long as the sensor is fixed then this factor will remain 

constant and hence it is not dependent upon absolute values, as the reading is only being 

compared to the one taken when the lamp was first put in.

4.1.3 Temperature Monitoring

When measuring the temperature o f a lamp, there are many different measurements that 

could be used. The most direct way would be to record the filament temperature; however 

doing this automatically would be expensive as it would require the use of a device such as
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a pyrometer or infra red temperature sensor due to the filament being housed in a vacuum, 

an approach which would be unlikely to ever be compatible with the ultimate aim of 

providing low cost monitoring. If the filament temperature cannot be monitored directly, 

then the next best approach is to measure the temperature of a surface which is being 

heated by the filament, such as the glass envelope of the lamp or the metal cylinder the 

lamp is being tested in. It was decided to monitor the temperature of the surrounding metal 

cylinder as attaching the sensor to the glass envelope of the lamp would have been difficult 

and it would have had to be re-attached every time a lamp was changed. As the readings 

are being compared to those attained when the lamp was installed, as long as the location 

of where the measurement is taken remains constant there should be no experimental 

errors. Factors which may affect the measurements are the ambient temperature and any 

air movements; as the test rig is located in a closed room any unexpected air movements 

would be minimal and the ambient room temperature was recorded with the results using 

another sensor so that it could be taken into account when considering the results.

Since the temperature sensors needed to be mounted on the metal cylinders surrounding 

the lamps, one temperature sensor was required for each lamp, plus an additional one to 

measure the ambient room temperature. Due to the ease of interfacing with the LabJack 

and their low purchase cost it was decided to use NTC thermistors to record the 

temperatures o f the lamps. As discussed when interfacing the light sensors, the analogue 

interface input impedance o f the LabJack U12 was too low to connect it directly to the 

output of the thermistor when configured as part o f a potential divider network. Instead, 

the signal had to be fed through a unity gain op amp circuit to ensure that the input 

impedance of the Labjack did not affect the reading. The circuit can be seen in figure 22.
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LM324N

Figure 22:- Circuit for Measuring Temperature for One Lamp Channel

Once the voltage value has been recorded, it is simply a case of using ohms law to 

calculate the resistance of the thermistor; using this, the current temperature of the 

thermistor can be read from its characteristic curve, which is shown in figure 23.

Plot of Thermistor Temperature vs Resistance
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o
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Figure 23:- Characteristic temperature curve for the thermistor used
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4.1.4 System Integration

Since the Labjack U12 has 16 digital 10 lines on the DB25 connector (the remaining four 

digital 10 lines are on a different connector), using just these allowed for the control of 16 

relays and hence 8 lamps. However there are only 8 analogue inputs available, which 

presented a problem as each lamp needed two analogue inputs, one for the temperature 

sensor and one for the light level sensor, making a total requirement of 16 analogue inputs. 

As only one channel is measured at a time due to the power analyser being shared by all 

the channels, it was decided to do the same with the analogue inputs. A Maxim MAX307 

dual channel 8 into 1 analogue multiplexer, which was controlled using the four digital 10 

lines which had not been used on the front o f the Labjack U12, was used to switch between 

the sensors from each of the lamps. The circuit diagram of the finished design is shown in 

figure 24.
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Figure 24:- Complete circuit diagram of the Temperature and Light Sensing.
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A photograph of the final circuit board, designed and manufactured by the author for this 

research, is shown in figure 25. Further construction information including the board 

layout can be found in appendix A.

y'M ylXlv'H
MM 30 Tt PI

Figure 25:- Photograph o f the completed Sensor board

Using this system, any one of the 8 lamps can be turned on or off by the computer and 

measurements can be taken for the supply voltage, lamp current, indirect lamp 

temperature, room temperature and light output for each lamp. An overall diagram of the 

entire system hardware described in this chapter, showing how it interfaces to the 

computer, is shown in figure 26. A photograph of the completed test rig is shown in figure 

27.
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Figure 26:- Block diagram of the complete data capture system hardware.
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Figure 27:- Photograph of the completed test rig.

4.2 Test Rig Software Design

In order to enable any required data manipulation, it was decided to load the data gathered 

by the test rig into Microsoft Excel; however since the test rig would be running 

continuously for long periods of time, it would be inadvisable to store the data directly into 

Excel or any other large application as a single crash of the application would ruin the 

experiment. A better solution appeared to be to have two applications, one small 

application which stored all the data directly to the hard drive and another application 

which could be run at any time to extract the recorded data and load it into Excel or 

another application in order to perform operations on the data. Due to the specialised 

nature of the hardware it was decided that custom written software would be the best way 

of achieving the flexibility required; C++ was chosen as the programming language due to 

its support of object orientated programming and the author having had a lot of previous 

experience in using it.
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4.2.1 Data Recording

To allow for more structured programming, C++ incorporates the use of classes and 

objects. An object is created from a class and can be considered as a grouping o f data 

types and operations which work together. For example, when developing software to 

control a car, the developer could model the engine as an object. Within that object would 

be data types, called member variables, such as double numbers for current engine speed 

and temperature; there would also be functions, called member functions, to control the 

engine such as start, stop, set speed etc. The exact content of the object is specified by the 

class which it is created from, and multiple objects can be created from a class. This is 

useful as a lot of applications will have multiples o f the same object. In this example a row 

of engines could each be controlled by an object created from the one class; although the 

structure of each object would be identical, the values contained in them would vary for 

each engine.

One of the benefits of object oriented programming comes from object member protection. 

Each member variable or function can be declared in the class definition as private or 

public (there is also a protected option, but for clarity that will be ignored here). A private 

member variable cannot be accessed by code outside of the class, meaning that protection 

is afforded against rogue program errors causing serious problems. Returning to the car 

engine example, it may be damaging for the speed of the engine to exceed 5000rpm. To 

prevent this the engine speed variable would be declared as private and a public member 

function added to set the speed. Within the function code there would then be a check to 

ensure that no value above 5000rpm would be accepted; if the value is acceptable then the 

funtion would update the member variable and set the speed accordingly, otherwise it
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would reject the value. This protection mechanism ensures that an error elsewhere in the 

code can be isolated and its impact limited. For these reasons, object oriented 

programming techniques were applied wherever possible when developing the software for 

the lamp monitoring test rig.

As was mentioned in the first half o f this chapter during the discussion of the hardware 

arrangements, there are two measurement devices the software needs to communicate with 

in order to record all the data. The LabJack device controls the multiplexing of the 

measured signals and performs the data capture o f the temperature and light signals, while 

the Voltech PM 100 power analyser performs the measurement of the voltage and current 

supplying the lamp under test.

The LabJack device comes supplied with a dynamic link library (dll), which once loaded 

will allow communication with the LabJack via a series of function calls. A C++ class was 

constructed which loaded the dll as soon as an object was instantiated from the class, and 

implemented all the available function calls as member functions of the class.

A similar approach was adopted for the power analyser; however, as the power analyser 

did not come with any software all the communication with it had to be achieved by 

sending command strings through the RS232 port. Once again a C++ class was 

constructed with all the available function calls, so that the communication with the power 

analyser and serial port was hidden from the rest of the program, helping to make the 

program more structured and understandable.
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One of the simplest methods of storing the data to the harddrive is in the form of a text file. 

The format decided upon is demonstrated in figure 28, every reading being stored exactly 

as it was read in the text file along with the date and time of when it was recorded.

21Feb2005 23:02 57 Result:..........Lamp Turned On, Inrush Current; 1.4269
21Feb2005 23:03 00 Result:- Measurement Cycle Start, Minutes Burned:-; 0 
21Feb2005 23:03 00 Result:- Lamp Temp Sens Voltage; 3.19336 
21 Feb2005 23:03 00 Result:- Lamp Light Sens Voltage; 0.512695 
21 Feb2005 23:03 00 Result:- Room Temp Sens Voltage; 2.96875 
21Feb2005 23:03 00 Result:- Volts AC; 248.7 
21Feb2005 23:03 01 Result:- Amps AC; 0.10835 
21 Feb2005 23:03 02 Result:- Watts; 26.94 
21Feb2005 23:03 02 Result:- Power Factor; 0.9998
21 Feb2005 23:03 03 Result:------ End of Measurement Cycle---; 0
21Feb2005 23:12 45 Result:- Measurement Cycle Start, Minutes Burned:-; 10
21Feb2005 23:12 45 Result:- Lamp Temp Sens Voltage; 6.90918
21Feb2005 23:12 45 Result:- Lamp Light Sens Voltage; 0.576172
21Feb2005 23:12 45 Result:- Room Temp Sens Voltage; 2.97363
21Feb2005 23:12 45 Result:-Volts AC; 250.4
21Feb2005 23:12 46 Result:-Amps AC; 0.1072
21Feb2005 23:12 46 Result:-Watts; 26.77
21Feb2005 23:12 47 Result:- Power Factor; 0.9998
21Feb2005 23:12 48 Result:------ End of Measurement Cycle---; 0

Figure 28:- Extract from a results text file.

The file format was designed so that it could be easily read by humans as well as by 

computer software; this meant that should any spurious results occur, their origin could be 

thoroughly investigated by looking at the original raw results.

A class called “result handling'’ was created to deal with the opening and closing of the file 

as well as time and date stamping of all the results. As there were 8 lamps in total, 8 

instances of the result handling class were instantiated so that each lamp had its own 

results file.

Page 68



Chapter 4 -  Filament Lamp Test Rig

The main timing and control of the test rig were dealt with by two classes. The “lamp 

class” objects serve to keep track of how long the lamp has been on and how long before it 

needs to be turned off. Again each lamp has its own lamp class object. The class also has 

member functions which communicate with the LabJack class to turn the lamp on and off 

and to trigger a measurement sequence for that lamp. The main timing control however is 

dealt with by the “scheduler class” which uses a windows system timer to run a member 

function every minute. This function call is used to query each lamp object in turn to 

check whether any measurement cycle needs to occur or whether a lamp needs to be 

switched on or off; if something needs doing then the lamp object will carry out the 

necessary task. Upon start up, the scheduler also ensures that the lamp turn on times are 

staggered so that the shared measurement equipment is never in use by two lamps at the 

same time.

The final class created during the development of the software was the error handling 

class. This class serves to record any errors that occur, such as communication errors to a 

text file, so that any effect on the results can be taken into account later.

A Unified Modelling Language (UML) class diagram of the complete data recording 

software is shown in figure 29; full code listings are included in appendix B. The entirety 

of the software for recording the measurements was written by the author.
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Figure 29:- UML Class Diagram of the Data Recording Software.

4.2.2 Data Analysis

In order to analyse the data obtained from the experiments, it was clear that plots would 

need to be prepared to show the behaviour of the different lamp parameters over time. 

Microsoft Excel was chosen to generate the plots due to its comprehensive plotting 

features as well as its easy to use COM (Component Object Model) programming 

interface. A C++ program was developed to read in the results file generated by the 

program discussed in section 4.2.1, trim off any zero results that were measured after the
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lamps failed, load Microsoft Excel and then copy all the results into a blank spreadsheet. 

After the results are transferred, the program adds appropriate headings to the table and 

then generates XY scatter plots for each of the lamp parameters. Automating the process 

in this way ensures that large amounts of data can be processed quickly and easily and also 

minimises the chance of data errors being introduced.

B C D E F I G H
1 Voltage (V) | Current (A) V/l (Ohms) Power (W) Lamp Temp (V) iRoom Temp (V) Light (V)
2 248 ? 0 10835 2295 339179 26 94 3 19336 2 96875 0512695
3 2504 0 1072 2335 820896 26 77 6 90918 2 97363 0 576172
4 247 9 0 10665 2324 425692 26 44 703125 2 %387 0551758
5 248 8 0 10685 2328497894 2657 7 14355 2 95898 0 566406
6 249 6 0 10707 2331 185206 26 72 7 1582 2 95898 0 571289
1 2492 0 10681 2333 114877 26 56 7.13379! 2.93457 0.751953
8 248 1 0 10659 2327.61047 2643 7.0459! 2.94434 0.742188
9 247 1 0 10641 2322 150174 26 27 70459! 2 95898 0 600586
10 248 3 0 10677 2325 569614 26 52 7 08984 ! 2 9834 0.712891
11 247.5 0.10655 2322.853121 26 37 7.143551 2.96875 0.556641
12 247 9 0 10665 2324 425692 2643 7.12891; 2.96875 0 634766
13 2478 0 10659 2324.795947 26 36 7 12402! 2.98828 0.517578
14 2478 0.10667 2323.052405 26 44 7 084%! 2%875 0.576172
15 248 8 0 10682 2329.151844 26 56 7.11914! 2.98828 0 507813
16 249.2 0.10701 2328 754322 26 66 7 08984; 2.97363 0.654297
17 249 7 0 10712 2331 03062 26 69 7 1582! 2 %875 0.703125
18 248 6 0.10685 2326.626111 26 56 7.1582! 2 9834 0 664063
19 2482 0 10667 2326 802287 2642 7.10938! 2.97363 0.512695
20 249 2 0 10699 2329.189644 26.64 7.09473! 2.97363 0673828
21 250 3 0 10732 2332 277302 26 86 3 45703; 2 97852 0 65918
22 249 9 0 10714 2332.462199 26 77 6 96777: 2 98828 0.693359
23 2502 0.10718 2334 390745 26.79 7 15821 3 00781 0.551758
24 249 5 0 10705 2330 686595 267 7.11426 ; 2 99316 0 59082
25 249 4 0 10716 2327 360956 26 77 7 12402; 2%875 0 693359
26 250 5 0 10732 2334 140887 2687 7.19727 ! 2 %387 0 634766
27 2507 0 10743 2333612585 26 94 7 09%1i 2 97852 0 664063
28 249 7 0 10711 2331 248249 26 73 7 14355; 2 97852 0.522461
29 249 7 0 10717 2329 943081 26 75 7 1875! 2 9834 0 561523
30 250 1 0 10727 2331 499953 26 82 7 12891! 2 94922 0 576172
31 251 8 0 10763 2339496423 27.1 7.14844 ! 2 95898 0.556641
32 2509 0 10747 2334 605006 26 98 7.19727; 2 98828 0.722656
33 251 6 0 10765 2337.203902 27.09 7.0752| 2 97363 0.620117
34 245 8 0 1063 2312 323612 26.18 7.0459 ! 2 9834 0.488281
35 249 8 0 10721 2330 006529 26.8 7.20703! 2.97363 0 649414
36 249 7 0.1071 2331.46592 26 73 7.09473; 2 96387 0.512695
37 248 0 10674 2323.402661 2647 7 12891! 2 97852 0 625
38 247 9 0.10662 2326 079722 26 41 7.11426! 2.97363 0.561523
39 248 7 0 10689 2326.690991 26.62 7 08984! 297852 0.581055
40 248 1 0 10679 2323 251241 26 46 3 42285= 2 96875 0 50293
41 2484 0 10675 2326 932084 2649 6.95313j 2 9834 0.634766
42 2482 0.1069 2321.796071 26.56 6 97266j 2 98828 0.625
43 247 1 0 10655 2319 099015 26.34 7 06055! 2.98828 0 678711
44 246 7 0 10645 2317 519962 26 28 7 14844 ; 2.9834 0 649414
45 247.3 0.10662 2319.45226 26.32 7.05078; 2 %875 0.527344
46 245 4 0 10612 2312 476442 26 04 7 08984! 2.%387 0.483398
47 245 9 0 10627 2313 91738 26 15 7.09961! 2.%875 0498047

Figure 30:- An example of one o f the automatically generated spreadsheets.
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The program also automatically titles each of the plots that are generated with the lamp 

number that appears in the filename of the recorded results text file, this feature was 

included to ensure that the results from each lamp could not get mixed up.

Lamp 1, Current vs Time Burned

0  109

0 108

0107
♦  ♦

0 106

0105

1  0.104

0.103

0.102

0101

01

0 099
40000 60000 80000 

Time Burned (mine)
100000 12000020000 140000

Figure 3 1 An example of one of the automatically generated plots.

With the software complete, it was now possible to run an experiment simultaneously on 

upto 8 filament lamps at a time for as long as the lamps lasted, something that would not 

have been practical by hand.

Full code listings for the data analysis software are included in appendix B. Apart from the 

standard compiler additions for an MFC (Microsoft Foundation Class) application and the 

standard library files “excel.h” and “excel.cpp”, which are provided by Microsoft for
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interfacing with Excel, the entirity of the analysis software was written by the author for 

this application.

In the next chapter, the first filament lamp experiments conducted using these software 

tools are discussed, together with the results that were obtained.
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5.1 Continuous Monitoring

Using the automated test rig that was discussed in chapter four, eight GLS lamps made by 

General Electric were put on test. Four 25W lamps and four 40W lamps were used (lamp 

number 9 was added in place of lamp 5 after it failed within the first hour); these were 

followed by another batch o f eight 40W lamps which were all branded as Tesco lamps. 

Each lamp was turned on for a period o f 180 minutes (3 hours), and then turned off for 20 

minutes to allow the lamp to cool; this cycle was repeated until each lamp failed. This is a 

standard test cycle used by manufacturers.[8] Immediately after each lamp was turned on a 

set of readings were taken which included lamp voltage, current, power, temperature and 

light output, the same readings were also taken every 10 minutes that the lamp was on. 

From Tables 3 & 4, it can be seen that despite the 40W lamps having a 1000 hour rated 

life, the actual life of the lamps varied greatly between the samples.

Lamp No. Power (W) Time to Failure (minutes) Time to Failure (hours)

3 25 475,900 7932

2 25 136,000 2267

1 25 132,590 2210

8 40 65020 1084

4 25 50,840 847

7 40 49550 826

6 40 48120 802

9 40 36430 607

5 40 50 <1

Table 3:- Time to Failure for the first batch of tested lamps.
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Lamp No. Power (W) Time to Failure (minutes) Time to Failure (hours)

15 40 57950 966

10 40 55710 929

13 40 50070 835

11 40 48130 802

12 40 44690 745

16 40 44250 738

14 40 43390 723

17 40 32970 550

Tab e 4:- Time to Failure for the second bate i o f tested lamps.

For each of the lamps tested, the results were automatically loaded into an excel 

spreadsheet and plots produced for the different lamp parameters. Most of the lamps 

showed very similar trends for the different parameters. It was noticed that most of the 

lamps had multiple fractures in the filament after failure, suggesting that the filaments had 

thinned significantly over their entire length, rather than just in one place.

5.1.1 Lamp Voltage Monitoring

The lamp voltage was recorded, as although this is a result of the mains voltage rather than 

a lamp parameter, it is important to have a record of it so that it can be taken into account 

when explaining fluctuations in the other readings. A plot o f the Voltage across lamp one 

is shown in figure 32.
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Figure 32:- Voltage across lamp number 1 while it was burning

13,996 readings were taken in total, during which time the lowest recorded voltage was 

237.2V and the highest was 255.7V. The average of all the readings was 248.5V.

From figure 32, it can be seen that throughout the experiment the mains voltage mostly 

varied between 245V and 252V, a fluctuation of 7V, this is most probably due to the 

varying energy use of the building during the day and night. During the last 30,000 

minutes of the experiment the average mains voltage appears to have risen very slightly, 

this change occurred in the middle of May, which suggests this is also the result of a 

change in energy use patterns, due to the summer break. These small changes are unlikely 

to have a large effect on the other lamp parameters. However they were recorded so they 

could be taken into account when analysing the other results.

Page 77



Chapter 5 -  Filament Lamp Monitoring Experiments

5.1.2 Lamp Current Monitoring

The next measurement taken was lamp current and the plot for lamp number one is shown 

in figure 33.
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Figure 33:- Current through lamp number one while it was burning

Looking at figure 33, it can be seen that the lamp current showed a general downwards 

trend while the lamp was burning, coinciding with what was expected as the filament will 

thin during use due to evaporation, which causes it to increase in resistance and hence the 

current through it to decrease.

The current decrease o f 0.006A is very small and the affect of the mains voltage 

fluctuations on the filament current can be seen in the variation of the readings 

(approximately ±0.001 A).
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5.1.3 Filament Resistance Monitoring

It is clearly important that the mains voltage fluctuations are either kept under control or 

compensated for in the results in order to improve the accuracy. A simple way of doing 

this is to plot the filament hot resistance rather than the filament current, as resistance is 

equal to voltage divided by current and filament current increases as a result of increasing 

filament voltage, the fluctuations in both current and voltage should therefore partially 

cancel each other. The fluctuations will not cancel completely, as the filament resistance 

changes with filament temperature, which will depend on the mains voltage applied, 

however some cancellation will be achieved. Figure 34 shows a plot of the hot filament 

resistance of lamp one while it was on test.
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3 2400
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Figure 34:- Resistance o f lamp number one while it was burning

It can be seen from figure 34 that although some fluctuation is still visible on the resistance 

plot, it is proportionally smaller than the fluctuation visible on the current plot.
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5.1.4 Lamp Power Monitoring

Another parameter which was measured was the lamp power. Although this is essentially 

the same as the voltage and current multiplied together, due to the lamp being resistive and 

having near unity power factor, it was recorded anyway as a secondary check for the 

results. Once again, the plot which can be seen in figure 35 shows a general decrease in 

power consumption as the lamp ages, presumably due to the increasing filament resistance 

caused by tungsten evaporation. The mains voltage fluctuations can also be seen causing 

fluctuations in the power consumption.
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Figure 35:- Power consumption of lamp number one while it was burning.
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5.1.5 Lamp Light Output Monitoring

As well as affecting the electrical characteristics of the lamp, the light output and 

temperature of the lamp should also reduce as the filament evaporates due to the increasing 

filament resistance and corresponding decrease in input electrical power. To test this 

theory, the light output was recorded together with the temperature of the casing 

surrounding each lamp every time a set o f readings were taken. The room temperature was 

also recorded so that the effects of the fluctuating air temperature could be accounted for.

12000040000 60000 80000 
Time Burned (mine)

100000 14000020000

Figure 36:- Light output o f lamp number one while it was burning.

The light sensor used was designed to produce a constant current which is linearly 

proportional to the intensity o f the light on the sensor. This was converted to a measurable 

voltage signal by using a resistor to form a potential divider. As the experiment was
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looking for a measurable trend rather than trying to measure the actual light output, the 

results were left as voltages.

Once again, there is a general downward trend shown by the plot in figure 36. During the 

last 30000 minutes however there is a significant rise in the light output, which coincides 

with the rise in mains voltage observed on the voltage plot.

5.1.6 Temperature Monitoring

The temperature results required further manipulation before they could be plotted, the 

lamp and room temperatures were measured by thermistors, with the recorded result being 

the voltage across the 56k resistor in series with the thermistor. As the relationship 

between thermistor resistance and temperature was not linear, plotting the measured 

voltage trend would have been misleading. Instead the measured voltage had to be 

converted to a temperature using the manufacturer’s datasheet, so that the effect of the 

thermistor’s non-linear response would be removed. The manufacturer’s datasheet only 

gave a table o f 206 discrete conversion points, so the computer software package 

MATLAB was used to plot the characteristic curve o f the thermistor and the “spline” 

function within MATLAB was used to perform “cubic spline interpolation” between the 

points, which is shown in figure 37.
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Rot of Thermistor Temperature vs Resistance
150

0
0 0.5 1.5 2 2.5 3 3.5 4

Thermistor Resistance (Ohms) x 10'

Figure 37:- Thermistor Temperature vs. Resistance with interpolated points

Using MATLAB, the voltage measured across the 56k resistor in series with the thermistor 

was used to calculate the thermistor’s resistance for each measurement using the following 

equation:-

where Vin is the voltage measured across the 56k resistor, R is the resistance of the 

thermistor in ohms and the “ 1 0 ” is the voltage across the potential divider, which was kept 

constant using a voltage regulator. The MATLAB “spline” function was then used again 

to convert each thermistor resistance reading into a temperature in degrees Celsius. Once 

converted, the lamp temperatures were plotted in Excel, as shown in figure 38.

1 0  -Vin(V) = 560,000 
Vin(V) ~ Vin(V)
56000

Equation 1 Calculating thermistor resistance from input voltage
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Figure 38:- Indirect temperature o f lamp number one while it was burning.

Looking at figure 38, it can be seen that there are two discrete bands of readings. All but 

one of the readings are either between 20-30°C or between 45-65°C. The reason for this is 

that the first reading is taken a few seconds after the lamp has been turned on, which means 

it is virtually at room temperature.

There are also two regions on the plot where the readings are more erratic than normal; 

these are during the first 2,000 minutes of burning and the last 30,000 minutes. These 

regions can be explained by looking at the room temperature plot which is shown in figure 

39.
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Figure 39:- Room temperature while lamp number one was burning.

From figure 39, it can be seen that the room temperature fluctuations are greatest at the 

same time as the lamp temperature fluctuations; this indicates that the fluctuations in lamp 

temperature have been caused by the room temperature changing during the different 

seasons of the year, rather than any change in the lamp characteristics.

It is very difficult to identify any trend in the plots of lamp temperature. It appears that if 

there is a trend there then it is obscured by room temperature fluctuations. Considering the 

experiment was conducted in a room where the temperature varied by less than 10°C, it 

seems very unlikely that measuring lamp temperature would be a practical proposition for 

a real monitoring system, where ambient temperature would be much more varied.
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5.1.7 Mains Voltage Compensation

In the majority of plots looked at so far, each lamp parameter showed a general downward 

or upward trend as the lamp aged; however the effect of the fluctuating mains voltage has 

meant that the trend is often disrupted, which makes predicting lamp life rather difficult.

The primary problem with a fluctuating mains voltage is that it causes the filament 

temperature to fluctuate which in turn affects the filament resistance and hence lamp power 

and current. It would be difficult and relatively expensive to regulate the AC voltage 

reaching the lamp, which ruled this out as an appropriate approach for low cost monitoring 

systems. The only other approach is to try and compensate for the fluctuating voltage. A 

simple approach was shown in section 5.1.3, where the lamp resistance was plotted rather 

than lamp current, the fluctuations in lamp voltage and current partially cancel each other 

when the resistance is calculated. However this approach only works fully if  the resistance 

o f the filament does not vary with mains voltage, which for a filament lamp is not the case.

To compensate more fully for mains voltage fluctuations, the fluctuation of filament 

resistance with mains voltage needs to be taken into account. As the filament resistance 

will not vary linearly with mains voltage, an experiment was conducted to determine how 

the filament resistance changes with mains voltage. This relationship could have been 

determined theoretically, however it was done experimentally to take account of heat loss 

to the environment, which would have been very difficult to calculate.
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A filament lamp was connected to a variac and its voltage, current and power monitored 

using the Voltech PM 100 power analyser which had been used in the first experiment. A 

diagram of the experiment setup is shown in figure 40.

Power Analyser

- O O

240V Mains 
Supply

Figure 40:- Experimental setup for investigating filament resistance variation.

Four different wattage lamps were used, each was connected to the circuit shown above 

and the voltage applied to it was increased from 0 to 265V in 5V increments using the 

Variac. At each voltage, the lamp was given 5 minutes for the filament temperature to 

stabilise, before the current was recorded. The current and power readings were then 

plotted against the applied voltage to produce the plots shown in figures 40 and 41.

From the plots it can be seen that the filament resistance increases as the voltage across the 

lamp rises. The increase is not linear, so the next step was to try and obtain an expression 

for the relationship so that it could be used to correct for mains voltage fluctuations in the 

readings obtained from the other experiments.
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Figure 4 1 Current vs. Voltage for each GLS lamp power rating
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Figure 42:- Power vs. Voltage for each GLS lamp power rating
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Looking at figure 42, it can be seen that although the trend lines do separate from each 

other, their shape is very similar. It was found that if the power o f each lamp was 

converted into a percentage o f its value at 240V then the trend lines were practically 

identical. So that one equation could be used to compensate the readings from lamps of 

different powers, the trend lines of the four lamps were converted to percentages and then 

averaged to remove the very small variations present; a plot of the averaged percentage 

power against voltage is shown in figure 43.
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Figure 43:- Averaged percentage power o f the four lamps versus supply voltage

Using Microsoft Excel, a third order polynomial trend line was fitted to the data and this 

was used to generate an equation for the curve.

y  = -1 .4 7 2 x l( T V  + 1 .5 9 6 x l(T V  + 0.121*-0.450 

Equation 2:- Calculating percentage power from mains voltage

Page 89



C hapter 5 -  Filament Lamp Monitoring Experiments

Using this equation, it was possible to calculate the expected power draw of a lamp for 

each value of mains voltage recorded during the experiment. To do this, the power drawn 

by the lamp when it was powered up for the first time was divided by the percentage 

expected for the mains voltage at the time; the result was then multiplied by each 

calculated percentage value to give a predicted power for each value of mains voltage 

measured during the experiment. The difference between the measured power and 

predicted power was then calculated for each of the lamps and plotted against minutes 

burned; figure 44 shows the result o f this for lamp number one. Plots of the power 

difference for all the tested lamps are included in appendix C.
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Figure 44:- Lamp 1 (25 W) power difference (expected -  actual) vs. minutes burned

By comparing the plot of power difference shown in figure 44 with the plot of recorded 

lamp power shown in figure 45, it can be seen that the mains voltage compensation has 

significantly reduced the effect of the mains voltage fluctuations on the readings.
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Figure 45:- Lamp 1 (25 W) power vs. minutes burned

Looking at the power difference plot shown in figure 44, it can be seen that there is a very 

clear increase in the difference between the predicted power and the actual power as the 

lamp ages. This shows that the real lamp power is gradually decreasing as the lamp ages 

and the filament thins. Plots of the power difference for all the tested lamps are included in 

appendix C.

The rate of increase in the difference between predicted power and actual power was then 

calculated for the remaining lamps and tabulated, together with how long they actually 

lasted.
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5.1.8 Results & Discussion

Lamp Number Rated Power 
(W)

Corrected Power 
Drop (W)

Time to Failure 
(hours))

Hours / Watt 
decreased

1 25 1 .9 0 -0 .3 4 =  1.56 2 2 1 0 1417

2 25 1 .2 9 -0 .2 7 =  1.02 2267 2223

3 25 3 .7 2 -2 .6 3  = 1.09 7932 7277

4 25 1 .20-0 .39  = 0.81 847 1045

5 40 4 .1 9 -0 .0 0  = 4.19 < 1 0 . 2 0

6 40 1 .1 2 -0 .1 8  = 0.94 802 853

7 40 1 .5 0 -0 .1 7 =  1.33 826 621

8 40 1 .7 2 -0 .1 0 =  1.62 1084 669

9 40 1 .2 6 -0 .4 6  = 0.80 607 759

1 0 40 1 .2 3 -(-0 .1 0 )=  1.33 929 699

1 1 40 1.21 - ( -0 .0 4 )=  1.25 802 642

1 2 40 1 .1 6 -(-0 .0 8 )=  1.24 745 601

13 40 1 .2 4 -(-0 .0 8 )=  1.32 835 633

14 40 1.21 - 0 .0 8 =  1.13 723 640

15 40 1 .1 5 -(-0 .0 7 )=  1.22 966 792

16 40 1 .0 7 -(-0 .1 8 )=  1.25 738 590

17 40 0 .70 -(-0 .1 3 ) = 0.83 550 663

Table 5:- Results table for all tested ft ament lamps
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Looking at the results table, it can immediately be seen that there is a significant difference 

between the behaviour of the 25W lamps and the 40W lamps. The 25W lamps on average 

lasted 3314 hours, significantly longer than the 40W lamps, which on average lasted only 

739 hours. The average time taken for a drop of one Watt in electrical power was 628 

hours for the 40W lamps and 2991 hours for the 25 W lamps. The probable explanation 

for this is that the filament of a 25 W lamp runs at a lower temperature than the filament of 

a 40W lamp, therefore it evaporates at a slower rate and lasts for longer, but at the cost of 

light output. Due to the different behaviour of the lamps, the results for the 40W and 25W 

lamps need to be considered seperately.

Lamp number five was also excluded from the comparisons as it only lasted for 50 

minutes, which meant there were very few measurement results for it and so it will be 

considered separately later on.
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Figure 46:- Power drop at failure vs time burned until failure for the 40W lamps
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From figure 46, a trend is clearly visible, the decrease in power of the lamp by the time it 

fails is approximately proportional to the length of time it burned before it failed. This is a 

disappointing result for lamp condition monitoring, as it would appear that the filament 

power decreases linearly with the age of the lamp and although the rate of decrease varies 

between the lamps, it appears to have little observable effect on when the point of failure 

will occur.

The results from the 25 W lamps however showed a rather different trend, as can be seen in 

figure 47. The projected trend line shown was fitted using the first three points and the 

origin of the plot which was set as the intercept. The fourth point was omitted when fitting 

the trend line as its behaviour was clearly different to the other points on the plot and the 

results observed for the 40W lamps. Although there are very few data points, due to test 

rig and time limitations, the dotted line represents a reasonable prediction based on the 

similar trend observed for the 40W lamps.

P ro jected  trend  line b a s e d  on the th ree  short life lam ps, s e t  to intercept a t origin

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time Burned (Hours)

Figure 47:- Power drop at failure vs time burned until failure for the 25 W lamps
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From figure 47, it can be seen that the three points on the left appear to point to the same 

behaviour as was observed for the 40W lamps; the longer the lamp burned, the higher the 

power drop it experienced. One of the four lamps however, shown on the right o f the 

graph, behaved very differently to the others; this lamp burned for 7277, hours which was 

seven times longer than its 1 0 0 0  hour rated life and almost four times longer than any of 

the other lamps. From the projection based on the behaviour of the other lamps tested, had 

any of them gone on to last this long, then due to their rate of filament evaporation their 

power consumption would have dropped by 4.75 Watts in this time, rather than just over 

one Watt as was observed for this lamp. Something was clearly causing the filament of 

this lamp to degrade at a much slower rate than the other lamps.

Since the predominant cause o f filament failure is the formation of hotspots, which is 

accelerated by a high filament temperature, it seemed reasonable that a filament which 

lasted almost four times longer than any o f the other lamps may have been running cooler. 

