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Abstract

The synthesis, characterisation and anion binding properties of a series of 
mono-, tris- and tetrakis-functional boronic esters of ferrocene are reported. Mono- 
borylated systems: (T]5C5H5)Fe(r|5C5H4B0 2 R) [where O2R = ethane-1,2-diolato (la) 
and pinanediolato (lb)], tris-functional borylated systems: [(r|5-C5H3EtB0 2 R)Fe(r|5- 
CsH3(B02R)2] [where O2R = ethane-1,2-diolato (3a), stilbenediolato (3b) and 
pinanediolato (3c)] and tetrakis-functional borylated systems: [(rj5-C5H3(B02R)2)]2Fe
[where O2R = ethane-1,2-diolato (4a), stilbenediolato (4b), pinanediolato (4c) and 
napthalenediolato (4d)] have been synthesised and characterised by NMR, UV/Vis 
and IR spectroscopy, mass spectrometry and in most cases by X-ray diffraction. 
Electrochemical analyses of most of the above-mentioned boronic esters of ferrocene 
have demonstrated the influence of the number of boronic ester groups on the redox 
potential of the ferrocene backbone, and have allowed a comparison of the different 
substituents.

The anion-binding properties of the above-mentioned boronic esters have 
been monitored by spectroscopic (including NMR and UV/Vis) and electrochemical 
methods. Bis-fimctionalised boronic esters of ferrocene have previously shown a 
colorimetric response to fluoride, and have been shown to bind two equivalents of 
fluoride per receptor. An analogous colorimetric response to fluoride is observed with 
the tris- and tetrakis-functionalised boronic esters, which also display a particular 
affinity for fluoride. The kinetics of the colorimetric response have been probed using 
time-resolved UV/Vis experiments, with the tris- and tetrakis-functionalised 
compounds shown to effect a more rapid response to fluoride. Kinetic experiments 
have revealed that the response to fluoride is greatly enhanced with tris- and tetrakis- 
functionalised receptors, and also revealed a binding stoichiometry of 2:1 (anion: 
receptor) in all cases; thus the binding of more than two equivalents of fluoride by the 
additional boryl groups is not responsible for enhanced kinetics.

The synthesis and characterisation of a range of dimeric, macrocyclic and 
polymeric ferroceneboronic esters has been undertaken. Dimeric ferrocene boronic
esters; (Ti’-CsHsFe^-CsH^RCV-CsIiOFeOi’-CsHs) [where R = BO2C8H12O2B (7a), 
B(0CH2)2C(CH20)2B (8a) and BC>2(C6H2)02B (9a)], macrocyclic ferrocene boronic 
esters: [(r^-CsILOFe^-CsILOBRBk [where R = BO2C8H12O2B (7b) and
B(0 CH2)2C(CH2 0 )2B (8b)], and the polymeric ferrocene boronic ester [(r|5- 
C5H4)B02CgHi202B(r|5-C5H4)Fe]n polymer (7c) have been synthesised and 
characterised by NMR and UV/Vis spectroscopy, mass spectrometry and in some 
cases by X-ray diffraction. Electrochemical analyses of some of the above-mentioned 
boronic esters of ferrocene have demonstrated the lack of electronic communication 
between iron centres with the saturated pentaerythritol and cyclooctanetetraol linker 
groups. Investigation into the factors controlling assembly of boronic ester units into 
poly-, oligomeric or macrocyclic products has been possible. The two different linker 
groups have revealed very different product distributions under analogous reaction 
conditions with ferrocene-bis-boronic acid. The pentaerythritol linker favours 
macrocycle formation, whilst the cyclooctanetetraol linker favours polymer 
formation. Thus reactions can be driven with high selectivity towards either 
macrocyclic or polymeric products depending on choice of linker group.
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Notes

The following abbreviations have been used in the text: 

amu = atomic mass units 

Ar = aryl

bipy = 2 ,2 -bipyridine 

br = broad

”Bu = -CH2CH2CH2CH3 

'Bu = -C(CH3)3

18-C-6 = 18-crown-6

calc. = calculated

COD = cyclooctadiene

Cp = cyclopentadienyl, r|5-C5H5

CV = cyclic voltammetry

Da = Dalton

Dba = dibenzylidene acetone 

DCM = dichloromethane 

5 = NMR chemical shift 

DFT = density functional theory 

DME = dimethoxyethane 

DMF = dimethylformamide 

DMSO = dimethylsulphoxide 

DNA = deoxyribosenucleic acid 

d = doublet

E = oxidation potential 

El = electron ionisation

'Pr = -CH(CH3)2 

ES = electrospray

Et = -CH2CH3

Fc = ferrocenyl, (r|5-C5H5)Fe(r|5-C5H4) 

fc = ferrocenediyl, (rj5-C5H4)Fe(r|5-C5H4) 

fc' = ferrocenetetryl, (r|5-C5H3)Fe(r|5-C5H3) 

FcH = ferrocene, (r^-CsHs^Fe 

FcH* = ferrocenium, [(r|5-C5H5)2Fe]+

FT = Fourier Transform

GPC = gel permeation chromatography

h = hours

i = current

IR = infrared

J — coupling constant

X = wavelength

LUMO = lowest unoccupied molecular 

orbital

m = multiplet

MALDI = matrix-assisted laser 

desorption/ionisation 

max = maximum 

md = medium

Me = -CH3



Mes = mesityl VT-NMR = variable temperature nuclear

min. = minutes magnetic resonance

MS = mass spectrometry w = weak

v = stretching frequency 1 Torr = 1 mmHg = 133.3 Pa

Mw = molecular weight 

NHC = N-heterocyclic carbene 

NOESY = Nuclear Overhauser effect 

spectroscopy

NMR = nuclear magnetic resonance 

obs. = observed 

Ph = -C6H5

ppm = parts per million

q = quartet

Ref. = reference

RT = room temperature

s = singlet

st = strong

t = triplet

TBAF = tetrabutylammonium fluoride

TGA = thermogravimetric analysis

THF = tetrahydrofuran

Tol = toluene, tolyl

tmeda = tetramethylethylenediamine

UV/Vis = ultraviolet/visible
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Chapter One

Introduction

1.1 Introduction

Supramolecular chemistry involves the design of functional molecular arrays, 

in which the most important feature is not necessarily the covalently bonded 

molecules from which these arrays are built, but the non-covalent intermolecular 

forces by which they are held together. The multidisciplinary field of supramolecular 

chemistry has grown to become an area of intense research interest over recent 

decades, often combining biological, chemical, physical and technical aspects; from 

biological inspiration through to chemical design, followed by investigation into the 

physical properties and finally incorporation of the product into a functioning 

technical device. Supramolecular chemistry is based upon the critical concept of 

complementarity, in which nature is the expert, providing insight with numerous 

examples. The most significant example of complementarity in nature must be the 

base pairing displayed in the DNA double helix; each DNA strand consists of purine 

and pyrimidine bases linked to a framework of phosphorylated sugars. The two 

strands of the double helix are held together by complementary hydrogen bonds 

between base pairs. However it is chemical design and synthesis towards 

complementarity in supramolecular binding chemistry of functional molecules that is 

particularly relevant to the work presented in this thesis. Contributing significant 

input to the broader field of supramolecular chemistry, the studies of cation and anion 

recognition have grown to become areas of intense research interest over recent 

decades. Early examples of cation receptors are the well-known crown ethers, 

reported in 1967 by C. J. Pederson;1 crown ethers are still used extensively for the
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encapsulation of metal cations today, and “proton sponge” reported by Alder et al. in 

1968. This and other early discoveries have led to extensive research interest in the 

field of cation binding, which has until now largely over-shadowed the field of anion 

recognition. Although the first report of an inorganic anion receptor was made back 

in 1968,3 the complexation of anions has received somewhat less attention over the 

years.

There are several reasons why the field of anion recognition has received less 

research attention. Anions possess a negative charge and are more diffuse in 

comparison to their cationic analogues; hence receptors for anions must be able to 

accommodate their larger ionic radii to achieve effective binding. In the case of the 

fluoride anion, a relatively small ionic radius means that the fluoride anion possesses 

a higher charge density, a feature that makes it easier to accommodate when 

designing a receptor, compared to other larger anions with relatively disperse charge. 

The solvent can play a significant role in the binding process, if the solvent strongly 

solvates either the host or the guest species, this can dramatically alter the host-guest 

equilibrium and make recognition non-specific. Anions in general display a high free 

energy of solvation; a good acceptor solvent solvates anions very effectively, hence 

careful choice of solvent and design of the receptor molecule are required for binding 

processes that are to take place in solution. Anionic species can also be very sensitive 

to pH, for example phosphate anions become protonated at low pH values, reducing 

their negative charge. A further complication is that different anions can adopt a vast 

range of different geometries, for example halide anions are spherical and azide 

anions are linear, whereas phosphate and sulphate anions are tetrahedral. All of these 

factors add to the challenge of designing an anion specific receptor. This chapter aims 

to summarise the literature reports that are relevant to the chemistry presented in this
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thesis; this will include a summary of the various anion-binding reports, particularly 

fluoride binding by Lewis acid systems. A summary of sensors designed to give a 

colorimetric or spectroscopic response to anion binding will be included, together 

with a final overview of organometallic polymer chemistry and the applications of 

organometallic polymers in the field of anion sensing.

1.2 Host-Guest Interactions

By definition a supramolecular structure is built via non-covalent interactions 

between specific molecules. There are a number of alternative interactions accessible 

to form a host-guest complex, the most important being electrostatic, hydrogen 

bonding and Lewis acid/base interactions. Electrostatic binding is very strong and has 

been widely employed in the design of anion receptors. The basis for electrostatic 

interactions is the Coulombic attraction between opposite charges. These can 

incorporate ion-ion, ion-dipole and dipole-dipole interactions (Figure 1.1).

n  11 n  11 i i  i

5+ 5-
 ►  i n  i i  i i i  i i i

8+ 5- 8+ 8-
 ►  m i  h i m - - - - - - - - - - * -

Figure 1.1 Electrostatic interactions

It is common for hydrogen bond donor molecules to be incorporated in the design of 

a electrostatic host molecules, to support and strengthen the electrostatic interaction,
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and there are few examples of receptor systems utilizing purely electrostatic binding 

interactions. Hydrogen bonding provides another alternative non-covalent interaction, 

capable of strong binding where a host has been designed with the directional nature 

of the hydrogen bond in mind, i.e. one hydrogen bond will not provide a strong guest- 

host interaction, but precise design to incorporate an array of potential hydrogen 

bonding sites presents the means of achieving a strong guest-host interaction. The 

coordination of anionic guest species via arrays of hydrogen bonds is demonstrated in 

many biological systems, for example the formerly cited DNA double helix (Figure 

1.2).

H N ------H  ii i in i in ii i mi i ii 11 iQ

NHN  imiimimH— N

H

Figure 1.2 Base pairing (C-G) by hydrogen bonding in DNA.

In nature, where anion specificity can be essential, anion complexation is 

often made selective for a particular anion by the use of appropriately positioned 

hydrogen bonding sites. There are also numerous examples of anion receptors 

chemically designed to promote hydrogen-bonding interactions. In addition to 

electrostatic and hydrogen-bonding interactions, anion binding via Lewis acidic 

interactions has also been widely researched. Anions donate an electron pair in 

forming a hydrogen bond with a hydrogen bond donor, and in the same way a Lewis 

acid is capable of accepting a pair of electrons. Trigonal three coordinate boron acts
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as a strong Lewis acid, possessing only six electrons in its outer shell and a formally 

vacant pz-orbital into which an electron pair can be donated from an anion/Lewis base 

thereby completing its octet. These guest-host interactions will be discussed in greater 

detail with examples from the literature in the following sections.

1.2.1 Anion recognition via electrostatic and hydrogen bonding interactions

As discussed, electrostatic and hydrogen bonding interactions have been 

widely used in the development of anion receptors, many examples of systems using 

purely hydrogen bonding interactions are known.4 In contrast, relatively few systems 

are known to achieve anion complexation through electrostatic interactions alone. 

Using a positive charge to bind a negative charge is an obvious method of anion 

complexation, although it does cause a design setback, in that positive charges will 

repel each other, hence to incorporate an array of positive charges into a receptor they 

need to be constrained within a rigid framework. Early synthesis of a purely 

electrostatic receptor featured a quatemized analogue of the well-known ammonium- 

based electrostatic/hydrogen-bonding macrocyclic receptors, achieved by 

Schmidtchen in an attempt to minimise the influence of pH on ammonium-based 

receptors and to investigate the effect of hydrogen bonding on the affinity of the host 

for the guest.5 Hossain and Ichikawa reported a similar species,6 featuring a 

quartemized ammonium based binding cavity (Figure 1.3).
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ch3

Figure 13  A macrotricyclic receptor for electrostatic fluoride binding.

The fluoride anion is encapsulated within the binding cavity created by constraining 

four positively charged ammonium groups within a macrocyclic framework. Fluoride 

is strongly bound by the electrostatic interaction with the oppositely charged 

ammonium groups. In this case, selectivity is governed by the size of the cavity, 

which can be easily tuned, by alteration of the cavity size, to be selective for a 

number of different anions. Previous reports of halide inclusion by larger analogous 

receptors featuring quaternary ammonium ions,7 led the authors to the conclusion that 

fluoride selectivity could be achieved by decreasing the size of the binding cavity. 

The binding chemistry between the tetra-ammonium host and fluoride in aqueous 

solution was assayed by 19F NMR using [nBu4N]+F‘ as the source of fluoride. 19F 

NMR spectra indicated a fluoride-encapsulated species (8f = -28 ppm), evident as an 

upfield shift from free solvated F' (8f  = 0 ppm); the stability constant of the resulting 

complex was determined from the 19F NMR data (K ~ 1.5 x 104 M '1).

Although hydrogen-bonding receptors can have some disadvantages, for 

example pH dependence in some cases, an array of hydrogen bonds can offer a
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complementary interaction to electrostatics, and there have been many literature 

reports that have capitalised on including both types of interaction in the design of 

anion receptors. One of the earliest examples of this kind of cooperative binding was 

reported by Graf and Lehn in 1976, featuring a protonated cryptate (Figure 1.4) that 

was observed to bind F , Cl' and Br' anions.8

NH

NH+ NH+

NIT

Figure 1.4 Protonated cryptate capable of halide encapsulation.

The protonated cryptate was found to achieve effective anion encapsulation, making 

use of both hydrogen bonding and electrostatic interactions. During initial studies it

was found that this receptor binds chloride anions, resulting in the formation of the

11guest-host complex as evidenced by significant changes in the C NMR spectrum. 

Analogous binding was observed upon treatment of this receptor with fluoride and 

bromide anions. A subsequent study by Metz et al. 9 solved the X-ray structure of the 

chloride cryptate; close inspection of the structure revealed that the anion is bound via 

a tetrahedral array of N-H«**X hydrogen bonds. These studies were followed up to 

include alternative cryptand systems, incorporating an array of ''NFb groups within a
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macrocycle (Figure 1.5), thereby providing a receptor capable of increased hydrogen 

bond donation. 10

N H

Figure 1.5 Protonated cryptate systems for the binding of F', CF, Br’ and N3' anions.

Crystal structures of the fluoride, chloride, bromide and azide guest-host complexes 

were obtained, however the X-ray diffraction data revealed that the different anions 

are bound in different modes; the smaller fluoride anion is bound within just one half 

of the binding cavity, coordinated to four ammonium centres in a tetrahedral fashion. 

This observation indicates that the fluoride anion is too small to bind to each of the 

six protons within the cavity. By contrast, the larger chloride and bromide anions 

were found to bind via an octahedral array of hydrogen bonds to the six ammonium 

centres, almost precisely located on the N-N axis. The linear azide anion is found to 

bind on the N-N axis, with each terminal nitrogen forming three hydrogen bonds with 

three ammonium centres. The increased number of hydrogen bond donors has 

allowed the additional binding of halide ions outside the binding cavity. The authors 

went on to pursue the development of a fluoride specific polyammonium receptor, via 

alteration of the size of the binding cavity. The resulting octaaza-cryptand system 

displayed high fluoride selectivity; X-ray diffraction studies revealed that the fluoride 

anion is bound to six ammonium centres within the cavity. 11
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Since the early reports of the coordination chemistry of polyammonium 

macrocycles by Lehn et al. research interest in this field has been fast evolving and 

today includes a huge variety of different receptors, from acyclic to mono-, bi- and 

polycyclic species. As discussed, protonated amines make use of both hydrogen 

bonding and electrostatic interactions simultaneously, however the development of 

receptors that function only through hydrogen bonding is an equally vast area of 

research interest. It is important when designing an anion receptor based on hydrogen 

bonding interactions, to appreciate the geometry of the anion and to design the 

receptor accordingly. It is crucial that hydrogen bonding sites are suitably orientated, 

with the hydrogen atoms in a convergent manner, and the first example of a purely 

hydrogen bonding based receptor illustrates this principle perfectly. Reported by 

Spergel et al. this receptor features three convergent amide protons directed into the 

cavity (Figure 1.6) . 12

O O

Figure 1.6 Amide-based hydrogen bonding receptor for fluoride.

When the receptor was treated with a source of fluoride, lH and 19F NMR provided 

evidence that the receptor binds fluoride anions, although the studies did not indicate 

whether the three amide hydrogen bond donors hold the fluoride anion within the
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cavity. Although this receptor was treated with fluoride, the trigonal arrangement of 

hydrogen bond donors is particularly complementary to trigonal planar and 

tetrahedral anions, for example phosphate anions, the binding of which is of 

biological relevance. Since this initial report, the development of neutral amide-based 

receptors for anion encapsulation has rapidly expanded and many examples of these 

types of receptors are now known. 13

Another approach to anion binding via hydrogen bonding has been 

established, using not amide protons but the pyrollic protons of a pyrrole-based 

receptor. Early work by Sessler et al in developing pyrrole-based anion receptors 

with built-in chromophores led to the use of these compounds as colorimetric anion 

sensors, 14 making use of both UV/Vis and fluorescence spectroscopies to assay anion 

binding. The application of fluorescence and UV/Vis spectroscopies in monitoring 

anion binding is discussed in detail in Section 1.3. Subsequent research by Camiolo 

and Gale was aimed at modification of the pyrrole framework to incorporate longer 

and bulkier functional groups, to create “super-extended cavities” (Figure 1.7) . 15

OR

M e

RO
NH HN

Me

N H HN
O R

Me
I R = CH2COOEt
II R = CH2CONEt2

RO

Figure 1.7 Fluoride specific calix[4]pyrrole-based receptors I and II.
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These macrocycles have displayed remarkable selectivity for fluoride over other 

anions in solution. Solution binding properties were investigated by !H NMR titration 

experiments in cU-DMSO; it was found that addition of excess Cl", Br", I", H2PO4" and 

HSO4' anions caused no changes in the NMR spectra. On addition of fluoride 

anions however, new resonances were observed in the lH NMR spectra, giving 

evidence of interaction with fluoride. Furthermore, coupling between the NH protons 

of calix[4]pyrrole and the bound fluoride is observed in room temperature 19F NMR 

spectra, with coupling constants of 47 Hz determined for both compounds I and II. 

The bulky functional groups pendant to the calix[4]pyrrole ring resemble the array of 

phenol groups present in the lower-rim of an un-functionalised calixarene in the cone 

conformation. Calix[4]arenes consist of cyclic arrays of phenol groups linked via 

methylene groups, which can adopt four different geometries depending on whether 

one or more or none of the phenol groups is directed downwards. For example p-tert- 

butylcalix[4]arene typically adopts the cone geometry, in which all four phenol OH 

groups are convergent forming a lower-rim capable of anion binding via hydrogen 

bonding interactions. Both the lower and upper rims may be easily substituted to 

incorporate alternative functional groups. The aromatic cavities of these species can 

function as effective cation receptors, however it is the anion-binding properties of 

these compounds that is particularly relevant to this work.
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A system featuring two adjoined calix[4]arene fragments linked via covalent 

amide bonds was reported by Beer et al (Figure 1.8) . 16

L

Figure 1.8 Bis-calix[4]arene receptor for chloride and fluoride inclusion.

Anions are bound via hydrogen bonding interactions with the phenol OH and amide 

protons, the two amide groups encourage binding within the cavity due to their 

positioning, between the two calix[4]arene rings. Anion binding studies revealed that 

the chloride and fluoride anions are bound by the receptor, but that the cavity is too 

small to bind hydrogen sulphate and di-hydrogen phosphate anions. NMR titration 

experiments were performed revealing that the host-guest complex forms in a 

1:1 stoichiometry. Stability constants for each host-guest complex were determined 

from this data, the receptor having nearly an order of magnitude greater selectivity for 

fluoride (1330 M '1) over chloride (172 M '1) anions. By comparison the interaction of
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the receptor with hydrogen sulphate and di-hydrogen phosphate is very much weaker. 

The difference in stability constants is probably attributable to anion size; fluoride has 

an ionic radius of 1.33 A, where chloride has an ionic radius of 1.81 A, hydrogen 

sulphate, for example, has a larger ionic radius of 2.35 A and di-hydrogen phosphate 

larger still. A complete review of electrostatic and hydrogen bonding receptors is 

beyond the scope of this chapter, representative examples of such receptors have been 

discussed. For further information on electrostatic and hydrogen bonding receptors

17see, for example, reviews published by Beer and Gale.

1.2.2 Anion recognition and binding via Lewis acid/base interactions

A well-established alternative route to anion recognition and binding uses 

Lewis acid/base interactions. Although less exploited in research effort, there has 

been growing interest in this approach. Incorporation of a Lewis acidic moiety into a 

potential anion sensor may allow direct recognition by a neutral host. As discussed, 

trigonal three-coordinate boron acts as a widely tunable Lewis acid possessing only 

six electrons in its outer shell and a formally vacant pz-orbital into which an electron 

pair can be donated from an anion/Lewis base. Although boron has found application 

in an extensive range of receptors to date, other Lewis acid systems have been 

reported, making use of alternative Lewis acids such as mercury, silicon, aluminium, 

gallium and tin. Chelation of anions has been a particular focus in research, due to the 

potential for added stability of the resulting host-guest complex. This section aims to 

summarise some of the most significant publications regarding both simple binding 

and chelation of anions via Lewis acid/base interactions.

One of the earliest reports of anion chelation by a Lewis acid-based receptor

151was published by Shriver et al. in 1967. This early report sparked much research
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interest in the chelation of anions via Lewis acids and the role the chelate effect could 

play in bringing increased stability to the host-guest complex. The authors found that 

1,2-6z's(difluoroboryl)ethane was capable of chelating a methoxide anion (Figure 1.9).

•O*

Me

Figure 1.9 A methoxide adduct of 1,2-&zs(difhioroboryl) ethane

In order to encourage chelation it was thought that the Lewis base (anion) must 

possess two lone pairs of electrons on a single atom to be capable of simultaneous 

interaction with two boron centres, and have sufficient basicity so as to interact with 

both boron centres but not be a strong enough base to effect boron -  halogen bond 

cleavage. Hence the choice of oxygen containing bases such as ethers, ketones and 

the methoxide ion; the investigation spanned interaction of this species with each of 

these bases. Ethers and ketones were found not have sufficient basicity to coordinate 

to both boron centres. However the methoxide anion provided the perfect balance and 

was found to interact strongly in a chelating fashion with l,2 -bis(difluoroboryl)ethane 

(Figure 1.9).

The significant research effort of Katz et al. offered in many publications, has 

provided some considerable insight into the field on anion recognition by Lewis 

acid/base interactions. One early report in 1985 details the development of 1,8-bis- 

(dimethylboryl)napthalene framework for the chelation of hydride. By analogy with 

the l ,8 -di(amino)napthalene system, this Lewis acid system is known as the hydride 

sponge (Figure 1.10) . 19
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BMe2 BMe2

Figure 1.10 “Hydride sponge”

Binding was investigated by titration with KEtsBH and monitored by n B NMR. 

Binding of a hydride anion is evident from the observed upfield shift, from the 

hydride-free compound at 8 b = 79 ppm, to the host-guest complex at 8 b = 5 ppm. The 

hydride-bound species was also characterised by X-ray diffraction, which revealed 

the hydride anion to be un-symmetrically situated between the two boron centres. 

Host-guest complexes of this rigid bidentate Lewis acid with fluoride and hydroxide 

anions have also been characterised by NMR spectroscopy. The chelate effect plays a 

significant role in the stability of these compounds, and this was tested by placing

1 ,8 -8 /s-(dimethylboryl)napthalene in competition for a halide anion already bound to 

another non-chelating Lewis acid receptor, dimethyl-1-napthylborane. 1,8 -8 /5 - 

(dimethylboryl)napthalene was found to be capable of abstracting the halide from the 

competing Lewis acid receptor, demonstrating the role of the chelate effect. The 

powerful Lewis acidity displayed by this species is described as being a result of 

steric repulsion between the methyl groups, forcing the boryl groups out of 

conjugation with the naphthalene ring.

In subsequent work Katz went on to provide the first definitive evidence of a 

chloride ion bridging between two trigonal boron centres. It was observed that, whilst 

the hydride sponge was capable of chelating hydride, fluoride and hydroxide anions, 

it was not a powerful enough Lewis acid to chelate chloride anions. This observation
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prompted the design of a host capable of chelating chloride and Katz reported 1,8 -bis- 

(dichloroboryl)napthalene (Figure 1.11) . 20

c i2b  b c i .

Figure 1.11 Chelation of chloride by l ,8 -£/s-(dichloroboryl)napthalene

Chloride binding studies were performed using [PPhJCl and [PPNJC1 in 

dichloromethane, and the nature of the chloride-bridged product was confirmed both 

by X-ray diffraction and n B NMR. More recent research by Katz has led to the 

development of the first rigid di-boron host species for di-basic guests. This synthetic 

study details the synthesis of l ,8 -anthracenediethynylbis(catecholboronate) and its 

role as a host for di-basic guests (Scheme 1.1) 21

Me

B 5-Methylpyrimidine

Scheme 1.1 l ,8 -anthracenediethynylbis(catecholboronate)
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The aim of this research was the design of a host species with a larger cavity to 

support larger guest species, hence the use of the anthracene framework. This very 

rigid framework offers a boron-boron separation of about 5 A. Molecular models of

l ,8 -anthracenediethynylbis(catecholboronate) were made and indicated that with 

neutral guests such as pyrimidine, featuring two basic sp2 hybridised atoms in 1,3 

positions, binding is almost strain free. Katz investigated the interaction of 1,8- 

anthracenediethynylbis(catecholboronate) with 5-methylpyrimidine; binding was 

assayed by lH NMR titration in CD2CI2 by monitoring changes in the chemical shifts 

of the aryl protons. The proton titration of the host treated with 5-methylpyrimidine 

displayed a distinct slope change after 2.5 equivalents of 5-methylpyrimidine were 

added. Two binding constants were determined from the NMR data, the first for the 

1:1 bridging complex was Ki = 130 M'1; further addition of 5-methylpyrimidine 

resulted in the formation of a 2 :1  complex, which had a substantially smaller binding 

constant (K2 = 40 M '1). Comparative studies were carried out with thiazole (one basic 

atom) and 4-methylpyrimidine (one sterically hindered basic atom), both of which 

displayed no bridging interaction with the host from lH NMR titration studies, 

affirming the conclusion that this host was the first rigid Lewis acid-based receptor 

for dibasic guests.

Jacobson and Pizer have carried out theoretical studies concerning anion 

binding by macrobicyclic and macrotricyclic organoboron macrocycles. Molecular 

orbital calculations were undertaken with the intention of clarifying the structures of a 

range of organoboron species with bound hydride, chloride, fluoride and superoxide 

(Figure 1.12) . 22
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Figure 1.12 Potential macrobicyclic and macrotricyclic organoboron anion receptors

These investigations led to the interesting conclusion that where the macrobicyclic

particular cavity size do not solely govern specificity of a certain macrocycle for a 

certain anion. On the basis of calculated standard enthalpies of reaction, the 

computational results indicated that hydride (2.08 A), for example, despite being 

larger than fluoride (1.33 A) was actually capable of fitting into a smaller cavity. For 

example, hydride was bound to a comparable extent to hosts featuring n = 4-6, 

fluoride by hosts with n = 5 and 6 , chloride by hosts with n = 6  and 8  and superoxide 

to hosts with n > 4. In the case of this macrobicycle, anions were found to bridge 

between the two boron centres whereas with the macrotricyclic compound, anions 

were found to bridge between more than two boron centres. The macrotricyclic host 

revealed greater selectivity for hydride and superoxide, both of which favoured hosts 

with n = 2. Fluoride and chloride were found to bind predominantly to hosts with n = 

3. Although a hydride anion bound within a cavity smaller than its own ionic radii is a 

stable species, a hydride anion bound within a larger cavity has been proven a more 

stable species; this observation was thought to be as a result of lessened

compounds are concerned, the ionic radii of the anion and its compatibility to a
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rehybridisation at the boron centre. In sill cases it was concluded that anion 

coordination occurs with a change from sp2 to sp3 hybridisation at boron and that 

charge transfer of electron density from the anion to the Lewis acid centre allows 

anions to fit into cavities that are smaller than their ionic radii.

The use of borylated-metallocene frameworks as the basis for anion receptor 

molecules is an exciting area of research although not as thoroughly investigated as 

some alternative frameworks. Borylation of both the upper and lower 

cyclopentadienyl rings of a metallocene system provides a receptor that could 

potentially be tuned, either by substitution at boron, by the use of a specific 

metallocene that has a precise separation, or a combination of both of these

factors, to provide specificity for a range of anions. A borylated-metallocene based 

receptor for anions was reported by Herberich, Fischer and Wiebelhaus featuring a 

bis(boryl)cobaltocenium ion, which displays unusual variability in its interactions 

with anions (Scheme 1.2) 23

ivr<
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Scheme 1.2 Hydroxide binding by the bis(boryl)cobaltocenium ion

The receptor l,l'-bis(diisopropylboryl)cobaltocene was prepared by reaction between 

CstLB'P^ with CoBr2 .DME in the presence of LiCp. Subsequent oxidation of the 

product with Cu(OH)2 afforded a host-guest complex featuring an hydroxide anion 

bridging between two boron centres, as determined via an X-ray diffraction study and 

NMR spectroscopy (JH and n B). In contrast, structural characterisation of the
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oxidation product with C2CI6 revealed an alternative binding mode, in which one 

chloride anion is bound to one boron centre whilst the remaining boron centre retains 

its trigonal geometry. *H and 13C NMR spectra remain unchanged upon cooling down 

to -80°C, hence it was concluded that rapid chloride exchange between the two boron 

centres was occurring on the NMR timescale.

Boron has been widely exploited as a Lewis acid for the binding of anions. 

Less widely exploited in this application are the alternative Lewis acids such as tin, 

mercury, silicon and aluminium, both in homo- and heteronuclear systems. An 

innovative synthetic study detailing the use of tin macrocycles for encapsulation of 

halide anions was published by Newcombe et al. reporting the size selective binding 

of chloride and fluoride by macrobicyclic hosts containing two Lewis acidic tin 

binding sites. Results suggested that binding occurs within the cavity (Figure 1.13).24

Ill  if = 6  

IV 11 = 8

Figure 1.13 Macrobicyclic organotin receptors for halide encapsulation

In this publication by Newcombe et a l host III (n = 6) was found to have an 

inappropriate cavity size for chloride encapsulation. On closer inspection of the 

crystal structure of the host, and observation of a tin -  tin separation of 5.25 A, it was 

predicted that this species might exhibit size selectivity for the fluoride anion with a 

complementary diameter of 2.6 A. The guest was treated with tetrabutylammonium
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fluoride and the 119Sn NMR spectra indicated a Sn-F interaction. A binding constant 

for this host-guest complex of 1.2 x 104 M_1 was determined, a much stronger 

interaction than that determined for host IV (n = 8 ) of 7 M '1. Crystallographic data for 

host IV revealed that chloride and fluoride are bound within the cavity with differing 

modes of interaction. The X-ray structure of the chloride host-guest complex 

indicated that the chloride anion is bound with greater strength to one tin atom than 

the other, forming one trigonal-bipyramidal tin centre with an Sn-Cl separation of 

2.61 A, whilst weakly bound to the other tin atom, which remains in a distorted 

tetrahedral environment with an Sn-Cl distance of 3.38 A. The fluoride host-guest 

complex was found to exhibit roughly equal Sn-F bond lengths (2 . 1 2  A and 2.28 A) 

in an almost symmetrical structure. In this host-guest complex both tin atoms are in 

trigonal bi-pyramidal environments.

A more recent publication by Newcombe et a l extends the application of tin 

macrobicycles within the field of anion binding to incorporate binding of chloride, 

fluoride and bromide anions.25

i n — ClCl

( C H 2)i

Br i n — Br

Figure 1.14 Tin macrobicycles for chloride and bromide guest species

(« = 6  to n = 1 2 )
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Characterisation of the fluoride and chloride complexes was provided by solid-state 

119Sn NMR spectroscopy and X-ray diffraction. Upfield chemical shifts in the 119Sn 

NMR spectra for the n = 1 through n = 12 macrobicycles on exposure to 

tetrahexylammonium chloride were observed, which are symptomatic of increased 

charge at tin and hence anion coordination. Treatment of the bromide-functionalised 

hosts with tetrahexylammonium bromide was found to affect a similar upfield shift in 

the 119Sn NMR spectra, indicating the existence of a bromide bound host-guest 

species. Job’s method was applied to the NMR data to determine a binding 

stoichiometry of 1:1 in all cases. Temperature dependant dynamic NMR behaviour 

was observed for the bicyclic hosts, simulations of the spectra measured at various 

temperatures provided rate constants for both the binding and dissociation of the 

anionic guest species. Binding constants were found to reflect the complementary fit 

of chloride and bromide into appropriate cavity sizes, for example the binding 

equilibrium constant for the chloride n = 2 host (0.29 M ') is much smaller than the 

binding equilibrium constant for the chloride n = 12 host (6.00 M"1), reflecting the 

increased compatibility between the chloride anion and the binding cavity in the 

larger (n = 1 2 ) host.

A synthetic study detailing the anion binding properties of Lewis acidic 

silicon centres was published by Tamao et al. In a later publication the potential of 

these compounds for fluoride chelation was investigated, detailing the anion binding 

properties along with calculation of binding constants for ortho-ftw-(fluorosilyl) 

benzenes treated with fluoride.27
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Figure 1.15 Oitho-6 zs-(fluorosilyl) benzenes

The binding constant of receptor V was compared with two alternative receptors VI 

and VII to probe the effect of varying the substitution pattern at the silicon centre on 

fluoride binding properties. The binding constants of these host-guest complexes 

were measured via and 19F NMR competition experiments with a 

fluoromonosilane (PhMeSiF2) receptor of known binding constant. The extent of 

interaction between each host and fluoride was estimated by noting which hosts were 

capable of competing successfully for fluoride in the presence of fluoromonosilane. 

Equilibrium constants between each host and PhMeSiF2 were then measured by 

monitoring the chemical shifts of the Si-CH3 protons of PhMeSiF2 . Host VII was 

found to have the weakest binding constant (K = 5.9 x 105 M '1), while host V was 

found to have a binding constant of (K = 5.9 x 107 M '1) and host VI the largest 

binding constant with fluoride (K = 1.1 x 109 M '1). From these results it was 

concluded that the anion binding ability of the bidentate silanes increases with 

increasing fluoride substitution at the silicon centres. In the case of hosts V and VI, 

where the total number of fluorides is the equal, the asymmetric host (VI) is a 

stronger Lewis acid. This report provided evidence at that time of the strongest 

binding constant for a host-guest interaction with fluoride.
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Hawthorne and Zheng have explored the use of mercury as the Lewis acidic 

moiety within macrocycles designed specifically as host molecules for anion

carborane cages with three or more interlinking mercury atoms; examples of these 

“mercuracarborands” are shown in Figure 1.16.

Mercury displays many advantageous features that support its utility in the field of 

anion encapsulation. The linear geometry displayed by some Hg(II) species in cyclic 

structures provides host species with large binding cavities that can accommodate 

large anions. Also Hg(II) species are stable in the presence of both air and water, a 

very beneficial feature for a potential halide receptor. Lastly, it is found that in 

diorganomercury compounds, Hg(II) forms two a  bonds which are essentially linear, 

whilst the vacant p-orbitals at Hg(II) remain perpendicular to the plane of the a-bonds 

thus retaining substantial Lewis acidity. The tetrameric host has proven capable of 

binding chloride anions, the encapsulation of two iodide anions was also observed

complexation.29 These macrocycles featured three or more icosahedral ortho-

Figure 1.16 Mercuracarborands for halide complexation
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with this host. These halide coordination studies were monitored closely by 199Hg 

NMR spectroscopy. Anion encapsulation was confirmed by X-ray diffraction studies, 

from which the bound chloride anion was shown to interact equally with all four 

mercury centres; the two iodide ions located above and below the plane of the 

mercuracarborand ring, were also shown to interact with all four mercury centres. 

Complexation of a molecule of acetonitrile was observed with the trimeric species. 

The electron withdrawing nature of the carborane cages and the Lewis acidity of the 

mercury centres combined with the large binding cavity presents a very versatile host 

for anions.

As previously demonstrated in the work of Hawthorne and Zheng on 

mercuracarborands, the ability of mercury centres to act as electron acceptors is 

enhanced with the use of electron withdrawing backbones. This principle is again 

illustrated in the work of Tschinkl et al. in a publication detailing the preparation of 

1 ,2 - 2>zs(chloromercurio)tetrafluorobenzene and its ability to encapsulate basic 

substances featuring terminal oxo groups. These studies led to isolation of the first

9Qchelate complex between a ketone and a bi-functional Lewis acid (Scheme 1.3).

acetone

F F F F

Scheme 13  Host-guest chemistry of l,2-6/s(chloromercurio)tetrafluorobenzene with

acetone
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Binding studies were performed in acetone due to low solubility in less polar 

solvents; DMSO and DMF were added in increments to the solution of 1,2- 

&/s(chloromercurio)tetrafluorobenzene. Binding was monitored via 199Hg NMR; a 

significant downfield shift was observed, indicating the displacement of formerly 

bound acetone for DMSO and DMF donors. Curves were plotted showing 199Hg 

NMR shift against concentration of DMSO and DMF, both curves were observed to 

rapidly reach a plateau; this behaviour is characteristic of the quantitative formation 

of host -  guest complexes. Curves were fitted on the basis of two hypothetical 

models, one for formation of a 2 :1  host -  guest complex and the other for formation 

of a 1:1 host-guest complex. The latter model was found to provide a more stable 

refinement along with reliable stability constants. Although calculated stability 

constants were found to be fairly low this was thought to be due to acetone competing 

with DMSO and DMF for the binding site, since the acetone-bound adduct was 

obtained as a by-product in crystallisations of the DMSO and DMF adducts from 

acetone solution [K(DMSO) 8.0 M' 1 > K(DMF) 1.8 M '1]. These observations follow 

the relative donor strength associated with each guest species (DMSO > DMF > 

acetone). Single crystal X-ray diffraction served as further confirmation of the 

structures of the acetone and DMF host-guest complexes; in both cases the guest 

species was shown to be bound in a bidentate fashion via the carbonyl oxygen to both 

Lewis acidic mercury centres.

