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Summary

This thesis investigates the idea of balancing different constraints in order to find 
optimal solutions to two personnel scheduling problems, within the framework of 
constructive metaheuristic approaches. The two problems considered are a nurse 
scheduling problem, for which finding feasible solutions is known to be difficult and 
for which the hard and soft constraints are in direct conflict, and a medical student 
scheduling problem for which there is little relevant literature; this second problem 
also has conflicting hard and soft constraints, but presents further conflict between the 
different soft constraints. The methods used to solve these problems are focused on 
two constructive metaheuristics in particular: Greedy Randomised Adaptive Search 
Procedures (GRASP) and Ant Colony Optimisation (ACO) and for each approach 
several construction heuristics are introduced and compared. Using GRASP, a number 
of local search neighbourhoods are established for each problem, while for ACO the 
suitability of three trail definitions are compared. In order to further explore the 
balance which may obtained between the different constraints and objectives for the 
two problems, hybrid constructions are investigated, incorporating exact methods 
which take advantage of the underlying structures of each problem with regards to 
feasibility. For medical student scheduling, this exact method was developed into a 
new type of construction mechanism providing much improved results over a 
standard heuristic approach. Further enhancements investigated include the use of 
problem-specific feedback for nurse scheduling and the use of an intelligent memory 
procedure for the medical student scheduling problem. For the nurse scheduling 
problem, the final algorithm developed was able to rival the best in the literature so 
far and produce optimal solutions for all available datasets. For the medical student 
scheduling problem, optimal solutions are not known, but the results obtained are very 
promising and provide a good basis for further study of the problem.
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Chapter 1
Introduction

In today’s society, a multitude of large and complex problems arise which require 

high-quality solutions. Usually, there are a number of different constraints on the 

problem which must be satisfied and, further, these can be split into hard and soft 

constraints depending on whether they are essential or merely desirable, respectively. 

Problems with both hard and soft constraints have, essentially, two separate 

objectives: firstly, all the hard constraints must be satisfied in order for the solution to 

be feasible and secondly, the soft constraints must be satisfied as far as possible. 

Where there are several soft constraints, this raises a further issue of which of these 

constraints are the most important and, from an algorithmic point of view, how to deal 

with the problem of setting appropriate weights. Often, different constraints will be in 

direct conflict with one another, and so a trade-off is necessary in order to find 

optimal solutions. Additional difficulties occur when the satisfaction of the hard 

constraints is non-trivial and this raises a further issue of how much bias can be given 

to the feasibility aspects of the problem without adversely affecting the final solution 

quality. Clearly, if the bias is too much in favour of the soft constraints, resulting
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solutions will not be feasible, but by focusing solely on the satisfaction of the 

feasibility constraints, optimal solutions may be missed.

With very small problems, all possible solutions to the problem may be enumerated 

and finding an optimal solution is reduced to the task of merely choosing the solution 

with the best cost. With larger problems this is not feasible, but, for certain problems, 

linear and mathematical programming models will be able to find the optimal solution 

in a reasonable amount of time. However, for NP-hard problems, the amount of time 

required to solve such a model grows exponentially with problem size and so, for this 

type of problem, inexact, heuristic methods may be used to search for good solutions. 

Although optimal solutions cannot be guaranteed, these types of methods have been 

shown to be capable of producing high-quality solutions within a much shorter time

frame.

The focus of this thesis is the careful balance required between the different 

constraints in these types of large NP-hard problems, involving hierarchies of 

objectives and conflicting constraints, and the resulting trade-offs necessary to 

produce high-quality solutions. In particular attention is given to the solution of two 

multiple-choice scheduling problems, a nurse scheduling problem and a medical 

student scheduling problem, within a constructive metaheuristic framework. Both 

problems consist of assigning a number of tasks to each individual such that certain 

constraints are met. For both problems there are conflicting hard and soft constraints 

and these must be successfully balanced in order for optimal solutions to be produced. 

Both have been chosen as they are suitable to be solved using an iterative constructive 

technique and the solution methods applied to each problem will be discussed in the 

next section.

The nurse scheduling problem consists of assigning each nurse in a ward with a 

complete set of shifts for a one-week planning period such that the staffing 

requirements of the ward are met for each of 14 shifts and 3 skill or ‘grade’ levels. For 

each available nurse, a single cost relating to the soft constraints is known for each 

complete set of potential shifts, or ‘shift patterns’. These costs are based on the 

nurses’ individual preferences; by keeping these costs low, staff satisfaction is 

increased. The problem has been solved previously using a variety of techniques and
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obtaining this balance between the two aspects of the problem has proved very 

difficult. It is interesting to consider here because a great deal about the problem 

structure is known and so different ways of balancing the hard and soft constraints can 

be investigated with prior knowledge of the difficulty of each problem aspect. Further, 

since optimal solutions have been obtained using an IP approach, often requiring an 

excessive amount of computation time, the results of solution approaches in this thesis 

can be compared directly with the optimal costs, as well as with those of other 

metaheuristic techniques.

The medical student scheduling problem is interesting for study for a different set of 

reasons. As well as providing conflict between the hard and soft constraints, further 

conflict exists between different soft constraints. It consists of assigning each student 

to one location or ‘firm’ in each of 5 timeslots in which to study the 5 necessary 

specialities such that each speciality is studied exactly once and the capacities of the 

firms not exceeded in any timeslot. The soft constraints are incorporated to give each 

student as much experience as possible, by penalising situations where a student visits 

the same hospital, is taught by the same consultant, or is placed in the same firm as 

any other given student, on more than one occasion. While the nurse scheduling 

problem has had the soft constraint violations combined into a linear cost function, so 

that one cost exists for each potential nursing assignment, the objective function of the 

medical student scheduling problem presents both quadratic and quartic terms, so the 

cost of each assignment depends very much on every other. Not only does this mean 

that the objective function is more complicated, but it means that an IP formulation of 

the problem is not practical due to the number of binary variables which would be 

required in order to linearise it; thus optimal solutions are not known. Further, this 

problem has not been well studied and so the structure of this problem and the 

particular difficulties associated with achieving good solutions have not been 

identified. However, the similarities between the two problems allow an exchange of 

ideas between them about the construction methods. The aim is first to find successful 

methods for balancing the constraints of the nurse scheduling problem and then to 

apply these techniques as far as possible to the medical student scheduling problem. 

The aim of this thesis is to successfully identify methods of balancing different and 

conflicting constraints and to evaluate the methods successful on one problem on 

another. By developing an understanding of the delicate balance required for the nurse
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scheduling problem, known to be difficult in this respect, and further, by applying 

similar techniques to another, relatively unknown problem with a similar requirement 

for such a balance, but a very different problem structure, a greater understanding of 

the difficulties of finding a suitable balance and the successful techniques for 

overcoming these difficulties can be provided.

There are two types of metaheuristics: those which are initialised with a random 

solution, such as Tabu Search and Simulated Annealing, and those for which the 

construction of each solution is important, such as Greedy Randomised Adaptive 

Search Procedures (GRASP), Ant Colony Optimisation (ACO), and Genetic 

Algorithms (GAs) where the solution components are not encoded directly. 

Manpower scheduling problems naturally lend themselves to a solution approach of 

the second type since, when assigning tasks to personnel, it is possible to bias the 

choice of each assignment such that solution quality is improved. As mentioned, this 

thesis is concerned with creating solutions within a constructive metaheuristic 

framework and the two problems chosen are suitable for such methods to be applied. 

The two metaheuristic approaches applied in this thesis are GRASP and ACO. Both 

of these fit into the second metaheuristic category, using a constructive approach as a 

major part of the solution process; GRASP creates one construction and then uses a 

local search approach to improve this constructed solution, applying this two-part 

process repeatedly in what has been likened to a repetitive sampling technique; ACO 

can be viewed as a population based approach and uses information from the solutions 

in previous cycles to feed back information about which assignments were successful, 

in order to aid the construction of better solutions in future. GRASP and ACO have 

been widely employed in the literature and yet the role of the construction has been 

very little studied, although much work has been done on enhancing the basic 

algorithms as will be discussed further in the literature review in Chapter 3.

1.1 Overview of research presented in this thesis

As discussed, this thesis presents two problems: nurse scheduling and medical student 

scheduling. This variant of the nurse scheduling problem has been the subject of 

much investigation. This research is motivated by the work of Aickelin (1999), who 

presented a series of heuristics to construct a solution which balance the bias between
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feasibility and optimality, within the context of a GA approach. The quality of the 

results obtained was variable, but the research showed that the idea of balancing 

conflicting constraints within a constructive framework was worth further research. 

The two metaheuristics introduced to solve the problems are GRASP and ACO, as 

mentioned previously. These two approaches use a similar type of construction and 

they are chosen for study because ideas from one can easily be carried over into the 

other; a single GRASP construction with certain parameters is equivalent to an ACO 

algorithm with population size 1 and with no feedback from previous solutions.

One of the important features of both these scheduling problems is that each has an 

underlying structure pertaining to the feasibility which may be exploited in order to 

improve the chances of creating feasible solutions. It shall be shown how, for the 

nurse scheduling problem, a knapsack model may be used to ensure that any 

constructed solutions may be made feasible through the use of local search and how, 

for the medical student scheduling problem, the hard constraints may be modelled as a 

network flow problem and thus solved exactly. For the medical student scheduling 

problem, then, the use of this network flow model in conjunction with a heuristic 

construction is able to guarantee that the constructed solutions will be feasible. The 

knapsack model, relating to the feasibility of the nurse scheduling problem, is based 

only on a relaxation of the hard constraints, however, and so is not able to guarantee 

feasibility, but only make feasibility more achievable. The hybridisation of techniques 

to balance the different constraints will prove very important for both problems and 

will be discussed more fully in the appropriate results sections.

The original intention was to apply both GRASP and ACO to both nurse scheduling 

and medical student scheduling and both of these approaches have been applied to the 

nurse scheduling problem. However, after a further investigation of the medical 

student scheduling problem structure in Chapter 2, and considering the information 

gained by applying ACO to the nurse scheduling problem in Chapter 5 and the poor 

quality of the GRASP constructions for medical student scheduling obtained in 

Chapter 6, it was decided that an ACO application to the medical student scheduling 

problem would not be worthwhile. Chapter 2 goes into some of the reasons why the 

medical student scheduling problem does not lend itself well to the successful 

incorporation of feedback from one solution to the next.
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1.2 Aims

This thesis has three main aims, all of which are related to the exploitation of a high- 

quality constructive approach. These aims are:

1. To investigate the role of the construction within a metaheuristic approach.

2. To investigate how different constraints may be balanced within a construction.

3. To investigate how exploiting problem structure with regards to feasibility may 

improve constraint balance within the construction.

A secondary aim is of course to try to produce high-quality solutions for the problems 

studied. A fourth aim is therefore:

4. To produce a robust method for each problem, capable of producing high-quality 

solutions for all problem instances.

Each of these aims is now discussed in further detail.

1. Investigating the role o f  the construction within a metaheuristic framework

By investigating both GRASP and ACO approaches to the problem, the roles of the 

construction and improvement phases in a solution approach can be determined as 

well as the relative importance of each. As has been discussed, the GRASP and ACO 

constructions are very similar and it will be interesting to investigate how much of the 

information necessary to successfully balance the different constraints can be built 

into the constructions and whether it is possible to maintain high solution quality only 

using very simple neighbourhoods. The question which will need to be answered is 

whether the construction can provide sufficient balance to enable satisfaction of all 

constraints or whether some aspects must necessarily be left to the local search. For 

example, it shall be investigated whether or not results can be improved by allowing 

the construction to concentrate only on one aspect, such as feasibility, rather than 

finding a balance. This type of approach provides a new type of balance to be 

investigated, occurring between the construction and local search, a comparison 

which does not often appear in the literature. The ACO algorithm often incorporates
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an element of local search to improve solution quality, even though it is not part of the 

standard algorithm, and it will be interesting to note whether the feedback mechanism 

will be sufficient to build high-quality solutions, or whether local search will still be 

necessary.

In terms of the nurse scheduling problem, the most successful approach in the 

literature is a tabu search method, which is initialised with a random solution and 

focuses on improving using very complex and problem-specific neighbourhoods. It 

will be interesting, therefore, to see whether good solutions can be obtained for this 

problem with a method which exploits an aggressive construction rather than local 

search.

2. Investigating how different constraints may be balanced within a construction

The problems presented in this thesis provide a variety of conflicting constraints and 

in order to find good solutions a balance must be found, such that all hard constraints 

are satisfied, but not at the expense of unnecessary soft constraint violations. As 

mentioned previously, while the nurse scheduling problem offers conflict between the 

hard and soft constraints, the medical student scheduling problem offers further 

conflict between a number of different soft constraints. In order to successfully 

construct high-quality schedules, it is essential that an appropriate score function can 

be found which will be able to balance the weights associated with each type of 

constraint.

3. Investigating how exploiting problem structure with regards to feasibility may 

improve constraint balance within the construction.

As mentioned, each problem has an underlying structure pertaining to the feasibility 

which allows the constraints, or a relaxation of the constraints to be modelled exactly. 

Clearly, by incorporating these types of exact approaches, the construction is biased 

towards feasibility. This thesis investigates the need for the use of such methods in 

order to determine whether they are a necessary addition or whether the bias in favour 

of feasibility is too great and becomes an obstacle to the satisfaction of the soft 

constraints. On the other hand, incorporating the feasibility constraints in this way
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may enable the heuristic score functions to focus more strongly on the remaining 

constraints enabling solution quality to be improved overall. It will need to be 

determined whether this type of exploitation is advantageous and the effect it has on 

the balance required by the heuristic used alongside it.

4. Producing a robust method fo r each problem, capable o f producing high-quality 

solutions for all problem instances.

Secondary to the main thrust of the research, it will be interesting to determine 

whether, using the construction-based techniques explored in the fulfilment of aims 1 

-  3, the methods produced will be able to produce high-quality solutions. In terms of 

the nurse scheduling problem, the optimal solutions are known and the best heuristic 

approach in the literature so far is a tabu search method capable of producing optimal 

solutions for all known datasets in a reasonable timeframe. It will therefore be 

interesting to see whether the methods produced in this thesis using a construction- 

based approach will be able to rival the improvement-based approach of the tabu 

search. Note that more details of the methods applied to the nurse scheduling problem 

will be given in Chapters 2 and 3. For medical student scheduling, optimal solutions 

are not known and there is no research in the literature with which results may be 

compared. However, it will be interesting to see whether a robust, construction-based 

approach is capable of being found.

The next section gives a breakdown of the thesis structure and explains the contents of 

the remaining chapters.

1.3 Thesis structure

The following chapter gives an overview of the two problems investigated in this 

thesis, giving full details of each problem, including its mathematical formulation, and 

discussing the particular difficulties of finding good-quality solutions and interesting 

features of the problem structure, such as the ability to model some or all of the hard 

constraints so that they may be solved exactly. The chapter serves to introduce the 

problems and discuss them on an equal footing before the literature review in Chapter 

3; there is little relevant literature for the medical student scheduling problem, while
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the nurse scheduling problem presented here has been much more widely solved. 

Further, Chapter 2 provides sufficient detail of each problem such that the literature 

review may be tailored to include the most relevant details from the literature and 

such that details of the different methods applied may easily be given in a context 

suitable for the remainder of this thesis.

As mentioned previously, there is little available literature on the medical student 

scheduling problem and, while problems similar to medical student scheduling are 

discussed in Chapter 2, the literature review in Chapter 3 must necessarily be focused 

on the literature relating to the nurse scheduling problem. This literature review 

provides details of the variants of the nurse scheduling problem which arise in 

different hospitals around the world and the differences in the types of constraints 

which arise as well as other, more fundamental differences. A history of the GRASP 

and ACO metaheuristics is provided as well as a history of the approaches which have 

been previously applied to nurse scheduling. Finally, a complete overview of the 

methods previously applied to this variant of the problem is presented along with the 

particular difficulties relating to balancing the different constraints which arose from 

each approach.

Chapters 4 and 5 relate to the investigation of solution methods for the nurse 

scheduling problem. Chapter 4 provides details of the investigation using a GRASP 

approach and Chapter 5, an ACO approach. Chapter 4 discusses the different 

heuristics which may be applied in conjunction with a GRASP construction as well as 

suitable local search neighbourhoods. The usefulness of combining the GRASP with 

the knapsack model is a major feature of the investigation and the GRASP is 

hybridised both with the knapsack model as well as with two types of feedback in 

order to produce the final solutions. The notion of exploring equal cost moves in the 

local search neighbourhoods is also put forward as a possible enhancement to final 

solution quality. Chapter 5 then shows the difference in quality obtained by using a 

GRASP approach and that of ACO, using the same constructive heuristics. After the 

different potential pheromone trail definitions to utilise the ACO feedback are 

introduced, an investigation into the many different parameters required is performed. 

The final ACO algorithm, whose success is compared with that of the GRASP
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approach in Chapter 4 is hybridised both with the knapsack model as well as an 

element of local search.

Chapter 6 then details the investigation into the medical student scheduling problem 

using GRASP. The issue of whether or not the network flow model is necessary or 

helpful to the search for optimal solutions is explored and, as well as using heuristics 

based on those introduced in Chapter 4, heuristics based entirely on a network flow 

model of the problem are introduced. Although, as will be discussed further in 

Chapter 2, an ACO approach is not suitable for this problem, the idea of incorporating 

memory without the use of feedback is investigated and several ways of incorporating 

this memory are compared for the best of the approaches so far. Although optimal 

solutions are not known for this problem, the robustness of the resulting algorithms is 

tested by considering the number of times the best known solution is produced. 

Unlike the nurse scheduling problem, for which details of the 52 datasets can be found 

in Appendix A, the medical student scheduling problem was provided with only two 

sets of real-world data. Chapter 6, therefore, also provides details of how these two 

datasets were used to build 46 further datasets which are both realistic and interesting 

to study.

The final chapter of this thesis gives a summary of the findings and draws conclusions 

in keeping with the aims set out in this introduction. Suggestions for further research 

are also presented.

Note that all computation times provided in the following chapters refer to 

experiments carried out on a Celeron M 1.5 GHz notebook computer.
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Chapter 2
Introduction to problems

2.1 Introduction

As stated in the introduction, this thesis is concerned with balancing different 

objectives using a metaheuristic framework relying on greedy, randomised 

constructive techniques. The two construction-based metaheuristics on which this 

work will be based are Greedy Randomised Adaptive Search Procedure (GRASP) and 

Ant Colony Optimisation (ACO). These will be introduced in detail in the next 

chapter. This chapter introduces the two problems, nurse scheduling and medical 

student scheduling, on which all experiments will be carried out and explains why 

they are both suitable and interesting for study and comparison. Further, since the 

medical student scheduling problem is new and therefore does not appear much in the 

literature, this chapter allows us to introduce these two problems on an equal footing 

before the literature review in Chapter 3. Finally, the nurse scheduling problem arises 

in many different forms and by introducing the variant we are concerned with here, 

we may tailor the literature review to allow more detailed information about the most 

relevant research. Of particular interest in this thesis is the balance between feasibility
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and optimality and the two problems introduced here both possess interesting 

characteristics in this respect; we present a nurse scheduling problem, for which much 

previous research has shown that obtaining feasible solutions is not trivial and a 

medical student scheduling problem, for which there is little relevant literature, but 

the many, varied objectives provide an interesting framework for study.

The nurse scheduling problem arises in many forms and has been solved using a 

variety of methods. The variant presented here arises at a major UK hospital and has 

been solved using several approaches; finding a balance between feasible solutions 

and solutions with low-cost in terms of staff preferences has been found to be non

trivial. Previous research on this problem will be summarised in Section 2.2.3 and 

discussed further in Section 3.5 of Chapter 3. By selecting this problem for study, we 

are able to investigate solution approaches and compare their results with those in the 

literature as well as with the known optimal solutions.

However, although having known solutions available enables a direct evaluation of 

results, it is also interesting to approach a problem which has never been solved other 

than by hand, by using very simple heuristics (Harris 1997), or by attempting to 

model aspects of the problem as an Integer Program (IP) (Fuller 1998). Optimal 

solutions are therefore not known. The particular difficulties of the nurse scheduling 

problem have already been studied, but by approaching a totally new problem, the 

specific difficulties are not yet established and so these too must be discovered.

We therefore put forward these two problems: nurse scheduling, a well known 

problem with interesting attributes including conflict between feasibility and 

optimality; and medical student scheduling, a previously unsolved problem arising at 

a major university and involving several potentially conflicting objectives.

The rest of the chapter is organised as follows. Section 2.2 relates to the nurse 

scheduling problem investigated in this thesis. First, a description of the problem in 

real-world terms is given and this is followed by its mathematical formulation. The 

section ends with a summary of the previous approaches applied to the problem and a 

discussion of the problem structure. In particular, a method for aiding the construction 

of feasible solutions is discussed. Section 2.3 relates to the medical student scheduling
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problem and, again, the problem description and formulation are given. Although no 

literature is available on this problem, it bears a resemblance to a variant of the 

3-dimensional assignment problem and so a brief discussion of this similarity and any 

relevant literature is given. The section ends with details of the problem structure and, 

again, a brief discussion of the potential methods aiding the search for feasibility. The 

final section compares the two problems presented in this thesis.

We begin by looking at the nurse scheduling problem.

2.2 The nurse scheduling problem

The nurse scheduling problem is a well-known scheduling problem which arises in 

hospital wards all over the world. Although the details of the problem vary in different 

countries, the essence of the problem is to assign shifts to each nurse for the given 

planning period, such that constraints are adhered to and objective costs minimised. 

The problem presented here has been much studied and provides a well-established 

database of 52 individual problems based on real-world data. For each of these the 

optimal solutions are known, and so the success of the GRASP and ACO approaches 

presented here may be judged individually, as well as relative to the previous heuristic 

methods applied.

The next sections give the details and mathematical formulation of the nurse 

scheduling problem arising at a major UK hospital, which is to be the focus of this 

research, after which follows a summary of the particular difficulties encountered by 

previous approaches.

2.2.1 Problem description

Weekly rosters for individual hospital wards are required. Each roster must ensure 

that the hospital has sufficient staff at all levels of seniority throughout the week, 

whilst adhering to the nurses’ contracts and fulfilling their personal preferences as far 

as possible. The working day is divided into three shifts: an ‘early’ day shift (0700 -  

1430), a Tate’ day shift (1400 -  2130) and a night shift (2100 -  0730). Only the 

allocation of nurses to either days or nights is considered, since assigning the nurses to
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either an early or late shift can be solved exactly using a network flow model in a 

post-processing phase (Thompson and Dowsland 2000).

The majority of nurses work either day shifts or night shifts in a one week planning 

period, rather than a combination of the two and due to the different shift lengths, a 

nurse working days will typically work more shifts than a nurse working nights. For 

example, a full time nurse works either 5 day shifts or 4 night shifts. This will be 

denoted by (5,4). All wards considered have a number of part time nurses, working 

combinations such as (4,3) and (3,2). A small number of nurses may work 

combinations with equal numbers of day and night shifts, such as (3,3), and a small 

number of nurses will work a specific number of both days and nights in the same 

week. A nurse working both 1 day shift and 2 night shifts in a week will be denoted 

by (1&2).

The possible nursing contracts are (5,4), (4,4), (4,3), (3,3), (3,2), (2,2), (2,1), (1,1), 

(1&3), (1&2) and (0,0) where a nurse has a scheduled week off, giving eleven 

possible nursing ‘types’. Practically, however, the weekly contracts may vary slightly, 

since nurses for whom either day or night shifts have been disallowed would 

essentially have a different contract; a full time nurse with night shifts disallowed 

would, in effect, have a (5,0) contract for that week. Where a nurse has a scheduled 

training day, this may also result in an altered weekly contract. As will be discussed in 

more detail in Chapter 3, Dowsland and Thompson (2000) modified the data in a pre

processing phase to ensure that any surplus shifts are spread evenly across the 

weekdays, as requested by the hospital. This was done by adding surplus requirement 

to even out the demand and including ‘dummy’ nurses to cover the extra shifts and is 

explained more fully in Appendix C. Many of the nurses with equal numbers of day 

and night shifts are examples of such dummy nurses and so these often have night 

shifts disallowed. The nurses are divided into three grades according to their level of 

knowledge and experience. These grades can be categorised as follows:

Grade 1: Senior nurses, capable of being in charge of the ward.

Grade 2: Trained nurses, with a high level of nursing expertise.

Grade 3: Trained nurses, with the lowest level of training.
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For each shift, there is a minimum requirement for the number of nurses of each grade 

on duty. Although lower grade nurses may not replace higher grade nurses, the 

reverse is allowed and so these staffing constraints, known as the ‘cover’ constraints, 

are expressed cumulatively. For example the requirement 2/4/9 for a particular shift 

means that at least two grade 1 nurses, four nurses of grade 2 or higher and nine 

nurses in total are required.

The primary objective is to produce a feasible schedule, that is, one which satisfies the 

following constraints:

C1. Cover constraints satisfied for all shifts.

C2. Each nurse works the contracted number of shifts.

C3. Annual leave and study days adhered to.

C4. No nurse works a night shift followed immediately by a day shift or a day 

shift followed by a night shift on the same day.

In addition to producing feasible schedules, it is desirable that the rosters a number of 

secondary requirements, most of which relate to enabling the nurses to enjoy a healthy 

social and family life. To this end, several objectives are defined:

P I . Nurses can request not to work certain shifts / days.

P2. Each nurse has a full Saturday or Sunday off at least every other week.

P3. Night shifts are rotated between nurses.

P4. Very senior nurses are not scheduled on nights or weekends as this is too 

expensive.

P5. Nurses are assigned sequences of days off together rather than individual days 

off being spread over the week.

P6. Nurses do not work more than seven consecutive days.

P7. Nurses with many violations of these soft constraints in previous weeks are 

allocated more desirable shifts in this current schedule.

For each nurse working d  day shifts or e night shifts, it is possible to enumerate all 

workable shift patterns. A shift pattern is defined here as a binary string of length 14, 

where the first 7 digits represent the seven day shifts from Sunday to Saturday and the 

second set represents the nights. A ‘1’ indicates that the nurse works, while a ‘0’
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signifies a day or night off. The number of shift patterns for a nurse is 1Cd patterns of 

day shifts and 1Ce patterns of nights. For nurses working both days and nights in the

same week, all their feasible shift patterns can also be considered. We choose to deal 

with assignments of nurses to shift patterns rather than to individual shifts in order to 

simplify the problem, as do all previous approaches which tackle this problem in the 

literature. Aickelin (1999), in particular, used shift patterns in conjunction with his 

Genetic Algorithm approaches and, given that many of the constructive heuristics 

developed for the nurse scheduling problem in this thesis are based on this work and 

the data available is therefore in this format, it is sensible for us to adopt this shift 

pattern approach as well.

The objectives P1-P7 have been combined to give a single penalty cost, in the range 

[0, 100] for each nurse-shift pattern combination, with ‘O’ implying the shift pattern is 

ideal and ‘100’ signifying it is unacceptable. These values were obtained by 

Dowsland and Thompson from dialogue with the nurses. Full details of how the 

scores are derived can be found in Appendix B. Thus, the problem is reduced to 

finding a feasible roster that minimises the sum of these penalty costs and, since all 

factors affecting optimality are combined by this shift pattern approach, there are 

fewer aspects of the problem to balance.

Note that any constructive heuristic approach would have two possible approaches for 

creating the nursing schedules: either a nurse may be selected, along with a shift 

pattern for that nurse, or a shift pattern may be selected, and a nurse assigned to it. 

Thus the schedules may be created by systematically working nurse by nurse, until all 

nurses are assigned or pattern by pattern. The latter, however presents a fairly illogical 

way to proceed, since each shift pattern may be used once, more than once or not at 

all. By working through the nurses systematically, however, the task becomes much 

easier to handle and so, in Chapters 4 and 5, it is this approach which will be adopted.

2.2.2 Problem formulation

This problem can be formulated mathematically as follows:
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Indices:

i = 1,..., r nurse index, where r is the number of nurses

g  = 1,..., 3 grade index

j  = 1,..., m shift pattern index, where m is the total number of shift patterns

k = 1,..., 14 day index (where l,...,7=days and 8,...,14=nights)

Variables:

f 1 if nurse i works shift pattern j  
ij [0 otherwise

Constants:

J 1 if shift pattern j  covers day k 
Jk 0 otherwise

f 1 if nurse i is of grade g  or higher
h[ = <
lg 0 otherwise

p tj = cost of nurse i working shift pattern j

If we say St is the set of shift patterns which nurse i can work and Cgk is the number of 

nurses of grade g  or higher required on shift A:, then we have the following.

Min

c =iLY.Pijxu ’  c2-1)/'=! jeSj

subject to:

5 > # = 1  V», (2.2)
jeS,

y S ’k  (2 3 >/=! jeSt
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The objective function (2.1), made up of the sum of the preference costs, must be 

minimised subject to the satisfaction of (2.2) and (2.3), where (2.2) ensures each nurse 

works exactly one shift pattern and (2.3) ensures that the cover requirements are 

sufficient for each shift and at each grade.

Typical problem dimensions are 25 nurses with a total of m — 411 possible shift 

patterns; the number of patterns each nurse may work varies according to their ‘type’,

i.e. number of day and/or night shifts they are contracted to work. A full time nurse 

works 5 days or 4 nights and so has 1Cs + 1Ca -  56 potentially feasible patterns if both 

days and nights are allowed; part time nurses may have more or fewer patterns 

depending on the number of days and/or nights they must work.

Solving this IP exactly requires specialist software to which it is unlikely hospitals 

would have access. Even using such software, finding an optimal solution can take 

several hours (Fuller, 1998), although more recent software, certainly beyond the 

budget of a hospital ward, is more efficient. However, it is important to the hospital 

staff that they are able to choose from a range of varied schedules (Dowsland and 

Thompson 2000) and, even using today’s IP software, producing a range of optimal 

solutions is still an issue (Tsai et al. 2008). Thus, a heuristic approach is justified.

2.2.3 Summary of previous approaches to the nurse scheduling problem

This section provides a summary of the research in the literature for this variant of the 

nurse scheduling problem. A more detailed review of the previous research for this 

problem appears in the literature review in the next chapter.

Dowsland (1998) presented a tabu search method to solve the nurse scheduling 

problem. Infeasible solutions were unavoidably included in the search space due to 

the difficulty of the problem and the disconnectedness of the feasible region made it 

necessary to revisit the infeasible region repeatedly in order to adequately search the 

solution space. In order to reach an initial feasible schedule from the random starting 

solution the partition of nurses into days and nights was found to be of particular 

importance; often solutions would partition the nurses such that no simple 

neighbourhood move would be sufficient to improve feasibility due to the ‘imbalance’
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of nurses working on days and nights. This arises from the fact that most nurses work 

a different number of days than nights and so it is important for the ‘correct’ nurses to 

work each type of shift. Even when solutions were not ‘unbalanced’, often very large 

and complex neighbourhoods had to be employed in order to attain feasibility. Thus, 

finding feasible solutions to this problem is not trivial. Dowsland and Thompson 

(2000) used this work as a basis for the software CARE, which employs the pre

processing phase to evenly spread excess cover as discussed earlier and a post

processing phase to allocate the day shifts to either ‘early’ or ‘late’. It has since been 

employed in the hospital from which this data was gathered.

Aickelin (1999) originally solved this set of nurse scheduling problems using two 

Genetic Algorithm (GA) approaches. A straightforward GA approach, encoding each 

solution as a string of shift patterns for each nurse, produced comparatively poor 

results mainly due to the non-linearity between each ‘gene’, or nurse-pattem pair, in 

the string and the final solution cost. The feasibility of the solution relied on the 

interaction of all individual genes and so it was not necessarily the case that 

combining two feasible solutions would be likely to result in feasible children. This 

feature of non-linearity will be discussed again in more detail when discussing 

feedback which may be used in conjunction with the GRASP methods and the trail 

definitions suitable for an ACO approach.

Aickelin’s second GA approach used the GA simply to order the nurses and then each 

nurse was assigned a shift pattern in turn using a greedy heuristic which decoded the 

ordering into a completed schedule. This method produced higher quality solutions 

than the original GA method and it is these decoding heuristics which are used as the 

basis for the GRASP and ACO approaches presented in this thesis. The particular 

details of Aickelin’s (1999) decoders can be found in greater detail in Chapter 3, 

while details of the GRASP and ACO approaches presented for nurse scheduling are 

given in Chapters 4 and 5, respectively.

Other approaches used to tackle this problem have included using a hyperheuristic 

approach (Cowling et al. 2002, Burke et al. 2003b), where a number of low-level 

heuristics are each selected with dynamic probability to improve a randomly 

generated schedule and a Bayesian Optimisation algorithm (Li and Aickelin 2003,
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Aickelin and Li 2007) which selects which rule should be used at each stage of the 

construction process using conditional probabilities calculated from previous 

constructions.

For each of these approaches, finding feasible solutions was a major challenge. As 

discussed, the tabu search approach in Dowsland (1998) and Dowsland and 

Thompson (2000) made use of large and complicated neighbourhoods in order to 

provide feasible solutions in all cases, and both GA approaches in Aickelin (1999) 

failed to find feasible solutions for all cases. The hyperheuristic approaches fared well 

with regards to feasibility, but to the detriment of solution quality. The Bayesian 

Optimisation algorithm also managed to find feasible solutions in all cases, but 

showed that a simplified version not using the conditional probabilities failed to 

produce a single feasible solution from 20 attempts for each dataset. Even though this 

approach performed well in terms of feasibility, the algorithm often struggled to 

produce optimal solutions.

Full details of the existing literature on this problem are given in Section 3.5 of 

Chapter 3. Here we have summarised some of the more interesting research, pointing 

out that finding feasible solutions is not trivial and that some effort must be put into 

this aspect of the scheduling process if feasible solutions are to be found. Of the 

methods which have provided feasible solutions for all datasets, the solution quality is 

generally quite poor, and only the original tabu search approach (Dowsland 1998, 

Dowsland and Thompson 2000) has been able to reduce both the cover and the 

feasibility costs to the optimal in all cases; to do this, however, a great deal of 

problem-specific information was utilised and the resulting method relies heavily on 

large, complex neighbourhoods involving chains of moves in order to achieve this 

result.

2.2.4 Nurse scheduling problem structure

We now provide a discussion relating to the nurse scheduling problem structure and 

the particular difficulties inherent in the problem which must be tackled effectively 

for good solutions to be found.
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As has been mentioned previously, the nurse scheduling problem is one for which it is 

not trivial to find feasible solutions and a large part of any solution approach must be 

devoted to this task if the algorithm is to have any chance of producing feasible 

schedules. According to Garey and Johnson (1979), the staff scheduling problem, 

consisting of simplified version of the problem of finding a feasible solution, where 

all nurses are of the same grade and work the same number of shifts, and where the is 

no distinction between working days and night, is NP-hard.

However, an interesting feature of the nurse scheduling problem is that it is possible 

to exploit the problem structure to exclude a large number of infeasible solutions from 

the search space. In the last section, it was mentioned that Dowsland (1998) showed 

that the particular distribution of nurses working days or night was an integral part of 

whether or not a feasible solution could be obtained and this idea was also exploited 

in Aickelin’s second GA approach. Dowsland and Thompson (2000) showed that it is 

possible to determine whether or not a particular problem has a feasible solution, 

given the number and types of nurses available by solving a knapsack model of the 

problem derived from the relaxation of constraint (2.3). This was done by summing 

the day and night requirement at each grade and replacing the xy variables, relating to 

whether or not nurse i works pattern j, with a variable which merely determines 

whether or not each nurse works days or nights. We build on this idea, creating a 

system for maintaining the day/night balance during the construction of a solution, 

and ensuring that large areas of the infeasible region of the search space are never 

visited.

Regardless of the day/night balance existing in solutions created in conjunction with 

the knapsack model, the particular shift patterns for each nurse are not guaranteed to 

create a feasible solution. Thus, creating feasible solutions remains non-trivial and 

creating solutions which are both feasible and optimal more difficult still. Chapter 4 

will introduce this knapsack model more fully and will explain in detail how it may be 

used in conjunction with a GRASP solution approach.
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2.3 The medical student scheduling problem

This section provides an introduction to the medical student scheduling problem. 

Unlike nurse scheduling, this is a new problem with little previous work in the 

literature with which to draw comparison. However, the problem does share 

similarities with nurse scheduling in that we must allocate assignments to people over 

the given time-frame. Obviously these problems are only loosely related and the 

similarities and differences between them will be discussed more fully in Section 2.4. 

Just two sets of real-world data for this problem have been made available by the 

university hospital concerned, but, from these, we have been able to manufacture a 

further 46 datasets encompassing a wide range of realistic variations. The details of 

these will be given in Chapter 6.

In the next section we give details of the medical student scheduling problem and 

formulate it mathematically. We then discuss the particular difficulties of this problem 

and compare it with the nurse scheduling problem which we discussed in Section 2.2, 

showing that it is a sufficiently difficult problem to warrant our investigation. We 

begin with an overview of the problem.

2.3.1 Problem description

During their training, medical students are required to complete several years of 

clinical experience, which involves completing placements in different hospitals and 

covering a number of specialities. Creating their schedules is a relatively unexplored 

problem and, with several hard and soft constraints, finding optimal solutions is not 

trivial. The particular variant of the problem we will be looking at arises yearly at a 

large university in Wales, although other universities in the UK and around the world 

will face a similar scheduling challenge.

The first clinical year is split into five timeslots, with each student studying one of 

five specialities in each stage. In the first timeslot, all students study an introductory 

module; the students then complete the other four specialities exactly once in any 

order in the remaining time periods. The hospitals each contain a number of ‘firms’ 

consisting of groups of one or more consultants; each consultant may belong to more
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than one firm. The introductory module is offered across the board; each hospital will 

offer a number of firms designed for this purpose, while subsequent modules will only 

be offered by firms associated with that particular speciality. The number of places 

available in each firm is known as the ‘capacity’ of that firm and these values are 

known in advance. A solution is a list of which firm each student will attend during 

each of the five time periods.

For a solution to be feasible, each of the following hard constraints must be satisfied:

F 1. Each student must cover the introductory module in time period 1.

F2. Each student must cover the remaining four specialities exactly once in time 

periods 2-5.

F3. The number of students placed in each firm in each time period must not 

exceed the capacity of that firm.

It is also desirable for students to get as broad a range of experience as possible during 

their placements and so, for a solution to be optimal, we seek to minimise violations 

of three further soft constraints.

01. Each student is not allocated to the same consultant more than once.

02. Each student is not allocated to the same hospital more than once.

03. Each pair of students is not allocated to the same firm at the same time more 

than once.

In the case of nurse scheduling, in Section 2.2, the objectives P1-P7 were combined 

into a single score for each nurse-shift pair. For this problem, however, it is not 

sensible to enumerate the cost for all possible firm combinations for each of the 

students. The first reason for this is that the students’ costs are not independent; part 

of the cost is derived from the repetition of student pairings. As such we cannot know 

how much each student will contribute to the cost until all students have been 

scheduled. A secondary consideration is the large number of feasible firm-timeslot 

combinations. For the smaller of the two datasets, specialities 1 - 5  consist of 38, 9, 6, 

12 and 4 firms, respectively. Thus the number of possible combinations is 

38x9x6x12x4x4!, since specialities 2 - 5  may be studied in any order, giving over
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2.3xlO6 potential combinations. For the larger dataset this figure is more than 20 

times as great and to calculate these partial scores would not be computationally 

worthwhile. Further, it is interesting not to amalgamate these soft constraints into a 

single cost as it allows us to consider balancing the trade-offs between them. We 

therefore abandon the idea of creating an amalgamated score for each possibility in 

advance.

Given that the medical student scheduling problem can be large, with students 

numbering in the hundreds, finding a zero-cost solution to a particular problem is not 

guaranteed. In order to ensure that any compromise in our final solution rests with the 

least important of the soft constraints, weightings were applied to each constraint 

according to their relative importance. These were produced in consultation with the 

university.

It is seen as more important that the consultant constraint (01) is adhered to than the 

hospital constraint (02) and, in turn, the hospital constraint (02) than the student pairs 

constraint (03). We assign a weighting to each of these of 50:10:1, respectively. 

These match the trade-off in solution quality as perceived by the university so that ten 

violations of the student pair constraint is viewed equally undesirably as a single 

hospital constraint violation, for example.

2.3.2 Problem formulation

Formulating the problem mathematically, we have the following:

Indices:

s = 1,... ,r student index, where r is the number of students

t = 1,... ,5 time period index

/ =  1,.. .,v firm index, where v is the number of firms

q=  1,... ,5 speciality index
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Variable:

J 1 if student s  is placed in firm /  in timeslot t 
[0 otherwise

capacity of firm/

f  1 if firms /  and g  have a consultant in common 
[0 otherwise

J 1 if firms /  and g  are in the same hospital 
[0 otherwise

f 1 if firm /  offers speciality q 
[0 otherwise

The part of the cost associated with the consultant clashes (Ol) is given by

ZZ Z ZZca > (2-4)
5  =  1 t  =  \ U = l + 1 /  =  1 g  =  l

and the part associated with the hospital clashes (02) is given by

ZZZZZVtf**.- (2-5)
5 =  1 t= \  U = t+ \ f = 1  g = l

The cost for the student pairs (03) is slightly more complicated. For the hospital and 

consultant clashes, we count every instance where a student is in the same hospital or 

with the same consultant more than once. The way we count this means that if the 

student is in the same hospital twice, this is counted once, but if the student is in the 

same hospital three times, each pair is counted and so this occurrence is penalised 

with a cost three times that of the case where the student only has two hospitals in 

common. In the same way, if a student had all five placements in the same hospital, 

counting each pair would result in a cost 10 times that of the situation where the 

hospital was visited only twice. This reflects the fact that the requirement for students 

not to visit the same hospitals or be placed with the same consultants is not linear, and 

it is more desirable for a student to visit 2 hospitals twice than to be placed in one 

hospital three times, for example.

* 5 f t  =

Constants:

c/s =

K  =

afi
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When dealing with the student pair costs we have a quadratic term. Only pairs of 

student pairs must be counted. Single instances of a student pairing must clearly result 

in no additional cost. We are able to count such instances of repeated pairings using 

the following formula:

4 5 r - 1 r v v

Z Z Z Z  ZZvsiVw ■ (2-6)
t  =  \ U = t +  \ 5 =  1 Z = 5  +  l /  =  1 g  =  l

Combining these three with the weights given earlier, we arrive at the final cost 

function.

We must minimise (2.7) subject to (2.8), (2.9), (2.10) and (2.11).

Min
r 4  5 v v

£=ZZ Z ZZ [5Qcfgx,j>x*Su+1° W .J+
5 = 1  / = 1 U = t + 1 / = 1  g  =  l

4 5 r - 1 r v v

Z Z Z Z ZZw *.*,. (2-7)
/  =  1 M = / +  l 5 = 1  Z = 5 + l  / = 1  g = l

Subject to:
5 v

Z Z af<,x4<=*• Vs> i  (2-8)
/=1 / = !

Z / A / i  = 1, (2.9)
/ - i

(2-10)
/= 1

V/.^ (2.11)
5 = 1

Equation (2.8) ensures that each speciality is covered exactly once, (2.9) ensures that 

each student covers speciality 1 in time period 1, (2.10) ensures that each student is 

assigned to only one firm in each timeslot and (2.11) ensures that the capacities of
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each firm are adhered to in all time periods. Thus equations (2.8) -  (2.10) ensure that 

F 1 and F2 are satisfied, while F3 is covered by the last inequality.

Given that the medical student scheduling problem has both quadratic and quartic 

terms, it is not currently possible to solve it using an IP formulation and professional 

software due to the unreasonably large number of variables which would be required 

in order to linearise it (Fuller 1998). We are therefore justified in seeking heuristic 

approaches to tackle the problem.

2.3.3 Literature relevant to the medical student scheduling problem

Fuller (1998) created an IP model which tackled only the hard constraints and the 

hospital clashes. A combination of exact and heuristic approaches were used to find a 

solution to one instance of the medical student scheduling problem as presented here. 

The main difference in the problem formulation is that the consultant constraints were 

only considered after the development of the initial model and are only assigned a 

weight of 5, relative to the other costs, as supposed to the weight of 50 later adopted. 

The method consisted of finding a zero-cost partial solution for a subset of students 

using a greedy approach and then applying the IP to schedule the remaining students.

Since, there is little relevant literature about this problem, we look instead at a closely 

related classical combinatorial optimisation problem. Since we are assigning triplets, 

by assigning each student to one available place in a firm in each timeslot, we 

essentially have a variant of the three-dimensional assignment problem, and we now 

briefly discuss the relevant features of this problem and the solution approaches

The three-dimensional assignment problem (3AP) comes in two forms: axial and 

planar. It is the planar version which the medical student scheduling problem most 

closely resembles and we now give its formulation for comparison purposes.

applied.

Min
k'

(2 .12)
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subject to

i x *=ivm (2.13)

(2.14)

(2.15)
* = 1

(2.16)

where byk is the cost of assigning the 3-tuple The planar three-dimensional

assignment problem has been shown to be NP-hard (Frieze 1983, Hofstra 1983). An 

overview of this and other assignment problems can be found in Gilbert and Hofstra 

(1988) and Pentico (2007).

and quartic terms present in the objective of the medical student scheduling problem 

mean that algorithms based on an IP approach are unlikely to be successful for this 

problem. However, approaches which are not based on the linearity of the objective 

function, such as the types of heuristic approaches we are investigating, may be 

equally applicable to both problems and it is for this reason that we call attention to 

the planar three-dimensional assignment problem and look for literature related to it 

which may be relevant to medical student scheduling. First we discuss the similarities 

between the constraints of these two problems, which are even more apparent if we 

consider only timeslots 2 - 5 .  Although there is a similarity between constraints (2.13) 

-  (2.15) of the 3AP and constraints (2.8) -  (2.11) of the medical student scheduling 

problem, this is complicated by the fact that the dimension relating to the specialities 

is partitioned into different firms. Further the right hand side of the constraint relating 

to this dimension is not equal to 1.

The relationship between the two problems becomes clearer if we consider a different 

model of the 3AP, where i'= f — k'= n for some integer n and the constraints (2.14) 

and (2.15) are equations, rather than inequalities. Then there is a one-to-one 

relationship between the solutions of the 3AP and the set of nxn Latin squares. A

Clearly these two problems have very different objective functions and the quadratic
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Latin square is an nxn array such that in each row and column every integer from 1 to 

n appears exactly once. Thus if we let j  be the row index, k the column index and i the 

entry value, we can set up the equivalence relation between the Latin square and a 

solution to the 3AP by taking values

x  = 11 if = '
IJk [0 otherwise

where ajk is the entry in row j  and column k. Then the constraints correspond exactly

to each ajk containing exactly one value, each row j  containing entry i in exactly one

column k and each column k containing entry i in exactly one row j . Figure 2.1 shows 

an example of such a Latin square for the case n = 4.

1
k 

2 3 4
1 1 3 2 4

. 2 3 2 4 1
J 3 2 4 1 3

4 4 1 3 2
Figure 2.1. An example o f an nxn Latin square with entries ajk = i.

Magos (1996) was successful in applying a tabu search method to this problem based 

on the idea of using a Latin square representation, which forms the basis of the 

neighbourhood structure. A neighbouring move is, essentially, a Latin square which 

can be reached from the current one by changing the value of a single entry and then 

repairing it via a chain of moves.

Now consider a medical student scheduling problem in which the total number of 

places available is equal to the number of students. Let i be the student index, j  

represent the index of places and k the index of timeslots such that all indices relating 

to a given speciality are allocated consecutively forming 4 blocks. Feasible solutions 

are the set of nx4 Latin rectangles with the additional constraint that each i occurs in a 

different block in a different column. Figure 2.2 shows this setup with 192 students 

and 48 places available in each of specialities 2 -  5 in each timeslot.
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Timeslot k
2 3 4 5

l 192 58 22 16V N
O 2 38 52 160 181
<DOh

C/D
: j ; j

48 7 90 63 19
49 16 192 90 63

c n

o 50 160 181 58 22
4>Oh

C/D
: ■ *

<DO 96 52 19 7 38
cd 97 58 38 192 160

N

98 19 16 52 7
<UOh

C/D

• * ;

144 22 63 181 90
I/-N 145 181 7 19 192M t
o 146 63 22 16 58
<DOh

C/3
i ;

•
I

192 90 160 38 52
Figure 2.2. Latin rectangle setup o f  the medical student scheduling problem for specialities 2 - 5 .

In the example setup shown in Figure 2.2, the students i in positions ajk in the array 

have been chosen randomly and positioned merely to demonstrate the effect of the 

extra constraint which ensures that each student i appears in a different block in each 

column.

Although we have managed to demonstrate a similarity between the medical student 

scheduling problem and the 3AP, there are several important differences. One of these 

is the fact that the total available capacity need not equal the number of students and 

this is the case for many of our 48 datasets. The initial solutions used by Magos 

(1996) set each entry i in position ajk to be assigned using

f 0 +  & -l)m od« if ( j  + k -\)m o d n  > 0 
a i k ~ \  • (2.17)[ n otherwise

Where the number of students does not equal the number of places available, this 

leads to the necessary inclusion of empty cells which add further complexity and 

influences the ease with which feasible solutions may be created and maintained. 

Certainly using a straightforward algorithm such as (2.17) to create an initial solution
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would not be practical, since it requires a one-one correspondence between the 

number of students and the number of places available.

Note also that Magos (1996) studies problems of size up to n = 14, and indicates that 

problems of size n > 9 could not be solved optimally within a reasonable timeframe. 

A problem of size n = 14 gives a 14x14 Latin square containing 196 values with 

which to experiment. Our problem would generate a Latin square of at least size 

192x4 which presents 768 entries and so even if a similar approach were possible, it 

may not be computationally feasible.

Therefore, this sort of approach, as well as presenting problems in terms of getting an 

initial solution, would be likely to struggle for a problem as large as that of medical 

student scheduling and the neighbourhoods could easily become unmanageable. For 

this reason, we do not attempt to apply a similar method to our problem.

Gilbert and Hofstra (1987) show that the planar three-dimensional assignment 

problem is a suitable model for a scheduling problem arising in trade shows, where 

one-to-one meetings must occur between a number of buyers and sellers in a limited 

number of time periods. There are fewer buyers than sellers and all buyers must be 

assigned a meeting in every time period, while each seller must have some specified 

minimum number of meetings. Costs are assigned to each buyer-seller pairing 

depending on the desirability of the meeting according to both parties. However, due 

to the fact that the time of the meetings is of no consequence, the solution method is 

able to be done in two stages; in the first stage a set of minimum cost buyer-seller 

pairings is determined by ignoring the time constraints, while the second stage assigns 

these pairings to timeslots. By breaking down the solution approach in this way, the 

problem can be solved in polynomial time. The first stage reduces the problem to two 

dimensions with variables z7* = 1 if buyer j  meets seller k, and 0 otherwise. The 

second part of the solution process, assigning these pairs to timeslots, can then be 

solved using simple bounds on the number of times each buyer and seller can appear 

in each timeslot. Note that this type of approach would not be suitable for the medical 

student scheduling problem, since assignments would not be able to take into account 

the firm capacities as well as the fact that every student must cover every speciality.
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Furthermore, for the medical student scheduling problem, there are no costs relating 

to individual assignments and so this type of approach would not be sensible.

Another interesting area of research which is relevant to the medical student 

scheduling problem is that of the quadratic three-dimensional assignment problem 

(Q3AP). This is essentially an extension of the quadratic assignment problem, but 

shares some features with our medical student scheduling problem. It is formulated as 

follows.

Min
n n n n n n n n n

Z I I W I Z Z Z I X  d i j k l m p X i j k X lm p
(2.18)

/ = ]  y = l  k  =  1

subject to

/ = 1  j = \  £ = 1  / = 1  j = 1 £ = 1  / = 1  m = 1 p = 1
l * i  m *  j  p * k

£ i > * = l V *  (2-19)
/=1 7=1

/ '  k '1 1 **=  ivy (2.20)
( = 1  k = 1

r k'
IZ**=1V/ (2.21)
7=1 *=1

where b ijk is the cost of assigning the three-tuple ( i j , k )  and d ijklmp is the cost of

assigning both (ijjc) and (l,m,p). Although the medical school scheduling problem has 

no costs related to an individual assignment, the second part of the Q3AP

objective function (2.18) resembles the part of the medical school scheduling problem 

objective related to hospital and consultant clashes. The cost d ijklmp as concerns

medical student scheduling, related to making both assignments xijk and xlmp, is given

by

d  = i 5 0 c j n , + ^ h J m f o r i  =  l , k ^  p

ijkimp |q  otherwise

Note that if / = I and k *  p ,  this implies j  * m.
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The two problems are therefore similar, although constraints (2.19) -  (2.21) are 

related to the axial version of the 3AP, rather than the planar version the medical 

student scheduling problem resembles. Further, although the objective function is 

similar, the medical student scheduling problem contains still higher order terms, 

which is one of the features which makes it so interesting and also difficult to solve 

using exact methods. The exact method proposed for the Q3AP in Hahn et al. (2008) 

linearizes the problem by replacing each occurrence of a quadratic term xijkxlmp with a

variable viJkl . This would not be a realistic approach for the medical student

scheduling problem since the higher order terms mean that the number of variables 

required in order to linearize the problem would be impractical. The heuristic methods 

put forward by Hahn et al. were tabu search, simulated annealing, an ACO approach 

and an iterated local search (ILS). Of these, the ILS was the most successful, while 

the ACO approach proved the worst performing of the four. Although we later 

suggest strong reasons why an ACO approach may not practically be applied to 

medical student scheduling, the weakness of its success as applied to the Q3AP does 

nothing to encourage its use. However, all heuristic methods tested relied on the 

underlying structure of the Q3AP which, as for the QAP and the axial version of the 

3AP which this problem resembles, allows solutions to be represented as 

permutations. Again, this approach is not applicable to the medical student scheduling 

problem given that the number of students need not equal the number of places 

available. However, the success of the heuristic methods applied to the Q3AP goes 

some way to justify applying such techniques to the medical student scheduling 

problem.

2.3.4 Medical student scheduling problem structure

Although little is known about the specific difficulties of this problem and what type 

of approach is necessary in order to produce high-quality solutions, it is possible to 

recognise features which may be important when going through the solution process.

As with the nurse scheduling problem, we consider the difficulty of finding feasible 

solutions. In this case, however, it is easy to construct feasible solutions. Since each 

time period offers the same number of spaces for each speciality, with the obvious
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exception of time period 1, we can easily create a feasible solution by splitting the 

students evenly into four distinct groups, assigning each a place in speciality 1 in time 

period 1 and then assigning the rest of the specialities in a cyclical manner. For 

example, if the first group were assigned specialities {2, 3, 4, 5} in that order, the 

second group assigned {3, 4, 5, 2}, the third, {4, 5, 2, 3} and the final group, {5, 2, 3, 

4}, a feasible schedule must be possible since it is known that there are enough spaces 

for a quarter of the students to study each speciality at any given time and since no 

two groups will study the speciality at the same time. Obviously any other non

overlapping arrangement of specialities would give the same result. Thus, if 

necessary, we are able to guarantee feasible solutions.

However, by creating a timetable in this fashion, we are severely restricting the region 

of the search space which can be explored and the solution quality is likely to be very 

poor as a result. For example, the student-pair costs (2.6) are likely to be higher than 

necessary since each student is restricted to studying with a subset of only a quarter of 

the total number of students. It is likely, therefore, that a large number of repeated 

pairings will arise as the students necessarily study in the same places as each other 

repeatedly. Consider the following small example in Figure 2.3.
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Consider the case where 16 students must each study 5 specialities in 5 timeslots 

as usual. Let speciality 1 be provided by 8 firms of two places each and each of 

specialities 2 -  5 be covered by 2 firms each providing two places. Thus there is 

just enough space for all students to study speciality 1 and a quarter of the students 

to study each speciality in the remaining timeslots. If we disregard the hospital and 

consultant constraints for the purposes of this example, then we are left with the 

problem of merely distributing the students adequately such that no pair of 

students is in the same firm twice. Let us first consider the case where the 16 

students are divided into 4 groups of 4 to cover specialities 2 -  5 in rotation. Thus 

group 1 would study specialities 2, 3, 4, 5 in order, group 2 would study 3, 4, 5, 2 

and so on, such that the resulting timetable will be feasible. We must therefore 

find, for each group, a firm for each student in the given speciality such that no 

students are paired together more than once. If such an allocation can be found for 

one group, the same can be applied to all other groups and so only one such 

allocation is necessary. If this can be found, a further suitable grouping of students 

must be found for speciality 1. Consider the following setup for specialities 2 - 5 ,  

where each box represents a place in a firm.

Spec 2 Spec 3 Spec 4 Spec 5

Firm: 1 2 3 4 5 6 7 8

In order to minimise the number of student pairs resulting when allocating 4 

students to specialities 2, 3, 4 and 5 in that order, we may begin by allocating the 

first 2 students the following firms:

Student 1: 1,3, 5, 7

Student 2: 1,4, 6, 8

Figure 2.3. Example demonstrating how using a group-rotation approach to guarantee feasibility may 

result in higher than necessary student pair costs. (Continued on next page).
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Note that once student 2 has been allocated to firm 1 in timeslot 2, the student has 

no choice of firm for the remaining timeslots if there are to be no further pairings 

with student 1. Note that Student 1 *s choice of firms is unimportant since, initially, 

all places are homogeneous and student 2’s choices must also exist since there 

must be 2 students studying in firm 1 in timeslot 2. At this point, however, there is 

no way to allocate the third student without incurring more than one pairing with 

another student. The first three timeslots can be allocated thus:

Student 3: 2, 3, 6 , . . .  (or alternatively 2,4, 5...)

But the fourth place will necessarily result in a repeated pairing with either student 

1 or 2. Thus using this group-rotation method of assignment we cannot avoid 

student pair costs.

However, by allowing students to consider the specialities in any order, an 

allocation is possible such that all students have a feasible timetable and no 

student pair costs are incurred. Allow the 8 firms in timeslot 1 to be denoted by the 

letters A -  H and the firms in each other speciality as previously. Then the 

following is an example of such a feasible distribution.

Student Firms Specialities
1 A, 1,3, 5, 7 1,2, 3, 4, 5
2 B, 1,5, 7,3 1,2, 4, 5,3
3 A, 2, 8, 4, 6 1,2, 5, 3, 4
4 B, 2, 4, 6, 8 1,2, 3, 4, 5
5 C, 3, 1 ,8 ,5 1,3,2, 5,4
6 D, 3, 7, 6, 1 1,3, 5 ,4 ,2
7 C, 4, 6 ,1 ,7 1,3,4, 2,5
8 D, 4, 2, 7, 5 1,3,2, 5,4
9 E, 5, 3, 1, 8 1,4, 3, 2, 5
10 F, 5, 7, 3, 2 1,4, 5 ,3 ,2
11 E, 6, 2, 8, 3 1,4, 2, 5,3
12 F, 6, 8, 2, 4 1,4, 5,2,3
13 G, 7, 5, 3, 1 1,5, 4, 3, 2
14 H, 7, 1 ,5 ,4 1,5,2, 4,3
15 G, 8, 4, 2, 6 1,5, 3, 2, 4
16 H, 8, 6, 4, 2 1,5, 4, 3, 2

Figure 2.3 contd. Example demonstrating how using a group-rotation approach to guarantee feasibility 

may result in higher than necessary student pair costs. (Continued on next page).
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Thus by allowing each student the freedom to study the specialities in any order, 

a solution has been found of a higher quality than that possible using the group- 

rotation method.

Figure 2.3 contd. Example demonstrating how using a group-rotation approach to guarantee feasibility 

may result in higher than necessary student pair costs.

By restricting the available choices for each student, it is not only the student-pair 

costs which are likely to suffer, however. Removing options can only limit the quality 

of the resulting timetables, and if the optimal schedule does not take this cyclic form 

then by choosing such an approach we are effectively restricting the landscape of 

solutions to preclude this optimal schedule.

Chapter 6 introduces a network flow model which may be used in conjunction with a 

medical student scheduling approach in order to force solutions to be feasible without 

utilising such a rigid solution structure. In the case of nurse scheduling, it was a 

knapsack model used on a relaxation of the hard constraints which may improve the 

feasibility of the resulting solutions; we will show how a network flow model of this 

problem will result in all solutions being feasible. However, depending on the 

difficulty of finding feasible solutions, shown thus far to be relatively simple, such an 

approach may be more restrictive than helpful. A full discussion of this model and its 

application will be given in Chapter 6 .

Given that we have shown that feasible solutions can easily be guaranteed, the 

particular difficulty of the medical student scheduling problem does not lie solely with 

feasibility: it is possible to create a low-quality, feasible solution and then use other 

measures to improve it. For the nurse scheduling problem this is not a realistic option. 

The balance between the constraints is therefore different between these two problems 

and so is likely to give rise to different issues.

Unlike the nurse scheduling problem, the medical student scheduling problem does 

not have a cost allocated to each assignment; the costs gradually become known as the 

schedule is built. Therefore near the beginning of the construction all assignments will 

be cost-free and it is only when several students have been assigned and choices of
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firms become restricted that costs are incurred. The student-pair cost in particular is 

likely to be difficult to minimise during a solution’s construction in many cases; when 

an allocation is made for a particular student, the hospital and consultant costs arising 

will be known, whereas the student pair costs will not become apparent until a later 

stage. Obviously the very last students to be allocated in the final timeslot will have a 

good idea of the resulting student pair costs, but at this stage there will be limited 

places remaining and so the cost of the allocation would be relatively inconsequential.

A further noteworthy feature of the medical student scheduling problem is the 

inherent symmetry in the problem structure. For comparison purposes this symmetry 

makes it difficult to distinguish between any two solutions found. While in the case of 

nurse scheduling, there is no symmetry and all rosters can be easily identified by the 

shift pattern allocated to each nurse, or to a nurse of a specific type, in the case of 

medical student scheduling the problem of distinguishing between one solution and 

another with the same cost becomes a much more arduous task. This has 

repercussions on our ability to utilise feedback, as will be discussed later, as well as 

the ability to judge the range of solutions being produced by each solution method. A 

further consequence of the multitude of symmetries in the problem is the lack of 

variation between choices in the early stages of the construction. The symmetries 

involved are as follows:

1. Between students. Until students are allocated their first placement, students 

remain homogeneous. Even after some allocations have been made, there may 

be symmetry between students depending on the particular firms to which they 

have been assigned, since, as is discussed below, there may be an element of 

symmetry between certain firms. Obviously students assigned to the same 

firms will still be homogeneous.

2. Between timeslots. Timeslot 1 is unique; all students study the introductory 

module at this stage. Timeslots 2-5, however, are interchangeable. Once a 

timetable is obtained, the fundamental nature of the solution remains 

unchanged, irrespective of the order in which timeslots 2-5 are presented.
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3. Between firms. There is an amount of firm-specific information with each 

dataset. Such information includes: the firm capacity, the speciality covered, 

the hospital the firm belongs to, as well as any consultant clashes with other 

firms. Although this firm-specific information reduces the symmetries 

between firms, in several cases there will be groups of firms identical in each 

of these respects and so, again, we have an opportunity to alter the final 

timetable without changing the fundamental nature of the solution.

Even beyond these more obvious symmetries, other symmetries arise. For example, in 

some instances hospitals may present new symmetry. In more than one dataset we 

have hospitals offering only one firm. If the firms in such hospitals are 

indistinguishable, as happens when they have the same number of places available, 

offer the same speciality and have no or identical consultant clashes, a new type of 

symmetry arises between hospitals. When studying a particular solution, we may 

ignore this hospital symmetry to concentrate on the symmetry between the firms 

within those hospitals.

When investigating the lowest cost and poorer solutions, this inherent symmetry will 

make it more difficult to decide whether two solutions are fundamentally identical or 

whether the differences between them are large or small. When looking at a solution 

before and after local search is implemented, for example, the number of actual 

differences between the solutions may be large, although when symmetry is removed 

they may actually be more similar than at first appeared.

One of the consequences of the symmetry in the medical student scheduling problem 

is that using feedback is not viable. Since two equivalent solutions may comprise very 

different particular assignments, feeding back the individual success of solution 

components becomes redundant; an equivalent assignment in one solution is likely to 

be completely different from that of another. Thus feeding back information on which 

to base further constructions cannot be helpful. As we will see in Chapter 6, this is 

one of the reasons why ACO will not be applied to this problem.
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2.4 Comparison of the two problems

The nurse scheduling and medical student scheduling problems are both highly 

constrained. In the case of nurse scheduling each nurse must be assigned to a set of 

shifts such that none of the hard constraints are violated. The medical student 

scheduling problem seems more complicated at first glance, since students are 

assigned to firms in five different timeslots, whereas for the nurse scheduling problem 

we merely assign each nurse one shift pattern.

Although the two problems seem relatively different, they share many similarities and 

one of the reasons why it is interesting to study them together is in the fact that 

construction ideas applied to one problem may be carried over to the other. The 

particular constructive heuristics applied to each problem will be presented in 

Chapters 4 and 6 and the analogies between them will be discussed. Furthermore, the 

actual structures of the two problems are more similar than is at first apparent. The 

idea of assigning a nurse to a shift pattern is, after all, an idea manufactured from the 

original problem; the nurses are each to be assigned to a number of individual shifts, 

on different days. By combining the soft constraint costs into a single cost, and 

enumerating the possible shift patterns, the problem has become rather simpler to deal 

with than regarding individual shifts. Furthermore, since Dowsland and Thompson

(2000) have shown that assigning nurses to early or late shifts, if they are known to be 

working days, is relatively simple, the problem becomes one of assigning the nurses 

to the correct number of 14 ‘timeslots’, with each timeslot receiving either a ‘1’ or a 

‘0’ depending on whether the nurse is working or not; timeslots 1-7 then represent the 

seven day shifts, while timeslots 8-14 represent the 7 night shifts, as explained earlier.

Originally we would have had seven timeslots, one for each day of the week, and four 

choices for each nurse for each timeslot: early shift, late shift, night shift or day off. 

This is a similar idea to the medical student scheduling problem, where, for each of 

five ‘timeslots’, each student must be assigned to one of a number of possible firms, 

although the particular constraint sets involved are obviously very different. However, 

by reducing the nurse scheduling problem to one of a binary nature, and enumerating 

all possible shift patterns and associated cost for each nurse, the problem definition
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and approach has been greatly simplified and so no longer bears the same 

resemblance to medical student scheduling.

We have mentioned the discrepancy between the two problems in the way that the 

cost of the soft constraints is calculated: while the nurse scheduling problem has 

single costs for each shift pattern, the medical student scheduling problem must 

necessarily calculate the costs during the scheduling process or once the timetable is 

completed. This difference does more than affect the time required to compute the 

costs involved, but also provides a fundamental difference in the way an algorithm is 

able to judge the success of a partial solution. For the nurse scheduling problem, a 

simple lower bound for the preference cost may be calculated easily, by summing the 

minimum preference cost possible for each nurse and a partial solution may easily be 

judged in a similar manner -  an idea of the cost involved may be gleaned with every 

assignment. Note that there is a large variation between the nurses in terms of their 

shift patterns and the preference costs for these patterns. Within a nurse’s list of 

feasible patterns, the preference costs are also very variable and although the 

feasibility of a solution may not be determined until the solution is complete, this 

variability within the preference costs for each nurse is likely to mean costs are 

incurred relatively early in the scheduling process, giving something on which to base 

the choice of one pattern over another. With medical student scheduling, this is not 

the case. For the initial allocations, no costs will be incurred and so there is no way to 

tell the quality of the partial solution; many assignments must be made before the first 

cost is incurred. It may be difficult, then, to steer the construction towards good areas 

of the solution space since it will not be known where these are.

A further comparison of the two problems is in the underlying feasibility structures. 

Although it is possible to force the medical student schedules to be feasible, by 

severely restricting each student’s permutation of specialities, we have explained why 

this would not be a sensible course of action and for neither this problem, nor that of 

nurse scheduling, is there a simple way to guarantee feasibility whilst retaining the 

ability to explore the full search space. However, for each of these problems, as will 

be shown in their respective chapters, there is an underlying structure which enables 

the hard constraints, or at least a relaxed version in the case of the nurse scheduling 

problem, to be modelled as an IP which may be solved exactly with nominal
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computational expense. These models can then be used to guide the construction of 

solutions, so that the algorithm is steered away from undesirable, infeasible regions of 

the solution space. For medical student scheduling, the use of the network flow model 

will be shown to force the construction of feasible solutions, whereas for the nurse 

scheduling problem, incorporating the knapsack model provides assistance in the 

search for feasibility, but provides no such guarantee.

We have already mentioned that finding feasible solutions to the nurse scheduling 

problem has been difficult for all previous researchers, and this will be discussed in 

more detail in Chapter 3, but the difficulty of finding feasible solutions for the 

medical student scheduling problem, without the use of a restrictive system, is 

unknown. While both of these problems may have the feasibility of their schedules 

improved by such assistance, the implementation of such an aid is likely to be in 

direct competition with the final quality of solutions; it will be interesting to see the 

results of these experiments with feasibility assistance for the two problems in 

Chapters 4 and 6, especially since finding feasible nursing schedules is known to be 

difficult, while finding feasible medical student timetables has been shown to be 

relatively easy.

2.5 Conclusions

This chapter has served to introduce the two scheduling problems investigated in this 

thesis and it has been shown that these problems are similar enough to be able to 

approach them using the same types of construction techniques. Both also have a 

structure that enables at least some of the feasibility constraints to be modelled exactly 

using an IP formulation and so it is known that feasibility may be improved for each 

problem once such an implementation is employed.

The problems have two conflicting objectives: to create schedules which are feasible 

whilst also maintaining a high solution quality. Balancing these two objectives will be 

a key part of the research and will feature heavily in the solution approaches. 

However, the medical student scheduling problem, with its many separate objectives, 

also allows investigation into resolving balance other than that between feasibility and 

optimality.
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In terms of solution approaches, the nurse scheduling problem offers a problem more 

amenable to construction and improvement type strategies, since it has smaller size, 

more variation between solution components and a much lower order of symmetry; 

this lack of symmetry means an improved chance of successfully implementing 

feedback. The medical student scheduling problem offers an opportunity to solve a 

much larger, more homogeneous, problem with many conflicting constraints where 

solution techniques such as feedback may not practically be employed and 

construction and local search techniques must be more heavily relied on.

The known optimal solutions to the nurse scheduling problem will make initial 

evaluation of solution methods easier and the previous research will give a guideline 

as to the relative success of each approach, while the medical student scheduling 

problem allows the chance of tackling a previously unsolved problem.

The next chapter will give a review of the available literature, before going on to deal 

with solution methods to these problems in more detail. Note that the notation 

introduced in this chapter is summarised in Appendix D.
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Chapter 3
Literature review

3.1 Introduction

This chapter provides a background to the work presented in this thesis and places it 

within a wider context. Two problems are considered: the nurse scheduling problem 

and the medical student scheduling problem. The nurse scheduling problem, described 

in detail in Chapter 2, has been solved using a variety of solution approaches. 

However, this is just one of a number of nurse scheduling problems and this chapter 

will give details of the problem in its most general form and the variants which may 

be encountered in the literature. The medical student scheduling problem, on the other 

hand, is a new problem, not previously found in the literature, but a discussion of the 

problem structure and some of the particular similarities and differences with the 

nurse scheduling problem can be found in Chapter 2, along with a discussion of its 

similarities with other problems in the literature.

This thesis uses two metaheuristic approaches: greedy randomised adaptive search 

procedure (GRASP) and ant colony optimisation (ACO). This chapter will give an
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overview of these methods, their variations and extensions, and the relevant problems 

to which they have been applied previously.

The remainder of this chapter is organised as follows. The next section gives details of 

the GRASP and ACO metaheuristics, applied in this thesis. This is followed by a 

discussion of the nurse scheduling problem in all its guises in Section 3.3. The 

approaches applied to nurse scheduling in the past are discussed in Section 3.4 and in 

Section 3.5 the chapter is concluded with an in-depth look at the research which has 

been done on the nurse scheduling problem presented here.

