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Abstract

Natural intelligences appear to represent the world in ways which filter out irrelevant 

information and allow them to function in a challenging environment. Episodic 

memory is thought to be mediated by control processes that facilitate the retrieval of 

task-relevant information at the expense of irrelevant information. Six event-related 

potential (ERP) experiments were conducted to explore the factors facilitating this 

strategic recollection. All of the experiments employed a variant of the exclusion task 

first used by Jennings & Jacoby (1997), in which studied words (targets) are 

endorsed on one response key, whereas new words and new words which repeat after 

an intervening lag of 7-9 items (non-targets) are rejected on another key. In all of the 

experiments correct responses to targets and non-targets elicited reliable left-parietal 

ERP old/new effects. However, when target accuracy was high (experiments 4 and 5) 

the effect for non-targets was significantly attenuated. This pattern of data is 

consistent with previous suggestions that, when the likelihood of recollecting 

information about targets is high, participants use the success or failure of an attempt 

to recollect information about targets as the basis for distinguishing between targets 

and all other classes of test word. Importantly, the findings generalise those obtained 

in previous experiments to circumstances under which one class of ‘old’ test items 

comprises items repeated during the exclusion test phases. The findings in this set of 

experiments also highlight important considerations when employing exclusion task 

data in order to make estimates of the relative contributions of memory processes to 

task performance. Furthermore, an exploratory magnetoencephalography (MEG) 

experiment found likely functional correlates of ERP memory effects, as well as an 

event-related field (ERF) to which there is no comparable modulation within the 

electrical record, therefore, highlighting the possible benefits for the use of MEG in 

the study of human recognition memory.
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Chapter One 

Memory

Divisions in human memory

Psychologists began studying memory in the mid 19 century; the first monograph, 

by Ebbinghaus, was published in 1885. Ebbinghaus assessed retention of lists of 

nonsense syllables, documenting very rapid forgetting in the first hour, which 

flattened out at about 30% for delays of up to two days. After that the rate of 

forgetting slowed markedly, but some forgetting was still apparent after a month 

(Ebbinghaus, 1913). The 1880s have been seen as a revolutionary decade for 

memory research because it marked the beginnings of the descriptions of memory 

processes. By the end of 1980s the view that memory comes in many different forms 

was relatively widespread.

Short term vs. long term memory

Dissociations between different measures of memory have been interpreted as 

evidence that memory is not a unitary system, but rather that it is comprised of 

separable and functionally distinct components (Squire, 2004; Tulving, 1972;

Tulving & Craik, 2000). This view is supported by various findings in 

neuropsychological studies, which show contrasts between deficits on certain kinds 

of memory tasks and normal or near normal performance on others. In an attempt to 

account for these data, memory researchers have concentrated on determining the 

ways in which memory is fractionated. For the majority of the 1960s, memory 

research was focused on the differences between short-term and long-term memory.
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This work culminated in a memory framework formulated by Atkinson & Shiffrin 

(1968). This framework specified three kinds of memory store: sensory registers, 

short-term memory and long-term memory. In essence, the framework assumes that 

input information is initially received by modality- specific stores (the sensory 

registers) that hold information in a relatively uninterrupted form for very short 

periods of time (not longer than a few seconds). From the information entering the 

sensory stores, a small fraction is attended to and selected for further processing in 

short-term memory. Information in short-term memory is processed actively and may 

be transferred into long-term memory during the time it is being rehearsed (Atkinson 

& Shiffrin, 1968).

Once short-term memory is seen as a mechanism for allocating attention it is clear 

that it is not just a passive repository for incoming information. Instead, information 

is actively selected and actively manipulated. In keeping with this observation, 

Baddeley & Hitch (1974) and Hitch & Baddeley (1976) proposed that the concept of 

a short-term store serving as a temporary repository for information should be 

replaced with the idea of a working memory system with a functional role in a wide 

range of cognitive tasks.

Baddeley & Hitch (1974) argued that working memory is a complex multi- 

component system, rather than a unitary store. The working memory model has 

evolved out of series of experiments in which hypotheses about its structure and 

operation have been tested and revised. The model as it is most well known is 

composed of three separate components: a modality free central executive, an 

articulatory loop, and a visuo-spatial sketch pad (Baddeley, 1990). The central
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executive is a supervisory system that controls cognitive processes, and is 

responsible for directing attention to relevant information, suppressing irrelevant 

information and inappropriate actions, and for coordinating cognitive processes when 

more than one task must be done at the same time. The articulatory loop stores 

phonological information and prevents its decay by rehearsing its contents, thereby 

refreshing the information in a rehearsal loop. The visuo-spatial sketch pad stores 

visual and spatial information. It can be further broken down into a visual subsystem 

(dealing with, for instance, shape, colour, and texture), and a spatial subsystem.

Baddeley (2000) extended the model by adding a fourth component, the episodic 

buffer, which holds representations that integrate phonological, visual, and spatial 

information, and possibly information not covered by the articulatory loop or visuo- 

spatial sketch pad (e.g., semantic information, musical information). The component 

is episodic because it is assumed to bind information into a unitary episodic 

representation. The episodic buffer resembles Tulving's (1972, 1983, 1985a) concept 

of episodic memory (which will be described in detail later), but it differs from long

term episodic memory in that the episodic buffer is a temporary store.

There is a body of neuropsychological evidence (Gainotti, Cappa, Perri, & Silveri, 

1994; Gathercole, 1994; Shallice & Warrington, 1970; Smith & Jonides, 1995;

Vallar & Shallice, 1990; Van der Linden, Coyette, & Seron, 1992) and neuroimaging 

studies (D'Esposito et al., 1998; D’Esposito et al., 1995; Smith & Jonides, 1999; 

Smith, Jonides, & Koeppe, 1996) which are generally consistent with the working 

memory model. In particular, there is some evidence from neuroimaging research 

indicating that the articulatory loop can be mapped to particular brain regions.
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Specifically, it has been suggested that the left inferior parietal cortex supports 

storage, while a network of areas associated with speech production (left inferior 

frontal, premotor, supplementary motor, and cerebellar regions) mediate articulatory 

rehearsal (Awh et al., 1996; Jonides et al., 1998; Paulesu, Frith, & Frackowiak,

1993). However, the extent to which these conclusions account for both 

neuroimaging and neuropsychological results has been debated (Becker,

MacAndrew, & Fiez, 1999; Fiez, 2001). In addition, it is worth noting that although 

the Baddeley and Hitch (1974) model is the most popular conceptualisation of 

working memory, there are several alternative theoretical approaches to working 

memory (see Cowan, 2005; Oberauer, 2002 for examples).

Long-term memory contrasts with short-term memory in that information can be 

stored for extended periods of time (Baddeley, 1990). Long-term memory allows 

retrieval of information decades after it is stored, and the limits of its capacity are not 

known. Storage in long-term memory is assumed to be primarily associative, relating 

different items to one another and relating items to attributes of the current situation.

The strongest evidence for a dissociation between long-term memory and short-term 

memory comes from neuropsychological studies. Scoville & Milner (1957) reported 

that the severely amnesic patient H.M., who underwent surgery in which the 

temporal lobe was removed in order to relieve severe epilepsy symptoms, had normal 

short-term verbal recall, as measured by a digit span task. However, he was unable to 

retain new information for more than a few minutes (Scoville & Milner, 1957). The 

reverse pattern of findings was reported by Shallice & Warrington (1970) in patient 

K.F., who could retain new information permanently but had a severely impaired
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digit span (Shallice & Warrington, 1970). The question of the relationship between 

short-term and long-term memory remains a mater of debate, however (e.g. 

Ranganath & Blumenfeld, 2006), but the focus in the remainder of this thesis is on 

long-term memory.

Models of long-term memory

Craik & Lockhart (1972) proposed a broad framework within which long-term 

memory phenomena could be understood. They assumed that the attentional and 

perceptual processes operating at the time of learning determine what information is 

stored in long-term memory. The theory postulates that there are a number of 

different levels of processing, ranging from shallow or physical analysis of a 

stimulus to deep or semantic analysis. Within this theory, depth is defined in terms of 

the meaningfulness extracted from the stimulus rather than on the number of 

analyses performed on it. Two key assumptions were made by Craik & Lockhart 

(1972). First, that the level or depth of processing of a stimulus has a substantial 

effect on its memorability. Second, that deeper levels of analysis produce more 

elaborate, longer lasting, and stronger memory traces than do shallow levels of 

analysis (Craik & Lockhart, 1972). There is evidence that disconfirms this second 

assumption. For example, Morris, Bransford & Franks (1977) argued that stored 

information is remembered only to the extent that it is of relevance to the memory 

test. They found that when participants are given an incidental judgment task in 

which they are shown a series of words (e.g. ‘cat’) and asked to make rhyme 

judgments on them (e.g. ‘Does it rhyme with hat?’) or semantic judgments (e.g.

‘Does it have a tail’?) and the following day are required to either recognise the 

items, or were asked in each case whether the word rhymed with a word presented
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the previous day. On the incidental judgment task participants recalled more of the 

words that had been processed in terms of their meaning. However, when asked to 

recall words based on their judgment of rhyme (phonetics) the opposite result 

occurred -  participants performed better on the words presented in the phonetic 

condition. Morris et al. (1977) argued that their findings supported a transfer- 

appropriate processing theory, whereby different kinds of processing lead to the 

acquisition of different kinds of information about a stimulus. The key point 

regarding a transfer-appropriate processing theory is that memory performance 

benefits from the extent of the similarity between the processes engaged at study and 

at test. Eysenck (1979) further addressed issues raised by the Craik & Lockhart 

theory by arguing that long-term memory is affected by distinctiveness of processing 

as well as by the depth and elaboration of processing. Eysenck & Eysenck (1980) 

tested this theory and found that words in a non-semantic, distinctive condition were 

better recognised than non-semantic, non-distinctive words, and almost as well as 

semantic words. A final problem with Craik & Lockhart’s levels of processing theory 

is that they failed to give a detailed account of exactly why it is that deep processing 

is so effective.

In addition to his selective impairments being relevant to the short-term/long-term 

memory distinction, H.M. has also been influential with respect to questions 

concerning distinctions within long-term memory. H.M. was able to learn a hand-eye 

coordination skill (mirror drawing), whilst being unable to report any memory 

regarding the learning episode (Scoville & Milner, 1957). These findings suggest that 

long-term memory is not a unitary system. This hypothesis has been explored 

thoroughly more recently, with a number of further distinctions within the long-term
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memory system being identified. For a taxonomy of long-term memory systems, 

derived from Squire & Zola-Morgan (1991), see Figure 1.1. The following sections 

briefly review some of the distinctions shown in Figure 1.1.

PRIMINGEPISODIC SEMANTIC SKILLS/HABITS

CLASSICAL CONDITIONING

LONG-TERM MEMORY

NON-ASSOCIATIVE LEARNING

EXPLICIT/DECLARATIVE IMPLICIT /NON-DECLARATIVE

Figure 1.1. Taxonomy of long-term memory systems, derived from Squire & Zola- 

Morgan (1991).

Implicit/Declarative vs. Explicit/Non-decIarative memory

Numerous findings suggest that long term memory is comprised of at least two 

components, one of which is a conscious form of memory for facts and events while 

the other is a non-conscious form of memory which manifests itself by influencing 

behaviour. This dichotomy has been expressed primarily in two different ways; the 

explicit vs. implicit distinction (Graf & Schacter, 1985; Schacter, 1987) and the 

declarative vs. non-declarative distinction (Squire & Zola-Morgan, 1991). Explicit 

or declarative memory is conceptualised as a conscious form of memory retrieval, as 

one can introspect on and report the contents of the memory. Implicit or non

declarative memory is characterised as memory which influences behaviour in the
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absence of awareness. Whichever dichotomy is employed for defining these two 

distinct sets of processes, be it explicit vs. implicit or declarative vs. non-declarative 

memory, there is little difference in the functional and behavioural processes 

associated with either. There are different theories that can account for dissociations 

between explicit/declarative and implicit/non-declarative memory. The following 

section reviews the various data and theories supporting this dissociation between 

memory components. These sections are presented using the declarative vs. non

declarative memory terminology throughout.

Declarative vs. Non-declarative memory

Beginning in the mid 1980s, the dominant perspective in memory research was that 

of a framework that accommodated multiple memory systems (see for example, 

Tulving, 1985b). At that time, the term “ non-declarative” was introduced, as a 

modification of the earlier declarative vs. procedural distinction, with the idea that 

declarative memory refers to one memory system and that “non-declarative memory” 

is an umbrella term referring to several additional memory systems (Squire & Zola- 

Morgan, 1988).

Declarative memory is the kind of memory that is meant when the term “ memory” 

is used in everyday language. It refers to the capacity for conscious recollection 

about facts and events and is the kind of memory that is impaired in amnesia and 

dependent on structures in the medial temporal lobe and midline diencephalon 

(Squire, 2004). Declarative memory supports the on-demand accumulation, storage, 

and retrieval of new data about facts and events—the information that we capture 

from our experiences through our representations of it.
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There is substantial evidence that declarative and non-declarative memory systems 

differ in the degree to which the knowledge that they support can be generalised. 

Non-declarative memory includes classical conditioning and procedural memory 

(motor skills and habits such as tying up shoelaces). These forms of memory are 

difficult to describe verbally -  they can be ‘encoded’ and ‘retrieved’ with little or no 

conscious awareness. Unlike declarative memory, non-declarative memory is 

inflexible and bound to the modality of the original response systems (Squire & 

Knowlton, 1995). This arises directly from the fact that non-declarative memory is 

tied in many cases to the specific processing operations involved in behaviour.

Typically, declarative memory is assessed via recall and recognition tasks which 

require intentional retrieval of information from previous experiences, or the 

successful identification of the previously studied material, respectively. As the task 

instructions refer the subject to a specific spatiotemporal context, these tasks have 

been variously described as autobiographical (Jacoby & Dallas, 1981), direct 

(Johnson & Hasher, 1987), episodic (Tulving, 1972, 1983, 1985), and intentional 

(Jacoby, 1984), declarative (Squire, 1987), or explicit (Graf & Schacter, 1985). An 

alternative set of tasks which involve no reference to previous events have been 

described as implicit (Graf & Schacter, 1985), indirect (Johnson & Hasher, 1987), or 

incidental (Jacoby, 1984).

A distinction should be made between using terms that refer only to task demands 

(e.g. direct/indirect) and terms that confound task demands with terms often used to 

describe classes of process or distinct kinds of memories (e.g. declarative). This is so
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that the use of certain terms to describe tasks does not automatically carry the 

assumption that the tasks exclusively tap into only one memory process or system.

One source of evidence for the brain mechanisms involved in declarative memory 

comes from recent neuroimaging studies using functional magnetic resonance 

imaging (fMRI) that have examined the degree to which distinct subregions of 

human hippocampus and the surrounding medial temporal lobe (MTL) 

differentially support particular aspects of declarative memory (see Cansino, 

Maquet, Dolan, & Rugg, 2002; Davachi, Mitchell, & Wagner, 2003; Eldridge, 

Knowlton, Furmanski, Bookheimer, & Engel, 2000; Henson, Cansino, Herron, 

Robb, & Rugg, 2003; Ranganath et al., 2004; Yonelinas, Hopfinger, Buonocore, 

Kroll, & Baynes, 2001).

Furthermore, lesion studies demonstrate that certain types of brain damage only 

impair non-declarative memory, while others only impair declarative (Exner, 

Weniger, & Irle, 2001; Gabrieli, Fleischman, Keane, Reminger, & Morrell, 1995; 

Keane, Gabrieli, Mapstone, Johnson, & Corkin, 1995). Findings in neuroimaging 

studies therefore emphasise differences between non-declarative and declarative 

memory. These neural dissociations comprise distinct neural correlates of non

declarative and declarative retrieval. For example, event-related potentials (ERPs) 

have revealed different spatiotemporal signatures of non-declarative and declarative 

retrieval (for example, Paller, Hutson, Miller, & Boehm, 2003; Schott, Richardson- 

Klavehn, Heinze, & Duzel, 2002). Functional magnetic resonance imaging (fMRI) 

has helped localise neuroanatomical differences between non-declarative and 

declarative memory. In one study, for example, non-declarative memory retrieval
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recruited prefrontal, fusiform, and extrastriate regions, while declarative memory 

retrieval recruited the posterior cingulate, precuneus, and inferior parietal lobule 

(Schott et al., 2005); many other studies have revealed frontal involvement in 

declarative memory retrieval as well (e.g. Buckner & Koutstaal, 1998).

The distinction between declarative and non-declarative memory has also been 

conceptualised in terms of the degree to which retrieval is dependent on conscious 

voluntary procedures (declarative memory) rather than an automatic processes (non

declarative memory). For example, Graf, Squire, & Mandler (1984) demonstrated 

that amnesic patients only showed benefits from cues in a word-completion task if 

they were encouraged to guess rather than when they attempted active recall. It has 

also been shown that patients with global amnesia perform poorly on tasks that rely 

primarily on declarative memory (Scoville & Milner, 1957) but these same 

participants perform normally on tasks that rely primarily on non-declarative 

memory (Corkin, 1968; Warrington & Weiskrantz, 1970).

Declarative -  episodic and semantic memory

There have also been proposals that declarative memory contains sub-divisions. 

Tulving (1983, 1985) distinguished between episodic and semantic memory. 

Episodic memory mediates conscious recollection of previously experienced events, 

whereas semantic memory involves general symbolic knowledge and facts. The 

retrieval of semantic memories does not require recall of the contextual details 

surrounding their acquisition. Tulving (1985) associated episodic and semantic 

memory with autonoetic and noetic consciousness, respectively. Noetic
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consciousness refers to awareness of knowledge without a specific re-experience of 

the learning event (e.g., knowing that the capital of France is Paris). Conversely, 

autonoetic consciousness correlates with episodic memory and is necessary for the 

knowledge that an event was personally experienced in a particular spatio-temporal 

context (e.g., details of a personal trip to Paris).

There is clear evidence of important differences between episodic and semantic 

memory. First, different parts of the brain are relatively more active for both coding 

and retrieval of episodic and semantic memories (Wheeler, Stuss, & Tulving, 1997). 

Second, episodic retrieval leads to greater activation in the frontal lobes, particularly 

in the prefrontal cortex (Lepage, Ghaffar, Nyberg, & Tulving, 2000). There is also 

support for Tulving's view that episodic memory is more vulnerable to damage than 

semantic memory from Vargha-Khadem et al.'s (1997) studies of amnesic patients in 

which patients exhibited selecitve episodic memory deficits alongside intact semantic 

memory.

In overall summary, the understanding of the cognitive structure and dynamics of 

human memory has undergone a dramatic transformation over recent decades.

Central to this transformation has been the accumulation of evidence suggesting that 

memory is not a single entity but rather consists of several dissociable (albeit 

interacting) systems, each fulfilling specific functions (Graf & Schacter, 1985; 

Tulving, 1983; Tulving & Schacter, 1990). Many characteristics of these proposed 

memory systems, including their precise definitions, functions, neuroanatomy, and 

the temporal parameters of their component processes are yet to be delineated 

clearly.
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Models of recognition memory

The primary focus in this thesis is declarative memory processes, and more 

specifically, processes that are engaged in tasks where participants must make 

judgments about the prior occurrence of items. The term ‘recognition memory’ refers 

to the form of memory that enables one to distinguish between items encountered 

previously and those that are being encountered for the first time.

Recognition memory has been explained from two different perspectives, where it is 

thought that it is either supported by one or two processes (Gillund & Shiffrin, 1984; 

Hintzman, 1984, 1986, 1988; Jacoby & Dallas, 1981; Jacoby & Kelley, 1992; 

Mandler, 1980; Murdock, 1982,1983,1993; Yonelinas, 1994). From a dual-process 

position, the assumption is that two dissociable processes contribute to recogntiion 

memory. A single-process view assumes that there is a continuous strength based 

process which is the sole underlying mechanism for recognition memory.

Single process models of recognition memory

Global matching models

A class of recognition memory models referred to as ‘global matching models’ are 

based on the assumption that recognition memory is comprised of a single process as 

opposed to two distinct processes (Gillund & Shiffrin, 1984; Hintzman, 1984; 

Murdock, 1982). Global matching models have evolved as a result of combining 

features from two earlier types of models; direct-access models and search models. 

Search models (Tulving, 1976) assumed that events are stored in memory separately
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and that each item is retrieved sequentially and compared against the test cue. 

However, such a process would only produce correct rejections of new items after an 

exhaustive search, and it had been reported that correct rejections can be made very 

rapidly and confidently (Atkinson & Juola, 1974). Direct-access models (Kintsch, 

1970) were formulated within the framework of associative networks, in which items 

are represented as nodes and relations between items are conceptualised as pathways 

between nodes. According to direct-access models, recognition occurs when the test 

item gains direct access to the relevant node. The strength of information at this 

node is then used to make a recognition judgment. This model circumvents the 

factor of response speed that proved problematic for search models as it does not 

require a search process prior to responding, but it does not allow for the influence 

either of other items in memory or of non-targets and new items presented at test on 

recognition. As it had been reported that factors such as list length (Bowles & 

Glanzer, 1983) and inter-item similarity (Posner & Keele, 1970) influence 

recognition, it is clear that any model of memory must be able to account for the 

influence of other items. Search models can, however, account for these phenomena.

Global matching models were developed from the congruence between search 

models and direct-access models in terms of processing speed and being able to 

account for the influence of other items on recognition. Gillund & Shiffrin (1984) 

conducted a series of experiments examining whether recognition is comprised of 

both a direct-access component and a search component or whether it is comprised of 

a single process. They argued that fast responses should reduce the contribution of a 

search component while leaving direct-access unaffected, whereas the relative 

contribution of search processes should increase for slow responses (Gillund &
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Shiffrin, 1984). Variables thought to differentially engage search processes (e.g. list 

length, orienting task) should therefore show interactions with experimental 

manipulations that selectively reduce or eliminate the search component (Gillund & 

Shiffrin, 1984). However, although speeded performance decreased the accuracy of 

memory judgments, no such dissociations were observed. Therefore, the search of 

associative memory model (SAM) was developed as a single-process model of 

recognition memory (Gillund & Shiffrin, 1984). SAM, together with other global 

matching models, accounts both for the sensitivity of recognition performance to 

other items in memory, and for the production of relatively fast responses.

There are a number of single-process global-matching models. The three most 

influential are: search of associative memory models, or SAM (Gillund & Shiffrin, 

1984), MINERVA 2 (Hintzman, 1984, 1986, 1988), and theory of distributed 

associate memory, or TOD AM (Murdock, 1982; 1983; 1993). These will be 

reviewed briefly here. Although these three models do differ in detail, they share 

some commonalities. First and foremost, recognition is modelled as a single signal 

detection process based on global familiarity, which represents the total activation in 

memory in response to a test cue. They also a share two other underlying 

assumptions; a test cue is combined with its context into a single probe of memory 

(the interactive cue assumption), and the cue is simultaneously matched against all 

events in memory activating multiple events in parallel (the global matching 

assumption) rather than being used to retrieve a specific item (Clark & Gronlund, 

1996). Global matching results in a value which can be conceptualised as item 

familiarity, the match of item to memory, or the activation of memory produced by 

the item (Clark & Gronlund, 1996). This value is generally perceived as an index of
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global familiarity (Ratcliffe, Van Zandt, & McKoon, 1995). A familiarity value 

above a certain criterion leads to the judgment that the item occurred previously 

whereas a value below criterion leads to a negative response.

Although the outcome (a strength based signal) is the same in the three models, there 

are several key differences between them. SAM assumes that, during encoding, the 

strength between items is developed, and that item-specific and associative 

information are stored separately. Item-specific information reflects the ‘strength’ 

between the test cue and its representation in memory, while associative information 

reflects the strength between the test cue and the remaining items in memory. 

Importantly, although item-specific and associative information are stored separately, 

their contribution is combined at retrieval and both influence the overall familiarity 

value that arises. Both Minerva 2 and TOD AM assume items are represented as 

vectors. TOD AM assumes that an item is composed of numbers of vectors of 

attributes which are stored in a common memory vector. During memory 

recognition, the familiarity product between test item vector and memory vector will 

produce the match value. In MINERVA 2, items are also thought of as being vectors 

of attributes and the familiarity product between the vector of the test item and the 

vector of each item in the memory is matched at recognition. Consequently, the 

greater the number of shared attributes the greater the level of activation. Thus, 

although all global matching models specify a single retrieval process, the 

assumptions underlying retrieval vary substantially.

Signal-detection theory
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A number of single-process models of recognition memory employing signal 

detection theory (Green & Swets, 1966) were developed from classical signal 

detection models of yes/no recognition memory (Banks, 1970; Glanzer, Adams, 

Iverson, & Kim, 1993). Similar to global matching models, signal detection models 

of recognition memory specify a single continuously distributed familiarity process, 

and normal distributions represent the overlapping familiarity distributions of old and 

new words (see Figure 1.2). The mean of the old item familiarity distribution is 

higher than the mean of the new item familiarity distribution. The distance between 

the two means is denoted as d', which provides an index of discrimination of old 

from new items free from response bias, and which assumes that the standard 

deviations of the old item and new item distributions are equal (Swets, 1986).

oldnew

---------- ► "old"
response criterion (e)

response: new

familiarity

Figure 1.2. An equal-variance signal detection model illustrating familiarity 

distributions associated with studied and unstudied items. Adapted from Yonelinas 

(2002).

In the context of recognition memory, the signal detection models consists of two 

parts: the distribution of old and new items along a familiarity strength axis, and the 

placement of a decision criterion. It is considered that all test items have some level 

of familiarity value. Studying a list of items will temporarily increase their level of
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familiarity. Old items will therefore on average have a higher familiarity value than 

new items. However, because the distribution of old and new items interact, the 

overlap will therefore produce correct responses to old (hits) and new (correct 

rejections) items, as well as incorrect responses to both old (false alarms) and new 

(misses) items.

It is assumed that participants cannot determine directly whether an item is old or 

new, but that they are aware of the test item’s familiarity value (Snodgrass &

Corwin, 1988). Hence, participants must set a criterion, and whether an item will 

receive an old or new response will depend on where the decision criterion is placed: 

for an old item to receive an old response, its familiarity (Fo) must exceed the set 

criterion (C, see Figure 1.2).

PO‘old’1 old) = (Fo>C)

Similarly, in order for a new item to receive an old response, its familiarity value 

(Fn) must also exceed the set criterion.

Dual-process theory holds that some recognition memory decisions are based on the 

recollection of contextual detail, whereas other decisions are based on a sense of 

familiarity unaccompanied by contextual information (Curran & Hintzman, 1995; 

Mandler, 1980). One technique that is designed to measure these two processes is the 

remember/know procedure, which simply involves asking participants to say 

“ remember” (R) for recollection based decisions and “ know” (K) for familiarity- 

based decisions (Gardiner, Richardson-Klavehn, & Ramponi, 1997) (the R/K 

procedure is addressed in more detail in a subsequent section of this thesis). Signal
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detection theory has been used to understand aspects of the R/K procedure, by the 

use of a two-criteria signal detection model in which a further criterion is placed 

above the old/new criterion, and this is used to make Remember/Know judgments 

(see Figure 1.3); items whose familiarity lies above this second criterion will attract a 

Remember response, whereas those that fall between this criterion and the lower 

yes/no criterion will attract a Know response (Donaldson, 1996; Hirshman & Master, 

1997; Inoue & Bellezza, 1998). Increasing the old/new criterion (i.e. in a more 

lenient direction) should increase the rate of Know responses but leave Remember 

responses unaffected. Therefore, the placement of the old/new criterion and the 

proportion of Know responses should be positively correlated (Donaldson, 1996).

