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Summary of thesis

Firstly, we give a general introduction to gravitational waves, the instruments used to detect 
them, potentially interesting sources, and the basics of gravitational wave data analysis with 
respect to the compact binary search.

Following this, we look at a new class of approximants for inspiral waveforms. In these 
complete approximants, instead of truncating the binding energy and flux functions at the same 
post-Newtonian order, we instead keep terms such that the approximant corresponds in spirit to 
the dynamics of the system, with no missing terms in the acceleration. We compare the overlaps 
with an exact signal (in the adiabatic approximation) for a test mass orbiting a Schwarzchild 
black hole, for standard and complete approximants in the adiabatic approximation, and beyond 
the adiabatic approximation using Lagrangian models. A limited extension to the comparable 
mass case is also given.

We then investigate two approaches to performing inspiral searches in a time-critical man­
ner. Both involve splitting the search parameter space across several compute nodes. The first 
attempts to split the parameter space in an efficient manner by using information from previous 
runs. The second is balanced dynamically, with slave nodes requesting work off a master node.

We then develop a new method for coincidence analysis. In this method, each trigger has 
associated with it an ellipsoidal region of the parameter space defined by the covariance matrix. 
Triggers from different detectors are deemed coincident if their ellipsoids are found to overlap. 
Compared to an algorithm which uses uncorrelated windows separately for each parameter, the 
method significantly reduces the background rate for comparable detection efficiency.

We then give a summary of the current status of the ongoing search for high mass compact 
binary coalescences in the first calendar year of LIGOs fifth science run.
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Chapter 1

Introduction

In 1919, Eddington announced the results of an expedition to Principe, an island off the west 

coast of Africa, to view the total eclipse which took place there[l, 2]. The results had confirmed 

the prediction of general relativity of the bending of light rays from distant stars by the Sun. 

The theory had already been shown to explain the precession of the perihelion of Mercury[3], 

and as a consequence, Albert Einstein was propelled to international stardom. Since then, every 

experiment which has been carried out has confirmed the predictions of general relativity with 

remarkable accuracy.

One of the predictions of general relativity is the existence of gravitational radiation. In fact, 

gravitational radiation of some sort would be a prediction of any relativistic theory of gravity, 

due to the finite speed of propagation of interactions. In general relativity, gravitational waves 

manifest themselves as fluctuations in the curvature of spacetime. Such waves will be emitted by 

any object, or objects, which experience acceleration, provided the motion is not axisymmetric. 

Strong sources of gravitational waves include binary systems of compact objects, such has the 

Hulse-Taylor binary pulsar, which has been shown to behave as predicted by general relativity 

to a great degree of accuracy.

Many attempts have been made to detect gravitational waves over the years. However, de­

spite the often dramatic nature of potential sources, the effects of gravitational radiation incident 

on the Earth from these sources is expected to be very weak. This means that the signals due 

to gravitational radiation will be obscured by noise, making the detection of the gravitational 

radiation very difficult. So far, there has been no satisfactory claim of the direct detection of

1



gravitational radiation. Nonetheless, detectors such as LIGO are now taking data at unprece­

dented sensitivities, and there is optimism that the first sources will be detected over the next 

few years.

This thesis documents some aspects of the ongoing search for gravitational waves; in par­

ticular, the search for gravitational wave signals from inspiralling compact binary sytems, con­

sisting of neutron stars and/or black holes. Systems of this type are one of the most promising 

sources for detection, with next-generation detectors such as Advanced LIGO expected to see 

several such events per year. The search for such signals requires much effort, with work re­

quired in theoretical aspects, computational aspects, and optimisation of the search procedure. 

All of these aspects will be touched upon in this thesis.

The structure of the thesis is as follows: in this Chapter, we have an introduction to the basics 

underlying the search for gravitational waves, including the basics of gravitational wave physics, 

and how we attempt to detect them; a brief review of promising gravitational wave sources, with 

particular emphasis on compact binary coalescences (CBCs); and the basics of the methods used 

to extract the signals from noisy data. The next Chapter consists of a study of a new class of 

approximants for binary inspiral waveforms. This work was done in collaboration with P. Ajith, 

B. Iyer, and B.S. Sathyaprakash, and was published in [4] and [5]. My contribution to this work 

mainly consisted of the studies of non-adiabatic waveforms. The next Chapter consists of an 

investigation into possible methods for performing compact binary searches in a time-critical 

manner. This is likely to be a serious issue in the future, particularly when spinning sources 

are considered. The next Chapter gives details of a new method for performing coincidence 

analysis, developed by myself in collaboration with A.S. Sengupta and B.S. Sathyaprakash, and 

being used for all ongoing searches for compact binary inspirals in LIGO data. The final Chapter 

details such an ongoing search - namely the search for inspiral compact binaries with masses 

(25 M . < M < \00M .). This search is being carried out as part of the efforts of the Compact 

Binary Coalescence group of the LIGO Scientific Collaboration (LSC).
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1.1 Gravitational waves

1.1.1 G ravitational waves in linearised theory

We consider a weak gravitational field in a vacuum. In this situation, we can consider the 

spacetime metric g,* to be a weak perturbation of the flat spacetime metric Tb*[6], i.e.

gik=r\ik + hik, r u  =  diag(1, — 1, — 1, — 1). (1.1)

To terms linear in the perturbation /i,*, we find

g* = n'* -  h* (1.2)

and

S =  (l+/i)T1 (1.3)

where h — h\. We raise and lower indices using the unperturbed metric r|.

In this case, the Riemann curvature tensor becomes

R iklm  — 2 (h im ,k l +  h u ,im  hil,km  ^ km ,il) ( 1-4)

This in no way fixes a particular choice of reference frame. In particular, under a change of 

co-ordinates jr" =  jd +  £a, where the Q are small quantities, hn will transform as

Kk — hik — 2E>(i,k) • (1.5)

For our purposes, it proves useful to introduce the trace-reversed metric perturbation

■̂ik — hift T| if-h. (1.6)

We use the gauge freedom given in Eq. 1.5 to impose the condition

hfk = 0. (1.7)
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This choice is known as the harmonic or de Donder gauge *.

The Einstein field equations are given by

Gik = Rik ~  2 ^ 8 ik = (1-8)

where Gik is the Einstein tensor, Rik is the Ricci tensor, k is the gravitational constant, and Tik

is the energy-momentum tensor of the matter present. If we impose the conditions above in a

vacuum, Eq. 1.8 reduces to

Uhik = 0. (1.9)

This, taken with Eq. 1.7 are linear equations on a homogeneous Minkowski background. It is 

sufficient to consider a single Fourier mode

h k  =  h ik{n a ) e ,naX“ (1 .1 0 )

Plugging this into the field equation 1.9 gives

{nana)hik = 0, nkhik = 0. ( 1.11)

These equations tell us that ri is a null vector, and that A,* is orthogonal to n‘. As an illustration, 

we shall take the specific case of a plane wave travelling in the z-direction. In this case, the 

spacetime dependence of the Fourier mode is of the form Using the residual gauge

freedom we have, we impose the following further conditions:

hok = 0, K 0. ( 1.12)

When these are applied, ha = ha, and we have

h,k =

V

0 0 0 0

0 h + h x 0

0 h x ~ h + 0

0 0 0 0

(1.13)

1 Note that this does not completely fix the gauge, since we can still add t,1 to the provided they satisfy □£;' =  0.
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From this, we could conclude that gravitational effects propagate as waves travelling at the 

speed of light. However, we have chosen a specific gauge, so the existence of non-zero /z,* in 

this gauge is not an invariant indication of a gravitational field. A stronger argument for the 

existence of the field follows from combining Eq. 1.4 with Eq. 1.9 to get

□/?,*/„,= 0, (1.14)

i.e. the curvature tensor itself obeys the wave equation[7].

Polarization of gravitational waves

For the case described above, the line element becomes

ds2 = dt2 — (1 — h ^ d x 2 — (1 +h+)dy2 +  2 h xdxdy — dz2 (115)

from which we can see that gravitational radiation has two different polarization states.

Let us first consider the case where h x = 0 (i.e. hx = 0 ) , and investigate the effect on a 

system of test particles. If we consider two neighbouring particles in the (;c,y) plane, which 

initially have co-ordinates (jto,yo) anc* C*o +  the proper distance between them will be

given by

dl2 = ( l - h + ) d x 2. (1.16)

If we now consider two particles located at co-ordinates (.xô yo) and (.xo,yo +  ^y), the proper 

distance will be given by

dl2 = (\+ h+ )dy2. (1.17)

The proper distance is a co-ordinate invariant quantity, so it can be seen that as the value of h+ 

oscillates, the particles will move closer together in the jc-direction while moving further apart in 

the y-direction, and vice versa. Figure 1.1 shows the effect of such a wave on a ring of particles. 

This is known as the + polarization.

We now consider the case when h+ = 0. In this case, the line element becomes

ds2 = dt2 — dx2 — dy2 +  2hxdxdy — dz2- (118)
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Figure 1.1: The effect of a +-polarized gravitational wave on a system of particles.

Figure 1.2: The effect of a x-polarized gravitational wave on a system of particles.

If we change the co-ordinates by performing a rotation of 45° about the z-axis,

^  = yf = ~ ^ ^ y ~ x^  (119) 

we see that the line element becomes

ds2 = dt2 — (1 —h x) d / 2 — (1 + hx )dy'2 — dz2. (1.20)

Thus, we can see that the effect of such a wave is the same as a h+ wave, only rotated through 

45°, as illustrated in Figure 1.2. This is known as x polarization.

Note that equations 1.16 and 1.17 illustrate the fact that the change in separation between 

particles due to a passing gravitational wave is proportional to their initial separation. This is 

important when considering detection of gravitational waves.
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1.1.2 Radiation of gravitational waves

So far, we have seen that the solutions to the linearised Einstein equations in a vacuum allow 

wave-like solutions. However, we have not yet seen how these waves are generated. To inves­

tigate this, let us consider a weak gravitational field produced by bodies moving with velocities 

much smaller than the speed of light. In this case, we end up with the following equation[6]

1 -  871* , _ ix
— ^  X,£. (1.21)

Due to Eq. 1.7, we can see that

T , /  =  0. (1.22)

Eq. 1.21 has a standard ‘retarded potential’ solution of the following form:

7 4* f  Tik(t -  Ix -x 'l /c ^x ')  A .
hik = - - j  —  — 1> V y  (i.23)

cr J x — x'

If we are far away from a compact source, i.e. |x'| |x| =  r, then we have, to leading order

4k r
hik = -  —  J  xik{t -  r /c ,x ')d V  (1-24)

To solve this equation, we use the result that

/ Tapd3* =  ^2 ^ 2  J T00Xax?d3x. (1.25)

In the approximation we are using, the value of Too can be taken to be /tc2, where (x is the mass 

density of the source. Therefore, we obtain

hap = ~ ^ . ^ 2  J (1.26)

or

/?(xP =  “  3 ^ a(3 =  /  ̂  ~ d*x • ( 1 -27)

Q is the mass quadrupole tensor of the system. Note that this illustrates that there is no monopole 

or dipole gravitational radiation. This is a consequence of the conservation of 4-momentum
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in general relativity, and is analogous to the fact that there is no monopole electromagnetic 

radiation due to the conservation of charge.

1.2 Detecting gravitational waves

The attempt to detect gravitational waves has a long history[8, 9]. The field began in the 1960’s 

when J. Weber developed the first bar detectors. Following this, many other groups began to 

develop similar detectors. Inspired by the work done by these groups, Gertsenshtein and Pus- 

tovoit proposed that gravitational waves could be detected by looking for small shifts in the 

interference pattern of a Michelson interferometer formed between freely hung mirrors. The 

first interferometer of this type was created by Robert Forward in the late 1960’s. From the 

1970’s onward, Weiss and Drever, amongst others, continued the development of the funda­

mental designs of laser interferometric detectors, and from that time through to the 1990’s, 

major collaborations such as GEO[10], LIGO[l 1], Virgo[12] and TAMA[13] came together to 

build large-scale detectors. Since 2002, the LIGO detectors, consisting of two 4 km detectors 

located at Hanford, Washington, and Livingston, Louisiana (called HI and LI respectively), 

plus a 2 km detector also located at Hanford (called H2); along with GEO600, a 600 m detector 

located in Hanover, Germany, have undertaken several science runs searching for gravitational 

waves, with the LIGO detectors recently reaching their design sensitivity. The Virgo detector, a 

3 km detector located in Cascina, Italy, began its first full scale science run in May 2007, and ran 

in coincidence with the LIGO detectors until the end of their fifth science run (known as S5).

Despite these many years of efforts, and although there is optimism for the near future, at 

present, there has been no direct detection of gravitational waves. However, strong indirect 

evidence of gravitational waves has been observed. Observations of the Hulse-Taylor binary 

pulsar showed that the decrease in its orbital period agrees remarkably well with the prediction 

made by general relativity. For these observations, Hulse and Taylor were awarded the 1993 

Nobel Prize for Physics.

In this Section, we give a brief description of the indirect detection of gravitational waves, 

followed by a basic explanation of how laser interferometers such as LIGO can be used for their 

direct detection.



1.2.1 Indirect detection: the Hulse-Taylor pulsar

The Hulse-Taylor binary pulsar, or PSR B 1913+16, was discovered in 1974[14]. It is a system 

containing two neutron stars, which are thought to have roughly equal masses m\ .mi ~  1.4Af0 , 

with a separation of % 109m and an orbital period of «  7.75Hr. Immediately, this was seen as 

an ideal system to use as a test of general relativity. Such a system would be expected to emit 

gravitational waves, and as a result of balance of energy and angular momentum, the angular 

frequency of the system would be expected to change, to the lowest order, according to the 

following relation2:

d) =  ^ q A /5//3co11//3, (1.28)

where M is the total mass of the system, and T] =  m\m 2 /M 2 is the symmetric mass ratio. The 

system has been observed throughout the years since its discovery, and the change in its orbital 

angular frequency has been found to agree with general relativity to within 0.3%[15].

1.2.2 Direct detection: the laser interferom eter

There are now a number of efforts underway to directly detect gravitational waves using laser 

interferometric detectors. For the purposes of this thesis, we are mainly concerned with the three 

LIGO detectors. The LIGO detectors are power recycled Fabry-Perot-Michelson interferometers[ 16]. 

The mirrors in the interferometer play the role of the test masses.

To illustrate the basic principles involved, let us consider a simple Michelson interferometer 

with its arms aligned with the x  and y axes, in the presence of a plane, sinusoidal, +-polarized 

gravitational wave. In this case, the line element Eq. 1.15 becomes

ds2 = dt2 — (1 — h ^ d x 2 — (1 + h+)dy2 — dz2. (1-29)

We can assess the response of the detector to the gravitational wave by looking at the phase

shift of the light in the arms. The phase acquired by the light during a round trip along the arm

aligned with the x-axis is given by

flRT
<)>*=/  Infidt, ( 1.30)

Jo

2Hereafter, we use k = c = 1.
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Figure 1.3: The basic construction of a Michelson interferometer.

Mirrors

Beam splitter

Photodetector

where // is the frequency of the laser, and Zrt is the round trip time. Using the fact that ds2 =  0 

for light rays, to first order, we end up with [16, 17]

<>, =  ! o 2n f,( l - h +)'!2d x -

(1-31)

where L is the length of the arm. This gives a phase shift due to the gravitational wave of

S4>x =  - 2 jc/,IA+. (1.32)

A similar calculation for the arm aligned with the y-axis gives

5<()v =  2nfiLh+. (1.33)

which gives a total phase shift between the arms of

A<j) =  4nfiLh+. (1.34)

This phase shift can be detected by looking for changes in the interferometers interference pat-
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tern. The phase shift can be related to the change in length of the arms by using

A L~ - f
A<j>
J '

(1.35)

It is useful to define the gravitational wave strain h, as

To be able to detect the gravitational waves from expected sources, we need to be able to measure 

h ~  10~22. For a 4km detector this means it is necessary to measure changes in length

To increase the signal response of the detector, further mirrors are added near the beam splitter 

of the interferometer, creating a Fabry-Perot cavity in each arm, in which the light is stored for 

approximately 200 bounces. This increases the phase shift A<j> by 3 orders of magnitude.

Noise sources in interferometric detectors

There are many sources of noise which can mask the signal produced by a gravitational wave. 

The job of the experimenter is to minimise the noise sources, so as to maximise the chance of 

detecting the signal. The noise in the detector is usually measured as the amplitude spectral 

density, which is the square root of the power spectral density of the detector strain. A complete 

overview of the noise searches present in the LIGO interferometers can be found in [18]. Here, 

we give a brief overview of the most important sources[8].

Seismic noise. Mechanical noise caused by seismic motion of the Earth is an important source 

of noise, being most dominant at frequencies /  < 40Hz. To reduce this noise, it is neces­

sary to isolate the mirrors from the motion of the ground. This is typically done by using 

mirror suspension systems consisting of coupled pendulums.

Thermal noise. Thermal vibrations of the mirrors and suspensions is the dominant source of 

noise for frequencies in the range 40 < /  < 200Hz. To mitigate the effects of this noise, 

systems are designed so that their resonant frequencies are far from the measurement

AL ~  10"22 x 104 = 10-1V (1.37)
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frequencies. In addition, materials are chosen so that they have high Q, which means 

their resonant peaks are very sharp, and there will be minimal leakage into the frequency 

bands of interest.

Shot noise. Shot noise is the dominant source of noise for frequencies > 200Hz. It arises due 

to the quantum nature of light. We know that the actual number of photons collected by 

the photodetector per unit time is a Poisson process. Therefore, the error will improve as 

V n ,  where N is the average number of photons per unit time. It can be calculated that, to 

be able to detect changes in phase for a gravitational wave with a frequency of ~  100 Hz, 

the laser intensity would need to be ~  102 W, which is currently beyond the capability of 

any continuous laser. To get around this limitation, it is necessary to introduce a power 

recycling mirror into the interferometer design. This reflects wasted light back into the 

interferometer, and allows power to build up in the cavity. Using such a design, it is 

possible to obtain the desired sensitivity using the 10 W lasers typically used in the first 

generation interferometric detectors.

Other quantum effects. Although shot noise can be reduced by increasing the laser power, 

this in turn will increase the size of the fluctuations of the laser intensity, and therefore 

will increase the fluctuations of the light pressure on the mirrors. At high powers, these 

fluctuations will become a limiting factor of the noise, known as the quantum limit. For 

future interferometers, investigations are underway into ways to beat this quantum limit, 

including signal recycling, and the use of squeezed light.

1.3 Sources of gravitational radiation

There are many potential sources of gravitational radiation, each of which has its own signature, 

and poses its own detection challenges. In the case of ground-based detectors, due to the effects 

of seismic noise, they are confined to search for sources with frequencies greater than about 10 

Hz3. This means that we are restricted to searching for sources which are highly relativistic 

and not too massive. Future space-based detectors, such as LISA, will be able to search for 

more massive systems, and those in a less relativistic regime. In this Section, we give a brief 

•'For the case of current searches on initial LIGO data, the low-frequency cut-off is taken to be 40 Hz.
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overview of some of the sources being searched for with the current generation of ground-based

detectors [8, 19].

Spinning neutron stars. Slightly deformed, spinning neutron stars will be a source of quasi- 

periodic gravitational radiation. A particularly interesting class of objects of this type are 

low-mass X-ray binaries (LMXBs). In these systems, the neutron stars are spun up by 

accretion from a companion object; however, the systems seem to be locked into a spin 

frequencies of ~  300 — 600Hz. A plausible mechanism for this locking is that the torque 

due to accretion is being counteracted by an equal and opposite torque due to gravitational 

radiation. There are a number of potential mechanisms for the emission of gravitational 

waves by spinning neutron stars. These include density inhomogeneities, the rotation axis 

not being the the axis of symmetry of the star, causing it to ‘wobble’, or instabilities in 

the star driven by gravitational radiation reaction. The GW signal emitted by such signals 

will be weak, but due to their continuous nature, it is possible to use long integration times 

to increase the signal to noise ratio (SNR). However, for the case of LMXBs, due to the 

wandering of the spin frequency, care must be taking when analysing more than ~  20 

days of data.

Stochastic background. It is possible to search for a background of gravitational radiation. 

Such a background could have been created in the early universe, and permeate space 

in a manner analogous to the Cosmic Microwave Background (CMB). Additionally, a 

background could exist due to unresolved astrophysical sources, such as supemovae with 

asymmetric core collapse, binary black hole mergers, or neutron stars [20]. Searches 

for stochastic backgrounds typically involve cross-correlating the data between different 

detectors. Directional information can be obtained by introducing suitable time delays 

between the data streams from each detector. When considering stochastic backgrounds, 

it is usual to consider the energy density of the gravitational waves, Qgw(f),  which is 

usually measured in units of the critical energy density of the Universe, pr . pr is defined 

as the energy density for which the Universe would just stop expanding at infinite time. 

The value of p, can be calculated from the Hubble parameter, H, in the following way:



Given this, Qgn.(f) is defined as

(L39)

Initial detectors should be able to place an upper limit on Qgw of ~  10-5 . The next 

generation of detectors, such as Advanced LIGO, will be able to measure Qgii down to 

~  10-9 . Such a sensitivity will be able to place meaningful constraints on theories of the 

early universe. However, this limit is orders of magnitude higher than the level predicted 

by standard inflationary models, so an actual detection would be of profound significance.

Burst sources. There are many potential sources of gravitational radiation which would be ex­

pected to be signals of short duration, and be spread over a wide spectral bandwidth. 

Moreover, the precise form of these signals may presently be poorly understood, thus 

making optimal searches using matched filtering (see Section 1.5.1) impossible. Exam­

ples of such sources are mergers of binary compact objects, and core collapse super­

novae. Searching for such signals typically involves looking for excess power in certain 

frequency bands at certain times. Various consistency checks are then used, including 

looking at the cross-correlation between data streams from different detectors, and requir­

ing consistency in the relative amplitudes of signals in co-located detectors. While burst 

searches are less sensitive than matched filtering searches, they have the advantage of not 

assuming any form for the signal, thus allowing for the prospect of detecting previously 

unexpected types of signal which may turn out to be present.

Inspiralling compact binaries. A major search effort is underway to detect gravitational waves 

from inspiralling compact binaries, consisting of neutron stars and/or black holes. As the 

objects orbit each other, they emit gravitational radiation at twice the orbital frequency, 

causing the system to lose energy. After a period of adiabatic inspiral, the objects will 

plunge towards each other, and merge to form a single black hole, which will then radiate 

gravitational waves as it approaches a stable state. The radiation produced by adiabatic 

inspiral, and the final black hole’s ‘ring-down’ are reasonably well modelled. However, 

the standard analytic treatments become less reliable during the plunge and merger phase. 

Recent advances in numerical relativity have begun to shed some light on these phases of
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the evolution. For a more detailed look at compact binary inspirals, see the next Section.

1.4 Compact binary coalescences

Inspiralling compact binaries, consisting of neutron stars and/or black holes are one of the most 

promising candidates for detection. Estimates of the rates of binary neutron star coalescences 

per unit L\o, where L\q is 1010 solar blue luminosity, can be inferred from the fact that we 

know of four systems which will merge within a Hubble time. Current estimates for the merger 

rate of BNS suggest a rate of 10 — 170 x 10_6yr_1LJo at 95% confidence [21J. The rates for 

black hole-neutron star (BH-NS) systems, and binary black hole systems are highly uncertain, 

and the systematic uncertainties are poorly understood. However, by exploring the parameter 

space of the population synthesis models, while ensuring the BNS merger rate inferred from 

observations is preserved, one can obtain rate estimates for field binaries at the 95% confidence 

level of 0.1 — 15 x lO - V " 1̂ 1 for BH-NS,and 0 .1 5 -1 0 x  10" V -1^ 1 for BBH [22]. Other 

discussions have suggested that certain fractions of dense clusters may form many BBHs. In 

addition, there is evidence to suggest that short, hard gamma-ray bursts may be associated with 

the merger of a BNS or BH-NS system. Such discussions suggest that is a real chance of 

observing systems even with Initial LIGO.

The waveform for a compact binary coalescence consists of three phases: the inspiral 

phase, the plunge and merger phase, and the ringdown phase. In this thesis, we are mainly 

concerned with the inspiral phase of the waveform. The inspiral phase is well modelled as 

a post-Newtonian (PN) expansion in the adiabatic approximation[23]. In this approximation, 

the dynamics of the system are considered to be a series of quasi-circular orbits, in which the 

change in orbital frequency is negligible over an orbital period, i.e. d)/(02 <Cl.  In this regime, 

the phasing formula can be obtained by using the energy balance equation, dEtot/d t  =  —̂ F, 

where Etot (x  — v^) = M( \ + E(x)). Here, M  is the total mass of the binary, and E{x) is the PN 

expansion of the energy function. J (v) is the GW luminosity function. The invariantly defined 

velocity v is related to the GW frequency by the following:

v = {nM f)l/3. (1.40)
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The GW frequency is twice the orbital frequency. From this, it can be shown that the phasing

can be obtained by solving the following system of ODEs:

where E'(v) = dE jdv. We integrate these formulae up to v/yf„ which is the value of v for which 

E is a minimum, i.e. E'(v/vo) =  0.

It is known that the PN series is poorly convergent, and so it may be the case that the 

standard PN expansions are inadequate for detection and parameter estimation of inspirals, par­

ticularly for high mass systems. To counteract this, it is possible to use resummation techniques 

such as Pade resummation to improve convergence. Further information about the use of such 

techniques can be found in [23].

For systems > 25M . , the gravitational wave frequency at v/v„ is close to the peak detector 

sensitivity. We know that at this point, the adiabatic approximation starts to break down. More­

over, it is found that different ways of re-summing the PN expansions can give significantly 

different results for the phasing in this regime. Therefore, for systems of this mass and greater, 

it is necessary to go beyond the adiabatic approximation, and also include the plunge waveform. 

This can be done using the effective one-body approach [24]. This approach works by map­

ping the conservative part of the dynamics from a two body problem to an effective one-body 

problem. With no radiation, the effective metric is a spherically symmetric deformation of the 

Schwarzschild metric, with the symmetric mass ratio q =  mxmi/M2 acting as the deformation 

parameter. The damping force is re-summed using Pade resummation. The 2PN waveform ob­

tained from such an approach is currently being used as the signal template for the S5 LIGO 

search for high-mass compact binary coalescences, the current status of which will be described 

in Section 5. To generate this waveform, we start from the reduced Hamiltonian, given by:

d(J) 2v3 dv —J iy )  
~dt= ~M ’ I t  = ME’{v) ’ (1.41)

(1.42)

where the functions /4(r) and B(r) are given by

A(r) = 1 -  ^ +  2q
" M r )

—  [ l -  — (1.43)
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We can then calculate the orbital phase cp by integrating the following equations (here, t = t/M)\

dr dH 
dt dpr ’ 

dtp dH 
dt 9 ^  ’ 

dpr dH 
~df = ~

(1.44)

From these equations, the time-domain waveform is then given by

h{ t )  =  t > w ( 0 c o s  [<J>Gw(0] * VCD = > 0GW =  2(p. (1.45)

where ^  = ~^jJrp„{vo>)- ^/>n(vw) is the flu* function used for Pade approximants, which can ben i'(u
found in [23].

The EOB equations of motion are integrated until the termination of the plunge phase at the 

light ring. At this point, the radial co-ordinate has the value r/r, which is given by solving the 

following equation:

It is suggested in [23] that the best potential candidate sources for detection are stellar mass 

binaries with a total mass in the range 30 — 90Mq . Including the plunge part by using the EOB 

waveform increases the SNR significantly compared to the standard post-Newtonian templates 

for total mass > 35M .,. This highlights the importance of carrying out the high stellar mass 

compact binary search. 4

1.5 Data analysis

We shall now discuss the means by which signals are extracted from noise, in particular, for 

the case of compact binaries. Since, as we have seen, the form of the signals is known in this 

case, we will first derive the optimal filter for searching for signals of known form, the matched 

filter. We shall then look in more detail at the methods used in data analysis for compact binary

4Systems o f still higher mass can be searched for using the ringdown signal of the final black-hole. The ringdown 
in itself is not expected to provide a significant contribution to SNR for systems <  100M().

r \r  ~  r f r  +  5t1 =  0 . (1-46)
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searches.

