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0.1 Abstract

CONTENTS

This thesis describes the development of a far-infrared bolometric detector using 

a two-dimensional electron gas (2DEG) as the detecting medium. The 2DEG is 

formed at a AlGaAs/GaAs heterojunction made of layers of undoped GaAs and 

AlGaAs and highly doped (~  5 x 1 0 Al GaAs.  A 2DEG layer grown in this 

way in a molecular beam epitaxy (MBE) system is generally within ~100 nm of the 

surface of the wafer and is subsequently patterned by etching away the surrounding 

wafer material and leaving a mesa containing the buried 2DEG. Ohmic contact to 

the 2DEG is achieved either through a diffusion of charge carriers into the contact 

region.

Using a 2DEG as the absorbing medium in bolometers will yield detectors that 

are fast, sensitive, and frequency selective. The low electron densities in 2DEGs 

(~  1011 cm-2) allow large-area devices with extremely low thermal conductance 

between the electrons and the semiconductor lattice (e.g. Appleyard, et al. [1]). 

The fast time constant (on the order of 1 ps) of the electron relaxation time in the 

2DEG would allow for very high bandwidth spectroscopy.

This thesis presents an overview of the use of 2DEG bolometers and a detailed 

study of their properties relevant for use as THz HEBs or CEBs. Chapter 1 briefly 

outlines the importance of Terahertz astronomy. Chapter 2 presents an introduction 

to bolometer theory. Chapter 3 provides a description of the electrical, thermal, 

and magnetic properties of 2DEGs. Chapter 4 outlines the equations governing 

the operation of 2DEG HEBs and CEBs and contains computer-simulated data. 

Chapter 5 describes our device fabrication, testing methods, and gives the results 

of our measurements. Finally, this thesis concludes with a discussion of the results 

of the tests and possible interpretations in terms of different physical models for 

electron-photon interactions in the 2DEG.



C hapter 1 

Terahertz R adiation  and Its 

Im portance to  A stronom y

1.1 W hat Terahertz R adiation Tells Us about the  

U niverse

Terahertz (THz) radiation extends from about 10fim to 1 mm in the electromagnetic 

spectrum. It is a frequency range above microwave and below infrared radiation (it 

is frequently referred to as far-infrared radiation or F IR ). Development of technology 

for astronomy has been approaching the THz band from both directions. We have 

reliable x-ray, ultraviolet, radio, and microwave telescopes (we started with optical), 

but this in-between band has remained elusive until very recently. The work to 

develop THz detectors has been spurred on by the fact tha t half of the non-cosmic 

microwave background (non-CMB) light in the universe is in the far infrared, and a 

good deal of information about the universe lies within this band.

One of the main areas for investigation for FIR astronomy is star formation. 

Stars form when clouds of dust and gas collapse under their own gravity. This
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Star Formation

Optical HST

Figure 1.1: A comparison of images of the Eagle Nebula taken by Hubble in the 
optical and by SCUBA in the THz spectrum. Notice how the THz band shows the 
features of the star forming regions. (Taken from Mark Devlin’s BLAST web site 
[2])

gravitational collapse generates the heat tha t ignites the proto-stars. Around these 

nascent stars, disks of dust and gas coalesce and within these disks new planets 

form. The planets’ gravity disturbs the remaining dust in the disk causing ripples 

and lumps to form. Radiation emanating from the protostar is absorbed by the dust 

and reradiated in the far infrared. A good THz detector enables us to observe the 

star formation directly and the planet formation indirectly. In some instances, these 

processes are otherwise undetectable.

THz detectors also allow us to see the mechanics of early galaxy formation. 

Due to expansion, the light from the furthest galaxies has been red-shifted into the 

far infrared. A detector sensitive to these wavelengths would enable observation of 

galaxies billions of light years away. These would be the earliest galaxies from “ju s t” 

after the Big Bang; we could study the very first galaxies in the universe as they 

form. Again, such events can be invisible to anything but THz detectors.

The processes described above are not well understood precisely because the 

technology to make precise observations has not been available. THz detectors have
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the potential to show us the very beginnings of our universe and the mechanics of 

its evolution.

1.2 The Problem W ith Terahertz Detection

Making a THz detector is complicated because THz waves are non-ionizing, strongly 

absorbed by water, low energy, and produced as a component of blackbody radiation 

by anything with a temperature above 10K. Water’s strong absorption of THz radi

ation means that the atmosphere will block most celestial signals unless we conduct 

far infrared observation in very dry, high environments; with the ideal being a space- 

borne detector. Putting a THz detection apparatus, or anything else, into orbit is 

extremely expensive and ground-based observation has to be conducted in very high, 

dry environments such as the Mount Lemmon Infrared Observatory in Utah [3], the 

airborne SOFIA (Stratospheric Observatory for Infrared Astronomy) [4] jointly run 

by NASA and the German Aerospace Center, and Antarctica.

Everything with a temperature of more than 10 K will be emitting THz waves 

so the environment is saturated with signal that will drown out that from stars. 

Any THz detector will have to be cooled to well below 10K (typically ?«300 mK for 

ground-based systems) for the duration of observation, necessitating the incorpora

tion of cryogenic equipment into any design and the use of expensive (liquid helium) 

coolant. In the case of “ground-based” measurements, the detectors and cryogenic 

systems are sometimes lifted to high atmosphere via balloon (see Figure 1.4 showing 

the BOOMERANG- Balloon Observations Of Millimetric Extragalactic Radiation 

ANd Geophysics- system) to avoid atmospheric absorption of the signal.

The low energy of THz waves and photons necessitates very sensitive detectors. 

The required sensitivity is determined by the photon shot noise of the incoming
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M easurem ent T ype T elescope Tem p. R equired S en sitiv ity  (IV / \ / l l z )

Ground-Based Photometry 300 K 10" 15
Ground-Based Spectroscopy 300 K 10~17
Satellite-Based Photometry 60 K 10-16

Satellite-Based Spectroscopy 60 K 10-18

Satellite-Based Mirror 7 K 10-19
Satellite-Based Spectroscopy 7 K 10-20

Table 1.1: Telescope types and their sensitivity requirements assuming an incoming 
wavelength of 200/im. These numbers are determined by the shot noise of the 
incoming radiation.

radiation: the detector’s sensitivity must be at or below the photon shot noise (see 

Chapter 4 for a discussion of noise). Table 1.1 lists the sensitivity requirements of 

different detectors based on their operating temperature and an incoming wavelength 

of 200/im. The ground-based systems have lesser sensitivity requirements (higher 

numbers) because of the higher baseline of thermal noise in their systems due to the 

relative warmth of atmosphere compared to space. The detector must also contend 

with the power emanating from the detectors themselves, the atmosphere, and space. 

We calculate these numbers through the Planck blackbody formula:

Power
= r e ( u ) A Q ( ^ - )  

J exp ( t^ f)  — 1
dv. 1 . 1

exP (j4 r

where kB is the Boltzmann constant, T  is temperature, // is the frequency, r (/') is 

the frequency-dependent emissivity, A is area, and Q is the solid angle. In instances 

in which hv kT,  we can use the expansion exp(hv/kB 1 ) ~  1 {his/kfi I ). 1 his 

allows us to reduce Equation 1.1 to the Rayleigh-Jeans Law:

Power — 2kBT  Ave{v) — (1.2)
A

where A is the wavelength and Au  is the bandwidth. For our example, we need



1.2. THE PROBLEM  W ITH  T E RA H E R T Z D ETECTIO N  11

only consider single-mode transmission [5], so the A Q / A2 term will go to one. The 

value of the emissivity would be given by

Em iss iv i ty  =  1 — Transmission. (1.3)

Transmission numbers would be specific to the region, elevation, temperature, 

etc. at which they were measured.

At lower temperatures, we do not use the expansion. Again, for single-mode, 

AQ, = c2/ v2 so Equation 1.1 reduces to

Figure 1.2 shows a transmission graph taken on Cerro Sairecabur, Chile. We 

can get a good estimate of atmospheric power from the sky brightness, as shown 

in Figure 1.3. In calculating power, we often assume a constant throughput and 

a constant frequency resolution (i.e. N v / v  =  1). We can rewrite Equation 1.1 in 

terms of the intensity I u,

W ith our assumptions, the sky power is proportional to v l u. Table 1.2 shows 

examples of some power outputs. Compare the background power from atmosphere 

at 250K versus that from space. This relates back to Table 1.1 in tha t a ground- 

based detector is only going to be able to pick up whatever astronomical signal that 

can be seen above the thermal noise of the atmosphere, hence a detector sensitive 

enough to pick up anything less would be pointless.

Several different technologies are in use or being developed. Currently, the most 

often employed THz detector is the composite “spider web” bolometer. The pros and

Power  =  2 h (1.4)

Power = / I„e(v)AQ(v)dv. (1.5)
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o  9* trs

0 .2  0 4 0  6  O H 1 \ 2 1 4  1 6  1 8  2 2 2
Frequency (THz)

Figure 1.2: A plot of the transmission vs. frequency at Cerro Sairecabur, Chile, 
(taken from Marrone et al. [6])

B ack g ro u n d  P ow er L oad ing  (W ) a t...
Source 1 T H z 1.5 T 2 T H

300 K Blackbody 2.24 x 10-® 1.86 x 10-® 3.48 x 10“®
300 K Blackbody w / 10 % emissivity 2.24 x 1 0 -lU 1.86 x 10- ‘u 3.48 x 10-*°

250 K atmosphere 1.86 x 10-® 1.55 x 10-® 4.83 x 10-"
Background Power from Space 2.70 x 10-lS 8.00 x 10- lb 2.90 x 10- 16

0.6 T 0.8 T 1.2 T
80 K telescope w / 4% emissivity (SPIRE) 2.6 x 1 0 -'2 3.0 x 10" 12 3.8 x 10' 12

Table 1.2: Background powers for detectors, atmosphere, and space followed by 
those generated by two space-based FIR telescopes. Detectors on these satellites are 
cooled by on-board helium cryostats in order to give them the sensitivity to detect 
FIR photons. When the supply of helium runs out, the detectors’ tem peratures will 
rise to meet tha t of their respective satellites and their own noise will drown out the 
target FIR signal. Values calculated from data in Marrone et al. [6] and taken from 
data in Griffin et al  [8]
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Figure 1.3: A plot of the night sky brightness from various sources vs. wavelength. 
Note how different sources dominate at different frequencies. The region in which 
dust emission dominates(~ 1-3 THz, the FIR region) is covered by the PACS and 
SPIRE instrument in the Herschel Space Observatory, (adapted from image in 
Leinert et al. [7])
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cons of each type of detector is covered in C hapter 2. W hen speaking of maximizing 

sensitivity, we speak of direct detectors rather than  heterodyne detectors. The 

difference between the two is th a t a direct detector generates information about 

the source through absorption of the source’s radiation while a heterodyne detector 

mixes the incoming radiation with a signal from a local oscillator and generates a 

beat frequency which the operator reads out. All following discussions will concern 

direct detectors exclusively.

1.3 Our B est Efforts So Far...

Spider web bolometers represent the most well-developed THz detectors at the time 

of this docum ent’s drafting. They detect from ~300/xm to 3 mm and have been 

used extensively to map the sky in the far infrared. The ou tpu t of each bolom eter 

represents a pixel on the readout, each pixel covering a certain area of the sky. To 

maximize the am ount of sky th a t can be simultaneously imaged, the bolometers are 

arranged in arrays. Multiple arrays are used in instances where several different 

bandwidths are being studied, with each array being tuned to a particular wave

length using appropriate filters. The arrays are m ounted in a cryostat tha t will 

keep them  a t liquid helium tem perature or lower. Ground-based THz astronom y is 

mostly done in Antarctica, the most arid environment on the planet. The coldness 

of the environment further eliminates moisture through freezing. There, bolometric 

arrays are flown via balloon into the high atm osphere to m ap the sky in the far 

infrared. Projects th a t have used spider w’eb bolometric arrays in this fashion in

clude BOOMERANG [9, 10], BLAST(Balloon-borne Large A perture Subm illim eter 

Telescope) [11], and Bolocam (Bolometric Camera) [12, 13].

An ideal location for THz detection is space and the satellites Herschel Space
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Figure 1.4: Showing (clockwise from top) a bolometric array, a cryostat, and the bal
loon used for BOOMERANG’S launch. From the Astronomy and Instrumentation 
Group at Cardiff University’s web site [14].
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Observatory containing SPIRE (Spectral and Photom etric Imaging REceiver) [8] 

and Planck [15] utilize bolometric arrays for detection, but neither of these satellites 

is actively cooled and the telescopes operate a t tem peratures exceeding 40K, drown

ing out a lot of the THz radiation coming from celestial sources. Both are scheduled 

to launch in July 2008. SPIRE has a detector sensitivity of 2 x 1 0 ~l7W / \Z~Hz [8]. 

as does Planck [15]. Several actively cooled orbital far infrared observatories are in 

the planning phases. These projects include SAFIR (Single A perature Far-InfraRed 

observatory) [16, 17], SPECS(Submillimeter Probe of the Evolution of Cosmic Struc

ture) [18, 17], SPIR IT (SPace InfraRed Interferom etric Telescope) [19], and SPICA 

(Space Infrared Telescope for Cosmology and Astrophysics) [17, 20]. Achieving 

their design sensitivity requires the development of THz detectors w ith an N EP of 

< 1 x 10“ 19(see C hapter 2 for a discussion of N EP). 2DEG based detectors could 

realize this requirement and will be a viable option by the time the projects are in 

the construction phases.



C hapter 2

B olom eter M odels

The basic definition of a bolometer is a detector whose electrical properties depend 

on its rate of energy absorption. In this section three different types of bolometers 

and the theories governing their operation are discussed, with a concentration on the 

theories applicable to our 2DEG bolometers. The word bolometer literally means 

“ray measurer.” Bolometers are sensitive to anything tha t can generate heat, in

cluding EM radiation. Therefore, one of the important considerations for making a 

THz instrument with bolometric detectors is the filtering of high and low frequency 

signals. The bolometers to be discussed will be standard composite bolometers with 

different types of thermometers, hot electron bolometers, and cold electron bolome

ters.

2.1 G eneric B olom eters

A generic bolometer consists of a medium to absorb thermal radiation (an absorber) 

connected to a heat sink through links with low thermal conductance. A resistor 

whose resistance value is very dependent on tem perature (a thermistor) is put in 

good thermal contact with the absorber so it can be assumed th a t they are at

17
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Figure 2.1: A “spider web” composite bolometer. The thermometer sits in the center 
of the absorber mesh. The mesh is connected to the heat sink via a web of thin 
legs. The legs are engineered to be as thin as possible so as to make the thermal 
conductance as small as possible.(Image taken from NASA’s Web site [21])
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the same temperature. In operation, the power from the source incident on the 

absorber raises the absorber’s and the therm istor’s equilibrium temperature. If the 

rate of change of the therm istor’s resistance with temperature (dR /dT) is positive, 

a voltage bias is used for reading out. If dR /dT  is negative, a current bias is 

used. A semiconductor bolometer, such as the nuetron transm utation doped (NTD) 

germanium used in Planck and Hershel bolometers [29], would have a negative value 

for dR /dT . A bias current (/*,) is sent through the thermistor causing a voltage drop 

across the thermistor; measuring the voltage will give us the resistance value of the 

thermistor via Ohm’s law: V(T) = IbR{T). This value enables us to determine the 

source signal. In order to get a reading, we must compare the source signal with 

the off source signal. The bolometer would be oriented to a point away from the 

source, an empty spot in the sky. This gives us the off source signal, or the signal 

the thermistor registers when pointed at “nothing.” Subtracting the off source signal 

from the source signal gives a properly calibrated measure of the power emanating

from the source. A schematic of the absorption process in a generic bolometer is

shown in Figure 2.2.

A composite bolometer is an example of this kind of bolometer. It consists 

of an absorber material connected to a thermometer (a resistor) of a dissimilar 

material. The bolometer is connected to its heat sink via thin legs tha t minimize 

the bolometer’s thermal conductance G, see Figure 2.1. The average value of G for a 

leg (neglecting other contributions) would be determined by its cross-sectional area 

A, its length / , and its thermal conductivity k [22]:

Gleg = 4 5 .  (2.1)

A low thermal conductance is desirable because we detect radiation by measuring 

the temperature difference between the absorber at equilibrium and the heat sink.
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Bolometric
Detector

bolometer

Figure 2.2: Schematic of generic bolometer operation.

The magnitude of the difference will tell us how many W atts of radiative power are 

hitting the absorber. A source of radiation incident on the absorber will bring the 

absorber to an equilibrium temperature; this will in turn  warm the resistor. For 

small changes in temperature T (linear response regime) the resistance R changes 

as

R(T) = R(T0) + STW ,  (2.2)

wher T0 is the thermistor’s average operating tem perature, determined by the 

average optical and electrical power dissipated in the therm istor and absorber. A 

useful parameter for bolometer discussion is a ,

1 ( d R\  
a ~ R \ d T j ' (2.3)
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Therm al Property Electrical equivalent

Conductance (G) Inverse Resistance (1/R)
Temperature (T) Voltage (V)

Power (P) Current (I)
Heat Capacity (C) Capacitance (C)

Table 2.1: Thermal Properties and Their Electrical Equivalents

whose value is specific to the thermometer and is evaluated at the the operating 

temperature. Again, a semiconductor bolometer would have a negative value for 

dR/dT. The value of the resistance will indicate the temperature of the bolometer, 

and the temperature of the bolometer will give the rate of absorption from the 

source. This can be understood in terms of an “electrical model” of thermal devices. 