Old itemsNew items

‘old/new’
criterion criterion

Figure 1.3. An equal-variance signal detection model of Remember and Know 

responses, illustrating familiarity distributions associated with studied and unstudied 

items and the placement of the yes/no and Remember/Know (R/K) response criteria. 

Adapted from Inoue and Bellezza (1998).
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Two-criteria signal detection models have been used to demonstrate that a number of 

Remember/Know dissociations cited to support the dual-process approach can also 

be explained within a single-process model (Ratcliffe, Van Zandt, & McKoon,

1995). Some researchers adopting the two-criteria single-process model do not claim 

that all dual-process dissociations can be accounted for within a single-process 

model, but rather argue that Know responses are an unreliable estimate of familiarity 

as this measurement relies strongly on the placement of the second decision criterion 

(Donaldson, 1996). Or that the processes of recognition and familiarity represent 

instead strong and weak memories (Squire, Wixted & Clark, 2007).

In a review of signal-detection models, and in particular the unequal variance signal 

detection model, Wixted (2007) concludes that they are much more viable than 

alternative theories that currently guide investigations into the brain basis of 

recognition memory, such as the dual-process models and the theory that remember- 

know judgments capture recollection and familiarity.

Dual-process theories of recognition memory

In opposition to these unitary models of recognition memory, dual-process models 

propose that, in addition to an assessment of strength or familiarity, recognition 

judgments can be made on the basis of retrieval of the prior occurrence of the test 

item - the learning episode (Atkinson & Juola, 1974; Humphreys, Bain & Pike, 1989; 

Jacoby & Dallas, 1981; Jacoby & Kelley, 1992; Mandler, 1980). These models
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distinguish between processes supporting recognition with and without retrieval of 

context, since both familiarity and retrieval of the learning episode support 

recognition memory judgments, but only the latter supports context judgments.

One of the first dual process accounts of recognition memory was proposed as a 

result of findings from a sorting/recall paradigm (Mandler, Pearlstone, & Koopsman, 

1969). It was demonstrated that the number of categories into which items were 

sorted at study (referred to as an ‘organisational variable’) dissociated performance 

on two measures of memory retrieval; whereas immediate recall was positively 

correlated with the number of sorting categories but then declined, immediate 

recognition remained unaffected but then substantially improved over time as a 

function of this variable. Mandler et al. (1969) proposed that immediate recognition 

initially depended on ‘occurrence information’ (i.e. awareness that the item had 

previously been encountered), and that a retrieval check was only performed if this 

failed. The underlying assumption was that occurrence information decays more 

rapidly over time than organised structural effects. This theory was extended to 

assert that organisational variables relate to slower recognition responses, and that 

faster responses are made primarily on the basis of occurrence information, for which 

the term ‘familiarity’ was adopted (Mandler & Boeck, 1974). Juola, Fischler, Wood 

& Atkinson (1971) proposed a similar account in which familiarity was 

conceptualised as being continuously distributed, and in which participants adopted 

two response criteria; all items eliciting familiarity above the high criterion were 

judged ‘old’ (i.e. studied), and all items which elicited familiarity below the low 

criterion were judged ‘new’ (i.e. unstudied). It was hypothesised that a second 

search process is initiated if familiarity elicited by an item falls between these two
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criteria, and that this results in a slower response (Juola, Fischler, Wood, &

Atkinson, 1971).

In what is now perhaps the dual-process model to which most attention is paid 

(Jacoby, 1991; Yonelinas 1994, 1997, 1999, 2001a, 2001b), the two processes are 

known as familiarity and recollection. Familiarity is thought of as being relatively 

automatic and fast-acting, and reflects the outcome and assessment of a continuous 

index of memory strength. Recollection, on the other hand, is thought of as being 

slow and intentional, and is characterised by the retrieval of qualitative information 

about a prior event. These characterisations of the two processes differ somewhat 

among models. For example, in the influential early work of Mandler (1980), the two 

processes were referred to as Integration and Elaboration. However, the 

commonalities between the ways in which the terms are used outweigh the 

differences.

It has been proposed that the relationship between recollection and familiarity is one 

of independence, redundancy, or exclusivity (Jones, 1987). An independence 

relationship predicts that recollection and familiarity can occur simultaneously or 

separately. Redundancy refers to the possibility of familiarity occurring with or 

without recollection; however, recollection cannot occur without familiarity. From an 

exclusivity point of view, the two processes would never occur simultaneously (see 

Figure 1.4).
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Independence Redundancy Exclusivity

Figure 1.4. Three possible relationships between familiarity (F) and recollection (R).

There are a number of dual-process models that have been developed on the 

assumption that recognition memory consists of two separate mnemonic processes: 

the Atkinson Model, (Atkinson & Juola, 1973, 1974), the Mandler Model (Mandler, 

1980, 1991), the Jacoby Model (Jacoby, 1991; Jacoby & Dallas, 1981; Jacoby & 

Kelley, 1992) the Tulving Model (Tulving, 1985b; Tulving & Schacter, 1990) and 

the Yonelinas Model (Yonelinas, 1994,1997, 1999, 2001a, 2001b). The assumption 

that recognition memory is supported by two processes is central for all the models 

therefore they are relatively similar to one another. Furthermore, all the models 

assume that familiarity is a faster process than recollection, and that generally 

familiarity is considered to be relatively automatic, and recollection to be a process 

that can be controlled to a greater degree. However, there are some differences across 

the models with regard to some of their individual underlying assumptions.

For example, all the models, with the exception of the Atkinson model, assume the 

two processes operate independently. The Atkinson model (Atkinson & Juola, 1973,

1974) argues that familiarity is completed prior to recollection. Therefore, in the 

other models, in order for recollection to be available, or used, no prior assumptions
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need to be made with regards to familiarity. Atkinson, on the other hand, assumes 

that the information supporting familiarity and recollection judgments is stored 

separately, and argues that only when familiarity fails will the process of recollection 

commence. Across the models familiarity is considered to reflect continuous memory 

strength, and within the Atkinson and Yonelinas models it is described in terms of a 

signal detection framework. Recollection, meanwhile, is described by Yonelinas as a 

threshold process. Another differing assumption is that, while Jacoby (Jacoby & 

Dallas, 1981; Jacoby & Kelley, 1992) argues that familiarity is related to implicit 

memory processes (in particular, conceptual and perceptual priming), Tulving 

(1985a) argues that familiarity is linked to semantic memory. By contrast, both 

Atkinson and Mandler claim that familiarity and recollection are influenced by 

conceptual as well as perceptual processing operations. In addition, some of the 

models predict different rates of forgetting for the two processes, with Mandler and 

Atkinson claiming familiarity should decline more rapidly than recollection 

(Gardiner, 1988; Gardiner & Java, 1991; Yonelinas & Levy, 2002; but also see 

Bomstein & LeCompte, 1995).

Dissociating the processes in recognition memory

Several behavioural paradigms are currently widely employed as mechanisms for 

measuring the processes of recollection and familiarity in recognition memory. These 

include the Remember/Know paradigm (Gardiner, 1988; Gardiner & Java, 1990; 

Tulving, 1985a), calculated receiver operating characteristics (ROC: Yonelinas,

1994; Yonelinas, Dobbins, Szymanski, Dhaliwal, & King, 1996; Yonelinas, 1997), 

and the process dissociation procedure (PDP: Jacoby, 1991). These three approaches
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will be described in the following sections, with particular focus on the PDP, due to 

the relevance of this approach to the work in this thesis.

Remember/Know (R/K) procedure

The R/K procedure, as used in recognition memory research, is a phenomenological 

approach which relies on subjective reports of states of awareness to supplement 

behavioural measures of recognition performance. This approach was developed out 

of Tulving’s distinction between noetic and autonoetic consciousness (Tulving,

1983; Tulving, 1985b). Tulving argued that episodic remembering (or ‘mental time 

travel’) is specifically oriented towards the past and is accompanied by ‘autonoetic’ 

awareness, whereas the retrieval of declarative information is phenomenally distinct 

and is accompanied instead by ‘noetic’ awareness (Tulving, 1993; Tulving & 

Markowitsch, 1998). Gardiner and colleagues developed the R/K procedure in order 

to distinguish between the subjective experiences of remembering and knowing 

(Gardiner, 1988; Gardiner & Java, 1990; Gardiner & Java, 1993; Gardiner & Parkin, 

1990). Experiments utilising this approach require participants to respond 

‘Remember’ if they can consciously recollect any contextual aspect of prior 

presentation, and to respond ‘Know’ if they recognise the item on some other basis. 

Moreover, the Remember/Know distinction is generally assumed to overlap with the 

recollection/ familiarity distinction described by Mandler (1980), and it has been 

proposed that phenomenological accounts can be used to supplement objective 

accounts of recognition memory (Gardiner & Java, 1993).

Although Gardiner developed the Remember/Know paradigm from the model 

described by Tulving (1985b), the functional interpretation of Know responses is
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somewhat different in the dual-process application than that initially proposed by 

Tulving. Tulving (1985b) described the Remember/Know distinction as mapping 

onto the distinction between episodic and semantic retrieval, but in the most common 

application of this paradigm to dual-process models of recognition memory, 

Remember and Know responses are associated with recollection and familiarity 

processes, respectively. Although familiarity and semantic retrieval are both 

characterised as conscious retrieval in the absence of recollective experience, it can 

be argued that familiarity is also defined by a subjective awareness that the eliciting 

item has been previously and personally experienced, whereas this 

phenomenological experience is usually absent in semantic retrieval. Gardiner, 

Richardson-Klavehn & Ramponi (1998) studied transcripts of participants’ rationales 

for making ‘Know’, ‘Remember’ or ‘Guess’ responses. ‘Know’ responses showed no 

evidence of conscious recollection of contextual details, neither was there evidence 

of memory for perceptual experiences. Most participants reported that they were 

aware of having personally encountered the item previously, but could not explicitly 

remember the episode. Therefore, it appears that Know responses show functional 

characteristics similar to those attributed to familiarity. Reasons for making a 

Remember response fell into one of five categories; i) intra-list associations (i.e., 

associations formed between two or more items within the list), ii) extra-list 

associations (i.e., associating an item with a simultaneous environmental event), iii) 

item-specific imagery, iv) the item’s physical features, and v) self-reference.

Criticisms of the Remember/Know procedure

Phenomenological paradigms such as the Remember/Know procedure mandate a 

relationship of mutual exclusivity between recollection and familiarity, which is a
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consequence of the fact that the two responses cannot occur simultaneously. 

Criticisms regarding this mutual exclusivity assumption have been levelled at the 

phenomenological approach, as it has been argued that this assumption results in the 

contribution of familiarity to overall recognition memory being underestimated 

(Yonelinas & Jacoby, 1995). This is because any element of familiarity present in 

Remember responses is ignored as a result of conflating response type (i.e. 

Remember/Know) with the underlying processes. For this reason, it has been argued 

that Know responses should be corrected by dividing the proportion of Know 

responses by the opportunity the subject has to make a Know response (1 -  R) before 

they can be considered to be an accurate estimate of familiarity (F) (Yonelinas & 

Jacoby, 1995). The formula for this correction is:

F = K/ (1 - R)

Certain ambiguous and inconsistent behavioural and neuropsychological findings 

yielded by studies adopting the phenomenological approach have been resolved 

when Remember/Know data are reanalysed under a dual-process signal-detection 

model which incorporates an independence assumption (Yonelinas & Jacoby, 1995; 

Yonelinas, Kroll, Dobbins, Lazzara, & Knight, 1998), although Yonelinas & Jacoby 

(1995) emphasise that Remember responses are not affected by this issue. This 

question is discussed in greater detail later.

A second criticism has been aimed specifically at one-stage Remember/Know 

paradigms (i.e. paradigms in which participants are instructed to respond New, Know 

or Remember). It was reported that a two-step Remember/ Know procedure (in
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which participants are asked to rate items as Remembered or Known only after 

accepting them as old) was preferable to the one-step procedure, as the latter led to a 

higher false alarm rate for Know responses than for Remember responses, indicating 

that participants were treating the two responses as confidence judgments (Knowlton, 

1998; Hicks & Marsh, 1999). Therefore, differences in the implementation of these 

procedures between different laboratories may produce different patterns of results.

It is important to note that Gardiner & Conway (1999) suggest that an addition of a 

third, ‘Guess’, response is also advisable. They argue that estimates of Know 

responses are often contaminated by guessing, and that these estimates under binary 

response R/K paradigms may not therefore provide a valid measure of noetic 

awareness (Gardiner & Conway, 1999). Unlike Know responses, it has been argued 

that Guess responses show no memory for studied items, even in forced-choice tests 

(Gardiner & Ramponi, 1998). From a signal detection perspective, however, this 

distinction makes little sense, as perceived ‘guesses’ are simply low confidence 

responses when the familiarity signal for an item falls close to criterion.

Receiver Operating Characteristics (ROCs)

The study of ROCs in the context of recognition memory has had a significant 

impact on the development and evaluation of different models of the processes 

underlying recognition memory. A receiver operating characteristic, or ROC, is the 

function that relates the proportion of correct recognitions (i.e. hits) to the proportion 

of incorrect recognitions (i.e. false alarms) in a binary discrimination task. ROCs are 

typically plotted as a function of response confidence (e.g. Yonelinas, 1994; 

Yonelinas, Dobbins, Szymanski, Dhaliwal, & King, 1996; Yonelinas, 1997). When 

plotted as z-scores (see Figure 1.5.1), ROCs give two measures of performance; the
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intercept of the transformed ROC provides a measure of discriminability (d') or 

memory sensitivity (Yonelinas, 1997), whereas the slope provides a measure of the 

symmetry of the ROC. Two influential models of recognition memory, the 

unequal-variance signal-detection model and a dual-process threshold/detection 

model, accurately describe the receiver operating characteristic that is typically 

obtained in memory tasks, but only the latter model can provide estimates of 

recollection and familiarity (Wixted, 2007).

ROCs can also be plotted in probability space, (see Figure 1.5.2) where recognition 

responses accompanied with the highest level of confidence are represented to the far 

left of the ROC curve and subsequent points along the curve represent recognition 

responses accompanied by decreasing levels of confidence. Figure 1.5.2 

demonstrates two types of recognition memory ROCs. The lower function is 

curvilinear and symmetrical against the diagonal. The curvilinear shape reflects the 

continuous Gaussian familiarity distribution and is symmetrical because the old and 

new item distributions have equal variance.

Such characteristics were typical of early recognition ROCs (Murdock & Dufty, 

1972) and supported the view that recognition memory reflected only a single 

familiarity component that could be measured using a single parameter (e.g, d’) 

denoting the distance between the means of the new and old familiarity distributions 

and which was independent of response bias. However, later studies have shown that 

recognition memory often produces asymmetrical ROCs, as shown by the upper 

function in Figure 1.5.2.
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Figure 1.5. Symmetrical and skewed receiver operating characteristic curves plotted 

for z-coordinates (Figure 1.5.1) and for probability coordinates (Figure 1.5.2). 

Adapted from Yonelinas and Jacoby (1995).

The asymmetry of the ROC curve is not, in itself, problematic for single-process 

models, as certain models can account for asymmetrical ROCs by assuming that old 

items are always associated with a greater amount of variance than new items 

(Squire, Wixted & Clark, 2007), these models predict that the degree of asymmetry 

will co-vary with the degree of accuracy. However, the degree of asymmetry in 

recognition ROC curves is not constant and is functionally independent of 

recognition accuracy (Glanzer, Kim, Hilford & Adams, 1999). This suggests that two 

distinct components are necessary to account for recognition ROC curves -  one to 

explain increases in sensitivity (d’) and another to explain the differential changes in 

variance in old and new item distributions. It is this aspect of the ROC function data 

that has provided the greatest challenge for single-process models of recognition 

memory. As the majority of dual-process accounts specify a threshold process for
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recollection which results in highly confident responding (Jacoby, Toth, &

Yonelinas, 1993), they predict a skewed ROC with a slope of less than 1.0.

Therefore, observed ROCs match those predicted by dual-process models more 

closely than those predicted by single-process models. This has been replicated and 

extended from equal-variance signal-detection models to unequal-variance signal 

detection models (Yonelinas, Dobbins, Szymanski, Dhaliwal, & King, 1996), 

although this extension has recently been questioned by Wixted (2007). ROCs 

predicted by dual-process models are very similar to those predicted by unequal- 

variance signal-detection models. Although the unequal-variance signal-detection 

model offers a viable account of curvilinear ROCs and linear z-ROCs (Wixted, 

2007), the notion that decisions are based on a one-dimensional memory strength 

variable is not compatible with the dual-process theory of recognition memory.

This is because dual-process models incorporating recollection as a threshold 

process, predict ROCs that become more u-shaped than those predicted by unequal- 

variance signal detection models as the contribution of recollection increases 

(Yonelinas, Dobbins, Szymanski, Dhaliwal, & King, 1996). In support of this, 

Yonelinas et al. (1996) used a levels-of-process manipulation to maximise the 

contribution of recollection to recognition performance, and demonstrated that 

observed ROCs were linear for shallowly processed items but became more u-shaped 

for deeply processed items. Therefore, although both the dual-process and unequal- 

variance signal-detection models provided comparable accounts for shallowly 

studied words, only the dual-process model could account for the ROC observed for 

deeply processed items (Yonelinas, Dobbins, Szymanski, Dhaliwal, & King, 1996).
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The Process Dissociation Procedure (PDP)

The PDP was originally developed as a means of addressing concerns regarding the 

issue of ‘process purity’ (Jacoby, 1991). Jacoby noted that performance on retrieval 

tasks almost always represents a blend of conscious and automatic processing, and 

that memory performance on ‘indirect’ tests (i.e. tests that do not require explicit 

retrieval, and which therefore putatively reflect only implicit memory) would be at 

least partially contaminated by explicit memory. Likewise, memory performance on 

‘direct’ memory tasks (i.e. memory tasks requiring explicit retrieval) would be 

similarly contaminated by automatic influences. The PDP was introduced as a 

means of separating and estimating the contributions of conscious (recollection) and 

automatic (familiarity) influences towards performance on a retrieval task.

The PDP uses facilitation and interference paradigms in opposition in an attempt to 

separate estimates of recollection and familiarity. According to dual-process 

accounts, items in a recognition memory test requiring a simple judgment of prior 

presentation may be recognised either on the basis of recollection (which could be 

brought under intentional control) or on the automatic processes associated with 

familiarity (which could not). Such a paradigm is therefore facilitatory, as both 

recollection and familiarity contribute towards a common goal. A facilitatory 

paradigm is employed as the inclusion test condition which forms one part of the 

PDP. Jacoby (1991) also developed an interference paradigm which would place 

automatic and intentional uses of memory in opposition. In the most common 

version of this interference paradigm, study items are presented or processed in one 

of two different contexts. At test, participants are required to respond ‘old’ only if 

the item was presented in a specified context. These items are called targets. New
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items, and items previously presented in the other context (non-targets) are to be 

rejected (or ‘excluded’). The interference paradigm is referred to as the exclusion 

task condition, which forms the other part of the PDP. The correct exclusion of non

targets is thought to require the recollection of their study context so that they can be 

discriminated from equally familiar targets associated with an alternative study 

context (Jacoby, 1991). A key response category in the exclusion task is a target 

response to a non-target, based upon the assumption that this must be a response 

based upon familiarity in the absence of recollection: if the item had been 

recollected, a correct non-target response would have been given. This observation is 

key to the development of the formulae shown below, but it is also important to note 

that the response requirements of the exclusion task are such that correct responses to 

targets are made on one key and correct responses to non-targets and new items on 

another, and this leads to some degree of uncertainty regarding the processes used in 

correctly rejecting new and non-target items - a key issue relevant to the work in this 

thesis.

According to dual-process accounts, differential responding to different classes of 

studied item can only be achieved by an intentional and controllable retrieval 

process; automatic influences of memory would not allow selective responding of 

this nature. Recollection, therefore, can be quantified as the difference between the 

probability of endorsing an item of a specified class when directed to select for  items 

belonging to that class (facilitation/inclusion) and the probability of endorsing these 

same items when directed to select against items of that class 

(interference/exclusion). A series of simultaneous equations based on a probabilistic 

model can then be solved to yield estimates of the contributions of familiarity (F) and
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recollection (R) to recognition performance. Under exclusion conditions, a non

target will only intrude as an exclusion error (be incorrectly designated as a target), 

when recollection fails:

Exclusion = F  (1 -R)

In contrast, the probability of responding with the same item under inclusion 

conditions equals the probability that the item is recollected, plus the probability that 

the item is familiar in the absence of recollection. This probability is expressed as 

follows:

Inclusion =  R  +  F (1 -  R)

The probability of recollection equals the probability of responding with a non-target 

item under exclusion conditions subtracted from the probability of responding with 

the same item under inclusion conditions:

R  =  Inclusion -  Exclusion

Once an estimate of R has been obtained from performance data, F can then be 

solved for by using the following equation which is derived from the exclusion 

equation (Jacoby, Toth, & Yonelinas, 1993):

F  =  Exclusion /  ( 1 - R )
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The PDP has been applied to a variety of experimental manipulations, and has been 

used to demonstrate a wide variety of dissociations between recollection and 

familiarity. These findings are discussed later in this chapter. However, the PDP 

relies on a number of assumptions. A relationship of independence is assumed 

between familiarity and recollection, in that an item can be recognised on the basis of 

familiarity, on the basis of recollection, or on the basis of a combination of 

familiarity and recollection (Jones, 1987). The estimation procedure rests on the 

assumption that the criteria used for familiarity-based judgments are equivalent in the 

inclusion task and in the exclusion task, together with the assumption that the 

probability of recollection is equal in the two tasks. Finally, it is assumed that values 

of familiarity and values of recollection are totally uncorrelated.

Criticisms of the PDP

The PDP has been criticised on a number of counts, and has generated a significant 

amount of debate. While this review does not consider this debate in full, it is 

necessary to delineate a few key criticisms relevant to studies of recognition memory 

employing this paradigm. One of the principal criticisms is that the PDP conflates 

retrieval volition with states of awareness. Therefore the approach fails to account 

for phenomena such as involuntary conscious memory (Schacter, 1987; Richardson- 

Klavehn, Gardiner, & Java, 1994) in which recollection is experienced without 

conscious experience. The PDP also requires specific task-relevant contextual 

features to be retrieved in order for an item to be designated as recollected. If the 

specified contextual information is not retrieved the response is designated familiar, 

regardless of what other contextual aspects may have been recollected (recollection 

of contextual details other than those specified is termed ‘non-criterial recollection’).
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In response to this criticism, the PDP was employed to directly address this 

phenomenon (Yonelinas & Jacoby, 1996). It was demonstrated that non-criterial 

recollection exhibited functional characteristics similar to those associated with 

familiarity (Yonelinas & Jacoby, 1996), and that the effects of non-criterial 

recollection were independent from those associated with criterial recollection. 

Yonelinas & Jacoby (1996) subsequently argued that recollection is situation 

specific, in that it is defined by task demands. This stance illustrates a key 

philosophical difference between the PDP and phenomenological accounts; whereas 

the former operationalises recollection as the retrieval of contextual information that 

can be employed in the conscious control of behaviour, phenomenological accounts 

operationalise recollection as the retrieval of any contextual aspect whether it be 

voluntary or involuntary, criterial or non-criterial.

The PDP was also criticised by Gruppuso et al. (1997), who demonstrated that 

increasing the difficulty of the criterial question by increasing list similarity 

decreased recollection estimates while increasing familiarity estimates. This is 

problematic for the PDP as it demonstrates that estimates of the contributions of 

recollection and familiarity to recognition memory judgments obtained with the PDP 

are dramatically affected by the discriminability of the two study lists. On the basis 

of these findings, it was argued that estimates of recollection and familiarity as 

measured by the PDP are determined by task demands, and that familiarity estimates 

can be contaminated by recollection if recollection cannot be used to exclude items. 

These data can also be cited to support the criticism that the PDP almost always 

underestimates the contribution of recollection as it only provides an index of the 

proportion of recollective experience that is subject to conscious control (although
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this criticism is not problematic if your definition of recollection is that of 

consciously controlled retrieval). Thus in conditions which promote high levels of 

non-criterial recollection, recollection estimates will drop and familiarity estimates 

will rise (Gruppuso, Lindsay, & Colleen, 1997). Similar criticisms were made by 

Dodson & Johnson (1996), who reported findings that undermined both the 

assumption that familiarity is automatic, and the assumption that estimates of 

recollection remain consistent between the inclusion and exclusion task. It was 

reported that manipulating the proportion of studied targets (i.e. to-be-included 

items) to studied non-targets (i.e. to-be-excluded items) influenced estimates of 

familiarity. Dividing attention removed this effect, indicating that familiarity is not 

an automatic process but that it is controlled and task-demanding (Dodson & 

Johnson, 1996). It was also reported that enhancing similarity between targets and 

non-targets increased misrecollection (or source confusion), which resulted in a 

different target recognition rate on the inclusion task from that on the exclusion task, 

thus violating the assumption that recollection is equivalent in inclusion and in 

exclusion tasks (Dodson & Johnson, 1996).

The assumption that recollection and familiarity share a relationship of independence 

has also come under criticism (Joordens & Merikle, 1993; Cowan & Stadler, 1996). 

Joordens and Merikle (1993) argued that a relationship of redundancy (Jones, 1987) 

provided an equally plausible model, based on the assumption that any conscious 

influence is always accompanied by a correlated unconscious influence (Joordens & 

Merikle, 1993). It has also been argued that recollection and familiarity share a 

relationship of exclusivity rather than a relationship of independence, as one cannot 

experience familiarity and recollection simultaneously (Gardiner & Parkin, 1990).
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However, this argument applies to states of awareness, as delineated by the 

phenomenological approach, and does not address the processes of familiarity and 

recollection themselves.

Key empirical findings

Many behavioural studies relevant to the single versus dual-process issue have been 

conducted using the R/K, ROC and PDP methods. Key data points, and their 

relevance to questions concerning the characteristics of, and relationship between, 

recollection and familiarity, are described below, along with findings from 

neuropsychological and neuroimaging studies.

Behavioural evidence

Behavioural studies can provide evidence for models of recognition memory by 

demonstrating whether or not an experimental manipulation can have dissociative 

effects on the proposed components of recognition memory -  familiarity and 

recollection. A number of independent variables have shown differential effects on 

familiarity and recollection within studies employing the remember/know paradigm 

and the PDP. For example, in comparison to familiarity, recollection is relatively 

more sensitive to depth of processing manipulations (e.g., Toth, Reingold & Jacoby, 

1994). That is, recollection is enhanced when participants engage in the “deep”, 

semantic analysis of study items rather than in the more superficial or “shallow” 

analysis of their perceptual attributes. Using the R/K paradigm, Gardiner (1988) 

reported a depth of processing effect was totally accounted for by “remember” 

responses, while “ know” responses remained unaffected by this manipulation. In
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contrast, other studies, using the PDP, have also reported depth of processing 

influences on familiarity (Jacoby & Kelley, 1992; Toth, 1996). However these 

divergent findings were accounted for when the remember/know data, having been 

originally analysed under the exclusivity assumption, was reanalyzed under the 

independence assumption. The reanalysis showed a depth of processing effect in the 

same direction for both “remember” and “know” responses (Wagner, Gabrieli & 

Verfaellie, 1997). It has more recently been reported; however, that one component 

of familiarity seems to be sensitive to depth of processing manipulations while 

another component is not (Yonelinas, Kroll, Dobbins, Lazarra & Knight, 1998).

