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Summary

Summary
Although fungi are essential to functioning of forest ecosystems, ecology of wood 
decay fungi, particularly rare species, is understudied.

Hericium coralloides, on the UK red data list, H. erinaceus and Piptoporus 
quercinus, UK BAP species, and H. cirrhatum are rare in the UK, existing in isolated 
populations in areas with a history of continuous tree cover. Hericium spp. fruit 
primarily on beech (Fagus sylvatica), and P. quercinus exclusively on oak (Quercus 
spp.). Their ecology is unknown, beyond information on fruit body occurence, 
combative ability against wood decay fungi and extension rates on agar. Their 
ecology in terms of spore dispersal and germination, and inter- and intraspecific 
interactions was investigated.

Basidiospore dispersal of Hericium spp. was typical of basidiomycetes over 
the distances investigated (0-100 m from fruit bodies), but basidiospore germination 
was consistently under 1% in the laboratory. Mating systems of H. coralloides and H  
erinaceus were bifactorial, confirming previous research using North American 
isolates. H  cirrhatum ’ mating system remains unclear, due to anomalous clamp 
connections. Mating experiments also showed that H. coralloides from different host 
species can interbreed, and fruit bodies occurring simultaneously on a substrate may 
originate from a single mycelium. H. coralloides was successfully established 
artificially in living beech, revealed using molecular techniques. Primary mycelia of
H. coralloides were more combative than secondary, indicating the significance of 
this lifecycle stage for rare species.

P. quercinus had under 1% spore germination and unifactorial mating. The six 
populations sampled had only four mating alleles, two being unique to one fruit body. 
This implies inbreeding, but phenotypic variation (extension rates and colony 
morphology) prove the population is not clonal.

Results are discussed in relation to ecology of rare fungi in general, possible 
factors relating to the rarity of Hericium spp. and P. quercinus, and potential 
conservation strategies for these species.
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Chi Introduction

Chapter 1 Introduction
1.1 Fungal diversity and conservation

Fungal diversity has been conservatively estimated as at least 1.5 million species 

(Hawksworth, 1991; 2001), although less than 5% of these have been described 

(Mueller and Schmit, 2007). Using this estimate, at the rate of current description (ca. 

1000-2000 a year), it will be in the region of 1000 years before all species of fungi are 

described (Hawksworth, 1991). The majority of undescribed species are likely to be 

microfungi, estimates suggesting that 16-41% of macrofungi have been described 

(Mueller et al., 2007). Unfortunately as many biodiverse habitats are under threat 

from destruction, modification and fragmentation, it seems likely that a substantial 

number of these species, both micro- and macrofungi, will be extinct long before they 

are described. In the mid-1980s it was estimated that 25% of biodiversity present 

would be gone within 25 years, i.e. by the early 21st century (Raven, 1988, cited in 

Hawskworth, 1991), which would include the loss of 376,000 fungal species, more 

than five times the number presently described (Hawksworth, 1991). As biodiversity 

hotspots such as tropical rainforests where greatest diversity exists are also often areas 

for which little data exists regarding the fungal biota (Mueller et al., 2007), it is 

unknown how many species of fungus have been lost during this time period, and 

whether this prediction has proved accurate.

Despite being an extremely diverse and relatively understudied group, fungal 

conservation lags behind protection of other taxa such as mammals, birds and plants, 

due to a combination of lack of knowledge of so many species, their often relatively 

uncharismatic appearance compared to e.g. mammals, and the difficulties of assessing 

fungi using established criteria (Heilmann-Clausen and Vesterholt, 2008). For 

example, the International Union for Conservation of Nature (IUCN) Red Data List 

(RDL) uses criteria such as population size for inclusion / categorisation. Even this 

simple measure is complicated when considering fungi: as it is fruit bodies that are 

considered, non-fruiting individuals cannot be counted, which may be a substantial 

proportion of the population (Burnett, 2003). As a further complication, fruit bodies 

are not predictably produced, the frequency of production differing according to 

species and environmental conditions (Moore et al., 2008; Rayner and Boddy, 1988).

Although 20% of Europe’s fungal species are estimated to be endangered 

(Dahlberg and Croneborg, 2003), there is no protection for fungi at the European

1
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level, although RDLs for fungi exist in several countries including the UK. The UK’s 

RDL is not yet formalised, the preliminary list (Ing, 1992) having recently been 

updated to a “preliminary assessment” (Evans et al., 2007). This list contains nearly 

400 species, categorised according to current IUCN guidelines (IUCN, 2001), adapted 

to make them appropriate to the fungal lifestyle. The UK’s response to the 1992 

Convention on Biological Diversity, the UK Biodiversity Action Plan (BAP; 

www.ukbap.org.uk), also provides protection for approximately 200 fungal species 

through creation of Species Action Plans (SAPs), which identify conservation 

strategies and targets with partner organisations. In addition four species receive legal 

protection under the 1981 Wildlife and Countryside Act: Battarraea phalloides, 

Boletus regius, Hericium erinaceus and Buglossoporus pulvinus (=Piptoporus 

quercinus).

Fungi, a diverse but understudied group, are amongst the most important 

organisms in the world (Mueller and Schmit, 2007). Fungi are ubiquitous, occurring 

from polar regions to the tropics, performing a range of functions in these widely 

varying habitats, as well as being extensively used by humans for food, food 

additives, medicines and biocontrol agents. As pathogens and parasites they regulate 

populations of other organisms, are critical to at least 75% of plants as mycorrhizas 

(Smith and Read, 1996), are a source of food to many groups of animals such as 

insects and rodents, modify environments and are important decomposers, particularly 

of wood, and hence crucial to nutrient cycling (Rayner and Boddy, 1988). They are 

considered essential for the functioning of forest ecosystems (Vasiliauskas et al.,

2004; Lonsdale et al., 2008), habitats which support a large proportion of fungi. In 

Sweden for example, approximately 20% of the 12,000 fungal species are associated 

with dead wood (Boddy and Heilmann-Clausen, 2008). As a component of 

biodiversity wood decay fungi have intrinsic value within forest ecosystems. 

Functionally, they play vital roles, being one of the few groups of organisms capable 

of utilising the lignin from wood, thus releasing important nutrients into the 

ecosystem (Rayner and Boddy, 1988). As well as recycling nutrients, by decaying 

wood they alter availability of resources, both nutritional and spatial, for other 

organisms, rendering them important “ecosystem engineers” of forests (Lonsdale et 

al., 2008).

2
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1.2 Forests

Forests, particularly primary forests, are recognised as important reservoirs of
%

biodiversity (Harmon et al., 1986; Siitonen, 2001; Goldberg et al., 2007; Lonsdale et 

al., 2008). Coarse woody debris (CWD), i.e. dead wood ranging from standing dead 

trees to fallen branches, was considered primarily as a reservoir for pest species until 

the mid-1980s (Jonsson and Kruys, 2001). It is now recognised as an important 

resource, a diverse substratum with hundreds of microhabitats (Siitonen, 2001), that is 

the main resource for many groups of organisms including rodents, insects living 

within polypores, birds such as woodpeckers, molluscs (in mangrove forests) and 

bryophytes (see references in Lonsdale, 2008). For example, a conservative estimate 

of species dependent on dead wood in Finland alone is 4000-5000 (Siitonen, 2001).

Primary forests, also known as ancient woodland, have higher volumes of 

coarse woody debris (CWD) than managed forests (Hansen et al., 1991; Siitonen et 

al., 2000; Shorohova and Shorohov, 2001), which may account for their greater levels 

of biodiversity: species richness in taxa as diverse as wood decay fungi (Humphrey et 

al., 2000) and small mammals (Ecke et al., 2001) increase with amount of CWD in a 

stand. Modem forestry practises result in smaller volumes of CWD within stands, and 

that present is often of different types (e.g. size, mode of death) compared to natural 

forests (Siitonen et al., 2000). Primary forest, which remains only in small, 

fragmented patches in Europe, is therefore an extremely important habitat, the 

conservation of which is intrinsically linked to the conservation of wood decay fungi. 

Within the UK such habitat covers less than 2% of the land, and is extremely 

fragmented (Rackham, 2003).

1.3 Wood as a habitat for fungal growth

Both the physical structure of wood and microclimatic conditions within it affect 

fungal growth (Rayner and Boddy, 1988), allowing different fungal species to 

colonise or survive in various host species as decay progresses.

Wood, when dried but not decayed, is composed of approximately 40-50% 

cellulose, 25-40% hemicellulose, 18-35% lignin and less than 20% lipids, starches, 

simple sugars, peptides and other easily accessible and assimilable products (Boddy, 

1992). These components form vessels and tracheids, which transport water, fibres, 

which are strengthening elements, and parenchyma, undifferentiated living cells 

surrounding the more specialised cells. Organisation, relative abundance and size of

3
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these cell types vary between tree species, and are crucial in determining patterns of 

colonisation (Rayner and Boddy, 1988). Fungal hyphae generally follow the path of 

least resistance, growing within the pathways created by these elements which results 

in long, thin, cone-shaped decay columns. This reflects the mainly axial arrangement 

of transport elements within wood, i.e. vessels and tracheids, with few radial 

pathways, i.e. parenchyma rays, and extremely few opportunities for tangential spread 

(Rayner and Boddy, 1988).

On a larger scale, the outer layer of wood is the sapwood, younger wood 

which functions in water conduction. Older, non-functional wood in the centre of the 

tree is termed heartwood. In some species, such as oak (Quercus spp.) and chestnut 

(Castanea spp.), the heartwood is visually identifiable as a darker central region, due 

to the presence of extractives. Extractives can act as a carbon source for fungi, and 

can stimulate or even inhibit their growth. They include waxes, fats, fatty acids, 

alcohols, steroids and resins, the type, quantity and distribution of which varies 

between species and even between individuals (Rayner and Boddy, 1988).

Variations in the microclimate within wood, particularly moisture but also 

aeration and temperature, influence the development of decay (Boddy and Rayner, 

1983a; Boddy, 2001). In living trees moisture content is highest where there are living 

cells and actively conducting tissues, i.e. the sapwood. High moisture content imposes 

poor aeration, inhibiting aerobic processes; at the other extreme low water availability 

can inhibit metabolic processes, evidenced by poor growth in the laboratory on wood 

and agar subjected to low water potentials (e.g. Griffith and Boddy, 1991; Wald et al., 

2004a and b). Sapwood, the functional portion of a tree in which water conduction 

occurs, is therefore a difficult environment for fungal growth; thus in the living tree 

the central heartwood is a habitat more conducive to fungal growth (Rayner and 

Boddy, 1988).

Temperature will vary more in smaller diameter substrata such as twigs than in 

the heartwood of standing trees (Griffith and Boddy, 1991). Although there are 

species that can withstand extremes of temperature, in general, low temperatures 

decrease metabolic activity and high temperatures inhibit enzyme function (Cooke 

and Whipps, 1993).

Wood is a changing, rather than fixed environment. For example, a wound that 

breaches the sapwood exposes the underlying heartwood, bringing changes in the 

gaseous regime and moisture, and exposing it to greater variations in temperature. The

4
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environment also changes as decay proceeds (Boddy, 2001), some fungi even having 

the ability to regulate moisture content of the wood, e.g. Armillaria spp. and Xylaria 

hypoxylon, which regulate moisture content via their psdeudosclerotial plates (Boddy 

and Heilmann-Clausen, 2008).

The mode of wood decay, which is accomplished by production of 

extracellular enzymes, varies between species. The three types of rot cause 

characteristic appearances in the wood according to which components are broken 

down (Baldrian, 2008). Brown rot, produced almost exclusively by basidiomycetes, 

occurs when hemicelluloses and celluloses, but not lignin, have been removed, 

resulting in wood that is characteristically friable, brown, and cubically cracked. 

White rot breaks down lignin as well as cellulose and hemicellulose, leaving the wood 

with a bleached appearance. There are two types of white rot: in selective 

delignification, caused only by basidiomycetes, the cellulose is broken down after 

lignin and hemicelluloses; simultaneous white rot, which breaks down all components 

concurrently, can be caused by some xylariaceous ascomycetes as well as 

basidiomycetes. Soft rot degrades cellulose and hemicelluloses and slightly alters the 

lignin. Wood decayed by soft rot has a soft consistency or is brown and crumbly 

under wet and dry conditions respectively. It generally occurs in conditions of very 

high or fluctuating moisture, or where treatment by preservatives inhibits growth of 

brown or white rot fungi, and is caused primarily by ascomycetes.

1.4 Ecology of wood decay fungi

1.4.1 Arrival and exit

The initial stages of colonisation for any wood decay fungus are arrival at a 

substratum and establishment within it. Arrival can be as mycelium, or as spores, 

gaining access to woody tissues via discontinuities in bark such as wounds or branch 

stubs (Rayner and Boddy, 1988). They may also develop from latent propagules, i.e. 

fragments of mycelium or yeasts that are present in functional sapwood but prevented 

from developing due to high water content and low nutrient availability (Boddy,

2001). As with entry, exit can be effected as mycelium or as spores, the latter 

following formation of reproductive structures (Rayner and Boddy, 1988).

5
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1.4.2 Life-history strategies

Between the stages of entry and exit, the habitat of wood decay fungi is dynamic: 

during the progress from uncolonised to fully decomposed wood a range of fungi, and 

other organisms, will form communities that change and develop as decay proceeds 

(Rayner and Boddy, 1988). A range of life-history strategies have developed among 

wood decay fungi that enable them to utilise the various niches available over the 

course of the decay process (Boddy and Heilmann-Clausen, 2008).

Terminology to describe these strategies was originally developed for plants, 

but is applicable to fungi (Cooke and Rayner, 1984). This theory is based on the idea 

that community change is driven by three factors: (i) environmental disturbance; (ii) 

incidence of competitors, and (iii) environmental stress (Grime, 1977). Individuals 

better adapted to each of these circumstances are termed ruderal (R-selected), 

competitive (C-selected) or stress tolerant (S-selected), respectively. It is important to 

note that an individual may utilise more than one of these strategies at different stages 

according to circumstances, and therefore that individuals or species cannot be 

definitively categorised as being R-, S- or C-selected (Rayner and Boddy, 1988).

The first species to colonise a new resource are termed primary colonisers, and 

typically exhibit R-selected characteristics (Boddy, 2001): efficient dispersal, rapid 

spore germination, fast growth, and the ability to utilise compounds in previously 

uncolonised resources (Rayner and Boddy, 1988).

As primary colonisers expand their territories they will eventually come into 

contact with other fungi. The most common interaction between fungi is competition 

(Boddy, 2000); thus at this stage C-selected behaviour is required. Fungi arriving at 

previously colonised resources are termed secondary colonisers, and generally exhibit 

the C-selected characteristics necessary at this stage (Boddy and Heilmann-Clausen, 

2008). These characteristics include good combative ability, and the ability to grow 

well under relatively unstressed and undisturbed conditions. Thus, in previously 

colonised resources C-selected characteristics enable an individual to effectively gain 

territory.

S-selected characteristics are not associated with a particular stage of 

decomposition, but enable individuals to function or survive under stressful conditions 

that inhibit growth of most organisms (Boddy and Heilmann-Clausen, 2008). As well 

as the specific characteristics necessary to survive a particular extreme, for example 

desiccation or very low pH, S-selected individuals typically have a slow or
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intermittent commitment of biomass to reproduction, and may also grow slowly 

(Boddy and Heilmann-Clausen, 2008).

1.4.3 Inter- and intraspecific interactions

Wood decay fungi do not live in isolation, but will inevitably encounter individuals of 

the same or different species. Provided individuals are not genetically identical, 

combative interaction is the most likely outcome of such a meeting (Boddy, 2000). 

Interactions can result in deadlock, in which neither individual gains territory, or 

replacement, in which territory is gained. Although species or individuals can be 

placed in competitive hierarchies (e.g. Holmer and Stenlid, 1997), outcomes and 

combative ability are not fixed, but vary according to many factors including relative 

size of mycelium (Holmer and Stenlid, 1993), nuclear status (Fryar et al., 2002) and 

abiotic conditions such as pH (Wald et al., 2004b).

It is possible for genetically identical individuals to come into contact with 

each other as ramets, for example following germination of asexually produced spores 

in the same location. Being genetically identical the colonies will fuse, and function as 

a single unit. Observations of decay columns too long to have developed within a 

single season are assumed to have formed in this manner (Boddy and Rayner, 1984), 

which lead to the theory of development from latent propagules (Boddy, 2001).

1.5 Basidiomycete life cycle

In most basidiomycetes sexual reproduction does not occur via specialised 

reproductive structures, but by fusion and nuclear exchange between sexually 

compatible mycelia (Burnett, 2003). A number of terms can be applied to the unmated 

/ mated mycelium: primary / secondary, monokaryotic / dikaryotic or homokaryotic / 

heterokaryotic. Mono- / dikaryotic implies one or two nuclei, i.e. a single nucleus or 

one from each parent, but as basidiomycetes sometimes have more than two nuclei in 

a compartment, e.g. in the genera Coniophora, Stereum, and Phaneroctaete 

(Ainsworth, 1986), the term is misleading. Homo- / heterokaryotic are more correct as 

they indicate that all nuclei are similar, or that there is more than one type, i.e. 

different nuclei from the two parental mycelia. However, the terms primary and 

secondary mycelia are preferred, as analysis is required to prove that nuclei originate 

from different parents; unless this has been carried out the terms can be misleading 

(Ainsworth, 1986).
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The typical basidiomycete lifecycle (Fig 1.1) presents particular challenges for 

rare wood decay species at certain stages. The first of these is spore dispersal (Chapter 

2), which is often achieved via wind or air currents, although water and animals can 

also act as spore vectors (Rayner and Boddy, 1988). Dispersal by wind or air has the 

disadvantage that landing is entirely haphazard, the chances of arriving in a habitat 

suitable for germination and subsequent growth being extremely small (Heilmann- 

Clausen and Boddy, 2008). For a species with specific requirements for spore 

germination (Chapter 2 & 6) this stage may therefore act as a bottleneck, with an 

extremely small proportion of spores produced achieving germination. Following 

germination the primary mycelium must become established in the environment, 

potentially another bottleneck, as conditions under which germination has occurred 

may rapidly alter, or be different to those required for mycelia growth. Once 

established, primary mycelium faces the same biotic and abiotic challenges within a 

substratum as secondary mycelium (Chapter 3), but must meet a sexually compatible 

conspecific (Chapter 4 & 6) to achieve sexual reproduction. For a rare species with 

fewer individuals, fruit bodies and hence spores, such a meeting is less likely than for 

a more common species.

Ch 4 & 6 Compatible primary 1 \ _. /  1 Growth of
mycelia mate | * secondary mycelium

Ch 3,5, 6

Growth of primary Fruit body and
mycelium | spore production |

Spore Spore Ch 2
germination O dispersal

Figure 1.1 Generalised basidiomycete lifecycle
Red text indicates the chapter in which that stage will be investigated.
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As the majority of spores land within a few metres of the fruit body (Stenlid, 

1994) sibling primary mycelia are likely to meet. Although in most basidiomycetes 

sexual compatibility is genetically controlled by mating systems that promote 

outbreeding (Burnett, 2003; Chapter 4 & 6), a rare species with few propagules may 

be particularly at risk from inbreeding (Chapter 6).

Examples of rare wood decay fungi that may be subject to these particular 

challenges in the UK include Hericium cirrhatum, H. coralloides, H. erinaceus 

(Boddy and Wald, 2003; Boddy et al., 2004) and Piptoporus quercinus (Roberts,

2002), which are the subject of the current study.

1.6 Hericium spp. and Piptoporus quercinus

1.6.1 Hericium cirrhatum, H. coralloides and H. erinaceus

Hericium spp. are classified as: Basidiomycota, Agaricomycotina, Agaricomycetes, 

Russulales (Hibbett et al., 2007). The genus Hericium includes H. coralloides, H. 

erinaceus, H. abietis, H. americanum and H. flagellum (Stalpers, 1996). H. cirrhatum 

has usually been placed in a separate genus as Creolophus cirrhatus (Stalpers, 1996), 

but following observations on spore morphology and phylogenetic analyses this genus 

is now considered obsolete (Larsson and Larsson, 2003), and the species will 

therefore be referred to as H  cirrhatum throughout.

H. cirrhatum, H. coralloides and H. erinaceus (Fig 1.2 a-f) are rare in the UK, 

H. erinaceus being one of only four fungi protected by UK law under the 1981 

Wildlife and Countryside Act, as well as having a UK BAP. H. coralloides is the only 

one of the three species in the preliminary UK fungi RDL (Evans et al., 2007), classed 

as “vulnerable”. H. erinaceus and H. cirrhatum, although in the 1992 provisional 

RDL (Ing, 1992), are not included in the more recent RDL (Evans et al., 2007). The 

Fungal Records Database (FRD) of the British Mycological Society (BMS) is the 

primary repository of fungal records in the UK, containing records up to 150 years 

old. The FRD contains fewer than 350 records for each of the species (H. cirrhatum: 

252; H. coralloides: 146; H. erinaceus, 325; at March 2008). These records are 

mainly from the New Forest, which is considered to be the stronghold of all three 

species (Boddy and Wald, 2003), although all are also extant in Windsor Great Park. 

These sites, and others at which one or more of the species have been found, generally 

have a long history of continuous tree cover, relatively high levels of dead wood and a
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Figure 1.2a-f Fruit bodies of Hericium cirrhatum, H. coralloides and H. erinaceus 
a, immature H. cirrhatum fruit bodies on beech slice in the laboratory; b, mature H. cirrhatum 
fruit body on felled beech trunk at Burnham Beeches with spore traps (10 cm2) below; c, mature 
H. coralloides fruit body in the snow, scale bar 5 cm; d mature H. coralloides on beech snag, 
Busketts Wood, New Forest; e, sporulating H. erinaceus fruit body produced on agar slope in 
the laboratory, spines ca. 1 cm; f, mature H. erinaceus fruit bodies on living beech tree in 
Shaves Wood, New Forest; note spores that have fallen from spines in b. Photo credits: a, © 
Juliet Hynes; b, d and e © Martha Crockatt; c and d, © Martyn Ainsworth. Scale bars are 
approximate.
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range of tree age classes (Boddy and Wald, 2003), including sites such as Burnham 

Beeches (nat grid ref: SU98) and Epping Forest (NG reference: TQ49).

Although many of the FRD records, particularly older records, lack 

information as to host (species / state of host), analysis of them has provided 

important information (Boddy and Wald, 2003). Hericium coralloides and H. 

erinaceus are found fruiting from early September to late November, H. cirrhatum 

having a longer season from mid July to November. Over 80% of records for all three 

species are on beech (Fagus sylvatica) with 14% of H. coralloides records on ash 

(Fraxinus excelsior) and occasional findings of all species on other hosts including 

Quercus spp., Acer spp. and Betula spp. H. erinaceus is often found on living beech 

trees, sometimes fruiting regularly for up to 20 years on a single host (Marren and 

Dickson, 2000; Boddy and Wald, 2003). In contrast, H. coralloides is generally found 

on fallen logs where it fruits for only a few seasons, and H. cirrhatum occurs 

sporadically on cut stumps, rarely fruiting on the same host twice (Marren and 

Dickson 2000; Boddy and Wald 2003).

