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Abstract

This thesis is composed of two central themes of research; Chapters 2-6 describe efforts 
to understand and increase the activity of iminium ion catalysts. Chapters 7-9 are 
free-standing investigations exploring concepts and observations that were encountered 
through the course of the research.

Chapter 1 briefly introduces iminium ion catalysis before discussing the experimental 
and theoretical techniques that are routinely applied to investigate reaction mechanism. 
The discussion of techniques is divided into three sections; structural, kinetic and 
theoretical methods. This is followed by a passage that highlights the reported techniques 
that have been applied to understand mechanisms of iminium ion catalysed processes.

Chapter 2 highlights the work previously conducted within the group developing 
catalysts for the iminium ion catalysed Diels-Alder reaction and describes a SAR study 
designed to understand the relationship between the a-effect and P-EWG components of 
catalysts to aid future catalyst design. The study found that the components work 
independently. Chapter 3 describes a further SAR study conducted to provide evidence 
for the role of the P-EWG in increasing catalyst activity. The important conclusions 
drawn were that P-EWG was not acting as a proton shuttle as previously hypothesised 
and that EWG’s that do not contain a carbonyl group could be exploited to increase the 
activity of a catalyst.

Chapter 4 describes investigations into mechanistic aspects of the catalytic cycle for the 
iminium ion catalysed Diels-Alder reaction. The isolation of key iminium ion 
intermediate allowed for structural studies and kinetic investigations of the individual 
steps of the catalytic cycle. The Diels-Alder cycloaddition was found to be the RDS and 
the physical reasons for this were understood. The hypothesis was formed that a lowering 
in the LUMO energy of the dienophile by including a strong p-EWG into the catalyst 
would accelerate the overall catalytic cycle.

Chapter 5 describes the application of our findings to the design and synthesis of more 
active catalysts based around the scaffold of MacMillans imidazolidinone catalyst. The 
inclusion of an additional p-EWG within the catalyst scaffold provided unprecedented 
levels of activity supporting our hypothesis. The development and evaluation of a 
predictive theoretical tool for catalytic activity is also discussed.

Chapter 6 shows the preliminary development of piperazinones as catalyst for the 
iminium ion catalysed Diels-Alder reaction of aldehydes and ketones. Chapter 7 
describes our efforts to develop a chiral dynamic resolution procedure for the iminium 
ion catalysed Michael addition reaction of nitroalkanes to a,p-unsaturated ketones.

Chapter 8 reports the development of a one-pot monocarboxymethylation procedure for 
primary amines and diamines using glyoxylic acid under mild conditions. Chapter 9 
describes the first aminocatalytic method for the preparation of non-natural and natural 
bis-indolyl alkanes.
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Chapter 1_________

1.1 Introduction

T J K  Gibbs- PhD Thesis 2008

1.1.1 Asymmetric Catalysis within Synthetic Chemistry

The concept of asymmetric catalysis is arguably the most appealing in synthetic 

chemistry as it allows for the preparation of valuable chiral products with 

substoichiometric quantities of catalysts. Asymmetric catalysis has distinct advantages 

over resolution and chiral pool methods by minimising waste and providing a broad 

substrate scope. The area receives significant attention in a wide range of chemical 

research disciplines and continues to grow as a concept and a science.

1.1.2 Organocatalysis

Organocatalysis can be defined as ‘the acceleration of chemical reactions with a 

substoichiometric amount of organic compound which does not contain a metal atom’.1 

Asymmetric organocatalysis was first practised in the 1970’s using proline but it was 

only at the start of this decade that the potential of the field was realised and exploited. 

The growth and expansion of the area is illustrated by analysis of the annual publications 

within the discipline over the last ten years {Figure 1.1).

Publications vs Year

□ 1999 
■ 2000
□ 2001 
□ 2002
■ 2003
□ 2004
■ 2005
□ 2006
■ 2007

(Figure 1.1) Number of publications vs year based on a SciFinder search using ‘Organocatalysis’ as  the key word.
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1.1.3 Organocatalysis within Asymmetric Catalysis

Of the efficient catalytic asymmetric reactions known, the majority involves an 

organometallic species. These metal catalysed reactions are widely used within chemical 

research but do not figure so prominently in industrial processes due to the expenses of 

scale. Therefore, development of less sensitive and less toxic methods is of interest in all 

aspects of synthetic chemistry. The future for development of efficient, robust, non-toxic 

and environmentally benign systems is far brighter for the field of organocatalysis.

Organocatalysis is an attractive alternative to metal catalysed processes and frequently 

provides superior levels of enantioenrichment. The field of organocatalysis has produced 

a remarkable number of efficient systems in its short history.1 Organocatalysis is still 

very much in its infancy and therefore should not currently be viewed as an alternative to 

metal based catalysis but as a complimentary tool to be used in conjunction with existing 

methods to realise synthetic targets.

1.1.4 Classification of Organocatalysts

Organocatalytic processes can be classified according to the mode of action of the 

catalyst;3

• Lewis acid catalysis

• Br0nsted acid catalysis

• Lewis base catalysis

• Brpnsted base catalysis

Within the literature, examples of each mode have been described. However, the majority 

of reported transformations are in the Lewis base category and involve the formation of 

iminium ions or enamines as the key catalytic intermediates.

3



Chapter 1__________________

1.1.5 Enamine Catalysis

T J  K Gibbs- PhD Thesis 2008

Enamine catalysis represents the most successful branch of organocatalysis to date. 

Conceptually, enamine catalysis can be thought of as an alternative method for the 

generation of enolates that has numerous practical advantages over traditional methods. 

Enamine catalysis is a Lewis base method as the lone pair of the enamine raises the 

energy of the HOMO of the nucleophile increasing the associated nucleophilicity.

Enamine catalysis has been applied to many reactions that would normally involve the 

generation of an enolate. Catalysed reactions include the aldol,4 Robinson annulation,5
f \  7  Q Q i A

Mannich, a-amination, a-aminooxylation, conjugate addition, [4+2] cycloaddition, 

[2+2] cycloaddition11 and the Mortia-Baylis-Hillman reaction,12 among others. The 

general enamine catalytic cycle for proline is shown below (scheme 1.1).

Y electrophile:
11 aldehyde, ketone,

azadicarboxylate etc

(Scheme 1.1)

Condensation of the amine catalyst (1) and a carbonyl (2) gives an iminium ion which is 

rapidly converted to the nucleophilic enamine species 3. The enamine is sufficiently 

reactive to attack electrophile 4 which generates an iminium ion 5. Subsequent hydrolysis 

releases the reaction product 6 along with the amine catalyst 1 to continue the catalytic 

cycle.

4



Chapter 1_____________________

1.1.6 Iminium ion catalysis

T J K  Gibbs- PhD Thesis 2008

Conceptually, iminium ions can be thought of as being analogous to Lewis acid activated 

a,p-unsaturated carbonyl compounds and they posses similar 7t-electronics {Scheme 1.2). 

Iminium ions increase activity by accepting electron density from the C=C of the parent 

a,p-unsaturated carbonyl compound and thus lower the energy of the LUMO (the te* of 

the iminium ion derived from the parent carbonyl compound) which decreases the energy 

difference for interaction with the HOMO of the reaction partner resulting in a lower 

energy transition state and hence rate acceleration.

+ Lewis Acid (LA)

(Scheme 1.2)

The use of iminium ion technology has distinct practical advantages over the majority of 

Lewis acid catalysed reactions. The iminium ion catalysed reactions are inherently 

tolerant to air and moisture and are often conducted at ambient temperature. The area of 

iminium ion catalysis has been extensively reviewed.13 To date this methodology has 

been used in a number of asymmetric organic transformations including Diels-Alder14 

and [3+2] dipolar cycloadditions,15 Michael16 and conjugate17 additions, conjugate
1 Q  | Q  A  1 A A

reductions, ene reactions, cyclopropanations, aziridinations and epoxidations.

Structurally, the favoured catalysts for iminium ion accelerated processes are based 

around pyrrolidine (e.g. 11) or imidazolidinone scaffolds (e.g. 7-10), using the high 

nucleophilicity of the nitrogen lone pair generated by ring strain. The use of a co-acid is 

necessary to accelerate formation and hydrolysis of the reactive iminium ions, allowing 

for greater efficiency in the overall process.

5
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OTMS

.HX -HX .HX

7 8 g  10 11

(Figure 1.2) Popular catalysts for iminium ion catalysed transformations.

1.2 Methods of Determining Reaction Mechanism

1.2.1 Mechanism

Reactions are often written as simple transformations involving the conversion of one 

molecule to another. In actual fact, discreet intermediates are often involved. The study of 

mechanism is to understand the structural, thermodynamic and chemical relationships 

between each of the individual species that are formed in a reaction sequence.

Although the methods available to study mechanism have been categorised and discussed 

individually in this thesis, a single method provides insufficient evidence to confirm a 

proposed mechanism (although a single valid experiment is sufficient to discount a 

proposed mechanism). Therefore, numerous methods are often employed to provide 

sufficient evidence to support a mechanistic proposal.

1.2.2 The Philosophical Background to Physical Organic Chemistry24

Before discussion of the toolkit available to elucidate mechanism it is worth highlighting 

the philosophical constraints that an experimentalist must operate under. Detailed 

discussion can be found in historic and philosophical texts.23 The principle concept is that 

it is not possible to prove the mechanism of a reaction. It is, however, possible to 

disprove a mechanism by providing evidence to the contrary. Therefore, the acceptance 

of mechanism is based around strong supporting evidence in the absence of conflicting 

evidence.

6
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A mechanism is to all extents and purposes a product of the human mind and therefore to 

ensure that a proposed pathway is reasonable there are some minimum requirements that 

a proposed mechanism should posses before consideration.24 The proposed mechanism 

should be:-

• Consistent with all of the available experimental data and should not be in direct 

conflict with any data (provided there is not strong independent evidence which 

devalues the contradicting evidence). Neutrality can be accepted on certain issues.

• Testable by experimental means that would provide evidence to the contrary if not 

successful.

• Where possible, free of ad hoc modifications to explain inconsistencies with 

experimental observations.

In the event that numerous mechanistic proposals are consistent with minimum

requirements, and equally consistent with available experimental data, then favour is 

given to the simplest.

1.2.3 The Toolkit

Currently, chemists have a plethora of techniques at their disposal to gain insight into the 

mechanics of a reaction. These methods can be categorised into three main groups; 

structural, thermodynamic and theoretical. The following passage will provide a brief 

overview of the techniques that are often employed to provide evidence for mechanistic 

pathways.

7
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1.2.4 Structural Methods

T J  K Gibbs- PhD Thesis 2008

Structural studies are the simplest and often the most definitive method for providing 

evidence for a mechanistic pathway. These studies take the form of isolating and 

characterising reaction products and/or intermediates using physical methods such as 

spectroscopy and crystallography. The structure of reaction products often contain 

information which can be used to infer the reactants and intermediates that preceded 

them.

There are many techniques available that relate spectroscopic properties to physical 

structure. Such techniques include, infra-red spectroscopy (IR), ultra-violet spectroscopy 

(UV), fluorescence spectroscopy, ESR spectroscopy, mass spectrometry, NMR 

spectroscopy, atomic spectroscopy and X-ray crystallography.

1.2.4.1 Product Studies

The detection of chirality within a product can provide valuable information regarding 

the symmetry of the preceding intermediates or transition states,25 however, the absolute 

configuration of the products must first be determined. This is frequently achieved by 

sophisticated spectroscopic methods or X-ray crystallography. A classic application of 

chirality study is the nucleophilic substitution reactions on aliphatic carbons achieved in 

the 19 century. Modem chirality studies can take a number of forms from racemisation 

or exchange studies to sophisticated mechanistic tools such as the Tolbert analysis27 and 

concepts such as the Skell hypothesis which have been used to investigate the 

mechanisms of many reactions.29

The use of isotopic labelling has also emerged as a powerful tool in mechanistic 

determination.30 Isotopes possess the same chemical properties but differ in their physical 

properties, for example, molecular weight and NMR activity. This provides a convenient 

tool to monitor the final positions of labelled atoms within reaction products. A classic 

example of isotopic labelling is the hydrolysis of esters.31 The use of 180  labelled water 

can provide evidence as to whether acyl (13) or alkyl (14) bond cleavage occured in ester

8
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hydrolysis reaction (Scheme 1.3). Labelling experiments however, can be applied to more 

complex systems, for example, the ozonolysis of olefins.

o o o
I t  h 218o  J f  h 218o  J

" " X ) H  / '^ O R  ^ 18OH
14 12 13

(Scheme 1.3)

Mechanistic information can also be provided by variation of the reaction conditions. 

Common variables include reaction time and temperature. This method, however, must 

be validated as altering the conditions may lead to an alteration of the mechanism. A 

reduction in reaction temperature can often allow for the detection and isolation of 

intermediates. Additionally, lengthening reaction times of reversible reactions encourages 

the formation of greater quantities of the thermodynamic product.

1.2.4.2 Intermediate Studies

Product studies can be of limited use as it is possible that many intermediates could lead 

to a given product. Therefore, it is desirable to isolate or directly detect intermediate 

species within a reaction sequence. Intermediates can often be detected with routine 

analysis such as GC-MS or NMR techniques under normal chemical conditions. 

However, this is not always possible and therefore numerous methods have been 

developed to detect and characterise intermediate species.

Low temperature techniques are often employed to increase the lifetime of transient 

species. An example of such a technique is matrix isolation infra-red spectroscopy where 

intermediates are trapped using a solid argon matrix.33 Intermediate compounds such as 

benzyne 16 and cylclobutadiene 15 have been characterised by this method (Figure 1.3).

o
15 16

(Figure 1.3)

9
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Chemical trapping of intermediates is also possible where a reagent is introduced that is 

designed to react with an intermediate to yield a distinct product. A classic example is 

that of TEMPO 17, which is routinely used to selectively trap carbon centred radicals 18 

0Scheme 1.5).34 Conjugated dienes have also been used successfully to trap benzyne
1 C  1 Z

intermediates 16 which have only been physically detected through matrix isolation.

TEMPO

(Scheme 1.5)

Many sophisticated spectroscopic techniques have also emerged for direct detection of 

intermediates. NMR, ESR, mass spectrometry and laser techniques can all be employed. 

NMR has been used to detect and characterise carbonium ions in superacid media37 and 

techniques developed such as spin-saturation transfer38 while ESR has proved a reliable 

method for the detection of radical intermediates.39 The unique properties of laser 

radiation have lead to the development of spectroscopy on a picosecond timescale for the 

detection of short lived intermediates.40

10
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1.2.5 Kinetic Methods

T J  K Gibbs- PhD Thesis 2008

Once the species that are involved in a mechanistic pathway have been identified it is 

often desirable to conduct studies to understand the relationships of the individual 

components. This provides information that will subsequently lead to a fundamental 

understanding of the transformation.

1.2.5.1 Rates of Reaction

Measurement of the rate of a chemical transformation is of fundamental importance. The 

reaction order for a proposed mechanism can be predicted. Experimental determination of 

the order of reaction provides strong evidence to support or discount a mechanism. It is 

noteworthy however, that many proposed mechanisms may be predicted to have the same 

reaction order. Rate measurements can be achieved by numerous methods that can 

quantitatively relate the concentration of a compound with time. UV and NMR are 

frequently used to monitor kinetics although numerous other techniques based on IR, 

fluorescence and calorimetry, amongst others, have been employed.

With the advent of modem instrumentation and techniques, the kinetics of reactions of 

the scale of 10'12 s can be determined. For reactions of the order lO^-lO"3 s stopped flow 

methods are commonly applied.41 For reactions of the scale of 10'6-10’12 s the use of 

pulses of electricity, sound or light (lasers are needed for the fastest reaction) are used to 

perturb systems from equilibrium and then the restoration of equilibrium is observed 41

The use of isotopes in kinetic measurements can yield valuable mechanistic data. Primary 

and secondary Kinetic Isotope Effects (KIE) have been exploited by mechanistic 

chemists. The physical origin for KIE is complex when constructed properly and is 

covered elegantly by Carpenter.42 Primary KIE’s involve the cleavage of the isotope 

containing bond before or in the rate determining step whereas secondary KIE’s involves 

cleavage of a bond a  or (3 to the isotopic atom. Primary KIE’s can be successfully 

observed using a range of isotopic atoms while secondary KIE are of a much smaller 

magnitude and therefore only observable for X-H/D bonds.

11
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The observation of a primary KIE provides evidence for participation of a bond breaking 

before or during the rate determining step of the reaction. The method has been applied 

successfully to rationalise the mechanism of many reactions.

The use of the Hammett equation is another method that allows the electronic nature of 

the transition state to be probed. Examination of the relationship of the electronic nature 

of substituents and the respective rate can provide evidence to support or eliminate 

mechanistic proposals.43

1.2.5.2 Activation Parameters

There are three equations that describe the temperature dependence of a reaction. The 

Arrhenius equation is the most simplistic model and allows for measurement of activation 

energy Ea along with a pre-exponential factor A.

Transition state theory (Eyring equation) relates the rate constant k to enthalpy of 

activation AH* and the entropy of activation AS*.

Finally, collision theory is constructed from a detailed collision model Z a steric factor p  

and a Boltzmann energy term -E*/RT. Collision theory is effective at predicting rate 

constants of simplistic reactions in the gas phase but is quite arbitrary for larger 

molecules and reactions in solution.

7 ^k — A e ^ r

k =  pZ e
E*
RT

Using these equations it is possible to extract activation parameters provided that rate 

constants are measured at a range of temperatures. Methods such as Benson additives44

12
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and computational chemistry can provide good estimates of activation parameters for 

proposed mechanisms and become powerful tools when combined with experimental data 

for supporting or eliminating mechanistic proposals.

13
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1.2.6 Theoretical Methods45

T J  K Gibbs- PhD Thesis 2008

Chemists have always used theory to develop models to aid the understanding of 

chemical reactivity. In recent years there has been an explosion in computing technology 

and power. This affordable and accessible technology has allowed chemists to model 

more complex systems. Modem theoretical studies can contain tens of thousands of 

calculations which require computing ability that was not available until very recently.

Theoretical chemistry needs further development before it can be treated as a definitive 

tool for predicting and explaining reaction mechanism. However, theoretical chemistry is 

an extremely influential method when used in conjunction with physical experiment. 

Numerous theoretical models have emerged each with its merits and faults. An overview 

of the techniques frequently used is given below

1.2.6.1 Molecular Mechanics (MM)

Molecular Mechanics Force Field (MMFF)46 is the most simplistic theoretical model, 

requiring relatively small amounts of resources and providing cheap and rapid 

calculations, which are ideal for studying large systems such a proteins. Highly accurate 

MMFF models have been developed through careful parameterisation.47 MMFF is purely 

mechanical and therefore does not account for electron interactions and inadequately 

describes systems dominated by these effects. An example of a MMFF is MM2. The 

MM2 force field can be superficially described as:45

• Purely mechanical model (no electrons included)

• Can provide bond lengths accurate to 0.01 A

• Can provide bond angles within a few degrees

• Conformational energies to 1 kcal mol'1 with careful parameterisation

• Vibrational frequencies accurate to 20-30 cm '1

14
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1.2.6.2 Self Consistent Field Theory (SCF)
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The majority of theoretical techniques are based around SCF. The techniques involve the 

construction of a wavefunction in which a term describing the electron correlation is 

included. The varying expense and accuracy of these techniques is proportional to the 

manner in which electron interaction is considered. The simplest SCF treatments are 

semi-empirical methods48 that discard certain electron correlations in the wave function 

and subsequently introduce experimental or higher theoretical data. As with MMFF, 

semi-empirical methods rely on careful parameterisation for accuracy. A popular semi- 

empirical method is the Austin Model 1 (AMI). Some interesting features of AMI are 

highlighted below:45

• Direct calculation of valence electrons only

• Non-classical compounds considered to be less stable

• Faster calculations than higher SCF or DFT methods

• Sterically crowded and hyper coordinate compounds appear too unstable

• Rotational barriers often underestimated

• Four membered rings appear too stable

• Calculated activation barriers often too high

• For pericyclic reactions biradicaloid mechanisms favoured

In the Hartree-Fock (HF)49 model the influence that an electron feels is treated as the 

average field of all other electrons. This average treatment fails to account for specific 

electron repulsion and can lead to shorter bond lengths and higher total energies (EHf) 

than true energies, it also poorly describes highly delocalised systems. Common features 

of HF are:45

• Good accuracy for bond lengths and angles for standard organic molecules

• Conformational energies accurate to 1-2 kcal mol'1

• Vibrational frequencies systematically 10-12% too high for most covalent bonds

• Zero point vibrational energies inaccurate by ~ 1-2 kcal mol'1

• Protonation/deprotonation energies in gas phase inaccurate by -10 kcal mol'1

15
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• Atomisation/homolytic bond-breaking reactions inaccurate by 25-40 kcal mol'1

In the instances when HF theory is inappropriate, e.g. when investigating aromaticity, 

polarisation or delocalisation, then use of higher level theories is needed that correlate 

electron-electron interactions. There are many different treatments of electron correlation 

from those just above HF to complex detailed theories. The high level SCF methods are 

considered to be the benchmark for theoretical calculations. The electron-correlation 

theories can be described as being:45

• Straightforward to interpret complete electronic description

• Highly accurate rivalling experiment for small organic molecules

• Very time consuming and therefore expensive

• Strongly basis set dependent

• Straightforward to improve systematically

1.2.6.4 Density Functional Theory DFT

DFT uses an electron density functional (e.g. B3LYP)50 to replace the many body 

electronic wavefunction used in methods based on HF. This treatment requires less 

computation time but is of similar accuracy, greatly reducing cost. In principle, DFT is an 

exact quantum mechanical method, providing that the true functional is known. However, 

a degree of arbitrariness is involved when choosing functional combinations and 

therefore validation of the results is often necessary. Another consequence of this is that 

systematic improvement is difficult. DFT methods often display the following features:45

• Straightforward interpretation of results

• Large molecular systems can be examined

• Little basis set dependence

• Variable accuracy, validation often necessary

• Systematic improvements not possible
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1.2.6.5 Selection of Theoretical Method
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The selection of a theoretical method for the study of a system is normally governed by 

economic and time constraints. Ordinarily, lower levels of theory are applied to basic 

structural optimisations of normal organic molecules. High levels of theory are generally 

applied to compounds or transition state modelling where structure specific interactions 

of electrons are important. The size of a molecule or the complexity of a system also 

governs the level of theory that can be used. Practicality dictates that only small 

molecules can be treated with the highest levels of theory, whereas huge protein 

molecules are frequently modelled with MMFF. It is for this reason that simplified 

structures are often used for theoretical calculations.

1.3 Mechanistic Studies of Iminium Ion Catalysed Processes

The primary objective of the majority of investigators in the field of organocatalysis has 

been the discovery of novel organocatalytic asymmetric reactions rather than 

development of existing methods. This approach is understandable given the vast 

potential of the field and its relative youth. A consequence of this is that mechanistic 

aspects of the reactions have been generally overlooked. The following section will 

highlighted the mechanistic studies that have been conducted within the field of iminium 

ion catalysis.

1.3.1 Structural Studies

The majority of publications in the field of iminium ion catalysis describe asymmetric 

transformations. Consequently, there is a mass of structural information through 

enantioenriched reaction products determined by crystallography and sophisticated NMR 

studies. The information obtained by determining the absolute configuration of reaction 

products has lead to numerous proposed transition state models and mechanisms with 

little supporting evidence. Transition state models based purely on structural information 

have been proposed for the enantioselective organocatalytic Diels-Alder,51 [2+2],52 

[4+3],53 [3+2] dipolar cycloadditions,54 Michael additions,55 hydrogenation,56

epoxidation,57 ene,58 Baylis-Hillman59 reactions along with numerous organocatalytic

17
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cascade processes.60 The reports that support mechanistic proposals based on structural 

studies with computational or thermodynamic studies are discussed under these headings.

The study of non-linear behaviour has been applied successfully within the field of 

enamine catalysis to reveal mechanistic insights. Non linear studies involving iminium 

ions have proved less successful. Hanessian conducted nonlinear studies for the Michael 

addition of nitroalkanes to cyclic enones using L-proline as the catalyst and piperazine 

derivatives as additives.61 A nonlinear effect was observed for the reaction using trans- 

2,5-dimethylpiperazine as an additive. Clear mechanistic conclusions could not be drawn 

as the system was complex, similar behaviour has, however, been reported for metal
f \9ligand based systems.

1.3.2 Kinetic Studies

There are few reports of thermodynamic mechanistic investigations within the literature 

of iminium ion catalysis.

The most complete mechanistic investigation came form the group of Ogilvie who 

employed a combination of structural, kinetic and computational techniques to probe the 

mechanism of the organocatalysed Diels-Alder reaction with an asymmetric hydrazide 

catalyst 21 {Scheme 1.6). Ogilvie used NMR studies to detect and then observe the 

individual species in the catalytic cycle as the reaction proceeded.63 The kinetic evidence 

provided clearly indicated that the rate determining step of the catalytic cycle was the 

Diels-Alder cycloaddition reaction. It was also concluded that the hydrolysis step was 

rapid as the Diels-Alder cycloaddition iminium ion adducts 23 were not observed in 

significant quantities.
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25

Ogilvie subsequently isolated and crystallised the iminium ion intermediate 22 and 

combined this with PM3 semi-empirical computational studies to rationalise the favoured 

reactive conformation in solution.64

MacMillan undertook kinetic studies using !H and 15N NMR to explain the efficiency of 

[(nosylimino)iodo] benzene 30 as an in situ source of iodosobenzene 27 as an alternative 

to oligomeric iodosobenzene in an organocatalytic asymmetric epoxidation reaction.65

CH2CI2-AcOH
26 27 -30 °C 29

(Scheme 1.7)

MacMillan used lH NMR studies to determine the rate of formation of 27 from 30 and 

from oligomeric iodosobenzene. The experiments clearly indicated that 27 formed much 

faster from oligomeric iodosobenzene (ca 35% after lh) and remained at a constant level 

for 6 h. The active oxidant 27 formed at a much slower rate from 30 steadily increasing to 

15% conversion after 6 h.
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(Scheme 1.8)

Subsequent 15N NMR experiments demonstrated that compound 27 degenerated the 

reaction catalyst 28 resulting in compounds 31, 32 and 33 when oligomeric 

iodosobenzene was used as the source of oxidant 27. However, when 30 was used as the 

oxidant precursor only decomposition product 32 was observed in comparatively minor 

concentrations.

CDCI3,-1M AcOD

(Scheme 1.9)

The work provided evidence that elegantly explained the increased reaction efficiency 

and levels of asymmetric induction observed when using 30 as the source of 

stoichiometric oxidant which was described as an ‘internal syringe pump effect’. The 

results of this study demonstrated that the use of routine analytical tools can provide 

powerful evidence to rationalise experimental observations.

In a report on an asymmetric epoxidation reaction Cordova concluded that the reaction 

was possibly first order in respect to the pyrrolidine based catalyst 11 for catalyst 

loadings up to 10 mol%.66
OTMS

Oxidant

CHCI3, rt

(Scheme 1.10)

The reasons for his investigations are not entirely clear as the initial rates would be 

expected to be pseudo first-order in this process, independent of the true reaction order.
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The rate constants are also plotted in unusual units and no information is published as to 

how the kinetic information was obtained.

1.3.3 Computational Studies

Theoretical studies represent the largest portion of mechanistic studies undertaken within 

the field of iminium ion catalysts. The primary role of these studies is to provide support 

and further refinement to existing proposals based on structural studies.

The level of theory and detail of the studies vary dramatically from simple low level 

molecular modelling which supports proposed intermediates to full theoretical papers 

calculating the relative energies of the species in the catalytic cycle concerned.

1.3.3.1 Molecular Mechanics Studies

The simplest molecular model employed for molecular modelling (CS Chem3D Pro™ 

4.0) was used by Karlson to provide relative energies of the reactive conformations of 

iminium ion intermediates in an asymmetric 1,3-dipolar cycloaddition reaction of nitrone 

35 with a,p-unsaturated aldehyde 34 (Scheme 1.11).67 Unsurprisingly, the application of 

the simplistic model to a complex reaction involving charged species led to ambiguous 

conclusions being drawn.

The group of MacMillan have employed Monte Carlo (MC) simulations using the MM3

34 35 37

(Scheme 1.11)

68force field to rationalise the sense of asymmetric induction for a number of their 

imidazolidinone based catalysts 7, 8 and 9.
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38 39 40

The calculated structures are in agreement with the sense of asymetric induction observed 

in the reaction products. The conformation of iminium ion 38 has been used to rationalise 

the asymmetric Diels-Alder reaction,69 1,3-dipolar cycloaddition70 and Michael addition 

of pyrrole71 with oc,P-unsaturated aldehydes. The conformation of iminium ion 39 has
rjry

been used to rationalise the asymmetric Mukaiyama-Michael, Michael addition of 

indole73 and conjugate reduction reactions.74 Finally, the conformation of iminium ion 40 

has been applied to explain the asymmetric induction of the Diels-Alder reaction with 

a,p-unsaturated ketones.75 Subsequent to these reports higher level DFT calculations 

indicate that the structure of 38 may not be entirely correct {Figure 1.4).16 The correction 

however, does not, in this case, affect the sense of asymmetric induction and therefore is 

of limited importance. However, this does serve as a potent reminder that critical analysis 

of the considered choice of theoretical method is important.

(Figure 1.4) Left: MacMillan’s  calculated lowest energy conformation; Right: Calculated conformation reported by Houk.
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A further report of an MM study uses the MM3 force field to calculate the relative 

conformational energy of iminium ions, derived from imidazolidinone catalyst 9 and 

cyclopent-l-enecarbaldehyde, to explain the sense of asymmetric induction in a Michael
77addition reaction with substituted indoles (Scheme 1.12).

20 mol% 9

CHaClz/PrOH 
-25 °C

(Scheme 1.12}

1.3.3.2 Semi Empirical Studies

Semi-empirical calculations have also been used to model iminium ion catalysed 

processes. The group of Jprgensen employed PM3 semi-empirical calculations to 

discover the minimum energy conformation of the iminium ion intermediate of the 

imidazoline based catalysts 10 and 44 to rationalise the asymmetry observed in a series of 

Michael additions to a,p-unsaturated ketones.

The computationally determined structure of intermediate 43 has been used to explain the 

asymmetry observed for the Michael addition of nitroalkane16 and malonate78 

nucleophiles. Intermediate iminium ion 45 and aminal 46 were modelled to explain the 

sense of induction observed when cyclic 1,3-dicarbonyl compounds were used as
7Q

nucleophiles using 44 as the catalyst. Interestingly, both structures 45 and 46 are 

proposed as possible reactive intermediates. Furthermore, calculations indicated that the 

energy of the LUMO of 46 is activated when compared to the parent ketone.
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Disappointingly, no further investigations to attempt to identify the actual catalytic 

species have been reported.

Nevalainen and co-workers also used PM3 calculations to provide supporting evidence 

for the favoured ^-geometry of an iminium ion intermediate to rationalise the observed 

sense of asymmetric induction in an organocatalysed 1,3-dipolar cycloaddition reaction.80

The most detailed semi-empirical study using AMI of iminium ion catalysed processes
01

investigates the Diels-Alder reaction with protonated ammonia as a catalyst. The study 

investigated various reaction pathways indicating that cycloaddition across the C=C bond 

was most favourable energetically.

47 19 48 49

(Scheme 1.13)

The study also found that the cycloaddition was a step-wise process, firstly forming an 

intermediate cation 48 followed by ring closure {Scheme 1.13). However, higher level 

calculations of reactive Diels-Alder systems have been conducted suggesting that the 

Diels-Alder cycloaddition although asynchronous is concerted.82 This demonstrates the 

pitfalls of theoretical chemistry when little thought is given to experimental evidence and 

oversimplified models are employed.

1.3.3.3 DFT Studies

DFT studies are the most detailed and frequently applied of the methods in the theoretical 

literature on iminium ion catalysis. The DFT studies reported are either detailed 

theoretical studies or are provided as supporting evidence for proposed transition states 

and intermediates.

The group of Houk have made several theoretical contributions to the field of 

organocatalysis.83 Detailed DFT (B3LYP) studies of MacMillan’s asymmetric Diels-
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Alder reaction84 and asymmetric Michael addition85 have been published. The calculated 

conformational energies of the corresponding reactive iminium ion intermediates and 

transition-states are obtained and applied to statistically predict the level of asymmetry 

observed. The studies correlate with experimental evidence and are therefore useful in 

mechanistic interpretation. Comprehensive and detailed studies such as these represent 

the bench mark for theoretical investigations within the field to date.

Subsequently, Uggerund published a detailed study validating the use of DFT for 

investigation of nucleophilic addition reactions to a,p-unsaturated carbonyl compounds. 

The study involved comparison of high level ab initio calculations to the faster and 

cheaper DFT calculations. The study found that DFT (B3LYP) performed well and also 

revealed an unexpected intermediate 53 for the iminium ion catalysed Michael addition 

of nitromethane {Scheme 1.14).

50 51 52 53

(Scheme 1.14)

The study also found that protonated acrolein is more activated to nucleophilic attack 

than the corresponding iminium ion 51. This study highlights how detailed theoretical 

studies can provide interesting predictions which can be explored experimentally.

A DFT (B3LYP) study conducted by Platts examined the performance of numerous
on

catalysts in key stages of the iminium ion catalysed Diels-Alder reaction. An energy 

profile for iminium ion formation was determined and the relative energies associated 

with a series of catalysts were calculated. The study found that the introduction of an 

a-heteroatom and P-electron withdrawing group into acyclic catalysts lowered the 

activation barrier of iminium ion formation. The energy of the cycloaddition step was 

also measured and found to have a lower activation barrier than for iminium ion 

formation. The inclusion of an a-heteroatom and a p-electron withdrawing group within
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the catalyst is known to accelerate the reaction when compared to standard catalysts and 

therefore it was suggested that the rate determining step may be iminium ion formation.88

Recently, Jdrgensen has applied DFT (B3LYP) calculations rather than semi-empirical 

PM3 calculations to aid mechanistic understanding. The calculations were used to 

compare structural optimisations of reaction intermediates. The calculations identified the 

energetically favoured species to explain the observed asymmetry in the respective
OQ

products for the Michael addition of a range of N-containing heterocycles and a domino 

Michael-aldol-SN2 reaction {Scheme 1.15).90 The computational results were consistent 

with the sense of asymmetric induction in both cases.

M M  H0 ^  OH jj jj
0R2  -------------------------  —  * ^ ± 1  — - < < f j ' 0R2

99% 54 55 1%

(Scheme 1.15)

The computations indicated that the formation of 54 in the ring forming 

intramolecular-aldol reaction was considerably more stable than 55 providing an 

explanation of the excellent levels of asymmetry observed {Scheme 1.15).

Cordova has used DFT to calculate possible theoretical transition-states and intermediates 

for an iminium ion catalysed hydrophosphination reaction to explain the observed 

enantioselectivity {Scheme 1.16).91

R H

25

R̂  M P 
H
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Ph

'[{ OTMS 
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R^ .R P O

up to 95% ee 
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Oxidation

NaBH4

OR̂ ll .R P O
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BHoR  ̂ijkP

59
OH

(Scheme 1.16)
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The computations supported the hypothesis that the ^-iminium ion was lower in energy 

than the Z-isomer, rationalising the observed asymmetry in intermediate 57. Compound 

57 was however, not isolable and therefore was further elaborated in situ by oxidation to 

phosphine oxide 58 or treatment with NaBtL* to give the alcohol 59.

1.4 Conclusions

The potential for the discovery of novel asymmetric reactions or sequences within the 

field of iminium ion catalysis is vast. It is for this reason that the majority of leading 

researchers within the field pursue this goal. The discovery of novel methodology is of 

course important, however, there is a culture within the field that seeks only to display 

novel reactions or applications rather than to gain a thorough understanding of the 

reactions and their scope. Furthermore, there are several reasons why the organocatalytic 

methodology is not practical for widespread chemical manufacture at a large scale, 

notably, catalyst inefficiency and narrow substrate scope.

Within the field of iminium ion catalysis little effort has been deployed to understand the 

exact mode of action of the catalysts in the reactions. Frequently, groups postulate a 

transition-state based on structural studies of the reaction product and then use simple 

molecular modelling to provide supporting evidence. While in the majority of cases the 

transition states proposed seem perfectly viable, it is of extreme importance for future 

synthetic development that physical experiments are also conducted to validate the theory 

and provide a better mechanistic understanding.

The most thorough mechanistic study to date was conducted by Ogilvie who used a 

combination of techniques including qualitative kinetic measurements, structural studies 

and computational studies to gain a mechanistic insight. However, Oglivie’s catalyst is 

considerably less efficient than others reported for the Diels-Alder reaction. Supporting 

theoretical studies investigated the mode of asymmetric induction rather than attempting 

to understand the low activity of the catalyst. From a developmental point of view the 

catalyst scaffold induces near perfect levels of asymmetry in the product therefore there is 

little room for improvement, whereas there is a significant potential to increase activity
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when compared to similar catalysts. This preoccupation with asymmetry is mirrored 

across the field of organocatalysis.

Kinetic and thermodynamic studies are the least represented of the mechanistic tools that 

have been used to investigate iminium ion catalysed processes, however, it is this class of 

study that will allow for a fundamental understanding of the catalytic processes. 

Development of more efficient catalysts to address the issues of low activity will be 

accelerated once sufficient mechanistic evidence is available to allow for rational design.

The lack of detailed mechanistic evidence for iminium ion catalysed processes is 

primarily a consequence of the infancy of the subject, encouraged by the fact that much 

kudos and consequently funding is given to large synthetic groups with high publication 

rates. Almost all the sub-disciplines of organocatalysis are fiercely competitive which 

might lead to a lack of mechanistic information being communicated and certainly 

promotes the culture of rapid publication and short-term investigations. With time, the 

field will mature and longer-term detailed studies will become more evident within the 

literature. Currently, the potential for detailed mechanistic investigations of 

organocatalytic transformations appears bright and exciting. It was these factors coupled 

with our curiosity, which provided the impetus for the investigations carried out within 

this thesis.
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Chapter 2: Investigations to Determine the Role of the 

|3-EWG within Secondary Amine Catalysts Based Around

the a-Effect
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2.1 Introduction
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2.1.1 The Aim of the Research

The overall goal of the research began as an attempt to develop novel, highly active 

catalysts for a range of asymmetric iminium ion catalysed processes.

2.1.2 Previous Work Within the Group

Work began within the group in an attempt to make more active catalysts for iminum ion 

catalysed transformations.92 Catalysts reported within the literature were of moderate 

activity presenting a developmental opportunity. The investigation began with the choice 

of the iminium ion catalysed Diels-Alder reaction as a tool to systematically improve 

catalyst design. The generalised catalytic cycle of this transformation is shown below 

{Figure 2.1).

64-exo

Iminium ion 
formationH.HCIIminium ion 

hydrolysis

h2o  ^

63-endo 63-exo

Diels-Alder
cycloaddition

19

(Figure 2.1)

The proposed catalytic cycle has three major components. The initial step is iminium ion

formation, in which the secondary amine salt 65 condenses with the a,p-unsaturated

aldehyde 61 to yield the activated iminium ion 62. The iminium ion then undergoes a

cycloaddition reaction with a diene such as cyclopentadiene 19 to yield the Diels-Alder

iminium ion adduct 63. The cycle is complete when a molecule of water hydrolyses 63 to
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yield the product of the reaction 64 and regenerate the amine 65 which can continue the 

catalytic cycle.

From the initial observation that all the effective catalysts reported in the literature 

contained a nucleophilic amine bound within a five-membered ring it was rationalised 

that the nucleophilicity of the amine was crucial to catalytic activity and that iminium ion 

formation was likely to be the rate determining step.93 Therefore, the group sought to find 

ways to increase the nucleophilicity of the amine and thus increase the catalytic activity. 

Work began to prepare a series of catalysts utilising the a-effect to achieve this increased 

activity.

2.1.3 The a-effect

The a-effect can be defined as the increased nucleophilicity of a heteroatom by an 

adjacent heteroatom bearing a lone pair of electrons. The specific origin of this effect is 

not fully understood although many suggestions have been put forward. The two that are 

most widely accepted are:

• The interaction of the adjacent lone pairs leads to an increase in the energy of the 

HOMO of the nucleophile accelerating orbital controlled reactions.94

• The extra lone pair of electrons stabilises the transition state (stabilisation is 

substrate specific).95

Although a complete theoretical understanding of the a-effect remains elusive, it is the 

a-heteroatom’s ability to increase reactivity that is of interest to the synthetic chemist 

and of which there can be no dispute.96

In order to allow direct comparison of a specific catalyst’s activity the Diels-Alder 

cycloaddition between cinnamaldehyde 20 and cyclopentadiene 19 was used as a 

standard transformation.
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19 20 24 25

(i) Catalyst (10 mol%), MeOH, 25 °C. (ii) TFA, CHCI3, H20

(Scheme 2.1)

The catalysts that were initially investigated to determine if the a-effect would accelerate 

the iminium ion catalysed Diels-Alder reaction were dimethylamine hydrochloride 65 as 

the standard, N,A'-dimethylhydrazine dihydrochloride 66, 7V,7V'-diphenylhydrazine 

dihydrochloride 67 and N, O-dimethylhydroxylamine hydrochloride 68. On obtaining 

proof of principle more detailed studies would be warranted {Figure 2.2).

Mê HHCa “‘V S *  " S i '" ',*  MeY H> °n .n u i  n  ljoi ui u c i  n .n o i

65 66 67 68

(Figure 2.2)

In the absence of catalyst and in the presence of 10 mol% triethylamine hydrochloride the 

reaction of cinnamaldehyde 20 and cyclopentadiene 19 gave a 7% conversion after a 48 h 

period with predominance of the kinetically favoured endo-isomer 25. With 

dimethylamine hydrochloride 65, at a 10 mol% loading, 22% conversion was observed 

with approximately 2:1 ratio of exo 24 to endo 25 isomer (the observation of this ratio is 

diagnostic of an iminium ion catalysed reaction). N,N '-Dimethylhydrazine hydrochloride 

66 and N,N‘-diphenylhydrazine hydrochloride 67 both demonstrated increased reactivity 

relative to the standard dimethylamine hydrochloride catalyst 65 (48%, 72 h and 33%, 48 

h, respectively). However, A^O-dimethylhydroxylamine hydrochloride 68 displayed a 

greater increase providing a 65 % conversion under identical conditions. The results of 

this experiment clearly indicated that the a-effect could be used as a tool to increase 

reactivity in iminium ion catalysis.

Q  ^V^COoMe
H.HCI H.HCI

69 70

(Figure 2.3)
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During this work another interesting observation was made when examining cyclic 

catalysts. Proline methyl ester hydrochloride 70 demonstrated superior activity to 

pyrrolidine hydrochloride 69 as a catalyst for the standard Diels-Alder reaction, 

suggesting that inclusion of a carbonyl group (3- to the reactive nitrogen could increase 

activity. With these results to hand the next stage was to develop catalysts based around 

the a-effect to rival and compete with the reported cyclic catalysts in terms of efficiency.

3 '
I KH

N C02Et H.HCI Bn HHC)

71 7

(Figure 2.4)

The benchmark catalyst for this transformation is MacMillans catalyst 7 which facilitates 

a quantitative conversion for the standard Diels-Alder reaction after an 8 h period with 

excellent levels of asymmetric induction >90% e.e.14 The group began research to 

develop catalysts that could provide a more efficient catalyst than 7. The first step in the 

right direction was synthesis of catalyst 71 {Figure 2.4) which was prepared in two steps 

from commercially available ethyl carbazate and acetone. Catalyst 71 took the reaction 

between cinnamaldehyde 20 and cyclopentadiene 19 under the standard conditions to 

93% after 48 h.

The success of these experiments led to a comprehensive structure activity relationship 

(SAR) study based around five variables of the newly developed catalytic architecture

{Figure 2.5).97

Substitution of 
a-heteroatom R2

Substitution 
reactive

----------------  H
.H

Nature of 
a-heteroatom X

R2

"h T
H

1

EWG
Nature of 
jJ-EWG

.HY

Nature of acid 1 
co-catalyst HY 1

(Figure 2.5)

The SAR resulted in numerous catalysts being prepared which allowed for many 

comparisons to be drawn, however, only the structural features important for activity will 

be highlighted. The SAR can be summarised with the following statements:
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• The optimal a-heteroatom X is nitrogen.

• The optimal co-acid is HC1.

• The optimal substitution a- to the reactive nitrogen is secondary (R1).

• Optimal EWG is ethyl carbamate.

• Optimal substitution on the a-heteroatom X is tertiary (R2).

• Most active catalyst scaffold was based around a six- membered ring.

• Catalysts based around five membered rings were ineffective.

Catalysts 72 and 73 were the optimal catalysts prepared for the cyclic and acyclic series

respectively {Figure 2.6).

Catalyst 72 and 73 accelerated the standard Diels-Alder reaction to 86% and 89% 

conversion respectively after a 3 hour period at 10 mol% loading.

The SAR study succeeded in producing more active catalysts than those reported in the 

literature for the Diels-Alder reaction. It was also observed that the P-EWG held a vital 

role in facilitating increased activity. However, it was not clearly apparent how the EWG 

increased the catalyst activity in the transformation. We therefore sought to make a series 

of catalysts that could generate information as to role of the EWG to aid our 

understanding of the a-effect catalysts.

o

.HCI 0

72 73

(Figure 2.6)
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2.2.1 Separating the a-effect and the P-EWG

The initial investigation sought to increase the reactivity of the catalysts by introduction 

of the a-effect, however, this was only achieved by incorporation of a p-EWG, the role 

of which was not understood.

The first question that was addressd was whether the EWG was directly affecting the a- 

heteroatom responsible for increasing the nucleophilicity of reactive nitrogen or was the 

effect independent? To provide an answer to this question we sought to include both 

structural features into a series of catalysts in a manner that would allow us to probe the 

role of the respective structural features. The structures 74, 75, 76 and 77 were proposed 

to achieve our aim.

■ y N-— -^O E, E t O ^ N ^ ^ O E t
I H

74 75 76

(Figure 2.7)

The targets were chosen to allow direct comparison of structurally similar catalysts in the 

acyclic series. These targets also had the advantage that the synthesis was anticipated to 

be straightforward. Catalyst 74 allowed for separation of the a-effect facilitated by a 

nitrogen atom remote from the p-EWG while catalyst 75 was prepared as the oxygen 

analogue of catalyst 74. Catalyst 76 allowed us to observe the effect of including an 

additional p-EWG on catalyst activity. Catalyst 77 was targeted as previous synthetic 

studies indicated that the increase in substitution a- to the reactive nitrogen should further 

increase activity.

V X ,  = >  = >  " Y + ° Y ^ ° E'
I I ' 'h

74 78 79 80

(Scheme 2.2)
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Synthesis of catalyst 74 was envisaged from condensation of A,iV-dimethylhydrazine 79 

with ethylglyoxylate 80 to afford the hydrazal 78 which could be subsequently selectively 

reduced to achieve the target 74 (Scheme 2.2). The other catalysts 75-77 were envisaged 

using similar methodology.

2.2.2 Synthesis of Catalysts

The synthesis of 74 proved to be difficult with many attempts needed to finally achieve 

the target compound in 5% overall yield (Scheme 2.3). The initial condensation of the 

hydrazine 79 with ethyl glyoxylate 80 was efficient, although the imine intermediate was 

not rigorously purified. Considerable problems arose on reduction of the imine. Many 

methods were employed unsuccessfully including hydrogenation, reduction with sodium 

triacetoxyborohydride and sodium borohydride. Initially, sodium cyanoborohydride was 

unsuccessful, but finally granted access to the reduced catalyst 74 by increasing the 

number of equivalents of hydride to three and decreasing the pH of the reaction.

o 0
H+, CH3CN v  n 1  NaCNBH3, HCI \  J l

rt, 16 h | MeOH, 16 h I
78 5% overall 74

(Scheme 2.3)

The reaction proceeded with low conversion determined by *H NMR (ca 20%) but the 

amount of compound obtained after purification was significantly lower than the 

conversion. A likely explanation for this is that the compound 74 has a low boiling point 

and therefore significant quantities were lost on concentration of the fractions after 

column chromatography. Despite this frustrating observation we were able to access 

sufficient quantities of 74 in order to examine its activity as an iminium ion catalyst.

Catalysts 75, 76, and 77 were synthesised in poor to average overall yields by a reductive 

animation procedure.
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OEt

82a R = H 
82b R = Me

H+, CH3CN 

rt, 16 h
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o
Rs X

NaCNBH3, HCI
OEt

R MeOH, 16 h

83a X = NH, R1 = Me2, R =H 
83b X = O, R1 = Me, R = H 
83c X = NH, R1 = COgEt, R =H 
83d X = NH, R 1= C02Et, R =Me

(Scheme 2.4)

HrCX OEt

74 2%
75 5%
76 25%
77 35%

2.2.3 The Standard Procedure for Analysing Catalyst Efficiency

To allow for direct comparison with previous work in the group a standard set of 

conditions was applied for the Diels-Alder cycloaddition (Scheme 2.5).

+ iPh'

19 20

OMe

Ph OMe 

86
(ii)

MeO OMe 

87

(i) Amine catalyst.HCI (10 mol%), MeOH, 25 °C, 24 h (ii) TFA, CHCI3, H20, rt, 16 h

CHO 
Ph

exo-isomer
24

Ph

CHO
encfo-isomer

25

(Scheme 2.5)

The reaction was preformed in a set sequence. Initially 10 mol% of catalyst was placed in 

methanol (2 mL). To this was added the cinnamaldehyde 20 (1 eq) and the reaction 

mixture allowed to stir for 2 minutes at 25 °C before addition of cyclopentadiene 19 (2.5 

eq). The reaction was promptly sealed and allowed to stir for a specific time. The starting 

time of the reaction was taken as the addition of cyclopentadiene 19. Upon completion of 

the reaction time the mixture was diluted with dichloromethane and reduced in vacuo to 

remove the cyclopentadiene 19 and hence terminate the reaction. Hydrolysis of the 

methyl acetals 86 and 87 was achieved by stirring in a TFA, water and chloroform 

mixture overnight. Neutralisation of the acidic solution followed by extraction gave the 

crude product for analysis. Further purification was possible with column 

chromatography but was not routinely conducted.
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The conversion of the reaction was analysed using the crude product. This was possible 

as there were discreet and distinct peaks in the ]H NMR spectrum which allowed for 

comparison of the ratio of product and starting material through integration. It had been 

shown that the signals corresponding to the exo-24 and endo-25 isomers appeared at 

5 9.85 and 8 9.53 respectively with cinnamaldehyde 20 at 8 9.64 (Figure 2.8).98

Endo-lsom er

Starting Material

(Figure 2.8) *H NMR spectrum of the region used to calculate conversion and exo.endo  ratios for catalytic 

runs.

This method had previously been validated by comparison of the isolated yield of the 

experiment with those predicted from the conversion (determined by the method outlined 

above) being within experimental error (1-2% yield).99 There was no evidence of side 

reactions other than dimerisation of cyclopentadiene 19 which occured in a small and 

comparable extent in all catalytic runs independent of catalyst.

2.2.4 Performance of Catalysts

Catalysts were submitted to standard reaction conditions to gauge their respective 

activities (Tables 2.1 and 2.2).

O  - / —
19

Ph

20 24

(i) Catalyst (10 mol%), MeOH, 25 °C. (ii) TFA, CHCI3, HzO

(Scheme 2.6)

Ph 
O ^H

25
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Entry Catalyst3 Structure Conversion %b exo'.endo

1 74.HCI
o

H.HCI ||
V A ,

I
4 n.d.

2 75.HCI
0

H.HCI || 62 66:34

3 76.HCI ekA ^ oe,
H

65 65:35

4 77.HCI
0  0  II H.HCI ||

EtO'''^N''Nvy T ) E t 94 67:33

5 85.HCI

0  0  
fi H.HCljl

M eC r^ lsT  ' V ' X J M e
H I

94 65:35

(a) Reactions were carried out at 25 °C for 6 hours with 10 mol% catalyst in methanol.

(b) Conversion determined by 1H NMR of crude reaction mixtures.

(c) exo/endo ratios determined by 1H NMR of crude reaction mixtures.

(Table 2.1)

Entry Catalyst3 Structure Conversion %b excr.endo

1 74.HCI
0

H.HCI || 

- N ' ^ O E ,
I

16 64:36

2 75.HCI
0

H.HCI || 83 66:34

3 76.HCI eX ^ oe,
H

88 65:35

o
II H.HCI

4 77.HCI E t c r ^  N ̂  N V ^ O E t  94 67:33

o o
jj H.HCI

5 85.HCI OMe 94 65:35

(a) Reactions were carried out at 25 °C for 24 hours with 10 mol% catalyst in methanol.

(b) Conversion determined by 1H NMR of crude reaction mixtures.

(c) exo/endo ratios determined by 1H NMR of crude reaction mixtures.

(Table 2.2)
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Hydrazine 74.HC1 proved to be a disappointing catalyst for the reaction especially when 

compared with catalyst 75.HC1. Catalyst 74 was difficult to synthesise with doubts over 

its stability. However, when the results from 6 h and 24 h are compared it suggests that 

the amount of compound catalysing the reaction remains constant as the conversion after 

24 h (16%) is four times the magnitude of the conversion after 6 h (4%) which is 

expected in the early part of the kinetics for a first order process. A possible explanation 

in hindsight could be the formation of the dihydrochloride salt 88 which would severely 

alter the magnitude of the a-effect as the lone pair believed to be responsible for 

increased nucleophilicity would be protonated and hence 88 would no longer posses the 

a-effect. Due to the difficulties associated in the preparation of catalyst 74 investigations 

into whether this was the case were not conducted.

(Figure 2.9)

Catalyst 75 provided the most interesting results of those examined as it took the standard 

reaction to 62 and 83 % conversion after 6 h and 24 h respectively. When catalyst 75.HC1 

was compared to catalysts 68, 72 and 70 interesting conclusions could be drawn (Table 

2.3).
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Entry Catalyst3 Structure Conversion %b excr.endo

75.HCI .  nhciX  62 66:64

89

o
jt

'O ' 'OEt

H.HCI
68 <5 n.d.

o
H.HCI II

'NO ^ 0B <5 64:36

o
H.HCI ||

72 ^ ^ N ^ O E t  98 65:35
I

o69 <5 n.d.
H.HCI

70 V N x y u e  62 70:30
H.HCI

(a) Reactions were carried out at 25 “C  for 24 hours with 10 mol% catalyst in methanol.

(b) Conversion determined by 1H NMR of crude reaction mixtures.

(c) exo/endo ratios determined by 1H NMR of crude reaction mixtures.

(Table 2.3)

Catalysts 68 and 89 both contain less nucleophilic nitrogens and gave conversions less 

than <5% after 6 h. Catalyst 75.HC1 contains a nucleophilic nitrogen as well as (3-EWG 

and is reasonably active (Table 2.3, entry 1). Catalyst 72 (Table 2.3, entry 4) is 

considerably more active than 75 but this can easily be attributed to superior structural 

features determined form the results of the previously conducted SAR study; namely the 

a-heteroatom is nitrogen along with secondary substitution a- to the reactive nitrogen. 

Comparing this result with that of proline methyl ester hydrochloride 70 {Table 2.3, entry 

6) and pyrrolidine hydrochloride 69 {Table 2.3, entry 5) it can be concluded that in order 

to have an active catalyst a nucleophilic nitrogen is required (achieved either by 

incorporation into a five membered ring or by utilising the a-effect) along with a 

P-carbonyl based EWG. Importantly, these functionalities may be separated to obtain 

high activity.

Interestingly, incorporation of an additional EWG as in catalyst 76 {Table 2.2, entry 3) 

increases the conversion only slightly. With consideration of the structural differences

41



Chapter 2_________________________________________________________ T J  K Gibbs- PhD Thesis 2008

and previous SAR studies the catalysts can be thought of as having similar activity. This 

suggests that only a single (3-EWG is necessary for efficient catalysis. The activities 

observed for catalysts 77 and 85 are consistent with the results of previous
99investigations.

An explanation that would be consistent with the results obtained might be that the 

carbonyl in the P-position could be acting as a proton shuttle, aiding in the protonation 

and deprotonation of the various intermediates 81a and 81b involved in formation (and/or 

hydrolysis of iminium ion 84 {Scheme 2.7). If indeed it is these types of processes that are 

kinetically significant, then acceleration by a proton shuttling effect would increase the 

overall rate of iminium ion formation and hence the catalytic cycle, providing that 

iminium ion formation was the RDS.

RcTY0RX  "oh  -------- Aoh°  ‘ J 8FT^OH © R ft

81a 81b 84

(Scheme 2.7)

This model is consistent with the fact that the a-heteroatom and the (3-EWG can be 

separated spatially and with no loss of catalyst activity, and also the fact that a second 

(3-EWG leads to no further gain in activity.

2.3 Conclusions

This study, along with previous investigations highlighted the need for both a 

nucleophilic nitrogen and a carbonyl based P-EWG within the catalyst architecture for 

high activity. The study also demonstrated that the two effects appeared to operate 

independently and therefore could be separated to allow for more structurally diverse 

catalysts to be designed. However, it was still unclear as to what was the mode of action 

of the p-EWG, despite the fact that synergy with the a-effect could be eliminated.
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Chapter 3: Investigations to Discover the Function of the 

P-Electron Withdrawing Group
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3.1 Aim of the Investigation

The aim of this study was to synthesise a number of novel catalysts, based around the 

acyclic catalyst architecture developed previously within the group, to probe the optimal 

electronic properties for the p-carbonyl electron withdrawing group to increase catalyst 

activity. Appropriate electron withdrawing/donating groups were introduced to allow for 

a Hammett plot to be obtained.

3.2 Introduction

The results of previous experiments lead us to hypothesise that the p-EWG was acting as 

a proton shuttle in iminium ion formation and thus increasing the efficiency of iminium 

ion formation and hydrolysis, accelerating the catalytic cycle. We sought to provide 

evidence for this mode of action and attempted to tune the electronics of the p-EWG to 

provide more active catalysts, while providing information to aid future rational design of 

chiral catalysts.

To provide supporting evidence for our hypothesis we designed an SAR study in which 

variation of the electron density centred on the carbonyl might provide more active 

catalysts and further our understanding. Considered choice of the catalyst scaffold to be 

modified would allow us to construct Hammett plots by relating the pseudo first order 

rate constants of the overall catalytic cycle to the Hammett parameters of the substituents.

3.2.1 Catalyst Design

The catalyst scaffolds chosen for elaboration were 90 and 91. The reasons for this were 

three fold: Firstly, the catalysts had moderate activity over a 6 h period (76% and 58% 

conversion respectively) which would allow for any alteration in activity to be easily 

observed. Secondly, synthesis of the catalysts was envisaged to be short and 

straightforward. Finally, electronically perturbing substituents placed on the benzoyl 

EWG groups allow for Hammett analysis to be conducted.
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90 91

(Figure 3.1)

The catalysts chosen as targets were designed to include a range of stronger and milder 

p-EWG relative to the standard catalysts 90 and 91. We also targeted catalysts that could 

not be used in a Hammett plot but would allow qualitative conclusions to be drawn about 

the nature of the p-EWG.

H.HCIH.HCI H.HCI

9290

H.HCIH.HCIH.HCI
PhPh

94

H.HCIH.HCIH.HCI

'OMe

(Figure 3.2)

Catalysts 90 and 95-99 were targets for the Hammett analysis. Catalysts 92 and 94 were 

designed to replace the oxygen of the carbonyl with a sulphur atom to explore the effect 

on catalyst activity. Catalyst 93 was chosen to investigate the effect of a strong electron 

donating group on activity.
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3.3 Results and Discussion

3.3.1 Synthesis

Synthesis began with formation of hydrazone 100 from the condensation of acetone and 

Af-methylhydrazine 101 (70%) followed by coupling with the corresponding acid chloride 

to yield the catalyst precursor which was subsequently reduced to yield the target 

catalysts in yields of 13-73% from 100.

(ii)

NH

101

NH

100, 70%

(vii)

N
I
90a

O

I
98a

O
OMe

97a ^ " X l

(v)

95a
NMe,

y H^ x x9 9 a ^ ^ NO=>

(xi)
(ix)

(viii)
(ix)

(viii)

(x)

(viii)
(ix)

(viii)
(ix)

(xi)
(ix)

H.HCI
,N.

N

90, 13%

H.HCI

OMe98, 46%

O
H.HCI

97, 43%

O
H.HCI

" l  (
95, 56%

O
H.HCI

1 I!
99, 31%

NMe2

N02

H.HCI

96, 73%

(i) KOH, <35 °C, (ii) PhCHO, CH2CI2, rt,16 h, (iii) 4-OMe-C6H4CHO, CH2CI2, rt, 16 h, (iv) 4-CI-C6H4CHO, CH2CI2, rt, 16 h, (v) 4-NMe2-C6H4CHO, 
CH2CI2, rt, 16 h, (vi) 4-N02-PhCH0, CH2CI2, rt, 16 h, (vii) C6F5CHO, CH2CI2, rt, 16 h, (viii) 3 eq NaCNBH3, 2N HCI, MeOH, rt, 16 h, 
(ix) 5 eq HCI in ether, (x) HCI salt formed in reaction vessel with HCI in MeOH, (xi) H2, Pt02, EtOH, 16 h

(Scheme 3.1)
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Compound 93 was synthesised in an analogous manner coupling the hydrazone 100 and 

phenyl isocyanate followed by reduction to yield the free base of the catalyst {Scheme 

3.2). Synthesis of 94 was attempted, however, difficulties were encountered in the 

purification with minor but detectible impurities present. No further studies were 

performed with catalyst 94.