Dividing attention during study has been found to selectively affect “remember” 

responses (e.g., Gardiner & Parkin, 1990) as well as recollection in studies 

employing the PDP (e.g., Jacoby, 1991). Further evidence that attentional capacity 

selectively influences recollection was provided by another study employing the 

PDP, using a list length manipulation at study (Yonelinas & Jacoby, 1994). It was 

argued that, in expanding study list length, demands on attentional capacity increase 

-  this manipulation selectively reduced estimates of recollection but not familiarity 

(Yonelinas & Jacoby, 1994). However, it has been argued that a single-process 

model can account for these data (Ratcliff, Van Zandt, & McKoon, 1995). This can 

be achieved by increasing familiarity values for items from longer lists as well as 

increasing variability in their familiarity values. For example, for new items 

presented at test, familiarity will be twice as large for lists that are twice as long. 

Therefore, the familiarity criterion separating old and new responses needs to be 

moved as the list length changes so that it may remain between old and new item 

distributions. Further support for dual process models, however, comes from studies

52



of speeded recognition. These have indicated that estimates of recollection are 

reduced when participants are required to respond before a short, rather than a long, 

deadline, while estimates of familiarity are not influenced by this manipulation 

(Yonelinas & Jacoby, 1994). This suggests that familiarity is available earlier than 

recollection -  in fact, it has been reported that accurate old/new judgments can be 

made approximately 100 ms prior to accurate source judgments (Hintzman, Caulton, 

& Levitin, 1998). The few variables held to selectively influence familiarity are those 

that increase the perceptual fluency with which items are processed. For example, 

briefly flashing an item immediately prior to presenting the same item at test 

increases the probability that the word will be recognised as old (Rajaram & Neely,

1992). This type of manipulation has been found to increase “know” responses while 

leaving “remember” responses unaffected (Rajaram, 1993). Also, matching the 

modality between study and test produces a higher proportion of “know” responses 

than when modality shifts between study and test, while “remember” responses 

remain unaffected by this manipulation (Gregg & Gardiner, 1994).

Neuropsychological evidence

It is well established that damage to the medial temporal lobes causes severe 

impairments in memory performance (e.g., Moscovitch & McAndrews, 2002; 

Yonelinas et al., 1998). Damage to the hippocampus and surrounding temporal lobes 

in amnesic patients has been shown to disrupt both recollection and familiarity, but 

generally has a larger disruptive effect on recollection. For example, amnesic patients 

generally exhibit substantial deficits on associative compared to item-recognition 

tests, indicating that recollection is disproportionately disrupted by medial temporal 

lobe damage. Specifically, in comparison to tests of item recognition, amnesic
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patients perform more poorly on tests that require them to remember when an item 

was presented (Aggleton, Vann, Oswald, & Good, 2000; Kopelman, 1989; Nunn, 

Graydon, Polkey, & Morris, 1999). Consistent with such examples, ROC studies in 

amnesic patients have indicated that only one process (i.e. familiarity) is needed to 

account for their recognition performance (Yonelinas et al., 1998), as would be 

expected if they exhibited a severe deficit in recollection. Furthermore, results from 

the remember/know (Blaxton & Theodore, 1997; Knowlton & Squire, 1995;

Schacter, Verfaellie, & Anes, 1997; Schacter, Verfaellie, & Pradere, 1996), process- 

dissociation (Verfaellie & Treadwell, 1993) and ROC (Yonelinas, 1997) estimation 

methods indicate that, in studies which include patients with extensive temporal lobe 

damage, recollection is severely disrupted, whereas familiarity is disrupted to a lesser 

extent.

In a meta-analysis of 33 studies of amnesic patients and their performance on 

recognition memory, it was concluded that patients with relatively focal hippocampal 

damage displayed a greater impairment on recall than recognition (Aggleton & Shaw,

1996). Based on dual-process models, Aggleton & Shaw suggested that damage to 

the hippocampal system disrupts recollection, whilst leaving familiarity intact, 

thereby explaining their relatively preserved recognition performance (see also 

Aggleton et al., 2005).

In a study by Lazzara, Yonelinas & Ober (2001), in which they employed the R/K 

paradigm, patients with extended MTL damage showed a decrease in “R”as well as 

‘K’ responses, whereas patients with focal hippocampal damage exhibited a decrease 

primarily in ‘remember’ responses. Their result is consistent with the view that the
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hippocampus is critical for recollection, whereas other areas in the MTL support 

familiarity. Moreover, other studies in which the R/K paradigm (Schacter, Verfaellie, 

& Anes, 1997), PDP (Verfaellie & Treadwell, 1993), or ROC approach (Yonelinas, 

Kroll, Dobbins, Lazzara, & Knight, 1998) were employed demonstrated that isolated 

hippocampal lesions typically impair recollection, whereas extensive MTL damage 

has an effect on both processes. However, there are some inconsistencies across 

different studies. For example, in some R/K studies it has also been reported that 

amnesic patients show a large deficit in both recollection and familiarity (Knowlton 

& Squire, 1995), whereas others have argued that amnesia causes a deficit in 

recollection but an increase in familiarity, as ‘know’ responses increased (Schacter, 

Verfaellie, & Pradere, 1996). Yonelinas et al. (1998) have pointed out that the 

disparity between the different studies may be due to the fact that the false alarm 

rates differ enormously across studies, and that response bias should have been 

incorporated when interpreting the results (Verfaellie, Giovanello, & Keane, 2001).

Neuroimaging evidence

Functional neuroimaging techniques, such as functional magnetic resonance imaging 

(fMRI), have provided data to complement neuropsychological findings. In particular 

fMRI techniques offer a number of advantages over neuropsychological research in 

terms of the precise spatial localization of functional differentiation obtained within 

specific brain regions. This haemodynamic method detects changes in regional blood 

oxygenation, providing indirect measures of brain activity by imaging the 

oxygenation level of the blood flowing through the brain, as blood leaving relatively 

active neural populations is more richly oxygenated than blood leaving relatively 

inactive neural populations (Ogawa, Lee, Kay, & Tank, 1990).
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The results of functional imaging studies are broadly consistent with the view that 

while familiarity relies on regions in or around the perirhinal cortex, recollection is 

supported by the hippocampus (Cansino, Maquet, Dolan, & Rugg, 2002; Davachi, 

Mitchell, & Wagner, 2003; Eldridge, Knowlton, Furmanski, Bookheimer, & Engel, 

2000; Henson, Cansino, Herron, Robb, & Rugg, 2003; Henson, Rugg, Shallice, & 

Dolan, 2000; Henson, Rugg, Shallice, Josephs, & Dolan, 1999). In one important 

recent publication due to Yonelinas et al. (2005), participants were instructed to press 

one key if they recollected test items, and make old/new judgments as well as 

confidence judgments, on a four-point confidence scale, if they failed to recollect. 

Activation in the anterior medial frontal cortex, lateral parietal cortex, posterior 

cingulate, and hippocampus was related to recollection. Activation in the lateral 

prefrontal cortex, superior lateral parietal cortex, and precuneus was related to 

familiarity. The findings of Yonelinas et al. (2005) are broadly consistent with 

previous findings, but importantly, when controlling for confidence, there was only 

minimal overlap between the brain regions in which activity was correlated with 

recollection and with familiarity, thereby providing strong support for dual-process 

accounts of recognition memory.

In summary, the question of the validity and utility of the distinction between 

recollection and familiarity has generated substantial data and debate. The recent 

development of alternative dual-process models (Rotello, MacMillan & Reeder,

2004; Kelley & Wixted, 2001), as well as theoretical re-interpretations of data held to 

support dual-process accounts (Squire, Wixted & Clark, 2007; Wixted, 2007), has 

also breathed new life into this research area. An unchallenged assumption, however,
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is that the process of recollection entails recovery of contextual information, and it is 

broadly assumed that some degree of control can be exerted over recollection. The 

question of how and when control over recollection can be exerted is central to this 

thesis, and in the following sections, models in which retrieval control is 

incorporated are discussed. The ERP data described later will also, however, be 

linked back to considerations of the PDP, and the status of the process of familiarity, 

since the findings in the studies in this thesis provide data points relevant to these 

issues, although they are not the primary issues driving the experiments that were 

conducted.

Models of memory retrieval processing

Both cognitive theory and neuropsychological evidence suggest there are at least two 

classes of control operations that are involved in memory retrieval task performance 

(e.g., Burgess & Shallice, 1996; Schacter, Norman & Koustaal, 1998; Tulving,

1983). First, there is “retrieval cue specification” which is associaeted with the 

relationship between the retrieval cue and the known characteristics of the item to be 

retrieved. In other words, it is thought that efficient retrieval from episodic memory 

may depend on the ability to use semantic knowledge in order to systematically 

consider the most relevant characteristics of a current memory cue in relation to 

potential previous episodes (e.g. Schacter et al., 1998). The second proposed 

operation, is the process of evaluating the products of memory retrieval with respect 

to their relevance to the retrieval task.

In considering the above proposals, Dobbins, Foley, Schacter & Wagner (2002) 

examined neural activity across semantic encoding, source recognition and items
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recognition tasks. They suggested that, if controlled semantic analysis/selection of 

semantic features are required to specify effective retrieval cues for source 

recognition and to analyze task-relevant semantic features during encoding anterior 

left inferior preffontal cortex, an area related to semantic retrieval and selection 

(Buckner et al., 1995; Wagner, Koutstaal, & Schacter, 1999; Wagner, Pare-Blagoev, 

Clark, & Poldrack, 2001), should be activated in both tasks. In contrast, item 

recognition should not engage this brain region as controlled semantic analysis 

would not be required for this task (Fletcher & Henson, 2001). Furthermore, Dobbins 

et al. (2002) suggested that the monitoring requirements of source memory should 

recruit unique control processes given that neither item recognition nor semantic 

encoding should require the monitoring or evaluation of the outcome of episodic 

retrieval. In line with these proposals, Dobbins et al., (2002) reported that source 

memory tasks, relative to item recognition, differentially require distinct cue 

specification and monitoring operations that are supported by anatomically separable 

left preffontal regions. More specifically, their pattern of findings suggested that 

anterior left inferior preffontal cortex is involved in the controlled retrieval of 

semantic information that is necessary during semantic encoding and is a critical 

component of cue specification during a source retrieval attempt. However, 

ffontopolar and posterior dorsolateral preffontal cortex regions were exclusively 

engaged during the source task, suggesting a role in control processes that guide the 

monitoring or evaluation of the contents of episodic retrieval. Furthermore, 

consistent with the idea that the engagement of such processes in the controlled 

aspects of source memory is necessary regardless of task outcome, the degree of 

preffontal activity was insensitive to retrieval success (Dobbins, Foley, Schacter, & 

Wagner, 2002).
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The above findings indicate that episodic memory is supported by a number of 

preffontal brain regions associated with cognitive control processes that guide and 

monitor episodic retrieval attempts. That is, these preffontal regions are necessary for 

exerting control over retrieval. The question of how this can be done, and under what 

circumstances it is in fact accomplished, is central to this thesis. While the data 

presented later do not speak to the roles in retrieval control that are played by 

specific pre-ffontal regions, they do speak to questions about how and when retrieval 

control is implemented. In the following sections, models of retrieval that specify 

some of the processes that are involved in the control of retrieval are outlined. 

Common to all of them is the assumption that the human memory system can only 

operate as effectively as it does because of various classes of control operation that 

are engaged when retrieval is required.

The General Abstract Processing System (GAPS)

Tulving (1983) first proposed this ffamework for episodic memory retrieval, the 

foundation of which lies in the thirteen elements that he holds to constitute the 

episodic memory system. These include encoding operations as well as the 

relationship between encoding and retrieval. In depth details of the remainder of the 

GAPs ffamework are not relevant and will not be discussed further here. There are, 

however, some critical concepts that must be noted. One contained in the GAPS, and 

which is central to all models of memory retrieval, is the concept of a memory trace 

or engram (Schacter, 1987; Semon, 1921). The engram results ffom memory 

encoding, and it is the interaction between a trace or engram and a retrieval cue that 

is a key process in episodic retrieval. The trace/cue interaction has been termed
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ecphory (Semon, 1914), and ecphoric information is one term that has been used to 

describe the outcome of ecphory.

For present purposes, perhaps the most important concept that was introduced by 

Tulving (1983) is retrieval mode, even though this is not included in the GAPS 

ffamework. According to Tulving, for episodic retrieval to occur it is necessary to 

enter a cognitive set that ensures stimuli are processed as episodic retrieval cues 

(Wheeler, Stuss & Tulving, 1997). Retrieval mode is a tonic state that is maintained 

while episodic retrieval is required, which remains constant across different episodic 

retrieval tasks (Rugg & Wilding, 2000), and biases individuals to process stimulus 

events as retrieval cues rather than as simple environmental inputs (for a recent 

review, see Wheeler, Stuss & Tulving, 1997).

It has also been claimed that entry into retrieval mode is necessary in order for 

episodic retrieval to occur, but this claim seems somewhat incompatible with the 

widely accepted view that spontaneous or unintentional recollection can occur (Graf, 

Mandler & Haden, 1982; Jacoby & Dallas, 1981). While it is in principle possible to 

argue that retrieval mode can in some circumstances be adopted automatically, this 

claim is not supported by the findings of empirical studies of retrieval mode (see 

below). A more parsimonious perspective is that adopting retrieval mode may have 

positive benefits for episodic retrieval, but that there are conditions under which 

retrieval from episodic memory can occur in the absence of mode, for example when 

a particularly vivid memory is activated by an appropriate retrieval cue.
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Strong empirical support for the construct of retrieval mode comes almost wholly 

from studies in which brain activity was recorded while participants completed 

memory retrieval tasks. On the basis of findings in a series of positron emission 

tomography (PET) studies, Tulving and colleagues (1994) proposed that retrieval 

mode was supported by activity in right-preffontal cortex. This claim was based on 

findings that activity in this region was greater during tasks that required episodic 

retrieval than during tasks that did not, and that the activity in this region did not 

differentiate between different classes of test items. Lepage, Ghaffar, Nyberg & 

Tulving (2000), conducted a multi-study analysis of PET data gathered from 

experiments in which participants completed either an episodic (old/new recognition 

memory) or a semantic retrieval task (Kapur et al., 1995; Nyberg et al., 1995).

Across these tasks the right preffontal cortex was identified as the region that 

supported retrieval mode, as this cortical region showed as much differential 

activation during recognition testing of old items as it did during testing of new 

items. A brain region can, therefore, be regarded as a neuroanatomical correlate of 

retrieval mode if it (/) becomes differentially active during attempted retrieval of past 

events and (ii) does so independently of the level of ecphory (recovery of stored 

information).

These findings were obtained in PET studies of episodic retrieval and due to the 

nature of the imaging technique it is not possible to separate activity that is initiated 

by the presentation of individual items from activity that is initiated at the start of a 

task and which is maintained for the duration of a task (Donaldson, Allan & Wilding, 

2002; Rugg, 1998). As the presence of brain activity that differentiates episodic from 

non-episodic tasks, but which does not differentiate between stimulus-types, can be
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interpreted as providing support for the concept of retrieval mode, the findings in 

these PET studies provide conceptual support for retrieval mode only if the pattern of 

activity that is responsible for the results is maintained throughout the episodic task.

Arguably stronger evidence in support of the concept of retrieval mode comes from 

studies where event-related potentials (ERPs) were recorded during tasks designed to 

index retrieval mode (Duzel et al., 1999; Duzel et al., 2001; Morcom & Rugg, 2001). 

In the studies of Duzel and colleagues (1999; 2001), participants studied a series of 

words. At test, they were presented with blocks of four-item lists. They were cued to 

engage in either an episodic retrieval (old/new recognition) or a semantic retrieval 

task (animacy judgments) at the start of each block. Compared to cues signalling the 

requirement to complete the semantic task, the cues signalling the episodic retrieval 

task evoked ERPs which were more positive-going. The relative positivity onset 

prior to the first test word in each block and was maintained for the duration of the 

block. The fact that the effect was maximal over right anterior sites is consistent with 

the findings from PET studies (Lepage et al., 2000) and supports the claim that 

retrieval mode is supported by this region of the brain.

Morcom & Rugg (2001) employed the same retrieval task as Duzel et al. (1999), but 

participants in their studies were cued on each trial to complete either an episodic or 

a semantic retrieval task. Consistent with the finding of Duzel et al. (1999), Morcom 

& Rugg (2001) observed that the activity evoked by the episodic retrieval cues was 

relatively more positive-going at right fronto-central scalp sites than the activity 

evoked by the semantic retrieval cues (Morcom & Rugg, 2001).
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In keeping with the conclusion of Duzel et al. (2001), Morcom & Rugg (2001) 

proposed that the differences between the cue-related activity indicate the adoption 

and/or the maintenance of a retrieval mode. This claim is also supported by the 

findings of Herron & Wilding (2004), who demonstrated that preparatory activity at 

right frontal electrodes was more positive-going in two different episodic retrieval 

tasks than in a semantic retrieval task (Herron & Wilding, 2004).

While the effects reported by Duzel et al. and by Morcom & Rugg are broadly 

consistent with a mode interpretation, it is not the only plausible account of the data. 

The concept of retrieval orientation recently proposed by Rugg & Wilding (2000), is 

an alternative possibility. Orientation differs from mode in that retrieval orientations 

should vary according to the content of what episodic information is to be retrieved 

from memory. Therefore, while retrieval mode should be invariant across different 

episodic retrieval tasks, retrieval orientation should not. In the experiments of Duzel 

et al., (1999, 2001) and Morcom & Rugg (2001), the same episodic and semantic 

retrieval tasks were employed. Therefore, it is possible that these studies may have 

revealed indices of retrieval orientation specific to these task-pairings, rather than 

indices of retrieval mode. For further relevant comments on retrieval orientation see 

the following section on the Rugg & Wilding (2000) proposal (page 67).

Burgess and Shallice (1996) model o f memory control

On the basis of a detailed analysis of memory protocol studies and considerations of 

how memories are distorted in individuals who confabulate, Burgess & Shallice 

(1996) put forward a model of memory control. According to this model, 

confabulations occur due to the failure of memory control processes, which are
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governed by the frontal cortex (Burgess & Shallice, 1996). The model constitutes a 

stage where retrieval cues are specified (descriptor processes) and stages following 

retrieval where the information retrieved via those cues is monitored and verified 

(editor processes) and integrated with other cognitive demands (mediator processes: 

for a related view, see Koriat & Goldsmith, 1996). These processes are assumed to 

be under a degree of strategic control during autobiographical retrieval and to operate 

iteratively. Therefore, if the monitoring processes reveal that the information 

retrieved is inappropriate or not sufficiently relevant, further retrieval cues are 

specified and the processes are reiterated.

Burgess & Shallice’s (1996) conception of these control processes is based on the 

notion of a supervisory system proposed by Norman & Shallice (1980; 1986). They 

also argued that descriptor processes and editing processes are specific to memory 

retrieval and controlled by the frontal cortex -  claims that are supported by work 

with neuropsychological patients (for review, see Stuss, Eskes & Foster, 1994) as 

well as numerous recent findings in PET and functional magnetic resonance imaging 

(fMRI) studies (Tulving et al., 1994). The precise functional roles that are played by 

sub-regions of the frontal cortex are, however, a matter of considerable debate (for 

recent reviews, see Fletcher & Henson, 2001; Wood & Grafman, 2003).

The Source Monitoring Framework (SMF)

In the SMF (Johnson, Hashtroudi, & Lindsay, 1993) memory is not viewed as a 

literal reproduction of the past. Rather, memory is the result of various perceptual 

and reflective processes that form memory records. According to Johnson et al. 

(1993), memory records have different characteristics that include details of
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perceptual, contextual, semantic and affective information, as well as cognitive 

operations that were engaged at the time of encoding.

The amounts of these different characteristics are assumed to vary with the origin of 

the memory records, as memories acquired from different origins have different 

patterns of the distributions of these characteristics. For example, an activated 

memory record for a perceived event is likely to have more perceptual details than an 

imagined event. Johnson and colleagues propose that source judgments can be made 

by assessing the distribution of different memory characteristics for memories of 

different origins. So when distinguishing between stimuli that might have been 

perceived or imagined (Johnson, Raye, Foley, & Foley, 1981) one strategy would be 

to use the amount of perceptual detail that is recovered, as this should be greater for 

real than imagined events and therefore a good indicator of the source of a memory. 

The SMF thus involves attribution and decision processes that evaluate 

characteristics of a memory record, and the central concepts in the SMF are 

supported by the findings in numerous experiments. For example, in the studies of 

Dodson & Johnson (1993) participants were able to retrieve the details of an episode 

better when the test questions presented all possible sources to consider than when a 

yes-no binary question specific to one particular source was asked. It was argued that 

the simultaneous presentation of all sources oriented participants to consider all 

dimensions of the memory record’s characteristics at the same time and encouraged 

them to put more weight on characteristics that are diagnostic for the demands of the 

task. The claim that source discriminations are often made on the basis of an 

assessment of the presence or absence of particular characteristics is also supported
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by the verbal reports of participants in source monitoring studies (Johnson, Foley, 

Suengas, & Raye, 1988).

Constructive Memory Framework (CMF)

On the basis of the SMF, Schacter and colleagues (1998) proposed the CMF in which 

retrieval processing involves focusing, pattern completion and criterion setting. 

According to Schacter et al. (1998), the critical process, and the principal addition to 

SMF, is focusing, a process which involves refining a description of the 

characteristics of episodes that are to be retrieved. A good retrieval focus can lead 

not only to recollection of information relevant to target information but also the 

details of the target information (Schacter, Norman, & Koutstaal, 1998). The 

description of the information to be retrieved is then matched with the stored 

memory representations (McClelland, McNaughton, & O’Reilly, 1995). When this 

pattern completion process produces a match, this will lead to a decision stage, where 

recovered information is evaluated according to task-dependent criteria, in much the 

same way as in the SMF.

While doing so in different ways, and to different extents, the frameworks outlined 

above (see also Koriat & Goldsmith, 1996) emphasise the importance for retrieval of 

processes that operate after ecphory or pattern matching, as well as processes (e.g. 

focusing) that operate prior to the interaction between a retrieval cue and a memory 

record or trace. It is now widely accepted that the strategic control of retrieval 

involves processing at both of these loci, and this assumption is also made by Rugg 

& Wilding (2000), who provided a description of processes that operate before and
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after ecphory, as well as a discussion of how these processes could be isolated in 

appropriately designed brain imaging experiments.

Rugg & Wilding (2000)

Rugg & Wilding (2000) distinguished four classes of retrieval process. Of these four, 

the three that may form part of a retrieval attempt are retrieval mode, retrieval 

orientation and retrieval effort. The fourth class of process Rugg & Wilding use is 

termed ‘retrieval success’ and includes ecphoric or pattern matching processes, as 

well as processes that operate downstream of this stage . The focus in this thesis is on 

when control over retrieval can be exerted, and, as described in later chapters, the 

principal way in which this is done is by making inferences on the basis of the 

conditions under which an ERP index of successful retrieval changes in magnitude. 

One way of conceiving how these changes come about is that they result from 

changes in the processes that form part of a retrieval attempt. Mode has already been 

discussed, therefore only orientation and effort are discussed below.

As previously mentioned, retrieval orientation is a cognitive set that is maintained 

tonically and that determines the specific form of retrieval operations that will be 

engaged when a retrieval cue is encountered. Thus, orientation but not mode should 

vary according to the specific episodic demands of a retrieval task. Rugg & Wilding 

(2000) proposed that neural correlates of orientation can be identified by comparing 

the activity elicited by identical retrieval cues denoting different episodic retrieval 

tasks, and the consequences of adopting orientations can be investigated by 

comparing the activity elicited by new (unstudied) test items.
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In an experiment that was designed to investigate the relationship between retrieval 

mode and retrieval orientation (Herron & Wilding, 2004), ERPs evoked by three 

retrieval cues were recorded, one signalling semantic retrieval, the others two 

different kinds of episodic retrieval. The ERPs evoked by the different episodic 

retrieval cues elicited common right frontal positivities relative to those elicited by 

the semantic cue. This shared modulation resembled similar effects reported in 

previous studies (Morcom & Rugg, 2001), and was concluded to be a likely correlate 

of processes related closely to retrieval mode. Critically, ERPs elicited by the two 

episodic cues differed, and the ways in which they diverged from those elicited by 

the semantic cue were not equivalent. Herron & Wilding (2004) drew two 

conclusions from these results. First, the requirement to retrieve different kinds of 

episodic information results in the adoption of task-specific retrieval orientations. 

Second, retrieval mode and retrieval orientation are neurally dissociable classes of 

retrieval process.

Retrieval effort can be defined as the differential engagement of processing resources 

during a retrieval attempt (Rugg & Wilding, 2000). Commonly operationalised in 

terms of the relative level of memory difficulty, it can be measured by the accuracy 

of memory performance and/or the time taken by participants to respond during a 

retrieval task. Thus, manipulating task difficulty by, for example, varying the length 

of the study-test list or interval while keeping study task and retrieval cues constant, 

should reveal neural correlates of effort. With the more difficult retrieval task 

assumed to require greater retrieval effort and show poorer response accuracy and 

longer reaction times. According to Rugg & Wilding (2000), both orientation and

68



effort are processes which may be engaged during the use of a cue in a retrieval 

attempt, and may be engaged regardless of whether the attempt is successful or not.

Concluding remarks

Memory is not a unitary system, as demonstrated by previous empirical work. There 

is now a sizeable number of studies which provide support for the view that 

recognition memory can be supported by two separate processes, and that the two 

processes are qualitatively different, although the debate about these processes, and 

how they contribute under different circumstances on different tasks, remains very 

much alive. A critical observation for the work in this thesis is the fact that specific 

events can be recovered from a system containing very many events and often many 

similar events. This suggests that selective remembering is likely to involve control 

operations that operate prior to retrieval as well as after retrieval. There are various 

theoretical proposals concerning retrieval processing, and the processes involved, as 

well as how they co-operate. The principal ones have been reviewed above. Central 

to all of them is the assumption that processes such as recollection can be controlled, 

and that this probably occurs because of processes that occur prior to ecphory, as 

well as after it.

The work in this thesis is concerned with strategic retrieval processing in episodic 

memory, with one important focus being on the way in which strategic retrieval 

processing promotes selective recovery of information from memory. The following 

chapters will, more specifically, consider how, through use of the recognition 

memory exclusion task, event-related potentials (ERPs) may further elucidate 

cognitive processes underlying strategic recollection. Before reviewing findings from
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studies that have employed ERPs to investigate these memory processes (Chapter 3), 

issues relating to ERP methodology will first be discussed.
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Chapter Two

Event-related potentials

It is thought that all psychological function depends on basic biophysical processes, 

and that a large proportion of these processes consist of the transmembrane 

electrochemical activity of neurons (Churchland, 1986). Therefore, the recording 

and measurement of electrophysiological brain activity during specific psychological 

tasks can inform and constrain theories of psychological function.