Within Europe, H. erinaceus has been recorded from 435 localities in 18 

countries, in 15 of which it is a red listed species (Dahlberg and Croneborg, 2003). 

Further afield, H. erinaceus is common in Japan, but H. cirrhatum extremely rare, 

being known from only three localities (Eiji Nagasawa, pers. comm.); H. erinaceus is 

also common in North America (e.g. Guglielmo et al., 2007). Distribution of H. 

coralloides is less well documented, but it is on the red data list of Bulgaria 

(Gyosheva et al., 2000) and is also rare in Germany, where it received some attention 

as “Mushroom of the Year 2006” of the German Mycological Society (DGfM).

Beyond fruiting patterns, little is known of these species. Existing ecological 

research shows that: the three species have average extension rates in agar culture for 

mesophilic fungi and are average combatants against other wood decay fungi (Wald et 

al., 2004b); H. coralloides can be successfully established in freshly felled beech 

trunks (Boddy et al., 2004; Chapter 5); H. coralloides and H. erinaceus have 

bifactorial mating systems in North America (Hallenberg, 1983; Ginns, 1985; Chapter 

4); spore production of H. erinaceus is related to temperature and humidity 

(McCracken, 1970).

H. erinaceus is widely grown commercially for culinary and medicinal 

purposes, particularly in Japan and China. This has led to several publications on 

cultivation techniques (e.g. Suzuki and Mizuno, 1997; Stamets, 2000; Figlas et al.,
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2007) and medicinal properties, including potential anti-cancer (Petrova et al., 2008) 

and anti-MRSA (Ueda et al., 2007) compounds. H. coralloides ’ fruit bodies are also 

edible and can be cultivated (Stamets, 2000), although it is not generally grown 

commercially. As H. erinaceus readily produces large fruit bodies in culture (Stamets, 

2000; Fig 1.2e), and is common in Japan and North America, its rarity in Britain and 

the rest of Europe is intriguing.

1.6.2 Piptoporus quercinus

P. quercinus (Fig 1.3a-c) is classified as: Basidiomycota, Agaricomycotina, 

Agaricomycetes, Polyporales (Hibbett et al., 2007). The genus contains only one other 

species, P. betulinus. P. quercinus has the common synonyms Buglossoporus 

pulvinus and B. quercinus, but P. quercinus is the accepted name (Roberts, 2002).

In common with H. erinaceus, P. quercinus is one of the four fungi protected 

under the 1981 Wildlife and Countryside Act, and has UK BAP status, but is no 

longer classed as endangered in the recent RDL (Evans et al., 2007). It is widespread 

across Europe and Asia, but rare throughout its range, being on the red lists of at least 

four countries; it is not known from North America (Roberts 2002).

P. quercinus is found fruiting only on exposed oak (Quercus spp.) heartwood, 

generally of veteran (>250 years old) trees (Fig 1.3b-c), in which it causes brown rot 

(Roberts, 2002). It is not limited to large trees, but is often found on smaller limbs, 

sometimes long fallen, of as little as 15 cm diam. (Roberts, 2002). It fruits between 

July and August in sites that have a continuous history of tree cover, typically old oak 

pasture (Roberts, 2002). Its fruiting situations, for example on snags (standing dead 

tree) not shaded by other trees (Fig 1.3c) are often highly exposed to extremes of 

temperature and desiccation, implying it has the ability to colonise or persist within 

substrates under these adverse conditions (Roberts, 2002). Oak heartwood is itself an 

inhospitable environment in which few other fungi can grow, having high tannin 

content (Rayner and Boddy, 1988) and a relatively low pH of approximately 3.75 

(Gray, 1958).

The stronghold of the species in the UK is Windsor Great Park, in which there 

are 95 trees on which P. quercinus is known to have fruited (Ainsworth, 2008). The 

second most common sites for it are The Oaks at Kingston Lacey (NG reference: 

ST9603), a National Trust property in Dorset, at which there are eight known host 

trees (Roberts,
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Figure 1.3a-c Piptoporus quercinus fruit 
body and habitat
a, mature but damaged fruit body of P. 
quercinus, typically ca. 10 cm diam., Bears 
Rails, Windsor Great Park; b, host tree of P. 
quercinus, with typically exposed heartwood 
in oak pasture, Long Walk, Windsor Great 
Park; c, fruit body (indicated by dashed red 
circle) in typical position on exposed 
heartwood, Lords Bushes, Epping Forest. All 
pictures © Martyn Ainsworth.
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2002), and Sherwood Forest (NG reference: SK6267), in which nine fruit bodies were 

recorded in the 2007 season (Howard Williams, pers. comm.).

From the single paper published on the ecology of P. quercinus, it is known to 

grow relatively slowly on agar, and is a poor combatant against other wood decay 

fungi (Wald et al., 2004a). Optimum conditions for mycelial extension on agar were 

25 °C at pH 3.75 (Wald et al., 2004a). It produces large numbers of asexual 

chlamydospores (Stalpers, 1978), thick walled resting spores that may enable an 

individual to survive periods of adverse conditions (Rayner and Boddy, 1988). This 

may explain P. quercinus’ ability to survive in highly exposed substrates (Roberts, 

2002; Wald et a l, 2004a).

1.7 Research priorities, aims and objectives

Virtually nothing is known of the ecology of these species or why they are rare.

Stages of the lifecycle identified as presenting particular challenges to rare fungi (Fig 

1.1) have not been studied: we know nothing of spore dispersal or germination, the 

extent of the role that primary mycelium plays in the lifecycle, or mating system of 

these species in the UK. These areas have been identified as research priorities for 

Hericium spp. and P. quercinus by Natural England (Boddy et al., 2004), and form 

the basis for this investigation.

A clearer understanding of the lifecycles and ecology of Hericium spp. and P. 

quercinus may give clues as to why they are rare in the UK, should enable effective 

conservation strategies to be developed to maintain current populations, and may 

allow lessons to be learned that can be applied to other rare wood decay 

basidiomycetes. The aim of this thesis is therefore to obtain fundamental information 

on the ecology of these species.

Specific objectives were to investigate:

i. basidiospore dispersal of Hericium spp. (Chapter 2);

ii. basidiospore germination of Hericium spp. and P. quercinus (Chapters 2 and 

6, respectively);

iii. the relative significance of primary mycelium in the lifecycle of H. coralloides 

(Chapter 3);

iv. mating systems of Hericium spp. (Chapter 4) and P. quercinus (Chapter 6);
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v. whether fruit bodies of Hericium spp. (Chapter 4) or P. quercinus (Chapter 6) 

occurring simultaneously on the same substrate are produced by a single 

mycelium;

vi. artificial establishment of H. coralloides in living beech (Fagus sylvatica) 

(Chapter 5).
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Chapter 2: Spore germination and dispersal in Hericium cirrhatum, 

H. coralloides and H. erinaceus1

2.1 Introduction

For many wood decay fungi spore dispersal is an important, if not the main, method 

by which new habitats are reached. Sexual spores not only enable fungi to reach new 

habitats, but also increase genetic diversity. For stable populations as little as one 

immigrant per generation can prevent alleles becoming fixed through genetic drift 

(Slatkin, 1987); thus even very low levels of spore dispersal between populations are 

important in maintaining genetic diversity. Studying spore dispersal and germination 

is therefore crucial to understanding a species’ population dynamics, genetics and 

distribution patterns (Edman and Gustafsson, 2003).

Poor spore dispersal and / or germination could be a factor contributing to the 

rarity of a species, by both preventing the species from colonising new resources and 

by preventing gene flow between existing populations. Moreover, before contributing 

to the effective population, a spore must germinate, which may require specific 

conditions (see references in Merrill, 1970). If a species has stringent requirements 

for spore germination or growth the effects of poor dispersal and germination are 

exacerbated, as suitable resources may be rare. The rare tooth fungi Hericium 

cirrhatum, H. coralloides and H. erinaceus could be examples of such species, being 

found predominantly in old growth woodland, a rare habitat in the UK. As all three 

species are average to good combatants against other wood decay fungi (Wald et al., 

2004b), and fruit readily in culture (Stamets, 2000 [H. coralloides and H. erinaceus]; 

Boddy et al., 2004) these factors are unlikely to contribute to the species’ rarity, and 

other factors, such as those outlined above, should be investigated.

The objectives of this study, therefore, were to determine the extent of spore 

dispersal and germination. The techniques adopted used species specific primary 

mycelium to trap spores (Adams et al., 1984). This method ensures that only 

germinable spores are counted, and is well-established in the small field of wood

Published as Crockatt, M., A. Ainsworth, D. Parfitt, H. Rogers, and L. Boddy. 2007. Why are the 
tooth fungi Hericium cirrhatum, H. coralloides and H. erinaceus rare? Pages 116-118. World 
Conference on the Conservation and Sustainable Use o f Wild Fungi. Junta de Andalucia, 
Cordoba, Spain.
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decay basidiomycete spore trapping (Williams and Todd, 1984; Vilgalys and Sun, 

1994; Norden and Larsson, 2000; Hallenberg and Kiiffer, 2001; James and Vilgalys, 

2001; Edman et al., 2004a; Edman et al., 2004b). This technique was used to 

determine short distance (0-100 m) spore dispersal, combined with laboratory 

investigations into spore germination to assess whether these could be factors 

contributing to the rarity of Hericium spp. in the UK.

2.2 Materials and methods 

2.2.1 Spore germination

Spores were obtained from 28 fruit bodies at several field sites (Table 2.1), by 

attaching small pieces of sporulating fruit body to the lid of a Petri dish with 

petroleum jelly. This was positioned above a glass slide and left to deposit spores 

overnight. Spores were suspended in sterile distilled water, and spread onto agar 

medium at a density of ca. 5-40 spores per field of view at x 100 magnification. Unless 

stated otherwise, the medium was 2% malt agar (MA: 15 g Lab M agar no. 1; 20 g 

Lab M malt extract L1 distilled water; Lab M, Bury, Lancashire, UK) and plates were 

incubated at 20 °C in darkness. Plates were observed frequently until germination 

commenced; days taken to germinate and percentage germination were recorded. 

Percentage germination was counted on several days until a constant level was 

reached or until colonies grew so large as to obscure the view and prevent accurate 

counting. A total of 500 spores were counted from at least three of the five replicate 

plates to obtain the percentage germination.

2.2.2 Germination media and treatments

Preliminary experiments having found that germination was consistently well below 

1%, germination was also evaluated under a range of abiotic and biotic conditions 

(Table 2.2), in an attempt to increase percent germination. Spores from all fruit bodies 

were spread on 2% MA and incubated at 20 °C, different media and treatments being 

tested in addition to these control conditions according to the number of spores 

available. At least five replicate plates were made for spores from each fruit body for 

each treatment. Media used were as follows: water agar (15 g I'1 agar in distilled 

water); 1% MA (as 2% MA, but only 10 g malt extract); charcoal agar: 2% MA with 

0.28 g I"1 activated charcoal added prior to autoclaving; beech (Fagus sylvatica) agar: 

10 g f 1 beech sawdust soaked overnight in distilled water, the filtrate of which was
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Table 2.1 Hericium spp. spore prints collected 2005 -  2007

Species Fruit body Date collected Location NG reference Collector
ALla 24.07.05 NF SU3729204148 AL
MA124 01.10.05 WGP SU977734 AMA
MA125 07.10.05 BB SU94398467 AMA
MA128 26.10.05 EF TL42960020 AMA
SS2a 26.07.06 NF SU3729704146 SS
AL10 02.08.06 LW SU224211 AL
MA130 28.06.07 WGP SU98277287 AMA
MA131 28.06.07 WGP SU97607326 AMA
MA132 28.06.07 WGP SU97547331 AMA
BB1 18.10.07 BB SU94408471 MEC
MA126b 15.10.05 WGP SU956740 AMA
MA127 20.10.05 EF TQ42329853 AMA
MA129b 03.11.05 WGP SU956740 AMA
BW1 16.10.06 NF SU312111 MEC
AB1° 07.11.06 EF TL43790042 MEC
AB2c 07.11.06 EF TL43790042 MEC
AL3 30.09.05 NF SU2534106669 AL
AL4 30.09.05 NF SU3394305706 AL
AL5 05.10.05 NF SU2247515117 AL
AL6d 05.10.05 NF SU2896811808 AL
AL7 19.11.05 NF SU228148 AL
OckAe 16.10.06

30.10.06
NF SU246115 MEC

OckBe 16.10.06
30.10.06

NF SU246115 MEC

OckCe 16.10.06
30.10.06

NF SU246115 MEC

SWla 16.10.06 NF SU28801193 MEC
SW2d 16.10.06 NF SU28921180 MEC
Eye 1 30.10.06 NF SU227154 MEC
Eye 2 30.10.06 NF SU22731493 MEC

21.11.06
H. ci, Hericium cirrhatum; H. co, H. coralloides; H. er, H. erinaceus; BB, Burnham 
Beeches, Slough; EF, Epping Forest; LW, Langley Woods, Wiltshire; NF, New 
Forest; WGP, Windsor Great Park. AL, Alan Lucas; AMA, A. Martyn Ainsworth; 
MEC, Martha E. Crockatt; SS, Stuart Skeates; for contact details apply to Prof L 
Boddy (boddyl@cardiff.ac.uk); where two collection dates are shown two spore prints 
were taken from the same fruit body on the dates indicated; superscript letters indicate 
fruit bodies from the same tree. Equivalent Natural England references for H. 
erinaceus are in Appendix I.
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used in place of distilled water in normal 2% MA; cellulose agar (modified Eggins 

and Pugh media (Eggins and Pugh, (1962)), Park, 1973): ((NH^SC^, 0.5 g; KH2PO4 ,

1.0 g; KC1, 0.5 g; MgS0 4 .7 H2 0 , 0.2 g; Ca CI2 , 0.1 g; yeast extract, 0.5 g; ball-milled 

cellulose (72 hr), 10.0 g; agar, 20.0 g I'1; in distilled water (no ball mill being 

available cellulose was not milled). The effect of mycelium from single spores 

(obtained by picking single germinating spores and culturing in isolation) and fruit 

body tissue (obtained by fruit body tissue isolation onto agar medium) of the same 

species was investigated by taping (Nescofilm®) a plate well colonised with the 

appropriate mycelium above a plate of spores, allowing any volatiles produced by the 

mycelium to reach them, or by inoculating directly onto the plate of spores to 

investigate the effect of any diffusible chemicals produced by the primary or 

secondary mycelium. Spores from two fruit bodies each of H. coralloides and H. 

erinaceus were stored for four, eight, 12 and 24 weeks prior to spreading onto 2% MA 

and 2% MA plus activated charcoal (0.28 g I'1). Influence of spores from different 

fruit bodies upon germination was investigated by spreading spores from three fruit 

bodies on the same plate. Effect of a lowered incubation temperature of 10 °C was 

also investigated.

2.2.3 Spore dispersal

Traps consisted of 10 x 10 cm vented plastic dishes divided into 25 2 x 2 cm wells 

(Sterilin, Barloworld Scientific, Staffordshire, UK), filled with 2% MA, each 

compartment being well-colonised by a primary mycelium (obtained as previously 

described) of the appropriate species; traps were also made using 5 cm diam dishes 

(Sterilin). Open traps were placed at various distances around trees bearing fruit 

bodies for various lengths of time. Petroleum jelly was applied around the top edge of 

each plate to deter mites. Weather conditions were recorded. Dishes were incubated at 

20 °C in the dark for 10-15 days, depending on extent of contamination, and 

subcultures were made from each compartment onto 2% MA. Resultant cultures were 

checked for clamps to indicate that mating had occurred, and hence that at least one 

spore of the species in question had landed and germinated in that compartment.

Wells were also briefly checked for lines of antagonism, which could occur if more 

than one spore had landed and germinated there.

Having found, in a preliminary trial in 2005, clamp connections in all wells at 

distances of up to 10 m from a H  coralloides fruit body, over times from four to eight

19



Ch 2 Spore germination and dispersal of Hericium spp.

hr, distance of traps was increased and exposure times decreased for main 

experiments. Multi-well traps were placed at 10 and 100 m from the fruit body in the 

four cardinal compass directions (Fig 2.1) and left open for four or six hr during 

daylight, ca. 08.30 -  16.30. Two multi-well control traps, one closed and one open, 

were placed directly beneath the fruit body (=0 m). In some experiments (Table 2.3), 

5 cm diam traps (three replicates) were placed at the same points as multi-well traps, 

and in two cases also up to 800 m from the fruit body (Table 2.3). Ten fruit bodies in 

the South East of Britain (Table 2.3) were used.

To allow easy comparisons, data were converted to spores arriving per m per 

hour, with the assumption that a well with clamp connections was the result of a 

single spore having landed and germinated there.
N

^  ' "  +  '  1 0 0  m

^  10 m

+ + X + «-

Figure 2.1 Spore trap placement at 0,10 and 100 m from the fruit body
X = fruit body and 0 m control spore traps; + = spore trap location

2.3 Results

2.3.1 Spore germination

Germination rate was low for all species, some collections failing to germinate after 

20 weeks (Table 2.2). In all but eight of the 75 treatments / collections plated from 

fresh spore collections, germination was < 1%. The highest and most rapid 

germination was for spores of H. erinaceus on a plate which was contaminated by an 

unidentified yeast; 16.3% germinated within one day, whereas uncontaminated 

replicates germinated after 13 d with 3.3% success. Inoculating further plates of the 

same spores with the isolated contaminant, as well as plates of spores from other fruit 

bodies, failed to result in an increase in speed or success of germination. There was no 

evidence that composition of the medium, presence of spores from other fruit bodies 

or volatiles or diffusibles from mycelium from single spores or fruit body tissue 

affected germination. Age of spores was directly related to time taken to germinate,

20



Ch 2 Spore germination and dispersal of Hericium spp.

H. coralloides and H  erinaceus being similarly affected (Fig 2.2). Germination in all 

cases was again <1%.

Table 2.2 Time (d) until germination for spores of Hericium cirrhatum, H. 
coralloides and H. erinaceus under different conditions

water 1%MA 2%MA charcoal1 cellulose2 beech3 +het4 +hom5 10 °C Spore
agar mix

H. cirrhatum (10 fruit bodies)
N 2 10 2 1 1 1
fastest 30 29 32
mean 32 92
slowest >50* >146 >50 >146 >85
H. coralloides (6 fruit bodies) 
N 2 6 2 1 2 3
fastest 9 86 77 8 8
mean 9 146 7 8 9
slowest 9 22 7 >50 >50* 11*
H. erinaceus (16 fruit bodies)

1*N 3 17 4 3 3 3 3
fastest 8 ly,8 8 15 11 8 8 10
mean 10 l l 8 10 15 15 10 10 10
slowest

l
11
2

>50 11 15 19 12
4 _ _

12 10

spores;5 homokaryon above spores; 10 °C, spores incubated at 10 °C. Full details in 
text. >, indicates that spores had not germinated by this time, but plates had become 
contaminated. These times have not been included in the estimate of the mean; 
67y8contain a treatment/ collection with > 1% germination: 61.5%, 75% and 9.9%, 
y16.3%, 83.3%; *heterokaryon or homokaryon inoculated onto the plate; yPlates 
contaminated with a yeast; ^one combination of spores from three fruit bodies.
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Figure 2.2 Effect of spore age on time until germination of Hericium coralloides and H. 
erinaceus
Data are for spores from two fruit bodies of each species. Not all replicates of 24 
week old spores germinated so this value is an underestimate. Error bars are SEM.
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Ch 2 Spore germination and dispersal of Hericium spp.

2.3.2 Spore dispersal

A high proportion of the wells in plates directly beneath fruit bodies had clamp 

connections (Table 2.3). The proportion of wells with clamps decreased with distance 

from the fruit body (Fig 2.3), but there was evidence of mating even at 100 m; clamps 

were not found on traps more than 100 m from the fruit body. Unopened control 

plates lacked clamp connections. Contamination ranged from 0 to 100%, with an 

average of 40% (±8.3 SEM).

Figure 2.3 Average percentage of wells with clamp connections at 0-100 m from 
fruit body
Averages are for all fruit bodies and times at that distance; error bars are SEM; there 
are no error bars at 1 m as there was only one replicate.

In one instance (H. erinaceus VW1) clamps were found in 5 cm diam dishes, 

but not in multi-well dishes at the same point (10 m, 8 hr). No clamps were found in 

the 5 cm traps placed over 100 m away. Clamps were also absent in 5 cm diam dishes 

used for H. cirrhatum BB1, and from the only two uncontaminated dishes from H. 

coralloides AB1.

2.4 Discussion

Spores from most fruit bodies germinated, although percent germination of all three 

Hericium spp. was consistently low. This is a common situation for wood decay 

basidiomycetes, whose spores generally germinate in the laboratory (Merrill, 1970; 

Fries, 1987; Petersen, 1997), although often at low percentages (see references in

80 -i

0
0 20 40 60 80 100 120

Distance from fruit body (m)
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Table 2.3 Spore dispersal at 0 -  100 m from Hericium spp. fruit bodies expressed as percentage of wells with clamp connections and 
number of spores landing per m2 per hour

Date Location FB Code Substratum Weather 
(time of 

day)

0 m 6 hr 10 m 4 hr 10 m 6 hr 100 m 6 hr

%
clamped

spores
n^hr' 1

%
clamped

spores 
m2 hr' 1

%
clamped

spores 
m2 hr' 1

%
clamped

spores m2 
hr' 1

H. cirrhatum
18.10.06 Burnham

Beeches
BBla Fallen beech 

trunk
LR (PM) 0b 0b 33 8 208° 0 b (T 5 19

H. coralloides
01.11.05 WGP MAI 29° Standing

ash
D nd nd nd nd nd nd nd nd

30.10.06 Buskett’s 
Wood, NF

BW1 Standing 
dead beech

D 100 >417 74 463 57 236 21 88

21.11.06 Buskett’s 
Wood, NF

BW1 Standing 
dead beech

R All contaminated

07.11.06 Ambresbury 
Banks, EF

AB1 Standing 
dead beech

D 33 139b 2 13 5 19b 0 0

H. erinaceus
03.10.06 Virginia 

Water, WGP
VW la Fallen beech 

trunk
LR (PM) 

W
50 156 nd nd nd 0 0 a 0a

16.10.06 Ocknell, NF OckA Fallen beech 
trunk

D 8 33 nd nd 0 0 2 6

31.10.06 Eyeworth, NF Eyel Fallen beech 
trunk

D 100 >417 nd nd 8 33 nd nd

31.10.06 Eyeworth, NF Eye2 Fallen beech 
trunk

D 100 >417 43 179e 13 52 nd nd

21.11.06 Eyeworth, NF Eye2 Fallen beech 
trunk

R All contaminated

% clamped excludes contaminated wells; >, if  100% of clean wells have clamps then the number of spores fallen per m per hour is the minimum; nd, not determined; 5 cm 
diam dishes placed > 100 m (400 and 800 m (BB1); 200, 300 and 400 m (VW1)); b 5 cm diam dishes also placed;c results in text; d100 m for 8 hr;e lm for 6 hr; NF, New Forest; 
EF, Epping Forest; WGP, Windsor Great Park; LR, light rain; D, dry; R, rain; W, wind; AM, midnight to noon; PM, noon to midnight. NG references see Table 2.1, except H. 
erinaceus VW1, which is SU958693.
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Ch 2 Spore germination and dispersal of Hericium spp.