9. o o
(i)

,NH
» ii * II (ii) H.HCI ||
9.  \  ^ ph ----——  \  - PhN N^  W. I i h (iii) I I H

100 93,79%

(i) CH2CI2, rt, 16 h, (ii) NaCNBH3, 2N HCI, MeOH, 16 h, (iii) 5 eq HCI in MeOH

(Scheme 3.2)

Catalyst 91 was synthesised from commercially available benzoic hydrazide 102 and 

acetone to yield hydrazide 103 followed by a reduction and salt formation to give 91 

(,Scheme 3.3).'00

102 103,86% 91,82%

(i) CH3CN, rt, 16 h, (ii) H2, Pt02, EtOH, 16 h, (iii) 5eq HCI in ether

(Scheme 3.3)

Catalyst 92 was synthesised from compound 103 using Lawesson’s reagent to convert the 

carbonyl to the corresponding thio carbonyl. The product was reduced and the salt 

formed to yield the catalyst 92 {Scheme 3.4).

(i) (ii)
H.HCI .N

N 
H

103 104,55% 92,49%

(i) Lawesson's reagent, CH3Ph, A, N2, 16 h, (ii) NaCNBH3, 2M HCI, MeOH, 16h, (iii) 5 eq HCI in ether

(Scheme 3.4)
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The salts of all the catalysts (except 97) were formed on adding 5 equivalents of HCI in 

methanol to the free base. The salt of 97 was generated in situ for the catalytic run by 

adding a single equivalent of HCI in MeOH of known concentration. This method was 

validated by comparing the performance of the free base of catalyst 91, forming the salt 

in situ, with that of the preformed HCI salt. The results were found to be within 

experimental error (ca 3%) confirming the validity of this method. This was necessary to 

allow for direct comparison with experiments previously conducted.

3.3.2 Catalyst Performance

Once the catalysts were prepared they were examined in the standard Diels-Alder 

reaction between cinnamaldehyde 20 and cyclopentadiene 19 for 6  h.

o o

Ph

19 20 24 25

(i) Catalyst (10 mol%), MeOH, 25 °C. (ii) TFA, CHCI3, H20

(Scheme 3.5)
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Entry Catalyst3 Structure Conversion % exo:endo

90

91

92

93

95

96

97

98

H.HCI 
N

H.HCI 
,Nn

N 
H

H.HCI,NkN 
H

0
H.HCI II P̂h

N N 
I H

H.HCI

O F
H.HCI

O
H.HCI

O
H.HCI

‘OMe

76

58

<5

25

75

61

52

77

67:33

62:38

n.d.

69:31

65:35

72:28

62:38

69:31

99
H.HCI 

N

N02

77 56:35

(a) Reactions were carried out at 25 °C for 6 hours with 10 mol% catalyst in methanol.

(b) Conversion determined by ’H NMR of crude reaction mixture.

(c) exo/endo ratios determined by 1H NMR of crude reaction mixture.

(Table 3.1)

The results of this study yielded some interesting but overall disappointing results. The 

catalyst with the lowest activity was 92 (entry 3, <5%). The reaction appeared extremely 

sluggish, especially when compared to the equivalent catalyst 91 (entry 2 , 58%), such
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that after a 6  h period insufficient product was formed to enable measurement of an 

exo:endo ratio. It is noteworthy, however, that the !H NMR spectrum of the reaction 

mixture indicated that some other process may have occurred as it appeared 

uncharacteristically complex and untidy. Whether or not the catalyst was just poor or had 

reacted in a different manner was not defined, however, it can be concluded that 

thiocarbamate EWG’s were not effective within the catalyst scaffold for this 

transformation.

The introduction of a urea based EWG in catalyst 93 had a detrimental effect on catalyst 

activity (entry 4, 25%) when compared to standard catalyst 90 (entry 1, 76%). The urea 

group was chosen for the high electron density that would be present on the carbonyl 

from donation of the lone pairs of the nitrogens. It was concluded that this effect was 

possibly too strong for optimal catalyst activity.

The catalysts designed to have lower electron density on the carbonyl of the EWG 

displayed a mixture of results. Catalyst 97 (entry 7, 52%) gave the lowest conversion 

followed by 96 (entry 6 , 61%). Catalyst 99 (entry 9, 77%) displayed similar activity to 

the standard 90 (entry 1, 76%). It is clear from these results that apart from commenting 

on individual catalysts there was no apparent relationship between electron density on the 

carbonyl oxygen and catalyst activity.

The catalysts designed to have greater electron density on the carbonyl also provided 

inconclusive results. Catalysts 95 (entry 5, 75%) and 98 (entry 8 , 77%) both gave 

conversions that were within experimental error of the standard catalyst 90 (entry 1, 76%) 

and therefore it can be concluded that these subtle changes in the electron density had no 

significant effect on reactivity.

Originally, the catalysts were designed to construct a Hammett analysis to yield 

information of the electronic environment of the key transition-state in the overall 

catalytic cycle. However, it is clear from the results (Table 3.1) that there was no
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relationship between catalyst activity and electron withdrawing ability, therefore, a 

Hammett analysis was not conducted.

In parallel to this work on acyclic catalysts another group member conducted a similar

study based on a cyclic catalyst scaffold (Table 3.2). 99

Entry Catalyst

105

Structure Time h Conversion % excr.endo

.HCI OMe
67 66:34

106 cN I
NH

HCI

59 64:36

107 NI
NH

.HCI NO?

32 62:38

108 C JV  /Ph N N 
I H 

NH

.HCI

17 50:50

109 C JK  P̂hN N

I H 
NH

.HCI

15 32:68

110 ('''"'hAoEt
k/NH

.HCI

35 69:31

7 73

0

r ^ i j A o a
k^NH.HCI

6 99 68:32

8 111

O

i^^N^koBn
*\^NH.HCI

6 94 68:32

(a) Reactions were carried out at 25 °C for 24 hours with 10 mol% catalyst in methanol.

(b) Conversion determined by 1H NMR of crude reaction mixtures.

(c) exo/endo ratios determined by 1H NMR of crude reaction mixtures.

(Table 3.2)
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The results obtained for the cyclic series were in good agreement with the acyclic series. 

Catalysts based on thiocarbamates 110 (entry 6, 35%) and urea derivatives 109 {entry 5, 

15%) and 108 {entry 4, 17%) performed badly compared to standard catalyst 106 {entry 

2, 59%). However, a small but significant increase was observed for the slightly electron 

donating p-methoxyphenyl catalyst 105 {entry 1, 67%) relative to standard catalyst 106 

{entry 2, 59%). The catalyst containing a p-nitro EWG displayed reduced activity 

compared to standard catalyst 106 {entry 3, 32%).

The number of catalyst synthesised suitable for Hammett analysis was insufficient 

although the limited results looked promising. It is noteworthy, however, that none of the 

catalysts prepared had comparable activity to the previously synthesised benchmark 

catalyst 73 {entry 1, 99%). The study managed to discount numerous structural features 

for future design but provided little information that could be applied to enhance catalyst 

activity.
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3.3.3 The Role of the Electron Withdrawing Group EWG

An important question that needed to be addressed to aid our understanding was whether 

the (3-EWG must be carbonyl based to be effective. Therefore, we sought a commercially 

available catalyst that contained a nucleophilic nitrogen but also a strong P-EWG that 

could not act as a proton shuttle. Trifluoromethyl pyrrolidine (112) was selected as it 

would allow direct comparison with pyrrolidine hydrochloride (69) and proline methyl 

ester hydrochloride (70). The trifluoromethyl group is a very strong EWG but the fluorine 

atoms should not act as a proton shuttle. Catalyst 112 was converted to the HCI salt 

112.HC1 and examined in the standard Diels-Alder reaction.

Entry Catalyst3 Structure Conversion %b exo\endo°

Q
H.t- 

H.HCI

c x

69 <5 n.d
H.HCI

70 N^AX^Et 62 70:30
H.HCI

3 112.HCI \ ^ cf3 93 68:32
H.HCI

(a) Reactions were carried out at 25 °C for 24 hours with 10 mol% catalyst in methanol.

(b) Conversion determined by 1H NMR of crude reaction mixtures.

(c) exo/endo ratios determined by ’H NMR of crude reaction mixtures.

( Table 3.3)

Catalyst 112.HC1 (93%, 6  h) was surprisingly active, especially given the fact that it had 

a simple structure compared to the more elaborate catalysts that we had prepared of 

similar activity. This result suggested that the p-EWG was acting on a purely inductive 

basis as it was difficult to envisage any other mode of action. We therefore concluded 

that ability of the P-EWG to act as a proton shuttle could also be excluded as an 

important feature in catalyst design.
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The significant conclusion was that our understanding of the role of the P-EWG was 

inadequate. The underlying reason for this was that we had a poor understanding of the 

relationship of the individual steps of the catalytic cycle. This lack of knowledge made it 

extremely difficult to arrive at credible conclusions because our deductions to date were 

based largely on qualitative experiments.

3.4. Conclusions

Our attempts to prepare more active catalyst for the iminium ion catalysed Diels-Alder 

reaction by altering the electron density of the carbonyl group failed. Each of the novel 

catalysts prepared were of lower activity to catalysts previously prepared within the 

group. The catalysts prepared were designed to probe the electronic requirements of the 

carbonyl based p-EWG, however, due to the spread of results obtained, this was not 

possible. The effectiveness of trifluoromethyl pyrrolidine hydrochloride 112.HC1 as a 

catalyst suggested that the p-EWG was not exclusively acting as a proton shuttle as 

previously hypothesised. It was also concluded that detailed investigations into the 

mechanism of the catalytic cycle should be conducted to achieve a better appreciation of 

the relationships of catalyst architecture and activity.
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Chapter 4: Studies to Determine the Mechanism of the 
Organocatalysed Diels-Alder Reaction
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4.1 The Aim of the Research
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The purpose of this investigation was to establish the kinetically important features 

within the catalytic cycle by measurement of the rate constants and activation energies 

associated with each step. We also sought to extract any additional information that 

would aid us in the rational design of secondary amine catalysts for the Diels-Alder 

reaction.

4.2 Introduction

Having spent much effort within the group developing and testing catalysts for the Diels- 

Alder reaction between cinnamaldehyde 20 and cyclopentadiene 19 it was evident that 

our conclusions were philosophically weak due to our inherent ignorance of the physical 

parameters of the catalytic cycle.

19 20 24 25

(i) Catalyst (10 mol%), MeOH, 25 °C. (ii) TFA, CHCI3, H20

(Scheme 4.1)

To aid in the interpretation and also development of catalysts we sought to discover the 

relative rates and activation energies associated with the individual steps of the catalytic 

cycle. Previous attempts to understand the mechanism had been undertaken within the 

group and a range of techniques had been applied to gain an insight." These attempts 

failed to provide any quantitative evidence for the mechanism but provided a solid 

platform from which to expand the research.

The previous work was thwarted by the inability to isolate iminium ions to allow for 

independent study of the individual steps of the reaction. To further this research we 

targeted the isolation of the iminium ion intermediate as the key task to unlock the 

kinetics of the reaction.

56



Chapter 4_________________________________________________________ T J  K Gibbs- PhD Thesis 2008

Concurrent with our investigations Ogilive published similar work based on the kinetic 

observation of his asymmetric a-effect catalyst 24. The study comprised of monitoring 

the entire catalytic cycle by JH NMR and observing the relative quantities of the various 

intermediates against time. From the data obtained it was possible to identify the rate 

determining step which was highlighted as the Diels-Alder cycloaddition. However, as 

quantitative kinetic measurements were not conducted, no explanation could be given to 

explain the observation. From our preliminary studies we could postulate that the RDS 

was the Diels-Alder cycloaddition step form the observation that it was sluggish relative 

to the other steps in the catalytic cycle. Furthermore, Ogilive’s catalyst, although 

asymmetric was not very active and the reactions were conducted in nitromethane and 

therefore, could have very different kinetics to the systems that were of interest to us. The 

publication, although elegant, failed to provide any of the explanations that we sought to 

further our understanding of the catalytic cycle. Therefore, we continued with our studies 

with a hope to satisfy our curiosity.

4.2.1 The Concept

Iminium ion 
hydrolysis: 

Step 3
H.HXPh

'hyd

115Ph-116 Ph

'DA

Iminium ion 
formation: 

Step 1

HoO

o
Diels-Alder 

cycloaddition: 
Step 2

(Figure 4.1)

The isolation or favourable equilibrium in solution of an intermediate iminium ion 115 

would allow for the determination of the kinetics for the formation of the iminium ion if a 

suitable physical technique could be found {Scheme 4.2).
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RV „r2N
H.HX

Iminium ion r1 
O formation: N

Step 1
H

© V

H + H20

Ph 20 Ph^  115

(Scheme 4.2)

The isolation of 115 would also allow for a subsequent independent reaction with 

cyclopentadiene 19 to form Diels-Alder iminium ion adduct 116 (and its endo-isomer). 

Under anhydrous conditions the isolation of compound 116 should also be possible 

(Scheme 4.3).

rV©̂ R2 

N ©v

Ph

o
Diels-Alder 

cycloaddition: 
Step 2

RC©/R2 
N qex

H

115 19
Ph
116

(Scheme 4.3)

The isolation of Diels-Alder iminium adduct 116 would also allow for the independent 

study of step 3 on addition of water (Scheme 4.4).

pi @ p2 Iminium ion
hydrolysis: 

©X Step 3
i_i + h2o  ■—

(Scheme 4.4)

RV /R2

H *  K.HX

Ph
116

Ph

24

The combination of the three steps would allow us to build up a picture of the entire 

catalytic cycle to aid in our understanding and the quest for more active catalysts.
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4.3.1 Isolation of Iminium Ions

Previous attempts to isolate iminium ions as their HCI salts had proved unfruitful, 

indicating that modification of the system was necessary to achieve our aims. We 

therefore sought a catalyst-dienophile-co-acid combination that would provide a stable 

iminium ion {Figure 4.2).

Catalyst architecture I  R1 ® R2 [ Nature of co-acid HX IJ N o ^.........   *

Structure and reactivity j  
^ jo f th ^ ie n o g h il^ ^ J

(Figure 4.2)

We began our search by identifying catalysts that would, from our experience, provide a 

practical and useful system for kinetic evaluation. We rationalised that we should select 

an active catalyst that we had previously studied on the bench, as the relative order of 

kinetics for each step might be different for less active catalysts (it was of course the 

active catalysts that interested us most). Also, the collection of data would be more rapid 

with an efficient system. The catalysts selected were trifluoromethyl pyrrolidine 112, 

MacMillan’s imidazolidinone 7 and the most active catalyst developed by the group to 

date 73 {Figure 4.3).

^~~cF3 X N̂  o  o*
H b/ " E |
112 7 73

(Figure 4.3)

Our intention was to use either cinnamaldehyde 20 or its derivatives 117-121 as our 

dieneophile to ensure that our model system was as similar as possible to the system we 

had used for our SAR studies {Figure 4.4).
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20 117 118 119 120 121

(Figure 4.4)

Compounds 117 and 118 were chosen as substrates for use with fluorescence 

spectroscopy as they are known fluorophores. 117 and 118 were synthesised via a 

literature Heck reaction . 101 The remaining aldehydes 119-121 were commercially 

available.

It was clear that the one aspect of our system that needed addressing was the co-acid as 

numerous attempts to isolate the iminium chloride salts had failed. This was believed to 

be due to their instability towards hydrolysis. We therefore sought a co-acid that might 

have a stabilising effect on the resulting iminium ion. To achieve this we selected a 

number of weakly coordinating anions highlighted as good candidates in a review of non- 

coordinating anions. We selected hexafluorophosphoric acid HPF6 , tetrafluoroboronic 

acid HBF4 and fluoroantimonic acid HSbF6 . Pleasingly, on reaction of one equivalent of 

cinnamaldehyde 2 0 , trifluoromethyl pyrrolidine 1 1 2  and aqueous HPF6  in methanol at 

room temperature we obtained the iminium ion 1 2 2  in 82% yield as a geometrically pure 

bench stable compound.

MeOH, rt

(Scheme 4.5)

This initial success allowed us to synthesise a range of iminium ions based on catalysts 

112 and 7 with a variety of cinnamaldehyde derivatives and co-acids. These iminium ions 

were primarily characterised by HRMS and occasionally X-ray diffraction as in solution 

the majority of iminium ions were clearly in equilibrium with the starting materials 

making spectroscopic analysis difficult. Full analysis was conducted for the iminium ion 

1 2 2  which was important to the study.
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HPF6  quickly emerged as the optimal co-acid for the isolable iminium ions although 

HBF4  and HSbF6 did yield iminium ions, but they appeared to be less stable than those 

derived from HPF6 . Catalyst 112 gave the most stable iminium ions isolated and therefore 

was selected for subsequent kinetic studies.

4.3.2 Structural Studies

Having synthesised numerous examples of stable iminium ions we attempted to grow 

crystals suitable for X-ray analysis. The iminium ions for which X-ray structures were 

determined are shown below {Figure 4.5).

122 123 124 125 I 126

(Figure 4.5)

It was hoped that a comparison of structural features of the isolated iminium ions and 

their relative activity would structuaral information that could be related to the electronic 

of the 7t-system. A selection of these structures are shown below {Figure 4.6). These X- 

ray structures clearly show that the ^-geometry is favoured for iminium ions 124 and 122 

and that in all iminium ions the 7t-system is planar indicating good conjugation. The X- 

ray structures also provided structural information about the catalyst conformation in the 

iminium ion providing a more accurate model from which to design asymmetric catalysts. 

We have used the approach to investigate a novel class of secondary amines to be 

developed as asymmetric catalyst for iminium ion catalysed processes {see Chapter 6).
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124 122 123

(Figure 4.6) From left to right: X-ray structures of 124, 122 and 123

The isolation of the MacMillan derived iminium ion 124 allowed comparison of the 

solid-state structure with the two published calculated structures (MacMillan 124a103 and 

Houk 124b104) and a calculated structure obtained during complementary theoretical 

studies conducted by Platts and Evans in Cardiff. 105 The structure reported by Houk was 

remarkably similar to the structure obtained from Evans’s calculations and thus only the 

Evans structure of the two is shown (124b).

124a 124b 124

(Figure 4.7) From left to right: MacMillan’s calculated structure 124a, Evans calculated structure 124b and X-ray structure 124.

This evidence suggests that the structure proposed by MacMillan using low level MM3 

calculations in which n -n  stacking localises the benzyl arm over the iminium ion is 

incorrect in the solid-state. The most likely structure is the benzyl arm residing over the 

centre of the imidazolidinone ring of the catalyst 124 (Figure 4.7). However, the 

argument is academic as the mode of asymmetric induction is consistent for both 

conformations.
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The direct comparison of the experimentally obtained and calculated structures of 

iminium ion 124 display remarkable similarity when comparing the conformation of the 

benzyl group. The observed difference in the planarity of the iminium ion itself can be 

explained by coordination of the PF6  anion in the solid state which has been removed for 

clarity {Figure 4.8).

(Figure 4.8) Displaying the X-Ray 124 and the Evans calculated structures 124b overlaid.

Having established that isolation of iminium ions was possible and fairly general for 

cyclic secondary amines with cinnamaldehyde derivatives and HPF6 , we sought to 

identify the technique that would be most useful for determining the kinetics of the 

individual steps of the catalytic cycle.

4.3.3 Establishing a Physical Technique for Kinetic Analysis

The work previously conducted by Jones" suggested that UV spectroscopy would be a 

useful technique. We were also aware that fluorescence spectroscopy was a similar 

technique with departmental expertise to aid the physical studies. To explore this avenue 

we synthesised reported cinnamaldehyde derivatives 117 and 118 with fluorescent tags 

by a Heck reaction between the aryl halide and acrolein ethyl acetal followed by acetal 

hydrolysis. Subsequently we formed the corresponding iminium ions using HPF6 and 

trifluoromethyl pyrrolidine 1 1 2 .
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It was clear from preliminary experiments that low concentrations were needed for UV 

and fluorescence spectroscopy which favoured the starting materials 20 and 112.HPF6 in 

the equilibrium of step 1 {Scheme 4.6). The reason for this was that on dilution of the 

solution containing iminium ion 1 2 2  the relative amount of water present was drastically 

increased using bench solvents. This amount of water essentially made the hydrolysis 

reaction pseudo 1 st order and hence independent of the concentration of the iminium ion, 

where as the forward iminium ion formation reaction was still a concentration dependant 

2nd order reaction as the reactants were present in equimolar amounts. This observation 

highlighted that use of these spectroscopic techniques would require significant 

experimental effort and development to be useful, and therefore, we investigated NMR as 

an experimental technique.

J  H +
Ph

© 'n" cf3
PF,'M' ^3CF3 — --------------  r r 6

6

20 H2HPF, ph,  , 22

(Scheme 4.6)

Jones had previously discounted !H NMR as a useful technique as it appeared that the 

majority of the reaction had taken place before the first physical measurement could be 

made at approximately 7 minutes after mixing. We rationalised however, that reducing 

the concentration would decrease the actual rate of reaction and allow for physical 

measurements to be conducted. Furthermore, technical consultation indicated that 

methods were available for more rapid measurement of data points. Knowing this, 

qualitative experiments were conducted which clearly indicated that lH NMR would be a 

useful tool for the measurement of kinetics of iminium ion formation and of the 

subsequent Diels-Alder cycloaddition. The conditions and experimental details used are 

discussed in the following section.
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The solvents of choice for the iminium ion catalysed Diels-Alder reaction for the majority 

of active catalysts are MeOH or MeOH/FkO mixtures. However, mechanistic studies 

involving these solvents would be complex as the aldehydes in the reaction would be in 

equilibrium with their corresponding methyl acetals causing complications (Scheme 4.7).

MeOH

HoO

MeO OMe

Ph
24

MeOHH.HCI

H.HCI

Ph

Ph'
20

H.HCI

MeOH
MeO OMe

HoO

J  HPh

MeOH

rC®^r2
N © Cl

127

rVN
H.HCI

116
/  HPh

115

(Scheme 4.7)

If the reaction were to be conducted in MeOH then it would add extra equilibria to the 

catalytic cycle and thus create an additional level of complexity (Scheme 4.7). To 

circumvent this problem we sought a solvent that would maintain reactivity but would not 

react with the aldehydes and iminium ions in the reaction. The solvent would also have to 

be available in its deuterated form to be of use in NMR studies. Conducting a solvent 

screen revealed CH3 CN as the optimal reaction medium as it facilitated the fastest 

reaction for a non-alcoholic solvent. 10 6 Subsequently, it was found that the iminium ion of 

our model system 122 was only soluble in CH3CN reinforcing our choice of solvent.

4.3.5 Validation of Model System

The components of our model system differ from those we would use to conduct the 

reaction on the bench. Therefore it was important to validate our model system by 

performing a bench reaction and then compare observations with the optimal system.
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Comparison of the HPF6 and HC1 counter co-acids in methanol was not possible as the 

use of HPF6 co-acid caused precipitation of the iminium ion 1 2 2  in the reaction vessel 

thus removing the active component from the catalytic cycle. We therefore conducted a 

reaction on the bench with HPF6  in acetonitrile which gave 56% conversion in 6  h 

compared to HC1 in methanol 93% in 6  h. Considering that we had moved form the 

optimal solvent and co-acid the drop in reactivity was expected.

No significant by-products were observed in the NMR of the crude reaction mixture 

consistent with the standard reactions. This evidence suggested that alteration of the co­

acid affects the rate of the reaction but did not effect the mechanics of the reaction. 

Therefore, conclusions drawn from study of the model system should be applicable to the 

optimal bench system.

4.3.6 Iminium Ion Formation Step 1

We used the distinct !H NMR signal of the cinnamaldehyde 20 at 9.65 ppm and the 

iminum ion 122 at 8.64 ppm to allow us to monitor the progress of the reaction (Figure 

4.9). Using the integrations of the peaks we could quantitatively determine the conversion 

of the reaction. The conversion was then related to concentration at any data point as the 

initial concentrations were known. This allowed us to extract the second order rate 

constant kimin from a plot of 1/[A] vs t (Appendix) (where [A] is the concentration of the 

cinnamaldehyde) (Appendix).
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(Figure 4.9)

We measured the rate constants at 293, 298 and 303K (in duplicate) to allow the 

construction of an Arrhenius plot and hence determination of the activation energy. The 

rate constant was found to be 2.65 ± 0.35 x 10- 3  dm3 mol- 1  s- 1  at 293K.

-5.5 

-6
JSCc
-6.5

-7

-7.5 
0.00325

-12023.92X + 34.01

0.0033 0.00335 0.0034 0.00345
1/T (K 1)

(Figure 4.10)

Measuring the rate constants at different temperatures allowed us to plot ln&imin vs 1/T to 

obtain the Ea for step 1 at 100.0 ± 7.9 kJ mol’ 1 with an associated Arrhenius parameter A
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of 6.694 xlO15 s '1. The error on the intercept for the linear fit is ± 3.17 leading t a 

uncertainty of ± e3 1 7  (Figure 4.8). {For experimental data see Appendix)

4.3.7 Diels -Alder Cycloaddition Step 2

The Bruker 500MHz NMR machine was also employed for similar measurements of the 

Diels-Alder cycloaddition step. Ideally, we wanted to study steps 2 and 3 separately, 

however, this was not possible using our model system as the lH NMR signals of the 

Diels-Alder iminium ion adducts 130 and 131 overlapped with those of the iminium ion 

122 at 8.64 ppm. Furthermore, the Diels-Alder iminium adducts 130 and 131 were 

observed to convert to side products corresponding to new unidentified broad peaks in the 

NMR signal at 9.21 and 9.33 ppm {Scheme 4.8). The reaction to these new unidentified 

peaks was not reversible by addition of 2  equivalents of water over a period of an hour 

{see Appendix).

PFr N CF;

/  HPh

o
122 19

NR2

Ph
Exo

130

Jhuh
R?hr"H

Endo

131

h2o

Ph
Exo

24

Endo

25

24

122,130 
and 131

Unidentified peaks

(Scheme 4.8)
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We had strong evidence that the hydrolysis of the Diels-Alder iminium ion adducts 130 

and 131 was extremely rapid relative to the Diels-Alder cycloaddition: When 2 

equivalents of water were added to a CH3CN solution of 122 followed by addition of 19, 

the only observable peaks in the *H NMR were the Diels-Alder adducts 24 and 25 (Figure 

4.11). No indication of the intermediate iminium ions 130 and 131 could be detected. The 

absence of the unidentified peaks at 9.21 and 9.33 ppm in any of the reactions carried out 

in the presence of water in an NMR tube and on the bench suggested that there was never 

a sufficent amount of Diels-Alder iminium adduct formed in solution to facilitate this side 

reaction that was readily observed in absence of water. Furthermore, in the actual bench 

reactions MeOH or Me0 H/H2 0  (19:1) are used as solvents so there are huge excesses of 

methanol and water present to hydrolyse the Diels-Alder iminium adducts 130 and 131 

greatly reducing the kinetic significance of this step.

With 2 equivalents of water the reaction that we were effectively observing was the 

conversion of iminium ion 122 at (8.64 ppm) to the Diels-Alder products 24 and 25 (9.84 

and 9.53 ppm respectively).

Endo

122 19 24 25

(Scheme 4.9)

Confident that the rate of hydrolysis was rapid compared to the cycloaddition we can 

state that our kobs = koA- We then went on to measure the rate constants at a series of 

temperatures to allow us to calculate the Arrhenius parameter A and activation energy Ea.
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-A/V.

(Figure 4.11)

To allow for practical measurement 2.5 equivalents of cyclopentadiene were used as this 

accelerated the reaction to allow observation of the important portion of the kinetics 

within a one hour period. This treatment complicated the mathematics slightly but was 

easily manageable (see Appendix).

-7.2 y = -5428 .43x+  10.63

-7.4

-7.6

-7.8

0.00325 0.00330 0.00335 0.00340 ^0.00345

(Figure 4.12)

The second order rate constant of the Diels-Alder transformation was determined at 293, 

298 and 303 K. The rate constant kDA was found to be 3.74 ± 0.02 x lO^dm 3 mol- 1  s- 1  at 

293K. The Ea for the Diels-Alder cycloaddition was found to be Ea = 45.1±1.7 kj mol- 1
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with an associated Arrhenius parameter value of 4.14 x 104  s- 1  with an uncertainty of 

± e0A1 (.Figure 4.12),

4.3.8 Comparison to Theoretical Data

To compliment the experimental work Evans and Platts performed theoretical 

calculations to determine the activation energy of the individual steps of the catalytic 

cycle. 107 A comparison of the experimentally determined and calculated values for the Ea 

are shown below (Table 4.2).

Experimental Ea Theoretical Ea 
Step .

(kJ mol ) (kj mol )

Iminium ion formation 1 100.0 ± 7.9 96.9

Diels-Alder cycloaddition
45.1±1.7 62.3

2

Diels-Alder Iminium ion
n.d. 73

adduct hydrolysis 3
(Table 4.2)

The theoretical data was found to be in reasonable agreement with the experimentally 

determined values. This experimental validation of the theoretical model was interesting 

as it provided the possibility of developing a predictive tool for catalyst activity.

4.3.9 Interpretation of Kinetic Data

By comparing the physical data for the steps of the catalytic cycle, we concluded that the 

Diels-Alder cycloaddition was the rate determining step of the catalytic cycle as it had a 

smaller rate constant than iminium ion formation. It can also be concluded that the Diels- 

Alder cycloaddition had the lower activation energy of the two steps measured.

The physical parameter that was most interesting for the development of more active 

catalysts was the magnitude and consequence of the Arrhenius parameter A. The A value 

contains qualitative information as to the nature of the transition state and is commonly
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thought of as the number of collisions that take place per second, independent of the 

energy of the colliding molecules. This A value is then multiplied with the Boltzmann 

term containing the activation energy and temperature. Therefore, the magnitude of rate 

constant £ at a constant T depends on A and Ea.

Iminium ion formation is a bimolecular reaction which requires two atoms to approach 

each other in the correct geometry for reaction. In this case it will be related to the 

Burgi-Dunitz angle of 109°. The probability of this collision is relatively high and is 

reflected in the A value of 6.694 x 1015 s' 1 with a uncertainty of ± e 3A1. The thermal 

Diels-Alder cycloaddition however, is a concerted process and therefore requires four 

atoms to collide in the correct geometry for reaction. The probability of this is far smaller 

as a consequence of the ordered transition state necessary for a pericyclic reaction which 

is clearly reflected in the magnitude of the A value of 4.14 xlO4  s' 1 with a uncertainty of 

± e 017.

It can be concluded that the Diels-Alder cycloaddition is the rate determining step due to 

the highly ordered concerted transition state that defines the reaction. The small 

magnitude of A is effectively constant for this pericyclic process and consistent with 

reported A values for uncatalysed Diels-Alder reactions. 108 Manipulation of the reactive 

system to achieve a higher value of A would be extremely difficult. Therefore, in order to 

increase the magnitude of the rate constant Jcda a lowering in the energy of the LUMO of 

the iminium ion should be targeted to decrease the magnitude of Ea which, according to 

our findings will accelerate the overall reaction.

This conclusion can be used to explain the need for a p-EWG in active catalysts. The 

(3-EWG further reduces the energy of the LUMO of the iminium ion thus making it more 

active. Explanation of the reactivity of catalysts based on the pyrrolidine scaffold is also 

possible. We demonstrated that pyrrolidine hydrochloride 69 forms iminium ions (for X- 

ray data see Appendix) but is extremely sluggish in catalysing the Diels-Alder reaction 

(<5% 6  h, Table 4.3 entry 1). Proline methyl ester hydrochloride 70 is a significantly

72



Chapter 4________________________________________________________ T J  K Gibbs- PhD Thesis 2008

more active catalyst containing a moderate EWG which is reflected in our catalytic 

observations (62%, 6  h, entry 2). Activity is increased further when a strong P-EWG is 

present such as trifluoromethylpyrrolidine hydrochloridell2.HCl (93%, 6  h).

Entry Catalyst3 Structure Conversion %b exo\endoc

Q
H.l 

H.HCI

O -

69 <5 n.d
H.HCI

7 0  ^ N ^ ^c O g M e  6 2  7 0 :3 0
H.HCI

3  112.HCI CF3 9 3  6 8 :3 2
H.HCI

(a) Reactions were carried out at 25 °C for 6 hours with 10 mol% catalyst in methanol.

(b) Conversion determined by 1H NMR of crude reaction mixture.

(c) exo/endo ratios determined by 1H NMR of crude reaction mixture.

(Table 4.3)
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4.3.10 Diels Alder Reaction with Cinnamaldehyde Derivatives

We had now hypothesised that the energy of the LUMO was responsible for overall 

activity. To allow us to test this for our system we wanted to examine a range of 

cinnamaldehyde derivatives (20 119-121) which would vary the electron density located 

in the LUMO of the dienophile and hence change the energy associated with it.

MeO'

20 119 120 121

The aldehydes were submitted to the standard Diels-Alder reaction with cyclopentadiene 

and catalyst 7 in MeOH for 6  h (Scheme 4.9).

o

v /
H.HCI 

10 mol% 7

MeOH, 25 °C 
6 h

(Scheme 4.9)

CHO

CHO

Entry Aldehyde3 Conversion %a endo/exo

20 86 57:43

119 97 58:42

120 55 60:40

121 0 n.d

(a) Reactions were carried out at 25 °C for 6 hours with 10 mol% catalyst 

in methanol.(b) Conversion determined by 1H NMR of crude reaction mixture.

(Table 4.3)
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Electron deficient aldehyde 119 (Table 4.3 entry 2) preformed best with 97% conversion 

followed by cinnamaldehyde 20 (entry 1) at 8 6 % conversion. Electron rich aldehyde 121 

(ientry 3) gave 55% conversion while aldehyde 120 (entry 4) failed to react.

The usefulness of this study is limited, as the order of reactivity could have been
1 nopredicted beforehand from frontier orbital arguments and the electronics of the 

aldehyde will also effect iminium ion formation as there is a distinct difference in the 

electrophilicity of the respective carbonyl groups. However, what is significant is that 

with a strong electron donating group on the aldehyde 120 no reaction occured. This 

electron donating effect should also make the carbonyl less electrophilic and should 

decrease the rate of iminium ion formation. However, we were able to isolate compound 

128 at ambient temperature from methanol (confirmed by HRMS). We were also able to 

crystallise iminium ion 129 derived from catalyst 112. Catalyst 112 is of similar activity 

to catalyst 7 suggesting that iminium ion formation for catalyst with similar activity is not 

a significant step in the overall catalytic cycle for this substrate.

128

•CF3

I 129

(Figure 4.13)
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4.3 Conclusions
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Isolation of the key iminium ion 122 allowed us to obtain kinetic data of the components 

of the catalytic cycle. From this data we can concluded that the Diels-Alder cycloaddition 

was the RDS of the catalytic cycle for our model system. The magnitude of the rate 

constant kDA is governed by the associated A value. The small magnitude of the A value is 

a consequence of the highly ordered transition state of the concerted Diels-Alder reaction. 

Iminium ion formation was found to have an activation energy of 100 kJ mol- 1  consistent 

with the theoretically calculated value. The hydrolysis of the Diels-Alder iminium 

adducts was found to be extremely rapid and not observable on the NMR timescale.

The conclusions drawn allowed us to rationalise the role of the p-EWG acting to lower 

the energy of the LUMO of the reactive iminium ion. The results could now be 

incorporated in the design of novel catalysts suggesting that increased electron 

withdrawing ability of the P-EWG should afford increased activity.
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Chapter 5: Design and Synthesis of More Active 
Catalysts for the Organocatalysed Diels-Alder Reaction
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5.1 The Aim of the Research

The aim of these synthetic investigations was to prepare a more active variant of 

MacMillans imidazolidinone catalyst 7 by incorporating an additional p-EWG. Upon 

synthesis, catalytic testing would be conducted to establish whether the information 

gained from our mechanistic studies could be successfully applied to increase catalyst 

activity.

5.2 Introduction

MacMillans imidazolidinone catalyst 7 has been extremely successful and efficiently 

catalyses a wide range of transformations. 11 0 Furthermore, other catalysts developed 

within MacMillans group based around a similar architecture catalyse an even wider 

number of transformations. However, widespread industrial use of the methodology has 

not occurred principally due to the high catalyst loadings that are necessary which can 

prove unworkable in large-scale synthesis. Increasing the reactivity of these catalysts 

while maintaining the asymmetric induction reported would therefore be more attractive 

to industry and academia alike.

Having identified the Diels-Alder cycloaddition as the RDS of the catalytic cycle and 

acknowledged the physical reasons for the magnitude of the rate constant, we targeted a 

lowering in the energy of the LUMO of the iminium ion to increase the rate of the 

cycloaddition and therefore the overall catalytic cycle. In order to achieve this LUMO 

energy lowering effect we rationalised that inclusion of an additional P-EWG in the 

scaffold of catalyst 7 could lead to increased reactivity.

H.HCI

7
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The proposed, and widely accepted argument to explain the asymmetry observed in the 

asymmetric Diels-Alder reaction catalysed by 7 is that subtle differences in the steric 

requirements for the £-isomer 132 and Z-isomer 133 of the iminium ion lead to the 

exclusive formation of the E-isomer. This can be visualised when the two isomers of the 

iminium ion are drawn with the benzyl group away form the 7t-system (as the evidence 

from our solid-state studies suggest might be the true conformation (Chapter 4). The 

iminium ion in the Z-conformation (133) has an additional steric interaction with the 

geminal dimethyl group of the catalyst. This steric interaction is absent in the 

£-conformation(132) and therefore it is favoured energetically (.Figure 5.7).

To ensure that this mode of asymmetry is maintained within our modified catalysts, it 

was imperative that we maintained this structural feature by designing catalysts with 

similar spatial coordinates.

Steric clash

E- Isomer 132 Z- Isomer 133

(Figure 5.1)
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5.3 Results and Discussion

5.3.1 Computationally Aided Catalyst Design

Initially, based on experience within the group, we selected a number of catalyst targets 

134-137 that we believed would demonstrate increased activity {Figure 5.2).

Catalyst 134 and 135 contained the trifluoromethyl functionality as the P-EWG which we 

had identified as a good candidate to increase activity. Compounds 136 and 137 were 

identified as good candidates form SAR studies prior to the mechanistic investigation.

Having hypothesised that it was the LUMO energy lowering ability of a catalyst that was 

important for activity (provided the active nitrogen was sufficiently nucleophilic) we saw 

the opportunity to use basic computational modelling to establish whether there was a 

correlation between the energy of the LUMO and catalyst activity.

To achieve this we conducted Hartree-Fock (HF) geometry optimisations on the 

£-isomers of the iminium ions of the catalysts 134-137 with acrolein and then 

subsequently introduced a phenyl group into the plane of the iminium to represent 

cinamaldehyde. We then re-optimised the geometry using HF and it was from this final 

optimisation that we then extracted the energy of the LUMO corresponding to the 

7t-system of the iminium ion. The values obtained could not be treated as absolute values. 

Instead it was the relative values that allowed direct comparison between activity 

determined experimentally and the calculated values of the LUMO energy. This form of 

calculation was also performed on iminium ion 1 2 2  and a pictorial representation of the 

results obtained in these investigations is shown in {Figure 5.2).

.C02Me

C02Me

134 135 136 137

(Figure 5.2)
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(Figure 5.2)

The results of these calculations had to be treated with some caution as it was known that 

HF is an inaccurate method for delocalised systems, such as the 7t-system of the iminium 

ion. This is due to the approximations made about electron correlation in the construction 

of the HF theory. These inaccuracies should be largely consistent for molecule of a 

similar structural class. HF does, however, have the advantage that it allows rapid and 

simple calculation of the LUMO energy which allows many catalysts to be screened in a 

short period of time. Higher levels of theory might provide more accurate calculations but 

the time and financial costs involved would be far greater.

A correlation was found between activity and LUMO energy for a catalyst of similar 

structural class. The correlation did not extend between structural classes. The example 

that illustrates this best is comparison of pyrrolidine hydrochloride 69 and trifluoromethyl 

pyrrolidine hydrochloride 112.HC1. Pyrrolidine hydrochloride 69 is a poor catalyst (<5%, 

6  h) although we have good evidence it formed iminium ions (X-ray). This suggested that 

the iminium ion was not sufficiently activated to facilitate a rapid Diels-Alder 

cycloaddition reaction. The pyrrolidine derived iminium ion had a calculated LUMO 

energy of -2.50 eV (Table 5.1, entry 1) Trifluoromethyl pyrrolidine derived iminium ion 

122 however, was a considerably more active catalyst (93%, 6  h) and contained a p-EWG 

that lowered the energy of the LUMO. The calculated value obtained for 122 is -2.78 eV 

{Table 5.1, entry 2).
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Entry Catalyst Structure Yield % LUMO energy eV

1 69

2 112

3 7

4 137

5 135

Knowing that the simplistic model that we had developed had some credibility we 

calculated the LUMO energy of the iminium ions of our proposed catalysts 137 and 135 

which were -2.72 and -3.24 eV, respectively. The value obtained for the LUMO energy 

of the iminium ion of catalyst 135 was extremely interesting as, according to our 

hypothesis, it should be extremely active. We therefore devoted considerable attention to 

its preparation.

5.3.2 Catalyst Synthesis

Our initial attempt to synthesise the compounds 134-137 was analogous to the method 

described by MacMillan to prepare catalyst 7.111 The procedure involved reacting the 

precursor 138 and the corresponding carbonyl compound in methanol at reflux for 16 h 

with 10 mol% p-TSA as the catalyst.

Q H.HCI

^ V ^ cf3
H.HCI

V x
D ^ " ~ N  
Bn H.HCI

O 1 %^N̂ C 0 2Et

Bn H.HCI

Bn H.HCI

(Table 5.1)

<5%

93%

80%

n.d.

n.d.

-2.50

-2.78

-2.72

-2.72

-3.24
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The reaction of trifluoroacetone 139 with 138 led to the imine 140. To encourage ring 

closure further attempts were conducted at higher temperatures but this led to occurrence 

of side reactions and decomposition.

o /10 mol% p-TSA

MeOH. A, JL __ /
16 h

CF3

138 139 140

(Scheme 5.1)

The reaction of hexafluororacetone trihydrate 141 with 138 also proved unsuccessful with 

the initial mass of starting material recovered. This observation suggested that the 

hexafluoroacetone trihydrate was a poor electrophile. We therefore consulted the 

literature and found examples where the hexafluoroacetone was first dehydrated and 

bubbled through a reaction solution as a gas facilitating rapid and efficient condensation 

reactions. 112

° ^ nh  c

Xr  M U .Brr NHo

V ^ H  0 = y CF3 1?.rr.°J!/!P;T.s. l  ° Y nh c f3 ° Y V cF3
I ~ V p  MeOH, A. 1 J CF3

B n^^NHg 3 16hrs B n ^ ^ N ^ 'c F  Bn H
.3 H2O

138 141 142 135

(Scheme 5.2)

Initially, we bubbled gaseous hexafluoroacaetone through methanol at room temperature 

containing 138 and p -TSA but recovered only starting materials upon work up. Following 

literature precedent we selected DMSO as a solvent for the reaction as it had been 

successfully utilised in similar reactions. 113 Attempts at room temperature yielded only 

starting materials. Conscious that temperature was important for successful reaction we 

repeated the reaction in DMSO at the elevated temperature of 80 °C. In the analysis of the 

resulting mixture we observed a molecular ion at the correct mass for the imine 142 or 

the desired catalyst 135, however, the !H NMR clearly indicated that the isolated spots 

were not pure and further purification proved unsuccessful. Time restrictions ended our 

pursuit of this catalyst.
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< V "h  EV 0 V U -
J  ° = \  X nK

B r T ^ H 2 \  Bn H

138 143 136

(Scheme 5.3)

The reaction of ethyl pyruvate 143 and 138 lead to a complex mixture of products from 

which no compound resembling 136 could be isolated. It was difficult to ascertain the 

fate of the starting materials. Further failed attempts, combined with the work previously 

conducted by Jones" led us to abandon 136 as a target.

The reaction of diethyl oxomalonate 144 with 138 led to similar results {Scheme 5.4).

I Et0 /

I 0 = \  MeOH, A, XT  _
V = 0  16hrs C°2 Et

B r r ^ N H 2 E{Q/  Bn H

138 144 137

(Scheme 5.4)

5.3.3 Catalyst Redesign

Having failed in successfully synthesising the catalysts 134, 135, 136, and 137 we set 

about attempting to introduce an alternative EWG into the MacMillan scaffold in an 

attempt to obtain proof of concept. This would allow us to establish if such modified 

catalysts would have greater activity. If proof of concept was obtained then significant 

synthetic effort would be justified in pursuit of our initial targets.

Analysing the catalysts reported by MacMillan we saw the opportunity to modify catalyst 

145 by introducing benzaldehyde derivatives containing stronger EWGs (catalysts 146 

and 147). We also believed that the additional EWG introduced in catalyst 148 would 

provide a rate enhancement {Figure 5.3).
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y y

145 146

NOo

(Figure 5.3)

147

Mindful of the difficulties encountered with the synthesis of these types of compound we 

also selected other EWGs to hopefully increase the likelihood of a successful synthesis 

(Figure 5.4).

V \_T  ) ~ co‘
s / l l

Me

/x>-CCIa

Bn h

149 150

(Figure 5.4)

The attempts at the synthesis of 148 failed, more than likely due to the crowded nature of 

the ketone. The synthesis of 147 using the conditions of MacMillan led to a complex 

mixture of compounds from which the product could not be identified.

Reacting p-nitrobenzaldeyde 151 with 138 at 80 °C in MeOH yielded the corresponding 

imine 152. To assist in the cyclisation of the amide onto the imine we added HC1 in ether 

as a strong acid to form the corresponding iminium ion 153 {Scheme 5.5). This strategy 

proved unsuccessful, as the only compounds observed were the imine 152 and the initial 

starting aldehyde 151.

152 153 146

(Scheme 5.5)
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Therefore, we attempted to form an iminium ion using protecting group strategies. We 

prepared the Boc 154, Cbz 155 and Bn 156 protected MacMillan precursors {Figure 5.5). 

Reaction of 154 and 155 with a variety of aldehydes led to no reaction in MeOH at 80 °C 

and at elevated temperatures. The most plausible explanation for this is that the reduction 

in nucleophilicity of the protected nitrogen prevented formation of the iminium ion in 

both cases.

154 155 156

(Figure 5.5)

The benzyl protected catalyst 156 however, was still nucleophilic and on reaction with 

p-nitrobenzaldehyde 151 and glyoxylic acid 255 led to protected catalysts 157 (15%) and 

158 (17%) respectively.

/

Brf

157

TV
Bn

158

(Figure 5.6)

To convert 157 to 146 we performed a reduction using 10% Pd/C under an atmosphere of 

H2 {Scheme 5.6). The benzyl protecting group was removed but we also reduced the nitro 

group to the aniline to give compound 159 (as might have been expected) thus replacing 

our desired EWG with and an electron donating group.

H2, 10% Pd/C 

MeOH, 16h, rt

157 159

(Scheme 5.6)
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To prepare catalyst 149 {Figure 5.4) we successfully attempted to deprotect 158 with 

Pd/C and H2 indicating that the deprotection step was feasible. However, we sought to 

form the methyl ester before deprotection. To achieve this we used concentrated H2 SO4  in 

methanol as a catalyst which gave a complex mixture of products. Subsequently, we used 

diazomethane to form the ester which appeared to be good method. Despite our efforts 

catalyst 149 was not isolated although it is our belief that another attempt using 

diazomethane to form the ester followed by deprotection would yield the catalyst. 

Regrettably, time restraints and more encouraging results meant that a final attempt was 

not conducted.

We also reacted the benzyl protected amine 156 with trifluoroacetone, ethyl glyoxylate, 

ethyl pyruvate, dibromoacetic acid, chloral, pentafluorobezaldehyde, benzophenone and 

hexafluoroactetone under MacMillans conditions all without any indication of the desired 

products.

Having succeeded in synthesising and isolating the imine precursor 152 we made a final 

attempt at the preparation of catalyst 146 by refluxing the starting materials in DMSO for 

1 h and then reacted at 120 °C overnight which resulted in a small amount of desired 

catalyst 146 in 6 % yield amidst numerous products.

I 0
0  ' H 10 mol% p-TSA

' H j| DMSO, (A, 1 h)
II / k  120°C, 16 h

Bn NH2 NO?

138 151

(Scheme 5.7)

Bn1

146

The result of this experiment indicated to us that the reaction required large amounts of 

energy in order to proceed. This prompted us to use microwave technology in order to 

deliver sufficient energy to the substrates. Initial success affording cleaner 

transformations using DMSO prompted us to begin to optimise a microwave procedure.

87



Chapter 5 T J K  Gibbs- PhD Thesis 2008

Entry Solvent Temperature SC Time (mins) Yield of 146

1 MeOH 100 30 trace

2 MeOH 120 30 trace

3 DMSO 120 30 12%

4 DMSO 120 90 decomp

5 DMSO 180 30 decomp

6 DMF 1 2 0 30 25%

(Table 5.2)

Our brief optimisation indicated that MeOH was a poor solvent. The optimal temperature 

was found to be 120 °C as higher temperatures gave greater quantities of side products. 

DMF emerged as the solvent of choice affording a clean reaction mixture with only 

product, starting materials and imine present by JH NMR. Further optimisation was not 

conducted in the interest of time.

88



Chapter 5. T J K  Gibbs- PhD Thesis 2008

5.3.4 Catalyst Performance

Having synthesised catalyst 146 as a single diastereoisomer, we prepared the HC1 salt and 

examined it in the standard Diels-Alder reaction between cinnamaldehyde and 

cyclopentadiene with a range of catalyst loadings.

Catalyst loading .
Entry Solvent „ Time (h) Conversion % endo:exo

(mol %)

1 MeOH 10 6 99 65:35

2 MeOH 10 3 99 65:35

3 MeOH 5 3 82 65:35

4 MeOH 2.5 3 56 65:35

5 MeOH 1 3 23 67:33

6
MeOH/H20

19:1
10 3 78 68:32

(a) Catalyst 146 used as its HCI salt at 25 QC.

(b) Conversion determined by 'H NMR of crude reaction mixture.

(c) exo\endo ratios determined by 1H NMR of crude reaction mixture.

(Table 5.3)

MeOH proved to accelerate the reaction compared to Me0 H/H2 0 . It is also noteworthy 

that the endo/exo ratio observed for our catalysts was 2 : 1  whereas it was 1 : 1  for 

MacMillans original catalyst 7. The conversion of 82% after 3 hours at 5 mol% loading is 

unprecedented and demonstrates superior activity to MacMillan catalyst 7 (99%, 24 h, 5 

mol%). This result delighted us as we had only introduced a relatively weak EWG into 

the MacMillan scaffold. This result provided considerable encouragement form which to 

pursue some of the synthetically more challenging catalysts.
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5.3.5 Testing the Predictive Model

The experiments demonstrated that catalyst 146 (82%, 3 h, 5 mol%) was indeed 

significantly more active than MacMillan’s imidazolidinone 7 (89%, 6  h, 10 mol%) 

validating our design concept. The level of activity present at 5 mol% catalyst loading 

(82%, 3h) was sufficient to be a practical alternative to using higher loadings.

Synthesising an active catalyst gave us a chance to test our simplistic computational 

LUMO energy model. Pleasingly, the energy of the LUMO corresponding to the 7t* 

orbital of the iminium ion of 146 was -2.86 eV compared to that of the original catalyst 7 

-2.72 eV. This is consistent with our hypothesis that the lower the energy level of the 

LUMO energy the more active the catalyst. The LUMO energy value obtained for the 

iminium ion of catalyst 146 was still significantly higher than that of proposed catalyst 

135, further highlighting 135 as a desirable catalyst to synthesise.

5.3.6 Asymmetric Induction

To establish the relative conformation of the catalyst 146 we used NOESY NMR. 

Analysis of the spectrum displayed an enhancement between Ha of the ring junction and 

Hb in the ortho-position of the nitrophenyl ring indicating that they are close in space 

(.Figure 5.7). This observation is most consistent with that of the catalyst with the 

frans-conformation with respect to the benzyl and nitro phenyl groups.
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ppm

H,

H NOESY 
enhancement

’H N O ESY  
enhancement

-10

11

-12

12 11 10 9 8 7 6 S 4 3 2 1 ppm

(Figure 5 .7 )

To determine whether catalyst 146 had led to any asymmetric induction in the Diels- 

Alder cycloaddition reaction, we formed the corresponding 2,4-DNP derivatives114 (160) 

{Scheme 5.8). Subsequent analysis of the derivatives by chiral phase HPLC was 

conducted in accordance to the methods developed by Cavill. 115

CHO

Ph

HoN

H
NOj

+ isomer EtOH, rt, 3h 
86% 160 NO;

(Scheme 5.8)
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We found that the enantiomeric excess present was an excellent 87% for the 2R,3R 

endo-isomer 25-R and a disappointing 26% for the 2R,3R exo-isomer 24-/?.

exo-2R,3R exo-2S,3S encfo-2R,3R endo-2S.3S
24-R 24-S 25-R 25-S

(Figure 5 .8 )

Knowing the relative £ra«s-stereochemistry of the catalyst allowed us to develop a 

tentative transition state model to assist in explaining the experimental observations. Our 

first assumption was that exchanging the geminal dimethyl group in catalyst 7 for a 

nitrophenyl and a hydrogen in catalyst 146 would lead to loss of control in iminium ion 

geometry.

Single E-iminium geometry 
for catalyst 7 Poor iminium ion control for catalyst 146 

(Figure 5 .9 )

Provided that both E  and the Z-isomers of the iminium ion were present in solution there 

were eight transition-states that could lead to a product (.Figure 5.10). The Si and Re 

labels refer to the face of the dienophile that is approached by the diene in order to 

provide the Diels-Alder cycloaddition products 24-5/25-5 and 24-R/25-R respectively.
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NO;

M  O

NO; NO;

M o

NO;

£-isomer-S/-enofo
161

£-isomer- Si-exo 
162

E-isomer-fle-exo
163

E-isomer- Re-endo 
164

NO; /  > ^ n o 2 M r  r - n  /  y - N o 2 m  r~V /  Y ~ n o 2 \JT  W ®/1..v /

Z-isomer-Sf-exo
165

Z-lsomer-Si-endo
166

ZSsovner- Re-endo 
167

Z-isomer-Ee-exo
168

(Figure 5.10)

Without evidence to suggest the position of the benzyl arm in the reactive conformation 

of the iminium ion, it is difficult to discuss the mode of stereo-induction with any 

accuracy. The e.e, observed for the endo Diels-Alder product can be explained: in the 

Si-endo transition-states 161 and 166 the approach of the diene is hindered. This 

hindrance is not present in the Re-endo transition-states 164 and 167 promoting reaction 

at the Re-face of the iminium ion for endo-approach of the diene. Therefore the 25-R 

Diels-Alder product is favoured consistent with our observation.

The selectivity observed for the exo-Diels-Alder product was much smaller and more 

difficult to rationalise. Transition-states 165 and 162 should be the most energetically 

favoured as approach of the diene is less hindered compared to 163 and 168. The 

observation of this slight stereo enhancement indicates there must be a small energy 

difference between 165 and 162 compared to 163 and 168. The origin of this energy 

difference is difficult to rationalise using basic modelling due to the large number of 

variables. The use of computational transition state modelling could provide a more 

detailed analysis that might explain the observed sense of asymmetric induction for the 

exo product 24-R.
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Interested by the levels of asymmetric induction observed with catalyst 146 we 

considered whether (/?)-2-(trifluoromethyl)pyrrolidine 169 would yield enatioenriched 

products {Figure 5.11). We obtained commercially available 169 and prepared the 

corresponding HC1 salt prior to utilising it as a catalyst in the reaction of cinnamaldehyde 

and cyclopentadiene at 25 °C in methanol.

^ " ' 0F3
H.HCI

169.HCI

(Figure 5.11)

The Diels-Alder product was purified and a portion converted to the 2,4 DNP derivative 

160 for analysis by chiral phase HPLC. We found a pleasing 84 % e.e. for the minor endo 

25 -R isomer and 4 % e.e. for the major exo 24-R product. Construction of a simple 

transition state model provides an explanation of the enantioinduction observed. Previous 

X-ray and spectroscopic data indicated that only the Zs-isomer was present in solution, 

therefore only four transition-states need be considered.

CF- CF-

170 171 172

(Figure 5.12)

173

The steric differentiation for the transitions states with exo approach of the diene to the Si 

and the Re face 171 and 172 is minimal. Transition states 171 and 172 should therefore 

be of similar energy, consequently resulting in a low e.e. There is a larger steric 

differentiation between the Si and Re faces with endo attack of the diene. In the Si-endo 

transition state 170 the approach of the diene is hindered by the trifluoromethyl group. 

This hindrance is not present in the Re-endo transition state 173. The additional steric 

hindrance in 170 raises its energy and therefore disfavours formation of the endo 2S,3S 

Diels-Alder product leading to the favoured endo 2R, 3R product 25-R.
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5.4 Conclusions

We have demonstrated that the inclusion of an additional p-EW G within the scaffold of 

the MacMillan imidazolidinone will increase catalyst activity consistent with our 

hypothesis. We failed to synthesise catalysts 134, 135, 136, or 137 which are 

architecturally similar to MacMillan’s imidazolidinone 7. However, the catalyst 146 that 

we synthesised afforded good 87% e.e. for the 25-R Diels-Alder adduct. Unfortunately, 

the e.e. for the 24-R isomer, which was the major product, was found to be 26%. With the 

experimental observations obtained we were able to construct a transition state model to 

explain the observed sense of induction. Straightforward arguments could be invoked to 

explain the e.e, of the endo isomer 25-R whereas the sense of asymmetric induction for 

the exo isomer 24-R was more difficult to explain.

The calculated energy of the reactive LUMO of 146 is significantly lower than the 

calculated value for the corresponding LUMO energy of the iminium ion derived from 

MacMillan’s catalyst 7. This provides further evidence that lowering in the LUMO 

energy will increase activity provided a nucleophilic amine is present in the scaffold. This 

evidence also provides credibility to our simplistic model and as a consequence can be 

used with more confidence.

To achieve a highly active asymmetric catalyst compounds 134, 135, 136 and 137 should 

be targeted. The use of microwave technology could prove crucial in the synthesis of 

these molecules as it appears that large amounts of energy are needed to facilitate 

efficient cyclodehydration.
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Chapter 6: Development of a Novel Catalytic 
Architecture for the Secondary Amine Catalysed 

Diels-Alder Reaction of Enones
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6.1 The Aims of the Research

The aim of this study was to develop a piperazindione scaffold as a catalytic architecture, 

suitable upon modification, to facilitate the asymmetric organocatalysed Diels-Alder 

reactions of a, p-unsaturated ketones and aldehydes. We sought to synthesise a series of 

simple catalysts based around the piperazindione structure to obtain proof of concept by 

demonstrating their ability to catalyse Diels-Alder reactions involving aldehydes and 

ketones. Once achieved, synthesis of more challenging chiral variants would begin.

6.2 Introduction

To date, there have been a number of reports of organocatalysed Diels-Alder reaction 

with a,p~unsaturated aldehydes with excellent yields and selectivity . 1 1 6  However, this 

success has not been mirrored with more challenging a,p-unsaturated ketone substrates 

of which there is only one report. 117

The group of MacMillan were the pioneers in this challenging area. Their initial 

investigations indicated that catalyst 7, which had been successful for the asymmetric 

Diels-Alder reaction of a,p-unsaturated aldehydes, was not effective with a,P- 

unsaturated ketone substrates. Further investigations highlighted catalyst 9 with HCIO4  as 

the co-acid was the optimal catalyst-co-acid combination for the asymmetric Diels-Alder 

reactions of a,P-unsaturated ketones with cyclopentadiene (Table 6.1).
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(Scheme 6.1)

Entry Catalyst R1

1 7 Bn

2 8 Bn

3 177 Ph

4 145 Bn

5 9 Bn

R2 (R3) Time (h) 

Me (Me) 48

f-Bu (H) 48

Ph (H) 22

Ph(H) 42

5-Me-Furyl (H) 22

% Yield exo:endo e.e. %

20 7:1 0

27 9:1 0

88 21:1 47

83 23:1 82

89 25:1 90

(Table 6.1)

It is clear from the results (Table 6.1) that the mode of asymmetric induction for reactions 

involving ketone substrates is different from that of aldehydes. The catalysts that 

provided the highest levels of enantioselectivity were 145 and 9 which both contain two 

sterically shielding groups m-across the catalyst scaffold.

.HCIO,

145

.HCIO,
Me

To explain the sense of asymmetric induction observed, MacMillan proposed a model 

which was supported by MM3 calculations. The structures obtained from these 

calculations are shown below {Figure 6.1).
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Ph

Me Me

Ph

Me

c/'s-lminium 179 £  _ h or Me /rans-lminium 178

178 179

§  backed #  -M e S/taceexposed
•  = H ^e-face exposed •  = H SMace exposed

(Figure 6 .1 )

Importantly, the model provided an explanation as to why methyl ketones provided poor 

enantioselectivities. The model stated that both the cis and trans iminium ions 179 and 

178 were accessible, but the ds-iminium ion 179 was favoured energetically. With 

methyl ketone substrates one face of the C=C bond was exposed for the cis and trans 

iminium ions 179 and 178 respectively. For the ds-iminium ion 179 it is the 57-face and 

for the tram iminium 178 the /?e-face. Therefore low levels of asymmetric induction are 

observed. With ethyl ketone substrates the cis and trans-iminium ions 179 and 178 are 

also accessible. Crucially however, both faces of the rrans-iminium ion 178 are blocked. 

The 57-face of the iminium ion 178 is blocked by the bulky furfural group and the Re-face 

by the terminal methyl group of the ethyl ketone substrate (Figure 6.1). The 5/-face of 

ds-iminium ion 179 was exposed (analogous the methyl ketone substrates) and therefore 

reaction at this face predominates leading to the observed sense of asymmetric induction.
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Further evidence to support the proposed mode of induction was sought through 

application of catalyst 9 with a series of cyclic a,p-unsaturated ketones 180 (Table 6.2).