1.5.1 Searching for signals o f known form  

The optimal filter

To begin with, we will start by deriving the form of the optimal linear filter for a signal whose 

form is completely known. Let us consider the detector output x(t), of the form

x(t) = h(t) + n(t) (1.47)

where h(t) is a known signal, and n(t) is the noise present in the detector. We assume the noise 

to be stationary and Gaussian, as defined by the following equations:

n(t) = 0, n2(t) = ^ - f  Sn{wi)dco (1.48)
271 J —oo

We filter the data using a linear filter % with transfer function K'(co). It is clear that the output 

of such a filter will be of the form [25]

cp(r) =  /i(0 +  v(0 , (1-49)

where fi(t) is the output due to filtering the signal h(t), and v(r) is the output due to filtering the

noise. It can clearly be seen that these functions are given by:

n(t) = 2 -  f  ei(atK(v))h(a)d(a, v2(r) =  2 -  f  |/«:(co)|25„((d)^(o, (1.50)
271 J —oo 271 J —oo

where ^(co) is the Fourier representation of the signal.

The optimum filter for a known signal is that which maximises the signal-to-noise ratio 

(SNR), p, which is defined by

P2 =  ^ ,  (1.5.)
V2

where /x(/o) is just the output due to filtering the signal at some reference time to. It can be seen
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from equations 1.50 that p2 is given by

2   1 |r -^ * (w )* (C 0 )* D |2
P _  271 / r j K ( a ) ) | 2Sn(co)</co

(1.52)

Using the Schwarz inequality, it can be proved that p2 obeys the inequality

(1.53)

This maximum value for p2 is obtained if the transfer function tf(co) takes the following form:

where c is an arbitrary constant. This defines the optimal filter for a known signal.

The same filter can be used for signals with unknown time of arrival x, and signal amplitude 

G, i.e. signals of the form

In this case, the time of arrival can be found by maximising n(t) over time. The SNR at this 

maximum is p =  Gpo, where po is the SNR when G =  1, given in Eq. 1.53.

The statistical nature of detection

In practice, we do not know the particular parameters of a signal ahead of time; or even if there 

is a signal present. Due to the random nature of the noise present, detection of signals, and 

estimation of the parameters, cannot be achieved with any certainty. It is possible that the noise 

can conspire to give the impression of the presence of a signal, when there is none. Moreover, 

if a signal is detected, the random contamination of the signal by the noise will introduce errors 

in the measurement of the parameters. Due to these reasons, it is necessary to treat detection of 

signals in a statistical manner [25, 26].

We will assume that we are searching for a signal h(t\n), where fx is a vector of the unknown 

parameters characterising the system. The data stream from the detector will be of the form

h'(t) = Gh(t - t ) (1.55)

(1-56)
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if there is a signal present, or

x (t)= n (t)  (1-57)

if there is no signal present.

A useful point to start the analysis of this problem is Bayes’ theorem, which is given by

where P(A\B) posterior probability of event A occurring given event B has occured, P(A) is the 

prior probability of event A occurring, P(B\A) is the probability of event B occurring given event 

A has occurred (known as the likelihood), and P(B) is the prior probability event B occurring. 

In our case, we are interested in the probability P(h\x) of a signal h being present given we have 

received data x. The posterior probability of there being a signal present is then given by

The probability P(x), taking into account the unknown parameters fi of the signal, is given

by

P(x) = j  p[h(ii)]P[x\h{li)}dnp+P(0)P(x\0) (1.60)

where P(0) is the prior probability of there being no signal present, and P(jc|0) is the likelihood 

of the data given there is no signal. Using this in Eq. 1.59, and making a simple transformation, 

we get the following

p ^ = i ^ w m m '  a 6 1 )

where A is the likelihood ratio, defined as

J  W  *  /> (je |0 ) J  /> (jc |0 )

Similarly, the posterior probability of there being no signal present is given by

(1.62)

P(0W  = 1 =  (,.63)

It can be seen that the posterior probability of a signal being present given the data received
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depends on the prior probability of a signal being present. In practice, this prior probability is 

unknown, so the decision as to whether a signal is present is taken on the basis of the likelihood 

ratio. The decision rule takes the following form:

If A > A*, we decide the signal is present.

If A < A*, we decide the signal is absent,

where A* is the threshold value of the likelihood ratio.

If we consider this decision rule, it is clear that there are two types of correct decisions 

which can be made: correctly asserting that a signal is detected; and correctly asserting that a

signal is not detected. Similarly, there are two types of error which can occur: asserting that a

signal has been detected when there was no signal present, known as a false alarm; and asserting 

that no signal was detected when a signal was present, known as a false dismissal. We denote 

the probability of a correct detection as D, and the probability of a correct non-detection as Fq. 

From this, it is clear that

Do =  1 — D is the probability of a false dismissal.

F = 1 — Fo is the probability of a false alarm.

The total probability of a correct detection is clearly given by

P(correct) = P(h)D  +  p(0)(l — F). (1-64)

The observer who, on the basis of the data obtained, maximizes the detection probability for a 

fixed false alarm probability, is known as a Neyman-Pearson observer. The decision rule given 

above is the optimal rule in this sense.

Application to binary inspirals

We will now consider the construction of the likelihood ratio for the case of a signal h(t), and 

a data stream x(t). We assume the noise to be stationary and Gaussian, with zero mean, and a 

one-sided power spectral density S „(|/|)  defined by

n(t) = 0, n ( f ) n { f )  = ^ S „ ( \ f \)& ( f- f ') .  (1.65)
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It should be noted that the probabilities P(x\h) and />(.*|0) which come into the calculation of A, 

are usually zero. To remove this issue, we write

i.e. instead of using the actual probabilities to calculate A, we use the probability densities. 

We introduce an inner product, defined as

It can be shown that the probability density of obtaining a given realisation of detector noise is 

given by

Therefore, the probability density of obtaining data jt(f) given there is no signal present is given

Similarly, the probability density of obtaining data x(t) given that a signal h(t) is present is given

It is clear in Eq. 1.71 that the only dependence of A on the data received is through (x,h). 

Moreover, A is a monotonically increasing function of (x,h). Therefore, instead of considering 

the likelihood ratio for making the decision regarding the presence of a signal, we can instead

use (x,h) = cp:

If cp > cp*, we decide the signal is present.

If cp < cp*, we decide the signal is absent. It is worth noting that, for com­

pletely known signal h, this is the same as using the optimal filter given in Eq. 1.54, and making

_  P(x\h) _  p(x\h)dx _  p(x\h) 
P^IO) p(x\0 )dx p(*|0 ) ’

( 1.66 )

(1-67)

p{n) = ‘K e -* M . ( 1.68)

by

p(x  |0 ) = (1-69)

by

(1.70)

Thus, the likelihood ratio A is given by

(1.71)
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the decision based on its output.

It is clear that cp is a random variable with a Gaussian distribution. If only noise is received, 

the mean value of 0  will be zero. The variance will be given by

o 2  = t f  = {h,h)- (1-72)

In the presence of a signal h, the mean and variance will be given by

cp =  (h ,h ) , cr2 =  (cp — cp) 2 = (h,h) (1.73)

Given the distributions of cp in the presence and absence of a signal, the detection and false alarm 

probabilities can be calculated, and the threshold value cp* can be chosen.

If the signal is of an unknown amplitude, i.e. h'(f,G) =  Gh(t), the likelihood ratio changes 

to the form

A =  exp[G (x,h) -  \ p 2  {h,h)]. (1.74)

As before, this function is monotonic in (x,/i), so the same decision rule can be applied as

before. Note that this implies that one need only filter the data with templates h of unit norm. In

this case, the mean value of cp in the presence of a signal h!{t\G) is G (h,h).

We now consider the case of a signal with unknown phase. In this case, the likelihood ratio 

becomes

A(0) =  p(0|ft)exp[(*,A(0)) -  i  (M )]. (1-75)

We write the signal in the form

h(t,Q) = A (t) cos [2 0 (0 -0 ]. (1.76)

Substituting Eq. 1.76 in Eq. 1.75, and using simple trigonometric identities, we end up with

cp(0) =  c o s 0  (jc, A (r) cos 2<|>(r)) +sin0(jc,A(r)sin2<j>(r))

= #cos0  +  £sin0

= £cos(d> -0 ). (1.77)
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In calculating the likelihood ratio, we assume that the the value of 0 is equally likely to be any 

value between 0 and 2n. This means that

p ( 8 | / 0  =  T .  ( 1 .7 8 )

The likelihood ratio is therefore given by

r2n i p2n , , ,
a  =  /  A (ey e  =  — /  e1008 

Jo 2 n  Jo
= ^ 2 m /0(£ ), (1.79)

where /o is the modified Bessel function of the first kind of order zero.

It can be seen that, similarly to the previous cases, the data received only enters into the 

likelihood ratio via £ , and the likelihood ratio is a monotonically increasing function of £ . 

Therefore, we can make the decision whether a signal is present based on the value of *£.

If we look more closely at the value of £ , we see that it has the following form

£  =  \ / a 2  + b2  = y  (x,hc ) 2  +  (.x,hs)2, (1.80)

where

hc = A(/)cos2<|)(f), hs = A(t)sin2§(t)} (1-81)

i.e. the value of £  is given by the sum of the squares of two optimal linear filters in quadrature. 

It is convenient in practice to work with a normalised signal-to-noise ratio, defined by

<x*2
p2  = — , o 2  = {hc,hc). (1.82)

a z

It is clear that, in the presence of stationary Gaussian noise only, p2 will obey a y} distribution 

with two degrees of freedom.

As well as an unknown phase, it is clear that the time of the signal will also be unknown. 

In searching for coalescing binary systems, it is typical to use the time of coalescence, tc, to 

locate the signal in time. This is defined as the time at which the inspiral waveforms used in the
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search are terminated, e.g. t(viso) in the case of the TaylorTl approximant defined in Eq. 1.41. 

We can consider the case of searching for the signal h(t — tc). In this case, due to the properties 

of Fourier transforms, the signal in the Fourier domain becomes

M /) = (1.83)

where h,c ( f ) is the Fourier transform of h(t — tc), and h(f )  is the Fourier transform of h(t). 

If we then consider the inner products which come into the construction of the statistic p2 for 

signals ending at tc, we see that

(1.84)

In can be seen that the inner products are inverse Fourier transforms, thus making p2 a function 

of tc . To perform the measurement, we state that the most likely value for tc is that which 

maximizes the likelihood ratio. In performing the search, we therefore maximise p(/) overtime. 

If this maximum is greater than the threshold value p*, we record an event as having occurred 

at time t. Since there is the possibility of more than one signal occurring in a given stretch of 

data, we do not maximise over all time; we instead maximise over a certain time interval 8 /.

In searching for binary inspiral signals, there are many other parameters which will be un­

known. For detection in a single detector, certain parameters, e.g. the sky location and the incli­

nation of the binary, can be folded into the amplitude of the signal. This is done by introducing 

an effective distance, *D, which is related to the amplitude G in the following way [27, 28]:

where i is the inclination angle of the binary, and F+ and Fx are the antenna pattern functions of 

the detector.

For the other parameters, which, in the cases of non-spinning inspiralling compact binaries, 

correspond to the component masses of the system, (m i,m2), it is not feasible to search over 

them in a continuous manner. Therefore, a bank of templates is defined with a certain granularity

r
(1-85)
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on the parameter space. The spacing is chosen so that the match between any signal within the 

search space and at least one template will be more than a given minimum value. A summary of 

the geometrical formalism used for the constuction of a template bank, can be found in Ch. 4. 

The details of how this formalism is used for template placement can be found in [29].

In measuring the parameters m\ and m2 , as with measuring tc, we choose the parameters 

which maximise the value of the likelihood ratio. As is the case with tc, to allow for the pos­

sibility of more than one signal, each having different parameters, we do not maximise over 

the entire parameter space, but maximise over a certain neighbourhood within this space. A 

description of an algorithm which performs such clustering can be found in [30].

The case of searching real data

In the case of real data, as produced by the current generation of interferometric detectors, the 

noise present in the data stream is neither stationary nor Gaussian. As a result of this, there is 

likely to be a large number of false alarms with a high signal-to-noise ratio when looking at a 

single detector. To reduce this false alarm rate, and to increase the confidence of a detection, 

we look for coincident events appearing in different detectors. For events in different detectors 

to be considered coincident, we require the parameters of the events to agree to within a certain 

tolerance. A new method for checking for coincidences can be found in Ch. 4.
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Chapter 2

A new class of post-Newtonian 

approximants for gravitational wave 

data analysis

2.1 Introduction

The late-time dynamics of astronomical binaries consisting of neutron stars and/or black holes 

is dominated by relativistic motion and non-linear general relativistic effects. The component 

bodies would be accelerated to velocities close to half the speed of light before they plunge 

towards each other, resulting in a violent event during which the source would be most luminous 

in the gravitational window. Such events are prime targets of interferometric gravitational wave 

(GW) detectors that are currently taking data at unprecedented sensitivity levels and bandwidths 

[11, 12, 10, 13].

Binary coalescences are the end state of a long period of adiabatic dynamics in which the 

orbital frequency of the system changes as a result of gravitational radiation backreaction but 

the change in frequency per orbit is negligible compared to the orbital frequency itself. In­

deed, the adiabatic inspiral phase is well-modelled by the post-Newtonian (PN) approximation 

to Einstein’s equations but this approximation becomes less accurate close to the merger phase. 

Additionally, there are different ways of casting the gravitational wave phasing formula -  the 

formula that gives the phase of the emitted gravitational wave as a function of time and the pa­
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rameters of the system. These different approaches make use of the post-Newtonian expansions 

of the binding energy and gravitational wave luminosity of the system1.

2.1.1 Standard approach to phasing formula

The standard approach in deriving the phasing formula uses the specific gravitational binding 

energy E(v) (i.e. the binding energy per unit mass) of the system and its luminosity J (v), both 

to the same relative accuracy [31]. Including the radiation reaction at dominant order, however, 

is not a first order correction to the dynamics of the system, rather it is a correction that arises 

at 0[(v/c)5], where v is the post-Newtonian expansion parameter describing the velocity in the 

system and c is the speed of light2. Thus, the phasing of the waves when translated to the relative 

motion of the bodies implies that the dynamics are described by the dominant Newtonian force 

and a correction at an order (v/c)5, but neglecting conservative force terms that occur at orders 

(v/c ) 2 and (v/c)4. Such considerations have led to an approximation scheme in which one 

constructs the phasing of gravitational waves using the following ordinary, coupled differential

where E'(v) = dE(v)/dv  and m = m\ +rri2  is the total mass of the binary. The phasing obtained 

by numerically solving the above set of differential equations is called the TaylorTl approximant 

[23]. If the detector’s motion can be neglected during the period when the wave passes through 

its bandwidth then the response of the interferometer to arbitrarily polarized waves from an 

inspiralling binary is given by

where cp(/) is defined so that it is zero when the binary coalesces at time t = tc , cpc is the phase 

of the signal at tc, r| =  m\nt2 /M 2  is the symmetric mass ratio, D is the distance to the source and 

A is a numerical constant whose value depends on the relative orientations of the interferometer 

and the binary orbit. It suffices to say for the present purpose that for an optimally oriented

equations:
d cp 2 v3 dv
dt m ’ dt mE'(v) ’

(2 . 1)

(2.2)

'in the case of binaries consisting o f spinning bodies in eccentric orbit one additionally requires equations de­
scribing the evolution of the individual spins and the orbital angular momentum, but this complication is unimportant 
for our purposes.

2Throughout this Chapter we use units in which G — c — 1.
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source A = 1.

One can compute the Fourier transform / / ( / )  of the waveform given in Eq. (2.2) using the 

stationary phase approximation:

where the phase of the Fourier transform obeys a differential equation given by

^ l  = 2m  (2 4)
d f  2W’ d f  3v^ 7 (v/) {ZA)

The above expressions contain the post-Newtonian expansions of the energy and flux functions, 

as a function of the velocity parameter v/. In terms of the frequency, the parameter is given

equations Eq.(2.4) is called TaylorFl [23] approximant.

Before we proceed further, let us recall the notation used in post-Newtonian theory to iden­

tify different orders in the expansion. In the conservative dynamics of the binary, wherein there 

is no dissipation, the energy is expressed as a post-Newtonian expansion in 8 =  (v/c)2, with the 

dominant order termed Newtonian or OPN and a correction at order e" =  (v/c)2", n = 1 ,2 ,..., 

called nPN, with the dynamics involving only even powers of y/i = (v/c). When dissipation is 

added to the dynamics, then the equation of motion will have terms of both odd and even powers 

of v/c. Thus, a correction of order (v/c )"1 is termed as (m/2)PN.

In the case of a test-particle orbiting a Schwarzschild black hole, the energy function E (v) 

is exactly calculable analytically, while the flux function jF(v) is exactly calculable numerically 

[32, 33, 34, 35]. In addition, J (v) has been calculated analytically to 5.5PN order [36] by black 

hole perturbation theory [37]. In contrast, in the case of a general binary including bodies of 

comparable masses, the energy function E(v), has been calculated recently to 3PN accuracy by 

a variety of methods [38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. The flux function J (v), on the 

other hand, has been calculated to 3.5PN accuracy [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58.] 

up to now only by the multipolar-post-Minkowskian method and matching to a post-Newtonian 

source [59].

/ 5UX\ -7 /2  j [ 2Tt/rr -(pc +v|;(/)-7t/4|
D V 384 '

(2.3)

by Vf = (n m f) ,//3. The waveform Eq.(2.3) computed by numerically solving the differential
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2.1.2 Complete phasing o f the adiabatic inspiral: An alternative

The gravitational wave flux arising from the lowest order quadrupole formula, that is the OPN 

order flux, leads to an acceleration of order 2.5PN in the equations-of-motion. This far-zone 

computation of the flux requires a control of the dynamics, or acceleration, to only Newtonian 

accuracy. The lowest order GW phasing in the adiabatic approximation uses only the leading 

terms in the energy (Newtonian) and flux (quadrupolar) functions. For higher order phasing, 

the energy and flux functions are retained to the same relative PN orders. For example, at 3PN 

phasing, both the energy and flux functions are given to the same relative 3PN order beyond the 

leading Newtonian order. We refer to this usual physical treatment of the phasing of GWs com­

puted in the adiabatic approximation, and used in the current LIGO/Vitgo/GEO/TAMA searches 

for the radiation from inspiralling compact binaries, as the standard adiabatic approximation. 

We will denote the nPN standard adiabatic approximant as T( E^ ,  F̂n), where [p] denotes the 

integer part of p.

In the adiabatic approximation, we assume the system evolves through a series of quasicir­

cular orbits, for which the change in the orbital frequency is small over the orbital period. In this 

regime, we are justified in determining the evolution of the inspiral by using the energy balance 

equation, E =  — ? .  As a prelude to go beyond the standard adiabatic approximation, let us con­

sider the phasing of the waves in terms of the equations of motion of the system. To this end, 

it is natural to order the PN approximation in terms of its dynamics or acceleration. From the 

view point of the dynamics, the leading order standard adiabatic approximation is equivalent 

to using the OPN (corresponding to OPN conserved energy) and 2.5PN (corresponding to the 

Newtonian OPN flux) terms in the acceleration ignoring the intervening 1PN and 2PN terms. A 

complete, mathematically consistent treatment of the acceleration, however, should include all 

PN terms in the acceleration up to 2.5PN, without any gaps. We refer to the dynamics of the 

binary, and the resulting waveform, arising from the latter as the OPN complete non-adiabatic 

approximation. In contrast, the waveform arising from the former choice, with gaps in the 

acceleration at 1PN and 2PN, is referred to as the OPN standard non-adiabatic approximation. 

Extension to higher-order phasing is obvious. At 1PN the standard non-adiabatic approximation 

would involve acceleration terms at orders OPN, 1PN, 2.5PN and 3.5PN, whereas the complete 

non-adiabatic would additionally involve the 2PN and 3PN acceleration terms.
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Finally, we propose a simple extension of the above construction to generate a new class of 

approximants in the adiabatic regime. To understand the construction let us examine the lowest 

order case. Given the OPN flux (leading to an acceleration at 2.5PN), one can choose the energy 

function at 2PN (equivalent to 2PN dynamics) instead of the standard choice OPN (equivalent 

to OPN or Newtonian dynamics). This is the adiabatic analogue of the complete non-adiabatic 

approximant3. Extension to higher PN orders follows naturally. For instance, corresponding to 

the flux function at 1PN (1.5PN), the dissipative force is at order 3.5PN (4PN), and, therefore, 

the conservative dynamics, and the associated energy function, should be specified up to order 

3PN (4PN). In general, given the flux at nPN-order, a corresponding complete adiabatic approx­

imant is constructed by choosing the energy function at order [n +  2.5]PN, where as mentioned 

before, [p] denotes the integer part of p. We refer to the dynamics of the binary and the resulting 

waveform arising from such considerations, as the complete adiabatic approximation. We will 

denote the nPN complete adiabatic approximant as T(E^n+2 ,s\, !Fn)-

Before moving ahead the following point is worth emphasizing: The standard adiabatic 

phasing is, by construction, consistent in the relative PN order of its constituent energy and flux 

functions, and thus unique in its ordering of the PN terms. Consequently, one can construct 

different inequivalent, but consistent, approximations as discussed in Ref. [23] by choosing to 

retain the involved functions or re-expand them. The complete adiabatic phasing, on the other 

hand, is constructed so that it is consistent in spirit with the underlying dynamics, or accelera­

tion, rather than with the relative PN orders of the energy and flux functions. Consequently, it 

has a unique meaning only when the associated energy and flux functions are used without any 

further re-expansions when working out the phasing formula. As a result, though the complete 

non-adiabatic approximant is more consistent than the standard non-adiabatic approximant in 

treating the PN accelerations, in the adiabatic case there is no rigorous sense in which one can 

claim that either of the approximants is more consistent than the other. The important point, 

as we shall see is that, not only are the two approximants not the same but the new complete 

adiabatic approximants are closer to the exact solution than the standard adiabatic approximants.

In our view, these new approximants should be of some interest. They are simple general­

izations of the standard adiabatic approximants coding information of the PN dynamics beyond

3In this case one may also choose the energy function to 3PN accuracy and construct a complete approximant 
leading to 3PN acceleration
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the standard approximation without the need for numerical integration of the equations of mo­

tion. They should be appropriate approximants to focus on when one goes beyond the adiabatic 

picture and investigates the differences stemming from the use of more complete equations of 

motion (see Section 2.3).

In the case of comparable mass binaries, the energy function is currently known up to 3PN 

order and hence it would be possible to compute the complete adiabatic phasing of the waves to 

only 1PN order. One is thus obliged in practice to follow the standard adiabatic approximation to 

obtain the phasing up to 3.5PN order. Consequently, it is a relevant question to ask how ‘close’ 

are the complete and standard adiabatic approximants. The standard adiabatic approximation 

would be justified if we can verify that it produces in most cases a good lower bound to the 

mathematically consistent, but calculationally more demanding, complete adiabatic approxima­

tion. In this Chapter we compare the standard and complete models by explicitly studying their 

overlaps with the exact waveform which can be computed in the adiabatic approximation of a 

test mass motion in a Schwarzschild spacetime. The availability, in this case, of the exact (nu­

merical) and approximate (analytical) waveforms to as high a PN order as (v/c)n , allows one 

to investigate the issue exhaustively, and provides the main motivation for the present analysis. 

Assuming that the comparable mass case is qualitatively similar and a simple q-distortion of the 

test mass case would then provide a plausible justification for the standard adiabatic treatment 

of the GW phasing employed in the literature4.

2.1.3 Non-adiabatic inspiral

The phasing formulas derived under the various adiabatic approximation schemes assume that 

the orbital frequency changes slowly over each orbital period. In other words, the change in fre­

quency A/  over one orbital period P is assumed to be much smaller than the orbital frequency 

/  =  P~l . Denoting by f  the time-derivative of the frequency, the adiabatic approximation is 

equivalent to the assumption that A/  =  f P  < /  or f / f 2 <IC 1. This assumption becomes some­

what weaker, and it is unjustified to use the approximation E = — J , when the two bodies are 

quite close to each other. Buonanno and Damour [61, 24] introduced a non-adiabatic approach

4Note, however, that the view that the comparable mass case is just a r|-distortion of the test mass approximation 
is not universal. In particular, Blanchet [60] has argued that the dynamics of a binary consisting of two bodies of 
comparable masses is very different from, and possibly more accurately described by post-Newtonian expansion 
than, the test mass case.
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Figure 2.1: Various T-approximants of Newton-normalized (v-derivative of) energy function 
Ej(v)/E^(v)  (left), and flux function ^ t (v ) /^ (v )  (right) in the test mass limit along with the 
exact functions (denoted by X). Also plotted is the amplitude spectral density (per \/Hz) of 
Initial LIGO noise in arbitrary units.

to the two-body problem called the effective one-body (EOB) approximation. In this approxi­

mation one solves for the relative motion of the two bodies using an effective Hamiltonian with 

a dissipative force put-in by hand. EOB allows to extend the dynamics beyond the adiabatic 

regime, and the last stable orbit, into the plunge phase of the coalescence of the two bodies 

[24, 62,63, 64].

Recently, Buonanno, Chen and Vallisneri [65] have studied a variant of the non-adiabatic 

model but using the effective Lagrangian constructed in the post-Newtonian approximation. We 

shall use both the standard and complete non-adiabatic Lagrangian models in this study and see 

how they converge to the exact waveform defined using the adiabatic approximation5.

2.1.4 W hat this study is about

In our study we will use the effectualness and faithfulness (see below) to quantify how good the 

various approximation schemes are. There are at least three different contexts in which one can 

examine the performance of an approximate template family relative to an exact one. Firstly, one 

can think of a mathematical family of approximants and examine its convergence towards some 

exact limit. Secondly, one can ask whether this mathematical family of approximants correctly 

represents the GWs from some physical system. Thirdly, how does this family of approximate 

templates converge to the exact solution in the sensitive bandwidth of a particular GW detec­

tor. In the context of GW data analysis, the third context will be relevant and studied in this 

Chapter. Although there is no direct application to GW data analysis, equally interesting is the

5See Sec. 2.3 for a caveat in this approach.
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mathematical question concerning the behavior of different approximations, and the waveforms 

they predict, in the strongly non-linear regime of the dynamics of the binary, which is also stud­

ied in this Chapter. The latter obviously does not require the details of the detector-sensitivity 

and it is enough to study the problem assuming a flat power spectral density (i.e. a white-noise 

background) for the detector noise.

To summarize, our approach towards the problem will be two-pronged. First, we will study 

the problem as a general mathematical question concerning the nature of templates defined using 

PN approximation methods. We shall deal with four families of PN templates -  the standard 

adiabatic, complete adiabatic, standard non-adiabatic and complete non-adiabatic (in particular, 

Lagrangian-based) approximants -  and examine their closeness, defined by using effectualness 

and faithfulness, to the exact waveform defined in the adiabatic approximation. Since this issue 

is a general question independent of the characteristics of a particular GW detector, we first 

study the problem assuming the white-noise case. Having these results, we then proceed to see 

how and which of these results are applicable when applied to specific detectors. To this end, 

we study the case of the Initial LIGO, Advanced LIGO, and Virgo detectors. During the course 

of this study, we also attempt to assess the relative importance of improving the accuracy of 

the eneigy and flux functions by studying the overlaps of the PN templates constructed from 

different orders of energy and flux functions with the exact waveform. It should be kept in mind 

that this work is solely restricted to the inspiral part of the signal and neglects the plunge and 

quasi-normal mode ringing phases of the binary [6 6 , 67, 24, 23, 65, 6 8 , 69].