To determine if there was any sign o f this in the recorded lamp measurements, the recorded 

lamp power was examined for each lamp, rather than just the relative power dropped as the 

lamp burned, which had been considered previously. To make the comparison valid, the 

power readings for each lamp were adjusted for mains voltage compensation in the same 

way as discussed for the previous experiment and the power readings for the first 1 0 0  

hours of burning were used to extrapolate an initial power reading so that the effects of 

spurious readings would be reduced. A plot of this for lamp 1 is shown in figure 48, plots 

for all the lamps are shown in appendix C. The point where the line of best fit intercepts 

the y axis was taken as the initial starting power. The actual initial starting power of the 

lamp would have been slightly higher as the lamp power drops in the first few seconds of
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use; however using this transient value would have been misleading as the drop is very 

quick and the first measurement time from switch on may have varied by a few seconds for 

each lamp, which would have made measurements for this reading unreliable.
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Figure 48:- Voltage compensated power draw of lamp 1 (25W) during the first 100 hours.

Once the initial running power was obtained for all lamps, it became apparent that there 

was indeed a plausible explanation for the long life of lamp three; its running power was 

over one Watt lower than any o f the other 25 W lamps, as can be seen in table 6 .
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Lamp
Number

Rated Power (W) Initial Running Power (W) 
(Extrapolated Over lOOhrs)

Time to Failure 
(hours))

1 25 25.17 2 2 1 0

2 25 24.23 2267

3 25 23.00 7932

4 25 25.97 847

5 40 - 1

6 40 39.86 802

7 40 39.77 826

8 40 39.56 1084

9 40 39.81 607

1 0 40 40.06 929

1 1 40 39.88 802

1 2 40 40.26 745

13 40 40.26 835

14 40 40.68 723

15 40 39.84 966

16 40 40.48 738

17 40 40.22 550

Table 6 :- Initial Lamp Running Power

Looking at the values in the table, it is apparent that there is a relationship between the 

initial running power of the lamp and how long it lasted. To explore this further, plots 

were produced of lamp life against the initial running power of the lamp. Each o f the 

different lamp types were plotted separately, as the results varied with the design of the 

lamp. Lamp 5 was excluded from the plots as it did not last long enough to average.
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Figure 49:- Initial running power vs life for 25 W GE lamp samples (lamps 1-4).
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Figure 50:- Initial running power vs life for 40W GE lamp samples (lamps 6-9).
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Figure 5 1 Initial running power vs life for 40W Tesco lamp samples (lamps 10 -  17).

Considering figures 48 to 50, it can be seen that all three indicate the same trend of 

decreasing lamp life with running power. This is not surprising as it is common 

knowledge that running a lamp at an increased voltage and therefore power level will 

dramatically decrease its life; however it appears that the same principle is also true on a 

smaller scale when the lamp is manufactured. If the filament is manufactured slightly 

shorter or o f a thicker gauge than usual, then the filament will have a lower resistance than 

normal and therefore will run at a higher temperature and consequently fail sooner due to 

the accelerated formation o f hot spots and increased filament evaporation.

Based on these results, it appears that it would be possible to approximately predict the 

lifespan of a regular filament lamp based on the running power of it when it is first put into 

use. Clearly more experimentation would need to be done to collect data from a large 

number of samples so that a meaningful relationship could be formed between initial
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filament power and expected lamp life. One limitation of this method is that it in effect 

analyses the filament when the lamp is first put into use; it does not take into account any 

flaws in the gassing of the lamp, for example, that might lead to an accelerated evaporation 

of the filament as the lamp ages. This flaw becomes evident when considering the results 

of lamp number 5.

Lamp number 5 exhibited some extremely strange behaviour. It failed after only 50 

minutes of use, and failed while it was already on as opposed to all the other lamps which 

failed at switch on. A closer look at the power consumption of the lamp during its short 

life reveals some very interesting behaviour.
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Figure 52:- Voltage compensated power draw of lamp 5 (40W GE lamp sample).
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Using the principles established from the previous experiment, the initial power reading of 

under 40W would suggest that the filament is running at the correct power rating and 

therefore a lamp life similar to the other lamps should have been expected. However by 

the time of the next reading ten minutes later there has been a filament power drop of half a 

Watt. This is not entirely unexpected, as the first reading was taken almost immediately 

after the lamp was switched on for the very first time, and as mentioned earlier a drop in 

power was noted for all the lamps when the filament was lit for the very first time; 

however most of the other lamps only featured a drop of around a quarter of one Watt, so a 

drop of almost half a Watt was a little concerning.

Twenty minutes into the test, and the next reading indicates that the dropping power has 

stabilized; however ten minutes later it has started dropping again and it then carries on 

dropping until it fails sometime between 50 and 60 minutes of use. Further clues as to the 

cause of failure were evident upon visual inspection o f the lamp.

Figure 53:- Photograph of lamp number five after failure.
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All of the other lamps exhibited some glass blackening as they aged, as expected, due to 

the filament evaporating and depositing on the glass envelope. The difference with lamp 

five was the speed with which the deposits appeared on the envelope and the colour of 

them. Within the 50 to 60 minutes it was burning, the inside surface of the glass envelope 

of lamp five became coated with a misty white deposit. Combined with the evidence of 

the falling electrical power consumption, this suggests that too much oxygen was inside the 

lamp and the filament was simply burning away with the oxygen and forming tungsten 

oxide which was being deposited as a white mist on the inside of the envelope. The 

swirling patterns, evident in the deposit, would have been caused by the thermal 

convection currents caused by the heat o f the filament.

In the opinion of the author, the reason that lamp five behaved differently to the other 

lamps was that oxygen was inside the lamp; it had either been filled incorrectly during 

manufacture or a slow leak had developed during use allowing air inside. While 

measuring the initial power draw may enable lamp life prediction for correctly gassed 

lamps, it clearly will be of no use on an incorrectly gassed lamp, as it will take time for the 

effects to become apparent. What is needed is a way o f predicting lamp life which can 

take into account gassing faults as well.

5.2 Detecting Incorrectly Filled Lamps

During a typical gassing, the bulb is evacuated through the exhaust tube and filled with 

nitrogen/argon gas. The bulb is then partially re-evacuated and the lower end of the tube
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heat-sealed.[59] As with any such process, not all the oxygen will be removed from the 

lamp, so red phosphorous is usually applied to the filament^] to act as a ‘getter’; it is 

activated by heat and so is fired by the filament heating up for the first time.

During the first few seconds of the lamp being turned on, the tungsten filament will react 

with the oxygen and burn. This will stop as soon as all the oxygen in the lamp has been 

used up, either as a result o f the action o f the getter or due to the burning of the tungsten 

filament. While the filament is burning, it becomes thinner and the tungsten-oxide which 

is formed deposits as a white coating on the inside o f the glass envelope.

The longer the filament bums the thinner it will become and the more likely it is that the 

filament will fail prematurely. In the opinion o f the author, by measuring the length of the 

initial filament bum, it should be possible to detect lamps which are likely to fail 

prematurely due to incorrect gassing.

5.2.1 Procedure

In order to record the start-up power drop, a higher sampling rate was required than the ten 

minute recording intervals used in the previous experiment. The Voltech PM 100 power 

analyser was again used for this experiment, together with the software developed in 

chapter 4. The power analyser was connected as shown in figure 54.
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Figure 54:- Incorrect Gassing Detection Experiment Setup

The software was modified so that it still recorded the same data, but took measurements 

every second. A sampling rate o f 0.2 seconds had been tried initially, but it was found that 

this did not always allow enough time to read the data from the power analyser and record 

it to the text file before the next reading was due to take place; it was also observed from 

tests on a sample lamp that recording the data every second was sufficient for the trend 

being recorded.

Using this experimental setup, the initial bum period of a healthy lamp can be seen in 

figure 55, which shows the start up current draw of a small envelope 40W Tesco GLS 

lamp.
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5.2.2 Results

The following figures show start-up electrical parameters of a previously unused Tesco 

40W small GLS lamp.

0 1745

0 174

0 1735

0 173

<  0 1725

0 1715

0 171

0.1705

0 17
200 250 300 350100 150

Time (seconds)

Figure 55:- Current vs. time for the first start-up o f a Tesco 40W small GLS lamp.
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Figure 56:- Voltage vs. time for the first start-up o f a Tesco 40W small GLS lamp.
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From figure 55, it can be seen that the initial current draw of the lamp drops rapidly when 

it is first turned on; this drop continues for approximately the first 40 seconds the lamp is 

on, before the current then stabilizes as all the oxygen within the bulb has been used up.

The small fluctuations in the steady state current value are due to small fluctuations in the 

mains supply voltage, shown in figure 56. Although the drop in current shown in figure 55 

is very small compared to the current draw o f the lamp, it does show a clear trend. As the 

lamp was a healthy one it was expected that the current drop due to the initial power up 

bum would be very small.

To reduce the effect of voltage fluctuations, the resistance of the lamp was also plotted 

during start-up, this is shown in figure 57.
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Figure 57:- Resistance vs. time for the first start-up of a Tesco 40W small GLS lamp.
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To prove that this drop in lamp current was a characteristic unique to the first start up of 

the lamp and therefore linked to the burning in of the filament rather than a start up 

transient as a result o f the filament heating up each time, the same lamp was tested again 

when it was turned on for a second time. The result o f this test is shown in figure 58, 

overlaid with the plot o f the first start up for comparison purposes. This time the recorded 

mains voltage was divided by the recorded lamp current to give the hot resistance of the 

lamp filament; this was done to minimise the effect of mains voltage fluctuations so that 

the results could be more easily compared. Clearly the results will still be affected by 

mains voltage fluctuations to some degree as the lamp resistance is not linearly related to 

the mains voltage. However as both the mains voltage and lamp current will rise together, 

calculating the equivalent resistance helps minimise this error.
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Figure 58:- Filament resistance of a 40W Tesco lamp during first and second use.
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Figure 58 shows an increase in lamp resistance of 3Q after the second switch on, due to the 

lamp taking time to reach a steady temperature. However it is significantly smaller than 

the resistance increase of 31f2 during the first use of the lamp. This shows that a 

significant change is occurring within the lamp when it is powered up for the first time. 

Monitoring how long the filament resistance keeps rising when the lamp is first powered 

will, in the opinion o f the author, provide an indication of the damage the filament has 

suffered during its first bum and for incorrectly gassed lamps may provide a usable 

indicator of how long the lamp will last as a result o f this damage.

In order to conduct the necessary experiments and measure the start up current of 

incorrectly gassed lamps, a supply of faulty lamps was required. Since identifying faulty 

lamps would require testing every lamp and waiting to see if it was a faulty one before 

using the results, this was ruled out as a way o f obtaining results in a reasonable time scale. 

Instead, a method of simulating such affects was devised and developed as follows:

Brand new bulbs were purchased and a small 1mm hole was drilled in the neck of the lamp 

using a tungsten carbide drill. Air then quickly filled the lamp, replacing the previous 

contents; however it proved difficult to evacuate the lamp and then successfully seal the 

hole again and it was decided to adopt a different approach.

Being an inert gas, Argon will not react with the hot tungsten filament and it is therefore 

commonly used as a filling gas in incandescent lamps. Thus after drilling the hole, the 

lamp was filled with Argon welding gas (plus an inevitable small amount of air which 

remained inside). The exact composition of the gas mixture inside the lamp was not
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known and was deemed not to be important as this would not be known when testing a real 

lamp either. The hole was finally sealed with 60 second curing epoxy resin glue.

In all a total of 25 lamps were filled and successfully tested; many were wasted due to the 

glass cracking as a result o f the hole being drilled, or the Argon gas escaping completely as 

the hole was sealed. O f the 25 lamps successfully filled, 14 were 40W lamps and 11 were 

60W lamps (it had been intended to have equal numbers of both).

Each of the faulty lamps was subjected to the same test as the healthy lamp shown in figure 

57. Resistance plots for all 25 faulty lamps can be seen in appendix C. A plot of one of 

the faulty lamps is shown in figure 59. Attention is drawn to the change of axis scale, 

which confirms the significantly larger increase in the resistance of the faulty lamp.
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Figure 59:- Resistance vs. time for the first start-up of a simulated faulty 40W lamp and
an unaltered 40W lamp
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When comparing the example results shown in figure 59 there are two significant 

differences in the resistance profiles. The rate of increase in lamp resistance at switch on is 

significantly larger than for the unaltered lamp and the erosion of the filament also 

continued for longer than the typical 60 seconds observed for an unaltered lamp. Indeed 

the latter effect continued and did not stabilise before the lamp failed. The particular lamp 

shown in the plot lasted less than 10 minutes. Most of the other lamps tested lasted longer 

and did stabilise after the initial filament burning period, as shown in figure 60; the longest 

burned continuously for 33.5 hours.
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Figure 60:- Start up resistance o f a 40W GLS lamp when filled with Air and Argon

The results obtained were from lamps filled with a mixture of Air and Argon; one 

consequence of this was that the filament evaporated at a quicker rate than usual, which 

could be observed by watching the envelope of the lamp. Initially when the lamp was first
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turned on a white deposit formed at the top o f the glass envelope, which is due to the 

filament burning as a result o f the oxygen from the atmosphere present inside the envelope 

and caused the initial sharp increase in resistance. After the oxygen had been used up, the 

formation o f the white deposit stopped and a dark grey deposit started forming due to the 

filament evaporating.

Normally there is a very small amount o f Argon and nitrogen in the lamp envelope, as the 

lamp envelope is mostly evacuated; however as the lamps in this experiment were filled 

with air and argon there was no vacuum at all. In the opinion of the author, the grey 

deposit was therefore probably due to increased thermal currents within the lamp which 

lead to the increased rate o f filament evaporation; this theory was reinforced by the 

swirling patterns evident in the black deposit. This pattern of rapid burning followed by 

slow evaporation also explains the trend visible in the lamp resistance plot shown in figure 

60, with an initial rapid increase in filament resistance when it is turned on and then a slow 

linear rise during the remaining time that the lamp is burning for.

As a potential diagnostic and in order to identify any relationship between the initial 

resistance increase and the life o f the faulty lamp, the change in resistance between when 

the lamp was first turned on and after 30 seconds o f use (R30 -  Ro) was calculated for the 

25 data sets. These values were then correlated to the lamp survival times and the results 

are presented in table 7 and the subsequent figures, presented separately for the 40W and 

60W lamps.
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Lamp No. R30 — Ro (Q ) Life (Seconds)
40 Watt Lamps

FI 7 (40W) N/A 7

F I9 (40W) N/A 28

F I4 (40W) 687.74 35

F2 (40W) 426.58 59

F I2 (40W) 188.46 127

F20 (40W) 141.82 493

FI (40W) 175 564

FI 1 (40 W) 121.37 578

F I8 (40W) 55.72 654

F I6 (40W) 127.24 818

F I5 (40W) 106.60 901

F4 (40W) 149.10 1474

F I3 (40W) 60.54 2023

F3 (40W) 38.49 2497

60 Watt Lamps
F24 (60W) 618.81 31

F21 (60 W) 45.65 449

F25 (60W) 33.45 548

F23 (60W) 75.20 851

F6 (60W) 23.45 1045

F22 (60W) 72.68 1355

F5 (60W) 44.43 2038

F7 (60W) 28.16 5031

F8 (60W) 22.82 8207

F10 (60W) 21.97 43440

F9 (60W) 24.24 120640

Table 7:- Results for the 25 simulated faulty lamps

Looking at the results, it can be seen that some of the 60W lamps lasted significantly 

longer than the 40W lamps, this is believed to be due to a quirk of the filling process.
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Figure 61 shows the plot for 12 of the 40W Argon and Air filled lamps. (The two lamps 

which didn’t last 30 seconds were omitted the results).
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1000 10000

Figure 6 1 40W lamp (R30 -  Ro) values vs. how long the lamp lasted

From figure 61, it can be seen that there is a strong correlation between the calculated (R30 

-  Ro) values and the filament survival times.

Figure 62 shows the same information as figure 61, except this time the experiments were 

carried out on the 11 60W lamps. Once again the trend is similar to that obtained for the 

40W lamps, except the resistance increases are lower due to the higher power lamps.
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Figure 62:- 60W lamp (R30 -  Ro) values vs. how long the lamp lasted

The (R30 -  Ro) value was also recorded for the second batch of healthy 40W lamps (lamps 

10-17) used in the continuous monitoring experiment in section 5.1.8. The values obtained 

were as follows:-

Lam p No. R 3 0  — Ro ( ^ ) Life (Hours)

10 27.68 929

11 18.92 802

12 18.03 745

13 20.34 835

14 23.76 723

15 19.39 966

16 16.38 738

17 20.70 550

Table 8 :- Results for a batch of 8  unaltered lamps.

Page 114



Chapter 5 -  Filament Lamp Monitoring Experiments

There is no noticeable correlation in the results between how long the healthy lamps lasted 

and their value of (R30 -  Ro); however the purpose o f the test was to detect incorrectly 

gassed lamps that are likely to fail early. The healthy lamps, all of which lasted at least 

500 hours, had a (R30 -  Ro) value of less than 28f2, while the simulated faulty 40W lamps 

all had readings in excess o f 38Q, with the majority o f the lamps having readings above 

100Q. This shows that the technique is able to distinguish incorrectly filled lamps from 

normal healthy lamps

Considering again how most lamps are filled, the bulb is evacuated through the exhaust 

tube and filled with nitrogen/argon gas. The bulb is then partially re-evacuated and the 

lower end of the tube heat-sealed.[59] It becomes evident that there are two problems that 

could occur: the nitrogen/argon gas may not be added correctly or the lamp may not be 

evacuated fully. It is clear that this testing technique has the potential to diagnose both of 

these problems, as a large initial resistance increase indicates too much oxygen in the lamp 

as a result of poor evacuation and the rate o f resistance increase after this initial period will 

vary depending on the amount o f Argon/Nitrogen left in the lamp, due to evaporation and 

thermal convection. To develop this technique further a large scale trial is required so that 

the behaviour of normal and genuinely faulty lamps can be recorded and thresholds 

determined for reliably identifying the faulty lamps.

Page 115



Chapter 5 -  Filament Lamp Monitoring Experiments

5.3 Summary

In order to assess lamp condition, lamp power or current and lamp voltage need to be 

monitored. The key phases in the life o f the lamp that need careful monitoring (as they 

provide significant information on the condition o f the lamp) are as follows:

The rate of power drop during the first few seconds use of a new lamp signifies the quality 

of the gassing of the lamp. The results o f the experiments reported in this chapter show 

that the quicker the drop in lamp power and the longer it continues for, the more the 

filament is eroded, which means the lamp is more likely to fail prematurely.

Once the lamp has stabilised after its initial burn-in period (no more than a few minutes), 

the initial running power o f the lamp needs to be measured as it provides crucial 

information on how long the lamp is likely to last. The continuous monitoring experiments 

at the beginning of this chapter showed the significance of the initial running power on 

how long the lamp lasted; lamp three which had a running power of 23W, lasted 7932 

hours, which was just over nine times longer than lamp four, which had a running power of 

25.97W and lasted just 847 hours. Since a variation of three Watts is a relatively small 

signal to noise ratio, it is essential that the mains voltage is monitored as well, so that it can 

be used to compensate the power readings. It is also important that sufficient readings are 

taken and averaged to minimise any error in the reading.
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Finally, the descent profile o f the lamp power needs to be monitored during the entire life 

of the lamp. This is for two reasons: firstly, a fault may develop in the lamp while it is in 

use, such as a small crack forming in the glass envelope that causes a slow gas leak, which 

could be detected as an increase in the rate o f the power drop of the lamp; secondly, the 

experiments discussed in chapter four showed that lamp power decreases linearly with age 

although at a different rate for each lamp. By determining the normal rate of power drop 

for the lamp being monitored during its early life, the lamp’s age can subsequently be 

determined by measuring its power and comparing it with what it was when the lamp was 

new. This is important as it means the age can be monitored without resorting to 

measuring the time it has been switched on for.

Another possible benefit o f measuring the age o f a lamp by its declining power draw is that 

the declining power draw should decrease more slowly if the lamp is not run at full power, 

due to the filament running at a lower temperature and therefore evaporating more slowly. 

Whereas an hour meter becomes inaccurate if  the lamp is not run at full power, such as 

when it is dimmed or run from a slightly lower voltage than it is designed for, this method 

should automatically compensate. Clearly, further experimentation is required to prove 

this.

Whilst the experiments have clearly shown that monitoring filament lamp condition more 

accurately by monitoring the lamp’s electrical characteristics during use is possible, more 

data needs to be gathered in order to establish normal lamp behaviour patterns. A large 

scale trial o f a few hundred lamps is now required in order to gather enough data to 

reliably predict lamp behaviour. The affect o f other factors also needs to be researched,
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such as: running the lamps at lower power levels; using different switching cycles and how 

orientation of the lamp whilst running may affect its behaviour. Unfortunately, testing 

hundreds of lamps on an 8 lamp test rig would take a long time and was outside the 

timeframe of this work. In order to be practical the implementation technology needs to be 

cost effective and compact, a topic which is discussed in greater depth in chapter 8.
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Chapter 6 -  UV Discharge Lamps -  Detecting Failure

6.1 Introduction

UV sterilisation lamps present particular challenges for monitoring systems. The lamp is 

housed inside a close fitting quartz glass sleeve, which is surrounded by flowing water. As 

the lamp is effectively enclosed, monitoring it by electrical characteristics alone is 

particularly attractive.

Figure 63 shows the inside of a typical stainless steel UV water steriliser, the model shown 

also features an automatic sleeve cleaning mechanism, which can be seen to the left of the 

tube.

Figure 63:- Inside of a UV water treatment chamber.[60]
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6.2 Traditional Monitoring Techniques

Traditional techniques for monitoring low pressure discharge lamps such as UV 

sterilisation lamps and fluorescent lamps are broadly similar to those used for monitoring 

filament lamps and are described in the following sections.

6.2.1 Hour Meters & Scheduled Replacement

Hour meters monitor how long the lamp has been burning and the lamp is then replaced 

after a specified number o f hours o f use. This technique is often used for germicidal lamp 

installations, where lamp failure can present a significant hazard. Drawbacks with this 

technique are that it does not take into account the number of lamp starts, which can have a 

major effect on its life expectancy.[6q In addition, each lamp will last different amounts of 

time, so to avoid the risk o f it failing the lamp is usually changed well before its rated life. 

As most germicidal lamps are left burning continuously, smaller installations without hour 

meters usually have their lamp changed every year as a matter of routine.

Changing lamps well before they are likely to fail may seem a safe option for guaranteeing 

continued operation; however not every lamp will last as long as its rated design life, so 

some may well fail without warning before they are routinely changed. Another problem 

with relying on routine replacement is that the majority of lamps will be replaced long 

before they need to be. As each lamp contains mercury, it does not make sense 

environmentally to scrap lamps before they need replacement. UV sterilisation lamps are 

also very expensive compared to regular fluorescent lamps (a typical 55W lamp is around

Page 121



Chapter 6 -  UV Discharge Lamps -  Detecting Failure

£50+vat), so changing them before they need replacing is an expensive way of trying to 

ensure their continued operation.

6.2.2 Failure Detection

Another common approach to monitoring lamp failure is to install basic monitoring 

circuitry to alert the user when a lamp has failed. This can take a variety of different 

forms. On smaller lamps (around 15W) that use 240V magnetic ballasts, the voltage 

across the lamp when it has struck drops from line voltage to around 40V, which can be 

utilised by simply connecting a neon lamp (with series resistor) across the lamp. The 

warning lamp will illuminate when the UV lamp is not lit, a diagram of which is shown in 

figure 64.

Lamp Fail 
Indicator

w

230V
AC

Figure 64:- Circuit diagram of a very simple lamp monitoring setup using a neon lamp.

A more robust approach that is commonly used is to apply current monitoring to the lamp 

so that if no current flows through the lamp then a buzzer sounds to warn the user that the
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lamp has failed. A typical circuit diagram for acheiving this is shown in figure 65, the 

overall component count is low and, although more complicated than using a simple neon 

lamp as in the previous method, the completed board would cost no more than a few 

pounds to build.

Lamp Current

+ 12V

Sounder

230V
AC

Figure 65:- Circuit diagram of a typical lamp failure detector.

By its nature, any failure detection system will only work after the lamp has failed. To 

make the system fail-safe, the failure detection can be linked to an electric solenoid valve
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to automatically cut off the water supply until the lamp is replaced. Although this prevents 

untreated water passing through, it leaves the user without water while a new lamp is 

sourced, which in most cases is not an acceptable solution.

6.2.3 Light Level Monitoring

The most robust way to verify UV light output is to measure it using a UV meter; however 

due to the hazardous nature of UV-C radiation to humans and animals, the lamps are 

always enclosed within the water treatment unit. This means that the only way to safely 

get a consistent reading from a lamp when it is in use is to install a sensor within the lamp 

housing and then link this sensor to the monitoring system being used. A number of 

sensors designed for this task are available, an example of one supplied by Cole Parmer is 

shown in figure 66. Although systems using sensors such as this are more robust as they 

measure the actual light level delivered rather than some other parameter that is related to 

light output, they have the significant disadvantage o f being very expensive to implement. 

The UV-C sensor alone costs £192, which for small installations would be completely 

impractical. When purchased with a corresponding lamp monitoring unit the total price 

rises to £373, which for most domestic installations would be more than the UV 

disinfection unit.
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Figure 66:- Cole Parmer UV Disinfection Sensor^]

6.3 Failure Modes and Potential Monitoring Techniques

As previously discussed in chapter one, a typical UV lamp consists of two heater filaments 

enclosed at either end of a quartz glass tube. The tube is usually filled with argon gas and 

a very small amount of mercury which turns into mercury vapour when the lamp warms 

up. To light the lamp, the two heaters are usually warmed up for a few seconds before a 

high voltage is applied across the length of the tube to start the discharge; once struck the 

current through the tube has to be limited.
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6.3.1 Mechanical

Any leak in the quartz glass envelope will quickly lead to the gas within the lamp escaping 

and air being allowed in, which will cause the lamp to immediately fail, if the heaters are 

powered separately then they will bum out and leave a white deposit on the glass; if the 

heaters are kept hot by only the discharge then the discharge will just cease and the lamp 

will be unable to strike again.

There are several reasons why a leak may develop in the quartz glass envelope. Minute 

flaws in the glass wall or around the wire seals may cause a stress fracture to develop when 

the lamp warms up or cools down; alternatively thermal shock, such as water dripping on 

the lamp, may cause the glass to contract suddenly and fracture; physical handling may 

also lead to breakage of the glass envelope. Whatever the cause, detection o f a mechanical 

failure is virtually impossible for any monitoring system, the only exception to this being 

the development of a slow leak where some changes in the operating characteristics o f the 

lamp may be evident before it fails completely.

6.3.2 Electrode Failure

In a paper titled “Reducing Barriers to Use of High Efficiency Lighting Systems”[63] by the 

Lighting Research Centre, it was stated that “The failure of fluorescent lamps is caused 

mainly by the loss of the electron emissive coating of the lamp electrodes. Under certain 

circumstances, such as high frequency operation and frequent starting on instant start
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ballasts (“cold ignition”), fracture o f the tungsten coil is also observed, which causes the 

lamp to fail.”[6 3]

Anode
Positive column

Anode
sheath

Negative
glow

—Faraday 
dark space

Cathode
fall

Distance

Figure 67:- A sketch o f the main discharge regions^]

The discharge within the lamp is made up o f a number of different regions, as shown in 

figure 67. The cathode sheath and negative glow regions generate the supply of electrons 

for the positive column and hence sustain the discharge. The length of this region is 

determined mainly by the gas pressure, and is independent of the length o f the tube. The 

positive column is the main part o f the discharge and generates the majority o f the light 

output. The anode sheath completes the path between the positive column and the anode, 

and is typically significantly shorter than the cathode sheath and negative glow regions.
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Figure 68:- Negative glow and Faraday dark space regions in a Geissler tubers]

Figure 68 shows the negative glow and Faraday dark space regions in a DC driven Geissler 

tube. These regions are not visible in an everyday fluorescent lamp as the gas pressure is 

higher and so the Faraday Dark Space is significantly smaller; also most lamps are 

operated on AC, so the anode and cathode reverse fifty times a second, which means the 

light generated when it is acting as an anode masks the dark space present when it is acting 

as a cathode.

An important factor in lamp operation and life is the electrode temperature. Most electrons 

emitted by the cathode are as a result o f thermionic emission, where thermally excited 

electrons break free from the material. Fluorescent lamp electrode filaments are coated 

with an emission mix, made from calcium, barium, and strontium oxides to improve 

thermionic emission. For coated filaments, temperatures of about 900°C are high enough 

to create thermionic emission of electrons sufficient to maintain the discharge current. 

Without the emissive coating, thermionic emission is insufficient for the discharge current; 

maintaining the discharge by increasing the voltage across the tube would then lead to the 

destruction of the electrode and lamp failure.^]
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The reason for the loss o f electron emissive coating can be divided into two causes, 

evaporation and erosion due to sputtering. A very high electrode temperature (greater than 

1000°C) reduces lamp life due to evaporation o f the emitting material, while a low 

electrode temperature (less than 700°C) reduces lamp life due to erosion of the emitting 

material by sputtering.[63] Electrode temperature is critical to the life expectancy of the 

lamp.

Cathode fall voltage is the drop in electric potential from the cathode surface to the end of 

the cathode sheath region, over a distance o f approximately 0.1mm. It serves to accelerate 

the electrons emitted from the electrode toward the lamp arc stream and enables ion 

generation when these accelerated electrons collide with the mercury and argon atoms in 

the gas atmosphere of the lamp. Once produced, the ions are accelerated by the cathode 

fall voltage and strike the cathode. The ion bombardment heats the cathode surface, 

raising the electrode temperature and increasing the emission of electrons. [63]

The cathode fall voltage is an important parameter of a discharge as it indicates the level of 

electrode sputtering. A high cathode fall voltage causes ions to strike the cathode so 

forcefully that significant sputtering o f the emissive coating occurs. Alternately, a low 

cathode fall voltage indicates an abundance of free electrons, which implies that the 

electrode is operating at an excessively high temperature and consequently lamp life will 

be drastically shortened as the result o f a high electrode-evaporation rate.[6 3]

Based on these observations, a cathode with a worn or damaged emissive coating should 

correspond to an increased cathode fall voltage. A typical acceptable range of peak
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cathode fall voltage is between 11 and 14.5V[63], although 7 to 18V is not uncommon, 

which means a change in cathode fall voltage should be detectable as a change in the 

normal operating voltage of the lamp.

6.3.3 Mercury Loss

In a low pressure UV germicidal lamp, the UV output is generated as a result of collisions 

between electrons and mercury atoms. If mercury atoms are not present for the electrons 

to colide with then a discharge still takes place through the argon gas, but very little (if 

any) UV light is given out.

As the quartz tube is completely sealed, it would seem that the mercury could not escape. 

However, over time the mercury can bond with other materials in the lamp, particuarly 

evaporated electrode material that gets deposited on the lamp wall, leaving less free 

mercury to generate the UV output. Due to environmental reasons, some new lamp 

designs are manufactured with near the minimum amount of mercury needed for an 

efficient discharge. Mercury absorption is not an operational problem in lamps with excess 

mercury added because the lamp electrodes limit life before the excess runs out; however, 

for lamps with marginal amounts o f mercury dosing and severely sputtered and/or 

evaporated electrodes, different end-of-life behaviour has been reported.[6 3]

Mercury loss represents a very dangerous mode o f failure for germicidal lamps, as the 

argon within the lamp will maintain the discharge through the lamp even with no mercury 

present. To the user and any basic electrical lamp monitoring equipment, it appears that
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the lamp is operating satisfactorily; the lamp will even give off the same visible blueish 

glow as normal, but the output of invisible UV radiation which kills the harmful bacteria in 

the water may be significantly reduced.

A loss of mercury atoms should coincide with a reduction in the number of collisions 

taking place as the electrons pass through the tube, meaning that the electrons should travel 

further through the gas before colliding with a mercury atom.
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Figure 69:- Simplified transition diagram for mercury[66]

The transition diagram in figure 69 shows that to generate UV light, the incident electron 

needs to have a kinetic energy o f at least 4.89eV and to ionise the atom it has to have an 

energy of at least 10.43eV. Since on average the electrons will be travelling further before
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colliding with an atom, they should have gained more energy. This means the likelihood 

of ionising a mercury atom rather than just exciting it would be higher. Ionising more 

mercury atoms would mean an increase in electron density through the tube which means 

an increase in lamp current. The control gear would then decrease the lamp voltage to 

control the lamp current. In theory then, a loss of mercury should result in a decrease in 

lamp operating voltage as well as a decrease in light output.

The next chapter discusses the different experiments that were conducted to try and 

identify ways of monitoring for lamp electrode erosion and mercury loss.
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7.1 Steady State Electrical Parameter Monitoring

An initial set of experiments were performed in which the voltage across and current 

through 15 different lamps were recorded, together with the measured UV output of each 

lamp to determine if the relationship between the measurements varied with lamps of 

different ages. The procedure and results o f these experiments are discussed next.

7.1.1 Procedure

All 15 lamps were made by Philips and were type G30T8. Two of the lamps were brand 

new and had never been used before, the remaining 13 were obtained from a local water 

treatment company and were all removed from working installations during routine 

services and would have been run continuous for at least one year (approximately 9000 

hours) so were all beyond their stated useful design life of 8000 hours.

A test rig was constructed using a tube to cover the lamp, with a hole drilled in the middle 

of it to allow light onto the UV sensor which was secured over the hole in the tube. The 

lamp was then connected to a standard 30W magnetic ballast and wired up in the 

configuration shown in figure 70. Rather than use a standard switched starter, a push 

switch was used instead to allow for controllable starting conditions and to ensure that any 

current that might otherwise flow through the gas in the starter switch could not corrupt the 

readings for the lamp.

The Voltech PM 100 power analyser which was used for the previous filament lamp 

experiments was used for the voltmeter and ammeter shown in the diagram. As well as
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measuring voltage and current it also gave the power factor and power reading for the lamp 

being tested.

To measure the UV output o f the lamp, a UVX radiometer made by UV Products Ltd was 

used together with the UVX-25 sensor which is calibrated at a wavelength of 254nm and is 

designed to function in the 250-290nm wave band (upper region of UV-C band) at 

intensities upto 20mW/cm [67j. The lamps being tested produce peak output at 254nm.