20 mol% 
catalyst 9

(Scheme 6 .2 )

Entry n Time (h) % Yield exo.endo e.e. %

1 0 12 81 15:1 48

2 1 17 81 12:1 63

3 2 28 85 18:1 90

4 3 72 83 6:1 91

5 10 72 88 5:1 93

(Table 6.2)

The observed increase in enantioselectivity with increasing ring size (Table 6.2 entries 4 

and 5) was consistent with the proposed model. The large ring cyclic dieneophiles (n =3, 

10, entries 4 and 5) possess a higher degree of rotational freedom about the N=C-alkyl 

bond of the iminium ion and therefore behave in a similar manner to the ethyl ketones 

with good Re-face coverage. However, dieneophiles with the smaller rings (n = 0, 1, 

entries 1 and 2) result in moderate enantioselectivities as a consequence of the restricted 

rotational freedom around the N=C-alkyl bond preventing effective coverage of the Re- 

face. The substrate specificity was therefore a consequence of the catalytic architecture of 

9. No conjugate additions to a,P-unsaturated ketones using the imidazolidinone 

architecture have been described to date. These observations revealed the opportunity to 

develop a universal catalyst that could tolerate both a,P-unsaturated aldehydes and 

ketones as substrates.
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6.2.1 Catalyst Design

Having rationalised that an active asymmetric catalyst for Diels-Alder reaction with 

a,p-unsaturated ketones required the following elements: a nucleophilic nitrogen, a p- 

EWG and a chiral scaffold that could selectively hinder attack at one diasterotopic face of 

the iminium ion we proposed catalyst 185 as a novel candidate.

Piperidine is known to have a higher nucleophilicity than acyclic secondary amines. The 

piperazindione 185 should have a relatively flat geometry caused by the geometrically 

planar amides. This flattening of the ring should further expose the lone pair of the 

nitrogen and thus further increase the nucleophilicity. The scaffold of 185 also contains 

two P-EWG’s which could facilitate a further increase in activity. Finally, the fact that 

the catalyst was C2 symmetric dictates that independent of the geometry of the iminium 

ion, the same diastereotopic face should be shielded leading subsequent asymmetric 

reactions. For example, the iminium ions derived from 185 and cyclohexanone are 

identical and hence the stereochemical course of subsquent reactions would be the same 

{Figure 6.2).

Ph Ph
185

188 188

(Figure 6.2)
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6.3 Results and Discussion

6.3.1 Preparation of Model Catalysts

Aware that synthesis of catalyst 185 may not be straightforward we set about synthesising 

a range of catalysts based around the piperazindione scaffold that would be synthetically 

more accessible to allow us to asses the feasibility of catalysts based around this scaffold.

189 190 191 192 193

(Figure 6.3)

Piperazin-2-one 189 was obtained commercially. Compounds 190 and 191 were

synthesised according to the procedure of Mancilla by reaction of glycine ethyl ester

hydrochloride 186 and phenylalanine ethyl ester hydrochloride 187 respectively with 2-

bromoacetamide 194 {Scheme 6.3).118 
o

n h2 hci k h c o 3
EtO'

R

186 R = H
187 R = Bn

190 R = H 75%
191 R = Bn 11%

EtO

-EtOH

(Scheme 6.3)

Compounds 192 and 193 were synthesised in an analogous manner by reacting 

a-bromoester 195 with glycinamide 196 or phenylalaninamide 138 {Scheme 6.4).
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KHCO-

KHCO-

Ph Ph

138 195 193

(Scheme 6.4)

Compound 193 was isolated in a respectable 78% yield while catalyst 192 was isolated in 

29% along with 23% of the overalkylated byproduct 197. Attempts to improve the yield 

using toluene as the solvent failed to provide any of catalyst 192 while a reductive 

amination protocol utilising ethyl glyoxylate also proved unsuccessful. Despite the low 

yield, sufficient quantities of 192 could be obtained using this method to pursue our 

studies.

6.3.2 Piperazindiones as Catalysts for Diels-Alder Reaction with a,p-aldehydes

Having obtained the catalysts we set about examining their activity with our standard 

Diels-Alder cycloaddition. Catalysts 189, 190-193 were converted to their hydrochloride 

salts by adding the free amines to 5 equivalents of HC1 in ether. The catalysts were 

reacted at 1 0  mol% catalyst loading with (Zs)-cinnamaldehyde 20 and cyclopentadiene 19 

in MeOH and Me0 H/H2 0  (19:1) as the solvents to gauge catalyst activity (Table 6.3).

O  + j f ^ H  * z t j p h
Ph^ 'h

19

Ph'

20 24 25

(i) Catalyst (10 mol%), solvent, 25 °C. (ii) TFA, CHCI3, H20

(Scheme 6.5)
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Entry Catalyst3 Time (h) Solvent Conversion %

1 191. HCI 6 MeOH 38

Me0H/H20
2 191. HCI 6 18

19:11

3 192.HCI 6 MeOH 15

4 192. HCI 24 MeOH 32

Me0H/H20
5 192. HCI 6 41

19:11

Me0H/H20
6 192. HCI 24 54

19:11

Me0H/H20
7 192. HCI 24 69

19:11

8 193.HCI 6 MeOH 44

Me0H/H20
9 193.HCI 6 22

19:11

10 193.HCI 24 MeOH 62

(a) catalyst used at 10 mol% loading as the HCI salt in the stated solvent at 25 °C with 2.5 

equivalents 19 (b) conversion determined by ‘H NMR o f the crude reaction mixture (c) reaction 

conducted at 20 mol% loading with 5 equivalents o f 19.

{Table 6.3)

Catalyst 189.HC1 and 190.HC1 proved inactive for the transformation with no reaction 

occurring after 6  h. This somewhat surprising result may be explained by the limited 

solubility of these catalysts in the reaction medium. Catalyst 191.HCI displayed moderate 

activity (38 %, Table 6.3, entry 7) in MeOH and low activity in Me0 H/H2 0  (19:1) (18%, 

Table 6.3, entry 2). Catalysts 192.HC1 and 193.HC1 which both contain a methyl amide 

performed better. The optimal solvent for 192.HC1 was Me0 H/H2 0  (19:1) leading to 

modest conversion (54%, Table 6.3, entry 6) while for catalyst 193.HC1 the optimal 

solvent was MeOH (44%, Table 6.3, entry 8).
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Examining the literature it was evident that there was no single co-acid that was efficient 

with all catalysts or indeed in every transformation. Therefore, we tested catalyst 192 

with a range of co-acids in the standard Diels-Alder reaction with (£)-cinnamaldehyde 20 

and cyclopentadiene 19 conducted in MeOH/tkO (19:1) (Table 6.4).

Entry3 Co-acid Conversion%b

1 HCI 41

2 HCI04 22

3 TFA 33

4 TCA 25

5 HPF6 4

6 MsOH 50

7 BzOH 0

(a) catalyst used at 10 mol% loading as stated salt in M e0H /H 20  (19:1) for 

6 h at 25 °C with 2.5 equivalents 19 (b) conversion determined by 'H NMR  

of the crude reaction mixtures

(Table 6.4)

The study found that HCI and MsOH were the optimal co-acids for the standard Diels- 

Alder reaction {entry 1 and 6). Consistent with previous findings BzOH and HPF6 were 

poor co-acids for the reaction . 1 1 9 TFA, TCA and HCIO4  all provided moderate yields for 

the reaction {entries 2,3 and 4). Given the similar activities of MsOH and HCI as co­

acids, HCI was chosen as it allowed the convenient use of the preformed HCI salts of 

catalysts in the reactions.

105



Chapter 6. T J  K Gibbs- PhD Thesis 2008

6.3.3 X-Ray Study

A key feature in our design of catalyst 185 was the increased nucleophilicity of the 

nitrogen, facilitated by the flat geometry of the ring. To investigate the extent of this 

effect we attempted to form crystals of the iminium ions derived from the model catalyst 

192 to allow further insight.

5 mns, rt 
72%

192 20

(Scheme 6 .6 )

(Figure 6.4.)

We formed the iminium ion 125 by reaction of 192 with cinnamaldehyde 20 and HPF6 

cleanly in 72% yield {Scheme 6.6). Crystals suitable for X-ray crystallography were 

obtained by evaporation from CH3CN. The crystal structure confirmed our hypothesis 

that the piperazindione ring would have a high degree of planarity and hence an enhanced 

nucleophilicity {Figure 6.4).

6.3.4 Diels-Alder Reactions with a,(3-Unsaturated Ketones

Our initial aim was to develop a reaction that could be used as a benchmark to aid in the 

development of future catalysts for this class of transformation. We chose the literature 

reaction of cyclohexenone 198 and cyclopentadiene 19 to probe the reactivity of our 

catalysts {Scheme 6.7).120
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Q
20 mol% 
catalyst

H20, 4 °C

198 19 181

(Scheme 6.7)

Attempts using catalysts 112, 70, 7, and 91 all failed to provide any indication of product 

181. The product 181 was isolated however, in 1.4% yield from the Br0nsted acid 

catalysed reaction utilising 20 mol% HCI over a 4 day period.

Me
J. O

H.HCI

H.HCI '  H.HOI '  / ' " K ’.HCl' "

Ph
112.HCI 70 7 91

^ C F 3 ^V ^C 02Me ^  X

We then examined the reaction of 4-hexen-3-one 175 with cyclopentadiene 19 utilising 

MacMillans catalyst 9 .HCIO4 . Performing this reaction and isolating the product allowed 

us to develop a method for the determination of the conversion of the reaction by analysis 

of the ]H NMR of the crude reaction mixture. The NMR spectra of 175 (Figure 6.5) and 

176 (Figure 6.6) display diagnostic peaks at 6.85 ppm for 175 and 5.83 ppm for 176 to 

allow for measurement of conversion.

O 20 mol% catalyst
MeoM e ^ ^ E t  H20 , 0 °G, 24h

175 19 176

(Scheme 6.8)
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Et

Me H

| i i r— i | r i . i | , i i . | , i . i |

7 . 0  6 . 5  6 . 0  p p m

jJLi Jl
i  ■Tr̂  ' i  - r̂ -v^ ,  f i 11 ■ 1 i 1 11 ■ i 1 11 ■ i 1 ■ 11 i  i 1   r - ■ 1 ■ i ■ ■ 1 1 i 1 ■ ■ 1 i • ■ • • i

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

n«r
(Figure 6.5)

A .

7.5 7.0 6.5 6.0 5.5 4.5 4.05.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm
es Ico Io o> lir/ IM”

(Figure 6.6)

We then submitted our piperazindione catalyst 192.HC1 and 193.HC1 to the reaction 

conditions developed by MacMillan to discover whether our catalysts were active with 

ketone dienophiles. To our delight we obtained conversions of 21 and 26% for the 

transformation with catalysts 192.HC1 and 193.HC1 respectively (20 mol%, H20 , 24h)
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clearly demonstrating the ability of piperazin-2,6-diones to catalyse the organocatalysed 

Diels-Alder reaction with ketone dienophiles.

6.3.5 Development of an Asymmetric Piperazin-2,6-dione

Knowing that the catalysts based around the piperazin-2,6-dione scaffold were active for 

the reaction of ketone dienophiles in the Diels-Alder reaction we set about synthesising 

catalyst 185 as a chiral variant. Our first attempt was to perform a reported Ugi reaction 

that had been utilised to construct similar compounds (Scheme 6.9). Ugi had reported a 

one-pot synthesis of related non symmetrical compounds, however, the

diastereoselectivity of these reactions was not discussed within the paper. 121

Ph

Ph

H H2N

200

OH

201

Ph

HN

PhPh
202 203

Ph.

0̂  ,N ,
Ph"

N 
H

Ph Ph
185

Ph

HN

Ph N. ,̂Ph

204

+ MeOH

OMe

Ph Ph 

205

(Scheme 6.9)

The procedure involved formation of iminium ion 202 from reaction of 

phenylacetaldehyde 200 with L-phenylalanine 201. The iminium ion 202 can undergo 

attack from the isocyanide 203 followed by intramolecular attack of the carboxylic acid 

to form cyclic intermediate 204. Hydrolysis of the intermediate with methanol leads to 

the acyclic precursor 205 which upon cyclisation with loss of methanol gives compound 

185, preferably with the desired fra/w-stereochemistry. Unfortunately, the reaction 

provided a complex mixture of compounds from which the desired product was not
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isolated. This fact, coupled with the rancid stench of compound 203 led us to abandon 

this method as a route to 185.

Our second approach was to modify the preparation that we had used to synthesise 

compounds 192 and 193. To begin the synthesis we prepared bromo-ester 208 from keto- 

ester 206 and NBS via isolated intermediate 207 in 82% overall yield {Scheme 6.10).122

The bromo-ester 208 was initially reacted with 138 in CH3CN. This led to ethyl 

cinnamate 209 as the major isolated product via an elimination reaction {Scheme 6.11). 

The reaction yielded other unidentifiable spots by TLC whose spectroscopic data was not 

consistent with the desired product.

The reaction was repeated in toluene which allowed isolation of a compound whose 

analytical data was consistent with that of the diasteriomeric uncyclised compound 210, 

determined from *H, COSY and HSQC NMR spectra. However, full characterisation was 

not possible with the available data and without further purification. Time constraints 

ended our synthetic efforts at compound 185.

o o
EtOH/NaOEtEtOH/NaOEt, 

1 h, rt

206 207 208

(Scheme 6.10)

O O
KHCO-

208 209

(Scheme 6.11)

O O

210

(Figure 6.7)
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Future attempts at the preparation of catalyst 185 could use the work of MacMillan who 

has reported compound 211 as a catalyst for the Diels-Alder cycloaddition.123

a o W *
% h  ^ P h  

211
(Figure 6.8)

Adaptation of this methodology should allow for the synthesis of 185 with the desired 

trans- stereochemistry {Scheme 6.12). Evaluation of 185 as an asymmetric catalyst for the 

Diels-Alder reaction of a,p-unsaturated ketones and other iminium ion catalysed 

reactions could then be conducted.

u u
J L  .OTf HN. _

EtO N
EtO'

Ph

I H

Ph
212 138

Ph Ph 

210 185

(Scheme 6.12)

6.4 Conclusions

The work to date has demonstrated that catalysts based on the piperazin-2,6-dione 

scaffold as their HCI salts can be effectively deployed to accelerate the Diels-Alder 

reaction of a,(3-unsaturated aldehydes and ketones. We have developed a method for the 

rapid determination of catalyst activity based around conversions determined from the *H 

NMR spectrum of the crude reaction mixture. However, this method has yet to be fully 

validated. Structural studies on the iminium ion derived form catalyst 192 indicate that 

these cyclic catalysts have the desired flat geometry designed to increase the 

nucleophilicity of the active nitrogen. The synthesis of an asymmetric variant has to date 

proved elusive
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Chapter 7: Investigations into an Organocatalytic 
Dynamic Resolution Procedure

112



Chapter 7____________________

7.1 The Aims of the Study

T J K  Gibbs- PhD Thesis 2008

We sought to demonstrate the reversibility of an organocatalysed Michael addition 

reaction with a view to the development of an organocatalysed chiral dynamic resolution 

procedure.

7.2 Introduction

The notion of chiral dynamic resolution is an extremely attractive concept for organic 

synthesis. It allows for the installation of a racemic functionality early within a synthesis 

followed by chiral resolution in the final stages. With consideration of the complex and 

synthetically challenging compounds that are frequently targets in modem chemistry, 

development of such methods would provide a powerful alternative tool to aid the 

efficient synthesis of optically active compounds.

asymetric
catalyst

(Scheme 7.1)

In order to afford dynamic chiral resolution, an asymmetric reagent or catalyst is 

required. Catalytic dynamic resolution is of course the more attractive. The search for a 

chiral resolution procedure should then begin with a search for an asymmetric 

transformation facilitated by a catalyst which could be reversible under the reaction 

conditions. Examination of the literature suggested that the Michael addition reaction 

would be a good candidate.

The reversibility of the Michael addition reaction is well documented.124 There are 

examples of reversibility where cleavage of C-C,125 C-N,126 C-O127 and C-S128 bonds 

have occurred in a retro-Michael fashion. An example of this is with the naturally 

occurring alkaloid myrtine 215 which readily undergoes epimerisation under acidic or 

basic conditions via intermediate 216 to yield a 1:1 mixture of myrtine 215 and
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epimyrtine 217.129 The proposed mechanism of this epimerisation was a retro-Michael 

reaction followed by a non selective Michael addition.

H H H

215 216 217

(Scheme 7.2)

A further example of the facility of these processes is the enzyme catalysed dynamic 

resolution of oxazole 218 which is believed to undergo a retro-Michael reaction to give 

219 followed by a selective Michael addition to give 220 and finally hydrolysis to give 

221.130

o oX X,. _ _ . u . . . HCT^.Lipase, Buffer e Hydrolysis e

N > = N
218 Ar' 219 Ar' 220 Ar 221

Up to 90% e.e. 
Up to 89% yield

(Scheme 7.3)

Having examined the literature we rationalised that this type of process could be achieved 

utilising asymmetric organocatalysed Michael additions. We therefore set about finding a 

procedure that we could adapt to investigate the possibilities of organocatalysed dynamic 

resolution.

Within the field of organocatalysis Ogilvie began to develop a chiral dynamic resolution
n i

for the asymmetric Diels-Alder reaction catalysed by hydrazide 21 (Scheme 7.4).
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20 mol%

(Scheme 7.4)

Within his report Ogilvie stated that the iminium ion catalysed Diels-Alder reaction was 

reversible. He also concluded that the forward Diels-Alder reaction was catalysed by the 

hydrazide 21 while the retro-Diels-Alder reaction is primarily catalysed by the TfOH co­

acid. Ogilvie demonstrated that on adding 21 to a racemic mixture of 24 and 25 under the 

standard reaction conditions for 48h a small increase in the e.e. was observed. Despite his 

initial success Ogilvie did not fully exploit this observation to develop an efficient 

dynamic resolution procedure, primarily due to the sluggish kinetics encountered for the 

reversible process.

We sought to obtain a proof of concept for a dynamic resolution procedure with an 

organocatalysed Michael addition reaction by demonstrating the reversibility of another 

process. Once this was achieved we could tune the reaction conditions to obtain a 

practical dynamic resolution procedure.

Our attention was drawn to the work of Jdrgensen who had described asymmetric 

organocatalytic C-C bond forming Michael additions of nitroalkanes,132 p-keto esters,133 

1,3-dicarbonyls134 and p-keto-sulphones135 to a,P-unsaturated carbonyl compounds using 

imidazolidine based catalysts 10 and 222.

HN—N

222

The mode of asymmetric induction of these catalysts was rationalised by comparing the 

calculated energy for the various iminium ion intermediates 223-226.16 PM3 semi
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empirical calculations suggested that the rrans-iminium ions 224 and 226 were 

considerably higher in energy (>3 kcal/mol) than 223 and 225 due to unfavourable steric 

interactions. Iminium ions 223 and 225 were of similar energy although 223 was slightly 

favoured.

223

/
•N

225

224

/

226

(Figure 7.1)

Constructing a model of iminium ion 223 demonstrates that the Re-face of the iminium 

ion intermediate was blocked by the benzyl group of the catalyst and that the Sz-face was 

more exposed to nucleophilic attack (Figure 7.2). The proposed theoretical model was 

consistent with the observed asymmetric induction of the products determined by X-ray 

crystallography.

sM ace  open  
for attack

(Figure 7.2)

In particular, we were attracted by the Michael addition of nitroalkanes to a,P- 

unsaturated ketones principally due to the formation of the a C-C bond and the numerous
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subsequent elaborations possible with the nitro group. Catalyst 10 took the reaction to 

100% conversion with 79% e.e. over a period of 240 h with 20 mol% catalyst loading. 

The reaction times for a number of the reported transformations were extremely long (up 

to 300 h) to achieve modest yields. Therefore, we chose a system that was comparatively 

rapid to allow us to obtain our proof of concept {Scheme 7.4).

The catalytic cycle for this transformation begins with condensation of the secondary 

amine with the enone 227 to generate the iminium ion 230 {Scheme 7.5). The Michael 

acceptor is now sufficiently activated for attack by the nucleophile. In this case, the 

deprotonated nitropropane 228 reacts. Upon attack of the nucleophile, the enamine 232 is 

formed. The catalytic cycle is then completed by hydrolysis of the enamine to yield the 

product 229 and regenerate the catalyst.

o

79% e.e.

(Scheme 7.4)

O O

(Scheme 7.5)
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The proposed mechanism for the reversible Michael addition would begin by iminium 

ion formation by condensation of the secondary amine catalyst with the carbonyl of 

Michael adduct 229. The resulting iminium would then form the enamine 232. Donation 

of the lone pair of the nitrogen to form an iminium ion would displace electrons that in 

turn would displace the nitropropane anion 231 to generate the activated Michael 

acceptor 230. The iminium ion could then be hydrolysed or undergo a Michael addition 

to reform 229 {Scheme 7.6).

(Scheme7.6)

7.2.1 Experimental Design

In order to demonstrate the potential for dynamic resolution we designed three 

experiments that would give us proof of concept, or at least demonstrate the reversibility 

of the organocatalysed Michael addition.

Experiment I

The first and the most attractive would be to take a racemic Michael addition product 

from an organocatalysed reaction and submit this product to the optimal literature 

conditions for the asymmetric organocatalytic procedure in the presence of a chiral 

catalyst such as 10 {Scheme 7.7).

Rk©„Ft2N

N022 20 mol% 10

Racemic Via 230 

(Scheme 7.7)

Enantioenriched
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The observation of an increased e.e. in the Michael addition product would clearly 

indicate that intermediate 230 must have been formed with the reaction.

Experiment II

Another experiment very similar to experiment II, but less desirable, would be to subject 

an enantioenriched Michael addition adduct to an achiral catalyst under optimal reaction 

conditions and detect a decrease in the observed e.e. of the Michael adduct. As with 

experiment I this would clearly indicate that the intermediate iminium ion 230 must have 

been formed under the reaction conditions.

Experiment III

The third experiment would be to take the product of the Michael addition of a 

nucleophile and submit it to reaction conditions used for introducing an alternative 

nucleophile (Scheme 7.8). Detection of 234 would strongly indicate that the reaction was 

reversible as direct substitution would be unlikely.

7.2.2 Selection of Catalyst for the Study

Our preferred choice of asymmetric catalyst was the imidazolidine 10. In order to begin 

the research we had to prepare 10 which proved more difficult than expected. Preparation 

of 235 was straightforward and consistent with the literature. However, the cyclisation to 

afford 10 proved difficult and time consuming with many attempts conducted. It was 

found, however, that the glyoxylic acid starting material was the problem and on 

purchase of a fresh batch the synthesis was completed (Scheme 7.9).

234

(Scheme7.8)

119



Chapter 7_________________________________________________________ TV K Gibbs- PhD Thesis 2008

236 138 235 10

(i) NH2Me(5 eq) in EtOH,16 h,rt 89%.(ii) LiAIH4 (10 eq), THF, 16 h, reflux, 25%. (iii) CH0C02H, CH2CI2, 16 h, rt, 62%.

(Scheme7.9)

We also required an achiral catalyst for Experiments I I  and I I I  and therefore we 

proposed to use hydrazide catalyst 91 previously developed in the group as it was known 

to catalyse Michael addition reactions. However, 91 proved inactive for the reaction of 

nitroalkanes with enones as the HC1 salt and the free base. We also attempted using the 

MacMillan catalyst 7 to subsequently allow for preparation of an achiral variant but this 

also proved inactive. This may be for two reasons firstly; the catalysts were only 

sparingly soluble under reaction conditions. Secondly, the pKa of the co-acid may have 

been too low as the majority of active catalysts for this transformation contain an internal 

carboxylic acid with a higher pKa (~ 4). It is important to stress, however, that these 

organocatalysed Michael additions are slow, even under optimal conditions and therefore 

we could only realistically screen for the most active catalysts for this class of 

transformation.

We therefore targeted compound 237 as an achiral catalyst as it was structurally very 

similar to the chiral Jprgensen catalyst 10 and therefore should posses similar activity and 

be accessible by an analogous synthetic approach to catalyst 10.

/

However, compound 237 proved elusive although much synthetic effort was deployed 

developing reaction conditions. In hindsight the most probable reason for this was a 

similar reaction to that discussed in (Chapter 8), however, due to the complex mixture of 

products obtained this was not clearly evident at the time. We therefore decided to use 

proline 236 as our ‘achiral’ catalyst as it was successful in catalysing the Michael 

addition reaction of nitropropane 228 and eneone 227 with low selectivity (e.e. ~ 7%).
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7.2.3 Obtaining the Compounds for the Experiments

Having found suitable catalysts 10 and 236 for this investigation, in order to conduct 

experiments I-III outlined earlier we need access to sufficient quantities of chiral and 

racemic Michael addition products. We obtained our chiral Michael addition product 229 

by conducting the procedure reported by Jdrgensen. Due to the lack of information in the 

literature on achiral organocatalysed Michael additions we obtained our racemic product 

237 (equivalent to the reaction of 229 and nitromethane 238) from an efficient proline 

catalysed conjugate addition of acetone to frarcs-nitrostyrene 239 (Scheme 7.10).131

o  15mol % 236/ ^ N 0 2II + pĥ  DMSO,
rt- 24 h jq2

Ph

Yield 97% 
e.e. 7%

239 237

{Scheme 7.10)

7.2.4 Establishing a Method of Analysis

In his work Jprgensen determined the enantiomeric excess of the Michaels adducts using 

GC with a chirasil Dex-CB chiral stationary phase.16 Without this apparatus we had to 

develop a novel procedure for analysis. To achieve this we repeated J0rgensen’s 

procedure for the reaction and determined the e.e. by chiral phase HPLC. Comparing our 

observed values with those of the literature allowed us to validate our method and deduce 

the retention times of each enantiomer by analogy. An analogous procedure was 

conducted to establish the HPLC conditions for compound 237 using data provided by
1 *37List (see Appendix).

7.3 Results and Discussion

7.3.1 Reversibility Experiments

To satisfy the criteria of experiment I (Section 7.2.1) we took compound (±)237 along

with catalyst 10 and applied the reaction conditions provided for the transformation by

Jprgensen. After a generous reaction time of 240h the reaction was stopped, columned
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and analysed by HPLC. Disappointingly, the e.e. observed for the Michael addition 

adduct 237 was identical to the starting material (7%). Therefore, it can be concluded that 

this reaction is effectively irreversible at this time scale.

(±) 237 (-) 237

(Scheme 7.11)

To achieve proof of concept using experiment II we took the enantioenriched product 

229 and subjected it to D-proline, L-proline and (±)-proline individually in 

2-nitropropane for 3 weeks. Again, the e.e. of the products, determined by HPLC, 

obtained for all three catalysts was identical to that of the starting material.

20 mol% 
N02 Proline

PIT 21 d’ rt Ph"
n o 2 ' n o 2

(Scheme 7.12)

Experiment III was conducted using the racemic compound (±)237 which was stirred in 

diethyl malonate 240, ethylacetoacectate 241 and nitropropane 228 in the presence of 

proline 236 for one week {Scheme 7.13).
n O O 20 mol% 236 

EtO" ^ ^  ^OEt MeOH, 7 d, rt
. n o 2

Ph ^
(±) 237 240

O
o o

20 mol% 236
V 'N° 2  ^  OEt MeOH, 7d, rtPh

(±) 237 241

N02 20 mol% 236
MeOH, 7 d, rt

,  ^  -N 02 '  p ^
Ph v  | NOa

(± )237 228

(Scheme 7.13)
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Spectroscopic analysis provied no indication of the new products and the initial mass of 

racemic adduct was recovered. This experiment also indicated that the reaction was not 

reversible.

7.3.2 Effect of Methanol on Reaction Rate Of Michael Additions

The organocatalysed Michael additions involving nitroalkanes frequently use the 

nitroalkane as the solvent. In our investigations we made the observation that the catalyst 

did not appear to be well solubilised under the reaction conditions which could possibly 

explain the sluggish rate of reaction. We therefore added a small amount of methanol to 

see if this would accelerate the rate of reaction by making the catalyst more available in 

solution.

This proved successful and we managed to considerably lower the reaction time. In order 

to quantify this effect we did series of experiments where we altered the relative amount 

of methanol and nitroalkane {Figure 7.3).

Hie effect o f adding methanol as a co-solvent in  the M icheal 
addition reaction of nitroalkanes to a , (5 unsaturated 

ketones catalysed by proline
100

a
©

10040 60 80 1200 20

-96%
....... -90%

-80%
— *--60%

-20%
— •—-0%

Time h

(Figure 7.3)
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We discovered that the optimal amount of methanol for the reaction was 60 % (V/V 

Me0 H/CH3N0 2  although a similar acceleration was observed for 20% added methanol. 

Interestingly, addition of >60% methanol had a detrimental effect on the rate but was still 

superior than the levels of activity observed in the absence of co-solvent. An explanation 

for these observations may be that on addition of a greater portion of methanol there are 

fewer molar equivalents of nitropropane available for reaction, hence slowing the rate. 

This data suggested that with between 20-60% added methanol that all the catalyst was in 

solution. This was consistent with the physical observation of the transformation.

With these results in hand we believed that we might be able to accelerate the rate of the 

reactions and therefore added 60% methanol to reaction with the chiral 10. 

Disappointingly, a significantly lower e.e. (21% compared to 80%) was observed 

rendering the discovery obsolete as a method to accelerate the rate of this class 

transformation.

It is noteworthy, that although the published catalyst loadings for these transformations is 

20 mol%, in fact only a small fraction of this amount can be involved in the actual 

reaction due to an inherent lack of solubility of the catalyst.

7.3.3 Investigation of Alternative Catalysts for the Retro-Michael Reaction

Although we had failed to demonstrate the reversibility of the Michael addition with the 

published chiral catalyst 10 or proline 236 we rationalised that the requirements for a 

catalyst for the reverse reaction may be different to that of the forward reaction. There are 

examples in the literature of multiple organocatalysts selectively accelerating different 

reactions within a single reaction vessel.138 We believed that we could exploit this 

concept to develop a dynamic resolution procedure. In order that an amine be efficient at 

facilitating the retro-Michael reaction, we rationalised that greater electron density 

associated with the lone pair of the nitrogen is desirable to facilitate elimination of the 

nucleoiphi\e(Scheme 7.14).
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(Scheme 7.14)

To achieve our aims we selected a range of simple commercially available secondary 

amines with inductive electron donating groups. We also believed that the a-effect could 

encourage the retro-Michael reaction. We therefore selected a range of commercially 

available amines which would allow us to test this hypothesis {Figure 7.4).

■ a s -  A A  A  O
H HCI H HCI N H HCIH.HCI

242 243 69 244 68 66

(Figure 7.4)

Initially, we examined the catalysts in the forward reaction of eneone 227 with 

nitromethane with 60% added methanol. No reaction was observed for any of the 

catalysts 242-244, 66, 68 and 69 after a 48 h period.

Having established that the catalysts 242-244, 66, 68 and 69 would not rapidly catalyse 

the Michael addition we sought to discover whether they could catalyse the retro-Michael 

reaction. We submitted compound 237 to the catalysts 242-244, 66, 68 and 69 at 20 

mol% loading in deuterated solvent and monitored the reaction mixtures by *H NMR 

over a period of 7 d for the presence of eneone 227. The presence of 227 was not 

observed in the JH NMR spectra for any of the catalysts. Furthermore, the initial 

spectrum was identical to all subsequent spectra. We therefore concluded that none of the 

catalysts employed could facilitate a retro-Michael addition reaction.
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7.3.4 Iminium Ion Activation vs H-Bonding Activation

Subsequent to our investigations we became aware of work conducted by Lattanzi 

investigating the organocatalytic expoxidation of a,p-unsaturated ketones using 

peroxides {Scheme 7.75).139

Within this work Lattanzi conducted non linear studies and from the results postulated 

that catalyst 247 was acting as a bifunctional catalyst by simultaneously activating the 

ketone 245 and the peroxide 246 as outlined in the proposed catalytic cycle below 

{Scheme 7.16).

The cycle is initiated through deprotonation of the peroxide 246 by catalyst 247 to form 

the active peroxide anion 250 and the corresponding ammonium cation 249 which forms 

a tight ion pair in the non-polar hexane medium. It was then believed that the hydroxyl 

group of the catalyst activates the a , p-un saturated ketone through hydrogen bonding via 

the transition state 251. Electrostatic interactions then arrange the reaction components to 

allow for the conjugate addition of peroxide anion 250 to form a hydrogen bond 

stabilised enolate, which subsequently attacks the 0 - 0  bond of the peroxide

30 mol % 247 

Hexane, rt up to 87% yield 
up to 80% e.e. 

248

O

245 246

(Scheme 7.15)

247 246 249 250

248
251

(Scheme 7.16)
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intramolecularly generating the epoxide 248, ammonium species 249 and the 

tert-butoxide anion 252. The final step is regeneration of the catalyst 247 by 

deprotonation with the tert-butoxide anion 252.

We began to consider whether catalyst 10 could be acting in a similar manner activating 

the a,p unsaturated carbonyl by hydrogen bonding (254) rather than activation via 

iminium ion formation (253) to nucleophiles {Figure 7.5).

coBn' Bn’
Bn’

Ph-
10 253 254

(Figure 7.4)

It is noteworthy that there has been no evidence presented that confirms the occurrence of 

iminium ion 253 within the organocatalysed Michael additions reported by Jprgensen. 

Through conducting our work we have not observed any indication of the presence of 

iminium ion 253 although we did not explicitly look for it. What is significant is that 

within our iminium ion catalysed Diels-Alder work, where we conducted detailed studies 

of iminium ions (Chapter 2-5), the presence of an iminium ion was clearly indicated by a 

strong yellow colour within the reaction. This yellow colouration was not observed 

within this Michael addition investigation. This argument may be easily discounted as the 

reaction medium and substrates have been altered considerably. It is also noteworthy that 

catalyst 91 which is known to be efficient at catalysing Michael additions to a,P- 

unsaturated aldehydes through iminium ion activation is inactive in this transformation.140

91

(Figure 7.5)
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It may also be significant that the addition of MeOH as a co-solvent in the reaction 

increased the activity. This was thought to be due to solubility of the catalyst but it may 

well be that the MeOH present is contributing to the activation of the a,p-unsaturated 

ketone through hydrogen bonding. This is certainly consistent with the loss of asymmetry 

induced by adding MeOH {see section 7.3.2).

To discover whether or not catalyst 10 operates via iminium ion activation or through 

hydrogen bonding activation would require further experiments to be conducted. These 

additional experiments should be relatively straightforward to perform and certainly 

worthwhile.

7.4 Conclusions

Despite significant efforts to demonstrate the concept of dynamic resolution for the 

organocatalysed Michael addition reactions, proof remains elusive. It can be concluded 

that these reactions are effectively irreversible within the timescales that our experiments 

were conducted. Often, the forward organocatalysed Michael additions take several days 

for the reaction to achieve good yields. It has been shown that after an extended period of 

time excellent yields are obtained for these reactions (ca >95 %).16 If these yields do in 

fact represent the equilibrium positions of the reactions, that suggests that the rate of the 

retro-Michael reaction is extremely slow given the sluggish rate at which the forward 

reaction takes place. It is primarily the slow rates of the organocatalysed Michael 

additions that will inevitably limit the practicality of any resolution procedure developed 

with the substrates used.
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Chapter 8: Development of a Practical Method for the 
Carboxymethylation of Primary Amines141

129



Chapter 8_______________________

8.1 The Aims of the Research

T J  K Gibbs- PhD Thesis 2008

In this study we sought to explore the scope of a serendipitously discovered 

monocarboxymethylation reaction of primary amines. We then sought to extend our 

methodology to selectively synthesise piperazinones from diamines.

8.2 Introduction

In an attempt to synthesise catalyst 256 by reaction of glyoxylic 255 acid with 138, for a 

project investigating organocatalysed Michael additions (Chapter 7), great difficulty was 

encountered in interpretation of the spectroscopic data obtained for the product.

° r H hV  y v c c h  y v -cch
■ A * 4 5 —  b/ y  * b/ Y

138 255 256a 256b

(Scheme 8.1)

The ]H NMR data appeared to be generally consistent with a diastereotopic mixture of 

the isomers of 256a-b. However, mass spectrometry failed to find the molecular ion for 

compound 256. Not confident as to its structure we submitted the unidentified product as 

a catalyst for a Michael addition reaction in which it proved inactive. We therefore lost 

interest in the compound as a catalyst. Still unsure as to the compound’s identity we 

attempted to grow crystals suitable for X-ray crystallography studies. The structure that 

was determined for the compound was that of 257 (Figure 8.1).

r W 0H
Ph CHO O 

257

(Figure 8.1)

The result obtained was completely unexpected. Examining this result we rationalised

that compound 257 must have reacted with two equivalents of glyoxylic acid 255 to give
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compound 257. In order to establish whether the reaction was reliable we reacted 

phenethylamine 258 with glyoxylic acid 255 (2 eq) and obtained the corresponding 

product 259 (63%).

u ch ci y  pfl . .Y  ÔH CH2Clg . ^  ^  .N
H Y  24 h, rt [r y  V  V  'OH

O 63%
258 255 259

(Scheme 8.2)

Suitable crystals were also grown of this compound and X-ray crystallography confirmed 

that we had the desired product 259 (Figure 8.2).

(Figure 8.2)

A literature search revealed that a monocarboxymethylation reaction of primary amines 

with glyoxylic acid had been previously reported.142 However, we realised that the 

conditions used in the reported process were relatively harsh utilising formic or 

trifluoroacetic acid as the reaction medium at elevated temperatures (60-100 °C). The 

reaction that we had observed took place in CH2 CI2  at room temperature, presenting the 

opportunity to develop a mild and efficient method for the monocarboxymethylation of 

primary amines.
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8.2.1 Potential Extension to Synthesise Piperazinones for Peptidomimetics

We hypothesised that the transformation had the potential to be developed as an efficient 

method for the formation of piperazinones 260 using diamines 261 and glyoxylic acid 

255 as outlined below {Scheme 8.3).

CHO

H
CHO O r  V "h2n' H"jvoh   -h*° - L J f T

O I NH

261 255 262 263 260

(Scheme 8.3)

The piperazinone ring as a structural motif is of importance in the field of 

peptidomimetics. The concept of peptidomimetics is to mimic the properties of peptides 

with therapeutically active compounds of a similar structure that have superior receptor 

binding ability while being metabolically stable within the physiological system. An 

example of a therapeutic agent based around a central piperazinone is TAK-024 264 

(.Figure 8.3).m

(Figure 8.3)

It is the potential of this class of peptidomimetic that fuels much of the research into the 

development of novel and efficient methods for the preparation of 2-piperazinones. A 

method frequently employed for the monocarboxymethylation of primary amines 

involves the use of a-halo carboxylic acids and esters 265 {Scheme 8.4)
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o o
+ o

Rr N\^ ^ Q R2
o

R2 = H, alkyl 
X = Cl, Br 265 266 267

(Scheme 8.4)

However, these reactions are often inefficient due to the over alkylation of the amine 

which leads to compounds such as 267. This can be overcome using protecting group 

strategies or adding an excess of the amine but both are undesirable in a multi-step 

synthesis. Therefore, methods providing a selective monocarboxymethylation are desired 

prompting our attempts to develop the reaction further.

8.3 Results and Discussion

8.3.1 The Mechanism

We began by considering the mechanism of the reaction. We believed that the first step 

of the reaction was formation of imine 269 by condensation of the amine 258 and a 

molecule of glyoxylic acid 255. The imine then uncharacteristically acts as a nucleophile 

attacking a second molecule of glyoxylic acid 255 to yield iminium ion intermediate 270. 

This intermediate was believed to decarboxylate evolving CO2 (which is consistent with 

experimental observations.) The resulting enolate 271 can then be protonated restoring 

the carboxylic acid group while the iminium ion converts to the corresponding 

formamide to produce the observed structure 272.

o

272 271

(Figure 8.4)
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It is noteworthy that the glyoxylic acid 255 cannot be acting as a hydride source, in an 

analogous manner to formic acid reductions, due to the stoichiometry used within the 

reaction and the corresponding yields obtained.
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8.3.2 Solvent Screen

Having realised the potential of the reaction we set about developing optimal conditions 

for the transformation. We selected the reaction of phenethylamine 258 and glyoxylic 

acid 255 as our standard, reacting for 24 h at 0.2 M in a range of solvents (Table 8.1).

C T '”' -V ” -3 8 - r r -^ -C
258 255° 259

(Scheme 8.6)

Entry3 Solvent conversion %

1 CH2CI2 72

2 Et20  49

3 EtOAc 64

4 MeOH 23

5 MeCN 45

6 PhMe 43

7 THF 30

8 H20  75

9b H20  77

(a) Glyoxylic acid monohydrate 99%

(b) 50% w/v of glyoxylic acid solution used

(Table 8.1)
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The conversions were within 5% of the isolated yield of hydrolysed compound indicating 

the validity of the method for rapid analysis. The reaction tolerated a wide range of 

solvents with only MeOH (Table 8.1, entry 4) and THF (Table 8.1, entry 7) providing 

unsatisfactory yields in 24 h. This was most probably due to minor side reactions, as 

discolouration was observed in the reaction with these solvents. It was found that the 

optimal solvent was H2 O. This observation allowed us to develop a one-pot method for 

the monocarboxymethylation of primary amines as aqueous acid could be directly added 

to the reaction vessel to hydrolyse the formyl group after initial reaction. {Scheme 8.6). 

The method previously described involved isolation of the crude formamide intermediate 

before conducting the hydrolysis.

/ \ ^ N H 2 + (1) HgO, 24h, rt H.HCI j j
Ph H (ii) 1M HCI, 5h, A

258 255 O 273

(Scheme 8 .6 )

We also examined the use of a commercially available solution of 50 % w/v glyoxylic 

acid in H2 O. Slightly better conversions were obtained (within experimental error) using 

the glyoxylic acid solution providing a more economical and convenient procedure.

8.3.3 Reaction with Primary Amines

Having established the optimal reaction conditions from our solvent and determined that 

we could conduct a subsequent hydrolysis in a single vessel, we set about discovering the 

substrate scope. Initially, we reacted a number of primary amines with glyoxylic acid 

which led to compounds 273-279 in good to excellent yields {Table 8.2).

136



Chapter 8. T J  K Gibbs- PhD Thesis 2008

Entry3 Product Structure . b Yield %
Temp Hydrolysis 

eC conditionst

o
"OH

O

274 .  n HCI1  25 A 78
/ n /  \ / N nu

H *H C I  ii
275 25 B 86

276 .  n HC!JI 25 A 25

o
t.HCI II
' - A c

(
1.HCI ||

277 L I| h-hci U 25 A 50

MeO.

OH

O
278 L II jjHCIll 50 B 68

OH

Cl
279 L II H-^S^ 50 B 60

OH

O
H.HCI jT

273 r, r ^ ^ N̂ X ) H  25 A 70

280 n HC!A 2 5  B
BiT  " A ^ oh

281 H i  25 B

10 282 |l I h 25 A

" 111 283 25 A 0

(a) Reactions conducted at stated temperature in H20  for 24 h with 2.2 equivalents of 

glyoxylic acid, (b) A refers to hydrolysis in 1 M HC1 at reflux for 18 h , B refers to hydrolysis 

with 2 M HC1 at reflux for 18h.
(Table 8.2)

The reaction was shown to tolerate primary (Table 8.2, entry 1) and secondary (Table 8.2,

entry 2) a-substituted amines with good yield. The lack or reactivity of tert-butyl amine

{Table 8.2, entry 8) is most likely due to the steric bulk of the tert-butyl group hindering

formation of the imine intermediate under the reaction conditions as the amine was

present after reaction. Benzylamine reacted to give benzyl protected glycine 277 in 50%
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yield (Table 8.2, entry 4). Reactions with para-substituted benzyl amines containing 

electron donating methoxy and electron withdrawing chloro groups 278 and 279, 

respectively, were successful (Table 8.2, entry 5 and 6). The reaction also tolerated allyl 

amine albeit with poor yield (Table 8.2, entry 3). Ethanolamine reacted with glyoxylic 

acid but the NMR indicated that numerous compounds had formed with isolation of 

the desired product proving too difficult.

The reaction of TV-methyl benzylamine (Table 8.2, entry 10) and triethylamine (Table 8.2, 

entry 11) with glyoxylic acid yielded no products demonstrating the chemospecificity of 

the process for primary amines, a distinct advantage over other methods. This observation 

also provided further evidence for our proposed mechanism.

8.3.4 Reactions with Diamines

Having demonstrated that the reaction was efficient with a range of primary amines we 

set about reacting a series of 1,2 and 1,3 diamines with glyoxylic acid 255. There are 

several possibilities for the course of the reaction of ethylene diamine with glyoxylic 

acid. For example, the monocarboxymethylation of a single amine (284), alternatively 

both amines could undergo a monocarboxymethylation reaction (285). A further 

possibility is that after monocarboxymethylation of a single amine an intramolecular 

cyclisation might occur to give piperzinone 260. Dimerisation and polymerisation were 

also possible but less likely as it involves a more challenging intermolecular reaction 

{Scheme 8.7).
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.HCI
H2N' —  OH

284

H2N'
,NHp

261

OH

O
255

H.HCI 
.N

.HCI
H2N '

HCI

285

H
. N .  / O

N 
H.HCI
260

286

OH

,NH2
.HCI

(Scheme 8.7)

On analysis of the reaction of ethylenediamine and glyoxylic (4 eq) acid we had to 

establish which product we had obtained. NMR allowed us to discount structures 285 

and 286 as the correct structure. However, mass spectrometry failed to detect the 

molecular ion for either of structures 260 or 284. Therefore, the correct structure 284 was 

determined by analogy to the commercially available product by comparing samples 

using *H and 13C NMR as well as melting point and IR spectroscopy. Mass spectrometry 

also failed to detect the molecular ion of the commercially available sample. Products 

284, 287-290 were easily characterised by conventional techniques.
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Equivalents Hydrolysis 
Entry Product Structure . h Yield %

of 251a conditions

o
1 284 HCI .  h.hcmi 4 4  A 31

H2N OH
oH.HCI II

287 2 2  A 41
H.HCI

289 d HC' H.HCijt 4 4  B 4 4
/  "—" OH

290 4.4 B 59
.HCI

(a) Reactions conducted at 25°C in H20  for 24h. (b) Conditions A refers to hydrolysis with 1M 

HCI at reflux for 18h, B refers to hydrolysis with 2M HCI at reflux for 18h.
(Table 8.3)

Although the yields obtained are only moderate attempting the monocarboxymethylation 

of these diamine substrates with a-halo acids/esters would undoubtedly produce even 

lower yields with numerous by-products forming.

Disappointingly, no evidence of a piperazinone was observed. However, further attempts 

within the group have subsequently been successful in synthesising piperazinone 260 

from A-methyl ethylenediamine by altering the reaction conditions.

8.4 Conclusions

In summary, we have developed a mild and efficient method for a one-pot 

monocarboxymethylation of primary amines and diamines. The reaction is selective for 

primary amines without the need for protection of more nucleophilic secondary amines 

and can tolerate a range of amines. The reaction with ethylene diamine provides access to 

the monocarboxymethylated product in 31% isolated yield on addition of 4 equivalents of 

glyoxylic acid providing a remarkably selective process. This method has been 

subsequently been developed to allow for the synthesis of piperazinones.
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Chapter 9: An Aminocatalytic Method for the Preparation
of bis-lndoyl Alkanes144
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9.1 Introduction

The importance of indoles as a structural motif in organic chemistry is well 

documented. 145 The indole unit is present in the naturally occurring and abundant amino 

acid tryptophan and is consequently found in many compounds of natural origin. Within 

this chapter an aminocatalytic method for the synthesis of a variety of bis-indole 

containing natural and non natural targets is reported.

9.1.1 Discovery

At the heart of much chemical research is the search for new synthetic methods. We 

began this research with a view to expand the existing reaction portfolio of iminium ion 

catalysed processes. Iminium ions have been successful in catalysing numerous reactions 

that traditionally utilise Lewis acids. With this in mind our attention was drawn to a 

Lewis acid catalysed process where nucleophilic attack of TV-methyl indole facilitated 

cyclopropyl ring opening in a C-C bond forming process (Scheme 9.7) . 1 4 6

To establish whether a similar procedure could be achieved using secondary amine 

catalysis we conducted a reaction between A-methylindole 291 and cyclopropyl 

carboxaldehyde 292 utilising catalyst 91 previously developed within the group {Scheme

13 kbar 
Yb(OTf)3

>95% yield

(Scheme 9.1)

9.2).

o

\ MeOH, rt 
24h /

291 292 293

(Scheme 9.2)
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It was evident from the appearance of the reaction mixture that reaction had taken place. 

However, on analysis of the purified product it was clear that an unexpected reaction had 

occurred (Scheme 9.3).

CO  • v - '

291 292

(Scheme 9.3)

The spectroscopic data measured for the product was consistent with that of compound 

294. Consulting the literature we found that this class of compound was known and that 

frequently they have a natural origin.

A J:.HG'Ph N 
H

91 10 mol%
MeOH, rt 

24 h 294

9.1.2 Biological Significance and Reported Procedures

Bis-indolylalkanes as a structural class contain some biologically important molecules. 

For example, diindolylalkane 295 has been identified as being active at promoting 

beneficial oestrogen metabolism in men and women147 and has also been found to trigger 

apoptosis in human breast cancer cells . 1 4 8 The biological activity of these compounds has 

prompted numerous research groups to develop methods for their preparation.

It has been reported that bisindolyl alkanes can be prepared using both Brpnsted and 

Lewis acids to activate the carbonyl to attack by indole. Recent reports include the 

preparation of bisindolyl alkenes through heterogeneous catalysis using zeolites14 9 and 

montmorillonite KIO . 1 5 0  Lewis acids that have been utilised include Zr(OTf)3 , 151 

La(PFO)3 1 52 and CeCb . 1 5 3 The Brpnsted catalysts reported include Amberlyst resins154  

and molecular iodine, 155 along with KHCO3 1 5 6 also having reported as a catalyst. Of the
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catalysts listed above, it is the heterogeneous catalysts that appear to be the most efficient 

with reaction times 10 min- 6  h. However, large quantities of catalyst have to be used to 

accelerate the reaction with up to 9100% w/w of catalyst with respect to the aldehyde. To 

date there has been no report of secondary amines catalysing the reaction. We therefore 

set out to discover the potential of our aminocatalytic method for the preparation of bis­

indolyl alkanes.

9.2. Results and Discussion

9.2.1 Proposed Mechanism

The initial work established the need for a secondary amine catalyst 91 in order for 

reaction to occur (Table 9.1, entry 7). Therefore, we conducted control reactions 

conducting the addition with no catalyst (Table 9.1, entry 2 ), triethylamine hydrochloride 

(Table 9.1, entry 3) and also acetic acid (Table 9.1, entry 4). These control reactions 

yielded no product, as expected, confirming that our catalyst 91 was responsible for the 

reactivity.
o

91 10 mol% 
MeOH, rt

24h291 292 293

Entry Catalyst
Catalyst

Yield %
Loading mol%

Ph-

O
H.HCI

10 74

2 No catalyst 10 0

3 10 0

.HCI

O
4 10 0

(Table 9.1)
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To explain the reactivity we proposed a mechanism where the activated iminium ion 296 

formed by condensation of the secondary amine catalyst 91 and the carbonyl 298. The 

iminium ion 299 is significantly more electrophilic than the corresponding aldehyde and 

therefore undergoes attack by the indole 300 to form the amine 301. Protonation of the

conjugated 7t-sy stems to eliminate and regenerate the catalyst 91. The resulting 

a,P-unsaturated iminium ion 302 is sufficiently activated to undergo a nucleophilic 

Michael-type addition by a second molecule of indole 300 followed by rearomatisation of 

the indole to yield the observed product 303 {Scheme 9.4).

The tentative evidence for this is that the only compounds observed in the reaction 

mixture were the starting materials and the products. Attempts to facilitate mono addition 

of the indole by reducing the temperature and adding substoichiometric amounts of 

indole proved unfruitful; however, these studies were far from rigorous and 

comprehensive.

tertiary amine would allow for the lone pair of the indole nitrogen to push through the

300

R.

300

(Scheme 9.4)

It is thought that addition of the first indole is most likely to be the rate determining step.
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9.2.2 Effect of Solvent on Reaction

To discover the optimal solvent for the reaction we conducted a brief solvent screen. The 

reaction of propionaldehyde 304 and indole 300 with 5 mol% loading of catalyst 91 for a 

24 h period was examined with a variety of solvents (Table 9.2).

200 304

5 mol% 91
solvent 
24h, rt

(Scheme 9.5)

305

Entry Solvent
Catalyst Yield

Loading mol% %

c h 3cn

2 DMF 5 62

3 DMSO 5 55

4 H20  5 62

5 THF 5 39

6 MeOH 5 33

7 MeOH 10 84

(Table 9.2)

Acetonitrile was the worst solvent and failed to facilitate any significant reaction after a 

24 h period (Table 9.2, entry 1). Polar solvents such a DMF, DMSO and H2 O {Table 9.2, 

entries 2, 3 and 4) all gave the product 305 in similar yields 55-62%. MeOH and THF 

{Table 9.2, entries 6 and 7) were less efficient as solvents, providing yields of 33 and 

39% respectively.
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It was MeOH that we selected as our solvent of choice (partly as we had synthesised a 

number of compounds in MeOH prior to commencing the solvent screen) as it was 

operationally simpler to use in the reaction than DMF, DMSO and H2 O. Using MeOH 

also provided the advantage that upon reaction a precipitate was observed for many of the 

substrates allowing a rapid qualitative indication of successful reaction. This precipitation 

was not apparent in THF for any substrate.

9.2.3 Variation of the Indole

Having established that the reaction worked for a few examples we sought to discover the 

tolerance of the reaction with derivatised indoles. We selected indole 300 as the standard, 

iV-methylindole 291, 5-methoxyindole 306, 5-nitroindole 308 and 5-chloroindole 307 

{Figure 9.1).

(Figure 9.1)

Propionaldehyde 304 was chosen as the reaction partner to allow direct comparison of the 

relative reactivity of the indoles {Scheme 9.5).

300 R = H R1 = H 
291 R = H R1 = Me
306 R = OMe R1 = H
307 R = Cl R1 = H
308 R = N 02 R1 =H

304

10 mol% 91
MeOH 
24h, rt

(Scheme 9.5)

305 R1 = H R = H 84%
309 R1 = H R = Me 81%
310 R 1= H R = OMe 55%
311 R1 = H R = Cl 42%

No reaction occurred between 5-nitroindole 308 and propionaldehyde 304 after a 24 h 

period. The electron withdrawing effect of the nitro group considerably reduces the 

nucleophilicity of the indole and therefore reduces activity. The reaction did however 

tolerate the weaker EWG leading to 5-chloroindole derivative 311 in 42% yield after a
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24h period. Addition of an alkyl group on the nitrogen of the indole had little effect on 

reactivity. The reactions with indole 300 and A-methylindole 291 with propionaldehyde 

304 gave the expected products in 84 and 81% yield, respectively, after 24 h. The 

reaction also tolerated electron donating groups on the indole unit, 5-methoxyindole 306 

reacted with propionaldehyde 304 to give the adduct 310 in 55% yield.

9.2.4 Variation of the Aldehyde

304 292 312 313

(Figure 9.2)

After our initial success in reacting a series of indoles we wanted to discover which 

carbonyl substrates would be tolerated. Four aldehydes were reacted with indole, 

propionaldehyde (304), cyclopropanecarboxaldehyde (292), benzaldehyde (312) and 4- 

hydroxybenzaldehyde (313) to give the products 305 and 314-316 in 74-89% yield 

{Scheme 9.6).

MeOH 
24 h, rt

300
305 R = CH2CH3 84%
314 R = CH(CH2)2 74%
315 R = Ph 84%
316 R = 4-OH-C6H4 89%

(Scheme 9.6)
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9.2.5 Reaction with Ketones

10 mol% 91
solvent 
24 h, rt

n HN NH

295

(Scheme 9.7)

Many of the examples in the literature to prepare bis-indolylalkanes did not report 

ketones as substrates. We therefore examined the more challenging ketone substrates 

within this organocatalysed reaction. In total three ketones were tested, methyl 

cyclopropyl ketone 317, cyclohexanone 318 and cyclohexandione monoethylene ketal 

319 with indole 300. Methyl cyclopropyl ketone was also reacted with iV-methylindole 

291.
o

V J
317 318 319

The reactions were all successful furnishing compounds 320-323 as the products. Indole 

300 and Af-methylindole 291 reacted with identical efficiency with methyl cyclopropyl 

ketone providing both 322 and 323 in 69% isolated yield. Reaction of cyclohexanone 318 

with indole 300 gave the product 320 in 58% yield after 24 h. Pleasingly, compound 321 

was also obtained in 50% yield from the corresponding ketone displaying that our 

synthetic method could tolerate the acid sensitive ketal functionality. Synthesis of 321 

using the reported Brpnsted and Lewis acid methods would in our opinion present a 

greater challenge. It is also noteworthy that the modest 50% isolated yield obtained for
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321 is most likely a consequence of slower reactivity rather than side reactions or 

hydrolysis of the ketal (determined qualitatively by TLC).

9.2.6 Naturally Occurring Bis and Tris-Indolylalkanes

Having established that we had discovered a mild and efficient method for the synthesis 

for a range of bisindolylalkanes from aldehyde and ketone substrates we set about 

applying our methodology to synthesise a variety of naturally occurring compounds. 

There have been numerous bisindolylalkane natural products isolated and described. 157  

Examining the literature we selected four targets to test our methodology 324-327 

{Figure 9.3).

HN-
HN-HN-

HN NH

HN NH
HN NH

72% 51%
324 325 326 327

(Figure 9.3)

Vibrindole A 324 was first identified as a metabolite from the marine bacterium vibrio 

paraheamolyitcus and has also been detected in other marine organisms. 15 8 Our 

preparation afforded Vibrindole A 324 in 80% yield after a 24 h period under our standard 

reaction conditions at room temperature in methanol for 24 hours using 10 mol% of 

catalyst 91.

The naturally occurring compounds 325, 326 and 327 were all isolated from the marine 

bacterium vibrio paraheamolyitcus.159 The tris-indolylalkane 325 was obtained by 

reaction of 3-indolecarboxaldehyde with 2 equivalents of indole in a respectable 77% 

yield. Compound 326 was synthesised by reaction of isatin with 2 equivalents of indole in 

72% yield. The reaction of isatin at the ketone rather than the less reactive amide 

confirms the chemoselectivity of this process for aldehydes and ketones.
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The highlight of our synthetic work was the synthesis of compound 327. Previous 

experiments in the group had demonstrated that catalyst 91 could catalyse Michael 

additions to a,p-unsaturated carbonyl compounds. We recognised the opportunity to 

introduce the three indoles in one reaction vessel. This method was successful and gave 

327 in a respectable 51% yield forming three C-C bonds in one pot.

FtVu + N 
M H.HCI

NH
329

HN-

HN' NH
327

NH

330

(Figure 9.4)

The first step in the mechanism is formation of the a, P-unsaturated iminium ion 328 

which then undergoes the Michael addition reaction with a molecule of indole to give 

enamine 329. The resulting enamine is in equilibrium with the corresponding iminium 

ion 330 which reacts by the same mechanism outlined above {Scheme 9.4) to give the 

product 327 (51%).

9.2.7 Catalyst Loading

To establish the activity of our catalyst in the transformation we conducted the reaction 

between benzaldehyde 312 and 2 equivalents of indole 300 in the presence of 1 mol% of 

91.
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o
H MeOH

32h, rt 
84%

1 mol%91

HN NH
295 304 307

(Scheme 9.9)

The yield obtained after a 32 h period was 84% suggesting that catalyst 91 is particularly 

active for this transformation.

9.3 Conclusions

We have demonstrated the first aminocatalytic method for the preparation of bis and tris 

indolylalkanes. A variety of indoles, aldehydes and ketones are tolerated as substrates 

with acid sensitive groups such as ethylene ketals being compatible with the reaction 

conditions. The method was applied to the synthesis of a range of naturally occurring 

compounds including vibrindole A. The methodology can be further extended to facilitate 

a tandem Michaeladdition-bis-alkylation reaction in one-pot forming a total of three new 

C-C bonds. Significant reactivity was observed at 1 mol% catalyst loading.
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Chapter 10: Experimental
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Reagents were obtained from Aldrich, Lancaster and Fluka chemical suppliers. Solvents 

and reagents were purified according to the procedures of Perrin, Armarego and Perrin16 0  

Dichloromethane was dried by refluxing over, and distilling from calcium hydride. Ethanol 

was dried by refluxing over magnesium, followed by distillation. Toluene was dried over 

sodium wire for twenty-four hours prior to use. Anhydrous diethyl ether was obtained by 

distillation from sodium benzophenone ketyl.

All reactions using air/moisture sensitive reagents were performed in oven-dried or flame- 

dried apparatus, under a nitrogen atmosphere. Catalytic runs were performed using a 

Radley’s carousel, which consists of twelve test tubes with suba-seals and nitrogen inlets, a 

stirrer plate and a bath for heating. All reactions were followed and monitored by TLC, ]H 

NMR, 13C NMR and mass spectrometry as appropriate.

TLC analysis refers to analytical thin layer chromatography, using aluminium-backed plates 

coated with Merck Kieselgel 60 GF254. Product spots were viewed either by the quenching 

of UV fluorescence, or by staining with a solution of 2 % aqueous potassium permanganate. 

Chromatography refers to flash column chromatography using head pressure by means of 

compressed air according to the procedure of Still161using Merck Kieselgel 60 H silica or 

Matrix silica 60.

Melting points were recorded using a Kofler Heated Stage Micro Melting Point Apparatus 

and are uncorrected.

Infra-red spectra were recorded in the range 4000-600 cm ' 1 using a Perkin-Elmer 1600 

series FTIR instrument either as a thin film, a nujol mull or dissolved in stated solvent 

between sodium chloride plates. All absorptions are quoted in wave numbers (cm'1).

*H NMR spectra ( 5 h )  were recorded using an Avance Bruker DPX 400 instrument (400 

MHz) or an Avance Bruker DPX 500 (500MHz), with 13C NMR spectra (5c) recorded at 

100 MHz or 125 MHz respectively. Chemical shifts (5H and 5c) were recorded in parts per 

million (ppm) from tetramethylsilane (or chloroform) and are corrected to 0.00 (TMS) and
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7.26 (CHCI3 ) for NMR and 77.30 (CHCI3 ), centre line, for 13C NMR. The abbreviations 

s, d, t, q, sept., m, bs and br, denote singlet, doublet, triplet, quartet, septet, multiplet, broad 

singlet and broadened resonances, respectively; all coupling constants were recorded in 

hertz (Hz).