We typically talk about the thermal properties of bolometers, Table 2.1 presents 

electrical “analogs” of all the relevant thermal properties of bolometers. We will 

use this to draw “circuit diagrams” that represent the processes involved in thermal 

detection.

We are interested in looking at the current state of the bolometer and figuring 

out what the incoming optical power must be to induce that state. In the electrical 

analogies, power is represented as current, so we are interested in finding the current 

flowing into the system. Ohm tells us that

In our analogy, /  is the sum of the optical power and the electrical power that 

we must put in to read the resistance,

(2.4)

op tica l e le c tr ica l (2.5)

R is going to be the inverse of the thermal conductance G of the legs,
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(2 °)
le g s

Finally, V  is going to be the difference in temperature between the heat sink and 

the bolometer,

A V  ► T b o lo m e te r  T b e a t s i n k ’ (2.7)

The heat sink temperature is not going to be zero, so the power absorbed is only 

enough to raise the temperature from that of the heat sink to an equilibrium value, 

T b o l o m e t e r • This gives

P o p t  =  { T b o lo m e te r  T } ie a i 3in ie ' ) G  iCg S P e l e c • ( 2 -8 )

This is the steady-state condition of a bolometer. The general equation, allowing 

for power that changes with time, is

dT
G  ^  P o p t  T  P e le c  G ie g s { T b o lo r n e tc r  1  h e a t s in k ) « ( “ - ^ )

where C  is the heat capacity. Obtaining the heat capacity and thermal conduc

tance enable us to calculate the thermal time constant of the bolometer:

t = § -  (2-10)

This time constant describes the thermal decay time of the absorber. In order to 

see the origin of the thermal time constant (Equation 2.10) we can use the electrical 

analogs to redraw the bolometer schematic in terms of circuit symbols, see Figure 

2.3. In a circuit, the time constant would be equal to RC (C for capacitance): Table

2.1 shows that the thermal equivalent is C /G  (with C now representing the heat
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C,

electrical
.  A A A

bolometer

Figure 2.3: Electrical analog for generic bolometer operation. Note that the ca
pacitance (heat capacity) does not come into the equation. This is because it’s 
unchanging during bolometer operation, so it acts like a charged capacitor and the 
“current” completely bypasses it.

capacity). A problem is immediately evident: we need the thermal conductance to

be small in order to have a sensitive bolometer, but the smaller we make it, the 

longer the time constant becomes. Hence, we can have sensitivity or speed, but not 

both.

The measured time constant is usually different from r. This is due to electrother

mal feedback: the temperature rise due to an increase in radiant power is affected 

by the fact that R changes with temperature. Rearranging Equation 2.8 illustrates

this,

_ Pgpt Pelec > _ Pppt + ^ ( ^ ) (2 .11)

The thermal conductance is defined as the rate of change of power with respect 

to temperature. For a current-biased bolometer, a resistance which changes with 

temperature would give rise to an effective thermal conductance Ge equal to [22]
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Gr = G — I ^ R a ( 2 . 12 )

where G is now the dynamic therm al conductance d P /d T . For a semiconductor. 

Ge > G. We use this to calculate an effective time constant re = C / G c.

In operation, a generic bolom eter’s absorber tem perature will typically be higher 

than  its heat sink tem perature. Ideally, an infrared detector should display a large 

change in tem perature for the absorption of a given unit of energy, i.e. it should 

have a small heat capacity, and so is generally engineered to have such a property. 

As the heat capacity increases with tem perature (Equation 3.66), it is desirable to 

have a low detector tem perature.

Once the therm om eter gives us the bolometer tem perature, we have all the in

formation we need to determine the optical powrer detected from the source. How 

the resistance of the therm om eter changes w ith tem perature determines the respon- 

sivity of the bolometer. Responsivity is a term  which describes a detector's ability 

to convert input power into signal, specifically it is the change in voltage drop per 

w att of absorbed power. Its units will depend what sort of signal it puts out. but 

in general

In the case of a bolometer [22]:

Responsiv ity  = - IbRa (2.14)
Ge{ 1 +  lUJsTe)

where lvs is the frequency a t which the incident radiant power is m odulated. 

M ather [24] makes the assumption th a t therm al conductivity of the system  varies 

with tem perature according to a power law:

Responsiv ity  =
dSignal

(2.13)
d Power
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k ( T )  = Ko( - T — ) ,  (2.15)
\  1 h e a ts in k  '

where k0 is the thermal conductivity at Ths. The factor f3 would be determined 

by experimental data. Sudiwala et al. [23] uses this to calculate the power flow 

across a thermal link of cross-sectional area A and length I (i.e. the heat conducting 

leg of a bolometer).

r  K{T)dt r  16)P e g  -   J T T  -------- , (3.1b)
fo i dx

which gives us

Pus = -  J)’ (2'17)

where — T/Ths. From Pieg = GAT,  we get the thermal conductance in terms

of a temperature ratio:

G / $ 0 + i -  \ \
= j f i  (t t ) ’ (218)

where Go is G(<f>) at the limit where T  —> Ths. We can then reexpress Equa

tion 2.8 as

P ^ c W  = -  l) -  Popt- (2.19)

Thermal bolometers are characterized by their load curves, their voltage-current 

characteristics. These can be from the results of incrementing R(T) and Peiec{(F) 

from Thcutsmk to a maximum temperature. The values of voltage and current are 

then found via P — I2R , i.e.
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V = JP( T/ n, ) R( T)

and (2 .20 )

P ( T/ Ths) 
R{T)  ■

The reader is encouraged to look at the works of Mather [24], Sudiwala [23], 

Richards [22], and Clark-Jones [25] for further and more in-depth discussion of 

bolometer theory.

The following section touches very briefly on the origins of the equations for noise 

and NEP. For a more detailed discussion, the reader is encourage to read the text 

by van der Ziel [26] and the papers by Kuzmin et al. [27, 28], and Richards [22] from 

which this section was derived. There will be a level of naturally occurring noise in 

the bolometer below which measurement will require averaging the signal over as 

long an amount of time as possible. This noise is due to a combination of Johnson, 

phonon, photon, and equipment noise. Noise and its resulting noise equivalent power 

(NEP) must be considered when making any detector. We calculate the sensitivity 

of the bolometer by finding its total NEP. which is the ratio of the noise spectral 

density, the noise power per unit of bandwidth, to the responsivity. Specifically, the 

NEP is defined as the incident signal power required to obtain a signal equal to the 

noise in a 1 Hz bandwidth:

2.2 Noise and NEP

N  oiseEquivalentPower N oiseSpect ral Den s i t y
( 2 .21 )Responsivity
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The NEP relates the uncertainty in the detected power to the integration time

via

d Power
\J2.t in te g r a t

so it has units of {Waits/ \ /Hz),  regardless of the nature of detection. For a 

bolometer, the NEP equation would be [29]

NEP* = N  EP*km,„„ + N E P lphon on Jo h n so n + NEPphoton

I (2.23)

N E P ^  = 4 kBT 2G + + 2 Q{hv0 + i)ebkBTb).to ta l

The relevant temperature is that of the bolometer (absorber). R is the bolome

ter resitance; S. the responsivity; Q , the absorbed incident power; fi0, the central 

frequency; rj, the overall transmission of the system, eb, the emissivity of the back

ground; and Tb, the temperature of the background. The lower the temperature, 

the lower the NEP, the greater the sensitivity, i.e. the lower the signal it can detect.

2.2 .1  John son  N o ise

Also known as Johnson-Nyquist noise. This is noise due to random electron fluc

tuations in a medium; the only way to be rid of it would be to have the system at 

absolute zero temperature. In a circuit, these fluctuations will give rise to a volt

age and, hence, a current that will be there regardless of the optical input. The 

magnitude of the noise contribution will depend on the resistance of the absorber 

and its temperature. In order to derive the Johnson noise, it helps to envision a 

closed circuit consisting of a noiseless resistor of the absorber’s resistance and an
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impedance-matched terminator connected to a heat sink at OK. Connecting these 

entities would be transmission lines of the same impedance as the absorber. The 

current due to the electron fluctuation is flowing through the resistor, so it's radi

ating power I 2R. The magnitude of this power, with du centered at m will be the 

power radiated

P„ = 2kf U (2.24)
exp(w)  ~  1

A Taylor series expansion will show that this goes to kBTdv  when hv k T . (the 

noise frequency will be ~  10 — 20Hz)  so the powrer radiated will be kBT B . where B 

the bandwidth in question. The terminator impedance will also be radiating. As it 

is heat sunk to OK, it will simply radiate the same power as the absorber resistor. 

As these sources are incoherent, they will add so that the power is 2kBTB.  This will 

be the power for each polarization. As we will not be blocking any polarizations, we 

will have two dimensions, so we multiply by two to get 4kBTB.  We are interested 

in how the electrons’ fluctuations will affect the voltage. If we multiply the power 

by resistance, we will get the square of the voltage.

V P o w e r  —  ^ k B l  c B R 2 D E G (2.25

To find (square of) the value of the Johnson noise, we divide Equation 2.25 by 

the bandwidth, obtaining units of V/y/Hz.  The Johnson noise contribution to the 

total N E P 2 is obtained by dividing by the square of the responsivity (Equation 

2.21) to get the familiar 4kBT R / S 2.
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Shot noise arises from the flow of quantized units of energy. Electrical and thermal 

currents are made up of electrons and phonons, respectively. The flow of these 

energy units will not be consistent: for a given steady electrical or thermal current, 

randomly arriving electrons or phonons passing by a given point will be observed. 

This randomness will give rise to what is called shot noise in the system.

To derive the equation for shot noise, we must look at current flow from the 

quantum perspective. (Electrical current will be used for the derivation, but the 

theory covers thermal current as well.) The seemingly continuous flow in a system is 

actually a random progression of charge carriers. We will call these current pulses. 

If we were sitting at a point on a wire watching the current go by, the overall 

current will be the sum total of the current pulses we see pass by. We will mark 

the contribution of each pulse as it passes our point, the current would only exists 

in those finite times during which a current pulse is flying by. We can use the Dirac 

delta function to describe the overall current as a function of time.

/ (« )  =  £ ? < S ( ( - i , ) ,  (2 .26)
j

where t0 is the random arrival time of the charge q. In order to evaluate the 

duration of a current pulse, we use the autocorrelation function:

f T / 2
R^t' )  = lim / I{t)I(t + t’)dt. (2.27)

T —oo J - T / 2

From this, we can get the noise spectrum through the Wiener-Khintchine the

orem [26], which states that the noise spectrum is the Fourier transform of the 

autocorrelation function:
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/ OO

dt'. (2.28)
-oo

where Sj ( f )  is the one-sided power spectral density and /  is the frequency of the 

noise. Sj ( f )  will be the mean-square current fluctuation in a unity bandwidth(/2/A /)  

For the final shot noise expression, we plug in the current equation (Equation 2.26 

into Equation 2.27),

T /2

i2/(0 = limr^ooEE I  6(t -  tk)6(t -  tk> + t’)dt
k k' - T / 2

I (‘2-29)

Ri(t') =  liniT-oo -  h 1 + ?).
k k’

To simplify, we average such that the contributions from the instances where 

tk 7̂  t'k vanish from the Fourier transform that gets us the power spectral density, 

i.e. Ri(t') = qld(t'). The Fourier transform of a delta function gives one. so plugging 

Equation 2.29 into Equation 2.28 gives

Sj ( f )  = 2 qh  (2.30)

the equation for the shot noise. Note that it is independent of frequency, meaning 

it is “white” noise. Also, it is a function of the average current. In an AC system, 

the average current will be zero, so shot noise is exclusively a DC occurrence. To get 

the contribution of the shot noise to the total NEP. we divide by the responsivity:
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2.2 .3  P h on on  N o ise

Fluctuations in the energy of a bolometer will give rise to the phonon noise. This 

noise is caused by phonons passing through the thermal conductance of the device. 

Phonons are quantized units of energy equalling kTc (for a 2DEG), the phonon noise 

can therefore be described by shot noise equations. In order to describe it, we will 

again use the electrical analogs in Table 4.1. The unit of charge q in Equation 2.30 

will be kTc. Current is given by the product of inverse resistance and voltage. We 

see that the thermal equivalents of these values are thermal conductance G and 

power P. Therefore phonon NEP is given by

N E P ^ onon = 2kBTeGP, (2.32)

but we recall that G — dP/dT1 so we can simplify by revaluating P in terms of 

G and T:

N E P 2phonon = 2 kBT 2G. (2.33)

The final adjustment is to the coefficient. As when we were considering Johnson 

noise, we will imagine this system radiating into terminated free space. The resulting 

radiation will be incoherent, the intensity will therefore add linearly, so the proper 

value for NEP^honori will be twice the value given in Equation 2.33,

NEPphanan = ^ G .  (2.34)

2.2 .4  P h o to n  N o ise

Photon noise can again be described by shot noise arguments due to the particle 

nature of light. This noise is a quality of the radiation source, there’s nothing we can
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do to lessen it. The N E P phot0n in Equation 2.23 is an approximation that assumes 

that the incoming radiation has a very narrow bandwidth around a central frequency 

vQ. This is a fair assumption on our part due to the fact that we generally use filters 

to block out unwanted wavelengths.

2 .2 .5  O th er  N o ise

In addition to all of the above, there will be noise due to signal amplification as well 

as the inherent noise of the equipment used during operation. Nearly all electronic 

systems are subject to low frequency 1/f or flicker noise. All of these must be factored 

in to the total NEP of the device in order to accurately assess the sensitivity of the 

detector.

2.3 Hot Electron Bolom eters

A hot electron bolometer (HEB) uses the intrinsic heat capacity and thermal con

ductance of its absorber to determine its performance. Radiation from the source 

is generally coupled to the absorber through superconducting antenna. An incom

ing photon is absorbed by an electron in the absorber which transfers it to other 

electrons in the system at a rate determined by ree, the electron-electron scattering 

time. The electons’ energy is transferred to the lattice via electron-phonon interac

tion, the rate at which this occurs being rep, which is much longer than r,t . The 

resultant temperature rise changes the electrical properties of the absorber. The 

earliest HEBs used metal film absorbers. Nahum and Martins developed an x-ray 

detecting HEB [30] which used a normal metal-insulator-superconductor (NIS) junc

tions to measure the change in temperature of the absorber, it was proposed that 

the same idea could be used for FIR wavelengths [31, 32, 33]. A working detector
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based on these theories was developed by Chouvaev et al [34]. Yngvesson [35] has 

proposed using a 2DEG as the detector element of an antenna-coupled hot electron 

bolometer.

HEBs using a superconductor as the absorber have been developed [36, 37, 38]. 

Superconducting HEBs make use of the electron gas in a superconductor. Below the 

transition temperature. Cooper pairs form in the superconductor enabling current to 

flow without resistance, meaning the potential drop across the superconductor dis

appears. The superconductive state is achieved after a single Cooper pair is formed; 

once that pair is there, the normal electrons still in the system have no potential to 

drive them and so cannot contribute to the current. At the transition temperature, 

Cooper pairs are present about fifty per cent of the time, meaning that pairs are 

breaking and reforming. Superconductive HEBs operate right at the transition tem

perature of the superconductive metal they’re made from (niobium is very common). 

A bias current is used to make sure they do not slip into the superconductive state. 

An incoming photon will hit the superconducting HEB and impart so much energy 

to the electrons that they become too “hot” and fly apart. Even a partly-formed 

Cooper pair will have considerably lower loss characteristics than a lone electron, 

so the result will be a sharp jump in the resistance. This sharpness can be seen in 

Figure 2.4, the transition curve of niobium. That plot shows that niobium has very 

large a at the transition region; it would have a correspondingly large responsivity.

Early semiconductor HEBs used for millimeter astronomy were made of InSb. 

They operated in the 90-140 GHz range [39, 40].
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Figure 2.4: Niobium transition curve of sample measuring 5x25 firn2 from test at 
Cardiff University. Niobium is often used for constructing superconducting HEBs.

2.4 Cold Electron Bolom eters

A cold electron bolometer (CEB) works by removing the photoexcited electrons from 

the absorber system before they can share their energy with the lattice. Proposed 

by Kuzmin et al [28], a CEB makes use of a superconductor-insulator-normal metal- 

insulator-superconductor (SINIS) structure [41, 27]. A schematic is shown in Figure

2.5 The absorber is cooled to 300-350 mK to ensure that most of the (‘lections in the 

normal metal are at or below the Fermi level. These electrons are trapped by the 

presence of the energy gaps in the superconducting contacts; there are no available 

states into which the unexcited electrons can tunnel. An incoming photon excites 

an electron in the system to an energy above that of the superconductor's energy 

gap. Rather than allow this electron to distribute its energy to the phonons in the 

system, a bias voltage sweeps the electron to the barrier and encourages tunneling 

into the superconducting contact. The process is illustrated in Figure 2.G.