Tsunoda and Gabbai have extended the use of mercury-based Lewis acidic 

receptors to polyfunctional organomercurials, in the preparation of a trimeric 

perfluoro-or/Zzo-phenylene mercury receptor for dimethylsulphide (Figure 1.17).30
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Figure 1.17 Trimeric perfluoro-or/Zzo-phenylene mercury receptor

Characterisation of a host-guest complex displaying unusual hexacoordination of 

dimethylsulphide was reported. X-ray diffraction studies revealed two modes of 

coordination of the dimethylsulphide molecule to the tridentate receptor. Slow 

concentration of a dimethylsulphide solution of the receptor yielded crystals featuring 

four molecules of dimethylsulphide simultaneously bound to the trifunctional Lewis 

acid; two dimethylsulphide molecules were bound as terminal ligands coordinated 

each to a single mercury centre, the remaining two dimethylsulphide molecules were 

bound above and below the plane of the ring, each interacting symmetrically with 

three mercury centres (VIII - Figure 1.18). The receptor was further treated with an 

excess of dimethylsulphide, followed by slow evaporation of solvent, which yielded 

an adduct featuring one dimethylsulphide molecule hexacoordinated to two receptor 

molecules (IX - Figure 1.18).
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Figure 1.18 The alternative binding modes VIII and IX of the trimeric perfluoro- 

or//*o-phenylene mercury receptor with dimethylsulphide

Dimethylsulphide typically acts as a mono or bidentate bridging ligand, thus these 

findings give evidence of an unusually high coordination number for a neutral dialkyl 

sulphide ligand of this type.
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1.3 Physical detection of anions by Lewis acidic receptors

Physical detection of anions is an area of research that has been rapidly 

expanding and there are numerous publications detailing the syntheses of receptors 

capable of displaying one or more physical outputs upon anion complexation. The 

word ‘receptor’ refers to a supramolecular structure capable of binding a guest 

molecule. A receptor is classified as a sensor if it can report the presence of the guest 

species by some physical means. The illustration below depicts the fundamental role 

of a sensor (Figure 1.19)

Reporter

Binding site  
(h ost)

Reporter
response

H ost-guest 
supram olecular 

com plex

Figure 1.19 Illustration of the role of a sensor.

A common method applied to sensor production involves the incorporation of 

both a receptor function and a reporter group within the same molecule. The reporter 

function is chosen according to its specific spectroscopic or electrochemical 

properties, which are altered upon the binding of a guest to the receptor fragment. For 

example a response may be generated by quenching the fluorescence of a fluorescent 

sensor, by inducing a visible colour change or an electronic change detectable by an 

incorporated redox-active fragment via electrochemical methods. Ideally a sensor
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must be specific to a particular guest species to ensure that a false response never 

occurs, i.e. sensors are typically designed to affect specific binding of a certain anion. 

This section aims to summarise some publications detailing the preparation and 

functioning of sensors displaying a range of physical outputs.

1.3.1 Electrochemical detection of anions

Electrochemical methods can provide a significant insight into electron

transfer processes involved in redox reactions. Sensors that display an

electrochemical output can be prepared by attachment of a redox-active moiety to a

receptor. Typically the receptor fragment and the redox active centre are coupled in

order to facilitate electronic communication. Coupling between these two fragments
^  1

can occur via a number of pathways, including electronic communication through 

bonds, direct attachment of the guest to the redox centre, through-space electrostatic 

interaction between the guest and the redox centre or by an induced conformation 

change at the redox centre on guest complexation. In this way, the redox active centre 

can detect anion binding by the receptor and its electronic properties are subsequently 

altered, affecting a change in the electrochemical features of the redox active centre. 

Amongst the vast range of redox-active centres ferrocene is by far the most 

commonly used, having good solubility properties, air/moisture/heat stability and a 

well understood electrochemical response. A commonly used electrochemical 

technique for monitoring the redox reactions of ferrocene is cyclic voltammetry; this 

analytical technique has been applied in many publications detailing ferrocene-based 

anion sensors.

Ferrocene-based anion receptors using various host-guest interactions have 

been reported, for example, utilizing both hydrogen-bonding interactions and Lewis
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acid/base binding motifs. A sensor combining the receptor functionality of 

calix[4]arene with the redox-active centre of ferrocene has been reported by Beer et 

al?2 The anion complexation behaviour of the tetra-ureaferrocenecalix[4]arene 

(Figure 1.20) sensor towards chloride anions was investigated by use of cyclic 

voltammetry, along with NMR spectroscopy.

/ ^ \  ^
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Figure 1.20 Electrochemical tetra-ureaferrocenecalix[4]arene sensor for chloride

Prior to addition of anionic guests, cyclic and square wave voltammetry techniques 

revealed that this receptor displays a single virtually reversible oxidation, implying 

that the four ferrocene fragments are independent of each other and are oxidised at the 

same potential. Sequential addition of anionic guest species resulted in a cathodic 

shift in the oxidation potential of the ferrocene redox centres. A negative shift in 

redox potential can in this case be attributed to the binding of an anionic guest species
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by the NH protons of the urea moiety, which are in close proximity to the ferrocene 

centre. The absence of the reduction wave on addition of anions was concluded to

chloride, the sensor was also treated with benzoate and dihydrogen phosphate anions. 

Addition of dihydrogen phosphate was found to affect a greater cathodic shift in 

oxidation potential than those observed with chloride and benzoate.

A series of hydrogen bonding ferrocene receptors for the electrochemical

These hosts featured ferrocene backbones, substituted with amidopyridine ligands, 

either doubly on one cyclopentadienyl ring, or singly on both cyclopentadienyl rings. 

The hosts were designed to incorporate both hydrogen bond donor and acceptor sites, 

such that they might bind neutral cyclic organic guests featuring complimentary 

hydrogen bond donor and acceptor sites, as found in urea derivatives, one 

combination (host and guest) of the reported series is shown below in Figure 1.21.

possibly be a result of the anion-ferrocenium cation interaction. In addition to

detection of barbiturate and urea neutral guest species was reported by Tucker et al.

O o

Ethyleneurea

Figure 1.21 Sensor and substrate featured in the electrochemical study by Tucker et

al. 33
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Cyclic voltammetry studies were performed on the above host in the presence of > 20 

molar equivalents of ethyleneurea. Addition of the neutral guest species affected a 

cathodic shift in the oxidation potential of the ferrocene fragment, from the guest-free 

species (E° = 0.95 V) to the host-guest complex (E° = 0.89 V), a net cathodic shift of - 

60 mV (referenced against the Fc+/ Fc redox couple). The observed cathodic shift is 

consistent with increased electron density on the receptor due to formation of the 

hydrogen bond between the amide NH of the receptor and the oxygen donor of the 

guest, causing the ferrocene redox centre to be oxidised at a lower potential. This 

report illustrates that cyclic voltammetry can be a powerful analytical tool in 

investigating the electronic effects of guest binding.

More relevant to the work presented in this thesis however, are Lewis 

acid/base host-guest interactions. One pertinent example of an electrochemical sensor 

featuring the Lewis acidic binding site of boron was reported by Shinkai et al.34 The 

ferroceneboronic acid receptor features the necessary components to achieve effective 

anion sensing, i.e. the redox active ferrocene moiety coupled to a Lewis acidic boron 

centre, which is known to have a high affinity for fluoride. The receptor was shown to 

electrochemically detect fluoride over other halides in high concentration in aqueous 

solution. The redox properties of the ferrocene centre are significantly altered in the 

presence of fluoride anions, displaying a cathodic shift of ca. -100 mV in water.

1.3.2 Luminescent and colorimetric detection of anions

Certain compounds undergo a visible colour change on addition of a guest 

species; the design of such compounds is an area that has seen increasing research 

interest, in particular because this detection method requires nothing more than sight, 

eliminating the need for any costly instrumentation and/or transduction platforms.
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Luminescence is another widely exploited physical detection method applied to 

sensors for anions, incorporating fluorescence and phosphorescence. Fluorescent 

techniques are highly sensitive; as such they have been extensively developed for 

physical detection methods in host-guest chemistry, receiving enormous attention 

over recent years. These sensors are based on the principle that certain combinations 

of molecules affect luminescence under certain conditions, typically it is necessary to 

incorporate both a receptor molecule and an organic or inorganic luminophore, that 

are in close proximity to one another. Some commonly used fluorophores include 

anthracene, porphyrins and Ru(bipy)3, and often these will be covalently linked to 

polyammonium, guanidinium or calixpyrrole receptor molecules,35 although some 

examples featuring Lewis acidic receptor molecules are also known. Boron- 

containing 7t-electron systems have attracted significant recent attention because of 

their interesting photophysical properties arising from p^-71* conjugation via the 

vacant p-orbital at the boron centre. One such sensor was reported by Tamao et al 

featuring a tri(9)anthrylborane, in which the binding of fluoride was found to turn-off 

the pa-7c conjugation resulting in a colour change from orange to colourless. A 

sensor based on the dibenzoborole backbone has also been reported by Tamao et al. 

in which the pH-7i*conjugation can be selectively switched-off by exposure to a guest 

species. This effect is brought about by alteration in the delocalisation of the LUMO, 

which changes the band gap, resulting in a hypsochromic shift in the spectral band 

position in the emission and absorption spectra (Figure 1.23).37
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Figure 1.23 Dibenzoborole-based sensor offering ‘on-off control of physical

responses to anions.

It was found that the fluorescence properties of this sensor are highly dependant on 

solvent; the sensor itself has a yellow-orange emission (561 nm) in THF solution. 

However DMSO coordinates to the receptor, causing the receptor emission band to 

disappear and a new intense blue band to grow in at Xmax = 423 nm. Absorption and 

fluorescence spectra were then measured before and after addition the of tetra-n- 

butylammonium fluoride in THF solution. Upon addition of fluoride the absorption 

spectrum revealed a shift of Xmax from 480 to 374 nm, and the fluorescence spectrum 

showed a similar blue-shift of Xmax from 561 to 419 nm. The emission of the fluoride 

host-guest complex (Xmax = 419 nm) is similar to the spectrum observed in DMF 

solution (Xmax = 423 nm). These results illustrate the potential of the dibenzoborole 

backbone in the fluoride anion sensing applications. In later studies Tamao coupled a 

triarylborane chromophore with a porphyrin chromophore forming a conjugate 

system featuring both energy donor and acceptor molecules. When the Lewis acidic 

boron centre binds an anionic guest, the change in hybridisation from sp2 to sp3 

interrupts electronic communication, and the formerly cooperative chromophores 

begin to absorb and emit light independently.38 This concept was tested 

experimentally; fluorescence spectroscopy was used to monitor fluoride binding by
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the triarylborane-porphyrin conjugate (Xmax = 670 nm). Prior to addition of fluoride, 

the sensor showed one emission in the fluorescence spectrum at 670 nm. Upon 

addition of fluoride the emission band at 670 nm (red) can be seen to decrease in 

intensity, coupled with an increase in intensity of two bands at 356 nm (triaiylborane) 

and 692 nm (porphyrin) (blue). A colorimetric response was also observed from the 

purple sensor to the green host-guest complex. However, excitation spectra of the 

sensor treated with fluoride revealed that the absorbance of the triarylborane still 

contributes to the porphyrin emission at 692 nm, suggesting that communication 

between the two functionalities is still possible even when fluoride is bound via the 

vacant p-orbital at boron. This sensor illustrates the application of a combination of 

colorimetric and luminescent outputs in detecting fluoride anions.

In a more recent study Gabbai et a l developed a phosphonium borane-based 

sensor for fluoride. Based on previous studies investigating the use of bidentate 

boranes for the chelation of fluoride, the use of a cationic borane was thought to 

offer enhanced fluoride affinity because of the possibility for electrostatic host-guest 

interactions, coupled with the Lewis acidic binding centre at boron (Figure 1.22) . 40

Figure 1.22 A phosphonium borane sensor for fluoride

In addition to the above-mentioned advantages of this system, there is also the 

potential to monitor the binding process via absorption and emission spectroscopy.
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Exposure to fluoride results in quenching of the absorption band of the borane. The 

emission spectrum of the receptor shows an intense green fluorescence (Xmax = 495 

nm), which can be observed by the naked eye. This fluorescence band is quenched on 

formation of the fluoride host-guest complex, thus this sensor provides a range of 

physical outputs for signalling the presence of fluoride.

One of the most widely investigated luminescent complexes is tris-(2,2'- 

bipyridyl)ruthenium(II), a complex having chemical stability, as well as suitable 

redox and luminescence properties. This moiety has been applied to the preparation 

of a ruthenium-based sensor featuring a quinonehydrazone group, which becomes an 

azophenol on the binding of a fluoride anion leading to spectroscopic changes and a 

significant colour change (Scheme 1.4) . 41 Incorporation of the [Ru(bipy)3]2+ moiety 

presents the possibility for enhanced affinity via electrostatic interactions and allows 

the binding process to be monitored by luminescence spectroscopy.

~H
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Scheme 1.4 Anion binding by Ru-based sensor.

This sensor was found to be very effective, providing not only a very vivid orange to 

blue colour change, but also significant enhancement of fluorescence intensities. A 

test paper for fluoride was prepared by allowing a filter paper to become saturated in
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a solution of the sensor followed by drying, and was found to be fairly sensitive, 

detecting fluoride in aqueous solution at a concentration of 10 mg L"1.

Another hydrogen bonding based colorimetric sensor for fluoride, featuring 

binding sites both for anions and cations was reported by Tucker et al.42 The sensor 

incorporated a urea-linked nitrobenzene moiety, which has a strong absorption band 

in the UV region that has been observed to shift to the visible region upon addition of 

fluoride. This fragment was coupled with a crown-ether binding site for cations. 

Addition of fluoride resulted in a colourless to yellow colorimetric response; closer 

inspection via UV/Vis spectroscopy revealed that fluoride binding causes a shift in 

the absorption maxima of the nitrobenzene moiety from X = 304 and 332 nm to X = 

288 and 356 nm. Subsequent addition of K+ was found to result in a further colour 

change from yellow back to colourless, and NMR studies led to the conclusion that 

the bound K+ must interact in some way with the urea group, with the effect that 

hydrogen bonding to fluoride is weakened.

1.4 Organometallic polymers and oligomers

It was not until the 1950’s that transition metal-containing polymers were 

recognised as a separate class of polymeric compounds, with the free-radical 

polymerisation of vinylferrocene reported by Arimoto and Haven.43 Initial 

preparation of a well characterised transition metal containing polymeric compound 

was later achieved in the 1970’s by Pittman and co-workers.44 Since these early 

discoveries the field of transition-metal-containing polymers has attracted enormous 

research attention, and increasingly important and interesting applications of such 

compounds have been revealed. These include multi-electron catalysis, optical and 

electronic applications, electron storage devices, ceramic materials, surface
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modification of electrodes and sensor intensification. Transition metals may be either 

a  or n bonded, or both, to the carbon framework of the polymer or side-chain and 

examples of all three types are discussed below. The majority of research has 

concentrated on linear polymers, however a number of branched, star and dendritic 

compounds have also been reported. This section presents a summary of the 

developments that have brought the chemistry and applications of organometallic 

polymers to where they are today, including polymers featuring various transition 

metals and linker groups along with the ferrocene-based polymers, both linear and 

non-linear.

1.4.1 Ferrocene-based organometallic polymers and oligomers

Metallocenes have been extensively used in the preparation of organometallic 

polymers, as their capacity to achieve both o and n metal-carbon bonds enhances their 

use in some of the above-mentioned applications. Of all metallocenes, by far the most 

extensively applied to organometallic polymers is ferrocene. Ferrocene containing 

polymers have been divided into two sub-classes; type 1 polymers featuring 

ferrocenyl moieties as pendant substituents to the polymer main-chain (for example 

polyvinylferrocene, Figure 1.23) and type 2 polymers featuring ferrocene as the 

integral part of the polymer backbone (for example poly(ferrocenylene)s Figure 1.24).

Fe

Figure 1.23 A type 1 polymer -  Polyvinylferrocene
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R"1

Figure 1.24 A type 2 polymer - Poly(ferrocenylene)

Type 2 polymers featuring the ferrocene moiety coupled with Lewis acidic 

organoboron centres are especially relevant to the work presented in Chapter Five; 

polymers of this nature are discussed in much more detail in the relevant chapter.45 

Examples of type 2 polymers vastly outnumber those of type 1, since it is this class of 

polymer that has found extensive applications in photo- and electroluminescent 

devices, liquid crystals, sensor amplification etc. Prior to the well characterised 

compounds of Pittman and co-workers,44 poly(ferrocenylsilanes) featuring a main 

chain of alternating ferrocene and organosilane units had been prepared in the late 

1960’s via a polycondensation reaction between dilithioferrocene and 

organodichlorosilanes46 However this polymer was prepared in low molecular 

weight (Mw ca. 6000) and was not well characterised. Following these reports, the 

preparation of poly(l,T-ferrocenylenes) via an organolithium-organohalide coupling 

reaction was reported by Neuse et al.41 However this method also afforded polymer 

of low molecular weight (Mw < 6200). It was not until the discovery of the ring- 

opening polymerisation chemistry of strained [ljferrocenophanes by Manners et a l4* 

that the development of poly-ferrocenylenes began to rapidly expand. The reaction 

was initially tested with a strained cyclic ferrocenylsilane precursor and was found to 

yield high molecular weight organometallic polymers; this method was subsequently
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employed in preparation of phosphine and germane derivatives. Figure 1.25 

illustrates the preparative scheme for a poly(ferrocenylgermane).

, v Me

Fe¥ 3Fe
Me Heat
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Scheme 1.5 Synthetic route to poly(ferrocenylgermane)

The soluble poly(ferrocenylgermane) product was characterised by NMR (!H and 

13C); the molecular weight was estimated via gel permeation chromatography, 

measured against polystyrene standards, from which values of up to 2 0 0 , 0 0 0 0  were 

obtained. In addition, the product was observed to be indefinitely stable to air and 

moisture. Thus this method was proven to be useful for high-molecular-weight 

organometallic polymer production, offering versatility in the facile substitution of 

alternative metal centres. Subsequent work by Manners et al. focussed on the 

analogous ring-opening chemistry of [ljferrocenylsilane, towards developing a 

precursor capable of ring-opening polymerisation under more mild conditions, 

[ljferrocenylsilane was found to undergo ring-opening polymerisation at room 

temperature, while previous analogues required heating for reaction to occur. The 

molecular weight of the product was determined to be ca. 130,000.49 This finding led 

to studies concentrating on attaining precise control of the regiostructure of the 

products of polymerisation reaction; control over molecular weight was gained via 

addition of EtaSiH, which acts as a chain-terminating group.50

Poly(ferrocenylsilene) compounds are thought to display a variety of useful 

properties as potential precursors for ceramics, also displaying redox properties and



Chapter One Introduction 42

novel electronic properties as a result of a-Si -  7t-Fe orbital mixing. An analogous 

hyperbranched polymeric compound, poly(ferrocenylenesilyne), was reported by Sun 

et al.51 The hyperbranched poly(ferrocenylenesilyne) structure (Figure 1.25) was 

prepared via a coupling reaction between lithiated-ferrocene and various R- 

substituted trichlorosilanes, and showed improved solubility and stability along with 

extended electronic conjugation.

Figure 1.25 A hyperbranched organometallic polymer of poly(ferrocenylenesilyne)

The use of these compounds in the formation of ceramics has been investigated; the 

thermolysis behaviour of a range of various R-substituted poly(ferrocenylenesilyne)s 

was investigated using TGA analysis. For example, the methyl-subtituted compound 

was heated revealing, between 400-500 °C, a rapid thermolytic degradation observed 

as a sharp drop in the thermogram indicating that the polymer was ceramized by high



Chapter One Introduction 43

temperature pyrolysis. The methyl-substituted compound was further investigated by 

sintering to reduce the pore size by fast evaporation of volatile fragments, making a 

denser, stronger product.

Earlier examples of hyperbranched oligomeric metallocene aggregates include 

‘tentacle compounds’ featuring a central ferrocene fragment with penta-substituted 

Cp rings bearing dimethylsilylferrocenes linked via 3-carbon-chains to the central 

ferrocene, as reported by Batz et al. in 1996 (Figure 1.26).
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Figure 1.26 Two-dimensional oligonuclear iron complex

Many of the useful applications of organometallic polymers and oligomers 

stem from their ability to achieve electronic communication along a chain. For 

example, a polymer or oligomer featuring an electron rich group linked to a fragment 

bearing a vacant orbital as means of accepting electron density will be capable of 

propagating an electronic signal. A common method of detecting electronic 

communication is cyclic voltammetry, since in a communicating molecule the
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oxidation of one iron centre may have an effect on the oxidation potential of a 

neighbouring iron centre, and consequently more than one oxidation peak will be 

observed in the spectrum. Cyclic voltammetry was carried out on the tentacle 

compound reported by Batz et al. in which only one oxidation wave was observed, 

thereby leading to the conclusion that no electronic communication was occurring 

between the iron centres. Recent work by Vollhardt et al. has focussed on enhancing 

electronic communication by replacing the electronically “isolating” alkyl chain with 

directly attached metallocene ligands.53 This was achieved using a cymantrene core 

penta-substituted at the Cp ring with five ferrocenyl groups (Figure 1.27).
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Figure 1.27 Penta(ferrocenyl)cymatrene

Electrochemical studies on this compound revealed a substantial degree of electronic 

communication, as evidenced by multiple oxidation peaks in the cyclic 

voltammogram. This compound also has the potential for cluster formation under 

photolytic conditions.

Organometallic polymers featuring ferrocene fragments within the main-chain 

are well known, however there are very few example of polymers featuring ferrocene 

acting as a bridging ligand through interaction of the 7t-faces. One such recent
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example reported by Mulvey et a l features alkali-metal hexamethyldisilazide (alkali- 

metal = Li, Na, K, Rb, Cs) linker groups bridged by a facial interaction with the 

ferrocene 7t-system (Figure 1.28).54
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Figure 1.28 A cation-7E-interaction-assembled organometallic polymer

The linear polymer featuring sodium cations was characterised both 

crystallographically and by NMR (!H and 13C), as were the potassium, rubidium and 

caesium analogues. It was also noted that the rubidium and caesium polymers formed 

two-dimensional sheet-like structures by intermolecular agostic interactions with 

neighbouring chains.

1.4.2 Poly(metal acetylide) organometallic polymers

Ferrocene has been extensively used in the preparation of organometallic 

polymers, however a number of organometallic polymers featuring alternative 

transition metals (Pt, Pd, Au, Hg, Ag, W for example) have been reported.55 Of the 

different o-bonding transition metal polymer systems, poly(metal acetylides) have 

dominated the field, being stable materials with interesting electrical and optical 

properties due to their rigid-rod structures. Following the initial syntheses of 

polymeric platinum and palladium acetylides by Hagihara et a l in the 1970’s 56 there
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has been tremendous interest in metal acetylide polymers; systems have been reported 

featuring a range of different metal centres. Polymers containing a-bound conjugated 

alkynes are most common with platinum and palladium metal centres. Poly(metal 

acetylide) systems also feature extended rc-delocalisation along the polymeric chains 

as a result of the significant overlap between the 7t-system of the acetylene linker and 

the metal d-orbitals, as concluded by theoretical calculations.57 An organoplatinum 

polymer featuring an alkynyl-NCN spacer ligand was reported by van Koten et al. 

which was found to polymerise via C=CH***ClPt hydrogen bonding interactions 

(Figure 1.29).58

The NCN ligand was of interest due to its chelating NMe2 group offering enhanced 

stability. The short intermolecular hydrogen bonding contact (2.60 A) was confirmed 

by an X-ray diffraction study on single crystals of the compound. Subsequent 

research by the same group led to the development of a dimeric organoplatinum 

compound, prepared by a coupling reaction between an alternative iodide-substituted 

alkynyl-NCN ligand and the above platinum alkynyl-NCN fragment (Figure 1.30).59

H

NMe2 n

Figure 1.29 Organoplatinum polymer
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Figure 1.30 Novel precursors for mixed-metal organometallic polymers

The resulting dimeric species underwent oxidative addition to a Pd(0) centre yielding 

a mixed-metal complex. This report provides a novel strategy for precursors designed 

for controlled synthesis of rigid-rod metallopolymers.

A subsequent report by Fratoddi et al. detailed an alternative synthesis for 

organometallic square-planar platinum and palladium-containing polymers, featuring 

a 2,6-diethynyl-4-nitroaniline bridging spacer group.60 The 2,6-diethynyl-4- 

nitroaniline spacer group was chosen for its NH2 and NO2 groups and their roles in 

second-order non-linear optical properties, and the two alkynyl groups are especially 

useful for linking palladium and platinum forming polymer chains (Figure 1.31).
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Figure 1.31 Pt(II) and Pd(II) poly-ynes
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These platinum and palladium polymers were prepared by reaction of 2,6-diethynyl- 

4-nitroaniline with czs-[M(PTol3)2(C=C-C6H5)Cl] complexes (where M = Pt or Pd) 

via a dehydrohalogenation reaction. The products were characterised by IR 

(specifically looking for the C=C stretching frequency), and NMR spectroscopy (‘H, 

13C and 31P). Molecular weights of the polymeric products were determined from 

GPC measurements to be 14,600 amu for the Pt polymer (16 repeat units) and 6000 

amu for the Pd polymer (8 repeat units). Evidence that the structure of the polymer 

may not be linear but helical was gained via NOESY experiments, from which 

correlations between NH2 and aromatic phosphine protons in the polymer were 

observed, indicating that these fragments are spatially close.

A more recent report of a rigid-rod organometallic polymer by Leoni et al. 

features a platinum-based cluster fragment alternating with an alkynyl-based linker 

group.61 Cluster-containing conjugated structures have proven useful in the field of

ft)molecular electronics. This report describes preparation of the first cluster- 

containing a-alkynyl polymer (Figure 1.32).

Figure 1.32 Rigid-rod platinum-cluster-containing alkynyl polymer
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The polymeric product was characterised by NMR spectroscopy (!H and 13C), and 

molecular weights of up to ca. 65,000 determined by GPC measurements. UV/Vis 

spectra revealed a red-shift from the dimeric analogue at 449 nm to the polymeric 

compound (476 nm); this is attributed to extended rc-delocalisation along the polymer 

backbone and through the metal centres of the cluster.

1.4.3 Coordination polymers

The third main area of research contributing to the development of 

organometallic polymers is that of coordination polymerisation. The field of 

coordination polymers has rapidly expanded, with very recent efforts aimed at 

combining the dynamic behaviour of coordination polymers with electronic and/or 

optical properties. The thermodynamic driving force behind coordination 

polymerisation is metal-ligand affinity. A range of multidentate pyridine-containing 

ligands (phenanthroline and terpyridine), and their polymeric products formed on 

treatment with various transition metals (Ru, Cu and Ag) were reported by Rehahn et 

al (Figure 1.33).63
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Figure 1.33 A terpyridine coordination polymer
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Later work by Chen and MacDonnell has built on Rehahn’s studies on 

terpyridine and phenanthroline-based coordination polymers, developing optically 

active polymers by copolymerisation of enantiomerically pure Ru complexes 

(Scheme 1.6).64

Scheme 1.6 Co-polymerisation of Ru complexes for the synthesis of optically active

polymers

One monomer was functionalised with dione groups and the other with diamine 

groups, the polycondensation reaction produced a non-linear coiled polymer chain 

that displayed optical activity.

Phosphine donors are commonly used ligands for the synthesis of highly 

stable coordination polymers especially for late transition metals. Ditopic phosphine 

spacers have been used in the construction of rhodium-based polymers as reported by

if
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Ding et al.65 The bridging phosphine ligands were reacted with [Rh(COD)2]+ [BF4]‘ 

and the resulting polymeric product (Figure 1.34) was found to act as a recyclable 

hydrogenation catalyst.
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Figure 1.34 Rhodium-based polymeric catalyst for asymmetric hydrogenation

Another branch of coordination polymerisation involves the use of N- 

heterocyclic carbenes. This is a fairly new area of research despite the tremendous 

interest in NHC-metal complexes that has been witnessed over several decades. 

NHCs display high affinities for various transition metals, although the most stable 

polymers have been those incorporating Pd and Pt metals. One advantage of strongly 

donating monodentate NHC ligands is that the metal centre may remain 

coordinatively unsaturated, allowing the complexation of other ligands. This presents 

the possibility for tuning polymer properties by inclusion of functional groups, such 

that a particular application may be targeted.66 One such NHC polymerisation 

reported by Bielawski and co-workers67 involved the addition of PdCl2 to an 

equilibrium mixture of the free carbene and the poly(enetetraamine)s, a product of 

carbene dimerisation (Scheme 1.7).
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Scheme 1.7 Coordination polymerisation between an NHC and PdCh

The resulting palladium-containing polymers formed with mixtures of cis and trans 

isomers about the metal centre, and were found to be highly air and moisture stable, 

with molecular weights of up to 104 Da determined by GPC measurements (relative to 

polystyrene standards).

The field of transition metal-containing polymers has received tremendous 

attention over the past five decades resulting in great development of these 

compounds. Novel polymerisation methods reported have included the use of both 

metal-containing monomers and innovative metal-complexing ligands involved in the 

polymerisation step. Advances in the properties of the organometallic polymers 

obtained have also been vast. The effects of 7i-conjugation have been closely 

examined in the development of polymers displaying novel electronic properties, 

such that potential applications in molecular wires, photoelectronics, sensory devices 

and electroluminescent devices have been realised.
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1.4.4 Organometallic polymers as fluoride specific sensors

A key aim of the work presented in this thesis is the development of fluoride 

specific sensors. The field of chemical sensing has recently seen significant advances 

with novel polymeric, glass and nanostructured sensor materials being developed that 

display superior sensing properties. As discussed, organometallic polymer-based 

sensor materials offer amplification of the sensor signal. For example, polymeric 

sensory materials may display enhanced luminescence, electrochemical or visual 

responses to smaller aliquots of guest species. Enhanced receptor sensitivity can be 

critical, in particular allowing very toxic and fast-acting analytes, (e.g. chemical 

warfare agents), to be detected within a useable timeframe and dose limit.

A a-conjugated organoboron polymer (Figure 1.35) was reported in 2002 by 

Miyata and Chujo that was found to bind fluoride anions specifically with an 

accompanying optical response.69

f  \

Figure 1.35 Fluoride specific conjugated organoboron polymer

The binding of a fluoride anion by the Lewis acidic boron centre causes a change in 

hybridisation of the boron atom from sp2 to sp3, which interrupts the conjugation 

along the polymer chain, thereby quenching the emission of the polymer. In addition, 

fluoride binding was found to cause a significant blue shift in the absorption
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spectrum. However, this particular polymeric sensor was not found to enhance the 

emission or absorption spectra significantly, as even 0.1 equiv. of fluoride were not 

found to be sufficient to produce a significant physical response. Later work by Fujiki 

et a l focussed on the fluoride binding ability of Lewis acidic silicon-based 

organometallic polymers, including a a-conjugated poly(3,3,3- 

trifluoropropylmethylsilane) compound (Figure 1.36) with a very high (nanomolar) 

sensitivity range.70
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Figure 1.36 A a-conjugated poly(3,3,3-trifluoropropylmethylsilane) sensor for

fluoride

The sensor was found to be specific for fluoride over other halides in THF solution; 

this specificity was thought to be a result of the underlying affinity of Lewis acidic 

silicon centres for fluoride anions, and the electron-withdrawing CF3 groups in the 

side-chains facilitating fluoride attack on the silicon centres in the main chain. The 

poly(silane) was found to be a highly emissive material with a high quantum yield. 

Addition of fluoride to the poly(silane) was found to result in very significant 

photoluminescence quenching. To determine the sensitivity of the sensor towards 

fluoride the photoluminescence intensity was measured as a function of fluoride
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concentration (as the tetra-n-butylammonium salt). From these studies it was 

determined that the poly(silane) was capable of displaying a significant physical 

response to parts per billion concentrations of fluoride in THF. The enhanced 

response to fluoride is thought to be a result of multiple anion-binding sites, if each 

silicon atom binds a fluoride anion with a specific binding constant, then the binding 

constant multiplied by the degree of polymerisation (Mw = 1.13 x 105, PDI = 3.6) 

results in a remarkably high overall binding constant.

1.5 Aims of Research

The research objectives described in this thesis can be divided into three main 

areas as follows:

(i) Following the initial preparation of mono- and 6/s-boronate esters based on 

a ferrocene framework and some very interesting results concerning the anion binding

n lproperties displayed by such compounds, it was decided to extend these systems to 

incorporate tris- and tetrakis- boronate esters using analogous direct borylation 

chemistry,72 as well as extending the range of available mowo-boronate esters to cover 

alternative derivatization at boron. The ferrocene backbone offers several advantages: 

firstly synthetic ease of borylation, secondly ready spectroscopic and electrochemical 

investigation, and thirdly the potential for further derivatization at the boron centre to 

allow tuning of the Lewis acidity at boron.

(ii) Considering recent advances in the field of colorimetric recognition of 

anionic species, it was decided to examine the potential of the above-mentioned 

multi-functional ferrocene-based boryl compounds to achieve specific and multiple 

fluoride binding. With the particular aim of improving the prototype bi-functional

71Lewis acid system to proffer enhanced kinetics and sensitivity of response, a better
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knowledge of fundamental thermodynamic and kinetic factors behind the oxidation- 

based colorimetric response to fluoride is sought. A greater knowledge and 

understanding of such factors should allow specific sensor properties to be tuned via 

simple chemical modification. To this end, the effect of the number and nature of 

boronic ester groups and additional ligands on the efficiency and rate of colorimetric 

response will be systematically investigated. Thermodynamic aspects will be assayed 

by cyclic voltammetry and multi-nuclear NMR spectroscopy whilst the kinetics of 

response may be assessed by time resolved UV/Vis spectroscopy.

(iii) An extension of classical cation binding by macrocyclic Lewis basic 

frameworks to encompass macrocyclic Lewis acidic systems for anion binding, which 

may prove useful synthetic targets in the application of fluoride chelation. Likewise 

the potential applications of solid-state sensor materials have highlighted 

organometallic polymers as an exciting class of functional compounds. The 

development of molecular wires, requires that electronic communication along a 

polymer chain is possible, this could be achieved in this case by using the vacant p- 

orbital of boron centres; incorporation of redox-active fragments such as ferrocene 

provides a convenient means of monitoring electronic communication. Investigation 

into the factors controlling assembly of boronic ester units into poly-, oligomeric or 

macrocyclic products is therefore another research objective.
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Chapter Two 

Experimental Techniques

2.1 Manipulation of air-sensitive materials

Although air stability is a major stipulation of the sensor compounds 

described in this thesis it has been necessary to employ specific inert and high 

vacuum techniques as many of the precursors to such compounds are air- and 

moisture-sensitive and a brief introduction to the techniques involved in handling 

such compounds is presented below.

2.1.1 Inert atmosphere techniques

The manipulation of air- and-moisture sensitive compounds under an inert 

atmosphere is a well established technique and common choices of inert gases are 

argon and nitrogen. Two methods of employing such inert atmosphere techniques 

have been used in this project: (i) Schlenk line techniques, in which modified 

glassware is used for the containment of air/moisture sensitive compounds allowing 

bench-top manipulation of such compounds, and (ii) the use of a glove box, a sealed 

container accessible by rubber gloves, that is designed to allow the storage and 

manipulation of objects under an inert atmosphere.

The Schlenk line technique allows the safe and successful manipulation of 

large or small quantities of air/moisture sensitive chemicals with minimal risk of 

decomposition. The set-up of the Schlenk line which has been used for all the 

air/moisture sensitive research reported in this thesis is illustrated in Figure 2.1.
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Figure 2.1 A typical Schlenk line.

The Schlenk line consists of a dual manifold with several ports. One manifold 

is connected to a source of purified inert gas (typically argon) while the other is 

connected to a high vacuum pump, evacuation was achieved by the use of an oil- 

sealed rotary pump. The inert gas line is vented through an oil or mercury bubbler 

depending on the pressure required while solvent vapours and gaseous reaction 

products are prevented from contaminating the pump through the use of a liquid 

nitrogen trap. Special three-way stopcocks allow for vacuum or inert gas to be 

selected without the need for placing the sample on a separate line. The ground glass 

joints and three-way stopcocks were lubricated with ‘Dow-Coming High Vacuum’ 

grease which provides a tight seal to prevent the leaking of air under high vacuum. 

Attachment of a Pirani pressure gauge to the vacuum manifold allowed the pressure 

of the vacuum to be monitored (typically 10' Torr). Production of an inert 

atmosphere within Schlenk glassware requires the apparatus to undergo a ‘pump and 

purge’ cycle in which glassware is evacuated then filled with inert gas: this cycle is 

repeated at least three times to achieve an atmosphere which is suitably rid of
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atmospheric gases and moisture. For very sensitive compounds the internal glass 

surfaces were dried by ‘flaming-out’ with a Bunsen burner under high vacuum.

2.1.2 High vacuum techniques

Processes such as vacuum sublimation and removal of trace solvent from 

samples required a higher vacuum than the basic rotary pump on a Schlenk line could 

provide. These procedures were therefore carried out using a high vacuum line. 

Constructed from a glass manifold with Young’s greaseless stopcocks, evacuation 

was achieved by a combination of mercury diffusion and rotary pumps, enabling 

pressures of ca. 10"4 Torr to be reached; a Pirani gauge fitted to the vacuum manifold 

allowed the pressure of the system to be monitored. Solvent vapours and trace 

gaseous products were prevented from contaminating the pump through incorporation 

of a liquid nitrogen trap.

2.2 Physical measurements

2.2.1 NMR Spectroscopy

NMR spectra were measured on a Bruker AM-400 or Jeol Eclipse 300 Plus 

FT-NMR spectrometer. Residual solvent signals were used for reference with *H and 

13C NMR, whilst a solution of [”Bu4N][B3Hg] in CDCI3 was used as an external 

reference for n B NMR and CFCI3 was used as an external reference for 19F NMR.

2.2.2 Mass spectrometry

Mass spectra were measured by the EPSRC National Mass Spectrometry 

Service Centre, University of Wales Swansea and by the departmental services 

offered by the Cardiff University and the University of Oxford.
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Perfluorotributylamine (El) and polyethylenimine (ES) were used as the standards for 

high-resolution mass spectra.

2.2.3 Infrared spectroscopy

Infrared spectra were measured by (i) pressing each compound into a KBr 

disc using a ten-fold excess of dried KBr, (ii) as a solution contained within a solution 

infrared cell or (iii) as a nujol mull using sodium chloride plates. Where compounds 

were air-sensitive, KBr discs were prepared in the glove box, in which case the KBr 

was dried by heating under high vacuum before use. Spectra were recorded on a 

Perkin-Elmer 1600 Series FTIR spectrometer or a Perkin-Elmer 1000 Paragon FTIR 

spectrometer.

2.2.4 X-ray crystallography

Data collection was carried out using an Enraf Nonius Kappa CCD 

diffractometer at Cardiff University or on a similar instrument at the EPSRC National 

X-ray Crystallography Service Centre, University of Southampton. Structure solution 

and refinement were carried out by Dr. Liling Ooi (Cardiff University) and Dr. S J 

Coles (Southampton University).

2.2.5 UV/Vis spectroscopy

UV spectra were measured on a Perkin-Elmer Lambda 20 UV/Vis 

spectrometer using quartz cells.
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2.2.6 Electrochemistry (Cyclic voltammetry)

Electrochemical measurements were performed using dried, distilled 

dichloromethane or acetonitrile as the solvent and 0.1M tetrabutylammonium 

hexafluorophosphate as the supporting electrolyte on an Autolab PGSTAT 12 

Potentiometer with a Ag/AgNC>3 reference electrode (BAS Non-aqueous Reference 

Electrode Kit). Ferrocene (ethylferrocene where appropriate) was used as an internal 

standard.