2.1.5 Effectualness and Faithfulness

In order to measure the accuracy of our approximate templates we shall compute their overlap 

with a fiducial exact signal. We shall consider two types of overlaps [70, 71, 23, 72]. The 

first one is the faithfulness which is the overlap of the approximate template with the exact 

signal computed by keeping the intrinsic parameters (e.g. the masses of the two bodies) o f both 

the template and the signal to be the same but maximizing over the extrinsic (e.g. the time- 

of-arrival and the phase at that time) parameters. The second one is the effectualness which 

is the overlap of the approximate template with the exact signal computed by maximizing the 

overlap over both the intrinsic and extrinsic parameters. Faithfulness is a measure of how good
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is the template waveform in both detecting a signal and measuring its parameters. However, 

effectualness is aimed at finding whether or not an approximate template model is good enough 

in detecting a signal without reference to its use in estimating the parameters. As in previous 

studies, we take overlaps greater than 96.5% to be indicative of a good approximation.

In the next section we study the test-mass waveforms in the adiabatic approximation. We 

discuss the construction of the exact energy and flux functions as well as the respective T- 

approximants. The overlaps of various standard adiabatic and complete adiabatic approximants 

are also compared in this Section. Section III deals with the non-adiabatic approximation. Sec­

tion IV explores the extension of the results in the comparable mass case. It presents the energy 

and flux functions which are the crucial inputs for the construction of the fiducial exact wave­

form as well as the approximate waveforms followed by a discussion of the results. In the last 

section we summarize our main conclusions.

One of the main conclusions of this Chapter is that the effectualness of the test-mass ap­

proximants significantly improves in the complete adiabatic approximation at PN orders below 

3PN. However, standard adiabatic approximants of order > 3PN are nearly as good as the com­

plete adiabatic approximants for the construction of effectual templates. In the comparable mass 

case the problem can be only studied at the lowest two PN orders. No strong conclusions can be 

drawn as in the test mass case. Still, the trends indicate that the standard adiabatic approximation 

provides a good lower bound to the complete adiabatic approximation for the construction of 

both effectual and faithful templates at PN orders > 1.5PN. From the detailed study of test-mass 

templates we also conclude that, provided the comparable mass case is qualitatively similar to 

the test mass case, neither the improvement of the accuracy of energy function from 3PN to 

4PN nor the improvement of the accuracy of flux function from 3.5PN to 4PN will result in a 

significant improvement in effectualness in the comparable mass case. As far as faithfulness is 

concerned, it is hard to reach any conclusion. To achieve the target sensitivity of 0.965 in effec­

tualness corresponding to a 1 0 % loss in the event-rate, standard adiabatic approximants of order 

2PN and 3PN are required for the (10Afo , 10Mq) and (1.4A/©, 1.4M0 ) binaries, respectively, 

when restricting to only the inspiral phase. (Be warned that this is not a good approximation in 

the BH-BH case since the approach to the plunge and merger lead to significant differences.)
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2.1.6 Noise spectra of the interferometers

The noise power spectral density Initial LIGO, Virgo and Advanced LIGO are given in terms of 

a dimensionless frequency x = / / / o  by

•  Initial LIGO [23]

Sh(f)  =  9 x 1 0 " 46 [(4 .49jc)-56 +  0 .16jc-452 + 0.52 +  0.32*2] (2.5)

where /o =  150 Hz.

• Virgo [231

S„(f) = 3.24 x KT46 [(6.23*) “ 5 +  2* _1 +  1 +JC2] (2.6)

where /o — 500 Hz.

•  Advanced LIGO [19, 104]

Sn(f )  = 10- 49 

where /o =  215 Hz.

—4.14 * - 2  , , , ,+  111
l + * 2/ 2

(2.7)

2.2 Test mass waveforms in the adiabatic approximation

Our objective is to compare the effectualness (i.e larger overlaps with an exact signal) and faith­

fulness (i.e. smaller bias in the estimation of parameters) of the standard adiabatic T( E^ , f f n) 

and complete adiabatic T(E[n+2 .s],!Fn) approximants. As a by-product of this study, we would 

also like to have an understanding of the the relative importance of improving the accuracy of 

the energy function and flux function. Thus, what we will do is to take all possible combinations 

of T-approximants6 of energy and flux functions, construct PN templates and calculate the over­

lap of these templates with the exact waveform. In all cases, the exact waveform is constructed 

by numerically integrating the phasing formula in the time-domain [TaylorTl approximant, cf. 

Eqs. (2.1) and (2.2)]. The waveforms (both the exact and approximate) are all terminated at 

vjso =  1 / \ / 6 ,  which corresponds to F\so — 43 Hz for the (1A/Q, 100A/Q) binary, F\so ~  86  Hz for

6 We follow [23J in denoting the precise scheme used for constructing the approximant.
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Figure 2.2: Effectualness (left panels) and faithfulness (right panels) of various test mass Tay­
lorTI and TaylorFI templates in detecting a signal from a (lA/0 ,10A/Q) binary in white-noise. 
Different lines in the panels correspond to different orders of the flux function. Each line shows 
how the overlaps are evolving as a function of the accuracy of the energy function. Standard 
adiabatic approximants T(E[n\, !Fn) are marked with thick dots. All values are max-max over­
laps.

the (lAf0 ,5OAf0 ) binary and F\so — 399 Hz for the (lA/0 ,1OM0 ) binary7. Also, we take the 

noise power spectral density (PSD) of the detector to be infinite below a lower frequency cut-off 

Flow =  20 Hz.

As mentioned in Section 2.1.2, it is possible to create different approximants by re-expanding 

the functions involved in the phasing formula. However, the complete adiabatic approximant is 

motivated by the desire to be consistent with the underlying dynamics of the system. This con­

sistency is achieved by identifying terms in the PN expansions of the energy and flux functions, 

with terms in the PN expansion of the acceleration of the system. This only has a unique mean­

ing if the rational function E '/ J  in the phasing formula is used without any further re-expansion. 

Therefore, in this study, to avoid any ambiguities arising from the use of unequal orders of the 

energy and flux functions in the phasing formula, we only look at the aforementioned TaylorTI 

and TaylorFI approximants.

7Here, vlso is the velocity at the last stable circular orbit of Schwarzschild geometry having the same mass as the 
total mass m\ +  mi  o f the binary (we adopt units in which c =  G  =  1) and F\so is the GW frequency corresponding 
to it.
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Figure 2.3: As in Fig. 2.2 except that the signal corresponds to a (1A/©,5OM0 ) binary. 

2.2.1 The energy function

In the case of a test-particle m2 moving in circular orbit in the background of a Schwarzschild 

black hole of mass m\, where m2 /m \ —► 0, the energy function E{x) in terms of the invariant 

argument x =  v2 is given by

£exact(* ) =  T1 7= ^  , (2 ’8 >V 1 — 3jc

The associated v-derivative entering the phasing formula is

^exact(v ) — 2v
dE(x)

dx
(2 .9 )

W  nV(l-3v2)3/2'

We use the above exact E'{y) to construct the exact waveform in the test-mass case. In order to 

construct various approximate PN templates, we Taylor-expand £exact(v) anc* truncate it at the 

necessary orders.

£ ? /w M  =  ~ T1V
3v2 81 v4 675 v6 19845v8
~ 2  8  16 128

137781 v10 1852389v12 12196899v14 +  16 ' (2 . 10)
256 1024 2048

Different T-approximants of the energy function E'T(v) along with E 'exact(v) are plotted in Fig. 2.1a.
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2.2.2 The flux function

In the test-particle limit, the exact gravitational-wave flux has been computed numerically with 

good accuracy [33]. We will use this flux function (see Fig. 2.16), along with the energy function 

given by Eq. (2.9), to construct an exact waveform in the test-mass case. In the test-particle limit, 

the GW flux is also known analytically to 5.5PN order from black hole perturbation theory [36] 

and given by

7 ( V) = f  t,V ° ( x  Bmv" ') ln v + 0 (v12)
k = 0 \ m = 6 /

(2 . 11)

where the various coefficients ,4* and are [36],

4 0 =  A, = 0 .  A2 = ™ , A i = *n,  *  =  *  =
336 9072 672

6643739519 167t2 1712y 17121n4 _  1628571
Af> “  69854400 + ”1  105 105 ' Al  ~  504 ’

323105549467 232597 y 1369ti2 39931 In 2 47385 In 3
Ag =  -------- — — -  +

A g  =

3178375200 4410 126 294 1568
26597866751971 6848y7t 136967tln2

745113600 105 105 ’
_  2500861660823683 916628467y 424223tt2 83217611 In 2 473851n3

10 “  2831932303200 +  7858620 6804 1122660 +  196 ’
8399309750401 n 177293yTt 8521283Jtln2 1421557tln3 _  1712

Au  101708006400 +  1176 +  17640 784 ’
„ „ 232597 „ -684871 „ 916628467 „ 177293ti ^ ^

B~i — 0, = ----------- , Bg = ------------ , B in — ---------------1 B\\ -—------------- . (2.12)
8 4410 105 7858620 ’ 1176

We will use the energy and flux functions given by Eq. (2.10) -  Eq. (2.12) to construct various 

approximate templates by truncating the expansions at the necessary order. The different T- 

approximants of the flux function ^Fr(v) along with the (numerical) exact flux act(v ) are 

plotted in Fig. 2.1 b.

2.2.3 Comparison o f standard and com plete adiabatic approximants

We present the results of our study in the test mass limit in four parts. In the first part we dis­

cuss our conclusions on the mathematical problem of the closeness of the standard adiabatic 

and complete adiabatic template families with the family of exact waveforms in the adiabatic 

approximation. In the next part we exhibit our results in the case of the Initial LIGO, Advanced
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Figure 2.4: As in Fig. 2.2 except that the signal corresponds to a (1A/©, lOOAf©) binary.

LIGO and Virgo detectors. In the third part we compare the relative importance of improv­

ing the accuracy of the energy and flux functions. Finally, in the fourth part we compare the 

total number of GW cycles and the number of useful cycles accumulated by various standard 

adiabatic and complete adiabatic approximants.
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Table 2.1: Effectualness of standard adiabatic T ( E ^ , y rn) and complete adiabatic T(E[n+2.5], 7n) templates in the test mass limit. Overlaps are calculated
assuming a flat spectrum for the detector noise (white-noise).

(1M O,1OM0 ) (1A /q , 50M q ) ( lM 0 ,lOOAf0 )
TaylorTI TaylorFI TaylorTI TaylorFI TaylorTI TaylorFI

Order (n) S C S C S c S C S C S C
OPN 0.6250 0.8980 0.6212 0.8949 0.5809 0.9726 0.5917 0.9644 0.8515 0.9231 0.8318 0.9017
1PN 0.4816 0.5119 0.4801 0.5086 0.4913 0.9107 0.4841 0.5871 0.8059 0.9169 0.7874 0.8980

1.5PN 0.9562 0.9826 0.9448 0.9592 0.9466 0.9832 0.9370 0.9785 0.8963 0.9981 0.7888 0.9788
2PN 0.9685 0.9901 0.9514 0.9624 0.9784 0.9917 0.9719 0.9872 0.9420 0.9993 0.9178 0.9785

2.5PN 0.9362 0.9924 0.9298 0.9602 0.7684 0.9833 0.7326 0.9772 0.8819 0.9858 0.8610 0.9730
3PN 0.9971 0.9991 0.9677 0.9713 0.9861 0.9946 0.9821 0.9886 0.9965 0.9959 0.9756 0.9792

3.5PN 0.9913 0.9996 0.9636 0.9688 0.9902 0.9994 0.9858 0.9914 0.9885 1.0000 0.9690 0.9800
4PN 0.9937 0.9973 0.9643 0.9663 0.9975 0.9996 0.9903 0.9914 0.9968 0.9992 0.9769 0.9795

4.5PN 0.9980 0.9999 0.9671 0.9690 0.9967 1.0000 0.9902 0.9913 0.9996 1.0000 0.9787 0.9801
5PN 0.9968 0.9979 0.9661 0.9667 0.9994 0.9994 0.9913 0.9914 0.9992 0.9991 0.9790 0.9797



Table 2.2: Faithfulness of standard adiabatic T { E ^ % )  and complete adiabatic T(E[n+2.5], !Fn) templates in the test mass limit. Overlaps are calculated
assuming a flat spectrum for the detector noise (white-noise).

(1A/o , 50A/g ) (1A/g , 100Mo )
TaylorTI TaylorFI TaylorTI TaylorFI TaylorTI TaylorFI

O rd e r (n) S C S C S C S C S C S C

OPN 0.6124 0.1475 0.6088 0.1446 0.2045 0.4683 0.2104 0.4750 0.2098 0.4534 0.2208 0.4641
1PN 0.1322 0.1433 0.1350 0.1461 0.1182 0.1446 0.1236 0.1508 0.1395 0.1901 0.1432 0.1994

1.5PN 0.5227 0.4005 0.5241 0.3967 0.3444 0.3947 0.3505 0.3866 0.3260 0.7869 0.3399 0.7700
2PN 0.7687 0.5707 0.7680 0.5689 0.5518 0.6871 0.5535 0.6827 0.4377 0.8528 0.4506 0.8486

2.5PN 0.4735 0.5268 0.4748 0.5278 0.2874 0.3561 0.2933 0.3625 0.2787 0.4001 0.2918 0.4133
3PN 0.8629 0.8165 0.8932 0.8277 0.9420 0.6317 0.9334 0.6222 0.7579 0.8407 0.7570 0.8194

3.5PN 0.9309 0.9979 0.9194 0.9609 0.6689 0.9681 0.6695 0.9632 0.5740 0.9425 0.5805 0.9383
4PN 0.9174 0.9303 0.9087 0.9176 0.6693 0.7227 0.6701 0.7230 0.6129 0.7112 0.6236 0.7159

4.5PN 0.9525 0.9744 0.9330 0.9415 0.7829 0.9242 0.7827 0.9229 0.7286 0.9689 0.7308 0.9632
5PN 0.9370 0.9392 0.9225 0.9241 0.7275 0.7417 0.7276 0.7420 0.6972 0.7409 0.7027 0.7500



White-noise case

First, we explore the general question of the closeness of the standard adiabatic and complete 

adiabatic templates to the exact waveform assuming flat power spectral density for the detector 

noise. Fig. 2.2-2.4 show the effectualness and faithfulness of various PN templates for three 

archetypal binaries with component masses (lA/0 ,10Afo ), (lAf©,5OA/0 ) and (1A/., lOOAf.), 

respectively8.

The central result of this study is that complete adiabatic approximants bring about a re­

markable improvement in the effectualness fo r  all systems at low PN orders (< 3PN). The com­

plete adiabatic approximants converge to the adiabatic exact waveform at lower PN orders than 

the standard adiabatic approximants. This indicates that at these orders general relativistic cor­

rections to the conservative dynamics of the binary are quite important contrary to the assump­

tion employed in the standard post-Newtonian treatment of the phasing formula. On the other 

hand, the difference in effectualness between the standard and complete adiabatic approximants 

at orders greater than 3PN is very small. Thus, if  we have a sufficiently accurate (order > 3PN) 

T-approximant o f the flux function, the standard adiabatic approximation is nearly as good as 

the complete adiabatic approximation for construction o f effectual templates. Thus at all orders 

the standard adiabatic approximation provides a good lower bound to the complete adiabatic 

approximation for the construction of effectual templates.

The faithfulness of both the approximants fluctuates as we go from one PN order to the next 

and is generally much smaller than our target value of 0.965. The fluctuation continues all the 

way up to 5PN order reflecting the oscillatory approach of the flux function to the exact flux 

function at different PN orders. It is again interesting to note that complete adiabatic approxi­

mants are generally more faithful than the standard adiabatic approximants. It is certainly worth 

exploring, in a future study, the anomalous cases where it performs worse than the standard.

Noise spectra of specific detectors

Having addressed the general question concerning the closeness of standard adiabatic and com­

plete adiabatic templates to the exact waveforms, we now compare the overlaps in the case of 

specific detectors. The effectualness and faithfulness of various test mass PN templates for the

8 For the sake of convenience we also tabulate the results shown in Fig. 2 .2-2.4 in Tables 2.1 and 2.2.
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Figure 2.5: Effectualness (left panels) and faithfulness (right panels) of various test mass Tay­
lorTI and TaylorFI templates in detecting a signal from a (1M0 , lOA/0 ), calculated for the 
Initial LIGO noise PSD. Different lines in the panels correspond to different orders of the flux 
function. Each line shows how the overlaps are evolving as a function of the accuracy of the 
energy function. Standard adiabatic approximants T ( E ^ f rn) are marked with thick dots. All 
values are max-max overlaps.

(lA/0 , lOA/0 ) binary and (lM 0 ,5OA/0 ) binary are plotted in Fig. 2.5 and Fig. 2.6, respectively, 

and are shown in Tables 2.3,2.4 and 2.5. As in the case of white noise, here too we see that stan­

dard adiabatic approximants of order less than 3PN have considerably lower overlaps than the 

corresponding complete adiabatic approximants and the difference in overlaps between standard 

adiabatic and complete adiabatic approximants of order greater than 3PN is very small. Thus, if 

we have a sufficiently accurate (order > 3PN) T-approximant of the flux function, we conclude 

that the standard adiabatic approximation provides a good lower bound to the complete adia­

batic approximation for the construction of effectual templates. The plots and Table 2.5 indicate 

that the faithfulness of PN templates greatly improves in a complete adiabatic treatment for all 

orders studied in the case of Initial LIGO, and for the vast majority of orders in the case of 

Advanced LIGO and Viigo. However, for the latter two detectors, as in the white noise case, 

there were certain orders for which this was not the case.

We also calculate the bias in the estimation of parameters while maximizing the overlaps 

over the intrinsic parameters of the binary. The (percentage) bias in the estimation of the param-
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Figure 2.6: As in Fig. 2.5 except that the signal corresponds to a (lAf0 ,5OA/0 ) binary, 

eter p is defined as

c p —
_  \Pmax P \ x 100, (2.13)

where pmax is the value of the parameter p which gives the maximum overlap. Along with 

the maximized overlaps (effectualness), the bias in the estimation of the parameters M and r] 

are also quoted in Tables 2.3, 2.4. It can be seen that at lower PN orders (order < 3PN) the 

complete adiabatic approximants generally show significantly lower biases, although there are 

some anomalous cases where the standard adiabatic approximant shows lower biases than the 

complete adiabatic approximant. Even at higher PN orders complete adiabatic approximants are 

generally less-biased than the corresponding standard adiabatic approximants.

Accuracy of energy function Vs. flux function

In most of the cases, TaylorTI and TaylorFI templates show trends of smoothly increasing 

overlaps as the accuracy of the energy function is increased keeping the accuracy of the flux 

function constant. This is because the T-approximants of the energy function smoothly converge 

to the exact energy as we go to higher orders (see Fig. 2.1a). On the other hand, if we improve 

the accuracy of the flux function for a fixed order of energy, the overlaps do not show such a 

smoothly converging behavior. This can be understood in terms of the oscillatory nature of the 

T-approximarits of the flux function. For example, templates constructed from 1PN and 2.5PN
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Table 2.3: Effectualness of standard adiabatic T{E\n^%) and complete adiabatic
T (£[,1+2.5] ? IFh) approximants in the test mass limit. Overlaps are calculated for the Initial LIGO, 
Advanced LIGO, and Virgo noise spectra. Percentage biases Gm and in determining param­
eters M and r| are given in brackets.

(1A/0 ,1OM0)
TaylorTI TaylorFI

Order (n) S C S C
Initial LIGO

OPN 0.5910(12,5.7) 0.9707 (36,45) 0.5527 (31,28) 0.8395 (48,53)
1PN 0.5232 (22, 105) 0.8397(125,69) 0.4847(18,9.7) 0.8393(147,74)

1.5PN 0.9688 (52,51) 0.9887(8.3, 15) 0.8398 (61,57) 0.8606 (4.7, 10)
2PN 0.9781 (18,25) 0.9942 (0.4,0.6) 0.8485 (32,40) 0.8693(15,22)

2.5PN 0.9490 (96, 68) 0.9923 (26, 32) 0.8963(123,75) 0.9071 (49,50)
3PN 0.9942 (0.3, 1.1) 0.9989 (3.7, 6.2) 0.8713(16,23) 0.8822(12, 18)

3.5PN 0.9940(6.9, 11) 0.9998 (0.6, 1.4) 0.8685 (23,31) 0.8834(17,25)
4PN 0.9974(6.2, 11) 0.9996 (3.9, 6.9) 0.8746 (23, 30) 0.8817(21,28)

4.5PN 0.9988 (3.3,5.5) 1.0000 (0.8, 1.6) 0.8795(19,27) 0.8868(18,26)
5PN 0.9992 (4.0, 6.9) 0.9997 (3.5, 5.7) 0.8792 (21,29) 0.8825 (20,28)

Advanced LIGO
OPN 0.4281(9.18,2.63) 0.8960(31.7,42.1) 0.4061(8.55,4.62) 0.7264(32.5,42.4)
1PN 0.3498(28.2,8.90) 0.7258( 156, 75.2) 0.3378(8.82,17.1) 0.7336(166,76.9)

1.5PN 0.9010(47.9,48.8) 0.9653( 11.1,20.8) 0.7496(50.9,50.5) 0.7704(2.91,3.61)
2PN 0.9266(13.5,19.9) 0.9814(2.55,4.18) 0.7529(16.2,23.2) 0.7767(9.09,15.2)

2.5PN 0.8917(88.5,66.0) 0.9913(25.7,31.7) 0.7209(76.4,62.0) 0.8180(43.2,45.8)
3PN 0.9913(0.73,1.56) 0.9989(3.91,7.34) 0.7842(10.1,15.9) 0.8023(4.45,7.35)

3.5PN 0.9816(4.45,7.35) 0.9994( 0.36,0.33) 0.7788(14.1,20.3) 0.7996(9.00,14.3)
4PN 0.9895(4.18,7.13) 0.9970( 3.00,5.28) 0.7842(14.3,21.2) 0.7944(11.4,16.8)

4.5PN 0.9965(2.09,3.62) 0.9999( 0.82, 1.63) 0.7943(10.7,16.4) 0.8031(10.1,15.1)
5PN 0.9954(2.91,5.20) 0.9977(2.55,4.01) 0.7924(11.4,16.8) 0.7958(11.5,16.9)

Virgo
OPN 0.3894(42.0,41.2) 0.7256(0.82,3.81) 0.3699(10.7,11.3) 0.7275(16.6,27.6)
1PN 0.2956(10.9,6.51) 0.6876(187,80.1) 0.2926(1.18,21.5) 0.6951(191,80.4)

1.5PN 0.8474(31.2,36.6) 0.9487(11.5,22.2) 0.7688(31.5,36.8) 0.8079(10.2,18.8)
2PN 0.8933(9.91,14.9) 0.9711(3.00,4.61) 0.7855(10.0,15.0) 0.8197(0.73,0.66)

2.5PN 0.8179(68.7,58.5) 0.9864(25.6,31.7) 0.7581(67.6,58.2) 0.8375(30.9,36.5)
3PN 0.9845(0.64,1.48) 0.9970(3.82,7.25) 0.8312(2.18,3.70) 0.8441(0.09,0.08)

3.5PN 0.9722(4.27,7.20) 0.9991(0.36,0.33) 0.8222(6.73,10.9) 0.8397(4.00,6.98)
4PN 0.9829(4.09,7.06) 0.9955(2.91,5.20) 0.8266(6.73,10.9) 0.8339(6.27,9.66)

4.5PN 0.9937(2.00,3.54) 0.9999(0.82,1.63) 0.8343(5.45,9.02) 0.8418(5.00,7.79)
5PN 0.9920(3.00,5.28) 0.9967(2.64,4.09) 0.8323(6.27,9.66) 0.8353(6.00,9.45)
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Table 2.4: Same as Table 2.3 except that the values corresponds to the (1M0 ,5OM. ) binary.

