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SUMMARY

The present thesis examined the processes responsible for strategy selection in 
problem-solving tasks. Despite the salience of this mechanism there has been a dearth 
in empirical research in the paradigm. Existing accounts, primarily modelled upon 
simulations of data sets, propose that strategies are not selected per se, but problems 
are solved by an automatic attempt to retrieve a solution (the Automaticity account; 
Logan, 1988; 2002). Contrary to this account four studies presented in the first 
empirical series demonstrated that predicted retrieve/calculate selections could be 
made rapidly (within 850 ms) and accurately. This indicated that problem-solving 
comprises two dissociable phases, selection then solution. Selection was found to be 
sensitive to the familiarity of a problem and also specific problem features supporting 
an account in which selection may be determined by the type of problem and the 
context in which the problem is solved (the Adaptive account; Reder & Ritter, 1992; 
Siegler & Araya, 2005). Elucidating the mechanisms responsible for these effects, in 
the second empirical series, three issues representative of real-world problem-solving 
episodes were examined. When multiple cues to selection were available, the 
interplay between the cues either served to inhibit the effects of both cues, or 
facilitated the effect of one cue at the expense of the other. Problem familiarity effects 
were attributed to implicit procedures as these effects were apparently un-reliant upon 
conscious processes (Reder & Ritter, 1992; Schunn et al, 1997). However, the feature 
identification process, rather than the selection mechanism itself, was found to be 
reliant upon consciously directed processes (Siegler & Araya, 2005). The findings 
from these studies were used to evaluate existing accounts of strategy selection, and 
reflecting limitations in these models, candidate mechanisms are proposed to account 
for the key effects revealed in this thesis.
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CHAPTER ONE

1.1 INTRODUCTION

Humans are faced with many problems to solve in life. For example, if you were 

walking through a forest and met a bear there are a host of responses you could make. 

The most reliable option would be to mentally simulate all of the potential outcomes 

for each candidate response, then based upon the success of each simulation, decide 

upon the appropriate action. But given the demands of the situation (i.e., a rapid 

response) and the limitations of human memory and attention, this approach is not 

always possible. A fundamental issue when choosing how to respond to a problem is 

determining whether its solution can be directly retrieved from memory (e.g., when I 

meet a bear I should run away) or whether the solution needs to be worked out (e.g., I 

have not met a bear before, but when I met a badger I ran away, so I should do the 

same with the bear). Research into rapid problem-solving has illustrated that humans 

are adept at choosing the appropriate action under are range of situational constraints 

including time pressures (Gigerenzer & Goldstein, 1996; Payne, Bettman & Johnson, 

1988) and cognitive constraints such as concurrent memory loads (Broder & Schiffer, 

2003). However, a large degree of controversy still remains as to how we rapidly 

select between different options and the types of factors which affect those selections.

Within the problem solving literature much is known about how problems are 

solved, in particular, how problem-solving strategies interact with long-term memory 

to produce an answer to a problem (e.g., Lebiere & Anderson, 1998; LeFevre, 

Sadesky & Bisanz, 1996). Relatively little is known about the factors which are 

responsible for the selection of problem-solving strategies. It is acknowledged that 

adult problem-solvers have a large battery of solution strategies available varying in 

sophistication (e.g., Siegler & Booth, 2005) and that selection may be influenced by a 

range of factors including individual differences (e.g., LeFevre & Kulak, 1994), the 

age of the problem-solver (e.g., Touron & Hertzog, 2004) and problem characteristics 

(e.g., Reder & Ritter, 1992; Lebiere & Anderson, 1998). Developing an understanding 

of these factors and the mechanism underpinning selection will contribute to the
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understanding not only of the problem-solving process but also the process of skill 

acquisition (e.g., Siegler & Araya, 2005; Touron & Hertzog, 2004)

For most problems there are a number of candidate strategies that can lead to a 

solution. Most models of strategy selection seek to account for the selection of the 

two principle classes of strategy; i) direct answer retrieval from long term memory 

and ii) calculation strategies (or algorithms). Indeed, aside from problem-solving, this 

procedural distinction is central to a range of tasks including vocabulary learning 

(Crutcher, 1989), spelling (Siegler, 1986), acquisition of linguistic rules (Bourne, 

Healy, Rickard & Parker, 1999) and visual numerosity judgements (Palmeri, 1997). 

To examine the decision process, in the thesis I shall identify the key issues 

highlighted within the strategy-selection literature using a mental arithmetic task 

designed to delineate between the selection of memory retrieval and algorithmic 

strategies. The utility of mental arithmetic tasks as a tool for examining strategy 

selection is widely acknowledged within cognition as “discoveries in mathematical 

cognition will have implications for general theories of skill acquisition and memory” 

(Rickard, Healy & Bourne, 1994, p. 1139). The aim of this research scheme is to 

contribute to the understanding of strategy selection in problem-solving mechanisms, 

examining existing theoretical frameworks, highlighting and investigating their 

shortcomings as a platform for further theoretical development. First I shall review 

the existing theoretical approaches that have been applied to the strategy-selection 

process, then detail the key empirical findings in the field to date and finally introduce 

the mental arithmetic task used in all the thesis experiments.

1.2 THEORETICAL APPROACHES

A large number of models have been developed to account for performance in 

arithmetic problem-solving tasks. The level of specificity to which these models are 

detailed varies. At one end of the continuum are examples of higher-level models 

which analyse performance in respect to the type of strategies applied to solve 

problems (i.e., the strategic-level of analysis). Conversely, more fine-grained, or low- 

level approaches decompose the strategic level of analyses into the building block 

procedures that together comprise each strategy (i.e., the procedural-level of analysis). 

Also such models commonly detail the selection and deployment of these procedures 

on a temporal dimension. As well as varying in specificity, the focal remits of the
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selection models also varies. Some are designed to model strategy acquisition and 

integration, some focus on strategy shifts as a function of learning, and others are 

presented as pure models of the strategy selection process. All of the models detailed 

in the following sections have been developed from computational simulations of 

empirical findings. It is important to note at this juncture that the absence of empirical 

tests of the predictions of these simulations is detrimental to the strategy-selection 

paradigm. I begin by providing a theoretical backdrop to the paradigm, then detailing 

the competing models of strategy selection, establishing shared features and points of 

contention between the models.

In line with the remit of this thesis I choose to limit the scope of this section to a 

theoretical review of models which detail the processes used to select particular 

strategies for particular problems, rather than detailing more general, higher-level 

models of arithmetic problem-solving. It should be noted that a number of models of 

arithmetic problem-solving were designed to explore issues tangential to this thesis, 

such as the types of code used to represent arithmetic problems and how arithmetic 

facts are represented in long term memory (e.g., Campbell, 1994; 2005; Clark & 

Campbell, 1991; Dehaene, 1992; Dehaene & Cohen, 1995; McCloskey, 1992; 

McCloskey & Macaruso, 1994). These models are particularly informative about 

issues of representation and encoding in arithmetic problem-solving, but do not 

address in detail the process by which strategies are chosen. Furthermore, to manage 

the scope of theoretical investigation, 4 conditions were established for 2 purposes. 

Firstly, it was necessary to exclude models with insufficient power to address the 

central issue of this thesis, i.e., the process by which a strategy is selected. Secondly, 

to redress limitations inherent in the generality of some of the models to real-world 

problem-solving scenarios the ecological validity of the models was deemed critical. 

Accordingly, the models detailed in the thesis are:

1. Applicable to a range of populations, rather than specialist populations such as 

children, adults or those with cognitive impairments.

2. Able to account for performance in selection tasks at a procedural (i.e., low- 

level of analysis) rather than strategic level (i.e., higher-level strategy 

identification).

3. Able to account for strategy selections in problems which have and have not 

been encountered previously.



5

4. Able to accurately predict solution latencies for given problems and strategies.

However, where useful, recourse to models which violate these criteria will be made.

Prior classifications of models within the literature, such as that proposed by 

Siegler (1997; Siegler & Shipley, 1995), delineated between models based upon 

metacognitive or associative mechanisms. The associative class of models (e.g., 

General Inductive Problem-Solving model; Jones & van Lehn, 1991) are reliant 

purely upon associative strength based mechanisms where the link between a 

problem, strategy and strategy success — reinforced by practise on a problem — 

dictates future strategy selections. In contrast, early metacognitive models, such as the 

Triarchic Theory of Mind (Sternberg, 1985) classically assume that selection is 

determined by consciously available knowledge, directed by a homunculean executive 

processor which decides what the cognitive system should do:

The executive is aware of the system’s capacity limits and strategies.
The executive can analyse new problems and select appropriate 
strategies and attempt solutions. Very importantly, the executive 
monitors the success or failure of ongoing performance, deciding 
which strategies to continue and which to replace with potentially 
more effective and appropriate routines. In addition, the efficient 
executive knows when one knows and when one does not know, an 
important requirement for competent learning. (Schneider & Pressley,
1989, p. 91).

However, a wealth of more recent research has demonstrated that conscious 

processing is not necessarily required for accurate (i.e., where predicted strategy 

selection equates to actual strategy selection) strategy selection (e.g., Reder & Ritter, 

Schunn et al., 1997), and that associative strength-based factors do not solely 

determine strategy selection (Lebiere & Anderson, 1998; Reder 1987; Rickard, 1997).

Latter classifications have been based upon the type of information used to 

make selections. In one class of models, termed the strategy base-rate accounts by 

Schunn and colleagues (1997), strategies are selected in accordance with the relative 

proportion of successful applications of a strategy to a particular problem (e.g., 

Anderson, 1993; Lebiere & Anderson, 1997; Siegler & Jenkins, 198; Siegler & 

Shipley, 1995). This contrasts with a familiarity-based account in which the 

familiarity of the problem’s terms dictates strategy selection (Reder & Ritter, 1992; 

Schunn et al., 1997). However, this distinction is flawed as the base-rate class of
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models cannot account for selections determined by the problem’s terms (see Reder & 

Ritter, 1992; Schunn et al., 1997). Furthermore, both the familiarity and base rate 

accounts are undermined by the necessity of ad-hoc assumptions when modelling 

adult performance (see Reder & Ritter, 1992).

In this thesis, rather than distinguishing between the types of mechanism 

(associative or metacognitive) or the information (base-rate or problem familiarity) 

that may influence strategy selections models are classified upon the basis of a 

procedural distinction. Some models posit that strategies are selected within a 

dedicated strategy-selection phase. This operates prior to the deployment of solution 

strategies to solve the problem, affording an adaptive selection of strategies to fit the 

demands of the problem terms or situation. Other models specify that strategies are 

automatically applied to problems in a default order, thus circumventing the need for 

a dedicated selection phase. This distinction directly addresses the current challenge 

within the literature, namely to identify the processes by which memorial activations 

influence strategy selection.

1.2.1 Approaches to strategy selection: The ‘Automaticity’ account

Central to the Automaticity accounts of strategy selection is the premise that 

attention to a problem necessarily activates a memorial search for information 

pertaining to that problem, including its answer (the Obligatory Activation 

Assumption, Logan, 1988). This mechanism circumvents the problem of adjudicating 

between the competing classes of strategy (i.e., direct retrieval or answer calculation) 

as retrieval procedures are automatically initiated when a problem is attended to. 

Accordingly, this class of models does not strictly model the process by which 

strategies are selected as direct retrieval is always attempted first. However, models 

within this account can predict which strategy would be used to solve a particular 

problem; hence their predictions and specifications are directly comparable to those 

where strategies are chosen.

The Automaticity approach evolved from the classic response selection theory 

developed by Shepard (1957) and Luce (1959, 1963) which successfully predicted 

response probabilities in identification tasks from estimates of similarity and bias. 

However, these models were limited by their inability to predict response times (see 

Logan, 2004 for review). More recently, Bundesen (1993) among others successfully



7

replaced similarity-choice models with independent race models, where different 

solution strategies ‘race’ to produce a solution to a problem. These models produced 

equivalent predictions of choice probabilities but also allowed response latencies as 

well as response probabilities to be derived, a key requirement of strategy selection 

models. Such an approach is successful in tasks purely requiring responses based 

upon direct memory retrievals, but for problems such as, “465 + 935 = ?”, where it is 

highly unlikely that the problem can be solved by direct memory retrieval, 

specification of the mechanisms which select between different calculation algorithms 

(or backup strategies) is required. Accordingly, models of arithmetic strategy 

selection require a secondary mechanism to select between competing computational 

algorithms. In the following sub-sections, the specifications of models fitting the 

Automaticity classification will be presented in detail.

1.2.1.1 The Adaptive Control o f Thought-Rational (ACT-R; Lebiere & Anderson,

1998)

Lebiere and Anderson’s (1998) ACT-R 4.0 (hereafter referred to as ACT-R) 

model of arithmetic processing (see also Lebiere, 1999) provides perhaps the most 

comprehensive specification of strategy selection in mental arithmetic to date. Recent 

updates to the underlying ACT-R model have been made (Anderson et al., 2004; 

Anderson, 2005; Belavkin & Ritter, 2004), and where relevant, the implications of 

such updates will be applied to the Lebiere and Anderson (1998) model. The ACT-R 

architecture used to develop the arithmetic model is founded upon a distinction in 

memory between things we know (declarative knowledge) and the bank of processes 

and skills we have available to process memories {procedural knowledge). In respect 

to strategy selection, this dissociation neatly maps on to the two classes of solution 

pathway in arithmetic problem solving; retrieving the problem’s answer directly from 

(declarative) memory and use of computational algorithms (i.e., procedural memory). 

When presented with a problem such as 17 + 13 = ?, the problem is represented in 

memory as a discrete chunk, containing three full slots, one for each operand (i.e., 

[17] and [13]), one for the operator (i.e., [+]) and a further empty slot ready for the 

problem’s solution (Anderson, Reder & Lebiere, 1996; Lebiere & Anderson, 1998). 

Solution strategies are automatically applied to this representation in a prescribed 

order. As a consequence of the Obligatory Activation Assumption (Logan, 1988) an



attempt to retrieve the answer initiates immediately upon presentation of a problem. If 

no answer is returned then a calculation strategy is selected and executed.

1.2.1.1.1 The direct retrieval procedure

To find a solution to the problem, the retrieval production (i.e., a strategy) 

searches memory for chunks which match the contents of the problem chunk (i.e., 

[17] [+] [13]) but also include the answer. The level of chunk activation, which is 

represented by base-level — or resting level of — activation and current activation 

levels, is used to determine which chunks are identified as candidate answers. To 

illustrate, the base-level activation of a chunk is derived using the following function:

n

Bi = InYtf** Base-Level Learning Equation (1)
j  = i

Where tj is the time elapsed since the y'th retrieval of chunk i, n is the total number of 

references to that chunk and d is the memory decay rate. Base-level activation is then 

added to the associative activation that has spread to the chunk to give the current 

level of activation:

A,• = B,- + X W) S/,• Activation Equation (2)
j

Where B, is the base-level activation (or strength) of the chunk z, W) reflects the 

attentional weighting of the elements j  that are slots of the current goal and the Sy/ 

terms are the strengths of association from the elements j. To prevent incorrect 

matches between the problem chunk and candidate chunks, the current level of 

activation is converted into a match score, whereby a perfect match between the 

contents of the slots in the problem chunk and candidate chunk (excepting the answer 

slot) elicits a perfect match score. Match scores for imperfect (or partial) matches are 

penalised to prevent incorrect chunk retrievals. When candidate chunks are competing 

for retrieval, the chunk with the highest match score will be chosen, and the match 

score subjected to a preset threshold. If the score exceeds the threshold, the chunk, 

complete with the problem’s solution, is copied into the problem chunk and made 

available for output (Lebiere & Anderson, 1998; Lebiere, 1999) thus completing the 

retrieval production.
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1.2.1.1.2 The backup or calculation algorithm procedure

If the retrieval strategy fails to return a solution to the problem, the ACT-R 

simulation searches for appropriate calculation algorithms stored in procedural 

memory. For example, a common algorithm used by children to solve simple addition 

problems (i.e., 5 + 3 = ?) is the iterative counting produce (Lebiere & Anderson, 

1998). Here the largest addend is taken as the anchor and incremented by 1 in a loop 

until the number of increments made equals the value of the other addend. Algorithms 

applicable to particular problems are ordered in a conflict resolution stack in 

accordance with their predicted likelihood of success, as indexed by the Expected 

Gain equation:

E = PG - C Expected Gain Equation (3)

Where G is the value of the current goal, set as a constant in the ACT-R model, 

reflecting the amount of time the model will allocate to pursuing a given goal. P 

reflects the probability that a production has been successful in the past (P = 

successes/[successes + failures]) and C (C = efforts/[successes + failures]) is the ratio 

between the sum of all past successes and failures of the production, where effort is 

the time from firing the strategy until the model achieves either a success or failure. 

Noise is also added to the expected gain value to prevent the model from settling 

prematurely upon strategies that gain early advantage from P  and/or C.

The strategy with the greatest likelihood of success is executed first, if this 

fails to produce an answer, strategies in the stack are cycled though in a serial order 

until an answer to the problem is produced. Finally, once found, the answer is copied 

to the problem chunk, ready for output.

1.2.1.1.3 ACT-R summary

To summarise, in ACT-R (Lebiere & Anderson, 1998; Lebiere, 1999) when 

presented with a sum, the direct retrieval strategy automatically searches memory for 

a chunk matching the problem chunk. If a matching chunk of sufficient activation 

strength is found this chunk overwrites the problem chunk, including the empty slot 

ready for the answer. If however, the retrieval strategy fails to provide an answer, 

calculation algorithms applicable to the problem are arranged in a conflict stack
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according to their expected utility. Only one strategy can be employed at a time and 

they are executed serially until a solution to the problem is derived.

1.2.1.2 The Instance theory o f Attention and Memory account (ITAM; Logan, 1988,

2002)

Similar to ACT-R, ITAM (Logan 1988; 2002) was conceived to be a 

comprehensive model of attention and memory. The 2002 version of ITAM has not 

been directly applied to strategy selection, however, selection in arithmetic processing 

has shaped the evolution of key mechanisms within the model (see Compton & 

Logan, 1991; Zbrodoff & Logan, 1986; Zbrodoff & Logan, 1990). Underpinning this 

model is an Instance theory of memorial representation (Logan, 2002). Dissimilar to 

traditional ‘strength models’ of mental representation such as ACT-R, where repeated 

presentations of a stimulus (or problem) serve to reinforce the associative link 

between stimulus and response, in ITAM each encounter with a problem and 

consequently the ensuing processing episode, creates a separate memorial 

representation or instance. Each instance contains all the information encoded during 

a processing episode, including a record of the stimulus encountered in pursuit of the 

goal, the participant’s goal, the interpretation given to the stimulus with respect to the 

goal and the response made (i.e., the strategy used and its success). The numerosity of 

problem specific instances serves to ‘strengthen’ the link between stimulus and 

response. Specifically, as the number of accumulated instances for a particular 

problem increases, so does the likelihood that one of the instances will win the race 

against competing classes of instance (i.e., strategies). This serves to increase the 

rapidity and accuracy of responses in contrast to problems with relatively few 

accumulated instances.

1.2.1.2.1 Response selection in ITAM

As previously alluded, ITAM makes no formal distinction between the 

retrieval and calculation classes of strategy. On a procedural level, candidate answers 

are either derived by directly retrieving an instance which includes the problem’s 

solution or from the output of a calculation algorithm. Consequently, when presented 

with a problem, ITAM does not choose between solution strategies, but, as an 

obligatory consequence of attention, automatically encodes and attempts to retrieve
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all instances pertaining to the problem complete with the answer (i.e., direct retrieval; 

Logan, 1988, 2002; Zbrodoff & Logan, 1986). Simultaneously it searches for and 

executes relevant calculation algorithms. Accordingly, both classes of solution 

strategy, retrieval and calculation, fire in parallel racing to return a candidate answer 

(see also Ashcraft, 1982; 1987; 1992).

The ITAM simulations can utilise three different models to monitor the 

accumulation of instances originating from the different solution pathways. The 

frequency and rapidity of instances activated in response to the presentation of the 

problem determines which of the three models is used (Logan, 2002). The simplest 

model, the race model terminates the race when it receives the first return from any of 

the different solution pathways. One counter monitors the accumulation of instances 

from the direct retrieval pathway and separate counters monitor the return from each 

of the calculation algorithms that are engaged. This model affords rapid solution 

latencies, however when there are returns to multiple counters (i.e., returns from 

competing strategies), the mechanism becomes error prone as the fastest return may 

not be the most accurate (Logan, 2002).

The second response selection mechanism, the counter model circumvents the 

limitations of the basic race model in situations with competing returns in different 

counters. As before, a counter monitors each solution pathway. Employing a decision 

rule, the counter only signals a return when K memory traces have been accumulated 

in that counter. If AT is 1 (i.e., one complete instance has been returned to the counter) 

the model acts in an identical fashion to the simple race model. If K  is set to 3, the 

counter waits for three instances to accumulate before signalling a response. This 

model serves to increase the accuracy of response selections by confirming the 

accuracy of the first instances returned, but at the expense of response latencies as a 

longer duration is required for solution pathways to return multiple instances.

Finally, the random-walk model monitors the solution pathway counters and 

waits until there are K  more hits in one counter than the other. Similar to the counter 

model, the random-walk model affords greater accuracy than the race model but also 

accommodates the relative success of different solution pathways, resulting in 

protracted response times but greater accuracy when there is conflict between two 

strategies (Logan, 2002).



12

1.2.1.2.2 ITAM summary

When presented with a problem, ITAM automatically engages a memory 

search to recall all the instances, stored in memory, that pertain to the problem. This 

includes instances which can be classified as direct retrievals and instances 

comprising calculation algorithms. Instances are recalled in parallel, each racing to 

produce a solution to the problem. Three different types of counter can monitor the 

returns from each class of instance (or solution strategy; direct retrieval or calculation 

algorithms), determining which solution is accepted as the problem’s solution.

As the latest ITAM conception has not modelled empirical data in the mental 

arithmetic paradigm, specific, quantifiable predictions cannot be derived from the 

model. However, the parallel execution of strategies in ITAM provides a useful 

counterpoint to the serial processing advocated within the ACT-R model and other 

models within the Automaticity account of selection.

1.2.1.3 The Distribution o f Associations model (Siegler & Shrager, 1984)

The Distribution of Associations model (DOA; Siegler and Shrager, 1984) 

was one of the first comprehensive models of strategy selection and its specifications 

have been highly informative of a number of more recent models including ACT-R. 

The model was motivated by two remits; firstly to detail the process by which new 

strategies are developed and assimilated. Accordingly, the authors only simulated data 

from single-digit arithmetic sums (i.e., 3 + 4) in pre-school children which provide 

clearer evidence of strategy development and assimilation than data from adults. The 

authors also note that they suspect the same mechanisms are invoked by adults when 

making strategy selections (Siegler & Shrager, 1984). Secondly, the approach sought 

to debunk the notion that complex executive processes govern strategy selection (e.g., 

Sternberg, 1985) by illustrating that simple cognitive mechanisms can produce 

adaptive strategy selections.

Based upon a general semantic network view of knowledge representation in 

memory (see also Schunn et al., 1997), whereby knowledge is structured by 

associations between problems and their potential answers, the model picks the 

answer with the strongest association to the problem. For example, 3 + 5 is strongly 

associated with the correct answer 8, but also holds associations with the incorrect
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answers 2 (i.e., 5 - 3 ) ,  15 (i.e., 3 x 5 )  and other numbers neighbouring the correct 

answer, i.e., 7 or 9.

1.2.1.3.1 Strategy Selection in DO A

When presented with a problem, three processes, running in serial, are posited 

to determine strategy selections. First children attempt to retrieve the answer from 

memory; the success of this strategy is dependant upon the peakedness (i.e., the 

relative concentration of the associative strength distribution) of the association 

between problem and answer. A highly peaked distribution gives rise to greater 

confidence in the accuracy of an answer than a flat distribution. If confidence from 

the retrieval process falls bellows a preset threshold within the simulation, the next 

process taken by children is to elaborate the representation of the problem. For 

example, in a simple arithmetic problem such as 4 + 5 = ?, children may put up their 

fingers to represent the two addends. If this process fails to return an answer with 

sufficient confidence an algorithmic procedure would be used, perhaps counting the 

fingers the elaborated representation (Siegler & Shipley, 1995).

1.2.1.3.2 Summary ofDOA

The DOA model invokes a strict serial processing order to strategy selection. 

Firstly, children attempt to retrieve the answer directly from memory, if this fails they 

attempt to elaborate the representation of the problem using fingers as visual/spatial 

cues to memory retrieval. Finally, if neither process is successful, a calculation 

algorithm is applied, in the case of single-digit addition problems, finger counting. 

Despite its apparent successes in modelling the pre-school children’s data, 

demonstrating that the mechanism governing strategy selection was not reliant upon 

some homunculean executive the model was flawed in two key respects. First, it 

provided no specification of how competing calculation strategies were selected. 

Secondly, it did not learn from the experience it gleaned from the problem solving 

episode, no matter how many times the problem was encountered.

1.2.1.4 Summary o f the Automaticity Accounts

Common to all the models in the Automaticity account is the fundamental 

assumption that humans do not have any control over the initial step taken when
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attempting to solve a problem. This is irrespective of the type of problem and the task 

conditions, following the Obligatory Activation Assumption (Logan, 1988). 

Furthermore, the suitability of candidate responses is based upon the prior success of 

a particular strategy, through an associative strength mechanism in ACT-R and DO A 

and the instance accumulator counters in IT AM. Beyond the automatic application of 

the retrieval strategy however, the models diverge in respect to the order in which 

strategies are applied to a problem. As Figure 1.1 illustrates, the ACT-R and DOA 

simulations only employ a backup or calculation strategy if the retrieval strategy fails 

to produce an acceptable solution, applying strategies in a strict serial processing 

order. In contrast, the IT AM model initiates retrieval and calculation classes of 

strategy in parallel, each strategy racing to provide an answer to the problem. In the 

following section the competing class of selection models, the Adaptive account, will 

be introduced.

Time (s) 

2

R -  Retrieve 
C -  Calculate 
E - Elaborate

R R R

ACT-R IT AM DOA

Figure 1.1: The order o f processing proposed by each o f  the Automaticity models. Vertical arrows 

denote the action o f a particular strategy (retrieve, calculate or elaborate), horizontal lines indicate the 

point at which an output can be returned from a particular strategy. Note that the time scale is for 

illustrative purposes and is not exact, although, a number o f studies suggest that retrieval o f a problems 

answer takes approximately 850 ms (see Reder & Ritter, 1992; Schunn et al., 1997; Staszewski, 1988).

1.2.2 Approaches to strategy selection: The ‘Adaptive’ account

The notion that problem-solving and thus strategy selection is adaptive is more 

commonly associated with complex problems solving tasks that afford consciously
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directed processing rather than tasks requiring rapid solutions. For example, Schunn 

and Reder (1998) reported evidence of adaptivity in the Building Sticks Task, an 

analogue of the classic Water Jars task (Luchins, 1942), where participants are 

required to add and subtract 3 sticks of different lengths to produce a stick of a target 

length. They also revealed adaptivity in the Kanfer-Ackerman Air Traffic Controller 

Task (Kanfer & Ackerman, 1989; Kanfer, Ackerman & Pearson, 1994), a complex 

simulation in which participants are required to queue and land planes abiding to a set 

of rules. However, burgeoning evidence indicates that adaptive responses, i.e., those 

which are influenced by the task demands and cognitive resources available (Payne, 

Bettman & Johnson, 1988), are also evident in problem-solving tasks that are not 

reliant upon conscious processing (Reder & Ritter, 1992, Schunn et al, 1997).

Central to the Adaptive account is the premise that humans have a range of 

solution strategies at their disposal and that they can be applied in a manner specific 

to the problem, producing rapid and accurate responses (Reder, 1987; 1988; Reder & 

Ritter, 1992; Schunn et al., 1997; Shrager & Shipley, 1998; Siegler, 1999; Siegler & 

Araya, 2005; Siegler & Shipley, 1995). Furthermore, due to the competition for 

resources, strategies cannot be executed in parallel, thus necessitating selection 

between competing strategies (Rickard, 1997; 2004). To circumvent this issue, a 

common feature of the adaptive models is that strategies are selected during a 

dedicated strategy-selection phase, which operates prior to the deployment of any 

solution strategies. As strategy selection must be able to operate very rapidly, the 

rational for this approach was largely founded upon the surge of interest in memorial 

mechanisms that operate before items can be retrieved from memory. In particular 

mechanisms responsible for monitoring and controlling the processes used to access 

memory (see Koriat, 2006 for review). In the following sub-sections three models, 

classifiable as ‘adaptive’ will be detailed.

1.2.2.1 The Source o f Activation Confusion model (SAC; Reder & Ritter, 1992;

Schunn et al., 1997)

Reder’s approach was built upon her early research on question answering 

(1987). In strategy selection studies predating the publication of the SAC model, 

Reder’s empirical approach to strategy selection paralleled the Recognition memory 

literature by investigating the distinction between intrinsic factors, such as problem
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familiarity (Reder, 1982; Experiments 4, 5, 6; Reder, 1987; Reder & Wible, 1984) and 

extrinsic factors, such as, task instruction manipulations (Experiments 1, 2 and 3; 

Reder, 1987). In direct contrast to the Automaticity accounts, Reder suggested that the 

first step undertaken when solving a problem is an evaluation of the problem terms 

(Reder, 1987). This evaluation was shown to operate very rapidly (i.e., within 850 ms) 

and with a high degree of accuracy suggesting that it could be a component of the 

problem solving process (Reder & Ritter, 1992; Schunn et al., 1997). This approach 

has been applied to retrieve and calculate strategy selections in mental arithmetic 

problems (Reder & Ritter, 1992; Schunn et al., 1997), specifically, testing double

digit multiplication sums (e.g., 26 x 12) and in one unsuccessful instance double-digit 

addition sums (Reder & Ritter, 1992; Experiment 1). Aside from strategy selection, 

the SAC model has been applied to recognition memory (Diana, Reder, Arndt & Park, 

2006), specifically analysis of word frequency (Diana & Reder, 2006), contextual 

interference (Park, Arndt & Reder, 2006), list length and mirror effects (Cary & 

Reder, 2003).

In the SAC model, the problem solving process is split into two distinct 

phases. First, in a dedicated strategy selection phase, a solution strategy (retrieve or 

calculate) is selected, based upon a rapid analysis of the problem. In the second phase 

the selected strategy is then executed in an attempt to solve the problem. The model 

itself is founded upon a general semantic network model of memory (Schunn et al., 

1997) in which linked, or associated nodes represent concepts within memory (see 

Figure 1.2). The mechanism responsible for selecting between strategies in the SAC 

model is highly dependant upon the manner in which problems are represented in the 

SAC model. In the next section I shall outline the features of the semantic model 

pertinent to strategy selection.

1.2.2.1.1 Problem representation in the SAC model

Whereas models such as ACT-R (Lebiere & Anderson, 1998) represent 

problems as chunks in memory, containing the whole problem within a discrete unit, 

the SAC model is based upon a different approach. Problems such as 17 + 23 are 

represented by nodes representing the whole problem (i.e., [17 + 23]), individual 

operands (i.e., [17], [23]) and the operator (i.e., [+]). The highly interconnected 

organisation of nodes within the semantic network means that numerical nodes may
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serve as operand nodes for one problem and the answer node for another problem (see 

Figure 1.2).

40 x 17 680

H  1 7 x 2 317 + 23

32 + 40

391
14 + 32

Figure 1.2: An example o f the semantic network o f representation employed within the SAC model, 

comprising separate nodes for the problem, problem components and the answer. Note that only a 

small section o f  the network is displayed.

Each node has a base level strength (or resting strength) which represents the history 

of exposure to that concept (indexed as familiarity). So more familiar problems, such 

as 2 + 4 will have greater base level strength than less common problems, such as 17 

+ 23. Increases and decreases in base level strength (B) are determined by the function 

below, where c and d are model constants and U is the time since the zth presentation.

B = c j t - d Base Level Activation Equation (4)

This function accounts for the power-law decay of memories over time, where 

memories decay rapidly initially then more slowly after increasing delays. Also the 

power-law learning of memories with practise where the first exposure to a new item 

contributes more to its memorability than subsequent exposures (see Anderson & 

Schooler, 1991).

When a problem is presented, the three component nodes in this example [17], 

[+] and [23] are activated. In these source nodes, activation rises beyond the base
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level and spreads, via links running from the source nodes to nodes representing 

whole problems. The amount of activation spreading from a source node is dependant 

upon the level of activation in the source node itself and the strength of the links 

between the source nodes and receiver nodes. While link strength between nodes is 

dependant upon the number of times the two concepts represented by the node have 

been activated together, this strength is also subject to decay over time. So for the 

problem 17 + 23, in the local network illustrated in Figure 1.2, activation from the 

source node [17], would spread to the problem nodes; [17 x 23], [40 x 17] and [17 + 

23]. From the second operand, 23, activation would spread to nodes representing [17 

x 23] and [17 + 23], and from the operator, +, activation would spread to [14 + 32], 

[32 + 40] and [17 + 23]. The problem node with the greatest number of links back to 

the three source nodes (i.e., [17 + 23]) thus receives the greatest amount of activation 

which is added to the base level activation of that node. The SAC model takes the 

level of activation at the node with the greatest accumulation of activation as the basis 

for the strategy selection.

1.2.2.1.2 Strategy selection in the SAC model

When presented with a problem, the final level of activation (base level + 

spreading activation) at the most active problem node within the semantic network is 

used to determine a Feeling-of-Knowing (FoK). The FoK is then subject to a preset 

threshold criterion set in the simulation to determine whether to retrieve the answer or 

use a calculation strategy. Hence, if the most active problem node has a high level of 

activation, relative to other competing nodes, the FoK will be high and it is likely that 

the retrieve strategy will be chosen. Alternatively, if  the level of activation is not 

much greater than other activated problem nodes, calculate is likely to be selected. 

Rather than making a binary decision between the retrieve and calculate strategies, the 

FoK threshold mechanism, which determines strategy selection, derives a probability 

of choosing to select the retrieve strategy. This is calculated by assuming a normal 

distribution of activation values with a fixed variance assumed and a fixed activation 

threshold for selecting retrieve. In the actual model runs, each ‘participant’ was 

randomly assigned different activation thresholds for retrieve selections taken from a 

set range. This was introduced to allow the model to replicate the between subjects 

variability demonstrated it empirical studies of arithmetic problem solving (e.g., Kirk
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& Ashcraft, 2001). Furthermore, it must be noted that in SAC thresholds are fixed for 

the duration of a run.

1.2.2.1.3 Summary o f the SAC model

In the SAC model, strategy selections are determined by a rapid analysis of a 

problem’s terms. In this phase of the problem-solving process, which occurs prior to 

the deployment of any solution strategies, the patterns of activation elicited by the 

familiarity of a problem’s terms produce a FoK which in turn is subject to a decision 

mechanism. Based upon the strength of the FoK either the retrieval or calculation 

class of strategies are selected.

1.2.2.2 The Component Power Laws Theory (CMPL; Rickard, 1997 and Rickard,

2004)

The primary purpose of CMPL is to model the transition from the selection of 

calculation to retrieval strategies as a function of learning. As a counterpoint to 

Logan’s instance theory of automatic and parallel strategy execution, CMPL has been 

simulated on a range of tasks including alphabetic arithmetic (Experiment 2, Rickard, 

1997; Rickard, 2004), pseudo-arithmetic (using a novel operator termed pound, 

Experiment 1, Rickard, 1997) and artificial classification learning tasks (Bourne, 

Healy, Parker & Rickard, 1999). Underpinning the model are three key 

assumptions, the first concerns the structural composition of calculation algorithms. 

CMPL treats calculation algorithms as a sequence of memory retrieval events 

(qualitatively identical to the direct retrieval strategy), where each step of the 

algorithm is a separate retrieval event. For example, when solving the problem 23 + 

26 = ?, the first step in calculating the problem’s solution is the memory retrieval 3 + 

6. The second memory retrieval event being, 20 + 20, the third adds the products from 

the two intermediary sums (9 and 40) to get the final answer, 49. Secondly, in contrast 

to other models of serial strategy execution (e.g., ITAM) strategies cannot be 

executed in parallel; however candidate strategies can be activated in parallel ready 

for execution. Finally, unlike ITAM and ACT-R, CMPL assumes that the problem 

and its answer are represented separately in memory. Simple connectionist principles 

serve to specify the link between the problem and its answer, whereby practise on a 

particular problem reinforces the associative linkage.
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The structure of the model is depicted in Figure 1.3. At the top level of the 

model is the overall goal for the task, which in this instance is to solve the problem. 

This node has excitatory connections to the two solution strategies at the subgoal 

level, retrieve and calculate, which serve to execute both the first step of the 

calculation algorithm (i.e., the first memory retrieval in the algorithm) and a direct 

retrieval from memory. These two nodes in turn have excitatory connections to the 

long-term memory nodes at the problem-level which are also fed by the stimuli and 

information contained within working memory (Rickard, 1997). The connections 

between the nodes at different levels in CMPL are reinforced by exposure to problem

solving episodes. Use of the retrieval strategy reinforces only the retrieval pathway 

connection, but use of the calculate pathway reinforces the connection in both 

pathways, eliciting a shift with learning from selection of the calculate strategy to 

retrieval.

Goal Level

Subgoal Level

Solve Problem

 A : V . V . . . . . . . . . . . .

RETRIEVE
......... i k :

(;)

.......*  / + ...
Problem-Level Retrieve

....▼...............
Answer Level Answer Retrieval

CALCULATE 
(e.g., x, +, -, /)

f.......... i i

' .....
1st step o f  algorithm ;

Attended 
Information 
i.e.,4 x 12 = ?

 .....
Answer

Figure 1.3: A schematic o f the Component Power Laws theory o f  retrieve/calculate strategy selection 

in arithmetic problems. Note that indicates an inhibitory pathway, all other links are excitatory. 

Adapted from Rickard, 1997.

1.2.2.2.1 Strategy selection in CMPL

Based upon Rickard’s assumption that direct retrievals cannot be executed in 

parallel (Rickard, 2004) and that calculation algorithms are purely comprised of a 

series of memory retrievals, Rickard proposed a performance bottleneck where one 

strategy must be selected at the expense of another. When presented with a problem, 

candidate strategies are activated in memory in parallel during a dedicated strategy 

selection phase. Candidate selection is determined by the interactions between nodes
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at the subgoal and problem-levels for the direct retrieval strategy and the direct 

retrieval required for the first step of the algorithm. If activation levels at the subgoal 

and problem nodes in either strategy (i.e., retrieve or calculate) exceed a preset 

threshold, the pathway will be selected inhibiting the losing strategy. For example, if 

the subgoal for the first step of the algorithm and the corresponding problem-level 

node both reach the preset activation threshold, the direct retrieval strategy will be 

inhibited. Activation then is free to spread between the nodes in the algorithm 

strategy, eventually spreading to the answer node once the latter steps of the algorithm 

are completed. However, if the connection strengths between the subgoal and 

problem-level nodes within the direct retrieval strategy reach the threshold activation 

level before those in the algorithm strategy, the algorithm pathway will be inhibited. 

Activation then accumulates at the direct retrieval answer node without competition 

from the algorithm answer node. Contrary to serial models of strategy execution (e.g., 

ACT-R), where losing strategies are executed automatically upon failure of the 

original strategy to solve the problem, in CMPL the selection phase is reinitiated in 

light of the adjustments made to the associative connections elicited by the failed 

strategy execution.

1.2.2.2.2 Summary o f CMPL

In CMPL candidate strategies are recalled from memory in parallel and 

compete for selection in parallel. The winning strategy, determined by the degree of 

activation elicited by an attempted retrieval of the answer (for the retrieval strategy) 

or retrieval of the answer to the first step of the calculation algorithm, then inhibits the 

losing strategy, concentrating all of the available activation upon the strategy with the 

greatest likelihood of success.

As Rickard acknowledges, subgoal (or strategy level), and problem-level (item 

level) factors are not the only influences upon strategy selection (Rickard, 1997). To 

date the model does not have any provision, or mechanisms which can account for 

contextual or any other task influences. Furthermore, the model is contingent upon the 

first step of a calculation algorithm being a direct retrieval. This may not always be 

the case, for example, when individuals choose to reorder a problem or break it down 

into smaller components which can be solved by direct fact retrieval, a series of 

complex processes are employed before the first retrieval in the algorithm is required.
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However, CMPL does provide a useful and theoretically interesting structure within 

which to conceptualise the strategy selection process.

1.2.2.3 The Adaptive Strategy Choice model (ASCM; Siegler & Shipley, 1995), the 

Strategy Choice and Discovery Simulation (SCADS; Shrager & Siegler, 1998; 

Siegler, 1999) and the Strategy Choice and Discovery Simulation* (SCADS*; Siegler

& Araya, 2005)

In light of criticisms of the DOA model Siegler and colleagues developed 

second (ASCM; Siegler & Shipley, 1995) and third generation models (SCADS; 

Shrager & Siegler, 1998 and SCADS*; Siegler & Araya, 2005) to fit the premise that 

people do not always attempt to retrieve the solution to a problem before applying 

other strategies (see Reder, 1982). Similar to the DOA model, ASCM, SCADS and 

SCADS* are computational models, applied to data from single-digit arithmetic 

problems (e.g., 4 + 3) and inversion problems (i.e., a + b -  a, for example, 4 + 3 - 4 )  

recorded from children aged from 4-5 (Shrager & Siegler, 1998; Siegler, 1999; 

Siegler & Araya, 2005; Siegler & Shipley, 1995; Siegler & Stem, 1998).

In all three models, strategy selections are determined by a common 

associative mechanism. When presented with a problem, four sources of historical 

data, derived from prior applications of each strategy, contribute to the predicted 

strength of each candidate strategy:

1. Global data comprises the speed and accuracy of a particular strategy’s 

application to all problems.

2. Featural data comprises the speed and accuracy from prior applications of a 

strategy to problems containing specific features (e.g., both addends were 

presented in a larger font than average).

3. Problem-Specific data comprises speed and accuracy information pertaining 

to the application of specific strategies to specific problems.

4. Novelty data adds a weighting to new strategies, promoting selection of new 

strategies in the absence of a history of speed and accuracy data.

For each strategy, the relative weightings of each type of information differ in 

accord with the novelty of the problem. For example, when solving a commonly



23

encountered problem, more information about the prior success of a particular 

strategy on that problem is available, in this instance problem-specific data is given a 

greater weighting than global data which provides information about the prior success 

of a strategy on all problems. Alternatively, when a strategy has not been used on a 

specific problem before, but on problems with similar features, only global and 

featural data are used when determining which strategy to apply. In the models, the 

weighted sources of information are then entered into a stepwise regression which 

computes the predicted strength of each strategy. The actual probability of choosing a 

strategy is proportional to the strategy’s projected strength relative to the strength of 

all the strategies combined. This is calculated for each candidate strategy, the strategy 

with the greatest probability of success is chosen. SCADS*, unlike ASCM and 

SCADS, also includes feature detectors which are active during the encoding of a 

problem. These are sensitive to features such as the magnitudes of the operands, the 

type of operators in a problem, whether any operands are the same, whether all 

operands are odd or even and the colour and size of the operands (Siegler & Araya,

2005). When encoded, if any of these features are present, information pertaining to 

the success of each candidate strategy, in light of the features is also activated 

influencing strategy selection.

If a calculation algorithm is chosen, the procedure is run until an answer is 

returned. Alternatively, if retrieval is selected an identical procedure is employed as 

detailed in the DOA model, where an answer is retrieved when the associative 

strength between the answer and problem exceeds a confidence criterion. If however, 

the first choice pathway fails to return an answer within the allotted timeframe, a 

second round of selection occurs but with the failed strategy removed.

1.2.2.3.1 Summary o f ASCM, SCADS and SCADS*

In these three models, the suitability of all candidate strategies is assessed in 

parallel and based upon knowledge of the prior success of each candidate strategy. 

The winning strategy is then executed; if it fails to produce a solution then the 

selection process is repeated. Dissimilar to any of the other models previously 

detailed, in addition to the associative strength mechanism which operates as a default 

determinant of strategy selections, SCADS* includes a feature detection mechanism 

which influences strategy selection when particular features are detected in the 

problem terms. Other simulations such as ACT-R and the SAC model deal with this
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problem by invoking ad-hoc assumptions. However, the tractability of complex 

information processing requirements of the ASCM, SCADS and SCADS* 

simulations, where the value of each of the four types of information (global, featural, 

problem-specific and novelty) are entered into a stepwise regression to determine the 

potential of each candidate strategy is questionable when strategy selection is required 

under time constraints. This complexity also makes it very hard to extract concrete 

predictions of performance on specific stimuli in adult populations.