Low resolution mass spectrometric data was determined using a Fisons VG Platform II 

Quadrapole instrument using atmospheric pressure chemical ionisation (APcI) unless 

otherwise stated. El refers to electron ionisation and ES refers to electrospray. High 

resolution mass-spectrometric data was obtained courtesy of the EPSRC Mass Spectrometry 

Service at the University of Wales, Swansea, UK, using the ionisation methods specified. 

Calculated accurate masses are of the parent ion (exclusive of an electron, mass = 0.00055 

Da).

Typical experimental procedure for catalytic runs

fra/w-Cinnamaldehyde 20 (252mg, 1.9 mmol, 0.24 mL, 1.0 eq) was added to a solution of 

catalyst (10 mol%, 0.19 mmol) in methanol (2.0 mL) at 25 °C and the resulting mixture was 

stirred for 5 minutes to initiate iminium ion formation. Freshly cracked cyclopentadiene 19 

(323 mg, 4.9 mmol, 0.38 mL, 2.5 eq) was added in a single aliquot and stirring was 

continued for 24 hours. The volatiles were removed under reduced pressure and the 

resulting organics were hydrolysed in a chloroform (2 mL), water (1 mL) trifluoroacetic 

acid (1 mL) mixture over night. Saturated sodium hydrogen carbonate solution (18 mL) 

was added to neutralise the solution and the aqueous phase was extracted with 

dichloromethane (2x20 mL). The combined organics were washed with water (10 mL) and 

dried (Na2 SC>4 ) prior to the removal of the volatiles under reduced pressure. *H NMR of the 

crude reaction mixture was used to establish the conversion to the products and excr.endo 

ratios through the integration of aldehyde peaks at: Sh (400 MHz, CDCI3) 9.80 (exo) 9.65 

(cinnamaldehyde) 9.53 (endo). The products were then purified by flash column

exo-isomer
24

CHO
endo-isomer

25
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chromatography eluting with (9:1) ethyl acetate/petroleum ether resulting in a mixture of the

exo- and endo- isomers of 3-phenyl-bicyclo[2.2.1]hept-5-ene-2-carboxaldehyde 24 and 25

as a pale yellow oil. !H NMR, 13C NMR and IR data were consistent with previously

reported literature values; 16 2 Umax (liquid filmVcm' 1 1718, 1601, 1497; exo-isomer 24

NMR (400 MHz, CDC13) 5H 9.85 (1H, d, J = 2.0, CHO) 7.4-7.0 (5H, m, Ar-H) 6.27 (1H,

dd, J  = 5.6 3.6, CH=CH) 6.01 (1H, dd, J  = 5.6 3.6, CH=CH) 3.66 (1H, dd, J  = 5.0 3.4,

CHPh) 3.25-3.05 (2H, m, CHCH2) 2.55-2.45 (1H, m, CHCHO) 1.65-1.45 (2H, m, CH2 );

ewfo-isomer 25 lU NMR (400 MHz, CDC13) 8 H 9.53 (1H, d, J  = 2.1, CHO) 7.4-7.0 (5H, m,

Ar-H) 6.36 (1H, dd, J  = 5.6 3.6, CH=CH) 6.10 (1H, dd, J  = 5.6 3.6, CH=CH) 3.26 (1H, m,

CHPh) 3.05 (1H, m, CHCH2) 3.01 (1H, m, CHCH2) 2.91 (1H, m, CHCHO) 1.46-1.49 (2H,

m, CH2 ); m/z (El) [M]+ 198 (10%) 132 (89) 131 (100) 103 (52) 77 (21) 6 6  (54).

General Procedure 1

To a solution of N,N' dimethylhydrazine (leq) in acetonitrile (40 mL) was added ethyl 

glyoxylate 50% w/w solution in toluene (leq) and acetic acid (0.2 mL). The solution was 

stirred at ambient temperature overnight. Water (20 mL) was added and the aqueous layer 

extracted with ethyl acetate (3x30 mL). The organics were dried over MgS0 4 , filtered and 

concentrated under reduced pressure to yield the crude imine as a pale yellow oil. The crude 

imine was analysed to determine reaction extent and was then dissolved in methanol and 

stirred at room temperature. To this was added sodium cyanoborohydride (leq) followed by 

sufficient 2M HCI solution to maintain a pH 3-4 for a period of twenty minutes until a 

constant pH reading was obtained. A further equivalent of sodium cyanoborohydride was 

added and the procedure repeated to a total of three times. Once a constant pH was achieved 

after the third addition the reaction was allowed to stir at room temperature overnight. On 

reaction completion by TLC the mixture was quenched by adding sufficient 2M HCI to 

maintain pH 1 for five minutes. To this was added H20  (20 mL), ethyl acetate (30 mL) and 

neutralised with 20% w/v Na2 C 0 3 solution. The aqueous layer was extracted with ethyl 

acetate (3x30 mL). The organics were combined and dried over MgS0 4  and the volatiles 

removed under reduced pressure.
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The HCI salt was prepared by adding 5 eq of HCI (in MeOH) to a solution of the free base

in methanol with swirling for 1 0  minutes followed by removal of the volatiles under reduced

pressure. The resulting solid was then washed with ether and dried under reduced pressure

General Procedure 2

To a stirred solution of TV-Ao-propylidene-TV'-methyl-hydrazine 100 (leq) and triethylamine 

(leq) in dichloromethane (20 ml) in at 0 °C was added the acid chloride (leq) in 

dichloromethane (5 mL) slowly over a period of five minutes, , the solution was then 

allowed to warm to room temperature and stirred overnight. Once the reaction appeared to 

be over by TLC H2 O (20 mL) was added and the aqueous solution extracted with 

dichloromethane (3x20 mL). The combined organics were dried over Na2 S0 4  and the 

volatiles removed under reduced pressure to yield the crude product. The crude product was 

analysed to determine reaction extent and was then dissolved in methanol and stirred at 

room temperature. To this was added sodium cyanoborohydride (1 eq) followed by 

sufficient 2M HCI solution to maintain a pH 3-4 for a period of twenty minutes until a 

constant pH reading was obtained. A further equivalent of sodium cyanoborohydride was 

added and the procedure repeated to a total of three times. Once a constant pH was achieved 

after the third addition the reaction was allowed to stir at room temperature overnight. On 

reaction completion by TLC the mixture was quenched by adding sufficient 2M HCI to 

maintain pH 1 for five minutes. To this was added H2 O (20 mL), ethyl acetate (30 mL) and 

neutralised with 20% w/v Na2 C0 3  solution. The aqueous layer was extracted with ethyl 

acetate (3x30 mL). The organics were combined and dried over MgS0 4  and the volatiles 

removed under reduced pressure.

The HCI salt was prepared by adding 5 eq of HCI (in MeOH) to a solution of the free base 

in methanol with swirling for 1 0  minutes followed by removal of the volatiles under reduced 

pressure. The resulting solid was then washed with ether and dried under reduced pressure 

to yield the title compound as a colourless solid.
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Preparation of ethyl 2-(2,2-dimethylhydrazinyl)acetate hydrochloride 74.HC1163

The title compound was prepared using general procedure 1. The crude residue was purified 

using column chromatography eluting with ( 1 :1 ) petroleum ether/ethyl acetate to give the 

free base (137 mg, 2%)as a colourless oil. lU NMR (400MHz, CDC13) 8 H 6.32 (1H, bs, 

NH), 4.14 (2H, q, J = 7.2, CH2 CH3 ), 3.50 (2H, s, NCH2), 2.40 (6 H, s, NCH3), 1.21(3H, t, J  

= 7.5, CH2 CH3) 13C NMR (100MHz, CDC13) 5C 169.4, 62.0, 51.4, 47.6, 14.0.

The HCI salt was prepared using general procedure 1 (93%). mp 71-73 °C.

Preparation of ethyl 2-(methoxyamino)acetate hydrochloride 75.HC1

o
H.HCI II

^ N- A 0Et

The title compound was prepared using general procedure 1. The resulting residue was 

purified by column chromatography eluting with (2 :1 ) ethyl acetate/petroleum ether to 

afford the free base as a colourless oil (314 mg, 5%). *H NMR (400MHz, CDC13) 5h 6.14 

(1H, bs NH), 4.23 (2H, q, J  = 7.1, CHsOTO, 3.62( 2H, bd, J  = 5.6, NHCHs), 3.54 (3H, s 

OCH3), 1.27 (3H, t, 7=  7.1, CH2 CH3).

The HCI salt was prepared using general procedure 1. (90%). mp 80-82 °C.

Preparation of 76.HC1

The title compound was prepared using general procedure 1. The resulting solid was 

purified by column chromatography eluting with (3:1) dichloromethane/diethyl ether to 

yield the free base(1.42 g, 26%) as a colourless solid, mp 88-89 °C; *H NMR (400MHz, 

CDC13) 5h 6.48 (1H, bs, NH), 4.17-4.07 (5H, m, NH, CH2 CH3), 3.59 (H, d, J = 4, NCH2),
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1.24-1.18 (6 H, m, CH2 CH3 ); 13C NMR (100MHz, CDC13) 8 c 171.3 (C), 156.9 (C), 61.5

(CH2), 61.2 (CH2), 52.8 (CH2), 14.6 (CH3), 14.2 (CH3);

The HCI salt was prepared using general procedure 1. (95%). mp 115-118 °C. 

Preparation of 77.HC1

The title compound was prepared using general procedure 1. The resulting residue was 

purified by column chromatography eluting with (4:1) dichloromethane/diethyl ether to 

yield the free base (6 .8 6 g, 78%) as a colourless oil. Dmax (neat) /cm ' 1 3320, 2937, 2908, 

2882, 1728, 1530, 1554; ‘H NMR (400MHz, CDC13) 5H 6.48 (1H, bs, NH), 4.25-4.14 (5H, 

m, NH, CH2 CH3), 3.76-3.75 (1H, m, NHCHCH3), 1.36-1.25 (9H, m, CHCHj, CH2 CH3); l3C 

NMR (125MHz, CDC13) 8 c 173.4 (C), 157.1 (C), 61.5 (CH2), 61.2 (CH2), 58.4 (CH), 15.9 

(CH3), 14.6 (CH3), 14.21 (CH3).

The HCI salt was prepared using general procedure 1. (98%). mp 138 °C.

Preparation of 85.HC1
o o

j j  H.HCI TT

H I

The title compound was prepared using general procedure 1. The resulting mixture was then 

purified by column chromatography eluting with ( 1 :1 ) petroleum ether/ ethyl acetate to yield 

the free base (1.31 g, 38%) as a colourless oil. Dmax (CHCI3) /cm ' 1 3384, 2959, 1753, 1538, 

1455, 1277, 1152; 'H  NMR (400MHz, CDC13) 8 H 6.78 (1H, bs, NH), 4.31 (1H, bs, NH), 

3.84-3.71 (7H, m, CHCH3, OCH3 ), 1.36 (3H, d, i  = 7.2, CHCH3); ,3C NMR (100MHz, 

CDCI3 ) 8 c 174.3 (C), 157.6 (C), 58.2 (CH), 52.4 (CH3), 52,0 (CH3), 15.8 (CH3); m/z (APCI) 

(M+H) 177; HRMS (ES) (found 177.0871 [M+H]+; C6 H |3N2 0 4  requires 177.0870).

The HCI salt was prepared using general procedure 1.(92%). mp 133-134 °C.

159



Chapter 10________________________________________

2-Methyl-l-(propan-2-ylidene)hydrazine 100
T J K Gibbs- PhD Thesis 2008

I H
A ' n

Methyl hydrazine (13.6g, 295 mmol, 15.7 mL) was added drop wise to acetone (23.7 g, 409 

mmol, 30 mL) maintaining the reaction temperature below 35 °C. The solution was stirred 

for 1 hour after which the top layer was removed and allowed to stand over potassium 

hydroxide (5g) for a further 1 hour. The upper liquid was decanted from the lower aqueous 

phase and allowed to stand over two successive portions of potassium hydroxide (2x2.5g) 

for 30 minutes each. Purification was by distillation (1 atm., 110 °C) [lit. 1 18 b.pt. 116-118 

°C] under nitrogen affording the title compound as a colourless oil (17.85g, 70%); vmax 

(liquid filmVcm' 1 3394, 3262, 2911, 1711, 1631; ‘H NMR (400 MHz, CDC13) §h 4.28 (1H, 

s br, NH) 2.76 (3H, s, NHCH3 ) 1.88 (3H, s, N=CCH3 trcms) 1.68 (3H, s, N=C-CH3 cis); 13C 

NMR (100 MHz, CDCI3 ) 8 c 146.4 (C) 37.9 (CH3) 25.0 (CH3) 15.5 (CH3); m/z (APcI) 

[M +Hf 87 (100%); HRMS (El) (found 86.0841 [M]+; C4 Hi0 N2 requires 86.0838).

Preparation of l-isopropyl-2-methyl-4-phenylsemicarbazide 93

To a stirred solution of A-zso-propylidene-Af'-methyl-hydrazine 100 (1.00 g, 11.6 mmol,

I.16 mL) 36 in dichloromethane (20 mL) at 0 °C was added phenyl isocyanate (1.38 g, 11.6 

mmol, 1.26 mL) in dichloromethane (5 mL) slowly over a period of five minutes, the 

solution was then allowed to warm to room temperature and stirred overnight. Once the 

reaction appeared to be over by TLC H2 O (20 mL) was added and the aqueous solution 

extracted with dichloromethane (3x20 mL). The combined organics were dried over Na2 S0 4  

and the volatiles removed under reduced pressure to yield the crude product. The crude 

product was analysed to determine reaction extent and was then dissolved in methanol ( 2 0  

mL) and stirred at room temperature. To this was added sodium cyanoborohydride (0.72 g

II.6 mmol) followed by sufficient 2M HCI solution to maintain a pH 3-4 for a period of 

twenty minutes until a constant pH reading was obtained. A further equivalent of sodium
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cyanoborohydride was added and the procedure repeated to a total of three times. Once a

constant pH was achieved after the third addition the reaction was allowed to stir at room

temperature overnight. On reaction completion by TLC the mixture was quenched by

adding sufficient 2M HCI to maintain pH 1 for five minutes. To this was added H2 O (20

mL), ethyl acetate (30 mL) and neutralised with 20% w/v Na2 C0 3  solution. The aqueous

layer was extracted with ethyl acetate (3x30 mL).The organics combined and dried over

MgS0 4  and the volatiles removed under reduced pressure. The crude product was purified

by column chromatography eluting with (2 :1 ) petroleum ether/ethyl acetate resulting in the

free base (1.97 g, 82%) as a colourless solid, mp 80-81 °C; vmax (CD C^/cm ' 1 3366, 2975,

2359, 1792, 1666, 1533; ‘H NMR (400 MHz, CDCI3 ) 8 H 8.59 (1H, bs, NH), 7.45 ( 2H, d, J

= 8 .6 , Ar-H), 7.29 (2H, m, Ar-H), 6.94 (1H, t, J = 7.4, Ar-H) 3.36-3.27 (2H, m, NH, CH),

3.16 (3H, s, NCH3 ), 1.11 (6 H, d, J = 6.2, CH3 ); 13C NMR (100 MHz, CDCI3 ) 8 c 156.8(C),

139.2 (C), 128.9 (CH), 122.3 (C), 118.6 (CH), 47.1 (CH), 32.2 (CH3), 20.5 (CH3); m/z (ES)

[M+H]+; 208 (100%) HRMS (ES) (found 208.1446 [M+H]+; C 1 1H 17N3 O requires

208.1444).

The HCI salt was prepared by adding 5 eq of 3.8M HCI (in MeOH) to a solution of the free 

base in methanol with swirling for 1 0  minutes followed by removal of the volatiles under 

reduced pressure. The resulting solid was then washed with ether and dried under reduced 

pressure to yield the title compound as a colourless solid (96%). mp 149-150 °C.

Preparation of 4-(dimethylamino)-/Vr-isopropyl-iV-methylbenzohydrazide 95

The title compound was prepared using general procedure 2. The crude product was purified 

by column chromatography eluting with (2 :1 ) petroleum ether/ethyl acetate resulting in the 

free base (1.29 g, 63%) as an off white solid, mp 69-70 °C; vmax (CDC^/cm ' 1 3685, 3262, 

3153, 2969, 2901, 2812, 2358, 1792, 1608, 1526, 1469, 1428; 'H NMR (400 MHz, CDC13) 

SH 7.45 (2H, d, J  = 8.7, Ar-H), 6.60 (2H, d, J  = 8.9, Ar-H), 3.18 (4H, m, CH, NC£b), 2.94 

(6 H, S, NCH3), 0.86 (6 H, d, J = 6.2, CH3 ); 13C NMR (62.5 MHz, CDCI3) 8 C 171.9 (C),
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151.7 (C), 130.0 (CH), 122.0 (C), 110.9 (CH), 49.6 (CH3), 40.2 (CH3), 39.8 (CH), 20.9

(CH3); m/z (ES) [M +Hf; 236 (100%) HRMS (ES) (found 236.1757 [M+H]+; Ci3H2 iN30

requires 236.1759).

The HC1 salt was prepared using general procedure 2 (89%). mp 8 8  °C.

Preparation of A f-isopropyl-A-methyI-4-nitrobenzohydrazide 99

The title compound was prepared using general procedure 2. The crude product was purified 

by column chromatography eluting with ( 1 :1 ) petroleum ether/ethyl acetate resulting in the 

free base (1.18 g, 33%) as an off white solid, mp 58 °C;vmax (CDCl^/cm ' 1 3434, 2968, 

2106, 1636, 1520; lH NMR (400 MHz, DMSO) 5H 8.19 (2H, d , J =  8 .8 , Ar-H), 7.67 (2H,d, 

J=  8.4, Ar-H), 5.04 (1H, s, NH), 3.14-3.11 (4H, m, CH, NCH3), 0.66 (6 H, d, / =  6.0, CH3); 

13C NMR 8 C (62.5 MHz, DMSO) 170.2 (C), 147.6 (C), 144.4(C), 130.1 (CH), 123.0 (CH),

46.7 (CH3), 33.0 (CH), 20.5 (CH3); m/z (ES) [M+H]+; 238 (100%) HRMS (ES) (found 

238.1032 [M+H]+; C 10Hi5N3 O3 requires 238.1030).

The HC1 salt was prepared using general procedure 2. (93%). mp 144 °C.

Preparation of A'-isopropyl-4-methoxy-iV-methylbenzohydrazide 77

The title compound was prepared using general procedure 2 The crude product was purified 

by column chromatography eluting with ( 1 :1 ) petroleum ether/ethyl acetate resulting in the 

free base (1.32 g, 51%) as a colourless solid, mp 42^14 °C; vmax (CDCl^/cm 1 3436, 3269, 

3153, 2968, 2933, 2838, 1610, 1512, 1465; *H NMR (250 MHz, 35 °C, CDC13) 8 H 7.51
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(2H, d, J  = 8.5, Ar-H), 6.90 (2H, d, J  = 8 .8 , Ar-H), 3.81 (3H, s, OCH3 ), 3.27 - 3.15( 4H, m, 

CH, NCH3 ), 1.06 (6 H, d, J = 6.0, CH3 ); 13C NMR (100 MHz, CDC13) 8 c 171.1 (C), 161.1 

(C), 129.7 (CH), 127.6 (CH), 113.4 (C), 55.3 (CH3), 49.6 (CH3), 41.7 (CH), 20.8 (CH3); m/z 

(ES) [M+Hf; 223 (100%) HRMS (ES) (found 223.1441 [M+H]+; Ci2H,8N2 0 2  requires 

223.1441).

The HC1 salt was prepared using general procedure 2 (91%). mp 130-133 °C.

Preparation of 4-chloro-A'-isopropyl-A-methylbenzohydrazide 97

The title compound was prepared using general procedure 2 The crude product was purified 

by column chromatography eluting with (5:1) ethyl acetate/petroleum ether resulting in the 

title compound (1.13 g, 43%) as a colourless oil. Analysis of this compound clearly 

indicated that it posses many rotational states in solution. vmax (CDCl3 )/cm'' 3420, 2105, 

1639; 'H NMR (500 MHz, DMSO) 8 H 7.65-7.50 (2H, m, Ar-H), 7.41 (2H, bs, Ar-H), 4.98 

(1H, bs, NH), 3.26-3.11 (4H, m, CH, NCHj), 0.77 (6 H, bs, CH3); 13C NMR (125 MHz, 

DMSO) 5c 164.2 (C), 133.7 (C), 130.5 (CH), 129.1 (CH), 129.0 (CH), 127.3 (CH), 20.2 

(CH3), other carbons were not observed; m/z (ES) [M+H]+; 227 (100%) HRMS (ES) (found 

227.0946 [M+H]+; C nH I7N30 requires 227.0946).

The HC1 salt was prepared in situ within the reaction flask of the catalytic run by adding 1 

eq of HC1 in methanol. The volume of methanol as a solvent was then adjusted to maintain 

the correct reaction concentration.
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Preparation of 2,3,4,5,6-pentafluoro-iV'-isopropyl-iV-methylbenzohydrazide 96

F

To a stirred solution of Af-z'so-propylidene-iV-methyl-hydrazine 100 (1 g, 11.6 mmol, 1.16 

mL) and triethylamine (1.17g, 11.6 mmol, 1.61 mL) in dichloromethane (20 mL) at 0 °C 

was added 4 dimethylamino benzoyl chloride (2.67g, 11.6 mmol) in dichloromethane (5 

mL) slowly over a period of five minutes, the solution was then allowed to warm to room 

temperature and stirred overnight. Once the reaction appeared to be over by TLC H2 O (20 

mL) was added and the aqueous solution extracted with dichloromethane (3x20 mL). The 

combined organics were dried over Na2 S0 4  and the volatiles removed under reduced 

pressure to yield the crude product. The crude product was analysed to determine the extent 

of reaction and was then dissolved in a mixture of ethanol (12 mL) and acetic acid ( 6  mL). 

To this solution was added Platinium(IV) oxide (131 mg, 0.58 mmol, 5 mol%) and stirred at 

room temperature. The flask was then evacuated and back filled with an H2  for a total of 

five times and allowed to stir at room temperature under an atmosphere of H2 for 18hrs. The 

reaction mixture was then filtered through celite® and H2 O (10 mL) was added to the 

filtrate. The aqueous layer was then extracted with CHCfi (3x20 mL), the organics 

combined, dried over Na2 SC>4 and the volatiles removed under reduced pressure. The crude 

product was purified by column chromatography eluting with (4:1) petroleum ether/ethyl 

acetate resulting in the free base ( 2.59 g, 79%) as a pale pink solid, mp 77-77 °C; vmax 

(CDCbVcm' 1 3423, 2973, 2933, 1654, 1500; 'H  NMR (400 MHz, DMSO) 8 H 5.49 (1H, bs, 

NH), 3.21-3.14 (4H, m, CH, NCH3), 0.73 (6 H, d, J  = 6.0, CH3); 13C NMR (62.5 MHz, 

DMSO) 8c 160.2 (C), 45.6 (CH3), 31.8 (CH), 19.6 (CH3) other carbons were not observed', 

m/z (ES) [M+H]+; 283; HRMS (ES) (found [M+H]+; 283.0862 C 11H11F5N2 O requires 

283.0864).

The HC1 salt was prepared by adding 5 eq of HC1 (in MeOH) to a solution of the free base 

in methanol with swirling for 1 0  minutes followed by removal of the volatiles under reduced 

pressure. The resulting solid was then washed with ether and dried under reduced pressure 

to yield the title compound as a colourless solid (93%). mp 111 °C.
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iV-Methyl-TV'-iso-propyl benzoic hydrazide hydrochloride 90

PhA. H.HCI
,Ns

The title compound 90 was prepared using general procedure 2 affording the product (150 

mg, 11%) as a colourless solid; mp 145-146 °C; vmax (nujol)/cm_1 3408, 2923, 1638, 1460, 

1377, 1333, 1122, 1077; ’H NMR (400 MHz, CDCI3 ) 5H 7.51 (2H, d, 7 = 8.0, Ar-H), 7.49 

(1H, t, 7 =7.1, Ar-H), 7.42 (2H, m, Ar-H), 3.94 (1H, sept., 7 =  6 . 6  NCH(CH3)2), 3.61 (3H, s, 

NCH3 ), 1.51 (6 H, d, 7 = 6 .6 , NCH(CH2 )3); 13C NMR (100 MHz, CDC13) 6 C 170.8 (C), 132.3 

(C), 130.7 (CH), 128.9 (CH), 128.2 (CH), 53.7 (CH3), 38.6 (CH), 18.0 (CH3); m/z (ES) 

[M+H-HC1]+ 193 (100%); HRMS (ES) (found 193.1336 [M+H-HC1]+; CuH 1 7N20  requires 

193.1335).

(V'-(Propan-2-ylidene)benzoic hydrazide 103

o
Ph N 

H

Benzoic hydrazide 102 (5.00 g, 36.7 mmol) was stirred in an excess of acetone (22 mL, 0.3 

mmol), containing acetic acid (40 pL, 0.7 mmol), for 48 hours at ambient temperature. 

Water (30 mL) was added and the reaction mixture was extracted with dichloromethane 

(3x30 mL). The combined organic extracts were dried (Na2 SC>4 ) and reduced in vacuo to 

afford the title compound (5.57g, 8 6 %) as a colourless solid; mp (petrol/ether) 141-143 °C 

[lit. 121 mp 142-143 °C]; v max (nujoiycm 1 3221, 1655, 1578, 1578, 1531, 1490; 'H NMR 

(400 MHz, CDC13) 8 h 8.70 (1H, s, NH), 7.79 (2H, d, 7 =  7.1, Ar-H), 7.52 (1H, t, 7 =  7.1, Ar­

if), 7.44 (2H, t, 7 = 7.1, Ar-H), 2.15 (3H, s, CHj), 1.97 (3H, s, CH3); 13C NMR (100 MHz, 

CDC13) 8 c  164.6 (C), 156.9 (C), 134.1 (C), 132.1 (CH), 129.0 (CH), 127.6 (CH), 26.0 

(CH3), 17.3 (CH3); m/z (El) [M]+ 176 (8 %), 161 (50), 105 (100); HRMS (El) (found 

176.0950 [M]+; Ci0 Hi2N2O requires 176.0950).
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"Si'Vo
Platinum(IV) oxide ( 6 8  mg, 0.3 mmol) was placed in a nitrogen flushed flask with ethanol 

(12 mL) and acetic acid ( 6  mL). 7V-(Propan-2-ylidene) benzoic hydrazide 103 (2.50 g, 14.2 

mmol) was added, the flask was charged with hydrogen and stirred for 48 hours at ambient 

temperature. The reaction mixture was filtered over Celite and the filtrate was neutralised 

with saturated sodium bicarbonate solution (180 mL). The volatiles were removed under 

reduced pressure and the aqueous phase was extracted with diethyl ether (5x50 mL). The 

combined organic extracts were washed with brine (30 mL), dried (MgSdO and the 

volatiles were removed under reduced pressure to give the title compound (2.18 g, 8 6 %) as a 

colourless powder; mp 110-112 °C; vmax (nujoiycm ' 1 3289, 1640, 1537, 725, 693; !H NMR 

(400 MHz, CDC13) 8 h 7.70 (1H, s, NH), 7.69 (2H, d, J = 7.7, Ar-H), 7.46 (1H, t, J  = 7.7, Ar­

if), 7.38 (2H, t, J = 7.7, Ar-H), 4.81 (1H, s, NH), 3.18 (1H, sept., J  = 6.2, NCH(CH3)2), 1.05 

(6 H, d, J = 6.2, NCH(CH3 )2); 13C NMR (100 MHz, CDC13) 5c 167.5 (C), 132.9 (C), 131.9 

(CH), 128.7 (CH), 126.9 (CH), 51.4 (CH), 20.9 (CH3); m/z (El) [M]+ 178 (3%), 163 (9), 122 

(13), 105(100); HRMS (El) (found 178.1105 [M]+; CioH,4 N2 0  requires 178.1106).

Preparation of 3-naphthaIen-2-yl-propenal

Compound 117 was prepared in accordance of the procedure of Cacchi. 1 6 4 To a stirred 

solution of 2 bromonapthalene (1.04 g, 5 mmol) in dry DMF (20 mL) was added acrolein 

diethylacetal(1.95 g, 15 mmol, 2.28 mL), nBu4 NOAc (3.02 g, 10 mmol) , K2CO3(1.04 g, 

10 mmol), KC1 (0.37g, 5 mmol), and Pd(OAc) 2 (0.03 g, 15 mmol). The mixture was stirred 

for 16 h at 90 °C. The solution was allowed to cool and 2M HC1 (5 mL)was added slowly 

and the reaction stirred at room temperature for 1 0  min to allow hydrolysis of the acetal. 

The reaction was then diluted with ether and washed with water. The organic layer was then 

dried over Na2 SC>4 and concentrated in vacuo. The crude product was purified by column
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chromatography (9:1) petroleum ether/ethyl acetate to yield the title compound (0.62 g,

6 8 %) as off white platy crystals; mp 125 °C,; ‘H NMR (400MHz, CDCI3 ) § h  9.77 (1H, d, 7

=7.7), 7.97-7.55 (8 H, m), 6.83 (1H, dd, 7 = 15.9, 7.7); 13C (125 MHz, CDCI3 ) 6 c 193.8,

152.8, 134.7, 133.3, 131.6, 130.8, 129.0, 128.9, 128.7, 127.9, 127.1, 123.6; m/z (APCI) 183

(M+H); HRMS (ES) (found 183.0804[M+H]+;C,3H i0O requires 183.0804).

Preparation of (Z?)-3-(3-(trifluoromethyl)phenyl)acrylaldehyde 118

Compound 118 was prepared in accordance of the procedure of Cacchi. 164 To a stirred 

solution of 3-bromo benzotrifluoride (1.13 g, 5 mmol, 0.70mL) in dry DMF (20 mL) was 

added acrolein diethylacetal (1.95 g, 15 mmol, 2.28ml), nBu4 NOAc (3.02 g, lOmmol) , 

K2CC>3(1.04 g, 10 mmol), KC1 (0.37g, 5 mmol), and Pd(OAc) 2  (0.03 g.15 mmol). The 

mixture was stirred for 3 h at 90 °C. The solution was allowed to cool and 2M HC1 (5 mL) 

was added slowly and the reaction stirred at room temperature for 1 0  min to allow 

hydrolysis of the acetal. The reaction was then diluted with ether and washed with water. 

The organic layer was then dried over Na2 SC>4 and concentrated in vacuo. The crude product 

was purified by column chromatography (9:1) petroleum ether/ethyl acetate to yield the title 

compound (0.70 g, 70%) as a colourless oil. The data obtained is consistent with the 

reported values. v,„m (neat) /cm ' 1 2683, 1334, 1168, 1125; 'H NMR (400MHz, CDCI3) SH 

9.76 (1H, d, 7 = 7.5, CHO), 7.82-7.57 (4H, m, Ar-H), 7.53 (1H, d, 7 = 16.0, C=CHAr), 6.78 

(1H, dd, 7 = 16.0, 7.5, CHOCH=C) 13C NMR (100MHz, CDCI3) 8 c 193.1, 150.4, 134.8, 

131.7(q, 7=32.8), 131.2, 130.0, 129.7, 127.5 (q, 7=3.7), 125.2(q, 7 = 3.8), 123.7((q, 7 = 

272.4).
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PF<

To a stirred solution of cinnamaldehyde(118 mg, 1.42 mmol, 122 pi) in methanol (2 mL) 

was added trifluoromethylpyrrolidine (198 mg, 1.42 mmol) and allowed to stir for 2 min. 

Then hexafluorophosphoric 60% w/w solution in H2 O (345 mg, 1.42 mmol, 210 pi) was 

added forming a yellow precipitate on reaction. The excess solvent was removed under 

reduced pressure and the crude mixture was recrystallised from the minimum amount of hot 

methanol. To yield the title compound (82%) as an of colourless solid, mp 125 °C; !H NMR 

(400MHz, CD3 CN) 8 h 8.64 (1H, d, J  =10.6, N+=CH), 8.12 (1H, d, /  = 15.2, CH=CHAr), 

7.89 (2H, m, Ar-H), 7.68(m, 1H, Ar-H), 7.58 (m, 2H, Ar-H), 7.32 (1H, dd, / =  10.6, 15.2, 

CH=CHAr), 4.96 ( 1 H, m, CHCF3), 4.41 (2H, m, N+CIfc), 2.41 (2 H, m, CH2 CH2), 2.26(2H, 

m, CH2CH2); 13C (125 MHz, CD3 CN) 5c 170.8, 165.3, 134.9, 131.2, 129.7, 125.1, 118.4, 

6 6 . 8  (q, J  = 31.3),53.3, 24.9, 22.6, 21.7; m/z (APCI) 254 (M-PF6); HRMS (ES) (found 

254.1152[M-PF6]+;C,4Hi5NF3 requires 254.1151).

Preparation of 3-(4-nitrophenyl)bicycIo[2.2.1]hept-5-ene-2-carbaldehyde

n o 2

trans-4- Nitrocinnamaldehyde (390 mg, 1.9 mmol, 1.0 eq) was added to a solution of 

catalyst (10 mol%, 0.19 mmol) in methanol (2.0 mL) at 25 °C and the resulting mixture was 

stirred for 2 minutes to initiate iminium ion formation. Freshly cracked cyclopentadiene 19 

(323 mg, 4.9 mmol, 0.38 mL, 2.5 eq) was added in a single aliquot and stirring was 

continued for 6  hours. The volatiles were removed under reduced pressure and the resulting 

organics were hydrolysed in a chloroform (2 mL), water (1 mL) trifluoroacetic acid (1 mL)

168



Chapter 10 T J  K Gibbs- PhD Thesis 2008

mixture over night. Saturated sodium hydrogen carbonate solution (18 mL) was added to

neutralise the solution and the aqueous phase was extracted with dichloromethane (2 x2 0

mL). The combined organics were washed with water (10 mL) and dried (Na2 SC>4 ) prior to

the removal of the volatiles under reduced pressure. The data measured was consistent with

the literature. 165 umax (liquid filmVcm"1 1720, 1591, 1511, 1344.

exo-isomer lH NMR (400 MHz, CDC13) SH 9.87 (1H, d, J  = 1.5) 8.06-8.01(2H, m,) 7.25 

(1H, dd, J  = 5.6 3.6) 6.36 (1H, dd, J  = 5.7 3.3) 6.00 (1H, dd, J  = 5.7, 2.7) 3.84 (1H, dd, J  =

4.5, 4.5) 3.26-3.13 (2H, m), 2.59 (1H, dd, J  = 5.1, 0.6) 1.74-1.63 (2H, m, CH2 ); 13C (100 

MHz, CDCI3 ) 8 C 202.0(CH), 151.0(C), 146.8(C), 137.4(CH), 136.3(CH), 129.1(CH), 

123.7(CH), 59.9(CH), 48.8(CH), 48.0(CH2), 45.9(CH), 45.5(CH).

ewrfo-isomer lU NMR (400 MHz, CDCI3 ) SH 9.60 (1H, d, J = 1.5) 8.11-8.08(2H, m) 7.38 

(1H, dd, J  = 8.4, 0.6) 6.39 (1H, dd, /  = 5.7 3.3) 6.15 (1H, dd, J  = 5.7, 3.0) 3.84 (1H, br) 

3.26-3.13 (2H, m), 2.59 (1H, dd, J  = 5.1, 0.6) 2.94-2.90 (1H, m), 1.74-1.63 (2H, m); 13C 

(100 MHz, CDCI3 ) 8 C 202.6(CH), 152.0(C), 146.7(C), 139.4(CH), 134.3(CH), 128.6(CH), 

124.1(CH), 61.5(CH), 48.3(CH), 47.5(CH2), 45.9(CH), 45.4(CH).

Preparation of L-boc-phenylalaninemethylamide 154

Di-tert-butyldicarbonate (2.44 g, 11.2mmol) was added to dry dichloromethane (70 mL) at 0 

°C and stirred. To this was added L-phenylalaninmethylamide 138 (2 g, 11.2 mmol) in 

dichloromethane (10 mL) slowly over a period of 5 mins. The reaction was allowed to reach 

room temperature and stirred overnight. The volatiles were removed under reduced pressure 

to yield a crude colourless solid which was purified by column chromatography eluting with 

( 1 :1 ) ethyl aceatate/petroleum ether to tiled the title compound (2.16 g, 82%) as a colourless 

solid. Measured data is consistent with the literature. 1 66 Mpl39-141 °C; *H NMR
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(400MHz, CDC13) 5h 7.30-7.14 (5H, m, Ar-H), 6.13 (1H, bs, NH), 5.22 (1H, bs, NH) 4.34

(1H, dd, J  = 7.6, 7.2, CHCH2) 3.03 (2H, m, CHCIfc) 2.71 (3H, d, J = 4.9, NCfcb), 1.38 ( 9H,

s C(CH3 )3); 13C NMR (100MHz, CDCI3 ) 8 c 171.9(C), 155.2(C), 136.9(C), 128.2(CH),

128.5(CH), 126.8(CH), 80.0(C), 56.0(CH), 38.9(CH2), 28.2(CH3), 26.0(CH3).

Preparation of benzyl (S)-l-(methylcarbamoyl)-2-phenylethylcarbamate 155

01
Bn

Benzyl chloroformate (3.84 g, 22.5 mmol, 3.21 mL) and triethylamine (2.28 g, 22.5 mmol, 

3.14 mL) were added to dichloromethane (40 mL) and stirred at 0 °C. To this was added L- 

phenylalaninmethylamide 138 (4 g, 22.3 mmol) in dichloromethane (10 mL), allowed to 

warm to room temperature and stirred overnight resulting in significant quantities of a 

colourless precipitate. The precipitate was filtered and washed with H2 O and 

dichloromethane and subsequently purified by column chromatography eluting with (3:1) 

ethyl acetate/petroleum ether to yield the title compound (5.01 g, 72%) as a colourless solid, 

mp 163-164 °C; t>max (KBr) /cm ' 1 3306, 2353, 1668.2, 1652, 1531, 1285, 1285, 1239, 1146; 

‘H NMR (400MHz, CDC13) 8 H7.30-7.18 (10H, m, Ar-H), 6.56 (1H, bs, NH), 5.82 (1H, bs, 

NH), 4.98 (2H, dd, J  = 12.6, 28.4, OCH2 Ar), 4.24-4.18 (1H, m, CHCH2), 3.09 (1H, dd, J = 

5.0, 13.9, CHCH2), 2.78 (1H, dd, J = 9.4, 13.9, CHCJh), 2.62 (3H, d, 7 = 4.7, NHCH3 ).

0 ^ ,N H

B n ^ ^ N H

A
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Preparation of (S)-2-(benzyIamino)-N-methyl-3-phenylpropanamide 156

Benzyl bromide (5.73 g, 33.5 mmol, 3.98 mL), triethylamine (3.39 g, 33.5 mmol, 4.67 mL) 

and L-phenylalaninmethylamide 138 ( 6  g, 33.5 mmol) were added to toluene (70 mL) and 

refluxed with rigorous stirring overnight. The solution was allowed to cool and H2 O (30 

mL) added. The resulting solution was extracted with ethyl acetate (3x50 mL), the organics 

combined and concentrated under reduced pressure to yield the crude colourless solid which 

was purified by column chromatography eluting with ( 1 :1 ) ethyl acetate/petroleum ether to 

give the title compound (7.40 g, 82%) as a colourless solid. mp 53-54 °C; Dmax (CHCI3 ) 

/cm' 1 3377, 3017, 2942, 2854, 1950, 1666, 1531, 1496, 1454, 1412, 1332, 1117; ‘H NMR 

(400MHz, CDCI3 ) 8 H 7.32-7.06 (10H, m, Ar-H), 3.72 (1H, d, J  = 13.4, OCH^Ar), 3.56 (1H, 

d, J  = 13.4, OCJhAr), 3.42 (1H, dd. J  = 4.2, 9.5, CHCH2 Ar), 3.26 (1H, dd, J  = 4.2, 13.9, 

CHClfcAr), 2.83 (3H, d, J  = 5.0, NCH3 ), 2.77 (1H, dd, J  = 9.5, 13.9, CHCfEAr), 1 .75 (1H, 

bs, NH); m/z (APCI) (M+H) 269; HRMS (ES) (found 269.1650 [M+H]+; C 17H2 0 N2 O 

requires 269.1648).

Preparation of (14E)-2-(2,4-dinitrophenyl)-l-((3-phenylbicycIo[2.2.1]hept-5-en-2- 

yl)methylene)hydrazine 160

Compound 160 was prepared in accordance to the method developed by Cavill. 3- 

Phenylbicyclo[2.2.1]hept-5-ene-2-carboxaldehyde (24 and 25) was reacted with 2,4- 

dinitrophenylhydrazine to provide compound. Purification by flash chromatography on 

silica, eluting with ethyl acetate/petroleum ether (10:90), afforded the title compound as a 

yellow powder; Chiral HPLC analysis using a Chiralcel OD-R column, wavelength 215 nm,
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eluting with acetonitrile/water (80:20), flow rate of 0.5 mL/min, separated the chiral sample,

retention times of 30.7 and 36.5 minutes (em/o-diastereoisomers), 41.8 and 51.4 minutes

(gxo-diastereoisomers)

Exo-Diastereoisomer; Xmax 215 nm (EtOH); mp 160-162°C; Found 379.1402 (MH+ 

C2oHi8N4 0 4  requires 379.1401); vmax (Nujoiycm ' 1 3289 , 1618 , 1586, 1518, 1502, 1334, 

833, 743, 701; 5H (400 MHz, CDC13) 9.05 (1H, d, 7 =  2.5, H-3’), 8.22 (1H, dd, 7 = 9.7, 2.5, 

H-5’), 7.85 (1H, d, 7 = 9.7, H-6 ’), 7.66 (1H, d, 7 =  6.1, N=CH), 7.21 (5H, m, Ar-H), 6.33 

(1H, dd, 7=  5.6, 3.1, C=CH), 6.03 (1H, dd, 7 =  5.6, 2.8, C=CH), 3.52 (1H, dd, 7=  4.8, 3.7, 

H-3"), 3.21 (1H, br, C=CHCH), 2.99 (1H, br, C=CHCH), 2.63 (1H, ddd, 7 = 6.1, 4.8, 1.4, 

H-2"), 1.71 (1H, br, CH2 ), 1.60 (1H, ddd, 7 =  9.4, 9.4, 1.6, CH2); 6 C (100 MHz, CDC13)

154.9 (CH), 145.0 (C), 142.7 (C), 137.8 (C), 136.7 (CH), 135.9 (CH), 128.8 (C), 128.7 

(CH), 128.2 (CH), 127.8 (CH), 126.4 (CH), 123.5 (CH), 116.6 (CH), 49.9 (CH), 48.9 (CH),

48.7 (CH), 48.1 (CH), 47.5 (CH2); m/z (APcI) 378.9 (MH+, 51%), 338.4 (40), 144.9 (35),

106.9 (100);

Emfo-Diastereoisomer; Xmax 215 nm (EtOH); mp 160-162°C; Found 379.1402 (MH+ 

C2 0 Hi8N4 O4  requires 379.1401); vmax (nujol/cm1) 3289, 1618, 1586, 1518, 1502, 1334, 833, 

743, 701; 5H (400 MHz, CDCI3 ) 11.04 (1H, s, NH), 9.05 (1H, d, 7 = 2.3 , H-3’), 8.22 (1H, 

dd, 7=  9.6, 2.3, H-5’), 7.83 (1H, d, 7 =  9.6, H-6 '), 7.18 (6 H, m, N=CH, Ar-H), 6.44 (1H, dd, 

7=  5.5, 3.1, C=CH), 6.14 (1H, dd, 7 = 5.5, 2.6, C=CH), 3.09 (1H, br, C=CHCH), 3.07 (2H, 

br, C=CHCH, H-3"), 2.78 (1H, br, H-2"), 1.81 (1H, br, CH2), 1.61 (1H, br, CH2); 5C (100 

MHz, CDCI3 ) 155.5 (CH), 145.0 (C), 143.6 (C), 139.6 (CH), 134.1 (CH), 130.0 (CH), 128.7 

(CH), 127.3 (CH), 126.3 (CH), 123.5 (CH), 116.6 (CH), 51.1 (CH), 49.0 (CH), 48.4 (CH), 

47.4 (CH), 47.3 (CH2); other quaternary carbons not observed; m/z (APcI) 378.9 (MH+, 

51%), 338.4 (40), 144.9 (35), 106.9 (100).
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Compound 138 was prepared according to the procedure of MacMillan . 16 7 To a solution of 

L-phenylalanine methyl ester hydrochloride (2 g, 9.27 mmol) in ethanol (2 mL) was added 

methylamine 33% in ethanol solution (5 mL, 23.2 mmol) and the reaction stirred overnight 

at ambient temperature. The reaction mixture was then concentrated under reduced pressure 

to yield the crude reaction mixture. The mixture was purified by recrystallisation by 

displacement of the solid methylamine hydrochloride form solution with diethyl ether. The 

solid impurity was filtered and the filtrate concentrated under reduced pressure. The 

purification procedure was conducted as many times as necessary to yield the title 

compound(1.46 g, 81%) as a colourless solid, mp 62 °C. NMR (400MHz, CDCI3) 8 h 

7.39-7.16 (5H, m Ar-H), 3.72(1H, m, CH) 3.27(1H, dd, J = 4.32,13.70,CH2) 2.80(3H, d, J  

4.94, NCH3 ) 2.76(1H, dd, J  = 9.16,13.70, CH2 ) 2.54 (2H, bs, NH2 ); 13C NMR (125 MHz); 

8 c 174.8 (C), 138.0(C), 129.3(CH), 128.7(CH), 126.8(CH), 56.5(CH), 41.0(CH2), 

25.8(CH3); m/z (APCI) 179 (M+H); HRMS (ES) (found 179.1180[M+H]+; C 1 0Hi4 N2O 

requires 179.1179).

Preparation of (5)-2-(4-nitrobenzylideneamino)-A-methyl-3-phenylpropanamide 152

NH

Brf

To a solution of L-phenylalaninemethylamide 183 (0.50 g, 2.8 mmol) and p -TSA (48 mg, 

0.28 mmol) in MeOH (5 mL) was added 4-nitrobenzaldehyde 151 (0.42 g, 2.8mmol) and the 

reaction refluxed overnight. The reaction was allowed to cool and the volatiles removed 

under reduced pressure to yield the crude product. Purification was achieved using column 

chromatography eluting with ethyl acetate/petroleum ether ( 1 :1 ) to afford the title compound 

as a viscous yellow oil. Dmax (CH2CI2) /cm ' 1 3414, 3054, 2363, 1676, 1348, 1265; ]H NMR 

(400MHz, CDCI3) 5h 8.25 (2H, d, J  = 8 .8 , Ar-H), 7.75 (2H, d, J  = 8 .8 , Ar-H), 7.57 (1H, s,
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N=CHAr), 7.26-7.17 (3H, m, Ar-H), 7.06 (2H, d, J  = 8.0, Ar-H), 6.83 (1H, bs, NH), 4.02

(1H, dd, J = 3.0, 10.1, CHCH2), 3.47 (1H, dd, J = 3.1, 13.3, CHCH2), 2.95-2.90 (4H, m,

CHCHs, NCH3); m/z (El) (M+) 311; HRMS (El) (found 310.1186 [M-H]+; C 17H 1N3 O3

Preparation of (2R,5S) -5-benzy I-3-methyI-2- (4-nit ropheny Diniidazolidin-4-one 

hydrochloride 146

L-phenylalaninamethylamide 138 (400 mg, 2.23 mmol), p-nitrobenzaldehyde 151 (340 mg, 

2.23 mmol) and p -TSA (42 mg, 0.22 mmol, 0.1 eq) were dissolved in anhydrous DMF (2 

mL) and heated to 120 °C for 30 minutes using microwave irradiation (max 100 watts). The 

reaction mixture was allowed to cool. H20  (10 mL) and ethyl acetate (10 mL) were added 

and the aqueous layer extracted with ethyl acetate (3x10 mL). The organics were then 

combined, dried over MgSC>4 , filtered and concentrated under reduced pressure. The 

resulting residue was purified using column chromatography eluting with ( 1 :1 ) petroleum 

ether/ethyl acetate to yield the free base (94 mg, 25%) as a light yellow solid. !H NMR 

(500MHz, CDCI3) 6 h 8.16 (2H, d, /  = 8 .8 , Ar-H), 7.36 (2H, d, J  = 8 .8 , Ar-H), 7.26-718 

(5H, m, Ar-H), 4.88 (1H, s, CH(NR)2Ar), 4.00-3.97 (1H, m, CHCH2), 3.07 (1H, dd, /  = 4.2,

13.8, CH2 CH), 2.96-2.92 (1H, m, CH2 CH), 2.52 (3H, s, NCH3); 13C NMR (125 MHz, 

CDCI3); 5C 174.0 (C), 148.5(C), 146.5(C), 137.0(C), 129.6(CH), 128.6(CH), 127.8(CH), 

127.0(C), 124.3(CH), 76.5(CH), 59.7(CH), 38.5(CH2), 27.3(CH3) m/z (ES) 312 (M+H).

The HC1 salt was prepared by treating the catalyst to 5 equivalents of 3.8M HC1 in ether. 

The volatiles were removed under reduced pressure. The resulting solid was washed with 

ether and dried to yield the salt as a yellow solid (95%) mp 181-183 °C
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Synthesis of piperazin-2,6-dione 190
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Glycine methyl ester hydrochloride 186 (LOO g, 7.97 mmol) and potassium hydrogen 

carbonate (2.00 g, 19.93 mmol) was stirred in acetonitrile (60 mL). To this suspension 

2-bromoacetamide 195 (1.10 g, 7.97 mmol) was added and the reaction mixture refluxed for 

8  h. After cooling to room temperature the mixture was filtered and the solvent removed 

under reduced pressure. The resulting solid was washed with chloroform (5 mL) and 

acetone (5 mL) to yield the title compound (0.31 g, 34%) as a colourless solid, mp 100 °C 

(dec); vmax (Nujol) 3276, 1695 c m 1; 'H NMR (400 MHz, d - 6  DMSO) 5H 10.84 (1H, bs,

173.3, 48.4. MS (ES) m/z = 114 [M]+; HRMS (ES) (found [M]+ 114.0424; C4 H6 N2 0 2  

requires 114.0424).

Synthesis of piperazin-2,6-dione hydrochloride 190.HC1

Piperazin-2,6-dione (0.20 g, 1.75 mmol) was stirred in a solution of HC1 in diethyl ether 

(2.84 M, 8.75 mmol, 3 mL) for five minutes. Then the mixture was filtered and the product 

was washed with diethyl ether. The HCl-salt was isolated as a colourless solid in 74% yield 

(196mg). mp 130 °C (dec). v max (Nujoiycm1: 3295, 1692, 1267. ]H NMR (400 MHz, d- 6

NH), 3.42-3.32 (4H, m, NCH2 ), 3.12-3.04 (1H, m, NH); l3C NMR (62.5 MHz, DMSO) 6 C

H

H.HCI

DMSO) SH 10.92 (1H, bs, NH), 4.00-3.40 (2H, bs, NH), 3.39 (4H, s, CH2 ); 13C NMR (62.5 

MHz, d- 6  DMSO) 8 c 172.9,48.1.
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Synthesis of 3-benzylpiperazin-2,6-dione 191

‘N 
H 

Ph

L-Phenylalanine ethyl ester hydrochloride 138 (1.83 g, 7.97 mmol) and potassium hydrogen 

carbonate (2.00 g, 19.93 mmol) were stirred in toluene (60 mL). To the suspension

2-bromoacetamide '95 (1.10 g, 7.97 mmol) was added and the reaction mixture refluxed for 

4 d. After being cooled to room temperature the mixture was filtered and the solvent was 

evaporated. The solid collected was washed with chloroform (5 mL) then acetone(5 mL) 

and dried to yield the title compound (179 mg, 11%) as a colourless solid, mp 157 °C (dec); 

Vmax (Nujol) 3282, 1697, 1226 c m 1; ‘H NMR (400 MHz, d - 6  DMSO) 8 H 10.78 (1H, bs, 

NH), 7.29-7.17 (5H, m, Ar-H), 3.60-3.54 (1H, m, NCH), 3.47-3.31 (2H, m, NCH2 ), 3.16 

(1H, dd, J = 3.8, 14.2, ClfcA r), 2.93-2.86 (1H, m, NH), 2.75 (1H, dd, J  = 9.7, 14.2, CEbAr); 

l3C NMR (100 MHz, d - 6  DMSO) 8 c 173.8(C), 139.1(C), 129.8(CH), 128.5(CH), 

126.6(CH), 58.6(CH), 48.1(CH2), 35.6(CH2); MS (ES) m/z = 246 [M+MeCN+H]+, 

205[M+H]+; HRMS (ES) calculated for C nHi 2N2 0 2 [M]+ 205.0972, found 205.0972.

Synthesis of 3-benzylpiperazin-2,6-dione hydrochloride 191.HC1

Ph

3-Benzylpiperazin-2,6-dione 191 (0.10 g, 0.49 mmol) was stirred in a solution of HC1 in 

diethyl ether (2.84 M, 1.00 mL, 2.45 mmol) for five minutes. Then the mixture was filtered 

and the product was washed with diethyl ether. The HCl-salt was isolated (92 mg, 77%) as a 

colourless solid. vmax (Nujol) 3509, 3338, 1737, 1267 cm’1; NMR (400 MHz, d- 6  

DMSO) 5h 11.75 (1H, bs, NH), 11.00-9.50 (2H, bs, NH ), 7.35-7.23 (5H, m, Ar-H), 4.39 

(1H, bs, NCH), 3.99-3.88 (2H, m, NCH2), 3.37 (1H, dd, J=  6.2, 14.4, CH2 Ar), 3.15 (1H, dd, 

J = 6.5, 14.3, CH2Ar); 13C NMR (62.5 MHz, d- 6  DMSO) 6 C 168.3, 166.6, 135.6, 129.6,

128.5, 127.0, 55.9, 44.5, 33.2; MS (ES) m/z = 246 [M+MeCN+H-HCl]+, 205 [M+H-HC1]+.
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O ^ N H

n h2

Glycine ethyl ester hydrochloride 186 (3.00 g, 21.50 mmol) was stirred in a solution of 

methylamine in ethanol (33%, 6.00 mL, 48.00 mmol) for 3 days. Then the solvent was 

removed under reduced pressure and the resulting residue dissolved in methanol. Diethyl 

ether was added slowly to the solution until the starting material began to precipitate as a 

colourless solid. The suspension was then filtered followed by concentration of the filtrate 

under reduced pressure to yield the title compound (1.17g, 25%) as a colourless oil. vmax 

(neat)/ cm '1: 3298, 1651, 857, 831; 'H NMR (400 MHz, d - 6  DMSO) 8 H 7.64 (1H, bs, NH), 

2.91 (2H, s, CH2 ), 2.46 (3H, d, 7 = 6.5, NHCH3 ), 1.62 (2H, bs, NH); 13C NMR (62.5 MHz, 

d- 6  DMSO) 8c 173.3 (C) 44.8 (CH2) 25.2 (CH3); MS (ES) m/z = 8 8  [M]+; HRMS (ES) 

calculated for C3H8N20  [M]+ 88.0631, found 88.0632.

Synthesis of l-methy!piperazin-2,6-dione 192

o

H

2-Amino-A^-methylacetamide 196 (0.50 g, 5.67 mmol) and potassium hydrogen carbonate 

(1.40 g, 14.0 mmol) were stirred in acetronitrile (60 mL) and stirred vigorously to create a 

suspension. Ethylbromoacetate 195 (0.95 g, 5.67 mmol) was added and the reaction mixture 

was refluxed for 2 days. The reaction mixture was allowed to cool to room temperature and 

the precipitate filtered. The filtrate was concentrated under reduced pressure and the 

resulting residue purified by column chromatography eluting with ethyl acetate to provide 

the title compound (0.21 g, 29%) as a light purple solid, mp 78-82 °C; vmax (Nujoiycm'1: 

3320, 1660, 1300, 1161; !H NMR (400 MHz, CDC13) 5H 3.66 (s, 4H, NCH2), 3.09 (s, 3H, 

NCH3), 1.65 (1H, bs, NH); 13C NMR (62.5 MHz, CDC13) 5C 171.4 (C) 49.7(CH2) 25.4(CH3) 

MS (ES) m/z = 1 2 8  [M]+; HRMS (ES) calculated for C4 H8N2 0 2 [M]+ 128.0580, found 

128.0578.
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Synthesis of l-methylpiperazin-2,6-dione hydrochloride 192.HC1

N
H.HCI

l-Methylpiperazin-2,6-dione 192 (0.15 g, 1.20 mmol) was stirred in a solution of HC1 in 

diethyl ether (2.84 M, 2.50 mL, 6.00 mmol HC1) for five minutes. Then the mixture was 

filtered and the solid was washed with diethyl ether. The product was isolated as a light 

purple solid in 82% yield (0.16 g). mp >190 °C; vmax (Nujol)/ cm ' 1 3319, 1667, 1166; lH.

NCH3); ,3C NMR (62.5 MHz, d - 6  DMSO) 8 c 165.9(C), 44.6(CH2), 25.6(CH3). MS (ES) m/z 

= 128 [M-HC1]+.

Synthesis of 3-benzyl-l-methylpiperazin-2,6-dione

(S)-2-Amino-N-methyl-3-phenylpropanamide 193 (1.00 g, 5.61 mmol) and potassium 

hydrogen carbonate (1.40 g, 14.0 mmol) were stirred in acetonitrile (60 mL). To the 

suspension ethylbromoacetate 195 (0.95 g, 5.67 mmol) was added and the reaction mixture 

was refluxed for 3 d. The reaction mixture was allowed to cool to room temperature then the 

mixture was filtered and the solvent removed under reduced pressure. The residue was 

purified by column chromatography eluting with ( 1 :1 ) ethyl acetate/petroleum ether to yield 

the title compound (0.88 g, 72%) as a light yellow solid, mp 49-52 °C; vmax (Nujol) 3295, 

1660, 1292, 1127 cm '1; ‘H NMR (400 MHz, CDCI3 ) 5H 7.37-7.26 (5H, m, Ar-H), 3.82 (1H,

(CH), 127.2 (CH), 59.8(CH), 49.3 (CH2), 36.6 (CH2), 25.9 (CH3). MS (ES) m/z = 260 

[M+MeCN+Hf, 219 [M+H]+; HRMS (ES) calculated for C 1 2H 14N2 0 2 [M]+ 219.1128, 

found 219.1127.

NMR (400 MHz, d - 6  DMSO) SH 10.21 (2H, bs, NH), 4.07 (4H, s, NCH2), 3.03 (3H, s,

Ph

d, J = 17.4, NCH2 ), 3.74-3.70 (1H, m, NCH2 ), 3.59 (1H, d, J = 17.5, NCH), 3.42 (1H, dd, J  

= 4.0, 14.0, CHsAr), 3.18 (3H, s, NCH3), 3.04 (1H, dd, J  = 8 .8 , 14.0, C ^A r), 1.67 (bs, 1H, 

NH); 13C NMR (100 MHz, CDC13) 8 C 172.5 (C), 171.1 (C), 136.7 (C), 129.4 (CH), 128.9
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Synthesis of 3-benzyl-l-methylpiperazin-2,6-dione hydrochloride 193.HC1

Ph

3-Benzyl- l-methylpiperazin-2,6-dione 193 (0.50 g, 2.30 mmol) was stirred in a solution of 

HC1 in diethyl ether (2.84 M, 4.00 mL, 11.50 mmol HC1) for five minutes. Then the mixture 

was filtered and the solid was washed with diethyl ether. The product was isolated as a 

colourless solid in 87% yield (0.52 g). mp 170 °C (dec). vmax (Nujol) 3371, 1687 cm'1. 

NMR (400 MHz, d- 6  DMSO) 5H 11.50-9.50 (2H, bs, NH), 7.37-7.26 (5H, m, Ar-H), 4.44 

(1H, t, J = 5.8, NCH), 4.04 (2H, s, NCH2 ), 3.39 (1H, dd, 7 = 6 . 5  , 14.4, Cf^Ar), 3.18 (dd, J  

= 6.3, 14.3, CHzAr), 3.03 (3H, s, NCH3). 13C NMR (62.5 MHz, d - 6  DMSO) 6 C 136.0 (C) 

129.6 (CH) 128.4 (CH) 126.9 (CH) 56.8 (CH) 45.3(CH2) 34.1(CH3) 25.9 (CH2) carbonyl 

carbons were not observed; MS (ES) m/z = 260 [M+MeCN+H-HCl]+, 219 [M+H-HC1]+.