(1A/0 ,5QA/O)
TaylorTI TaylorFI

Order (n) S C S C
Initial LIGO

OPN 0.8748 (24, 29) 0.9471 (19, 14) 0.8294 (21,34) 0.8974(17, 13)
1PN 0.8101 (28, 104) 0.9392(19,40) 0.7662 (23, 116) 0.8898(18,43)

1.5PN 0.9254 (21,4.1) 0.9996 (6.7, 20) 0.8772(18,0.2) 0.9590 (6.4,20)
2PN 0.9610(18, 16) 0.9993 (7.5, 16) 0.9113(16, 14) 0.9583 (7.7, 17)

2.5PN 0.9104(21,6.9) 0.9940 (8.3,0.7) 0.8630(19,8.7) 0.9574(9.1, 1.9)
3PN 0.9968(11,21) 0.9992 (2.6, 10) 0.9500(11,21) 0.9648 (2.7, 11)

3.5PN 0.9923(13, 19) 0.9997 (2.4, 5.2) 0.9445(12, 18) 0.9679 (2.8,6.5)
4PN 0.9979(8.8, 13) 0.9995 (3.5,4.3) 0.9560 (8.9,14) 0.9672 (3.9,5.6)

4.5PN 0.9995 (7.1, 14) 1.0000(0.9, 1.9) 0.9590 (7.0, 14) 0.9698(1.5,3.4)
5PN 0.9994 (5.2,7.7) 0.9990 (2.6, 2.4) 0.9634 (5.9,10) 0.9690(3.4,5.1)

Advanced LIGO
OPN 0.6461(26.6,21.9) 0.8099(47.8,53.5) 0.6314(20.1,34.7) 0.7187(31.7,38.8)
1PN 0.6200(25.0,123) 0.7093(27.2,12.9) 0.6039(20.6,129) 0.6820(41.4,14.9)

1.5PN 0.6919(27.3,19.6) 0.9532(2.02,8.68) 0.6759(21.7,11.0) 0.9567(1.16,6.94)
2PN 0.8835(30.7,39.1) 0.9833(6.29,13.2) 0.7915(26.4,33.9) 0.9751(5.02,10.3)

2.5PN 0.6720(25.9,6.17) 0.9194(17.2,21.2) 0.6573(20.2,3.10) 0.9432(18.8,23.1)
3PN 0.9645(8.43,15.8) 0.9740(1.39,1.38) 0.9630(7.20,13.9) 0.9738(1.47,1.46)

3.5PN 0.9875(14.0,22.5) 0.9987(2.00,3.85) 0.9693(13.6,22.2) 0.9854(1.71,3.57)
4PN 0.9967(9.49,15.7) 0.9973(4.37,6.93) 0.9799(9.41,15.7) 0.9859(4.67,8.13)

4.5PN 0.9932(6.14,11.2) 1.0000(0.92,1.87) 0.9799(5.37,9.67) 0.9868(0.80,1.75)
5PN 0.9986(5.69,9.93) 0.9960(3.55,6.21) 0.9843(5.82,10.0) 0.9866(3.86,6.48)

Virgo
OPN 0.6004(50.4,25.2) 0.8689(50.5,55.7) 0.5878(44.2,17.2) 0.8577(50.8,55.7)
1PN 0.5498(51.4,30.0) 0.7217(51.6,28.4) 0.5328(52.6,23.9) 0.7190(59.3,36.1)

1.5PN 0.7308(56.0,52.7) 0.9619(1.06,6.85) 0.7652(68.1,60.3) 0.9664(0.67,5.52)
2PN 0.9291(34.4,42.9) 0.9854(5.39,11.6) 0.9141(34.4,42.9) 0.9829(4.82,10.1)

2.5PN 0.6579(48.5,40.9) 0.9446(19.1,23.2) 0.6551(57.1,48.6) 0.9591(19.5,24.3)
3PN 0.9697(7.41, 14.1) 0.9818(1.47,1.46) 0.9725(6.71,12.6) 0.9824(1.78,1.78)

3.5PN 0.9885(13.7,22.3) 0.9980(1.90,3.76) 0.9794(13.3,21.1) 0.9912(1.53,3.41)
4PN 0.9971(9.45,15.7) 0.9973(4.35,6.92) 0.9878(9.41,15.7) 0.9915(4.71,8.16)

4.5PN 0.9926(6.04,11.2) 1.0000(0.90,1.85) 0.9874(5.25,9.57) 0.9920(0.82,1.77)
5PN 0.9987(5.73,9.96) 0.9960(3.53,6.19) 0.9906(5.84,10.1) 0.9918(3.98,6.59)
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Table 2.5: Faithfulness of standard adiabatic T { E ^ f n) and complete adiabatic 7’(£,[n+2.5]» Fn) 
templates in the test mass limit. Overlaps are calculated for the Initial LIGO, Advanced LIGO 
and Virgo noise spectra.___________________________________________________________

(lA*o, 10 A/0 ) (lA/0 ,5OA/0)
TaylorT 1 TaylorFI TaylorTI TaylorFI

Order (n) S C S C S C S C
Initial LIGO

OPN 0.2186 0.6272 0.2108 0.5879 0.2134 0.3498 0.2145 0.3593
1PN 0.1342 0.1615 0.1308 0.1563 0.1511 0.2196 0.1527 0.2210

1.5PN 0.3788 0.4492 0.3449 0.6471 0.2915 0.9223 0.2956 0.9195
2PN 0.7449 0.7633 0.6279 0.7782 0.3613 0.8157 0.3674 0.8318

2.5PN 0.3115 0.3970 0.2905 0.3532 0.2608 0.4233 0.2606 0.4161
3PN 0.9633 0.7566 0.7913 0.8297 0.7194 0.9686 0.7057 0.9323

3.5PN 0.8385 0.9984 0.6582 0.7464 0.4941 0.9273 0.5046 0.9442
4PN 0.8356 0.8909 0.6527 0.6725 0.5960 0.7934 0.5864 0.8131

4.5PN 0.9395 0.9851 0.6967 0.7195 0.7594 0.9644 0.7605 0.9614
5PN 0.8960 0.9129 0.6770 0.6821 0.7344 0.8350 0.7432 0.8579

Advanced LIGO
OPN 0.1456 0.4915 0.1454 0.4139 0.1608 0.2955 0.1630 0.2929
1PN 0.0853 0.1041 0.0821 0.0985 0.1159 0.1609 0.1169 0.1623

I.5PN 0.2711 0.3063 0.2626 0.4711 0.2187 0.6735 0.2212 0.6677
2PN 0.6998 0.6140 0.6280 0.6407 0.2765 0.8403 0.2768 0.8406

2.5PN 0.2143 0.2710 0.2108 0.2623 0.1961 0.3094 0.1985 0.3120
3PN 0.8889 0.5791 0.7593 0.7473 0.7252 0.6971 0.7257 0.6820

3.5PN 0.7476 0.9985 0.6210 0.7196 0.3852 0.9087 0.3868 0.9215
4PN 0.7314 0.8144 0.6099 0.6290 0.4404 0.5761 0.4414 0.5754

4.5PN 0.9001 0.9718 0.6564 0.6798 0.5714 0.9078 0.5657 0.9190
5PN 0.8273 0.8518 0.6357 0.6400 0.5303 0.6166 0.5260 0.6232

Virgo
OPN 0.1384 0.3644 0.1376 0.3188 0.1265 0.3881 0.1270 0.3900
1 PN 0.0682 0.0818 0.0679 0.0813 0.0887 0.1205 0.0891 0.1211

1.5PN 0.2524 0.2348 0.2517 0.3575 0.1859 0.5783 0.1858 0.5730
2PN 0.7451 0.4617 0.6941 0.5536 0.2514 0.8597 0.2525 0.8588

2.5PN 0.2003 0.2496 0.1984 0.2469 0.1612 0.2420 0.1602 0.2412
3PN 0.8339 0.5745 0.8012 0.7451 0.7978 0.6210 0.7990 0.6131

3.5PN 0.7684 0.9968 0.6901 0.7842 0.3821 0.9259 0.3836 0.9348
4PN 0.7501 0.7892 0.6778 0.6981 0.4024 0.5306 0.4030 0.5295

4.5PN 0.8753 0.9595 0.7239 0.7458 0.5298 0.9132 0.5309 0.9225
5PN 0.8033 0.8232 0.7048 0.7093 0.4968 0.5617 0.4962 0.5626
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flux functions can be seen to have considerably lower overlaps than the other ones. This is 

because of the poor ability of the 1PN and 2.5PN T-approximants to mimic the behavior of the 

exact flux function (see Fig. 2.1 b). This inadequacy of the 1PN and 2.5PN T-approximants is 

prevalent in both test mass and comparable mass cases. Hence it is not a good strategy to use 

the T-approximants at these orders for the construction of templates. On the other hand, 3.5PN 

and 4.5PN T-approximants are greatly successful in following the exact flux function in the test 

mass case, and consequently lead to larger overlaps.

We have found that in the test mass case if we improve the accuracy of energy function from 

3PN to 4PN, keeping the flux function at order 3PN, the increase in effectualness (respectively, 

faithfulness) is ~  0.32% (—16%). The same improvement in the energy function for the 3.5PN 

flux will produce an increase of ~  5.9% (—2.0%). On the other hand, if we improve the accuracy 

of flux function from 3.5PN to 4PN, keeping the energy function at order 3PN, the increase 

in effectualness (respectively, faithfulness) is ~  —0.070% (—12%) . The values quoted are 

calculated using the TaylorTI approximant for the (1A/©, 10A/©) binary for the Initial LIGO 

noise PSD. If the comparable mass case is qualitatively similar to the test mass case, this should 

imply that neither the improvement in the accuracy o f the energy function from 3PN to 4PN nor 

the improvement in the accuracy o f the flux function from 3.5PN to 4PN will produce significant 

improvement in the overlaps in the comparable mass case. The trends in the faithfulness are very 

different for different binaries, so it is difficult to make any statement about the improvement in 

faithfulness.

Number of gravitational wave cycles

The number of GW cycles accumulated by a template is defined as [71]

where (piso and (piow are the GW phases corresponding to the last stable orbit and the low fre-

some instantaneous frequency F (as usual, F is the time derivative of F). However, it has been 

noticed that [71], the large number fA(iot is not significant because the only really useful cycles 

are those that contribute most to the signal-to-noise ratio (SNR). The useful cycles are defined

(2.14)

quency cutoff, respectively, and N(F) = F 2/ F  is the instantaneous number o f cycles spent near
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as [71]

Useful =  ( / " S° 7 W( / ) )  > <Z15>

where w (/) =  a2 ( f ) / h 2 {f)- If Sn ( /)  is the two-sided PSD of the detector noise, /*,,(/) is defined 

by h2 {f)  =  /■$„(/), while a( f )  is defined by \H( f ) \~a( t f ) / [F( t f ) ] 1/ 2 where H( f )  is the Fourier 

transform of the time-domain waveform h(t) (See Eqs.(2.2) and (2.3)) and tf  is the time when 

the instantaneous frequency F{t) reaches the value /  of the Fourier variable.

The total numbers of GW cycles accumulated by various standard adiabatic T(E^,!Jr„) and 

complete adiabatic T(E[n+2 .s], ?,,) approximants in the test mass limit are tabulated in Table 2.6 

along with the number of useful cycles calculated for the Initial LIGO noise PSD. We use 

Eq.(2.4) to calculate F and numerically evaluate the integrals in Eq.(2.15) to compute the num­

ber of useful cycles. In order to compute the total number of cycles, we numerically integrate 

the integral in Eq.(2.14) 9.

It can be seen that all complete adiabatic approximants accumulate fewer number of (total 

and useful) cycles than the corresponding standard adiabatic approximants. This is because the 

additional conservative terms in the complete adiabatic approximants add extra acceleration to 

the test mass which, in the presence of radiation reaction, would mean that the test body has 

to coalesce faster, and therefore such templates accumulate fewer number of cycles. Notice­

ably enough, approximants (like 3PN and 4.5PN) producing the highest overlaps with the exact 

waveform, accumulate the closest number of cycles as accumulated by the exact waveform. 

This is indicative that the phase evolution of these approximants is closer to that of the exact 

waveform. On the other hand, the fractional absolute difference in the number of cycles of the 

approximants producing the lowest overlaps (like OPN, 1PN and 2.5PN) as compared to the ex­

act waveform is the greatest, which indicates that these templates follow a completely different 

phase evolution.

In order to illustrate the correlation between the number of (total/useful) cycles accumulated 

by an approximant and its overlap with the exact waveform, we introduce a quantity =  

i^ - ^ x a c ,! w j1jc |1 js fractional absolute difference between the number of (total/useful) cycles-'vxuct

9Note that the method we are using to calculate the number of cycles is different from the method used by some 
authors, for example, Blanchet. et. al [54] who use a PN expansion of the GW phasing to calculate the (piso and 
(Piow appearing in Eq.(2.14). This method is not appropriate for our study as it involves further re-expansion of 
E '{v )/!F (v). Since different approaches to the phasing formula can produce slightly different phasings, one should 
not be surprised to see any differences in the results obtained by these different methods.
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accumulated by a template and the exact waveform. Here and lÂ xact are the number of 

(total/useful) cycles accumulated by the nPN approximant and exact waveform, respectively. In 

Fig. 2.7, we plot 69Q of various standard adiabatic and complete adiabatic approximants against 

the corresponding overlaps in the case of a (lAf©, lOAf©) binary.

The following points may be noted when comparing the results quoted here for the number 

of cycles with those of other works eg. Refs [54, 55, 56]. As emphasized in Ref. [23] one 

can get very different results for the phasing depending on whether one consistently re-expands 

the constituent energy and flux functions or evaluates them without re-expansion. In the com­

putation of the number of useful cycles different authors treat the function F differently ; some 

re-expand, whereas others do not, leading to differences in the results. The other important fea­

ture we would like to comment on is a result which appears, at first, counter-intuitive. This is 

the fact that, in some cases, the number of useful GW cycles is greater than the total number 

of GW cycles. A closer examination reveals that, while for most cases of interest this does not 

happen, in principle its occurrence is determined by the ratio f r = Fiow/Fiso. To understand this 

in more detail let us consider the ratio of the number of useful cycles to the total number of 

cycles in the case of white noise (in a frequency band Fiow to Fiso, for which

0 1 6 1

For f r 1, < 1. However, as f r increases to about f r = 0.52, 9Q transits from being less

than one to becoming greater than one. Essentially this arises due to the details of the scalings 

of the various quantities involved and the point of transition depends on the PN order and the 

precise form of the noise PSD. For f r ~  1, the calculation of useful cycles does not make much 

physical sense. This explains the absence of 9Qsef ui results for the (1M©, 10M©) binary in table 

2 .6.

2.3 Non-adiabatic models

Before introducing new non-adiabatic models in this section, let us recapitulate our point of 

view in summary. Contrary to the standard adiabatic approximant which is constructed from 

consistent PN expansions of the energy and flux functions to the same relative PN order, we
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Table 2.6: Number of GW cycles accumulated by various standard adiabatic T ( E ^ , y r„) and 
complete adiabatic T{E\nJr2 .5 \, ?„) approximants in the test mass limit. The number of useful 
cycles calculated for the Initial LIGO noise PSD is also shown in brackets. We choose a low 
frequency cutoff of 20Hz.

(1M0 eo

(lAf0) 50Mq) (\Me 1 00 A/ . ; )
Order (n) S C 5 C S c

OPN 481 (92.3) 424 (74.6) 118(110) 77.8 (64.4) 13.6 6.7
1PN 560(117) 526(102) 180(186) 124(104) 25.7 10.6

1.5PN 457(81.7) 433(71.8) 88.8 (76.3) 58.5 (38.2) 8.4 2.3
2PN 447 (77.7) 440 (74.0) 77.0 (61.8) 62.5 (41.5) 6.1 2.6

2.5PN 464 (84.5) 454 (79.6) 96.8(85.5) 74.5 (50.5) 9.7 2.9
3PN 442 (74.7) 440 (73.3) 64.5 (45.2) 58.1 (35.5) 3.4 1.6

3.5PN 445 (76.1) 442 (74.5) 68.7 (49.7) 60.6 (36.8) 4.0 1.4
4PN 445 (75.8) 443 (75.2) 66.4 (45.1) 62.9 (39.0) 2.9 1.6

4.5PN 443(75.1) 442 (74.5) 63.7 (42.0) 60.0(35.6) 2.5 1.2
5PN 444(75.3) 443 (75.0) 63.8 (40.9) 62.2 (37.8) 2.1 1.4
Exact 442 (74.1) 59.1 (34.3) 0.9

considered a new complete adiabatic approximant (still based on PN expansions of the energy 

and flux functions but of different PN orders) but consistent with a complete PN acceleration. 

Viewed in terms of the acceleration terms they include, the standard adiabatic approximation is 

inconsistent by neglect of some intermediate PN order terms in the acceleration. The complete 

adiabatic approximation on the other hand is constructed to consistently include all the relevant 

PN acceleration terms neglected in the associated standard approximant. These models were 

a prelude to phasing models constructed from the dynamical equations of motion considered 

in this section. However, we have worked solely within the adiabatic approximation. It is 

then pertinent to ask whether one can construct natural non-adiabatic extensions of both the 

standard and complete adiabatic approximants. And if so, how do their performances compare? 

Indeed, the work of Buonanno and Damour [24] within the effective one-body approach to the 

dynamics did find differences between the adiabatic and non-adiabatic solutions. In this Section 

we investigate whether it is possible to introduce non-adiabatic formulations of the standard and 

complete approximants considered in the previous Section.

The Lagrangian models studied by Buonanno, Chen and Vallisneri [65] seem to be the 

natural candidates for the purpose since they are specified by the acceleration experienced by 

the binary system. The Lagrangian models considered in Ref. [65] can be thought of as the 

standard non-adiabatic approximants, since, following standard choices, they lead to gaps in
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Figure 2.7: The fractional absolute difference 59 ^  between the number of cycles accumulated 
by various approximants and the exact waveform, plotted against the corresponding overlaps. 
Standard adiabatic T ( E ^ J rn) approximants are marked with lighter markers and complete adi­
abatic T (£[„+2.5]< %i) approximants are marked with darker markers. Top panels show 55^ for 
the total number of cycles and bottom panels show for the number of useful cycles. The 
number of useful cycles are calculated for the Initial LIGO noise PSD and the low frequency 
cutoff is chosen to be 20Hz. The plotted results are for a (!Af0 ,1OM0 ) binary.

the post-Newtonian expansion of the acceleration. Generalizing these Lagrangian models so 

that there are no missing PN terms, or gaps, in the acceleration we can construct the complete 

non-adiabatic approximants. With a non-adiabatic variant of the standard and complete approx­

imants we can then compare their relative performances. However, we will be limited in this 

investigation because of two reasons: Firstly, the Lagrangian models are available only up to 

3.5PN order, and higher order PN accelerations are as yet unavailable. Secondly, the only exact 

waveform we have has, however, been constructed only in the adiabatic approximation. Even in 

the test mass limit, the exact waveform is not known beyond the adiabatic approximation. Due 

to lack of anything better, we continue to use the exact waveform in the adiabatic approximation 

to measure the effectualness and faithfulness of the non-adiabatic approximants.

Thus to obtain non-adiabatic approximants, the signal is constructed by integrating the equa­

tions of motion directly using a Lagrangian formalism. The equations are schematically written 

as:
dx d \

(2.17)—  =  v. —  =  a 
dt dt
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For the complete non-adiabatic model of order n, all terms in the PN expansion for acceleration 

are retained up to order n +  2.5 without any gaps. For the standard non-adiabatic models, on the 

other hand, only terms in the acceleration consistent with the treatment of standard phasing are 

retained in the acceleration, resulting in gaps in the acceleration corresponding to intermediate 

PN terms neglected in the treatment. E.g. forn  =  0 the standard non-adiabatic approximation 

includes only the aN and a2.5PN while the complete non-adiabatic approximation would include 

in addition the aiPN and a2PN,0- Given the current status of knowledge of the two-body equations 

of motion, we have only two complete non-adiabatic approximants, at OPN and 1PN retaining 

all acceleration terms up to 2.5PN and 3.5PN, respectively. The associated OPN (1PN) standard 

non-adiabatic approximation retains acceleration terms corresponding to OPN and 2.5PN (OPN, 

1PN, 2.5PN and 3.5PN).

The explicit terms for accelerations for each order are given as follows [65, 73, 74]

aw = n
M (

a 1 pn = - ? {
M f

»2PN = - A

(1 +3t])v2 -  2(2 +  T ] ) y  -  ] f 2

j (12 +  29t]) + r |(3  — 4t])v4 +  ^ ti(1 — 3q)r4

- 2 ( 2  —T] ) r y \ ,

15 
8"

(2.18)

(2.19)

^r|(3 -4 q )v 2^  -  ^q(13 - 4 r | ) —v2 — (2 +  25ri +  2r|2)—r2

1
2™

rj(15 -h 4rj)v2 -  (4 +  41r| +  8r| ) ------ 3r| (3 H- 2rj)r2
}■

(2.20)

»3PN
M
r- 7 2 < n

35r6T] 1 7 5 r V  1 7 5 r V  \ 5 r \ v 2  1 3 5 rV v 2 255r4q V
16 16 16 8

15r2T|v4 237r2T|2v4 45r2r|3v4 1 lr|v6 49ti2v6 „ , 6
+ ------^ -------------  —  +  — t------------!—  +  13*n v

M
8

69r4r)2
+ y  7 9 ^ -

2 4 4

-  30r4r|3 — 121r2qv2 +  16r2q 2v2 +  20r2ri3v2

+

+

+

+

75r]v4 o 2 4 i n U \  M 2  (  2 22717r2T| l l r V  „ 2 3
- J -  +  8r) v -  lOr) v J  +  - j -  ( r 2 +  m  -  7 r V

615r2T|7t2 20827riv2 _|_^3 2 123r|7i2v2
64 840 64

Af3 /  1399t] 71q2 41r|7t2
r3 ~r

1 5 r V
12 2 16 

l3*,2„2

+  V
457s r|

-I- 1 5 r r i

,  ̂ 2 111/■")rizvz ,  ̂ ->2 65rnv4 w
-I- 1 2 rr j v   --------- 12r T] v --------  ------(- \9h\ v + 6rt| v

4 o

10Note that there is no 1.5PN acceleration term, as dissipative terms due to radiation reaction first enter at 2.5PN 
order.
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a.l5R R

32.5RR

+

+

+

+

I23h)w5849rt| (2.21)

(2 .22)

(2.23)

where n =  r/r.  In the above Eq.(2.21), the logarithmic terms present in a3PN in [73] have been 

transformed away by an infinitesimal gauge transformation following [74] 11.

The above equations are solved numerically to attain the dynamics of the system. Then the 

orbital phase 0(f) is calculated by numerically solving the equations

where the calculation of the orbital angular frequency assumes that the orbit is circular. Once 

we have the orbital phase, the waveform is generated using Eq. 2.2 since the orbital phase 0 is 

related to the GW phase cp by cp =  20.

2.3.1 Standard and complete non-adiabatic approximants in the test mass case

In the following we discuss the results of our study for the non-adiabatic waveforms in the test 

mass limit. To determine the appropriate expressions for the acceleration in the test mass case, 

we start with the general expression for the acceleration and set r\ = 0 in the conservative 1PN, 

2PN and 3PN terms. Since doing the same in the dissipative terms at 2.5PN and 3.5PN orders 

prevents the orbit from decaying, we retain terms linear in r| at these orders and set to zero terms 

of higher order in q. In the first part we discuss results found on the problem of the closeness of 

the standard and complete non-adiabatic template families with the fiducial exact waveform. In

11 We thank Luc Blanchet for pointing this to us and providing us this form
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Table 2.7: Effectualness of the Lagrangian templates in the test mass case for the white noise.
(1M©,1OM0 ) (1M© 50A/©) (1A#0 ,100A/©)

O rder (n) s c 5 C S C

OPN 0.5521 0.4985 0.5553 0.8399 0.6775 0.7789
1PN 0.4415 0.4702 0.5760 0.8327 0.6557 0.7591

Table 2.8: Faithfulness of the Lagrangian templates in the test mass case for the white noise.
( I M , } 10 M .)) (lAf©50M o ) (lAf©, 100A/©)

Order (/i) S C S C s C

OPN 0.0450 0.0441 0.1778 0.0991 0.5959 0.1851
1PN 0.0471 0.0474 0.3195 0.1235 0.3646 0.2404

the second part we extend our results to the noise spectrum expected in Initial LIGO, Advanced 

LIGO and Virgo.

White noise

First, we explore the general question as to the closeness of the standard non-adiabatic and 

complete non-adiabatic templates assuming a flat power spectral density for the detector noise. 

Tables 2.7 and 2.8 show the effectualness and faithfulness of Lagrangian models for the same 

three archetypal binaries as before: (1 Af©, 10A/©), (1 M©, 50M©), and (1A/©, lOOAf©) binaries. 

At present, the results are available at too few PN orders to make statements of general trends 

in effectualness and faithfulness. However, the main result obtained for the adiabatic approxi­

mants seems to hold good again for the non-adiabatic approximants: the effectualness is higher 

for the complete non-adiabatic model as opposed to the standard non-adiabatic model. This is 

indicative of the fact that corrections coming from the conservative part of the dynamics (i.e. 

the well-known general relativistic effects at 1PN and 2PN) make an improvement of the ef­

fectualness. However, as in the adiabatic case, the faithfulness of both standard and complete 

non-adiabatic models is very poor. But, in sharp contrast to the adiabatic case, here it appears 

that the complete non-adiabatic approximation results in a decrease in the faithfulness of the 

templates.
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Table 2.9: Effectualness of the Lagrangian templates in the test mass case for the Initial LIGO, 
Advanced LIGO, and Virgo noise PSDs. Percentage biases Om and in determining parame­
ters M and T] are given in brackets.

(1M© 1OM0) (lAf: SOM.)
Order (n) 5 C S C

Initial LIGO
OPN 0.5848(30,26) 0.9496(55,107) 0.8741(3.3,9.2) 0.9835(35,4.2)
1PN 0.6762(37,49) 0.9273(3.1,27) 0.8530(34,191) 0.9784(24,28)

Advanced LIGO
OPN 0.4259(31.09,29.04) 0.8682 (55.0, 105.01) 0.6384 (4.71,4.02) 0.9360 (40.20,23.15)
1PN 0.5256 (52.55,58.95) 0.8280 (0.36, 30.55) 0.6080(28.96,124.8) 0.9211 (17.61,0.47)

Virgo
OPN 0.3720(22.18,0.95) 0.7631 (55.18, 107.0) 0.5985 (20.49,30.68) 0.9618(40.35,23.46)
1PN 0.3599(3.81,21.17) 0.7386 (3.45, 34.8) 0.5777 (21.74,76.08) 0.9525(17.59,0.49)

Table 2.10: Faithfulness of the Lagrangian templates in the test mass case for the Initial LIGO, 
Advanced LIGO, and Virgo PSDs._________________________________

( IM, , 10A/o ) (1M0 ,5OM0)
Order (n) S C S C

Initial LIGO
OPN 0.2463 0.1216 0.5048 0.1747
1PN 0.4393 0.1823 0.3650 0.3119

Advanced LIGO
OPN 0.2636 0.0754 0.4857 0.0999
1PN 0.3419 0.1368 0.4493 0.2038

Virgo
OPN 0.1991 0.0570 0.4947 0.1097
1PN 0.2499 0.0911 0.5259 0.1954

Noise specta of particular detectors

Having addressed the question concerning the closeness of standard non-adiabatic and complete 

non-adiabatic templates to exact waveforms, we now compare the overlaps in the case of the 

Initial LIGO, Advanced LIGO and Virgo detectors.

Tables 2.9 and 2.10 show the effectualness and faithfulness, respectively, of Lagrangian 

templates for the (lAf0 , 10M0 ) and (1M0 , 5OA/0 ) binaries. In this case, we see that the effec­

tualness gets significantly improved in the complete non-adiabatic approximation and is greater 

than 0.9 for all the systems studied in this Chapter. Faithfulness appears to be decreased by 

the use of the complete non-adiabatic approximation (this result is in sharp contrast with the 

corresponding adiabatic case where we find that the complete adiabatic approximation gener-
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Figure 2.8: Various T-approximants of Newton-normalized (v-derivative of) energy function 
E j(v)/£^(v) (left) and flux function (v) (right) in the comparable mass case, along
with the corresponding fiducial ‘exact’ functions (denoted by X). Also plotted is the amplitude 
spectral density (per \/Hz) of Initial LIGO noise in arbitrary units.

ally brings about a significant improvement in faithfulness), but again there is no indication that 

either standard or complete templates are reliable in extracting the parameters of the system.

2.4 Comparable Mass Waveforms

In the case of comparable mass binaries there is no exact template available and the best we can 

do is to compare the performance of the standard adiabatic and complete adiabatic templates 

by studying their overlaps with some plausible fiducial ‘exact’ waveform. As in the case of the 

test masses, here too we will consider all possible combinations of T-approximants of energy 

and flux functions, construct PN templates and calculate the overlaps of these templates with 

the fiducial ‘exact’ waveform. In all cases, the fiducial ‘exact’ waveform is constructed by 

numerically integrating the phasing formula in the time-domain (TaylorTI approximant), and 

terminating the waveforms (‘exact’ and approximate) at V[so =  ^  which corresponds to F ~  

1570 Hz for a (1.4Af0 , 1.4Af0 ) binary and F ~  220 Hz for a (10Af0 , 10M0 ) binary. Also, we 

take the noise PSD of the detector to be infinite below a lower frequency cut-off F\ow = 40 Hz.

2.4.1 The energy function

Unlike in the test mass limit, the energy function F(.x;r|) is not known exactly in the comparable 

mass case but only a post-Newtonian expansion, which has been computed at present up to 3PN
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accuracy [38, 39, 40, 41, 42, 43, 44, 45, 46].

£ w (* ;r i)  =  ~ ^ r \ x  1 - ^  (9 +  r i )A :-^ 2 7 -1 9 T i + y ^ x 2

- 6 7 5  /209323 205712 U 0 X \ ^  155_2 35 js
+  V 4032 96~64

.4

9 /  96 ^ 5184 T1 XT'

+ o CO (2.25)

where X = -1987/3080 [44, 45, 46, 47]. The corresponding E'(v,x\) appearing in the phasing 

formula reads,

^ W ( v’ri) — —Ti v

+  4

l - i  (9 +  r |)v 2 -  ^ ( 27 -1 9 r i  +  0  v4 

-6 7 5  /  209323 205ti2 1 1 0 X \  155

64 +  V 4032

35
96 9 ) r] 96 ^ 5184 T] V

+  0(v8) (2.26)

We use this expression truncated at the necessary orders to construct the various approximate 

templates. To compute a fiducial ‘exact’ waveform, we use the exact energy function in the test 

mass limit supplemented by the finite mass corrections up to 3PN in the spirit of the hybrid 

approximation [75, 76]. In other words, the fiducial ‘exact’ energy E '( v ; t i )  will then look like

^ e x a c t^ )  =  “ TIV

(  4032

g exact(v ) _  H v 2 _  1  ^—19*11 -h —
r| v 6 8 \  3

, /  209323 205 7i2 110X\ 155 2
+  — ----------j - J t l - j g - T , 35 3 \ 6 T| V5184 1 '

(2.27)

where £exact(v) ls v-derivative of the exact energy function in the test mass limit given by 

Eq. (2.9). The T-approximants of the energy function Ej(v\r\) as well as the fiducial exact 

energy E'exacX(v,r\) are plotted in Fig. 2.8a. The v/,„ corresponding to the fiducial ‘exact’ energy 

function can be determined by solving E'exact(v,r\) = 0. This will yield a value vj™ hybnd ~  

0.4294 against the v/v„ ~  0.4082 in the test-mass case (more precisely it is the vMECo [65]). If 

the r|-corrections are included only up to 2PN instead of 3PN, vf™ hybnd ~  0.4113. It is worth

pointing out that vt2P N —Pade ~  0.4456[70] and it is not unreasonable to suspect that, with 3PN

corrections the differences between the different ways of determining the Iso converge. (For the 

purposes of our analysis, we have checked that there is no drastic change in our conclusions due
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to these differences and hence we use uniformly the value viso = 0.4082).