3.2 A history of methods applied in this thesis

The two scheduling problems presented in this thesis are highly constrained. The 

nurse scheduling problem presented here has been solved with metaheuristic 

approaches in the past, as will be discussed in Section 3.5, but this thesis presents the 

first Greedy Randomised Adaptive Search Procedure (GRASP) approach used to 

solve the problem. Ant Colony Optimisation (ACO) is another method never 

previously applied to the problem presented here, although it has been used to solve 

an Austrian nurse scheduling problem, as will be discussed in Section 3.4.3.1. To our 

knowledge, this thesis also presents the first attempt to solve the medical student 

scheduling problem using a metaheuristic approach. Again, a GRASP approach is 

exploited and Section 3.2.1 will show that it has previously been successful in solving 

one of the closely related classical problems in the literature, the three-index 

assignment problem. Although the original intention was to apply ACO to the medical 

student scheduling problem as well, later observations indicated that this would not be 

a sensible approach. In Section 3.2.2 we discuss how the ACO is particularly suited 

for problems whose solutions may be represented as permutations and how applying it 

to other types of problems, such as nurse scheduling and medical student scheduling 

is inherently more challenging.

This section provides details of the GRASP and ACO metaheuristics as well as an 

overview of the way in which they have been successfully applied to problems in the 

literature.
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3.2.1 Greedy Randomised Adaptive Search Procedure (GRASP)

Greedy Randomised Adaptive Search Procedure (GRASP) was first introduced by 

Feo et al. (1994) and is an iterative or multi-start procedure (Resende 2001), in which 

each GRASP cycle is composed of two distinct parts. First, a solution is constructed 

randomly with some greedy element and then a local search is used to improve this 

initial solution in the second stage. The variety of the constructions in the first part of 

the procedure allows for several local optima to be reached in the final set of 

solutions. The best of these solutions is kept as the end result. Resende (2001) views 

GRASP as a repetitive sampling technique, with each GRASP cycle resulting in one 

solution from the space of all possible solutions.

The first phase of the GRASP algorithm is the greedy randomised construction which, 

according to Corberan et al. (2002), can be traced back to Feo and Resende’s heuristic 

approach for solving a set covering problem (1989), although Resende likens the 

construction to Hart and Shogan’s slightly earlier research (1987). During the 

construction, the solution is built piece by piece, by selecting the next element 

myopically. To make a random greedy choice at each stage, a selection is made from 

a ‘restricted candidate list’ (RCL) comprising only the best elements, where one 

element is judged to be ‘better’ than another if its score in some appropriate 

evaluation function is higher, for example. The majority of GRASP applications make 

the selection from the list probabilistically, according to this score. The general 

methodology behind the scoring is to calculate, for each potential element to be 

selected, the immediate impact on the solution quality of making such a selection. 

Note that GRASP is adaptive because the function calculating the scores for each 

element is adaptive, and is based on the current partial solution. The particular 

heuristic used to create the scores will obviously vary and is generally problem- 

specific. The second, improvement, phase of GRASP, local search, is also an 

important consideration. Since the constructions are not guaranteed to be optimal, the 

application of local search is “almost always beneficial” (Li et al. 1994, Feo and 

Resende 1995, Resende 2001).

The key to providing an effective GRASP heuristic is combining the good 

constructions from the first GRASP phase with a suitable local search. Louren^o et al.
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(2001) state that “the most important concept in a local search is the definition of the 

neighbourhood for the problem under consideration” while Blum and Roli (2003) 

point out that it is important to choose a local search which ‘fits well’ with the 

construction phase, in order to be able to reach many different local optima.

A full survey of all GRASP literature is beyond the scope of this work, but overviews 

of GRASP can be found in Feo and Resende (1995), Resende (2001), Pitsoulis and 

Resende (2001) and Resende and Ribeiro (2002). Bibliographies can be found in 

Resende and Festa (2003) and Festa and Resende (2004).

3.2.1.1 Construction Phase

The heuristic used in the construction plays a large part in the success of the GRASP 

algorithm. Li et al. (1994) and Feo et al. (1991) note that GRASP is an improvement 

on a random multi-start local search; many GRASP cycles may be completed in the 

time taken for local search to converge given a random starting solution. In particular, 

Resende and Ribeiro (2002) apply GRASP to a simple combinatorial optimisation 

problem and show that the local search as applied to a near-greedy construction 

converges to a local optimum approximately 2.5 times more quickly than when the 

process is initialised with a purely random construction.

How greedily the solutions are constructed in this first phase, depends on the number 

of candidates, n, allowed in the restricted candidate list (RCL). If n = 1, the 

construction heuristic will always choose the best, or highest-scoring, value, meaning 

that the same solution will be produced in every cycle. This is likely to lead to 

relatively high-quality, but suboptimal, solutions. Choosing a larger value of n allows 

for more variation and, although this will be likely to worsen the quality of the 

solutions produced on average, the variation means that best solutions are likely to 

improve on those produced using a purely greedy heuristic (Feo and Resende 1995, 

Resende 2001). The RCL can be compiled in different ways. The first is to allow the 

RCL to be composed of the best n elements, as mentioned before, where n is some 

parameter to be decided. For example, Feo et al. (1996b), Corberan et al. (2002) and 

Casey and Thompson (2003) are among those using this approach. Another way to 

determine the RCL is to allow all elements whose scores are within some percentage
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a  of the greedy choice (Li et al. 1994, Feo and Resende 1995, Mavridou et al. 1998). 

Klincewicz (1992) combines these approaches, using a fixed maximum list size, but 

potentially reducing this size by disallowing all elements whose score is below a 

percentage of the best, and finds that the size of the RCL does have an impact on 

solution quality. Feo and Resende (1995) also present this as a possibility. Liu et al.

(2000) also use both ways of determining the size of the RCL when solving a 

frequency assignment problem; they choose a vertex from a list of fixed size «, but 

assign it a frequency by choosing from all frequencies whose cost is within a given 

percentage of the smallest possible. Aiex et al. (2005) create a candidate list from the 

best percentage, a  , but let a  be a parameter whose value is selected randomly at the 

start of each construction. As well as determining the size of the RCL, there is 

variation within the literature as to how to select from it. Although the original 

GRASP approaches sample uniformly from this list, for example Corberan et al. 

(2002) and Resende and Ribeiro (2002), many researchers select from the list 

probabilistically, using a roulette wheel selection method, for example Binato et al.

(2002), Kim and Park (2004).

Once the framework of the GRASP construction phase has been decided, there are 

several ways which have been introduced to improve on the basic construction 

method. Hart and Shogun (1987) detail several approaches for improving heuristic 

effectiveness and in the context of a GRASP construction discuss the virtue of using a 

fixed candidate list rather than sampling from all candidates whose cost is within a 

given fixed percentage of the best available. They conclude that while using the 

variable list size produces lower cost solutions than an equal number of cycles using a 

fixed list size, the fixed list, using a value of n = 2, was more robust. There have been 

many examples of improvements to the GRASP construction. Robertson (2001) 

presents two heuristics for producing the restricted candidate list for a 

multidimensional assignment: the first is a straightforward randomised greedy 

approach, but the second, maximum regret, is more intelligent; the difference in cost 

between the best and next best possibilities for a selection is used to create the 

candidate list. When a selection is made, the best cost assignment for this element is 

then accepted. Feo et al. (1996b) use a similar construction idea in a GRASP approach 

to a single machine scheduling problem. However, their score function associated 

with an unscheduled job j  is made up of both a standard greedy component regarding
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the changeover time cost as well as an ‘opportunity cost’ which determines the cost of 

inserting j  after half the unscheduled jobs have been scheduled. Thus a balance is 

created between selecting greedily and looking ahead to how this will affect the rest 

of the schedule.

Given the time required to perform local search, many researchers place more 

importance on providing their algorithm with a good construction. Kontoravdis and 

Bard (1995), for example, apply local search only to the best of each set of five 

constructed solutions and Rojanasoonthon and Bard (2005) also restrict the 

application of the improvement phase to only the most promising of the constructed 

solutions. Carreto and Baker (2002) only apply local search if a feasible solution has 

been obtained by the construction. Note that Robertson (2001) concludes that the 

benefits of the local search phase are outweighed by the computational expense and 

Argiiello et al. (1996) omit the improvement phase altogether. This indicates the 

importance of the construction.

One of the features Fleurent and Glover (1999) add to the GRASP construction for the 

QAP is the idea of correcting or improving a current partial solution before making 

the next assignment. In so doing, they hope to avoid one of the common problems 

arising from constructive procedures: that of “wrong choices” being made at an early 

stage in the construction, leading to additional wrong moves and resulting in an 

overall poor solution. Generally, correcting a completed poor solution is very difficult 

due to the non-linearity of the problem. They suggest two methods to ease this 

problem: firstly, to use a local search on the current partial solution; and secondly to 

oscillate between constructive and destructive moves, by periodically removing some 

of the most expensive assignments. Binato et al. (2002) provide another example of 

local search being applied periodically on partially constructed solutions, this time for 

a job-shop scheduling problem. Laguna and Marti (2001) describe a GRASP 

implementation for the graph colouring problem. The construction phase builds up the 

colour classes one at a time, completing one colour class before moving on to the 

next. Rather than just allowing a single attempt at each colour class several attempts 

are made and the best, according to a suitable criterion, is selected.
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However, aside from implementing enhancements to a basic GRASP construction, 

much research has shown that utilising different construction heuristics can be 

beneficial. Ribeiro et al. (2002), for example, successfully employ a combination of 

different construction heuristics available for the Steiner problem in graphs along with 

strategies to intensify, diversify or merely perturb solutions, as necessary. Robertson

(2001) showed that two construction heuristics applied to the multidimensional 

assignment problem gave large differences in solution quality.

Resende and Feo (1996) introduce a GRASP approach to solve a satisfiability 

problem, determining whether an assignment of values can be found for a set of 

logical variables, such that the conjunction of clauses containing these variables will 

be true. The constructions vary according to: whether or not the variable size of the 

RCL has a maximum; whether both the number of unassigned variables and 

unassigned clauses are used to create the score function or whether only the clauses 

are considered; and how the candidates are chosen for the candidate list when a 

maximum list size is employed. They found that all options considered found the 

necessary assignment, but that there were differences between them in terms of 

computational expense, with the fastest construction being the one with no restriction 

on the list size and considering only the clauses in the score function. Delorme et al.

(2004) use a GRASP approach to solve a set packing problem where a number of 

variables must similarly be set to either 0 or 1 to satisfy certain constraints, in order to 

maximise the total value of the variables set to 1. The first approach initialises all 

variables with the value 0 and the heuristic selects a single node to upgrade in each 

stage of the construction, while the second initialises all variables with the value 1 and 

selects a node to remove ‘from the pack’ at each stage. The final heuristic includes 

information about how many times each variable was set to 1 in previous solutions in 

order to create the scores. The approach developed was most successful when using in 

conjunction with this third heuristic incorporating a learning strategy.

Andronescu and Rastegari (2003) provide a further example of a GRASP approach 

where more than one heuristic has been tested, and also conclude that the difference in 

solution quality between them is discemable.
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Gomes and Oliveira (2001) use GRASP to solve a nesting problem, a two- 

dimensional cutting and packing problem where irregular shapes are to be packed 

onto a plate of fixed width and infinite length. The first heuristic presented considers 

only the length added to the solution for each assignment, whereas the second uses the 

wasted space added as a measure of fitness. The wasted space was chosen as the more 

practical of the two, since there was no way to compare two assignments for which 

neither increased the overall length.

There are therefore several examples in the literature where there has been a choice 

for the construction heuristic employed and where it has been shown that this choice 

is important to the overall quality of the solutions. We are especially interested in 

constructions which consider different ways to balance different weights, as this is an 

important part of our research. Pardalos et al. (1999), for example, solve a set- 

covering problem relating to a directed graph. To select and order vertices, which is 

normally done according to the degree of each vertex, Pardalos et al. consider the 

degree in terms of the number of edges entering and the number leaving each vertex. 

Three simple ways of combining these two aspects into a score are tested, with the 

multiplicative score producing slightly better results, on average than an additive 

score and one taking the maximum of the two values.

Note that in many cases obtaining a feasible solution within the GRASP construction 

is not an issue because feasibility can be built into the form the solution takes. Vofi 

(2000) notes that a feasible construction can easily be obtained for problems such as 

the QAP and TSP, whose solutions may be represented as permutations. For other 

GRASP applications, simple steps can be taken to ensure the constructions are 

feasible, by similarly disallowing elements on the RCL which will violate necessary 

criteria (Rojanasoonthon and Bard 2005, Skorin-Kapov and Kos 2006, for example). 

There has not been a great deal of research applying GRASP to problems where the 

hard constraints cannot easily be satisfied, however, Atkinson (1998) presents one 

such example. He uses a feedback approach for a vehicle routing problem which 

involves making locations unvisited in previous cycles more likely to be assigned to a 

vehicle earlier in the search. Note that the fact that there has previously been little 

research in this area shows that there is room in the literature for an investigation of 

the sort presented in this thesis.
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3.2.1.2 Improvement Phase

As was mentioned previously, in most instances the improvement phase of GRASP is 

a necessary inclusion since the construction phase alone cannot usually guarantee 

locally optimal solutions; Feo et al. (1991) assert that most solutions created by a 

GRASP construction could be improved by a simple local search application. 

Although the neighbourhoods employed must necessarily depend on the particular 

problem being studied, for most problems the easiest implementation of local search 

would take the form of applying a simple 1-opt or 2-opt neighbourhood. However, 

most employ a more sophisticated local search, and we now discuss some of the types 

of enhancements which have been used in conjunction with a GRASP approach.

A simple way in which the local search can be enhanced is to employ more than one 

neighbourhood and several cases of this can be found in the literature. 

Rojanasoonthon and Bard (2005), for example, solve a problem in which several jobs 

must be scheduled onto a number of non-homogeneous machines with time windows 

and five simple neighbourhoods are employed, successively. These are: relocating up 

to three jobs on the same machine, relocating up to three jobs on a different machine, 

swapping two jobs which are on the same machine, swapping two jobs which are on 

different machines and, finally, swapping a scheduled job with an unscheduled job. 

Although each neighbourhood definition is simple, by employing all five 

neighbourhoods, the space of solutions which can be searched is much greater than 

could be reached by employing just one or two. There are many other cases where 

local search has been employed with more than one neighbourhood and examples of 

these include Feo et al. (1991) and Xu and Chiu (2001).

Often, GRASP will be used with a more sophisticated local search technique in order 

to improve solutions more efficiently. Li et al. (1994) for example, present a new 

neighbourhood for the QAP, which may be applied to any other problem with a 

permutation representation, such that any pair of elements in the permutation may be 

exchanged provided that at least one of these has not yet been altered in the current 

local search phase. They determine that, in general, this neighbourhood allows better 

solutions to be found than the standard neighbourhoods used in conjunction with this 

problem. Other research into local search enhancements provides larger and more
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complex neighbourhoods, such as those used in Louren90 and Serra (1998). They 

introduce a variable depth neighbourhood for the generalised assignment problem, 

capable of both simple 1-opt moves, as well as ‘ejection chain’ moves, which perform 

a 1-opt move in conjunction with another, potentially balancing 1-opt type move. That 

is, moving task / from agent i to agent j  as well as moving task m from agent k (k * i)  

to agent p, where p *  j , but p  — i is allowed. Casey and Thompson (2003) offer 

another example of a local search which incorporates chains of moves within the 

neighbourhood definition.

Other general techniques for enhancing the improvement phase involve hybridising 

the GRASP with another search-based metaheuristic, such as simulated annealing 

(Liu et al. 2000, Laguna and Marti 2001), tabu search (Laguna and Gonzalez-Velarde 

1991, Louren9o and Serra 1998, Areibi and Vannelli 2000, Laguna and Marti 2001) 

or variable neighbourhood search (VNS) (Beltran et al. 2004).

3.2.1.3 Other variations

The basic idea of a GRASP approach is a very simple one and one which can be 

applied to a variety of problems with relative ease (Li et al. 1994). However, due to 

the complexity of many problems, such a simple approach is not always sufficient to 

find optimal or even close to optimal solutions. This section has so far discussed 

GRASP in its most basic form as well as some of the enhancements made to the 

construction and improvement phases in order to improve the solutions obtained by a 

GRASP approach; many further examples of enhanced GRASP algorithms exist in the 

literature.

GRASP is a multi-start procedure which can be viewed as a repetitive sampling 

technique (Resende 2001) as mentioned previously in this section. However, although 

this means that GRASP provides a diverse range of solutions, it has been suggested 

that solution quality could be enhanced by introducing memory strategies, utilising 

some of the information gained from previous cycles rather than treating them 

independently. One of the common memory strategies used in conjunction with a 

GRASP approach is that of path-relinking. This generally involves intelligently
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changing an existing high-quality solution s 1 into a second high-quality known 

solution s2 and thus creating a path of solutions between the two. By monitoring the 

modifications made during this process, it is suggested that solutions better than these 

elite solutions may be encountered along this path and thus a new elite solution will 

have been found. Laguna and Marti (1999) were the first to develop a hybrid GRASP 

with path-relinking approach and it has since been applied to job shop scheduling 

(Aiex et al. 2003), the QAP (Oliveira et al. 2004), workover rig scheduling for 

onshore oil production (de Aragao Trindade and Ochi 2005), set packing (Delorme et 

al. 2004) and the axial three-index assignment problem (Aiex et al. 2005, Fiigenschuh 

and Hofler 2006). As mentioned in Chapter 2, the planar version of three-index 

assignment problem shares similarities with the medical student scheduling problem. 

The constructions used by both Aiex et al. (2005) and Fiigenschuh and Hofler (2006) 

involve evaluating the cost for each individual assignment triple (ij,k ) and selecting 

the best of these to assign. Both employ approaches which take advantage of the fact 

that each element in a set can only be assigned once. Note that this type of approach 

could not be applied to medical student scheduling for two reasons: firstly, each 

assignment triple (sf,t) does not have a single, known cost which contributes linearly 

to the total solution cost and secondly, the sets of students, firms and timeslots are not 

of equal size and each student, firm and timeslot will necessarily appear more than 

once in any solution. Further, the local search phase of Aiex et al.’s GRASP algorithm

(2005) relies on the permutation representation of solutions, something which we 

have established is not suitable for the medical student scheduling problem. The path- 

relinking phase, also adopted by Fiigenschuh and Hofler (2006), would be difficult to 

implement for our problem, due to the problem of symmetry, as mentioned in Chapter

2. However, most instances of path-relinking in the literature have had very successful 

results, especially in terms of savings to overall computational expense.

Many other ways to introduce memory to a GRASP approach have been supplied in 

the literature. Atkinson (1998), for example, used GRASP with a diversifying 

memory function to solve a vehicle routing problem with time windows. For this 

problem it was not trivial to obtain a feasible solution where all locations were 

allocated to a vehicle. In order to use information from the previous cycles to 

encourage feasibility, a ‘priority’ cost PRt associated with location i was modified at
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the end of each cycle in proportion to the number of previous solutions in which i 

failed to be scheduled successfully. The construction stage of the GRASP then 

incorporated this information to encourage locations with a high PRt value to be 

scheduled earlier. Fleurent and Glover (1999), on the other hand, use memory as a 

form of intensification strategy; they use information from an elite set of solutions to 

guide the construction process for a GRASP approach to the QAP. Particular pairs of 

assignments which exist in a large number of the elite solutions are more likely to be 

selected for the current partial solution. The influence of this information over that of 

the standard evaluation function increases with time, since initially the solutions in the 

elite set are not known to be of a high quality. Binato et al. (2002) apply the same 

approach to a job-shop scheduling problem and a similar adaptive memory approach 

is utilised in Ahmadi and Osman (2004) in response to a capacitated clustering 

problem.

The combination or hybridisation of GRASP with other algorithms has proved 

extremely successful and the literature is full of examples where GRASP has been 

successfully improved by careful modifications of this nature, as has already been 

discussed. In some cases, GRASP has been effectively hybridised with more than one 

other approach, and examples of this include Gupta and Smith’s (2005) GRASP 

approach for a single machine scheduling problem which incorporates both path- 

relinking and VNS and Pinana et al.’s (2004) GRASP approach which incorporates 

path-relinking and uses tabu search in the improvement phase. Ribeiro et al. (2002) 

also use a GRASP with path-relinking and add a weight-perturbation strategy in the 

construction phase, using this weighting strategy to strategically oscillate between a 

bias towards intensifying, diversifying or merely randomly perturbing the 

construction of solutions. Casey and Thompson (2003) solve an examination 

scheduling problem, enhancing the basic GRASP algorithm using memory functions 

in the construction phase to intelligently diversify or intensify the solutions as 

necessary and simulated annealing with a neighbourhood definition including chains 

of moves in the improvement phase.

In its most basic form, GRASP is a method which is easily applied to a variety of 

problems, often with very good quality results in comparison to other methods of 

equal simplicity and with much reduced computing time over exact methods, should
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they be available. GRASP has been applied successfully to a wide variety of 

problems, including assignment problems (Li et al. 1994, Feo and Gonzalez-Velarde 

1995, Resende and Pardalos 1996, Mavridou et al. 1998, Louren90 and Serra 1998), 

scheduling problems (Feo et al. 1991, Feo et al. 1996a, Feo et al. 1996b, Xu and Chiu 

2001, Garcia et al. 2001, Kim and Park 2004), graph theory (Laguna and Marti 2001, 

Corberan et al. 2002), location problems (Klincewicz 1992), and packing problems 

(Moura and Oliveira 2005). However, when enhanced using some of the methods 

discussed previously to enhance both the construction and improvement phases and 

with other, more sophisticated modifications and hybridisations, very robust and 

successful approaches arise, which are generally able to compete and improve on 

other available approaches.

3.2.2 Ant Colony Optimisation (ACO)

The Ant Colony Optimisation method (ACO), introduced in Dorigo et al. (1991) and 

Dorigo (1992), aims to emulate the system by which the Argentine ant (Linepithema 

humile) searches for food (Taillard 1999). This technique is an automatic process 

which enables a colony of ants to quickly converge their various paths between the 

nest and food source to the one which has the shortest distance. This process is the 

result of a feedback loop created by the ants laying down pheromone as they walk and 

being more likely to follow a path which is rich in such trail. Ants following a shorter 

route will place their pheromone trail on it more frequently and so later ants are more 

likely to detect and adopt it. A simplified version of this process is illustrated in 

Figure 3.1.

[FOOD! 1 FOOD| I FOOD| I FOOD I I FOOD I | f OOD|

t = 1 t — 2 t — 3 t — 4 t 5 t —̂ oo

Figure 3.1. An example demonstrating the effects o f pheromone reinforcement on ant path-selection

over time.
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At time t = 1, the ants set out from the nest towards food. As they reach an obstacle, 

each ant has an equal probability of going either left or right. All ants leave 

pheromone trails as they travel and the pheromone trails are roughly equal in both 

directions. At time t = 2, some of the ants which chose the shorter route have already 

reached the food and are heading back to the nest, while those which chose the longer 

route have yet to reach the food. At time / = 3, the first ants which chose the shorter 

route have travelled back past the decision point, reinforcing the pheromone trail in 

that direction as they pass and causing a feedback loop. The trail is now stronger on 

this path and an ant reaching the decision point is more likely to choose this path over 

the longer one. At time t = 4, ants which had travelled to the food by the longer route 

may also return by the shorter path due to the increased amount of pheromone on this 

path. New ants reaching the decision point are now much more likely to take the 

shorter route than the longer one. By time t = 5, all ants travel the shortest way around 

the obstacle and, eventually, the pheromone trails lead all ants the shortest way to the 

food. The most natural use for an ant algorithm would be to solve a routing problem 

since this is directly applicable. The Travelling Salesman Problem (TSP) is the 

simplest of the routing problems and many of these problems have been solved 

successfully using ACO. Given n cities, a salesman starting from any city must visit 

each city exactly once before returning to the start point. The ACO algorithm, 

modified to deal with the discrete case, works in the following manner. The 

population of artificial ants is each given a starting location. For an ant at location /, a 

score, score(iJ), is assigned to each location j  to which the ant may now move, given 

by

score(i,j)=  , (3.1)

keK

where rjij is the visibility score between i and j ,  indicating the “closeness” or

“desirability” of location j , r jy is the trail score between i and j  and K  is the set of all

feasible locations to which the ant may still travel. The city chosen is selected 

probabilistically from these scores.

The ACO method has many variations -  mostly to do with the way the trails are 

updated. In Ant System (AS), the original ACO algorithm introduced by Dorigo 

(1992), the trail matrix is updated globally after all ants a have completed a full tour,
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T . For each tour 7*, the set of arcs (ij) which were visited during the tour add Ar? to 

the trail so that each element of the matrix is updated using

=(i - p K + Z Ar.y (3.2)
a

where A r? =
Q / ca if T a contains arc (z, j )
0 otherwise

p  is the evaporation rate, Q is some constant and ca is the total distance of tour 7a 

(Dorigo et al. 1991, Dorigo 1992). Basic enhancements to AS include the idea of an 

elite ant, where the best tour so far will contribute more strongly in the trail update 

(Dorigo et al. 1996). ASrank is another improvement to the basic AS strategy, using the 

idea that each ant’s tour contributes to the trail matrix in proportion to the rank of that 

tour, rather than in proportion to the actual tour cost (Bullnheimer 1999b). All these 

ideas provide slight variations on the basic AS method.

Ant Colony System (ACS), however, differs from AS in three main ways. Firstly, by 

the way in which the next city in the tour is selected; at each decision point, there is a 

chance of being allocated the best, or nearest, city, controlled by a parameter qo 

e [0 ,l] . If a random variable in the range [0,1] is greater than qo, the next city to be 

chosen is the closest, otherwise all cities not yet visited are considered as normal. 

Secondly, the trail matrix is not just updated globally, after all tours have been 

completed, but also locally; after every selection (ij) the trail matrix is updated 

according to

where r 0 is the initial trail value, usually a small constant. This has the effect of

diversifying by using the trail to discourage the use of arcs which have been 

previously visited. The third and final main difference between AS and ACS is in the 

global update at the end of each cycle; only arcs from the best tour found so far are 

used to update the trail. This has an intensifying effect, encouraging the use of these 

low-cost arcs in future solutions. ACS was introduced by Dorigo and Gambardella

*V=(l (3.3)
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(1997). ACS is based on the slightly earlier algorithm Ant-Q (Gabardella and Dorigo 

1995) which varies only in the value forr0. Where ACS takes r 0 to be a constant, the 

earlier Ant-Q calculated a value for it relative to the potential distances travelled by 

the ants in their initial journey. However the simpler version, where r 0 is constant,

proved just as effective and so Ant-Q was abandoned in favour of ACS (Dorigo and 

Stiitzle 2004). A final example of ACO is the MAX-MIN Ant System (MMAS) 

(Stiitzle and Hoos 1997, 2000), the major feature of which is strongly reinforcing the 

best tours found, while applying maximum and minimum limits to the pheromone 

trail values, as the name suggests. Using this algorithm, the trail matrix is initialised 

with the maximum value and is reinitialised each time the system stagnates. As has 

been mentioned, ACO is most directly applicable to the TSP and other routing type 

problems and it will be shown that any other problem whose solutions have a 

permutation representation can apply ACO similarly. In the next sections, we give 

details first of how ACO has been successfully applied to the TSP and related routing 

problems, before describing how it has been applied to other similar problems and, 

finally, other problems where a permutation representation cannot or has not been 

exploited.

3.2.2.1 ACO applied to the travelling salesman problem

The TSP is probably the problem to which ACO algorithms have been most often 

applied. Dorigo et al. (1991) applied several variations of AS on the TSP and 

produced good results. They found that the algorithm is sensitive to changes in 

parameters, with the exception of the parameter Q, which they found to have a 

negligible influence on solution quality. Gambardella and Dorigo (1995) used Ant-Q 

to solve the TSP as well as using ACS to solve both the symmetric and asymmetric 

TSPs (Gambardella and Dorigo 1996). Dorigo and Gambardella (1997), applied ACS 

to the TSP and showed that ACS performed well compared with other heuristic 

methods. Bullnheimer et al. (1999b) introduced ASrank and applied it to the TSP with 

promising results. Stiitzle and Hoos (2000) found that MMAS produced good results 

for the TSP compared with other ACO approaches, such as AS, AS with elite ants, 

ASrank and ACS. Bullnheimer et al. (1999a) applied Ant System to the vehicle routing
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problem, another problem to which the ant metaphor is easily extended. A review of 

ACO applied to the TSP can be found in Stiitzle and Dorigo (1999b).

3.2.2.2 ACO for permutation-based problems

As well as these more obvious applications, ACO has also been applied in its many 

forms to a wide range of other types of problems, including many scheduling and 

assignment problems. For problems such as TSP and vehicle routing, it is easy to see 

how the pheromone trail may be defined and, since a tour is being built, it is very easy 

to extend the ant analogy to a representation of this problem. For other, seemingly less 

related, problems a tour representation may still be used. Montgomery et al. (2005) 

indicate that there is a structural advantage inherent in problems with a permutation 

representation for the selection of pertinent trail definitions for ACO.

For example, solutions to the graph colouring problem, the problem of colouring a set 

of vertices in as few colours as possible such that no two vertices joined by an edge 

may have the same colour, may be represented by a permutation. Although they did 

not exploit this permutation representation, Costa and Hertz (1997) stated that there 

exists one or more optimal orderings of the vertices for any graph, such that the 

minimal colouring may be obtained by simply colouring each vertex greedily in turn. 

Thus a solution may be expressed as a permutation of the vertices and again a trail 

representation may be easily defined. Other problems with a permutation 

representation are similarly suited to an ACO approach.

Gravel et al. (2002) and Ferretti et al. (2006), for example, use permutation-based 

approaches to solve two continuous casting problems. A sequence of jobs must be 

scheduled and trail is defined between each pair of jobs (ij) when job j  is immediately 

preceded in the schedule by job i. Gagne et al. (2006) similarly treat a solution to a car 

sequencing problem as a permutation of car classes and so are easily able to extend 

the ACO trail definition for the purposes of their problem.

Merkle and Middendorf (2001) use a different approach to solve a permutation 

scheduling problem, where jobs must be assigned to a place in the schedule with a 

‘due date’ associated with each job; they alternate between generations of ants using a
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standard sequential approach and generations of ants which determine which job will 

be assigned the next place considering the places in a random order. They suggest that 

the new generations will better utilise the information in the trail matrix, since every

generations of ants will maintain the high levels of quality obtained from the 

heuristics developed for the problem. They found their algorithm performed well.

The Quadratic Assignment Problem (QAP) involves pair-wise matching of two sets of 

n objects in order to minimise the total cost associated with all assignments. The nurse 

scheduling problem presented here is based on a similar idea of creating minimum- 

cost pairings of nurses with shift patterns. However, since a solution to the QAP is a 

bijection, it may also be represented as a permutation and so the QAP more easily 

lends itself to an ACO solution approach.

Gambardella et al. (1999) use a variant of AS to modify existing solutions to the QAP, 

rather than to build new ones. Each ant is initialised with a randomly generated 

complete solution, consisting of a permutation of n elements, n .  A modification 

consists of swapping two elements in the permutation, n i, n}. The index of the first

value, i, is chosen randomly, while the second, j, is chosen in such a way that

otherwise. The first of these aims to create very good solutions based on the trail 

matrix, while the second is a more diversifying move.

Once the solution has been modified in this way a specified number of times, a 

standard local search procedure is implemented and the new solution becomes the 

starting solution for that ant at the beginning of the next generation. However, in order 

to intensify the search around good areas, each ant is initialised with its best 

permutation so far when the best solution produced so far has been improved upon.

place has the same opportunity to be the first that is assigned a job, while the standard

with some probability q and j  is chosen with probability

k*i
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When no improvement has been made to the best solution for a given number of 

cycles, a diversification strategy reinitialises the trail matrix and assigns new starting 

solutions for all ants other than the one representing the best solution found. In order 

to speed up convergence, only the pheromone trails relating to the best solution so far 

are updated.

Results show that this approach performs well on a variety of test problems, 

especially those with a more irregular data structure.

Maniezzo (1998) applies a modified version of AS to the QAP described as an 

approximate non-deterministic tree search and denoted by ANTS in the literature. In 

order to make the algorithm more computationally efficient, the standard 

multiplicative score function, given in (3.1), is replaced by an additive version, as 

given in (3.4).

/ x ax u + (l -  a)n.
M  = v , '  I  x (3-4)2^{azik + ( ! - a > 7 /J

score\

keK

The ANTS part of the algorithm comes from estimating the desirability of a move, 

rjy, by calculating lower bounds for the cost of the completion of the partial solution

containing j. Another feature is that ANTS does not apply the usual evaporation to 

each trail matrix element. Instead, the trail is updated using

r .. =  T.. + y ^ A r a. , u v u ’

where A r? = «
ca - L B  
c - L B

0

if T a contains arc (/, j )  

otherwise

Here LB is the lower bound to the optimal solution cost, c is the moving average of 

the last k solutions, and A: is a parameter. This dynamic scaling procedure allows 

distinctions to be made between small differences in the later stages of the search, 

when solutions become more uniform. ANTS was found to perform better than 

GRASP and Tabu search implementations.
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Stiitzle and Dorigo (1999a) give an overview of ACO as applied to the QAP, covering 

AS, MMAS and many other variations, and apply MMAS with 2 types of local search 

to the problem, concluding that ANTS (Maniezzo 1998) is the best approach for this 

problem.

3.2.2.3 Other problems and trail definitions

Although the ACO can be easily applied to the QAP, by using the permutation 

representation of a solution, many other problems have no such representation, and 

even when applying ACO to problems which do have a permutation representation, 

this is not always the trail definition used. Montgomery et al. (2005) suggest that 

problems without such a representation may require additional heuristic assistance to 

ameliorate any problems of unfavourable trail bias which may become apparent.

Louren^o and Serra (1998), for example, use a version of MMAS to solve the 

generalized assignment problem and use a trail between specific pairings. Since they 

admit infeasible solutions in the search space, the objective function includes a term 

to penalise infeasibility. By hybridising their method with a tabu search algorithm, 

they are able to produce excellent results for a number of test cases and found that the 

modified ant algorithm was able to outperform a GRASP approach with the same 

modifications.

Chen and Cheng (2005) apply an MMAS approach to a task assignment problem, 

using a trail definition between pairs of items to be assigned. The algorithm was tested 

on randomly generated data and was found to be much quicker and more successful 

than both a GA and an approximation algorithm based on an ILP approach.

Forsyth and Wren (1997) apply AS to a bus driver scheduling problem. They 

represented their problem as a series of work spells and relief opportunities. By 

formulating the problem in this way they are able to model it as a fully connected 

graph, where the relief opportunities form the nodes and the work spells, the edges. 

The trail is then defined between each pair of nodes. They need to minimise both the 

amount of uncovered work, to provide a feasible solution, and the number of shifts in 

the solution, to minimise the number of bus drivers required. Rather than combining
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these two factors, they update the trail according to just the amount of uncovered 

work and, once all work is covered, they change the trail update to reflect only the 

number of uncovered shifts. However, they were unable to rival results produced 

using a specialised ILP technique designed for this purpose.

Costa and Hertz (1997) do not use the permutation-based approach to solve a graph 

colouring problem, but instead create a trail between pairs of non-adjacent vertices; 

the level of pheromone added to a pair (if) reflects the quality of a solution in which i 

and j  received the same colour. Levine and Ducatelle (2004) emulate these trails in an 

ACO approach to a bin packing problem (BPP). The problem consists of fitting items 

of different sizes into a number of bins in order to minimise the number of bins 

required. The trail between a pair (if) reflects the success of placing items of size i 

and size j  in the same bin. Ritchie (2003) used a similar approach for a homogeneous 

multi-processor scheduling problem, essentially a variant of the BPP; pheromone trail 

between pair (if) indicates the level of success of assigning jobs of running times i 

and j  to the same processor. For the heterogeneous variant of the problem, where the 

processors may not all be identical, however, the problem was no longer one of 

grouping and the trail between a pair (if) was therefore taken as representing the 

favourability of assigning a job / to a processor j.

Dowsland and Thompson (2005) improve the ant algorithm ANTCOL, introduced by 

Costa and Hertz (1997), and adapt it for application to examination scheduling, a 

similar problem. By making a modification to the trail updates, in order to better 

differentiate between high- and lower-quality solutions, increasing the trail values for 

more “difficult” vertices, and matching a good heuristic with suitable combinations of 

parameters a  and /?, they were able to produce the best known solutions for all data 

sets tested. These results were consistent across a range of trials.

Socha et al. (2002, 2003) apply MMAS to a simplified university course timetabling 

problem trying trail definitions which matched events to timeslots as well as a similar 

trail to that of Costa and Hertz (1997) which records details of which events should 

not be placed in the same timeslot. However, when local search was incorporated, it 

was found that the first of these trail definitions, matching events to timeslots, gave
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significantly better results. Although not directly equivalent, note that this approach of 

introducing pheromone trail for specific assignments is more similar to the nurse- 

pattem trail adopted in Chapter 5 than that of using a relative approach.

3.2.2.4 Role of the construction heuristic

Although the construction heuristic, used to calculate the visibility scores rj, is an 

essential part of any ACO approach, there is relatively little in the literature about 

evaluating different heuristics. For problems with a simple structure, such as the TSP, 

it is sensible to use the natural construction approach, but for other types of problems, 

it is sensible to investigate not only enhancements to the trail definition and parameter 

values, but also the form which the visibility scores, 77, take. Although there are 

plenty of examples in the literature where the success of enhancements such as local 

search has been evaluated (Stiitzle and Dorigo 1999a, Levine and Ducatelle 2004 in 

the above, for example), occurrences of investigation into different construction 

heuristics and visibility scores are relatively rare. We now discuss some examples in 

the literature which do investigate this aspect of the ACO algorithm.

Costa and Hertz (1997) apply eight different construction heuristics to their ACO 

approach to solve a graph colouring problem. The variations are in how the next 

vertex to be assigned a colour is chosen as well as how the colour or the vertex is 

assigned. Their results show that applying different heuristics provides variation both 

in solution quality attained as well as the computational efficiency of the algorithm as 

a whole. Dowsland and Thompson (2005) apply the same heuristics to an examination 

scheduling problem, as well as introducing new evaluation functions, determining the 

success of each solution, feeding back to the trail. They find that the variation in the 

quality of results obtained by the different approaches is significant enough to claim 

that the time spent investigating and evaluating the different constructive approaches 

was worthwhile.

For the nurse scheduling and medical student scheduling problems investigated in this 

thesis, feasibility is certainly an issue and the bias between the conflicting aspects of 

feasibility and optimality is the focus of this research. It is interesting to note,
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therefore, some of the ways in which similar problems have occurred and been dealt 

with in the literature.

Although, as mentioned in the introduction in Chapter 1, ACO is not, eventually, 

applied to the medical student scheduling problem, the way in which the balance 

between different aspects is attained for other problems is still interesting.

Randall (2004) introduces an ACO approach for the Generalised Assignment Problem 

(GAP) and remarks that for problems such as this, where feasibility is an issue, it is 

important to build a heuristic function, 77, which deals with these constraints 

appropriately. The approach taken by Lourenpo and Serra (1998) to solve the GAP 

was to penalise infeasible solutions in the objective function, however, Randall (2004) 

notes that “it is often difficult to find an appropriate penalty function which works 

across a range of problem instances and feasible solutions are not guaranteed.” 

Instead, Randall introduces two visibility heuristics to be used in combination: one 

which favours low-cost assignments and one which favours assignments with higher 

available resource. The selection of the heuristic applied is based on a “cost to 

resource ratio” which can either be set in advance or changed dynamically depending 

on whether or not previous solutions obtained feasible solutions. Thus, the dynamic 

settings employ a learning strategy to guide the heuristic bias. Results showed that it 

was important to weight the selection process more in favour of feasibility and 

Randall suggests that this is likely to be the case for many other tightly constrained 

problems when using an ACO approach. However, this work was applied in 

conjunction with a local search and, without this help, it is possible that the heuristic 

bias in the construction will need to be even more carefully balanced.

Montgomery et al. (2004) also discuss the problem of infeasibility within the search 

space and note that for assignment problems, the order in which assignments are made 

is of great importance to the resulting feasibility of the solution; they note that finding 

ways to assign the most highly constrained items first can be extremely beneficial in 

this respect. Many of the construction heuristics put forward for the graph-colouring 

problem by Costa and Hertz (1997), for example, deal with different ways of choosing 

which vertex to colour next.
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The bias given to feasibility in relation to an ACO approach to the nurse scheduling 

problem will be discussed in Chapter 5.

3.2.2.5 Local search and other enhancements

Some of the different ACO variations were discussed at the beginning of this section, 

but there have been many further enhancements to ACO in the literature. One of the 

most notable is the inclusion of local search within the algorithm (Dorigo and 

Gambardella 1997, Stiitzle and Hoos 1997, Gambardella et al. 1999, Maniezzo and 

Colomi 1999, Ritchie 2003, Randall 2004), with the added help from the local search 

often greatly improving results. Randall (2004) remarks that for problems where 

infeasible solutions are necessarily included in the search space, the ACO 

construction can provide a mechanism for building feasible solutions, while the local 

search can then be used to improve their objective costs. Dorigo and Stiitzle (2004) 

also comment that often the very best ACO algoritms are those which combine the 

ACO constructions with a local search procedure. Other examples of enhancements to 

ACO include hybridising it with some other metaheuristic. Louren90 and Serra (1998) 

and Ritchie (2003), for example, hybridise their ACO constructions with a tabu search 

algorithm and Levine and Ducatelle (2004) apply ACO in combination with an 

iterated local search (ILS) technique.

For a review of ACO, see Dorigo et al. (1999), Taillard (1999), Cordon, Herrera and 

Stiitzle (2002) or Dorigo and Stiitzle (2003, 2004).

3.3 Nurse scheduling problem variations

Chapter 2 introduced the specific nurse scheduling problem investigated in this thesis; 

however, the nurse scheduling problem occurs in a number of guises. The next 

sections will discuss the problem variations and Section 3.4 will detail the solution 

approaches used to solve them. Since other researchers have previously studied the 

variant of the nurse scheduling problem presented here, we discuss their solution 

methods and their relative success in Section 3.5. We begin this section with an
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overview of the nurse scheduling problem in its most general form, before examining 

the problem variations and solution approaches.

As has been mentioned previously, the nurse scheduling problem is one which occurs 

in all hospitals. Due to the particular service they provide, it is important that the 

hospitals are not understaffed at any time. The difficulty of this problem is often to 

balance the hospital’s staff requirement with the nurses’ individual preferences. The 

quality of the nurses’ schedules is very important to their well being and job 

satisfaction, as well as the calibre of the healthcare they provide (Naidu et al. 2000, 

Berrada et al. 1996). The schedules are also important with regards to the hospital 

budget; Naidu et al. (2000) and Wright et al. (2006) both estimate that nursing costs 

account for around 50% of total hospital costs.

Since the need for high-quality nursing rosters arises in hospitals worldwide, there is 

inevitably a large amount of variation in the problem definition and formulation. The 

contracted number of hours for a nurse will vary from country to country, as will the 

number of shifts each day is split into, the length of the planning period, the number 

of levels of nurse seniority and even the nurses’ preferences. Even which of the many 

constraints are considered hard or soft may be variable.

The next sections detail the variations of the problem arising at different hospitals, 

before the research and solution approaches previously used to solve these problems 

are discussed in Section 3.4.

3.3.1 Cyclic and non-cyclic scheduling

There are two possible types of scheduling: cyclic and non-cyclic. Cyclic scheduling, 

as presented in Rosenbloom and Goertzen (1987), is where the same schedule is 

repeated for each planning period. Nurses rotate through set shift patterns which, in 

combination, constitute a feasible schedule. Cyclic schedules are often used when the 

scheduling has to be done manually as they reduce the scheduler’s workload. Given 

that a cyclic schedule only needs to be produced once and will be used for a long 

period of time, it is worth spending a large amount of time initially to ensure the 

schedule is of very high quality. Non-cyclic scheduling has to be performed more
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often and, as such, it is important that the schedules are created reasonably quickly. A 

small reduction in solution quality can be accepted if the schedule is produced 

quickly, especially since personnel unsatisfied with the current schedule may find the 

next one more favourable. So there is an exchange between spending a large amount 

of time finding one excellent solution and spending much shorter time finding 

solutions which are ‘good enough’.

However, cyclic scheduling inevitably reduces flexibility and hence the control over 

satisfying the nurses’ preferences and individual requests (Cheang et al. 2003). 

Furthermore, necessary changes to the schedule may become apparent due to staff 

illness or leave and the fixed schedule would then need to be reworked anyway, 

possibly using a rerostering technique as in Moz and Pato (2007). Non-cyclic 

scheduling, therefore, is generally more desirable and most of the research referred to 

here will be related to solving a non-cyclic nurse scheduling problem. The approach 

used by Warner (1976) aimed to incorporate some of the stability provided by a cyclic 

approach by having a cyclical weekend working policy, as well as the flexibility of a 

non-cyclic approach by allowing the rest of the schedule to be variable. The nurse 

scheduling problem presented in this thesis cannot be solved using a cyclic approach 

since the individual preferences, which vary from week to week, must be taken into 

account. However, examples of cyclic nurse scheduling problems and solution 

approaches can be found in Ahuja and Sheppard (1975), Millar and Kiragu (1998) and 

Bard and Pumomo (2007).

3.3.2 Planning period and shift types

The normal planning period varies from one week (Dowsland 1998, Dowsland and 

Thompson 2000, Aickelin and Dowsland 2000, 2004, Isken 2004) to two, three or 

four weeks and up to a month at a time, (Berrada et al. 1996, Valouxis and Housos 

2000, Ikegami and Niwa 2003, Bellanti et al. 2004), although some research allows 

the planning period to be user-defined (Burke et al. 1999). Bard and Pumomo (2005a) 

present a nurse-rescheduling problem arising from last minute variations in staff 

requirements and availability and so are only concerned with scheduling the next 24 

hours.
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For nurse scheduling problems in general, the day-time and night-time shifts for each 

24-hour period are treated separately due to practical considerations, enabling, for 

example, consecutive assignments of a nurse to a night shift followed by a day shift to 

be disallowed.

The day-time is usually, but not always (Ikegami and Niwa 2003), split further and 

most research splits the day-time into two (Bellanti et al. 2004, Dowsland and 

Thompson 2000) or even three separate shifts (Burke et al. 2003a), while the night

time is considered as a single shift; the software Plane (Burke et al. 2003a, Burke et al. 

1999), however, allows users to choose the number of shift types. Ikegami and Niwa 

(2003) also consider a problem where it is the long 16-hour night shift which is 

eventually split into two separate shifts. Bard and Pumomo (2005b) split each 24-hour 

period into five overlapping shift types: three consecutive eight-hour shifts 

overlapping with two consecutive twelve-hour shifts. Isken and Hancock (1991) allow 

variable shift times; the number of available staff working each of the eight-, ten- and 

twelve-hour shift types is given, but the start-times of the shifts are unknown. The 

problem is therefore to determine the numbers of each type of shift which must start at 

each hour of the day such that the demand is met and each nurse is able to work the 

correct number of hours in total.

For the problem presented in this thesis, it has been found that achieving a successful 

balance between the day- and night-time shifts is a more difficult task than filling in 

the detail for the configuration of the day-time shifts once the day/night distribution 

has been decided (Aickelin and Dowsland 2000, 2004). However, Berrada et al.

(1996) see their three different shifts as corresponding to disjoint problems and so, for 

each working day, only specify whether a nurse is working or has the day off. For the 

problem presented in this thesis, nurses are usually contracted for a different number 

of day shifts than night shifts due to the disparity in the working hours required for 

each. As such it is not possible to split this problem into three, with one for each shift 

type.
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3.3.3 Constraints

The nurse scheduling problem is highly constrained with staffing requirements, 

hospital policies, contractual agreements and the nurses’ individual preferences to 

take into account. While ensuring the hospital has adequate staff at all times is usually 

accepted as a hard constraint (Dowsland and Thompson 2000, Jan et al. 2000, 

Valouxis and Housos 2000, Burke et al. 2001, for example), that is, one which must 

not be violated for the schedule to be feasible, some hospitals’ regulations place a 

stronger importance on other contractual requirements and treat these staffing 

requirements as soft constraints (Bellanti et al. 2004, Berrada et al. 1996). Jan et al. 

(2000) solve a nurse scheduling problem where the binary variables representing the 

assignments are of the form x ikw, where i is the nurse index, k is the day index and w

is the index of the particular shift worked (w = 1, 2 or 3) and an interesting feature is 

that the cover requirement for the day-time shift (w = 1) is given as a minimum, but 

the demand for the other two shift types must be satisfied exactly.

The constraints applied in any particular case vary, but the most common ones are 

listed in Cheang et al. (2003). These include nurse workload, nurse requests, sufficient 

time between shifts and staff demand. Burke et al. (2003a) include further personal 

constraints such as staff not allowed to work without their mentor and staff who 

should not be allowed to work together.

3.4 A history of nurse scheduling solution approaches

The nurse scheduling problem has been tackled using a wide variety of methods, 

including mathematical programming, Al and heuristics (Cheang et al. 2003). 

Although detailing all previous research on nurse scheduling problems is beyond the 

scope of this thesis, we present here some of the more relevant methods which have 

been applied to nurse scheduling in the past. General overviews of nurse scheduling 

can be found in Cheang et al. (2003), Burke et al. (2004a) while Ernst et al. (2004) 

provides a more general staff-scheduling review.
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Some of the different approaches used to solve the nurse scheduling problem are 

detailed below.

3.4.1 Exact approaches

Exact methods have been employed in the past to solve nurse scheduling problems; 

however, it is generally the case that these approaches take an excessive amount of 

time to find the optimal solution and in many cases are unable to cope with the large 

number of variables required to solve formulations as complex as most nurse 

scheduling problems require. Warner (1976) uses a mathematical programming 

approach to solve a model of a nurse scheduling problem simplified by the use of 

fixed weekends and limited rotation between different types of shift. Penalties are 

assigned according to nurse preferences and the final model provided high-quality 

solutions in a fraction of the time required to create them by hand. Bard and Pumomo 

(2007) used CPLEX software to solve a linear programming model for a cyclic nurse 

scheduling problem and found that generating optimal solutions for the problem in 

this way was unrealistic. Only by hybridising the search with heuristic methods were 

they able to find good, feasible solutions quickly. Bard and Pumomo (2005b) also had 

to combine exact and heuristic methods in order to successfully solve a nurse 

scheduling problem using column generation.

Millar and Kiragu (1998) were able to successfully solve both cyclic and non-cyclic 

nurse scheduling problems using a branch-and-bound approach. However, the 

problem size is small (up to 8 nurses) and given that, due to time-constraints, they 

stop the search when the first feasible integer solution is found, the approach is strictly 

regarded as a heuristic. Bard and Pumomo (2005a) find that an integer programming 

approach is suitable for a short-term nurse-rescheduling problem, where existing 

rosters must be modified for the next 24 hours to cope with fluctuations in nurse 

supply and demand, again showing that integer programming approaches can be 

successful for reduced problems. Jaumard et al. (1998) produce an exact solution 

approach to a nurse scheduling problem using column generation and branch-and- 

bound, although they also suggest halting the search prematurely once several feasible 

solutions have been found. The time taken to find good solutions, however, can be 

several hours. Ikegami and Niwa (2003) discuss replacing their branch-and-bound
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approach with a heuristic in order to speed up the solution process. Wright et al. 

(2006) also have to use a heuristic approach to solve their nurse scheduling problem, 

although an exact method is sufficient to solve a partial variant of the problem.

3.4.2 Heuristic approaches

Heuristics are algorithms employed to find good solutions to problems where an 

exhaustive search of the solution space would not be practical. Optimality cannot be 

guaranteed, but by careful construction or modification of a solution, they can often 

find satisfactory solutions in a reasonable amount of time. Randhawa and Sitompul 

(1993) use a heuristic approach to create a computerised nurse scheduling system for 

use in small- to medium-sized hospitals. Bresina (1996) used a heuristic-biased 

stochastic sampling technique to solve a scheduling problem, using a “roulette-wheel” 

selection; weights were applied to each score in proportion to its rank so that choosing 

one of the better elements was more likely.

As mentioned in Section 3.4.1, heuristic approaches also arise by using an exact 

method, but stopping the search early before the optimal solution is found, as in 

Millar and Kiragu (1998).

Heuristics which are more problem-specific generally give better results in the time 

allowed, however, and there is much evidence in the literature of heuristic approaches 

being applied successfully to nurse scheduling problems. These include Cheng et al.

(1997), Abdennadher and Schlenker (1999), Meyer auf m Hofe (2001) and Wright et 

al. (2006).

These types of relatively simple algorithms are the building blocks of metaheuristics, 

which use heuristics as part of a larger search structure to enhance the quality of 

solutions.

3.4.3 Metaheuristic approaches

Much of the recent nurse scheduling research in the literature draws upon 

metaheuristic approaches. We give details of some of these, paying particular
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attention to Genetic Algorithms and Tabu Search since they have often been applied 

to nurse scheduling. Furthermore, they have been used on the problem presented in 

this thesis with some success as will be discussed in Section 3.5. Metaheuristics are 

really just a larger framework within which problem-specific heuristics can operate to 

form a more general solution methodology.

We now discuss some of the metaheuristic approaches which have been applied to 

nurse scheduling in the past. Note that details of the tabu search and genetic algorithm 

metaheuristics can be found in Appendices E and F.

3.4.3.1 Ant Colony Optimisation (ACO)

The ACO metaheuristic, described in detail in Section 3.2.2, has been little applied to 

the area of nurse scheduling. However, as it is one of the methods applied in this 

thesis, we give special attention to the work of Gutjahr and Rauner (2007), who do 

use an ACO approach for this purpose.

Gutjahr and Rauner (2007) present an ACO approach to solve a nurse scheduling 

problem arising at a hospital in Vienna. This problem, and especially their 

formulation of the problem, differs significantly from the one presented here. The 

most notable difference between the two problems is that Gutjahr and Rauner are 

concerned only with scheduling supply nurses, that is, they need only schedule the 

extra nurses required at peak times, since the basic schedule has already been 

completed. Further points to note are that they allow a large amount of user- 

defmability and that their problem is dynamic, rather than having a fixed planning 

period. However, as there is little in the literature on ACO as applied to nurse 

scheduling, their work is relevant despite these differences.

The trail they suggest is between each nurse and each ‘demand’ for cover, where a 

demand is any connected time window, or shift, for which only one nurse is required. 

Note that this is a similar trail to that often used in ACO approaches to the QAP (e.g. 

Maniezzo and Colomi 1999) and also to the nurse-shift trail presented in Chapter 5. 

Their ACO algorithm has an element of positive reinforcement, by increasing only the 

trail corresponding to the best solution. After their initial testing the parameters found
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to be most successful were as follows: r 0 = 1, = 3 in the first third of the run, 2 in

the second third and 1 in the final third, a  = 1. The evaporation rate and the size of the 

ant population used in Gutjahr and Rauner’s research have not been revealed.

Despite only supplementary nurses being scheduled, finding feasible solutions was 

still an issue; in their illustrated example, more than 10 per cent of the generated 

demands were unmet. However, they found that their solutions compared favourably 

with a straightforward greedy algorithm.

3.4.3.2 Tabu Search

Tabu search is a very flexible metaheuristic and may be applied to even highly 

constrained problems. As such, it has been implemented successfully on many 

problems in a variety of areas. A description of the algorithm is given in Appendix E. 

For more details relating to the tabu search method and its applications, refer to 

Glover and Laguna (1995) and Gendreau and Potvin (2005).

While tabu search has been applied to many problems, the area in which we are most 

interested is that of nurse scheduling. Several papers have used a tabu search approach 

to solve a nurse scheduling problem. Many of these have been very successful, but 

have often required the additional use of problem-specific information in order to do 

so.

Bellanti et al. (2004) investigate an Italian hospital’s nurse scheduling problem. Their 

method generates an initial solution using a greedy algorithm consisting of a 

combination of three greedy heuristics before applying local search. Their tabu search 

algorithm is applied to a partial solution including information only about the night 

shifts. Four neighbourhoods are considered, all related to satisfaction of the hard 

constraints regarding the assignment of night shifts. The four neighbourhoods involve: 

moving a set of night shifts from one nurse to another; moving the first, or last, night 

shift in a set from one nurse to another, and assigning a new night shift to a nurse as 

either the first or last in a consecutive set. On the real data provided the tabu search 

produced the best solutions compared with an iterated local search approach, but in
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the longest time; it also performed well on several instances of randomly generated 

data.

Dias et al. (2003) offer a tabu search solution to a Brazilian nurse scheduling problem 

and compare it with a genetic algorithm approach. The tabu search is initiated with a 

random solution and an evaluation function with carefully selected penalty weights 

and is implemented with the use of a hybrid neighbourhood; one neighbourhood is 

used until a certain number of iterations without improvement, after which a second 

neighbourhood is employed. The genetic algorithm was found to produce slightly 

better results, but the tabu search was less computationally expensive. The tabu search 

algorithm was a vast improvement on the manually created schedules.

Aside from including problem-specific information to aid the tabu search, there has 

been evidence in the literature of improving a tabu search approach by hybridising it 

with other methods. Burke et al. (1999) and Valouxis and Housos (2000), for 

example, both use a hybrid tabu search approach to solve the nurse scheduling 

problem with some success.

Burke et al. (1999) introduce two hybrid algorithms developed into the commercial 

nurse scheduling software Plane. The first of these incorporates a ‘diversifying’ move. 

The tabu search is applied until no improvement has been found for a given number of 

iterations. This schedule is then altered by ensuring there are no incomplete 

weekends. If there are no such changes to be made, a second diversifying move is 

introduced; a number of full days which will affect those with the worst individual 

timetable are swapped, greedily. The second hybrid tabu algorithm introduced by 

Burke et al. attaches a ‘greedy shuffling’ algorithm to the end of the tabu search. 

Since it was realised that manual manipulation of the final schedule could often result 

in improvements, this final greedy step after the search ensured user satisfaction, by 

performing any ‘obvious’ changes to the schedule using the second diversifying move 

described above. They found that both hybrid techniques produced excellent results 

and the ‘greedy shuffling’ method, in particular, produced a level of user-satisfaction 

even greater than the cost function would suggest. De Causmaecker and Vanden 

Burghe (2003) noted this algorithm, which allows a large amount of user-deflnability, 

often results in overconstrained problems for which the software Plane would be

76



unable to provide feasible solutions. They therefore introduce ways of relaxing the 

covering constraints in a similar manner as would be done by a manual scheduler in 

order to provide high-quality solutions which also satisfy the staff involved.

Valouxis and Housos’s approach (2000) hybridises a tabu search algorithm with a 

standard local search. The tabu search continues until no improvements can be made 

without violating the tabu list. To further the search a two-step procedure is applied: 

first, a single move violating the tabu list restrictions is accepted; secondly, a 

diversification measure utilising a much longer tabu list is employed to move the 

search to a new region of the search space. This method produced results 

‘significantly better’ than those found using a standard local search technique.

Other nurse scheduling problems which have been solved using tabu search include 

Ferland et al. (1996) and Ikegami and Niwa (2003). There are several other papers 

which successfully apply a tabu search method to the variant of the problem presented 

in this thesis. These will be discussed in detail in Section 3.5.

3.4.3.3 Genetic Algorithms

A description of the genetic algorithm (GA) metaheuristic is given in Appendix F. 

The applications of this approach to the particular variant of the nurse scheduling 

problem investigated in this thesis will be discussed in Section 3.5. We now give 

details of some of the GA approaches applied to other nurse scheduling problems.

Moz and Pato (2007) apply a GA approach to a nurse rerostering problem, rebuilding 

a previously adequate schedule which has become infeasible due to one or more 

nurses becoming unable to work shifts which were previously suitable. One of the 

main characteristics of this problem is that the new schedule must be as similar as 

possible to the old one, so as to minimise disruption to other staff members. They use 

an indirect GA approach, due to the fact that the schedules resulting when the 

crossover operators are applied are consistently infeasible. The algorithms tested 

performed well compared with a purely constructive heuristic approach, although the 

time taken to produce the solutions was substantially longer.
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Beddoe and Petrovic (2005) use a novel approach to solve a nurse scheduling 

problem, developed in Beddoe and Petrovic (2003). A database, or case base, of 

previously encountered constraint violations and the repairs performed to correct them 

is used to suggest repairs for constraint violations occurring in a current solution. In 

order to determine which case in the database is the most similar to the constraint 

violation considered for repair, they suggest a number of particular violation 

characteristics or ‘features’ which they may use to compare two violations. They use a 

GA to optimise the weighting associated with each of these features, so that more 

relevant aspects o f each case will be given more consideration when determining 

which case from the database is the most similar to the current violation. Note that 

Scott and Simpson (1998) also use a case-based approach to solve a nurse scheduling 

problem, but their case base stores sets of efficient shift patterns used to build an 

initial solution which are then repaired with a series of shift swaps.

Tanomaru (1995) uses a GA to solve a staff scheduling problem similar to the nurse 

scheduling problem; the staff can be split into distinct groups, similar to the nurses’ 

grades, with each fixed time period having a known requirement for the total number 

of staff as well as the numbers required for each group. However, the shift times are 

variable and staff may start a shift (of several time periods) at any hour. Note also that 

there is no hierarchy in this problem and so the issue of substitution between the 

different staff groups does not occur. For each nurse and shift, a preference cost of 1, 

0, or -1 is assigned. Tanomaru does not use a shift pattern approach, but, for a 

problem with maximum allowed number of shifts S  and E  employees, encodes each 

schedule as an ordered string comprising E  consecutive substrings of length 2S. Each 

pair of places in the string represents the start and end times of the shift being worked. 

An inactive shift is represented by the pair (0,0). The evaluation function is the sum of 

the individual penalty costs assigned to each type of constraint violation. Since 

overtime is allowed, the emphasis is on minimising cost. A two-point crossover 

allows movement only of whole employee schedules, but heuristic operators are then 

applied to make further improvements. These are divided into three types: those 

which act only on a single shift, those which act only on a single employee and those 

which act on the whole solution. Tanomaru finds that the GA approach is effective in 

finding high-quality solutions.
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Dias et al. (2003) found that a GA approach was able to produce slightly better 

solutions than a tabu search approach for a nurse scheduling problem at a large 

hospital in Brazil, although the time required to do so was longer. It is important to 

note that one of the main difficulties when applying a GA approach to a problem such 

as nurse scheduling is in creating and maintaining feasible solutions, due to the fact 

that the children of feasible solutions may not themselves be feasible. Some of the 

methods used for dealing with the general problem of maintaining feasibility with a 

GA approach can be found in MSkinen et al. (1999), for example. As mentioned 

previously in this section, GA approaches have also been successfully applied to the 

nurse scheduling problem presented here (Aickelin 1999, Aickelin and Dowsland

2000, 2004) and these will be discussed in further detail in Section 3.5.2.

Memetic algorithms arise when a GA approach is hybridised with some form of local 

search and memetic approaches have also been applied to nurse scheduling problems 

with a variety of success (Burke et al. 2001, Burke et al. 2004b, Ozcan 2005).

3.4.4 Other methods applied to nurse scheduling

As well as the other methods already discussed in this section, there have been several 

other approaches applied to nurse scheduling. Variable neighbourhood search (VNS) 

and simulated annealing, for example, have been discussed previously as methods 

used in conjunction with other approaches to form a more powerful hybrid (Liu et al.

2001, Casey and Thompson 2003, Beltran et al. 2004, Gupta and Smith 2006). VNS 

has also been used successfully in its own right (Burke et al. 2003a) and although 

simulated annealing has been much less well instigated as a solution method for the 

nurse scheduling problem, it does feature in some research. Isken and Hancock 

(1991), for example, use a simulated annealing approach and Brusco and Jacobs 

(1995) use simulated annealing in a solution approach to a personnel scheduling 

problem which may be applied to nurse scheduling. Osogami and Imai (2000) discuss 

appropriate neighbourhoods for an ‘elementary’ nurse scheduling problem and show 

that a 4-opt neighbourhood gives rise to a connected solution space.

Other approaches applied to the field of nurse scheduling include hyperheuristics 

(Cowling et al. 2002, Burke et al. 2003b), which have been applied to the nurse
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scheduling problem presented here and will be discussed in further detail in Section 

3.5.3, scatter search algorithms (Maenhout and Vanhoucke 2006) and multicriteria 

approaches (Berrada et al. 1996, Burke et al. 2002, Burke et al. 2004b).

3.5 Previous methods tackling this instance of the problem

Previously, there have been many solution approaches to the particular nurse 

scheduling problem presented in this thesis. This section will describe each of the 

methods in some detail and compare their relative success.

3.5.1 Initial tabu search investigation

Dowsland (1998) and Dowsland and Thompson (2000) were the first to present a 

solution to the variant of the nurse scheduling problem investigated in this thesis, and 

used a tabu search approach. Dowsland and Thompson (2000) introduced the pre- and 

post-processing phases discussed in Chapter 2 and Appendix C. A knapsack model is 

used initially to analyse the numbers of nurses required and to ensure excess cover is 

spread evenly over the weekdays and a network flow model is used on a final solution 

to allocate the nurses working days to early or late day shifts. It should be noted that 

this knapsack model forms the basis for the feasibility check introduced in Chapter 4. 

These pre- and post-processing phases simplify the problem to the one investigated in 

this thesis, formulated in Chapter 2, and is the version solved by all subsequent 

approaches in the literature.

The tabu search method put forward by Dowsland (1998) is initiated with a randomly 

generated solution and the standard neighbourhood involves changing the shift pattern 

of one nurse. However, obtaining a feasible solution for this problem is non-trivial 

and even when the neighbourhood was initially restricted to moves which decrease 

the cover cost and do not increase the preference cost, it was found that this rarely led 

to a feasible local optimum. A main reason for this was the occurrence of so-called 

‘unbalanced’ solutions. Due to the discrepancy between the number of day and night 

shifts worked by many nurses, it is often essential that the right ‘types’ of nurses are 

working days and nights, in order for there to be enough total day and night cover 

available. For example, by assigning a (3,3) nurse to days and a (4,3) nurse to nights,
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the extra day shift which could potentially have been worked by the (4,3) nurse is lost 

and a total of 6 rather than 7 shifts are now available. Note that once a local optimum 

is reached, if the partition of nurses into days and nights is unsuitable, no move in the 

standard neighbourhood can be accepted as any move will necessarily result in an 

increase in the cover cost. In order to overcome this problem a new strategy had to be 

introduced, which involved restricting the candidate list of standard neighbourhood 

moves to those which move a nurse working days to nights or vice versa, depending 

on where the shortfall lies. The move which has the least negative impact on the cover 

cost is assigned.

However, even ‘balanced’, infeasible local optima were found to occur frequently 

which were surrounded by equal-cost or slightly higher-cost moves. Again, the 

standard neighbourhood was not sufficient to escape from these situations and so two 

new neighbourhoods, involving chains of moves, were employed. The ‘shift chain’ 

neighbourhood, involves changing the pattern of one nurse by a single shift to 

increase the cover on an undercovered shift, and then creating a chain of similar 

moves to replace the undercover created by this initial step. The ‘nurse chain’ 

neighbourhood is similar, but, after the initial move, all subsequent nurses are moved 

to the exact pattern vacated by the previous nurse in the chain. Once a local optimum 

is reached with regards to all these neighbourhoods, the standard neighbourhood is 

used again, but is restricted to moves which transfer cover from an overcovered shift 

to an undercovered shift. It is found that these five steps, applied in succession, are 

usually able to provide a feasible solution; when this is not the case a final random 

‘kick’ using the standard neighbourhood is applied and the process repeated until a 

feasible solution is found.

However, the feasible solution found by this first set of neighbourhoods is unlikely to 

be optimal with respect to the nurses’ preferences and so a second phase introduces 

moves designed to aggressively reduce these penalty costs without increasing the 

feasibility. However, when no improving moves are found, the search applies a single 

move which takes the preference cost as the evaluation function and allows all moves 

in the standard neighbourhood, thus removing the search to the infeasible space, 

whereupon the first set of moves designed to improve the feasibility are reapplied.
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Although this rigorous searching of the solution space often produced high-quality 

solutions, it was not robust enough to secure good solutions in certain situations. In 

such situations the cause was always identified as the day/night partition of the nurses 

and it was found that the partition or partitions utilised were not suitable to produce 

optimal or, in some cases, feasible solutions. In order to ensure a sufficiently varied 

range of day/night partitions, the partitions employed were tracked throughout the 

solution process and a tabu list employed to prevent the search from revisiting the 

same partition repeatedly. The list is updated whenever a partition-changing move is 

accepted. If no such change is made within 50 moves, the candidate list is restricted to 

those which change pattern type.

A further problem affecting feasibility was found to be the occurrence of solutions 

where both the total day and night cover was unbalanced, rather than the shortfall 

occurring for just one type of shift. To deal with this case, a new ‘swap’ 

neighbourhood was introduced and the candidate list restricted to pairs of moves 

which move a nurse from days to nights and vice versa.

It is clear that this variant of the nurse scheduling problem is one for which finding 

feasible solutions is a non-trivial task and where, in particular, the particular nurses 

assigned to days and nights is of great importance. However, by improving on the 

basic 1-opt neighbourhood with larger, more problem-specific enhancements, high- 

quality solutions were found for all datasets and the software CARE developed in 

Dowsland and Thompson (2000) for use within the hospital remains one of the most 

successful approaches for this problem to date.

3.5.2 Genetic algorithm approaches

Aickelin (1999) presents two genetic algorithm approaches: direct and indirect. The 

direct approach represents a complete solution as a 1 x r vector, where r is the number 

of nurses and element / represents the shift pattern worked by the z'th nurse. By 

insisting each ‘gene’ in the string be a complete pattern, rather than allowing 

individual shifts to be encoded, the solution is guaranteed to maintain feasibility with 

regards to constraints C2-C4 (see Chapter 2) following the application of any 

crossover operator. For this reason, other solution representations were discarded. By
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defining mutation to change the shift pattern of a nurse only to another feasible 

pattern, these constraints are also upheld after mutation. Only the covering constraints 

may be violated with such an encoding and a penalty function approach was used to 

tackle this.

Extensive testing was used to choose suitable parameters; it was found that while 

some were particularly sensitive, other parameters were less influential on solution 

quality. The penalty weight associated with violation of the covering constraints Cl 

was one of the less sensitive parameters; although extreme values negatively impacted 

on solution quality, a broad range of values produced results of similar quality. Since 

initial tests using the optimised parameter values were typically poor, a dynamic 

penalty weight approach was implemented. However, although this did improve 

feasibility and solution cost, the results were still poor compared with those of 

Dowsland (1998).

Aickelin points out that a possible reason for this failing is an inherent difficulty in 

applying a GA approach to a problem where final solution quality is not a linear 

combination of the quality of the individual genes. In the case of this nurse scheduling 

problem, each gene or ‘nurse-shift pattern pair’ has an associated cost, p tj, and these

do combine linearly. However, the genes do interact in order to determine feasibility 

and the covering costs are a result of the particular mix of genes present in a solution, 

rather than a sum of the fitness of the individual genes present. Aickelin identifies that 

this non-linearity is two-fold, since the interaction of the different grades is also a 

contributing factor.

To tackle this second manifestation of interaction within the genes a new approach to 

solution recombination is proposed. First, the genes are re-ordered within each string 

according to grade. Secondly, the population was split into ‘sub-populations’ 

according to grade and fitness functions applied to each of these. Fixed-point 

crossovers on grade boundaries were introduced so that some children would be 

created from larger building blocks of successful solutions. Migration between the 

different populations ensures a diverse range of solutions in each, while the fixed- 

point crossover operators ensure that large sections of good solutions are maintained
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intact. By further applying problem-specific repair operators, providing incentives and 

disincentives to avoid unbalanced solutions and strategies to fix balanced ones, the 

quality of results was greatly improved, although results were still not as good as in 

Dowsland (1998) and so an indirect GA approach is employed and the problem is 

remodelled so as not to require any constraint-specific information within the 

encoding.