2.2.7 Elemental analysis

Elemental analyses were performed by Warwick Analytical Services, 

University of Warwick, and by MED AC Analytical Services.

2.3 Preparation and purification of solvents and reagents

Several compounds prepared during the course of this research were only 

accessible via certain commercially unavailable precursors. Such starting materials 

have been prepared from readily available reagents as described in the following 

tables. Some of the commercially available reagents were purchased and used as 

supplied without further purification, however many starting materials and solvents 

required purification prior to use. The sources and necessary methods of purification 

for the various compounds used are found in Table 2.1.
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Table 2.1 Chemical suppliers and purification methods.

Compound Source Quoted

purity

Method

Reagents

Ferrocene Alfa Aesar 99% Used as supplied

7rdm-Stilbene Lancaster 97% Used as supplied

Methane sulphonamide Avocado 98+ % Used as supplied

(DHQD)2PHAL Aldrich 95+ % Used as supplied

Potassium ferricyanide Aldrich 99% Used as supplied

Potassium carbonate Aldrich 99% Used as supplied

Potassium osmate (VI) 

dihydrate (K2OSO4 .2 H2O)

Aldrich Unknown Used as supplied

Sodium sulphite B.D.H 96% Used as supplied

Sulphuric acid Fisher 98% Used as supplied

Cone. Hydrochloric acid (37 

%)

Fisher Unknown Used as supplied

Magnesium sulphate Fisher 99% Used as supplied

Triethylamine Alfa Aesar 99% Dried over sodium wire

Boron tribromide Aldrich 99+ % Used as supplied

Boron trifluoride etherate Aldrich ‘purified’ Used as supplied

"BuLi (1.6 M in hexanes) Acros

Organics

Unknown Used as supplied

T etra-H-butylammonium 

fluoride hydrate

Aldrich 98% Used as supplied
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Potassium fluoride Aldrich 99.5 % Used as supplied

18-Crown-6 Aldrich 99% Used as supplied

Ethylferrocene Aldrich 98% Used as supplied

Tetramethylethylene diamine Aldrich 99% Dried over sodium wire

Tri-n-butylborate Alfa Aesar 98% Used as supplied

N-methylmorpholine-N-

oxide

Aldrich Unknown Used as supplied

Cyclooctadiene Alfa Aesar 99% Used as supplied

Hexamethylenetetramine Aldrich 99% Used as supplied

Methyl iodide Avocado 99% Used as supplied

Silver (I) triflate Aldrich 99% Used as supplied

Silver (I) tetrafluoroborate Aldrich 99% Used as supplied

Ferroceneboronic acid Aldrich 99% Used as supplied

1 ,2 -dibromoferrocene I. R. Butler Unknown Used as supplied

Potassium hydroxide Fisher 85+ % Used as supplied

Dihydroxy-para-quinone Aldrich 98% Used as supplied

Chlorotrimethylsilane Aldrich 99+ % Used as supplied

T riethoxyborane Aldrich 99% Used as supplied

Granular tin Aldrich 99+ % Used as supplied

Silver (I) Fluoride Aldrich 99% Used as supplied

Solvents

Toluene Fisher 99+ % Heated under reflux over 

sodium followed by 

distillation

Hexanes Fisher 99+ % Heated under reflux over 

potassium followed by 

distillation
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Dichloromethane Fisher 99+ % Heated under reflux over 

CaH2 followed by distillation

THF Fisher 99+ % Heated under reflux over 

sodium followed by 

distillation

Acetonitrile Fisher 99+ % Heated under reflux over 

CaH2 followed by distillation

Diethyl ether Fisher 99+ % Heated under reflux over 

sodium followed by 

distillation

2-Methyl-2-propanol Aldrich 99.5 % Used as supplied

Ethanol Fisher 99+ % Used as supplied

Deuterated Solvents

Benzene-^ Goss 99.6 atom 

%

Stored under argon over 

potassium mirror

Chloroform-*/ Aldrich 99.8 atom

%

Stored under argon over 

flamed-out molecular sieves

Dichloromethane-*/2 Goss 99.8 atom 

%

Stored under argon over 

flamed-out molecular sieves

d m s o -*/6 Avocado 99.5 atom 

%

Used as supplied

Deuterium Oxide Goss 99.9 atom

%

Used as supplied

2.3.1 Preparation of precursors

Preparation o f Dibromobory ferrocene, FcBBr2

Dibromoborylferrocene was prepared by minor amendment of the method published 

by Ruf, Renk and Siebert. 1 Boron tribromide (5 ml, 52.6 mmol) was added slowly to 

a solution of ferrocene (9.84 g, 52.6 mmol) in toluene (80 ml) and the resulting
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mixture was stirred at 45 °C for 3 h. After cooling to room temperature and removal 

of solvent in vacuo, the solid product was extracted into hexanes (3 x 40 ml), 

combining the washings each time by cannula filtration. Concentration and cooling to 

-30 °C produced dark red crystals of FcBBr2 in 51 % yield. NMR spectra (!H and 

n B) were in agreement with those reported previously. 1

Preparation o f 1,1 ’-bis-(dibromoboryl)ferrocene, fc[BBr2]  2

1 ,1  ’-5 /5 -(dibromoboryl)ferrocene was prepared according to the procedure reported 

by Appel, Noth and Schmidt. Boron tribromide (10.2 ml, 0.108 mmol) was syringed 

into a slurry of ferrocene (10 g, 53.8 mmol) in dry degassed hexanes (120 ml) and the 

mixture was heated under reflux for 5 h. Insoluble products were removed by cannula 

filtration from the hot solution affording a dark red solution. Subsequent 

concentration and cooling to -30 °C yielded a dark red crystalline solid, isolated in 62 

% yield. Characterising data was in the form of and n B NMR spectra, which were 

in accordance with literature reports.2

Preparation o f  1,1 ’3,3’-tetrakis-dibromoborylferrocene, f c ’[BBr2 ]4  

l ,r ,3 ,3 ’-te/ra£zs-(dibromoboryl)ferrocene was prepared according to a procedure 

reported by Noth et al.2 Boron tribromide (10.2 ml, 108 mmol) was added via syringe 

to solid pre-dried ferrocene (2 g, 10.8 mmol) in a jacketed Schlenk equipped with a 

stirrer bar. The resulting dark red mixture was heated at reflux (100 °C) with stirring 

for 36 h. Insoluble products were removed by cannula filtration and washed with 

portions of toluene (3 x 20 ml). The filtrates were combined and volatiles were 

removed in vacuo to yield a dark red solid (6.09 g, 65 %). The product was
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characterised by *H and n B NMR spectra which were in agreement with those 

reported by Noth et al.

Preparation o f  1 ’,3, 3 ’-tris-dibromoboryl-1-ethylferrocene,fc'[BBr2] 3Et

1,1 ’ 3 ,-/m-(dibromoboryl)-3 ’ -ethylferrocene was prepared according to a procedure 

reported in the thesis of Dorfler.3 Boron tribromide (6.19 ml, 65 mmol) was added 

gradually via cannula to a stirred solution of ethylferrocene (2.39 ml, 14 mmol) in dry 

degassed hexanes (150 ml). The resulting dark orange solution was heated to reflux 

for 24 h. Insoluble products were removed by cannula filtration and the remaining 

deep red filtrate was cooled to -78 °C. A red powder precipitated from solution, 

which was isolated by cannula filtration at -78 °C in a yield of 4.18 g, 41 %. 

Characterising data was in the form of !H and n B NMR spectra, which were in 

accordance with that reported by Dorfler.3

Preparation o f  1,1 - ferrocene-bis-boronic acid, fc[B(OH)2 ]2

Ferrocene-Zus-boronic acid was prepared according to a procedure reported by Knapp 

and Rehahn.4 To a stirred solution of ferrocene (10 g, 54 mmol) in diethyl ether (200 

ml) at room temperature was added a mixture of TMEDA (18.1 ml, 120 mmol), n- 

butyllithium (nBuLi) (1.6 M in hexane, 75 ml, 120 mmol) and diethyl ether (100 ml). 

The reaction mixture was stirred for 6  h at room temperature then added dropwise to 

a stirred and cooled (-78 °C) solution of tributylborate (35 ml, 130 mmol) in diethyl 

ether (200 ml). The mixture was stirred at -78 °C for 1 h, then allowed to warm to 

room temperature and stirred for a further 12 h. After hydrolysis with 10 % aqueous 

potassium hydroxide (150 ml), the organic phase was extracted with aqueous 

potassium hydroxide (4 x 100 ml). The combined aqueous layers were cooled in an
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ice-bath and acidified with dilute sulphuric acid (10 %). The resulting precipitate was 

isolated by filtration, washed with water (500 ml) and dried under vacuum. The crude 

material was purified by successive chloroform washings to remove ferroceneboronic 

acid yielding pure ferrocene-6 z's-boronic acid (2.9 g, 21 %). The product was 

characterised by *H, n B and 13C NMR spectra which were in agreement with those 

reported by Knapp et a l .4

Preparation o f  (S,S)-stilbenediol, (1,2-diphenyl-1,2-ethanediol)

The synthesis of (S,S)-stilbenediol was carried out following the method of Sharpless 

et al.5 An aqueous solution of potassium ferricyanide (32.3 g, 98 mmol) and 

potassium carbonate (13.5 g, 33 mmol) was added to a solution of trans-stilbene ( 6  g, 

33 mmol), methane sulphonamide (3.1 g, 33 mmol) and (DHQD^PHAL [(S,S)- 

enantiomer] (255 mg, 0.33 mmol) in tert-butanol (300 ml). The bi-phasic reaction 

mixture was stirred very vigorously. Potassium osmate(VI) dihydrate (0.049 g, 0.13 

mmol) was added and the reaction mixture was stirred for 48 h. To the bright yellow 

reaction mixture was then added sodium sulphite (4.2 g, 33 mmol) followed by ethyl 

acetate (180 ml). The organic layer was washed with dilute sulphuric acid (20 ml of a 

1 M solution), followed by a solution of sodium hydrogen carbonate (30 ml of a 1 M 

solution in water) and finally water (3 x 15 ml). Subsequent drying of the organic 

phase over magnesium sulphate, filtration and removal of solvent yielded a white 

crystalline solid which was re-crystallised from hot toluene with a yield of 4.2 g, 60

•  1 1 'X%. Characterising data i.e. H and C NMR spectra were in agreement with those 

reported by Sharpless et a l5
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Preparation o f  l-(2-napthyl)-l,2-ethanediol

The method of Sharpless et al.5 was employed in the preparation of l-(2-napthyl)-l,2- 

ethanediol. An aqueous solution of potassium ferricyanide (32 g, 100 mmol) and 

potassium carbonate (13.4 g, 100 mmol) in water (160 ml) was added to a solution of 

2-vinylnapthalene (5 g, 32.4 mmol) and (DHQD^PHAL [(S,S) enantiomer] (253 mg, 

0.33 mmol) in tert-butanol (160 ml). The biphasic reaction mixture was stirred 

vigorously. Potassium osmate (VI) dihydrate (0.047 g, 0.13 mmol) was then added to 

the stirred reaction mixture followed by vigorous stirring for 48 h. To the bright 

yellow reaction mixture was then added sodium sulphite (4.2 g, 33 mmol) and the 

now beige solution was diluted with ethyl acetate (180 ml). The organic layer was 

then washed with dilute sulphuric acid (20 ml of a 1 M solution), followed by sodium 

hydrogen carbonate solution (30 ml of a 1 M solution in water) and finally water (50 

ml). Subsequent drying of the organic phase over magnesium sulphate, filtration and 

removal of solvent on a rotary evaporator yielded a white crystalline solid which was 

recrystallised from hot toluene in 65 % yield. Characterising data was in the form of
i I 1!  r
H and C NMR spectra were in agreement with that reported by Sharpless et al. 

Preparation o f  (lR,2S,5R,6S)-cyclooctane-l,2,5,6-tetraol

(lR,2S,5R,6S)-Cyclooctane-l,2,5,6-tetraol was synthesised following a procedure 

reported by Sharpless et al.6 To a solution of cyclooctadiene (2.83 ml, 23 mmol) in 

acetone (60 ml) was added N-methylmorpholine-N-oxide (5 g, 42 mmol) in water (10 

ml). Potassium osmate (VI) dihydrate (0.123 g, 0.33 mmol) was added to the reaction 

mixture, the reaction vessel was sealed and the contents were stirred for 48 h. A white 

precipitate formed after 24 h stirring, which was isolated by filtration and 

recrystallised from 2:1 methanolracetone in a yield of 1.58 g, 39 %. Characterising
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data was in the form of !H and 13C NMR spectra which were in agreement with that 

reported by Sharpless et. al.6

Preparation o f 1,2-ferrocene-bis-boronic acid

The synthesis of 1,2-ferrocene-Zus-boronic acid was achieved using 1,2- 

dibromoferrocene as the starting material.7 1,2-Dibromoferrocene (0.380 g, 11 mmol) 

was dried in vacuo and dissolved in dry diethyl ether (35 ml). The resulting solution 

was cooled to -65°C and t-BuLi (1.46 ml of a 1.7 M solution in pentanes) added 

dropwise. The reaction mixture was warmed to -40°C and stirred for 4 h. The 

resulting yellow solution was then cooled to -60 °C and triethylborate (1 ml, 5.9 

mmol) in diethyl ether (20 ml) added dropwise. The resulting mixture was stirred at -  

60 °C for 1 h, then warmed to room temperature and stirred for a further 12 h. After 

extraction with degassed, 10 % aqueous KOH solution (3 x 20 ml at 0 °C), the 

combined aqueous layer was neutralised with 1 0  % H2SO4 (neutralisation determined 

using universal indicator paper) and a white precipitate isolated. The orange aqueous 

layer was filtered and back-extracted into diethyl ether; volatiles removed in vacuo to 

yield an orange powdery solid (0.136 g, 45 %). Characterising data were in
o

accordance with those provided by I. R. Butler.
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Preparation o f MeHMTAF, Methylhexamethylenetetramine fluoride dihydrate

Methylhexamethylenetetramine fluoride dihydrate was prepared according to the 

procedure reported by Clark and Nightingale.9 Hexamethylenetetramine (5 g, 36 

mmol) was placed in a round-bottomed flask and dissolved in chloroform (70 ml). 

The flask was fitted with a reflux condenser then cooled in an ice bath before methyl 

iodide (6.7 ml, 107 mmol) was added. Methylhexamethylenetetramine iodide rapidly 

formed as a white precipitate. The reaction mixture was stirred overnight, the solution 

filtered and the resulting solid washed with chloroform and diethyl ether. The 

resulting white powdery solid was recrystallised from acetonitrile/methanol to yield 

methylhexamethylenetetramine iodide as white needle-like crystals. The white solid 

was then dissolved in distilled water (10 ml) and silver fluoride (2.74 g, 21.6 mmol) 

also as a solution in distilled water ( 2 0  ml) added to the 

methylhexamethylenetetramine iodide solution. The resulting yellow silver iodide 

precipitate was removed by filtration and water removed from the filtrate to yield a 

viscous oil which on cooling formed a white solid. After diying in vacuo 

methylhexamethylenetetramine fluoride dehydrate was isolated as a white free- 

flowing powder (8.05 g, 80.3 %). Characterising data was in the form of 1H and 13C 

NMR spectra which were in agreement with those reported by Clark et al.9
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Preparation o f 1,2,4,5-tetrahydroxybenzene

1,2,4,5 - Tetrahydroxybenzene was synthesised in quantitative yield according to the 

method of Hegedus and co-workers. 10 To a suspension of dihydroxy-para-quinone 

(10 g, 0.07 mol) in conc. HC1 (200 ml) was added slowly granular tin (10 g), and the 

mixture heated at reflux for 2 h. Filtration whilst hot and subsequent cooling to 0 °C 

yielded off-white crystals, which were recrystallised from hot THF to form the pure 

compound as white crystals. IR and lH NMR spectra were in accordance with those 

quoted by Hegedus et. al. 10

Preparation o f  1,2,4,5-(Me$SiO)4C(>H2

The synthesis of the trimethylsilyl derivative of tetrahydroxybenzene was carried by

minor modification of the method reported by Aldridge and co-workers. 11 To a

suspension of tetrahydroxybenzene (5 g, 35.2 mmol) in toluene (40 ml) was added via

syringe triethylamine (19.6 ml, 0.14 mol) and chlorotrimethylsilane (17.9 ml, 0.14

mol). After stirring at room temperature, the reaction mixture was filtered via

cannula, the white [Et3NH]Cl precipitate washed with toluene (2 x 15 ml) and the

combined washings reduced to dryness in vacuo. The resulting solid was extracted

into hexanes, filtered and concentrated before recrystallisation at -30 °C.

1 1Characterising data in form of H and C NMR spectra were in agreement with those 

previously reported by Aldridge et. al.11

Preparation o f  1,2,3,4,5-pentamethylferrocene

To a slurry of FeCl2(THF)i.5 (3.73 g, 15.8 mmol) in THF (35 ml) was added TMEDA 

(14.4 ml, 15.8 mmol). The resulting slurry was cooled to -30 °C and a slurry of 

lithium-l,2,3,4,5-pentamethylcyclopentadienide (2.256 g, 15.8 mmol) in THF (50 ml)
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was added via cannula whilst stirring. The solution was stirred at -30 °C for 48 h, 

after which a solution of lithium cyclopentadienide (1.14 g, 15.8 mmol) in THF (30 

ml) was added via cannula at -30 °C whilst stirring. The resulting solution was 

warmed to room temperature and stirred for 24 h. Volatiles were removed in vacuo 

and the dark yellow residue was dried under high vacuum. Recrystallisation from 

hexanes at -30 °C yielded a yellow crystalline solid. Characterising data in the form 

of and 13C NMR spectra were in agreement with the expected product.

Preparation o f  1,2,3,4,5-pentamethyl-r-dibromoborylferrocene 

To a solution of 1,2,3,4,5-pentamethylferrocene (1.07 g, 4.2 mmol) in toluene (50 ml) 

was added neat boron tribromide (0.4 ml, 4.2 mmol) via syringe. The dark red 

mixture was heated to 45 °C for 1.5 h with stirring. Volatiles were removed in vacuo 

and the red residue was dried under high vacuum for 3 h. The residue was washed 

with hexanes (2 x 40 ml), concentrated washings were cooled to -30 °C yielding a 

dark red powder which was isolated by filtration. Characterising data in the form of 

!H and 13C NMR spectra were in agreement with those reported by M. Wagner. 12

Preparation o f  1,2,3,4,5-pentamethyl-l' 3 '-bis-dibromoborylferrocene 

To a solution of 1,2,3,4,5-pentamethylferrocene (1.03 g, 4.0 mmol) in hexanes (50 

ml) was added neat boron tribromide (1.9 ml, 20 mmol) via syringe. The dark red 

mixture was heated at reflux for 20 h with stirring. The reaction mixture was filtered, 

concentrated, and cooled to -30 °C to yield a dark red crystalline solid which was 

isolated by filtration. Characterising data in the form of *H and 13C NMR spectra 

were in agreement with those reported by M. Wagner. 12
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Chapter Three 

The Synthesis and Characterisation of Mono- Tris- and 

Tetrafunctional Boron-Containing Lewis Acids

3.1 Introduction

The preparation of metallocene systems featuring boron-substituted 

cyclopentadienyl ligands has attracted much research interest over recent years and 

such systems have been reported for most elements of the first transition series. These 

compounds find extensive application in the fields of anion sensing and molecular 

recognition, 1 in olefin polymerisation catalysis (primarily with group 4 systems), 2,3 

and as precursors to organometallic polymers and oligomers of interest due to their 

remarkable electronic properties.4,5

There are two main synthetic approaches that have been established for the 

preparation of metal complexes bearing boiylcyclopentadienyl ligands. The first and 

less widely used method involves the reaction of a transition metal complex (e.g 

halide, amide or alkyl) with a cyclopentadienyl ligand precursor containing a pendant 

boryl function. This approach was utilized by Herberich and co-workers in the 

preparation of bis(boiyl)cobaltocenium ions which were subsequently found to bind 

various anions depending on the nature of the boryl substituent, R. This series of 

compounds was prepared by the reaction of an alkali-metal borylcyclopentadienide 

[M(C5H4BR2) where M = Li, Na and R = Pr1] with CoBr2.DME (Scheme 3.1), 

followed by subsequent oxidation to the corresponding cobaltocenium complex.6,7
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CoBr2.DME BR2
2Li(C5H4BR2) Co

BR2

Scheme 3.1 Bis(boryl) substituted cobaltocenes synthesised from pre-assembled

borylcyclopentadienyl ligands

The second approach involves introduction of the boron functionality to an existing 

metallocene fragment, primarily via electrophilic aromatic substitution using boron 

trihalides. This route has been explored by Siebert et al., for example, to produce both 

mono- and Zus-dihaloborylferrocenes (Scheme 3.2) via electrophillic borylation of 

ferrocene.8

Refluxing hexane
Fe Fe

Scheme 3.2 Direct ftw-borylation of ferrocene with boron tribromide

This chemistry has since been extended in subsequent work by Noth et al. leading to 

the isolation of the tris- and tetrakis-dihaXobory\ derivatives of ferrocene, ruthenocene 

and osmocene (Scheme 3.3).
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Fe Refluxing neat BBr3
Br2B

Br2B

BBr-

BBri

M = Fe, Os, Ru

Scheme 3.3 Direct borylation of ferrocene with neat boron tribromide

More severe reaction conditions are required than those used in preparation of the 

mono- and Zus-dihaloboryl ferrocenes, i.e. the use of neat BBr3 at reflux 

temperatures.9 The resulting complexes feature dihaloboryl units that can be further 

derivatized via boron-centred substitution reactions. 10 A related borylation reaction 

was applied by Piers et a l in the preparation of bis- 

(pentafluorophenyl)borylferrocene, involving the treatment of ferrocene with bis- 

(pentafluorophenyl)borane, a highly electrophilic reagent used to introduce a boron- 

containing fragment. 11

Fe
HB(C6F, ) 2

80°C
Ee

HgCl C1B(C6F5) 2

25°C

iX\\''C6F5

c 6f 5

Scheme 3.4 Two alternative syntheses of bis-(pentafluorophenyl)borylferrocene
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The authors also reported a second approach to the same compound in which the

boron-containing unit is introduced to a metallated ferrocene, (chloromercuric)

ferrocene, by treatment with the analogous chloroborane species C1B(C6F5>2. A

similar process to introduce the boron-containing fragment by reaction of a metallated

cyclopentadienyl ring with a boron halide has been reported by Manners et al. who

reacted a tin-containing ferrocenophane with one equivalent of boron trichloride to
i

introduce a single dichloroboryl moiety.

Mes

Fe
Mes

BCb (1  equiv.) Fe

BC1

Scheme 3.5 Borylation of a metallated cyclopentadienyl with BCI3

3.1.1 Aims of present research

Employing the direct borylation methods reported by Siebert and co-workers8 

mono- and 6 /s-(dihaloboryl)ferrocene systems have been prepared and were further 

derivatized to synthesize a range of mono- and Ws-boronate esters. 10 The reasons for 

the choice of ferrocene as the backbone in these compounds were three-fold: firstly 

synthetic ease of borylation, secondly the ready spectroscopic and electrochemical 

handles offered by ferrocene-based systems, and thirdly the potential for further 

derivatization at the boron centre to allow for tuning of the Lewis acidity. Following 

the initial preparation of ferrocene mono- and fos-boronate esters and some 

interesting anion binding properties displayed by such compounds, it was decided (i)
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to extend this approach to incorporate tris- and tetrakis- boronate esters using

analogous direct borylation chemistry, and (ii) to extend the preparation of mono-

boronate esters to cover alternative derivatization patterns at boron.

Scheme 3.6 General preparative scheme for mono and multi-functional boryl 

metallocenes (where n = 0 , 1 and m = 0 , 1)

3.2 Experimental

Preparation o f  mono-ethanediolatoborylferrocene (la)

&

Ethane-1,2-diol (1.2 ml, 2.15 mmol) was dried under vacuum for 3 h and dissolved 

in toluene (30 ml). Triethylamine (0.6 ml, 4.27 mmol) was then added to the stirred 

diol solution followed by a solution of dibromoborylferrocene (0.75 g, 2.1 mmol) in 

toluene (30 ml). The resulting cloudy orange solution was stirred for twelve 12 h. The 

1 lB NMR spectrum at this point revealed the presence of boric acid at 8 b 22 ppm 

along with the desired product at 8 b 32 ppm. The orange solution was filtered and 

volatiles removed in vacuo to produce a bright yellow powder in 32 % yield, which 

was further dried in vacuo. The yellow powder was washed with dry hexane; the 

washings were filtered and placed in the freezer. Slow evaporation of benzene from a
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solution afforded orange block-like crystals suitable for X-ray diffraction. NMR

(400 MHz, [D]chloroform, 20 °C): 8  4.08 [s, 5H, C5H5], 4.26 [s, 4H, CH2CH2 of

chelate], 4.34 [m, 4H, C5H4]. I3C{!H} NMR (75.5 MHz, [D]chloroform, 20 °C): 8

65.8 [CH2CH2 of chelate], 68.5 [C5H5], 72.2 [C5H4], 73.7 [C5H4]. "B ^H } NMR (96

MHz, [D]chloroform, 20 °C): 8  32.7. IR (KBr disc, cm 1): v 2973 w, 2911 md, 1497

md, 1473 s, 1312 s, 1384 md, 1184 md, 1129 s, 990 s. UV/Vis (chloroform): A,max 444

nm, e = 135 cm' 1 mol' 1 dm3. MS(EI): M+ = 256 (100 %), exact mass (calc.) m/z

256.0353, (obs.) 256.0352. Crystal data: Ci2Hi3BFe0 2, orthorhombic, P 2\ 2i 2i, a =

5.81790(10) A, b = 9.9233(2) A, c = 18.4741(5) A, V = 1066.56(4) A3, Z = 4, =
■j 1

1.594 Mg m ', p(MoKa) = 1.391 mm' . A suitable crystal was covered in pre-dried 

mineral oil and mounted at 150(2) K. 2138 unique reflections were collected (3.6 < 0 

< 26.3°). Final R-factor: Ri = 0.034.

Preparation o f (pinanediolatoboryl)ferrocene (lb)

(lS,2S,3R,5S)-(+)-Pinane diol (0.461 g, 2.7 mmol) was dried in vacuo for 4 h and 

dissolved in toluene (25 ml), the diol solution cooled to -78°C and n-butyllithium 

(3.52 ml of a 1.6 M solution in hexanes, 5.6 mmol) added drop-wise via syringe. The 

dilithiate solution was warmed to room temperature and stirred for 2  h whereupon a 

solution of dibromoborylferrocene (1.002 g, 1.2 mmol) in toluene (50 ml) was added 

drop-wise via cannula. The resulting orange reaction mixture was stirred for 48 h and 

the orange solution was filtered from the precipitate. Toluene was removed in vacuo
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to yield a bright orange powdery solid, which was further dried in vacuo, taken into a

minimum volume of hexane and placed in the freezer (-30 °C). An orange solid

crashed out of hexane, was isolated, dried in vacuo and re-dissolved in acetonitrile.

Slow evaporation of solvent from an acetonitrile solution afforded orange block-like

crystals of the product. Yield of orange solid: 379 mg, 37.1 %. *H NMR (400 MHz,

[DJchloroform, 20 °C): 8  0.42 [s, 3H, H-8 ], 0.93 [s, 3H, H-9], 1.21 [s, 3H, H-10],

1.33 [d J=  10 Hz, 1H, H-6 a], 1.55 [m, 1H, H-5], 1.89-2.08 [overlapping m, 4H, H-l,

H-4a, H-4b, H-6 b], 4.03 [s, 5H, C5H5], 4.10 [m, 2H, C5H4], 4.11 [dJ=  2 Hz, 1H, H-

3], 4.58 [d J  = 1.6 Hz, 2H, C5H4], atom numbering scheme shown above. 13C{!H}

NMR (75.5 MHz, [D]chloroform, 20 °C): 5 22.5, 25.5, 25.7, 27.9, 34.7, 36.8, 38.5,

50.4, 73.1, 76.7 [pinane backbone], 67.5 [C5H5], 70.9 [C5H4], 73.0 [C5H4]. "B^H }

NMR (96 MHz, [D]chloroform, 20 °C): 8  30.1. IR (KBr disc, cm'1): v 2930 md, 1501

md, 1482 s, 1382 s, 1324 s, 1261 md, 1189 w, 1130 s, 1034 md, 909 w, 816 s, 702 w,

6 8 8  md, 598 w. UV / Vis (chloroform): Xmax 446 nm, e = 134 mol' 1 cm' 1 dm3. MS

(El): M* = 364.1 (100%), exact mass (calc.) m/z 362.1292, (obs.) 364.1290. Crystal

data: C2oH2sBFeC>2, tetragonal, P_42, a = 16.8050(16) A, b = 16.8050(16)A, c =

6.3272(4)A, V = 1786.9(3) A3, Z = 4, = 1.353 Mg m'3, p(MoKa) = 0.852 mm'

l. A suitable crystal was covered in pre-dried mineral oil and mounted at 150(2) K.

3179 unique reflections were collected (3.6 < 0 < 26.3°). Final R-factor: Ri = 0.084.
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Preparation o f  l,l\3-tris-(ethanediolatoboryl)-3'-ethylferrocene (3a)

Ethane-1,2-diol (0.31 ml, 5.56 mmol) was dried in vacuo for 6  h and dissolved in 

toluene (50 ml), and triethylamine (1.54 ml, 10.9 mmol) added via syringe. 1,1',3-tris- 

(dibromoboryl)-3*-ethyl ferrocene (1.33 g, 1.83 mmol) in toluene (50 ml) was then 

added drop-wise via cannula and the resulting orange solution stirred for 12 h. After 

filtration, the solvent was removed in vacuo to yield an orange powdery solid. 

Reciystallisation from hexanes at -30 °C yielded an orange oil which was dried under 

high vacuum to yield an orange solid: 318 mg (41 %). JH NMR (400 MHz, 

[D]chloroform, 20 °C): 6  0.91 [t J = 7 Hz, 3H, CH3 of Et], 2.26 [broad quartet, 2H, 

CH2 of Et], 4.22 [m, 1H, C5H3], 4.24 [s, 1H, C5H3], 4.26 [b s, 12H, CH2CH2 of 

chelate], 4.45 [m, 1H, C5H3], 4.51 [m, 2H, C5H3]. ^Cf'H} NMR (75.5 MHz, 

[DJchloroform, 20 °C): 8  14.6, 21.7 [Et], 64.7 [CH2 of chelate, 2 overlapping signals 

(ca. 2:1) at 64.72 and 64.46], 65.77 [CH2 of chelate], 72.7, 74.3, 74.4, 78.4, 78.6, 

81.7 [CH of C5H3]. nB NMR (96 MHz, [DJchloroform, 20 °C): 8  32.6. IR (KBr disc, 

cm'1): v 2924 s, 1460 s, 1376 s, 1298 md, 1198 md, 1084 w, 1064 md, 991 md, 42 

md, 850 w, 722 md, 6 8 6  w. UV/Vis (chloroform): Xmsx 454 nm, s = 199 m ol1 cm' 

1dm3. MS(EI): M* = 424 (100%), exact mass (calc.) m/z 424.1118, (obs.) 424.1119.
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Preparation o f  1 ,1 3-tris-(stilbenediolatoboryl)-3 '-ethyl ferrocene (3b)

Ph i O ^ M W P h

Ph'"" O

(S,S)-Stilbenediol (1.18g, 5.51 mmol) was dried in vacuo for 2 h and dissolved in 

toluene (70 ml), the solution was cooled to -78 °C and n-butyllithium (6.89 ml of a

1.6 M solution in hexanes, 11.0 mmol) was added drop-wise via syringe. After 

warming to room temperature and stirring for 1 h, l,r,3-/ra-(dibromoboryl)-3'-ethyl 

ferrocene (1.33 g, 1.83 mmol), in toluene (50 ml) was added drop-wise via cannula. A 

white precipitate was formed and the resulting cloudy orange solution stirred for 1 2  h 

before filtration. Volatiles were then removed in vacuo to yield an orange oily 

product which was further dried under high vacuum to produce an orange powdery 

solid. The orange solid was extracted into hexane, and precipitated at -30°C, the solid 

was isolated by filtration. An acetonitrile solution of the resulting solid, layered with 

water in an NMR tube yielded orange plate-like crystals. Yield of orange solid: 672 

mg, 46%. lH NMR (400 MHz, [D]chloroform, 20 °C): 6  1.08 [ tJ=  3.3 Hz, 3H, CH3 

of Et], 2.38 [q, 2H, CH2 of Et], 4.47 [s, 1H, CH of chelate], 4.50 [s, 1H, CH of 

chelate], 4.55 [s, 1H, CH of chelate], 4.63 [s, 1H, CH of chelate], 4.85 [s, 1H, CH of 

chelate], 5.01 [s, 1H, CH of chelate], 5.13 [m, 2H, C5H3], 5.14 [m, 2H, C5H3], 5.22 [s, 

1H, C5H3], 5.25[s, 1H, C5H3], 7.25-7.67 [m, 30H, aromatic CH], 13C{'H} NMR (75.5 

MHz, [D]chloroform, 20 °C): 14.0,21.1 [Et], 72.6, 73.6, 74.1, 77.7, 78.5, 81.0 [CH of 

chelate], 125.0, 125.2, 125.3, 127.0, 127.1, 127.2, 127.5, 127.6, 127.7 [aromatic CH],

138.7, 138.8, 139.3 [aromatic quartemary]. n B{'H} NMR (96 MHz, [D]chloroform, 

20 °C): 8  34.1. IR (KBr disc, cm 1): v 2923 s, 1463 s, 1376 s, 1274 s, 1209 md, 1078
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w, 1059 md, 986 md, 844 w, 759 md, 697 s, 650 w, 611 w. UV/Vis (chloroform):

Xmax 454 nm, e = 253 mol' 1 cm"1 dm3. MS(EI): M+ = 880 (100%), exact mass (calc.)

m/z 880.2996, (obs.) 880.2997. Crystal data: C54H47B3Fe0 6 , orthorhombic, P 2\ 2\ 2j,

a = 9.26740(10) A, b = 15.9758(2) A, c = 30.0231(4) A, V = 4445.04(9) A3, Z = 4,

Ddc = 1.315 Mg m'3, n(MoKa) = 0.392 mm'1. A suitable crystal was covered in pre-

dried mineral oil and mounted at 150(2) K. 8873 unique reflections were collected

(3.6 < 0 < 26.3°). Final R-factor: R, = 0.071.

Preparation o f  l,r,3-tris-(pinanediolatoboryl)-3'-ethylferrocene (3c)

Me
MeMe

MeMe
Me Me

MeMe

(1 S,2S,3R,5S)-(+)-Pinanediol (0.784 g, 5.49 mmol), was dried in vacuo for 2 h and 

dissolved in toluene (40 ml), the diol solution cooled to -78 °C and n-butyllithium 

(6 . 8 6  ml of a 1.6 M solution in hexanes, 10.9 mmol) added drop-wise via syringe. 

After warming to room temperature and stirring for 2 h, 1,1 ',3-/r/A-(dibromoboryl)-3'- 

ethyl ferrocene (1.33 g, 1.83 mmol) in toluene (50 ml) was added drop-wise. The 

resulting cloudy orange solution was stirred for 1 2  h, filtered, and volatiles removed 

in vacuo to yield an orange powdery solid. The solid was dissolved in a minimum 

volume of hexane, cooled to -30°C, and an orange oily solid isolated by filtration and 

further dried under high vacuum. Yield of orange solid: 523 mg (38 %). 'H NMR 

(400 MHz, [DJchloroform, 20 °C): 8  0.82 [s, 9H, C-10], 1.09 [ t J  = 5 Hz, 3H, C-12], 

1.24 [s, 9H, C-9], 1.20 [m, 3H], 1.41 [overlapping signals, 9H, C-8 ], 1.87 [m, 6 H],
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2.04 [m, 3H], 2.31 [m, 3H], 2.33 [m, 5H], 4.15-4.52 [overlapping m, 9H, C5H3 and

H-3]. 13C{‘H} NMR (75.5 MHz, [D]chloroform, 20 °C): 8  12.9 [Et, C12], 21.9 [Et,

Cl 1 ], 24.1, 26.7 [three overlapping signals], 27.2, 29.0, 35.7 [three overlapping

signals], 38.2, 39.7, 51.4 [three overlapping signals] 77.8 [three overlapping signals],

85.6 [three overlapping signals, pinane backbones], 73.4, 77.4, 77.7, 78.2, 81.9, 82.5

[CH of C5H3]. “ B^H} NMR (96 MHz, [D]chloroform, 20 °C): 8  32.8. IR (KBr disc,

cm'1): v 2923 s, 1716 w, 1462 s, 1375 s, 1304 md, 1233 md, 1122 md, 1078 md,

1061 w, 1025 w, 989 w, 937 w, 722 md. UV/Vis (chloroform): Xmax 454 nm, 8  = 218

mol' 1 cm' 1 dm3. MS(EI): M+ = 754 (100%), exact mass (calc.) m/z 754.4044, (obs.)

754. 4045 .

Preparation o f 1,1’,3,3'- Tetrakis(ethanediolatoboryl)ferrocene (4a)

O O
To a solution containing ethane- 1,2-diol (0.42 ml, 7.52 mmol) and triethylamine

(2.11 ml, 15 mmol) in toluene (30 ml) was added a solution of 1,1’,3,3'- 

tetrakis(dibromoboryl) ferrocene (1.633g, 1.18 mmol), also in toluene (30 ml). An 

orange precipitate formed and the n B NMR spectrum at this point revealed the 

presence of boric acid (8b 22 ppm) along with the product peak (8b 32 ppm). The 

orange solution was filtered via cannula and the orange precipitate was washed with 

toluene and the washings were filtered, and combined. Toluene was removed in 

vacuo to yield a dark orange solid, which was washed with hexane and sonicated. The 

pale yellow hexane washings were dried in vacuo and the yellow solid was taken into



Chapter Three The Synthesis and Characterisation o f  Mono-, Tri-
and Tetra-functional Boron-Containing Lewis Acids

90

deuterated benzene for NMR, yield of yellow solid: 264 mg (31 %). Benzene was 

allowed to slowly evaporate from the NMR sample and orange rod-like crystals grew 

over a two week period. Yield of crystals: 25.6 mg, 3.0 %. *H NMR (400 MHz, 

[D]chloroform, 20 °C): 6  4.35 [s, 16H, CH2CH2 of chelate], 4.53 [s, 4H, C5H3], 4.65 

[s, 2H, C5H3]. 13C{!H} NMR (75.5 MHz, [D]chloroform, 20 °C): 8  64.8 [chelate],

77.7, 80.8 [C5H3], quaternaries of C5H4 not observed. 11B{1H} NMR (96 MHz, 

[D]chloroform, 20 °C): 8  32.3. IR (KBr disc, cm 1): v 3404 md, 1495 s, 1398 md, 

1340 md, 1300 s, 1262 md, 1199 s, 1068 s, 992 md, 943 md, 860 w, 802 md, 691 md, 

583 w, 500w. UV/Vis (chloroform): Xmax 442 nm, e = 79 mol' 1 cm' 1 dm3. MS(EI): M+ 

= 466 (100%), exact mass (calc.) m/z 466.1031, (obs.) 466.1029. Crystal data: 

Ci8H22B4FeOg, monoclinic, P 2 j/n, a = 5.8495(3) A, b = 9.8627(5) A, c = 17.0345(11) 

A, p= 96.899(2)°. V = 975.64(9) A3, Z = 2 , Dcaic = 1.584 Mg m'3, p(MoKa) = 0.819 

mm'1. A suitable ciystal was covered in pre-dried mineral oil and mounted at 150(2) 

K. 1987 unique reflections were collected (3.6 < 0 < 26.3°). Final R-factor: Ri = 

0.055.