2.4.2 The flux function

The flux function in the case of comparable masses has been calculated up to 3.5PN accuracy 

[48, 49, 50, 51, 52, 53, 54], and is given by:

^(v ;ri) =  y 1! 2^10 £ A * (T i) v *  +  fl6(Ti)v6 l n v + 0 ( v 8)
k=0

where

(2.28)

^oOl)

AiOl)
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1247 35
1. A,(ri) =  0, A2 (Tl) =  - y y - - ^ r i ,  A3{r\)=4n,

44711 9271 65 2
+

9072 
6643739519

504 T1 +  T8,1^ 5(,1) =
8191 583
 1-------*1 I 71,672 24 u

69854400 +
167T2 1712
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11497453 4l7t2 176A. 880 \
272160 + 48 +
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T1

94403
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16285 214745
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In 4,

504 1728
193385
3024 ri2 71, fl60l) =  -

1712
l o F ’ (2.29)

and the value of 0  has been recently calculated to be ~  — 1.28 [56] by dimensional regulariza­

tion.

To construct our fiducial ‘exact’ waveform, we will use the energy function given by Eq. (2.27) 

and the flux function

32
.inexact — c 'HV °

7 ,

^exact(v)- X  ( i4*V* +^6V6lnv)
k=0

+ X  f îfc(Tl)v* +  ^ 6(r|)v6 Inv^
k=0

(2.30)

where T̂exact(v) is the Newton-normalized (numerical) exact flux in the test-mass limit. The 

expansion coefficients s and Bf, refer to the test-mass case and /4*(r))’s and ^ (r ] )  refer to the 

comparable mass case. The exact flux function is thus constructed by superposing all that we 

know in the test mass case from perturbation methods and the two body case by post-Newtonian 

methods. It supplements the exact flux function in the test body limit by all the ri-dependent 

corrections known up to 3.5PN order in the comparable mass case. The T-approximants of the
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Figure 2.9: Effectualness (Fig. a) and Faithfulness (Fig. b) of various TaylorTI and TaylorFI 
templates in the comparable mass case for the Initial LIGO noise spectrum. Different lines in the 
panels correspond to different orders of the flux function. Each line shows how the overlaps are 
evolving as a function of the accuracy of the energy function. Standard adiabatic approximants 
T { E ^ f f n) are marked with thick dots. Label A represents the (10A/o , lOAf0 ) binary and label 
C represents the (1.4M0 , 1.4A/0 ) binary. All values are max-max overlaps.

flux function jFr(v;ri) and the fiducial exact flux iFexact^'H) are plotted in Fig. 2.86.

2.4.3 Comparable mass results in the adiabatic approximation

The effectualness and faithfulness of various PN templates in the case of comparable mass 

binaries are plotted in Fig. 2.9a and Fig. 2.9b, respectively, and are tabulated in Tables 2.11 

and 2.12. The overlaps of the fiducial ‘exact’ waveform in the figures are calculated with the 

TaylorTI and TaylorFI approximants using the Initial LIGO noise spectrum. Different lines in 

the panels of Fig. 2.9 correspond to different PN orders of the flux function. Let us note that in 

the case of comparable mass binaries the complete adiabatic approximants can be calculated, at 

present, at most up to 1PN order. From the Tables 2.11 and 2.12 one can see that the complete 

adiabatic approximation generally improves the effectualness of the templates at OPN and 1PN 

orders. But, as far as faithfulness is concerned, it is hard to conclude that one approximation is 

better than the other at these PN orders.

Even though complete adiabatic approximants are not calculated for higher PN orders, the 

general conclusion one can make from Fig. 2.9 is that the complete adiabatic approximation of 

the phasing will not result in a significant improvement in overlaps if we have a flux function 

of order >  1.5PN. We, thus, conclude that, provided we have a sufficiently accurate (order 

> 1.5PN) T-approximant of the flux function, the standard standard adiabatic approximation
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Table 2.11: Effectualness of standard adiabatic T(E^,!Fn) and complete adiabatic
7’(E[„+2.5]? W  approximants in the comparable-mass case. Overlaps are calculated for the 
Initial LIGO, Advanced LIGO and Virgo noise spectra. Percentage biases Cm and a n in de­
termining parameters M and r| are given in brackets.

(10A/., 1OA/:,) (1 AM . , 1 AM . )
Order (n) S C S C

Initial LIGO
OPN 0.8815(14,0.2) 0.9515(3.7,0.1) 0.8636(1.4,0.2) 0.6993(4.3,0.2)
1PN 0.8457 (59,0.1) 0.8957 (45, 12) 0.5398(5.0,0.1) 0.5639(4.3,0.2)

1.5PN 0.9536(3.9,0.3) 0.9516(0.4,0.2)
2PN 0.9833 (0.4,0.2) 0.8751 (0.0,0.1)

2.5PN 0.8728(14,0.1) 0.8517(0.4,0.1)
3PN 0.9822(1.5,0.0) 0.9955 (0.0,0.3)

3.5PN 0.9843(1.4,0.0) 0.9968 (0.0,0.3)
Advanced LIGO

OPN 0.7606(8.45,0.06) 0.9132(5.00,0.28) 0.8347( 1.43,0.05) 0.5809(4.29,0.09)
1PN 0.7110(56.8,0.57) 0.7360(38.8,0.61) 0.3959(6.07,0.01) 0.4194(5.00,0.12)

1.5PN 0.8741(2.40,0.12) 0.9034(0.00,0.18)
2PN 0.9803(0.80,0.16) 0.8179(0.36,0.03)

2.5PN 0.7705(7.30,0.05) 0.7826(0.36,0.03)
3PN 0.9626(0.50,0.01) 0.9981(0.36,0.28)

3.5PN 0.9683(1.25,1.51) 0.9977(0.36,0.28)
Virgo

OPN 0.7009(5.25,0.00) 0.9280(4.70,0.93) 0.7119(1.43,0.08) 0.4405(5.00,0.02)
1PN 0.5834(55.5,0.28) 0.6148(30.3,0.20) 0.2808(3.93,0.10) 0.2968(2.86,0.04)

1.5PN 0.8698(1.25,0.00) 0.7724(0.36,0.67)
2PN 0.9815(0.75,0.24) 0.6420(0.00,0.01)

2.5PN 0.7299(4.75,0.00) 0.6266(0.00,0.08)
3PN 0.9624(0.50,0.11) 0.9822(0.00,0.25)

3.5PN 0.9627(0.45,0.14) 0.9823(0.00,0.25)

provides a good lower bound to the complete adiabatic approximation for the construction of 

both effectual and faithful templates in the case of comparable mass binaries. It should be kept in 

mind that unlike the test mass case where the exact energy and flux functions are known leading 

to an exact waveform in the adiabatic approximation in the comparable mass case we are only 

talking about fiducial energy and flux functions constructed from what is known. Probably, 

the exact waveform in this case has nothing much to do with the exact waveform predicted by 

general relativity.
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Table 2.12: Faithfulness of the standard adiabatic T(E\n\,% ) and complete adiabatic
T (£[,,+2.5], Fn) templates in the comparable-mass case. The overlaps are calculated for the Initial 
LIGO, Advanced LIGO and Virgo noise spectra._____________________

(10A/©, 10Mo ) (IAMq, \AMq)
Order (n) S C s c

Initial LIGO
OPN 0.5603 0.8560 0.3783 0.1624
1PN 0.3026 0.3491 0.1520 0.1615

1.5PN 0.7949 0.7259
2PN 0.9777 0.5565

2.5PN 0.5687 0.5934
3PN 0.9440 0.9888

3.5PN 0.9522 0.9916
Advanced LIGO

OPN 0.3902 0.7030 0.3731 0.1300
1PN 0.1944 0.2248 0.1054 0.1128

1.5PN 0.6362 0.5735
2PN 0.8895 0.3964

2.5PN 0.4125 0.4407
3PN 0.9117 0.9947

3.5PN 0.9106 0.9952
Virgo

OPN 0.4262 0.5490 0.3138 0.0794
1PN 0.1574 0.1798 0.0686 0.0732

1.5PN 0.5950 0.3986
2PN 0.8120 0.3027

2.5PN 0.3842 0.3726
3PN 0.9169 0.9668

3.5PN 0.9177 0.9686
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Table 2.13: Effectualness of the Lagrangian templates in the comparable mass case for Initial 
LIGO, Advanced LIGO and Virgo noise spectra. Percentage biases Gm and a n in determining 
parameters M and r| are given in brackets.

(1.4Af0 ,1.4Af©) (10Af:. 10M.)
Order (n) 5 C S C

Initial LIGO
OPN 0.9282(27.43, 1.56) 0.5848(31.60,3.61) 0.8533(14.35,2.51) 0.9433(34.50,8.87)
1PN 0.5472(22.22, 1.25) 0.6439(24.31,3.09) 0.8137(3.60,0.17) 0.9329(11.15,7.38)

Advanced LIGO
OPN 0.9147 (25.35, 1.93) 0.4338 (28.93, 3.84) 0.7417(18.60,2.21) 0.8322 (35.1,3.36)
1PN 0.3937 (20.00,3.51) 0.5132 (21.43,2.98) 0.7433(4.40,0.001) 0.8158(13.4, 1.36)

Virgo
OPN 0.8142 (25.71, 1.81) 0.3113(29.64, 1.13) 0.6895 (20.65,2.31) 0.7341 (32.9,5.97)
1PN 0.2880 (21.42,2.68) 0.3944(19.28, 1.22) 0.6807 (4.85,0.04) 0.7420(14.5,4.00)

2.4.4 Comparable mass results beyond the adiabatic approximation

Finally, for the comparable mass case, non-adiabatic waveforms were generated in the La­

grangian formalism, using the complete equations Eq. (2.17) -E q . (2.23).

Tables 2.13 and 2.14 show the effectualness and faithfulness of the standard and complete 

non-adiabatic Lagrangian waveforms for the Initial LIGO, Advanced LIGO and Virgo detectors. 

The results are more mixed in this case than for the test mass case. For the OPN order, for the NS- 

NS binary, the standard non-adiabatic approach seems to be more effectual and faithful than its 

complete non-adiabatic counterpart. However, in the BH-BH case, the complete non-adiabatic 

seems to be more effectual; but less faithful. At the 1PN order, the effectualness is always higher 

for the complete non-adiabatic case; but faithfulness is always lower. It is interesting to note that 

the effectualness trends shown by the adiabatic and non-adiabatic approximants are the same at 

orders OPN and 1PN. However, further work will be necessary to make very strong statements 

in this case.

2.5 Summary and Conclusion

The standard adiabatic approximation to phasing of gravitational waves from inspiralling com­

pact binaries is based on the post-Newtonian expansions of the binding energy and gravitational 

wave flux both truncated at the same relative post-Newtonian order. To go beyond the adiabatic 

approximation one must view the problem as the dynamics of a binary under conservative rela-
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Table 2.14: Faithfulness of the Lagrangian templates in the comparable mass case for Initial 
LIGO, Advanced LIGO and Virgo noise spectra._____________________

(1.4Af0 ,1.4A/0 ) (lOAf0 10M : )
Order (n) 5 C S C

Initial LIGO
OPN 0.0717 0.0658 0.6689 0.3146
1PN 0.0810 0.0771 0.7380 0.6568

Advanced LIGO
OPN 0.0637 0.0546 0.4662 0.2192
1PN 0.0794 0.0703 0.6594 0.4788

Virgo
OPN 0.0414 0.0334 0.3439 0.1661
1PN 0.0803 0.0463 0.5709 0.3704

tivistic forces and gravitation radiation damping. In this viewpoint the standard approximation 

at leading order is equivalent to considering the OPN and 2.5PN terms in the acceleration and 

neglecting the intermediate 1PN and 2PN terms. A complete treatment of the acceleration at 

leading order should include all PN terms upto 2.5PN. These define the standard and complete 

non-adiabatic approximants respectively. A new post-Newtonian complete adiabatic approx­

imant based on energy and flux functions is proposed. At the leading order it uses the 2PN 

energy function rather than the OPN one in the standard approximation so that loosely it does 

not miss any intermediate post-Newtonian terms in the acceleration. We have evaluated the per­

formance of the standard adiabatic vis-a-vis complete adiabatic approximants, in terms of their 

effectualness (i.e. larger overlaps with the exact signal) and faithfulness (i.e. smaller bias in es­

timation of parameters). We restricted our study only to the inspiral part of the signal neglecting 

the plunge and quasi-normal mode ringing phases of the binary [66, 67, 24, 23, 65, 68, 69]. We 

have studied the problem for the white-noise case, as well as the Initial LIGO, Advanced LIGO 

and Virgo noise curves.

The main result of this study is that the conservative corrections to the dynamics of a binary 

that are usually neglected in the standard treatment of the phasing formula are rather important 

at low PN orders. At the low PN orders, they lead to significant improvement in the overlaps 

between the approximate template and the exact waveform. In both the white-noise case, and 

the case of specific detectors, we found that at low (< 3PN) PN orders the effectualness of 

the approximants significantly improves in the complete adiabatic approximation. However, 

standard adiabatic approximants of order >  3PN are nearly as good as the complete adiabatic
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approximants for the construction of effectual templates.

In the white-noise case, the faithfulness of both the approximants fluctuates as we go from 

one PN order to the next and is generally much smaller than our target value of 0.965. The 

fluctuation continues all the way up to 5PN order probably reflecting the oscillatory approach 

of the flux function to the exact flux function with increasing PN order. Poor faithfulness also 

means that the parameters extracted using these approximants will be biased. It is again interest­

ing to note that complete adiabatic approximants are generally more faithful than the standard 

adiabatic approximants. For the Initial LIGO noise case on the other hand, the faithfulness of 

the complete adiabatic approximants is vastly better at all orders.

To the extent possible, we also tried to investigate this problem in the case of comparable 

mass binaries by studying the overlaps of all the approximants with a fiducial ‘exact’ waveform. 

It is shown that, provided we have a T-approximant of the flux function of order > 1.5PN, the 

standard adiabatic approximation provides a good lower bound to the complete adiabatic ap­

proximation for the construction of both effectual and faithful templates. This result is in contrast 

with the test mass case where we found that the complete adiabatic approximation brings about 

a significant improvement in effectualness up to 2.5PN order, and a significant improvement in 

faithfulness at all orders. To achieve the target sensitivity of 0.965 in effectualness, standard adi­

abatic approximants of order 2PN and 3PN are requires for (lOA/0 ,1OM0 ) and (1.4M0 ,1.4A/0 ) 

binaries. Whether the complete adiabatic approximant achieves this at an earlier PN order is an 

interesting question. It is worth stressing that this result is only relevant for the family of in­

spiral waveforms. In the real physical case of BH-BH binaries the inspiral family would not 

be adequate and must be supplemented by the plunge part of the waveform as first discussed in 

[23, 24] and later in [65, 68]. A discussion of plunge requires a 3PN description of dynamics 

so that the 2PN templates are no longer adequate. This is an example of the second variety of 

questions one can study in this area referred to in our introduction related to whether a template 

family indeed represents GWs from a specific astrophysical system.

We have also constructed both standard and complete non-adiabatic approximants using the 

Lagrangian models in Ref. [65]. However, we were limited in this investigation because of two 

reasons: Firstly, the Lagrangian models are available only up to 3.5PN order, and higher order 

PN accelerations are as yet unavailable which makes it impossible to calculate the complete
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non-adiabatic approximants of order > 1PN. Secondly, the only exact waveform we have has, 

however, been constructed only in the adiabatic approximation. So we are unable to make strong 

statements of general trends and view this effort only as a first step towards a more thorough 

investigation. From the non-adiabatic models studied, the conclusion one can draw is that while 

complete non-adiabatic approximation improves the effectualness, it results in a decrease in 

faithfulness.

There is a limitation to our approach which we should point out: complete adiabatic models 

can be very well tested in the test mass case where both approximate and exact expressions 

are available for the various quantities. However, complete models cannot be worked out to 

high orders in the comparable mass case since they need the energy function to be computed 

to 2.5PN order greater than the flux and currently the energy function is only known to 3PN 

accuracy. Also, due to the lack of an exact waveform, one is constrained to depend upon some 

fiducial exact waveform constructed from the approximants themselves. Though, in the present 

Chapter, we have used the new approximants to construct waveform templates, one can envisage 

applications to discuss the dynamics of the binary using numerical integration of the equations 

of motion.

During the course of this study, we also attempted to assess the relative importance of im­

proving the accuracy of the energy function and the flux function by systematically studying the 

approach of the adiabatic PN templates constructed with different orders of the energy and the 

flux functions to the exact waveforms. From the study of test-mass templates we also conclude 

that, provided the comparable mass case is qualitatively similar to the test mass case, neither the 

improvement of the accuracy of the energy function from 3PN to 4PN, nor the improvement of 

the flux function from 3.5PN to 4PN will result in a significant improvement in effectualness in 

the comparable mass case.
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Chapter 3

Developing a low-latency search for 

inspiralling compact binaries

Searching for inspiral compact binary sources in gravitational wave data is a challenging task. 

For the current generation of ground-based detectors, the signals from even strong sources will 

be buried within the detector noise. To locate the signals, it is therefore necessary to filter the 

data, and utilise various techniques for removing spurious events caused by noise. This process 

is very computationally intensive. Accordingly, for a search to be carried out in a feasible 

amount of time, it is necessary to design search pipelines which run across several nodes on 

large computing clusters.

The design of the inspiral pipeline currently used in the flagship LIGO searches consists of a 

number of stages, as illustrated in Fig. 3.1. Each stage of the pipeline is run in an embarrassingly 

parallel manner. The various stages of the pipeline perform the following tasks [77]:

Generate a template bank for each chunk of data. The bank generated depends upon the choice 

of mass range, the requested minimal match, and the noise power spectrum for that chunk.

Match filter the data using the inspiral code. This takes the templates produced in the pre­

vious stage and matched filters them against the data stream. Any time that the signal 

to noise ratio exceeds a specified threshold, we record a trigger. This stage is the most 

computationally intesive part of the pipeline.

Search for coincident triggers between different detectors. The triggers generated by the pre-
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Figure 3.1: Topology of the compact binary inspiral search pipeline [77].
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vious stage are read in, and triggers from different detectors are compared by their pa­

rameters (for example, To,T3,tc)- If the parameters agree to within a certain tolerance, the 

event is deemed coincident.

Trigbank. Coincident events are processed to create template banks for the following stage. 

This ensures that only relevant areas of the parameter space are re-filtered using the com­

putationally costly vetoes.

Matched filtering with vetoes applied. The coincident triggers are then returned to the inspi­

ral code to be re-filtered, including the various signal-based vetoes, specifically the chi 

squared and r-squared vetoes. This stage is potentially computationally expensive.

Repeated coincidence.

Coherent stage. The triggers which survive the second coincident stage are then analysed us­

ing a coherent matched filter.1 Those triggers which survive this stage are considered 

candidate events, and are followed up using various methods.

The computational requirements of running this pipeline can be estimated from runs already 

performed on LIGO S5 playground data. In the case of the low-mass non-spinning compact 

binary search (covering a range of masses Mtota[ < 35Af©, with component masses > 1M©), 

it is estimated that approximately 410 GFLOPS would be required to run the pipeline in real- 

time[78]. 2 This roughly equates to 200 CPUs on a typical computing cluster. It is expected 

that the computational cost of performing a comparable search for spinning objects would be 

significantly greater.

In performing an inspiralling compact binary search in gravitational wave data, typically the 

search is distributed in a data-parallel manner.3 In this distribution model, each computational 

node receives a different set of data, and then performs the inspiral search across the entire 

search space. Although this leads to efficient use of computational resources, it also introduces 

a large latency into the search. This latency is not necessarily a problem for offline searches

1 It should be noted that, for the searches being performed on the first calendar year of the LIGO S5 data set, 
the coherent stage is not run as part of the pipeline. However, it will be used as one of the follow-ups on candidate 
events.

2This number neglects additional computing time required to perform Monte-Carlo injections of simulated sig­
nals, which are used for pipeline tuning, and measurement of the efficiency

3 An exception is the online search (D. Brown et al).
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across relatively short data sets; however, it can have a number of drawbacks. Firstly, when the 

detectors are engaged in very long, or continuous science runs, it may be desirable to obtain 

search results as quickly as possible, so as to provide an on-line summary of how the run is 

progressing. The latency involved in the data-parallel search may preclude the generation of 

such a summary as promptly as may be desired. Additionally, should the need arise to follow 

up a source seen in electromagnetic observations, it would be useful to obtain a result as quickly 

as possible.4 Also, if a strong candidate source is detected in gravitational waves, it may be 

beneficial to follow it up with electromagnetic observations. This is only feasible if the results 

from gravitational wave searches are obtained with a low latency.

This leads to the idea of a low latency search, wherein the search is distributed in a data- 

serial, parameter space-parallel manner. In this case, for the matched-filtering parts of the search 

pipeline, each computational node receives the same data, but processes a different area of the 

parameter space. Thus the latency is greatly reduced.

A question arises about how best to split the parameter space between computational nodes. 

For certain searches (the spinning BBH case in particular), parts of the parameter space may 

be more computationally intensive than others. Also, if running on a heterogeneous set of 

resources, it may be the case that the intrinsic performance of a particular resource may differ 

from the others. Thus, it was necessary to develop a way of balancing the load so that each node 

took the approximately same amount of computational time for each data set.

In this Chapter, two approaches at attacking this problem are detailed. The first is a simple 

step-wise load balancing algorithm. In this case, the parameter space is initially split naively 

(i.e., each node receives the same number of templates). Utilising the time taken for each job 

to run in this case, the splitting of the template bank is adjusted for the next run. Thus the 

computational load is balanced via an iterative process, where the splitting of the parameter 

space of the next run depends on the timings for the previous run. In the event of a job failure or 

unexpected delay, the algorithm is designed not to wait indefinitely, but ‘march on ahead’ when 

a user specified fraction of the jobs have finished.

The second approach consists of a more dynamical load-balancing mechanism. In this case, 

slave nodes will request templates from a controller node whenever they become idle. This

4An example of such a source is GRB070201, the position of which on the sky indicated that it could be located 
in Andromeda. If this were the case, and assuming the source was a compact-binary coalescence, this would be a 
strong candidate for gravitational wave detection.
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process continues until the entire list of templates is exhausted. Since, in this approach, the 

slave nodes will always be kept occupied, the the CPU load will automatically be balanced.

3.1 Step-wise load balancing algorithm

While developing a low-latency pipeline, there are a number of considerations to take into 

account in deciding which approach to take. The first is the computational efficiency of the 

pipeline: we would ideally like the pipeline to be as efficient as possible. However, there is an­

other, potentially competing consideration: the necessity to significantly modify existing analy­

sis code, and develop new code. If an approach can be found so that the computational cost can 

be kept to a ‘good enough’ level, without significant modifications to code, it could be argued 

that such an approach should be pursued, rather than scientists spending large amounts of time 

re-writing code to make further, potentially unnecessary improvements.

The step-wise load balancing algorithm was designed with the latter consideration in mind. 

It required very little (if any) modification to the main data-analysis codes used in the inspiral 

pipeline to obtain a good level of balance for the load on each node.

3.1.1 H ow the algorithm works

The problem of balancing the load on each node for running the inspiral analysis more or less 

boils down to assessing the fraction of templates which should be given to each compute node5. 

In the case of the step-wise load balancing algorithm, the run initially starts by naively split­

ting the template bank, so that each node receives roughly the same number of templates. For 

subsequent steps of the run, the details of the splitting of the bank is determined by the timing 

information of the previous steps. Note that this means that subsequent steps cannot be run until 

the previous step has been completed. However, since the main motivation for such an algorithm 

is for generating online results with low latency, this is not necessarily a problem.

The load is balanced for subsequent steps in the following way. If there are n compute 

nodes, and node i receives F, out of Pt()tai templates for analysis, and takes time 7} to analyse

•‘'This assumes that approximately the same point in different template banks will correspond to the same area of 
the parameter space. Since all template banks within a run are generated using the same placement algorithm, this is 
a fair assumption.
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them, one can compute the average analysis time per template for each node

To perfectly balance the nodes, one wishes for each node to take the same amount of time to 

complete its analysis, i.e.,

t\P\ =  tiPi =  ... =  tnPn. (3.2)

To achieve this aim, for the next step, each node is allocated P"ext out of P"™̂  templates 

according to the following:

r r  =  r C S .  (3.3)

where

By the definition given above, the numbers P?ext are not whole numbers; therefore, for the actual 

number of templates, they are rounded to the nearest whole number. Any discrepancy between 

X P'tiext and is then taken care of by adding to, or subtracting from, random p ,.iexns as 

appropriate.

Once more than one step of the pipeline has been run, the algorithm can instead use the 

average time per template for each node, fj. This is more robust against being thrown off-course 

by the occasional ‘rogue’ job.

3.1.2 M arching ahead: how we deal with failures

In performing a long analysis run, it is inevitable that occasionally, certain jobs may fail. This 

could happen due to a node crashing, data becoming inaccessible, or another, unknown reason. 

In addition, due to compute nodes becoming busy with other tasks, or a rogue stretch of data 

having different characteristics to those expected, it can be the case that, for a particular step, one 

node may take much longer than the others to complete its analysis. To prevent the algorithm 

failing, or subsequent steps getting held up by a rogue job, it is necessary to have a means of 

dealing with these eventualities.

To this end, it was decided that, in the event of a failure, or a rogue long-running job, the
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Figure 3.2: Histogram showing the deviation from the average time taken per compute node 
for each compute node. The red histogram shows the distribution for an initially unbalanced 
cluster. The black histogram shows the distribution obtained using the step-wise load-balancing 
algorithm.
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algorithm would march on ahead regardless. In the event of a job failure, the failure would 

be logged, so that it could be rescued at a later time. In the event of a long running job, the 

job would be passed to a monitor running in a separate thread, to keep track of its eventual 

completion or failure.

In practice, this was implemented as follows: the load-balancing script would go ahead and 

commence running the next step after a certain fraction of the nodes had completed (typically 

95%, but this fraction could be specified by the user). The time per template f, for a long-running 

job, or one which failed on the previous step, was taken to be the average, rj calculated from the 

prior steps; or in case of the first step of the run, it would be taken to be the average over the 

other nodes. For long-running jobs, the time taken for the job would be incorporated into the 

average upon completion.
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3.1.3 Benefits of using the algorithm

To test the efficacy of using such an algorithm for balancing the cluster, an implementation 

was written in Python, to be used in conjunction with the Condor job management system. To 

perform the tests, the distribution of templates amongst the nodes was initially in an unbalanced 

state. It was found that, even after one step, the algorithm had brought the nodes into a far more 

balanced state. For subsequent steps, it was found that, on average, the nodes were balanced. 

However, the test also highlighted some of the limitations of the approach. Firstly, there is 

only a certain resolution in performing the splitting of the template banks amongst the nodes, 

as the splitting cannot be preformed at a finer resolution than a single template. This issue 

is only significant for small template banks, as the correct fractions can be more accurately 

achieved when more templates are available. Secondly, there is the fact that the nodes are only 

balanced on average. Due to statistical fluctuations, for any given step, the actual timings for 

the nodes will have a Gaussian distribution about the mean time. Using a step-wise algorithm 

such as this to balance the load on the nodes, with no dynamic provision of templates to nodes, 

it is impossible to obviate this limitation. However, given that using this approach requires 

no modification of the analysis code, and does balance the load on average, this may be good 

enough for our purposes.