1.2.2.4 Summary o f the Adaptive Account

The models detailed in this section all posit that, when given a problem to 

solve, a strategy is selected before any attempt to derive an answer to the problem is 

initiated. This is not to say that selection is a controlled process in the tradition of the 

early metacognitive models (e.g., Sternberg, 1985) where an executive homunculean 

processor dictates selection, but that selection is adaptive. It is responsive to the type 

of problem presented, the context within which it is presented and specific 

characteristics of that problem. As Figure 1.4 illustrates, in the SAC model, during a 

selection phase (represented by the dashed arrows), before a strategy is deployed the 

decision is made whether to deploy the retrieve strategy or not. In CMPL, retrieve and 

calculate strategies compete for selection during this phase. If the retrieve strategy 

wins, the answer is output, however if the calculate strategy wins the remainder of the 

algorithm is processed until an answer is produced. SCADS*, uses a more complex 

mechanism whereby strategies compete for selection during a selection phase, the 

decision process is also augmented by a feature detector.
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Figure 1.4: The order o f processing advocated in each o f the adaptive models. Dashed vertical arrows 

denote instances where the potential application o f a strategy is being assessed during a selection 

phase. Dashed horizontal lines represent the point at which a strategy selection is made. Solid vertical 

arrows represent the execution o f a strategy and solid horizontal lines the optimal point at which an 

answer can be produced. Note that the most recent o f Siegler and colleagues models, SCADS*, is 

depicted here. Furthermore, for simplicity only two strategies, out o f  the host o f  potential candidate 

strategies considered by SCADS* during the strategy selection phase are included in this figure.

However, the models differ in respect to the types of information they use to 

resolve selection. In the SAC model selection is based upon an assessment of the 

familiarity of a problem’s terms. CMPL employs knowledge of the prior success of a 

strategy derived from base-level and associative strengths. While in ASCM and 

SCADS four classes of information are used to derive strategy selection, all based 

upon the prior success of the problem-solving episode. Each source of information is 

then weighted and combined to determine which strategy has the greatest chance of 

success. Augmenting that mechanism SCADS* also employs a secondary mechanism, 

a feature detector, which is sensitive to specified features inherent within a problem.

1.2.3 Summary of theoretical approaches

As I have shown in the previous section a significant degree of controversy 

still remains as to whether strategies are applied automatically to a problem, or 

whether they are selected adaptively in accordance with the demands of a problem. 

Some models propose that selection occurs before any attempt to solve the problem is 

made (SAC, CMPL, ASCM, SCADS and SCADS*), alternatively that selection only
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occurs after the first strategy deployed fails to return an answer (DOA, ACT-R), or 

not at all (ITAM). As some of the models are embedded within general architectures 

of cognition (e.g., ACT-R and ITAM) or are used to model performance in a variety 

of tasks (e.g., SAC and CMPL) this is a core issue in cognition which requires 

resolution as the ramifications of this issue are far-reaching. The models do however 

converge upon the notion that selection can be resolved by simple cognitive 

mechanisms that monitor and/or control access to knowledge stored in long term 

memory, rather than opaque conscious or ‘executive’ mechanisms. Very little 

empirical work has been undertaken to test the predictions of these models and only 

three attempts have been made to directly contrast the predictions of the competing 

models (Nino & Rickard, 2003; Reder & Ritter, 1992 & Rickard, 1997).

It may be possible that inconsistencies between the models are a by-product of 

the different methodologies and stimuli used to produce the datasets upon which the 

simulations are founded. The datasets simulated by ITAM and CMPL utilised either 

alphabetic or pseudo-arithmetic paradigms (Compton & Logan, 1991; Rickard, 2004; 

Rickard & Bourne, 1996; Rickard, Healy & Bourne, 1994) rather than conventional 

arithmetic tasks. The SAC model is based upon a paradigm where participants are 

repeatedly exposed to conventional, but difficult, arithmetic problems (e.g., 23 x 46 = 

?) and predict what strategy they would use to solve the problem before attempting to 

solving it (Reder & Ritter, 1992; Schunn et al., 1997). As mentioned previously, no 

ITAM simulations have been run on arithmetic tasks to my knowledge and the 

component mechanisms of this model, similar to CMPL, were tested using artificial 

arithmetic tasks (i.e., alphabetic- or pseudo-arithmetic) rather than conventional 

arithmetic problems. Furthermore, all of the models are simulations tested upon either 

one or a small number of datasets, for example, the ACT-R, ASCM and DOA models 

were all tested upon the same dataset, each model differing in respect to the order in 

which strategies are applied to a problem.

Following Bourne, Healy, Parker and Rickard (1999) it appears likely that 

“learners can and do change the basis for performance in a learning or memory task as 

experience with or practice on the task proceeds” (Bourne, Healy, Parker & Rickard, 

1999, p.224). To identify the actual strategy selection process used by adults it is 

necessary to test adult performance on conventional mental arithmetic tasks. Whilst 

this thesis acknowledges the contribution of the models based upon artificial 

arithmetic tasks and experimentally induced knowledge, a thorough investigation of
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the factors that actually impinge upon actual adult performance is clearly required 

(Siegler, 1999). To evaluate the reliability of the competing models the empirical 

work in the thesis uses experimental designs which directly contrast the predictions of 

the models, testing adult performance on conventional arithmetic tasks.

1.3 EMPIRICAL PHENOMENA

Whilst a number of theoretical models of strategy selection exist, there has been 

comparatively very little empirical research testing their predictions. In light of the 

shortfall of empirical research within this paradigm, in the next section I shall review 

the key findings from the mental arithmetic and strategy selection paradigms which 

stand as features that a comprehensive model of strategy selection must fit. The first 

phenomenon detailed pertains to the order of processing in the problem-solving 

episode (1.3.1), the other two sections (1.3.2 and 1.3.3) to the factors that have been 

shown to influence strategy selection.

1.3.1 Strategy selections can be made quickly and accurately

The most compelling evidence that strategy selections can be made rapidly 

and accurately is from a series of experiments by Reder and colleagues (Reder & 

Ritter, 1992; Schunn et al., 1997) designed to contrast the predictions of the 

Automaticity and Adaptive accounts of selection. To recapitulate, the Automaticity 

class of models stipulate that strategies are applied in an automatic fashion, as an 

obligatory consequence of encoding, conversely, the Adaptive accounts assert that 

strategies are selected during a discrete phase which occurs prior to strategy 

execution. In their dual-phase design, on each trial participants first indicated what 

strategy (retrieve or calculate) they would use to solve the presented problem within a 

time limit of 850 ms and then solved the problem. The time limit was imposed to 

prevent participants from solving the problem, identifying what strategy they used, or 

should have used, and using this hindsight report as a basis for their predicted strategy 

selection. Previous studies have illustrated that 850 ms is required to execute to 

completion a direct retrieval (Staszewski, 1988), accordingly responses exceeding this 

time limit were excluded from the analysis.
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In line with the predictions of the SAC model, participants were able to make 

strategy selections well within the 850 ms time limit. Furthermore, the percentage of 

late responses (i.e., those exceeding the time limit) was below 34% in all 

experimental conditions (see Table 1.1) indicating that selections could be made 

rapidly.

Table 1.1

All figures are means, rounded to whole integers. Sources 1 and 2 were taken from Reder and Ritter 

(1992) Experiments 1 and 2 respectively, source 3 from Experiment 1, Schunn et al (1997).

Source Stimuli

Strategy selection latency 

(ms)

Late to choose strategy 

(%)

Solution Latency 

(ms)

Calculate Retrieve Calculate Retrieve Calculate Retrieve

1 Multiplication 685 760 19 34 8930 3660

Addition 750 625 33 12 1910 780

2 Multiplication 640 695 18 26 9130 1280

Sharp 645 580 16 26 7850 1700

3 Multiplication 647 607 9 11 7787 1415

Sharp 645 596 12 11 7235 1376

To test the accuracy of the responses it was reasoned that the chosen strategy 

in each trial should correspond to the amount of time required to solve the problem, 

i.e., the chosen strategy was actually used to solve the problem (Lebiere & Anderson, 

1998; Reder & Ritter, 1992; Schunn et al., 1997). For example, retrieve selections 

made in the selection-phase of each trial should be accompanied by short solution 

latencies in the solution phase, calculate selections by longer solution latencies. As 

per the predictions of the SAC model it was found that rapid strategy selections could 

be made accurately: Retrieve selections were followed by significantly shorter 

solution latencies than when calculate was chosen in the selection phase, indicting 

that the rapid strategy selections were corroborated by actual strategy use in each trial.

This finding was evident in three separate experiments using arithmetic stimuli 

(Reder & Ritter, 1992; Schunn et al., 1997) but can only be accounted for by the SAC 

model, directly contradicting the predictions of the Automaticity models. However, 

this finding has to be treated with a degree of caution as it has not been replicated in 

any other papers than those authored by Reder and colleagues, nor has the reliability
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of this effect been tested using different experimental designs. In other paradigms 

which measure judgements of predicted future performance, such as Judgements-of- 

Leaming (Koriat & Ma’ayan, 2005; Koriat, Ma’ayan & Nussinson, 2006; Nelson, 

1996; Nelson & Dunlosky, 1991) or Ease-of-Leaming (Koriat, Ma’ayan & Nussinson, 

2006; Nelson & Narens, 1990), it is accepted that the accuracy and consistency of 

these judgements maybe questionable (Koriat & Ma’ayan, 2005), one problem being 

that the mechanisms that underlie such responses are not fully understood (Koriat, 

2006; Koriat, Ma’ayan, Nussinson, 2006; Smith, Shields & Washburn, 2003). 

Another possibility is that the finding is contingent upon the design of the experiment, 

in which participants are asked to predict their subsequent strategy selection, before 

solving a problem. Following the assumptions of the Automaticity models this would 

suggest that order of processing in this design (i.e., strategy selection then strategy 

execution) is artefactual, rather than being the natural processing order in problem 

solving assumed by Reder and colleagues. Furthermore, analysis of the strategy 

selection latencies was largely overlooked in all studies (Reder & Ritter, 1992; 

Schunn et al., 1997). Such an analysis may be highly useful in determining exact the 

relationship between FoK and strategy selection (e.g., Lachman & Lachman, 1980) 

and identifying whether Reder and colleagues dual-phase design is representative of 

the manner in which adults normally solve problems in the real world.

1.3.2 The relationship between strategy use and solution latencies

This relationship is exemplified by a key phenomenon in the mental arithmetic 

literature, the problem-size effect (Groen & Parkman, 1972). As Figure 1.5 illustrates, 

there is a positive correlation between solution latencies and the magnitude of a 

problem’s solution (see also Penner-Wilger, Leth-Steensen & LeFevre, 2002). 

Problems with a larger solution, and hence larger operands, elicit longer solution 

latencies than problems with smaller operands and solution. Furthermore, for larger 

problems, a greater frequency of incorrect answers is given than in smaller problems 

(Zbrodoff & Logan, 2005). This effect has consistently been shown to be present in 

multiplication, addition, division and subtraction problems, in production problems 

(i.e., 9 + 7 = ?) and verification problems (i.e., 9 + 7 = 14, true or false?). 

Furthermore, the problem size effect is found in individuals of different ages, cultures
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and languages and applies to problems with single- and multiple-digit operands (see 

Zbrodoff & Logan, 2005 for review).
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Figure 1.5: Median latencies for single-digit addition sums, collapsed across participants for all trials 

(open circles) and for trials in which the retrieval strategy was used (closed squares). Tied problems 

(i.e., 6 + 6 = ?) were omitted. The dotted line represents the best-fitting regression line, where the 

problems sum was used as a predictor. The dashed line only represents trials where the retrieval 

strategy was selected (adapted from LeFevre, Sadesky & Bisanz, 1996).

Recent interpretations of this effect assert that the positive correlation between 

solution latencies and the magnitude of a problem’s solution is due to a principled 

variation in the strategies applied to problems (Zbrodoff & Logan, 2005). Problems 

with larger operands require more complex solution strategies than smaller problems. 

This effect is borne out by the assumption that particular problems are consistently 

solved by specific strategies (Campbell & Fugelsang, 2001; Campbell & Timm, 2000; 

Campbell & Xue, 2001; Hecht, 1999; 2002; LeFevre et al., 1996; LeFevre, Sadesky & 

Bisanz, 1996). For example, LeFevre, Sadesky and Bisanz (1996) reported that 

participants used retrieval more frequently with simple problems (i.e., those which 

summed to less than 10) and a calculation strategy, termed transformation1, more 

frequently for problems summing to more than 10 (see Figure 1.6). This suggests that 

conventional approaches to reporting latency data, which are insensitive to strategy 

use (i.e., averaging across trials then participants), may be responsible for this positive

1 The calculation strategy, transformation (LeFevre, Sadesky & Bisanz, 1996) is used to break a 
problem into smaller sums which then can be solved using retrieval procedures. The answers from 
these intermediary sums are then recombined to solve the original problem. Referred to elsewhere in 
the literature as a decomposition strategy (Hecht, 1999; 2002; Siegler, 1987).
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correlation (see the dotted line in Figure 1.5). However, as the dashed line in Figure 

1.5 illustrates, problem size effects are also evident within strategies (in this instance 

the retrieval strategy) as well as between strategies (but see Hecht, 1999; Lee & Kang, 

2002; Seyler, Kirk & Ashcraft, 2002; Wheeler, 1939). But it must also be noted that 

calculation strategies (e.g., transformation and counting) typically produce greater 

problem size effects than the retrieval strategy (Campbell & Timm, 2000; Campbell 

& Xue, 2001; Compton & Logan, 1991; LeFevre, Sadesky & Bisanz, 1996; Siegler, 

1987; Siegler & Shrager, 1984).
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Figure 1.6: The percentage o f  single-digit addition problems solved by reported strategy use; retrieve 

(R) and the transformation strategy (T). Also, the counting strategy (C) where participants reported 

incrementing one operand by the magnitude o f the other (adapted from LeFevre, Sadesky & Bisanz, 

1996).

It is however the exceptions to the problem size effect that are most revealing 

of the mechanisms used to solve problems. For example, problems comprising decade 

numbers (10, 20, 30... 90) or fives (5, 15, 25...95) may be solved rapidly by direct 

fact retrieval where problems comprising other numbers of similar magnitude (e.g., 

+/- 1) require calculation procedures. Most adults would rapidly solve 20 + 30 = ? 

using the retrieval strategy, whereas 19 + 29 = ? would normally require the 

application of a calculation procedure eliciting a longer solution latency. This effect 

violates the positively skewed distribution of responses which normally fit solution 

latencies to answer size (Penner-Wilger, Leth-Steensen & LeFevre, 2002) 

representing a switch in selection from calculation to retrieval procedures (LeFevre, 

Sadesky & Bisanz, 1996; Zbrodoff & Logan, 2005).



32

In summary, the reliability of the problem size effect has established the 

magnitude of a problem’s answer as a key predictor of strategy use in models of 

strategy selection including ACT-R, ITAM, CMPL, ASCM, SCADS and SCADS*. 

However, all the models barring SCADS* have struggled to account for exceptions to 

the effect without invoking ad-hoc mechanisms which are taught to recognise the 

exception problems and what strategy to apply to the problem. The feature detection 

overlay in SCADS* differs only from an ad-hoc mechanism in that it has the ability to 

learn new exception problems. Perhaps more importantly however, the reliable 

relation between solution latencies and strategy use acts as an accepted analytical tool 

used to identify strategy selections in arithmetic tasks (e.g., Lebiere & Anderson, 

1998; Reder & Ritter, 1992; Schunn et al., 1997). Specifically, shorter solution 

latencies are expected if the retrieval strategy is used, whereas longer solution 

latencies are expected if a calculation strategy is employed. However, this principle is 

unable to distinguish between the different types of calculation strategy employed.

1.3.3 Problem familiarity correlates with reported strategy selections

A number of studies have suggested that problem solving is mediated by a 

mechanism which rapidly monitors the contents of memory (Koriat & Lieblich, 1977; 

Metcalfe, 1986; Metcalfe & Weibe, 1987; Reder, 1987). In a series of experiments 

modelled by the SAC account, Reder and colleagues examined the sensitivity of a 

monitoring mechanism, which elicits FoK judgements, to the familiarity of mental 

arithmetic problems (Reder & Ritter, 1992; Schunn et al., 1997). They investigated 

what processes underlie FoK judgements and whether these judgements (and hence 

mechanisms) directly influence strategy selection. Previously Reder (1987) had 

demonstrated in non-arithmetic problem solving studies that priming a problem’s 

terms induced stronger FoKs, but without accompanying benefits to the recall or 

recognition the problem’s answer. From this it was inferred that judgements of 

problem answerability may have been based upon the familiarity of a problem’s terms 

— and by extension FoKs — rather than, as all the other models advocate, the 

magnitude of a problem’s solution.

In Experiment 1 (Reder & Ritter, 1992), reported that greater exposure (and 

hence familiarity) to a problem confers a greater likelihood of choosing the retrieve 

strategy in selection tasks. Using the same dual-phase experimental design as detailed
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in 1.3.2, participants were repeatedly exposed — with systematically varying 

frequency — to double-digit addition and multiplication problems (e.g., 16 + 31 or 17 

x 23) in order to provide their participants with opportunity to learn answers. For each 

presentation of a problem they were required to make a rapid retrieve or calculate 

strategy selection and then solve the problem. Frequently encountered problems 

elicited greater frequencies of retrieve strategy selections than rarely encountered 

problems.

To isolate which components of a problem influence strategy selection, novel 

problems were presented towards the end of the experiment which looked similar to 

the previously learnt problems, but were reconfigured with operator switches (17 x 23 

to 17 + 23), operand reversals (17 x 23 to 23 x 17) or novel combinations of operands 

( 1 7 x 2 3 t o l 7 x  24). Results indicated that the exposure effect was controlled by the 

familiarity of the problem terms, rather than the familiarity of the problem’s answer, 

in particular by the familiarity of the pair of operands in the problem. However, these 

effects were only reported for multiplication problems. As the authors acknowledge, 

the incentive scheme designed to promote accurate strategy selection and rapid 

solution latencies flawed the results from the study using addition problems (Reder & 

Ritter, 1992). In a second experiment, a novel operator with a longer solution 

algorithm, named sharp (#), replaced the addition problems used in the first 

experiment. As before, greater familiarity with a problem (i.e., exposure to a problem) 

elicited a greater frequency of retrieval strategy selections, irrespective of the operator 

in a problem.

In keeping with the tradition set by ACT-R, ITAM, SCADS* and CMPL 

which asserts that strategy selections are determined by the prior success of a strategy 

in providing a solution to a problem, a major criticism of the finding is that accurate 

strategy selections under speeded conditions could be informed by an early read or 

partial retrieval of the answer (e.g., Blake, 1973), rather than the familiarity of the 

problem’s terms. An early read account assumes that the progress of a solution 

strategy in solving the problem is monitored online and a progress report can be 

accessed to inform responses demanded prior to the completion of the strategy. To 

rule out this possibility, Schunn et al (1997; Experiment 1) using double-digit

2 Sharp (#) problems were calculated as follows, the solution 40, to the problem 23 # 67 = ?, would be 
derived by completing three steps; [(2 + 6) * (3 + 7) * 3] modulo 100, then [ 8 * 1 0 * 3 ]  modulo 100 
which equals 240 modulo 100 = 40.
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multiplication problems, employed a similar priming technique as in Reder and Ritter 

(1992) but split the procedure into two distinct phases. In the first block of trials, 

participants were repeatedly presented with specific problems and requested to select 

a strategy (priming only the problem terms), in the second block, participants were 

required to select strategies and then answer the problem (priming both the problem 

terms and problem’s answer). In contrast to the ACT-R, ITAM, ASCM, SCADS, 

SCADS* and CMPL accounts, it was found that strategy selection was not influenced 

by priming of the problem’s solution as well as the terms of the problem. This 

suggests that the familiarity of a problem’s terms is the key determinant of strategy 

selection as per the predictions of the SAC account.

1.3.4 Summary of key empirical phenomena

To date none of the models of strategy selection have been able to account in 

full for all of the key empirical findings. The most controversial finding, that 

strategies can be selected quickly and accurately (Reder & Ritter, 1992; Schunn et al., 

1997), suggests that when solving a problem, a strategy is selected before any attempt 

to derive a solution to the problem is initiated. However, as there has been no direct 

empirical investigation to my knowledge designed to question the contrary position 

(i.e., the predictions of the Automaticity models) this finding has to be treated with 

some caution.

In addition to the distinction between the Automaticity and Adaptive selection 

models, based upon the manner in which strategies are applied to a problem, a second 

issue in the literature is highlighted by the empirical work undertaken within the 

paradigm. A degree of controversy exists in respect to the factors invoked to 

determine strategy selection. Most models posit that associative strength based factors 

are the key determinants of selection (for the Adaptive selection models, i.e., ASCM, 

CMPL, ASCM, SCADS and SCADS*) or predictors of actual strategy usage (for the 

Automaticity models, i.e., ITAM, ACT-R and DOA): Specifically, the strength of the 

link between a representation of the problem and the problem’s solution. On a 

superficial level this approach meshes with the problem-size effect (Groen & 

Parkman, 1972; Zbrodoff & Logan, 2005). Smaller problems are solved more rapidly 

and accurately than larger problems, which are less common in day-to-day life or 

schooling. In such accounts, the frequency of prior exposure to a problem and its



35

solution serves to reinforce the associative link between the problem and its solution, 

thus increasing the accuracy and rapidity of problem solutions. In contrast the SAC 

model asserts that strategy selections are determined by a rapid evaluation of a 

problem’s terms, specifically an analysis of the familiarity of the operands in a 

problem. This approach asserts that a metacognitive mechanism monitors the 

familiarity of a problem’s terms and bases strategy selection upon the magnitude of 

the FoK elicited by the familiarity of a problem’s terms.

In light of the dearth of empirical research in the paradigm, in this thesis two 

key controversies will be further investigated. Firstly, that of whether strategies are 

selected before they are deployed to solve a problem, and secondly, the factors which 

determine strategy selection will be identified. In the following section, the general 

methodology used to investigate these issues will be detailed.

1.4 TASK OUTLINE

In order to investigate the two key issues outlined in the previous section, a 

task was required which afforded a fine-grained analysis of the strategy selection 

process. A secondary consideration was that the two key factors may interact and thus 

would require investigation in a design which allows both issues to be examined in 

tandem and in isolation. One option was to simply present participants with a sum and 

ask them to solve it. In this design, it is possible to infer strategy use on each 

particular problem from solution latencies, whereby short solution latencies would 

indicate a retrieve strategy selection, long solution latencies a calculation strategy 

selection (e.g., Hecht, 1999; 2002). This design would demonstrate the stimulus 

driven factors that may influence strategy selections (e.g., the magnitude of a 

problem’s solution or the familiarity of the problems terms) but would not provide 

any information about the manner in which the solution strategy was selected (i.e., 

automatically or adaptively). A second possibility was to record strategy selections in 

a pseudo (e.g., Experiment 1, Rickard, 1997; Schunn et al., 1997) or algebraic 

arithmetic task (e.g., Compton & Logan, 1991; Experiment 4, Logan, 1988; 

Experiment 2, Rickard, 1997; Rickard, 2004). Here participants would be taught 

arithmetic facts through repeated exposure to specific problems, a design normally 

used to chart the transition from algorithmic problem solving to direct memory 

retrieval as a function of learning. However, this design does not afford an
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examination of how strategy selections are made for commonly encountered 

problems, one of the goals of this thesis.

The third option was to employ the Game Show design (see Reder, 1987; 

Reder & Ritter, 1992; Schunn et al., 1997), a methodology with the power to identify 

the factors that determine strategy selection and to examine the mechanics of the 

selection process. Each trial in the methodology has two distinct phases, the first 

immediately followed by the second. In the first phase of each trial, the selection- 

phase, participants are presented with a problem and asked ‘when solving the problem 

would you retrieve the answer directly from memory or use a calculation algorithm?’ 

Here, a time limit of 850 ms is set for the retrieve or calculate strategy selection, the 

predicted strategy selection and the time required to make the selection are recorded. 

In the second phase of each trial, the solution-phase, participants are asked to solve 

the problem as quickly and accurately as possible. The actual response and the time 

taken to make the response are recorded.

This design affords an insight into the manner in which strategies are applied 

to a problem. Accurate and rapid predicted strategy selections can only be made in the 

selection-phase if a distinct strategy selection phase precedes strategy deployment 

(Reder & Ritter, 1992; Schunn et al., 1997). Furthermore, the solution phase of each 

design attests to the accuracy of the predicted strategy selection. Accurate retrieve 

selections made in the selection-phase should be followed by short solution latencies 

in the solution phase. Calculate selections made in the selection-phase should be 

followed by longer solution latencies in the solution phase. Lastly, by manipulating 

the types of problems presented, or the frequency with which they are presented, it is 

possible to identify these problem-driven factors that influence strategy selection.

1.5 INTRODUCTION SUMMARY

In this chapter I have reviewed the computational models of strategy selection 

and the key empirical findings pertinent to the paradigm. In doing so, key areas of 

contention have been highlighted in respect to the structure and the predictions of 

these models. To illustrate the degree of controversy within the literature, all eight 

models detailed previously make different predictions and are based upon different 

assumptions. Accordingly, a program of systematic and comprehensive experimental 

research is required to test the veracity of these models.
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The empirical work in the thesis will investigate the two key issues; the 

manner in which strategies are applied during a problem-solving episode (i.e., 

automatically or adaptively) and the identification of factors which determine strategy 

selection. Predictions from each of the computational models will be contrasted in a 

number of experiments which employ a methodology designed by Reder and 

colleagues (see Reder, 1987; Reder & Ritter, 1992; Schunn et al., 1997) to develop 

the SAC model.

1.5.1 Empirical Series 1

This series was designed to test the competing Adaptive and Automaticity 

accounts of strategy selection. To do so, predictions derived from one of the Adaptive 

accounts, the SAC model (Reder & Ritter, 1992; Schunn et al, 1997), were used as a 

focal point for the investigation as out of all the models detailed in Chapter 1 this 

model is detailed to the highest resolution. Not only was it possible to investigate the 

operation of the selection mechanism itself, but also the suitability and robustness of 

the dual-phase design for subsequent experiments. The series goes on to adopt a 

systematic approach to identifying the key factors responsible for strategy selections. 

While in the SAC account selection is determined by the familiarity of a problem’s 

terms (Reder & Ritter, 1992; Schunn et al, 1997) all of the other accounts propose that 

the association between a problem and its solution would determine whether the 

retrieve or calculate strategy was selected. Manipulations were employed to examine 

this issue also investigating whether selection is influenced by particular problem 

features. Reder and Ritter (1992) noted that in some instances participants appeared to 

base strategy selections purely upon the type of operator in a problems (i.e., x or +). 

Examining this contention, problem features were manipulated and evaluated within 

the framework of the Adaptive and Automaticity accounts.

1.5.2 Empirical Series 2

The studies reported within the second empirical series were designed to 

refine the problem familiarity and problem feature effects revealed in Chapter 2. Of 

the existing accounts only the SAC model predicted that the familiarity of a problem 

would influence selection while none of the accounts were able to detail in full the
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empirical signature of the problem feature effects. Accordingly, the experiments 

presented in this series sought to establish the mechanisms through which their 

influence upon selection is realised. In particular whether strategy selections are 

driven by consciously directed procedures, or whether unconscious processes are 

responsible for problem familiarity and feature effects. Furthermore, the investigation 

also considered how the influence of these factors is realised in real-world problem

solving episodes. Following Cary and Reder’s (2002) proposal, the notion that in real- 

world problem-solving episodes a range of factors, not just problem familiarity and 

problem features, may influence selection was considered. In particular, two issues 

were explored, that of how the selection mechanism accommodates multiple cues to 

retrieve/calculate selection and how selection is influenced by biases inherent in the 

wider processing context.
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2.0 ABSTRACT

Predictions derived from the SAC model were used as a basis for examining the 

selection mechanism. In all of the experiments it was evident that retrieve/calculate 

selections could be made rapidly, and with a degree of accuracy, contrary to the 

predictions of the Automaticity accounts. Accordingly, following the Adaptive 

account, it was proposed that selections are made in a distinct phase before an attempt 

to execute a problem-solving strategy is engaged. Confirming the procedural 

demarcation between selection- and solution-phase it was evident that the dual-phase 

design is a sufficiently robust methodology for subsequent investigation (Experiments 

lb, 2b and 3). Furthermore, the familiarity of a problem, rather than its answer was 

shown to influence selection (Experiments la and 2a) supporting the predictions of 

the SAC model (Reder & Ritter, 1992; Schunn et al, 1997). However, problem feature 

effects upon selection could not be easily assimilated into that model (Experiments 2a 

and 2b) suggesting that the selection mechanism is sensitive to more factors than 

previously conceived.
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2.1 INTRODUCTION

The experiments presented in this Chapter 2 test predictions derived from the 

models detailed in the Chapter 1. A methodology was used to investigate two key 

facets of the models. Firstly, the issue of whether strategies are chosen adaptively in a 

distinct selection phase was addressed; specifically, whether strategy selection 

precedes an attempt to solve the problem (i.e., the Adaptive account) or whether 

strategies are applied automatically, in a default order, to solve the problem (i.e., the 

Automaticity account). Secondly, the types of arithmetic problems used within this 

design were manipulated to identify the particular qualities of a problem that 

influence selection. These two ends will be achieved by focusing on the methodology 

underpinning the SAC model, the Game Show design (Reder & Ritter, 1992; Schunn 

et al., 1997). This stands as the most comprehensive example of experimental work in 

the arithmetic strategy-selection paradigm to date and as an appropriate starting point 

for the empirical work in this thesis.

Experiments la and 2a in the present chapter employed the dual-phase Game 

Show design. In this methodology, participants are first presented with a problem and 

are required to make a rapid strategy selection, choosing either the retrieve or 

calculate strategy (i.e., the selection-phase). In the solution-phase, which immediately 

follows the selection-phase participants are required to solve the problem. Experiment 

la examines the influence exerted upon selection by the familiarity of a problem's 

terms and the familiarity of the problem’s answer. The problems presented in the 

current study were designed to follow the predictions of the Problem Size effect 

(Groen & Parkman, 1972), whereby solution latencies increase in accordance with the 

magnitude of the addends in a problem. For example, solving 26 + 29 = ? takes longer 

than solving 16 + 19 = ?. Experiment 2a, using the same methodology, examined the 

selection process in three types of problem that violate the positive correlation 

between addend magnitude and solution latencies predicted by the Problem Size 

effect (Groen & Parkman, 1972). For example, 20 + 30 = ? can be solved much more 

rapidly than 19 + 29 = ?, despite the similarity in addend magnitude. Three types of 

problem, decades (i.e., 20 +30), fives (i.e., 25 +35) and mixed (i.e., 25 + 30) were used 

to investigate whether specific features common to a particular problem, for example 

that both addends are multiples o f 10, influenced the selection process. Experiments 

lb and 2b stand as replications of each respective experiment in which only the first
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phase, the selection-phase, is tested. Results from these experiments indicated 

whether the act of solving a problem in the solution-phase of each trial influences 

subsequent performance in the selection-phase of each trial. This will indicate 

whether the dual-phase Game Show design used in this thesis is validated or 

undermined. Adopting the reverse rationale, Experiment 3 examined whether 

crosstalk between the selection-phase influences performance in the solution-phase of 

each trial by testing the solution-phase in isolation.

2.2 EXPERIMENT la

Results from Reder and colleagues’ (Reder & Ritter, 1992; Schunn et al., 

1997) studies, hereafter referred to as the Game Show studies, suggest that strategy 

selections can be made rapidly, accurately and are influenced by the frequency of 

exposure to specific problem constituents (Reder & Ritter, 1992; Schunn et al., 1997). 

The more frequently an individual is exposed to a problem the more likely they are to 

choose to retrieve the solution to that problem. Together these findings suggest that 

strategy selections are made in a distinct phase. This operates before an attempt to 

solve the problem is initiated and is determined by a rapid evaluation of the frequency 

of exposure to, or familiarity of, a problem’s terms. The current experiment was 

conducted for two purposes. Firstly, to extend the core findings of the Game Show 

studies, examining how they relate to the competing models of strategy selection. 

Secondly, as a general test of the dual-phase Game Show design and how the 

adaptations made to that design in this study influence selection.

As the findings from the Game Show studies act as the foundation for the SAC 

model, the current study also stands as a direct test of the predictions of this account. 

First I shall detail the two key modifications made in the current experiment to Reder 

and Ritter’s (1992) design. Both of these key changes were introduced to establish the 

robustness of familiarity effects upon selection once problematic features of the 

classic design were removed. In the Game Show studies, problem familiarity was 

manipulated by varying the frequency with which specific problems and specific 

problem components were presented within the experiment. This approach to 

familiarisation served to control — and was used to manipulate — the strength of 

long-term memorial representations. For example, specific problems or specific 

pairings of problem components (e.g., ‘23 +’) partnered with other operands (i.e., 23
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+ 38, 23 + 49 or 23 + 16), were presented on multiple occasions during the 

experiment to induce familiarity. More frequent exposure to a particular problem, or 

pair of problem components presented together served to increase their familiarity.

A further aspect of the Game Show design was that, to encourage participants 

to actively engage in learning these problems and their answers, an incentive scheme 

was used. This sought to establish experimentally induced familiarity differentials 

between problems (or components of the problem) that were presented frequently or 

infrequently. The scheme utilised four payoff situations designed to discourage 

participants from defaulting to the ‘safer’ option in the selection task and selecting 

calculate for every problem. Furthermore, it encouraged participants to learn the 

arithmetic facts they derived from processing the problems. This promoted the 

selection of the retrieve strategy in the selection-phase and the use of retrieval 

procedures during the solution-phase of the experiment. Fifty points were awarded on 

a trial when participants selected retrieve during the selection-phase and produced a 

correct answer in the solution-phase within 1050 ms or 1400 ms (depending upon the 

number of digits in the answer, 3 or 4 respectively). If the calculate strategy was 

chosen in the selection-phase, followed by a correct answer produced within 24 s or 

30 s (again dependant upon the number of digits in the answer), the participant was 

rewarded with 5 points. Alternatively, if participants produced a correct answer but 

violated the deadlines in either phase, 1 point was awarded. No points were given 

when subjects failed to meet the deadline in both phases, or failed to solve the 

problem correctly. Participants were given .005 cents per point and awarded a bonus 

of $1 if their point total exceeded the current top score (see Reder & Ritter, 1992).

Over a series of experiments, this scheme proved successful, promoting 

retrieve selections for difficult problems (i.e., double-digit multiplication problems 

and double-digit problems with a novel operator termed as sharp). However, for 

double-digit addition problems (Reder & Ritter, 1992, Experiment 1) scores were 

unexpectedly low. Many participants reported that they chose retrieve purely in 

attempt to beat the incentive scheme and were unable to solve the problems within the 

time limit allowed for a correct retrieve selection. Accordingly, the authors presented 

only a superficial analysis of the data from the addition problems, focusing primarily 

upon multiplication problems. To circumvent this flaw, the approach taken to problem 

familiarity in the current experiment was to derive measures of problem familiarity 

from conventional measures of long-term familiarity. This approach is widely used in
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tests of familiarity in a number of related paradigms such as tests of recognition 

memory (see Yonelinas, 2002 for review). Problem familiarity was derived by adding 

the familiarity rating (see Gielen, Brysbaert & Dhondt, 1991) of each addend in a 

sum. The relationship between independent observations of numbers x and y  and 

concordant observations of x and y  stipulates that more frequent independent 

observations equate to a greater frequency of concordant observations over time (see 

Church & Hanks, 1990 for similar argument). It was predicted that sums classed as 

high in familiarity are likely to elicit a greater percentage of retrieve selections in the 

selection-phase of each trial than unfamiliar sums.

Using this approach, three key findings underpinning the predictions derived 

from the Game Show design and consequently the SAC model of selection, were 

examined. Firstly, the Game Show studies demonstrated that strategy selections can 

be made rapidly, indicating that selection occurs before a deployed solution strategy is 

executed to completion. In this study, similar to the previous Game Show studies, a 

time limit of 850 ms (see also Reder & Ritter, 1992; Staszewski, 1988; Vernon & 

Usher, 2003) was set to ensure that participants were unable to base retrieve or 

calculate selections made in the selection-phase upon feedback derived from 

completed solution procedures. Campbell and Austin (2002) have shown when 

solving single-digit addition problems that 57% of answers were initiated within 750 

ms and 73% within 900 ms. Accordingly, the additional encoding time necessary for 

processing double-digit addend sums — as opposed to single-digit sums (Reder & 

Ritter, 1992) — suggests that more than 900 ms will be required before a response 

derived retrospectively from a completed solution procedure can be returned. Strategy 

selections made within 850 ms are therefore argued to be determined by a strategy 

selection mechanism rather than feedback from completed solution procedures (Reder 

& Ritter, 1992; Schunn et al, 1997)

The second key finding from the Game Show studies is that these rapid 

strategy selections are largely accurate, i.e., statistically, they predict actual strategy 

use, a finding testified to by the time taken to solve the problem in each trial. When 

retrieve was chosen in the selection-phase it was found that solution latencies in that 

trial were relatively short. Conversely, protracted solution latencies were evident in 

the solution-phase if calculate was selected in selection-phase (Reder & Ritter, 1992; 

Schunn et al., 1997). A similar approach to accuracy was adopted in the current study 

to determine the accuracy of selections. Finally, Reder and Ritter (Experiment 1;
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1992) have shown that when participants were frequently (as opposed to infrequently) 

presented with either the first operand, first operand and operator pairing or second 

operand, they were more likely to choose retrieve in the selection-phase and produce 

shorter solution latencies when solving the problem. From this it was tentatively 

suggested (because of the aforementioned confounding influence of the incentive 

scheme employed) that for double-digit addition problems, the familiarity of a 

problem’s terms tempted participants to respond with erroneous retrieve selections. 

More importantly, this would indicate that strategy selection was indeed sensitive to 

the familiarity of the problem. To test the problem familiarity effect, in the present 

experiment problems were either low or high in pre-experimental familiarity, rather 

than using a technique which experimentally induced familiarity. If selection is 

influenced by the familiarity of a problem’s terms it was predicted that a greater 

percentage of retrieve selections, and consequently a lower percentage of calculate 

selections, would be made for problems with relatively familiar as opposed to 

unfamiliar terms.

Contradicting the predictions of the SAC model, the Automaticity class of 

models (i.e., ACT-R, IT AM and DO A) and one model from the Adaptive class of 

models, the CMPL account, assert that apparently rapid and accurate strategy 

selection is determined by a competing account, the early read account . Common to 

these models is the notion that selection is determined by the strength of the 

associative link in memory between a problem and its solution. Generally speaking, 

the act of encoding a problem automatically initiates the search for the problem’s 

answer (Logan, 1988). Accordingly, on an operational level, the familiarity — as 

familiarity and associative strength are largely inseparable in the models of strategy 

selection — of the answer will determine (in the case of CMPL where strategies are 

selected before deployment) or predict (in the case of the Automaticity models where 

strategies are applied in an automatic manner) strategy selection. It may be that when 

making a strategy selection under time pressure, individuals can utilise feedback from 

incomplete solution procedures as a cue to selection. For example, in tip-of-the- 

tongue states the answer itself cannot be recalled but information pertaining to the 

answer such as the first letter of the answer, the location of a primary stress, or

3 It should be noted here that the complex array o f factors that are posited to guide adaptive strategy 
selections in the ASCM, SCADS, SCADS* simulations make the models virtually unfalsifiable on an 
experimental level. However, findings from this experiment (and the remainder in this thesis) where 
possible will be applied to these models.
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knowledge of the number of syllables in an answer may be known (Brown & 

McNeill, 1966). The strength of the tip-of-the-tongue state acts as an indicator of the 

probability that the actual answer can be recalled.

In line with the difficulty of the problems presented in the current study and in 

the absence of an incentive scheme, it was deemed unlikely that any of the problems 

could be solved using direct retrieval procedures and that the calculate strategy would 

be selected in a higher percentage of trials than the retrieve strategy. Accordingly, 

effects of problem and answer familiarity upon strategy selection would be evident in 

the percentage of calculate strategy selections reported in the selection phase. 

Although Reder and Ritter (1992; Experiment 1) demonstrated that answer familiarity 

did not influence strategy selection, the present experiment includes a direct test of the 

early read account (cf. Blake, 1973) in light of the modifications made to the original 

Game Show design. For problems with answers rated as low or high in familiarity it 

was anticipated that a greater percentage of calculate selections would be expected in 

the low answer familiarity condition than high answer familiarity condition if an early 

read mechanism influences selection. However, in the absence of answer familiarity 

effects, if a greater percentage of calculate selections were evident in the low problem 

familiarity condition then this would support the SAC account. This would indicate 

that pre-existing familiarity, rather than experimentally induced familiarity influences 

strategy selection. To ensure that strategy selections could be made within the 850 ms 

time limit, the strategy selection latencies were recorded, affording an opportunity to 

examine for the first time whether the time taken to select a strategy is influenced by 

either familiarity measure. Furthermore, problem solution latencies were recorded as a 

measure of the accuracy of the strategy selections made during the selection-phase of 

each trial, whereby shorter latencies were anticipated if retrieve was chosen in the 

selection-phase rather than if calculate was selected.

2.2.1 Method

2.2.1.1 Participants

Twenty-four undergraduates from the School of Psychology at Cardiff 

University were given course credit for their participation. All were native English 

speakers reporting normal hearing and corrected or normal vision.
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2.2.1.2 Materials & Design

The addends in each problem summed to less than 100 and were drawn from a 

sample ranging from 12 to 49. Each addend pair was from the same decade class (e.g., 

23 + 29), none of the addends were divisible by 5 or 10 and there were no tied 

addends (i.e., 23 + 23). Two variables were investigated; sum familiarity (i.e., the 

summed familiarity of the problem terms) and answer familiarity. The four 

experimental conditions were contrasted in a repeated measures design; low sum 

familiarity/low answer familiarity, low sum familiarity/high answer familiarity, high 

sum familiarity/low answer familiarity, and high sum familiarity/high answer 

familiarity (see Appendix E, table E l, for stimuli). Participants completed 16 practise 

trials followed by 64 experimental trials.

Familiarity scores were derived from the number frequency measures 

developed by Gielen, Brysbaert and Dhondt (1991). In that study, twenty participants 

rated the numbers between — and including — 0 to 99 on a scale ranging from 1 

(extremely rare) to 6 (extremely frequent) in respect to their frequency of occurrence 

in everyday life. Ratings were then linearly rescaled (by subtracting 1 and multiplying 

the results by 100) to give a familiarity rating of between 0 and 500 for each number. 

Sum familiarity ratings in this study were obtained by simply adding the familiarity 

ratings of the two addends in each problem. The answer familiarity was purely the 

familiarity rating of each problem’s answer. Two repeated measures ANOVAs were 

run, confirming that there was a significant difference between the low and high 

levels of sum familiarity, F(l, 15) = 105.34, MSE = 4142.89, p  < .001 and answer 

familiarity; F (l, 15) = 412.63, MSE = 427.50,/? < .001.

2.2.1.3 Procedure

The experiment was programmed and compiled in Visual Basic 6.0. 

Participants were instructed that they would be presented with a series of arithmetic 

problems, each trial comprising two phases. Each trial commenced when the 

participant pressed the enter key to start the program, after which a fixation mark (“X 

+ X”) appeared in the centre of the screen, it flashed three times, each flash 

interleaved by a blank screen for 850 ms. On what would have been the fourth 

appearance of the fixation mark, the problem appeared in its place and the selection- 

phase commenced immediately. An on-screen caption prompted participants to make 

a retrieve/calculate selection by pressing the r button for retrieve or c for calculate.
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The r button was located on the z key and the c button on the m key of a standard 

qwerty keyboard. Participants were advised before the experiment that their selection 

had to be made within 850 ms and that the time limit did not allow for much 

consideration of the problem. Furthermore, that retrieve should be selected for trials 

where they “would be able to instantly provide a solution if they were solving the 

sum, for example 10 + 10”. Calculate should be chosen “when the sum may need to 

be broken down, such as 14 + 17. Here, the sum may be broken into 4 + 7 and 10 + 

10, the products of those recombined to answer the original sum”. The same examples 

were relayed to each participant verbally by the experimenter and also as part of the 

written instructions. Care was taken to provide the exact same instructions to each 

participant. As Kirk and Ashcraft (2001) previously demonstrated, instructions 

emphasising the usage of the retrieve strategy increased self-reported use of retrieval 

procedures relative to a non-biased condition. Similar effects were found when task 

instructions emphasised the use of the calculate strategy in problem-solving tasks (see 

also Blote, Van der Burg & Klein, 2001; Gardner & Rogoff, 1990; Siegler & Lemaire, 

1997). Accordingly, use of neither strategy was emphasised and equivalent time and 

description were provided for the retrieve and calculate strategies.