This flow of hot electrons out of the normal metal would constitute a current
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Figure 2.5: Schematic of Kuzmin’s CEB made with a normal metal absorber. (Taken 
from Agulo et al [42])

METAL SUPERCONDUCTOR

Figure 2.6: CEB made from SINIS structure. The low operating temperature keeps 
the normal metal’s electrons below the Fermi level. An incoming photon allows an 
individual electron to get above the superconductor energy gap and tunnel into the 
superconducting contact where it registers as a photocurrent.
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whose magnitude would describe the rate of energy absorption from the source. Be

cause the hot electrons would not be interacting with the phonons in the metal, 

the m etal’s tem perature would be constant. This decoupling of heat flow between 

the normal m etal and its electrons would allow for a condition in which the elec

tron tem perature is lower than  the m etal’s tem perature. The process by which hot 

electrons are removed from the 2DEG is called microrefrigeration ( it’s also called 

nanorefrigeration).

There will be some heat flow between the electrons and the lattice, but most 

of the hot electrons tunnel out of the system before they have a chance to interact 

with the lattice or with other electrons. The overall effect of the tunneling is to cool 

the electron gas to an equilibrium tem perature; the m agnitude of this cooling is 

determined by the bias voltage. A CEB, like any other bolometer, is an equilibrium 

device; the input power must equal the ou tpu t power. A CEB will have the sum 

of its electron-phonon power and it cooling (tunneling) power equal to the optical 

input power. Adjusting the bias voltage optimizes the tunneling rate such tha t the 

electron-phonon power is minimized and the electron cooling is maximized. A lower 

absorber tem perature will make the detector more sensitive, it will also lower the 

2DEG’s electron mobility [43, 44, 45, 46].



Chapter 3

2DEGs, The Basic Properties

What follows is a discussion on the fabrication and properties of a 2DEG. First basic 

construction of the semiconductor stack that gives rise to a 2DEG will be addressed, 

with the exact material data for the fabrication chapter. Then the electrical, ther

mal, and magnetic properties of 2DEGs will be discussed. Many of the discussions 

presented are derived from the texts by Kittel [47], Ashcroft and Mermin [48], Liboff 

[49], Sze [50], and Griffiths ’[51].

3.1 Making a 2DEG

In order to make a 2DEG, we grow layers of doped and undoped semiconductor (in 

our case, GaAs and AlGaAs) one on top of the other; the order is illustrated in 

Figure 3.2. The 2DEG resides in an energy well that forms in the system due to 

band bending that occurs in semiconductors with different band gaps when brought 

into contact with one another. Whenever this union occurs, the Fermi levels of the 

touching parties must equalize. We will look at a metal/semiconductor interface 

first (discussion derived from text in Bube [53], Fraser [54], and Gavryushin [55]). A 

metal’s Fermi sea can simply readjust, but the equilibration process in semiconductor

37
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Figure 3.1: Illustration of band bending in metal-semiconductor junctions. In the 
case of contact between metal and an n-type semiconductor, a Schottky energy 
barrier is formed. (Image taken from Rockett [52])

is achieved via a migration of charge carriers into the junction region. The charges 

flow freely until the Fermi levels equalize. In the immediate area of the junction a 

depletion region will form where the mobile carrier densities are zero. The width of 

the depletion region is dependent on the material properties of the semiconductor 

and the voltage applied across the junction. The energy bands of the semiconductor 

will bend depending on how the semiconductor is doped. In the p-doped case, the 

conduction and valence bands will be pulled downwards. The nature of this junction 

is ohmic. Current will flow easily through this junction because of the attractive 

Coulombic forces between the holes in the semiconductor and the electrons in the 

metal. In the case of an n-doped semiconductor, the Coulombic forces are repulsive, 

leading to an energy barrier at the metal-semiconductor interface, or a Schottky 

barrier. This has the effect of bending the conduction and valence bands upwards. 

Both cases are illustrated in Fig 3.1.

In the ideal case of a metal/n-doped semiconductor junction, the barrier height

Barrier) is determined by the work function of the metal and the electron affinity 

of the semiconductor. The former is the amount of energy required to take an

W id th
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electron from the Fermi level of the metal to the vacuum level (effectively infinity), 

the latter is the amount of energy required to remove an electron from the conduction 

band edge of the semiconductor to the vacuum level. In the n-type case, the equation 

reads

where q is the charge of an electron, <&m e tai is the metal’s work function, and 

Xsemiconductor is the semiconductor’s electron affinity. In the ideal metal/p-doped 

semiconductor junction, where the bands are bent downwards, the equation is

where EBandGap is the band gap energy of the semiconductor in question.

In reality, distortions of the semiconductor’s crystal lattice can cause the barrier 

height to be different than the equations predict. The distortions lead to energy 

states in the semiconductor’s energy gap that can act as either donors or acceptors. 

In the case of n-doped GaAs, Equation 3.1 generally underestimates barrier height. 

The surface states in GaAs dominate the barrier formation, leading to about same 

height( 70-80 meV) regardless of the work function of the metal in contact.

Equations 3.1 and 3.2 are easily adapted to semiconductor/semiconductor junc

tions. For these equations, we will call the semiconductor in which the barrier forms 

Semiconductor 1 and the contacting semiconductor Semiconductor 2. If Semicon

ductor 1 is an n-type, then

U ^ n —typ eB a rr ic r  — Q i ^ m e t a l  X sem iconductor) (3.1)

(1 ^  p —typeB arr ie r  E B a n d G a p Q(*& metal X sem iconductor) (3.2)

H ^ n - ty jx iB a r r i e r  Q {^ .semiconductor  2 Xsemiconductor I ) (3.3)

If Semiconductor 1 is p-type,
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Q ^ p - t y p e B a r r i e r  — ^B andG ap ( ] (X se in iconduc tor2  X sem icon du ctor  l ) -  ( d - d )

The bands of semiconductors put into contact with each other will bend up 

or down depending upon their charge concentrations relative to each other. A 

schematic of a 2DEG structure is shown in Fig. 3.2 and a representative energy 

level diagram is shown in Fig. 3.3 (top to bottom on the former = left to right on 

the latter). Each layer will have its own Fermi level; band bending will occur as they 

equilibrate. For a 2DEG HEB, the contacts would be metal, so a Schottky barrier 

forms between the contact and the undoped GaAs cap layer. The next layer is made 

of n-doped AlGaAs; electrons from this layer will flow into the GaAs layer in order 

to equilibrate their Fermi levels. The bands on the n-doped side of the GaAs/n-f 

AlGaAs interface will bend upwards, forming Schottky barriers, while the bands on 

the relatively positive GaAs side will bend downwards. This mismatched bending 

forms an energy well at the interfaces, but one whose bottom is well above the Fermi 

level. The next layer is of undoped AlGaAs which is called the spacer layer. The 

spacer layer limits the amount of electrons that are available for the 2DEG. The 

wider the spacer layer, the lower the 2DEG electron density. The spacer is what 

allows us to tune this property of the 2DEG.

The final layer before the substrate is an undoped GaAs “buffer" layer. Undoped 

AlGaAs has a higher Fermi level than GaAs, so we will see an energy well form on 

the GaAs side of the interface just as we did at the cap layer/n+ AlGaAs interface, 

but this well will have its base below the Fermi level. If we give the system a burst 

of energy, from an LED, for example, the electrons in the n+ AlGaAs layer will 

absorb enough energy to surmount the barrier between them and the buffer layer. 

Once over, they will fall into the energy well there. They will be confined to this 

well unless they absorb photons of sufficient energy to liberate them. The elec trons
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Figure 3.2: Sketch of 2DEG producing semiconductor stack. The 2DEG’s location 
is indicated by the dotted line. (Adapted from image in Yngvesson [35]) Note: This 
figure is not to scale.

in this well comprise the 2DEG. You can think of the well as confining electrons in 

the z direction. In the x and the y directions, there is a continuum of energy states 

in which the electrons can reside; the result is a two-dimensional metal or a 2DEG.

Note in Figure 3.2 the space between the contacts and the 2DEG. In order to read 

out, we will have to make low-resistance ohmic contact to the 2DEG. Good contacts 

are essential to the functionality of a 2DEG detector and very difficult to fabricate; 

they were the main focus of our efforts. Doping methods involve sharply increasing 

the electron density in the regions of the heterostructure immediately below the 

contacts, forming a low resistance path from 2DEG to the contact.

3.2.1 D iffusion  D op in g

Diffusion doping is the oldest and most widely used doping method. It involves 

placing alloys over the contact areas and annealing the detector. These alloys contain

3.2 Contacts
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Figure 3.3: Schematic of conduction band of semiconductor stack, energy vs. layer 
thickness. Zero nm denotes the contact/cap layer junction and positive progression 
is downwards through the stack. The vertical dotted lines represent layer boundaries. 
The Fermi level is at 0 eV. Plot from computer model designed by Dr. Martin Elliott 
at Cardiff University.
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elements that will easily diffuse into the heterostructure and act as donor or acceptor 

atoms. In the case of GaAs, a III-V semiconductor, we want alloys of Group IV 

or Group VI elements. These elements will serve as donors when diffused into the 

heterostructure, making an n-type contact to the 2DEG. For long term durability, 

these contacts must be passivated to avoid degradation [56].

Our contacts used AuGe with a nickel layer [57]. The gold counteracted the 

tendency of germanium to bead up during the annealing process, making for a 

rough surface on the contact pad.

The electrons in a 2DEG are simply electrons confined to a plane. At any given 

time, the electrons are moving around with energies equal to /c^T (1/2 k s T  for each 

degree of freedom). The electrons will collide with each other, scattering off of each 

other. The time since their last collision and before their next is the mean-free or 

scattering time:

where /i is the mobility of the electrons and m* is the effective mass (which 

is introduced because we made our 2DEG structures from semiconductors). The 

mobility of the electrons is of paramount importance in determining the fitness of 

the 2DEG for detector use. Rearranging Equation 3.5 gives

3.3 Electrical Properties

3.3 .1  D C  C ase

(3.6)
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Figure 3.4: Schematic of Hall effect showing direction of Lorentz force. (Image taken 
from NIST [58])

In general, this equation describes the relationship between the mobility and 

the time constant of electrons in a semiconductor and can also be used for 2DEGs. 

There are different time constants for different electron interactions, hence there 

will be different mobilities. Equation 3.6 refers to the Hall mobility. We find the 

Hall mobility by using the Hall effect: the phenomenon in which a current carrying 

medium (CCM) is subjected to a magnetic field that is nonparallel to the current 

direction. A voltage arises that is mutually perpendicular to the current direction 

the component of the magnetic field that is perpendicular to the current direction. 

See Figure 3.4.

The reason this voltage arises is because the magnetic field will exert a force on 

the moving electrons in the current, pushing them towards the edge of the CCM as 

they move along:

^ m a g n e t ic  — X B  — 1/ X B. (3.7)
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where v is the electron velocity, B is the magnetic field, I is the current, and I is 

the length of wire subject to the influence of the magnetic field. This is the familiar 

Lorentz force. Assuming a magnetic field completely perpendicular to the current, 

a transverse electric (Hall) field will be produced such that (assuming a magnetic 

field in the z direction)

^ m a g n e t ic  7 -^ H a ll- ( 3 - 8 )

This electric Hall field will give us the Hall voltage. Assuming a consant Enaii 

and using the fact that V = f  Edr , we can call the transverse measure of the CCM 

w and say that

V H all — E Hall^- (3.9)

With the Hall voltage, we can get the charge density of the CCM via

n e ~ ~ T 7 ~ .  (3-10)qVH

and use this to get the mobility from the following equation,

/i = — , (3.11)
qnep3

where ps is the sheet resistance of the CCM. Note: Equation 3.10 is not the most 

accurate measure of the charge density. A more precise measurement can be obtained 

from observing Shubnikov de Haas oscillations of the 2DEG’s resistivity [59, 60], to 

be discussed later.

Ohm’s law states that
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(3.12)

where j is the current density and a is the conductivity. Current density c an 

also be represented in the form of drift velocity,

where vd is the drift velocity, which is the average velocity of the electrons when 

electron-electron and electron-lattice collisions are taken into consideration. We 

would obtain it from the Lorentz force:

As we have an electric field, we have to add a qE term to the Lorentz force 

in order to be complete. The limits of plus and minus rs would amount to the 

time the electron travels between collisions (assuming electron-impurity collisions 

are more frequent than electron-phonon collisions). An electron's average* travel 

time, therefore, will last 2rs. With a constant Lorentz force, the drift velocity 

becomes

As Equation 3.6 shows, the mobility is directly proportional to the scattering 

time, so it will decrease with rising electron temperature. Mobility can also be* 

represented as a function of drift velocity,

j  - - n eqvd (3.13)

(3 .1 4 )

vd = r/(E + vd x B )—k  
m *

M (3.16)E
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Figure 3.5: A graph of measured voltage vs. applied current for a 2DEG structure. 
As the current through the 2DEG increases, the electrons get warmer, decreasing 
their mobility value. This leads to the increasing resistance evident in the increasing 
slope. Warming the 2DEG increases its resistance, just as in a metal. Despite 
originating in a semiconductor stack, 2DEGs behave like (two-dimensional) metals.
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Combining Equations 3.12 and 3.13 in the case of no magnetic field and rear

ranging, we obtain

Vd
crE
nre

3.17

This allows us to write

1
P = (3.18)

nee pnce

as the resistivity is just the reciprocal of the conductivity. Solving Equation 3.18 

for p, we can obtain resistance in terms of mobility:

r = p3  =
I

;3.i9)
A pnceA

So, as the mobility decreases, the resistance increases. Figure 3.5. an IV curve 

of a 2DEG, demonstrates this phenomena.

We can combine Equations 3.13 and 3.15 to get the current density in terms of 

the electric and magnetic fields:

j = nce2(E + vd x B) — .
m* ;3.20)

As we are working with 2DEGs, we will put this equation in 2D vector terms. 

Assuming that the electric and magnetic field are perfectly perpendicular, we get

( ■ \Jx _  nce2r,
m*

Jy ,

Ex + Vfiy B

Ey Vdx H

nre2r,
nr (3.21

This leads to the following relations:
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& q E x  ^ c ^ ~ s j y  4” J x  find ( J g E y  ^ c ^ s j x  4” 3 y i (3.22)

where <j0  is the conductance, defined as

n Pe ts

n r
nce/j., (3.23)

and uy is the cyclotron frequency, defined as

UJr
eB
vrr

(3.24)

Because this is a two-dimensional system, the conductivity will have the form of 

a 2 x 2 matrix,

(a) = (3.25)

O y x  ® y y  J

We obtain the elements of the matrix by applying Ohm’s law in two dimensions:

(  . \
J x

h  )

I \
&xx &xy

° y x  G y y

Ex N 

Ey /
(3.26)

giving us

jx ^XX EX 4“ (TXyEy and Jy (JyyEy (JyxEx (3.27)

By assuming the electric field to be acting only in one axis at a time we obtain,

J x  &XyEy and jy (JyyEy CJyxEX (3.28)
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Using the same assumption, we combine Equations 3.22 and 3.28 and solve for 

the various a values:

r r  — ,-r — OQ nnH r t  —  /T — ____ O Q ^ ' c t i_
V x x  ~  V y y  ~  i + (u;cra)2 rtUU °  x y  —  V y x  —  l + ̂ r , ) 2 ' (3.29)

Resistivity is the reciprocal of conductivity, so the resistivity matrix will be the 

inverse of the conductivity matrix:

(p) = M
-l

Ĝ xx̂ yy @ tuGx y ' - ’  y x

yy — Gx y

—a y x a, )

On
r \• r • */ 3

(3.30)

on on J

We apply our current in the x direction only, so j y is zero. We measure the 

voltage across the x and y axes and calculate the electric fields through the relation 

E  =  AV. This will get us values for a0 and rs. In order to get the electron density 

within the 2DEG, we take readings from the integer quantum Hall effect (IQHE).