There is another issue with this approach which should be of some concern. A fundamental 

assumption in this approach is that the time taken to run a particular analysis job is dominated by 

the time taken to perform the analysis itself. Time spent performing I/O operations is assumed 

to be negligible. This may be a safe assumption in the case of a cluster in a relatively idle 

state, or for jobs which require huge numbers of templates to be filtered. However, for the case 

of a heavily loaded cluster, or jobs which filter only a relatively small number of templates, 

this assumption may not be valid. In such situations where the time spent performing I/O is 

significant, the performance of the load-balancing algorithm will be significantly reduced.

3.2 Dynamic load-balancing algorithm

In an optimal situation, one would expect that all compute nodes involved in the analysis of a 

stetch of data would be completely occupied while the data is being analyzed. Although proven 

to be reasonably successful, the step-wise balancing algorithm cannot guarantee that this will
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Figure 3.3: A schematic of the mechanism for centralised load balancing.
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be the case for any given job. To do this, a dynamic way of providing templates to nodes would 

be necessary. To provide such functionality, it may be necessary to make significant re-writes 

to existing analysis codes; a potentially costly exercise. However, the long-term benefit may 

justify the investments.

The approach taken to this problem was a centralised dynamic approach. In this approach, 

a master process holds the collection of templates which need to be analyzed, and provides the 

slave nodes with templates to analyse. Whenever a slave node becomes idle, it requests further 

work, and the master node provides it with further templates for analysis. This process continues 

until the template list is exhausted. When this occurs, upon completion of their analysis, the 

slave nodes are sent a termination message, and the master node collects the results.

One potential drawback of using such an approach is that the master node can only process 

one request at a time. This may result in a bottleneck if many slave nodes make requests simul­

taneously. However, this should not be a problem provided the number of slave nodes are not 

too many, and the tasks are computationally intensive [79]. The latter condition can be achieved 

by a judicious choice of the number of templates sent by the master at any one time. For current 

searches, the former should not be a problem; however, for runs across larger parameter spaces,

76



Figure 3.4: A plot of the time taken to perform an analysis against the number of compute
nodes used for dynamic load-balancing.
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where searches may need to be run across huge numbers of nodes, the centralised approach may 

fail, and a move to a decentralised approach may be necessary.

3.2.1 Benefits o f using the algorithm

The results of using the dynamic load-balancing algorithm for performing an analysis of a 

stretch of data using ~  3500 templates can be seen in Fig. 3.4. It can be seen that there is a 

marked reduction in the time taken to perform the analysis as the number of nodes is increased. 

As can be seen in Fig. 3.5, the time taken approximately follows a power law (n — l ) -v, where n 

is the number of nodes being used, and s < 1. This is to be expected given the nature of distribut­

ing the job by the allocation of templates. The deviation of s from 1 as the value of n increases 

is due to a combination of the increase in the likelihood of communication bottlenecks due to 

simultaneous requests from compute nodes as n increases, and the increasing significance of the 

unchanging start-up time as the analysis time is reduced. The cost of communication can be at 

least partially mitigated by reducing the number of requests made by compute nodes. This can 

be achieved by tuning the number of templates sent by the master node in response to a request.
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Figure 3.5: A log-log plot of the time taken to perform an analysis against the number of
compute nodes used for dynamic load-balancing.
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3.3 Conclusions

The search for gravitational wave signals from compact binary sources is a computationally in­

tensive exercise, requiring analysis to be carried out across several processors in order for the 

search to be completed in a reasonable amount of time. The standard approach to the distribu­

tion of work amongst the processors is data-parallel, in which each processor performs the same 

work on a different stretch of data. Although computationally efficient, this approach introduces 

a large latency in the acquisition of results. It is expected that, in the future, acquiring results 

from a search as quickly as possible will become more important. To this end, we have investi­

gated two approaches to distributing the work in a parameter-space parallel manner: step-wise 

load-balancing, and dynamic load balancing.

The step-wise load-balancing algorithm has the advantage of requiring little or no modi­

fications to existing analysis codes, and undoubtedly speeds up the time taken to process the 

data. However, due to the changing characteristics of the data as a run progresses, as well as the 

changing loads on computational resources, it is only possible in this approach to balance the 

time taken per node on average. Therefore, using this approach, there will always be some com-
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pute nodes which finish faster than others, making it inevitible that compute nodes will spend 

some time sitting idle.

The dynamical load-balancing algorithm is balanced by default, with slave nodes requesting 

more work off a master node when they become idle. The performance of the algorithm has 

been shown to be close to t (n — l ) -5, where s < 1 for up to 10 processors, which is very 

close to the naively expected optimal behaviour for distribution of the work in a parameter- 

space parallel manner. However, such an approach requires significant modification of analysis 

codes, warranting much investment of time and effort. In addition, due to the need for slave 

nodes to request and receive work from a master node, the use of such an approach introduces 

inter-process communication, which is not required in the step-wise approach, Although such 

communication may not introduce a large penalty if the analysis is run on a single computing 

cluster, the penalty will become more significant if the analysis is distributed across several 

resources located in different locations, which may be the case in a Grid environment.
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Chapter 4

A geometric algorithm for efficient 

coincident detection of gravitational 

waves

4.1 Motivation

Long baseline interferometric gravitational wave detectors, such as the Laser Interferometer 

Gravitational-Wave Observatory (LIGO) [80], Virgo [81], and GEO 600 [82], are currently ac­

quiring the best data ever. The data sets from the different detectors can be either brought 

together and analyzed phase coherently [83, 84, 85, 86], or analyzed separately followed up by 

a coincidence analysis [87, 88, 85, 89, 90, 91, 92, 93, 94] of the triggers from different detec­

tors. Coherent analysis maximizes signal visibility (i.e., gives the best possible signal-to-noise 

ratio in the likelihood sense) while the goal of coincidence analysis is to reduce and mitigate 

the non-stationary and non-Gaussian background noise. A recent comparison of coherent anal­

ysis vis-a-vis coincidence analysis under the assumption that the background noise is Gaussian 

and stationary has concluded that coherent analysis, as one might expect, is far better than co­

incidence analysis. However, there are two reasons why current data analysis pipelines prefer 

the latter over former. Firstly, since the detector noise is neither Gaussian nor stationary, co­

incidence analysis can potentially reduce the background rate far greater than one might think 

otherwise. Secondly, coherent analysis is computationally far more expensive than coincidence
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analysis and it is presently not practicable to employ coherent analysis.

4.1.1 The problem o f coincident detection

In coincidence analysis (see for example, Refs. [91, 95, 92, 93, 96, 94]), data sets from each 

detector will be analyzed separately and the triggers from the end of the pipeline from different 

detectors compared with one another to identify triggers that might be in coincidence with one 

another. More precisely, the goal is to find if the parameters (e.g., in the case of a coalescing 

binary the time of merger, the component masses and spins) of a trigger from one detector 

are identical to those from another. Since the background noise corrupts any inherent signal it 

is highly improbable that the same gravitational wave in different detectors can be associated 

with exactly the same set of parameters. However, it should be possible to detect signals in 

coincidence by demanding that the measured parameters lie in a sufficiently small range [91,95, 

92, 93, 96, 94]. Thus, we can revise the coincidence criteria as follows: triggers from different 

detectors are said to be in coincidence if  their parameters all lie within a certain range. Events 

that pass the coincidence test are subject to further scrutiny but we shall focus in this Chapter 

on the coincidence test itself.

From the above discussion it is clear that an important aspect of coincidence analysis is 

the determination of the range of parameter values to be associated with each trigger. To this 

end, until recently, the LIGO Scientific Collaboration (LSC) has deployed a phenomenological 

method for assigning the ranges [91, 95, 92, 93, 96, 94], More precisely, one performs a large 

number of simulations in which a signal with a known set of parameters is added in software 

to the data which is then passed through the analysis pipeline. The pipeline identifies the most 

probable parameters with each injected signal and the ensemble of injected and measured pa­

rameters gives the distribution of the errors incurred in the measurement process. Given the 

distribution of the errors, one can choose a range for each parameter such that more than, say, 

95% of the injected signals are detected in coincidence. Choosing wider windows will enable 

greater detection probability but also increase the rate of accidental triggers. On the contrary, 

smaller windows decrease the false alarm rate but also reduce the detection probability.
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4.1.2 A geom etric approach to choosing coincident windows

In this Chapter we propose a new algorithm based on the metric (equivalently, the information 

matrix) defined on the signal manifold. The idea is very simple, even obvious, but leads to a 

great reduction in the background trigger rate. The advantages of the new algorithm are better 

appreciated by listing certain drawbacks of the phenomenological method. The drawbacks are 

quite naturally remedied in the new approach.

First, because the current method uses rectangular windows it ignores the correlations be­

tween different parameters. For instance, in the case of a chirping signal from a black hole 

binary the shape of the signal depends, among others, on the component masses. However, 

not all combinations of the two masses lead to signals that are easily distinguishable from one 

another. Indeed, at the lowest post-Newtonian order the waveform depends only on a certain 

combination of the masses called the chirp mass', binaries of different values for the two masses 

but the same chirp mass produce essentially the same signal. This degeneracy is broken when 

post-Newtonian corrections are included. Nevertheless, the two mass parameters continue to be 

highly correlated.

The second drawback is that the method employs windows of the same size throughout the 

parameter space while we know that errors in the measurement of the parameters depends, in 

some cases quite sensitively, on the parameters. Drawing again from our example of a binary, 

the error in the estimation of the chirp mass can vary by more than two orders of magnitude 

across the parameter space of interest in the case of systems that LIGO is expected to observe 

(see, e.g., [31, 26, 97, 98, 99, 100, 101, 102, 103, 66, 104]). Clearly, it is not optimal to deploy 

windows of the same size all over the parameter space.

Thirdly, by not taking into account parameter covariances, the method entails independent 

tuning of several parameters at the same time. This could be a horrendous problem when deal­

ing with signals characterized by many parameters. For instance, continuous radiation from 

a pulsar is characterized by the location of the pulsar, its spin frequency, the derivative of the 

frequency and so on. These physical parameters are all not independent; the existence of co- 

variances among them means that not all variations of the parameters leads to distinct signals. 

This further implies that it may not be necessary to tune each parameter separately, rather it 

should be enough to tune only a subset of the parameters or, more precisely, only the principal
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components. Furthermore, the method does not provide a unique set of windows, rather several 

possibilities could be worked out.

Finally, by using windows of the same size irrespective of the signal-to-noise ratio of the 

trigger, the method suffers from an undesirably high false alarm rate, particularly in the tail of 

the SNR distribution. Needless to say, a successful detection of gravitational waves necessitates 

as clean a distribution of the SNRs as possible, with little contamination of the tails. One way of 

reducing the false alarm rate is by using tighter windows at higher SNRs. This is well-motivated 

since true high-SNR events will be associated with smaller errors.

The geometric algorithm proposed in this Chapter quite naturally overcomes the drawbacks 

of the phenomenological method. The algorithm takes into account the correlations amongst the 

various parameters and deploys parameter- and SNR-dependent ellipsoidal windows defined by 

the Fisher information matrix using a single parameter. The most important consequence of the 

new algorithm is a great reduction in the background rate.

4.1.3 Organization o f the Chapter

In Sec. 4.2 we present and discuss the new algorithm to identify events in coincidence. The 

algorithm comprises two steps. The first step consists in associating each trigger with a p- 

dimensional ellipsoid. In the second step one tests if the ellipsoid associated with a trigger from 

one detector overlaps, or at least touches, an ellipsoid associated with a trigger from another 

detector. In Sec. 4.5 we apply the algorithm developed in Sec. 4.2 to the case of a transient chirp 

signal from a binary black hole. This will help us assess the extent to which the algorithm is 

helpful in reducing the background. Sec. 4.6 concludes by summarizing the application of the 

new algorithm in real data analysis pipelines and future prospects.

4.2 A geometric coincidence algorithm

This Section begins with a brief introduction to the geometric formulation of signal manifold 

and metric introducing the terminology needed in later Sections. The metric so defined helps 

us in identifying ellipsoidal regions with a given point on the manifold whose size is chosen 

depending on the signal-to-noise ratio (SNR) and the parameter space region where the point 

lies. We then compare the volume of the ellipsoid with that of a proper rectangular box enclosing
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the ellipsoid and aligned along the coordinate lines.

4.2.1 Scalar Product, Signal M anifold and Metric

The problem of gravitational wave data analysis was addressed in a geometric framework with 

the intention of understanding parameter estimation [102, 103] and computational requirements 

for matched filtering [105, 106, 107]. In this framework, one thinks of the outputs of an en­

semble of detectors as either finite- or infinite-dimensional vectors depending on whether one 

considers data streams as a discrete sampled set or the continuum limit of the same, respectively. 

For the sake of convenience, in this Chapter we shall deal with the continuum limit. However, 

all our results are applicable to the more realistic case in which detector outputs are treated as 

finite dimensional vectors. It is easy to see that the set of all detector outputs form a vector 

space satisfying the usual axioms of a vector space. The starting point of our discussion is the 

definition of the scalar product. Given any two functions x{t) and y(t), their scalar product (jc, y) 

is defined as [26, 97, 98, 31]

where X ( /)  =  / r >00d/jc(/) exp(2nift) is the Fourier transform of the function x(t) (and similarly, 

Y ( /))  and S/,(/) is the one-sided power-spectral density of the detector. Scalar product Eq. 4.1 

is motivated by the optimal detection statistic of a known signal buried in Gaussian, stationary 

background [108].

Amongst all vectors, of particular interest are those corresponding to gravitational waves 

from a given astronomical source. While every signal can be thought of as a vector in the 

infinite-dimensional vector space of the detector outputs, the set of all such signal vectors don’t, 

by themselves, form a vector space. One can immediately see that the norm of a signal h (i.e., 

the square-root of the scalar product of a signal with itself) gives the SNR p for a signal that is 

filtered using an optimal template [28, 109]:

y) = 2 [  ^ 7 )  [ * ( / ) r  ( / ) + *  W ( / ) l , (4.1)

(4.2)

where H( f )  is the Fourier transform of the signal h(t). In particular, we can define signals h of
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unit norm:

(4.3)

Although the set of all signal vectors do not form a vector space, the set of all normed 

signal vectors (i.e., signal vectors of unit norm) do form a manifold, the parameters of the 

signal serving as a coordinate system [102, 103, 106, 107]. Thus, each class of astronomical 

source forms a n-dimensional manifold Sn, where n is the number of independent parameters 

characterizing the source. For instance, the set of all signals from a binary on a quasi-circular 

orbit inclined to the line-of-sight at an angle I, consisting of non-spinning black holes of masses 

m \ , and , located a distance D from the Earth, initially in the direction (0,cp) and expected to 

merge at a time tc with the phase of the signal at merger cpc, forms a nine-dimensional manifold 

with coordinates {£>, 0, (p, mi, m2 , tc , cp c> 1, where y  is the polarization angle of the signal. 

In the general case of a signal characterized by n parameters we shall denote the parameters by 

/?“ , where a  =  1,... ,n.

The manifold Sn can be endowed with a metric gap that is induced by the scalar product 

defined in Eq. 4.1. The components of the metric in a coordinate system pa are given by:

The metric can then be used on the signal manifold as a measure of the proper distance d£

in dpa , it is straightforward to see that the overlap O of two infinitesimally close by signals can 

be computed using the metric:

The metric on the signal manifold is nothing but the well-known Fisher information ma-

Sap =  (dah, Oph) , dah ee  — (4.4)

between near by signals with coordinates pa and pa +  d t h a t  is signals h(pa) and h(pa +

d^2 =  gapd/?ad/?p. (4.5)

Now, by Taylor expanding h(pa +  dp a) around and keeping only terms to second order

0 (dpa -,pa) = (h(pa),h (p a + dpa)) 

= 1 -ga$dpadpV, (4.6)
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trix usually denoted r ap, (see, e.g., [108]) but scaled down by the square of the SNR, i.e.,

£ap — P-2r ap. The information matrix is itself the inverse of the covariance matrix Cap and is

a very useful quantity in signal analysis. The ambiguity function J%(dpa', pa), familiar to signal 

analysts, is the overlap function defined above: Sl{dpa\ pa) = 0(dpa\ pa). Thus, the equation

A (dpa\ p a) =  e, or 0{dpa\ pa) = e, (4.7)

where e (0 < e < 1) is a constant, defines the ambiguity surface, or level surface. In gravitational 

wave literature e, which measures the overlap between two mis-matched signals, is also called 

the match. Using the expression for the overlap O [cf. Eq. 4.6] in Eq. 4.7, we can see that the 

coordinate distance dpa to the ambiguity surface from the coordinate point pa is related to the 

proper distance1 by:

gapdpadpp =  1 -  8, (4.8)

Equivalently, d£ = \ / l  — 8. For a given value of the match e the above equation defines a (n — 

1)-dimensional ellipsoid in the n-dimensional signal manifold. Every signal with parameters 

pa -1- dpa on the ellipsoid has an overlap e with the reference signal at pa.

4.2.2 Coincidence windows

Having defined the metric (equivalently, the information matrix) and the ambiguity function, we 

next consider the application of the geometric formalism in the estimation of statistical errors 

involved in the measurement of the parameters and then discuss how that information may be 

used in coincidence analysis. We closely follow the notation of Finn and Chemoff [26, 97, 98] 

to introduce the basic ideas and apply their results in the choice of coincidence windows.

Let us suppose a signal of known shape with parameters pa is buried in background noise 

that is Gaussian and stationary. Since the signal shape is known one can use matched filtering 

to dig the signal out of noise. The measured parameters J? 1 will, in general, differ from the true 

parameters of the signal2. Geometrically speaking, the noise vector displaces the signal vector 

and the process of matched filtering projects the (noise + signal) vector back on to the signal

1 Here the proper distance refers to the distance between the signal h ( p a ) at the coordinate point p a  and a signal 
h(pa + d p a ) with coordinates p a  + d p a  on the ambiguity surface.

2In what follows we shall use an over-line to distinguish the measured parameters from true parameters p a .
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manifold. Thus, any non-zero noise will make it impossible to measure the true parameters of 

the signal. The best one can hope for is a proper estimation of the influence of noise.

In general, the posterior probability density function (P of the parameters p01 is given by a 

multi-variate Gaussian distribution:

where n is the number of parameters, Apa =  p a — p®, and Cap is the covariance matrix, C being

that if we define new parameters p'a =  ppa , then we have exactly the same distribution function 

for all SNRs, except the deviations Apa are scaled by p.

Let us first specialize to one-dimension to illustrate what region of the parameter space one 

should associate with a given trigger. In one-dimension the distribution of the deviation from 

the mean of the measured value of the parameter p  is given by:

SNR, what is the volume Vp in the parameter space such that the probability of finding the 

measured parameters p inside this volume is PI This volume is defined by:

(4.9)

its determinant. Noting that Cap =  p2gap, we can re-write the above distribution as:

(4.10)

where we have used the fact that C = 1 /(p2n g), g being the determinant of the metric gap. Note

P \ / 8 ppdAp
2*(Ap)dAp

where, analogous to the n-dimensional case, we have used a 2  = l / ( p 2 gpp)- Now, at a given

[  !P(Ap)dAp.
J ApeVp

(4.12)

Although VP is not unique it is customary to choose it to be centered around Ap =  0 :

P y/g^dA p

■gppAp2 <r2 {P) \flU(Ap/a)2 <r2 (P) \/2no

where given P the above equation can be used to solve for r(P) and it determines the range of
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integration. For instance, the volumes Vp corresponding to P ~  0.683,0.954,0.997,..., are the 

familiar intervals [—a, a], [—2a, 2a], [—3a, 3a], . . . ,  and the corresponding values of r are 1,

2, 3. Since a  =  1 / \ f p 2 gpp we see that in terms of gpp the above intervals translate to

1 1 1 2 2 1 3 3
.  \ / S p p  \ / S p p . ’ P . y /Si pp  y / S p p . ’ P .  \ / S p p  y / S p p .

(4.14)

Thus, for a given probability P, the volume Vp shrinks as 1/p. The maximum distance dmax 

within which we can expect to find “triggers” at a given P depends inversely on the SNR p :

d£ =  yjgppAp2 = r/p . Therefore, for P ~  0.954, r — 2 and at an SNR of 5 the maximum 

distance is 0.4, which corresponds to a match of e =  1 — dZ2  — 0.84. In other words, in one- 

dimension 95% of the time we expect our triggers to come from templates that have an overlap 

greater than or equal to 0.84 with the buried signal when the SNR is 5. This interpretation in 

terms of the match is a good approximation as long as dZ <C 1, which will be true for large SNR 

events. However, for weaker signals and/or greater values of P we can’t interpret the results in 

terms of the match although, of course, the foregoing equation can be used to determine r(P). 

As an example, at P ~  0.997, r = 3 and at an SNR of p =  4 the maximum distance is dZ = 0.75 

and the match is e =  7/16, which is significantly smaller than 1 and the quadratic approximation 

is not good enough to compute the match.

These results generalize to n dimensions too. In n-dimensions the volume Vp is defined by

p =  (  !P(Apa) dnAp.
JApaeVp

(4.15)

Again, VP is not unique but it is customary to centre the volume around the point Apa = 0 :

p" y/gdnAp
p2fi^ApaAp^<r2 (Rn) {2n) n / 2

= [
J p 2K ^ A p a A p ^ < r 2(Rn

exp - y g a p A / ^ A (4.16)

Given P and the parameter space dimension n, one can iteratively solve the above equation for 

r{P,n). The volume Vp is the surface defined by the equation

gapApaApV = ( ^ (4.17)

This is the same as the ellipsoid in Eq. 4.8 except that its size is defined by r/p . Let us note
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Table 4.1: The value of the (squared) distance d i 2  = r2 /p 2 for several values of P and the 
corresponding smallest match that can be expected between templates and the signal at different 
values of the SNR.

P = 0.683 P = 0.954 P = 0.997
p d i 1 Emm d i 2 £mm d i 2 Emm

n =  1

5 0.04 0.9798 0.16 0.9165 0.36 0.8000
10 0 .0 1 0.9950 0.04 0.9798 0.09 0.9539
2 0 0.0025 0.9987 0 .0 1 0.9950 0.0225 0.9887

n — 2

5 0.092 0.9529 0.2470 0.8677 0.4800 0.7211
10 0.023 0.9884 0.0618 0.9686 0 .1 2 0 0 0.9381
2 0 0.00575 0.9971 0.0154 0.9922 0.0300 0.9849

n = 3
5 0.1412 0.9267 0.32 0.8246 0.568 0.6572
10 0.0353 0.9822 0.08 0.9592 0.142 0.9263
2 0 0.00883 0.9956 0 .0 2 0.9899 0.0355 0.9821

the generalization of a result discussed previously, namely that the size of the ellipsoid is not 

small enough for all combinations of P and p and, therefore, it is not always possible to interpret 

the distance from the centre of the ellipsoid to its surface in terms of the overlap or match of 

the signals at the two locations except when the distance is close to zero. This is because the 

expression for the match in terms of the metric is based on the quadratic approximation which 

breaks down when the matches are small. However, the region defined by Eq. 4.17 always 

corresponds to the probability P and there is no approximation here (except that the detector 

noise is Gaussian).

When the SNR p is large and 1 — P is not close to zero, the triggers are found from the 

signal with matches greater than or equal to 1 — (r(P ,n)/p)2. Table 4.1 lists the value of r for 

several values of P in one-, two- and three-dimensions and the minimum match Emm for SNRs 

5, 10 and 20. Table 4.1 should be interpreted in the light of the fact that triggers come from 

an analysis pipeline in which the templates are laid out with a certain minimal match and one 

cannot, therefore, expect the triggers from different detectors to be matched better than the 

mimimal match. From the Table, we see that when the SNR is large (say greater than about 

10) the dependence of the match Emm on n is very weak; in other words, irrespective of the 

number of dimensions we expect the match between the trigger and the true signal (and for our
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purposes the match between triggers from different instruments) to be pretty close to 1, and 

mostly larger than a mimimal match of about 0.95 that is typically used in a search. Even when 

the SNR is in the region of 5, for low P again there is a weak dependence of Emm on the number 

of parameters. For large P and low SNR, however, the dependence of Emm on the number of 

dimensions becomes important. At an SNR of 5 and P ~  0.954, Emm =  0.80,0.72,0.66 for 

n = 1,2,3 dimensions, respectively.

In general, for a given probability P the size of the ellipsoid at an SNR p is smaller by 

a factor p compared to that at p =  1. Thus, the volume in the parameter space in which the 

measured parameters will lie at a given probability P will scale with the SNR as p~". Therefore, 

if the goal of an experiment is to have false dismissal probability that is no greater than 1 — P 

then the ellipsoidal windows given by Eq. 4.17 could be employed when testing triggers from 

different detectors for coincidences. We now have our first result which states that:

When performing coincidence analysis o f triggers one should test to see if  the as­

sociated ellipsoids overlap with each other. These ellipsoids describe the smallest 

possible volume within which the false dismissal probability is no more than a pre­

specified value.

Notice also that the false alarm rate would then go down by p~n. Thus, given the false dismissal 

probability 1 — P the size of the ellipsoid further depends on the SNR of the events that are 

being subject to coincidence analysis, the size shrinking sharply as a function of the event’s 

SNR. Thus we have the second of our results:

The size o f the ellipsoids should be chosen in inverse proportion to the signal-to- 

noise ratio.

However, this latter feature has not yet been implemented in current gravitational wave searches 

and will be a priority for implementation in future versions of the search pipeline. The final, and 

practically speaking probably the most important, result is the following:

Our coincidence algorithm reduces the number o f tunable parameters from n (where 

n is the number o f parameters) to 1 , irrespective o f the dimensionality o f the signal 

parameter space.
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This parameter (jl introduced in Eq. 4.19 essentially scales the volume of the ambiguity ellipsoid 

-  the shape and orientation of which is entirely determined from the metric components. The 

appropriate value of this parameter can be determined by extensive Monte-Carlo tests where 

one injects GW signals in interferometer noise and by optimising the detection efficiency vis- 

a-vis false alarm rate, an acceptable value of /x is arrived at. Having just one parameter greatly 

simplifies this tuning procedure. Note that, as argued before, /x is SNR-dependent: loud signals 

with high SNRs are expected to be more consistent in their parameters in different detectors. 

Thus the ellipsoids associated with these high SNR triggers are expected to overlap (and hence 

pass coincidence) even if they each have a smaller volume. On the other hand, for weaker 

signals we need to associate larger ellipsoids in order for them to overlap.

4.3 Overlap of ellipsoids

A key tool in determining coincidences of triggers from two or more detectors is a mathematical 

algorithm to determine if the ellipsoids associated with triggers either touch or overlap with each 

other. This algorithm forms the workhorse for identifying coincidence of triggers from two or 

more detectors.

As stated in Section 4.2.1, triggers resulting from the analysis pipeline are projections of 

the data by normed signal vectors onto an n-dimensional space Sn, where n is the number of 

independent parameters characterizing the source. In the foregoing Section we introduced el­

lipsoidal regions in the n-dimensional parameter space with their centers at the location of the 

signal. When we analyze the data, however, we will not know before hand if a signal is present 

in the data and even when there is one we would not know where its location in the parameter

space is. We will have, nevertheless, the knowledge of the location of the triggers in the pa­

rameter space. Let us denote the coordinates of a trigger from a detector A as where a  is 

the index on the parameter space. The coincidence analysis proceeds in the following manner. 