230V
AC

Figure 70:- UV Lamp Test Circuit Diagram

Each lamp was connected to the test circuit shown in figure 70 and run for 2 hours to allow 

time for it to warm up and stabilize; at the end of this period, the lamp voltage, current, 

power factor and real power were recorded together with the UV light output reading 

obtained from the radiometer.
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7.1.2 Results

The following figures show one o f the measured lamp parameters plotted against the UV 

light output to identify if there is any relationship between any of the parameters and light 

output. The values used to generate the plots are presented in tabular form in appendix D.

New Lamp

New Lamp

100 10396 98 99
Lamp Voltage (V)

101 10294

Figure 7 1 Light Output vs. Lamp Voltage for the 15 sample lamps.

From figure 71, it can be seen that there is a possible correlation between light output and 

lamp voltage. The lamps with a larger voltage drop across them had a higher light output. 

The brand new lamps are the two highest points on the plot as they had the highest light 

outputs at 12.31 and 12.00mW/cm2; they also had the highest and third highest lamp 

voltage drops of 101.05 and 102.61V, respectively. From this it would appear that the 

lamp voltage and light output fall as the lamp ages.
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Figure 72:- Light Output vs. Lamp Current for the 15 sample lamps.

From figure 72, it can be seen that there is little (if any) relationship between lamp current 

and light output; this is a little misleading as the magnetic ballast will have had the effect 

of adjusting the lamp voltage and current to try and maintain a near constant power to the 

lamp. This explains why 13 o f the lamps have nearly the exact same current (±0.005A) 

through them, despite one o f them being brand new and the others being near the end of 

their life.

To try and minimise the effects o f the ballast, the lamp voltage was divided by the lamp 

current to give the equivalent lamp running resistance. This is shown in figure 73.
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Figure 73:- Light output vs. equivalent lamp resistance

From figure 73, it can be seen that there is a possible correlation between light output and 

the equivalent lamp resistance. The trend is a little blurred, possibly due to the fact that the 

readings came from different lamps o f different ages, rather than one lamp at different 

times during its life. Unfortunately, due to the long life of these lamps, this method was 

the only way to get readings within a reasonable time scale.

In order to complete the analysis, the power and power factor of the 15 lamps were plotted 

against light output, and are shown in figures 72 and 73, respectively. Although the values 

for the lamps vary, there does not appear to be any correlation between these and the light 

output of the lamps.
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Figure 74:- Light Output vs. Electrical Power Input to Lamp
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Figure 75:- Light Output vs. Power Factor of Lamp
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7.1.3 Discussion

The results indicate that as a lamp ages, the light output falls, which was expected and the 

gas discharge becomes more conductive. At first this seems illogical as the primary failure 

mechanism is erosion o f the electron emissive coating on the heaters, which in theory 

should result in a rise o f the lamp voltage in order to maintain the same current (flow of 

electrons) from the now less emissive electrodes.

In the opinion of the author, if  the current flowing through the lamp is not affected by light 

output and therefore age, which appears from the graph to be what happened, then the 

number of electrons flowing through the gas in the glass tube must have remained 

relatively constant as the lamp aged, yet the light output appears to have fallen with the 

older lamps.

As discussed in the previous chapter, the UV output of the lamp is generated when 

electrons flowing through the tube collide with atoms of mercury vapour which are mixed 

with the argon gas in the tube. The incident electron excites one of the electrons o f the 

mercury atom into a higher energy orbit, and when this electron drops back to its original 

orbit it emits energy in the form o f ultra violet radiation. If fewer mercury atoms were 

present in the tube then fewer collisions with electrons would take place, which would 

result in a lower light output; however the current through the lamp would be largely 

unaffected as the electrons would still pass through the tube. As fewer collisions take 

place, the electrons will acquire more kinetic energy before colliding with an atom and so 

the chance of ionisation when a collision occurs will be higher; with a constant voltage 

across the tube this would lead to an increase in current through the tube. However to stop
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the tube being damaged, the ballast serves to limit the current through the tube; therefore 

this increase in electron liberation leads to a decrease in lamp voltage. Based on these 

results, it is proposed by the author that a decrease in light output due to mercury loss also 

leads to a decrease in the normal operating voltage o f the lamp.

7.2 Striking Voltage Measurement

In order to strike a low pressure discharge lamp, a high voltage is applied across the ends 

of the lamp. In a conventional magnetic ballast system this is achieved by momentarily 

shorting out the lamp with a glow switch starter via the tube filaments. This warms up the 

filaments, and when the starter opens, the ballast releases a high voltage impulse which 

breaks down the gas in the tube. As the lamps age, it would seem logical to propose that a 

higher voltage would be required to strike them; however this experiment shows that this is 

not necessarily the case.

7.2.1 Procedure

The experiment was set up as shown in figure 76.

0
(240V)

(240V)

240V Mains 
Supply

Figure 76:- Experimental Setup for Measuring Striking Voltage
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To keep the number of variables to a minimum, the heaters were left cold and the lamps 

were left overnight in the room so that they were all at the same temperature. To generate 

a high enough voltage to start the discharge, two 240V-12V transformers were connected 

in series, with the 12V windings fed from a mains variac. By overloading the inputs to the 

transformers for very brief periods, it was possible to generate around 700V using this 

setup. The lamp ballast was left in the circuit to limit the current through the lamp once it 

had struck.

The lamp was put inside a thick walled plastic tube, firstly to block the harmful UV-C 

radiation given off and secondly to stop the light in the room liberating electrons from the 

cathodes via the photoelectric effect, which would have caused the lamp to strike at a 

lower voltage than it would have otherwise. Once the lamp was connected, the circuit was 

energised and the variac was very slowly turned up from zero volts. As the lamp was 

being supplied from an abnormally high mains supply, once struck the lamp current would 

be abnormally high, even with the ballast in circuit; for this reason, as well as avoiding 

warming the lamp up, the circuit was turned off as soon as the lamp struck.

The same test procedure was repeated three times for each lamp, with 10 minutes allowed 

between each strike for it to return to room temperature. As found in an experiment by 

Yunfen Ji, the resistance and hence temperature of a T8 lamp electrode takes at least 5 

minutes to return to cold values after being on[68]. The highest breakdown voltage was 

taken from the three readings for each lamp, as it represents the minimum required voltage 

to reliably strike the lamp and hence the worst case scenario.
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The same lamps were used as per the previous experiment, apart from lamp 5 which had to 

be left out o f the experiment due to breakage. As the light output is indicative of lamp age, 

the highest striking voltage of each lamp was plotted against the light output, which was 

obtained for each lamp from the results o f the previous experiment. The plot is shown in 

figure 77, while the full tabulated results are presented in appendix D.
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Figure 77:- Light Output vs. Striking Voltage of the 14 UV Lamps 

7.2.2 Discussion

From figure 77, it can be seen that the striking voltage appears to decrease with the light 

output, which implies that the striking voltage decreases as the lamp ages. This is contrary 

to what would be expected if  the electrodes degrading were the cause of the changing 

striking voltage. The author therefore proposes that the cause of the decreasing striking
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voltage is most likely to be the same as the cause of the decreasing steady state lamp 

voltage observed in the previous experiment. As the lamp ages and the mercury content 

depletes, there are fewer atoms in the gas for the electrons to collide with, which means 

that the electrons accelerate further before colliding with an atom. As the average distance 

before collision is further as the lamp ages, the electrons do not need to be accelerated as 

quickly through the tube and consequently a lower voltage is required to trigger ionisation 

breakdown. In summary, as the mercury in the lamp depletes with age, the striking voltage 

of the tube decreases too; presumably at some further point in the life of the lamp electrode 

failure will start to reverse this trend.

7.3 Electrode Monitoring

As electrodes age, their electron emissive coating is eroded by both sputtering and 

evaporation. Once the coating has been damaged, it is harder to draw electrons from the 

cathode and a higher electric field is required to maintain the discharge current; this leads 

to an increased cathode fall voltage. The increased cathode fall voltage leads to increased 

sputtering as the mercury and argon ions are positively charged and so accelerate at higher 

speed into the cathode. Their impacts sputter more of the electrode material onto the walls 

of the lamp and at the same time warm up the electrode; however the increased electrode 

temperature reduces the cathode fall voltage and the rate of sputtering is self limiting to an 

extent.[69] In smaller lamps such as compact fluorescent lamps, this phenomenon can cause 

significant problems. It is reported^] that at the end o f life o f the lamp, continued 

operation can lead to a shattered glass envelope or melting of the lamp ends, as shown in 

figure 78.
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Figure 78:- A compact fluorescent lamp at end of life^oj

In the previously reported experiments undertaken in this work, there was no evidence of a 

rise in lamp operating voltage (or current fall), this could be because the lamp electrodes 

were running hotter and so compensating for their expected inefficiency due to aging. If 

the effects of electrode ageing on lamp performance are being obscured by a gradually 

increasing electrode temperature, it follows that the electrode temperature could be an 

indicator of their condition. The following experiments introduce electrode temperature 

monitoring to identify if there is any correlation with lamp age.

7.3.1 Electrode Temperature Measurement

In most UV filtration units the lamp is housed inside a close fitting quartz glass sleeve. 

Thus attempts to measure the filament temperature indirectly, by measuring the wall 

temperature of the lamp near the electrode, would not be possible, since this glass sleeve is 

also in contact with the water flowing through the unit and this would significantly affect
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the lamp wall temperature. Further, as the lamp is always hidden from view, optical based 

systems such as infrared pyrometers are not possible, and any practical system would have 

to determine the electrode temperature from the electrical characteristics of the heater.

In order to relate the filament voltage to filament temperature, an experiment was 

conducted where the filament voltage o f a new lamp was varied and the colour compared, 

by eye, with a steel wire supported inside a temperature controlled kiln. The kiln 

temperature was varied in 50°C steps and the filament voltage required to match the colour 

temperature of the kiln recorded.

12V

Figure 79:- Circuit configuration for varying filament temperature

A pyrometer could have been used to measure the filament temperature instead of using 

the kiln, however it proved difficult to find one as for most applications the infrared 

thermometer has taken over; although one o f these was tried, it proved unsuitable as it 

measured the glass wall temperature rather than the filament. Figure 80 shows a plot o f the 

results for this experiment and tabulated results are presented in appendix D. The trend 

line is extrapolated to intercept the y-axis at 20°C, which was the recorded room 

temperature and hence would be the filament temperature when no voltage is applied to it.
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Figure 80:- Filament temperature vs. voltage applied to filament

This relationship assumes that the filament design remains constant between the lamp 

samples. As all the lamps used in the experiments were Philips G30T8 lamps, the 

filaments were nominally identical; however if the study were extended to lamps made by 

other manufacturers then this experiment would need to be repeated to obtain trend 

information for each lamp type.

The trend line equation fitted to the data from this experiment, which is shown in appendix 

D, was subsequently used by the next experiment to convert the filament voltage readings 

into temperatures.

Page 147



Chapter 7 -  UV Discharge Lamp Experiments

Figure 81 shows the circuit diagram of the experimental setup used for monitoring the 

running temperature o f the filaments in each lamp. Prior to the lamp being struck the 

filaments were warmed up from the two windings of the 12V transformer via two 22Q 

power resistors. The power resistors served to limit the power to the filaments so that they 

reach approximately 600°C before the lamp is struck. Since any increase in filament 

temperature will lead to an increase in filament resistance, the voltage across the filament 

will vary with the filament temperature, due to the series resistance of the power resistors, 

up to a maximum of the filament supply voltage, which was 12V. The first temperature 

reading was taken after 30 minutes, i.e. once the filament temperature had stabilized but 

before the lamp was struck. The reading was seen to stabilise after ten minutes, but a 

further twenty minutes were allowed for good measure.

o o

240V Mains 
Supply

(12V) (12V)22 R 22R

(240V)

Figure 81:- Experimental setup for measuring filament temperature increase
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Once the filaments were stabilized, the starter switch was closed and then opened again to 

strike the lamp. The filament voltage was then recorded after 30 minutes of being struck. 

The two readings were then converted to temperatures and the difference between them 

taken as the rise in electrode temperature due to discharge operation. There are a number 

of potential flaws in this technique. Firstly, the filaments are likely to be running at a 

higher temperature than usual due to the extra power introduced by the heater supply. 

However since this will be the same for all the lamps tested, it should not affect 

comparisons between the lamps. Secondly, the discharge through the lamp may not leave 

the filament at the same point in each lamp. Investigations at the Lighting Research 

Centre[63] have confirmed the theory that the discharge actually moves along the filament 

like a “burning candle”; the results of one of their experiments can be seen in figure 82.

Days of operation @ 30 mA
Figure 82:- Movement of hot spot for instant start fluorescent lamp under dimmed

condition^]

Filament breaks
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The problem with the discharge leaving the filament at different places is that the discharge 

current, which is usually around 100mA, may flow through the entire length o f the 

filament before exiting the tube to the mains connection, or it may flow through a very 

small section of filament before exiting. Since the discharge current is supplied from the 

ballast, it is likely that it could be out of phase with the heater supply current, meaning that 

the total current through the filament could be 100mA greater or 100mA less than in 

another lamp where the lamp discharge does not flow through the filament. This 

difference in current flow would translate to an error in the filament voltage reading o f 

around 1.5V, which would affect the temperature reading by approximately 100°C. To 

avoid this error, the lamp current was turned off and the reading taken immediately after 

the light went out, before the filament had time to cool.

Another consequence of the lamp discharge current leaving the filament in different places 

is that the section of filament it flows through will be hotter than the other part o f the 

filament. This means the voltage (and therefore temperature) reading obtained from this 

experiment will reflect the average temperature of the filament, rather than the temperature 

of the discharge point. Since the damage caused by electrode overheating in small 

diameter lamps is so extreme, as observed in figure 78, it is evident that there is a large 

scale change in electrode temperature, which should be easily observable from the average 

filament temperature.

To generate the plot shown in figure 83, the filament voltages from both ends of the lamp 

were measured while the lamp was struck and converted into temperatures using the
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formulae of the best fit line shown in figure 80. The starting temperature of the filaments, 

which were calculated in the same way, were then subtracted from these values to give the 

temperature rise of each filament due to the effect of the discharge. As both electrodes 

alternate between acting as cathode and anode, both are equally responsible for 

maintaining the electron flow through the lamp; therefore the two figures for electrode 

temperature rise were added together and divided by two to give the average electrode 

temperature rise for the lamp.

To measure the UV output o f the lamp, a UVX radiometer made by UV Products Ltd was 

used together with the UVX-25 sensor which was secured over a hole in the middle of the 

plastic tube used to cover the lamp.
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Figure 83:- Light output vs average filament temperature.
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From figure 83, it appears that there is no correlation at all between the average filament 

temperature rise and the light output o f the lamp. Since light output is indicative o f age, 

this also implies that there is no relationship between filament temperature and age.

All of the filaments were run at approximately 800°C (± 75°C) before the lamps were 

struck. From figure 83, it can be seen that all the lamps experienced an electrode 

temperature rise o f between 65 and 145°C. This means that there was a maximum of 80°C 

difference in temperature rise between each of the lamp samples, which is not a large 

difference for a filament that is operating at around 900°C. Closer examination of the 

figures, which are tabulated for inspection in appendix D, revealed that the second highest 

electrode temperature rise occurred in lamp 14, which before the experiments started was a 

brand new lamp and had only been used for an hour or so during the first experiment. The 

results seem to suggest that monitoring the electrode temperature has revealed no evidence 

of the electrodes running any hotter in the older lamps.

7.3.2 Lamp Rectification Monitoring

As the mains supply is AC, the direction o f current reverses twice every second. This 

means that for the first half of a mains cycle the one electrode acts as the cathode and 

during the second half the other electrode acts as the cathode. If one electrode is worse at 

emitting electrons than the other, then more current will flow through the tube in one 

direction than in the other; this means that the tube acts as a partial rectifier and a DC 

component develops across the tube. As no two electrodes will degrade at exactly the 

same rate, the development of a DC potential across the tube can be used to indicate that 

the electrodes in the tube are reaching their end of life. This technique is deployed in the
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Infineon ICB1FL01G ballast control ICpi], where the controller shuts the lamp off if  the 

ratio of the positive and negative peaks of the lamp voltage is above 1.15 or below 0.85 for 

longer than 500mS. This ratio equates to a DC level o f approximately 0.075 times the 

peak lamp voltage. The lamp voltages were measured in the previous experiments and 

were all around 100V RMS, which would equate to a DC cut off voltage of approximately 

10V. In this experiment, the DC component o f the lamp voltage is measured to find out if 

any of the lamps are exhibiting signs o f assymetrical operation due to a failing electrode. 

Each lamp was connected up in turn to the aparatus shown in figure 84. The lamp was run 

under normal operating conditions for 30 minutes and the DC component was then 

measured using a true RMS Fluke 87 Series Multimeter.

230V
AC

Figure 84:- Experiment configuration for measuring rectification

The measurements were then plotted against the light output previously measured for each 

lamp, as shown in figure 85.
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Figure 85:- DC component o f lamp voltage vs light output

From figure 85, it is apparent that as the lamp ages and its light output falls, the dc 

component of the lamp voltage increases. This is as expected, as a reduction in the 

emission rate of one of the electrodes will lead to asymmetrical behaviour. However the 

level of DC voltage is exceedingly small (approximately 1 % of the ac voltage across the 

lamp). The Infineon ballast control ICpi] would have required a DC component o f 

approximately 10V to shut down. This shows that the DC component measured on these 

lamps is very small compared with that o f a faulty lamp and the electrodes in each o f these 

lamps are operating virtually in balance with each other.

7.3.3 Discussion

The electrodes in a fluorescent lamp transfer the discharge current from the incoming 

conductor to the discharge column and then back out again on the other side. During the 

half cycle that the electrode acts as a cathode, it is essential that the electrode has a high
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electron emissivity, and for this reason each electrode is coated with an emissive coating. 

Without the emissive coating, thermionic emission is insufficient for the discharge 

current. [63] Therefore, once the coating has worn off the lamp current should start to 

decrease, causing the electrode temperature to decrease and the lamp current to drop 

further still until the lamp goes out.

In this chapter, experiments were carried out to measure the lamp voltage, current, filament 

temperature, striking voltage and light output. The samples varied greatly in age, two of 

the lamps were bought brand new for the experiments and so had a running time of only a 

few hours by the end, the others were all removed from use from water filtration 

installations around Wales, and had been in constant use for between one and two years 

(8760 - 17520 hours), which is well beyond their rated life. Despite this large difference in 

sample ages, the UV light output varied very little, in fact one of the two new lamps had a 

lower UV output than many of the older lamps. It was also found that the electrical 

characteristics of the lamps varied only slightly, the lamp voltage changed only slightly 

and rather than rising with age, which would have been consistent with electrode failure, 

the voltage appeared to fall with age, indicating mercury loss. The filament temperature 

did vary between the samples by up to 80°C, but with a filament temperature o f around 

900°C, this again is not a very large variation and showed no sign o f a correlation with 

light output.

The only electrode monitoring parameter which did show any sign of a correlation with 

light output was the DC lamp voltage, which is generated as a result o f assymetric lamp 

operation due to an under performing electrode. The DC voltage present across the lamps
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varied between 0.50 and 1.13V, which compared with the AC lamp voltage o f 

approximately 100V is a fluctuation of less than 1%. The Infineon Ballast Control ICpij 

mentioned earlier in this chapter would deem the lamp to have failed and shut it off when 

its DC component reached 10V, which is nearly a factor of 10 greater than any of the 

sample lamps measured in these experiments.

From these results, it is concluded by the author that although the lamp samples were all 

older than their rated life, the electrodes and electrode coatings were still in good operating 

condition despite their age. In order to determine what happens when the electrodes fail, 

the experiment in the next section attempts to damage the electrodes o f one o f the new 

lamps by over running the tube heaters to see what effect it has on the running 

characteristics of the lamp.

7.4 Accelerated Electrode Ageing

Failure due to electrode erosion occurs when the emissive coating on the cathode has 

decreased to the point where not enough electrons are emitted to maintain the discharge 

current. As discovered in the previous experiments, the time taken for an electrode to fail 

can extend into years, which meant it would have been impractical to test for this failure 

mode under normal operating conditions. The two primary causes of electrode erosion are 

sputtering and evaporation. Sputtering occurs (mainly) when the cathode is too cold and 

the subsequent high cathode fall voltage acts to accelerate the mercury ions into the 

cathode at high speed, causing bulk displacement o f cathode material. As the cathode is
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generally kept warm by the discharge current alone, cooling it to speed up the sputtering 

process would have been impractical; evaporation, on the other hand, occurs slowly during 

normal use and much quicker when the cathodes are run too hot. As the cathodes are 

filaments, it is relatively easy to run the cathodes too hot by passing an additional electrical 

current through the filaments while the lamp is in use. This causes the filaments to 

evaporate and deposit on the inside o f the glass tube at a much faster rate than normal, 

rapidly eroding their coating.

7.4.1 Procedure

To overrun the electrodes, a voltage had to be applied to both of the filaments while the 

lamp was in use. It was found through simple experiments that approximately 12V caused 

the filaments to glow bright white and it appeared that increasing it any further may cause 

the filament to melt, so 12V was adopted. During the previous experiments, the filament 

reached its normal operating temperature of around 900°C when a voltage of the order of 

6V was applied. Running the filament at 12V, double its normal voltage, will, in the 

opinion of the author, significantly increase the rate of electrode evaporation and seriously 

reduce the life of the lamp.

In order to apply voltage to the filaments while the lamp was in use, two electrically 

isolated 12V sources were required; as during normal lamp operation there is a voltage 

difference of around 100V between the two filaments. A single transformer was used with 

two 12V windings on the secondary, which were connected directly across the filaments,
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as shown in figure 86. Switches were inserted to allow switching between the accelerated 

testing and normal operating mode when gathering results.

240V Mains 
Supply

(12V) (12V)

(240V)

Figure 86:- Experimental Setup

The Philips 30W G8 lamp was left on continuously for 6 days each week with the heaters 

being overrun, and on the seventh day the switches were opened to disconnect the power to 

the filaments and allow the lamp to run normally. At the end of the seventh day the 

readings for the lamp were recorded and the lamp filaments were then reconnected to the 

12V supplies for another 6 days. This process, which is illustrated in figure 87, was 

repeated until the lamp eventually failed.
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7.4.2 Results

The following figures show the measured characteristics, i.e. light output, lamp voltage,

current and power as the accelerated ageing test progressed. The lamp tested survived for

13 weeks in total, although by the time the measurements were taken on the 13th week, it

was effectively useless as it would not stay alight for more than 10 minutes without

restriking.
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Figure 87:- Filament voltage timing profile

Figure 88 shows the light output for the lamp during its entire life. It can be seen that the 

light output falls steadily with age; there is a small platteau around week 8, before it starts 

falling more sharply again after week 9. By the end of week 12, when the lamp was still 

running unaided, the light output had fallen to less than half its initial value. During the 

13th week the lamp failed, its light output fell to a quarter of its original value and it 

required frequent restriking.
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Figure 88:- Light Output vs. time with accelerated aging

The lamp power, shown in figure 89, dropped steadily with time as the lamp aged until 

week 13, when the power dropped to approximately a third of its original value.
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Figure 89:- Lamp Power vs. time with accelerated aging
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The lamp current also dropped steadily with time until week 13, as shown in figure 90.
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Figure 90:- Lamp Current vs. time with accelerated aging

The lamp voltage decreased steadily with age until the lamp was 8 weeks old and then 

started increasing again. The plot for this can be seen in figure 91.
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Figure 91:- Lamp Voltage vs. time with accelerated ageing
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7.4.3 Discussion

After week 13, when the lamp had failed, it would start normally but extinguish after 

around 10 minutes of use. Looking at the results for lamp current and power, this is not 

surprising as the lamp power when it was running was nearly a third o f the normal lamp 

power. Reduced lamp running power leads to reduced electrode temperatures, which 

reduces the lamp current further until the discharge eventually extinguishes.

Up until week 13, the lamp power and current showed a gradual decrease over the life of 

the lamp. The lamp voltage however showed a gradual decrease during the first 8 weeks 

of use and then started increasing again, so that at the point of failure the lamp voltage was 

nearly double what it was when the lamp was new. In section 7.1 it was shown that the 

lamp voltage decreased with the light output. It was proposed that this was due to the loss 

of mercury within the lamp enclosure; it is further proposed here that this mechanism 

explains the observed decrease in lamp voltage observed up until week 8.

After week 8, the lamp voltage started rising again and continued rising until the point of 

failure; in the author’s opinion this is indicative of electrode failure, as the emissivity o f the 

electrodes decreases due to electrode erosion, the ballast increases the voltage across the 

lamp to try and maintain the current through the lamp. The eroded electrode material 

could be seen deposited on the inside of the glass tube; a photograph of this, which was 

taken after the experiment was completed, is shown in figure 92. The change in prevalent 

failure mechanism around week 8 also coincides with and explains the resumation o f the 

decrease in light output observed after week 8.
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Figure 92:- Photograph o f the lamp end post failure

Based on the results obtained, it is possible to monitor the voltage across the UV lamps to 

determine the extent of mercury loss and corresponding light reduction based on the 

reduction in lamp operating voltage during the first phase of the lamps life. Electrode 

failure can also be detected when the lamp voltage begins to rise.

To build on the findings of this experiment and establish suitable fault detection thresholds, 

a large scale trial involving a few hundred lamps being run at regular power levels until 

they fail is required. Unfortunately this would take several years to complete and was 

therefore outside the possibilities of this work. However, these findings do show that the 

technique works and would be practical once the appropriate functional thresholds have 

been determined.
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8.1 Potential Implementation

With both filament lamp monitoring and UV lamp monitoring, it was found that the 

changes in electrical characteristics o f the lamp are relatively small (typically less than 

lWatt) and will require accurate measurement to detect them. However, as well as being 

accurate, any implementation has to be low cost (in comparison to the lamp it is 

monitoring) and compact (approximately as small as the lamp it is trying to monitor). 

Fortunately, precision power measurement is used extensively for electricity metering and 

as a result of technological advances in remote reading of electricity meters, manufacturers 

such as Maxim have developed purpose-made integrated circuits for use in such 

applications. One such device is the Maxim MAXQ3120 High Precision Analaogue to 

Digital Convertor Mixed-Signal Microcontroller, which is primarily designed for the single 

phase electricity metering market, but is also suitable for any application requiring high 

precision analogue to digital conversion and fast processing.

“The MAXQ3120 microcontroller is a high-performance, 16-bit microcontroller that 

incorporates dual, true-differential, 16-bit sigma-delta analogue-to-digital converters 

(ADCs), a liquid-crystal display (LCD) interface that can drive up to 112 segments, and a 

real-time clock (RTC) module with a dedicated battery-backup supply.”[72] Although some 

parts of this device are redundant for this application, all o f the requirements needed for 

lamp monitoring are incorporated. The device is listed on Maxim’s website as costing 

$4.83 for 1000+ quantities, which is approximately equivalent to £2.50 in Britain. As 

there are very few external components required with this device, it offers an extremely 

cost effective and compact way of implementing lamp monitoring, while the 16,000 word
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flash program memory allows complete customisation of the monitoring system. A block 

diagram of the MAXQ3120 is shown in figure 93 and a possible way of using it is shown 

in figure 94.
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Figure 93:- Block Diagram of the Maxim MAXQ3120 IQ 72]
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Figure 9 4 :-  Block diagram o f how the M A X Q 3 1 2 0  could be used for lamp monitoring [adapted from 66]

From figure 94, it can be seen that very few external components would be required in 

order to use the MAXQ3120 for lamp monitoring applications. The EEPROM is required 

so that readings taken from the lamp while it is in use are not lost on power down, as a 

significant number of readings will usually be required in order to accurately calculate the 

rate of filament evaporation. The RS-485 transceiver enables the lamp being monitored to 

be connected along with other lamp modules to a central monitoring station. An 

alternative to this would be to use power-line communication to link local lamp modules 

together without the addition of extra wires and then link the local groups to a central 

monitoring station using another method such as an RS-485 cabled link, a GSM radio link 

or even an IP based link across the internet.
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Any practical system is likely to feature a large number o f lamps, so for this reason it is 

essential that all data is dealt with at the source and only high level information is passed 

back to the main controller. For example, every lamp will produce a large number of 

readings for voltage, current etc. Generally speaking, the main controller has no need to 

receive all this data; the only data the main controller needs is feedback on lamp condition, 

which could be in the form of a percentage life remaining. This level o f abstraction not 

only significantly reduces data transfer, but enables the main controller to monitor many 

lamps of different types without needing detailed information about each and every lamp. 

The consequence of dealing with the data at a low level is that processing power is 

required at each lamp, which is also catered for by the 16-bit RISC core of the Maxim 

MAXQ3120 IC.

Having developed practical techniques for monitoring filament and UV discharge lamps, 

consideration has to be given to what the future holds for such technology.

8.2 Filament Lamps and the Future

A valid point which could be raised about this technology is why would anyone install 

filament lamp monitoring equipment when the British government, along with other 

governments around the world, are proposing banning filament lamps within the next four 

years[73j. What sounds like a simple bold government initiative however is far from simple 

and many barriers stand in the way o f this objective.
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The commonly cited reasons for replacing incandescent light bulbs with Compact 

Fluorescent Lamps (CFL’s) include approximately five times lower power usage and a 

longer life expectancy. These advantages however are not as straightforward as they seem 

at first sight; although a fairly inefficient light generator, incandescent lamps are very 

efficient at generating heat, but this is discounted as not being of any use when the lamp 

efficiency is calculated. Since most homes use lighting more in the winter than during the 

summer, the heat from the lamps is not always wasted and simply serves to heat the home 

as well as light it, reducing the amount o f time the thermostatically controlled room 

heating is on for. In his article for BBC News[74], Dr Matt Prescott makes the valid point 

that although the heat given off by light bulbs reduces the amount o f other heating 

required, gas central heating is more efficient than the conversion process used to generate 

the electricity to power the lamp in the first place; however a lot of modern apartments and 

flats are heated solely by electricity and in these cases the argument that the heat from a 

light bulb is not wasted can still hold true. The other argument for the use o f CFL’s is their 

longer life expectancy. Once again this is a sweeping generalisation; CFL’s do not 

respond well to frequent starting, which is why the packets usually display a warning to not 

use them in circuits controlled by occupancy or PIR sensors. If the lamp is used in an 

automatic security light, for example, where it may be on for less than a minute at a time, 

then its life span may be less than that of a standard incandescent lamp in the same role. 

Considering the higher purchase cost and hazardous substances contained in CFL’s, it 

makes no sense to use CFL’s in locations such as these.

The major problem for homeowners trying to change over to compact fluorescent lamps is 

compatability with existing light fittings. The vast majority of CFL’s cannot be dimmed
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and will be seriously damaged if they are put in a circuit which features a conventional 

dimmer. CFL’s also require good ventilation to keep the lamp and electronics cool, which 

makes them unsuitable for most enclosed light fittings, such as those found in bathrooms 

etc; use in such fittings can result in a 15% to 20%[75] reduction in light output and 

potential early failure.

Outside of the domestic environment there are many specialist applications where 

incandescent lamps are the only practical choice, these include examples like stage lighting 

where LED lighting has had some impact, but the majority o f luminaires are still based on 

incandescent lamps due to their high light output, better colour rendering and ease of 

dimming.

In summary, although CFL’s can in many cases be substituted for standard GLS lamps, 

banning incandescent lamps completely would be impractical as there are many 

applications where CFL’s or LED lamps simply cannot compete with incandescent lamps 

in terms of light output or endurance. Although it could be easily missed amongst the 

sensationalist headlines regarding the banning of incandescent lamps, the European 

Comission has recognised the nessessity o f incandescent lamps in certain applications and 

said that 15% of lamps sold will be exempt from the minimum efficiency standards. In the 

words of Dr Matt Prescott, “none of the attention grabbing proposals to ban incandescents, 

made anywhere in the world, have yet made it into binding legislation and there is a danger 

that light bulb bans have been announced in order to silence critics rather than drive 

meaningful change. Places such Australia, Canada, California and the EU have all
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announced light bulb bans, to great applause, but none have said how their bans will be 

implemented”^ ] ;  it appears for now at least that the incandescent light bulb is far from 

extinction, and is likely to continue to be used in the more specialist applications for years 

to come. It is these specialist applications, such as theatre lighting, that are particularly 

likely to benefit from comprehensive lamp monitoring systems.

8.3 UV Lamps

Compared with filament lamps, very few germicidal UV lamps are manufactured each 

year; however the techniques developed for monitoring them during the course o f this 

work would be equally applicable to standard office fluorescent lamps, which provide a 

much larger potential market for any lamp monitoring system. UV lamps present 

significant monitoring challenges to the person maintaining them; not only is their 

continued operation critical for the safety of the water they are being used to treat, but 

detecting when they are failing can be very challenging indeed. As was shown in chapter 

7, just because the same power is being delivered to the lamp does not mean that its UV 

light output is correct. Since the main wavelength of their light output is invisible to the 

human eye, it is impossible to tell from looking at the lamp whether it is producing the 

correct light intensity or not, and purchasing dedicated UV sensors is a very expensive way 

of monitoring each lamp. Based on the findings of this research, monitoring the electrical 

characteristics o f the lamp more closely over time could provide a very cost effective way 

of implementing automated lamp monitoring.
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Most UV lamp installations feature a very small number of lamps at a specific location on 

site, as they are often used to treat drinking water in locations where mains water is not 

available. Their location can be well away from main roads and other accessible routes 

and hence automated monitoring presents enormous benefits to the companies and people 

whose job it is to maintain the UV germicidal units. Linking the findings of this work to 

existing distributed monitoring systems, such as those discussed in the first chapter for 

monitoring street lighting, could produce a system whereby a company can remotely 

monitor all its installations and visit customers as their systems require servicing.

If the monitoring hardware was mass produced, its highly likely that it would find new 

applications in monitoring fluorescent lighting throughout entire buildings, so that 

maintenance could be optimised and lamps changed before they start flickering and 

wasting energy through inefficient operation.