Preparation o f  l,r ,3 ,3 ’-tetrakis(stilbenediolatoboryl)ferrocene (4b)

(S,S)-Stilbene-diol (1.48 g, 6.91 mmol) was dried in vacuo for 2 h, dissolved in 

toluene (50 ml) cooled to -78°C and n-butyllithium (8.65 ml of a 1.6M solution in 

hexanes, 13.8 mmol) was added drop-wise via syringe. The dilithiate was stirred for 

48 h at room temperature before l,r,3,3'-tetrakis(dibromoboryl)ferrocene (1.507g,
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1.7 mmol) in toluene (50 ml) was added dropwise via cannula. The resulting orange

solution was filtered and toluene was removed in vacuo to yield an orange viscous

oily product. The product was dried in vacuo and washed with hexane but was only

very sparingly soluble. A toluene solution of the product layered with hexanes

afforded large orange block-like crystals. Yield of crystals: 698 mg, 38 %. NMR

(300 MHz, [D8]toluene, 20°C): 8 5.20 [m, 2H, C5H3], 5.23 [s, 4H, CH of chelate],

5.30 [m, 2H, C5H3], 5.34 [s, 4H, CH of chelate], 5.64 [s, 2H, C5H3], 7.01-7.24 [m,

40H, aromatic CH]. 13C{!H} NMR (75.5 MHz, [D6]benzene, 20°C): 5 81.4, 81.8,

84.1 [C5H3], 88.4, 88.5 [CH of chelate], 127.7, 128.1, 129.8, 129.9, 138.6 (2

overlapping signals) [aromatic CH], 146.3, 146.5 [aromatic quaternary]. 11B{1H}

NMR (96 MHz, [D6]benzene, 20°C): 8 33.2 (b). IR (KBr disc, c m 1): v 3033 w, 1605

w, 1496 s, 1276 s, 1213 md, 1192 md, 1146 w, 1061 s, 988 s, 802 w, 760 md, 698 s,

538 md. UV/Vis (chloroform): Â ax 472 nm, e = 667 mol'1 cm'1 dm3. MS(EI): M+ =

1074 (100%), exact mass (calc.) m/z 1074.3535, (obs.) 1074.3546. Crystal data:

C66H54B4Fe0 8 , orthorhombic, C 2221, a = 12.3580(2) A, b = 15.4190(2) A, c =

29.7570(5) A, V = 5670.14(15) A3, Z = 4, Dcaic = 1.258 Mg m'3, p(MoKa) = 0.322

mm'1. A suitable crystal was covered in pre-dried mineral oil and mounted at 150(2)

K. 5619 unique reflections were collected (3.6 < 0  < 26.3°). Final R-factor: R\ =

0.051.
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Preparation o f  1,1 ’,3,3 ’-tetrakis(pinanediolatoboryl)ferrocene (4c)

MeMe.
Me

MeMe
Me

O
/

B Me\
O MeMe

O
/

B Me\
O MeMe

(lS,2S,3R,5S)-(+)-Pinane diol (0.784 g, 4.6 mmol) was dried in vacuo for 2 h, 

dissolved in toluene (40 ml), the solution was cooled to -78°C and n-butyllithium 

(5.75 ml of a 1.6 M solution in hexanes, 9.2 mmol) added drop-wise via syringe. The 

dilithiate solution was warmed to room temperature and stirred for 2  h, whereupon a 

solution of l,r,3,3'-tetrakis(dibromoboryl)ferrocene (1.003 g, 1.2 mmol) in toluene 

(50 ml) was added drop-wise via cannula. The resulting orange solution was filtered, 

and toluene was removed in vacuo to yield an orange solid which was further dried 

under high vacuum. Recrystallisation from acetonitrile produced orange plate-like 

crystals. Yield of orange solid: 488 mg (47 %). *H NMR (400 MHz, [D]chloroform, 

20 °C): 6  0.80 [s, 12H, H-10], 1.24 [s, 12H, H-9], 1.42 [s, 12H, H-8 ], 1.88 

[overlapping m, 12H], 2.02 [t J=  5 Hz, 4H], 2.16 [m, 4H], 2.29 [m, 4H], 4.30 [t J=  7 

Hz, 4H, H-3], 4.50 [m, 4H, C5H3], 4.56 [m, 2H, C5H3], 5.22 [m, 4H, H-3]. ^C^H} 

NMR (75.5 MHz, [D]chloroform, 20 °C): 6  23.8, 26.9, 29.1, 35.8, 37.9, 39.7, 51.6,

51.7,81.8, 85.6 [pinane backbone], 78.0 [C5H5], 78.2 [C5H3], 79.0 [C5H3]. "B ^H } 

NMR (96 MHz, [D]chloroform, 20 °C): 8  32.3. IR (KBr disc, cm'1): v 3434 w, 2913 

s, 2868 md, 2358 w, 1491 s, 1397 md, 1305 s, 1224 md, 1148 w, 1062 s, 988 w, 922 

md, 692 s, 539 md. UV/Vis (chloroform): Â ax 472 nm, e = 203 mol' 1 cm ' 1 dm3. 

MS(EI): M* = 898 (100%), exact mass (calc.) m/z 898.4787, (obs.) 898.4796. Crystal
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data: CsoHvoE^FeOg, orthorhombic, P 2\ 2\ 2 i, a = 11.969(2) A, b = 11.964(2) A, c =

32.749(7) A, V = 4689.6(15) A3, Z = 4, Dcaic = 1.272 Mg m'3, p(MoKa) = 0.375 mm'

'. A suitable crystal was covered in pre-dried mineral oil and mounted at 150(2) K.

5184 unique reflections were collected (3.8 < 0 < 23.5°). Final R-factor: Ri = 0.106.

Preparation o f  1,1’3,3 ’-tetrakis(2-napthyl-ethanediolatoboryl)ferrocene (4d)

Co \

(2S)-Napthyl-ethane-l,2-diol (0.039 g, 0.21 mmol) was dried under vacuum for 2 h, 

dissolved in toluene (50 ml), the solution cooled to -78 °C and n-butyllithium (2.6 ml 

of a 1.6  M solution in hexanes, 4.2 mmol) added drop-wise via syringe. After stirring 

for 12 h at room temperature, l,r,3,3'-tetrakis(dibromoboryl)ferrocene (452 mg, 0.52 

mmol) in toluene (50 ml) was added dropwise via cannula and the resulting cloudy 

orange solution stirred for a further 12 h. After filtration through a frit containing 

celite, solvent was removed in vacuo to yield an orange oily product, which was dried 

under high vacuum for 12 h. The resulting orange solid was recrystallised from 

hexanes at -30°C. Yield of orange solid: 251 mg (50 %). !H NMR (400 MHz, 

[D]chloroform, 20 °C): 8  4.13 [overlapping m, 4H, CH2 of chelate], 4.42 [m, 2H, CH 

of chelate], 4.65 [m, 2H, CH of chelate], 4.74 [d, J=  1.2 Hz, 2H, C5H3], 4.80 [d, J  =

1.3 Hz, 2H, C5H3], 4.95 [s, 2H, C5H3], 5.62 [t, J=  8  Hz, 2H, CH2 of chelate], 5.69 [t, 

J=  8  Hz, 2H, CH2 of chelate], 7.39 [m, 12H, aromatic CH], 7.74 [m, 16H, aromatic
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CH]. bC{'H> NMR (75.5 MHz, [DJchloroform, 20 °C): 8  70.9 [C5H3], 71.0 [C5H3],

76.5 [CH2 of chelate], 76.6 [CH2 of chelate], 76.8 [CH of chelate], 77.1 [CH of

chelate], 80.4 [C5H3], 121.0, 121.4, 122.7, 123.0, 124.2, 125.8, 126.1, 126.7, 126.8,

131.1, 131.2, 131.3, 136.0, 136.5 [napthyl CH], "Bf'H} NMR (96 MHz,

[DJchloroform, 20 °C): 8  32.4. IR (KBr disc, c m 1): v 2923 s, 1625 w, 1462 s, 1376 s,

1063 md, 855 w, 814 w, 722 md. UV/Vis (chloroform): A,mix 461 nm, e = 347 m of1

cm ' 1 dm3. MS(EI): M+ = 970 (100%), exact mass (calc.) m/z 970.2909, (obs.)

970.2908.

Alternative synthesis o f  (ethanediolatoboryl)ferrocene (la) from ferroceneboronic 

acid

Ferroceneboronic acid (0.776 g, 33.8 mmol) was weighed into a pressure tube, 

dissolved in acetone (30 ml) and ethane-1,2-diol (0.210 g, 33.8 mmol) added. The 

pressure tube was sealed, placed in an oil bath and heated to 70 °C for 20 h with 

stirring. The resulting orange solution was filtered and volatiles removed in vacuo to 

yield an orange powdery solid which was recrystallised from hot dichloromethane, 

yield 0.676 g, 75 %. Characterising data were the same as those quoted above for 

compound la.

Alternative synthesis ofpinanediolatoborylferrocene (lb ) from ferroceneboronic acid 

Ferroceneboronic acid (0.388 g, 16.9 mmol) was weighed into a pressure tube and 

dissolved in acetone (30 ml), (lS,2S,3R,5S)-(+)-pinanediol (0.288 g, 16.9 mmol) 

added. The pressure tube was sealed, placed in an oil bath and heated to 70 °C for 20 

h with stirring. The resulting orange solution was filtered and volatiles were removed 

in vacuo to yield an orange powdery solid which was recrystallised from hot
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dichloromethane. Yield: 0.444 g, 72 %. Characterising data were the same as those

quoted above for compound lb.

Alternative synthesis o f 1,1 ’-bis(stilbenediolatoboryl)ferrocene (2a) from  

ferrocenebis-boronic acid

O ^ M i \ P h

O  x \ \ \ r h

Ferrocenefo's-boronic acid (0.481 g, 19.9 mmol) and (S,S)-stilbene diol (0.852 g, 39.8 

mmol) dissolved in acetone (40 ml) in a thick-walled pressure tube. The pressure tube 

was sealed and heated to 70 °C for 24 h with stirring. The resulting orange solution 

was filtered and volatiles removed in vacuo to yield an orange powdery solid. The 

crude product was extracted with dichloromethane (40 ml), filtered and solvent was 

removed under vacuum to yield an orange solid (l.OOg, 80 %). *H NMR (400 MHz, 

[D6]benzene, 20°C): 5 4.39 [m, 2H, C5H4], 4.44 [m, 2H, C5H4], 4.88 [m, 2H, C5H4], 

4.99 [m, 2H, C5H4], 5.30 [s, 4H, CH of chelate], 7.04 -  7.26 [m, 20H, C6H5]. 13C{*H} 

NMR (75.5 MHz, [D6]benzene, 20°C): 5 72.9, 73.5, 75.1, 75.5 [CH of C5H4], 86.9 

[CH of chelate], 126.2, 128.4, 128.8 [aromatic CH], 140.1 [aromatic quaternary]. 

"B t'H } NMR (96 MHz, [DJchloroform, 20 °C): 8  34.0. MS(EI): M+ = 630 (100%), 

exact mass (calc.) m/z 630.1836, (obs.) 630.1834.
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Alternative synthesis o f 1,1 ’(bis-pinanediolatoboryl)ferrocene (2b) from

ferrocenebis-boronic acid

Me
MeMe

Me
MeMe

Ferrocenefo's-boronic acid (0.710 g, 29.3 mmol) was weighed into a pressure tube, 

equipped with a stirrer bar and dissolved in acetone (40 ml) and (lS,2S,3R,5S)-(+)- 

pinanediol (1.00 g, 58.7 mmol) added. The pressure tube was sealed and heated to 70 

°C for 24 h with stirring. The resulting orange solution was cooled to room 

temperature and crystalline 2a isolated on cooling by filtration (0.693 g, 43 %). *H 

NMR (400 MHz, [DJchloroform, 20 °C): 5 0.83 [s, 6 H, H-8 ], 1.25 [s, 6 H, H-9], 1.28 

[dJ=  10 Hz, 2H, H-6 a], 1.42 [s, 6 H H-10], 1.89 [overlapping m, 4H, H-2, H-4a, H-5, 

H-7], 2.07 [t J = 5 Hz, 2H, H-l], 2.21 [m, 2H, H-6 b], 2.35 [2H, m, H-4b], 4.32 [m, 

4H, CH of C5H4], 4.34 [m, 2H, H-3], 4.35 [m, 2H, CH of C5H4], 4.37 [m, 2H, CH of 

C5H4]. I3C{'H} NMR (75.5 MHz, [DJchloroform, 20 °C): 5 24.2, 26.7, 27.2, 29.1, 

35.9, 38.3, 39.7, 51.4, 77.9, 85.8 [pinane backbone], 72.5, 72.6, 74.2, 74.3 [CH of 

C5H4]. n B{‘H} NMR (96 MHz, [DJchloroform, 20 °C): 8  32.2. IR (KBr disk, cm 1): v 

3155 w, 2924 st, 2253 st, 1794 w, 1647 w, 1560 w, 1480 st, 1383 st, 1323 st, 1312 st, 

1277 md, 1261 md, 1237 md, 1209 w, 1189 w, 1128 st, 1096 md, 1021 md, 916 st, 

712 st. UV/Vis (chloroform): Am,* = 462 nm, e = 101 cm' 1 mol' 1 dm3. MS(EI): M+ = 

542 (100%), exact mass (calc.) m/z 542.2457, (obs.) 542.2456.
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Attempted preparation o f  l,2-bis(stilbenediolatoboryl)ferrocene (6 a)

Ph

Ph

Î e
" 'P h

l,2 -FerroceneA/5 -boronic acid (0.093 g, 3.4 mmol) and (S,S)-stilbene diol (0.145 g,

6 .8  mmol) dissolved in acetone (40 ml) in a thick-walled pressure tube. The pressure 

tube was sealed and heated to 70 °C for 24 h with stirring. The resulting orange 

solution was filtered and volatiles removed in vacuo to yield an orange powdery 

solid. The crude product was washed with dichloromethane (40 ml), the 

dichloromethane solution was filtered and solvent was removed under vacuum to 

yield an orange solid (0.069 g, 32.6 %). n B NMR (96 MHz, [D]chloroform, 20 °C): 6

32.8. MS(EI): M* = 630.3 (100%), 486.1 (80 %), 408.2 (20 %). The orange solid was 

found by mass spectrometry to be a mixture of products, which separated into three 

bands after filtration of a chloroform solution through a small silica column. The first 

band was found to contain the mono-stilbene compound (lc), the remaining two 

bands were found still to comprise a mixture of components. Alternative separation 

methods proved unsuccessful. A cleaner synthesis may be required to achieve full 

characterisation of the product.
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Preparation o f  l'-mono-fstilbenediolatoboryl)-!,2,3,4,5-pentamethylferrocene (5a)

Me Fe Me

O ^ atW rh

To a solution of (S,S)-stilbene diol (0.6 g, 2.78 mmol) in toluene (30 ml) was added 

n-butyllithium (3,5 ml of a 1.6 M solution in hexanes, 5.56 mmol) dropwise via 

syringe at -78°C. The reaction mixture was warmed to room temperature and a 

solution of l,2,3,4,5-pentamethyl-r-(dibromoboiyl)ferrocene (1.18 g, 2.78 mmol) in 

toluene (30 ml) added dropwise via cannula. The resulting cloudy orange solution 

was filtered, and volatiles removed in vacuo to yield a orange powder that was further 

dried under high vacuum. 56 % yield after recrystallisation from hexanes (air-stable 

orange crystalline solid). *H NMR (400 MHz, [D6]benzene, 20°C): 5 2.02 [s, 15H, 

Cp*], 4.03 [m, 1H, C5H4], 4.05 [m, 1H, C5H4], 4.45 [m, 1H, C5H4], 4.48 [m, 1H, 

C5H4], 5.43 [s, 2H, CH of chelate], 7.19-7.25 [m, 6 H, C6H5], 7.42-7.45 [m, 4H, 

C6H5]. i3C{‘H} NMR (75.5 MHz, [D6]benzene, 20°C): 8  11.3 [CH3 of Cp*], 71.2 [b, 

C5H4 quaternary], 76.0 (two overlapping signals), 76.7, 77.4 [CH of C5H4], 80.4 [Cp* 

quaternary], 8 6 .6  [CH of chelate], 126.4, 127.2, 128.6 [aromatic CH], 140.2 [aromatic 

quaternary]. 11B{1H} NMR (96 MHz, [D6]benzene, 20°C): 5 33.3. IR (KBr disk, cm' 

!): v 3423 md, 2962 md, 2904 md, 2854 w, 1636 w, 1496 md, 1479 st, 1451 md, 1382 

st, 1325 md, 1315 md, 1301 md, 1261 w, 1208 w, 1174 w, 1125 st, 1027 st, 988 w, 

818 w, 802 w, 762 w, 700 md, 6 8 6  w, 537 w, 482 w. UV/Vis (chloroform): Â ax = 

445 nm, 8  = 193 cm’1 mol' 1 dm3. MS(EI): M 1- = 478 (5%), exact mass (calc.) m/z 

477.1797, (obs.) 477.1791.
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Preparation o f r,3-bis-(stilbenediolatoboryl)-J ,2,3,4,5-pentamethylferrocene (5b)

MeMe

Me Me

Fe Me

ph < ^ 0  / c O \
[ SB— B r

T h

By an analogous method 5b was prepared by reaction between (S,S)-stilbenediol in 

toluene with a solution of 1,2,3,4,5 -pentamethyl-1 ’ ,3 '-bis(dibromoboryl)-ferrocene 

also dissolved in toluene. Filtration of the cloudy orange solution followed by 

removal of volatiles in vacuo yielded an orange powder. 58 % yield after 

recrystallization from hexanes (air-stable orange crystalline solid). !H NMR (400 

MHz, [D6]benzene, 20 °C): 5 2.18 [s, 15H, Cp*], 4.77 [m, 1H, C5H3], 4.79 [m, 1H, 

C5H3], 5.33 [s, 1H, C5H3], 5.47 [s, 4H, CH of chelate], 7.23-7.32 [m, 12H, C6H5], 

7.45-7.47 [m, 8 H, C6H5]. ‘H NMR ([DJchloroform, 20°C): 8  1.88 [s, 15H, Cp*], 4.27 

[m, 1H, C5H3], 4.32 [m, 1H, C5H3], 4.55 [s, 1H, C5H3], 5.23 [s, 4H, CH of chelate], 

7.27-7.34 [m, 20H, CeHs], l3C{‘H} NMR (75.5 MHz, [D6]benzene, 20°C): 8  11.3 

[CH3 of Cp*], 65.9 [b, C5H4 quaternary], 80.7 [CH of C5H3], 80.9 [Cp* quaternary], 

81.6, 83.7 [CH of C5H3] 8 6 .6  [CH of chelate], 126.4, 128.6 [aromatic CH], 140.2 

[aromatic quaternary]. UB{!H} NMR (96 MHz, [DJchloroform, 20 °C): 8  32.7. IR 

(KBr disk, cm’1): v 3436 md, 3063 w, 3031 w, 2964 md, 2901 md, 1634 w, 1484 st, 

1454 md, 1382 w, 1335 md, 1274 st, 1209 w, 1188 md, 1139 w, 1080 md, 1058 st, 

1030 md, 985 md, 803 md, 760 md, 697 st, 650 w, 607 w, 534 w, 493 w. UV/Vis 

(chloroform): Â ax = 453 nm, s = 217 cm' 1 mol' 1 dm3. MS(EI): M+ = 700 (5%), exact 

mass (calc.) m/z 698.2686, (obs.) 698.2690.
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3.3 Results and discussion

3.3.1 Mono(boronic ester) ferrocene-based Lewis acids

Dibromoboryl ferrocene was prepared by the direct borylation of ferrocene 

with boron tribromide as previously discussed.8 Subsequent reaction of with a diol- 

dilithiate proceeds via elimination of two equivalents of lithium bromide to 

successfully yield mono-functional boronic esters containing ferrocene backbones 

(Scheme 3.7). All compounds were isolated as orange-yellow air-stable solids, 

typically in yields of about 40%.

BBr
OLi OLiFe Fe
Toluene
12h

Scheme 3.7 Synthetic route to mewo-borylferrocenes ( la  and lb)

Preliminary confirmation of the identity of the desired products ( la  and lb) was 

obtained via inspection of the nB NMR spectrum of the reaction mixture, which in 

each case is found to be too broad to conclusively rule out the presence of impurities;

• 1 1 'X _further characterising data from H and C NMR measurements were acquired on 

crystalline products. The NMR spectra corroborate the proposed structures, 

exhibiting singlet resonances for the unsubstituted Cp ligand and the expected pattern 

of signals for the boryl-substituted Cp ligand i.e. multiplets for each of the two sets of 

chemically equivalent CHs in the 2 and 3 positions. In the NMR spectrum of 

compound la  a singlet resonance (4H) is observed for the CH2 groups of the chelate

1 3backbone and the C NMR reveals just four signals in total, one signal for the chelate
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backbone, one for the un-substituted cyclopentadienyl ring and a further two signals

for the mono-substituted ring: no quaternary carbons are observed in the spectrum

presumably due to broadening by the presence of unresolved coupling to the

quadrupolar 11B (I = 3/2) and 10B (I = 3) nuclei of the boryl substituent. In the case of

compound la  a broad singlet is observed in the nB NMR spectrum at 32.1 ppm

characteristic of a cyclic boronate ester, and similar to the chemical shift observed for

lc (34.0 ppm). Mass spectrometry data confirmed the expected molecular ion peak

along with the correct isotope pattern. Slow evaporation of a solution of la  in

deuterated chloroform in an NMR tube yielded single orange crystals suitable for X-

ray diffraction. The solid-state structure of this species is illustrated in Figure 3.1;

selected bond lengths and angles are listed in Table 3.1.

C<5

Figure 3.1 Molecular structure of (ethanediolatoboryl)ferrocene (la). ORTEP 

ellipsoids set at the 50 % probability level. Hydrogen atoms omitted for clarity.
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Table 3.1 Bond lengths [A] and angles [°] for la._______________

C ( l) -F e ( l) 2 .048(3) C ( l l ) - 0 ( 1 ) 1.446(3)

C (2)-C (3) 1.445(4) C (11)-C (12) 1.527(4)

C (3 )-B (l) 1.538(4) C (1 2 )-0 (2 ) 1.444(3)

C (3 )-F e (l) 2 .060(2) 0 (1 )-B (1 ) 1.371(4)

C (6)-C (10) 1.412(4) 0 (2 ) -B ( l) 1.363(4)

C (4 )-C (3 )-B (l) 125.3(3) B (l)-0 (2 )-C (1 2 ) 107.9(2)

B ( l) -0 (1 ) -C ( l  1) 107.4(2) 0 (1 )-C (1 1 )-C (1 2 ) 105.5(2)

0 ( 2 ) - B ( l ) - 0 ( l ) 114.0(2) 0 (2 )-C (1 2 )-C (l 1) 105.2(2)

0 (2 )-B (l) -C (3 ) 122.0(3) C (2 )-C (3 )-B (l) 128.2(3)

0 (1 )-B (1 )-C (3 ) 124.0(3) C (l)-C (5 )-C (4 ) 107.9(2)

One notable feature of the solid-state structure of la  is the O-B-O bond angle, which 

was found to be 114.0(2) °. This is slightly lower than that expected for an idealised 

trigonal planar geometry, due to the chelating backbone and constraining 5- 

membered heteroatom ring. The sum of angles about the boron centre is found to be 

359.9(8)° indicative of a perfectly trigonal planar geometry. These bond angles are 

consistent with those found for previously made analogous mono-boronic ester of

• ITferrocene, featuring a propanediolato backbone. B-O bond lengths are also within 

the predicted region of ca. 1.37 A,16 and are comparable with those observed for the 

related stilbenediolato substituted compound (Figure 3.2); many other salient 

parameters listed in Table 3.2 are comparable to those observed for the mono- 

stilbenediolato compound.
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Figure 3.2 (Stilbenediolatoboryl)ferrocene (lc)

Table 3.2 Bond lengths [A] and angles [°] for lc.

B(l)-0(1) 1.379(6) 0(1)-C(1 l)cyclic boronate 1.434(5)

C(Cp)-B(l) 1.538(7) 0(2)-C(12)cyclic boronate 1.438(5)

B(l)-0(2) 1.369(6)

0(l)-B(l)-0(2) 113.1(4) B(l)-0(1)-C(l)cyclic boronate 108.6(3)

C(Cp)-B( 1 >-0(2) 124.8(4) B(l)-0(2)-C(2)cyclic boronate 107.7(3)

C(Cp)-B(l)-0(l) 122.0(4)

It has been noted by Wagner and others14 for related /wowo-functional compounds that 

the boryl moiety is tilted out of the plane of the Cp ligand towards the iron centre, a 

particularly large tilt angle being measured for the mono-borylferrocene system 

featuring a catecholate boronic ester function (13.3°). However the tilt angle observed 

for compound la  is much smaller being only 5.0°. This observation will be discussed 

presently in more detail.
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The corresponding compound featuring a pinanediolato boronic ester (lb) was 

prepared by analogous reaction of dibromoborylferrocene with one equivalent of the 

di-lithiate of (lS,2S,3R,5S)-(+)-pinanediol to yield lb  as a very crystalline orange 

air-stable solid in 37 % yield. UB NMR analysis substantiates a formulation 

containing a three-coordinate boryl group with a broad signal being observed at 8b 30 

ppm, effectively coincident with the chemical shift observed for compound la. lH
1 q

and C NMR spectra confirm that the desired product has been formed. The non

equivalence of all hydrogens of the chiral pinane fragment brings about some 

complex coupling patterns in the *H NMR spectrum; the atom numbering scheme for 

the pinane fragment of lb  in the chair conformation is shown in Figure 3.3. The 

methyl signals are easily assigned to the three singlets all around 1 ppm (C8, C9 and 

CIO). The singlet in the Cp region is easily assigned to the unsubstituted 

cyclopentadienyl ring and the mono-substituted Cp ring shows the characteristic AB 

pattern. The CH of the chelate (C3) gives rise to a distinctive signal owing to its high 

shift at 4.11 ppm; the remainder of the pinane fragment shows a complex overlapping 

pattern between 1.3 and 2.1 ppm. The mass spectrometry data corroborates the 

proposed structure, displaying the expected molecular ion peak and isotopic pattern, 

further verified by an accurate mass measurement.

Me
Me

Me
8

Figure 3.3 Atom numbering scheme quoted in NMR discussion for lb



Chapter Three The Synthesis and Characterisation o f Mono-, Tri- 105
and Tetra-functional Boron-Containing Lewis Acids

X-ray diffraction data further confirms the expected structure, which is represented

pictorially in Figure 3.4. Relevant bond lengths and angles are noted in Table 3.3.

Figure 3.4 Molecular structure of (pinanediolatoboryl)ferrocene (lb). ORTEP 

ellipsoids set at the 30 % probability level. Hydrogen atoms omitted for clarity.
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Table 3.3 Bond lengths [A] and angles [°] for lb.

C(l)-Fe(l) 2.014(9)

C(2)-C(3) 1.459(17)

C(5)-B(l) 2.026(7)

C(3)-Fe(l) 2.047(10)

C(6)-C(10) 1.343(19)

C(ll)-0(1) 1.475(10)

C(11)-C(12) 1.562(11)

C(12)-0(2) 1.426(10)

0(1)-B(1) 1.366(11)

0(2)-B(l) 1.364(11)

C(l)-C(5)-B(l) 126.5(10)

B(l)-0(1)-C(l 1) 108.6(6)

0(2)-B(l)-0(l) 112.7(8)

0(2)-B(l)-C(5) 122.7(8)

0(1)-B(1)-C(5) 124.6(8)

B(l)-0(2)-C(12) 110.4(7)

0(1)-C(11)-C(12) 103.7(6)

0(2)-C(12)-C(l 1) 104.6(7)

C(4)-C(5)-B(l) 126.2(8)

C(l)-C(5)-C(4) 106.1(8)

The structural parameters for lb  are all within the expected ranges; the O-B-O bond 

angle (112.7(8)°) are akin to that observed for la  (114.0(2)°), in addition the B-0 

bond lengths of 1.364(11) and 1.366(11) A is comparable to those found for la  (ca. 

1.37 A). When comparing the geometric parameters associated with mono-boronic 

ester Lewis acid systems it is interesting to note the tilt angles. The diagram below 

(Figure 3.5) shows compound lb  with the tilt angle illustrated; the Cp centroid- 

C(Cp)-B angle is measured as 169.41°, and so the tilt angle is calculated to be 10.59°.



Cp(centroid)
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Figure 3.5 Compound lb  with the tilt angle illustrated and the pinane fragment

omitted for clarity.

In each case the trigonal planar boryl moiety is tilted out of the plane of the 

cyclopentadienyl ligand to a varying extent depending on a donor/acceptor interaction 

between filled molecular orbitals on the iron centre and the vacant pz-orbital at boron. 

This bending of the boryl group towards the iron centre has been previously observed 

in the crystal structures of fc[BBr2]2 and FcBBr2 in which the tilt angles were found 

to be 10.2° and 17.7° respectively. These observations were corroborated by 

electronic spectra, in which intense absorptions were observed and conclusively 

assigned via experimental and computational methods to a symmetry allowed metal- 

ligand charge transfer from the occupied Fe dz2/ dx^y2 orbitals to the formally vacant 

p-orbital at boron. 14,17 The corresponding angles measured for la, lb  and FcB(OH) 2 

were found to be 5.0°, 10.6° and 3.6° respectively . These figures likely reflect a 

difference in the crystal packing of these compounds, but may also reflect a
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difference in Lewis acidity, which would be expected to follow an order [FcBBr2 >

fc[BBr2]2 > FcB(OH)2 > lb  > la] considering the relative demand for electron density

at each boron centre. The UV/Vis spectra of these ferrocene boronic esters have been

found to exhibit weak/medium absorptions between 444 - 472 nm, (s = 79-667 mol' 1

cm' 1 dm3). It seems there is limited evidence of an Fe-B interaction as suggested by

the observed tilt angles which are negligible in most instances. It seems unlikely

therefore that a metal-ligand charge transfer is responsible for the observed

absorption bands; it is probable that the observed absorption bands arise from other

d—►d transitions, for example, aig-e2g, aig-eig* or e2g- eig*.

Initial synthesis of these mono-boronate Lewis acids was achieved via a 

dibromoborylferrocene precursor, followed by salt elimination of lithium bromide or 

triethylammonium bromide depending on which base was used. This route was found 

to provide an average yield of a moderately impure product, perhaps due to the very 

sensitive nature of the reactants and (where triethylamine is used) difficulty in 

separating the product from the NEt3H+Br' salt by-product of the reaction. However 

the alternative preparation of la  and lb  by a condensation reaction between 

ferroceneboronic acid with the respective diol provided very pure products in high 

yields of about 70 %. This method has the further advantage that reactants and 

products are air stable and this route was used in preference over the 

dibromoborylferrocene route for all subsequent preparations of la  and lb.
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3.3.2 Z?£s(boronic ester) ferrocene-based Lewis acids

The initial preparation of bi-functional boron-containing ferrocene based 

Lewis acids by Bresner, 10 and subsequent investigation of their unique fluoride 

binding capabilities has provided the foundation upon which the work presented in 

this chapter aims to build, and the original findings provide valuable comparison with 

more recently prepared mono-, tris- and tetrakis-functional analogues. Bisboronic
O

esters of ferrocene were prepared using direct metallocene borylation chemistry to 

give -BBr2 derivatives followed by subsequent salt elimination reaction with various 

diol-dilithiates. Of the many air-stable bis-substituted compounds prepared the most 

widely investigated and thus the most useful for comparative purposes is 1 ,1  '-bis- 

(stilbenediolatoboryl)ferrocene (2a), shown in Figure 3.6. Relevant bond lengths and 

angles are noted in Table 3.4.

Ke

Figure 3.6 1,1 '-^-(stilbenediolatoboryl) ferrocene (2a).
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Table 3.4 Bond lengths [A] and angles [°] for 2a.

B(l)-0(1)

C(Cpl)-B(l)

B(l)-0(2)

1.378(3)

1.538(4)

1.378(3)

B(2)-0(3)

B(2)-0(4)

C(Cp2)-B(2)

1.372(3)

1.369(4)

1.533(4)

0(l)-B (l)-0(2) 113.4(2)

C(Cp 1 )-B( 1 )-0(2) 122.0(2)

C(Cp2)-B(2)-0(4) 123.5(2)

0(3)-B(2)-0(4) 113.6(2)

B( 1 )-0(2)-C(6)cyclic boronate 106.3(2)

B(2)-0(3)-C(26)cyclic boronate 107.5(2)

B( 1 )-Cp(centroid)-Cp(centroid)-B(2) 52.6

The B-O bond lengths and O-B-O bond angles associated with 2a are all similar to 

those observed for la, lb  and lc. It was noted of the crystal structure of 2a that the 

intramolecular boron-boron separation [3.790(4) A] is much larger than the Cp-Cp 

centroid distance [3.304(5) A] because the boryl groups are not eclipsed but are 

twisted away from each other, (torsion angle of 52.6(6)°). The corresponding B»*«B 

distance in an eclipsed conformation was calculated to be ca. 2.87 A, which is ideal 

to chelate fluoride based on standard B-F distances for B-F-B units (e.g ca. 1.5 A in 

[F3B-F-BF3 ] ' ) , 15 assuming that it is possible to achieve an eclipsed geometry by 

rotation about the Cp-Fe-Cp axis. Moreover, on steric grounds the torsion angle 

might be expected to be significantly larger, i.e. approaching 180° to minimize 

repulsive interactions between boryl groups, as has been witnessed with analogous 

6 /s-systems. 16 The measured torsion angle of 52.6° was thought to be a result of 

crystal packing.
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3.3.3 7m(boronic ester) ferrocene-based Lewis acids

The preparation of a tri-functional boron-containing ferrocene Lewis acid was
o

undertaken using the direct borylation chemistry as reported by Siebert et al. 

Preparation of a tri-functional Lewis acid via this direct borylation chemistry first 

requires the preparation of a /m(dibromoboryl)ferrocene species, an example of 

which was first reported by Noth and co-workers.9 In theory isolation of 

/ra(dibromoboryl)ferrocene can be accomplished in two ways, firstly by reaction of 

ferrocene with an excess of boron tribromide under reflux conditions and by 

termination of this reaction at an appropriate time i.e. between the formation of 

^/^(dibromoborylferrocene (requiring a 5 h reflux) and tetrakis- 

(dibromoboryl)ferrocene (requiring a 36 h reflux). However, this route does not 

represent a viable method for the isolation of usable amounts of 

/ra(dibromoboryl)ferrocene, the critical drawback being that the reaction mixture at 

this point comprises a mixture of mono, bis, tris and tetrakis species, which is very 

difficult to separate. The second method to these compounds requires blocking of one 

CH site of the parent ferrocene to prevent borylation occurring at this site. This was 

achieved by using an alkylferrocene derivative; 17 reaction of ethylferrocene, for 

example, with a slight excess of boron tribromide in hexanes under reflux conditions 

for 24 h results in the formation of the desired product in 41 % yield. Subsequent 

reaction of /ra(dibromoboryl)ethylferrocene with a diol-dilithiate and elimination of 

lithium bromide (triethylammonium bromide in the case of 3a) leads to the formation 

of the tri-functional Lewis acids 3a, 3b and 3c.

1,1 ',3-/m-(ethanediolatoboryl)-3'-ethylferrocene (3a), shown in Figure 3.7, 

was prepared by reaction between ethane-1 ,2 -diol and l,r,3-/m-(dibromoboryl)-3'- 

ethylferrocene to yield an orange powdery air-stable solid in yields of 41 %.
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Figure 3.7 1,1 ',3-^m(ethanediolatoboryl)-3'-ethylferrocene (3a)

Evaluation of the nB NMR spectrum of 3a reveals a single broad peak (8 b 32 ppm), 

despite the chemical in-equivalence of each boron centre. In general, the observed 

shift is consistent with what is known for a three-coordinate boron centre bonded to 

two oxygen donors and a cyclopentadienyl ligand. The NMR spectrum of 3a 

reveals that all the backbone CH2 protons are coincidently equivalent despite the in

equivalence that the ethyl group brings to the molecule. The upper and lower

cyclopentadienyl rings are however found to be inequivalent in the JH NMR

1 ̂spectrum as evidenced by the four signals observed. The C NMR spectrum displays 

two overlapping signals for the chelate backbone carbons (ca. 2:1) at 64.7 and 64.4 

ppm; consistent with the inequivalence of the upper and lower cyclic boryl moieties. 

Mass spectrometry results confirm the expected molecular ion peak, further verified 

by an accurate mass measurement. Crystal growth proved unsuccessful using various 

techniques and solvent systems, however the spectroscopic evidence and comparison 

with structurally characterised 3b supports the proposed structure.

Compound 3b, 1,1 ',3-/m-(stilbenediolatoboryl)-3'-ethylferrocene, shown in 

Figure 3.8, was synthesised by the reaction of the dilithiate of (S,S)-stilbene diol with
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1 ,1  ',3 -/m(dibromoboryl)-3'-ethylferrocene to yield an orange powdery air-stable

solid in a 46 % yield.

Figure 3.8 1,1 ',3-/m-(stilbenediolatoboryl)-3'-ethylferrocene (3b)

The nB NMR spectrum of 3b reveals a single broad peak (5b 34 ppm), although each 

boron centre is expected to show a different shift owing to the inequivalence provided 

by the ethyl group. It seems likely that what is observed in the 1 *B NMR spectrum of 

3b is a broad signal comprising several overlapping resonances of very similar 

chemical shift. The observed shift is coherent with a three-coordinate boron centre 

with two appended oxygen donors and a cyclopentadienyl ligand. Scrutiny of the 

NMR spectrum of 3b confirms the inequivalence of the Cp CHs on the upper and 

lower Cp rings, these being observed as four singlets. The CH groups of the chelate 

rings are observed as six distinct singlets. The l3C NMR data further substantiates the 

proposed structure with unique signals being observed for each of the Cp CHs and for 

each of the CH groups of the three unique chelate rings. Mass spectrometry 

measurements gave the expected molecular ion peak, endorsed by accurate mass 

measurement. The extensive solubility of 3b in a wide range of solvents complicated 

the crystallisation procedure. However orange plate-like crystals suitable for X-ray



Chapter Three The Synthesis and Characterisation o f Mono-, Tri- 114
and Tetra-functional Boron-Containing Lewis Acids

diffraction were eventually grown from an acetonitrile/water layering at room

temperature. The suppositions based on spectroscopic data are confirmed by the X-

ray diffraction studies (Figure 3.9). Relevant bond lengths and angles are noted in

Table 3.5.

