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Summary

In this thesis we show the methods we developed for the detection and lo­

calisation of P300 signals from the electroencephalogram. We utilised signal 

processing theory in order to enhance the current methodology. The work 

done can be applied both to EEG averages and single trial EEG data. We 

developed a variety of methods dealing with the extraction of the P300 and 

its subcomponents using independent component analysis and least squares. 

Moreover, we developed novel localisation methods that localise the desired 

P300 subcomponent from EEG data. Throughout the thesis the main idea 

was the use of reference signals, which describe the prior information we 

have about the sources of interest.



ABSTRACT

The main objective of this thesis is to utilize adaptive techniques, 

namely blind source separation (BSS), least squares (LS) and spatial 

filtering, in order to extract the P300 subcomponents from the elec­

troencephalogram (EEG) with greater accuracy than the traditional 

methods.

The first topic of research, is the development of constrained BSS 

and blind signal extraction (BSE) algorithms, to enhance the estimation 

of the conventional BSS and BSE algorithms. In these methods we use 

reference signals as prior information, obtained from real EEG data, 

to aid BSS and BSE in the extraction of the P300 subcomponents. 

Although, this method exhibits very good behaviour in terms of EEG 

averaged data, its performance degrades when applied to single trial 

data, which is the response of the brain after one single stimulus.

The second topic deals with single trial EEG data and is based 

on least squares. Again, we use reference signals to describe the prior 

knowledge of the P300 subcomponents. In contrast to the first method, 

the reference signals are Gaussian spike templates with variable latency 

and width. The target of this algorithm is to measure the properties 

of the extracted P300 subcomponents and obtain features that can be 

used in the classification of schizophrenic patients and healthy subjects.

Finally, the idea of spatial filtering combined with the use of a refer-
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A bstract V

ence signal for localisation is introduced for the first time. The designed 

algorithm localises our desired source from within a mixture of sources 

where the propagation model of the sources is available. It performs 

well in the presence of noise and correlated sources.

The research presented in this thesis paves the path in introducing 

adaptive techniques based on reference signals into ERP estimation. 

The results have been very promising and provide a big step in estab­

lishing a foundation for future research.
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Chapter 1

INTRODUCTION

It has been established for a long time that the information processing 

within the brain is carried out in the form of electric signals. The 

comprehensive study of these signals has become possible through the 

advances of technology throughout the last century. Most notably, the 

invention of the electroencephalogram (EEG) has made it possible to 

study the electrical behaviour of the brain in great detail. EEG is a 

technique that records the electrical potentials created inside the brain 

from electrodes1 placed on the scalp.

The study of the electrical properties of the brain has led to greater 

understanding of the functions of the mind. Based on EEG informa­

tion the human brain is roughly divided into regions corresponding to 

various functions including moving, sensing and reactions2.

There are many types of electric signals created inside the brain 

that serve different functions or that are used to explain different men­

tal states of the brain (for more details see next chapter). In this thesis 

we concentrate on one subgroup of electric signals called event related 

potentials (ERPs). ERPs occur as the response of the brain to some 

specifically designed stimuli that aim to elicit the ERP signal. By

1 small electric conductors
2There are other methods as well, such as magnetic resonance (MRI) imaging, 

but these are not in the scope of this thesis.

1
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studying these signals clinicians can make deductions regarding many 

behavioural characteristics of the person under test. For example, the 

relative amplitude of some of the ERP subcomponents3 can be indica­

tive of the levels of suspiciousness of the person [1].

In this thesis we concentrate on the ERPs of schizophrenic4 pa­

tients. It has been discovered that the ERPs of schizophrenic patients 

usually exhibit different properties than those of non-schizophrenics. 

Also, there are differences between subtypes of schizophrenia. In some 

cases studying the ERPs of patients can lead to greater accuracy and 

effectiveness of the medical treatment. The main aim of this thesis 

is to find ways to extract some specific ERP subcomponents or their 

spatial and temporal properties that are useful to clinicians. The main 

ERPs of interest here are the P300 subcomponents (for details see next 

chapter). The P300 subcomponents occur as positive spikes about 300 

milliseconds after the application of the stimulus to the person. The 

stimulus can be visual, auditory or somatosensory. Here, our focus is 

on visual and auditory stimuli.

Traditonally, ERPs are studied by averaging a number of trials. 

This method inherently smoothes the waveform and filters out unde­

sired components. A trial is defined as one particular application of a 

stimulus. Usually, tens of stimuli are presented to the subject. This 

method has many problems such as:

• Fails to characterise overlapping components. As it is widely re­

garded, the ERPs consist of a number of components that overlap 

in time.
3ERP is the collection of a number of different components, each possibly having 

a number of subcomponents.
4 A psychiatric disease that impairs the perception of reality, can manifest in the 

form of hallucinations, delusions, disordered speech and disorganised thinking.
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• Poor spatial resolution. As a result of the averaging process, the 

method hardly gives sufficient information regarding the locations 

of the components.

• Trial-to-trial variability is lost. It is observed that the ERP 

changes after repeated stimuli. This is known in P300; for ex­

ample, as habituation occurs the amplitude is gradually reduced.

In the signal processing field a large number of methods have been 

applied to the problem of EEG and ERP processing and will be shown 

in Chapter 3.

1.1 Aims and Objectives

In this thesis we aim to develop signal processing methods that reliably 

extract ERP components and localise their sources within the brain, 

by using prior knowledge of their properties. As the use of prior knowl­

edge is the main motivation behind this study, in all the methods we 

develop we use it in various ways. This thesis represents substantial 

and significant contribution in the following three ways:

• Extraction of the P300 subcomponents by developing a constrained 

independent component analysis (ICA) method.

• Extraction of the P300 subcomponents and estimation of their 

important parameters using a novel method based on introducing 

proper templates for the P300 subcomponents.

• Localisation of the P300 subcomponents. We have developed two 

methods to deal with the localisation problem. The first method 

is a simple way of categorising the locations of different signals. In



Section 1.2. Thesis Outline 4

other words, it is used mainly to find out if two signals originate 

from the same location in general. The second and our most 

important contribution, is a method that locates exactly with 

high efficiency the locations of the P300 subcomponents.

1.2 Thesis Outline

The thesis is organised in 7 chapters that describe our work and the 

main references and resources. Chapter 2  shows some basic knowledge 

regarding EEG, ERP and the basic processes that govern the creation 

of electric signals in the brain. In Chapter 3 we describe the main signal 

processing methods used regarding EEG and ERP. Our work has been 

greatly inspired by some of these methods. In Chapter 4 we develop our 

ICA/BSS5 method and we apply it to real EEG data. We also perform 

a simple localisation procedure to categorise schizophrenic patients and 

healthy subjects6. Chapter 5 shows our work on estimating the prop­

erties of the P300 subcomponents and we use a modified version of the 

localisation algorithm of Chapter 4. In Chapter 5 a technique based 

on the application of templates of the P300 signals is established. Our 

most important contribution, a new localisation algorithm, is described 

in Chapter 6 . A new spatial filtering approach for the localisation of 

ERPs is developed in this chapter. Finally, we conclude this thesis in 

Chapter 7.

5Blind Source Sepaxation. Term used interchangeably with ICA.
6In this thesis we refer to healthy subjects as people with no schizophrenia. We 

also use the terms control subject or normal subject.



Chapter 2

OVERVIEW OF THE 

ELECTROENCEPHALOGRAM 

AND EVENT-RELATED 

POTENTIALS

The electrical activity of the brain was first studied by Richard Caton 

in 1875 [2]. This study was performed on rabbits and monkeys. Similar 

experiments were carried out on rabbits and dogs in 1890 by Beck [2]. 

Hans Berger is widely credited for the invention of the human EEG 

in 1926 although similar experiments were performed by some other 

researchers.

EEG describes the electric activity recorded at the surface of the 

head using metal electrodes. These are specifically designed electric 

conductors that are placed on the scalp with a certain type of gel that 

reduces the contact impedance of the skin. The signal from each elec­

trode is then fed to a separate differential amplifier1 in the EEG ma­

chine to amplify the signal and reduce noise. The second input of 

the amplifier is fed from what is called the reference electrode, which

*A an amplifier circuit that amplifies the difference between two signals.

5
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is usually an electrode placed on the earlobes or forehead. A typical 

adult human EEG signal has the amplitude of about 10 — 100fiV when 

measured from the scalp. EEG is a non-invasive method in contrast 

with electrocorticogram which records the electrical activity from the 

surface of the brain.

Before explaining the source of electrical activity picked up by the 

EEG we first briefly describe the functions mainly responsible for the 

electrical activity inside the brain. This requires the study of a type of 

nerve cell, the neuron, which is provided in the next section.

2.1 Neuron

The neuron is the brain cell responsible for the information transfer 

within the brain. It has distinct features that allows the brain to per­

form a variety of functions that are used for intracellular and inter­

cellular signalling. The signalling process is an electrochemical process 

and the information transfer is performed by the neuron while changing 

its chemical properties [3]. A neuron is shown in Figure 2.1; adapted 

from [4].

We now describe the main parts of a neuron responsible for informa­

tion transfer [3]. A neuron consists mainly of the axon, the dendrites, 

the cell body and the synapse.

Axon. The axon is a thin tube structure that its length can vary 

from micrometers up to more than a meter, always terminating at a 

synapse (see below). The main function of an axon is to transfer the 

signal from the cell body (see below) to the synapse.

D endrite . The dentrites are structures that are usually thinner 

than the axon and tend to form tree-like structures called dentritic tree.
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Figure 2 .1 . Schematic diagram of a neuron’s basic parts.
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The role of the dendrites is to receive information from the synapses 

of other neurons although that is not exclusive. Some dendrites share 

with axons the ability to transmit electric signals.

Synapse. The synapse is a unique and highly sophisticated struc­

ture that serves the function of intercellular communication. That is the 

transfer of information from one part of the nervous system to another. 

It is now known that the information transfer is an electro-chemical 

process and it is mediated by electrical and chemical processes in the 

synapses [3]. It is located where the axon terminates.

Cell body (soma). Cell body (soma) is the main part of the neu­

ron and contains the neuron’s nucleus (with DNA2 and typical nuclear 

organelles). The neuron’s cell body is similar to other cells of the hu­

man body and from which the dendrites branch out and where the axon 

starts.

As mentioned previously the information transfer in the brain is 

performed in the form of electric signals. These electric signals arise 

from potential differences in neurons. More specifically, when the cell 

is not conducting any nerve impulses (signals from other neurons or 

nerves), a potential difference is formed between the inside of the cell 

membrane and its outside. Hence, membranes are polarized or, in other 

words, exhibit a resting membrane potential. This means that there 

is an unequal distribution of ions (atoms with a positive or negative 

charge) on the two sides of the nerve cell membrane. This potential 

generally measures about 40 — 90m V  (with the inside of the membrane 

negative with respect to its outside). So, the resting potential is ex­

pressed as —40 to —90 mV.  The resting potential is due to unequal

2 Deoxyribonucleic acid
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distributions of potassium (K+), sodium (Na+) and chloride (C1-).

When a cell membrane conducts nerve impulses the cell membrane 

is rapidly depolarised (the potential difference takes a positive jump). 

This jump in turn opens what are called sodium gates and (Na+) from 

inside the cell flows towards the outside. The system functions in such 

a way that when the potential difference reaches a certain level the 

sodium channels close (however, there are some left open still). The 

process then repeats in reverse and the potential difference goes back 

to the resting potential. That positive surge is called an action poten­

tial (AP) and is the signal that triggers the chemical processes at the 

synapse.

The action potential is transmitted through the axon to the synapses. 

A special chemical called neurotransmitter then either excites or in­

hibits the connecting cell. This depends on the type of the recipient 

cell (post-synaptic cell).

2.2 EEG generation

Scalp EEG measures summated activity of post-synaptic currents as a 

result of the neurotransmitters from a large number of neurons. The 

activity of many types of receptors results in a flow of ions into or out 

of the dendrite of the receiving cell. This results in a current flowing 

outwards which is responsible for the generation of EEG voltages. It 

has to be noted that the EEG is not sensitive enough to pick up the 

action potentials formed at the cell body and axon.

Surface EEG is the summation of the electrical activity of thousands 

of neurons with similar orientation. Scalp EEG is more sensitive to 

radially oriented neurons and it benefits from the parallel arrangement
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of dendrites in the cortex.

EEG is highly described by rhythmic activity that has been di­

vided into different frequency bands that generally relate to different 

functions and brain states such as sleep, awake, and mental disorders. 

These rhythmic activities, again, represent the synchronised activities 

of networks of neurons. The characteristics of the EEG frequency bands 

are briefly described here.

D elta is the frequency range up to 4 Hz. It is usually observed in 

adults during sleep and in infants. Also, it appears in adults as a result 

of brain damage.

Theta is the frequency range from 4 Hz to 8  Hz. It is seen normally 

in young children and in drowsy or emotionally aroused adults. A high 

amplitude theta activity may represent an abnormal activity in the 

brain.

Alpha is the frequency range from 8 Hz to 12 Hz. It is normally 

observed when the person is relaxed. It usually attenuates with mental 

activity and is usually larger for the non-dominant hemisphere (right 

hemisphere for right handed people). Mu rhythm is a special kind of 

alpha activity that is seen over the sensorimotor cortex.

Beta is the frequency range from 12 Hz to about 30 Hz and has 

usually a smaller amplitude than the other bands.

Gamma is the frequency range approximately 30 to 100 Hz. Be­

cause of the filtering properties of the skull and scalp, gamma rhythms 

can only be recorded by electrocorticography3.

3Similar to EEG but electrodes axe placed inside the head on the brain
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2.3 Event Related Potentials

Event related potentials (ERP) belong to a special kind of brain electri­

cal activity that arises as a result of some external or internal stimulus. 

It is an automatic response to either a perceived event or a thought. 

ERPs are the main subject of this thesis.

ERPs are used mainly by clinicians in order to assess a number 

of neurological disorders and cognitive processes. They are elicited by 

specifically designed experiments that provide different kinds of stimuli 

presented to the person’s attention. For example, the classic oddball 

experiment4 is usually performed to elicit the P300 ERP component 

(see below). Most of the neurological disorders or mental abnormali­

ties can be diagnosed by analysing the temporal and spatial properties 

of the ERPs. Traditionally, due to the fact that ERPs are compara­

ble in amplitude to non-ERP related activity and are time-locked to 

the stimulus, the most common method is to apply various repetitive 

stimuli many times and then average the responses. The response of 

each application is called a frame. This way non-ERP related activity 

is filtered out.

P300. This is the main ERP component of interest in this thesis. 

P300 wave is a positive ERP component which occurs with a latency of 

about 300ms after novel, or task relevant stimuli. It requires an effortful 

response on the part of the individual under test [5] [6 ] [7] [8 ] [9]. When 

a stimulus strikes a person’s attention a number of ERP components 

are observed that are usually functionally independent, meaning that 

they represent different brain states. One of those components is the

4For example, the person under test is presented with two types of stimuli, one 
frequent and one rare. The person is asked to press different button on each case. 
Such a process elicits the P300 from the rare stimulus.



Section 2.3. Event Related Potentials 12

P300 that can be further decomposed into the P3a and P3b subcom­

ponents. P3a reflects an automatic orientation of attention to novel 

or salient stimuli independent of task relevance [8 ] [10]. Prefrontal, 

frontal and anterior temporal brain regions play a major role in gener­

ating P3a giving it a frontocentral distribution [7] [8 ]. In contrast, P3b 

has a greater centro-parietal distribution due to its reliance on poste­

rior temporal, parietal and posterior cingulate mechanisms [7] [9]. P3a 

is also characterised by a shorter latency and more rapid habituation5 

than P3b [8 ] [9].

The P300 wave represents cognitive functions involved in orientation 

of attention, contextual updating, response modulation and response 

resolution [5] [7], and consists of multiple overlapping subcomponents, 

two of which are identified as P3a and P3b [8 ] [9]. Figure 2.2 illus­

trates some typical P3a and P3b waveforms from temporal-basal and 

temporo-superior dipoles, adapted from [1 1 ].

Abnormalities in P300 are found in several psychiatric and neuro­

logical conditions [6 ] however, differences may exist in particular in the 

specific subcomponents [9]. Moreover, changes to certain P300 subcom­

ponents may distinguish between relatives discordant for psychiatric 

illness, and between subdiagnosis of illness [12] [13]. That is, although 

reduced amplitude of the auditory P300 is reported in many studies of 

schizophrenia, some features of the P300 such as its topography vary 

with subdiagnosis and sex [14] [12]. Finally, certain subcomponents 

may be modality specific, whilst others may be independent of modal­

ity [9]. Thus, auditory and visual P300 appear to be differentially af­

fected by illness and respond differently to treatment, suggesting differ-

5 The process that while a stimulus is reapplied the amplitude of the resulting 
ERP decreases.
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P3b

P3b

P3a

P3a

Figure 2 .2 . Some examples for P3b (1  and 2) and P3a (3 and 4) 
signals and their corresponding typical locations.
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ences in underlying structures and neurotransmitter systems [9]. P300 

has significant diagnostic and prognostic potential especially when it is 

combined with clinical evaluation, that is the procedure of evaluating 

the symptoms and condition of the patient [6 ] [9]. However, in order 

for this to be fully realised, efficient and reliable methods for separating 

P300 sources and its subcomponents must be established [6 ].