If a strategy selection was made within 850 ms participants immediately 

proceeded to the solution-phase. The runtime program automatically recorded the 

strategy selection or marked the response as late if a selection was not made within 

the time limit. In the event a strategy selection was late, the solution-phase of each 

trial started immediately after the expiry of the 850 ms time limit. In this phase 

participants were instructed to “solve the sum as quickly and accurately as possible”. 

The answer was entered by the participant using the numerical keypad on a standard 

qwerty keyboard, and ‘enter’ was pressed to confirm the answer. The runtime 

program recorded the participant’s given answer and the time taken to enter that 

answer. As the experiment was self-paced, participants were required to click on a 

‘continue’ button to proceed to the next trial.

2.2.2 Results

2.2.2.1 Scoring Procedure

Two measures were taken during the selection phase; the strategy selection 

(retrieve or calculate) and the strategy selection latency which was recorded from the
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initial point at which the problem was presented up to when the participant selected 

retrieve or calculate. If a selection was not made within the time limit no selection 

latency was recorded for that particular trial and the response was marked as late. In 

the solution-phase, the participant’s given answer and accuracy of the answer (in 

respect to the correct answer) was recorded. The solution latency was automatically 

recorded by the program, either from the entry of a strategy selection, or if the 

selection was late, at the expiry of the 850 ms time limit until the participant pressed 

the ‘enter’ key to confirm his/her given answer. Both latency measures were accurate 

to approximately ±2 ms and for analysis, split according to the retrieve/calculate 

selection made in selection-phase. So, on each trial a selection latency, solution 

latency and sum solution were tagged to the retrieve or calculate selection made 

during the selection-phase. If a strategy selection was late the data from that trial were 

removed from the final analysis.

As a consequence of this experimental design, participants could only select 

the retrieve or calculate strategy. Accordingly, if a participant chose to select calculate 

for all the problems in one of the four experimental conditions there would not be any 

entries for the other measures (strategy selection latency, sum solution, or solution 

latency) for retrieve in that condition as they are tagged to the strategy selection made 

in the selection-phase. This serves to reduce the degrees of freedom in some statistical 

analyses reported in the thesis. Participants with missing values are automatically 

removed from the repeated measures analysis used in the thesis by SPSS. This 

however only applies to analyses where the two alternative fixed choice is required, 

such as selecting between retrieve or calculate. In instances where missing values are 

justified, such as when considering the percentage of incorrect sum solutions where a 

missing value indicates a correct response, missing values are replaced with a zero. 

Throughout the thesis, statistically non-significant main effects and interactions are 

not reported unless theoretically warranted.

2.2.2.2 Strategy Selection

As predicted, mean strategy selections reported in Table 2.1 illustrate that 

calculate was selected in a considerably higher percentage of trials than retrieve. 

Accordingly, the results analysis in the current study will focus upon the influence 

exerted by the experimental variables upon the percentage of calculate selections 

rather than retrieve selections. This approach is adopted in light of the dependant
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relationship between retrieve and calculate selection such that the factor/s which 

influence calculate selections will have an inverse effect on retrieve selections. One 

corollary with such an analysis is that although retrieve and calculate are dependent 

measures, the percentage of late responses also need to be considered. If the tendency 

to produce a late response is influenced by either familiarity measure then the 

dependant relationship between retrieve and calculate selections may be 

compromised. For example, in the low sum familiarity/low answer familiarity 

condition, on average the retrieve strategy was selected in 16.1% of trials, the 

calculate strategy in 73.7% of trials. In the remaining 10.2% of trials selections were 

not made within the time limit and were hence marked as late. If in another condition 

20% of trials had late responses and this was caused by one or more of the 

experimental manipulations then the hypothesised dependant relationship between 

retrieve and calculate would need to be reconsidered. In this study, a repeated 

measures ANOVA demonstrated that neither sum nor answer familiarity, influenced 

late selections, nor was there a significant interaction between those two variables (all 

Fs < 3.72, all ps > .08). Accordingly, it is surmised that the dependant relationship 

between the percentages of retrieve and calculate selections was not differentially 

influenced by condition type.

Turning to the influence exerted by the two experimental variables upon the 

percentage of calculate selections, a 2 (sum familiarity; low vs. high) x 2 (answer 

familiarity; low vs. high) repeated measures ANOVA revealed that a greater 

percentage of calculate selections were made for unfamiliar than familiar problems, 

indicating for the first time that pre-experimental familiarity — rather than 

experimentally induced familiarity — influences strategy selection, F(l, 23) = 13.2, 

MSE = .28, p  = .001. Furthermore, null effects of answer familiarity upon the

percentage of calculate selections were revealed, F{ 1, 23) = .38, MSE = 68.8, p  = .54, 

demonstrating that the familiarity of a problem’s solution does not influence the 

selection process.
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Table 2.1.

Summary by condition o f  mean retrieve (Ret) and calculate (Calc) strategy selections (in %>), strategy 

selection latencies (in ms) and solution latencies (in ms). Corresponding standard deviations are in 

parentheses.

Low Answer Familiarity High Answer Familiarity

Low Sum High Sum Low Sum High Sum

Familiarity familiarity Familiarity familiarity

Measure Ret Calc Ret Calc Ret Calc Ret Calc

Strategy

selected

(%)

16.1

(16.2)

73.7

(17.6)

24.7

(17.4)

59.9

(20)

16.9

(17.5)

70.6

(22)

32

(23.6)

59.6

(25)

Selection

latency

(ms)

568 510 599 510 547 522 589 506

(102) (83) (84) (77) (121) (96) (84) (94)

Solution

latency

(ms)

3904 4369 3979 4475 3708 4401 3627 4000

(1490) (1210) (1540) (1270) (1360) (1040) (1290) (1250)

2.2.2.3 Selection Latency Analysis

In total, only 12.2% of strategy selections were not made within the time limit 

of 850 ms. Similar to results evident in the Game Show studies (Reder & Ritter, 1992; 

Schunn et al, 1997) this indicates that participants were comfortably able to make 

strategy selections within the time limit. In respect to the experimental manipulations, 

a 2 (sum familiarity; high and low) x 2 (answer familiarity; high and low) repeated 

measures ANOVA revealed that of calculate selection latencies were insensitive to 

sum familiarity, F (l, 23) = .76, MSE = .002, p  = .39, and answer familiarity, F(l, 23) 

= 0.28, MSE = .001, p  = .6. Similarly, it was found that the time taken to select the 

retrieve strategy was insensitive to the familiarity of the problem’s answer, F(l, 15) = 

1.55, MSE = .01, p  = .23. However the time taken to select the retrieve strategy was 

influenced by the familiarity of the problem, F(l, 15) = 7.66, MSE = .002, p  = .014. 

Post-hoc comparisons indicate that retrieve selections were made more slowly for 

familiar problems than unfamiliar problems {M difference = 31 ms, p  = .014). 

Furthermore, when comparing the mean selection latencies for the two strategies 

(retrieve or calculate), a repeated measures ANOVA, including sum and answer 

familiarity, revealed that calculate selections were made more rapidly than retrieve 

selections, F(l, 38) = 6.24, MSE = .02,p = .02.
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2.2.2.4 Solution Latency Analysis

Only 4.7% of solution latencies were excluded from the analysis for exceeding 

10 s. Incorrect sum solutions accounted for 7.4% of responses demonstrating that 

participants were able to complete the solution-phase with a high degree of accuracy. 

A 2 (sum familiarity; high and low) x 2 (answer familiarity; high and low) repeated 

measures ANOVA run on solution latencies tagged to calculate selections made 

during the selection-phase revealed a significant interaction between sum familiarity 

and answer familiarity, F(1, 23) = 4.95, MSE -  1.54, p -  .04. Simple effects 

indicated that answer familiarity effects were only evident for familiar problems. 

Familiar problems with more familiar answers were solved more rapidly than familiar 

problems with unfamiliar answers, F(1, 23) = 6.97, p  = .02. Solution latencies tagged 

to retrieve selections made in the selection-phase were immune to effects of sum 

familiarity, F(l, 16) = .22, MSE = .83, p  = .65 and effects of answer familiarity were 

marginally significant, F(l, 16) = 4.36, MSE = .53, p  = .05. They followed the same 

pattern as solution latencies tagged to calculate selections in that familiar problems 

with familiar answers exhibited shorter solution latencies than familiar problems with 

unfamiliar answers.

To examine the accuracy of strategy selections made in the selection-phase, 

the strategy selection was compared to the solution latency produced in the solution 

phase of each trial (see also Reder & Ritter, 1992; Schunn et al., 1997; Siegler & 

Lemaire, 1997). To recapitulate, it was predicted that if retrieve was chosen in the 

selection-phase and participants could, to some degree at least, predict which strategy 

they would use, shorter solution latencies should be evident in the solution phase of 

each trial than if calculate was selected in the selection phase. As Table 2.1 indicates, 

problems where calculate was selected in the selection-phase were partnered by 

longer solution latencies than when retrieve was chosen in the selection-phase. 

However, this trend failed to reach statistical significance, F (l, 39) = 1.78,/? = .19. In 

the present experiment however, the solution latencies evident in Table 2.1 were 

befitting of the type of sums presented to the participants, none of which were 

expected to be solved by direct retrieval procedures. To corroborate this relation, 

Figure 2.1 illustrates that the percentage of calculate selections made increased in line 

with the length of time required to solve the problems (r -  .85, p  = .003) indicating 

that the percentage of calculate selections made was befitting of the actual difficulty 

(as indexed by solution latencies) of the problems tested.
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Figure 2.1: The percentage o f calculate selections made within each solution latency group collapsed 

across sum and answer familiarity conditions. Solution latency groups run from 1-2 s, 2-3 s, 3-4 s, 4-5 

s, 5-6 s, 7-8 s, 9+ s. The trend line represents a strictly linear relation.

2.2.3 Discussion

The present experiment was designed for two specific purposes, firstly to test 

the suitability of the dual-phase methodology as a basis for further empirical 

investigation of the selection process. Secondly, to test the core findings derived from 

the Game Show studies which act as the foundation for the SAC model. In respect to 

the first aim, the design used in the present experiment produced comparable 

responses to the Game Show studies. Participants were able to make rapid strategy 

selections with a high degree of accuracy (i.e., which predict subsequent solution 

latencies). In a significant departure from the Game Show design, strategy selection 

was shown for the first time to be influenced by pre-experimental familiarity (rather 

than experimentally induced familiarity). This suggests that strategy selections in 

conventional arithmetic tasks, not only in the dual-phase design, are sensitive to the 

familiarity of the problem rather than being contingent upon task learning. 

Furthermore, an incentive scheme, as used in the Game Show studies, is not required 

to obtain accurate indices of performance in this methodology and task. Accordingly, 

it seems apparent that the experimental design employed here is an effective means by 

which to obtain accurate indices of performance in strategy selection.
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When considering the underlying mechanism responsible for selection the 

current study contrasted predictions derived from the familiarity based Adaptive 

account proposed by the SAC model and the early read account supported by the 

predictions of the Automaticity models and CMPL. To recapitulate, in the early read 

account selection is determined by the strength of activation elicited by an obligatory 

attempt to solve the problem (see Logan, 1988), determined by the strength of the 

association between the problem and its solution. In this experimental design, the time 

limit imposed upon the selection-phase of each trial precludes the participant from 

solving the problem and basing the predicted strategy selection upon a retrospective 

interpretation of the problem-solving episode. Accordingly, the progress made in 

solving the problem, at the point where this process is necessarily truncated so a 

selection can be returned within the time limit, may serve to determine selection. Here 

the strength of the association between the problem and its answer will predict the 

progress made by retrieval procedures in solving the problem. For example, in 

problems with more familiar answers, and hence a stronger association between 

problem and answer, greater progress will have been made in finding the answer than 

in problems with unfamiliar answers. Accordingly, from this account it was predicted 

that more retrieve selections would be made for problems with familiar answers than 

problems with unfamiliar answers. However, the findings from the current study fail 

to support the early read account as strategy selections were insensitive to the 

familiarity of the problem’s answer. Furthermore, the speed with which selections 

were made, consistently within 850 ms and the evident accuracy of strategy selections 

demonstrated by solution latencies serves to question the predictions of models reliant 

upon the early read account.

In contrast, the findings from the present study fit the predictions of the SAC 

model (Reder & Ritter, 1992; Schunn et al., 1997) where a rapid assessment of the 

familiarity of the problem’s terms determines strategy selection. To rule out the 

possibility that other factors contributed to the problem familiarity effect a covariate 

analysis was conducted (see Appendix A). This demonstrated that there were no other 

problem-level factors which covaried significantly with calculate selections. A series 

of regressions were also conducted to examine whether any other characteristics of 

the problems (i.e., answer magnitude, answer familiarity, whether a carry would be 

required when solving the problem) influenced selection (see Appendix B). It was 

found that both answer magnitude and problem familiarity accounted for a highly
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significant but comparable amount of the variance in calculate selections, 46% and 

44% respectively. Accordingly, the possibility remains that either answer magnitude 

or problem familiarity could account for strategy selections in this experiment. Two 

lines of converging evidence, although failing to rule out the possibility that answer 

magnitude influences selection, support the problem familiarity-based account of 

selection. Firstly, for answer magnitude to influence strategy selection a model of 

selection akin to the early read account would be required. However, the 

implausibility of an early read account has already been outlined in this section. 

Secondly, Reder and colleagues have previously demonstrated by dissociating answer 

magnitude and problem familiarity that selection is determined by problem 

familiarity. In their priming methodology they systematically manipulated the 

frequency with which problems with a range of answer magnitudes, or components of 

those problems, were presented to participants in a pre-test phase. In a test phase they 

demonstrated that increased exposure to a problem (or its components) serves to 

increase its familiarity and the likelihood that the retrieve strategy is chosen in 

subsequent problem solving episodes (Reder & Ritter, 1992; Schunn et al, 1997). No 

effects of answer magnitude were reported demonstrating using their methodology 

that problem familiarity rather than answer magnitude determines selection.

If problem familiarity rather than answer magnitude does influence selection 

the question still remains as to why these two factors accounted for an almost 

identical proportion of the variance in calculate selections. One explanation can be 

found in an argument proposed by Siegler and Araya (2005). They stated that the 

frequency of exposure to a problem (and consequently the familiarity of a problem) is 

predicted by the magnitude of a problem’s answer. Studying learning materials they 

discovered that individuals are exposed to smaller problems more often than larger 

problems. This is reflected in the significant negative linear relationship between 

exposure to a problem (and therefore the familiarity of the problem) and the size of 

the problem which can be indexed by the magnitude of a problem’s answer. 

Accordingly, as found in the present experiment, a significant negative correlation 

between problem familiarity and answer magnitude would be expected.

One finding that could not be easily reconciled by the SAC model was that 

calculate selection latencies were made more rapidly than retrieve selection latencies. 

Schunn et al (1997) propose that retrieve/calculate selections are resolved by a single 

threshold against which FoK responses are subjected. To recapitulate, the activation
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level elicited by the problem terms of the most active node in memory determines the 

strength of the FoK. Low FoKs stem from low levels of relative activation and 

propagate a low probability of selecting retrieve. Conversely with a high FoK, where 

the relative spread of activation between nodes is disparate, the probability of 

selecting retrieve will be greater (Schunn et al., 1997). When considering that the 

SAC model posits a single threshold it would be predicted that retrieve and calculate 

selections (i.e., the decision not to retrieve) would be made at the same juncture in 

time. Accordingly, further specification of the selection criterion is required.

It may be possible that the SAC’s single threshold mechanism acts in tandem 

with a conditional rule forcing an extended search to find further information 

validating the selection (including the problem’s solution) if the activation level of the 

most active node is relatively, but not especially high. Evidence from related 

experimental paradigms supports this notion, suggesting that individuals search longer 

for answers to questions that they already know (Gruneberg, Monks & Sykes, 1977; 

Lachman & Lachman, 1980; Reder, 1987). Affording additional time to confirm 

whether retrieve should be selected allows the individual to obtain more information 

to verify the veridicality of the candidate response. However, an alternative 

explanation can be derived from the recognition memory literature. Explanations of 

the Fan effect (Anderson, 1983) suggest that the number of facts linked to a particular 

item regulate old (i.e., the item was evident in a study list) and new (i.e., the item was 

not seen in the study list) responses. Within this paradigm, effects of strength and 

interference have opposite effects on the time taken to retrieve items from memory. 

Generally it is established that by practising memory retrievals on particular items 

subsequent responses on the same item become faster (Yonelinas, 2002). However, 

the retrieval of facts rich in associates is slower than retrieval of items with few 

associates (Reder, 1988). This is because of the competition for the available, but 

limited, activation is greater than when there are few associates. Consequently the 

activation value required for one node to breach the threshold for retrieval is not 

reached as quickly when relative levels of activation at more than one node is 

equable. In the case of strategy selections, it is likely that there are fewer associates, 

or that the associates will have less strength for problems which are solved by 

calculate rather than retrieve selections. Accordingly, this interference account may be 

responsible for calculate selections being made more rapidly than retrieve selections. 

An alternative proposition is that separate threshold mechanisms may be responsible
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for retrieve and calculate selections. The SAC model proposes a single-counter 

mechanism in which the FoK determines whether the retrieve strategy should be 

selected. Here calculate selections occur by default, as a function of not choosing the 

retrieve strategy, conversely a dual-counter account (see Nelson & Narens, 1990) 

proposes that separate counters (and hence thresholds) determine selection. 

Accordingly, as separate thresholds determine retrieve and calculate selection 

responses can be returned at different points in time.

In summary, the present study has served to confirm the three key predictions 

of the SAC model. Firstly, that strategy selection is made very rapidly, within a 

timescale which indicates that selections are not determined by completed solution 

procedures. Secondly, that selections are made with a degree of accuracy and thirdly, 

that the familiarity of the problem, rather than the familiarity of the problem’s answer 

influences selection. The analysis presented in this experiment fails to rule out the 

possibility that answer magnitude influences selection (as examined in Appendix B), 

however, lines of converging evidence support a problem familiarity-based account as 

the most likely description of the selection process. The SAC model fails to account 

for the finding that calculate selections are made more rapidly than retrieve selections. 

Furthermore, the findings illustrate for the first time that pre-experimental familiarity 

influences selection and that an incentive scheme is not required to stimulate accurate 

responses. In Experiment lb a potential corollary of this experimental design is 

examined. It may be that the act of solving a problem after selecting a strategy serves 

to bias subsequent strategy selections. Specifically, by solving a problem after 

selecting a strategy, participants may be able to learn which strategy to correctly 

select for latter problems in the experiment (i.e., within-task learning). Furthermore, 

the following experiment affords an opportunity to test the veracity of the results 

revealed in the present study.

2.3 EXPERIMENT lb

Reder and colleagues’ Game Show design was originally based upon the 

assumption that problem-solving is characterised by two distinct phases; the strategy 

selection phase during which a strategy is chosen, followed by a solution phase in 

which the chosen strategy is executed in an attempt to solve the problem. Evidence 

from Experiment la serves to affirm this postulated order of processing. It was



57

evident that selections can be made quickly (i.e., before the answer can be retrieved 

from memory) and that they predict which strategy is actually used to solve a 

problem. As the focal remit of this thesis is the strategy selection mechanism, rather 

than the process by which a solution is derived from a deployed strategy, it is 

necessary to lesion the selection- and solution-phases to ensure that in this 

experimental series the two phases operate in isolation. In the Game Show studies the 

coupling of these phases was used for two purposes; firstly, as a means of testing the 

accuracy of selections, and secondly, to encourage within-task learning of the 

presented arithmetic problems. The stimuli they used were all difficult problems 

which at the start of the experiment could not be solved by retrieval procedures (e.g., 

double-digit operand multiplication problems). Repeated exposure to these stimuli 

and their components served to familiarise participants with these problems. Once 

familiarised, a greater percentage of retrieve selections were elicited in the selection- 

phase and in the solution-phase direct retrieval procedures were employed more often. 

However, Experiment la indicated that pre-experimental familiarity, as opposed to 

familiarity artificially induced within the experiment, can also influence selection. 

Accordingly, it is necessary to ensure that familiarity induced during the course of the 

experiment does not influencing selection in this experimental design which, as in 

Experiment 1 a, was attributed to pre-experimental familiarity.

To examine this potential confound, in Experiment lb the selection-phase was 

run in isolation (the selection-phase design), where the strategy selected (retrieve or 

calculate) and the time taken to select a strategy in each trial were recorded. The 

principle aim of the current study was to examine whether the act of solving a 

problem influences future strategy selections. This was done by contrasting 

performance in the dual-phase design to the selection-phase design. Specifically, 

examining whether feedback from the solution phase, which may reveal the accuracy 

of prior strategy selections, influences subsequent strategy selection. In the dual-phase 

design the solution phase acts as a probe of the strategy selected as it provides the 

participant with the opportunity to evaluate the accuracy of their strategy selections. 

This can be achieved by comparing the strategy chosen in the selection-phase to the 

strategy successfully used to solve the problem, providing a useful source of 

information which may direct future strategy selection. One possibility is that the 

presence of a probe may influence the strategies selected in latter problems. However, 

contrary to this position, Green, Cerella & Hoyer (2000), using a design which probed
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only half of their participants, found that the presence or absence of a probe did not 

influence selections. If feedback between the selection- and solution-phase does 

influence performance it would be predicted that the percentage of calculate (and 

hence retrieve) selections would differ significantly (see Rickard, 2004 for similar 

argument) in respect to the influence exerted by problem and answer familiarity 

between the two experimental designs. Therefore, if effects of sum but not answer 

familiarity are reported in the selection-phase design (as in the dual-phase design) this 

would indicate that feedback from the solution-phase does not modulate the effect of 

these variables upon the strategy selections reported in Experiment la. More 

importantly, that pre-experimental rather than experimentally induced familiarity can 

influence strategy selection. This confirms that the dual-phase design is representative 

of the normal processing order used in arithmetic problem-solving and provides an 

accurate measure of selection.

In the eventuality that the influence exerted by problem and answer familiarity 

does not differ between experimental designs the secondary aim of this study was to 

analyse of the validity of the strategy selection latencies reported in Experiment la. 

To recapitulate, mean selection latencies ranged between 500 ms and 600 ms, well 

within the allotted 850 ms time frame. This indicated that participants did not require 

the full time allocation to make accurate selections. Of greater interest is the finding

— contrary to all the models of strategy selection detailed in Chapter 1 of this thesis

— that calculate selections were made more rapidly than retrieve selections. 

Furthermore, only retrieve selection latencies were influenced by the familiarity 

manipulations, whereby latencies were longer for more familiar problems.

Before it is possible to draw further conclusions from these results, the present 

experiment was designed to replicate these three findings using the selection-phase 

design. In the dual-phase design, as soon as a strategy selection is made, participants 

were required to solve the problem. One possibility is that in addition to the selection- 

phase time limit, the immediate onset of the solution-phase acts as a further time 

pressure, forcing participants to rush their responses. Whereas in the experimental 

design employed in the present study, the secondary time pressure is circumvented as 

after each strategy selection (or expiry of the 850 ms time limit) the runtime program 

paused, prompting participants to click a ‘continue’ button to start the next trial. The 

same stimuli were presented in the current experiment as in Experiment 1 a, testing the 

influence exerted by problem and answer familiarity upon the selection process. It
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was predicted that if the feedback gleaned from the act of solving a problem (i.e., the 

probe) influences subsequent strategy selections the pattern of influence exerted by 

sum and/or answer familiarity in the present experiment would differ significantly 

from that evident in Experiment la. Furthermore, if the solution-phase in the dual

phase design influenced the amount of time required to make strategy selections, 

mean durations in the current experiment would differ from those evident in 

Experiment la.

2.3.1 Method

2.3.1.1 Participants

Twenty-four undergraduates from the School of Psychology at Cardiff 

University were given course credit for their participation. All were native English 

speakers reporting normal hearing and corrected or normal vision and had not 

participated in any of the other experiments in this series.

2.3.1.2 Materials & Design

See corresponding section in Experiment la, the same set of materials and 

experimental design was employed in the present study.

2.3.1.3 Procedure

Exactly the same procedure and instructions were given to participants as in 

Experiment la, with three exceptions. Firstly, whereas participants in Experiment la 

were informed that there would be two phases in each trial (i.e., a strategy selection- 

phase and a solution phase), here participants were told that they had to select a 

strategy in each trial. Secondly, upon completion of the selection-phase (i.e., 

immediately after a strategy selection was made, or upon expiry of the 850 ms time 

limit), a ‘continue’ button appeared on the screen which once clicked initiated the 

lead-in to the next trial. Finally, participants were advised that they would not be 

required to solve any of the problems at any point in the experiment.
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2.3.2 Results & Discussion

In this design the two measures taken were recorded in an identical manner to 

Experiment la, the actual strategy selection and the strategy selection latency. In line 

with the difficulty of the double-digit addition problems the calculate strategy was 

selected most often (see Figure 2.2). In respect to the principle aim of this study, there 

were main effects of sum familiarity upon calculate selections, F( 1, 23) = 34.58, MSE 

= 73.4, p < 0.01, replicating the pattern of results found in the dual-phase design in 

Experiment la. The calculate strategy was selected less often (and hence retrieve 

more often) for more familiar problems, and null effects of answer familiarity, F( 1, 

23) = 1.88, MSE = 135.4, p = .18, were evident. Therefore, it seems reasonable to 

conclude that in the dual-phase design, the feedback that can be extracted from the act 

of solving a problem did not contribute to the action of problem familiarity during the 

course of this experiment.
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Figure 2.2. The percentage of calculate selections by condition. Grey bars represent data from the 

selection-phase design employed in Experiment lb, white bars the data from the dual-phase design 

Experiment 1 a. Error bars represent the standard error o f the mean.

In total, 8.14% of strategy selections were not made within the 850 ms time 

limit compared to 12.2% in the dual-phase design. The mean duration of calculate 

selections were insensitive to answer familiarity, F(l, 15) = 3.81, MSE = .001, p  =
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.07, and sum familiarity; F(l, 15) = 2.55, MSE = .001, p  = .134, replicating the key 

effects observed in the dual-phase design used in Experiment la. Analysis of retrieve 

selection latencies revealed a minor divergence from Experiment la. In the dual-phase 

design retrieve selections were made more slowly on average for familiar problems 

than for unfamiliar problems. In this design however null effects of both sum and 

answer familiarity, F(l, 15) = .25, MSE = .006, p  = .62 and F(l, 15) = 2.87, MSE = 

.005,/? = .11, were evident, thus failing to replicate this effect.

The secondary aim of the current study was to assess the validity of the 

selection latency measure in respect to the average time taken to select both strategies. 

As Table 2.2 demonstrates, there was a significant interaction between answer 

familiarity and the strategy selected (i.e., retrieve or calculate), F(l, 38) = 5.23, MSE 

= .003,/? = .03. Simple effects reveal marginally significant differences between the 

mean latencies of retrieve and calculate selections but only in problems with familiar 

answers .F(l, 38) = 3.4, p  =.07. This finding partially replicates the effects evident in 

Experiment la where a significant difference between the duration of retrieve and 

calculate selections in each of the four within subjects conditions was found. Between 

subjects effects of experimental design (dual- vs. selection-phase) revealed that 

calculate selection latencies were significantly shorter in the dual- than selection- 

phase design, F(l, 46) = 8.34, MSE = .02, p  — .006. However, this effect was not 

evident for retrieve selection latencies, F( 1, 30) = 2.01, MSE = .03, p  = .17, where 

there was a higher percentage of missing responses. This suggests that the additional 

time pressure in the dual-phase design exerted by progression from selection- to 

solution-phase may have encouraged participants make responses more rapidly.

4 As in Experiment la, the degrees o f freedom for this analysis, and subsequent analysis in this section, 
are lower than 23 as only 16 out o f the 24 participants tested made retrieve selections in each o f the 
four conditions.



62

Table 2.2.

Summary by condition o f  mean retrieve (Ret) and calculate (Calc) strategy selection latencies (ms) fo r  

dual- and selection-phase design. Standard deviations are in parentheses.

Low Answer Familiarity High Answer Familiarity

Low Sum High Sum Low Sum High Sum

Familiarity familiarity Familiarity familiarity

Selection

Latency
Ret Calc Ret Calc Ret Calc Ret Calc

Selection- 609 568 603 594 638 562 608 582

phase (117) (79) (102) (74) (130) (84) (94) (80)

Dual-phase
568 510 

(102) (83)

599 510 

(84) (77)

547 522 

(121) (96)

589 506 

(84) (94)

In summary, the findings from this and Experiment la  reveal that the act of 

solving a problem and the feedback that can be derived from this act did not impact 

the influence exerted upon selection by problem and answer familiarity for these types 

of problems and in this experimental paradigm. That participants were not explicitly 

required to solve the problems after making a predicted strategy selection, a technique 

used by Reder and colleagues to experimentally induce familiarity, suggests that pre- 

experimental familiarity influenced selection in the current study experiment. Similar 

to Experiment la, strategy selection in this study was influenced by problem 

familiarity but not by answer familiarity such that more familiar problems elicited a 

greater percentage of retrieve strategy selections. Replication of the problem 

familiarity effect confirms that the dual-phase design provides a useful method to 

analyse the strategy selection process. However, it was found that selections were 

made more rapidly in the dual-phase design than in the selection-phase design. This 

suggests that in the dual-phase design the additional demand of solving the problem 

after making a selection forces participants to make more rapid responses in the 

selection-phase. As the influence of sum and answer familiarity upon selection was 

similar across experimental designs there is no reason to suspect that the added time 

pressure has a negative affect on the accuracy of strategy selections.

In respect to the secondary aim of the study, to replicate the other key effects 

illustrated in Experiment 1 a, the mixed findings were revealing. From the analysis of 

selection latencies, inconsistent effects of sum and answer familiarity between 

experimental designs suggests that familiarity effects upon selection latencies should
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be treated with caution and may as such be an unstable measure. Furthermore, as in 

Experiment la, it was evident that calculate selections were made more rapidly than 

retrieve selections. Contradicting the predictions of the SAC model (Reder & Ritter, 

1992; Schunn et al, 1997) this provides some supports Nelson and Narens (1990) 

dual-counter account of rapid memorial searches, as well as the interference account 

described within the Fan effect (Anderson, 1983). This finding also fits with an 

account in which a conditional rule dependant upon the strength of the FoK, affords 

the individual more time to search for information validating the proposed strategy 

selection. Further consideration of these hypotheses will be made throughout the 

course of the experiments presented in this chapter and in more detail in Experiments 

5a, 5b, 6a and 6b of Chapter 2.

The present experiment has served to replicate the key findings from 

Experiment 1 a, also demonstrating that the dual-phase design provides an appropriate 

methodology for investigating the influence of pre-experimental familiarity upon the 

selection process. Experiment 2a uses the dual-phase design to test a different class of 

double-digit addition stimuli that a number of strategy selection models have failed to 

model successfully.

2.4 EXPERIMENT 2A

Experiments la and lb demonstrate that strategy selection in arithmetic 

problems is influenced by a rapid assessment of the familiarity of a problem’s terms 

in line with the predictions of the SAC model. However, the specifications of the SAC 

model, built primarily upon results from double-digit multiplication stimuli, failed to 

account comprehensively for strategy selections in double-digit addition sums. In 

their Experiment 1, Reder and Ritter (1992) presented a mixture of addition and 

multiplication problems where participants consistently chose retrieve for double-digit 

addition — as opposed to multiplication — sums. Solution latencies indicated that a 

high percentage of retrieve selections were inaccurate: Participants reported they were 

made in an attempt to beat the incentive system used to stimulate rapid and accurate 

responses. Accordingly, the authors argued that in this design, the operator type (+ or 

x) was used as a cue to strategy selection and that the apparent lack of accuracy in 

participants’ strategy selections was motivated by the incentive scheme used in their 

design. Such a finding promotes the notion that the presence of specific problem
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features in a task, such as operator type, irrespective of the familiarity of the problem 

terms, may also influence rapid strategy selections.

In the present experiment, for the first time in the paradigm, a systematic 

examination of the influence exerted by specific problem features upon the selection 

process was undertaken. Rather than using an incentive scheme and presenting 

problems with different operators (i.e., + and x) similar to the Game Show studies, a 

problem addend manipulation was employed. Problems were comprised of integers 

which were multiples of 5 {decades, i.e., 10, 20, 30, 40... and fives, i.e., 15, 25, 35, 

45...). A number of sources of evidence converge upon the proposition that decade 

and fives numbers are processed in a different manner to other numbers of similar 

magnitude violating the assumptions of the problem size effect (Groen & Parkman, 

1972). For example, in arithmetic tasks problems comprising these types of addends 

are solved more rapidly and with lower error rates than problems comprising other 

numbers of a similar magnitude (Campbell, 1994; Campbell & Graham, 1985; 

Campbell & Oliphant, 1992; LeFevre, Sadesky & Bisanz, 1996). Furthermore, 

decades are ranked as highly familiar numbers (Gielen, Brysbaert & Dhondt, 1991) 

and are used very frequently in a range of calculation procedures to simplify complex 

problems. Another possibility is that the primacy of decades numbers in arithmetic 

tasks may arise from the organisational principles used by the verbal naming code of 

numerical quantities (e.g. thirty-one or seventy-nine) and consequently verbal 

encoding processes (Fayol & Seron, 2005, cited in Campbell, 2005; McCloskey, 

1992; McCloskey & Macaruso, 1995). English, German, Spanish, Italian and French 

verbal numerical systems are all constructed around a base of 10, e.g., twenty-one, 

thirty-four. To illustrate, a memorial representation for the number 5030 may be 

(5}10EXP3 (3}10EXP1, the digits in braces (e.g., {3}) indicate quantity

representations and the 10EXP« indicates an exponent of 10. For example, 10EXP3 

represents 1000 (McCloskey, 1992; McCloskey & Macaruso, 1995).

By manipulating the types of addend pairs in a problem, the present 

experiment was designed to examine whether the strategy selection process is affected 

by particular problem features; specifically, whether addends in a problem are both 

decades, fives or contain one decade and one fives addend. Furthermore, Experiment 

2a sought to replicate two findings from Experiment la while testing problems which 

were likely to be solved by a mixture of retrieval and calculate procedures, rather than 

just calculate procedures: firstly, that solution latencies correspond to the
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retrieve/calculate selection made in the selection-phase of each trial which testifies to 

the general accuracy of strategy selections, and secondly, that calculate selections are 

made more rapidly than retrieve selections, a finding that pertains to the underlying 

mechanics of the strategy selection mechanism.

2.4.1 Method

2.4.1.1 Participants

Twenty-four undergraduates from the School of Psychology at Cardiff 

University were given course credit for their participation. All were native English 

speakers reporting normal hearing and corrected or normal vision and had not 

participated in any of the other experiments in this series.

2.4.1.2 Materials & Design

The sum of each problem amounted to less than 100 and all addends were 

drawn from a sample of integers divisible by 10 (20, 30, 40, 50, 60, 70) or 5 (15, 25, 

35, 45, 55, 65, 75). Three levels of sum type were prepared, each level comprising 12 

novel problems: decades sums comprised two decade addends (e.g., 20 + 50), mixed 

sums contained one decade and one fives addend (e.g., 20 + 55) and the addends in 

fives sums (e.g., 25 + 55) were both fives. All problems were addition sums, each 

comprising two addends presented in the centre of the screen on one line, e.g., “40 + 

50”. The font used to present the sum was Arial, size 48 and none of the sums 

comprised tied addends (e.g., 40 + 40). Questions were arranged into different 

pseudo-random orderings for each participant. Sixteen practise problems were 

presented at the beginning of the experiment (see Appendix E, table E2, for stimuli).

2.4.1.3 Procedure

Procedural details were exactly the same as those employed in Experiment 1 a.

2.4.2 Results

2.4.2.1 Scoring Procedure

The same four measures were recorded as in Experiment la; the strategy 

selection (retrieve or calculate), the strategy selection latency, the given answer and
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the solution latency (see corresponding section in Experiment la for more detail). To 

briefly recapitulate, both latency measures were tagged to the preceding strategy 

selection, so in each trial a strategy selection latency and solution latency was 

recorded for either the retrieve or calculate strategy.

2.4.2.2 Strategy Selection

In accordance with the difficulty of the problems, the retrieve strategy was 

chosen in a higher percentage of trials than the calculate strategy. As Table 2.3 

illustrates, the percentage of retrieve selections was highest in the decades condition 

and lowest in the fives condition. A repeated measures ANOVA with three levels of 

sum type (decades, mixed and fives) revealed a significant main effect of sum type, 

F{2, 22) = 9.07, MSE = 291.74,/? = .001. Planned pairwise comparisons indicate that 

the percentage of retrieve selections was sensitive to the three levels of sum type. 

Retrieve was selected more often — hence calculate less often — in the decades 

condition than fives (p = .001), decades than mixed (p = .02) and mixed than fives (p 

= .03).

As in previous experiments, to ensure that the dependant relationship between 

retrieve and calculate selections is not confounded by the percentage of late 

selections, a repeated measures ANOVA, run on the percentage of late responses in 

each sum type condition was conducted. It was found that the number of late 

selections was not influenced by sum type, F(2, 22) = .9, MSE = 1.16, p = .41. This 

indicates that the percentage of late responses in the current experiment did not 

compromise the dependant relationship between retrieve and calculate selections.

Table 2.3.

Summary by condition o f  mean retrieve and calculate strategy selections (in %), strategy selection 

latencies (in ms) and solution latencies (in ms). Standard deviations in parentheses.

Decades Mixed Fives

Measure Retrieve Calculate Retrieve Calculate Retrieve Calculate

Strategy selected 82.6 12.5 69.8 26.4 56.9 43.4

(%) (30.9) (22.9) (43.5) (39.1) (43.7) (41.8)

Selection latency 509 416 556 515 567 505

(ms) (52) (77) (45) (48) (89) (62)

Solution latency 1426 1971 1829 2793 2904 3294

(ms) (218) (387) (380) (474) (459) (805)
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2.4.2.3 Selection Latency Analysis

Only in 9.26% of trials were strategy selections not made within the 850 ms 

time frame, a figure which compares to the 12.2% of selections excluded from 

Experiment la for the same justification. This indicates that despite the difference in 

dominant strategy selections between experiments (calculate in Experiment la, 

retrieve in the present experiment) participants were equally able to make rapid 

strategy selections within the time limit. Due to the low percentage of calculate 

selections returned in this study repeated measures ANOVA was not conducted on 

calculate selection latencies. Significant effects of sum type were revealed when 

considering the time taken to select the retrieve strategy, F(l, 16) = 9.49, MSE < 

0.01,/? = .002. Pairwise comparisons indicated that retrieve selection latencies were 

shortest in the decades condition, on average 47 ms faster than the mixed condition (p 

= .003) and 58 ms faster than the fives condition (p = .03). This effect may be more 

accurately recast as demonstrating the difference between the encoding demands of 

decades and the mixed and fives conditions, as only a 9 ms mean difference in 

retrieve selection latencies was evident between the mixed and fives condition. This 

indicates that selections were made most rapidly when both addends were divisible by 

10. It is proposed that this finding is largely contingent upon the time taken to encode 

the three different types of problems. Where decades addends are encoded more 

rapidly than addends in mixed and fives problems. As Table 2.3 illustrates, and 

similar to the findings from Experiments la  and lb, retrieve selection latencies were 

consistently longer than calculate selection latencies F( 1, 23) = 13.71, MSE -  .004,/? 

=  .001 .

2.4.2.4 Solution Latency Analysis

Error rates were negligible, 0.34% of sum solutions were incorrect in the 

decades condition, 2.08% in the fives and 2.43% in the mixed condition and only 

5.2% of solution latencies were excluded for exceeding 10 s. A repeated measures 

ANOVA revealed that solution latencies tagged to retrieve selections were influenced 

by the type of sum presented (decades, mixed or fives), F(2, 16) = 177.81, MSE =.11, 

p < .001. Pairwise comparisons revealed that solution latencies for retrieve selections 

were longer in the fives than decade conditions, longer in the mixed than decade and 

fives than mixed conditions (all ps < .05). Therefore, decades problems were solved 

most rapidly while fives problems evoked the longest solution latencies.
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When examining the accuracy of selections, solution latencies tagged to 

retrieve selections were on average shorter than solution latencies tagged to calculate 

selections in each condition, F(1, 23) = 49.22, MSE = .15, p < .001. This 

demonstrates, as predicted, that when retrieve was chosen in the selection-phase 

participants went on to solve the problem more rapidly in the solution-phase than 

when calculate was chosen in the selection-phase. Further analysis of the relationship 

between solution latencies and retrieve selections is illustrated in Figure 2.3. In the 

decades (r = -.73, p  = .03), mixed (r = -.85, p  = .004) and fives (r = -.72, p  = .01) 

conditions, significant negative correlations between solution latencies (arranged into 

in 500 ms groupings) and the percentage of retrieve selections illustrates that shorter 

latencies were evident where there was a higher percentage of retrieve selections 

confirming the accuracy of selections.

♦ Decades

■ Mixed

▲ Fi\es

Linear (Decades)
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Figure 2.3: Correlation between the percentage o f retrieve selections and solution latency group. 

Solution latency groups run from 0 s at 500 ms intervals up to 5 s, group 11 comprises all remaining 

responses from 5 s to 10 s latencies.

However, solution latencies in neither the mixed nor fives conditions met the 

criteria set at 1.4 s by other authors for a true direct retrieval (see Reder & Ritter, 

1992; Schunn et al., 1997; also Staszewski, 1988). In the Game Show studies solution 

latencies were recorded from the point of sum presentation to the initiation of a
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vocalised answer. Here, allowing for a typed response and recording up to the point of 

answer confirmation, latencies under 2 s may be more representative of direct 

retrievals. By this reasoning, as Table 2.3 illustrates, solution latencies tagged to 

retrieve selections in the decades and mixed conditions may represent accurate 

strategy selections, but in the fives condition longer mean latencies reveal that a 

mixture of retrieval and calculation procedures may have been used to solve the 

problems. Interestingly, when questioned at the end of the experiment, a number of 

participants admitted to selecting retrieve for fives problems even though with 

hindsight they realised that they actually solved some problems, such as 35 + 45 = ? 

using three — albeit very rapid — addition sums; for example, 30 + 40, 5 + 5 then 70 

+ 10. Accordingly, apparently incorrect retrieval selections in the fives condition may 

be attributed to an inaccurate definition of retrieval procedures rather than incorrect 

selection per se.

2.4.2.5 Covariate Analysis

Despite the influence of sum type upon the percentage of retrieve selections in 

this experiment which supports the notion that specific problem features influence 

strategy selection, it was necessary to examine whether item-level variables, such as 

the familiarity of the problems’ terms covaried significantly with sum type. If this was 

the case it may be that sum familiarity is responsible for the effects primarily 

attributed to sum type in the preceding sections of this analysis. Accordingly, two 

linear mixed models were run upon the percentage of retrieve selections in each 

condition in order to identify any potential covariates. Three covariates were 

considered, each of which shared a linear relationship to the percentage of retrieve 

selections; sum familiarity (the familiarity rating of both addends in a problem 

summed), the familiarity of the first addend and the familiarity of the second addend. 

Two models were tested, the first comprising sum familiarity as a covariate and sum 

type as a repeated measures factor (d f = 6, AIC = 152.79) which provided a 

significantly better fit to the data than the second model (p = .01) which was 

comprised of sum type as a repeated effect and the familiarity ratings of the first and 

second addends as covariates (df = 6, AIC = 160.57). Notably, in the sum familiarity 

model the repeated effect of sum type, F(2, 22.4) = 1532, p  < .001, and the covariate 

sum familiarity, F(l, 13.07) = 5.14,/? = .04, both reached significant levels suggesting 

that sum type was not solely responsible for the variation in the percentage of retrieve
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selections but that sum familiarity also played a role. To delineate between these two 

factors, effects of sum familiarity were analysed within the three sum type conditions 

(decades, mixed and fives). If the familiarity of a problem was responsible for the 

percentage of retrieve selections returned in each condition then a positive correlation 

between problem familiarity and the percentage of retrieve selections recorded would 

be expected. However, in each condition non-significant correlations were reported 

(all rs < .53, all ps > .07) indicating that problem familiarity effects were not 

masquerading as sum type effects. A series of regressions presented in Appendix C 

also confirm this finding, demonstrating that sum type is the greatest predictor of the 

retrieve strategy selections reported in this study.