Figure 3.9 Molecular structure of l,T,3-/r/5-(stilbenediolatoboryl)-3'-ethylferrocene 

(3b). ORTEP ellipsoids set at the 30 % probability level. Hydrogen atoms omitted for 

clarity. Cl 1 and C12 remain isotropic due to a high degree of disorder and the 

difficulty modelling these atoms anisotropically.
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Table 3.5 Bond lengths [A] and angles [°] for 3b.______________

C(10)-C(ll) 1.564(13) C(3)-B(2) 1.547(7)

C(11)-C(12) 1.302(18) B(2)-0(3) 1.361(7)

C(9)-C(10) 1.409(10) B(2)-0(4) 1.375(7)

C(10)-Fe(l) 2.074(6) B(l)-0(2) 1.361(7)

C(7)-B(3) 1.529(8) B(l)-0(1) 1.369(7)

B(3)-0(5) 1.375(6) C(20)-C(21) 1.511(7)

B(3)-0(6) 1.360(6) 0(1)-C(13) 1.442(5)

Fe(l)-C(3) 2.064(5) C(13)-C(20) 1.558(7)

C(l)-C(5)-B(l) 126.7(5) 0(1)-B(1)-C(5) 123.1(5)

C(2)-C(3)- B(2) 126.7(5) 0(3)-B(2)-C(3) 123.9(5)

C(6)-C(7)-B(3) 125.5(5) 0(5)-B(3)-C(7) 122.7(4)

0(l)-B(l)-0(2) 113.2(5) C( 14)-C( 13 )-C(20) 111.4(4)

0(3)-B(2)-0(4) 113.5(4) C(21 )-C(20)-C( 13) 111.4(4)

0(5)-B(3)-0(6) 113.7(5) C(9)-C(10)-C(ll) 130.3(7)

O(l)-C(13)-C(20) 103.9(4) C(9)-C(10)-C(6) 108.9(6)

C(10)-C(ll)-C(12) 1 1 2 .8 ( 1 2 ) B(3)-0(5)-C(41) 107.1(4)

B(2)-Cp(centroid)-Cp(centroid)-B(3) 56.03

The O-B-O angles in the solid state structure of 3b are found to be 113.2(5)°, 

113.5(4)° and 113.7(5)°. These O-B-O bond angles are consistent with that observed 

in la  (114.0(2)°). The sum of angles about the boron centre is found to be 359.9(14)°
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in all three cases, confirming that the boron centres are in a trigonal planar

environment These observations are consistent with those found for the mono-

boronic ester systems la, lb  and lc  and the previously reported bis-boronic ester

system 2a.10 In the case of 3b, there are now multiple boron centres, which introduces

some more interesting features for discussion, one being the intramolecular B«»*B

distances [3.775(7) (B2-B3) and 4.745(7) (B1-B3) A], which are significant because

it is this feature that will determine whether chelation of a fluoride anion is possible,

although the B***B separation will vary by rotation about the Cp(centroid)-Fe-

Cp(centroid) axis. This boron-boron distance is comparable with that known for

compound 2a [3.790(4) A] and, like 2a, this boron-boron distance is somewhat larger

than distance between the cyclopentadienyl rings [3.326 A] due to the fact that the

boronic ester groups are not eclipsed but rotated away from each other about the

Cp(centroid)-Fe-Cp(centroid) axis. The torsion angle [B-Cp(centroid)-Cp(centroid)-

B] was calculated at 56.0°, similar to that measured for 2a [52.6°]. The distinction

between these two species with respect to torsion angles being that 3b is a tetra-

substituted ferrocene and there is a limit to how large the torsion angle can extend and

in this case the torsion angle [56.0°] represents the maximum possible separation

between upper and lower boiyl/ethyl groups, while the torsion angle of compound 2a

could be extended up to 180° to gain maximum boryl-boryl separation. Given the

intramolecular B***B distance for a torsion angle of ca. 56°; the corresponding B***B

distance in an eclipsed conformation is calculated to be ca. 2 .8 8  A, similar to 2a {ca.

2.87 A), also an ideal distance to potentially chelate fluoride. One unusual and

prominent aspect of this compound is the remarkably large tilt angle for the boryl

group attached to the Cp ring bearing the ethyl moiety of 15.8°, whereas the tilt

angles associated with the Cp ring featuring two boryl groups are much smaller (ca.
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3.7°). This bending of the boryl group towards the iron centre has been formerly

observed in the crystal structures of fc[BBr2]2 and FcBBr2 in which the tilt angles

were found to be 10.2° and 17.7° respectively14,17 and also noted in the crystal

structures of la  and lb  but not to such a great extent. On closer examination of the

structure 3b it is apparent that the large tilt angle of the one boryl ligand is coupled

with a shortened Fe-B distance of 2.985 A, which can be compared with the

corresponding Fe-B distances within the same molecule of ca. 3.168 A. Furthermore,

a similar tilt angle of 16° was reported for an analogous borylmetallocene compound

featuring pentafluorophenyl ligands by Piers et. al. with a similar shortening of the

Fe-B distance also noted (2.924 A).11 In addition to these observations the authors

also note a shortening of the C(Cp)-B distance to 1.501(4) A, a value intermediate

between those known for B-C double bond (1.44 A in LiCH2=B(Mes)2 ) 18 and the B-

C single bond (1.58 A in BPI13).19 This observation gives evidence of electron

donation from the Cp ligand as well as from the Fe centre into the vacant p-orbital at

boron. In the structure of 3b, specifically the tilted boryl group, a very slight

shortening of the C(Cp)-B bond length is observed (1.529(8) A) compared to the

other boryl groups e.g. 1 .547(7) A but this value provides no statistically significant

evidence of electron donation from the Cp ligand into the vacant p-orbital of boron.

1 ,1',3-/rw(pinanediolatoboryl)-3'-ethylferrocene (3c), pictured in Figure 3.10, 

was prepared by the corresponding reaction of the dilithiate of (lS,2S,3R,5S)-(+)- 

pinanediol with 1 ,1 ',3-rm(dibromoboryl)-3'-ethylferrocene to yield a bright orange 

powdery air-stable solid which was isolated in yields of 38%.
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Figure 3.10 1,1 ',3-/m-(pinanediolatoboryl)-3'-ethylferrocene (3 C)

The nB NMR spectrum of 3c shows a single broad, presumably multi-component 

peak (8 b 32 ppm), which is consistent with shifts observed for the analogous 

compounds 3a and 3b. The NMR spectrum becomes very complex in the case of 

compound 3c; the pinane fragment gives rise to convoluted overlapping resonances 

and the spectrum becomes yet more involved in the presence three inequivalent 

pinane moieties. The only distinctive signals in the NMR spectrum are the ethyl 

signals and three methyl singlets each integrating to the nine total methyl protons.

1 'IThe C NMR spectrum is also complex, and as the NMR spectra are not definitive in 

compound characterisation, other data (in particular mass spectrometry) have been 

utilized. Mass spectra for 3c display the molecular ion peaks as expected, with 

accurate mass measurement confirming the identity of the ion. As with compound 3a, 

crystal growth of 3c has been unsuccessful over a range of techniques and solvent 

systems, however the spectroscopic data are in agreement with the structure depicted 

in Figure 3.10.
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3.3.4 Tetrakis(f>oron\c ester) ferrocene-based Lewis acids

Preparation of a tetra-functional boron-containing ferrocene Lewis acid has 

also proved successful, once again using the direct borylation methodology reported 

by Siebert et al.s followed by subsequent derivatization of the Lewis acidic group to 

yield of a range of air-stable tetra-functional boron-containing ferrocene Lewis acids. 

These syntheses first require the preparation of the intermediate l,r,3 ,3 - 

te/raA7's(dibromoboryl)ferrocene.9 Synthesis of this intermediate is achieved by 

reaction of ferrocene with a ten-fold excess of neat boron tribromide under reflux 

conditions for 36 h in yields of ca. 40 %. Subsequent reactions of this intermediate 

with various diols has led to the isolation of a range of tetra-functional Lewis acids 

4a, 4b, 4c and 4d.

Compound 4a (1,1 '3,3'-/efraALv(ethanediolatoboryl)ferrocene), shown in 

Figure 3.11, was prepared by reaction of four equivalents of ethane-1,2-diol in the 

presence of excess triethylamine with one equivalent of l , r , 3 ,3 '-te/ra&7s- 

dibromoborylferrocene to produce 4a as an orange powdery air-stable solid which 

was isolated in yields of 31 %.

B Bi
Fe

B

Figure 3.11 1,1 ',3,3'-te/raHv-(ethanediolatoboryl)ferrocene (4a)
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Assessment of the n B NMR spectrum of 4a revealed a single broad peak (8 b 32

ppm), this chemical shift being entirely consistent with n B NMR shifts observed for

the analogous mono-, bis- and /ra-functional species, and with compounds in general

containing a three-coordinate boron centre with two pendant oxygen donors. The ]H

NMR spectrum is very simple, featuring only three signals: a singlet resonance for

the sixteen protons of the chelate backbone and two singlet resonances (2 :1 ) of the

substituted cyclopentadienyl rings. The 13C NMR also presents only three signals, one

for the chelating backbone and two for the cyclopentadienyl carbons: quaternary

carbons were not observed in this spectrum despite acquisition of > 2 0 0 0  scans with

increased pulse delays. The expected molecular ion peak was confirmed by mass

spectrometry and verified by an accurate mass measurement. Orange rod-like crystals

suitable for X-ray diffraction were grown by slow evaporation of benzene from a

concentrated solution of 4a, and assumptions based on spectroscopic data were

confirmed by the X-ray diffraction studies. The structure of 4a is represented

pictorially in Figure 3.12. Relevant bond lengths and angles are listed in Table 3.6.
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Figure 3.12 Molecular structure of l,r,3,3'-tefrafoXethanediolatoboryl)ferrocene 

(4a). ORTEP ellipsoids set at the 30 % probability level. Hydrogen atoms omitted for

clarity.
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Table 3.6 Bond lengths [A] and angles [°] for 4a_______________

Fe(l)-C(l) 2.065(3)

B(l)-0(1) 1.362(4)

0(1)-C(12) 1.452(4)

B(2)-0(3) 1.357(4)

0(3)-C(13) 1.436(4)

C(11)-C(12) 1.499(5)

C(4)-B(2) 1.546(5)

B(l)-0(1)-C(12) 107.6(3)

B(2)-0(4)-C(14) 107.0(3)

C(2)-C(l)-B(l) 130.6(3)

C(3)-C(4)-B(2) 123.0(3)

0(3)-C(13)-C(14) 105.4(3)

0(3)-B(2)-C(4) 121.3(3)

0(2)-B(l)-C(l) 125.5(3)

0(4)-B(2)-C(4) 125.0(3)

C(l)-B(l) 1.547(5)

B(l)-0(2) 1.367(4)

0(2)-C(l 1) 1.445(4)

B(2)-0(4) 1.361(4)

0(4)-C(14) 1.454(4)

C(13)-C(14) 1.501(5)

B(l)-0(2)-C(l 1) 107.0(3)

B(2)-0(3)-C(13) 108.2(3)

C(3)-C(l)-B(l) 123.3(3)

C(5)-C(4)-B(2) 130.1(3)

0(4)-C(14)-C(13) 105.6(3)

0(3)-B(2)-0(4) 113.7(3)

0(1)-B(1)-C(1) 120.8(3)

B( 1 )-Cp(centroid)-Cp(centroid)-B(2) 39.95
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Compound 4a contains a centre of symmetry and thus the asymmetric unit contains

only half of the molecule. Bond lengths and angles determined from the crystal

structure of 4a are analogous to those noted for mono-, bis- and /ra-functional

compounds 1, 2 and 3; for example the O-B-O angles in the solid state structure of 4a

are found to be 113.6(3)° and 113.7(3)°. The sum of angles about each boron centre is

found to be 359.9(9)°, representative of a boron centre in a trigonal planar

environment. The torsion angle calculated is unusually small [40.0°] compared to

those measured for analogous compounds, for example the torsion angle observed for

3b [56.0°]. It is likely that the small angle observed is an artifact of the crystal

packing system. Tilt angles are negligible in this case, being just 6.0° and 4.8°, similar

to that for compound la , which also features the ethanediolate backbone. A B««*B

separation of 3.626(4) A is entirely consistent with those previously observed.

l,1^3,3'-te/rafoXstilbenediolatoboryl)ferrocene (4b, Figure 3.13) was

synthesised by reaction of four equivalents of (S,S)-stilbene diol with eight

equivalents of n-butyllithium and subsequent reaction of the resulting lithiate with

one equivalent of 1,1^3,3,-te*rafo'.y(dibromoboryl)ferrocene to produce an orange solid

which was isolated in yields of 38 %.

^ P h

■""W/Ph

^ P h

'"""/Ph

Ph///,,,„

P h ^ " '^  ~ 0

Figure 3.13 1,1 ',3,3'-/^^raA:«(stilbenediolatoboryl)ferrocene (4b)
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The nB NMR spectrum of 4b revealed the characteristic single broad peak (8b 33 

ppm), characteristic of a cyclic boronate ester. In the case of 4b, NMR measurements 

at room temperature in dg-toluene are consistent with a more symmetrical structure 

than that of approximate (non-crystallographic) C2 symmetry determined in the solid 

state (vide infra). NMR measurements made in d-chloroform shows coincidental 

equivalence which complicates interpretation. VT-NMR measurements made in dg- 

toluene however imply that rotation about the centroid-Fe-centroid axis (Figure 3.14) 

becomes slow on the NMR timescale at temperatures below -60°C. Thus, for 

example, the two singlet resonances due to the prochiral methine protons of the 

boronic ester chelate rings are split into four distinct signals at -90°C, which sharpen 

on further cooling. By simulating the experimental data a barrier to rotation of Ag* =. 

13.0 kcal mol’1 for the ‘cogged’ rotation of the q 5-C5H3[B(OR)2]2] boronic ester units 

can be calculated, which compare with similar values of 11.0 and 13.1 kcal mol' 1 

calculated for the l ,r ,3 ,3 ’-tetra(trimethylsilyl) and l ,r ,3 ,3 ’-tetra-(ter/-butyl)- 

ferrocenes.20

Figure 3.14 C2 symmetry of 4b and rotation about the centroid-Fe-centroid axis

B ( O R ) 2 B (O R )2
(RO^B, B (O R )2Rotation about 

centroid-Fe-centroid 
axis

B ( O R ) 2

B (O R )2 B ( O R ) 2
B (O R )2

The predicted molecular ion peak was observed in the mass spectrum and its identity 

confirmed by accurate mass measurement. 4b was found to be a very crystalline



Chapter Three The Synthesis and Characterisation o f Mono-, Tri- 125
and Tetra-functional Boron-Containing Lewis Acids

material and orange, block-like crystals suitable for X-ray diffraction were grown

from a toluene/hexane layering. The expected structure is confirmed by the X-ray

diffraction studies, the structure of 4b being represented pictorially in Figure 3.15;

relevant bond lengths and angles are listed in Table 3.7.

Figure 3.15 Molecular structure of 1,13,3-te/rafa's-( 1,2- 

diphenylethanediolatoboiyl)ferrocene (4b). ORTEP ellipsoids set at the 30 % 

probability level. Hydrogen atoms omitted for clarity.
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Table 3.7 Bond lengths [A] and angles [°] for 4b_______________

0(2)-B(2) 1.371(4) 0(3)-C(14) 1.444(4)

0(3)-B(l) 1.373(4) 0(3)-C(l 1) 1.455(4)

0(4)-C(12) 1.448(3) 0(1)-B(2) 1.371(4)

0(1)-C(13) 1.445(4) C(l)-C(2) 1.414(4)

C(11)-C(12) 1.544(4) C(13)-C(14) 1.558(4)

C(6)-B(2) 1.539(5) C(20)-C(12) 1.495(4)

C(19)-C(l 1) 1.488(4) C(19)-C(29) 1.387(5)

Fe(l)-C(l) 2.030(3) Fe(l)-C(3) 2.054(3)

C(l)-Fe(l)-C(2) 40.75(13) C(20)-C(49)-C(59) 120.6(4)

C(19)-C(l 1)-C(12) 113.5(3) C(19)-C(30)-C(47) 120.8(3)

C(20)-C(12)-C(l 1) 116.5(3) 0(3)-C(l 1)-C(19) 113.0(2)

0(3)-C(l 1)-C(12) 102.5(2) 0(4)-C(12)-C(l 1) 112.2(3)

B(2)-0(2)-C(14) 108.4(2) B(l)-0(3)-C(ll) 106.2(2)

B(2)-0(l)-C(13) 107.9(2) B(l)-0(4)-C(12) 106.2(2)

B(2)-0(2)-C(6) 124.0(3) B(2)-0(l)-C(6) 122.9(3)

0(3)-B(l)-0(4) 113.6(3) 0(l)-B(2)-0(2) 113.0(3)

B( 1 )-Cp(centroid)- Cp(centroid)-B(2) 50.48

As with 4a the asymmetric unit contains only half of a molecule of 4b. From the 

crystal data the O-B-O angles were found to be 113.6(3) and 113.0(3)°, and the sum 

of angles about the boron centre found to be 360.0(9)°. B-O bond lengths were
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measured 1.371(4) and 1.373(4) A, which is standard compared with analogous 

compounds. The intra-molecular B«**B distance of 3.800(4) A is within the expected 

range and a torsion angle B(l)-Cp(centroid)- Cp(centroid)-B(2) of 50.48° is similar to 

those noted for compounds 2a and 3b. Calculated tilt angles are not of notable 

magnitude in this case [5.52° and 8.28°], as expected for a weakly Lewis acidic 

boronic ester moiety. It is notable that the boryl groups do not actually lie coplanar to 

Cp ligand but are twisted out of the plane by angles of between 17.8°-19.7°, 

suggesting that electron donation into the vacant pz-orbital at boron comes 

predominantly from the neighbouring oxygen donors rather than the Cp ligand. Such 

large out-of-plane twists are observed particularly where the stilbene group is present, 

are probably due to steric effects.

Compound 4c (l,r,3,3'-^ra^(pinanediolatoboryl)ferrocene, Figure 3.16) 

was prepared by the reaction of four equivalents of (lS,2S,3R,5S)-(+)-pinanediol 

with eight equivalents of butyl-lithium and further reaction of the resulting diol- 

dilithiate with 1 ,1 ',3,3'-/e/ra£zXdibromoboryl)ferrocene to yield a bright orange solid 

which was isolated in yields of 47 %.

Me Me

Me Me

Me Me

Me Me

Figure 3.16 1,1 ',3,3'-/e/raA:w(pinanediolatoboryl)ferrocene (4c)
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The nB NMR spectrum shows a single broad peak (5b 32 ppm), indicating the

presence of boron in a single chemical environment or of closely overlapping

resonances; this shift is consistent with analogous compounds 4a and 4b. As with the

previously made mo«o(pinanediolatoboryl) derivative (lb), w(pinanediolatoboryl) 16

and /ra(pinanediolatoboryl) species (3c), the lH NMR spectrum of 4c is very

complex. The three methyl groups provide characteristic signals namely three singlets

(each 12H) below 1.5 ppm. The four CH groups of the boronic ester chelate ring also

display a very distinctive singlet, because of the proximity to the two oxygen centres;

the remainder of the spectrum is very complex with overlapping signals, however in

total the peaks integrate to the correct number of protons. The 13C spectrum is equally

convoluted, there are ten signals for the pinane fragment that cannot be reliably

1 "Xassigned using just the 1-D C spectrum, and three more distinct C5H3 signals at 

higher shifts. The predicted molecular ion peak was observed by mass spectrometry, 

with its identity verified by an accurate mass measurement. Compound 4c is a very 

crystalline material (as with many other compounds containing the pinane fragment) 

and orange plate-like crystals were grown by slowly cooling an acetonitrile solution 

from 80°C to room temperature. The expected structure was confirmed by X-ray 

diffraction studies and the structure of 4c is represented pictorially in Figure 3.17; 

relevant bond lengths and angles are listed in Table 3.8.
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Figure 3.17 Molecular structure of l,r3,3'-tefra£w(pinanediolatoboryl)ferrocene 

(4c). ORTEP ellipsoids set at the 30 % probability level. Hydrogen atoms omitted for 

clarity. Isotropic atoms are to due a degree of disorder in the pinane fragment and 

difficulty in modelling these atoms anisotropically.



Chapter Three The Synthesis and Characterisation o f Mono-, Tri- 130
and Tetra-functional Boron-Containing Lewis Acids

Table 3.8 Bond lengths [A] and angles [°] for 4c _____

B(l)-0(1)

B(l)-0(2)

B(l)-C(5)

C(5)-C(4)

C(5)-C(l)

0(1)-C(41)

0(2)-C(42)

C(41)-C(42)

1.378(18)

1.371(17)

1.453(17)

1.435(17)

1.399(18)

1.372(12)

1.373(12)

1.606(19)

C(5)-Fe(l)

C(7)-Fe(l)

C(7)-B(2)

B(2)-0(3)

B(2)-0(4)

0(4)-C(31)

0(3)-C(32)

C(31)-C(32)

2.005(10)

2.162(12)

1.549(19)

1.276(15)

1.337(15)

1.442(14)

1.490(14)

1.451(16)

0(l)-B(l)-0(2)

C(5)-B(l)-0(1)

C(5)-B(l)-0(2)

B(l)-0(2)-C(42)

B(l)-0(1)-C(41)

0(1)-C(41)-C(42)

B(l)-C(5)-C(l)

B(l)-C(5)-Fe(l)

120.5(10)

127.1(13)

112.3(13)

101.6( 10)

104.4(10)

104.1(9)

125.6(12)

121.4(9)

0(2)-C(42)-C(45)

B(2)-0(3)-0(4)

C(7)-B(2)-0(4)

C(7)-B(2)-0(3)

B(2)-0(4)-C(31)

B(2)-0(3)-C(32)

B(2)-C(7)-C(6)

B(2)-C(7)-Fe(l)

106.7(9)

108.2(12)

128.9(11)

122.8( 11)

112.9(9)

112.5(9)

129.9(10)

123.2(8)

B(l)-Cp(centroid)- Cp(centroid)-B(2) 67.53 

B(3)-Cp(centroid)- Cp(centroid)-B(4) 58.17

B»"B distances are larger in the case of compound 4c, 4.42(17) A [B1»*#B2 ] and 

4.45(17) A [B3###B4] than those found for analogous tetrafunctional compounds. The
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boryl groups are bending further away from each other due to the sizeable steric bulk

of the pinane fragment, as evidenced by the increased torsion angles calculated B(l)-

Cp(centroid)- Cp(centroid)-B(2) 67.53° and B(3)-Cp(centroid)- Cp(centroid)-B(4)

58.17°. Tilt angles in this case are insignificant and the sum of angles about each

boron centre is found to be 359.9(36)°.

A te/rafas-functionalised system featuring a napthalene-substituted boronic 

ester function (4d), as shown in Figure 3.18, was also prepared by an analogous 

procedure to 4b and 4c, yielding an air stable orange solid in ca. 50 % yield.

B

BB

Figure 3.18 1,1 3,3'-te/raA:zs(2S-napthylethanediolatoboryl)ferrocene (4d)

Attempts to grow single crystals, suitable for X-ray diffraction, proved unsuccessful 

despite the use of varied solvent systems and a number of techniques (layering, 

diffusion and cooling of concentrated solutions). However the product was 

characterised by a number of spectroscopic techniques, including n B NMR 

spectroscopy (6 b 32 ppm), which gives a resonance similar to related structurally 

characterised analogous compounds. *H NMR corroborates the proposed structure, 

although the aromatic region is very convoluted the mid-field region displays 

distinctive peaks: two 2H doublets and a 2H singlet for the Cp CHs and two 

overlapping multiplets for the chelate CH and CH2 groups. 13C NMR shows two
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distinctive signals in the Cp region for the C5H3 CHs and four signals for the chelate

CH and CH2 groups and again the aromatic region is very complex. Mass

spectrometry (including accurate mass determination) analyses confirm the expected

molecular ion peak and are consistent with the structure represented in Figure 3.18.

3.4 Modifications towards more efficient anion binding

3.4.1 Introduction

The main application perceived for these multi-functional boronic esters of 

ferrocene is in the selective binding of fluoride anions; the mono- (lc) and bis- 

functionalised systems (2a) previously mentioned have been shown by a range of 

techniques to achieve selective fluoride binding. This and the anion binding results 

for the corresponding tris- and te/rafo's-compounds will be discussed at length in 

chapter four. Some modifications to existing compounds have been made in an 

attempt to enhance performance in the task for which they have been made.

3.4.2 Attempted preparation of a l,2-di(boryI) ferrocene system

The main purpose of the ferrocene boronic ester systems discussed in this 

chapter is the binding of fluoride anions. Furthermore the chelation of fluoride is an 

even more advantageous target; however evidence to date (namely 19F NMR) 

strongly suggests that chelation of fluoride is not occurring when 1 ,1  '-diborylated 

systems are treated with a source of fluoride. With the aim of improving “first 

generation” ferrocene systems to promote chelation of fluoride, the use of 1 ,2 - 

disubstituted ferrocene systems has been investigated. Initial preparation of 1,2- 

dibromoferrocene was carried out by Dr. I. R. Butler (Univ. of Wales, Bangor)
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according to a published route.21

1. L D A
2 . B r F 2C C F 2B r
3 . t-B u L i
4 . B r F 2C C F 2B r  
R e f  22

B r

B rF e

1. t -B u L i
2 . B (O E t)3

1. N a O H  (a q , 1 0% )
2 . H 2S 0 4 (a q , 1 5 % )

F e

Scheme 3.9 Preparative scheme for ferrocene-l,2-bis(boronic acid)

From the 1,2-dibromoferrocene starting material, preparation of 1,2- 

ferrocenediboronic acid was attempted via reaction with t-butyllithium and 

triethoxyborate to prepare 1 ,2 -diethoxyboryl ferrocene, followed by hydrolysis of the 

ethoxy groups with aqueous sodium hydroxide and sulphuric acid solutions. A 

subsequent condensation reaction with (S,S)-stilbene diol, in which the boronic acid 

is heated with the diol and acetone in a sealed pressure tube at 80°C for 24h, was 

carried out in an attempt to synthesise l,2 -&w-(diphenylethanediolatoboryl) ferrocene 

(6a) as shown below in Scheme 3.10.
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Ph

Ph
A ceton e /80°C

P hF e
P ressu re  tube

P h

Scheme 3.10 Preparative scheme for l,2-Z>/s-diphenylethanediolatoborylferrocene

(6a)

After removal of solvent the product was isolated as an orange, air-stable solid in a 

yield (crude) of 69.5 mg, 32.6 %. However mass spectrometry results indicated that 

the product comprised a mixture of compounds, (i) the desired product observed at 

m/z = 630.2, (ii) a compound featuring one stilbenediolatoboiyl and one bromide 

group pendant to ferrocene at m/z = 486.0 and (iii) the /wo/?o(stilbenediolatoboryl) 

compound (lc) at 408.1.The solid was re-dissolved in chloroform and filtered through 

a small silica column and three clearly separated bands were isolated. The first band 

was found to contain the mowo-stilbenediolatoboryl compound (lc) confirmed by 'H 

NMR and mass spectrometry. The second and third bands were still found to consist 

of a mixture of products by mass spectrometry, although the third band appeared to 

contain less of the /wowo-substituted compound. Concerning NMR spectroscopy, the 

!H NMR spectrum was expected to be slightly more complex than those previously 

discussed, but without a suitable separation method it is impossible to reliably assign 

the peaks. The peak in the n B NMR is within the expected region at 8b 34.3 ppm, 

however. Separation of these compounds has been attempted through fractional 

crystallisation and by slow evaporation of various solvents, but these attempts failed. 

It appears that these compounds are of too similar solubility for this method to
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succeed. A cleaner synthesis may be required to achieve clean samples of the desired

product.

3.4.3 Preparation of Pentamethylferrocene derived boronic esters

Further modification was made to the existing ferrocene boronic ester systems 

involving the use of the more strongly electron donating Cp* ligand; the mono- and 

&w-stilbene compounds featuring a Cp* ligand (5a and 5b) were prepared by C.

O')Bresner as shown in Scheme 3.11.

o  (RO)2B B(OR)2

Scheme 3.11 Syntheses of pentamethyferrocene-based Lewis acids containing one or 

two pendant boronic ester functions (5a and 5b).

These compounds were prepared with a view to improving the response time 

associated with colorimetric sensing of fluoride. The additional electron donation 

from the methyl groups of the Cp* ligand should enhance the kinetics of the system, 

making the electron-transfer process more rapid by making oxidation more 

thermodynamically favourable (Marcus theory). Compounds 5a and 5b were 

prepared by reaction l,2,3,4,5-pentamethyl-T-(dibromoboryl)ferrocene and 1,2,3,4,5- 

pentamethyl-1 ',3 '-bis(dibromoboryl)-ferrocene respectively, with 1 and 2 equiv. of 

the lithiate of (S,S)-stilbene diol respectively, yielding yellow air-sensitive powders.
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3.5 Conclusions and suggestions for future research

The synthesis of mono-functional boronic ester derivatives (la, lb) has been 

achieved in excellent yields and very high purities via condensation chemistry, to 

extend the series of known mono-functional compounds of this type. Comparison of 

the X-ray structures of la  and lb  with that of the known compound lc  has revealed 

no significant structural differences.

The successful preparation of the analogous multi-functional boronic ester 

derivatives (3a-5a) has allowed for further comparison of structural and chemical 

parameters with the corresponding mono-functional compounds. Most of these 

compounds were found to be extremely crystalline materials, allowing not only for 

ease of purification, but also for crystallographic analyses. However the 

/m(ethanediolatoboryl) (3a) and Zm(pinanediolatoboryl) (3c) compounds proved 

problematic in terms of crystal growth, with no single crystals grown despite 

numerous attempts.

With respect to improvement of the syntheses used in the preparation of tris

and tetrakis-functional boronic esters of ferrocene, it would be valuable investigating 

synthetic routes to tris- and tetrakis-boxomc acids of ferrocene as precursors for the 

condensation reaction with diols, given the ease of synthesis, greatly improved yields 

and very high purity of the products.

Successful isolation of pure 1,2-stilbenediolatoboiylferrocene (6a) would be 

very beneficial to the advancement of this project, with the boryl groups brought into 

closer proximity of each other it is possible that chelation of fluoride will be the most 

favoured mode of binding and will present a more stable, and perhaps more 

crystalline, host-guest complex which will hence allow for more extensive 

characterisation of the fluoride-bound product.
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Chapter Four

Fluoride Binding by Mono-, Bis-, Tris- and TWra&is-functional

Boron-Containing Lewis Acids

4.1 Introduction

4.1.1 Chemical warfare agents

The selective recognition of chemical warfare agents (CWAs) is a rapidly 

expanding area of chemical research interest and its relevance to health and 

environmental issues is largely driven by current global political situations. More 

specifically, the use of CWAs as weapons in terrorist or military action present 

growing concerns, and sensors for such potential weapons may find application in the 

supply of personal monitors for military personnel and in decontamination. Sensors 

for nerve and blister CWAs are among the most highly researched. A potent class of 

nerve agents are the G agents, organophosphonate esters, which are similar in 

structure to some insecticides. The critical feature of these polar organic liquids is the 

phosphorus-oxygen double bond, which binds irreversibly to acetylcholinesterase, the 

enzyme that is responsible for effective neurotransmitter function. When nerve agents 

irreversibly bind to acetylcholinesterase, it can no longer stimulate and control nerve 

impulses. The nerve gases GB (Sarin) and GD (Soman) are highly toxic, typically 

causing death within one minute after ingestion (0.01 mg per kg body weight), and 

slow debilitation in lower doses. Detection of such species requires that unique 

features of the behaviour of nerve agents be exploited, for example, 

fluorophosphonate esters are known to hydrolyse spontaneously in air to produce HF 

gas (Scheme 4.1).
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Catalyst/enzyme
RUvv P \ F ~  R' ^ O H  + H F

O R ' O R'

Scheme 4.1 Hydrolysis of a fluorophosphonate ester (Sarin; R = Me, R' = Pr)

4.1.2 Background to the field of colorimetric fluoride sensing

In developing a useable sensor for Sarin (GB), the chemically specific 

recognition of HF must be possible; furthermore the binding event should be coupled 

by a fluorescence, colorimetric, or electrochemical response to have use in the 

sensing application. To this end, sensors which specifically bind fluoride and undergo 

a change in photophysical properties as a result of the binding event are a key goal of 

the work presented in this chapter; it is also a subject of wide and varied research 

interest. Fluoride anions demonstrate a specific affinity for Lewis acidic boron-based 

receptors,1 and this feature has been exploited by many research groups in the design 

of the boron-based receptors. Since there are very few benign compounds that 

spontaneously release HF gas, the possibility of a sensor for Sarin giving a ‘false- 

positive’ response is very small and the detection of HF should provide a sensor 

exclusive to Sarin.

If a redox active centre is incorporated in the design of anion specific 

receptors, electrochemistry can provide a convenient method of monitoring and 

analysing the fluoride binding ability of the receptor. The ferrocene fragment can 

provide such advantages and the selective recognition of fluoride by ferroceneboronic 

acid has been achieved by Shinkai et al. (Figure 4.1).
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Fe

Figure 4.1 Ferroceneboronic acid

Boronic acids have a high affinity for fluoride anions and in ferroceneboronic acid the 

Lewis acid binding site has a pendant ferrocene fragment, enabling the binding 

process to be monitored by cyclic voltammetry. Specifically the shift in the redox 

potential of the ferrocene moiety as a result of anion complexation can be used to 

detect fluoride. The redox properties of ferroceneboronic acid are drastically altered 

on addition of fluoride; even in water a cathodic shift is observed in the CV of ca. 

-100 mV, consistent with the formation of the electron-donating four-coordinate 

boronate anion. Furthermore, the receptor was shown to electrochemically detect 

fluoride in water even in the presence of other halides in high concentrations, thus 

specificity for fluoride was displayed.

The conversion of binding information into comprehensible fluorescent 

outputs has been the target of many research groups.3 Again exploiting the high 

affinity of boronic acids for fluoride, James et al. carried out fluorescence titrations of 

phenylboronic acid and 2-napthylboronic acid with KF and reported a decrease in 

fluorescence intensity upon addition of KF.4 When a three-coordinate boron centre 

binds a fluoride anion there is a change in hybridisation from sp2 to sp3 at the boron 

centre.5 The fluorescence intensity decreases as a result of formation of this sp3 four- 

coordinate boronate anion, which is known to quench the fluorescence of directly 

attached fluorophores by a mechanism of photo-induced electron-transfer.6 This
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report represented the first example where fluorescence had been used as an 

analytical technique to monitor fluoride binding.

Colorimetric fluoride ion sensing has been investigated by Tamao et al. in 

developing the boron-containing 7i-electron system of dimesityl-boiyl substituted
n

trianthiylborane (Figure 4.2). The ^-conjugation in this system extends through the 

vacant p-orbital at the boron centres resulting in characteristic absorption properties 

in the UV/Vis spectrum. Thus fluoride binding can be closely monitored by this 

spectroscopic technique because complexation of a fluoride anion at the boron centre 

will interrupt the extended ^-conjugation, thereby causing a marked change in 

The authors report the fluoride sensing ability of dimesityl-boiyl-substituted 

trianthrylborane to be characterised by a red to orange colour change, monitored by 

UV/Vis spectroscopy.

Mes Mes

Mes Mes

Figure 4.2 Dimesityl-boryl substituted trianthrylborane
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Fluoride complexation by this receptor was accompanied by a decrease in intensity of 

the absorption band of the parent compound (474 nm) and the growth of a new 

absorption band at 570 nm. This shift was interpreted as the mono-fluoride guest-host 

complex, which was later confirmed by X-ray diffraction studies. Upon addition of 

subsequent portions of fluoride further shifts in the absorption bands in the UV/Vis 

spectrum were observed. These spectral changes were construed as complexation of 

two additional equivalents of fluoride to the second and third boron centres, the final 

spectrum looking similar to that of the fluoride-free compound except red-shifted by 

ca. 25 nm. Thus the authors conclude that fluoride complexation does not occur at the 

central boron atom.

Phosphorescence as an analytical tool for monitoring anion binding remains a 

limited area of research, although Gabbai et al. recently reported the use of a 

heteronuclear bidentate Lewis acid as a phosphorescent fluoride sensor (Scheme 

4.2).8

Scheme 4.2 A heteronuclear bidentate Lewis acidic phosphorescent fluoride sensor

This heteronuclear B/Hg bidentate Lewis acid features napthalenediyl and mesityl 

substituents, hence ^-conjugation extends through the vacant p-orbital at boron
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between these two substituents, as seen in the UV/Vis spectrum as a broad absorption 

band at 361 nm. Furthermore, heavy atoms such as mercury are known to enhance 

spin-orbit coupling in organic molecules, which in spectroscopic terms can lead to 

enhanced phosphorescence emission, and solid-state photoexcitation of this species 

gives rise to an emission at Â ax = 531 nm, which is observed as a red glow. This 

bifimctional Lewis acid was found to chelate fluoride anions, evidence of which was 

gained from 19F and 199Hg NMR, which are comparable to previously characterised
o

fluoride-bridged boron species. When fluoride chelation occurs the formerly vacant 

p-orbital at boron becomes populated and conjugation between the napthalenediyl 

and mesityl substituents is no longer mediated. As a result the absorption band in the 

UV/Vis spectrum is seen to progressively decrease upon incremental addition of 

fluoride, until the baseline is reached after addition of exactly 1 equiv. implying 

formation of a 1:1 guest-host complex. Photoexcitation of the fluoride-bound guest- 

host complex gives rise to a new intense emission at 480 nm, which is green in 

colour, indicating that the loss of conjugation isolates the napthalenediyl 

chomophore, which readily phosphoresces. These results prove that fluoride binding 

has no effect on the spin-orbit coupling induced by the mercury atom.

In a recent publication Gabbai et al. reported a fluoride-selective sensor based 

on a cationic or/Zzo-ammonium borane, which was found to display distinct 

photophysical changes on the binding of fluoride (Figure 4.3).9

Figure 4.3 A cationic borane as a fluoride-selective sensor
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Addition of a source of fluoride to the sensor in aqueous solution was found to induce 

rapid quenching of the UV/Vis absorption band at 321 nm, followed by precipitation 

of the fluoride-bound complex. From the fluoride-binding UV/Vis data a binding 

constant of 910 M’1 was calculated. Experimental and DFT studies have implied that 

the orf/io-trimethylammonium group leads to increased Lewis acidity, since the para- 

analogue was found to bind cyanide anions exclusively whilst treatment with fluoride 

resulted in no spectral changes in the UV/Vis spectrum. DFT results show that the 

energy of the LUMO in the ortho-isomer is lower than in the /?<zra-isomer. Steric 

crowding was thought to be one reason for the observed selectivity of this receptor
O 1

for fluoride. Addition of A1 ions to a solution of the fluoride-bound host-guest 

complex was found to result in regeneration of the fluoride-free receptor, indicated by 

changes in the UV/Vis spectrum.