The indirect GA approach presented still uses a string of length r, but is now 

representative of a permutation of the ordering of the nurses. A separate decoder is 

then used to build a solution from this ordering, by applying a greedy heuristic, 

assigning a shift pattern to each nurse in the order provided by the GA solution.

Two decoders are presented: a ‘cover highest’ decoder scores each shift pattern for the 

current nurse based on the effect assigning it will have on the day or night shifts with 

the highest undercover and an ‘overall contribution’ decoder scores the patterns based 

partly on the effect to the days and nights currently undercovered and partly on the 

preference cost . Both of these decoders perform poorly and so a third ‘combined’

decoder is introduced. This decoder still incorporates the preference cost of the shift 

pattern, but for each shift covered by it, the score is related to the number of 

remaining uncovered shifts, rather than just a binary value indicating whether the shift 

is undercovered or not. This decoder improves results considerably and is enhanced 

further by fine-tuning the parameters and introducing a new crossover operator. By 

utilising a simple bound such that no pattern is assigned with p tj > C* if the cost of

the best feasible solution found so far is C*, the algorithm avoids wasting time on 

solutions which cannot possibly be optimal.

With these modifications, the indirect GA provides good solutions, better than those 

produced using the direct GA and almost as good as those produced in Dowsland

(1998).

Details of these direct and indirect GA approaches can also be found in Aickelin and 

Dowsland (2000, 2004).
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3.5.3 Other approaches

Cowling et al. (2002) and Burke et al. (2003b) use a hyperheuristic approach, 

previously applied successfully to two other scheduling problems. The hyperheuristic 

is initialised with a schedule by randomly assigning each nurse a feasible shift pattern 

and consists of nine low-level heuristics, each involving changing or swapping one or 

two shift patterns. Noting that the previous methods (Dowsland 1998, Aickelin and 

Dowsland 2000) have relied heavily on problem specific information, Burke et al. 

(2003b) aim to produce an algorithm which will transfer more easily to other similar 

problems. They wish to develop an algorithm which will produce results which are 

‘good enough -  soon enough -  cheap enough’ for a range of problems, rather than one 

which is problem-specific and, although possibly achieving better solution quality, 

will not transfer so easily

These low-level heuristics were adaptively ranked within the algorithm, using 

information based on three factors: the individual success of each heuristic (denoted 

/i), the combined success of pairs of heuristics (denoted fi)  and the last time each 

heuristic was called (denoted fi) . Of these, f\ and fr are intensifying procedures 

designed to increase the chances of successful heuristics being utilised, whilst/j is a 

diversifying move, increasing the chances of using a heuristic if it has not been called 

recently. The weights associated with each of these were modified dynamically within 

the algorithm, generally resulting with a high weight for f$, indicating that a high level 

of diversification was required.

According to Cowling et al. (2002), the two heuristics called most often were 

changing the shift pattern of a random nurse to improve feasibility (referred to as 

[h2]) and changing a nurse’s shift pattern type from days to nights or vice versa if the 

solution is unbalanced in this respect (referred to as [h6]). Burke et al. (2003b) use a 

tabu list to disallow the use of those heuristics which have recently failed to improve 

the solution, on a first in, first out basis. The list is emptied each time a change to the 

solution has been accepted.

The results were compared with the tabu search approach in Dowsland (1998) and the 

direct and indirect GA approaches in Aickelin (1999) and Aickelin and Dowsland
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(2000). The hyperheuristic approaches proved robust, consistently finding feasible 

solutions, but were outperformed by all other approaches in terms of preference cost.

Li and Aickelin (2003, 2004), Aickelin et al. (2007a), Aickelin and Li (2007) 

introduce the first Bayesian Optimization algorithms to be applied to the problem. 

Their solution approach is to decide, for each nurse, the rule by which the nurse will 

be scheduled. For a problem with r  nurses, then, they seek a string of length r, where 

each place in the string represents a nurse and the element in position i is the rule by 

which nurse i will be scheduled. They model the problem as a Bayesian network in 

which each node Ny  represents nurse i being scheduled by rule j .  The eventual aim is 

to emulate the high-quality scheduling capabilities demonstrated by human 

schedulers, by implementing this model using relatively simple rules, but by being 

able to switch between these rules intelligently.

In each case a string is obtained by finding a directed path from nurse 1 to nurse m, 

linking m nodes. Each node is associated with a conditional probability, based on the 

nodes before it and these probabilities are updated based on the fitness of solutions 

produced.

Given a current population of rule strings, a subset of the most promising strings is 

selected from the population and the conditional probabilities of each node are 

calculated. New strings are then generated based on these conditional probabilities, 

using the probabilistic, roulette-wheel method, whereby the better solutions are more 

likely to be selected. These new strings then replace some of the previous population. 

Subsequent generations are produced in the same way. The process is initialised with 

a randomly generated population of strings. The four rules suggested are: to assign the 

nurse a random pattern; to assign the nurse a randomly selected pattern from the k  

patterns with the lowest p y  values, where k=5; to assign the nurse based solely on the 

improvement to the feasibility of the current schedule; and to assign the nurse based 

on both the p y  values and the feasibility, but with the emphasis on solution quality. 

They therefore have rules which focus solely on solution quality, solely on feasibility, 

a combination of the two and a final random rule.
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Li and Aickelin (2004) build on this initial research by introducing an adapted 

classifier system. Feedback is provided by assigning a positive reward evenly across 

all nodes in solutions better than the previous one and a negative amount in the same 

way for all nodes used in solutions poorer than the previous one. The best solution so 

far is always kept. Thus the adapted classifier system improves a single solution rather 

than the population-based approach used by the initial Bayesian algorithm and 

although it performs well, and produces feasible solutions in every case, the results 

produced are slightly poorer than those created using the original Bayesian approach.

The Bayesian optimisation approach is further enhanced by modifications in Aickelin 

et al. (2007a). The four rules suggested in Li and Aickelin (2003) are extended to six, 

by the addition of two new cover and contribution rules. Previously, the cover rule 

scored shift patterns by the single most understaffed shift they covered. The new 

cover rule assigned a score based on the total level of understaffing of all shifts 

covered by the pattern. The new contribution is also similar to that originally 

presented. The initial contribution rule incorporated a score partly based on 

feasibility; this part of the score worked by assigning a ‘1’ to understaffed shifts 

covered by the pattern and including a weighted sum of these. The new version of the 

contribution rule worked in the same way, but instead of scoring understaffed shifts 

with ‘1’, the new rule scores them with the actual amount by which they are 

undercovered.

The algorithm is improved further by the addition of an ant-miner algorithm. Trails 

ty are between each nurse i and each rule j. Thus each node in the Bayesian network

is associated with a particular trail element, reinforcing the conditional probabilities. 

The addition of the ant-miner algorithm proved to be worthwhile, with large 

improvements in cost noticeable on several datasets, although the addition of the two 

new rules did not appear to have such an effect.

The results obtained from each of these approaches were compared with the optimal 

IP results, those produced by the GA results from Aickelin and Dowsland (2000), and 

two further variants of the Bayesian optimisation algorithm: one using solely the 

random rule and one using all four rules but with each having a constant 25% chance
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of being chosen. The Bayesian optimisation algorithm performed extremely well 

when compared with the GA. The Bayesian algorithm found optimal or near optimal 

solutions for 38 of the 52 datasets compared with the 42 found by the GA. The 

Bayesian approach, however, found feasible solutions in all cases, which the GA had 

failed to do. The results from the two variants of the Bayesian approach showed that 

the conditional probabilities were essential to the success of the algorithm, with the 

constant 25% rule variant performing very poorly in comparison, and the random 

variant failing to find even a single feasible solution across 20 runs of each dataset.

Aickelin et al. (2007b) further tackle the problem using a squeaky wheel optimisation 

method which they initialise with a random solution. In a ‘selection’ step, each 

assignment is assessed and less successful components are removed, probabilistically, 

according to their fitness. A mutation step then discards a number of the remaining 

nurse assignments with a small probability. The squeaky wheel part of the algorithm 

rebuilds the schedule by prioritising the nurses to be scheduled according to their 

initial fitness scores, with the ‘less fit’ nurses given a higher priority. A greedy 

algorithm then rebuilds the schedule taking the nurses in order of priority. The fitness 

is then reassessed and the process repeated. The method, improving on an initial 

squeaky wheel approach with the introduction of the selection and mutation steps, 

performs well, finding optimal solutions for all but 5 datasets.

Aickelin and White (2004) investigate a method by which two algorithms applied to 

the same problem may be compared. As was the case for Burke et al. (2003b), their 

method deals with the relative success of different approaches and, as such, may be 

applied easily to other problems.

A focal point of the research, particularly apparent in this nurse scheduling problem, 

is how to compare two methods when infeasible solutions are part of the solution 

space, and how to rank two methods when one gives mostly infeasible but otherwise 

low-cost solutions and the other consistently produces poor-quality feasible solutions. 

Aickelin and White consider a feasible solution to be more successful than an 

infeasible one, regardless of the actual costs involved. Note that this is the approach 

chosen for evaluating the fitness of solutions in this thesis.
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3.6 Conclusions

This chapter has provided a background to the work in this thesis. As discussed in the 

introduction in Chapter 1, the aim of this thesis is to investigate the conflict between 

different constraints and the balance which may be achieved using a constructive 

metaheuristic approach. In Section 3.2 we introduced the two metaheuristics which 

will be employed as the basis of our investigation and gave an overview of how they 

have previously been applied to other problems. Neither of these approaches has yet 

been used to solve the problems presented in Chapter 2. However, from the review in 

this section it was clear that although these two methods, GRASP and ACO, are 

construction-based metaheuristics, there is very little work in the literature about 

using the constructions to build feasible solutions or to balance different constraints; 

most applications have been to problems where feasibility is not an issue and for those 

problems where there is an existing conflict between constraints, enhancements to the 

basic metaheuristic are often used to improve the already-constructed solutions. Those 

approaches which do concentrate on the construction aspect tend to do so by 

enhancing the basic algorithm, rather than by comparing different ways of balancing 

the constraints within the basic constructive framework. There is therefore scope for a 

study which investigates whether a simple constructive technique is able to create the 

necessary balance by performing a rigorous comparison of different constructive 

approaches.

As has been discussed, there is little relevant work in the literature with regards to 

medical student scheduling and so this chapter has necessarily been focused on the 

work surrounding the nurse scheduling problem. This chapter has placed the variant 

of the nurse scheduling problem studied in this thesis within the context of a wider 

body of work, demonstrating that the area of nurse scheduling as a whole is one which 

warrants a great deal of investigation and, further, that the particular variant studied 

here is one which has been proven to be of sufficient difficulty to justify repeated 

investigation from a number of perspectives. The aspect of feasibility is one which is 

repeatedly mentioned in the literature with regards to this problem, with many 

researchers claiming success when achieving sub-optimal, but feasible solutions. The 

only method applied to this problem to date which has produced optimal solutions for 

all available datasets has been a tabu search method, incorporating a great number of
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complex, problem-specific neighbourhoods. Therefore, there is room in the literature 

for a solution approach which bases its work on balancing these different constraints 

within a constructive framework.

Because the medical student scheduling problem is one which does not appear 

frequently in the literature, it makes an interesting subject for study. Although the 

nurse scheduling problem has been widely studied, however, the constructive 

approaches which have been applied so far have not been highly successful. This 

makes applying a construction-based technique more interesting, especially since the 

difficulty of the problem has been well established and many details regarding the 

problem structure are known. Given that the subject of conflicting constraint 

satisfaction within a constructive framework is not one which has been widely 

researched, applying such techniques to these problems will further add to the body of 

work in this area.

The aims of the thesis were laid out in Chapter 1, and this chapter, in combination 

with chapter 2 have served to introduce the problems and methods which will be 

applied, as well as placing the work investigated in this thesis within a wider context. 

The next chapter will provide details of the investigation into nurse scheduling using a 

GRASP approach.
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Chapter 4
Nurse scheduling with GRASP

4.1 Introduction

The description of the nurse scheduling problem is given in Chapter 2 along with a 

discussion of the particular problem characteristics and difficulties. In the literature 

review in Chapter 3, details were provided of the methods previously applied to this 

problem; so far all methods have either used highly problem-specific information and 

complex neighbourhoods to obtain low cost solutions or have used a much more 

generalised approach, often finding feasible solutions, but at the expense of solution 

quality. In Chapter 1, one of the aims of this thesis was stated as investigating this 

trade-off between conflicting constraints within a constructive metaheuristic 

framework. The GRASP approaches applied will be as general as possible, but it will 

be shown in the later section of this chapter that in order to rival the most successful 

solution approaches for this problem, it is necessary for some problem-specific 

knowledge to be exploited.

91



Due to the complexity of the problem, generating feasible schedules is demanding 

and, as such, our solution space must include both feasible and infeasible schedules. 

Given this, we compare different ways of balancing the search between finding 

feasible schedules and finding ones which have an optimal preference cost. One 

option is to base the construction entirely on just the feasibility of the problem and to 

see whether the local search phase is able to optimise the schedule. Another is to use 

weights to balance these two factors in the construction, which leaves a better starting 

solution for the local search, but may reduce the probability of obtaining a feasible 

solution. A third method is to use a look-ahead procedure to ensure, at each stage of 

the construction, that the schedule does not stray from the space of partial solutions 

from which feasible complete solutions can easily be obtained by the local search. In 

Chapters 2 and 3 we mentioned the problems associated with unbalanced solutions; 

the look-ahead procedure would be used to ensure solutions remain balanced 

throughout the construction process. We try seven construction methods and compare 

each of these with and without a look-ahead procedure. Each construction method 

generates a complete, if not necessarily feasible, schedule. The look-ahead procedure 

would be based on exploiting the problem structure with regards to the feasibility 

constraints, using a knapsack model to solve a relaxed version of these constraints 

exactly, as suggested in Chapter 2. Note that only a relaxed version of the constraints 

are solved using this exact method and thus schedules incorporating this added 

feasibility check will still not be guaranteed to be feasible, although they will be 

balanced.

For the improvement phase, three simple neighbourhoods will be explored. The first 

is a 1-opt neighbourhood, involving changing the shift pattern of a single nurse. The 

second, a swap neighbourhood, swaps the shift patterns of two nurses. The third, a 2- 

opt neighbourhood, involves a more rigorous search for improvement: placing a nurse 

onto a pattern of lower cost and searching through the remaining nurses to find one 

who may be moved to cover the resulting uncovered shifts such that, overall, the cost 

is improved. This can be viewed as a chain neighbourhood utilising chain length 2.

The rest of the chapter is organised as follows. In the next section we introduce the 

solution approaches, including more details of the construction heuristics, look-ahead 

procedure and local search neighbourhoods. This will be followed by an explanation
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of the experiments undertaken and their results. Initial experiments to obtain 

parameters will be followed by in depth testing of the different approaches and 

extensions to these basic methods in order to further improve the schedules produced.

The next section details the initial nurse scheduling solution approach using GRASP. 

Note that the notation in this chapter is as defined in Chapter 2 and is summarised in 

Appendix D.

4.2 Solution approach

This section is concerned with the solution approaches with which we shall tackle the 

nurse scheduling problem. Since we aim to solve this problem using GRASP, we shall 

be discussing the construction algorithms with which it may be sensible to proceed 

along with the difficulty of ensuring feasible solutions at the end of the construction 

phase. The potential local search neighbourhoods available for use in the 

improvement phase will be detailed at the end of this section.

We begin with an examination of the construction phase.

4.2.1 Construction

As outlined in Chapter 3, the GRASP method consists of both a construction phase 

and an improvement phase, the construction phase gradually building a solution from 

either a partial or, more usually, an empty starting solution. The manner in which the 

full schedule will then be assembled is not pre-determined, but may be approached in 

several ways; the particular heuristics used to score and select components to add to 

the schedule must be carefully decided upon. This section describes the particular 

heuristics and construction approaches we have decided to investigate, with 

explanations of why these choices have been made.

We have already discussed some of the difficulties of the nurse scheduling problem, 

in particular, the difficulty of balancing feasibility with low solution cost. As has been 

mentioned in Chapter 2, even finding feasible solutions is a non-trivial task, since 

there is further balancing required: balancing the hospital requirements with the

93



nurses’ grades and individual contracts. Given that we are unable to guarantee feasible 

solutions, we must include both feasible and infeasible schedules in our solution 

space. Dowsland (1998) used a method of strategic oscillation between these regions, 

first rigorously reducing cover costs and then intensively improving the preference 

costs. The difficulty with improving preference costs from a feasible solution is that 

neighbouring solutions with a lower preference cost are all likely to be infeasible. By 

making a move to take the solution back into the infeasible region of the search space, 

there is the chance to descend to a new local optimum and making this move such that 

the preference cost is lowered is likely to increase the chance of the new local 

optimum being of a higher quality.

The GRASP approach presented here aims to find low-cost, feasible solutions without 

this type of move. We allow both feasible and infeasible schedules in the initial 

solution space through necessity, but wish to build an algorithm which will construct 

solutions in an intelligent manner, thereby negating the need for such ‘uphill’ moves 

in the local search phase. It is the intention to determine whether there can be an 

appropriate constructive technique whereby the constructed solution will lie in a good 

enough region of the search space for uphill moves in the local search to become 

unnecessary.

We have already discussed some of the ideas behind the constructive heuristics in the 

way they balance the two conflicting costs. The first idea was to concentrate solely on 

the feasibility during the construction, to see whether the local search would be able to 

optimise solutions. The second was to try balancing the two costs using weights 

within the construction to give the local search a potentially better starting solution. 

These two ideas are based on Aickelin’s (1999) research in which his Cover and 

Combined decoders, used to construct a schedule from an ordering of the nurses 

created using a GA approach, took this form. Note that using Aickelin’s approach, 

two further points of interest arise when adapting this for a GRASP application and 

we shall introduce these in turn. The first point is that, while Aickelin was using a 

fixed ordering created by the GA, the GRASP approach presented here has no such 

ordering and it must be decided whether it is sensible to use a fixed ordering or 

whether all nurses should be considered for assignment at each stage of the 

construction process. We shall discuss later why Cover, because of the way in which
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it deals with grades, should be used with a fixed ordering of the nurses. However, 

Combined gives rise to no such difficulties and so we try both approaches here, 

denoting the approach where Combined allows all nurses to be considered by Holistic. 

The second point of interest is that, since Combined and Holistic have scores based on 

both types of cost, we must decide on how to most effectively combine these into a 

single score. Clearly it is possible to weight the two options, but the question remains 

whether to use an additive approach or a multiplicative approach. That is, would a 

score of the form a  .Cost, + /?.'Cost 2 be more appropriate than a score of the form

Cost,a x Cost/ ,  where Cost, and Cost2 represent the scores for the two costs and a  

and p  their associated weights. We choose to investigate both of these scoring 

approaches and the implications of each type will be discussed later. Thus we have 

five heuristics based on the work of Aickelin (1999): one based on his Cover decoder 

and four based on his Combined decoder, comprising two scoring methods for 

Combined and two for Holistic.

The final construction idea introduced for the GRASP approach is based on an idea 

found in Balas and Saltzman (1991) and Robertson (2001). The difference in score 

between the highest and second-highest scoring shift pattern for each nurse is 

considered at each stage of the construction. The idea is that if there is a large 

difference in score between these two options for a nurse, it is important to schedule 

them at this stage with their ‘best’ pattern, since, later in the construction, they may 

not be able to work this pattern due to feasibility restrictions and this could be very 

costly to the schedule as a whole. This method, denoted LastChance, therefore 

chooses a nurse to schedule at each stage and assigns that nurse their highest-scoring 

shift pattern, with these scores calculated as for Holistic. Clearly, this method cannot 

be used with a fixed ordering, but may be used with the two options for combining the 

scores as for Holistic. We therefore have two variants of the LastChance heuristic and 

seven potential construction heuristics in total all investigating different ways of 

balancing the two costs. Although feasibility cannot be guaranteed, we will show in 

Section 4.2.2 how we are able to use a knapsack model, modified from the pre

processing phase used in Dowsland and Thompson (2000), in order to construct 

solutions which are more easily made feasible during the local search phase of 

GRASP. By incorporating this model into the construction, the GRASP will be shown



to be more robust with respect to feasibility, allowing the construction to give more 

weight to preference cost and allowing overall better quality solutions to be produced.

This section gives details of the seven heuristics investigated and the reasons why 

these may be successful. The two final costs, cover and preference cost, are not 

amalgamated into a weighted sum, but are calculated separately, given that any 

infeasible solutions may be discarded regardless of preference cost. The formulations 

for these costs are presented at the end of this section. We now describe the general 

constructive method, after which details of the heuristics which may be used in 

conjunction with this algorithm are given.

As mentioned in Chapter 2, there are two avenues for creating the nursing schedules: 

either a nurse is selected, along with a shift pattern for that nurse, or a shift pattern is 

selected, and a nurse assigned to it. The latter, however presents a fairly illogical way 

to proceed, since each shift pattern may be used once, more than once or not at all. By 

working through the nurses systematically, however, the task becomes much easier to 

handle and so it in this manner the algorithm will function.

Given this, at each stage of the construction, a nurse and a shift pattern for that nurse 

must be selected. The score function of the incorporated heuristic could be used to 

select both of these, or the nurses may be pre-ordered and each nurse selected in turn. 

A pre-ordering of the nurses would be expected to decrease the computation time, but 

allowing both nurse and shift-pattem to be selected simultaneously allows the 

algorithm more flexibility which, in turn, is likely to offer the more successful 

approach.

Let R be the set of nurses and R+ be the set of nurses already allocated. Then, for any 

given score function,/fy), the construction phase proceeds as in Figure 4.1.
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Procedure to allocate nurse-shift pattern pairs

Step 1: Set R+ = 0 .

Step 2: Calculate the score f(i,j) associated with allocating nurse i to shifty, for all

Step 3: Let L be the candidate list of the n highest scoring options.

Step 4: Select (ij)^L  using roulette wheel selection, i.e. each (ij)  is selected with 

a relative probability proportional toflij).

Step 5: Update the schedule with this allocation and set R+ = R+ u  {/}

Step 6 : If R+ * R go to Step 2.

§ Note that the set of feasible allocations (ij) may include all nurses not already 

allocated, or may relate to a single nurse i given by a predefined ordering.

We have two score functions relating to the cover. Both of these are functions of the 

total undercover, dgk, of shift k at grade g  defined as

The first of the cover scores, covscorely, suggested by Aickelin and Dowsland (2004) 

is designed to be used without a preference cost score and in a situation where the 

nurse order is predefined. It is defined as follows.

feasible pairs ( i j f .

Figure 4.1. Procedure to allocate nurse-shift pattern pairs.

4r*(^+)= maxj( (4.1)

Let

mmmin < g > g ( : ^  dgk (R+) > 0 > if such a g exists
k=i

14

otherwise

and let k! = argmaxjc/^}, then
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covscorelij= ^  ajkdg.k (R+), (4.2)

\ if k ' < 7 or the nurse must be on days
where K = < < \

I {8, . . . ,  14} if k' > 8 or the nurse must be on nights.

For a given nurse i, this score is a measure of the improvement in cover at grade g, (or 

at the first uncovered grade below g, if all cover at g, is already satisfied), where g, is 

the grade of nurse i, giving a greater score to those shifts with the most undercover. If 

the greatest shortfall in cover on a single shift is on nights then only the night shifts 

will contribute to the score of a shift pattern and vice versa.

As the scores for different nurses are measured according to a particular grade, this 

method of scoring is not suited to situations in which the nurse has not already been 

determined. It is sensible to use this method with a nurse-ordering where the higher- 

grade nurses are scheduled first, since priority is given to the higher-grade cover until 

no more cover at that grade is required. By scheduling the nurses in different order, 

where some grade 3 nurse are scheduled before grade 1 nurses, for example, the 

algorithm would not be able to spread the cover as efficiently.

The priority given to nights or days also make it unsuited to combination with a 

preference cost score, as it is common for there to be a large difference between the 

preference costs for days and nights for some nurses; such differences would not be 

considered.

The second cover score, covscore2y, is more general, taking all grades into account, 

and so may be used when the nurses are not subject to a predefined ordering. It is also 

suitable for use alongside a preference cost score as the undercover on all day and 

night shifts contributes to the score. This cover score is simply a weighted sum of the 

undercover, and is given by
3 / 1 4  >

covscore2ij= £  w, Y jajkd (4.3)

where wg is the weight associated with grade g for g = 1,...,3.
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Given that we wish to combine this second cover score with the appropriate 

preference cost score, there are two ways to proceed. We may either add a preference 

cost contribution to the score or use the preference cost as a multiplier. The following 

paragraphs explain how these two ideas may be put into practice.

Since the preference costs are in the range [0,100], we may simply add 1 0 0 -p (yto

covscore2ij. This means that for a shift pattern with an unacceptable cost of 100, we 

add zero to the score, and for a pattern with an optimal preference cost of zero, we add 

100. Note that we do not just deduct py from covscore2y, since this may lead to some 

negative scores which would be incompatible with a roulette wheel selection method 

of choosing a shift pattern.

The first preference cost score then, prefscorely, can be written as

to be used as part of a weighted sum in a combined score function.

The second method was to use a multiplicative approach. Since we wish the score to 

decrease for large py values, we may use \/py as the multiplying factor. Since 

preference costs of zero exist, however, we shall take the denominator to be py + 1 to 

avoid the possibility of dividing by zero.

For simplicity, we shall take the second preference cost score, prefscore2y, to be

where prefscore2y is intended to be used as a dividing factor.

The difference between the effects these two approaches will produce is not 

immediately apparent; both will give larger scores to shift patterns with lower 

preference costs and smaller scores to less desirable patterns. However, the way in 

which these scores differentiate between patterns of similar cost can be significant.

prefscorely = 100 -  ptj (4.4)

prefscore2ij=piJ+1, (4.5)
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For example, two shift patterns with the same (non-zero) value for covscore2y and 

with preference costs of 0 and 1 will have very similar scores using the prefscorely 

approach and very different scores using the prefscore2y approach. The additive 

version will add 0 or 1 to the score, but the multiplicative version will divide the cover 

score by either 1 or 2 , thus the multiplicative version attributes double the importance 

to the zero-cost patterns. When the different parts of the score are weighted, this 

difference can only become more marked. Another example of the difference between 

these methods is their effect on a pattern’s score when covscore2y = 0. The additive 

version will base the scores on the preference cost alone, but the scores using the 

multiplicative version will all be zero. In this case, either a second score related only 

to the preference cost must be used for the roulette wheel selection, or each zero-cost 

pattern must be selected with equal probability. Note that if there are some options 

which improve the cover, the multiplicative version will always choose one of these, 

whereas the additive version has the possibility of choosing options beneficial to the 

preference cost over those which improve the cover. Clearly, the likelihood of 

choosing an option which does not improve the cover, over one which does, will 

depend on the values of the weights associated with each aspect.

It is not clear which of the two approaches, additive or multiplicative, will be the most 

likely to produce high-quality solutions. In some cases, the sensitivity of the 

multiplicative algorithm may be what is required to differentiate between good and 

excellent solutions, but, on the other hand, this very sensitivity to changes in the 

preference cost may go too far and prevent the construction from selecting patterns 

required for feasibility.

Without further testing it is impossible to know which method to continue with and so 

we now describe seven heuristics, one without any reference to the preference cost, 

three using the additive approach and three using the multiplicative approach, with 

which we will experiment.

These heuristics are based upon decoders used in Aickelin and Dowsland (2004) to 

decode a string of nurses obtained through a GA approach into a complete schedule. 

The decoders work with a predefined ordering of the nurses since it is this ordering 

which the GA has sought to optimise, however, in this research, we are not seeking to
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find an optimal ordering and any pre-ordering will simply take the nurses in order of 

grade. We also have the option not to use a predefined ordering and we have already 

mentioned that this will allow the algorithm more flexibility and, therefore, more 

potential for success.

The details of the seven heuristics are given below.

4.2.1.1 Cover

We define the score function for the Cover heuristic to be

Cover: f\(i,j) = covscorelij. (4.6)

This heuristic is Aickelin and Dowsland’s (2004) Cover decoder and is dedicated 

solely to finding feasible solutions. As was mentioned previously, covscorelij is 

unsuitable for use in conjunction with a preference cost score due to the often large 

discrepancies between preference costs for day and night shifts.

As this algorithm is designed to be used with a predefined ordering, we schedule the 

nurses in order of grade, with more qualified nurses scheduled first. Since we assume 

that nurses of a higher grade can cover for nurses of a lower grade, by scheduling the 

higher grade nurses first according to the amount of undercover, it seems likely that 

we would be improving our chances of finding feasible solutions. By restricting the 

choice of shift patterns to those which have a chance of reducing the maximum 

undercover, this algorithm seems to offer the best chance of creating feasible 

solutions.

Since Cover is based only on improving the staff coverage, the task of optimising the 

solutions with respect to the nurses’ preferences falls entirely to the local search phase 

of the GRASP.
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4.2.1.2 Combined

This heuristic predefines the order in which the nurses are to be scheduled in the same 

way as for Cover. The score function for the additive version, Combineda, of this 

heuristic is defined as

Combineda: = wc.covscore2y + wp.prefscorely (4.7)

where wc and wp are weights associated with the cover and preference scores, 

respectively. If wc = wp = 1, then this score function becomes the same as that for the 

Combined decoder introduced in Aickelin and Dowsland (2004).

The multiplicative, or quotient, version of the Combined heuristic, Combinedq, has the 

score function given by

covscore 2 .Wc
Combinedq: f( i , j )  = ------------- J— , (4.8)

p r e f s c o r e ly  p

where wc and wp are weights as before.

A possible drawback of the Combined heuristic is that the nurse order is predefined. 

The GA implemented by Aickelin and Dowsland (2004) was used to order the nurses 

before the heuristic decoded the ordering into a schedule. Given that we use only a 

single ordering of the nurses, there are large areas of the solution space which will not 

be fully explored by Combined as it stands.

4.2.1.3 Holistic

In order to overcome the problem of inflexibility faced by Combineda and Combinedq, 

we introduce heuristics which do not assign the nurses in a given order, but instead 

assign a score to each nurse-pattem pair. At each stage of the construction both the 

nurse i and shift pattern j  are selected, allowing the heuristic a more complete 

exploration of the solution space.
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Thus, HolistiCa, the additive version of this heuristic, has the same score function as 

combineda and is therefore given by

Holistic a: f f l i j )  = wc.covscore2ij + wp.prefscorel y. (4.9)

Note that, in this case, i is not limited to representing a single nurse selected in 

advance for assignment, but is evaluated for all nurses for whom no assignment has 

yet been made.

The multiplicative version of the Holistic heuristic, Holisticqi again uses the same 

score function as Combinedq and thus it is given by

again, where the nurse index / represents all possible nurses to be scheduled rather 

that the single nurse given by the pre-ordering used by Combinedq. Again, this 

‘quotient’ will share many of the attributes of its additive counterpart, and will have 

the subtle differences discussed earlier.

Although this wider search area may well give rise to better solutions, the large 

number of options to be considered may give rise to increased computational expense 

as well as a lack of focus.

4.2.1.4 LastChance

As discussed earlier, by introducing the dynamic ordering the search is more flexible 

and by allowing the search to cover a wider area, it is more likely that the search 

space covered will include optimal solutions. However, the potential drawbacks 

mentioned were the increase in computational expense, since the number of score 

functions to be calculated and assignments to select from will be greatly increased, 

and the possible lack of focus, since the assignments are not necessarily being made in 

order of grade.

Holisticq: fs(i,j) =
covscore!tJWc

(4.10)
prefscore!
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A solution to these problems is proposed in the final set of heuristics presented. These 

will incorporate an element of look-ahead in order to help focus the search while 

maintaining the flexibility from the dynamic ordering. In order to do this, the same 

scores are evaluated as for the Holistic heuristics, but a second calculation determines, 

for each nurse still to be scheduled, the difference in cost between the best available 

score and the next-best. This difference in cost constitutes the score function. The 

nurse is then selected based on these scores and the nurse’s best-scoring pattern is 

assigned to them. The score functions for LastChanceJLastChanceq can be expressed 

mathematically in the following way.

Let j* {i) = argmax{ /2/3 (1,7 )}. Then
j e S ,

Lastchancea/q: f 4/5 (i) = max { f m i ' j ) } - m„ax {/2/30'.y)} (4.11)
yeS , jeSi

Note that the score function itself is very simple, but the additive and multiplicative 

variations come from the cost functions used to calculate the scores for each pattern, 

from which the best and next-best for each nurse are then identified.

By assigning the best pattern to a nurse where there is a large difference between the 

best cost and the next-best cost, we ensure that the cost for assigning this nurse is kept 

low. Nurses where this difference is less substantial may be assigned later, since if 

their ‘best’ patterns are no longer workable the damage to the overall quality of the 

solution is unlikely to be as great.

Note that often, during the earlier stages of the selection process, all nurses will have a 

difference in cost of zero between their two preferred shift-pattems, as it is normal for 

nurses to have several shift patterns with the same preference cost. In these situations, 

the scores for each nurse will be based on the actual cost of their best shift pattern. 

Thus the scores for each nurse i would be given by

A /s  (0 = max{/2/3(;,y)}. (4.11’)
jeS ,
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If these are all zero, then a random nurse is selected and one of their best patterns 

assigned.

This variant has fewer options at each stage as only the nurse has to be chosen. 

However it does not suffer from the limitations of the Cover and Combined 

constructions in that the shift pattern associated with each nurse also changes 

adaptively, depending on the allocations made in previous stages. The inclusion of 

some degree of look-ahead into the score should help to overcome the problem 

inherent in all greedy approaches, of potentially being left with a set of expensive 

options in the last few stages.

4.2.1.5 Costs

Once the greedy construction is complete, the costs are calculated as follows:

Note that having more staff than required on any shift is not penalised and a score of 

zero will be returned as long as all staffing requirements are satisfied at each grade. 

Although the original problem requires that any excess cover be spread evenly over 

the weekdays, this is automatically handled by the pre-processing phase of Dowsland 

and Thompson (2000), detailed in Appendix C, whereby available excess is included 

in the weekday requirement and a ‘dummy’ nurse is made available to ensure a 

feasible solution will be possible, but that there is no excess cover. A dataset for 

which any feasible solution will have no excess cover is deemed to be ‘tight’, whereas 

a dataset for which a solution may be feasible, but also have more than the required 

number of nurses per shift is deemed to have ‘slack’. The large majority of the 52 

datasets considered in this thesis fall into the ‘tight’ category, due to the pre

processing phase.

14 3 f  r

Cover cost = ^  ̂  max 0, Cgk -  I X *
4.1 g-l [ 1=1 je S ,

(4.12)

r

Preference cost = ^  ̂  pyXy
i=1 jeS ,

(4.13)
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By meeting the covering constraints, the solution will be feasible; the other hard 

constraints, those of meeting the nurses’ contractual obligations and disallowing 

consecutive shifts (a night shift followed by a day shift, for example), are 

automatically built into the system of assigning each nurse with a suitable shift 

pattern. Therefore, to create feasible solutions, achieving a cover cost of zero is 

sufficient.

A preference cost of zero is not generally possible, although the optimal solutions are 

known and a theoretical minimum can always be obtained as the sum of the minimum 

cost shift-pattems for each nurse. However, the pre-processing done by Dowsland and 

Thompson (2000) ensures that a feasible solution, with zero cover cost, exists for all 

datasets through the inclusion of ‘bank’ nurses where there is not enough staff cover 

available to meet the requirement.

We have discussed, however, how these construction heuristics may struggle to find 

feasible solutions and how the use of a knapsack model, similar to that used in the 

pre-processing stage by Dowsland and Thompson (2000), may be used in order to 

direct the search towards feasible areas of the solution space.

In the next section we introduce this knapsack model and describe how it may be used 

in conjunction with each of these heuristics. This hybrid of GRASP with an exact 

method will be shown with experimentation to be very successful in overcoming this 

problem.

4.2.2 Hybridising the construction with a knapsack model

As we mentioned earlier, we introduce the knapsack model as a means of creating 

partial solutions from which feasible schedules can easily be obtained using local 

search. As will be detailed in the next section, the two neighbourhoods utilised in the 

local search when feasibility has not yet been achieved involve either changing the 

pattern of a single nurse or directly swapping the patterns of two nurses. As 

mentioned earlier, there are situations where the solution is ‘unbalanced’, as described 

in Dowsland (1998), and in these cases, it will not be possible to achieve feasibility 

using just these two types of move. Consider the following example in Figure 4.2.
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Cover required:

Days Nights
S M T W T F S Tot. S M T W T F S Tot.
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 8 8 8 8 8 7 54 3 3 3 3 3 3 3 21

Number of nurses available:

Grade
1 2 3

<D (5,4) 3 3 4
£ (4,3) 2 2 2
r-1 (3,3) 0 0 2

Then consider the following situation where all nurses have been assigned to 

either days or nights.

Grade Days Tot. Nights Tot.

1 (5,4) x 2 
(4,3) x 1

14 (5,4) x 1 
(4,3) x 1

7

2 (5,4) x 2 
(4,3) x 1

28 (5,4) x 1 
(4,3) x 1

14

3
(5,4) x 3
(4.3) x 1
(3.3) x 2

53
(5,4) x 1 
(4,3) x 1 21

All nurses have been assigned, but there is one staff shortage on the day shifts at 

grade 3. Notice that this situation could easily be rectified by moving the grade 3,

(4,3) nurse on nights to days and moving one of the (3,3) nurses to nights. This 

would mean that the same number of night shifts would be available, but the (4,3) 

nurse would be able to supply the extra shift required on days. However, the local 

search would never be able to rectify this situation.

Figure 4.2. Example o f a situation for which the local search would not be able to obtain a feasible 

solution due to an initially ‘unbalanced’ allocation o f  nurses. (Continued on next page).
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No straightforward swapping of patterns could be employed to perform the switch, 

since a (4,3) nurse may only swap shift patterns with other (4,3) nurses and the 

same goes for the (3,3) nurses. Equally, simply changing the pattern of one nurse 

at a time would not solve this problem, since any move of either the (4,3) nurse to 

days or one of the (3,3) nurses to nights would result in an immediate decrease in 

feasibility and so would never be accepted.

Figure 4.2 contd. Example o f  a situation for which the local search would not be able to obtain a 

feasible solution due to an initially ‘unbalanced’ allocation o f  nurses.

Dowsland (1998) overcame this problem using powerful neighbourhoods involving 

chains of several moves. Rather than allow the introduction of such complicated 

neighbourhoods, we instead utilise the knapsack model as a way to ensure situations 

such as that in Figure 4.2. do not occur so that all solutions created have the potential 

to be made feasible by the local search. Our aim is therefore to introduce a powerful 

look-ahead mechanism which will guide the construction in such a way as to make 

them a good starting point for the local search in terms of feasibility. We base this 

decision on observations from Aickelin and Dowsland (2004) and Dowsland (1998). 

They suggest that the types of solution landscape produced by our evaluation function 

and neighbourhood structures, which will be discussed more fully in the next section, 

are likely to consist of subspaces separated by ‘ridges’ so that the improvement phase 

will be restricted to a single sub-space, even if we were to allow some small uphill 

steps. These ridges are caused by the changes in cover that result in moving nurses of 

different types from days to nights and vice versa. The subspaces correspond to 

numbers of day/night allocations of different types, and for tight problems many of 

these subspaces will not contain any feasible solutions. Figure 4.2 is one such 

example of this. This problem can be overcome if we can design a construction 

heuristic that only produces solutions that lie in those subspaces that also contain 

some feasible solutions and it is with this aim in mind that we introduce the knapsack 

model.

As mentioned in Chapter 2, Dowsland and Thompson (2000) observe that the fact that 

nurses work a different number of night shifts and day shifts means that it is not 

possible to determine whether or not a problem is feasible simply by counting the
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number of shifts available. They go on to show that this problem can be overcome 

using a knapsack model. We will use this model to ensure that our solutions lie in the 

right sub-spaces. As we will show, this is equivalent to ensuring that the day/night 

allocations returned by the construction phase have sufficient numbers of nurses to 

meet the total covering requirements on both days and nights for all grades g. It is 

necessary to solve the model at all three grades, since a solution found which meets 

the total requirements at grade 3 must also provide adequate cover for the problem at 

grades 1 and 2 and at grade 1. Figure 4.3 gives an example of a situation where it is 

possible to find a feasible allocation of nurses at each grade individually, but where no 

one solution exists which is compatible at all three grades.

Cover required:

Days Nights
S M T W T F S Tot. S M T W T F S Tot.
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 8 8 8 8 8 7 54 3 3 3 3 3 3 3 21

Number of nurses available:

Grade
1 2 3

(5,4) 0 2 2
<D (4,3) 1 2 4
CU (3,3) 4 0 2H (3,2) 1 1 0

(1,1) 2 0 1

Note that this is not a very realistic setup, since there are generally a high 
proportion of grade 1 and full-time nurses, but provides an effective example.

Figure 4.3. Example o f  a situation where a feasible assignment is possible at each grade, but no 

compatible solution at each grade exists. (Continued on next page).
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Now to provide a feasible assignment covering grade 3, which incorporates all 

three grades of nurse and the total cover requirement, we may have the following 

assignments.

Grade Days Tot. Nights Tot.

1 (4,3) x 1 
(3,2) x 1

7 (3,3) x 4 
(1,1) x 2

14

2
(5,4) x 2 
(4,3) x 2 
(3,2) x 1

28 14

3 (5,4) x 2 
(4,3) x 4

54 (3,3) x 2 
(1,1) x 1

21

where the columns labelled ‘Tot.’ provide the cumulative totals for the day and 

night cover at each grade.

Here the overall cover requirement has been fulfilled but it is possible to see that 

while the combined cover at grades 1 and 2 is also satisfied, the cover at grade 1 is 

deficient. However, there is a feasible allocation at grade 1, since moving two

(3.3) nurses and one (1,1) nurse from nights to days would solve this problem. 

However, in order for the assignment to remain feasible at grades 2 and 3, some 

nurses at these lower grades would be required to move from days to nights in 

order to compensate. However, there are no nurses currently scheduled to work 

days who work an equal number of day and night shifts and therefore by moving 

these grade one nurses from nights, we effectively lose a number of day shifts. A

(3.3) nurse removed from nights would have to be replaced by a (4,3), for 

example; the number of night shifts worked is therefore unaltered but the number 

of day shifts is reduced by 1. Given that there are no nurses on days who work an 

equal number of day and night shifts, the number of day shifts at grades 2 and 3 

must necessarily be reduced by correcting the grade 1 cover. Since the day cover 

at grades 2 and 3 is equal to the requirement, there is no way for a feasible 

assignment for nurses to be compatible at all grades.

Figure 4.3 contd. Example o f  a situation where a feasible assignment is possible at each grade, but no

compatible solution at each grade exists.
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Thus it is necessary to ensure that any solution to the knapsack problem which meets 

the overall covering requirements is compatible with the solution to the smaller 

problem at the higher grades.

Essentially Dowsland and Thompson show that there are sufficient nurses to meet the 

cumulative cover constraints for grade g if the solution to the knapsack problem:

T
maxZ = Y*ety t%

t= 1

st ’Ld,y,g < ’Z d ln,g - D g
t=1 t=\

y,g < n,g V/

is at least Eg , where

t = l ,...,r  is the nurse nurse type index 

dt = number of day shifts worked by a nurse of type t 

et = number of night shifts worked by a nurse of type t 

ntg = number of nurse of type t of grade g  or above
7

Dg = £ C \ (i.e. the total day requirement at grade g  and above)
k = \

14
Eg = XC. (i.e. the total night shift requirement at grade g  and above)

k=8

and y tg is the number of nurses of type t and grade g  or above assigned to nights.

The expression in the objective function, (4.14g) is the total number of night shifts 

covered, constraint (4.15g) ensures that there are sufficient day-shifts remaining and 

constraints (4.16g) ensure that the number of nurses allocated does not exceed those 

available. For a given problem instance P (i.e. for given T, dh eh ntg, Dg and Eg) we 

will denote the problem of finding a solution to (4.14g), (4.15g), (4.16g) of value at 

least Eg by KSg(P). Clearly, if P  is feasible there must be solutions satisfying KSg(P) 

for g = 1,2 and 3. However, as shown in Figure 4.3 this is not sufficient, as we need
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to ensure that the three solutions are compatible with one another. In order to ensure a 

compatible set of solutions we need to add the constraint:

0 ^  .> V i -  y<s ^  n,g+\ -  ntg V‘>g = 1,2 (4.17)

The left hand inequality ensures that the number of night allocations at grade g+1 and 

above is at least as many at that at grade g and above, and the right hand inequality 

ensures that there are sufficient grade g+1 nurses to make up the difference. We will 

refer to the set of constraints given by KSi(P), KS2CP), KS3(P) and (4.17) by Cons(P). 

For a given problem instance, P, we ensure that our constructions always satisfy 

Cons(P) as follows.

Let P(R') denote a partial solution to instance P in which the number of day and night 

shifts worked by those nurses in the set R' is known. We start by defining Pboth as the 

set of nurses who work both days and nights, and /£fixed as the set of nurses who must 

be allocated to days together with those who must be allocated to work nights. Let R+ 

be the set of nurses already allocated by the construction phase. Then the remaining 

nurses can be allocated to days and nights in such a way as to satisfy Cons(P) if there 

is a feasible solution to Cons(P(Pboth u  Rflxed u  R+)). Therefore during the 

construction phase, once a nurse i and shift j  have been selected, if i <£ Rboth u  P flxed, 

we attempt to find a feasible solution to Cons(P(Pboth u  Rflxed u i? + u  {/})). If there is 

a solution then the allocation is made and the construction moves on to step 5, as 

given by Figure 4.1. If not, then, if j  is a night shift, nurse i must be restricted to days 

and vice versa. We therefore restrict the set of feasible shift patterns for nurse i 

accordingly and return to step 2 without making the allocation. The restriction is 

enforced for the remainder of the construction phase only. It remains to be shown that 

we can determine whether or not there is a feasible solution to Cons(P(P')) for any P 

and R' at minimal computational expense.

Our approach is based on the following observations.



Observation 1.

For any R' we can obtain Cons(P(7?')) from Cons(P) by setting ntg = ntg - 1 for each 

nurse of type t and grade g  or above in R’ and reducing Dg and Eg by the number of 

day and night shifts of grade g  or above covered by the assignment of nurses in R’.

Observation 2.

Given a solution Yg* to KSg(P(R')), any solution to the knapsack problem:
T

maxZ = 2>,y,g_i
t =i

T T

st H d>y*-
<=i t= \

y,g~\ ^ min(n,g-\ ,y* ,g )

y,g_, >max(0, y * g

satisfying Z> E g.\ is a compatible solution to KSg_i (P(R')).

Note that the lower bounds given by (4.18g.i) are obtained from (4.16g.i) and the left- 

hand part of (4.17) and the upper bounds given by (4.19g_i) are simply the right-hand 

part of (4.17). We denote this problem KSg-i(P(K')|yg*)

Observation 3.

The usual way to solve the knapsack problem is to use the algorithm given by

Martello and Toth (1990), which involves solving the linear programming relaxation

and branching on the functional variables. However, this approach seeks to find the 

optimal assignment, and will remove suboptimal solutions from the search tree. We 

are not looking for an optimal solution, but potentially require all feasible solutions 

with the desired objective value. We cannot, therefore, use this approach as we may 

remove branches which still contain feasible solutions. Since we want to use the 

heuristic as the method of assignment and only refer to the knapsack model to check 

our solution is balanced, removing branches which contain feasible solutions could 

mean that a desired solution is overlooked; the knapsack model would be capable of 

labelling certain assignments as unacceptable even when there is a balanced day/night 

partition which includes it. Instead, we use a branch and bound tree search in which

(4.14g.,)

(4.15*0

(4.18*0

(4.19*0
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the branches at level i represent the set of feasible values for the ith variable. The 

problems represented by the nodes in the tree are smaller knapsack problems in which 

some of the variables have been fixed. Therefore local lower bounds can be obtained 

from the linear programming relaxations of these problems. This involves ordering 

the items in value/weight order, given by ejdh and filling the knapsack with as many 

units of the highest priority item as possible before considering the next item. 

Considering the value attained by filling the knapsack exactly, by including a 

fractional amount of the first item not to fit fully, allows the calculation of an upper 

bound. In order to reach good solutions quickly and make the bounds easier to 

calculate the variables are considered in decreasing etldt order and the branches are 

considered in decreasing value order. The tree is pruned by backtracking whenever 

the bound is less than Ztarget and the bounds are recalculated every time the search 

backtracks. See the example given later in this section, in conjunction with Figure 4.5, 

for an illustration of the solution process.

We can make the process more efficient by noting that we do not necessarily need to 

solve a new knapsack problem every time a new allocation is considered.

We can use the above observations to solve the appropriate Cons(P(R')) at each stage 

of the construction using a hierarchical tree search. As we are unable to build the 

different grades directly into the knapsack model, we first solve the problem for all 

grades of nurse. The tree at the top of the hierarchy represents a branch and bound 

search for all solutions of KS3(P(7?')). Once a solution has been found, represented by 

a terminal node, Yj*, we then reduce the problem to the nurses of grades one and two 

and the cover requirement at grade two only, and try to find a solution at this level 

compatible with the overall solution. As was shown in Figure 4.3, it is not enough to 

find a feasible allocation of nurses for the overall problem, the problem at grades 1 

and 2 and the problem at grade 1 only since we require a single allocation which 

satisfies the requirements at all grades and simply knowing that a feasible solution 

exists at all grade levels is not enough; for a workable template, we require an 

allocation which will be feasible at all grades, simultaneously. Thus it is essential that 

the knapsack model be used in an iterative fashion to produce solutions which are 

feasible at each grade g  -  1, while remaining compatible with the solution at grade g.
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Each terminal node, I 3*, spawns a new tree representing a branch and bound search 

for solutions to problem KS2(P(/?,)I^3*)- Similarly the nodes representing these 

solutions spawn new trees representing a branch and bound search for solutions to 

KS\(P(R') 112*). The whole structure is searched using a depth first strategy. Once a 

feasible solution with respect to grade g is found the search proceeds to the next tree 

in the hierarchy i.e. grade g -  1. If the search is not successful then control is returned 

to the tree relating to grade g  until the next feasible solution is found. When a solution 

is reached at the third hierarchy i.e. grade 1, then a feasible solution to Cons(P(/?')) 

has been obtained and the allocation of nurse i to shift j  can be made. If the search 

terminates without finding a solution at grade 1 then Cons(P(/?')) is infeasible and the 

current allocation cannot be accepted.

Once appropriate solutions have been found at all grades, the number of nurses of 

each type and grade who must work days and nights is known. This process is 

completed before a construction heuristic is executed. At any point in the construction 

we have the y tg values for a feasible solution to Cons(P(/?')) and ea°h time a nurse is 

allocated these values will be reduced accordingly. As the heuristic picks a nurse and 

shift pattern, implying a day/night allocation, and before making the assignment, it 

consults this template to check whether there are any remaining allocations for this 

nurse type to work this sort of pattern. If we then consider allocating nurse i of type t 

and grade g  to nights, then the existing solution will still be feasible as long as y tg > 1 

and (if g  ^  1) y tg > ytg-1- Similarly a day allocation will be feasible if ntg -  y tg >1 and 

ntg-  y tg > ntg.\ - y tg.\ If these conditions hold we can allocate nurse i without solving a 

new knapsack problem. Having made the allocation we update the variables and 

constants to reflect the new solution.

If, however, the template will not allow nurse i to work the selected pattern, rather 

than immediately returning to the construction heuristic to make a new choice, we 

continue searching the updated knapsack tree to look for a feasible allocation of 

nurses which will allow this pairing. If one is found, we can accept the heuristic’s 

choice, update the new template and continue to the next stage of the construction. 

Otherwise, we must reject this choice and return to the heuristic to pick again, noting
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that this nurse must now work the opposite type of pattern to the one originally 

selected.

The process is summarised in Figure 4.4.

C )
Use knapsack to find 

compatible Yg ,g  = 1,...,3

Pick nurse i and shift 
pattern y implying 

day/night allocation

current

X x
Assign nurse i pattern 

j .  Accept new Yg*

Adjust parameters and
j ^ O i  solve new knapsack

Update schedule. 
Set /C  = i?+U{*}

Solution
exists?

Ban current day/night 
allocation for this nurse

 ----------------
Construction complete^

Figure 4.4. Flow chart showing implementation o f  the knapsack.

We now give an example of the knapsack implementation as applied to a partial 

solution.

Let the remaining unscheduled nurses be given by
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Grade
ejdt 1 2 3

1: (3,3) 1.00 0 1 1
<L>
& 2: (5,4) 0.80 2 3 4
H 3: (4,3) 0.75 2 2 3

4: (3,2) 0.67 0 2 3

Note that the nurses available are now given cumulatively at each grade so, for 

example, there is only one nurse of type 1, a grade 2 nurse, who can cover shifts at 

both grade 2 and grade 3.

We number each type of nurse, in decreasing order of etldt. Let the remaining total 

cumulative cover requirement for days and nights at each grade be given by

Grade Days Nights
1 8 7
2 19 10
3 26 14

Finally let the current knapsack solution Y* be given by

Grade Days Tot. Nights Tot.

1 (5,4) x 1 
(4,3) x 1

9 (5,4) x 1 
(4,3) x 1

7

2 (5,4) x 1 
(3,2) x 2

20 (3,3) x 1 10

3 (4,3) x 1 
(3,2) x 1

27 (5,4) x 1 14

where the columns labelled ‘Tot.’ give the cumulative totals for the day and night 

cover at each grade. Now assume the heuristic picks a nurse i to work nights, where i 

is a type 4, (3,2) nurse of grade 2. First we check if this is compatible with the current 

knapsack solution, Y*, and see that it is not, since the current solution only allows 

type 4 nurses to work day shifts. We therefore re-solve the knapsack problems to 

check whether a solution exists which will allow this current allocation. That is, we 

solve Cons(.P(/?'u {/})), where i is assumed to be working nights. This gives a new set 

of available nurses, with one grade 2, type 4 nurse removed and a new set of night
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requirements with these 2 night shifts removed from grades 2 and 3. The new total 

night requirement is therefore cumulatively 7, 8 and 12 at grades 1, 2 and 3 

respectively. The knapsack capacities given by the right hand side of equations (4.15g) 

are 10 at grade 1, 10 at grade 2 and 15 at grade 3. Figure 4.5 shows the tree relating to 

the search for a feasible solution.

infeasible

infeasible infeasible

Figure 4.5. The tree relating to the search for a feasible solution.

118



At the top level of the search, node A represents the knapsack problem K S3 relating to 

g  = 3, with target value £3 = 12, knapsack capacity = 15 and the upper bounds on the 

variables given by the total number of nurses available of each type. The top segment 

of Figure 4.5, that is, the region denoted g  = 3, shows a tree search for all feasible 

solutions to this problem with objective value at least 12, using bounds based on the 

linear programming relaxation of the problem to prune the tree. Note that the types are 

considered in decreasing et/dt order and the branches relating to each variable are 

ordered in decreasing value order. This improves the efficiency of the search.

The type 1 nurses are therefore the first to be considered. There is only one such nurse 

available, with a ‘weight’ of 3 days. The first branch to be considered is therefore 

yn = 1 and this leaves a remaining capacity of 15 -  3 = 12, enough space for 12/5 =

2.4 type 2 nurses. This gives us an initial lower bound of 1x3 + 2x4 =11,  and an 

upper bound of 1x3 + 2.4x4 = 12.6. However, only whole nurses can be considered 

and with one type 1 nurse and two type 2 nurses, there is a remaining capacity of 15 -  

3 -  2x5 = 2, which means no more nurses would be able to work nights without 

violating the capacity. Since the current branch only gives 11 night shifts, which is 

less than the target value, we backtrack to the previous branching point and consider 

instead allocating just one type 2 nurse. At this point the bounds are recalculated. 

With one type 1 nurse and one type 2 nurse, there is a remaining capacity of 15 -  3 -  

5 = 7. This leaves enough space for 7/4 = 1.75 type 3 nurses, giving a new upper 

bound of 1x3 + 1x4 + 1.75x3 = 12.25. The process continues in this manner. 

Obviously once a complete solution at grade 3 is found, a compatible grade 2 and then 

grade 1 solution must be obtained. Figure 4.5 shows the full search tree.

The first solution is found at node B and is given by T3* = (1,1,1,1), with 1 nurse of 

each type working nights and the remainder on days. Having reached the solution we 

spawn a new tree to search for solutions to the problem (K S2IF3*) starting at node B\ 

The target value is now 8 and the knapsack capacity is 10. The vector of upper 

bounds, given by the right-hand side of constraint set (4.182) is (1,1,1,1) and the 

vector of lower bounds, given by the right-hand side of (4 .192) = (1,0,0,0). Thus y  12 is 

fixed at y n =  1. Substituting the fixed value leaves us with a problem in the three 

remaining variables with an adjusted target of 8 -  3 = 5 and adjusted knapsack
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capacity of 10 -  3 = 7. The tree search corresponding to this problem starts at root 

node B' and the first feasible solution is found at E corresponding to Y2 * = (1,1,0,0).

We now spawn a new tree to search for solutions to (KSil^*)- The target is 7 and the 

knapsack capacity is 12. The upper bounds are given by (0,1,0,0) and the lower 

bounds by (0,0,0,0). Thus all variables except >>32 are fixed at 0 and as 3̂2 has an upper 

bound of 1 the problem is clearly infeasible as we cannot meet the target value. We 

therefore return to node E and continue searching the tree corresponding to (K S 2 I T 3 * ) .  

A second solution at this level in the hierarchy is found at F with Y2 * = (1,0,1,1). This 

spawns a new problem (KSi|72*) with upper bounds (0 ,0 ,1,0) and lower bounds 

(0,0,0,0). Once again we have a problem in just one variable which is clearly 

infeasible so control is returned to node F. Continuing the search at this level shows 

that there are no more feasible solutions to ( K S 2 I T 3 * )  and control is returned to point 

B and the search for solutions to problem A continues.

The next solution is at C corresponding to F3* = (1,0,3,0). This spawns a new problem 

for (KS2IT3*) at C' with upper bounds (1,0,3,0) and lower bounds (1,0,2,0). This 

becomes a problem in ̂ 32 with a target of 5 and knapsack capacity = 7. This problem 

is clearly infeasible as the lower bound on y ?,2 causes the knapsack capacity constraint 

(4.152) to be violated. Control therefore returns to C. The next solution occurs at D 

corresponding to T3* = (0,3,0,0) with upper bounds (0,3,0,0) and lower bounds 

(0,2,0,0). The tree for the resulting problem in y 2i starts at D' yielding a feasible 

solution at G corresponding to Y2 * -  (0,2,0,0). This spawns problem (KSi|72*) at G' 

with upper bounds (0,2,0,0) and lower bounds (0,1,0,0) and yielding a feasible 

solution at H. Thus there is a feasible solution that is compatible over all grades given 

by
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Grade Days Tot. Nights Tot.
1 (4,3) x 2 8 (5,4) x 2 8

2
(3.3) x 1
(5.4) x 1 
(3,2) x 1

19 — 8

3 (4,3) x 1 
(3,2) x 1

26 (5,4) x 1 12

where the columns labelled ‘Tot.’ give the cumulative totals for the day and night 

cover at each grade. We therefore make the allocation of nurse i to pattern j .  Had the 

search failed to find a feasible solution nurse i would have been added to the set RfrKCd 

(tagged as days only), the matrix Y* restored to its previous set of values and «24 and 

«34 reduced by 1 and D2 and reduced by 3.

We incorporate this look-ahead rule based on the knapsack calculations described in 

this section into each of our 7 construction heuristics to form 7 further variants. Figure 

4.6 describes a full construction incorporating this knapsack routine.
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Total cover required at each grade:

Grade Days Nights
1 14 7
2 28 14
3 91 21

Available nurses of each type at each grade:

Type Grade1 Grade2 Grade3
(5,4) 6 4 7
(4,3) 3 1 1
(3,2) 2 0 0
(3,3) 1 1 0

Initial solution created by the knapsack for use as a template during the 

construction:

Grade Days Tot. Nights Tot.

1
(5,4) x 5 
(4,3) x 3 
(3,2) x 2

43
(5,4) x 1 
(3,3) x 1 7

2 (5,4) x 3 
(4,3) x 1

62 (5,4) x 1 
(3,3) x 1

14

3 (5,4) x 5 
(4,3) x 1

91 (5,4) x 2 22

where the columns labelled ‘Tot.’ provide the cumulative totals for the day and 

night cover at each grade. Let the notation {d,e)g —» D indicate that the

construction heuristic is recommending the assignment of a (d,e) nurse of grade 

g  to days and (d,e)g -^>N indicate the nurse is being assigned to nights. If

assignments which do not agree with the knapsack template are indicated with 

an asterisk (*), we may track the progress of each stage of the construction as 

follows.

Figure 4.6. Example construction o f  a solution from a real dataset, demonstrating the incorporation o f

the knapsack model. (Continued on next page).
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Stage Suggested assignment
1 (5,4)2 -*• D
2 (5,4)2 ->D
3 (5,4)3 -> D
4 (5,4), -*• D
5 (3,3)i D *

The first four assignments agree with the knapsack template and so the 

assignments can be accepted. However, the fifth stage of the construction places 

one of the (3,3) nurses onto days, when the template has both of these nurses 

working nights. In order to check whether a feasible set of assignments exist 

where this nurse is working days, we attempt to solve the new knapsack problem 

where the cover required and number of nurses available are both reduced to 

exclude the current nurse and all nurses which have previously been scheduled. 

Therefore, at this point the knapsack model would be required to solve the 

problem where the required cover has been reduced to

Grade Days Nights
1 6 7
2 10 14
3 68 21

Note that the night shift requirements are unaltered as no nurses have yet been 

assigned to work on nights. The available nurses at each grade are now:

Type Grade 1 Grade2 Grade3
(5,4) 5 2 6
(4,3) 3 1 1
(3,2) 2 0 0
(3,3) 0 1 0

Figure 4.6 contd. Example construction o f a solution from a real dataset, demonstrating the 

incorporation o f  the knapsack model. (Continued on next page).
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The knapsack model produces a new solution which does satisfy these new 

criteria:

Grade Days Tot. Nights Tot.

1
(5,4) x 3 
(4,3) x 3 
(3,2) x 1

30
(5,4) x 2 
(3,2) x 1 10

2 (5,4) x 1 
(4,3) x 1

39 (5,4) x 1 
(3,3) x 1

17

3 (5,4) x 5 
(4,3) x 1

68 (5,4) x 1 21

where the columns labelled ‘Tot.’ provide the cumulative totals for the day and 

night cover at each grade.

The assignment (3,3), —> D is therefore accepted and the new template referred to 

in subsequent stages of the construction. The construction continues with the 

following assignments.

Stage Suggested assignment
6 (4,3), -» D
7 (3,2), -> D
8 (4.3)2 D
9 (5,4)3 D
10 (4,3)3 ->D
11 (5,4),->D
12 (4,3), ->D
13 (5,4),
14 (3,2)i N
15 (3,3)2 D *

At this stage of the assignment process, the construction heuristic suggests putting 

the other (3,3) nurse onto day shifts. However, this time the assignment 

(3.3)2 —> D is rejected and thus we know this nurse must work nights.

Figure 4.6 contd. Example construction o f a solution from a real dataset, demonstrating the 

incorporation o f  the knapsack model. (Continued on next page).
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By disallowing future day shift patterns for this nurse, we may also reduce the 

required amount of night cover for grades 2 and 3 by 3 shifts in future 

calculations. Stage 15 has therefore made no assignment as yet and we try 

another nurse before continuing to the next stage.

Stage Suggested assignment
15' (5,4),
16 (5,4), -*• N
17 (5,4), ->N *

By this time, our current template has indicated two (5,4) nurses at grade 1 

should work nights; stage 17 suggests allocating a third. We therefore check the 

knapsack model for a feasible distribution of nurses which includes this 

assignment. The remaining cover requirement, given that we know a (3,3) nurse 

will be assigned to nights, is:

Grade Days Nights
1 0 0
2 0 0
3 34 4

The nurses available to cover these shifts are:

Type Grade 1 Grade2 Grade3
(5,4) 0 2 5
(4,3) 1 0 0
(3,2) 0 0 0
(3,3) 0 0 0

The knapsack is able to satisfy these constraints and produces the following new 

template for use with the remainder of the construction.

Figure 4.6 contd. Example construction of a solution from a real dataset, demonstrating the 

incorporation o f  the knapsack model. (Continued on next page).
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Grade Days Tot. Nights Tot.
1 (4,3) x 1 4 — 0
2 (5,4) x 2 14 — 0
3 (5,4) x 4 34 (5,4) x 1 4

where the columns labelled ‘Tot.’ provide the cumulative totals for the day and 

night cover at each grade.

For the remainder of the construction, all assignments suggested by the heuristic 

match with the template and the construction concludes with these assignments.

Stage Suggested assignment
18 (5 ,4  ->D
19 (5,4), -*D
20 (5,4), -» D
21 (5,4)3 ->D
22 (5,4)2 D
23 (4,3), D
24 (5,4)2 D
25 (5,4), -* N
26 (3,3)2 -*■ N

Thus all 26 nurses have been assigned to shift patterns in such a way that the 

resulting solution is balanced and the local search has a good chance of making 

it feasible if it is not feasible already.

Figure 4.6 contd. Example construction o f a solution from a real dataset, demonstrating the

incorporation o f the knapsack model.

Thus we have explored the three ways of balancing the search between feasibility and 

optimality: the Cover decoder looks only at the feasibility of the problem, leaving the 

task of finding low-preference cost solutions to the local search part of the GRASP 

algorithm; the Combined, Holistic and LastChance decoders balance these two factors 

with weights in different ways, with the LastChance decoder incorporating an element 

of look-ahead; and each of these algorithms, combined with the knapsack algorithm 

has a look-ahead procedure capable of steering the construction towards regions of the 

search space that may contain high-quality feasible solutions.
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4.2.3. Local Search Neighbourhoods

None of the above construction heuristics is guaranteed to produce a feasible solution. 

Therefore the solution space for the improvement phase is the set of solutions in 

which each nurse is allocated to a feasible shift pattern, regardless of whether or not 

the covering constraints are satisfied. Our basic search strategy is that of random 

descent i.e. at each iteration we sample the space of neighbours of the current solution 

uniformly and accept an improving solution as soon as it is encountered. However, a 

typical data set may have many variables with identical values. This suggests that 

there may be large plateau-like areas in the solution landscape and for this reason we 

also experiment with accepting equal cost solutions. Our evaluation function reflects 

the importance of meeting the covering constraints over that of optimising the 

preference cost, and we define a solution as being better than its neighbour if the 

cover is improved or if the cover is unchanged and the penalty is improved.

More precisely our evaluation function is defined as:

f  = E £ ^ * s + ^ - £ I X * ( * ) >  (4.20)
i eR j eS j  k=1 g=l

where W » P i j ,  V i,7 .

Our objective is to exploit the construction part of the GRASP algorithm, in order to 

determine whether it is possible to produce good solutions without the use of complex 

local search neighbourhoods. We therefore introduce three simple neighbourhoods 

which, used in combination, should be flexible enough to allow sufficient exploration 

of the search space. The neighbourhoods considered are: a 1-opt neighbourhood, 

which involves changing the shift pattern of one nurse; a 2-opt neighbourhood, which 

involves changing the shift patterns of two nurses; and a straightforward swap 

neighbourhood, which allows two nurses of the same type to swap their shift patterns. 

The neighbourhoods are combined by selecting each with a given probability. In all 

cases, sampling was carried out without replacement. The next sections provide 

definitions of each of the neighbourhoods.
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4.2.3.1. Change neighbourhood

Nc(s) is the set of solutions obtained from any solution, s , by changing the shift- 

pattem of a single nurse. A nurse and a new shift pattern are chosen at random, such 

that the pattern is one which fulfils the nurse’s contractual requirements. Only patterns 

with a preference cost lower than 100 are considered. The choice of pattern is kept for 

this nurse if it results in an improvement. Changing the shift pattern of a nurse is the 

most obvious local search method and allows for a large neighbourhood. As a move in 

Nc(s) can change both the cover and the preference cost, in theory any solution is 

reachable from any other by a series of moves using this neighbourhood. However it 

is not sufficiently flexible in the context of our descent strategies, as if the cover 

constraints are tight, any solution, s, satisfying the covering will not have any 

improving moves within Nc(s).

4.2.3.2 Swap neighbourhood

NsCs) is the set of solutions obtained from s by swapping the shift patterns of two 

nurses where their patterns are compatible. Two nurses are chosen at random and their 

shift patterns are swapped, if their contracts allow and if this results in an 

improvement. Again, moves where a nurse would be allocated a shift pattern with a 

preference cost of 100 are not included. Swapping two nurses’ shifts allows for 

improvements to the preference cost with minimal or no change to the cover. As 

swapping the patterns of two nurses on days (nights) will not affect the cumulative 

cover at grade 3, this neighbourhood is likely to allow the search to progress further 

once a feasible solution is found even on tight problems. However, as swaps are 

limited to nurses of a single type some areas of the solution space are likely to be 

unreachable.

4.2.3.3 Extended neighbourhood

N e(s ) is the set of solutions obtained from s by changing the shift-pattems of two 

nurses. This gives more flexibility than the above neighbourhoods when s satisfies the 

covering constraints. However it is a larger neighbourhood and it may be 

computationally expensive to find improving moves close to local optima when they
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may be sparsely distributed. We overcome this by restricting its use to situations 

where 5 is already feasible and sampling from a candidate list of neighbours that is a 

superset of those that result in an improvement. This is achieved as follows. Given s, 

an element of Ne(s) is defined by the quadruple {i\jui2j i)  where i\ and ii are the 2 

nurses involved and j\  and fa are the new patterns for these nurses. The 4 parameters 

are sampled in the above order with all the options for the remaining parameters being 

exhausted before parameters higher in the order are changed. i\ is sampled uniformly 

from the full set of nurses, but the candidate sets for the remaining parameters can be 

considerably reduced using the following logic. The brackets in the following refer to 

the case where we accept moves of equal cost as well as improving moves.

Given that s satisfies the cover constraints, an improving move must result in a 

reduction in the preference cost. For any two nurses involved in such a move then at 

least one must be moved to a pattern with lower (or equal) preference cost. As we are 

sampling from the set of nurses uniformly we can assume that this is true for i\. Thus, 

given i\ we sample j\  from the set of patterns with penalty cost less than (or equal to) 

the cost of zi’s current allocation. Further efficiency gains are possible if the patterns 

for each nurse are pre-sorted into py order. If there is little or no slack in the covering 

constraints then moving nurse i\ to pattern j\ may result in some shifts being 

uncovered. The second half of the move must repair this. Thus nurse ii must be of a 

sufficiently high grade to cover the shortfall and must currently be off duty on all the 

under-covered shifts. Our candidate list for ii is therefore restricted to nurses who 

satisfy these conditions. Finally pattern j i  must be chosen from those patterns for 

which the increase in preference cost for 12 is less than (or equal to) the reduction 

obtained from moving nurse 1.

4.3. Experiments and results

Fifty-two datasets have been obtained from a large UK hospital and each has been 

pre-processed by adding bank nurses in situations where there are not sufficient 

nurses to satisfy demand and adding dummy nurses to equalise numbers on each shift 

where there were too many nurses available. Further details can be found in Dowsland 

and Thompson (2000) and Appendix C. The details of each dataset can be found in
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Appendix A which lists the numbers of each nurse type and lists the numbers of each 

of these forced to work days or nights. A sample dataset is also given.

These datasets have also been considered by other researchers including Dowsland 

and Thompson (2000), Aickelin and Dowsland (2004), Burke et al. (2003b) and 

Aickelin and Li (2005). Optimal solutions have been obtained for all datasets using 

specialist IP software. See Fuller (1998) for a description of the IP solution process 

for this problem.