3 .3 .2  A C  C ase

If the applied field is AC, the drift velocity will change with time. We can rewrite 

the Lorentz force (acting on an electron) in terms of the AC drift velocity:

A C L o r e n tz  — n?
dvd Vd
dt r« ( e v d x  B )  — — cE a c l 3.31

The E ACl is from the fact that F=qE . Assuming a magnetic- field in the positive 

z direction, a 2D vd that has positive x and y components, and anEACL that has 

positive x and y components of equal magnitude. From this we get
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(Fx)

rn*i'dx + z£vdx + (Bvdy = - c E ACLx 

and 

( F y )

m ' v dy + ^c,,B -  c B c , h = - c E a c l „• 

Rearranging gives us

Let's call

(Fx)

m*vdx = - e E ACLx + eBvdy -  ~ v dl 

and 

( F y )

m*vdy = - e E ACLy ~ eBvdx -  1Jf v dy

vdx = vxelu,t, vdy = v2eluJt1 and EACLx/y = E0eMt,

(3.32)

(3.33)

(3.34)

where u  is the frequency of oscillation and E0 is a constant. To figure out what 

uj and v2 are we can apply the electric field in one direction and combine Fx and 

Fy. Applying the field in the x direction gives us
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(F*)

iunTvi — —cE0 + eBv2 — 7Jj - V \~s

and (3.35)

(Fy)

iwm*v2 — —eBv\ — — v2.TS

Solving for V\ and v2 gets

VI =  (iwr, + + l)  ' and i'2 =  (3.3G)

Now we can find the AC conductivities. Recalling that j = — ncvj wo can state 

that

j x = (txxEAclx = -n e v dx and j y = (JxyE.ACL, = ~ nrr (tv. (3.37)

which leads us to

and (3.38)

Repeating the above steps, but setting the electric field in the y direction, gives

& y y  =  ° x x  and O y X  = - a X y .  As in the DC case, finding the inverse of the conductivity

matrix gets us the values for the resistivity:
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( (H-iu>Tj, ) 2 wc Ts (H -iu ;r s)
<70 ( ( l + i ^ r s )2 +  (a)c rs )2) <to((1+iwts)2+(u;cts)2))

(p) = • (3-39)
___U/cT$ (1 ~f~ijJTs)______________  (l-)-iu;ra)2_______

\  <r0 (( l + i w r J)2 +  (u;(-rs )2 ) a 0 ( ( l+ iu ;r s )2 +  (u;crs )2 ) )

The impedance of a 2DEG in the AC regime contains a real and an imaginary 

term:

Z 2 DEG — R E  i u L k  — R( 1 4- iuJTm ) (3.40)

where R is the low frequency resistance, Lk is the kinetic inductance, and rm is 

the momentum relaxation time.

3.4 Thermal Properties:

The thermal properties of electrons in the 2DEG are determined by the density of 

states and the electrons’ interaction with the surrounding medium. The distribution 

function describes the probability of finding an electron in, at, or below a given 

energy. For electrons (and fermions in general), we use the Fermi-Dirac distribution:

/ ( e ) _  exp ( S f )  + 1 ' (3'41)

It is a function of both energy and temperature. The quantity fi is the chemical 

potential and is determined by the (electron) temperature of the system. As T 

approaches zero, fi will approach c/r, the Fermi energy. At T=0, we would fully 

expect all electrons to be at or below the Fermi energy. For non-zero temperatures, 

the chemical potential is a value that ensures calculations using the distribution 

function yield the correct number N of particles in the system.

As to the number of particles in a system, we need to know the density of states
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(ge) of the system, which describes the number of states at a given energy. For a 

2DEG, this is 2m*/nTi2. Note that it’s independent of energy. This moans that 

all energy levels are equally degenerate: there are 2m*/nti2 spaces for electrons at 

each energy level. Degeneracy means that there are multiple states that exist at the 

same energy level. If it were not for degeneracy, we could simply count the number 

of electrons in a system and divide that number by two (as only two electrons can 

coexist on a given energy level), the resulting number would be the ordinal number of 

the highest energy level at OK; which would be the Fermi level. We can only do this 

for systems with no degeneracy, such as a quantum dot. which is zero-dimensional. 

We need the density of states of the system to determine the number of electrons at 

or below a given energy level E:

K  = /  9(t)f(t)de.  (3.42)

If we integrate from 0 to infinity, we will get the total number of electrons in 

the system, assuming we’ve chosen our // correctly. Note: The density of state's 

calculation used above is for a perfectly two-dimensional system. In actuality, our 

2DEG will have some finite depth; assume this is in the z direction. This does not 

mean we will have multiple energy states associated with the /-component. We will, 

in fact, only have one. Call the z depth a and the x and y dimensions equal to L. 

In operation, a <C L. The z wave vector will be

n7r . ,kz = — , with n=l,2,3,..., (3 43)a ’

where n is a quantum number. Quantum numbers are introduced because the z 

energy levels will have the form of those of a particle in a box (see Fig. 3.6). The 

energy levels would be described by
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f

H

P

Figure 3.6: Representation of energy levels in a zero- dimensional system, better 
known as a particle in a box. These would be the “extra” energy z energy lev
els available to electrons in a 2DEG, but the large energy spacing will only allow 
occupation of the ground state.

h2k2
E ■ =  2^ -  (3-44)

For a small a, the spacing on the energy levels will be enormous, too high for the 

electrons in the 2DEG to go anywhere but the lowest energy level. Each z energy 

level would contain all of the xy energy states; if we could get to Ez2 our density 

of states would double; at Ez3, we’d have triple the states of Ez\. But, again, we 

can only remove one to the lowest order energy level in z, so we just have those xy 

energy states that come with it.

To calculate the electron-phonon time constant (Equation 2.10) requires figuring 

out the thermal conductance and heat capacity of the 2DEG. The thermal conduc

tance is the rate of change of the power with respect to temperature,

G = % :  (345)

and is given by the equation
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G = 5E(7)4 -  Te4)A, (3.46)

where Te is the electron temperature, and A is the (planar) area of the 2DEG, 

and E is the material specific electron-phonon coupling constant [61, 62].

The Fermi energy equation is dependent on the dimension of the system, the most

useful to us being the two and three-dimensional cases. In both, the relationship

between Fermi energy eF and Fermi wave vector kF is represented by

h2kF
( F = 2 ^ '  (3'4 ' )

but the representation of kF differs in 2D and 3D:

2D 3D
(3.48)

k p 2D  =  \ / 2 7 rn~e k F 3D =  <y37i2 n c .

where ne is the dimensionally appropriate electron density. (Note how the 2D 

and 3D densities describe a circle and a sphere, respectively, with kF as the radius. 

The factor of 2 is due to electron spin.) The number of electrons in either system 

can be found by
*, Sne
N0 = — . (3.49)

0(7 F

In general, the heat capacity of a substance is the rate of change of its energy 

density (u ) with respect to temperature.

c  = ( ^ )  ■ 5(»

The energy density is the amount of internal energy (U) per unit volume in a

3D system and the amount per unit area in a 2D system. In both systems
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t/ = 2 £ c (k ) /(e (k ) ) . (3.51)
k

In k space, the unit volume will be Ak87r3 and the unit area will be Ak47r2. We 

use these values to calculate the 3D and 2D energy densities:

“«  = s f c  = s ^ E ? ‘ (k ) /( ‘ (k));
(3.52)

In the limit as Ak —> oo, we can use the following relations:

2D

Hnw-oc ^ E F ( < ( k ) )  = /  ^ F ( e ( k ) )

(3.53)

3D

imiA^oo ^  E  F(e(k)) =  /  ^ F ( e ( k)),

where F(e)  represents a generic function of e. This enables us to represent the 

2D and 3D energy densities:

U2D = f  ^ c ( k ) f ( t ( k ) ) ;

(3.54)

u3D = S ^ ( k ) M k ) ) -

We use the relationship between energy c and wave vector k (Equation 3.47) to 

get the above equations in the following form,

/oo
G(e)F(t)de,

-O O

(3.55)
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where G(e) is the density of levels. In order to make this conversion, wo have to 

express the vector k in terms of spherical coordinates; in the 2D case.

/  =  f f  ^ F ^ dkd<> = f  (3.56)

and in the 3D case,

/ r i\r  r2 n  rir roc  t*2 roc  2-2
F(e(k))=  /  /  — F(e(k))sin<t>dkd<t>de= — F(t(k))clk. (3.57

47rJ Jo Jo Jo 47tj Jo h

Using the wave vector energy relation, we can replace k and dk with energy (f) 

terms, giving us

2D 3D
,_____  (3-58)

/ ” ^ F ( e) *  - ^ V 2 ^ F ( c ) < k .

Checking the form of Equation 3.55, we can pull the 2D and 3D densities of 

levels out of these integrals:

G(c) 2D = S  G(chn = ^ V 2 ^ -  (3.5'J)

These are the number of levels in each system. To get the density of s t a t e s ,  we 

have to take into consideration how many spaces there are for electrons at each level. 

As electrons are fermions, there are two, so we multiply by two to get the 2D and 

3D densities of state:

g(c)2D = ^  s ( f )3D = ^ v / 2 ^ 7 .  (3.60)

Note, again, that the 2D density of states is independent of energy. Recall that
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a real 2DEG system would have a finite z depth, leading to an increase in the 

system's degeneracy. A quick reordering of the 3D density of states shows how that 

z-component shows up:

So the third dimensional component amounts to the multiplicative factor in the 

parentheses. In the case of our system, we will be running at very low temperatures, 

so low that we can assume we are operating at the Fermi energy. If we replace c 

with cp in Eq. 3.61, we get a constant density of states for the 3D system as well. 

We can put this in terms of the electron density(ne) via Equations 3.47 and 3.48 so 

that

In order to get the energy densities of the systems, we make use of the Sommerfeld 

approximation

We are operating at a very low temperature, so the electrons are going to be 

residing near the Fermi level, which is why the Fermi energy is used as a limit. The

tial contributor of value for C. For integration, we only have to worry about terms 

having temperature in them (see Equation 3.50) so separate calculations for the 2D 

and 3D case are unnecessary. Furthermore, the density of levels is constant, so the 

g'{eF) goes to zero, therefore

(3.61)

(3.62)

p —OO p^F 7T̂

u =  eg(e)f(e)de = / eg{e)de + — {kBT)2\eFg'{eF) + g(eF)\ + 0 ( T 4). (3.63) 
Joe Jo 6

0 ( T 4) represents some fourth-order values that will be too small to be a consequen-
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u = %\ k BT )2g{tF). (3-64)
6

Differentiating with respect to temperature gives us

c  = (3.63)
3

for both cases. Evaluating heat capacities, using the densities of levels for the 

2D and 3D case:

2D 3D
(3.66)

n  -  2*m' kl T n  -  2̂ I \ / 2'm*3er
~~ 3h2 v 3tr3h:i V

The units of each of these would be heat capacity per unit area (2D) and heat

capacity per unit volume (3D). Putting the 3D heat capacity in terms of nt . wo get

Cv = \ - rM  • (3.6*
2m*k2BT  //3np \ 2/3 

37T2h2 V \  47T

We can now combine Equations 3.66 and 3.46 to get the electron-phonon time 

constant for the 2D state:

2irkj3m*rr(
Tep(2D) ~ 15E(T/l -  7;4)/i2' j

The rate of travel of a photoexcited electron in our 2DEG will be determined by 

the diffusion time

U = 3 ^  { 3 m )

where L is the length of travel of the electron and D is the diffusivity of the 

2DEG. The diffusivity describes the random motion that an electron undergoes in
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Force

B

Figure 3.7: The path of an electron in a uniform magnetic field due to Lorentz force. 
(Image taken from Thieman et al [63].)

traversing a CCM. The value for D  can be related to the mobility through the 

Einstein relation:

(3.70)

When designing our detector, we would want to make sure tha t the excited 

electrons reach the contacts (to be read out) before they lose their energy to the 

lattice, i.e. we want <  rep. Knowing the properties of our 2DEG, we would 

choose a maximum contact separation L such that our diffusion time is less than 

our electron-phonon recombination time.

3.5 M agnetic Properties:

If we inject an electron into a magnetic (B) field, the electron will feel a force that 

is mutually perpendicular to the B field and the electron’s motion. This force is 

described by the Lorentz equation and will result in a centripetal acceleration that 

will cause the electron to travel in a circular path, as shown in Fig. 3.7. For the 

sake of this argument, let’s assume that the B field is in the positive z direction, 

resulting in circular motion in the xy plane. This means that the vector potential
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of the field is

A  =  (—y B ,  0 ,0 ) . (3.71)

The B field being the curl of A. The Ham iltonian describing the motion is there

fore

where p is the momentum vector. We use the tim e-independent Schrodinger 

equation to describe the energy of this electron:

where E is the energy and <I> is the eigenfunction. We know tha t both py and pz 

commute with H  because the Hamiltonian normally commutes with the momentum 

operator and there are no x or z term s in the Ham iltonian. The eigenfunction of 

the momentum operator is of the form elkg9, a standing wave, and there's nothing 

to indicate th a t there’s anything else going on in the x or z direction, but the y 

term  in the Hamiltonian means th a t the eigenfunction is going to need a unique 

y-component. For the moment, le t’s call tha t unique component f(y). giving us an 

eigenfunction of

(3.72)

H  =  —b l f e  +  e y B f  +  py2 +  p .2]$  =  E § . (3.73)

$  =  ei{klX+k,z)f^y ) (3.74)

O perating will give us



3.5. MAGNETIC PROPERTIES: 63

Simplifying,

(3.76)

The z-component of the kinetic energy has been moved over because a z-oriented 

B field will have no effect on motion parallel to the z-axis it only effects xy-plane 

motion.

where K  = (eB)2/rn* and yo = —hkx/eB.  The left-hand side of this equation 

has the form of the Hamiltonian of a simple harmonic oscillator (SHO). That makes 

perfect sense, looking at the electron’s motion along the y-axis, it would be observed 

undergoing steady harmonic oscillation. As this is an SHO equation, we can get the 

natural frequency of oscillation, from the “spring constant” K:

And this will be the cyclotron frequency, it indicates the natural frequency an 

electron will exhibit when executing circular motion due to movement in given (per

pendicular to the electron’s path) B field. The nth order wave function of an SHO 

is a Hermite polynomial,

I (3.77)

(3.78)
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4>„ =  AnH ( O e - ^ m (3.79)

leading to the following equation for energy levels for a charged particle in a B

These are the Landau levels. Subtraction shows that the spacing between ad

jacent Landau levels is A E = hu>c. The term from the z-component of the kinetic 

energy gives us the following eigenfunction for our system (i.e. the f(y) put in as a 

place holder earlier),

which, finally, gives us the following wave function for a charged particle in a B

Having established the energy level equation for Landau levels, the next step is 

to determine their degeneracy. First of all, what does degeneracy mean for a Landau 

level? Let’s assume that we are conducting our experiment in a large1 (wrt ijo) box 

with a volume of L3. The wave function seems to be degenerate in Ay. judging from 

the presence of Ay in y0, so we will represent Ay in terms of our new space:

field:

(3.80)

f n = AnH n (3.81)

field:

$ n = AnH n

27T77
L ' (3.83)
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Increasing B
B=0

Density o f  States

Figure 3.8: A representation of the Landau energy states of the 2DEG shifting with 
increasing magnetic field. The system depicted is one in which a low temperature 
has put all the electrons in the 2DEG at or below the Fermi energy (E/). When the 
Fermi level is between states, electron scattering in the xx direction is impossible, 
amounting to an xx resistivity value of zero. (Image taken from one in Leadly [64])

where nx is the quantum number. The x wave vector has this form to ensure 

that the wave function, which will be of the form sin kxx , goes to zero at the extents 

of the system. With this constraint, we rewrite yo as,

Vo =
27rftna
eBL (3.84)

The quantity yo is the value of the center of the circular path that the electron 

will take in a B field. In our experiment, its maximum possible value would be L 

(we assume that the area of the electron’s circular path is small in comparison to 

L2). We can solve Eq. 3.84 for the maximum value,

2irh
nr. =  - (3.85)eB L 2 ’

The absolute value of this quantity represents the degeneracy of the Landau
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levels. The energies of the Landau levels th a t are affected by the B Held are those 

in the xy plane. The xy component is quantized as a function of the cyclotron 

frequency. We see this expressed as the electron moving around in a circle at a 

speed determined by its quantum  number (for a given B field). The degeneracy 

arises from the fact th a t we can place this electron a t any point on the xy plane, 

constrained only by the area of the plane, and it will have the same energy. In the 

case of our 2DEG detector, L 2 would just be the detector area.

The next question is, which electrons are available to occupy the Landau levels? 

We are operating at a very lowr tem perature, so we can make the assum ption th a t all 

the electrons are a t or below the Fermi level; therefore it is only those electrons at 

the Fermi level th a t are free to scatter (having nothing “above” them  to get in their 

way). The only way they can scatter is if there is some energy state  to  scatter into, 

i.e. a Landau level to occupy. For this to occur, the energies of the Fermi level (FL) 

and Landau levels (LL) must m atch (within the limits of Heisenberg uncertainty). 

Bringing the LL into coincidence wdth the FL is simply a m atter of choosing the right 

B field. At a low B field, the FL will m atch wdth a higher order LL. If we increase 

the B-field steadily, the lower order LLs wdll ascend in their energy value, passing 

by the Fermi level as they go. The electrons in the FL wdll scatter at those specific 

values of the B field tha t bring the LLs into coincidence. An a rtis t's  rendition of 

this phenomenon serves as Fig. 3.8.