Synthesis of piperazin-2-one hydrochloride 189.HC1

&N
H.HCI

Piperazin-2-one 189 (0.25 g, 2.50 mmol) was stirred in a solution of HC1 in diethyl ether 

(2.84 M, 4.40 mL, 12.50 mmol HC1) for five minutes. Then the mixture was filtered and the 

solid was washed with diethyl ether. The product was isolated as an orange solid in 60% 

yield (0.21 g). mp 96-98 °C; v ma; (Nujol) 3301, 1651, 1120 cm '1; ‘H NMR (400 MHz, d - 6  

DMSO) 8 h 7.78 (1H, bs, NH), 6.00-4.00 (2H, bs, NH), 3.25 (2H, s, CH2 CO), 3.18-3.15 (2H, 

m, CH2 CH2 ), 2.88 (2H, t, J  = 5.7, CH2 CH2); n C NMR (100 MHz, d - 6  DMSO) 8 c 167.8(C), 

48.7(CH2), 41.7(CH2), 41.2(CH2).
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Synthesis of (£>4-methyI-3,5-dioxo-l-(3-phenylallylidene)piperazin-l-ium

hexafluorophosphate 125

l-Methylpiperazin-2,6-dione 192 (0.05 mg, 0.39 mmol) was dissolved in methanol (5.00 

mL) and (£)-cinnamaldehyde 20 (49.00 pL, 0.39 mmol) was added, followed by HPF6  (60% 

in water, 57.00 pL, 0.39 mmol).After a few seconds a yellow precipitate was observed. The 

mixture was stirred for a further 5 minutes and then the precipitate was separated by 

filtration. The solid was washed with methanol to yield the title compound ( 0.11 g, 72%) as 

a yellow solid. vmax (Nujol)/ cm '1: 3338, 1752, 1685, 1625; 'H  NMR (400 MHz, d-3 MeCN) 

8 h 8.35 (1H, d, J  = 10.8 N+=CH), 8.04 (1H, d, J  = 15.0, CH=CHAr), 7.85 (2H, d, J = 1A, 

Ar-H), 7.65-7.61 (1H, m, Ar-H), 7.55-7.51 (2H, m, Ar-H), 7.37 (1H, dd, J  = 10.8, 15.0, 

CH=CHAr), 4.93 (2H, s, N+CHz), 4.80 (2H, s, N+CH2), 3.08 (3H, s, NCH3). 13C NMR (125 

MHz, d-3 MeCN) 8 c 171.0(CH), 165.0(CH), 134.9(CH), 133.5(C), 131.1(CH), 129.7(CH), 

116.2(CH), 58.0(CH2), 52.0(CH2), 26.1(CH3), carbonyl carbons were not observed; For X- 

ray structure see (Appendix)

Synthesis of ethyl 2-benzyIbromoacetate 208

C02Et

Under nitrogen and at -35 °C ethyl-2-benzylacetoacetate (10.00 g, 45.40 mmol) was added 

to a solution of sodium ethoxide (3.09 g, 45.50 mmol) in ethanol (75 mL). N- 

bromosuccinimide (8.08 g, 45.50 mmol) was added slowly and the resulting mixture was 

stirred for lh at rt. After the addition of water (75 mL) the solution was extracted with 

diethyl ether (3x50 mL) and the organic layer was dried over NaSCL. The intermediate 207 

was purified by column chromatography (petroleum ether: dichloromethane 1.5:1). Then the 

bromonated intermediate was dissolved in a solution of sodium ethoxide (3.09 g, 45.50 

mmol) in ethanol (75 mL) and was stirred for 3h. Water (75 mL) was added and the solution 

was extracted with diethyl ether (3x50 mL) and dried over NaSCL, filtered and concentrated
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under reduced pressure to yield the title compound (6.80 g, 82%) as a yellow liquid. IR

(Nujol) 3295, 1739, 1605 cm '1; !H NMR (400 MHz, CDC13) 8 H 7.26-7.14 (5H, m, Ar-H),

4.36-4.30 (1H, m, CHBr), 4.14-4.07 (2H, m, CC^CHj), 3.37 (1H, dd, J = 5.5, 14.1, Ar-Qfc),

3.17 (1H, dd, J  = 7.1, 14.1, Ar-CHa), 1.15 (3H, t, J  = 3.9, CH2 CH3); 13C NMR (125 MHz,

CDCI3 ) 8 c 169.4(C), 136.8(C), 129.2(CH), 128.6(CH), 127.3(CH), 62.0(CH2), 45.5(CH),

41.1(CH2), 13.9(CH3).

Synthesis of tricycIo[5.2.1.0~2,6~]dec-8-en-3-one

o

2-Cyclohexen-l-one 198 (290 mg, 3.00 mmol, 0.29 mL) was added to water (0.75 mL) at 4 

°C, followed by conc. HC1 (0.05 mL, 0.60 mmol). The mixture was stirred for five minutes 

and cyclopentadiene 19 (0.71 mL, 9.00 mmol) was added dropwise. The mixture was stirred 

for 4d and was then diluted with (5:l)petroleum ether/diethyl ether (12 mL) and submitted

directly to column chromatography eluting with petroleum ether/diethyl ether (5:1) to yield
168the title compound (6.9 mg, 1.4%) as a yellow oil. Data was consistent with the literature.

‘H NMR (400 MHz, CDCI3 ) 8 H 6.13-6.11 (1H, m), 5.98-5.94 (1H, m), 4.14-4.07 (2H, m), 

3.20 (1H, s), 2.82 (1H, s), 2.68-2.60 (2H, m), 2.28-2.23 (1H, m), 1.91-1.82 (2H, m), 1.73- 

1.59 (2H, m), 1.40-1.37 (1H, m), 125-1.23 (1H, m), 0.71-0.55 (1H, m); 13C NMR (62.5 

MHz, CDCI3 ) 8 c 215.6, 137.7, 135.0, 51.7,48.4, 46.6, 45.2, 41.4, 39.4, 28.0, 21.8; MS (ES) 

m/z = 162 [M]+.

Synthesis of l-(3-methylbicyclo[2.2.1]hept-5-en-2-yl)propan-l-one 176

Catalyst (0.12 mmol) was dissolved in water (203.00 pL) and cooled to 4 °C. 4-hexen-3-one 

175 (70.00 pL, 0.61 mmol) was added, followed by perchloric acid (70 % in water, 10.50 

pL, 0.12 mmol) and the mixture was stirred for five minutes. Cyclopentadiene 19 (75.00 pL, 

0.91 mmol) was added and the stirring was continued for 24h. Then the mixture was diluted
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with petroleum ether/diethyl ether (9:1) and directly purified by column chromatography

with the same solvent system to yield the title compound (32 mg, 16%) as a colourless

liquid. Data was consistent with the literature. 16 8 JH NMR (400 MHz, CDCI3 ) 5h 6.17-6.15

(1H, m, CH=CH), 5.84-5.82 (1H, m, CH=CH), 3.06 (bs, 1H, CH=CHCH), 2.39-2.33 (4H,

m, CH2 COCH, CH=CHCH,), 1.84-1.82 (1H, m, CH 2CH), 1.52 (1H, m, CH2 CH), 1.37 (1H,

m, CH2 CH), 1.09 (3H, d, J  = 7.0 CHCH3), 0.95 (3H, t, J  = 7.4, CH2 CH3); 13C NMR (62.5

MHz, CDC13) 8 c 211.7, 138.5, 132.5, 60.7, 49.0, 46.3, 35.7, 34.7, 21.0, 7.8.

Preparation of (S)-5-methyl-5-nitro-4-phenylhexan-2-one 229

NO;

The enetaionenriched product was prepared in accordance with the method of Jorgensen. 169  

£-4-phenylbut-3-en-2-one (37 mg, 0.25 mmol) was place in nitropropanane (496mg 5.5 

mmol, 0.5 mL), To this was added 20 mol% of catalyst 10 ( l l mg  g, 0.05 mmol) and the 

reaction allowed to stir at ambient temperature for 14 days. On completion of the reaction 

the volatiles were removed under reduced pressure. The resulting residue was purified by 

column chromatography eluting with. The e.e was determined by Chrial HPLC using 

Chiracel OJ column eluting 10% IPA in hexanes flow rate 1 mL min'1. Enatiomers were 

determined by analogy, mp °C; lH NMR (400MHz, CDC13) 8 H 7.33-7.24 (3H, m, Ar-H), 

7.21-7.16 (2H, m, Ar-H), 3.92 (1H, dd, / =  10.8, 3.6, CHCH2 ), 3.09 (1H, dd, J = 16.8, 10.8, 

CHCH2) 2.71, (1H, dd, J  = 16.8, 3.0, CHQK) 2.03 (3H, s, COCH3) 1.55 (3H, s, N 0 2 CCH3) 

1.47(3H, s, N 0 2 CCH3) 13C NMR (100MHz, CDC13 )5c 205.2(C), 137.5(C), 129.1(CH), 

128.5(CH), 127.9(C), 91.0(C), 48.8(CH2), 44.0(CH), 30.3(CH3), 25.8(CH3), 22.3(CH3).
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Preparation of 5-nitro-4-phenylpentan-2-one 237
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o

Compound 237 was prepared in accordance with the procedure of List. 1 7 0  To a suspension 

of L-proline (120mg 1.01 mmol, 15mol%) in DMSO (54 mL) was added trans-beta nitro 

styrene (1 g, 6.7 mmol) and acetone (10.6 g, 182 mmol, 13.4 mL) and the mixture stirred 

overnight at room temperature. To this was added ethyl acetate (50 mL) and saturated 

NH4 C1 solution (50 mL). The aqueous layer was extracted with ethyl acetate (3x50 mL), the 

organics combined dried over MgS0 4  filtered and concentrated under reduced pressure. The 

resulting residue was purified using column chromatography eluting with ( 1 :1 ) petroleum 

ether/ethyl acetate to yield the title compound (1.31 g, 95%) as a colourless solid. NMR 

(400MHz, CDCI3 ) 8 h 7.35- 7.21 (5H, m Ar-H), 4.70 (1H, dd, J  = 6.9, 6.9, CH2 NO2 ), 4.61 

(1 H, dd, 7=  7.7, 7.7, CH2NO2 ), 4.01 ( 1 H, m, ArCHCH2), 2.93 (2h, d, 7 =  7.0, CH2 CO), 2.13 

(3H, s, COCH3 ).

Preparation of (S)-A-methyI-3-phenylpropane-l,2-diamine, 235

Compound 235 was prepared in accordance with the procedure of Jprgensen. 

L-phenylalaninmethylamide 138 (1 g, 5.6 mmol) was dissolved in anhydrous THF (30 mL) 

and lithium aluminium hydride (1.07g, 29.1 mmol, 5 eq) added. The reaction mixture was 

refluxed for 48h and allowed to cool before being filtered through celite. The filtrate was 

collected and concentrated under reduced pressure. The resulting oil was purified by column 

chromatography eluting with methanol to yield the title compound (0.23 g, 25%) as a 

colourless oil data consistent with reported values. !H NMR (400MHz, CDCI3) 8 h 7.32-7.19 

(5H, m, Ar-H) 3.14-3.08 (1H, m, CH2 CHCH2), 2.80 (1H, dd, 7 = 4.9, 13.3, ArCH2) 2.67 

(1 H, dd, J = 3.9, 11.7, ArQfc), 2.53-2.44 (5H, m, NCH3, NCH2 ); 13C NMR (125MHz,
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CDCI3 ); 8 c 139.0 (C), 129.3(CH), 128.5(CH), 126.3(C), 57.9(CH2), 52.1(CH), 42.7(CH3).

m/z (APCI) (M+H) 165; HRMS (ES) (found 165.1386 [M +Hf; Ci0 H 16N2 requires 

165.1386).

Preparation of 257

Glyoxylic acid monohydrate 255 (1.22 g, 13.2mmol) and L-phenylalaninmethylamide 138 

(1 g, 6 .6 mmol) were dissolved in CH2 C12 (100 mL) and stirred overnight at room 

temperature. The resulting solution was then concentrated under reduced pressure to yield 

the title compound (1.29 g, 74 %) as a colourless solid. For X-ray structure see Appendix. 

mp 175-177 °C; (CHCI3 ) /cm ' 1 3680, 1664, 1524, 1423, 1215, 1017; ‘H NMR 

(400MHz, CDCI3 ) 5h (rotameric ratio 2.58:1) 7.93 (1H, s, NCHO, minor rotamer), 7.85 

(1H, s, CHO, major rotamer), 7.24-7.05 (5H, m, Ar-H, major and minor), 4.57 (1H, t, J -

8.4, CHCH2, minor), 4.14 (1H, dd, J  = 4.5, 10.9, CHCH2, major) 3.96-3.65 (2H, m, 

CH2 COOH, major and minor)3.61-3.40 (1H, m, CHCH?, major) 3.27-3.24 (1H, m, 

CHCH2, minor) 300-2.95 (1H, m, CHCFh, minor) 2.80-2.75 (4H, m, NCH3, CHCHs, 

major), 2.66-2.65 (3H, m, NCH3, minor) I3C NMR (100MHz, CDC13) 5c 170.8, 169.5,

169.3, 163.9, 163.3, 136.9, 136.8, 129.0, 128.9, 128.7, 127.20, 126.9, 64.1, 52.8, 52.8, 47.4, 

45.2, 36.1, 34.2, 26.5, 26.3; m/z (APCI) 264 (M+H); HRMS (El) (found 264.1105 [M+H]+; 

Ci3 Hj6N2 0 4  requires 264.1103).

Synthesis of 2-(propylamino)acetic acid hydrochloride 273

Glyoxylic acid monohydrate 255 (1.71 g, 19.0 mmol) was dissolved in distilled water 

(20 mL) at room temperature. Phenethylamine 258 (1.00 g, 8.25 mmol) was added and the

o NH

Ph CHO O

O

resulting solution stirred for 24 hours. During this time the formation of a white precipitate
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was observed. After this period 2M HC1 (20 mL, 40 mmol) was added and the reaction

mixture heated at reflux overnight. The solvent was removed under reduced pressure and

the residue recrystallised from methanol/diethyl ether to give the title compound (1.24 g,

70%) as a colourless solid, mp 184°C; v max (Nujoiycm ' 1 2924, 1748; !H NMR (500MHz, d-

6  DMSO) 5h 13.80 (1H, bs, C 0 2 H) 9.38 (2H, bs, NH), 7.36-7.24 (5H, m, Ar-H) 3.89 (2H,

s, NCH2 CO2 H) 3.16 (2H, t, J  = 10.0, NCH2 ) 2.99 (2H, t, J  = 10.0, CffcAr); 13C NMR

(125 MHz, d- 6  DMSO) 5C 168.5 (C) 137.6 (C) 129.1 (CH) 129.1 (CH) 127.3 (CH) 48.1

(CH2) 47.3 (CH2) 31.8 (CH2); MS (ES) m/z = 180 [M + H - HC1]+; HRMS (ES) (found

180.1019 [M + H - HC1]+Ci0 Hi4 NO2; requires 180.1025)

Synthesis of 2-(propylamino)acetic acid hydrochloride 274

Glyoxylic acid monohydrate 255 (1.71 g, 19.0 mmol) was dissolved in distilled water 

(20 mL) at room temperature. Propylamine (0.50 g, 8.5 mmol) was added and the resulting 

solution stirred for 24 hours. After this period 2M HC1 (20 mL, 40 mmol) was added and the 

reaction mixture heated at reflux overnight. The solvent was removed under reduced 

pressure and the residue recrystallised from methanol / diethyl ether to give the title 

compound (1.02 g, 78%) as a colourless solid, mp 197-198 °C; vmax (Nujoiycm ' 1 2924, 

1753; !H NMR (400MHz, d - 6  DMSO) 5H 13.73 (1H, bs, C 0 2 H), 9.18 (2H, bs, NH), 3.84 

(2H, s, NCH2 C 0 2 H), 2.85 (2H, t, J  = 7.8, NQfe), 1.69-1.61 (2H, m, CH2 CH3 ), 0.89 (3H, t, 

J = 7.5, CH2 CH3); 13C NMR (62.5 MHz, d- 6  DMSO) 5C 167.9(C), 48.2(CH2), 46.7(CH2), 

18.7(CH2), 10.9(CH3). MS (ES) m/z = 118 [M + H - HC1]+; HRMS (ES) 118.0868 

calculated for C5 H n N i 0 2 [M + H - HC1]+, found 118.0863.
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Synthesis of 2-(cylohexylamino)acetic acid hydrochloride 275

50%-Glyoxylic acid solution (0.82 g, 11.1 mmol) was added to distilled water (20 mL) at 

room temperature. Cyclohexylamine (0.50 g, 5.05 mmol) was added and the resulting 

solution stirred for 24 hours. The solvent was removed under reduced pressure to give a 

yellow oil. Then 2M HC1 (20 mL, 40 mmol) was added and the reaction mixture heated at 

reflux overnight. The solvent was removed under reduced pressure and the residue 

recrystallised from methanol / diethyl ether to give the title compound (0.77g, 8 6 %) as a 

colourless solid, mp 208 °C; vmax (Nujol)/cm‘‘ 2924, 1759; ‘H NMR (400MHz, d - 6  DMSO) 

8 h 13.77 (1H, bs, C 0 2 H), 9.09 (2H, bs, NH), 3.85 (s, 2H, NCH2 CO,H), 3.03-2.90 (1H, m, 

NCH(CH2)2), 2.09-1.95 (2H, m, CHCH2 CH2), 1.81-1.67 (2H, m, CHCHzCH;,), 1.63-1.53 

(1H, m, CH,), 1.39-0.90 (5H, m, CH,); 13C NMR (125 MHz, d- 6  DMSO) 8 c 167.7(C), 

57.1(CH), 44.0(CH2), 28.7(CH2), 24.6(CH2), 24.1(CH2); MS (ES) m/z = 158 [M + H - 

HC1]+; HRMS (ES) 158.1181 calculated for C8 H,5N 0 2 [M + H - HC1]+, found 158.1176.

Synthesis of 2-(allyIamino)acetic acid hydrochloride 276

o h

Glyoxylic acid monohydrate 255 (1.77g, 19.3 mmol) was dissolved in distilled water 

(20 mL) at room temperature. Allylamine (0.50 g, 8.76 mmol) was added and the resulting 

solution stirred for 24 hours. After this period 2M HC1 (20 mL, 40 mmol) was added and the 

reaction mixture heated at reflux overnight. The solvent was removed under reduced 

pressure and the crude product dissolved in methanol and filtered through Celite®. The 

residue was recrystallised from methanol/diethyl ether to give the title compound (0.33 g, 

25%) as a brownish solid, mp 163-164 °C; vmax (Nujoiycm -1 2912, 1752; NMR 

(400MHz, MeOD) 6 H 6.01-5.87 (1H, m, CH2 =CH), 5.56 (1H, dd, J =17.1, 0.9, CH2 =CH), 

5.52 (1H, dd, J  = 10.1, 0.8, CH2=CH ), 3.89 (2H, s, NCI^COsH), 3.71 (2H, d, J  = 7.7,
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NCHz); 13C NMR (62.5 MHz, MeOD) 8 C 167.5(C), 127.5(CH), 123.4(CH2), 49.11(CH2), 

46.1(CH2); MS (ES) m/z = 116 [M + H - HC1]+; HRMS (ES) 116.0712 calculated for 

C5H9 N 0 2 [M + H - HC1]+, found 116.0706.

Synthesis of 2-(benzylamino)acetic acid hydrochloride 277

Glyoxylic acid monohydrate 255 (0.95 g, 10.3 mmol) was dissolved in distilled water 

(20 mL) at room temperature. Benzylamine (0.50 g, 4.67 mmol) was added and the resulting 

solution stirred for 24 hours. The solvent was removed under reduced pressure to give a 

yellow oil. Then IN HC1 (20 mL, 20 mmol) was added and the reaction mixture heated at 

reflux overnight. The solvent was removed under reduced pressure and the residue 

recrystallised from methanol / diethyl ether to give the title compound (0.47g, 50%) as a 

colourless solid, mp 221-222 °C; vmax (Nujoiycm ' 1 2924, 1747; *H NMR (400MHz, MeOD)

46.2(CH2); MS (ES) m/z = 166 [M + H - HC1]+; HRMS (ES) 166.0868 calculated for 

C9 H 11NO2 [M + H - HC1]+, found 166.0863.

Synthesis of 2-(4-methoxybenzyIamino)acetic acid hydrochloride 278

50%-Glyoxylic acid solution (0.59 g, 7.97 mmol) was added to distilled water (20 mL) at 

room temperature. 4-Methoxybenzylamine (0.50 g, 3.64 mmol) was added and the resulting

give a yellow oil. Then 2M HC1 (20 mL, 40 mmol) was added and the reaction mixture 

heated at reflux overnight. The solvent was removed under reduced pressure and the 

residue recrystallised from methanol / diethyl ether to give the title compound (0.57g, 6 8 %)

8 h 7.54-7.42 (5H, m, Ar-H), 4.26 (2H, s, NCHjCOzH), 3.92 (2H, s, NCHjAr); 13C NMR 

(125 MHz, MeOD) 8 c 167.3(C), 130.8(C), 129.7(CH), 129.5(CH), 129.0(CH), 50.6(CH2),

solution stirred for 24 hours at 50 °C. The solvent was removed under reduced pressure to
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as a colourless solid, mp 200 °C; vmax (Nujol)/cm'' 2924, 1745 ; 'H NMR

(400MHz, MeOD) 8 H 7.45-7.38 (2H, m,Ar-H), 7.04-6.97 (2H, m, Ar-H), 4.19 (2H, s,

NCH2 CO2H), 3.88 (2H , s, NCELAr), 3.83 (3H, s, OCH3 ); 13C NMR (125 MHz, d- 6  DMSO)

8 c 168.2(C), 160.2(C), 132.3(CH), 123.8(C), 114.5(CH), 55.7(CH3), 49.7(CH2), 46.4(CH2);

MS (ES) m/z = 196 [M + H - H C lf; HRMS (ES) 196.0974 calculated for Ci0Hi3NO2 [M +

H - H C lf, found 196.0968.

Synthesis of 2-(4-chlorobenzylamino)acetic acid hydrochloride 279

ci

OH

50%-Glyoxylic acid solution (0.58 g, 7.83 mmol) was added to distilled water (20 mL) at 

room temperature. 4-Chlorobenzylamine (0.50 g, 3.53 mmol) was added and the resulting 

solution stirred for 24 hours at 50 °C. The solvent was removed under reduced pressure to 

give a yellow oil. Then 2M HC1 (20 mL, 40 mmol) was added and the reaction mixture 

heated at reflux overnight. The solvent was removed under reduced pressure and the residue 

recrystallised from methanol/diethyl ether to give the title compound (0.50 g, 60%) as a 

colourless solid. mp 216-217 °C; vmax (Nujoiycm ' 1 2925, 1745; *H NMR

(400MHz, MeOD) 5H 7.57-7.41 (4H, m, Ar-H), 4.26 (s, 2H, NCH2 CO2 H), 3.94 (s, 2H, 

NCH2Ar); 13C NMR (125 MHz, MeOD) 6 C 167.3(C), 135.5(C), 131.6(CH), 129.5(C), 

129.0(CH), 49.9(CH2), 46.3(CH2); MS (ES) m/z = 200 [M + H - HC1]+; HRMS (ES) 

200.0478 calculated for C9 H 1 0ClNO2 [M + H - HC1]+, found 200.0473.

Synthesis of 2-(2-aminoethylamino) acetic acid dihydrochloride 284

H2N OH
.HCI

Glyoxylic acid monohydrate 255 (3.37g, 36.6 mmol) was dissolved in water (20 mL) at 

room temperature. Ethylenediamine (0.50 g, 8.32 mmol) was added and the resulting 

solution stirred for 24 hours. After that period 2M HCI (20 mL, 40 mmol) was added and
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the reaction mixture heated at reflux overnight. The solvent was removed under reduced

pressure and the residue recrystallised from methanol/diethyl ether to give the title

compound (0.49 g, 31%) as a colourless solid. vmax (Nujol) 2923, 1719 cm'1; lH NMR

(400MHz, d- 6  DMSO) 5H 8.39 (bs, 4H, NH), 4.03 (s, 2H, NCH2 CO2 H), 3.46-3.39 (m, 2H,

NCHj), 3.38-3.32 (m, 2H, NCH2); 13C NMR (125 MHz, d - 6  DMSO) 8 c 168.2(C),

47.4(CH2), 44.3(CH2), 35.5(CH2);

Synthesis of 2-(2-(dimethylamino)ethylamino)acetic acid dihydrochloride 288

OH

Glyoxylic acid monohydrate 255 (1.15 g, 12.5 mmol) was dissolved in water (20 mL) at 

room temperature. A^A-Dimethylethylenediamine (0.50 g, 5.67 mmol) was added and the 

resulting solution stirred for 24 hours. After that period 2M HCI (20 mL, 40 mmol) was 

added and the reaction mixture heated at reflux overnight. The solvent was removed under 

reduced pressure and the residue recrystallised from methanol/diethyl ether to give the title 

compound (0.71 g, 57%) as a colourless solid, mp 202 °C; vmax (Nujoiycm ' 1 2924, 1718; !H 

NMR (400MHz, MeOD) 8 H 4.05 (s, 2H, NCH2 CO2 H), 3.62-3.52 (m, 4H, NCH2), 2.99 (s, 

6 H, NCH2); ,3C NMR (125 MHz, d - 6  DMSO) 8c 168.0(C), 52.5(CH2), 47.3(CH2), 

42.9(CH3), 41.4(CH2); MS (ES) m/z = 147 [M + H - 2 HC1]+. HRMS (ES) 147.1134 

calculated for C6 H 14N 2 0 2 [M + H - 2 HC1]+, found 147.1128.

Synthesis of 2-(2-(methyIamino)ethylamino)acetic acid dihydrochloride 287

H.HCI
OH

Glyoxylic acid monohydrate 255 (1.37g, 14.9 mmol) was dissolved in water (20 mL) at 

room temperature. A-Methylethylenediamine (0.50 g, 6.75 mmol) was added and the 

resulting solution stirred for 24 hours. The solvent was removed under reduced pressure to 

give a brown oil. Then 2M HCI (30 mL, 60 mmol) was added and the reaction mixture
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heated at reflux overnight. The solvent was removed under reduced pressure and the residue

recrystallised from methanol / diethyl ether to give the title compound (0 .5 7 g, 41%) as a

brownish solid, mp 192-194 °C; v max (Nujoiycm ' 1 2923, 1736; 'H NMR (400MHz, MeOD)

5h 4.01 (2H, s, NCH2 C0 2H), 3.50-3.37 (4H, m, NCH2 ), 2.79 (s, 3H, NCH3 ); 13C NMR (125

MHz, d- 6  DMSO) 8 c 168.2(C), 47.3(CH2), 44.3(CH2), 42.9(CH2), 32.7(CH3).

Synthesis of 2-(3-(dimethyIamino)propyIamino)acetic acid dihydrochloride 290

.HCI w

OH

Glyoxylic acid monohydrate 255 (1.98 g, 21.5 mmol) was dissolved in water (20 mL) at 

room temperature. 3-Dimethylaminopropylamine (0.50 g, 4.89 mmol) was added and the 

resulting solution stirred for 24 hours. The solvent was removed under reduced pressure to 

give a brown oil. Then 2M HCI (25 mL, 50 mmol) was added and the reaction mixture 

heated at reflux overnight. The solvent was removed under reduced pressure and the residue 

recrystallised from methanol/diethyl ether to give the title compound (0.57g, 50%) as a 

colourless solid, mp 194 °C; vmax (Nujoiycm ' 1 2924, 1754; 'H NMR (400MHz, MeOD) 8 H 

3.99 (2H, s, NCH2 C0 2 H), 3.26 (2H, t, 7 = 7.9, NCH2), 3.19 (2H, t, 7 =  8.0, CHjCTfeN), 2.93 

(6 H, s, NCH3), 2.27-2.12 (2H, m, (C H ^N C th). 13C NMR (125 MHz, d - 6  DMSO) 8 c 

168.2(C), 53.8(CH2), 47.2(CH2), 44.3(CH2), 42.3(CH3), 20.8(CH2). MS (ES) m/z = 161 [M 

+ H - 2 HC1]+. HRMS (ES) 161.1290 calculated for C7 HI6 N2 0 2  [M + H - 2 HC1]+, found 

161.1284.

Synthesis of 2-(3-(methylamino)propylamino)acetic acid dihydrochloride 289

.HCI w

■ M - OH

Glyoxylic acid monohydrate 255 (2.30 g, 25.0 mmol) was dissolved in water (20 mL) at 

room temperature. 3-Dimethylaminopropylamine (0.50 g, 5.67 mmol) was added and the 

resulting solution stirred for 24 hours. The solvent was removed under reduced pressure to 

give a brown oil. Then 2M HCI (30 mL, 60 mmol) was added and the reaction mixture
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heated at reflux overnight. The solvent was removed under reduced pressure and the residue

recrystallised from methanol/diethyl ether to give the title compound (0.55 g, 44%) as a

colourless solid, mp 199 °C; v max (Nujoiycm 1 2923, 1741 cm '1. lU NMR (400MHz, MeOD)

5h 3.97 (2H, s, NCH2  C 0 2 H), 3.19 (2H, t, J  = 7.9, NCH2 ), 3.12 (2H, t, J  = 7.8, NCHO, 2.74

(3H, s, NCH3), 2.19-2.08 (2H, m, NCH2 CH2 ). 13C NMR (125 MHz, d- 6  DMSO) 6 C

168.3(C), 47.2(CH2), 45.6(CH2), 44.3(CH2), 32.6(CH3), 22.4(CH2). MS (ES) m/z = 147 [M

+ H - 2 HC1]+. HRMS (ES) 147.1134 calculated for C6 Hi4 N2 0 2  [M + H - 2 HC1]+, found

147.1128.

Synthesis of 5-methoxy-3-(l-(5-methoxy-l//-indol-3-yl)propyl)-l//-indole 310

MeO OMe

5-Methoxyindole 306 (200 mg, 1.35 mmol) was added to methanol (2.5 mL) and benzoic 

acid iV-isopropylhyrdazide 91 (14.5 mg, 0.0675 mmol, O.leq) and stirred at 25 °C. 

Propionaldehyde 304 (39 mg, 0.675 mmol, 0.049 mL,) was added, the reaction tube sealed 

and allowed to stir for 24hrs at ambient temperature. The solvent was removed under 

reduced pressure and the resulting mixture was then purified by flash column 

chromatography eluting with 3:1 petroleum ether/ethyl acetate to yield the title compound 

(124 mg, 55%) as an off white solid, mp 70-72 °C; Dmax (nujol) /cm ' 1 3403, 2360, 1622, 

1579, 1483, 1435, 1288, 1208, 1171, 1096cm1; 'H NMR (400MHz, CDC13) 7.81 (2H, bs, 

NH) 7.24 (2H, d, ArH, J = 9.04) 7.02 (2H, d d ,, J  = 13.1, 2.5, Ar-H) 6.83 (2H, dd, ArH, J =

8.5, 2.51), 4.27 (1H, t, J  = 7.5, CH), 3.76 (6 H, s, OCH3 ), 2.23(2H, m, CH2 ) 1.01(3H, t, 7  =

7.5, CH3); 13C NMR (100MHz, CDCI3 ) 5 154.4(C), 131.8(C), 127.5(C), 122.1(CH), 

120.0(C), 111.6(CH), 101.8(CH), 55.9(CH3), 35.8(CH), 28.2(CH2), 13.1(CH3). m/z (APCI) 

335 (M+H); HRMS (ES) (found 335.1752 [M+H]+; C2 1 H2 2 N2 O2 requires 335.1754).
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Synthesis of 3-(l-(l//-indol-3-yl)propyI)-l//-indole 305

Indole 300 (158 mg, 1.35 mmol) was added to methanol (2.5 mL) and benzoic acid N'- 

isopropylhyrdazide 91 (14.5 mg, 0.0675 mmol, O.leq) and stirred at 25 °C. Propionaldehyde 

304 (39 mg, 0.675 mmol, 0.049 mL,) was added, the reaction tube sealed and allowed to stir 

for 24hrs at ambient temperature. The solvent was removed under reduced pressure and the 

resulting mixture was then purified by flash column chromatography eluting with 3:1 

petroleum ether/ethyl acetate to yield the title compound (156 mg, 84%) as an off white 

solid, mp 131-133 °C; v max (CHCI3 ) /cm ' 1 3478, 3418, 3058, 3047, 2962, 2931, 2872, 1731, 

1618, 1456, 1447; 'H NMR (400MHz, CDC13) SH 7.89 (2H, bs, NH), 7.60 (2H, d, J  = 7.7, 

Ar-H), 7.53-7.00 (8 H, m, Ar-H), 4.39 (1H, t, J  = 7.4, CHCH2), 2.30-2.22 ( 2H, m, CH2 CH3 ), 

1.02 (3H, t, J = 7.4, CH2 CH3 ); 13C NMR (100MHz, CDC13) 6c 136.6(C), 127.2(C), 

121.7(CH), 121.5(CH), 120.3(C), 119.7(CH), 119.0(CH), lll .l(C H ), 35.9(CH), 28.7(CH2), 

13.1(CH3).

Synthesis of 5-chloro-3-(l-(5-chloro-IfiT-indol-3-yl)propyl)-l//-indole 311

5-Chloroindole 307 (200 mg, 1.32 mmol) was added to methanol (3.0 mL) and benzoic acid 

T/'-isopropylhyrdazide 91 (14.1 mg, 0.066 mmol, O.leq) and stirred at 25 °C. 

Propionaldehyde 304 (39 mg, 0.660 mmol, 0.05 mL,) was added, the reaction tube sealed 

and allowed to stir for 24hrs at ambient temperature. The solvent was removed under 

reduced pressure and the resulting mixture was then purified by flash column 

chromatography eluting with 3:1 petroleum ether/ethyl acetate to yield the title compound 

(190 mg, 42%) as an off white solid, mp 8 8  °C; ; !H NMR (400MHz, CDCI3) Sh 7.98 (2H,
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bs, NH), 7.49 (2H, d, 7 = 1.9, Ar-H), 7.26-7.24 (2H, m, Ar-H), 7.11-7.06 (4H, m, Ar-H),

4.23 (1H, t, 7 = 7.4, CHCH2), 2.24-2.17 (2H, m, CHCH2 CH3 ), 1.21 (3H, t, 7=  7.0, CH2 CH3)

Synthesis of l-methyl-3-(l-(l-methyl-l/y-indol-3-yl)propyl)-l/f-indoIe

iV-Methylindole 291 (177 mg, 1.35 mmol) was added to methanol (2.5 mL) and benzoic 

acid A-isopropylhyrdazide 91 (14.5 mg, 0.0675 mmol, O.leq) and stirred at 25 °C. 

Propionaldehyde 304 (39 mg, 0.675 mmol, 0.049 mL,) was added and allowed to stir for 

24hrs at ambient temperature. The solvent was removed under reduced pressure and the 

resulting mixture was then purified by flash column chromatography eluting with 1 0 : 1  

petroleum ether/ethyl acetate to yield the title compound (165 mg, 81%) as an off white 

solid, mp 142-144 °C; *H NMR (400MHz, CD3 OD) SH 7.46 (2H, d, 7 = 8.0, Ar-H), 7.11 

(2H, d, 7 = 8.2, Ar-H), 7.05-7.03 (2H, m, Ar-H), 6.90-6.88 (2H, m, Ar-H), 6 . 6 8  (2H, s, Ar­

if), 4.21 (1H, t, 7 = 7.4, CHCH2), 3.53 (6 H, s, NCH3) 2.09-2.09 (2H, m, CHCH2 CH3), 0.85 

(3H, t, 7=  7.4, CH2 CH3).

Synthesis of 3-(cyclopropyl(l//-indol-3-yl)methyl)-l//-indole 293

TV-Methyl indole 291 (177 mg, 1.35 mmol) was added to methanol (2.5 mL) and benzoic 

acid A-isopropylhyrdazide 91(14.5 mg, 0.0675 mmol, O.leq) and stirred at 25 °C. 

cyclopropanecarboxaldehyde 292 (47 mg, 0.675 mmol) was added, the reaction tube sealed 

and allowed to stir for 24hrs at ambient temperature. The solvent was removed under 

reduced pressure and the resulting mixture was then purified by flash column 

chromatography eluting with 3:1 petroleum ether/ethyl acetate to yield the title compound
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(157 mg, 74%) as an off white solid, mp 124-125 °C; u max (CHC13) /cm ' 1 2359, 1734, 1473, 

1423, 1372, 1327; ‘H NMR (400MHz, CDCI3 ) 5H 7.35 (2H, d, J = 7.6, Ar-H), 7.06 (2H, d, J 

= 7.7, Ar-H), 6.97-6.93 (2H, m, Ar-H), 6.78-6.73 (4H, m, Ar-H), 3.75 (1H, d, J  = 8.4, 

CHCH£Ar)2), 3.51 (6 H, s, NCH3 ), 1.30-1.26 (1H, m, CHCH(CH)2), 0.41-0.36 (2H, m, 

CH2CIb) 0.17-0.05, (2H, m, CH2 Q b ) ;  13C NMR (100MHz, CDCI3 ) 8 c 137.2 (C), 127.7 

(C), 126.7 (CH), 121.2 (CH), 120.0 (CH), 118.7 (C), 118.4 (CH), 109.0 (CH), 38.0 (CH),

32.7 (CH3), 17.2 (CH), 4.95 (CH2).

Synthesis of 3-(cyclopropyl( I -methyl-l//-indol-3-yl)methyl)-l -methyl-1//-indole 323

7V-methyl indole 291 (0.52 g, 4.0 mmol, 2eq) was added to methanol (4 mL) and benzoic 

acid iV'-isopropylhyrdazide 91 (43 mg, 0.2 mmol, O.leq) and stirred at 25 °C. Cyclopropyl 

methyl ketone 317 (170 mg, 2.0 mmol, 0.2 mL) was added, the reaction tube sealed and 

allowed to stir for 24hrs at ambient temperature. The solvent was removed under reduced 

pressure and the resulting mixture was then purified by flash column chromatography 

eluting with 3:1 petroleum ether/ethyl acetate to yield the title compound (453 mg, 69%) as 

an off white solid, mp 59 °C; t w  (CHC13) /cm -1 3416, 3049, 3006, 2935, 2821, 1681, 1631 

1465, 1372, 1323, 1215, 1095, 1016; ’H NMR (400MHz, CDC13) 8 H 7.19-7.15 (4H, m, Ar­

il), 7.02-6.98 (2H, m, Ar-H), 6.93 (2H, s, Ar-H), 6.74-6.70 (2H, m, Ar-H), 3.70 (6 H, s, 

NCH3 ), 1.67-1.64 (4H, m, CH(CH2)2, CH3), 0.41-0.38 (2H, m, CH2) 0.24-0.23 (2H, m, 

CIb); m/z (APCI) (M+H) 328;
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Synthesis of 3-((ltf-indoI-3-yl)(phenyl)methyl)-l/f-indole 315

Indole 300 (500 mg, 4.27 mmol, 2eq) was added to methanol (5 mL) and benzoic acid N'- 

isopropylhyrdazide 91 (46 mg, 0.214 mmol, O.leq) and stirred at 25 °C. Benzaldehyde 312 

(230 mg, 2.14 mmol, 0.22 mL,) was added, the reaction tube sealed and allowed to stir for 

24hrs at ambient temperature. The solvent was removed under reduced pressure and the 

resulting mixture was then purified by flash column chromatography eluting with 3:1 

petroleum ether/ethyl acetate to yield the title compound (570 mg, 84%) as a red solid. 

Measured data is consistent with literature values . 171 mp 157 °C; Dmax (KBr) /cm"1; 3416, 

1634, 1378, 737. ‘H NMR (400MHz, CDCI3 ) 6 H 7.88 (2H, bs, NH), 7.42-7.14 (11H, m, Ar- 

H), 7.04-6.98 (2H, m, Ar-H), 6.65 (2H, d, J = 2.4, Ar-H), 5.89 (1H, s, (Ar)3 CH) 13C NMR 

(125MHz, CDCI3 ) 8 c 145.5 (C), 137.0 (C), 128.8 (CH), 128.5 (CH), 127.1 (C), 126.3 (CH),

124.0 (CH), 121.3 (CH) 119.6 (CH), 118.6 (CH), 118.5 (C), 111.9 (CH), 40.2 (CH); m/z 

(APCI) (M+H+) 321.

Synthesis of 4-(di(lff-indoI-3-yl)methyl)phenol 316

HO

Indole 300 (250 mg, 2.13 mmol, 2 eq) was added to methanol (2.5 mL) and benzoic acid N -  

isopropylhyrdazide 91 (14.5 mg, 0.0675 mmol, O.leq) and stirred at 25 °C. p-Hydroxy 

benzaldehyde 313 (130 mg, 1.07 mmol) was added, the reaction tube sealed and allowed to 

stir for 24hrs at ambient temperature. The solvent was removed under reduced pressure and 

the resulting mixture was then purified by flash column chromatography eluting with (2 :1 ) 

petroleum ether/ethyl acetate to yield the title compound (322 mg, 89%) as an off white 

solid, mp 118-122 °C; 'H NMR (400MHz, CDC13) 5h 7.82 (2H, bs, NH), 7.40-7.35 (4H, m,
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Ar-H), 7.21-7.15 (4H, m, Ar-H), 7.00 (2H, t, J = 7.8, Ar-H), 6.75 (2H, d, J  = 8.5, Ar-H), 

6 . 6 6  (2H, d, J  = 1.5, Ar-H), 5.82 (1H, s, CH), 4.67 (1H, bs, OH). 13C NMR (100MHz, 

CDCI3 ) 5c 129.8 (CH), 123.5 (CH), 121.9 (CH), 120.0 (CH), 119.2 (CH), 115.0 (CH), 31.0 

(CH). None o f the quaternary carbons were observed; m/z (APCI) (M+H)+ 339.

Synthesis of 3-(l-(l//-indoI-3-yl)cycIohexyl)-l/if-indole 320

Indole 300 (500 mg, 4.27 mmol, 2eq) was added to methanol (5.0 mL) and benzoic acid N -  

isopropylhyrdazide 91 (45.9 mg, 0.214 mmol, O.leq) and stirred at 25 °C. Cyclohexanone 

318 (210 mg, 2.14 mmol, 0.22 mL,) was added, the reaction tube sealed and allowed to stir 

for 24hrs at ambient temperature. The solvent was removed under reduced pressure and the 

resulting mixture was then purified by flash column chromatography eluting with 3:1 

petroleum ether/ethyl acetate to yield the title compound (393 mg, 59%) as an off white 

solid, mp 146°C; Dmax (CHCI3 ) /cm ' 1 3477, 3018, 2934, 2856, 2356, 1456, 1415, 1215, 

1100; !H NMR (400MHz, CDC13) 5H 7.92 (2H, bs, NH), 7.56 (2H, d, J  = 8.0, Ar-H), 7.31 

(2H, d, J  = 8.1, Ar-H), 7.11, (2H, d, J  = 2.4, Ar-H), 7.04 (2H, t, J  = 7.6, Ar-H), 6.89 (2H, t, J 

= 7.9, Ar-H), 2.56-2.52 (4H, m, CCHa), 1.66-1.57 (6 H, m, Ctfc) 13C NMR (100MHz, 

CDCI3) 5c 137.0(C), 126.2(C), 123.6(C), 122.0(CH), 121.4(CH), 121.2(CH), 118.5(CH), 

lll.O(CH), 39.5(C), 36.8(CH2), 26.8(CH2) 23.0(CH2).

Synthesis of 3-(l-(l//-indol-3-yl)cyclohexan-4-one ethylene acetal)-l//-indole 321

Indole 300 (250 mg, 2.13 mmol, 2eq) was added to methanol (3 mL) and benzoic acid N -  

isopropylhyrdazide 91 (23 mg, 0.11 mmol, O.leq) and stirred at 25 °C. 1,4 cyclohexadione 

monoethylene ketal 319 (170 mg, 1.07 mmol)was added, the reaction tube, sealed and 

allowed to stir for 24hrs at ambient temperature. The solvent was removed under reduced

196



Chapter 10__________________________________________________________T J  K Gibbs- PhD Thesis 2008

pressure and the resulting mixture was then purified by flash column chromatography

eluting with (3:1) petroleum ether/ethyl acetate to yield the title compound (200 mg, 50%)

as an off white solid, mp 228 °C; v max (CHCI3 ) /cm ' 1 3477, 3415, 3019, 2932, 2329, 1722,

1456, 1215; 'H NMR (400MHz, CDC13) 5H7.94 (2H, s, NH), 7.59 (2H, d, J = 8.1, Ar-H),

7.31 (2H, d, J = 8.1, Ar-H), 7.10-7.06 (4H, m, Ar-H), 6.94-6.90 (2H, m, Ar-H), 4.00 (4H, s,

0 (CH2 )2 0 ), 2.73-.2.70 (4H, m, OCH2 CH2 ), 1.83-1.80 (4H, m, OCH2 CH2 ); 13C NMR

(100MHz, d6  acetone) 5c 139.4(C), 128.2(C) 124.1(CH), 122.8(CH), 122.4(CH),

119.7(CH), 133.1(CH), 110.6(C), 56.7(CH2), 40.3(C), 35.9(CH2), 33.7(CH2) the other

quaternary carbon was not observed, m/z (APCI) (M+H); HRMS (ES) (found [M+H]+

373.1914; C2 ,H2 2 N2 0 2 requires 373.1911).

Synthesis of vibrandole A  324

Indole 300 (500 mg, 4.27 mmol, 2eq) was added to methanol (2.5 mL) and benzoic acid N'~ 

isopropylhyrdazide 91 (46 mg, 0.214 mmol, O.leq) and stirred at 25 °C. Acetylaldehyde (94 

mg, 2.14 mmol, 0.12 mL,) was added, the reaction tube sealed and allowed to stir for 24hrs 

at ambient temperature. The solvent was removed under reduced pressure and the resulting 

mixture was then purified by flash column chromatography eluting with 3:1 petroleum 

ether/ethyl acetate to yield the title compound (450 mg, 80%) as an off white solid, mp 155 

°C; u max (CHCI3 ) /cm ' 1 3479, 3417, 3018, 1455, 1416, 1092; 'H NMR (500MHz, CDCI3 ) 8 H 

7.81 (1H, bs, NH), 7.52 (2H, d, 7 = 7.9, Ar-H), 7.29 (2H, d, 7 =  8.1, Ar-H), 7.10,(2H, t, 7 = 

8.1, Ar-H), 6.97 (2H, t, 7 = 8.0, Ar-H), 6 . 8 6  (2H, d, 7 = 2.4, Ar-H), 4.61 (1H, q, 7 = 7.1, 

CH), 1.75(3H, d, 7 = 7.1, CH3).13C NMR (125MHz, CDCI3 ) 8 C 136.7 (C), 126.9 (C). 121.8 

(CH), 121.7 (C), 121.2 (CH), 119.8 (CH), 119.0 (CH), 111.1 (CH), 28.1 (CH), 21.8 (CH3).
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Synthesis of 3-(l,3-di(l/f-indoI-3-yI)butyl)-l#-indole 327

NH

Indole 300 (0.5 g, 4.27 mmol) was added to methanol (5 mL) and benzoic acid N -  

isopropylhyrdazide 91 (30.5 mg, 0.142 mmol, O.leq) and stirred at 25 °C. Crotonaldheyde 

(100 mg, 1.42 mmol, 0.12 mL,) was added, the reaction tube sealed and allowed to stir for 

24hrs at ambient temperature. The solvent was removed under reduced pressure and the 

resulting mixture was then purified by flash column chromatography eluting with (3 :1 ) 

petroleum ether/ethyl acetate to yield the title compound (290 mg, 51%) as an off white 

solid. The measured data is consistent with literature values17 2  mp 151-154 °C; lH NMR 

(400MHz, CDC13) 5h 7.60-7.43( 4H, m, 3(NH], Ar-H) 7.43(1H, d, J = 7.8, Ar-H), 7.41 (1H, 

d, J = 7.8, Ar-H) 7.25-7.05 (6 H, m, Ar-H), 7.04-6.90 (3H, m, Ar-H), 6.76 (1H, d, J = 2.0, 

Ar-H), 6.70 (1H, d, J = 2.0, Ar-H), 6.65(1H, d, J = 2.0, Ar-H), 4.50 (1H, t, J = 7.8, Ar2 -CH), 

3.00 (1H, m, CH3 CH), 2.60 (1H, m, CHCH2 ), 2.40 (1H, m, CHCH2 ), 1.38 (3H, d, J = 7.0, 

CH3 CH).

Synthesis of tri(l//-indoI-3-yI)methane 325

■NH

Indole 300 (500 mg, 4.27 mmol, 2 eq) was added to methanol (5 mL) and benzoic acid N'- 

isopropylhyrdazide 91 (46 mg, 0.214 mmol, 0.1 eq) and stirred at 25 °C. Indole-3- 

carboxaldehyde (310 mg, 2.14 mmol) was added, the reaction tube sealed and allowed to 

stir for 24hrs at ambient temperature. The solvent was removed under reduced pressure and 

the resulting mixture was then purified by flash column chromatography eluting with 3:1 

petroleum ether/ethyl acetate to yield the title compound (590 mg, 77%) as an off white 

solid. 'H  NMR (400MHz, CDC13) 5h 10.8 (3H, d, J  = 1.9, NH), 7.43 (3H, d, J  = 8.0, Ar-H),
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7.39 (3H, d ,J =  8.0, Ar-H), 7.07-7.05 (3H, m, Ar-H), 6.99 (3H, d, J  = 2.0, Ar-H), 6.92-6.88 

(3H, m, Ar-H), 6.10 (3H, s, Ar3CH) 13C NMR (100MHz, CDCI3) 5c 136.7(C), 127.1(C), 

123.3(CH), 121.7(CH), 120.0(CH), 119.3(C), 199.0(CH), lll.O(CH), 31.2(CH).

Preparation of 3,3-di(l//-indol-3-yl)indolin-2-one 326

HN-

Indole 300 (250 mg, 2.13 mmol, 2eq) was added to methanol (5.0 mL) and benzoic acid N'- 

isopropylhyrdazide 91 (23.0 mg, 0.107 mmol, 0.1 eq) and stirred at 25 °C. Isatin (160 mg,

1.07 mmol) was added, the reaction tube sealed and allowed to stir for 24hrs at ambient 

temperature. The solvent was removed under reduced pressure and the resulting mixture 

was then purified by flash column chromatography eluting with 3:1 petroleum ether/ethyl 

acetate to yield the title compound (280 mg, 72%) as an off white solid, mp 286 °C; *H 

NMR (400MHz, CD3 OD) 5H 7.32 (2H, m, Ar-H), 7.27-7.25(4H, m, Ar-H), 7.05-7.03 (3H, 

m, Ar-H), 6.99-6.96(lH, m) , 6.90(2H, s, Ar-H), 6.82-6.81 (2H, m Ar-H); 13C NMR 

(125MHz, CD3 OD) 5C 183.4(C), 143.1(C), 139.6(C), 137.5(C), 129.8(CH), 128.1(C), 

127.3(CH), 126.4(CH), 124.1(CH), 123.2(CH), 122.9(CH), 120.3(CH), 116.5(C),

113.1 (CH), 111.8(CH),55.7(CH).
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Appendix

Equation to determine rate of iminium ion formation

For a reaction where the initial concentration of A and B are identical

A + B - + P  (1)

Where A and B are the starting materials and P is the product the rate of the reaction is 

given by

This can be rewritten as

-  V  = k x  w  0 )

Through mathematical separation of the variables and integration gives

m ~ k t + c  (4)

Provided that [A] = [A]o at t = 0 the constant of integration becomes l/[A]0and therefore the 

integrated second order equation becomes

= kt
lA ) [A )o (5)

A plot of 1/[A] vs t should therefore be a straight line for a second order process and have 

slope k. The rate constants k were measured using data points up to 50% conversion.
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Equation to determine the rate constant of the Diels-Alder cycloaddition

For the reaction where the initial concentration of A and B are in equivalent the variable x is 

introduced to give.

^  =  k([A}0 -  x)([B}0 -  x)

x is the decrease in the concentration of A and B  therefore [A]o-jc = [A] and [B]o-x = [B].

If equation is treated mathematically with separation of the variables and partial fraction 

expansion it can then be integrated to give

1  l n  Id L0—3: —
[A\0-[ B ] 0 [B]0- x  (7)

The constant of integration C can then be found using the condition x = 0 when t = 0 by 

equation (8 )

( ? = , „  r rji In [ A ] ,

[A)0-[B ]  o [B]0 (g)

When this is substituted into equation (7) we get

ln[o]°  ̂— kt([A]0 — [B]0) +  In[B\0- x  vL l [B]o ^

Therefore if [A] > [B] then a plot of ln(([A]0 -x)/([B]0 -x)) vs t will have positive slope, equal 

to ([A] 0  -  [B]0 )k. The rate constant k was measured using data points up to 50% conversion.
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The Arrhenius Equation

The Arrhenius equation relates rate to activation energy is often written in the form

lnfc =  - | |  +  ln A  (10)

Where k is the rate constant, Ea is the activation energy, R is the gas constant, T is the 

temperature and A is the Arrhenius pre-exponential factor. Using this equation a plot of Ink 

vs 1/T gives a slope of -Ea/R with an intercept In A.
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Progress of reaction for iminium ion formation (293K Run 1)
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2nd Order Rate Plot for Iminium Ion formation at 293K
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Kinetic data for iminium ion formation at 293K (Run 1)

Integration Integration 

Integration Integration Total cinnamaldehyde/ iminium/Total 
cinnamaldehyde iminium integration Total integration integration [Iminium] 1/[lmini

) 1 0 1 1 1 0 0

4 1 0.0786616 1.0786616 0.927074812 0.072925188 0.018231297 54.85C

17 0.975638 0.0954952 1.0711332 0.910846569 0.089153431 0.022288358 44.866

:0 0.974936 0.106356 1.081292 0.90163989 0.09836011 0.024590027 40.666

:3 0.959829 0.116821 1.07665 0.891495844 0.108504156 0.027126039 36.864

6 0.965788 0.133105 1.098893 0.878873557 0.121126443 0.030281611 33.023

9 0.937286 0.148708 1.085994 0.863067383 0.136932617 0.034233154 29.211

2 0.930808 0.153153 1.083961 0.858709861 0.141290139 0.035322535 28.31 C

>5 0.931484 0.170722 1.102206 0.845108809 0.154891191 0.038722798 25.824

38 0.8834 0.160245 1.043645 0.84645641 0.15354359 0.038385898 26.051

0.902673 0.192012 1.094685 0.824596117 0.175403883 0.043850971 22.804

14 0.881297 0.192969 1.074266 0.820371305 0.179628695 0.044907174 22.268

17 0.876085 0.211909 1.087994 0.805229624 0.194770376 0.048692594 20.58

30 0.848822 0.207038 1.05586 0.803915292 0.196084708 0.049021177 20.393

>3 0.866961 0.232523 1.099484 0.788516249 0.211483751 0.052870938 18.918

36 0.829297 0.221371 1.050668 0.789304519 0.210695481 0.05267387 18.984

)9 0.810011 0.237827 1.047838 0.773030755 0.226969245 0.056742311 17.623

32 0.808783 0.235496 1.044279 0.774489385 0.225510615 0.056377654 17.737

35 0.798519 0.256306 1.054825 0.757015619 0.242984381 0.060746095 16.461

!8 0.780611 0.259038 1.039649 0.750840909 0.249159091 0.062289773 16.06

)1 0.803918 0.289411 1.093329 0.735293768 0.264706232 0.066176558 15.111

4 0.790241 0.27926 1.069501 0.738887575 0.261112425 0.065278106 15.313

17 0.783533 0.309042 1.092575 0.717143446 0.282856554 0.070714139 14.141

!0 0.767473 0.312511 1.079984 0.710633676 0.289366324 0.072341581 13.828

)3 0.764613 0.336035 1.100648 0.69469349 0.30530651 0.076326628 13.101

>6 0.745143 0.320089 1.065232 0.699512407 0.300487593 0.075121898 13.31

39 0.72069 0.332389 1.053079 0.684364611 0.315635389 0.078908847 12.672

2 0.715529 0.342035 1.057564 0.676582221 0.323417779 0.080854445 12.36'

35 0.727121 0.351789 1.07891 0.673940366 0.326059634 0.081514909 12.26/

38 0.724685 0.371061 1.095746 0.661362214 0.338637786 0.084659447 11.812

31 0.709422 0.350005 1.059427 0.669628016 0.330371984 0.082592996 12.107

>4 0.685013 0.368386 1.053399 0.650288257 0.349711743 0.087427936 11.437
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3850

m
-096

3)69

0.67552 0.379978 1.055498 0.640001213 0.359998787 0.089999697 11.111

0.695931 0.39885 1.094781 0.635680561 0.364319439 0.09107986 10.97S

0.669385 0.383779 1.053164 0.635594266 0.364405734 0.091101433 10.976
0.666577 0.410277 1.076854 0.619004062 0.380995938 0.095248985 10.491

0.644206 0.407436 1.051642 0.612571579 0.387428421 0.096857105 10.324
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Kinetic data for iminium ion formation at 293K (Run 1)

Conversion
namaldehyde] 1 /[Cinnamaldehyde] Time 1 /[Cinnamaldehyde] Time to iminium

0.25 1 0 4 0 0
0.231769 4.314646 514 4.314646 514 119.1291
0.227712 4.391519 587 4.391519 587 133.6667
0.22541 4.436361 660 4.436361 660 148.7706

0.222874 4.486841 733 4.486841 733 163.3666

0.219718 4.55128 806 4.55128 806 177.093
0.215767 4.634632 879 4.634632 879 189.6591
0.214677 4.658151 952 4.658151 952 204.3729

0.211277 4.733118 1025 4.733118 1025 216.5591

0.211614 4.725583 1098 4.725583 1098 232.3523

0.206149 4.85086 1171 4.85086 1171 241.4005

0.205093 4.875841 1244 4.875841 1244 255.1355

0.201307 4.967527 1317 4.967527 1317 265.1219

0.200979 4.975649 1390 4.975649 1390 279.3606

0.197129 5.072819 1463 5.072819 1463 288.3998

0.197326 5.067753 1536 5.067753 1536 303.0929

0.193258 5.174438 1609 5.174438 1609 310.9516

0.193622 5.164693 1682 5.164693 1682 325.6728

0.189254 5.283907 1755 5.283907 1755 332.1406

0.18771 5.32736 1828 5.32736 1828 343.1343

0.183823 5.440003 1901 5.440003 1901 349.4484

0.184722 5.413543 1974 5.413543 1974 364.641

0.179286 5.577685 2047 5.577685 2047 366.9982

0.177658 5.628779 2120 5.628779 2120 376.6358

0.173673 5.757935 2193 5.757935 2193 380.8657

0.174878 5.718269 2266 5.718269 2266 396.2738

0.171091 5.844838 2339 5.844838 2339 400.1822

0.169146 5.912068 2412 5.912068 2412 407.9791

0.168485 5.935243 2485 5.935243 2485 418.6855

0.165341 6.048123 2558 6.048123 2558 422.9411

0.167407 5.973466 2631 5.973466 2631 440.4478

0.162572 6.151118 2704 6.151118 2704 439.5949

0.16 6.249988 2777 6.249988 2777 444.3208

0.15892 6.292469 2850 6.292469 2850 452.9224
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0.158899 6.293323 2923 6.293323 2923 464.4605
0.154751 6.461993 2996 6.461993 2996 463.634

0.153143 6.529849 3069 6.529849 3069 469.9955
0.231769 4.314646 514 4.314646 514 119.1291
0.227712 4.391519 587 4.391519 587 133.6667

0.22541 4.436361 660 4.436361 660 148.7706

0.222874 4.486841 733 4.486841 733 163.3666

0.219718 4.55128 806 4.55128 806 177.093

0.215767 4.634632 879 4.634632 879 189.6591

0.214677 4.658151 952 4.658151 952 204.3729
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Kinetic data for iminium ion formation at 293K (Run 2)

Integration
inamaldehyde

Integration
iminium

Total
integration

Integration 

cinnamaldehyde / 
Total integration

integration
iminium/

Total
integration [iminium] 1/[iminiu

1 0 1 1 1 0 0
1 0.0525211 1.052521 0.9501 0.049900282 0.012475071 80.1598

0.976773 0.0563195 1.033093 0.945485 0.054515448 0.013628862 73.373
0.954415 0.0573704 1.011785 0.943298 0.056702143 0.014175536 70.544C
0.950905 0.0833145 1.03422 0.919442 0.080557851 0.020139463 49.6537

0.935718 0.102005 1.037723 0.901703 0.098296944 0.024574236 40.693C
0.927286 0.117216 1.044502 0.887778 0.112221901 0.028055475 35.6436

0.906985 0.133437 1.040422 0.871747 0.128252767 0.032063192 31.1884

0.906053 0.152904 1.058957 0.855609 0.144391132 0.036097783 27.7026

0.896053 0.161474 1.057527 0.84731 0.152690191 0.038172548 26.1968

0.868374 0.171544 1.039918 0.835041 0.16495916 0.04123979 24.2484

0.858046 0.176109 1.034155 0.829707 0.170292654 0.042573164 23.4889

0.854173 0.195951 1.050124 0.813402 0.186597964 0.046649491 21.4364

0.833209 0.209131 1.04234 0.799364 0.200636069 0.050159017 19.9366

0.821795 0.222229 1.044024 0.787142 0.212858134 0.053214533 18.7918

0.804798 0.229205 1.034003 0.778332 0.221667635 0.055416909 18.045C

0.787319 0.230004 1.017323 0.773913 0.226087486 0.056521872 17.6922

0.777969 0.24731 1.025279 0.758788 0.241212392 0.060303098 16.582:

0.774994 0.259439 1.034433 0.749197 0.250803097 0.062700774 15.9487

0.785654 0.268687 1.054341 0.745161 0.254838805 0.063709701 15.696;

0.749746 0.283626 1.033372 0.725533 0.274466504 0.068616626 14.5737

0.728995 0.274805 1.0038 0.726235 0.273764694 0.068441174 14.611C

0.725611 0.299039 1.02465 0.708155 0.29184502 0.072961255 13.705!

0.717782 0.306193 1.023975 0.700976 0.299023902 0.074755975 13.3768

0.700969 0.306338 1.007307 0.695884 0.304115826 0.076028956 13.1528

0.696942 0.328612 1.025554 0.679576 0.320423888 0.080105972 12.4834

0.690886 0.32511 1.015996 0.680009 0.319991417 0.079997854 12.5002

0.695492 0.346814 1.042306 0.667263 0.332737219 0.083184305 12.021!

0.663821 0.338093 1.001914 0.662553 0.337447126 0.084361782 11.8537

0.668502 0.360286 1.028788 0.649796 0.350204318 0.08755108 11.421!