The fundamental unit of the brain is a neuron. A neuron communicates with other 

neurons via electrical impulses, also called potentials, and chemical secretions called 

neurotransmitters. Electrical input to one neuron comes from many others, each 

having a specific amount of influence, or weight, on the neuron. When neuronal 

networks are activated, they produce a noticeable change in voltage potential, which 

can be captured by an electroencephalograph (EEG). Spontaneous EEG activity was 

first discovered in animal studies during the late nineteenth century by Caton (1875).

Electrogenesis

An understanding of the principles of electrogenesis and of the propagation of field 

potentials is of crucial importance in the interpretation of EEG. Electrogenesis 

occurs at the level of individual neurons due to the bi-directional flow of positive and 

negative ions resulting from changes in the permeability of the cellular membrane. 

These individual electrical events are thought to consist largely of changes in the 

polarisation of cell bodies and dendrites of pyramidal cells as opposed to axonal 

action potentials (Allison, Wood & McCarthy, 1986).
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When the membranes of large groups of neurons are polarised simultaneously, the 

resultant potentials undergo spatial summation resulting in a local field potential. 

The spatial arrangement of the neurons constituting the generator determine whether 

the field is ‘open’ or ‘closed’ (Coles & Rugg, 1995), see Figure 2.1. An open field 

consists of neurons of the same orientation arranged in parallel, and is essentially a 

dipole as it contains both positive and negative charges between which current can 

flow.

Or>en Field Closed Field

Figure 2.1. Open and closed field configurations. Adapted from Alison et al. (1986).

A local field potential will only propagate throughout the brain, skull and scalp 

(which are conductive media) if it is generated by an open field, and if the neurons 

making up the field are synchronously active. A closed field is a group of neurons 

which are configured in such a way that the individual potentials cancel each other 

(Wood, 1987), see Figure 2.1. For example, a closed field may consist of neurons of 

opposite orientation, or of neurons arranged radially so that current can only flow



inwards (Kutas & Dale, 1997). The potential produced by a ‘closed’ field does not 

spread beyond its generators and therefore cannot be detected at the scalp. These 

limitations mean that only a proportion of brain activity can be detected at the scalp. 

The principal brain structure that satisfies all of these constraints is the neocortex, 

70% of which consists of pyramidal cells organised by groups in columns and 

oriented perpendicular to the surface of the cortex (Nunez, 1981).

Consequently the EEG is the summation of the electrical activity of large populations 

of cells conducted through the brain and its coverings to the scalp (Allison et al., 

1986; Nunez, 1981). It consists of a voltage by time function. The amplitude of the 

normal human EEG varies between approximately -100 and +100 microvolts, and 

the frequency ranges from DC up to 100Hz (Coles & Rugg, 1995). The amplitude of 

the EEG signal recorded at the scalp strongly depends on how synchronous the 

activity of the underlying neurons is, and how distant the generators are from the 

recording electrodes.

EEG Acquisition

An event-related potential (ERP) is scalp-recorded electrical activity time-locked to a 

specific physical or mental event (Picton, Lins & Scherg, 1995). In cognitive 

psychology experiments this event is typically the experimental stimulus. The ERP 

is most commonly extracted from the EEG by means of averaging the signal across 

multiple trials of the same stimulus type. As the activity recorded is time-locked to 

the presentation of each experimental stimulus, ERPs therefore provide a trial-based 

measure of neural activity. This allows averaged ERPs to be formed for 

experimental condition post-hoc depending on outcome. For example, ERPs elicited
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by the presentation of a studied item during a recognition memory test can be 

categorised according to whether the item was recognised correctly or not.

ERPs are sensitive to sensory, perceptual, motor and cognitive processes (Kutas & 

Dale, 1997). They have excellent temporal resolution, in the order of milliseconds. 

ERPs can therefore track cognitive processes in real time, and provide information 

about the dynamics of neural activity, as well as interactions between the activity of 

multiple neural populations (Rugg, 2001). The fact that ERPs are sensitive 

indicators of changes in neural activity, regardless of whether these changes 

influence awareness or observable behaviour, means that they can be used to 

examine cognitive processes when direct behavioural measures cannot be obtained. 

For example, ERPs have been used to examine the processes underlying implicit 

memory (Paller, Kutas & Mclsaac, 1995), and to study the neural correlates of 

attended versus unattended stimuli (Hillyard, Hink, Schwent, & Picton, 1973).

The small changes in voltage time-locked to or elicited by events of interest in ERPs 

are difficult to detect. Therefore, the equipment, procedures and parameters 

employed in the recording of ERP data significantly influence both the nature and the 

quality of the data collected. Electrode type and the quality of the interface between 

the skin and the electrode are both important in assuring high quality data, whereas 

recording parameters such as the reference site and the sampling rate employed can 

influence the topographic shape, polarity, and temporal resolution of the resulting 

ERPs. The recording system is typically designed to minimise signal distortion and 

to remove artefactual noise in the signal picked up from the experiment environment 

and the participant.
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The basic unit of data elicited in ERP recording is a measure of the potential 

difference between two scalp locations. An ERP waveform is a sequence of such 

data points, sampled at discrete intervals. The sampling rate of this analogue-digital 

conversion determines the temporal resolution of the resulting waveform. The rate 

must be such that it captures all frequencies of interest within it (Cooper, Osselton, & 

Shaw, 1980; Picton et al, 2000). Typically, ERPs are concurrently recorded from 

midline and lateral scalp sites. Locations are defined with respect to designated 

landmarks and measurement criteria, and one of these, the International 10-20 system 

(Jasper, 1958), is shown in Figure 2.2.

Nasion 20%

20%

Cz

20%

Inion

Figure 2.2. An illustration of the calculation and layout of the 10/20 system (Jasper, 

1958).
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Other montages are increasingly being used, such as the Queen Square system of 

electrode placement which has been proposed as a standard in recording the pattern 

of evoked potentials in clinical testing (Blumhardt, Barrett, Halliday & Kriss, 1977). 

Irrespective of the montage system employed, recordings at each site are commonly 

made with respect to a common reference point, although other arrangements are 

possible (Cooper, Osselton & Shaw, 1980).

Electrodes form the connection between electrical activity at the scalp and the input 

circuit of the amplifier. It is crucial that the signal is not distorted significantly at this 

interface if the recording is to be accurate. The quality of recording is significantly 

influenced by the type of metal with which the electrodes are made. Non-polarizable 

Silver/Silver Chloride (Ag/AgCl) electrodes are most commonly used, as these are 

able to accurately record very slow changes in potential with minimal distortion 

(Picton et al, 2000). A further possible source of distortion is the quality of the 

connection between the electrode and the scalp. The electrical impedance at this 

interface should be less than the input impedance of the amplifier by a factor of at 

least 100, or the recording is likely to suffer from artefactual effects of 

electromagnetic fields (Picton et al, 2000).

As a potential is the difference between two points, all ERP recordings must be made 

with respect to a reference electrode (Coles & Rugg, 1995). The location of the 

reference employed is of crucial importance when interpreting the scalp distribution 

and/or polarity of an ERP, as measurements of potentials are relative rather than
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absolute. The absolute values in referenced recordings will differ according to the 

location of the reference employed.

Analogue/Digital (A/D) converters sample the ongoing EEG, converting these 

signals from analogue into digital form to facilitate data analysis (Picton et al, 2000). 

Filtering enables the recording system to detect target electrical brain activity while 

rejecting frequencies that are unlikely to reflect the activity of interest. Low and high 

cut-off frequencies specify the bandpass of the amplifier, and frequencies that fall 

outside of this bandpass are rejected by the amplifiers. Typical recording parameters 

are between 0.01 and 100 Hz (Coles & Rugg, 1995).

Processing

The EEG waveform can be assumed to be composed of two parts (John, Ruchkin, & 

Vidal, 1978). The critical part is the neural activity (the signal) evoked by the 

particular stimulus in a given task. The second part of the EEG sample is noise. This 

latter component consists of neural contributions to the waveform that are unrelated 

to the presented stimulus, as well as non-neural contributions such as muscle activity 

and eye movements. Signal extraction procedures must be employed in order to 

separate the signal from the noise. Electromagnetic noise from the environment is 

removed by the use of differential amplifiers which allow electrical noise common to 

a ground electrode and the electrodes of interest (known as ‘common mode signals’) 

to be cancelled (Picton et al., 2000).

The most widely employed signal extraction procedure is signal averaging. The 

assumption entailed when applying this procedure to ERPs is that the ‘noise’ in a
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given sample of EEG is random. Therefore, averaging across trials will reduce the 

impact of the noise in the averaged ERP, whilst leaving electrophysiological activity 

which is constant across trials unaffected. The greater the number of trials 

contributing to the average, the higher the signal/noise ratio.

However, averaged ERPs should be interpreted with caution as signal averaging can 

lead to distortions of the original signal present in the single-trial data. It is possible 

for an averaged ERP waveform to bear little relation to the ERPs observed in 

individual trials, as trial-to-trial variability in either the latency or amplitude of the 

ERPs can ‘smear’ the averaged ERP (Picton et al, 2000).

All EEG data must be closely examined to ensure that the ERPs only contain true 

brain activity. This is necessary because a number of artefacts can still be present in 

the data after recording and averaging. The waveforms are therefore usually 

analysed off-line in order to determine that all artefacts have been removed or 

corrected prior to analysis. These artefacts can take the form of baseline drifts, 

saturation and eye movement artefacts.

One means of increasing the signal/noise ratio is to reject certain classes of trials 

prior to averaging. A common source of EEG contamination is due to eye blinks and 

eye movements, both of which cause changes in potential over anterior scalp 

locations (Lins, Picton, Berg, & Scherg, 1993). Concurrent EOG (electro- 

oculargram) recording permits monitoring of eye blink artifacts. Blink-related 

artefacts can be eliminated in one of two ways; blinks can both be discouraged and
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excluded, or the contribution of the blink artefact to all other recording channels can 

be estimated for each individual participant and corrected.

Limitations

As the scalp recorded event-related potential (ERP) is a sum of brain electrical 

activities from different brain generators, it is difficult to separate the contributions 

from discrete brain networks when analyses are limited to fairly gross measurements 

such as peak latency, area or amplitude. Analytic techniques including Principal 

Component Analysis (PCA) have been used in reducing ERP waveforms to their 

component parts (Wood & McCarthy, 1984). A once-popular method employed to 

extract different components from the ERP waveform PCA measures patterns of 

covariance between temporal changes in voltage, topographic changes in voltage and 

changes in voltage associated with experimental manipulations, and yields a set of 

components which are weighted for each time-point in the waveform. These weights 

indicate to what degree the various components are present in the waveform (Picton, 

Lins, & Scherg, 1995). However, the use of PCA can be misleading when different 

experimental conditions elicit the same component at different latencies, as it can 

identify spurious components (Coles & Rugg, 1995). It has also been demonstrated 

that PCA can ‘misallocate’ variance between supposedly orthogonal components 

(Wood & McCarthy, 1984).

ERPs suffer from poor spatial resolution. Because the brain acts as a volume 

conductor, there is no way of knowing the exact location of the neural generator/s 

that give rise to a particular pattern of activity detected at the scalp without using 

other constraining sources of information. The difficulty in determining the neural
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generators of an ERP scalp field is known as ‘the inverse problem’. Any attempt to 

solve the inverse problem is obstructed by the fact that there is no unique solution in 

terms of generators for any given pattern of scalp activity (Wood, 1982): it is an error 

to assume that the scalp location of an ERP deflection necessarily reflects the fact 

that the neural source lies in the tissue directly below the deflection. Analytical 

procedures have been developed that allow one to infer candidate ERP sources from 

scalp fields. One such method is the Brain Electrical Source Analysis procedure 

(BESA; Scherg, 1990) which models the head as a number of shells, each of which 

constitutes the skull, scalp and brain tissue, and each of which has a different 

conductivity value. BESA solutions specify sources in terms of their quantity, 

anatomical location, orientation, time-course and relative strengths (Coles & Rugg, 

1995). More recent developments in the field of source localisation have applied 

assumptions drawn from neuroanatomical knowledge to apply specific constraints to 

source localisation (e.g. dipoles must be located in grey matter, dipoles must be 

oriented perpendicular to the cortical sheet, dipoles must possess locally coherent 

activity), and take advantage of information gained from haemodynamic imaging 

studies employing analogous tasks to produce a single solution or ‘best fit’ for any 

scalp field (Phillips, 2001). However, the relationship between electrophysiological 

and haemodynamic signals is not yet fully understood. Consequently, caution is 

necessary when using haemodynamic measures to constrain the source localisation 

of ERP data.

ERPs and Psychology

The exclusive use of behavioural measures for memory research can provide only 

limited insights into the cognitive processes supporting memory performance. This is 

because behavioural measures do not provide direct access to the neural events
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thought to instantiate cognitive processing and can only index the output of these 

processes. The employment of electrophysiological techniques, however, provides 

more direct information with regard to the associated neural activity by measuring 

electrical brain activity elicited during the performance of specific cognitive tasks.

As with other neuroimaging techniques, ERPs can be employed in one of three 

principal ways (Rugg, 1995). First, they can be used in experimental manipulations 

to isolate a known cognitive process and identify its neural correlate. Second, ERPs 

can be used to investigate the pattern of neural activity associated with specific 

experimental manipulations, and use this information to makes inferences about the 

cognitive processes engaged. A third approach is to investigate the circumstances 

under which a known cognitive process is engaged by using pre-existing knowledge 

about its neural correlates and assessing how these are influenced by various 

experimental manipulations. The second and third approaches are of the most 

interest to psychologists, as these employ neuroimaging techniques primarily to 

inform theories of cognitive function.

ERP components

ERP waveforms consist of a series of peaks and troughs which are generally 

described in terms of their latencies, polarities, scalp distributions and amplitudes, 

measured in relation either to a pre-stimulus baseline (the mean voltage level of the 

waveform in the period preceding stimulus presentation), or to another feature of the 

waveform. Traditionally, each deflection was defined as a single ‘component’, and 

was labelled according to its latency and polarity. A positive component at 100 msec 

is called ‘PI00’ and a negative deflection at 200 msec is a ‘N200’.
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There is no unique definition of an ERP component, as the descriptive framework 

employed depends on whether the researcher is adopting a ‘physiological’ or a 

‘functional’ approach. The former emphasises anatomical localisation and defines 

components as the activity of a single neural generator, whereas the latter emphasises 

the functional significance of ERP deflections and defines components in terms of 

the processing operations with which they are associated (these two approaches are 

discussed in greater detail shortly). These two approaches lie at opposite ends of a 

continuum, and in reality researchers take an interpretative approach that lies 

somewhere between these two extremes. However, it is generally agreed that a 

single ERP component should represent the activity of a pool of neurons correlated 

with a specific processing operation.

The evoked potentials that are determined by physical aspects of the stimulus have 

been labeled ‘exogenous’, and those related to the cognitive components are 

“endogenous”. The former are sensitive to the physical characteristics of the 

stimulus, whereas the latter reflect the operation of higher order cognitive processes. 

This distinction is not categorical, and components can show sensitivity both to the 

physical characteristics of the stimulus and to task demands. Many evoked potentials 

are named after their latency when first seen, and these names have stuck despite the 

act that they are no longer strictly accurate, e.g. a ‘P300’ can occur at any point 

between 300-800 msec and consequently the ‘N400’ may occur prior to it. The 

earliest ERP components are far field potentials and they reflect activity in the 

receptors and peripheral relay stations. Following these are the early cortical evoked 

responses, which appear to be generated in the primary visual areas of the brain. 

Examples include the N100 and the P I00 (both occurring 100msec after presentation 

of a visual stimulus) which reflect the physiological action of the visual system.
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Endogenous event related potentials are of considerable scientific interest because of 

their relationship to cognitive function. It is the study of the ERP components that are 

related to higher cortical functions that has captured the interest of researchers 

interested in perceptual, cognitive, and motor behaviour. Two of the key ERP 

components are discussed below, because they are of direct relevance to the work in 

this thesis.

P300

Sutton, Braren, Zubin & John (1965) first described the P3O0 component and its 

association with cognitive function. The P300 is elicited by a variety of stimuli in 

many experimental conditions. It has been linked with many processes and is 

classically associated with the oddball paradigm. In this paradigm, two classes of 

stimuli are presented, one of which occurs less frequently than the other. When the 

task is to detect the infrequent stimuli, the P300 is of greater amplitude for this 

stimulus type (Yamaguchi & Knight, 1995; Polich, 1990; Duncan- Johnson & 

Donchin, 1977). The latency of P300 increases with the time required to distinguish 

between rare and frequent stimuli. The amplitude increases with rarity of the 

stimulus (Donchin, 1981; Donchin, Ritter, & McCallum, 1978).

As well as the attention dependent P300 described above, a passive or ‘novelty’ P300 

occurs to infrequent non stimuli that are not task relevant (Courchesne, Kilman, 

Galambos & Lincoln, 1984; Knight, 1984). This novelty P30Q, also called P3a, has a 

shorter latency and different scalp distribution than the classic P300, sometimes called 

P3b. P3a is more anteriorly distributed than P3b, and in the context of the work
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described in this thesis P3b (hereafter P300) is the more relevant of the two 

components.

P300 amplitude changes have been described in various conditions, including frontal 

lobe lesions (Wirsen, Sternberg, Rosen & Ingvar 1992), hyperactive children treated 

with methylphenidate (Sangal & Sangal, 2004), infantile autism (Kemner, van der 

Gaag, Verbaten & van Engeland, 1999), and schizophrenia (Wood, Potts, Hall, 

Ulanday & Netsiri, 2006). Overall the P300 is related to task relevance and 

categorization time. It is sensitive to feedback and to the informational value of the 

stimulus. The P300 has also been linked to learning. In general, the amplitude and 

latency of the P300 are used as indices of information processing (Johnson -Jr, 

Kreiter, Russo, & Zhu, 1998). P300 latency has also been shown to covary with 

speed of information processing as indexed by reaction times; the faster the speed of 

processing, the earlier P300 latency (Ford, Roth, Mohs, Hopkins III, & Kopell, 1979; 

Kutas, McCarthy, & Donchin, 1987; Picton & Stuss, 1980). This has made it a key 

component in the study of cognitive function using ERPs. The reason why this 

component is reviewed here is because the time course, scalp distribution and 

sensivity of this component to experiment variables means that changes in P300 need 

to be considered as possible reasons for some of the ERP modulations that are 

described in later chapters.

N400

A second ERP component, related to semantic memory, is the negative-going N400. 

It occurs between 200 and 500 ms after presentation of a potentially meaningful 

information-bearing stimulus and varies systematically according to the pre-existing

84



context that is established by semantic and long-term memory influences. The N400 

component was first reported by Kutas & Hillyard (1980) who recorded ERPs in a 

sentence-reading task. In this paradigm words are presented serially and participants 

are questioned about the content of the sentence at the end of the experiment. 25% of 

the sentences ended with a semantically incongruous word. The ERPs to words that 

completed the sentence but which rendered the sentence meaningless were associated 

with a negative-going shift -  the N400, which was attenuated when the last word 

fitted the context of the sentence. Furthermore the amplitude of the shift was 

proportional to the degree of incongruity.

The N400 is largest over central and parietal scalp locations, and there is some 

evidence that in the classical sentence processing task it is larger over the right 

hemisphere than over the left (Kutas & Hillyard, 1980). Subsequent work has linked 

the amplitude of the N400 to the degree of semantic relatedness between words and 

their preceding context (Kutas & Hillyard, 1984).

However, modulations of the N400 are not restricted to the terminal word sentence 

paradigm. The N400 is also attenuated by the repetition of individual words over 

relatively short delays (Bentin, McCarthy, & Wood, 1985; Rugg, 1985; Rugg & 

Nagy, 1989). In addition, this component is sensitive to non-semantic relationships 

between stimuli (Barrett & Rugg, 1990; Rugg & Barrett, 1987). A large N400 

component is also evoked by semantic anomalies presented in the auditory modality 

(Coles, Gratton, & Fabiani, 1990).
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In summary, N400 amplitude is reduced as a function of associative, semantic, and 

repetition priming within or across sensory modalities (Kutas & Federmeier, 2000; 

although see Rhodes & Donaldson, 2008). The relevance of this modulation for the 

empirical work in this thesis is the fact that the N400 is sensitive to repetition of 

stimuli, and occurs in a time window and over scalp regions where memory-related 

effects of interest occur.

Concluding remarks

Two final notes of caution are required when interpreting ERP data. Firstly, it is 

important to remember that it can never be proven that two or more processes do not 

elicit qualitatively distinct patterns of electrophysiological activity through the use of 

ERPs, or to conclusively prove that an experimental condition is not associated with 

a specified ERP effect, as a null effect may occur either because the effect is taking 

place in a closed field and is therefore undetectable by scalp electrodes, or because 

the level of activity associated with the condition is too weak to be detected at the 

scalp. Therefore it is impossible to conclude that an experimental manipulation has 

no effect on brain activity simply because no difference is observed in the ERPs. 

Secondly, as with all neuroimaging techniques, ERPs are purely correlational. One 

cannot therefore establish a causal relationship between cognitive function and 

electrophysiological activity solely through the use of scalp-recorded ERPs. ERPs 

must be employed simultaneously with invasive techniques (e.g. pharmacological 

manipulations) in order to demonstrate a causal relationship between function and 

neural activity.
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Chapter Three 

ERPs and recognition memory

Cognitive operations associated with successful episodic retrieval are reflected by a 

class of ERP modulations called ‘old/new effects’. The effects can be revealed by 

contrasting ERPs evoked in conditions where retrieval is successful against those 

evoked in baseline conditions where retrieval does not or cannot occur. For example, 

by comparing the differences between the waveforms evoked by correctly recognised 

old words (hits) and correctly rejected new words (correct rejections) in recognition 

memory tasks. A robust finding is that ERPs differentiate items correctly recognised 

as old from correctly rejected new items (Sanquist, Rohrbaugh, Syndulko &

Lindsley, 1980; Neville, Kutas, Chesney & Schmidt, 1986; Friedman, 1990; Rugg, 

Brovedani & Doyle, 1992; Wilding & Sharpe, 2004). There are a number of ERP 

old/new effects, two of which are directly relevant to the work in this thesis and 

which will be reviewed in the following section.

Left-parietal ERP old/new effect

The left-parietal ERP old/new effect (also referred to as the Tate positive component’ 

-  LPC, (Paller & Kutas, 1992)) typically occurs between 500 and 800 ms post

stimulus and is largest at left parietal/posterior sites. However, the scalp distribution 

of this effect differs depending on the type of task, study-test delay and nature of the 

materials employed as stimuli. For example, whereas the parietal effect is usually 

bilateral in tests of continuous recognition (e.g. Rugg, Brovedani, & Doyle, 1992), it 

is often left-lateralised in study-test designs employing verbal stimuli (e.g. Wilding
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& Rugg, 1996). For this effect, correct responses to old items are relatively more 

positive-going than correct responses to new items, as well as incorrect responses to 

old and new items (Sanquist et al, 1980; Smith & Guster, 1993; Wilding, Doyle, & 

Rugg, 1995; Wilding & Rugg, 1996,1997).

It was at one time hypothesised that the left-parietal ERP old/new effect reflected 

familiarity-based recognition memory (Rugg & Doyle, 1992). Rugg & Doyle 

suggested that the effect reflects familiarity-based recognition as the left-parietal 

ERP old/new effect was larger for low than high frequency words (Rugg & Doyle, 

1992, also see Cycowicz, Friedman, & Snodgrass, 2001). Their proposal was based 

on the assumption that familiarity was engaged to a greater degree for low than for 

high frequency words (Jacoby & Dallas, 1981). However, in other studies it has been 

demonstrated that although there is an increase in recollection and familiarity for low 

as well as for high frequency words, the frequency effect has a greater impact on 

recollection than familiarity (Gardiner & Java, 1990; Gardiner, Richardson-Klavehn, 

& Ramponi, 1997; Hirshman, Fisher, Henthom, Amdt, & Passannante, 2002; Rugg, 

Cox, Doyle, & Wells, 1995).

In keeping with this observation it quickly became apparent that the left-parietal ERP 

old/new effect was in fact a correlate of recollection-based recognition, as further 

studies demonstrated that the amplitude of this effect was larger for Remember than 

Know judgments (Smith, 1993; Duzel, Yonelinas, Mangun, Heinze, & Tulving, 

1997), deep compared to shallow encoding (Rugg et al., 1998) and recognition 

accompanied by the retrieval of contextual information (Wilding & Rugg, 1996; 

Donaldson & Rugg, 1998; Curran, 2000; Curran, Schacter, Johnson, & Spinks,
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2001). Reports that the left-parietal ERP old/new effect is not elicited in patient 

groups thought to have a selective impairment in recollection support the view that 

this effect is a correlate of recollection-based recognition (Tendolkar et al., 1999; 

Duzel, Vargha-Khadem, Heinze, & Mishkin, 2001). Other work confirmed that the 

left-parietal ERP old/new effect was a mnemonic effect rather than an effect 

sensitive to factors such as probability and targetness (Friedman, 1990; Smith & 

Guster, 1993; Herron, Quayle & Rugg, 2004). The left-parietal ERP old/new effect, 

therefore, is currently considered to be a correlate of recollection-based recognition 

memory.

An interesting development in recent years comprises the patterns of left-parietal 

ERP old/new effects on exclusion tasks. Of central importance is the finding that a 

left-parietal ERP old/new effect was not elicited by correctly excluded non-target 

items amongst participants who showed good discrimination between target and non

target items, but a left-parietal ERP old/new effect was elicited by non-target items 

amongst old participants who showed poor discrimination even when these items 

were correctly excluded (Dywan, Segalowitz, & Webster, 1998). This finding is 

particularly surprising given the assumption that the majority of correctly excluded 

old items are excluded on the basis of recollection (Jacoby, 1991), and either implies 

that this assumption is incorrect or implies that the left-parietal ERP old/new effect is 

sensitive to additional factors contingent on recollection, or not a correlate of 

recollection at all.
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Modulations o f the left-parietal ERP old/new effect in exclusion tasks 

For present purposes, it is important to highlight recent findings in which left-parietal 

ERP old/new effects were not elicited by items that, at least from one theoretical 

perspective, should have been recollected. These data were obtained in ERP studies 

employing the exclusion task.

As noted previously, the exclusion task is one part of the process-dissociation 

procedure (PDP), a method developed by Jacoby and colleagues (Jacoby, 1991; 

Jacoby, Toth & Yonelinas, 1993) in order to assess the respective contributions of 

recollection and familiarity to performance on recognition memory tasks. In a typical 

experiment employing the exclusion task, study items are presented in two different 

contexts, defined by different presentation lists, different presentation modalities or 

encoding tasks. At test, participants are presented with the studied items from these 

two contexts along with unstudied items. Participants are required to give different 

responses to different classes of studied items. They are to make ‘old’ responses only 

for items presented in a specified study context (targets). The items previously 

presented in the alternative context are classified as non-targets, and participants are 

to respond ‘new’ to non-targets as well as to genuinely new items.

The exclusion task is designed in such a way that successful completion of the task 

depends upon recollection, since familiarity alone will not, in most circumstances, 

permit discrimination of targets from non-targets. Jacoby (1991) argued that in the 

exclusion task participants rely upon recollection of targets as well as recollection of 

non-targets in order to make task judgments. This assumption is central to the way in 

which the PDP is employed in order to make estimates of recollection and familiarity
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(see Chapter 1, pages 45-50). If this assumption is correct, then both targets and non

targets attracting correct judgments should be associated with left-parietal ERP 

old/new effects.