8.4 Lamp Monitoring Systems

Whatever the type o f lamp being monitored, the potential for distributed monitoring 

systems is clear. The hurdles at the moment are the succesful monitoring o f individual 

lamp types and simplifying the technology required so that it remains reliable and cost 

effective in relation to the system it is monitoring. As discussed in chapter two, street light 

monitoring systems are already being installed by several councils, and although the initial 

cost is high, it is clearly hoped that the reduced maintenence costs and improved service 

will justify them. The challenge now is to tune the techniques discovered during this work 

on low pressure discharge and filament lamps, so that the hardware required can be
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minimised and the associated cost o f installing the system will then make it practical for 

installation in theatre and stage lights etc, as well the lower cost light fittings found in 

offices and commercial premises around the world.
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PCB Layouts 
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Relay Board Photograph

Sensor Board Photograph
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Circuit Diagrams 
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Result Recording Program Listing 
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•SetF requenqrSourceO
• s  etS ingleHarmoni cO
•satM axim um H arm onicO
•identrtrf)
•S e tllp ln teg ra to O
•iftitiaitseO perationCom pleteFunctionO
V lagW hanO paiationC om plataO
•ResetAveragingO
•SetR angingO
•ResetD evieeO
♦SetScalingO
•SelectFuncaronLislO
•Setlntem alExternalC urrentShuntO
•setS erv rceR equestE nab leR eg is teC
•R eadServiceR equestEnableR egisteiO
*ReadSta1u<)
•T rig g a C
•SeHTestOWO
•w artforO perabonO

^O oub le2S tringO

sertalcom m  

4bbjndla*arlal HANDLE 
^ p R e a d B u ffe r : char*

•serialoom m O
•<<vrrtual>> —xan atcommQ
•TxD ataO  
*RxD at aQ

•pErrorLog

scheduler 
,  e q u e n c e r  int 

i m i  nut e c o u n te r : 
wTi m e f  es : UINT 
wTimeiD : UINT

Int

ResuttHandling

^R esultH andlingO  
*<<virtual>> ~ResultHandlingO 
*RecordR esultO

ŝcheduleO
♦ « ¥ ir tu a l> > -so h ed u le rO
* 0 n e  MinuteOon eO 

enM inutesG oneQ

-pErrorLog

im in u te s b u m e d  : int 
i a m p o n  : bool 
i t i m e o n  : int 
i t i m e o f f : int 
i n i t i a l i s e d  : bool 
i U i d n u m  : long

*LampO
* < < v ir tu a l»  -L jm p O  
♦initialiseO  
^T enm inu teC allO  M̂easureO 

^T u rn O n L am p O  
urnOffLampO 

& T  urnOnRelavO 
^►TurnOffRelayO ĈhecMErroO

-pErrorLog

ErrorHandling

^ErrorHandlingO 
♦<<virtual>> ~ErrorHandlingO 
^ErrorH andling::ReportErroO

•pLabiack

________ Labjack
Abtilabiack : HMODULE

pL am ps{8]

* L ab jad O
*<<virtual>> -L a b ja d O
•EA rtaloglnO
•EA nalogO utO
•EC ountO
•EO igitallnO
*EDigitalOutO
•A SynchConfigO
*ASynchO
•A IS am pleQ
*AIStream StartO
•A lStream C learO
•A O U pdateO
♦BHsToVolisO
•voltsToBitsO
•C o u n te C
•D igitallOO•GetDriverVereionO
•GetErrorStringO
•GetFirm wareVeislonO
•oetW lnV eisionO
•ListAIIO
•LooallDO
*NoThreadO
•T hreadT eslO
•PulseO utO
•pulseO utS tartO
•pulsaO utF inishO
♦PulseO utCalcO
•R eE num O
•R asalO
•R asatL JO
•SHT1XO•sHTCommO
•SHTCRCO•synchO
• w a tc h  dogO
*RaadMarr>0
•W rite MemO
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Scheduler.cpp

iiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiniiiiiiiiinmiiiiiiiiiiiiiiiii
H Scheduler cpp im plem entation o f  the Schedu le r classII lllllllllllllltllllltlllllUIIIIIIHIIIIIIHIIIIIIIIIUIIIIIIIIIII/lll 
^include "Scheduler h" 

/////////////////////////W //////////////////////////////////////////
11 Construction/D estructionllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
//  Call back function for timer
void CA LLBACK O neM inuteU pf U IN T w T im erlD , U IN T  msg,

DW ORD dwUser, DW O RD  d w l,  D W O R D  dw 2 )
{

scheduler* pScheduler, 
pScheduler = (scheduler* )dw U ser; 
pScheduler->O neM inuteG one(),

}
scheduler:: schedulerfErrorH andling* pE rro rH and le r)
{

pErrorLog = pErrorH andler, 
m inutecounter = 0; 
sequencer =  0;
TIM ECAPS tim ecaps; // needed  by tim eG etD evC aps

i f (  timeG etD evCaps) & tim ecaps, sizeof) T IM E C A PS ) )  != T IM E R R N O E R R O R  ) // G et max & min o f  sys tim er 
{

pE rrorL og-> R eportE rror(true , "C annot find lim its o f  tim er”, 0);

wTim erRes = max( tim ecaps w PeriodM in, 10 ); / /  Set m inim um  reso lu tion  o f  10ms
if) timeBeginPeriod< w T im erR es ) != T IM E R R  N O E R R O R  ) // set m inim al res for our tim er
{

pE norL og-> R eportE rro r(false, "C annot set m in tim er res", 0);
}
// Now, run the timer
w Tim erlD  -  tim eSetE vent(60000, w T im erR es, O neM inuteU p, (D W O R D )this, (T IM E_PER IO D IC  || TIM E_CA LLBA CK _FU N CTIO N ));

/ /  (delay in ms, resolution, callback function, user data, periodic tim er event)

if( w T im erlD ”  N U L L )
{

pE rro rL og-> R eportE rror(tn ie, "C annot start tim er", 0);
}
// C reate new labjack object
long Llidnum  = -1,
pLabjack = new  L abjack(pE rrorL og),

// C reate new pow er analyser ob jec t
pPow erA nalyser = new  P ow erA nalyser(”C O M 5", "19200,n ,8 ,l" , pErrorLog);

// C reate 8 lamp objects 
for(int i -  0 ; i < =  7; i++)
{

pLam ps[i] =  n ew  L am p((i+1), pL abjack, pPow erA nalyser, pErrorLog);
}

scheduler: -scheduler))
{

tim eK illEvent( w Tim erlD  ); / /  Kill the tim er
w Tim erlD  = 0;
timeEndPeriod( w Tim erRes ); //  re turn  prev ious setings

if  (pLabjack ! -  N U L L) dele te pL abjack, 
pLabjack = NULL,

if  (pPow erA nalyser != N U L L ) dele te  pPow erA nalyser; 
pPow erA nalyser =  NU LL;

// Delete the 8 lamp objects 
for(int i -  0; i < =  7; i++)
{

i f  (pL am psji] != N U L L) dele te pL am ps[i]; 
pLam psji] =  N U L L ;

>}

// Function called every 60 seconds 
void scheduler: :OneM inuteGone(void)
(

minutecounter++; 
if) m inutecounter =  10)
{

TenM inutesG one(); 
m inutecounter =  0;

}}
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void scheduler: :TenM inutesGone(void)
(

11 S tagger the start o f  the lamps 
if  (sequencer < 8)
{

pLam ps[sequencer]->initialise(),
sequencer++;

)

// U pdate the 8 lamp objects 
foifint i ”  0; i <”  7; i++)
{

pLam ps[i]->T enm inuteCaliO;
}

Scheduler.h

^include "ErrorH andlingh"
^include “mmsystem.h"
^include "lamp.h"

class scheduler

public:
schedulerfErrorHandling* pErrorHandler);
virtual ~scheduler();
void O neM inuteG one(void);

private:
void TenM inutesGone(void); 
int sequencer; 
int minutecounter;
UfNT wTimerRes;
UINT wTimerlD;
ErrorHandling* pErrorLog,
Pow er Analyser* pPow er Analyser; 
Labjack* pLabjack;
Lamp* pLamps[8],

//  used to  stagger the first start o f  the lamps 
/ /  used to  divide dow n to  ten m inutes 
/ /  tim er resolturion 
//  tim er ID

//  A rray o f  pointers to the lam ps
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Labjack.cpp

lu u im iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiw  
II Labjack cpp im plem entation o f  the Labjack classIImimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiim 
Sinclude 'L abjack  h"

mmitmiiiiiiimiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
II Construction/Destruction
4^////////////////////////////////////////////////////////////////

Labjack: Labjack(ErrorH andling* pErrorLog)
I

hlabjack -  N ULL.
hlabjack -  LoadL ibrary("ljackuw "). / /  Load labjack dll
i f  (hlabjack = -  N U L L) pE rrorL og-> R eportE rror(tn ie. "U nable to  load Ijackuw  dll", 0 ), / /  T hrow  erro r if  unable to  load dll

1
Labjack: -LabjackQ  
(

FreeLibrary(hlabjack),
J
long Labjack: EAnaIogIn(long* idnum. long dem o, long channel, long  gain, long* overV oltage , float* vo ltage)
{

EAN A LO G IN D LL EA naloglnD II.
EAnaloglnDII = (EA N A L O G lN D L L )G etProcA ddress(h lab jack , "E A nalog ln"). 
return EAnalogInDII(idnum, dem o, channel, gain , overV oltage, voltage);

)

long Labjack EA nalogO ut(long* idnum, long dem o, float analogO utO , float a n a lo g O u tl)
<

EAN A LO G O U TD LL EAnalogO utD II.
EAnalogOutDII =  (E A N A L O G O U T D L L )G etP rocA ddress(h lab jack , "E A nalogO ut"); 
return EAnalogO utD II(idnum , dem o, analogOutO, an a lo g O u tl) ,

)

long Labjack. ECount(long* idnum, long dem o, long resetC ounter, double* coun t, double* m s)
(

ECOUNTDLL ECountDII,
ECountDII “  (E C O U N T D L L )G etP rocA ddress(hlabjack, "EC ount"); 
return ECountDI!(idnum, dem o, resetC ounter, count, ms);

)

long Labjack: :EDigita!In(long* idnum, long dem o, long channel, long readD , long* state)
I

EDIGITA LIN D LL ED igitallnD II,
EDigitallnDII = (E D lG lT A L lN D L L )G etProcA ddress(h lab jack , "E D ig ita lln"), 
return EDigitalInDII(idnum, dem o, channel, readD , state),

)

long Labjack :EDigitalOut(long* idnum, long dem o, long channel, long  w riteD , long s ta te)
{

EDIG ITA LO U TD LL EDigitalOutDII,
EDigitalOutDII = (E D IG IT  A L O U T D L L )G etP rocA ddress(h lab jack , "E D igita lO ut"); 
return EDigitalOutDII!idnum , dem o, channel, w riteD , state),

)

long Labjack ASynchConfig(long* idnum , long dem o, long tim eou tM ult, long configA , long configB , long conflgT E , long fullA , long fulIB, long fiillC, long halfA, long halfB , long 
halfC)
{

A SY NCHCONFIGD LL A SynchC onfigD ll;
ASynchConfigDII =  (A SY N C H C O N FlG D L L )G etP rocA ddress(h lab jack , "A S ynchC onfig"),
return A SynchConfigDII(idnum , dem o, tim eoutM ult, configA , configB , configT E , full A, fijllB , fullC , halfA , halfB , halfC);

)
long Labjack ASynch(long* idnum, long dem o, long portB , long enab leT E , long enab leT O , long  enableD el, long baudrate, long num W rite, long num Read, long* data)
{

A SYNCHDLL ASynchDII;
ASynchDII -  (A SY N C H D L L )G etProcA ddress(h lab jack , "A S ynch”);
return ASynchDII(idnum, dem o, portB , enableT E , enableT O , enableD el, baudrate, num W rite, num R ead, data);

}
long Labjack AISample(long* idnum, long dem o, long* sta te lO , long u p d ate lO , long ledO n, long num C hannels, long* channels, long* gains, long disableCal, long* overV oltage, 
float * voltages)
{

AISAM PLEDLL AlSam pleDII.
AISampleDII « (A ISA M PL E D L L )G etP rocA ddress(h lab jack , "A lSam ple");
return AISampleD II(idnum, dem o, statelO , update lO , ledO n, num C hannels, channels, gains, disableC al, overV oltage, voltages);

)
long Labjack AIBurst(long* idnum, long dem o, long  s tatelO in , long update lO , long ledO n, long  num C hannels, long* channels, long* gains, float* scanRate, long d isab leC al, long 
triggerlO, long triggerState, long num Scans, long tim eout, float* (voltages)[4 ], long* sta te lO ou t, long* overV oltage, long transferM ode)

{
A IBURSTDLL AIBurstDII;
AIBurstDll =  (A IB U R ST D L L )G etP rocA ddress(h lab jack , "A IB urst");
return AIBurstDII(idnum , dem o, statelO in , update lO , ledO n, num C hannels, channels, gains, scanRate, disableC al, tnggerlO , triggerState, num Scans, tim eout, voltages, 

statelOout, overVoltage, transferM ode),)
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long Labjack A IStream Start(long* idnum, long dem o, long statelO in , long update lO , long ledO n, long num Channels, long* channels, long* gains, float* scanRate, long disableCal, 
long reserved I, long readC ount)

AISTRF.AM STA RTD LL AIStream StartD II.
AIStream SlartDll = ( A IST R E A M ST A R T D L L )G etP rocA ddress(h lab jack , "A lStream Start"),
return AIStream StartO II(idnum , dem o, statelO in, update lO , ledOn, num Channels, channels, gains, scanRate, disableCal, reservedl, readCount),

long Labjack A IStream Read(long locallD , long num Scans, long tim eout, float* (voltages)[4], long* statelO out, long* reserved, long* IjScanBacklog, long* overV oltage) 

A ISTREA M REA D D LL A IStream ReadD ll,
AIStreamReadDII = (A IST R E A M R E A D D L L )G etProcA ddress(h lab jack , "A IS tream R ead"),
return A IStream ReadD llflocallD , num Scans, tim eout, voltages, statelO out, reserved, IjScanBacklog, overV oltage),

long Labjack A lS tream C learflong locallD )

A ISTR EA M CLEA RD LL AIStream ClearD II,
AIStreamClearDII = (A IST R E A M C l.E A R D L L )G etP rocA ddress(h lab jack , "A lStream C lear"), 
return A lStream C learD llflocallD ),

long l abjack A O llpdateflong ’ idnum, long dem o, long trisD , long trisIO , long ’ stateD , long *statelO , long updateD igital, long resetCounter, unsigned long ‘ count, float 
analogOutO, float analogO utl)

A O L'PDA TEDLL AOU pdateD ll,
AOUpdateDII = (A O U PD A T E D L L )G etP rocA ddress(h lab jack , "A O U pdate"),
return AOU pdateDllfidnum , dem o, trisD , trisIO , stateD , statelO , updateD igital, re setC ounter, count, analogOutO, analogO utl);

long Labjack BitsToV olts (long chnum , long chgain, long bits, float ’ volts)

BITSTO V O LTSD LL BitsToVoltsDll.
BitsToVoltsDII = (B IT ST O V O L T SD L L )G etProcA ddress(h lab jack , "B itsT oV olts"), 
return B itsToVoltsDII(chnum , chgain, bits, volts).

long Labjack V oltsToBits (long chnum, long chgain, float volts, long  ’ bits)

V O LTSTO BITSD LL VoltsToBitsDII,
VoltsToBitsDII = (V O L T ST O B IT SD L L )G etProcA ddress(h lab jack , "V oltsT oB its"), 
return VoltsToBitsD ll(chnum , chgain, volts, bits).

iong Labjack C ounter(long ’ idnum, long dem o, long ‘ stateD , long ’ sta te lO , long resetC ounter, long enableST B , unsigned long ’ count) 

COU N TERD LL CounterDII,
CounterDll = (C O (JN T E R D L L )G etProcA ddress(hlabjack, "C ounter");
return CounterDII(idnum , dem o, stateD, statelO , resetC ounter, enableST B , count).

long Labjack DigitallOOong *idnum, long demo, long *trisD, long trisIO , long *stateD , long ‘ s tatelO , long updateD igital, long *outputD ) 

D IG ITA LIO D LL DigitallODII,
DigitalIODU = (D IG IT A L IO D L L )G etP rocA ddress(hlabjack, "D ig ita llO "),
return DigitalIODIl(idnum, dem o, trisD, trisIO , stateD , statelO , updateD igita l, ou tputD ),

lloat Labjack G etD riverV ersion(void)

G ETD RIV ER V ER SIO N D LL G etD riverV ersionD II,
G etD riverV ersionDII = (G E T D R lV E R V E R S lO N D L L )G etP rocA ddress(h lab jack , "G etD riverV ersion"), 
return GetD riverV ersionDII(),

void Labjack G etE rrorS tringdong errorcode, char ’ errorS tring)

G ETERRORSTR1NG DLL G etErrorS tringD ll,
GetErrorStringDII = (G E T E R R O R ST R IN G D L L )G etP rocA ddress(h lab jack , "G etE rrorS tring");
GetErrorStringD II(errorcode, errorS tring),
return.

lloat Labjack G ctEirm w areV ersion(long ’ idnum)

G E I IIR M W A R E V E R SIO N D L L  G etE irm w areV ersionD II,
GetEirmw areVersionDII = (G E T FIR M W A R E V E R SIO N D L L )G etP rocA ddress(h lab jack , "G etF irm w areV ersion"), 
return G etF irm w areV ersionD II(idnum ),

long Labjack G etW inV ersionfunsigned long ’ m ajorV ersion, unsigned  long ‘ m inorV ersion , unsigned long *buildN um ber, unsigned long ‘ platform lD , unsigned long 
’ servicePackM ajor, unsigned long *servicePackM inor)

G ETW IN V ERSIO N D LL G etW inV ersionD ll,
GetW inV ersionD ll = (G E T W IN V E R SIO N D L L )G etP rocA ddress(h lab jack , "G etW inV ersion");
return G etW inV ersionD II(m ajorV ersion, m inorV ersion , bu ildN um ber, p latform lD , servicePackM ajor, servicePackM inor);

long Labjack ListAII(long ‘ productlD L ist, long ‘ seria lnum L ist, long ’ loca llD L ist, long *pow erL ist, long (*calM atrix)[20], long ’ num berFound, long ’ fcddM axSize, long 
‘ hvcM axSize)

L1STALLDLL ListAllD ll;
ListAIID11 = (L IST A L L D L L )G etProcA ddress(h lab jack , "L istA ll"),
return L istA IID Il(productID List, serialnum List, locallD L ist, pow erList, calM atrix , num berFound, fcddM axSize, hvcM axSize),
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ong Labjack LocalII)<long ’ idnum , long  locallD ) 

l.C X 'A l.lD D l.l. l.oca llD D II,
l.ocallD D II (L C X A l.lD D l.I .lG clP ro cA d d res .s jh la b jack , "l o ca llD "). 
return l.ocallD D II! idnum , locallD ),

ong Labjack N oThread! long ’ idnum , long noT hread)

NO I HRE ADD1.I. N o I hreadD II,
N oIhreadD II (N o rH R E A D D I.I .)G e tP ro c A d d re ss (h la b ja c k , "N o T hread"), 
return N oThreadD II! idnum , noT hread),

ong lab jack  ThreadT esttlong  tim eoutm s)

IIIR I A D I L S I D1 I ThreadTcslD II.
1 hreadTestDII - ("I H RE.A D I E S I  D l.l.)G e tP roc .A ddress(h lab jack , "T hreadT est"), 
return 1 hread TeslDll! tim eout ms),

ong Labjack PulseO ut(long ’ idnum , long dem o, long low First, long b itSc lect, long n um P ulses , long  tim e B I , long tim e C I , long tim eB 2, long tim eC2) 

P ll .S E O L T D L l. PulseO utD II.
PulseOutDII -  (P L 'I.S E O l'T D L E K jetP ro c .A d d resslh lab jack , "P u lseO u t") ,
return PulseO utD II)idnum , dem o, low First, b itSelect, num Pulses, t im e B I , t i m e d ,  tim eB 2, tim eC 2),

ong Labjack P ulseO utS tart(long ’ idnum , long  dem o, long low F irst, long b itS e lec t, long  num Pulses, long  tim eB  1, long tim eC  I , long tim eB2, long tim eC 2) 

P L 'L SE O U T ST A R T D l.L  PulseO utStartD II,
PulseO utStartD II - (PL!l.S E O U T S T A R T D l.E )G e tP ro c A d d re ss (h lab jac k , "P u lseO u tS tart") ,
return PulseO utStartD II!idnum , dem o, low First, b itSelect, num Pulses, tim e B I , t i m e d ,  tim eB 2, tim eC 2),

ong Labjack P ulseO utFim sh(long ’ idnum , long dem o, long tim e o u tM S )

P l'L S E O U T F IN IS H D l.L  P ulseO utFim shD II,
PulseO utFinishD II = (P l 'L S E O L ’T F IN IS H D L L X ie tP ro cA d d ress!h lab ja ck , "P u lseO utF in ish"), 
return PulseO utFinishD IK idnum , dem o, tim eou tM S ),

ong Labjack P ulseO utC alcltloa t ’ frequence, long  ’ tim eB , long ’ tim eC )

P l'L S E O U T C A E C D L L  PulseO utCalcD II,
PulseO utCalcD II = (PL 'ESEO U TC A L C D L D G etP ro cA d d ressJh lab jac k , "PulseO utC ’alc"), 
return PulseO utC alcD II(frequency , tim eB , tim eC ),

ong Labjack R eE n u m (lo n g ’ idnum )

R EEN U M D L L R eEnum D II,
ReEnumDII = (R E E N U M D L L )G etP rocA ddress< h lab jack , "R eE n u m ”), 
return R eEnum D II!idnum ).

long Labjack R esetdong ’ idnum )

R ESET D LL ResetDII,
ResctDII = (R E S E T D L .I.)G etP rocA ddress(h lab jack , "R eset"), 
return R esetD II(idnum ).

ong Labjack R e se tIJd o n g  ’ idnum )

R E S E T lJD l.l.  R eset!.JD II,
R esetlJD II ~ (R E S E T E JD I.I .)G e tP ro cA d d ress(h lab jack , " R e s e tlJ " ) , 
return Reset I. JDII( idnum ).

ong Labjack SILL I X dong  ’ idnum , long dem o, long so lK 'o n tm , long  m ode, long  sta lu sR eg , lloat ’ tem pG , lloat ’ tem pi-, float *rh)

SI IT IX D I.I . SH I IX DII,
SH TIX D II (SH FI X D I.l.jC ie tP iocA ddress!h lab jack , "SH  I IX "),
return SI 11 1 XDII( idnum , dem o, so llC om m , m ode. sta tusR eg , tem pC , tem pi-, rh),

ong lab jack  S H T C om tndong ’ idnum , long sol'tCornm, long w aitM eas, long  seria lR eset, long  d ataR a te , long  num W rite, long  num Read, unsigned char ’ data tx , unsigned char 
latarx)

S IL K O M M D 1.I. SH I ( om inD II,
SH IC om m D II -  (S IIT T 'O M M I)l.l.)G e tP ro cA d d re ss!h lab jac k , "SH T C om m ");
return SII IC om m D II(idnum , so lK  ornm, w a itM eas, seria lR eset, d a taR a te , num W rite , num R ead, data tx , datarx).

ong Labjack SH T C R ('(long  s tatusR eg, long num W rite, long num R ead , unsigned  ch a r ’ data tx , unsigned  ch a r ’ d ata rx ) 

SH TC RC D LL SH TC RC D II,
SHTCRCDII = (S H T C R C D L L )G etP ro cA d d ress(h lab jack , "S H T C R C "), 
return S H T C R C D II(statusR eg, num W rite, num R ead , data tx , data rx ).
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long L abjack: Synch(long ’ idnum , long dem o, long m ode, long m sD elay, long husD elay, long controlCS, long  csLine, long csState, long configD , long num W riteRead, 
long ‘ data)

SY N CH D LL SynchDII;
SynchDII = (SY N C H D L L )G etP rocA ddress(hlabjack, "Synch");
return SynchDII(idnum , dem o, m ode, m sD elay, husD elay, controlC S, csLine, csS tate, configD , num W riteR ead, data);

}
long Labjack W atchdogflong " idnum , long dem o, long active, long tim eout, long reset, long activeDO, long ac tiv e D l, long activeD8, long stateDO, long stateD I, long stateD 8) 

W A TCH D O G D LL W atchdogDII,
W atchdogDII = (W A T C H D O G D L L )G etProcA ddress(h lab jack , "W atchdog");
return W atchdogD llfidnum , dem o, active, tim eout, reset, activeDO, ac tiv e D l, activeD 8, stateDO, sta teD I, stateD8);

}
long Labjack :ReadM em(long "idnum , long address, long *data3, long *data2, long " d a ta l , long "dataO)
{

REA D M EM DLL ReadM em DII,
ReadMemDII = (R E A D M E M D L L )G etProcA ddress(h lab jack , "R eadM em "), 
return R eadM em D llfidnum , address, data3 , data2 , d a ta l, dataO);

}
long Labjack ;W riteM em (long "idnum , long unlocked , long address, long data3, long data2 , long d a ta l, long dataO)
(

W RITEM EM D LL W riteM em D ll;
W riteM emDll = (W R IT E M E M D L L )G etProcA ddress(h lab jack , "W riteM em "); 
return W riteM em DII(idnum, unlocked, address, data3 , data2, d a ta l, dataO);

>

Labjack. h

iiiiiiiiiituimiiiiiiiiiiiiimmimMimiititiiimitii 
// Labjack. h: interface for the Labjack class.//
iiniiiiiiiiiiiiniiiiiMiiiiiiiitiiiiiiiiiHiiiiitiiiiiiiiiinitiiii
#include "afx h"
^include "ErrorHandling.h"

# if !defined(A FX _LABJA CK _H B 887B 4F 9_9F E 3_4D C 9_B 513_69 5 F 2 1F7B B F2 IN CLU D ED _)
#defme A FX _L A B JA C K _H _B 887B 4F9_9F E 3_4D C 9_B 513 _ 6 9 5 F 2 1F7B B F2 IN C L U D E D _

#if_ M S C _ V E R >  1000 
#pragma once 
#endif

typedef long (W INAP1 "E A N A LO G IN D LL) (long* idnum , long dem o, long channel, long  gain, long* overV oltage, float* voltage);
typedef long (W INAPI "EA N A LO G O U TD LL) (long* idnum , long dem o, float analogOutO, float analogO utl);
typedef long (W INAPI *ECO U N TD LL) (long* idnum , long  dem o, long resetC ounter, double* count, double* ms);
typedef long (W INAPI ’ ED IG ITA L IN D LL) (long* idnum , long dem o, long channel, long readD , long* state);
typedef long (W INAPI ‘ ED IG ITA L O U TD LL) (long* idnum , long  dem o, long channel, long w riteD , long state);
typedef long (W INAPI ’ A SY N C H C O N FIG D LL) (long* idnum , long  dem o, long tim eoutM ult, long configA , long configB , long configT E, long  fullA, long fullB, long fulIC, long 
halfA, long halfB, long halfC);
typedef long (W INAPI ’ A SY N C H D LL ) (long* idnum , long dem o, long portB , long enableTE, long enableTO , long enableD el, long baudrate, long num W rite, long num Read, long* 
data);
typedef long (W INAPI *A ISA M PLED LL) (long* idnum , long dem o, long* s tatelO , long update lO , long ledO n, long num Channels, long* channels, long* gains, long disableCal, 
long* overVoltage, float* voltages);
typedef long (W INAPI * A IBU RSTD LL) (long* idnum , long dem o, long statelO in, long update lO , long ledOn, long num Channels, long* channels, long* gains, float* scanRate, long 
disableCal, long triggerlO , long triggerState, long num Scans, long tim eout, float* (voltages)[4], long* statelO out, long* overV oltage, long transferM ode);
typedef long (W INAPI *A ISTR EA M STA R TD LL) (long* idnum , long dem o, long statelO in , long  updatelO , long ledOn, long num Channels, long* channels, long* gains, float* 
scanRate, long disableCal, long reserved!, long readC ount);
typedef long (W IN A PI ‘ A ISTR EA M R EA D D LL) (long  locallD , long num Scans, long tim eout, float* (voItages)[4], long* statelO out, long* reserved, long* IjScanBacklog, long* 
overVoltage);
typedef long (W INAPI *A1STREA M CLEA RD LL) (long  locallD );
typedef long (W INAPI *A O U PD A TED LL) (long  ‘ idnum , long dem o, long trisD , long trisIO , long 's ta teD , long ‘ statelO , long updateD igital, long resetCounter, unsigned long 
‘ count, float analogOutO, float ana logO utl);
typedef long (W IN A PI ’ B ITSTO V O L TSD L L) (long  chnum , long chgain, long bits, float *volts); 
typedef long (W INAPI *V O L TSTO BITSD L L) (long  chnum , long chgain, float volts, long ’ bits);
typedef long (W INAPI ’ CO U N TE RD L L) (long  *idnum , long dem o, long *stateD , long ‘ statelO , long resetCounter, long enableSTB, unsigned long *count);
typedef long (W INAPI ‘ D IG IT A LIO D LL) (long *idnum , long dem o, long *trisD , long  trisIO , long ’ stateD, long *stateIO, long updateD igital, long *outputD);
typedef float (W INAPI *G E TD RIV ER V ER SIO N D LL) (void);
typedef void (W INAPI ’ G ETER R O R STR IN G D LL) (long errorcode, char ’ errorS tring); 
typedef float (W INAPI *G ETFIR M W A REV ERSIO N D LL) (long  *idnum ),
typedef long (W INAPI ‘ G E TW IN V ERSIO N D LL) (unsigned long *m ajorV ersion, unsigned long ‘ m inorV ersion, unsigned long ‘ buildN um ber, unsigned long ’ platform lD , unsigned 
long ’ servicePackM ajor, unsigned long ’ servicePackM inor);
typedef long (W INAPI *LISTA LLD LL) (long ’ p roductlD L ist, long ’ serialnum List, long *localID List, long ’ pow erList, long (*calM atrix)[20], long ‘ num berFound, long 
•fcddM axSize, long ’ hvcM axSize);
typedef long (W INAPI *LO C A LID D LL) (long  ’ idnum , long  locallD ); 
typedef long (W INAPI *N O TH RE A D D LL) (long *idnum , long noThread), 
typedef long (W INAPI *TH R EA D TESTD LL) (long tim eoutm s);
typedef long (W INAPI *PU LSEO U TD LL) (long *idnum , long  dem o, long low First, long bitSelect, long num Pulses, long tim eB I, long t im e C l, long tim eB2, long timeC2);
typedef long (W INAPI *PU LSEO U TSTA R TD LL) (long  *idnum , long  dem o, long low First, long bitSelect, long num Pulses, long tim eB I, long tim eC  1, long timeB2, long timeC2);
typedef long (W INAPI *PU LSEO U TFIN ISH D LL) (long ‘ idnum , long dem o, long tim eoutM S);
typedef long (W INAPI *PU LSEO U TC A LC D LL) (float ‘ frequency, long  *tim eB, long *timeC);
typedef long (W INAPI *REEN U M D LL) (long *idnum );
typedef long (W IN A PI ’ RESET D LL) (long *idnum ),
typedef long (W IN A PI *R ESETLJD LL) (long *idnum );
typedef long (W IN A PI *SH T1X D LL) (long *idnum, long dem o, long soflC om m , long m ode, long statusReg, float *tempC, float *tempF, float *rh);
typedef long (W INAPI *SH TCO M M D LL) (long  *idnum , long soflC om m , long w aitM eas, long serialReset, long dataRate, long num W rite, long numRead, unsigned char ‘ datatx,
unsigned char ’ datarx);
typedef long (W IN A PI *SH TCRCD LL) (long statusReg, long num W rite, long num Read, unsigned char ‘ datatx, unsigned char ‘ datarx);
typedef long (W INAPI ‘ SY N C H D LL) (long  ‘ idnum , long  dem o, long m ode, long m sD elay, long  husD elay, long controlCS, long csL ine, long csState, long configD , long
num W riteRead, long *data);
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typedef long (W IN A PI * W A T C H D O G D L L ) (long *idnum, long dem o, long active, long tim eout, long reset, long activeDO, long ac tiveD l, long activeD 8, long stateDO, long 
stateD I. long stateD 8),
typedef long (W IN A PI *R EA D M EM D LL ) (long  *idnum , long address, long *data3, long *data2, long ‘ d a ta l, long ‘ dataO), 
typedef long (W IN A PI ‘ W R IT E M E M D L L ) (long  ‘ idnum , long unlocked, long address, long data3, long data2, long d a ta l, long dataO),

class Labjack 

public
L abjacklE rrorH andling * pE rrorL og), 
virtual - L abjack!),
long EA nalogln(long* idnum , long dem o, long channel, long gain, long* overV oltage, float* voltage);
long E A nalogO utl long* idnum , long dem o, float analogoutO, float a n a lo g o u tl),
long E C ount(long* idnum , long dem o, long resetCounter, double* count, double* ms),
long ED igitalln(long* idnum , long dem o, long channel, long readd, long* state),
long F.DigitalO ut(long* idnum , long dem o, long channel, long w rited, long state),
long A SynchC onfig(long* idnum , long dem o, long  tim eoutm ult, long conftga, long conftgb, long configte, long fulla, long fullb, long fullc, long halfa, long halfb, long

halfc),
long A Svnch(long* idnum , long dem o, long portb, long enablete, long enableto, long enabledel, long baudrate, long num w rite, long num read, long* data); 
long A ISam ple(long* idnum , long dem o, long* stateio , long updateio, long ledon, long num channels, long* channels, long* gains, long disablecal, long* overvoltage, 

float* voltages).
long AIBurst(long* idnum, long dem o, long stateio in , long update ic , long ledon, long num channels, long* channels, long* gains, float* scanrate, long disablecal, long 

tnggerto, long triggerState, long num scans, long tim eout, float* (voltages)[4], long* stateioout, long* overvoltage, long transferm ode),
long A IStream Start(long* idnum , long dem o, long stateioin, long update io , long ledon, long num channels, long* channels, long* gains, float* scanrate, long disablecal, 

long reserved I, long readcount),
long A IStream Read(long localid, long num scans, long tim eout, float* (voltages)[4], long* stateioout, long* reserved, long* Ijscanbacklog, long* overvoltage), 
long A IStream Clear(long locallD ),
long A O U pdate(long *idnum , long dem o, long  trisD , long trisIO , long *stateD , long ‘ statelO , long updateD igital, long resetCounter, unsigned long ‘ count, float 

analogOutO, float analogOut I ),
long B itsToV olts (long chnum , long chgain , long bits, float *volts); 
long V oltsToBits (long chnum , long chgain , float volts, long *bits),
long C ounter(long *idnum , long dem o, long *stateD , long *stateIO , long resetCounter, long enableSTB, unsigned long *count); 
long D igitalIO (long ‘ idnum , long dem o, long ‘ trisD , long trisIO , long *stateD , long ‘ statelO , long updateD igital, long *outputD), 
float G etD riverV ersion(void),
void G etErrorS tring (long  errorcode, char *errorS tring),
float G etF irm w areV ersion (long  *idnum ),
long G etW inV ersion(unsigned long ‘ m ajorV ersion , unsigned long ‘ m inorV ersion, unsigned long ‘ buildN um ber, unsigned long ’ platform lD , unsigned long 