There are two main ways that any kind of data processing is car­

ried out on ERP signals. The first, which is the traditional and most 

common method deals with applying some signal processing algorithm 

on the averaged response from a number of frames. The second way, 

is to apply some signal processing algorithm on one single frame. The 

latter approach is called single-trial analysis.

2.4 Conclusions

This chapter showed the grounding knowledge regarding some basic 

concepts exploited in this thesis. We described briefly about the na­

ture of the EEG, its generation and its acquisition. The neuron struc­

ture, a brain cell responsible for the electrical activity in the brain, was 

briefly shown. The processes that initiate the electrical activities in 

neurons are also explained. Finally, we talked about ERPs including 

the P300 subcomponents, which are the ERP components of interest 

in this thesis.



Chapter 3

SIGNAL PROCESSING 

METHODS FOR BRAIN 

SIGNAL SOURCES

In this chapter we describe a number of methods that attempt to es­

timate the brain activity employing various signal processing methods. 

We discuss the main developments in EEG signal processing, and par­

ticularly the methods that influence the work of Chapter 3 to Chapter 

5.

3.1 Dipole fitting methods

The dipole fitting methods axe best described by the work done in [15] 

and [16] although these were not the first papers on the subject [17] 

[18]. These methods comprise of a current dipole model for each source 

and by a model of the propagation medium between the sources and 

the electrodes. The methods described in [15] [16] deal primarily with 

MEG1 but the ideas can be easily extended to EEG, see section 3.3. 

The aim is to estimate the magnetic field or electric potential (in our

1Magnetoencephalography, similar to EEG but now it is magnetic fields that are 
measured.

15
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case) by estimating the strength and locations of the dipole sources.

For a dipole at location L, the magnetic field B at sensor i located at 

R(i) is:

B(0 - w/4*Q |R(^-L |L> (S1,)

where Q (3 x 1 ) is the dipole moment including the orientation and 

strength of the dipole. The model of the data for one dipole source can 

be written as:

B .  |B(.)... B w r  -  ... . M f c V r r

= /Jo/47r[gT( l ) . . .  gT(m)]TQ = //o/47t G Q
(3.1.2)

where g (i) is a 1 x 3 vector (G ism x  3) which models the propagation 

of the source to the magnetometer i, the dipole moment Q is a 3 x 1 

vector, and B is an m  x 1 vector. For p dipoles the data model can be 

written as:

B =  [G1 . . . G p] [Q [ . . .Q f ]T (3.1.3)

The dipole moments can be factorised to the product of their unit 

orientation moments and strengths:

B =  GM S (3.1.4)

where M  and S are the dipole moments and strengths respectively.

This can be written as a function of the location and orientation such 

as:
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B =  H (L ,M )S (3.1.5)

where H  denotes the function of location and moments. Then, the 

least squares solution between the model and the actual data has to be 

obtained:

Jis =  ||X  — H(L, M )S ||^ (3.1.6)

The parameters to be estimated are the location L, dipole orientation 

M  and magnitude S. The major drawback of this approach is that 

the number of dipoles has to be known beforehand. If too few dipoles 

are selected then the obtained dipole parameters are influenced by the 

missing dipoles. If too many dipoles are selected, some of them will not 

account for valid brain activity. Also, the computation cost to minimise 

such a cost function is too high. A way to go round it is to consider it 

as a projection minimisation:

JlB = ||X  — H (L ,M )S |||. =  ||P /fX ||J. (3.1.7)

The matrix P #  projects the data onto the orthogonal complement2 of 

the column space3 of H. This function has to be iteratively minimised 

with respect to the desired parameters. By forming the Singular Value 

Decomposition4 (SVD) of X =  U £V r  the cost function can be rewrit­

ten as:

Ju =  ||P ^U E V r | | |  =  IIP^UEII2. (3.1.8)

2The orthogonal complement of vector space, Q, is the set of vectors that are 
orthogonal to all vectors of Q.

3The vector space defined by the columns of a matrix.
4Method that extracts the basis vectors and their magnitudes from a data matrix.
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since orthogonal matrices preserve the F-norm (Frobenius-norm). The 

matrix Z =  U S is now m  x m  instead of X which is m  x T, T  is the 

number of samples. So, a great reduction in computation cost has been 

accomplished. Note that S can have only m  non-zero singular values 

because rank(X) < m  and generally T  m. The SVD can also be 

used to reduce the computations regarding the projection matrix P #  =  

(I — HH*). The pseudoinverse H* can be decomposed as V #

H =  U tfE /jV j. The cost function becomes:

Jls = \ \ v l _ M l  = m l  -  l|U^Z||2F (3.1.9)

where U r is the matrix corresponding to the r non-zero singular values 

of H e^mxr and it spans the column space of H  whereas the rest of the 

columns correspond to the left nullspace 5 of H. So, for the true dipole 

locations the F-norm ||U ^_rZ ||F is zero since the two matrices are 

orthogonal because the first one belongs to the left nullspace of H  and 

the second one to the column space and these two spaces are orthogonal. 

This result was used to develop the MUSIC6 algorithm for EEG/MEG 

localisation. It employs a grid search over a number of locations and 

the quantity Amin [U ^ $  JUg* ] is zero for any true dipole location, 

where G* =  which is the forward matrix for a true dipole

source. The matrix is called the noise subspace and is estimated

by selecting the p less significant eigenvectors7 of R x  =  X X t /T . An 

extension of the MUSIC algorithm is the R-MUSIC which searches for 

two dipoles simultaneously to solve the problem of wrong localisation 

for synchronous sources.

5 The set of all vectors a for which aTHT =  0.
6Multiple Signal Classification.
7Basis vectors of a data matrix.
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More recently studies like [19] and [20] have enhanced the dipole 

fitting model for focal and line sources as well. They consider constant 

and varying parameters such as the orientation and intensity.

3.2 Inverse Solutions

The inverse solution to the EEG problem consists of estimating the 

electrical activity at every predefined location in the brain. In such 

methods the propagation model is available beforehand and consists of a 

matrix, termed the lead-field matrix, which contains all the propagation 

information from every location to all electrodes. This model can be 

described as:

X =  HS (3.2.1)

where X  is the n x T  data matrix (EEG or MEG), n is the number of 

electrodes, T  the number of samples, H  is the lead-field matrix which is 

n x3p  where p is the number of locations, and S is a 3p x T  matrix which 

contains the strength and orientation of each dipole (each dipole is 

represented by a 3 x T  vector; from now on we will refer to a component 

of S as one 3 x T  vector). These methods differ from the dipole fitting 

methods since we estimate the electrical activity in every location. The 

solution to that is:

S =  (Ht H )- 1H t X (3.2.2)

The problem which these methods are inherently faced with is that they 

are generally underdetermined. Matrix H  is of rank much smaller than 

p, since the number of electrodes n is much smaller than the number
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of locations (usually n =  16 or n =  64 and p ~  3000). So, the rank of 

H  can be at maximum n. This means that there are infinite solutions 

that satisfy Equation (3.2.2). In other words there exist an infinite 

number of possible electrical activations that produce the same EEG 

recording. This can be verified by noting that the columns of H  are not 

linearly independent and hence the actual activity in a specific location 

could be estimated as two or more separate activities in different loca­

tions. Another point to consider is that the selection of the locations 

to compute the lead-field matrix H can have an effect on the result; 

consider the case where H does not include a location where there is 

some electrical activity. Methods that compute the lead-field matrix 

are shown in the next section. Methods of solving the inverse problem 

consider the lead-field matrix known and presumably correct and deal 

with finding a physiologically sound solution to Equation (3.2.2).

As mentioned previously, electrical activity in the brain is synchro­

nised and concentrated in some specific regions. This means that the 

rows of S should evolve smoothly and should be nearly zero in most 

places, meaning that contiguous components of a row of S should have 

similar strengths. This desired property of S has lead to a number of 

different algorithms that produce a unique physiologically sound solu­

tion.

One approach is the minimum norm solution which minimises the 

norm of S under the constraint of the forward problem [2 1 ]:

min 11S111, subject to X  =  HS (3.2.3)

with solution:
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S =  H T(HHT)fX (3.2.4)

The motivation for the minimum norm solution is to create a sparse 

solution with zero contribution from most sources. This method has 

the serious drawback of poor localisation performance in 3-D space. 

An extension to this method is the weighted-minimum norm (WMN) 

method which compensates for deep sources and hence performs better

in 3-D space [21]. In this case the norms of the columns of H  are

normalised. For this method the constraint problem is:

min ||WS||2 , subject to X =  HS (3.2.5)

with solution:

S =  W '1H T(H W '1H T)tX (3.2.6)

where W  is a diagonal 3p x 3p weighting matrix which compensates for 

deep sources in the following way:

W  =  dm<7[||Hi | | . . . | |H 3p||] (3.2.7)

Another minimum norm method, known as LORETA (low-resolution 

brain electromagnetic tomography) [2 2 ] employs a spatial smoothing 

Laplacian operator. This operator produces a spatially smooth solu­

tion agreeing with the physiological assumption mentioned earlier. The 

desired optimisation formulation is then:

min ||B W S | |2  5 subject to X  =  HS (3.2.8)
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where W  is the same as in equation (3.2.7) and B is the Laplacian 

operator and its definition can be found in [2 2 ].

LORETA produces a blurred image of the true sources but the maxima 

are correctly located for the noiseless case [2 2 ] [23]. FOCUSS is a high 

resolution iterative WMN method that uses information from previous 

iterations [23] [24]. The cost function is:

min ||C S ||1 , subject to X  =  H S (3.2.9)

In this case c  = (Q-TQ- 1 and Qt = W Q i_1 [cfoi5 (Si_1 (l) . . .  S ^ p p ) ]  

and the solution at iteration i is [24]:

S. =  Q iQ fH r (HQiQ fH T)tX  (3.2.10)

The iterations stop when there is no significant difference in the estima­

tion. W  is the same weighting matrix as before. The initialisation to 

the FOCUSS algorithm plays an important part in a correct estimation. 

In practise, the algorithm converges to a solution close to the initial­

isation. It has been suggested that the LORETA algorithm can be 

used for the initialisation of FOCUSS [25] [26]. Standardised LORETA 

(sLORETA) is another method that achieves a unique solution to the 

inverse problem [27]. It uses a different cost function such as:

J(S) =  min {||X  -  HSII1 +  a ||S ||l>  (3.2.11)

This is the zero-order Tikhonov regularisation which provides a solution 

to ill-posed inverse problems. The regularisation parameter a can be 

estimated by the discrepancy principle or by the L-curve method [23]. 

The solution is then obtained as:
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S =  Ht (HHt  +  a l ) " 1 (3.2.12)

sLORETA normalises each source estimate using the resolution matrix. 

The resolution matrix R  describes a mapping from the actual to the 

estimated source activity and is given by:

where Ses* is the estimated source activity and Sac* is the actual source 

activity. The resolution matrix can provide useful information as for 

the so-called point-spread-functions (PSF) of the original sources. PSFs 

show the spatial dispersion of each actual source and depend on the 

method used. The normalisation is performed as follows:

where S/ corresponds to the lth source and R« corresponds to the lth 

diagonal block of R. In [2 2 ] it is shown that the resolution matrix is 

equal to the source variance. So, by standardising the estimated sources 

they are normalised by their power.

In [23] and [26] the LORETA and the FOCUSS solutions were com­

bined to improve the results. It has been claimed that the localisation 

was successful even for closely spaced and correlated sources. It uses 

sLORETA as an initialisation to a standardised FOCUSS process. Also, 

at each iteration only the prominent nodes are kept (along with their 

neighbouring nodes), which means that the columns of matrix H are

R  =  H T(HHT +  a I ) 1H

and (3.2.13)

(3.2.14)
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removed for elements of S(i) less affecting X. This creates a much bet­

ter solution because at each iteration “wrong” columns do not interfere 

with the solution.

It has been also attempted to use the temporal properties of brain 

signals to improve the localisation performance. This was performed 

in [28] by adding an additional constraint motivated by the assumption 

that for each location the change in the source amplitude with time is 

minimal. The constraint to be added is min\\S(t) — S(t  — 1)||J* where 

t denotes time.

The inverse problem has also been tackled under a Bayesian approach 

[29]. A method to estimate the sources has been proposed, based on 

Bayesian theory that introduces some information about the spatio- 

temporal properties of the sources [30]. This information is incorpo­

rated by using the prior probabilities.

The model of the EEG generation is again [30]:

Xt =  HS* +  b t (3.2.15)

where Xt is an m  x 1 vector containing the EEG measurements at 

time t, H  is the m  x n matrix containing the information of the head 

model, the source set pattern and measurement positions on the surface 

of the skull. S* is a n x 1 vector containing the tth time sample of the 

source magnitudes, and bt is the total additive noise. The a priori 

information regarding the sources imposes some constraints on their 

location and their temporal properties. The estimation is carried out 

using a maximum a posteriori (MAP) estimator. That is, the estimator 

tries to find St that maximises the probability distribution of St given 

the measurements X*. The estimator is:
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St =  max[p(St |Xt)] (3.2.16)

and the posterior probability according to Bayes law is:

p(S,|X*)ocp(X*|S,)p(S,) (3.2.17)

where p(X*|S*) is the likelihood of St given X*. In other words it is the 

forward model between the sources and the sensors. p(St) is the prior 

probability. The posterior can be written in terms of energy functions:

and U(St) =  Ui(St) +  AC/2 (St) where U\ and U2 correspond to the 

likelihood and the prior respectively (A is the regularisation parameter 

between the two functions). The prior is separated into two functions, 

one for the spatial priors U3 and one for the temporal priors Ut. The 

spatial prior function can take into account the smoothness of the spa­

tial variation of the sources. A cost function that determines the spatial 

smoothness is:

where K  is the scaling factor, which determines the required smooth­

ness. Then the prior function for the spatial constraints can be written 

as:

k= 1

where the index x  or y corresponds to the horizontal or vertical gradi­

p(S(|z„) =  exp [-(/(S,)] (3.2.18)

(3.2.19)

n

u . {  S t)  =  X > £ ( V *S <k) + ^ (V vs 4|fc)] (3.2.20)
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ents respectively.

The temporal constraints are imposed by assuming that the source 

magnitudes are evolving slowly compared to the sampling frequency. 

It is implemented by minimising the projection of S t to the space per­

pendicular to St_i. Thus, the temporal prior function could be written 

as:

C/t (S1) = /3 | |P ii 1S t | | 2 (3.2.21)

where is the projector onto the perpendicular space to St_i. Hence, 

the total energy function to be minimised can be written as:

m

U(St) =  | |X ,-H S (||2 + A { ^ [ ^ ( V I S(|t:) + ^ ( V yS(|fc)]+ /? ||P 2i 1St||2}
fc=l

(3.2.22)

The estimator in this formulation is:

St =  min[C/(St)] (3.2.23)

In [31] an interesting work was carried out that combines the so 

called equivalent dipole (ED) and distributed linear (DL) models. ED 

refer to the model of section 3.1, of the dipole fitting methods, where the 

EEG is explained as the summation of the activity of various dipoles. 

DL refers to the imaging techniques of section 3.2 where all possible 

sources are estimated at the same time. Temporal and spatial priors 

are introduced in a general framework and the parameters are estimated 

with a maximum a-posteriori estimator (MAP).

There are methods that solve the inverse problem but do not use 

the actual lead-field vectors for the propagation of the sources to the
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electrodes. In [32] a regularised least squares method is exploited and 

the spatial correlation between the channels is used as additional infor­

mation in the estimation procedure. The estimation is carried out in a 

single trial basis. A model has to be established for the generation of 

the sensor signals as:

Xj =  Si +  e; (3.2.24)

where Xi is the sensor signal after trial i, s* denotes the ERP and e* 

is the noise signal, which can be the background EEG. The evoked 

potential s* is modelled as a linear combination of some basis vectors 

4>j-

S i  =  H0j (3.2.25)

where H is the matrix having the basis vectors ifrj in its columns and 

Oi is the vector of the parameters. The difficulty in this model is the 

selection of the basis vectors. The best basis would be the true physical 

model which could describe the spatial and temporal properties of the 

evoked potential. Some simple Gaussian or sigmoid functions are used 

that can describe the evoked potentials as consisting of positive and 

negative humps. As mentioned before the method used is based on 

regularised least squares (similar to sLORETA). The problem to solve 

is:

Oi — arg min{||xi -  H 0 i | | 2 +  a2| |L ^ | |2} (3.2.26)
6i

where a is the regularisation constant. The second part of the right 

hand side of equation (3.2.26) is called the side constraint. Equation



Section 3.3. Forward-Problem 28

(3.2.26) is a modification of the ordinary least squares to the direc­

tion in which the side constraint norm is minimised. A regularisation 

matrix L is proposed as the second derivative approximation. That 

should smooth any sharp peaks in the estimated vector. The solution 

to (3.2.26) is:

Oi =  (Ht H  +  a2LTL )-1H Tx j (3.2.27)

The previous method can be combined with the principal component 

regression approach. If the first p eigenvectors of the data correlation 

matrix Rx  are placed in a matrix H 5 , then that matrix will be an 

orthonormal basis of the space S  of the measurements. The evoked 

potentials s* are desired to be close to that space. The projection of s* 

to S  is (H sH ^H flj and their distance is | |( /  — L is then 

written as ( /  — H sH j)H  which gives a solution as:

Oi =  (Ht H  +  a2H T(I -  H 5H £)H )-1H TXi (3.2.28)

The estimator for the source signals is then s* =  H0*. The information 

about the spatial correlation of sources is modelled in the eigenvectors 

of the data correlation matrix.