The findings from the ERP studies that have employed the exclusion task 

consistently reveal the existence of left-parietal ERP old/new effects for target items 

(Dywan, Segalowitz, & Webster, 1998; Herron & Rugg, 2003b; Wilding & Rugg, 

1997). In the first published ERP exclusion task study, participants were required to 

respond to one class of old items (either originally spoken in a male or female voice; 

designated the target) with one response button and to the other category of old items 

(designated the non-target) and new items with the other response button. There were 

left-parietal ERP old/new effects for both targets and non-targets, with the effect 

being reliably larger for targets (Wilding & Rugg, 1997). The nature of the task 

response requirements could have been responsible for the reduction in the 

magnitude of the left-parietal ERP old/new effect for non-targets, as both recollected 

and forgotten non-targets attract the same response. In elaboration on this point 

Wilding and Rugg concluded that the difference in amplitudes reflected a “diluting 

effect”: a reduction (relative to targets) in the proportion of trials on which non

targets attracting a correct judgment were associated with recollection. This account 

was supported by the greater accuracy for non-target responses (74% correct) than 

target responses (58% correct), coupled with an equivalent probability of recollection 

across the two tasks, due to the identical encoding tasks, thereby suggesting that a 

larger proportion of correct non-target judgments were not accompanied by 

recollection. This was the explanation offered for the reduced size of the left-parietal
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ERP old/new effect for non-targets relative to that accompanying targets. In 

subsequent work, however, it has been shown that this explanation is insufficient.

In two exclusion task experiments reported by Herron & Rugg (2003b), participants 

completed one identical and one different encoding task. The common task that was 

required for half of the study words in each experiment was to incorporate each word 

into a sentence and to say it aloud. For the second task in Experiment 1, participants 

were asked to rate words for pleasantness, while in Experiment 2 the second task was 

simply to read aloud each word that was presented. Non-targets were defined as 

words from the common task in both experiments, and the accuracy of target 

judgments was superior in Experiment 1. Non-target accuracy was equivalent in the 

two experiments.

Target as well as non-target items elicited left-parietal ERP old/new effects in 

Experiment 2, while in Experiment 1 the effect was observed only for target items. 

These findings suggest that target items in both experiments were classified on the 

basis of recollection. By contrast, the classification of non-targets items differed 

between the two experiments as the left-parietal ERP old/new effect was observed 

for non-targets only in Experiment 2. This pattern of findings suggests that 

participants relied on recollection to classify non-target items in Experiment 2 only. 

The authors interpreted these findings as reflecting the adoption of different retrieval 

strategies. They suggested that when memory for targets was good (Experiment 1), 

non-targets were classified on the basis of the failure to recollect information about 

targets. They suggested that this strategy was not optimal when memory for targets 

was poor, and as a result, recollection of non-targets was prioritised in Experiment 2
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to a greater degree than in Experiment 1. Complementary findings and similar 

conclusions have been reported by Herron & Rugg (2003a). However, the study 

design used by Herron & Rugg means that the differences in levels of target accuracy 

were confounded with target-encoding task. Therefore it is possible that the results 

can be explained in terms of the target encoding condition employed as well as a 

difference in target accuracy. Another possible explanation for the findings is that in 

Experiment 1 non-target items were simply forgotten. That is, the deeply studied 

targets in Experiment 1 may have produced a greater degree of retroactive 

interference such that information about non-targets was less available in Experiment 

1 than in Experiment 2. Therefore in Experiment 1 a large proportion of non-target 

items may have been excluded because they were misclassified as new words.

In two recent studies, (Dzulkifli & Wilding, 2005; Dzulkifli, Herron & Wilding, 

2006), the Herron & Rugg strategic retrieval proposal was rigourously tested in tasks 

where there was no target/non-target confound and where there were direct estimates 

of the accuracy of non-target judgments available. Dzulkifli & Wilding (2005) 

reported differences between classes of ERPs evoked by items that were acquired 

during two different retrieval tasks. Participants studied words initially, all of which 

were concrete nouns. For half of the words, the task was to decide how difficult the 

object denoted by each word would be to draw. For the remainder, the task was to 

generate uses for the object denoted by each word. Old and new (unstudied) words 

were presented at test, and participants completed exclusion tasks. The study did not 

elicit reliable left-parietal ERP old/new effects for non-targets, which suggests that 

participants prioritised recollection of information about targets over information 

about non-targets.
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Dzulkifli, Herron, & Wilding (2006) also acquired ERPs during separate test phases 

of a verbal recognition memory exclusion task. The study design was equivalent to 

that of Dzulkifli & Wilding (2005) with the exception that the study and test lists 

were longer and there were longer intervals between study and test. These variations 

led to a reduction in the level of memory accuracy in comparison with the earlier 

study.

The left-parietal ERP old/new effect was evident for targets and for non-targets in all 

test phases, consistent with the view that participants recollected information about 

both of these classes of test word. These findings contrast with those of the Dzulkifli 

& Wilding (2005) study in which the same tasks were used, and in which a left- 

parietal ERP old/new effect was found for targets only, but for this earlier study the 

accuracy of task judgments was markedly higher. In summary, the two Dzulkifli et al 

studies showed that where accuracy for targets and non-targets is high a left-parietal 

ERP old/new effect is observed for targets only. However, when accuracy for task 

judgments is lower both classes of items elicit left-parietal ERP old/new effects.

The combination of all of the above findings provides support for the claim that 

selective control of recollection is indexed by the patterns of ERP left-parietal 

old/new effects for targets and for non-targets. Further investigation into the 

strategic control of information recollection has been carried out using different 

presentation lists, different presentation modalities and encoding tasks. The findings 

in these studies define some of the boundary conditions under which selective 

recovery of task-relevant information may or may not occur.
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Wilding, Fraser, & Herron (2005) acquired ERPs during two experiments in order to 

determine boundary conditions for when recollection of colour information can be 

controlled strategically. In initial encoding phases, participants saw an equal number 

of words presented in red or green. In subsequent retrieval phases, all words were 

shown in white. Participants were asked to endorse old words that had been shown at 

encoding in one colour (targets), and to reject new test words as well as old words 

shown in the alternate colour (non-targets). Study and test lists were longer in 

Experiment 1, and as a result, the accuracy of memory judgments was superior in 

Experiment 2. The left-parietal ERP old/new effect was reliable for targets in both 

experiments and reliable for non-targets in Experiment 1 only. These findings also 

support those of Herron & Rugg (2003b) in that when performance accuracy was 

high the left-parietal ERP old/new effect was evident for targets only. These 

findings are therefore consistent with the view that participants were able to restrict 

recollection to targets in Experiment 2, while recollecting information about targets 

as well as non-targets in Experiment 1. The fact that a selective strategy of restricting 

recollection of task related information to targets was implemented in Experiment 2 

indicates that participants were able to exert considerable control over the conditions 

under which recollection of task-relevant information occurred even when the 

information associated with targets and with non-targets corresponds closely.

Another important study that has contributed to understanding of the boundary 

conditions under which selective attenuation of the left-parietal ERP old/new effect 

occurs is due to Herron & Rugg (2003a). In their experiment, an equal number of 

pictures and words were presented in the encoding phase. At test, all stimuli were



words, which were either old or new. The old words were either re-presentations of 

words, or of words corresponding to the objects denoted by the pictures. In separate 

retrieval phases, targets were designated as old words that had been encountered 

either as words or as pictures. There were left-parietal ERP old/new effects for 

targets when the sought after study items were either pictures or words. However, 

non-target items elicited a left-parietal ERP old/new effect only when pictures were 

the designated targets. Herron & Rugg proposed that because both targets and non

targets elicited successful retrieval in the picture condition, more information is 

needed to be retrieved to allow picture targets to be discriminated from non-targets 

than was the case for word targets.

The absence of such effects for non-targets when words were designated as targets 

suggests that recollection of non-target items did not occur in this condition. Herron 

& Rugg suggested that the absence of a left-parietal old/new effect for non-targets 

came about because of the high level of cue-target compatibility, which allowed 

participants to search memory with a high degree of specificity. However, the 

presence of a non-target left-parietal old/new effect in the picture target condition 

was due to the fact that under this task condition, it was not possible to recollect 

information specific to studied pictures. According to this account, the cue-target 

incompatibility in the picture target condition impeded participants from searching 

memory with a high degree of specificity, thereby explaining the left-parietal 

old/new effect for non-targets (words). In summary, the findings of Herron & Rugg 

(2003a) can be explained in terms of the different circumstances under which 

selective recollection can be accomplished. The important point from the Herron and 

Rugg (2003a) findings for present purposes is that the ERP data are consistent with
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the view that recollection can be restricted to certain kinds of memory 

representations under some circumstances. These findings have been replicated by 

Johnson & Rugg (2006) and Homberger, Morcom & Rugg (2004).

There are, however, some data points that are not accommodated straightforwardly 

within the framework described above. One set of findings comes from a study that 

was based closely on the initial Herron & Rugg (2003b) experiments. Herron &

Rugg (2003b) reported that non-targets elicited a left-parietal ERP old/new effect 

when target accuracy was low, but not when it was high. Their explanation for this 

was that target information was the focus for recollection when the likelihood of 

target recollection was high, as this gave rise to accurate task performance.

As levels of target accuracy were confounded with target-encoding task, however, an 

alternative hypothesis arises; it is possible that target-specific retrieval strategies are 

also influenced by the nature of the encoding operations performed at study and not 

just by target accuracy. Herron & Wilding (2005) tested this hypothesis by varying 

target accuracy, but without confounding accuracy with encoding task. Instead, all 

targets were encoded using the same pleasantness-rating task used by Herron and 

Rugg (2003a; deep condition), but target accuracy was lowered in one condition by 

inserting a 40-min interval after the target study phase. In both conditions, the non

target encoding task was the same (animacy judgments).

The study elicited reliable left-parietal ERP old/new effects for targets in both the 

easy and difficult conditions, with the magnitude of the old/new effect being larger in 

the easy condition. Herron & Wilding interpreted this as showing that participants
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adopted a strategy of priotistising the recollection of target information at the 

expense of non-target information even when target accuracy was low (Herron & 

Wilding, 2005). This suggests that contrary to Herron & Rugg’s (2003b) hypothesis, 

the level of target accuracy is not the sole determinant of the conditions under which 

strategic retrieval will occur. However, Herron &Wilding employed a within 

participants manipulation of difficulty, whereas the other studies have used between 

participant comparisons. This is an important distinction to make as the differences 

in effects recorded could be due to this manipulation. It may be that changing 

strategies during a single experimental session is not something that can be 

accomplished.

A series of findings which are also not accommodated in the Herron & Rugg (2003b) 

account are due to Dywan and colleagues (Dywan, Segalowitz & Webster, 1998; 

Dywan, Segalowitz, Webster, Hendry, & Harding, 2001; Dywan, Segalowitz, & 

Arsenault 2002). They employed a variant of the exclusion task in which items from 

two separate contexts comprise items encountered in a prior study phase, and new 

test items that are repeated after a designated lag at test. In the test phase of these 

experiments, previously studied words (targets) were presented along with new 

words, some of which repeated after a lag of only a few trials (non-targets). Across 

all of the studies target accuracy was comparable to that of previous studies, 

however, a left-parietal ERP old/new effect was observed for targets, whereas no 

effect was detected for excluded non-targets. These findings are inconsistent with 

those of Herron & Rugg (2003b) and the two Dzulkifli et al studies.
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The key motivations for the experiments reported in this thesis relate to this 

paradigm, first described by Jennings & Jacoby (1997), and how use of it in the 

following experiments permits an investigation into the extent to which the existing 

standard exclusion task findings of strategic control of recollection generalise to a 

procedure with a somewhat different design. It is important to generalise these 

findings in order to ascertain whether they are a consequence of peculiarities 

associated with one particular incarnation of the exclusion task. Moreover, one of the 

implications of the theoretical accounts given above is that under some 

circumstances people can exert considerable control over whether or not information 

is recollected, and this in turn suggests that ERPs acquired in episodic retrieval tasks 

may be a useful functional tool for determining the conditions under which this can 

be achieved, as well as, ultimately, the mechanisms that are responsible for the 

strategic control of recollection (for discussion, see Dzulkifli & Wilding, 2005; 

Herron & Rugg, 2003a; Homberger, Morcom, & Rugg, 2004). The broad utility of 

ERPs in this regard depends in part upon the extent to which comparable patterns of 

selective attenuation of left-parietal ERP old/new effects can be obtained across tasks 

with somewhat different demands at the time of retrieval.

Mid-frontal ERP old/new effect

The mid-frontal ERP old/new effect - also referred to as ‘FN400’ (Curran, 1999) - is 

the less well defined of the two old/new effects described here, and as such there is 

more debate about its likely functional significance. The effect is observed between 

300 and 500 ms post-stimulus, is largest at anterior-superior electrode sites, and 

comprises a relatively greater positivity for hits than for correct rejections. Rugg and 

colleagues (1998) were among the first to suggest that the mid-frontal ERP old/new
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effect is a correlate of familiarity (Rugg et al., 1998, although see Duzel, Yonelinas, 

Mangun, Heinze, & Tulving, 1997).

Rugg et al. (1998) employed one shallow (orthographic) and one deep (semantic) 

encoding task at study, whilst at test participants were asked to make old/new 

recognition memory judgments. ERPs associated with hits were relatively more 

positive-going than those associated with correct rejections at anterior-superior sites. 

In addition, this anteriorly distributed effect was of equivalent size in both the 

shallow and deep conditions. However, the magnitude of the left-parietal ERP 

old/new effect was influenced by the depth of processing manipulation: the effect 

was larger for ERPs associated with hits in the deep than in the shallow encoding 

task. Rugg et al. suggested that the anterior modulation is an index of familiarity, a 

claim based upon; 1) the fact that the modulation preceded the putative index of 

recollection, 2) the ERP old/new effects associated with the deep and shallow 

conditions were of equivalent size, and 3) the effect was not present for misses.

The results of Rugg et al. provide strong evidence for a dual-process account, 

because two functionally distinct ERP old/new effects linked to explicit memory 

were identified. However, their data provides equivocal evidence for the link 

between the mid-frontal ERP old/new effect and familiarity. This is because a 

number of studies have demonstrated that both recollection and familiarity are 

affected by depth of processing at encoding, though recollection is typically 

influenced more than familiarity (Gardiner, Java, & Richardson-Klavehn, 1996; 

Khoe, Kroll, Yonelinas, Dobbins, & Knight, 2000; Toth, 1996; Wagner, Gabrieli, & 

Verfaellie, 1997; Yonelinas, Kroll, Dobbins, Lazzara, & Knight, 1998).
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Subsequent studies have, however, provided some data supporting the link between 

the mid-frontal ERP old/new effect and the process of familiarity. For example, in an 

experiment where the recognition memory ERP old/new effects associated with 

words and pseudo words (pronounceable non-words) were compared, Curran (1999) 

demonstrated that left-parietal ERP old/new differences were larger for words than 

pseudowords, whereas they did not differ significantly at mid-frontal electrode sites. 

Based on this finding, Curran proposed that the anteriorly distributed effect indexes 

familiarity, arguing that familiarity is the basis upon which recognition memory 

judgments for pseudowords are typically made (Curran, Schacter, Norman, & 

Galluccio, 1997; Gardiner & Java, 1990).

In a further study by Curran (2000), words were presented in either singular or plural 

forms (e.g .frog, lakes) at study. During the subsequent test phase, an old/new 

recognition memory task was completed in which the test words were either the same 

as at study (old: frog, lakes), had reverse plurality (lures: frogs, lake), or were new 

(capitot). The assumption was that old responses to words in the reversed plurality 

category would be based on familiarity rather than recollection, whereas correct 

responses to old words would be based upon recollection as well as familiarity, in 

line with previous behavioural findings (Hintzman & Curran, 1995; Hintzman, 

Curran, & Oppy, 1992). As predicted, the left-parietal ERP old/new effect behaved 

as it would for recollection: ERPs evoked by correctly identified old items were 

relatively more positive-going than those evoked by similar lures and correct 

rejections. Critically, in the 300-500 ms time window, ERPs evoked by correctly
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identified old items and similar lures were relatively more positive-going than those 

evoked by correct rejections.

Similar findings were obtained by Curran & Cleary (2003) in a study where the 

stimuli were pictures. At study greyscale line drawings of different objects, animals, 

scenes, and people were presented. Participants were instructed to memorise the 

orientation of these pictures. At test, participants were instructed to make an old 

response to pictures that had been studied in the same orientation, and a new 

response to similar items (reversed orientation) and new pictures. For the analysis, 

participants were divided into two separate groups, post-study, depending on their 

level of accuracy - ‘good performers’ and ‘poor performers’. Both ‘good’ and ‘poor’ 

performers showed a mid-frontal ERP old/new effect that was related to familiarity- 

based recognition: lures and hits were of equal magnitude, whereas correct rejections 

were relatively more negative-going. In addition, for the ‘good’ performer group a 

left-parietal ERP old/new effect was obtained, where hits were relatively more 

positive-going than lures and correct rejections. No reliable left-parietal ERP old/new 

effect was obtained for the ‘poor’ performer group (Nessler, Mecklinger & Penney, 

2001). The findings in this and the previous study support a familiarity account of the 

mid-frontal ERP old/new effect in so far as the levels of familiarity should be similar 

for copy cues and for slightly changed (plurality or orientation) stimuli.

In a previous study, however, Curran et al. (2001) did not obtain evidence consistent 

with a familiarity account. Words were heard during encoding, and at test 

participants were required to make old/new recognition judgments to visually 

presented words. In this experiment, the ‘similar’ lures were semantically similar to
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the items presented at study, whereas the new items (dissimilar lures) did not have an 

obvious semantic association with the studied words. There was no reliable ERP 

old/new effect at mid-frontal electrode sites for old words or for semantically similar 

lures. Curran et al. suggested that the absence of the mid-frontal ERP old/new effect 

may be due to the switching of modality across study and test, under the assumption 

that this manipulation reduces the availability of familiarity for test judgments.

Reliable mid-frontal ERP old/new effects have also been obtained in studies in which 

study and test items were presented in different modalities (Curran & Dien, 2003; 

Joyce, Paller, Schwartz, & Kutas, 1999; Nessler et al., 2001) however also see 

(Wilding, Doyle, & Rugg, 1995). Similar to Curran et al. (2001), Nessler et al.

(2001) presented items auditorally at study, whereas during the recognition memory 

test the items were presented visually. Nessler et al. demonstrated that the mid- 

frontal ERP old/new effect was reliable and of the same magnitude for hits and lures 

(semantically similar items). Curran & Dien (2003) obtained similar results with the 

same modality manipulation across study and test.

Nessler & Mecklinger (2003) examined the ERP old/new effects for old items, 

similar lures (semantically similar), and new items after short (40 s) and long (80 s) 

delays. They found that old/new recognition accuracy did not show any reliable 

differences across the two delay conditions. The behavioural data is consistent with 

the electrophysiological data, in that the mid-frontal ERP old/new effect for old items 

did not differ across the two delay conditions. However, the likelihood of an 

incorrect judgment for lures increased as the delay time between study and test 

increased, and the correlate of familiarity was evident for the lure/new contrast in the
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short delay condition only. It was argued that the null-result in the long delay 

condition may have come about due to weak memory traces (Nessler & Mecklinger, 

2003).

Other researchers have shown that the mid-frontal ERP old/new is also affected by 

test items being perceptually similar (Curran, Tanaka, & Weiskopf, 2002). This study 

employed computer-generated two-dimensional polygons, referred to as blobs. 

Twelve different blob families (categories) were generated. The study phase entailed 

the training of participants so that they could discriminate between blobs that were in 

the same family (in blobs) versus blobs that belonged to a different family (out 

blobs). In the subsequent test phase, Curran et al. found that mid-frontal ERP 

old/new effects were obtained for blobs. Given that it is difficult to assign semantic 

labels to these stimuli, Curran et al. argued that this finding provides support for the 

link between the mid-frontal ERP old/new effect and perceptual correspondences 

that may contribute to familiarity.

There is also neuropsychological data that is relevant to the question of the functional 

significance of the mid-frontal ERP old/new effect. Tendolkar et al. (1999) 

demonstrated that patients with Alzheimer’s Disease (AD) only showed a mid- 

frontal ERP old/new effect, whereas the matched controls showed both a mid-frontal 

and left-parietal ERP old/new effect. The patients’ recognition rates were above 

chance; however, they failed to recollect the correct source for test items. This 

finding is consistent with the view that the principal deficit in AD is with recollection 

(Fox, Warrington, Seiffer, Agnew, & Rossor, 1998), and that the mid-frontal ERP
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old/new effect in the AD patients indexes their residual recognition judgments made 

on the basis of familiarity (see also Mecklinger, 2000).

In a relatively recent study (Curran, 2004), attention was manipulated during study, 

and confidence was manipulated at test. The mid-frontal ERP old/new effect was 

equivalent under full versus divided attention conditions, which runs counter to the 

claim that attention manipulations influence familiarity as well as recollection (for 

review, see Yonelinas, 2002). This finding is comparable to the result reported by 

Rugg et al. (1998) in the deep/shallow encoding manipulation reviewed previously. 

For the confidence manipulation, there were not enough trials to analyze the 

differences between the mid-frontal ERP old/new effects for high and low 

confidence hits. However, ERPs associated with low confidence correct rejections 

were somewhat more positive-going than those associated with high confidence 

correct rejections (p = .06). This aspect of the data provides some degree of support 

for the link between the mid-frontal ERP old/new effect and the process of 

familiarity, as new items which have a strong level of relative famiiairty will attract a 

lower confidence correct rejection response than new items with a weaker level of 

familiarity.

In a challenge to the familiarity view of the mid-frontal ERP old/new effect, it has 

been suggested (Voss & Paller, 2006; Yovel & Paller, 2004) that the effect is not 

correlated with episodic memory but that it is an index of conceptual priming. One 

study in which the data has been interpreted to support this claim is that reported by 

Olichney et al. (2000), who required participants to decide whether visually 

presented single word stimuli were semantically congruent or incongruent with a
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spoken category name that preceded each stimulus. ERPs were acquired time-locked 

to the visual stimuli, and all stimuli were repeated three times during the task. 

Reliable positive-going repetition effects were obtained for incongruent endings only 

in the 300-500 ms time window, and these data have been interpreted as being 

consistent with the view that in this time window ERPs index conceptual priming 

rather than familiarity (Olichney et al, 2000). By this view, the familiarity 

interpretation of the mid-frontal ERP old/new effect is an incorrect inference and the 

effect in verbal recognition memory tasks occurs simply because of the conceptual 

priming associated with presentations and re-presentations of the same stimuli. Data 

in support of this position comes from the absence of the mid-frontal ERP old/new 

effect for faces, which presumably cannot benefit from conceptual priming (Yovel & 

Paller, 2004). However, in some cases, mid-frontal ERP old/new effects for faces 

have been obtained, (Johansson, Mecklinger, & Treese, 2004; Nessler, Mecklinger,

& Penney, 2005), and as reviewed above, the ‘blob’ data is difficult to incorporate 

into a conceptual priming framework (Curran et al., 2002). The extent, moreover, to 

which the data due Olichney et al. (2000) is relevant to the processes engaged during 

recognition memory tasks is questionable, given that only category judgments were 

required at the time of ERP acquisition, and that each item was preceded by a 

category cue which became increasingly informative as to the identity of the 

subsequent item with each repetition.

If mid-frontal ERP old/new effects were evident when familiarity is equated but 

conceptual priming varied there would be direct support for the conceptual priming 

account. However, this pattern of data has not been demonstrated, in fact, the reverse 

has been shown; that is the presence of mid-frontal ERP old/new effects when
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conceptual priming is likely to be constant. In a series of studies incorporating 

perceptual manipulations of stimuli across study and test phases of retrieval tasks 

(Ecker, Zimmer, & Groh-Bordin, 2007; in press; Groh-Bordin, Zimmer, & Ecker, 

2006; Groh-Bordin, Zimmer & Mecklinger, 2005; Schloerscheidt & Rugg, 2004), the 

mid-frontal ERP old/new effects for items attracting correct judgments were larger 

when studied items were re-presented in the same format at test, than when the 

studied items were re-pesented in a different format. In so far as the meaning of the 

stimuli is not altered by changes in perceptual format, these findings contradict a 

conceptual priming account of the mid-frontal ERP old/new effect.

It has been reported that the mid-frontal ERP old/new effect may not be an 

obligatory correlate of familiarity-based recognition memory (Tsivilis, Otten, & 

Rugg, 2001). This study explores the effects of context on ERP correlates of 

recognition memory. Participants at study were presented with complex stimuli 

which consisted of an item superimposed onto a background scene. Five classes of 

stimuli were presented at test; the same item-background pairing as at study 

(‘SAME’), a different pairing of a studied item and a studied background 

(‘REARRANGED’), a new item on a studied background (‘NEW-OLD), a studied 

item on a new background (‘OLD-NEW), and a new item on a new background 

(‘NEW-NEW’). Participants were required to make old/new judgments for the item 

component of stimuli presented at test. Interestingly, although correctly recognised 

SAME and REARRANGED stimuli elicited greater positivity than novel stimuli 

over frontal sites between 300-500 ms, correctly recognised OLD-NEW stimuli did 

not. The finding that there were no sginficant behavioural or ERP differences 

between REARRANGED and OLD-NEW stimuli was cited to suggest that
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processing reflected by the mid-frontal ERP old/new effect may not be directly 

related to a familiarity-driven recognition response (Tsivilis, Otten, & Rugg, 2001). 

It was hypothesised that the mid-frontal ERP old/new effect may reflect processing 

‘downstream’ from that responsible for familiarity-based recognition, and may be 

sensitive to novel components of a stimulus (Tsivilis, Otten, & Rugg, 2001).This 

provides some insight into the functional significance of the effect, but, as Tsivilis et 

al. note, the possibility still remains that in tasks with verbal material and single 

presentations of study and test items the effect acts as an index of familiarity.

In summary, some researchers have suggested that the mid-frontal ERP old/new 

effect is linked to familiarity (Curran, 1999, 2000; Curran & Cleary, 2003; Curran & 

Friedman, 2004; Curran et al., 2002; Duzel, Vargha-Khadem, Heinze, & Mishkin, 

2001; Mecklinger, 2000; Nessler & Mecklinger, 2003), and while there are data 

points that are inconsistent with this account (Curran, 2004; Rugg et al, 1998), these 

typically comprise null results. There are, furthermore, data points that contradict 

directly a conceptual priming account of the mid-frontal effect (Ecker, Zimmer, & 

Groh-Bordin, 2007; in press; Groh-Bordin, Zimmer, & Ecker, 2006; Groh-Bordin, 

Zimmer & Mecklinger, 2005; Schloerscheidt & Rugg, 2004), and overall the weight 

of evidence supports a familiarity account of this old/new effect.

Conclusions

ERP studies have provided empirical evidence for a number of dissociable effects 

associated with episodic memory. The left-parietal ERP old/new effect, which is the 

effect with the longest history (Sanquist, Rohrbaugh, Syndulko, & Lindsley, 1980), 

is proposed to be a correlate of recollection. As reviewed above, a number of studies
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have provided support for the link between the mid-frontal ERP old/new effect and 

the process of familiarity. However, because of contradictory data points, the link 

between the mid-frontal ERP old/new effect and familiarity remains a matter of 

debate (Curran, 2004; Olichney et al., 2000; Tsivilis et al., 2001; Voss & Paller, 

2006; Yovel & Paller, 2004). The absence or attenuation of parietal ERP old/new 

effects for some classes of old item relative to others within exclusion memory tasks 

has been interpreted as evidence for selective attention to task-relevant material only 

(Dywan et al., 2002; Dywan et al., 1998; Dywan et al., 2001), or as evidence that 

participants can control, at least under some circumstances, what information will be 

recollected during a task in order to complete the task efficiently (Dzulkifli, Herron, 

& Wilding, 2006; Dzulkifli & Wilding, 2005; Herron & Rugg, 2003a; Homberger, 

Morcom, & Rugg, 2004).