Merrill, 1970). However, some species have germination in excess of 90% (Schmidt 

and French, 1983). Both percentage of spores germinating and time taken to germinate 

are subject to many factors, including age of fruit body at spore release (Schmidt and 

French, 1983), age of spores (e.g. Aime and Miller, 2002) and temperature (e.g. Sautour 

et a l, 2001). Such studies have frequently shown that germination can be increased, i.e. 

spore viability is much higher than germination under sub-optimal conditions. For 

example, Polyporus dryophilus (=Inonotus dryophilus) had low percentages of erratic 

germination (Bailey, 1941, cited in Merrill, 1970), which increased to 92% when CO2  

was increased or volatiles produced by that species’ mycelium were present (Morton, 

1964, cited in Merrill, 1970). That germination rate can be high in the Hericium spp. 

was evidenced by the five-fold increase in percent germination of H. erinaceus on the 

plate contaminated with a yeast. Further, the spore traps provided evidence that 

germination frequently occurs in the field if established primary mycelia are present. 

Spores that do not germinate may be either nonviable or merely dormant. Future 

research should investigate spore viability, for example using vital stains such as 

propidium iodide and fluorescein diacetate. Successful germination of spores up to 24 

weeks indicates that these species could remain dormant while environmental 

conditions are unsatisfactory. Dormancy is probably exogenous as with other 

basidiospores (Rayner and Boddy, 1988).

The majority of basidiospores from wood decay basidiomycetes fall within 1 m 

of the fruit body, with few travelling further than 100 m (Kallio, 1970; Stenlid, 1994; 

Norden and Larsson, 2000). Hericium spp. appear to be no different. There is evidence 

that spores of wood decay fungi, albeit a small number, regularly travel greater than 1 

km (Kallio, 1970; Stenlid, 1994; Norden, 1997; see references in Norden and Larsson, 

2000), and occasionally up to 1000 km (Hallenberg and Kuffer, 2001). If Hericium spp. 

behave similarly this implies that spore dispersal is not a contributing factor to their 

rarity. It is important to note, however, that dispersal may not be followed by 

germination, let alone growth within a resource. The technique used here, of trapping 

spores with a primary mycelium, has the advantage of counting only germinable spores, 

but it must be remembered that such a situation may be more favourable for 

germination than the vast majority of possible landing places. Thus it is dispersal of 

germinable spores and colonisation potential that is measured; this must not be confused 

with actual colonisation.

It is not easy to meaningfully compare the number of spores settling per m per 

hour with other studies, there being such wide variation amongst species in the total

24



Ch 2 Spore germination and dispersal of Hericium spp.

number of spores produced. In addition, when 100% of wells had clamp connections the 

number of spores landing is almost certainly an underestimate. Sporulation is also likely 

to vary with age and condition of fruit body and environmental conditions such as 

temperature and humidity (Rayner and Boddy, 1988). This is certainly true for H. 

erinaceus in the USA, where it was found that spore production varied inversely with 

relative humidity, and had an optimum temperature of 24-27 °C (McCracken, 1970), 

illustrating the importance of taking environmental variables into account. Further 

studies of spore dispersal combined with investigation of spore production of Hericium 

spp. in the UK, using existing data on H. erinaceus as a starting point, could provide 

more precise information regarding dispersal potential of these species.

The technique of using species specific primary mycelium as a bait for spores 

proved extremely useful for experiments using relatively short exposure times. The 

problem of contamination is difficult to avoid due to the rich agar medium -  other 

studies have found similar problems (Vilgalys and Sun, 1994). To investigate longer 

distance spore dispersal,4 wood traps colonised with primary mycelium would be more 

appropriate, as these are inconspicuous and can be left unattended in woodland 

locations for several weeks (Edman et a l , 2004a).

Although it has been shown that Hericium spp. are similar to other wood decay 

basidiomycetes in terms of short distance spore dispersal and percentage germination, 

the effects of long distance spore dispersal may be of greater importance to these rare 

fungi whose populations are widespread. Short distance spore dispersal and 

establishment will maintain populations on a local scale, but to counteract inbreeding it 

is important for populations to retain gene flow between them, i.e. for spores to reach 

and establish in other populations. Isolated populations of rare fungi sometimes have 

lower spore germination, possibly due to inbreeding (Hogberg, 1998 cited in Hogberg 

and Stenlid, 1999; Edman et a l , 2004a). It is therefore vital to investigate long-distance 

spore dispersal of Hericium spp. which, according to fruit body distribution, exist in the 

UK in relatively small, distant populations that are not connected by suitable habitat 

corridors (Boddy and Wald, 2003). Combining this with investigations into spore 

viability using vital stains (see above) would bring us closer to understanding the 

possible effects of spore germination and dispersal on Hericium spp. in the UK.
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Chapter 3: Combative ability and extension rates of Hericium 

coralloides primary and secondary mycelia1

3.1 Introduction

The lifecycle of a typical basidiomycete comprises spore germination producing a 

primary mycelium, followed at some point by fusion and exchange of nuclei with a 

mating-type compatible primary mycelium to yield a secondary mycelium. 

Subsequently haploid sexual spores are produced following karyogamy and meiosis, 

and/or asexual haploid spores, oidia, are derived usually incorporating single nuclei. 

Primary mycelia are generally considered short-lived (e.g. Kauserud et al., 2006), and 

the secondary mycelium assumed to be the dominant phase, although there is little 

evidence for this. Indeed, some primary mycelia, for example those of the wood- 

rotting species Trametes versicolor and Heterobasidion annosum, can persist in the 

field for several years, and possibly much longer (Coates & Rayner, 1985; Garbelotto 

et al., 1997; Redfem et al., 2001). There is also evidence of an inverse relationship 

between number of colonies of a species in the field and the number that are primary 

mycelia (Stenlid, 1994). Thus, for a rare species mating may be delayed due to low 

numbers of potential mates.

The vast majority of studies on fungal ecophysiology and the development and 

functioning of communities in dead organic resources have employed isolates 

obtained from colonized resources or from fruit body tissues, i.e. secondary cultures, 

and largely ignored the primary phase. However, there is evidence that primary and 

secondary mycelia exhibit differences in performance (Table 3.1), for example in 

terms of extension rate (e.g. Simchen, 1966; Hansen, 1979; Fryar et al., 2002), wood 

decay rate (e.g. Platt et al., 1965; Amburgey, 1970; Elliott et al., 1979), and 

interspecific combative ability (Fryar et al., 2002). So far there does not appear to be a 

trend for primary or secondary mycelia to out-perform the other in any particular 

activity.

1 Crockatt, M., G. Pierce, R. Campbell, P. Newell, and L. Boddy. 2008. Homokaryons are more 
combative than heterokaryons of Hericium coralloides. Fungal Ecology. 
doi:10.1016/j.funeco.2008.01.001
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Author/Date

m .>bt vuM ^H U U g U111VI I

Characteristics
investigated

LFcivrccn p r im a ry  ana secondary mycelia 

Isolates used
Primary/secondary 
mycelia related? Results*

Fryar et al., 2002 Competitive ability
and extension rate of four wood
decay basidiomycetes

One PM and one SM (progeny of PM) of each species N SM>PM; SM<PMb

Redfem et al., 
2001

Area of stump colonisation by 
Heterobasidion amosum

Natural colonisation by airborne spores; other spores used 
unspecified

Y SM>PM

Sakamoto et al., 
2001

Protein
expression in Flammulina 
velutipes

Two PM and derived SM N Non-quantitative
differences

Garbelotto et al., 
1997

Colonisation of roots by 
Heterobasidion amosum

Four PM and four SM N SM= PM

Nguyen et al., 1992 Phosphate solubilising activity 
of Laccaria bicolour

PM and 20 derived SM N SM=PM

Kope and Fortin, 
1991

Variation in antifungal activity 
of Pisolithus arhizus

32 PM, 41 derived SM N SM>PM

Meysselle et al., 
1991

Relative acid 
phosphatase activity of 
Hebeloma cylindrosporum

11 SM; 20 sibling PM and 50 derived 
SM

N PM=SM

Elliott et al., 1979 Wood decay rate of Serpula 
lacrymans

Three SM from FBT, 40 PM derived from the three FBs, 138 
SM synthesised from PM

Partially PM>SM

Hansen, 1979 Wood decay and extension rate 
of Phellinus weirii

Six SM and six PM (from four fruit bodies) Y SM>PM

Bezemer, 1973 Extension rate of Gloeophyllum 
trabeum

13 SM and their constituent PM N SM>PM

Amburgey, 1970 Extension and decay rates of 
Gloeophyllum trabeum

Eight SM from FBT; 24 PM from the FBs; 15 SM synthesised 
from the PM; chemically induced PM from the synthesised 
SM

Partially SM>PM / SM<PMb

Simchen, 1966 Extension rates of 
Schizophyllum commune

Six SM from FBT; 24 PM from the six FB; 72 derived SM Y SM>PM / SM=PM / 
SM<PMb

Platt etal., 1965 Wood decay rate by 
Heterobasidion annosum

16 SM and 10 PM from one fruit body Y SM>PM

PM, primary mycelia; SM, secondary mycelia; sig diff = significant differences; FB(T) = fruit body (tissue); aSM>PM, SM outperformed 
PM; PM=SM no significant differences between PM and SM; SM<PM, PM outperformed SM; different results for different 
species/isolates.

K>'■j

Ch 
3 

Com
bative 

ability 
and 

extension 
rate 

of Hericium 
coralloides 

prim
ary 

and 
secondary 

m
ycelia



Ch 3 Combative ability and extension rates of Hericium coralloides primary and
_________________________________  secondary mycelia

For saprotrophic species that rarely produce basidiocarps, such as Hericium 

coralloides, there will be relatively fewer airborne propagules compared to frequently 

fruiting species. In these cases the primary phase may be of greater significance than 

for a common species, as this phase may be relatively long, and it will be the primary 

mycelium that establishes the individual in dead organic resources. Thus, primary 

mycelia of rare species must be particularly ‘fit’ to survive and mate, or poor survival 

of primary mycelia may contribute to the rarity of the species.

In the following study H. coralloides was used as a model species to examine 

relative ‘fitness’ of primary and secondary mycelia of rare wood decay 

basidiomycetes. Secondary mycelia of H. coralloides obtained from fruit body tissue 

isolation are average to good combatants, not losing any territory to most members of 

the early stage decay community against which they were tested (Wald et al., 2004b). 

Rarity is not, therefore, likely to result from poor combative ability of established 

secondary mycelia. Experiments were therefore designed to test the hypotheses that:

(1) primary mycelia grow more slowly than secondary mycelia (in agar culture) and

(2) primary mycelia are less combative than secondary mycelia.

3.2 Materials and methods
3.2.1 Cultures

Primary and secondary mycelia of Hericium coralloides and other wood decay 

Ascomycota and Basidiomycota (Table 3.2) were maintained on 2% or 0.5% (w/v) 

malt agar (MA; 15 g f 1 Lab M agar no. 2 (LabM, Bury, Lancashire, UK) with either 

20 or 5 g I*1 Munton & Fison Spray Malt Light (Munton Pic, Stowmarket, Suffolk, 

UK), respectively).

Primary mycelia were obtained by isolation of single germinating spores.

Small portions of mature hymenium were stuck to the lid of a Petri dish with 

petroleum jelly and positioned over a glass slide onto which spores were allowed to 

deposit overnight. Spores were suspended in sterile distilled water (SDW) and diluted 

so that when spread on 9 cm non-vented Petri dishes (Greiner Bio-One, Austria) of 

high clarity 2% MA (20 g Lab M agar no. 1; 15 g Lab M malt extract; f 1 distilled 

water) there was approximately one spore per field of view at x 100 magnification. 

Plates were sealed with Nescofilm®, incubated at 20 °C in darkness and checked 

regularly until germination commenced. The location of single, well spaced
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Table 3.2. Details of Hericium coralloides isolates, 
Ecological role Species Strain

and isolates against which they were paired 
Source Isolated by

in agar culture 
Date isolated/ created

Tooth fungus® Hericium coralloides Secondary mycelia
MAI

MA102

331

424

1229

Fagus sylvatica, Windsor Great A .M. Ainsworth 
Park
F. sylvatica, Windsor Great Park J. Hynes 

Sweden FCUGc

Yugoslavia

Sweden

FCUGc
FCUGc

Primary mycelia 
MA126b

1, 6, 7, 10, 13

MA127

2, 10, 14,25,27

MA129b
9, 18, 20,25,29

Artificial secondary 
Mycelia
MA126 1 XMA127 27 

MA126 1 x MA129 9 

MA127 2 x MA127 9 

MA126 10 x MA127 2 

MA127 27 x MA129 25 

MA126 1 XMA126 10 

MA127 2 x MA127 25 

MA129 9 x MA129 29 

MA129 20 x MA129 29

Fraxinus excelsior, Windsor Great M. Crockatt 
Park

F. sylvatica, Epping forest M Crockatt

Fr. excelsior, Windsor Great Park M. Crockatt

Feb 2002 

Oct 2003

Nov 2005

Nov 2005 

Dec 2005

Aug 2006 

Aug 2006 

Aug 2006 

Aug 2006 

Aug 2006 

Aug 2006 

Aug 2006 

Aug 2006 

Aug 2006
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Table 3.2, continued
Ecological role Species Strain Source Isolated by Date isolated/ created
Primary colonizers, latently present 
in standing trunks and attached 
branches Coniophora puteana 

Daldinia concentricae

Cputl F. sylvatica S. J. Hendry

Sep 2005

Eutypa spinosae Esl F. sylvatica S. J. Hendry

Stereum gausapatum Sgl Quercus robur, L. Boddy

Vuilleminia comedens Vcl Quercus robur L. Boddy

Heart rotters Fomes fomentarius JHC001-201 F. sylvatica, Denmark J. Heilmann-Clausen
Ganoderma applanatum JHC-GA F. sylvatica, Denmark J. Heilmann-Clausen

Oct 2006Laetiporus sulphureus MA123 Windsor Great Park M. Crockatt

Early secondary colonizers on 
standing and fallen wood Trametes versicolor D2 Quercus robur L, Boddy

Later secondary colonizing Hypholoma fasciculare GTWV2 Wenvoe, S. Wales G. Tordoff 2003

cord-formers

Later stage fungi whose ecological 
strategies have been little studied Ceriporiopsis gilvescens CgJHC 1 F. sylvatica, Denmark J. Heilmann-Clausen

Ecological strategy unknown Panus conchatus Pci Windsor Great Park M. Crockatt Oct 2006

Pholiota alnicolcf Pal Windsor Great Park M. Crockatt
Oct 2006

Unless stated otherwise all cultures were obtained from within the UK and are maintained at Cardiff University.a Ecological role not yet entirely clear; found both in 
central heart regions and outer sapwood particularly on beech (Boddy and Wald, 2003);b Specimens obtained from same tree;c Supplied by Fungal Cultures Collection 
University of Gothenburg (FCUG)/Nils Hallenberg; * As corny cot a, all others are Basidiomycota;f Although primarily on alder (Alnus spp.), P. alnicola is found 
occasionally on beech
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Ch 3 Combative ability and extension rates of Hericium coralloides primary and
secondary mycelia

germinating spores was marked with a dummy objective (a thin metal tube mounted 

on an objective lens that can be lowered into the agar to cut a plug of agar that directly 

corresponds to the field of view through the xlO objective lens). The plug of agar 

containing the germinating spore was then transferred to a fresh agar plate under a 

low power microscope (xlO magnification) with a needle of sharpened tungsten wire 

(tungsten wire pulled through molten sodium nitrite in a steel container). It was 

important that germinating spores were not touching any other mycelium, or had any 

spores in the same field of view, to ensure that mating could not occur. However, as 

germination was generally well below 1%, with often only a single germinating spore 

found on an entire plate, in order to obtain sufficient primary mycelia for experiments 

it was often necessary to transfer germinating spores that had (ungerminated) spores 

in the same field of view. To avoid possible mating that could occur if one of these 

spores germinated, as soon as sufficient mycelium was visible this was subcultured 

onto a fresh agar plate, where it was checked for presence of clamp connections. 

Cultures with clamp connections were discarded.

Spore prints originated from three fruit bodies: MAI26 and MAI29, which 

were produced on the same ash tree in Windsor Great Park, Berkshire, UK (Nat. Grid 

ref. SU956740), and MAI27 and on a beech tree in Epping Forest, U.K. (Nat. Grid 

ref. TQ42329853).

Secondary mycelia were obtained by excising small pieces of tissue (avoiding 

the hymenium) from within fruit bodies collected from the field, which were surface 

sterilised by flaming before being placed onto 2% MA. In addition, ten artificial 

secondary mycelia were created by pairing selected primary mycelia on agar plates to 

produce stable secondary mycelium (Table 3.2).

3.2,2 Extension rates

Extension rates were determined on 0.5% MA for all 15 primary mycelia and the five 

natural secondary mycelia (Table 3.2) at 5,10, 15, 20, 25, 30 and 35 °C, and for 

artificial secondary mycelia at 10 and 20 °C, with four replicates of each isolate at 

each temperature. Plugs (6 mm diam) from the growing margin of the colony, were 

inoculated centrally on 0.5% MA in 9 cm non-vented dishes and colony diameter in 

two dimensions perpendicular to each other was measured regularly during the log 

phase of extension. Measurements were made to 0.1 mm using Dialmax vernier
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calipers (Swiss Precision Instruments Inc, Garden Grove, CA, USA). Extension rates 

were determined by linear regression and compared with one-way ANOVA, or 

Kruskal-Wallis if data were not normally distributed, using Minitab.

3.2.3 Interspecific interactions

Pairings between the 20 natural H  coralloides isolates and the 13 other wood decay 

species were made on 0.5% MA in 9 cm non-vented dishes. Fungi were inoculated (6 

mm diam plugs) 3 cm apart at different times according to their extension rates so that 

they met in the centre of the dish. Plates were incubated in darkness at 20 °C (four 

replicates per combination). Once colonies had met, interactions were observed 

weekly, and final outcomes recorded after 12 to 14 weeks as either deadlock (where 

neither isolate captured territory from the other), replacement (where one fungus had 

grown over and through the other so that it was no longer recoverable by isolation) or 

partial replacement (where one fungus was recoverable from some but not all of the 

territory originally held). Outcomes were confirmed by subculturing from the base of 

the agar.

As an aid to comparison of overall combative ability, outcome of each 

replicate of each pairing was given a score: replacement of the antagonist by H. 

coralloides was assigned +2; partial replacement of the antagonist, +1; deadlock, 0; 

partial replacement of H. coralloides, -1; complete replacement of H  coralloides, -2. 

Cumulative values were determined for each isolate.

3.3 Results
3.3.1 Extension Rates

Optimum temperature for radial extension rate was 25 °C for 17 of the 20 natural 

isolates, exceptions being MAI26 6 and 13, and 10, which had optima of 20 °C, and 

30 °C respectively. All isolates grew at 5 °C. Maximum temperature for growth was 

between 30 °C and 35 °C for the majority of isolates, although two secondary and five 

primary mycelia did grow at 35 °C. No primary mycelia from MAI27 grew at 35 °C, 

and MAI26 6 did not grow at 30 °C. The duration of lag phase following inoculation 

decreased as incubation temperature approached the optimum.

Some isolates were consistently fast or slow growers (e.g. secondary mycelia 

331 and 1229, respectively), and at 15 °C primary mycelia extended at significantly
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greater rates than secondary mycelia (Fig 3.1). There were also differences between 

primary mycelia isolated from different fruit bodies (Fig 3.2). However, there were no 

consistent differences across all temperatures.
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Figure 3.1 Extension rates of Hericium coralloides primary and secondary 
mycelia
■ , primary mycelia; ♦ , secondary mycelia; error bars are SEM. Significant 
differences between extension rates, * P < 0.05
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Figure 3.2 Extension rates of Hericium coralloides primary mycelia grouped by 
fruit body
■ , MA127; ♦ , MA126; , MA129; error bars are SEM. No MA127 primary mycelia grew at 30 °C.
Significant differences between extension rates: * P <0.05; ** P <0.01; *** P <0.001. 5 °C: MAI26 vs 
MA127 ***; MA126 vs MA129 ***. 10 °C: MA126 vs MA127 ***; MA127 vs MA129 ***. 20 °C: 
MAI26 vs MAI27 **; MA127 vs MA129 *. 25 °C: MA126 vs MA127 **; MA127 vs MA129 **.
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At neither 10 nor 20 °C were there any consistent patterns between extension 

rates of artificial secondary mycelia and their parental primary mycelia (Fig 3.3). 

Results ranged from no significant difference between parent and progeny (e.g.

MAI29 9 x MAI29 29 at 20 °C), to progeny having significantly greater extension 

rates than either parent (e.g. MAI26 1 x MAI27 27 at 10 °C).
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a I s s o a

20 °C10 °C Isolate / temperature

Figure 3.3 Extension rates of artificial secondary mycelia and parental primary 
mycelia
Striped bars, 1st parental primary mycelia; grey bars, 2nd parental primary mycelia; 
black bars, artificially created secondary mycelia; e.g. in far left set of bars Al is 
striped bar (1st parental mycelium), B27 is grey bar (2nd parental mycelium) and the 
progeny secondary mycelium is the black bar. A, MAI26; B, MAI27; C, MAI29, e.g. 
AlxB27 is MA126 1 crossed with MA127 27; bars are SEM; significant differences 
between extension rates: * P <0.05; ** P < 0.01; *** P < 0.001.

3.3.2 Outcome o f interactions

Hericium coralloides performed well, either gaining territory or reaching deadlock in 

over half of all interactions, and with 12 of the 20 isolates having positive cumulative 

scores (mean score for all isolates was 2.6). Deadlock and replacement generally 

followed gross mycelial contact, although non-contact inhibition occurred with 

MAI26 6 against seven of the 13 opponent species. Overall H. coralloides was most 

successful (large positive cumulative score; Table 3.3) against Fomesfomentarius,
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Figure 3.4 Hericium coralloides primary and secondary mycelia vs. other species: 
percentage of interactions in each category of outcomes
Black bars, secondary mycelia; striped bars, primary mycelia; R, replacement of H. 
coralloides by opponent; PR, partial replacement of H. coralloides by opponent; D, 
deadlock; pr, partial replacement of opponent by H. coralloides; r, replacement of 
opponent by H. coralloides.