3.3 Forward-Problem

Up to now the lead-field matrix H  has been considered known. Here, we 

show how the electric and magnetic fields arise from a current density8 

J* [33]. This is called the impressed current and assume that it lies in 

a conductor with conductivity cr. To compute the electric field E  and

8i denotes the source



Section 3.3. Forward-Problem 29

the magnetic induction B Maxwell’s quasi-static equations are used:

E =  —V V

V x B =  /io
(3.3.1)

J =  J* +  ctE

V . B =  0

where V  is the electric potential and J is the total current. For a 

homogeneous medium the equation for the electric potential is:

K(q) =  (3-3-2) 

for a point source the electric potential reduces to:

V(q) = q ~ ^  (3.3.3)
47rcr |q — q |

where Q is the dipole moment. When the medium is inhomogeneous 

(it comprises of regions of different conductivities) then the expressions 

are more complex. The potential then consists of a number of integrals 

for each region of different conductivity:

«r(q)V(q) =  <7nVo(q) -  /  ^ (q ')n (q '). 4 ^ 5
%J Sj I jI tL I

(3.3.4)

and Sj denotes the corresponding surface, a is the number of surfaces 

and (jj and a" are the conductivities of the inner and outer sides of Sj.

The forward model can be simplified by assuming a spherically sym­

metric conductor or horizontally layered conductor. Detailed deriva­

tions can be found in [33].
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Another way to compute the electric potential or magnetic field 

at the scalp is using the so-called boundary element method (BEM). 

This method approximates segments of the conductor with triangu­

lar meshes. Each mesh has a constant conductivity which provides a 

solution to the mathematical modelling of the electric field. BEMs for­

mulations are such that enable the differentiation of the electric field 

without any problem. Some studies on forward solutions can be found 

in [34] [35] [36] [33] [37].

3.4 Spatial-Filtering

Spatial Filtering is analogous to frequency filtering, where the signals 

are considered disjoint in space. It is also similar to beamforming widely 

used in telecommunications but the angle of arrival cannot be estimated 

since the low sampling rate provides the presence of brain signals on 

all electrodes simultaneously. Linear Constrained Minimum Variance 

(LCMV) is described below [38] [39]. The spatial filter designed by this 

method produces a signal which is a linear combination of the data. 

The weights are selected in order to minimise the signal output while 

forcing if to pass any activity from a specific location. The design of 

such a filter will be shown here. Let the filter be denoted as W g which 

is an n x 3 vector, where n is the number of electrodes and q denotes 

the location. The output signal is y =  W TX, where X  is n  x T  and T  

is the number of samples. Also, H  is the lead-field matrix (n x 3p) and 

X =  HMS, where S has the usual meaning of the source matrix and M  

is 3p xp  containing the dipole orientations. An ideal spatial filter has the 

following properties: W goH 9o =  I and W goH g =  0 for every q ±  q0 and 

n q is the lead-field matrix (n x 3) for the q location and <70 is the location
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that the filter is centered. So, the signals from all other locations other 

than qo will be cut off. The major drawback of such a filter is that the 

lead-field matrices are nearly dependent (similar to each other), so any 

linear filter designed to pass a signal from location q0 is bound to pass

some energy of signals from most nearby locations, though they are

mostly attenuated. This effect does not exist in the frequency domain 

where the basis vectors are linearly independent. Minimisation of the 

variance attempts to overcome this problem. The filter is defined as 

the solution to the following constrained optimisation problem:

min trace C(y) subject to W ^ H 9o =  I (3.4.1)
W<J0

where C (y) is the covariance matrix of the output signal. The solution 

to the above optimisation problem at location q$ has the form:

W 50 =  [H^0C ~'(X )H ,0]-1H ^ C -1(X) (3.4.2)

The energy of the signal at location q0 is:

vario =  trace[H^C_1(X)Hm]_1 (3.4.3)

The estimation can be improved if the noise covariance matrix is known. 

Also, it has to be noted that superposition does not hold in the spatial 

spectra. The spectrum of a sum of signals is not necessarily the sum 

of the individual signals’ spectra. This is because of the inverse oper­

ation in calculating the energy at each location. Also, the number of 

electrodes, the number of sources, closeness of the electrodes and the 

sources as well as the correlation between the sources affect the results.

Another approach to perform spatial filtering is the method of com-
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mon spatial pattern (CSP) [40] [41]. This method has been used in 

classification of single-trial EEG and also hand movement-related pat­

terns (distinguishing between left and right hand movement from the 

EEG). A CSP algorithm distinguishes between classes and finds a filter 

that maximises the variance for one class while minimising the variance 

for the others.

The method works by utilising the covariance matrix for each class. 

In a two-class scenario suppose Xi corresponds to class 1 and X 2 cor­

responds to class 2. Then, a matrix W  is calculated so that:

W S 1W r  =  D and W E2W T =  I -  D (3.4.4)

where Ej is the covariance matrix for class j  and D is a diagonal matrix 

consisting only of ones and zeros. Hence, for different classes the result 

is orthogonal. The matrix W  can be calculated in the following way: 

first whiten Ei +  E2, i.e. determine P  such that:

P (E 1+ S 2)P t =  I (3.4.5)

Then define Si =  P E iP , S2 =  P E 2P  and compute the RD  decompo­

sition of Si and S2. After some algebra it follows that Si =  R D R T 

and S2 =  R (I — D )R T. The matrix W  is then:

W  = R r P  (3.4.6)

Hence, by obtaining W  we get the required matrix to distinguish 

between the classes.
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3.5 ICA methods

One of the most useful tools in signal processing with numerous appli­

cations is Independent Component Analysis (ICA). This method refers 

to the recovery of the independent original signals from their combina­

tions. The applications are widespread and range from telecommunica­

tions to EEG. The general ICA problem can be formulated as follows: 

There is a number n  of sensor signals X i ( t )  which are mixtures of m  

source signals S j ( t ) ,  where usually n  > m .  The objective is to find an 

unmixing system which produces m  outputs V j ( t )  which are as close as 

possible to the original sources. This procedure is usually performed in 

an adaptive manner based on an optimisation procedure. The original 

sources and the mixing system are assumed unknown, but some infor­

mation is placed upon the statistical properties of the sources. The 

sources are assumed to be independent and in the ERP case this is 

not an unrealistic assumption. There are two main BSS mixing models 

based on ICA. The first regards the mixing as linear and instantaneous 

and the second as linear and convolutive. There are also nonlinear 

models where the medium changes with respect to its inputs. The case 

of interest is the linear and instantaneous mixing since the electrical 

activity that reaches the electrodes is a function of distance and the 

electrical properties of the brain. It is regarded instantaneous mainly 

because the sampling rates of EEG machines are too low compared 

to the propagation speed of electromagnetic waves. Thus, at every 

sampling period the electrodes pick up activity of the same temporal 

activation. In the EEG case the sensor signals correspond to electrodes 

and the sources correspond to the sources of brain activity. The mixing 

system can then be written as:
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^ x i  ( t )  ^ 

x 2{ t )
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where hij is the propagation coefficient from the j th source to the ith 

electrode9. The separation system can be modelled similarly as:

Vi (t) ^

m(t)

y Vmify J  \

W n  W 12

™21

Win

Wr

X i ( t )

x 2( t )

J  \  Xn ( t )  J

(3.5.2)

It is convenient to describe the mixing and unmixing models in a noise­

less environment in matrix form. A general model for the mixing system 

is defined as:

X =  HS (3.5.3)

where H is the matrix of the propagation coefficients, S is a matrix 

whose rows contain the source signals and X contains the sensor sig­

nals. During the unmixing process the sources are estimated using the 

following model:

9noise is not considered for simplicity
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Y =  W X  (3.5.4)

where W  is the unmixing matrix and is proportional to H -1 subject 

to the scaling and permutation ambiguities of the estimated sources

i.e W  =  D P H -1 (D and P  are the scaling and permuation matrices

respectively) and Y  is the estimate of the sources. There are two main 

ambiguities in the ICA solution. Firstly, the scaling of the original 

sources cannot be determined and secondly the ordering of the sources 

is unknown. As mentioned before in ICA the sources are assumed 

independent, which means that the joint pdf can be expressed as the 

product of the marginal pdfs of each source. This can be expressed 

mathematically as:

771

q{s) =  ^ (s i)  x . . .  x qm{sm) = J J ^ ( s i )  (3.5.5)
i= 1

From Equation 3.5.5 we can see one way to explain the ICA ambiguities. 

Since, q(s) is the product of the individual pdfs any arbitrary scaling 

gives the same solution. For example, q(s) =  —2qi(si) x —̂ 2 (^2 ) • • • x 

Qm(sm) = qi(si) x . . .  x <7m(sm). For the same reason we get the permu­

tation ambiguity, any arbitrary ordering of the pdfs creates the same 

solution. In most ICA algorithms the pdfs of the sources are modelled a 

priori. This way one can minimise the Kullback-Leibler divergence [42] 

between the hypothesized pdfs and the estimated ones or can minimise 

the information between the sources having known pdfs. In the Infomax 

algorithm [43] it is attempted to maximise the information flow between 

the inputs and outputs of a neural network. The inputs correspond to 

the electrode signals and the outputs to a non-linear transformation
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(which should correspond to the cumulative density function of the in­

put) of the estimated sources. The Infomax algorithm is very similar to 

the maximum likelihood and the minimisation of mutual information 

algorithms. Other algorithms are the JADE10 , SOBI11, which perform 

joint diagonalisation of the eigenmatrices of fourth order cumulants and 

covariance matrices respectively, and the multichannel deconvolution 

class of algorithms. For an overview and analysis of ICA algorithms 

see [44] [45] [46] [47] [42].

The Infomax algorithm attempts to maximise the information flow 

between the inputs and the outputs of an artificial neural network 

(ANN). It is not nessesary to explain the theory behind ANNs; al­

though it has to be noted that an ANN has the same properties as the 

model of Equation (3.5.4) with the difference that the output is now 

a non-linear transformation of the estimated sources, i.e. Z =  / ( Y). 

The inputs are the electrode signals. It is shown that if the nonlinear 

functions are selected appropriately [43], then the information maximi­

sation will correspond to the minimisation of the dependence between 

the estimated sources. The Infomax cost function is:

Jm(W) =  J(z ,x ) =  H{z) -  tf(z |x) (3.5.6)

where z e 9ftnxl is the output of the neural network (z =  / ( y), / ( )  

is the non-linear activation function applied element wise to y  which 

is the estimated source vector), x  is the input to the neural network, 

/ ( z,x) is the information between the inputs and the outputs of the 

ANN, H(z) is the entropy of the output and H (z|x) is the conditional

10 Joint Approximate Diagonalisation of Eigenmatrices
11 Second Order Blind Identification
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entropy of the output assuming a known input; note, for convenience 

the time index is dropped. The natural gradient of (3.5.6) is

Vw /(z ,x )W TW  = Vw if(z)W r W  (3.5.7)

since H(z|x) is independent of W. Minimisation based on the natural 

gradient is used to achieve good convergence [48]. The adaptation rule 

for the unmixing matrix W  becomes:

w m  = W t +  I +  (1 -  2 /(y ))yT)W ( (3.5.8)

where / (y )= ( l  +  exp(—y))-1 is called logistic function and it assumes 

super-Gaussian outputs, and /x is the learning rate. The adaptation 

for an individual weight can be described by the equation (using the 

gradient descent method):

AWij = + XA 1 ~  2Vi) (3-5-9)

where cof represents the cofactor and det the determinant. Thus, each 

individual weight is adapted in a way that the rows and columns differ 

from each other, as prescribed by the first term in the right hand side 

of the equation. When two rows or columns become similar, the matrix 

becomes singular, and then det W  will tend to zero forcing the weight 

element to change dramatically. This change will be affected by cof Wij 

which expresses the relative singularity of the remainder of the matrix, 

regardless of the row and column this element belongs to, compared to 

the whole matrix.

An interesting variation of the classic multichannel ICA approach 

is Blind Signal Extraction (BSE). In BSE, instead of estimating all the
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sources simultaneously they are estimated sequentially. Typical cost 

functions include the kurtosis estimate and maximum likelihood.

ICA has been applied to EEG data extensively by [49] [50]. The 

Infomax algorithm has been used to separate the independent compo­

nents from multichannel EEG data. An extension of the Infomax has 

been developed where the algorithm is modified to account for super- 

Gaussian and sub-Gaussian sources. More recently, the same research 

group developed a convolutive Infomax algorithm [51]. The reason be­

hind it was to take into account the spatio-temporal dynamics of the 

brain sources (i.e they move across the brain). Also, the convolutive 

Infomax algorithm can offer analysis in different spectral bands, which 

is justified based on the well established fact that EEG signals have 

distinct characteristics in different spectral bands. In this method the 

time-frequency transform of the electrode signals is computed:

Xi(T +  r)bf{r) (3.5.10)
T

where Xi is the ith electrode (i = 1,..., M)  and bf is the basis function 

which extracts the /  spectral band from the time-domain signal. The 

short-time Fourier transform used has a basis function:

6/(r) =  h(r)exp{—j  27rfr/2K) (3.5.11)

where h(r) is a window function. Hence, each electrode signal (1 channel x

T  samples) is transformed to data of size (1 channel x T  samples x

/ frequency bands). The mixing model is then:

x (T ,/)  =  A (/)s (T ,/) (3.5.12)
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where A (/)  is the mixing matrix at frequency band /  and s(T, / )  is the 

source vector at time T  and frequency / .  Similarly to the instantaneous 

case the estimates of the sources are obtained by multiplying the sensor 

signals with a frequency-domain unmixing matrix W (/):

u (T ,/ )  =  W (/)x (T ,/ )  (3.5.13)

The algorithm is then a complex extension of the Infomax algorithm 

(using the natural gradient):

V W (/) =  ( I -  < v(T, f)u(T, f ) H >T) W ( /)  (3.5.14)

where < x(.)y(.) > is the inner product between x(.) and y(.) , also

v(T, / )  =  M T , / ) . . .  vn (T, /)] and v,(T, f )  = s i g n ^ T ,  

where g'(.) is the first derivative of g(.). Also:

^  ^  (3.5.15)g(x) 1 +  e-x

which gives the complex generalisation of the logistic function used in 

the Infomax algorithm. The steps of the algorithm are:

• perform short-time Fourier transform (STFT)

• perform ICA using the complex Infomax algorithm obtaining in­

dependent components (ICs) for each band

• obtain the complex scalp maps for each band which are the columns 

of A (/) =  P D W -1(/) (where P  and D are the permutation and 

scaling matrices respectively).

The complex scalp maps describe the amplitude and phase differences 

between different ICs. A complex map a*(/) e A (/), whose elements
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have a significant imaginary part suggests spatio-temporal variations 

of the source (spatial-propagation of the source).

The algorithm produces independent components (ICs) for each fre­

quency band. Sources, however may exhibit activity in a number of 

frequency bands. In order to solve the permutation problem, i.e to find 

out which ICs in different bands correspond to the same source the 

Euclidean distances between the scalp maps is utilised. Components 

with small Euclidean distances between their maps are assumed to come 

from the same source. Also, the distance between ICs in different bands 

can be used. The correlation between ICs is used to obtain these com­

ponents corresponding to the same source. In that paper these methods 

are described in detail and ways to assign the best matching ICs. Mea­

surements of second and fourth-order statistical dependencies were also 

described to evaluate the performance of the algorithm.

Another ICA algorithm for separation and localisation was devel­

oped in [52], In that algorithm the Infomax algorithm was used to 

separate the sources from an EEG. Then, the ICs which exhibit a sig­

nificant degree of spikiness were selected from the IC group. To improve 

the selection process the subset of ICs which could be localised as neu­

ronal sources was selected. This was done using the RAP-MUSIC12 

algoritm [16]. Finally, the ICs left are clustered automatically accord­

ing to their location and time courses. Also, in [53] a joint EEG/MEG 

modality is used to enhance the localisation process. The combination 

is done by using mutual information as the criterion. It basically is a 

solution to the inverse problem where the gain matrices are estimated 

in such a way as to minimise their mutual information.

12Recursively Applied-MUSIC
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The ICA process may be constrained by some a priori information 

to aid the extraction of desired sources. An overview of this is given 

in [54]. The applications can be found in [55] and in [56] [57].

Another recent development within the field of BSS/ICA that has 

had application in EEG is non-negative matrix factorisation. It is a 

technique that decomposes a non-negative matrix X into non-negative 

matrices A and S [58] [59] [60]. In other words:

X =  AS (3.5.16)

In order to perform such a factorisation a cost function is needed to 

quantify its quality. There are two main cost functions [60]. The first 

is the Euclidean distance:

de =  ||X  — AS|| (3.5.17)

The other cost function is the Kullback-Leibler divergence:

du =  x ;  X,3/05- ^ -  -  XtJ +  (AS)y (3.5.18)
i j  '

Both of these algorithms are implemented using multiplicative up­

date rules. The positiveness is ensured by two main points. Firstly, 

A and S are initialised to positive values. Secondly, the update rule 

only involves multiplications between positive quantities so the result 

remains positive. For the Euclidean cost function the update rule is:

(XST), 
(ASST)y

A * ! (3.5.19)

and
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(ArX)fj- 
%J (ATAS)ij

(3.5.20)

In [58] and application of NMF onto EEG regarding Alzheimer’s 

disease was performed. The motivation was to include constraints 

that will enhance the factorisation quality, specialising in the EEG 

signal. Namely, there is a temporal smoothness constraint that forces 

the sources to have the short-term variance small compared to the long­

term variance. Also, there is a spatial constraint that forces the sources 

to be spatially as decorrelated as possible.