‘ servicePackM ajor, unsigned long *serv icePackM inor),
long ListAII(long ‘ productID L ist, long ‘ seria lnum L ist, long ’ locallD L ist, long ’ pow erList, long (*calM atrix)[20], long ‘ num berFound, long ‘ fcddM axSize, long

•hvcM axSize),
long LocalID (long *idnum , long locallD ), 
long N oThread(long ’ idnum , long noT hread), 
long ThreadTest(long tim eoutm s),
long PulseO ut(long ‘ idnum , long dem o, long low First, long bitSelect, long num Pulses, long tim eB  I , long tim eC  1, long tim eB2, long tim eC2),
long PulseO utStart(long ’ idnum , long dem o, long low First, long b itSelect, long num Pulses, long tim eB I, long tim eC  1, long tim eB2, long tim eC2),
long PulseO utF in ishdong ’ idnum , long dem o, long  tim eoutM S),
long PulseO utCalc(float ‘ frequency, long *tim eB, long *timeC);
long R eEnum (long *idnum ),
long Resetflong * idnum ),
long R esetLJ(long ’ idnum );
long S H T IX (long ’ idnum , long dem o, long softC om m , long m ode, long statusReg, float *tem pC, float *tempF, float *rh);
long SFITComm(long *idnum , long  softC om m , long w aitM eas, long serialReset, long dataR ate, long num W rite, long num Read, unsigned char *datatx,

unsigned char ’ datarx),
long SFITCRC(long statusR eg, long num W rite, long num Read, unsigned char *datatx, unsigned char *datarx);
long Synch(long * idnum, long dem o, long m ode, long m sD elay, long husD elay, long controlC S, long csLine, long csS tate, long configD , long

num W riteRead, long ’ data),
long W atchdog(long ‘ idnum , long dem o, long active, long tim eout, long reset, long activeDO, long a c tiv e D l, long activeD 8, long stateDO, long s ta teD I, long stateD 8);
long R eadM em (long ’ idnum , long address, long *data3, long *data2, long * d a ta l, long *dataO),
long W riteM em (long ’ idnum , long unlocked , long address, long data3, long data2, long d a ta l, long dataO);

private
HM O D U LE hlabjack.

rtendif
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PowerAnalyser.cpp

llllllllllllllllinilllllllllllllllllltlHIIIIIHIIIIIIIIIIIIIIIIIIIH
// Power Analyser cpp implem entation o f  the Pow er A nalyser class.

iimmmnimmimiiiimiiiiiiiiiiiiiimitiiiiiiiiiiiiiii
//include "Pow er Analyser.h"

miiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimiiiiimiuiiimmm
II Construction/D estructioniiiiiiiiiimimiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniii
Pow erAnalyser::PowerAnalyser(char* gszPort, char* settings, ErrorH andling* pErrorH andler)
{

pErrorLog = pErrorH andler;
//  Constructor for Pow er analyser class, indirectly  opens up serial port 
pSerialPort = new serialcom m fgszPort, settings, pErrorLog);

)
Pow er Analyser: -P o w e r Analyser/)
{

// Destructor for Pow er analyser class, indirectly closes serial port 
iffpSerialPort != NULL) dele te pSerialPort; 
pSerialPort «= NULL;

}
void Pow er Analyser :SetAveraging(char option[3], int N oO fM easurem ents)
{ iiiiiiinimniiiimitiiimwmtimtiiiiiiiiiiiwiiimiii

// Set to  average several m easurem ents 
// option = AUT for A uto Range//
// FIX for Fixed Range
// Number o f  m easurem ents =  0 to  16iiiiiiiiiiiiiiiiimmmiiiiiiiiiiiiiitiiiiiiiiiiwiiwmii 
A SSERT((N oO fM easurem ents <= 16) & &  (N oO fM easurem ents > =  1));
CString com m and =
CString NoOfM eas =
iffoption =  "A U T") c o m m a n d + =  ”:A V G ;A U T "; / / Set to  auto range
iff option =  "FIX") com m and + =  ":A V G :FIX  "; / /  Set to  fixed range
iff command —  *")
{

A SSERT(false); / /  I f  the option is not valid, do not send
return;

}
NoOfM eas.Form at("% d", N oO fM easurem ents); 
command += NoOfM eas; 
com m and += "\r";
pSerialPort->TxD ata(com m and); / /  Send com m and string

}
void Power Analyser: :SetBallastU ltrasonicM ode(char option[3])
{ iiiiwiiiiiiiwiinminiimiiiiiiiiniiiiiiiiiimiiiiiiiimii

// Set M eter to ballast and ultrasonic m ode 
// option = H 50 for 50H z operation 
// H60 for 60H z operationllllllllllllllllltlllllllllllllllllllllllllllllllllllinilllllllllllll
CString com m and =
if  (option =  "H50") com m and = ":BA L:H 50\r"; 
i f  (option =  "H 60”) com m and = ":BA L:H 60\r"; 
i f  (comm and = = " ”)
{

A SSERT(false); 
return;

)
pSenalPort->T xData(com m and);

}

//  Set to  50Hz 
/ /  Set to  60H z

//I f  the option is not valid, do  not send 

/ /  Send com m and string

void PowerAnalyser: :Calibrate(charoption[3], int range, double value)
{ iiiiiniiiiiiiiiiiiiwinitiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiwwwii

// Perform calibration.II
// Option -  V LT C alibrate voltage.
/ /  -  AM P C alibrate current
/ /  -  EX T C alibrate external shunt
// Range = (1 - 8)II
// Value -  Double value, rm s V oltage fo r V LT and EX T, rms Am ps
//  for AMP
//////////////////////////////////////////////////////////////////////
ASSERT((range <= 8) && (range >=  1));
CString com m and =
CString strrange = 
strrange.Form at("% d", range); 
com m and = ":CA L:"; 
com m and += option; 
command += strrange; 
com m and +=
com m and += D ouble2String(value);
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com m and += " V ;  
pSerialPort->T xData( command);

}

void Pow er Analyser: :CalibrateSave(int passw ord)
{ iiiiitmiiiiiiimimmmiimimiiiiiiiiiiiiimii

II Save calibration settings, passw ord = (0-9999)
llllllllllllllltllllllllllllllllllllllllllllllllltltlllllHIIIIIIIIIII 
ASSERT((password <= 9999) && (passw ord >= 0)); 
CString com m and =
CString StrPassword = 
com m and = ":CA L:EN D 
StrPassword Form at(''% d", password); 
com m and += StrPassword, 
command += "\r"; 
pSerialPort->T xData(command);

void Pow er Analyser: :CalibrationReadStatus(bool& Vflag, bool& Aflag, bool&  X flag)
{ immmniiiiiwiwiimmiiiiiinimiiiimmiiiiiiii

II Function will return true for each m easurem ent that is 
// calibrated, false i f  not calibrated
II
II Vflag refers to  the voltage input.
// Aflag refers to the current input.
// Xflag refers to  the external shum input.
////////////////////////////////////////////////////////////////////// 
int posa =  0; 
int posb = 0; 
int pose =  0; 
int i - 0 ;
CString command =
CString values =
CString strVflag ”
CString sir Aflag =  "";
CString strXflag =

com m and = ":CAL7\r"; 
pSerialPort->T xData( command); 
values = pSerialPort->RxD ata();

posa = values.Find(","); II F ind first com m a

for (i =  0, i<posa; i++)

{
strVflag += values. Get At(i)

)
values. S etA t(posa,'') ;  
posb =  values.Find(",");

for (i =  (posa+1); i<posb; H-+)
{

str Aflag += values. GetA t(i)
)
values SetA tfposb ,'') ;  
pose = values GetLength(),

for (i =  (posb+1); i<posc; i++)
{

strXflag +=  values.G etA t(i); / /  C opy th ird  flag to  external Shunt
)

Vflag = false,
Aflag = false;
Xflag =  false;

if(strV flag =  "255") Vflag =  true; 
ifistrAflag =  "255”) Aflag =  true; 
if( strXflag =  "255") Xflag =  true;

double Pow er Analyser: :CalibrationReadValues(char option[3], int range)
( lllllllllllllllllllllllllllllllllllllllltlllllllllllllllllllllllllllll 

//  Returns the calibration correction value for the given channel 
// Option = VLT Read voltage calibration
// =  AMP Read current calibration
// =  EX T Read external shunt calibration
// Range can take the values 1-8 
////////////////////////////////////////////////////////////////////// 
A SSERT((range <= 8) && (range >=  1));
CString result = "" ;
CString command = ":CA L:“;
CString strRange = ”"; 
strRange.Form at("% d", range); 
command += option; 
com m and += "? 
command += strRange; 
com m and += "\r"; 
pSerialPort->T xData( com m and), 
result =  pSeriaIPort->RxData(); 
return strtod(result, NULL);

/ /  C opy first flag to  V oltage

// R em ove com m a so that next one is found 
/ /  Find second com m a

//  C opy second flag to  Current

/ /  R em ove com m a so  that next one is found 
// F ind last character
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void PowerAnaIyser::Configure(int prog, int data)
{

llllllllllllllllllltllllllltlllllltlllltlltltlllllltltllllllllllllllll 
II Configure operating m odes o f  analyser 
II Prog “  integer (0  - 49)//
// M ode = A ppropriate integer or floating point data
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllltlllllHlI 
ASSERT((prog <= 49) && (prog >= 0));
CString command =
CString strprog =
CString strdata = 
strprog Format("% d", prog); 
strdata.Form at(”% d", data); 
command = ":CFG “; 
command += strprog; 
command += ", 
command += strdata; 
command += V ;  
pSerialPort->TxData( command),

}
double Power Analyser ::ConfigurationRead(int prog)
{

iiiiiiiiiiiiimiiiiiinmiiiimimiiiiiiimiiiiitiiimiiiiiwi
II Returns configuration as double 
// prog = Integer number (0  - 49)
IlllllllllWllimilllllllllllllllllllUllllllllimillllllllllllll 
ASSERT((prog <= 49) && (prog >=  0));
CString command =
CString strprog =
CString data = 
strprog Form at("% d", prog), 
command = ":CFG? "; 
command += strprog; 
com m and += " V ;  
pSerialPort->T xData( command); 
data = pSerialPort->RxDataO, 
return strtod(data, NULL);

}

void Pow er Analyser; :ClearStatusRegisters(void)
I iiiiiiiiiiimiiiimimiiiimiiiiiiiiiiiiimiiwiiiiiiiiiii 

// C lear Standard Status Register and D ata Status R egisteriiiiimiiiimiiiiiiiiimiiiiiiiiiiiiiiiimmiiiiiiiiiiiiiiiiiiiii 
pSerialPort->T xData( ” *CLS\r");

}

void Pow er Analyser: :SetDataStateEnableRegister(int D SED ata)
{ iiiiiiiiiiiiiiiiiiiimiiiiiiiiiiimiimtiminimiiiiii 

// Set data status enable register (0-255) 
iiiiiiiiiiiiiiiiiim m iim im im iiim m H iiiiii/iiiiiiiiii 
ASSERT((DSEData <= 255) && (D SED ata >= 0)), 
CString command =
CString num ber = 
number.Form at("% d”, DSEData); 
command = ":DSE "; 
command += number; 
command += "\r"; 
pSerialPort->TxData(command);

}

int Power Analyser: ReadDataStateEnableRegister(void)
{ iiiiiiwiiiiwiiiiiiiiiimiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

II Retrieve current value held in data status enable register(0-255) iiiiiiiiiiiiHmiiimiiimiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiH 
pSerialPort->TxDataC': DSE'Ar"),
CString DSEData;
DSEData = pSerialPort->RxD ata(), 
int DataValue = ttoi(DSEData);
ASSERT((DataValue < -  255) && (D ataV alue >= 0)); 
return DataValue;

}

int Pow er Analyser: :ReadDataStatusRegister(void)
{ iiiiiiiiiiiiiiiitiiiiiiiniiiiimiiiiiiiiiiiiiiiiiiiiiiiiiHiiiiiiin

// Retrieve current value held in data status register (0-255).Illlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
pSerialPort->TxD ata(":D SR?\r”);
CString DSRData;
D SRD ata =  pSerialPort->RxD ata(); 
int DataValue =  _ttoi(D SRD ata);
ASSERT((DataValue <= 255) && (D ataV alue > =  0)); 
return DataValue;

Page 207



Paul Edwards Appendix B -  Test Rig Software

void Pow erA nalyser::D eviceClear(void)
{ iiiiiiiiiiiiiiiiiiiiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinii 

H R esets the PM  100 analyser llllllllllllllllllllllltlllllllllllllllllllllllllllllllllllltltlllllll 
pSerialPort->TxD ata(":D V C\r");

J

void Pow er Analyser: SetStandardEventStatusEnableRegister(int E S E D ata )
{ iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiinii

//  Load int value into the standard event status enable reg iste r,
// Accepts int (0-255)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiin
ASSERT((ESED ata < -  255) && (E SE D ata > -  0));
C String com m and =
C String num ber = 
num ber F o rm at("% d \ ESED ata); 
command = "*ESE ", 
com m and += number; 
com m and += " V ,  
pSerialPort->TxD ata(com m and),

)

int Pow er Analyser R eadStandardEventS tatusEnableR egister( void)
( iiiiimmiiiimiiiiiiiiiiiiiiiiiiiiiniiiiiiiiitiiiiiiiitimii

it Retrieve current value in standard event status enab le  re g is te r 
//  Returns int (0-255)imitiiiimimiiintmiimiiiiiiiiniiiiiiiiiitiiiiiiiii
PSerialPort->TxD ata("*ESE7\r“);
CString ESEData,
ESED ata =  pSerialPort->RxD ata(); 
int DataValue = _ttoi(ESED ata);
ASSERT((DataValue <= 255) & &  (D ataV alue > =  0 )) ; 
return DataValue;

}

int Pow er Analyser: :ReadStandardEventStatusRegister( void)
{ iiiiiiiiiiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

// Retrieve current value held in standard event sta tus re g is te r
// Returns the integer value held in the reg ister (0  - 2 5 5 )
IIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
pSeriaIPort->TxD ata("*ESR?\r”),
CString ESRData,
ESRD ata = pSerialPort->RxD ata(); 
int DataValue = ttoi(ESR D ata),
ASSERT((DataValue < «  255) & &  (D ataV alue > =  0 )); 
return DataValue;

}

double Pow er Analyser: :ReadFunctionD ata(char option[3])
{

////////////////////////////////////////////////////////////////////// 
// Read Function data
// Option = W A T W atts 
/ /  =  VAS VA
//  -  V AR V A r
/ /  *  V LT V  rms
// = AM P A rms
//  = PW F Pow er Factor
/ /  = VPK V Peak
II =  APK A Peak
//  -  VCF V C rest Factor
II =  ACF A C rest Factor
/ /  =  W H R W att Hour
II -  VAH VA H our
//  = V RH V A r H our
//  =  AHR A m p H our
//  «  APF A verage Pow er F actor
II =  V H M  V  harm  m agnitude
II = AHM  A harm  m agnitude
II =  W H M  W harm  m agnitude
/ /  = VDF V TH D
// = ADF A TH D
/ /  = FRO  Frequency
II -  VD C V dc
II -  ADC A dc
II = V H A  V harm  angle
II = AHA A harm  angle
/ /  =  RES Resistance
// =  IM P Im pedance
II =  REA Reactance
// Returns one double result.
////////////////////////////////////////////////////////////////////// 
C String data =
C String com m and =  ":FN C :”; 
com m and += option; 
com m and += "?\r"; 
pSerialPort->TxD ata(com m and); 
data =  pSerialPort->RxD ata();
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return strtod(data, NULL);
)

double Power Analyser: :ReadFundamentalData(char option[3])
{

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiih
II Returns one double number for the value requested
II Option = WAT, VAS, VAR. VLT, AMP, PWF, WHR, VAH, VRH, AHR, APF 
II Data read can be synchronised to new data values by using the 
II NDV bit in the data status register
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiH ii
CString data “
CString command = ”:FND:"; 
command += option, 
command += ”7\r"; 
pSerialPort->T xData( command). 
data = pSerialPort->RxData(); 
return strtodfdata, NULL);

)

double Power Analyser: ReadForegroundData(void)
{

IIIIIIIHIIIIIIIIIIIIIIIIIIItlllllllllllllllllllllllllllllllllllllllll
// Data sent is determined by the previously stored selection using
// SelectFunctionList()II
II Repeated use returns subsequent measurements and do not repeat
II the same data
II Returns one double number
//////////////////////////////////////////////////////////////////////
CString data =
CString command = ":FRD?\r"; 
pSerialPort->T xData(command), 
data = pSerialPort->RxDataO, 
return strtod(data, NULL);

)

void Power Analyser ::SetFrequencySource(char option[3])
{

//////////////////////////////////////////////////////////////////////
// Set Frequency SourceII
II When the input signal is complex, the PM 100 analyser locks onto 
II the lowest frequency.II
// Option = AUT Set auto frequency source
// = VLT Set voltage frequency source
// = AMP Set current frequency source
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUIIIII 
CString command = " FSR ", 
if (option =  "AUT") command += "AUT\r"; 
if (option =  "VLT”) command += "FIX:VLT\r"; 
if (option == "AMP”) command += "FIX: AMP\r"; 
pSerialPort->TxData(command);

void Power Analyser: :SetSingleHarmonic(int harmonic)
{ llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

II Set single harmonicII
II Harmonic -  integer harmonic number (0 - 50)
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiim iiiiiiiiiiii
ASSERT((harmonic <= 50) && (harmonic >= 0)); 
CString command = "";
CString number = 
number Format("%d", harmonic); 
command = ":HRM "; 
command += number; 
command += "\r"; 
pSerialPort->T xData(command),

)

void PowerAnalyser::SetMaximumHarmonic(char option[3], int harmonic)
{

lllllllllllllllllllllllllllllllllllllUIIIIIIIIIIIIIIHIIIIIIttlllllll 
II Set Maximum Harmonic For Series
II Both ODD and ALL series start with harmonic 0, the DC component. 
// Therefore the ODD series is 0,1,3,5.. and the ALL is 0,1,2,3..
// Option = ODD Only odd harmonics 
// = ALL Use both odd and even harmonics
// Harmonic = Integer maximum harmonic (I - 50)
llllllllllllllllllllllin illllllllllllllllllllllllllllllllllllllllllll
ASSERT((harmonic <= 50) && (harmonic >= 1));
CString strHarmonic = 
strHarmonic.Format(”%d", harmonic);
CString command = ":HMX:"; 
command += option; 
command += strHarmonic; 
command += "\r"; 
pSeria!Port->T xData(command);
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CString Power Analyser::Identify( void)
{

i i n m m i i i m i i m i i i i i i i i i i i i i i i i m m m i i i m i i
// Returns CString containing a description of the analyser
m m im m m iim im iii i i ii i i im m iiii im iii i i ii i i i ii i i im
pSerialPort->T xData(" 'IDNAr”), 
return pSeriaIPort->RxData(),

)

void Power Analyser SetUplntegrator(char option[3], int time)
{

m w m iiim tiiitiiiiiiiiiiiiiiiiiiiim iiiiiiiiiiiH iiiiiiiiii  
// Set up integrator and start running
// Options •  RUN, time Run time in integer minutes

“ ENB Start integrator with previous time
H m DIS Stop integrator
im m i i im im t t iM im m iu n tm i im im m ii i i i i i t i i i i
CString strTime = 
strTime Format(”%d", time);
CString command = ":INT:“; 
command += option;
if (option =  "RUN") command += strTime; 
command += *\r"; 
pSeria!Port->TxData( command),

}

void Power Analyser InitialiseOperationCompleteFunction( void)
{ iiiiiiimimiiiiiiiiimtiitiiiimitwtiiitiiiiimiiiii

II Clears the NDV bit, NDV bit will be set again when new data is
// available, use FlagWhenOperationComplete<) to check
lllltm illlllllllllllllllllllllllllltlllllltlllllllllllllllllllllllll
pSerialPort->TxDataC’OPCAr”),

)

bool Power Analyser Flag WhenOperationComplete( void)
(

i i ii i i ii i i i iim n iu iiin im m m iiiiitim im iim iu iiim ii
// Use with InitialiseOperationCompleteFunctionO, will return true 
// when new data is available
i i m m m i m / m m m i u m m i / i m / m m / / / /
if (pSerialPort->RxData() =  *1")
{

return true;
}
else
{

return false,
}

)

void PowerAnalyser::ResetAveraging(void)
{

i i i i i i i i i i i im ii i ii i i ii im im iii ii i i i ii i i im im iii i i i ii i i i i
// This command can be used to speed up the response o f the 
II instrument to step changes especially when in fixed averaging
iitiiiiiiiiiiH itniw m iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiH iiiii
pSerialPort->TxData(":RAV\r");

}

void PowerAnalyser;:SetRanging(char optionl[3], char option2[3], int range) 
{

i i ii in m i i i im m i i i i i i i i i i i i i i i i t i i i i i i i i i im i im i i i i i i i
1/ Set fixed or auto ranging for each input 
// Option I “ VLT Set Voltage ranging 
II AMP Set Current ranging
// Option 2 = FIX Fixed Range 
// AUT Auto Range
// Range -  1 -8  (Not used if auto range specified)
lllllllllllllllllltllllllllllllltlllllllllllllllllllllllllllllllllllll 
ASSERT((range <» 8) && (range >= I));
CString strRange = 
strRange Format("%d", range);
CString command “ " RNG ”; 
command += option 1, 
command += 
command += option2,
if (option2 =  "FIX") command += strRange; 
command += "V; 
pSerialPort->T xData( command),

}

void PowerAnalyser::ResetDevice(void)
{

/////////////y//y/////////////////////////////////////////////////////
// Reset Power Analyserllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
pSeria!Port->TxData("*RST\r");

}
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void Power Analyser: SetScaling(char option[3], double scale)
{ iiiitiiimimmmnimmmmiiimiiiiiimmii

// Set scaling for each input
// Option « VLT Set Voltage Scaling
// « AMP Set Current Scaling
// Scale = Number with decimal point, e.g. 0.1, 1.0 etciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimiiiii
CString strScale, 
strScale Format("%f\ scale), 
strScale TrimRight("0"),
CString command -  “ SCL:"; 
command += option, 
command += " *; 
command += strScale; 
command += "\r", 
pSerialPort->T xData( command),

void PowerAnalyser::SelectFunctionList(char option[3])
{

iwiimimmiimiiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiim
// Select the list of parameters for return by Read ForegroundDataf)
// Option = CLR Clear Entire Selection
// = CHI Channel 1
// = WAT Watts
U -VASVA
// -VAR VAr
II -  VLT V rms
II = AMP A rms
II = PWF Power Factor
H -  VPK V Peak
II = APK A Peak
II -  VCF V Crest Factor
II = ACF A Crest Factor
II = WHR Watt Hour
II = VAH VA Hour
II = VRH VAr Hour
II -  AHR Amp Hour
II -  APF Average Power Factor
1/ = VHM V harm magnitude
II = AHM A harm magnitude
II -  WHM W harm magnitude
H = VDF V THD
1/ -  ADF A THD
II -  FRQ Frequency
II -  VDC V dc
II = ADC Adc
II = VHA V harm angle
II = AHA A harm angle
II = FND Include Fundamentals in the list
II = SER Include the harmonic series defined by SetMaxHarm
II = RES Resistance
II = IMP Impedance
II = REA Reactance
m illlllim illllllllllllllllllllllllllllllllllllllllllllllllllllll
CString command = ":SEL:";
command += option;
command += "V;
pSerialPort->T xData( command),

)

void Power Analyser: :SetInternalExtemalCurrentShunt(char option[3])
( iiiiiimitiiiiiiiiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiiiimiiimi

// Set whether using an external or the internal current shunt
// Option = INT Use Internal Current Shunt
// = EXT Use External Current Shunt
llllllliniltlllllllllllHIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIHIIIII
CString command = " SHU:",
command += option;
command += "\r";
pSerialPort->T xData(command).

}

void Power Analyser::SetServiceRequestEnableRegister(int SREData)
{

iiiiiiiin im iiiiiiiiiiH iiiiiiiiiiiiw iiiiw iiu iiiiiiiiiiiiiiii
// Set service request enable register with the integer value
/ / (0-255)
llllllllllllllllllllllinilllllH llllllltlllllllllllllllllllllllllllll
ASSERT((SREOata <= 255) && (SREData >= 0)); 
CString command = "*SRE ";
CString number = 
number.Format("%d", SREData), 
command += number; 
command += “\r"; 
pSerialPort->TxData(command);

}
int Power Analyser: :ReadServiceRequestEnableRegister(void)
{

IIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUIIIIIIIIIIH
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// Retrieves current value held in the service request enable 
// register Returns integer in range 0-255
i i i i im it i i i im m i i i i iM i im m im tm i i i i i i iu tu i i i iu
pSerialPort->TxData("*SRE?\r"),
CString SREData;
SREData = pSerialPorl->RxData(), 
int DataValue = _ttoi(SREData),
ASSERT((DataValue <= 255) && (DataValue >= 0)); 
return DataValue,

}
int Po wer Anal yser: Read Status( void)
I

t i i i im ii iM ii i i i i ii t i t iim m iii i i ii i i i iim iiim iiii i i i ii i
II Returns the status register as an integer (0-255)
i i i i i i i i i i i im iiim iii ii i i i ii i i ii i i i ii t i i ii i i ii i im iii i i ii i i i
pSerialPort->TxData(", STB?\r");
CString STBData,
STBData = pSerialPort->RxData(); 
int DataValue = ttoi(STBData),
ASSERT((DataValue < - 255) && (DataValue >= 0)); 
return DataValue;

)

void Power Analyser: Triggerfvoid)
{

w m i m i m i i i i m m i n i i i n m i i i i im m n m i i i i i m i
II Resets the averaging, and starts the new measurement
ttiiH iim m iim iim iiiu iim u m tim iim iitititiiiim m ii
pSerialPort->TxData("*TRG\r");

}
bool PowerAnalyser::SelfTestOK(void)
{

iiiiiiiiu iitiiiiiiiiiiim iiiim iiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiii 
II Query status of self test, true = OK, false = Error 
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIW 
pSerialPort->T xDat a( ” *TST?\r");
CString data = pSerialPort->RxData(); 
if ((data — "1”) || (data GetLength —  0))
{

return false;
}
else
{

return true;
J)

void Power Analyser; :WaitForOperation( void)
{

iiiiiiiiiiiiiiiim im iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin ii
II The operation complete flag is set when new data is available,
// this function will then effect a delay until data is available
llllllllllllllim illin tllllllllllttlllllllllllllllllllltllllllllll
pSerialPort->T xData(”* W AI\r");

}

CString Power Analyser: :Double2String(double number)
{ //////////////////////////////////////////////////////////////////////

II Accepts a double number, returns CString in the following format 
// d ddddEdd
iiiuiiiiiiiiiiiiiiiiimiiiiiiiiiiiimiiiiiiiimmiiiiiiiiim
int power = 0; 
int dec = 0; 
int sign “ 0;
CString strnumber =
CString strpower =
CString strsign =
CString stranswer =

//Convert number to positive if negative, whilst storing sign 
if (number < 0.0)
{

strsign »
number = -number;

}

//Find power for large numbers 
if (number > 1.0)
{

while (number >= 10.0)
{

number = number /10.0; 
power = power + 1;

}}
//Find power for small numbers 
else
{

while ((number < 1.0) && (number > 0))
{

number = number * 10.0; 
power = power - 1;

Page 212



Paul Edwards Appendix B -  Test Rig Software

>}
ASSERT (power < 100);

// Convert the remaining number to a string, round to 4d.p.'s 
stmumber = _ecvt(number, 5, &dec, &sign),
// Insert decimal point which was lost during conversion into string 
stmumber lnsert(l,

// Convert power to string format

strpower.Format("%d", power), 
stranswer = strsign; 
stranswer += stmumber; 
stranswer += "E"; 
stranswer += strpower;

return stranswer,
>

PowerAnalyser.h

înclude "SeriallO.h"
înclude "ErrorHandling.h"

»include "strstreah”
#include “math.h”

class Power Analyser
{
public:

PowerAnalyser(char* gsvPort, char* settings, ErrorHandling* pErrorHandler); 
virtual -PowerAnalyser();
void SetAveraging(char option[3], int NoOfMeasurments); 
void SetBallastUltrasonicMode(char option[3]); 
void Calibrate(char option[3], int range, double value); 
void CalibrateSave(int password);
void CalibrationReadStatus(bool& Vflag, bool& Aflag, bool& Cflag);
double CalibrationReadVaIues(char option[3], int range);
void Conflgure(int prog, int data);
double ConflgurationRead(int prog);
void ClearStatusRegisters(void);
void SetDataStateEnableRegister(int DSEData);
int ReadDataStateEnableRegister(void);
int ReadDataStatusRegister(void);
void DeviceCleaifvoid);
void SetStandardEventStatusEnableRegister(int ESEData);
int ReadStandardEventStatusEnableRegister(void);
int ReadStandardEventStatusRegister(void);
double ReadFunctionData(char option[3]);
double ReadFundamentalData(char option[3]);
double ReadForegroundData(void);
void SetFrequencySource(char option[3]);
void SetSingleHarmonic(int harmonic);
void SetMaximumHarmonic(char option[3], int harmonic);
CString Identify(void);
void SetUpIntegrator(char option[3], int time); 
void InitialiseOperationCompleteFunction(void); 
bool FlagWhenOperationComplete(void); 
void ResetAveraging(void);
void SetRanging(char option I [3], char option2[3], int range);
void ResetDevice(void);
void SetScaling(char option[3], double scale),
void SelectFunctionList(char option[3]);
void SetlntemalExtemalCurrentShunt(char option[3]);
void SetServiceRequestEnableRegister(int SREData);
int ReadServiceRequestEnableRegister(void),
int ReadStatus(void);
void Trigger(void),
bool SelfTestOK(void);
void WaitForOperation(void);

private:
serialcomm* pSerialPort, 
ErrorHandling* pErrorLog,
CString Double2String(double number);

);

Page 213



Paul Edwards Appendix B -  Test Rig Softw are

SeriallO.cpp

// Construction/Destruction//////////////////////////////////////////////////////////////////////
serialcomm: serialcommfchar* gszPort, char* settings, ErrorHandling* pErrorHandler)
{

pErrorLog = pErrorHandler;
// Buffer for data read in 
pReadBuffer = new char[500);

DeviceControlBlock = NULL; 
handleserial = NULL;

// Open COM port
handleserial = CreateFilefgszPort, GENERIC_READ | GENERIC_WRITE, 0, 0, OPEN_EXISTING, NULL, 0); 
iff handleserial == INVALID HANDLE V ALUE)
{

// Unable to obtain handle on serial port, report and terminate 
pErrorLog->ReportError(true, "Unable to open COM port", GetLastErrorf)),

}
// Define a Device Control Block for the COM port and set baud rate etc 
DeviceControlBlock = new DCB,
FillMemoryfDeviceControlBlock, sizeoff*DeviceControlBlock), 0);
DeviceControlBlock->DCBIength = sizeoff *DeviceControlBlock), 
iff!BuildCommDCBfsettings, DeviceControlBlock))
{

II DCB could not be built, report and terminate
pErrorLog->ReportError(true,"COM Port DCB could not be built", GetLastErrorf));

}
// Specify timeouts for send and receive 
timeout = new COMMTIMEOUTS; 
timeout->ReadIntervalTimeout = 1; 
timeout->ReadTotalTimeoutConstant = 500; 
timeout->ReadTotalTimeoutMultiplier = 1; 
timeout->WriteTotalTimeoutConstant = 500; 
timeout->WriteTotalTimeoutMultiplier = I; 
iff! SetCommTi meoutsf handleseriai, timeout))
{

// Timeout values could not be set
pErrorLog->ReportError(false, "Unable to set COM port timeout values", GetLastErrorf));

}}

serialcomm: :-serialcomm()
{

// Close COM port
iff ICIoseHandlef handleserial))
{

// Handle on serial port could not be closed
pErrorLog->ReportError(false, “Unable to close handle on serial port", GetLastErrorf));

}
// Delete DCB
iffDeviceControlBlock != NULL) delete DeviceControlBlock;
DeviceControlBlock = NULL; 
iff timeout != NULL) delete timeout; 
timeout = NULL;
iffpReadBuffer != NULL) delete pReadBuffer; 
pReadBuffer = NULL;

void serialcomm: TxDatafCString data)
{

unsigned long byteswritten; 
long length = data GetLengthf);

iff! WriteFilef handleserial, data, length, &byteswritten, NULL))
{

// Write to file failed
pErrorLog->ReportError(false, "Warning:- Unable to write to COM port", GetLastErrorf)); 
return;

}
iff(long)byteswritten != data.GetLengthf))
{

// Warning - data sent to port was more than what was transferred 
pErrorLog->ReportError(false, "Data written to COM port was less than that sent", 0); 
return;

}
return;