Recalling O hm ’s law in two dimensions (Eq. 3.27), let's assume a low tem per

ature 2DEG system with a current in the positive x direction and a B held in the 

positive z direction (so keep an eye on j x ). These conditions wdll lead to a Hall 

voltage being established perpendicular to the current's  axis (Equation 3.8). The 

B held will also give rise to LLs in the 2DEG. At high (77K and above) tem per

atures, electrons in the 2DEG occupy a continuum  of partially filled levels above
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the FL; this means tha t there is always a coincident LL (and more likely several) 

available for the electrons to scatter into, giving us a Hall voltage tha t increases 

linearly with B field. At low tem peratures, the availability of electrons capable of 

scattering (i.e. having open energy states above them) drops remarkably because 

most of the electrons have fallen into states under the FL. We start with a B field 

value tha t equalizes the FL and a LL. The FL electrons will scatter into the Landau 

degeneracy, giving rise to conductivity values in the xx direction,axx (this is the 

electrons moving around in circles). But they also have translational motion in the 

x direction, which gives rise to a Hall field in the y direction, E y. The electrons 

are being pulled in the xy direction; their scattering along th a t line gives us the 

axy value. Now let’s increase the B field until there is not a LL tha t matches the 

FL. There are no states for the FL electrons to scatter into; no scattering in the 

xx direction means no resistivity in that direction (i.e. infinite conductivity) and, 

hence, no electric field in tha t direction. Interestingly, this does not mean no current 

in the x direction. Looking at the Equation 3.27 again, we see th a t current can flow 

in the x direction even when Ex is zero. We will continue to have the Hall field E y 

and electrons scattering in the xy direction, but those electrons got in when the LL 

and the FL were coincident. The resistivity in the xy direction (pxy the reciprocal 

of (jxy) will remain constant until we bring another LL into coincidence and pluck 

some more electrons from the FL.

At each point of FL/LL coincidence, the Hall resistivity will jump by a quantized 

increment, where n  is a positive non-zero integer. This is the integer quantum 

Hall effect (IQHE). A plot of pxy vs. B-field will show the resistivity increasing in 

IQHE steps at those points of FL/LL coincidence. At these same values of B, a 

graph of pxx vs. B will show sharp peaks where there is suddenly xx resistivity. The 

width of these peaks would be directly proportional to the width of the LLs. The
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Figure 3.9: G raph showing 2DEG xx and  xy resistiv ites (pxx and  pxy) as a  function 
of m agnetic field. T he integer quantum  Hall effect is ev ident in pxy, while Shubnikov 
de Haas oscillations are evident in pxx. O nly th e  Hall resistance is evident in the  
plot of pxy. The IQHE is only seen in 2D EG s a t less th a n  4.2K: we can assum e th a t 
any resistivity not due IQHE is negligible. (Im age ad ap ted  from one in Leadly [64])
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value of the resistivity will depend upon the qualities of the 2DEG. These are called 

Shubnikov de Haas (SdH) oscillations. Plots of both phenomenon are shown in Fig.

vs. the reciprocal of the B field. These oscillations provide a very accurate measure 

for the electron density in a 2DEG sample via the following equation:

where A (1 / B) — 1/Bn — 1/Bn+\ and each value of 1/B  is from a peak or trough 

on the graph of pxx vs. 1/B. Eq. 3.86 is a far more accurate measure of charge 

density than Eq. 3.10 and can therefore be used to get a more accurate measure the 

electron mobility value (Eq. 3.11).

We can find the electron temperature by fitting the oscillation curves. The SdH 

effect is well described theoretically by the “Lifshitz-Kosevich” formula in which 

the oscillatory part of the resistance can be expressed as a Fourier-like expansion 

[65, 66, 67],

where p0 is the zero-field resistance, F  is the SdH frequency, related to the 2D 

electron density ns by F — (h/2e)ns. The terms Ar and 4>r are amplitude and phase 

factors for each harmonic number r. The relative electron effective mass m* is 0.067 

for the GaAs-based 2DEGs examined here, and TD — h/2nkBTs is the so-called 

Dingle temperature and is related to the scattering lifetime rq of electrons in the 

quantized Landau levels. The Dingle temperature can be determined through the fit

3.9.

In the SdH effect, the oscillation of the value of pxx will be periodic if plotted

e
(3.86)n,

ApxxjTe ,B) _ X)r ArX r exp( — K m r T o / B )  

x c o s (2 7 tr F /B  -t- <f>r)
Po (3.87)
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of the curve and from it, Tg. Having rq allows us to determine the quantum mobility 

using the form Equation 3.6 and replacing t s with rq. The fundamental constant 

K  = 2TT2kBm 0/he  = 14.693 TK_1

Central to our experiments is the thermal damping factor

K rm 'T e/ B
r sinh (K rm ‘Te/B )  ( ’

arising from the Fermi-Dirac distribution of states around the Fermi level, and 

which contains all the temperature dependence of the SdH effect. From this factor, 

by examining the SdH effect as power is dissipated in the sample, it is possible' to 

calculate the electron temperature Te, if all other quantities in Equation 3.87 are' 

known.

The broadening of the LL can be described by the quantum mobility. f.iq. We get 

this value by employing Equation 3.6 with the time constant, rq. determined from 

the Heisenberg uncertainty principle:

A E A t  < h —> TiAujTq = h —► rq = (2ttA v) !. 

where A v  is the uncertainty in frequency of the LL.

(3.89)



Chapter 4

2DEG Detectors

A 2DEG acts like an ultra thin metal film of exceptional conductivity. Through 

doping and choice of semiconductor material, the electrical and thermal properties 

of the electrons can be controlled, and knowing the properties of the electrons allows 

us to model them. Detectors that are made from superconducting or normal metal 

films can be made with 2DEGs with the benefit being that we can tailor the 2DEG 

properties to maximize detector sensitivity. This chaper will discuss the design and 

theory of operation of 2DEG HEBs and CEBs.

4.1 A 2DEG HEB

Yngvesson proposed a 2DEG HEB [35]. A 2DEG HEB would function much like 

a superconducting HEB bolometer. Incoming radiation warms the electron gas, 

decreasing the time between electron-impurity collisions (the scattering time), and 

increasing the overall resistance of the 2DEG. The electrons give up their energy to 

the lattice via electron-phonon interactions; in equilibrium, there would be a steady 

heat flow from the 2DEG to the lattice. The equation governing the 2DEG/lattice 

system would be

71
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P o p t  — ( T f jo io jn e te r  T k c n t / i in k  )Cr c p • (4-1)

Therefore, the 2DEG would be hotter than the heat sink bv A T  = The’ I'rj,

lattice would be connected to a heat sink through a high thermal conductance in

terface, in order to maintain a low lattice temperature. The incoming power from 

the radiation source determines the equilibrium resistance of the 2D EG.

A 2DEG HEB has several advantages over a superconducting HEB. Firstly, the 

effective mass of electrons in semiconductors is usually at least ten times lower than 

electron mass in metals. The electrical conductivity per electron in a 2DEG is on the 

order of 105 times higher than in a metal. 2DEG electrons will therefore have a lower 

resistance than metallic electrons so less material is needed to impedance match the 

2DEG to the source. A 2DEG will also have smaller values of heat capacity and 

thermal conductance than a metal, making rcp smaller. Table 4.1 compares the 

properties of niobium at its transition temperature and a GaAs based 2DEG. While 

the responsivity of a superconducting HEB would be better, a 2DEG HEB would 

be faster. You could also tune the properties of the 2DEG through semiconductor 

choice and doping. If we could make a 2DEG absorber with a superconducting 

thermometer, we would have the best of both worlds.

A transition edge sensor (TES) primarily consists of a thin film of superconduct

ing metal cooled to just below its transition temperature which acts as the absorber. 

It is basically a superconducting HEB. Antenna-coupled radiation raises the tem

perature of the superconductor causing it to leave the superconducting state. A 

device of this type is described by Prober [68]. The transition from superconducting 

to normal state is usually on the order of millikelvins [69]. This means a dramatic 

change in resistance for even small rises in temperature. This change would be mea

sured through the voltage across a bias resistor in parallel with the absorber [70]. A
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Material 
(at 9K)

effective
mass

(kg)

heat
capacity

(J/K)

thermal
conductance

(W/K)

time
constant

(s)
Niobium 9.11 x IO- 31 1.58 x 10~10 2.0 x 10-1 7.93 x 10- 10

GaAs 2DEG G.l x IO- 32 1.97 x 10~14 5.91 x 10"4 3.34 x 10~n

Table 4.1: Comparison of properties of niobium and a GaAs 2DEG for use in an 
HEB. We are assuming a detector area of 1 mm2 (and in the case of the niobium 
a thickness of 25 uni). The temperature of 9K was chosen because it would be 
the approximate operating temperature of a niobium HEB. For niobium, the heat 
capacity is found from C = 7TV,  where 7 = 700^  3, and the thermal conductance 
is found from G = 4A T 3V [38], where A = 8.2 x 109^ m3 [72]. In both equations, T  
is temperature in degrees Kelvin and V  is volume in m3. 2DEG properties calculated 
from equations found in Chapter 3.

2DEG could improve the function of a TES by acting as the absorber. Again, the 

heat capacity of the 2DEG is lower than in a metal so the electrons in the 2DEG 

will get hotter upon the absorption of radiation. The 2DEG would be coupled to 

the superconducting film and the two systems will come into equilibrium. The film 

will in turn experience a larger rise in temperature than it would alone making it 

more sensitive to the absorbed radiation. The electron density in a 2DEG is consid

erably less than that of a metal, so the film would have to be of a size that would 

about equalize the number of electrons in the two systems to ensure an appreciable 

rise in temperature of the film. So the size of the superconducting film in a 2DEG 

TES would be smaller than in a regular one. While the low electron density in 

the 2DEG is advantageous for sensitivity, the corresponding high inductance and 

plasma frequency in the GHz (Burke, et al. [71]) makes electromagnetic coupling 

and absorption difficult.
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4.2 A 2DEG CEB

CHAPTER 4. 2DEG DETECTORS

A  2DEG CEB would function differently from a 2DEG HEB in that the temperature 

of the electrons is measured by two voltage biased superconductor-insulator-normal 

metal (SIN) junctions. In order to make a CEB, we take the 2DEG structure 

described in the HEB section and use a superconducting (at the operating tempera

ture) metal as the contact. This is good because, for a 2DEG, Tep is proportional to 

1/T3; a lower absorber temperature means a more sensitive (albeit slower) detector.

The structure of a 2DEG CEB is identical to that of a 2DEG HEB except for 

the contacts. For a 2DEG HEB, the contacts are ohmic; for a 2DEG CEB. we have 

superconducting tunnel junction contacts. Our 2DEG structures contain layers of 

n-doped semiconductor. When an n-type semiconductor is brought into contact 

with a metal, a Schottky energy barrier is formed on the semiconductor side of 

the interface. With a normal metal contact, the electrons in the 2DEG can tunnel 

through the Schottky barrier whether they be hot or cool, escaping into the electrical 

leads and contributing to dark noise. This probability is increased with higher bias 

voltage. In the case of a superconducting contact, the only way they can tunnel out 

of the 2DEG is by absorbing enough energy to make it over the energy gap. Figure 

4.1 illustrates the concept. The results of a program (Appendix'A) simulating the 

cooling effect’s dependence on the bias voltage can be seen in Figure 4.2. Simulated 

IV curves of the 2DEG at various electron temperatures can be seen in Figure 4.3.

In a 2DEG CEB, the tunneling current is proportional to the power emanating 

from the source. Figure 4.4 shows an electronic model for a CEB. Unlike the other 

bolometers, a CEB does not need a current to be put into it to read out. it produces 

a current that will travel across our leads. In the following equation, the output 

power will be electrical. The electron temperature is lower than the lattice temper

ature; this means there will be heat flow from the lattice to the 2DEG. This is an
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Sm

2A

2A
m m

conduction 
band edge

Figure 4.1: Illustration of heavily n-doped semiconductor interacting with super
conducting contacts under a leftward voltage bias V. The semiconductor region is 
labeled Sm, while the superconducting regions are labeled S. Note the formation of 
Schottky barries at the Sm-S interfaces. The gray areas denote occupied, single
particle electron states. Single electrons are evident in superconductors’ conduction 
bands because the illustration assumes a non-zero temperature, allowing non-paired 
electrons to exist above the Fermi level in the superconductor. P represents heat 
flow, I represents current. (Image taken from Savin et al [73]
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3 0
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E l e c t r o n  T e m p e r a t u r e  vs .  Bxas  Vo l tage  ( 2 K  L a t t i c e  T e m p  )
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Figure 4.2: Graph showing cooling effect of tunneling current in a 2DEG CEB. In 
this simulation, produced by an IDL program, the lattice temperature' is 2 K and 
the optical power is 1 picowatt.
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300 mK 
100 mK 
50 mK \4

2

0
0.1 0.2 0.3 0.4

bias voltage, mV

Figure 4.3: IDL simulated IV curves for 2DEG with superconducting tunnel con
tacts. The tem peratures are the electron temperatures.

equilibrium device, the total power in must be equal to the total power out, so

P ou tpu t P optica l T P th erm a l (^-^)

P th erm a i represents the rate of heat flow from the lattice to the 2DEG. To repre

sent tha t we use Table 2.1 and Ohm’s law:

V
P th erm a l > 1therm al (4-3)

We know from the standard bolometer section tha t V  is analogous to the differ

ence between the electron and lattice temperatures. Heat flowing from the lattice 

to the electrons tha t holds them, so R  will be the reciprocal of the electron-phonon 

thermal conductance,
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optical

2DEG ^  th e r m a l
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Figure 4.4: Schematic of 2DEG CEB in operation.

Rdecti ou-pliouou

electron r W \ A
G ptical electron

C

A Itliermal

heat capacity

leads

I = I 4- ^lat  ̂***cout 1 opt r>
<P

V,lattice

Figure 4.5: Electrical analog for a 2DEG CEB in operation . As in th e  generic 
bolometer analogy, the heat capacity does not come into play because i t ’s unchanging 
and therefore neither taking or giving “curren t.”
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Quasiparticle Trap

o o
Norm al
Metal

2A

i
o o

Figure 4.6: A conceptual drawing of a quasi-particle trap in operation. Hot electrons 
fall into the lower energy levels available in the metal, cooling in the process.

Rearrangement of Equation 4.2, gives us an equation for determining optical 

power,

While the bias voltage will make a “forward” current favorable, there is still 

the possibility of hot electrons back-tunneling into the 2DEG so that the tunneling 

current registers as smaller than it ought to be. In order to prevent this, we put a 

layer of normal metal on top of the superconducting contact. The transition edge 

from the top of the energy gap in the superconductor into the continuum of the metal 

is a smooth one. Hot electrons in the superconductor with fall into the metal’s Fermi 

sea, giving up their heat to the electrons in the metal. Once so cooled, they do not

Telectron ) G  electron—phonontherm al la ttic e (4.4)

^optical  —  ̂ output (̂ lattice'̂ 'electr cm) &  electron—phtmmi (4.5)
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have the energy required to make it back into the superconductor and are trapped 

until they are read out via the leads. This setup is called a quasi-particle trap  [74]; 

i t ’s illustrated in Figure 4.6.

The 2DEG CEB would, in theory, function as a single photon counter; each 

photon would produce hv/k,Te electrons, where v  is the frequency of the incoming 

photon. In practice, it will probably be impossible to avoid some electron-phonon 

interaction. W hen exposed to a magnetic field perpendicular to the plane of the 

2DEG, Landau levels would form in the 2DEG. Adjusting the field would adjust 

the level spacing. In a single 2DEG HEB, adjusting the field would constrain the 

absorption spectrum  of the 2DEG HEB. Only photons m atching the Landau energy 

spacing (within Heisenberg limits) would be able to excite the 2DEG. Furtherm ore, 

only photons able to im part energies greater than  A would be detected. A string of 

2DEG HEBs, each with a different magnetic field acting on them  tuned to a specific 

wavelength would then constitute a 2DEG spectrom eter. Kaw’ano. et al. [75] have 

fabricated and tested frequency selective bolometers consist ing of 2DEG hall probes 

placed in a magnetic field.

4.3 R ead ing O ut a 2D E G  CEB:

In operation, infrared photon energy will be channeled into the 2DEG via an an

tenna. Ideally, all this energy would go into raising the electrons to a high enough 

energy state  to tunnel out of the 2DEG and into the superconductor, but in prac

tice some of the energy will go into heating the 2DEG lattice, creating phonons. 