3.5.1 Optimisation

Optimisation is the process of finding a minimum (or maximum) of a 

function f(x).  We are interested in the case where x  is a vector or 

even a matrix. Although, here the theory is presented for vectors it 

can be easily generalised for matrices. Only the theory for minimi­

sation problems will be described for convenience, and the generality 

will not be lost since any maximisation problem can be converted to a 

minimisation problem by inverting the cost function.

We are interested in the conditions for which the following problem 

has a solution:

where E n is the space of vectors with n elements. In order to have x* as 

a minimum of (3.5.21) a set of first-order conditions can be established 

as:

minimise / ( x ) , x e E n (3.5.21)

V/(x*) =  0 , x * e £ n (3.5.22)
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Hence, we have n equations and we seek for n unknowns. The second- 

order conditions are of great importance since they determine if a so­

lution point x* achieves a minimum or a maximum. The second-order 

conditions are:

i)V/(x*) =  0 , -x* e E 71
(3.5.23)

ii)dTVJ/(x*)d>0,Vde£:"

Condition (ii) means that in order for x* to achieve a minimum the 

matrix V2/(x*) should be positive semidefinite. If dT V2/(x*)d < 0 

then x* would achieve a maximum.

3.6 Wavelet-based ERP detection

Apart from conventional time-frequency methods (such as short-time 

Fourier transform) wavelet decomposition has been also used in the 

study of ERPs [61]. The wavelet transform expands the ERP into dif­

ferent scales and latencies and allows for a more in-depth look at the 

brain activity. The variable scale allows us to choose at what detail 

we want to view the data. In comparison to time-frequency methods, 

wavelets can have theoretically unlimited resolution. Also, the trans­

form is based on the choice of wavelets, which are waveforms that the 

decomposition is based on. Generally, wavelet functions are categorised 

into wavelet families comprising of similar characteristics. The wavelet 

transform has been used mainly in the following areas:

• Estimation of the overlapping signals in the time domain

• Extraction of single trial ERPs from background EEG. Remember 

that ERPs exhibit spiky characteristics suitable to most wavelet
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families.

• Exploitation of the wavelet coefficients for the extraction of in­

formation regarding human behaviour.

• EEG denoising

• Jointly use with ICA.

ERPs are suitable for wavelet analysis since they contain a num­

ber of different frequencies (delta, alpha, theta, beta) and each ERP 

component (P3a, P3b, etc...) usually comprises of a number of sub­

components. Thus, a multiscale (frequency) and translation (latency) 

method such as the wavelet transform can extract different components 

in different frequencies and latencies. The method works by scaling and

shifting a function g(t) such as gab(t) — —k=*g[(t — b)/ a]. This function
V ( ° )

is called mother wavelet since it defines all the scaled and translated 

wavelets. The wavelet transform is defined as:

W(a, b) = (  s(t) ga,b(t) dt (3.6.1)
J—x

In discrete time the scaled and translated wavelets are chosen to be 

orthogonal. This allows the signal to be partitioned into distinct scales 

and translations. The dyadic decomposition allows this: a =  2J, b = 

k2j , [k,j eZ].

In [61] some applications of wavelets to ERPs are shown. In [62] a 

spike detection method is introduced in which the wavelet transform 

is applied and then a detection algorithm extracts the peaks. This 

method utilises what is known as wavelet denoising in which the wavelet 

coefficients are compared with a threshold level to restore the signal
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from noise [63]. In [64] a mother wavelet is defined based on a real 

action potential waveform and its hypothesised time distribution. In 

this way different wavelets can be designed depending on the action 

potential. In [3] it is shown that a neuron’s action potential can have 

different shapes depending on its electro-chemical state and behaviour. 

In [65] ICA is applied in the wavelet domain, similar to the method 

in Section 3.5 where the STFT was used. It has been shown that the 

proposed ICA algorithm converges faster in the wavelet domain than 

in the time domain.

3.7 Other separation/localisation methods

There are some other methods that do not fall into the above cate­

gories. A number of other approaches to brain source estimation and 

localisation have been studied. A brief review of them is given here. 

In [66] the directed transfer function (DTF) was developed. DTF mea­

sures the flow of a signal from a channel to another channel and it 

is based on a multivariate autoregressive (MVAR) model for the data 

(the data samples are created by a weighted sum of the previous data 

samples). Another interesting paper that compares different methods 

in estimating the number of sources of the EEG is [67]. A number of 

different approaches are compared and some are extended to take into 

account the spatial properties of the sources. In [68] the performance of 

inverse solutions for misspecified models has been analysed. In [69] [70] 

Prony’s method is used for event related potential estimation. Prony’s 

method was developed in 1795 by Gaspard Riche de Prony but it was 

not until recently that the application became practical. In Prony’s 

method a function of a sum of damped sinusoids is fit to a data se­
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ries. Regarding ERP, the parameters of the function are estimated to 

produce different signals corresponding to various ERP components. 

In [71] the differences in the response of the brain to various stimuli 

is quantified by information theoretic measures. Then, the resulting 

differences are used for the classification of the responses of two groups 

of people with different sensitivities to the stimuli.

3.8 Conclusions

In this chapter we described the major developments in EEG signal 

processing with emphasis on source localisation and extraction. In Sec­

tion 3.1 we described the basic theory of the equivalent dipole (ED) 

model and how it is used to estimate the dipole parameters. This fam­

ily of methods suffers from the main problem of having to know the 

number of sources beforehand. An extension of those methods, the 

MUSIC algorithm, estimates the electrical activity at any point in the 

brain and does not require any knowledge about the number of sources. 

However, as with all (ED) methods, it is required that the number of 

electrodes is greater or equal to the number of dipole sources. The 

main advantage of the ED methods is the ease of use and implemen­

tation and they produce good results for relatively simple cases, i.e. 

where there is not too high levels of noise or there are not too many 

sources. In Section 3.2 we showed the theory behind various Distrib­

uted Linear (DL) propagation model algorithms, that try to solve the 

inverse problem. DL methods have the advantage over the ED meth­

ods that they estimate the activity at every predefined location in the 

brain. However, they suffer from some indeterminacy in the solution 

which needs additional information. Inverse methods have been widely
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implemented and there has been research that combines different DL 

methods which are successful. Section 3.3 dealt with the forward ma­

trix, also known as lead-field matrix, and we showed its most common 

form. The form presented is the most commonly used in the literature 

and the one used by Brainstorm [72], a software package that we used 

to perform our simulations. In Section 3.4 the developments in spatial 

filtering for EEGs were demonstrated. Spatial filtering is analogous to 

the inverse methods in the sense that it tries to estimate the electrical 

activity at every point in the brain. It produces good results although 

it is sensitive to noise. Similarly to the ED methods, it requires more 

electrodes than sources. Section 3.5 covered the new ICA methods for 

EEG which are used primarily for extracting various sources from the 

EEG. ICA can have many applications including the estimation of the 

mixing matrix; the way various sources are mixed into the electrode 

signals. It is easy to implement and it potentially allows analysis that 

was not possible before. Wavelet methods were shown in Section 3.6, 

which have good single-trial performance because they behave well at 

high noise levels. Finally, in Section 3.7 other methods which do not 

exactly fit to the above categories were described. In general, there 

has not been any method specifically designed for the estimation of the 

ERP components, let alone for the P300 subcomponents. In this thesis 

we aimed to develop methods that use prior knowledge of the shape of 

those signals, and incorporate it in various signal processing methods.



Chapter 4

CONSTRAINED BSS

The main goal in ERP signal processing is to extract as an accurate 

description of the desired ERP components as possible. In this section 

the use of constrained ICA in separating the P3a and P3b subcom­

ponents from the P300 composite wave is described. There are two 

novel methods introduced. The first one makes use of BSS where we 

extract a number of sources at the same time, while the second method 

involves BSE where we extract sources sequentially. Both methods 

employ a constrained optimisation process in which the primary cost 

function is based on ICA and the constraint function forces the ICA 

output towards a certain type of signal. Constrained optimisation is 

used in situations where we desire our optimisation to be limited or 

constrained by some other function. This chapter is supported by the 

following publications [56] [73] [74] [75].

4.1 CBSS

In this section we describe the constrained BSS algorithm we have de­

veloped. As mentioned before, we aim to apply prior information about 

our source signals to enhance the performance of the BSS algorithm. 

The prior information we have is the latency and the approximate shape 

of these components, which can be observed from many studies [49] [50],

48
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and also from the data. The motivation is to use a constraint function 

together with Infomax to utilise the prior knowledge we have about the 

P3a and P3b subcomponents. We use Infomax because of the extensive 

use it has undergone in EEG and ERP signal processing (see section 

3.5). There are two main constraint functions that can be used which 

incorporate the prior information of the P3a and P3b. Both involve 

the idea of a desired, or reference, signal. A reference signal is used to 

model the ERP source we desire to extract. The first possible constraint 

function is the correlation (zero-lag) between our reference signal and 

the output of BSS. The second one, and the one used in this study, is 

the Euclidean distance between the reference signal and the output of 

BSS. Both methods are valid and need the corresponding signals to be 

normalised to the same variance; here, we use the Euclidean distance 

as our distance measuring function. The next issue is how to obtain 

the reference signal.

Experiments can be specifically designed in order to elicit specific 

ERP components. For example, a task can be designed such that when 

a random stimuli of novel value (something that captures the attention) 

is applied, P3a is the main component and when a task-relevant stimuli 

(e.g pressing a button when a specific letter is shown) is applied P3b 

is the main component. These stimuli are applied a number of times, 

and the response of each is called a frame. By averaging the frames 

corresponding to each of the specific stimuli the ERP will have either 

the P3a or P3b dominant. In the case where P3b is dominant P3a is 

always present so we can observe both signals. Then the time period 

corresponding to P3a or P3b is chosen as a reference signal (windowed 

or zeroed). Another way to obtain a reference signal, used in the next
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chapter, is to use some predefined spike functions (such as Gaussian, 

sine or wavelet spikes) with latency and shape width according to our 

prior information. For example, by observing a dataset we can estimate 

approximately the duration of the P3a or P3b; then this information 

can be used to set the latency and width of a Gaussian spike. In 

the next section we show exactly the modelling procedure of the ERP 

components.

Provided that the reference signal is acquired we can proceed on de­

scribing the constraint function. While ICA is producing independent 

components we are interested in one (or more) of them to be as similar 

as possible to our reference signal(s). Here, we use the Euclidean dis­

tance as the constraint function and we illustrate the effect on one of 

the ICA outputs. In other words we desire to minimise the following:

Ik — yill (4.1.1)

where y =  wX is one independent component of the current iteration 

of the ICA algorithm and r is the reference signal. So, by applying this 

constraint function, CBSS will direct that output towards the reference 

signal. ICA does not necessarily produce unique outputs, however this 

constraint function guarantees that the desired source is one of the 

outputs. The constrained problem in this study [73] [56] is formulated 

as:

max Jm(W ) subject to Jc{W ) =  0 (4.1.2)

Jm and Jc  are the Infomax and the constrained cost functions respec­
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tively. The cost function of the CBSS algorithm is:

J(W , A) =  Jm(W) -  A Jc(W ) (4.1.3)

where A is the matrix of Lagrange multipliers. The constraint function 

specialised for each row of W  is defined as:

^c(wi) =  | | r -  wfX | |2 for i = (4.1.4)

where r  is the reference signal, y { = w*X) is the ith output and w* is the 

ith row of W. The unknown parameters in the problem are now two: 

the matrix W  and the matrix A. The matrix W  is found adaptively 

via the following relation [73] [76]:

w (+1 =  W ( +  fi(V w ,^(W t, A)) W tTW t

= W ( +  /i(l +  (1 -  (1 +  e ip(W (x ))-1)(W 1x)T (4.1.5)

-  2A(x(W (x -  P f )  W tT) W (

and

At+1 =  At + p diag((W x -  P )(W x -  P )T) (4.1.6)

where fi is the learning rate of the adaptation of the unmixing matrix, 

p is the learning rate for the Lagrange multiplier matrix and P  is a 

matrix whose rows contain the corresponding reference P300 signal. If 

a block algorithm is required then the data vector x  becomes a matrix 

and it should be scaled accordingly.

The basic form of the constrained algorithm can be modified to
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mitigate some inherent problems with this approach. Firstly, in the 

present form of the algorithm attempts to produce n outputs that are 

as close as possible to the P300 reference signal. Although this effect 

is alleviated partly by the Infomax algorithm which tries to produce 

different outputs the constraint part of the algorithm will influence 

more of those outputs that axe further away (in Euclidean distance 

terms) from the reference signal. Hence, it would be a good idea to try 

to enforce the constraint in one or a small number of the outputs. This 

comes from the fact that usually the P300 signal consists of a number of 

subcomponents in different regions of the brain. Secondly, the scaling 

ambiguity of every ICA algorithm can be a problem since one output 

could have exactly the same shape as the reference signal but it could be 

a scaled version of it. The algorithm would change that output (since 

it violates the constraint) which could damage its shape. So, a scaling 

procedure is used in which the reference signal matches the amplitude 

of the estimated sources. Finally, the problem of finding good initial 

conditions for W , A, /i and p can be overcome partly by using a variable 

which determines the contribution of the two separate cost functions (i.e 

main and constraint) to the adaptation of W . This way, the algorithm 

can be made to work (by avoiding the rapid divergence of the Frobenius 

norm of W ) in a variety of situations. This way, the stability of the 

algorithm is ensured because the learning is kept bounded especially 

when Jc(wi) >> 0 .  It also functions as a safety point to make sure that 

the algorithm converges to a solution, which produces outputs close 

to the reference signals. The convergence of the algorithm is stable 

to the optimum point since both parts of the CBSS function have a 

negative definite Hessian matrix (easy to prove by checking the sign
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and the non-singularity of the Hessian). The constrained cost function 

can take any form that would be suitable for a specific application. A 

cost function which maximises the inner product between the estimated 

sources and the reference signals was used but its performance was not 

as satisfactory as the Euclidean distance function. Following the theory 

of constrained optimisation, in those cases where the separation needs 

to be improved over the traditional ICA methods, a number of new BSS 

algorithms can be developed. Other suggested cost functions for the 

present purpose can be maximising the spikiness of the output sources 

around the time of interest (300ms), estimating the pdf of the P300 

sources and forcing the pdfs of the output sources to have a similar 

form1 or even applying a spatial constraint using prior knowledge of 

the possible P300 positions.

A variation of this algorithm which was used to separate the P3a 

and P3b subcomponents was implemented by using the method of least 

squares. If the reference signals for P3a and P3b are known then we 

can model the EEG system as:

where r  is the reference signal, X is the data matrix and w ^  (row 

vector 1 x n) is the vector that should produce r. Then, the constraint 

cost function will be:

where w i is the ith row vector of the unmixing matrix. This vector

r  =  w optX (4.1.7)

• 7 c ( w i )  =  | |W i -  W op ,||^ (4.1.8)

1this can be facilitated as part of the original Infomax algorithm where the 
activation function should ideally be derived from the pdfs of the sources
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corresponds to the ith output y i expected to be the separated P3a or 

P3b. The selection of the appropriate y f to enforce the constraint, 

is achieved in terms of which one is closer in terms of the Euclidean 

distance to the reference signal, w ^  is found using the common least 

squares (LS) solution:

=  (XXT) - 'X r T (4.1.9)

Also, the gradient of Equation (4.1.8) is:

VWi Jc(wi) =  2(w* -  w ^  (4.1.10)

Then, this gradient is incorporated within the main Infomax update 

equation in a similar manner to Equation (4.1.5). This constraint is 

different from those used in [77] [78].

4.1.1 Acquiring the reference signal

Here we illustrate the method that we use to obtain the P3a and P3b 

reference signals. As mentioned before, in an EEG recording, vari­

ous stimuli are applied a number of times and each one elicits specific 

ERP components. Our data contain 40 frames that elicit the P3a and 

P3b components. Traditionally, ERP estimation would include aver­

aging these frames and using the resulting waveform as the ERP re­

sponse. Our data are recorded using 18 electrodes (inluding 3 reference 

electrodes) so by averaging those 40 frames we get 18 waveforms, one 

for each electrode. In Figure 4.1 we show 3 of those waveforms for a 

schizophrenic patient. The reference signal has to be a single waveform 

so the next step is to average all those waveforms. Hence, in effect we
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get a space-time average of the ERP components. Note, although the 

P3a and P3b are dominant there are other ERP components present 

as well. In Figure 4.2 we show the space-time average for the same 

patient.