CString serialcomm: :RxData()
{

CString DataRead; 
unsigned long BytesRead;
// Read bytes in synchronously
iff IReadFilefhandleserial, pReadBuffer, 500, &BytesRead, NULL))
{

pErrorLog->ReportError(false, "Failure reading from COM Port", GetLastErrorf));
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}
forfint i = 0; i<((int)BytesRead), i++)
{

DataRead += pReadBufTer[i],
}
return DataRead,

SeriallO.h

#include "afx.h"
înclude "ErrorHandling h"

class serialcomm
{
public:

serialcomm(char* gsvPort, char* settings, EnrorHandling* pErrorHandler); 
virtual ~serialcomm(), 
void TxData(CString data),
CString RxData();

private:
HANDLE handleserial,
DCB* DeviceControlBlock;
COMMTIMEOUTS* timeout,
ErrorHandling* pErrorLog; 
char* pReadBuffer,

// File Handle for opened COM Port 
// Pointer to DCB block for COM Port 
// Pointer to timeout limits on communication 
// Pointer to object for dealing with errors 
// Pointer to reading buffer
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ErrorHandling.cpp

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 
// ErrorHandling cpp implementation of the ErrorHandling class.//
iiiiiiiiniimiiiiimimiiiMitiiiiiiiitiiiiimiiiiiiimi
//include "ErrorHandling h"
//include "fstream.h"

iwiiniiiiiiimimuiimimiiiiiimimimiiiiiiiiiiii
II Construction/Destruction
llllllllllltllimiHttinitWmilHIIMItlllillltlHIIHHIIH
ErrorHandling ErrorHandlingO
{

// Create or open new file object for logging errors 
char* pFileName = "errorlog.txt", 
pErrorFile = NULL, 
pErrorFile = new ofstream;

// Retrieve current time and date 
char* pTimeString = NULL,
CTime thetime = CTime::GetCurrentTime();
CString timestring;
timestring = thetime Format( “%d%b%Y %H:%M " );

// Open Error log file for writing by this process only, if not in existance create new file 
pErrorFile->open(pFileName, ios::app | ios::in | ios :out, 0),//filebuf::sh_read );

ifl[pErrorFile->fail())
{

// File not opened, delete nearby objects and terminate immediately 
cout « timestring «  "Error - Unable to open or create Log File" «  endl; 
delete pErrorFile; 
pErrorFile = NULL; 
exit(l);

}
else
{

// File opened successfully, carry on
cout «  "**••*«*»•*•*• " « timestring «  "Log File Opened Successfully ****»•
•pErrorFile «  »*«*•»*****•** " « timestring «  “Log File Opened Successfully

)}
ErrorHandling: :~ErrorHandling()
{

//Close file etc 
if (pErrorFile != NULL)
{

pErrorFile->flush(); 
pErrorFile->close(); 
delete pErrorFile; 
pErrorFile = NULL;

)}
ErrorHandling::ReportError(bool terminate, CString errordescription, long errorcode)
(

// Retrieve current time and date 
CTime thetime = CTime::GetCuirentTime();
CString timestring;
timestring = thetime.Format( ”%d%b%Y %H:%M %S " );

if (terminate == true)
{

// Write error to log file
•pErrorFile « timestring «  "Error;- ” «  errordescription «  ", Code:-" «  errorcode «  endl;
// Copy error to screen
cout« timestring «  "Error:-" «  errordescription «  ", Code:-" «  errorcode «  endl; 
exit(l);

}
else
(

// Write error to log file
•pErrorFile « timestring «  "Warning:- " «  errordescription «  ", Code:-" «  errorcode «  endl; 
// Copy error to screen
cout« timestring «  "Warning:-" «  errordescription «  ", Code:-" «  errorcode «  endl;

)}

«  endl;
****** << en(j|.
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ErrorHandling. h

miMtmiiiimmmittmimmtiimiimiiiiimii
ErrorHandling h interface for the ErrorHandling class//

imiiimmimiiiimimmmitiiimiimiitimuim
înclude “afx h"
înclude "fstream h"

#if !defined(AFX_ERRORHANDLlNG_H E882C7E3_847E_4B49_95B2_D294E221 AD25 INCLUDED_)
^define AFX_ERRORHANDLING_H_E882C7E3_847E_4B49_95B2_D294E221AD25 INCLUDED

#if _MSC_VER > 1000 
#pragma once
#endif// MSC_VER > 1000

class ErrorHandling
{
public:

ErrorHandlingO; 
virtual ~ErrorHandling();
ErrorHandling: ReportEnorfbool terminate, CString errordescription, long errorcode);

private:
ofstream* pErrorFile;

};
#endif // 'defined(AFX_ERRORHANDLING_H E882C7E3_847E_4B49_95B2_D294E221AD25 INCLUDED_)
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Lamp.cpp

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIII 
U Lamp cpp: implementation of the Lamp class.

miiiiimiiimiiiiiiimiiimiimmiiiiiimiiimiiiimiiH
& include "lamp h"

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiihiiiiii

11 Construction/Destruction
iiiiiiiiiiiim iiiiiiiiiim m tf tiiiiiiiiiim in iiiiiiiim iH

Lamp Lamp(int chnum, Labjack* pLabj, Power Analyser* pPowerMeter, ErrorHandling* pErrorHandler)

ASSERT((chnum >“  1) && (chnum <= 8));
Channel = chnum,
pLabjack = pLabj,
pPower Analyser = pPowerMeter;
pErrorLog = pErrorHandler;
Uidnum = -1;

T urnOffRelay(Channel);
T urnOffRelay(Channel+8), 
minutesburned = 0; 
timeoff = 0; 
timeon = 0; 
lampon = false; 
initialised = false;

// Initialise known variables

// Set labjack id to first found 

II Turn off lamp

// Initialize all yet to be used variables

// Generate filename for the result file for this channel 
CString strChannel =
CString filename = "LampChannel”; 
strChannel Format("%d", Channel); 
filename += strChannel; 
filename += ".txt";

//Create new result handler object and file for this lamp channel 
pResultLog = new ResultHandling(filename GetBuffer(20)); 
filename ReleaseBufferQ,

}
Lamp::~Lamp()

if(pResultLog != NULL) delete pResultLog; 
pResultLog = NULL; // Destroy the corresponding file object

void Lamp :Initialise(void)
{

if (initialised = true) return, 
initialised = true; 
TumOnLampO,

// Skip this step if already initialised

void Lamp::TenminuteCall(void)

if (initialised) return; 
minutesburned = minutesburned + 10; 
if (lampon == true)
{

timeon = timeon + 10; 
if (timeon >= 180)
{

}
else
{

)
else
{

TumOfTLampO;

Measure();

timeoff = timeoff + 10; 
if (timeoff >= 10)
{

TumOnLampO;
}

// Check channel is up and running
// Update number of minutes lamp has been on for

// Check to see if it is time yet to turn off lamp 

//Turn off lamp

// If execution reaches here lamp is still on, take routine measurement

// Check to see if it is time yet to turn on lamp 

// Turn on lamp

void Lamp::Measure()
{

long overvoltage = 0; 
float voltage = 0;

// Switch ammeter to channel of interest 
TumOnRelay(Channel);
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TumOffRelay(Channel+8);

// Set bits of multiplexer to select input channel according to channel number 
pLabjack->EDigitalOut(&LJidnum, 0, 0, 0, 0); 
pLabjack->EDigitalOut(&LJidnum, 0, 1,0, 0), 
pLabjack->EDigitalOut(&LJidnum, 0, 2, 0, 0);
pLabjack->EDigitalOut(&Uidnum, 0, 3, 0, I), // Enable output of analogue multiplexer
iff(Channel - I) & 4) pLabjack->EDigitalOut(&LJidnum, 0, 2,0, 1); //MSB
ifUChannel - I) & 2) pLabjack->EDigitalOut(&LJidnum, 0, 1, 0, I);
iff (Channel - I) & I) pLabjack->EDigitalOut(&LJidnum, 0, 0, 0, I); //LSB

pResultLog->RecordResult("Measurement Cycle Start, Minutes Burned - ", (double)minutesburned); 

// Read temperature on analogue channel 0
Check4Error(pLabjack->EAnalogIn(&LJidnum, 0, 0, 0, &overvoltage, &voltage)),
iff overvoltage > 0) pErrorLog->ReportEmor(false, "LJ Overvoltage on AlChannel 0", Channel);
pResultLog->RecordResult("Lamp Temp Sens Voltage", (double)voltage), // Record Result

// Read light level on analogue channel I
Check4Error(pLabjack->EAnalogIn(&LJidnum, 0, 1,0, &overvoltage, &voltage)); 
iffovervoltage > 0) pErrorLog->ReportError(false, "LJ Overvoltage on AlChannel 1", Channel), 
pResultLog->RecordResult("Lamp Light Sens Voltage", (double)voltage); // Record Result

// Read ambient temperature on analogue channel 2
Check4Error(pLabjack->EAnalogIn(&LJidnum, 0, 2, 0, &overvoltage, &voltage));
iflovervoltage > 0) pErrorLog->ReportError(false, "LJ Overvoltage on AlChannel 2", Channel);
pResultLog->RecordResult("Room Temp Sens Voltage", (double)voltage); // Record Result

// Record Lamp Voltage
double volts = pPowerAnalyser->ReadFunctionData("VLT“); 
pResultLog->RecordResult("Volts AC", volts);

// Record Lamp Current
double amps = pPowerAnalyser->ReadFunctionData("AMP“); 
pResultLog->RecordResult("Amps AC", amps);

// Record Lamp Power
double power = pPowerAnalyser->ReadFundamentalData("WAT"); 
pResultLog->RecordResult("Watts", power),

// Record Lamp Power Factor
double PFactor = pPowerAnalyser->ReadFundamentalData("PWF"); 
pResultLog->RecordResult("Power Factor", PFactor);

// Switch channel back to bypass 
TumOnRelay(Channel+8);
T urnOffRelay(Channel),

// Mark end of measurements
pResultLog->RecordResult(" End of Measurement Cycle ", 0.0);

void Lamp::TumOnLamp(void) // Switch on lamp
{

if (lampon == true) return, // Return if lamp already on

pPowerAnalyser->Configure( 1,1); // Set analyser to inrush current mode
pPowerAnalyser->SetRanging(”AMP","FIX",6); // Set analyser to fixed current range 24.3A max

T umOnRelay(Channel);

double amps = pPowerAnalyser->ReadFunctionData(“AMP”); // Read inrush current
pResultLog->RecordResult(” Lamp Turned On, Inrush Current", amps);

pPowerAnalyser->SetRanging(''AMP","AUT",8); // Return analyser to auto range mode

TumOnRelay(Channel+8), // Put channel onto bypass
TumOffRelay(Channel),
lampon = true; // Update variables
timeoff = 0; 
timeon = 0;

Measure(); // Take measurements imediately after startup
>
void Lamp::TumOffLamp(void) // Turn off lamp for rest
{

if (lampon == false) return, // Return if lamp already ofT
Measure(); // Take last measurements before turning off
T umOffRelay(Channel+8);
lampon = false, // Update status variables
timeon = 0; 
timeoff = 0;
pResultLog->RecordResult(" Lamp Turned Off ", 0.0);

}
void Lamp::TumOffRelay(int RelayNo)
{

ASSERT ((RelayNo >= 1) && (RelayNo <= 16));
Check4Error(pLabjack->EDigitalOut(&LJidnum, 0, (RelayNo - 1), 1, 0));

}
void Lamp::TumOnRelay(int RelayNo)
{

// Turn on relay Ammeter relay's = 1-8, Bypass relay's = 9-16.
ASSERT((RelayNo >= 1) && (RelayNo <= 16));
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Check4Error(pLabjack->EDigitalOut(&LJidnum, 0, (RelayNo - 1), 1, 1));)
void Lamp: :Check4ErroF(long errorcode)
I

if (errorcode != 0)
{

CString errorstring;
CString errorstring I = "LJack ",
pLabjack->GetErrorString(errorcode, errorstring.GetBuffer(200)); 
errorstring ReleaseBuffer(), 
errorstring 1 += errorstring;
pErrorLog->ReportError(false, errorstring I, errorcode);

))

Lamp.h

#include "ErrorHandling h” 
#include "PowerAnalyser.h" 

înclude "Labjack.h"
#include "ResultHandling h*

class Lamp 
{
public:

Lamp(int chnum, Labjack* pLabj, PowerAnalyser* pPowerMeter, ErrorHandling* pErrorHandler); 
virtual ~Lamp(); 
void lnitialise(void); 
void TenminuteCall(void);

private:
int Channel;
int minutesburned;
bool lampon,
int timeon;
int timeoff,
bool initialised,
void Measure(void);
void TumOnLamp(void);
void TumOfTLamp(void);
void TumOnRelay(int RelayNo);
void TumOffRelay(int RelayNo);
void Check4Error(long errorcode);
Labjack* pLabjack,
long LJidnum,
PowerAnalyser* pPowerAnalyser, 
ErrorHandling* pErrorLog; 
ResultHandling* pResultLog,

// Lamp number
// Total time lamp has run
// Flag to show if lamp on
// Used to keep track of switching times
// Used to keep track of switching times
// Used to monitor startup of channel
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ResultHandling.cpp

iiiiiiimiiiimimiiiititmimitiiiiimiiiiiiiitiiiiiiimi 
// ResultHandling cpp implementation of the ResultHandling class.

m/mimi/m/imi/mm/mmmm/m
//include "ResultHandling h"
//include "fstreamh"

iiiimniiiiiiimimmimiiiiiiimmmiiiimiimiiiii
// Construction/Destruction
IIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIHIIIIIIUIIIUIIIHIIII

ResultHandling ResultHandlingfchar* pFileName)
(

// Create or open new file object for logging Results 
pResultFile = NULL; 
pResullFile = new ofstream,

// Retrieve current time and date 
char* pTimeString = NULL;
CTime thetime = CTime: :GetCurrentTime();
CString timestring;
timestring = thetime Formatf “%d%b%Y %H:%M " );

// Open Result log file for writing by this process only, if not in existance create new file 
pResultFile->open(pFileName, ios::app | ios::in | ios::out, 0)//filebuf: sh read );

«  endl;
******”«  endl;

ResultHandling: :~ResultHandling()
{

//Close file etc 
pResultFi!e->flush(); 
pResultFile->close(); 
delete pResultFile, 
pResultFile = NULL;

)
ResultHandling: :RecordResuIt(CString Resultdescription, double Result)
{

// Retrieve current time and date 
char* pTimeString = NULL,
CTime thetime = CTime::GetCurrentTime();
CString timestring;
timestring = thetime.Formatf “%d%b%Y %H:%M %S " );

// Write Result to log file
•pResultFile « timestring «  "Result:-" «  Resultdescription «  " «  Result«  endl;

}

ResultHandling.h

iitiitiiiiiiiiHiiniimwiiHimiiiiitiiiiiiiiiiiiitiiiiiiiiiii
// ResultHandling h: interface for the ResultHandling class.//
//////////////////////////////////////////////////////////////////////
#include "afx.h"
//include "fstreamh"

class ResultHandling
{
public:

ResultHandling(char* pFileName); 
virtual ~ResultHandling();
RecordResult(CString Resultdescription, double Result);

private:
ofstream* pResultFile;

>;

if(pResultFile->fail())
{

// File not opened, delete nearby objects and terminate immediately
cout« timestring «  "Error:- Unable to open or create Results File" «  endl;
delete pResultFile,
pResultFile = NULL;
exh(l);

}
else
{

// File opened successfully, carry on
cout«■••*******•» « « timestring «  "Results File Opened Successfully ***•*•« 
•pResultFile «  »*»*♦«**»*** » « timestring «  "Results File Opened Successfully

)}
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Main.cpp

înclude "iostream h" 
înclude "ErrorHandling.h" 
înclude "Scheduler.h"

void main() 
{

char text[200] =

ErrorHandling* pErrorLog; 
pErrorLog = new ErrorHandling;

scheduler* pScheduler,
pScheduler = new scheduler(pErrorLog),

while ((text != "exit") && (text I* "EXIT") && (text != "quit") && (text != "QUIT")) 
{

cin » text;
}
delete pScheduler; 
pScheduler = NULL,

delete pErrorLog; 
pErrorLog = NULL;

// Create error handling object ready to receive any errors 

// Create scheduler object which will start test cycle

// Halt main program thread until exit typed 

// Clean up scheduler object 

// Clean up error handling object
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Result Analysis Program Listing

As well as the following files, excel.cpp and excel.h were used, however these are generic 
files that are supplied as part of the Excel C++ type library, and so are not included here. 
The result analysis program is an MFC (Microsoft Foundation Class) program, 
consequently the compiler generates the basic framework of the program required for it to 
operate as a program in Windows, (i.e. the window and ok/cancel buttons)

FileRead.cpp

// FileRead cpp Defines the class behaviors for the application.

#include "stdafx.h"
înclude "FileRead h"
înclude "FileReadDlg.h"
înclude <afxdisp.h>

#ifdef_DEBUG
tfdefine new DEBUG_NEW
#undefTH!S_FlLE
static char THIS_FILE[] =  FILE;_j
#endif

i/iiiiiiiiiiiiiiiiiiiiiimiiiiiiiiiiiiiiiiiiiiiiiniiiiitiiitmmiiiiiii
II CFileReadApp

BEGIN_MESSAGE_MAP(CFileReadApp, CWinApp)
ON COMMAND(ID HELP, CWinApp: OnHelp) 

END_MESSAGE_MAP()

llllllllllllllllltlllllllllllllllUIIIIIIIIUllllHIIIIIIIIIHIHIIIIIIIIIHI 
II CFileReadApp construction

CFileReadApp: :CFileReadApp()
{}
iitiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiu 
// The one and only CFileReadApp object

CFileReadApp theApp;

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllinmi
// CFileReadApp initialization

BOOL CFileReadApp::InitInstance()
{

ifj!AfxOleInit())
(

AfxMessageBox("Could not initialize COM dll"); 
return FALSE;

)
AfxEnableControlContainer();

«ifdef_AFXDLL
Enable3dControls(); // Call this when using MFC in a shared DLL

#else
Enable3dControlsStatic(); II Call this when linking to MFC statically

#endif

CFileReadDIg dig; 
m_pMainWnd = &dlg; 
int nResponse = dig DoModal(), 
if (nResponse =  IDOK)
{

// dismissed with OK
)
else if (nResponse =  IDCANCEL)
{

// dismissed with Cancel
)
II Since the dialog has been closed, return FALSE so that we exit the 
// application, rather than start the application's message pump, 
return FALSE;
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FileRead.h

FileRead h : main header tile for the FILEREAD applicationII
#if idefined(AFX_FILEREAD_H 073F182F_FAAB_43B5_A125_096348EB87C2 INCLUDED_)
Wefine AFXFILERE AD_H 073F182F_FAAB_43B5_A125_096348EB87C2_INCLUDED_

#if_MSC_VER > lOOO 
p̂ragma once

#endif // _MSC_VER > 1000

Sifndef _A F X W IN _H _
terror include 'stdafx.h' before including this file for PCH

flendif

înclude "resource h” // main symbols

iiiiiiiiiiiiiiiiiiiiiiiiimmnimiiiiiiiiiimiiiiiiimiiimmmi
II CFileReadApp:
// See FileRead cpp for the implementation of this class

class CFileReadApp : public CWinApp
{
public:

CFileReadAppO;

// Overrides
// C lass Wizard generated virtual function overrides
/ / { ( A FX _ VIRTU AL(CFileReadApp)
public
virtual BOOL InitlnstanceO, 
//})AFX_VIRTUAL

DECLARE_MESSAGE_MAPO

iiiiiiiiiiiiiiiiiiiiiiiiimumtiitimiiiiiiHiiiiiiiiiiiiintiiiiniini
//{(AFXINSERTLOCATION))
// Microsoft Visual C ++ will insert additional declarations immediately before the previous line.

#endif // 'definedf AFX_FILEREAD_H 073FI82F_FAAB_43B5_AI25_096348EB87C2 INCLUDED_)

Page 224



Paul Edwards A ppendix B -  T est Rig Softw are

FileReadDIg.cpp

FileReadDIg cpp implementation file

^include "stdafx.h"
înclude "FileRead h"

^include "FileReadDIg.h"
“include "spreadsheet.h"
^include "fileio h"

#ifdef_DEBUG
fldefine new DEBUG_NEW
#undef THISFILE
static char THIS_FILE[] = _FILE_;
«endif

iiiiiiiiiiiiiiiiiiimmtiiiiiiiimmuiiitiiiitiiiiiimtmiiii
// CAboutDIg dialog used for App About

class CAboutDIg : public CDialog
{
public:

CAboutDlgO;

// Dialog Data
//{(AFX_D AT A(C AboutDIg) 
enum { IDD = IDD_ABOUTBOX ),
//}}AFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchangefCDataExchange* pDX); // DDX/DDV support 
//})AFX_ VIRTUAL

protected:
//{(AFX_MSG(CAboutDlg)
//)) AFXMSG
DECLARE_MESSAGE_MAP()

);
CAboutDlg::CAboutDlg(). CDialogfCAboutDIg TDD)
{

//{{AFX DATA_IN1T(CAboutDIg)
//)} AFX_D AT A_INIT

}
void CAboutDIg::DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);
//{{AFX_DATA_MAP(C AboutDIg)
//)) AFX_DAT A_MAP

)
BEGlN_MESSAGE_MAP(CAboutDlg, CDialog)

//{{AFX_MSG_MAP(CAboutDlg)
// No message handlers 

//)) AFX_MSG_M AP 
END_MESSAGE_MAP()

iiiiitiiiiitimmwiiitimmtiiiimiHiiinmimimiiinmii
// CFileReadDIg dialog

CFileReadDIg CFileReadDlg(CWnd* pParent /*=NULL*/)
CDialog(CFileReadDlg::IDD, pParent)

{
//{{AFXD AT A_INIT(CFileReadDlg) 
mFilename = _T("*);
//)} AFX_DATA_IN1T
// Note that Load Icon does not require a subsequent Destroylcon in Win32 
mhlcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME),

)
void CFileReadDIg: :DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);
//{{AFX_D AT A_M AP(CFi leReadDIg)
DDX TextfpDX, IDC_EDIT1, m_Filename);
//)) AFX_DAT AM  AP}

BEGIN_MESSAGE_MAP(CFileReadDlg, CDialog)
//{{AFX_MSG_MAP(CFileReadDlg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
0N_BN_CL1CKED(IDRUN, OnRun)
//))AFX_MSG_MAP

END_MESSAGE_MAP()

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiii
// CFileReadDIg message handlers

BOOL CFileReadDlg::OnInitDialog()
{
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mFilename = "Enter File Name, NO Directories (run program in same folder)";
CDialog: :OnlnitDialog();

// Add "About..." menu item to system menu

ASSERT((IDM_ABOUTBOX & OxFFFO) =  IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE); 
if (pSysMenu != NULL)
{

CString strAboutMenu;
str A bout Menu LoadStri ng( IDS_ABOUTBOX); 
if (IstrAboutMenu.IsEmptyO)
{

pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRJNG, 1DMABOUTBOX, strAboutMenu);

SetIcon(m_hIcon, TRUE), // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon

return TRUE; // return TRUE unless you set the focus to a control
)
void CFileReadDlg::OnSysCommand(UINT nID, LPARAM IParam)
{

if «nID & OxFFFO) =  IDM_ABOUTBOX)
{

CAboutDIg dlgAbout; 
dlgAbout DoModal();

}
else
{

CDialog: :OnSysCommand(nID, IParam);

void CFileReadDIg: OnPaintO
{

if (IsIconicO)
{

}
else

CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc GetSafeHdc(), 0);

// Center icon in client rectangle
int cxlcon = GetSystemMetrics(SM_CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect,
GetClientRect(&rect);
int x = (rect.Width() - cxlcon + 1) / 2;
int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon 
dc.Draw!con(x, y, m_h!con);

CDialog: :OnPaint();

HCURSOR CFileReadDIg: :OnQueryDragIcon()
{

return (HCURSOR) m_hlcon;
)
void CFileReadDIg: :OnRun()
{

UpdateData(TRUE); 
spreadsheet myspread;
// Label first sheet
myspread celldata( I ,"AI ","Mins Burned"); 
myspread celldata( I ,"B 1 "."Voltage (V)"); 
myspread celldata( 1 ,"C 1 "."Current (A)"); 
myspread celldata( I ,"D1 ",“V/I (Ohms)"); 
myspread.celldata( 1 ,"E I "."Power (W)"); 
myspread celldata( I, "FI "."Lamp Temp (V)"); 
myspread.celldata(l,"G1",“Room Temp (V)“); 
myspread.celldata( 1,"HI","Light (V)”);
// Label second sheet
myspread celldata(2,”Al "."Mins Burned'1); 
myspread ce!ldata(2,"B 1 "."Power (W)"); 
myspread.celldata(2,"Cl","Predicted Power%”); 
myspread.celldata(2,"Dl","Predicted Power (W)"); 
myspread.celldata(2,"El","Predicted - Actual'1); 
myspread.celldata(2,"FI","Filtered");

fileio myfile(m_Filename);
CString line = "";
CString num =
CString cell =
CString row =
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CString first «
CString second =
CString formula =
CString source =
CString source! =

int rowcount = 2; 
int fail = 0;

whilefmyfile.Getnextlinef&line))
{

// Read next line from the file
ifffline.Findf'Results File Opened Successfully *•*****••»*")) |= _j)
{
}
ifffline Findf'Result:------- Lamp Turned On, Inrush Current;")) != -1)
{ /•

cell -  "I".
row.Format("%d", rowcount); 
cell += row; 
num = line.Mid(67), 
myspread. celldata(cell,num),
*/// Not used for filament lamps

// Shade cells green at switch on for sheet I
rowFormat("%d", rowcount),
first = "A";
first += row;
second = "H”;
second += row;
myspread. setcolourf I .first, second);

// Shade cells green at switch on for sheet 2
row.Format("%d", rowcount);
first = "A";
first += row;
second = "F";
second += row;
myspread. setcolour(2,first,second);

}
ifffline.Findf'Result:- Measurement Cycle Start, Minutes Burned:-")) != -1)
{

cell = "A";
row.Format("%d", rowcount); // Convert integer to string
cell += row;
num = line.Mid(73);
myspread.celldatafl,cell,num); // Store minutes burned on sheet 1
myspread celldataf2,cell,num), // Store minutes burned on sheet 2
cell = "D";
cell += row,
num = "=B",
num += row;
num += "/C";
num += row;
myspread.celldatafl,cell, num); // Load formulae for V/I on sheet I

iff(line Find("Result - Lamp Temp Sens Voltage;")) 1= -1)
{

cell = “F";
row.Format("%d", rowcount); 
cell += row; 
num = line.Mid(53); 
myspread.celldatafl,cell,num);

}
ifffline Findf'Result - Lamp Light Sens Voltage;")) != -1) 
{

cell = "H";
row.Formatf'%d", rowcount); 
cell += row; 
num = line.Midf54); 
myspread.celldataf 1 .cell,num);

iff(line.Findf"Result> Room Temp Sens Voltage;")) I- -I) 
{

cell -  "G";
row.Format("%d", rowcount); 
cell += row; 
num = line.Mid(53); 
myspread.cel Idataf 1 .cell,num);

}
ifffline Findf'Result:- Volts AC;")) != -1)
{

cell = "B";
row.Formatf'%d", rowcount); 
cell += row; 
num = line.Mid(39); 
my spread, celldataf 1,cell,num);
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if((line.Find("Result:- Amps AC;")) != -1)
{

cell = "C";
row.Format("%d", rowcount); 
cell += row; 
num = line.Mid(38). 
myspread.cel ldata( I .cell,num);

if{(line Find("Result - Watts;”)) != -1)
{

cell = "E";
row.Format("%d", rowcount); 
cell += row; 
num = line Mid(36), 
myspread cel ldata( I .cell, num), 
double power = strtod(num, NULL); 
if(power >= 10.0)
{

fail = rowcount;
}
cell = "B”;
row Format("%d“, rowcount); 
cell += row; 
num = line Mid(36), 
myspread cel ldata(2, cell, num);

if((line.Find("Result:- Power Factor;”)) != -1)

// Not used for fdament lamps 
/•cell = "H";
row.Format(”%d", rowcount); 
cell += row; 
num = line Mid(43); 
myspread celldata(cell.num);*/

// Fill in equation for predicted % power on sheet 2 
cell = "C";
row.Format("%d", rowcount); 
cell += row;

source = "(Sheet 1 IB”; 
source += row; 
source += ”)”;

formula = ”=(-M7203332464055E-06*("; 
formula += source;
formula -H= ”A3)) + (0.0015957395I837966*("; 
formula += source;
formula += ”A2)) + (0.120660948856852*"; 
formula += source;
formula += ") - 0.449534812519687"; 

myspread.celldata(2,cell,formula);

// Fill in equation for predicted power in watts on sheet2 
cell = "D";
row.Format("%d", rowcount); 
cell += row;

formula = "=((";
source = "C";
source += row;
formula += source;
formula += "/C2)*B2)'';
myspread.celldata(2,cell,formula);

// Fill in equation for predicted power - actual power 
cell = "E”;
row.Format("%d", rowcount); 
cell += row;

formula = "=("; 
source = "D"; 
source += row; 
formula += source; 
formula += 
source = "B"; 
source += row; 
formula += source; 
formula +=")";
myspread.celldata(2, cell, formula); 

source 1 = "F";
row.Format("%d", (rowcount-1)); 
source 1 += row;

cell = "F"; 
source = "E";
row.Format(”%d", rowcount); 
source += row; 
cell += row;
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f o r m u l a  =  " = I F ( ( A B S ( " ,  

f o r m u l a  + =  s o u r c e ,  

f o r m u l a  + =  

f o r m u l a  + =  s o u r c e  1, 

f o r m u l a  + =  " ) > 0  6 ) ,  " , 

f o r m u l a  +  - s o u r c e  I ,  

f o r m u l a  + =  " , " , 

f o r m u l a  + =  s o u r c e ,  

f o r m u l a  + =  " ) " ,

m y s p r e a d  c e l l d a t a ( 2 , c e l l , f o r m u l a ) ,

i f f d i n e  F i n d C 'R e s u l t  E n d  o f  M e a s u r e m e n t  C y c l e  . " ) )  ! -  - I )I
r o w c o u n t  ■* *,

iU ( l in e  F i n d ( " R e s u l t  L a m p  T u r n e d  O f f  , " ) )  1= - 1 )

r o w  F o r m a t ( " ° o d " ,  f a i l ) ,  

c e l l  =  " F " ,  

c e ll  + ~  r o w ,

f o r m u la  =  " = I N D E X ( L I N E S T ( F 2  ",

f o r m u la  ■+= c e l l ,

f o r m u la  + =  “ ,A 2  ",

c e l l  =  " A " .

c e ll  + =  r o w ,

f o r m u la  + =  c e l l .

f o r m u la  + =  " .T R U E .F A L S E ) ,  1 )" , 

m y s p r e a d  c e l l d a t a ( 2 ,  ” H 2 " ,  f o r m u l a ) ,

r o w  F o r m a t )  " % d " ,  f a i l ) ,  

c e ll  =  " F " .  

c e l l  + =  r o w ,

f o r m u la  =  " = I N D E X ( L I N E S T ( F 2  " ,

f o r m u la  + =  c e l l ,

f o r m u la  + =  " , A 2  " ,

c e l l  =  " A " ,

c e l l  + = r o w ,

f o r m u la  + =  c e l l .

f o r m u la  + =  " ,T R U E ,F A L S E ) ,2 ) " ,  

m y s p r e a d  c e l l d a t a ( 2 ,  " 1 2 " , f o r m u l a ) ,

f o r m u la  =  " = a b s ( ( ( H 2 *  A 2 ) + I 2 ) - ( ( H 2 * " ,  

f o r m u la  + =  c e l l ,  

f o r m u la  + =  " ) + I 2 ) ) " ,  

m y s p r e a d  c e l l d a t a ( 2 ,  " J 2 " ,  f o r m u l a ) ,

m y s p r e a d  c e l l d a t a ( 2 ,  " H I " ,  " G r a d i e n t " ) ,  

m y s p r e a d  c e l l d a t a ( 2 ,  " I I " ,  " I n t e r c e p t " ) ,  

m y s p r e a d  c e l l d a t a ( 2 ,  " J l " ,  " D i f f e r e n c e " ) ,

f o r m u la  E m p ty ) ) ,  

c e l l  E m p ty ) ) ,  

n u m  E m p ty ) ) ,  

l in e  E m p ty ) ) ,  

r o w  E m p ty ) ) ,  

f i r s t  E m p ty ) ) ,  

s e c o n d  E m p ty ) ) ,

m y s p r e a d  c e l l d a t a ( 2 , " F 2 " ,  " 0 " ) ,  

m y s p r e a d  s e t t a b l e b o r d e r s )  I . r o w c o u n t - 1 ), 

m y s p r e a d  s e t t a b l e b o r d e r s ( 2 , r o w c o u n t - 1), 

m y s p r e a d  g r a p h ) f a i l ,  m  F i l e n a m e ) ,  

m y s p r e a d  s a v e ) ) ,  

e x i t ( 0 ) .
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FileReadDIg.h

'/ FileReadDIg h : header file

#if !defined! AFX_FILEREADDLG_H 51 F8BC86 0BF3 46B8 9A20_B772C4AE528D_INCLUDEDJ
ftdefine AFX FILEREADDLG H 51 F8BC86_0BF3_46B8_9A20_B772C4 AE528D _INCLUDED_

#if _MSC_VER > 1000 
#pragma once
#endif// MSC VER > 1000

iiiiiiiiiiiiiiiiimiiiiiimiimiiiiiiHiiiiiimiiiiiiiiiiiwiiiiniiiiii
// CFileReadDIg dialog

class CFileReadDIg : public CDialog
{
// Construction 
public:

CFileReadDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
//{{AFX_D AT A(CFileReadDlg)
enum { IDD = IDD_FILEREAD_DIALOG };
CString m_Filename;
//})AFX_DATA

// ClassWizard generated virtual function overrides 
//{{AFX_ VIRTU AL(CFileReadDlg) 
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support 
//)}AFX_ VIRTUAL

// Implementation 
protected:

HICON mjilcon;

// Generated message map functions 
//({AFX_MSG(CFileReadDlg) 
virtual BOOL OnlnitDialogO;
afx msg void OnSysCommand(UINT nID, LPARAM IParam);
afxmsg void OnPaint();
afx msg HCURSOR OnQueryDragIcon();
afx_msg void OnRunO;
//))AFX_MSG
DECLARE_MESSAGE_MAP()

};
//({AFX1NSERT LOCATION))
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif II 'defined!AFX_FILEREADDLG_H 51 F8BC86_0BF3_46B8_9A20_B772C4AE528D_INCLUDEDJ
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FilelO.cpp

// Read in data from textfile 
înclude "fileio.h”

fileio:: fi leio(CString Filename)

pLampFile = new ifstream;
pLampFile->open(Filename, ios:;in | ios::nocreate, filebuf::sh_read); 
if(pLampFile->fail())
{

AfxMessageBox("File could not be opened"), 
exit(l);

)

fileio: :—flleio()
(

pLampFile->closeO, 
delete pLampFile, 
pLampFile = NULL;

bool fileio: :Getnextline(CString* line)
{

char temp[IOO];
pLampFile->getline(temp, 100); 
•line = temp;
if (pLampFile->eof() != 0)
{

return false,
)
else
(

return true;
)>

FilelO.h

^include "stdafx h"
^include “fstream.h"

class fileio
{
public:

fileio(CString Filename); 
virtual ~fi!eio();
bool Getnextline(CString* line);

private:
ifstream* pLampFile;
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Spreadsheet.cpp

// spreadsheet cpp implementation file

((include “stdafx h"
((include "FileRead h"
((include "spreadsheet h"

(fifdef DEBUG
((define new DEBUG_NEW
(tundefTHIS_FILE
static char TH1S_F1LE[] = _FILE_;
(fendif

iwwiM iiwmiiim m iiim iitiiim m m m iiiim iii
// spreadsheet 

spreadsheet:: spreadsheet)
I

try
{

LPDISPATCH IpDisp, 

COIeVariant

// idispatch pointer

covT rue(( short )TRUE), 
covFalse((short)FALSE),
covOptional((long)DISP_E_PARAMNOTFOUND, VT_ERROR);

)
catch(C01eException *e)

// Start Excel and get Application object, 
i t  !app.CreateDispatch(”Excel. Application"))
{

AfxMessageBox("Couldn't start Excel."); 
return,

}
/(Make Excel Visible 
app. SetVisible(TRUE);
// Get IDispatch pointer and attach to the books object 
IpDisp = app.GetWorkbooks();
ASSERT(IpDisp);
books AttachDispatch(lpDisp),
// Create new workbook 
IpDisp = books Add(covOptional),
ASSERT(lpDisp);
book AttachDispatch(lpDisp),

// Get sheets
IpDisp = book.GetSheetsO;
ASSERT(lpDisp);
sheets. AttachDispatch(lpDisp);

// Get sheet
IpDisp = sheets.GetItem(COIeVariant((shortXl)));
ASSERT(lpDisp);
sheet. AttachDispatch(lpDisp);
// Get second sheet
IpDisp = sheets. Getltem(C01eVariant((shortX2)));
ASSERT(lpDisp);
sheet2 AttachDispatch(lpDisp),
// Set column width for AI-II on sheet I
IpDisp = sheet GetRange(COIeVariant("Ar), C01eVariant("Il"));
ASSERT(lpDisp);
range AttachDispatch(lpDisp);
range SetColumnWidth(C01eVariant(''13“));
// Set column width for Al-FI on sheet 2
IpDisp = sheet2 GetRange(CO!eVariant("AI"), C01eVariant("FI''));
ASSERT(lpDisp);
range. AttachDispatch(lpDisp);
range SetColumnWidth(COIeVariant(” 18"));

{
char bufj 1024];

sprintfljbuf, "COleException. SCODE: %081x.”, (long)e->m_sc); 
:MessageBox(NULL, buf, "COleException”, MB SETFOREGROUND | MB_OK);

catch(COIeDispatchException *e)

char buf] 1024]; 
spnntfTbuf,

}
catch(...)