W ithin the detector, then, there will be powrer flowing into the electrons and into 

the lattice. We are draining off the power going into the electrons via the tunneling 

current, which is cooling the 2DEG. The sum of these two pow'er flow's within the
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detector will be equal the optical power being absorbed from the source,

81

P op t ica l  P c o o l in g  T  P c lc c t r o r i —ph on on -  ( 4 - G )

We will minimize the electron-phonon (EP) heat flow. The equation describing 

the EP heat flow is

PEP = E2D/l(Tf5 -  T?,). (4.7)

where A is the area of the system, Te is the electron temperature, and Tp is the 

phonon temperature. E is given by the following equation(Wellstood et al [62])

^  k j 9 # 2 D /3 D ( e F ) r ( 5 ) ( ( 5 )
^ 2 D / 3 D  =  -------------- ---------Z 4 -------------------------- , ( 4 . 8 )97rpn v jv f

where r(n) is the gamma function, C(n) is the Riemann zeta function, ep is the 

Fermi energy, p is mass density, vs is the longitudinal speed of sound in the material,

and vF is the Fermi velocity, which is obtained from the kinetic energy equation,

vF =  (4.9)
V m

E can be represented as

E = 0.524q:*7, (4.10)

where

= 4 0 3 ) ^  and 7 = ^ .  (4.11)
3 n p h Hv*VF 1 l e

E is most often found by experiment and then used to calculate other quantities,
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such as the thermal conductance (Equation 3.46). £  can be used to find rtp via

As the EP heat flow equation shows, minimizing EP heat flow is a matter of 

equalizing the electron and phonon temperatures. The cooling power describes 

the tunnelling rate from the 2DEG to the SC. We model it using Fermi's golden 

rule [76], which gives the probability of electronic transitions in systems in which 

the transition probability is constant in time. We use it here to describe the readout 

mechanism in our detector, a tunneling process. Again, the photoexcited electrons 

in the 2DEG will only register as photocurrent if they tunnel through the barrier 

between the 2DEG and the superconductor (SC) readouts. These electrons must be 

at an energy higher than that of the superconductor's band gap energy (A) in order 

to tunnel because there are no available states to tunnel into within the band gap. 

The probability of this occurrence is given by the following equation:

The numbers represent two different states in the two media: 1 represents the 

initial state in the 2DEG; 2, the final state in the SC. The ^-function is 1 if E> -  E\ 

and zero otherwise. The electron is not going to gain or lose any energy in jumping 

through the barrier, so the energy levels on either side have to be equal. At the heart 

of this equation is the interaction matrix element M X2. The initial and final states of 

the electron can be represented by wave functions: both of which will have non-zero 

probability fields extending into the finite barrier region. We assume that the barrier 

is thin enough that these probability fields overlap (if they did not. there would bo 

no tunnelling). The overlap of these wave functions within the barrier is described

1 _  ^2D/3pTe 
Tep 0.524Ca/r

(4.12)

(4.13)
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by the interaction matrix element, which will depend inversely on the thickness of 

the barrier (as the thinner the barrier, the greater the interaction between states 1 

and 2). In this instance,

|Mi2|2 = ampip2. (4.14)

Where the pi and p2 represent the states in each medium and a m is a factor

describing the coupling strength between the states. The latter can be represented

as a function of the normal resistance, R^:

“ m =  (415)

In the case of a 2DEG CEB, the “normal” resistance will be the result of electrons 

tunneling through the Schottky barriers between the 2DEG and the superconducting 

contacts. The tunneling resistivity for a Schottky barrier is given by [77]

k% (  $ 547r lesm*e0

where A* is Richardson’s constant [78], es is the dielectric constant, Ne is the 3D 

electron density, and $5  is barrier height of the semiconductor. To calculate the 

rate of transfer through the barrier , we must integrate over all electronic energy 

states.

Rate. = j J \ M l2\26(E2 -  £ ,)  = ^  J Plp25(E2 -  E l )dEldE2 = ^  / PlP2dE

(4.17)

We replaced E\ and E2 with E  to represent an energy level present in both 

media. The bit to fill in now is the two ps. The electrons will be tunnelling from the
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2DEG into the superconductor so we are concerned with the number of electrons 

in the 2DEG and the number of available states in the superconductor. We get the 

number of electrons in the 2DEG by integrating the Fermi-Dirac distribution over 

energy (Eq. 3.42). The density of states of a 2DEG is a constant (Eq. 3.60), so it 

can be incorporated into R /v- On the superconductor side, we assume that all the 

states are empty and waiting for electron population. The p for the superconductor 

will therefore be its density of states, so

where tp2 is the difference in the Fermi levels. We are interested in energies 

above the A of the superconductor, so our limits of integration will be from A to 

infinity. We will assume that the Fermi levels have equalized, so (y2 is zero:

We now have an expression for the rate of transfer from the 2DEG into the 

superconductor through a barrier. To get the tunnelling current, we simply multiply 

by the unit of charge e [79]:

We get the power transferal rate by tacking on the energy transferred by each 

electron (E — eV):

PT would be the cooling power Pcooiing in Equation 4.6. We wrote a program

(4.18)

(4.21)
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in IDL that would calculate It , Pt * and Pe P  under the constraint imposed by 

Equation 4.6 (the text of the code is contained in Appendix1 A). The following 

values were made adjustable: the superconductor A; the lattice temperature (used 

as a parameter in determining Tc); RN* Popttcah the 2DEG area; am; the emissivity 

of the background, eb, the central frequency of the 2DEG, /zG; the transmission of 

the system,//; and nc. In order to calculate £ , results from Appleyard, et al [1] were 

used. They used the following equation for the electron-phonon power flow:

Combining this equation with Equation 3.46, we get

Appleyard et al found a value of Q ~  (61 ±  10)T5eV/s for their GaAs samples. 

The T5 term will cancel making £  constant for the 2DEG, as in a metal.

The program operates by making an array of bias voltages and electron tem

peratures. For each bias voltage, a value is obtained for It , Pt > and Pep for each 

electron temperature. Of these results, only those corresponding to values Te that 

satisfy Equation 4.6are kept; in this way, we get an accurate measure of the electron 

temperature of the system. Through a plot of Te vs. bias voltage, we can see which 

values of the bias will most effectively lead to cooling of the 2DEG. The derivative 

of the Fermi-Dirac distribution (Equation 3.41) with respect to Te was included:

P e p  = (Q(Te) -  Q(Tt))neA, (4.22)

where Q is the power transfer per electron and Q oc T5 at our operating temper

atures [1, 80]. We can calculate G via

(4.23)



86 CHAPTER 4. 2DEG DETECTORS

d m  =  (4 25)
dTe fcsT2 (e.rP ( f ^ )  +  l ) ' 2

This allowed me to calculate and which allowed me to calc ulate

the responsivity via Equation 2.13:

j r dip
dTe (4.26)

dPoptica l ^

The responsivity allows me to calculate the total NEP via Equation 2.23.

4.4 Simulations

Using the program we simulated the effects of changing the operating parameters of 

the detector. We used aluminum contacts and, unless otherwise specified, the lat

tice temperature was 300 mK, the normal resistance was 10 k Q .  the optical power 

was lx lO -16 Watts, the detector area was 1000//m2, nc — 1.8 x 101,m~2. and 

Q = 1 x 10~17W atts/K 5. We looked at how the electron temperature and the NEP 

varied as a function of the bias voltage. Because our concern was the 2DEG‘s per

formance, we chose the low optical power and only looked at the NEP contributions 

from the phonon, shot, and Johnson noise.

4 .4 .1  L a ttice  T em p era tu re  V a r ia tio n

Increasing lattice temperature adversely affects the ability of the tunnel junction to 

cool the 2DEG and the NEP rises as a result (Figure 4.7). The 2DEG is decoupled 

from the lattice, but not completely. Equation 4.7 describes the heat flow between 

the lattice based phonons and the 2DEG. As the lattice temperature rises so does 

Tp and with it the magnitude of P e p - The only way to drain this heat from the
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system is through the cooling power (PT). The cooling power is a function of the 

bias voltage and the superconductor’s material properties (Equation 4.21) and has 

a peak value. If the lattice temperature and hence Tp get too high, the cooling 

power peak value will be insufficient to drain enough heat from the 2DEG to lower 

its temperature below that of the lattice. The temperature dependent phonon and 

Johnson noise will rise as a result, leading to the increase in total NEP.

4 .4 .2  N orm al R e s is ta n c e  V a r ia tio n

As the normal resistance goes up, again, the detector’s cooling ability and NEP 

suffer (Figure 4.8). The tunneling current (and, therefore, the cooling power) is 

inversely proportional to the normal resistance (see Equation 4.20); as the normal 

resistance goes up, the ability of the tunnel junction to draw heat out of the system 

decreases. This keeps energy in the system longer and gives it time to warm the 

2DEG. The cooling power keeps going down as the normal resistance goes up until 

it has no effect at all. The increase in the Johnson noise contribution is exacerbated 

by its direct dependence on the electron temperature and its inverse dependence, 

thorough the responsivity, on the normal resistance. (Equations 2.23 and 4.26) 

while the phonon noise would increase due to its square dependence on the electron 

temperature. The shot noise is reduced due to its direct dependence on IT (Equation 

2.30), but Johnson and phonon noise are far greater contributors to the total NEP.

4 .4 .3  A b sorb er  A rea  V a r ia tio n

As the area goes up, the cooling ability suffers and the NEP with it (Figure 4.9). The 

increase in area is causing an increase in Pep rate due to an increased thermal con

ductance (Equation 3.46) so more of the photon’s energy is going into the 2DEG as 

a whole, warming it up. The cooling power, on the other hand, is not being affected,
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Figure 4.7: Effects of lattice tem perature variation on electron tem perature and
NEP.
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so we eventually get to a point where the cooling mechanism is overwhelmed.

4 .4 .4  O p tica l P o w er  V a r ia tio n

As the optical power input increases, again, the cooling mechanism begins to fail 

and the NEP rises. As Equation 4.6 states, the incoming energy flows either out 

of the system via the cooling power or into the phonons of the system. Once the 

cooling power is overwhelmed, the incoming energy will be dumped into the phonons 

of the system and the electron temperature will rise, with the stated effects on the 

total NEP.
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Figure 4.9: Effects of absorber area variation on electron temperature and NEP.
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Chapter 5

Results and Analysis

The vast majority of our work has been in characterizing 2DEG heterostructures. 

We’ve done this through resistance vs. temperature tests and IV tests at fixed 

temperatures, Shubnikov de Haas tests, and optical tests. Growing superconducting 

contacts is not trivial and the process was not refined during the data taking phase 

of this project, so we tested the properties of our 2DEGs using ohmic contacts (in 

operation, these would be HEBs). This does not present a problem for finding the 

2DEG characteristics, but a 2DEG CEB would require superconducting contacts to 

work.

The final section of this chapter will contain plans for our final sample configu

ration and results from preliminary tests.

5.1 Fabrication

Central to our detectors is the ability to produce a 2DEG. Nottingham Univer

sity was pursuing the growth of 2DEG heterostructures in order to studying their 

properties. They gave us a portion of one of their wafers for our initial tests. The 

structures were grown by molecular beam epitaxy (MBE) using a Gen-II system on 2

93
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inch semi-insulating substrates. All the growths were performed at a substrate tem

perature of 630°C. The growth rate of GaAs and AlAs was one monolayer per second 

and half a monolayer per second, respectively, as measured by the reflection high- 

energy electron diffraction (RHEED) technique. The As/(Ga,Al) beam equivalent 

pressure ratio determined by an ionization gauge was 12. The samples were rotated 

during growth to improve uniformity. The wafer was grown on a semi-insulating 

GaAs substrate. The layer order from the substrate up was as follows: 2 micron 

GaAs buffer layer, 400A A l o . 3 3 G a o . 6 7 A s  undoped spacer layer, 400A 1.3 x 10 

silicon-doped (modulation doped) Alo.33Gao.07A s  layer, and a 170A GaAs capping 

layer.

Sheffield University also has an MBE facility. We wanted to see how difficult it 

would be to grow a decent 2DEG heterostructure in a system not optimized for that 

purpose. Ease of fabrication would be an issue for mass production. At our request, 

they grew us two wafers. The first was grown 011 a GaAs substrate and the layer 

order was 1 micron GaAs buffer layer, 200A Alo.33GaQ.6 7A s  undoped spacer layer. 

200A 2.5 x 1017cm-3 silicon-doped Al — D.^Gao.oiAs layer, and a 200A GaAs capping 

layer. The second wafer was grown to the doping and thickness specifications of tin* 

Nottingham wafer. We do not have the specifics of their growth process save for a 

growth temperature of 620°C and a growth rate of 1 f u n / h r .

We designed a variety of mesa structures for our tests. Most were eight-terminal 

Hall bars of varying dimensions, but we included a meander structure as well. A 

sketch of the Hall bar and meander designs is shown in Figure 5.1. The Hall bar 

configuration allowed for 4-wire measurements of a detector in simulated operation. 

All of our tests involved placing a voltage across the longitudinal direction of our 

Hall bars via the longitudinal contacts, simulating a photocurrent. We measured 

the voltage drop across the 2DEG itself via the transverse contacts, theoretieallv
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20 x 500/^m2 20 x 24,480^m2

Figure 5.1: Sketches of Hall bar and meander configurations and dimensions. Di
mensions correspond to just the Hall bars and does not include contact areas.

eliminating the contribution of the transverse contacts’ resistance. The tests for 

which data is presented were performed at cryogenic temperatures ranging from 77 

K to 450 mK. In all tests, we monitored the current through the system via a bias 

resistor at room temperature which was in series with the 2DEG.

Our choice of Hall bar dimensions for our experimental samples focused on ease of 

fabrication and comparison of size-related properties rather than on optimal detector 

performance. The Hall bar measured 20 x 500/zm2 and the meander measured 

20 x 24,480/mi2 arranged in a mm2 “footprint.”

The meander structure was created for optical tests; we wanted to see how well 

the 2DEG would directly absorb photons. To that end, the footprint of the meander 

structure was on par with the wavelengths of THz photons we are interested in. The 

path of the meander is such that the impedance was matched to free space. This 

was a wholly experimental configuration as our meander design can never be used 

for a CEB: it’s length means that a photoexcited electron would invariably undergo 

heat exchange with a phonon before reaching a readout contact (so it could be an
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HEB).

The mesas were created via standard photolitohographv wet etch. The ohmic 

contacts were applied in a thermal evaporation chamber. We evaporated 100 inn 

of Gei2Au88 followed by 28 nm Ni and then 300 nm Au. We then annealed at 

400°C for 1 min. The AuGe was used to provide an ohmic connection between the 

2DEG and the contact via diffusion during the annealing process. The Ni would 

provide good electrical contact for the mounting wires while the Au would ensure 

that wires bonded to the surface would adhere. We mounted samples on 16 pin 

connectors (Figure 5.2) and TO 8 headers (Figure 5.9) and connected the sample 

contacts to the pins via wire bonding. Our initial Hall bar designs had the contact 

pads connected to the mesas by rectangular strips. These had a lot of contact 

resistance and made testing difficult when we lost one or both of the longitudinal 

contacts. We eventually adopted graduated connectors shown in Figure 5.1 which 

minimized the contact resistance.

5.2 R  vs.T and IV tests

For R vs. T tests, we made a dip probe by mounting a 16-pin socket on the end 

of a wooden rod. We soldered 0.2 mm diameter copper wire to each pin on the 

socket and ran the copper wire to a D-connector. We housed this assembly in a 

stainless steel tube and mounted a box on the warm end to hold the D-connector 

(see Figure 5.2). For determination of the temperature, we mounted a BC diode on 

the socket as close to the sample as possible. For these tests, we assumed that the 

electron temperature was equal to the lattice temperature. For testing, we simply 

lowered the mounted sample into a nearly empty helium dewar. We ran a constant 

current of ~10 nA (current calculated by measuring voltage across a bias resistor)
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Figure 5.2: Dip probe used for resistance vs. temperature tests. This probe had a 
sixteen-pin socket for the sample mounts. The smaller image shows picture of one of 
our mounted Hall bars. The object mounted to the right of the Hall bar is a diode 
thermometer.

across the longitudinal contacts and recorded temperature and voltage data as we 

slowly lowered the sample. A low current was necessary to minimize the heating 

of the sample. To check for symmetry of the resistance vs. temperature curve, we 

changed the current direction and continued to take data as we removed the sample. 

This was an important preliminary test because it proved whether or not we had a 

2DEG. A poorly manufactured heterostructure would display the R vs. T curve of 

a semiconductor rather than a metal. Both the Nottingham and Sheffield samples 

displayed R vs. T behavior in keeping with tha t of a metal, as shown in Figure 5.2. 

For temperatures below 4.2 K, we used a cryostat capable of reaching temperatures 

of 300 mK. We did lower tem perature tests primarily for resistance values to use in 

our IV tests.

We performed IV tests at fixed temperatures in the same cryostat in which we 

conducted our <4.2K R vs. T measurements. We measured the voltage across 

the 2DEG via a 4-wire measurement of the Hall bar in the cryostat; we placed a 

thermometer near the sample to determine the ambient temperature. We applied the
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Figure 5.3: a. R vs. T tests for two dimensionally identical hall bars, one made 
with the Nottingham material (NU03) and the other with the Sheffield material. 
The resistance of both samples rises wdth temperature, as in a metal, proving that 
the 2DEG is present in both heterostructures, b. R vs. T for NU03 sample being 
w’armed to room temperature from a helium bath. The NU03 sample was the one 
we used for further testing due to its superior performance.
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longitudinal

bias resistor

Figure 5.4: Schematic showing setup for SdH tests.
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current through applying an increasing voltage across an external, room temperature 

bias resistor. As the cryostat temperature dropped (to an ultimate temperature of 

450 mK) we recorded voltage drop across the Hall bar and its temperature. We 

changed the bias voltage at different temperatures to see how the current through 

the 2DEG changed. From our R vs. T curves, we could determine the temperature 

of the 2DEG throughout the measurement. We made rudimentary calculations 

of the thermal conductivity by recording the power dissipation and temperatures 

at two points for each sample and using Equation 3.45. This gave us a value of 

?^1.26x 10~16W/K for the Sheffield sample and « 1.1 x 10- 17W /K for the Nottingham 

sample. These would be average values of the thermal conductivity per electron.