Laetiporus sulphureus, Ganoderma applanatum, Vuilleminia comedens and Eutypa 

spinosa, in decreasing order.

All pairings against Daldinia concentrica resulted in deadlock, while 

Hypholoma fasciculare and Coniophora puteana always replaced H. coralloides.

The weakest combatant, as indicated by the cumulative scores, was MAI26 6. 

Overall, however, secondary mycelia performed less well than primary mycelia: all of 

the former had negative cumulative scores, compared to only three of the 15 latter 

(Table 3.3); secondary mycelia gained territory in 31% of interactions, and primary 

mycelia in 49% (Fig 3.4). Primary mycelia were notably better than secondary 

mycelia in interactions against G. applanatum.

There was sometimes extreme variation in outcomes of interactions between 

different isolates. For example, four isolates replaced Ceriporiopsis gilvescens, while 

two were completely replaced by the latter. Sometimes there were different outcomes 

between replicates. This occurred to an equal extent in primary and secondary 

mycelia. Outcomes varied between both extremes, e.g. MAI27 10 against Stereum 

gausapatum, though more commonly there was only a slight shift in outcome, e.g. 

deadlock to partial replacement.
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Table 3.3 Outcomes of interactions between Hericium coralloides secondary/primary mycelia and 13 antagonist species
Isolate Ceriporiopsis ConiophoraDa.ld.inia Eutypa Fomes Ganoderma Hypholoma Laetiporus Panus Pholiota Stereum Trametes Vuilleminia Cumulative
_________ gilvescens puteana concentrica spinosa fomentarius applanatum fasciculare sulphureus conchatus alnicola gausapatum versicolor comedens scores

Se
co

nd
ar

y 
m

yc
el

ia

MAI
MA102
331
424
1229

PR
r
D
R
PR

R
R
R
R
R

D
D
D
D
D

Pr
PR(2)D(2)
D
D
PR

r
r
D
Pr(3)R(l)
D

R R 
R(3)D(1) R 
D R 
r(2)D(l)R(l)R  
D R

R
r(3)R(l)
R
r(3)pr(l)
Pr

r
Pr
Pr
D
D

r
r
R
D
D

R
R
PR(2)pr(2)
R
r

R
R
R
R
R

Pr
pr
Pr(3)D(l)
Pr
D

-4
-4

-17
-26
-20

MA126
1 D R D Pr r r R D pr D r(2)D(2) D Pr 16
6 R R D* D* pr D* R D* D* R* PR D(2)R(2) D* -36
7 pr R D R r r R R Pr r r D Pr 44
10 pr R D Pr D r R D D Pr Pr(2)D(2) D(2)r(2) pr 14
13 r R D Pr PR r R D PR R r D Pr 0

•2
13

MA127
2 PR R D pr(3)D r r R R pr(2)D(2) pr(2)D(2) R R Pr(3)D(l) -2o

C 10 pr R D R r r R R pr PR R(2)r(l)D(l)R Pr 14G

S'
14 R(2)PR(2) R D r(3)pr(l) r r R R pr(3)D(l) PR R R pr -4
25 r R D D(3)pr(l) r r R r(3)pr(l) pr PR r R r 24

'»hOh 27 PR R D R Pr r R Pr D PR(2)D(2) r R r 10

MA129
9 PR R D R r D(3)pr(l) R R D PR PR D pr 1
18 PR R D Pr r r R Pr D PR(2)D(2) PR D Pr 2
20 pr R D Pr r r R Pr pr pr PR D Pr 20
25 r R D Pr r r R r(2)D(2) pr(2)D(2) D(3)pr(l) R D pr 15
29 pr R D D r r R r(2)D(2) D PR PR D r 8

Cumulative
Scores 6 -160 0 62 109 93 -160 98 39 -13 -24 -80 82

Abbreviations: D, deadlock; R, replacement of H. coralloides by opponent; PR, partial replacement of H. coralloides by opponent; r, replacement of opponent by H. coralloides', pr, partial 
replacement of opponent by H. coralloides. * with non-contact inhibition..Figures in brackets indicate how many of the four replicates represented each outcome, for those interactions that 
gave different outcomes amongst replicates. Scores for each isolate are cumulative for all replicates against 11 antagonists. Scores for each replicate were -2 when H. coralloides was replaced, 
-1 when it was partially replaced, 0 for outcomes o f deadlock, 1 when H. coralloides partially replaced its opponent and 2 when it completely replaced its opponent.
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3.4 Discussion
The relationship between temperature and extension rate of H. coralloides isolates 

was typical of that of mesothermic fungi, which generally have cardinal temperatures 

of approximately 5, 25 and 40 °C (Rayner & Boddy, 1988); the maximum rates of 

around 2.5 -  3.0 mm d'1 are low to average for wood decay fungi (Boddy, 1983; 

Rayner & Boddy, 1988; Magan, 2008). The hypothesis (1) that primary grow more 

slowly than secondary mycelia is rejected, primary mycelia averaging a more rapid 

extension rate than secondary, though the difference was only significant at 15 °C.

The possibility that extension rate results could be simply due to genetic variation 

between isolates, rather than karyotic status, is rejected, as is shown by comparisons 

between parent primary mycelia and artificially created secondary mycelia. The lack 

of significant differences between primary and secondary mycelia (with the exception 

of significant differences at 15 °C) contrasts with previous studies, all be they few, in 

which secondary mycelia of Gloeophyllum trabeum and Phellinus weirii grew more 

rapidly than primary mycelia (Bezemer, 1973; Hansen, 1979). A primary mycelium of 

a Peniophora species grew faster than a secondary, but only one isolate of each was 

tested (Fryar et al., 2002), preventing generalisation for this species. Examining other 

characteristics, wood decay rate by Serpula lacrymans was less in 57% (of 138), 

intermediate in 33% and more in 10% of secondary mycelia than their component 

primary mycelia (Elliott et al., 1979). Secondary mycelia of Gloeophyllum trabeum 

generally decayed wood more rapidly than primary mycelia from which they were 

synthesized (Amburgey, 1970). However, the relationships between karyotic states in 

this species were not straightforward, as about half of the primary mycelia generated 

by dedikaryotisation of two wild types decayed wood more rapidly than their 

progenitor. In Heterobasidion annosum primary and secondary mycelia could both be 

divided into two groups based on decay rate, that of the fast group being similar in 

both, and likewise that of the slow group (Platt et al., 1965). In the present study, 

variation in optimum and maximum temperatures for growth and actual extension 

rates was broad, but was as large within groups (primary and secondary mycelia from 

different sources) as between. There do not appear to be any comparable published 

data for other basidiomycetes.

The second hypothesis that secondary mycelia are more combative than 

primary was also rejected, since all primary mycelia, except MAI26 6, had higher 

cumulative scores than secondary mycelia. In the only other study to have examined
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relative competitive ability of primary and secondary mycelia (based on area of agar

covered after 58 d; Fryar et al., 2002), outcomes for three species were variable, but

only one primary and one secondary mycelium of each species was used.

Both primary and secondary mycelia mostly replaced, or at least deadlocked 

with, the heart rot species {Ganoderma applanatum, Fomes fomentarius and 

Laetiporus sulphureus) and early colonizers (Daldinia concentrica, Eutypa spinosa 

and Vuilleminia come dens), though not Stereum gausapatum or Coniophora puteana. 

Thus, the combative ability of primary mycelia probably does not contribute to the 

apparent rarity of the species. As in extensive previous studies with secondary 

mycelia (Wald et al., 2004a,b), there were sometimes differences in outcome between 

replicates, presumably reflecting closely matched combatants and a delicate balance 

in the interplay between microenvironment and combative ability.

The scoring system was valuable for summarising combative ability against a 

range of opponents. It is always easy to spot very good and very poor combatants in a 

matrix of outcomes, but less easy to ascertain relative combative ability when 

outcomes range from replacement of antagonist, through deadlock, to replacement by 

the antagonist. A scoring system has been used previously with grain storage fungi 

(Wicklow et al., 1980; Magan & Lacey, 1984; Marin et al., 1998a,b), which involved 

assigning codes for different outcomes, e.g. mutual antagonism on contact (2) and 

mutual antagonism at a distance (3), and then adding them. That system, however, 

suffers from the drawback that it is completely qualitative, yet the codes are treated 

quantitatively. This is inappropriate as, for example, there is no reason why mutual 

antagonism at a distance should have a higher value than mutual antagonism 

following contact. Even though it is valid to use our scoring system quantitatively, 

numerical scoring on its own masks variation in outcomes and similar scores can be 

obtained for vastly different combinations of outcome, e.g. five replacements of other 

fungi plus five replacements by other fungi would yield the same score as ten 

deadlocks, but the ecological consequences would be very different.

Clearly, in the present study primary mycelia performed at least as well as 

secondary mycelia, though it should be noted that the primary mycelia used were 

obtained from single spore isolates and, therefore, had not had an independent 

existence in the field. Also, there is an inherent bias towards spores that germinate 

under artificial laboratory conditions, which may be particularly significant in a 

species such as H. coralloides that has a germination rate of less than 1 % in the lab
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(Chapter 2). Ideally, primary mycelia isolated from wood should be used, though 

these are extremely difficult to obtain for rare fungi. Alternatively, dedikaryotization 

could have yielded constituent primary mycelia. Another possible source of bias is 

having used primary mycelia derived from spores from two fruit bodies on the same 

tree (MAI26 and MAI29), which could have been produced by the same mycelium in 

which case primary mycelia would all have been siblings.

It should be noted that abiotic conditions, including microclimate and venue of 

interaction (e.g. agar, wood or soil) affect interaction outcome (e.g. Boddy, 2000).

The present study concerned variation between primary and secondary mycelia, which 

can validly be compared on agar medium, though outcome of interactions may differ 

slightly in more natural conditions. The suggestion that primary mycelia of these rare 

fungi may have to survive for longer than those of more common species, has not 

been refuted by these experiments. As primary mycelia of H. coralloides are better 

combatants than secondary, and have at least equal extension rates over a range of 

temperatures, once established they are likely to be able to survive for long enough to 

meet a mate and become stable secondary mycelia.
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Chapter 4: Mating systems and somatic compatibility of Hericium 

cirrhatum, H. coralloides and H. erinaceus

4.1 Introduction

Sexual reproduction is responsible for creating and maintaining genetic diversity. In 

basidiomycetes sexual compatibility is governed by genetic controls called mating 

systems. These mating systems have been referred to as “arguably the most complex 

mating system of all known organisms” (James et al., 2004); luckily for researchers 

although the systems themselves may be complex, elucidating them is often relatively 

straightforward.

Although approximately 10% of homobasidiomycetes are self fertile 

(homothallic; Esser, 1967, based on analysis of mating systems of 335 species, cited 

in Hibbett and Donaghue, 2001), the majority have diaphoromictic mating systems, 

which favour outbreeding. In these systems sexual compatibility is governed by one 

or two unlinked multiallelic loci, referred to as unifactorial or bifactorial mating 

systems, respectively. Genetic exchange can occur if primary mycelia have different 

alleles at the locus or loci. In a typical basidiomycete lifecycle the haploid 

basidiospores produced by a single fruit body will therefore be of either two 

(unifactorial) or four (bifactorial) mating types. Hence between sibling primary 

mycelia there will be 50 or 25% sexual compatibility for unifactorial or bifactorial 

systems, respectively. However as there are many alleles within a population there 

will be close to 100% compatibility between non-sibling primary mycelia. Thus 

mating systems promote outbreeding; without such a system there would be 100% 

compatibility between all primary mycelia regardless of relatedness. The majority of 

homobasidiomycetes are bifactorial, which promotes a greater degree of outbreeding 

than a unifactorial system (distribution is 65 and 25%, respectively; Esser, 1967, 

based on analysis of mating systems of 335 species, cited in Hibbett and Donaghue, 

2001).

The significance of in- or outbreeding is likely to be greater for species with 

few fruit bodies (such as Hericium spp. in the UK) than species whose fruit bodies are 

common, as it is less likely that primary mycelia from the former will encounter other 

conspecific primary mycelia. As the majority of spores fall within a few metres of the 

fruit body (Kallio, 1970; Stenlid, 1994; Norden and Larsson, 1999) it is more likely
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that primary mycelia of rare fungi will encounter siblings than non-siblings. A mating 

system, which favours outbreeding, may be advantageous in such a situation where 

inbreeding would otherwise be extremely common, thus preventing development of 

genetic variability which would be brought about by genetic exchange between 

populations. However, in such populations mating between closely related individuals 

may be the only opportunity for sexual reproduction, thus inbreeding can also have 

advantages.

As rare species existing in isolated populations in the UK (Boddy and Wald, 

2003) H. coralloides, H. erinaceus and H. cirrhatum provide examples of 

basidiomycetes in which inbreeding could be a significant issue. It is therefore crucial 

to understand their mating systems, i.e. how genetic exchange is regulated.

As a first step to understanding genetic diversity within populations of these 

species, somatic compatibility of cultures isolated from fruit bodies of each species 

that appear simultaneously on a substrate was investigated. This was to determine if 

they originated from a single mycelium or whether genetically different individuals of 

the same species ever occupy the same substrate, thus testing the hypothesis that a 

single individual of Hericium spp. can produce multiple fruit bodies on the same tree.

Mating systems were also investigated for all three species. North American 

isolates of H. coralloides and H. erinaceus are bifactorial (Ginns, 1985), and there are 

indications that H. coralloides within Europe is also bifactorial (Hallenberg, 1983), 

although this is based on a very small sample size. It has also been suggested that H. 

coralloides may be homothallic, due to observations of primary mycelia with clamp 

connections, which are generally only seen on mated mycelia. However, unmated 

mycelia of some genera produce clamp connections (Ainsworth, 1986), and it would 

be unwise to accept the claim of homothallism without further investigations into 

nuclear behaviour. The hypothesis that they are bifactorial in the UK, as they are in 

the North America, was thus tested. The mating system of the closely related H. 

cirrhatum has not been investigated, so was a priority for this study.

4.2 Materials and methods

4.2.1 Cultures

Primary and secondary mycelia (Table 4.1) were obtained as described in Chapter 3.
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Table 4.1 Hericium cirrhatum, H. coralloides and H. erinaceus isolates used in mating system and somatic compatibility experiments

Species Fruit Date Substrate Collector Location National grid Experiments used in*
body collected ref

__________________  Somatic compatibility Mating system
H. cirrhatum AL1 24.07.05 Fagus AL NF SU37290414 Y (22)

MAI 25 07.10.05
sylvatica 
F. sylvatica AMA BB SU94398467 Y (22)

MAI 28 26.10.05 F. sylvatica AMA EF TL42960020 Y (12)
H. coralloides ABla 07.11.06 F. sylvatica MEC EF TL43790042 Y

AB2a 07.11.06 F. sylvatica MEC EF TL43790042 Y
MAI 15 24.10.04 Fraxinus

excelsior
AMA WGP SU950751 Y

MA116 24.10.04 F. sylvatica AMA WGP SU926746 Y
MA126b 15.10.05 Fr. excelsior AMA WGP SU956740 Y (11)
MAI 27 
MA129b

20.10.05
03.11.05

F. sylvatica 
Fr. excelsior

AMA
AMA

EF
WGP

TQ42329853
SU956740

Y (10)
Y (14)

H. erinaceus AL7 19.11.05 F. sylvatica AL NF SU228148 Y(6)
Eye 2 21.11.06 F. sylvatica MEC NF SU22731493 Y (2)
SWla 16.10.06 F. sylvatica MEC NF SU28801193 Y (16)
SW2 16.10.06 F. sylvatica MEC NF SU28921180 Y (2)
OckA0 16.10.06 F. sylvatica MEC NF SU246115 Y Y (2)
Ock B° 16.10.06 F. sylvatica MEC NF SU246115 Y Y (20)
Ock C° 16.10.06 F. sylvatica MEC NF SU246115 Y
480 Unknown F. sylvatica PT EC SU9727 Y
PT Y

* Y = used in that experiment; numbers in brackets in mating system column are number of primary mycelia obtained from that fruit body. Commercial strain 
obtained from Ann Miller, Aberdeen. Sets of superscript letters indicate fruit bodies occurring simultaneously on the same substrate. AB1 was ca. 80 cm 
above AB2; MAI26 was ca. 1 m above MAI29; OckC was 50 cm above OckB, which was 2 m above OckA. Collector abbreviations: AL, Alan Lucas;
AMA, A Martyn Ainsworth; MEC, Martha E. Crockatt; PT, P. Thomas; for contact information apply to Prof L Boddy (boddyl@cf.ac.uk). Location 
abbreviations: NF, New Forest; BB, Burnham Beeches; EF, Epping Forest; WGP, Windsor Great Park, EC, Ebemoe Common. Equivalent Natural England 
codes for H. erinaceus are in Appendix I.
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4.2.2 Somatic compatibility
Tissue isolates of H. coralloides and H. erinaceus isolated from two or more fruit bodies 
occurring simultaneously on the same substrate (Table 4.1) were paired against each other to 

investigate somatic compatibility. They were also paired against other isolates of the same 

species from different locations (Table 4.1). Plugs (6 mm diam) of agar and mycelium 

from the edge of the colony were placed 3 cm apart on a 9 cm Petri dish of 2% MA, 

sealed with Nescofilm® and incubated at 20 °C in darkness. Controls were self 

pairings. Four replicates were made of each pairing including controls (self pairings). 

Plates were sealed with Nescofilm®, incubated at 20 °C in the dark and checked 

weekly for signs of somatic incompatibility such as inhibition or stimulation of 

growth, pigment production or changes in colony morphology such as barrage 

production. Observations continued until a point was reached where there had been no 

change in an interaction for four weeks.

4.2.3 Mating system

Non-sibling pairings of primary mycelia were performed to determine if a species was 

outcrossing. Up to five primary mycelia were randomly selected from each fruit body, 

and all cultures paired in all combinations. Pairings were made on 2% MA as 

described above except that plugs were placed 1.5 cm apart to allow colonies greater 

growth before meeting. Not less than one week after colonies had met, cultures were 

checked microscopically (x100-400 magnification) for presence of clamp 

connections, which would indicate that nuclear exchange had occurred and that the 

primary mycelia were sexually compatible, as clamp connections were found on 

isolates from fruit body isolates, but never on primary mycelia. Subcultures were 

made from compatible pairings, from the interaction zone and edges of each colony. 

When grown out these were again checked for clamps to ascertain whether a stable 

secondary mycelium had developed.

If greater than ten primary mycelia had been obtained from a fruit body, then 

sibling pairings were performed to ascertain whether the species had a uni factorial or 

bifactorial mating system. Two such experiments were performed for H. cirrhatum 

(MAI25 and AL1) and H. erinaceus (OckB and SWla) and three for H. coralloides 

(MAI26, MAI27 and MAI29). Up to 22 primary mycelia from a single fruit body 

(Table 4.1) were paired in all combinations as described above, including pairing with 

self for controls. Compatible interactions were subcultured and re-checked for clamps
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as described above. Results were recorded in a matrix which could be re-arranged so 

that compatible interactions were grouped together, allowing primary mycelia to be 

assigned to groups according to which mating allele(s) they possessed.

4.3 Results

4.3.1 Somatic compatibility

H. coralloides fruit body isolate pairings highlighted a similarity in mycelial 

morphology between AB1 and AB2, compared to MAI 15 and MAI 16 (Fig 4.1a-j). 

Both AB1 and AB2 invariably produced fruit body primordia at the colony margins, 

whereas MAI 15 produced clumps of floccose aerial mycelium around the inoculum 

plug and colony margin, and MAI 16 had very little aerial mycelium. Pairings of AB1 

vs. AB2 and control pairings of both were all indistinguishable from each other. Non- 

contact inhibition was not seen in any pairings, and by six weeks (ca. three weeks 

after colonies had met) no differences in colony morphology were apparent between 

any control and experimental pairings, all isolates having met in the centre of the plate 

and apparently reaching deadlock without overt signs of antagonism.

In fruit body tissue pairings of H. erinaceus, isolate P overgrew all other isolates 

by 40 d, while other pairings were just meeting. By 58 d all colonies had met, but 

there were no signs of somatic incompatibility between any isolates; 81 d after pairing 

there were still no signs of somatic incompatibility. Colony morphology of isolates 

varied greatly even within replicates of the same pairing, including controls. This 

made it impossible to draw conclusions as to similarity or dissimilarity of OckA, B 

and C based on colony morphology (Fig 4.2a-e).

4.3.2 Mating system

4.3.2.1 H. cirrhatum

H. cirrhatum clamp connections varied greatly in shape (Fig 4.3a-e) and frequency 

both within and between pairings, but were occasionally present at most septa and 

easily interpreted as being clamps. Inconsistency in frequency and appearance of 

clamp connections made it extremely difficult to decide if a pairing was sexually 

compatible. Subculturing compatible interactions to confirm secondary mycelium was 

stable showed that clamps were always present in the central zone, but not always 

around the margins of both colonies.
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Figure 4.1 a-j Hericium coralloides fruit body isolate pairings at 41 d
a-d are control pairings of the four isolates used, e-j are experimental pairings; note similarity of e (AB1 vs AB2) to a and b (AB1 and AB2 
controls, respectively), and variation in colony morphology on experimental compared to control pairings.
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OckB control

480 control

OckB V i OckC
M H i f e L . ___

Figure 4.2a-e Hericium erinaceus fruit body isolate pairings at 84 d
Each picture shows three replicates of the same pairings. Figs a to c, control self pairings 
of named isolate; Figs d and e, first isolate is on the left of the plate, second isolate on the 
right. Note variation in colony morphology between replicate plates in control (a-c) and 
experimental (d-e) pairings.
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Figure 4.3 a-e Definite and possible clamp connections from interaction zone of 
pairings of Hericium cirrhatum primary mycelia (x400 magnification)
a is a typical, unambiguous clamp connection; b is a definite clamp connection; c-e 
are possible clamp connections.

H. cirrhatum non-sibling pairings approached 100% compatibility, there being 

just one incompatible pairing within the matrix (Table 4.2a).