"COIeDispatchException. SCODE: %081x, Description: \"%s\".", 
(long)e->m_wCode,
(LPSTR)e->m_strDescription.GetBufTer( 1024));
: :MessageBox(NULL, buf, "COIeDispatchException",
MB SETFOREGROUND | MB_OK);
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:MessageBox(NULL, "General Exception caught", "Catch-All", MB SETFOREGROUND | MB OK);

spreadsheet : spreadsheet()
{

app. ReleaseDispatch(), 
book ReleaseDi spatch(), 
books ReleaseDispatch(); 
borders. ReleaseDispatch(); 
chart ReleaseDispatch(), 
chart object ReleaseDispatch(); 
chart objects.ReleaseDispatch(); 
interior ReleaseDispatch(); 
range ReleaseDispatch(); 
series ReleaseDispatch(); 
sheet. ReleaseDispatch(), 
sheet2 ReleaseDispatch(), 
sheets ReleaseDispatch(); 
trendline ReleaseDispatch(), 
trendlines. ReleaseDispatchQ;

llillllllllllllllllllllllllllllllllillllllllllllllllllim illllllllim illl 
// spreadsheet message handlers

void spreadsheet :celldata(int sheetnum, CString cellname, CString data)
{

try

LPDISPATCH IpDisp; // idispatch pointer
// get cell
ifl>heetnum=l)
{

IpDisp = sheet GetRange(COIeVariant(cellname), COIeVariant(cellname));
ASSERT(lpDisp);
range. AttachDispatch(lpDisp);
range SetValue2(COIeVariant(data));

)
ifl>heetnum=2)
{

IpDisp = sheet2.GetRange(COIeVariant(cellname), COIeVariant(cellname));
ASSERT(lpDisp);
range. AttachDispatch(lpDisp);
range. SetValue2(C01eVariant(data));

}

catch(COIeException *e)
{

char buff 1024];

sprintf(buf, "COleException. SCODE: %081x.", (long)e->m_sc); 
MessageBox(NULL, buf, "COleException", MB SETFOREGROUND | MB_OK);

}
catch(COIeDispatchException *e)
{

char buf] 1024]; 
sprintfl[buf,

"COIeDispatchException. SCODE: %08lx, Description: \"%s\".", 
(long)e->m_wCode,
(LPSTR)e->m_strDescription.GetBuffer( 1024)); 
::MessageBox(NULL, buf, "COIeDispatchException",
MB SETFOREGROUND | MB OK);

catch(...)
{

:MessageBox(NULL, "General Exception caught ", "Catch-All", MB SETFOREGROUND | MB OK);

void spreadsheet::setcolour(int sheetnum, CString first, CString second)
{

try
{

LPDISPATCH IpDisp; // idispatch pointer 

COIeVariant
covTrue(( short )TRUE), 
covFalse((short)FALSE),
covOptional((long)DISP_E_PARAMNOTFOUND, VT_ERROR);

i f t s h e e t n u m  =  1 )

{
II Select cells
IpDisp = sheet.GetRange(C01eVariant(first), COIeVariant(second)); 
ASSERT(lpDisp);
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range AttachDispatchflpDisp),
// Colour cells green
IpDisp = range. GetlnteriorO;
ASSERT(lpDisp);
interior. AttachDispatchflpDisp);
interior SetColor(COIeVariant("25S>2S5“));

i ft sheet num == 2)
{

// Select cells
IpDisp = sheet2.GetRange(COIeVariant(first), COIeVariant(second));
ASSERT(lpDisp);
range AttachDispatch( IpDisp),
// Colour cells green 
IpDisp = range.Getlnteriorf);
ASSERT(lpDisp);
interior AttachDispatchflpDisp);
interior.SetColor(COIeVariant("255,255"));

)
}
catch(COIeException *e)
{

char buf[1024];

sprintftbuf, "COleException. SCODE: %081x", (long)e->m_sc);
MessageBoxfNULL, buf, "COleException", MB SETFOREGROUND | MBOK);

}
catch(COIeDispatchException *e)
{

char buff 1024]; 
sprintftbuf,

"COIeDispatchException. SCODE: %08Ix, Description: \"%s\".",
(long)e->m_wCo<le,
(LPSTR)e->m_strDescription.GetBuffer( 1024));
: MessageBoxfNULL, buf "COIeDispatchException",
MB SETFOREGROUND | MB_OK);

}

catchf...)
{

MessageBox(NULL, "General Exception caught ", "Catch-All", MB_SETFOREGROUND | MB OK);

void spreadsheet: settablebordersfint sheetnum, int noofrows)
{

try
{

LPDISPATCH IpDisp; // idispatch pointer

iffsheetnum =  1) 
{

CString bottomright = "H”,
CString row;
row.Format("%d", noofrows);
CString bottomleff = "A"; 
bottomleft += row; 
bottomright += row;
// Select cells
IpDisp = sheet.GetRange(COIeVariant("Ar), COleVariant(bottomright));
ASSERT(lpDisp);
range. AttachDispatch(lpDisp);
// Put on thin border around all cells 
borders=range.GetBorders(),
borders. SetWeight(COIeVariant((short)2)); //xlThin = 2 
// Put medium line around mins column
IpDisp = sheet.GetRange(COIeVariant("Al"), COIeVariant(bottomleft));
ASSERT(lpDisp);
range. AttachDispatch(lpDisp);
range BorderAround(COIeVariant((short)l), -4138, 0, COIeVariant((short)0)); // Solid line = 1, -4138 = Thick 
// Put medium line around heading
IpDisp = sheet GetRange(C01eVariant(''Al"), COleVariantC'Hl"));
ASSERT(lpDisp);
range AttachDispatch(lpDisp);
range BorderAround(COIeVariant((short)l), -4138, 0, COIeVariant((short)0)); // Solid line = 1, -4138 = Medium 
// Put double line border around entire table
IpDisp = sheet.GetRange(COIeVariant("Al"), COIeVariant(bottomright));
ASSERT(lpDisp);
range. AttachDispatchflpDisp);
range BorderAround(COIeVariant((short)l), 4, 0, C01eVariant((short)0)); // Solid line =1,4 = Thick

iff sheetnum == 2)

CString bottomright2 = "F";
CString row2;
row2.Format(“%d", noofrows);
CString bottomleff2 = "A"; 
bottomleft2 += row2; 
bottomright2 += row2;
II Select cells
IpDisp = sheet2.GetRange(C01eVariant(',Al"), COIeVariant(bottomright2));
ASSERT(lpDisp);
range. AttachDispatch(lpDisp),
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// Put on thin border around all cells 
borders=range.GetBordersf);
borders. SetWeight(COIeVariant(fshort)2)); //xlThin = 2 
// Put medium line around mins column
IpDisp = sheet2.GetRange(COIeVariant("AP), C01eVariant(bottomleft2));
ASSERT(lpDisp),
range AttachDispatch(lpDisp);
range BorderAround(COIeVariant((short)l), -4138,0, COleVariant((short)0)); // Solid line = 1, -4138 = Thick 
// Put medium line around heading
IpDisp = sheet2.GetRange(COIeVariantf"Ar), COIeVariant(”Fr'));
ASSERT(lpDisp);
range. AttachDispatch(lpDisp);
range BorderAround(COIeVariantffshort)l), -4138, 0, COIeVariant((short)0)); // Solid line = 1, -4138 = Mediui 
// Put double line border around entire table
IpDisp = sheet2GetRangefCOIeVariant("Al"), COIeVariant(bottomright2));
ASSERT(lpDisp);
range AttachDispatch(ipDisp);
range BorderAround(COIeVariant((short)l), 4, 0, COIeVariant((short)0)); // Solid line =1,4 = Thick

catch(COIeException *e)
{

char buf[1024],

sprintffbuf, "COleException. SCODE: %081x", (long)e->m_sc);
MessageBoxfNULL, but "COleException”, MB_SETFOREGROUND | MB OK);

}
catch(COIeDispatchException *e)
{

char buf[1024]; 
sprintffbuf,

"COIeDispatchException. SCODE: %081x, Description: \"%s\".",
(long)e->m_wCode,
fLPSTR)e->m_strDescription.GetBufferfl024));
: MessageBoxfNULL, buf, "COIeDispatchException”,
MB_SETFOREGROUND | MB OK);

}

catchf...)
{

::MessageBox(NULL, "General Exception caught ", "Catch-All", MB SETFOREGROUND | MB_OK);

void spreadsheet::graph(int noofrows, CString lampnum)
{

try
{

LPDISPATCH IpDisp; II idispatch pointer
VARIANT var;
var vt = VT_DISPATCH;
COIeVariant covTrue((short)TRUE), covFalse((short)FALSE),

covOptional((long)DISP_E_PARAMNOTFOUND, VT_ERROR);

lpDisp=sheet.ChartObjectsfC01eVariant(covOptional));
ASSERT(lpDisp);
chartobjects. AttachDispatchflpDisp);
CString row;
row.Format("%d", noofrows);
CString column;
CString cola = "A"; 
cola += row;
CString title;
int position = lampnum.Find(",txt",0); 
lampnum Delete(position,4);

* * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

// Plot Voltage vs Time

// Generate name of last cell to be plotted 
column = "B"; 
column += row;

// Generate Title from filename 
title = lampnum;
title += ”, Voltage vs Time Burned";

// Find initial site for chart
chartobject = chartobjects.AddfO,0,500,500);
chart. AttachDispatch(chartobject.GetChartO);

// Get y-axis range and store as range object
IpDisp = sheet GetRange(COIeVariant("B2"), COleVariant(column)); 
range. AttachDispatchflpDisp);
// Package range object as a Variant 
var.pdispVal = IpDisp;
// Set chart data values to this range of values 
series.SetValuesfCOIeVariantfvar));

// Generate and label chart 
chart.ChartWizardfvar,
COleVariantff short )-4169) 
covOptional,

// Source.
// Gallery: xyscatter. 
// Format, use default.
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// PlotBy: xlColumns 
// CategoryLabels.
// SeriesLabels.
// HasLegend.
// Title.
// CategoryTitle.
// ValueTitles.
// ExtraTitle.

// Get hold o f the first and only plot series and turn into object 
IpDisp = chart.SeriesCollection(COIeVariant((short)l)), 
series AttachDispatch(lpDisp);

II Get x-axis range and store as range object
IpDisp = sheet GetRange(COIeVariant("A2"), COIeVariant(cola));
range AttachDispatch(lpDisp);
II Package range object as a Variant 
var.pdispVal = IpDisp;
II Set chart x axis to this range of values 
series. SetXValues(COIeVariant( var));

// Display chan as a separate sheet in the workbook 
chart.Location((long( 1 )),COIeVariant(”Voltage''));

COIeVariant((short)2), 
COIeVariant((short)FALSE), 
COIeVariant((short)FALSE), 
COIeVariant((short)FAJLSE), 
COIeVariant(title), 
COIeVariant("Time Burned (mins)"), 
COIeVariant(”Voltage (V)"), 
covOptional 
);
// The return is void

// Generate name o f  last cell to be plotted 
column = "C"; 
column += row;

// Generate Title from filename 
title = lampnum,
title += ”, Current vs Time Burned";

II Find initial site for chart
chartobject = chartobjects. Add(0,0,500,500);
chart. AttachDispatch(chartobject. GetChartO);

// Get y-axis range and store as range object
IpDisp = sheet GetRange(COIeVariant("C2"), COleVariant(column));
range AttachDispatch(lpDisp);
// Package range object as a Variant 
var.pdispVal = IpDisp,
// Set chart data values to this range of values 
series. Set ValuesfCOleV ariant(var));

II Generate and label chart 
chart.ChartWizardfvar,
COIeVariant((short)~4169), 
covOptional,
COIeVariant((short)2),
C01eVariant((short)FALSE),
COIeVariant((short)FALSE),
COIeVariant((short)FALSE),
COleVariant(title),
COIeVariant(”Time Burned (mins)”),
COIeVariant(”Current (A)"), 
covOptional 
);
// The return is void

// Get hold o f the first and only plot series and turn into object 
IpDisp = chart.SeriesCollection(C01eVariant((short)l)); 
series. AttachDispatch(lpDisp);

// Get x-axis range and store as range object
IpDisp = sheet GetRange(COIeVariant("A2"), COIeVariant(cola));
range. AttachDispatch(lpDisp);
// Package range object as a Variant 
var.pdispVal = IpDisp;
// Set chart x axis to this range of values 
series.SetXValues(COIeVariant(var));

// Display chart as a separate sheet in the workbook 
chart Location((long(l)),COIeVariant("Current"));

//••*•«••«•««*<»*«»••«»*•*••••••••••**•**••*•**•*••*•*•*••***•******************•'
II Plot Resistance Vs Time

II Generate name of last cell to be plotted 
column = "D"; 
column += row;

II Generate Title from filename 
title = lampnum;
title += ", Resistance vs Time Burned";

// Find initial site for chart
chartobject =  chartobjects.Add(0,0,500,500);
chart. AttachDispatch(chartobject.GetChartO);

II Get y-axis range and store as range object
IpDisp = sheet.GetRange(COIeVariant("D2"), COIeVariant(coIumn)); 
range. AttachDispatch(lpDisp);

// Source.
II Gallery: xyscatter. 
// Format, use default 
// PlotBy xlColumns. 
// CategoryLabels.
// SeriesLabels.
II HasLegend.
//Title.
// CategoryTitle.
// ValueTitles.
// ExtraTitle.
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// Package range object as a Variant 
var.pdispVal = IpDisp;
// Set chart data values to this range o f  values 
series.SetValuesfCOleVariantfvar)),

II Generate and label chart 
chart.ChartWizardfvar,
COIeVariant((short)-4169), 
covOptional,
COIeVariant((short)2),
COIeVariant(fshort)FALSE),
COIeVariant((short)FALSE),
COIeVariant((short)FALSE),
COIeVariant(title),
COIeVariant("Time Burned (mins)”), 
COIeVariant("Resistance (Ohms)"), 
covOptional 
);
// The return is void

// Source.
II Gallery: xyscatter 
// Format, use default. 
// PlotBy: xlColumns. 
// CategoryLabels.
// SeriesLabels.
// HasLegend.
// Title.
// CategoryTitle.
// ValueTitles.
// ExtraTitle.

// Get hold of the first and only plot series and turn into object 
IpDisp = chart SeriesCollection(COIeVariant((short)l)); 
series. AttachDispatchflpDisp),

// Get x-axis range and store as range object
IpDisp = sheet GetRange(C01eVariant("A2"), COIeVariant(cola));
range. AttachDispatch(lpDisp);
// Package range object as a Variant 
var.pdispVal = IpDisp;
// Set chart x axis to this range of values 
series. SetXValues(C01eVariant(var));

II Display chart as a separate sheet in the workbook 
chart.Location((long(l)),C01eVariant("Resistance"));

// Plot Power Vs Time

// Generate name of last cell to be plotted 
column = "E"; 
column += row;

II Generate Title from filename 
title = lampnum;
title += ”, Power vs Time Burned",

II Find initial site for chart
chartobject = chartobjects.Add(0,0,500,500);
chart AttachDispatch(chartobject GetChartO);

II Get y-axis range and store as range object
IpDisp = sheet GetRange(C01eVariant("E2"), COleVariant(column)); 
range. AttachDispatchflpDisp);
// Package range object as a Variant 
var.pdispVal = IpDisp;
// Set chart data values to this range o f values 
series. SetValuesfCOIeVariantf var));

// Generate and label chart 
chart. Chart Wi zardfvar, 
COIeVariant((short)-4169), 
covOptional,
COIeVariant((short)2), 
COIeVariant(fshort)FALSE), 
COIeVariantff short )FALSE),
COIe Variantff short )F ALSE), 
COIeVariantftitle), 
C01eVariant("Time Burned (mins)"), 
COleVariantf'Power (W)"), 
covOptional 
);
// The return is void

// Source.
//Gallery: xyscatter. 
// Format, use default. 
//PlotBy: xlColumns. 
// CategoryLabels.
// SeriesLabels.
// HasLegend.
// Title.
// CategoryTitle,
// ValueTitles.
// ExtraTitle.

// Get hold of the first and only plot series and tum into object 
IpDisp = chart. SeriesCollection(COIeVariantffshort)l)); 
series. AttachDispatchflpDisp);

II Get x-axis range and store as range object
IpDisp = sheet GetRangefCOIeVariant("A2"), COleVariantfcola));
range. AttachDispatchflpDisp);
// Package range object as a Variant 
var pdispVal = IpDisp;
// Set chart x axis to this range of values 
series.SetXValuesfCOIeVariantfvar));
// Display chart as a separate sheet in the workbook 
chart Locationfflongf 1 )),COIeVariant(”Power"));

// Plot Lamp Temp Vs Time

// Generate name of last cell to be plotted 
column *= "F"; 
column += row;

// Generate Title from filename 
title = lampnum;
title += ", Lamp Temperature vs Time Burned"
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// Find initial site for chart
chartobject = chartobjectsAdd(0,0,500,500);
chart. Att achDi spat chf c hartobject. Get Chart ());

// Gel y-axis range and store as range object
IpDisp = sheet GetRange(COIeVariant("F2"), COIeVariant(column)); 
range AttachDispatchflpDisp);
// Package range object as a Variant 
var pdispVal = IpDisp;
// Set chart data values to this range of values 
series SetValuesfCOIeVariantfvar)),

// Generate and label chart 
chart Chart Wizardf var,
COIeVariant((short)-4169), 
covOptional,
COIeVariant((short)2),
COIeVariant(fshort)FALSE).
COleVariant(fshort)FALSE),
COIeVariant((short)FALSE),
COIeVariantf title),
COIeVariant(Time Burned (mins)"),
COIeVariant(“Lamp Temperature Sensor Voltage (V)"), 
covOptional 
);

// The return is void

// Get hold of the first and only plot series and turn into object 
IpDisp = chart.SeriesCollection(COIeVariant((short)l)); 
series. AttachDispatch(lpDisp);

// Get x-axis range and store as range object
IpDisp = sheet GetRange(C01eVariant("A2"), COIeVariant(cola));
range AttachDispatch(lpDisp);
// Package range object as a Variant 
var pdispVal = IpDisp;
// Set chart x axis to this range of values 
series.SetXValuesfCOleVariantfvar));

II Display chart as a separate sheet in the workbook 
chart.Location((long( 1 )),COIeVariant("Lamp Temp"));

//**.......
// Plot Room Temp Vs Time

II Generate name of last cell to be plotted 
column = "G"; 
column += row;

II Generate Title from filename 
title = lampnum;
title + = ", Room Temperature vs Time Burned";

// Find initial site for chart
chartobject = chartobjects. Add(0,0,500,500);
chart. AttachDispatchfchartobject. GetChart());

II Get y-axis range and store as range object
IpDisp = sheet.GetRange(COIeVariant("G2"), COleVariant(column)); 
range AttachDispatchflpDisp);
// Package range object as a Variant 
var pdispVal = IpDisp;
II Set chart data values to this range of values 
series.SetValuesfCOIeVariantfvar));

// Generate and label chart 
chart ChartWizardf var,
COIeVariantff short )-4169), 
covOptional,
C01eVariant((short)2),
COleVariant(fshort)FALSE),
COIeVariant(fshort)FALSE),
COIeVariantff short)F ALSE),
COIeVariantftitle),
COIeVariant("Time Burned (mins)"),
COIeVariantf"Room Temp Sensor Voltage (V)'1) 
covOptional 
);
// The return is void

// Get hold of the first and only plot series and turn into object 
IpDisp = chart SeriesCollectionfCOIeVariant(fshort)l)); 
series. AttachDispatchflpDisp),

// Get x-axis range and store as range object
IpDisp = sheet.GetRange(C01eVariant("A2"), COleVariantfcola)); 
range. AttachDispatchflpDisp);
// Package range object as a Variant 
var.pdispVal = IpDisp;
II Set chart x axis to this range of values 
series. SetXValuesfCOIe Variantfvar));

// Display chart as a separate sheet in the workbook 
chart.Location((long(l)),C01eVariant(”Room Temp1'));

//Source.
// Gallery: xyscatter 
// Format, use default 
// PlotBy: xlColumns. 
// CategoryLabels.
// SeriesLabels.
// HasLegend 
// Title.
// CategoryTitle.
// ValueTitles.
// ExtraTitle.

// Source.
// Gallery: xyscatter. 
// Format, use default 
// PlotBy: xlColumns 
// CategoryLabels 
// SeriesLabels.
// HasLegend.
// Title.
// CategoryTitle.
// ValueTitles 
// ExtraTitle
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// Plot Lamp Light Vs Time

// Generate name of last cell to be plotted 
column -  "H"; 
column += row;

// Generate Title from filename 
title = lampnum;
title += ", Light Output vs Time Burned";

// Find initial site for chart
chartobject = chartobjects.Add(0,0,500,500);
chart AttachDispatchf chartobject GetChartO);

// Get y-axis range and store as range object
IpDisp = sheet GetRange(COIeVariant("H2"), COIeVariant(column)); 
range AttachDispatch(lpDisp),
// Package range object as a Variant 
var pdispVal = IpDisp;
// Set chart data values to this range of values 
series SetValues(COIeVariant(var));

// Generate and label chart 
chart.ChartWizard(var,
CO!eVariant((short)-4169), 
covOptional,
COIeVariant((short)2),
COIeVariant((short)FALSE),
COIeVariant((short)FALSE),
COIeVariant((short)FALSE),
COIeVariant(title),
COIeVariant("Time Burned (mins)"),
COleVariantf "Lamp Light Sensor Voltage (V)"), 
covOptional // ExtraTitle.
);
// The return is void

// Get hold of the first and only plot series and turn into object 
IpDisp = chart SeriesCollectionfcOleVariant((short)l)); 
series AttachDispatch(lpDisp),

// Get x-axis range and store as range object
IpDisp = sheet GetRange(COIeVariant("A2"), COIeVariant(cola));
range. AttachDispatchflpDisp);
// Package range object as a Variant 
var pdispVal = IpDisp;
// Set chart x axis to this range of values 
series. SetXValues(COIeVariant(var));

II Display chart as a separate sheet in the workbook 
chart. Location((long( I )),COIeVariant("Lamp Light"));

//.******.**«***********•*********•*•**•
// Plot Power Error Signal vs time (mins)
II Generate name of last cell to be plotted 
column = "F"; 
column += row;

II Generate Title from filename 
title = lampnum;
title += ", Power Error Signal vs Time Burned";

// Find initial site for chart 
chartobject = chartobjects. Add(0,0,500,500); 
chart. AttachDispatchfchartobject.GetChart());

// Get y-axis range and store as range object
IpDisp = sheet2 GetRange(COIeVariantf"F2"), COleVariant(column)); 
range AttachDispatch(lpDisp);
// Package range object as a Variant 
var.pdispVal = IpDisp;
// Set chart data values to this range of values 
series SetValues(COIeVariant(var));

// Generate and label chart 
chart Chart Wizardf var,
COIeVariant((short)-4169), 
covOptional,
CO!eVariant((short)2),
COIeVariant((short)FALSE),
COIeVariant((short)FALSE),
COIeVariant(fshort)FALSE),
COIeVariantftitle),
COIeVariant("Time Burned (mins)"),
COIeVariantf"Power Error Signal (W)") 
covOptional 
);
// The return is void

II Get hold of the first and only plot series and turn into object 
IpDisp = chart.SeriesCollectionfcOleVariant((short)l)); 
series. AttachDispatch(IpDisp);

II Get x-axis range and store as range object
IpDisp = sheet2.GetRange(COIeVariantf"A2"), COIeVariant(cola));

//Source.
// Gallery: xyscatter. 
// Format, use default. 
// PlotBy: xlColumns. 
II CategoryLabels.
// SeriesLabels.
// HasLegend.
// Title.
// CategoryTitle.
// ValueTitles.
// ExtraTitle.

//Source.
// Gallery: xyscatter. 
// Format, use default 
// PlotBy . xlColumns. 
// CategoryLabels.
// SeriesLabels.
// HasLegend.
// Title.
II CategoryTitle.
//
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}

catchf)
{

}
}

void spreadsheet ::saveO 
{

try
{

)
catchf.)
{

}

range AttachDispatch(lpDisp);
// Package range object as a Variant 
var.pdispVal = IpDisp;
// Set chart x axis to this range of values 
series. SetXValues(COIeVariant(var));

// Display chart as a separate sheet in the workbook 
chart Locationf(long(l)),COIeVariantf"Power Error"));

IpDisp = series Trendlinesf covOptional); //xlLinear -4132
ASSERT(lpDisp),
trendlines. AttachDispatchflpDisp);
IpDisp = trendlines Addf

ASSERT(lpDisp), 
trendline. AttachDispatchflpDisp); 
trendline SetNamelsAutoftrue); 
trendline SetlnterceptlsAuto(true); 
trendline. SetType((long)-4132); 
trendline.SetForwardfflongJO); 
trendline SetBackwardfflong)0),
// Location MUST be set last, changes after this do not take effect 
chart Locationf(longfl)),COIeVariant("Power Error")); 
double intercept = trendline.GetlnterceptQ,

catchfCOleException *e) 

char buf[1024];

sprintffbuf, "COleException. SCODE: %08lx.", (long)e->m_sc); 
MessageBoxfNULL, buf, "COleException", MB SETFOREGROUND | MB_OK);

"COIeDispatchException. SCODE: %08lx, Description: \"%sV\", 
(long)e->m_wCode,
(LPSTR)e->m_strDescription GetBufferf 1024));

MessageBoxfNULL, buf, "COIeDispatchException", 
MB_SETFOREGROUND | MB_OK);

"MessageBoxfNULL, "General Exception caught ", "Catch-All", MB_SETFOREGROUND | MB OK);

app.SaveWorkspacefCOleVariantf""));

fflong)-4!32),
covOptional,
covOptional,
covOptional,
covOptional,
covOptional,
covTrue,

// Line type = xlLinear -4132
// Order
//Period
// Forward Prediction units 
// Backward Prediction units 
// Intercept 
// Display equation 
// Display R Squared 
//Name

covT rue, 
covOptional);

catchfCOleDispatchException *e) 
{

char buf[1024]; 
sprintffbuf.
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Spreadsheet.h

înclude "excel.h"

ffif ! defined! AFX_SPREADSHEET_H 26F4F7BD_9BD6_4EE9_A32F_71D20EDADA19 INCLUDED_)
#define AFX_SPREADSHEET_H 26F4F7BD_9BD6_4EE9_A32F_71D20EDADA19 INCLUDED

#if_MSC_VER > 1000 
^pragma once
#endif//_MSC_VER> 1000 
// spreadsheet h ; header file

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiwiniiiiiiiiiniiiiiimiiiiiiiiiiiiimi
// spreadsheet window

class spreadsheet
{
// Construction 
public:

spreadsheet);

II Attributes 
public:

// Operations 
public:

private:
Application app.
Workbook book,
Worksheet sheet.
Worksheet sheet2,

_Chart chart;
Trendline trendline;
Trendlines trendlines;
Workbooks books;
Worksheets sheets;
Range range.
Interior interior;
Borders borders;
ChartObjects chartobjects;
ChartObject chartobject.
Series series;

// Overrides
// ClassWizard generated virtual function overrides 
//({AFXVIRTUAL< spreadsheet)
//))AFX_ VIRTUAL

// Implementation 
public:

void ce!!data(int sheetnum, CString cellname, CString data);
void setcolourfint sheetnum, CString first, CString second);
void settableborders(int sheetnum, int noofrows);
void graph(int noofrows, CString lampnum);
void saveO;
virtual -spreadsheet!);

// Generated message map functions
protected:

//{{AFX_MSG( spreadsheet)
// NOTE - the ClassWizard will add and remove member functions here. 