5.3 SdH tests

We performed SdH tests in a cryostat which housed a persistent current super

conducting magnet capable of reaching fields up to 12 T. The cryostat had a base 

temperature of 4.2K, but lower temperatures could be achieved by pumping on the 

sample space, but we were not able to do this in a controlled method and so could 

not rely on the readings produced. We mounted the samples on a probe that we 

then inserted into the heart of the magnet space. The sample was oriented such 

that the plane of the 2DEG was perpendicular to the direction of the B field. We 

wired an external bias resistor to the longitudinal contacts on the Hall bax configu

ration (see schematic in Figure 5.4. We used the voltage across the bias resistor to 

monitor the current through the 2DEG. We used the transverse contacts to monitor 

the longitudinal voltage (and from it the longitudinal resistance) and to monitor the 

transverse Hall voltage. We mounted an optical LED and a resistive thermometer 

on the sample holder. The LED allowed us to shine light on the heterostructure and
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observe the effect on the 2DEG. We observed a lower resistance with illumination, 

matching previous studies [81, 82].

Our initial round of tests involved two samples made from Nottingham material. 

NS01 and NS02, and a third sample made from the original Sheffield material. CS01. 

The Nottingham samples were manufactured there with Nottingham masks: in the 

case of NS02, we did the final anneal at Cardiff. We used our own mask, contact 

recipe, and annealing routine for the sample we made from the original Sheffield 

wafer. The latter sample failed to produce SdH oscillations. Our speculation was 

that this had to do with both the dimensions and the doping density of this sample. 

The lattice mismatch at the GaAs cap layer/AlGaAs doped layer gives rise to surface 

states in the GaAs that trap electrons. These surface states will take electrons from 

the doped layer until filled; the remaining electrons will comprise the 2DEG. The 

original Sheffield sample had a lower doping density and a thinner doped layer than 

the (successful) Nottingham sample. It’s probable that there simply were not enough 

electrons left after the surface states were filled to populate the 2DEG.

The dependence of the oscillations on the temperature of the 2DEG was borne 

out in experiment. Increasing bias voltages warmed the 2DEG and populated LLs 

above the Fermi level leading to less pronounced oscillations (see Figure 5.5). After 

plotting against the reciprocal of the B field (Figure 5.6), we calculated the electron 

density of each sample using Equation 3.86 and the mobility from Equation 3.11. 

For the Nottingham sample, we found ne % 9.67 x 10Mm -2 and // % 376///2/ \ 's .  For 

the Sheffield sample, ne «  1.61 x 1015ra~2 and p % \27rn2/Vs.

The analysis process had two steps. First, Equation ‘3.87 was used to fit the 

SdH data (with typically 3 to 10 harmonics depending on field range) at a power 

dissipation rate low enough that we could assume that Tc = 4.22A' (the temperature 

of the sample helium bath). This yielded 3-10 amplitudes and phases, a value' for
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Figure 5.6: Plot of SdH oscillations vs. reciprocal of B field in Sheffield sample.
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circles is original data with error; blue line is fit).
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Figure 5.8: A temperature vs. power/electron plot for XU03. The reciprocals of 
the slope will give G per electron for the 2DEG at those power rates. Note: The 
temperature has been normalized by subtraction of the base temperature.

the Dingle temperature, and a frequency (also an offset, linear and quadratic term 

in p(B) to allow for the lion-oscillatory part of the magnetoresistance). The next 

step was to analyze the data with T/. as the adjustable fitting parameter through 

Equation 3.88, This is justified for small temperature rises since a" ’ >r terms are 

essentially temperature independent. This technique gave us very good fits (see 

Figure 5.7). This allowed us to calculate the dynamic thermal conductance of the 

2DEG at these settings, shown in Figure 5.8.

05
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Figure 5.9: A QMC Instruments liquid helium cryostat with amplifier box. We 
shone radiation through the filtered window at its base. We mounted the samples 
on TO 8 headers (shown in smaller image) for these tests.

5.4 Optical Tests

We performed three types of optical tests on the meander structure: responsivity and 

noise using a filtered blackbody source, spectral response of detected signal using 

a Fourier transform spectrometer(FTS), and transmission of an unetched 2DEG 

heterostructure of an using the same FTS. We housed the meander structure in a 

QMC Instruments cryostat (Figure 5.9). These cryostats allow optical access by 

room-temperature sources to samples held at 4.2K. Our particular cryostat also had 

an electronics box that allowed us to run a bias current through our sample in situ. 

The bias current allowed us to determine the resistance of the meander during the 

experiment. The resulting data is shown in Figure 5.10

The blackbody source was simply a heated chamber. The resulting radiation 

was sent through a chopper, a propeller-like construct that, when spinning, inter-
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Figure 5.10: Plot of meander responsivity and XEP vs. bias current from blackbody 
source test.

m ittently blocked the blackbody signal. This approxim ated a square wave. The 

blackbody radiation warmed the electrons in the meander and increased its resis

tance; we saw this as a peak in the current flowing in the m eander th a t was centered 

around the rotation frequency of the chopper. The purpose of this test was to test 

the capability of the 2DEG to act as direct photon detector.

The FTS is a type of Michelson interferometer. The source is heated to a tem 

perature of ~  1000°C and sends a beam of collimated radiation onto a mirror. This 

mirror sends the beam into a splitter, reflecting one half of the beam to a mirror 

perpendicular to  the original beam and transm itting  the other half to an in-line 

mirror. The two beams reflect back to the beam  splitter where they combine on 

the side opposite the source. These two beams contain the entire bandw idth of 

radiation th a t the source is putting  out. The respective path  lengths determine 

which wavelengths will be constructively or destructively added. The FTS used one
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fixed mirror and one that moved continuously during the course of the experiment. 

The rate of the moving mirrors’ oscillation enables us to reconstruct the spectrum 

through a Fourier transform.

The direct absorption test involved putting a section of unetcted heterostucture 

in the path of the FTS. We performed this test to see whether the spectral response 

had more to do with the etched structure (the meander) or the 2DEG itself. The 

results are shown in Figure 5.11. The oscillations in the graph are due to reflection of 

the beam from the back surface. The reflected beam constructively and destructively 

interferes with the incident beam. More striking is that this graph shows 100% 

transmission over most of its range, a result which surprised us. A 2DEG should 

act like a thin metal film and should therefore not be transparent to incoming EM 

waves. To figure out why, we had to think of what conditions would make a metal 

film appear transparent. The radiation was traveling through air (approximated 

as free space, through the heterostructure, and then back into air. For absorption 

to occur, the heterostructure’s impedance would have to be matched to that of 

free space («377Q). As there was no absorption, the question was whether the 

heterostructure’s impedance was greater or lesser than that of free space. We were 

not sure of the mechanism involved in the 2DEG’s interaction with the radiation, 

but we were able to use three different methods to model it: as a circuit; quantum 

mechanically; and using a plasmon approach. These approaches allowed us to think 

up ways to solve the absorption problem.

5.4 .1  C ircu it M o d e l

The way to answer this question is to consider the situation as a circuit. What we 

have is two resistors in parallel, one representing free space, the other the 2DEG. 

An EM wave meeting the 2DEG will have a choice of paths, and EM waves always
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take the path of least resistance. The wave chooses to continue along free space, so 

the 2DEG path must have an impedance greater than that of free space. In fact, 

given that there is no absorption at all, the impedance of the 2DEG must be much 

greater than that of free space. The next question is why?

In the plane of the 2DEG, along which the interaction would occur, our SdH 

tests showed a resistance of ~17-30 Q/square. The dimensions of the unetched het

erostructure were more or less square, so the real impedance (resistance) should have 

been in 17-20 Q range, but measurements of the Nottingham material's impedance 

during the absorption test put it at over 1000Q. The extra impedance had to be 

imaginary. We had, up until this measurement, failed to take into consideration the 

kinetic inductance (Lk) of the 2DEG. Inductance, in general, is the property through 

which Faraday’s Law asserts itself in a circuit. If the magnetic field through a loop 

(the flux, is changing due to a change in current, the inductance will establish 

an emf according to £ = —Ldl/dt .  We generally speak of the self inductance of 

a loop (L), which is dependent on the geometry of the current loop (<hfi = LI). 

Kinetic inductance is distinguished by being solely a property of elec trons. It arises 

from their inherent resistance to being accelerated. It is Lk that will be the relevant 

inductance for a 2DEG. To derive a value for a 2DEG’s kinetic inductance, wo start 

with the total conductance (from the Drude model) [83]

, . nee2re 1
<7(u> =  ------—  — — ------ (5 .1 )

m* 1 + iujTe

where uj is the angular frequency of the incoming radiation. The reciprocal of 

Equation 5.1 will be the impedance per square of the 2DEG:
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Figure 5.11: Comparison of FTS transmission through the original Sheffield het
erostructure with no 2DEG, the Sheffield 2DEG heterostructure, and a GaAs insu
lating substrate. The fringing present is due to reflection due to the different indicies 
of refraction of the air, heterostructure, and substrate. Constructive and destructive 
interference occurs, giving rise to the variation in the transmission. The upper edge 
of the curve is what is relevant. Note th a t the transmission goes to 100% in all cases,
i.e. no absorption even by the 2DEG. This is due to the high inductive impedance 
of the 2DEG.
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2DEG
Figure 5.12: Schematic of 2DEG showing resistance and kinetic inductance in series. 
Adapted from image in Kang et al. [83]

This gives us a real and imaginary component of the 2DEG impedance. The real 

component will be the resistance per square (R 2 DEG)• the imaginary part will be the 

kinetic inductance per square(L^ =  reR 2DEG)- The kinetic inductance is effectively 

in series R 2 DEG, shown schematically in Figure 5.4.1.

The transmission tests were done with Sheffield m aterial which had an R^deg ~  

30S2/s<7 and ne ^ 1 .3 4 x 1 0 loe lec /m2. Using Equation 5.2. this gives 11s a Tr =5.83x 10“ 1 

and a subsequent L* =1.75 11H. This would give us an impedance of at a

frequency of 1 THz. far too high to expect any absorption. In order to make an ef

fective 2DEG detector, we would have to find some way to circumvent the inductive 

impedance.

The transmission test of the meander structure  etched on the Sheffield 2DEG 

provided a possible solution to the inductive impedance problem. The FTS test 

went from 0-3THz and we observed an absorption peak at « 1.1 THz (Figure 5.13

a.). We theorized tha t this absorption peak was caused by resonance due to the 

capacitance of the meander (uj = 1 j \ f L C ) .  This capacitance would be from the
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spacing between the longer lengths of the meander (see Figure 5.14).

Using ADS, a circuit simulation program, we made a circuit diagram of the path 

of the radiation to the meander. This diagram included the resistance of the free 

space leading to and from the meander as well as the contact resistance (Figure 

5.15).

In addition to the 2DEG impedance, we added a capacitive term. Using our 

calculated values for R , 2 d e g  and L k  we entered a value for C to approximate the 

absorption peak in the FTS test(Figure 5.13 b.). We found the meander structure’s 

capacitance to be 1 .16x l0 -5 pF. As a comparison, we decided to see what an es

tim ate of the capacitance using C = e^A/d  would give. We assumed that the 23 

“legs” of the meander corresponded to 23 plates with areas of 20x1000 //m 2 and 

with 40fim separating each plate (the distance from midpoint to midpoint). This 

was the equivalent of 22 capacitors arranged in series. The calculated value was 

2.01 xlO 4 pF, an order of magnitude greater than  ADS calculated, implying that 

the process is governed by a more intricate theory.

5 .4 .2  P la s m o n  M o d e l

As explained in Pendry et. al [85]. A plasmon is a collective oscillation of the 

electron density in a given medium; similar in concept to a sound wave moving 

through air. This medium could be a m etal or an electron gas. An incoming EM 

wave will cause the electron gas to oscillate. The electron gas in each system will 

have a characteristic frequency which will induce simple harmonic motion. This is 

the system’s plasma frequency [48, 47]:
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Figure 5.13: The FTS test of the m eander s tru c tu re  on the  Sheffield 2DEG showed 
an absorption peak at «  1.1 T H z  (a.). We m odeled the  system  w ith ADS including 
a value for the capacitance of the m eander s tru c tu re  and m ade an absorption curve 
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Figure 5.14: Model of meander structure showing the capacitance between straights 
of the meander path and the kinetic inductance of the 2DEG in the meander. These 
two properties will effectively make a series LC circuit.
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Capacitive Mesh Filter

I 9 I

Figure 5.16: Dimensions of a capacitive mesh. (Image taken from H ooberm an [84])

Figure 5.17: Schematic of m esostructure. Taken from Pendry et al. [85].
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In order to detect THz, we will have to change the 2DEG’s absorption properties. 

Pendrv et. al [85] describes a method of generating low-frequency plasmons in 

metallic mesostructures. These mesostructures are thin (radii ~  Ifim) metal wires 

arranged so that they form a cubic lattice (see Figure 5.17). The properties of a 

mesostructures is a function of the wire radius r  and the wire spacing a:

2nc2
a2ln(a/r) (5'4)

and

/ i07rr2e 2n ,  . . . .
m = ---- ------- ln(a/r), (5.5)

Z7T

where n is the electron density of the wire material. This model will enable 

us to determine by how much wre would have to change the effective masses of the 

electrons in the 2DEG in order to achieve the absorption we want, i.e. uip= l THz.

5.5 “Ideal” D etectors

A 2D EG detector would incorporate a capacitance in series with the kinetic induc

tance of the 2DEG. We could achieve this through the use of a capacitive mesh filter 

overlaid on a lattice of 2DEG material. The impedance of the mesh filter would go

as

1 2  ( A 1— 2(4a;o Incsc— ) (— ----- - )  5.6)
vqC 7i2 + nl 9 cujq g f

where = ^o^/n2+n? [84]. The values a and g refer to the dimensions of the 

mesh (see Figure' 5.16), while ri\ and n2 are dielectric indices of refraction [86]. In our 

case, iii would be the refractive index of air (1) and n2 that of the heterostructure
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(GaAs, \/l3 ). The dimensions of the mesh would be chosen such that the detector 

would resonate at the target frequency u>t ■ <̂t — 1 /V LkC .

The low thermal conductance of the 2DEG allows us to use larger dimensions 

than in other detectors. Where they would use antennae to couple incoming radi

ation to a small absorber, we could simply make our absorber size on the order of 

the THz wavelength and allow direct absorption.

We have the options of making either 2DEG HEBs or 2DEG CEBs. While the 

CEB is our goal, a HEB could also be useful. We could modify our meander design 

by adding regularly spaced metal islands. These islands would serve as a linear 

capacitive filter. As Figure 5.14 shows, there will also be capacitance between the 

straights of the meander path and added capacitance due to the islands themselves.

For a 2DEG CEB, we would deposit a layer of superconductor on top of the 

islands of the capacitive mesh to serve as readout pads. Which island sites we would 

use would be determined by r3. We would choose islands that allow for multiples 

thereof.



Chapter 6

Conclusion

In this thesis, the possibility of a new type of THz detector (bolometer) using a 

semiconductor heterostructure has been explored . The absorbing medium would 

be a 2DEG created through doping of the heterostructure. Among the advantages 

of such a bolometer over a germanium one, for example would be increased electron 

mobility. The increased electron mobility will allow for for detection with a smaller 

number of electrons, and we could control that number through doping whereas a 

metal is bound to its ~1022electronsfm?. A metal bolometer would be limited by 

the material properties of the absorber, the only way to minimize the number of 

electrons would be to apply as thin a film as physically possible. A 2DEG will have 

an effective thickness of a few angstroms, thinner than is possible for a metal film. 

Fewer electrons would mean a smaller heat capacity for the 2DEG. In the case of a 

2DEG CEB. the heat capacity be even lower due to the decoupling of the electrons 

and the phonons in the 2DEG system. The photon energy would be primarily shared 

by the ('lections so the large heat capacity that would be contributed by the phonons 

is bypassed. The small heat capacity would also mean a small time constant, i.e. 

faster measurements.

117
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A 2DEG CEB could potentially have an NEP ~10_19IT/ \ /H z  and a time con

stant ~1 /is at an operating temperature of 100 mK. A modern silicon-nitride mi

cromesh bolometer (the same type used on BOOMERANG) described in Woodc raft 

et al [87] had a design goal of time constant of 5.8 ms and an NEP of l.ox lO -1' 

at 100 mK. A TES bolometer described by Hunt et al [88] has a time constant of 

437/is and an NEP of 2 .0xl0-17 (at 360 mK transition temperature).

We have proven that it is possible to produce suitable heterostructures without 

using overly specialized MBE systems, but, of course, best results will be obtained 

from MBE systems optimized for 2DEG heterostructure production. The two most 

pressing challenges to the development 2DEG bolometer prototype are coupling 

THz radiation into the 2DEG and devising a sensitive thermometer to measure the 

electron temperature.