4.3.1 Parameter testing

Values for the parameters n, wc and wp are required. The values of n we try must differ 

between heuristics as in each case we are selecting something different. For the Cover 

and Combined heuristics we select n shift patterns for a nurse from the patterns 

available for that nurse’s type, typically around 60, while for the Holistic heuristics 

we are selecting n nurse-pattem pairs from around 1,500 such pairings. For the 

LastChance heuristic, however, our list is of n nurses and we would only have about 

25 of these. For each heuristic we have chosen a low value, a high value and an 

intermediate value for n to test. Table 4.7 shows the values investigated for each of 

the parameters.

Decoder n wc Total combinations
Cover 3,12,20 — — 3
Combineda 3,12,20 1,2,...,5 1,2,...,5 75
Combinedq 3,12,20 1,2,...,5 1,2,...,5 75
Holistica 3,10,60 1,2,...,5 1,2,...,5 75
Holistic q 3,10,60 1,2,...,5 1,2,...,5 75
LastChancea 3,6,10 1,2,...,5 1,2,...,5 75
LastChancea 3,6,10 1,2,...,5 1,2,...,5 75

Table 4.7. The combinations of parameters investigated.

We have fourteen decoders, seven with the knapsack and seven without. For each of 

these, and for each of the parameter combinations, we performed 100 GRASP cycles 

on each of the 52 datasets. We originally experiment with just the first two, simpler, 

neighbourhoods, Nc(s) and Ns(s). The local search chooses one of these
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neighbourhoods randomly for each iteration and continues until a local optimum has 

been reached and no moves remain within either neighbourhood.

To compare each parameter combination, results must be combined over all 52 

datasets. Two scores are required: a feasibility score, to determine how many feasible 

solutions this combination produces compared with other parameters; and an 

optimality score, to determine the quality of the feasible solutions found, given that 

the optimal is known in each case. To measure the success of each parameter 

combination in terms of feasibility, we choose to compare the average number of 

feasible solutions found from the 100 GRASP cycles over the 52 datasets. To 

compare their success in terms of preference cost we will compare the average 

preference cost of all the feasible solutions found over the 52 datasets. The preference 

costs of those solutions which were not feasible are not of interest as no infeasible 

solutions will be accepted.

4.3.2 Choosing parameters

To choose sensible parameters for each of the 14 heuristics, we need to examine the 

effect of the parameter choices on both feasibility and optimality. The first 

consideration is that we must combine information about solution quality from the 

different datasets, since the optimal preference costs vary greatly between datasets. In 

order to compensate for this variation we standardise the results by subtracting the 

optimal value in each case. Figures 4.8 (a)-(g) show plots of the percentage of feasible 

solutions against the average standardised preference cost for these feasible solutions, 

over all 100 cycles, for each heuristic. Each point represents a single combination of 

n, wc and wp.
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Figure 4.8 (a). Plots o f  average preference cost against percentage feasibility for the Cover heuristic 

with and without the knapsack, for the three values o f  n.
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Figure 4.8 (b). Plots o f  average preference cost against percentage feasibility for the Combineda 

heuristic with and without the knapsack, for each parameter combination.
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Figure 4.8 (c). Plots o f  average preference cost against percentage feasibility for the Combinedq 

heuristic with and without the knapsack, for each parameter combination.
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Figure 4.8 (d). Plots o f average preference cost against percentage feasibility for the Holistica heuristic 

with and without the knapsack, for each parameter combination.
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Figure 4.8 (e). Plots o f  average preference cost against percentage feasibility for the Holisticq heuristic 

with and without the knapsack, for each parameter combination.
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Figure 4.8 (f). Plots o f  average preference cost against percentage feasibility for the LastChancea 

heuristic with and without the knapsack, for each parameter combination.
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Figure 4.8 (g). Plots o f average preference cost against percentage feasibility for the LastChanceq 

heuristic with and without the knapsack, for each parameter combination.

It is clear that the seven approaches incorporating the knapsack model fare much 

better in terms of feasibility. Furthermore, while all knapsack-enabled approaches 

produced at least one feasible solution for every dataset, without the knapsack only 5 

of the 453 approaches managed this, and these solutions were generally of relatively 

poor cost in terms of the nurses’ preferences. In terms of computational expense, the 

incorporation of the knapsack model adds a negligible amount to the construction 

time and, on average, actually decreases the total solution time by a small amount. 

Thus, it can be deduced that the knapsack is a beneficial addition to the construction 

phase.

For all but the LastChance constructions, there is evidence that smaller values of n 

outperform larger ones suggesting that the added diversity of larger n is less beneficial 

than a greedier approach. Of the knapsack heuristics, Figures 4.8 suggest that the 

LastChance variant is the most promising. In order to confirm this, each variant was 

run 10 times for 100 cycles on each of the 52 data sets using a single set of parameter 

values. Unlike the above experiment where results were averaged over all cycles we 

now consider each block of 100 cycles as a complete GRASP run and record only the 

best solution over these cycles. Since all seven heuristics with the knapsack produce a 

high proportion of feasible solutions, the choice of parameters with which to continue 

experimentation was based on the average preference cost over the 52 datasets.
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For the Cover heuristic with the knapsack, only three values for n were tested and it is 

clear from Figure 4.8 (a) that the lowest preference cost is given by n -  20. For all 

other heuristics the best parameter combination from 75 must be chosen. In order to 

select these parameters, plots of the average feasible preference cost against the ratio 

wjwp were created in order to give the impression of which wc and wp values would 

be suitable. Figure 4.9 shows an example of such a plot for Holistica with knapsack. 

Clearly any parameter combination with n = 3 and wc < wp would be acceptable. Note 

that since we are considering preference cost, it is to be expected that higher values of 

wp would be successful and since we know that a reasonable percentage of feasible 

solutions are found in all cases, we can deduce that feasibility can be obtained even 

with a relatively low value of wc. Although any of these values would be likely to 

perform adequately, we select the value pertaining to the lowest average preference 

cost, which relates back to the values wc = 1 and wp = 3. Thus, for this heuristic, we 

have the parameter combination («, wc, wp) = (3, 1, 3).
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Figure 4.9. Sample plot for H olistica with knapsack showing the average feasible preference cost 

against the ratio for the weights w jw p for each value o f n.

For all additive heuristics, these graphs of preference cost again the ratio wjwp have a 

similar shape, but the quotient graphs produce a slightly different result as shown in 

Figure 4.10.
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Figure 4.10. Sample plot for Holisticq with knapsack showing the average feasible preference cost 

against the ratio for the weights w jw p for each value o f  n.

As would be expected, choosing values of wc and wp with the same ratio give similar 

results using the additive heuristics, as these experiments are essentially repeated 

results; variation comes only from the difference in the random seed. However, for the 

multiplicative method, there is obviously a difference between choosing wc = 1, 

wp = 1 and wc = 2, wp = 2, for example, and Figure 4.10 demonstrates this difference. 

We can also see that a ratio in the range (1,2) is likely to be more successful for this 

method. Again, this graph shape is typical of all multiplicative heuristic approaches. 

Although choosing high wc and low wp is still shown to give poorer results, the main 

difference between the additive and multiplicative approaches is in preference costs 

where wc is significantly lower than wp. Where this was beneficial in an additive 

context, the results for the multiplicative versions slightly worsen as wc drops below 

wp. A potential reason for this is that, using a multiplicative approach, selecting a 

much higher wp value may lead to the influence of the cover part of the scores being 

negligible and so in order for good solutions to be found, a balance must be struck 

whereby the cover has a significant enough impact to be able to steer solutions 

towards feasibility. Although the local search may be able to ‘correct’ the feasibility 

of constructed solutions with a very high cover cost, the more moves required to attain
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feasibility, the more significant the effect on the preference cost is likely to be. Thus, 

multiplicative heuristics perform better with a different ratio of wc/wp than their 

additive counterparts. Again, we select the value with the best cost in this suitable 

range for further study. In Figure 4.10 this value gives wc = 4 and wp = 3 giving the 

compete combination («, wc, wp) = (3,4, 3). The parameters selected for each heuristic 

were used to produce a further 10 complete GRASP runs in order to more fairly 

compare each heuristic. These parameters, along with the results produced by each, 

are given in Table 4.11. Note that, apart from the Cover heuristic, all approaches 

produce the best results with a value of n = 3. The column labelled ‘Cost’ provides the 

mean best solution cost from each run, standardised by subtracting the optimal costs 

from each dataset. The column labelled ‘% Feasible’ gives the percentage of all 

solutions produced which were feasible and ‘% Feasiblec’ gives the percentage of 

solutions which were feasible at the end of the construction phase. Column ‘Time’ 

gives the average time in seconds taken to complete one run of 100 cycles on one 

dataset, while ‘Timec’ gives the average time taken to produce just the constructions 

of one run.

"
Heuristic n Cost % Feasiblec % Feasible Timec Time

Cover + kn. 20 — — 22.92 0.07 76.40 0.08 0.73
Combineda + kn. 3 2 5 7.73 0.08 81.68 0.07 0.42
Combinedq + kn. 3 5 5 3.85 0.76 83.04 0.08 0.38
Holistica + kn. 3 1 3 3.84 0.17 83.66 1.05 1.51
HolistiCq + kn. 3 4 3 3.77 2.39 85.19 0.72 1.01
Lastchancea + kn. 3 2 5 1.18 11.23 89.06 0.79 1.06
Lastchancea + kn. 3 4 3 2.03 19.03 89.64 0.67 0.91

Table 4.11. Parameters chosen for each heuristic with the knapsack.

It can be seen that all methods produce a high percentage of feasible solutions, 

although all methods struggle to produce feasible constructions. Of all the methods 

tried, the two Lastchance heuristics produce both the highest percentages of feasible 

solutions as well as the lowest average standardised preference costs. The additive 

version produces the solutions of the best quality, on average, and is chosen as the 

most successful algorithm to be the subject of further experimentation. Although the 

multiplicative version gives a slight improvement in terms of the percentage of 

feasible solutions produced, this difference is negligible considering the large number 

of feasible solutions that both approaches are able to produce. Although the Holistic
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and LastChance heuristics take longer to produce 100 cycles, as is to be expected 

since they consider all nurses at each stage, all methods are fairly fast, taking around 

just 1 second to produce a complete run, on average. Another interesting point to note 

with regards to the length o f time taken for each approach is that the Cover heuristic, 

despite creating each construction fairly quickly, takes much longer to descend to a 

local optimum and this again indicates that providing the local search with a good 

starting solution can reduce the time taken to find a local optimum as well as 

providing higher quality solutions. In the next section we take a closer look at the 

results produced using Lastchancea and apply the third, extended, local search 

neighbourhood with the aim o f improving solution quality.

4.3.3 Applying the extended neighbourhood

Although Table 4.11 appears to show that Lastchancea gives very good results, there 

is a great deal o f variation between the datasets and, in some cases, between different 

runs on a single dataset.

Figure 4.12 shows a breakdown o f results for this approach by dataset, providing the 

number o f optimal solutions from 10 and the number within 3 o f the optimal for each 

o f the 52 datasets. The value 3 has been chosen as a comparative measure because this 

indicates that only the most minor types of penalty have been incurred and thus, 

although the schedule may not be optimal, it would certainly be acceptable for 

hospital use. Furthermore, this allows a direct comparison with the results obtained by 

Aickelin (1999) and other approaches in the literature for which results are reported in 

the same way.
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Figure 4.12. Detailed results for all 52 datasets showing the number o f optimal and near-optimal 

solutions obtained using Lastchancea with the knapsack model.
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From Figure 4.12 it is clear that while some datasets are solved to optimality in every 

run, there are several for which the optimal solution is never found and some for 

which the algorithm struggles to return even near-optimal solutions. At this point, the 

third, extended, local search neighbourhood Ne(s) is implemented; due to the fact that 

this neighbourhood contains moves not in either of the other two neighbourhoods, it 

may introduce enough flexibility to allow solutions to escape from situations where 

any moves resulting in a lower preference cost would result in the solution becoming 

infeasible, since this neighbourhood allows, essentially, a chain o f two moves in order 

to redistribute any undercovered shifts resulting from the initial shift change. As 

mentioned earlier, this neighbourhood is only applied once solutions are feasible. The 

resulting breakdown o f solutions by dataset is shown in Figure 4.13 (b). The original 

results in Figure 4.10 are given in Figure 4.13 (a) for the purposes o f comparison.

Id
(a) Detailed results for all 52 datasets without NE(s).

(□I

(b) Detailed results for all 52 datasets with NE(s).

□  No. optimal □  No. within 3

Figure 4.13. Detailed results for all 52 datasets showing the number o f optimal and near-optimal 

solutions obtained with and without the extended neighbourhood, N E(s).

It is clear that the inclusion o f the Extended neighbourhood has a large impact on the 

quality o f the solutions; there is now only one dataset for which not all o f the 10 runs 

produce near-optimal solutions and far more of the optimal solutions are found for 

each o f the datasets, in general. In terms of computation time, the use o f the Extended 

neighbourhood increases the time taken to perform the local search by about three
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times, but this is still very quick in terms of actual time, taking around 2 seconds, on 

average, to complete one complete run. However, there are still a small number of 

datasets for which the algorithm struggles to produce optimal solutions and so at this 

point the algorithm, although generally producing good solutions and fairly robust 

across the datasets, is not yet performing as efficiently as the Tabu Search approach in 

Dowsland and Thompson (2000), which found optimal solutions to all datasets. In the 

next section we discuss the success of the algorithms produced so far with regards to 

the original aims of the chapter, as well as offering suggestions for improving solution 

quality still further.

4.3.4 Initial conclusions

Thus far, we have introduced a basic GRASP method for solving the nurse scheduling 

problem. The original aim of this chapter was to employ a simple version of this 

construct-and-improve metaheuristic in order to investigate how the conflicting 

factors of feasibility and optimality may be balanced in order to successfully produce 

good solutions. By investigating a range of heuristic constructions with some simple 

neighbourhoods, the problem of finding a feasible solution was found to be difficult, 

as has been noted in the literature. However, this difficulty was eased somewhat by 

hybridising the construction with the knapsack model, which solved a relaxed version 

of the problem in order to ensure that the total number of nursing shifts assigned to 

days and to nights did not become unbalanced. This day/night balance has been 

shown in the past to be a particular difficulty in solving this problem and by the 

inclusion of the knapsack model, the average percentage of feasible solutions found 

was increased to over 75 per cent for all the heuristic approaches and to nearly 90 per 

cent for the most successful.

Although these hybridised versions of the heuristics were capable of producing a large 

number of feasible solutions, they showed a great deal of variation in the quality of 

these solutions, with the most noteworthy finding being that the heuristic which did 

not include any information about the preference costs of the shift patterns in the 

construction phase produced solutions of a significantly worse quality than any other. 

Clearly, the local search part of the algorithm requires a reasonably good starting 

solution in order to be able to find high-quality local optima. Furthermore, once the
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knapsack enables all heuristics to find a large number of feasible solutions, the 

usefulness of a construction focusing only on feasibility is undermined. Thus we can 

conclude that the balance between the influence that feasibility and optimality each 

have on determining the assignments during the construction is vital. Note that we 

cannot create the assignments based solely on the preference costs since the knapsack 

does not influence the actual feasibility of the schedule, but only ensures that the 

day/night balance is maintained.

Another interesting point which was investigated was whether or not using a pre

ordering of the nurses had an impact on solution quality. Although the difference is 

not as marked as for the decision to include the preference cost in the scores, 

comparing the Combined and Holistic values in Table 4.11 indicates that enforcing a 

fixed ordering of the nurses produces results of an inferior quality. The final type of 

construction investigated, using look-ahead to schedule potentially difficult nurses 

first and ensure they are given a good shift-pattem now if this may prove difficult at a 

later stage of construction, was shown to be the most successful of the four types 

evaluated. By further enhancing the local search, adding a more sophisticated 

neighbourhood to allow it to escape certain types of local optima, we have found good 

results.

Essentially, it has been shown that a straightforward construct and improve method 

such as GRASP is capable of balancing the conflicting objectives of this problem, 

once it has been hybridised with a simple exact method to ensure that the solution 

avoids certain regions of the solution space, which have proved difficult to escape 

from without employing very complicated local search neighbourhoods. The results in 

Figure 4.13 (b) show the algorithm presented here to be capable of producing a large 

number of optimal solutions for most datasets and near-optimal solutions in nearly all 

other cases.

However, as mentioned earlier, while these results improve on some other 

approaches, such as the GA results in Aickelin (1999), the algorithm is not as robust 

as the Dowsland and Thompson (2000) TS approach. Although the aim of this thesis 

is to explore balancing different constraints, rather than to find high-quality solutions 

for the problems investigated, it is interesting to determine whether these types of
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techniques may be developed further into a robust algorithm rivalling the best so far. 

Nonetheless, for the GRASP approaches in this chapter and the ACO approaches 

introduced in the next chapter, finding high-quality solutions, although desirable, is a 

secondary consideration. After the initial investigations into the question of balance 

have taken place for both approaches, however, the GRASP approach is shown to be 

the more promising of the two with regards to creating a robust algorithm for this 

problem and so, in the next section, the most successful GRASP method is developed 

with the new aim of improving its performance further still.

4.3.5 Further experimentation

This section details the experiments and results carried out to further improve the 

results obtained using Lastchancea with the knapsack model by enhancing the local 

search and incorporating feedback. At the end of this section we will compare our 

final results with those produced using the TS method of Dowsland and Thompson 

(2000), the best performing algorithm applied to this problem so far, and show that 

our results compare favourably. We begin with a simple enhancement to the local 

search.

During the local search thus far, we have accepted only improving moves; we have 

found that by constructing a suitable starting solution we are able both to reduce the 

feasibility cost to zero and to produce a low preference cost without the uphill moves 

necessary to find optimal solutions in using the TS algorithm (Dowsland 1998, 

Dowsland and Thompson 2000). However, often a solution is surrounded by many 

neighbouring schedules of equal cost and we suggest that allowing some acceptance 

of these ‘plateau’ moves may allow a fuller exploration of the search space, leading to 

an overall improvement in final solution quality. Certainly, a non-optimal solution 

where all neighbouring moves are of equal or higher cost, may be afforded some 

assistance in escaping from such a region by allowing plateau moves; an equal-cost 

neighbouring schedule may have a lower-cost neighbour not reachable from the 

original solution by only a single local search move. Thus we investigate the inclusion 

of these plateau moves, noting that we must include new terminating criteria for the 

local search to prevent moves being accepted indefinitely.
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We are only interested in applying plateau moves once we have a feasible solution in 

order to fully explore the region around a good solution; accepting plateau moves 

before feasibility has been reached is likely to greatly increase computation times 

without adding much to solution quality. Once a feasible solution is found there are 

not likely to be plateau moves within the Change neighbourhood Nc(s), since 

changing one nurse’s pattern will be likely to increase the cover cost, and, since the 

Swap neighbourhood Ns(s) is exchanged for the Extended neighbourhood Ne(s) once 

feasibility is reached, it is only Ne(s) for which plateau moves become useful. It is not 

necessarily sensible to include all plateau moves, since this may result in long periods 

spent in the same region of the search space and increase computation times more 

than is required. We aim to provide a balance such that the plateau moves become a 

tool which may be used to escape regions where solutions are surrounded by equal- 

cost solutions if necessary, but minimising wasted time spent exploring equal-cost 

areas of the search space when this is not the case. Thus we allow equal-cost moves to 

be accepted with a given probability. The probabilities tested were 0.25, 0.5, 0.75 and 

1, and these were compared with the previous results obtained from effectively 

applying a probability of zero. Obviously by allowing the inclusion of plateau moves, 

the computation time required for the local search may be greatly increased and, 

depending on the stopping criteria may be allowed to continue indefinitely. The 

search is stopped after 10,000 moves have been accepted or all neighbourhoods have 

been exhausted, whichever comes first.

In order to compare the results obtained from using different probabilities of 

accepting plateau moves, for each dataset a value was calculated, indicating by how 

much the best solution of each run was sub-optimal, on average. Each approach could 

then be compared in four ways: summing these costs across all datasets, taking their 

maximum and mean values and counting the number of datasets for which no sub- 

optimal solutions were found from 10 runs. The results obtained from these 

experiments are shown in Table 4.14.
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% Sum Max Mean Count/52
0 13.5 3.3 0.260 36

25 4.2 1.6 0.081 44
50 3.0 0.8 0.058 45
75 3.6 1.2 0.069 46
100 3.3 0.9 0.063 46

Table 4.14. The results obtained accepting different percentages o f  equal-cost moves.

Clearly, the introduction o f these plateau moves significantly increases the number of 

datasets for which optimal solutions are found from all 10 runs, although it is difficult 

to choose between the different percentages as to which is the best performing. For 

comparison purposes, the results for each dataset using a 75% chance o f accepting 

each plateau move are shown with those obtained using no plateau-move acceptances 

in Figure 4.15. The reason for choosing to depict the results with 75% chance of 

accepting plateau moves will become apparent in Section 4.3.6.
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(a) Detailed results for all 52 datasets using N E(s) without plateau moves.
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(b) Detailed results for all 52 datasets accepting 75% of plateau moves.

□  No. optimal □  No. within 3

Figure 4.15. Detailed results for all 52 datasets with and without acceptances o f plateau moves.

Comparing the results with and without plateau moves in Figure 4.15, the 

improvement in solution quality obtained with this addition to the algorithm is 

evident. There are now only six datasets for which optimality is not achieved in every 

run and all datasets produce the optimal solution at least 3 times out o f 10. The 

computation time is increased, as expected, with the local search now taking
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approximately nine times as long with the plateau moves as without. The total time to 

complete one run is now about 10 seconds, on average. Although this is longer than 

for the previous experiments, it is still very reasonable.

Thus far, we have used a basic GRASP approach in order to solve this nurse 

scheduling problem. We have carefully selected the heuristic and parameters which 

gave the best results and hybridised the GRASP with the knapsack model in order to 

ensure a good number of feasible solutions. Further, we have included a more flexible 

neighbourhood to allow greater exploration of the feasible region and have accepted a 

percentage of equal-cost plateau moves during the search in order to more thoroughly 

explore and prevent optimal solutions near the current solution from being 

overlooked. The results are suitably impressive and for nearly all datasets the optimal 

solution is found in all runs. However, six of the datasets are still difficult to optimise 

and so, in order to try to improve their success rate, we introduce two feedback 

elements into the GRASP so that later cycles can benefit from information attained in 

earlier cycles. We now introduce these two types of feedback.

4.3.5.1 Preference cost threshold

So far, the local search has accepted all moves which improve feasibility, regardless 

of the impact this has on the preference cost. Thus, by obtaining feasibility, the 

influence of the preference cost in the construction phase can be negated. However, it 

is not sensible to only accept moves which do not negatively impact the preference 

cost as this may prevent solutions from becoming feasible. Instead, we now propose 

to set a threshold on the amount by which the preference cost may be increased by 

any neighbourhood move. Clearly this threshold must be dataset dependent, since 

each dataset has a very different set of preference costs for each of the nurses; a 

suitable threshold for one dataset would be too low and therefore restrictive for a 

dataset incurring larger costs, but too high, and therefore of no consequence, for a 

dataset where all preference costs and the optimal value are much lower. In the initial 

cycles, then, the threshold will not be utilised and it will only be employed once a 

feasible solution has been found, after which it will be employed with the value 

Best(c) + ThreshP, where Best(c) is the preference cost of the best solution found in 

cycles 1 to c -  1, c is the current cycle and ThreshP is a dynamic value determined by
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previous cycles. This means that we can iterate towards a value of ThreshP which is 

large enough not to hamper the realization of feasible solutions, but small enough so 

that solution quality is maintained as far as possible. ThreshP is initialised with a 

value ThreshP = ThreshPo and is increased each time a cycle c fails to find a feasible 

solution, using

ThreshP = ThreshP.(1 + X .Cover cost(c)), (4.21)

where Cover_cost(c) is the cover cost of cycle c, as given by (4.12), and X is a 

constant. In the following experiments we set ThreshPo = 10.0 and X = 0.4. Thus the 

threshold on the preference cost increase is initialised ThreshPo higher than the cost of 

the best feasible solution found so far and whenever a cycle returns an infeasible 

solution ThreshP is increased by an amount based both on the current value of 

ThreshP and on the amount by which the solution failed to be feasible.

The improvement phase of GRASP then accepts moves which improve the feasibility 

only if the preference cost is less than Best(c) + ThreshP. Obviously moves which 

improve the preference cost but not the cover are accepted in the usual way.

4.3.5.2 Knapsack-based diversification

The second type of feedback employed is designed to diversify the solutions obtained, 

ensuring that the cycles in each run visit different areas of the search space. Each 

solution can be categorised by the numbers of each type of nurse working days or 

nights and the use of the knapsack ensures that the solutions which are produced are 

balanced in this respect. However, for each dataset, there is usually more than one 

such balanced partition of the nurses into days and nights and it is often the case that 

some of these partitions will form the basis for the final solutions more often than 

others. In Section 4.2.2, we denoted the numbers of nurses of type t and grade g 

assigned to nights by y tg and a complete solution at grade g  comprising the set of all 

values y tg by Yg. Let Y denote the set of values Yg at all grades g  and thus represent a 

complete knapsack solution. In order to ensure diversity, we therefore wish to prevent 

any set Y from occurring too frequently. As for the preference cost threshold, the
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initial solutions proceed unaffected, but once the number of times a set Y has been 

exploited reaches a certain threshold, ThreshK, further solutions pertaining to this 

day/night partition of the nurses are rejected for this cycle. This threshold is again 

calculated dynamically, using

ThreshK = min(Freq(c)) + V(c)/3, (4.22)

where min(Freq(c)) is the minimum frequency with which any set Y occurs in cycles 

1 to c, V(c) is the number of different sets Y which have been employed in cycles 1 to 

c, and c is the current cycle, as before.

Note that the construction process is very fast and so as long as the number of rejected 

constructions is not extreme, as can happen when a set Y has a very small probability 

of being generated, it is practical to apply this type of feedback. In order to ensure this 

is the case and that computational expense is not wasted on low-probability Y, if no 

construction satisfying the acceptance conditions is sampled after 20 trials, then one 

of the solutions relating to the set Y with the minimum frequency of these 20 is 

accepted.

4.3.6 Further results

Both the preference cost threshold and the knapsack diversification feedback 

procedures were added to the best performing approach so far and 10 runs performed 

on each dataset. Since it was not clear from Table 4.14 which probability for the 

plateau move acceptances was the best-performing, we ran these experiments using 

probabilities of 0.25, 0.5, 0.75 and 1. The results from these experiments, providing 

the same details as for Table 4.14, are shown in Table 4.16.

% Sum Max Mean Count/52
25 1.8 1.6 0.035 50
50 1.1 0.8 0.021 48
75 0.5 0.4 0.010 50
100 2.2 2.0 0.042 50

Table 4.16. The results obtained accepting different percentages o f equal-cost moves alongside the 

knapsack-based diversification and the preference cost threshold.
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From Table 4.16 we can see that it is sensible to select 75 per cent for the plateau 

move acceptances and we show the breakdown of these results by dataset in Figure 

4.17(d).

Figure 4.17 shows the gradual improvement of the algorithm’s performance with the 

addition of each enhancement for comparison purposes. All graphs in Figure 4.17 

show results using Lastchancea with the knapsack and with parameters n = 3, wc= 2

and w = 5. Then, Figure 4.17 (a) shows results for each dataset without using the

Extended neighbourhood, N e ( s ) ,  (b) shows results with this neighbourhood included,

(c) shows results with the inclusion of 75 per cent of the plateau moves and, finally,

(d) shows the final improvements made using the two feedback mechanisms.

(a) Detailed results for all 52 datasets using basic Lastchancea with knapsack approach.

5

O
(b) Detailed results for all 52 datasets with Extended neighbourhood N E(s).

10

5

O

(c) Detailed results for all 52 datasets with plateau moves.

10

s

o

(d) Detailed results for all 52 datasets with plateau moves and feedback.

□  No. optimal □  No. within 3

Figure 4 .17. Detailed results for all 52 datasets using each o f the different enhancements.
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Thus Figure 4.17 clearly shows the improvement which each enhancement has 

afforded the basic GRASP approach and Figure 4.17 (d) shows that the final inclusion 

of the two feedback elements gives rise to an extremely robust approach, whose 

results are optimal in nearly all cases, rivalling those of the TS method in Dowsland 

and Thompson (2000).

In order to test how the earlier versions of the algorithm fare with these added 

enhancements we re-run all other heuristics with the knapsack, with the extended 

neighbourhood, plateau moves and feedback. Optimal solutions were produced in all 

10 runs for all heuristics on 43 of the datasets, but results for the other nine datasets 

are shown in Table 4.18 along with the average cost above the optimal found in the 10 

runs for each method. It can be seen that although each heuristic is clearly much 

improved and each method is now generally capable of producing good solutions, the 

LastChance additive heuristic still produces the best results.

Data Cover Combined a Combined q Holistic a Holistic q Lastchance a Lastchance q
2 0.1 0.1 0.1 0.0 0.0 0.1 0.7
20 0.0 5.0 6.5 1.7 6.0 0.0 0.0
31 1.6 1.2 0.0 2.8 4.0 0.8 0.4
33 0.0 1.0 1.0 0.0 0.0 0.0 0.0
35 0.0 0.0 0.4 0.0 0.0 0.0 0.0
42 0.0 0.0 0.0 0.7 0.5 0.0 0.6
44 0.0 7.6 8.8 4.0 10.0 0.0 0.0
46 0.0 1.0 0.0 0.0 0.0 0.0 0.0
52 0.0 0.0 10.0 0.0 0.0 0.0 0.0

Average 0.19 1.77 2.98 1.02 2.28 0.10 0.19

Table 4.18. Results for all heuristics with the knapsack using the Extended neighbourhood, plateau

moves and feedback.

A further set of runs were performed with no construction heuristic, where the local 

search and feedback enhancements acted on an initial solution for which each nurse’s 

pattern was assigned on a purely random basis. It is interesting to note that when no 

construction heuristic is used, even though the quality of the feasible solutions is 

reasonable, the algorithm struggles to produce feasible solutions for many datasets; 

for five datasets infeasible solutions were returned as the best results found for several 

runs.

We compare the results from the best GRASP approach with those of other 

approaches in the literature which have been used to solve these datasets. Table 4.19 

shows the best results obtained from GRASP as well as those found by Tabu Search
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(Dowsland and Thompson 2000), Genetic Algorithm (GA) (Aickelin 1999) and 

Estimated Distribution Algorithm (Aickelin and Li 2005) approaches.

Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2i 23 24 25 26
IP 8 49 50 17 11 2 11 14 3 2 2 2 2 3 3 37 9 18 1 7 0 25 0 1 0 48
GRASP 8 49 50 17 11 2 11 14 3 2 2 2 2 3 3 37 9 18 1 7 0 25 0 1 0 48
Tabu 8 49 50 17 11 2 11 14 3 2 2 2 2 3 3 37 9 18 1 7 0 25 0 1 0 48
GA 8 50 50 17 11 2 11 14 3 3 2 2 2 3 3 38 9 18 1 7 0 25 0 1 0 48
EDA 8 56 50 17 11 2 14 15 14 2 2 3 3 4 4 38 9 19 10 7 1 26 1 1 0 52

Dataset 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
IP 2 63 15 35 62 40 10 38 35 32 5 13 5 7 54 38 22 19 3 3 3 4 27 107 74 58
GRASP 2 63 15 35 62 40 10 38 35 32 5 13 5 7 54 38 22 19 3 3 3 4 27 107 74 58
Tabu 2 63 15 35 62 40 10 38 35 32 5 13 5 7 54 38 22 19 3 3 3 4 27 107 74 58
GA 3 63 15 35 65 41 10 39 37 32 5 13 5 7 54 41 22 20 3 4 3 4 28 108 74 58
EDA 28 65 109 38 159 43 11 41 46 45 7 25 8 8 55 41 23 24 6 7 3 5 30 109 171 67

Table 4.19. Comparison o f  best results for all 52 datasets using different approaches.

We can see from Table 4.19 that the GRASP outperforms the Estimated Distribution 

Algorithm and GA in terms of cost. Further comparison with the GA results in 

Aickelin (1999) show that the GRASP is also superior in terms of feasibility, since the 

GA did not consistently produce feasible solutions. Although the Tabu Search 

achieves optimal costs for all datasets, the GRASP algorithm has managed this 

without the use of complicated local search neighbourhoods and extensive use of 

problem specific information. Even without the use of feedback (Figure 4.17 (c)), the 

GRASP approach was able to find optimal solutions for all datasets for at least three 

of the ten runs.

4.4 Further testing of the GRASP algorithm.

Since the GRASP method presented here has been so successful in solving these 52 

datasets, we present some discussion and analysis of the particular datasets as well as 

considering how the algorithm may be further tested. Appendix A gives the details of 

the 52 datasets supplied and on which all testing for this algorithm was performed. 

Originally, the intention was to select a small number of these datasets on which to 

experiment so that the remaining datasets could be used to test the robustness of the 

resulting algorithm. However, each dataset provides unique characteristics and so it 

was not possible to choose a small number of datasets which were representative of 

the entire base of problems. Although, as has been shown by the various results in the 

previous sections, some of the problem instances are more ‘difficult’ than others, 

there is usually a reason specific to that dataset why the algorithm struggled to find an 

optimal solution, such as a particular, anomalous nurse for whom a high-cost pattern
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was required in order for solutions to be optimal or the optimal day/night partition of 

the nurses being particularly unlikely to emerge. Thus we were provided with 52 

unique and interesting problem datasets and we tested our algorithm on all of them at 

each stage to see how successfully it was able to solve each of these cases.

In order to further test the algorithm, then, we artificially manufactured a further 52 

datasets from the original data by redistributing the nurses into new groups and 

creating an artificial cover requirement for each, such that there was no slack for each 

problem. Nurse numbers in each new dataset were kept reasonable within each grade 

and such that the cumulative total night requirement at grades 1, 2 and 3 would stay at 

7, 14 and 21 respectively as in all previous datasets and the day cover requirement at 

grades 1 and 2 would be 14 and 28 respectively, also. Thus only the total day 

requirement was altered between datasets, making each newly-formed dataset as 

realistic as possible. However, despite the care with which these new datasets were 

formed, the results obtained from 10 runs on each did not show as much variation as 

expected: each of the 52 manufactured datasets was easily solved to optimality in 

every run using the most enhanced GRASP approach. Since these datasets were 

carefully created using real nurses and tight covering constraints we can conclude that 

either the algorithm created is very robust, and clearly powerful enough to 

successfully solve new instances or that there is something else in the underlying 

structure of the original 52 datasets which makes them especially difficult to solve, in 

which case we are justified in testing our algorithms on all 52 datasets at each stage, 

rather than just a representative sample. In either case, we can conclude that the final 

GRASP approach is certainly a very successful method, producing optimal solutions 

over 99.5% of the time and it rivals the most successful method so far, that of 

Dowsland and Thompson’s (2000) TS approach, while remaining relatively simple 

and without the use of complicated neighbourhoods.

4.5 Conclusions

As stated in the introduction in Chapter 1, the focus of this thesis is concerned with 

balancing different objectives using greedy, randomised constructive techniques 

within a metaheuristic framework. The nurse scheduling problem presents an 

excellent opportunity to investigate the balance between feasibility and optimality as
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these are in direct conflict and it is often the case that the quality of solutions in terms 

of the preference cost must necessarily be compromised if the schedule is to be 

feasible. However, we have shown that it is essential not to focus entirely on either 

aspect and that optimal solutions arise when a sensible balance between these two 

costs is achieved.

However, the main feature of the nurse scheduling problem which enables this 

balance to be struck is the underlying feasibility structure consisting of the day/night 

balance among the nurses. Since we have introduced only simple neighbourhoods in 

the local search phase, the main obstacle to finding feasible solutions was ensuring 

that each construction was balanced in terms of this day/night distribution and since 

we were able to introduce an exact method, by hybridising with the knapsack model, 

to ensure all constructed solutions were balanced, this meant that enough 

consideration could be given to the preference cost to ensure a higher chance of 

optimality. Thus the introduction of the knapsack model was an essential part of the 

success of this algorithm. However, in order to fully exploit the structure of the 

problem, it was necessary to introduce further measures such as the Extended 

neighbourhood and plateau moves to prevent the local search from stagnating in near- 

optimal regions of the search space from which there were no improving moves.

The final enhancements, introducing feedback, provided further examples of 

developing improvements to the balance between feasibility and optimality. The 

preference cost threshold, for example ensured that as much advantage was given to 

the preference cost as possible, without jeopardising the likelihood of attaining 

feasibility. Every time the threshold proved to be biased too much in favour of the 

preference cost, the effect was reduced until the balance was restored. The effect of 

the knapsack in maintaining a favourable day/night allocation was the enabling factor 

in allowing this bias towards preference cost in the feedback mechanism. For datasets 

where the particular day/night partition required for optimality was less likely to be 

produced by the construction phase, the knapsack-based diversification again allowed 

the algorithm to explore different constructions sufficiently such that optimal 

solutions could be found using the same balance between the costs as in all other 

situations.
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In terms of the aims of this thesis, then, we have succeeded in showing that the 

construction part of the heuristic provides an essential role and, although some 

element of local search is required to ensure high-quality solutions, it is the 

construction which initialises the local search with a suitable initial solution and 

enables it to improve to a high-quality local optimum. Furthermore, we have shown 

that a good balance may be achieved within the construction, such that the constructed 

solutions are reasonable in terms of both the cover and preference costs. The use of 

the knapsack model has also been shown to be an essential part of the algorithm, 

allowing the constructed solutions to be made feasible relatively easily by the 

application of local search; without the knapsack, the number of feasible solutions 

was very low, on average, and there were several datasets for which no feasible 

solutions were found at all.

Thus we have found a GRASP approach, hybridised with the two elements of an exact 

knapsack model and feedback, which was able to successfully solve the 52 instances 

of the nurse scheduling problem presented here to optimality and able to rival the 

best-known approach so far. However, neither of these approaches has been able to 

produce optimal solutions for all datasets in every run, and there is also room for 

improvement in terms of computational efficiency. One of the most common methods 

of enhancing GRASP is to use a path-relinking strategy and this is certainly a 

promising avenue for further research.

Given that the methods available for this problem are able to find optimal solutions 

for all datasets, another interesting subject for further research would be to experiment 

with slightly larger or more complex datasets. It would be interesting to see whether a 

GRASP approach would be able to find good solutions to a similar problem where the 

datasets involve substantially more nurses, for example, or a longer planning period. 

In Chapter 3, variations on the nurse scheduling problem were discussed and it would 

be interesting to develop the methods presented here to see whether they would be 

able to deal with the inclusion of additional constraints.
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Chapter 5
Nurse scheduling with ACO

5.1 Introduction

The purpose of this chapter is to investigate similar questions using an Ant Colony 

Optimisation (ACO) approach as those explored using GRASP in the previous 

chapter, such as the required balance between the conflicting aspects of feasibility and 

optimality in the construction heuristic and the role of the knapsack in enhancing 

solution quality. However, in order to be able to carry out such an investigation, it is 

first necessary to find an ACO framework suitable for application to this problem. 

This means establishing suitable trail definitions and parameters as part of the 

research.

Given the similarity of the constructive ideas behind ACO and GRASP, the positive 

elements of the GRASP construction may be easily included in an ACO algorithm and 

the use of a population-based approach and the inclusion of memory within the 

pheromone trails is a natural next step to further improve solution quality.
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An essential enhancement to the GRASP algorithm was the inclusion of the knapsack 

model, which provided a great deal of improvement to the quality of the 

constructions. This knapsack model can easily be included in an ACO approach due 

to the similarity of the solutions’ constructions and we will show that its inclusion 

provides vital assistance with regard to finding feasible solutions. In order to further 

enhance the solutions using GRASP, it was necessary to use an element of feedback. 

The ACO’s pheromone trails provide a built-in capability to learn from previous 

solutions and the population-based approach provides a neat framework for 

incorporating diversity.

In the literature review in Chapter 3 it was mentioned that ACO is most directly 

applicable to routing-type problems and that for other, non-permutation-type, 

problems finding a suitable trail definition is a particular challenge. For discrete 

routing problems, an ‘adjacency’ trail is easily defined using the original ant colony 

analogy, and the quality of a final solution can easily be judged using a single distance 

measure. For the nurse scheduling problem there is no obvious way to maximise the 

effectiveness of a feedback mechanism and two costs, for cover and preference, must 

both be taken into account. This will be covered later in the chapter.

Although, as has been discussed in the literature review in Chapter 3, there are many 

types of ACO approaches, we shall be concerned only with a simple Ant System (AS) 

approach. The aim of this research is to see whether or not an ACO approach is able 

to provide the necessary balance between the different constraints in order for good 

solutions to be found and to investigate which construction heuristics are most suited 

to provide this balance in conjunction with an ACO approach, as well as the necessity 

of incorporating the knapsack model within these constructions. If good solutions 

were produced, this would then provide the basis for a more detailed investigation 

using the available ACO approaches, so that the most suitable approach could be 

found. However, as shall be shown later in this chapter, the ACO approach presented 

here is not as successful as some other methods, even with an additional element of 

local search.

The rest of this chapter is organised as follows. In the next section, we describe how 

ACO may be applied to nurse scheduling, including a discussion of the different
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possible trail definitions. This will be followed by an explanation of the experiments 

undertaken and their results.

We begin with a description of ACO applied to nurse scheduling.

5.2 Solution approach

This section is concerned with the various solution approaches with which we shall be 

solving the nurse scheduling problem. Since we aim to use an ACO approach, in 

particular Ant System (AS), this section will discuss the visibility and trail costs 

which will be utilised and the possible values for the many parameters which are 

present in an AS algorithm.

We begin with an overview of AS applied to nurse scheduling.

5.2.1 AS applied to nurse scheduling

Chapter 3 has already given an explanation of the AS algorithm; the aim here is to 

apply such an approach to nurse scheduling.

The basic algorithm may be described as follows. The population is initialised with a 

given number of ants, nants. Each ant proceeds to build a schedule in an iterative 

construction similar to that of GRASP. One difference between the GRASP 

construction and that of an ant is that at each stage of the construction, the ants may 

select from all available components, rather than just the best n. Another, more 

significant, difference between the construction by a single ant using an AS approach 

and that of a GRASP lies with the way the scores are calculated; each component has 

a score based partly on the visibility, which may involve utilising a heuristic such as 

those suggested in Chapter 4, and partly on the information contained within the trail 

matrix, r  . Thus a final score pertaining to the assignment of nurse i to shift pattern j  

would be calculated using
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where J  is the set of all feasible shift patterns for nurse i, t ( i j )  is the score relating to 

the trail information, v(/,y) is the visibility score and wt and wv are the weights 

corresponding to trail and visibility, respectively. Note that the notation used here is 

not standard as, in much of the literature, the trail and visibility weights are denoted 

by a  and p , respectively, and the trail and visibility scores are given by r(i,j) and 

Tj(i,j), respectively. However, since throughout this thesis all weights are presented 

in the format suggested here, this notation is consistent with the rest of this thesis and 

also provides an indication of which aspect the weight relates to, when taken out of 

context of this formula. In terms of the trail and visibility scores, the trail score 

presented here indicates a score to be calculated in some way from the trail matrix 

elements, rather than indicating one such element of the trail matrix. For consistency, 

then, the notation for the visibility score is altered in line with this. A glossary of the 

notation for this chapter can be found in Appendix D.

As mentioned before, the visibility scores may be calculated using a heuristic and the 

visibility scores suggested here are taken from the GRASP approach in Chapter 4. 

The trail scores will be calculated from the information in the trail matrix, t  , at that 

time. In routing problems, such as the TSP, the elements of the trail matrix may be 

used directly as the trail score and for one of our suggested trail definitions, this will 

also be the case. However, for two of the three trail definitions which will be 

presented later in this section, the trail matrix cannot be used directly and a trail score 

must be calculated, from relevant values within it, first. Since the knapsack model 

proved so invaluable to the success of the GRASP constructions, it is likely to be a 

similarly necessary addition to the ACO. We include it in our experiments in the same 

way as for the GRASP approach in order to determine whether this extra bias towards 

feasibility is necessary when approaching the problem using ACO.

Once each ant in the population has built a complete solution, the elements in the trail 

matrix are updated. This takes the form of ‘evaporating’ pheromone from existing
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trails by multiplying each element in the trail matrix b y ( l - p )  < 1 and by adding an

amount to each element to reflect the quality of the schedules produced. For an ant a 

with solution cost C ,  the trail would be updated for all elements utilised within that 

schedule by an amount QIC1. So, where an ant has produced a low cost schedule, the 

trails representing this solution will become larger than for poorer solutions.

Let R be the set of nurses and R+ be the set of nurses already allocated. Let nants be 

the total number of ants and nants+ be the number of ants with a completed solution. 

Similarly, let gen be the number of cycles required and gen+ the number of completed 

cycles. Then we may describe the process by which AS is used to schedule the nurses 

using the procedure detailed in Figure 5.1.
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Procedure to solve the nurse scheduling problem using AS

• Set gen -  0.

• Set nants+z= 0.

• Set R+ = 0 .

• Calculate the visibility score v(ij) associated with assigning pattern j  to nurse /, 

for all feasible pairs (i j ) §.

• Calculate trail score t(ij) associated with assigning pattern j  to nurse i, for all 

feasible pairs ( i j) § using trail matrix r .

t(i ’)w‘ v(i ’YVv
• Calculate final score j ( i j )  for this pairing with f i i j )  = \  , v -

Vi,y

• Select (ij) using roulette wheel selection, i.e. each (ij) is selected with a relative 

probability proportional to j(ij).

• Update the schedule with this allocation and set R+ = R+ u  {/}.

• If R+ * R go to Step 4.

• Set nants+ = nants+ +1.

• If nants+ < nants, go to step 3.

• Update the trail matrix r  .

• Set gen+ = gen +1

• If gen < gen, go to Step 2.

§ Note that the set of feasible allocations (ij) may include all nurses not already 

allocated, or may relate to a single nurse i given by a predefined ordering.

• Here wt is a weight associated with the trail score and wv is a weight associated 

with the visibility score. These are constants which may be varied to assign more or 

less weight to each of the components.

Figure 5.1. Procedure to solve the nurse scheduling problem using an AS approach.
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It is clear that there are several parameters associated with the AS metaheuristic, as 

has been mentioned earlier. Before we discuss the problem of defining a trail matrix 

or calculating visibility costs, we shall briefly examine each of these parameters and 

discuss their significance. These are: population size, nants; number of cycles, gen; 

evaporation rate p ; the weights associated with the trail and visibility, wt and wv

respectively; and the value of Q, the constant which initially determines the weight of 

chosen elements over those which have not been included in a solution.

5.2.2 Parameters

Population size

In a permutation-based problem such as the travelling salesman problem (TSP), the 

number of ants in the population, and therefore the number of solutions constructed in 

every cycle, is generally taken to be equal to the number of nodes in the original 

problem. In the case of the TSP this would be equal to the number of cities. This 

number gives a good spread of starting solutions, especially if each permutation is 

initialised with a different starting node. For example, in the TSP, each ant is 

generally assigned a different starting city. This gives balance within the ant 

population.

For the nurse scheduling problem, however, nurse-shift pattern pairs are being 

created, rather than a single permutation. It would be possible to initialise each ant 

with a different nurse, but, having seen when using the GRASP approach that a pre

ordering of the nurses was not very successful, it must be concluded that some nurses 

should be scheduled earlier in order for solutions to be feasible and that enforcing 

each ant to initialise with a different nurse would necessarily result in the inclusion of 

some less-desirable solutions.

A second option would be to initialise each ant with the same nurse, but each taking a 

different shift pattern. However, this again forces one nurse to be scheduled first, and 

given that some shift patterns are likely to be very high cost, this method is likely to 

be even less successful.
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The only sensible option available is to give each ant the freedom to make the initial 

selection, but by choosing a sensible population size this should hopefully still give 

rise to a good range of solutions. It seems sensible to allow a population size similar 

to the number of choices each nurse has available so that each shift pattern could 

potentially be chosen once. Given that each nurse works a different number of shifts 

and has a different number of patterns available, there is no one value which will be 

equal to the number of shift patterns for every nurse, so we select a suitable 

compromise, which will be discussed in Section 5.3.1.

Clearly, with too large a population size, the computational expense required to 

produce solutions would be unreasonable. Further, the feedback will lack focus and it 

will be difficult for the trail matrix, and the solutions from each cycle, to converge.

Number o f cycles

The number of cycles permitted must be large enough for the trail matrix to be useful 

in helping to find good solutions, but obviously there is no point in continuing the 

search once the trail has converged and the population contains little or no diversity. 

Given that we had success with a feedback function using GRASP over 100 cycles, 

we use this same figure as a suitable value for the number of ant colony cycles. 

Obviously, this may be modified in the future if necessary, but later experiments will 

show that 100 cycles is suitable.

Evaporation rate

The evaporation rate determines how lasting the effects of each trail update are; a low 

value of p  means that each cycle feels the effects of the trail from previous cycles 

more strongly and the algorithm is likely to converge more quickly. A higher value 

fo rp , on the other hand, encourages diversity. This means that any undeserved 

success for a particular trail value is likely to be short-lived, but also that very good 

components with currently high trail values may easily be overlooked in the next 

cycle; getting a good balance is important. We therefore choose a value commonly 

used in the literature, discussed further in Section 5.3.1.
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Visibility and trail weights

It is necessary to determine the weight which will be attributed to each of the 

components used to create the score function. Using GRASP we determined weights 

to assign to the cover cost and preference cost parts of the score. When using ACO, 

these weights are still in use, but the whole of this score must be weighted against a 

secondary cost determined by the trail matrix and it is important to strike the correct 

balance between the two.

We wish to ensure that the information from previous schedules is utilised to 

maximum effect. By assigning too little weight to the trail information it becomes 

redundant and past mistakes may be repeated. By assigning too much weight to the 

trail, however, there is the risk that schedule quality may decrease as decisions are 

based, mainly, not on what will improve the current partial schedule, but on which 

elements have been successful in previous schedules, regardless of the impact on the 

current one. It is very important, therefore, to ensure the correct weightings are 

applied.

In previous literature using ACO, it is generally the case that the weight for visibility 

is higher than the trail weight, which is usually set to 1 (Dorigo et al. 1991, Dorigo et 

al. 1996, Dorigo et al. 1999, Dorigo and Stutzle 2004, Gutjahr and Rauner 2007). In 

general, therefore, the score function or heuristic calculating the visibility is adequate 

to give a good idea of which elements will be successful, but the trail matrix is used as 

an additional aid to choose between elements of similar cost or to steer solutions away 

from elements which have proven very poor and towards elements which have been 

particularly successful.

In the case of nurse scheduling, particularly, it is difficult to decide which elements 

may be better additions to a partial solution based only on previous success. For the 

TSP, for example, there is a linear relationship between each solution element and the 

final cost and so success of a particular ordered pair of cities in one solution is likely 

to be as successful in another. For the nurse scheduling problem, however, this is not 

the case. Since it is not easy to determine how the trail and visibility scores will 

interact, and so how these two may be combined successfully in order to create a good 

balance, we base the initial experiments on values commonly appearing in the
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literature. Details of the specific values experimented with will be given in Section 

5.3.1.

The value o f the parameter Q

In ACO, the parameter Q is a constant and it is this value, divided by the cost or cost 

function of the final solution, which is added to successful elements in the trail matrix. 

According to Dorigo et al. (1996), this value is relatively unimportant with regards to 

final solution quality and so an arbitrary value of 1 or 100 is often assigned (Dorigo et 

al. 1991, Dorigo et al. 1999, for example). The only power the value of Q possesses is 

to determine how much importance is assigned to elements of the trail which have 

been initially selected for inclusion within a schedule, over those which have not. For 

example, a very large value of Q will lead all updated elements to have a much 

improved chance of being selected by the next cycle of ants, whereas a small value of 

Q will mean that despite some elements being updated, all will still have a roughly 

equal chance of being chosen by the next cycle. Obviously, as the number of cycles 

completed increases, the effect of the value of Q becomes negligible as the trail matrix 

converges and so it is only in the first stages that Q can have any impact upon solution 

quality.

However, the cost of solutions varies greatly between datasets and it is not sensible to 

carefully select a specific value of Q in order to produce a given effect upon solution 

quality. We too select an arbitrary value of Q = 100 with the reasoning that if the trail 

converges immediately we can lower this value if necessary. As shall be shown by 

later experimentation, however, the original supposition holds true and the impact of 

the value of the parameter Q appears negligible.

5.2.3 Calculating the cost of a schedule

Previously, using the GRASP approach in Chapter 4, there was no need to combine 

the cover and preference costs into a single score. Each schedule had a preference cost 

and was either feasible or infeasible. When applying local search a hierarchy was 

established for these two costs so that an improvement in cover would be classed as 

better than an improvement in preference cost, regardless of the actual figures 

involved. Using ACO, however, a single cost must be manufactured, demonstrating
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the total success of a solution so that its components may be updated accordingly in 

the trail matrix.

There is the option to create a similar hierarchy, so that infeasible solutions are 

excluded from the feedback process, for example, or are judged negatively, however, 

given the difficulty of finding feasible solutions for this problem, the likelihood is that 

the majority of schedules will be infeasible, especially in the initial cycles. Thus by 

excluding or penalising components of infeasible schedules, it may be difficult for the 

trails to gain any useful information and so the use of a feedback mechanism becomes 

redundant.

Equally, scoring a schedule based on just the cover cost or just the preference cost is 

likely to result in extremely poor scores for whichever cost is ignored and alternating 

between the two costs would result in a lack of focus.

The most sensible way to proceed is therefore to attempt to create a single score for 

each schedule, incorporating both the cover and preference costs, weighting them so 

as to ensure that feasibility is given more consideration.

The formula used to calculate the score for a schedule created by ant a, T a , is then

Wca+pa+ \ ’

where W is the weight demonstrating the importance of feasibility over preference 

cost, and ca and p a are the cover and preference costs of the schedule created by ant 

a, respectively.

Varying W will determine how much more importance is given to satisfying the cover 

constraints over the nurses’ preferences. By setting the value of W suitably high, it is 

possible to ensure that the cover and preference cost hierarchy is maintained, with 

even small improvements to the cover cost valued more highly than any preference 

cost improvements. A lower value will obviously treat the two costs more equally.
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Adding 1 to the denominator ensures that, for datasets where a zero-cost solution is 

possible, a division by zero can never occur. The initial value chosen for W will be 

discussed in Section 5.3.1.

Now that we have set up the basic AS algorithm as applied to nurse scheduling and 

have a means of calculating the relative success of each solution, we may discuss the 

particular trail definitions and ways of scoring the visibility which will give us the 

scores t(ij) and v(ij). We begin by discussing appropriate trail definitions.

5.2.4 Trail definitions

As has already been mentioned, the nurse scheduling problem has no obvious trail 

definition and so we must manufacture something suitable for the purposes required 

in order to make an ACO algorithm practical for application to this problem. Even 

once such a trail definition is set up, there is still the question of calculating how each 

schedule will feed back to the elements of the trail matrix from which it is constructed 

and, as has been discussed, the two conflicting costs relating to cover and preference 

must be combined to give a score representative of each schedule’s quality.

Note that the option exists not to combine these costs and instead to utilise two 

separate trail matrices, one relating to feasibility and one to preference cost, but again 

these must be weighted within the scoring process to determine how much each of the 

two trail scores will contribute. Given that the two costs must therefore be weighted 

anyway, it seems much more sensible to keep to a single trail matrix, thus keeping the 

algorithm relatively simple and avoiding unnecessary computational expense.

There is no one obvious trail definition, and we present three possibilities for further 

study. Each of these feeds back a different type of information to be included in the 

shift patterns’ scores.

The GRASP algorithm was improved by applying two types of feedback: information 

on how much the preference cost should be allowed to deteriorate for the sake of 

improving the cover cost and information regarding the day/night partition. The first 

of these is not really suitable for adaptation to an ACO trail as the feedback only alters
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one value and this value for the preference cost threshold has no direct relation to the 

potential success of selecting a particular shift pattern during the construction. The 

second option may create a good trail definition, between each nurse and either ‘days’ 

or ‘nights’. This way, the algorithm would automatically learn which type of shifts 

each nurse should work in order for good solutions to be found. However, although 

this may initially provide a means for obtaining feasible solutions and potentially 

perform a similar function as the knapsack model, the reason this type of feedback 

was introduced in Chapter 4 was in order to diversify in situations where the optimal 

solution lay in a particular day/night partition which was less likely to occur. 

Therefore, although this approach may be suitable for promoting the production of 

feasible solutions it is likely to be very bad at optimising solutions where these rarer 

day/night partitions of the nurses are required, intensifying the use of just one 

partition and having the opposite effect to the successful knapsack-based 

diversification introduced in Chapter 4.

We therefore consider new ways of incorporating feedback into the constructions; by 

using the more subtle ACO feedback we can discover whether or not this day/night 

information will be processed automatically and the correct mixture of days and 

nights found without explicit instruction.

The three trail definitions investigated are described in detail below.

5.2.4.1 Nurse-pattern trail

The first suggestion for a trail definition is to assign a trail value between each nurse 

and each potential shift pattern for that nurse. Since we intend to build the solution as 

before, by assigning each nurse with one of a pre-determined list of shift patterns, it is 

sensible to include this as an option for a trail definition. This way, while each shift 

pattern may be assigned a visibility score for a given nurse, that same pattern will also 

have a pre-defined trail value.
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The trail matrix component t { i , j )  refers to the current trail value between nurse i  and 

shift pattern j  and hence the trail score t ( i j )  for assigning nurse i  to pattern j  would 

be

t { i , j ) = T ( i j ) ,  (5.3)

where r ( i j )  is the entry in the trail matrix relating to the assignment of nurse i  to 

pattern j.

This is possibly the simplest way to define the trail and also simplifies calculation of 

the trail update.

Practically, the trail matrix can be set up as an mx 411 matrix, since m is the number 

of nurses and there are 411 possible shift patterns in total. Infeasible elements would 

never be selected and in order to save computation time, only the feasible elements of 

the trail matrix would be evaporated at the end of a complete cycle.

Updating the trail matrix at the end of each cycle from the nants schedules created is 

also simple using this approach. An amount Ar“ is added to the trail between each

nurse i and the shift pattern j  allocated to that nurse in Ta for each ant a. The update 

therefore takes the form
nants

K !' . y ) = ( 1 - p M ' . y ' ) +  > ( 5 - 4 )

0=1

where Ar" = < ^  if nurse i  works pattern j  in Ta
Wca + p a + 1

0 otherwise

One of the drawbacks of using the nurse-pattem trail is a problem mentioned 

previously: the cost of each trail element does not share a linear relationship with the 

final solution quality. A shift pattern which has previously been part of high-quality 

schedules and has a correspondingly high trail matrix value owes a large part of its 

success to the other nurse-pattem pairs present in the schedule. An individual pattern 

with a low preference cost, for example, may only be successful if the other choices 

made allow the cover to be satisfied and also have relatively low preference costs.
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Thus the trail matrix may not always accurately recognise which schedule 

components are necessary to achieve a high solution quality and which have 

previously been included in a good solution, but may be easily replaced for the sake 

of feasibility. We try another tactic in the aim of relating the final costs involved more 

closely with the trail elements.

5.2.4.2 Nurse-shift trail

One of the oversights of the nurse-pattem trail is the way in which similar shift- 

pattems are dealt with. Usually, similar shift patterns will have a similar preference 

cost. Since the nurse-pattem trail only updates the trail relating to the particular shift 

pattern involved, it may be the case that a similar shift pattern is overlooked, even if 

this substitution would improve feasibility without increasing total preference cost. By 

regarding each separate shift independently, the nurse-shift trail aims to rectify this 

problem. Two similar patterns will automatically be regarded similarly by the trail 

matrix, since the information stored relates only to single shifts rather than the pattern 

as a whole. Therefore, two patterns differing only by one shift will be treated 

similarly, regardless of which actual pattern is selected.

The trail matrix element r(i,k) refers to the current trail value between nurse i and 

shift k and trail score, t(i, j), would be calculated as

At the end of a completed cycle, the trail matrix is updated from the nants schedules 

by considering every shift which each nurse has worked. The update therefore takes 

the form

IK/.*)
(5.5)

where |y| denotes the number of shifts k worked in pattern j.

(5.6)
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Q
where AtJ Wca+ p a +l

0 otherwise

if nurse i works shift k in Ta

This method of calculating the trail score should give the algorithm more flexibility 

and prevent it from discarding potentially good shift patterns at an early stage. 

However, since each nurse will have several shifts in the trail updated for every 

schedule created and these values will support the selection of several related patterns 

for selection in the next cycle, it could also lead to a lack of focus.

5.2.4.3 Nurse-nurse trail

Given the difficulty of applying a feedback mechanism to this problem, a third trail 

definition is suggested, which is based more upon the nurse-ordering idea used in 

Aickelin’s indirect GA (1999). Since good results have been found by scheduling the 

nurses with a simple heuristic once a good ordering has been ascertained, we have 

adopted this idea of ordering the nurses for use with an ant colony trail. Aickelin 

found that the nurse scheduling problem was a difficult one for a GA to cope with due 

to its complexity, but by using the GA to solve the much simpler problem of ordering 

the nurses and then using a heuristic to decode this ordering into a schedule, good 

results were obtained. In some cases, a nurse will only have one or two shift patterns 

which can be part of an optimal solution; if these nurses are not scheduled early, there 

is a risk that in creating a feasible schedule these nurses may be forced onto a high- 

cost shift pattern. Here we suggest using the trail definition to keep track of an 

ordering of the nurses, while the visibility alone determines which pattern each nurse 

should work.

The trail score, is based solely on the nurse considered for selection, relative to

the nurses which have not yet been selected. As each nurse is selected, we essentially 

create an ordered string of the nurses. The set of nurses which have not yet been 

scheduled is denoted by R \ R+.
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As the trail score does not use any pattern-specific information, we simply use the 

trail score t(i) to calculate a score for scheduling nurse i next in the sequence, for each 

nurse not yet scheduled. Here the trail score t(i) would be calculated as

To update the trail matrix at the end of each cycle, an amount A is added to the trail 

between each ordered pair of nurses (/, /’) where nurse i was scheduled before nurse V 

in Ta. The updated trail therefore takes the form

nants

r(z,f) = ( l - p ) r (;,*’’)+ ^A r* , (5.8)
a -\

Q
where A r! = - Wca + p a + 1

0 otherwise

if nurse i was scheduled before nurse V in Ta

Since this approach does not use any information about particular shift patterns from 

previous solutions, but only creates an ordering of the nurses, it is similar to 

Aickelin’s (1999) indirect GA. Aickelin selected the best shift pattern for each nurse, 

whereas this approach uses a roulette wheel selection to choose the nurses’ patterns 

once the ordering has been decided. Aickelin’s resultant schedules were of a high 

quality, but not able to rival the mostly optimal solutions obtained by Dowsland and 

Thompson (2000), and it is possible that this trail will produce results of a similar 

quality.

5.2.5 Visibility scores

As mentioned earlier, the visibility scores for an AS algorithm are roughly equivalent 

to the scores used in a GRASP construction. The heuristics implemented in the 

GRASP algorithm are therefore equally as applicable here and for the nurse-pattem 

and nurse-shift trails the Cover, Combined, Holistic and LastChance heuristics may be
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easily integrated into the AS algorithm as they stand. The nurse-nurse trail, however, 

creates an ordering for the nurses and so is not compatible with the Holistic heuristic, 

which assumes no pre-ordering. The Combined and Holistic heuristics use the same 

approach, but where the Combined heuristic considers just one nurse, the Holistic 

approach considers all unscheduled nurses. Calculating the visibility score for each 

unscheduled nurse using the Combined heuristic is equivalent to the Holistic 

approach, since all unscheduled nurses will have their shift pattern scores enumerated 

during each construction phase. The LastChance heuristic is also compatible with a 

nurse-nurse trail, since it gives a score to each nurse, as does the trail. The three 

heuristics which are used in conjunction with the nurse-nurse trail are therefore Cover, 

Combined and LastChance only.

The three trail definitions and the visibility scores to be used in conjunction with each 

have now been defined. Given the difficulty of finding feasible solutions to this 

problem, however, it is likely that these basic approaches may struggle to obtain 

feasibility. We now discuss possible extensions to the algorithm which may help to 

overcome this problem.

5.2.6 Extensions to the AS construction method

As we have discussed, the basic framework laid down to solve the nurse scheduling 

problem using AS has been put in place, but the particular difficulty of finding 

feasible solutions to this problem may cause the algorithm to struggle in this respect. 

We have already suggested that the addition of the knapsack model may provide the 

constructions with vital assistance and the application of the knapsack model to an AS 

algorithm will be discussed in more detail later in this section.

The feedback mechanism of the nurse-pattem or nurse-shift trails is likely to work 

very well just for reducing the preference costs, since the cost of each solution 

element has a linear relationship with the total preference cost, but since the feasibility 

of each component within the solution is dependent on every other, the feedback 

mechanism may struggle to converge to good values. Although there may be some 

nurses for which a particular shift or shift pattern is essential in order for feasibility, 

this is not usually the case and so it is finding the correct combinations of elements,
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rather than finding specific elements which is essential; this is also something the 

feedback mechanism may struggle with, since components which would be a vital 

addition to a current partial schedule, but have previously been part of a low-quality 

solution, would be overlooked. Even if there were specific assignments essential to 

the feasibility of solutions for a particular dataset, if these are not selected early, due 

to a relatively high preference cost, for example, the trail matrix entry for this choice 

would gradually be evaporated and its likelihood of being chosen would decrease 

further.

The AS with nurse-nurse trail is also likely to struggle with regards to finding feasible 

solutions. In this case, the actual construction of a solution has no information 

regarding the success of individual components in previous cycles; the only assistance 

is in the ordering of the nurses. For certain datasets, where some nurses have only one 

or two feasible shift patterns, ordering the nurses may provide valuable assistance. 

However, given that no information about which of their patterns should be assigned 

is stored, the algorithm becomes similar to that of a GRASP construction and so is 

likely to require added assistance if good-quality solutions are to be found.

As discussed earlier, the solution construction approach used by each ant bears a 

resemblance to the construction phase of a single GRASP cycle and the AS 

metaheuristic can be viewed almost as a population-based version of GRASP which 

incorporates learning, but no local search. Given the similarity between the GRASP 

construction phase and the ant constructions, in the first cycles of AS in particular, it 

is likely that similar results to the pre-descent GRASP constructions will be obtained 

using AS. During later cycles, the effect of the trail information is likely to have more 

impact, but especially in the first few cycles the difference in trail values for 

‘successful’ and ‘unsuccessful’ components will not be very pronounced. Note that 

this can be enhanced by varying Q if necessary, but even with large Q the early cycles 

will not be as affected by the trail as later cycles; the first set of ants to construct a 

solution will not be affected by the trail matrix at all, since there have been no 

previous cycles and all trail values will be equal.

It is important for these early cycles to make good choices so that the trail matrix can 

learn effectively. Given that the solutions produced by the GRASP construction phase
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were generally of a low quality, it seems necessary to enhance the ants’ scheduling 

capabilities if the AS approach is to be successful. We therefore also suggest adding 

an element of local search as a possible way to enhance solution quality. The addition 

of the knapsack model, introduced earlier as a potentially successful enhancement, 

and the options for adding local search are now discussed in more detail.

5.2.6.1 Knapsack

The knapsack model was very successful in improving solution quality when 

incorporated into the GRASP construction and incorporating this same model into the 

AS approach is likely to be even more advantageous to solution quality than for the 

GRASP approach. As an AS algorithm will, at best, contain a limited amount of local 

search, the correct assignments must be made during the construction process. 

Without good-quality solutions to draw on, the trail matrix has no chance of 

recognizing good components and, as mentioned earlier, if necessary assignments are 

overlooked in the early stages, there is a strong chance that the trail matrix will ensure 

they are never selected. Thus, by utilising the knapsack model, the chances of making 

sensible choices, certainly in terms of feasibility, are improved from the very 

beginning and the trail matrix is more likely to converge to values encouraging good 

solutions.

The knapsack model can be implemented here in the same way as in Chapter 4. For 

each ant, the knapsack will produce an initial list of which types of nurses may work 

days and nights. The construction will then continue as normal, but before any 

assignment is confirmed, the allocation is checked with the knapsack solution. If the 

assignment and knapsack solution are in agreement, and this may mean producing a 

new knapsack solution, the assignment is made, otherwise it is discarded and a new 

assignment must be selected. Figure 4.4 in Chapter 4 is representative of the 

procedure by which each ant may create a schedule using the knapsack model.

5.2.6.2 Local search

The local search proved to be an essential part of the GRASP algorithm; pre-descent 

schedules created using the construction process alone were never optimal and the
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difference in cost before and after the local search was implemented was often great. 

In the first cycle, the trail does not factor into assignment choices since all trail values 

are equal and in the first cycles its influence is still relatively minor, since there has 

not been time for a significant difference in the trail values to accrue. We have already 

discussed how the visibility scores are generally assigned more weight than the trail 

scores and this is in keeping with the theory that in the early cycles, the AS will 

produce similar solutions to that of a GRASP construction. Since these are unlikely to 

be locally optimal and are therefore of a relatively poor quality, compared with those 

given the benefit of a local search algorithm, it seems pertinent to discuss the 

possibility of including some element of local search within the AS algorithm.

An important consideration, however, is the computational expense required to 

produce these solutions. The local search phase of the GRASP algorithm accounts for 

a large part of the time required to create the solutions, often accounting for more than 

half of the computation time. Using the AS method, the computational expense is 

already likely to be larger than for GRASP, since rather than just completing one 

schedule per GRASP cycle, we are required to create schedules for a number of ants 

in each cycle. Unless the number of ants or the number of cycles is kept very small, 

there will be far more than 100 schedules being created in every run. If local search is 

incorporated into each of these, potentially more than doubling the computation time, 

it is likely that the computational effort required would be unreasonable.

In order to reduce computation time while still receiving the benefits of local search, a 

compromise is suggested: from each cycle, apply local search to just one of the 

completed schedules. It makes sense to select the best, or most promising, schedule 

for this purpose. This can be determined using the usual process of lowest feasibility 

cost with preference cost as a secondary consideration. By selecting an already good- 

quality schedule, it is likely that the local search will require fewer iterations in order 

to locally optimise, thus reducing the computational impact of the local search further 

( Li et al. 1994, Feo et al. 1991).

A final point to note is that if only one schedule receives the benefit of local search, 

especially if this was originally the best schedule of the cycle, the resulting schedule 

will be of a far better quality than schedules produced by the other ants of the cycle.
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As such, when the process is complete and the trail matrix is updated, it makes sense 

to update only from this one ant. Otherwise, the benefits of having found a locally 

optimal schedule will be overshadowed by the large numbers of relatively poor- 

quality solutions also providing feedback. When experimenting with the inclusion of 

local search within the AS framework, all three neighbourhoods described in Chapter 

4 shall be employed, since the Extended neighbourhood proved so beneficial. The 

precise details of the local search can be found in Section 5.3.5.

5.3 Experiments and results

These experiments are performed on the same 52 datasets as described in Chapter 4 

and in Appendix A. All datasets have previously been solved using exact methods and 

so we are able to judge the success of the ACO approach for each dataset by a direct 

comparison.

Again, any solution will be judged firstly on its feasibility and schedules with zero 

cover cost will be judged according to how the preference cost compares with the 

optimal solution. Where the cover cost is non-zero, the schedule will be discarded, 

regardless of the preference cost. In the case of no feasible solutions being found for 

any method, two infeasible solutions could be compared based on their cover costs 

with the preference cost only considered in cases of equal cover cost.

5.3.1 Initial experiments

For the GRASP algorithm, the initial experiments were performed on a single GRASP 

run of 100 cycles. Since each cycle was independent, GRASP often having been 

referred to as a repetitive sampling technique (Resende 2001), this gave a good 

overview of the algorithm’s performance; a further 100 cycles would be likely to give 

very similar results. For the AS algorithm, this is no longer the case; although each 

cycle produces a number of independent schedules in identical conditions, each cycle 

learns from the one before it and so the cycles cannot be examined individually.