4.1.3 Preliminary work

In previous studies towards the development of a sensor for fluoride anions 

made within the group, the mono-functional boronic ester lc  was found to act as a 

selective receptor for fluoride in chloroform solution. Electrochemical studies then 

revealed that the binding event was accompanied by a cathodic shift in the oxidation 

potential of the ferrocene centre of ca. -530 mV (from +131 to —403 mV with respect 

to ferrocene/ferrocenium).10 Conclusive evidence of formation of the four-coordinate 

adduct [FcB(OR)2F]‘ was gained via multi-nuclear (!H, nB and 19F) NMR and 

electro-spray mass spectrometry, and a relatively weak binding constant (K = 35±9

1 3  • 1mol’ dm ) was determined by use of a H NMR titration curve. This weak host-guest 

interaction was thought to be responsible for the high degree of selectivity for 

fluoride displayed. Despite the relatively large electrochemical shift observed on 

binding fluoride the thermodynamics of oxidation for compound lc  are not
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sufficiently favourable that atmospheric oxygen is able to oxidise the orange 

ferrocene compound to the corresponding green ferrocenium compound, hence this 

compound does not behave as a colorimetric sensor for fluoride. In subsequent 

investigations to facilitate colorimetric sensing, modifications to the existing sensor 

were made. Such modifications included the addition of an extra boryl group into the 

system, which is now capable of binding two equivalents of analyte, and 

consequently bringing about a larger electrochemical shift (ca. 1 V) on fluoride 

coordination. The 6/5-fluoride adduct is now oxidised by atmospheric oxygen 

affecting a visual colour change from orange to green and the bi-functional Lewis 

acid system featuring a stilbenediolate backbone (2a), as shown Scheme 4.3, has been 

reported to act as a fluoride specific colorimetric sensor molecule.11 The ferrocene to 

ferrocenium oxidation process, which accompanies fluoride binding, is characterised 

in the UV/Vis spectrum by the decay of bands at 341 and 449 nm and growth of 

features at 428 and 633 nm. Cyclic voltammetry results indicate a cathodic shift from 

the parent compound at +206 mV (with respect to ferrocenium/ferrocene) with two 

redox waves observed with net shifts of -590 and -960 mV. The former shift is 

similar to that measured for the mono-stilbene fluoride-bound adduct [lc*F]' and was 

hence assigned to oxidation of the mono-fluoride adduct, whilst the larger shift (and 

the observed oxidation in the presence of air) was thought to be strongly suggestive 

of the 6/5-fluoride adduct.
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Scheme 4.3 Colour change and chemical mode of action for a fo's-functional boronic 

ester as a colorimetric fluoride ion sensor in chloroform solution.

Subsequent studies on these systems led to the development of a receptor featuring a 

boron-based binding site with a Lewis basic component incorporated in the within the 

molecular framework, to facilitate whole acid binding, either of an intact HF 

molecule or as distinct H+ and F' components. The interaction of this receptor with 

three equivalents of HF in MeCN solution led to the isolation of a zwitterionic 

species [(T|5-C5Hs)Fe{r|5-C5H3(BF3)(CH2NMe2H)}], characterised spectroscopically 

and by X-ray diffraction (Figure 4.5). The intermolecular H-F interaction was found 

to be relatively weak as evidenced by a separation of 2.204 A (0.92 A for gaseous 

HF).12
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FeMeMe

F — --H

MeMe

Figure 4.5 Mixed Lewis acid/Lewis base system for whole acid binding

The key feature of this whole acid binding systems is the high selectivity for HF over 

other acids, demonstrated electrochemically in the presence of HC1. Addition of HF 

to the receptor revealed a cathodic shift of -80 mV consistent with transformation of 

a three-coordinate boronic acid group into an electron-donating four-coordinate 

boronate. By contrast, addition of HC1 caused a significant anodic shift (+149.5 mV), 

consistent with protonation of the amine moiety, with no significant Lewis base 

coordination at the boron centre.

4.1.4 Aims of Research

Considering recent advances in the field of colorimetric recognition of 

specific anionic species, it was decided to examine the potential of Lewis acidic 

binding of fluoride anions using the multi-functional ferrocene-based boryl 

compounds synthesised in chapter three. With the specific aim of advancing the
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prototype bi-functional Lewis acid system to proffer enhanced kinetics and sensitivity 

of response, a better knowledge of fundamental thermodynamic and kinetic factors 

behind the oxidation-based colorimetric response to fluoride was sought. A greater 

knowledge and understanding of such factors should allow particular sensor 

properties to be tuned via simple chemical modification. To this end, the effect of the 

number and nature of boronic ester groups and additional ligands on the efficiency 

and rate of colorimetric response have been systematically investigated. 

Thermodynamic aspects have been evaluated by use of cyclic voltammetiy and multi- 

nuclear NMR spectroscopy whilst the kinetics of response was assessed by time 

resolved UV/Vis spectroscopy.

4.2 Experimental

4.2.1 Electrochemical (CV) analysis o f  multi-functional borylmetallocenes 

Electrochemical analysis was carried out under the following conditions: electrolyte, 

0.1 M [nBu4N][PF6] in dry dichloromethane or acetonitrile; reference electrode 

standard, 0.1 M [nBu4N][PF6], 0.01 M silver nitrate in acetonitrile. Initially the 

electrolyte solution was degassed with argon to remove any dissolved oxygen before 

background cyclic voltammetry (CV) scans were recorded to guarantee the purity of 

the electrolyte solution prior to addition of the compound. Once a clean flat 

background CV had been measured a small sample of the Lewis acid (ca 2-5 mg) was 

added and the solution was further degassed to purge the solution of any additional 

dissolved oxygen and to dissolve the compound by agitation before spectral 

acquisition. Further CV scans were measured after of addition of 

ferrocene/ethylferrocene as the reference compound. This procedure was carried out 

for compounds la, lb , 3b, 4b and 4c.
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4.2.2 Electrochemical (CV) analyses o f multi-functional borylmetallocenes treated 

with fluoride

Electrochemical analysis was carried out under analogous conditions to those quoted 

in section 4.3.1. Once a clean flat background CV had been measured a small sample 

of the Lewis acid ica 2-5 mg) was added and the solution was further degassed to 

purge the solution of any additional dissolved oxygen and to dissolve the compound 

by agitation before spectral acquisition. Further CV scans were measured after 

addition of portions of solid [nBu4N]F and on addition of ferrocene/ethylferrocene as 

the reference compound. This procedure was carried out for compounds la, lb  and 

4b.

4.2.3 Chemical Oxidations

Chemical oxidation o f  lb

A solution of lb  (0.2 g, 5.49 mmol) in dichloromethane (50 ml) was added to a 

solution of silver (I) tetrafluoroborate (0.107 g, 5.49 mmol) also in dichloromethane 

(50 ml). A very rapid colour change from orange to blue was observed and the 

resulting dark blue solution was stirred for a further 12 h. After filtration to remove 

silver metal, solvent was removed in vacuo to yield a dark blue oily residue which 

was extracted into toluene. The toluene solution was concentrated, layered with 

hexanes and stored at -30 °C, whereupon crystals of [lb]+[BF4]' suitable for X-ray 

diffraction were grown over a 24 h period. nB NMR (96 MHz, CDCI3): 5 44.1. 

UV/Vis (chloroform): Â ax = 627 nm, e = 97.6 mol' 1 cm' 1 dm3. Crystal data: 

C2oH25B2F4FeC>2, orthorhombic, P 2\ 2\ 2 i, a = 9.0670(3) A, b = 10.0542(3) A, c = 

22.8151(9) A, V = 2079.86(12) A3, Z = 4, Dcaic = 1.440 Mg m'3, p(MoKcc) = 0 .7 7 3  

mm'1. A suitable crystal was covered in pre-dried mineral oil and mounted at 150(2)
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K. 4171 unique reflections were collected (3.57 < 0 < 26.37°). Final R-factor: Ri = 

0.0906.

Chemical oxidation o f lc

By an analogous method to that used for [lb]+[BF4]', lc  (0.2 g, 4.9 mmol) was 

oxidised with silver (I) triflate (0.125 g, 4.9 mmol) in dichloromethane solution (50 

ml). An immediate colour change from orange to dark green was observed. Layering 

of the concentrated dark green solution with hexanes at -30°C yielded blue plate-like 

crystals of [lc]+[CF3SC>3]' suitable for X-ray diffraction. nB NMR (96 MHz, CDCI3) 

6  44.5. Crystal data: C5oH42B2F6Fe20ioS2, monoclinic, P 2 , a = 10.1599(5) A, b = 

9.4937(5) A, c = 12.7481(10) A, V = 1175.17(13) A3, Z = 1 , = 1-575 Mg m'3,

p(MoKa) = 0.791 mm'1. A suitable crystal was covered in pre-dried mineral oil and 

mounted at 150(2) K. 4339 unique reflections were collected (3.72 < 0 < 26.37°). 

Final R-factor: Ri = 0.0689.

Chemical oxidation o f  2b

By an analogous method to those listed above, 2b (0.2 g, 3.69 mmol) was oxidised 

with silver (I) triflate (0.095 g, 3.7 mmol) in dichloromethane solution (50 ml). An 

immediate colour change from orange to dark green was observed. Layering of the 

concentrated dark green solution with hexanes at -30°C yielded blue plate-like 

crystals of [2 b]+[CF3SC>3]' suitable for X-ray diffraction. n B NMR (96 MHz, CDCI3) 

6  43.2. UV/Vis (chloroform): Amax = 631 nm, 6  = 107.6 mol' 1 cm' 1 dm3. MS(ES): M+ =

542.4 (100%). Crystal data: C3oH4oB3F4Fe0 4 , orthorhombic, P 2\ 2\ 2i, a = 11.243(3) 

A, b = 13.871(4) A, c = 19.773(5) A, V = 3083.9(15) A3, Z = 4, = 1.355 Mg m'3,

p(MoKa) = 0.547 mm'1. A suitable crystal was covered in pre-dried mineral oil and
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mounted at 120(2) K. 6208 unique reflections were collected (4.0 < 0 < 29.4°). Final 

R-factor: Ri = 0.0688.

4.2.4 NMR analyses o f fluoride binding to mono- and multi-functional Lewis acids 

la , lb, 4a, 4b and 4c

A sample of mono/multi-functional Lewis acid (typically approximately 20 mg) was 

weighed into a Young’s NMR tube under an argon atmosphere, dissolved in dry, 

degassed CD3CI, and the purity of the compound checked by nB and NMR 

preceding fluoride addition. Tetra-n-butyl ammonium fluoride trihydrate (1 equiv. ca. 

10 mg) was added to the Young’s NMR tube under an inert atmosphere. A 10-minute 

period was allowed for mixing before the nB and !H NMR were measured again. 

Subsequent equivalents of [nBu4N]F were added until the starting material was 

undetected in the nB NMR spectrum.

Spectroscopic data for la  + [nBu4N]F

nB NMR (96 MHz, CDC13) 6 B 9.75 (br); 19F NMR ([D]chloroform, 283 MHz, 20°C), 

5f -133.39.

Spectroscopic data for  lb  + MeHMTAF

“ B NMR (96 MHz, CDC13) 8 B 8.92 (br); l9F NMR ([D]chloroform, 283 MHz, 20°C), 

5f -137.29.

Spectroscopic data for 4b + ["Bu+NjF

"B NMR (96 MHz, CDCI3) 8 B 6.30 (br); 19F NMR ([D]chloroform, 283 MHz, 20°C), 

SF-134.0.

Spectroscopic data for 4c + ["BiuNjF
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nB NMR (96 MHz, CDC13) 5„ 5.11 (br); l9F NMR ([D]chloroform, 283 MHz, 20°C), 

Sf -135.1.

4.2.5 Binding stoichiometry o f multi-functional borylmetallocenes 3b, 4b and 4c by 

UV/Vis spectroscopy determined via Job’s Method.

Into nine sample vials were weighed varying masses (0 to 40 mg in 5 mg increments) 

of a multi-functional boiyl-metallocene (3b, 4b and 4c) and each dissolved in 

chloroform (8.4 ml). [nBu4N]F.3 H2 0  was added to each sample vial in varying 

amounts so as to keep the overall concentration constant (4.4 x 10' mol d m '). After 

one hour was allowed for thorough mixing of the solution and dissolution of oxygen 

into the system, the UV/Vis spectrum of each solution was recorded. A subsequent 

plot of absorbance of the ferrocenium peak against molar ratio provided a curve from 

which a binding stoichiometry can be ascertained.

4.2.6 UV Kinetic Studies

An aliquot containing a known excess of tetra-n-butylammonium fluoride trihydrate 

was added via syringe to 2.5 cm3 of a stock solution of the boronic ester (17.5 mM) 

contained within the UV cell. The absorbance in the UV spectrum for the band at ca. 

630 nm, associated with the ferrocenium product was then recorded at Is intervals for 

a period of 2400 s. Each boronic ester has a specific wavelength associated with its 

ferrocenium oxidation product; these values are displayed with the corresponding UV 

spectrum.
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4.3 Results and Discussion

4.3.1 Electrochemical and chemical oxidation of mono- and multi-functional 

ferroceneboronic esters

Electrochemical methods have long provided a valuable insight into the 

mechanisms of electron transfer reactions involved in redox processes and the 

ferroceneboronic esters described in chapter three were designed with this convenient 

method of analysis in mind. Cyclic voltammetry measurements have been carried out 

on compounds la , lb , 3a, 4b and 4c with a view to analysing the electronic effects of 

the number and nature of the pendant boiyl groups boryl groups. Measurements were 

carried out in either dichloromethane or acetonitrile solution depending on solubility, 

and in all cases ferrocene was used as a reference compound, except in the case of 3b 

where ethylferrocene was used as the reference compound. The cyclic 

voltammograms of compounds la, lb , 3b, 4b and 4c are shown in Figures 4.6- 4.10 

and a summary of relevant information is given in Table 4.1.
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Figure 4.6 Cyclic Voltammogram of compound la.
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Figure 4.7 Cyclic Voltammogram of compound lb.
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Figure 4.8 Cyclic Voltammogram of compound 3b.
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Figure 4.9 Cyclic Voltammogram of compound 4b.



Chapter Four Fluoride binding by mono-, bis-, tris- and tetrakis-functional 157
boron-containing Lewis acids

5.50E-06

3.00E-06

E/mV

150 650-1350

-4.50E-06

Figure 4.10 Cyclic voltammograms of compound 4c.

Compound Solvent Oxidation

Potential

(mV)

Peak-Peak

separation

(mV)

Potential 

Relative to FcH 

(Ref.) (mV)

la MeCN +216 100 +29

lb MeCN +206 90 +90

3b* Dichloromethane +544 107 +305*

4b Dichloromethane +680 90 +430

4c Dichloromethane +501 149 +280

lc Dichloromethane +317 91 +131

Table 4.1 Electrochemical data for boiylferrocene systems la, lb , 3b*, 4b, 4c and lc 

(*3b referenced against ethylferrocenium/ethylferrocene).
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All compounds (la, lb, 3b, 4b and 4c) exhibit reversible oxidation processes 

characteristic of the ferrocene/ferrocenium redox couple. The reversible nature of 

these electrochemical processes implied by the observed peak-peak separations is 

approaching ideal behaviour, but these processes appear to be slightly less 

electrochemically reversible as indicated by increased peak-peak separations (ca. 

95mV) which if displaying typical Nemstian behaviour would be closer to 59 mV. 

With respect to ferrocene, the oxidation potentials of these compounds are shifted 

anodically and this is easily rationalised with consideration of the Lewis acidity of the 

boron centre. Conjugation of the formally vacant p-orbital at boron causes electron 

withdrawal from the 7c-orbitals of the cyclopentadienyl aromatic system; hence the 

iron centre becomes less electron rich and less easily oxidised compared with 

ferrocene. The effect becomes more pronounced as additional boryl groups are 

introduced to the system as evidenced by the increasingly anodic shifts observed for 

tris- (+305 mV cf. EtFcH) and te/rakfr-functionalised systems (+430 mV cf. FcH), 

compared to shifts observed for mewo-borylmetallocenes (+90 mV cf. FcH) and bis- 

borylmetallocenes (+206 mV cf. FcH). Electrochemical shifts observed for the novel 

mowo-compounds (la and lb) are slightly lower (ca. 100 mV) than that observed for 

the previously reported mono-compound lc  as shown in Table 4.1, it is likely that 

solvent effects are responsible for the difference in shifts, la  and lb  were run in 

acetonitrile where lc  was run in dichloromethane.

As discussed, tris- and tetrakis-boronic esters are shifted anodically compared 

to mono- and bi-functional compounds; this is consistent with the 7i-electron 

withdrawing nature of the boronic ester fragment, and is shown pictorially in Figure 

4.12 in which the cyclic voltammograms for mono-, bis-, tris- and tefrafa's-stilbene 

compounds (lc, 2a, 3b and 4b) have been overlaid.
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Figure 4.12 Cyclic voltammograms comparing lc (black trace), 2a (blue trace), 3b 

(green trace) and 4b (red trace), referenced against ferrocenium/ferrocene (lc, 2a, 

4b), ethylferrocenium/ethylferrocene (3b).
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Figure 4.13 Plot of E1/2 against the Hammett parameter summed for each additional 

boronic ester group in lc, 2a, 3b and 4b (blue triangles), 5a and 5b ( Vide infra, red

squares).
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The plot of E1/2 versus £ o p (where op is the Hammett para coefficient associated with

the boronic acid group), gives a straight-line plot for both the ferrocene-based

stilbene-compounds (lc, 2a, 3b and 4b) and the pentamethylferrocene-based stilbene

compounds (5a and 5b, see Figure 4.11). In the case of compounds lc, 2a, 3b and 4b,

it is apparent that each additional boronic ester group instigates an anodic shift of ca.

110 mV, in effect this anodic shift serves to stabilise the neutral molecule against

formation of the corresponding cation. This anodic shift is comparable to a value of

120-160 mV per chloride substituent calculated for the analogous chlorinated

11feirocenes CioHio-xC lxFe. This analysis serves as a useful probe for stereoelectronic 

effects at work in these systems; in this case we observe a linear plot of Em  Vs ap and 

this evidence serves as proof that the multiple boryl groups act independently of each 

other.

Further modification was made to the existing systems involving the use of 

the more strongly electron donating Cp* ligand. The mono- and bis- 

stilbenediolatoboryl compounds featuring a Cp* ligand (5a and 5b) were prepared by 

C. Bresner, 14 as shown in Scheme 4.4 (the preparation of these compounds is 

discussed in chapter three).

[B r2B ] l(R O )2B] B (O R )2

Scheme 4.4 Syntheses of pentamethyferrocene-based Lewis acids containing one or 

two pendant boronic ester functions (5a and 5b)
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These compounds were prepared with a view to improving the response time 

associated with colorimetric sensing of fluoride. The electron donating methyl groups 

of the Cp* ligand should enhance the kinetics of the system because the iron centre is 

more electron rich, making oxidation more thermodynamically favourable according 

to Marcus theory. This effect is clear in the cyclic voltammograms of the mono

substituted compounds 5a (black trace) and lc (blue trace), in which a cathodic shift 

of ca. -300 mV is observed on permethylation of the Cp ligand (Figure 4.11).

450.00 BmV1.00-1550.1

-1.50E-06

Figure 4.11 Cyclic voltammograms of lc (blue trace) and 5a (black trace) overlaid.

Compound Solvent Oxidation 

Potential (mV)

Peak-Peak

separation

(mV)

Potential Relative 

to FcH (Ref.) (mV)

5a Dichloromethane -126 91 -169

5b Dichloromethane -32.3 1 0 0 -83

lc Dichloromethane +317 91 +131

Table 4.2 Electrochemical data for borylferrocene systems lc, 5a and 5b
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Chemical oxidation of ferroceneboronic esters has also been undertaken using 

silver(I) oxidants; thus isolation of ferroceniumboronic esters in the absence of 

fluoride has been possible. Silver® salts are very widely used as one-electron 

oxidants, however it is worthwhile to note that the oxidation potential of such 

oxidants depends greatly on the solvent; whereas silver® salts can be considered 

strong oxidants in dichloromethane solution, they are considered weak oxidants in 

acetonitrile solution. Consistent with these findings, the chemical oxidation of 

ferroceneboronic esters was easily achieved by the use of a silver® oxidant 

[Ei/2(Ag+/Ag) = +650 mV in dichloromethane], while the analogous reactions in 

acetonitrile are unfeasible [Ei/2(Ag+/Ag) = +40 mV in MeCN] . 15 Chemical oxidation 

of lb , lc, 3b, 4b and the £/s-pinane compound (2b) have been performed in 

dichloromethane using silver® triflate and silver® tetrafluoroborate oxidants 

(Scheme 4.5).

A gO T f or AgBF4

DCM 
- Ag

D Me

Me Me

■ C C I

Scheme 4.5 General preparative scheme for ferroceniumboronic esters.
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In all cases a very rapid orange-green/blue colour change is observed on addition of 

the oxidant accompanied by precipitation of silver metal, which is subsequently 

removed by filtration. Compound lb  was oxidised with one equivalent of silver(I) 

tetrafluoroborate to yield a blue solution, from which crystals suitable for X-ray 

diffraction were grown after layering with hexane. The solid-state structure of 

[lb]+[BF4]- is illustrated in Figure 4.14; selected bond lengths and angles are listed in 

Table 4.3.

F I

F4

Figure 4.14 Molecular structure of [lb]+[BF4]\ ORTEP ellipsoids set at the 50 % 

probability level. Hydrogen atoms omitted for clarity. Fluoride atoms of the 

tetrafluoroborate counter ion remain isotropic due to a high degree of disorder and 

difficulty in modelling these atoms anisotropically.



Chapter Four Fluoride binding by mono-, bis-, tris- and tetrakis-functional 164
boron-containing Lewis acids

Table 4.3 Bond lengths [A] and angles [°] for lb +BF4.____________

0(1)-B(1) 1.350(11) 0(2)-B(l) 1.350(12)

C(5)-B(l) 1.554(13) C(5)-Fe(l) 2.135(7)

C(ll)-0(1) 1.491(10) C(16)-0(2) 1.457(10)

0(l)-B(l)-0(2) 115.7(8) 0(2)-B(l)-C(5) 122.5(8)

0(1)-B(1)-C(5) 121.9(8) B(l)-0(1)-C(ll) 107.4(6)

B(l)-0(2)-C(16) 108.3(6) C(4)-C(5)-C(l) 105.8(7)

Many of the structural parameters associated with compound [lb]+[BF4]' are similar 

to those observed for the analogous neutral compound lb; the O-B-O bond angle of 

115.7(8)° is comparable to that found for lb  (112.7(8)°). The sum of angles about the 

boron centre is found to be 359.9(24)° much like the ferroceneboronic ester 

analogues. B-O bond lengths are within the expected region of ca. 1 .3 7  A (compared 

with B-O bond lengths noted for analogous un-oxidised compounds discussed in 

chapter three). In this case the boryl moiety is found be lying closer to the plane of 

the Cp ligand, the tilt angle being only 1.9° where in the parent compound (lb) the tilt 

angle is 1 0 .6 °, perhaps this is because the iron centre now has less electron density to 

interact with the vacant p-orbital at the boron centre, hence the boiyl fragment is 

tilted less towards the iron centre. There are two further features to note, firstly the Cp 

rings are perfectly eclipsed and secondly the boiyl fragment is twisted out of the 

plane of the Cp ligand by an angle of (27.4°) where it lies virtually planar in the 

parent compound, these features are likely to be result of the crystal packing system.
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In a similar fashion compound lc was oxidised with one equivalent of 

silver(I) triflate in dichloromethane solution, to yield a green solution, from which 

crystals suitable for X-ray diffraction were grown after layering with hexane at -  

30°C. The solid-state structure of [lc]+[CF3S0 3 ]‘ is illustrated below in Figure 4.15; 

selected bond lengths and angles are listed in Table 4.4.

Figure 4.15 Molecular structure of [lc]+[CF3S 03]‘. ORTEP ellipsoids set at the 50 % 

probability level. Hydrogen atoms omitted for clarity.
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_________ Table 4.4 Bond lengths [A] and angles [°] for [lc]+[CF3SQ3]~._________

0(1)-B(1) 1.352(9) 0(2)-B(l) 1.380(9)

C(l)-B(l) 1.555(11) C(l)-Fe(l) 2.096(7)

C(12)-0(l) 1.447(7) C(1l)-0(2) 1.429(8)

0(l)-B(l)-0(2) 114.8(7)

0(1)-B(1)-C(1) 124.0(6)

B(l)-0(2)-C(12) 108.6(5)

0(2)-B(l)-C(l) 121.2(6)

B(l)-0(1)-C(ll) 107.5(5)

C(4)-C(2)-C(l) 105.7(6)

As with compound [lb]+[BF4]', many of the salient parameters associated with 

[1c]+[CF3S 03]" are similar to those observed for the parent compound (lc). The O-B- 

O angle is found to be 114.2(7)°, similar to that previously observed for lc  

(113.1(4)°). The sum of angles about the boron centre is calculated at 359.9(19)°, 

indicative of a boron centre in a perfect trigonal planar orientation. B-O bond lengths 

are found to be similar to those found in previously characterised analogues (see 

Chapter three) ca. 1.37 A and the tilt angle is found to negligible (2.4°), as with lc. 

The Cp rings in this case, like [lb]+[BF4]', are perfectly eclipsed; again, this is 

probably a feature of the crystal packing system.

The oxidation of compound 2b was also undertaken using one equivalent of 

silver(I) tetrafluoroborate in dichloromethane solution, to yield a green solution, from 

which crystals suitable for X-ray diffraction were grown after layering with hexane at 

—30°C. The solid-state structure of [2 b]+[BF4]' is illustrated below in Figure 4.16; 

selected bond lengths and angles are listed in Table 4.5.
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Figure 4.16 Molecular structure of [2b]+[BF4]‘. ORTEP ellipsoids set at the 30 % 

probability level. Hydrogen atoms omitted for clarity.
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Table 4.5 Bond lengths [A] and angles [°] for [2b]+[BF4]~.___________

0(1)-B(1) 1.352(8) 0(2)-B(l) 1.355(8)

C(l)-B(l) 1.561(8) C(16)-B(2) 1.551(8)

C(6)-0(l) 1.471(6) C(ll)-0(2) 1.482(6)

0(3)-B(2) 1.370(8) 0(4)-B(2) 1.360(7)

0(l)-B(l)-0(2) 115.6(5) 0(3)-B(2)-0(4) 115.6(5)

0(1)-B(1)-C(1) 122.7(6) 0(4)-B(2)C(16) 122.6(5)

B(l)-0(2)-C(l 1) 107.7(4) C(l)-B(l)-0(2) 1 2 1 .6 (6 )

C(16)-B(2)-0(3) 121.5(6) C(16)-B(2)-0(4) 122.6(5)

As with compounds [lb]+[BF4]' and [lc]+[CF3S 03]', the relevant parameters 

associated with [2 b]+(BF4]\ are similar to those observed for the parent compound 

(2b). The O-B-O angles are found to be ca. 115.6(5)°, slightly larger than those 

previously observed for analogous charge neutral compounds (ca. 113.1(4)°). The 

sum of angles about the boron centre is calculated at 359.9(16)°. B-O bond lengths 

are similar to those observed for analogous un-oxidised ferroceneboronic ester 

compounds discussed in chapter three (ca. 1.37 A), and the tilt angle is found to 

negligible (0 .2 °), smaller tilt angles have been consistently observed with 

ferroceniumboronic esters. The Cp rings in this case are actually staggered, unlike the 

Cp rings in the oxidised analogues [lb]+[BF4]" and (lc]+[CF3S 0 3]‘. The torsion angle 

in this case is 36.8°, which is small considering the steric bulk of the pinane fragment 

and the likely steric repulsion between the two pinane fragments. In the parent 

compound (2 b) the torsion angle was found to be 162.2°, this is likely to be simply a
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feature of the crystal packing system rather than a result of the oxidation of this 

compound.

Chemical oxidation of /ns-functionalised ferroceneboronic esters was also 

undertaken, using the silver(I) triflate and tetrafluoroborate oxidants in 

dichloromethane solution has yielded blue/green solutions, which after subsequent 

layering with hexanes at -30°C yields powdery orange solid after ca. 24 h, which was 

confirmed by mass spectrometry to be the un-oxidised starting material. Chemical 

oxidation of the te/raAis-functionalised ferroceneboronic esters was also undertaken 

but proved unsuccessful, with the blue oxidised compounds also being reduced back 

to un-oxidised starting material after layering. The silver (I) oxidant has a redox 

potential of +0.65 V in DCM (with respect to ferrocene), thus it is a strong enough 

oxidant to oxidise tris- and te/ra£w-functionalised compounds (oxidation potential of 

3b = +305 mV and oxidation potential 4b = +430 mV, both with respect to 

ferrocene). It is apparent that the combined effect of oxidation and the electron- 

withdrawing boiyl groups create a highly electron poor iron centre which is stable 

only for a limited time, before it is reduced. Oxidation of tetrakis-fnnci\ovm\ 

ferroceneboronic esters has also been attempted using the very strong oxidant, 

nitrosonium tetrafluoroborate. The NO+ ion is generally considered a non-innocent 

chemical oxidant since it tends to display coordinative behaviour and is believed to 

perform inner-sphere electron-transfer processes, indeed this ion proved to be non

innocent, causing complete degradation of the starting material. 16
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4.3.2 Analysis of fluoride binding by NMR

The complexity of NMR spectra of the tris- and tetrakis-functioned boronic 

esters of ferrocene (3b, 4b and 4c) has meant that the effectiveness of NMR as an 

analytical technique to monitor fluoride binding by tris- and tetrakis-fmctionai 

boronic esters is drastically reduced. Spectra, particularly NMR spectra, become 

ever more complex where there are > 2  binding sites for fluoride anions and it is not 

possible to reliably monitor the movement of a single peak in the NMR spectrum 

for the purpose of plotting a lH NMR titration curve. Determination of the mode, 

stoichiometry and thermodynamics of binding for the tris- and tetrakis-functional 

boronic esters is of much importance in terms of their application in the field of anion 

sensing. As discussed, the NMR spectra of the tris- and tetrakis-^mctioneX boronic 

esters become too complex to determine a binding constant or mode of binding via 

construction of a !H NMR titration curve, possibly due to in-equivalent binding 

and/or slow exchange between binding sites. However, NMR investigations have 

been performed, mainly using nB and 19F NMR techniques to study fluoride binding, 

although the results are really only sufficient to confirm interaction with fluoride.

In the case of compounds la  and lb, treatment with excess quantities of 

fluoride as [nBu4N]F or methylhexamethylenetetramine fluoride (MeHMTAF) in 

chloroform solution (methanol/acetonitrile where MeHMTAF is the fluoride source) 

under anaerobic conditions, leads to an upheld shift in nB NMR spectra, from the 

fluoride-free species (8 B 32.7 ppm) to a broad resonance at 5B 9.8 ppm (la) and 5B 8.9 

ppm (lb). The spectra of the te/raHs-functional compounds 4b and 4c reveal a 

similar effect. Treatment of 4b and 4c with excess fluoride as [nBu4N]F in chloroform 

solutions under anaerobic conditions leads to an upfield shift in the nB NMR spectra, 

from the free receptors (8 B 33.1 (4b) and 5B 32.7 (4c) ppm) to a broad resonance at 5B
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6.3 ppm (4b) and 8 b 5.1 ppm (4c). These shifts are consistent with the binding of an 

anionic donor to three-coordinate boron and are comparable to the upfield shift of ca. 

25 ppm observed after treatment of 2a (^w-(stilbenediolatoboryl) compound) with 

excess ["BiuNJF in chloroform ( 8 b  34.0 ppm to 8 b  9.4 ppm). The 19F NMR spectra of 

compounds la, lb, 4b and 4c treated with fluoride reveal shifts distinctly different 

from the shifts of the individual fluoride sources themselves, 8 f -133.4 ppm (la), 8 f -

137.2 ppm (lb), 8 f -134.0 ppm (4b) and 8 f -135.1 ppm (4c), compared with the 

standard fluoride sources used; [nBu4N]F ( 8 f  -122.7) and MeHMTA+F‘ ( 8 f  -150.0).

This data is strongly suggestive of some form of Lewis acid-fluoride 

interaction taking place; however determination of the mode of binding and binding 

stoichiometry requires further investigation. Regarding the multi-functional boronic 

esters, there are two simple possible modes of anion binding: chelation of a fluoride 

anion to two boron centres, or mono-dentate coordination of a single fluoride anion 

which is then fluxional between a pair of boron centres (Figure 4.17).

RO,B
Fe

BO

BO

BO,Rr o 2b

Figure 4.17 The three possible modes of fluoride binding for te/rafa’s-functional

ferrocene boronic esters
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4.3.3 Analysis of fluoride binding of multi-functional borylmetallocenes 3b, 4b 

and 4c by UV/Vis spectroscopy

It was observed in initial studies that tris- and /e/raAxs-borylmetallocenes 3b, 

4a, 4b and 4d achieved the selective binding of fluoride anions over other anions (CF, 

Br', BF4", PF6‘) in solution, and undergo a similar orange to green colour changes on 

exposure to fluoride in air as the prototype 6/s-boiylmetallocene compound (Figure 

4.18). This colour change occurs with apparently very different kinetics i.e. much 

more rapidly with the tris- and tetrakis-functional compounds. By eye, a veiy rough 

estimate of time taken for a colour change to occur was noted for bis- and tetrakis- 

functionalised receptors (ca. 30 minutes and ca. 30 seconds respectively). This 

interesting observation provided confirmation that response to fluoride could indeed 

be tuned to meet specific requirements by simple chemical modification. From this 

observation arose the palpable question of binding stoichiometry, i.e. how many 

equivalents of fluoride are being bound to affect such rapid response.

Figure 4.18 Samples prepared for the Job Plot of 4b displaying the colour change 

observed on addition of fluoride to a chloroform solution, under aerobic conditions.
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UV/Vis spectroscopy provides a convenient means of monitoring the orange- 

green colour change, and is strongly suggestive that the colorimetric response is 

associated with formation of a ferrocenium ion, with a new band growing in at ca. 

640 nm. This band is similar in energy and intensity to that observed in the spectrum 

of ferrocenium itself (617 nm), which has been attributed to a E2g -  Eiu LMCT 

charge transfer process.17 Compounds 3b and 4b both display absorptions at 454 nm 

and 472 nm respectively, and like ferrocene itself, display no significant absorptions 

above 530 nm. These bands are quantitatively replaced by new features at 640 nm 

(4b) and 654 nm (3b) upon aerobic addition of excess ["BiliNJF (Figure 4.19).

4
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1

0

350 450 550 650 750
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Figure 4.19 UV/Vis spectra of 4b (orange trace), and 4b plus excess [nBu4N]F (green

trace) in chloroform solution.
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Similar anion binding studies were performed on the tetrakis-functional 

ferroceneboronic ester featuring the pinane backbone (4c). Interestingly it was found 

that a solution of 4c in chloroform underwent an extremely slow orange-green colour 

change after the addition of excess [nBu4N]F and exposure of the solution to 

atmospheric dioxygen. Addition of alternative sources of fluoride (MeHMTA+F and 

KF/18-crown-6) in various solvents affected the same result. Response time is key in 

the design and manufacture of colorimetric sensors for GB (Sarin), as the action of 

Sarin as a nerve agent is extremely rapid, and a potential sensor must be capable of 

detection on a smaller timescale. This observation precludes the potential use of 4c as 

a colorimetric sensor for such fluoride-containing analytes, as the response time is not 

within a useable timeframe.

Prior to investigation into the kinetics at work in the system, it was decided to 

attempt to determine a binding stoichiometry by construction of a Job plot via 

UV/Vis spectroscopy. Job’s method can be used to identify a binding stoichiometry 

and a provisional binding constant and is generally carried out by UV/Vis 

spectrophotometry. UV analysis is performed on samples containing various 

equimolar quantities of host and guest species, each solution maintains a constant 

final concentration. The results are plotted in a graph of host-guest complex 

absorbance versus molar fraction, the maximum of which determines the binding 

stoichiometry. Conditional formation constants can be calculated using equations 

proposed by Likussar and Boltz, 18 however this method has not been used to 

determine a binding constant in this case. For this analysis, which was carried out on 

compounds 3b and 4b, varying masses of boryl-metallocene were weighed into 

sample vials and dissolved in chloroform, the fluoride source [nBii4N]F was weighed 

in the corresponding varying masses as to keep the overall concentration of each
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solution constant (4.4 x 10'3 mol dm'3). Each solution was exposed to the air for one 

hour to allow for oxygen dissolution into the system, after which the UV/Vis 

spectrum of each solution was run. The results were plotted as follows:
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Figure 4.20 Job plot of tri-functional boryl-metallocene 3b

0.12

0.1Ec o
CO 
CD
to 0.08
CO 
CD 
C L

a>oc
(0

-O

oco-Q<

0.06

0.04

0.02

0.2 0.4 0.6

Mole Fraction

0.8

Figure 4.21 Job plot of tetra-functional boryl-metallocene 4b
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As can be clearly seen from the graphs, a conclusive binding stoichiometry cannot be 

determined from these plots as the maximum spans the region of 2, 3 and 4 

equivalents of fluoride. Thus these graphs cannot be used to determine a binding 

constant using Likussar and Boltz’s method. However it is relevant to note that these 

receptors do not behave as classical sensors, in that the binding of fluoride in this case 

is not truly an equilibrium process. Irreversible oxidation of the sensor molecule 

would occur under these conditions. Typically a binding constant is a measure of an 

equilibrium between the association and dissociation processes after infinite reaction 

time; Kass = kon / kofr and KdiSS = kofr / kon- Alternative methods have been used to 

investigate anion binding by tri- and tetra-fimctional boiyl-metallocenes further and 

are discussed in section 4.4.5.

4.3.4 Analysis of fluoride binding by electrochemical methods

In much the same way that cyclic voltammetry (CV) has been used to analyse 

the electronic effects of the boiyl group, it is also a convenient analytical method for 

monitoring the process of fluoride binding by these systems. The effect of fluoride 

binding on the oxidation potential of the ferrocene moiety is very pronounced in the 

CV spectrum as a result of the electronic changes that take place at the boron centre. 

Prior to fluoride binding the boryl groups act as net electron withdrawing groups as 

evidenced by the increasing anodic shift of the ferrocene moiety observed as the 

number of pendant boiyl groups increases. This effect is reversed on the binding of 

fluoride as the resulting four-coordinate borate moiety acts as an electron-donating 

group. Consequently the ferrocene fragment becomes more electron rich and hence is 

oxidised at a lower potential. In previous anion binding studies the mono-functional 

ferroceneboronic ester lc  was found to act as a selective receptor for fluoride, with
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the binding event being accompanied by a cathodic shift in oxidation potential of the 

iron centre from +131 mV to -403 mV, a total shift of -534 mV. In subsequent anion 

binding studies made on novel mono-functional ferroceneboronic esters (la  and lb); 

similar cathodic shifts of ca. -460 mV were observed in dichloromethane solution. 

The CV scan for la  treated with solid [nBu4N]F in dichloromethane solution is shown 

in Figure 4.22, with the CV scan for the parent compound overlaid.

600

E/mV

Figure 4.22 Cyclic voltammogram of la  (blue trace) and la  plus > 1 equivalent of 

[nBu4N]F (red trace) in dichloromethane.

In the case of the previously reported compound 2a, featuring two boryl 

groups, the receptor is capable of binding two equivalents of fluoride, with the effect 

that the iron centre becomes so electron rich that it is oxidised by atmospheric di

oxygen. This is evident from the CV scan, in which two distinct binding events are 

observed in the presence of excess fluoride; these are measured at -384 and -746 mV
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(with respect to ferrocene/ferrocenium) and represent net shifts o f -590 and -1002 

mV compared to the parent compound as shown in Table 4.6. The former shift is 

similar to that observed for lc treated with fluoride, and is therefore assigned to the 

mono(fluoride) adduct [2a«F]‘; the larger shift is logically indicative of the formation 

of the &/s(fluoride) adduct [2a*2F]2', considering also the observed aerobic oxidation 

of this adduct. The CV scan of 2a treated with solid ["BiljNJF in dichloromethane 

solution is shown in Figure 4.23, with the CV scan for the parent compound overlaid.
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Figure 4.23 Cyclic voltammogram of 2a (blue trace) and 2a plus > 2 equivalents of 

[nBu4N]F (red trace) in dichloromethane.
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Compound Initial oxidation 

potential (mV)

F" adduct 

potential relative 

to FcH (mV)

Cathodic 

shift (mV)

la +216 -237 -482

lb +206 -146 -442

lc +317 -403 -534

2a +448 -746 -1002

Table 4.6 Electrochemical data for boiylferrocene systems la, lb, lc, and 2a treated 

with [nBu4N]F in dichloromethane referenced against ferrocene/ferrocenium.