Define an ellipsoidal region £ (pa , g) around each trigger <7“ by

£(P A,g) = {PA eS n  | (PA-qA)r g (PA -q/0  <  1} , (4.18)

where 6  Sn is the position vector of the center of the ellipsoid (i.e., the location of the trigger
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from detector A) and g is the rescaled metric which we shall refer to as the shape matrix. It is 

related to the metric by

Sap =  /*2Sap (4-19)

where p2 is a numerical scaling factor used to expand the linear distances of the ellipsoid while 

holding the position of the center and the spatial orientation constant. Eq. 4.17 allows us to 

interpret the parameter p in terms of the probability P with which the trigger can be expected to 

be found within the ellipsoid £ (p a, g ) :

 ̂= 7$)- (4'20)

Further, the probabilities P associated with a given pcan be found using Eq. 4.16 when the back­

ground noise is Gaussian. However, most detector noise is non-Gaussian and non-stationary and 

in those cases p serves as a parameter that must be tuned to achieve a certain detection efficiency 

or, alternatively, a certain false alarm rate.

Thus, the shape matrix is the scaled metric and encodes the local correlations between the 

parameters in the neighborhood of the trigger center. It is trivial to check that when p = 1, 

Eq. 4.18 defines the interior of the ambiguity ellipsoid previously defined in Eq. 4.7.

Once an ellipsoidal model for the trigger is established, following [110] one can construct 

a contact function !Fa b ( X )  of two ellipsoids £ (q a , g^) anc* 8 b ) (basically, triggers from

detectors A and B) as

M X )  =  X ( l - X )  r / B [A,?*1 +  (1 - X ) * ; 1] " 1 rAB, (4.21)

where rAB =  q B — q,* and X € [0,1] is a scalar parameter. The maximum of the contact function 

over X in the interval [0,1] can be shown [110] to be unique. It can also be shown that for two 

overlapping ellipsoids, the maximum of the contact function is less than 1, i.e,

F  — max [ 7 a b { X ) \ <  1. (4.22)

When F = 1, the two ellipsoids ’touch’ each other externally.

In the ‘coincidence’ data-analysis paradigm, given triggers from N  detectors (N > 2), one
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Figure 4.1: Panel A plots the contact function Eq. 4.21 for two pairs of three-dimensional ellip­
soids taken from a search for binaries consisting of non-spinning compact objects characterized 
by parameters (tc, 10 ,13) [see Sec. 4.5, in particular Eq. 4.34]. Panels B, C and D are the pro­
jections of the ellipsoids in (f0 To), ( ^ 3) and (to,T3) orthogonal planes, respectively. Solid 
lines refer to the case of non-overlapping ellipsoids and dashed lines are for over-lapping (i.e., 
coincident) triggers. Note that in the latter case the maximum of the contact function is <  1, 
which is the test that is carried out to determine if a pair of triggers are in coincidence.
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draws up a list of ‘coincident triggers’ for further analysis to test their significance. The simplest 

coincident triggers consist of those which have ‘consistent’ parameters in two detectors (two- 

way coincidence). Testing for two-way coincidences for triggers from co-located detectors (e.g., 

the two LIGO detectors at Hanford) can be accomplished by a single test of Eq. 4.22 on a pair 

of triggers.

When the detectors are non-colocated, one needs to allow for a non-zero ‘time-of-flight’ 

delay between the trigger arrival times. One assumes that the GW signals travel at the speed 

of electro-magnetic radiation in vaccuum c, and the maximum allowed time delay is then set 

to ±A/c, where A is the distance between the two detectors. As far as the geometrical picture 

of the coincidence test is concerned, for the non-colocated case one needs to test for the over­

lap of a ‘cylindrical’ volume (of length 2A/c along the time-dimension) and an ellipsoid. In 

practice, however, the test can be carried out iteratively by adding discrete time delays to the 

trigger (spanning the allowed time-delay) from one detector and testing for the overlap condi­

tion against the trigger from the other detector, keeping the latter fixed in time. The discrete 

time step can be set to the inverse of the sampling frequency of the time series. The fact that the 

test is computationally cheap allows for such a brute-force implementation strategy to be viable.

The two-way coincident triggers can be used as building blocks to construct more complex 

coincident triggers that have consistent parameters in three or more detectors (three-way, ..., 

rc-way coincident triggers) [111]. For example, the set of triggers (7a, 7g,Tq) can be classified 

as three-way coincident if (TA,TB), (TB,Tc) and (TA,Tc) two-way coincident pairs exist. Here 

again, the subscripts A ^  B /  C are labels on the detectors. This idea can be generalised to 

determine the list of n-IFO coincident triggers given the list of {n— l)-way coincidences. It is 

useful to note that Eq. 4.22 is the only test we need in order to build the entire hierarchy of 

coincident triggers.

We conclude this Section by drawing attention to two practical issues in implementing this 

geometrical coincidence test. The first has to do with the algorithm one uses to draw up two-way 

coincidences. Given the set of triggers from two detectors, one can (a) work with time-ordered 

triggers and (b) find the maximum length of the bounding box of the ellipsoid along the time 

dimension over all the triggers such that for any trigger from one detector, the test for overlap 

is carried out only if a trigger from the other detector occurs at a time that is within twice this
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interval. This approach greatly reduces the overall number of overlap tests required to find 

two-way coincidences. The expression for the length of the sides of the bounding box can be 

algebraically determined given the shape matrix of the triggers and is explicitly given for 2- and 

3-dimensions in the next Section.

The second point is on the numerical implementation of the test of the overlap of ellipsoids 

where we maximize the contact function over a single parameter X. Evaluation of the contact 

function involves matrix inversion which can be quite expensive computationally. Under these 

circumstances, prior knowledge of the inverse of trigger shape matrices can prove to be more 

efficient than on-the-fiy computation. Brent’s minimization method [112, 113] is particularly 

suitable for fast convergence to the maxima given the well behaved nature of the contact function 

and is available as part of the GNU Scientific Library [114].

4.4 Expected reduction in false alarm rate

Next, let us consider the reduction in the false alarm rate as a result of using ellipsoidal windows

as opposed to rectangular windows. In order to achieve false dismissal probability less than

or equal to 1 -  P, a rectangular window has to be at least as large as the box that encloses 

the ellipsoid. Now the volume of an n-dimensional ellipsoid (n > 2) whose semi-axes are a 

k = 1 ,.. .,  n, is given by a recursive formula:

yn = 2 nVn- 2  Y \a k, where V0  =  1, Vi =  2. (4.23)
n L i

On the other hand, the smallest volume an n-dimensional box that encloses the ellipsoid would 

be

Un = f[ (2 a k) = 2 " Y \a k, (4.24)
*=1 k=\

where a factor of 2 arises since ak are semi-major axes and the side-lengths of the enclosing box 

will be twice that value. Thus, the rectangular box’s volume is larger than that of the ellipsoid 

by the factor
U„ n2"-'



Thus, in 2-, 3- and 4-dimensions the saving is 4 / 7t, 6/71 and 32/tc2, respectively. However, 

the real factor could be far greater as the error ellipsoids are generally not oriented along the 

coordinate axes.

When the ellipsoid is not aligned with the coordinate axes the side-lengths of the bounding 

box are given by maximizing each coordinate axis over the entire ellipsoidal surface as follows. 

Starting from Eq. 4.17 one can express the first of the coordinates p =  p ] in terms of the other 

coordinates:

g \\p 2 + 2g\iPP, + gijP,p J -  = 0 , 1,7 =  2 , . ..n, (4.26)

which can be solved to obtain

1
P± = —  

S11
- g u pl ±  yj(gug] j -  g u g i^ p 'p j  +  (£11 r1 / p2) (4.27)

For our purposes we only need the ‘plus’ solution. One can then set-up n — 1 equations in as 

many variables by demanding that dp+/d p k = 0 , which gives

((g ]ig \k -g \\g ik )(g ijg ik -g u g jk ) ( \  i j r2
( -------------------- 2 (£ii£U-£ii£«y) )PP- (4.28)
V £u  /  P

These are again quadratic equations that must be solved (simultaneously) for the coordinates p j ,

j  = 2 . . . ,  n. The resulting (positive) roots, denoted p\ can be substituted in Eq. 4.26 to obtain

the half-side-length of the ellipse. We shall next give explicit expressions for the side-lengths of 

the enlosing box in two and three dimensions. In higher dimensions the expressions are rather 

cumbersome but the general procedure outlined above can be used to compute the volume of 

the bounding box in all cases.

The side-lengths of the bounding box are given in two dimensions by

x = 2 \l  fz r, y =  2 , / ^ ,  (4.29)l«l V Isl

a n d  in th ree  d im e n s io n s  by:

x _ 2  ' { 823  ~  8 2 2 8 3 3 ) 822

( £ l 2£23 _  8 2 2 8 13)2 — (£23 £ 22£ 33) f e l 2 ~  £ l l £ 22)
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(&12&13 “  ^ U ^ 2 3 ) 2 “  U l 3  “  £ l l S 3 3 )  U l 2  ~ £ l l £ 2 2 )

(£12813 “ 811823)2 “  (£12 “ 811822) (£13 “ 811833)

( 8 l 3  ~ £ l l £ 3 3 ) £ l l

( 8 l 2  “ 8 l l 822) 8 l l (4.30)

4.5 Application to coalescing binaries

Inspiralling compact binaries are one of the most promising candidates for detection by the laser 

interferometric detectors. It will, therefore, be interesting to investigate the gains of using the 

new coincidence method in such searches. For the purpose of our discussion, it will suffice 

to use a simple model of the signal. We shall use the Fourier representation of the waveform 

from a binary consisting of non-spinning compact objects on a quasi-circular orbit in which 

post-Newtonian (PN) corrections to the amplitude are neglected, but corrections to the phase 

are included to the desired order. This waveform is calculated using the stationary phase ap­

proximation, and is of the form:

Waveforms of this type at 2PN order [49, 48] have been used in previous searches for binary 

neutron star inspirals [92], and are currently being used in searches for compact binary inspirals 

with a total mass of < 35A/0 . Moreover, the metric computed for such a waveform has been 

shown to be approximately valid for a range of physical approximants [115, 29]. At the 2PN 

order, the coefficients Xk are given by the following expressions:

where M is the total mass of the system, and r\ is the symmetric mass ratio, which is defined as 

r\ = m\nt2 /M 2.

The metric required for determining coincidence in the case of non-spinning binaries is

(4.31)

'V(f) = 2nftc  + 4>c +  X  W (*"5)/3- (4.32)
k

3 1 _ 0 1 5 ( 143 11
\2&r](nM)5/3 ’ 1 ~~ ’ 2 ~  96nr\M V336 +  4
/ 3 15 /  3058673 5429 617
T3’ 4 "  64ti(7tM,/3 V1016064 +  100811 +  1441

(4.33)
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that in the 3-dimensional space of (tc,T0^ 3), where To and T3 are the chirp times, which are a 

convenient way of parameterizing the masses of the binary system. They are given by

T0 =  256k t (nMfL)~5/3’ T3 =  (434)

where fa is the low frequency cutoff.

In obtaining the metric, it proves to be more convenient to use parameters (7c,0i >62)1 where 

0i =  27i//To, and 02 =  Infax^. This metric was obtained by Owen in [106]. Here, Eq. 4.6 was 

used, and the phase <|)c maximized over to give the expression for the metric:

Sap =  \  {3 [VaVp] -  3  [Va] 3 [Vp]) , (4.35)

where \{/a is the derivative of the Fourier phase of the inspiral waveform with respect to param­

eter 0a . /  is the moment functional of the noise PSD, which is defined for any function a(x) as:

J{fl) ni) L
xv a(x)x~7/3

dx. (4.36)
7(7) JxL SH(x)

I(q) is the r̂th moment of the noise PSD, which is defined by:

/xu r-<?/3

S M ) dX’ ( 4 ' 3 7 )

where x =  f  /fo, fo being a fiducial frequency used to set the range of the numerical values of 

the functions contained in the integrals. The value of x i  is chosen so that the contribution to the 

integral for values below xl would be negligible, xy  =  fa  /  fa , where fa  is the ending frequency 

of the inspiral waveform in question. In deriving the explicit expression for the metric, the 

starting point is the Fourier phase of the waveform in the form [115]:

^ ( / U c ^ h ^ )  — 2nftc + ciq\Q\x 5/ 3 +  <221 (0 i / 0 2 ) +  an  (6 1 6 2 )

+ #41 ( 0 l / 0 2 )  + # 4 2  (01 / 0 2 ) 1//3 + # 4 3  ( 6 2 / 6 1 )
1/3

X  +  <2 3 1 0 2 +

l/3, (4.38)
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where the coefficients a are given by

3 1171 743 /  25 \ 1/3 - 3  617 2
001 =  5 ’ 021 =  1 2 " ’ *22 =  20i6 [ $ ? )  ’ “31 =  T ’ *41 =  38471 ’

_  , , 1/3 15293365 /  5 \ 1/3
«42 =  7 7" /  ( -^r- ) «43 =  I ) • (4.39)

_  5429 /2571 \  1/J _  15293365
“  5376 \  Y  J a 43 “  10838016 V̂ Tt4

Using the above in Eq. 4.35, one can find an explicit expression for the metric. This expression 

is too unwieldy to write here, but it can be obtained by utilising the fact that, since the Fourier 

phase is a polynomial function, J7 can be expanded in terms of normalised moments J, where

j ( p ) = ' M -  <4-4°)

To assess the potential gains of using this coincidence method for inspiral analysis, it is 

useful to consider the difference in volume between the ellipsoidal region defined by g, and its 

bounding box aligned with the co-ordinate axes This ratio can be calculated with

the help of Eqs. (4.30). Fig. 4.2 shows how this ratio varies across the (1 0 ,^3) space in the 

case of Initial and Advanced LIGO, Virgo and Einstein Telescope (a third generation European 

detector that is currently being designed). It can be seen that for most of the parameter space, 

the volume of the bounding box is an order of magnitude larger than the volume of the ellipsoid; 

however, in certain regions, corresponding to high masses, this ratio can be as large as two orders 

of magnitude. This suggests that significant reductions of the background can be achieved by 

using ellipsoidal windows. Runs on example data sets suggest that in practice, the reduction in 

background coincident triggers due to using such a coincidence method will be a factor of ~  1 0 .

To assess the improvement in the confidence in any candidate detection, it is helpful to look 

at how reducing the background rate by a factor of k will improve the odds O of a detection

O W D ) = m r y  (441)

where P(h\D) is the posterior probability of a signal h being present given the set of triggers D 

has been obtained, and /5(0|D) is the probability of there being no signal given D. We take the 

accidental trigger rate to be a Poisson process, with a trigger rate prior to reduction X. Assuming 

that the detection efficiency is not affected by the reduction in the trigger rate, we see that the
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Figure 4.2: The logi0 of the ratio of the volume of the bounding box to the volume of the 
ellipsoid as a function of location in (to,T3) space. The plots shown are (clockwise from top- 
right) for the initial LIGO, advanced LIGO, Virgo and Einstein Telescope. The low frequency 
cutoff is chosen to be 20 Hz.



odds improves by the following factor:

0(h\D)x/k l - e- XT
0(h\D)x l-g -M Y * ’

(4.42)

where T is the duration of the run.

The factor by which the odds of a signal being present improves by reducing the false alarm 

rate by a factor of k depends on how high the false alarm rate was to start with. If the initial false 

alarm rate is low (XT <C 1), the improvement in the odds approaches the factor k. However, 

for high false alarm rates, the improvement becomes less marked, tending to a factor of 1 as 

XT —> °°.

4.6 Summary and Conclusions

A new method of coincidence analysis is proposed in which, instead of the rectangular win­

dows on parameters conventionally used, ellipsoidal windows are employed based on the metric 

defined on the signal manifold. This allows us to use windows of appropriate size depending 

on the location in the parameter space, instead of using a phenomenological ‘best fit’ choice 

of windows across the entire space. The algorithm has a massive practical advantage in that it 

requires the tuning of only one parameter irrespective of the number of dimensions of the pa­

rameters. This contrasts with the conventional method that required us to tune nearly as many 

parameters as the dimension of the parameter space. In addition, the method allows us to take 

into account covariances between parameters, thus significantly reducing the volume enclosed 

within the windows. In particular, for the case of non-spinning compact binary coalescences in 

Initial LIGO, it is expected that the use of such a method will reduce the background rate of 

coincident triggers by roughly an order of magnitude. By also incorporating SNR-dependence 

into the size of the windows, the background of high SNR events can be reduced even further.
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Chapter 5

Searching for high-mass binary 

coalescences in LIGO S5 data

The current generation of interferometric gravitational wave detectors are taking data at un­

precedented sensitivities. Throughout the fifth science run (S5), the LIGO detectors have been 

taking data at their design sensitivity. Therefore, there is a genuine chance of a detection oc­

curring in the data currently being analysed. Among the most promising sources for detection 

are compact binary coalescences (CBCs) consisting of neutron stars and/or black holes. The 

signals emitted by such systems consist of 3 distinct phases: the adiabatic inspiral phase; the 

merger phase; and the ringdown of the final black hole. The inspiral phase is well modelled 

using the post-Newtonian approximation, and the ringdown phase can be modelled as the ring­

ing of the quasinormal modes of the final black hole. However, obtaining the description of the 

merger phase requires solving the full non-linear equations of general relativity to a high degree 

of accuracy. Recent advances in numerical relativity have allowed us to solve the merger phase 

of a coalescing binary system, and provide detection templates for use in future searches. This 

can enhance the reach of the detectors by a factor of 2, leading to an increase in the event rate 

of a factor of 8. An analytic approach to obtaining the approximate form of the merger signal 

- the effective one-body (EOB) approach - was taken by Buonanno and Damour[61, 24]. The 

recently obtained full numerical solutions have been seen to agree remarkably well with the 

predictions of the EOB approach, as can be seen in Fig. 5.2.

The rate at which signals from CBCs are expected to be detected depends on a number
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Figure 5.1: The horizon distance for a binary of equal component masses plotted as a function 
of the total mass of the binary, for the first 3 months of S5. The horizon distance is defined 
as the distance at which an optimally oriented, optimally located binaiy will have an expected 
SNR of 8. The horizon distance has been plotted for integrating up to the last stable orbit (LSO), 
and up to the light ring. It can be seen that integrating up to the light ring greatly enhances the 
sensitivity to more massive systems.
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Figure 5.2: The left-hand panel shows the waveform produced by a coalescing binary with 
equal mass, non-spinning components, generated at 2.5PN order using the effective one-body 
approachf24J. A ringdown signal for the final black hole consisting of 1 quasinormal mode 
has also been included. The right-hand panel shows the numerical waveform for an equal-mass 
binary, where the components had small spins, obtained by Pretorius[116]. (Figures taken from 
[117].)

103



100

so :

70h
60“

50
CM

20

40 60
Mass 1 / solar mass

Figure 5.3: The search for inspiralling compact binary systems is split into two regions. The low 
mass region (enclosed by the solid black line) is searched using frequency-domain templates 
in the stationary phase approximation at the 2PN order. The high mass region (enclosed by 
the dotted red line) is searched using 2PN effective one-body templates generated in the time- 
domain. Using the effective one-body approach allows us to include the merger phase in the 
template.

of factors, including the sensitivity of the detectors, and the astrophysical model used for the 

distribution of such sources in the universe. The typical assumption is that the rate of com­

pact binary coalescences in a given volume is proportional to the star formation rate, and will 

therefore follow the blue light luminosity. For binary neutron star (BNS) systems, it is pos­

sible to infer merger rates per L\o, where L \o is 1010 times the blue Solar luminosity, based 

on the BNS systems which have been observed. However, the absence of observational evi­

dence for systems consisting of a neutron star and a black hole (BHNS), and two black holes 

(BBH), introduces a large degree of uncertainty in any expected rate, although population syn­

thesis models suggest that such systems should exist. Moreover, there is also uncertainty about 

the assumption that merger rates are proportional to blue light luminosity; in particular, it has 

been suggested that this assumption will underestimate the contribution to merger rates from 

elliptical galaxies[118]. Nonetheless, despite the uncertainties, the current best estimates of 

merger rates are 10 -  170 x 10“6yr_1L7o for BNS, 0.1 — 15 x 10-6yr-1L̂ Q for BHNS, and 

0.15 -  10 x l O - y - 1̂ 1 for BBH.

There are currently a number of search efforts underway looking for signals from CBCs.
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Firstly, there are the inspiral searches, which are carried out by matched filtering the data with 

templates based on the inspiral part of the waveform. These searches are performed over two 

overlapping mass regions, as shown in Fig. 5.3. The low mass region contains BNS, BHNS, and 

BBH systems up to a total mass of 35A/0 . It is searched using templates based on second order 

restricted post-Newtonian inspiral waveforms in the stationary phase approximation. These 

templates are of the same type as in the case of the search for BNS in the S3 and S4 data sets[27]. 

The high-mass region contains BHNS and BBH systems with total mass in the range 25A/0 < 

M < lOOAfv Such signals typically have an ending frequency near the the most sensitive region 

of the detector noise curve. Additionally such signals may only appear in the detectors sensitive 

bandwidth for a very short time. Therefore, it is important to integrate the templates as far as 

possible, and include the plunge waveform. To this end, the search uses effective one-body 

(EOB) templates integrated in the time-domain.

In addition to these blind searches, there are also targetted searches being pursued. It has 

been suggested that short hard gamma-ray bursts (GRBs) could be associated with coalescences 

of BNS or BHNS systems. Thus, there is also a search taking place which looks for compact 

binary coalescences in coincidence with GRB events. The known sky location and time of such 

signals allows one to dig deeper into the noise, and obtain a higher detection efficiency for a 

given false alarm rate than would otherwise be possible. A description of a recently performed 

‘quick look’ search performed on LIGO data coincident with GRB 070201, whose electromag- 

netically detemined sky position was coincident with the spiral arms of the Andromeda galaxy, 

can be found in [119].

The searches detailed above are all taking place using templates that are derived assuming 

the objects within the binary are non-spinning. However, it is known that, for BHNS and BBH 

systems, the effect of spin on the amplitude and phase of the observed gravitational radiation 

can be significant. Very little is currently known about the distribution of spins of BHs in bina­

ries; they could potentially be very large. Therefore, it could prove to be of great importance 

to include spin effects in templates to search for such systems. In practice, due to the compu­

tational cost of implementation, it is currently impossible to perform a search using a template 

bank across all physical parameters required to fully take into account the spin of the objects. 

To reduce this cost for current searches incorporating spin effects, two approaches have been
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taken to reduce the effective dimensionality: introduction of a detection template family (DTF), 

which captures the essential characteristics of the inspiral signal, while depending on fewer 

(phenomenological) parameters[120], as was done for the search for systems containing spin­

ning objects in S3 LIGO data[121, 122]; and to use a quasi-physical template family based on 

the PN equations of motion for a binary system with a single spinning object[123, 124]. Both 

approaches are under assessment and development for current and future searches; in particular, 

for the case of the DTF, it is important to assess whether the increased false alarm rate which 

results from using such templates is a price worth paying for the associated gain in detection 

efficiency.

As well as the searches above, there is also a search for black-hole ringdowns. For this, tem­

plates are used which model the ringing of quasinormal modes of the final black hole following 

merger. The ringdown search becomes particularly useful for systems > 100A/q .

The focus of this Chapter will be on the search for non-spinning high-mass CBCs in data 

from the first calendar year of the LIGO S5 run. This search is currently an ongoing endeavour, 

so here we give the current status of various aspects of this search. In particular, results given 

in this Chapter will only involve a subset of the data, known as the playground data. The 

organisation of the Chapter will be as follows: first we will discuss the details of the data set 

being analysed, and the pipeline used to perform the search. Next, we will discuss the tuning 

of the various parameters involved in performing the search. Following this, we will discuss 

the accuracy of parameter recovery for simulated signals injected into the data. Finally, we will 

discuss the current status of the search, and give a projection of the expected final result.

5.1 The S5 first calendar year

5.1.1 Details of the data analysed

The S5 run commenced on 4th November 2005 with only the HI and H2 detectors running. 

They were joined in the run by the LI detector on 14th November 2005. The first calendar year 

searches analyse data from the start of the run up to the anniversary of LI joining the run (i.e. 

up to 14th November 2006). For data to be analysed, it is required that at least two instruments 

have data suitable for analysis for that time. For initial investigations and tuning purposes, data 

from a fraction of the total time, the playground data is used. The playground data consists of
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approximately 10% of the total data, and is chosen by selecting 600 seconds of data every 6370 

seconds. More formally, the playground data set T  is defined as [125]

T  =  {[*„,*„+ 600) :tn =  729273613+  6370n,n <E Z}. (5.1)

To avoid any bias which may be introduced via the tuning process, any final upper limits will be 

calculated using only non-playground data. In searching for potential detection candidates, all 

data will be analysed.

A list of times for which the instruments have poor data quality has been produced. These 

times are grouped into different categories, depending on the cause of the poor data quality. De­

pending on the category the times belong to, the data for that particular instrument will either not 

be analysed, or any triggers produced will be vetoed post-generation. In certain circumstances, 

it is possible that a signal arriving during the vetoed times could nonetheless be detected and 

validated; however, these vetoed times will be ignored in computing final upper limits. In addi­

tion to these, there is a further set of data quality flags which are not significant enough to veto 

any triggers produced, but may prove useful in following up candidate events.

5.2 Structure of the pipeline

A brief description of the pipeline used for inspiral searches was given in Chapter 3, and illus­

trated in Fig. 3.1. We therefore will focus on the specific details of the pipeline regarding this 

particular search, rather than the general topology of the pipeline itself. Firstly, it is necessary 

to break the data up into analysis segments. This is done by breaking up the data into stretches 

of 2048 s in duration. To perform the analysis, these stretches are then broken up into 15 over­

lapping segments of 256 s duration. To avoid issues with corruption of data, the first and last 

64 s in a segment are not used for trigger generation. To ensure this doesn’t lead to data ignored 

in the analysis, the 2048 s stretches are selected to overlap by 128 s in contiguous data. At the 

start and end of a science segment, to avoid any transients which might arise, we ignore the first 

and last 8 s of data respectively. Note that this means that science segments of less than 2064 s 

will not be analysed. For the analysis of playground data, as described previously, triggers are 

only kept for 600s stretches of data; however, for the calculation of the power-spectral density,
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Figure 5.4: A plot of the number of templates required for the high-mass coalescing binary 
search vs time for S5 playground data.

Days after start of run

2048 s stretches are still used.

Once we have the data segments, we generate the template banks which will be used in the 

search. Template banks are generated for each detector, and for each 2048 s data stretch, to take 

into account fluctuations of the detector power-spectral densities. For the high-mass coalescing 

binary search, the banks are generated to cover the range of component masses lAf0 < m <  

99A/0 , with a total mass range 25M0 < M <  100A#0 , with a minimal match of 0.97. The 

templates are places on a hexagonal lattice using the metric defined on the parameter space, 

as described in [29]. Figure 5.4 shows how the number of templates required in each detector 

changed with time for the times being analysed. The fluctuation of this number highlights the 

non-stationarity of the noise.

5.2.1 Filtering

Following the generation of the templates, the data is then filtered as described in Section 1.5.1. 

For this particular search, we use 2PN effective one-body templates, generated in the time- 

domain, to model the expected waveform. The process of filtering each template will produce
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an SNR time-series, p(r). If this exceeds the chosen threshold, p*, we keep it as a gravitational 

wave trigger. In the case of the high-mass search this threshold is set to a value of 6 . Per­

forming such filtering across the entire template bank will produce a prohibitively large number 

of triggers, which will mostly be due to noise transients contained in the data. Therefore, it is 

necessary to perform data reduction on this set of triggers. This is done in two ways: firstly, for 

the SNR time-series of each individual template, clustering is performed over a sliding window 

of 3 s duration. The clustering works as follows: if we have a trigger such that p >  p*, if this 

trigger is within 3 s of an earlier trigger from the same template, which had a larger value of p, 

we discard the current trigger; however, if the earlier trigger has a smaller value of p, we discard 

the earlier trigger. Note that in other searches for compact binary coalescences on S5 data, the 

length of the clustering window is determined by the length of the template. However, for the 

high-mass search, the highest mass templates are of very short duration. These highest mass 

templates are also the most likely to be triggered by noise transients. Therefore, in this case, it 

is necessary to choose a fixed clustering window to achieve the required level of data reduction.