After we obtain the space-time average we need to identify the la­

tencies in which the P3a and P3b occur. This has to be done in order to 

obtain different reference signals for each one of them. By observing the 

waveform we can deduce that the P3a (first peak) is located at about 

275 milliseconds while the P3b (second peak) is located at about 330 

milliseconds. Then we create two windowing functions around those 

two latencies and we apply them to the space-time average to get the 

two reference signals. However, it is possible that for different subjects 

both the P3a and P3b occur with different latencies. The distinctive 

feature is then that P3a occurs before the P3b. P3a is hence selected 

by the space-time averaging of all the electrodes and selecting the first 

peak that occurs near the time of interest (250ms-350ms) and P3b by 

selecting the second peak.

4.1.2 Results using simulated data

In this section we show the performance of the CBSS algorithm for 

synthetic data. We mix 3 sources on 3 electrodes and investigate the 

produced signals for various cases. We use realistic head model obtained 

through the Brainstorm software [72].

3

X =  HMS +  N  =  HjirijS, +  N  (4.1.11)
i=i

In Figure 4.3 we show the three original sources. An example mix­

ture is shown in Figure 4.4.
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Averaged waveforms for 3 electrodes
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Figure 4.1. Example of a 40 frame average for 3 random electrodes. 
The common features are evident. In total there are 15 electrodes so 
the next step is to average those 15 signals.

Space-Time average
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Figure 4.2. Space-time average of the 15 time-averaged(40 frames) 
electrode signals. This waveform is the basis from where the specific 
reference signals for an ERP component are obtained.
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Figure 4.3. Three Gaussian-spike sources peaking at 200ms, 300ms 
and 450ms.

o

-50

-100 100

Mixed sources

200 300
time: ms

400 500

500100 200 300 400
time: ms

20
a.
E 10

100 400 500200 300
time: ms

Figure 4.4. Three mixtures from the sources of Figure 4.3.

The first experiment is to constrain the first row of W . Applying the 

CBSS algorithm has a few significant advantages over unconstrained 

Infomax. Firstly, it produces a better, in terms of error, description 

of the original source. Infomax sometimes fails to extract an accept­

able source signal. In Figure 4.5 we show an example of this, where
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none of the 3 sources are accurately extracted. By applying the CBSS 

algorithm, using the same initial conditions, we extract the sources of 

Figure 4.6. Note that we only applied the constraint on the first output 

source for the signal peaking at 450 ms. Hence, the second advantage of 

CBSS is that it guarantees our desired signal to be one of the outputs. 

Also, from Figure 4.6 we observe that the other two sources are better 

extracted as well, without applying the constraint on them.

time: ms

Figure 4.5. Obtained output sources from Infomax. The second and 
third outputs are still mixtures of the three sources. Only the first 
output resembles source 3, although it is inverted.

In Figure 4.7 we show a simple case where Infomax is successful but 

as depicted in Figure 4.8 CBSS extracts the sources with smaller error. 

We have to make clear at this point, that for all these cases we use the 

same sources and locations. The only difference is the dipole orientation 

m . j .  It has to be pointed that for the same initial conditions, Infomax 

(and hence CBSS) produce always the same output, the optimisation 

process is deterministic. As a result, we try to observe the behaviour of 

both algorithms for different initial conditions (dipole orientation being



Figure 4.6. By applying CBSS we obtain all 3 sources quite accurately. 
Note that we applied the constraint only on the first output. It is 
significant to observe then, that using the constraint only one output, 
the other outputs converged to the true sources as well.

one of them), simulating real EEG analysis.

0.2
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0 100 200 300 400 500
time: ms

Figure 4.7. Here, Infomax succesfully obtains accurate descriptions 
off all 3 sources.

For the next case we apply some noise on the mixtures. The SNR
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Figure 4.8. With CBSS we get more accurate descriptions of the 
sources.

is 8dB. In Figure 4.9 we see that Infomax fails to produce the correct 

output sources. After applying CBSS we get the sources of Figure 4.10.
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Figure 4.9. We see here the extracted output sources from Infomax. 
None of the sources are accurately extracted.

We carried out a statistical test to evaluate how the algorithm per­

forms for various dipole orientations. We run the algorithm for 1000
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Figure 4.10. Applying CBSS on the same mixtures, still constraining 
the first output, we get a much better description of all 3 sources.

times for 1000 different dipole orientation, in Equation (4.1.11). In 

Table 4.1 we see the results.

SNR CBSS error Infomax error
lOdB 0.2824 0.8758
3dB 0.2853 1.0927
OdB 0.4032 1.0860

Table 4.1. Simulation results comparing CBSS and Infomax. The 
error is the Euclidean distance between the original source and the 
estimated one. It is evident that CBSS extracts the desired source 
with significantly less error.

In the next case, Table 4.2, we try to enforce the constraint on two 

rows, so we have two desired outputs. Again, we run the algorithm 

for 1000 different dipole orientations for each source and calculate the 

mean error between the original and estimated sources.
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SNR CBSS error 1 Infomax error 1 CBSS error2 Infomax error2
KMB 0.1673 0.8705 0.0607 0.7329
3dB 0.3421 1.0333 0.0519 0.8847
OdB 0.3970 1.0861 0.0667 0.9537

Table 4.2. Simulation results comparing CBSS and Infomax. The 
error is the Euclidean distance between the original source and the 
estimated one. It is evident that CBSS extracts the desired source 
with significantly less error. In this table the constraint was enforced 
on two outputs.
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4.1.3 Results using Real EEG

In this section we show the results of applying CBSS on real EEG 

data. The EEG data were recorded using a Nihon Kohden model EEG- 

F/G  amplifier and Neuroscan Acquire 4.0 software. EEG activity was 

recorded following the international 10-20 system from 15 electrodes. 

The reference electrodes were linked to the earlobes. The impedance for 

all the electrodes was below 5kfl, sampling frequency Fs=2kHz and the 

data were subsequently bandpass filtered (0.1-70Hz). This frequency 

range was chosen to be compatible with [79].

Subjects were required to sit alert and still with their eyes closed 

to avoid any interference. Also, to avoid any muscle artefact the neck 

was firmly supported by the back of the chair. The feet were rested on 

a footstep. The stimuli were presented through ear plugs inserted in 

the ear. Forty rare tones (1kHz) were randomly distributed amongst 

160 frequent tones (2kHz). Their intensity was 65dB with 10ms and 

50ms duration for rare and frequent tones respectively. The subject 

was asked to press a button as soon as they heard a low tone (1kHz). 

The ability to distinguish between low and high tones was confirmed 

before the start of the experiment. The task is designed to assess basic 

memory processes. ERP components measured in this task included 

N100, P200, N200 and P3a and P3b.

Firstly, from the raw-EEG we temporally average event-related data 

(40 events), each event producing an EEG of size n x T ,  where n is the 

number of electrode signals and T  is the number of samples of the 

event. That averaged ERP is also of dimensions n x T. Here, n = 15 

and T  = 1000. The advantage of averaging event-related data is not 

only to enhance the signal, but also to remove non-event-related noise.
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Secondly, the reference sub-component signal is selected according to 

the method described in section (4.1.1). Thirdly, CBSS is applied to 

the ERP (n x T) in order to separate the P300 and its sub-components. 

Filtering (at the delta range) is applied to the separated sources, based 

on the knowledge that the main power of the P300 component is in 

the delta range [80]. Figure 4.11 shows three electrodes of the averaged 

ERP and Figure 4.12 shows the estimated P3a and P3b sources for a 

schizophrenic patient. Figure 4.13 shows the estimated P3a and P3b 

using the unconstrained version of Infomax. We can see that CBSS 

produces outputs with more distinct peaks than unconstrained Info­

max.

4.1.4 Localisation

Localisation of electrical sources inside the brain has been investigated 

by a number of people [15] [16] [81] [34] [82]. Unlike the work done 

in [15] which assumes that the electrical sources are magnetic dipoles, 

in the paper [73] we assumed that they are sources of isotropic prop­

agation. Hence, the head simply mixes and attenuates the signals. 

Therefore based on Figure 4.14 we have

||ffc -  a j | |2 =  dj fo r  j  =  1,2,3 (4.1.12)

where is the position of the source k, aj are the positions of the 

electrodes and dj are the distances between the source and the j th elec­

trode. The distances dj are nonlinearly proportional to the inverse of 

the correlation between the estimated source and the electrode signals. 

This is because a source is attenuated non-linearly with the distance. 

Hence, the correlation of the electrodes with a source is non-linearly
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Figure 4.11. Three channel ERP of a schizophrenic patient obtained 
by averaging 40 related events.
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Figure 4.12. The separated P3a and P3b from the signals of Figure 
4.11 using the proposed CBSS algorithms.
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Figure 4.13. The separated P3a and P3b from the signals of Figure 
4.11 using the original Infomax algorithm.
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proportional to the distance [33]:

cor(X, sk) = <  X  • sk > =  HSsJ (4.1.13)

where X = HS, H describes the forward model for which the magnitude 

of a source attenuates with ^  and s*, is the vector of all sample values of 

the kth source. It has to be noted that the sources must be uncorrelated 

for the method to be efficient. After computing the correlation the 

values are normalised and converted to distances by the following:

It has to be noted that this approach does not provide a valid source 

reconstruction since it ignores the conductivity properties of the brain 

but it can be used to distinguish between sources in relatively different 

locations. Index j  represents the three electrodes that have maximum 

correlation coefficients with source k, k = 1, 2, . . . , n, shows the 

source number. In this equation all the variables except f*, are known.

The next step is to convert the above scenario to a mathematical 

problem, which requires to calculate the coordinates of an unknown 

point when both of the coordinates of d points and the distances of 

the unknown point from the given points are known. This problem is 

clearly equivalent to finding the intersection point (s) of d spheres in 

Rd. The points are the solution to the following least squares problem 

which can be obtained from [83]:

(4.1.15)
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Figure 4.14. Part of the scalp including the electrode locations, al, 
a2 and a3, and the location of the source k, f*,, to be identified.

where
3

5 (flt) =  ^ { | |f « ; - a j ||2 -< ii }2 (4.1.16)
3= 1

In this study we applied CBSS to the data from 10 different people, 

5 patients and 5 control subjects. The result of the localisation of the 

P3a and P3b components is shown in Figure 4.15 for five schizophrenic 

patients and in Figure 4.16 for five control subjects. It is evident that 

the P3a and P3b for a schizophrenic patient are closely and irregularly 

located, whereas for a control subject the P3a and P3b are located in 

distinct regions.
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Figure 4.15. Localisation result for schizophrenic patients. The cir­
cles, o, correspond to the P3a and the squares , to P3b. The P3a and 
P3b are closely and irregularly located following no specific pattern.

Figure 4.16. Localisation result for normal subjects. The circles, 
o, correspond to P3a and the squares, □, to P3b. The P3a and P3b 
sources are located in distinct regions in the brain.
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4.2 CBSE

In Blind Signal Extraction (BSE) the signal sources are extracted se­

quentially. The main advantages of BSE over BSS can be the following:

• The algorithm concentrates only on the signals of interest based 

on their properties

• In general BSE algorithms are much simpler.

• They can be easily modified for a number of situations.

However, it does not give an estimate of the mixing matrix. Again 

we use prior knowledge of the shape and latency of P300 signals to 

obtain the signals. This is done by using a constraint function, which 

is imposed on the original BSE cost function.

We use the normalised kurtosis cost function, which estimates the 

deviation of a random variable from Gaussianity. For kurtosis equal 

to zero the signal is Gaussian, for positive values it is super-Gaussian 

and for negative values it is sub-Gaussian. From the Central Limit 

Theorem it is known that a signal consisting of a mixture of different 

signals tends to have a Gaussian distribution. So, by maximising the 

absolute value of the kurtosis of the output signal, we create a more 

unmixed output signal.

In the BSE model the output of the algorithm is described as :

y =  wTX (4.2.1)

where y is the output vector of size 1 x T  (T is the number of samples), 

w is the unmixing vector (n x 1, where n is the number of electrode 

signals) obtained by the algorithm and X is the data matrix (n x T)
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consisting of the electrode signals. 

The cost function is:

(4.2.2)

where kurt{y) is the normalised kurtosis and is given by:

kurt(y) (4.2.3)

where E () denotes the statistical expectation. This leads to the 

following online adaptation rule:

w (k +  1) =  w (k) +  n(k)<p(y(k))x.(k)

where k is the iteration index (sample number), m q is the qth mo­

ment and no e (0,1] adjusts the influence of the previous estimate of the 

moment and the current estimate.

The constraint is imposed upon the normalised kurtosis cost func­

tion and utilises prior knowledge of the P300 shape and latency. The 

procedure is to obtain a reference P300 signal and in turn a vector w ^  

which minimises the Euclidean distance between that reference and the 

data in the following way:

m 2(y(k)) m 4(y(k))
m 4{y){k)

(4.2.4)

mq(k) =  (1 -  n0)mq(k -  1) +  n0\y(k)\q

del = | |yspike ~  Wop*X|\l (4.2.5)

Then, we want to minimise the distance of the obtained w from

(4.2.4) and w opt from (6.9). So, we aim to minimise:
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de2 =  W^opt ~  w| I2 (4.2.6)

This is the constraint cost function incorporated into the original 

cost function (4.2.4) according to the theory of penalty parameters. 

Hence, the adaptation rule becomes:

w (k +  1) =  w (k) +  n(k)ip(y(k))x(k) +  K(w(k)  -  w ^ )  (4.2.7)

where K  is the penalty parameter. It should not be too high so it 

does not overcome the effect of the main cost function or too low for 

the constraint to be ignored [56].

4.2.1 Results on P3a and P3b

The recording was the same as in section (4.1.2). After obtaining the 

data, they were temporally averaged for all event related trials (40 

events). The algorithm automatically obtains the reference signal, w ^  

and hence y LS. The algorithm was applied to many sets of data and 

it extracted the desired components successfully. The obtained P3a 

and P3b were more highlighted compared to the reference signal and 

their shape was more in agreement with typical P3a and P3b shapes. 

Some typical obtained signals can be seen in Figures 4.17 and 4.19 

while the corresponding y LS signals are shown in Figures 4.18 and 4.20 

and the spatio-temporal averaged reference signal2 is shown in Figure 

4.21. As can be seen from the figures the constrained method obtains 

good representations of P3a and P3b. Their respective latencies are

2This signal is used to obtain the y ref  signals for P3a and P3b.
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in agreement with prior physiological research and their shapes are 

more smooth than those of the y LS signals. This is expected since the 

algorithm tries to obtain an output close to the y LS but also as less 

mixed as possible.

By comparing the resulting signals with the unconstrained case use­

ful insights can be obtained as to the selection of the appropriate para­

meters for the algorithm (such as the K  penalty parameter, the learning 

rate n and the n0 paratemter). If K  is set to zero the algorithm is un­

constrained and the resulting output is not the desired one. Gradually 

increasing the K  parameter starting from a small value (about 10-5) 

the algorithm’s behaviour can be observed. At very small values the 

influence of the constraint is minimal and does not produce valuable re­

sults. High values tend to make the algorithm crash. A practical value 

that produces good results while the signal is not very close to the ref­

erence is 10-4. In fact, the value of K  can be adapted and updated 

iteratively according to the changes in the gradients of Jc and Jm. The 

learning rate was set to 10-3 and it was reduced every iteration by 1%. 

The parameter no was set to 0.5.
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Figure 4.17. The P3a signal obtained by using the constrained BSE 
algorithm.
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Figure 4.18. The y LS signal used to obtain the signal of Figure 4.17.
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F igure 4.19. The P3b signal obtained by using the constrained BSE 
algorithm.
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Figure 4.20. The y LS signal used to obtain the signal of Figure 4.19.
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Figure 4.21. Spatio-temporal averaged EEG reference signal.
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Figure 4.22. Convergence of the algorithm for the signal of Figure 
4.17.

4.3 Conclusions

In this chapter we described the two methods we have developed that 

utilise ICA. Our first method, CBSS, extracts a number of sources at 

the same time, while requiring that one or more of them are close to our 

reference signal(s). The results were satisfactory and produced better 

representations of the original sources in our simulated experiments, 

having significantly less error than the sources produced by the original 

unconstrained Infomax algorithm. It is also superior to the original 

Infomax algorithm, when our reference signal is quite different from the 

original source. This experiment simulated the real-data case where 

we do not know exactly the waveform of the original sources. We
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applied our CBSS algorithm to real EEG data, containing both the 

P3a and P3b ERP subcomponents. It created more realistic looking 

output sources. Also, we applied the algorithm on various datasets 

from different subjects and, as mentioned before, CBSS always produces 

outputs that strongly exhibit features of P3a and P3b, while Infomax 

may fail on a number of occasions. The main downside of CBSS.

The second method we developed based on ICA is the CBSE algo­

rithm. In contrast with CBSS which extracts all sources at the same 

time, CBSE extracts only one, again requiring it to be close to our ref­

erence signal. The main advantage is that it is easier to use, with the 

only output being the desired one. Because there is only one output it 

is not necessary to search through the produced outputs to find which 

one is the desired one. In other words, the user can select, for example, 

to extract the P3a and the output will exhibit the properties of a P3a 

source.

Although the two methods were succesful in extracting the ERP 

components from the frame averaged ERP, they did not perform well 

for single trial EEG analysis. That is because the ERP components 

are not accentuated enough in individual frames for ICA to produce 

reasonable outputs. Hence, in the next chapter we develop a method 

for single trial EEG.



Chapter 5

SINGLE-TRIAL ERP 

COMPONENT ESTIMATION 

BASED ON ERP TEMPLATES

In the previous chapter we developed a method that extracts the P3a 

and P3b subcomponents from ERP averaged data. In this chapter we 

develop an algorithm that is especially designed for single-trial data. 