Sibling pairings could not be easily interpreted. H. cirrhatum AL1 mating 

matrix had 25% compatibility, but primary mycelia could not be grouped by mating 

allele (Table 4.2b). Fruit bodies were found on 60% of compatible interactions, but 

only 2% of incompatible pairings.
Following high levels of contamination in the first attempt, H. cirrhatum 

MAI25 matrix (Table 4.2c) was repeated, thus yielding data on the reproducibility of 

pairing outcomes. In the first attempt 24% of pairings were compatible, compared to 

51% in the repeat. Only half (55%) of compatible pairings were again compatible 

when repeated. 22 pairings were compatible in the repeat that had been incompatible 

in the initial attempt. Neither the initial nor repeated matrix, or a combination of the 

two, could be arranged to group primary mycelia according to their mating alleles. An 

arrangement counting only pairings that produced regularly shaped, frequent clamps 

as being compatible did not produce more satisfactory results than when all clamp 

producing pairings were included.
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Table 4.2a-c Hericium cirrhatum mating matrices
FB AL1 MA125 MA128 ALIO

SSI no. 12 16 6 8 17 23 11 13
ALIO 13 + + + + + + + \

11 + + + + + | V
MA128 23 + + + + \

17 + + + + \
MAI 25 8 + + + \

6 + + \ 4.2a H. cirrhatum iAL1 16 + \
12 \

SSI no. 2 5 8 9 10 12 15 16 17 18 19 20 22 24 25 26 27 28
28
27
26
25
24
22
20
19
18
17
16
15
12
10
9
8
5
2

+  
+  

+ +

+
+

+ +  + 
+

+

+ \
+ \ 

\

+

+ + \
+ + + \

+ + \
\

+ \
+ \

+ \
\

\

4.2b H. cirrhatum AL1 sibling pairings

no.
48
47
45
32
25
22
21
19
18
17
14
11
8
6

6 8 11 14 17 18 19 21 22 25 32 45 47 48
+  +  ++ 
+
+  ++  

+  +
+

+  ++ +
+

++ +  +
+ + +

+ +  +
+  ++ -H- +  \

+ + + + + + +  \
+ + + \
+ \
+ + +  \

+ + \ 
-H- + +  \

+ \
+ \
\

\
++ \ 
\ 4.2c H. cirrhatum MAI25 sibling pairings

FB, fruit body; SSI no., single spore isolate number; +, stable secondary mycelium 
found; blanks, secondary mycelium not formed; \, control self pairing. Table 4.2c 
only: +, stable secondary mycelium present in first experiment only; +, stable 
secondary mycelium in repeat experiment only; ++, stable clamp connections present 
in both experiments
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Table 4.3a-c Hericium coralloides mating matrices
FB MAI 26 MA127 MA129

SSI no. 1 7 9 10 15 2 4 14 25 28 9 18 20 25 29
MA129 29 + + + + + + + + \

25 + + + + + \
20 + + + + + + + + \
18 + + + + + \
9 + + + + + + + + \

MAI 27 28 + + + + + \
25 + + + + + \
14 + + + + + \
4 + + + + + \
2 + + + + + \

MAI 26 15 \
10 + \
9
7

+
\ X 4.3a H. coralloides non sibling pairings

1 \

SSI no. 4 10 14 16 25 2 22 27 28 38
38 + + + + \
28 + + + + \
27 + + \
22 + + \
2 + + \

25 \
16 \
14 \ 4.3b H. coralloides MAI27 sibling pairings
10 \
4 \

SSI no. 6’ 9' 10' 13 3" 9" 20" 4’ \T 8' 14' 12" 18" 25" 28" 11" 15’ 12'
29’ + + + + + + +
24’ + + + + + -*- +
1" + + + + +
1' + + + + + + +
12' + + + + + + + + \

+ + + \
H I + + + + \
28” + + + + + + \
25”
18”
12”

14’
8 '

T
4’

20"

9”
3"
13’
10 '

9*
6 ’ 4.3c H. coralloides MAI 26 and MAI29 combined pairings

Legend: as Table 4.2a-c. Boxes indicate primary mycelia with the same mating 
alleles. Table 4.3c only: primary mycelia from fruit bodies MAI26 and MAI29, 
which occurred on the same substrate, were pooled and a matrix with all primary 
mycelia performed; x’, primary mycelium from MAI26; x", primary mycelium from 
MAI29; e.g. 6’ is primary mycelium 6, from MAI26; 3” is primary mycelium 3 from 
MA129.
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4.3.2.2 H. coralloides

Non-sibling pairings of H. coralloides MAI27 against both MAI26 and MAI29 were 

100% compatible, but compatibility was only 16% between MAI26 and MAI29 

primary mycelia (Table 4.3a); compatibility within each fruit body was close to 25%. 

Fruit bodies were observed on almost all compatible pairings (99%). No definite fruit 

bodies were seen on incompatible pairings, although there were two plates with 

possible fruit body primordia.

H. coralloides MAI27 sibling pairings had 31% compatibility, and fell into 

four clear groups (Table 4.3b). Fruit body formation was not noted on these pairings. 

Following the inter fruit body pairing results, it was decided to combine the MAI26 

and MAI29 matrices, as it seemed likely that the fruit bodies originated from the 

same mycelium and all primary mycelia would be siblings. Overall, pairings had 23% 

success. Although there were anomalies, possible groups according to mating alleles 

could be seen (Table 4.3c). H. coralloides MAI29 sibling pairings had fruit bodies on 

79% of compatible pairings and possible fruit bodies on four incompatible pairings. 

Fruit body primordia were noted on only one sibling pairing for MAI26 (7 vs. 14), 

which was incompatible.

4.3.2.3 H. erinaceus

H. erinaceus non-sibling pairings had 87.5% compatibility. Of the five incompatible 

pairings three were between OckA and OckB (Table 4.4a), which were from the same 

tree.

Sibling pairings of H. erinaceus provided easily interpreted matrices in which 

primary mycelia could easily be arranged according to mating allele (Tables 4.4 b and 

c). As with other matrices, a few compatible pairings fell outside the compatibility 

groups (one in Ock B and two in SWla). Conversely, some incompatible pairings fell 

within these groups. A few pairings in each matrix (five in OckB and two in SWla) 

formed transient secondary mycelia, i.e. the subcultured compatible pairing did not 

have clamp connections.

4.4 Discussion

There is strong evidence that the sampled H. coralloides fruit bodies occurring on the 

same tree were produced by a single mycelium. This evidence comes from the 

somatic compatibility experiments, in which pairings of isolates from fruit bodies
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Table 4.4a-c Hericium erinaceus mating matrices

FB
SSI
no.

Eye 2 

6 12

Ock A  

3 4

OckB 

27 32

SWla 

18 22

SW2 

2 5
SW2 5 

2
+ + 
+ +

+ + 
+ +

+ + 
+ +

+
+

\
\

SWla 22 
18

+ + 
+ +

+ + 
+ +

+ + 
+ +

+ \ 
\

Ock B 32 
27

+ + 
+ +

+ + \ 
\

OckA 4 
3

+ + 
+ +

\
\

Eye 2 12 
6

\
\ 4.4a H. erinaceus non sibling

SSI
no. 4 15 16 29 32 34 38 18 9 28 19 25 27 6 13 20 31 33 36 39
39 + + + + + \
36 + + + + \
33 + + + + + + + \
31 + + + + + + + \
20 + + + + + + + \
13 + + + + + + + \
6 - + + + + + + \
27 + + + \
25 + \
19 + + + \
28 \
9 \
18 \
38 \
34 \
32 \
29 \
16 \
15 \
4 \ 4.4b H. erinaceus OckB sibling pairings

SSI
no. 2 10 22 25 26 4 12 3 18 24 1 5 7 8 28 27
28 + + + + + \
27 + + + + + \
8 + + + + + \
7 + + + \
5 + \
1 + + + \
24 + + \
18 + \
3 + \
12 \
4 \
26 \
25 \
22
10 \

\
4.4c H. erinaceus SWla sibling pairings

2 \

Legend: as Table 4.2a-c; boxes indicate primary mycelia with the same mating alleles.
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located approximately 80 cm apart on the same tree were indistinguishable from 

control pairings. There is additional evidence from the pooled matrix of MAI 26 and 

MAI29 primary mycelia pairings, which shows that the two fruit bodies shared the 

same four mating alleles, implying that they were either very closely related or 

produced by a single mycelium.

H. erinaceus may also produce multiple fruit bodies from a single mycelium, 

but somatic compatibility experiments were inconclusive. Furthermore, although it 

appears fruit bodies on the same free may possess the same mating alleles, any 

conclusions must remain tentative because of the extremely small number of primary 

mycelia available from such fruit bodies.

In the UK H. coralloides and H. erinaceus have bifactorial mating systems, 

which confirms findings in North America and continental Europe (Hallenberg, 1983; 

Ginns, 1985). The mating system of H. cirrhatum remains unknown, although it 

appears to be outbreeding as sexual compatibility between non-sibling primary 

mycelia approached 100%, but was much less than 100% between siblings.

The compatibility of pairings between primary mycelia from H. coralloides 

MAI26/129 and MAI27, which fruited on ash and beech respectively, shows there 

are no barriers to gene flow between individuals fruiting on different trees. This is 

important, as such barriers have been found in other wood decay basidiomycetes such 

as Laetiporus sulphureus, for which there is a sexual compatibility barrier between 

individuals fruiting on broadleaved and coniferous hosts (Rogers et al., 1999). 

Although H. coralloides is usually found fruiting on beech in the UK (Boddy and 

Wald, 2003), it is useful for conservation of this species to know that individuals on 

ash, the second most common host, are not sexually separated from the main 

population.

The low percentage of compatibility between MAI 26 and MAI 29 primary 

mycelia shows that the parental fruit bodies had identical mating alleles. This 

indicates that they were either very closely related, or had both been produced by a 

single mycelium. Unfortunately fruit body tissue isolates were not made, so somatic 

compatibility of the two fruit bodies could not be tested. Knowing whether the fruit 

bodies were produced by one or two mycelia would be of great interest, as at present 

it is not known how much wood a typical individual occupies, or whether different 

individuals ever occupy the same substrate. Somatic compatibility experiments imply 

that AB1 and AB2, which were approximately 80 cm apart, were produced by the
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same mycelium. This shows it is possible for a single mycelium of H. coralloides to 

produce more than one fruit body on a tree, but this does not preclude the possibility 

of different genotypes coexisting within a substrate. Decay columns of 

basidiomycetes can extend over several metres (Boddy, 2001), therefore fruit bodies 

could occur 80 cm apart on the same mycelium. It is also therefore feasible that H  

erinaceus OckA, OckB and OckC, which occurred over a total distance of 2.5 m on a 

single trunk, were produced by a single mycelium.

Contrary to previous reports (Hallenberg, 1983), no indications of 

homothallism were seen in H. coralloides. The claim of homothallism was based 

purely on possession of clamp connections by single spore isolates, assumed to be 

self-mated; however, as unmated (primary) mycelia of several genera have clamps, 

e.g. Stereum, Phanerochaete and Coniophora (Ainsworth, 1986) the claim is 

illfounded. Unfortunately, due to low percentage germination it was necessary to 

include germinating spores which may have had contact with other spores. Therefore 

it was possible that clamps on cultures from germinating spores were due to mating 

having occurred.

H. erinaceus illustrated a textbook bifactorial mating system, with close to 

100% sexual compatibility in non-sibling pairings, and approximately 25% 

compatibility in sibling pairings. Primary mycelia in both sibling matrices were 

readily grouped according to the four combinations of mating alleles, although as with 

H. coralloides, there were some compatible pairings that occurred outside the 

compatibility groups. As with H  coralloides, there are hints that fruit bodies on the 

same tree may be produced by the same mycelium, as shown by the incompatibility 

between primary mycelia from fruit bodies OckA and OckB. This is backed up by the 

lack of signs of somatic incompatibility between OckA, OckB and OckC.

H. cirrhatum matrix patterns were unclear, although the relatively low 

proportion of compatible sibling versus non-sibling pairings implies the existence of 

an outbreeding bias. The lack of clarity in matrices may be due to inconsistent 

appearance of clamp connections, which made scoring difficult, rather than H. 

cirrhatum possessing an unusual mating system. When presence or absence of clamp 

connections cannot be used to distinguish between primary and secondary mycelium, 

as in the present case, there are alternative possibilities. For example, in some species 

clear morphological differences exist between primary and secondary mycelia, which 

can be used to investigate mating systems (e.g. Rogers et al., 1999; Boddy and

53



Ch 4: Mating systems and somatic compatibility of Hericium spp.

Rayner, 1982). Molecular techniques can also distinguish between primary 

(homokaryotic) and secondary (heterokaryotic) mycelia by investigating 

heterozygosity at known polymorphic loci (e.g. de Fine Licht et al., 2005). A more 

detailed study of primary and secondary mycelia of these species, perhaps using a 

nuclear stain such as DAPI (4,6-diamidino-2-phenyl-indole dihydrochloride), would 

be the next logical step towards understanding the mating system of H. cirrhatum.

Confirmation of the bifactorial mating systems of UK H. coralloides and H. 

erinaceus and the discovery that H. coralloides on ash and beech can interbreed are 

significant advances in understanding potential gene flow within these species. It is 

interesting that a single mycelium of H. coralloides, and possibly also H. erinaceus, 

can produce more than one fruit body, as this indicates that the mycelium can occupy 

a large volume of wood. Obviously these findings apply only to the trees studied, and 

do not in any way exclude the possibility that two genotypes could occupy the same 

substrate. The mating system of H. cirrhatum remains unknown, and alternative 

strategies outlined above may be required to investigate it further.
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Chapter 5: Establishment of Hericium coralloides in living beech 

(Fagus sylvatica) trees

5.1 Introduction

Fungal communities can develop and decomposition occur within branches still 

attached to living trees and in standing trunks (Boddy, 2001). There are several ways 

in which fungi gain access including via exposed heartwood resulting from branch 

breakage; through wounds that allow the bark to be breached; active pathogenesis; 

and latent propagules (Boddy, 2001). Pre- 1980s it was thought that wood decay fungi 

were unable to colonise branches and trunks unless they had been pre-conditioned by 

growth of bacteria and non-decay fungi. This has since been proved incorrect, and that 

wood decay fungi can establish naturally and by artificial inoculation in previously 

undamaged wood (e.g. Boddy and Rayner, 1984; Hendry, 1993; Boddy, 2001).

H. coralloides is usually found fruiting on large, fallen beech {Fagus 

sylvatica) logs in old forests (Boddy and Wald, 2003), and can be artificially 

established within freshly felled beech logs, but not in logs that have been felled for 

some time, presumably due to primary colonising fungi that have already gained a 

foothold (Boddy et al., 2004). Its ease of establishment in appropriate conditions is 

confirmed by the fact that it is readily cultivated for commercial purposes (Stamets, 

2000). Hericium spp. have been found, using PCR amplification, as latent propagules 

in beech, ash {Fraxinus excelsior), hazel {Corylus avellana), maple (Acer campestris) 

and oak (Quercus robur) (D. Parfitt, unpublished). It is possible that the propagules 

were H  coralloides, but the PCR primers used for this work detect H. erinaceus and 

H  alpestre as well as H. coralloides (Parfitt et al., 2005).

Although H. coralloides may have been found as latent propagules, and can 

readily establish in freshly felled logs, whether it can establish in living trees remains 

unknown. To investigate this, beech trees were artificially inoculated with H. 

coralloides (Boddy et al., 2004), and subsequently harvested to see whether it had 

successfully established, and to analyse colonisation patterns. A combination of 

traditional isolation onto agar and PCR analysis, using the above mentioned primers, 

were used. This tested the hypothesis that H. coralloides could establish in living 

trees.
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5.2 Materials and methods

5.2.1 Inoculation o f Hericium coralloides into beech trees

In November 2002 oak dowels (8.5 x 25 mm; Anne Miller, Aberdeen) colonised with

H. coralloides (obtained from fruit body tissue isolation) were inoculated (by P.M. 

Wald) into 15 standing living beech trees and 3 ash trees, (ca. 10 cm d.b.h.) at Coed 

Gorllwyn, Bangor (Nat. Grid Ref. SH589422). Inoculations were made at 0.5,1.0,1.5 

and 2.0 m above ground, with two inocula at each height 180° from each other, and 

90° from those above and below. Staggering inocula in this way minimises the 

possibility of decay columns interfering with each other (Hendry, 1993). An electric 

hand drill, the bit sterilised with methylated spirits prior to each use, was used to 

create holes (9 mm diam and 30 mm deep) into which the colonised dowels were 

hammered. Electrical tape was wrapped around the trunk to cover inoculation points. 

Six of the 15 trees were controls, inoculated as above but with uncolonised, sterile 

dowels.

5.2.2 Sampling

Four beech trees were harvested: one experimental tree on 2nd March 2007 (T4) and a 

further two experimental and one control tree on 12th August 2007 (T8/T12 and T15, 

respectively), the rest being left for future sampling. After felling, the lower 2.5 m of 

each tree was taken for sampling. Trunks were cut into four sections, each one 

containing a set of inoculation points, then sliced into quarters lengthwise, attempting 

to cut through at least one inoculation point. Each quarter of each section was 

assigned a letter arbitrarily, with A-D closest to the ground and Q-T the highest 

section. After photographing each section, samples were taken from putative decay 

columns arising from inocula. The area for sampling was swabbed with 5% household 

bleach, the top 3-4 mm of wood removed with a sterile chisel and a small (ca. 3-5 

mm3) sample taken with a sterile chisel from the newly exposed surface. Samples 

were stored at -80 °C until required, and trunk sections were stored at -20 °C.

Duplicate samples were taken from T4 at each sampling point, one of which was 

stored at -80 °C for molecular analysis as above, the other being placed on 2% malt 

agar (MA: 20 g Lab M agar no. 1; 15 g Lab M malt extract I"1 distilled water; Lab M, 

Bury, Lancashire, UK) and incubated for up to three weeks to check for presence of 

H coralloides. Any mycelium growing from the chip was checked for clamp 

connections, indicative of a basidiomycete. Sampling was focussed around dowels
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(three or four per experimental tree and two for control) that could be clearly seen in 

cross section -  not all were visible in this way due to the difficulty of accurately 

manipulating large logs through a band saw. Based on PCR results more samples 

were taken closer or further from the inoculum to determine the extent of the 

mycelium within wood, with a total of up to six samples taken from around each 

inoculum. The exception to this was T4, for which all samples were taken at once, and 

from which a greater number of samples were taken (Table 5.1).

5.2.3 DNA extraction from wood

DNA extraction followed the protocol developed by Cenis (1992). Samples were 

wrapped in foil and immersed in liquid nitrogen for 5 min then transferred to a sterile, 

cooled mortar in which they were ground to a find powder using liquid nitrogen with 

the addition of 600 pi extraction buffer (200 mM Tris, 250 mM NaCl, 25 mM EDTA, 

0.5% SDS, adjusted to pH 8.5 using HC1; Raeder and Broda, 1985). The powder was 

transferred to a sterile 1.5 ml microcentrifuge tube and the mortar rinsed with 600 pi 

0.4% w/v dried skimmed milk which was then transferred to the same microcentrifuge 

tube. Samples were vortexed for 15 sec, shaken for 30 min and centrifuged (17000 g 

for 5 min) in an Eppendorf Minispin microcentrifuge (Eppendorf, Cambridge, UK). 

Supernatant was transferred to a fresh 1.5 ml microcentrifuge tube and the 

centrifuging was repeated. After being transferred to a fresh 1.5 ml microcentrifuge 

tube half the volume of supernatant of 3M sodium acetate (pH 8.5) was added and the 

samples were mixed by inversion and placed at -20 °C for 10 min. Following another 

5 min centrifuge (17000 g) the supernatant was transferred to a 14 ml Falcon tube and 

the DNA purified using spin columns (QIAquick PCR purification kit, Qiagen, 

Crawley, UK) according to the manufacturer’s instructions, with the following 

exception. Extracted DNA was stored at -20 °C for short term and -80 °C for longer 

term storage. Due to the large volume of supernatant, it was necessary to run the 

sample through the spin columns in successive batches of 750 pi each.

5.2.4 DNA extraction from mycelium

DNA was extracted from mycelial cultures of H  coralloides and H  cirrhatum grown 

on agar, to be used as positive and negative controls for PCR amplification of DNA 

extracted from wood (see below).
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Table 5.1 Presence of Hericium coralloides according to PCR products 
extracted DNA and wood chip isolation onto agar

PUV2/
PUV4C

Tree

HER2F/HER2R c

of

Hericium present?

temple Section* Distance from 
inoculum (cm)b 1:10 neat 1:10 1:100 Molecular Agar

1 N 19 + + + Y X
2 N 8 + N N
3 N 0.5 + + + + - Y N
4 N 4 + N X
5d O 12 X
6 O 5 + + - + Y N
7 0 1 + + + Y C
8 o 7 + N N
9d I 3 C
10d I 6 N
lld I 15 N
12d I 25 X
13d J 27 N
14 J 11 + - - N N
15 J 3 + N X
16 H 1 + N X
17d H 0.5 N
18 H 8 + (+ )- (Y) N
19 H 25 + (+)- (Y) N
20 G 17 + (+ )- (+ )- (Y) N
21 E 27 + N X
22 A 1 + N N
23 B 1 + N N
24 B 4 + N N
25 C 6 + N X
26 D 12 + N N
1 C 1.0 + N
2 C 8.5 + N
3 C 5.0 + N
4 L 1.5 + N
5 L 2.5 + N
6 L 6.0 + N
7 M 7.0 + N
8 M 5.0 + N
9 C 8.5 + N
10 C 1.5 + N
11 L 1.5 + N
12 L 9.5 + N
13 M 22.0 + N
14 M 1.5 + N
15e M 15.5
1 K 6.5 + N
2 K 14.5 + N
3 K 2.0 + N
4 M 0.5 + N
5 Q 60.0 + N
6 K 1.5 + N
7 K 1.5 + N

T4

T8

T12
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Table 5.1 cont’d

HER2F/HER2Rc HericUtm Present?

imple Section* Distance from 
inoculum (cm)b 1:10 .  .n  * Molecular Agar neat 1:10 1:100 6

8 M 0.5 + ..................................  N
9 M 3.5 + ..................................  N
10 M 5.0 + ..................................  N
11 M 10.5 + ..................................  N
1 B 1.0 + ................................... N
2 H 0.5 + ................................... N
3 H 6.0 + ................................... N
4 H 3.0 + ................................... N
5 H 3.5 + ................................... N
6 H 7.0 + ................................... N

T15

+ band present; - band absent; (+) weak band present; N, Hericium not present; Y, 
Hericium present; X, sample on agar contaminated; C, clamp connections present, but 
became contaminated so could not be further investigated; “lowest section is A-D, 
highest Q-T; b estimated from photographs for T4; c primers, details intext; donly 
sample for growth on agar taken;6 sample discarded due to chemical contamination.

Mycelium was scraped from approximately 20 cm2 agar and transferred to a sterile

1.5 ml microcentrifuge tube. Extraction buffer (as above) and 0.4% (w/v) dried 

skimmed milk (300 pi each) were added. Samples were vortexed for 15 sec and 

centrifuged (17000 g for 5 min). After being transferred to a fresh 1.5 ml 

microcentrifuge tube, half the volume of supernatant of 3M sodium acetate (pH 8.5) 

was added and the samples were mixed by inversion and placed at -20 °C for 10 min. 