This interaction is an important factor in the success of the AS metaheuristic and it is 

essential in these first experiments to determine not only which approach produces the
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best results, but which, if any, are successfully able to utilise the feedback from the 

trail to gradually improve the overall quality of each successive cycle. Thus, we 

cannot consider the 100 cycles as a set of independent observations and even for the 

very basic experiments we will need to do several complete runs.

Given the large number of constructions which constitute one AS run, and the large 

number of such runs which must be performed initially, the number of repetitions 

performed must be reasonably small. We have chosen to repeat each run 5 times, 

since this should give a fair approximation of how the algorithm will perform in 

general. We now discuss the parameters which must be assigned values and the 

experiments which will be performed to test them.

Parameter testing

The AS algorithm relies on a wide range of parameters and some of these are more 

sensitive to change than others. We have already discussed in Section 5.2.2 the 

different parameters associated with the AS algorithm. Note that the particular 

visibility scores chosen, with the exception of the Cover heuristic, also require 

parameter tuning to balance the cover and preference cost weights, wc and wp, 

respectively. Although values for these were found using GRASP, they may not be 

suitable for this algorithm; it will no longer be only the best n from which the choice 

is made, and these scores will also be used in conjunction with the trail scores, so it 

cannot be assumed that the parameter combinations chosen for the GRASP algorithm 

would be the best in this case.

Thus, the parameters associated with this AS algorithm are as follows:

wc The weight associated with the cover part of the visibility score

wp The weight associated with the preference cost part of the visibility score

wv The weight associated with the visibility part of the score function

wt The weight associated with the trail part of the score function

nants The number of ants per cycle 

gen The number of cycles per AS run
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p  The evaporation rate

Q The multiplier for scores added to trail values during the trail update

W The weight assigned to undercover when determining trail update scores Ar“

Each set of parameter combinations selected must be applied, five times, to each of 52 

datasets, using three trail definitions, each with either five or seven visibility 

heuristics, and each of these with and without the knapsack routine. So for each 

parameter combination, there would be a minimum of 9,880 runs to complete. 

Clearly, an exhaustive examination of parameter combinations is impractical. We 

therefore carefully select sensible values for each parameter in an initial attempt to 

gauge which of the trail definitions is the most promising and to which of the 

visibility heuristics, with or without the knapsack, it is most suited.

However, at this stage, we aim just to provide a general overview of the methods 

suggested and the computational expense required necessitates minimising the 

number of runs performed. For most of the parameters, just one value is selected 

initially. Once it is determined which of the approaches are worth pursuing, parameter 

testing can be carried out without wasting computation time on tuning parameters for 

approaches which may never produce good solutions. Table 5.2 shows the values for 

each parameter during the initial experiments and a discussion of these choices will 

follow.

Parameter Value(s) investigated
wc 1,3,5
w p

1
wv 2
wt 1

nants 50
gen 100
P 0.5
Q 100
w 10

Table 5.2. Values investigated for each parameter.

Cover and preference cost weights

For most of the parameters only one value has been selected, however, given the 

sensitivity of the heuristics in the past to the balance between cover and preference
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cost, some variation will be included in these initial experiments. Due to the difficulty 

of finding feasible solutions and the fact that the AS will not have the assistance of a 

sophisticated local search algorithm, we restrict wp to 1 and try three equal and higher 

values for wc: 1,3 and 5. We do not try all values from 1 to 5 because of the large 

amount of computational effort required; if the choice of these parameters proves to 

be of particular importance, further experimentation will enable closer inspection of 

the relationship between these parameters and the solution quality.

Visibility and trail weights

As mentioned previously, in much of the literature (Dorigo et al. 1991, Dorigo et al. 

1996, Dorigo et al. 1999, Dorigo and Stiitzle 2004, Gutjahr and Rauner 2007) it has 

been found that ACO is more effective when visibility weight is at least that of the 

trail and when the trail weight is equal to 1. Thus we have selected values which are 

in keeping with this, but are not too exaggerated.

Number o f ants per cycle

As discussed earlier the number of ants is usually based upon some suitable number 

relevant to the size of the problem, although it is difficult to determine upon which 

criterion this should be based for the nurse scheduling problem. It was decided that 

using a similar number of ants to the number of feasible shift patterns for each nurse 

was the most logical although, given that this number varies between nurses, one 

value would have to be chosen which would be acceptable for all. Common numbers 

of patterns are 56 and 70 for (5,4) and (4,3) nurses, although many types of nurse have 

far fewer options and some can have as many as 80. When nurses are prohibited from 

working either day or night shifts, their number of options will approximately halve, 

depending on their type.

We selected the value nants = 50 as a compromise. This figure is very similar to the 

number of patterns available to the full-time nurses, who often account for a large 

proportion of the staff on a given ward. We wanted to ensure that there would be 

enough diversity within each cycle to give a diverse range of solutions, but without 

adding unnecessary computational expense.
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Number o f cycles

The number of cycles is set at 100, equal to the number of GRASP cycles in a run. 

This should allow the trail matrix plenty of opportunity to aid the constructions and 

also gives an easy comparison with the GRASP. This number can be altered in later 

experiments if necessary, but it is a suitable number for initial testing and results will 

show later that there is no real need to alter this value.

Evaporation rate

In much of the literature (Dorigo et al. 1991, Dorigo et al. 1996, Costa and Hertz 

1997, Dorigo et al. 1999, Dorigo and Stiitzle 2004), p  is set to 0.5 although higher 

values may be found successful. We adopt the value 0.5 for these initial experiments.

Weight o f the cover in judging solution cost

The value of W is difficult to determine. A very large cost will ensure that solution 

quality is judged primarily on the cover cost and the preference cost will only be 

considered when the cover cost is zero. However, although this is the way solution 

success is judged when determining which is the best schedule, for example, or to 

decide whether or not to accept a local search move, this is not necessarily a good idea 

for this purpose. We wish the trail matrix to reflect the quality of schedule 

components on both these counts and by allowing it to build up a picture only of the 

success of each element in terms of feasibility, there is the danger that the trail will 

tend to favour feasible, very high-cost solutions and it will be difficult to balance the 

two once feasibility has been attained and preference cost suddenly becomes 

important. For this reason, we decide to use a more reasonable value for W, so that 

although the trail is biased towards cover, larger differences in preference cost will be 

reflected in the trail. This way, the algorithm should be able to steer the search 

towards lower-cost feasible solutions slowly, rather than quickly finding feasibility at 

the expense of solution quality.

Weight o f selected components, Q

As mentioned earlier, the parameter Q is generally found to have a negligible effect 

on solution quality. As such, we select Q -  100 for these experiments.
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Initial trail values

The trail matrix is updated using information obtained from previous cycles and each 

element must be initialised with a non-zero value in the first cycle. These initial 

values, t0 , should be of a suitable size relative to the amount by which they will be

updated, although as the solution process progresses the value r0 becomes

increasingly unimportant. For our problem, the cost of a solution obviously varies 

between datasets and whether or not the solution obtained is feasible will also impact 

on the amount fed back to the trail matrix. We choose r0 =1.0 for these experiments.

Thus we have just three sets of parameter combinations to test on each of the 38 

solution approaches, one for each value of wc, and each of these experiments will be 

repeated 5 times on each of the 52 datasets. The next section details the results 

obtained from these experiments.

5.3.2 Initial results

When examining the results of the nurse scheduling experiments using GRASP, both 

the feasibility and the preference costs of these feasible solutions were considered. 

However, for these initial AS approaches, the results show that for each run, 

comprising 5000 constructions in total, the percentage of these which were feasible 

was low enough to make analysing the feasible solutions’ preference costs irrelevant; 

in some cases, not one feasible solution was produced during the run.

Thus, not only would it be difficult to compare the (feasible) preference costs fairly, 

given the low number of these available from each run, but since finding feasible 

solutions is crucial, we wish to ensure that any decisions based on these experiments 

will maximise the chances of producing feasible solutions in the future. If it were the 

case that no feasible solutions were obtained from any of the approaches, we could 

use the average or best cover costs produced in order to compare the algorithms. 

However, given that many do produce some feasible solutions, we shall use the 

percentage of solutions which are feasible as an initial measure of success.
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Table 5.3 shows the breakdown of results according to which approach and which 

value for wc was applied. In order to obtain these figures the mean percentage of 

feasible solutions found in each cycle for each dataset in each of the five runs was 

calculated. Thus, an approach which produced exactly 25 feasible solutions in each 

cycle from a possible 50, for all datasets and runs, would have an average feasibility 

of 50.00%. If these 25 feasible solutions were only produced for one dataset and all 

others yielded no feasible solutions in each of the five runs, this figure would be 

smaller by a factor of 52. Table 5.4 shows the number of datasets from 52 for which at 

least one feasible solution was found along with the average number of runs from 5 

attempts for which at least one feasible solution was found. Thus 52/5.0 indicates that 

every run on each dataset produced feasible solutions, while 52/2.5 shows that for 

every dataset feasible solutions were found for around half of the runs, on average. 

Due to rounding, values of 52/5.0 arise in Table 5.4 where the number of feasible runs 

was slightly under the maximum. In order to distinguish these from methods 

producing feasible solutions in every run, the values indicating the maximum number 

of feasible runs are highlighted in bold.

Thus, Table 5.3 indicates the total number of feasible solutions found from 5000 

attempts per run, whereas Table 5.4 gives more of an impression of the success of one 

run on any dataset in finding at least one feasible solution. Both of these measures are 

important in judging the success of each approach; it is important that a good number 

of feasible solutions are found in each run, so that the trail matrix may leam 

effectively, giving more chance of finding high quality solutions, but equally, we wish 

the solution methods to be robust and able to cope with all datasets rather than 

producing many feasible solutions for some and none for others. Note that the Cover 

heuristic does not balance the cover and preference costs within the score and so no 

weight for wc is required.
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Without knapsack model
Trail Nurse-pattem Nurse-shift Nurse-nurse

Wc 1 3 5 1 3 5 1 3 5
Cover 0.07 — — 0.05 — — 0.01 — —

Combineda 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Combinedq 1.11 2.50 1.84 0.00 0.00 0.09 0.00 0.00 0.00
Holistic a 0.02 0.01 0.01 0.00 0.00 0.00 — — —

Holisticq 2.15 4.51 12.21 0.03 1.11 5.04 — — —

LastChancea 9.56 16.86 17.94 8.69 16.68 18.23 3.52 8.79 10.74
LastChance0 5.12 12.23 20.23 3.77 10.63 17.92 5.61 8.54 12.19

With knapsack model
Trail Nurse-pattem Nurse-shift Nurse-nurse

Wc 1 3 5 1 3 5 1 3 5
Cover 0.17 — — 0.07 — — 0.02 — —

Combineda 0.09 0.06 0.05 0.00 0.00 0.00 0.00 0.00 0.00
Combinedq 9.14 16.58 23.93 0.00 0.26 2.73 0.00 0.00 0.00
Holistic a 0.01 0.03 0.01 0.00 0.00 0.00 — — —

Holistic q 8.89 20.16 31.15 0.03 1.42 9.79 — — —

LastChancea 25.23 55.96 62.77 21.31 50.35 58.23 9.54 30.95 38.27
LastChance0 12.36 24.95 46.00 9.80 22.37 42.64 6.35 19.18 42.91

Table 5.3. The percentage o f  feasible solutions produced by the different methods and with different

values o f wc.

Without knapsack model
Trail Nurse-pattem urse-shift Nurse-nurse

Wc 1 3 5 1 3 5 1 3 5
Cover 6/0.3 — — 6/0.3 — — 3/0.2 — —

Combineda 3/0.1 2/0.1 3/0.1 0/0.0 0/0.0 0/0.0 2/0.1 2/0.1 2/0.1
Combinedq 2/0.1 7/0.4 11/0.6 0/0.0 7/0.4 13/0.7 0/0.0 0/0.0 0/0.0
HolistiCa 2/0.1 3/0.1 3/0.1 2/0.1 0/0.0 1/0.1 — — —

Holistic q 11/0.7 31/1.9 44/3.5 7/0.4 34/2.4 45/4.0 — — —

LastChancea 38/3.4 47/4.5 46/4.4 38/3.5 47/4.5 46/4.4 40/3.5 50/4.8 50/4.8
LastChanceq 17/1.5 35/3.1 44/4.0 18/1.6 37/3.3 47/4.2 41/3.8 49/4.5 50/4.6

With knapsack model
Trail Nurse-pattem Nurse-shift Nurse-nurse

Wc 1 3 5 1 3 5 1 3 5
Cover 44/2.4 — — 31/1.8 — — 16/0.6 — —

Combineda 25/0.9 20/0.7 27/0.9 1/0.1 2/0.1 2/0.1 1/0.0 1/0.0 1/0.0
Combinedq 18/1.2 40/2.9 49/4.3 9/0.4 49/3.9 51/4.9 1/0.0 1/0.0 1/0.0
HolistiCa 11/0.4 20/0.6 19/0.6 1/0.0 2/0.1 3/0.2 — — —

HolistiCq 29/2.1 47/3.9 52/4.9 13/0.6 50/4.4 52/5.0 — — —

LastChancea 47/4.4 52/5.0 52/5.0 48/4.6 52/5.0 52/5.0 49/4.6 52/5.0 52/5.0
LastChancea 27/2.4 48/4.5 50/4.8 28/2.6 50/4.6 50/4.8 21/2.0 50/4.6 50/4.8

Table 5.4. The number o f  datasets for which feasible solutions were found/the average number o f runs

for which feasible solutions were found for each approach, rounded to ld.p.
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There are several factors to consider when analysing these results. We must select the 

trail definition, heuristic, wc value with the best performance and decide whether or 

not the knapsack model is a successful addition.

The value in bold in Table 5.3 highlights the particular approach which produces the 

highest average percentage of feasible solutions. This approach also produced feasible 

solutions for every dataset, as can be seen in Table 5.4. It is clear that of the three 

trails, the nurse-nurse trail is the least effective, although it produces reasonable 

results in conjunction with the LastChance heuristic, which produces good results for 

all three trails. The nurse-pattem trail produces the highest average percentage of 

feasible solutions in general and is the most robust of the three trails; it is clear that 

the addition of the knapsack is essential in all cases, vastly improving the feasibility of 

results, and that higher values of wc are also imperative to the success of the 

algorithms.

Another interesting observation is that for the Combined and Holistic heuristics, the 

multiplicative version appears to be much more effective at producing feasible 

solutions; the reverse is tme for the LastChance heuristic, although the difference is 

less marked. A possible explanation for the superiority of the multiplicative over the 

additive approaches is that the additive versions give a great deal of weight to the 

preference cost. Even with high values of wc, the preference cost score for a pattern 

can be some magnitude higher than that of the cover, especially if it is a particularly 

low preference cost and several nurses have already been scheduled. This leads to 

assignments required for feasibility being based primarily on preference cost instead. 

The multiplicative version, however, uses the wc value as an exponent, thus 

reinforcing the dominance of the cover score. The other important point to note is that 

any patterns which would not contribute to the feasibility at all are given a cost of 

zero using the multiplicative approach and so would not be considered.

We mentioned that for the LastChance heuristics, the multiplicative version was no 

longer superior and this is probably due to the different mechanism by which it 

functions; by assigning each chosen nurse with their best shift pattern, the likelihood 

of producing feasible solutions is increased. If good choices with regards to feasibility 

have been made earlier in the construction, as is especially likely when the knapsack
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model is employed, then the remaining few nurses are likely to be put on the ‘correct’ 

patterns which will fill the gaps in cover. As was mentioned before, for the 

multiplicative versions, there are fewer choices since those not improving the cover 

will have zero cost. The additive version therefore gives a broader range of options for 

each nurse, even if some of these are less than ideal with respect to feasibility. 

However, it may be that the LastChance heuristic, which is already very suited to 

producing feasible solutions, is aided by this added diversity, which allows it to 

further explore the solution space and produce schedules which the multiplicative 

version would not be able to create.

Table 5.4 shows that there are six methods for which at least one feasible solution was 

found for every run. Since we know that the best preference cost from each will 

therefore be from a feasible solution, we may compare the average best preference 

costs from each approach fairly. This comparison is made in Table 5.5; optimal 

solutions have been subtracted in order to give an indication of how far above the 

optimal these costs are. Thus a value of zero in Table 5.5 would indicate that every 

run achieved the optimal value for that method.

With knai3sack model
Trail Nurse-pattem Nurse-shift Nurse-nurse
wc 1 3 5 1 3 5 1 3 5

Holisticq 
Lastchancea —

------

4.53
-----

4.51
15.19
4.70 — 6.66 6.71

Table 5.5. The average best cost with optimal subtracted over each run o f  the 52 datasets for the six 

methods with the maximum feasibility performance as shown in Table 5.4.

From Table 5.5 we can see that the nurse-shift trail with LastChance additive heuristic 

and wc ~ 3, gives the lowest average best preference cost. However, the nurse-pattem 

trail with LastChance additive and wc = 5, was shown in Table 5.3 to be much more 

successful in terms of number of feasible solutions produced, while the difference 

between the two methods in terms of average best preference cost is negligible. Since 

the nurse-pattem trail was shown to be slightly more robust in general, and has been 

shown to be a suitable choice for further investigation, we therefore continue all 

investigations with this method in the aim of further improving solution quality. All
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further results refer to experiments carried out with the nurse-pattem trail, with the 

LastChance additive heuristic and using wc = 5.

5.3.3 Parameter experimentation

All experiments thus far have been performed using just one value for each parameter, 

shown in Table 5.2, except for wc, which has now been set equal to 5. Each run takes 

just under a minute on average and so five runs on 52 datasets to evaluate a method 

takes several hours. It is therefore not computationally viable to evaluate every 

combination of parameters and instead each parameter is evaluated in turn.

Weight o f the cover in judging solution cost

There is a distinction in Table 5.2 between the parameters associated with a generic 

AS algorithm and those which have been introduced specifically for AS applied to the 

nurse scheduling problem. It is sensible to first adequately equip the AS algorithm 

with the tools necessary to solve the problem, before going on to fine-tuning the AS 

parameters. Thus we have investigated the relationship between solution quality and 

the trail definitions, the use of the knapsack and the weights for the heuristics in the 

first stages of the investigation. The final parameter which has been introduced to the 

AS algorithm in order to adapt it to nurse scheduling is the weight with which the 

solution cover cost feeds back to the trail, W. In all previous experiments this had 

been set at 10, but we shall now vary W in the hope of improving solution quality and 

investigate values of W = 5, 20, 50 and 100 for comparison purposes.

Table 5.6 shows the results from these experiments. Note that the results for W = 10 

have already been obtained in the previous investigation. The table shows the 

following results: the percentage of solutions created in each run which were feasible; 

the average preference cost of the best solution from each run, less the optimal cost; 

the average value of the cost functions from the best solution of each cycle; and the 

average number of solutions from each run which were optimal. Note that since the 

best solution from each run is feasible the average of the best preference costs from 

each run will be equal to the average cost function values of the best solutions for 

each run, less the average of the optimal solution costs.
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w % Feas. Best Pref. Av. Best CF No. Opt.
5 62.18 4.43 31.67 16.89
10 62.77 4.53 31.60 16.21
20 63.92 4.53 31.70 16.55
50 65.61 4.61 31.76 17.13
100 66.85 4.49 31.88 17.56

Table 5.6. The percentage o f  feasible solutions per run, average best preference cost per run, average 

cost function for the best solution from each cycle and average number o f  optimal solutions found per

run using different values o f W.

Clearly, varying the parameter W does not create a great difference in the results 

produced. However, there are slight variations and we shall use these to choose 

suitable values of W with which to continue our investigation. The percentage of 

feasible solutions found, for example, does increase slightly with W. And although the 

average best preference cost and average best cost function values vary and increase 

slightly with W, higher values of W do also appear to produce a higher number of 

optimal solutions, on average. However, since the number of optimal solutions 

implies an average of around 17 optimal solutions from a possible 5000 for each run, 

the difference between each approach is negligible. Since higher values appear to 

produce slightly better results in terms of both feasibility and optimality we select W = 

100 to continue with and, mindful that a high value may be to the detriment of the 

preference cost in general, we therefore also select W = 50 as a compromise. Since 

none of the values for W appear to have a great deal of influence, however, either of 

these values should give respectable results.

Visibility and trail weights

So far we have been concerned with optimising the parameters which adapt the AS 

algorithm to the nurse scheduling problem. Now that these parameters have been 

selected, we may further improve the results obtained by ensuring the visibility and 

trail weights are suitable. As discussed earlier, attempting all parameter combinations 

would be too computationally expensive and so, given that it is usual for the visibility 

power to exceed that of the trail in order to achieve good results, we attempt to vary 

only the visibility power, whilst keeping the trail power at a value of 1. We have
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already tried wv = 2 and now investigate values of wv = 1, 3, 4, 5, including wv = 1 for 

completeness.

Table 5.7 shows the results of this investigation.

w Wv % Feas. Best Pref. Av. Best CF No. Opt.
50 1 64.44 3.74 29.52 22.55
50 2 65.61 4.61 31.76 17.13
50 3 65.88 5.48 33.24 12.64
50 4 65.30 6.03 34.10 10.69
50 5 65.09 6.54 34.57 9.68
100 1 65.61 3.81 29.51 23.62
100 2 66.85 4.49 31.88 17.56
100 3 67.13 5.76 34.16 12.83
100 4 67.06 6.00 35.06 11.12
100 5 66.20 6.53 35.56 9.85
Table 5.7. Results for different values o f wv using W =  50 and 100.

From Table 5.7 it is possible to see the difference in solution quality between results 

obtained using the five trialled values of wv with the two choices for W. In terms of 

feasibility, all wv values perform similarly, although wv = 3 gives a slightly higher 

return of feasible results for both W values; it is also clear that W = 100 has a slight 

advantage in percentage of feasible solutions obtained, as was originally indicated by 

the results in Table 5.6. This difference between the two W values therefore has more 

of an effect on the feasibility than varying wv, as would be expected, since the two are 

directly related. In terms of the quality of the arising solutions, however, the value of 

wv has a much greater impact and it is clear that for either W value, wv = 1 is certainly 

the best performing of those tested. Given that the difference in feasibility between wv 

= 1 and wv = 3 is insubstantial in comparison to the cost benefits, we may accept wv = 

1 as the superior value and use this in the next experiments.

5.3.4 Results by individual dataset

Thus far the interpretation of results has treated the 52 datasets collectively. However 

it is unlikely that the figures pertaining to the group as a whole will be reflected 

equally in the results for each dataset and, as for the GRASP approach, the algorithm
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will perform better on some datasets than others. Thus we present a breakdown of the 

results obtained by dataset in Figure 5.8.

0 Hi ULloU
(a) Detailed results for all 52 datasets from 5 runs using W = 50, showing the number o f optimal and 

near optimal solutions.

5 n
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(b) Detailed results for all 52 datasets from 5 runs using W = 100, showing the number o f optimal and 

near optimal solutions.

□  No. optimal □  No. within 3

Figure 5.8. Detailed results for all 52 datasets from 5 runs using wv = 1 for W -  50 and W=  100.

Figure 5.8 shows the results, by dataset, for wv = 1 for both W  = 50 and W = 100. 

Clearly, the difference in solution quality between the two choices o f W is small and, 

although W =  100 shows a slight advantage, neither one significantly outperforms the 

other. Although these two approaches are the best of those using AS, their results are 

still relatively poor quality. All runs successfully find at least one feasible solution, 

but, for around a quarter o f the datasets, no optimal or near optimal solutions are 

produced from the 5 runs.

Since these results are vastly inferior in comparison to those produced using the 

GRASP approach in Chapter 4, we add a final stage of local search to the algorithm, 

as suggested in 5.2.6.2, in order to increase solution quality and make the two 

approaches more comparable.
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5.3.5 AS with local search

As was mentioned in Section 5.2.6.2, the quality of the solutions produced using the 

GRASP algorithm in Chapter 4 was vastly improved by the local search phase and 

that the constructed solutions, before the local search was implemented were 

consistently of a significantly poorer quality. Thus, we suggested that a final stage of 

local search within the AS algorithm may also be beneficial. As we have already 

mentioned, the AS algorithm is relatively slow, with each run taking around a minute 

of computation time, depending on the dataset. Since the local search phase of a 

construct/descend algorithm is known to account for a significant percentage of the 

computation time, by applying local search to every constructed schedule, the solution 

times are likely to double, at least. Thus, in order to save time, we suggest applying 

local search only to the schedule of the best ant in each cycle, reducing the 

computational expense necessary. Not only are fewer schedules being improved, but 

the time required to descend to the local optimum is likely to be shorter given a good 

schedule as the starting solution.

A complication with this approach is that during the trail update, if all the schedules 

of all ants are considered, the superior attributes of the one locally optimal schedule 

are likely to be diluted by the inclusion of the other, much poorer quality, schedules so 

that any benefit to the trail from this solution is lost. Instead, therefore, only the 

solution to which local search has been applied will contribute to the trail update. This 

is likely to mean that the trail matrix will converge more quickly, but the aim is that it 

will quickly converge to much better values as it is being guided only by solutions of 

a much higher quality. Further, by applying local search to a completed schedule, this 

goes some way to overcoming the problem that the patterns are not linear with respect 

to feasibility cost since unsuitable patterns assigned on the basis of trail value may be 

replaced by the local search.

In the case of the GRASP approach in Chapter 4, the local search was an essential part 

of the solution process and an integral part of the algorithm. We therefore spent a 

great deal of attention selecting suitable neighbourhoods and ensuring that these were 

as effective as possible. When adapting this local search for use with the AS 

algorithm, we may apply the knowledge gained from the GRASP approach; the
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particular neighbourhoods used for GRASP may also be applied in this case. 

However, we wish to keep the local search as simple as possible; the aim is to 

investigate whether an AS algorithm, with the additional help supplied by a small 

amount of local search, is capable of producing good results for this problem, rather 

than creating an AS-local search hybrid. One of the ways in which the local search is 

kept simple is by the fact that only one solution per cycle will have local search 

applied. However, it is important to note that in the case of the non-population-based 

method, GRASP, only one solution is created in each cycle and so the two methods 

produce the same number of locally optimised solutions in each run. The three 

neighbourhoods applied in Chapter 4 will all be applied here; the extended 

neighbourhood was particularly effective. However, for the GRASP algorithm, a 

number of plateau moves were included to allow a more extensive exploration of the 

solution space. For the AS approach, we shall keep to the basic neighbourhood 

definitions, and allow no more than 10,000 local search iterations.

A final point to note is that since the trail matrix is updated only from the best 

solution, the parameter IF becomes largely irrelevant, since the best solution is always 

likely to be feasible. Indeed, the results produced using W=  50 and W= 100 were 

identical in all cases and so only one set of results incorporating local search (LS) are 

given, shown in Table 5.9.

LS W % Feas. Best Pref. Av. Best CF No. Opt.
No 50 64.44 3.74 29.52 22.55
No 100 65.61 3.81 29.51 23.62
Yes 50 67.07 3.07 26.63 262.23

Table 5.9. Results obtained using AS with local search compared with those previously attained.

Clearly, the results produced using local search are vastly superior in terms of the 

number of optimal solutions found, although the other differences are less significant. 

Figure 5.10 shows the breakdown by dataset of this approach and compares these 

results with those obtained without the use of local search using W= 50 and W = 100 

in Figure 5.8, as well as the most comparable GRASP results, utilising the 

LastChance heuristic with the knapsack model and the three neighbourhoods in their 

simplest forms. Note that the GRASP implementation shows the results from 10 runs, 

rather than 5.
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(a) Detailed results for all 52 datasets from 5 runs using W = 50, showing the number o f optimal and 

near optimal solutions.
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(b) Detailed results for all 52 datasets from 5 runs using W =  100, showing the number o f optimal and 

near optimal solutions.
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(c) Detailed results for all 52 datasets from 5 runs incorporating local search, showing the number of 

optimal and near optimal solutions.
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(d) Detailed results for all 52 datasets from 10 runs using GRASP with the LastChance heuristic, 
knapsack and the three standard neighbourhoods.

□  No. optimal □  No. within 3

Figure 5.10. Detailed results for all 52 datasets from 5 ACO runs with and without local search, 

compared with 10 runs obtained from a basic GRASP using all three neighbourhoods.

Table 5.9 showed that, with local search, the algorithm was the most successful of the 

AS approaches so far. However, the breakdown by dataset in Figure 5.10 shows that 

although this approach finds high quality solutions for a slightly wider range of 

datasets, there are still several datasets for which no near optimal solutions are found 

and the algorithm is certainly not robust enough to cope with the wide range of 

datasets available. The GRASP approach, whose solutions are given in Figure 5.10 

(d), is very similar to the AS approach relating to (c); both use the LastChance 

heuristic as the basis for construction and both apply all three neighbourhood 

definitions to a total o f 100 solutions. However, it is clear that the GRASP 

outperforms the AS method to such an extent so as to call into question the suitability
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of an AS algorithm for this problem. We have already shown, in Chapter 4, that a 

GRASP approach can be made robust and powerful enough to find high-quality 

solutions, but it seems that the population-based, learning approach supplied by AS is 

not enough to compensate for the lack of an extensive local search and, in fact, must 

even be hindering the process. As we have suggested, the lack of linearity between the 

individual assignments and the feasibility cost of the final solution may make it 

difficult for the trail to converge; this means that the trail values, rather than aiding the 

constructions, may instead be hindering them, by including irrelevant information. 

Furthermore, the roulette wheel selection process used by the ACO constructions 

includes all possible solution components, whereas the GRASP selects only from the 

best n and it was shown in Chapter 4 that the GRASP constructions produced the best 

results for small values of n. Note that, although ACO approaches do not generally 

employ a restricted candidate list (RCL), the Ant Colony System approach introduced 

by Dorigo and Gambardella (1996) shows the benefits of using an RCL with an ACO 

approach. The inclusion of an RCL in an ACO approach for nurse scheduling is 

therefore something which could be put forward as a suggestion for further research.

Figure 5.11 shows a plot of the average and best values of the cost function for each 

cycle, without local search and with W = 100, for dataset 52. This shape is typical 

among all datasets and shows that the trail is not really helping the ants to learn from 

previous cycles, although there is some evidence of improvement in the first few 

cycles. This is typical of the datasets for which no good solutions were found. The 

average value of the cost function is lowered after the first one or two cycles, but the 

quality of the best solution is largely unaffected by the number of previous cycles and 

the best cycle of the run is just as likely to be produced in earlier cycles as later ones. 

For datasets which do find optimal solutions, such as dataset 4, it is possible to see 

slightly more benefit from the trail in the first few cycles, but again, it is clear that the 

trail is unable to successfully guide the constructions.
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Figure 5.11. Plot o f  average and best cost function values against AS cycle for dataset 52, without local

search and with W = 100.

Figure 5.12 shows a similar plot for one run of dataset 52 with the addition of local 

search.
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Figure 5.12. Plot o f  average and best cost function values against AS cycle for dataset 52, using local

search.
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It seems that with only one ant contributing, the trail is more able to focus and it can 

be seen that there is an overall tendency for gradual improvement as the number of 

cycles increases. This could potentially imply that the number of ants, nants, may 

have impacted negatively on the solution quality before the local search was applied 

and that, in particular, fewer ants may have been more successful. Indeed the 

LastChance heuristic selects from a number of nurses each time and so it is possible 

that setting nants equal to the number of nurses may produce better results. The 

Combined heuristic, for which the number nants = 50 represents a similar number to 

the number of assignments available in the form of the number of shift patterns per 

nurse, does show the trail playing more of a successful role in improving solution 

quality from cycle to cycle, as can be seen in Figure 5.13, even though the actual costs 

involved are substantially worse. Thus the nurse-pattem trail is capable of providing 

assistance to the constmctions and an optimised value for nants may help the 

algorithm. Note that with local search, however, only one ant contributes to the trail 

and so solution quality can only increase with nants. However, with the results 

presented here, and given that even with the benefit of a good local search the 

algorithm is unable to compete with the GRASP approach, it is unlikely that merely 

changing nants will have enough of an impact on solution quality to make further 

investigation worthwhile. Another possible enhancement would be to use local search 

and apply local search to the best few ants’ schedules, updating the trail from all of 

these, but, again, the poor quality of the solutions produced by AS thus far and the 

computational expense required to include more local search suggests little advantage 

would be gained by pursuing these ideas further.
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Figure 5.13. Plot o f average and best cost function values against AS cycle for dataset 52, using the 

nurse pattern trail with the additive Combined heuristic, with wc = 5, wv = 2 and W =  10, as in the initial

experiments.

5.3.6 Discussion of untested parameters

In Section 5.3.1, we listed the nine parameters associated with the AS algorithm for 

nurse scheduling and discussed their significance. Of those, the weights wc, wp, wv, wt 

and IF have all been investigated and suitable values found. The remaining parameters 

have been assigned a single value for each experiment and we discuss each of these 

now.

Number o f ants per cycle

The value of nants and its potential impact on solution quality has already been 

discussed; for the LastChance heuristic it is likely that a smaller number of ants may 

be more suitable and, in particular, setting nants equal to the number of nurses is 

likely to give better results. However, when an element of descent is included, the 

particular value of nants becomes largely irrelevant as, in our case, only one ant is 

used to update the trail matrix; instead, it is really the number of ants to which local 

search is applied and which affect the trail that becomes important.
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Number o f cycles

As we have discussed, the number of cycles, gen, was initially set to equal that of the 

GRASP approach so as to provide a direct comparison between the two. For the runs 

where the trail does not provide adequate support and the solution quality fluctuates 

seemingly randomly from cycle to cycle, the number of cycles used is not very 

important. Fewer runs would result in a reduced computation time, but would not be 

likely to affect solution quality. Thus a smaller value of gen is not worth investigating 

at this stage. From the runs with and without local search for which the trail matrix 

was beneficial, the value gen =100 seems adequate and it is unlikely that solutions 

would be much improved by allowing further cycles. Further, by increasing the 

number of cycles significantly, solution times would also be significantly increased.

Weight o f selected components, Q

We have already discussed this parameter; its role within the algorithm is minimal and 

ceases to affect solution quality after a number of cycles have been completed. Since 

it is widely accepted that the value for Q has a negligible impact on the effectiveness 

of the algorithm, it is not necessary to experiment with this parameter further.

Evaporation rate

The evaporation rate is integral to the success of the AS algorithm, as we discussed 

earlier, determining how lasting the effects of the trail updates are. A high value 

indicates the results of several previous cycles are contributing to the trail score, while 

a low value means that only very recent cycles will impact on the assignment choices 

of the next. In much of the literature a value of p  = 0.5 is adopted with some papers 

choosing a lower value. There is little evidence of higher values of p  being 

successfully adopted. In the original experiments, performed without the use of local 

search, the value of p  chosen resulted in the trail matrix values converging until just 

a few potential shift patterns were being considered for each nurse by the final cycle. 

In some ways this produces a similar effect as the GRASP heuristic choosing only 

from the best n, although in this case there is no way to determine whether these 

remaining patterns are actually the best. However, the value of p  is suitable, since the 

number of non-zero trail matrix values after several cycles still provides enough 

choice to allow a diverse range of solutions, while distinctly promoting the
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components deemed from previous cycles to be the most advantageous. However, this 

situation is slightly altered once the local search is implemented. Ordinarily, a lower 

value of p  is used in conjunction with a small population of ants to ensure that the 

trail still represents information from a wide range of solutions. For our problem, 

when local search is included and only one ant is used to update the trail, it is 

important that the nants in the following cycle are based mainly around this solution 

as opposed to the components of several solutions to avoid the problem where 

components from several good solutions are combined, but form a solution which is 

not feasible. However, it can be seen that the trail matrix values do converge much 

more quickly, as is to be expected, and there could be an argument for using a lower 

value of p  to prevent the convergence of trail values to a single shift pattern for each 

nurse, as does happen for a few datasets. However, although this may improve 

solution quality, it is unlikely to have enough impact to make further testing 

worthwhile at this stage.

5.4 Conclusions

The aim of this thesis is to investigate balancing different constraints within the 

framework of a constructive metaheuristic approach. In the last chapter, a GRASP 

approach was utilised and found to be successful in this respect. Combining the 

knapsack model alongside a heuristic employing appropriately tuned weights in the 

construction phase and combining this with a relatively simple local search proved to 

be a powerful method; this simple method was powerful enough to deal effectively 

with the conflict between feasibility and optimality, finding high-quality feasible 

solutions in all cases. Although this approach was later improved with slightly more 

problem-specific information, it was clear that a simple GRASP framework was 

suitable for dealing with the conflicting constraint information and able to balance the 

bias towards each problem aspect such that both costs were reduced sufficiently. This 

chapter has investigated the same questions using an AS framework. However, while 

the GRASP approach had a relatively straightforward implementation, the initial 

implementation of an ACO approach was complicated by the necessity of finding a 

suitable trail definition, as well as values for the large number of inbuilt parameters.
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The experiments carried out in Section 5.3 have provided a sensible trail definition 

and tested the algorithm with a reasonable range of parameters. Results showed 

similarities with the GRASP approach with regards to which constructive approaches 

were successful; the Holistic and LastChance heuristics were again shown to be 

superior and the inclusion of the knapsack model once again proved vital to finding 

feasible solutions. However, the AS method proved less able to successfully balance 

the conflicting constraints of feasibility and optimality. Even with an element of local 

search, the number of optimal solutions found showed the method to be much less 

robust in this respect than its GRASP counterpart and the possible reasons for this 

have already been discussed. The impracticality of applying trail matrix information 

to a non-linear problem is one of the possible reasons for the poorer quality of the 

solutions; by giving each assignment an overall score based on both feasibility and 

preference cost no regard is given to the fact that the feasibility of the solution rests 

with the successful combination of solution components, rather than with the 

necessity of including particular assignments. Another possible reason put forward for 

the lack of success of the AS algorithm was that the heuristic was allowed to choose 

from all possible assignments at each stage, rather than from just the best few, as was 

the case with the GRASP. The suitability of the weights within the GRASP heuristic 

in balancing the conflicting constraints was shown in Chapter 4, but the AS was 

allowed to select assignments which would necessarily have been excluded from the 

GRASP constructions. This could be countered by altering the heuristic to allow more 

distinction between high and low scores, by increasing the weights wc and wp using 

the multiplicative heuristics, for example, but this would alter the balance of 

importance assigned to each type of constraint.

However, it must be noted that the AS approach applied in this chapter, whilst not 

providing the level of solution quality or robustness exhibited by the GRASP, has 

shown that with the bias in the construction provided by the application of the 

knapsack model and the small element of local search, it is capable of providing 

feasible solutions for all datasets, something which not all previous methods in the 

literature can claim, and although the preference costs have not been optimised in 

most cases, for several datasets the quality of the solutions obtained is reasonable.
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We can therefore conclude that, while the practicality of applying and ACO approach 

to other problems with conflicting constraints may be questionable, due to the large 

number of possible parameter choices and the difficulty of finding a suitable trail 

definition, the ACO metaheuristic provides a framework in which a reasonable 

balance may be obtained.

Doubtless, there are many ways in which solution quality may be improved. We have 

already discussed how altering parameters such as nants and p  may provide some 

improvement and, of course, there are several variants of ACO which have not been 

applied and which may be more able to produce good solutions. Ant Colony System, 

for example, provides a slightly different framework: firstly, only the best solution 

created so far in the run is used to add pheromone to the trail matrix; secondly, each 

solution component is chosen probabilistically as for AS for q > q0, where qo is a 

parameter in the range [0,1] and q is a random variable in the range [0,1], but the best- 

scoring choice is made whenever q < q0; and thirdly, the trail matrix is updated after

each assignment has been made in order to diversify, by altering the trail of the 

solution component which has just been utilised. Clearly, some of these additions to 

the basic AS algorithm may be beneficial to the success of an ACO approach as 

applied to this problem; the fact that in a random proportion of cases the best-scoring 

assignment is made would certainly be likely to increase solution quality. Another 

possible way to improve solution quality is to enhance the local search or to apply 

local search to more than one solution per cycle.

However, the aim of this chapter was to determine whether a simple ACO approach 

would be able to handle the conflicting constraint information and create a suitable 

balance between the feasibility and optimality costs in the construction, rather than 

finding solutions of the highest possible quality. Improving the algorithm further, in 

order to enable an ACO approach to rival that of the final GRASP produced in 

Chapter 4, is a possible subject for further research.
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Chapter 6
Medical student scheduling with GRASP

6.1 Introduction

In Chapter 2 we introduced the medical student scheduling problem as one which 

provides an interesting array of conflicting objectives which must be successfully 

balanced during any solution approach if high-quality solutions are to be found. We 

mentioned that, unlike for the nurse scheduling problem, it is possible to guarantee 

feasible solutions; however, the feasibility issue is not so trivial that it can be ignored 

completely and so a trade-off still exists between the hard and soft constraints. Further, 

where the nurse scheduling problem had just one set of costs relating to the soft 

constraints, the medical student scheduling problem presents three separate costs relating 

to the soft constraints and this allows further investigation of the compromise necessary 

in order to achieve a good balance. Despite the many differences between the two 

problems, they are similar enough to allow the techniques applied to nurse scheduling to
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be applied to medical student scheduling as well and the constructive heuristics 

developed for medical student scheduling in Section 6.2.1 are based on the same ideas as 

those developed for nurse scheduling in Chapter 4. The exploitation of the underlying 

feasibility structure, which allowed the knapsack model to be applied to the nurse 

scheduling problem, is also mirrored in this chapter, where a network flow model is 

introduced in order to satisfy the hard constraints. We shall later show how this model 

can be developed into a full construction heuristic in its own right and the experiments 

using this approach, detailed later in the chapter, will be shown to provide interesting 

results.

We showed in Chapter 5 that an ACO algorithm was unable to provide very good 

solutions to the nurse scheduling problem due to the lack of linearity between the cost of 

solution components and the final solution cost. The fact that each nurse’s pattern was 

dependent on every other for feasibility meant that, in terms of feasibility, a good 

component of one solution may be very poor in another and an ACO approach was not 

able to consolidate the information from the previous cycles in order to provide reliable 

information about the likely value of each assignment. These same potential problems are 

present for medical student scheduling since, even if a complete schedule were 

considered for each student at each stage, the student pair constraints create an automatic 

interdependency between solution components. However, beyond that, the underlying 

symmetry of the problem, mentioned in Chapter 2, means that it would be impossible 

even to identify which component from one solution is equivalent to a specific 

component from another. Thus, even if ACO had been successful when applied to nurse 

scheduling, it may not be sensible to apply it here. However, although this traditional 

form of feedback may not be realistically applied, we do manage to introduce a form of 

learning between cycles, by storing part of the full schedule from the previous cycle. The 

details of this memory approach will be described later in the chapter.

We therefore begin our investigation into the medical student scheduling problem by 

applying a straightforward GRASP algorithm, incorporating ideas from the GRASP 

approach for nurse scheduling in Chapter 4. The rest of the chapter is organised as
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follows. In the next section we discuss how a GRASP approach may be applied to 

medical student scheduling and present the construction heuristics which will be 

investigated, discussing how a network flow model may be incorporated to ensure 

feasibility. The section concludes by introducing suitable neighbourhoods for the 

improvement phase. Section 6.3 presents a discussion of the 48 datasets investigated, 

providing details of how these were manufactured from the original two provided and 

Section 6.4 gives details of the experiments carried out using the basic construction 

heuristics and local search neighbourhoods detailed in Section 6.2 and the results 

obtained. Section 6.5 then gives details of further enhancements to the algorithm and, 

finally, Section 6.6 provides conclusions and suggestions for further research. Note that 

the notation for this chapter is as defined in Chapter 2 and is summarised in Appendix D.

6.2 Solution approach

This section is concerned with the solution approaches with which we shall tackle the 

medical student scheduling problem. Since we aim to solve this problem using GRASP, 

we shall be discussing the construction algorithms with which it may be sensible to 

proceed along with the possibility of ensuring feasible solutions at the end of the 

construction phase. The latter part of this section will then detail some of the local search 

neighbourhoods available for use in the improvement phase.

We begin with an examination of the construction phase.

6.2.1 Construction

The GRASP method consists of both a construction phase and an improvement phase, the 

construction phase gradually building a solution from either a partial or, more usually, an 

empty starting solution. The manner in which the full schedule will then be assembled is 

not pre-determined, but may be approached in several ways; the particular heuristics used 

to score and select components to add to the schedule must be chosen such that they 

create the careful balance between the different constraints necessary to arrive at good
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solutions. This section describes the particular heuristics and construction approaches we 

have decided to investigate, with explanations of why these choices have been made.

Since we are dealing with such a large scheduling problem, it makes sense to use a 

systematic approach in order to solve it. This leads us to two options for how to proceed: 

either we can approach the problem one timeslot at a time and make sure all students are 

scheduled before proceeding to the next timeslot or we can proceed student by student 

and give each student a full schedule of five placements before continuing on to the next 

student. The option to pick both student and timeslot simultaneously was discarded for 

two reasons. The first is that by doing this, it will take much longer to incur any costs 

and, as such, we are more likely to be forced into making very poor choices when 

scheduling the last few placements. The second reason is that there is no obvious way to 

ensure feasibility when scheduling in this way. As will be discussed in Section 6.2.2, 

creating the schedules in a more orderly fashion, either student by student or timeslot by 

timeslot will permit feasible solutions to be guaranteed.

Now our two approaches have been decided upon, we will detail the four construction 

heuristics we have chosen to investigate, based on the Cover, Combined, Holistic and 

LastChance heuristics used to tackle the nurse scheduling problem. Note that for the 

nurse scheduling problem, both additive and multiplicative methods were introduced to 

combine the feasibility and optimality parts of the scores. However, results showed that, 

while there were significant differences between heuristics, there was generally little 

difference between the results obtained using an additive or a multiplicative approach. 

We therefore use only one such approach in this chapter, selecting the multiplicative 

approach as it proved to be the more robust of the two. This section gives details of each 

heuristic applied.

Note that, at the start of the construction, students form a homogenous group and only 

become distinct once they have been assigned a firm for their first placement in timeslot 

1. In this problem, for which the exact characteristics of the 48 datasets presented are 

discussed in Section 6.3, the first timeslot is tight, and so always has the same number of
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places available as students to be scheduled. Given that every place in each firm in 

timeslot 1 must be filled by a student, each student must take exactly one place and all 

students are identical when no assignments have been made, we may assign each student 

a place in timeslot 1 and use the construction algorithm to schedule only the remaining 

four timeslots. Even if students are to be assigned one at a time, rather than timeslot by 

timeslot, all students may still be assigned their first placement without affecting the 

effectiveness of such a method.

To assign each student a firm in timeslot 1, we merely fill the places in each firm in turn, 

student by student. This results in a complete schedule for this timeslot.

Let S be the set of students and S* the set of students who have been assigned their first 

placement. Here s is a student in S , f  is a firm offering speciality 1, C/ is the capacity of 

firm /  and C+ft is the number of students currently placed in firm /  in timeslot t. Then we 

proceed as in Figure 6.1.

Procedure to allocate first timeslot

Step 1: Set S* =  0 .

Step 2: Set/ =  1,5 = 0 and C+fl = 0, V / .

Step 3: Set s = 5+1.

Step 4: If C+fx = Cf , set /  = f  + l .

Step 5: Make the allocation xs/i = 1 and set S* =  S* u  { 5 } ,  C+fx = C ,̂ +1.

Step 6: If S* * S  Go to Step 3.

Figure 6.1. Procedure to allocate the first timeslot.

We will not consider taking each student in turn and giving them a full schedule at this 

stage, but concentrate instead on creating schedules timeslot by timeslot. The reasons for 

this will be explained in Section 6.2.1.5. We now describe the construction phase using a
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score function y(sj,t) for the case where timeslots 2-5 are scheduled one at a time. Let t 

be the current timeslot being scheduled. Here, Sf is the set of students who have been 

assigned a placement in timeslot t. We introduce the notation Dq to represent the set of all 

students who have already been assigned to a firm covering speciality q. The procedure is 

shown in Figure 6.2.

Procedure to allocate timeslots 2-5

Step 1: Set t = 2.

Step 2: Set S* = 0  and Dq = 0 ,  for q -  2 ,..., 5.

Step 3: Calculate the score y (s j j)  associated with allocating student s to firm /in the 

current timeslot for all pairs (s j) §, with s <£Dq if a/q= I.

Step 4: Let L be the candidate list of the n highest scoring options.

Step 5: Select (sj)^L  using roulette wheel selection, i.e. each (sj) is selected with a 

relative probability proportional to y(sj,t).

Step 6: Update the schedule with this allocation and set S* = S+ u  {5}and Dq =

{5} for q such that cifq = 1.

Step 7: If Sj * S go to Step 3.

Step 8 : I f * * 5 ,f  = /+  l. Go to Step 2.

§ Note that the set of feasible allocations (sj) may include all students not already 

allocated, or may relate to a single student s given by a predefined ordering.

Figure 6.2. Procedure to allocate timeslots 2-5.

As for the nurse scheduling heuristics, we have two scores for the feasibility. Let us 

define a value for the number of places remaining in a speciality q at time t, dqt, as

d„,= Z max{c / - c /<’°}- (61)
f-aA =1
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If we set q'= argm ax^,}, we can define the first of these two feasibility scores, fscorelft 

to be

fscorelf l = \  max(C/ - C;>°} ifa /< =1 . (6.2)
[ -1  otherwise

We choose q' as the speciality with the highest number of remaining spaces and only 

give a score to a firm /  if it offers this speciality. The score given to a candidate firm f  

fscorelft, is then simply a measure of the remaining number of available places in this 

firm in the current timeslot. The value -1  assigned to firms not belonging to q' is an 

arbitrary negative value to ensure firms not offering speciality q' are given a lower score 

than firms which offer q ', but have no places remaining and any firm with a negative 

score is automatically not included in the roulette wheel selection process.

Since each student must cover each speciality, it is important that we do not schedule too 

many students to do each speciality in the early stages as we may have difficulty in 

obtaining feasible schedules in the later stages of the construction. In the data provided, 

firms offering the same speciality tend to have a similar number of places, but different 

specialities will have different numbers of firms with different numbers of places 

available. If only the remaining number of spaces in each firm were considered, then, 

near the beginning of the construction, specialities with a smaller number of higher

capacity firms would be consistently selected before any other specialities were

considered. By restricting the choice of firm to one from a speciality where fewer people 

have already been placed, we hope to ensure a more even distribution of students across 

the different specialities from an early stage, in order to improve the chance of being able 

to directly construct feasible solutions. Note that the logic behind this idea uses a similar 

approach to that of the Cover heuristic applied to the nurse scheduling problem, where 

choices were limited to just days or nights.
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To create our second feasibility score, we allow firms from all specialities to be 

considered. By doing this we hope to direct the search to finding high quality solutions, 

rather than just feasible ones. In Section 6.2.2 we are able to introduce an additional

algorithm to guarantee feasible solutions. Given this, we wish to ensure that our

constructions are still concerned with finding low-cost solutions; it would be undesirable 

to direct the search towards feasible solutions to the detriment of final solution quality.

We thus define our second feasibility score, fscore2/t to be

fscore2ft = max{Cy -  C+ft ,o}, (6.3)

for all firms f

We now define the optimality score for a given firm /  in timeslot t, based on the 

fulfilment of the three soft constraints. The score comprises three components: one from 

each of the three soft constraints. The part of the score associated with the consultant 

clashes, 01, is given by equation (6.4). The part of the score from hospital clashes, 02, is 

given by (6.5) and (6.6) gives the score from the number of student pairs, 03.

/ - I  V

oscorelsft = EE (6'4>
U = 1 g = l  

/ - l  V

oscore2sft = EEV«« (6.5)
u = 1 g = l  

M  r v

oscore3s/, = EEE x w x w x zf, (6.6)
u = 1 z = 1 g = l  

z*s

The way in which (6.4) and (6.5) are calculated is straightforward; we calculate the 

number of times in the previous timeslots where student s has been in either the same
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hospital or with the same consultant as firm f  We have essentially the same scores as

(2.4) and (2.5), put forward in Chapter 2, but we ignore all irrelevant costs and 

concentrate solely on those which would be affected by the new assignment.

When we calculate (6.6), we need to calculate the effect on the student pairs cost, of 

adding student s to firm f  We cannot use the same type of calculation as before, since we 

are counting the occurrence of pairs, where a single pair is not to be penalised. When 

investigating hospital and consultant clashes, every pair incurs a cost. Instead, we 

calculate this score, oscore3sfh as the number of times students s and z have been placed 

together in previous timeslots, where z has already been placed in /  in timeslot t. We use 

this score because if students s and z are placed together in timeslot t, the student pairs 

part of the cost will increase by the number of times these students have been placed 

together in the previous timeslots. This is demonstrated in Table 6.3, where Nszt represent 

the number of times students s and z have been placed together in timeslots 1 to t -  1.

Nszt Cost due to N szt Cost if  Nszt = Nszt +1 Increase in cost
0 0 0 0
1 0 1 1
2 1 3 2
3 3 6 3
4 6 10 4

Table 6.3. Explanation for equation (6.6).

We can therefore use the value of Nszt to calculate the change in cost achieved by 

allocating student s to firm f  Note that Nszt = 5 indicates that student 5 (and z) has already 

been given a full schedule and so would not be considered.

Combining these three scores into a single optimality score, oscoresft, and using the 

weights we decided upon previously, we obtain

<-1 v , . / - I  r v

oscoresf,  =  ’Z ’Z ( 5 0 c fgxsgu + 1 ° V W + Z Z Z  • ( 6 - 7 )
u - 1 g - 1 u= 1 Z=1 g - 1z#s
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We now demonstrate how these three scores are used to create the four heuristics we will 

base our experiments on.

6.2.1.1 Feasibility

We define the score function for the Feasibility heuristic to be

Feasibility :gi(f,t) =fscorelft. (6.8)

This heuristic is similar to the cover heuristic used to solve the nurse scheduling problem; 

only the feasibility is taken into account, with the soft constraints disregarded. For initial 

experiments we use this heuristic with a predefined ordering of the students. We therefore 

calculate gj(f,t) where t is the current timeslot being considered, for all firms /  which 

cover a speciality the particular student under consideration has not yet been assigned to.

6.2.1.2 Combined

The score for the Combined heuristic is defined as

fscore2
Combined :g2{sfy) = ---------- ^ -----, (6.9)

oscoresft ° +1

where wy and wQ are constants. This heuristic uses a pre-defined ordering of the students. 

Thus g2(sf,t) is used to calculate the scores for each firm/ covering a speciality student s 

has not yet covered, where s is the particular student being scheduled and t is the current 

timeslot being considered.

This heuristic, as indicated by the name, is based on the Combined heuristic used for the 

nurse scheduling problem. Multiplying by fscore2ft will result in a zero score for all firms 

/  already filled to capacity in timeslot /, irrespective of how few other costs would be 

incurred. We divide by oscoresft since a larger cost here is undesirable. The larger the 

optimality costs, the smaller our overall score. We add 1 to this denominator to prevent 

division by zero.
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6.2.1.3 Holistic

The Holistic heuristic for the medical student scheduling problem is, once again, a variant 

on the heuristic of the same name produced for the nurse scheduling problem. Here we 

use the same basic scoring method as for the Combined heuristic, but, rather than taking 

all the students in a set order, we select the student and firm at the same time. This 

heuristic only makes sense if we schedule one full timeslot before tackling the next. If we 

were to create a full timetable for each student before moving on to the next, there would 

be little advantage in taking the students out of order. There is the option to select both 

the timeslot and firm for a pre-selected student, but given the symmetry between 

timeslots at all stages of the construction, again, there seems little purpose to this 

endeavour.

The scores for the Holistic heuristic are therefore

Holistic :g3(sfy) = f score2f‘— ? (610)
oscoresft 0 +1

but in this case the scores are calculated for all s, and all /  relating to s in timeslot t. 

Again, w/ and wQ are parameters to be decided.

6.2.1.4 LastChance

We relate this heuristic back to the nurse scheduling heuristic of the same name. Let Gst 

be the set of all firms f  such that it is feasible for student s to be allocated to /in  timeslot 

t.

Then let f(s ,t)  = argmax{g3 ( s ,/ ,* )} .
f*Gs,

We then calculate the scores for the LastChance heuristic as

LastChance:g4(s,t) = max{g3(s,/ , / ) } -  max {g3(s,/, ')} •  (6.11)/eGs,
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As for the Holistic heuristic, it makes little sense to apply this, as it stands, to the case 

where we schedule by student rather than by timeslot, since in each phase of the 

construction this algorithm would lead us to choose a student to schedule. We would then 

assign student s to firmf  {sj).

To make this heuristic fit with the student by student approach we would have to work 

out the scores for complete student timetables. We would then pick the student with the 

largest difference between their best and next best schedules and assign them so as to 

achieve the lowest possible cost. Obviously, this is a much more time-consuming 

enterprise than the original scheme.

6.2.1.5 Choosing between scheduling approaches

Since two of our four construction heuristics must be scheduled by timeslot rather than by 

student, we shall proceed with the timeslot by timeslot method of construction. There is 

no reason to suppose that scheduling students one at a time would be a more successful 

construction technique and, given that the two heuristics which cannot be used in this 

way are based on the more successful of the heuristics applied to nurse scheduling, this 

seems a sensible approach to take. The final decision on which approach to use will be 

discussed once the approaches to ensure feasibility have been analysed for both types of 

construction.

6.2.2 Ensuring feasibility

As discussed previously, we are able to present a method by which we can guarantee all 

solutions will be feasible at the end of the construction. Once feasibility constraints are 

satisfied, the improvement phase may concentrate solely on lowering the costs relating to 

the soft constraints. This section discusses the manner in which we may produce feasible 

solutions.
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Since each speciality has the same number of places available in each timeslot, we 

already have a trivial method for creating feasible schedules, by allowing each group of 

four students to cycle through the specialities such that each speciality is covered exactly 

once in each timeslot. This would distribute the students evenly across the specialities 

over the four timeslots and ensure that the feasibility criteria are met. However, by 

adhering to such a constricting system, we inevitably lose the required flexibility to build 

good quality solutions as was demonstrated by the example in Figure 2.3 in Chapter 2. As 

such, this type of cyclic scheduling will not be explored further.

Since we are creating the schedules timeslot by timeslot we need to guarantee that at the 

end of each timeslot /, each speciality q will have accepted a number of students, Aqi, 

such that the number of students yet to study speciality q does not exceed the number of 

spaces available. This will be achieved if we satisfy conditions (6.12) and (6.13).

Inequality (6.12) prevents the number of students assigned to speciality q in the current 

timeslot from exceeding the number of spaces available in q while inequality (6.13) says 

that the number of students who must still study q at the end of timeslot i, given by the 

number who needed to study q at the beginning of timeslot i less those who have been 

allocated to study it in /, must be less than the capacity of q in the remaining timeslots. 

For a general case with N  timeslots, this gives

Ag:< f^ C f aA , (6.12)
/=1

(6.13)
S=1 /=l t=2 /=1 /=/+1

where

5=1 / = 1  / = 2

represents the number of students who have not yet studied q and
v N

X  2  Cf afq
/ = 1  t= i+ 1
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represents the number of places available in q in the remaining timeslots. Then, by 

rearranging (6.13) we obtain a lower bound for Aqi, given by inequality (6.14).

x sJ>a fy -  Z  Z  C f a A  (6-14)
S = \  /= 1  t=2 /= 1  t=i+\

Thus (6.12) and (6.13) impose necessary conditions on the upper and lower bounds for 

Aqi, respectively, for the solution to be feasible. However, although these two conditions 

are necessary for a feasible solution to exist, they are not necessarily sufficient. Consider 

the counterexample given in Figure 6.4.
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Counterexample showing (6.12) and (6.13) are not sufficient for feasibility

Consider a situation with 16 students, where the following numbers of places are 

available in each speciality in each timeslot.

2
Timeslot 

3 4 5 Total
2 3 4 5 5 17

o<D 3 4 3 5 5 17
o.00 4 5 5 3 4 17

5 5 5 3 4 17
Total 17 17 16 18

There is enough space in each timeslot and each speciality for a feasible solution to be 

possible; the following permutations each worked by the given numbers of students: 

(2,3,4,5) x3, (3,2,5,4) x3, (4,5,2,3) x5 and (5,4,3,2) x5, give an example of a 

feasible allocation of the students’ speciality permutations.

However, by obeying (6.12) and (6.14), such feasibility is not guaranteed. Allocating 

students to specialities in the first two timeslots thus: (2,3) x3, (3,2) x4, (4,5) x5,

(5,4) x4 would leave the correct number of places remaining for each student to study 

their remaining specialities in timeslots 4 and 5 and so (6.12) and (6.15) would be 

satisfied. However, we would be left with the situation where 7 students must study 

specialities 4 and 5 in the last two timeslots and although there are enough places in 

total, there is not enough space in timeslot 4 for 7 students to study these two 

specialities.

Figure 6.4. Counterexample showing (6.12) and (6.13) are not sufficient for feasibility.

This counterexample shows that (6.12) and (6.13) are not sufficient for feasibility in the 

general case. However, in the particular cases investigated in this research, the same 

number of spaces are available for each speciality in each timeslot. We now prove that, 

when equal numbers of spaces in each speciality are available in each timeslot, conditions



(6.12) and (6.13) are sufficient for feasibility. We first define a number of terms 

necessary for the proof:

Bipartite graph:

A graph G(V,E) whose vertices V may be partitioned into two disjoint subsets with no 

edge e e E connecting two vertices within the same subset.

A Matching:

A set of edges such that no two edges have a vertex in common.

A perfect matching:

A matching of a graph G(V,E) containing |F|/2 edges.

Hall’s Marriage Theorem:

Let G(V\,V2,E) be a bipartite graph with partitions V\ and V2 and Then there

exists a matching such that every vertex in V\ is connected iff, for every subset V  of Vi, 

|U V'\ >\v \ , where |U V'\ is the number of vertices in V2 adjacent to vertices in V ' .

6.2.2.1 Proof of feasibility

We prove by induction that (6.12) and (6.13) are sufficient in order for a feasible solution 

to exist for the case where there are N  timeslots needing to be scheduled.

First, consider inequality (6.13). At the beginning of timeslot i, the number of students 

who will study speciality q in timeslot i may be incorporated into the right hand side of 

the equation, leaving the more general inequality

r - t t Z x* af ^ H C f a A , (6-13')
S = l  f = \  t=2 / = 1 t = i
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which indicates that the number of students who are left to study q in the remaining 

timeslots does not exceed the number of places available.

Consider the situation where just one timeslot remains to be scheduled, timeslot N. 

Assuming that (6.12) and (6.13') have held throughout timeslots 1 to i -  1, each student 

will have just one speciality left to cover and, if (6.13') holds at the beginning of this 

timeslot, a feasible solution exists, since this tells us there are enough places for each 

student to study their remaining speciality.

Let us now consider an arbitrary timeslot i and assume that inequalities (6.12) and (6.13’) 

have been satisfied for timeslots 2 to i -  1. We must show that if we start i with (6.12) 

and (6.13') satisfied, we can find an assignment that will then allow us to start timeslot i 

+ 1 with (6.12) and (6.13) still satisfied.

Let us set up a bipartite graph G(Vi,V2 ,E) as follows. Let V2 be the set of all the places 

available in timeslot i and let V\ comprise two subsets: Va and Vb. Let Va be the set of all r 

students and let Vb be a set containing one ‘dummy student’ for each extra place in V2 

which exceeds the size of the subset Va. Thus Vb is set up to ensure that the number of 

places available in V2 is equal to the number of ‘students’ in V\. If we think of this in 

terms of the specialities, this gives

(tf-i + OICV-Er-EIZ
/ = 1  q  |_  s = l  / = 1  t= 2 (6.15)

N - i  + 1

which can be rewritten as

v  r  v  i - 1

Z  (Ar- ' +1) Z c / <v » -  r - E E E * t f aAS=1 /=1 t=2
(6.16)

N - i  + 1
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where

(jV-i + l^ C y a
/=1

is the total remaining capacity in speciality q, and

r - ± ± ± W «
5 = 1  / = 1  , = 2

is the number of students still needing to do speciality q. Essentially, \Vb\ is given by

summing the capacity of all firms in a given timeslot and subtracting the total number of 

students, r; by considering that all students still need to study N  -  i + \ specialities in the 

N  -  i + 1 remaining timeslots, the size of |Fa| summed over all remaining timeslots is 

obtained. We therefore divide by the N — i + 1 timeslots remaining to obtain the value for 

in a single timeslot. Note that |F6| is constant throughout since the value of \Vb\ is

defined as the total capacity less the number of students and, in the problem considered 

here, the total capacity of each speciality is the same in each timeslot.

Now consider a variable slackq, which is defined as the maximum number of spare places 

we can allow in q in timeslot i. This is given by

slackq = Cf afq -m in (^ .)  
/ = i

H c f afq
/ = i

r  v  / - l

OX c
5 = 1  /= 1  t=2 f =1

f afi

= ( N - i  + l)-£C f aA -
f =1

r  v  / - I

r - Z Z Z * # a fq
s=l /= 1  /=2

(6.17)

(6.18) 

(6.19)

Note that (6.18) is obtained from making the substitution given by (6.13). The constant 

W -  1’ in (6.18) is given by the fact that this part of the sum is over timeslots i+1 to N  in 

inequality (6.13) whereas, until this point, we have been referring to (6.13’), which 

incorporates the Aqi values and is therefore summed over timeslots i to N.
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For each q then pick slackq variables in V2 corresponding to speciality q and denote these 

sets Vq.

Now define an edge between each vertex in Va and each vertex in V2 which corresponds 

to a place in a speciality this student has not yet covered. Further, define an edge between 

every vertex in Vb and every vertex belonging to a place in a set V .

Proposition:

Every perfect matching in G(V1,^2,is) corresponds to a feasible assignment for period i 

satisfying (6.12) and (6.13).

This will be true because every student vertex in Va will be matched with a vertex in V2 

corresponding to a speciality the student has not yet covered, given that only edges 

relating to feasible allocations were allowed and given that in a perfect matching each 

student vertex will have exactly one such edge. Furthermore, (6.13) will be satisfied 

because a maximum of slackq spaces in any speciality q will be unassigned in timeslot i 

and slackq is defined as the permissible number of unassigned places in q such that (6.13) 

will hold.

We therefore just need to prove that a perfect matching exists.

Take a subset V' of size k of vertices in V\.

First let us assume that V' does not contain any vertices from Vb. Then this subset is 

adjacent to all vertices in a subset S' containing all places covering a speciality still 

required by any vertex in V ' . We therefore have

l5 1= E Z c A  • (6-20)
q e S y . f = 1

where Sv. is defined as the set of specialities required by at least one student vertex in 

V' . Since each element of Va is adjacent to N -  i + 1 specialities, we have the result

219



z
| j / ’| <

r  v  i - 1-zzz
s = l  / = 1  / = 2

N - i  + 1

< z Z<>f i t

(6 .21)

(6.22)
q e S y  f = \

since
r  v  j - 1

5=1 /=l /=2
< ( w - ; + i ) £ £ c /a

f q
q  f = \

by (6.13*).

We have therefore shown that for the case where V' consists only of vertices from Va 

\V\ < |»S"| and so, by Hall’s Marriage Theorem, a perfect matching exists.

Now let us assume that V' contains kb vertices from Vb. We therefore have

z (N - 1-a;

o
'+1 -ZZZ^/,

9 /=l 5=1 /=! /=2
iV - 1 +1

z
q e S y . /= 1

- Z Z Z w ,5 =  1 / = 1 t  =  2

zq*Sy

N - i  + \

/= 1

r  v  / - I

r - X s f t a f q
5=1 /=1 t = 2

N - i  + \

(6.23)

+ (6.24)

We know that the size of V' can now be written as

r  v  / - I

\vUk<\vb\+
ZqeSy

r - X s f t a f q
5=1 /=1 /=2

N - i  + l
(6.25)
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Z Z C/*
q  /  =  1

fq
+

IqtSy

V J - l

-ZZZ
5 = 1 /  = 1 1 = 2

N - i  + l

X s f t a f q

(6.26)

by substituting the value of \Vb\ from (6.24) and simplifying. But V ' is also adjacent to 

all V for q <£Sy., since each vertex in Vb has an edge to all vertices in Vq for all q, and 

since
r  v  j ' - l

\Vq\ = slackq =  ( N - i  + l)̂ T Cf af q-
/=i

r - Xsfiafq
5=1 /= l t=2

we therefore have

\v\
fq

+ qiSy 5 = 1  / = 1  t= 2

q /=1 JV-i + 1

from (6.26) and we obtain

(6.27)

(6.28)

|5l = ( N - i- + l ) X Z c / a/» + Z
q  / = 1

r  v  i - l-zzz
5 = 1  / = 1  (= 2

Xsfiafq (6.29)

by adding the total number of nodes adjacent to b \  •

Comparing the right hand sides of (6.28) and (6.29) shows we have the result |F'| < |*S"| as

required, proving that a matching, and hence a feasible allocation of the students, exists 

for timeslot i. We have shown that if (6.12) and (6.13) hold at the beginning of timeslot z, 

then we can start timeslot z+1 with (6.12) and (6.13) still satisfied and we know that, if

(6.12) and (6.13) are satisfied at the beginning of timeslot N, we find a feasible allocation 

for the remaining students. Furthermore, we know that (6.12) and (6.13) hold at the 

beginning of timeslot 2 because each problem has sufficient capacity for the problem to 

be feasible. It has therefore been shown that (6.12) and (6.13) are both necessary and 

sufficient conditions for feasibility, given that all timeslots have equal capacities for each 

speciality.
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We have shown the bounds for the total number of students who must do each speciality, 

but we also know that only certain students may be included in these numbers; if a 

student has already done speciality q in a previous timeslot, they must not be one of the 

students to be assigned to q in the current timeslot.

We now introduce a new variable, by designating sixteen student ‘types’. Note that these 

should not be confused with the nurses’ ‘types’ introduced in Chapter 2, since the nurses 

were classified into types according to their contracts and remained the same type 

throughout the solution process. Although the student types also relate to feasibility, the 

difference here is that a student’s type changes dynamically as the construction 

progresses and is related to the current construction rather than the details of the problem 

instance being considered. The type p  of a student is determined by the specialities the 

student must still cover in order for the solution to be feasible. A student’s type is 

therefore largely determined by the current timeslot, since as each student is scheduled, 

the number of specialities remaining for this student decreases and the student type will 

change. The student types are outlined in Table 6.6.

p Specialities previously assigned
1

2-5
6-11
12-15

16

None 
{2}, {3}, {4} or {5}

{2,3}, {2,4}, {2,5}, {3,4}, {3,5} or {4,5} 
{2,3,4}, {2,3,5}, {2,4,5} or {3,4,5}

{2,3,4,5}
Table 6.6. A list o f  the specialities covered by each o f the student types, categorised by timeslot.

Note that we ignore speciality 1, since this is covered by all students in timeslot 1 and 

consider only the remaining four specialities when referring to student type. Therefore 

p  = 1 refers to a student who has been assigned to speciality 1 only. After a student has 

been assigned a place in timeslot 2, the student’s type will be in the range [2,5], since in 

timeslot 2 they must have been assigned to cover exactly one speciality. Similarly, a 

student scheduled in timeslot 3 will have covered two of the four specialities and their 

type will therefore be in the range [6,11]. Once all assignments have been made, the 

student will be type 16. If we now look at the types, /?, of student who may be eligible to
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study speciality q, we can easily set limits on the number of students Bpq from each type p  

who may study speciality q. The only possible values for Bpq are given by

0< B pq< \p\ (6.30)

where \p\ is the number of students of type p. Note also that

(6-31)
P

We may now express our problem as finding a way to allocate numbers of students from 

the types p  to the specialities, q, in such a way as to ensure the upper and lower limits are 

adhered to. We therefore wish to find whether there are suitable values Bpq such that 

constraints (6.12) and (6.14) are met and every student is allocated a place in a firm they 

have not yet studied. More formally, we can say that for timeslot i we wish to find a 

solution to

Bpq<\p\ Vp,q (6.32)

v <7 (6-33)
P  / = •

Z*« - i t C / O j *  v? (6-34)
p  5 = 1  / = 1  1= 2  f = \ t = i + \

^  Bpq = D , where D is a constant. (6.35)

We are now left with a problem which may be modelled as a network flow and in the 

next section we explain this process.