0.649619 0.353584 1.003203 0.647545 0.352455086 0.088113772 11.3489

0.654922 0.361241 1.016163 0.644505 0.355495132 0.088873783 11.2519
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35 0.640255 0.38727 1.027525

58 0.629395 0.396955 1.02635

31 0.630692 0.402422 1.033114

34 0.612024 0.398681 1.010705

711 0.608491 0.407083 1.015574

50 0.58768 0.408425 0.996105

33 0.5987 0.425149 1.023849

36 0.592189 0.43644 1.028629

39 0.587037 0.439659 1.026696

112 0.578097 0.449466 1.027563

15 0.559014 0.438187 0.997201

0.623104 0.376895939 0.094223985 10.613C

0.613236 0.386763775 0.096690944 10.3422

0.610477 0.389523325 0.097380831 10.2682

0.605542 0.394458324 0.098614581 10.1404

0.59916 0.400840313 0.100210078 9.9790c

0.589978 0.410022036 0.102505509 9.75557

0.584754 0.415245803 0.103811451 9.63284

0.575707 0.424292918 0.10607323 9.42744

0.571773 0.428227051 0.107056763 9.3408c

0.56259 0.437409677 0.109352419 9.14474

0.560583 0.439416928 0.109854232 9.10297
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inamaldehyde]

Kinetic data for iminium ion formation at 293K (Run 2)
Conversion to

1/[Cinnamaldehyde] Time 1/[Cinnamaldehyde] Time iminium
0.25 1 0 4 0 0

0.237525 4.210084 222 4.210084 222 0.049900282
0.236371 4.230635 295 4.230635 295 0.054515448
0.235824 4.240442 368 4.240442 368 0.056702143
0.229861 4.350464 441 4.350464 441 0.080557851
0.225426 4.43605 514 4.43605 514 0.098296944

0.221945 4.50563 587 4.50563 587 0.112221901
0.217937 4.588486 660 4.588486 660 0.128252767
0.213902 4.675033 733 4.675033 733 0.144391132

0.211827 4.720823 806 4.720823 806 0.152690191

0.20876 4.790185 879 4.790185 879 0.16495916

0.207427 4.820977 952 4.820977 952 0.170292654

0.203351 4.917617 1025 4.917617 1025 0.186597964

0.199841 5.003979 1098 5.003979 1098 0.200636069

0.196785 5.081676 1171 5.081676 1171 0.212858134

0.194583 5.139193 1244 5.139193 1244 0.221667635

0.193478 5.168543 1317 5.168543 1317 0.226087486

0.189697 5.271567 1390 5.271567 1390 0.241212392

0.187299 5.33905 1463 5.33905 1463 0.250803097

0.18629 5.367966 1536 5.367966 1536 0.254838805

0.181383 5.513184 1609 5.513184 1609 0.274466504

0.181559 5.507857 1682 5.507857 1682 0.273764694

0.177039 5.648481 1755 5.648481 1755 0.29184502

0.175244 5.706329 1828 5.706329 1828 0.299023902

0.173971 5.748083 1901 5.748083 1901 0.304115826

0.169894 5.886022 1974 5.886022 1974 0.320423888

0.170002 5.882279 2047 5.882279 2047 0.319991417

0.166816 5.99464 2120 5.99464 2120 0.332737219

0.165638 6.037254 2193 6.037254 2193 0.337447126

0.162449 6.155781 2266 6.155781 2266 0.350204318

0.161886 6.177178 2339 6.177178 2339 0.352455086

0.161126 6.206315 2412 6.206315 2412 0.355495132

0.155776 6.419473 2485 6.419473 2485 0.376895939

0.153309 6.522772 2558 6.522772 2558 0.386763775

0.152619 6.552257 2631 6.552257 2631 0.389523325

0.151385 6.605656 2704 6.605656 2704 0.394458324
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0.14979 6.676017 2777 6.676017 2777 0.400840313
0.147494 6.779914 2850 6.779914 2850 0.410022036

0.146189 6.840481 2923 6.840481 2923 0.415245803
0.143927 6.947978 2996 6.947978 2996 0.424292918

0.142943 6.995784 3069 6.995784 3069 0.428227051

0.140648 7.109969 3142 7.109969 3142 0.437409677

0.140146 7.135428 3215 7.135428 3215 0.439416928
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Kinetic data for iminium ion formation at 298K (Run 1)

Integration Integration

Iminium/ Cinnamaldehyde/
Integration Integration Total Total Total

rime cinnamaldehyde iminium integration Integration Integration [iminium] 1/[iminiun
0 1 0 1 0 1 0 0

148 1 0.0381273 1.038127 0.036726999 0.963273 0.00918175 108.911/
221 0.977101 0.068101 1.045202 0.065155826 0.934844 0.016288957 61.39125
294 0.944072 0.0890635 1.033136 0.086206988 0.913793 0.021551747 46.39995
367 0.927927 0.110772 1.038699 0.106644947 0.893355 0.026661237 37.50764
440 0.901843 0.136438 1.038281 0.131407586 0.868592 0.032851897 30.43964
513 0.895628 0.159392 1.05502 0.1510796 0.84892 0.0377699 26.47611
586 0.880292 0.172619 1.052911 0.163944531 0.836055 0.040986133 24.3985
659 0.851433 0.202143 1.053576 0.19186371 0.808136 0.047965927 20.84815
732 0.833351 0.204827 1.038178 0.197294684 0.802705 0.049323671 20.27424

805 0.825531 0.214549 1.04008 0.206281248 0.793719 0.051570312 19.391

378 0.799671 0.246174 1.045845 0.235382872 0.764617 0.058845718 16.99355

951 0.789724 0.262774 1.052498 0.249666983 0.750333 0.062416746 16.02134

024 0.777948 0.277229 1.055177 0.262732224 0.737268 0.065683056 15.22465

097 0.760145 0.299082 1.059227 0.282358739 0.717641 0.070589685 14.16635

170 0.735175 0.30465 1.039825 0.292981992 0.707018 0.073245498 13.65272

243 0.730068 0.316186 1.046254 0.302207686 0.697792 0.075551921 13.23595

316 0.694745 0.323989 1.018734 0.318031007 0.681969 0.079507752 12.57735

389 0.701208 0.341494 1.042702 0.327508723 0.672491 0.081877181 12.21345

462 0.692057 0.360264 1.052321 0.342351811 0.657648 0.085587953 11.68385

535 0.685448 0.376786 1.062234 0.354710921 0.645289 0.08867773 11.27675

608 0.673502 0.386399 1.059901 0.364561407 0.635439 0.091140352 10.97205

681 0.644835 0.387832 1.032667 0.375563468 0.624437 0.093890867 10.65065

754 0.634209 0.410421 1.04463 0.392886477 0.607114 0.098221619 10.18105

827 0.619857 0.407543 1.0274 0.396674129 0.603326 0.099168532 10.08384

900 0.604452 0.409388 1.01384 0.403799416 0.596201 0.100949854 9.905905

973 0.615885 0.441054 1.056939 0.417293713 0.582706 0.104323428 9.585575

!046 0.593532 0.435814 1.029346 0.42338922 0.576611 0.105847305 9.447575

119 0.581948 0.454921 1.036869 0.438744914 0.561255 0.109686228 9.116915

192 0.5725 0.465287 1.037787 0.448345373 0.551655 0.112086343 8.921695

!265 0.555753 0.478724 1.034477 0.462769109 0.537231 0.115692277 8.643615

.'338 0.557002 0.483413 1.040415 0.464634785 0.535365 0.116158696 8.608915
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2411 0.54596 0.490692 1.036652 0.473343031 0.526657 0.118335758 8.450531
2484 0.547975 0.503603 1.051578 0.478902183 0.521098 0.119725546 8.352436
2557 0.509369 0.477541 0.98691 0.483874923 0.516125 0.120968731 8.266596
2630 0.512666 0.504277 1.016943 0.495875383 0.504125 0.123968846 8.06654c
2703 0.510927 0.51026 1.021187 0.499673419 0.500327 0.124918355 8.005226
,2776 0.502922 0.523368 1.02629 0.509961122 0.490039 0.127490281 7.843736
2849 0.488333 0.528361 1.016694 0.519685372 0.480315 0.129921343 7.696966
2922 0.479294 0.537184 1.016478 0.528475776 0.471524 0.132118944 7.568937
: 2995 0.481056 0.547697 1.028753 0.532389213 0.467611 0.133097303 7.5133

: 3068 0.476493 0.56941 1.045903 0.544419511 0.45558 0.136104878 7.347276
,3141 0.469258 0.556244 1.025502 0.542411424 0.457589 0.135602856 7.374476
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Kinetic data for iminium ion formation at 298K (Run 1)

Conversion
[Cinnamaldehyde] 1/[Cinnamaldehyde] Time 1/[Cinnamaldehyde] Time to iminium

0.25 4 0 4 0 0
0.240818 4.152509 148 4.152509 148 0.036727
0.233711 4.278788 221 4.278788 221 0.065156

0.228448 4.377359 294 4.377359 294 0.086207

0.223339 4.477503 367 4.477503 367 0.106645

0.217148 4.605152 440 4.605152 440 0.131408

0.21223 4.711867 513 4.711867 513 0.15108

0.209014 4.784372 586 4.784372 586 0.163945

0.202034 4.94966 659 4.94966 659 0.191864

0.200676 4.983149 732 4.983149 732 0.197295

0.19843 5.039568 805 5.039568 805 0.206281

0.191154 5.231376 878 5.231376 878 0.235383

0.187583 5.330966 951 5.330966 951 0.249667

0.184317 5.425437 1024 5.425437 1024 0.262732

0.17941 5.573816 1097 5.573816 1097 0.282359

0.176755 5.657565 1170 5.657565 1170 0.292982

0.174448 5.732365 1243 5.732365 1243 0.302208

0.170492 5.865369 1316 5.865369 1316 0.318031

0.168123 5.948033 1389 5.948033 1389 0.327509

0.164412 6.082279 1462 6.082279 1462 0.342352

0.161322 6.198772 1535 6.198772 1535 0.354711

0.15886 6.294865 1608 6.294865 1608 0.364561

0.156109 6.405775 1681 6.405775 1681 0.375563

0.151778 6.588554 1754 6.588554 1754 0.392886

0.150831 6.629916 1827 6.629916 1827 0.396674

0.14905 6.709151 1900 6.709151 1900 0.403799

0.145677 6.864522 1973 6.864522 1973 0.417294

0.144153 6.937088 2046 6.937088 2046 0.423389

0.140314 7.126884 2119 7.126884 2119 0.438745

0.137914 7.250914 2192 7.250914 2192 0.448345

0.134308 7.445588 2265 7.445588 2265 0.462769

0.133841 7.471535 2338 7.471535 2338 0.464635

0.131664 7.595077 2411 7.595077 2411 0.473343

0.130274 7.676102 2484 7.676102 2484 0.478902
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0.129031 7.750059 2557 7.750059 2557 0.483875

0.126031 7.934546 2630 7.934546 2630 0.495875

0.125082 7.994778 2703 7.994778 2703 0.499673

0.12251 8.162618 2776 8.162618 2776 0.509961

0.120079 8.327875 2849 8.327875 2849 0.519685

0.117881 8.483127 2922 8.483127 2922 0.528476

0.116903 8.554123 2995 8.554123 2995 0.532389

0.113895 8.780007 3068 8.780007 3068 0.54442

0.114397 8.741477 3141 8.741477 3141 0.542411
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Kinetic data for iminium ion formation at 298K (Run 2)

Integration Integration

iminium/ cinnamaldehyde/
Integration Integration Total Total Total
inamaldehyde iminium integration integration integration [Iminium] 1/[lminium

1 1 0 1 0 0
1 0.0705531 1.070553 0.06590341 0.934097 0.016475853 60.69489

0.973304 0.104543 1.077847 0.09699243 0.903008 0.024248108 41.24033
0.948847 0.128629 1.077476 0.119379921 0.88062 0.02984498 33.50647
0.910521 0.150602 1.061123 0.141926996 0.858073 0.035481749 28.1835
0.896143 0.172831 1.068974 0.16167933 0.838321 0.040419832 24.74033
0.874285 0.192482 1.066767 0.180434903 0.819565 0.045108726 22.16866
0.849718 0.217178 1.066896 0.203560609 0.796439 0.050890152 19.65017

0.831153 0.235786 1.066939 0.220992953 0.779007 0.055248238 18.10012

0.800476 0.242617 1.043093 0.232593834 0.767406 0.058148458 17.19736
0.78471 0.280492 1.065202 0.263322825 0.736677 0.065830706 15.19048

0.770275 0.297911 1.068186 0.278894312 0.721106 0.069723578 14.34235

0.74892 0.308191 1.057111 0.291540813 0.708459 0.072885203 13.72021

0.724236 0.316609 1.040845 0.304184581 0.695815 0.076046145 13.14991

0.727113 0.351275 1.078388 0.325740828 0.674259 0.081435207 12.2797

0.69251 0.351875 1.044385 0.336920772 0.663079 0.084230193 11.87223

0.65095 0.352897 1.003847 0.351544608 0.648455 0.087886152 11.37836

0.678897 0.39428 1.073177 0.367395127 0.632605 0.091848782 10.88746

0.635938 0.390678 1.026616 0.3805493 0.619451 0.095137325 10.51112

0.638093 0.425213 1.063306 0.399897113 0.600103 0.099974278 10.00257

0.620677 0.428597 1.049274 0.408470047 0.59153 0.102117512 9.79264

0.622848 0.440722 1.06357 0.414379872 0.58562 0.103594968 9.652979

0.569515 0.438564 1.008079 0.435049237 0.564951 0.108762309 9.194362

0.586092 0.464447 1.050539 0.44210353 0.557896 0.110525882 9.047655

0.586715 0.483447 1.070162 0.45175123 0.548249 0.112937808 8.854431

0.577458 0.488218 1.065676 0.458129863 0.54187 0.114532466 8.731149

0.545846 0.494477 1.040323 0.475311033 0.524689 0.118827758 8.415542

0.542624 0.508636 1.05126 0.483834637 0.516165 0.120958659 8.267287

0.545096 0.503786 1.048882 0.480307604 0.519692 0.120076901 8.327996

0.530972 0.528254 1.059226 0.498716988 0.501283 0.124679247 8.020581

0.510325 0.5307 1.041025 0.509786028 0.490214 0.127446507 7.846429

0.506187 0.536307 1.042494 0.514446126 0.485554 0.128611532 7.775353

218



■479 0.507857 0.547137 1.054994 0.51861622 0.481384 0.129654055 7.712832
:552 0.499314 0.56139 1.060704 0.529261698 0.470738 0.132315424 7.557698

:625 0.486593 0.560334 1.046927 0.535217833 0.464782 0.133804458 7.473593
:698 0.476103 0.568149 1.044252 0.544072695 0.455927 0.136018174 7.351959

771 0.468767 0.586491 1.055258 0.555779724 0.44422 0.138944931 7.197096

CO -F
^

-P
- 0.445948 0.583674 1.029622 0.566881827 0.433118 0.141720457 7.056144

•917 0.452698 0.606701 1.059399 0.572684135 0.427316 0.143171034 6.984653

:990 0.453399 0.582676 1.036075 0.562387858 0.437612 0.140596965 7.112529

:063 0.44701 0.599515 1.046525 0.572862569 0.427137 0.143215642 6.982478

136 0.427333 0.612589 1.039922 0.589072065 0.410928 0.147268016 6.790341

209 0.425571 0.61778 1.043351 0.59211138 0.407889 0.148027845 6.755486
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Kinetic data for iminium ion formation at 298K (Run 2)

[Cinnamaldehyde] 1/[Cinnamaldehyde]
0.25 4

0.233524 4.282212

0.225752 4.429642

0.220155 4.542254

0.214518 4.661608

0.20958 4.771444

0.204891 4.880637

0.19911 5.022353

0.194752 5.134742

0.191852 5.212364

0.184169 5.429787

0.180276 5.547037

0.177115 5.646056

0.173954 5.748651

0.168565 5.932437

0.16577 6.032462

0.162114 6.168504

0.158151 6.323062

0.154863 6.457334

0.150026 6.665524

0.147882 6.762126

0.146405 6.830366

0.141238 7.080263

0.139474 7.169789

0.137062 7.295958

0.135468 7.381842

0.131172 7.623564

0.129041 7.749455

0.129923 7.696861

0.125321 7.979524

0.122553 8.159702

0.121388 8.238015

0.120346 8.309378

0.117685 8.49729

Conversion
1/[Cinnamaldehyde] Time to iminium

4 0 0

4.282212 216 0.065903
4.429642 289 0.096992

4.542254 362 0.11938

4.661608 435 0.141927

4.771444 508 0.161679

4.880637 581 0.180435

5.022353 654 0.203561

5.134742 727 0.220993

5.212364 800 0.232594

5.429787 873 0.263323

5.547037 946 0.278894

5.646056 1019 0.291541

5.748651 1092 0.304185

5.932437 1165 0.325741

6.032462 1238 0.336921

6.168504 1311 0.351545

6.323062 1384 0.367395

6.457334 1457 0.380549

6.665524 1530 0.399897

6.762126 1603 0.40847

6.830366 1676 0.41438

7.080263 1749 0.435049

7.169789 1822 0.442104

7.295958 1895 0.451751

7.381842 1968 0.45813

7.623564 2041 0.475311

7.749455 2114 0.483835

7.696861 2187 0.480308

7.979524 2260 0.498717

8.159702 2333 0.509786

8.238015 2406 0.514446

8.309378 2479 0.518616

8.49729 2552 0.529262

Time
0

216

289

362

435

508

581

654

727

800

873

946

1019
1092

1165

1238

1311
1384

1457

1530

1603

1676

1749

1822

1895

1968

2041

2114

2187

2260

2333

2406

2479

2552
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0.116196 8.606182 2625 8.606182 2625 0.535218

0.113982 8.773328 2698 8.773328 2698 0.544073

0.111055 9.004542 2771 9.004542 2771 0.55578

0.10828 9.235355 2844 9.235355 2844 0.566882

0.106829 9.360757 2917 9.360757 2917 0.572684

0.109403 9.140514 2990 9.140514 2990 0.562388

0.106784 9.364667 3063 9.364667 3063 0.572863

0.102732 9.734067 3136 9.734067 3136 0.589072

0.101972 9.806599 3209 9.806599 3209 0.592111
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Kinetic data for iminium ion formation at 303K (Run 1)

Integration Integration

iminium/ cinnamaldehyde/
Integration Integration Total Total Total
mamaldehyde iminium integration integration integration [Iminium] 1/[lminii

1 1 0 1 0 0
1 0.0901037 1.090104 0.082656081 0.917344 0.02066402 48.393

0.964781 0.143097 1.107878 0.129163139 0.870837 0.032290785 30.968
0.907487 0.178053 1.08554 0.164022514 0.835977 0.041005629 24.386
0.856561 0.241803 1.098364 0.22014833 0.779852 0.055037082 18.169
0.819382 0.275352 1.094734 0.251524115 0.748476 0.062881029 15.903
0.760271 0.286789 1.04706 0.273899299 0.726101 0.068474825 14.603
0.745521 0.335275 1.080796 0.310211178 0.689789 0.077552794 12.894

0.703929 0.368981 1.07291 0.343906758 0.656093 0.08597669 11.631
0.668953 0.395704 1.064657 0.371672755 0.628327 0.092918189 10.762

0.627587 0.410407 1.037994 0.395384752 0.604615 0.098846188 10.116

0.637699 0.457356 1.095055 0.417655734 0.582344 0.104413934 9.5772

0.616577 0.471962 1.088539 0.433573809 0.566426 0.108393452 9.2256

0.604825 0.507397 1.112222 0.45620119 0.543799 0.114050298 8.7680

0.566877 0.530449 1.097326 0.483401469 0.516599 0.120850367 8.2746

0.544459 0.529283 1.073742 0.492933125 0.507067 0.123233281 8.1146

0.539165 0.553629 1.092794 0.506617899 0.493382 0.126654475 7.8954

0.510997 0.563222 1.074219 0.524308358 0.475692 0.131077089 7.6290

0.482115 0.580638 1.062753 0.546352727 0.453647 0.136588182 7.3212

0.473249 0.598312 1.071561 0.558355521 0.441644 0.13958888 7.1638

0.479658 0.605995 1.085653 0.558184798 0.441815 0.139546199 7.1660

0.444531 0.61556 1.060091 0.580667131 0.419333 0.145166783 6.8886

0.452681 0.626872 1.079553 0.580677373 0.419323 0.145169343 6.8885

0.426774 0.643525 1.070299 0.601257219 0.398743 0.150314305 6.6527

0.43909 0.653521 1.092611 0.598127787 0.401872 0.149531947 6.6875

0.420399 0.655627 1.076026 0.60930405 0.390696 0.152326013 6.5648

0.388653 0.655905 1.044558 0.627925879 0.372074 0.15698147 6.3701

0.384896 0.678521 1.063417 0.638057319 0.361943 0.15951433 6.2690

0.379119 0.695412 1.074531 0.647177234 0.352823 0.161794308 6.1806

0.38128 0.687933 1.069213 0.643401268 0.356599 0.160850317 6.2166

0.358461 0.692381 1.050842 0.658882115 0.341118 0.164720529 6.0708

0.350027 0.689689 1.039716 0.663343644 0.336656 0.165835911 6.0300



406 0.341765 0.71051 1.052275 0.675213228 0.324787 0.168803307 5.9240

479 0.328437 0.718539 1.046976 0.686299399 0.313701 0.17157485 5.828G

■552 0.342062 0.728263 1.070325 0.680412959 0.319587 0.17010324 5.8787

425 0.325008 0.719611 1.044619 0.688874125 0.311126 0.172218531 5.8065

498 0.322701 0.727793 1.050494 0.69281024 0.30719 0.17320256 5.7735

771 0.314953 0.738144 1.053097 0.700926885 0.299073 0.175231721 5.7067

544 0.308657 0.742736 1.051393 0.706430421 0.29357 0.176607605 5.6622

417 0.304859 0.744226 1.049085 0.709404862 0.290595 0.177351216 5.6385

490 0.298109 0.747843 1.045952 0.714987877 0.285012 0.178746969 5.594

463 0.283406 0.748465 1.031871 0.725347451 0.274653 0.181336863 5.5145

36 0.283381 0.745474 1.028855 0.72456663 0.275433 0.181141657 5.5205
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Kinetic data for iminium ion formation at 303K (Run 1)

[Cinnamaldehyde] 1/[Cinnamaldehyde]
0.25 4

0.229336 4.360415

0.217709 4.593283

0.208994 4.784818

0.194963 5.129181

0.187119 5.344194

0.181525 5.508878

0.172447 5.798876

0.164023 6.096694

0.157082 6.366109

0.151154 6.615778

0.145586 6.868789

0.141607 7.06182

0.13595 7.355662

0.12915 7.742957

0.126767 7.888506

0.123346 8.107307

0.118923 8.408809

0.113412 8.817423

0.110411 9.057059

0.110454 9.053559

0.104833 9.538961

0.104831 9.539194

0.099686 10.03153

0.100468 9.953413

0.097674 10.23814

0.093019 10.75055

0.090486 11.05147

0.088206 11.33714

0.08915 11.21709

0.085279 11.72615

0.084164 11.88155

0.081197 12.31577

0.078425 12.75101

Conversion
1/[Cinnamaldehyde] Time to iminium

4 0 0

4.360415 143 0.082656
4.593283 216 0.129163
4.784818 289 0.164023
5.129181 362 0.220148
5.344194 435 0.251524

5.508878 508 0.273899
5.798876 581 0.310211

6.096694 654 0.343907

6.366109 727 0.371673

6.615778 800 0.395385

6.868789 873 0.417656

7.06182 946 0.433574

7.355662 1019 0.456201

7.742957 1092 0.483401

7.888506 1165 0.492933

8.107307 1238 0.506618

8.408809 1311 0.524308

8.817423 1384 0.546353

9.057059 1457 0.558356

9.053559 1530 0.558185

9.538961 1603 0.580667

9.539194 1676 0.580677

10.03153 1749 0.601257

9.953413 1822 0.598128

10.23814 1895 0.609304

10.75055 1968 0.627926

11.05147 2041 0.638057

11.33714 2114 0.647177

11.21709 2187 0.643401

11.72615 2260 0.658882

11.88155 2333 0.663344

12.31577 2406 0.675213

12.75101 2479 0.686299

Time
0

143

216

289

362

435

508

581

654

727

800

873

946

1019

1092

1165

1238

1311

1384

1457

1530

1603

1676

1749

1822

1895

1968

2041

2114

2187

2260

2333

2406

2479

224



0.079897 12.51615 2552 12.51615 2552 0.680413

0.077781 12.85653 2625 12.85653 2625 0.688874

0.076797 13.02127 2698 13.02127 2698 0.69281

0.074768 13.37466 2771 13.37466 2771 0.700927

0.073392 13.62539 2844 13.62539 2844 0.70643

0.072649 13.76486 2917 13.76486 2917 0.709405

0.071253 14.03449 2990 14.03449 2990 0.714988

0.068663 14.56386 3063 14.56386 3063 0.725347

0.068858 14.52257 3136 14.52257 3136 0.724567
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Time

0
230

303

376

449

522

595

668

741

814

887

960

1033

1106

1179

1252

1325

1398

1471

1544

1617

1690

1763

1836

1909

1982

2055

2128

2201

2274

2347

2420

Kinetic data for iminium ion formation at 303K (Run 2)

Integration Integration Total

Integration
iminium/

Total

Integration
cinnamaldehyde/

Total
inamaldehyde iminium integration integration integration [Iminium]

1 1 0 1 0
1 0.163228 1.163228 0.140323307 0.859676693 0.0350808

0.962368 0.219744 1.182112 0.185891015 0.814108985 0.0464728
0.924426 0.265949 1.190375 0.22341615 0.77658385 0.055854

0.881526 0.308666 1.190192 0.25934135 0.74065865 0.0648353
0.821678 0.350713 1.172391 0.299143375 0.700856625 0.0747858
0.790433 0.404799 1.195232 0.338678181 0.661321819 0.0846695
0.759024 0.430771 1.189795 0.362054808 0.637945192 0.0905137

0.734027 0.455591 1.189618 0.382972517 0.617027483 0.0957431

0.687468 0.472025 1.159493 0.407096032 0.592903968 0.101774

0.663333 0.511782 1.175115 0.435516524 0.564483476 0.1088791

0.645477 0.535298 1.180775 0.453344625 0.546655375 0.1133362

0.625652 0.546298 1.17195 0.46614446 0.53385554 0.1165361

0.604054 0.586793 1.190847 0.492752637 0.507247363 0.1231882

0.576299 0.59951 1.175809 0.509870226 0.490129774 0.1274676

0.563836 0.636919 1.200755 0.530432103 0.469567897 0.132608

0.544572 0.640737 1.185309 0.540565372 0.459434628 0.1351413

0.53979 0.654131 1.193921 0.547884659 0.452115341 0.1369712

0.523341 0.675546 1.198887 0.563477625 0.436522375 0.1408694

0.504036 0.678466 1.182502 0.573754632 0.426245368 0.1434387

0.480303 0.697507 1.17781 0.592206723 0.407793277 0.1480517

0.4718 0.711698 1.183498 0.601351249 0.398648751 0.1503378

0.443569 0.716596 1.160165 0.617667315 0.382332685 0.1544168

0.452493 0.741603 1.194096 0.621058106 0.378941894 0.1552645

0.43994 0.746351 1.186291 0.629146643 0.370853357 0.1572867

0.431272 0.741282 1.172554 0.632194338 0.367805662 0.1580486

0.425618 0.751212 1.17683 0.638335189 0.361664811 0.1595838

0.406439 0.759162 1.165601 0.651305206 0.348694794 0.1628263

0.401245 0.78128 1.182525 0.660687935 0.339312065 0.165172

0.401387 0.792153 1.19354 0.663700421 0.336299579 0.1659251

0.392661 0.7909 1.183561 0.668237632 0.331762368 0.1670594

0.387922 0.800155 1.188077 0.673487493 0.326512507 0.1683719



12493 0.38571 0.806335 1.192045 0.676430001 0.323569999 0.1691075 5.913398277

12566 0.377009 0.818333 1.195342 0.684601562 0.315398438 0.1711504 5.8428146
12639 0.360539 0.83209 1.192629 0.697693918 0.302306082 0.1744235 5.733173094

,2712 0.353074 0.824649 1.177723 0.700206245 0.299793755 0.1750516 5.712602574

L
O

C
O

r~
-

CVI 0.363757 0.83316 1.196917 0.696088367 0.303911633 0.1740221 5.746396851
12858 0.34824 0.83048 1.17872 0.70456088 0.29543912 0.1761402 5.677295058

12931 0.359567 0.84659 1.206157 0.701890384 0.298109616 0.1754726 5.698895569
13004 0.328763 0.841457 1.17022 0.719058809 0.280941191 0.1797647 5.562827334

13077 0.361945 0.868937 1.230882 0.70594663 0.29405337 0.1764867 5.666150711

13150 0.337369 0.850687 1.188056 0.716032746 0.283967254 0.1790082 5.58633669

13223 0.333659 0.868738 1.202397 0.722505129 0.277494871 0.1806263 5.536292875
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Kinetic data for iminium ion formation at 303K (Run 2)

Conversion
[Cinnamaldehyde] 1/[Cinnamaldehyde] Time 1/[Cinnamaldehyde] Time to iminium

0.25 4 0 4 0 0
0.214919 4.652912 230 4.652912 230 0.140323
0.203527 4.913347 303 4.913347 303 0.185891
0.194146 5.150764 376 5.150764 376 0.223416
0.185165 5.400599 449 5.400599 449 0.259341
0.175214 5.707301 522 5.707301 522 0.299143

0.16533 6.048492 595 6.048492 595 0.338678

0.159486 6.270131 668 6.270131 668 0.362055

0.154257 6.482693 741 6.482693 741 0.382973

0.148226 6.746455 814 6.746455 814 0.407096

0.141121 7.086124 887 7.086124 887 0.435517

0.136664 7.317224 960 7.317224 960 0.453345

0.133464 7.492664 1033 7.492664 1033 0.466144

0.126812 7.885699 1106 7.885699 1106 0.492753

0.122532 8.161104 1179 8.161104 1179 0.50987

0.117392 8.51847 1252 8.51847 1252 0.530432

0.114859 8.706353 1325 8.706353 1325 0.540565

0.113029 8.8473 1398 8.8473 1398 0.547885

0.109131 9.163333 1471 9.163333 1471 0.563478

0.106561 9.384266 1544 9.384266 1544 0.573755

0.101948 9.808891 1617 9.808891 1617 0.592207

0.099662 10.0339 1690 10.0339 1690 0.601351

0.095583 10.46209 1763 10.46209 1763 0.617667

0.094735 10.55571 1836 10.55571 1836 0.621058

0.092713 10.78593 1909 10.78593 1909 0.629147

0.091951 10.87531 1982 10.87531 1982 0.632194

0.090416 11.05996 2055 11.05996 2055 0.638335

0.087174 11.47135 2128 11.47135 2128 0.651305

0.084828 11.78856 2201 11.78856 2201 0.660688

0.084075 11.89416 2274 11.89416 2274 0.6637

0.082941 12.05682 2347 12.05682 2347 0.668238

0.081628 12.25068 2420 12.25068 2420 0.673487

0.080892 12.36209 2493 12.36209 2493 0.67643

0.07885 12.68237 2566 12.68237 2566 0.684602

228



0.075577 13.23162 2639 13.23162 2639 0.697694

0.074948 13.34251 2712 13.34251 2712 0.700206

0.075978 13.16172 2785 13.16172 2785 0.696088

0.07386 13.53917 2858 13.53917 2858 0.704561

0.074527 13.41788 2931 13.41788 2931 0.70189

0.070235 14.23786 3004 14.23786 3004 0.719059

0.073513 13.60297 3077 13.60297 3077 0.705947

0.070992 14.08613 3150 14.08613 3150 0.716033

0.069374 14.41468 3223 14.41468 3223 0.722505
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Progress of reaction for Diels-AIder cycloaddition (293K Run 1)
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2nd Order Rate Plot for Diels-Alder Cycloaddition at 293K
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Kinetic data for Diels-Alder cycloaddition at 293K (Run 1)

Integration of Integration Integration Integration of Integration of
the exo of of the endo the iminium the exo and Total

Time (s) product cinnam aldehyde product ion endo products integration
132 1 0.443178 0.314401 19.9132 1.314401 21.227601
205 1.5281 0.633787 0.41473 18.8209 1.94283 20.76373
278 2.0545 0.726718 0.903806 17.697 2.958306 20.655306

351 2.48329 0.770859 1.1683 16.4122 3.65159 20.06379
424 2.84032 0.859304 1.24855 15.8221 4.08887 19.91097

497 3.10956 0.756098 1.36814 14.5266 4.4777 19.0043

570 3.83278 0.888352 1.77336 14.1804 5.60614 19.78654

643 4.10522 0.990289 1.88705 13.8015 5.99227 19.79377

716 4.47477 0.808459 1.81848 12.9319 6.29325 19.22515

789 4.63335 0.947674 2.1003 12.3074 6.73365 19.04105

862 4.98822 0.788095 2.1244 11.8066 7.11262 18.91922

935 5.38899 0.919572 2.42932 11.3805 7.81831 19.19881

1008 5.46939 0.953847 2.59327 10.865 8.06266 18.92766

1081 5.99213 0.685697 2.49926 10.4356 8.49139 18.92699

1154 5.97561 0.625884 2.80706 10.0179 8.78267 18.80057

1227 6.19115 0.646107 2.83301 9.68277 9.02416 18.70693

1300 6.37306 0.832465 2.84055 9.45022 9.21361 18.66383

1373 6.62413 0.850626 3.01164 9.05988 9.63577 18.69565

1446 6.64276 0.630097 3.05003 8.43732 9.69279 18.13011

1519 7.0151 0.777956 3.11684 8.29454 10.13194 18.42648

1592 7.0876 0.51669 3.4369 8.49082 10.5245 19.01532

1665 7.06853 0.499362 3.26604 7.8275 10.33457 18.16207

1738 7.39644 0.513954 3.41204 7.45658 10.80848 18.26506

1811 7.47012 0.486778 3.47047 7.43117 10.94059 18.37176

1884 7.48556 0.324261 3.38135 7.03816 10.86691 17.90507

1957 7.62022 0.525984 3.53411 7.04086 11.15433 18.19519

2030 7.89744 0.679776 3.54282 6.87238 11.44026 18.31264

2103 7.86037 0.386134 3.67879 6.74693 11.53916 18.28609

2176 8.16861 0.514953 3.60814 6.4286 11.77675 18.20535

2249 7.97014 0.310302 3.66812 6.20622 11.63826 17.84448

2322 8.1258 0.42108 3.64404 5.88301 11.76984 17.65285

2395 8.18489 0.260208 3.60635 5.90892 11.79124 17.70016

2468 8.16034 0.100944 3.76929 5.78053 11.92963 17.71016

2541 8.3345 0.194453 3.69758 5.55221 12.03208 17.58429

232



2614 8.53592 0.476606 3.89941 5.70902 12.43533 18.14435
2687 8.42668 0.47604 3.8157 5.33601 12.24238 17.57839

2760 8.57247 0.400387 3.78431 5.1553 12.35678 17.51208

2833 8.57508 0.285465 3.87256 4.85637 12.44764 17.30401

2906 8.61132 0.179459 3.9837 5.08617 12.59502 17.68119

2979 8.68236 0.244203 4.01059 4.75732 12.69295 17.45027

3052 8.8846 0.173319 4.04224 4.67276 12.92684 17.5996

3125 8.93811 0.218495 4.09827 4.74538 13.03638 17.78176

3198 8.91594 0.174362 3.94794 4.39183 12.86388 17.25571

3271 9.07006 0.175409 4.21481 4.76245 13.28487 18.04732

3344 8.87158 0.147853 3.91455 4.43572 12.78613 17.22185
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Kinetic data for Diels-Alder cycloaddition at 293K (Run 1)

Conversion Extent of reaction [x] [iminium]-[x]

0.06191943 0.01548 0.23452

0.09356845 0.023392 0.226608
0.14322257 0.035806 0.214194

0.18199901 0.0455 0.2045

0.20535765 0.051339 0.198661

0.2356151 0.058904 0.191096

0.28333099 0.070833 0.179167

0.30273515 0.075684 0.174316

0.32734465 0.081836 0.168164

0.35363859 0.08841 0.16159

0.37594679 0.093987 0.156013

0.40722889 0.101807 0.148193

0.42597236 0.106493 0.143507

0.44863922 0.11216 0.13784

0.46714913 0.116787 0.133213

0.48239663 0.120599 0.129401

0.49366127 0.123415 0.126585

0.51540171 0.12885 0.12115

0.53462389 0.133656 0.116344

0.5498576 0.137464 0.112536

0.55347478 0.138369 0.111631

0.56901939 0.142255 0.107745

0.59175716 0.147939 0.102061

0.59551126 0.148878 0.101122

0.60691804 0.15173 0.09827

0.61303729 0.153259 0.096741

0.62471932 0.15618 0.09382

0.63103485 0.157759 0.092241

0.64688402 0.161721 0.088279

0.65220505 0.163051 0.086949

0.6667388 0.166685 0.083315

0.66616573 0.166541 0.083459

0.67360374 0.168401 0.081599

0.68425168 0.171063 0.078937

0.6853555 0.171339 0.078661

[cyclopentadiene]-

[x] Time (s) ln([cp-x]/[imin-x])
0.60952 98 0.955130518

0.601608 171 0.976384726
0.589194 244 1.011872292

0.5795 317 1.041596907
0.573661 390 1.060440132

0.566096 463 1.085986974

0.554167 536 1.129146801
0.549316 609 1.147803295
0.543164 682 1.172472274

0.53659 755 1.20017051
0.531013 828 1.224845795

0.523193 901 1.261436013
0.518507 974 1.284570167

0.51284 1047 1.313869277

0.508213 1120 1.338952871

0.504401 1193 1.360456382

0.501585 1266 1.376860939

0.49615 1339 1.409851522

0.491344 1412 1.440592999

0.487536 1485 1.466093691

0.486631 1558 1.472305236

0.482745 1631 1.499720141

0.477061 1704 1.542075922

0.476122 1777 1.54934498

0.47327 1850 1.571943308

0.471741 1923 1.584395455

0.46882 1996 1.608839396

0.467241 2069 1.622437959

0.463279 2142 1.657827257

0.461949 2215 1.67013521

0.458315 2288 1.704925166

0.458459 2361 1.70351961

0.456599 2434 1.721987881

0.453937 2507 1.749307523

0.453661 2580 1.75220142

234



0.6964449 0.174111 0.075889 0.450889 2653 1.781951899
0.70561464 0.176404 0.073596 0.448596 2726 1.807528163

0.71935002 0.179838 0.070162 0.445162 2799 1.847625474

0.71234006 0.178085 0.071915 0.446915 2872 1.826883738

0.72737843 0.181845 0.068155 0.443155 2945 1.872130201

0.73449624 0.183624 0.066376 0.441376 3018 1.894562338

0.73313215 0.183283 0.066717 0.441717 3091 1.890210101

0.74548541 0.186371 0.063629 0.438629 3164 1.93058934

0.73611317 0.184028 0.065972 0.440972 3237 1.899754754

0.7424365 0.185609 0.064391 0.439391 3310 1.920417455
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Kinetic data for Diels-Alder cycloaddition at 293K (Run 2)

Integration of 

the exo  
product

1

I.97878 

2.77687 

3.83312 

4.79735 

5.33093 

5.83677 

6.6899 

7.43091 

7.98625 

7.9136 

8.90324 

9.14003 

9.41085 

9.77863 

9.94212 

10.1965 

10.8873 

10.8351 

10.9914

II.8753  

11.6855 

12.1996 

12.1255 

12.4235 

12.3562 

12.8894 

13.0927 

13.4647 

13.1309 

13.5171 

13.8017 

14.111 

13.6493

Integration

of

cinnam aldehyde

1.1977 

1.09731 

1.19328 

1.49192 

1.59608 

1.63499 

1.42367 

1.57599 

1.55895 

1.74427 

1.4436 

1.44959 

1.50054 

1.59847 

1.25328 

1.41886 

1.29494 

1.43864 

1.23221 

1.10448 

1.19271

1.2669

1.12174 

0.912212 

0.831865 

0.85857 

0.913403 

0.910045

1.0471 

0.521987 

0.787979 

0.535886 

0.542592 

0.464769

Integration 

of the endo  
product

0.588322 

0.569363

1.4394

1.52667

1.91962 

2.33374 

2.60002 

3.01422 

3.21669 

3.44161 

3.61764 

3.96748 

4.3442 

4.36509 

4.46319 

4.68691 

4.74496 

5.05094 

4.85884 

5.12397 

5.16815

5.43089 

5.68624 

5.6435 

5.74079 

5.46775 

6.07531 

5.96973 

6.24542 

5.94959 

6.10488 

6.16776 

6.49218 

6.27454

Integration of 

the iminium 

ion

33.7338 

30.6192 

29.4255 

27.6966 

26.1127 

24.8816 

23.5417 

22.5281 

21.9246 

20.8478 

19.1402 

19.7038 

18.4598 

17.7059 

17.1776 

15.737 

15.1833 

15.052 

14.3643 

14.0891 

13.1102 

12.9065 

12.9837 

12.1288

11.7876

11.1637

11.6558
11.2524 

10.6116 

9.75125 

9.68629

9.43089 

9.65886 

8.91436

Integration of 

the exo and 

endo products

I.588322 

2.548143 

4.21627 

5.35979 

6.71697 

7.66467 

8.43679 

9.70412 

10.6476

II.42786

11.53124 

12.87072 

13.48423 

13.77594 

14.24182 

14.62903 

14.94146 

15.93824 

15.69394 

16.11537 

17.04345 

17.11639 

17.88584

17.769

18.16429

17.82395

18.96471

19.06243

19.71012

19.08049

19.62198

19.96946

20.60318

19.92384



2597

2670

2743

2816

2889

2962

3035

3108

3181

3254

3327

13.7468

14.1562

14.6246

13.9492

14.4107

14.4168

14.7398

14.6981

14.8833

15.34

14.6411

0.599861

0.539094

0.749743

0.429609

0.351022

0.532449

0.251386

0.571086

0.355521

0.36123

0.161429

6.30728

6.31019

6.76512

6.56668

6.51465

6.60905

6.64956

6.8424

6.83105

6.87116

6.4516

8.46443

8.42941

8.68289

8.33204

7.74285

7.60123

7.65496

7.39724

6.75029

7.04841

6.44895

20.05408 

20.46639 

21.38972 

20.51588 

20.92535 

21.02585 

21.38936 

21.5405 

21.71435 

22.21116 

21.0927



Kinetic data for Diels-Alder cycloaddition at 293K (Run 2)

Conversion Extent of reaction [x] [iminium]-[x] [cyclopentadiene]-[x] Time (s) ln([cp-x]/[imin-x])
0.04496678 0.011242 0.238758 0.613758 98 0.944149445
0.07682687 0.019207 0.230793 0.605793 171 0.965016378
0.12532842 0.031332 0.218668 0.593668 244 0.998765949
0.16214081 0.040535 0.209465 0.584465 317 1.026140862
0.20460059 0.05115 0.19885 0.57385 390 1.059817755
0.23550072 0.058875 0.191125 0.566125 463 1.085887861
0.26382703 0.065957 0.184043 0.559043 536 1.111056082
0.30106893 0.075267 0.174733 0.549733 609 1.146174519
0.32689226 0.081723 0.168277 0.543277 682 1.172008152
0.35407053 0.088518 0.161482 0.536482 755 1.200637737
0.37596018 0.09399 0.15601 0.53101 828 1.224860946
0.39511618 0.098779 0.151221 0.526221 901 1.246979149
0.4221205 0.10553 0.14447 0.51947 974 1.279737815
0.4375837 0.109396 0.140604 0.515604 1047 1.299391211

0.45328081 0.11332 0.13668 0.51168 1120 1.320058082
0.48175642 0.120439 0.129561 0.504561 1193 1.359537539
0.49598603 0.123997 0.126003 0.501003 1266 1.380303442

0.5142987 0.128575 0.121425 0.496425 1339 1.408133597

0.52211773 0.130529 0.119471 0.494471 1412 1.420417584

0.53354255 0.133386 0.116614 0.491614 1485 1.438822152

0.56522013 0.141305 0.108695 0.483695 1558 1.492908981

0.57011134 0.142528 0.107472 0.482472 1631 1.501691343

0.57940092 0.14485 0.10515 0.48015 1704 1.518712369

0.59432467 0.148581 0.101419 0.476419 1777 1.547038561

0.60644888 0.151612 0.098388 0.473388 1850 1.570998264

0.61488082 0.15372 0.09628 0.47128 1923 1.588193478

0.61934664 0.154837 0.095163 0.470163 1996 1.597485384

0.62881534 0.157204 0.092796 0.467796 2069 1.617627333

0.65003305 0.162508 0.087492 0.462492 2142 1.665084321

0.66178767 0.165447 0.084553 0.459553 2215 1.692874922

0.66950318 0.167376 0.082624 0.457624 2288 1.711745661

0.67922525 0.169806 0.080194 0.455194 2361 1.736278206

0.68082588 0.170206 0.079794 0.454794 2434 1.740401111

0.69088362 0.172721 0.077279 0.452279 2507 1.766875976

0.70319522 0.175799 0.074201 0.449201 2580 1.800690637

0.70828252 0.177071 0.072929 0.447929 2653 1.815144121

238



0.71126916 0.177817 0.072183 0.447183 2726 1.82376671
0.71117363 0.177793 0.072207 0.447207 2799 1.823489314

0.72991503 0.182479 0.067521 0.442521 2872 1.88004621
0.73447414 0.183619 0.066381 0.441381 2945 1.89449163
0.73643866 0.18411 0.06589 0.44089 3018 1.900804391

0.74437396 0.186093 0.063907 0.438907 3091 1.926865181

0.76285349 0.190713 0.059287 0.434287 3164 1.991320978

0.75910753 0.189777 0.060223 0.435223 3237 1.977802534

239



Kinetic data for Diels-Alder cycloaddition at 298K (Run 1)

Integration of Integration Integration Integration of Integration of
the exo of of the endo the iminium the exo and Total

Time (s) product cinnam aldehyde product ion endo products integration
257 1.05014 0.568175 0.429233 10.9229 1.479373 12.402273
330 1.51128 0.63491 0.702269 9.74399 2.213549 11.957539
403 1.82365 0.564261 0.825886 9.00445 2.649536 11.653986
476 2.1374 0.608931 0.967224 8.09036 3.104624 11.194984
549 2.47616 0.585157 1.12501 7.66519 3.60117 11.26636
622 2.52258 0.510535 1.17381 6.87672 3.69639 10.57311
695 2.62174 0.599926 1.32525 6.37829 3.94699 10.32528
768 2.7211 0.488499 1.51313 5.8567 4.23423 10.09093
841 2.99779 0.516527 1.5448 5.95424 4.54259 10.49683
914 3.03841 0.520903 1.58483 5.54047 4.62324 10.16371

987 3.11679 0.37729 1.60035 4.992 4.71714 9.70914

1060 3.19429 0.423254 1.69892 4.8132 4.89321 9.70641

1133 3.24389 0.328069 1.67503 4.39346 4.91892 9.31238

1206 3.34994 0.272149 1.80893 4.20195 5.15887 9.36082

1279 3.57951 0.324634 1.80032 4.20275 5.37983 9.58258

1352 3.80965 0.357925 1.97626 4.09311 5.78591 9.87902

1425 3.8302 0.305604 2.0592 4.15209 5.8894 10.04149

1498 4.12016 0.217452 2.08327 3.82053 6.20343 10.02396

1571 4.17007 0.191647 2.13767 3.92606 6.30774 10.2338

1644 4.4001 0.278559 2.24493 3.7863 6.64503 10.43133

1717 4.79209 0.328737 2.15222 3.74801 6.94431 10.69232

1790 4.84675 0.26315 2.16867 3.52333 7.01542 10.53875

1863 5.06768 0.20256 2.41277 3.64323 7.48045 11.12368

1936 4.94053 0.235318 2.23653 3.34327 7.17706 10.52033

2009 5.1689 0.259431 2.38515 3.44932 7.55405 11.00337

2082 5.13933 0.150331 2.30868 3.11546 7.44801 10.56347

2155 5.01954 0.194659 2.26493 3.1442 7.28447 10.42867

2228 4.92869 0.134416 2.41037 2.73745 7.33906 10.07651

2301 4.44973 0.187652 2.24419 2.75107 6.69392 9.44499

2374 4.24017 0.0865062 2.14613 2.33208 6.3863 8.71838

2447 4.12144 0.0956692 2.18952 2.2114 6.31096 8.52236

2520 4.0661 0.0393535 2.15212 2.16495 6.21822 8.38317

2593 4.30019 0.082393 2.18357 2.22753 6.48376 8.71129

2666 4.25577 0.0416384 2.22883 2.2233 6.4846 8.7079

240



2739 4.41392 0.0813617 2.22712 2.03468 6.64104
2812 4.72656 -0.0375703 2.46217 2.12988 7.18873
2885 4.99499 0.131605 2.50267 2.32027 7.49766
2958 5.43016 0.165122 2.48033 2.42774 7.91049
3031 5.47156 0.0418692 2.58885 2.26193 8.06041
3104 5.46794 0.0642045 2.52735 2.12589 7.99529
3177 5.3256 0.0748257 2.43836 2.14574 7.76396

3250 5.40339 0.0543981 2.64202 2.10903 8.04541

8.67572

9.31861

9.81793

10.33823

10.32234

10.12118

9.9097

10.15444

241



Kinetic data for Diels-Alder cycloaddition at 298K (Run 1)

Conversion Extent of reaction [x] [iminium]-[x] [cyclopentadiene]-[x] Time (s) ln([cp-x]/[imin-x])
0.11928241 0.029821 0.220179 0.595179 257 0.994420211
0.18511744 0.046279 0.203721 0.578721 330 1.04407023
0.2273502 0.056838 0.193162 0.568162 403 1.078875833

0.27732277 0.069331 0.180669 0.555669 476 1.123505019
0.31963917 0.07991 0.17009 0.54509 549 1.164622374
0.34960291 0.087401 0.162599 0.537599 622 1.195824711
0.38226469 0.095566 0.154434 0.529434 695 1.232042487
0.41960751 0.104902 0.145098 0.520098 768 1.276607269
0.43275827 0.10819 0.14181 0.51681 841 1.293184957
0.45487721 0.113719 0.136281 0.511281 914 1.322202032
0.4858453 0.121461 0.128539 0.503539 987 1.365430684
0.5041215 0.12603 0.12397 0.49897 1060 1.392508651

0.52821298 0.132053 0.117947 0.492947 1133 1.430167874
0.55111304 0.137778 0.112222 0.487222 1206 1.468242608
0.5614177 0.140354 0.109646 0.484646 1279 1.486164728

0.58567651 0.146419 0.103581 0.478581 1352 1.530472533
0.58650658 0.146627 0.103373 0.478373 1425 1.532044273
0.61886021 0.154715 0.095285 0.470285 1498 1.596466935

0.61636342 0.154091 0.095909 0.470909 1571 1.591263847

0.63702615 0.159257 0.090743 0.465743 1644 1.635598543

0.64946709 0.162367 0.087633 0.462633 1717 1.663774349

0.66567857 0.16642 0.08358 0.45858 1790 1.702326997

0.67247979 0.16812 0.08188 0.45688 1863 1.719165489

0.68220864 0.170552 0.079448 0.454448 1936 1.743982433

0.68652149 0.17163 0.07837 0.45337 2009 1.755271307

0.70507229 0.176268 0.073732 0.448732 2082 1.805989756

0.69850422 0.174626 0.075374 0.450374 2155 1.787616567

0.72833352 0.182083 0.067917 0.442917 2228 1.87510076

0.70872706 0.177182 0.072818 0.447818 2301 1.816421022

0.73250994 0.183127 0.066873 0.441873 2374 1.888233363

0.74051788 0.185129 0.064871 0.439871 2447 1.914087012

0.74175044 0.185438 0.064562 0.439562 2520 1.918147606

0.7442939 0.186073 0.063927 0.438927 2593 1.92659765

0.74468012 0.18617 0.06383 0.43883 2666 1.92788919

0.76547422 0.191369 0.058631 0.433631 2739 2.000923812

0.77143801 0.19286 0.05714 0.43214 2812 2.023237676

242



0.76367014 0.190918
0.7651687 0.191292

0.78087042 0.195218
0.78995631 0.197489
0.78347074 0.195868
0.79230465 0.198076

0.059082 0.434082

0.058708 0.433708

0.054782 0.429782

0.052511 0.427511

0.054132 0.429132

0.051924 0.426924

2885 1.994300356

2958 1.999798067

3031 2.05991015

3104 2.09695864

3177 2.070333974

3250 2.106827637

243
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Kinetic data for Diels-Alder cycloaddition at 298K (Run 2)

Integration of 

the exo  
product

1

1.39986

1.72921

2.20689

2.60725

2.81504

3.07085

3.37578

3.62921

3.91802

4.09506

4.25479

4.21536

4.44024

4.21839

4.66625

4.6803

4.53321

4.73631

4.71146

4.7605

4.96761

5.14617

5.12305

5.24365

5.07096

5.30453

5.29879

5.49052

5.29584

5.32107

5.54984

5.62915

5.53311

integration

of

cinnam aldehyde

0.617481

0.623436

0.778468

0.713036

0.683518

0.739291

0.711366

0.548659

0.657811

0.553304

0.543954

0.385424

0.492054

0.60114

0.29801

0.563785

0.365043

0.286121

0.393185

0.41166

0.399322

0.367229

0.225882

0.201425

0.214372

0.2994

0.336778

0.094489

0.149918

0.11285

0.125611

0.165606

0.199216

0.137472

Integration 

of the endo  
product

0.303014 

0.567036 

0.814944 

1.08432 

1.17424 

1.37266 

1.49662 

1.48714 

1.68779 

1.75937 

1.9386 

1.91287 

1.90166 

1.83456 

1.90968 

1.93933 

2.10178

1.82928 

2.16885 

2.1836 

2.01284 

2.20662 

2.34412 

2.28066 

2.35038 

2.33554 

2.36224 

2.36504 

2.35154 

2.42161 

2.35833 

2.47455 

2.58591 

2.62978

Integration of 

the iminium 

ion

11.7723 

10.9337 

10.3887 

9.47829 

8.66667 

8.4328 

7.95526 

7.2982 

7.08246 

6.59007 

6.46684 

6.32179 

5.87398 

5.51464 

5.13518 

5.31234 

5.50598 

5.05673 

5.08405 

5.06629 

4.65744 

4.62894 

4.75469 

4.34588 

4.38729 

4.44344 

4.06168 

3.93017 

3.84398 

3.74948 

3.84952 

3.7881 

3.64913 

3.4282

Integration of 

the exo and 

endo products

1.303014

1.966896

2.544154

3.29121

3.78149

4.1877

4.56747

4.86292

5.317

5.67739

6.03366

6.16766

6.11702

6.2748

6.12807

6.60558

6.78208

6.36249

6.90516

6.89506

6.77334

7.17423

7.49029

7.40371

7.59403

7.4065

7.66677

7.66383

7.84206

7.71745

7.6794

8.02439

8.21506

8.16289



2666 5.57873 0.0186666 2.55815 3.27397 8.13688 11.41085

2739 5.62756 0.200425 2.5535 3.21401 8.18106 11.39507

2812 5.6102 0.038692 2.44476 3.08591 8.05496 11.14087

2885 5.75015 0.0652576 2.47362 3.17309 8.22377 11.39686

2958 5.71579 -0.0371191 2.47743 3.07326 8.19322 11.26648

3031 5.81946 0.0527227 2.64216 3.13048 8.46162 11.5921

3104 6.01637 0.115045 2.66996 3.20585 8.68633 11.89218

245



Kinetic data for Diels-Alder cycloaddition at 298K (Run 2)

Conversion Extent of reaction [x] [iminium]-[x] [cyclopentadiene]-[x] Time (s) ln([cp-x]/[imin-x])
0.09965451 0.024914 0.225086 0.600086 184 0.980589392
0.15246551 0.038116 0.211884 0.586884 257 1.018789372
0.19672023 0.04918 0.20082 0.57582 330 1.053386313
0.25773993 0.064435 0.185565 0.560565 403 1.105539913
0.30377903 0.075945 0.174055 0.549055 476 1.148826328
0.33181728 0.082954 0.167046 0.542046 549 1.177082972
0.36473437 0.091184 0.158816 0.533816 622 1.212303105
0.39987435 0.099969 0.150031 0.525031 695 1.25261341

0.428809 0.107202 0.142798 0.517798 768 1.288155424
0.46280078 0.1157 0.1343 0.5093 841 1.332962193
0.48267349 0.120668 0.129332 0.504332 914 1.360854186
0.49382959 0.123457 0.126543 0.501543 987 1.377109527
0.51013427 0.127534 0.122466 0.497466 1060 1.401691106
0.53223902 0.13306 0.11694 0.49194 1133 1.436694179
0.54407653 0.136019 0.113981 0.488981 1206 1.456292761

0.55425611 0.138564 0.111436 0.486436 1279 1.473655099

0.55192439 0.137981 0.112019 0.487019 1352 1.469635304

0.55717378 0.139293 0.110707 0.485707 1425 1.478721597

0.57594787 0.143987 0.106013 0.481013 1498 1.512332335

0.57644497 0.144111 0.105889 0.480889 1571 1.513246878

0.59255274 0.148138 0.101862 0.476862 1644 1.543609611

0.60782231 0.151956 0.098044 0.473044 1717 1.573768624

0.61170292 0.152926 0.097074 0.472074 1790 1.581659966

0.63012497 0.157531 0.092469 0.467469 1863 1.620461678

0.63382248 0.158456 0.091544 0.466544 1936 1.628529276

0.62502426 0.156256 0.093744 0.468744 2009 1.609489673

0.65368996 0.163422 0.086578 0.461578 2082 1.673609908

0.66101691 0.165254 0.084746 0.459746 2155 1.691017794

0.67106222 0.167766 0.082234 0.457234 2228 1.715622027

0.67301797 0.168254 0.081746 0.456746 2301 1.720515516

0.66609882 0.166525 0.083475 0.458475 2374 1.703355687

0.67931401 0.169829 0.080171 0.455171 2447 1.736506217

0.69242485 0.173106 0.076894 0.451894 2520 1.771022087

0.70423834 0.17606 0.07394 0.44894 2593 1.803630612

0.71308272 0.178271 0.071729 0.446729 2666 1.829053284

0.71794732 0.179487 0.070513 0.445513 2739 1.843427316
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0.72300996 0.180752 0.069248 0.444248 2812 1.858694682

0.72158208 0.180396 0.069604 0.444604 2885 1.85435616

0.72722092 0.181805 0.068195 0.443195 2958 1.871641473

0.72994712 0.182487 0.067513 0.442513 3031 1.880146907

0.73042369 0.182606 0.067394 0.442394 3104 1.88164392

0.75218413 0.188046 0.061954 0.436954 3177 1.953436204
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Time (

184

257

330

403

476

549

622

695

768

841

914

987

1060

1133

1206

1279

1352

1425

1498

1571

1644

1717

1790

1863

1936

2009

2082

2155

2228

2301
2374

2447

2520

2593

Kinetic data for Diels-Alder cycloaddition at 303K (Run 1)

Integration of 

the exo  

product

1

1.52154

1.89861

2.23546
2.47537

2.81319

2.98469

3.23056

3.36991

3.50289

3.67118

3.85086

3.90466

3.92278

3.99832

4.11886

4.17592

4.2737

4.22025
4.34327

4.41781

4.36781

4.39061

4.41802

4.40808

4.51248

4.54513

4.50076

4.55608
4.57147

4.62788

4.56756

4.67312

4.63966

Integration 

of 

cinnam aldehyde

0.411761

0.580055

0.600281

0.617828

0.458713

0.54425

0.414501

0.370209
0.384487

0.383477

0.346429

0.407948

0.266436

0.283751

0.26852

0.192361

0.274056

0.148861

0.194625

0.159192

0.114091

0.126512

0.169025

0.165651

0.169097

0.0530001

0.208635

0.142176

0.158693

0.0742623

0.147124

0.116401
-0.0165822

0.0384821

Integration 

of the endo  

product

0.519678 

0.622719 

0.858788 

0.990452 

1.05817 

1.27326 

1.43704 

1.54418 

1.48031 

1.54111 

1.69118 

1.6758 

1.82203

1.77076

1.88336

1.81609

1.95652

1.95331

1.90704

1.89775
1.92767

1.977 

2.00379 

2.13537 

2.07055 

2.05467 

2.0955 

2.06152 

2.06776 

2.18265 

2.10001 

2.21251 

2.09703 

2.12657

Integration of 

the iminium  

ion

8.84649
7.98402

7.15802

6.6279

6.11517

5.63236

5.24318

4.94985
4.70621

4.22507

4.02078

3.82373
3.75004

3.4688

3.2691
3.13087

2.9809

2.93651

2.85008

2.72828

2.67168

2.60163

2.67802

2.61968
2.40184

2.43435

2.31993

2.17135

2.19528

2.13236

2.14687

2.08649

2.05455
2.0652

Integration of 

the exo  and 

endo products

1.519678

2.144259

2.757398
3.225912

3.53354

4.08645

4.42173

4.77474

4.85022

5.044

5.36236

5.52666

5.72669
5.69354

5.88168

5.93495

6.13244

6.22701

6.12729
6.24102

6.34548

6.34481

6.3944

6.55339

6.47863

6.56715

6.64063

6.56228

6.62384

6.75412

6.72789
6.78007

6.77015

6.76623



2666 4.7579 0.0146899 2.11469 1.90538 6.87259 8.77797
2739 4.73657 -0.0737908 2.21514 1.92246 6.95171 8.87417
2812 4.72842 0.0363881 2.19363 1.98309 6.92205 8.90514
2885 4.70708 0.00864628 2.20825 1.81459 6.91533 8.72992

2958 4.68277 0.123942 2.21647 1.79733 6.89924 8.69657

3031 4.71327 0.060859 2.25193 1.78694 6.9652 8.75214

3104 4.76054 -0.0220905 2.0897 1.68341 6.85024 8.53365



Kinetic data for Diels-Alder cycloaddition at 303K (Run 1)