At issue in the experiments described in the subsequent chapters is the extent to 

which previous findings of left-parietal ERP old/new effects for targets and non

targets in exclusion tasks could be generalised to a variant of the exclusion task with 

different retrieval demands. Are the differing experimental findings described in the 

preceding section a consequence of peculiarities associated with the particular 

incarnation of the exclusion task employed? Furthermore, can the explanation 

offered initially by Herron & Rugg (2003b) for the attenuation of left-parietal ERP 

old/new effects in exclusion tasks under some circumstances but not under others be 

generalised to additional exclusion task type paradigms? Moreover, the experiments 

will also begin to define some of the boundary conditions under which selective 

recollection of task-relevant material can or cannot occur.
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Chapter Four

General Methods 

Introduction

This chapter outlines the methods common to all the EEG experiments reported in this 

thesis. Procedures specific to each experiment are described in the relevant methods 

sections. The studies reported employed the same criteria for participant inclusion in 

the first instance, and similar materials. The ERP recording parameters, as well as data 

processing and analysis, were identical in experiments 2, 3, 4, 5 and 6. In Experiment 

1, the recording parameters and some elements of initial data processing were 

different, because the EEG was acquired on a different acquisition system.

Participants

They were all aged between 18 and 30 years of age, right handed, as defined by self 

report, and were native English speakers who reported normal, or corrected to normal, 

vision. Participants were screened for neurotropic medication, and any clinical 

diagnosis of dyslexia. They were all students from Cardiff University and gave 

informed consent prior to commencing the experiments. They were paid £7.50/hour 

for their participation.

Materials

Stimulus lists consisted of words, ranging from four to nine letters in length. They 

were all low- frequency words (range 1-7 per million), and were drawn from the MRC 

psycholinguistic data base (http://www.psy.uwa.edu.au/MRCDataBase/uwa_mrc.htm).
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The words were presented visually, in upper case white letters on a black background 

in central vision on a computer monitor. The images subtended a maximum of 5° of 

visual angle horizontally and 0.6° vertically.

All experiments included study and test lists. ERPs were acquired during the test 

phases only. Details regarding the construction of the study and test lists in order to 

control for item and order effects will be provided in the method sections in each of 

the experimental chapters. The experiments contained either two (Experiment 5) or 

four (Experiments 1, 2, 3,4 and 6) study-test cycles. For all experiments, study and 

test list combinations were constructed so that across participants all words were 

encountered as each class of item. These comprised new (unstudied) words, studied 

words, and some new words that were repeated. Within each study cycle, the order of 

presentation of study items for each participant in each experiment was determined 

randomly by the stimulus presentation software. The order of presentation of test items 

was such that the repeated new words were re-presented after randomised intervening 

lags of between 7-9 items. Across test lists within each experiment, words appeared 

both at study and at test (old items), or were presented only at test. In the latter case, 

they were presented, on different lists, either once (new items) or twice (repeated new 

items).

Experiment procedures

Participants were fitted with an electrode cap before commencing each experiment 

(see below). The procedure for all participants started with preparation of the skin with 

a cotton bud. This procedure helps to minimise the contribution of artefacts to the 

recorded EEG, by reducing the electrical impedance levels at the scalp. For each
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participant, the inter-electrode impedance level at all sites was below 5 KQ at the 

outset of each experiment session. The participants were then seated in a sound- 

attenuated recording booth. They were situated approximately one metre in front of a 

computer monitor. Prior to each experiment, the participants were given a written 

instruction sheet to read, and the task requirements were also explained verbally. 

Participants were asked to relax, keep still, and maintain fixation on the centre of the 

screen and blink as they would normally throughout the experiment. In all experiments 

there was a short practice session before the experiment began. In each experiment 

there was also a short break after each study-test cycle.

Electrophysiological recording procedures

For experiment 1 EEG was recorded from 34 silver/silver chloride electrodes, 32 of 

which were housed in an elastic cap. For experiments 2-6,  EEG was recorded from 

27 silver/silver chloride electrodes, 25 of which were housed in an elastic cap. The 

sites were located at midline as well as left and right hemisphere locations (Jasper, 

1958). The electrode locations are shown in Figure 4.1. For both recording procedures 

the remaining two electrodes were placed on the right and left mastoids.

For experiments 2-6,  EEG channels were referenced during acquisition to Fz, and 

were subsequently re-referenced off-line to the algebraic average of the two mastoids. 

Data were sampled continuously at a rate of five ms per point for experiments 2, 3, 5 

and 6, and 4 ms per point for Experiment 4. The durations of the epoched data were 

1280 ms and 924 ms respectively, all including a 100 ms pre-stimulus baseline period 

relative to which all mean amplitude measures were taken. EEG and EOG were 

recorded with a bandwidth of 0.03-40 Hz (-3dB) in all except Experiment 1, where
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EEG and EOG was acquired referenced to linked electrodes located midway between 

POz and P03/P04, respectively. EEG and EOG were recorded with a bandwidth 

range of DC-419Hz; initial sampling rate 2048 Hz. Data was high-pass filtered off-line 

(0.03Hz) and down-sampled to 200 Hz (5 ms/point). The duration of the recording 

epoch was 1280 ms, including a 100 ms pre-stimulus baseline period.

Figure 4.1. Selected sites from the international 10/20 system (Jasper, 1958). The 

sites employed in experiments 2, 3, 4, 5, and 6 reported in this thesis are shown in 

black. The sites used for Experiment 1 are those used for the remaining experiments 

with the addition of the 6 sites shown in red.

Data processing

Processing and analysis were completed off-line after the end of each experiment 

session. Trials containing large EOG artefact, and/or movement artefact, were
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identified using set criteria and verified by visual inspection prior to rejection or 

inclusion. Trials containing A/D saturation, and/or baseline drift (difference between 

first and last data point) exceeding ±80pV were also rejected. Other EOG blink 

artefacts were corrected using a linear regression estimate (Semlitsch, Anderer, 

Schuster, & Presslich, 1986).

In all experiments, the averaged ERPs were subjected to a seven-point binomially 

weighted smoothing filter prior to analysis, and waveforms were formed for each of 

the critical response categories for each participant. Participants were excluded from 

subsequent statistical analyses, both for ERP and for behavioural data analysis, if they 

did not contribute a minimum of 16 artefact-free ERP trials to each of the critical 

response categories.

Data analyses

Behavioural data

The accuracy and RT data were analysed by employing t-tests (corrected for multiple 

comparisons where appropriate) and repeated measures ANOVAs. The Geisser- 

Greenhouse correction procedure was implemented where necessary in all ANOVAs, 

for accuracy, RT and ERP data (Greenhouse & Geisser, 1959).

Two measures of discrimination (Pr: Snodgrass & Corwin, 1988) were calculated for 

all experiments. The first was computed to determine whether participants were able 

to distinguish between old words and new words (p(hit) - (FA)). The second was 

computed to determine whether participants were able to distinguish between old 

words and repeated new words (p(hit) - p(rFA)). Measures of response bias (Br:
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Snodrgass & Corwin, 1988) were also calculated for all experiments, where Br = 

p(FA)/(l -  Pr).

ERP data

Analyses of ERP old/new effects

Two sets of analyses were completed for all the experiments reported in this thesis. 

Both set of analyses were performed over three time windows (300-500, 500-800 and 

800-1100 ms). The first set of analyses (hereafter ‘global analyses’), included mean 

amplitude data from 18 electrode sites, split equally over the two hemispheres, with an 

equal number of sites at anterior, central, and posterior scalp locations (see Figure 4.1). 

The analyses included the factors of condition (the conditions included will vary 

across experiments and will be identified for each experiment), anterior/posterior (AP) 

dimension (three levels: anterior: F3/F4/F5/F6/F7/F8, central: C3/C4/C5/C6/T7/T8, 

and posterior: P3/P4/P5/P6/P7/P8), hemisphere (two levels: left/right), and site (three 

levels: inferior: F7/F8/T7/T8/P7/P8, mid-lateral: F5/F6/C5/C6/P5/P6, and superior: 

F3/F4/C3/C4/P3/P4).

The second set of analyses (hereafter ‘midline analyses’) included mean amplitude 

data from Fz, Pz and Cz. This set of analyses included the factors of condition, and site 

(three levels: anterior: Fz, central: Cz, posterior: Pz). The outcomes of the analyses at 

the midline will only be reported if there is an interaction involving condition as well 

as electrode site. These analyses were completed in order to provide a more sensitive 

assessment of changes of interest on the anterior/posterior dimension than would be 

obtained via the global analyses.
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The main interest in the experiments reported in this thesis is on ERP differences 

according to condition. Therefore, only effects involving this factor will be reported. 

Reliable two- and three-way interactions involving the critical factor will be followed 

up with appropriate directed analyses, as described in the relevant empirical chapters.

Directed analyses of mid-frontal ERP old/new effects

One set of directed analyses was carried out for the mid-frontal ERP old/new effect 

for all experiments. The analyses were carried out in the 300-500 ms time window 

for all experiments. This time window was selected as it has been shown that for 

anterior sites in this post-stimulus epoch, ERPs are sensitive to item familiarity 

(Curran, Tepe, & Piatt, 2006; Rugg et al., 1998). The analyses included data from F3, 

Fz, and F4 only, and included the factors of condition (as specified in each 

experiment chapter) and site (three levels: F3/Fz/F4).

Directed analyses of left-parietal ERP old/new effects

The directed analyses for the left-parietal ERP old/new effect included factors of 

condition, hemisphere, and site (four levels: P3, P4, P5, P6), and were completed over 

the 500-800 ms time window. This time window was selected as it captures when and 

where the left-parietal ERP old/new effect is primarily evident (Friedman & Johnson, 

2000; Rugg, Herron, & Morcom, 2002).

Presentation of Tables, Figures and Scalp Topographies

The tables for the critical behavioural data are show in the main body of text, with 

some additional material in the appendices where necessary. The tables for the 

accuracy data present the mean proportions of correct and incorrect responses,
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separated according to condition. RT tables in the main body of the text display the 

mean RTs for correct and incorrect responses in all conditions.

All experimental chapters include tables showing the outcomes of the global and 

mid-line analyses on the ERP data. These are located at the end of each chapter. Only 

the highest order interactions in each contrast of interest are described in the main 

body of the text. The ERP figures and topographic maps are presented at the end of 

each chapter, with additional material in the appendices as necessary. All maps 

shown are computed from difference scores, obtained by subtracting the mean 

amplitudes associated with one critical condition from another.
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Chapter Five

Experiments 1 and 2 

Introduction

Inferences about the control of retrieval have been made on the basis of findings in 

ERP studies in which participants completed recognition memory exclusion tasks 

(Jacoby, 1991, 1998). In these tasks, participants are typically required to distinguish 

between new items (those presented at test for the first time) and two classes of old 

items, each having different study histories -  for example, an equal number may 

have been spoken in a male/female voice in a prior encoding phase (Jacoby &

Kelley, 1992; Wilding & Rugg, 1997). At the time of retrieval, participants are asked 

to respond on one key to items with one type of study history (often designated as 

‘targets’) and on another key to new items as well as to items with different study 

histories (‘non-targets’).

The reason why the ERP findings in exclusion tasks have been interpreted in terms 

of retrieval control is due to the pattern of ERP old/new effects that have been 

obtained. The exclusion task is designed in such a way that successful completion of 

the task depends upon recollection, since familiarity alone will not, in most 

circumstances, permit discrimination of targets from non-targets (the possible use of 

familiarity as the sole basis for judgments in exclusion tasks will be addressed further 

within the general discussion at the end of the thesis). Jacoby (1991) has argued that, 

in the exclusion task, participants rely upon recollection of targets as well as 

recollection of non-targets in order to make task judgments. This assumption is
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required if one wishes to estimate the contributions that recollection and familiarity 

make to recognition memory performance using the computational approach 

provided by Jacoby and colleagues (the Process Dissociation Procedure (PDP): 

Jacoby, 1991; Jacoby, 1998). If this assumption is correct, then both targets and non

targets attracting correct judgments should be associated with left-parietal ERP 

old/new effects, because this aspect of the electrical record has been linked to the 

process of recollection (Friedman & Johnson, 2000; Rugg & Allan, 2000; Wilding & 

Sharpe, 2003).

The left-parietal effect takes the form of greater positivity for correctly identified old 

items relative to correctly identified new items. This positivity has a left temporo

parietal scalp maximum and onsets around 500 ms post-stimulus. A variety of 

evidence links this effect to recollection. For example, the effect is greater when 

elicited by recognized items attracting correct rather than incorrect source judgments 

(Wilding & Rugg, 1996; Wilding, 2000); and for items attracting ‘remember’ as 

opposed to ‘know’ judgments (Duzel, Yonelinas, Mangun, Heinze, & Tulving, 1997; 

Smith, 1993; Trott et al., 1999; but see Spencer, Vila Abad, & Donchin, 2000). In 

addition, the effect is absent or attenuated markedly in neurological patients in whom 

recollection is selectively impaired (Duzel, Vargha-Khadem, Heinze, & Mishkin, 

2001).

The critical ERP data in exclusion tasks that is of particular relevance here concerns 

the left-parietal ERP old/new effects elicited by correct judgments to targets and to 

non-targets. In a number of recent studies, the magnitude of the left-parietal ERP 

old/new effects has been markedly larger for targets than for non-targets (e.g.
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Czemochowski, Mecklinger, Johansson, & Brinkmann, 2005; Dzulkifli, Herron, & 

Wilding, 2006; Dzulkifli & Wilding, 2005; Herron & Rugg, 2003a, 2003b; 

Homberger, Morcom, & Rugg, 2004).

This pattern of data was first reported by Herron & Rugg (2003a; for a pre-cursor, 

see Wilding & Rugg, 1997), who conducted two exclusion task experiments. For 

these two experiments, participants completed one identical and one different 

encoding task. The common task that was required for half of the study words in 

each experiment was to incorporate each word into a sentence and to say it aloud.

For the second task in Experiment 1, participants were asked to rate words for 

pleasantness, while in Experiment 2 the second task was simply to read aloud each 

word that was presented. Non-targets were defined as words from the common task 

in both experiments, and the accuracy of target judgments was superior in 

Experiment 1. Non-target accuracy was equivalent in the two experiments.

Target as well as non-target items elicited left-parietal ERP old/new effects in 

Experiment 2, replicating the findings of Wilding & Rugg (1997), while in 

Experiment 1, the effect was observed only for target items. These findings suggest 

that target items in both experiments were classified on the basis of recollection. By 

contrast, the basis for classification of non-target items presumably differed between 

the two experiments, as the left-parietal ERP old/new effect was observed for non

targets in Experiment 2 only. This pattern of findings suggests that participants relied 

on recollection to classify non-target items in Experiment 2 only. The authors 

interpreted these findings as reflecting the adoption of different retrieval strategies. 

They suggested that when memory for targets was good (Experiment 1), non-targets
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were classified on the basis of the failure to recollect information about targets. They 

suggested that this strategy was not optimal when memory for targets was poor, and 

as a result, recollection of non-targets was prioritised in Experiment 2 to a greater 

degree than in Experiment 1. Complementary findings and similar conclusions have 

been reported by Herron & Rugg (2003b).

Herron & Rugg (2003a) employed a between-participants design in which target 

memorability was manipulated via encoding task. In Experiment 1 targets were 

encoded using a “deep” task (pleasantness rating); in Experiment 2 targets were 

encoded using a “shallow” task (read aloud). All non-targets were encoded in the 

same task (sentence generation). Non-targets elicited a left-parietal ERP old/new 

effect when target accuracy was low (in Experiment 2) but not when it was high 

(Experiment 1). The study design means that the differences in levels of target 

accuracy were confounded with target-encoding task. Therefore it is possible that the 

results can be explained in terms of the target encoding condition employed as well 

as a difference in target accuracy. Another possible explanation for the findings is 

that in Experiment 1 non-target items were simply forgotten. That is, the deeply 

studied targets in Experiment 1 may have produced a greater degree of retroactive 

interference such that information about non-targets was less available in Experiment 

1 than in Experiment 2. Therefore in Experiment 1 a large proportion of non-target 

items may have been excluded because they were misclassified as new words.

Herron & Rugg (2003a) addressed this concern in a behavioural study on six 

additional participants, where Experiment 1 was replicated with the target and non

target classifications reversed. Accuracy for targets was 86%, with a new-item false 

alarm rate of 3%. Herron & Rugg concluded that it was therefore highly unlikely that
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memory for non-targets in Experiment 1 was so poor that they were in general 

mistaken for new items.

In two recent studies, (Dzulkifli & Wilding, 2005 and Dzulkifli, Herron, & Wilding, 

2006), the Herron & Rugg strategic retrieval proposal was rigorously tested in tasks 

where there was no target/non-target confound and where there were direct estimates 

of the accuracy of non-target judgments available. Dzulkifli & Wilding (2005) 

reported old/new effects in a study where participants studied words initially, all of 

which were concrete nouns. For half of the words, the task was to decide how 

difficult the object denoted by each word would be to draw. For the remainder, the 

task was to generate uses for the object denoted by each word. Old and new 

(unstudied) words were presented at test, and participants completed exclusion tasks. 

There were reliable left-parietal ERP old/new effects for targets only, which suggests 

that participants prioritised recollection of information about targets over information 

about non-targets. In a second study, Dzulkifli, Herron, & Wilding (2006) utilised 

the study design employed by Dzulkifli & Wilding (2005), with the exception that 

the study and test lists were longer and there were longer intervals between study and 

test. These variations led to a reduction in the level of memory accuracy in 

comparison with the earlier study.

The left-parietal ERP old/new effect was evident for targets as well as for non-targets 

in all test phases, consistent with the view that participants recollected information 

about both of these classes of test word. These findings contrast with those of the 

Dzulkifli & Wilding (2005) study in which the same tasks were used, and in which a 

left-parietal ERP old/new effect was found for targets only. For the earlier study,
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however, the accuracy of task judgments was markedly higher. In summary, the two 

Dzulkifli et al. studies show that, where accuracy for targets and non-targets is high, 

a left-parietal ERP old/new effect is observed for targets only. However, when 

accuracy for task judgments is lower, both classes of items elicit left-parietal ERP 

old/new effects.

The combination of all of the above findings provides support for the claim that 

selective control of recollection is indexed by the patterns of ERP left-parietal 

old/new effects for targets and for non-targets. One important question is what 

factors can influence the selective control of recollection in the exclusion task. The 

Dzulkifli et al. (2005, 2006) and Herron & Rugg (2003a) studies suggest that levels 

of target accuracy are one key factor, with high levels of target accuracy encouraging 

participants to adopt a target-specific retrieval strategy, resulting in an attenuated 

non-target left-parietal ERP old/new effect, due to the prioritisation of recollection of 

target information over non-target information .

The preceding descriptions demonstrate that under some circumstances people can 

exert considerable control over whether or not information is recollected, and this in 

turn suggests that ERPs acquired in episodic retrieval tasks may be a useful 

functional tool for determining the conditions under which this can be achieved, as 

well as, ultimately, the mechanisms that are responsible for the strategic control of 

recollection (for discussion, see Dzulkifli & Wilding, 2005; Herron & Rugg, 2003; 

Homberger, et al., 2004 ). The broad utility of ERPs in this regard depends in part, 

however, upon the extent to which comparable patterns of selective attenuation of 

left-parietal ERP old/new effects can be obtained across tasks with somewhat
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different retrieval demands to those described above. This observation is the 

motivation for the two studies described in this chapter.

The version of the exclusion procedure employed here was introduced initially by 

Jennings & Jacoby (1997). In this variant, all study items are subjected to the same 

encoding operations. In the subsequent retrieval task, a proportion of new (unstudied) 

test items are repeated after an intervening lag (hereafter repeated test items). Either 

studied items or repeated test items can be designated as targets in this design, and 

the use of the studied items as targets is employed in the pair of experiments reported 

here.

For both of the following studies, the repeated test items were the non-targets. The 

only difference between the two studies was the encoding task used in the study 

phase; in Experiment 1 the task was to say aloud a word which rhymed with the 

presented study word whilst for Experiment 2 it was to read each study word aloud. 

In this design, the repeated test items are, by virtue of the short lag between first and 

second presentation, likely to be associated with strong memory representations. 

Under these circumstances, therefore, participants might not be able to prioritise 

recollection of studied items over repeated test items, despite high levels of studied 

item accuracy.

Data inconsistent with this possibility, however, come from a series of experiments 

by Dywan and colleagues (Dywan, Segalowitz, & Webster, 1998; Dywan,

Segalowitz et al., 2001 and Dywan, Segalowitz, & Arsenault 2002) in which they 

utilised the same variant of the exclusion task described above. Across all of the
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experiments in which the participants were young adults, a left-parietal ERP old/new 

effect was observed for targets, whereas no reliable effect was detected for excluded 

non-targets. What is surprising about these data is that the extensive attenuation of 

the non-target left-parietal ERP old/new effect occurred even though mean target 

accuracy across studies (.58) was markedly lower than the level required in other 

studies in order to demonstrate a similar pattern of attenuation of non-target left- 

parietal effects (Herron & Rugg, 2003b, Dzulkifli et al. 2005, 2006). These data 

suggest that the likelihood of recollecting information about targets is not the only 

factor influencing the strategy adopted by participants in exclusion tasks, in keeping 

with the findings of Herron & Wilding (2005). At issue in the following two 

experiments are the generality of the findings obtained in the experiments described 

above.

Method

Due to the similarities between the designs of the two experiments, they are 

described jointly, with differences between the two noted where appropriate.

Participants

21 participants completed Experiment 1; the average age was 22 years (range 18 to 

30). The data from five participants was discarded prior to analysis. For two of these 

the reason for rejection was that they did not contribute sufficient trials of incorrect 

responses to target items (target miss)(for criteria see General Methods, Chapter 4). 

The remaining participants were excluded due to excessive EOG artefact (see 

General Methods for criteria). Of the remaining 16 participants, 15 were female. 19 

participants completed Experiment 2; the average age was 20 years (range 18 to 24)
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and the data from three participants (three female) was discarded due to excessive 

EOG artefact (see General Methods for criteria) and consequently low numbers of 

trials in critical conditions. Of the remaining 16 participants, 15 were female. All 

participants were right-handed native English speakers. No participants were taking 

neuroleptic medication at the time of testing or reported a history of mental illness. 

All were paid at a rate of £7.50/hour and gave informed consent prior to commencing 

the experiments. No participant completed both experiments.

Stimuli and design

Across both experiments, words were taken from the MRC psycholinguistic 

database (frequency range =1-7 occurrences per million, length = 4-9 letters: 

Coltheart, 1981). These were presented in white letters on a black background on a 

computer monitor placed 1 m from participants. The stimuli subtended maximum 

visual angles of 5° (horizontal) and 0.6° (vertical).

In both experiments, 280 critical words were split into 8 equal groups of 35 words. 

Words appeared in only one group. One complete word task list comprised two study 

lists and two test lists. There were 70 words (2 groups) on each study list. There were 

175 words on each test list. These comprised the 70 words presented at study along 

with 35 unstudied words, and a further 35 unstudied words which then repeated once 

after 7-9 intervening items. The numbers of words re-presented after lags 7, 8, and 9 

were approximately equal. For each test list there were also 6 fillers placed towards 

the end of the lists. These did not appear on any study list and were included in order 

to ensure that the final repeating word fell within the 7-9 item repeat interval. No 

words appeared in both test lists. Rotating the groups of words across study and test
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lists so that all words were presented at study and test, once or twice at test only, and 

in either the first or second study-test cycle, resulted in the creation of 8 complete 

task lists. The order of presentation of words in the study lists was determined 

randomly for each participant. The order of presentation of test items was determined 

pseudo-randomly. In total, each participant saw 502 presentations of words (140 

study words, 350 test words +12 fillers)

Procedure

Prior to commencing either experiment, participants were informed that they would 

be presented with a series of words on the computer screen. In each study phase, 

participants completed one encoding task for all words. For Experiment 1 they were 

asked to say aloud a word which rhymed with the presented study word. Participants 

were informed that for polysyllabic words (e.g. marmalade) where a rhyme did not 

come immediately to mind it was acceptable to produce a word that rhymed only 

with the last syllable of the target word. For Experiment 2 they were asked to read 

each word aloud. For all participants an asterisk before study words initiated each 

study trial and remained on the screen for 1000 ms. The screen was then blanked 

(100 ms) before the study word was presented for 300 ms. Participants were asked to 

give their response after the study word appeared. In Experiment 1 the next trial 

started after the participant pressed a key on the response box. In Experiment 2 the 

next trial started 2500 ms after the study word was presented.

Each test trial started with a fixation asterisk (500 ms duration), which was removed 

from the screen 100 ms prior to presentation of a test word (300 ms duration). The 

screen was then blanked until the participant responded, and the next trial started
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1000 ms after the response. For each test phase, participants responded with one 

hand to words that were seen at study (‘old words’), and with the other to unstudied 

test words (‘new words’) and to unstudied test words which repeated during the test 

phase (‘repeated test words’). Responses were made on a key-pad with the left and 

right thumbs. The hands required for the binary test judgment were also balanced 

across participants and all participants were encouraged to respond quickly and 

accurately. Responses slower than 4000 ms and faster than 300 ms were regarded as 

errors and were discarded from behavioural and ERP analyses. An average of < 1% 

of trials per participant in both experiments (range 0.2 -  1.6%) were excluded due to 

this criterion.

EEG acquisition

These procedures were different in the two experiments. For Experiment 1 there 

were 32 recording locations from the International 10-20 system (Jasper, 1958) 

comprising midline (Fz, Cz, Pz, Oz), left and right hemisphere sites (FP1/FP2, 

F7/F8, F5/F6, F3/F4, F1/F2, T7/T8, C5/C6 C3/C4, C1/C2, P7/P8, P5/P6, P3/P4, 

P1/P2, 01/02). Additional electrodes were located on the mastoid processes. EEG 

was acquired referenced to linked electrodes located midway between POz and 

P03/P04 respectively. EEG data was high-pass filtered off-line (0.03Hz) and down- 

sampled to 200 Hz. The EEG acquisition parameters were: range 0.03 -  40 Hz; 

sampling rate 2048 Hz.

For Experiment 2, EEG was recorded from 25 silver/silver chloride electrodes at 

midline sites (Fz, Cz, Pz) and left/right hemisphere locations (FP1/FP2, F7/F8, 

F5/F6, F3/F4, T3/T4, C5/C6, C3/C4, T5/T6, P5/P6, P3/P4, 01/02: Jasper, 1958).
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Additional electrodes were placed on the mastoid processes. EEG data acquisition 

parameters were: range 0.03 -  40 Hz; sampling rate 200 Hz.

For both experiments, data from Fz were recovered, the data were re-referenced 

offline to the algebraic mean of the signal at the two mastoids, and EOG was 

recorded from above and below the right eye (VEOG) as well as on the outer canthi 

(HEOG). Trials containing large EOG artefact were rejected, as were trials 

containing A/D saturation or baseline drift exceeding ±80pV. Other blink artefacts 

were corrected using a linear regression estimate (Semlitsch, Anderer, Schuster, & 

Presslich, 1986). A 7 point binomially weighted smoothing filter was applied prior to 

analysis.