This method uses prior information of the shapes of the ERP compo­

nents. As it is widely observed, ERP signals are transient waves time- 

locked at approximate latencies after an ERP eliciting event. A good 

approximation for the ERP components is to model them as Gaussian 

spikes (with certain latencies and variances) [49] [84]. The main mo­

tivation is that we need to avoid using any information that comes 

from ERP averages. Recall that in the previous chapter we used ERP 

averages to obtain the reference signals. One advantage of using a para­

metric approach, i.e. Gaussian-shaped spikes where the parameters are 

the latency and variance, is that the algorithm can be used in real-time 

or in cases where there are only a few number of trials, and hence we 

cannot use ERP averages. The Gaussian spikes then serve as refer­

ence signals onto which the EEG data are projected. Thus, we use the

78
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spatio-temporal information which exist in the data to find the closest 

representation of the reference in the data. We use least squares to 

extract the ERP components. Therefore, our algorithm can provide a 

description of all ERP components for every trial.

We also aim to acquire an estimate of the locations of these compo­

nents. By estimating all the existing ERP components in the data it 

becomes possible to obtain the implied mixing matrix. The locations of 

the sources are computed using an extension of the localisation method 

used in Chapter 4.

Given the approximate shape of the components as a priori, the 

method developed here has a superior performance compared to other 

methods. It is fast and robust in terms of noise since an estimation of 

the reference is expected to be in the data. Hence, it is suitable for 

single-trial data. Moreover, it is robust to model errors in the sense 

that it tries to find the closest match to the reference signal. No in­

formation about the number of sources is needed beforehand since it is 

estimated by the algorithm. Finally, it is consistent since it provides 

unique results which do not depend on any initial conditions. However, 

its application is limited since it can only work with spike-like signals. 

Also, it estimates the sources and the forward or mixing matrix with a 

scaling indeterminacy (similar to the BSS/ICA indeterminacy). This, 

however, is a minor problem considering that all the necessary informa­

tion lie within the relative magnitudes of the elements of the forward 

vectors.

In the next section the procedure to obtain the sources and forward 

matrix is explained. Then, we show the performance and the details of 

the algorithm by illustrating its performance on simulated data. The
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single-trial performance is also shown by applying the algorithm to a 

number of data of normal and schizophrenic patients and evaluating 

their differences. Finally, the paper concludes with a summary of the 

findings and the performance of the algorithm. The work in this chapter 

is supported by the following publications [85] [86] [87].

5.1 Proposed Method

Here we consider a more general model for the EEG signal by ignoring 

the dipole orientations; we model it as an n x T  matrix (n is the number 

of electrodes and T  is the number of time samples):

X  =  HS =  ^ h iS< (5.1.1)
i

where H  is the n x m  forward matrix of the m  sources s* and h* are

the forward vectors of the sources. The sources s* are considered as

the ERP components that are directly relevant and time-locked to the 

stimulus; we treat every other activity as noise. They are thought to 

have a transient spiky shape. The perfect source reconstruction would 

occur if we could design m  filters {w*} (note that we do not know the 

sources or their number beforehand) that satisfies:

Si =  w fX  (5.1.2)

This can be accomplished if each filter {w*} is designed to minimise:

wopt =  argmin ||si -  w f X ^
W i

(5.1.3)
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which would, however, require prior knowledge about the sources s<, 

which is not feasible in practise. Nonetheless we have a reasonable idea 

of how the sources look like:

S i =  exp(—(t -  t < )2 /< 7 ? )  (5.1.4)

where t* is the latency of the ith source and a* its width. The width is 

chosen as the average width of the P3a and P3b subcomponents and it 

does not have to be accurately estimated since the LS solution (6.3.1) 

will find the closest match.

5.1.1 Estimating the source signals

In contrast with the CBSS method which obtains an estimate of the 

source that is close to our reference signal, here the aim is to find a 

good description of the source directly. For example, when we used a 

reference for the P3a, the obtained signal usually had different latency 

than the reference. Hence, the idea here is to vary the latency of the 

reference. By using a Gaussian shaped reference spike, with variable 

parameters, we produce the same signal but with different latency. By 

varying the latency of the reference we can create many reference sig­

nals and hence produce many estimates of the sources. Some of those 

estimates will have similar properties, most notably their latency. That 

comes from the fact, as mentioned previously, that the extracted output 

source will be as close to the reference signal as possible. Therefore, 

since many reference signals will be close to a source, we expect to ob­

tain many estimates representing the same source. These estimates will 

be similar to each other and we expect to observe groups of estimates



Section 5.1. Proposed Method 82

belonging to separate sources. From those estimates we can do two 

things; firstly, we can average all the estimates that belong to the same 

group, each group consisting of all the estimates with similar latencies. 

Secondly, within each group we find the source with the minimum error

e(wj):

e(w3) =  ||sj — wJXHj j  e Gx (5.1.5)

where j  is the index that runs through the sources of one group and 

Gx denotes group x  of the estimated sources. The latter way is what 

we use to select the sources. So, in order to estimate the sources, s*, we 

create a large number of reference signals r , =  exp(—(t — j ) 2/cr2), say 

T, each having a latency at a different time sample. Hence, we create 

T  of those references (Figure 5.1) shows an example one).

/
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Figure 5.1. Gaussian spike with variance a2 and latency I, used to 
model the ERP components

Then we compute T  (note that T  m) filters such as:

w j =  argm in||ri -  wJX||^, y7- =  w JX  j  = 1...T (5.1.6)Wj

Again we note that we assume that the signals which have a similar
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latency to that of a true source s* correspond to that source only. Also, 

since the ERP components have distinct latencies we expect the signals 

yj to be grouped into m  clusters, equivalent to the number of sources. 

To cluster the T  signals y; we use the following algorithm:

for j = 1 to T

• measure /(j), the latency of y^

• if l(j) — l(j — l )< /3 ,  then y^ and Yj_i belong to the same group, 

P is a threshold selected empirically

• if l(j) — l(j — 1) > /?, then y • belongs to a different group than 

Y j - i

Then, within each group we select the signal y  • with the minimum 

error as defined in Equation (5.1.5) and obtain c signals yc, and it is 

expected that c = m. Note that the obtained sources can be a scaled 

version of the original sources s* because their scales depend on the 

amplitude of the reference signals.

This procedure extracts spike-like waves from the data. The main 

advantage is that by sweeping all the data at relatively small intervals 

every spike-like wave will be extracted. This coincides with ERP sig­

nals, which are known to have transient waveforms. Also, this method 

is robust to differences in modelling of the spikes. It extracts the sources 

which are most similar to the reference signal.

5.1.2 Forward matrix

To obtain the forward vectors (also known as scalp maps, the columns 

of the forward matrix H) we use the following novel procedure. First
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we compute R  as the cross-correlation between the data matrix and 

the output sources matrix:

R*„ =  X Y t =  H SY t (5.1.7)

where Y is a matrix whose rows are the signals y c. The estimated 

sources Y  can be written as Y  =  DS, where D is a diagonal matrix 

describing the scaling factor of each of the sources:

/ di 0 0 0 0 \

0 0 0 0

0 0 • 0 0

0 0 0 0

\ 0 0 0 0 dc )

If we multiply R  by the autocorrelation matrix of Y  we can obtain a 

scaled version of the scalp maps:

R R " 1 =  H SY T(YYr )“1
(5.1.9)

=  H D -1 Y Y r  (Y Y r )-1 =  H D "1

The permutation does not have any effect on the solution since the 

ordering of the sources is arbitrary Hence, the ith scaled scalp map 

will correspond to the scaled ith source.

5.1.3 Least squares estimation of the position of the source

We now show how to calculate the position of the source using the 

modified LS method. The first step is to convert the elements of the 

H  matrix to estimates of the distances between the electrodes and the
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sources. We use an isotropic propagation model of the source where it 

attenuates with the 3rd power of the distance [33]. To convert to the 

distance we perform the following operation:

where hj is the j th elemement of a specific column of the H  matrix. 

The point q is the solution to the following least squares problem:

where we know A j the positions of the electrodes, and rj the scaled 

distances, E(q) is the squared error. The factor M  denotes the scaling 

that arises from the algorithm as discussed in the previous section and

properties of the head. We desire to minimise the error function and it 

should ideally be zero. The derivatives with respect to q  and M  are:

n

(5.1.11)

also from the fact that our model (5.1.11) did not consider the electrical

n

V £ q =  2 ] T (q  -  A j)(M 2 -  ^ | |q _rJA .||2) (5.1.12)

n

V£?m =  2 ^  M ||q  -  Xj\\\  -  ||q  -  A ^ r ,-  (5.1.13)

We employ an iterative procedure to estimate q:

q =  q -  IV (5.1.14)

and

M  = M  — m V  Em (5.1.15)
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where I and m  are the learning rates. The solution for q  and M  is 

unique subject to having an appropriate number of electrodes. This 

method performs better than the localisation method of last chapter.

5.2 Results for simulated EEG

In this part we evaluate the performance of the algorithm from using 

synthetic EEG data. We use a similar setup to that of the previous 

chapter; we mix 3 sources in 30 electrodes. Again, the head model is a 

realistic model obtained through the Brainstorm software platform [72]. 

The width of the sources is cr =  0.1. In Figure 5.2 we show the sources, 

and in Figure 5.3 we show an example mixture.

f  o
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200 300
time: ms

400 500

1  0.5

400 500100 200 300
time: ms

1  0.5

300 400 500100 200
time: ms

Figure 5.2. Three Gaussian-spike sources peaking at 200ms, 300ms 
and 450ms.

The first experiment is to apply the algorithm assuming we know 

exactly the width of the original sources. In other words the a of 

Equation (5.1.4) is the true one. We also assume there is no noise for 

the first experiment. In Figure 5.4 we see the resulting scatter diagram.
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Figure  5.3. Three mixtures from the sources of Figure 5.2.

The horizontal axis shows the latency of the produced signal, as in 

Equation 5.1.6; the vertical axis is the peak amplitude of the produced 

signal. Note that the amplitude is not important since the algorithm 

tries to extract a signal with an amplitude as close to the amplitude 

of the reference signal. In Figure 5.5 we use a slightly different width, 

a = 0.5 and in Figure 5.6 we use a =  5. For illustration we show the 

three different spikes in Figure 5.7.

It is evident from these plots, for the noiseless case, even for a quite 

different reference signal, that the algorithm estimates the latencies of 

the sources perfectly.

In Figure 5.8 we show the obtained sources using the proposed al­

gorithm for the three different cases.

Next experiment is to demonstrate the behaviour of the algorithm 

when the mixtures are corrupted with noise. In the ERP context this 

noise can be background EEG or measurement noise. In Figure 5.9 we 

show the scatter diagram for 12dB SNR and in Figure 5.10 for OdB
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Scatter diagram: Peak versus latency
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Figure 5.4. Scatter diagram of the latencies of the extracted sources 
and their peak amplitudes. Here we use the actual width of the source 
a — 0.1. The clustering of the extracted sources at the correct latencies 
is evident.
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Scatter diagram: Peak versus latency
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Figure 5.5. Scatter diagram of the latencies of the extracted sources 
and their peak amplitudes. Here we use a higher width than the actual 
width of the source a = 0.5. The resulting clustering of the extracted 
sources at the correct latencies is evident, although in this case there 
were less sources at 300ms.
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Scatter diagram: Peak versus latency
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Figure 5.6. Scatter diagram of the latencies of the extracted sources 
and their peak amplitudes. Here we use a substantially different width 
from that of the actual source cr = 5. The clustering of the extracted 
sources at the correct latencies is still evident. Here, many of the ex­
tracted y z signals that previously had latency of 300ms have moved to 
the other two clusters.
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Figure 5.7. The three Gaussian spikes used in the simulations with 
widths G\ =  0.1, <J2 = 0.5, and <73 =  5



Section 5.2. Results for simulated EEG 90

•g 0.2

i 01
W na 0l

•g 0.4

■5.|  0.2

& 0l

<35 1

CL
E 0.5

200 400 600
time in milliseconds

800 1000

200 400 600
time in milliseconds

800 1000

-....... --- ---

/

....... ........ ... ............. . ....... . 1 ■' 1

j 1 A ............
200 400 600

time in milliseconds
800 1000

Figure 5.8. The estimated source signal using the three reference 
signals of Figure 5.7. Although the reference signals are different from 
the true source the latency however is the correct one.

SNR. In Figure 5.11 we show the result of clustering of the solutions 

for when two of the sources overlap (see Figure 5.13), simulating the 

overlap between a real P3a and P3b, and in Figure 5.12 we add noise 

to the mixtures.
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Scatter diagram: Peak versus latency
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Figure 5.9. Scatter diagram of the latencies of the extracted sources 
and their peak amplitudes. The clustering of the extracted sources at 
the correct latencies has degraded in this case for 12dB SNR.

Scatter diagram: Peak versus latency
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Figure 5.10. Scatter diagram of the latencies of the extracted sources 
and peak amplitudes. The clustering of the extracted sources at the 
correct latencies has degraded in this case for 0dB SNR.

5.2.1 Discussion

The algorithm performs very well in terms of latency estimation even 

for noisy mixtures. It exhibits robustness and even if the extracted
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Figure 5.11. Scatter diagram of the latencies of the extracted sources 
and their peak amplitudes. The clustering of the extracted sources at 
the correct latencies is perfect for this case where the two sources are 
correlated.

sources are different from the true sources their latencies are the true 

ones. However, the performance degrades when we have both correlated 

sources and noisy mixtures.

As expected reference signals with different widths produce good 

results since the LS solution finds the closest possible match. This fact 

is very useful and encourages application of the algorithm to real single 

trial EEG data which is the subject of the next section.
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Scatter diagram: Peak versus latency
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Figure 5.12. Scatter diagram of the latencies of the extracted sources 
and their peak amplitudes. The clustering of the extracted sources at 
the correct latencies has degraded in this case for 0dB SNR and when 
the two sources are correlated.

5.3 Results on real single trial EEG data

When applied to real data the algorithm follows a step by step pro­

cedure. The procedure will be automatic and will return important 

features of the extracted components. Here we describe the full algo­

rithm although some of the functions can be skipped for a particular 

application. For example, it may be only necessary to obtain just the 

latency of the P3a subcomponent. In that case we create a Tp3a num­

ber of filters, hence we need a Tp3a number of reference signals, ranging 

from j  =  250ms to 300 ms. Hence we skip the scalp map and loca­

tion estimation. The steps of the full procedure for all components and 

their scalp maps and locations are:

• Choose the width cr, the number of reference signals to be created, 

maximum T, and the latency range of those references.
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Figure 5.13. The extracted sources for the case of Figure 5.11. In 
this case the first two sources overlap in time simulating the overlap 
between the P3a and P3b subcomponents.

• Compute the T  filters w/, each corresponding to a reference signal.

• Measure the latency of each output signal y h group them in c 

clusters according to the algorithm in Section 5.1.1, and average 

the signals within each cluster.

• Measure the latency, compute the scalp maps for the averaged 

outputs of each cluster.

• Compute the 3D  locations of the desired components using the 

method of Section 5.1.3.

5.4 Single-Trial P300 estimation

In this section we show the performance of the algorithm on real single 

trial EEG data. In Figure 5.14 we show the scatter diagram for a 

schizophrenic patient. Observing the figure we see various clusters of
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components. In Figure 5.15 we have zoomed in to the latencies of 

interest, around P3a and P3b. In Figure 5.16 we show the zoomed in 

scatter diagram of a different trial.

Scatter diagram: Peak versus latency
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Figure 5.14. Scatter diagram of the latencies of the extracted sources 
and their peak amplitudes.
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Figure 5.15. Scatter diagram of the latencies of the extracted sources 
and their peak amplitudes within 240 to 320 msec interval.
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Scatter diagram: Peak versus latency
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Figure 5.16. Scatter diagram of the latencies of the extracted sources 
and their peak amplitudes within 240 to 360 msec interval.
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We applied the algorithm to the data from 10 schizophrenic patients 

and 10 normal subjects. In Table 5.1 we show the mean latencies of the 

P3a and P3b of 40 trials. In Table 5.2 we show the standard deviation 

of those latencies.