2.4.3 Discussion

The results from the present experiment clearly replicate certain aspects of 

Experiment la  demonstrating that strategies can be selected rapidly and accurately, 

favouring the case forwarded by the SAC model. However, contrary to the SAC 

models predictions, and replicating the findings from Experiments la and lb, 

calculate selections were made more rapidly than retrieve selections. Of greater 

interest is the finding that retrieve strategy selections reported in this experiment 

appeared to be determined by specific problem features, specifically whether the 

addends in this experiment were decades or fives numbers. To illustrate, problems in 

the decades condition which comprised two addends divisible by 10 into integers 

elicited a greater percentage of retrieve selections than problems with either one 

addend divisible by 10 (i.e., mixed condition) or none (i.e., fives). This finding stems 

from the first systematic investigation of the influence exerted by specific problem 

features upon the selection process, illustrating that problem familiarity is not the sole 

determinant of strategy selection. Where problem features are shown to influence 

selection, in future experiments such effects will be termed selection-by-feature 

effects.

The Game Show studies have previously shown that selection in problems 

which violate the problem size appears to be based upon specific features inherent in a 

problem. Indeed the SAC model simulations include a conditional parameter “does 

participant decide to never retrieve for one o f the operators” (Reder & Ritter, 1992; 

Schunn et al., 1997, p. 12). Similarly, ACT-R has invoked additional assumptions in
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an ad-hoc fashion to model selection in problems divisible by 10 (Lebiere & 

Anderson, 1998). However, the specificity of such parameters stipulates that any 

additional parameters are identified in an ad-hoc fashion. The only model to include a 

mechanism with the potential to account for selection-by-feature effects is SCADS* 

(Siegler & Araya, 2005). In this model a feature detection mechanism, running in 

parallel with encoding processes, identifies both task relevant (e.g., the magnitude of 

the operands, whether the operands are ties) and irrelevant problem features (e.g., the 

size and colour of the operands). For example, in the current study a task relevant 

feature in the decades condition would be both addends end in a zero (i.e., a decades 

problem, 20 + 40 = ?). For each feature identified, SCADS* keeps track of two 

proportions; one proportion tracks the number of trials in which a particular feature 

was detected and in which a specific strategy (e.g., retrieve) produced good 

performance (i.e., a correct response and a faster solution latency than normal) 

relative to the total number of trials in which the feature was present. The second 

counter monitors the number of trials in which a particular feature was absent and the 

strategy produced unusually good performance relative to the number of trials in 

which the feature was absent. If a large enough difference between these two 

proportions exists over the course of several trials, the presence or absence of a 

particular feature is used to compute the potential strength of a strategy thus 

influencing the selection process (Sigler & Araya, 2005).

In isolation, the mechanism seems capable of accounting for the effects of sum 

type in the current study. However, to recapitulate, SCADS* not only bases strategy 

selections — which occur in a distinct selection-phase prior to strategy execution — 

upon feature detections, but also historical data concerning the prior success of 

strategy applications to specific problems, and the prior success of the strategy in 

general. The latter two measures are determined by the strength of the link between 

the representation of a problem and its answer, and hence on an experimental level 

would be indexed by the answer familiarity measure employed in Experiments la and 

lb. As null effects of answer familiarity were reported, the model as a whole is 

undermined. However, the structure of the feature detection mechanism may be 

informative of the manner in which specific problem features influence selection. 

Further examination of the functionality of this mechanism will be presented in the 

studies presented in the following chapter.
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To test the veracity of the findings reported in the present experiment, 

Experiment 2b seeks to replicate the key findings employing the selection-phase 

design and testing the same stimuli to identity whether within-task learning is 

responsible for the selection-by-feature effect. More importantly, it affords an 

opportunity to examine how potentially useful problem features are adopted by the 

selection process.

2.5 EXPERIMENT 2b

The current experiment was conducted for two purposes: Firstly, to replicate 

the selection-by-feature evident in Experiment 2a and secondly to examine whether 

the selection-by-feature effect is influenced by solving similar problems in previous 

trials. As in Experiment lb, the selection-phase design was used and the same stimuli 

presented in Experiment 2a were deployed.

In Experiment lb it was shown that pre-experimental problem familiarity 

influenced selection rather than experimentally induced familiarity as shown in the 

Game Show studies. However, as Experiment 2a illustrated, strategy selections for 

decade, mixed and fives problems were not influenced solely by problem familiarity 

but crucially by specific problem features. By lesioning the selection- and solution- 

phases of the dual-phase design, in the current experiment it was be possible to 

identify whether the problem features that were used to determine selection in 

Experiment 2a are identified as a consequence of selecting a strategy, then solving the 

problem. Or whether they were identified from arithmetic problem-solving episodes 

prior to the experiment and had been employed in instances prior to the experiment. 

As in Experiment lb where the pattern of influence exerted by the two familiarity 

manipulations (problem and answer) did not differ between the selection-phase and 

dual-phase designs the same rationale was adopted here. Null effects of sum type 

upon the percentage of retrieve selections (unlike Experiment 2a) would indicate that 

problem features are only learnt through the act of selecting a strategy then solving 

the problem within the experiment. However, if the percentage of retrieve selections 

made do vary by sum type this will indicate that the problem features that do 

influence selection have been derived from processing episodes prior to the 

experiment and thus the selection- and dual-phase designs are representative of the 

selection process used in real-world problem solving.
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Based upon the finding that sum type influenced the percentage of retrieve 

selections made, the secondary aim of the study was to examine some key 

comparisons derived from the previous three studies in this chapter. Firstly, that given 

the relative difficulty of these problems, in comparison to those presented in 

Experiments la and lb, the retrieve strategy should be selected more often than the 

calculate strategy. Secondly, in respect to the duration of strategy selections, calculate 

selections should be made more rapidly than retrieve selections, and finally, effects of 

sum type should be evident upon the duration of retrieve selections, whereby decades 

problems elicited the fastest retrieve selections, fives problems the slowest response.

2.5.1 Method

2.5.1.1 Participants

Twenty-four undergraduates from the School of Psychology at Cardiff 

University were given course credit for their participation. All were native English 

speakers reporting normal hearing and corrected or normal vision and had not 

participated in any of the other experiments in this series.

2.5.1.2 Materials & Design

See corresponding section in Experiment 2a, the same set of materials and 

experimental design was employed in the present experiment.

2.5.1.3 Procedure

The exact same procedure was employed as in Experiment lb and the same 

instructions were given to participants as those detailed in Experiment 1 a.

2.5.2 Results & Discussion

As in Experiment lb the only measures taken were the actual strategy 

selection and the selection latency. As Figure 2.4 illustrates, similar to the results 

derived from the dual-phase design, the retrieve strategy was selected more often than 

the calculate strategy. Furthermore, main effects of sum type were evident upon the 

percentage of retrieve selections made, F(2, 22) = 16.81, MSE = 156.21, p < .001, 

thus confirming that selection was influenced by the selection-by-feature effect. As
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participants had no experience of solving the problems within the experimental design 

adopted in the current study it was inferred that for a feature to be adopted by this 

mechanism the act of actually solving the problem is not necessary. A greater number 

of retrieve selections were evident in the decades condition than the mixed condition 

(p = .007), decades than fives and mixed than fives conditions (p < .001). To 

dissociate between selections based upon the selection-by-feature effect and a 

problem familiarity based mechanism, similar to Experiment 2a, effects of problem 

familiarity were analysed within sum type levels. A significant positive correlation 

between problem familiarity and the percentage of retrieve selections in each of the 

sum type conditions would indicate that selection was influenced by problem 

familiarity. However, non-significant correlations were reported in each condition (all 

rs < .52, all ps > .09), indicating that the selection-by-feature account provides the 

best explanation of performance.
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Figure 2.4: The percentage of retrieve strategy selections by condition. Grey bars represent data from 

the selection-phase design employed in the present experiment, white bars the data from the dual-phase 

design in Experiment 2a. Error bars represent the standard error o f the mean.

In respect to the time taken to select retrieve and calculate selections, the 

duration of retrieve selections was influenced by sum type, F(2, 22) = 17.11, MSE = 

.002, p < .001, whereby retrieve selections were made more rapidly in the decades (M 

= 527 ms), than the mixed (M = 560 ms) and fives condition {M = 608 ms). When 

comparing retrieve and calculate selection latencies between experimental designs
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(selection- and dual-phase), there was no significant difference for retrieve selections, 

F(l, 40) = 2.44, MSE = .006, p  = .13, indicating that the experimental design did not 

influence the time taken to select either strategy unlike Experiment lb.

The only other departure from the findings reported in Experiment 2a was that 

main effects of sum type upon the percentage of late selections were evident, F{2, 22) 

= 4.12, MSE = .48, p  = .03, indicating that a greater percentage of late selections was 

evident in the fives condition (M = 7.99%) than the mixed (M = 5.21%) or decades 

(M = 2.43%). This finding in itself is unsurprising and reflects the main effects of 

sum type upon the duration of retrieve selections, such that faster selections were 

made for decades problems, hence a lower overall likelihood of producing a late 

response. Longer latencies were evident in the fives condition, indicating a greater 

potential for late responses.

Table 2.4.

Summary, by condition, o f  mean retrieve (Ret) and calculate (Calc) selection latencies (in ms) for  

selection- and dual-phase design. Standard deviations in parentheses.

Decades Mixed Fives

Selection Latency Ret Calc Ret Calc Ret Calc

Selection-phase 527 (53) 472 (86) 560(54) 525(119) 608 (66) 561 (91)

Dual-phase 509(52) 416(77) 556(45) 515 (48) 567 (89) 506 (62)

In summary, the findings from the present experiment replicate the key 

findings reported in Experiment 2a, demonstrating that the act of solving a problem 

does not influence subsequent strategy selections and is not necessarily required to 

identify potentially useful features which are adopted by the selection-by-feature 

mechanism. That the same conclusion was drawn in Experiment lb suggests that this 

finding can be generalised across different types of problem and strategy selections 

(i.e., retrieve and calculate). Furthermore, all of the key findings in Experiment 2a 

were replicated here, establishing some key empirical signatures for the first time in 

this paradigm. Specifically, that sum type influenced the percentage of retrieve 

selections supports the case that problem features were not identified through the act 

of solving prior problems. This confirms that the dual-phase design is an appropriate 

test of selection for a range of problems. In addition, calculate selections were made 

more rapidly than retrieve selections, and sum type was shown to influence the
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duration of retrieve strategy selections such that selections for decades problems were 

made more rapidly than the other conditions. This confirms that rather than being 

sensitive to familiarity or feature manipulations per se, selection latencies are more 

sensitive to encoding demands, where decades numbers are encoded more rapidly. 

The final experiment presented in Chapter 2 is designed to investigate whether the act 

of selecting a strategy or being required make a strategy selection before solving the 

problem influences the amount of time taken to actually solve the problem and/or the 

accuracy of given answers.

2.6 EXPERIMENT 3

Experiment 3, which investigates the solution-phase in isolation (i.e., the 

solution-phase design), is designed as a test of the corresponding measures taken in 

the dual-phase methodology reported in Experiments la  and 2a. Findings from 

Experiments lb and 2b indicate that the act of solving a problem did not influence 

subsequent strategy selections made within the experiment. The current experiment 

investigates the opposite eventuality, that the act of selecting a strategy before being 

asked to solve the problem influences the manner in which the problem is then solved. 

The dual-phase design is contingent upon the fact that the order of processing 

(strategy selection, then strategy execution) reflects the natural order undertaken by 

problem solvers in real-world problem-solving (Reder & Ritter, 1992; Schunn et al, 

1997). Specifically, that the strategy selection made in the selection-phase of the dual

phase design determines which strategy is executed in the solution-phase. However, it 

may be that the transition between phases within each trial requires a re-initiation of 

the selection process at the outset of the solution-phase in the dual-phase design. If 

this were the case it would be predicted that there would be no difference in solution 

latencies between experimental designs (solution-phase vs. dual-phase), as in both 

designs the solution-phase of each trial requires selection and then solution processes. 

Conversely, the possibility remains that participants in the dual-phase design do not 

need to make another strategy selection when at the outset of the solution-phase. 

Accordingly, if this were the case solution latencies would be consistently shorter in 

the dual-phase design than the selection-phase design. The design also affords an 

opportunity to replicate the effects of the experimental manipulations employed in
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Experiment la (sum familiarity and answer familiarity) and Experiment 2a (sum type; 

decades, mixed and fives) upon the solution phase of the design.

To test the two key aims of the current study for these eventualities the stimuli 

used in Experiments la and 2a were employed here. Participants were required to 

solve problems without making a making a predicted strategy selection in a distinct 

phase first. To identify whether the order of processing in the dual-phase design 

mirrors the order of processing in normal arithmetic problem solving, two 

comparisons are presented. Firstly, the pattern of influence exerted by the 

experimental variables from Experiment la  (sum and answer familiarity) and 

Experiment 2a (sum type). If the interaction between sum and answer familiarity in 

Experiments la  and effects of sum type in Experiment 2a are revealed this would 

indicate that selecting a strategy in a distinct phase in each trial prior to solving a 

problem does not influence the problem-solving process. Secondly, by comparing 

solution latencies across designs, it will be apparent whether in the solution-phase of 

the dual-phase design the selection process is re-engaged to choose a solution 

strategy.

2.6.1 Method

2.6.1.1 Participants

Twenty-four undergraduates from the School of Psychology at Cardiff 

University were given course credit for their participation. All were native English 

speakers reporting normal hearing and corrected or normal vision and had not 

participated in any of the other experiments in this series.

2.6.1.2 Materials & Design

The stimuli presented in the current experiment were presented in Experiments 

la (sum familiarity/answer familiarity) and 2a (decades, mixed and fives), see 

corresponding sections in Experiment 1 a and 2a for details of the stimuli construction. 

The problems from each of the conditions were presented in a pseudo-randomised 

ordering and therefore not blocked by the experiment of origin. The experiment 

commenced with 5 practise questions, followed by a total of 112 experimental trials.
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2.6.1.3 Procedure

The experiment was programmed and run in Visual Basic 6.0. Participants 

were advised that they would be presented with a series of sums, one-by-one and that 

they would be required to solve each problem as quickly and accurately as possible. 

The experiment was self-paced, each trial commencing when participants pressed the 

enter key to initiate the lead-in to the trial. The lead-in commenced with a fixation 

mark (“X + X”), positioned in the centre of the screen, which flashed 3 times, each 

flash interleaved by 850 ms. On what would have been the fourth appearance of the 

fixation mark the problem appeared in its place. The problem remained visible on the 

screen until participants pressed the enter key to confirm their response which was 

entered using the numerical keypad on a standard qwerty keyboard. Both solution 

latencies and the given sum solution were automatically recorded by the runtime 

program.

2.6.2 Results & Discussion

Two measures were taken, the solution latency and sum solution. Solution 

latencies were recorded from the point at which the problem was initially presented 

on the screen until enter was pressed to confirm the answer. In the dual-phase studies, 

solution latencies were tagged to the preceding strategy selection made in the 

selection phase. As the selection-phase was not tested in this design solution latencies 

were analysed without the strategy tag. To facilitate a like-for-like comparison 

between experimental designs, solution latencies from the dual-phase studies were 

reanalysed, collapsed across the strategy selection tag thus matching the outputs from 

the current study. The following analyses will present the findings pertaining to the 

independent variables from Experiments 1 a and 2a separately.

2.6.1.1 Sum Familiarity and Answer Familiarity

Only 7.61% of problems were answered incorrectly (compared to 7.4% in the 

dual-phase design) and 5.66% of responses were not made within 10 s (4.7% in the 

dual-phase design). Similar to the findings from Experiment la, where solution 

latencies tagged to calculate selections were influenced by the interaction between 

sum and answer familiarity, the same interaction was significant here, F{ 1, 23) = 

12.13, MSE = .07, p  = .002. Simple effects indicated, similar to Experiment la, that
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effects of answer familiarity were only evident in familiar (as opposed to unfamiliar) 

problems, F( 1, 23) = 49.4, p < .001, and that for these types of problems, the act of 

selecting a strategy prior to solving the sum (as in the dual-phase design) does not 

influence performance when solving the problem. A mixed measures ANOVA with 

sum and answer familiarity as within subjects variables and design (solution- vs. dual

phase) as a between subjects variable revealed a non-significant difference between 

solution latencies across experimental designs, F (l, 46) = .4, MSE = 3.18, p = .53. If 

solution latencies were significantly shorter in the dual-phase than the single-phase 

design this would speak to the notion that participants only had to make a selection 

once, rather than twice in each trial. However, as there was a non-significant 

difference between the two designs (see Figure 2.5) this suggests that the transition 

between the selection- and solution-phases in the dual-phase design is characterised 

by a re-initiation of the selection-phase of the solution process, contrary to the 

predictions of the SAC model.
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Figure 2.5: Solution latencies in each sum type condition. Grey bars represent data from the solution- 

phase design employed in the present experiment, white bars the data from the dual-phase design in 

Experiment 1 a. Error bars represent the standard error o f the mean.

2.6.2.2 Sum Type

Only 1.62% of sum solutions were incorrectly answered (compare to 4.85% in 

the dual-phase design) and 7.64% of latencies exceeded 10 s (5.2% in the dual-phase
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design). Main effects of sum type were evident upon solution latencies in the current 

study replicating those observed in Experiment 2a, F(2, 22) = 230.65, MSE = .05, p < 

.001. This confirms that the finding that the act of selecting a strategy before solving a 

problem does not change the pattern of influence exerted by the experimentally 

manipulated variable sum type. Similar to the dual-phase design, decades problems 

were solved more rapidly than mixed or fives problems, and that mixed problems 

were solved more rapidly than fives problems (all ps < .001). When contrasting the 

mean solution latencies across experimental designs (see Figure 2.6), a mixed 

measures ANOVA with sum type and design (solution- vs. dual-phase) revealed a 

non-significant difference in latencies, F( 1, 46) = 3.1, MSE = .31, p = .08. 

Accordingly, as there was a non-significant difference between latencies in the single- 

and dual-phase designs, similar to the findings from the sum and answer familiarity 

problem set, it is possible that the selection process is re-initiated at the start of the 

solution-phase in the dual-phase methodology.
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Figure 2.6: Solution latencies in each sum type condition. Grey bars represent data from the solution- 

phase design employed in the present experiment, white bars the data from the dual-phase design in 

Experiment 2a. Error bars represent the standard error from the mean.

In summary, the pattern of effects exerted upon solution latencies in the 

current study replicates those evident in Experiments la and 2a. Accordingly, it is 

apparent that the solution processes employed in the dual-phase design are not
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distorted by the act of making a predicted strategy selection before solving the 

problem. This confirms that the same pattern of influence exerted by sum familiarity, 

answer familiarity and sum type upon solution latencies occurs whether participants 

are required to make predicted strategy selections in a distinct phase prior to solving 

the problem or are only required to solve the problem.

The findings from the present experiment also are revealing of the processing 

undertaken in the transition between the two phases in the dual-phase design. In the 

dual-phase design it is assumed by Reder and colleagues (Reder & Ritter, 1992; 

Schunn et al, 1997) that the two phases comprising the problem-solving process (i.e., 

selection then solution), as identified in previous experiments, are dissociable and 

follow each other in a set order. Reflecting this demarcation in the dual-phase design 

the solution-phase immediately follows the selection-phase. Reder and colleagues 

propose that for this experimental design selections made in the selection-phase 

determine which strategy is deployed in the solution-phase of the design. However, 

between phases there is a slight delay in the runtime programme as the screen is 

refreshed with instructions prompting the participant to solve the problem replacing 

those to select the strategy. One possibility is that this delay may force participants to 

make another strategy selection at the outset of the solution-phase. If this were the 

case it would be anticipated that solution latencies in the selection-phase and dual

phase designs would differ in duration reflecting the additional time required to make 

a second strategy selection in the dual-phase design. Results from this study however 

support another eventuality. There was a non-significant difference between solution 

latencies across experimental designs suggesting that in the dual-phase design a 

second strategy selection may be required at the outset of the solution-phase.

From the examination of these two key issues it is apparent that the difference 

in processing required of the participant by the single- and dual-phase designs does 

not serve to confound the effects of the experimental manipulations examined so far 

upon solution latencies. In the dual-phase design it may not be the case that 

retrieve/calculate selections made during the selection-phase determine the strategy 

selected to actually solve the problem. However, effects of sum type, answer 

familiarity and problem familiarity upon solution latencies replicate the findings 

revealed in Experiments 1 a and 2a. This confirms that both designs can be used with a 

large degree of confidence to assess the accuracy, i.e., the relation between predicted 

strategy selections and solution latencies.
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2.8 GENERAL DISCUSSION

The five experiments presented in Chapter 2 have examined the processes by 

which strategies are selected in mental arithmetic problems. The findings presented in 

these experiments demonstrate that the dual-phase experimental design is an effective 

and reliable tool for measuring the performance of the selection mechanism in 

arithmetic problem solving. Experiments 1 a and 2a showed that strategy selections in 

different types of problems are influenced by mechanisms sensitive to qualitatively 

distinct problem components (i.e., problem familiarity and specific problem features). 

Furthermore, that the strategy selection-phase temporally precedes the solution-phase 

in problem solving. Experiments lb, 2b and 3 confirm these findings, illustrating that 

the dual-phase design does not confound the accuracy of responses derived from the 

selection- and solution-phases of the design, supporting the notion that a distinct 

strategy selection phase precedes strategy execution. This confirms that problem 

familiarity and selection-by-feature effects are based upon pre-experimental 

familiarity and features identified and employed prior to the experiment, presumably 

in prior real-world problem-solving episodes. Together these experiments support the 

Adaptive class of selection models, in particular the SAC model (Reder & Ritter, 

1992; Schunn et al, 1997). A brief summary of the key findings from the five 

experiments will follow, with particular emphasis upon how the results contribute to 

the limited body of experimental research into strategy selection. Specific reference 

will be made to the type of factors that influence the selection process and the 

mechanisms required to process these factors.

Results from Experiments la, lb, 2a and 2b provide concrete support for the 

Adaptive class of strategy selection models (i.e., SAC, CMPL, ASCM, SCADS and 

SCADS*). Two avenues of investigation lead to this conclusion. I turn first to the 

rapidity with which strategy selections were made. To recapitulate, on average, 

selection latencies ranged between 450 ms and 650 ms and were consistently inside 

the 850 ms window indicating that selections were made well before a solution 

strategy could be completed. Consequently, it was not possible for participants to 

solve the problem and use hindsight to identify an appropriate strategy selection, the 

approach necessarily advocated by the Automaticity models in rapid selection tasks. 

In the ACT-R (Lebiere & Anderson, 1998) and DOA (Siegler & Shrager, 1984) 

simulations, following the Obligatory Activation assumption (Logan, 1988) the
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retrieval strategy is automatically applied upon presentation of a problem. 

Consequently, accurate predicted strategy selections (as required in selection-phase of 

the dual-phase design) can only be made when the retrieval production fails to return 

an answer, at which point it would be apparent to the simulation whether the answer 

could be retrieved or not. Similarly, in the ITAM model (Logan, 1988; 2002), where 

retrieval and calculation classes of strategy are run in parallel, racing to produce an 

answer to the problem, accurate selection in the dual-phase experimental design could 

only be returned upon completion of one of the strategy pathways.

A further account of rapid strategy selection was also examined in Experiment 

la. Rather than waiting for the retrieval production to complete it may be that an early 

read of the problem’s answer, which reflects the degree of progress made by the 

retrieve production in finding the correct answer, is used to guide responses in the 

rapid strategy selection task (see also Reder & Ritter, 1992; Schunn, et al, 1997 for 

similar argument). This possibility is not specified within any of the Automaticity 

selection models, but it is a logical extension (see Reder & Ritter, 1992) in tasks 

where responses are required within a timescale which precludes the full execution of 

the retrieval strategy. However, the prediction that problems with more familiar 

answers, and hence answers which should be retrieved more rapidly, should elicit a 

greater percentage of retrieve selections was not borne out by the data.

The second avenue of investigation centred upon the role played by problem 

familiarity in determining the strategy selections made in Experiments la  and lb. In 

accordance with the predictions of the SAC model, it was found that familiar 

problems elicit a greater percentage of retrieve strategy selections (hence fewer 

calculate selections) than unfamiliar problems. This suggests that the final level of 

activation (i.e., comprising base level + spreading activation) at the most active 

problem node in memory elicited by encoding a problem’s terms predicted 

performance in the selection task. It should be noted that based upon the outputs of a 

regression analyses presented in Appendix B an account of selection in which answer 

magnitude influences selection cannot be entirely discounted. However, converging 

evidence presented in Experiment la  provides supports the problem familiarity 

account. The Automaticity models which are based upon an obligatory search for a 

problem’s solution (Logan, 1988), were unable to account for the problem familiarity 

effect, paralleling item familiarity effects evident in a number of other paradigms 

which require rapid memory searches (Yonelinas, 2002). The CMPL account
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(Rickard, 1997; 2004) similarly struggles to account for this finding. Candidate 

strategies (retrieve and calculate) are activated in memory as a by-product of problem 

encoding. The competition between the search for the answer by the retrieval strategy 

and the answer of the first step of the calculate algorithm (as in CMPL calculation 

algorithms are decomposed into a series of retrieval productions) determines which 

strategy is selected. Once activation elicited by either strategy in the search for the 

problem’s solution breaches a threshold, the strategy is allowed to execute to 

completion, inhibiting the action of the losing strategy. Accordingly, as selection is 

determined by the activation elicited by the search for a problem’s answer, rather than 

the activation elicited by the problem itself, the CMPL is unable to account for the 

problem familiarity effect.

The findings from Experiment 2a and 2b serve to question the ecological 

validity of the SAC model, illustrating that problem familiarity does not account for 

predicted strategy selections on all types of problem. Here, it was apparent that 

particular problem features influence the strategy selection process. The covariates 

analysis in Experiment 2a illustrated that a model accounting for both problem 

features and problem familiarity provided the best fit to the data. That there were no 

problem familiarity effects within each of the sum types levels indicates that the 

particular problem feature took precedence over sum familiarity as the key 

determinant of selection in these problems. The SAC model and other models such as 

ACT-R have acknowledged that the presence of specific problem features influences 

selection, however, they are only specified as ad-hoc assumptions in the model. Only 

the SCADS* model formally specifies a pathway through which fhe selection-by- 

feature account could operate, positing that a feature detection mechanism runs in 

parallel with encoding processes identifying task relevant and irrelevant features 

(Siegler & Araya, 2005). The mechanism tracks the utility of each feature identified 

and records performance in the presence and absence of the feature to determine 

whether subsequent strategy selections should be determined by specific features. 

However, in essence this mechanism is still beset by the same limitations of the 

rudimentary ad-hoc assumptions employed by a number of models. The mechanism 

scans the problem for features that are specified at the outset of the model run and 

cannot assimilate new features online. Furthermore, as the model is fundamentally 

based upon the prior success of strategy applications, where success is indexed by the 

selection of a strategy producing a correct response, the key predictor of selection



85

would be answer familiarity which was shown to have no impact upon the selection 

process in Experiment 1 a.

A further finding, that calculate strategy selections were made more rapidly 

than retrieve selections, did not fit with any of the existing accounts of strategy 

selection. This effect was evident in problems which elicited both a high percentage 

of retrieve (Experiments 2a and 2b) and calculate (Experiments 1 and lb) selections 

indicating that it could not be attributed to the type of problem presented, or indeed 

the mechanism used to determine selections (i.e., problem familiarity or selection-by- 

feature). One possible account of this effect is that participants’ expectations may 

influence selection latencies. For example, in Experiment la  most problems elicited a 

high percentage of calculate selections. Accordingly participants may have become 

accustomed to choosing calculate, a switch from the ‘default’ strategy (i.e., calculate) 

to retrieve may have incurred a time cost during the selection-phase. However, in the 

fives sum type condition in Experiment 2a, where there was a more equitable 

selection of the retrieve (M  = 56.9%) and calculate (M = 43.4%) strategies, the effect 

was still present thus ruling out this possibility. Also, the effect was not promoted by 

experimental design. Calculate selections were made more rapidly than retrieve 

selections in the two experiments which tested the selection-phase in isolation 

(Experiments lb and 2b). Nor was it apparently contingent upon the dominant 

strategy selection, as calculate selections were made more rapidly when calculate was 

the dominant strategy (Experiment la) and retrieve was the dominant strategy 

(Experiment 2a). The finding in itself is counter-intuitive and contradicts the positions 

advocated by the existing selection mechanisms. For example, in the SAC model 

during the selection-phase the level of activation elicited by the encoding of the 

problem terms produces a feeling-of-knowing (FoK) which in turn is subject to a 

single-counter threshold (see Nelson & Narens, 1990 for discussion). If the FoK 

breaches the criterion, reflecting a relatively high level of activation, the retrieve 

strategy will be selected, conversely if activation is low, the calculate strategy will be 

selected. As SAC operates with a single threshold criterion (i.e., the decision whether 

to apply the retrieve strategy or not), in respect to the temporal dynamics of the 

selection process, both retrieve and calculate selections should therefore be made 

simultaneously. However, this is not the case in the experiments reported in the 

present chapter, nor in the original Game Show studies where an unprincipled 

relationship was evident between the duration of retrieve and calculate selections (see
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Table 1.1 in Chapter 1). Nelson and Narens (1990) also propose that the FoK response 

may be subjected to separate thresholds, one responsible for information pertaining to 

items that are known, the other for items that are not known. A detailed consideration 

of this hypothesis will be made in Chapter 3.

The empirical work in this chapter has served to evaluate the key predictions 

of the Automaticity and Adaptive class of models, establishing that the SAC model 

provides the most comprehensive account of how strategies are selected to date. Two 

key problem-level manipulations (i.e., pre experimentally derived problem familiarity 

and problem features) were shown to influence selection for the first time in the 

mental arithmetic literature. Furthermore, the dual-phase methodology was 

decomposed confirming that there was no bias in either phase attributable to the order 

of processing it required indicating that the outcomes derived from this design are 

consistently representative of those used in real-world problem-solving. In the 

following empirical chapter, sensitivity of the selection mechanism to problem- and 

task-level manipulations is examined in greater detail. The empirical work serves to 

extend the key predictions supported by the empirical outcomes detailed in the present 

chapter whilst building a more coherent overview of the functionality of the selection 

mechanism in real-world problem-solving episodes.
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CHAPTER THREE

3.0 ABSTRACT

Three key issues were examined in Chapter 3 arising from the problem-level effects 

evident in Chapter 2. When two problem feature manipulations were employed 

neither feature was found to influence selection (Experiment 4). However, in 

Experiment 5a, when a problem feature and problem familiarity manipulation was 

used an interaction between these two cues demonstrated that different cue 

configurations serve to control the effects of specific cues upon selection. 

Furthermore, problem familiarity effects upon selection were unaffected when 

conscious processing during the course of the experiment was precluded and task 

instructions designed to bias retrieve or calculate selections were employed 

(Experiment 6a). However, problem feature effects were shown to be-reliant on 

conscious processes in Experiment 5a but not 5b, and selections were biased by task 

instructions (Experiment 6b). These findings were evaluated in light of the existing 

models of selection and where necessary candidate mechanisms were identified in 

light of the limitations of these models.



3.1 INTRODUCTION

The empirical drive of this thesis so far has examined the existing accounts of 

selection whilst identifying the types of factors that influence retrieve and calculate 

strategy selections. In Chapter 2 it was shown that the problem-solving process is 

comprised of two distinct phases. In the first phase strategies are selected upon the 

basis of problem familiarity or specific problem features (i.e., the selection-by-feature 

effect). This is followed by a solution-phase, where the chosen strategy is executed in 

an attempt to solve the problem (see also Reder & Ritter, 1992; Schunn et al., 1997). 

Using a task in which rapid strategy selections were required, findings from Chapter 2 

clearly indicate that existing simulations of the selection process are unable to account 

in full for the findings detailed. In light of this conclusion the experimental work 

presented in Chapter 3 was designed to examine three key issues arising from the 

empirical work in Chapter 2, rather than directly evaluating predictions derived from 

the Adaptive and Automaticity accounts of selection. Of course, the findings from 

following experiments can be contrasted to the predictions of these models, but 

fundamentally the issues explored in the present chapter have received little, if any 

coverage in the existing models.

The first issue examined in this chapter centres upon the selection-by-feature 

effect identified in Experiments 2a and 2b. In two experiments reported in this chapter 

an opportunity was afforded to examine the empirical signature, i.e., the effects of 

problem features upon strategy selection. The second issue examined centres upon the 

notion that in real-world problem-solving the selection mechanism must be able to 

make rapid strategy selections for problems that comprise a number of cues to 

selection. Accordingly, in Experiments 4 and 5a two different configurations of 

problem-level factors are manipulated to examine how selections are determined 

when there are competing cues to strategy selection. The final key issue addressed in 

this chapter focuses upon how the context in which a problem is solved influences the 

selection process. Specifically, using two task-level interventions in which the 

availability of conscious processes (Experiments 5a and 5b) and task instructions 

(Experiments 6a and 6b) are manipulated it will be evident whether features of the 

processing context interact with the influence exerted upon selection by problem 

familiarity and selection-by-feature effects. In the remainder of this section the thrust 

of these issues will be outlined in greater detail.
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In Chapter 2, the familiarity of a problem’s terms and specific problem 

features was shown to influence strategy selection. Whilst problem familiarity effects 

have been identified in a number of studies (see Reder & Ritter, 1992; Schunn et al, 

1997), selection-by-feature effects have not previously been detailed. Two 

experiments in Chapter 3 provided an opportunity to examine how problem features 

influence selection in greater detail, as little is known about how these effects actually 

are realised in rapid strategy selection tasks. Experiments 2a and 2b demonstrated 

selection-by-feature effects such that the sum type (i.e., decades, mixed and fives 

problems) manipulation influenced the percentage of retrieve strategy selections 

returned. However, there has been no empirical evidence presented to date indicating 

whether problem feature manipulations influence calculate selections as well as 

retrieve selections or whether they influence selection in unfamiliar problems, as 

opposed to the familiar problems (i.e., decades, mixed and fives) employed in 

Experiments 2a and 2b. Furthermore, the covariates analysis conducted in Experiment 

2a revealed that problem familiarity covaried significantly with the percentage of 

retrieve strategy selections returned. From this it may be inferred that strategy 

selections attributed to the action of the selection-by-feature mechanism in those 

studies may have been incorrect. Addressing these outstanding questions and with the 

intent to develop a clearer understanding of the functional characteristics of the 

selection-by-feature effect, in Experiments 4 and 5a problem features were 

manipulated in unfamiliar problems designed to elicit a high percentage of calculate 

selections.

The analytical approach adopted in the Chapter 2 was based upon the 

predictions derived from existing models of strategy selection. However, all of these 

models, barring the SCADS* model assert that selection in the dual-phase 

experimental paradigm is determined by a single factor, such as problem familiarity 

(i.e., SAC) or the familiarity of the problem’s answer (ACT-R, IT AM, DO A, CMPL). 

In the SCADS* model (Siegler & Araya, 2005), four sources of historical data, 

termed as global, featural, problem-specific and novelty data, are evaluated when 

making a strategy selection. The relative weighting of each of the data sources is 

entered into a stepwise regression which computes the predicted strength of each 

candidate strategy. Unfortunately, due to the complexity of this simulation and its 

reliance upon modelling large data sets it was not possible to obtain testable 

predictions from this account of cue combination that could be assimilated into the
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empirical approach employed within this thesis. As there are no other empirical or 

theoretical accounts of how multiple sources of information (or cues to selection) 

might combine to influence selection within the arithmetic strategy-selection literature 

there is no foundation upon which to ground further consideration of this issue. 

Excepting Experiments la and lb, where effects of problem familiarity and not 

answer familiarity were evident, in Chapter 2 problem-level manipulations (i.e., 

problem familiarity or problem feature) were examined in separate experiments where 

other factors shown to influence selection were controlled. However, this approach is 

unlikely to mirror processing in real-world scenarios where the number and type of 

factors that influence selection are not controlled. Accordingly, to tap this facet of the 

selection mechanism in full it is necessary to understand how multiple cues, of 

different types, serve to elicit retrieve and calculate strategy selections. For example, 

when making a selection, do particular types of problem-level manipulation take 

precedence over others, or does the influence exerted by both types of manipulation 

interact? Experiment 4 examines the influence exerted upon selection by two problem 

features in a single experiment. In extension to this rationale, Experiment 5a examines 

whether problem feature or problem familiarity manipulations take precedence, or 

whether their influence upon selection is derived from an interaction between the two 

factors

When considering how the context in which a problem is solved influences 

strategy selection, within the problem-solving literature it is proposed that there are a 

range of candidate factors, aside from problem-level manipulations, that may 

influence strategy selection. For example, in a complex mental arithmetic problem

solving task Cary and Carlson (1999) demonstrated that the availability of working 

memory aids dictated which strategy was actually used to solve a problem. If an aid 

(i.e., pen and paper) was available, the strategy participants selected to solve the 

problem took advantage of the aid. Alternatively, if there was no aid available, 

participants used a problem-solving strategy that minimised the demands placed upon 

working memory resources. From this example, it is apparent that the influence 

exerted by the context (i.e., the availability of an aid) in which the problem is solved 

is inseparable from way the problem is actually solved and therefore the strategy 

chosen to solve the problem. In Chapter 2 of this thesis, the potential influence 

exerted by the context in which a problem was solved can be appreciated by 

examining an overview of the experimental designs employed and the findings
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revealed. To illustrate, when considering the findings revealed in Chapter 2, the 

results from experiments employing the dual-phase design (Experiments la and 2a) 

were successfully replicated in experiments testing the selection-phase (Experiments 

lb and 2b) and solution-phase (Experiment 3) in isolation. From this analysis it was 

demonstrated that effects of the processing context, i.e., whether the problem is solved 

after making a strategy selection or not, also if participants are only required to solve 

the problem rather than making a predicted strategy selection before solving the 

problem did not impact problem familiarity or selection-by-feature effects. 

Accordingly, it was from this overview of the experiments that a task-level (or the 

context in which strategies are selected, or problems solved) did not interact with the 

influence exerted by problem familiarity of problem features upon selection

Three experiments in this chapter sought to identify two further components of 

the problem-solving episode that may influence selection. Experiments 5a and 5b 

investigated whether conscious processes influence problem familiarity and selection- 

by-feature effects. In the Chapter 2 effects of both problem-level manipulations were 

attributed to the action of the selection mechanism. However, a hitherto unexplored 

possibility is these effects are facilitated by other cognitive mechanisms, in particular 

the selection-by-feature effect. Drawing upon findings from related paradigms where 

memorial searches determine performance, such as the Feeling of Knowing literature 

(Botvinick et al, 2001; Koriat, 1993; Koriat, Ma’ayan & Nussinson, 2006; Nelson & 

Narens, 1990; Schwartz & Metcalfe, 1992) and recognition memory literature (e.g., 

Hirschman & Henzler, 1998; Yonelinas, 2001; 2002) it was hypothesised that a 

conscious appraisal of a problem’s terms (Cary & Reder, 2002) may be responsible 

for the selection-by-feature effect. In Experiments 5a and 5b, a secondary task 

(articulatory suppression) was employed in order to impair a conscious appraisal of 

the specific factors inherent in a problem and of the familiarity of the problem during 

the course of the selection task. By inhibiting this process it will become evident 

whether strategy selections influenced by problem familiarity or problem features 

stem from the selection mechanism itself, or a separate process contingent upon 

conscious processing during the task. In Experiments 6a and 6b a further type of task- 

level manipulation was employed. Specifically, the type of instructions given to 

participants was manipulated to examine whether biases in instructions are reflected 

in selections. Previous mental arithmetic problem-solving studies have shown that 

task instructions emphasising usage of the retrieve strategy increased the number of
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self-reported retrieve selections made by participants after they solved problems (Kirk 

& Ashcraft, 2001, see also Blote, Van der Burg & Klein, 2001). Similarly, task 

instructions emphasising usage of the calculate strategy served to elicited calculate 

selections more often.

The findings from these studies, where possible, are contrasted against 

predictions derived from the existing models of strategy selection. Due to the 

limitations inherent in these models in respect to their specificity and ability to 

account for the findings presented in the thesis to date, the findings from these studies 

serve to detail the strategy selection mechanism to a greater resolution.

3.2 EXPERIMENT 4

In Chapter 2 evidence has been presented to suggest that strategy selection is 

influenced by two key factors, problem familiarity and specific problem features. In 

Experiments la and lb, selection was influenced by a rapid assessment of the 

familiarity of a problem’s terms. The stimuli used in these experiments elicited a high 

percentage of calculate selections and there were no problem feature manipulations 

employed which may have influenced selection. In contrast, retrieve and calculate 

selections in Experiments 2a and 2b selection were sensitive to the selection-by- 

feature effect such that obvious problem features (i.e., decade, mixed and fives) 

influenced selection. The problems presented in that experiment were relatively high 

in familiarity in contrast to those used in Experiments la  and lb and elicited a high 

percentage of retrieve selections. Bridging the manipulations employed in these 

experiments this study was designed to investigate two hypotheses. Firstly, to identify 

whether in unfamiliar sums, where problem familiarity is controlled and problem 

features are evident, if the selection-by-feature effect influences calculate selections. 

As prior experiments have only examined the selection-by-feature effect in decades, 

mixed and fives problems the current study will reveal whether the effect is limited to 

highly familiar problems (i.e., decades, mixed and fives) or whether its influence 

extends to all problems upon the familiarity dimension. Furthermore, selection-by- 

feature effects have only been observed in problems which elicit a high percentage of 

retrieve selections. As the problems presented in this study do not contain any 

numbers divisible by 5 or 10 into integers it is predicted that the calculate strategy
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will be selected most often. Problem feature effects would indicate that the selection- 

by-feature effect can also be generalised to calculate selections.

Secondly, an opportunity is afforded to identify further types of problem 

feature that influence selection. To date, within the strategy selection literature only 

two problems features have been shown to influence selection: operator type (Reder 

& Ritter, 1992), where problems with different operators are presented within a task. 

Also the sum type manipulation used in Experiments 2a and 2b in this thesis (i.e., 

decades, mixed and fives problems). In the current study participants were presented 

with unfamiliar double-digit addition problems, similar to those used in Experiments 

la and lb, for which it was predicted that a high percentage of calculate selections 

would be returned. Two specific problem features were manipulated, accordingly, any 

variation in the percentage of calculate selections made across conditions would 

denote the influence of the particular problem features upon strategy selection. 

Problems were constructed from two classes of problem feature, the odd or even 

status of the addends and the relative magnitude of the addends. In non-decades and 

non-fives sums such as 21 + 23  or 22 + 24 each addend in a problem may be 

categorised by its odd or even status. Evidence from arithmetic solution verification 

tasks (e.g., 26 + 22 = 59, true or false?) which employed problems which did not 

contain decade or fives addends suggests that adults (Lemaire & Fayol, 1995; 

Lemaire & Reder, 1999) and children (Lemaire & Siegler, 1995) are sensitive to the 

odd or even status of the addends when required to verify the accuracy of a problems 

solution. Accordingly, for the manipulation addend status three types of problems 

were constructed containing addends which were both even numbers, both odd 

numbers and problems with one odd and one even addend. On a structural level, in 

this manipulation the three levels were designed to mirror the manipulation of 

decades, fives and mixed problems presented in Experiments 2a and 2b. It was 

anticipated that problems comprising two even addends would be solved more rapidly 

than problems comprising one or two odd addends. This would be indicative of a 

violation of the problem size effect (Groen & Parkman, 1972) which stipulates that 

solution latencies increase in a linear trend with the magnitude of the addends. Such a 

finding would indicate that the selection mechanism utilises the odd or even status of 

the addends as a cue to strategy selection.

The second factor manipulated here, the relative magnitude of the addends, 

was operationalised for two purposes. Firstly, to identify whether the mechanism
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responsible for the selection-by-feature effect is also sensitive to this problem feature. 

If so, it would be predicted that problems with addends of a similar magnitude would 

elicit a greater percentage of retrieve selections than problems with disparate addends. 

Secondly, whereas, other manipulations of problem features (i.e., sum type, and 

addend status) focus upon the correspondence between the problem features inherent 

in both addends (e.g., both addends are decades numbers) this feature would be 

identified by a more complex assessment of the relationship between the two 

numbers. It may be that one addend is processed in the context of another, where the 

smaller number is compared to the larger addend which acts as a starting point, or 

anchor, for the assessment. Evidence from numerical processing paradigms suggests 

that if this were the case, a positive correlation between processing time and relative 

addend magnitude would be expected (Brysbaert, 1995; Brysbaert, 2005; Fayol & 

Seron, 2005). Faster strategy selections would be predicted for problems with a 

similar, rather than disparate magnitude, as less time is required to count from the 

larger number to the smaller number. Alternatively, a second possibility is that the 

magnitude of one addend is compared directly to another, with neither addend acting 

as an anchor. In number comparison studies (e.g., Moyer & Landauer, 1967; Ratinck 

& Brysbaert, 2002), a process commonly associated with arithmetic problem solving 

(Dehaene, 1992), participants are able to identify 2 as the smaller number in the pair 

2-8 more rapidly than in 2-3. Accordingly, if problems comprising addends of a 

disparate magnitude elicit faster strategy selections than those with a similar 

magnitude, this would indicate that the addends are being compared with each other 

in the strategy selection process.