For radiation coupling to the system, we would use current antenna/filter tech

nologies. The real problem is getting the THz energy into the 2DEG. The electron 

density in a 2DEG is lower than that of a metal, but the 2DEG's DC resistance 

is comparable to metal because of greater electron mobility. The relative scarcity 

of the electrons in a 2DEG, however, means that the electron-photon interaction 

cross-section will be much smaller. In addition, the two-dimensional aspect means 

that light shining on the surface of the heterostructure, perpendic ular to the 2DEG‘s 

plane, would not be readily absorbed. Radiation will have to be channeled into the 

plane of the 2DEG both to enable any electron-photon interaction and to maximize 

the likelihood that the radiation will find electrons.

There are a number of methods that have been proposed for monitoring the 

temperature of the electrons in a 2DEG including Shubnikov de Haas oscillations 

and/or Hall resistance (Komiyama, et al [89]), 1-D thermopower (Applevard. et 

al. [1]), and superconducting tunnel contacts (Anghel, et al. [32]). We have done
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simulations to show that superconducting SINIS contacts, if properly engineered, 

could provide a high sensitivity from a relatively high base temperature.

A great hurdle to overcome in the development of 2DEG detectors is simply to 

understand the mechanism of their interaction with radiation. The impedance of the 

2DEG does appear to be frequency dependent through the inductance, as described 

in Chapter 5. but we lack an exact description of the mechanics. Kabir et al [90] 

suggests that the resistance of the 2DEG may also be frequency dependent. The 

uncertainty is primarily due to the relative novelty of THz measurement. Studies of 

higher and lower frequencies have been made, but there is a gap in the area of the 

spectrum in which we are interested. The solution to this problem is simply more 

research, and the promise of THz exploration of our universe has prompted studies.

We hope to eventually provide astronomers and astrophysicists a useful, versatile 

tool to uncover the information long hidden in the THz spectrum. While the hurdles 

facing 2DEG detector development are not insignificant, our research shows that 

neither are they insurmountable. Hopefully, the next thesis that mentions 2DEG 

detectors will be one primarily concerned with data analysis from observations.
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2DEG Sim ulation Program

The following Appendix contains  the text  of the IDL code used to generate the 

simulations found in Cha p te r  4:

p ro  t u n n e l c u r r e n t 2 d e g

; Looking a t  c o o l i n g  p r o p e r t i e s  of  a  tw o-d im e n s io n a l  

; e l e c t r o n  gas  u s i n g  e q u a t i o n s  from Nahum APL (65) pg. 3123 

; and p a r a m e t e r s  f rom A pp leya rd  Phys.  Rev. L e t t  (81) 3491.

; A t tem pt ing  t o  r e p l i c a t e  r e s u l t s  f rom Sav in  APL (79) 1471

e l e c = l . 602e-19 ; e l e c t r o n  c h a rg e  i n  Coulombs

;d e l t a = 3 4 8 . e ~ 6  ;2xene rgy  gap of  aluminum a t  OK i n  eV 

d e l t a = 3 0 5 0 . e -6  ; 2xene rgy  gap of  niobium a t  Ok i n  eV 

; d e l t a = 1 7 4 . e - 6  ; e n e rg y  gap of  aluminum a t  OK i n  eV 

; d e l t a = 1 5 2 5 . e - 6  ; e ne rgy  gap of  niobium a t  Ok i n  eV

123
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; d e l t a = 5 0 0 . e -6

d e = d e l t a / 1 0 0 . ; I n t e g r a t i o n  e lement  

;d e 2 = d e l t a 2 / 1 0 0

kb= 8 .62e -5  ;Bol tzmann c o n s t a n t  i n  eV/K 

h=4 .1 4e -15  ; P lanck  c o n s t a n t  i n  eV*s 

t l = . 3  ; L a t t i c e  t e m p e r a t u r e  i n  K

rn= 100. ; Normal s t a t e  r e s i s t a n c e  o f  t h e  j u n c t i o n  i n  Ohms

ev=2. ; Energy d i f f e r e n c e  between Fermi l e v e l s  i n  s u p e r -  

; c o n d u c te r  and normal m eta l

mu=1.5el2 ; C e n t r a l  f r e q u e n c y  of  d e t e c t o r  i n  Hz

e ta = 0 .0 5  ; O v e r a l l  t r a n s m i s s i o n  of  t h e  sy s te m ,  d i m e n s i o n l e s s

e m is= l .  ; E m i s s i v i t y  of t h e  background ,  d i m e n s i o n l e s s

p o p t = l . e - 1 2  ; O p t i c a l  power i n p u t  i n  Watts

area=10000. ;Area of absorber m a te ria l in  square microns
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q do t= .25e -17  ; c o e f f i c i e n t  o f  e l e c t r o n - p h o n o n  i n t e r a c t i o n  i n  W /(e lec tron)K~5  

n e l  = 2 . e 3  ; e l e c t r o n  d e n s i t y  i n  l /unT2

sigma = q d o t* n e l  ; c o e f f i c i e n t  o f  e l e c t r o n - p h o n o n  i n t e r a c t i o n  in  W/unT2K~5

p h o t n e p = s q r t ( 2 * p o p t* ( h * e l e c * m u + e ta * e m is * k b * e le c * t l ) )  ; Photon  NEP i n  u n i t s  of  V 

jbacground  t e m p e r a t u r e  = l a t t i c e  temp 

; absorbed  i n c i d e n t  power = o p t i c a l  power

v b ia s = (d in d g e n (1 0 0 )+ 2 0 )* d e  ; B i a s  v o l t a g e  

e ne rgy= (d indgen(1000)+ 101)*de  ; E l e c t r o n  energy  

t e l e c t = ( d i n d g e n ( 1 0 0 0 ) + l ) * t l / 5 0 0 . +  d e /k b  ; E l e c t r o n  t e m p e r a t u r e

t u n c u r = d b l a r r (1000) 

p o w o u t= d b la r r (1000) 

p o w e l p h = d b la r r (1000) 

t e r e l = d b l a r r (100) 

t u n r e l = d b l a r r (100) 

p h o n e p = d b la r r (100) 

j o h n e p = d b l a r r (100) 

g = d b l a r r (100) 

d i d t e = d b l a r r (1000) 

d p o u t d t e = d b l a r r (1000)
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d p e l p h d t e = d b l a r r (1000) 

d i d p = d b l a r r (100)

;Want t o  c r e a t e  a  g raph  of  e l e c t r o n  t e m p e r a t u r e  v s .  b i a s  v o l t a g e  f o r  a  2DEG.

; In  o p e r a t i o n ,  t h e  power i n p u t  w i l l  be e q u a l  t o  t h e  p ow e r  o u t p u t ;  t h e  on ly  

; r e l e v a n t  e l e c t r o n  t e m p e r a t u r e s  a r e  g o in g  t o  be t h o s e  t e m p e r a t u r e s  a t  which 

; t h e  i n p u t  and o u t p u t  powers a r e  e q u a l i z e d .  The i n p u t  power i s  som e th ing  we 

; c o n t r o l  v i a  t h e  amount of  ( o p t i c a l )  en e rg y  t o  w h ich  we e x p o s e  t h e  2DEG. The 

; o u t p u t  power w i l l  be l e s s e n e d  due t o  en e rg y  l o s t  t o  e l e c t o n - p h o n o n  i n t e r a c t i o n  

; w i t h i n  t h e  l a t t i c e .  Hence, we want  an e q u a t i o n  t h a t  r e a d s  a s  f o l l o w s :

; o p t i c a l  power -  e l e c t r o n - p h o n o n  power -  o u t p u t  power  = 0.

; To c a l c u l a t e  o u t p u t  power, I am u s i n g  e q u a io n  2 f ro m  Nahum APL v o l . 65 pg.

;3123, December, 1994. I t ' s  an i n t e g r a l .  For  f u t u r e  w o rk ,  I ’m a l s o  c a l c u l a t i n g  

; t h e  t u n n e l i n g  c u r r e n t  u s i n g  e q u a t i o n  1 from t h e  same p a p e r .

f o r  i=0 ,  99 do beg in

v b = v b i a s ( i )  ; S e t t i n g  b i a s  v o l t a g e  v a l u e  f o r  each  i t e r a t i o n  of  t h e  i - l o o p

f o r  j= 0 ,  999 do beg in

; e n = e n e rg y ( j )

t e = t e l e c t ( j )

f d d 2 d = l . / (exp(  ( e n e r g y - v b ) / ( k b * t e ) ) + l . ) ; F e r m i - D i r a c  d i s t r i b u t i o n  2DEG 

d o s s c = e n e r g y / s q r t ( e n e r g y ~ 2 - d e l t a ~ 2 )  ; D e n s i t y  of  s t a t e s  i n  s u p e r c o n d u c t o r  

d2ddte= ( (ene rgy-vb)  * ( e x p ( ( ene rgy-vb)  /  ( k b * t e ) ) ) /  ( ( k b * t e ~ 2 )  * ( exp(  ( en e r g y -v b )  /  (kb* te )  )+l. j
i

;The above i s  t h e  d e r i v a t i v e  of fdd2d wr t  t h e  e l e c t r o n  t e m p e r a t u r e .
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t u n c u r ( j ) = ( l . / r n ) * t o t a l ( f d d 2 d * d o s s c ) * d e  ; I n t e g r a l  f o r  t u n n e l i n g  c u r r e n t  

p o w o u t ( j ) = ( 1 . / r n ) * t o t a l ( ( e n e r g y -v b ) * f d d 2 d * d o s s c ) * d e  ; I n t e g r a l  f o r  power 

p o w e l p h ( j ) = s i g m a * a r e a * ( t e ~ 5 - t l ' ‘5) ; E q u a t io n  f o r  e l e c t r o n - p h o n o n  power

d p e l p h d t e ( j ) = 5 . * s igm a *a re a * te ~ 4  ; D e r i v a t i v e  of  e l e c t r o n - p n o n o n  power wrt  

; e l e c t r o n  t e m p e r a t u r e .

d i d t e ( j ) = ( l . / r n ) * t o t a l ( d 2 d d t e * d o s s c ) * d e  ; I n t e g r a l  f o r  d e r i v a t i v e  of  t u n n e l  cui 

;wr t  e l e c t r o n  t e m p e r a t u r e .

; s to p

d p o u t d t e ( j ) = ( l . / r n ) * t o t a l ( ( e n e r g y -v b ) * d 2 d d te * d o s s c )* d e  ; I n t e g r a l  f o r  d e r i v a t i \  

; ou tp u t  power wr t  e l e c t r o n  

; t em p e ra tu re

e n d fo r

r e l e v a n t t e = m i n ( a b s ( p o p t - p o w o u t - p o w e l p h ) , jmin)  ;min f u n c t i o n  f i n d s  minimum of  a

; o p e r a t i o n  c o n t a i n  i n  p a r e n t h e s e s  and

;p l a c e s  t h e  l o c a t i o n  of  t h a t  v a lu e  i n

;a  l o c a t o r ,  in  t h i s  ca se  " jm in . "  Again

;we i d e a l l y  want t h e  sum of  t h e  powers

; t o  be ze ro .

;Note:  Without  t h e  comma and l o c a t o r
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; a s s ignm en t ,  min w i l l  s imply r e t u r n  t h e  

; s m a l l e s t  va lu e  i n  t h e  a r r a y .  Note,  i n  

; t h i s  c a s e ,  min i s  a c t i n g  on t h e  

; a b s o l u t e  v a lu e  (abs f u n c t i o n )  of  t h e  

; a r r a y  o p e r a t i o n  in  t h e  p a r e n t h e s e s .

t e r e l ( i ) = t e l e c t ( j m i n )  ;Gives r e l e v a n t  v a lu e  of  e l e c t r o n  t e m p e r a t u r e  f o r  t h e  t h i s  b i a s  vcl; 

t u n r e l ( i ) = t u n c u r ( j m i n )

d i d p ( i ) = d i d t e ( j m i n ) / ( d p o u t d t e ( j m i n ) + d p e l p h d t e ( j m i n ) ) ;  

g ( i ) = 5 * s i g m a * t e r e l ( i ) ~ 4 * a r e a

p h o n e p ( i ) = s q r t ( 4 * k b * e l e c * t e r e l ( i ) ~ 2 * g ( i ) ) ;Phonon NEP 

j o h n e p ( i ) = s q r t ( 4 * k b * e l e c * t e r e l ( i ) / ( r n * d i d p ( i ) " 2 ) )  ; Johnson NEP 

e n d fo r

p l o t ,  v b i a s ,  t e r e l , t h i c k = 2 , $

t i t l e =  ’ !8 E le c t r o n  Tempera ture  v s .  B ia s  V o l t a g e ' , $ 

x t i t l e = ' B i a s  Vol tage  (V)’ ,$ 

y t i t l e = ' E l e c t r o n  Temperature (K) ' 

s t o p
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; p l o t , v b i a s , t u n r e l , t h i c k = 2 , $

; t i t l e =  ’ ! 8 C u r re n t  v s . B i a s  V o l t a g e ' , $

; x t i t l e = ' B i a s  V o l t a g e  ( V ) ' , $

; y t i t l e = ' C u r r e n t  (Amps) '

; s t o p

; p l o t ,  v b i a s ,  d i d p , $

; t i t l e =  ' ! 8 R e s p o n s i v i t y  v s .  B i a s  V o l t a g e ' , $ 

; x t i t l e = ' B i a s  V o l t a g e  ( u V ) ' , $

; y t i t l e = ' R e s p o n s i v i t y  (A/W)'

; s t o p

p l o t , / y l o g ,  v b i a s ,  ph o n e p + jo h n e p ,$  ; f o r  p a r t i a l  n o i s e  

t i t l e =  ' ! 8 P a r t i a l  NEP v s .  B ia s  V o l t a g e ' , $ 

x t i t l e = ' B i a s  V o l t a g e  ( u V ) ' , $  

y t i t l e = ' N E P  ( W a t t s / s q r t ( H z ) ) '  

s t o p

; p l o t , / y l o g ,  v b i a s ,  pho tnep+phonep+ jo hnep ,$

; t i t l e =  '!8NEP v s .  B i a s  V o l t a g e ' , $

; x t i t l e = ' B i a s  V o l t a g e  ( u V ) ' , $

; y t i t l e = ' N E P  ( W a t t s / s q r t ( H z ) ) '

; s t o p
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s e t _ p l o t ,  ’p s ’

;d e v i c e , f i l e n a m e = ’\ \S e r p e n s \ s p x i d b \ s p i e \ 3 0 0 m k 2 d e g t v s v . p s ’

; p l o t ,  v b i a s ,  t e r e l , t h i c k = 2 , $

; t i t l e =  ’ INElect ron  Temperature  vs .  B ia s  Vol tage  (300 mK L a t t i c e  Temp.) '  

; x t i t l e = ’Bias  Voltage  (V)’ ,$

; y t i t l e = , E l e c t r o n  Temperature (K) ’ 

j d e v i c e , / c l o s e

;d e v i c e , f i l e n a m e = ’\ \ S e r p e n s \ s p x i d b \ s p i e \ 5 0 m k i v . p s ’

; p l o t ,  v b i a s , t u n r e l , t h i c k = 2 , $

; t i t l e =  ’ !8Current  v s . B i a s  Voltage  (50 mK L a t t i c e  Temp)’ , !

; x t i t l e = , Bias  Voltage  (V) ’ ,$

; y t i t l e = ’C ur ren t  (Amps)’

; d e v i c e , / c l o s e

;d e v i c e , f i l e n a m e = ’\ \ S e r p e n s \ s p x i d b \ t h e s i s \ 4 k 2 d e g r e s v s v . p s ’

; p l o t ,  v b i a s ,  d i d p , t h i c k = 2 , $

; t i t l e =  ’ !8Respons iv i ty  vs .  Bias  Vol tage  (4K L a t t i c e  T e m p . ) ’ ,$ 

; x t i t l e = ’Bias  Voltage  (uV)’ ,$

; y t i t l e = ’R e s p o n s iv i ty  (A/W)’

;d e v i c e , / c l o s e

;d e v i c e , f i lename= * \ \S e r p e n s \ s p x id b \ s p i e \ 3 0 0 m k 2 d e g n e p v s v .p s ’

; p l o t ,  / y l o g ,  v b i a s ,  photnep+phonep+johnep,$

; t i t l e =  ’ !8NEP vs .  Bias  Voltage (300mK L a t t i c e  T e m p . ) ' , !

; x t i t l e = ’Bias  Voltage  (uV)’ ,$
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; y t i t l e = , NEP ( W a t t s / s q r t ( H z ) ) ’

;d e v i c e , / c l o s e

s e t _ p l o t , ’w i n ’

; i v = d b l a r r (2 ,100)  ;making t x t  f i l e  of  c u r r e n t  and v o l t a g e  d a t a  

; i v [ 0 , * ] = v b i a s  

; iv  [ 1 , * ] = tu n r e l

;openw, 1, ’ \ \ S e r p e n s \ s p x i d b \ s p i e \ 5 0 m k i v . t x t *

; p r i n t f ,  1, i v  

; c l o s e ,  1 

end
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