As mentioned in section 4.4.3, tris- and /e/raATs-functionalised ferroceneboronic 

esters 3b and 4b undergo a similar (although much more rapid) orange-green colour 

change on exposure to fluoride in air. CVs of 3b and 4b in the presence of excess 

fluoride are however indicative of irreversible electrochemical processes. The CV 

scan of 4b treated with excess [nBu4N]F in dichloromethane is shown in Figure 4.24.
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Figure 4.24 Cyclic voltammogram of 4b (blue trace) and 4b plus > 4 equivalents of 

[nBu4N]F (red trace) in dichloromethane.

The CV scan features an oxidation wave at a +69 mV (red trace), a net shift of -622 

mV from the parent compound, which features an oxidation wave at -680mV (blue 

trace). This is similar to the cathodic shift in oxidation potential observed for 

bis(fluoride) adduct [2a*2F]' of -590 mV. However this oxidation wave cannot be 

reliably assigned to the [4b*2F]‘ adduct as the wave is irreversible and there are other 

features at higher oxidation potentials in the CV. The rapid orange-green colour 

change observed on aerobic exposure to fluoride is indicative of formation of at least 

the ^/5(fluoride) adduct, as thermodynamically the shift typically associated with 

formation of such a dianion would be the minimum required for oxidation by 

atmospheric dioxygen. The potential associated with the O2/O2’ redox couple in non-
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aqueous solution is known to be strongly dependant on pH. For example, for 

O2 + e' —► O2’, Ej/2 = -1000 mV versus Fc+/Fc in DMF, while for O2 + H+ + e' —► 

HO2, Ej/2 = -280 mV also referenced against Fc+/Fc in DMF. 19 All solution anion 

binding studies have been performed in chloroform or dichloromethane solution, 

however the use of the ["BiuNJFjri-hO fluoride source inevitably introduces a protic 

component to the reaction mixture, making O2 a stronger oxidant than it would be in 

strictly aprotic solution.

4.3.5 Kinetic aspects of colorimetric fluoride ion sensing

Previous anion binding studies suggest that tris- and tetra-functional 

ferroceneboronic esters bind two or more equivalents of fluoride. Thus the 

colorimetric response to fluoride and the maximum observed in the Job plot (although 

broad) both imply the binding of > 2 equivalents of fluoride. Monitoring the rate of 

colorimetric response as a function of fluoride concentration offers a means of 

assessing fluoride binding.

The kinetics of colorimetric response have been evaluated by UV/Vis 

spectroscopy, following the observation that anion binding proceeds with 

accompanying growth of a ferrocenium band in the UV/Vis spectrum. The intensity 

of the ferrocenium band was monitored as a function of time for various 

ferroceneboronic esters treated with fluoride. Initial studies have highlighted the 

critical dependence of the kinetic response on the oxidant. It was found that under 

strictly anaerobic conditions, in the absence of dissolved dioxygen, a solution of 4b in 

chloroform shows no colorimetric response to [”Bu4N]F, and the ferrocenium band at 

ca. 640 nm is absent. The effect of pre-saturating the chloroform solvent with 

dioxygen was found to be negligible as reactions carried out in bench chloroform and
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chloroform pre-saturated with dioxygen were found to undergo aerobic oxidation 

with similar absorption/time profiles. In addition, chloroform solutions pre-saturated 

with argon but exposed to air on addition of the fluoride source, demonstrate how the 

sensor response is limited by the rate of diffusion of dioxygen into the system, in that
o  i

the initial rate is reduced by approximately 70 % (from 1.6 x 10* to 4.6 x 10' s*). 

The graph below shows the kinetics of oxidation of 4b in chloroform solution under 

different degrees of oxygenation (Figure 4.25).
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Figure 4.25 Plot of normalized absorbance vs. time for ferrocenium band at 640 nm 

formed on addition of 15 equiv. ["Bu^NJF to 4b in chloroform solution (17.5 mM) 

under different degrees of oxygenation green: strictly anaerobic conditions; red: 

solvent pre-saturated with argon but exposed to air during measurement; blue: 

untreated bench solvent; black: solvent pre-saturated with dioxygen.
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The logarithmic plot (Figure 4.26) proves the initial rate of response to fluoride to be 

pseudo first-order and demonstrates the much-reduced initial rate in the absence of 

excess oxygen.
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Figure 4.26 Pseudo first-order fits for red (solvent pre-saturated with argon but 

exposed to air during measurement) and blue data (untreated bench chloroform

solvent) for t < 30 s.

UV/Vis monitoring of bands associated with the respective ferrocenium 

products of 2a, 3b and 4b treated with fluoride proves consistent with substantial 

variation in reaction kinetics depending on the number of boronic ester binding sites. 

The plots of normalised absorbance, A/A(max), against time for bis, tris and tetrakis 

stilbene diolate-fimctionalised receptors 2a, 3b and 4b are shown below in Figure 

4.27. All measurements were performed under standardised conditions and are not
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limited by fluoride concentration or availability of oxidant (15 equiv. fluoride, bench 

chloroform, 20°C).
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300 600 9000 1200
Time (s)

Figure 4.27 Plot of normalized absorbance against time for the band at ca. 630 nm 

associated with the oxidized ferrocenium species formed on addition of ["Bi^NJF (15 

equiv.) to the receptors 2a, 3b and 4b (17.5 mM). Red: 2a (monitored at 633 nm); 

green: 3b (654 nm); blue: 4b (640 nm).

This graph substantiates the initial observation made that the response of tris- and 

tetrakis-fimctionalised ferroceneboronic esters to fluoride follows vastly different 

kinetics than that of 6/s-functionalised system. The very steep initial curve for 3b and 

4b compared to 2a clearly indicates that the rate of formation of the ferrocenium 

product is significantly enhanced for the tris- (3b) and /e/rafo's-functionalised (4b) 

compounds, compared with the Zus-functionalised (2a) analogue.
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Figure 4.28 Logarithmic plot to determine pseudo first-order rate constants. Red: 2a;

green: 3b; blue: 4b.
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Assuming pseudo first-order kinetics, the linear plots shown above in Figure 4.28 

reveal similar rate constants for 3b and 4b (5.4 x 10*2 and 6.0 x 10' 2 s' 1 respectively), 

which are at least one order of magnitude larger than the rate constant calculated for 

2a (2 x 10' 3 s'1). Pseudo first-order kinetics are assumed, given the large excess of 

fluoride used, hence the concentration of fluoride is assumed to remain constant, and 

with the knowledge that under these solvent conditions, the rate is not oxidant 

limited.

To further explore the kinetic factors underlying these observations, the 

kinetics of the reactions of 3b and 4b with fluoride as a function of fluoride 

concentration were investigated. In each case the intensity of the absorption peak 

characteristic of each ferrocenium species (654 nm and 640 nm for 3b and 4b 

respectively) was measured as a function of time for a number of kinetic runs in 

which the fluoride concentration was systematically varied. Estimates of the initial 

rate, Vj, for each run were obtained by fitting a linear function to the absorbance/time 

data for t < 20 s. Using the method of initial rates,20 the order of reaction with respect 

to fluoride was obtained from the gradient of the linear plot of ln(vj) against ln[F']. 

The results are shown below in Figure 4.29 and 4.30 (3b) and Figure 4.31 and 4.32 

(4b).
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Figure 4.29 Plot of absorbance against time for the growth of the band at 654 nm 

associated with the ferrocenium species formed on oxidation of 3b (17.5 mM) in the 

presence of different concentrations of ["BiuNJF. The eight traces (bottom to top) 

were obtained for ["Bu4N]F concentrations of 17.5, 26.3, 35.0, 43.8, 52.5, 61.3, 78.8 

and 87.5 mM, and initial rates (vj) obtained by fitting the data to a linear expression in 

time.
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Figure 4.30 Plot of ln(vj) against ln(fluoride concentration) for the generation of the 

ferrocenium species formed on oxidation of 3b in the presence of different 

concentrations of ["Bu^NJF. Two independent sets of data are plotted, that 

represented by the blue triangles corresponding to the kinetic runs described by the 

upper figure.
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Figure 4.31 Plot of absorbance against time for the growth of the band at 640 nm 

associated with the ferrocenium species formed on oxidation of 4b (17.5 mM) in the 

presence of different concentrations of ["BiljNJF. The seven traces (top to bottom) 

were obtained for ["BiljNJF concentrations of 17.5, 26.3, 35.0, 43.8, 61.3, 70 and 87.5 

mol dm 3, and initial rates (vj) obtained by fitting the data to a linear expression in 

time.



In
(v

i)
Chapter Four Fluoride binding by mono-, bis-, tris- and tetrakis-functional 190 

boron-containing Lewis acids
2.8 3.2 3.6 4 4.4

2

y= 1.893x-12.204 
R2 = 0.958-4

-6

y = 2.197x-13.445 
R2 = 0.942

8
ln[fluoride]

Figure 4.32 Plot of ln(vj) against ln(fluoride concentration) for the generation of the 

ferrocenium species formed on oxidation of 4b in the presence of different 

concentrations of [”Bu4N]F. Two independent sets of data are plotted, that 

represented by the blue triangles corresponding to the kinetic runs described by the 

upper figure.

In each case the data shows the order of reaction with respect to fluoride to be 

second order (from the gradient of the linear plot of ln(vi) against ln[F"]), consistent 

with a mechanism whereby two equivalents of fluoride are bound by one equivalent 

of the receptor. This observation is also in keeping with electrochemical studies, 

which have showed that the conversion of at least two electron-withdrawing boronic 

ester groups to electron-donating boronates is necessary to affect a colorimetric 

response to fluoride. The kinetic results present an interesting question: if tris- and 

tetra-fimctional ferroceneboronic esters are, like the bis- analogues, binding only two 

equivalents of fluoride, why is the response to fluoride so much faster with tris- and
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tetrakis-fxmoXiondX ferroceneboronic esters compared to the bifunctional analogue 

(2a). The discreet process which is causing the colorimetric response, i.e. the transfer 

of one electron from the iron centre to dioxygen forms the ferrocenium ion. Electron

transfer processes involving ferrocene and inorganic oxidants typically proceed via

01outer-sphere mechanisms, as described by Marcus theory; such transfer processes 

occur between two non-connected species and the electron is forced to move through 

space from one redox centre to another. Energy is required for the electron to be able 

to cross an energy barrier in moving from one molecule to another, the size of this 

energy barrier determines the speed of the reaction, in this case the speed of oxidation 

of ferrocene to ferrocenium, hence the visual response to fluoride. In the cases of 2a, 

3b and 4b the rates of oxidation to ferrocenium appear to be controlled by different 

factors; the thermodynamics of oxidation of [3b*2F]2' and [4b*2F]2' would be 

expected to be less favourable than that for [2a«2F] ', since in the former two 

compounds there remain uncomplexed pendant boryl groups which will withdraw 

electron density from the metal centre, which would make the iron centre less easy to 

oxidise. Thus it could be rationally assumed that the kinetics of oxidation of the 

[3b*2F]2’ and [4b«2F]2' species would be slower than that for [2a«2F]2", however the 

observed results invalidate these predictions. It is possible that the remaining 

(uncomplexed) three-coordinate boron centre(s) in [3b*2F]2' and [4b«2F]2" provide a 

facile route for electron transfer from the electron rich ferrocene to the dioxygen 

oxidant. Three-coordinate boron centres possessing vacant p-orbitals are known to 

offer a facile route for electron transfer.22 Perhaps it is feasible that dioxygen is 

capable of forming a transitory interaction with the vacant p-orbital at boron, thus 

effectively providing the means of achieving a rapid inner-sphere electron transfer 

process. Alternatively, it is possible that the additional pendant boronic ester groups
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present in the [3b*2F]2' and [4b*2F]2‘ complexes offer a mechanism for fluoride 

chelation, since the boron centre becomes much more Lewis acidic in the ferrocenium 

species, this effect would increase the binding energy and hence the overall 

thermodynamic driving force behind the aerobic oxidation and the Marcus-predicted 

rate. Thus the lack of an uncomplexed boronic ester group in the [2a»2F] ' complex 

may offer an explanation as to the notably slower oxidation process, where the 

oxidation thermodynamics are not enhanced by formation of a stable fluoride chelate 

complex (Figure 4.33)

+  2  F ‘F e F e

Figure 4.33 Potential fluoride chelation in /m-functional compounds

Finally, to explore the effect of the boronic ester backbone on the kinetic 

response to fluoride the response of the te/raAzs-functionalised ferroceneboronic 

esters featuring the pinanediolatoboiyl and napthalenediolatoboryl backbones have 

been compared with the te/rafo’$(stilbenediolatoboryl) analogue. It has been 

previously noted that the pinanediolatoboryl-functionalised receptors show markedly 

slower colorimetric responses to fluoride. Equimolar solutions of each compound
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were prepared in bench chloroform and excess fluoride added to each. The results are 

shown in the graphs below (Figures 4.34 and 4.35).
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Figure 4.34 Plot of normalized absorbance against time for the band at 640 nm 

associated with the oxidized ferrocenium species formed on addition of 15 equiv. 

["BiqNJF to the tetrakis boronic ester receptors 4b, 4c and 4d (each 17.5 mM in 

chloroform). Red: 4c; green: 4b; blue: 4d
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Figure 4.35 Pseudo first-order fits for red (4c) and blue (4d) data for t < 30 s.

As previously mentioned, a visual colorimetric response to fluoride is not 

immediately observed with the tetrakis-pinane compound (4c), consistent with this 

observation the calculated rate constant is ca. five times slower than 4b. The pinane 

fragment is very sterically hindering, it is possible that in this case, where there are 

four closely spaced pinanediolatoboryl moieties, the steric bulk of the ligands is 

hindering the fluoride anions ability to reach the binding site at the boron centre. The 

pinane fragment is also saturated and is unlikely to be delocalised with the oxygen 

donors, decreasing the Lewis acidity of the boron centre by enhancing electron- 

donation from the adjacent oxygen donors to the boron centre. It is apparent from 

anion binding studies that steric bulk is not hindering anion complexation where there 

are just two or three pinanediolatoboryl ligands, as the analogous bis- and tris- 

functionalised ferroceneboronic esters featuring the pinanediolatoboiyl backbone (2b
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and 3c) were found to show relatively rapid colorimetric responses to fluoride under 

aerobic conditions.

Modifications to the 6 /s-functional ferroceneboronic ester (2a) to incorporate 

the electron-donating pentamethylcyclopentadienyl ligand (5b) has been achieved and 

the electrochemical properties of these compounds have been previously discussed. In 

order to confirm that the pentamethylcyclopentadienyl ligand serves to enhance the 

kinetics of response to fluoride, the 6 /s-functionalised pentamethylferrocene boronic 

ester 5b was compared to the analogous &/s-functionalised ferrocene boronic ester 

(2a) via UV/Vis kinetics experiments. Consistent with the electron-donating effect of 

the pentamethylcyclopentadienyl ligand the kinetic response to fluoride of 5b is 

found to be ca. double that measured for 2a. This is a result of the electron-donating 

Cp* ligand making oxidation thermodynamically more favourable according to 

Marcus theory. The kinetic data for 2a and 5b are shown in the graphs below in 

Figures 4.36 and 4.37.
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Figure 4.36 Plot of normalized absorbance against time for the band at ca. 630 nm 

associated with the ferrocenium species formed on addition of 15 equiv. of ["Ba^NJF 

to 2a and 5b (each 17.5 mM in chloroform). Red: 2a (monitored at 633 nm); blue: 5b 

(722 nm).
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Figure 4.37 Pseudo first-order fits for red (2a) and blue (5b) data for t < 50 s.
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Assuming pseudo first-order kinetics, the linear plots shown above in Figure 4.36 

reveals that the rate constant for 5b (1.1 x 10'2 s'1) is approximately one order of

3 1magnitude larger than the rate constant calculated for 2a (5x10 ' s ' ).

4.4 Conclusions and suggestions for further research

The prototype mono-functional ferroceneboronic ester lc, which was shown 

to display selectivity for fluoride anions over others in solution, showed no 

colorimetric response to fluoride, as the observed cathodic electrochemical shift on 

binding fluoride was not substantial to allow oxidation by atmospheric dioxygen. In 

later studies the 6 w-functional compound 2a was found to bind two equivalents of 

fluoride, thereby causing a significant cathodic electrochemical shift the result being 

that oxidation by dioxygen was possible.

Two successful chemical modifications have since been made to these 

prototype systems in designing enhanced colorimetric sensors for fluoride capable of 

a more rapid visual response to fluoride. Firstly the use of the strongly electron 

donating pentamethylcyclopentadienyl ligand in preparation of 5a and 5b. Compound 

5b has been shown to affect a substantial cathodic electrochemical shift and a 

doubled rate of response to fluoride compared with the prototype compound 2a. 

Secondly, the use of sensors featuring more than two binding sites (3b, 4b and 4d) 

causes a greatly enhanced kinetic response to fluoride. Such receptors have been 

conclusively shown to bind only two equivalents of fluoride despite the extra binding 

sites. The enhanced kinetics is thought to be result of the pendant uncomplexed boron 

centres providing a means of facile electron transfer during the oxidation process.

The rate of sensor response (by UV/Vis measurements) is found to be 

critically dependant on the availability of oxidant. This observation is particularly
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relevant to the preparation of solid-state sensor devices, where the incorporation of a 

suitable redox-matched solid-state oxidant would be required in order to facilitate a 

useable colorimetric response over a realistic timeframe. Incorporation of an oxidant 

pendant to the ferroceneboronic ester, for example, perhaps a quinone-based oxidant, 

may prove advantageous and eliminate the dependence of kinetic response on the 

availability of oxidant.

Fluorescence spectroscopy has proven a very useful analytical tool for
n o

monitoring fluoride binding and has employed by many research groups. The tetra- 

functional ferroceneboronic ester compound featuring a pendant napthalene group 

(4d) is an ideal compound for this kind of analysis, featuring the fluorescence active 

napthalene group, a result of the transitions. The typical response of

fluorescence quenching upon anion complexation allows the detection of anions and 

the ability to monitor the extent of host-guest interactions via fluorescence titration 

experiments (Fc+ being much more effective at fluorescence quenching than Fc).

The 1,2-6/s,-fimctional ferroceneboronic ester compound (6 a), which was 

prepared in Chapter three, shows the potential to bind fluoride in a chelating fashion, 

due to the favourable spacial arrangement of boiyl functions. The chelation of 

fluoride allows for much stronger binding and a more stable host-guest complex, 

which in turn may make crystallisation of the host-guest complex possible. Previous 

attempts to isolate crystals of a host-guest complex have been unsuccessful, despite 

the very crystalline nature of the hosts. However, if compound 6 a does chelate 

fluoride, the iron centre may then not be electron rich enough to undergo a visual 

colorimetric response to fluoride, as previously observed with mono-fluoride bound 

receptors (lc). A useful modification to this system, towards a colorimetric sensor for
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fluoride, would be the preparation of the l,2 , l \ 2 '-tetrafunctionalised compound, with 

now two binding sites potentially capable of chelating fluoride.
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Chapter Five

The Synthesis and Characterisation of Ferrocene Based Boron-

Containing Lewis Acidic Oligomers and Polymers

5.1 Introduction

Since the initial preparation of a well characterised transition metal containing 

polymeric compound in the 1970’s by Pittman and co-workers, the field of 

organometallic polymers and oligomers has found vastly increasing research attention 

and a number of important and interesting applications, such as multi-electron 

catalysis, optical and electronic devices, electron storage devices, surface 

modification of electrodes and sensor intensification. 1 There exist two main classes of 

ferrocene-containing organometallic polymers; type I polymers featuring ferrocenyl 

moieties as pendant substituents to the polymer main-chain, for example 

polyvinylferrocene, and type II polymers featuring ferrocene as the integral part of 

the polymer backbone, for example poly(ferrocenylene)s.

The key interests with respect to the work presented within this chapter are 

type II polymers featuring the ferrocene moiety coupled with Lewis acidic 

organoboron centres. Ferrocene is a particularly useful fragment in the above- 

mentioned applications due to its reversible redox chemistry, high thermal stability 

and good solubility, whilst the vacant p-orbital at the boron centre provides the 

potential for achieving 7i-conjugation along a polymer chain, the key feature which 

has led to extensive application in the development of molecular wires and sensor 

devices.
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Initial preparation of a boron-bridged poly(ferrocenylene) stemmed from 

investigation of the ring opening chemistry of boron-bridged ferrocenophanes by 

Manners et al. and has sparked vast research interest.2,3 The preparation of boron- 

bridged ferrocenophanes was preceded by research into the preparation of silicon- 

bridged ferrocenophanes. In an attempt to maximise the tilt angle of the 

ferrocenophane the authors successfully prepared an analogous compound bridged by 

an element of smaller covalent radius, namely boron.

nTMEDA
F e B = N

C12B=NRR'

Figure 5.1 The preparative scheme for boron-bridged ferrocenophanes

Preparation of boron-bridged ferrocenophanes was achieved by reaction of 

dilithioferrocene with TMEDA and aminodichloroboranes. As predicted by the 

authors, on the basis of covalent radii, the product was found to have the largest 

known tilt angle of 32.4(2)° (c.f 31.1(1)° as determined for the sulphur-bridged 

ferrocenophane). The ring-opening polymerisation chemistry of these compounds 

was investigated via a differential scanning calorimetry study to examine possible 

polymeric products formed.4

B

i
NRRf

J  n

Figure 5.2 A polyferrocenylborane
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Polymerisation was carried out by heating the monomer to 180°C in a sealed Pyrex 

tube for two hours; the resulting red glassy material was found to be very sparingly 

soluble in common solvents and to consist mainly of low molecular weight 

oligomers.

The advantageous electronic properties presented by borylene-bridged 

polyferrocenylenes have prompted the development of novel synthetic routes to such 

compounds by Wagner et al.5

Fe
BBr

Br

BBr

Scheme 5.1 Synthetic route to boiylene-bridged polyferrocenylene

Wagner et al. reported a simple, quantitative coupling reaction between FcBBr2 and 

HSiEt3 to produce a diferrocenyl borane Fc2BBr. An analogous synthetic procedure 

was then applied in the preparation of the corresponding polymeric species using a 

disubstituted Fc[BBr2]2 precursor. The polymeric product was found to be highly air 

and moisture sensitive and insoluble in conventional inert solvents. In order to resolve 

such problems the authors substituted the remaining bromide for a mesityl group by 

reaction of the polymer with CuMes. The mesityl moiety was chosen to provide steric 

protection to the Lewis acidic while also aiding solubility, and the resulting mesityl 

substituted polymer was found to be only slightly air-sensitive and highly stable 

thermally. In order to determine the molecular weight of the polymeric product 

MALDI TOF-TOF mass spectra were acquired and the product was found to
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comprise a series of three polymers each with different capping fragment 

combinations, Mes-Mes, Mes-Fc and Fc-Fc, characterised by a pattern of peaks in the 

spectrum with a constant separation corresponding to the repeat unit. Using these 

compounds the authors proved the existence of rc-conjugation and thus electronic 

communication between the ferrocenyl moieties via the three-coordinate boron 

centre. Cyclic Voltammetry was performed to compare the dinuclear and polymeric 

products using ferrocene as a reference compound. Two reversible redox waves of 

equal intensity were observed for the dinuclear compound arising from the sequential 

one-electron oxidation of each iron centre, a large separation between the two redox 

waves indicating pronounced electronic communication between the two ferrocenyl 

fragments. Two redox waves were also observed in the cyclic voltammogram of the 

polymer, the first wave being irreversible and assigned to the two terminal iron 

centres. The second (reversible) redox wave was observed at much higher potentials 

than the dinuclear compound, which was assigned to the oxidation of neutral 

ferrocene fragments adjacent to ferrocenium centres. Again a very large splitting 

between the redox waves was observed, thereby providing additional evidence for 

electronic communication.

5.2 Aims of research

The implication of boronic esters in anion sensing and the opportunity for 

enhanced selectivity in the specific recognition of anions i.e. fluoride and the 

advantages of anion chelation have been discussed in Chapters Three and Four. 

Cation binding by macrocyclic Lewis basic frameworks is a widely explored area of
• A 7 8research interest * ’ a logical extension of this approach suggests that macrocyclic 

Lewis acidic systems might prove useful synthetic targets in the application of 

fluoride chelation. Hence the synthesis of Lewis acid based macrocyclic structures
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featuring the ferrocene fragments is a key goal. Likewise the potential applications of 

solid-state sensor materials have highlighted organometallic polymers as an exciting 

class of functional compounds. One such application, that of molecular wires, 

requires that electronic communication along a polymer chain, is possible. This is 

achieved using the vacant p-orbital of three-coordinate boron centres; incorporation 

of redox active fragments such as ferrocene provides a convenient means of 

monitoring electronic communication. Hence considerable research effort has been 

expended on the development of routes to ferrocene-based polymers featuring boron 

centres within the backbone. To date such routes have involved ring-opening 

polymerisation, coordination polymerisation or B-H/B-C exchange4,5,9 and the 

preferential formation of short chain oligomers has proven a downfall of such 

methods. This chapter targets investigation into the factors controlling assembly of 

boronic ester units into poly-, oligomeric or macrocyclic products using a simple 

condensation methodology, with electrochemical investigation to observe possible 

inter-metallic electronic communication.

53  Experimental

Preparation o f FcB02CsH 12O2BFC (7a)

I
B

Fe Fe

(lR,2S,5R,6S)-tetrahydroxycyclooctane (0.124 g, 7.03 mmol) was weighed into a 

Schlenk, dried in vacuo for two hours and dissolved in toluene (150 ml). 

Triethylamine (0.40 ml, 28.1 mmol) was added gradually to the stirred tetraol
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solution via syringe. 1-dibromoborylferrocene (0.5 g, 14.1 mmol) was weighed into a 

Schlenk and dissolved in toluene (100 ml); this solution was added to the stirring 

tetraol solution dropwise via cannula over a period of 1 h. After stirring for 24 h the 

cloudy orange reaction mixture was filtered through celite and toluene was removed 

in vacuo to yield an air-stable yellow powder (yield: 212 mg, 53 %). Slow diffusion 

of hexanes into a chloroform solution of 7a at room temperature afforded small plate

like crystals suitable for X-ray diffraction. NMR (400 MHz, [D]chloroform, 20 

°C): 8 1.84 [s, 4H, CH2 of cyclooctane ring], 2.11 [s, 4H, CH2 of cyclooctane ring],

4.08 [s, 10H, C5H5], 4.34 [m, 8H, C5H4], 4.59 [d J  = 8 Hz, 4H, CH of chelate]. 

13C{jH} NMR (75.5 MHz, [D]chloroform, 20 °C): 5 25.0 [CH2 of cyclooctane ring],

68.5 [C5H5], 72.2 [C5H4], 73.7 [C5H4], 78.5 [CH of chelate], quaternary of C5H4 not 

observed. 11B{1H) NMR (96 MHz, [D]chloroform, 20 °C): 8  32.5. MS(EI): M+ =

564.1 (100 %), exact mass (calc.) m/z 564.1024, (obs.) 564.1028. IR (KBr disc, cm-1): 

v 2943 w, 2677 w, 1499 md, 1480 s, 1381 s, 1324 s, 1324 s, 1301 s, 1231 md, 1189 

w, 1126 s, 1104 w, 1032 w, 817 md. UV/Vis (chloroform): Xmax 444 nm, e = 431 cm"1 

mol' 1 dm3. Crystal data: C2gH3oB2Fe20 4 , orthorhombic, Pnma, a = 29.8942(10) A, b 

=10.7482(3) A, c =7.4301(3) A, V = 2387.36(14) A3, Z = 4, Dcalc = 1.569 Mg m'3, 

p(MoKa) = 1.251 mm'1. A suitable crystal was covered in pre-dried mineral oil and 

mounted at 120(2) K. 2868 unique reflections were collected (2.33 < 0 < 27.5°). Final 

R-factor: Ri = 0.077.
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Preparation o f poly/oligomeric [fcB02CsHi202B]„ (7c)

FeFe

B

Ferrocene-fo's-boronic acid (0.254 g, 9.25 mmol) and (1R,2S,5R,6S)- 

tetrahydroxycyclooctane (0.162 g, 9.25 mmol) were weighed into a thick-walled 

pressure tube. Acetone (40 ml) was added, the pressure tube was sealed and the 

reaction mixture heated with stirring to 80 °C for 24 h. A yellow solid formed during 

the course of the reaction, which was isolated by filtration and dried under vacuum. 

The solid product was washed with chloroform until washings became colourless; the 

chloroform solution was reduced to diyness in vacuo to yield a powdery yellow solid 

(16.8 mg, 4.8 %). Crystals suitable for X-ray diffraction were grown by slow 

diffusion of ether into a chloroform solution of macrocyclic side-product 7b, which is 

discussed in greater detail in section 5.4.2. The remaining portion of the yellow solid 

was found to be insoluble in a wide range of solvents and hence was shown to be an 

oligo/polymeric product by MALDI mass spectrometry. Yield of polymeric product 

7c (241 mg, 69 %). Spectroscopic data for 7b: MS(EI): M+ = 564.2 (100 %), 756.3 

( 1 2  %). Crystal data: CsefMM ^Og, orthorhombic, Pbcn, a = 19.6222(11) A, b = 

7.8609(3) A, c = 21.3982(11) A, V = 3300.6(3) A3, Z = 4, Dcaic = 1.521 Mg m'3, 

p(MoKa) = 0.934 mm'1. A suitable crystal was covered in pre-dried mineral oil and 

mounted at 120(2) K. 3366 unique reflections were collected (2.95 < 0 < 26.4°). Final 

R-factor: Ri = 0.091.
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Preparation o f FcB(OCH2) 2C(CH2Q)2BFc (8 a)

To solution of ferroceneboronic acid (0.2 g, 8.70 mmol) in acetone (40 ml) in a thick- 

walled pressure tube was added pentaerythritol (0.059 g, 4.35 mmol). The pressure 

tube was sealed and heated with stirring to 80°C for 24 hours. The resulting acetone 

solution was then filtered and reduced to dryness in vacuo to a yield a bright yellow 

powder (172 mg, 75 %). Crystals suitable for X-ray diffraction were grown by slow 

diffusion of ether into a chloroform solution of 8 a. NMR (400 MHz, 

[D]chloroform, 20 °C): 5 3.97 [s, 8 H, CH2], 4.08 [s, 10H, C5H5], 4.16 [m, 8 H, C5H4]; 

13C{'H} NMR (75.5 MHz, [D]chloroform, 20 °C): 8  36.2 [spiro-C], 64.5 [CH2], 68.1 

[CH of C5H5], 71.0, 71.9 [CH of C5H4], quaternary of C5H4 not observed. 11B {111! 

NMR (96 MHz, [DJchloroform, 20 °C): 8  33.6. IR (KBr disc, cm'1): v 3313 md, 1753 

w, 1495 s, 1376 s, 1299 md, 1238 md, 1168 md, 1175 md, 1014 md. UV/vis (CHCI3) 

Xma,(£) 445 nm (123.7 mol' 1 cm' 1 dm3). MS(EI): M+ = 524.1 (100 %), exact mass 

(calc.) m/z 524.0726, (obs.) 524.0556. Crystal data: C26H27B2Cl3Fe2C>4, monoclinic, 

P2 (l)/n, a = 22.5093(3) A, b = 5.8951(3) A, c = 22.9770(5) A, p= 119.110(1)°, V = 

2663.80(15) A3, Z = 4, Dcaic = 1.604 Mg m'3, p(MoKa) = 1.422 mm'1. A suitable 

crystal was covered in pre-dried mineral oil and mounted at 150(2) K. 6331 unique 

reflections were collected (3.12 < 0 < 27.8°). Final R-factor: Ri = 0.059.
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Preparation oflfcB(OCH2)2C(CH20)2B]2 (8 b)

O

I
Fe O

O FeO

To solution of ferrocenefo's-boronic acid (400 mg, 7.3 mmol) in acetone (40 ml) in a 

thick walled pressure tube was added pentaerythritol (200 mg, 7.3 mmol). The 

pressure tube was sealed and the reaction mixture heated with stirring to 80°C for 24 

h. During the course of the reaction a yellow solid formed which was isolated by 

filtration and extracted with chloroform to a yield a bright yellow powder (393 mg, 

80 %). Crystals suitable for X-ray diffraction were grown by slow diffusion of ether 

into a chloroform solution of 8 b. NMR (400 MHz, [DJchloroform, 20 °C): 8  4.03 

[br s, 16H, CH2], 4.30 [m, 8 H, C5H4], 4.30 [m, 8 H, C5H4]; 13C{!H} NMR (75.5 MHz, 

[DJchloroform, 20 °C): 8  36.5 [spiro-C], 64.9 [CH2], 71.6, 73.7 [CH of C5H4], 

quaternary of C5H4 not observed. 11B{1H} NMR (96 MHz, [DJchloroform, 20 °C): 8  

27.6. IR (KBr disc, cm'1): v 3102 md, 3082 md, 1486 s, 1333 s, 1296 s, 1261 s, 1188 

s, 1175 md, 1045 md, 973 md. UV/vis (CHCI3) A,max(s) 454 nm (410.9 mol' 1 cm' 1 

dm3). EI-MS m/z (%) 676.1 (100), correct isotope distribution for 4B, 2Fe atoms. 

Exact mass (M+): calc. 672.1308 (10B4 isotopomer); meas. 672.1307. Elemental 

analysis: calc, for 2-V*CHCl3 C 51.51, H 4.61; meas. C 51.54, H 4.70. Crystal data: 

C6oH64B8Fe4Oi6, monoclinic, P 1 2 H, a = 11.9633(6) A, b = 9.9176(5) A, c = 

13.4452(6) A, P= 114.889(3)°, V = 1446.96(13) A3, Z = 1 , Dcalc = 1.553 Mg m'3, 

p(MoKa) = 1.251 mm'1. A suitable crystal was covered in pre-dried mineral oil and 

mounted at 150(2) K. 4291 unique reflections were collected (2.34 < 0 < 27.7°). Final
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R-factor: Ri = 0.046.

Preparation o f  FcB0 2 (C6H2)0 2 BFc (9a)

Fe Fe

To a solution of dibromoborylferrocene (165 mg, 4.63 mmol) in toluene (40 ml) was 

added a solution of l,2,4,5-tetrakis(trimethylsilyl)benzene (100 mg, 2.33 mmol) in 

toluene (30 ml) dropwise. The reaction vessel was sealed and heated to 80°C for 48 h. 

After hot filtration, toluene was removed in vacuo to yield a yellow powder, which 

was washed with hexanes and reciystallised from hexanes at -30°C. The resulting 

yellow solid was isolated and dried in vacuo (101 mg, 41 %). NMR (400 MHz, 

[DJchloroform, 20 °C): 8  3.95 [s, 10H, C5H5], 4.30 [m, 4H, CH of C5H4], 4.72 [m, 

4H, CH of C5H4], 6.97 [s, 2H, aromatic CH]. ^C ^H ) NMR (75.5 MHz, 

[DJchloroform, 20 °C): 8  68.1 [C5H5], 73.7 [CH of C5H4J, 74.0 [CH of C5H4], 98.9 

[aromatic CH], quaternary of C5H4 not observed. 11B{1H} NMR (96 MHz, CDCI3) 8  

33.9. MS(EI): M+ = 530.0 (100 %), exact mass (calc.) m/z 530.0257, (obs.) 530.0233. 

IR (KBr disc, cm"1): v 2965 s, 1493 md, 1458 s, 1383 md, 1337 w, 1262 md, 1142 s, 

1026 w, 1231 md, 1189 w, 1126 s. UV/Vis (chloroform): Xmax(e) 439 nm (104.7 mol"1 

cm"1 dm3).

5.3.1 Electrochemical (CV) analysis o fla , 8 a, 9a and 8 b.

Electrochemical analyses was carried out under the following conditions: electrolyte, 

0.1 M [nBu4N][PF6] in dry dichloromethane; reference electrode standard, 0.1 M 

[nBu4N][PF6], 0.01 M silver nitrate in acetonitrile. Initially the electrolyte solution
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was degassed with argon to remove any dissolved oxygen before background cyclic 

voltammetry (CV) scans were recorded to guarantee the purity of the electrolyte 

solution prior to addition of the compound. Once a clean flat background CV had 

been measured a small sample of the compound (ca 2-5 mg) was added and the 

solution was further degassed to purge the solution of any additional dissolved 

oxygen and to dissolve the compound by agitation before spectral acquisition.

5.4 Results and discussion

5.4.1 Synthesis of oligomeric ferrocene based Lewis acids

Preliminary synthesis of dinuclear Lewis acids was carried out, prior to the 

attempted preparation of polymeric and oligomeric species, in order to obtain reliable 

characterising data on soluble compounds. Initial preparation of the cyclooctane- 

bridged di-ferrocenyl species (7a) was achieved via reaction of two equivalents of the 

dibromoboryl ferrocene precursor with one equivalent of (1R,2S,5R,6S)- 

tetrahydroxycyclooctane and four equivalents of triethylamine (Scheme 5.2). This 

synthetic route is identical to that applied in the preparation of mono-, tris- and 

te/rafcw-functional boron-containing Lewis acids described in chapter three.

HO OH

NEt

Toluene

HO OH

BBr
Fe2

Scheme 5.2 Synthetic route to 7a via a dibromoboryl ferrocene precursor
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This synthetic procedure provided a route to the air-stable dinuclear product 7a, 

obtained as a yellow powder in 53 % yield. The product was found to be freely 

soluble in chloroform and preliminary characterisation was made via ]H, nB and 13C 

NMR spectroscopy, each of which substantiate the proposed structure. The nB NMR 

spectrum of 7a displays a characteristic signal at 8b 32.5; the *H NMR spectrum 

exhibits a singlet resonance for the unsubstituted Cp ligand, and a multiplet for the 

C 5H 4 groups, while the CH  groups of the chelate ring are observed as a doublet, and 

the four CH2 groups of the cyclooctane ring give rise to two broad singlets between

131.8 and 2.1 ppm. The C NMR spectrum is very simple displaying the expected 

number of peaks in the Cp region (ca. 70 ppm), a CH chelate resonance at a higher 

chemical shift (78 ppm) and two signals attributed to the CH2 groups of the 

cyclooctane ring at lower shifts (ca. 25 ppm). Mass spectrometry data confirms the 

expected molecular ion peak along with the correct isotope pattern. Slow diffusion of 

hexanes into a chloroform solution of 7a at room temperature afforded small plate

like crystals suitable for X-ray diffraction. The solid-state structure of this compound 

displays each atom of the O2C8H12O2 bridge disordered over two sites, for clarity the 

two disordered components are separately illustrated pictorially in Figure 5.3, 

showing the two positions of the bridging ligand; selected bond lengths and angles 

are listed in Table 5.1.
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Figure 5.3 - Molecular structure of FcBC^CgHnC^BFc (7a). ORTEP ellipsoids set at 

the 30 % probability level. Hydrogen atoms omitted for clarity.
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_________ Table 5.1 Bond lengths [A] and angles [°] for 7a.______________

B(2)-0(2') 1.326(6) B(2)-0(2) 1.410(6)

0(2')-C(ll) 1.437(9) 0(2)-C(l 1’) 1.452(9)

B(l)-0(1) 1.253(7) B(1)-0(T) 1.500(6)

0(1)-C(8’) 1.443(9) 0(1')-C(8) 1.473(10)

C(13)-B(2) 1.551(8) C(4)-B(l) 1.543(8)

0(2)-B(2)-0(2') 114.5(5) 0(T)-B(1)-0(1) 112.6(5)

C(4)-B(l)-0(1) 130.7(3) C(4)-B(1)-0(T) 116.5(3)

B(l)-0(1)-C(8) 111.1(5) B(l)-0(1)-C(8’) 104.6(5)

C(13)-B(2)-0(2) 119.3(3) C(13)-B(2)-0(2') 126.4(4)

B(2)-0(2)-C(lT) 106.2(6) B(2)-0(2')-C(l 1) 107.6(5)

The molecular structure of 7a displays typical bond lengths and angles in general. 