Participants engaged in the same dual-phase methodology as used in 

Experiments la and 2a. Six experimental conditions were constructed based upon a 

factorial manipulation of two types of problem feature, addend status {odd, even, and 

mixed odd and even addend pairs) and relative addend magnitude {similar or 

disparate). Effects of addend status upon the percentage of calculate selections made 

would indicate that problem features influence calculate strategy selections (rather 

than only retrieve selections) and also problems relatively low in familiarity. 

Furthermore, effects of the relative addend magnitude manipulation upon time taken 

to select the calculate strategy will provide insight into whether number comparison 

or anchoring processes are used by the selection process to analyse problem features.
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3.2.1 Method

3.2.1.1 Participants
Twenty-four undergraduates from the School of Psychology at Cardiff 

University were given course credit for their participation. All were native English 

speakers reporting normal hearing and corrected or normal vision and had not 

participated in any of the other experiments in this series.

3.2.1.2 Materials & Design

The addends in each problem summed to less than 100 and were drawn from a 

sample of numbers ranging from 12 to 87. All of the problems in the stimulus set 

were double-digit addition problems and presented in an identical fashion to 

Experiments la  and 2a using the dual-phase design. Two variables were investigated; 

addend status (even, odd or mixed) and the relative magnitude of the addends. Even 

problems comprised two even number addends (e.g., 16 + 18), odd problems 

comprised two odd number addends (e.g., 17 + 19). Mixed problems comprised one 

odd and one even number addend (e.g., 16 + 19), the ordering of which was 

randomised in the problems presented within the stimuli set. The difference in 

magnitude between the first and second addends in similar relative magnitude 

problems ranged from 1-7 (e.g., 23 + 24 or 31 + 38). Addends in the wide magnitude 

conditions differed by a minimum of 32 and a maximum of 73. The six experimental 

conditions were contrasted in a repeated measures design. Participants completed 88 

trials in total, comprising 12 problems from each experimental condition which were 

preceded by 16 practice trials (see Appendix E, table E3, for stimuli).

3.2.1.3 Procedure

See Experiment la for detailed exposition of the procedure employed in the 

current study, also for details of the instructions given to participants at the outset of 

the experiment.

3.2.2 Results

3.2.2.1 Scoring Procedure

As in Experiments la  and 2a four measures were recorded during the 

experiment; strategy selection, strategy selection latency, problem solution
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solution latency. Full details of how and when the measures were recorded can be 

found in the corresponding section in Experiment la.

3.2.2.2 Strategy Selection

A repeated measures ANOVA indicated that there was no significant effect of 

either manipulation; addend status, F(2, 22) = 1.87, MSE = 1.22, p  = .18 or relative 

addend magnitude, F(1, 23) = 1.30, MSE = 1.73, p  = .27, upon the percentage of late 

responses. This confirms that the experimental manipulations did not influence 

participants’ propensity to produce late responses.

To identify the influence exerted by the two manipulations of problem feature 

a 2 (relative magnitude; similar, disparate) x 3 (addend status; odd, even and mixed) 

repeated measures ANOVA was conducted upon the percentage of calculate 

selections made by participants. This reveals, as Figure 4.1 illustrates, that selection of 

this strategy was insensitive to both the relative magnitude of the addends; F(l, 20) < 

.001, MSE = 23.15, p — 1, and addend status, F(2, 19) = .09, MSE = 51.84, p  = .92, 

demonstrating that neither problem feature influenced the selection process. As 

neither problem feature manipulation was shown to influence calculate selections an 

item-level covariates analysis was run to identify the item-level factors that may have 

influenced selection. The same procedure and four models tested in Experiment la 

were applied to this data set (see also Appendix A). The magnitude model (magnitude 

of the first and second addends as covariates; d f= l ,  AIC = 364.02) and familiarity 

model (familiarity of first and second addends as covariates; d f  = 7, AIC = 362.4) 

provided comparable fits to the data. As did a model containing both sum familiarity 

and answer familiarity as covariates (df = 7, AIC = 365.85), each model sharing the 

same number of parameters. A model containing only problem familiarity as a 

covariate (df= 6, AIC = 359.66) provided a significantly better fit to the data than the 

other three models (ps = .01), suggesting that problem familiarity contributed to 

strategy selections in the present experiment in the absence of problem feature effects 

sought here.
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Figure 3.1: The percentage of calculate strategy selections returned in each condition. Error bars 

represent the standard error of the mean.

3.2.2.3 Selection Latency Analysis

In total, 11.3% of the strategy selections were not returned within the 850 ms 

timeframe allowed for responses in this phase of the experiment. A 2 (relative 

magnitude; similar, disparate) x 3 (number status; odd, even, mixed) repeated 

measures ANOVA run on the mean calculate selection latencies revealed null effects 

of addend status, F{2, 18) = 0.6, MSE = .004, p  = .94, and relative magnitude, F(l,

19) = 0.33, MSE = .003, p = .57. Similarly, no effects of addend status or relative 

magnitude were evident upon the relatively small percentage of retrieve selection 

latencies; F(2, 7) = 0.22, MSE = .007, p  = .81, and F(l, 8) = 0.29, MSE = .006, p = 

.87.
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Table 3.1.

Summary, by condition, o f  mean retrieve (Ret) and calculate (Calc) selection latencies (in ms) and 

solution latencies. Standard deviations in parentheses.

Similar Magnitude Disparate Magnitude

Even Odd Mixed Even Odd Mixed

Selection
Ret

539

(78)

499

(111)

521

(63)

492

(110)

533

(H I)

507

(86)

Latency (ms)
Calc

525

(92)

544

(47)

537

(51)

542

(59)

532

(56)

551

(67)

Ret
3236 3708 3565 2543 3429 3063

Solution (633) (1177) (483) (789) (751) (513)

Latency (ms)
Calc

4664

(1536)

4508

(1051)

3752

(589)

3556

(410)

3901

(571)

3921

(575)

3.2.2.4 Solution Latency Analysis

Only 6.28% of solution latencies were excluded for exceeding 10 s and 4.1% 

of problems were solved incorrectly. As Table 4.1 illustrates, solution latencies tagged 

to retrieve selections made in the selection-phase were significantly shorter than those 

tagged to calculate selections F(l, 27) = 30.28, MSE = .49, p  < .001. However, the 

mean solution latencies tagged to retrieve selections exceeded 2.4 s, suggesting that 

calculation procedures were used to solve these problems. A 2 x 3 repeated measures 

ANOVA revealed a significant interaction between relative magnitude and addend 

status for solution latencies tagged to calculate strategy selections, F(2, 18) = 5.66, 

MSE = .49, p  = .01. Post-hoc comparisons demonstrate that there was a simple effect 

of addend status (i.e., even, odd, mixed) upon solution latencies in problems 

comprising addends with a relatively similar magnitude, F(2, 18) = 4.34, p = .03, and 

also problems with addends of a disparate magnitude, F{2, 18) = 7.62, p  = .004. The 

interaction also revealed that problems comprising addends of a similar relative 

magnitude which had mixed addends were solved more rapidly than problems with 

odd addends (p = .01). Furthermore, that for problems with a disparate relative 

addend magnitude even problems were solved more rapidly than both mixed (p = .02) 

or odd problems (p = .01). From this it is tentatively suggested that problems with 

either one or two even addends in are solved faster than problems with two odd 

addends, irrespective of the relative magnitude of the addends in a problem. More 

tellingly however, simple effects of relative addend magnitude were only found in
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odd, F(l, 19) = 8.14, p  = .01, and even addend problems, F (l, 19) = 5.93, p  = .03, 

such that problems with disparate addends magnitude were solved more rapidly than 

problems with a similar relative magnitude.

3.2.3 Discussion

Experiments 2a and 2b demonstrated that particular problem features (i.e., the 

presence of decades and fives addends) influenced the strategy selection process via a 

selection-by-feature sensitive mechanism. In the current study the selection 

mechanism was found to be insensitive to the odd or even status of the addends and 

the relative magnitude of the problems, indicating that the selection-by-feature effect 

did not influence selection. The null effect of relative addend magnitude upon 

selection latencies indicates that the selection mechanism does not set one addend as 

an anchor against which the other addend is compared. Furthermore, these null effects 

demonstrate that selection is not contingent upon a comparison between the 

magnitudes of both addends in a problem. These findings fit with the covariates 

analysis which revealed that problem familiarity, rather than the magnitude of the first 

and second addends covaries significantly with selection of the calculate strategy. 

This suggests that both addends in a problem are viewed as a whole, rather than as 

two separate addends and that selection of the calculate strategy in the current study 

was influenced by problem familiarity rather than specific problem features.

When considering the null effects of the two problem features manipulated it 

may be that participants simply did not appreciate the specific problem features. In the 

experiments reported in Chapter 2, effects of sum type (decades, fives and mixed) and 

problem familiarity were evident not only in strategy selections, but also in solution 

latencies. This suggests that a linkage between the factors that influence the selection 

process and solution latencies exists and, as highlighted in Chapter 1, stands as a key 

indicator of accurate performance. It is proposed that the linkage between factors that 

influence strategy selection and solution latencies are likely to stem from two sources. 

Firstly, it may be that a conscious evaluation or appreciation of the particular problem 

features inherent in a problem (or stimulus set) maybe required. Within a problem 

there are many features that could potentially influence selection which could be 

appreciated within the 850 ms time frame imposed upon strategy selections in this 

design. For example, the colour or size of the addends (Siegler & Araya, 2005) or the
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operator type (Reder & Ritter, 1992). Considering that sum type effects in Experiment 

2a and problem familiarity effects in Experiment la  were reflected in both the 

percentage of strategy selections and solution latencies it seems that selection-by- 

feature effects may only occur if the individual appreciates that problems with a 

particular feature are solved more rapidly than problems without that feature. Hence, a 

key signature of the selection-by-feature effect may be effects of a particular problem 

feature upon both strategy selection and solution latencies. However, the interaction 

between addend status and relative addend magnitude revealed in solution latencies in 

the present study was not mirrored in the percentage of calculate strategies reported in 

this study questioning such a notion.

A distinct possibility is that the proposed correspondence between effects of 

the experimental manipulations upon both strategy selection and solution latencies 

was not evident here due to the complexity of the experimental design. In the current 

study the factorial manipulation of addend status (comprising 3 levels) and relative 

addend magnitude (comprising 2 levels) may have served to reduce the salience of 

these problem features. To illustrate, the factorial manipulation necessitated that there 

were 6 different problem conditions within the stimulus set and accordingly the 

problem features may have not been apparent to participants. To examine this 

eventuality and the results from the covariates analysis run in Experiment 4, in 

Experiment 5a only one problem feature (addend status) was employed in tandem 

with a manipulation of problem familiarity. Furthermore, Experiment 5 a examined 

whether a conscious appreciation of the problem features inherent in a set of problems 

is necessary for the selection-by-feature effect to influence selection. To do so a 

secondary task, articulatory suppression, was used to preclude conscious processing 

within the task.

3.3 EXPERIMENT 5a

This study was designed to address two key issues that arose in Experiment 4. 

Firstly, to examine why the problem features manipulated in that study failed to 

influence strategy selections, and secondly, to investigate whether consciously 

directed processes were responsible for the identification of the problem features 

employed responsible for selection-by-feature effects. In respect to the first aim, it 

was shown in Chapter 2 that effects of the experimental manipulations in the
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selection-phase were largely mirrored by effects of the same manipulation upon 

solution latencies. For example, in Experiment la, a higher percentage of retrieve 

selections were made for relatively familiar problems and those problems were solved 

more rapidly than unfamiliar problems. Similarly, in Experiment 2a, a greater 

percentage of retrieve selections was made for decades than fives problems and 

solution latencies were significantly shorter in the decades condition than fives 

condition accordingly. However, in Experiment 4, there were null effects of the two 

types of problem features manipulated upon both the selection- and solution-phases of 

the experiment.

Three possible explanations for the null effects evident in the previous 

experiment are considered. Turning first to the most straightforward explanation, it 

may be that the participants were simply insensitive to the relative magnitude of the 

addends paired within a problem. However, it was anticipated that the addend status 

manipulation would influence selection as this manipulation is analogous to the sum 

type (decades, mixed and fives) manipulation used in Experiment 2a and 2b. To 

illustrate, in both manipulations, the addend pairs in a problem could be considered in 

respect to a categorisation of the types of addends comprising the pair. For example, 

both addends are decades numbers, or both addends are even numbers. Alternatively, 

the null effects evident in Experiment 4 may be attributed to the complexity of the 2 

(relative magnitude) x 3 (addend status) design employed in the previous study. In 

Experiments 2a and 2b, the only problem feature manipulated (i.e., sum type; 

decades, mixed and fives problems) may have been more easily apparent to 

participants. In contrast, in Experiment 4, each problem was comprised of one of the 

three addend status levels and one of the two relative addend magnitude levels. The 

presence of these features may not have been apparent to participants, as essentially 

there were 6 different types of problems constructed from the factorial manipulation 

of the two variables within the stimulus set. To mitigate this eventuality, a more 

simplistic factorial design was employed to identify whether the selection-by-feature 

effect influences strategy selection in unfamiliar problems (i.e., non-decade/fives 

problems) as well as in familiar problems (i.e., decade/fives problems). Accordingly, 

the addend status manipulation employed was comprised of only two levels (even and 

mixed problems) and the relative addend magnitude manipulation was jettisoned from 

the design. It was predicted that selection-by-feature effects would be revealed in the 

percentage of calculate selections returned such that a greater percentage of calculate
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selections — and hence fewer retrieve selections — will be made for mixed rather 

than even problems.

A third consideration arising from Experiment 4 was that the familiarity of a 

problem’s terms may serve to moderate the selection-by-feature effect. It may be that 

problem features are only used to inform selection when it is not possible to 

distinguish between strategy selections upon the basis of problem familiarity alone, 

especially, when problems are high in familiarity. In the previous experiment, all of 

the problems were relatively low in familiarity in comparison to those presented in 

Experiments 2a and 2b (i.e., decades, mixed and fives problems). To test this 

eventuality, the problem familiarity manipulation was re-introduced in order to 

examine whether the familiarity of a problem moderates the impact of the selection- 

by-feature effect. If only problems which are relatively high in familiarity (e.g., 

decades, mixed and fives problems), as opposed to relatively low in familiarity (i.e., 

those presented in the current study) exhibit selection-by-feature effects then it would 

be predicted that addend status effects on calculate selections would not be found in 

this study. However, if selection-by-feature effects influence strategy selections in 

problems at both ends of the familiarity dimension that addend status effects would be 

present in the present study.

An alternative interpretation of this hypothesis is that the influence of the 

selection-by-feature effect may be limited to retrieve strategy selections, rather than 

just high familiarity problems. If problem feature effects do not influence calculate 

selections this would be suggestive of the notion that separate selection mechanisms 

determine retrieve and calculate strategy selections. This notion is contrary to the 

specifications of the SAC model which proposes a single-counter selection 

mechanism based upon the FoK response elicited by the relative activation at the 

problem nodes (Schunn et al, 1997). This threshold account determines whether the 

retrieve strategy should be selected or not. Accordingly, if selection-by-feature effects 

are limited to retrieve strategy selections this would indicate that the mechanism 

which governs retrieve and calculate selections is sensitive to different types of 

information. As the problems employed in the present experiment were all unfamiliar 

(in comparison to decades, mixed and fives problems), with a comparable level of 

familiarity to the problems presented in Experiments la  and lb, it was predicted that 

the calculate strategy would be selected most often. Significant effects of the problem 

feature addend status upon the percentage of calculate strategy selections reported
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would support the notion that a single-counter selection mechanism determines both 

retrieve and calculate selections as per the predictions of the SAC account.

In respect to the second aim of the current study, to identify the cognitive 

mechanisms responsible for strategy selection, a secondary task, articulatory 

suppression, was included in the experimental design as a between subjects 

manipulation. Whereas previous experiments presented in this chapter focus on the 

problem-level influences (i.e., problem familiarity and problem features) upon 

strategy selection, termed intrinsic factors by Cary and Reder (2002), a secondary task 

was implemented in this study to examine extrinsic (i.e., task-level) features. Types of 

task-level features that may influence selection include the broader context in which 

each trial is processed, task instructions, and the prior history of success with a 

strategy (Cary & Reder, 2002). In their review of a range of tasks proposed to rely 

upon metacognitive monitoring and control processes Cary and Reder (2002) 

examined the boundary between conscious and metacognitive contributions (i.e., 

FoK) to selection. Hitherto, this issue has received limited empirical investigation in 

the literature. Examining the process through which new strategies are discovered, 

Siegler and Stem (1998) examined the role played by insight, distinguishing between 

conscious and unconscious pathways to strategy discovery in their investigation of 

arithmetic problem solving in children. It should be noted that although the strategy 

discovery process differs significantly from the feature detection crucial to the 

selection-by-feature effect, there may be commonalities between the two. One useful 

approach to insight in problem-solving derived from Siegler and Stem’s (1998) 

research suggests that the discovery of new problem solving techniques implies a 

“prior conscious insight” (p. 378, Siegler & Stem, 1998, see also Gick & Lockhart, 

1995). This is indicative of a potential role for conscious processing in selection tasks, 

however, in their review chapter, Cary and Reder (2002) conclude that:

People’s actions are influenced by features of the task, features of 
the environment, and their success at using specific strategies. 
Remarkably, this adaptation often occurs without any awareness of 
what procedures or strategies are being used, the base rates of types 
of stimuli in the environment, or the success of a given strategy. ..If 
people in the field maintain the position that metacognition requires 
conscious awareness, then we would argue that cognitive monitoring 
and strategy selection often occur without metacognitive 
intervention, (p.76)
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From these two accounts it is unclear whether conscious processes are 

necessary for the selection of strategies in arithmetic problems. Specifically, whether 

problem features are detected through conscious insight, or whether (by implication) 

the effect of problem features upon selection is realised through consciously 

procedures rather than the implicit mechanisms through which problem familiarity 

effects are purported to rely upon (Reder & Ritter, 1992; Schunn at al, 1997). Reder 

and Cary’s assertion is based upon a range of tasks with different characteristics. 

Their examination of problem-level factors is predominantly founded upon the 

outcome of the Game Show studies (Reder, 1987; Reder & Ritter, 1992; Schunn et al, 

1997). In this task the time limit in the strategy selection phase (i.e., 850 ms) serves to 

favour the contribution of more automatic and unconscious processes. Insufficient 

time is afforded for conscious processes to direct behaviour and return responses 

within the time available. Conversely, their identification of task-level factors was 

derived from a review of more complex tasks than the arithmetic strategy selection 

task employed in this thesis and in the Game Show studies. These experiments 

included a building sticks task (Lovett & Anderson, 1996) and an experiment in 

which participants were required to judge the plausibility of statements based upon 

the content of a story that had just been read (Reder, 1987). Also, an air traffic control 

task (Reder & Schunn, 1999) where positive correlations between individual 

differences in strategy adaptivity, working memory capacity and inductive reasoning 

abilities were evident, points to the contribution of conscious processing to 

performance. However, a shortfall in their analysis is evident in the structure of the 

dissociation they have drawn. Problem-level influences are derived from 

methodologies where speeded responses (i.e., the Game Show studies) are required; 

while candidate task-level factors were derived from non-speeded responses in which 

conscious processing was afforded. To address this limitation, delineating between 

consciously directed processes and metacognitive processes, such as the FoK 

mechanism, in the present experiment both factors are investigated under speeded 

response conditions. Here the time limit imposed upon the selection-phase prevented 

participants from solving the problem then employing recollective processes to 

identify the strategy they used to solve the problem, or indeed the strategy they should 

have used to solve the problem. Accordingly, strategy selections made during this 

time can be attributed to metacognitive (e.g., the SAC model) or automatic procedures 

(e.g., ACT-R and IT AM). In this study the dual-phase design was employed and the
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secondary task, articulatory suppression, was used to examine the contribution of 

conscious processing to strategy selection.

Under articulatory suppression the participant is required to continuously 

repeat a vocalisation (e.g., ‘xyz ’) whilst simultaneously performing the primary task. 

In a number of other experimental paradigms including serial recall (Jones, Hughes & 

Macken, 2006; Macken & Jones, 1995), recognition memory tasks (see Yonelinas, 

2002 for discussion) and mental arithmetic problem solving (Lee & Kang, 2002; 

Logie, Gilhooly & Wynn, 1996; Seitz & Schumann-Hengsteler, 2000, 2002) 

suppression has been shown to partial out the contribution of consciously directed 

operations or the “inner voice” (see p. 436, Macken & Jones, 1995) to processing on a 

primary task. It has been suggested in previous experiments in this thesis that the 

rapidity with which strategy selections can be made (i.e., within 850 ms) indicates that 

the selection task is completed by metacognitive or automatic processes. Therefore, it 

was not expected that participants’ ability to complete the selection task will be 

impaired by the suppression task. However, it will prevent participants from any 

deeper cognitive processing of the stimuli during the selection task, especially during 

the short intervals between problems (i.e., during the lead in before problem 

presentations). In particular, discovering new problem features through conscious 

insight (e.g., Siegler & Stem, 1998).

In related paradigms and following the predictions of the SCADS* model 

(Siegler & Araya, 2005), for a particular problem feature to influence selection it must 

first be identified by the individual. The suppression task was employed to prevent 

participants from identifying the problem feature during the experiment. Accordingly, 

if problem features in this selection task are identified by a conscious insight or 

evaluation of the stimuli received during a task, the strategy selections made by 

participants in the suppression condition will be insensitive to the problem feature 

addend status. However, if the selection-by-feature effect is reflected in the 

percentage of calculate selections returned under suppression, this will speak to the 

notion that conscious processes are not required for the identification of new and 

useful problem features. Based upon this hypothesis it was decided that participants in 

both suppression conditions (suppression vs. no suppression) should not have had any 

prior experience with the dual-phase selection task. Furthermore, it was ensured that 

the practise questions presented at the outset of the experiment did not resemble those
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presented in the test phase itself. This approach ensured that participants were not 

primed with an appreciation that addend status may be manipulated during the task.

Participants engaged in the dual-phase design similar to that employed in 

Experiment 4 of this chapter but with one notable change. In the classic dual-phase 

design each trial comprised of a selection-phase immediately followed by a solution- 

phase. However, the introduction of the suppression task necessitated a revision to 

this design. The selection- and solution-phases were blocked such that participants 

made predicted strategy selections for all of the problems in the stimulus set, 

maintaining continuous suppression throughout the course of each block. Then, once 

all of the selection-phase blocks were complete, the same set of problems were 

represented (but in a pseudo-randomised order) and participants were required to 

solve the problems (i.e., the solution-phase). As in the selection-phase, in the solution- 

phase problems were blocked. This arrangement meant that participants maintained 

suppression both whilst making selections and between trials in the selection-phase 

ensuring that conscious processes could not intrude at any point in the trial blocks.

Two variables, addend status (even and mixed problems) and problem 

familiarity (low and high) were manipulated as within subjects manipulations, each 

comprising two levels. Articulatory suppression was manipulated as a between 

subjects variable. It was predicted that effects of addend status in the selection-phase 

in the absence of suppression would reveal that the selection-by-feature effect is not 

limited to highly familiar problems (e.g., decades and fives) but also influences 

selection in problems which are unfamiliar. This would be indicative of the ubiquity 

of the effect and that null effects of problem features could attributed to the 

complexity of the feature manipulation employed in Experiment 4. Furthermore, this 

finding would demonstrate that the selection-by-feature effect is not limited solely to 

retrieve strategy selections but also calculate selections. Effects of suppression upon 

performance in the selection-phase would be revealing of the cognitive mechanisms 

that contribute to the selection-by-feature effect. It was predicted that there may be an 

interaction between the suppression condition and the two manipulations, problem 

familiarity and addend status. Specifically, suppression may attenuate effects of 

addend status, reflecting the contribution of the conscious evaluative processes 

required to identify a problem feature before it influences selection.



107

3.3.1 Method

3.3.1.1 Participants
Twenty-four participants from the School of Psychology at Cardiff University 

were given course credit or payments in return for their participation. All were native 

English speakers reporting normal hearing and correct or normal vision.

3.3.1.2 Materials & Design

All the problems presented were double-digit addition sums comprising two 

addends drawn from a sample ranging from 12 to 49. None of the addends were 

divisible into integers by 5 or 10, there were no tied addends (i.e., 23 + 23) and each 

addend pair was from the same decade class (e.g., 23 +29). Please refer to Appendix 

E, table E4, for a list of the stimuli employed in this experiment.

Two manipulations of stimulus type were employed, a sum familiarity 

manipulation and a problem feature manipulation. As in Experiments la  and lb 

twenty-four problems were presented in each sum familiarity condition (low vs. high). 

A one-way ANOVA was used to ensure that there was a significant difference in 

mean sum familiarity ratings between the low and high conditions, F{ 1, 46) = 12.852, 

p < .001. In respect to the problem feature manipulation, in each level of sum 

familiarity there was an equal number of problems with even addends and one even 

(i.e., even) and one odd addend (i.e., mixed). To ensure that any reported effects of 

addend status were not masquerading as an effect of an underlying factor (i.e., answer 

familiarity, the familiarity of the first or second addend) separate repeated measures 

ANOVAs were run to confirm that within both levels of sum familiarity non

significant differences between even and mixed status conditions were evident (all Fs 

< 3.65, allps > .07).

For the articulatory suppression task participants were required to 

continuously vocalise a repeated loop of three consonants x y  z, pronounced ‘‘zee ’ 

rather than "zed ’. Rather than vocalising the consonants aloud, participants were asked 

to whisper the consonants. This way it is easier for participants to maintain a 

consistent and rapid speed of the repetition (Macken & Jones, 1995; Jones, Hughes & 

Macken, 2006). For counterbalancing purposes participants were randomly allocated 

to one of four suppression conditions in which they were required to do suppression 

during both the selection- and solution-phase blocks, during only one of the phase
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blocks, or not at all. Accordingly, in each phase 12 participants were required to 

suppress and 12 participants did not suppress.

3.3.1.3 Procedure

A modified version of the classic dual-phase design employed in Experiments 

la and 2a was used in the present experiment. Whereas in the classic design, on each 

trial participants are presented with a problem, made a predicted strategy selection, 

then solved the problem, here the two distinct phases were completed separately. In 

the first half of the experiment, the selection-phase, participants made strategy 

selections for each of the problems in the stimulus set which were presented one after 

the other. In the second half, the solution-phase, participants were presented the same 

problems again and were required to solve them. Results from experiments in Chapter 

2 indicated that the same effects were evident in the selection-phase and dual-phase 

designs. Accordingly, testing phase blocks independently (i.e., the selection-phase or 

solution-phase) should not compromise the influence exerted by the experimental 

variables, nor contaminate a comparison of the effects derived from the current 

experiment and those in the dual-phase studies in Chapter 2.

The selection-phase of the experiment operated in a similar fashion to that 

described in Experiments lb and 2b. Briefly, participants were presented with a 

problem after a short lead-in and were then required to indicate whether they would 

retrieve or calculate the problem’s answer if they were required to solve it. The 

strategy selection (retrieve or calculate) was recorded as was the time taken to select 

the strategy. If a selection was not made within the time limit of 850 ms the lead-in to 

the next trial started and the response was marked as late. After making a strategy 

selection, or a late response, the lead-in to the next trial immediately commenced. The 

experiment opened with 30 practise questions designed to accustom participants to the 

selection task. A further 10 practise questions followed, those participants not 

required to use suppression during the experiment completed them as normal. But 

participants required to suppress completed the problems in tandem with articulatory 

suppression.

During the experimental trials, each block of 10 problems, which were 

organised in a novel pseudo-randomised order for each participant, was punctuated by 

a pause in the program. In the no suppression condition, a message prompting 

participants to take a brief pause appeared, and to click on the start button when they
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were ready to recommence. For those required to suppress, a prompt indicating that 

the suppression should cease appeared. To recommence the experiment participants 

clicked on a start button when they were ready to recommence the suppression and 

the experiment. The longest time participants were required to perform continuous 

suppression during this phase of the study was approximately 45 s. This feature was 

designed to reduce fatigue from the repeated articulations thus allowing the 

participants to maintain a rapid and continuous rate of suppression during the task. 

The rate and accuracy of suppression was monitored by the researcher who was 

present throughout the course of the study. Participants deviating below the required 

rate were requested to speed up the suppression at an appropriate pause in the primary 

task.

Upon completion of the selection-phase of the experiment, the solution-phase 

opened with 10 practise trials, the first 5 of which all participants completed without 

suppression, for the second 5 trials suppression was required dependant upon the 

participants’ allocated condition. Each of the problems presented in first half of the 

study were presented again in the solution phase in a pseudo-randomised order. 

Participants were requested to solve the problems as quickly and accurately as 

possible. After typing the answer in using the keyboard and pressing the enter key to 

confirm the entry a lead-in to the next problem started. As in the selection-phase, after 

each block of 10 trials, the runtime programme paused, allowing all participants a 

brief rest. The experiment recommenced when participants pressed enter, or clicked 

the start button to continue.

3.3.2 Results

3.3.2.1 Scoring Procedure

Similar to the dual-phase design, four measures were taken during the 

experiment. In the selection phase, two measures were automatically recorded by the 

runtime program; the strategy selection (retrieve or calculate) and the time taken to 

select a strategy, the selection latency. In the solution-phase the participants’ given 

answer was recorded as was the time taken to enter the answer, the solution latency.
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3.3.2.2 Strategy Selection

As Figure 4.2 illustrates, participants chose the calculate strategy more often 

than the retrieve strategy. This finding is as predicted given the familiarity of the 

problems presented in the current study when compared to those presented in 

Experiments 2a and 2b. A 2 (sum familiarity; low vs. high) x 2 (addend status; even 

vs. mixed) x 2 (suppression in selection-phase; yes vs. no) mixed measures ANOVA 

run on the percentage of calculate strategy selections yielded two significant 

interactions between the experimental variables. There was a significant interaction 

between sum familiarity and addend status, F (l, 20) = 9.76, MSE = 62.36, p  = .005. 

When examining this interaction further, simple effects reveal that addend status — 

and by implication the selection-by-feature mechanism — only influenced selection in 

the problems relatively high in familiarity within the stimulus set, F(l, 20) = 6.17,/? = 

.022. A greater percentage of retrieve selections (and hence fewer calculate 

selections) were made for even than mixed problems for these higher familiarity 

problems. Furthermore, simple effects indicated that problem familiarity effects were 

present in even problems, F{ 1, 20) = 10.16, p  = .005, but not mixed problems, F{ 1,

20) = .02, p  = .9, such that in even/high familiarity problems fewer calculate 

selections were made than in even/low familiarity problems. The complexity of this 

interaction suggests that participants did not solely rely upon one cue to selection at 

the exclusion of another but that cue which actually influences selection is specific to 

particular problems.

Crucially, this interaction revealed the influence of the selection-by-feature 

mechanism in problems, which in comparison to the decade, mixed and fives 

problems presented in Experiments 2a and 2b, were relatively low in familiarity. 

Furthermore, the results show that the influence exerted by the selection-by-feature 

effect upon strategy selection is not limited to retrieve strategy selections (as evident 

in Experiment 2a and 2b), but can also influence selection of the calculate strategy. 

This finding supports the SAC account which proposes that there is a common 

selection mechanism responsible for both retrieve and calculate selections, rather than 

separate mechanisms, one responsible for retrieve selections and one responsible for 

calculate selections (e.g., Nelson & Narens, 1990).

Turning to the effects of the suppression task upon strategy selection, a 

significant interaction between sum familiarity and suppression condition, F{ 1, 20) = 

4.6, MSE = 62.35, p  = .045, upon the percentage of calculate strategy selections
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reported was revealed. Fewer calculate strategy selections (hence more retrieve 

selections) were made for relatively familiar, rather than unfamiliar problems, when 

participants were required to suppress, F (l, 20) = 7.12, MSE = 224.39,/? = .02. This 

demonstrates that under suppression the problem familiarity manipulation influenced 

strategy selection. Conversely, without suppression, as in Experiments la and lb, 

there were significant effects of sum familiarity, F{1, 20) = 8.59, MSE = 132.38,/? = 

.008, upon calculate selections. This suggests that the presence of suppression served 

to inhibit the selection-by-feature effect as there were no effects of addend status upon 

selection in the suppression condition.

When the implications of the two interactions revealed in the current study are 

considered in tandem, an interesting picture of the relationship between problem 

familiarity and problem features emerged. The interaction between addend status and 

problem familiarity first and foremost denoted the influence of the selection-by- 

feature mechanism upon selection, albeit its influence was localised to relatively 

familiar problems within the stimulus set. On the other hand, the interaction between 

sum familiarity and suppression condition indicates that sum familiarity effects were 

only present in the suppression condition. Taken together in the problems presented in 

the current study it was evident that without suppression both the problem feature, 

addend status, and problem familiarity influenced selection. However, under 

suppression the influence of the problem feature was attenuated and in its absence 

problem familiarity influenced selections.
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Figure 3.2: The percentage of calculate strategy selections returned either with or without suppression 

(error bars represent the standard error o f the mean).

3.3.2.3 Selection Latency Analysis

Participants required to suppress produced a greater percentage of late 

responses than those not required to suppress, F (l, 22) = 5.7, MSE = 1.87, p  = .03. 

However, to put this finding in perspective, the percentage of late responses in the 

experiment amounted to only 5.6% of all responses. When compared to other 

experiments presented in this thesis this figure is relatively low. As in previous 

experiments where comparable stimuli were employed (i.e., Experiment la and lb) 

the mean duration of calculate strategy selections was insensitive to sum familiarity, 

F(l, 22) = .02, MSE = .001, p  = .9. However, dissimilar to Experiments 2a and 2b, 

where calculate selection latencies were sensitive to the problem feature manipulation 

of sum type, here latencies were insensitive to the manipulation of addend status, F(l, 

22) = .003, MSE = 002, p  = .96. Furthermore, suppression did not impact latencies 

significantly, F(l, 22) = 2.84, MSE = .03, p = .11. This supports the notion that the 

selection mechanism itself is immune to disruption from the suppression task. 

However, as Figure 4.3 demonstrates, in general, under suppression participants took 

marginally longer to make calculate selections (approximately 50 ms). This may be 

attributable to the effect of the manipulation upon the selection mechanism but it is
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important to reinstate this trend within the correct context. It is highly probable that if 

the selection mechanism itself is contingent upon consciously directed procedures, the 

impact of suppression would be highly apparent, not only in the duration of strategy 

selections, but in the percentage of late responses. Accordingly, as the trend was 

insignificant and of a small magnitude it was not believed that this constituted 

evidence to suggest that the selection mechanism itself is directly influenced by 

suppression and consequently is not reliant upon consciously directed procedures. 

More likely, is that the trend is a corollary of the between subjects manipulation of 

suppression condition. However, it should be noted that this null effect was based 

upon a between subjects comparison of selection latencies derived from 12 

participants in each suppression condition.
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Figure 3.3: Calculate strategy selection latencies either with or without suppression (error bars 

represent the standard error of the mean).

3.3.2.4 Solution Latency Analysis

Only 2.8% of sum solutions were not made within the time limit of 10 s and 

18.1% of given answers were incorrect. In the no suppression condition 8.4% of 

responses were incorrect, while for those participants required to suppress 8.9% of 

sum solutions were incorrect. To analyse solution latencies tagged to calculate 

selections made in the selection-phase a 2 (sum familiarity; low vs. high) x 2 (addend 

status; even vs. mixed) x 2 (suppression in solution phase; yes vs. no) repeated
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measures ANOVA was conducted. Effects of sum familiarity were revealed, F( 1, 22) 

= 5.53, MSB = .27, p  = .03, indicating that familiar problems were solved more 

rapidly than unfamiliar problems thus replicating the effects evident in Experiment 1 a. 

Null effects of addend status, F(l, 22) = .08, MSE  = .35, p  = .79, and suppression 

condition, F{1, 22) = .35, MSE = 5.58, p  = .56, were also found. In Figure 4.4 it is 

apparent that in general under suppression participants took longer to solve problems 

than participants not required to suppress. It is likely that the null effects of the 

suppression condition can be attributed to individual differences. A number of studies 

in arithmetic problem-solving have demonstrated that performance in mental 

arithmetic tasks may vary considerably across individuals (see also Campbell & Xue, 

2001; Hecht, 1999; Jackson & Coney, 2007; Lefevre & Kulak, 1994; LeFevre, Kulak 

& Bisanz, 1991; Little & Widaman, 1995).
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3.3.3 Discussion

The results from the present study address the candidate issues identified as 

responsible for the null effect of addend status evident in Experiment 4. To 

recapitulate, three explanations for this null effect were considered within the current 

experiment. Firstly, that the null effects were a consequence of the complex factorial

pNo suppression 
□ Suppression
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manipulation addend status and relative addend magnitude. Specifically, that due to 

the range of problem types in the stimulus set participants were unable to identify 

either of the factors, or the levels operationalised within each problem feature 

manipulation. Secondly, that the selection-by-feature effect is limited to familiar 

problems, such as the decade, mixed and fives problems employed in Experiment 2a 

and 2b, rather than the unfamiliar problems employed in the present experiment and 

also Experiment 4. Thirdly, that the selection-by-feature effect is limited to retrieve 

strategy selections and does not extend to calculate selections. By reducing the 

complexity of the problem feature manipulation and introducing a problem familiarity 

manipulation, an interaction between sum familiarity and addend status was revealed. 

This indicates for the first time the presence of the selection-by-feature effect in 

unfamiliar problems presented in this study. Also this demonstrates that calculate 

selections, the dominant strategy selection in this study, can be influenced by the 

selection-by-feature effect. From this finding it is tentatively proposed that a common 

mechanism is responsible for both retrieve and calculate strategy selections, which is 

sensitive to common influences (i.e., problem familiarity and problem features). This 

follows the predictions of the SAC model where a single selection mechanism 

assesses the FoK elicited from the familiarity of a problem’s terms (Reder & Ritter, 

1992; Schunn et al, 1997). However, a further possibility remains: it may be that there 

are separate mechanisms determining retrieve and calculate strategy selections, both 

of which are sensitive to sum familiarity and problem features.

The impact of articulatory suppression upon selection of the calculate strategy 

was equally revealing. It was found that articulatory suppression served to attenuate 

the selection-by-feature effect, and in the absence suppression problem familiarity 

influenced strategy selection. From this it is inferred that conscious processing, 

occurring between trials was responsible for the identification of that problem feature. 

Furthermore, that suppression did not influence the time taken to select a strategy, nor 

the percentage of late responses indicates that the selection mechanism is immune to 

disruption from this secondary task5. Building on this premise, the findings from the 

current study are revealing of the process by which problem features used by the 

selection mechanism are identified. In Schunn et al’s (1997) Experiment 2 they 

demonstrated that when presenting participants with problems without any pre-

5 It should be noted that this between subjects comparison is built upon a sample o f 12 participants in 
each suppression condition. However, this same null effect was replicated in Experiment 5b
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experimental familiarity (i.e., problems with multiplication or sharp operators), by 

repeatedly solving these problems, familiarity with the problem components was 

increased. The linkage between solving a problem, updating the familiarity of the 

problem and subsequent strategy selections based upon the familiarity of the problem 

was reflected in the greater number of retrieve strategy selections made in contrast to 

problems which were only solved infrequently. Previous research has indicated that 

problem familiarity is derived from the act of solving a problem (Reder & Ritter, 

1992; Schunn et al, 1997). Accordingly, the relationship between problem familiarity 

effects in both the selection- and solution-phases of the design stands as a key 

component of performance in the dual-phase experimental design. However, it is not 

clear whether the selection-by-feature effect is contingent upon the individuals’ 

experience of solving the problems or a pre-experimental awareness of a host of 

potentially useful problem features.

In the present study participants completed both phases of the experiment in 

isolation, making predicted strategy selections in the selection-phase before moving 

on to solve the problems in the solution-phase. Similarly, in Experiment 2b which 

used the single phase experimental design (i.e., section-phase only), selection-by- 

feature effects were evident. In both designs, when making the predicted strategy 

selection, participants had no prior experience of solving those or similar problems. 

Accordingly, it seems reasonable to conclude that the identification of problem 

features useful to the selection mechanism is not necessarily derived from the act of 

solving a problem as is apparent in respect to problem familiarity. Hence it is 

proposed that selection-by-feature effects upon both strategy selections and solution 

latencies may not be a key signature of performance in this experimental paradigm as 

is the case with problem familiarity effects (see Schunn et al, 1997).

To test this notion further, and clarify the relationship between the two factors 

of sum familiarity and problem features in strategy selection, the following 

experiment also employs articulatory suppression to inhibit the selection-by-feature 

effect but in a set of problems rich in problem features and high in pre-experimental 

familiarity, namely the decades, mixed and fives problems used previously in 

Experiments 2a and 2b. From this experiment it should be evident whether the 

selection-by-feature effect is reliant upon feedback derived during the course of the 

experiment or on pre-experimental experience.
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3.4 EXPERIMENT 5b

The present experiment was designed to examine the process by which 

problem features are identified. In Experiment 5a it was shown that articulatory 

suppression mitigated the selection-by-feature effect by attenuating effects of the 

problem feature manipulation addend status. This finding was tentatively attributed to 

the notion that the influence of addend status upon selection was contingent upon an 

inter-trial conscious evaluation of the problem features inherent in the stimulus set. 

The alternative hypothesis, that the suppression task impacted the selection 

mechanism itself was refuted by the finding that selection latencies were not affected 

by the suppression task.

This was explored by testing familiar problems rich in problem features in the 

same experimental design as employed in the Experiment 5 a. The sum type 

manipulation was used to examine whether suppression attenuated selection-by- 

feature effects in decades, mixed and fives problems. As stated in Experiment 2a and 

2b, the sum type manipulation presents a set of problem features which are highly 

apparent to individuals, easily identifiable and rich in pre-experimental familiarity. In 

Experiment 2b the influence of sum type upon retrieve strategy selections 

successfully replicated the effects evident in Experiment 2a accordingly sum type is 

seen as a robust effect. In Experiment 5 a it was shown that suppression inhibited 

effects of addend status upon selection. From this it was inferred that this problem 

feature was identified by participants during the course of the experiment under 

conditions in which a conscious appraisal used to identify particular problem features 

was not impeded by suppression. However, it may also be the case, similar to problem 

familiarity, where prior experience with solving specific problems serves to increase 

their familiarity, that problem features are not only identified during the course of an 

experiment, but are already known from previous processing episodes. This scenario 

is particularly likely with decades, mixed and fives stimuli as these problems are 

encountered frequently and as such it is probable that individuals are highly 

accustomed to using the features in these problems to facilitate problem-solving 

performance. Accordingly, it was predicted that if the identification of the problem 

features that contribute to selection-by-feature effects are solely reliant upon 

conscious processes operating during the course of the experiment then suppression 

will attenuate the selection-by-feature effect. Alternatively, null effects of suppression
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upon the sum type manipulation would indicate that the problem features influencing 

selection were already known by the participant such that identification of the feature 

was not required during the course of the experiment.

As in Experiment 5a, participants first made predicted strategy selections for 

each of the problems in the stimulus set, then solved all of the problems. In addition, 

the current study also provided an opportunity to replicate a key finding from 

Experiment 5a. In that experiment it was shown that selection latencies were largely 

immune to interference from the suppression task. From this it was inferred that the 

influence of the suppression task could not be localised to the processes responsible 

for actually making the strategy selection, but the consciously directed mechanism 

which operates during the course of the experiment, between trials, and is potentially 

responsible for identifying problem features.

3.4.1 Method

3.4.1.1 Participants

Twenty-four participants from the School of Psychology at Cardiff University 

were given course credit or payments in return for their participation. All were native 

English speakers reporting normal hearing and correct or normal vision.

3.4.1.2 Materials & Design

The same type of stimuli detailed in Experiments 2a and 2b were employed in 

this study. To recapitulate, the addends in all of the problems were drawn from a 

sample of decades and fives numbers from which three conditions were constructed, 

decades (e.g., 20 + 50), fives (e.g., 25 + 50) and mixed (i.e., 25 + 55). All problems 

summed to less than 100 and did not comprise of any tied addends (e.g., 25 + 25). 