6.2.2.2 Applying a network flow model to the medical student scheduling problem

Figure 6.7 demonstrates how a feasibility test for the medical student scheduling problem 

may now be modelled as flow through a network. The main flow variables relate to the 

variables Bpq representing students of type p  being allocated to speciality q in the current 

time period. This diagram shows the situation during a particular timeslot /; note that the 

number of nodes for student type p  and the number of arcs from nodes p  to q will vary
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depending on the timeslot being considered. Other relevant arcs and source and sink 

nodes have been added in order to model the situation as a minimum cost flow problem 

in a closed network.

NODES: Source Student type p  Speciality q Sink

ARCS: A rcl Arc2 Arc3

Figure 6.7. Network flow model representing the situation during an arbitrary timeslot i o f the medical

student scheduling problem.

All costs in the network are zero as they have no meaning in this context; the lower and 

upper bounds on each of the arcs, represented as I and u respectively, can be specified as 

follows.

Arcl

An arc (Source,/?), connecting the source with a particular student type, /?, has

I = u = \p\,

Arc 2

An arc (p,q), connecting a student type node to a speciality node, q, has

I = 0, u = |/?| 

as given by inequalities (6.30), previously.
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The flow along these arcs represents the number of students of each type who proceed to
*

study each of the possible specialities in timeslot i. If no students of a given type p  are

assigned to a particular speciality q*, the flow along arc (p*,q*) will be zero. Similarly if
£ $

all students of type p  were assigned to q the flow along this arc would be

Arc 3

An arc (#,Sink), connecting a speciality with the sink node, has

l = r ~ -  Z  Z c / a/ ,’ “ = Y f t aM >
i = l / = l t = 2  / = 1  / = / + !  / = 1

as given by (6.12) and (6.14), previously.

Finally, an arc connects the sink node to the source node in order to complete the flow, 

with bounds given by

I —u — r.

This network flow problem can be solved relatively quickly using the out-of-kilter 

algorithm, detailed in Dowsland (2005). It is known that the minimum cost network flow 

problem can be solved in polynomial time, but, for the general case where there are N  

timeslots and specialities to consider, the time required for the network flow feasibility 

check increases exponentially with N.

Finding the existence of a feasible flow in this network for each of the timeslots means 

there exists a way in which we can allocate students so that the schedule will be feasible 

at the end of the construction. Of course in order to then create such a feasible schedule, 

we allocate students in a feasible manner throughout the construction phase of the 

GRASP cycle.

When using the knapsack algorithm to improve the feasibility of constructions for the 

nurse scheduling problem, we had a similar approach. Solving the knapsack model of the 

problem would tell us whether a feasible solution was possible, but then we had to check
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each of our assignments with the model and update it accordingly after each addition to 

the schedule. We approach the use of the network flow model similarly.

We start by solving the problem in the above network to give an initial feasible solution 

and a corresponding set of flows Fy along each arc (if). Let upq and lpq denote the upper 

and lower bounds on arc (p,q), from type p  to speciality q, respectively. Then as we 

progress through the construction, each time a student is assigned a firm, we test the 

feasibility of the flow by increasing the lower bound on the relevant arc by 1 unit. If this 

does not violate the upper bound and a feasible flow can be found, the assignment is 

allowed and the flow is altered accordingly. These lower bounds are maintained to ensure 

any future solution includes the current and all previous assignments. Otherwise, if no 

feasible flow exists with this assignment, the lower bound is reduced again and no future 

assignments are considered which would send flow through the arcs which are already at 

capacity. Essentially, each attempted assignment tells us whether or not a student of type 

p  can study speciality q in this timeslot.

The process is summarised in Figure 6.8.
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0 = 0  )

-------------- V --------------
Use network flow model 

to find compatible F'

Pick student s and 
lĵ j> firm/implying type<^[ 

p  and speciality q

NO J  Set / = / +1 andJ s l  * p q  p q

^  solve new flow model

Assign student s to firm f  
Update F'

YESlu u c in  s  iu  m m j .

' with I = 1 + 1  ^
P R  P R

Set S* = S*v{s}

Flow exists?

Ban further (p,q) 
allocations in slot i

(^Construction complete^)

Figure 6.8. Flow chart showing implementation o f  the network flow algorithm.

It is known that the minimum cost network flow problem can be solved in polynomial 

time, but, for the general case where there are N  timeslots and specialities to consider, the 

time required for the network flow feasibility check increases exponentially with N.
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6.2.2.3 Ensuring feasibility for student by student construction

If we are creating the schedules student by student, rather than timeslot by timeslot, 

clearly the same logic cannot be applied. In this case, setting bounds on the number of 

assignments to each speciality is not sufficient. Although guaranteeing that there is 

enough space left in each speciality for all students still to be scheduled, by adhering to

is a necessary condition for a feasible solution to exist, it is not sufficient, as the 

counterexamples in Figures 6.9 and 6.10 show. Each counterexample demonstrates a 

different type of problem: Example 1 in Figure 6.9 shows that it is possible, when 

allocating a student’s schedule one timeslot at a time, to reach a situation where it is not 

possible to find a feasible allocation for the rest of the schedule; Example 2 in Figure 6.10 

shows that it is possible, once a subset of students has been allocated, to reach a situation 

where there is no feasible allocation for the rest of the students, due to the fact that 

remaining spaces in a speciality will vary between timeslots.

(6.36)
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Example 1

Consider a situation with 2 students, 

available in each speciality in each times

where the fol

ot.

Timeslot 
2 3 4 5

lowing numbers of places are 

Total
2

6 3 0) J & Aoo 4
5

1 0  0 1 
0 1 1 0  
0 0 1 1  
1 1 0  0

2
2
2
2

Total

There is enough space in each timeslot ai 

possible; (2,5,3,4) and (5,3,4,2) woulc 

speciality permutations. However, if the 

timeslots, there is no way to complete 

correct number of spaces being available

2 2 2 2

tid each specie 

i be a feasit 

first student i 

the current s 

in total.

ility for a feasible solution to be 

ile allocation of the students’ 

s allocated (2,3) in the first two 

tudent’s allocation, despite the

Figure 6.9. Counterexample showing inequality (6.36) is not sufficient for feasibility when scheduling

student by student.

Example 2
Consider a situation with 3 students, 
available in each speciality in each times

where the fol 
ot.

Timeslot 
2 3 4 5

lowing numbers of places are 

Total
2

6  3
Oh Aoo 4  

5

1 2  2 2 
2 1 0  0 
0 1 7  1 
1 0  1 7

7
3
3
3

Total

By allocating the first student permutatii 
each speciality, and (6.36) is upheld, ho1 
the remaining allocations since both stu 
timeslot 2 and therefore only one student

4 4 4 4

Dn (2 ,3,4,5), v 
wever, there i 
dents will be 
will be able tc

/e have at least 2 spaces left in 
s then no feasible way to make 
forced to cover speciality 3 in 
) cover speciality 5.

Figure 6.10. Second counterexample showing inequality (6.36) is not sufficient for feasibility when

scheduling student by student.
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We must therefore develop necessary and sufficient conditions for a feasible allocation to 

exist. We begin with the situation in Example 2.

Suppose there are s students left to allocate. Let the number of spaces available in 

speciality q in timeslot t be denoted Spaceqt. The number of places required overall in q is 

s, as given by (6.36). Set up the bipartite graph G(V\,V2 ,E) such that V\ is the set of 

specialities and V2 is the set of timeslots and define an edge e e E  between q e Vx and 

t g V2 for every available place in speciality q in timeslot t. There will therefore be 

Spaceqt edges between vertices q and t.

A feasible allocation will consist of a subset of edges E \  such that Z)eg£,(v') = s 

V v ' g (F, u F 2 ) .  This provides an edge relating to each speciality and each timeslot for 

each student. Thus, the existence of such a subgraph is a necessary condition for 

feasibility. We now show it is also sufficient.

An Edge Colouring:

An assignment of colours to the edges of a graph, such that no two edges with the same 

colour have a vertex in common.

Graph colouring theorem:

The edges of a bipartite graph with maximum degree Dmax can always be coloured in 

Dmax colours. Furthermore, this is the optimal edge-colouring.

Consider the subgraph formed by E '. The number of edges is given by 

(V u  V )s
p ]  = 2 = number of timeslots x s (=  number of specialities x s ), (6.37)

since the number of edges is equal to half the sum of the degrees. Thus the maximum 

degree is 5 and the graph can be coloured in s colours and each colour must be used on N  

edges, as all edges are included, where N  is the number of timeslots (and specialities).
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Thus each set of edges in a single colour form a feasible allocation for one student and so 

s students can be allocated.

We can represent the above conditions as a network flow problem. Let xqt equal the 

number of edges from q to / in E ' . Then there exists a suitable subgraph G’(Vl,V2,E') if 

we can find xqt such that:

2X<= iW
q = 2

(6.38)

(6.39)
t= 2

where the summations would be taken from 1 to N  in the general case.

These are simple network flow constraints and will be satisfied if there is a feasible flow 

in the network with nodes (S,Vl,V2T) with the lower and upper bounds, represented by 

LB and UB, on each arc V q, t shown in Table 6.11.

Arc LB UB
s s

(<7.0 0 Spaceqt
(f,T) s s
(:r , s ) Ns Ns

Table 6.11. Lower and upper bounds required for a feasible flow in the network. 

Figure 6.12 shows the setup of this network flow model.
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Source Specialities q Timeslots t Sink

S Vi V2 T

Figure 6.12. Network flow model for which a feasible flow designates a feasible allocation o f specialities to

timeslots which scheduling student by student.

Then if we can find a feasible flow in this network, we have found a suitable allocation of 

specialities to timeslots. The network flow model would not need to be set up for each 

student, but may be initialised at the start of the schedule with s = r and the lower bounds 

increased as each student is scheduled.

This could then be used in conjunction with any other solution approach to check that an 

appropriate balance of each speciality is being maintained within each timeslot in the 

same way as the network flow model for checking the schedules timeslot by timeslot and 

the knapsack model was used to assess the feasibility of the nurses’ assignments. Note 

that this only guarantees feasibility of the remaining students’ full permutations, but 

would not avoid situations such as that in Example 1 in Figure 6.9. To ensure that the 

current student being assigned may complete their allocation, it would be necessary to 

cycle through the permutations for the remaining timeslots and temporarily impose these 

on the network flow model until an assignment is found which will allow a feasible 

complete of the student’s schedule.

Note that the complexity of the feasibility check using the student by student construction 

is also exponential relative to problem size, with up to N\ calls to the network flow
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subroutine are required for each student. Since both scheduling approaches, student by 

student and timeslot by timeslot require feasibility checks whose time requirements are 

exponential with respect to N, there is no reason to prefer the student by student 

approach; the timeslot by timeslot approach will therefore provide the basis for all future 

investigation.

6.2.3 Local Search Neighbourhoods

Having examined the construction phase of the GRASP algorithm, we now give details of 

the improvement phase. This section explains the neighbourhoods which we will employ 

and the structure of the landscape we aim to explore.

The solution space considered in the improvement phase is dependant on the 

construction. If no network flow model is used to guarantee feasible solutions to use as a 

starting point for the local search, we must allow some infeasible solutions to be 

considered. However, if the network flow algorithm has been implemented, we may 

deduce all our solutions are already feasible and thus there is no reason to include 

infeasible timetables in the search space.

When the timetable is not yet feasible, a neighbouring solution is accepted as being an 

improvement on the current one if it lowers the feasibility cost or if the feasibility cost is 

unchanged, but the sum of the optimality costs is lowered.

When choosing suitable neighbourhoods for the improvement phase for nurse scheduling, 

we concerned ourselves only with changing whole patterns for a nurse; at no point did we 

change just a single shift. In the case of medical student scheduling, however, we are 

unable to use this technique. It would be too computationally expensive to search the 

whole neighbourhood based on selecting, for each student, a ‘pattern’ detailing which 

five firms they will attend in each timeslot, due to the number of such combinations 

which must be considered. By avoiding such an approach, we also increase the number of 

possible neighbourhoods; by dealing with each student, firm and timeslot individually,
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there are many neighbourhood definitions available and we must ensure that the 

neighbourhoods we select are able to fully explore the landscape in the most efficient 

manner possible.

We investigate three possible neighbourhoods; two different 1-opt neighbourhoods and a 

swap neighbourhood. These are defined as follows.

6.2.3.1 Change Neighbourhood

M c( ct) is the set of solutions obtained from solution cr by changing one student’s 

assignment in one timeslot. Only timeslots 2-5 will be considered; since students are 

homogenous and timeslot 1 is tight, changing all students’ options in timeslots 2-5 would 

be equivalent to changing their timeslot 1 allocation. Note that if we only change the firm 

in one timeslot, we must ensure that the new firm we select belongs to the same speciality 

as the original firm in order to avoid the student studying the same speciality twice.

To achieve this, we select a random student s and select for that student a random pair 

(tf), such that firm /  covers the same speciality the student is currently timetabled to 

study in timeslot t. That is

° A o  = a f ^ ’ (6-40>
where fo is the firm which student s is currently assigned to in timeslot t and fo belongs to 

speciality qo. If f  * f 0, we check whether the change would result in an improvement, 

and accept it if this is the case.

Note that when selecting a student and firm, several checks must be performed. Not only 

must the new firm be different from the old firm, but the new firm must cover the same 

speciality as the old firm and have space remaining in order for the move to have a 

chance of being accepted. Thus, by allowing all choices of firm for each student, there is 

the chance that many unsuitable firms may be tested before one which meets these basic 

criteria is found. Note that when implementing this type of 1-opt neighbourhood for the 

nurses, it was practical to create a standard list of patterns for each nurse which could be

234



sampled from throughout the process, since the potentially successful patterns for each 

nurse were not so variable or so numerous. However, for the medical student scheduling 

problem, this would be a very time-consuming approach. Note that use of the permutation 

neighbourhood, described below, means that for each student, the speciality studied in a 

timeslot may change and so the list of potential firms for this neighbourhood will change 

also. In order to speed up the selection process, the local search creates an initial list of 

feasible triplets (s /,t) which pass these checks, where 5 is a student and/ is a firms which 

this student could potentially work in timeslot t. Then, every time a neighbourhood move 

is accepted, this list is updated to reflect the changes, removing triplets from the list 

pointing to firms which are now full, adding firms which have had places created and 

exchanging the timeslots in triplets where a student’s permutation of specialities has 

changed. By maintaining the list in this manner, the change neighbourhood can easily 

sample from it and thus will automatically test an allocation which has the necessary 

basic requirements, speeding up the process overall.

Changing a student’s firm gives us a large neighbourhood; each solution has in the order 

of vr neighbours. Note that without allowing students to change speciality in a given 

timeslot, we would not be able to reach all possible solutions using this neighbourhood 

alone, even allowing for symmetry. Another concern is that once a feasible solution is 

found, if the dataset is tight, there will be no feasible moves in this neighbourhood. Given 

this, we introduce a new neighbourhood to address some of these issues.

6.2.3.2 Permutation neighbourhood

Mp( cr) is the set of solutions obtained from a solution cr by giving one student a new 

permutation of specialities for timeslots 2-5 and then allocating them a new set of firms 

accordingly. By allowing students to move between firms as well as changing their 

speciality, we increase the number of feasible moves available using this neighbourhood.

To achieve this, we select a student s along with a random permutation of specialities 2-5, 

(q2,q3,q4,q5). A check is performed to ensure the permutation differs from that of the
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student’s current timetable and that each speciality has at least one firm with places 

available in the given timeslot. That is, (6.41) and (6.42) must be satisfied, where qt 

represents the speciality associated with timeslot t in the given permutation.

We cycle through each combination of 4 firms within this permutation,

stage storing the best combination found so far. Here, the ‘best’ is recognised by the same 

criteria by which we judge an improving move. We then accept this best combination if it 

is an improvement on the current schedule. Note that in timeslots where the speciality in 

the randomly generated permutation does not differ from the speciality the student is 

already assigned to, movement between firms is still allowed. By disallowing such moves 

we may miss out on potential improvements to our timetable and in cases where we do 

not force a feasible construction, we may even improve feasibility with such moves. 

However, if the randomly generated permutation does not differ in any timeslot from that 

already assigned to the student, no moves will be considered as this would be equivalent 

to a number of moves in Mc( cr).

Obviously calculating costs for every firm combination is computationally expensive, so 

we reduce the work needing to be done by intelligently removing combinations which 

cannot result in an improvement. By ignoring all combinations involving a firm which is 

already full, we can drastically reduce the work needed to find an improving move.

This is a large neighbourhood with a size in the order of v4r  as we select the best set of 

firms or vNr in the general case and, in conjunction with the Change neighbourhood, it 

theoretically covers the whole landscape of solutions. However, when faced with a tight 

dataset, it is possible that no feasible moves will be available in this neighbourhood when 

the current timetable is feasible or close to feasible. We therefore introduce a third 

neighbourhood, which will have feasible moves in this situation.

(6.41)

v f r '
£ a / ? -max XX /<~C />° SI V/

1=2 f =1
f  r \

(6.42)
y

{C/2 » > f t » fs ) : Clfiqi = l |,  calculating the new cost these firms would provide, and at each
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6.2.3.3 Swap neighbourhood

Ms( cr) is the set of solutions obtained from a solution cr by swapping the firms of two 

students in some or all of timeslots 2-5, in such a way that the feasibility of the schedule 

is not compromised. Note that since students are homogeneous before they are assigned, 

there is little point in allowing all timeslots to be swapped, since the same solution can be 

reached by a serious of moves in Ms( cr).

We select two students s\ and $2 and perform two quick checks: first, that s, * s2 and 

secondly, that the part of the cost function f  contributed by these two students is not 

equal to the cost from them being paired together. That is, we only select students s\ and 

S2 if we have:

Z Z ZZ (c / * + K  Xv„*.+x s,f*x slSu )+
t= \  u = t+ 1 / = 1  g = l

sj,x,f,xStguxlgu + xSif,xzftxSieilxISU)> 0 (6.43)
t= \  u —t +1  2=1  f = 1  g = l

Z*S\
z*s2

Obviously if their cost contributions are just their mutual pair costs, swapping their firms 

will not affect the overall cost of the solution and we may discard this selection without 

further investigation.

We then calculate the possible sets of timeslots whose firms may be swapped. From the 

set of timeslots {2,3,4,5} it will not usually be feasible to swap all possible subsets. For 

example, if the two students study different specialities in a particular timeslot, swapping 

the firms in this timeslot alone would leave each of the students’ timetables with one 

duplicated speciality and one incomplete. We therefore only consider swapping subsets 

which would not interfere with the feasibility of the final schedule. From these possible 

subsets, we keep the best of these if it results in an improvement. Again, the ‘best’ is 

defined by the same criteria by which we judge an improving move. By only considering 

swapping sets of firms which will result in a feasible schedule for each student, the time

4 5 r  v v ,zzzzz(*
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required to check for an improving move in this neighbourhood is reduced; although 

students with the same permutations of specialities will require the complete check of all 

15 subsets (15 = 4Ci + 4C2 + 4Ci + 4C4), students whose specialities differ in every 

timeslot, for example, will require all firms to be swapped in order for their schedules to 

be feasible and so only this one check needs to be performed.

Ms( cr), then is defined as the set of solutions which may be obtained from a solution cr, 

by swapping a feasible subset of firms between two students. The number of 

neighbouring solutions from each solution, cr, is of order r2.

This neighbourhood does not allow for new firms to be introduced into the solution. 

However, in tight datasets, this neighbourhood will always have feasible moves and so is 

very useful in combination with the first two neighbourhoods to fully explore the search 

space.

At each iteration, the local search chooses randomly between the change and permutation 

neighbourhoods until the solution becomes feasible; once a feasible solution is obtained, 

all three neighbourhoods have an equal chance of being selected. Note that for all three 

neighbourhoods, sampling is without replacement and the check for the new solution cost 

consists only of altering the existing cost with regards to the suggested move, rather than 

recalculating the entire cost of the schedule.

6.3 Data

We were supplied with two sets of data; one from the academic year starting in 2005 and 

one from a previous year. The smaller of these had 190 students and 69 firms and the 

larger had 280 students and 112 firms.

Each dataset came in the following format:

E l. A list of the capacities for each firm.

E2. A list of which hospital each firm belongs to.
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E3. A list of which speciality each firm offers.

E4. A list of which consultants are associated with each firm.

E5. The number of students in the year.

Although we were able to experiment with just the two real datasets supplied, we wish 

our algorithm to be as robust as possible and so, to that end, we created several more 

datasets on which to base our results. The aim was to create datasets which were realistic, 

based on the information given, and which would vary slightly each of the different 

variables in a way which is plausible in the real world.

Given that our nurse scheduling parameter choices were based on analysis of results from 

52 datasets, we ideally wish to experiment on a similar number of datasets when tackling 

this problem. By experimenting on only two datasets we run the risk of producing a data- 

specific algorithm, capable of solving these two datasets, but unable to cope well with 

any further medical student scheduling problems.

By modifying each of the two real datasets in a number of different ways as explained 

later in this section, we were able to construct a further 46 datasets, giving us a total of 48 

with which to experiment. With this larger number of datasets we will be able to deduce 

more effectively how successful our algorithms are at solving the medical student 

scheduling problem; any algorithm now tested will have to be robust in order to 

successfully solve a wider range of data.

As mentioned previously, the real data supplied came in a format which split the relevant 

information into 5 sections: firm capacities (El), firm-hospital grouping (E2), firm- 

speciality grouping (E3), consultant lists for each firm (E4) and number of students to be 

scheduled (E5). We decided to alter three of these five in order to create the new 

datasets. Table 6.13 provides details of the data for El, E2 and E3 for the two original 

datasets as well as the modified versions of El and E2 which were used to create some of 

the new datasets. The key provides an explanation of each of the columns. We now give 

details of how we created the 46 new datasets.
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Firm E1 E1' E2 E2' E3
1 5 4 1 1 1
2 5 6 1 1 1
3 5 4 1 1 1
4 5 6 1 1 1
5 5 4 1 1 1
6 5 6 1 1 1
7 5 4 1 1 1
8 5 6 1 1 1
9 5 4 1 1 1
10 5 6 1 1 1
11 5 4 1 1 1
12 5 6 2 2 1
13 5 4 2 2 1
14 5 6 2 2 1
15 5 4 2 2 1
16 5 6 2 2 1
17 5 4 2 2 1
18 5 6 3 3 1
19 5 4 3 3 1
20 5 6 3 3 1
21 5 4 3 3 1
22 5 6 3 3 1
23 5 4 3 3 1
24 5 6 3 3 1
25 5 5 4 4 1
26 5 5 4 4 1
27 5 5 4 4 1
28 5 5 4 4 1
29 5 5 4 4 1
30 5 5 5 5 1
31 5 5 5 5 1
32 5 5 5 5 1
33 5 5 5 5 1
34 5 5 6 1 1
35 5 5 6 1 1
36 5 5 7 6 1
37 5 5 7 6 1
38 5 5 7 6 1
39 4 4 1 1 2
40 4 4 1 1 2
41 4 4 2 7 2
42 4 5 2 2 2
43 4 5 2 2 2
44 8 6 3 3 2
45 8 6 3 3 2
46 8 8 5 4 2
47 8 10 4 5 2
48 8 4 2 2 3
49 8 4 4 5 3
50 8 6 1 1 3
51 8 10 1 1 3
52 8 12 3 3 3
53 8 12 5 4 3
54 4 2 1 1 4
55 4 2 1 1 4
56 4 2 1 1 4
57 4 2 1 2 4
58 4 4 2 2 4
59 4 4 2 3 4
60 4 4 3 3 4
61 4 4 3 3 4
62 4 4 5 5 4
63 4 6 5 5 4
64 4 6 4 4 4
65 4 8 4 4 4
66 12 10 8 5 5
67 12 12 9 6 5
68 12 12 10 7 5
69 12 14 11 8 5

Firm E1 E1' E2 E2' E3
1 5 6 1 1
2 5 4 1 1 1
3 5 6 1 1 1
4 5 4 1 1 1
5 5 6 1 1 1
6 5 4 1 1 1
7 5 6 1 1 1
8 5 4 1 1 1
9 5 6 1 1 1
10 5 4 1 1 1
11 5 6 1 1 1
12 5 4 1 1 1
13 5 6 1 1 1
14 5 4 1 1 1
15 5 6 2 2 1
16 5 4 2 2 1
17 5 6 2 2 1
18 5 4 2 2 1
19 5 6 2 2 1
20 5 4 2 2 1
21 5 6 2 2 1
22 5 4 2 2 1
23 5 6 2 2 1
24 5 4 2 2 1
25 5 6 2 2 1
26 5 4 2 2 1
27 5 6 3 3 1
28 5 4 3 3 1
29 5 6 3 3 1
30 5 4 3 3 1
31 5 6 3 3 1
32 5 4 3 3 1
33 5 6 3 3 1
34 5 4 3 3 1
35 5 6 3 3 1
36 5 4 4 4 1
37 5 6 4 4 1
38 5 4 4 4 1
39 5 6 4 4 1
40 5 4 4 4 1
41 5 6 4 4 1
42 5 4 4 4 1
43 5 6 4 4 1
44 5 4 5 4 1
45 5 6 5 5 1
46 5 4 5 5 1
47 5 6 5 5 1
48 5 4 5 5 1
49 5 6 5 5 1
50 5 4 5 5 1
51 5 6 6 6 1
52 5 4 6 6 1
53 5 6 6 6 1
54 5 4 6 6 1
55 5 4 6 6 1
56 5 6 7 6 1

Firm E1 E1' E2 E2' E3
57 5 8 1 1 2
58 5 3 1 1 2
59 5 5 1 1 2
60 5 4 1 1 2
61 5 4 1 1 2
62 5 4 1 1 2
63 5 6 1 1 2
64 5 6 5 2 2
65 5 6 5 3 2
66 5 4 5 3 2
67 5 2 5 5 2
68 5 7 6 5 2
69 5 5 6 5 2
70 5 6 6 5 2
71 5 8 2 2 3
72 5 3 2 2 3
73 5 6 2 2 3
74 5 4 2 2 3
75 5 4 2 2 3
76 5 4 2 2 3
77 5 5 3 3 3
78 5 5 3 3 3
79 5 6 3 3 3
80 5 4 3 4 3
81 5 2 4 4 3
82 5 7 4 4 3
83 5 6 4 1 3
84 5 6 7 1 3
85 5 8 1 1 4
86 5 3 1 1 4
87 5 5 1 1 4
88 5 4 1 1 4
89 5 4 2 2 4
90 5 4 2 2 4
91 5 5 2 2 4
92 5 6 3 3 4
93 5 6 3 3 4
94 5 2 3 3 4
95 5 4 4 4 4
96 5 7 4 4 4
97 5 6 4 5 4
98 5 6 6 5 4
99 5 8 1 1 5
100 5 3 1 1 5
101 5 6 1 1 5
102 5 4 2 2 5
103 5 6 2 2 5
104 5 4 2 2 5
105 5 5 3 2 5
106 5 5 3 3 5
107 5 6 4 3 5
108 5 4 4 3 5
109 5 6 5 5 5
110 5 4 5 5 5
111 5 2 5 5 5
112 5 7 6 5 5

(b) Dataset 2: 280 students

KEY to Table 6.13 
El : Original capacity 
E l’ : Modified capacity 
E2 : Original hospital 
E2’ : Modified hospital 
E3 : Speciality

(a) Dataset 1: 190 students

Tables 6.13 (a) and (b) Details o f datasets 1 and 2, respectively.
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6.3.1 El -  Firm capacity

It is conceivable that firm capacities may be variable from year to year. In order to ensure 

that our algorithm is able to cope with such variations, we now explain how the original 

data was used to provide new data in which the firm capacities are altered.

Dataset 1 has 190 students to be scheduled and dataset 2 has 280 students. Referring to 

Tables 6.13, we see that in each case we have space for all students to do the introductory 

module in the first timeslot, with no places spare. The second dataset also has no slack in 

any of the further specialities; in each timeslot there will be the correct number of spaces 

to ensure each student may study one of the four outstanding specialities in rotation in 

each of the four remaining timeslots with no places unfilled. In the first dataset, however, 

there are more places in each of the four specialities in each timeslot than are necessary. 

Obviously the 190 students cannot divide equally into the four specialities in each 

timeslot as this would result in the practical impossibility of 47.5 students in each group. 

However, we can see that since we have 48 places in three specialities and 52 in the 

remaining one, there is some slack here; we may assign all the students and still have 

some firms filled to less than maximum capacity in some timeslots.

When altering the capacities of the firms, we allowed the total capacity of each speciality 

to remain constant. The new capacities for the firms were not generated randomly, but 

were chosen to create diversity without unduly unbalancing the total capacity of the firms 

in each hospital excessively. This process resulted in one new list of capacities for each 

of the two datasets.

Table 6.13 shows the original and modified capacities for each of the firms in columns 

El and E l’, respectively.
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6.3.2 E2 -  Hospitals

To give us a broader range of data, we altered the number and types of firms in each 

hospital, merging some hospitals in the process. By merging hospitals, and broadening 

the number of specialities offered by each, we increase the difficulty of the problem by 

making hospital clashes harder to avoid. It is certainly within the realms of possibility 

that the number of hospitals in which students can do placements may decrease. While 

the reverse is true, we did not think this a sensible option to investigate, since more 

available hospitals would reduce the likelihood of hospital clash costs occurring. The 

possibility that a hospital may offer new firms and new specialities is also conceivable 

which led us to explore this option.

Again, the changes made were not generated randomly; we carefully selected the new 

hospitals’ structure so that the resulting compositions were realistic considering the 

current setup. Overall, we were left with a reduced number of hospitals in both cases, 

with at least one hospital offering all five specialities. This resulted in one new list of 

hospitals for each of the two datasets. These changes are detailed in Table 6.13, with 

columns E2 detailing the original data and E2’ detailing the modified data.

6.3.3 E3 -  Specialities

It was decided that we would not alter the speciality with which each firm was associated. 

It seemed unlikely that a firm would switch from one speciality to another in a real-world 

situation, since all aspects of the firm, such as consultant and equipment would be 

affected by the change. Furthermore, all students have to cover each speciality once and 

so the ratio of the numbers of each type of firm is unlikely to change much, year by year. 

Varying all the other aspects of the problem definition individually, a more likely 

scenario, is enough to ensure a diversification in problem specification and so exploring 

this eventuality may be considered redundant. We therefore leave the firm-speciality 

pairings unchanged. The specialities for each firm can be seen in Table 6.13, in columns 

E3.
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6.3.4 E4 -  Consultants

The list of which consultants worked with each firm was used to generate the score, c/g, 

for each pair of firms, (f,g). We calculated a value for ‘clash density’, for each of the two 

datasets, where we define the clash density,/?, to be the probability that a randomly 

selected pair of firms (f,g) has c/g = 1. The original data gave p  « 0.03538 for dataset 1 

and p  « 0.01802 for dataset 2.

To create variation, we assigned a c/g value of ‘1’ to each element if RAND[0,1)< 1.25p, 

where RAND[0,1) was a randomly generated number in the range [0,1). This way we had 

a new, random consultant clash list for each of the two datasets, with a clash density of 

approximately 25% greater than the original.

The main observation with the new lists is that while, originally, consultants would only 

clash between firms if they belonged to the same hospitals, now there may be consultant 

clashes between hospitals, thus making the problem more difficult as avoiding consultant 

clashes must now balance avoiding hospital clashes. Rather than the hospital and 

consultant constraints reinforcing one another, they are now conflicting and so we have 

created datasets which, essentially, have three conflicting sets of constraints rather than 

two.

6.3.5 E5 -  Number of students

There is the option to vary the number of students in a given year. Decreasing the number 

of students will increase slack and potentially reduce problem difficulty although does 

allow for more variation in the solutions. As outlined in Section 6.2.2 it is the way in 

which the spare capacity is used which determines the feasibility. Increasing the number 

of students, given that the introductory module, for example, provides exactly the 

required number of places, would result in all solutions being infeasible, unless more 

places were created.
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We decided not to alter the number of students in this way, since the problem would not 

be made more interesting by a variation of this sort.

6.3.6 Compiling the new datasets

With the new data elements, we created eight datasets from each of the two original 

datasets. Table 6.14 shows the characteristics of each of these eight

Capacities (El) Hospitals (E2) Consultants (E4)
Original Original Original
Modified Original Original
Original Modified Original
Modified Modified Original
Original Original Modified
Modified Original Modified
Original Modified Modified
Modified Modified Modified

Table 6.14. Characteristics o f  eight datasets created from each original dataset.

Applying these variations to both of the original datasets, we now have a total of sixteen 

datasets -  eight based on the first dataset and eight on the second.

As mentioned earlier, the first of the original datasets was slightly slack in terms of firm 

capacity. It is known that there are 190 students, all studying the first speciality in time 

period 1. Since the total capacity of all firms offering this module is 190, this part of the 

problem is already tight. Since the other four specialities are to be studied simultaneously 

during time periods 2-5, for this part of the problem to be tight, exactly a quarter of the 

students must study each of the four specialities at any time. With three of the specialities 

having 48 places and the fourth 52 places available, all the four remaining specialities 

have slack. We can tighten the problem by adding two students and adding two more 

spaces to the total capacity of the firms offering speciality 1. In this way, the first timeslot 

remains tight and the three specialities with capacity 48 become tight. Only the speciality 

with total capacity 52 contains an element of slack. By making this modification for each
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of the eight datasets based on this dataset, we now have sixteen datasets based on the first 

dataset.

To complete the tightening of this data we then remove four spaces from the remaining 

slack speciality. Applying this to each of the eight modified datasets, we now have 24 

datasets, with eight of these being completely tight, eight with some slack and eight 

slacker still. Let us introduce the notation mx{8) to represent a dataset with X 

modifications and original dataset 8 , We therefore now have 24 datasets comprising 

eight of the form m0(l), eight m{( 1) and eight m2( 1).

Since dataset 2 is already tight, we cannot tighten it further, but we may make similar 

modifications in the backwards direction. We already have eight datasets of the form 

m0(2) and we can remove two students and two spaces from the speciality 1 firms to 

create some slack in time periods 2-5 to create eight slightly slack datasets, designated 

m1(2). To obtain m2( 2), we add more places to one of the specialities 2-5 to make more 

slack in the problem, giving a similar situation as the original dataset 1. Thus we have 24 

datasets based on this dataset alone and 48 datasets in total. This gives us a broader range 

of realistic data to experiment with.

6.4 Experiments and results

As described in Section 6.3, we have 48 sets of data, each representing one timetabling 

problem. All datasets, including, to our knowledge, the two originals, have not previously 

been solved using any optimisation technique and we therefore have no benchmark 

solutions on which to base the success of our results.

Rather than comparing the results obtained with the optimal values as was possible for 

the nurse scheduling results in Chapter 4, we can only compare the results produced from 

different approaches and surmise that those approaches creating solutions of lower cost 

must be the more successful. However, we may also put forward the idea that methods
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which produce solution costs with a high standard deviation are not robust and are 

certainly not producing the optimal solution in every run.

With this in mind, the following sections detail the particular experiments undertaken and 

their comparative success.

6.4.1 Initial experiments

Parameter testing

We have suggested four heuristics: Feasibility, Combined, Holistic and LastChance. For 

each of these the values of the parameters n, w/ and wQ are varied. As for the nurse 

scheduling problem, we selected four potentially suitable values of n for each heuristic. 

These values, along with those tested for w/ and w0, are shown in Table 6.16.

Heuristic n 1 Wf w0
Feasibility 3 ,6 ,10 ,15 ~ -
Combined 3 ,6 ,10 ,15 1 - 5 1 - 5
Holistic 3, 10, 60, 100 1 - 5 1 - 5
LastChance 3, 6, 10, 50 I 1 - 5 1 - 5

Table 6.16. The parameter values investigated for each heuristic.

For each of these parameter and heuristic combinations, 100 GRASP cycles will be 

performed. If we consider these 100 cycles to constitute one run of the algorithm, we are 

therefore producing 304 runs, each with a different parameter combination.

Neighbourhood testing

Together, the Change and Permutation neighbourhoods theoretically cover the entire 

landscape of solutions. However, it has been noted that once a feasible solution is 

encountered, there may not be any feasible moves in either neighbour if only improving 

moves are permitted. The Swap neighbourhood gives further movement within the
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landscape while maintaining feasibility. However, since the inclusion of the more 

versatile Swap neighbourhood will be likely to increase the total time taken for each 

GRASP cycle, initial tests will be performed to determine its usefulness.

Two local search approaches will therefore be utilised for each parameter combination: 

the first will use only the Change and Permutation neighbourhoods, while the second will 

include the Swap neighbourhood as well. Thus, 608 runs will be performed, half of these 

with two neighbourhoods and half with all three.

The Network Flow model

A further enhancement to the algorithm, suggested in Section 6.2.2.2, is the use of a 

network flow algorithm to ensure all solutions are feasible at the end of the construction 

phase. For the nurse scheduling problem in Chapter 4, it was found that without added 

help directing the construction towards feasibility, schedules were unlikely to be feasible 

even after the implementation of the local search. Experiments will be done here to test 

whether this is also the case for the medical student scheduling problem. If the algorithm 

struggles to find feasible solutions, then the addition of the network flow model may play 

an important part in creating good solutions. However, if finding feasible solutions is not 

an issue, it may save time and allow the algorithm to find lower cost solutions, by 

excluding such an enhancement.

Each variant of the algorithm suggested so far will be tested both with and without the 

network flow model. Thus we have 1216 variations to be tested on the 48 datasets. We 

only perform one run on dataset with each of the variants at this stage since it would be 

too computationally expensive to do more than this. Since one run comprises 100 

independent GRASP cycles, this gives us enough information to choose parameters with 

which to continue experimentation.
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6.4.2 Initial results

As was mentioned in the introduction to this section, we have no way to measure the 

actual success of these methods, since the optimal solutions are not known. Since we are 

not able to compare the solution costs obtained with the optimal, as we were for the nurse 

scheduling problem, we instead compare the different approaches and decide which of 

these is the most successful, even though we are not able to judge this success in 

definitive terms.

Normalising the results

For each dataset and each variant, we have produced 100 schedules. Unlike the nurse 

scheduling problem, where the algorithm struggled to find feasible solutions for all 

datasets, all algorithms tested on the medical student scheduling problem found at least 

19 feasible solutions from 100 for every dataset. Furthermore, three quarters of the 

datasets yielded feasible solutions at least 70% of the time for all algorithms and so, 

unlike for the nurse scheduling problem, we will analyse the success of each algorithm 

based purely on the costs obtained relating to the soft constraints and not on its ability to 

find feasible solutions. There are consequently two main ways to judge the success of 

such a run: either the best cost obtained in the run or the average of the feasible costs 

obtained. There are benefits and drawbacks associated with both approaches. If we were 

to use the algorithm to create a schedule in the real world, one run would be performed 

and the output would certainly be the best cost solution. Thus, this approach is more 

realistic as it is really only the best solution which is of interest in the long term. Using 

the average of all feasible solutions would include information from poorer schedules 

which would never actually be selected for use. However, given that we are performing 

preliminary experiments and producing only one run at this stage, it is not sensible to rely 

solely on one solution for each method; the best solution for a particular method may be 

an outlier, unlikely to be repeated in subsequent runs and exaggerating its success. Using 

the averages, however, it is possible to compare two methods knowing that similar results 

would be likely if the experiments were repeated.
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Given this deliberation, we elect to use both methods for the following analysis, and use 

only the best costs when we are comparing more than one run. So, for each dataset and 

each of the approaches, we have two values: the best feasible cost obtained from the 100 

cycles and the average cost of all feasible solutions. The simplest way to compare the 

results, since the costs vary greatly between datasets, is to normalise the results across the 

datasets. For both average and best costs, we normalise the data so that variations in 

particular datasets will not skew the perceived success of any method.

To normalise the data, we calculate the mean and the standard deviation of the results for 

each dataset across all methods. Here, ‘results’ refers to either the best or average costs 

obtained. Each cost, , associated with a method p  and a dataset 8  is then normalised.

The normalised cost, x^s > *s calculated using

.  X v s - X s  ' (6 44)

where Xs is the mean of all costs pertaining to dataset 8 and a s is their standard

deviation. This means that for each dataset the normalised costs have a mean of zero and 

a standard deviation of 1 and the methods may be compared fairly by simply summing 

these normalised costs across all datasets.

Neighbourhood testing

Once the initial results had been normalised, there was an obvious conclusion to be drawn 

regarding the use of the different neighbourhoods. Figure 6.17 shows the results obtained 

with and without the Swap neighbourhood using the best solution from each cycle.
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Figure 6.17. Graph o f  normalised costs with and without the Swap neighbourhood, summed across all

datasets.

Each point in Figure 6.17 represents the total normalised best costs across all datasets for 

one of the parameter combinations. The same graph produced using the average costs 

shows a very similar pattern and it is clear that with the Swap neighbourhood, the 

algorithm produces results of a far superior quality. From this point onwards, all 

experimentation carried out will include the Swap neighbourhood.

From Figure 6.17, we can see that the difference between the variants which do include 

the Swap neighbourhood is negligible in comparison with the difference in cost of 

including or not including it. In order that the array of poor quality solutions arising from 

these discarded experiments will not skew further interpretation of the results, we 

renormalise the data at this point, ignoring these unwanted results.

Parameter testing

Once the results were normalised, there were no further obviously superior variants, and 

so values for the parameters «, Wf and w0 were selected for each heuristic, with and 

without the addition of the network flow model. In many cases, there was no one choice
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which clearly outperformed the others, but this very lack of distinction meant that as long 

as sensible choices were made, the algorithm should not be much affected by the 

selection. The selected parameters are shown in Table 6.18.

w/o network flow with network low
Wf w0 n Wf W0 n

Feasibility - - 10 - - 10
Combined 2 1 10 1 2 10
Holistic 3 3 10 2 5 10

LastChance 1 5 3 1 3 3
Table 6.18. The parameter values selected for each heuristic.

6.4.3 Further experiments and results

For each of the parameter combinations shown in Table 6.18, a further ten runs were 

performed, with one run consisting of 100 GRASP cycles and the results of these runs 

were normalised to provide a fair comparison. Now that ten runs are being performed on 

each variant, the best solution attained in each run becomes of more interest as we will 

have ten such best results for each. Whereas previously, where only one run was 

performed, the best solution could potentially be an outlier and misleading as to the 

success of the algorithm in general; when ten bests are produced for each, the overall 

comparison of such values is more likely to be a more accurate reflection of the 

algorithms’ respective success. However, the average results will always provide a 

reasonably robust comparative technique. Other considerations for each approach’s 

success are the number of feasible solutions obtained and the time taken for each 

complete run. Tables 6.19-6.22 detail these results for our analysis.

251



Heuristic Feas. Comb. Holis. Last C. Feas. Comb. Holis. Last C.
Net. flow? No No No No Yes Yes Yes Yes

4.04 7.46 -9.06 -5.75 7.16 12.77 -13.86 -8.57
-1.02 2.28 -11.47 -3.15 9.42 3.08 -6.93 -6.10
9.83 3.90 -5.11 0.69 10.78 13.39 -19.38 -15.83
11.88 11.12 -14.30 -3.89 -0.57 0.64 -8.09 -6.41
9.68 1.45 -5.96 3.72 15.77 2.23 -4.98 -10.93
9.63 -8.26 -6.11 -10.31 5.09 10.09 -7.97 -5.78
12.51 0.23 -2.66 -10.37 10.31 13.47 -6.29 -4.36
2.59 2.08 -5.84 -18.90 5.66 2.20 -3.45 -3.92
4.32 8.94 -0.18 -2.04 7.23 5.67 -17.24 -9.91
15.58 9.54 5.45 4.26 17.90 6.01 -1.58 -13.53

Mean 7.90 3.88 -5.52 -4.57 8.87 6.96 -8.98 -8.53

Table 6.19. The normalised best results for each heuristic over ten runs and all datasets.

Heuristic Feas. Comb. Holis. Last C. Feas. Comb. Holis. Last C.
Net. flow? No No No No Yes Yes Yes Yes

-1.46 6.78 -25.18 -12.59 11.02 28.03 -0.35 -0.61
1.55 -2.75 -12.10 -18.36 13.43 29.64 -10.13 -5.44
-2.26 -3.57 -15.23 -13.99 8.28 21.11 -16.27 -11.26
3.33 -0.93 -10.71 -5.02 9.13 27.57 -7.70 -3.44
3.24 -5.22 -24.99 -6.27 15.80 19.65 -3.45 -10.44
5.87 10.28 -4.97 -16.95 22.34 10.48 -12.25 -0.95
-2.51 -5.00 -17.06 -8.06 23.26 21.51 -5.10 -0.38
-6.49 9.96 -9.04 -12.05 12.29 24.05 -11.79 -3.42
4.40 -0.33 -14.15 -11.47 23.64 26.25 -5.31 -3.81
0.62 2.33 -16.20 -15.73 11.57 25.11 -1.23 -18.58

Mean 0.63 1.16 -14.96 -12.05 15.08 23.34 -7.36 -5.83

Table 6.20. The normalised average results for each heuristic over ten runs and all datasets.

Heuristic Feasibility Combined Holistic Last Chance
Max. Min. Ave. Max. Min. Ave. Max. Min. Ave. Max. Min. Ave.
100 95 99.42 100 72 93.69 100 33 89.10 100 26 89.19
100 92 99.44 100 73 94.40 100 50 89.71 100 22 89.29
100 96 99.46 100 73 93.94 100 37 89.42 100 33 88.46
100 94 99.44 100 70 94.25 100 44 89.83 100 33 89.29
100 95 99.42 100 73 94.17 100 48 89.54 100 36 89.17
100 95 99.56 100 67 93.60 100 40 88.71 100 25 89.08
100 94 99.50 100 74 94.17 100 47 89.69 100 28 89.71
100 94 99.44 100 71 93.67 100 45 89.29 100 24 88.96
100 94 99.42 100 70 93.94 100 44 89.63 100 20 88.54
100 96 99.52 100 72 94.13 100 42 89.46 100 21 89.19

Table 6.21. The maximum, minimum and average number o f feasible solutions from 100 over all datasets 

for each run for approaches without the network flow model.

Heuristic Feas. Comb. Holis. Last C. Feas. Comb. Holis. Last C.
Net. flow? No No No No Yes Yes Yes Yes

-113.03 -345.83 205.12 99.96 -72.36 -231.27 289.06 178.34
-111.22 -269.89 171.03 82.51 -60.36 -187.36 232.84 145.00
-107.10 -276.64 170.06 78.34 -61.58 -188.63 234.94 143.88
-106.04 -275.36 171.15 83.22 -60.69 -188.23 232.45 143.60
-110.47 -274.17 170.48 83.93 -59.25 -186.95 230.50 144.85
-99.55 -278.05 163.81 81.11 -53.76 -188.72 233.11 144.94

-107.11 -274.21 170.42 84.15 -54.81 -188.90 233.22 146.59
-109.23 -279.20 169.42 81.99 -59.75 -186.90 229.97 144.23
-110.41 -276.34 170.73 82.86 -62.81 -189.12 233.10 143.63
-108.05 -273.91 169.49 84.23 -61.48 -187.70 232.40 145.75

Mean -108.22 -282.36 173.17 84.23 -60.68 -192.38 238.16 148.08

Table 6.22. The normalised times for each heuristic over ten runs and all datasets.
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6.4.4 Analysis of further results

The summaries of the results obtained from this further set of experiments are shown in 

Tables 6.19 -  6.22. Given the difficulty of drawing obvious conclusions from them, this 

section provides a discussion and offers explanations for any unexpected results arising.

Table 6.19 shows the normalised best results for each approach. These results do not give 

a clear indication of any one approach significantly surpassing the others. It appears that 

the Holistic and LastChance heuristics outperform Feasibility and Combined, but other 

conclusions are not so easy to draw. At first glance it seems that the algorithm works best 

when utilising the network flow model to aid feasibility, and also that the Holistic 

heuristic may be achieving slightly better results, on average. However, when looking at 

the ten individual results attained for each run, it is clear that there is a great deal of 

variation within each category. Given that the results for the number of feasible solutions 

found, shown in Table 6.21, indicate that when the network flow model is not utilised, the 

algorithm still produces plenty of feasible solutions, there is no need to incorporate it 

solely for the purposes of feasibility, although it cannot be discounted it if does assist in 

improving solution cost.

Since these results are not conclusive and do not show a clear advantage of one algorithm 

over another, we also consider the average results. From the normalised results for the 

average solution costs in Table 6.20, it is possible to see that when considering the 

average results, rather than the best, it is the algorithms which do not incorporate network 

flow which are now superior. Again, the Holistic and LastChance heuristics produce the 

better results, with Holistic proving slightly more successful on average.

Grouping the datasets by consultant clash matrix

However, these runs have been performed on many different types of data. The datasets 

may be classified according to whether they were manufactured from the first or second 

original datasets, whether they have the original or denser consultant clash matrix, or by
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how much slack is present. When considering each of these data types individually, the 

same patterns generally emerge, with one noticeable exception. When the datasets are 

considered in two separate groups, according to whether the consultant clash matrix used 

was the original or the modified version, it is the LastChance heuristics which are 

superior using the original matrices, while the Holistic heuristic performs best using the 

modified version. Since the altered matrix generally gives rise to higher overall costs and 

also greater variations within the costs, it is understandable that it is the results from the 

datasets with this denser matrix which would be more influential when the two types of 

data are considered together. Tables 6.23 show the mean of the normalised best results 

for each approach split into these two categories.

Heuristic Feas. Comb. Holis. Last C. Feas. Comb. Holis. Last C.
Net. flow? No No No No Yes Yes Yes Yes

Mean 7.88 3.40 -2.08 -3.45 7.06 1.80 -5.59 -9.03
Original Matrix

Heuristic Feas. Comb. Holis. Last C. Feas. Comb. Holis. Last C.
Net. flow? No No No No Yes Yes Yes Yes

Mean 0.02 0.48 -3.45 -1.13 1.82 5.16 -3.39 0.50
D enser Matrix

Tables 6.23. The mean o f the normalised best results for each heuristic over ten runs for datasets with the 

original and modified consultant clash matrices, respectively.

The tables obtained using the average costs show a similar result and so it is difficult to 

choose between the Holistic and LastChance heuristics. It is to be expected that the 

Feasibility and Combined approaches would not be as successful since they both consider 

each student in turn and so reduce the flexibility of the algorithm. The Feasibility 

heuristic, in particular, pays no heed to the cost of assignments in the construction which 

means that the local search will generally start from a much higher cost solution. 

However, looking at the normalised average costs in Table 6.20, it seems that Feasibility 

is outperforming Combined on average. This situation arises when the local search is 

actually restricted by the lower cost solutions constructed by the Combined heuristic, 

which prevents the search from adequately searching the search space. If the constructed 

solution is relatively low-cost, but is not able to be optimised using the available 

neighbourhoods with only improving moves, then the Combined approach may
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eventually result in poorer cost solutions than Feasibility, even though Feasibility must 

make more neighbourhood moves than Combined in order to achieve this result. The 

solution times given in Table 6.22 show that Combined does indeed seem to be 

converging more quickly than Feasibility. This situation does not arise in all cases, 

however, and Table 6.19 shows that the best solutions attained using Combined are better 

than those utilising the Feasibility heuristic, on average.

The performance of both the Feasibility and Combined heuristics is nonetheless inferior 

to that of the Holistic and LastChance heuristics and so these approaches are discarded, 

both with and without the network flow models. The remaining heuristics are still 

regarded as potentially good solution methods and so are used as a base of comparison 

for the experiments detailed in the following section.

6.5 Enhancements to the basic algorithm

The experiments in the previous sections were performed using the four basic 

construction heuristics detailed in Section 6.2.1 as well as four further heuristics which 

incorporated an addition to the construction to force the satisfaction of the feasibility 

constraints. Along with these constructions we used three local search neighbourhoods to 

explore the solution space. Although the optimal solutions were not known, we were able 

to deduce that the Holistic and LastChance heuristics were the best performing. However, 

the range of quality in the solutions produced indicates that these algorithms are not 

consistently producing optimal solutions and so we now turn to other constructive ideas 

with the aim of producing a more robust algorithm.

6.5.1 Using the network flow as a construction heuristic

This section introduces the idea of using the network flow model, not just as an aide to 

the heuristic to determine whether the heuristic’s student-firm selection will be feasible, 

but as a heuristic in its own right. Thus far, the performance of the GRASP construction 

phase has been relatively poor and although results have been able to show that some
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heuristic approaches are performing better than others, a closer inspection of the quality 

of solutions before and after the local search phase shows that the GRASP is heavily 

reliant on the local search in order to improve solution quality. On average, the cost of a 

constructed solution is improved by 91.6% of the initial value with the application of 

local search, equating to an average improvement of 8649.5. This cost-improvement 

obviously varies greatly depending on the dataset and heuristic approach used, but in all 

cases the improvement is similarly marked. The number of local search moves accepted 

is 680.8 on average, which is significant, given the number of assignments constituting a 

solution and indicates that the local search is having to ‘correct’ a significant proportion 

of the assignments made. This suggests that looking for improved construction 

techniques would be worthwhile. Furthermore, the number of assignments required for 

each construction is itself very large: up to 1400 for a schedule with 280 students, with 

each assignment requiring a large number of calculations regarding the feasibility and 

cost. Since the first assignments are made by selecting from many zero-cost options it is 

not surprising that these choices are later found to be poor. In general, it is only towards 

the end of the scheduling process for timeslot 2 when the first cost is incurred and this 

means that over two hundred assignments have been made before any idea of solution 

quality is considered. For the larger datasets this value is closer to four hundred. There is 

therefore good reason to try a new construction approach, based on the network flow 

model, to see whether these difficulties can be limited. A network flow approach to the 

construction would certainly be beneficial in terms of the number of assignments 

required, since solving one network flow model would assign a full schedule for one 

timeslot. However, this would not necessarily improve the problem of choosing between 

zero-cost assignments in the early stages, which is why a network flow construction 

incorporating look-ahead is also introduced in this section.

This section describes how the network flow model can be modified to include student- 

firm selection information and gives details of two possible ways of approaching this, by 

varying the arc-costs.
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In its present form, the network flow model simply identifies the minimum and maximum 

numbers of each type of student who must cover each speciality in each timeslot for the 

solution to be feasible. We now describe how it is possible to add more detail to this flow 

model in order to assign students to specific firms by taking into account the specific 

costs involved. Obviously to do this, new nodes must be added to the model representing 

individual students and firms. Figure 6.24 shows the new setup. Note that although it is 

possible to associate each student-firm pair with a cost based on the hospital and 

consultant clashes, it is not possible to add the student pair cost into this model.

Source Student type p  Student s F irm / Speciality q Sink

Arc2bA rcl Arc2a Arc 2 c Arc 3

Figure 6.24. Network flow model detailing the situation during an arbitrary timeslot i o f  the medical student

scheduling problem.

Again, the model represents the situation during one particular timeslot i. Arcs 1 and 3 

are as in the previous model, but the central section of the flow diagram now incorporates 

details of the students and firms involved in the scheduling process. We therefore have
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two new sets of nodes: student nodes and firm nodes. Figure 6.24 shows some of the 

types of flows which will transpire from this scheduling setup.

The lack of student pair cost in this modified network flow model means that higher than 

necessary student pair costs may arise. In datasets where the student pair costs may be 

more of a factor in finding optimal solutions, especially, we may find that this approach is 

less suitable. In order to prevent higher than necessary student costs being generated, the 

arcs are taken in a random order allowing students to prevent students from just following 

each other around the network. Consider the out-of-kilter algorithm, described in Figure 

6.25.
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Out-of-kilter algorithm

1. Set up all arcs and nodes.

2. Calculate costs and upper and lower bounds for each arc.

3. Set all flows and node potentials to zero.

4. Calculate y  coordinates for each arc.

5. Create a list of arcs, list\, to keep track of which arcs are out-of-kilter.

6. Select an arc from list\, (i j ). If no arcs remain go to step 15.

7. If arc is in kilter, remove from the list and go to step 6, otherwise go to step 8.

8. Work out whether flow in (ij) needs to be increased or decreased and label 

nodes i and j  accordingly.

9. Create a list of arcs, list2 , to keep track of which arcs are labelled.

10. Select an arc from list2 , (&,/)• If no arcs remain go to step 14.

11. If arc is labelled at only one end and the flow can be altered in the required 

direction, go to step 12, otherwise remove arc from the list and go to step 10.

12. Label the unlabelled node on arc (k,l) appropriately.

13. If the required terminal node has been labelled update all flows in the chain 

and go to step 6, otherwise go to step 9.

14. No flow augmenting chain has been found, so update node potentials. If the 

node potentials cannot be altered further, no feasible flow is possible.

15. All arcs are in kilter and a feasible flow has been found.

Figure 6.25. Description o f  the out-of-kilter algorithm.

Steps 6 and 10 require the selection of an arc. In the solution of the network flow model 

introduced in Section 6.2.2, each arc on the list was tested in order, but for this model, 

where individual students are considered, it is pertinent to randomise the arc selection and
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this was done by sampling randomly without replacement from both list\ and //s/2 as 

defined in Figure 6.25. Initial testing without random sampling indicated significantly 

increased student pair constraint violations in the final solutions compared with the 

random approach. Note also that by randomly selecting arcs, the construction is still very 

much in keeping with a GRASP approach, since the solution produced will be a random 

choice of one of the optimal solutions.

Two types of construction will be considered.

6.5.1.1 Net-construct

Since arcs 1, 3 and the sink-source arc remain unchanged, the details of only the 

remaining arcs will now be clarified.

Arc2a

An arc {p,s), connecting a student type with a particular student, merely splits each set p  

into its constituent students. Obviously, each type node p  may have one or more arcs 

leaving from it, but all student nodes s must have exactly one arc arriving from a node p. 

We therefore have

I = u = 1.

Since every student must have a type and the particular type holds no penalty, there is 

zero cost on all arcs (p,s).

Arc2b

The arcs (sj), connecting each student to his or her possible firms, are now the basis of 

our construction heuristic. The associated costs with these arcs will direct the flows 

through arcs which should give lower solution costs. One difficulty with our original 

construction is the fact that no costs are incurred until many assignments have been made. 

This makes it difficult to see which allocations may be potentially harmful when the last 

students come to be scheduled at the end of the construction. By scheduling all students
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in a timeslot simultaneously, rather than one student at a time, this may help us avoid 

having to make poor choices towards the end of the construction.

Each student node s will have arcs connecting it with each firm node f  where/belongs to 

a speciality student s has not yet covered. These arcs will therefore have

since a student s will either be assigned to a particular firm/  or not. The cost on an arc 

(sofo) is given by

where i is the timeslot being scheduled. Note that the weightings associated with the 

hospital and consultant clashes are the same as in the original GRASP construction. We 

cannot assign a student-clash cost with any of the arcs as these costs cannot be worked 

out in advance in this way; there is no disadvantage, therefore, in reducing the weightings 

from (10,50) to (1,5).

Arc2c

The arcs (f,q) simply connect each firm node /  to its associated speciality node q. The 

bounds on the arcs are therefore given by

/ = 0, u = Cj-,

since the maximum number leaving the firm node must be given by that firm’s capacity.

With the network flow model set up, the flow is optimised using the out-of-kilter 

algorithm (Dowsland 2005). The local search can then be used repeatedly to improve 

what should be a good starting solution to provide us with a set of potentially high-quality 

timetables.

Since only hospital and consultant information is incorporated into the construction using 

the network flow model, the descent part of the metaheuristic is responsible for reducing 

the number of student clashes. Given that these are of a much lower priority -  one tenth

/ = 0, u = 1,

/ = 1 1= \
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the weighting of the hospital clashes -  it is hoped that by skewing the costs incurred 

towards this type of clash, the overall solution costs will be reduced.

6.5.1.2 Net-lookahead

The arcs for Net-lookahead are defined in the same way as for Net-construct, but with a 

difference in the way the arc2b costs are calculated. Rather than working out the cost 

solely on the clashes which would be incurred with firms in preceding timeslots, the Net- 

lookahead construction takes into account what costs are likely to be incurred in the 

following timeslots as well. For each assignment, some idea of future costs can be 

ascertained because the specialities which the student must study in the remaining 

timeslots will be known. By timeslot 5, it follows that the costs for Net-lookahead will be 

identical to those for Net-construct. To create a score for a firm f  the potential cost of 

making the assignment is calculated by considering all feasible future combinations of 

firms and the hospital and consultant clashes arising from each of these full schedules. 

We arrange these scores in order of increasing cost and take the mean of a percentage of 

the lowest cost combinations to give a value U. The score for an arc (sq/ o) is then the 

weighted sum of the Net-construct cost for the arc and U. Thus, the cost on arc (soj/o) in 

timeslot /, 2 < i < 4, is calculated as follows.

We cycle through all feasible firm combinations for the remaining timeslots

5 - /  v / - I

( /♦ . . - . / s ) :  = 0  V q , j * k ,  = 0
7=1 / = 1  /=1

and calculate the cost of the clashes with the current firm choice fo as well as previous 

firms assigned to student sq in timeslots 1 to * — 1, using
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Z  ^ /o / ,  +50c/o/, fh^hjf. + 50c#. ) +R,
7  = 1 L  / = 1  '= 1

r  4 - /  5 - i

where R = Z H hfjfk if * = 2°r3
7  =  1 * = 7  +  1

0 otherwise
7  =  1 * = 7  +  1

0

The R term then counts the costs from clashes between these newly considered firms.

The mean of a percentage of the lowest cost combinations then gives the value U. The 

cost on an arc (sofo) is then calculated to be

The percentages of total combinations which will be considered at this stage are 25, 50 

and 100 per cent. Note that selecting zero percent would be equivalent to using the Net- 

construct flow model. We would expect that taking the mean from 100 per cent of the 

possible combinations would give relatively poor results since the worst of these 

combinations would never be selected; the score does not then give as realistic an idea of 

the expected future costs as one produced using only the better combinations. The Net- 

construct algorithm can be viewed as the particular case of the Net-lookahead where zero 

per cent of the combinations are considered.

6.5.2 Further experimentation and results

The next set of experiment performed were ten runs using Net-construct and ten runs 

using Net-lookahead with each of these percentage combinations: 25 per cent, 50 percent 

and 100 per cent.

The results of these experiments were normalised against those obtained previously, 

excluding the inferior results obtained using Feasibility and Combined. The normalised 

best costs for each approach are shown in Tables 6.26 -  6.28.

V / - I

/= 1  /=1
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Heuristic Holis. Last C. Holis. Last C. Net-con. Net-I. 25 Net-I. 50 Net-I. 100
Net. flow? No No Yes Yes — — — —

8.93 11.58 5.23 6.64 8.31 -21.38 -5.74 -16.40
9.86 13.54 6.07 7.63 17.92 -22.15 -9.23 -17.94

12.24 12.87 3.62 1.45 12.27 -23.54 -8.95 -14.01
5.09 9.70 8.46 8.79 14.93 -19.24 -6.78 -16.94
9.42 15.66 9.26 6.70 8.82 -19.93 -13.69 -19.16
8.01 8.77 9.64 10.78 10.04 -20.56 -10.74 -16.89
15.11 7.42 7.32 11.35 8.42 -21.62 -9.60 -16.55
7.63 0.59 13.35 11.35 3.69 -20.50 -7.74 -20.61
11.85 12.92 2.19 7.44 8.31 -19.93 -7.97 -12.65
21.44 13.42 9.64 5.03 9.04 -20.46 -11.42 -17.45

Mean 10.96 10.65 7.48 7.71 10.18 -20.93 -9.18 -16.86

Table 6.26. The normalised best results over ten runs and all datasets for Holistic and LastChance with and 

without network flow, Net-construct and Net-lookahead with 25%, 50% and 100% contributions.

Heuristic Holis. Last C. Holis. Last C. Net-con. Net-I. 25 Net-I. 50 Net-I. 100
Net. flow? No No Y es Yes — — — —

9.01 5.77 10.50 5.68 12.13 -19.09 -18.86 -6.86
9.12 7.34 7.21 6.42 14.05 -22.74 -17.57 -5.31
14.01 8.57 8.13 4.38 11.84 -21.73 -17.52 -10.19
12.55 9.74 9.21 5.14 11.10 -19.56 -15.28 -6.69
8.39 7.47 10.60 4.24 12.27 -20.79 -13.62 -6.76
12.31 5.71 8.36 8.00 14.28 -20.20 -19.10 -1.35
11.29 7.53 10.43 7.78 11.92 -21.47 -17.36 -10.85
14.31 6.99 8.03 5.78 8.23 -22.50 -16.13 -4.40
11.85 6.71 8.47 6.77 9.31 -21.98 -16.84 -8.14
8.30 5.14 12.57 0.84 9.65 -19.23 -17.68 -5.66

Mean 11.11 7.10 9.35 5.50 11.48 -20.93 -17.00 -6.62

Table 6.27. The normalised average results over ten runs and all datasets for Holistic and LastChance with 

and without network flow, Net-construct and Net-lookahead with 25%, 50% and 100% contributions.

Heuristic Holis. Last C. Holis. Last C. Net-con. Net-I. 25 Net-I. 50 Net-I. 100
Net. flow? No No Yes Yes — — — —

Mean -14.88 -27.19 -11.34 -23.14 -54.75 480.36 577.26 486.60

Table 6.28. The normalised times for ten runs and all datasets for Holistic and LastChance with and

without network flow, Net-construct and Net-lookahead with 25%, 50% and 100% contributions.

From Tables 6.26 and 6.27, it is clear that Net-lookahead in all cases is able to 

outperform the other approaches and although there is some variation between the 

successes of the other heuristics, this difference is relatively insignificant in comparison. 

In particular, Net-lookahead seems to perform better when a lower percentage of the 

remaining combinations are considered. This is likely to be because the scores arising 

from an approach including only the better combinations will be a more accurate
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reflection of the costs which actually will be incurred in the later stages of construction; 

when 100 per cent of the possible combinations are considered, for example, this includes 

very poor cost options, which will certainly be discarded by the construction’s greedy 

approach anyway. Net-lookahead using the best 25 per cent of the available combinations 

is therefore the most successful method so far. We denote this Net-lookahead-25.

However, Table 6.28 shows that this increase in solution quality is to the detriment of 

computational expense. In terms of actual solution time this adds up to an hour to the 

time required to perform one run. Since these timetables are to be produced annually, 

rather than weekly, as for the nurse scheduling problem, it is worth spending this extra 

time to create the best schedule possible although it is, of course, desirable that the 

schedules should be created as quickly as possible.

Although the Net-lookahead-25 algorithm is slow, it has so far been the most successful 

at producing low cost solutions. However, if we look at the results produced in each of 

the ten runs, the solution costs are still very variable. Table 6.29 gives details of the best 

solution costs from each run for some of the datasets using Net-lookahead-25.

D ataset 10 11 12 16 17 18 22 23 24 41 48
Min. 211 278 428 330 384 504 530 568 769 1656 1441

M ean 233.0 304.6 483.4 344.5 406.1 549.7 543.8 595.4 801.2 1675.4 1459.7
Max. 245 331 522 361 417 581 571 632 829 1687 1470

R ange 34 53 94 31 33 77 41 64 60 31 29

Table 6.29. The minimum, maximum, mean and range o f  the best costs from each run for a selection o f

datasets using Net-lookahead-25.

Table 6.29 indicates that although Net-lookahead-25 is the best method, it is not robust. 

Although the optimal solutions are not known, Net-lookahead-25 is certainly not 

achieving optimality for all ten runs, since the ten best costs show a great deal of variety 

and in many cases the difference between the best cost arising from one run and another 

is significant.
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At this point it must be noted that a series of basic experiments have been carried out on 

the medical student scheduling problem using GRASP and it was at this stage of testing 

using the nurse scheduling problem, once a series of construction heuristics and 

neighbourhoods had been exploited, that an ACO approach was considered. The best 

performing approach, GRASP, was then further tested in order to produce a more 

aggressive algorithm for the problem. It is therefore prudent to discuss briefly why an 

ACO approach is not now being considered for the medical student scheduling problem.

As discussed earlier, one of the main reasons why medical student scheduling does not 

lend itself well to a feedback approach, such as ACO, is the inherent problem symmetry; 

the structure of the problem is such that there can be no benefit in rewarding a specific 

assignment or group of assignments since, at the start of the construction, all students are 

homogeneous, as are the 4 main timeslots and specialities. This means that there would 

be no way to judge whether an assignment in the current construction was equivalent to a 

previous assignment of the same description or not. Even using a method where the trails 

are used to group certain firms, rather than having a trail represent single assignments, the 

symmetry of the problem prevents information from one cycle reliably influencing the 

next, since there is symmetry between many firms as well. It should also be noted that the 

ACO approach was not highly successful even with the nurse scheduling problem, which 

indicates that, even without the inherent symmetry, the non-linearity of the objective 

function would hinder the success of an ACO approach. A further indication that 

pursuing an ACO approach would not be worthwhile is evident in the results so far in this 

chapter. The constructions thus far have proved to be of a relatively poor quality, relying 

heavily on the use of local search. If a constructive technique alone is not sufficient to 

produce at least reasonable solutions, then it is unlikely that an ACO approach, which 

relies heavily on the construction, would fare better. Note that even the most successful 

construction technique so far, Net-lookahead-25, relies on several hundred 

neighbourhood moves to improve every construction significantly. Therefore, in order to 

further investigate the medical student scheduling problem, the current GRASP 

approaches are enhanced.

266



In order to improve the GRASP solution approach, an element of memory is introduced 

from one cycle to the next. The experiments using GRASP with memory are detailed in 

the following section.

6.5.3 GRASP with memory

This section gives details of the memory procedure and the experiments performed and 

results obtained using this approach. We begin with an explanation of how the memory 

approach is incorporated into a GRASP run.

The first cycle is completed as normal. The memory approach then initialises each 

subsequent construction with the complete timetable of the previous cycle. One timeslot 

is selected at random and this timeslot is emptied of all current assignments and rebuilt 

using the heuristic. The local search phase then improves this modified solution as 

normal. Only timeslots 2-5 are considered for overhaul, since timeslot 1 is of a different 

nature. Note that this effectively turns the algorithm into a form of iterated local search 

(ILS), where a local optimum is perturbed and local search reapplied. As was mentioned 

in Chapter 2, an ILS approach was the most successful heuristic technique applied to the 

quadratic three-dimensional assignment problem (Q3AP) by Hahn et al. (2008) and since 

we have already established many similarities between these two problems, especially in 

their objective functions, there is reason to suppose that such an approach may also be 

effective here. This approach is applied to the Holistic and LastChance heuristics with 

and without the network flow model, and to Net-construct. Since Net-lookahead is 

identical to Net-construct when only one timetable remains to be scheduled, there seems 

little point in producing both sets of results.

The results from these experiments are shown in Table 6.30 and are normalised against 

Net-lookahead-25, since this was previously the most successful method.
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Heuristic Holis. Last C.
With Memory

Holis. Last C. Net-con. Net-125
Net. flow? No No Yes Yes — —

10.56 7.99 6.60 11.51 -57.19 20.90
11.95 9.78 10.99 11.56 -55.38 16.40
6.18 12.94 9.79 7.18 -57.64 15.37
8.49 9.62 6.80 10.39 -57.72 22.58
6.54 9.30 8.71 12.96 -56.00 17.33
5.92 12.47 10.87 8.36 -58.33 14.59
8.98 12.94 9.46 11.57 -56.88 16.54
6.98 11.22 8.63 9.96 -53.95 21.50
8.42 11.29 5.86 10.04 -54.94 19.34
2.46 8.60 9.34 14.35 -54.07 19.98

Mean 7.65 10.61 8.71 10.79 -56.21 18.45

Table 6.30. The normalised best results over ten runs and all datasets for Holistic and LastChance with and 

without network flow and Net-construct with memory and Net-lookahead-25.