//}}AFX_MSG
//DECLARE_MESSAGE_MAP()

};

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJ  

//(f AFX_INSERT_LOCAT10N)}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

ftendif // !defined(AFX_SPREADSHEET_H_26F4F7BD_9BD6_4EE9_A32F_71D20EDADA19_INCLUDEDJ
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Continuous Monitoring Results

Lamp 1

Lamp 1 - Power Difference (Expected - Actual) vs Minutes Burned
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Lamp 3

Lamp 3 - Power Difference (Expected - Actual) vs Minutes Burned
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Lamp 5

Lamp 5 - Power Difference (Expected - Actual) vs Minutes Burned
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Lamp 7

Lamp 7 - Power Difference (Expected - Actual) vs Minutes Burned
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Lamp 9 (Channel 5)

Lamp 9 - Power Difference (Expected - Actual) vs Minutes Burned
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Lamp 11 (Channel 2)

Lamp Channel 2, Power Difference (Expected - Actual) vs Minutes Burned
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Lamp 13 (Channel 4)

Lamp Channel 4, Power Difference (Expected - Actual) vs Minutes Burned
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Lamp 15 (Channel 6)

Lamp Channel 6, Power Difference (Expected - Actual) vs Minutes Burned
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Lamp 17 (Channel 8)

Lamp Channel 8, Power Difference (Expected - Actual) vs Minutes Burned
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Voltage Compensation Results

AC Voltage 
RMS Power (W)

Volts +/- 0.1 (V) 25W 40W 60W 100W
0 0.00 0.00 0.00 0.00
5 0.05 0.16 0.24 0.39
10 0.15 0.45 0.67 1.04
15 0.28 0.78 1.16 1.79
20 0.45 1.15 1.69 2.62
25 0.65 1.55 2.28 3.57
30 0.87 1.98 2.92 4.60
35 1.12 2.45 3.61 5.70
40 1.39 2.94 4.34 6.90
45 1.67 3.46 5.10 8.15
50 1.99 3.98 5.94 9.51
55 2.32 4.54 6.80 10.95
60 2.67 5.14 7.72 12.47
65 3.04 5.77 8.67 14.05
70 3.44 6.41 9.67 15.71
75 3.85 7.08 10.70 17.42
80 4.27 7.78 11.80 19.22
85 4.71 8.50 12.91 21.05
90 5.17 9.23 14.05 22.96
95 5.63 10.00 15.20 24.92
100 6.11 10.78 16.43 26.94
105 6.60 11.58 17.67 29.03
110 7.12 12.40 18.94 31.17
115 7.67 13.25 20.26 33.35
120 8.21 14.10 21.60 35.57
125 8.76 14.98 22.95 37.88
130 9.35 15.93 24.34 40.21
135 9.91 16.83 25.79 42.57
140 10.50 17.78 27.19 45.00
145 11.11 18.72 28.65 47.46
150 11.72 19.73 30.15 50.00
155 12.34 20.72 31.67 52.53
160 12.98 21.84 33.22 55.17
165 13.61 22.89 34.80 57.80
170 14.28 23.94 36.40 60.50
175 14.95 25.01 38.03 63.25
180 15.62 26.10 39.67 66.01
185 16.32 27.20 41.35 68.82
190 17.02 28.33 43.04 71.67
195 17.75 29.46 44.75 74.55
200 18.44 30.58 46.50 77.52
205 19.17 31.75 48.24 80.48
210 19.89 33.08 50.02 83.54
215 20.62 34.27 51.84 86.58
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220 21.36 35.46 53.68 89.67
225 22.12 36.72 55.53 92.81
230 22.91 37.95 57.41 96.00
235 23.69 39.20 59.31 99.24
240 24.48 40.46 61.25 102.50
245 25.28 41.75 63.19 105.77
250 26.10 43.05 65.18 109.13
255 26.93 44.37 67.17 112.51
260 27.74 45.68 69.19 115.96
265 28.59 47.04 71.23 119.38
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Initial Power Draw (Over 100 Hours)

Lamp 1

Lamp 1 - Voltage Compensated Power Draw during the first 100 hours
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Lamp 3

Lamp 3 - Voltage Compensated Power Draw during first 100 hours
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Lamp 5

Lamp 5 - Voltage Compensated Power Draw
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Lamp 7

Lamp 7 - Voltage Compensated Power Draw during first 100 hours
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Lamp 9

Lamp 9 - Voltage Compensated Power Draw during first 100 hours
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Lamp 11

Lamp 11 - Voltage Compensated Power Draw during first 100 hours
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Lamp 13

Lamp 13 - Voltage Compensated Power Draw during first 100 hours
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Lamp 15

Lamp 15 - Voltage Compensated Power Draw during first 100 hours
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Lamp 17

Lamp 17 - Voltage Compensated Power Draw during first 100 hours
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Incorrectly Filled Lamps
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Lamp 3
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Lamp 5
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Lamp 7
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Lamp 9

Lamp 9 60W 240V Tesco, Resistance vs Time

1200

1000

800

600

400

200

0
20000 40000 100000 120000 1400000 60000 80000

Time (seconds)

Lamp 10

Lamp 10 60W 240V Tesco, Resistance vs Time

1200

1000

800

o 600 
c

400 —

200

45000 5000035000 40000300002500020000150001000050000
Time (seconds)

Page 267



Paul Edwards Appendix C -  Filament Lamp Results

Lamp 11

Lamp 11 40W 240V Tesco, Resistance vs Time
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Lamp 13
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Lamp 15
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Lamp 19

Lamp 19 40W 240V Tesco, Resistance vs Time
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Lamp 21

Lamp 21 60W 240V Tesco, Resistance vs Time
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Lamp 23

L am p  23 60W  240V T e s c o , R e s is ta n c e  v s  Tim e

1600

1400

1200

1000

800

600

400

200

100 900200 300 800400 500

Time (seconds)

600 700

Lamp 24

<jnnn

L am p  24  60W  240V  T e s c o , R e s is ta n c e  v s  Tim e

1800 

1600 

1400 ■

I  1200 -
c
0
1 1000

♦

* * * * * *
, ♦ ♦ ♦ # 4

•  ■ 1

. »  ♦w *

♦  ♦ ♦ • - ♦ * * *

•  800 • cc

600 - 

400

200 ■ 

0
ci (> 10 15 2i 

Time (seconds)

0 25 30 35

Page 274



Paul Edwards Appendix C -  Filament Lamp Results

Lamp 25

Lamp 25 60W 240V Tesco, Resistance vs Time
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Initial Resistance Increase of Unaltered Lamps 10 -17
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Lamp 12 (Channel 3)

Lamp Channel 3 First 10 mins, Resistance vs Time
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Lamp 14 (Channel 5)
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Lamp 16 (Channel 7)
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Aged Sample Data

Lamp
No

Lamp
Voltage
(VAC)

Lamp
Current

(mA)
Lamp V/l 

(O)

Lamp
Power

(W)
UV

(mW/cm2)

Lamp
Voltage
(VDC)

1 95.74 368 260.16 29.55 9.45 0.72
2 97.66 367 266.10 30.1 9.94 0.50
3 96.88 361 268.37 29.41 9.96 0.60
4 93.73 375 249.95 29.43 8.87 0.78
6 93.9 378 248.41 29.74 8.93 1.13
7 94.63 373 253.70 29.69 9.44 0.64
8 94.58 377 250.88 29.88 9.34 0.62
9 97.69 371 263.32 30.45 10.18 0.65
10 96.95 369 262.74 30.06 9.39 0.80
11 95 358 265.36 28.5 8.78 0.60
12 98.28 350 280.80 29.01 9.2 0.72
13 97.41 362 269.09 29.59 9.39 0.63
14 98.79 365 270.66 30.36 9.88 0.74
15 97.08 361 268.92 29.42 10 0.71

Filament Temperature Monitoring

Conversion Scale

Filament
Voltage Temperature

3.78 700
4.35 800
5.21 900
6.04 1000
6.93 1100
8.99 1200

Trend Line Equation

Temp (°C) = -1.239389154620x3 + 10.574090956233x2 + 119.882869143828x + 
168.753050283471 

Where x = Filament Voltage (V)

Results
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Lamp Striking Voltages

Lamp

1st
Strike

Voltage

2nd
Strike

Voltage

3rd
Strike

Voltage Max Light
1 608 576 552 608 11.37
2 480 488 488 488 11.43
3 616 608 608 616 11.59
4 432 408 392 432 10.98
5 9.86
6 432 384 368 432 10.15
7 520 528 520 528 10.78
8 584 568 560 584 10.72
9 616 600 592 616 11.34
10 448 456 448 456 10.22
11 432 408 416 432 10.89
12 728 744 744 744 11.54
13 528 528 520 528 10.94
14 640 624 584 640 12.00
15 512 504 504 512 12.31

Accelerated Ageing

Weeks Voltage (V)
Current

(mA) Power (W) UV(mW/cm2)
0 101.05 356 30.44 12.31
1 101.37 357 30.38 12.35
2 99.31 361 30.61 11.14
3 98.60 354 29.32 10.23
4 96.90 354 28.81 9.65
5 96.50 347 28.33 8.30
6 96.80 345 28.05 8.90
7 95.90 346 27.87 8.50
8 95.60 343 27.54 8.10
9 96.27 340 27.69 8.12
10 97.40 335 27.41 7.20
11 98.38 329 27.39 5.85
12 101.16 326 27.91 5.97
13 188.96 201 12.52 2.76
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Lamp Monitoring

A Review of Lamp Condition 
Monitoring Technologies

As remote 
monitoring 
systems for 
commercial and 
public lighting 
proliferate almost 
monthly, Paul 
Edwards, Roger 
Grosvenor and 
Paul Prickett 
survey the 
various systems 
and technologies 
on offer -  and 
look at future 
monitoring needs

Abstract
This paper considers the 
monitoring techniques for 
determining lamp condition 
and d iscu sses som e of the 
world-wide research currently 
under way on the monitoring 
of different lamp types.
Having identified areas of 
lighting technology where 
monitoring technology is still 
inadequate, the paper 
discusses the work required 
to enable informed pre­
emptive lamp replacement to 
becom e a routine part of 
maintenance.

1. Introduction
Nearly every aspect of 
modern day life involves the 
use of electric lamps. Lamps 
used to light hom es, offices, 
traffic signals and roads are 
all essential to modern life. 
While they may use  
completely different 
technologies, they share one 
inevitable feature -  they will 
all fail at som e time or 
another. The time taken for 
each lamp to fail varies 
widely, from a few hours up to 
a few decades for som e  
lamps, such as the recently

launched range of induction 
lamps.

Depending on the task a lamp 
is performing, the 
con sequences of failure can 
be surprisingly significant. For 
example, traffic lights failing 
unexpectedly can cause  
accidents and traffic 
congestion -  and drinking 
water sterilisers which rely on 
UV lamps to kill harmful will 
not be effective if the lamp is 
failing or has failed. This 
could lead to illness or even 
death for anyone drinking the 
water.

It also makes good economic 
se n se  to monitor lamps 
effectively, where light fittings 
are in inaccessible, difficult- 
to-maintain areas, such as  
above a swimming pool or in 
the roof of a theatre. Knowing 
the condition of lamps in such 
places m eans maintenance 
can be scheduled for the 
most appropriate time, such 
as during a period when the 
pool is drained -  or in the 
ca se  of a theatre, when the 
lighting rig is being set up for 
a show.

Currently the most popular 
way of ensuring a light 
fitting’s  continued operation is 
to schedule routine 
replacement of the lamps at 

. set periods. This is very costly 
and still does not guarantee 
one of the new lamps will not 
fail unexpectedly at an early 
stage. An alternative 
approach has been to provide 
a second lamp which is 
switched on when the first 
lamp fails. However this is not 
perfect, as it is adds cost and 
bulk to the lighting system, 
and there will always be a 
time delay in switch over. 
Depending on the type of 
lamp and control gear this 
can be significant.

Clearly, there is a growing 
requirement to be able to 
determine the remaining life 
expectancy of lamps used in 
everyday life. The Intelligent 
Process Monitoring & 
Management (IPMM) Centre 
based at Cardiff University 
has carried out a number of 
successful research projects 
during the last 20 years 
based on machine tool 
condition monitoring. During 
these projects, different 
monitoring techniques were 
explored and developed in 
collaboration with numerous 
industrial partners, with the 
aim of providing fast fault 
detection and informed 
maintenance scheduling.

In this latest research project, 
the IPMM Centre is 
considering the condition 
monitoring of lighting system s 
and how they may be 
improved to provide ‘real time’ 
detection of impending lamp 
failures. This could provide 
the end user with sufficient 
information to take immediate 
action if required -  or to 
optimise scheduled  
maintenance when the 
imminent failure does not 
present an immediate 
problem.

2. Traditional
Monitoring 
Techniques
The traditional method of 
measuring the remaining life 
of a lamp is to measure how 
long it has been running for, 
using a device such as an 
hour meter. However, this has 
a number of major 
drawbacks:

The initial life expectancy 
quoted by the manufacturer is 
inherently inaccurate. Some 
lamps may fail after a very

Paul Edwards M Eng (Hons) 
MIEE, Roger Grosvenor B 
Eng (Tech) M Eng PhD C 
Eng Mlnst MC and Paul 
Prickett B Eng (Tech) M Eng 
C Eng MIMechE, work at the 
Condition Monitoring Group 
in the School of Engineering, 
Cardiff University

Street lighting presents a major potential growth area for lamp 
monitoring systems, due to the large number o f lamps involved and their 

diverse locations (photo: Simon Rowe)
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short period of time due to 
infant mortality, whilst others 
may last twice their expected  
life -  this can cause major 
errors in the predicted 
replacement time of the lamp.

A lot of lamps are dimmed, 
which will significantly affect 
their life expectancy.

Environmental factors such 
as switching frequency are 
not accounted for.

Another well established  
method of lamp monitoring is 
to monitor a parameter of the 
lamp, such a s the operating 
current, so  that when the 
filament breaks or the 
discharge ceases , an alarm is 
triggered. However, this is 
useless for the purpose of 
pre-emptive maintenance.

3. Emerging Lamp 
Condition Monitoring 
Technology
An emerging approach to 
lamp monitoring, around

which this paper is based , is 
to m easure a characteristic, 
or combination of 
characteristics, of a lamp to 
accurately determ ine the 
remaining life. W hen 
perfected, this will provide a 
continuously updated 
estim ate of the remaining life, 
based  on its current u sage  
patterns. This work is still in 
its infancy and progress with 
the technique and the 
enabling technologies varies 
greatly with lamp type.

3.1. Filament Lamps: Little, if 
any, work appears to have 
been  published on condition 
monitoring for conventional 
filament or halogen lamps. 
Nearly all existing monitoring 
system s rely on detecting an 
interruption in current flow a s  
a m eans of determining that 
a lamp h as failed. T hese  
system s are often 
incorporated into high 
specification cars. There 
appear to be no dedicated

system s or devices for 
performing predictive lamp 
failure monitoring.

3.2. HID (High Intensity 
Discharge) Lamps: There 
has been  a lot of interest in 
monitoring th ese  types of 
lamps, primarily due to their 
u se  in expensive multi-media 
projectors and also due to the 
possibility of lamp explosion  
at failure.

In 1996, Osram Sylvania Inc. 
w as granted a patent for a 
‘Ballast containing protection 
circuit for detecting 
rectification of arc discharge 
lamp’111. This device m easures  
the DC voltage component, 
which develops across the 
lamp as it approaches the 
end of its life, and disables 
the inverter before the 
cathodes are overheated.

The Hewlett Packard 
Company w as granted a 
patent in 2002  for an 
invention which ‘provides an 
end-of-life notification signal, 
indicating that the arc lamp 
bulb should be replaced, 
c lo se  to the end of the useful 
life of the arc lamp bulb, but 
before the bulb actually burns 
out. The threshold property 
value is ch osen  to correspond 
to a point in the life of the arc 
lamp bulb that precedes the
actual burn out of the bulb.'121

Koninkl Philips Electronics 
w as granted a patent in 2003  
for a device which monitors 
g a s  discharge lamps. 'A 
warning signal is generated  
when a test value is 
m easured which corresponds 
to a clear reduction in the 
lamp voltage, for the purpose 
of better predicting the life of 
the lamps and the risk of 
explosion.’ 131

In 2004 a patent application 
by the BENQ Corporation 
w as published, one of its 
claims being ‘A projector 
capable of detecting 
remaining life time of the light 
source lamp therein,

Typical High Intensity Discharge 
Lamp

comprising: an image 
projection device having a 
light source lamp with a pair 
of lamp electrodes: a 
detection device for detecting 
a voltage across the lamp 
electrodes; an analogue-to- 
digital converter for converting 
the voltage to a digital value; 
and a control unit for 
comparing the digital value 
with a relational table to 
calculate the remaining life 
time of the lamp.’141

From all the patents found, it 
is clear that quite a lot of 
work has been done on 
detecting the imminent end of 
life of discharge lamps, 
particularly those used in 
projectors. However, the first 
three patents do not discuss 
determining the actual 
remaining lamp life at any 
particular time -  they 
concentrate on setting 
thresholds based on an 
individual, or combination of, 
lamp parameters, in order to 
warn the user when the lamp 
is about to expire and shut it 
off before the lamp explodes. 
The final patent application
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cdoes discuss a device for 
rmeasuring the remaining 
1,lamp life at any point in time, 
sand displaying it each time at 
sstart up for the user to see, 
tout it is clear that the primary 
frfocus of the work has been  
ftor projector lamps, which is 
primarily a stand-alone 
application

3.3. Fluorescent Lamps: In a
vwhite paper for CEYX 
Technologies151, a control 
ssystem for the cold cathode 
ffiuorescent lamps used in 
LCD backlighting is described 
tthat monitors the lamp current 
in order to enable the 
controller to maintain a 
consistent light level from the 
Uamp. The controller also uses 
tthe lamp current to implement 
f.-ailure prediction, using built 
in diagnostics.

At present, there appears to 
toe very little interest in 
condition monitoring 
conventional, heated cathode, 
fluorescent lamps. Unlike HID 
lamps, fluorescent lamps are 
inexpensive, as too are the 
fiittings they’re used in. 
Consequently the cost of any 
monitoring system has to be 
Icow in order to make it 
economically viable, unless 
tthe lamp happens to be part 
D)f a safety critical system  
where cost is then a 
secondary concern. One 
factor which helps make 
condition monitoring of 
R luorescent lamps a 
favourable option is the large 
mumber in use. Huge savings 
im both running costs and 
lamp costs could be achieved 
iff they were changed at the 
rught time. The sam e 
monitoring technology could 
Bilso probably be used on 
compact fluorescent lamps.

31.4. SID (Static Induction 
Discharge) Lamps: There 
seem s to be no information 
available on condition 
■monitoring techniques for 
amps of this type. This is 
presumably due to the fact

Remote
Monitoring

Segment
Controller

Power Line Communication Phone Line / Internet
OLC = Outdoor Lighting Controller

Figure 1: the Philips Telemanagement Architecture (see Section 4.1)

that they are, firstly, a very 
new technology with relatively 
few installed -  and the fact 
that the lamps have a typical 
life of around 60,000 hours161, 
which m eans obtaining data 
on the characteristics of the 
lamp over its lifetime would be 
very time consuming. As 
replacement of the lamp is so  
infrequent, it is possible the 
lamp may not even be the 
most frequently replaced part 
of the system . The electronic 
ballast used to drive the 
lamps could cau se  a 
significant percentage of 
failures itself, which would be 
very hard to predict. 
Consequently developing a 
monitoring system  for this 
type of lamp may not turn out 
to be cost-effective until the 
lamp is in more widespread  
use and more data is 
available.

3.5. LED (Light Emitting 
Diode) Lamps: There seem s  
to be little or no existing

Fully RoHS C om ]

RO YCE T H O M P S O N
LIGHTING TECHNOLOGY IN CONTROL 

we specialise in photo
electronic s^nes

A RANGE OF ONE PART' AND 
TWO PART' PHOTOCELLS WITH 
MARKET LEADING RELIABILITY 
AND PERFORMANCE. HIGHLY 
CAPABLE RADIO FREQUENCY 
MONITORING SYSTEMS. 
ELECTRONIC BALLASTS AND 
MISCELLANEOUS LIGHTING 
CONTROLS.

% >
• i

ROYCE THOMPSON
ACE BUSINESS PARK, MACKA00WN LANE. 

K i n s  GREEN, BIRMINGHAM B33 OLD
TEL0121 785 4700

W W W .R0YCETH0M PS0N.C0M

LJ

http://WWW.R0YCETH0MPS0N.C0M


jj Lamp Monitoring

information on condition 
monitoring techniques for 
LED lamps. Although LEDs 
are not new, their use as 
major light sources has only 
been facilitated by recent 
improvements in their output 
power; consequently the 
numbers in use are 
comparatively few, with most 
being used for specialist 
applications such as traffic 
lights and torches. The 
reason for there not being 
much interest in condition 
monitoring of LED lamps is 
almost certainly the sam e as 
for SID (Static Induction 
Discharge) lamps.

4. Emerging Lamp 
Monitoring S y stem s
A few advanced monitoring 
system s for outdoor (mainly 
street and road) lighting 
installations have recently 
becom e commercially 
available.

4.1. Philips Lighting: One of
the most recent, and arguably 
most comprehensive systems, 
is one advertised by Philips in 
their Telemanagement 
Solutions in Outdoor Lighting 
brochure'7'. Philips currently 
supplies two system s, called 
Starsense and Telesense, 
which both allow greater 
control and monitoring of 
outdoor lighting installations 
than was previously possible.

Both system s revolve around 
each light being fitted with 
special electronic control gear 
which provides dimming 
control of each  discharge 
lamp. The electronic ballast 
also monitors the discharge 
lamp's inner electrical 
parameters, to accurately 
predict when the lamp is 
about to fail, thus enabling 
efficient and timely 
replacement of the lamp. The 
system s are claimed to 
provide significant cost 
savings, by enabling lam ps to 
be dimmed to the required 
light level depending on the 
time of day, weather, age  of 
the lamps etc. They also  
remove the need to employ 
people to scout for failed 
lamps.

The Starsense system  has 
comprehensive functionality, 
to allow it to interact with 
traffic m anagem ent system s  
and geographical information 
system s, which m akes it ideal 
for larger installations such as  
motorways and large 
interchanges. The T elesense  
system  has a simpler 
architecture and is intended  
for stand-alone street lighting 
applications only (s e e  Fig.1 
on page 33). With both 
system s there is a SC  
(Segm ent Controller) for each  
group of lights -  this 
com m unicates via the power

lines with the OLC (Outdoor 
Luminaire Controller) installed 
in every luminaire. The OLC 
monitors the lamp and 
controls its dimming level 
under the command of the 
SC. The SC in turn 
com m unicates with the 
monitoring PC at the control 
centre via a phone line or the 
internet.

4.2. IEI (Integrated 
Equipment & 
Instrumentation): A very 
similar system  is presented in 
a paper written by R. 
Seevaratnam  of Integrated 
Equipment & Instrumentation 
entitled ‘Street and Public 
Light Monitoring System  
(SPL)’18'. The system  
incorporates a Basic 
Signalling Module (BSM) in 
each  luminaire which 
com m unicates via the power 
line with a data logger module 
housed within the power 
distribution board; from here 
data is sent back to a central 
computer via a telephone line, 
fibre optic cable or wireless 
modem.

The system  enables remote 
switching of the luminaire, 
plus dimming if the ballast 
supports it. As well as  
control, the system  also  
provides feedback on fault 
conditions, including lamp 
failure, inefficient lamp 
running and the door of the 
lamp column being open. A 
database on the central 
computer keeps track of the 
switching cycles of each  
lamp, together with any faults 
that have been detected. The 
detection of inefficient lamp 
operation also gives the user 
the option to replace lamps 
before they fail.

4.3. Mayrise Systems: One
of the products on offer from 
Mayrise System s is a 
software management system  
designed to help manage the 
operation and maintenance of 
street lighting installations. 
This system  has also been  
integrated with remote 
monitoring system s from two 
different manufacturers to 
provide a complete 
management solution.

The Royce Thompson Cluster Controller scans the individual radio 
modules on each light to provide supervision o f the street lighting 

system.

In Starsense. the lamp monitoring occurs in the OLC (Outdoor Lighting 
Controller) in each street light. The Segment Controller acts as a network 

component that manages the passing o f information and also checks 
that the OLCs are healthy.
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The first monitoring system , 
from Royce Thompson Ltd, 
uses RF units that replace the 
photocells in luminaries. T he  
Oasis 2000 RF can dim 
electronic ballasts according 
to timetables or road 
conditions and also monitors 
street lighting to give desktop 
maintenance reports.’191. The 
system utilises a street level 
cluster controller which 
downloads timetables from 
the central computer and 
modifies the dimming levels of 
the lamps accordingly.

The second monitoring 
system, called ‘Lightmaster’, 
which is produced by 
Mayflower Intelligent 
Management Systems, also 
uses a RF module to replace 
photocells. This system works 
by using sub-master 
controllers to control a 
number of individual lights 
each, and then master 
controllers to control the sub­
master controllers, which can

control up to 32,000 nodes'101. 
The master controllers can be 
linked to a central computer 
through radio, existing wide 
area networks or GSM. The 
Mayrise system  is currently 
being implemented and used  
by a number of local 
authorities in the UK.

4.4 Harvard Engineering:
The LeafNut system  
developed by Harvard 
Engineering is another 
wireless street lighting control 
system '111. Each luminaire is 
fitted with a Harvard 
electronic dimming ballast 
which is connected to a 
wireless device called the 
LeafNode unit, which is 
designed to replace the 
photocell on top of the 
lantern. To control the 
LeafNode units, a 
BranchNode unit is required; 
this is a slightly larger device  
than the LeafNodes units, but 
is still able to be mounted on

top of a lantern. The 
BranchNode communicates 
with the LeafNodes via an 
868Mhz wireless network and 
can control up to 256  
LeafNode units within a one 
kilometre range. A main 
server, called the TrunkNode, 
com m unicates with the 
BranchNode units by GSM 
mobile phone or by using a 
GPRS system . It also hosts 
the web interface, which 
allows control and monitoring 
of the system .

Up to eight different dimming 
profiles can be handled by the 
system  to suit different 
locations, to enable lamps to 
operate at reduced light levels 
during the night, for example, 
when fewer cars are on the 
road. Should communication 
be lost with a LeafNode unit, 
it will continue switching and 
dimming the lamp using the 
sam e schedule as from the 
day before. As well as 
allowing centralised control

The Leafnut system’s 
Branchnode, which controls and 
monitors up to 256 street lights 

via wireless network

using time profiles or a web- 
based solar clock control, the 
lamps can also be controlled 
by a photocell installed in 
every Branch Node.

As well a s  controlling lamps, 
the LeafNut system also 
provides comprehensive
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zonitoring capabilities; it can 
zonitor each lighting unit for 
Fficiency, predicted lamp life, 
itllast condition and energy 
nsumption. The system can 
ten stop lamps cycling when 
sy reach end of life, by 
meeting the cycling and then 
nning the lamp at 75%
»wer, until there is 
Uportunity for it to be 
placed. The LeafNut system  
believed, by the 
ainufacturer, to be ‘the only 
D)nitoring control system that 
k<s directly to the micro- 
rocessor in the ballast and 
n therefore accurately 
e?dict lamp failure' p11.

5> Archnet Technology Ltd:
leather system by Archnet 
chnology Ltd.1121 operates 
1 a similar basis to the 
sitems previously described 
sections 4.1 to 4.3, except 
a t at the time of writing 
e re is no sign of provision 
• lamp failure prediction, 
ihy detection. The system is 
ir rently available for 
>mitoring street and campus 
hiting and features a device 
nmected to each lamp 
H-ch monitors its current 
j'w to detect when it fails, 
ich lamp device 
nnmunicates via the power 
e s to a power line modem, 
i'Ch then conveys the 
xmation back to a central 
; via either the internet or a 
’IRS (General Packet Radio

Service) modem. Information 
can also be sent to the lamp 
module to switch the lamp on 
or off a s  desired.

4.6 Fortran Traffic Systems 
Ltd: The N aztec Lamp 
Monitoring System  by Fortran 
Traffic System s Ltd.I* 3] u se s  
precision current transformers 
to monitor the current drawn 
by each lamp in the traffic 
lights at a traffic intersection. 
By detecting the failure of any 
lamp quickly, replacement can  
be arranged before an 
accident occurs. Although the 
system  can detect an 
intermittently failing lamp, it 
appears to have no predictive 
failure abilities.

5. C o n c lu sio n s
Following consideration of the 
current state of monitoring of 
the different lamp types, 
together with a survey of the 
system s currently available 
on the market, it is clear that 
a lot of work has been  done. 
However, m ost of the work 
has involved HID lamps and 
devices for incorporation into 
projectors, to warn the user of 
impending lamp failure and to 
protect them from exploding 
lamps. Very little work has 
been done on fluorescent 
lamps and filament lamps.
This is not perhaps 
surprising, a s  the products 
which use  HID lamps are 
usually expensive and hence  
can accom m odate the extra 
financial burden of a

am p type Lamp sa le s  
(m illions)

P ercen tage  o f  
total s a le s

il ament (GLS) 323 74.7

uorescent tubes 54 12.5

alogen 26 6.0

ompact fluorescent 24 5.5

igh intensity discharge 5.5 1.3

The Naztec lamp monitoring system by Fortran

monitoring system . However, 
the full benefit of lamp 
monitoring has yet to be 
realised, a s  HID lamps only 
make up a small fraction of 
UK lamp sa les, a s  shown in 
Table 1.

Looking at the table, it is clear 
that while a lot of work has 
been done on monitoring HID 
lamps, which make up around 
1.3% of UK sa les, this will 
have had very little impact on 
the overall lighting market. 
With this in mind further 
research need s to be carried 
out into condition monitoring 
of filament lamps (including 
halogen lamps), which make 
up an overwhelking 80.7% of 
the total UK market, and 
fluorescent lamps (including 
com pact fluorescent lamps), 
which account for 18%. Once 
this has been achieved, work 
n eed s to be done to s e e  how 
the information gathered from 
individual lamps can be 
processed  and used to form a 
collective picture, for the end 
user, of the condition of an 
entire lighting system , 
containing many different 
types of lamp. The total cost 
and complexity of such a 
system  must be kept to a 
minimum, in order that it may 
be commercially viable for 
use with the more common, 
lower cost types of everyday 
lamps.
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Abstract

This research note describes a novel yet simple way to quickly detect incorrectly 
evacuated lamps from the electrical characteristics o f the lamp when it is turned on for 
the very first time.



1. Introduction

Filament lamps still make up a large proportion of total lamp sales; in 2002 General 
Lighting Service (GLS) filament lamps made up 74.7% of total UK lamps sales whilst 
halogen lamps made up a further 6% of total salesp]. This means that over 80% of 
lamps sold in the UK in 2002 used a filament as their main source of illumination.

During the current research project, which follows on from previous research on 
monitoring systems based on low-cost eight bit microcontrollers, the Intelligent 
Process Monitoring & Management (IPMM) centre, which is based at Cardiff 
University has been considering how informed maintenance scheduling for lighting 
systems can be achieved through the detection or prediction of impending lamp 
failures before they occur. The latest part o f this work has revolved around trying to 
pre-empt lamp failures by detecting flawed lamps before they are used. The main 
focus of the work so far has been looking at how incorrectly gassed lamps can be 
detected before they are put into use.

2. Detecting Incorrectly Filled Lamps

During a typical gassing, “the bulb is evacuated through the exhaust tube and filled 
with nitrogen/argon gas. The bulb is partially re-evacuated and the lower end o f the 
tube heat-sealed.”[2 ] As with any process like this not all the oxygen will be removed 
from the lamp, so the filament is coated with “red phosphorus, which is very effective 
in removing traces o f oxygen and moisture from the inert gases commonly used in 
lamps.”[3] The red phosphorous on the filament is activated during the first lighting of 
the lamp, and along with the recrystallisation o f the tungsten wire during first use, 
contributes to the electrical phenomena shown in figure 1, which shows the filament 
resistance of a normal GLS lamp during its very first and then second start up.

The small fluctuations in the steady state resistance value are due to small fluctuations 
in the mains supply voltage which was also recorded. The measurements were taken 
using a Voltech PM 100 single phase power analyser interfaced to a computer which 
recorded all the measurements using custom written C++ software.
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Figure 1 Start up resistance o f a previously unused GLS lamp

If excess air is left inside when the lamp is made, then depending on how much is 
inside, the lamp may well survive the initial filament bum as the oxygen inside the 
lamp is used up by the action o f the getter and the burning filament, however this will 
mean that the filament is weakened and will probably fail prematurely when the lamp 
is put into use. A solution for detecting this problem has been the main outcome of 
the work so far and is discussed in the next section.

3. A New Approach

In order to conduct experiments and measure the start up current of incorrectly gassed 
lamps, a supply o f faulty lamps was required. Since identifying faulty lamps would 
require testing every lamp and waiting to see if  it was a faulty one before using the 
results, this was ruled out as a way o f obtaining results in a reasonable time scale. 
Instead brand new bulbs were purchased and a small 1mm hole was drilled in the 
neck of the lamp using a tungsten carbide drill. This meant that air quickly filled the 
lamp, replacing the previous contents. As it proved very difficult to evacuate the 
lamp and then successfully seal the hole again it was decided to adopt a different 
approach. Being an inert gas, Argon will not react with the hot tungsten filament, 
therefore the lamp was filled with Argon welding gas plus a small amount of air 
which remained inside. The exact quantities o f the gas inside the lamp did not matter 
as this would not be known when testing a real lamp either. The hole was then finally 
sealed with epoxy resin glue.

Each of the faulty lamps was then subjected to the same test as the healthy lamp 
shown in figure 1, except this time they were left on until they burned out. A plot of 
one of the faulty lamps is shown in figure 2. Note the change of the Y axis scale, 
which is required due to the significantly larger increase in the resistance of the faulty 
lamp.
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Figure 2:- Start up resistance o f a GLS lamp when filled with Air and Argon

Looking at figure 2 it can be seen that the increase in resistance during the first 60 
seconds of being on is significantly larger than for the unaltered lamp. The particular 
lamp shown in the plot lasted less than 10 minutes, however a lot lasted longer than 
this and some lamps burned for a couple o f days.

In all a total o f 13 40W lamps were filled and successfully tested. Figure 3 shows a 
plot of the increase in resistance for the lamps after being on for 30 seconds against 
how long the lamps lasted when they were left on continuously.
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Figure 3:- Plot of initial filament resistance increase vs how long the 40 W lamp lasted



From figure 3 it can be seen that there is a good correlation between the increase in 
resistance when the lamp is turned on for the very first time and how long the filament 
is likely to last as a result o f incorrect gassing.

Figure 4 shows the deposit patterns on one o f the lamps after the test was completed. 
Normally there is only a very small amount of Argon and nitrogen in the lamp 
envelope, as the lamp envelope is mostly evacuated; however as the lamps in this 
experiment were filled with air and argon there was no vacuum at all. The grey 
deposit, which formed after the white deposit from the filament burning ceased 
forming, was therefore probably due to increased thermal currents within the lamp 
which lead to the increased rate o f filament evaporation; this was backed up by the 
swirling patterns evident in the grey deposit.

Figure 4:- Photograph o f one o f the modified lamps after testing

By considering again how most lamps are filled, “the bulb is evacuated through the 
exhaust tube and filled with nitrogen/argon gas. The bulb is partially re-evacuated 
and the lower end of the tube heat-sealed.”;[2] it becomes evident that there are two 
problems that could occur, the nitrogen/argon gas may not be added correctly or the 
lamp may not be evacuated fully. Although more research work needs to be done to 
establish how the results correspond to real life lamps, it is clear that this testing 
technique has the potential to quickly diagnose both of these problems, as a large 
initial increase in resistance indicates too much oxygen in the lamp as a result o f poor 
evacuation and the rate o f resistance increase after this initial period will vary 
depending on the amount of Argon/Nitrogen left in the lamp, due to evaporation and 
thermal convection.

Although this testing technique will not detect all possible faults with a lamp, its main 
benefit is the simplicity o f the test. All that is required to detect incorrect gassing in a



previously unused light bulb is to illuminate it for around 30 seconds by connecting it 
to a stable voltage source and monitor how quickly its current draw decreases 
(resistance increases) during the first few seconds of use. The test does not harm the 
light bulb and can be conducted on the actual lamps that will be put into service; with 
the use o f computer interfaced test equipment it could be performed completely 
automatically. To develop this technique further a larger scale trial is required so that 
the behaviour of normal and genuinely faulty lamps can be recorded and thresholds 
determined for reliably identifying the faulty lamps in the shortest test period 
possible.
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