Table 5.1. Average latencies of the obtained P3a and P3b from 40 
trials.__________________________________________________

Control P3a Control P3b Patient P3a Patient P3b
274.4625 300.9000 275.5125 296.5125
274.9875 299.9875 277.4500 296.6375
271.5250 300.3750 275.7500 300.9500
276.2875 303.7875 272.1625 303.7500
273.5125 305.6125 275.6500 297.6625
273.0625 297.6250 271.5500 303.7500
275.6875 301.1250 276.6750 296.4875
278.6500 299.4875 275.6125 298.7625
273.3125 303.3500 273.0875 300.6500
273.6500 301.6125 273.2875 301.0875

Table 5.2. Standard deviation of the latencies of the obtained P3a 
and P3b from 40 trials.__________ ____________ ____________

Control P3a Control P3b Patient P3a Patient P3b
10.8640 9.7133 12.1390 14.1630
12.5440 12.2270 16.2530 12.9170
14.0550 14.7300 10.7660 12.5300
13.0660 12.0330 12.9450 15.6520
16.4980 13.7720 11.4390 13.6550
14.6290 12.6480 15.3490 16.0510
12.3930 12.7240 16.5020 15.6420
14.9210 10.2970 8.6012 15.7280
14.7560 13.8890 12.9810 15.0160
13.6530 12.8460 12.6620 15.1100

The means of latencies and standard deviations are shown in tables 

5.3 and 5.4 respectively.
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Table 5.3. Means of the latencies of the obtained P3a and P3b from 
40 trials calculated using Table 5.1._________________________

Control P3a Control P3b Patient P3a Patient P3b
274.5138 301.3863 274.6737 299.6250

Table 5.4. Means of the standard deviations of the obtained P3a and 
P3b from 40 trials calculated using Table 5.2.________________

Control P3a Control P3b Patient P3a Patient P3b
13.7379 12.9821 12.4695 14.6464

Table 5.5. Means of kurtosis of the obtained P3a and P3b from 40 
trials.  ____________________ ____________ ____________

Control P3a Control P3b Patient P3a Patient P3b
-0.0846 0.1483 0.4388 1.1923
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5.4.1 Discussion

The main findings of the current study are supported by findings via 

clinical studies and examinations well supported in the literature. One 

main result is that control subjects and schizophrenic patients have 

similar latencies in terms of P3a and P3b. The latency therefore cannot 

distinguish between the two groups.

In contrast to the mean latencies of the two groups there are other 

features available only through single-trial estimation that can separate 

the two populations. Most importantly, the standard deviation of the 

latencies of the P3b subcomponent can distinguish between the two 

groups with 80% accuracy. We also observe that the kurtoses of the 

patients’ P3a and P3b signals are significantly higher than that of the 

healthy individuals.

5.5 Single-Trial P300 location tracking for two subjects

In the paper [86] we applied our localisation algorithm to estimate the 

locations of the P300 subcomponents for a schizophrenic patient and 

for a control subject. In Figure 5.17 we see the different locations of 

the P3a and P3b signals for a schizophrenic patient and in Figure 5.18 

the locations of the P3a and P3b for a control subject. It is observed 

that the locations of the control subject exhibit less variability than 

that of the schizophrenic patient. In this section we just aim to exhibit 

the performance of the algorithm and we do not aim for a qualitative 

explanation of the differences between patients and control subjects.
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Figure 5.17. The locations of the of P3a and P3b for a schizophrenic 
patient. The diamonds represent the P3a and the circles the P3b. The 
x axis denotes right to left (positive to negative), the y axis front to 
back (positive to negative), and the z axis is up to down (positive to 
negative).
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Figure 5.18. The locations of the of P3a and P3b for a normal subject 
are shown in this figure. The diamonds represent the P3a and the circles 
the P3b. The x axis denotes right to left (positive to negative), the y 
axis front to back (positive to negative), and the 2  axis is up to down 
(positive to negative).

5.6 Conclusions

We used a newly developed method for the latency estimation of ERP 

components. We performed simulations to evaluate the performance 

of the algorithm in generated data. The results were successful so we 

proceeded to real single trial EEG data. We used the algorithm to 

investigate P300 latency variability in schizophrenia. The algorithm 

works by obtaining a reference signal to be used as template for an
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ERP component. Then we project a number of delayed versions of 

the reference onto the data. This way, we can estimate various ERP 

components that exist in the data. One main advantage of the method 

is that it can be used for single trial EEG data. Single trial analysis 

allowed the measurement of standard deviation and kurtosis for the 

subcomponents, P3a and P3b. The method allowed for various mea­

surements and most importantly by using the standard deviation of the 

P3b there was 80% correct classification between controls and patients. 

The results are consistent with studies suggesting that latency variabil­

ity does not underlie P300 amplitude reduction in schizophrenia, but 

rather reflects a separate abnormality with potential diagnostic value.



Chapter 6

LOCALISATION USING 

SPATIAL NOTCH FILTERS

Localisation of the sources in EEG has attracted great attention by it­

self, separately from the issue of extraction or separation. As described 

in Chapter 3 the traditional methods of complete source reconstruc­

tion suffer from the inverse problem. Here, we develop a method based 

on spatial notch filtering (SNF) which does not suffer from the inverse 

problem and targets specific sources. So far, a method does not exist 

in which a desired signal is used for localisation of brain sources. The 

work in this chapter is supported by the following publications [88] [89]

6.1 Spatial Notch Filtering

The method proposed in this paper uses prior information of the shapes 

of the ERP components and utilises the principles of spatial filtering. 

As it is widely observed, ERP signals are transient waves time-locked 

at approximate latencies after an ERP eliciting event. A good approx­

imation for the ERP components is to model them as Gaussian shaped 

signals (with certain latencies and variances). The proposed spatial 

filter used is designed to cut-off any activity from a specific location.

102
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It will be shown later that if a correct model is used for the ERP sig­

nals and at the same time the activity from the location of an ERP 

component is filtered out, then the algorithm will point to the correct 

location of that component.

The construction of the algorithm is similar to that of the LCMV 

spatial filter method. In the LCMV method the filter output is min­

imised, while the activity from one location passed. Here, we try to 

force the filter output to be as similar as possible to our reference ERP 

component while we cut off the activity from a location. It turns out 

that if the reference signal matches the true ERP and the true location 

is within our solution space (i.e. it is included in the grid search) then 

the algorithm will always attain a saddle point at the correct location. 

This implies that if the ERP model is not exact, for example, the refer­

ence has a slightly different latency or width, the algorithm will try to 

find the closest match between the reference signal and the extracted 

one.

The proposed method does not need any prior assumptions about 

the number of sources, and more importantly it does not require to 

have a noise subspace (i.e. overdetermined system, more sensors than 

sources) as the LCMV and MUSIC method do. Our method works for 

more sources than sensors too. In contrast to the MN methods, our 

algorithm is not an inverse method so there is no need for regularisa- 

tion of the solution. The motivation of this method is to investigate 

the efficacy of our algorithm in high noise conditions and quantify how 

useful the application of the reference signal is. A number of differ­

ent cases are examined for synthetically generated data and real EEG. 

Specifically, we examine the effect of noise and the effect of correla­
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tion between different ERP components and explore various set-ups. 

Finally, we apply the algorithm to real EEG data.

6.2 Sources and EEG Model

The proposed method is based on a head and source model which de­

scribes the propagation of the brain sources to the sensors. The sources 

are modelled as current dipoles and their propagation to the sensors is 

mathematically described by an appropriate forward model [33] [90].

We model the EEG signal as an n x T  matrix, where n is the number 

of electrodes and T  is the number of time samples:

m
X  =  H M S +  N  =  Hj-mj-Sj- +  N  (6.2.1)

3= 1

The term H M S + N  of Equation (6.2.1) is the matrix form of the model 

and H  is an n x 3m matrix describing the forward mixing model of the 

m  sources to the n electrodes and N  is the noise matrix. H  is further 

decomposed into m  matrices H j as:

H  =  [ H , ... H , ... H m] (6.2.2)

where H j is an n  x 3 matrix whose each column describes the potential 

at the electrodes due to the j th dipole for each of the three orthogonal 

orientations. For example, the first column of H  , describes the forward 

model of the x  component of the j th dipole when the y and z components 

are zero. Similarly, M  is a 3m x m matrix describing the orientation 

of the m  dipoles and is decomposed as:
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(  m i 0 0 0 0 \

0 ... 0 0 0

M  =  0 0 m j 0 0

0 0 0 ... 0

(6.2.3)

\  0 0 0 0 mrn

where is a 3 x 1 vector describing the orientation of the j th dipole. 

Finally, sj which is a 1 x T  vector, is the timecourse of the j th dipole and 

N is the combination of the measurement noise and modelling error.

In addition to the forward model, we create a model for the time­

course of the ERP sources as well. It can be seen by many studies that 

they exhibit transient behaviour which can be modelled by a Gaussian 

shaped signal [49] [84]. Here, we model the ERP references as (for 

source i):

Note that we define the EEG as a sum of sources, some of which 

are ERP components. The subscript i in Equation (6.2.4) refers to 

one of the m  sources. Generally, ERPs are not correlated with each 

other and occur at distinct latencies. An exception is the P3a and P3b 

subcomponents, which overlap slightly but their peaks are distinct in 

time. To use the reference model properly, estimation of their latencies 

and widths is necessary. These parameters should correspond to the 

true ERP shape of each component. In this work we focus on the P300 

subcomponents (P3a and P3b) for which an approximate estimate is

Ti(t) = exp(- ( t  -  l i f / a f ) (6.2.4)

where U is the latency of the ith source and cr* is the spike width (Figure
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|i4' h W

Figure  6.1. Three different Gaussian shaped spikes used to model the 
ERP components
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made by inspection of the data [86]. The spike shapes do not need to 

be very accurate since the algorithm finds the closest match.

6.3 Proposed Method

The designed algorithm is based on spatial notch filtering and minimis­

ing the distance between the reference signal and a filtered version of 

the EEG. This is equivalent to a beamformer which tries to set a null 

in the location of the desired source. We perform a constrained opti­

misation technique in which the primary cost function is the Euclidean 

distance between the reference signal and the filtered EEG:

/d(wj) =  ||r< -  w fX ||!  (6.3.1)

where w* refers to the filter for extracting the ith source. Also, note 

that Ti is a vector containing the T  samples of Vi(t). The minimum 

point can be obtained by the classic least squares minimisation and is 

given by:

w i i0pt  =  (XXT) - 1X rf  (6.3.2)

This method designs a filter wi)0pt, which is of dimensions n x 1, and 

gives an estimate of the ith reference signal that exists in the data. 

However, this procedure alone does not include any spatial information 

unless we obtain all the filters w i>opt for all the sources. This way, we 

can construct a matrix W , similar to the separating matrix in an ICA

framework, which could be converted to the forward matrix H  [86]. In

this work we wish to estimate the location of a source which matches 

our reference signal without having to estimate the w i)0pt filters for
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other sources.

If we minimise fd(w) subject to / c(w) =  0, i.e.:

f c( w) =  wTH(p) =  0 (6.3.3)

where f c(w) is a 1 x3 function and H(p) is the forward matrix of a dipole 

at location p, and perform a grid search over a number of locations then 

the algorithm will point to the true location of the reference signal (as 

shown later). Note that H(p) denotes the forward matrix for spatial 

location p while H* denotes the submatrix from Equation (6.2.2). For 

example, if source i is at location q then H(g) =  H*. By imposing such a 

constraint on the original cost function we force the filter output to have 

minimum energy from a particular location. Such a constraint function 

can be thought of as a spatial notch filter. A spatial notch filter removes 

any signal coming from a specific location. The stopband behaviour 

and accuracy of the filter depends on the number of electrodes and the 

spacing between the sources in the grid.

Hence, in fact, we are designing an adaptive null beamformer which 

scans a number of locations and tries to find the closest match to our 

reference signal. However, at the same time, we are testing for the 

absence of the reference signal. This expresses the main novelty of this 

work. When the proposed beamformer scans a particular location in 

the candidate source space it tries to match the reference signal while 

placing a null in that particular location. If the reference signal does not 

originate from that location the beamformer will try to find the closest 

match but will be influenced by the three degrees of freedom (one degree 

of freedom for each orthogonal dipole orientation) that have been used 

by placing the null in that location. So, the solution differs from the
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optimum filter that extracts the reference with minimum error. In this 

case, our adaptive beamformer will not be equal to w^ opt of Equation 

(6.3.2). The wi)0pt filter places nulls on the locations of the undesired 

sources (assume r* is our desired source at location H* and assuming no 

noise). That is because the LS algorithm, which tries to extract only 

our desired source r i5 nulls the mixing vectors of all sources other than 

Tj, which is the model of source i:

w?op(Hi mj =  0 j  = 1...TO and j  i (6-3.4)

where j  runs over the range of sources (ERPs) as in Equation (6.3.1). 

Hjirij is the mixing vector of source j .  At some point during the grid 

search, the forward matrix H(p) takes the value of the forward matrix of 

source i, our desired source. At this point H(p) =  Hi, which will place 

another null in the location of our desired source. So, at this point 

our adaptive beamformer (with primary and constraint functions) w 

satisfies:

wTH Jirij =  0 j  = l...m  (6.3.5)

Note that for source i wTHjiiii =  0 because w TH* =  0. Hence, the 

only result of the filter will be a zero signal, which can only be obtained 

by a filter equal to the null vector. That is because we have cancelled 

out all other signals. This happens only when the beamformer has 

been constrained to be at the location of our desired source. For any 

other location, the beamformer will try to do its best according to the 

conditions imposed by the constraint. So, we steer our beamformer 

constraint over a number of candidate source locations and at some
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point it fails to give any output (i.e. it is equal to the null vector). 

That location will be the location of the desired signal. In other words, 

the optimum point of the process is where the algorithm fails to find a 

solution.

We will now show that for the correct reference and location the 

filter w is forced to zero. The constrained problem can be posed as:

min fd(w) subject to / c(w) =  0 (6.3.6)w

This constrained problem can be converted to an unconstrained 

optimisation procedure by using Lagrange multipliers. Consequently, 

Equation (6.3.6) is converted to (in the following equations, index i has 

been dropped for convenience):

F(w)  =  f d(w) +  / c(w)q =  ||r  -  w TX |\\ +  wTH(p)q (6.3.7)

where q is a 3 x 1 vector of Lagrange multipliers. The derivative of 

F{w) w.r.t. wT is:

( rrT ~  2rXTw +  w TX X Tw +  wTH(p)q} (6.3.8)
o w 1 O V f 1

where i has been discarded for simplicity. This becomes:

=  -2 rX T +  2wtX X t +  q^HCp)7" (6.3.9)
O W 1

To obtain the minimum we set Equation (6.3.9) to zero and obtain:
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wT = i(2 rX T -  qTH(p)T)C “1 (6.3.10)

where Cx = XX T is the covariance matrix of X. If we substitute 

Equation (6.3.10) into Equation (6.3.5) we obtain:

wTH(p) =  i  (2rXT -  qTH(p)r )C “ *H(p) =  0 (6.3.11)

which will give us the Lagrange multipliers q:

qT =  2rXTC ;1H(p)(H(p)TC ;1H (p))-1 (6.3.12)

Now, we substitute qT into Equation (6.3.10) and we obtain the full 

expression for the filter:

wT =  (rX T -  rX TC j 1H(p)(H(p)7’C “ 1H (p))_1H(p)T)C “ 1 (6.3.13)

which splits into two parts; the first part is the solution to the primary 

cost function /<*(w) and the second part is due to f c(w):

wT =  w£,( -  rX TC “1H(p)(H(p)TC j 1H (p))_1H (p)TC “ 1 (6.3.14)

We now proceed to show that if r  corresponds to a source si} which 

is uncorrelated with the other sources, and the forward matrix Hi is 

included in the grid search, then w will be forced to zero. This happens 

only for the conditions mentioned above. Consider the product rX T
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(ignore the noise for the moment) which is:

m
rXT = r ( 5 Z H Jm Jsj ) T

J =1 (6.3.15)
=  $ » J h T

3= 1

So if the sources are uncorrelated then we obtain:

rX T =  r s f m f H  J  (6.3.16)

By substituting that into Equation (6.3.14) we achieve:

W T =  -  r s > f H f C ; 1H (p)(H(p)TC ; 1H (p ))-1H(p)TC ; 1

(6.3.17)

Now, at some point during the grid search the matrix H(p) will take the 

value of Hi which will give through Equation (6.3.17), the following:

w T = w ^ - r s f m f H f C ; 1

= w ^  -  rX TC “ 1 (6.3.18)

= WS* -  w lpt =  0

So, w  =  0 only for the location corresponding to the desired signal. A 

measure of how close w  is to the null vector will point to the correct 

location. The procedure is to calculate Equation (6.3.14) for all loca­

tions obtained from a forward model and choose the solution with w 

closest to the null vector. The closeness measure we use is the norm 

of w since it reflects the distance of w to the origin, which is the null 

vector.
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6.3.1 Correlated sources

In this section we explore the cases where the desired source is corre­

lated with some other sources. For example, the P3a and P3b usually 

overlap temporally. In such a case the w vector will not become zero 

at the correct location. It will be biased by the cross-correlated terms 

as shown in the summation of Equation (6.3.15). After some algebra, 

we get for the filter w  (at the location i of our desired source):

m
wT =  - r  Y ,  (6.3.19)

j  =  l j^ i

So, at the correct location of source s* the norm of w  will depend on 

the cross-correlation between the desired source r  =  s* and the rest of 

the sources as well as the rest of the product in Equation (6.3.19). In 

such a case it is possible for the norm of w  to be minimised in a wrong 

location (however not equal to the null vector). Note that the effect of 

the correlation between sources will influence the beamformer for every 

location. If we denote the beamformer as w c  when there are correlated 

sources and w  for the uncorrelated case then we can write:

w£ =  w T -  rX TC j 1H(p)(H(p)TC " 1H (p))_1H(p)TC~1 (6.3.20)

where X  is the matrix containing all the sources that are correlated 

with our desired source:
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where in this case sj for j  =  l...c is the subset of c sources that are 

correlated with the desired source. The effect of source correlation is 

investigated in section 6.4.

6.3.2 Noise efTect

If we include the noise effect in Equation (6.3.15) it changes to:

i= 1

If we denote the beamformer as when the noise effect is considered 

and w the beamformer for the noiseless case then we can write:

=  w T -  r N TC~1H(p)(H(p)TC~1H(p))~1H(p)TC~1 (6.3.23)

The last term in the right hand side of Equation (6.3.23) is influenced 

by the correlation between the desired source and the noise sequence. 