From Table 6.30, it is clear that Net-construct with memory, now denoted 

Net-construct-M, is the most successful algorithm by far. However, it also interesting to 

note that even the original heuristic approaches are now superior to Net-lookahead-25 

when the memory is applied. Figure 6.31 shows some of the typical plots of the solution 

costs for each GRASP cycle using Net-construct-M, to demonstrate the success of the 

memory approach.
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Figure 6.31. Some plots o f the solution cost before and after local search over the 100 GRASP cycles.

As can be seen, for datasets 12, 17 and 23, for example, the use of memory is clearly 

improving the solution cost over time. By repairing a mostly completed solution, the local 

search is initiated with a relatively low-cost solution in a good area of the solution space 

and thus the solutions gradually improve over time. This improvement is more 

pronounced in the first few cycles, but improvement is generally seen even in the later 

stages of the run and is the result of a gradual improvement in hospital cost. The 

consultant constraints are usually satisfied in the first few cycles due to their higher 

weighting in the objective function and this produces the initial large decrease in cost. 

The hospital constraint violations are then slowly improved upon with the student costs as
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a secondary consideration. Dataset 48 is an example of a situation in which both the 

consultant and hospital costs converge early on and the remaining fluctuations are solely 

with regard to the varying student costs. Datasets 19 and 45 are the final example plots, 

showing situations where the memory appears to have far less of an impact. Dataset 19 is 

similar to dataset 48. The consultant and hospital costs are easily minimised, but the 

algorithm struggles to reduce student-pair costs. In the case of dataset 48, however, the 

memory was of assistance in reducing the hospital and consultant costs initially, whereas 

for dataset 19, even this initial assistance is not required as both of these types of 

violation are reduced to zero easily. For datasets of this type, although the plots do not 

show any obvious signs that the memory is improving the schedules, the best solution 

costs found from each run are generally still better than those produced using 

Net-lookahead-25. Since it is only the student-pair costs which are difficult to minimise, 

by searching intensively in a good area of the solution space, the algorithm is more able 

to find high-quality solutions. The final example plot, from dataset 45, is where all three 

types of costs converge easily, and thus the same, potentially optimal, solution is obtained 

from each cycle.

The use of memory thus seems an important addition to the algorithm. Since the 

construction is doing much less work during each cycle, the solution times are also 

greatly improved. Table 6.32 shows the mean normalised solution times of the methods 

with memory and compares these with that of the original Net-construct approach, since 

this was previously the quickest algorithm.

Heuristic Holis.
With Memory

Last C. Holis. Last C. Net-con. Net-con.
Net. flow? No No Yes Yes — —

Mean -4.41 -4.36 -3.53 -0.12 -65.93 78.35

Table 6.32. Mean normalised times to complete one run for each o f  the approaches.

Net-construct-M is therefore both the most successful algorithm and the quickest so far. 

The time required to perform one run of 100 GRASP cycles varies depending on the 

dataset, but is less than a minute in all cases.
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6.5.4 Sensitivity to weights

Although we have so far achieved the best results using a heuristic based on the network 

flow model, it is important to note that Net-construct does not include any information 

about the student pairings in the construction stage and its success may be partly reliant 

on the fact that the student costs have a much lower weighting than the other types of 

cost. In order to test this we re-ran new experiments with the respective weightings for 

the consultant, hospital and student-pair constraint violations set to 50:10:100, 

respectively, compared with the original weightings of 50:10:1. Ten runs were performed 

using these weightings for both Net-construct-M as well as the best of the original 

heuristics so far, Holistic with memory and no network flow, simply referred to as 

Holistic-M in the following.

Table 6.33 shows the normalised bests results from these experiments. These results are 

shown over all datasets as usual, but also split into datasets using the original and 

modified consultant clash matrices. Clearly, these results are not directly comparable with 

those obtained previously, but we will be able to discuss their relative success.

All d a ta se ts Original matrix D en ser matrix
Heuristic Holis-M N et-Con-M Holis-M Net-Con-M Holis-M Net-Con-M

19.54 -18.10 -0.82 5.00 20.36 -23.10
16.48 -19.51 -3.42 3.72 19.90 -23.22
14.36 -22.19 -7.00 -0.67 21.36 -21.52
17.67 -11.40 -3.65 8.12 21.32 -19.52
16.34 -19.53 -6.58 4.84 22.92 -24.37
21.59 -15.12 -2.70 5.52 24.28 -20.64
22.27 -22.95 -2.68 -1.56 24.95 -21.39
18.87 -19.59 -2.35 2.68 21.22 -22.27
20.30 -19.11 -2.11 4.54 22.41 -23.65
17.61 -17.56 -3.29 2.39 20.91 -19.95

Mean 18.50 -18.50 -3.46 3.46 21.96 -21.96

Table 6.33. The normalised best results over ten runs with Holistic-M  and Net-construct-M  using the

altered constraint weightings.

Although it is clear that Net-construct-M is still performing the best over all datasets, 

there is a clear divide in the successes of the two algorithms between datasets with and
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without the denser consultant clash matrices. For datasets where it is relatively easy to 

minimise the consultant constraint violations, it is generally the student costs which are 

harder to minimise and make the difference between a good or a poor solution. In these 

situations the Net-construct-M algorithm is at a disadvantage, since these important 

student-pair costs are not considered during the construction stage at all, whereas 

Holistic-M is much more able to minimise these costs effectively.

However, once the consultant clash matrix is modified, it is the consultant costs which 

are more difficult to minimise. During construction, Holistic-M reduces all costs as far as 

possible, but gives preference to the higher-weighted student costs. This is to the 

detriment of the consultant and hospital costs. Once the student constraint violations have 

been minimised, no other improvements can be made which will negatively affect the 

student costs due to their high weighting. By minimising these ‘secondary’ costs before 

attempting to minimise the student costs, Net-construct-M is actually more successful.

The results of this section indicate that it is important to choose a construction approach 

which effectively tackles the most difficult set of constraints. For datasets where 

minimising the student-pair clashes was the most difficult task, the Holistic-M 

construction, which took these into account, was the more successful. For the datasets 

where the consultant clashes were more of a problem, however, the Net-construct-M 

approach, which focused more on these consultant costs, proved to be much more 

successful. It seems, then, that although there is benefit in balancing all constraints in the 

construction phase, the important factor in the success of a GRASP approach lies with 

ensuring that the construction is able to effectively reduce violations of the most difficult 

set of constraints. This was also seen in the GRASP approach to the nurse scheduling 

problem in Chapter 4, where the main difficulty was in finding feasible solutions; the best 

approaches were heavily biased towards feasibility in the construction phase and the 

incorporation of the knapsack was essential for this purpose.

We therefore maintain that Net-construct-M is the best solution method available thus far, 

although it is interesting to bear in mind that it does ignore a complete set of constraints
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during the construction phase and so it may not be a prudent choice if the student 

constraints were to become more important.

Obviously, in a real world situation, it is unlikely that the student-pair constraints would 

be valued more highly that the others, but these experiments are included for other 

problems which may arise with a similar formulation, and for the sake of completeness.

6.5.5 Improvements to the memory approach

Since applying memory to the algorithms was so successful, we attempt to further 

improve solutions, by trying three further memory tactics. Previously, we initialised the 

construction with the schedule from the previous cycle and selected a random timeslot for 

modification.

We suggest the following improvements:

1. Initialise with the best schedule found so far

2. Select the timeslot with the highest contribution to the cost for modification

3. Both initialise with the best schedule and remove the highest-cost timeslot.

We applied these three approaches to Net-construct and denote them by the suffixes -B, 

-W  and -BW, respectively. The best results obtained from each method are detailed in 

Table 6.34.
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Heuristic Net-con-B Net-con-W Net-con-B W Net-con-M
-9.44 0.77 10.46 -3.16
-6.52 -1.96 15.15 -5.37

-10.47 -6.34 5.23 -7.26
-11.49 1.65 10.26 -9.34
-10.18 2.42 6.86 -4.91
-5.90 1.66 15.54 -7.90

-15.16 3.61 11.61 -3.81
-2.94 5.81 11.05 -0.82
-7.15 4.87 16.75 -1.79
-8.90 0.24 19.33 -2.46

Mean -8.81 1.27 12.22 -4.68

Table 6.34. The normalised best results over ten runs and all datasets for Net-construct with the different

types o f memory enhancements.

It was expected that each enhancement would be likely to improve solution quality and 

that combining the two should give the most improvement, however this is clearly not the 

case. While modifying the best solution so far (Net-construct-B) does give some 

improvement, selecting the highest-cost timeslot for modification (Net-construct-W) 

actually decreases solution quality and using both enhancements (Net-construct-B W) 

gives the worst results of all the methods.

The reason for the poor performance of Net-construct-W can be explained by looking 

more closely at the results obtained. In most of the initial cycles, it is the last of the five 

timeslots which contributes the most to the solution cost and is therefore chosen for 

rebuilding. However, it is not just these initial cycles for which the fifth timeslot is 

selected; the fifth timeslot is selected over 90 per cent of the time and this results in the 

GRASP stagnating, since it is rebuilding from the same partial solution over and over 

again. When Net-construct-B W is used, this situation is only compounded; since the best 

solution often remains the best for several cycles and, since the worst timeslot is selected 

for removal, it is the same partial solution being rebuilt in every cycle. Thus the algorithm 

is not able to explore the search space fully and so stagnates easily.
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However, despite the overall lack of success of these methods, there are datasets for 

which these generally poorer methods produce solution costs lower than the best found 

using Net-construct-M or Net-construct-B. For this reason, rather than abandoning these 

enhancements, two new approaches are suggested, which incorporate all three 

enhancements.

6.5.6 Further modifications to the memory approach

The first of these combined memory approaches, which will be denoted by 

Net-construct-R in the following, is a straightforward randomisation of all the memory 

approaches so far. At the beginning of each cycle, the heuristic will decide with equal 

probability which method will be applied. The choices are:

•  Use the original memory approach {-M)\ remove a random timeslot from the 

solution of the previous cycle.

•  Use the best solution approach (-B): remove a random timeslot from the best 

solution of the run.

•  Use the worst timeslot approach (-W): remove the timeslot with the highest cost- 

contribution from the solution of the previous cycle.

•  Use the combined approach (-BW): remove the timeslot with the highest cost- 

contribution from the best solution of the run.

The second approach, which will be denoted by Net-construct-I, also combines the 

different methods, but does so more intelligently. It begins by applying the ‘-W  

approach, rebuilding the worst timeslot for each new cycle. Once the hospital and 

consultant costs have been unchanged and the same timeslot has been selected for five 

cycles, it is deemed that the search has stagnated and the heuristic changes to the ‘-i?’ 

approach, rebuilding a random timeslot from the best solution so far. Once the best cost 

solution so far has remained the same for five cycles, the straightforward memory 

approach ‘-AT applied initially is used until a new best cost solution is found. If the new 

solution has decreased hospital or consultant costs, the worst timeslot approach is used
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again or if the hospital and consultant costs are unchanged the best solution approach is 

revisited. The process repeats until the stopping criteria, reaching 100 cycles, is met.

Table 6.35 shows the normalised best results from ten runs using each of these two 

combined memory approaches, Net-construct-R and Net-construct-I, against the best 

performing method so far, Net-construct-B and the original memory approach 

Net-construct-M.

Heuristic Net-con-R Net-con-l Net-con-B Net-con-M
-5.80 -5.50 -3.38 -0.75
-5.06 8.78 4.05 2.48
0.48 1.59 -3.21 -4.80

-11.22 0.87 -4.79 -5.78
6.06 11.07 -2.03 -0.87
0.09 7.55 8.37 0.61
-4.89 -3.46 -10.44 4.67
2.70 -7.40 12.05 12.39
-1.32 0.33 -2.19 1.33

-10.77 1.23 -0.87 7.82
Mean -2.97 1.51 -0.24 1.71

Table 6.35. The normalised best results over ten runs and all datasets for the two memory approaches 

combining the different enhancements as well as the best o f the previous approaches.

The results in Table 6.35 show that Net-construct-R appears to be the most successful 

method so far, although there is still a great deal of variation in cost between the ten runs 

and the difference between the different approaches is not very pronounced.

6.5.7 Further analysis and discussion

Until this point, we have looked at the results obtained giving equal importance to each of 

the datasets. However, this is not necessarily prudent as shall be explained in the 

following. For many of the datasets, the best solution found is repeated in nearly all runs 

using each method. In the rare circumstance that a run of higher cost is produced, the 

impact on the normalised costs is enormous, although this is probably unrepresentative in 

real-world terms. Obviously if all methods produce the ‘optimal’ result ten times, but one 

only produces it nine times, this method may not be as robust, but when the added cost is
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negligible it seems impractical to base long-term decisions on these inflated statistics 

when decisions on relative success should more probably be based on solutions to more 

‘difficult’ datasets.

Table 6.36 shows details of the actual lowest cost found for each dataset. The ‘Net-con-R’ 

column gives the best result produced for each dataset using Net-construct-R, the most 

successful method so far. Where this is higher than the best known solution, the figure is 

shown in italics. The third column gives the number of times from ten these results were 

produced using Net-construct-R and the final columns give the number of times from ten 

that these best costs were within 9 and 49 of the overall best cost for the dataset. 

Investigating the solutions within 9 of the best known ensures that these are all allowing 

further violations of the least important constraint only, related to the student pairings. 

Similarly, solutions within 49 ensure no additional consultant costs. At this point it is 

interesting to note that dataset 1 describes the same problem as that solved by Fuller 

(1998), although Fuller assigns a weight of 5, rather than 50, to violations of the 

consultant constraints. However, the solution produced by Fuller’s approach, as 

mentioned briefly in Chapter 2, has 1 consultant clash, 24 hospital clashes and 46 student 

pair clashes, giving a total cost of 291 using consultant weight 5 or 336 using the updated 

weighting scheme. It is therefore encouraging to note that the GRASP approach has 

reduced this total cost to just 30, comprising three hospital constraint violations.

Table 6.36 clearly shows that Net-construct-R is very capable of producing good 

solutions for all datasets created from the original second dataset (datasets 25-48) and for 

the three versions (original, tightened and tight) of the first original dataset, but struggles 

to find consistently good solutions for the remaining datasets. When looking at which 

datasets are solved within 9 of the best found so far a clear pattern emerges: For datasets 

with the original consultant clash matrix it is the student cost which is lowering the 

solution quality, but for the denser matrix the quality is more likely to be adversely 

affected by extra hospital and, in some cases, consultant constraint violations.
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The nature of the consultant clash matrix has clearly had a major impact on the difficulty 

of the problem. As we mentioned in Section 6.3.4, the original matrices had the attribute 

that any two firms with a consultant in common would be in the same hospital. The result 

of this was that by avoiding consultant clashes, further hospital clashes were 

automatically avoided as well. By allowing consultants to head firms in different 

hospitals, however, the two constraints are no longer in concordance and the conflict 

between the two creates additional difficulty in allowing the solution to steadily converge 

to a low-cost solution.

We are therefore interested not only in the normalised best solution costs obtained, but 

also in the robustness of the algorithm and the likelihood that solutions found will be of 

an acceptable quality. For datasets which have proved particularly difficult, this is 

especially the case and so we provide more details in the following of the success of each 

algorithm with respect to each individual dataset. Given that there has been little 

difficulty in finding the best known solution for datasets 1-3 and 25-48, it is only datasets 

4-24 which seem to be proving difficult to converge.
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Dataset Best found Net-con-R /10 in 9 in 49
1 30 30 10 10 10
2 80 80 10 10 10
3 240 240 10 10 10
4 168 181 1 0 10
5 209 217 1 1 8
6 293 293 1 6 10
7 0 0 3 10 10
8 1 2 1 10 10
9 2 2 1 10 10
10 96 104 1 1 8
11 125 132 1 1 8
12 146 181 1 0 1
13 0 0 8 10 10
14 20 20 3 10 10
15 180 180 9 10 10
16 189 209 1 0 7
17 248 260 1 0 9
18 292 303 1 0 8
19 1 1 1 10 10
20 1 1 1 10 10
21 3 3 1 10 10
22 281 317 2 0 2
23 341 354 1 0 3
24 411 435 1 0 2
25 900 900 10 10 10
26 850 850 10 10 10
27 610 610 10 10 10
28 900 900 10 10 10
29 850 850 10 10 10
30 610 610 10 10 10
31 780 780 10 10 10
32 730 730 10 10 10
33 490 490 10 10 10
34 780 780 10 10 10
35 730 730 10 10 10
36 490 490 9 10 10
37 1700 1700 10 10 10
38 1650 1650 10 10 10
39 1410 1410 10 10 10
40 1700 1700 10 10 10
41 1650 1650 10 10 10
42 1410 1410 10 10 10
43 1700 1700 10 10 10
44 1650 1650 10 10 10
45 1410 1410 10 10 10
46 1700 1700 10 10 10
47 1650 1650 10 10 10
48 1410 1410 10 10 10

Table 6.36. Details o f  the best known costs for each dataset, and the relative success o f Net-construct-R.
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The following figure, Figure 6.37, shows the breakdown by dataset for the ten runs 

produced using some o f the most recent methods. The black bars indicate how many 

times the best known solution was found, the grey bars, solution costs within 9 of the best 

known solution, indicating violation o f only the least significant, student pair, constraints 

and the white bars, solution costs within 49 of the best known solution, indicating that 

there have been no consultant cost violations.

H  H I
(a) Detailed results from all 48 datasets using Holistic-M.

■fljiiuja
(b) Detailed results from all 48 datasets using Net-construct-M.

O J -IILiOn
(c) Detailed results from all 48 datasets using Net-construct-B.

(d) Detailed results from all 48 datasets using Net-construct-R.

(e) Detailed results from all 48 datasets using Net-construct-I.

No. best known No. in 9

i nfl H l r i m

□  No. in 49

Figure 6.37. Solution cost breakdown by dataset for timetables produced using different heuristic

approaches with memory.
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It can be seen from Figure 6.37 that all of the approaches (b)-(e) using Net-construct with 

memory strategies produce relatively similar results. It is clear that although datasets 25- 

48 easily produce the best known solution in each run, the Net-construct method is 

required in order to produce these results and that without this assistance in the 

constructions, Holistic-M (Figure 6.37 (a)) is unable to produce results of a similar 

standard for datasets using the denser consultant clash matrix. One of the reasons for the 

noticeable difference in success between datasets with the original and denser clash 

matrices is due to the denser matrices allowing consultants to move between hospitals. In 

the original consultant clash matrices each consultant was restricted to working in a 

single hospital and no movement of consultants between hospitals was allowed. The 

denser matrix allows consultants to head firms in different hospitals and this means that, 

while the consultant constraints using the denser matrix are in conflict with the hospital 

constraints, the original matrix has the effect of reinforcing them. Thus while the denser 

consultant clash matrix provides the opportunity to solve a problem with three conflicting 

soft constraints, the original matrix only has two.

Of the Net-construct approaches it is difficult to determine which is the most successful. 

Although the statistical analysis over all datasets would suggest that Net-construct-R is 

the best on average, it must be pointed out that although Net-construct-I is worse at 

finding very good solutions, more of the solutions it does find are within 49 of the best 

known. If a solution of cost at least 50 greater than the best known solution is considered 

undesirable, then while Net-construct-R produces at least one such undesirable solution 

from ten runs for ten datasets, Net-construct-I does this for only five datasets and 

generally produces fewer ‘undesirable’ solutions for each of these. Thus, Net-construct-I, 

could be considered the most robust of the methods; the solutions found may not always 

be of the highest quality, but they are more likely to all be of a reasonable quality. Note 

that for most of the datasets we are unable to judge how good the best known solutions 

are in relation to the optimal. However, as can be seen in Table 6.36, for datasets 7 and 

13, the best known solutions have zero cost and so we know that these are optimal. 

Clearly, for any dataset where the best known solution is very low in terms of actual cost, 

even if this is not the optimal value, it cannot be very far from optimal.
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6.6 Conclusions

As stated in the introduction in Chapter 1, the focus of this thesis is concerned with 

balancing different objectives using greedy, randomised constructive techniques within a 

metaheuristic framework. The medical student scheduling problem presents an excellent 

opportunity to study such a problem. Not only are conflicts present between the hard and 

soft constraints, but also between the various soft constraints; in order to be able to 

minimise all costs a balance must be struck which gives an appropriate amount of 

consideration to each aspect and thus produce solutions of as high a quality as possible. 

By altering the consultant clash matrix to allow movement of consultants between 

hospitals we were able to solve datasets with both two and three sets of conflicting soft 

constraints. It was found that although a network flow approach could be incorporated to 

guarantee feasible solutions, the difficulty of finding feasible solutions to this problem 

was not severe enough to warrant the enforcement of such restrictions; not only were 

plenty of feasible solutions found without this aid, but the quality of the solutions were 

impeded by its use. Thus a straightforward approach fared better, although the overall 

quality of the solutions obtained using any of these constructive heuristics was generally 

quite poor.

Although the network flow model was not successful when used as an aid for feasibility, 

when a modified model was used to find a good balance for the hospital and consultant 

constraints, it performed very well. Initial experiments comparing different heuristics 

showed that, although the Holistic and LastChance heuristics outperformed Feasibility 

and Combined, all approaches performed relatively poorly, compared with the results 

obtained from the network flow construction approaches. Furthermore, although the idea 

of using look-ahead was not very successful for individual assignments, the LastChance 

and Holistic heuristics performing similarly, it proved successful when looking ahead at 

the potential consultant and hospital clashes in the remaining timeslots, as shown by the 

success of the Net-lookahead construction. However, one of the drawbacks of using this 

type of method is that it relies upon the fact that the student pair constraints, which cannot 

be modelled into the network, are the least important. We showed, by assigning the
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student costs more weight, that there may be cases where the best solution is not found 

using a network flow construction approach if the importance of these constraints were 

altered. However, even with a high weight on the student pair costs, the difficulty of 

balancing just the hospital and consultant clashes meant that the results obtained using 

Net-lookahead were reasonable. Thus we have provided a good construction which builds 

a solution based on only the feasibility and the hospital and consultant constraints while 

the local search is entirely responsible for optimising the student costs. For the medical 

student scheduling problem, then, we have had the opportunity to study the conflict 

between the different soft constraints and have discovered that the least significant of 

these, namely the student pair constraints, may be omitted entirely from the construction 

without any loss of final solution quality. However, the experiments carried out with 

increased weight on the student costs showed that it is not necessarily the highest- 

weighted constraints which should be given priority in the construction, but the ones for 

which minimising the number of violations proves the most difficult. For the medical 

student scheduling problem, however, the particular difficulty of each set of constraints 

varied between datasets and so the final choice of approach was the one which provided 

the best solutions on average.

The final improvement to the algorithm came from the incorporation of an element of 

memory. It was shown previously that the symmetry of the medical student scheduling 

problem, as well as the poor quality of the constructed solutions, meant that using a 

feedback approach such as ACO would be unlikely to be successful. However, by 

rebuilding a single timeslot from a previous solution, and ensuring that this did not result 

in early stagnation of the search, solutions were found of a much higher quality than 

those previously. As was discussed in the previous section, the optimal cost of each 

dataset is not known, but since the best known solution found is not produced in every 

run for all datasets, we know that the algorithm is not consistently producing optimal 

solutions. We do know that the algorithm is more likely to find better solutions more 

consistently for datasets using the original consultant clash matrix, and therefore 

investigating the balance between two, rather than three, conflicting soft constraints. 

However, given that this problem has not previously been studied in such depth, we have
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gained a lot of information about the balance between the different costs and the methods 

which do and do not assist in the search for high-quality solutions.

In terms of the aims of this thesis, we have been successful in showing that the role of the 

construction is important, with a great deal of variation in solution quality between 

approaches using different constructive heuristics, and with the Net-lookahead providing 

far superior results when using a straightforward approach with no memory. Furthermore, 

we have shown the benefit obtained by tackling the most difficult constraints within the 

construction phase. We have also deduced that, although the construction is important it 

needs to be used in combination with a suitable local search element in order for the 

approach to be successful. This was shown most clearly in the difference in solution 

quality between approaches with and without the swap neighbourhood, and it was shown 

that the constructions relied heavily on local search in order to improve solution quality. 

Furthermore, we showed that although it is possible to balance the different constraints 

within the construction, using an exact method to minimise the costs relating to the 

simpler, but more important, constraints in each timeslot and allowing the local search to 

minimise the costs relating to the more complex, but less important, student constraints is 

a more effective method. Finally, exploiting the underlying feasibility structure of the 

problem to hybridise the GRASP with an exact method capable of ensuring satisfaction 

of the hard constraints was not found to beneficial in this case; the problem of finding 

feasible solutions for medical student scheduling was not found to be sufficiently difficult 

for such an approach to be worthwhile.

This problem has been shown sufficiently interesting to warrant further research and, 

given that it is not possible to solve exactly it will be interesting to see if further 

experimentation will produce results better than the best solutions obtained here. Clearly, 

we have provided an explanation of why an ACO algorithm would not be suitable for 

application to this problem, but it may be interesting to experiment with other 

metaheuristics such as Tabu Search, which has been applied so effectively in the past to 

nurse scheduling and would also be applicable here. In may also be interesting to 

experiment with a metaheuristic such as simulated annealing; by slowly reducing the cost
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of uphill moves allowed during the search, we would gradually be pruning the search of 

accepting the different types of constraint violation. Since this problem offers different 

costs for each of the conflicting constraints the search would slowly allow no further 

violations of the consultant, hospital and finally student constraints, in that order as the 

temperature is reduced and it would be interesting to see the effect this has on solution 

quality. Given that the memory approach of rebuilding a timeslot was so successful, it 

would also be interesting to apply an iterated local search approach, which also relies on 

repeatedly perturbing and improving solutions.

A further point of interest would be to consider instances where there is not an exact 

match between the number of students and the spaces available in timeslot 1. Thus far, 

there has been no slack in timeslot 1 and so the schedules created in this first timeslot 

have created a basis on which the rest of the solution is built. It would be interesting to 

see how this added choice can be managed if spare places were allowed in timeslot 1. 

There would then be reason to widen the local search to include moves affecting timeslot 

1.

In conclusion, we have provided an algorithm to a new problem, and built a method 

based on hybridising a network flow construction with local search and memory in order 

to solve it. Although the optimal costs are not known, we know we have found optimal 

solutions for at least two datasets and it is likely that several others, especially those 

based on the larger dataset, are also optimal. However, those datasets for which the best 

known solution is not found on every occasion provide an interesting framework for 

further research and the prospect of creating an even more robust algorithm, even if the 

best known solutions cannot be improved upon.
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Chapter 7
Conclusions and suggestions for further research

This thesis has focused on the concept of balancing conflicting constraints in large, 

NP-hard problems within a constructive metaheuristic framework. The two problems 

which have been the subject of this investigation were both shown to exhibit the 

necessary conflicts to make them suitable for such a study and it has been shown for 

both problems that finding robust methods, able to balance these constraints by using 

a constructive approach, is non-trivial. In the case of the nurse scheduling problem, 

the conflict was between feasibility and optimality, and finding feasible solutions 

alone has been shown in the literature to be particularly difficult. The medical student 

scheduling problem presented a different set of conflicts and finding feasible solutions 

was, on its own, a relatively easy task. However, the complex objective function 

incorporated quadratic as well as higher order terms from up to three conflicting soft 

constraints and so balancing all these factors in order to produce solutions which were 

both feasible and optimal with regards to the objectives was much more difficult.

The constructive metaheuristic approaches used were GRASP, which was applied to 

both problems, and ACO, which was only applied to nurse scheduling. While GRASP
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was easy to apply in both cases, there were important factors which suggested that an 

ACO approach to medical student scheduling would be unsuccessful. Firstly, as was 

discussed in Chapter 2, the medical student scheduling problem is highly symmetrical 

which means that applying feedback through the use of a trail is likely to be 

ineffective, since specific assignments are not important to solution quality, only the 

relationship between assignments. Furthermore, since the quality of solutions 

obtained using an ACO approach for the nurse scheduling problem could not rival 

those of the GRASP, and the quality of the GRASP constructions for medical student 

scheduling were relatively poor, this only reinforced the conclusion that applying 

ACO to medical student scheduling would not be worthwhile. Before discussing the 

work in this thesis in relation to the aims stated in the introduction, a statement of the 

key results and conclusions is provided.

Main conclusions:

•  For both GRASP and ACO, selection of an appropriate construction heuristic is 

important.

•  For both problems, the best construction exploited problem structure although, for 

the medical student scheduling problem, this was not in the way anticipated.

•  The balance of the constraints in the construction is important, and there is a 

suggestion that ‘difficult’ constraints should be given priority.

Finer points worth noting:

•  Key features of the problem considered should be identified and exploited where 

possible.

•  Large construction steps, where several assignments are made simultaneously, can 

be beneficial, especially if some form of exact method can be used to optimise 

some set, or sets, of constraints. This is a similar idea to using large 

neighbourhoods in the local search phase where several assignments are replaced 

in one step.

•  Local search is important, even for generation-based methods with feedback.

•  Suitable trail definitions are difficult to define for these types of problem and so 

further complicate the design of an effective algorithm.
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•  Utilising information from previous cycles is important, especially where the local 

search does a lot of work. By utilising such information, the construction is 

generally able to provide a better starting point for the local search in the next 

cycles. This was especially evident for the memory approach for medical student 

scheduling.

•  Looking ahead has benefits over a purely myopic approach.

•  Diversity in the constructed solutions is important, but not at the expense of 

solution quality. The nurse scheduling problem approach was improved with the 

use of knapsack-based diversification and the medical student scheduling problem 

approach was hindered by memory approaches which did not allow a variety of 

constructions. However, both approaches were more successful when a shorter 

RCL was applied in the construction.

Note that all the above conclusions are based on the results obtained for just the two 

problems investigated in this thesis. Therefore further investigation is required in 

order to be able to draw conclusions in the general case.

Now that the key results have been stated, a discussion is provided which examines 

how these findings fit in with the original aims of the thesis.

As stated in the introduction, this thesis had three main aims and a fourth, secondary 

aim:

5. To investigate the role of the construction within a metaheuristic approach.

6. To investigate how different constraints may be balanced within a construction.

7. To investigate how exploiting problem structure with regards to feasibility may 

improve constraint balance within the construction.

8. To produce a robust method for each problem, capable of producing high-quality 

solutions for all problem instances.

The work in this thesis has dealt with the fulfilment of these aims and, in many cases, 

there has been overlap between them. The following sections provide a discussion of 

how each aim has been fulfilled and the subsequent conclusions which may be drawn.
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7.1 Investigating the role of the construction within a metaheuristic approach.

As was mentioned in the introduction, there are two types of metaheuristic 

approaches: those which are initialised with a random solution and those for which 

the role of the construction is important. This thesis has focused on the second type 

and, in particular, on ascertaining how important the role of the construction is on 

final solution quality and whether an aggressive construction would be able to 

compensate for the use of only minimal local search.

It has been stated repeatedly in the literature that no constructive technique can 

guarantee locally optimal solutions and therefore an element of local search is almost 

always beneficial and for the problems presented in this thesis this was certainly the 

case. However, although the construction may not be sufficient to produce high 

quality solutions on its own, this thesis has certainly shown that the construction plays 

an important part in solution quality. All approaches developed showed significant 

variation between the results obtained using different constructions. With the same 

amount of local search, but employing different constructive approaches, the solution 

quality was shown to be very variable and this indicates that the role of the 

construction is to create a starting point for the local search which is in a good area of 

the solution space, one which is in the basin of attraction of a high quality local 

optimum, given the neighbourhoods employed.

However, the GRASP approach in Chapter 4 showed that, even though there was a 

significant difference between the quality of the solutions obtained using different 

construction heuristics, the local search was necessary to provide a good number of 

feasible solutions. For the GRASP approach applied to medical student scheduling in 

Chapter 6, the local search part of the algorithm was clearly important to solution 

quality and it was shown, for example, that incorporating the swap neighbourhood 

made a significant improvement to the results obtained. The ACO approach in 

Chapter 5 was initially applied with no local search and results showed a definite 

improvement in solution quality when even a relatively small amount of local search 

was incorporated. Thus it can be deduced that although the role of the construction is 

important, it is, indeed, beneficial to have some element of local search.
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It has been shown that for the nurse scheduling approaches, a construction is able to 

create a reasonable balance between feasibility and optimality in the construction and, 

although some local search is necessary in order to find very good solutions, the 

constructions are able to steer the search towards areas of the solution space which are 

promising both in terms of feasibility and nurse preferences. However, although the 

heuristics employed for the medical student scheduling problem were able to 

incorporate costs relating to all constraints, it was found that a construction focusing 

on just some of the constraints was the most successful. In particular, it was important 

that the construction tackled the most difficult set of constraints, since minimising 

violations of these in the construction provided a starting point for the local search 

from which high-quality solutions were more likely to be found. For the nurse 

scheduling problem, the feasibility constraints were known to be the most difficult, 

while for the medical student scheduling problem, the most difficult set of constraints 

to meet was more data-specific. The consultant and hospital clashes were generally 

more difficult to minimise where the consultant clash matrix had been altered, 

whereas the student costs provided a greater challenge for most other datasets.

Consider the use of the knapsack model, in conjunction with the construction of a 

nursing schedule, where feasibility is the most difficult problem. This construction 

makes sure that the local search is much more likely to be able to find a feasible 

solution. Applying local search to a construction without this additional help, even 

one employing the cover heuristic, which is biased towards feasibility, the chance of 

obtaining a feasible solution on a given dataset is still fairly low. Although Dowsland 

(1998) showed that feasibility could be obtained with the use of complex, problem- 

specific neighbourhoods, this thesis has shown that feasibility can be obtained in most 

cases by using a more aggressive construction in combination with a much simpler 

local search element.

Overall, this thesis has approached this question of the role of the construction from 

many different angles and it is possible to conclude that while a good construction is 

able to balance many different elements and provide solutions which are of a 

reasonable quality, the idea of a construction works best when combined with a 

compatible local search. Effectively, the construction builds a good starting solution
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for the local search and a trade off exists whereby, the better the starting solution, the 

simpler the local search required to find high-quality solutions.

7.2 Investigating how different constraints may be balanced within a 

construction

The role of the construction within a wider solution framework has been discussed, 

and the best constructions will provide high-quality solutions where little local search 

is required in order to optimise. And, where a problem has conflicting constraints, it is 

natural to suppose that the construction should aim to reduce violations of all of these, 

rather than reducing one set at the expense of another. For the nurse scheduling 

problem, however, it has been shown that this is not necessarily the case, as will be 

discussed later in this section. One of the aims of this thesis, as stated in the 

introduction, was to investigate ways of establishing balance within a constructive 

approach, such that the final solution obtained is of a reasonable quality with respect 

to all constraints.

For both problems a number of experiments were carried out initially into ways of 

balancing the different constraints within the construction. The initial investigation 

took the form of trying a number of different heuristics, with various weights tested 

for the costs associated with feasibility and optimality.

The different heuristics each approached the task of balancing constraints in a slightly 

different way. The first, denoted Cover for nurse scheduling and Feasibility for 

medical school scheduling, was concerned only with satisfaction of the feasibility 

constraints, while Combined introduced a weighting system which gave significance 

to both the hard and soft constraints. Both of these heuristics created a schedule in a 

set order, taking the nurses, or students, in turn. The Holistic and Last chance 

approaches were based on a similar approach of balancing the two sets of constraints, 

but introduced more flexibility by not using a fixed nurse, or student, ordering and the 

Last chance heuristic incorporated an element of look-ahead, by favouring 

assignments which, if delayed, could lead to higher costs. The exploitation of the 

feasibility structure of each problem by use of the knapsack and network flow models 

provided a further way for balance to be investigated by ensuring that some aspects of

291



the feasibility constraints were satisfied at each stage of the construction and the 

success of these exact methods will be discussed further in the next section. It was 

found that, as expected, heuristics which utilised a score function based both on the 

feasibility and optimality costs were more likely to produce higher-quality solutions. 

Although the Cover and Feasibility heuristics were better at producing feasible 

solutions, this was offset by the high cost of the solutions they produced and, since a 

reasonable number of feasible solutions were found by the other heuristics, they 

showed no overall advantage.

A further way in which balance was investigated was in the way the two parts of the 

score function were combined, using Combined, Holistic and Last chance for the 

nurse scheduling problem. Two approaches were tested: an additive and a 

multiplicative method. The main difference between them is that the multiplicative 

approach will not allow any assignments to be considered which do not contribute to 

the feasibility if there are assignments available which will do so. However, the 

results showed that there was generally not a big difference between the quality of the 

solutions attained using each of these types of combination, compared with the 

difference in quality from using a different heuristic. For this reason, the experiments 

carried out for medical student scheduling did not test both of these methods of 

combination and instead used just the multiplicative approach, which had been shown 

to be the more robust of the two.

The last piece of the initial investigation into achieving balance within the 

construction involved testing the actual weights applied to each aspect of the score 

function. Clearly, this is one of the most important parts of the investigation, since 

finding a suitable weighting is almost equivalent to finding a suitable balance. For 

each problem a range of weights were tested. The weight settings which produced the 

best results depended on the method of combination, additive or multiplicative, 

whether or not the feasibility was enhanced using an exact method and, for nurse 

scheduling, on the metaheuristic used. The method of combination influenced the 

choice of weights due to the fact that the multiplicative heuristics used the weights as 

exponents, rather than multipliers and so the same weights applied to each aspect of 

the problem had a greater impact in this case. When the construction was hybridised 

with an exact method, this too influenced the weights required to find good solutions.
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In most cases where hybridisation was employed, the best results occurred when the 

weight relating to the soft constraint part of the score was increased relative to the 

feasibility weight, since finding feasible solutions was no longer such a difficult 

problem. In terms of the metaheuristic used for nurse scheduling, it was found that the 

ACO approach, which did not have the benefit of local search, struggled to produce 

feasible solutions and so the best weight settings were found to be those which 

favoured feasibility, since these were the most likely to produce feasible solutions.

The main experiments, considering possible ways of balancing the different types of 

constraints, have been detailed and, as mentioned, the experiments involving the 

hybridisation of the heuristic methods with the exact techniques to improve the 

feasibility will be discussed in the next section. However, for the medical student 

scheduling problem, the exact network flow model was used to create a new type of 

construction, and this is relevant to the current examination of the ways in which a 

construction may be used to balance different aspects. Chapter 6 saw the introduction 

of two network flow construction techniques, Net-construct and Net-lookahead. In all 

heuristic approaches for the medical student scheduling problem, weights were used 

to balance the conflicting aspects of feasibility and optimality, where the soft 

constraints were combined to provide a single weighted score. Net-construct and 

Net-lookahead used a different approach, however; for each timeslot a network flow 

approach was used to model the feasibility constraints and the hospital and consultant 

costs only. Although the student costs were necessarily excluded from the model, 

these construction techniques were able to find the best possible allocation of students 

to firms for the given timeslot, according to all other constraints. The Net-lookahead 

construction, in particular, was able to incorporate potential future costs and so 

provide a solution suitable not only for the current timeslot, but which would be likely 

to reduce the overall cost of the final solution. These methods were shown to be more 

successful, generally, than the heuristic approaches and the high-quality solution 

produced in terms of the more important costs was able to compensate for the fact that 

the student pair costs were not considered in the construction. Thus it has been shown 

that it can be beneficial to use the construction to minimise just some constraints 

allow the local search to minimise violations relating to other constraints.
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This thesis has considered many ways of balancing different and conflicting 

constraints using a constructive approach. Although it has been possible to find, for 

each problem and each metaheuristic approach, constructive techniques which are 

able to provide the necessary balance, it has also been shown that there is no one 

method which is guaranteed to provide a good balance in all situations. The weight 

settings required, for example, will vary depending on how easy each aspect of the 

problem is and experiments using the nurse scheduling problem showed that a higher 

weight for feasibility was required when using an ACO approach, with which feasible 

solutions were less likely to be produced. The approaches developed for the medical 

student scheduling problem also showed that, while a straightforward heuristic could 

easily be applied, much better solutions were found when a novel, problem-specific 

method was adopted. In summary, it has been shown that it is possible to balance 

constraints within a constructive approach, but that, in order to do so successfully, 

careful consideration of the design of the construction and the choice of parameters is 

necessary.

7.3 Investigating how exploiting problem structure with regards to feasibility 

may improve constraint balance within the construction

The last of the three main aims of the thesis was to investigate the benefits of 

hybridising the construction with an exact method to ensure that the feasibility 

constraints, or a relaxed version of the constraints in the case of nurse scheduling, are 

satisfied at the end of the construction.

The impact of utilising such a procedure is very different for each of the two problems 

in this thesis. The main difference between the advantages of the knapsack and 

network flow models was made clear in Chapter 2; while hybridising the medical 

student scheduling constructions with a network flow model guarantees feasible 

schedules, the knapsack model only guides the construction towards creating balanced 

solutions which can more easily be made feasible by the application of local search.

For the nurse scheduling problem, finding feasible solutions has been shown to be 

particularly difficult and there is no way to guarantee the construction of feasible 

solutions. However, as has been repeatedly shown throughout this thesis, one of the
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main obstacles to finding feasible solutions is the occurrence of unbalanced solutions, 

where simple neighbourhood moves, such as those used in this thesis, would not be 

sufficient to correct the imbalance of nurses working days and nights. The use of the 

knapsack model guaranteed that all solutions would be balanced at the end of the 

construction, significantly improving the likelihood of feasible solutions being found 

by the local search. Even using an ACO approach, where local search was not initially 

incorporated, the number of feasible solutions found was greatly increased using the 

knapsack model. It can be deduced that the knapsack model is an essential part of any 

aggressive construction method for the nurse scheduling problem. Furthermore, for 

the GRASP approach, it was shown that the use of the knapsack allowed the weight 

associated with the feasibility part of the heuristics’ score functions to be reduced, 

relative to the weight associated with the preference costs. By guaranteeing balanced 

solutions, the likelihood that the local search would be able to produce feasible 

schedules was increased, and so the balance in the construction was able to shift more 

in favour of satisfying the soft constraints.

For the medical student problem, however, finding feasible solutions is not such a 

difficult problem. Not only can the network flow model be used to guarantee 

feasibility, but it was shown in Chapter 2 that finding a feasible solution is relatively 

trivial if a cyclic approach is taken. The problem of finding a feasible solution is 

therefore much simpler for this problem than for that of nurse scheduling. It is 

therefore not surprising that, for this problem, the hybridisation of the construction 

with the network flow algorithm did not significantly influence solution quality. If 

anything, the constructions were shown to perform slightly better without the use of 

the network flow and this could be due to the lack of restrictions imposed on the 

construction; by allowing the heuristic to choose all solution elements, lower-cost 

solutions may be found and, even if the constructed solution is not feasible, the local 

search may be able to correct this with minimal impact on the solution cost. Thus it 

has been shown that, although the addition of the knapsack model was necessary for 

the creation of high-quality schedules, the difficulty of satisfying the hard constraints 

of the medical student scheduling problem is not sufficient for the use of the network 

flow model to be beneficial. However, although exploiting an exact method to 

produce feasible schedules was not found to be advantageous, exploiting the problem
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structure further, to incorporate the hospital and consultant clashes in the model, was 

found to be a very successful approach.

The success of hybridising a constructive approach with an exact method to exploit 

the feasibility structure of a given problem has been shown to depend on the difficulty 

of the original problem. Where nurse scheduling, for which feasibility is a difficult 

problem, benefits greatly from such an approach, this is not the case for the medical 

student scheduling problem, for which feasibility is less of an issue. In other cases, 

whether or not such an approach could, or should, be employed, will depend very 

much on the problem under investigation and the particular difficulty of solving the 

hard constraints. However, while the initial aim was to investigate how exploiting 

problem structure may benefit the feasibility, a broader range of ideas have been 

implemented, with the inclusion of the network flow constructions, and it is clear that 

a more general approach to the exploitation of problem structure can be highly 

beneficial.

7.4 Producing a robust method for each problem, capable of producing high- 

quality solutions for all problem instances.

Although the main aims of this thesis were related to investigating the successful 

characteristics of a constructive metaheuristic approach able to balance conflicting 

constraints, a secondary aim was to find good solution approaches for each problem.

For the nurse scheduling problem, the aim was to produce a method capable of 

rivalling the best in the literature so far, a tabu search method, by exploiting a 

construction-based approach. Both ACO and GRASP were applied to the problem 

and, although both provided reasonable results, finding feasible solutions for all 

datasets, the GRASP performed significantly better in terms of producing optimal, 

and near-optimal, solutions. For this reason, further experimentation was carried out 

using a GRASP approach. The local search was enhanced by allowing a percentage of 

plateau moves to be accepted and feedback was introduced in the form of the 

preference cost threshold and knapsack-based diversification. The final method 

produced excellent results for all 52 datasets and the aim of producing a method to 

rival that of the tabu search was therefore achieved. Furthermore, it was shown that,
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although the additional enhancements allowed all construction heuristics to produce 

high-quality solutions, the best results were still obtained by utilising the most 

successful heuristic. And, since utilising the local search with all the enhancements 

and feedback using a randomly constructed solution gave relatively poor results, it 

can be determined that the final method produced is one which does rely on the 

construction to provide a good starting solution. For this problem the aim has 

therefore been met successfully.

For the medical student scheduling problem it was more difficult to determine the 

success of a method, since optimal solutions are not known and there are no results in 

the literature with which to compare the quality of the solutions produced for each 

dataset. A solution cost for just one dataset appears in the literature and it was shown 

that the cost obtained in this thesis was a great improvement. For many of the 

datasets, the same best cost was produced for every run and it is likely that this is the 

optimal value; even if this is not the case, it shows that the method produced is fairly 

robust for these problem instances. However, there were several datasets for which 

the final algorithms struggled to reproduce the best-known cost, including the two 

datasets for which zero-cost, and therefore optimal, solutions had been found. It can 

therefore be concluded that although this thesis has produced a method capable of 

solving the medical student scheduling problem, the quality of the solutions obtained 

is not known with any certainty and only by employing different techniques for 

comparative purposes can the success of the GRASP approach be appropriately 

measured.

7.5 Suggestions for further research

The work presented in this thesis gives rise to many possible directions for future 

research, both in terms of applying new and enhanced techniques to the problems 

studied in this thesis and also extending the techniques used here to apply to other 

problems.

For the nurse scheduling problem, robust metaheuristic methods are available, 

although neither the construction-based GRASP method presented in this thesis, nor 

the improvement-based tabu search method, has been able to produce optimal
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solutions for all datasets in every run. A common GRASP enhancement is that of 

path-relinking, as discussed in Chapter 3, and it would be interesting to hybridise this 

technique with the GRASP developed for nurse scheduling to see whether the quality 

of the results produced for the more difficult datasets could be improved further, and 

especially to see whether the computational time required to produce high-quality 

results could be reduced. To further test the methods developed it would be interesting 

to extend the problem definition to include a range of more challenging datasets. 

These could be provided by considering larger problems, where several wards are 

combined or the planning period is extended, or by including additional constraints, 

such as those in Burke et al. (2003a), where there are restrictions on which staff may 

work together. Note that, for the nurse scheduling problem presented here, adding 

these types of nurse-pairing constraints would result in the necessary inclusion of 

constraints of the type introduced for dealing with student pairings for the nurse 

scheduling problem as these could not be included into the shift pattern scores for 

each nurse. The scores for each nurse’s shift pattern would then be altered 

appropriately depending on the number of shifts which coincide with those assigned 

to the other nurse. It would also be sensible to think about assigning these types of 

pairs either consecutively or simultaneously and assigning nurses whose presence will 

affect several other staff members early on in the process.

There are many cases in the literature where GRASP has been enhanced and 

hybridising the GRASP with other metaheuristic approaches may also provide an 

interesting study. For example, GRASP has often been hybridised with other 

metaheuristics, such as simulated annealing or tabu search and these techniques also 

may be able to improve the solution method. In particular, the tabu search algorithm 

developed by Dowsland (1998) has been shown to provide high-quality solutions for 

the nurse scheduling problem and hybridising the GRASP constructions developed 

here with the tabu search algorithm, by utilising it in the improvement phase may 

provide a more efficient and robust method overall.

This thesis has also provided a basic AS approach for solving the nurse scheduling 

problem and, although the algorithm struggled to compete with the GRASP approach, 

it would be interesting to give more attention to the range of ACO heuristics available 

and see whether one of the more advanced ACO approach, such as ACS or MMAS,
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would be better placed to provide high-quality solutions. Most ACO algorithms these 

days do incorporate an element of local search. Further research on this topic could 

take the form of finding the best possible ACO approach for this problem; with a 

more advanced ACO algorithm incorporating a more intensive local search it may be 

possible to produce an ACO approach able to produce optimal solutions for all 

datasets, and this would certainly be worth further study.

This thesis was also concerned with the relatively new medical school scheduling 

problem, which has been solved primarily using a GRASP approach. Since this work 

presents the first known application of a metaheuristic approach to solve this problem, 

it would be beneficial to apply a wider range of techniques to the datasets introduced 

here in order to make a comparative study possible. Since the optimal solutions are 

not known for the datasets provided for this problem, it would be advantageous for 

the problem to be studied in detail using different approaches in order that an 

understanding of the difficulty of the problem can be gained and, further, that a 

comparison of the resulting costs for each dataset can be made. Only by studying this 

problem further can the success of any solution approach be gauged with any 

confidence.

An obvious next step in studying this problem would be to apply another 

metaheuristic approach. It has already been discussed why an ACO approach or any 

feedback-type techniques may not work well, but an interesting direction would be to 

apply a tabu search algorithm to this problem. For the nurse scheduling problem, the 

GRASP and tabu search approaches were the most successful and, in keeping with the 

comparisons between the two problems drawn throughout this thesis, the application 

of a tabu search approach would be the logical, and most interesting, next step. The 

medical student scheduling problem is one which is likely to lend itself well to an 

improvement-based metaheuristic and so a tabu search approach could be easily 

implemented. The choice of neighbourhoods and whether or not the inclusion of 

chain-type neighbourhoods is necessary would be topics covered by such a study.

Aside from the implementation of a tabu search approach, there are several other 

metaheuristic approaches, in particular improvement-based metaheuristics, which 

could easily be applied to medical student scheduling. It was described how the
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memory approach applied in Chapter 6 is similar to that of iterated local search (ILS) 

and, since this was such a successful technique, it would be interesting to apply other 

ILS approaches, perhaps using different types of ‘perturbing’ moves. Simulated 

annealing is another example of an improvement-based metaheuristic which could 

easily be applied to this problem.

Other interesting aspects include further study of the importance of the assignments in 

the first timeslot. Thus far, the firms in the initial timeslot have been filled in a 

straightforward manner and these assignments have not been subject to change even 

using local search. It may be that allowing moves in this timeslot enables a more 

efficient search of the solution space, since making one change in this timeslot could 

be equivalent to a succession of several moves in other timeslots.

It would also be interesting to see whether further research would enable some of the 

symmetry of this problem to be removed, thus potentially allowing feedback-type 

approaches to be applied. Other suggestions for further study include ways to focus 

specifically on minimising the student-pair constraint violations, since these have not 

been studied in as much depth as the other constraints. This could include trying to 

find a way to incorporate the student costs into a network flow type approach and 

finding neighbourhoods which deal exclusively with trying to minimise the student 

costs. Certainly, further work could be done identifying key difficulties with the 

medical student scheduling problem and, although optimal costs are not known, it 

may be possible to obtain bounds for each dataset. It is clear that the medical student 

scheduling problem provides an interesting topic for further study for which a great 

deal of further research is possible.

Finally, this thesis has introduced interesting techniques for solving problems with 

conflicting constraints and it would be worthwhile applying these types of approaches 

to other, similar, problems. One such example would be the operating theatre 

scheduling problem, which requires that a set of limited hospital resources be 

assigned to jobs for the given planning period, in order to maximise the use of 

hospital resources such that tasks are performed according to their needs and 

priorities.
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Many of the enhancements developed for nurse scheduling were problem-specific, 

however, the GRASP enhancements introduced for the medical student scheduling 

problem, such as using partial restarts and considering large portions of the 

construction at once rather than considering all assignments individually, are ideas 

which could potentially be applied to other problems. It would therefore be interesting 

to find similar problems in the literature and determine how the techniques applied in 

this thesis may be adapted to solve them successfully.
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Appendix A
Nurse scheduling datasets

Chapters 4 and 5 perform experiments using 52 known datasets. The details of these 

datasets are given in this appendix. For each dataset, the number of nurses, along with 

the numbers of each type of nurse, is given for each of the three grades. For each type 

of nurse, a number of these may be forced to work either days or nights, depending on 

their preference costs. Since any pattern with a preference cost of 100 is deemed 

unacceptable and is disallowed, a nurse for whom all day patterns are voided in this 

way must work nights and vice versa.

The data in Table A.l is displayed in the following manner:

(5,4) :4,3)
4 1 0 3 1 0

19 23 6 0 1 0 0 0
3 0 1 1 0 0

3 0 1 3 2 0
20 23 4 0 1 1 0 0

3 0 1 1 0 0

The top row gives the nurse type and it must be noted that the 11 nurse types which 

arise do not all occur in every dataset; most datasets include only about half this 

number. The first two columns give the number of the dataset and the total number of 

nurses available in the dataset, respectively. Note that (0,0) nurses do not work any 

shifts, but are still included in this total number of nurses. For each dataset, we have a 

3 x 3  grid giving information for each type of nurse. This information is organised as 

follows. For each dataset, the three rows represent the three grades, with the top row 

representing grade 1. The three columns for each type indicate: the number of nurses 

of that type and grade, and the number of these forced to work days and nights 

respectively.
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Thus dataset 19 has 23 nurses in total and four of type (4,3). Of these, three are grade 

1 and one is grade 3. Of the three grade 1 nurses, one must work days. Clearly, for 

types (1&3), (1&2) and (0,0) the last two columns are not necessary since these 

nurses cannot be forced to work just days or nights.

Table A.2 gives details of the cover requirements of each dataset.
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(5,4) (4,3) (3,2) (2,1) (4,4) (3,3) (2,2) (1,1) (1&3) (1&2) (0,0)
6 t) 0 3 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 26 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2
2 27 3 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3
3 27 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
4 26 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
5 26 4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 1 3
6 24 3 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0
7 23 3 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

8 3 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 1 0
8 24 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

Table A.I. The number o f nurses o f each type and grade available for each dataset. (Continued on next page).



[5,4) (4,3) (3,2) :2,o (4,4) (3,3) (2,2) (1,1) (1&3) (1&2) (0,0)
7 3 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 1 1

9 24 3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

4 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
10 24 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

5 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

5 2 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
11 25 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

6 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

5 2 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 25 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

4 0 0 3 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

4 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0
13 25 4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

5 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 2

4 2 1 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
14 22 3 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

4 1 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
15 21 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
16 22 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

3 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Table A.l contd. The number of nurses of each type and grade available for each dataset. (Continued on next page).



(5,4) (4,3) (3,2) (2,1) (4,4) (3,3) (2,2) :u > (1&3) (1&2) (0,0)
3 ‘1 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2

17 23 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
4 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

4 2 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
18 22 4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

4 1 0 3 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 23 6 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

3 0 1 3 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
20 23 4 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3 0 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

2 1 0 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
21 23 5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

5 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
22 26 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 3 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

3 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 26 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

6 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

3 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
24 23 3 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

5 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.l contd. The number of nurses of each type and grade available for each dataset. (Continued on next page).



(5,4) (4,3) (3,2) (2,1) (4,4) (3,3) (2,2) (1,1) (1&3) (1&2) (0,0)
4 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

25 23 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4 0 0 2 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 2 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2
26 26 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

7 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3

3 1 0 4 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
27 26 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

6 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3

5 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
28 27 3 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 4

4 1 1 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2
29 24 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

5 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2

6 2 1 2 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 2
30 27 3 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

7 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3
31 28 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

9 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

8 3 1 2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
32 27 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

Table A.l contd. The number of nurses of each type and grade available for each dataset. (Continued on next page).
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(5,4) (4,3) (3,2) (2,1) (4,4) (3,3) (2,2) (1,1) (1&3) (1&2) (0,0)
8 3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3

33 27 4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

7 3 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 1 0
34 23 3 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

8 3 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 1 0
35 24 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

7 3 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 1 1
36 24 3 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

5 2 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
37 25 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

6 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

5 2 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
38 25 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

4 0 0 3 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

4 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0
39 25 4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

5 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 2

4 1 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
40 21 2 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.l contd. The number of nurses of each type and grade available for each dataset. (Continued on next page).



(5,4) (4,3) (3,2) (2,1) (4,4) (3,3) (2,2) (1,1) (1&3) (1&2) (0,0)
4 *2 1 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

41 22 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
3 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

3 1 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2
42 23 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

4 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

4 2 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
43 22 4 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

3 0 1 3 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
44 23 4 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3 0 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

2 1 0 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
45 23 5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

3 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
46 26 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

6 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

3 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
47 23 3 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

5 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
48 23 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

4 0 0 2 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.l contd. The number of nurses of each type and grade available for each dataset. (Continued on next page).
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(5,4) (4,3) (3,2) (2,1) (4,4) (3,3) (2,2) (1,1) (1&3) (1&2) (0,0)
3 ‘ 1 0 4 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

49 26 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
4 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3

5 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
50 27 3 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 4

4 1 1 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2
51 24 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

5 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2

5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0
52 23 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

5 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A .l contd. The number o f nurses o f each type and grade available for each dataset.



The cover requirements for each day and grade are given for each dataset in Table 
A.2. Note that for all datasets, the requirement for the night shifts is the same and the 
day requirement at grades 1 and 2 is also unaltered. However, the overall requirement 
for each day shift varies between datasets. For completeness, the details of all 
requirements at all grades are given below.

Days Nights
S M T W T F S Tot. S M T W T F S Tot.
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

1 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
13 13 13 13 13 13 13 91 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
2 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

11 11 11 11 11 11 11 77 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
3 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

12 12 12 12 12 12 12 84 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
4 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

11 11 11 11 11 11 11 77 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

5 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
12 12 12 12 12 12 12 84 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
6 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

9 10 10 10 10 10 9 68 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
7 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

9 9 9 9 9 9 9 63 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
8 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

10 11 11 11 11 11 10 75 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
9 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

10 11 11 11 11 11 10 75 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
10 * 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

8 9 9 9 9 9 8 61 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

11 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
10 11 11 11 11 11 10 75 3 3 3 3 3 3 3 21

Table A.2. Details o f  the cumulative cover requirements for each day and grade for each dataset.
(Continued on next page).
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Days Nights
S M T W T F S Tot. S M T W T F S Tot.
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

12 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
9 10 10 10 10 10 9 68 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

13 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
9 10 10 10 10 10 9 68 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

14 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
8 9 9 9 9 9 8 61 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

15 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 8 8 8 . 8 8 7 54 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

16 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 8 8 8 8 8 7 54 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

17 4 4 4 4 4 4 4 28 2 . 2 2 2 2 2 2 14
7 8 8 8 8 8 7 54 3 3 3 3 3 3 .3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

18 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
9 10 10 10 10 10 9 68 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

19 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
9 10 10 10 10 10 9 68 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
20 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

8 8 8 8 8 8 8 56 3 3 3 3 3 3 3 21

2 2 “2 2 2 2 2 14 1 1 1 1 1 1 1 7
21 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

8 9 9 9 9 9 8 61 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
22 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14 1

9 11 11 11 11 11 9 73 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

23 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
8 10 10 10 10 10 8 66 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
24 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

7 9 9 9 9 9 7 59 3 3 3 3 3 3 3
21

Table A.2 contd. Details o f  the cumulative cover requirements for each day and grade for each dataset.
(Continued.on next page).
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Days Nights
S M T W T F S Tot. S M T W T F S Tot.
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

25 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
8 9 9 9 9 9 8 61 3 3. 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

26 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 10 10 10 10 10 7 64 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

27 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 10 10 10 10 10 7 64 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

28 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 8 8 8 . 8 8 7 54 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

29 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 8 8 8 8 8 7 54 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

30 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
11 12 12 12 12 12 11 82 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
31 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

12 13 13 13 13 13 12 89 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
32 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

12 12 12 12 12 12 12 84 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
33 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

12 12 12 12 12 12 12 84 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
34 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

9 9 9 9 9 9 9 63 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
35 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

10 11 11 11 11 11 10 75 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
36 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

10 11 11 11 11 11 10 75 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
37 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

10 11 11 11 11 11 10 75 3 3 3 3 3 3 3 21
Table A.2 contd. Details o f  the cumulative cover requirements for each day and grade for each dataset.

(Continued on next page).
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Days Nights
S M T W T F S Tot. S M T W T F S Tot.
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

38 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
9 10 10 10 10 10 9 68 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

39 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
9 10 10 10 10 10 9 68 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

40 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 8 8 8 8 8 7 54 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

41 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 8 8 8 8 8 7 54 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

42 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 8 8 8 8 8 7 54 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

43 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
9 10 10 10 10 10 9 68 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

44 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
8 8 8 8 8 8 8 56 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

45 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
8 9 9 9 9 9 8 61 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

46 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
8 10 10 10 10 10 8 66 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

47 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 9 9 9 9 9 7 59 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

48 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
8 9 9 9 9 9 8 61 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

49 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 8 8 8 8 8 7 54 3 3 3 3 3 3 3 21
2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7

50 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14
7 8 8 8 8 8 7 54 3 3 3 3 3 3 3 21

Table A.2 contd. Details o f  the cumulative cover requirements for each day and grade for each dataset.
(Continued on next page).
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2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
51 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

7 8 8 8 8 8 7 54 3 3 3 3 3 3 3 21

2 2 2 2 2 2 2 14 1 1 1 1 1 1 1 7
52 4 4 4 4 4 4 4 28 2 2 2 2 2 2 2 14

10 10 10 10 10 10 10 70 3 3 3 3 3 3 3 21
Table A.2 contd. Details o f  the cumulative cover requirements for each day and grade for each dataset. 

A.l Sample dataset

The following is an example o f the raw data supplied for one o f the 52 datasets.

The first 3x14 set o f numbers indicate the cover requirements. Each row represents 
the cumulative cover required at each grade with the first row representing grade 1. 
The 14 columns each represent a single shift, with columns 1 -  7 representing 
Sunday -  Saturday days and columns 8 - 1 4  representing Sunday -  Saturday nights.

S M T W T F  S S M T W T  F S
1 <■

Days Nights

The details are then provided for each nurse in turn. The first row provides three 
numbers. The first o f these indicates the nurse counter, the second number provides 
the nurse’s grade and the third provides a number indicating the nurse’s type; all 
nurses in the dataset with this value will work the same number o f day and night 
shifts, although the labelling system may change between datasets.. The second row 
provides the number o f day and night shifts the nurse is contracted for, respectively, 
along with a third value indicating whether the nurse will work both days and nights 
in the same week. As mentioned earlier, all 411 possible shift patterns may be 
enumerated and the third row refers to the ordered list o f shift patterns giving the list 
numbers o f the first and last o f these patterns this nurse may work if  on days and the 
first and last numbers they may work if on nights, in this order. Nurses working both 
days and nights in the same week will have just two numbers in this row, indicating 
the first and last patterns in the list they may work. The final list o f numbers gives the 
preference cost values for this nurse for each of these potential shift patterns, in the 
order given in the third row. Here, a value of 100 signifies an infeasible pattern which 
the nurse will not be allowed to work. Thus, certain nurses are forced to work either 
days or nights according to these values.

Grade 1 
Grades 1& 2 
Grades 1, 2 & 3
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Reference 
numbers for 
allowed shifts
Nur s e

Counter No. day shifts
Grade

No. night shifts 
Type

Days and/or nights?

0 0 1 0 1 0 1 0  1 1 1| 00100100100100100100100100100100100100100100100100100100 
1001001001001001001001001001001001

'Pref. costs (nights)- Pref. costs (days)

The following constitutes the full version of the raw data supplied for dataset 41.

2 2 2 2 2 2 2 1 1 1 1 1 1 1
4 4 4 4 4 4 4 2 2 2 2 2 2 2
7 8 8 8 8 8 7 3 3 3 3 3 3 3

Nur s e 1 1 1
5 4 0

1 21 22 56
0 2 0 1 2 0 1 1 2 0 2 2 2 2 0 1 1 1 2
0100100100100100100100100100100100100100100100100100100100 

100100100100100100100100100100100100100100100100 
Nur s e  2 1 1

5 4 0
1 21 22 56

0 2 0 1 2 0 1 1 2 0 2 2 2 2 1 0 1 1 1 2  
0100100100100100100100100100100100100100100100100100100100 

100100100100100100100100100100100100100100100100
Nu r s e  3

4
57 91 . 92 126

13 15 15 15 14 15 16 14 16 15

1 2
3 0

3 3 3 3 5 4 2 3 4 3  
0 2 2 2 010010010010010013 15 14 14 15 14 15 15 15 15  

100100100100100100100100100100100100100100100100100100100100 
100100100100100100100100100100 

N u r s e  4 1 1
5 4 0

1 21  22 56
25 15 14 14 16 2 26  27 16 14 26 27 15 16 26  28 29  17 17 30
28 25 27 15 28 38 27 40 26  40 27 39 27 40 27 41 28 38 52 40
39 28 18 30 17 30 17 30 42 30 29 28 42 29 29 40

1 1
4 0

Nu r s e 5 
5

1 21 22 56
100100100100100100100100100100100100100100100100100100100100 
100 0 14 14 15 13 14 15 25 27 26 14 14 15 26  28 27 25 27 27 

38 12 14 14 25 26  25  26  26  26 37 24 26 25 37 36  
Nu r s e  6 1 2

4 3 0
57 

0 2
91
2 13

92
1

126  
2 14 1 14 13 2 2 13 2 15 14 2 13 14 13

0 2 13 1 14 13 2 14 14 14 0 13 13 13 12 12 25 25 12 14
14 1 26 13 12 14 14 2 26 14 13 14 2 2 12 27 27 14 39 27
26 27 15 15 26 27 15 14 25 12
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N u r s e 7 1 4
3 2 0

127 161 162 182
24 13 13 24 14 14 25 2 13 12 26 27 38 15 27 25 14 26 25 12
13 14 25 2 14 14 2 14 14 1 14 26 26 13 20 12 13 24 14 26
24 14 26 25 24 15 27 26 25 24 3 15 15 14 13 12
Nurs e 8 1 3

1 3 1
332 411

12 14 14 20 26 27 33 26 33 32 24 26 32 26 33 32 36 44 44 42
24 26 32 26 33 32 36 44 44 42 41 41 47 41 47 47 36 44 44 42
41 41 47 53 59 59 53 59 59 54 12 41 47 41 47 59 41 47 59 59
12 26 47 26 47 59 24 47 59 59 18 32 32 32 33 44 30 32 44 42

Nu r s e 9 1 2
4 3 0

57 91 92 126
0 3 3 3 2 3 4 2 4 3 3 3 3 3 5 4 2 3 4 3
0 3 2 2 3 2 3 3 3 3 0 2 2 2 0 37 26 26 25 27

27 26 15 14 13 39 39 39 27 27 26 27 27 27 13 29 29 27 17 16
15 17 16 16 3 29  28 27 14 13
Nu r s e 10 2 1

5 4 0
1 21 22 56

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 14 15 27 27 28
26 24 26 38 38 25 38 38 37 38 49 26 38 38 38 39 50 37 38 50
49 12 26 26 25 26  37 26 26 38 37 24 26 37 37 36
Nu r s e 11 2 7

0 0 0
218 218 219 2 1 9

0 0
Nu r s e 12 2 7

0 0 0
218 218 219 2 19

0 0 -

Nu r s e 13 2 7
0 0 0

218 218 219 2 19
0 0

Nu r s e 14 2 1
5 4 0

1 21 22 56
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
100 12 14 14 27 13 14 27 13 27 26 14 14 27 14 28 27 13 27 27

26 0 2 14 1 14 13 2 14 14 13 0 14 13 13 12
Nu r s e 15 2 2

4 3 0
57 91 92 12 6

0 14 2 1 13 2 2 13 14 1 14 2 2 14 15 2 13 13 2 13
12 2 1 13 14 1 14 14 2 14 12 13 1 13 12 22 11 23 22 12
24 23 12 11 22 12 24 24 12 12 23 12 12 24 10 13 25 24 13 13
24 13 13 25 12 13 13 24 11 10
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Nu r s e 16 3 1
5 4 0

1 21 22 56
13 15 14 14 16 14 14 15 16 26 14 15 15 28 26 0 2 2 14 15
13 25 15 15 16 26  27 28 14 16 15 27 27 28 15 17 16 26 28 28
27 13 15 15 2 3 2 15 15 15 14 13 15 14 14 25
Nurs e 17 3 1

5 4 0
1 21 22 56

100100100100100100100100100100100100100100100100100100100100
.00 0 14 14 14 13 14 14 25 26 25 14 14 14 26 27 26 25 26 26
37 12 14 14 25 26 25 26 26 26 37 24 26 25 37 36
Nu r s e 18 3 1

5 4 0
1 21 22 56

0 3 2 2 4 2 2 3 4 2 2 3 3 4 2 0 2 2 2 3
0 0 3 3 4 2 3 4 2 4 3 3 3 4 3 5 4 2 4 4
3 0 3 3 2 3 2 3 3 3 2 0 3 2 2 0

Nurs e 19 3 4
3 2 0

127 161 162 182
12 1 13 12 2 14 13 2 1 12 2 15 14 3 3 13 2 2 13 0

2 14 13 2 2 14 2 2 14 2 2 2 14 1 0 0 13 12 14 14
24 14 14 25 24 3 3 14 13 12 3 3 15 14 13 0
N u r s e 20 3 2

4 3 0
57 91 92 126

8 2 2 1 1 2 2 1 2 1 2 2 1 2 3 2 1 1 2 1
0 2 1 1 2 1 2 2 2 2 0 1 1 1 0 0 1 1 0 2
2 1 2 1 0 2 2 2 2 2 1 2 2 2 0 3 3 2 3 3
2 3 3 3 2 3 3 2 1 0

Nu r s e 21 3 2
4 3 0

57 91 92 126
0 2 2 -1 1 2 2 1 2 1 2 2 2 2 3 2 2 2 2 2
0 2 1 1 2 1 2 2 2 2 0 1 1 1 0 10 11 11 10 12

12 11 12 11 10 12 12 12 12 12 11 12 12 12 10 13 13 12 13 13
12 13 13 13 12 13 13 12 11 10
N u r s e  22 3 5

1 1 0  
211 217 204 2 1 0  

100 0 0 0 0 0100100100100100100100100
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Appendix B
Calculation of nurses’ preference costs

Chapters 4 and 5 detail experiments performed with the 52 datasets listed in Appendix 

A. For each nurse, all shift patterns which are feasible with regard to the number of 

day and night shifts they are contracted to work are assigned a single cost in the range 

[0,100] which incorporates the costs relating to constraints PI -  P7. The exact manner 

in which these costs are derived is explained here. The idea is that anything infeasible 

adds 90 to the cost, anything feasible but highly undesirable adds 18 and any violation 

of little importance adds 3. Other costs range between 4 and 12. These costs were 

derived as the result of several consultations at the hospital by Dowsland and 

Thompson and trials over several weeks/wards. The following costs were created.

Basic shift pattern cost

Each of the 411 shift patterns was given a cost, in consultation with the hospital, 

according to the mix of consecutive working days or off duties. These were allocated 

subjectively and are mostly in the range 0 to 3, but some undesirable patterns for 

(1&2) and (1&3) were given a cost of 18. All costs can be customised for individual 

nurses but this is not the case for any of the 52 test data sets.

Preferences and requests

Night/Day contracts/preferences

Some nurses are contracted to work only nights or only days. The ‘wrong’ types of 

shift pattern were therefore given an additional penalty of 90. Other nurses are 

contracted to work only nights or only days ‘if possible’. This condition can be 

violated in order to have sufficient cover. All shifts of the ‘wrong’ type were given an 

additional penalty cost of 18.
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Requests for current week

Requests for off-duties are classified by the person in charge of rostering, using 5 

different categories of increasing importance, with category 5 being essential, 4 very 

important etc. These were given costs of 3, 8, 12, 18 and 90 for categories 1 - 5  

respectively. This cost was added for every shift included in the request and covered 

by the shift pattern. For example, a category 3 request for Wednesday and Thursday 

off would add a penalty cost of 24 for all patterns covering both Wednesday and 

Thursday and a cost of 12 for patterns covering just Wednesday or Thursday. Note 

that this option was preferred by the hospital to that of penalising each unmet request 

just once regardless of the number of shifts involved.