The average B-O bond length was calculated at 1.377 A, which are similar to those 

observed for analogous ferroceneboronic ester compounds discussed in chapter three 

(ca. 1.37 A). The O-B-O bond angles of 114.5(5) and 1 12.6(5)° are typical for five- 

membered boronic ester rings and are consistent with those previously observed for 

analogous boronic esters of ferrocene (see chapter three).

In exploring a general route to organometallic ferrocene-containing polymers, 

oligomers and macrocycles, the simple condensation reaction between

ferroceneboronic acid and various tetraols has been exploited. Subsequent 

preparations of compound 7a have followed this methodology, in which the reactants 

(ferroceneboronic acid and (lR,2S,5R,6S)-tetrahydroxycyclooctane in this case) are
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simply dissolved in acetone and heated to reflux in a sealed thick-walled pressure 

tube, eliminating water as a by-product (Scheme 5.3).

I  ► I O O I
2 Fe + R(OH)4 Pressure tube, 80°C Fe Fe +4H20

Scheme 5.3 Outline of the condensation methodology

Products are either soluble in acetone or precipitate out of solution, giving a simple 

work-up in either situation. This methodology inhibits possible side-reactions that 

may occur when very sensitive starting materials are used; hence products are 

obtained in very high purity and high yield (ca. 75 %).

Analogous 1:1 reaction of ferroceneboronic acid with pentaerythritol was 

carried out to prepare compound 8 a, in which the two ferrocenyl ligands are bridged 

by a pentaerythritol moiety (Figure 5.4).

Figure 5.4 FcB(0CH2)2C(CH20)2BFc (8 a)

The yellow powder was isolated in 75 % yield and in very high purity after removal 

of the acetone reaction solvent and water by-product in vacuo. Characterising data in 

the form of multinuclear NMR, IR and UV spectroscopies and mass spectrometry are 

consistent with formation of compound 8 a. n B NMR revealed the product peak as a
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broad signal at 8 b 33.6 ppm, consistent with the characteristic signal for a boronic 

ester fragment ( 8 b  ca. 30 ppm), and with previously reported boronic ester shifts (see 

Chapter Three). NMR shows a broad signal for all the eight Cfh protons; the 

ferrocenyl protons are observed as a singlet for the C 5H 5 protons and a multiplet for 

the C 5H4 protons. C NMR data also substantiates formation of the desired product; 

the spiro-C has a very distinctive chemical shift of 36 ppm, and the CH2 groups are 

measured at 65 ppm. The ferrocenyl carbons show three signals in the Cp region of 

the spectrum, as the signal due to the quaternary carbon centre was not observed. 

Mass spectrometry confirmed the expected molecular ion peak, verified by accurate 

mass measurement and isotopic profiling. Crystals suitable for X-ray diffraction were 

grown by slow diffusion of ether into a chloroform solution of 8 a. The molecular 

structure is shown in Figure 5.5, relevant bond lengths and angles are listed in Table 

5.2.
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Figure 5.5 Molecular structure of FcB(0CH2)2C(CH20)2BFc (8 a). Hydrogen atoms 

omitted for clarity; ORTEP ellipsoids set at the 50 % probability level. Atoms C10- 

C14 remain isotropic due to a high degree of disorder and difficulty in modelling

these atoms anisotropically.
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Table 5.2 Bond lengths [A] and angles [°] for 8 a.

C(17)-B(l) 1.539(7) C(27)-B(2) 1.553(7)

B(l)-0(1) 1.363(6) B(l)-0(2) 1.366(6)

B(2)-0(3) 1.371(6) B(2)-0(4) 1.358(6)

0(1)-C(2) 1.441(5) 0(2)-C(3) 1.446(5)

C(l)-C(2) 1.526(6) C(l)-C(3) 1.519(6)

C(l)-C(4) 1.519(6) C(l)-C(5) 1.524(6)

0(l)-B(l)-0(2) 122.7(4) 0(3)-B(2)-0(4) 123.3(4)

C(2)-C(l)-C(3) 108.5(3) C(2)-C(l)-C(5) 111.6(4)

C(5)-C(l)-C(4) 109.7(4) C(3)-C(l)-C(5) 109.7(4)

C(17)-B(l)-0(1) 116.0(4) C(17)-B(l)-0(2) 120.5(4)

C(27)-B(2)-0(3) 115.9(5) C(27)-B(2)-0(4) 120.5(4)

B(l)-0(1)-C(2) 120.5(4) B(l)-0(2)-C(3) 119.8(4)

B(2)-0(3)-C(4) 120.5(4) B(2)-0(4)-C(5) 118.8(4)

The molecular structure of 8 a displays some characteristic features; the sum of angles 

about the boron centre is found to be 359.9(12)°, indicative of boron in a trigonal 

planar environment, however the breakdown of angles is unusual. The O-B-O angles 

(ca. 123°) in this compound are substantially larger than previously observed for 

similar boronic esters of ferrocene (ca. 114°). This feature is probably an effect of 

geometry constraints forced in forming the six-membered heterocyclic ring, where in 

previous structures the boron center has been constrained within a five-membered 

heterocycle. This opening of the O-B-O angle in a six-membered heterocyclic ring
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has been previously observed in the ferrocene-boronic ester compound featuring a 

propane backbone, in which the O-B-O angle was found to be 123.3(4)°.10 The 

pentaerythritol bridging unit has an almost perfect tetrahedral core geometry, as such 

the ferrocenyl fragments are almost perpendicular to each other, and in each case the 

boryl moiety is twisted out of the plane of the Cp ligand by ca. 13.0°. B-O bond 

lengths [1.363(6), 1.371(6), 1.366(6) and 1.358(6)] which are similar to B-O bond 

lengths previously observed for analogous compounds prepared in chapter three (ca. 

1.37 A).

Compound 9a was prepared with a view to investigating whether or not the 

benzene bridge is capable of supporting electronic communication between the two 

iron centres. Electronic communication can be detected by electrochemical methods 

and this molecule was specifically designed for this purpose, featuring the redox 

active ferrocene fragment. Compound 9a (Figure 5.6) was synthesised via an 

alternative method, involving reaction of the te/ra£zs(trimethylsilyloxy) derivative of 

benzene with dibromoborylferrocene. The use of a trimethylsilyl precursor as the 

source of “RO‘” eliminates the need for butyllithium, and means that this reaction can 

be applied to diols that are difficult to obtain as dry precursors.

Figure 5.6 FcB02(C6H2)02BFc (9a)
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The product was characterised via multi-nuclear NMR, UV and IR spectroscopy and

mass spectrometry. nB NMR provides rapid confirmation of formation of a boronic

ester, the product displaying a broad peak at 8 b 34 ppm, a characteristic shift for

boronic esters. The *H NMR spectrum is very simple; the two aromatic protons give

rise to a very distinctive peak at 6.9 ppm; the ferrocenyl fragment displays a singlet

for C 5H 5 and two multiplets for the C 5H 4 protons. The aromatic CH fragment is also

1 ̂very distinctive in the C NMR spectrum, observed at 99 ppm, along with the C 5H 5 

carbons at 6 8  ppm and two further signals at 73 and 74 ppm for the C 5H 4 carbons. 

Mass spectrometry, including accurate mass measurement, confirmed the expected 

molecular ion peak. Numerous crystallisation attempts were made, using various 

methods and various solvent systems, however all were unsuccessful.

5.4.2 Synthesis of macrocyclic and polymeric ferrocene based Lewis acids

Minor modification to the previously discussed condensation methodology 

was made, involving the corresponding 1 :1  condensation reaction of ferrocene&w- 

boronic acid with tetraols. This reaction was thought to provide a convenient route to 

polymeric products, as such this reaction was carried out with tetraols (1R,2S,5R,6S)- 

tetrahydroxycyclooctane and pentaerythritol. The 1:1 reaction of ferrocene-bis- 

boronic acid with (lR,2S,5R,6S)-tetrahydroxycyclooctane led to the formation of a 

mixture of products; both macrocyclic and polymeric. The macrocyclic product 

UCBO2C 8H12O2B] 2 (7b) was isolated in very low yield (5 %) as a yellow powder 

(Figure 5.7).
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B

i

B/
O

Figure 5.7 ffcB02C8Hi202B]2 (7b)

Crystals suitable for X-ray diffraction were grown by diffusion of ether into a 

chloroform solution of the product. X-ray crystallography and mass spectrometry 

were the only pieces of characterising data gained due to the very low yield of 

product, however mass spectrometry confirmed the dinuclear nature of the product. 

This reaction was repeated under identical conditions and a similar distribution of 

products was observed. The solid-state structure of compound 7b is illustrated 

pictorially in Figure 5.8; selected bond lengths and angles are listed in Table 5.3.
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Figure 5.8 Molecular structure of UCBO2C8H12O2B] 2 (7b) 

ORTEP ellipsoids set at the 50 % probability level.
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_____________ Table 5.3 Bond lengths [A] and angles [°] for 7b.______________

C(l)-B(l) 1.533(10) C(6)-B(2) 1.547(9)

B(l)-0(1) 1.369(8) B(l)-0(2) 1.382(9)

B(2)-0(3) 1.380(8) B(2)-0(4) 1.356(8)

0(1)-C(11) 1.457(7) 0(2)-C(12) 1.450(7)

C(ll)-C(12) 1.551(8) 0(3)-C(15) 1.455(7)

0(4)-C(16) 1.454(7) C(15)-C(16) 1.550(8)

0(l)-B(l)-0(2) 1 1 2 .6 (6 ) 0(3)-B(2)-0(4) 113.6(6)

B(l)-0(1)-C(ll) 108.0(5) B(l)-0(2)-C(12) 108.6(5)

B(2)-0(3)-C(15) 108.0(5) B(2)-0(4)-C(16) 107.6(5)

C(l)-B(l)-0(1) 124.7(6) C(l)-B(l)-0(2) 122.7(6)

C(6)-B(2)-0(3) 123.9(6) C(6)-B(2)-0(4) 122.5(6)

C(ll)-C(12)-C(13) 116.2(5) C( 14)-C( 15)-C( 16) 117.7(5)

The asymmetric unit contains only half of a molecule of 7b, consequently only half of 

the molecule displays unique bond lengths and angles. The molecular structure of 7b 

presents some predictable features: the sum of angles about the boron centre is found 

to be 359.9(18)°, and O-B-O bond angles (112.6(6)° and 113.6(6)°) are similar to 

those observed in previously characterised ferroceneboronic ester systems. Observed 

B-O bond lengths of ca. 1.369(8) A are within the expected region (ca. 1.37 A, based 

on that observed for analogous ferrocene boronic esters prepared in chapter three) and 

are similar to those observed in the open-chain species 7a. The boryl fragments are 

observed to display a substantial twist out of the plane of the Cp ligand (ca. 23°); 

additionally the cyclopentadienyl rings are almost perfectly eclipsed; these features
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are probably due to the geometric constraints necessitated by forming the macrocycle. 

The torsion angle [B(l)-Cp(centroid)- Cp(centroid)-B(2)] was calculated to be 78.12°.

The polymeric product (7c) was isolated as the major product of the reaction 

(69 %), the yellow powdery product was found to be insoluble in all common 

solvents examined (hexanes, toluene, dichloromethane, chloroform, acetone, 

methanol, dimethylformamide, dimethylsulfoxide, and water), and hence was 

presumed to oligo/polymeric prior to analysis. The insolubility of the product 

precluded characterisation by conventional methods, such as NMR and mass 

spectrometry. However MALDI mass spectrometry has allowed assessment of the 

composition of the poly/oligomer (Figure 5.9).
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Figure 5.9 MALDI mass spectrum of 7c.

The MALDI mass spectrum reveals a mixture of chain terminating groups, as 

displayed by the two series of peaks. One series corresponds to chains containing one 

ferrocenyl [Fc, (r|5-C5H5)Fe(r|5-C5H4)] and one diol [B0 2 CgHi2(0 H)2] terminus [m/z
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= 378ft + 370 (where n = 2 -  17)], the other series corresponds to polymer chains 

featuring two ferrocenyl termini \m/z = 378ft +186 (where n — 2 -  17)], both are 

shown below in Figure 5.10.

Figure 5.10 Polymeric products featuring different combinations of chain-

terminating groups.

Similar spectra, featuring a mixture of chain terminating groups, have been recently 

observed by Wagner et al. in the preparation of borylene-bridged 

poly(ferrocenylenes) . 5

In the analogous 1:1 condensation reaction of ferrocene-bis-boronic acid with 

pentaerythritol a very different product distribution is obtained. The product was 

found to be freely soluble in chloroform, which immediately indicated that the 

product in this case was unlikely to be polymeric. The solid product was washed with

o \
F e Fe
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chloroform until washings became colourless; the resulting orange powder was 

isolated after removal of volatiles in vacuo in 80 % yield (Figure 5.11).
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Figure 5.11 [fcB(0CH2)2C(CH20)2B]2 (8b)

A combination of multinuclear NMR ^H, 13C, n B), IR and UV spectroscopies, mass 

spectrometry and elemental microanalysis are consistent with the formation of the 

macrocycle 8b. nB NMR revealed the product peak at 8 b 28 ppm, consistent with the 

observed shift for the mono-bridged analogue 8a ( 8 b  33 ppm). The NMR spectrum 

of 8b shows a single broad resonance for all eight CH2 protons at ca. 4 ppm, and just 

two ferrocenediyl signals in the Cp region. The spiro-C centre displays a 

characteristic signal in the 13C NMR spectrum (37 ppm), the CH2 carbons are 

observed at a higher shift (65 ppm) and a further two signals between 71 and 73 ppm 

were observed for the Cp carbons. Mass spectrometry (including accurate mass 

measurement) is consistent with the expected molecular ion peak. Crystals suitable 

for X-ray diffraction were grown by slow diffusion of ether into a chloroform 

solution of 8b, and single crystal X-ray diffraction was consistent with the product 

being formulated as the macrocyclic dimer [fcB(0 CH2) 2C(CH2 0 ) 2B] 2 shown below 

in Figure 5.12; selected bond lengths and angles are listed in Table 5.4.
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Figure 5.12 Molecular structure of [fcB(0CH2)2C(CH20)2B] 2 (8 b) ORTEP ellipsoids 

set at the 50 % probability level. Hydrogen atoms omitted for clarity.
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_________Table 5,4 Bond lengths [A] and angles [°] for 8b.______________

B(l)-0(1) 1.365(6) B(l)-0(2) 1.360(5)

B(3)-0(5) 1.365(6) B(3)-0(6) 1.361(5)

0(1)-C(12) 1.434(5) 0(2)-C(ll) 1.438(5)

0(5)-C(15) 1.436(5) 0(6)-C(14) 1.434(5)

C(13)-C(ll) 1.531(6) C(13)-C(12) 1.527(5)

C(13)-C(14) 1.531(6) C(13)-C(15) 1.532(5)

C(l)-B(l) 1.550(6) C(6)-B(2) 1.556(6)

C(21)-B(3) 1.553(6) C(26)-B(4) 1.547(7)

0(l)-B(l)-0(2) 123.3(4) 0(3)-B(2)-0(4) 123.2(4)

0(5)-B(3)-0(6) 123.2(4) 0(7)-B(4)-0(8) 122.6(4)

C(l)-B(l)-0(1) 118.9(4) C(l)-B(l)-0(2) 117.8(4)

C(21)-B(3)-0(5) 119.1(4) C(21)-B(3)-0(6) 117.6(4)

C(ll)-C(13)-C(12) 108.3(3) C(11)-C(13)-C(14) 110.8(3)

C(ll)-C(13)-C(15) 110.6(3) C(5)-C(l)-C(2) 106.4(4)

B(l)-0(1)-C(12) 119.9(3) B(l)-0(2)-C(ll) 119.9(3)

The molecular structure of 8b displays similar bond angles at boron to 8a, the sum of 

angles about the boron centre is 359.9(12)°, again the O-B-O bond angles (123.3(4)°) 

are larger than those previously observed (ca. 114°), a result of formation of the six- 

membered heterocycle, which widens the O-B-O, closing one of the Cp(C)-B-0 

angles slightly. B-O bond lengths of ca. 1.365(6) A are consistent with B-O bond 

lengths of previously discussed analogous compounds (see chapter three). Whereas
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with the analogous macrocyclic compound 7b the boryl fragment was twisted out of 

the plane of the Cp ligand by a substantial amount (ca. 23°), this is reduced in 

compound 8 b where the corresponding torsion is ca. 10°. The torsion angle [(B(l)- 

Cp(centroid)-Cp(centroid)-B(2)] of 62.0° is slightly smaller than that observed for the 

analogous cyclooctanetetraol based macrocycle (7b) [B(l)-Cp(centroid)- 

Cp(centroid)-B(2) of 78.1°]. The molecular structure of 8 b conforms to approximate 

chiral D2-symmetry; NMR measurements made at -50°C show four distinct signals 

for the ferrocenediyl C 5H4 protons, implying that this dissymmetric structure is 

maintained in solution within the lower temperature ranges (Figure 5.13). Just two 

C 5H 4 signals are observed at room temperature along with a single broad signal 

observed for all eight CH2 protons at 25°C which sharpens on warming to 50°C. Such 

changes are consistent with a fluxional racemisation process involving concerted 

rotation about the two centroid-Fe-centroid axes (Figure 5.14).

Figure 5.13 NMR spectra of compound 8 b in CDCI3 at room temperature and -

50°C.
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Figure 5.14 NMR spectra of compound 8 b at room temperature and 50°C.

The reactions of ferrocenefo's-boronic acid with cyclooctanetetraol and 

pentaerythritol display remarkably high selectivity for the formation of either 

polymer or macrocycle. The reaction of cyclooctantetraol with ferrocenefo's-boronic 

acid favours formation of polymeric over macrocyclic products, in this reaction the 

macrocycle 7b was only ever isolated in minor yield (< 5 %). The reaction conditions 

were varied; temperature and concentration were systematically altered with little or 

no effect on the product distribution. The reaction mixture was spiked with an alcohol 

(ethane-1 ,2 -diol), in an attempt to inhibit polymer formation by blocking 

polymerisation sites with chain terminating groups, but the reaction was found still to 

favour formation of polymeric products. By contrast the reaction of pentaerythritol 

with ferrocene^w-boronic acid was found to favour formation of macrocyclic 

products with no trace of polymeric products observed.
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It has previously been demonstrated in studies of Lewis basic 

polymeric/macrocyclic systems that backbone conformational geometry and
o

flexibility are key features in determining the selectivity for either product. It also 

seems logical that the geometry and flexibility of the linker may be a factor in 

determining the product distribution in the case of compounds 7b, 7c and 8 b, since 

such high selectivity has been observed. The pentaerythritol and cyclooctanetetraol 

ligands exhibit very different geometrical features, in the case of 8 b exclusive 

formation of macrocyclic product implies that the reaction intermediate 

(H0 )2BfcB(0 CH2)2 C(CH2 0 )2BfcB(0 CH2)2C(CH2 0 H) 2 (Figure 5.15) is highly 

preorganised such that macrocyclisation is preferred, and that the rate of 

macrocyclisation must be very high. In closer examination of the molecular structure 

of 8 b it is apparent that the B02 planes are significantly twisted with respect to each 

other (mean torsion angle 61.4°) and exhibit a ‘bite-angle’, [mean B-C(spiro)-B] 

angle of 137.6°, i.e. in a chain of

(H0 )2BfcB(0 CH2)2 C(CH2 0 )2BfcB(0 CH2)2C(CH20 H)2 the fcB(OH) 2 and 

C(CH2 0 H)2 fragments are forced close to each other because of the B-C(spiro)-B 

angle of the bridging ligand, promoting subsequent condensation reaction at this site 

to form the macrocycle. Furthermore for a macrocyclic system featuring rigid 

bridging groups (such as pentaerythritol) the loss of conformational entropy is likely 

to be small compared with one comprised of more flexible bridging units (such as 

cyclooctanetetraol).
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HO

Fe
Fe

Figure 5.15 Likely reaction intermediate in preparation of 8 b.

In contrast, the geometry of the bridging BO2C8H12O2B unit reveals that the 

cyclooctanetetraol framework adopts a more linear geometry in compound 7a, the B- 

C(ipso) angles being in a more linear arrangement than those in 8 b, thus is 

preorganised so as to favour the formation of a linear chain. Hence by careful choice 

of tetraol linking agent, the simple condensation synthesis of multinuclear Lewis 

acids can be driven with high selectivity towards either macrocyclic or polymeric 

products. Further studies targeting exploitation of this synthetic control towards size 

specific anion chelation and soluble Lewis acid polymers were subsequently 

undertaken, along with electrochemical analyses.

5.43 Electrochemical and NMR analysis of anion binding by oligomeric and 

macrocyclic Lewis acids

The ability of an organometallic polymer to propagate an electronic signal 

along its chain is a useful property and one that is being exploited for the purpose of 

developing molecular wires and for the enhancement of sensor signals. The 

successful detection of very toxic substances such as Sarin and Soman (see chapter 

four) and other chemical warfare agents requires very highly sensitive materials,
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capable of responding very rapidly to a very low dose of toxic material. 

Investigations towards compounds that meet these requirements have recently 

focussed on organometallic polymers that can provide amplification of a sensor 

signed. A critical feature of these systems is the inter-metallic electronic 

communication. Such compounds, capable of electronic communication, have certain 

chemical features that allow the conjugation of electrons to run along a whole chain, 

for example a delocalised electron rich group linked to a fragment featuring a vacant 

orbital as means of accepting electron density. Main chain organoboron polymers are 

valuable candidates for optical sensor materials as a result of the extended 71- 

conjugation between delocalised electron rich spacers and the vacant p-orbital of 

boron. These substances have the potential for sensor signal amplification upon 

binding of a guest molecule to a suitable receptor, namely the Lewis acidic boron 

centre, within the conjugated polymer. 11 The electrochemical properties and reactivity 

of organoboron polymers towards anions have been investigated by a number of 

research groups. 12,13 The above-mentioned organoboron dinuclear (7a, 8 a, 9a), 

macrocyclic (8 b) and polymeric (7c) products were made with a view to investigating 

both their anion binding and electronic properties. Assessment of the binding 

properties of the dimeric and macrocyclic analogues offers insight into the suitability 

of the polymeric species to act as anion specific sensors offering switchable 

conductivity and enhancement of both signal response and sensor kinetics. 

Macrocyclic Lewis acid systems featuring a binding cavity also offer enhanced 

stability in the host-guest complex.

NMR investigations have been performed, using mainly n B and 19F NMR 

techniques to study fluoride binding. lH NMR spectra become very complex after the 

addition of fluoride, which has meant that the effectiveness of NMR as an analytical 

technique to monitor fluoride binding is drastically reduced. In the case of 8 b for
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example, up to four binding sites for fluoride anions are available and it is not 

possible to reliably monitor the change in chemical shift of a single peak in the 

NMR spectrum as a function of fluoride concentration. Compound 7a was treated 

with excess quantities of fluoride as [nBu4N]F in chloroform solution under anaerobic 

conditions, followed by spectral acquisition. The addition of a source of fluoride to 7a 

was found to cause an upfield shift in the nB NMR spectra, from the fluoride-free 

species (8 b 32.5 ppm) to a broad resonance at 8 b 3.8 ppm. This upfield shift of ca. 28 

ppm is consistent with formation of a four-coordinate anionic boronate centre, and 

with shifts previously observed for analogous compounds (4b, 4c and 2b) when 

treated with fluoride (see chapter four). The 19F NMR signal resulting from fluoride 

treatment ( 8 f  -134.3 ppm) supports the complexation of F', since the chemical shift is 

significantly different from the [nBu4N]F itself (8 p -122.7 ppm). The chemical shift is 

also consistent with that observed for the fluoride-adduct of 2b ( 8 f  -130.8 ppm) . 14 

The 19F resonance appears broader than the source, possibly due to unresolved 19F / 

UB coupling. The orange solution of 7a was not observed to change colour on 

addition of fluoride, after exposure of the NMR sample to air for 24 h. This finding is 

consistent with the behaviour of analogous mono-boronic esters of ferrocene (see 

chapter four), in which it is found that the binding of one equivalent of fluoride is not 

sufficient that subsequent electron donation to the iron centre allows aerobic 

oxidation, which would be accompanied by an orange to green colour change.

Compound 8b was treated with different sources of fluoride and with various 

anions. Treatment of 8b with excess quantities of ["BiljNJF or KF with 18-crown-6 in 

chloroform solution under anaerobic conditions, leads to upfield shifts in the nB 

NMR spectrum of ca. 22 ppm, from the parent compound ( 8 b  27.6 ppm) to a broad 

resonance at 8 b 4.3 ppm. These shifts are consistent with the binding of an anionic 

donor to three-coordinate boron. The 19F NMR signal resulting from fluoride
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treatment with ["BiuNJF supports the complexation of F' (8 f -136.8 ppm), this 

chemical shift being markedly different from the source (5f  -122.7 ppm), the 

observed chemical shift is also consistent with that observed for the fluoride-adduct 

of 2b (8f  -130.8 ppm) . 14 Again the 19F resonance appears broader than the source, 

perhaps due to coupling of 19F to 1 nuclei. A solution of 8b treated with fluoride 

was not observed to change colour after exposure to air for 24 h. While the lack of 

colorimetric response was expected for mono-functional compound (7a), compound 

8b features two binding sites per iron centre, and hence the possibility of forming a 

2:1 adduct. Thus this observation provides some information on the binding 

stoichiometry. If one equivalent of fluoride were bound at each Lewis acidic boron 

centre, a colour change from orange to green would be expected to result, since the 

electrochemical shift (based on that previously measured for 2a) would be expected 

to be sufficient that it would be oxidised by atmospheric oxygen. The NMR data is 

however strongly suggestive of some form of Lewis acid-fluoride interaction taking 

place, however determination of the mode of binding requires further investigation.

The use of ferrocene has been particularly extensive in the development of 

organometallic polymers capable of inter-metallic electronic communication, acting 

as the backbone of the polymer in many cases. The reversible redox chemistry of 

ferrocene provides a convenient method of analysis. Electrochemical methods, 

particularly cyclic voltammetry, can provide a valuable insight into the mechanisms 

of electron transfer reactions involved in redox processes, capable of detecting 

electronic communication between redox active centres. For example in the simple 

case of compound 7a, where just two ferrocene units are bridged by a 

cyclooctanetetraol linker group, electronic communication (if it were to occur) would 

be manifested by the presence of two oxidation waves. Thus as one iron centre 

becomes oxidised, the neighbouring site becomes more difficult to oxidise and
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therefore does so at a higher oxidation potential and two oxidation waves are 

observed. The peak-peak separation provides an estimate of the degree of interaction 

between the two iron centres, and have been observed in a range of AE1/2 = 0.16-0.29 

V, depending on the spacer group. 15 In a situation where no electronic 

communication is occurring and both iron centres are in equivalent chemical 

environments, we would expect to observe just a single redox wave, as the oxidation 

of one iron centre cannot affect the oxidation potential of the second.

In previous anion binding studies, the mono-functional analogue 2a was found 

to act as a selective receptor for fluoride, with the binding event in dichloromethane 

being accompanied by a cathodic shift in oxidation potential of the iron centre from 

+131 mV to -403 mV, a total shift of -534 mV (see chapter four). Electrochemical 

analyses were performed on the dinuclear compounds 7a, 8a, 9a, and macrocycle 8b, 

to gain some insight as to whether the polymeric analogues of these compounds 

might show evidence of electronic communication. The insolubility of the polymeric 

product 7c has precluded electrochemical analysis of this compound. Analyses of the 

remaining compounds were made in dichloromethane solution, and for all 

measurements ferrocene was used as a reference compound. The CVs of compounds 

7a, 8a, 9a, and 8b are shown below in Figures 5.16, 5.17 5.18 and 5.19, and a 

summary of relevant information is shown below in Table 5.5.
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Figure 5.16 Cyclic Voltammogram of compound 7a.

It is evident from the CV scans that the saturated cyclooctanetetraol spacer 

unit is not sufficient to allow extended conjugation and inter-metallic electronic 

communication, and as expected only a single redox wave is observed.
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Figure 5.17 Cyclic Voltammogram of compound 8 a.
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Compound 8 a displays a remarkably low oxidation potential (+15 mV with 

respect to ferrocene) compared with analogous mowo-substituted compound 7a, 

which implies that the pentaerythritol linker is quite electron donating, hence the iron 

centre remains relatively electron-rich and is more easily oxidised. Again, as 

predicted, only one reversible wave is observed with a small peak-peak separation, 

which concludes that the pentaerythritol linker cannot facilitate electronic 

communication between metal centres.
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Figure 5.18 Cyclic Voltammogram of compound 9a.

In comparison to 8 a the oxidation potential of 9a is cathodically shifted 

slightly, the compounds feature very different spacer groups. The benzene linker 

group featured in 9a is likely to be conjugated with the adjacent 7i-oxygen donors, 

thus the oxygen donors are less able to donate electron density into the vacant p- 

orbital at the boron centre, leaving the vacant p-orbital capable of accepting more 

electron density from the cyclopentadienyl ligand. Hence the iron centre becomes less 

electron-rich and more difficult to oxidise. One interesting point to note about the CV 

scan of 9a is the lack of multiple redox waves; the incorporation of the delocalised
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benzene spacer group, which was thought to be capable of supporting electronic 

communication between two metal centres, has proven unsuccessful.
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Figure 5.19 Cyclic Voltammogram of compound 8 b.

The unusual macrocyclic structure of compound 8 b is reflected in the 

oxidation potential of the compound (+416 mV), this value is not similar to any of the 

analogous boronic esters of ferrocene reported in Chapters Three and Four. Again, a 

small peak-peak separation (117 mV) is observed, along with a single redox wave, 

both of which provide significant proof that the pentaerythritol linker is not capable 

of supporting electronic communication through the vacant p-orbital at boron 

between two iron centres. Although it has already been implied from previous 

electrochemical studies that none of the above-mentioned compounds are capable of 

supporting electronic communication, from the perspective of developing 

colorimetric sensors for fluoride these compounds are still of interest.
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Compound Solvent

Potential Relative to 

FcH (Ref.) (mV)

Peak-Peak 

separation (mV)

7a Dichloromethane +182 1 2 1

8a Dichloromethane +15 105

9a Dichloromethane +67 117

8b Dichloromethane +295 117

Table 5.5 Electrochemical data for 7a, 8a, 9a, and 8b (referenced against

ferrocenium/ferrocene).

Electrochemical analysis also provides a convenient analytical method for 

monitoring the process of fluoride binding. The effect of fluoride binding on the 

oxidation potential of the ferrocene moiety is very pronounced in the CV spectrum as 

a result of the electronic changes that take place at the boron centre. Prior to fluoride 

binding the boryl groups act as net electron acceptors; this effect is reversed on the 

binding of fluoride, the resulting four-coordinate borate moiety acts as an electron 

donor, the ferrocene fragment becomes more electron rich, and hence is oxidised at a 

lower potential. Electrochemical analysis of anion binding was performed on 

compounds 8a and 9a. The novel dimer 8a displayed a cathodic shift of ca. —456 mV 

on addition of 2 equiv. [nBii4N]F. The CV scan for 8a treated with solid [nBii4N]F in 

dichloromethane solution is shown in Figure 5.20, with the CV scan for the parent 

compound overlaid.
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Figure 5.20 Cyclic voltammogram of 8 a (blue trace) and 8 a plus 2 equivalents of 

[nBii4N]F (red trace) in dichloromethane.

The observed cathodic shift of -456 mV provides substantial proof of a host-guest 

interaction between 8 a and fluoride anions, this shift is similar to those observed for 

the mono-functional analogues la  (-482 mV), lb  (-442 mV) and 2a (-534 mV) 

described in chapter four. The magnitude of the cathodic shift suggests that one 

fluoride is being bound at each of the two boron centres. From previous anion binding 

studies on boronic esters of ferrocene, it has been determined that in order to undergo 

aerobic oxidation by atmospheric dioxygen, the net cathodic shift must be ca. 1000 

mV. The potential associated with the O2/O2* redox couple in non-aqueous solution is 

known to be strongly dependant on pH. For example, for O2 + e' —► 02*, Ei/2 = -1000 

mV versus Fc+/Fc in DMF, while for O2 + H+ + e* —> HO2 , E1/2 = -280 mV also 

referenced against Fc+/Fc in DMF.19 Thus it is obvious from this evidence why 8 a 

does not display an orange to green colour change upon aerobic exposure to fluoride.
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Electrochemical anion binding studies were also performed on the analogous 

compound featuring a benzene spacer group (9a), which displayed a cathodic shift of 

-256 mV (major product peak) on addition of 2 equiv. ["BiljNJF in MeCN solution. 

The CV scan for 9a treated with solid ["BiljNJF in dichloromethane solution is shown 

in Figure 5.21, although the redox process associated with the [9a*F]' complex 

appears to be less reversible in dichloromethane solution.
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Figure 5.21 Cyclic voltammogram of 9a plus 2 equivalents of [nBu4N]F in

dichloromethane.

The observed cathodic shift provides some evidence of a host-guest interaction 

between 9a and fluoride anions, although the magnitude of the cathodic shift is much 

smaller than that observed for dimeric analogue 8 a (see table 5.6 below). The CV 

scan for 9a treated with fluoride shows two peaks, which might provide evidence for 

electronic communication between the two iron centres in the [9a*F]' complex, 

perhaps formation of the electron-donating four coordinate boron centre facilitates
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electronic communication via the delocalised benzene spacer. Alternatively it is 

possible that the mono-fluroide adduct is formed, thus there are two different boron 

centres -  one three coordinate (shifted a smaller amount from the free receptor) and 

one four coordinate (shifted a larger amount from the free receptor).

Compound Solvent Initial oxidation 

potential relative to 

FcH (mV)

F' adduct 

potential relative 

to FcH (mV)

Cathodic

shift

(mV)

8a Dichloromethane +15 -464 -482

9a Dichloromethane +67 -148 -256

Table 5.6 Electrochemical data for borylferrocene systems 8a and 9a treated with 

[nBu4N]F in dichloromethane referenced against ferrocene/ferrocenium.

5.5 Conclusions and suggestions for future research

Investigation into the electrochemical properties of oligomeric and macrocyclic 

compounds has revealed that there is no electronic communication occurring between 

redox centres. Compounds 7a, 8a and 8b feature saturated cyclooctanetetraol or 

pentaerythritol linker groups; delocalised linker groups are more likely to sustain a 

conjugative interaction. Careful choice of an appropriate electron-rich unsaturated 

linker group, featuring the necessary geometry to favour polymer or macrocycle, is 

required to advance towards compounds suitable to access solid-state sensor systems 

with switchable conductivity and enhancement of both signal response and sensor 

kinetics. A wide range of compatible tetra-ol reagents are available, allowing the 

opportunity to systematically vary geometry, conformational rigidity and
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stereochemistry. Whilst select choice of linker group can be made to promote 

electronic communication, the use of for example, redox-active ortho-quinone 

linkers, in this way the redox properties of the polymer might perhaps be tuned to 

meet specific requirements.

The insolubility of the polymeric product (7c) has hindered characterisation of 

that product by conventional methods such as NMR, mass spectrometry, UV and IR 

spectroscopies, and has precluded anion binding and electrochemical studies. There 

stands vast scope for alteration of solubility properties by minor modification to the 

linker group, for example by variation at X in the l,4 -X2-tetrahydroxybenzene linker 

used in the preparation of 9a. Incorporation of long-chain alkanes will enhance 

organic solubility, whilst inclusion of alcohols, sugars or carboxylate groups will 

increase aqueous solubility of polymeric products.

Cross-linking for enhanced polymer strength can be promoted by spiking the 

tetra-ol component with hexa-ols, capable of undergoing a condensation reaction to 

bridge two or more parallel polymer chains, in this way the degree of cross-linking 

may also be tuned by adding quantitatively less or more hexa-ol to the tetra-ol 

component. Another method of tuning cross-linking is by spiking the ferrocene- 

diboronic acid with the tris- or tetrakis-boronic acid analogues. Use of tris- or 

tetrakis-boronic acids and hexa-ols may also provide the scope to prepare 

dendrimeric compounds. Addition of chain-terminating rigid diols i.e. catechol to the 

tetra-ol component of the reaction mixture, or by addition of ferroceneboronic acid to 

the ferrocene-diboronic acid component allows the possibility to control polymer 

chain length.
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Appendix One

K inetics Equations

Part I -  Calculation of rate constant for 2b, 3b and 4b with excess fluoride.

[Receptor] + 2F' [Receptor.2F]2'

oxidant

[Receptor.2F]‘

Rate = k3 [Ox] [(Receptor.2F) ~] (1)

Using steady state approximation for the concentration of [(Receptor.2F) "]:

0 = Rate of change of concentration of [(Receptor.2F)2"]

= ki [Receptor] [F ] 2 -  k2[(Receptor.2F)2'] -  k3[Ox][(Receptor.2 F)2‘]

So, by rearranging:

[(Receptor.2F)2'] = ki [Receptor] [F ] 2 / (k2 + k3[Ox]) (2)

Substituting this in to equation 1 gives:

Rate = k3[Ox][(Receptor.2 F)2'] = kik3[Ox][Receptor] [F"]2 / (k2 + k3[Ox]) (3)

If we make the assumption that k2 »  k3[Ox] (i.e. we ignore the k3[Ox] term on the 

bottom), then equation 3 simplifies to

Rate = k3[Ox][(Receptor.2 F)2'] = kik3 [Ox] [Receptor] [F"]2 / k2 (4)

And since K = ki / k2 equation 4 becomes

Rate = k3K[Ox] [Receptor] [F' ] 2 (5)



We then assume pseudo first order kinetics by assuming that (using experimental 

conditions such that) [Ox] and [F“] do not change.

Part II -  Calculation of binding stoichiometry.

(i) Kinetics as a function of fluoride concentration investigated.

Rate = v = k[F']" (6 )

(ii) In our case:

v = k[F']"[Receptor] (7)

ln(v) = Ink + nln[F‘] + ln[receptor] (8 )

For initial period in which [receptor] is effectively constant, therefore: 

ln(vi) = «ln[F"] + constant (9)

Initial rates (v) estimated by fitting a linear function to the absorbance vs 

time data for kinetic runs of varying fluoride concentrations.

(iii) Plot of ln(vj) vs. ln[F"] has a gradient of n to determine binding

stoichiometry.

References:

K. J. Laidler, Chemical Kinetics, Harper and Row: New York, 1987; Chapter 2.
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