Conversion Extent of reaction [x] [iminium]-[x] [cyclopentadiene]-[x] Time (s) ln([cp-x]/[imin-x])
0.14659978 0.03665 0.21335 0.58835 98 1.014387839
0.2117101 0.052928 0.197072 0.572072 171 1.065694137

0.27809196 0.069523 0.180477 0.555477 244 1.124223818
0.32737706 0.081844 0.168156 0.543156 317 1.172505539
0.3662189 0.091555 0.158445 0.533445 390 1.213947227

0.42046814 0.105117 0.144883 0.519883 463 1.277677445
0.45750348 0.114376 0.135624 0.510624 536 1.325746458
0.49099654 0.122749 0.127251 0.502251 609 1.372939266
0.50753472 0.126884 0.123116 0.498116 682 1.397704021
0.54417541 0.136044 0.113956 0.488956 755 1.45645911
0.57148886 0.142872 0.107128 0.482128 828 1.504186822
0.59106198 0.147765 0.102235 0.477235 901 1.540738746
0.60428967 0.151072 0.098928 0.473928 974 1.566666429
0.62140676 0.155352 0.094648 0.469648 1047 1.601816113
0.64275177 0.160688 0.089312 0.464312 1120 1.648420352
0.65465121 0.163663 0.086337 0.461337 1193 1.675868684
0.67290807 0.168227 0.081773 0.456773 1266 1.720239601
0.67954345 0.169886 0.080114 0.455114 1339 1.737095904
0.68252617 0.170632 0.079368 0.454368 1412 1.744807431
0.69582019 0.173955 0.076045 0.451045 1485 1.780242353
0.70371159 0.175928 0.074072 0.449072 1558 1.802144482
0.70919941 0.1773 0.0727 0.4477 1631 1.817780291
0.70481746 0.176204 0.073796 0.448796 1704 1.805268038
0.71441622 0.178604 0.071396 0.446396 1777 1.832965254
0.72953684 0.182384 0.067616 0.442616 1850 1.878860559
0.72956174 0.18239 0.06761 0.44261 1923 1.87893857
0.74109542 0.185274 0.064726 0.439726 1996 1.915986928
0.75138058 0.187845 0.062155 0.437155 2069 1.950658569
0.7510772 0.187769 0.062231 0.437231 2142 1.949612543

0.76004447 0.190011 0.059989 0.434989 2215 1.981161227
0.75809261 0.189523 0.060477 0.435477 2288 1.974181037
0.76467875 0.19117 0.05883 0.43383 2361 1.997996225
0.76718189 0.191795 0.058205 0.433205 2434 2.007246812
0.76615339 0.191538 0.058462 0.433462 2507 2.003432292

0.78293615 0.195734 0.054266 0.429266 2580 2.06817948
0.78336453 0.195841 0.054159 0.429159 2653 2.069905448

250



0.77730951 0.194327 0.055673 0.430673 2726 2.045859712

0.79214128 0.198035 0.051965 0.426965 2799 2.106137035

0.79332886 0.198332 0.051668 0.426668 2872 2.111171234
0.79582822 0.198957 0.051043 0.426043 2945 2.121872815
0.80273271 0.200683 0.049317 0.424317 3018 2.152215154

0.78587263 0.196468 0.053532 0.428532 3091 2.080088398



Time (

102
175

248

321

394

467

540

613

686
759

832

905

978

1051

1124

1197

1270

1343

1416

1489

1562

1635

1708

1781

1854

1927

2000
2073

2146

2219

2292

2365

2438

2511

Kinetic data for Diels-Alder cycloaddition at 303K (Run 2)

Integration of 

the exo  

product

1

2.18514 

3.48476 

4.29983 

5.27288 

6.02307 

6.56928 

7.20941 

7.65345 

8.02601 

8.40285 

8.77222 

9.04088 

9.33634 

9.80761 

9.76211 

9.79634 

10.3127 

10.3579 

10.4681 

10.6647 

10.6862 

10.7884 

10.9719

11.2169

11.3467

11.2044

11.1483

11.493

11.4408

11.4738

11.4571

11.4768

11.5839

Integration 

of 

cinnam aldehyde

1.70731 

1.54899 

1.57842 

1.66131 

1.44818 

1.0864 

1.43667 

1.50606 

1.07714 

1.29979 

0.981851 

0.882777 

0.771884 

0.951116 

0.603918 

0.793144 

0.459518 

0.643226 

0.447227 

0.580607 

0.349698 

0.18903 

0.505039 

0.421715 

0.263083 

0.511007 

0.392757 

0.397373 

0.155555 

0.00884792 

0.0150697 

0.262941 

0.21012 

0.0393883

Integration 

of the endo  

product

0.602389

0.888656

1.51398

1.83014

2.3872

2.54141

2.89315
3.28602

3.71487

3.98826

3.96891

3.69827

4.43107

4.23953

4.42215
4.35524

4.56534

4.57718

5.13141

4.89958

4.81496
5.00502

5.37554

5.33455

5.14199

5.12723

5.25786

5.27965

5.6701

5.23873

5.42898

5.34878
5.07697

5.53946

Integration of 

the iminium  

ion

24.6436 

21.5688 

19.3979 

17.2627 

16.6192 

14.7662 

13.9631 

13.1772 

12.0481

11.1164 

10.7386 

10.0099 

9.46524 

8.86197 

8.5009 

8.20221 

7.90611 

7.29526 

7.22655 

6.62652 

6.60603 

5.899 

5.57429 

5.92042 

5.48633 

5.50552 

5.49768 

5.01623 

5.14695 

4.90797 

4.36039 

4.69083 

4.23516 

4.11497

Integration of 

the exo  and 

endo products

I.602389 

3.073796 

4.99874 

6.12997 

7.66008 

8.56448 

9.46243 

10.49543
II.36832  

12.01427 

12.37176 

12.47049 

13.47195 

13.57587 

14.22976 

14.11735 

14.36168 

14.88988 

15.48931 

15.36768 

15.47966 

15.69122 

16.16394 

16.30645 

16.35889 

16.47393 

16.46226 

16.42795 

17.1631 

16.67953 

16.90278 

16.80588 

16.55377 

17.12336



2584 11.7375 -0.153986 5.58891 4.28569 17.32641 21.6121
2657 11.567 0.106337 5.42094 4.02404 16.98794 21.01198
2730 11.6907 0.111804 5.58598 4.08215 17.27668 21.35883
2803 11.636 0.133164 5.60553 3.78351 17.24153 21.02504

2876 11.8589 -0.305899 5.56972 4.02366 17.42862 21.45228
2949 11.5401 0.0219436 5.76508 3.75631 17.30518 21.06149
3022 11.8321 -0.302145 5.47577 3.65036 17.30787 20.95823

253



Kinetic data for Diels-Alder cycloaddition at 303K (Run 2)

Conversion Extent of reaction [x] [iminium]-[x] [cyclopentadiene]-[x] Time (s) ln([cp-x]/[imin-x])
0.06105272 0.015263 0.234737 0.609737 98 0.954562449
0.12473507 0.031184 0.218816 0.593816 171 0.998337644
0.20489461 0.051224 0.198776 0.573776 244 1.06005937
0.26204662 0.065512 0.184488 0.559488 317 1.109436402
0.31549865 0.078875 0.171125 0.546125 390 1.160452247
0.36709089 0.091773 0.158227 0.533227 463 1.214915276
0.40393665 0.100984 0.149016 0.524016 536 1.25746931
0.44335716 0.110839 0.139161 0.514161 609 1.306906429
0.48548497 0.121371 0.128629 0.503629 682 1.364909
0.51940865 0.129852 0.120148 0.495148 755 1.416133411
0.53533394 0.133833 0.116167 0.491167 828 1.441758564
0.55472748 0.138682 0.111318 0.486318 901 1.474470853
0.58734091 0.146835 0.103165 0.478165 974 1.533627938
0.60504353 0.151261 0.098739 0.473739 1047 1.568175597
0.62601614 0.156504 0.093496 0.468496 1120 1.611609206
0.63251023 0.158128 0.091872 0.466872 1193 1.625654955
0.64495309 0.161238 0.088762 0.463762 1266 1.653415345
0.67116457 0.167791 0.082209 0.457209 1339 1.715877259
0.68187205 0.170468 0.079532 0.454532 1412 1.743108989
0.69871512 0.174679 0.075321 0.450321 1485 1.788199238
0.70089094 0.175223 0.074777 0.449777 1558 1.794238596
0.72677444 0.181694 0.068306 0.443306 1631 1.870257829
0.74357204 0.185893 0.064107 0.439107 1704 1.924189686
0.73363681 0.183409 0.066591 0.441591 1777 1.891817263

0.74885444 0.187214 0.062786 0.437786 1850 1.941992769
0.74951512 0.187379 0.062621 0.437621 1923 1.944249527

0.74964959 0.187412 0.062588 0.437588 1996 1.944709702

0.76607965 0.19152 0.05848 0.43348 2069 2.003159565

0.76929904 0.192325 0.057675 0.432675 2142 2.01515945

0.7726476 0.193162 0.056838 0.431838 2215 2.027843862

0.79493227 0.198733 0.051267 0.426267 2288 2.118019799

0.78178847 0.195447 0.054553 0.429553 2361 2.063574303

0.79627812 0.19907 0.05093 0.42593 2434 2.123814728

0.80624795 0.201562 0.048438 0.423438 2507 2.168122241

0.80169951 0.200425 0.049575 0.424575 2580 2.147599816

0.8084883 0.202122 0.047878 0.422878 2653 2.178429004

254



0.80887764 0.202219 0.047781 0.422781 2726 2.180233854
0.82004743 0.205012 0.044988 0.419988 2799 2.23382752
0.81243672 0.203109 0.046891 0.421891 2872 2.19692464
0.82165032 0.205413 0.044587 0.419587 2945 2.241820139
0.82582689 0.206457 0.043543 0.418543 3018 2.263024991
0.83186909 0.207967 0.042033 0.417033 3091 2.294716138



X-Ray data for iminium ion 122aq

Table 1. C r y s t a l  d a t a  a n d  s t r u c t u r e  r e f i n e m e n t .

I d e n t i f i c a t i o n  c o d e  

E m p i r i c a l  f o r m u l a  

F o r m u l a  w e i g h t  

T e m p e r a t u r e  

W a v e l e n g t h  

C r y s t a l  s y s t e m  

S p a c e  g r o u p  

U n i t  c e l l  d i m e n s i o n s

V o l u m e

Z

D e n s i t y  ( c a l c u l a t e d )  

A b s o r p t i o n  c o e f f i c i e n t  

F(000)

C r y s t a l  

C r y s t a l  s i z e

G r a n g e  f o r  d a t a  c o l l e c t i o n  

I n d e x  r a n g e s  

R e f l e c t i o n s  c o l l e c t e d  

I n d e p e n d e n t  r e f l e c t i o n s  

C o m p l e t e n e s s  t o  0 =  2 7 . 4 9 °  

A b s o r p t i o n  c o r r e c t i o n  

M a x .  a n d  m i n .  t r a n s m i s s i o n  

R e f i n e m e n t  m e t h o d  

D a t a  /  r e s t r a i n t s  /  p a r a m e t e r s  

G o o d n e s s - o f - f i t  o n  F2 

F i n a l  R  i n d i c e s  [F2 >  2 o ( F 2 ) ]  

R  i n d i c e s  ( a l l  d a t a )

L a r g e s t  d i f f .  p e a k  a n d  h o l e

2007src0354 (TG 3.399)

C 1 4 H 1 5 F 9 N P

3 9 9 . 2 4  

1 2 0 ( 2 )  K  

0 . 7 1 0 7 3  A 
M o n o c l i n i c  

P 2 x/c

a  =  1 8 . 5 7 9 7 ( 5 )  A a =  9 0 °

b =  1 0 . 6 2 5 7 ( 3 )  A J3=  9 8 . 7 1 8 ( 2 ) °

c =  8 . 3 8 6 7 0 ( 1 0 )  A 7 = 9 0 °

1 6 3 6 . 5 9 ( 7 )  A3 
4

1 . 6 2 0  M g  /  m 3  

0 . 2 6 0  m m - 1  

8 0 8

B l o c k ;  c o l o u r l e s s  

0 . 5 0  x  0 . 2 0  x  0 . 1 0  m m 3  

2 . 9 3  -  2 7 . 4 9 °

- 2 3  < h < 2 4 , - \ 2 < k <  1 3 ,  - 1 0  <  I <  1 0  

1 9 8 2 9

3 7 3 7  [Rint =  0 . 0 4 1 1 ]

9 9 . 5  %

S e m i - e m p i r i c a l  f r o m  e q u i v a l e n t s  

0 . 9 7 4 5  a n d  0 . 8 8 1 0  

F u l l - m a t r i x  l e a s t - s q u a r e s  o n  F 2 

3 7 3 7 / 0 / 2 2 6  

1 . 0 4 7

R1  =  0 . 0 3 9 5 ,  wR2  =  0 . 0 9 7 8  

R1  =  0 . 0 5 3 0 ,  wR2  =  0 . 1 0 4 7  

0 . 3 2 8  and - 0 . 4 4 2  e A-3

Diffractom eter: Nonius K appaC C D  area detector (0  scans and CO scans to fill asym metric unit sphere). Cell determ ination: DirAx 

(Duisenberg, A.J.M .(1992). J. Appl. Cryst. 25, 92-96.) D ata collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 

1998). D ata reduction and cell refinem ent: D enzo  (Z. Otwinowski & W. Minor, Methods in Enzymology (1997) Vol. 276: 

M acrom olecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption correction: 

SADABS Version 2.10. (G. M. Sheldrick (2003)) Bruker A XS Inc., Madison, W isconsin, USA. Structure solution: SHELXS97 (G. M. 

Sheldrick, Acta Cryst. (1990) A 46 4 6 7 -4 7 3 ). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University o f Gottingen, 

Germany). G raphics: PLATON  (A.L. Spek, J. Appl. Crystallogr. 2003, 36, 7).
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Table 2. A t o m i c  c o o r d i n a t e s  [ x  1 0 4 ] ,  e q u i v a l e n t  i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  [A2 x  103] a n d  s i t e  o c c u p a n c y  f a c t o r s .  

Ueq i s  d e f i n e d  a s  o n e  t h i r d  o f  t h e  t r a c e  o f  t h e  o r t h o g o n a l i z e d  l f j  t e n s o r .

A t o m X z u eq S.o.f

C l 7 2 7 ( 1 ) - 1 3 3 6 ( 2 ) 8 7 1 1 ( 2 ) 3 2 ( 1 ) 1

C 2 1 1 6 3 ( 1 ) - 5 1 4 ( 2 ) 7 7 3 4 ( 2 ) 2 2 ( 1 ) 1

C 3 8 2 6 ( 1 ) 7 9 0 ( 2 ) 7 3 6 9 ( 2 ) 2 8 ( 1 ) 1

C 4 1 1 6 2 ( 1 ) 1 6 0 3 ( 2 ) 8 7 9 5 ( 2 ) 3 0 ( 1 ) 1

C 5 1 9 3 5 ( 1 ) 1 1 0 2 ( 2 ) 9 2 2 4 ( 2 ) 2 3 ( 1 ) 1

C 6 2 4 1 8 ( 1 ) - 1 0 3 0 ( 2 ) 8 8 7 2 ( 2 ) 1 8 ( 1 ) 1

C l 3 1 2 1 ( 1 ) - 7 6 8 ( 2 ) 9 7 3 2 ( 2 ) 1 9 ( 1 ) 1

C 8 3 6 4 0 ( 1 ) - 1 6 6 4 ( 2 ) 9 8 0 9 ( 2 ) 2 0 ( 1 ) 1

C 9 4 3 8 6 ( 1 ) - 1 5 7 3 ( 2 ) 1 0 6 3 2 ( 2 ) 1 9 ( 1 ) 1

C I O 4 6 4 2 ( 1 ) - 5 4 7 ( 2 ) 1 1 6 1 7 ( 2 ) 2 3 ( 1 ) 1

C l l 5 3 6 4 ( 1 ) - 5 0 8 ( 2 ) 1 2 3 3 4 ( 2 ) 2 6 ( 1 ) 1

C 1 2 5 8 3 9 ( 1 ) - 1 4 7 4 ( 2 ) 1 2 0 8 6 ( 2 ) 2 8 ( 1 ) 1

C 1 3 5 5 9 5 ( 1 ) - 2 4 8 5 ( 2 ) 1 1 1 1 3 ( 2 ) 2 8 ( 1 ) 1

C 1 4 4 8 7 0 ( 1 ) - 2 5 3 6 ( 2 ) 1 0 3 9 9 ( 2 ) 2 4 ( 1 ) 1

N 1 1 8 8 2 ( 1 ) - 2 3 2 ( 1 ) 8 6 8 0 ( 2 ) 1 8 ( 1 ) 1

F I 2 4 5 6 ( 1 ) 9 7 6 ( 1 ) 5 6 9 3 ( 1 ) 3 4 ( 1 ) 1

F 2 3 3 0 1 ( 1 ) - 1 6 8 ( 1 ) 4 6 3 7 ( 2 ) 4 0 ( 1 ) 1

F 3 2 5 7 3 ( 1 ) 1 1 8 0 ( 1 ) 3 0 7 0 ( 1 ) 4 4 ( 1 ) 1

F 4 2 4 1 8 ( 1 ) - 9 3 5 ( 1 ) 2 7 2 8 ( 1 ) 3 6 ( 1 ) 1

F 5 1 5 8 1 ( 1 ) 2 0 9 ( 1 ) 3 7 9 1 ( 2 ) 4 7 ( 1 ) 1

F 6 2 3 2 0 ( 1 ) - 1 1 3 7 ( 1 ) 5 3 5 8 ( 1 ) 3 2 ( 1 ) 1

F 7 1 0 3 0 ( 1 ) - 2 4 6 9 ( 1 ) 9 0 0 7 ( 2 ) 5 0 ( 1 ) 1

F 8 6 4 5 ( 1 ) - 8 3 8 ( 1 ) 1 0 1 3 3 ( 1 ) 4 3 ( 1 ) 1

F 9 5 7 ( 1 ) - 1 5 2 8 ( 1 ) 7 9 0 2 ( 2 ) 5 0 ( 1 ) 1

P I 2 4 4 0 ( 1 ) 2 4 ( 1 ) 4 2 0 7 ( 1 ) 2 1 ( 1 ) 1
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Table 3. B o n d  l e n g t h s  [A] a n d  a n g l e s  [ ° ] .

C 1 - F 8 1 . 3 3 4 ( 2 ) C 9 - C 1 4 1 . 3 9 6 ( 2 )

C 1 - F 7 1 . 3 3 5 ( 2 ) C 9 - C 1 0 1 . 4 0 7 ( 2 )

C 1 - F 9 1 . 3 4 0 ( 2 ) C 1 0 - C 1 1 1 . 3 8 6 ( 2 )

C 1 - C 2 1 . 5 1 4 ( 2 ) C 1 1 - C 1 2 1 . 3 8 9 ( 3 )

C 2 - N 1 1 . 4 7 8 4 ( 1 9 ) C 1 2 - C 1 3 1 . 3 8 4 ( 3 )

C 2 - C 3 1 . 5 3 2 ( 2 ) C 1 3 - C 1 4 1 . 3 9 0 ( 2 )

C 3 - C 4 1 . 5 3 0 ( 2 ) F I - P I 1 . 6 0 2 6 ( 1 0 )

C 4 - C 5 1 . 5 2 1 ( 2 ) F 2 - P 1 1 . 5 9 9 0 ( 1 1 )

C 5 - N 1 1 . 4 8 7 ( 2 ) F 3 - P 1 1 . 5 9 7 9 ( 1 1 )

C 6 - N 1 1 . 2 9 9 ( 2 ) F 4 - P 1 1 . 6 0 0 9 ( 1 0 )

C 6 - C 7 1 . 4 1 9 ( 2 ) F 5 - P 1 1 . 5 9 4 0 ( 1 2 )

C 7 - C 8 1 . 3 5 1 ( 2 ) F 6 - P 1 1 . 6 0 2 7 ( 1 0 )

C 8 - C 9 1 . 4 5 5 ( 2 )

F 8 - C 1 - F 7 1 0 7 . 0 6 ( 1 6 ) C 2 - N 1 - C 5 1 1 1 . 6 8 ( 1 2 )

F 8 - C 1 - F 9 1 0 6 . 8 1 ( 1 5 ) F 5 - P 1 - F 3 9 0 . 8 6 ( 7 )

F 7 - C 1 - F 9 1 0 6 . 8 4 ( 1 5 ) F 5 - P 1 - F 2 1 7 9 . 5 3 ( 7 )

F 8 - C 1 - C 2 1 1 3 . 4 8 ( 1 5 ) F 3 - P 1 - F 2 8 9 . 5 6 ( 7 )

F 7 - C 1 - C 2 1 1 2 . 0 8 ( 1 5 ) F 5 - P 1 - F 4 9 0 . 1 0 ( 6 )

F 9 - C 1 - C 2 1 1 0 . 2 2 ( 1 5 ) F 3 - P 1 - F 4 9 0 . 8 7 ( 6 )

N 1 - C 2 - C 1 1 0 9 . 9 0 ( 1 3 ) F 2 - P 1 - F 4 9 0 . 1 0 ( 6 )

N 1 - C 2 - C 3 1 0 3 . 4 7 ( 1 3 ) F 5 - P 1 - F 1 8 9 . 5 5 ( 6 )

C 1 - C 2 - C 3 1 1 3 . 1 9 ( 1 4 ) F 3 - P 1 - F 1 8 9 . 5 6 ( 6 )

C 4 - C 3 - C 2 1 0 4 . 3 8 ( 1 3 ) F 2 - P 1 - F 1 9 0 . 2 5 ( 6 )

C 5 - C 4 - C 3 1 0 4 . 2 7 ( 1 4 ) F 4 - P 1 - F 1 1 7 9 . 4 5 ( 6 )

N 1 - C 5 - C 4 1 0 4 . 2 2 ( 1 3 ) F 5 - P 1 - F 6 9 0 . 0 2 ( 7 )

N 1 - C 6 - C 7 1 2 4 . 2 6 ( 1 5 ) F 3 - P 1 - F 6 1 7 9 . 1 1 ( 7 )

C 8 - C 7 - C 6 1 1 8 . 7 4 ( 1 5 ) F 2 - P 1 - F 6 8 9 . 5 6 ( 6 )

C 7 - C 8 - C 9 1 2 6 . 7 2 ( 1 5 ) F 4 - P 1 - F 6 8 9 . 2 9 ( 6 )

C 1 4 - C 9 - C 1 0 1 1 8 . 8 3 ( 1 5 ) F 1 - P 1 - F 6 9 0 . 2 8 ( 6

C 1 4 - C 9 - C 8 1 1 8 . 2 1 ( 1 4 )

C 1 0 - C 9 - C 8 1 2 2 . 9 4 ( 1 4 )

C l  1 - C 1 0 - C 9 1 1 9 . 8 4 ( 1 5 )

C 1 0 - C 1 1 - C 1 2 1 2 0 . 5 0 ( 1 6 )

C 1 3 - C 1 2 - C 1 1 1 2 0 . 2 9 ( 1 5 )

C 1 2 - C 1 3 - C 1 4 1 1 9 . 5 4 ( 1 6 )

C 1 3 - C 1 4 - C 9 1 2 0 . 9 9 ( 1 6 )

C 6 - N 1 - C 2 1 2 3 . 2 2 ( 1 3 )

C 6 - N 1 - C 5 1 2 4 . 8 0 ( 1 3 )



Table 4. A n i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  [ A 2 x  103]. T h e  a n i s o t r o p i c  d i s p l a c e m e n t  

f a c t o r  e x p o n e n t  t a k e s  t h e  f o r m :  —2jc2[h2a*2Un + ■■• + 2 h k a *  b* Un  ].

A t o m U" u22 u33 u23 u13 U'2

C l 1 8 ( 1 ) 2 3 ( 1 ) 5 2 ( 1 ) 3 ( 1 ) 4 ( 1 ) 0 ( 1 )

C 2 1 8 ( 1 ) 2 3 ( 1 ) 2 4 ( 1 ) - 2 ( 1 ) 1 ( 1 ) K D

C 3 2 2 ( 1 ) 2 6 ( 1 ) 3 5 ( 1 ) 5 ( 1 ) - 1 ( 1 ) 2 ( 1 )

C 4 2 5 ( 1 ) 2 0 ( 1 ) 4 6 ( 1 ) - 3 ( 1 ) 3 ( 1 ) 4 ( 1 )

C 5 2 4 ( 1 ) 1 7 ( 1 ) 2 7 ( 1 ) - 4 ( 1 ) 2 ( 1 ) 0 ( 1 )

C 6 2 0 ( 1 ) 1 6 ( 1 ) 2 0 ( 1 ) 2 ( 1 ) 7 ( 1 ) - 1 ( 1 )

Cl 2 0 ( 1 ) 1 9 ( 1 ) 1 9 ( 1 ) K D 4 ( 1 ) - 1 ( 1 )

C 8 2 1 ( 1 ) 1 9 ( 1 ) 1 9 ( 1 ) K D 5 ( 1 ) - 2 ( 1 )

C 9 1 9 ( 1 ) 2 0 ( 1 ) 1 9 ( 1 ) 4 ( 1 ) 5 ( 1 ) - 1 ( 1 )

C I O 2 5 ( 1 ) 2 2 ( 1 ) 2 2 ( 1 ) 3 ( 1 ) 4 ( 1 ) K D

C l l 2 6 ( 1 ) 2 9 ( 1 ) 2 2 ( 1 ) 2 ( 1 ) K D - 6 ( 1 )

C 1 2 1 9 ( 1 ) 4 0 ( 1 ) 2 4 ( 1 ) 7 ( 1 ) 2 ( 1 ) - 3 ( 1 )

C 1 3 2 2 ( 1 ) 3 2 ( 1 ) 2 9 ( 1 ) 4 ( 1 ) 6 ( 1 ) 7 ( 1 )

C 1 4 2 4 ( 1 ) 2 5 ( 1 ) 2 4 ( 1 ) - 1 ( 1 ) 5 ( 1 ) K D

N 1 1 8 ( 1 ) 1 8 ( 1 ) 1 8 ( 1 ) K D 4 ( 1 ) - 1 ( 1 )

F I 4 5 ( 1 ) 2 9 ( 1 ) 2 9 ( 1 ) - 1 3 ( 1 ) 7 ( 1 ) - 2 ( 1 )

F 2 2 5 ( 1 ) 3 4 ( 1 ) 6 1 ( 1 ) - 2 ( 1 ) 7 ( 1 ) 0 ( 1 )

F 3 8 1 ( 1 ) 2 2 ( 1 ) 2 9 ( 1 ) 6 ( 1 ) 8 ( 1 ) - 6 ( 1 )

F 4 6 4 ( 1 ) 2 5 ( 1 ) 2 2 ( 1 ) - 6 ( 1 ) 1 3 ( 1 ) - 5 ( 1 )

F 5 2 8 ( 1 ) 3 8 ( 1 ) 6 7 ( 1 ) - 1 4 ( 1 ) - 1 2 ( 1 ) 8 ( 1 )

F 6 4 6 ( 1 ) 2 6 ( 1 ) 2 5 ( 1 ) 4 ( 1 ) 1 2 ( 1 ) -4 (1 )

F 7 3 3 ( 1 ) 2 3 ( 1 ) 9 7 ( 1 ) 1 7 ( 1 ) 1 5 ( 1 ) 2 ( 1 )

F 8 3 8 ( 1 ) 5 0 ( 1 ) 4 6 ( 1 ) 8 ( 1 ) 2 3 ( 1 ) - 2 ( 1 )

F 9 2 1 ( 1 ) 4 0 ( 1 ) 8 4 ( 1 ) 2 ( 1 ) - 3 ( 1 ) - 1 0 ( 1 )

P I 2 7 ( 1 ) 1 7 ( 1 ) 1 8 ( 1 ) - 1 ( 1 ) 3 ( 1 ) K D
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m
CIO

Cl 2

,C13

C9
C14



X-Ray data for iminium ion 123

Table 1. C r y s t a l  d a t a  a n d  s t r u c t u r e  r e f i n e m e n t .

I d e n t i f i c a t i o n  c o d e 2007src0546 ( T G  3.415)
E m p i r i c a l  f o r m u l a c 1 3 h 1 6 f 6 n p

F o r m u l a  w e i g h t 3 3 1 . 2 4

T e m p e r a t u r e 1 2 0 ( 2 )  K

W a v e l e n g t h 0 . 7 1 0 7 3  A
C r y s t a l  s y s t e m M o n o c l i n i c

S p a c e  g r o u p P2y/C

U n i t  c e l l  d i m e n s i o n s a  =  1 8 . 0 4 5 9 ( 5 )  A o r = 9 0 °  

b =  1 6 . 9 6 8 0 ( 5 )  A p =  9 7 . 1 9 8 ( 2 ) °  

c  =  9 . 5 8 2 3 0 ( 1 0 )  A y =  9 0 °

V o l u m e 2 9 1 1 . 0 0 ( 1 2 )  A3
Z 8

D e n s i t y  ( c a l c u l a t e d ) 1 . 5 1 2  M g  / m 3

A b s o r p t i o n  c o e f f i c i e n t 0 . 2 4 7  m m - 1

F(000) 1 3 6 0

C r y s t a l B l o c k ;  c o l o u r l e s s

C r y s t a l  s i z e 0 . 2 0  x  0 . 1 2  x  0 . 0 4  m m 3

G r a n g e  f o r  d a t a  c o l l e c t i o n 3 . 3 1  - 2 7 . 5 0 °

I n d e x  r a n g e s - 2 3  <  f t  < 2 3 , - 2 2  < £ < 2 2 ,  — 1 2  <  /  <  1 1

R e f l e c t i o n s  c o l l e c t e d 4 0 0 7 0

I n d e p e n d e n t  r e f l e c t i o n s 6 6 6 4  [ / ? , „ ,  =  0 . 0 5 5 6 ]

C o m p l e t e n e s s  t o  0 =  2 7 . 5 0 ° 9 9 . 5  %

A b s o r p t i o n  c o r r e c t i o n S e m i - e m p i r i c a l  f r o m  e q u i v a l e n t s

M a x .  a n d  m i n .  t r a n s m i s s i o n 0 . 9 9 0 2  a n d  0 . 9 5 2 3

R e f i n e m e n t  m e t h o d F u l l - m a t r i x  l e a s t - s q u a r e s  o n  F2

D a t a  /  r e s t r a i n t s  /  p a r a m e t e r s 6 6 6 4 / 0 / 4 1 6

G o o d n e s s - o f - f i t  o n  F2 1 . 0 4 0

F i n a l  R  i n d i c e s  [F2 > 2 o (F 2)] R1  =  0 . 0 5 5 2 ,  wR 2 =  0 . 1 4 0 5

R  i n d i c e s  ( a l l  d a t a ) R1  = 0 . 0 8 2 5 ,  wR 2 =  0 . 1 5 8 3

L a r g e s t  d i f f .  p e a k  a n d  h o l e 0 . 7 8 3  a n d  - 0 . 7 7 5  e  A " 3

Diffractom eter: Nonius KappaC CD  area detector ( <j> scans and CO scans to fill asymmetric unit sphere). Cell determ ination: DirAx 

(Duisenberg, A.J.M .(1992). J. Appl. Cryst. 25, 92-96.) D ata collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 

1998). Data reduction and cell refinem ent: Denzo  (Z. Otwinowski & W. Minor, M ethods in Enzymology (1997) Vol. 276: 

Macromolecular Crystallography , part A, pp. 307-326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption correction: 

SADABS Version 2.10. (G. M. Sheldrick (2003)) Bruker AXS Inc., Madison, W isconsin, USA. Structure solution: SHELXS97 (G. M. 

Sheldrick, Acta Cryst. (1990) A 46 4 6 7 -4 7 3 ). Structure refinem ent: SHELXL97 (G. M. Sheldrick (1997), University o f Gottingen, 

Germany). G raphics: PLATON  (A.L. Spek, J. Appl. Crystallogr. 2003, 36, 7).
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T a b l e  2 .  A t o m i c  c o o r d i n a t e s  [ x  1 0 4 ] ,  e q u i v a l e n t  i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  [A2 x  1 0 3 ]  a n d  s i t e  o c c u p a n c y  f a c t o r s .  

Ueq i s  d e f i n e d  a s  o n e  t h i r d  o f  t h e  t r a c e  o f  t h e  o r t h o g o n a l i z e d  l f j  t e n s o r .

A t o m X y z u eq S.o.f.

F 7 3 1 3 3 ( 2 ) 8 2 6 7 ( 1 ) 9 9 4 ( 3 ) 4 7 ( 1 ) 0 . 7 7 4 ( 8 )

F 9 4 2 0 9 ( 2 ) 8 8 6 0 ( 2 ) 6 9 0 ( 4 ) 4 6 ( 1 ) 0 . 7 7 4 ( 8 )

F 1 0 3 5 9 6 ( 3 ) 9 7 0 2 ( 2 ) - 8 4 4 ( 3 ) 4 9 ( 1 ) 0 . 7 7 4 ( 8 )

F 1 2 2 5 1 7 ( 1 ) 9 1 1 8 ( 2 ) - 5 5 6 ( 4 ) 5 1 ( 1 ) 0 . 7 7 4 ( 8 )

FT 2 6 0 4 ( 1 0 ) 8 5 4 3 ( 8 ) 6 3 3 ( 1 2 ) 7 5 ( 6 ) 0 . 2 2 6 ( 8 )

F 9 - 3 8 7 0 ( 1 6 ) 8 6 3 3 ( 1 2 ) 1 3 3 1 ( 1 6 ) 1 4 2 ( 1 2 ) 0 . 2 2 6 ( 8 )

F 1 0 ' 3 9 4 1 ( 1 8 ) 9 5 1 1 ( 1 9 ) - 2 0 0 ( 4 0 ) 2 1 4 ( 1 8 ) 0 . 2 2 6 ( 8 )

F I  2 ’ 2 8 2 0 ( 1 5 ) 9 4 9 5 ( 1 1 ) - 9 5 3 ( 1 1 ) 1 0 8 ( 9 ) 0 . 2 2 6 ( 8 )

F 8 3 4 5 6 ( 1 ) 8 3 8 5 ( 1 ) - 1 1 4 0 ( 2 ) 3 7 ( 1 ) 1

F I  1 3 2 3 3 ( 1 ) 9 6 1 2 ( 1 ) 1 3 4 2 ( 1 ) 3 6 ( 1 ) 1

P 2 3 3 5 1 ( 1 ) 8 9 9 5 ( 1 ) 1 1 1 ( 1 ) 2 6 ( 1 ) 1

C 1 4 2 7 9 6 ( 1 ) 3 1 8 7 ( 2 ) - 2 6 7 7 ( 3 ) 3 0 ( 1 ) 1

C 1 5 3 2 9 5 ( 2 ) 2 7 2 9 ( 2 ) - 3 5 5 4 ( 3 ) 3 4 ( 1 ) 1

C 1 6 3 3 8 5 ( 1 ) 3 2 8 8 ( 2 ) - 4 7 7 4 ( 2 ) 3 0 ( 1 ) 1

C 1 7 2 6 2 1 ( 1 ) 3 6 6 4 ( 2 ) - 5 1 0 6 ( 2 ) 2 7 ( 1 ) 1

C 1 8 1 8 5 1 ( 1 ) 4 1 9 6 ( 1 ) - 3 3 6 5 ( 2 ) 2 3 ( 1 ) 1

C 1 9 1 4 4 3 ( 1 ) 4 7 3 9 ( 1 ) - 4 2 9 9 ( 2 ) 2 2 ( 1 ) 1

C 2 0 9 5 5 ( 1 ) 5 2 3 8 ( 1 ) - 3 8 0 0 ( 2 ) 2 2 ( 1 ) 1

C 2 1 5 2 1 ( 1 ) 5 8 4 4 ( 1 ) - 4 6 1 8 ( 2 ) 2 1 ( 1 ) 1

C 2 2 5 6 0 ( 1 ) 5 9 5 4 ( 1 ) - 6 0 5 6 ( 2 ) 2 5 ( 1 ) 1

C 2 3 1 3 2 ( 1 ) 6 5 2 9 ( 2 ) - 6 8 0 0 ( 2 ) 2 9 ( 1 ) 1

C 2 4 - 3 3 8 ( 1 ) 7 0 0 7 ( 1 ) - 6 1 1 2 ( 3 ) 2 8 ( 1 ) 1

C 2 5 - 3 8 7 ( 1 ) 6 8 9 8 ( 1 ) - 4 6 9 8 ( 2 ) 2 7 ( 1 ) 1

C 2 6 3 7 ( 1 ) 6 3 1 9 ( 1 ) - 3 9 4 3 ( 2 ) 2 4 ( 1 ) 1

N 2 2 3 6 4 ( 1 ) 3 7 2 5 ( 1 ) - 3 6 9 6 ( 2 ) 2 2 ( 1 ) 1

F I 6 4 0 ( 1 ) 4 0 2 2 ( 1 ) 5 9 1 ( 2 ) 6 8 ( 1 ) 1

F 3 1 6 1 0 ( 1 ) 3 4 1 7 ( 1 ) - 2 6 9 ( 2 ) 7 2 ( 1 ) 1

F 4 2 4 0 9 ( 1 ) 4 0 9 5 ( 1 ) 1 2 1 2 ( 3 ) 7 6 ( 1 ) 1

F 6 1 5 1 5 ( 1 ) 4 7 2 1 ( 1 ) 2 0 5 4 ( 2 ) 7 1 ( 1 ) 1

F 2 1 5 1 6 ( 1 ) 3 3 9 4 ( 1 ) 2 0 4 0 ( 2 ) 4 3 ( 1 ) 1

F 5 1 5 2 7 ( 1 ) 4 7 5 8 ( 1 ) - 2 7 4 ( 2 ) 4 8 ( 1 ) 1

P I 1 5 1 6 ( 1 ) 4 0 7 5 ( 1 ) 8 8 2 ( 1 ) 2 7 ( 1 ) 1

C l 2 0 8 0 ( 1 ) 6 5 8 5 ( 1 ) 1 1 7 8 ( 2 ) 2 4 ( 1 ) 1

C 2 1 4 0 5 ( 1 ) 6 7 9 5 ( 2 ) 1 2 0 ( 2 ) 2 8 ( 1 )

C 3 1 7 6 6 ( 1 ) 7 0 2 9 ( 2 ) - 1 1 8 0 ( 2 ) 2 8 ( 1 ) 1

C 4 2 4 0 7 ( 1 ) 6 4 4 5 ( 1 ) - 1 2 0 7 ( 2 ) 2 6 ( 1 ) 1

C 5 3 0 6 4 ( 1 ) 5 6 6 2 ( 1 ) 7 3 1 ( 2 ) 2 0 ( 1 ) 1

C 6 3 5 3 2 ( 1 ) 5 2 4 5 ( 1 ) - 1 2 3 ( 2 ) 2 1 ( 1 ) 1
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C l 3 9 8 0 ( 1 ) 4 6 7 3 ( 1 ) 4 7 9 ( 2 ) 2 2 ( 1 )

C 8 4 4 7 3 ( 1 ) 4 1 5 8 ( 1 ) - 2 0 5 ( 2 ) 2 1 ( 1 )

C 9 4 8 6 8 ( 1 ) 3 5 6 9 ( 1 ) 5 9 7 ( 3 ) 2 7 ( 1 )

C I O 5 3 3 6 ( 1 ) 3 0 5 7 ( 1 ) - 1 9 ( 3 ) 3 0 ( 1 )

C l l 5 4 2 5 ( 1 ) 3 1 3 7 ( 1 ) - 1 4 2 2 ( 3 ) 2 8 ( 1 )

C 1 2 5 0 4 7 ( 1 ) 3 7 3 2 ( 1 ) - 2 2 3 0 ( 2 ) 2 6 ( 1 )

C 1 3 4 5 7 5 ( 1 ) 4 2 3 7 ( 1 ) - 1 6 3 2 ( 2 ) 2 3 ( 1 )

N 1 2 5 7 8 ( 1 ) 6 1 8 9 ( 1 ) 2 8 1 ( 2 ) 1 9 ( 1 )



Table 3. Bond lengths [A] and angles [°].

F 7 - P 2

F 9 - P 2

F 1 0 - P 2

F 1 2 - P 2

F 7 - P 2

F 9 - P 2

F 1 0 - P 2

F 1 2 - P 2

F 8 - P 2

F 1 1 - P 2

C 1 4 - N 2

C 1 4 - C 1 5

C 1 5 - C 1 6

C 1 6 - C 1 7

C 1 7 - N 2

C 1 8 - N 2

C 1 8 - C 1 9

C 1 9 - C 2 0

C 2 0 - C 2 1

C 2 1 - C 2 2

C 2 1 - C 2 6

C 2 2 - C 2 3

C 2 3 - C 2 4

F 1 0 - P 2 - F 9 '

F 1 0 - P 2 - F 1 2 '

F 9 - P 2 - F 1 2 '

F 1 0 - P 2 - F 1 2

F 9 - P 2 - F 1 2

F 1 2 - P 2 - F 1 2

F 1 0 - P 2 - F 7

F 9 - P 2 - F 7

F 1 2 - P 2 - F 7

F 1 2 - P 2 - F 7

F 1 0 - P 2 - F 9

F 9 - P 2 - F 9

F 1 2 - P 2 - F 9

F 1 2 - P 2 - F 9

1 . 5 7 5 ( 2 )

1 . 5 9 4 ( 3 )

1 . 6 0 4 ( 3 )

1 . 5 7 3 ( 3 )

1 . 6 8 1 ( 9 )

1 . 5 3 2 ( 1 0 )

1 . 4 3 6 ( 1 5 )

1 . 5 6 0 ( 1 2 )

1 . 6 1 2 8 ( 1 5 )

1 . 6 1 1 4 ( 1 4 )

1 . 4 8 5 ( 3 )

1 . 5 2 0 ( 4 )

1 . 5 2 9 ( 3 )

1 . 5 1 7 ( 3 )

1 . 4 8 6 ( 3 )

1 . 2 9 2 ( 3 )

1 . 4 2 5 ( 3 )

1 . 3 5 1 ( 3 )

1 . 4 6 1 ( 3 )

1 . 4 0 0 ( 3 )

1 . 4 0 5 ( 3 )

1 . 3 8 5 ( 3 )

1 . 3 9 7 ( 3 )

9 0 . 2 ( 1 8 )

8 6 . 9 ( 1 8 )

1 6 9 . 7 ( 7 )

122(2)

1 4 5 . 5 ( 1 3 )

3 5 . 3 ( 1 0 )

1 4 6 ( 2 )

5 6 . 3 ( 1 3 )

1 2 7 . 1 ( 1 1 )

9 1 . 7 5 ( 1 8 )

5 6 ( 2 )

3 7 . 1 ( 1 3 )

1 4 2 . 8 ( 1 1 )

1 7 6 . 4 6 ( 1 6 )

C 2 4 - C 2 5

C 2 5 - C 2 6

F I - P I

F 3 - P 1

F 4 - P 1

F 6 - P 1

F 2 - P 1

F 5 - P 1

C l - N l

C 1 - C 2

C 2 - C 3

C 3 - C 4

C 4 - N 1

C 5 - N 1

C 5 - C 6

C 6 - C 7

C 7 - C 8

C 8 - C 9

C 8 - C 1 3

C 9 - C 1 0

C 1 0 - C 1 1

C 1 1 - C 1 2

C 1 2 - C 1 3

F 7 - P 2 - F 9  

F 1 0 - P 2 - F 1 0  

F 9 - P 2 - F 1 0  

F 1 2 - P 2 - F 1 0  

F 1 2 - P 2 - F 1 0  

F 7 - P 2 - F 1 0  

F 9 - P 2 - F 1 0  

F 1 0 - P 2 - F 1 1 

F 9 - P 2 - F 1 1  

F 1 2 - P 2 - F 1 1 

F 1 2 - P 2 - F 1 1 

F 7 - P 2 - F 1 1 

F 9 - P 2 - F 1 1  

F 1 0 - P 2 - F 1 1

1 . 3 8 1 ( 3 )

1 . 3 9 2 ( 3 )

1 . 5 7 4 2 ( 1 9 )

1 . 5 9 3 5 ( 1 8 )

1 . 6 0 3 ( 2 )

1 . 5 6 9 3 ( 1 7 )

1 . 6 0 2 4 ( 1 5 )

1 . 6 0 5 1 ( 1 6 )

1 . 4 8 0 ( 3 )

1 . 5 2 6 ( 3 )

1 . 5 2 9 ( 3 )

1 . 5 2 7 ( 3 )

1 . 4 8 5 ( 3 )

1 . 2 8 9 ( 3 )

1 . 4 3 4 ( 3 )

1 . 3 4 7 ( 3 )

1 . 4 6 1 ( 3 )

1 . 4 0 0 ( 3 )

1 . 4 0 9 ( 3 )

1 . 3 9 3 ( 3 )

1 . 3 8 0 ( 3 )

1 . 3 9 7 ( 3 )

1 . 3 8 3 ( 3 )

8 9 . 8 4 ( 1 8 )

3 3 ( 2 )

1 2 3 . 4 ( 1 3 )

5 4 . 0 ( 1 1 )

8 9 . 3 ( 2 )

1 7 6 . 7 0 ( 1 7 )

8 8 . 9 2 ( 1 8 )

8 5 . 6 ( 7 )

8 0 . 0 ( 4 )

8 9 . 9 ( 4 )

9 0 . 2 3 ( 1 2 )

9 2 . 9 5 ( 1 1 )

9 2 . 8 5 ( 1 4 )

9 0 . 1 7 ( 1 3 )
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F 1 0 - P 2 - F 8 9 4 . 6 ( 7 ) F 6 — P 1 - F 4 8 6 . 3 0 ( 1 4 )

F 9 - P 2 - F 8 1 0 1 . 1 ( 4 ) F I — P I — F 4 1 7 7 . 6 1 ( 1 1 )

F 1 2 - P 2 - F 8 8 9 . 0 ( 4 ) F 3 - P 1 - F 4 8 7 . 7 4 ( 1 3 )

F 1 2 - P 2 - F 8 8 8 . 7 9 ( 1 2 ) F 2 - P 1 - F 4 8 8 . 0 1 ( 1 0 )

F 7 - P 2 - F 8 8 7 . 5 3 ( 1 1 ) F 6 - P 1 - F 5 8 9 . 4 9 ( 1 0 )

F 9 - P 2 - F 8 8 8 . 1 2 ( 1 4 ) F 1 - P 1 - F 5 9 1 . 0 3 ( 1 0 )

F 1 0 - P 2 - F 8 8 9 . 3 7 ( 1 3 ) F 3 - P 1 - F 5 9 0 . 9 6 ( 9 )

F I 1 - P 2 - F 8 1 7 8 . 9 2 ( 9 ) F 2 - P 1 - F 5 1 7 9 . 3 0 ( 1 0 )

F 1 0 - P 2 - F 7 ' 1 6 8 . 9 ( 9 ) F 4 - P 1 - F 5 9 1 . 2 9 ( 1 1 )

F 9 - P 2 - F 7 ' 9 1 . 4 ( 1 2 ) N 1 - C 1 - C 2 1 0 2 . 2 9 ( 1 7 )

F 1 2 - P 2 - F 7 1 8 9 . 6 ( 1 1 ) C 1 - C 2 - C 3 1 0 2 . 4 9 ( 1 9 )

F 1 2 - P 2 - F 7 ' 5 4 . 5 ( 7 ) C 4 - C 3 - C 2 1 0 4 . 2 2 ( 1 8 )

F 7 - P 2 - F 7 ' 3 8 . 5 ( 6 ) N 1 - C 4 - C 3 1 0 3 . 8 9 ( 1 7 )

F 9 - P 2 - F 7 ' 1 2 7 . 6 ( 7 ) N 1 - C 5 - C 6 1 2 5 . 1 6 ( 1 9 )

F 1 0 - P 2 - F 7 ' 1 4 3 . 2 ( 7 ) C 7 - C 6 - C 5 1 1 8 . 3 7 ( 1 9 )

F I  1 - P 2 - F 7 ' 8 3 . 9 ( 3 ) C 6 — C 7 - C 8 1 2 7 . 3 ( 2 )

F 8 - P 2 - F 7 ' 9 5 . 9 ( 3 ) C 9 - C 8 - C 1 3 1 1 8 . 8 ( 2 )

N 2 - C 1 4 - C 1 5 1 0 4 . 4 2 ( 1 9 ) C 9 - C 8 - C 7 1 1 8 . 6 ( 2 )

C 1 4 - C 1 5 - C 1 6 1 0 3 . 5 0 ( 1 9 ) C 1 3 - C 8 - C 7 1 2 2 . 6 ( 2 )

C 1 7 - C 1 6 - C 1 5 1 0 3 . 9 ( 2 ) C I O — C 9 - C 8 1 2 0 . 4 ( 2 )

N 2 - C 1 7 - C 1 6 1 0 2 . 5 6 ( 1 8 ) C l  1 - C 1 0 - C 9 1 2 0 . 2 ( 2 )

N 2 - C 1 8 - C 1 9 1 2 5 . 1 ( 2 ) C 1 0 - C 1 1 - C 1 2 1 2 0 . 1 ( 2 )

C 2 0 - C 1 9 - C 1 8 1 1 9 . 4 ( 2 ) C 1 3 - C 1 2 - C 1 1 1 2 0 . 1 ( 2 )

C 1 9 - C 2 0 - C 2 1 1 2 5 . 5 ( 2 ) C 1 2 - C 1 3 - C 8 1 2 0 . 3 ( 2 )

C 2 2 - C 2 1 - C 2 6 1 1 9 . 2 ( 2 ) C 5 - N 1 - C 1 1 2 3 . 9 5 ( 1 7 )

C 2 2 - C 2 1 - C 2 0 1 2 2 . 2 ( 2 ) C 5 - N 1 - C 4 1 2 5 . 0 4 ( 1 8 )

C 2 6 - C 2 1 - C 2 0 1 1 8 . 6 ( 2 ) C 1 - N 1 - C 4 1 1 0 . 9 1 ( 1 7

C 2 3 - C 2 2 - C 2 1 1 2 0 . 4 ( 2 )

C 2 2 - C 2 3 - C 2 4 1 1 9 . 9 ( 2 )

C 2 5 - C 2 4 - C 2 3 1 2 0 . 1 ( 2 )

C 2 4 - C 2 5 - C 2 6 1 2 0 . 4 ( 2 )

C 2 5 - C 2 6 - C 2 1 1 1 9 . 9 ( 2 )

C 1 8 - N 2 - C 1 4 1 2 3 . 5 1 ( 1 9 )

C 1 8 - N 2 - C 1 7 1 2 5 . 5 1 ( 1 9 )

C 1 4 - N 2 - C 1 7 1 1 0 . 9 5 ( 1 8 )

F 6 - P 1 - F 1 9 4 . 3 4 ( 1 4 )

F 6 - P 1 - F 3 1 7 4 . 0 3 ( 1 4 )

F 1 - P 1 - F 3 9 1 . 6 1 ( 1 3 )

F 6 - P 1 - F 2 9 0 . 4 6 ( 1 0 )

F 1 - P 1 - F 2 8 9 . 6 7 ( 1 0 )

F 3 - P 1 - F 2 8 9 . 0 1 ( 1 0 )
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Table 4. A n i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  [ A 2 x  103]. T h e  a n i s o t r o p i c  d i s p l a c e m e n t  

f a c t o r  e x p o n e n t  t a k e s  t h e  f o r m :  -27T2[h2a * 2U n  +  • • •  +  2 h k a*  b* U n  ] .

A t o m Uu u22 E/ 3 3 t / 2 3 Un un

F 7 7 4 ( 2 ) 3 4 ( 1 ) 3 8 ( 1 ) 1 ( 1 ) 2 9 ( 1 ) - 9 ( 1 )

F 9 3 0 ( 1 ) 5 7 ( 2 ) 4 7 ( 2 ) - 1 3 ( 1 ) - 1 0 ( 1 ) 5 ( 1 )

F 1 0 9 1 ( 3 ) 2 7 ( 1 ) 3 2 ( 1 ) 4 ( 1 ) 2 3 ( 1 ) - 1 ( 2 )

F 1 2 2 8 ( 1 ) 6 8 ( 2 ) 5 3 ( 2 ) - 3 3 ( 2 ) - 1 0 ( 1 ) 1 8 ( 1 )

F T 1 0 4 ( 1 2 ) 7 0 ( 8 ) 6 3 ( 7 ) - 5 0 ( 6 ) 6 3 ( 8 ) - 6 5 ( 9 )

F 9 ' 2 3 0 ( 2 0 ) 1 2 8 ( 1 5 ) 4 9 ( 8 ) - 4 4 ( 8 ) - 7 2 ( 1 1 ) 1 5 1 ( 1 7 )

F 1 0 ' 1 7 0 ( 2 0 ) 2 3 0 ( 3 0 ) 2 9 0 ( 3 0 ) - 1 9 0 ( 3 0 ) 2 1 0 ( 2 0 ) - 1 6 0 ( 2 0 )

F I  2 ’ 2 0 0 ( 2 0 ) 9 5 ( 1 2 ) 2 3 ( 5 ) - 5 ( 6 ) - 8 ( 8 ) 8 4 ( 1 4 )

F 8 4 2 ( 1 ) 3 4 ( 1 ) 3 5 ( 1 ) - 8 ( 1 ) 4 ( 1 ) 1 1 ( 1 )

F I  1 4 9 ( 1 ) 3 7 ( 1 ) 2 1 ( 1 ) - 7 ( 1 ) 5 ( 1 ) - 6 ( 1 )

P 2 2 9 ( 1 ) 2 6 ( 1 ) 2 1 ( 1 ) 0 ( 1 ) 1 ( 1 ) 1 ( 1 )

C 1 4 2 8 ( 1 ) 3 1 ( 1 ) 3 0 ( 1 ) 1 1 ( 1 ) - 2 ( 1 ) 4 ( 1 )

C 1 5 3 1 ( 1 ) 2 6 ( 1 ) 4 4 ( 1 ) 2 ( 1 ) 0 ( 1 ) 5 ( 1 )

C 1 6 2 6 ( 1 ) 3 4 ( 1 ) 2 9 ( 1 ) - 5 ( 1 ) K D 4 ( 1 )

C 1 7 2 8 ( 1 ) 3 3 ( 1 ) 2 1 ( 1 ) - 3 ( 1 ) K D 5 ( 1 )

C 1 8 2 2 ( 1 ) 2 6 ( 1 ) 2 1 ( 1 ) 3 ( 1 ) 2 ( 1 ) - 5 ( 1 )

C 1 9 2 3 ( 1 ) 2 3 ( 1 ) 2 1 ( 1 ) 3 ( 1 ) 2 ( 1 ) - 2 ( 1 )

C 2 0 2 1 ( 1 ) 2 4 ( 1 ) 2 2 ( 1 ) 2 ( 1 ) K D - 3 ( 1 )

C 2 1 2 0 ( 1 ) 2 1 ( 1 ) 2 3 ( 1 ) 0 ( 1 ) 3 ( 1 ) - 3 ( 1 )

C 2 2 2 5 ( 1 ) 2 7 ( 1 ) 2 4 ( 1 ) 5 ( 1 ) 7 ( 1 ) 4 ( 1 )

C 2 3 3 0 ( 1 ) 3 1 ( 1 ) 2 7 ( 1 ) 9 ( 1 ) 7 ( 1 ) KD
C 2 4 2 6 ( 1 ) 2 0 ( 1 ) 3 8 ( 1 ) 6 ( 1 ) 4 ( 1 ) KD
C 2 5 2 4 ( 1 ) 2 2 ( 1 ) 3 4 ( 1 ) - 5 ( 1 ) 4 ( 1 ) 0 ( 1 )

C 2 6 2 1 ( 1 ) 2 4 ( 1 ) 2 6 ( 1 ) - 5 ( 1 ) 2 ( 1 ) - 2 ( 1 )

N 2 2 2 ( 1 ) 2 3 ( 1 ) 1 9 ( 1 ) 2 ( 1 ) - 1 ( 1 ) - 1 ( 1 )

F I 3 7 ( 1 ) 8 4 ( 2 ) 7 9 ( 1 ) 2 7 ( 1 ) - 7 ( 1 ) - 5 ( 1 )

F 3 1 3 8 ( 2 ) 3 7 ( 1 ) 4 9 ( 1 ) - 1 1 ( 1 ) 4 1 ( 1 ) - 1 5 ( 1 )

F 4 3 6 ( 1 ) 5 3 ( 1 ) 1 4 2 ( 2 ) 1 8 ( 1 ) 2 0 ( 1 ) - 8 ( 1 )

F 6 1 4 0 ( 2 ) 4 4 ( 1 ) 3 1 ( 1 ) - 1 2 ( 1 ) 1 4 ( 1 ) 4 ( 1 )

F 2 4 9 ( 1 ) 4 4 ( 1 ) 3 1 ( 1 ) 1 2 ( 1 ) - 8 ( 1 ) - 2 1 ( 1 )

F 5 8 2 ( 1 ) 3 4 ( 1 ) 2 7 ( 1 ) 4 ( 1 ) 9 ( 1 ) - 1 5 ( 1 )

P I 3 2 ( 1 ) 2 8 ( 1 ) 2 1 ( 1 ) - 1 ( 1 ) 6 ( 1 ) - 7 ( 1 )

C l 2 9 ( 1 ) 2 6 ( 1 ) 2 0 ( 1 ) 0 ( 1 ) 9 ( 1 ) 5 ( 1 )

C 2 2 6 ( 1 ) 3 1 ( 1 ) 2 8 ( 1 ) 4 ( 1 ) 7 ( 1 ) 6 ( 1 )

C 3 2 9 ( 1 ) 3 1 ( 1 ) 2 3 ( 1 ) 4 ( 1 ) 3 ( 1 ) 3 ( 1 )

C 4 2 8 ( 1 ) 3 2 ( 1 ) 1 7 ( 1 ) 3 ( 1 ) 3 ( 1 ) 5 ( 1 )

C 5 2 0 ( 1 ) 2 1 ( 1 ) 1 9 ( 1 ) - 1 ( 1 ) 2 ( 1 ) - 3 ( 1 )

C 6 2 0 ( 1 ) 2 6 ( 1 ) 1 8 ( 1 ) - 2 ( 1 ) 5 ( 1 ) - 1 ( 1 )
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C 7 2 1 ( 1 ) 2 3 ( 1 ) 2 2 ( 1 ) - 1 ( 1 ) 3 ( 1 ) - 2 ( 1 )

C 8 1 7 ( 1 ) 2 3 ( 1 ) 2 4 ( 1 ) - K D 3 ( 1 ) - 2 ( 1 )

C 9 2 7 ( 1 ) 2 5 ( 1 ) 2 9 ( 1 ) 5 ( 1 ) 6 ( 1 ) - 1 ( 1 )

C I O 2 7 ( 1 ) 2 4 ( 1 ) 4 0 ( 1 ) 5 ( 1 ) 6 ( 1 ) 5 ( 1 )

C l l 2 5 ( 1 ) 2 5 ( 1 ) 3 5 ( 1 ) - 7 ( 1 ) 7 ( 1 ) 2 ( 1 )

C 1 2 2 2 ( 1 ) 3 2 ( 1 ) 2 5 ( 1 ) - 5 ( 1 ) 2 ( 1 ) - 1 ( 1 )

C 1 3 2 0 ( 1 ) 2 6 ( 1 ) 2 2 ( 1 ) - 2 ( 1 ) 0 ( 1 ) 0 ( 1 )

N 1 1 9 ( 1 ) 2 3 ( 1 ) 1 5 ( 1 ) - 1 ( 1 ) 5 ( 1 ) - 1 ( 1 )
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X-Ray data for iminium ion 126

Table 1. C r y s t a l  d a t a  a n d  s t r u c t u r e  r e f i n e m e n t .

I d e n t i f i c a t i o n  c o d e 2007srcl313 (TG3-446)
E m p i r i c a l  f o r m u l a c 1 6 h 2 0 f 9 n 2 p

F o r m u l a  w e i g h t 4 4 2 . 3 1

T e m p e r a t u r e 1 2 0 ( 2 )  K

W a v e l e n g t h 0 . 7 1 0 7 3  A
C r y s t a l  s y s t e m M o n o c l i n i c

S p a c e  g r o u p P 2 l/c

U n i t  c e l l  d i m e n s i o n s a  =  2 0 . 7 9 2 3 ( 9 )  A a =  9 0 °  

b  =  1 0 . 7 1 1 4 ( 5 )  A p =  9 4 . 9 2 3 ( 3 ) °  

c =  8 . 4 0 1 3 ( 3 )  A y =  9 0 °

V o l u m e 1 8 6 4 . 1 9 ( 1 4 )  A3
Z 4

D e n s i t y  ( c a l c u l a t e d ) 1 . 5 7 6  M g / m 3

A b s o r p t i o n  c o e f f i c i e n t 0 . 2 3 8  m m - 1

F(000) 9 0 4

C r y s t a l B l a d e ;  o r a n g e

C r y s t a l  s i z e 0 . 4 0  x  0 . 2 0  x  0 . 0 4  m m 3

G r a n g e  f o r  d a t a  c o l l e c t i o n 3 . 0 9  -  2 7 . 5 0 °

I n d e x  r a n g e s - 2 6  <  h <  2 6 ,  - 1 3  <  k  <  1 3 ,  - 1 0  <  /  <  1 0

R e f l e c t i o n s  c o l l e c t e d 3 0 0 3 5

I n d e p e n d e n t  r e f l e c t i o n s 4 2 6 0  [ / ? , „ ,  =  0 . 0 6 4 4 ]

C o m p l e t e n e s s  t o  9 -  2 7 . 5 0 ° 9 9 . 7  %

A b s o r p t i o n  c o r r e c t i o n S e m i - e m p i r i c a l  f r o m  e q u i v a l e n t s

M a x .  a n d  m i n .  t r a n s m i s s i o n 0 . 9 9 0 5  a n d  0 . 9 1 0 8

R e f i n e m e n t  m e t h o d F u l l - m a t r i x  l e a s t - s q u a r e s  o n  F2

D a t a  /  r e s t r a i n t s  /  p a r a m e t e r s 4 2 6 0  /  0  /  2 5 5

G o o d n e s s - o f - f i t  o n  F2 1 . 0 2 5

F i n a l  R  i n d i c e s  [F2 > 2 o (F 2)] R1  =  0 . 0 5 2 0 ,  wR 2 =  0 . 1 3 0 8

R  i n d i c e s  ( a l l  d a t a ) R1  =  0 . 0 6 9 0 ,  wR 2  =  0 . 1 4 2 1

L a r g e s t  d i f f .  p e a k  a n d  h o l e 0 . 5 3 0  a n d  - 0 . 4 9 3  e  A - 3

Diffractom eter: Nonius K appaC C D  area detector {<(> scans and co scans to fill asym metric unit sphere). Cell determ ination: DirAx 
(Duisenberg, A.J.M .(1992). J. Appl. Cryst. 25, 92-96.) D ata collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 
1998). Data reduction and cell refinem ent: D enzo  (Z. Otwinowski & W. Minor, M ethods in Enzymology (1997) Vol. 276: 
M acrom olecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption correction: 
SADABS Version 2.10. (G. M. Sheldrick (2003)) Bruker A XS Inc., Madison, W isconsin, USA. Structure solution: SHELXS97 (G. M. 
Sheldrick, Acta Cryst. (1990) A 46 4 6 7 -4 7 3 ). Structure refinem ent: SHELXL97 (G. M. Sheldrick (1997), University o f Gottingen, 
Germany). G raphics: PLATON  (A.L. Spek, J. Appl. Crystallogr. 2003, 36, 7).