Twenty-four problems were prepared for each sum type condition comprising 12 

novel problems and 12 further problems created by switching the order of the addends 

in the novel problems (see Appendix E, table E5, for stimuli).

As in the previous experiment, participants were randomly allocated to one of 

four suppression conditions in which they were required to carry out suppression in 

both the selection- and solution-phases of the experiment, in only one phase, or in 

neither phase. The selection-phase of the experiment commenced with 30 practise 

questions, followed by a further 10 practise questions which were completed with or
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without articulatory suppression dependant upon which condition participants were 

allocated to. None of the practise questions comprised addends divisible by 5 or 10, 

ensuring the experimental manipulation of sum type manipulation was first 

encountered by participants during the test phase.

The solution-phase of the experiment started with 10 practise questions. None 

of the participants were required to practise suppression for the first 5 problems, while 

in the last 5, those required to, completed these trials under suppression. After each 

block of 10 trials in the selection- and solution-phase of the experiment the program 

paused, providing participants with an opportunity to take a break from the 

suppression, and recommence the experiment when ready.

3.4.1.3 Procedure

The exact same runtime procedure and instructions were issued to participants 

as detailed in the previous experiment.

3.4.2 Results

3.4.2.1 Scoring Procedure

See corresponding section in Experiment 5a for further detail.

3.4.2.2 Strategy Selection

As in Experiments 2a and 2b where sum type was also manipulated the 

retrieve strategy was selected more often than the calculate strategy (see Figure 4.5). 

Furthermore, a 3 (sum type; decades, mixed and fives) x 2 (suppression condition; no 

suppression vs. suppression) mixed measures ANOVA indicated that the percentage 

of late selections recorded was immune to both sum type and suppression condition, 

F(2, 21) = 1.69, MSE = .73 , p  = .21, and F( 1, 22) = .16, MSE = 3.09 , p  = .69, 

respectively. Using the same ANOVA a significant interaction between sum type and 

suppression condition upon the percentage of retrieve selections made was found, 

F(2, 21) = 4.52, MSE = 265.4 , p  = .02. Simple effects demonstrated that sum type 

influenced selection irrespective of whether participants were required to suppress, 

F(2, 21) = 34.46, p  < .001, or not, F(2, 21) = 9.24, p  = .001. These two findings not 

only replicate the effect of sum type on selection evident in Experiments 2a and 2b,
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but contrast the effects of suppression evident in Experiment 5a, where suppression 

attenuated the effects of the problem feature manipulation addend status.

Pairwise comparisons indicate that a significant effect of suppression upon 

retrieve selections was only evident for fives problems (p = .02). A greater percentage 

of retrieve selections (and hence a lower percentage of calculate selections) was made 

under suppression than without suppression (see Figure 4.5). It could be that 

suppression effects can be localised to fives problems. However, it is not possible to 

corroborate this finding conclusively from the data derived from this study. A further 

possibility is that this finding, rather than reflecting the influence of articulatory 

suppression upon selection, may simply reflect the abnormally low frequency of 

retrieve selections made by participants who were not required to suppress. To 

illustrate, in Experiment 2a (where participants were not required to suppress) retrieve 

was selected in 56.9% of fives problems. Whereas in the present study participants 

not required to suppress only selected the retrieve strategy in 30.9% of fives 

problems. Furthermore, the lower rates of retrieve selection in this study could not be 

localised to the performance of a small minority of participants as 66% of participants 

chose retrieve in 41.6% of trials or less.
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3.4.23 Selection Latency A nalysis

In total, 3.93% of responses were not made within the time limit, indicating 

that participants were easily able to make strategy selections with and without 

suppression, well within 850 ms. Breaking down this figure, 2.1% of responses were 

not made within the time limit in the no suppression condition while 1.8% of 

responses were late in the suppression condition. A mixed measures ANOVA run 

with sum type as a within subjects factor and suppression condition as a between 

subjects factor revealed that sum type influenced the duration of retrieve strategy 

selections, F(l, 20) = 8.26, MSE = .001, p  = .002. Similar to Experiments 2a and 2b, 

post hoc comparisons indicated that the retrieve strategy was selected more rapidly in 

the decades than mixed or fives condition, and more rapidly in the mixed than fives 

condition (all ps < .05). Between subjects analysis replicated the findings from 

Experiment 5 a indicating that there were null effects of suppression condition, F(l,

21) = .35, MSE = .01,/? = .56, demonstrating that the time taken to select the retrieve 

strategy was not influenced by the suppression manipulation. Similar to the previous 

experiment, from this finding it is inferred that the suppression task did not exert a 

direct influence upon the selection mechanism. Due to the low frequency of calculate 

strategy selections the mean duration of calculate selections were not analysed. 

However, as Table 4.2 illustrates calculate selection latencies were consistently longer 

than retrieve selections, replicating the pattern of performance demonstrated in 

previous experiments.
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Table 3.2.

Summary by condition o f  mean calculate (Calc) and retrieve (Ret) strategy selections (in %), selection 

latencies (in ms) and solution latencies (in ms) split by sum type condition and articulatory suppression 

condition. Standard deviations are presented in parentheses.

Decades Mixed Fives

No Supp Supp No Supp Supp No Supp Supp

523 567 587 582 565 571
Calc

Selection (52) (67) (82) (95) (67) (76)

Latency 497 515 534 533 569 523
Ret

(52) (73) (61) (84) (57) (83)

1758 1808 2227 2221 2632 3438
Calc

Solution (381) (778) (609) (464) (903) (649)

Latency 1663 1673 2163 2219 2575 2970
Ret

(390) (287) (685) (447) (1140) (529)

3.4.2.4 Solution Latency Analysis

Only 1 response in the whole dataset was not made within the time limit of 10 

s set for responses in this phase of the experiment. In total only 7.35% of sum 

solutions were incorrect, comprised of 5.2% of responses in the no suppression 

condition, 2.1% in the suppression condition. The difference between the two 

conditions can be largely accounted for by the performance of one participant in the 

no suppression condition whose errors alone accounted for 3.1% of the total errors 

made in this phase in the whole experiment. A mixed measures ANOVA revealed 

significant effects of the sum type manipulation upon solution latencies which were 

tagged to both retrieve and calculate selections made during the selection-phase, F(2,

20) = 35.47, MSE = .14, p  < .001, and F(2, 8) = 19.08, MSE = .123, p  = .001, 

respectively. In both, problems were solved more rapidly in the decades than mixed or 

fives, and in the mixed than fives (all ps < .002). Articulatory suppression did not 

influence the time taken to solve problems tagged to retrieve, F(l, 21) = .61, MSE = 

.95, p  = .44 or calculate selections, F( 1, 21) = .03, MSE = .89, p  = .88, made in the 

selection-phase of the experiment. Similar to the previous experiment, despite the 

presence of a trend, individual differences are posited as responsible for the null 

effects of suppression upon solution latencies tagged to retrieve selections.
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3.4.3 Discussion

The results detailed in the previous section support the notion that generally 

speaking the problem features responsible for selection-by-feature effects are not 

necessarily identified by a conscious appraisal of the problems during the course of 

the experiment. Although there was a significant interaction between sum type and 

suppression condition only retrieve selections in the fives condition were influenced 

by suppression. However, the abnormally low level of retrieve selections, in 

comparison to those reported in the same sum type condition in Experiments 2a and 

2b, serves to question whether suppression actually influenced selection in these 

problems. Null effects of suppression upon selection in decades and mixed problems 

supports the notion that problem features used for these problems were already known 

by participants prior to the experiment. Furthermore, that they were employed by the 

selection mechanism without the contribution of consciously directed procedures. 

This finding contrasts the conclusions drawn in Experiment 5 a where the significant 

interaction between addend status and suppression condition revealed that participants 

identified problem features during the course of the experiment. However, replicating 

the effects of suppression upon selection latencies in the previous study, it was 

apparent that the selection mechanism itself was immune to influence from the 

suppression task.

One caveat with the notion that selection is influenced by pre-experimentally 

derived problem features is that the possibility still remains that selection may be 

influenced by unconscious processes. Returning to Siegler and Stem’s (1998) analysis 

of insight in strategy discovery, it may be that problem features are identified during 

the course of the experiment but at an “implicit, unconscious, metaprocedural level” 

(p. 378, Siegler & Stem, 1998, see also Karmiloff-Smith, 1992) immune to 

interference from the suppression task. Accordingly, it is possible that conscious 

evaluative processes are not responsible for the identification of problem features 

which result in selection-by-feature effects. The findings from the present experiment, 

taken in tandem with those from the previous study, appear to support the position 

forwarded by Cary and Reder (2002), that there is no clear distinction between 

conscious and metacognitive processing in strategy selection. The most useful 

description of the interplay between these two processes is that their deployment was 

opportunistic. In Experiment 5a it was concluded that articulatory suppression



124

inhibited the action of consciously directed processes operating over the course of the 

experiment. These conscious processes were proposed to be responsible for 

identifying features inherent in the problems presented in the stimulus set that were 

subsequently employed by the selection mechanism to direct retrieve/calculate 

selections. While in this study articulatory suppression did not impact the discovery of 

new problem features as the selection mechanism was already using known problem 

features derived from prior problem solving episodes.

In an experiment detailed in Appendix D, the possibility that unconscious 

mechanisms are responsible for the identification of problem features during the 

course of the experiment was examined. This notion has already been highlighted in 

the specifications of the SCADS* mechanism, where to briefly recapitulate, 

perceptual and encoding processes invoked as responsible for the identification of 

problem features (Siegler & Araya, 2005). A secondary task designed to inhibit a 

comparison between the features of each addend inherent in a problem (e.g., the first 

and second addends in a problem are both even numbers) was employed. Selection- 

and solution-phases were blocked (as in the current study) and the same set of 

problems tested in Experiments 5a was examined. The secondary task was derived 

from the Vigilance literature where participants are commonly required to monitor a 

continuous presentation of letters, words or other stimuli, reporting the occurrence of 

a critical signal (Ballard, 1996, see also Auburn, Chapman & Jones, 1987). Critical to 

performance in symbolic vigilance tasks is the ability to encode the signal, detecting 

changes in the signal and identifying ‘hits’ (Ballard, 1996). To appreciate a hit the 

individual is required to retrieve the higher order semantic category of each signal. 

For example, if the signal was the word ‘carrot’, the higher order semantic category 

would be ‘vegetable’. They must then maintain that category name in short-term 

memory while comparing the semantic category of the current signal to the prior 

signal. In accordance with the rapidity with which signals were presented (i.e., 1 per 

second) participants would have been unable to use conscious processes to complete 

this task. During blocks of trials a continuous presentation of words drawn from a 

number of categories were presented auditorily. A critical signal was defined as the 

occurrence of three items from the same category in a row. Participants made retrieve 

or calculate strategy selections and at the end of each trial block indicated whether a 

signal was present. When detecting a problem feature (such as those used to influence 

selection in the addend status manipulation) it is assumed that the individual will
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extract a host of features from each of the addends in the problem. For example, the 

first addend is an even number, the second addend is an even number. Then search 

for a correspondence between the features identified in each addend, both addends 

are even numbers, by comparing the activated feature. It was predicted that if feature 

detection in problems is contingent upon perceptual and encoding mechanisms 

operating during the course of the experiment that this secondary task would inhibit 

the influence exerted by the problem feature addend status. However, there was a non 

significant interaction between the vigilance task condition and the problem feature 

addend status. Accordingly, it may be that perceptual and encoding mechanisms are 

not solely responsible for the identification of problem features during the course of 

the experiment. However, further investigation of this hypothesis is required to isolate 

the action of mechanisms with the potential to identify and compare the types of 

features that can be extracted from a problem. A more detailed exposition of this 

experiment is presented in Appendix D.

In summary, the effects of articulatory suppression upon strategy selection 

revealed in Experiments 5a and 5b suggest that the selection-by-feature effect may be 

contingent upon conscious processes identifying problem features during the course 

of the study. The results from Experiment 5 a demonstrate that effects of addend status 

were mitigated when the contribution of conscious processes to performance was 

precluded by the articulatory suppression secondary task. Conversely, those 

participants not required to suppress in that study demonstrated effects of addend 

status. However, as Experiment 5b demonstrated, it was found that inhibiting 

conscious procedures does not necessarily mitigate problem feature effects. 

Suppression had no effect upon the influence exerted by the sum type (i.e., decades, 

mixed and fives problems) manipulation on retrieve strategy selections. Following the 

predictions of the SCADS* model, in an experiment presented in Appendix D of this 

thesis, the possibility that encoding and perceptual processes were responsible for 

feature detection, rather than conscious mechanisms, was examined. This experiment 

was conducted to investigate whether the null effects of suppression evident in 

Experiment 5b were suggestive of the notion that unconscious processes (i.e., 

encoding and perceptual mechanisms) were actually responsible for feature detection, 

rather than conscious processes as suggested by the results from Experiment 5a. 

However, as there was no evidence of an interaction between the vigilance task 

designed to inhibit feature detection and addend status. This suggests that as in
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Experiment 5a the null effects of suppression could be attributed to the proposition 

that participants were already aware of the problem features applicable to decade, 

mixed and fives problems and hence did not need to identify any problem features 

during the course of that experiment. In the following experiment a further type of 

task-level manipulation is employed to examine the susceptibility of selection to task 

instructions.

3.5 EXPERIMENT 6a

Building upon the distinction drawn between problem-level and task-level 

manipulations of strategy selection, the present experiment was designed to examine a 

further type of task-level manipulation. Findings from a range of studies have shown 

that strategy selection in problem-solving tasks is highly susceptible to task 

instructions. For example, in a series of maze navigation puzzles, Gardner and Rogoff 

(1990) used instructions emphasising speed over accuracy and vice-versa. They found 

that children used less advanced planning strategies when speed was emphasised and 

more advanced planning strategies when accuracy was emphasised. Returning to 

mental arithmetic problem-solving, Kirk and Ashcraft (2001) reported that a between 

subjects manipulation of instruction type served to bias self-reported indications of 

strategy selection. Testing single-digit addition and multiplication problems, 

participants were required to solve the problem then identify which strategy they 

actually used to solve the problem. In a between subjects design three sets of task 

instruction were examined, one group received instructions emphasising the use of 

direct retrieval to solve problems, another emphasising the use of calculation 

procedures and a further set of instructions derived from LeFevre, Sadesky and 

Bisanz (1996) which did not explicitly favour either strategy. They found that by 

manipulating the emphasis of the instructions self-report responses followed suit. For 

example, participants receiving instructions emphasising use of the direct retrieval 

strategy reported using calculation procedures on only 9% of addition problems and 

4% in multiplication trials. Conversely, those who received instructions emphasising 

calculate procedures reported using calculate strategies on 62% of their addition trials 

and 38% of multiplication trials when presented with the same problems. A number of 

authors have expressed doubts with the reliability of self-report measures (e.g., 

Ericsson & Simon, 1993; Kirk & Ashcraft, 2001 and Payne, 1994). This concern 

stems from the notion that the mental processes responsible for selecting a strategy
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and deriving a solution are not necessarily accessible to conscious processes (see Cary 

& Reder, 2002 for discussion of this issue). Accordingly, the accuracy with which 

retrospective strategy selections are identified may be questionable. From Kirk and 

Ashcraft’s (2001) findings it is unclear whether the task instruction effect (see also 

Blote, Van der Burg & Klein, 2001) occurs as a function of the conscious and 

evaluative processes used to reconstruct the prior problem-solving episode as part of 

the self-report response, or alternatively, whether unconscious and implicit processes 

are responsible for the effect.

In the present study, similar to Experiments lb and 2b, the selection-phase 

design was employed but with a between subjects manipulation of task instructions to 

examine whether they influence the selection mechanism. From Kirk and Ashcraft’s

(2001) study it seems likely that the influence of task instructions upon self-reported 

strategy selections was contingent upon the action of consciously directed procedures 

used retrospectively to identify strategy selection in an earlier processing episode. 

However, Cary and Reder (2002) propose that task instruction manipulations operate 

at an unconscious level. In this study a modification to the methodology used 

previously in this thesis (where participants were required to choose either retrieve or 

calculate) was made such that participants were allocated to one of two task 

instruction conditions. Depending upon which condition they were randomly 

allocated to, participants indicated whether when solving the problem they would 

retrieve the answer, yes or no, or calculate the answer yes or no. Analogous to the 

manipulation used by Kirk and Ashcraft (2001), it was predicted that the two types of 

instruction would elicit a bias towards the strategy identified in the instruction. 

Specifically, it was predicted that participants responding to the retrieve yes/no 

instruction would favour selection of the retrieve strategy over those responding to the 

calculate yes/no instruction. The time limit imposed on the selection-phase of 850 ms 

in this design served to prevent participants from solving the problem and using 

conscious recollective processes to identify the strategy used to solve the problem. 

Accordingly, significant effects of the task instruction manipulation upon selection 

would be indicative of the action of the selection mechanism, rather than the 

consciously directed procedures used to identify strategy selections retrospectively.

The same stimulus manipulations as detailed in Experiment la and lb (i.e., 

sum familiarity and answer familiarity) were used in this study. In those experiments 

a robust effect of the sum familiarity manipulation was evident such that a greater
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percentage of calculate selections was made for relatively unfamiliar problems than 

familiar problems. Null effects of the answer familiarity manipulation indicated that 

the familiarity of a problem’s solution did not influence the selection process. The 

current experiment also provided an opportunity to examine the mechanics of the FoK 

response and how the activations elicited by a problem result in retrieve and calculate 

strategy selections. This issue has been touched upon briefly in the discussion of 

results originating in previous experiments (e.g., Experiment 5a) but has not received 

direct empirical investigation in this thesis. However, due to the centrality of the FoK 

mechanism to the approach to selection adopted in Chapter 3 it is worthy of further 

examination. In the SAC model (Reder & Ritter, 1992; Schunn et al, 1997), it is 

proposed that the relative level of activation at the most active node in memory 

determines the strength of the FoK. Accordingly, for activations elicited by familiar 

problems there is a greater disparity between activation at the most active node and 

the second most active node than evident in unfamiliar problems (Schunn et al, 1997). 

The FoK is subject to a threshold mechanism against which the strength of the FoK is 

compared to a preset threshold. If the FoK strength exceeds the threshold the retrieve 

strategy is selected. Alternatively, if the FoK fails to breach the threshold level the 

retrieve strategy is not selected (i.e., the calculate strategy is chosen). This mechanism 

is analogous to the single-counter FoK hypothesis proposed by Nelson and Narens 

(1990) where a FoK is based upon the availability of information in memory. The 

single-counter hypothesis is contingent upon the information accumulated about an 

item known in memory, which in this experimental paradigm, rather than the 

recognition paradigm used by Nelson and Narens (1990) to examine the FoK 

mechanism, would elicit a retrieve selection when activation levels exceed the 

threshold. Of course, by default, the mechanism can also elicit calculate selections but 

only as a consequence of insufficient information accumulating over time to exceed 

the threshold.

An alternate conception of FoK is proposed by Nelson and Narens (1990), 

derived from their examination of an apparent paradox in research conducted by Hart 

(1965). Hart (1965) illustrated that participants were unable to recall the solutions to 

general knowledge questions could indicate very rapidly whether they knew the 

answer or not. Furthermore, that these evaluations were positively correlated to 

performance in later recognition tests of the unrecalled items. This suggested that 

participants knew about the absence or presence of an item in memory without having
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to complete a memory search for the item. From this Nelson and Narens (1990) 

proposed a dual-counter hypothesis, where one FoK component taps information in 

memory and the other tapping information pertaining to what is not present in 

memory. Relating this conception back to strategy selections made in the 

experimental paradigm used in this study, calculate selections do not occur as a 

default but as a consequence of accumulating evidence indicating that an item is not 

resident in memory. While, as before, retrieve selections are based upon the activation 

elicited by information indicating that the item is stored in memory. Separate FoK 

counters index these activations whose return is subject to a difference threshold 

which discerns the difference in the two values. Where a positive value returned (i.e., 

the item is known in memory) in this experimental paradigm a retrieve strategy 

selection would be made. Conversely, a negative return would elicit a calculate 

selection. Accordingly, it was reasoned that if the dual-counter hypothesis is 

responsible for FoK responses in this strategy selection paradigm, it may be the case 

that the type of information which can be extracted from a problem contributes to 

either knowledge of facts stored in memory, or not stored in memory. Therefore, it 

was predicted that if sum familiarity effects were evident in only one of the response 

type conditions (i.e., calculate yes/no and not retrieve yes/no), this would indicate that 

separate selection mechanisms influence retrieve and calculate strategy selections.

To address a potential flaw in the design of Experiments la and lb the answer 

familiarity manipulation was reintroduced. A number of models of the strategy 

selection process detailed previously suggest that the familiarity of a problem’s 

answer influences strategy selection (i.e., ACT-R, ITAM and DOA). In these accounts 

the act of encoding a problem automatically initiates a search for the problem’s 

solution (i.e., the Obligatory Activation Assumption, see Logan, 1988). Previously, 

the null effects of the answer familiarity manipulation upon selection found in 

Experiment la and lb indicate that the memorial search for the answer does not 

influence selection. However, effects of this manipulation may be revealed by the task 

instruction manipulation employed in this experimental design if separate FoK 

counters determine retrieve and calculate selections. Specifically, as the time limit in 

the selection-phase prevents the participant from solving the problem before making a 

selection, answer familiarity has been conceived as a predictor of the progress made 

in finding a solution before a strategy selection had to be made (Reder & Ritter, 

1992). Accordingly, in problems with familiar answers (as opposed to unfamiliar
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answers), greater progress in retrieving a solution will be made up to the point at 

which this process is truncated and a selection returned based upon this level of 

progress. It was thus predicted that effects of the answer familiarity manipulation 

would be more likely in the retrieve yes/no instruction condition as answer familiarity 

stands as an indicator of progress made in retrieving the answer to a problem in 

accordance with the Obligatory Activation Assumption (Logan, 1988).

A further between subjects manipulation, termed key position, was used to 

ensure that there was no bias in selection attributable to the relative positioning of the 

yes and no keys on the keyboard (i.e., on the left or right side of a standard qwerty 

keyboard). In summary, it was predicted that effects of task instruction would indicate 

whether the unconscious mechanisms responsible for strategy selections are solely 

determined by problem-level manipulations (i.e., problem or answer familiarity), but 

also features of a task (i.e., task instructions). Null effects of key position would 

confirm that any task instruction effects were not attributable to a bias in selections 

arising from the positioning of the yes and no keys on the keyboard. From the two 

within subjects manipulations, sum familiarity and answer familiarity, effects of these 

variables would be revealing of the operation of the selection mechanism. If the 

percentage of calculate selections elicited from the two task instruction conditions 

both exhibited effects of sum familiarity this would support the SAC model’s account 

of selection. Alternatively, if sum familiarity effects were only evident in one of the 

task instruction conditions this would support the notion that separate mechanisms are 

responsible for retrieve and calculate selections. Furthermore, effects of answer 

familiarity may interact with task instruction if separate FoK components determine 

retrieve and calculate selections.

3.5.1 Method

3.5.1.1 Participants

Twenty-four participants from the School of Psychology at Cardiff University 

were given course credit or payment in return for their participation. All were native 

English speakers reporting normal hearing and corrected or normal vision and had not 

participated in any of the other thesis experiments.



131

3.5.1.2 Materials & Design

The same type of stimulus manipulations were used as in Experiments la and 

lb (sum familiarity and answer familiarity). All sums were double-digit addition 

problems comprising two addends drawn from a sample ranging from 12 to 49 (see 

Appendix E, table E6, for stimuli). None of the addends were divisible by 5 or 10, 

there were no tied addends (i.e., 23 + 23) and each addend pair was from the same 

decade class (e.g., 23 +29). The two variables, sum and answer familiarity, were 

contrasted in a repeated measures design, in which participants completed 16 practise 

trials followed by 64 experimental trials, 16 trials in each condition, the order of 

which was pseudo-randomised for each participant. Separate repeated measures 

ANOVAs ensured that there was a significant difference between the low and high 

levels of problem familiarity, F (l, 15) = 105.34, MSE = 4142.89, p < .001 and 

answer familiarity; F(l, 15) = 412.63, MSE = 427.50,/? < .001.

Task instructions were manipulated as a between subjects variable, 12 

participants were asked to indicate whether they would retrieve the answer, yes or no, 

the other 12 were asked whether they would calculate the answer, yes or no. 

Furthermore, the positioning of the ‘yes’ key was manipulated as a between subjects 

variable. For half of the participants (n = 12) the yes key was positioned on the left 

side of the keyboard (on the z key) and no on the m key. For the second half the 

positions were reversed.

3.5.1.3 Procedure

The same selection-phase procedure was used as in Experiments lb and 2b. 

To recapitulate, after a short lead-in participants were presented with a problem and 

asked to make a predicted strategy selection within 850 ms. However, the design 

employed in the current experiment included one notable change. Whereas previously 

participants were required to indicate what strategy they would use to solve a problem 

by selecting either retrieve or calculate, here participants were either asked whether 

they would retrieve the answer and responded by choosing yes or no. Participants in 

the other task instruction condition were asked if they would calculate the answer and 

responded with yes or no. Once the strategy selection had been made participants 

were prompted to initiate the lead-in to the next trial.
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3.5.2 Results

3.5.2.1 Scoring Procedure

Two measures were derived; the strategy selection which, dependant upon the 

response type condition they were allocated to (i.e., would you retrieve the answer, or 

would you calculate the answer), participants responded with a yes or no selection. It 

should be highlighted at this juncture that retrieve yes and calculate no selections both 

equated to the same underlying strategy selection (i.e., retrieve), calculate yes and 

retrieve no selections to the selection of the calculate strategy. To minimise 

confusion, in the analysis, reported strategy selections will be identified by the 

underlying strategy selection they represent (i.e., retrieve or calculate) and will be 

split by task instruction condition (calculate y/n, or retrieve y/n). The strategy 

selection latency was also recorded; this measured the time taken to make the strategy 

selection. Unless detailed to the contrary, all statistical analyses will employ mixed 

measure ANOVAs using a 2 (selection question; retrieve y/n vs. calculate y/n) x 2 

(yes key position; left vs. right) x 2 (sum familiarity; low vs. high) x 2 (answer 

familiarity; low vs. high) design. In each of the between subjects conditions there 

were 12 participants and where insignificant, interactions are not reported.

3.5.2.2 Strategy Selection

As in Experiments la and lb a higher percentage of calculate strategy 

selections were returned than retrieve selections (see Figure 4.5). To test the 

relationship between calculate and retrieve selections a mixed measures ANOVA was 

conducted to identify whether any of the variables manipulated made participants 

return a greater number of late responses. Null effects of the problem-level 

manipulations sum and answer familiarity and the task-level manipulations, key 

position and task instruction, (all Fs < .72, all ps > .39) revealed that the manipulated 

variables failed to compromise the dependant relationship between the two underlying 

strategies retrieve and calculate. This replicates findings from all of the previous 

experiments which have demonstrated that the dependant relationship between 

retrieve and calculate selections is unaffected by the experimental manipulations.

Similar to previous experiments presented in this thesis which employed the 

sum familiarity manipulation, the familiarity of the problem was shown to influence 

calculate selections, F( 1, 20) = 20.83, MSE = 4.61, p  < .001. Pairwise comparisons
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demonstrate that the calculate strategy was selected more often in unfamiliar than 

familiar problems (p < .001). Furthermore, null effects of answer familiarity upon the 

percentage of calculate strategy selections made, F(l, 20) = .55, MSE = 3.7, p = .47, 

replicate the findings from Experiments la and lb. Both of these findings serve to 

replicate the pattern of performance exhibited in Experiments la and lb which 

employed identical stimuli. When considering the impact of task instructions on the 

task, the interaction between sum familiarity and task instruction, F(l, 20) = .33, MSE 

= 4.61, p  = .58, was insignificant. This suggests that sum familiarity had comparable 

effect upon the strategy selection irrespective of the task instruction participants 

received. There was a non-significant interaction between task instruction and answer 

familiarity, F(l, 20) = .01, MSE = 3.7, p  = .92. From this there is no evidence to 

suggest that separate mechanisms are responsible for retrieve and calculate strategy 

selections. Also, the task instruction manipulation failed influence calculate strategy 

selections, F(l, 20) = .17, MSE = 35.4, p  = .69, and null effects of key position reveal 

that the spatial positioning of the yes and no keys on the keyboard did not serve to 

bias participants responses in favour of one response key over the other, F(l, 20) = 

.005, MSE = 7>5 A, p  = .95.
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Figure 3.5: The percentage o f retrieve strategy selections made in each o f the sum type conditions for 

participants making calculate strategy selections (i.e., selecting ‘calculate yes’ vs. ‘retrieve no’)- Grey 

bars represent responses to the selection question ‘calculate y/n’ where the participants chose ‘calculate 

no’ (i.e., to use the retrieve strategy). White bars represent responses when participants were asked 

‘retrieve y/n’ and selected ‘retrieve yes’. Error bars represent the standard error of the mean.
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3.5.2.3 Strategy Selection Latency

Only 10.6% of responses were not made within the 850 ms window allocated 

for strategy selections in the current experiment. It was found that sum familiarity did 

not influence the amount of the time taken to select the calculate strategy, F(l, 20) = 

.01, MSE < .001, p  = .91. However, marginally significant effects of the answer 

familiarity manipulation were evident, F (l, 20) = 4.55, MSE = .01, p  = .05, such that 

calculate strategy selections were made more rapidly in problems with relatively 

familiar answer than problems with unfamiliar answers. Although this level of 

significance is marginal non-significant effects of answer familiarity were evident in 

Experiments la and lb accordingly, further consideration of this result is not 

developed in this thesis. Non-significant effects of task instruction and yes key 

position upon the time taken to select the calculate strategy were found, F(l, 20) = 

.54, MSE = .02,/? = .47 and F( 1, 20) = 2.27, MSE = .02,/? = .15, respectively.
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Figure 3.6: Strategy selection latencies in each condition split by the position o f the yes key. Grey bars 

represent latencies derived when the key was positioned on the left o f  the keyboard, white bars when 

the yes key was positioned on the right. Error bars represent the standard error of the mean.

The same pattern of results emerged in respect to the time taken to select the 

retrieve strategy. There were null effects of sum familiarity F( 1, 13) = 3.16, MSE = 

.001,/? = .1, and marginally significant effects of answer familiarity, F(l, 13) = 4.93,
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MSE = .002, p  = .05. Similar to the duration of calculate strategy selections, faster 

selections were made for problems with more familiar answers than problems with 

unfamiliar answers (see Figure 4.6).

3.5.3 Discussion

The findings reported in this study fail to provide any evidence to suggest that 

task instructions influence rapid retrieve or calculate strategy selections. This supports 

the notion that task instruction effects are realised through consciously directed 

processes following the conclusions drawn from Kirk and Ashcraft’s (2001) verbal 

protocol study. Furthermore, the positioning of the yes and no keys on the keyboard 

did not serve to bias selection responses either. In respect to the second issue 

examined in this study, three findings converge upon the notion that the single

counter hypothesis determines strategy selections in this experimental paradigm. This 

serves to support the predictions of the SAC account of selection which favours a 

single-counter conception of FoK (Reder & Ritter, 1992; Schunn et al, 1997) rather 

than a dual-counter conception where separate mechanisms determine retrieve and 

calculate strategy selections. Firstly, it was predicted that if there were separate 

mechanisms then the impact of the problem level manipulations, sum familiarity and 

answer familiarity, may be limited to one mechanism and not the other. However, this 

eventuality was ruled out as there were no significant interactions between the task 

instruction manipulation and either problem or answer familiarity. Secondly, the 

pattern of influence exerted upon selection by problem familiarity was comparable in 

both task instruction conditions such that calculate was selected more often for 

unfamiliar than familiar problems. Finally, there were no effects of the answer 

familiarity manipulation upon calculate strategy selections, for which it was predicted 

that if separate mechanisms existed, would exert a greater influence upon participants 

in the retrieve yes/no condition than those in the calculate yes/no condition.

Before considering the theoretical ramifications of the two key outcomes 

revealed in the present experiment in greater detail, in the following experiment the 

same task instruction manipulation was used. To examine whether the susceptibility 

of the selection mechanism to task instructions manipulation is moderated by the 

types of problems presented (i.e., problems in which problem familiarity effects are 

evident, or problems in which problem feature effects are evident) the sum type
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manipulation (i.e., decades, mixed and fives problems) was employed in place of the 

sum familiarity and answer familiarity manipulations. Furthermore, manipulation of 

the task instruction variable facilitated a further investigation of the single- versus 

dual-counter hypothesis of FoK.

3.6 EXPERIMENT 6b

In the previous experiment it was shown that task instructions emphasising 

selection of either the retrieve or calculate strategy had no impact upon predicted 

strategy selections. Furthermore, there was no evidence to suggest that a dual-counter 

account of the FoK mechanism provided a better fit to the pattern of results than the 

single-counter account. In the present experiment the same two issues detailed in the 

previous experiment were examined. To briefly recapitulate, the task instruction 

variable (i.e., retrieve yes/no vs. calculate yes/no) was employed to investigate what 

types of task-level manipulation influence the strategy selection mechanism. Findings 

from a mental arithmetic study (e.g., Blote, Van der Burg & Klein, 2001; Kirk & 

Ashcraft, 2001) revealed that self-reported measures of strategy use were susceptible 

to the influence of task instructions (see also Gardner & Rogoff, 1990, for similar 

result but in a maze navigation study). Specifically, task instructions emphasising 

usage of the retrieval strategy elicited a high percentage of self-reported retrieval 

selections made after solving the problem. Similarly, instructions emphasising the use 

of calculate strategies produced a bias in responses to selection of the calculate 

strategy. However, null effects of task instructions upon selection in Experiment 6a 

serve to question whether the selection mechanism is indeed responsive to 

manipulations of the task (i.e., task instructions), rather than the problem itself (i.e., 

problem familiarity or problem features). One possible explanation for this null effect 

resides in the difference between the measures of strategy selections obtained in this 

experimental paradigm and those produced in the Kirk and Ashcraft (2001) study. In 

the selection-phase experimental design, responses are produced rapidly and there is 

no opportunity afforded to use conscious processes to identify what strategy was 

actually used to solve the problem. As shown by the articulatory suppression 

manipulation employed in Experiments 5a and 5b, the selection latencies and the 

percentage of late responses illustrate that the selection mechanism itself is apparently 

immune to interference from secondary tasks. Conversely, the self-report responses
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collected by Kirk and Ashcraft (2001) are contingent upon a conscious evaluation of a 

prior processing episode. Here the participant must identify what strategy they 

actually used to solve the problem and in the eventuality that information is not 

accessible, guess the most likely candidate (Kirk & Ashcraft, 2001). Accordingly, it 

may be the case that the influence of the task instruction manipulation is realised 

through the contribution of conscious processes used to reconstruct a prior processing 

episode, rather than the unconscious processes shown to drive strategy selections in 

previous experiments presented in this thesis.

In respect to the second facet of selection examined in Experiment 6a, the 

issue of whether a single-counter or dual-counter account of the FoK mechanism 

provides the best description of the findings, the same rationale was applied in this 

study. If selection-by-feature effects, which have been shown to influence selection in 

decades, mixed and fives problems (see also Experiments 2a, 2b and 5b), are only 

evident in one of the task instruction conditions (i.e., retrieve yes/no or calculate 

yes/no) this would be indicative of the operation of separate counters. One counter 

determining retrieve selections based upon information in memory pertaining to the 

accumulated knowledge of things that are known. A second counter monitoring 

knowledge pertaining to things that are not known and resulting in calculate strategy 

selections.

To examine these two issues, the same selection-phase design was employed 

here as in Experiment 6a including a between subjects manipulation of task 

instruction (i.e., retrieve yes/no vs. calculate yes/no) and key position (yes key on the 

left vs. right side of the keyboard). However, a further hypothesis, that only certain 

types of problem are sensitive to the task instruction was also examined. Whereas in 

the previous experiment problem familiarity effects were evident and task instructions 

did not influence selection, in this study the sum type manipulation (i.e., decades, 

mixed and fives problems) was employed to identify whether strategy selections 

influenced by the selection-by-feature effect (rather than problem familiarity) are 

sensitive to task instructions.
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3.6.1 Method

3.6.1.1 Participants

Twenty-four participants from the School of Psychology at Cardiff University 

were given course credit or payment in return for their participation. All were native 

English speakers reporting normal hearing and corrected or normal vision and had not 

participated in any of the other thesis experiments.

3.6.1.2 Materials, Design & Procedure

The same type of stimuli were used as in Experiments 2a and 2b (decades, 

mixed, fives problems). To recapitulate; both double-digits addends in each problem 

were either divisible by 5 or 10. Problems in the decades condition contained two 

addends which were divisible by 10 into integers, problems in the fives condition 

comprised two addends divisible into integers by 5. Problems in the mixed condition 

contained one decade and one fives addend. No tied problems were included and all 

problems summed to less than 100 (see Appendix E, table E7, for stimuli). 

Participants completed 16 practise questions followed by 12 trials in each sum type 

condition, the order of which was pseudo-randomised for each participant.

As in the previous study, two further manipulations were run as between 

subjects variables; task instruction (retrieve y/n vs. calculate y/n) and yes button 

position (left vs. right of keyboard). Full exposition of the methodology and procedure 

is provided in the corresponding section presented in the previous experiment.

3.6.2 Results

3.6.2.1 Scoring Procedure

All statistical analyses, unless detailed to the contrary, were conducted using a

2 (task instruction; retrieve y/n vs. calculate y/n) x 2 (yes key position; left vs. right) x

3 (sum type; decades, mixed and fives) mixed measures ANOVAs. Within this design 

sum type was manipulated within subjects, selection task instruction and yes key 

position between subjects. To briefly recapitulate, retrieve yes and calculate no 

selections both equated to the same underlying strategy selection (i.e., retrieve), 

calculate yes and retrieve no selection to the calculate strategy. To minimise 

confusion, in the analysis, selection responses will be identified by the underlying
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strategy selection (retrieve or calculate) and will be split by the task instruction 

condition (calculate y/n, or retrieve y/n).

3.6.2.2 Strategy Selection

In accordance with findings detailed in prior studies employing the sum type 

manipulation, the underlying strategy selected most often was the retrieve strategy 

(see Figure 4.7). A mixed measures ANOVA was conducted, analysing the 

percentage of late responses in each of the conditions. Null effects of sum type, task 

instruction and yes key position (all Fs < .7, all ps > .14) upon the percentage of late 

responses revealed that the dependant relationship between retrieve and calculate 

selections was not compromised by the experimental variables.

It was found that there were no significant interactions between any of the 

manipulations (all Fs < 1.1, all ps > 3.7). However, there was a significant effect of 

sum type on the percentage of retrieve selections recorded (i.e., retrieve yes and 

calculate no selections), F(2, 19) = 14.58, MSE = 4.76, p  < .001. As Figure 4.7 

illustrates and pairwise comparisons confirm, the retrieve strategy was selected more 

often in the decades than mixed (p = .013), decades than fives (p < .001) and mixed 

than fives (p < .001) conditions. This replicates the pattern of influence exerted upon 

selection by the sum type manipulation shown in Experiments 2a, 2b and 5b. Turning 

to the effects exerted on selection by the task instruction manipulation, significant 

main effects were evident, F{ 1, 20) = 5.4, MSE = 12.6, p  = .03. Participants 

indicating whether they would retrieve the answer from memory (yes vs. no) made a 

greater number of retrieve selections than those who were asked whether they would 

calculate the answer (p = .03). Null effects of the key position manipulation serve to 

indicate that selection of the yes or no response was not contingent upon the spatial 

location of the yes key on the keyboard, F( 1, 20) = .04, MSE = 2.62, p  = .84.
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asked ‘retrieve y/n’ and selected ‘retrieve yes’. Error bars represent the standard error o f the mean.

3.6.2.3 Strategy Selection Latencies

In respect to the rapidity with which strategy selections were made, overall, a 

total of only 6.02% of selections were not made within the 850 ms time limit. 

Marginally significant effects of sum type were evident upon the time taken to select 

the retrieve strategy, F{2, 18) = 3.33, MSE = .002, p = .06. This narrowly fails to 

replicate findings from previous experiments presented in this thesis which employed 

identical stimuli in which significant effects of sum type upon retrieve selection 

latencies were reported. Despite the significant effects of task instructions upon 

retrieve selections there was no effect of this manipulation upon the time taken to 

select retrieve strategies, ^(1, 19) = .18, MSE = 12.59,/? = .68. Nor was if found that 

the spatial location of the yes key position influenced mean retrieve selection 

latencies, F( 1, 19) = .09, MSE = 12.59,/? = .77, see also Figure 4.8.
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3.6.3 Discussion

In summary, it was found that task instructions, dissimilar to Experiment 6a, 

influenced the process that determines retrieve strategy selections. Participants 

instructed to predict whether they would retrieve the answer (yes or no) selected the 

retrieve strategy on a greater percentage of trials than those participants asked to 

indicate whether they would calculate the problem’s solution. In respect to the second 

issue examined in the present experiment, there was no evidence to support the 

predictions of the dual-counter account of FoK, where separate counters measure the 

accumulation of information pertaining to what is known in memory and what is not 

known (see Nelson & Narens, 1990). Turning first to the effect task instructions upon 

strategy selection, the findings reported in the current study support Cary and Reder’s

(2002) conception of strategy selection in that selection was not only influenced by 

problem-level manipulations (i.e., problem familiarity and/or problem features) but 

also task-level (i.e., task instructions) manipulations. In the previous study the null 

effects of task instruction were attributed to the notion that conscious processes were 

responsible for their effect. As previously identified, instruction effects were reported
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in the self-report selections made by participants in Kirk and. Ashcraft’s (2001) study 

and these responses were derived from a consciously directed reconstruction of a prior 

processing episode. However, the significant effects of task instruction in the present 

experiment undermine this hypothesis. Here the time limit imposed upon responses 

made in the selection-phase was implemented to prevent conscious process from 

reconstructing the prior processing episode and identifying the strategy selected but 

this control did not mitigate instruction effects. From this it can be inferred that the 

unconscious or implicit processes, including the FoK mechanism, may be sensitive to 

task instructions. However, the ubiquity of this theory is challenged by a comparison 

of the findings derived from this study and Experiment 6a. In Experiment 6a the null 

effects of task instructions upon strategy selections were shown to be influenced by 

the problem-level manipulation problem familiarity. This indicates for the first time in 

the strategy selection literature that the influence of task instructions and potentially 

other task-level manipulations upon selection is dependant upon the type of problem.

To date, selection models, in particular the SAC account, have focused upon 

modelling problem-level effects, rather than task-level manipulations. Accordingly, 

there is very little specification of how task-level manipulations actually influence 

selection. Further discussion of this issue and the implications of this finding are 

presented in further detail in Chapter 4.

3.7 GENERAL DISCUSSION

Whereas in Chapter 2 the empirical work focussed primarily upon two 

objectives, establishing key empirical phenomena within the paradigm and evaluating 

the robustness of the dual-phase design, in Chapter 3 a more detailed examination of 

the selection mechanism is presented. To do so, five experiments examined three key 

issues which have received little, or no, attention within the arithmetic strategy- 

selection literature to date. In Experiments 4, 5a and 5b it was shown for the first time 

in a controlled empirical setting that the influence exerted upon selection by problem- 

level manipulations is contingent upon the type and number of manipulations 

operationalised. Furthermore, that underpinning the retrieve and calculate selections 

made in these experiments a common selection mechanism was in operation. 

However, it was also revealed that the influence of selection-by-feature effects upon 

retrieve and calculate selections may be inconsistent. Although in Experiments 6a and
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6b some evidence is presented to suggest that problem feature effects are contingent 

upon not only the type of problem feature/s manipulated, but also the task-level 

conditions imposed upon the processing episode. To examine whether this outcome 

could be attributed to action of the selection mechanism itself or to other cognitive 

functions, the wider context in which problems were solved was also examined in 

Experiments 5a, 5b, 6a and 6b. From these experiments it was found that although 

selections were made rapidly, they were still sensitive to other influences, including 

the availability of consciously directed processes and task instructions. The findings 

from these experiments emphasise limitations inherent in the familiarity- (problem or 

answer) based selection models detailed in Chapter 1, as the influence of problem- 

and task-level factors cannot be dissociated from the selection process. A brief outline 

of the key findings from each of the experiments presented in this chapter will follow. 

Particular emphasis will be made to the key empirical phenomena identified in 

Chapter 2 and the limitations of existing models of strategy-selection.