Requests for the following week

When scheduling week i the requests for week i+l are usually known. If the 

number_of_requests + number_of_shifts worked = 7 then for the requests to be met 

next week’s shift pattern will be fixed. Any pattern that would cause more than 7 

consecutive days work when combined with the fixed pattern for week i+1 is 

penalised with an extra cost equal to the penalty associated with the first day off 

requested in week i+l.

Penalties based on historical information

Infeasible shifts

When scheduling week i, if the Saturday night was worked in week i- \  then the cost 

of all patterns involving Sunday day have an additional penalty of 90.

Isolated shifts and isolated weekends

When scheduling week z, if the Saturday of week i- l  was not worked then all patterns 

which involve working Sunday but not Monday have an increased cost of 1. Similarly 

for patterns which do not include a Sunday shift when week z-1 included a Saturday 

shift, but not a Friday.

Rotate nights

If the nurse is not contracted to work nights, or is not on a preferred nights contract, 

then if nights were worked in week i- l a penalty of 5 is added to all night shifts. A
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further penalty of 5 is added if nights also worked in week i-2 before. Similarly, if the 

nurse is not contracted to work days, or is not on a preferred day contract then if days 

have been worked for the last 3 weeks, a penalty of 4 is added to all day shifts.

Spread weekend working

If the nurse worked both Saturday and Sunday for the last k weeks, penalise any shifts 

including both Saturday and Sunday with an additional penalty cost of k.

More than seven consecutive shifts

Let the sum of the consecutive shifts at end of last week plus the consecutive shifts at 

start of the current pattern be represented by k. If k > 8 add k to the penalty cost. Note 

that since no more than 5 shifts can be worked in a given week, no more than 10 

consecutive days are possible.

Share out ‘bad’ shifts

If the nurse did not work a zero-cost shift pattern last week add the cost of last week’s 

pattern to any pattern with a non-zero cost.

After the above calculations, all penalty costs greater than or equal to 90 are then set 

equal to 100 and thus are considered infeasible.
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Appendix C
Nurse scheduling pre-processing phase

The number of bank nurses and dummy shifts required were determined by solving a 

knapsack problem to determine the maximum number of days Dmax that can be 

covered given that the night requirement must be satisfied. If Dmax fell short of the 

required number of day shifts, by say k shifts, then k bank nurses, each working 1 

shift, were added. If Dmax exceeded the required number by k, however, then there was 

a requirement the surplus be allocated to days, spread evenly, and that weekdays 

should be over-covered before weekends. In order to ensure this, the requirement on 

weekdays was increased by an appropriate amount and a dummy nurse was added 

working sufficient shifts to cover the extra requirement that could not be met as 

follows.

First if k > 7 then we can cover every day by an extra 

the requirement on every day by this amount.

shifts. Thus we increase

For all values of k if kmodl *  0 we will have kmod7 surplus shifts to allocate and they 

must allocated to kmodl different days. These must be weekdays if kmod7 < 5, and 

include Saturday or Sunday if Amod7 = 6. In the former case we increase the day 

requirement by an additional shift for weekdays and add a dummy nurse who is able 

to work 5 -  kmodl days, excluding weekends. In the latter we increase all day 

requirements by 1 and add a dummy nurse who is able to work either Saturday or 

Sunday.
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Appendix D
Glossary of notation

Throughout the thesis various types of notation have been introduced. In some cases, 

notation has been reused, referring to different things in different parts of the thesis as 

this was the best available notation and choosing different symbolism would have 

made the topic less clear. We present here a glossary of the notation used within the 

thesis, which may be used both for clarification and reference purposes.

D.l Notation for Chapter 4 -  Nurse scheduling with GRASP

cijk A variable whose value is 1 if shift pattern j covers shift k, and 0

otherwise

Best(c) The preference cost of the best solution found in cycles 1 to c

c An arbitrary GRASP cycle

Cgk The number of nurses of grade g  or higher required on day A:

Cons(P) The set of constraints related to finding a solution to problem instance P 

which is compatible at all grades 

dt The number of day shifts worked by a nurse of type t

dgk The current amount by which shift k at grade g  is understaffed, known as

the undercover of shift k at grade g 

Dg The total day shift requirement at grade g

et The number of night shifts worked by a nurse of type t

Eg The total night shift requirement at grade g

Freq{c) The frequency with which a day/night partition Y appears in cycles 1 to c

g  An arbitrary grade

gi The grade of nurse i

hig A variable whose value is 1 if nurse i is of grade g  or higher, and 0

otherwise 

i An arbitrary nurse

j  An arbitrary shift pattern
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k An arbitrary shift

KSg(P) The problem of finding a solution to the knapsack equations (4.14g) -

(4.16g) of problem instance P at grade g 

n The number of highest-scoring candidates from which each constructive

selection is made 

ntg The number of nurse of type t of grade g or higher

Nc(s) The set of solutions reachable from solution s by making one move in the

Change neighbourhood 

NeC?) The set of solutions reachable from solution s by making one move in the

Extended neighbourhood 

Ns(s) The set of solutions reachable from solution s by making one move in the

Swap neighbourhood 

Pij The preference cost associated with nurse i working shift pattern j

P An arbitrary problem instance

P(R') A partial solution to problem instance P in which the number of day and

night shifts worked by nurses in the set R' is known, giving a problem of 

reduced size 

r The total number of nurses

R The set of nurses

R+ The set of nurses who have already been assigned a shift pattern

Rboth The set of nurses who work both days and nights

f̂ixed The set of nurses who must work either days or nights due to feasibility

restrictions

Si The set of shift patterns which are feasible for nurse i

t An arbitrary nurse type

T The total number of nurse types

ThreshK The dynamic threshold for the number of times a particular day/night 

partition may be utilised 

ThreshP The dynamic preference cost threshold

V(c) The number of different day/night partitions Y which have been employed

in cycles 1 to c
wc The weight associated with the cover cost part of the heuristics’

construction scores
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Wg The weight associated with grade g

wp The weight associated with the preference cost part of the heuristics’

construction scores

Xy A variable whose value is 1 if nurse i has been assigned to shift pattern j,

and 0 otherwise

ytg The number of type t nurses of grade g  or higher who have been assigned

to nights

Y A solution consisting of a compatible set of values Yg at all grades g

Yg A  solution to a problem KSg(P(^'))

D.2 Notation for Chapter 5 -  Nurse scheduling with ACO

a An arbitrary ant

ca The cover cost of the solution built by ant a

C1 The cost relating to the solution built by ant a, referring to the general

case

At°, The amount to be added to trail matrix element r(t,t') relating to the

success of the schedule created by ant a 

gen The total number of cycles

gen The number of completed cycles

i An arbitrary nurse

j  An arbitrary shift pattern

|yj The number of shifts worked in shift pattern j

k An arbitrary shift

m The total number of nurses to be scheduled

nants The total number of ants in the population

nants+ The number of ants in the population which have completed a solution

pa The preference cost of the solution built by ant a

Q A  parameter signifying the importance of the elements chosen for

inclusion in the initial cycles 

p  The evaporation rate

R The set of nurses

R+ The set of nurses who have already been assigned a shift pattern
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t The trail matrix

r0 The initial value assigned to each element of the trail matrix, r

r(t,t') The value of the trail matrix relating to the arbitrary items t and f

t(i) The trail score related to assigning nurse i next, for use with the nurse-

nurse trail

t(i,j) The trail score related to making assignment (ij), for use with the nurse-

pattem and nurse-shift trails 

Ta The schedule created by ant a

v(i,j) The visibility score related to making assignment (ij)

wc The weight associated with the cover part of the visibility score

wp The weight associated with the preference cost part of the visibility score

wt The weight associated with the trail part of the construction score

wv The weight associated with the visibility part of the construction score

W The weight indicating the importance of feasibility in a completed

solution when feeding back to the trail matrix

D.3 Notation for Chapter 6 -  Medical student scheduling with GRASP

afq A variable whose value is 1 if firm/ covers speciality q, and 0 otherwise

Aqi The total number of students who have been assigned to study speciality q

in timeslot i

Bpq The number of students of type p  who may study speciality q in a given

timeslot, in order to ensure a feasible completion of the solution is 

possible

Cfg A variable whose value is 1 if firms / and g  have a consultant in common,

and 0 otherwise 

Cf The capacity of firm/

C+ft The number of students assigned to firm /in timeslot t

8 An arbitrary dataset

dqt The number of places remaining in speciality q in timeslot t

Dq The set of students who have already been assigned to a firm covering

speciality q
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/  An arbitrary firm

Gst The set of firms covering a speciality s has not previously studied in

timeslots 1 to t -  1

hfg A variable whose value is 1 if firms/ and g are in the same hospital, and 0

otherwise

X The number of modifications made to a dataset with regards to the amount

of slack in the problem 

L The restricted candidate list

p  A solution approach

mx(S) A set of eight datasets based on original dataset 8 and with X

modifications

Mc( cr) The set of solutions reachable from solution a  by making one move in

the Change neighbourhood 

Mp( cr) The set of solutions reachable from solution cr by making one move in

the Permutation neighbourhood 

M s(cr) The set of solutions reachable from solution cr by making one move in

the Swap neighbourhood 

n The number of items on the restricted candidate list, L

N  The number of timeslots (excluding timeslot 1) in the general problem

case

Nsa The number of times students s and z have been placed together in

timeslots 1 to t -  1

p  An arbitrary student type, indicating the particular specialities remaining

to be covered

p  The density of a given clash matrix, that is, the probability that a

randomly selected pair of firms share a consultant 

r The total number of students

cr An arbitrary solution

crs The standard deviation of all solution costs obtained for dataset 8

s A  student belonging to set S

S The set of students

Sf The set of students who have been assigned a placement in the relevant

timeslot
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t An arbitrary timeslot

q An arbitrary speciality

q' The speciality with the most remaining space in a given timeslot

v The total number of firms

Wf The weight associated with the feasibility part of the heuristics’

construction scores

w0 The weight associated with the optimality part of the heuristics’

construction scores 

Xs The mean of all solution costs obtained for dataset 8

X^5 A final cost arising from applying method ju to dataset 8

X^5 A final, normalised, cost arising from applying method fi to dataset 8

xsft A variable whose value is 1 if student s is assigned to firm /in timeslot /,

and 0 otherwise

y(sf,t) The score associated with assigning the triplet (.s/,0-
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Appendix E
Tabu search

As tabu search (TS) is a metaheuristic which has often been applied to the nurse 

scheduling problem and, in particular, has been very successfully applied to the 

variant of the nurse scheduling problem presented in this thesis, we give a description 

of the method here.

In order to find good solutions to a problem, local search is often implemented. 

Starting from a fully constructed solution, the neighbouring solutions, those which 

may be obtained from the current solution by making a small change, are investigated; 

if any of these neighbours are of lower cost, the current solution may be replaced by 

the improved solution and the process repeated until a local optimum has been found. 

It is important that the search be able to escape from such minima in order to fully 

search the solution space. If the landscape of solutions is hilly, it is impossible to fully 

explore the landscape without making some worsening moves and a straightforward 

‘descent’ approach will not be as successful.

Tabu search, proposed by Glover (1986), is one of the methods used to overcome this 

problem. During the local search, the solution will gradually change as each 

improvement is accepted. The tabu search method makes use of a short-term memory, 

selectively recording the previous versions of the solution in a ‘tabu’ or taboo list H. 

The search then takes the following form: All neighbouring solutions are evaluated 

and the best of these, which will not result in the solution reverting to a state on the 

list H , is accepted as the new solution. H  may then be updated so that the most recent 

solution is added and the oldest solution currently on the list is removed and may now 

be revisited. Generally, the tabu list does not hold a list of complete solutions, but a 

list of solution attributes, so that a particular assignment may be disallowed, for 

example. However, an ‘aspiration’ move is generally allowed. This is one which 

accepts a solution of a higher quality than the best found so far, regardless of the tabu 

list, ensuring that good solutions are not overlooked.
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Obviously, once a local optimum is reached, the next solution accepted by the local 

search must then be a worsening move and, depending on the landscape and size of H, 

it is likely that the next few moves will also be worsening in terms of cost. The theory 

is that, if H  is large enough, by the time the search next starts accepting improving 

moves, the solution will have moved far enough through the landscape to descend to a 

different local optimum. By utilising this form of short-term memory, the search is 

able to diversify and by allowing a more rigorous exploration of the solution space it 

is now much more likely that good solutions will be found; with tabu search, high- 

quality solutions may still be reached even if the initial solution is in a problematic 

area of the solution space, whereas with a simple descent algorithm this would be 

impossible.
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Appendix F
Genetic algorithms

Genetic Algorithms (GAs) are a well-known and widely-used class of metaheuristics. 

Due to their prevalence in the literature with regards to nurse scheduling applications, 

and particularly the nurse scheduling problem presented in this thesis, we give a 

description of this metaheuristic here.

In the same way as Ant Colony Optimisation attempts to find solutions by emulating 

ant behaviour, GAs also draw on concepts found in nature, imitating the genetic 

evolution of a population. All GAs must be initialised with a population of solutions, 

each encoded as a string of finite length. Two parent members of the population 

‘breed’ by using information from both parents to form a new, child, solution; the 

particular method, or crossover operators, by which the new solution is formed from 

the two parents is variable and will usually significantly impact the quality of the 

results.

Each child may or may not be included in the next generation of the population 

depending on its fitness, this, in turn, dependant on some appropriate objective 

function. The idea is that by selecting fitter parents for breeding and only accepting 

children of a certain calibre into the next generation, the population will gradually 

evolve into one containing, on average, higher-quality solutions.

Another important part of GAs is the idea of mutation. A small, but random change is 

made to a solution in the population. This is important for injecting diversity into the 

population and preventing stagnation.

GAs have been widely used to solve a number of problems, but are often difficult to 

implement for highly-constrained problems; when a crossover operator acts on two 

parents representing feasible solutions to a highly-constrained problem, it is often 

difficult to ensure that the child solution will also be feasible. This leads to an
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additional ‘repair’ operation being required in many situations. The possible options 

available are as follows:

• Include the constraints into the encoding of the solution.

• Penalise infeasible solutions.

• Repair infeasible solutions so that they become feasible.

• Use an indirect approach: the encoding on which the GA acts is a set of 

instructions for how to assemble the complete solution.

For highly constrained optimisation problems, it is unlikely that all constraints may be 

contained within the solutions’ encoding and so one or more of the other methods 

must be employed in order to find good solutions using a GA approach. Using a 

penalty function to guide the selection process and thus penalise infeasible solutions is 

an easy method to implement and is often utilised in GA approaches. However, it 

does not guarantee feasibility and so repair functions, requiring much more problem- 

specific information, but more often able to guarantee feasibility are also a widely- 

used GA feature. Using both penalty and repair functions in combination with each 

other is also common (Aickelin 1999).
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Appendix G
Paper accepted for publication
The following paper, produced from the research in this thesis, has been accepted for 

publication and is to appear in the Journal of Heuristics.

A GRASP-KNAPSACK HYBRID FOR A NURSE-SCHEDULING PROBLEM

ABSTRACT

This paper is concerned with the application of a GRASP approach to a nurse- 
scheduling problem in which the objective is to optimise a set of preferences subject 
to a set of binding constraints. The balance between feasibility and optimality is a key 
issue. This is addressed by using a knapsack model to ensure that the solutions 
produced by the construction heuristic are easy to repair. Several construction 
heuristics and neighbourhoods are compared empirically. The best combination is 
further enhanced by a diversification strategy and a dynamic evaluation criterion. 
Tests show that it outperforms previously published approaches and finds optimal 
solutions quickly and consistently.

KEY WORDS: Nurse-scheduling, rostering, GRASP, hybrid, knapsack.
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1. INTRODUCTION

Construction heuristics, neighbourhood search techniques and evolutionary 
algorithms have all been used successfully in the solution of practical scheduling 
problems. However, there is often a conflict between feasibility and solution quality, 
and the difficulty in maintaining a suitable balance between these two objectives is 
well documented. For example Michalewicz and Fogel (2004) devote a whole chapter 
to the handling of constraints in evolutionary algorithms. Early examples from the 
fields of timetabling and scheduling include Wright (1991) and Abramson (1991) 
while observations made by Aickelin and Dowsland (2004), Zhu and Lim (2006) and 
Lim, Rodrigues and Zhang (2006) show that these issues are still relevant. They arise 
for a number of reasons. In some cases it may not be practical to limit the solution 
space to the set of feasible solutions, as simply finding a feasible solution may itself 
be a non-trivial problem. Even if this is not so, it may still be difficult to define 
operators, such as crossover in a genetic algorithm or neighbourhood moves in local 
search, that preserve feasibility. In other cases, restricting the search to feasible 
solutions may result in a solution space that is very sparsely connected and this may 
hamper the ability of the search to seek out high quality solutions. (See for example 
Thompson and Dowsland (1996) and Dowsland (1998)). There are a number of ways 
of overcoming this, for example the use of penalty functions, repair functions, wider 
neighbourhoods etc. However, none of these is able to provide a universal answer and 
when they do work their success is often the result of exploiting information about the 
problem structure, for example in setting appropriate penalty weights, or allowing the 
efficient exploration of large neighbourhoods.

One approach that has received considerable interest in the solution of scheduling 
problems is Greedy Randomised Adaptive Search Procedure (GRASP). A 
construction phase is followed by an improvement phase and these are repeated for 
several cycles. Examples include Drexl and Salewski (1997) who use a two phase 
greedy randomised algorithm to solve the school timetabling problem, Binato et al. 
(2001) who incorporate intensification strategies into their GRASP for Job Shop 
Scheduling, and Gupta and Smith (2006) who schedule a single machine to minimise 
tardiness using a variation of Variable Neighbourhood Search in the improvement 
phase of their GRASP.

This paper is concerned with a GRASP approach to a variant of the nurse-scheduling 
problem in which the objective is to find a schedule that optimises a set of preferences 
while meeting a series of binding constraints. The constraints are often tight i.e. the 
nurses available are just sufficient to meet the requirements without any slack. Thus 
simple heuristic rules often fail to produce feasible solutions and existing approaches 
capable of producing high quality solutions across a range of problem instances all 
use problem specific information to balance the focus between optimality and 
feasibility (Dowsland (1998), Dowsland and Thompson (2000), Aickelin and 
Dowsland (2000, 2004)). The objectives of our investigation are two-fold: firstly to 
produce a robust solution approach to the problem, which is typical of that arising in 
many UK hospitals; and secondly to examine the impact of the construction heuristic 
used within the GRASP algorithm on solution quality. In particular, we investigate the 
use of problem specific knowledge, in the form of a look-ahead procedure based on a 
knapsack model, to strengthen the construction heuristic. This allows us to use a
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straightforward descent algorithm based on simple neighbourhood moves during the 
improvement phase.

In the next section we describe the problem and outline other solution approaches 
reported in the literature, highlighting the fact that the most successful of these have 
all included special procedures to deal with the quality/feasibility issue. This is 
followed by an introduction to GRASP in Section 3. Section 4 deals with the family 
of GRASP heuristics we have developed for the problem, while Section 5 describes 
an enhancement achieved by hybridising the construction phase with a knapsack 
algorithm. Section 6 is concerned with computational experiments. These are based 
on 52 data sets from a large UK hospital and are designed to compare the different 
variants with each other, and to compare the most successful with other approaches 
from the literature. Finally, conclusions and further work are discussed in Section 7.

2. THE NURSE-SCHEDULING PROBLEM

The problem of allocating nurses to duty rosters occurs in hospital wards all over the 
world. The essence of the problem remains the same in each case: every nurse in the 
ward must be assigned a suitable set of shifts for the given planning period. However, 
the precise details of the problem differ from hospital to hospital. Objectives range 
from minimising costs to maximising the satisfaction of the personnel involved (e.g. 
(Jaumard et al. (1998), Berrada et al. (1996)), while a wide range of working practices 
leads to an equally wide range of problem constraints. Some hospitals employ a cyclic 
schedule where for each planning period the same schedule is repeated, and each 
nurse cycles around a subset of the selected shift patterns, (e.g. Rosenbloom and 
Goertzen (1987)). Others use non-cyclic schedules in order to provide more flexibility 
in dealing with absence, fluctuations in patient numbers and staff requests (e.g. 
Cheang et al. (2003)). Other variations include the length of the planning period, the 
numbers and lengths of shifts on each day, whether or not different skill levels need to 
be taken into account, and constraints on working practices such as the number of 
consecutive work days, minimum rest period between shifts, rotation of 
night/weekend working etc. The papers by Dowsland and Thompson (2000), Isken 
(2004), Bellanti et al. (2004) and Burke et al. (2003a) illustrate many of these 
differences. A range of solution approaches have been used to tackle the different 
variants of the problem, including exact approaches, often based on mathematical 
programming (e.g. Isken (2004)), artificial intelligence (e.g. Meyer auf m Hofe 
(2000), Petrovic et al. (2003)) and a variety of heuristics including genetic algorithms 
(e.g. Burke et al. (2001), Moz and Pato (2007)), ant colony optimisation (Gutjahr and 
Rauner (2007)), simulated annealing (e.g. Brusco and Jacobs (1995)), tabu search 
(e.g. Dowsland (1998), Bellanti et al. (2004)) and other forms of local search e.g. 
SAWing (Parr and Thompson (2007)). Of these, tabu search seems to be the most 
popular. Most of the approaches reported in the literature deal with a fixed problem 
definition, but others such as the algorithm PLANE described in Burke et al. (1999) 
allow many of these details to be user defined. Recent surveys can be found in Burke 
et al. (2004) and Ernst et al. (2004).

The variant of the problem considered here is that introduced in Dowsland (1998) and 
also tackled in Dowsland and Thompson (2000), Aickelin and Dowsland (2000, 
2004), Aickelin and Li (2007) and Burke et al. (2003b). The objective is to produce 
weekly work rosters for individual hospital wards. These must satisfy individual work
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contracts and ensure there are sufficient nurses with the desired skill mix on duty at 
all times, whilst also meeting the nurses’ preferences and requests as far as possible. 
The day is divided into three shifts; an ‘early’ day shift, a Tate’ day shift and a night 
shift. The majority of nurses work either days or nights in a given week, although a 
few may be contracted to work a combination of the two. Night shifts are longer than 
day shifts. Due to the different shift lengths, a nurse working day shifts will typically, 
but not always, work more shifts than a nurse working nights. For example, a full time 
nurse works either 5 day shifts or 4 night shifts. Part time nurses work other 
combinations e.g. 4 days or 3 nights and 3 days or 2 nights, while some part-timers 
are contracted to work equal numbers of days or nights. In total there are ten possible 
day/night combinations. At the start of the planning period the combination pertaining 
to each nurse is known. We will refer to this combination as the type of the nurse.

Each nurse is graded according to their level of expertise and experience, resulting in 
3 grade bands, with band 1 consisting of senior nurses who are capable of being in 
charge of the ward, and band 3 those nurses who are trained only to the minimum 
level. For each shift there is a minimum requirement of nurses of each grade, and as 
nurses of higher grades can cover all the duties of those at lower grades these are 
expressed cumulatively. For example, requirements of 1, 2 and 5 nurses at grades 1, 2 
and 3 respectively means that at least one grade 1 nurse, two grade 1 or 2 nurses, and 
five nurses in total are required. Where there are more nurses than required the 
additional cover should be spread uniformly over the planning period and if there are 
insufficient nurses additional ‘bank’ nurses must be used. The requirements that each 
nurse works the correct number of shifts, that the minimal covering requirements are 
met, and that shifts at the start of the week are compatible with those worked at the 
end of the previous week are binding, and must be met if the solution is to be feasible. 
In addition, there is a requirement to produce rosters that are user friendly. This 
involves attempting to meet requests not to work certain shifts/days, rotation of nights 
and weekend working, and avoiding sequences of shifts that are unpopular e.g. 
working alternate days.

Thompson and Dowsland (2000) show that the problem can be pre-processed so that 
any bank nurses required can be added beforehand, and ‘dummy’ nurses can be added 
to deal with the problem of spreading any excess cover. This results in a tight problem 
in which there is no slack in the overall cover requirements. They also show that the 
allocation of day nurses to ‘earlies’ and Tates’ can be dealt with in a post-processing 
phase. Thus the ‘early’ and ‘late’ requirements can be amalgamated into a single ‘day’ 
requirement. The remaining problem can be modelled as an integer program as 
follows.

For nurses working d day shifts or e night shifts, the set of feasible shift patterns for 
that type is defined by a set of binary vectors of length 14, with the first 7 values 
representing the day shifts and the remaining 7 values the night shifts. A ‘ 1 ’ implies 
that the nurse is working and a ‘0’ implies a day or night off. The number of possible

shift patterns for each nurse is j day patterns and night patterns. Patterns for

those nurse-types working a combination of days and nights can be defined similarly. 
The feasible patterns for individual nurses are then formed by removing any patterns 
that would violate the constraints relating to working practices, annual leave etc. The 
quality of each pattern is reflected by the allocation of a penalty cost, referred to in the
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following as the preference cost, in the range [0, 100] with ‘0’ implying the shift 
pattern is ideal and ‘100’ signifying it is infeasible. These values were obtained as the
result of an iterative consultation process with a major UK hospital. The IP
representation is then:

r __
Minimise I E  P i i x u . (1)

/ = 1  j e S i

s t ' E x i j  =  l  w > ( 2 )jeS,

where

ZEv»-c**’ vg,k (3)
ieRg JeSj

f 1 if nurse i works shift pattern j
xu -  \ 0 otherwise

J 1 if shift pattern j  covers shift k 
Jk [0 otherwise

Pij is the preference cost of nurse i working shift pattern j , St is the set of shift patterns
that nurse i can work, C k is the number of nurses of grade g  or better required on
shift k , Rg is the set of nurses at grade g  or better and r is the total number of nurses.
The objective function (1) is the total preference cost, constraints (2) ensure that each 
nurse is assigned to a valid shift pattern and constraints (3) ensure that the cover 
requirements are satisfied. Typical problem dimensions are between 21 and 28 nurses 
and a total of 411 shift patterns. For some instances solving this IP to optimality can 
take several hours using the professional version of the Xpress-MP integer 
programming software (Fuller 1998).

Several heuristic methods have already been applied to this problem. The tabu search 
approach of Dowsland (1998) uses a series of complex neighbourhoods, evaluation 
functions and candidate lists to increase the scope of the search as it moves through 
the space of feasible solutions. Nevertheless a strategic oscillation strategy in which 
the search is periodically allowed to visit solutions outside of the feasible region is 
necessary in order to guarantee quality solutions. Aickelin and Dowsland (2000, 
2004) develop two genetic algorithm (GA) approaches. In the first of these, the 
individuals of the population represent complete solutions to the problem. Fitness is 
defined as a weighted sum of the preference cost and the total number of 
undercovered shifts at each grade. In order to deal with constraints (3) (the covering 
constraints), three problem-specific modifications to the classical GA implementation 
are required. These are: a complex co-evolutionary strategy using sub-populations 
that allow constraints at different grades to be relaxed and then recombined 
intelligently; a hill-climbing repair operator; and an additional penalty/reward scheme 
that rewards offspring that are likely to be repairable and penalises those that are not. 
The second, more successful, approach uses a GA to order the nurses and then applies 
a heuristic decoder to produce a solution from this ordering. Several different 
heuristics using a different balance between feasibility and quality were tested and it 
was shown that a bias towards seeking feasibility while including some measure of
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quality produced the best solutions. The final implementation also used a modified 
crossover operator and information from a lower bound to improve the decoder.

The success of the above approaches was achieved at the expense of a series of 
modifications and enhancements based on aspects of the problem structure. Two more 
generic approaches are those of Burke et al. (2003b) and Aickelin and Li (2007). The 
former applies a tabu search hyperheuristic that makes use of several of the simpler 
neighbourhoods used in Dowsland (1998). For each move the choice as to which 
neighbourhood to use is made via a scoring system based on the success of that type 
of move to date. However, their objective was to produce a fast, generic approach to 
the problem requiring little problem specific information or fine-tuning. While they 
achieved this objective the results are not comparable with those of Dowsland in 
terms of solution quality. Aickelin and Li schedule the nurses sequentially using a 
Bayesian network to determine an appropriate scheduling rule for each nurse. The 
results show that this approach consistently produces feasible solutions but once again 
solution quality does not match that of Dowsland’s tabu search implementation.

The above suggests that balancing feasibility and optimality is indeed a difficult task 
for both population based and sequential search approaches to the problem. In the two 
more successful approaches i.e. Dowsland’s Tabu Search method (1998) and Aickelin 
and Dowsland’s indirect GA (2004), this was achieved by the use of problem specific 
information to drive a number of intelligent add-ons. In the following sections we 
investigate the possibility of using this type of information in the construction phase 
of a GRASP approach to the problem.

3. GRASP

GRASP was first introduced by Feo et al. (1994). It can be viewed as a multi-start 
local search approach in which the starting solutions are generated by a probabilistic 
greedy construction approach. In its original form, GRASP consists of nrep 
independent repetitions of two phases: Construct and Improve. Construct is the 
greedy construction phase that builds a solution one element at a time. At each stage 
in the construction each available element, /, is given a score f(i) based on a local 
measure of the benefit of adding that element next. The element to be added is then 
chosen probabilistically according to the scores. There are obviously many strategies 
available for achieving this but the most common approach is to determine a 
candidate list of the best n elements for a given n and then to select randomly from 
this list. This is usually achieved using roulette wheel selection where each element is 
selected with a probability proportional to its relative score. Improve is a local search 
based improvement heuristic, in which the incumbent solution is repeatedly replaced 
by a neighbour of higher quality until no such neighbour exists i.e. a local optimum 
has been reached.

As with any metaheuristic search technique, in order to implement a GRASP 
approach to a given problem, a number of problem specific decisions must be made. 
These include the usual local search decisions i.e. the definition of the solution space, 
neighbourhood structure and evaluation function, together with the details of the 
construction heuristic including the definition of the score function./(0 -
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Since the first GRASP implementations were published, researchers have suggested a 
number of ways of improving performance. Some of these focus on improving the 
solutions obtained from the construction phase. For example Laguna and Marti (2001) 
describe a GRASP implementation for the graph colouring problem. The construction 
phase builds up the colour classes one at a time, completing one colour class before 
moving on to the next. Rather than just allowing a single attempt at each colour class 
several attempts are made and the best, according to a suitable criterion, is selected. 
Others, for example Binato et al. (2001), Fleurent and Glover (1999), try to improve 
the partial solutions by periodically applying local search during the construction 
phase.

An alternative is to focus on improving the local search phase. Typical examples 
involve replacing the simple descent algorithm with a more powerful local search 
technique such as simulated annealing or tabu search (e.g. Laguna and Gonzalez- 
Velarde (1991)). However, Laguna and Marti (2001) found that these additions did 
not improve the solutions significantly when given a limited amount of time for the 
improvement phase. Others have attempted to exploit information from earlier cycles 
to seek out better solutions. A popular approach is to use some sort of feedback 
mechanism to influence the greedy selection process in the construction phase. This is 
achieved by increasing the probability of selecting elements that correspond to 
features of good solutions and/or decreasing those that correspond to bad solutions, in 
much the same way as the trail mechanism influences the construction phase of an ant 
algorithm (Fleurent and Glover (1999)). Others use previously gleaned information in 
other ways. For example, Aiex et al. (2003) use the best existing solutions as the basis 
for a path relinking phase which is added after the local search phase in each iteration. 
For a summary of these, and other developments in GRASP and its applications, see 
Resende (2001).

Our main focus is on improving the construction phase, and instead of selecting the 
next element purely on a myopic basis we employ a look-ahead strategy based on a 
knapsack model to produce solutions that are more likely to be repaired by the local 
search phase. The variables in the knapsack model also form the basis of a feedback 
mechanism aimed at diversification. We also make minor modifications to the 
improvement phase, by relaxing the requirement that only improving moves are 
accepted, and using feedback information to place a threshold on the preference cost.

4. GRASP ALGORITHMS FOR THE NURSE-SCHEDULING PROBLEM

Due to the complexity of the problem and the tightness of the constraints, generating 
feasible schedules is itself a demanding task and, as such, our solution space must 
include both feasible and infeasible schedules. Thus our construction phase needs to 
produce a complete, but not necessarily feasible, schedule that will be used as the 
starting point for the local search improvement phase.

4.1. Construction

At each stage of the construction phase a nurse and an appropriate shift pattern for 
that nurse must be selected. Both selections could be made according to the score 
function or the nurse could be selected a priori according to a predefined ordering.
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(Note that as each shift pattern may be used once, more than once, or not at all, pre
ordering the shift patterns and then selecting a nurse is not a sensible option.) Given a 
partially constructed schedule, the allocation of unscheduled nurse i of grade g, to 
shift pattern j  will add p tj to the total preference cost and will improve the cover for 
those shifts included in pattern j  that do not currently meet the staffing requirements 
for grades g, and below. We therefore need a 2-part score function to capture both 
these aspects. Experiments with a number of different score definitions were carried 
out and these will be described in detail after the following outline of the construction 
process.

For any given score function, f( ij) , the construction phase proceeds as follows:

Let R be the set of nurses and R+ be the set of nurses already allocated.

Step 1: Set R+ = 0 .
Step 2: Calculate the score f(i,j) associated with allocating nurse i to shift pattern j, for 

all feasible pairs {ij). (Note that the set of feasible allocations (ij) may include 
all nurses not already allocated, or may relate to a single nurse i given by a 
predefined ordering.)

Step 3: Let L be the candidate list of the n highest scoring options.
Step 4: Select (ij)^L  using roulette wheel selection, i.e. each (ij) is selected with a 

relative probability proportional to j(ij) .
Step 5: Update the schedule with this allocation and set R+ = R+ u  {/}
Step 6: If R+ * R go to Step 2.

Aickelin and Dowsland (2004) suggest three different score functions to guide the 
greedy construction heuristics used as decoders for their indirect GA implementation. 
The part of the score relating to preference cost is given by:

Two different functions are used for the part of the score relating to cover. Our 
construction methods are based on these scores and we therefore present them in 
detail.

Both cover related scores are functions of the current total undercover of shift k at 
grade g, defined as:

The first cover score was designed for use without a preference cost element in a 
situation where the nurse i to be allocated next is decided a priori. It is defined as 
follows.

prefscore.. = 1 0 0 - pLj, where p tj is as defined in Section 2.

dgk(R+) = m&x
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Let

min < g> g{min i g  > g(. : dgk (R+) > 0 > if such a g exists

3 otherwise

and let k! = argmax{<i^}, then
covscoreli}= Y^ajkds.k(R+),

[ {l,..., 7} if k ' < 7 or the nurse must be on days 
where A' = < f ,

[{8,..., 14} if k ' > 8 or the nurse must be on nights.

For a given nurse /, this score is a measure of the improvement in cover at grade g, (or 
at the first uncovered grade below g, if all cover at g, is already satisfied), giving a 
greater score to those shifts with the most undercover. If the greatest shortfall in cover 
on a single shift is on nights then the score is based on night shifts only and vice 
versa. As the scores for different nurses are measured over different grades this 
method of scoring is not suited to situations in which the nurse has not already been 
determined. The priority given to nights or days also make it unsuited to combination 
with the preference score as it is common for there to be a large difference between 
the preference costs for days and nights for some nurses, and such differences will not 
be considered.

The second cover score is intended to overcome these problems. It is more flexible in 
that it includes a term for each grade where cover would be improved. These terms 
are weighted so that cover at higher grades, for which there are fewer nurses 
available, are given priority. This score is simply the weighted sum of the undercover 
and is given by:

where wg is the weight associated with grade g for g = 1,...,3.

We use these individual scores to form the basis of a family of construction heuristics 
by changing the way in which the scores are combined, using both dynamic and static 
orderings of the nurses, and by incorporating a simple look-ahead rule. Each of these 
will provide a different balance between the opposing goals of optimising preference 
costs and meeting the covering constraints, and can be expected to provide solutions 
with different attributes as starting points for the local search phase.

Our simplest construction heuristics define the score function f(i,j) to be a weighted 
sum of the preference score and a cover score and combine this with a fixed ordering 
of the nurses. We implemented two variants using this strategy, denoted cover and 
combined and given by:

cover: f i( i j)  = covscorel y

combined: f£ i j )  = wp.prefscorey + wc.covscore2ij,

3  f  1 4

covscore2ij=  £  w  I J ] a,tdgt ( R ' )
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where wp and wc are two weight parameters.

In cover all the emphasis is on attempting to satisfy the cover constraints, while 
combined is a more balanced strategy. However, given that the ordering of the nurses 
is fixed we would not expect either to be as successful in producing high quality 
solutions for the start of the improvement phase as a more flexible approach in which 
both the nurse and the shift pattern are selected dynamically by the score functions. 
Thus for these options, if the full GRASP implementation is to be successful, the local 
search phase will be required to play a significant role. In particular, for cover, all the 
optimisation of the preference cost will be left to the local search phase.

We also consider two construction heuristics based on a dynamic ordering. The first 
uses the combined score function to select both the nurse and shift pattern. This option 
is referred to as holistic as it encompasses the whole space of options at each stage. 
However the number of available options with this approach will be large, especially 
in the early stages of the construction. This may result in longer solution times and a 
lack of focus during this phase. We therefore introduce our fourth variant, last chance, 
which strengthens the construction by incorporating an element of look-ahead, while 
reducing the number of shift patterns considered for each nurse to one. This is 
achieved by comparing the highest scoring option for each nurse with the second 
highest and defining a single score function for each nurse based on the difference. 
The selected nurse is then allocated to the shift pattern with the highest score. The 
score function for this option is calculated as follows:

Let/O') = argmax{/2(/,y)}. Then
jeSi

-  max { f2(i,j)} ■

This variant has fewer options at each stage as only the nurse has to be chosen. 
However it does not suffer from the limitations of the fixed ordering in the cover and 
combined variants in that the best shift pattern associated with each nurse also 
changes adaptively, depending on the allocations made in previous stages. In addition, 
the inclusion of some degree of look-ahead into the score should help to overcome the 
problem inherent in all greedy approaches, that of potentially being left with a set of 
expensive options in the last few stages.

4.2 The improvement phase.

None of the above construction heuristics is guaranteed to produce a feasible solution. 
Therefore, the solution space for the improvement phase is the set of solutions in 
which each nurse is allocated to a feasible shift pattern, regardless of whether or not 
the covering constraints are satisfied. Our basic search strategy is that of random 
descent i.e. at each iteration we sample the space of neighbours of the current solution 
without replacement and accept an improving solution as soon as it is encountered. 
Our evaluation function reflects the importance of meeting the covering constraints 
over that of optimising the preference cost, and we define a solution as being better 
than its neighbour if the cover is improved or if the cover is unchanged and the 
penalty is improved. More precisely our evaluation function is defined as:

last chance: / 3 (z) = max { f 2 (z, 7')}
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i e R  j e S j  A:=l g = l

where W » p y , \ / i , j .

We also consider two minor modifications to the straightforward descent strategy. 
Firstly, a typical data set may have many xy variables with identical p y  values. This 
suggests that there may be large plateau-like areas in the solution landscape and for 
this reason we also experiment with accepting equal cost solutions. Secondly, during 
the search for a feasible solution, the above objective function may allow the 
preference cost to increase significantly from that produced at the end of the 
construction phase. We therefore introduce a threshold on the preference cost using 
feedback information from previous cycles.

As our objective is to exploit the construction part of the GRASP algorithm, rather 
than to develop a complex local search algorithm in which the construction phase 
plays only a minor role, our neighbourhood structure needs to be simple, but flexible 
enough to allow moves in different areas of the search space. For this reason we 
consider combinations of three natural neighbourhoods: a 1-opt move neighbourhood, 
a 2-opt move neighbourhood, and a swap neighbourhood as defined below. We then 
combine the neighbourhoods by selecting each with a given probability that may 
change according to whether or not the current solution is feasible.

1. Change neighbourhood
NcC?) is the set of solutions obtained from any solution, 5, by changing the shift 
pattern of a single nurse. This neighbourhood can change both the cover and the 
preference cost and in theory any solution is reachable from any other by a series of 
moves using this neighbourhood. However, it is not sufficiently flexible in the context 
of our descent strategies, as if the cover constraints are tight, any solution, s, 
satisfying the covering constraints will not have any improving moves within Nc(s).

2. Swap neighbourhood
Ns(s) is the set of solutions obtained from s by swapping the shift patterns of two 
nurses where their patterns are compatible i.e. where both patterns are feasible for 
both nurses involved in the swap. As swapping the patterns of two nurses on days 
(nights) will not affect the cumulative cover at grade 3, this neighbourhood is likely to 
allow the search to progress further once a feasible solution is found even on tight 
problems. Note that even for tight problems there is likely to be slack at grades 1 and 
2 but moves are only accepted if the shortfall in cover does not increase at any grade. 
However, as swaps are limited to nurses of a single type some areas of the solution 
space are likely to be unreachable.

3. Extended neighbourhood
N e(s) is the set of solutions obtained from s by changing the shift patterns of two 
nurses. This gives more flexibility than the above neighbourhoods when s satisfies the 
covering constraints. However it is a larger neighbourhood and it may be 
computationally expensive to find improving moves close to local optima when they

355



may be sparsely distributed. We overcome this by restricting its use to situations 
where s is already feasible and sampling from a candidate list of neighbours that is a 
superset of all those that result in an improvement. This is achieved as follows. Given 
s, an element of NE(s) is defined by the quadruple (iiji& ji)  where i\ and ii are the 2 
nurses involved and j\  and j '2 are the new patterns for these nurses. The four 
parameters are sampled in the above order with all the options for the remaining 
parameters being exhausted before parameters higher in the order are changed. i\ is 
sampled uniformly from the full set of nurses, but the candidate sets for the remaining 
parameters can be considerably reduced using the following logic. The brackets in the 
following refer to the case where we accept moves of equal cost as well as improving 
moves.

Given that s satisfies the cover constraints an improving move must result in a 
reduction in the preference cost. For any two nurses involved in such a move at least 
one must be moved to a pattern with lower (or equal) preference cost. As we are 
sampling from the set of nurses uniformly we can assume without loss of generality 
that this is true for i\. Thus, given i\ we sample j \  from the set of patterns with penalty 
cost less than (or equal to) the cost of i\ s current allocation. Further efficiency gains 
are possible if the patterns for each nurse are pre-sorted into py order. If there is little 
or no slack in the covering constraints then moving nurse i\ to pattern j\  may result in 
some shifts being under-covered. The second half of the move must repair this. Thus 
nurse ii must be of a sufficiently high grade to cover the shortfall and must currently 
be off duty on all the under-covered shifts. Our candidate list for 12 is therefore 
restricted to nurses who satisfy these conditions. Finally pattern 72 must be chosen 
from those patterns for which the increase in preference cost for 12 is less than (or 
equal to) the reduction obtained from moving nurse ii to patternj\.

5. HYBRIDISING THE CONSTRUCTION HEURISTIC WITH A KNAPSACK
ROUTINE

The construction heuristics and local search strategies described above can be 
combined in different ways to form a family of traditional GRASP algorithms based 
on a relatively straightforward greedy construction phase and a descent based 
improvement phase. As outlined in Section 3, many of the more successful GRASP 
implementations include some additional ingredients aimed at improving either the 
construction or improvement phases. In this section we describe a hybridisation of the 
construction phase with a knapsack model. This allows us to incorporate a powerful 
look-ahead mechanism that will ensure that solutions produced from the construction 
are promising from the point of view of producing feasible solutions during the 
improvement phase. Our rationale for this is based on observations in Aickelin and 
Dowsland (2004) and Dowsland (1998). They suggest that the solution landscapes 
produced by our neighbourhood structures and evaluation function are likely to 
consist of subspaces separated by ‘ridges’ so that the improvement phase will be 
restricted to a single subspace, even if we were to allow some small uphill steps. As 
stated in Section 2, the nurses are partitioned into types according to the number of 
day and night shifts for which they are available and the ridges are caused by the 
changes in cover that result in moving nurses of different types from days to nights 
and vice versa. The subspaces correspond to the number of nurses of each type
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allocated to days and nights, and for tight problems many of these subspaces will not 
contain any feasible solutions. This problem can be overcome by a construction 
heuristic that only produces solutions that lie in those subspaces that also contain 
some feasible solutions.

Dowsland and Thompson (2000) observe that the fact that nurses work a different 
number of night shifts and day shifts means that it is not possible to decide if a 
problem is feasible simply by counting the number of shifts available. They go on to 
show that this problem can be overcome using a knapsack model. We will use this 
model to ensure that the solutions produced by the construction phase lie in suitable 
subspaces. As we will show, this is equivalent to ensuring that the day/night 
allocations have sufficient numbers of nurses to meet the total covering requirements 
on both days and nights for all grades, g.

Essentially Dowsland and Thompson show that there are sufficient nurses to meet the 
cumulative cover constraints for grade g  if the solution to the knapsack problem:

T

Maximise Z = Z
/=i

st H diy,g^Hd,n,g - D g
t = 1 t = 1

ylg < nlg Vt

is at least Eg, where
t = l ,...,r  is the nurse type index 
dt = number of day shifts worked by a nurse of type t 
et = number of night shifts worked by a nurse of type t 
ntg = number of nurses of type t of grade g  or better

7
Dg = YaCkg (i-e- the total day shift requirement at grade g  and better)

k = l

14

Eg = (be. the total night shift requirement at grade g  and better)
k =8

and y tg is the number of nurses of type t and grade g  or better assigned to nights.

The expression in the objective function, (4g) is the total number of night shifts 
covered, constraint (5g) ensures that there are sufficient day shifts remaining and 
constraints (6g) ensure that the number of nurses allocated does not exceed those 
available. For a given problem instance P (i.e. for given T, dh et, ntg, Dg and Eg) we 
will denote the problem of finding a solution to (4g), (5g), (6^) of value at least Eg by 
KSg(P). Clearly, if P  is feasible there must be solutions satisfying KSg(P) for g  = 1,2 
and 3. However, this is not sufficient, as we need to ensure that the three solutions are 
compatible with one another. In order to ensure a compatible set of solutions we need 
to add the constraint:

0  ̂y,s*i - y,g  ̂ntg+\ - n,g Vt’g = l>2 ' (?)

(4g)

(5g)

(6g)
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The left hand inequality ensures that the number of night allocations at grade g+1 and 
better is at least as many as that at grade g and better, and the right hand inequality 
ensures that there are sufficient grade g+1 nurses to make up the difference. We will 
refer to the set of constraints given by KSi(P), KS2CP), KS3CP) and (7) by Cons(P). 
For a given problem instance, P, we ensure that our constructions always satisfy 
Cons(P) as follows.

Let P(R') denote a partial solution to instance P in which the number of day and night 
shifts worked by those nurses in the set R’ is known. At the start R’ consists of the set 
of nurses who work both days and nights, and the set of nurses who must be allocated 
to days together with those who must be allocated to work nights. We define this set 
to be i?flxed. At any stage in the construction let R+ be the set of nurses already 
allocated to their shift patterns. Then the remaining nurses can be allocated to days 
and nights in such a way as to satisfy Cons(P) if there is a feasible solution to 
Cons(P(K')) where R' = Rfixed u  R+. Assume the allocation selected is nurse i to shift 
pattern j. If i e /?flxed R' will not change when i is added to R+. Thus Cons(P(R 'u  
{/})) must still be feasible and the allocation can be made i.e. the construction moves 
onto step 5. If i <£ i?flxed, we need to check for feasibility by attempting to find a 
feasible solution to Cons(P(7?flxed u  R+ u  {/})). If there is a solution then the 
allocation is made. If not, then if j  is a night shift, nurse i must be restricted to days 
and vice versa. We therefore restrict the set of feasible shift patterns for nurse z, add i 
to Rflxcd and return to Step 2 without making the allocation. The restriction is enforced 
for the remainder of the construction phase only. It remains to be shown that we can 
determine whether or not there is a feasible solution to Cons(P(jR')) for any P and R' 
at minimal computational expense.

Our approach is based on the following observations:

Observation 1.
For any Rr we can obtain Cons(P(i?')) from Cons(P) by reducing ntg by one for each 
nurse of type t and grade g or better in R' and reducing Dg and Eg by the number of 
day and night shifts of grade g or better covered by the assignment of nurses in R'.

Observation 2.
Given a solution Yg* to KSg(P(i?')) any solution to the knapsack problem:

T

maxZ = Y.e,y,g-\ (4g-i)
t = \

T T
st Y.dty tĝ < Y ,d tntg_x - D g_x (5g-i)

(=1 (=1
y,g-i ^  min(n,g_ ,,y*lg) (8g-i)
y,g_, > max(0,y*,g -{n,g — (9g.i)

satisfying Z> E g.\ is a compatible solution to KSg.i(P(i?')).

Note that the upper bounds given by (8g.i) are obtained from (6g-i) and the left-hand 
part of (7) and the lower bounds given by (9g_i) are simply the right-hand part of (7). 
We denote this problem KSg.iCP(.ft')|7£*)
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Observation 3.
The set of all feasible solutions to a bounded knapsack problem with an objective 
function value at least Ztarget can be enumerated using a branch and bound tree search 
in which the branches at level i represent the set of feasible values for the ith variable. 
The problems represented by the nodes in the tree are smaller knapsack problems in 
which some of the variables have been fixed. Therefore local lower bounds can be 
obtained from the linear programming relaxations of these problems. For knapsack 
problems these linear programmes can be solved trivially without the use of an LP- 
solver (see Martello and Toth (1990) for details). The tree is pruned by backtracking 
whenever the bound is less than Ztarget-

We can use the above observations to solve the appropriate Cons(P(R')) at each stage 
of the construction using a hierarchical tree search. The tree at the top of the hierarchy 
represents a branch and bound search for all solutions of KS3CPCR')). Each terminal 
node representing such a solution, 73*, spawns a new tree representing a branch and 
bound search for solutions to problem KS2(P(R')\Yt,*). Similarly, the nodes 
representing these solutions spawn new trees representing a branch and bound search 
for solutions to KSi(P(i£')|72*)- The whole structure is searched using a depth first 
strategy. Once a feasible solution with respect to grade g  is found the search proceeds 
to the next tree in the hierarchy i.e. grade g-1. If the search is not successful then 
control is returned to the tree relating to grade g  until the next feasible solution is 
found. When a solution is reached at the third hierarchy i.e. grade 1, then a feasible 
solution to Cons(P(K')) has been obtained and the allocation of nurse i to shift j  can be 
made. If the search terminates without finding a solution for grade 1 then Cons(P(^')) 
is infeasible and the current allocation cannot be accepted. Appendix One illustrates 
this procedure plus that in the following paragraph.

The above procedure is able to find feasible solutions or confirm that none exists in 
very short computational time for typical data sets. However, we can make the whole 
process more efficient if we note that we do not necessarily need to solve a new 
knapsack problem every time we consider a new allocation. At any point in the 
construction we have the y tg values for a feasible solution to Cons(P(i?')). If we then 
consider allocating nurse i of type t and grade g  to nights, then the existing solution 
will still be feasible as long as y tg > 1 and (if g  ^ 1) y tg > y tg-i. Similarly a day 
allocation will be feasible if ntg - y tg >1 and ntg - y tg > ntg.\ - y tg. 1 If these conditions 
hold, we can allocate nurse i without solving a new knapsack problem. Having made 
the allocation we update the variables and constants to reflect the new solution.

The process is summarised in Figure 1.

(Insert Figure 1 around here)

We incorporate this look-ahead rule based on the knapsack calculations described in 
this section into each of our four construction heuristics to form four further variants. 
The best of these is then subject to further modifications. These are described in the 
following section.
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6 . FURTHER ENHANCEMENTS

In this section we consider three enhancements to the above implementations. The 
first is a simple extension of the local search phase, namely the acceptance of non
worsening moves within the neighbourhood Ne. The remaining two utilise the cyclic 
structure of the GRASP algorithm and use information from previous cycles. This use 
of feedback takes two forms. The first involves the use of a threshold on the 
preference cost during the search for a feasible solution, while the second is a 
diversification mechanism based on the values of the knapsack variables.

1. Plateau moves.
The introduction of the swap neighbourhood Ne increases the probability of 
generating moves that do not change the preference cost. It is possible that a sequence 
of such moves may lead to a point where further improvements can be made. On the 
other hand allowing all such moves may mean that there is not sufficient pressure for 
improvement. We therefore experimented with accepting such moves in Ne with a 
given probability.

2. Preference cost threshold.
According to the evaluation function given in Section 4, if the cover is improved, a 
move is accepted regardless of any increase in the preference cost. Thus the influence 
of the preference cost in the score functions in the construction phase may be 
destroyed. However, it is not sensible to reject all moves that increase the preference 
cost as these are often necessary in reaching feasibility. Instead we place a threshold 
on the increase. Such a threshold will be data dependent. For example, it must be 
greater than the preference cost of the best feasible solution. We use feedback from 
previous cycles to impose such a threshold in two ways. Firstly, we do not impose a 
threshold until we reach a cycle where a feasible solution has been obtained. For 
subsequent cycles we set a threshold of best_feasible_solution + Q, where Q is a 
dynamic threshold, also determined by the results of previous cycles. This means that 
we can iterate towards a value of Q that is large enough to allow the improvement 
phase to find feasible solutions, but is small enough to preserve the quality of the 
initial solution as far as possible. Q is initialised with a value qo, and increased 
according to the function Q = Q + aQ at the end of each cycle, where a  is a function 
of the cover_cost of the solution produced in that cycle. Thus Q increases whenever a 
cycle fails to find a feasible solution. A move is then accepted during the 
improvement phase if cover cost improves and preference cost is less than 
best feasible solution + Q.

3. Knapsack based diversification.
The final enhancement addresses the issue of diversification. It is designed to ensure 
that different cycles visit different areas of the solution landscape based on the 
numbers of nurses of each type and each grade allocated to days/nights. These values 
are precisely the sets Yg of y  variables returned by the knapsack calculations. To 
ensure diversity we need to ensure that no sets Yg occur too frequently. This is 
achieved by generating initial solutions as before, and rejecting those relating to sets 
Yg whose frequency is above a given threshold. This threshold is given by:
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Freqmin + Vy/3 where Freqmin is the minimum frequency of all the Yg vectors accepted 
so far and Vy is the number of different vectors generated so far. As the construction 
process is very fast, this is feasible as long as the number of rejected solutions does 
not get excessive, as is the case if there are some vectors with a very small probability 
of being generated. This situation is addressed by modifying the above process so that 
if no pattern satisfying the acceptance conditions is sampled after 20 trials, then one 
of the solutions relating to the vector with the minimum frequency of these 20 is 
accepted.

7. EXPERIMENTS AND RESULTS

7.1 Initial results.

Our experiments are based on fifty-two datasets from a large UK hospital. These 
datasets have also been considered by Dowsland (1998), Dowsland and Thompson 
(2000), Aickelin and Dowsland (2000, 2004) and Burke et al. (2003b). In all cases, 
the optimal solutions are known.

Our initial experiments were designed to evaluate the effect of the knapsack over the 
full range of data sets and construction heuristics, using a range of values for the 
parameters n (size of the candidate list), wc and wp (the weights on the cover cost and
the preference cost in the objective function), and to identify the most promising for 
further investigation. The role of n is to balance aggression and diversity within the 
construction with smaller values of n leading to more emphasis on the better scoring 
options and larger values of n leading to more diversity. The value of n will obviously 
be partially dependent on the number of options available at each stage of the 
construction process. This corresponds to around 60 shift patterns for the cover and 
combined heuristics, around 1,500 nurse-pattem pairs for the holistic heuristic and 
around 25 nurses for the last chance heuristic. Thus the range of n will vary according 
to the heuristic. For the combined, holistic and last chance heuristics we also need to 
define wc and . Table 1 shows the parameters used.

(Insert Table 1 around here)

Each construction method was run with and without the knapsack routine, giving 8 
different GRASP implementations. For each one, every combination of parameters 
was run once on each of the 52 data sets, using nrep = 100. The local search phases 
used neighbourhoods Nc and Ns, selected with equal probability for each move until 
feasibility was achieved and using neighbourhood N s only after that point. (N e was 
not included at this stage as some of the variants frequently failed to find feasible 
solutions.) Since sampling is without replacement, the search was allowed to continue 
until the local optimum had been reached.

In order to be able to combine the results from different data sets, the results have 
been standardised by subtracting the optimal cost. Figure 2 shows plots of the 
percentage of feasible solutions against the average standardised preference cost for
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these feasible solutions, over all 100 cycles, for each of the eight heuristics. Each 
point represents a single combination of n, wc and wp.

(Insert Figure 2 around here)

It is clear from Figure 2 that the percentage of feasible solutions increases 
significantly with the use of the knapsack routine. A closer examination of the data 
also revealed that of the 228 parameter combinations without the knapsack only 5 
generate at least one feasible solution for all 52 datasets, and these have much poorer 
solutions in terms of the preference cost than those generated by heuristics utilising 
the knapsack algorithm. Thus there is clear benefit in incorporating the knapsack into 
the construction phase.

For all but the last chance constructions, there is evidence that smaller values of n 
outperform larger ones suggesting that the added diversity of larger n is less beneficial 
than a greedier approach. Of the knapsack heuristics, Figure 2 suggests that the last 
chance variant is the most promising. In order to confirm this, each variant was run 10 
times for 100 cycles on each of the 52 data sets using a single set of parameter values. 
Unlike the above experiment where results were averaged over all cycles we now 
consider each block of 100 cycles as a complete GRASP run and record only the best 
solution over these cycles. As all four heuristics produce a high proportion of feasible 
solutions the parameter choices were based on the average preference score over the 
52 data sets and are shown in Table 2, along with the mean standardised preference 
costs.

(Insert Table 2 around here)

The results confirm the superiority of the last chance heuristic. It has an average 
preference cost lower than all other heuristics and about 95% of the cycles create 
feasible schedules. These results are promising but only provide an overall view 
averaged over all datasets. In the next subsection we evaluate the performance in 
more detail on each dataset and compare the results with those obtained when the 
neighbourhood Ne and the enhancements suggested in Section 6 are included.

7.2. More detailed results.

Although the amalgamated results in Figure 2 suggest that our GRASP based on the 
last chance construction together with the knapsack performs reasonably well, the 
variability of the results is apparent when we consider each data set separately. Figure 
3(a) shows the number of runs returning an optimal solution and the number returning 
a result within 3 of the optimum. It is clear that there are many data sets for which the 
optimum is not found in any of the 10 runs, and several where there are no solutions 
even close to the optimum.

(Insert Figure 3 around here)

Figure 3(b) shows the results of expanding the local search to include the extended 
neighbourhood Ne. This was implemented by replacing Ns with NE once the first 
feasible solution in each cycle has been found. The results have clearly improved but 
still fail to match those of Dowsland and Thompson (2000).
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Further improvements were obtained by the introduction of plateau moves. The 
probability of accepting moves that do not change the preference cost was varied from 
0% to 100% in steps of 25%, with 75% giving the best results. These results are given 
in Figure 3(c) and improve the results to the point where all instances are solved to 
optimality at least once.

Finally Figure 3(d) shows the results of adding the two feedback related 
enhancements. For the preference cost threshold, parameter choices qo = 10 for the 
initial threshold value and a  = 4*cover_cost for the rate of increase were found to 
work well. The knapsack based diversification was added as stated in Section 6.

Comparing these results, with those obtained previously, we can see that the 
algorithm now finds the optimal solution in every case for all but two datasets and 
nine times out of 10 for the remaining two. This is a better average performance than 
that reported in Thompson and Dowsland and has been obtained without recourse to 
complex neighbourhoods, which may be data specific.

7.3 The role o f the construction heuristic.

The results of Section 7.1 suggested that even after the inclusion of the knapsack 
routine there was a clear difference between the different construction heuristics in 
terms of solution quality. Given the dramatic improvements obtained by the use of the 
extended neighbourhood, plateau moves and feedback mechanisms it is no longer 
clear that this is still the case. All four heuristics were therefore rerun 10 times on 
each data set with all the enhancements included. Feasible solutions were produced in 
all runs, with optimal solutions being produced for all 10 runs using all four heuristics 
for all but 8 of the 52 data sets. The results for these 8 are shown in Table 3. Once 
again results have been standardised by subtracting the optimal cost.

(Insert Table 3 around here)

The performance of all four algorithms is much improved but the last chance heuristic 
remains the best and most consistent performer. This, combined with the vast 
improvements offered by the knapsack routine, show that it is worthwhile investing 
some thought, effort and experimentation into the choice of construction heuristic 
when developing a GRASP implementation. The results from this best algorithm are 
compared with those quoted by others in Table 4. This shows the best results obtained 
from GRASP, Tabu Search (Dowsland and Thompson (2000)), Genetic Algorithm 
(Aickelin and Dowsland (2004)) and Estimated Distribution Algorithm (Aickelin and 
Li (2007)). The rows marked IP are the optimal solutions obtained from the integer 
programming formulation (Fuller 1998), which required several hours of 
computational time for some datasets. GRASP outperforms the EDA in terms of 
preference cost and the GA in terms of both preference cost and feasibility. As stated 
above when we compare average performance, GRASP also outperforms the Tabu 
Search approach. The run-times required by GRASP are also impressive. All 
experiments were performed on a 1 MHz Pentium III PC with 256 MB of RAM, and 
required between 1 and 4 seconds of CPU time per cycle. Although this is slightly 
slower than the Tabu Search approach, it is significantly faster than an exact IP 
approach. The time required to check for knapsack feasibility is almost negligible,
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while using plateau moves has a significant impact on the time taken by the 
improvement phase. When averaged over all 10 runs for all 52 datasets, using 75% 
plateau moves, construction takes approximately 2.5% of the solution time and 
checking the knapsack takes less than 0.005% of the construction time. Without 
plateau moves construction takes 85% of the solution time.

(Insert Table 4 around here)

8. CONCLUSIONS AND FURTHER WORK

This paper has considered a nurse-scheduling problem in which the conflict between 
feasibility and optimality is an issue that must be addressed by any successful solution 
approach. We have developed a GRASP approach that outperforms other heuristic 
approaches for this particular variant of the problem. The key to achieving this was 
the incorporation of a look-ahead facility based on a knapsack model of a relaxation 
of the problem, to ensure that the solutions produced by the construction phase were 
relatively easy to convert into feasible solutions during the improvement phase. The 
paper also adds to the body of evidence showing the importance of a suitable 
neighbourhood structure and evaluation/acceptance criteria during the improvement 
phase, as well as the benefit of a feedback mechanism to allow for a learning process 
from one cycle to the next. Feedback was used in two ways. Firstly, as the basis of a 
diversification strategy to ensure that the construction phase produced solutions from 
different areas of the search space, and secondly, to adjust the acceptance conditions 
for the improvement phase. Both played an important role in providing high quality 
solutions on the more difficult data sets.

The need to balance feasibility with optimality in all parts of the search was evidenced 
not only by the improvements resulting from the knapsack routine, but also by the 
introduction of the preference cost threshold with Nc and Ns. The results also show 
that the choice of construction heuristic is important, although it is not clear why the 
last chance decoder proved to be the best of the four. Three possible factors are its use 
of a look-ahead strategy, the more aggressive use of the best shift-pattem for each 
nurse, and the fact that the number of options at each stage in the construction is 
smaller than for the other three.

This work has shown that, for this particular problem, a GRASP approach can be very 
effective in solving highly constrained problems, as long as the feasibility of the 
solution is given sufficient consideration during the construction. It would be 
interesting to use a similar approach on other problems, in particular the use of 
relaxations or other problem specific information to guide the construction phase 
towards feasible, or easily repairable, solutions. We are currently working on these 
ideas with respect to a scheduling problem arising in the allocation of medical 
students to ‘firms’ of consultants in order to cover a given set of clinical disciplines.
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Tables

Table 1. The combinations of parameters investigated.

Heuristic N % Total combinations
Cover 3,12,20 — — 3
Combined 3,12,20 1,2,...,5 1,2,...,5 75
Holistic 3,10,60 1,2,...,5 1,2,...,5 75
Last chance 3,6,10 1,2,...,5 1,2,...,5 75

Table 2. Comparison of 4 knapsack heuristics.

Heuristic n wc %
Cost %

feasible
cycles.

Cover + kn. 20 — — 23 76
Combined + kn. 3 2 5 6 89
Holistic + kn. 3 1 3 4 87
Last chance + kn. 3 2 5 2 95

Table 3. Average cost of best solutions obtained from 10 runs of 100 GRASP cycles 
for each of the four heuristics using the extended neighbourhood, plateau moves, 

preference cost threshold and knapsack based diversification.

Data Set Cover Combined Holistic Last chance
2 0.2 0.1 0 0.1

20 0 13.5 9.7 0
25 0 1 0 0
31 3.6 1.2 3.2 0.4
33 0.8 0 0 0
42 0.1 0 0.6 0
44 0 10.8 5.1 0
46 0 0.6 0 0

Table 4. Comparison of best results for all 52 datasets.
Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
IP 8 49 50 17 11 2 11 14 3 2 2 2 2 3 3 37 9 18 1 7 0 25 0 1 0 48
GRASP 8 49 50 17 11 2 11 14 3 2 2 2 2 3 3 37 9 18 1 7 0 25 0 1 0 48
Tabu 8 49 50 17 11 2 11 14 3 2 2 2 2 3 3 37 9 18 1 7 0 25 0 1 0 48
GA 8 50 50 17 11 2 11 15 3 4 2 2 2 3 3 38 9 19 1 8 0 26 0 1 0 48
EDA 8 56 50 17 11 2 14 15 14 2 2 3 3 4 4 38 9 19 10 7 1 26 1 1 0 52

Dataset 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
IP 2 63 15 35 62 40 10 38 35 32 5 13 5 7 54 38 22 19 3 3 3 4 27 107 74 58
GRASP 2 63 15 35 62 40 10 38 35 32 5 13 5 7 54 38 22 19 3 3 3 4 27 107 74 58
Tabu 2 63 15 35 62 40 10 38 35 32 5 13 5 7 54 38 22 19 3 3 3 4 27 107 74 58
GA 2 63 141 42 166 99 10 48 35 41 5 14 5 8 54 38 39 19 3 3 4 6 30 211 - -

EDA 28 65 109 38 159 43 11 41 46 45 7 25 8 8 55 41 23 24 6 7 3 5 30 109 171 67
N.B. The GA did not find any feasible solutions for datasets 51 and 52.
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Figures

Figure 1. Flow chart showing implementation of the knapsack model.
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Figure 2. Plots of feasibility against average preference cost for the eight heuristics.
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Appendix One. Worked example of the knapsack look-ahead procedure.

Suppose we have a situation in which the set of nurses as yet unallocated who are free 
to work days or nights (i.e. the set R - R') are as given in Table 5a, the shifts that they 
must cover are as given in Table 5b, and the solution to the knapsack problems 
Cons(-PCK')) for the previous iteration is given by

0 1 1 0
1 1 1 0
1 2 1 0

Table 5a. Details of unallocated nurses
Type index (t) 1 2 3 4
Days worked (dt) 3 5 4 3
Nights worked (et) 3 4 3 2
Number grade 1 0 2 2 0
Number grade 2 1 3 2 2
Number grade 3 1 4 3 3

Table 5b. Cover Requirements
Grade (g) Days required Nights required
All (g=3) 26 14
1 and 2 (g=2) 19 10
1 (g=i) 6 7

Now assume that the greedy construction process selects nurse i to work pattern j, 
where i is a type 4, grade 2 nurse and j  is a shift pattern covering nights. First we 
check the current Y* matrix to see if our choice is compatible with the current 
knapsack solution. As the matrix represents a possible feasible allocation of nurses to 
nights, and >>24* = 0, the current solution is not compatible. Thus it is necessary to 
resolve the knapsack problems to determine whether or not the suggested allocation is 
feasible i.e. we need to search for a solution to Cons^Z^utz})) where i is assumed to 
be on nights. We therefore reduce the number of type 4 grade 2 nurses available by 1 
and subtract e\ (i.e. 2) from the night requirements for g = 2 and g  = 3.

The cumulative number of nurses of each type available, ntg,is now given by the 
'0  2 2 0^

matrix N  =

The target values Eg are as given by the new night requirements (7,8,12) and the 
capacities of the knapsacks defined by the right-hand sides of constraints (5g) are 
given by the vector (10,10,15). The tree relating to the search for a feasible solution is 
shown in Figure 4.

At the top level of the search, node A represents the knapsack problem KS3 relating g 
= 3, where the target value E3 = 12 , knapsack capacity =15 and the upper bounds on
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the variables are given by the bottom row of matrix N. The top segment of the Figure, 
i.e. the region denoted g= 3, shows a tree search for all feasible solutions to this 
problem with objective value at least 12, using bounds based on the linear 
programming relaxation of the problem to prune the tree. Note that the types have 
been ordered in decreasing et/dt order and the branches relating to each variable are 
ordered in decreasing value order. This improves the efficiency of the search.

The first solution is found at node B and is given by Y 3* = (1,1,1,1) i.e. 1 nurse of 
each type working nights and the remainder on days. Having reached the solution we 
spawn a new tree to search for solutions to the problem (K S2IY 3*) starting at node B\ 
The target value is now 8 and the knapsack capacity is 10. The vector of upper bounds 
(given by the right-hand side of constraint set (82)) = (1,1,1,1) and the vector of lower 
bounds (given by the right-hand side of (92)) = (1,0 ,0,0). Thusy^ is fixed a tyn  = 1. 
Substituting the fixed value leaves us with a problem in the three remaining variables 
with an adjusted target of 8-3 = 5 and adjusted knapsack capacity of 10-3 = 7. The 
tree search corresponding to this problem starts at root node B' and the first feasible 
solution is found at E corresponding to Y2* = (1,1,0,0).

We now spawn a new tree to search for solutions to (KSi|Y2*). The target is 7 and the 
knapsack capacity is 10. The upper bounds are given by (0,1,0,0) and the lower 
bounds by (0,0,0,0). Thus all variables except ̂ 32 are fixed at 0 and asy32 has an upper 
bound of 1 the problem is clearly infeasible as we cannot meet the target value. We 
therefore return to node E and continue searching the tree corresponding to (K S2IY 3*). 
A second solution at this level in the hierarchy is found at F with Y2* = (1,0,1,1). This 
spawns a new problem (KS1IY2*) with upper bounds (0 ,0 ,1,0) and lower bounds 
(0,0,0,0). Once again we have a problem in just one variable which is clearly 
infeasible so control is returned to node F. Continuing the search at this level shows 
that there are no more feasible solutions to (K S2IY 3*) and control is returned to point 
B and the search for solutions to problem A continues.

The next solution is at C corresponding to Y 3* = (1,0,3,0). This spawns a new 
problem for (K S2IY 3*) at C' with upper bounds (1,0,3,0) and lower bounds (1,0,2,0). 
This becomes a problem in y23 with a target of 5 and knapsack capacity = 7. This 
problem is clearly infeasible as the lower bound on >>23 causes the knapsack capacity 
constraint (52) to be violated. Control therefore returns to C. The next solution occurs 
at D corresponding to Y 3* = (0,3,0,0) with upper bounds (0,3,0,0) and lower bounds 
(0,2,0,0). The tree for the resulting problem in 2̂2 starts at D' yielding a feasible 
solution at G corresponding to Y 2* = (0,2,0,0). This spawns problem (K S1IY 2*) at G' 
with upper bounds (0 ,2,0 ,0) and lower bounds (0 ,1,0 ,0) and yielding a feasible 
solution at H. Thus there is a feasible solution that is compatible over all grades given 
by

r0 2 0 0A
0 2 0 0

v0 3 0 oy

We therefore make the allocation of nurse i to pattern j . Had the search failed to find a 
feasible solution nurse i would have been added to the set Fflxed ((agged as days only), 
the matrix Y* restored to its previous set of values and ri24 and reduced by 1 and 
D2 and reduced by 3.
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Figure 4. Search tree for finding a feasible solution
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