Samples were centrifuged, the supernatant transferred to a fresh 1.5 ml 

microcentrifuge tube and an equal volume of isopropanol added. After standing at 

room temperature for 5 min the samples were again centrifuged after which the 

supernatant was discarded and the pellet remaining in the microcentrifuge tube was 

washed in 500 pi 70% v/v ethanol. A final microcentrifugation (17000 g for 5 min) 

was followed by removal of the ethanol and the pellet being air dried before being re

suspended in 50 pi sterile distilled water. Storage of extracted DNA was as above.

5.2.5 PCR amplification

For each sample duplicate PCRs were performed with template DNA undiluted and at 

one in ten and one in 100 concentrations, i.e. a total of six PCRs for each sample. In 

addition, all samples were tested with the general plant primers PUV2 

(TTCCATGCTAATGTATTCAGAG) 5'-3' and PUV4
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(ATGGTGGTGACGGGTGAC) 5-3’, which would detect beech ribosomal RNA, to 

confirm that DNA extraction had been successful.

Each PCR reaction contained 2.5 pi lOx buffer (Qiagen), 0.5 pi dNTPs (10 

mM), 1 pi of each primer (100 mM), 0.125 pi (0.625 U) HotStar Taq (as supplied by 

Qiagen) andl pi template DNA, made up to 25 pi with sterile distilled water. The 

Techne Flexigene thermal cycler (Barloworld Scientific, Staffordshire, UK) was used 

according to the manufacturer’s instructions with the following programme: 96 °C for 

15 min; 35 cycles of 94 °C for 1 min, 55 °C for 1 min, 72 °C for 1 min; 72 °C for 10 

min. Primers used were HER2F (ATCTCATCCATCTTACACC) 5'-3' and HER2R 

(CTCATAACAAGAGGATTGA) 5-3' (Parfitt et a l, 2005), which distinguish 

Hericium coralloides, H. erinaceus and H. alpestre from the closely related H. 

cirrhatum and other wood decay asco- and basidiomycetes. Programme for use with 

primers PUV2/PUV4 was as for HER2F/HER2R. Included in each HER2F/HER2R 

PCR run were six controls, as follows. A positive control with H. coralloides DNA, to 

prove the PCR and primers were working; a reaction with H  cirrhatum DNA and 

HER2F/HER2R primers to show that the primers were acting specifically, i.e. a 

negative control; a second reaction with H  cirrhatum DNA, but with the species 

specific combination of primers HER2F and HER3R (CATATGACAGAGGATCGA) 

5-3' (Parfitt et al., 2005) to prove that this DNA was of PCR quality; a reaction with 

HER2F/HER3R primers and H. coralloides DNA to confirm that these primers were 

picking up only H. cirrhatum DNA; a reaction with water rather than template DNA 

for each set of primers to prove that there was no contamination of primers or other 

PCR reagents. In each PCR it was therefore checked that the primers were working, 

but specifically enough not to detect DNA of a closely related species (H. cirrhatum), 

and that the DNA of that species was detectable if present.

PCR products were electrophoresed on a 1.5% agarose gel (1.5% agarose w/v 

in IX TAE buffer (50X TAE: 242 g Tris base; 57.1 ml glacial acetic acid; 100 ml 0.5 

M EDTA pH 8)) containing ethidium bromide (10 fig ml) and the bands visualised 

under UV light with the Gene Genius Bio Imaging System (Syngene, Cambridge,

UK). To allow comparison of fragment size, a 1 kb ladder (500 ng; Invitrogen,

Paisley, UK) was also run on each gel.

If results of duplicate PCRs were not consistent a third PCR was performed, 

with two exceptions. First, if the two results comprised a very weak band (see Fig 5.4) 

and a negative, which could be caused by a low DNA concentration on the border of
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detection. Second, if there was already a (duplicated) positive result at another 

concentration for that sample.

5.3 Results
Excepting small areas of dark staining surrounding the dowel, decay columns were 

not apparent in T8, 12 or 15 (e.g. Fig 5.1; Appendix Ila-d). Columns were visible in 

T4 when it was first cut into quarters, but these faded within hours, and were not very 

clear in photographs (Fig 5.2). It was also noted that oalli had formed over dowels in 

T8 and T15 (Fig 5.3).

Figure 5.1 Cut section of tree T8 inoculated with Hericium coralloides showing 
inoculation and sampling locations
Length of each section is approximately 50 cm; inoculation height 1.5 m; X, sample 
location; arrow, dowel inoculum.

Of the 26 samples on agar from T4, eight were contaminated with bacteria or 

Penicillium type fungi, two yielded mycelium with clamp connections, i.e. 

basidiomycetes, and the remaining 16 had either no growth or growth of a non- 

basidiomycete (Table 5.1). The two clamped cultures became contaminated before it 

was possible to conduct further tests to ascertain if they were H. coralloides. One the 

corresponding samples of these clamped cultures was positive by PCR analysis; the 

other had not been sampled for molecular testing.

All samples were positive with PUV2/PUV4 primers, which showed that 

DNA had been extracted from the samples and was of sufficient quality for PCR 

amplification. Only four samples, all from around a single dowel in T4 yielded 

definite positive results with HER2F/HER2R primers (samples 1, 3, 6, 7; Fig 5.2).
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Figure 5.2 Cut section of tree T4 inoculated with Hericium coralloides showing 
inoculation and sampling locations
Length of each section is approximately 50 cm; inoculation height 2.0 m; X, sample 
location; arrow, dowel inoculum; solid red circle indicates a presence of Hericium 
(band present on gel).

Figure 5.3 Callus formed in living beech over Hericium coralloides-colonised 
dowel inoculum
Bracket indicates dowel; arrowheads indicate increased growth over inoculum

The four positive samples were between 0.5 and 19 cm from the inoculum 

(Table 5.1; Fig 5.2); not all samples in this putative decay column were positive (Fig 

5.2; Table 5.1), samples 2, 4 5 and 8 from the same area being negative by PCR 

analysis. A further three samples from T4 had weak positive results (18, 19 and 20). 

These were from sections G and H and were 8-17 cm from the inoculation point; 

however samples 16 and 17 which were closer to the inoculation point were negative. 

A result was classed as a strong positive when the band was clearly visible on the gel
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in both repeats; a weak positive was an extremely faint band in one replicate of the 

PCR and no band in the repeat (Fig 5.4).

Reproducibility of the PCRs was 96%, although when weak bands that were 

not reproduced in the second PCR were excluded, this figure is increased to 99%.

Figure 5.4 Example gel picture of PCR products
All samples are from T4, using primers HER2F/HER2R. LI, lkb ladder; L2, sample 1 
undiluted; L3, sample 1 diluted lin 100; L4, sample 2 diluted 1 in 10; L5, sample 2 
diluted 1 in 100; L6, sample 3 diluted 1 in 10; L7, sample 3 diluted 1 in 100; L8, 
sample 4 undiluted; L9, sample 4 diluted 1 in 10; L I0, sample 6 undiluted; LI 1, 
sample 6 diluted 1 in 100. SP, strong positive; WP, weak positive; N, negative.

5.4 Discussion

Hericium coralloides successfully established in one (T4) of the three experimental 

trees sampled, with four positive results in a single decay column, proving the initial 

hypothesis, that H. coralloides could be established in living beech, to be correct. This 

result is consistent with existing research which shows that many, but no all, primary 

wood decay fungi can be artificially established in functional sapwood. For example, 

four canker-producing fungi (Biscogniauxia nummularia, Hypoxylon fragiforme, 

Diatrype stigma and D. disciformis) were consistently successfully established in 

living beech trunks from colonised dowel inocula (Hendry, 1993), but only three out 

of six white-rotting basidiomycetes inoculated into attached living oak branches 

established successfully (Exidia glandulosa, Phellinus ferreus and Schizopora 

paradoxa failed to establish; Peniophora quercina, Stereum gausapatum and 

Vuilleminia comedens successfully established; Boddy and Rayner, 1984).

The furthest positive result (19 cm) from an inoculation point shows that H. 

coralloides was well established. The length of this decay column is consistent with 

previous research: freshly felled beech trees artificially inoculated with H. coralloides 

developed decay columns to an average of 55 mm six months after inoculation 

(Boddy et al., 2004). If columns continued extending at this rate, a length of 19 cm
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would be much less than expected after five years, but in other inoculation 

experiments it was found that decay columns were well established at six months but 

subsequently failed to extend much further (Boddy and Rayner, 1984).

That establishment in living trees was poorer than had previously been found 

in felled wood (Boddy et al., 2004) is not surprising, as the former type of habitat is 

generally inimical to fungal growth. This has been attributed to high water content in 

the functional sapwood, leading to poor aeration, and a lack of readily available 

nutrients (Boddy and Rayner, 1983b).

The regions of increased tree growth over inocula, i.e. callus production, are a 

typical response to wounding in trees and is attributed to this rather than presence of 

the fungus, the response being seen in control as well as experimental trees.

Consistency of results in repeated PCRs gives confidence in this method, as 

does the clustering of positive results around a single inoculation point. The high 

number of negative results, particularly those from the centre of the detected decay 

column, are deemed reliable due to the robust repetition of PCRs over a range of 

concentrations, and it having been proven by PCRs with general plant primers 

(PUV2/PUV4) that DNA of PCR quality had been successfully extracted. Running 

the PCRs with different concentrations of template DNA allowed for possible PCR 

inhibition due to poor DNA quality, which can be a problem when extracting directly 

from wood (D. Parfitt, pers. comm.). The negative results from within the detected 

decay column may be due to the amount of DNA present being below the limits of 

detection. Future work could investigate using nested PCR, which can detect much 

lower levels of DNA than traditional PCR (e.g. Lochman et al., 2004; Parfitt et al., in

prep.)-
Molecular methods are becoming more popular than traditional techniques, as 

they are often able to detect fungi that are unculturable or present at extremely low 

levels, and because results can be obtained more quickly (Guglielmo et al., 2007). For 

example, H. cirrhatum (Parfitt et al., 2005), Biscogniauxia nummularia (Mazzaglia et 

al., 2001) and Phlebia brevispora (Suhara et al., 2005) were all detected using PCR 

based methods where traditional isolation failed to find them. It was for this reason 

that traditional techniques were only used on one of the four trees. Unfortunately, 

since cultures with clamp connections were not confirmed as H. coralloides, it is 

difficult to draw any conclusions as to the extent that results from the two techniques
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were in agreement. Perhaps this circumstance in itself shows the relative ease of 

molecular vs. traditional methods.

Throughout the above, it has been assumed that the inoculated Hericium 

coralloides was being detected, despite there being no proof of this: primers used 

were not species specific, and H. coralloides was not re-isolated from wood, which 

would have allowed somatic compatibility tests to confirm that what had been 

inoculated was still present. However, given the rarity of H. coralloides and other 

members of the genus, it seems unlikely that one of these would be coincidentally 

present in these trees. It is assumed that the more plausible scenario, that positive PCR 

results were finding the inoculated H. coralloides, is what occurred.

In summary, it has been shown that H. coralloides can be successfully 

artificially established in living trees, although not consistently; it has previously been 

discovered that it readily colonises freshly felled wood (Boddy et al., 2004) and that 

it, or other members of the genus Hericium, are latently present in a variety of tree 

species including beech (Parfitt et al., in prep.). Although establishment in living trees 

occurs less readily than in dead wood, if H. coralloides does manage to colonise 

living trees it is capable of significant growth; it is still unknown how H. coralloides 

establishes in its natural habitat.
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Chapter 6: Population structure, spore germination and extension 

rates of Piptoporus quercinus

6.1 Introduction

Piptoporus quercinus is rare and protected under UK law primarily due to the rarity of 

its habitat, which is the exposed heartwood of veteran oak trees or fallen branches 

located in old growth wood pasture and parkland (Roberts, 2002). Little is known of 

the species beyond when and where it fruits (Chapter 1; Fig 6.1), and its combative 

ability and extension rates on agar under various conditions: on agar, P. quercinus is a 

poor combatant against other wood decay fungi, and grows slowly (1.9-3.15 mm d 1 

depending on isolate) even under optimum conditions of 25 °C and pH 3.75 agar 

(Wald et al., 2004a). The heartwood on which it fruits is inimical to growth of most 

fungi, having a low pH due to presence of tannins (Rayner and Boddy, 1988), which 

may explain how, despite being a poor combatant and slow grower, it can survive for 

long enough within a substrate to assimilate sufficient nutrients to produce sexual fruit 

bodies. P. quercinus is also known to produce chlamydospores (Stalpers, 1978), 

asexually produced thick-walled resting spores that may enable the mycelium to 

survive periods of environmental stress (Rayner and Boddy, 1988).

Once fruit bodies are produced, the dispersal, germination and establishment 

of spores may present a severe bottleneck in the lifecycle of a species with such 

specific habitat requirements, appropriate substrata being few and far between. In this 

situation inbreeding is particularly likely: most spores land within a few metres of 

basidiomycete fruit bodies (Kallio, 1970; Stenlid, 1994; Norden and Larsson, 2000), 

thus making it likely that sibling spores will land near to each other. Given the 

specificity of habitats for fruiting, germination may also be limited to certain 

substrata, and if fruit bodies are scarce and far apart, there is an even greater 

likelihood that if spores do germinate they will encounter siblings rather than non

siblings. If P. quercinus has a unifactorial mating system (see Chapter 4), as does the 

only other species in the genus (P. betulinus\ Cant, 1980), there is a 50% chance that 

sibling primary mycelia will be sexually compatible, allowing twice as much 

inbreeding as with a bifactorial system. Given these factors it is highly possible that 

there may be inbreeding in the UK population of P. quercinus.
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WGP

Figure 6.1 Distribution of Piptoporus quercinus in the UK: sampled locatio ns and 
pre- / post-1970 records
Data from Roberts (2002), expanded to include subsequent findings of P. quercinus. 
Light blue dots, recorded pre-1970; dark blue dot, recorded post-1970; red dot, used 
in current study (Table 6.1). Location codes: CA, Calke Abbey; SW, Sherwood 
Forest; MP, Moccas Park; WW, Wentwood; EF, Epping Forest; WGP, Windsor Great 
Park; KL, Kingston Lacey.

P. quercinus populations are generally small (Roberts, 2002) and widely 

spread (Fig 6 .1), occurring in on veteran oaks in old growth parkland or wood pasture, 

rare and fragmented habitats in the UK. Habitat fragmentation has been cited as a 

possible factor contributing to possible inbreeding in two rare boreal wood decay 

basidiomycetes (Edman et al., 2004a). Whether inbreeding has occurred to any 

noticeable extent within UK populations of P. quercinus, due to reasons outlined
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above, is unknown. It is also unknown whether fruit bodies occurring simultaneously 

on the same substratum are produced by a single mycelium, or whether more than one 

individual can coexist within a substratum. If the latter is the case, the population 

would be larger than is currently known, and habitats capable of supporting more 

individuals than if the former were true.

This chapter investigates possible factors contributing to rarity of P. quercinus 

in the UK, and whether inbreeding is detectable within UK populations. The former 

was achieved by studying spore germination, mating system, and whether fruit bodies 

produced simultaneously originate from a single mycelium. The latter was 

investigated by comparison of extension rates on agar of fruit body isolates from 

around the country, to assess variation between populations. This study tested three 

hypotheses: firstly, P. quercinus has a unifactorial mating system, as does the only 

other species in the genus, P. betulinus (Cant, 1980); secondly, that inbreeding is 

detectable in the UK population; thirdly, that fruit bodies on the same tree originate 

from the same mycelium.

6.2 Materials and methods

6.2.1 Cultures

Primary mycelia were obtained by single spore isolation. Spores were collected from 

fruit bodies found in the field by one of the following two methods. The lid of a 45 

mm diam. Petri dish was suspended not more than 1 cm below the hymenium (by 

pinning directly to the fruit body, or arranging the dish by other means), which was 

left in position overnight. Alternatively, a small section of hymenium was cut from 

the fruit body and affixed to the lid of a 9 cm Petri dish with petroleum jelly. A glass 

slide was positioned directly under the hymenium and left overnight. Spores were 

washed from the Petri dish lid or slide and suspended in sterile distilled water, then 

spread on 2% malt agar (MA; 20g f 1 Lab M malt extract; 15 g f 1 Lab M agar no. 1), 

adjusted to pH 4 as follows. Potassium hydroxide (KOH; 0.1 M) was added dropwise 

to 250 ml phosphoric acid (H3PO4 ; 0.4 M) while continuously stirring until desired 

pH was reached (measured using a Gelplas flat tip combination pH electrode; BDH, 

Poole and a Delta 340 pH meter; Mettler-Toledo Ltd., Leicester, UK). As pH 

increased between this stage and the final poured plate, a calibration curve was 

constructed to enable the correct pH to be achieved. Thus at this stage the solution 

was adjusted to pH 3.3, reaching pH 4 on poured plates. This solution was then made
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up to 500 ml, autoclaved, and mixed with 500 ml double strength MA (as for 2% MA, 

but made up to only 500 ml with distilled water). After pouring, pH was measured 

using a flat tip electrode. Plates with spores were incubated at 20 °C in darkness and 

checked regularly until germination was seen. Single, well spaced germinating spores 

were transferred to fresh agar plates as described in section 4.2.1.

Secondary mycelia (Table 6.1) were obtained by excising small pieces of 

tissue (avoiding the hymenium) from within fruit bodies collected from the field, 

which were surface sterilised by flaming before being placed onto 2% MA.

6.2.2 Spore germination

Spores of P. quercinus were collected and spread as described above, but at a higher 

density of 5-40 spores per field of view at x 100 magnification. The effects of a 

variety of media, treatments and spore age on time to germination and the percentage 

germination were investigated. All spores were spread on pH 4 2% MA which was 

used as a comparison with the other treatments. Media were as follows: 2% MA 

adjusted to pH 3 and 4; 2% MA, pH unadjusted (ca. pH 5.6); pH 4 water agar (15 g I' 1 

agar); oak extract 2% MA: 15 g I*1 oak heartwood soaked overnight in distilled water, 

the filtrate of which was used in place of distilled water in normal 2% MA; charcoal 

agar: pH 4 2% MA with 0.28 g f 1 activated charcoal. Effect of a presence of a 

secondary mycelium was investigated by taping a plate well colonised with secondary 

mycelium above a plate of spores, allowing any volatiles produced to reach the 

spores. Plates were incubated at 20 °C in darkness and checked regularly until 

germination commenced. Some spores were incubated at 10 °C. Percent germination 

was obtained by scoring approximately 500 spores from three replicate plates as 

germinated or ungerminated at x400 magnification. Counting was continued every 2-3 

d until colonies grown from previously germinated spores were large enough to 

inhibit accurate counting. Germination below 1 % was not quantified, but recorded as 

< 1%.

6.2.3 Mating system

Initially primary mycelia were only available from five fruit bodies, all from Windsor 

Great Park (Table 6.1). Up to five siblings from each fruit body were selected and 

paired against each other in all combinations, thus investigating sibling and non-
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Table 6.1 Piptoporus quercinus isolates used in experiments
Fruit body Collector Source Nat Grid Ref Date

collected
Spore
germ'll

Mating
system

Somatic
compatibility

Extens
rate

A2 AMA AC TQ17736055 09.07.07 Y Y
AL2 AL NF SU37310436 02.08.05 Y
BRla [04] AMA WGP SU977730 14.10.04 Y
BRlb [04] AMA WGP SU977730 14.10.04 Y
BR4[06] AMA WGP SU97927291 11.07.06 Y
BR6[06] AMA WGP SU97907288 11.07.06 Y
BR7[05] AMA WGP SU97977299 12.07.05 Y
C5[06] AMA WGP SU94657292 08.07.06 Y
C8[06] AMA WGP SU94117338 08.07.06 Y
CA1 MEC CA SK363224 23.08.07 Y Y Y
CA2 MEC CA SK363224 23.08.07 Y
CBS 858.72 Germany 1975 Y Y
El [05] AMA WGP TQ397944 26.07.05 Y
E2[05] AMA EF TQ41079551 04.08.05 Y
E3 [05] AMA EF TQ41409352 04.08.05 Y
E ll [07] AMA EF TQ41459313 19.07.07 Y Y
EW1 AMA AC TQ17576034 23.07.06 Y
HSH2 [05] AMA WGP SU93577416 13.07.05 Y Y
HSH5 [05] AMA WGP SU936741 13.07.05 Y Y Y Y
HSH10 AMA WGP SU93557398 28.06.06 Y Y
HSH12a [05] AMA WGP SU935741 13.07.05 Y Y Y
HSH12b [05] AMA WGP SU935741 13.07.05 Y Y Y Y
KC1627* PL BP SK526101 09.01 Y Y
KL1 MEC KL ST96670375 12.07.07 Y Y
KL2 MEC KL ST96670375 12.07.07 Y
KL3 MEC KL ST96860394 12.07.07 Y
MCI7 [04] AMA MP S03442 14.10.04 Y Y
POWP1 [05] AMA WGP SU966737 12.07.05 Y Y
POWP2[06] AMA WGP SU96617363 11.07.06 Y
POWP3[06] AMA WGP SU96577361 11.07.06 Y
POWP3a [05] AMA WGP SU965736 12.07.05 Y Y Y
POWP3b [05] AMA WGP SU965736 12.07.05 Y Y Y Y
POWP5[05] AMA WGP SU96517344 08.08.05 Y
POWP6[06] AMA WGP SU96557366 Y
PS1 PS KL ST9670403796 05.07.05 Y
PS2 PS KL ST9667603756 05.07.05 Y
PS3 PS KL ST96620375 21.07.06 Y
PS4 PS KL ST96670375 14.07.06 Y Y
PS5 PS KL ST96670375 14.07.06 Y
SF15[06] AMA WGP SU94267214 01.08.06 Y
SF6[06] AMA WGP SU94057113 01.08.06 Y
SGla[06] AMA WGP SU95137181 08.07.06 Y
SGlb[06] AMA WGP SU95137181 08.0.06 Y
SMalii[06] AMA WGP SU95747397 13.07.06 Y
SMa2[05] AMA WGP SU95697408 07.08.05 Y
SSI SS NF SU3739904499 26.07.06 Y
SW1 HW SWF SK46213680 26.08.07 Y
WW1 MEC WW ST40379368 25.07.06 Y Y
WW2 MEC WW ST40379368 06.08.07 Y Y
AMA, Martyn Ainsworth; AL, Alan Lucas; HW, Howard Williams; MEC, Martha 
Crockatt; PL, Peter Long; PS, Peter Samson; SS, Stuart Skeates; for contact details: Prof 
L Boddy (boddyl@cf.ac.uk); AC, Ashtead Common; BP, Bradgate Park; CA, Calke 
Abbey; EF, Epping Forest; KL, Kingston Lacey; MP, Moccas Park; SWF, Sherwood 
Forest; NF, New Forest; WGP, Windsor Great Park; WW, Wentwood Forest. *in Kew 
Culture Collection as K(M) 88407.

mailto:boddyl@cf.ac.uk
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sibling sexual compatibility at the same time. If more than ten primary mycelia were 

available from a single fruit body a separate mating matrix was performed by pairing 

them in all combinations. Controls were self pairings. Plugs ( 6  mm diam) from the 

growing margin of the colony were inoculated 1.5 cm apart on 9 cm non-vented Petri 

dishes (Greiner Bio-One, Austria) of 2% MA adjusted to pH 4 and incubated at 20 °C 

in darkness until colonies had met. Cultures were observed microscopically (x400 

magnification) for presence or absence of clamp connections, indicating successful or 

unsuccessful mating, respectively. Successful matings were subcultured from the 

interaction zone and far sides of each colony and re-examined for clamp connections 

following outgrowth from inoculum plugs to check that a stable secondary mycelia 

had formed. As further primary mycelia from other fruit bodies were obtained, these 

were paired against two tester strains of each mating type selected at random from the 

initial matrices (HSH12b primary mycelium 5 / HSH5 primary mycelium 1 and 

HSH12b primary mycelium 6  / POWP1 primary mycelium 12).