The effect depends on the statistics of the noise, the number of samples, 

and the rest of the product in Equation (6.6.2). The effect of the noise 

is investigated in section 6.4 as well.

6.4 Experimental Results

In this section we apply the algorithm to a simulated EEG signal con­

taining a number of ERP components and we localise the P3a and P3b 

from real EEG data. We investigate a joint ICA-SNF procedure in 

which the desired signal is obtained directly from ICA.

m
rX T = r ( ^ H Jm JsJ +  N )T

m (6.3.22)



Section 6.4. Experimental Results 115

Localisation plot
100

SO

«
&
I

- 5 0 ------------------------ ■-------------------------  *---------------------------------------------------
0 500 1000 1500 2000 2500

Location number

Figure 6.2. Localisation plot for one source uncorrelated with other 
sources in a noise free environment. The location number refers to a 
geometrical location in a three-dimensional grid within the brain.

6.4.1 Simulated EEG

Here, we investigate the ability of the algorithm for correct localisation 

of the sources in various scenarios. A forward model is obtained us­

ing the B rainS to rm  software [72]. We use a 3 layer spherical head 

model with conductivities of 0.33[iS/cm  , 0.0042^5/cm, 0.33^S/cm, 

for scalp, skull and brain respectively. We create thirty-two Gaussian 

pulses in thirty-two different locations with random orientations, peak­

ing at different latencies and using thirty electrodes. This is to have an 

underdetermined system. We consider several different cases in order to 

evaluate the effect of noise and correlation between the sources. There 

are 2700 voxels. The source we are looking for is originally placed at 

location numbered 1000. For the simple case of no noise and uncorre­

lated1 sources we obtain accurate localisation of the source as depicted 

in Figure 6.2.

So far, we have used a single orientation set-up for the mixing of
T

!we define correlation between vectors x and y as rx>y =  (jxjf2|î |)2 where | | . | | 2  

denotes Euclidean norm.
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the sources. The performance of the algorithm can be affected by the 

orientation of the dipole while the other parameters are fixed. Now we 

consider the statistical performance of the algorithm for various random 

orientations. This is to show how the performance of the algorithm is 

affected by the dipole orientation. Figures 6.3, 6.4, 6.5 and 6.6 show the 

percentage of correct localisation for 1000 different randomly oriented 

dipoles. We also compare the standard beamformer (dashed line) with 

our algorithm (bold). Figure 6.3 shows the performance of the algo­

rithm as the SNR increases for a constant correlation (10%) between 

two sources while Figure 6.4 shows the same for 30% correlation. In 

Figures 6.5 and 6.6 we show the performance of the algorithm with 

respect to the correlation between the sources for constant SNR values 

(15dB and 5dB). Again, the standard LCMV algorithm is compared 

with our algorithm. Note that for all the figures we have the same 

number of sources (32) using the same setup.

It can be seen from the plots that the algorithm is very robust in 

terms of noise but the performance degrades as the level of correlation 

increases. Compared to the LCMV method, our algorithm demon­

strates much better performance for high noise levels. However, LCMV 

has a better performance for high correlation values.

6.4.2 Real EEG

In the section we used the same recording as in Section (4.1.2). In 

Figures 6.7 and 6.8 we see the locations of the P3a and P3b sources 

for a number of normal individuals and schizophrenic patients. It can 

be seen that the locations of the P3a and P3b for the schizophrenic 

patients are less distinct than the locations for the healthy individuals.
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Figure 6.3. Percentage of successful localisation for various SNRs 
for our algorithm (bold) and the LCMV (dashed). The purpose is 
to evaluate the performance of the algorithm for different orientations 
of the sources. We used the same noise sequence for 1000 different 
orientations and various SNR values. Here, the correlation is 10%.
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Figure 6.4. Percentage of successful localisation for various SNRs 
for our algorithm (bold) and the LCMV (dashed). The purpose is 
to evaluate the performance of the algorithm for different orientations 
of the sources. We used the same noise sequence for 1000 different 
orientations and various SNR values. Here, the correlation is 30%.
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Figure 6.5. Percentage of successful localisation for various correlation 
values for our algorithm (bold) and the LCMV (dashed). The purpose is 
to evaluate the performance of the algorithm for different orientations 
of the sources. We used the same noise sequence for 1000 different 
orientations and various correlation values. Here, the SNR is 15dB.
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Figure  6.6. Percentage of successful localisation for various correlation 
values for our algorithm (bold) and the LCMV (dashed). The purpose is 
to evaluate the performance of the algorithm for different orientations 
of the sources. We used the same noise sequence for 1000 different 
orientations and various correlation values. Here, the SNR is 5dB.
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Figure 6.7. Localisation plot for the P3a, circles o, and P3b, squares 
□, for 10 normal people. The numbers correspond to the control sub­
ject’s number (e.g. o1 shows the location of the P3a for control subject 
number 1). The three axis refer to the geometrical coordinates in me­
ters. The y axis determines front-back of the head, x axis is left-right 
and z is the vertical position. Units are in meters.

The average distance for the normal subjects was 12cm while for the 

patients it was 8cm. The standard deviation of the distances was 0.03 

for the normal subjects and 0.036 for the schizophrenic patients. In 

Figure 6.9 we see a bar chart of the mean distances and standard errors 

between the normal and schizophrenic patients. Note that by source we 

mean a single dipole; although this is not generally correct. However, 

if the brain activity is concentrated in a specific area, the single dipole 

model can provide a good approximation [17] [38].

6.5 A hybrid ICA-SNF system

Until now we had knowledge of the desired source beforehand. In this 

section we investigate the case where we obtain the desired source using 

the Infomax algorithm. We perform experiments on simulated data and 

use the same setup as in last section.

We use the original unconstrained Infomax algorithm as described
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Figure 6.8. Localisation plot for the P3a, circles o, and P3b, squares 
□, for 10 schizophrenic patients. The numbers correspond to the 
schizophrenic patient’s number (e.g. o1 shows the location of the P3a 
for schizophrenic patient number 1). The three axis refer to the geo­
metrical coordinates in meters. The y axis determines front-back of 
the head, x axis is left-right and z is the vertical position. Units are in 
meters.

Bar chart of mean distances and standard errors

Figure 6.9. Bar chart of the distances of normal subjects and 
schizophrenic patients, (a) shows the mean distances between P3a and 
P3b for the normal subjects, (b) shows the standard deviation of the 
distances from the mean, (c) shows the mean distances between P3a 
and P3b for the schizophrenic patients and (d) shows the standard 
deviation of the distances from the mean
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Table 6.1. Distance in meters between the P3a and P3b locations for 
control subjects and schizophrenic patients.________________________

Subject Number Distance (meters) for Control Distance(meters) for Patient
1 0.1145 0.1063
2 0.0632 0.0447
3 0.0825 0.0663
4 0.1300 0.1217
5 0.1539 0.1269
6 0.1273 0.1095
7 0.1086 0.0985
8 0.1269 0.0316
9 0.1640 0.0332
10 0.1304 0.1005

in section 3.5. After the sources are estimated we use a very simple 

method to choose the one closest to our desired latency. We compute 

the correlation between all of our desired sources and a rough template 

that peaks at the desired latency. Then we choose from the estimated 

sources the one with the highest correlation.

Finally we use that source as our desired source for the SNF algo­

rithm. We run similar experiments as in last section. In Figure 6.10 

we see the obtained desired source from ICA while in Figure 6.11 we 

see the true source. The SNR is 20db in this case.

Obtained source from ICA

§

800 1000600200 400
time in ms

F ig u re  6.10. The obtained desired source from ICA(Infomax).
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F igure  6.11. The estimation of the true source using ICA.

We run the simulation 1000 times and the mean Euclidean distance 

between the true source and the estimated one from ICA is 0.7 while a 

typical Euclidean distance between two sources that are near in latency 

is 1.3. Compared to the case where we exactly know the desired source 

the algorithm exhibited a 30% drop in localisation success for 20dB 

SNR while for low noise this figure increased to 45%.
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6.6 Correlated Sources

If there are two or more sources correlated with our desired signal then 

the performance of the algorithm degrades as observed in the previous 

sections. In Equations (6.6.1) and (6.6.2) we saw the relation between 

the obtained w  for the correlated and uncorrelated cases.

w£ =  w T -  rX TC “ 1H (p)(H (p)TC “1H (p))_1H (p)TC ~l (6.6.1)

C

X  =  £ H ,m 3s3 (6.6.2)
J =1

Lets assume that there are only two sources that are correlated and 

we know their waveforms. Then Equation (6.6.1) breaks down to:

=  w r  -  r s J m j H j C “1H (p)(H (p)TC “ 1H (p))_1H(p)TC “ 1

(6.6.3)

Hence, in order to overcome the problem with correlation we need 

an estimation of m j and H ,. The procedure for the estimation is as 

such:

.  Find -  w ^ ( - r X TC ; 1H (p)(H(p)TC ; 1H (p ))-1H(p)TC ; 1 as 

in Equation (6.3.14) for every location p,

•  For every such w c  we include another loop that runs through all 

locations, use index q here, and find of Equation (6.6.3),

•  The only unknown is m 9 which is found by estimating the proper 

m q that minimises w g,

•  Among all w 9 which are obtained through a minimisation process,
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we find the one with the smallest norm.

In other words we minimise Equation (6.6.3) with respect to the 

location of the desired source, the location of the correlated source and 

the orientation of the correlated source.

6.7 Conclusions

In this chapter we developed an algorithm for localisation of the P300 

subcomponents. We modified the LS approach by using a desired signal 

and a spatial notch filter. The desired signal is designed based on prior 

knowledge of the shape of the P300 subcomponents. The algorithm is 

in fact a special kind of beamformer and is a constrained version of the 

original LS solution. It points to the correct location when we have a 

suitable model of the actual sources and the sources are uncorrelated. 

As seen in section 6.4, the correlation between the sources and increas­

ing the noise level can degrade the performance of the algorithm but 

even in these cases the algorithm achieves high localisation accuracy.

We applied the algorithm to real EEG data and compared the 

locations of the P300 subcomponents between normal subjects and 

schizophrenic patients. We achieved that the locations of the P300 

subcomponents are mixed for the schizophrenic patients, whereas the 

locations are more distinct for a healthy subject. Moreover, the compar­

ison between our proposed beamformer and the LCMV method showed 

an improved quality of the results when using our method.

We also combined ICA and SNF in which the desired signal is ob­

tained directly from an ICA algorithm. The results were encouraging 

with small errors even for high noise level.



Chapter 7

SUMMARY, CONCLUSIONS 

AND FUTURE WORK

The field of EEG signal processing and more specifically the extrac­

tion and localisation of the P300 subcomponents have attracted great 

attention in the last two decades. Advances in signal processing and 

the application of well known methods in the field of ERP has en­

hanced the analysis of brain signals. Moreover, the creation of software 

packages such as Brainstorm [72] and EEGLAB [91] has made EEG 

analysis easier even for non-experts. As a result, the possibilities for 

research are endless. Although the signals of interest in our thesis, 

namely the P3a and P3b subcomponents, have very valuable diagnos­

tic information, they have not been effectively explored by experts in 

ERP analysis. Also, methods specifically designed for their automatic 

recognition have not been developed.

ERP signal processing suffers from poor spatial resolution, low SNR 

and regarding our research, the temporal overlap of the P3a and P3b 

subcomponents. In this thesis we developed three methods that dealt 

with those problems. All of the developed methods used prior knowl­

edge of the shapes of the P300 subcomponents. However, the implemen­

tation of the prior knowledge has been substantially different between
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the methods. There has been a gap in existing methods regarding the 

use of prior information when dealing with ERP signal processing. In 

this thesis we aimed to close that gap.

In section 4.1 we enhance the conventional Infomax algorithm by 

adding a constraint function to the original Infomax cost function. The 

aim of the constraint function is to aid Infomax in the extraction of 

the desired P300 subcomponents (see section 4.1). The resulting algo­

rithm’s outputs resemble the true sources more closely than those of the 

unconstrained Infomax. Also, there are occasions that unconstrained 

Infomax fails to produce any of the desired sources and incorporating 

the constraint alleviates that problem. For an investigation of the ef­

ficacy of the algorithm on simulated data see section 4.1.2 and on real 

EEG data see section 4.1.3. Another inherent problem with placing the 

constraint function is the reliable use of the prior information that we 

have. In section 4.1.1 we describe how we obtained that information. 

The BSS algorithms provide an estimate of the mixing matrix of the 

propagation medium from the sources to the electrodes. This in turn 

can provide an estimate of the location of the sources if there is proper 

knowledge of the propagation process. In section 4.1.4 we developed a 

simple method that can localise the extracted sources from the EEG. 

The method, albeit not entirely exact, has the ability to distinguish 

between sources from different locations.

In section 4.2 we apply a constraint function this time to the BSE 

method. BSE methods extract sources one at a time and this is desir­

able for a number of reasons. An algorithm can be designed for specific 

situations; the algorithm is much simpler and faster to converge and 

it is used to concentrate on the signals of interest. In section 4.2 we
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apply the same constraint function to the basic BSE cost function. The 

algorithm was applied on real EEG data and the main advantage over 

unconstrained BSE is that it produces an output resembling a P300 

subcomponent every time.

In chapter 5 we developed a novel method that is especially designed 

for the single-trial estimation of the P300 subcomponents. Unlike the 

reference signals used in Chapter 4 we used generic templates that re­

semble the P3a and P3b signals. The reason for that is that we wanted 

the process to be completely blind in the sense tha t we do not use any 

information from the EEG. In other words we desired to create an algo­

rithm that can be used at any occasion without any information from 

the EEG. In section 5.1 we introduced an algorithm for the extraction 

of the sources together with a localisation algorithm that is an enhanced 

version of the localisation algorithm of section 4.1.4. In section 5.2 an 

investigation was performed on the validity of the method regarding 

simulated data and the performance was satisfactory and the resulting 

latency estimation was succesfull even in the presence of noise and in 

the case where the sources are correlated. Section 5.3 demonstrates the 

application of the algorithm on real EEG data. We measured various 

features of the extracted sources and we found variability between the 

P300 subcomponents of control subjects and schizophrenic patients. 

Results on the localisation algorithm are shown in section 5.4 where we 

investigated the efficacy of the algorithm on single trial data.

In Chapter 6 a novel method (SNF) that localises brain sources 

when we have a good knowledge of their shape was presented. It is 

based on the principles of LS and spatial filtering. The results were very 

satisfactory and a localisation method that uses desired signals does
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not exist in the literature. In section 6.3 we described the SNF method 

from basic principles and gave a proof of its validity. In sections 6.3.1 

and 6.3.2 we investigated the performance for the cases when there is 

noise and when some sources are correlated. Section 6.4 proceeded with 

experiments that demonstrated the localisation success of the algorithm 

in various scenarios; high-low SNR, high-low correlation. SNF exhibits 

very good performance even in the presence of noise and correlated 

sources. It was empirically verified that the localisation success is higher 

than that of the LCMV method (see section 3.4). A combined ICA- 

SNF method was shown in section 6.5 where the extracted sources from 

ICA as desired signals are used in SNF. The results were good but there 

is room for further investigation. Finally, in section 6.6 we described a 

solution to the problem of correlated sources.

7.1 Future work and development

As mentioned before the possibilities for ERP research are endless 

within the field of signal processing. Similarly, the methods shown 

in this thesis have great potential for further research and development 

for a variety of applications.

The CBSS algorithm of Chapter 4 can be modified in many ways 

to better enhance its performance. Firstly, the pdfs of the sources in 

an ICA framework can be optimised to better fit the pdfs of the true 

sources (see section 3.5). Also, other constraint function can be applied 

such as temporal smoothing or spatial decorrelation. Regarding CBSE 

(section 4.2), other BSE cost functions can be used such as Fastlca [42].

The algorithm of Chapter 5 can be combined with ICA to extract 

the sources instead of the LS algorithm. In other words, Gaussian
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spikes should be still used as templates but an ICA algorithm should 

be responsible for the extraction. Moreover, an in depth study into 

a classification algorithm for the various features produced from the 

algorithm would be highly desirable. This can lead to an automatic on­

line classification algorithm for the distinction between schizophrenic 

patients and healthy subjects. Furthermore, the classification algorithm 

can be extended to distinguishing between types of schizophrenia and 

the sex of the patient.

The novel method in Chapter 6 deserves further study and explo­

ration. It has to be mentioned that the algorithm is not limited in 

the EEG field. It can be used in any scenario where we have some 

knowledge of the propagation process between the sources and sensors 

(in our case electrodes). For example, the location of a sound source 

could be estimated provided we know the locations of the microphones 

and the approximate waveform of the sound source. More importantly, 

the algorithm can be modified to work in the frequency domain; in 

effect there is no difference since we can treat the spectrum of the sig­

nal as any other signal. In section 6.3.1 we observe that knowledge of 

the noise would lead to improvement in the localisation success rate. 

A common method used in other signal processing methods [38] is to 

estimate the noise statistics prior to the onset of the EEG signal and 

use this estimate as the noise within the current EEG dataset range. 

Finally, the ICA-SNF method should be applied to real EEG data for 

the automatic classification of the P300 subcomponents.
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