Results from Experiments 5b and 6b in this chapter serve to support the 

proposed selection-by-feature effect originally identified in Chapter 2. In Experiment 

2a it was concluded that particular features inherent in problems, for example, both 

addends in a sum are divisible by 10, influence the strategy selections mechanism. As 

evidence of this effect stemmed from one set of stimuli (i.e., decades, mixed and fives 

problems), although replicated in the selection-phase design, it was necessary to 

identify the boundaries of this effect. As decades, mixed and fives problems elicited a 

high percentage of retrieve strategy selections it was considered whether the influence 

of the selection-by-feature effect is limited to retrieve strategy selections. 

Furthermore, decades, mixed and fives problems are all relatively familiar problems 

in comparison to those presented in Experiments la  and lb where sum and answer 

familiarity was manipulated. It may also be the case that the selection-by-feature 

effect is limited to familiar as opposed to unfamiliar problems. Findings from 

Experiments 5a demonstrate that selection-by-feature effects can influence the 

percentage of calculate selections made in unfamiliar problems and are thus not 

limited to either retrieve selections, or highly familiar problems. From this it is 

inferred that problem features may influence strategy selection in a range of problem 

types.

As well as being informative of the ubiquity of the selection-by-feature effect, 

findings from Experiments 5a and 5b also confirmed that this effect is based upon
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problem features rather than problem familiarity. In Experiments 2a and 2b, effects of 

the problem feature manipulation sum type were found in the percentage of retrieve 

selections reported. However, a covariates analysis demonstrated that problem 

familiarity covaried significantly with retrieve selections. The import of this finding 

was undermined by a further analysis run in Experiment 2a which revealed that 

problem familiarity effects were not present within each level of the sum type 

manipulation. Confirming this account of the selection-by-feature effect, Experiment 

5a employed a design with the power to dissociate the influence exerted upon 

selection by problem features and problem familiarity. A significant interaction 

between these two manipulations, such that an effect of the problem feature addend 

status was only evident in familiar (as opposed to unfamiliar) problems confirmed that 

the selection-by-features effect is distinct from that of problem familiarity.

As well as establishing the scope of the selection-by-feature effect the 

experiments in this chapter also provided an opportunity to examine how problem- 

level manipulations combine to influence selection. As detailed previously, the 

majority of strategy-selection models stipulate that retrieve and calculate selections 

are determined by a single factor. However, in reality, problems may be comprised of 

a number of factors with the potential to influence selection, including problem 

familiarity and problem features. In Experiment 4 two feature manipulations were 

employed, addend status (i.e., odd, even and mixed problems) and relative addend 

magnitude (i.e., similar and disparate). As neither feature was found to influence 

selection it could be inferred that the null effects of both feature manipulations upon 

selection could be attributed to the action of one manipulation nullifying the effect of 

the other. A further eventuality considered was that the complexity of the 2 (relative 

addend magnitude) x 3 (addend status) factorial design used failed to render either 

feature apparent to the participant. However, this finding needs to be considered with 

some caution. The relative addend magnitude manipulation, designed to investigate 

whether number comparison or anchoring processes were used when identifying 

features in a problem, was not examined in any of the other experiments presented in 

this thesis. Nor had this type of manipulation been employed in any other selection 

tasks using a similar experimental paradigm. Accordingly, it may not be a feature that 

actually influences selection. In contrast, when comparing the influence exerted by 

two problem-level manipulations, problem familiarity and addend status, in 

Experiment 5a a significant interaction was found. This suggests that it is not
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necessarily the number of problem-level factors inherent in a problem that limits their 

impact upon selection, but the type of factor. To illustrate, in Experiment 5 a the 

interaction between addend status and problem familiarity revealed that selection in 

relatively familiar problems was influenced by addend status, but not in relatively 

unfamiliar problems. More importantly, from the interaction between these two 

factors, it is proposed that selection is not influenced by one factor at the exclusion of 

another, but that the influence exerted by one factor is moderated by the other.

Turning to the third issue examined within this chapter, that of the role played 

by the context in which a strategy-selection is made, the particular focus of this issue 

was in identifying how context contributes to the selection-by-feature effect. When 

examining how problem familiarity and selection-by-feature effects occur it is 

necessary to identify the processes responsible for generating differentials in problem 

familiarity and responsible for identifying problem features relevant to selection. 

Turning first to problem familiarity effects, the SAC model provides an apparently 

sound foundation for appreciating how problem familiarity influences selection. As 

detailed previously, briefly stated, problem familiarity is determined by the frequency 

of exposure to problems, or specific components of problems (Reder & Ritter, 1992; 

Schunn et al, 1997), whereby greater exposure confers greater familiarity. Supporting 

this account, in Experiment la  calculate selections were shown to be sensitive to 

problem familiarity. However, in Experiment lb, it was evident that problem 

familiarity effects upon selection were determined by problem familiarity ratings 

derived prior to the experiment. Problem familiarity effects upon calculate strategy 

selections were shown to be immune to two task-level manipulations in Experiments 

5a and 6a. Articulatory suppression, a secondary task designed to inhibit conscious 

processes not only during but between strategy selection trials, failed to attenuate 

problem familiarity effects. Furthermore, in Experiment 6a, the manipulation of task 

instructions failed to impair problem familiarity effects. Perhaps more importantly, 

there was no interaction between problem familiarity and the task instruction given to 

participants. From this it is apparent that effects of problem familiarity are not only 

robust, but immune to interference from conscious processes and attempts to bias 

strategy selections using task instruction manipulations.

Conversely, from the experiments presented in the present chapter, selection- 

by-feature effects were shown to be sensitive to both problem- and task-level 

manipulations. Findings detailed in Experiment 2a, demonstrate that retrieve
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selections were influenced by the type of problem presented, decades, mixed or fives. 

While Experiment 2b demonstrated that the problem features specific to this set of 

problems are not necessarily identified by the act of solving the problems. Based upon 

this foundation, in Experiment 5b it was apparent that selection in decades, mixed and 

fives problems was immune to interference from articulatory suppression. It is 

concluded that the problem features responsible for the selection-by-feature effect are 

derived from prior problem-solving episodes and are thus immune to suppression 

effects, similar to problem familiarity. However, when examining a further type of 

problem feature, addend status, it was found in Experiment 5a that Articulatory 

suppression did attenuate the selection-by-feature effect. Accordingly, it is suggested 

that selection-by-feature effects can be determined by problem features either derived 

from prior problem-solving episodes, or from features identified during the course of 

an experiment. Generally stated, it the influence exerted upon selection by problem 

features is much more sensitive to task-level manipulations than that of problem 

familiarity.
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CHAPTER FOUR

4.1 AIMS OF THE THESIS

Although strategy selection is a key component of the problem-solving 

process, the level of attention paid to the mechanism responsible for rapid and 

accurate performance fails to reflect the importance of this cognitive function. To 

redress this neglect I have endeavoured to demonstrate that examining strategy 

selection in arithmetic problem-solving is a useful way to observe the operation of not 

only the selection mechanism but the processes that monitor and control knowledge in 

general. In this final chapter I review the findings derived from the key themes 

underpinning the two empirical series presented in this thesis. Broadly speaking, the 

principle aims of the thesis are threefold. Reflecting the paucity of empirical research 

in the domain, the opening remit of the thesis was to establish a robust and flexible 

methodology which could be used to examine the selection mechanism. Addressing 

the limitations of existing simulations of strategy selection the key tenets of these 

models were contrasted from a largely exploratory standpoint. Then the findings from 

these experiments were used to direct further empirical investigation designed to 

extend and refine key aspects of the selection mechanism itself. By identifying and 

elucidating critical facets of the selection process it is hoped that a greater 

understanding of the process by which problems are solved is achieved.

4.2 SUMMARY OF FINDINGS: ESTABLISHING THE KEY EMPIRICAL

PHENOMENA

Despite the number of existing strategy selection models the lack of empirical 

research designed to establish key effects within the paradigm is compelling. 

Exploiting the dual-phase experimental design developed by Reder and colleagues 

(Reder, 1987; Reder & Ritter, 1992; Schunn et al, 1997) the empirical series presented 

in this thesis took a more holistic approach to selection than is evident in existing 

accounts. By examining the type of factors that influence selections in real-world 

problem-solving, taken together, the experiments reported in this thesis indicate that
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selection is more flexible than previously conceived. Specifically, a range of problem- 

level (i.e., problem familiarity and problem features) and task-level manipulations 

(i.e., task instructions and articulatory suppression) were shown to influence retrieve 

and calculate selections. As many of the issues examined in this thesis have not been 

covered within the arithmetic strategy-selection literature previously, in the following 

sub-sections I shall detail each of the key issues examined and their implications for 

the strategy selection process.

4.2.1 Testing the Dual-Phase design

At the outset it was necessary to establish a robust methodology with the 

power to examine the predictions derived from existing models of selection. 

Reflecting limitations in the scope of prior empirical research, the findings supporting 

existing models of selection were derived from a range of arithmetic tasks. These 

included pseudo-and alphabetic-arithmetic tasks (Compton & Logan, 1991; Rickard, 

2004; Rickard & Bourne, 1996; Rickard, Healy & Bourne, 1994), arithmetic inversion 

problems (Siegler & Araya, 2005) and in the case of the ACT-R, ASCM and DOA, a 

conventional arithmetic problem-solving experiment. In a series of experiments Reder 

and colleagues (Reder, 1987; Reder & Ritter, 1992; Schunn et al, 1997) demonstrated 

that the dual-phase Game Show design provided a suitable methodology with which 

to investigate the operation of the selection mechanism. Furthermore, within this 

design there was the potential to integrate a range of problem- and task-level 

manipulations.

The design itself is contingent upon a clear distinction between selection- and 

solution-phases and that this demarcation mirrors the natural order of processing in 

problem-solving. To test this assertion it was necessary to ensure that the outcomes 

from the design demonstrated that strategy selection could be made rapidly and with a 

degree of accuracy. Furthermore, that the modifications made to the Reder and 

colleagues’ (Reder & Ritter, 1992; Schunn et al, 1997) dual-phase design did not 

compromise the rapidity and accuracy of selections. In the selection-phase of the 

design a time limit of 850 ms was imposed upon selection to force rapid strategy 

selections. In a simple mental arithmetic problem-solving study Staszewski (1988) 

had demonstrated that at least 850 ms is required for a direct retrieval of a problem’s 

answer to be completed. Results from the Game Show studies had already illustrated
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that selections could be made rapidly (i.e., 580 -  760 ms). Based upon the 

modifications made to the dual-phase design used by Reder and colleagues (Reder & 

Ritter, 1992; Schunn et al, 1997) it was necessary to replicate these effects to ensure 

the validity of the design. Overall, in the experiments reported in this thesis it was 

found that mean selection latencies ranged between 416 — 638 ms and the mean 

percentage of late responses between 3.9% - 12.2%, indicating that participants were 

able to select the retrieve or calculate strategy well within that time limit.

Not only could selections be made rapidly but it was also evident that 

predicted strategy selections were largely accurate. In related experimental paradigms, 

where predictions of future performance are based upon memory monitoring 

mechanisms, the accuracy of these mechanisms is deemed to be questionable. 

However, it should be noted that in the metacognition literature, apparent inaccuracies 

in Judgements-of Learning and Ease-of-Leaming (see Koriat & Ma’ayan, 2005; 

Koriat, Ma’ayan & Nussinson, 2006; Nelson & Narens, 1996; Nelson & Dunlosky, 

1991) are often attributed to a lack of understanding of how these mechanisms 

function (Koriat, 2006; Koriat, Ma’ayan, Nussinson, 2006; Smith, Shields & 

Washburn, 2003) rather than inaccuracy per se. To assess the accuracy of predicted 

strategy selections, Reder and Ritter (1992) using d ’ (see Macmillan & Creelman, 

2004) and the Goodman-Kruskal gamma correlation (see Nelson, 1986), compared 

the predicted strategy selection in a trial to the time taken subsequently to solve that 

problem. By subjecting the strategy selections and solution latencies to the incentive 

scheme used in those studies hits, misses, false alarms and correct rejections were 

identified. To illustrate, a hit was identified when the participant chose the retrieve 

strategy and correctly answered the problem within the time limit allocated to 

retrievals. False alarms were allocated to trials in which retrieve was chosen but the 

accompanying solution latency exceeded the time limit within the scheme for 

retrievals. As the focal remit of this thesis was to identify the factors that influence 

selection, rather than establishing the accuracy of these selections, based upon the 

good levels of accuracy established in Reder and colleagues’ (Reder & Ritter, 1992; 

Schunn et al, 1997) studies it was deemed appropriate to take a more simplistic 

approach to accuracy. Furthermore, by jettisoning the incentive scheme used by Reder 

and colleagues to stimulate performance for both theoretical and empirical ends (see 

section 4.2.2), this type of analysis was not possible. Accordingly, the analysis of 

accuracy was simplified such that retrieve selections should be accompanied by
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significantly shorter selection latencies than calculate selections. In general it was 

found that solution latencies were representative of the time that should be taken by 

either the retrieve or calculate strategy to solve that problem. Again, it was deemed 

unnecessary to quantify these time periods, as individual differences dictate that 

solution latencies vary considerably between individuals (Campbell & Xue, 2001; 

Hecht, 1999; Jackson & Coney, 2007; Lefevre & Kulak, 1994; LeFevre, Kulak & 

Bisanz, 1991; Little & Widaman, 1995) and that there was no one-fits-all time limit 

that could be used effectively as a cut-off between retrieve and calculate selections.

In respect to the modification made to Reder and colleagues’ (Reder & Ritter, 

1992; Schunn et al, 1997) dual-phase design, one notable change was made, 

demonstrating that performance attributed to the selection- and solution-phases by 

Reder and colleagues was indeed dissociable. In Experiments lb, 2b, 3 either the 

selection-phase or solution-phase were performed in isolation. Findings from 

Experiments lb and 2b replicated the results from Experiments la and 2a which used 

the dual-phase design. Also Experiment 3 replicated the pattern of influence exerted 

by the problem-level manipulations upon solution latencies evident in Experiments 2a 

and 2b. Therefore it was concluded that the experimental design had the suitable 

flexibility with which to examine a range of problem- and task-level influences. Also, 

by replicating the effects found in the dual-phase design, the single-phase designs not 

only testified to the robustness of the methodology but supported the Reder and 

colleagues’ assumption that performance arising from the selection- and solution- 

phases of problem-solving is dissociable (Reder & Ritter, 1992; Schunn et al, 1997).

4.2.2 Problem Familiarity as a cue to strategy selection

The problem familiarity effect stands as one of the most controversial, but 

important findings within the paradigm to date. Considering the lack of empirical 

research and reliance on modelling techniques within the paradigm, the effect is 

relatively well established at an empirical level. Reder (1987) illustrated that by 

priming the terms of a general knowledge question, and hence increasing the 

familiarity of these primed terms, that individuals are more likely to select the retrieve 

strategy than calculate. Within the Game Show studies, using a similar technique, the 

same finding was revealed (Reder & Ritter, 1992; Schunn et al, 1997) in mental 

arithmetic problems. To recapitulate, in all but one of these studies (Reder & Ritter,
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1992; Experiment 1) retrieve and calculate selections were examined in double-digit 

multiplication or sharp problems. When first presented with these problems, due to 

their difficulty (e.g., 23 x 46), participants did not make predicted retrieve selections 

nor were they able to solve them using direct retrieval procedures. With repeated 

exposure to the problems and repeated solving of these problems, participants became 

familiarised with the problems and returned a greater frequency of predicted retrieve 

selections. However, there was a crucial limitation in Reder and colleagues’ studies 

(see Reder & Ritter, 1992; Schunn et al, 1997). The priming methodology and 

incentive scheme used to reinforce learning served to confound selections for double

digit addition problems in particular. Rather than basing selections upon the actual 

familiarity of the problem, participants were attempting to beat the incentive scheme, 

selecting retrieve almost exclusively to maximise their score (Reder & Ritter, 1992; 

Experiment 1). A further consideration examined was that the use of an incentive 

scheme and priming technique may be unnecessary as individuals are already 

familiarised to a certain extent with a vast range of problems. In particular, it may be 

that this artificial method of inducing familiarity may not mirror the same process 

used in real-life problem-solving. Accordingly, a different approach was adopted in 

the experiments presented in this thesis. Based upon number familiarity ratings, 

problem familiarity ratings were derived and manipulated in a number of experiments. 

For the first time in the literature, the experiments presented in this thesis converge 

upon the notion that pre-experimental familiarity, rather than experimentally induced 

familiarity, also influences retrieve and calculate strategy selections. This supports an 

account of real-world problem-solving such that prior exposure to problems serves to 

increment problem familiarity and also influences selection itself. In Experiments la 

and lb, the retrieve strategy was selected more often in relatively familiar problems 

than unfamiliar problems. Regression analyses conducted in Experiment la (see 

Appendix B) suggest that instead of problem familiarity the magnitude of a problem’s 

answer may influence selection. However lines of converging evidence provide 

greater support to the problem familiarity account of selection. Further 

experimentation, directly manipulating answer magnitude, would be required to rule 

out the potential contribution of this measure to selection conclusively. Problem 

familiarity effects were also evident in Experiments 5a and 6a; these will be discussed 

in greater detail in sections 4.2.4 and 4.2.5. Taken in tandem with the findings from 

the Game Show studies the problem familiarity effects evident in this thesis
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demonstrate the ubiquity of this effect. Perhaps more importantly, they illustrate that 

selection is not only influenced by experimentally induced problem familiarity but 

extant problem familiarity, derived from a lifetime of problem-solving.

4.2.3 The Selection-by-feature effect

One issue that has received very limited coverage in the existing models of 

strategy selection is the type of problem-levels factors that influence the selection 

mechanism. Aside from problem familiarity, only one model, SCADS* (Siegler & 

Araya, 2005) has sought to accommodate a range of influences upon selection. When 

examining double-digit addition and multiplications problems, using the dual-phase 

design, Reder and Ritter (1992) identified that strategy selections were not only 

influenced by problem familiarity but by a particular problem feature, operator type 

(i.e., + or x). Whereas the accuracy of selections based purely upon problem 

familiarity was shown to be high in other studies (see Reder & Ritter, 1992; Schunn et 

al, 1997) the accuracy of retrieve selections in addition problems was relatively low in 

comparison to multiplication problems. Participants often selected retrieve but were 

unable to solve the problems within the time limit set by the incentive scheme. Low 

levels of accuracy can in part be attributed to the influence of the incentive scheme. 

Participants realised that the greatest pay-off opportunity was to make a predicted 

retrieve selection and attempt to solve the problem as rapidly as possible. But the 

authors also acknowledge that selection was influenced by the type of operator rather 

than the familiarity of the problem.

Such problem feature effects have been accommodated by ad-hoc assumptions 

bolted on to account for their influence (i.e., ACT-R and SAC). However, the 

possibility that a range of features influences selection and that their effect is 

contingent upon a common mechanism was considered in the present thesis. 

Accordingly, three different types of problem feature were examined in the 

experiments reported in this thesis to examine the scope of these effects. In 

Experiments 2a and 2b, retrieve strategy selection were influenced by the problem 

feature sum type in that participants utilised features such as both addends are 

decades numbers, or both addends are fives numbers. Although problem familiarity 

was not manipulated in the current study, a covariates analysis revealed that the 

familiarity of the problem covaried significantly with retrieve selections. Further
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analyses indicated that within each level of sum type there were no effects of problem 

familiarity but the possibility remained that problem familiarity effects were 

misattributed to the problem feature. In Experiment 4, the two problem features 

manipulated, addend status and relative addend magnitude, had no impact upon 

selection. Effects of addend status were expected as the manipulation was analogous 

to the sum type manipulation. However, the relative addend manipulation required a 

magnitude comparison between both addends in a problem, rather than the 

identification of a particular feature, such as both addends are even numbers. 

Subsequent effects of addend status in Experiment 5a, albeit with 2 rather than 3 

levels and paired with a manipulation of problem familiarity rather than another 

problem feature manipulation, demonstrated that operator type and sum type are not 

the only problem feature manipulations to influence selection.

From these studies it is possible to build upon a basic understanding of the 

types of feature that influence selection. Effects of sum type and addend status 

demonstrate that participant’s utilised semantic features of a problem, such as both 

addends are even numbers, or both addends are multiples o f five. Null effects of the 

relative addend magnitude manipulation indicate that magnitude comparisons 

between the two addends did not influence selection. To confirm this notion it would 

be necessary to examine the influence of the relative addend magnitude upon 

selection in isolation, or alternatively paired with a manipulation of problem 

familiarity (see 4.2.4). Furthermore, whereas sum type effects were realised in highly 

familiar problems which elicit a high percentage of retrieve selections (i.e., decades, 

mixed and fives), effects of addend status in relatively unfamiliar problems which 

predominantly elicit calculate selections indicate the generality of the selection-by- 

feature effect to a range of problems, problems varying in familiarity and strategy 

selections.

4.2.4 Cue combination: When problem familiarity and problem features collide

In most mental arithmetic problems there will be a number of cues with the 

potential to influence selection. This is especially likely in more complex problems 

such as general knowledge questions (see Reder, 1987). Irrespective of the number of 

cues, or the complexity of the problem, individuals still must be able to make rapid 

and accurate strategy selections. For the first time in the paradigm, in a number of
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experiments, multiple problem-level manipulations were employed to examine 

whether one manipulation takes precedence over the other, or whether selections are 

influenced by an interaction between the factors. To do so, three configurations of 

problem-level manipulation were examined. Experiments la, lb and 6a demonstrated 

that when two familiarity manipulations were employed (i.e., problem and answer 

familiarity) problem familiarity took precedence. However, this needs to be treated 

with some caution as a number of studies have demonstrated that answer familiarity 

does not influence rapid strategy selections (Reder & Ritter, Schunn et al, 1997, cf. 

the ACT-R, IT AM and DO A models). To confirm whether problem familiarity takes 

precedence over answer familiarity it would be necessary to examine answer 

familiarity effects when manipulated in isolation. Two problem features (addend 

status and relative addend magnitude) were manipulated in Experiment 4. The null 

effects of these manipulations were primarily attributed to the complexity of the 

factorial manipulation used in that experiment where 6 different configurations of 

problems were required. Accordingly, participants may have been unable to identify 

either or both of the manipulations, alternatively selection may have been confounded 

by the influence of both manipulations, indicating that they are unable to interact. 

Supporting this notion, in Experiment 5 a it was evident that selections are influenced 

by both problem familiarity and problem features (i.e., addend status). More 

importantly, a significant interaction between these manipulations suggests that the 

influence of each manipulation is conditional. To illustrate, addend status effects were 

only evident in relatively familiar problems.

From these three configurations of problem-level manipulations it is apparent 

that problem familiarity is a particularly robust effect in the presence of other 

familiarity or feature based manipulations. Conversely, in the presence of other 

feature or familiarity manipulations problem feature effects appear to be more 

sensitive as illustrated by the complexity effect.

4.2.5 Selection in context

While the focus of the review presented in this chapter so far, and indeed the 

empirical work undertaken within the paradigm, has centred upon how problem-level 

manipulations influence selection, four experiments examined how context influences 

selection. In the distinction drawn between intrinsic and extrinsic influences upon
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strategy adaptivity, Cary and Reder (2002) proposed that selection is sensitive to not 

only problem-level manipulations but task-level manipulations. Following these 

authors’ assertion that conscious awareness is not a pre-requisite for strategy 

adaptation, in Experiments 5a and 5b the contribution of conscious processes to 

selection was examined using a secondary task. In Experiment 5 a articulatory 

suppression, used to inhibit consciously directed action during the task, interacted 

with problem familiarity. Generally, selection in the present experiment was 

characterised by an interaction between addend status and problem familiarity such 

that addend status effects were only apparent in familiar (as opposed to unfamiliar 

problems). However, this interaction between problem familiarity and suppression 

was particularly revealing as under suppression, effects of problem familiarity were 

re-instated demonstrating that addend status effects were attenuated by the 

suppression task. From this it is evident that consciously directed processes are at 

least in part responsible for addend status effects. It was predicted and shown that the 

action of the selection mechanism itself was immune to suppression effects following 

the notion that selection is based upon implicit or unconscious processes such as the 

FoK mechanism (Reder & Ritter, 1992; Schunn et al, 1997). Accordingly, it is 

suggested that the locus of suppression effects upon addend status can be localised to 

the consciously directed processes operating during the course of the experiment. 

These were presumably responsible for the identification of the problem feature, 

rather than inhibiting the action of the selection mechanism directly. In Experiment 5b 

sum type was manipulated to replicate the action of suppression on the selection-by- 

feature effect but using a different problem feature, sum type. However, strategy 

selections made for decades and mixed problems were immune to suppression effects. 

Extending the earlier rationale, it was inferred that consciously directed processes 

were not required for the identification of these problem features. However, selection 

in the fives condition was influenced by suppression, but this effect was attributed to 

the uncommonly low percentage of retrieve selections made in this condition, for 

which there was no logical explanation.

That the sum type manipulation was largely insensitive to suppression 

demonstrates that the influence of conscious processes upon selection is contingent 

upon the type of problem features inherent in a problem. While effects of the addend 

status feature were reliant upon consciously directed processes occurring during the 

course of the experiment, sum type effects were not reliant upon the same process.
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This is based upon the notion that participants were already aware of the problem 

feature from problem-solving episodes previous to the experiment. Further research 

would be beneficial to refine this hypothesis. Specifically, it would be useful to 

examine whether making participants aware of the addend status manipulation before 

the experiment would serve to render suppression ineffective.

To examine a further class of context effects proposed by Cary and Reder 

(2002) a second task-level manipulation was employed to examine the sensitivity of 

selection to biases in the task instructions. In arithmetic problem-solving and related 

paradigms a number of studies have illustrated that instructions emphasising the use 

of one strategy over the other can bias selections (Kirk & Ashcraft, 2001; Blote, Van 

der Burg & Klein, 2001; see also Gardner & Rogoff, 1990). However, these effects 

have not been examined in speeded response conditions therefore the measures taken 

in these experiments may be contingent upon conscious processes used to reconstruct 

prior processing episodes (e.g., self-reports). In Experiment 6a, where participants 

were instructed to indicate whether they would retrieve the answer (yes or no), or 

calculate the answer (yes or no), problem familiarity effects were immune to the task 

instruction. In Experiment 6b, there was no significant interaction between task 

instructions and sum type. However, participants given instructions emphasising the 

use of the retrieve strategy selected the retrieve strategy more often than participants 

given instructions biased towards calculate selections. That instructional bias only 

influenced the effect of sum type and not that of problem familiarity is particularly 

revealing. From this it was inferred that the selection-by-feature effect is susceptible 

to task instruction manipulations while selection influenced by problem familiarity is 

immune to such manipulations.

4.2.5 Summary of key findings

In summary, the key findings revealed from the two empirical series reported 

in this thesis combine to produce a much more complex overview of selection than 

previously conceived. It is apparent that problem-solving, on an experimental level, 

can be successfully lesioned into distinct selection- and solution-phases. Furthermore, 

the dual-phase experimental design employed in the thesis experiments provides a 

powerful and flexible methodology with which to investigate the selection process. 

Using this design, key findings from the Game Show studies were replicated, namely,
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that strategy selections are made rapidly, with a degree of accuracy and are influenced 

by problem familiarity. More importantly, familiarity derived by individuals from 

prior problem-solving episodes influences selection rather than experimentally 

induced during the course of an experiment. Evidence was also presented 

demonstrating that feature effects are contingent upon the identification and 

application of particular semantic characteristics inherent in the problem during 

selection.

Examining a more realistic problem-solving scenario, where multiple cues are 

present in a problem, it is tentatively proposed that the competition between two 

problem features may serve to attenuate the effects of one or both feature. However, 

selection may be influenced by both problem familiarity and problem features in 

tandem. Aside from the problem-level manipulations strategy selection, even though 

made very rapidly, varies in sensitivity to the wider processing context. Problem 

familiarity effects were largely immune to context manipulations as neither the 

availability of conscious processes, nor task instruction manipulations influenced 

selection. Furthermore, the selection mechanism itself was apparently un-reliant upon 

conscious processes. However, it was proposed that conscious processes are 

responsible for the identification of problem features during the course of an 

experiment, but problem features can also be derived from prior processing episodes, 

and in this instance are unaffected by the availability of conscious processes. In the 

following section these key phenomena will be used as a benchmark to examine the 

predictions of the existing accounts of selection.

4.3 THEORETICAL IMPLICATIONS

Despite the relatively large number of strategy selection models, the empirical 

research undertaken within the paradigm is limited in scope. The empirical series 

presented in this thesis has sought to broach this remiss through an empirical 

investigation of the models’ predictions. In this section, I return back to the models 

comprising the Automaticity and Adaptive accounts of selection. The predictions of 

these accounts will be evaluated in light of the key phenomena detailed in the 

previous section, and as none of the models are able to account for these phenomena 

in full, I specify a framework in which candidate mechanisms with the potential 

account for these phenomena are outlined.
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4.3.1 The Automaticity account of strategy selection

A central tenet of the Automaticity account is that individuals automatically 

attempt to solve problems following the Obligatory Activation Assumption (Logan, 

1988). Accordingly, within this account strategies are not chosen per se as this 

assumption circumvents any requirement to select between candidate strategies. In 

respect to the experimental paradigm used within the experiments reported in this 

thesis predictions from the three Automaticity models (ACT-R, IT AM and DO A) 

stipulate that retrieve and calculate selections are determined by a measure derived 

from the attempted retrieval. For example, in ACT-R (Lebiere & Anderson, 1998) 

when presented with a problem, the retrieval production searches memory for chunks 

matching the problem terms. If a chunk in memory, complete with a problem’s 

answer, has sufficient activation, the problem chunk will be overwritten and the 

answer available for output. A similar process is responsible for strategy selections in 

the DOA model (Siegler & Shrager, 1984). Here knowledge is structured as a series 

of associations in memory between the problem and answer. When problems are 

presented, the first step taken is an attempt to retrieve the answer. The relative 

concentration of associative activation between a problem and candidate answers 

activated determines whether the answer will be returned. Highly peaked distributions 

denote a greater confidence in the accuracy of an answer, whereas relatively even 

distributions of activation denote uncertainty. Contrasting these two accounts, in the 

IT AM model (Logan, 1988; 2002) it is proposed that an attempt to access all of the 

instances in memory of the problem, complete with the answer (i.e., a direct retrieval) 

is made. Simultaneously, IT AM searches for all stored instances of calculation 

algorithms applicable to the problem in memory.

Based upon these fundamentals, three streams of investigation failed to 

provide any support for the Automaticity accounts. All of the models were 

underpinned by the notion that the most rapid return from a problem-solving episode 

would be a completed direct retrieval of the problem’s solution. Accordingly, 

following Reder and Ritter’s (1992) critique of these accounts, none of the models 

were able to accommodate the rapidity and degree of accuracy of selections. In all of 

the thesis experiments it was evident that strategy selections were made consistently 

within the 850 ms designed to preclude participants from solving problems during this 

phase. Furthermore, precluding them from making predicted strategy selections upon



159

the basis of a completed direct retrieval participants and using hindsight to identify 

the actual strategy they used to solve the problem.

A further possibility considered within the Game Show studies was that an 

early read of the problem’s answer could be used to inform selection. It was argued 

that the attempted answer retrieval could be truncated allowing the return of a 

predicted strategy selection within the time limit. At that point in time the progress 

made in finding a solution, potentially indexed by the concentration of activation 

elicited by a problem, could act as a reliable indicator of the likelihood that the 

problem could be solved using the retrieve strategy. Accordingly, in problems with 

relatively familiar answers, it would be predicted that the retrieve strategy would be 

selected more often. However, Reder and Ritter (1992) found that selection was 

immune to the technique used to experimentally prime the association between 

problem and answer. Confirming this effect, findings from Experiments la, lb and 6a 

also revealed that the familiarity of a problem’s answer did not influence selection.

These three findings serve to highlight a fundamental flaw in the 

specifications of the Automaticity models. This is not to say that the Obligatory 

Activation assumption (Logan, 1988) is incorrect as it is acknowledged within wider 

cognition as being a particularly parsimonious way of accounting for a range of 

memory phenomena. However, it appears to be likely that this process is not 

responsible for the strategy selections made within this experimental paradigm, and 

potentially strategy selection in problem-solving in general.

4.3.2 The Adaptive account of strategy selection

Underpinning strategy selection in the Adaptive accounts is the notion that 

strategies are chosen in a distinct phase before an attempt to solve a problem is 

engaged. To recapitulate, in this class of models it is appreciated that problems can be 

and are often solved by a range of different strategies. Furthermore, given the same 

problem twice in succession individuals may employ different solution strategies 

(Reder, 1987; 1988; Shrager & Shipley, 1998; Siegler, 1999; Siegler & Araya, 2005; 

Siegler & Shipley, 1995). In the following sub-sections the key empirical phenomena 

revealed in this thesis will be applied to the predictions of the CMPL (Rickard, 1997; 

2004), SCADS* (Siegler & Araya, 2005) and SAC (Reder & Ritter, 1992; Schunn et 

al, 1997) models.
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4.3.2.1 The Component Power Laws theory (CMPL; Rickard, 1997; 2004)

In many respects the CMPL model bridges the divide distinguishing the 

Automaticity and Adaptive approaches. In line with the Adaptive account, when 

presented with a problem, in CMPL either the retrieve or calculate strategy is selected 

to the exclusion of the other. Fundamental to selection in this account is the approach 

taken to calculate strategies. Calculate strategies in CMPL are viewed as a series of 

direct retrievals. When applying this account to the data presented in this thesis, as 

selection is determined by the action of two competing retrievals, attempting to either 

solve the problem or the first step of the calculation procedure, it is apparent that the 

familiarity of a problem’s solution — rather than the problem itself — would 

influence selection. Unlike the Automaticity accounts, it could be argued the model 

has the potential to return rapid and accurate predicted selections as a function of the 

competition for activation between retrieve and calculate selections. Furthermore, 

these responses could be returned with a degree of accuracy. Responses could be 

based upon activation accumulated for each strategy and hence accuracy would not be 

contingent upon participants solving problems and then using hindsight to identify the 

strategy they used to solve the problem. However, in Experiments la, lb, 6a selection 

was shown to be insensitive to the familiarity of the problems’ solution, and thus 

failing to provide unequivocal support for this account.

4.3.2.2 The Strategy Choice and Discovery Simulation * (Siegler & Araya, 2005)

Before attempting to evaluate the specifications of this model it should be

noted that the SCADS* model will be focused upon in this section, rather than the 1st 

or 2nd generation accounts (i.e., ASCM and SCADS) preceding it. In light of the 

complexity of the SCADS* simulation I will briefly recapitulate the key components 

of the model. This family of models (i.e., ASCM, SCADS and SCADS*), similar to 

the SAC account, stipulate that individuals do not always attempt to retrieve the 

solution to a problem before applying other strategies (Shrager & Siegler, 1998; 

Siegler, 1999; Siegler & Araya, 2005; Siegler & Shipley, 1995). Rather than being 

based upon a single factor, like most of the strategy selection models detailed in this 

thesis, strategy selections in SCADS* is determined by four different types of 

information; global, featural, problem-specific, and novelty data. Information 

pertaining to each of these four types of data is combined for each candidate strategy. 

The model compares the relative strength of each strategy against its competitors and
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the candidate strategy with the greatest strength is chosen. Due to the complexity of 

this approach it is difficult to extract robust empirical predictions of performance from 

this model. This is particularly problematic because the contribution of each different 

type of data, to each candidate strategy, within each strategy-selection episode, is 

difficult to resolve in an empirical setting such as that employed in the experiments 

reported in this thesis.

To evaluate the SCADS* account, predictions from the model will be pitted 

against four empirical phenomena revealed in this thesis. Firstly, as strategies are 

selected in a distinct phase, where either the retrieve or calculate classes of strategy 

can be selected, this specification can apparently account for the rapidity with which 

strategy selections can be returned. Furthermore, as selections are made before an 

attempt to solve the problem is engaged it would also theoretically be possible for the 

model to return accurate predicted strategy selections. However, one caveat with this 

conclusion is that the computations that determine selection in SCADS* are relatively 

complex when compared to the more parsimonious accounts offered by other models. 

To illustrate, when selecting a strategy, activation elicited by the problem accumulates 

in parallel for each of the four different sources of data and for each of the candidate 

strategies in memory. In reality, rather than just being a straight competition between 

two strategies (i.e., retrieve and calculate), the retrieve strategy will compete for 

selection against a host of calculation strategies, especially in adult problem-solvers 

who have a large battery of different calculation (Hecht, 1999; 2002). Such a process 

may be computationally tractable in the simulations run by Siegler and colleagues. 

However, it is questionable whether the complexity of the computations required will 

afford rapid strategy selections in human problem-solvers. To date, there has been no 

specification of the time the model takes to select strategies; furthermore, existing 

simulations have been largely based upon data from children, who will have had 

smaller set of candidate strategies competing for selection than adults. Accordingly, it 

is unclear, at a practical level, whether using these procedures human problem solvers 

would be able to return rapid strategy selections within 850 ms. Particularly adult 

problem solvers who have a more comprehensive battery of candidate strategies than 

children to delineate between.

Turning to the problem-level manipulations employed in this thesis, although 

problematic, I shall attempt to extract some predictions from the SCADS* model. In 

Experiments la, lb, 6a of this thesis it is likely that the contribution of novelty and
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featural data to selection was minimal. Briefly stated, the problems presented in these 

studies were relatively unfamiliar in comparison to decades, mixed and fives 

problems. Furthermore, in these experiments problem features were not manipulated 

so it is probable that feature data will not influence selection. Following this rationale 

it is hypothesised that global data, which is based upon the prior history of success of 

a particular strategy when applied to all problems and problem-specific data which 

indexes the prior success of a particular strategy on a particular problem would 

determine selection in these experiments. Generally speaking, as the action of these 

two data sources is reliant upon the historical success and accuracy of prior strategy 

applications, strategy selections determined by these factors would be contingent 

upon the associative link between the problem and its answer (Shrager & Siegler, 

1998; Siegler & Shipley, 1995; Siegler, 1999; Siegler & Araya, 2005). As detailed 

previously, in Experiments la, lb and 6a, selection was not influenced by the 

familiarity of the problems’ solution. It may be that this provides evidence for a 

substantive case against the SCADS* model, however, this assertion needs to be 

appreciated with a degree of caution as it is not possible to account for the 

contribution of novelty or feature data in these types of problem.

A particularly notable facet of the SCADS* model is its ability to account for 

selection-by-feature effects. Other approaches (i.e., ACT-R and SAC) accommodate 

such effects by invoking ad-hoc assumptions when required. Such an approach 

compromises the ecological validity of these simulations as human intervention is 

required during the modelling procedure to specify particular problem features and to 

quantify the influence exerted upon selections. For example, in the SAC model a 

conditional parameter, ‘does participant decide to never retrieve for one of the 

operators? True/False’ (Schunn et al, 1997, p. 12) was added to the model to account 

for performance in studies where problems with two different operators were 

presented. However, this feature was only used to account for performance in a 

limited number of participants within the data set. In contrast, the feature detection 

mechanism, running in parallel with the selection mechanism in SCADS* affords a 

great deal of online flexibility. Siegler and Araya (2005) indicate that the feature 

detection mechanism may identify features such as the identity of each number in a 

problem and whether both numbers are equal. Also the mechanism can detect features 

irrelevant to the problem such as the relative magnitude of the numbers, the colour 

and size of the numbers in a problem. Accordingly, it is likely that such a mechanism
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could account for the selection-by-feature effects evident in Experiments 2a, 2b and 

5b where problems were comprised of addends that were multiples of five or ten. It 

should be noted that in this conception the presence of a particular feature does 

automatically mean that selection is determined by that feature. Using two counters, 

the model tracks the presence of each feature identified and the success of the strategy 

applied to solve each problem. It also tracks the success of strategies in the absence of 

particular features. When there is a difference of sufficient magnitude between the 

returns in each counter the presence or absence of a particular feature is used to 

compute the particular strength of a candidate strategy. Accordingly, in Experiment 4, 

where two feature manipulations were employed, the number of perceptual features, 

inherent not only in each problem but in the stimulus set as a whole, may have 

rendered feature detection of no benefit. However, in Experiment 5a, where only one 

problem feature was manipulated, addend status (with two levels), the feature, both 

addends are even numbers, may have been detected by this mechanism and 

subsequently influenced selection.

Aside from the complexity effect, a key component of the feature detection 

mechanism in SCADS* pertains to the consistency of feature effects. When a new 

problem feature is identified this feature only influences subsequent selections if the 

problem with that feature was solved correctly and at least 50% faster than usual 

(Siegler & Araya, 2005). Within SCADS*, perceptual and encoding mechanisms are 

posited as responsible for feature identification, in Experiments 5a and 5b mixed 

support for account was revealed. When conscious processes were precluded in 

Experiment 5a, addend status effects were impaired, while the same secondary task 

manipulation failed to impact selection-by-feature effects in Experiment 5b in which 

decade, mixed and fives problems were presented. This finding was attributed to the 

notion that consciously directed processes were responsible for the identification of 

problem features during the course of the experiment. This also suggests that some 

types of problem feature (e.g., both addends are multiples o f ten) are already known 

and hence do not require identification during the course of the experiments. These 

findings cannot be easily accommodated with the SCADS* account as problem 

features are detected by perceptual mechanisms, presumably operating at a 

unconscious level during encoding and hence immune to interference from the 

articulatory suppression secondary task designed to preclude conscious processing.
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In summary, it is apparent that the SCADS* account manages to accommodate 

the key empirical phenomena revealed in this thesis with mixed success. 

Fundamentally, the model has the potential to return rapid and accurate strategy 

selections as it is proposed that selections are determined prior to an attempt to solve 

the problem. However, its apparent reliance upon the associative linkage between a 

problem and the problem’s solution as a predictor of performance in selection tasks 

serves to undermine the account. Although, in line with the complexity of the account 

it may be that this evaluative criterion employed within this section is too simplistic as 

it does not account for the influence of novelty and feature data. Unlike any of the 

other selection models, SCADS* has the ability to account for selection-by-feature 

effects. Ideally, further empirical investigation of the key predictions of the model is 

required to assess claims of this model, however due to the complexity of the account 

it may be that a fine-grained empirical approach is not possible.

4.3.23 The Source o f Activation Confusion account (SAC; Reder & Ritter, 1992; 

Schunn et al, 1997)

As the most detailed account of selection and the focal point for the empirical 

investigation presented in Chapter 1 of this thesis, the predictions of this model have 

been examined more rigorously than any of the other models. In all of the thesis 

experiments it was shown that strategy selections could be made rapidly and with a 

degree of accuracy, supporting the position advocated by the SAC account that 

selection occurs in a distinct phase prior to strategy execution. Similar to the findings 

reported by Reder and colleagues (Reder & Ritter, 1992; Schunn et al, 1997) it was 

evident that problem familiarity influences selection (see Experiments la, lb and 6a). 

However, in extension of this rationale, for the first time it was shown that not only 

problem familiarity induced experimentally, but problem familiarity derived from a 

long-term history of previous processing episodes influences selection. This suggests 

that the problem familiarity-based mechanism detailed in the SAC model has the 

potential to account for problem familiarity effects in real-world problem-solving. 

However, despite the successes of the model in accounting for these key phenomena, 

it was unable to accommodate selection-by-feature effects.
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4.4 SUMMARY AND CONCLUSIONS

Current specifications of the strategy selection process are derived from 

computational simulations of a limited range of datasets. As this thesis has 

demonstrated, it is crucial that such imbalances are redressed by an empirical 

investigation addressing the scope, veridicality and ecological validity of the models’ 

predictions. The present thesis highlights a number of limitations within the paradigm 

in respect to the empirical phenomena the models attempt to accommodate and the 

theoretical approach they adopt to the strategy selection process. Generally speaking 

the Adaptive class of selection models provided the most comprehensive account of 

the empirical phenomena presented in this thesis. However, the most notable 

conclusion that can be drawn from this exercise is that none of the existing models of 

strategy selection could account in full for these findings. The effects of problem 

familiarity fitted only the predictions of the SAC model and in particular the FoK 

mechanism which underpins this model. Problem-level effects also support this 

account while the selection-by-feature effect potentially could be accounted for by the 

feature handling component of the SCADS* model. In respect to the latter it was 

apparent that two processes were responsible for the selection-by-feature effect, a 

feature detection mechanism and a selection mechanism which can employ problem 

features during selection to determine retrieve and calculate strategy selections. From 

the SCADS* simulation it is proposed that automatic perceptual and encoding 

mechanisms can accommodate feature effects. However from the thesis’ experiments 

it was apparent that when conscious processes were impaired during the course of the 

study the identification of particular problem features was also impaired. Further 

investigation of the mechanism through which problem features are integrated into the 

selection process is required. A computationally complex mechanism is provided 

within SCADS*, however it may be more beneficial to conceptualise a ‘selection-by- 

feature mechanism’ within the SAC based upon the relative parsimony of the account 

and its ability to model problem familiarity effects. One consideration is that the 

presence of distinct features in a problem set may influence the positioning of the FoK 

threshold which determines whether retrieve or calculate selections are returned. For 

example, problems with addends that are multiples of 5 or 10 may catalyse a shift 

towards leniency, such that retrieve selections are made more often in the presence of 

that feature. To examine such a possibility, employing a rationale derived from signal
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detection theory (Macmillan & Creelman, 2005) I have conducted a couple of pilot 

studies using a recognition memory paradigm to identify whether criterion shifts can 

be induced under speeded response conditions (Brown & Steyvers, 2005; Hirschmann 

& Henzler, 1998). From these studies it will become apparent whether conscious or 

automatic processes are responsible for selection-by-feature effects. In conclusion, it 

is apparent that an empirically, rather than theoretically motivated approach to 

selection is required within the paradigm. Selection was shown to be far more 

adaptive than previously conceived and in future examination of the selection 

mechanism it is hoped that subsequent investigation will embrace this notion.
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APPENDIX A

The following is a covariates analysis to accompany the findings presented in 

Experiment la.