6.2.4 Extension rate

Ten secondary mycelia (Table 6.1) were selected to compare extension rate over a 

range of temperatures. Plugs ( 6  mm diam) from the actively growing margin of the 

colony were inoculated centrally onto non-vented 9 cm Petri dishes of 20 ml 2% MA 

adjusted to pH 4. Five replicate plates of each isolate were incubated in darkness at 

10, 20 and 30 °C. Colony diameter was measured in two dimensions perpendicular to 

each other at intervals of 3-14 d as appropriate according to extension rate, using 

Vernier dial callipers accurate to 0.1 mm (Fisher Scientific, UK), ensuring that the 

exponential growth phase was captured.

6.2.5 Somatic compatibility

Secondary mycelia obtained by tissue isolation from fruit bodies occurring 

simultaneously on a substratum were paired against each other and six isolates from 

as geographically diverse locations as possible (Table 6.1). Further pairings were 

conducted when isolates from new localities were available. Plugs ( 6  mm diam) from 

the growing margin of the colony were placed 3 cm apart on non-vented 9 cm Petri 

dishes of 2% MA adjusted to pH 4, with four replicates of each pairing; controls were 

self-pairings. Plates were incubated at 20 °C in darkness and observed regularly over 

at least 1 0  weeks for signs of rejection or antagonism, such as pigment production,
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growth inhibition or invasive fronts. Once they had ceased changing, each interaction 

was given a score of strong somatic incompatibility, weak somatic incompatibility or 

no somatic incompatibility.

6.2.6 Statistical analyses

Mycelial extension rates (mm d'1) were determined by linear regression analysis and 

mean extension rates of the 11 isolates compared at each temperature with ANOVA, 

using the Minitab statistical package. Homogeneity of variance and normal 

distribution of residuals were tested with Bartlett’s and Anderson-Darling tests, 

respectively. If the variance was homogenous and the residuals normally distributed, 

ANOVA was performed, followed by Tukey’s pairwise comparison of means if 

significant differences were found. If data could not be transformed to have 

homogenous variance and or normally distributed residuals, then a Kruskal-Wallis test 

the non parametric equivalent of ANOVA, followed by Mann-Whitney tests to 

compare pairs of medians, were performed.

6.3 Results

6.3.1 Spore germination

Of the 41 spore prints received over the three years, eight were entirely contaminated 

and six failed to germinate on any media or under any treatment (Fig 6.2; Appendix 

III). Percentage of spores germinating was always below 1% under all treatments, 

with the exception of PS4, which reached 1% germination on pH 4 2% MA. Average 

time for spores to germinate on each medium was consistently ca. 40 d with the 

exception of water agar, on which the single spore print that germinated (PS4) took 

105 d (Fig 6.3).

The most successful medium was pH 4 2% MA, on which 23 of 29 spore 

prints germinated (Fig 6.2). In no instance did spores that failed to germinate on this 

medium germinate on any other media or under any other treatments. Spores also 

germinated on agar with unaltered pH and pH 3 agar, although in one case spores 

spread on all three media only germinated at pH 4.

In the presence of a secondary mycelium or with the addition of charcoal some 

spores from some fruit bodies failed to germinate, despite having done so on other 

media (SSI and HSH10[06], respectively). Six of the seven prints spread on pH 4

72



Ch 6 Population structure of Piptoporus quercinus

30 H

Figure 6.2 Number of Piptoporus quercinus spore prints that germinated under 
different conditions
Black bars, spore prints that germinated; grey bars, spore prints that did not 
germinate, “spore print” refers to spores collected from a single fruit body; not all 
spore prints from a single fruit body were spread on all media. Unless stated 
otherwise, all spores incubated at 20 °C. Water, pH 4 water agar; pH 3/4/5.6, 2% MA 
adjusted to pH 3, 4 and unadjusted (respectively); + oak, oak extract 2% MA; + sec, 
with secondary mycelium present; + char, 2% MA with activated charcoal; 10 °C, 
spores incubated at 10 °C; for full details see text.

water agar failed to germinate: one also failed to germinate under any other conditions 

(SF6), but five germinated on pH 4 2% MA (BR6[06], PS5, SMalii, SF15[06], 

POWP6[06]); the single print that germinated took 105 d (PS4). Spores never 

germinated on oak extract agar or when incubated at 10 °C, although all spores spread 

on the former medium failed to germinate under any conditions (PS1, PS2); those that 

failed to germinate at 10 °C had germinated under other conditions (HSH10[06], 

BR6[06], SMalii).

Days taken to germinate increased with age of spore print (Table 6.2), but not 

predictably. For example, spores from POWP1[05] and HSH2[05] took 49 and 19 d 

(respectively) to germinate when fresh, but 57 d when re-spread at 13 weeks. The 

single print spread at 24 weeks (HSH10[06J) failed to germinate. The exception to the 

positive correlation between spore age and days to germinate was PS4, which 

germinated at 35 d when fresh and 26 d when re-spread 30 weeks later.
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Figure 6.3 Germination time (d) for spore prints of Piptoporus quercinus
Whiskers = data range; boxes = 1st quartile, median, 4th quartile; •  = median; details 
of media / treatments: see legend for Fig 6.2. Categories without boxes had only one 
spore print that germinated on that media, therefore the line represents the single 
result.

Table 6.2 Germination of Piptoporus quercinus spores after storage for 0-30 
weeks

Isolate
Spore age

(wk) PQWP1[05] HSH2f051 POWP6fQ61 HSH10[061 PS4
0 49 19 61 29 35
13. 57 57
20 88 
24
30 26

Figures in table 6.2 are days taken to reach germination following spreading at given 
number of weeks; -, no germination.

6.3.2 Mating system

Sexual compatibility or incompatibility could not be determined by examining 

cultures without the aid of a microscope to check for clamp connections, i.e. there
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were no macroscopic signs of rejection, such as barrages or pigment production, 

between incompatible primary mycelia. Unstable secondary mycelia were never 

found, i.e. initial observations of clamp connections were always positively confirmed 

when rechecked following subculturing.

Almost all pairings between Windsor Great Park (WGP) primary mycelia had 

50% compatibility, between both siblings and non siblings (Table 6.3). The exception 

to this was HSH10 [05] primary mycelia (Table 6.4), which had 17% compatibility 

between the eight sibling primary mycelia, secondary mycelia being formed only 

between sibling 27 and other siblings. Compatibility with tester strains was not 

completely as expected, sibling 27 being incompatible with all four tester strains and 

sibling 29 being compatible with only one of the four strains.

Table 6.3 Sexual compatibility of Piptoporus quercinus sibling and non sibling 
primary mycelia from Windsor Great Park

1 1 2 2 24 20 10 11 5 ~| 1 6 5 6 7 8 5 12 2 18 20
20 + + + + + + + +
18 + + + + + + + +
2 + + + + + +
12 + + + + + + +
5 + + + + +
8 + + + + + + + +
7 + + + + + + + +
6 + + + + + + + +
5 + + + + + + + +
6 + + + + + + + +
1 + + + + + + + + \
5 + \
11 \
10 \
20 \
24 \
2 + \

\
\

Key:
Fruit body

Colour indicates from which fruit body primary mycelia originated; number is 
arbitrarily assigned number for that primary mycelium. +, stable secondary mycelium 
found; blank, no clamp connections found; \, control self pairing. Results have been 
re-arranged to group primary mycelia with the same mating alleles, indicated by black 
boxes.

Almost all pairings between primary mycelia from outside WGP and the WGP 

tester strains had 50% compatibility regardless of parental origin (Table 6.5). The 

exceptions were the two primary mycelia from WW2, which were compatible with

POWP3b |  POWP1 HSH2
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100% of non sibling primary mycelia, including the WGP tester strains. The WW2 

primary mycelia were also compatible with each other.

Table 6.4 Sexual compatibility of Piptoporus quercinus HSH10[05] primary 
mycelia against each other and tester strains

Tester strains

x>(N

H
SH

5 
1

VO
x>
CM

CM

£
x
cn
X

X
C/3
X

£o
Ph 8 9 10 17 19 22  2 4 25 27

29 - - + - +
27 - - - - + + + + + \
25 - - + + \
24 \
22 \
19 \
17 - - + + \
10 \
9 \
8 \

POWP1 12 \
HSH12b 6 \

HSH5 1 \
HSH12b 5 \

+, stable clamp connections found; no clamp connections found; \ , control self 
pairings; blanks, pairing not attempted.

6.3.3 Extension rate

There were significant differences in extension rate between the 11 isolates at all three 

temperatures (Fig 6.4) (10 °C: Kruskal-Wallis, p<0.001; 20 °C, one-way ANOVA, 

p<0.001; 30 °C, one-way ANOVA, p<0.001). However, pairwise comparisons of 

means (at 20 and 30 °C) and medians (10 °C) showed that these significant differences 

were never between HSH12a and HSH12b or between POWP3a and POWP3b at any 

temperature. The pairwise comparisons of mean extension rates also showed that 

there was a greater degree of statistically significant variation between pairs of growth 

rates at 20 than 30 °C: of the 50 comparisons, 23 were significantly different to each 

other at 20 °C, compared to just 13 at 30 °C (Appendix IV). At 10 °C only the 

medians of HSH12a/b and POWP3a/b were compared, as the greater the number of 

comparisons made the greater the possibility of type I error, i.e. false rejection of the 

null hypothesis (Bowker and Randerson, 2006). Extension rates of isolates relative to 

each other were not consistent across the three temperatures. For example, KC1627 

was the fastest at 20 and 30 °C, but fifth fastest at 10 °C.
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Table 6.5 Sexual compatibility of Piptoporus quercinus non-WGP primary 
mycelia against sibling mycelia and tester strains

Tester strains
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Colour indicates from which fruit body primary mycelia originated; number is 
arbitrarily assigned number for that primary mycelium. +, stable secondary mycelium 
found; no clamp connections found; \ , control self pairings; blanks, pairing not 
attempted. Results have been re-arranged so that primary mycelia with the same 
mating allele are grouped together, indicated by black boxes. Note that WW2 primary 
mycelia are compatible with all four tester strains as well as almost all other primary 
mycelia, whereas primary mycelia from other fruit bodies are generally compatible 
with only two of the four tester strains.

6.3.4 Somatic compatibility

Initial pairings between isolates from the same substrate and the six other isolates 

showed no signs of non-contact inhibition and met in the centre of the plate 

approximately three weeks after inoculation. No indications of somatic 

incompatibility developed over the following seven weeks, experimental and control
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plates being indistinguishable from each other beyond slight variations in mycelial 

morphology, plates were thus discarded.
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Figure 6.4 Extension rates of Piptoporus quercinus at 10,20 and 30 °C on 2% 
malt agar adjusted to pH 4
Whiskers = data range; boxes = 1st quartile, median, 4th quartile; •  = median.

Pairings between isolates WW1 and CBS 858.72 were as above until ten 

weeks, i.e. ca. seven weeks after colonies met, at which point a strong band of 

pigment accompanied by a barrage developed at the interaction zone in all 

experimental pairings with WW1 (strong somatic incompatibility reaction; Fig 6.5a); 

there was no pigment or barrage in WW1 control pairings or any pairings with CBS 

858.72. The experiment was extended, and at 14 weeks a very narrow band of denser 

mycelium formed at the interaction zone on experimental pairings between CBS 

858.72 and all other isolates except E3 (weak somatic incompatibility reaction; Fig 

6.5d). Although the weak reaction became slightly more pronounced by 26 weeks, it 

did not approach the level of pigmentation seen in reactions with WW1.

15 weeks after pairing, i.e. ca. 1 2  weeks after having met, there were no signs 

of somatic incompatibility between CA1 and isolates against it was paired, or between 

isolates originating from the same substrate, the latter experiments having been 

repeated in light of delayed somatic incompatibility reactions of CBS 858.72. Strong 

somatic incompatibility, as described above, was seen on WW1 vs CA1 at ten weeks.
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Table 6 . 6  Outcomes of somatic compatibility experiments between isolates of 
Piptoporus quercinus
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Figure 6.5 Examples of somatic 
incompatibility reactions between 
isolates of Piptoporus quercinus at 
14 and 26 weeks
a, strong somatic incompatibility (14 
weeks); b, no somatic 
incompatibility reaction (14 weeks);
c, control, no somatic 
incompatibility reaction (26 weeks);
d, weak somatic incompatibility (26 
weeks). Arrows indicate interaction 
zone where indications of somatic 
incompatibility or the lack of it can 
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interaction zone between KC1627 
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6.4 Discussion

Piptoporus quercinus has a unifactorial mating system, but only four mating alleles in 

the UK. The population is not clonal, as there are significant differences in extension 

rate between isolates, and somatic incompatibility was seen between 12 of the 13 FBT 

isolates tested. Lack of significant differences in extension rate between pairs of FBT 

isolates from the same tree implies that they are genetically identical, i.e. originate 

from single mycelia, but at present, somatic compatibility experiments which would 

support this are inconclusive.

The first hypothesis, that P. quercinus has a unifactorial mating system, is 

therefore accepted. This is the second most common mating system in 

homobasidiomycetes, being found in approximately 25% of species (Esser, 1967, 

based on analysis of mating systems of 335 species, cited in Hibbett and Donoghue, 

2001), including the only other species in the genus, P. betulinus (Cant, 1980; Adams, 

1982). As a brown rot species with a unifactorial mating system, P. quercinus fits the 

trend noted that these two features frequently occur together (Hibbett and Donoghue, 

2001).

The second hypothesis, that inbreeding would be detectable in the UK 

population of P. quercinus, is accepted with reservations. The extremely low number 

of mating alleles (four) discovered implies inbreeding, but a degree of variability 

exists, as evidenced by the significant differences in extension rate at all three 

temperatures, and the somatic incompatibility between isolates from around the UK. It 

is interesting that the isolate from Germany had similar somatic incompatibility 

reactions against all UK isolates, whereas the Wentwood FBT isolate behaved 

differently, with a much more marked somatic incompatibility reaction. The low 

number of mating alleles is very unusual, more typical numbers being 81-83 for 

Ganoderma boninense from neighbouring populations in Papua New Guinea (Pilotti 

et al., 2003), 33 in sampled UK populations of P. betulinus (Cant, 1980), and ca. 1000 

for the entire species of Heterobasidion annosum (Ullrich and Raper, 1974). The 

distribution of the four mating alleles is intriguing: two alleles were ubiquitous in 

twelve fruit bodies sampled from seven locations, a further two being found in the 

single fruit body from Wentwood forest. In summary, there are a number of small, 

isolated populations with identical alleles at the single locus examined, but that are 

not clonal, and another single individual that has different alleles. Generally, small, 

isolated populations will be homogenous, with genetic variation detectable at a
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regional scale, while large, continuous populations have greater variation within, but 

less between populations (Stenlid and Gustafsson, 2001). Clearly P. quercinus does 

not easily fit either of these scenarios.

The third hypothesis, that fruit bodies on the same tree are produced by the 

same mycelium cannot be accepted or rejected based on current results. Although 

pairs of FBT isolates never had significantly different extension rates, there were 

other isolates for which this was also the case. There were no signs of somatic 

incompatibility between isolates from the same substratum by 15 weeks, but neither 

were there clear somatic incompatibility reactions between CA1 and other isolates. At 

present, insufficient pairings have been made to decide whether weak, strong, or no 

somatic incompatibility reaction is “normal”, hence conclusions cannot be drawn as to 

whether fruit bodies on the same tree are produced by a single mycelium. Further 

experiments pairing more isolates for longer periods of time are urgently required.

There is a trend for early colonisers to have few individuals within a substrate, 

compared to more combative secondary colonisers (L. Boddy, pers. comm.). For 

example, in general only one individual of the primary colonisers P. betulinus 

(Adams, 1982), Stereum gausapatum (Boddy and Rayner, 1982), or Heterobasidion 

annosum (Redfem et al., 2001) was isolated from a substratum, whereas secondary 

colonisers such as Trametes versicolor and Stereum hirsutum often exist in 

populations with many individuals in a single substrate (Rayner and Todd, 1978). 

Evidence implies that P. quercinus is one of the former, a stress tolerant early 

coloniser (Wald et al., 2004a), so would be expected to have few genetically different 

individuals within a single substrate. Although the present findings do not definitely 

support this, neither do they disprove it. It should be noted that this is based purely on 

fruit body occurrence, and true mycelial distribution has to date not been investigated.

As mentioned previously, the population structure of P. quercinus as shown 

here is difficult to account for. There is a consistent lack of diversity in mating alleles 

between the sampled populations (excluding Wentwood), and although such 

homogeneity usually results from gene flow between populations, this is not always 

the case (Stenlid and Gustafsson, 2001). This study has investigated population 

diversity using indirect measures of gene flow, i.e. a picture of historical, rather than 

present gene flow has been created. At present nothing is known of direct gene flow 

in the species, which could be measured by spore dispersal (Stenlid and Gustafsson,
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2001). A combination of direct and indirect measures would allow a clearer picture of 

historical and potential gene flow between populations.

It is highly likely that some P. quercinus spores would be dispersed over the 

distances between the populations sampled (maximum is ca. 220 km, between Calke 

Abbey and Kingston Lacey); although few spores travel further than 100 m from the 

fruit body (Kallio, 1970; Stenlid, 1994; Norden and Larsson, 2000), they can travel up 

to 1000 km (Hallenberg and Kiiffer, 2001). However, spore dispersal must be 

followed by germination and mating in order to be translated into gene flow. In 

contrast to P. betulinus, spores of which germinate within 72 hr (Cant, 1980), P. 

quercinus has very poor germination, the range of conditions assayed never increasing 

percentage germination nor decreasing time taken to germination. That spores from 

four out of five fruit bodies germinated following storage implies that even if 

conditions are not appropriate immediately upon arrival at a new substrate, 

germination could occur at a later date. It is unclear whether the extremely low 

percentage of spores germinating is due to low spore viability, or to favourable 

conditions not having been found. Condition and age of the fruit body when spores 

were sampled could also be a factor (Schmidt and French, 1983), which it was not 

possible to investigate in the present study. Interestingly, fruit bodies of the rare 

polypore Fomitopsis rosea from areas with a long history of forest fragmentation 

generally released sterile spores, whereas those from large old-growth forests, which 

also had higher levels of heterozygosity, were viable (Hogberg, 1998, cited in 

Hogberg and Stenlid, 1999).

The isolate from Wentwood is of particular interest, both FBT isolate and 

primary mycelia exhibiting considerable differences to all other fruit bodies sampled. 

Its mating alleles were unique to this location, and the FBT isolate had a markedly 

different somatic incompatibility reaction to all other FBT isolates, including the 

single non-UK isolate, which was widely separated from all other samples both 

geographically (being from Germany) and temporally (isolated in 1975). The Curley 

Oak, host to Wentwood’s P. quercinus population, is one of the few remaining 

deciduous trees from what was once an ancient forest, that was converted to conifer 

plantation between late 19th and mid 20th century. This is an unfortunate location for 

what could be an extremely important reservoir of genetic diversity, as not only will 

long distance spore dispersal be hampered by the densely surrounding conifers, but 

there are virtually no suitable substrates in the immediate neighbourhood. It is hoped
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that the diversity encapsulated within the Wentwood P. quercinus is not in a genetic 

blind alley.

Unfortunately, this study is based on a very small number of samples, 

particularly of primary mycelia. Due to the species’ rarity, there has been a dearth of 

material, and obtaining primary mycelia from these few samples has been additionally 

hampered by lack of, or extremely low, spore germination, making finding well

spaced germinating spores an extremely labour intensive activity. Germlings 

transferred to fresh media often failed to grow, further diminishing sample sizes. It is 

hoped that studies into spore viability will show whether it is worth searching for a 

better medium for spore germination, and that molecular studies using micro satellite 

markers will be able to continue the investigations into population structure and 

variability using the existing culture collection that will hopefully continue its 

expansion. Tantalising facts have been discovered about the UK population of P. 

quercinus, and this is very much the beginning of a study rather than the end.
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Chapter 7: Synthesis

This is one of the few studies to focus on rare wood decay basidiomycetes, and has 

substantially increased knowledge of the ecology and lifecycle of Hericium 

cirrhatum, H. coralloides, H. erinaceus and Piptoporus quercinus. Discussed below 

are the extent to which the studies have met objectives outlined in Chapter 1, whether 

any of the aspects investigated can account for the species’ rarity, implications for 

conservation strategies and future research priorities.

Basidiospore dispersal of Hericium spp. (Objective 1 )

Spore dispersal of Hericium spp. was typical of other wood decay basidiomycetes 

previously investigated, spore deposition decreasing logarithmically at distances up to 

100 m from the fruit body (Kallio, 1970; Stenlid, 1994; Norden and Larsson, 2000; 

Chapter 2). Evidence of spore deposition was not found at distances greater than 100 

m, but given the relatively short time for which traps were exposed, this is perhaps 

unsurprising. If spore dispersal over longer distances is also typical of other wood 

decay basidiomycetes, then dispersal ability considered in isolation can be discarded 

as a cause for their rarity.

Assuming Hericium spp. to have typical spore dispersal patterns over long as 

well as short distances, they are likely to face the challenges outlined in Chapter 1 for 

this stage of the lifecycle. The first challenge is the haphazard nature of wind 

dispersal, meaning that a spore is unable to regulate its landing, which can be a 

particular problem if a spore has specific requirements for germination. A second 

challenge relates to short distance dispersal: as most spores fall within a small 

distance of the fruit body, inbreeding is likely to be an issue for rare species with 

small, widely spread populations of fruit bodies, in which there will be few non

sibling spores in the neighbourhood of a fruit body. Inbreeding was not directly 

investigated for Hericium spp., but unlike P. quercinus, no repetition of mating alleles 

was found for any species except possibly in H. coralloides and H. erinaceus fruit 

bodies from the same tree. Over greater distances such as tens or hundreds of miles, it 

is probable that only an extremely small fraction of spores will reach these distances 

and germinate successfully. However, even an extremely low amount of spore 

dispersal between populations may be sufficient to maintain gene flow between
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populations and prevent inbreeding (Stenlid and Gustafsson, 2001), as just one 

immigrant per generation is sufficient to counteract the effects of inbreeding (Slatkin, 

1987).