Once this clustering has been performed, the surviving triggers are then clustered across the 

parameters ( f c ^ o ^ ) ,  where tc is the coalescence time, and To and T3 are the chirp times, which 

are a parametrization of the masses of the system. The clustering works by making use of the 

metric on the parameter space, and assigning triggers which are ‘near’ to each other in this space 

as being part of a cluster. The trigger with the highest SNR in each cluster is then kept, while 

the rest are thrown away. A more complete description of this clustering algorithm can be found 

in [30].

5.2.2 Coincidence analysis

To reduce the number of false triggers further, those which survive the filtering stage are then 

subjected to a coincidence test. For triggers in different detectors to be considered coincident, 

we require that the parameters of the triggers agree to within a certain tolerance. In previous 

searches, this was achieved by performing large-scale Monte-Carlo simulations, to tune win­

dows on each of the individual parameters. However, in this case, we use the coincidence 

algorithm detailed in Chapter 4. This approach has two advantages: firstly, it reduces the back­

ground by a factor of ~  10 for comparable detection efficiency, and secondly, it only requires the
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tuning of a single parameter, the parameter p2 in Eq. 4.191. In fact, we actually choose to tune 

v =  1 /fi2, which, in the current implementation within the LIGO analysis pipeline, is known as 

the e-thinca parameter. For triggers to survive this stage, we require coincidence in at least two 

detectors.

5.2.3 Signal-based vetoes

If there are any triggers which survive the first coincidence stage, they are then re-filtered, this 

time with signal-based vetoes applied to further reduce the number of false triggers. So far, two 

such tests have been applied on the high-mass search: the x 2 vetcL and the r2 veto. Here, we 

briefly describe each of these tests.

The x 2 veto

The chi-squared test can be thought of as a ‘goodness-of-fit’ test between the data which gen­

erated the trigger, and the template itself [126, 127, 128, 27, 129]. The veto works as follows: 

firstly, we divide up the template into p  frequency bands, such that each band contains the same 

quantity of power, i.e., for orthogonal templates hc(t) and hs(t), we break them up into bands uj 

and vj respectively, where j  = 1 , such that

—  5,*, 
p

(5.2)

P
(5.3)

( u i , v k ) =  0 . (5.4)

(5.5)

By filtering each of these bands against the data x(t), we obtain the quantities

y t =  ( x , U i ) , (5.6)

(5.7)

1 In the previous chapter, the parameter p2 depended on p2. However, the current implementation within the 
LIGO analysis pipeline ignores the dependence on p2.
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By definition, it is obvious that

; =i  i =  1
(5.8)

We then define the quantities Ay, and AZi as

y
Ay, = y i -

P
(5.9)

A ZAzi =  zi  .
P

(5.10)

We then define the y} statistic as

*2 =  ^ S [ ( a >,)2+ ( A2)2]- (5.11)

It is clear that, for a perfectly matched signal and template, in the absence of noise, the value 

of x2 wiH be zero. In the presence of noise only x(t) = n(t), the statistic will be y 2-distributed 

with 2p — 2 degrees of freedom. In fact, it can be shown that, even in the presence of a signal

freedom. However, if the data contains a spurious artefact which is picked up with a high SNR,

is a useful discriminant for distinguishing between signals and noise[126].

So far, we have assumed that a signal and template are perfectly matched; however, this 

is very unlikely to be the case. Firstly, this is due to the discrete nature of the template banks 

used in the search. Secondly, there will be differences between any real signal detected, and 

the templates used to approximate them. To take into account these differences, in practice, we 

threshold on the value %2, where

and noise, x(r) =  n(t) +  h(t), the statistic still obeys a ^-distribution with 2p — 2 degrees of

but does not perfectly match the template, this will lead to a high value of x2- Thus, this statistic

x2 < ? d ( p + s 2p2), (5.12)

where 82 is a parameter used to take into account the mismatches between templates and poten­

tial signals. The values of 52 and xl used for the search are tuned using Monte-Carlo simula­

tions. The status of this tuning will be discussed in Section 5.3.
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The r2 veto

The r2-veto allows us to further distinguish between true signals and instrumental transients. 

The veto works by examining the r2 time-series, which is defined as

r 2 ( , )  = x_(0 ( 5 1 3 )

p

It utilises the fact that the r2 time-series behaves differently for signals and instrumental glitches 

as the coalescence time of the trigger is approached. The /^-veto works by looking at the r2 

time-series for a duration A/* leading up to the coalescence time of a trigger. If the r2 time- 

series remains above a threshold value r2 for longer than a duration At within the interval A/*, 

the trigger will be vetoed. Further details of how the r2 veto works can be found in [130].

Typically, the tuning of the r2-veto consists of two regimes. Below a certain threshold 

SNR, the search requires a fixed At to be specified. Above this SNR, the threshold value At = 

Ap", where the r2 coefficient A, and the power n, both need to be tuned using Monte-Carlo 

simulations.

Second coincidence

Following the filtering of the data with application of signal-based vetoes, the remaining triggers 

are then run through the coincidence stage again. Those triggers which survive in at least double 

coincidence will constitute the output of the search. These surviving coincident triggers are then 

clustered over a 10 s window, keeping the coincident trigger with the maximum combined SNR 

pr . For previous searches [27], the combined SNR was constructed from effective SNRs, which 

combined p and x2 values in a certain way. Such a statistic has not yet been properly assessed 

for the high-mass search; therefore, where pr has been used in the playground tuning runs, it 

has been defined by

(P,)2 =  £ p ? ,  (5.14)
i

where p, is the SNR of the trigger in the ith detector (HI, H2 or LI). The clustered coincident 

triggers constitute the final output of the pipeline, known as the in-time coincident triggers.
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5.3 Monte-Carlo simulations and background

We now discuss the process of tuning the parameters for each stage of the pipeline. This is done 

by performing the following actions:

Monte-Carlo injections of signals. Signals are injected into the data streams, which we then 

attempt to detect using the pipeline. Due to the uncertainties in the waveform during the 

last few cycles, for the high-mass search, it is particularly important to inject signals of 

many different families of waveforms, including waveforms from spinning objects.

Estimation of the background. To assess the probability of an in-time coincident trigger be­

ing the result of an accidental coincidence of noise triggers, it is necessary to obtain an 

estimate of the rate of background events. This is done by performing the coincidence 

analysis with the data streams of the detectors shifted in time relative to one another. In 

the playground data, we performed 30 time-shifts forward, and the same number back­

ward, and took these to be 60 independent trials from which to estimate the background. 

H2 and LI were shifted in time relative to HI by multiples of 5s and 10s respectively.

The goal of the tuning procedure is to obtain the maximum detection efficiency for as low a 

background rate as possible. Due to the many parameters involved, many of which may not 

be independent, obtaining an optimal tuning is a very difficult task. Many ongoing projects 

are underway to attack this problem, using tools such as neural networks. However, for the 

time being, the approach taken is a phenomenological one, with each parameter being tuned 

individually by looking at the triggers from injections and time-shifts. The general philosophy 

is to tune the parameters so that cuts are relatively loose, with as many triggers associated with 

injections surviving as possible, provided this doesn’t also let a prohibitively large number of 

time-shifted triggers through.

5.3.1 Coincidence step

In tuning the coincidence step, we only need to tune a single parameter, the e-thinca parameter v. 

In accordance with the philosophy specified above, we tune this parameter such that the cut will 

be loose, thereby letting as many signals through as is reasonable, while leaving any resulting 

accidental triggers to be dealt with by further vetoes. As a guide for tuning this parameter, we
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Figure 5.5: A plot showing the effective distance of found (blue crosses) and missed (red
crosses) injected effective one-body waveforms vs chirp mass.

Distance vs Chirp Mass
10s ---------------1--------------- 1--------------- i---------------1---------------j---------------1-------------- :-------------- r

Injected Chirp Mass (Msun)

note the fact that the parameter v corresponds to 1 — m, where m is the match. The theoretical 

studies in stationary, Gaussian noise in Chapter 4 indicated that, at an SNR of 5, we would need 

to use an v ~  0.35 for 99.7% of triggers associated with signals to be correctly identified as 

such. However, in practice, the noise is not stationary or Gaussian, and we therefore need to 

use an v which is significantly larger than this. We choose the value of of v to be 0.5 for the 

high-mass search.

Fig. 5.5 shows the effective distance of found and missed injected effective one-body wave­

forms against chirp mass, Mchirp, defined as

M c h i r P  = Mr[3/5, =  (5.15)

where M is the total mass of the binary system, and m, are the component masses. It can be 

seen that, for Mchirp ~  6M0 , there appears to be an excess of missed events at relatively small 

effective distances. This feature has not been seen in previous searches. The reason for this 

phenomenon is that, in the high-mass search, we encounter signals with high total mass, but 

also small symmetric mass ratio r\. These factors conspire to give signals from such systems a
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Figure 5.6: A plot showing the X2 value vs p for time-shifted triggers (black crosses), plus 
found injected signals for a range of signal approximants (red crosses). Triggers plotted here 
are for all detectors: HI, H2 and LI. The proposed veto is given by the cyan line.

P

relatively low amplitude, while also occupying only a small part of the sensitive bandwidth of 

the detector. Thus, we expect to be less sensitive to these systems.

5.3.2 The %2 veto

We will now discuss the tuning of the parameters for the %2 veto, namely xl and 52. To perform 

this task, Monte-Carlo simulations of many different families of waveform were performed, as 

well as performing estimations of the background using time-shifted triggers. These runs were 

performed using a very loose X2 cut, and their output was used to choose the parameters for the 

veto.

In previous searches, the x2 statistic has been calculated for p =  16. However, since the high- 

mass search will look for signals which will only be in the sensitive bandwidth of the detector 

for a short time, and will only cover a small bandwidth, here we used p =  10. Fig. 5.6 shows the 

X2 vs p for time-shifted triggers, plus found injections for a range of signal approximants. Since 

the general philosophy adopted is to tune the veto parameters to be the same for all detectors,

115



Figure 5.7: A plot showing the r2 duration At vs p for time-shifted triggers (black crosses), plus 
found injected signals for a range of signal approximants (red crosses). Triggers plotted here 
are for all detectors: H I, H2 and LI.

*  10"

p

we plot triggers from HI, H2 and LI on this figure. It can be seen that there is a lot of mixing 

between time-shifted triggers and those which are associated with injections; therefore, the %2 

veto will not be as efficient a descriminator as has been the case in other searches, including 

the low-mass compact binary search on the first calendar year of S5. However, it is possible to 

apply a veto which will remove a number of background events, including some with very high 

values of p, while barely affecting the number of found injected signals. The proposed values 

for use in the x2 cut are a xl of 10, and a 52 value of 0.15.

5.3.3 The r2 veto

Once we have an approximate tuning of the %2, we then set about tuning the r2 veto. Firstly, we 

need to choose the r2 threshold value, rj, and the time duration A/* for which we will examine 

the r2 time-series. We require the value of r2 to be higher than the threshold value for the x2 

veto. Therefore, we choose r2 to be 15, and A/* to be 6s.

Fig. 5.7 shows the duration At over which the r2 time series remains above i2 within the time
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Figure 5.8: A plot showing v =  Al/(0.0015p] 124764) vs p for time-shifted triggers (black
crosses), plus found injected signals for a range of signal approximants (red crosses). Trig­
gers plotted here are for all detectors: HI, H2 and LI. The proposed veto is given by the cyan 
line.
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interval A/* plotted against p. The two regimes detailed above can clearly be seen. As was the 

case for the %2 veto, the separation of the triggers from injected signals and time-shifted triggers 

is not as clean as for previous searches. However, with appropriate choices of parameters, it 

is clear that the r2 veto will be very useful in removing large numbers of background triggers. 

The proposal for the veto is to throw away triggers with At > 0 .0 0 7 5 P 1 124764. This cut is better 

illustrated in Fig. 5 .8 .

5.4 Estimation of parameters

The primary purpose of the S5 high-mass search is the detection of signals. Good estimations of 

the parameters of the system can be obtained by following up any interesting candidate events 

with further analysis, such as Markov Chain Monte-Carlo (MCMC) methods. However, it is 

interesting to assess how well the search itself is performing the estimation of parameters, as an 

aid in diagnosing potential problems which may exist in seach codes; and also as a measure of 

the reliability of the parameters passed as input to further investigations undertaken on candidate 

events. Histograms of the errors in the measurement of Mchirp, tc and q for EOB injections can 

be found in Figs. 5.9, 5.10 and 5.11 respectively.

Fig. 5.12 shows the chirp mass accuracy for EOB injections as a function of the injected 

chirp mass, for the HI detector. There are a number of curious features which are highlighted 

in this plot. The most obvious feature is the systematic underestimation of Mchirp when the 

injected Mchirp > 25Af0 . One reason for this is that the region of the parameter space in question 

is covered by only a few templates in the template bank. There is another feature present in this 

plot, namely a propensity to overestimate the chirp mass for injected chirp masses of 5M0  < 

Mchirp £  15M©. Investigations have shown that this is due to asymmetric high-mass systems 

being detected by templates of similar total mass, but more symmetric (hence greater Mchirp).

To see where these biases arise, it is informative to look at the errors in the estimation of 

x0 and i 3, defined in Eq. 4.34, as a function of the location in the (1 0 ,13) space. Figs. 5.13 

and 5.14 show the errors in To and T3 respectively as a function of injected (to,T3). It can 

be seen in these plots that underestimations in To and T3 , corresponding to overestimations of 

MchirP come from the left-hand side of the (to,T3) space, getting worse moving from bottom 

to top. This corresponds to the highest mass end of the parameter space, getting worse as
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Figure 5.9: A histogram of the errors in Mchirp for the HI detector.
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Figure 5.10: A histogram of the errors in tc for the Hi detector.
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Figure 5.11: A histogram of the errors in r| for the HI detector.
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Figure 5.12: A plot of the error in Mr/urp against the injected Mchirp
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Figure 5.13: Errors in the measurement of To as a function of injected (tq,X3 ).
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Figure 5.14: Errors in the measurement of T3 as a function of injected (tq,T3).
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Figure 5.15: Errors in the measurement of To as a function of detected (1 0 ,1 3 ).
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Figure 5.16: Errors in the measurement of T3 as a function of detected (10 ,13).
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the systems become more asymmetric. Figs. 5.15 and 5.16, which show the errors in To and 

T3 respectively as a function of detected (to,X3 ), clearly indicate that these systems are being 

detected by templates in the bottom-left comer of the (To,T3) space, which correspond to high- 

mass symmetric templates.

5.5 The S5 first-calendar year playground results

Here we discuss the current results for the S5 playground data-set. As the tuning of the parame­

ters for the x2 and r2 vetoes is only preliminary at present, the vetoes as described above are not 

applied in obtaining the following results; instead, a very loose x2 veto was used, with x* =  1 0 0 , 

and p = 16. For the purposes of this discussion, we only use triple-coincident data.

Fig. 5.17 shows the cumulative histograms for the various combinations of double-coincident 

triggers. Fig. 5.18 shows SNR scatter plots of the double-coincident triggers. It can be seen that 

there are no double-coincident triggers which are not consistent with the background. There 

is a statistical excess of H1H2 in-time triggers. This is due to the correlation of noise sources 

in HI and H2 due to their location on the same site, which the estimation of the background 

via time-shifts fails to take into account. It is noteable that the scatter plots exhibit high-SNR 

tails. These have been seen in previous searches, where they have been suppressed by using an 

effective SNR, which takes into account the values of p and x2- The presence of the tails here 

indicates that such a statistic is worth pursuing in the current search.

There were no triple-coincident triggers found in the time-shifted data used to estimate the 

background. However, there were two in-time triple-coincident events, which can be seen in 

Fig. 5.19. This immediately identified these events as candidates for various follow-up checks. 

These checks indicated that these triggers occurred at times of heightened seismic activity at 

Hanford in one case, and both Hanford and Livingston in the other case. This, coupled with 

other checks which have been carried out, reduce the plausibility of either event being identified 

with a genuine inspiral signal. In fact, the apparent significance of these events likely has the 

same cause as the excess of H1H2 in-time coincidences, namely the failure to take into account 

correlated noise sources in H1H2 when generating the background estimate. Any plausible 

events surviving the final vetoes in the full data set would be subject to rigorous follow-up 

procedures.
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Figure 5.17: Cumulative histograms forH lH 2, H1L1, and H2L1 double-coincident in-time trig­
gers (circles), and estimated background from accidental coincidences (squares and 1-standard- 
deviation ranges) for the preliminary run-through of the high-mass compact binary search in S5 
first calendar-year playground data.



Figure 5.18: Scatter plots of pi vs P2 for H1H2, H1L1, and H2L1 double-coincident in-time 
triggers (red circles), and time-shifted triggers (black crosses), for the preliminary run-through 
of the high-mass compact binary search in S5 first calendar-year playground data.
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Figure 5.19: Scatter plots of Pi vs p2 for the triple-coincident events, projected onto the H1H2, 
H1L1, and H2L1 planes. There were no time-shifted triple-coincident events.
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5.5.1 Efficiency and projected upper limit

Assuming there are no signals detected in the search, we will then set an upper limit on the rate 

of compact binary coalescence in the universe for the mass range in question. In this section, we 

give a brief discussion of how such an upper limit is set, along with giving a projected estimate 

of the upper limit we may obtain. It is important to stress that the upper limit that will be 

obtained upon completion of the search will depend on the combined SNR of the loudest event 

seen, as well as its probability of being a background event. Therefore, the projected upper limit 

given here should in no way pre-empt that which will be obtained when the search is completed. 

However, it may serve as an indicator of the order of magnitude we hope to achieve.

The Bayesian upper limit, at a confidence level a, if we have a uniform prior on the rate R, 

is given by [131, 132]:

where Cl(Pc,wox) is the cumulative blue luminosity which we are sensitive to at a combined 

SNR of pc.max, T is the observation time, and A is a measure of the likelihood that the loudest 

event is due to the foreground. If the loudest event candidate is very likely to be a background 

event, we get

where /?%% is the upper limit at a 90% confidence level.

The cumulative luminosity Cl is dependent on the efficiency e of detecting a particular 

event with combined SNR > pc,max, and the predicted source luminosity as a function of the 

effective distances and the chirp mass, L((Dh , ‘Dl .Mchirp)■ It is obtained by integrating 8 times 

L(£>//, (Dl ,Mcilirp) over effective distance and mass. In practice, it is usual to remove the depen­

dence on Mcilirp by using chirp distances fDchirP =  (D{MchirP,oIMchirp)5̂ 6, where Mcilirpp is some 

fiducial chirp mass. We then have

CL{P) =  /  /  e(2>, hirP,H <D(hirP,Li P)L(<Dchirp,H <̂chirP,L)d<Dchirp H dDchirp L. (5.18)

J  =  £> RTCL(PC,m ax) J _j_ RT Ct(pC,max) (5.16)

^90% rr ̂  / _  \ i
' t 'L \P C ,m a x )

(5.17)

o J o
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Figure 5.20: A plot showing the efficiency of the search evaluated at the threshold combined 
SNR, estimated by injecting simulated signals into the playground data, as a function of effective 
distance.

Table 5.1: The amount of time analysed in S5 when at least two detectors were switched on.
Detector combination Time / hrs

H1-H2-L1 4107
H1-H2 1881
H l-L l 345
H2-L1 383
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The efficiency is evaluated by injecting large numbers of simulated signals into the data. A 

plot of the efficiency as a function of (£>//, 2 \ ) ,  evaluated for the threshold combined SNR, can 

be seen in Fig. 5.20. The distribution of blue luminosity as a function of distance is based on 

the catalog described in [133]. To obtain the luminosity as a function of (Dchirp, it is necessary 

to assume some form for the astrophysical distribution of the masses of the sources. For the 

purposes of generating the predicted upper limit, we assume that the total mass of a binary 

system is uniformly distributed. In this case, we estimate the cumulative luminosity we are 

sensitive to, Cl ~  13700Lio for the threshold SNR. Taking the amount of time analysed in 

the first year of S5 to be as detailed in Table 5.1, we obtain a predicted upper limit %o% ~  

2.2 x 10-4 yr_l Lj'g. Although this estimate should be taken with a grain of salt, it indicates that 

we can expect to do significantly better than the upper limit of % q% = 0.5 yr-1 L ^1 which was 

obtained for S4[27].

5.6 Status and future plans

The S5 high-mass search is still an on-going endeavour. So far, we have used the playground 

data to assess of the performance of the search, gain a measure of the accuracy of the estimation 

of parameters, and obtain estimates of the expected background. These have been used to tune 

the parameters for the various steps of the pipeline, such as the coincidence test, %2 veto, and 

r2 veto, with the intention of reducing the background as much as possible, while still obtain­

ing a good detection efficiency. We have also looked at the in-time coincident triggers in the 

playground, obtained using very loose parameters for vetoes, to assess the character of the data.

Going on from here, there are many things which still need to be done. Of prime impor­

tance is to investigate the possibility of using an effective SNR in the search. In addition to 

this, a number of vetoes which may prove useful need to be assessed; for example, requiring 

consistency in measurements of effective distance in HI and H2.

Following this, larger scale runs will be required, performing simulations using injected 

signals, and time-shifted data, using the full data set. This is done for three reasons: to confirm 

the tuning performed on the playground; to assess the efficiency of the search; and to get a better 

estimate of the expected background. Once this has been performed, the in-time full data set 

will be analysed, and any interesting candidate events will be followed up. Assuming the full
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data set produces no detections, the final result of the search will be an upper-limit on the rate 

of high-mass compact binary coalescences. Preliminary predictions of the expected upper limit 

suggest that we can expect to do significantly better than that which was obtained for S4.
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Chapter 6

Conclusion

The search for gravitational waves poses many challenges, theoretically and computationally. 

This thesis has touched on a number of these issues. We now present a summary of the the main 

points discussed in this thesis.

In Chapter 2, we investigated a new class of approximants for binary inspiral waveforms. 

The standard adiabatic approximant uses the post-Newtonian expansions of the energy and grav­

itational wave flux tmncated to the same relative post-Newtonian order. However, when looking 

at the dynamics of the system, we know that the leading order radiation reaction term enters at 

2.5PN. From the viewpoint of the dynamics of the system, the standard approximation at leading 

order is thus equivalent to keeping the OPN and 2.5PN terms in the acceleration, but neglecting 

the 1PN and 2PN terms. This motivated the construction of the new complete adiabatic approx­

imants, which at the leading order, use the 2PN energy function, and therefore correspond in 

spirit with the dynamics of the system with no missing terms in the post-Newtonian expansion 

of the acceleration.

To compare the performances of the standard and complete approximants, we compared 

their overlaps in the test mass case with the exact waveform in the adiabatic approximation. We 

found that the complete approximants generally brought about a remarkable improvement in 

the effectualness (i.e. larger overlaps with the exact signal when maximizing over the template 

parameters) for orders < 3PN. However, for orders > 3PN, the standard adiabatic approxi­

mants were nearly as good as the complete adiabatic approximants for the creation of effectual 

templates. The faithfulness (i.e. overlaps with the exact signal, with the parameters of the tem­
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plate kept the same as those of the signal) was also generally better for the complete adiabatic 

approximants than for the standard adiabatic approximants.

We then compared standard and complete non-adiabatic approximants using the Lagrangian 

models of Buonanno, Chen and Vallisneri in the test mass limit. In this case, we were lim­

ited in the scope of our investigation, due to the terms in the post-Newtonian expansion of the 

acceleration only being available up to 3.5PN order. In addition, in the absence of an exact 

non-adiabatic signal, we had to compare overlaps with the exact signal in the adiabatic approx­

imation. Given these limitations, one should be wary about making general statements about 

the trends in effectualness and faithfulness. However, at the orders studied, we have seen that 

the effectualness of the complete non-adiabatic approximant is usually better than the standard 

non-adiabatic approximant; but the faithfulness is generally better for the standard non-adiabatic 

approximant.

A limited extension to the comparable mass case was also provided, where the performances 

of the standard and complete approximants were assesed by comparing their overlaps with a 

fiducial waveform. We found that the standard adiabatic approximants achieve the target ef­

fectualness of 0.965 at order 3PN. Moreover, if we assume that the comparable mass case is 

qualitatively similar to the test mass case, then improving the accuracy of the energy function 

from 3PN to 4PN and/or improving the accuracy of the flux function from 3.5PN to 4PN will not 

result in a significant improvement in effectualness in the comparable mass case for terrestrial 

laser interferometric detectors.

In Chapter 3 we looked at a study of two approaches to performing searches for inspiralling 

compact binaries in a time-critical manner. The first took a step-wise approach to splitting the 

work amongst the compute nodes. In this approach, the search templates are initially distributed 

naively amongst the compute nodes, with each node receiving the same number of templates. 

The splitting of the template bank amongst the nodes for the next step is then adjusted according 

to the time taken for each job to finish. Thus, the computational load on each node is balanced 

via an iterative process, where the splitting of the template bank for the next run depends on 

the timings for the previous run. This simplistic approach has the advantage of requiring little 

or no modification to the analysis codes, and it is found to do a reasonably good job; however, 

due to the changing characteristics of the data as a run progresses, as well as changing loads on
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computational resources, it is only possible to balance the time taken for each node on average.

The second approach involved a dynamic load-balancing algorithm, in which slave nodes 

request work of a master node whenever they become idle. Such an approach approach will 

balance the load amongst the worker nodes by default. However, implementing such an ap­

proach requires significant modifications to analysis codes. In addition, the use of such an 

approach introduces inter-process communication, which may introduce a performance penalty 

if the analysis is distributed across several computing resources found in different locations.

In Chapter 4 we developed a new method for coincidence analysis. The algorithm makes 

optimal use of the variances and covariances that exist amongst the different parameters of the 

signal in a coincident detection of events. We associate with each trigger ellipsoidal regions 

which are defined by the metric on the parameter space, or, equivalently, the Fisher information 

matrix. Triggers from different detectors are said to be in coincidence if their ellipsoids are 

found to overlap. The use of such a method offers a significant reduction in the background for 

a comparable detection efficiency. An implementation of such an approach, with the ellipsoid 

scaling factor being independent of SNR, is currently being employed in the search for compact 

binary coalescences in LIGO S5 data.

Following this, in Chapter 5 we looked at the current status of the search for high-mass 

compact binary coalescences in the first calendar year of data from the fifth LIGO science run

(S5). This search is using effective one-body (EOB) templates to search for systems with masses 

in the range 25A/0 < Mtotai <  100M0 . We looked at the preliminary tuning of the parameters 

of the search. We also looked at the playground data using very loose parameters for vetoes, to 

assess the character of the data. Even in the absence of a detection, when completed, the search 

promises to dramatically improve on the upper limit on compact binary coalescences obtained 

for the previous science run.

Following the completion of the S5 run, commisioning of a series of major improvements 

and upgrades, known as Enhanced LIGO is about to begin. These improvements will improve 

the sensitivity of the instruments by a factor of 2. Beyond this, improvements to the Virgo detec­

tor, and the commisioning of Advanced LIGO suggest that a concrete detection of gravitational 

waves is likely to be made in the not too distant future. The first detection will be a major sci­

entific breakthrough, and will no doubt lead to further major discoveries, and allow us to test
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our current theories. If the first detection is a binary black hole, it will be the first direct confir­

mation of the existence of such systems. Moreover, the information contained in the waveform 

will allow us to perform strong-held tests of general relativity. In conclusion, it promises to be 

a very exciting time, as a new window on the Universe is opened.
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