Covariate Analysis

One possibility is that performance was determined by factors that were not 

directly tested in Experiment la, specifically other memorial and or problem features 

contained in a problem’s terms or answer. To rule out this eventuality, using separate 

Linear Mixed models and specifying the potential confounds as covariates, two 

models were tested, both of which included sum familiarity and answer familiarity as 

repeated measures factors. The first model, termed the magnitude model sought to 

identify whether calculate selections were sensitive to the magnitude of the first 

and/or second addend. The problem size effect (Ashcraft, 1992; Groen & Parkman, 

1972; LeFevre, Sadesky & Bisanz, 1996; Penner-Wilger Leth-Steensen & LeFevre, 

2 0 0 2 ) predicts that solution latencies increase with the magnitude of a problem’s 

answer reflecting a shift in strategy selections from retrieval to calculation procedures. 

Accordingly, the strategy selection process may be influenced by the magnitude of the 

first or second addend, however none of the covariates reached significant levels 

(both Fs < .34, both ps > .57) demonstrating that the observed percentage of calculate 

selections was insensitive to the magnitude of the first and second addend (df= 6 , AIC 

= 322.66).

Another possible confound is the level of familiarity with individual terms 

within the problem (Campbell & Graham, 1985; Koriat & Lieblich, 1977; Metcalfe, 

1986; Metcalfe & Weibe, 1987; Reder, 1987; Schunn et al., 1997). By separately 

priming the question terms, if was found that participants can be biased towards 

selecting retrieval rather than calculation (Reder, 1987; Schunn et al., 1997). 

Familiarity ratings of the first and second addend were entered into the second model 

(the familiarity model). Again, neither measure covaried significantly with the 

percentage of calculate selections returned (both Fs < .56, both ps > .46) indicating 

that strategy selection was insensitive to the familiarity of the first or second addend 

(df = 6 , AIC = 332.29). Separate chi square tests indicate that a model comprised
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solely of the experimental factors, sum familiarity and answer familiarity (df= 4, AIC 

= 314.85) provided a better fit to the data than the magnitude (p = .02) and familiarity 

models (p = .0 2 ) confirming that sum familiarity was the best predictor of 

performance.
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APPENDIX B

In Gielen, Brysbaert and Dhondt (1991) a significant correlation between 

number frequency and number magnitude was evident. Based upon this premise it 

may be possible that addend magnitude, rather than problem familiarity was 

responsible for the effects upon selection attributed to problem familiarity in 

Experiment la. To test this eventuality a series of regressions were conducted in 

which the calculate strategy selection data reported in Experiment la was re-analysed 

with the intention of identifying the relative contribution of problem familiarity and 

other predictor variables to the strategy selection process.

Four potential predictors of the variance in calculate strategy selections were 

entered into linear regressions. Problem familiarity (the summed familiarity ratings of 

both addends) and the familiarity rating of the problem’s answer were chosen as they 

were directly manipulated in Experiment 1 a. In light of the correlation between 

number frequency (or familiarity) and magnitude reported in Gielen, Brysbaert and 

Dhondt (1991) the magnitude of the problems answer was also selected. A further 

predictor, that of whether the problem necessitated a carry (i.e., 19 + 18) or not (i.e.,

13 + 14) when being solved was also chosen as it may have been a feature of the 

problem particularly apparent to individuals during the selections process. To identify 

any instances of multicolinearity between these predictors Pearson correlation 

coefficients were calculated. A significant negative correlation between answer 

magnitude and problem familiarity, -.877, (n = 64,/? < .001) was found. To 

accommodate this finding and preventing the erroneous inflation of standard errors 

(Field, 2005) in the regression analysis these factors were analysed in separate 

models. Theoretically, this approach matches that adopted in the computational
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models of the strategy selection process where problem familiarity, answer familiarity 

and answer magnitude are analysed as sole determinants of strategy selections. None 

of the selection models to date provide a rationale to suggest that these factors 

combine to influence the strategy selection process (see Lebiere & Anderson, 1998; 

Logan, 2004; Reder & Ritter, 1992; Schunn et al, 1997; Siegler & Araya, 2005).

Separate linear regressions examined each of the predictors in turn. Three of 

the factors, problem familiarity, answer magnitude and the presence (or absence) of a 

carry accounted for a significant proportion of the variance in the calculate strategy 

selections reported in Experiment la (see Table Bl). Answer magnitude and problem 

familiarity accounted for a similar proportion of the variance, 46% and 44% 

respectively, while the carry predictor only accounted for 33%. This suggests that the 

effects attributed to problem familiarity in Experiment 1 a could equally be 

attributable to the magnitude of a problem answer.

Table B l.
Linear regressions conducted upon calculate strategy selections reported in Experiment la.

B SEB f i R2 Adjusted R
Model 1 . 2 .18

Problem familiarity - . 1 .003 _ 4 4 ***
Model 2 .2 1 .2

Answer magnitude 
Model 3

0.07 0 . 0 2 4 5 ***
.004 - . 0 1

Answer familiarity -0.003 0.006 -.06
Model 4 . 1 1 .09

Carry -2.48 0.91 -.33**
* p <  .05, ** p  < .01, ***p  < .001

When examining whether answer magnitude or problem familiarity influenced 

selection in Experiment la  two issues need to be considered. Firstly, the problem 

familiarity effects described in Experiments la and lb replicate those found in the 

Game Show studies by Reder and colleagues (Reder & Ritter, 1992; Schunn et al, 

1997). Unlike the methodology used in this thesis’ experiments they employed a 

priming methodology which allowed them to demonstrate a clear dissociation 

between problem familiarity and other problem features such as answer magnitude.
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To briefly recapitulate, by manipulating problem familiarity in a priming phase Reder 

and colleagues demonstrated that problems encountered frequently in the priming 

phase elicited a greater frequency of retrieve strategy selections than those 

encountered infrequently in the priming phase, irrespective of the magnitude of a 

problem’s answer. This methodology clearly dissociated problem familiarity and 

answer magnitude, a comparison that is not afforded by the methodology employed 

with the experiments in this thesis. Here the experiments were designed to examine 

existing problem familiarity rather than experimentally induced problem familiarity as 

used in Reder’s methodology.

Secondly, on a procedural level the use of answer magnitude as a cue to 

selection may be problematic. In the dual-phase design employed in this thesis’ 

experiments a time limit of 850 ms was imposed upon the selection phase. This 

prevented individuals from retrieving a problem’s solution and using that as a guide to 

strategy selection. As Reder and colleagues stated, the accuracy of strategy selections 

derived from an early read of a problems solution is likely to be significantly 

compromised (Reder & Ritter, 1992). Furthermore, in the early read approach, 

selection is determined by the strength of the associative link between a problem and 

its solution as the act of encoding a problem automatically initiates the search for the 

answer to that problem (Logan, 1988). Within models of selection, familiarity and 

associative strength are largely inseparable, accordingly, it would be expected that the 

familiarity of the answer will determine strategy selection (e.g., CMPL, IT AM, ACT- 

R) which was not found to be the case in the regression analysis or repeated measures 

ANOVA analysis.

Although these two sources of evidence provide support for the notion that 

problem familiarity rather than answer familiarity influences selection the question 

remains as to why answer magnitude and problem familiarity accounted for a 

comparable proportion of the variance in the regressions. One possibility may lie in an 

argument proposed by Siegler and Araya (2005). They examined the frequency with 

which arithmetic problems are presented to individuals over the course of a lifetime 

examining, among other sources, educational learning materials. They reported that 

over an individual’s lifetime and when generalised to the population, a negative linear 

correlation between the frequency of problem presentation (i.e., exposure) and 

problem size (i.e., answer magnitude) was evident. Smaller problems (i.e., those with 

a small answer magnitude) were encountered more frequently than larger problems
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(i.e., large answer magnitude problems). When this is taken in tandem with Reder and 

colleagues’ finding that exposure to a problem serves to increase the familiarity of 

that problem (Reder & Ritter, 1992; Schunn et al, 1997), a highly significant negative 

correlation between answer magnitude and problem familiarity would therefore be 

expected in Experiment la. Similarly, both answer magnitude and problem familiarity 

would be expected to share a comparable amount of variance in calculate selections. 

From this it is inferred that while answer magnitude and problem familiarity are 

distinct and dissociable items in memory (see Reder & Ritter, 1992; Schunn et al, 

1997) problem familiarity is largely determined by answer magnitude in an 

opportunistic fashion. Exposure to a problem increments problem familiarity and the 

frequency of exposure to a problem is predicted by the size of the problem, 

specifically the size of its answer.

The evidence presented here fails to rule out the possibility that answer 

magnitude, rather than problem familiarity, influences selection. However, based 

upon converging lines of evidence derived from previous research by Reder and 

colleagues, the explanation for the relationship between problem familiarity and 

answer magnitude provided by Siegler and Araya (2005) and the limitations of the 

early read account of selection it seems more likely that the problem familiarity 

account is the most likely of the two alternatives. Further experimentation using a 

priming methodology similar to that employed by Reder and colleagues may be useful 

to replicate the findings from the experiments in which problem familiarity has been 

manipulated in this thesis. This would allow a clear dissociation between the effects 

of problem familiarity and answer familiarity. Also, direct experimental manipulation 

of answer magnitude, rather than post hoc analysis, would be beneficial to rule out the 

contribution of answer magnitude to strategy selection in the dual-phase design used 

in this thesis.
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APPENDIX C

Similar to the approach adopted in Appendix B the strategy selection data 

recorded in Experiment 2a was re-analysed to identify whether strategy selection 

should be attributed to the action of the selection-by-feature effect or other problem 

features (i.e., problem familiarity, answer magnitude or the presence or absence of a 

carry). A further predictor, termed sum type was used to examine the predictions of 

the selection-by-feature effect identified in Experiments 2a and 2b. This effect is 

contingent upon the notion that participants use particular features of a problem to 

determine strategy selections (i.e., the presence of one or two decades or fives 

addends in a problem).

As illustrated in Table Cl the sum type predictor (model 5) accounted for the 

greatest proportion of the variance (58%), 15% greater than the carry predictor (model 

4; 43%). These findings support the conclusions drawn in Experiments 2a suggesting 

that selection-by-feature effects influenced strategy selection in problems comprising 

decades, mixed and fives addends.

Table Cl.
Linear regressions conducted upon retrieve strategy selections reported in Experiment 2a.

B SEB f i R2 Adjusted R
Model 1 . 0 1 - . 0 2

Problem familiarity -0.006 0 . 0 1 -.11
Model 2 . 0 -.03

Answer magnitude 
Model 3

0 . 0 0.04 . 0

.0 1 - . 0 2

Answer familiarity -0.005 0 . 0 1 -.09
Model 4 .44 .43

Carry -4.63 0.89 ■ 67***
Model 5 .59 .58

Sum Type -3.08 .44 yy***
* * * p <  .0 0 1
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APPENDIX D

Vigilance experiment

The following experiment was originally outlined in Experiment 5b of Chapter 

3. Experiments 5a and 5b presented in Chapter 3 of this thesis investigated the 

contribution of the selection-by-feature effect to strategy selection. In the current 

study, a secondary task, derived from the Vigilance literature was employed to 

examine whether feature detection is actually determined by a unconscious 

mechanism, potentially encoding and perceptual mechanisms (Siegler & Araya, 

2005). By impeding the action of consciously directed processes in Experiment 5a it 

was revealed that suppression impaired addend status effects (i.e., even and mixed 

odd and even problems), while in Experiment 5b, sum type effects (i.e., decades, fives 

and mixed decades and fives problems) were immune to interference from 

suppression. The secondary task employed in the present study was designed to 

impair the unconscious processes responsible for identifying and comparing the 

problem features that can be derived from a problem.

An equal number of participants were either presented with the same problems 

as employed in Experiment 5a (problem familiarity and problem feature) or those 

presented in Experiment 5b (sum type) and the same blocked dual-phase design as 

employed in those studies was used here. It was predicted that a significant interaction 

between either of the problem features employed (addend status or sum type) and the 

secondary task condition would demonstrate that unconscious perceptual and 

encoding mechanisms may be responsible for feature identification (Siegler & Araya, 

2005) rather than consciously procedures as evident in Experiment 5a.

Method

Participants
Twenty-four participants from the School of Psychology at Cardiff University 

were given course credit or payments in return for their participation. All were native
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English speakers reporting normal hearing and correct or normal vision and had not 

participated in any of the other thesis experiments.

Materials & Design

Refer to the corresponding sections in Experiments 5 a and 5b for detail of the 

problem-level manipulations employed in the present study. All of the participants 

were required to complete the background auditory monitoring task throughout the 

duration of the strategy selection task. The auditory items used in the monitoring task 

were drawn from eight different categories (musical instruments, drinks, music types, 

weather, fish, birds, vegetables and animals) each of which contributed 1 2  different 

words (from Van Overschelde, Rawson and Dunlosky, 2004). These auditory items 

were recorded using Sound Forge in a female voice, each item measuring 500 ms in 

length and across all items pitch and intensity were controlled. When constructing the 

sound files each auditory item was separated by 500 ms of silence to ensure the words 

were easily identifiable.

Within each block of 6  problems in the strategy selection phase participants 

were exposed to between 38 s (i.e., 16 items) and 41 s (i.e., 20 items) of background 

sound depending upon how long was taken to make the strategy selections over the 

course of the trial block. For each participant a pseudo-randomised ordering of 

auditory items was constructed where targets (i.e., 3 consecutive items from the same 

category) were always from the same two categories, vegetables and animals. The 

precise constituents of each target differed for each participant as did the position of 

the targets, pseudo-randomly ranging from the first to the twelfth trial block. None of 

the targets were located in the opening 6  auditory items in a list, or the final 6  items.

Procedure

The same experimental design was employed as in Experiments 5a and 5b 

where the participants made strategy selections for all of the problems, then solved all 

of the problems in the stimulus set. Accordingly, the same instructions were relayed 

to participants with few notable departures from Experiment 5a. The experiment 

started with a practice phase designed to accustom participants with the identification 

of auditory targets in the monitoring task. Six auditory practice lists of were presented 

in isolation (i.e., as a primary task) and participants were required to indicate after 

each list whether they heard a target or not. Targets were present in 3 of the 6  lists
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over a pair of headphones. At the end of the presentation of each list immediate 

feedback was provided as to whether the target was correctly identified (i.e., a hit), the 

absence of a target was correctly identified (i.e., a correct rejection), a target was 

identified even though the list did not contain one (i.e., false alarm) or a target was 

missed (i.e., a miss).

Upon completion of this task the selection-phase of the experiment 

commenced with 16 practice questions. For the opening 8  questions there was no 

background sound to monitor, the final 8  were accompanied by the background 

sounds to monitor. During the experimental trials participants were advised to focus 

on the primary task (i.e., the strategy selection task) but also monitor the background 

sounds for three items in a row from the same semantic category. After every 6  

problems the runtime program paused and asked participants to identify whether they 

heard a target in the background sound. Participants responded ‘yes’ or ‘no’ and 

unlike the practice trials for the monitoring task did not receive feedback as to the 

accuracy of the response. To resume the experiment participants clicked on the start 

button to when ready.

When the selection task was completed for all of the problems in the stimulus 

set the solution-phase of the experiment opened with 8  practice questions. Each of the 

problems presented in the selection-phase were represented in a pseudo-randomised 

order. Participants were requested to solve the problems as quickly and accurately as 

possible. After typing the answer in and pressing the enter key to confirm the answer 

the lead-in to the next problem started. In this phase there were no background sounds 

to monitor.

Results

Scoring Procedure

To identify the effects of the monitoring task employed in the strategy 

selection-phase the findings from the present experiment were contrasted to those 

reported in the conditions without articulatory suppression in Experiments 5 a and 5b 

which acted as a control condition for the analyses conducted here. The same 

measures as in previous experiments were recorded; the strategy selection (retrieve or 

calculate), the selection latency, the sum solution and solution latency. In addition a 

measure of performance on the monitoring task was also taken using a basic
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sensitivity measure employed in signal detection theory (see Macmillan & Creelman, 

2005) where responses are recorded as hits, misses, false alarms, correct rejections.

Effects o f  problem familiarity and addend status upon selection

As Figure D 1 indicates, in accordance with previous studies presented in this 

thesis which have employed the same stimuli, the calculate strategy was selected in a 

greater percentage of trials than the retrieve strategy. A 2 (sum familiarity; low vs. 

high) x 2  (addend status; even vs. mixed) x 2  (monitoring condition; monitoring vs. 

no monitoring) mixed measures ANOVA, similar to Experiment 5a revealed a 

significant interaction between the two variables sum familiarity and addend status, 

F(l, 22) = 17.75, MSE = 82.53,/? < .001. Simple effects indicate that addend status 

only influenced relatively familiar problems, F (l, 2 2 ) = 19.17,/? < .0 0 1 , such that a 

greater percentage of retrieve selections were made on even than mixed status 

problems. Effects of sum familiarity were evident in both levels of addend status, 

even and mixed respectively, F (l, 22) = 7.83,/? = .01, and, F(l, 22) = 6.76,/? = .016. 

More familiar problems elicited a greater percentage of retrieve (hence less calculate) 

strategy selections.

Main effects of monitoring condition revealed that the monitoring task served 

to reduce the overall percentage with which the calculate strategy was selected, F(l, 

22) = 6.33, MSE = 1166.29,/? = .02. There was no significant interaction between 

either addend status and sum familiarity and monitoring condition, (both ps > .16). 

This suggests that the monitoring task predisposed participants to select the retrieve 

strategy on a greater percentage of trials than those participants who were not required 

to monitor. However, as there is no obvious explanation of that effect evidence of an 

interaction between either of the manipulations and monitoring condition would be 

more revealing of the impact the monitoring task levied upon strategy selection.
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Figure D l:  Mean percentage o f calculate strategy selections. Error bars represent the standard error of 

the mean.

To assess the level of performance in the monitoring task when it was 

performed in isolation (i.e., in the pre-test phase) and in tandem with the selection 

task the frequency of hit and correct rejections were analysed. When performed in 

isolation, during the pre-test phase there were 5 trials in which 3 lists comprised 

targets, whereas when performed in tandem with the selection task, there was a total 

of 12 lists, 2 of which included targets. The evident probability of correctly 

identifying a target as a hit in the pre-test phase was .58, whilst during the selection 

task the probability was .46. The probability of making a correct rejection was also 

equitable, .91 in the pre-test phase and .89 during the selection-phase indicating that 

performance levels in the monitoring task did not decrease notably in the dual-task 

scenario. It was anticipated that the proportion of targets identified would have been 

approaching 1 as easily discemable targets (i.e., vegetables and fruits) were 

employed.

Effects o f the sum type manipulation upon selection

Similar to previous experiments which have employed this set of stimuli, the 

retrieve strategy was selected most often (see Figure D2). A mixed measures ANOVA
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conducted on sum type (decades, mixed and fives) with monitoring condition as a 

between subjects variable (no monitoring vs. monitoring) revealed main effects of 

sum type upon the percentage of retrieve selections made, F(2, 21) = 93.04, MSE = 

202.57,/? < .001. Pairwise comparisons reveal that a higher percentage of retrieve 

selections were made (and hence the calculate strategy less frequently) in the decades, 

than mixed or fives (both ps < .001) conditions, and in the mixed than fives condition 

{p < .001). Null effects of monitoring condition, on both retrieve and calculate 

strategy selections indicate that the monitoring task did not influence the selection 

task, F(1, 22) = .25, MSE = 514.94,/? = .62, and F{ 1, 12) = .25, MSE = 423.03,/? = 

.62, respectively.

As in Experiment 6a performance on the monitoring task was compared in the 

pre-test phase to the performance on the monitoring task which was completed in 

tandem with the selection task. As before the proportion of hit rates in the pre-test 

phase (.49) and selection-phase (.5) were comparable as were the proportions of 

correct rejections, .88 in the pre-test phase and .85 in the selection phase.

□ vigilance
□ no vigilance

I

Mixed Fives
Sum  type

Figure D2. Mean percentage o f retrieve strategy selections. Error bars represent the standard error of 

the mean.
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Discussion

In summary, the failure to identify a significant interaction between the either 

addend status or sum type and the monitoring task condition is suggestive of one of 

two outcomes. Firstly, that the selection-by-feature effect is immune to interference 

from the monitoring task, specifically the requirement to identify and compare 

features in the addends in a problem. Alternatively, it may have been the case that 

participants were ignoring the monitoring task and focused on completing the 

selection task. This conclusion is supported by the relatively low hit rates revealed in 

both studies (approximately .5), although in both studies correct rejection rates were 

relatively (approximately .9). As the hit and correct rejection rates were similar to 

those revealed in the pre-test phase where the monitoring task was performed in 

isolation it may be the case that the monitoring task was too difficult for participants, 

as performance did not noticeably depreciate when participants completed the 

selection task in tandem with the monitoring task. Accordingly, at this juncture any 

conclusions drawn from this study have to be proposed tentatively. There was no 

evidence to suggest that the monitoring task interfered with the influence of the 

problem features (or indeed problem familiarity) upon selection, which supports the 

notion that conscious processes are responsible for feature identification. However, 

further investigation is required to establish a baseline in respect to the difficulty of 

the monitoring task on a larger sample set.
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APPENDIX E

In the following tables the stimuli used in the thesis experiments are presented. Please 
note that in Experiment 3 the stimuli used in Experiments la  and 2a were used.

Table E l.
Stimuli presented in Experiments la  and lb  accompanied by familiarity ratings o f  Addend A (i.e., the 
first addend in the problem), Addend B (i.e., the second addend in the problem), the Problem (i.e., the 
familiarity o f  addend A plus Addend B) and the Answer fo r  each problem.

Sum  Answer 
Familiarity familiarity Familiarity Familiarity Problem Answer 

Sum Answer group group Addend A Addend B Familiarity Familiarity
26 + 23 49 Low Low
28 + 23 51 Low Low
23 + 29 52 Low Low
27 + 29 56 Low Low
28 + 29 57 Low Low
34 + 33 67 Low Low
34 + 39 73 Low Low
37 + 39 76 Low Low
38 + 39 77 Low Low
44 + 49 83 Low Low
42 + 43 85 Low Low
42 + 44 86 Low Low
44 + 43 87 Low Low
46 + 48 94 Low Low
47 + 49 96 Low Low
48 + 49 97 Low Low
23 + 27 50 Low High
26 + 29 55 Low High
28 + 27 55 Low High
32 + 37 69 Low High
33 + 37 70 Low High
34 + 37 71 Low High
38 + 33 71 Low High
38 + 37 75 Low High
42 + 48 90 Low High
43 + 47 90 Low High
44 + 46 90 Low High
42 + 49 91 Low High
44 + 47 91 Low High
44 + 48 92 Low High
46 + 49 95 Low High
48 + 47 95 Low High
14 + 17 31 High Low
18 + 13 31 High Low
14 + 19 33 High Low
16 + 17 33 High Low
16 + 18 34 High Low
18 + 19 37 High Low

245 200 445 175
225 200 425 160
200 200 400 140
240 200 440 185
225 200 425 165
205 215 420 195
205 190 395 145
175 190 365 190
195 190 385 200
165 175 340 145
220 130 350 200
220 165 385 150
165 130 295 145
220 175 395 165
230 175 405 200
175 175 350 160
200 240 440 330
245 200 445 235
225 240 465 235
260 175 435 325
215 175 390 245
205 175 380 240
195 215 410 240
195 175 370 360
220 175 395 360
130 230 360 360
165 220 385 360
220 175 395 235
165 230 395 235
165 175 340 245
220 175 395 245
175 230 405 245
320 290 610 140
365 350 715 140
320 275 595 215
325 290 615 215
325 365 690 205
365 275 640 175
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Table E1 (continued)

Sum Answer

Sum
Familiarity

group

Answer
familiarity

group
Familiarity 
Addend A

Familiarity 
Addend B

Problem
Familiarity

Answer
Familiarity

22 + 26 48 High Low 260 245 505 175
22 + 27 49 High Low 260 240 500 175
22 + 29 51 High Low 260 200 460 160
24 + 27 51 High Low 265 240 505 160
24 + 28 52 High Low 265 225 490 140
24 + 29 53 High Low 265 200 465 125
26 + 27 53 High Low 245 240 485 125
26 + 28 54 High Low 245 225 470 195
32 + 33 65 High Low 260 215 475 200
32 + 34 66 High Low 260 205 465 215
14 + 13 27 High High 320 350 670 240
12 + 17 29 High High 315 290 605 200
16 + 13 29 High High 325 350 675 200
13 + 17 30 High High 350 290 640 320
14 + 16 30 High High 320 325 645 320
13 + 19 32 High High 350 275 625 260
14 + 18 32 High High 320 365 685 260
16 + 19 35 High High 325 275 600 240
18 + 17 35 High High 365 290 655 240
17 + 19 36 High High 290 275 565 260
22 + 23 45 High High 260 200 460 270
22 + 28 50 High High 260 225 485 330
36 + 33 69 High High 260 215 475 325
32 + 38 70 High High 260 195 455 245
34 + 36 70 High High 205 260 465 245
32 + 39 71 High High 260 190 450 240
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Table E2.
Stimuli presented in Experiments 2 a and 2b accompanied by familiarity ratings o f  Addend A (i.e., the
first addend in the problem), Addend B (i.e., the second addend in the problem), the Problem (i.e., the
familiarity o f  addend A plus Addend B) and the Answer fo r  each problem.

Sum A nsw er Sum  type
Familiarity 
Addend A

Familiarity 
Addend B

Problem
Familiarity

Answer
Familiarity

10+50 60 D ecade 445 330 775 290
10+60 70 D ecade 445 290 735 245
10+70 80 D ecade 445 245 690 260
10+80 90 D ecad e 445 260 705 360
20+40 60 D ecad e 370 300 670 290
20+50 70 D ecad e 370 330 700 245
20+60 80 D ecad e 370 290 660 260
20+70 90 D ecad e 370 245 615 360
30+40 70 D ecad e 320 300 620 245
30+50 80 D ecad e 320 330 650 260
30+60 90 D ecad e 320 290 610 360
40+50 90 D ecad e 300 330 630 360
15+25 40 Fives 345 370 715 300
15+35 50 Fives 345 340 685 330
15+45 60 Fives 345 270 615 290
15+55 70 Fives 345 235 580 245
15+65 80 Fives 345 200 545 260
15+75 90 Fives 345 360 705 360
25+35 60 Fives 370 340 710 290
25+45 70 Fives 370 270 640 245
25+55 80 Fives 370 235 605 260
25+65 90 Fives 370 200 570 360
35+45 80 Fives 340 270 610 260
35+55 90 Fives 340 235 575 360
10+55 65 Mixed 445 235 680 200
10+75 85 Mixed 445 360 805 200
20+35 55 Mixed 370 340 710 235
20+55 75 Mixed 370 235 605 360
20+75 95 Mixed 370 360 730 245
30+25 55 Mixed 320 370 690 235
30+45 75 Mixed 320 270 590 360
40+25 65 Mixed 300 370 670 200
40+45 85 Mixed 300 270 570 200
50+25 75 Mixed 330 370 700 360
50+45 95 Mixed 330 270 600 245
60+25 85 Mixed 290 370 660 200
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Table E3.
Stimuli presented in Experiment 4 accompanied by familiarity ratings o f  Addend A (i.e., the first
addend in the problem), Addend B (i.e., the second addend in the problem), the Problem (i.e., the
familiarity o f  addend A plus Addend B) and the Answer fo r  each problem.

Sum Answer

O d d /  
Even / 
Mixed 
group

Sim ilar/
Disparate
Magnitude

group
13+15 28 Odd Similar
13+19 32 Odd Similar
15+19 34 Odd Similar
23+25 48 Odd Similar
23+29 52 Odd Similar
25+29 54 Odd Similar
33+35 68 Odd Similar
33+39 72 Odd Similar
35+39 74 Odd Similar
43+45 88 Odd Similar
43+49 92 Odd Similar
45+49 94 Odd Similar
12+46 58 Odd Disparate
13+45 58 Odd Disparate
13+53 66 Odd Disparate
13+61 74 Odd Disparate
13+69 82 Odd Disparate
13+77 90 Odd Disparate
13+85 98 Odd Disparate
15+43 58 Odd Disparate
15+51 66 Odd Disparate
15+59 74 Odd Disparate
15+67 82 Odd Disparate
15+83 98 Odd Disparate
12+17 29 Mixed Similar
14+15 29 Mixed Similar
16+13 29 Mixed Similar
22+29 51 Mixed Similar
24+27 51 Mixed Similar
28+23 51 Mixed Similar
32+37 69 Mixed Similar
34+33 67 Mixed Similar
36+39 75 Mixed Similar
42+47 89 Mixed Similar
44+43 87 Mixed Similar
48+45 93 Mixed Similar
12+55 67 Mixed Disparate
12+63 75 Mixed Disparate
12+71 83 Mixed Disparate
12+79 91 Mixed Disparate
12+87 99 Mixed Disparate
13+44 57 Mixed Disparate
13+52 65 Mixed Disparate
13+62 75 Mixed Disparate
13+70 83 Mixed Disparate
13+78 91 Mixed Disparate

Familiarity Familiarity Problem Answer
Addend A Addend B Familiarity Familiarity

350 345 695 225
350 275 625 260
345 275 620 205
200 370 570 175
200 200 400 140
370 200 570 195
215 240 455 235
215 190 405 220
240 190 430 200
130 270 400 205
130 175 305 245
270 175 445 165
315 220 535 170
350 270 620 170
350 125 475 215
350 165 515 200
350 325 675 170
350 200 550 360
350 200 550 205
345 130 475 170
345 160 505 215
345 150 495 200
345 195 540 170
345 145 490 205
315 290 605 200
320 345 665 200
325 350 675 200
260 200 460 160
265 240 505 160
225 200 425 160
260 175 435 325
205 215 420 195
260 190 450 360
220 230 450 235
165 130 295 145
175 270 445 150
315 235 550 195
315 160 475 360
315 240 555 145
315 155 470 235
315 145 460 280
350 165 515 165
350 140 490 200
350 165 515 360
350 245 595 145
350 140 490 235
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Table E3 (continued)

Sum Answer

O d d /  
Even / 
Mixed 
group

Sim ilar/
Disparate
Magnitude

group
Familiarity 
Addend A

Familiarity 
Addend B

Problem
Familiarity

Answer
Familiarity

13+86 99 Mixed Disparate 350 150 500 280
12+16 28 Even Similar 315 325 640 225
14+16 30 Even Similar 320 325 645 320
16+18 34 Even Similar 325 365 690 205
22+26 48 Even Similar 260 245 505 175
24+26 50 Even Similar 265 245 510 330
26+28 54 Even Similar 245 225 470 195
32+36 68 Even Similar 260 260 520 235
34+36 70 Even Similar 205 260 465 245
36+38 74 Even Similar 260 195 455 200
42+46 88 Even Similar 220 220 440 205
44+46 90 Even Similar 165 220 385 360
46+48 94 Even Similar 220 175 395 165
12+47 59 Even Disparate 315 230 545 150
12+54 66 Even Disparate 315 195 510 215
12+62 74 Even Disparate 315 165 480 200
12+70 82 Even Disparate 315 245 560 170
12+78 90 Even Disparate 315 140 455 360
12+86 98 Even Disparate 315 150 465 205
14+44 58 Even Disparate 320 165 485 170
14+52 66 Even Disparate 320 140 460 215
14+60 74 Even Disparate 320 290 610 200
14+68 82 Even Disparate 320 235 555 170
14+76 90 Even Disparate 320 190 510 360
14+84 98 Even Disparate 320 215 535 205
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Table E4.
Stimuli presented in Experiment 5 a accompanied by familiarity ratings o f  Addend A (i.e., the first
addend in the problem), Addend B (i.e., the second addend in the problem), the Problem (i.e., the
familiarity o f  addend A plus Addend B) and the Answer fo r  each problem._____________________

Sum Answer

Sum
Familiarity

group

Even / 
Mixed 
group

Familiarity 
Addend A

Familiarity 
Addend B

Problem
Familiarity

Answer
Familiarity

19+42 61 Low Mixed 275 220 495 165
28+37 65 Low Mixed 225 175 400 200
23+48 71 Low Mixed 200 175 375 240
27+44 71 Low Mixed 240 165 405 240
59+18 77 Low Mixed 150 365 515 200
18+63 81 Low Mixed 365 160 525 205
37+44 81 Low Mixed 175 165 340 205
43+38 81 Low Mixed 130 195 325 205
58+23 81 Low Mixed 170 200 370 205
57+26 83 Low Mixed 165 245 410 145
37+48 85 Low Mixed 175 175 350 200
29+64 93 Low Mixed 200 195 395 150
44+28 72 Low Even 165 225 390 220
48+26 74 Low Even 175 245 420 200
34+48 82 Low Even 205 175 380 170
38+44 82 Low Even 195 165 360 170
44+38 82 Low Even 165 195 360 170
48+34 82 Low Even 175 205 380 170
26+58 84 Low Even 245 170 415 215
28+56 84 Low Even 225 185 410 215
46+38 84 Low Even 220 195 415 215
34+58 92 Low Even 205 170 375 245
54+38 92 Low Even 195 195 390 245
38+56 94 Low Even 195 185 380 165
19+36 55 High Mixed 275 260 535 235
18+43 61 High Mixed 365 130 495 165
32+29 61 High Mixed 260 200 460 165
27+36 63 High Mixed 240 260 500 160
46+17 63 High Mixed 220 290 510 160
47+24 71 High Mixed 230 265 495 240
47+36 83 High Mixed 230 260 490 145
64+19 83 High Mixed 195 275 470 145
18+73 91 High Mixed 365 145 510 235
67+24 91 High Mixed 195 265 460 235
68+24 92 High Mixed 235 265 500 245
17+76 93 High Mixed 290 190 480 150
34+18 52 High Even 205 365 570 140
36+18 54 High Even 260 365 625 195
22+34 56 High Even 260 205 465 185
34+22 56 High Even 205 260 465 185
36+26 62 High Even 260 245 505 165
28+36 64 High Even 225 260 485 195
26+46 72 High Even 245 220 465 220
16+58 74 High Even 325 170 495 200
36+46 82 High Even 260 220 480 170
24+68 92 High Even 265 235 500 245
66+26 92 High Even 215 245 460 245
74+18 92 High Even 200 365 565 245
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Table E5.
Stimuli presented in Experiment 5b accompanied by familiarity ratings o f Addend A (i.e., the first
addend in the problem), Addend B (i.e., the second addend in the problem), the Problem (i.e., the
familiarity o f  addend A plus Addend B) and the Answer fo r  each problem.

Sum Answer Sum  Type
Familiarity 
Addend A

Familiarity 
Addend B

Problem
Familiarity

Answe
Familiar

10+30 40 D ecad e 445 320 765 300
20+30 50 D ecad e 370 320 690 330
30+20 50 D ecad e 320 370 690 330
20+40 60 D ecad e 370 300 670 290
40+20 60 D ecad e 300 370 670 290
50+10 60 D ecad e 330 445 775 290
20+50 70 D ecad e 370 330 700 245
30+40 70 D ecad e 320 300 620 245
40+30 70 D ecad e 300 320 620 245
50+20 70 D ecad e 330 370 700 245
60+10 70 D ecad e 290 445 735 245
10+70 80 D ecad e 445 245 690 260
20+60 80 D ecad e 370 290 660 260
30+50 80 D ecad e 320 330 650 260
50+30 80 D ecad e 330 320 650 260
60+20 80 D ecad e 290 370 660 260
70+10 80 D ecad e 245 445 690 260
10+80 90 D ecad e 445 260 705 360
20+70 90 D ecad e 370 245 615 360
30+60 90 D ecad e 320 290 610 360
40+50 90 D ecad e 300 330 630 360
50+40 90 D ecad e 330 300 630 360
60+30 90 D ecade 290 320 610 360
70+20 90 D ecad e 245 370 615 360
15+25 40 Fives 345 370 715 300
25+15 40 Fives 370 345 715 300
15+35 50 Fives 345 340 685 330
35+15 50 Fives 340 345 685 330
15+45 60 Fives 345 270 615 290
25+35 60 Fives 370 340 710 290
35+25 60 Fives 340 370 710 290
45+15 60 Fives 270 345 615 290
15+55 70 Fives 345 235 580 245
25+45 70 Fives 370 270 640 245
45+25 70 Fives 270 370 640 245
55+15 70 Fives 235 345 580 245
15+65 80 Fives 345 200 545 260
25+55 80 Fives 370 235 605 260
35+45 80 Fives 340 270 610 260
45+35 80 Fives 270 340 610 260
55+25 80 Fives 235 370 605 260
65+15 80 Fives 200 345 545 260
15+75 90 Fives 345 360 705 360
25+65 90 Fives 370 200 570 360
35+55 90 Fives 340 235 575 360
55+35 90 Fives 235 340 575 360
65+25 90 Fives 200 370 570 360
75+15 90 Fives 360 345 705 360
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Table E5 (continued)

Sum Answer Sum  Type
Familiarity 
Addend A

Familiarity 
Addend B

Problem
Familiarity

Answer
Familiarity

15+20 35 Mixed 345 370 715 340
20+15 35 Mixed 370 345 715 340
15+30 45 Mixed 345 320 665 270
20+25 45 Mixed 370 370 740 270
30+15 45 Mixed 320 345 665 270
15+40 55 Mixed 345 300 645 235
20+35 55 Mixed 370 340 710 235
25+30 55 Mixed 370 320 690 235
35+20 55 Mixed 340 370 710 235
15+50 65 Mixed 345 330 675 200
25+40 65 Mixed 370 300 670 200
40+25 65 Mixed 300 370 670 200
45+20 65 Mixed 270 370 640 200
20+55 75 Mixed 370 360 730 360
25+50 75 Mixed 370 330 700 360
30+45 75 Mixed 320 270 590 360
35+40 75 Mixed 340 300 640 360
50+25 75 Mixed 330 370 700 360
60+15 75 Mixed 290 345 635 360
45+40 85 Mixed 270 300 570 200
70+15 85 Mixed 245 345 590 200
40+55 95 Mixed 300 235 535 245
50+45 95 Mixed 330 270 600 245
65+30 95 Mixed 200 320 520 245
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Table E6.
Stimuli presented in Experiment 6a accompanied by familiarity ratings o f Addend A (i.e., the first
addend in the problem), Addend B (i.e., the second addend in the problem), the Problem (i.e., the
familiarity o f  addend A plus Addend B) and the Answer fo r  each problem.

Sum Answer

Sum
Familiarity

group

Answer
Familiarity

group
Familiarity 
Addend A

Familiarity 
Addend B

Problem
Familiarity

Answe
Familiar

23+29 52 Low Low 200 200 400 140
26+23 49 Low Low 245 200 445 175
27+29 56 Low Low 240 200 440 185
28+23 51 Low Low 225 200 425 160
28+29 57 Low Low 225 200 425 165
34+33 67 Low Low 205 215 420 195
34+39 73 Low Low 205 190 395 145
37+39 76 Low Low 175 190 365 190
38+39 77 Low Low 195 190 385 200
42+43 85 Low Low 220 130 350 200
42+44 86 Low Low 220 165 385 150
44+43 87 Low Low 165 130 295 145
44+49 83 Low Low 165 175 340 145
46+48 94 Low Low 220 175 395 165
47+49 96 Low Low 230 175 405 200
48+49 97 Low Low 175 175 350 160
23+27 50 Low High 200 240 440 330
26+29 55 Low High 245 200 445 235
28+27 55 Low High 225 240 465 235
32+37 69 Low High 260 175 435 325
33+37 70 Low High 215 175 390 245
34+37 71 Low High 205 175 380 240
38+33 71 Low High 195 215 410 240
38+37 75 Low High 195 175 370 360
42+48 90 Low High 220 175 395 360
42+49 91 Low High 220 175 395 235
43+47 90 Low High 130 230 360 360
44+46 90 Low High 165 220 385 360
44+47 91 Low High 165 230 395 235
44+48 92 Low High 165 175 340 245
46+49 95 Low High 220 175 395 245
48+47 95 Low High 175 230 405 245
14+17 31 High Low 320 290 610 140
14+19 33 High Low 320 275 595 215
16+17 33 High Low 325 290 615 215
16+18 34 High Low 325 365 690 205
18+13 31 High Low 365 350 715 140
18+19 37 High Low 365 275 640 175
22+26 48 High Low 260 245 505 175
22+27 49 High Low 260 240 500 175
22+29 51 High Low 260 200 460 160
24+27 51 High Low 265 240 505 160
24+28 52 High Low 265 225 490 140
24+29 53 High Low 265 200 465 125
26+27 53 High Low 245 240 485 125
26+28 54 High Low 245 225 470 195
32+33 65 High Low 260 215 475 200
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Table E6 (continued)

Sum Answer

Sum
Familiarity

group

Answer
Familiarity

group
Familiarity 
Addend A

Familiarity 
Addend B

Problem
Familiarity

Answer
Familiarity

32+34 66 High Low 260 205 465 215
12+17 29 High High 315 290 605 200
13+17 30 High High 350 290 640 320
13+19 32 High High 350 275 625 260
14+13 27 High High 320 350 670 240
14+16 30 High High 320 325 645 320
14+18 32 High High 320 365 685 260
16+13 29 High High 325 350 675 200
16+19 35 High High 325 275 600 240
17+19 36 High High 290 275 565 260
18+17 35 High High 365 290 655 240
22+23 45 High High 260 200 460 270
22+28 50 High High 260 225 485 330
32+38 70 High High 260 195 455 245
32+39 71 High High 260 190 450 240
34+36 70 High High 205 260 465 245
36+33 69 High High 260 215 475 325
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Table E7.
Stimuli presented in Experiment 6b accompanied by familiarity ratings o f  Addend A (i.e., the first
addend in the problem), Addend B (i.e., the second addend in the problem), the Problem (i.e., the
familiarity o f  addend A plus Addend B) and the Answer fo r  each problem.

Sum Answer Sum  Type
Familiarity 
Addend A

Familiarity 
Addend B

Problem
Familiarity

Answer
Familiarity

10+50 60 D ecade 445 330 775 290
10+60 70 D ecade 44 5 290 735 245
10+70 80 D ecade 445 245 690 260
10+80 90 D ecade 445 260 705 360
20+40 60 D ecade 370 300 670 290
20+50 70 D ecade 370 330 700 245
20+60 80 D ecade 370 290 660 260
20+70 90 D ecade 370 245 615 360
30+40 70 D ecade 320 300 620 245
30+50 80 D ecade 320 330 650 260
30+60 90 D ecade 320 290 610 360
40+50 90 D ecade 300 330 630 360
15+25 40 Fives 345 370 715 300
15+35 50 Fives 345 340 685 330
15+45 60 Fives 345 270 615 290
15+55 70 Fives 345 235 580 245
15+65 80 Fives 345 200 545 260
15+75 90 Fives 345 360 705 360
25+35 60 Fives 370 340 710 290
25+45 70 Fives 370 270 640 245
25+55 80 Fives 370 235 605 260
25+65 90 Fives 370 200 570 360
35+45 80 Fives 340 270 610 260
35+55 90 Fives 340 235 575 360
10+55 65 Mixed 445 235 680 200
10+75 85 Mixed 445 360 805 200
20+35 55 Mixed 370 340 710 235
20+55 75 Mixed 370 235 605 360
20+75 95 Mixed 370 360 730 245
30+25 55 Mixed 320 370 690 235
30+45 75 Mixed 320 270 590 360
40+25 65 Mixed 300 370 670 200
40+45 85 Mixed 300 270 570 200
50+25 75 Mixed 330 370 700 360
50+45 95 Mixed 330 270 600 245
60+25 85 Mixed 290 370 660 200