Results

Behavioural data

Table 5.1 shows response accuracies and reaction times (RTs) for correct and 

incorrect responses to old, new and repeated test items in experiments 1 and 2. Two 

measures of discrimination (Pr: Snodgrass & Corwin, 1988) were calculated. The 

first was computed to determine whether participants were able to distinguish 

between old and new words. The second was computed to determine whether 

participants were able to distinguish between old words and repeated test words. In 

Experiment 1, Pr was reliably greater than 0 in both cases (Pr values = 0.61 and 0.57: 

t(15) = 14.63, p<.001 and t(15)=l 1.61, p<.001), and these two Pr scores did not 

differ reliably from each other. In Experiment 2, both Pr values were also reliably 

greater than 0 (Pr values = 0.62 and 0.53: t(15)= 20.54, p<.001 and t(15) = 10.44,
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p<.001). Discrimination between old and repeated test words was inferior to that 

between old and new words (t(15) = 3.54, p<.01).

Measures of response bias (Br) were also calculated, where Br = p(FA)/(l -  Pr). For 

the discrimination involving new words in Experiment 1, the mean value across 

participants was 0.14, while Br for the discrimination involving repeated test words 

was 0.22. Br scores did not differ reliably from each other. The values in each case 

indicate a mild to moderate conservative bias (Snodgrass & Corwin, 1988). In 

Experiment 2, Br for the discrimination involving new words was 0.20, whilst Br for 

the discrimination involving repeated test words was 0.33. Br scores differed reliably 

(t(15) = -4.85, p<.001), indicating a relatively more conservative bias for the 

discrimination involving new words.

For Experiment 1, a one-way ANOVA on the RTs for correct responses revealed 

significant differences between item class (F (1.9, 29.2) = 13.74, p <.001). Follow up 

paired comparisons showed that there were significant differences only between 

reaction times for old and repeated test items (t(15)=3.43, p< .005) and between new 

items and repeated test items (t(15)= 5.36, p< .001). These significant differences 

arose due to faster RTs to correct responses for repeated test items than to correct 

responses to new and old items. A one-way ANOVA on the RTs for correct 

responses in Experiment 2 revealed no reliable differences.
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Table 5.1. Probabilities of correct (p(correct)) and incorrect (p(incorrect)) responses 

and reaction times in milliseconds (RT) to old, new and repeated test words in 

experiments 1 & 2.

Exp. 1

Exp. 2

New________Repeated Test

p(correct)

RT

p(incorrect)

RT

p(correct)

RT

p(incorrect)

RT

Old

0.67 (0.18) 

1137(691)

0.33 (0.18) 

1286 (598)

0.69 (0.13) 

908(395)

0.31 (0.13) 

1089 (628)

Word class

0.94 (0.03) 

1038 (626)

0.06 (0.03) 

1390 (471)

0.93 (0.06) 

876 (353)

0.07 (0.06) 

1130(375)

0.90 (0.08) 

903 (448)

0.10(0.08) 

1268 (422)

0.83 (0.13) 

875 (348)

0.17(0.13) 

954 (340)
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ERP data

ERPs could in principle be obtained for 6 response categories in both experiments: 

correctly and incorrectly identified old, new and repeated test words. Too few 

participants made sufficient false alarms to new and repeated test words (2 

participants for both conditions in each experiment) to permit analysis of the ERP 

data for these response categories. Therefore baseline corrected averaged ERPs (100 

ms pre-stimulus baseline) were formed for correctly identified old words (hits), new 

words (correct rejections) and repeated test words (repeated hits), and incorrectly 

identified old words (misses), and were analysed for the 16 participants in each 

experiment who contributed sufficient artefact-free trials to these critical response 

categories. Mean trial numbers for these response categories were 72, 109, 47 and 

35, in Experiment 1 and 82, 49,116 and 36 in Experiment 2.

For both experiments, the ERP data were analysed over three time windows: 300- 

500, 500-800 and 800-1100 ms. For the three time windows, two sets of analyses 

were completed. In the first set (hereafter the Midline analyses) the analyses were 

restricted to 3 midline locations (Fz, Cz, and Pz). In the other set of analyses 

(hereafter the Global analyses), data from lateral electrode locations was employed. 

The data comprised ERPs acquired from 18 electrode locations, an equal number at 

left and right hemisphere sites at anterior (F3/F4, F5/F6 and F7/F8), central (C3/C4, 

C5/C6 and T7/T8) and posterior (P3/P4, P5/P6 and T5/T6) scalp locations. These 

analyses included the factors of category, location in the anterior/posterior plane 

(AP: 3 levels), location in the left-right plane (HM: left hemisphere, right- 

hemisphere) and site. Initial analyses were conducted involving the data from correct
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responses to old, new and repeated test words. Significant effects involving category 

were followed up by all possible paired contrasts between the three response 

categories. For the analyses of data including lateral scalp locations, interactions with 

the AP and/or HM dimension were followed up by analyses at each level of the 

relevant factor.

Two additional directed analyses were conducted. The first was carried out to assess 

changes in the mid-frontal ERP old/new effect with condition, and was carried out in 

the 300-500 ms time window for both experiments. This time window was selected as 

it has been argued that, at anterior sites near the midline in this post-stimulus epoch, 

ERPs are sensitive to item familiarity (Curran, Tepe, & Piatt, 2006; Rugg et al., 1998). 

The analyses included data from F3, Fz, and F4 only, and included the factors of 

category and site (three levels: F3/Fz/F4). The second directed analysis addressed 

directly changes in left-parietal ERP old/new effects and included factors of category, 

hemisphere, and site (four levels: P3, P4, P5, P6), and was completed over the 500-800 

ms time window. This time window was selected as it captures when the left-parietal 

ERP old/new effect is primarily evident (Friedman & Johnson, 2000; Rugg, Herron, & 

Morcom, 2602). The results for Experiment 1 are reported first, followed by those for 

Experiment 2, and only in the sets of directed analyses are the ERPs elicited by 

incorrect responses to targets (misses) included alongside those associated with correct 

responses to targets, non-targets and new test items.
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Experiment 1 

Hits, correct rejections and repeated hits

Figure 5.1 is relevant to the following statistical analyses and shows the ERPs 

elicited by hits, correct rejections and repeated hits at electrode sites F3/F4, C3/C45 

P3/P4, Fz, Cz and Pz. The figure shows that, from approximately 300 ms onwards, 

the ERPs elicited by hits and repeated hits are more positive-going than those elicj^ 

by correct rejections. This greater relative positivity for both classes of old item 

peaks at approximately 600 ms and is more pronounced at central and posterior 

midline sites. There is little difference of note between the ERP old/new effects 

associated with targets and with non-targets.

300-500 ms: 

Midline analyses:

The initial analysis revealed a main effect of category (F(2.0, 29.9) = 38.59, p< XXjjj

as well as an interaction between category and site (F(2.6, 39.2) = 3.06, p<.05). The

follow-up analyses comprised all possible paired contrasts of the three categories,

and these revealed that the ERPs evoked by hits were reliably more positive-going

than those elicited by correct rejections (F(l,15) = 50.66, p<.001). A category by 
»

interaction for the contrast between hits and repeated hits (F(l .8 , 27.6) = 4.33, j k 05) 

reflected the fact that, while hits are more positive-going than repeated hits at Fz, at 

Pz the reverse is true. The final contrast revealed only that the ERPs evoked by 

repeated hits were reliably more positive-going than those elicited by correct 

rejections (F(l,15) = 62.03, p<.001).
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Global analyses:

The second set of analyses for this time window revealed a main effect of category 

(F(1.9, 28.5) = 35.50, p<.001), as well as interactions between category and site 

(F(2.3, 34.3) = 13.46, p<.001), and category, AP and site (F(6.4, 96.1) = 2.85, 

p<.05). The follow-up analyses comprised all possible paired contrasts of the three 

categories. Table 5.2 shows the outcomes of the paired contrasts in the global 

analyses for all three time windows, only those terms for which outcomes were 

reliable in at least one paired contrast are shown.. For the 300-500 ms time window, 

the contrast between hits and correct rejections revealed an interaction between 

category and site, reflecting the fact that the old/new effect is largest at sites closest 

to the midline.

For the contrast between repeated hits and correct rejections there was a three-way

interaction between category, AP and site, and further analysis at each of the AP

levels revealed a greater relative positivity for repeated hits at central and posterior

sites closest to the midline (central category by site interaction: F(3.4, 51.1) = 7.38,

p<.001, parietal category by site interaction: F(2.4, 36.7) = 8.14, p<.001). For the hits

versus repeated hits contrast there was an interaction between category, AP and site.
»

Further analysis at each of the AP levels revealed no significant effects. It is most 

likely that the interaction came about because of a relative greater positivity for 

repeated hits at posterior midline scalp locations that was not evident at frontal and 

central locations (see Figure 5.1).
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500-800 ms:

Midline analyses:

The initial analysis revealed a main effect of category (F(1.4, 20.9) = 35.27, p <

.001). The follow up analyses comprised all possible paired contrasts of the three 

categories, and these revealed that, while not differing from each other, the ERPs 

evoked by hits and repeated hits were both reliably more positive-going than those 

elicited by correct rejections (F(l,15) = 87.14, p< .001 and F(1,15) = 70.80, p<.001 

respectively).

Global analyses:

The second set of analyses for this time window revealed a main effect of category 

(F(1.6, 24.0)= 36.15, p<.001), as well as an interaction between category and site 

(F(2.2, 32.6) = 18.78, p< .001). The follow-up analyses comprising all possible 

paired contrasts of the three categories are shown in the middle portion of Table 5.2.

There was a three-way interaction between category, AP and site for the contrast

between hits and correct rejections. Further analysis at each of the AP levels revealed

that at each AP level the old/new effects are largest close to the midline (frontal

category by site interaction F(2.6, 37.5) = 7.50, p<.001, central category by site 
»

interaction: F(3.0, 45.0) = 11.77, p<.001, parietal category by site interaction: F(2.7, 

39.8) = 5.26, p<.005). The most likely reason for the three-way interaction is that the 

old/new effects are larger and more widespread at posterior sites. The contrast 

between repeated hits and correct rejections produced an interaction between 

category and site, reflecting the fact that the greater positivity associated with 

repeated hits is largest at the sites closest to the midline.

136



Table 5.2. The outcomes of the paired contrasts between the mean amplitudes 

associated with hits, correct rejections and repeated hits for the global analyses over 

the 300-500, 500-800 and 800-100 ms time windows in Experiment 1. CR = correct 

rejection, RHit = repeated hit, CC = category, HM = hemisphere, AP = 

anterior/posterior plane, SI = site, df = degrees of freedom. *** = p<.001,** = p<  

.01, * = p < .05, • = p < .1, ns = non-significant. Epsilon values are shown in 

brackets.

300-500 ms

df Hit vs CR CR vs RHit Hit vs RHit

CC 1,15 37.21*** 63.20*** ns

CC x SI 2,30 34.89(.44)*** 19.23(.5o)*** ns

CC x AP x SI 4,60 ns 3.25( 67)* 3.36(.6V

500-800 ms

CC 1,15 84.46*** 60.70*** ns

CC x SI 2,30 55.81C50)*** 26.58C55)*** ns

CC x AP x SI 4,60 2.54( 67)* ns ns

800-1100 ms
»

CC 1,15 22.23*** 12.02** ns

CC x SI 2,30 ns 8.16( 61)** ns

CC x AP x SI 4,60 2.70(,63)* ns ns
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800-1100 ms:

Midline analyses:

The initial analysis revealed a main effect of category (F(1.5, 22.5) = 6.37, p<.05) as 

well as an interaction between category and site (F(2.8, 41.8) = 3.57, p<.05). The 

follow-up analyses comprised all possible paired contrasts of the three categories, 

and these revealed a category by site interaction for the contrast between hits and 

correct rejections (F(1.2, 17.6) = 4.58, p<0.05), reflecting the fact that the relatively 

greater positivity for hits than for correct rejections was smallest at Pz. There was 

also a category by site interaction for the contrast between repeated hits and correct 

rejections (F(1.6, 24.2) = 6.02, p<.05), but in this case the interaction term reflected 

the fact that while repeated hits are more positive-going than correct rejections at Fz, 

at Pz the reverse is true.

Global analyses:

The second set of analyses for this time window revealed a main effect of category

(F(1.6, 24.5) = 9.01, p<.01), as well as an interaction between category and site

(F(2.2, 32.7) = 3.82, p<.05). The results of the follow-up analyses comprising all 
»

possible paired contrasts of the three categories, are shown in the lower portion of 

Table 5.2.

The contrast between hits and correct rejections revealed a three-way interaction 

between category, AP and site. Further analysis at each of the AP levels revealed no 

significant interactions between category and site. It is most likely that the interaction
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came about because the old/new effects are largest at central sites close to the 

midline. For the contrast between correct rejections and repeated hits there was an 

interaction between category and site, which was due to the increased magnitude of 

the relatively greater positivity for repeated hits at sites closest to the midline.

Mid-frontal ERP old/new effects:

To further investigate how the mid-frontal ERP old/new effect changed with 

category, additional directed analyses were conducted. This involved the mean 

amplitudes for hits, misses, repeated hits and correct rejections at F3, Fz and F4 in 

the 300-500 ms time window. Figure 5.2 is relevant to the following statistical 

analyses and shows the ERPs elicited by the four classes of items at electrode sites 

F3, Fz, and F4. The figure shows that from approximately 300 ms hits and repeated 

hits are more positive-going than misses and correct rejections, with misses being 

more positive-going than correct rejections. From approximately 500 ms the 

differences between misses and correct rejections diminish at Fz and F4.

The directed analysis revealed a main effect of category (F(2.0, 29.9) =16.67,

p<.001). Paired contrasts demonstrated that hits (F(l,15) = 34.82, p<.001 and F(1,15)

= 11.41, p<.005) as well as repeated hits (F(l,15) = 31.50, p<.001 and F(1,15) =
»

6.41, p<.05) were both more positive-going than correct rejections and misses at 

these mid-frontal electrode sites. Misses were also reliably more positive-going than 

correct rejections (F(l,15) = 5.15, p<.05). There were no significant differences 

between the two classes of hits. This pattern of data at the mid-frontal electrode sites 

is further illustrated in Figure 5.8, where the mean amplitudes for the old/new effects
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for hits, misses and repeated hits averaged across sites F3, Fz and F4 are shown for 

both experiments.

Left-parietal ERP old/new effects:

This analysis involved the mean amplitudes for hits, misses, repeated hits and correct 

rejections at P3, P5, P4 and P6 in the 500-800 ms time window. Figure 5.3 is 

relevant to the following statistical analyses and shows the ERPs elicited by the four 

classes of items at the electrode sites included in the analyses. The figure shows that 

in the critical 500-800 ms time window hits and repeated hits are equally more 

positive-going than misses and correct rejections, with minimal differences between 

misses and correct rejections.

The analyses revealed a main effect of category (F(2.0, 30.0) = 22.82, p < .001). This 

was followed up by all possible paired contrasts, and the outcomes of these showed 

that ERPs evoked by hits (F(l,15) = 87.62, p<.001) and by repeated hits (F(l, 15) = 

42.29 p<.001) were reliably more positive-going than those evoked by correct 

rejections. Figure 5.4 shows topographic maps of the differences in neural activity at 

the scalp between hits and repeated hits respectively compared to correct rejections 

for both experiments and illustrates this greater positivity for old words relative to 

new. The contrast between the ERPs evoked by hits and repeated hits revealed no 

significant effects. The contrast between hits and misses revealed that hits were more 

positive-going than misses (F(l,15) = 25.48, p<.001) and that this greater relative 

positivity was maximal at P3 (category by site interaction: F(1.9, 29.0) = 3.84, 

p<.05). Likewise repeated hits were also more positive-going than misses (F(l ,15) = 

29.15, p<.001), however a condition by site interaction reflected the fact that this
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greater relative positivity was maximal at P4 (F(l .9, 29.0) = 4.20, p<.05). There were 

no significant effects involving category revealed in the contrast between misses and 

correct rejections.

Experiment 2 

Hits, correct rejections and repeated hits analyses

Figure 5.5 is relevant to the following statistical analysis and shows the ERPs elicited 

by hits, correct rejections and repeated hits at electrode sites F3/F4, C3/C4, P3/P4,

Fz, Cz and Pz. The figure shows that, from approximately 300 ms onwards, the ERPs 

elicited by hits and repeated hits are more positive-going than those elicited by 

correct rejections. At right anterior sites later in the epoch hits remain consistently 

more positive-going than those elicited by correct rejections. However, from 

approximately 700 ms onwards at right anterior sites, the ERPs elicited by repeated 

hits are no longer more positive-going than those elicited by correct rejections.

300-500 ms: 

Midline analyses:

The initial analysis restricted to midline locations revealed a main effect of category 

(F(2.0, 29,4) = £6.24, p < .001), as well as an interaction between category and site 

(F(2.8, 42.2) = 4.76, p<.01). The follow-up analyses revealed that the ERPs evoked 

by hits were reliably more positive-going than those elicited by correct rejections 

(F(l ,15) = 29.37, p<.001). There was a category by site interaction for the contrast 

between hits and repeated hits (F(l .6, 23.3) = 9.14, p<.005), reflecting the fact that 

while hits are more positive-going than repeated hits at Fz, at Pz there are minimal 

differences between these classes of ERPs. The final contrast between repeated hits
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and correct rejections revealed a main effect of category (F(l,15) = 54.14, p<.01). 

This was moderated by an interaction between category and site (F(1.6, 24.0) = 3.85, 

p<.05) which reflected the fact that the greater positivity for repeated hits is smallest 

at Fz.

Global analyses:

The second set of analyses for this time window revealed a main effect of category 

(F(2.0, 29.9)= 22.18, p<.001), as well as interactions between category and site 

(F(2.1, 30.8) = 16.77, p<.001), and category, AP and site (F(4.0, 60.5) = 2.62, 

p<.05). The follow-up contrasts (upper portion of Table 5.3) revealed that between 

hits and correct rejections there was a four-way interaction between category, AP, 

HM and site. Further analysis at each of the three levels of the AP factor showed 

only one significant interaction involving category, which was between category,

HM and site at central electrode locations (F(1.9, 28.8) = 9.26, p<.001). This was 

because the relatively greater positivity for hits over correct rejections was largest at 

C3. For the repeated hits versus correct rejection contrast there was a three-way 

interaction between category, AP and site. Further analysis at each of the three levels 

of the AP factor showed a relatively greater positivity for repeated hits at all three AP 

levels (frontal: F(1,15) = 20.00, p<.001, central: F(1,15) = 34.74, p<.001 and parietal 

F(1,15) = 44.79, p<.001). There was a significant interaction between category and 

site only at parietal electrode locations (F(1.8,26.7) = 5.58, p<.05) which was 

because the relatively greater positivity for repeated hits was largest at P3/P4. For the 

remaining paired contrast between repeated hits and hits, there were no reliable 

effects involving category.
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500-800 ms:

Midline analyses:

The initial analysis revealed a main effect of category (F(1.6, 24.5) = 25.24, p<.001), 

and an interaction between category and site (F(2.7,40.6) = 3.94, p<.05). The 

follow-up analyses again comprised all possible paired contrasts of the three 

categories, and these revealed that the ERPs evoked by hits and repeated hits were 

both reliably more positive-going than those elicited by correct rejections (F(l,15) = 

33.28, p<.001 and F(1,15) = 47.07, p<.001 respectively). The contrast between 

correct rejections and repeated hits was moderated by an interaction between 

category and site (F(1.5,22.1) = 6.07, p<.05) reflecting the fact that the relatively 

greater positivity for repeated hits at Pz was larger than the comparable positivity at 

Fz.

Global analyses:

The second set of analyses for this time window revealed a main effect of category

(F(1.7, 24.8) = 21.06, p<.001), as well as interactions between category and AP

(F(2.4, 35.6) = 6.28, p<.005), category and site (F(2.0, 29.8) = 24.13, p<.001) and a

three way interaction between category, AP and site (F(4.4, 65.9) = 3.92, p<.005).
»

The follow-up analyses (see Table 5.3) show that, for the contrast between hits and 

correct rejections, there was a three-way interaction between category, AP and site.
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Table 5.3. The outcomes of the paired contrasts between the mean amplitudes 

associated with hits, correct rejections and repeated hits for the global analyses over 

the 300-500, 500-800 and 800-100 ms time windows in Experiment 2. Nomenclature 

as for Table 5.2 (page 137).

df Hit vs CR CR vs RHit Hit vs RHit

300-500 ms

CC 1,15 20.87*** 41 94*** ns

CCx SI 2,30 19.75(.56)*** 35.94(61)*** ns

CC X  AP X  SI 2,30 ns 3.65(.5g)* ns

CC x AP x SI x HM 3,40 3.24(.62)* ns ns

500-800 ms

CC 1,15 2 7  ] \ *** 43.65*** ns

CCx SI 1,15 35.26(.58)* 19.25(64)*** 12.31

CCx AP 1,20 7.55(.63) ** 13.5(.67) *** ns

CC x AP x SI 3,40 6.60( 73) * * * 4.80(,58) * ns

(•63)

800-1100 ms

CC

CC x SI 

CCx AP 

CC x AP x SI

1.15 6.46*

1.15 ns 

1,20 ns 

3,40 ns

ns

ns

5.4

ns
(-62)

ns

4 .68( 61)̂

5 .34(,67)̂

ns
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Further analysis at each of the three levels of the AP factor showed significant 

interactions between category and site at midline (F(2.0, 30.1) = 6.14, p<.01) and 

parietal (F(1.6, 24.5) = 6.36, p<.01) electrode sites only, these reflected the relatively 

greater positivity for hits being largest at inferior sites.

The contrast between repeated hits and correct rejections also revealed a three-way 

interaction between category, AP and site. Further analysis at each of the three levels 

of the AP factor showed significant interactions between category and site at midline 

(F(2.5, 38.2) = 3.22, p<.05) and parietal (F(2.1, 30.8) = 6.97, p<.005) electrode sites, 

and these arose because the relatively greater positivity for repeated test items was 

largest at central and parietal midline sites. The final contrast between hits and 

repeated hits revealed a significant interaction between category and site which came 

about because the greater positivity for hits is largest at sites closest to the midline.

800-1100 ms: 

Midline analyses:

The initial analysis revealed an interaction between category and site (F(3.1, 47.1) = 

3.63, p<.05). The follow-up analyses comprised all possible paired contrasts of the 

three categories, and these revealed only a category by site interaction for the 

contrast between hits and correct rejections (F(1.3, 19.3) =8.12, p<0.01), reflecting 

the fact that the relatively greater positivity for hits than for correct rejections was 

smallest at Pz.
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Global analyses:

The second set of analyses for this time window revealed a main effect of category 

(F(1.4, 21.5) = 4.12, p<.05) as well as interactions between category and AP (F(2.2, 

32.5) = 4.12, p<.05) and category and site (F(2.2, 32.4) = 3.64, p<.05). The follow- 

up contrasts (lower portion of Table 5.3) revealed that between hits and correct 

rejections there was only a main effect of category which was due to the greater 

positivity for hits. There were category by AP and category by site interactions for 

the contrast between hits and repeated hits. Further analyses at each of the AP factor 

levels showed a significant effect of category at frontal electrode sites only (F(l ,15)

= 4.99, p<.05), reflecting the greater relative positivity for hits at anterior sites. The 

final contrast between correct rejections and repeated hits revealed only an 

interaction between category and AP. Further analysis at each of the three levels of 

the AP factor showed a main effect of category at parietal sites only (F(l ,15) =

11.75, p<.005), which was due to the relative greater positivity for repeated hits.

Mid-frontal ERP old/new effects:

Figure 5.6 is relevant to the following statistical analyses and shows the ERPs 

elicited by all four classes of item at electrode sites F3, Fz, F4. The figure shows that, 

in the critical 300-500 ms time window, the ERPs elicited by hits, repeated hits and 

misses are all more positive-going than those elicited by correct rejections. Later in 

the epoch the differences between misses and correct rejections become far less 

prominent.
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The initial analysis revealed a main effect of category only (F(1.9, 29.2) = 18.56, p < 

.001). Paired contrasts within the experiment demonstrated that hits and misses 

(F(l,15) = 28.24, p<.001 and F(l,15) = 10.50, p<.01) as well as repeated hits 

(F(l,15) = 23.07, p<.001) are all more positive-going than correct rejections at these 

mid-frontal electrode sites. The contrast between hits and correct rejections also 

revealed an interaction with site (F(2,30) = 5.95, p<.01) which reflects the fact that 

the mid-frontal ERP old/new effect for studied words is largest at Fz. This can 

clearly be seen in Figure 5.4, which shows a topographic map illustrating the scalp 

distribution of the difference between activity evoked by hits and that evoked by 

correct rejections over the 300-500 ms time window. There were no reliable 

differences between the ERPs elicited by hits, repeated hits and misses.

Left-parietal ERP old/new effects:

Figure 5.7 is relevant to the following statistical analyses and shows the ERPs 

elicited by the four classes of items at electrode sites P3/4 and P5/6. The figure 

shows that from approximately 300 ms to 950 ms post-stimulus, hits and repeated 

hits are equally more positive-going than misses and correct rejections, with minimal 

differences between misses and correct rejections.

The initial analysis revealed a main effect of category (F(1.4, 21.2) = 25.40, p<.001) 

and an interaction between category and site (F(l .7, 25.3) = 6.04, p<.01). The 

outcomes of the paired follow-ups showed that ERPs evoked by both classes of old 

words were reliably more positive-going than those evoked by new words (hit:

F(1,15) = 31.07, p<.001 and repeated hit: F(l,15) = 86.10, p<.001). There was also 

an interaction between category and site for the contrast between hits and correct
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rejections (F(l,15) = 20.20, p<.001), which reflected the fact that the relatively 

greater positivity for old words is largest at sites bordering the midline (P3/P4). The 

greater positivity for old words relative to new is further illustrated in Figure 5.4, 

which shows a topographic map of the differences in neural activity recorded at the 

scalp between hits and correct rejections, and demonstrates a degree of left 

hemisphere lateralisation that was not liable in the statistical analyses. For the 

repeated test words the differences in neural activity compared to that associated 

with new items shows a classic P3 distribution (see Figure 5.4). Both classes of old 

word were also reliably more positive-going than misses (hit: F(1,15) = 52.31, 

p<.001 and repeated hit: F(1,15) = 71.65, p<.001). The contrasts between the ERPs 

evoked by misses and by correct rejections over this time window at these posterior 

electrode locations revealed no reliable effects involving category.