Special details:
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Table 2. A t o m i c  c o o r d i n a t e s  [ x  104], e q u i v a l e n t  i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  [A2 x  103] a n d  s i t e  o c c u p a n c y  f a c t o r s .  

Ueq i s  d e f i n e d  a s  o n e  t h i r d  o f  t h e  t r a c e  o f  t h e  o r t h o g o n a l i z e d  l f J t e n s o r .

A t o m X >> z u eq S.o .f

C l - 3 2 9 9 ( 1 ) 6 0 4 7 ( 2 ) - 1 0 5 2 ( 3 ) 3 5 ( 1 ) 1
C 2 - 3 9 8 4 ( 1 ) 6 5 0 4 ( 2 ) - 1 3 4 1 ( 3 ) 4 6 ( 1 ) 1
C 3 - 4 2 7 9 ( 1 ) 5 6 7 6 ( 2 ) - 2 6 9 7 ( 3 ) 4 0 ( 1 ) 1
C 4 - 3 9 5 6 ( 1 ) 4 4 0 4 ( 2 ) - 2 4 0 0 ( 3 ) 3 3 ( 1 ) 1
C 5 - 4 3 3 2 ( 1 ) 3 5 5 9 ( 2 ) - 1 3 7 7 ( 3 ) 4 2 ( 1 ) 1
C 6 - 2 8 3 9 ( 1 ) 3 9 4 2 ( 2 ) - 1 3 9 7 ( 2 ) 2 9 ( 1 ) 1
C l - 2 2 3 4 ( 1 ) 4 2 2 3 ( 2 ) - 5 8 9 ( 2 ) 2 9 ( 1 ) 1
C 8 - 1 7 4 7 ( 1 ) 3 3 7 5 ( 2 ) - 5 7 4 ( 2 ) 2 9 ( 1 ) 1
C 9 - 1 1 0 6 ( 1 ) 3 5 0 4 ( 2 ) 1 9 0 ( 2 ) 2 7 ( 1 ) 1
C I O - 6 3 2 ( 1 ) 2 6 2 0 ( 2 ) - 1 3 1 ( 3 ) 3 0 ( 1 ) 1
C l l - 2 ( 1 ) 2 7 1 6 ( 2 ) 5 1 2 ( 2 ) 3 0 ( 1 ) 1
C 1 2 1 9 2 ( 1 ) 3 7 0 7 ( 2 ) 1 5 6 1 ( 2 ) 2 7 ( 1 ) 1
C 1 3 - 2 8 5 ( 1 ) 4 6 0 3 ( 2 ) 1 8 8 5 ( 2 ) 2 9 ( 1 ) 1
C 1 4 - 9 0 7 ( 1 ) 4 4 9 7 ( 2 ) 1 2 1 6 ( 2 ) 2 8 ( 1 ) 1
C 1 5 1 2 9 7 ( 1 ) 2 8 9 3 ( 2 ) 1 8 6 6 ( 3 ) 3 8 ( 1 ) 1
C 1 6 9 9 4 ( 1 ) 4 8 0 2 ( 2 ) 3 3 5 4 ( 3 ) 3 6 ( 1 ) 1
N 1 - 3 3 2 5 ( 1 ) 4 7 1 5 ( 2 ) - 1 5 4 4 ( 2 ) 2 7 ( 1 ) 1
N 2 8 1 0 ( 1 ) 3 8 0 5 ( 2 ) 2 2 2 9 ( 2 ) 3 2 ( 1 ) 1
F I - 4 4 3 6 ( 1 ) 4 0 5 7 ( 2 ) 3 6 ( 2 ) 5 4 ( 1 ) 1
F 2 - 4 9 1 3 ( 1 ) 3 3 0 3 ( 2 ) - 2 1 2 3 ( 2 ) 6 4 ( 1 ) 1
F 3 - 4 0 3 8 ( 1 ) 2 4 6 2 ( 1 ) - 1 0 8 3 ( 2 ) 6 0 ( 1 ) 1
F 4 2 7 4 4 ( 1 ) 1 2 4 3 ( 1 ) 2 3 1 7 ( 2 ) 5 8 ( 1 ) 1
F 5 2 5 7 7 ( 1 ) 1001( 1 ) - 3 4 7 ( 2 ) 5 1 ( 1 ) 1
F 6 2 0 4 0 ( 1 ) - 2 1 3 ( 2 ) 1 3 1 7 ( 2 ) 5 1 ( 1 ) 1
F 7 2 8 1 1 ( 1 ) - 1 0 5 4 ( 1 ) - 7 6 ( 2 ) 5 0 ( 1 ) 1
F 8 2 9 8 7 ( 1 ) - 8 1 6 ( 1 ) 2 5 9 0 ( 2 ) 4 4 ( 1 ) 1
F 9 3 5 2 3 ( 1 ) 3 8 6 ( 2 ) 9 3 5 ( 2 ) 5 9 ( 1 ) 1
P I 2 7 8 3 ( 1 ) 9 5 ( 1 ) 1 1 2 6 ( 1 ) 3 3 ( 1 ) 1

270



Table 3. B o n d  l e n g t h s  [A] a n d  a n g l e s  [ ° ] .

C l - N l 1 . 4 8 6 C 1 - C 2

C 2 - C 3 1 . 5 2 9 ( 4 )

C 3 - C 4 1 . 5 3 0 ( 3 )

C 4 - N 1 1 . 4 7 9 ( 3 )

C 4 - C 5 1 . 5 1 1 ( 3 )

C 5 - F 1 1 . 3 3 7 ( 3 )

C 5 - F 3 1 . 3 3 7 ( 3 )

C 5 - F 2 1 . 3 4 2 ( 3 )

C 6 - N 1 1 . 3 0 4 ( 3 )

C 6 - C 7 1 . 4 1 0 ( 3 )

C 7 - C 8 1 . 3 6 0 ( 3 )

C 8 - C 9 1 . 4 3 6 ( 3 )

C 9 - C 1 4 1 . 4 0 8 ( 3 )

C 9 - C 1 0 1 . 4 1 0 ( 3 )

C 1 0 - C 1 1 1 . 3 7 7 ( 3 )

C 1 1 - C 1 2 1 . 4 1 6 ( 3 )

C 1 2 - N 2 1 . 3 6 1 ( 3 )

C 1 2 - C 1 3 1 . 4 2 4 ( 3 )

C 1 3 - C 1 4 1 . 3 7 0 ( 3 )

C 1 5 - N 2 1 . 4 5 9 ( 3 )

C 1 6 - N 2 1 . 4 5 6 ( 3 )

F 4 - P 1 1 . 5 9 2 0 ( 1 5 )

F 5 - P 1 1 . 6 0 1 7 ( 1 4 )

F 6 - P 1 1 . 5 9 9 4 ( 1 5 )

F 7 - P 1 1 . 5 9 5 8 ( 1 5 )

F 8 - P 1 1 . 5 9 8 5 ( 1 4 )

F 9 - P 1 1 . 5 9 1 9 ( 1 6 )
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N1-C1-C2

C 1 - C 2 - C 3

C 2 - C 3 - C 4

N 1 - C 4 - C 5

N 1 - C 4 - C 3

C 5 - C 4 - C 3

F 1 - C 5 - F 3

F 1 - C 5 - F 2

F 3 - C 5 - F 2

F 1 - C 5 - C 4

F 3 - C 5 - C 4

F 2 - C 5 - C 4

N 1 - C 6 - C 7

C 8 - C 7 - C 6

C 7 - C 8 - C 9

C 1 4 - C 9 - C 1 0

C 1 4 - C 9 - C 8

C 1 0 - C 9 - C 8

C l  1 - C 1 0 - C 9

C 1 0 - C 1 1 - C 1 2

N 2 - C 1 2 - C 1 1

N 2 - C 1 2 - C 1 3

C 1 1 - C 1 2 - C 1 3

C 1 4 - C 1 3 - C 1 2

C 1 3 - C 1 4 - C 9

C 6 - N 1 - C 4

C 6 - N 1 - C 1

C 4 - N 1 - C 1

C 1 2 - N 2 - C 1 6

C 1 2 - N 2 - C 1 5

C 1 6 - N 2 - C 1 5

F 4 - P 1 - F 9

F 4 - P 1 - F 7

F 9 - P 1 - F 7

F 4 - P 1 - F 8

F 9 - P 1 - F 8

F 7 - P 1 - F 8

F 4 - P 1 - F 6

F 9 - P 1 - F 6

F 7 - P 1 - F 6

F 8 - P 1 - F 6

1 0 4 . 8 3 ( 1 8 )

1 0 4 . 1 ( 2 )

1 0 4 . 6 3 ( 1 9 )

1 0 9 . 7 8 ( 1 8 )

1 0 3 . 7 7 ( 1 7 )

1 1 2 . 6 7 ( 1 9 )

1 0 7 . 0 ( 2 )

1 0 6 . 7 ( 2 )

1 0 6 . 6 ( 2 )

1 1 3 . 4 ( 2 )

1 1 2 . 5 ( 2 )

110.2(2)

1 2 4 . 2 ( 2 )

1 1 9 . 6 ( 2 )

1 2 7 . 0 ( 2 )

1 1 6 . 8 7 ( 1 9 )

1 2 3 . 9 3 ( 1 8 )

1 1 9 . 1 7 ( 1 9 )

122. 1(2)

1 2 0 . 6 7 ( 1 9 )

1 2 1 . 5 0 ( 1 9 )

1 2 1 . 1 8 ( 1 9 )

1 1 7 . 3 2 ( 1 9 )

1 2 0 . 9 9 ( 1 9 )

1 2 2 . 0 0 ( 1 9 )

1 2 3 . 4 6 ( 1 8 )

1 2 5 . 0 5 ( 1 8 )

1 1 1 . 1 4 ( 1 6 )

1 2 0 . 7 7 ( 1 8 )

1 2 0 . 6 9 ( 1 9 )

1 1 8 . 5 1 ( 1 8 )

9 0 . 7 8 ( 1 0 )

1 7 9 . 1 9 ( 1 0 )

8 9 . 9 1 ( 9 )

9 0 . 7 0 ( 8 )

9 0 . 0 7 ( 9 )

8 9 . 7 2 ( 8 )

8 9 . 6 9 ( 1 0 )

1 7 9 . 3 9 ( 1 0 )

8 9 . 6 2 ( 9 )

8 9 . 5 5 ( 8 )
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F 4 - P 1 - F 5  8 9 . 5 6 ( 9 )

F 9 - P 1 - F 5  9 0 . 0 3 ( 9 )

F 7 - P 1 - F 5  9 0 . 0 3 ( 8 )

F 8 - P 1 - F 5  1 7 9 . 7 3 ( 1 0 )

F 6 - P 1 - F 5  9 0 . 3 6 ( 8 )

S y m m e t r y  t r a n s f o r m a t i o n s  u s e d  t o  g e n e r a t e  e q u i v a l e n t  a t o m s :

Table 4. A n i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  [ A 2 x  103]. T h e  a n i s o t r o p i c  d i s p l a c e m e n t  

f a c t o r  e x p o n e n t  t a k e s  t h e  f o r m :  - 2 7 r 2[h2a* 2U n +  • • •  +  2 h k a*  b* U 12 ] .

A t o m U n U22 U33 u23 U u U n

C l 3 3 ( 1 ) 2 8 ( 1 ) 4 4 ( 1 ) - 3 ( 1 ) 5 ( 1 ) 0( 1 )

C 2 3 7 ( 1 ) 3 5 ( 1 ) 6 5 ( 2 ) - 4 ( 1 ) KD 3 ( 1 )

C 3 3 2 ( 1 ) 4 0 ( 1 ) 4 8 ( 1 ) 6( 1 ) 1( 1 ) 3 ( 1 )

C 4 2 8 ( 1 ) 3 5 ( 1 ) 3 6 ( 1 ) - 3 ( 1 ) 2( 1 ) - 1 ( 1 )

C 5 2 7 ( 1 ) 3 6 ( 1 ) 6 4 ( 2 ) 1( 1 ) 7 ( 1 ) - 2 ( 1 )

C 6 2 8 ( 1 ) 2 8 ( 1 ) 3 2 ( 1 ) 2( 1 ) 10( 1 ) - 2 ( 1 )

C l 2 9 ( 1 ) 2 9 ( 1 ) 3 1 ( 1 ) 1( 1 ) 7 ( 1 ) - 2 ( 1 )

C 8 3 1 ( 1 ) 2 7 ( 1 ) 3 0 ( 1 ) 1( 1 ) 9 ( 1 ) - 3 ( 1 )

C 9 2 7 ( 1 ) 2 5 ( 1 ) 3 0 ( 1 ) 3 ( 1 ) 8( 1 ) 0( 1 )

C I O 3 3 ( 1 ) 2 5 ( 1 ) 3 4 ( 1 ) - 1 ( 1 ) 7 ( 1 ) 1( 1 )

C l l 3 2 ( 1 ) 2 5 ( 1 ) 3 4 ( 1 ) 1( 1 ) 9 ( 1 ) 5 ( 1 )

C 1 2 2 6 ( 1 ) 2 8 ( 1 ) 2 7 ( 1 ) 4 ( 1 ) 7 ( 1 ) - 1 ( 1 )

C 1 3 3 2 ( 1 ) 2 6 ( 1 ) 2 9 ( 1 ) 0( 1 ) 8( 1 ) - 1 ( 1 )

C 1 4 2 9 ( 1 ) 2 6 ( 1 ) 3 0 ( 1 ) 2( 1 ) 10( 1 ) 4 ( 1 )

C 1 5 3 1 ( 1 ) 3 8 ( 1 ) 4 5 ( 1 ) 4 ( 1 ) 7 ( 1 ) 6( 1 )

C 1 6 3 3 ( 1 ) 3 7 ( 1 ) 3 7 ( 1 ) 2( 1 ) 3 ( 1 ) - 4 ( 1 )

N 1 2 5 ( 1 ) 2 8 ( 1 ) 2 9 ( 1 ) 0( 1 ) 6( 1 ) - 2 ( 1 )

N 2 2 9 ( 1 ) 3 2 ( 1 ) 3 5 ( 1 ) 2( 1 ) 4 ( 1 ) KD
F I 4 6 ( 1 ) 6 0 ( 1 ) 6 0 ( 1 ) 7 ( 1 ) 2 4 ( 1 ) - 2 ( 1 )

F 2 3 1 ( 1 ) 5 9 ( 1 ) 102( 1 ) 0( 1 ) - 4 ( 1 ) - 1 5 ( 1 )

F 3 4 1 ( 1 ) 3 5 ( 1 ) 1 0 4 ( 1 ) 1 6 ( 1 ) 1 8 ( 1 ) - 1 ( 1 )

F 4 9 2 ( 1 ) 3 7 ( 1 ) 4 6 ( 1 ) - 9 ( 1 ) KD 7 ( 1 )

F 5 6 2 ( 1 ) 5 1 ( 1 ) 4 0 ( 1 ) 1 7 ( 1 ) 3 ( 1 ) - 3 ( 1 )

F 6 3 7 ( 1 ) 66( 1 ) 5 3 ( 1 ) 1 3 ( 1 ) 1 3 ( 1 ) 1( 1 )

F 7 6 7 ( 1 ) 4 5 ( 1 ) 4 0 ( 1 ) - 1 0 ( 1 ) 1 6 ( 1 ) - 8 ( 1 )

F 8 5 5 ( 1 ) 4 2 ( 1 ) 3 6 ( 1 ) 6( 1 ) 7 ( 1 ) 9 ( 1 )

F 9 3 9 ( 1 ) 66( 1 ) 7 3 ( 1 ) 9 ( 1 ) 6( 1 ) - 1 5 ( 1 )

P I 3 8 ( 1 ) 3 2 ( 1 ) 3 0 ( 1 ) KD 7 ( 1 ) - 3 ( 1 )
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X-Ray data for iminium ion 124

refinement for nct0601.Table 1. Crystal data and structure

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient 

F(000)

Crystal size

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 26.37° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data / restraints /  parameters 

Goodness-of-fit on F2 
Final R indices [I>2sigma(I)]

R indices (all data)

Absolute structure parameter 

Largest diff. peak and hole

nct0601

C22 H25 F6 N2 O P

478.41

150(2) K

0.71073 A

Orthorhombic

P 212121

a = 9.7220(3) A fi II o o

b =  13.2520(4) A P= 90°.

c =  17.4010(5) A oOONII

2241.87(12) A3
4

1.417 Mg/m3 
0.189 mm'1 
992

0.40 x 0.28 x 0.25 mm3 
3.72 to 26.37°.

-1 l<=h<=12, -16<=k<=16, -21<=1<=21 
13712

4572 [R(int) = 0.0925]

99.5 %

Semi-empirical from equivalents 

0.9543 and 0.9282 

Full-matrix least-squares on F2 
4572 / 0 /2 9 2  

1.079

R1 = 0.0486, wR2 = 0.1037 

R1 =0.0666, wR2 = 0.1117 

0.04(12)

0.204 and -0.292 e.A'3



Table 2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103) 

for nct0601. U(eq) is defined as one third of the trace of the orthogonalized U‘J tensor.

X y z U(eq)

C (l) 1785(3) 8179(2) 5405(2) 26(1)

C(2) 1876(3) 8783(2) 6689(1) 23(1)

C(3) 2417(3) 8135(2) 7345(2) 34(1)

C(4) 1959(3) 9906(2) 6882(2) 29(1)

C(5) 304(3) 8192(2) 5663(1) 22(1)

C(6) 4061(3) 8688(2) 5880(2) 37(1)

C(7) -565(3) 8930(2) 5189(2) 27(1)

C(8) -83(3) 10012(2) 5214(1) 29(1)

C(9) -779(3) 10730(2) 5641(2) 39(1)

C(10) -303(4) 11711(2) 5693(2) 49(1)

C (ll) 871(4) 11997(2) 5311(2) 47(1)

C(12) 1559(4) 11309(2) 4864(2) 46(1)

C(13) 1094(3) 10325(2) 4813(2) 33(1)

C(14) -496(3) 8353(2) 7003(1) 26(1)

C(15) -1787(3) 7876(2) 6912(2) 26(1)

C(16) -2550(3) 7717(2) 7545(2) 27(1)

C(17) -3771(3) 7092(2) 7622(2) 25(1)

C(18) -4405(3) 7018(2) 8342(2) 31(1)

C(19) -5509(3) 6359(2) 8455(2) 35(1)

C(20) -5957(3) 5782(2) 7849(2) 37(1)

C(21) -5351(3) 5849(2) 7133(2) 36(1)

C(22) -4263(3) 6502(2) 7017(1) 27(1)

N(l) 437(2) 8473(2) 6482(1) 22(1)

N(2) 2586(2) 8536(2) 5974(1) 24(1)

0 (1) 2167(2) 7916(1) 4765(1) 30(1)

PCD -907(1) 10124(1) 8875(1) 32(1)

F(l) -823(2) 9951(2) 9774(1) 57(1)

F(2) -1792(2) 11127(1) 9004(1) 54(1)

F(3) 471(2) 10771(1) 8889(1) 51(1)

F(4) -15(2) 9120(1) 8729(1) 42(1)

F(5) -2291(2) 9474(1) 8848(1) 46(1)

F(6) -1016(2) 10280(1) 7967(1) 47(1)



Table 3. Bond lengths [A] and angles [°] for nct0601.

C (l)-0(1)

C(l)-N(2)

C(l)-C(5)

C(2)-N(2)

C(2)-N(l)

C(2)-C(3)

C(2)-C(4)

C(5)-N(l)

C(5)-C(7)

C(6)-N(2)

C(7)-C(8)

C(8)-C(9)

C(8)-C(13)

C(9)-C(10)

C(10)-C(ll)

C(ll)-C(12)

C(12)-C(13)

C(14)-N(l)

C(14)-C(15)

C(15)-C(16)

C(16)-C(17)

C(17)-C(22)

C(17)-C(18)

C(18)-C(19)

C(19)-C(20)

C(20)-C(21)

C(21)-C(22)

P (l)-F (l)

P(l)-F(3)

P(l)-F(6)

P(D-F(5)

P(l)-F(2)

P(l)-F(4)

1.224(3)

1.346(3)

1.508(4)

1.459(3)

1.502(3)

1.523(4)

1.527(4)

1.478(3)

1.533(3)

1.458(3)

1.510(4)

1.384(4)

1.402(4)

1.383(4)

1.374(5)

1.372(5)

1.384(4)

1.293(3)

1.415(4)

1.344(4)

1.453(4)

1.396(4)

1.401(4)

1.397(4)

1.374(4)

1.381(4)

1.381(4)

1.5843(18)

1.5906(19)

1.5966(17)

1.5984(19)

1.5996(19)

1.6073(17)
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0(1)-C(1)-N(2)

0(1)-C(1)-C(5)

N(2)-C(l)-C(5)

N(2)-C(2)-N(l)

N(2)-C(2)-C(3)

N(l)-C(2)-C(3)

N(2)-C(2)-C(4)

N(l)-C(2)-C(4)

C(3)-C(2)-C(4)

N(l)-C(5)-C(l)

N(l)-C(5)-C(7)

C(l)-C(5)-C(7)

C(8)-C(7)-C(5)

C(9)-C(8)-C(13)

C(9)-C(8)-C(7)

C(13)-C(8)-C(7)

C(10)-C(9)-C(8)

C(ll)-C(10)-C(9)

C(12)-C(l 1)-C(10)

C(11)-C(12)-C(13)

C(12)-C(13)-C(8)

N(l)-C(14)-C(15)

C(16)-C(15)-C(14)

C(15)-C(16)-C(17)

C(22)-C(17)-C(18)

C(22)-C(17)-C(16)

C(18)-C(17)-C(16)

C(19)-C(18)-C(17)

C(20)-C(19)-C(18)

C( 19)-C(20)-C(21)

C(20)-C(21 )-C(22)

C(21 )-C(22)-C( 17)

C(14)-N(l)-C(5)

C(14)-N(l)-C(2)

C(5)-N(l)-C(2)

C(l)-N(2)-C(6)

126.5(3)

124.3(2)

109.2(2)

100.09(19)

110.5(2)

110.3(2)

112.4(2)

111.6(2)

111.5(2)

101.9(2)

114.0(2)

111.9(2)

114.8(2)

117.6(3)

121.0(3)

121.3(2)

121.1(3)

120.4(3)

119.8(3)

120.2(3)

120.9(3)

126.8(2)

117.9(2)

128.0(2)

119.0(2)

122.0(2)

118.8(2)

120.5(3)

119.0(3)

121.4(3)

120.0(3)

120.2(2)

125.7(2)

121.3(2)

112.40(19)

122.3(2)

278



C(l)-N(2)-C(2) 115.6(2)

C(6)-N(2)-C(2) 122.0(2)

F(l)-P(l)-F(3) 91.07(11)

F(l)-P(l)-F(6) 178.80(11)

F(3)-P(l)-F(6) 90.10(11)

F(l)-P(l)-F(5) 89.66(11)

F(3)-P(l)-F(5) 179.26(11)

F(6)-P(l)-F(5) 89.16(10)

F(l)-P(l)-F(2) 90.45(11)

F(3)-P(l)-F(2) 90.14(10)

F(6)-P(l)-F(2) 89.75(10)

F(5)-P(l)-F(2) 89.92(10)

F(l)-P(l)-F(4) 90.48(10)

F(3)-P(l)-F(4) 89.72(10)

F(6)-P(l)-F(4) 89.32(9)

F(5)-P(l)-F(4) 90.21(10)

F(2)-P(l)-F(4) 179.07(10)

Symmetry transformations used to generate equivalent atoms:
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T a b l e  4 .  A n i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  ( A 2 x  1 0 3 ) f o r  n c t 0 6 0 1 .  T h e  a n i s o t r o p i c  

d i s p l a c e m e n t  f a c t o r  e x p o n e n t  t a k e s  t h e  f o r m :  - 2 7 i 2 [  h 2 a * 2 U n  +  . . .  +  2  h  k  a *  b *  U 1 2  ]

U11 U22 U33 u 23 U 13 u 12

C(l) 32(2) 18(1) 29(2) 0(1) 1(1) 0(1)

C(2) 21(1) 26(1) 23(1) -4(1) 1(1) -2(1)

C(3) 29(2) 42(2) 31(2) 4(1) -2(1) 2(1)

C(4) 26(1) 28(1) 32(1) -8(1) 1(1) -5(1)

0(5) 27(2) 18(1) 21(1) -4(1) -1(1) -4(1)

C(6) 22(1) 44(2) 45(2) -2(1) 6(1) -3(1)

C(7) 24(1) 30(1) 28(1) K D -3(1) -4(1)

C(8) 34(2) 29(1) 24(1) KD -5(1) 6(1)

C(9) 37(2) 36(2) 44(2) -3(1) 0(2) 12(1)

C(10) 68(3) 30(2) 51(2) -8(2) -9(2) 25(2)

C (ll) 73(3) 24(2) 44(2) 4(1) -14(2) -1(2)

C(12) 61(2) 35(2) 40(2) 5(2) 4(2) -4(2)

C(13) 46(2) 26(1) 28(1) 3(1) KD 2(1)

C(14) 29(2) 25(1) 24(1) -4(1) 0(1) -K D

C(15) 26(1) 26(1) 28(1) -4(1) -2(1) -4(1)

C(16) 24(1) 29(1) 28(1) -6(1) 0(1) 2(1)

C(17) 21(1) 25(1) 29(1) 1(1) -2(1) 2(1)

C(18) 27(2) 37(2) 29(1) -1(1) 0(1) 3(1)

C(19) 30(2) 41(2) 35(2) 10(1) 6(1) 0(1)

C(20) 25(2) 38(2) 49(2) 11(1) KD -6(1)

C(21) 31(2) 35(2) 41(2) 0(1) -7(1) -3(1)

C(22) 24(1) 29(1) 27(1) 2(1) -1(1) -1(1)

N(l) 22(1) 22(1) 22(1) 0(1) 2(1) -2(1)

N(2) 23(1) 25(1) 25(1) -2(1) 6(1) -2(1)

0 (1) 41(1) 28(1) 22(1) -5(1) 6(1) 3(1)

P d ) 36(1) 27(1) 33(1) -7(1) 2(1) -2(1)

F(l) 71(1) 68(1) 30(1) -9(1) 2(1) -18(1)

F(2) 50(1) 34(1) 76(1) -18(1) 19(1) 1(1)

F(3) 44(1) 44(1) 66(1) -10(1) 7(1) -15(1)

F(4) 49(1) 36(1) 41(1) -4(1) -5(1) 13(1)

F(5) 42(1) 37(1) 58(1) -10(1) -2(1) -10(1)

F(6) 56(1) 49(1) 36(1) 4(1) -1(1) 15(1)
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Table 5. Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 103) 

for nct0601.

X y z U(eq

H(3A) 2229 7423 7236 51

H(3B) 1959 8330 7825 51

H(3C) 3411 8236 7397 51

H(4A) 2908 10080 7018 43

H(4B) 1352 10054 7317 43

H(4C) 1672 10303 6435 43

H(5) -92 7498 5621 27

H(6A) 4561 8165 6164 55

H(6B) 4316 9354 6079 55

H(6C) 4299 8647 5333 55

H(7A) -568 8701 4648 33

H(7B) -1525 8902 5377 33

H(9) -1598 10545 5904 47

H(10) -791 12190 5994 59

H(11) 1205 12668 5356 57

H(12) 2358 11510 4589 55

H(13) 1578 9854 4503 40

H(14) -293 8612 7500 31

H(15) -2106 7674 6419 32

H(16) -2255 8054 7997 32

H(18) -4082 7418 8758 37

H(19) -5942 6311 8942 42

H(20) -6701 5327 7924 45

H(21) -5682 5447 6721 43

H(22) -3848 6549 6524 32

281



282



X-ray structure for compound 257
Table 1. C r y s t a l  d a t a  a n d  s t r u c t u r e  r e f i n e m e n t .

I d e n t i f i c a t i o n  c o d e  

E m p i r i c a l  f o r m u l a  

F o r m u l a  w e i g h t  

T e m p e r a t u r e  

W a v e l e n g t h  

C r y s t a l  s y s t e m  

S p a c e  g r o u p  

U n i t  c e l l  d i m e n s i o n s

V o l u m e

Z

D e n s i t y  ( c a l c u l a t e d )  

A b s o r p t i o n  c o e f f i c i e n t  

F (000)

C r y s t a l  

C r y s t a l  s i z e

G r a n g e  f o r  d a t a  c o l l e c t i o n  

I n d e x  r a n g e s  

R e f l e c t i o n s  c o l l e c t e d  

I n d e p e n d e n t  r e f l e c t i o n s  

C o m p l e t e n e s s  t o  9 =  2 7 . 4 8 °  

A b s o r p t i o n  c o r r e c t i o n  

M a x .  a n d  m i n .  t r a n s m i s s i o n  

R e f i n e m e n t  m e t h o d  

D a t a  /  r e s t r a i n t s  /  p a r a m e t e r s  

G o o d n e s s - o f - f i t  o n  F2 

F i n a l  R  i n d i c e s  [ F2 > 2 o (F 2)] 

R  i n d i c e s  ( a l l  d a t a )

A b s o l u t e  s t r u c t u r e  p a r a m e t e r  

E x t i n c t i o n  c o e f f i c i e n t  

L a r g e s t  d i f f .  p e a k  a n d  h o l e

2006src0812 / TG218
Ci3H16N204 
2 6 4 . 2 8  

1 2 0 ( 2 )  K  

0 . 7 1 0 7 3  A 
Orthorhombic 

P 2{2{2 \

a  =  8 . 1 8 6 9 ( 3 )  A a r = 9 0 °

b =  1 0 . 1 1 9 7 ( 3 )  A j8 =  9 0 °

c =  1 5 . 8 8 9 6 ( 4 )  A y =  9 0 °

1 3 1 6 . 4 4 ( 7 )  A3 
4

1 . 3 3 3  M g  / m3 
0.100 mm-1 
5 6 0

Slab; Colourless 

0 . 6 2  x 0 . 3 6  x 0 . 0 9  mm3 
3 . 2 6  -  2 7 . 4 8 °

- 1 0  <  h <  1 0 ,  - 1 3  <  k  <  1 3 ,  - 2 0  <  /  <  2 0  

1 3 5 5 2

1 7 4 4  [Rint =  0 . 0 4 0 2 ]

9 9 . 7  %

Semi-empirical from equivalents 

0 . 9 9 1 1  and 0 . 9 4 0 7  

Full-matrix least-squares on F 2 

1 7 4 4 / 0  /  1 7 5  

1 . 0 4 5

R1  =  0 . 0 3 2 3 ,  wR2  =  0 . 0 7 7 0  

R1 =  0 . 0 4 3 7 ,  wR2  =  0 . 0 8 2 3  

?

0 . 0 1 6 ( 3 )

0 . 1 8 3  and - 0 . 1 5 6  e A“3

Diffractom eter: Nonius K appaC C D  area detector (0  scans and (O scans to fill asym metric unit sphere). Cell determ ination: DirAx 

(Duisenberg, A.J.M .(1992). J. Appl. Cryst. 25, 92-96.) D ata collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 

1998). D ata reduction and cell refinem ent: D enzo  (Z. Otwinowski & W. Minor, M ethods in Enzymology (1997) Vol. 276: 

M acrom olecular Crystallography , part A, pp. 307 -326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption correction: 

SADABS Version 2.10. (G. M. Sheldrick (2003)) Bruker A XS Inc., Madison, W isconsin, USA. Structure solution: SHELXS97 (G. M.
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Sheldrick, Acta Cryst. (1990) A 46 4 6 7 -4 7 3 ). Structure refinem ent: SHELXL97 (G. M. Sheldrick (1997), University o f Gottingen, 

Germany). G raphics: ORTEP3 for Windows (L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565).

Special details:

All hydrogen atoms were fixed.
It was not possible to accurately determine the absolute structure. The stereochemistry picked was based on the precursor 

molecule.
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T a b l e  2 .  A t o m i c  c o o r d i n a t e s  [ x  1 0 4 ] ,  e q u i v a l e n t  i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  [ A 2  x  1 0 3 ]  a n d  s i t e  o c c u p a n c y  f a c t o r s .  

Ueq i s  d e f i n e d  a s  o n e  t h i r d  o f  t h e  t r a c e  o f  t h e  o r t h o g o n a l i z e d  l f j  t e n s o r .

A t o m X y z u eq S .o .f

C l 8 7 5 1 ( 2 ) 6 0 7 4 ( 2 ) 3 7 3 1 ( 1 ) 1 9 ( 1 ) 1

C 2 9 1 2 2 ( 2 ) 5 9 0 0 ( 2 ) 4 6 6 8 ( 1 ) 2 1 ( 1 ) 1

C 3 8 2 9 9 ( 3 ) 5 1 1 9 ( 2 ) 6 0 4 4 ( 1 ) 2 8 ( 1 ) 1

C 4 5 7 1 2 ( 2 ) 6 6 3 8 ( 2 ) 3 5 6 5 ( 1 ) 2 3 ( 1 ) 1

C 5 4 3 7 5 ( 2 ) 6 1 0 7 ( 2 ) 4 1 2 6 ( 1 ) 2 1 ( 1 ) 1

C 6 6 7 6 1 ( 3 ) 4 5 4 9 ( 2 ) 3 1 3 1 ( 1 ) 2 8 ( 1 ) 1

Cl 9 2 6 1 ( 2 ) 7 4 4 0 ( 2 ) 3 3 9 4 ( 1 ) 2 0 ( 1 ) 1

C 8 9 4 2 4 ( 2 ) 7 4 3 6 ( 2 ) 2 4 4 5 ( 1 ) 2 1 ( 1 ) 1

C 9 1 0 6 5 3 ( 2 ) 6 6 9 3 ( 2 ) 2 0 6 1 ( 1 ) 2 4 ( 1 ) 1

C I O 1 0 8 3 1 ( 3 ) 6 6 7 7 ( 2 ) 1 1 9 5 ( 1 ) 2 9 ( 1 ) 1

C l l 9 7 7 1 ( 3 ) 7 4 1 7 ( 2 ) 6 9 5 ( 1 ) 3 1 ( 1 ) 1

C 1 2 8 5 5 3 ( 3 ) 8 1 4 9 ( 2 ) 1 0 6 5 ( 1 ) 3 1 ( 1 ) 1

C 1 3 8 3 7 0 ( 2 ) 8 1 5 7 ( 2 ) 1 9 3 7 ( 1 ) 2 5 ( 1 ) 1

N 1 7 0 8 3 ( 2 ) 5 7 2 7 ( 1 ) 3 4 9 3 ( 1 ) 1 9 ( 1 ) 1

N 2 7 9 8 2 ( 2 ) 5 4 0 4 ( 2 ) 5 1 5 9 ( 1 ) 2 3 ( 1 ) 1

O l 1 0 5 2 5 ( 2 ) 6 1 6 2 ( 1 ) 4 9 3 2 ( 1 ) 2 5 ( 1 ) 1

0 2 2 9 4 4 ( 2 ) 6 6 0 9 ( 1 ) 3 9 2 8 ( 1 ) 2 8 ( 1 ) 1

0 3 4 6 0 5 ( 2 ) 5 3 5 2 ( 1 ) 4 7 0 5 ( 1 ) 2 8 ( 1 ) 1

0 4 5 4 0 3 ( 2 ) 4 2 0 7 ( 2 ) 2 9 0 1 ( 1 ) 3 8 ( 1 ) 1
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Table 3. Bond lengths [A] and angles [°].

C l - N l

C 1 - C 2

C 1 - C 7

C l - H l

C 2 - 0 1

C 2 - N 2

C 3 - N 2

C 3 - H 3 A

C 3 - H 3 B

C 3 - H 3 C

C 4 - N 1

C 4 - C 5

C 4 - H 4 A

C 4 - H 4 B

C 5 - 0 3

C 5 - 0 2

C 6 - 0 4

C 6 - N 1

1 . 4 6 0 ( 2 )

1 . 5 2 9 ( 3 )

1 . 5 4 0 ( 3 )

1.0000

1 . 2 5 2 ( 2 )

1 . 3 1 6 ( 2 )

1 . 4 5 8 ( 2 )

0 . 9 8 0 0

0 . 9 8 0 0

0 . 9 8 0 0

1 . 4 5 7 ( 2 )

1 . 5 1 1 ( 3 )

0 . 9 9 0 0

0 . 9 9 0 0

1.210(2)

1 . 3 1 5 ( 2 )

1 . 2 2 1 ( 3 )

1 . 3 5 0 ( 3 )

C 6 - H 6

C 7 - C 8

C 7 - H 7 A

C 7 - H 7 B

C 8 - C 1 3

C 8 - C 9

C 9 - C 1 0

C 9 - H 9

C 1 0 - C 1 1

C 1 0 - H 1 0

C 1 1 - C 1 2

C l l - H l l

C 1 2 - C 1 3

C 1 2 - H 1 2

C 1 3 - H 1 3

N 2 - H 2

0 2 - H 2 A

0 . 9 5 0 0

1 . 5 1 4 ( 2 )

0 . 9 9 0 0

0 . 9 9 0 0

1 . 3 8 9 ( 3 )

1 . 3 9 7 ( 3 )

1 . 3 8 4 ( 3 )

0 . 9 5 0 0

1 . 3 9 4 ( 3 )

0 . 9 5 0 0

1 . 3 7 5 ( 3 )

0 . 9 5 0 0

1 . 3 9 3 ( 3 )

0 . 9 5 0 0

0 . 9 5 0 0

0 . 8 8 0 0

0 . 8 4 0 0

N 1 - C 1 - C 2

N 1 - C 1 - C 7

C 2 - C 1 - C 7

N 1 - C 1 - H 1

C 2 - C 1 - H 1

C 7 - C 1 - H 1

0 1 - C 2 - N 2

0 1 - C 2 - C 1

N 2 - C 2 - C 1

N 2 - C 3 - H 3 A

N 2 - C 3 - H 3 B

H 3 A - C 3 - H 3 B

N 2 - C 3 - H 3 C

H 3 A - C 3 - H 3 C

H 3 B - C 3 - H 3 C

N 1 - C 4 - C 5

N 1 - C 4 - H 4 A

C 5 - C 4 - H 4 A

N1-C4-H4B

1 1 4 . 2 3 ( 1 5 )

1 1 2 . 2 9 ( 1 5 )

1 1 2 . 8 4 ( 1 6 )

1 0 5 . 5

1 0 5 . 5

1 0 5 . 5

1 2 2 . 1 9 ( 1 8 )

1 1 8 . 9 9 ( 1 7 )

1 1 8 . 6 9 ( 1 6 )

1 0 9 . 5

1 0 9 . 5

1 0 9 . 5

1 0 9 . 5

1 0 9 . 5

1 0 9 . 5

1 1 2 . 2 7 ( 1 5 )

1 0 9 . 2

1 0 9 . 2

1 0 9 . 2

C 5 - C 4 - H 4 B

H 4 A - C 4 - H 4 B

0 3 - C 5 - 0 2

0 3 — C 5 - C 4

0 2 — C 5 - C 4

0 4 - C 6 - N 1 

0 4 - C 6 - H 6  

N 1 - C 6 - H 6  

C 8 - C 7 - C 1  

C 8 - C 7 - H 7 A  

C l — C 7 - H 7 A  

C 8 - C 7 - H 7 B  

C 1 - C 7 - H 7 B  

H 7 A - C 7 - H 7 B  

C 1 3 - C 8 - C 9

C 1 3 - C 8 - C 7  

C 9 - C 8 - C 7  

C 1 0 - C 9 - C 8  

C 1 0 - C 9 - H 9

1 0 9 . 2  

1 0 7 . 9  

1 2 4 . 3 9 ( 1 8 )  

1 2 4 . 0 9 ( 1 7 )  

1 1 1 . 4 7 ( 1 6 )  

1 2 3 . 7 ( 2 )  

1 1 8 . 1  

1 1 8 . 1

1 1 1 . 6 0 ( 1 5 )

1 0 9 . 3

1 0 9 . 3

1 0 9 . 3

1 0 9 . 3  

1 0 8 . 0  

1 1 8 . 4 4 ( 1 7 )  

1 2 1 . 5 1 ( 1 7 )  

1 2 0 . 0 5 ( 1 7 )  

1 2 1 . 1 3 ( 1 9 )

1 1 9 . 4
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C 8 - C 9 - H 9 1 1 9 . 4 C 8 - C 1 3 - C 1 2 1 2 0 . 5 ( 2 )

C 9 - C 1 0 - C 1 1 1 1 9 . 7 ( 2 ) C 8 - C 1 3 - H 1 3 1 1 9 . 7

C 9 - C 1 0 - H 1 0 1 2 0 . 2 C 1 2 - C 1 3 — H 1 3 1 1 9 . 7

C 1 1 - C 1 0 - H 1 0 1 2 0 . 2 C 6 - N 1 - C 4 1 1 6 . 2 5 ( 1 6 )

C 1 2 - C 1 1 - C 1 0 1 1 9 . 7 8 ( 1 9 ) C 6 - N 1 - C 1 1 2 0 . 3 3 ( 1 6 )

C 1 2 - C 1 1 - H 1 1 1 2 0 . 1 C 4 - N 1 - C 1 1 2 3 . 2 5 ( 1 5 )

C 1 0 - C 1 1 - H 1 1 1 2 0 . 1 C 2 - N 2 - C 3 1 2 1 . 4 0 ( 1 6 )

C l  1 - C 1 2 - C 1 3 1 2 0 . 5 ( 2 ) C 2 - N 2 - H 2 1 1 9 . 3

C l  1 - C 1 2 - H 1 2 1 1 9 . 8 C 3 - N 2 - H 2 1 1 9 . 3

C 1 3 - C 1 2 - H 1 2 1 1 9 . 8 C 5 - 0 2 - H 2 A 1 0 9 . 5

S y m m e t r y  t r a n s f o r m a t i o n s  u s e d  t o  g e n e r a t e  e q u i v a l e n t  a t o m s :
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Table 4. A n i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  [ A 2 x  103]. T h e  a n i s o t r o p i c  d i s p l a c e m e n t  

f a c t o r  e x p o n e n t  t a k e s  t h e  f o r m :  - 2 ju 2[h2a * 2U n  +  —  +  2 h k a*  b*  U 12 ] .

A t o m U11 u22 t / 3 3 f / 2 3 Un U12

C l 1 4 ( 1 ) 2 2 ( 1 ) 2 2 ( 1 ) 0 ( 1 ) 2 ( 1 ) 0 ( 1 )

C 2 1 7 ( 1 ) 2 1 ( 1 ) 2 4 ( 1 ) - 2 ( 1 ) 2 ( 1 ) K D

C 3 2 6 ( 1 ) 3 5 ( 1 ) 2 2 ( 1 ) 6 ( 1 ) - 2 ( 1 ) - 4 ( 1 )

C 4 1 4 ( 1 ) 2 8 ( 1 ) 2 7 ( 1 ) 4 ( 1 ) 1 ( 1 ) 3 ( 1 )

C 5 1 6 ( 1 ) 2 3 ( 1 ) 2 2 ( 1 ) - 3 ( 1 ) 0 ( 1 ) - 2 ( 1 )

C 6 2 6 ( 1 ) 3 0 ( 1 ) 2 7 ( 1 ) - 7 ( 1 ) 7 ( 1 ) - 3 ( 1 )

Cl 1 7 ( 1 ) 2 0 ( 1 ) 2 4 ( 1 ) - 1 ( 1 ) 1 0 ) - K D

C 8 1 9 ( 1 ) 1 8 ( 1 ) 2 5 ( 1 ) 2 ( 1 ) K D - 6 ( 1 )

C 9 2 0 ( 1 ) 2 5 ( 1 ) 2 7 ( 1 ) 3 ( 1 ) 0 ( 1 ) - 3 ( 1 )

C I O 2 8 ( 1 ) 2 8 ( 1 ) 2 9 ( 1 ) - 2 ( 1 ) 6 ( 1 ) - 4 ( 1 )

C l l 4 1 ( 1 ) 2 9 ( 1 ) 2 3 ( 1 ) 0 ( 1 ) K D - 1 0 ( 1 )

C 1 2 3 5 ( 1 ) 2 6 ( 1 ) 3 1 ( 1 ) 7 ( 1 ) - 8 ( 1 ) - 6 ( 1 )

C 1 3 2 2 ( 1 ) 2 0 ( 1 ) 3 3 ( 1 ) 2 ( 1 ) - 3 ( 1 ) - 4 ( 1 )

N 1 1 5 ( 1 ) 2 0 ( 1 ) 2 1 ( 1 ) - 1 ( 1 ) 2 ( 1 ) K D

N 2 1 7 ( 1 ) 3 0 ( 1 ) 2 2 ( 1 ) 2 ( 1 ) - K D - 3 ( 1 )

O l 1 6 ( 1 ) 3 5 ( 1 ) 2 4 ( 1 ) - 1 ( 1 ) 0 ( 1 ) - 2 ( 1 )

0 2 1 4 ( 1 ) 3 6 ( 1 ) 3 3 ( 1 ) 8 ( 1 ) 5 ( 1 ) 2 ( 1 )

0 3 1 8 ( 1 ) 3 7 ( 1 ) 2 7 ( 1 ) 7 ( 1 ) 2 ( 1 ) K D

0 4 2 9 ( 1 ) 4 8 ( 1 ) 3 8 ( 1 ) - 1 7 ( 1 ) 5 ( 1 ) - 1 4 ( 1 )
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Table 5. Hydrogen coordinates [x 104] and isotropic displacement parameters [A2 x 103].

A t o m X y z u eq S .o .f

H I 9 4 6 6 5 4 2 4 3 4 3 4 2 3 1

H 3 A 9 2 0 7 4 4 9 2 6 0 8 9 4 2 1

H 3 B 7 3 1 9 4 7 3 4 6 3 0 0 4 2 1

H 3 C 8 5 8 2 5 9 3 9 6 3 3 7 4 2 1

H 4 A 5 2 5 8 6 8 0 9 2 9 9 8 2 8 1

H 4 B 6 1 0 6 7 4 9 0 3 7 9 5 2 8 1

H 6 7 6 4 3 3 9 5 2 3 0 5 1 3 3 1

H 7 A 8 4 3 5 8 1 0 5 3 5 6 2 2 4 1

H 7 B 1 0 3 1 8 7 6 9 7 3 6 4 8 2 4 1

H 9 1 1 3 7 9 6 1 8 9 2 3 9 9 2 9 1

H 1 0 1 1 6 7 1 6 1 6 5 9 4 2 3 4 1

H I  1 9 8 9 1 7 4 1 5 1 0 0 3 7 1

H 1 2 7 8 3 1 8 6 5 3 7 2 5 3 7 1

H 1 3 7 5 1 7 8 6 5 9 2 1 8 6 3 0 1

H 2 7 0 0 8 5 2 4 1 4 9 4 9 2 8 1

H 2 A 2 2 4 6 6 3 7 0 4 2 8 4 4 1 1



Table 6. Hydrogen bonds [A and °].

D - U - A d ( D - H ) d (H -A ) d {D —A ) Z ( Z ) H A )

N 2 - H 2 - 0 3 0 . 8 8 2 . 0 1 2 . 8 5 8 ( 2 ) 1 6 1 . 9

0 2 - H 2 A - 0 1 i 0 . 8 4 1 . 7 6 2 . 5 8 3 2 ( 1 9 ) 1 6 7 . 1

S y m m e t r y  t r a n s f o r m a t i o n s  u s e d  t o  g e n e r a t e  e q u i v a l e n t  a t o m s :  

( i )  x - l , y , z
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X-Ray structure of compound 259

Table 1. C r y s t a l  d a t a  a n d  s t r u c t u r e  r e f i n e m e n t .

I d e n t i f i c a t i o n  c o d e  

E m p i r i c a l  f o r m u l a  

F o r m u l a  w e i g h t  

T e m p e r a t u r e  

W a v e l e n g t h  

C r y s t a l  s y s t e m  

S p a c e  g r o u p  

U n i t  c e l l  d i m e n s i o n s

V o l u m e

Z

D e n s i t y  ( c a l c u l a t e d )  

A b s o r p t i o n  c o e f f i c i e n t  

F(000)

C r y s t a l  

C r y s t a l  s i z e

G r a n g e  f o r  d a t a  c o l l e c t i o n  

I n d e x  r a n g e s  

R e f l e c t i o n s  c o l l e c t e d  

I n d e p e n d e n t  r e f l e c t i o n s  

C o m p l e t e n e s s  t o  0 =  2 7 . 4 7 °  

A b s o r p t i o n  c o r r e c t i o n  

M a x .  a n d  m i n .  t r a n s m i s s i o n  

R e f i n e m e n t  m e t h o d  

D a t a  /  r e s t r a i n t s  /  p a r a m e t e r s  

G o o d n e s s - o f - f i t  o n  F2 

F i n a l  R  i n d i c e s  [ F2 > 2 o(F 2)] 

R  i n d i c e s  ( a l l  d a t a )

A b s o l u t e  s t r u c t u r e  p a r a m e t e r  

L a r g e s t  d i f f .  p e a k  a n d  h o l e

2006src0919 (TG305)

c „ h 1 3 n o 3

2 0 7 . 2 2  

1 2 0 ( 2 )  K  

0 . 7 1 0 7 3  A 
O r t h o r h o m b i c  

R212121

a  =  8 . 2 3 2 8 ( 2 )  A a =  9 0 °

b =  1 1 . 1 8 5 0 ( 2 )  A J3=  9 0 °

c =  1 1 . 3 3 0 0 ( 2 )  A y =  9 0 °

1 0 4 3 . 3 1 ( 4 )  A3 
4

1 . 3 1 9  M g  / m 3  

0 . 0 9 7  m m - 1  

4 4 0

S l a b ;  c o l o u r l e s s  

0 . 6 0  x  0 . 4 0  x  0 . 1 2  m m 3 

3 . 5 6  -  2 7 . 4 7 °

- 1 0  <  h <  1 0 ,  - 1 4  <  k  <  1 4 ,  - 1 4  <  /  <  1 4  

1 4 2 8 1

2 3 8 0  [ / ? , „ ,  =  0 . 0 3 1 2 ]

9 9 . 2  %

S e m i - e m p i r i c a l  f r o m  e q u i v a l e n t s  

0 . 9 8 8 5  a n d  0 . 9 4 4 4  

F u l l - m a t r i x  l e a s t - s q u a r e s  o n  F2 

2 3 8 0 / 0  /  1 4 1  

1 . 0 4 4

R1  =  0 . 0 3 1 7 ,  wR2 =  0 . 0 7 7 9  

R1 =  0 . 0 3 8 4 ,  wR2 =  0 . 0 8 1 4  

0 . 0 ( 9 )

0 . 1 1 9  and- 0 . 2 1 1  e A' 3

Diffractometer: Nonius K appaC C D  area detector (<p scans and co scans to fill asym metric unit sphere). Cell determination: DirAx 

(Duisenberg, A.J.M .(1992). J. Appl. Cryst. 25, 92-96.) D ata collection: Collect (Collect: Data collection software, R. Hooft, Nonius 

B.V., 1998). D ata reduction and cell refinem ent: Denzo (Z. Otwinowski & W. Minor, Methods in Enzymology (1997) Vol. 276: 

Macromolecular Crystallography, part A, pp. 307—326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). Absorption
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correction: SORTAV (R. H. Blessing, Acta Cryst. A51 (1995) 33-37; R. H. Blessing, J. Appl. Cryst. 30 (1997) 421-426). Structure 

solution: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A46 467-473). Structure refinement: SHELXL97 (G. M. Sheldrick 

(1997), University of Gottingen, Germany). Graphics: Cameron - A Molecular Graphics Package. (D. M. Watkin, L. Pearce and C. 

K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1993).

T a b l e  2 .  A t o m i c  c o o r d i n a t e s  [ x  1 0 4 ] ,  e q u i v a l e n t  i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  [ A 2  x  1 0 3 ]  a n d  s i t e  o c c u p a n c y  

f a c t o r s .  Ueq i s  d e f i n e d  a s  o n e  t h i r d  o f  t h e  t r a c e  o f  t h e  o r t h o g o n a l i z e d  l f j  t e n s o r .

A t o m X y z u eq S.o.f.

C l - 1 9 ( 2 ) 8 7 9 2 ( 1 ) 1 9 6 0 ( 1 ) 2 6 ( 1 ) 1

C 2 - 1 0 3 7 ( 2 ) 8 1 5 1 ( 1 ) 1 2 1 5 ( 1 ) 3 2 ( 1 ) 1

C 3 - 9 7 1 ( 2 ) 8 3 2 6 ( 2 ) - 3 ( 1 ) 4 3 ( 1 ) 1

C 4 9 6 ( 2 ) 9 1 2 9 ( 2 ) - 4 8 6 ( 1 ) 4 9 ( 1 ) 1

C 5 1 1 1 0 ( 2 ) 9 7 7 9 ( 2 ) 2 4 8 ( 1 ) 4 7 ( 1 ) 1

C 6 1 0 5 4 ( 2 ) 9 6 1 5 ( 1 ) 1 4 6 0 ( 1 ) 3 5 ( 1 ) 1

Cl - 1 0 2 ( 2 ) 8 6 3 7 ( 1 ) 3 2 8 0 ( 1 ) 2 7 ( 1 ) 1

C 8 - 1 1 8 3 ( 2 ) 9 5 9 1 ( 1 ) 3 8 3 7 ( 1 ) 2 3 ( 1 ) 1

C I O - 1 8 3 4 ( 2 ) 8 5 7 6 ( 1 ) 5 7 6 8 ( 1 ) 2 3 ( 1 ) 1

C l l - 5 6 7 ( 1 ) 7 8 0 9 ( 1 ) 6 3 7 4 ( 1 ) 2 1 ( 1 ) 1

N 1 - 1 1 3 4 ( 1 ) 9 5 6 7 ( 1 ) 5 1 2 7 ( 1 ) 2 1 ( 1 ) 1

C 9 - 4 8 0 ( 2 ) 1 0 4 4 5 ( 1 ) 5 7 4 4 ( 1 ) 2 4 ( 1 ) 1

O l - 4 3 8 ( 1 ) 1 0 4 6 1 ( 1 ) 6 8 4 0 ( 1 ) 2 8 ( 1 ) 1

0 2 8 7 7 ( 1 ) 7 8 5 3 ( 1 ) 6 1 8 1 ( 1 ) 2 8 ( 1 ) 1

0 3 - 1 2 7 3 ( 1 ) 7 0 7 9 ( 1 ) 7 1 3 0 ( 1 ) 3 0 ( 1 ) 1
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Table 3. Bond lengths [A] and angles [°],

C 1 - C 2

C 1 - C 6

C 1 - C 7

C 2 - C 3

C 3 - C 4

C 4 - C 5

C 5 - C 6

C 7 - C 8

C 8 - N 1

C 1 0 - N 1

C 1 0 - C 1 1

C l  1 - 0 2

C l  1 - 0 3

N 1 - C 9

C 9 - 0 1

1 . 3 8 9 ( 2 )

1 . 3 9 6 ( 2 )

1 . 5 0 7 4 ( 1 6 )

1 . 3 9 4 6 ( 1 9 )

1 . 3 7 0 ( 3 )

1 . 3 8 5 ( 3 )

1 . 3 8 7 ( 2 )

1 . 5 2 4 9 ( 1 7 )

1 . 4 6 3 2 ( 1 3 )

1 . 4 4 5 0 ( 1 6 )

1 . 5 1 5 2 ( 1 7 )

1 . 2 0 9 3 ( 1 4 )

1 . 3 1 8 6 ( 1 5 )

1 . 3 2 0 1 ( 1 6 )

1 . 2 4 1 8 ( 1 5 )

C 2 - C 1 - C 6

C 2 - C 1 - C 7

C 6 - C 1 - C 7

C 1 - C 2 - C 3

C 4 - C 3 - C 2

C 3 - C 4 - C 5

C 4 - C 5 - C 6

C 5 - C 6 - C 1

C 1 - C 7 - C 8

N 1 - C 8 - C 7

N 1 - C 1 0 - C 1 1

0 2 - C 1 1 - 0 3

0 2 - C 1 1 - C 1 0

0 3 - C 1 1 - C 1 0  

C 9 - N 1 - C 1 0  

C 9 - N 1 - C 8  

C 1 0 - N 1 - C 8  

0 1 - C 9 - N 1

1 1 8 . 4 2 ( 1 2 )

1 2 1 . 1 3 ( 1 2 )

1 2 0 . 4 2 ( 1 2 )

1 2 0 . 3 7 ( 1 5 )

1 2 0 . 8 2 ( 1 5 )

1 1 9 . 3 8 ( 1 3 )

1 2 0 . 3 6 ( 1 6 )

1 2 0 . 6 4 ( 1 5 )

1 1 0 . 9 0 ( 1 0 )

1 1 2 . 6 3 ( 1 0 )

1 1 2 . 8 0 ( 1 0 )

1 2 5 . 1 8 ( 1 1 )

1 2 4 . 8 6 ( 1 1 )

1 0 9 . 9 6 ( 1 0 )

1 1 7 . 8 4 ( 9 )

1 2 1 . 7 9 ( 1 0 )

1 2 0 . 3 6 ( 1 0 )

1 2 3 . 4 5 ( 1 1 )

S y m m e t r y  t r a n s f o r m a t i o n s  u s e d  t o  g e n e r a t e  e q u i v a l e n t  a t o m s :



T a b l e  4 .  A n i s o t r o p i c  d i s p l a c e m e n t  p a r a m e t e r s  [ A 2 x  1 0 3 ] .  T h e  a n i s o t r o p i c  d i s p l a c e m e n t  

f a c t o r  e x p o n e n t  t a k e s  t h e  f o r m :  - 2 7t2[h2a * 2U u  +  +  2  h k a*  b* U n  ] .

A t o m U u U22 f / 3 3 f / 2 3 U n un

C l 2 8 ( 1 ) 3 2 ( 1 ) 2 0 ( 1 ) 0 ( 1 ) 0 ( 1 ) 1 4 ( 1 )

C 2 3 7 ( 1 ) 3 3 ( 1 ) 2 6 ( 1 ) - 5 ( 1 ) - 4 ( 1 ) 1 5 ( 1 )

C 3 5 7 ( 1 ) 4 8 ( 1 ) 2 4 ( 1 ) - 1 1 ( 1 ) - 1 2 ( 1 ) 3 0 ( 1 )

C 4 6 1 ( 1 ) 6 6 ( 1 ) 1 9 ( 1 ) 5 ( 1 ) 5 ( 1 ) 4 0 ( 1 )

C 5 4 4 ( 1 ) 6 0 ( 1 ) 3 6 ( 1 ) 2 1 ( 1 ) 1 4 ( 1 ) 2 2 ( 1 )

C 6 3 2 ( 1 ) 4 4 ( 1 ) 3 0 ( 1 ) 6 ( 1 ) 3 ( 1 ) 1 0 ( 1 )

Cl 3 1 ( 1 ) 3 2 ( 1 ) 1 8 ( 1 ) K D 0 ( 1 ) 9 ( 1 )

C 8 2 8 ( 1 ) 2 6 ( 1 ) 1 5 ( 1 ) 1 0 ) - 1 ( 1 ) 4 ( 1 )

C I O 2 2 ( 1 ) 2 6 ( 1 ) 2 0 ( 1 ) - 1 ( 1 ) 0 ( 1 ) - 1 ( 1 )

C l l 2 7 ( 1 ) 2 1 ( 1 ) 1 5 ( 1 ) - 2 ( 1 ) 0 ( 1 ) - 2 ( 1 )

N 1 2 4 ( 1 ) 2 3 ( 1 ) 1 5 ( 1 ) 0 ( 1 ) 0 ( 1 ) 1 ( 1 )

C 9 2 8 ( 1 ) 2 2 ( 1 ) 2 2 ( 1 ) 0 ( 1 ) - 2 ( 1 ) 2 ( 1 )

0 1 3 6 ( 1 ) 2 8 ( 1 ) 2 0 ( 1 ) - 5 ( 1 ) - 4 ( 1 ) 1 ( 1 )

0 2 2 4 ( 1 ) 3 2 ( 1 ) 2 7 ( 1 ) 3 ( 1 ) 2 ( 1 ) 4 ( 1 )

0 3 2 8 ( 1 ) 3 5 ( 1 ) 2 7 ( 1 ) 1 1 ( 1 ) - 3 ( 1 ) - 3 ( 1 )
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