Spore dispersal over longer distances should be investigated to ascertain the 

potential for gene flow between populations, which in the UK are generally separated 

by distances in the region of hundreds of miles. Such experiments have previously 

used wood discs colonised with primary mycelium placed at distances 500 m to 100 

km from known spore sources for up to two weeks (Edman and Gustafsson, 2003; 

Edman et al., 2004a). Traps must be exposed for longer periods of time when 

investigating long distance dispersal, as only a very few spores are expected to travel 

distances greater than 1 km (Stenlid, 1994). Wood discs are preferred to malt agar as 

the former is a much less rich medium, therefore it has the advantage of being less 

prone to contamination and can be left in situ for the longer periods of time 

appropriate for studies into long distance spore dispersal (Edman and Gustafsson, 

2003).

Until such experiments have been conducted full conclusions cannot be 

drawn, but it is expected from results on short distance spore dispersal that this stage 

of the lifecycle does not cause their rarity. However, as a bottleneck in the lifecycle of 

any basidiomycete, it may exacerbate their rarity, fewer fruit bodies implying fewer 

spores in the air, thus fewer opportunities for colonisation of new habitats or gene 

flow between existing populations. Similar conclusions have been reached for the 

Phlebia centrifuga and Fomitopsis rosea, rare wood decay basidiomycetes found in 

old growth boreal forest, for which low spore deposition and low germinability are 

cited as factors that may be a threat to the long-term persistence of the species in 

isolated populations (Edman et al., 2004a).

Spore germination of Hericium spp. and P. quercinus ("Objective 2)

The consistently low spore germination (less than 1%) of Hericium spp. (Chapter 2) 

and P. quercinus (Chapter 6 ) is not without precedent for basidiomycetes (see refs in 

Merrill, 1970). However, as percentage germination of spores from one fruit body of 

H. erinaceus increased five fold in the presence of a yeast contaminant, it may be that 

viability is higher than germination, and the appropriate medium or trigger has not yet 

been found. This hypothesis is supported by the often high percentages of spore trap 

wells with clamp connections for all three Hericium spp., implying that spore
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germination was higher in these traps than under the laboratory treatments. There are 

no clues as to the spore viability of P. quercinus, as no treatments had any effect on 

percentage germination and spore trapping was not attempted. An investigation into 

the viability of all four species is essential before conclusions can be drawn as to 

whether spore germination is a contributing factor in their rarity.

Inbreeding as a result of habitat fragmentation has been cited as a possible 

reason for decreased germinability of spores of F. rosea and Ph. centrifuga in 

fragmented compared to continuous forests (Edman et al., 2004a). It is possible that 

such factors could account for low germinability of both P. quercinus and Hericium 

spp. spores, but in the absence of populations in continuous habitat as a comparison, 

this cannot be proven.

That spores of H. coralloides, H. erinaceus and P. quercinus maintained 

germinability over timescales of up to 24 and 30 weeks, respectively, indicates that if 

an unsuitable habitat was reached spores could remain dormant, germinating 

subsequently if conditions improved. Chlamydospores produced by P. quercinus 

consistently had germination above 1 0 %, and germinated readily following exposure 

to high and low temperatures and desiccation for up to 14 d, although percentage 

germination decreased and time taken to germinate increased compared to controls 

(A. Campbell, unpublished). The substrata colonised by P. quercinus are often subject 

to such extremes of temperature and desiccation (Roberts, 2002), under which 

mycelia of P. quercinus would be unable to survive (Wald et al., 2004a). Production 

of chlamydospores, able to germinate following such extremes, may therefore enable 

P. quercinus to survive adverse conditions and re-colonise the substratum when 

microclimatic conditions become favourable. Schizopora paradoxa also produces 

chlamydospores (Rayner and Boddy, 1988) and is stress-tolerant but is a poor 

combatant (Boddy and Rayner, 1983c), chlamydospores perhaps enabling it to survive 

adverse conditions (L. Boddy, pers. comm.), as is hypothesised for P. quercinus. 

Chlamydospores may play a substantial role in the lifecycle of P. quercinus, 

enhancing its stress-tolerant characteristics and enabling it to inhabit substrata in 

which other fungi are unable to survive.
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Relative significance of primary mycelium in the lifecycle of H. coralloides 

(Objective 3)

Primary mycelia had extension rates at least equal to those of secondary mycelia, and 

were more successful combatants against a range of wood decay species (Chapter 3). 

This agrees with the theory that primary mycelia may play a particularly significant 

role in the lifecycle of rare species compared to common species, as it is likely that 

encountering a sexually compatible mate will take longer for the former. Relative 

fitness of primary mycelium is discarded as a contributing factor to the rarity of H. 

coralloides. A primary mycelium able to successfully survive is important to a rare 

species, as the longer it survives, the greater the chance it has of encountering a mate, 

thus becoming a secondary mycelium with associated possibility of sexual 

reproduction.

This study is one of the first to examine relative fitness of primary and 

secondary mycelia in an ecological context, therefore it is difficult to draw 

comparisons, or extrapolate to say whether primary mycelia of the other Hericium 

spp. and P. quercinus might behave in a similar fashion. As one of the first such 

studies, it is hoped that the ecology of primary mycelia, particularly for rare species, 

will in the future receive greater attention.

Although it has been shown that primary mycelia of H. coralloides have the 

potential to survive as well as secondary mycelia, the persistence and relative 

abundance of the two under natural conditions is unknown. A survey of substrata 

appropriate as Hericium spp. habitats using species specific primers could potentially 

yield this information, if it could be ascertained from extracted DNA whether the 

individual was a primary or secondary mycelium. This can be done by investigating 

the degree of heterozygosity at known polymorphic loci (e.g. de Fine Licht et al., 

2005). At present, this survey would only be feasible for H. cirrhatum, as primers that 

distinguish between H. coralloides and H. erinaceus are yet to be developed. A 

survey as described combined with studies on long distance spore dispersal of these 

species (see above) is essential to an understanding of potential population sizes and 

locations of these species, but can only be achieved if species specific primers for H  

coralloides and H. erinaceus are developed.
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Mating systems of Hericium spp. and P. quercinus (Objective 4)

H. coralloides and H. erinaceus had bifactorial mating systems (Chapter 4), 

confirming previous research in North America (Hallenberg, 1983; Ginns, 1985). The 

mating system of H. cirrhatum could not be elucidated, due to extreme variation in 

frequency of clamp connections of highly variable appearance. Incidental discoveries 

associated with discovery of mating system are perhaps of greater significance to their 

conservation, particularly the fact that H. coralloides from ash and beech can 

interbreed. If the populations were inter-sterile this would present difficult challenges 

for conservationists; as it is, conservation efforts do not have to be divided between 

two groups, but can be focussed on the species as a whole.

The mating system of P. quercinus is unifactorial (Chapter 6 ), as is that of P. 

betulinus, the only other species in the genus (Cant, 1980; Adams, 1981). Unexpected 

discoveries again proved extremely interesting, there being only four mating alleles in 

the seven P. quercinus populations sampled, two of which were unique to a single 

fruit body (WW1). The Wentwood isolate also had an unusual reaction in somatic 

compatibility experiments: in pairings with all other FBT isolates the somatic 

incompatibility reaction occurred sooner and was more marked than in pairings of any 

other FBT isolates. Possessing unique mating alleles and having such a different 

somatic compatibility reaction, the isolate from Wentwood is clearly very different to 

the rest of the population. Although an unusual population structure clearly exists in 

the UK, given the extremely small number of samples it would be unwise to draw 

conclusions as to the entire UK population at present. Further research is required in 

order to understand the population structure of P. quercinus, and whether the unusual 

distribution and low number of mating alleles so far encountered is representative of 

the diversity or lack of it over the entire genome. This could be achieved by a survey 

of genetic diversity within UK populations using microsatellites, which have been 

successfully used with fungi for similar applications (e.g. Bergemann et al., 2006). A 

detailed knowledge of population structure within the UK would enable development 

of informed strategies as to which habitats and locations should be protected to best 

conserve the species.
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Are fruit bodies of Hericium spp. or P. quercinus occurring simultaneously on the 

same tree are produced bv a single mycelium? (Objective 5)

From somatic compatibility experiments which highlighted differences and 

similarities in colony morphology, it appears that H. coralloides can produce multiple 

fruit bodies on the same tree (Chapter 4). This was supported by fruit bodies on the 

same tree sharing mating alleles. H. erinaceus somatic compatibility experiments 

were inconclusive, but fruit bodies on the same tree may share mating alleles; it has 

not been disproved that H. erinaceus can produce more than one fruit body from a 

single mycelium. These experiments were not relevant to H. cirrhatum, as fruit bodies 

always occurred singly.

P. quercinus may also produce more than one fruit body on the same 

substratum (Chapter 6), but evidence for this is sparse, and further investigations are 

required in order to accept or reject the hypothesis that a single mycelium can produce 

multiple fruit bodies. That extension rates of fruit body isolates from the same 

substrate were never significantly different provides some proof that they were 

produced by a single mycelium, but unfortunately somatic compatibility experiments 

were inconclusive. Portions of the latter experiments urgently require repeating: initial 

pairings that were discarded after ten weeks must be repeated and the experiment 

allowed to run for the full 26 weeks to ascertain whether a delayed somatic 

incompatibility reaction occurs, as was noted in later experiments.

Although fruit bodies of these species on the same tree are likely to be 

produced by a single mycelium, simultaneous occupancy of a substratum by 

conspecific individuals cannot be ruled out for Hericium spp. or P. quercinus. This is 

an important area of study for at least two reasons: firstly, if more than one 

conspecific individual can exist in a substratum then the potential number of 

individuals a habitat can support is increased; and secondly, the relationship between 

size of vegetative mycelium and fruiting is unknown. However, ascertaining the 

volume of wood occupied by an individual would be extremely difficult to investigate 

without using destructive methods, which would be undesirable with such rare 

species.

Objective 6: Investigate artificial establishment of H. coralloides in living beech 

H. coralloides was successfully established in one of four trees sampled, found up to 

19 cm from the inoculation point. This compares poorly with its establishment in
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freshly felled logs (Boddy et al., 2004), which is to be expected, the functional wood 

of living trees presenting a much harsher environment for fungal growth than non

functional wood (Boddy and Rayner, 1983b). Given the relatively poor establishment 

of H coralloides in living trees, if additional populations were created for 

conservation purposes it might be more effective to colonise dead wood than living 

trees.

Establishment is an important stage in the lifecycle, without which spore 

dispersal and germination cannot result in ultimate success. These experiments have 

shown that within living trees establishment is uncertain even from a relatively large 

inoculum. It seems doubtful whether a spore, which has much smaller nutritional 

reserves, would be able to colonise such a substratum. However, H. coralloides /  H. 

erinaceus has been found latently present in several host species using the primers 

described in Chapter 5 (Parfitt et al., in prep.), and it is possible that development 

from latent propagules when microclimatic conditions are appropriate is one of the 

ways in which these species become established in new substrata.

Research priorities

Objectives of the study have been met, and several possibilities excluded as reasons 

for these species rarity, but in the light of this knowledge new questions have arisen 

that must be answered. However, it is felt that continuing investigations should be 

addressed from a different angle. Rather than asking why these species are rare, the 

focus should be on whether they are actually rare, i.e. are mycelia as rare as fruit 

bodies, what causes fruit bodies initiation, and what genetic diversity exists within 

and between UK populations. Genetic diversity of P. quercinus is of particular 

interest given the unusual distribution of mating alleles in the population studied so 

far.

Mycelial distribution of these species remains entirely unknown, thus rarity of 

all four is based solely on fruit body occurrence. Although only individuals that 

produce fruit bodies will contribute to the effective population size, mycelial 

distribution represents the potential effective population (Burnett, 2003). This leads to 

the question of what causes fruiting, which again has not been investigated, except for 

H erinaceus in commercial settings, which can be induced to fruit by a sudden 

alteration in gaseous regime (Stamets, 2000). Such alterations in gaseous regime 

could occur in nature as a result of circumstances such as wounding or a branch
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falling, suddenly exposing the inner wood to the atmosphere, and may lead to fruit 

body production if a mycelium is present. There is some evidence from conservation 

efforts in Epping Forest that haloing oak trees, i.e. clearing undergrowth from around 

the base of trees, promotes fruiting of P. quercinus (Ainsworth, 2006). Removal of 

undergrowth decreases shading and allows rainfall and dewfall to reach the tree, 

leading to increased warmth and moisture, thought to be required for initiation of 

fruiting (Ainsworth, 2006).

The frequency of fruiting for the four species is intriguing, and presents 

challenges population surveyors. H. erinaceus, which commonly fruits regularly and 

over a long period of time on the same substrate (Marren and Dickson, 2000), will be 

easier to survey for in known habitats than H. cirrhatum, which generally appears 

only once on a substrate (Marren and Dickson, 2000; Ainsworth, 2008). How long H. 

cirrhatum inhabits a substrate before fruiting, what causes it to fruit, and what 

happens to the mycelium following fruiting are important questions. P. quercinus 

presents slightly different challenges: as it fruits earlier in the year than most species, 

and is of unspectacular appearance, it may be missed on fungal forays and thus under 

recorded.

Given that P. quercinus fruits on veteran oak trees, timescale is particularly 

interesting for the species. It is a suspected primary coloniser exhibiting stress-tolerant 

characteristics (Wald et al., 2004a), and could be growing, or surviving as 

chlamydospores, within oak for long periods of time, potentially up to hundreds of 

years. Pentilla et al. (2006) highlight the lag that may exist for long-lived species, 

such as wood decay basidiomycetes, between current actions and a noticeable effect 

on the populations. This has particular relevance to P. quercinus whose hosts (veteran 

oaks) may have a lifespan of several hundred years. Hence future studies on the 

population of P. quercinus should take historical distribution of woodland and oaks 

into account when interpreting findings.

This brings us to the important question of whether P. quercinus is found in 

oaks of all ages, but merely fruits on older trees. Species specific primers have been 

designed with this end in mind (D. Parfitt, unpublished), and work is currently 

underway to isolate DNA of sufficient quality for PCR from oak heartwood, a 

difficult task due to extractives present within the wood (H. Rogers, pers. comm.). 

When protocols have been optimised, a survey of known host trees, likely host trees 

within and outside known populations and younger oaks would reveal the mycelial
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distribution of P. quercinus geographically and in terms of host preference. The 

exposed heartwood of veteran oaks on which P. quercinus fruits could be easily 

sampled without damage to the tree; samples from younger trees could be obtained 

during routine management operations.

Similar investigations would also be appropriate for Hericium spp., although 

unless primers can be developed that distinguish between H. coralloides and H. 

erinaceus it would not be possible for these species.

Conservation strategies

If the research priorities outlined above were addressed, informed decisions could be 

made regarding where conservation efforts should be focussed in terms of what 

specific locations and habitat types to protect in order to benefit the UK population of 

each species as a whole.

An integrative approach to conservation is essential. Given present 

knowledge, the best conservation strategy may be simply to protect existing and 

potential habitats, and increase awareness and knowledge of the general public with 

regard to fungi as a whole, and these rare species in particular.

Protection of the habitats in which these species occur, wood pasture or 

parkland for P. quercinus, and old-growth woodland for Hericium spp., which are in 

themselves of conservation interest, would protect suitable substrata for Hericium spp. 

and P. quercinus. Existing and potential habitats for these species are under the 

ownership / management of a range of people and organisations, including charities 

such as the National Trust, private landowners, the Crown Estate, and local councils. 

In order to effectively protect suitable habitats, and thus the species that rely on them, 

it is essential to ensure that stakeholders have easy access to information regarding 

location and ecology of these species. In order to lift the profile of these species in 

particular and rare fungi in general, Hericium spp. (being more charismatic than P. 

quercinus) could become a flagship species for conservation of wood decay fungi, as 

have waxcaps (Hygrocybe spp.) for grassland fungi. A greater awareness of fungi 

would hopefully engender interest in, and a wish to preserve and protect, what at 

present is unfortunately associated by the general public with “darkness, decay and 

death” (Heilmann-Clausen and Vesterholt, 2008).

Specifically, land managers should be encouraged to: protect substrata on 

which these species are known to fruit; check known substrata during the fiuiting

92



Ch 7 Synthesis

season for presence or absence of fruit bodies; wherever practical leave CWD in situ 

in order to protect possible current and / or future habitats; create haloes (see above) 

around veteran oak trees, snags or fallen limbs to encourage fruiting of P. quercinus 

(Ainsworth, 2006). By encouraging landowners to take these relatively simple 

measures, it is hoped that populations of Hericium spp. and P. quercinus can at least 

be maintained at current sizes until further research can enable more targeted 

conservation.
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Appendix I

Appendix I: Hericium erinaceus fruit body references with 

corresponding substratum codes from Natural England report

In order to avoid future confusion a list has been compiled of the references of H. 

erinaceus fruit bodies used in the thesis, together with the code assigned to that 

substratum in the most recent survey of the species, conducted by Natural England 

(NE) in 2007 (Ainsworth, 2008). The NE report assigns a reference to a substratum 

rather than fruit body; National grid references sometimes vary slightly between those 

in the thesis and those in the NE report, due to slight variation in GPS systems or 

recorder estimates. That the thesis and report are referring to the same substratum / 

fruit body has been carefully confirmed through personal communication and 

comparison of site photographs. For details of collectors and collection dates see 

Tables 2.1 and 4.1.

Thesis FB ref Thesis NG Ref NE substratum ref NENG Ref
AL3
AL4
Eyel, AL5 A LT  
Eye2
OckA/B/C 
AL6, SW2a 
SWla

SU2534106669
SU3394305706
SU227154
SU22731493
SU246115
SU28921180
SU28801193

Wooson’s Hill 1 
Unknown5 
Eyeworth 1 
Eyeworth 2 
Bolderwood Walk 
Clay Hill 1 
Clay Hill 2

SU25340766

SU22521518 
SU22731492 
SU24541154 
SU28971181 
SU28901188

Thesis FB ref, reference assigned to fruit body in thesis; NG ref (thesis), national grid 
reference recorded during field work; NE tree reference, Natural England host 
substratum reference; NG Ref (NE), Natural England national grid reference of host 
substratum. afruit bodies produced in different years. bthis isolate cannot be definitely 
linked to a single NE code, as Denny Wood, the location in which this grid reference 
falls, has a large number of H. erinaceus substrates.
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Appendix 11a T4: dowel inocula and sample locations
End closer to the ground is on the left; A-D are the lowest sections, M-P the highest; length of each section is approximately 50 cm; X, sample 
location; arrow, dowel inoculum -  if dowel has been cut in half both portions are indicated; solid red circle indicates a presence of Hericium 
(strong band on gel in both PCRs with at least one dilution); dashed red circle indicates possible presence of Hericium (weak band on gel in one 
PCR, none in repeat or at any other dilution).
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Appendix II

Appendix Ob T8: dowel inocula and sample locations
Legend as Appendix Da.
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Appendix II

Appendix lie T12: dowel inocula and sample locations
Legend as Appendix Ha.
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Appendix II

Appendix lid T15: dowel inocula and sample locations
Legend as Appendix Ila.
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Appendix III

Appendix III: Days taken to reach germination for Piptoporus quercinus spores 
spread on different media

FB *1 # water pH 3 pH 4 pH 5.6 +oak + sec + char 10 °C

A2 18.07.07 44
AL2* 02.08.05 X

BR4[06]a 17.07.06 X X X

BR6[06] 17.07.06 - 44 44 44 -
BR7[05] 19.07.05 37
C5[06]a 12.07.06 X X X X X

C8[06] 04.09.06 X

CA1 29.08.07 23
CA2 29.08.07 28
E ll 25.07.07 34
E2[05] 11.08.05 42 -
EW1 * 04.08.06 X

HSH10[06] 05.07.06 X 29 - -
HSH12a[05] 19.07.05 49
HSH12b[05] 19.07.05 49
HSH2[05] 19.07.05 19
HSH5[05] 20.07.05 23
HW1 * 04.09.06 X

KL1 14.07.07 45
KL2 14.07.07 22
KL3 14.07.07 69
POWP1[05] 19.07.05 49
POWP2[06]b 17.07.06 -
POWP3[06] 17.07.06 - 45 -
POWP3a[05] 19.07.05
POWP3b[05] 19.07.05 41
POWP5[05]a 11.08.05 X

POWP6[06] 01.09.06 - - 61 -
P S lb 05.07.05 - - -
PS2b 05.07.05 - - -
PS3 b 21.07.06 - - -
PS4 21.07.06 105 35 -
PS5 21.07.06 - 54
SF15[061
SF6[06]

01.08.06 - 43 38
01.08.06 - -

SGla[06]* 12.07.06 X X X X X

SGlb[06]a 12.07.06 X X X X

44
X

SMalii[06] 26.07.06 - X 44 -
SMa2[05] 11.08.05 X

SSI 04.08.06 27 X 40
SW lb 04.09.07 -
WW2 07.08.07 37

average 105 36 40 42 41 44
SD 12 13 3 4
n germ 1 2 23 2 0 2 1 0
n ungerm 7 2 6 4 2 1 1 5

n contam 3 5 11 5 0 0 0 3
total 11 9 40 11 2 3 2 8
fastest 105 27 19 40 38 44
slowest 105 44 69 44 44 44

Figures in table are days to reach germination; x, all plates contaminated; -, spores 
failed to germinate; blanks, spores not spread on that media, entire spore print 
contaminate; bspores from fruit body never germinated;. SD, standard deviation; 
germ, germinated; ungerm, ungerminated. For details of fruit body origins see Table 
6.1. For details of media see Ch 6 Materials and methods.
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Appendix IV

Appendix IV: Significant differences in extension rate of Piptoporus quercinus 

isolates at 20 and 30 °C using Tukey-Kramer a posteriori pairwise comparison of 

means

20 °C
Isolate CBS El E3 HSH12a HSH12b HSH5 KC1627 MCI 7 POWP3a POWP3b WW1
WW1 X X \

POWP3b X X X X X \
POWP3a X X X \

MC17 X X \
KC1627 X X X X X X \
HSH5 X \

HSH12b X \
HSH12a X X \

E3 X \
El \

CBS \

30 °C
Isolate CBS El E3 HSH12a HSH12b HSH5 KC1627 MC17 POWP3a POWP3b WW1
WW1 X \

POWP3b X X X X \
POWP3a X X X X \

MC17 \
KC1627 X X X X \
HSH5 

HSH12b 
HSH12a 

E3 
El 

CBS
Statistical analyses were carried out using Minitab 13. X, significant difference 
between isolates at the given temperature at p=0.05; blank, no significant difference at 
p=0.05; \ , comparison against self not conducted.
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