Discussion

Previous ERP findings (see chapter Introduction) are consistent with the view that it 

is possible under some circumstances for people to exert considerable control over 

the recollection of information. This suggests that, within episodic retrieval tasks, 

the use of ERPs may be an effective functional tool for establishing the conditions 

under which such regulation can be attained, as well as, ultimately, the mechanisms 

that are responsible for the strategic control of recollection (for discussion, see 

Dzulkifli & Wilding, 2005; Herron & Rugg, 2003b; Homberger et al., 2004). The 

benefits of using ERPs in this manner depend somewhat, however, upon the degree 

to which equivalent patterns of selective attenuation of left-parietal ERP old/new 

effects can be obtained across tasks other than standard exclusion tasks, and in 

particular, those which have different retrieval demands.
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The motivation for the two studies described in this chapter was to; (i) assess the 

extent to which previous findings of left-parietal ERP old/new effects for targets and 

non-targets in exclusion tasks could be generalised to a variant of the exclusion task, 

(ii) assess the impact of changing encoding task on the patterns of left-parietal ERP 

old/new effects observed, and (iii) provide a starting point for investigating the 

apparent inconsistencies between the findings of these studies and those of Dywan et 

al. (1998, 2001, 2002). The critical behavioural and ERP findings relevant to these 

issues will be discussed in the following sections. This will be followed by a brief 

discussion of further ERP findings relevant to the functional interpretation of the 

mid-frontal ERP old/new effect.

Left-parietal ERP old/new effects

The directed analyses of the left-parietal ERP old/new effects showed reliable 

old/new effects for studied as well as repeated test items in both experiments. There 

were no reliable differences between misses and correct rejections at posterior sites 

in the 500-800 ms epoch in either experiment. If the magnitude of left-parietal ERP 

old/new effects is an index of the extent to which recollection was engaged, then the 

pattern of effects is consistent with the view that participants did not prioritise 

recollection of studied words over repeated test words in either experiment.

In both experiments, participants were able to discriminate between the three critical 

classes of test word. Mean levels of accuracy for targets were 0.67 in Experiment 1 

and 0.69 in Experiment 2. In previous exclusion task studies where new items were 

not repeated, some degree of attenuation of non-target old/new effects has been
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reported with levels of target accuracy comparable to those reported here (cf.

Dzulkifli et al., 2006; Dzulkifli & Wilding, 2005; Herron & Rugg, 2003a; Herron & 

Rugg, 2003b; Wilding et al., 2005). It may be the case that the reason for the findings 

here is due to the difficulty in controlling recollection of the repeated test items, with 

the findings in earlier studies reflecting relatively lower degrees of difficulty for the 

non-target categories employed in those experiments. This issue is returned to in 

Chapter 7. The previous findings, however, that are of greatest relevance here are 

those reported by Dywan and colleagues who employed the paradigm used in 

experiments 1 and 2 (Dywan et al., 2002; Dywan et al., 1998; Dywan et al., 2001).

In each of these three publications, at least one group of participants was given the 

same task instructions as those provided to participants in Experiment 2 described 

earlier. In contrast to the findings in experiments 1 and 2, however, parietally 

distributed ERP old/new effects were markedly and reliably larger for correct 

responses to studied words than for correct responses to repeated test words (referred 

to as Tag’ words by Dywan et al.). In fact, in all three publications, there is little 

evidence for a relatively greater positivity for correct responses to repeated test 

words in comparison to correct rejections at parietal locations in the 500-800 ms time 

window.
»

Previous findings have shown that higher levels of target accuracy are more likely to 

result in an attenuation of the non-target left-parietal ERP old/new effect (Dzulkifli et 

al., 2006; Dzulkifli & Wilding, 2005; Herron & Rugg, 2003a, 2003b; Wilding et al.,

2005). It is therefore very surprising that with a higher level of target accuracy than
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that in the Dywan et al studies there is no observable attenuation of the left-parietal 

ERP old/new effect for repeated test items in either experiment.

It is also unlikely that the disparity in findings is due to the encoding task, as Dywan 

et al. required participants simply to read words aloud, the same encoding task that 

was employed in Experiment 2. In the studies due to Dywan et al., the lag between 

first and second presentations of repeated test words was fixed at 6 items, whereas in 

experiments 1 and 2 the lag varied between 7 and 9 items. One possibility, therefore, 

is that the greater predictability of the occurrence of repeated test words contributed 

to the disparate findings. While this possibility cannot be ruled out entirely, it seems 

somewhat unlikely when considering the relatively complex demands of the retrieval 

task, and the fact that in none of the studies were participants informed of the 

repetition lag.

A possible account of the disparities across studies stems from the fact that, in both 

experiments described here, the ratio of studied words to repeated test words was 2:1, 

contrasting with the 1:1 ratio in the studies of Dywan et al. The P300 (P3b) potential 

is sensitive to the relative probabilities of classes of stimuli, as well as their task- 

relevance (Donchin & Coles, 1988). The P300 is typically larger for task-relevant as 

well as for lower probability classes of stimuli, and this component is commonly 

largest at centro-parietal scalp sites, with little if any hemisphere lateralisation 

(Horst, Johnson, & Donchin, 1980; Squires, Squires, & Hillyard, 1975). In light of 

these observations, the probability disparity across studies offers to explain the 

differences between the ERP findings. By this account, the greater relative positivity 

for repeated test words relative to new words in experiments 1 and 2 but not in the
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work of Dywan et al. is simply a consequence of a larger P300 elicited by this class 

of stimuli in Experiments 1 and 2 (see data for Pz shown in Figures 5.1 and 5.7).

The probability disparity will be addressed in Experiment 3. Prior to this, however, 

one further aspect of the parietal ERP data warrants comment, as do other aspects of 

the findings in these experiments. For the parietal effect, there was no statistical 

evidence for lefl-lateralisation for the parietal ERP old/new effects in either 

experiment. Inspection of Figure 5.4 suggests that there is a degree of lateralisation 

of the ERP old/new effect for studied items in Experiment 2, but the relevant 

statistical analyses did not reveal interactions involving condition and hemisphere 

(see Table 5.3). The absence of an asymmetry in the differences between the ERPs 

evoked by old and new words is arguably more surprising for studied words than for 

repeated test words. This is because in continuous recognition memory tasks, where 

participants encounter a single list of items and some repeat after a variable number 

of intervening items, parietally distributed ERP old/new effects tend to show little if 

any hemisphere asymmetry (e.g. Rugg, Mark, Gilchrist, & Roberts, 1997; Rugg & 

Nagy, 1989; Swick & Knight, 1997). To the extent that the repeated test words in 

this task are comparable to repeated words in a standard continuous recognition 

memory task, the absence of asymmetric effects in these experiments is consistent 

with the prior literature, even if it does not help with an explanation as to why the 

degree of lateralisation of parietal ERP old/new effects varies across continuous and 

study-test recognition memory tasks.

From this perspective, the surprising aspects of the data in these experiments are the 

parietal ERP old/new effects for studied words. There is no immediate explanation
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for this null finding in the current data, although the absence of strongly lateralised 

parietally distributed old/new effects has been reported in other studies (see, for 

example Senkfor & Van Petten, 1998; Van Petten, Senkfor, & Newberg, 2000; 

Wilding et al., 2005; Yovel & Paller, 2004).

Mid-frontal ERP old/new effect

Previous research has suggested that frontally distributed ERP old/new differences 

(appearing between 300 and 500 ms) index familiarity (Curran, 1999, 2000; Curran 

& Cleary, 2003; Curran, Tanaka, & Weiskopf, 2002; Guillem, Bicu, & Debruille, 

2001; Mecklinger, 2000; Nessler, Mecklinger, & Penney, 2001; Rugg et al., 1998).

How do the findings in Experiments 1 and 2 contribute to this issue? One important

observation is that, within both experiments, moderate to high levels of familiarity

for studied words may not be a good basis for task judgments. The reason for this

claim is the assumption that repeated test words will be highly familiar because of

the short lag between first and second presentation. As a result, familiar but not

recollected studied words might attract incorrect responses despite relatively high

levels of familiarity as they might be misclassified as repeated test items. It follows

from this argument that if the mid-frontal ERP old/new effect indexes familiarity 
»

then the effect should be evident for misses in both of these experiments.

The directed analysis of the mid-frontal ERP old/new effect confirmed that within 

both experiments there were reliable old/new effects for both classes of old items. 

Furthermore, in Experiment 1, hits and repeated hits were reliably more positive- 

going than misses, which in turn showed a greater relative positivity in comparison 

to correct rejections. In Experiment 2, there were no differences between the two
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classes of old item and misses, all of which were again reliably more positive-going 

than correct rejections. In both experiments there were no reliable differences 

between hits and repeated hits at mid-frontal electrode locations.

Since reliable mid-frontal ERP old/new effects were obtained for misses in both 

experiments, as Figures 5.2 and 5.6 show, the data are consistent with the account 

that the mid-frontal ERP old/new effect indexes familiarity. These findings converge 

with previous studies in establishing a link between the mid-frontal ERP old/new 

effect and familiarity, and they do so in tasks where for the first time there is no 

response confound: correct responses to new words and incorrect responses to 

studied words were made on the same key (Bridson, Fraser, Herron & Wilding,

2006).

Concluding remarks

Reliable mid-frontal ERP old/new effects were obtained for misses and all classes of 

old item in both experiments, consistent with the account that the mid-frontal ERP 

old/new effect indexes familiarity. There were reliable parietal ERP old/new effects 

for both studied and repeated test items in both experiments. This is surprising, given 

previous findings (Dywan et al., 1998; Dywan et al., 2001; Dywan et al., 2002), and 

is the starting point for further investigations into the boundary conditions under 

which differential attenuation of the parietal ERP old/new effect for the repeated test 

items occurs within this variant of the exclusion task.
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The probability disparity across studies offers one explanation of the differences 

between the parietal ERP findings of these experiments and those of Dywan et al. 

(1998, 2001, 2001). By this account, the greater relative positivity for repeated test 

words relative to new words in experiments 1 and 2 but not in the work of Dywan et 

al. is simply a consequence of a larger P300 elicited by this class of stimuli in 

experiments 1 and 2 (see data for Pz shown in Figures 5.1 and 5.7). The lower 

probability of occurrence in these experiments, moreover, might also have 

encouraged participants to adopt a different strategy for completing the task, 

focusing to a greater extent on the repeated test words in both experiments than in the 

studies of Dywan et al. To the extent that this strategy resulted in an increase in the 

task-relevance of the repeated test words, again the prediction would be that this 

class of stimuli should elicit a sizable P300. This leads to considerations as to 

whether the disparities between studied and repeated test word ERP old/new effects 

can be explained by the occurrence of P300 modulations. Experiment 3 was designed 

in order to address this issue by manipulating the probability of occurrence of studied 

and repeated test words to replicate the 1:1 ratio employed in the Dywan et al. 

studies.

The following chapter also contains a report of a second experiment, which replicates 

Experiment 3 except for the fact that target/non-target designation was reversed at 

test, such that repeated test items were designated as targets. The reason for this 

manipulation was the fact that no direct indicator of the memorability of repeated 

test items can be obtained when they are designated as non-targets, since correct 

responses to new items and non-targets are made on the same key in the exclusion 

task, as outlined in the Introduction (see page 46). The absence of such information
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makes it difficult to interpret unequivocally any changes in the non-target ERP 

old/new effects as being due to the strategic control of recollection, since participants 

may have correctly classified a proportion of non-targets because these items were 

simply forgotten and misclassified as new words. Consequently, for the 

interpretation of findings in terms of the control of recollective processes it is 

important that memory for non-targets is assessed directly.
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Figure 5.1. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites F3/F4, C3/C4, P3/P4, Fz, Cz and Pz in Experiment

1.

50Q xb 50Q xb

F4

0 50Qns

lOfN

C3

0 50Qxb 50Qns0

04

50Qns0

P3 Pz P4

50Gns 50Qns 50Qns

______ Hit Repeated Hit Org-rect  Bejectdcn.

157



Figure 5.2. Grand averaged ERPs elicited by hits, misses, correct rejections and repeated hits at sites F3, Fz, F4, in Experiment 1.
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Figure 5.3. Grand averaged ERPs elicited by hits, misses, correct rejections and repeated hits at sites P3/4, P5/6, in Experiment 1.
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Figure 5.4. Scalp distributions of the ERP old/new effects for hits, misses and repeated hits in experiments 1 and 2. The data are shown for three post
stimulus epochs: 300-500, 500-800 and 800-1100 ms. The maps were computed from scores obtained by subtracting mean amplitudes from the ERPs 
evoked by correct rejections from hits, repeated hits and misses. The paired values below each map denote the maxima and minima of the amplitude 
differences between response categories, which can be interpreted relative to the colour bar at the foot of the figure.
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Figure 5.5. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites F3/F4, C3/C4, P3/P4, Fz, Cz and Pz in Experiment 2
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Figure 5.6. Grand averaged ERPs elicited by hits, misses, correct rejections and repeated hits at sites F3, Fz, F4, in Experiment 2.
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Figure 5.7. Grand averaged ERPs elicited by hits, misses, correct rejections and repeated hits at sites P3/4, P5/6, in Experiment 2.
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Figure 5.8. A bar graph of the mean amplitudes of the old/new effects for hits, misses and repeated hits across sites F3, Fz and F4 in the 300- 

500 ms time window in Experiments 1 and 2.
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Chapter Six

Experiments 3 and 4 

Introduction

In experiments 1 and 2 there were reliable parietal ERP old/new effects for both 

studied and repeated test items. Data inconsistent with these findings, however, 

comes from a series of experiments by Dywan and colleagues (Dywan, Segalowitz & 

Webster, 1998; Dywan, Segalowitz et al, 2001 and Dywan, Segalowitz & Arsenault 

2002) in which they utilised the same variant of the exclusion task. Across all of the 

studies in which the participants were young adults, a left-parietal ERP old/new 

effect was observed for studied words (targets), whereas no reliable effect was 

detected for excluded repeated test items (non-targets). What is surprising about 

these data is that the extensive attenuation of the non-target left-parietal ERP old/new 

effect occurred even though mean accuracy for targets across studies (.58) was 

markedly lower than the level required in other studies in order to demonstrate a 

similar pattern of attenuation of non-target left-parietal effects (Herron & Rugg,

2003, Dzulkifli et al., 2005,2006). These data suggest that target accuracy might not 

be the only factor influencing the strategy adopted by participants in this variant of 

the exclusion task, but as described below, there is also a more mundane explanation.

As outlined previously, the probability disparity across studies is one explanation for 

the differences between the parietal ERP findings in experiments 1 and 2 and those 

of Dywan et al. (1998,2001,2001). By this account, the greater relative positivity for 

repeated test words relative to new words in experiments 1 and 2, but not in the work
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of Dywan et al., is simply a consequence of a larger P300 elicited by this class of 

stimuli in experiments 1 and 2. The ratio of occurrence of studied and repeated test 

words is 2:1 in Experiments 1 and 2, and 1:1 in all of the Dywan et al. studies.

Experiment 3 was designed in order to assess whether the disparities between studied 

and repeated test word ERP old/new effects can be explained by P300 modulations. 

This was investigated by manipulating the probabilities of occurrence of studied and 

repeated test words to replicate the 1:1 ratio employed in the Dywan et al. studies, 

while maintaining all other aspects of the design of Experiment 2.

Experiment 4 was motivated by a need to formally assess the memorability of the 

repeated test items, as this is not possible from the data gained previously with the 

binary responses utilised in the paradigm when studied words are targets. Therefore, 

in Experiment 4 the target/non-target designation was reversed, with repeated test 

items designated as the targets. This evaluation is critical to the interpretations of the 

findings in this thesis as a key assumption is that the degree of attenuation of the 

parietal ERP old/new effects reflects the degree to which recollection of item 

information is controlled strategically. However, recollection of repeated test items 

might not always be necessary for successful task performance. In principle 

participants could mistakenly endorse a repeated test item as a new item and would 

make the same response as they would if they recollected information relating to the 

repeated test items. Under these circumstances, it is impossible to interpret 

unequivocally the ERP old/new effects obtained for the repeated test items in 

experiments 1 and 2 in terms of recollective processes. By gaining a formal 

assessment of the memorability of the repeated test items, reasonable inferences can
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be made about the levels of recollection obtained for these items across the 

remaining studies presented in this thesis.

Method

Due to the similarities between the designs of the two experiments, they are 

described jointly, with differences between the two noted where appropriate.

Participants

19 participants completed Experiment 3; the average age was 21 years (range 18 to 

30). The data from 3 participants were discarded due to excessive EOG artefact (see 

General Methods for criteria). Of the remaining 16 participants, 14 were female. 18 

participants completed Experiment 4; the average age was 20 years (range 18 to 23) 

and 13 participants were female. All were right-handed native English speakers. No 

participants were taking neuroleptic medication at the time of testing or reported a 

history of mental illness. All were paid at a rate of £7.50/hour and gave informed 

consent prior to commencing the experiments. No participant completed both 

experiments.

Stimuli and design

Stimuli were as for experiments 1 and 2 and were presented in the same manner. In 

Experiment 3,400 critical words were split initially into eight equal groups of 50 

words. One complete task list comprised two study-test cycles. There were 70 words 

in each study cycle; one complete study list and 20 fillers selected at random from a 

second list. The fillers were presented only at study. There were 150 words in each 

test cycle; 50 words presented at study, 50 unstudied (new) words and a further 50
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new words which were repeated once after 7-9 intervening words. The numbers of 

words re-presented after lags 7, 8 and 9 were approximately equal within blocks and 

equated across blocks. In addition, 5 fillers were placed towards the end of each test 

list in each cycle in order to ensure that the final repeating words fell within the 7-9 

word repeat interval. No words appeared in both study-test cycles. The groups of 

words were rotated across study and test lists so that, across complete task lists, all 

words were presented at study as well as at test, at test only, at test only and repeated 

during test, and also served as fillers at study only. This procedure resulted in the 

preparation of eight complete task lists. In total, participants saw 70 stimuli in each 

study phase and 205 stimuli in each test phase.

In Experiment 4, each task list contained the same number of stimuli as in 

Experiment 3. There were, however, only 320 critical words. These were split 

randomly into six groups of 50 words and one group of 20 filler words. These fillers 

were the 20 words that appeared in each of the two study lists and which were not 

repeated at test. Three lists were assigned randomly to the first study-test cycle, and 

the remainder to the second cycle. This was the only design difference across the two 

experiments. Rotating words across study and test lists so that all words appeared at 

study as well as at test, at test once only, and at test twice, across the two study-test 

cycles resulted in the creation of six complete task lists. The total number of stimuli 

seen by participants was the same as in Experiment 3. To reiterate: the difference 

across experiments was restricted to the numbers of fillers employed.
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Procedure

In each study phase, participants completed one encoding task for all words. For both 

experiments they were asked to read each word aloud. For all participants an asterisk 

before study words initiated each study trial and remained on the screen for 1000 ms. 

The screen was then blanked (100 ms) before the study word was presented for 300 

ms. Participants were asked to give their response after the study word appeared. The 

next trial started 2500 ms after the study word was presented.

In both experiments each test trial started with a fixation asterisk (500 ms duration), 

which was removed from the screen 100 ms prior to presentation of a test word (300 

ms duration). The screen was then blanked until the participant responded, and the 

next trial started 1000 ms after the response. For each test phase in Experiment 3, 

participants responded with one hand to words that were seen at study (‘old words’), 

and with the other to unstudied test words (‘new words’) or unstudied test words 

which repeated during the test phase (‘repeated test words’). In Experiment 4 

participants responded with one hand to words that were seen at study (‘old words’) 

and unstudied test words (‘new words’) and with the other to unstudied test words 

which repeated during the test phase (‘repeated test words’). Responses were made 

on a key-pad with the left and right thumbs. The hands required for the binary test 

judgment were also balanced across participants and all participants were encouraged 

to respond quickly and accurately. Responses slower than 4000 ms and faster than 

300 ms were regarded as errors and were discarded from behavioural and ERP 

analyses. An average of < 2% of trials per participant were excluded due to this 

criterion.
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ERP acquisition

EEG was recorded as per Experiment 2, with the same acquisition rate, electrode 

montage, off-line processing stages and exclusion/inclusion criteria.

Results

Behavioural data

Table 6.1 displays the probabilities of correct and incorrect responses to each class 

of test word. As per the first two experiments, two measures of discrimination (Pr: 

Snodgrass & Corwin, 1988) were calculated. The first was computed to determine 

whether participants were able to distinguish between old and new words (p(hit)- 

p(FA)). The second was computed to determine whether participants were able to 

distinguish between old words and repeated test words (p(hit) - p(rFA)).

For experiment 3, both Pr values were reliably greater than 0 (Pr values = 0.53 and 

0.52: t(15) = 11.63 , p<.001 and t(15) = 11.90, p<.001), and these two Pr scores did 

not differ reliably from each other (p>.05). For the discrimination involving new 

words, the mean value of Br (Br = p(FA)/(l-Pr)) was 0.18, while Br for the 

discrimination involving repeated test words was 0.21. Br scores did not differ 

reliably from each other, with the values in each case indicating a conservative bias, 

with participants more likely to make a new than an old response when uncertain 

(Snodgrass & Corwin, 1988). A one-way ANOVA on the RTs for correct responses 

(see Table 6.1) revealed no significant differences between response categories.

170



Table 6.1. Probabilities of correct (p(correct)) and incorrect (p(incorrect)) responses 

and reaction times in milliseconds (RT) to old, new and repeated test words in 

experiments 3 and 4.

Exp. 3

Exp. 4

Word class

Old_________New________Repeated Test

p(correct)

RT

p(incorrect)

RT

p(correct)

RT

p(incorrect)

RT

0.62 (0.16) 

948 (414)

0.38(0.16) 

980 (368)

0.84 (0.08) 

899 (300)

0.16(0.08) 

1078 (206)

0.91 (0.12) 

914(403)

0.09 (0.12) 

1283 (599)

0.97 (0.02) 

775 (225)

0.03 (0.02) 

982 (321)

0.90 (0.08) 

853 (366)

0.10(0.08) 

950 (392)

0.82 (0.08) 

874 (217)

0.18(0.08)

874(193)
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In Experiment 4, both Pr values were also reliably greater than 0 (Pr values = 0.81 

and 0.66: t(17) = 38.70 , p<.001 and t(17) = 33.46, p<.001) and these two Pr scores 

differed reliably from each other (p>.05). The differences in Pr scores occurred 

because of superior discrimination between old and repeated test words. Br for the 

discrimination involving new words was 0.15, whilst Br for the discrimination 

involving repeated test words was 0.51. Br scores differed reliably from each other 

(t( 17) = 9.45, p<.001), with the values in each case indicating a greater likelihood of 

participants making a new than an old response when uncertain.

A one-way ANOVA on the RTs for correct responses in Experiment 4 revealed a 

significant difference between word class (F(1.7,29.6) = 28.48, p<.001). This was 

because the responses to correctly identified new words were quicker than those for 

correctly identified old and repeated test words (t( 17) = 65.47, p<.001 and t(17) = 

38.59, p<.001 respectively). There were no differences in response times for 

correctly identified old and repeated test words.

ERP data

As for experiments 1 and 2, baseline corrected averaged ERPs (100 ms pre-stimulus 

baseline) were formed for correctly identified old words (hits), incorrectly identified 

old words (misses), new words (correct rejections) and new repeated words 

(repeated hits) in Experiment 3 and were analysed for the 16 participants who 

contributed sufficient artefact-free trials to these critical response categories. Mean 

trial numbers for these response categories were 50 (range 22-84), 34 (range 16-53), 

158 (range 87-204) and 74 (range 31-94), respectively. For Experiment 4, too few 

participants made sufficient (16 or more) incorrect judgments to old words (4
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participants only) to permit analysis of the ERP data for this response category. 

Therefore baseline corrected averaged ERPs (100 ms pre-stimulus baseline) were 

formed for correctly identified old words (hits), new words (correct rejections) and 

repeated test words (repeated hits) and were analysed for the 18 participants who 

contributed sufficient artefact-free trials to these critical response categories. Mean 

trial numbers for these response categories were 47 (range 20-66), 116 (range 47- 

145) and 57 (range 23-69).

The ERP data were analysed over the same three time windows as for experiments 1 

and 2, and two sets of analyses were completed using the same parameters as for the 

earlier experiments (see details of Midline and Global analyses in Chapter 5). The 

initial set of analyses was conducted involving the ERP data for correct responses to 

old, new and repeated test words. Significant effects involving category were again 

followed up by all possible paired contrasts between the three response categories. 

For the analyses of data including lateral scalp locations, interactions with the AP 

and/or HM dimension were followed up by analyses at each level of the relevant 

factor.

As for the initial experiments, two additional directed analyses were conducted; the 

first was carried out to consider changes in the mid-frontal ERP old/new effect across 

the experimental conditions and how these might relate to the hypothesis that at 

anterior sites near the midline in the 300-500 ms post-stimulus epoch, ERPs are 

sensitive to item familiarity (Curran, Tepe, & Piatt, 2006; Rugg et al., 1998). The 

analysis was carried out in the 300-500 ms time window, utilising data from F3, Fz, 

and F4 only, and included the factors of category and site. The second directed
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analysis addressed directly any possible changes in the magnitude of the left-parietal 

ERP old/new effects due to the experimental manipulation, included factors of 

category, hemisphere, and site (four levels: P3, P4, P5, P6), and was completed over 

the 500-800 ms time window. For Experiment 3 these analyses were conducted on 

data for incorrect responses to old words and correct responses to all three word 

classes, whereas for Experiment 4 they were conducted only on data for correct 

responses to each word class.

Experiment 3 

Hits, correct rejections and repeated hits

Figure 6.1 is relevant to the following statistical analysis and shows the ERPs elicited 

by hits, correct rejections and repeated hits at electrode sites F3/F4, C3/C4, P3/P4,

Fz, Cz and Pz. The figure shows that, from approximately 300 ms onwards, the ERPs 

elicited by hits and repeated hits are more positive-going than those elicited by 

correct rejections. There is a greater positivity for repeated hits than for hits which 

onsets early in the epoch at posterior and central sites and is maximal over posterior 

parietal sites. This difference attenuates at posterior sites from approximately 500- 

700 ms, after which hits become more positive-going. At anterior sites from 

approximately 400 ms to the end of the recording epoch, repeated hits and hits also 

differentiate, with hits being more positive-going than repeated hits, and this pattern 

of data becomes evident approximately 100 ms later at central electrode sites.

174



300-500 ms:

Midline analyses:

The initial midline analysis revealed a main effect of category (F(1.8, 27.2) = 7.25, 

p<.001). The follow-up analyses comprised all possible paired contrasts of the three 

categories, and these revealed a significant old/new effect for hits (F( 1,15) = 12.39, 

p<.01). There were no significant effects for the contrast between hits and repeated 

hits. The final contrast revealed that the ERPs evoked by repeated hits were reliably 

more positively going than those elicited by correct rejections (F(l,15) = 7.46, 

p<.05), with an interaction between condition and site (F(1.3,18.8) = 5.51, p<.05) 

which reflected the fact that the greater relative positivity for repeated hits was 

maximal at Pz.

\

Global analyses:

The second set of analyses for this time window including the data from lateral scalp 

locations revealed a main effect of category (F(1.6, 24.7) = 12.57, p<.001), as well as 

an interaction between category and site (F(1.9, 28.7) = 14.76, p<0.001). The follow 

up analyses comprised all possible paired contrasts of the three categories and are 

shown in Table 6.2.

The contrast between hits and correct rejections revealed an interaction between 

category and site, which came about because the greater relative positivity for hits is 

smallest at inferior sites. For the contrast between repeated hits and correct 

rejections, there was also a significant interaction between category and site, which 

reflected the fact that the greater relative positivity for repeated hits was largest at 

midline sites.
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Table 6.2. The outcomes of the paired contrasts between the mean amplitudes 

associated with hits, correct rejections and repeated hits for the global analyses over 

the 300-500, 500-800 and 800-1100 ms time windows. CR = correct rejection, RHit 

= repeated hit, CC = condition, HM = hemisphere, AP = anterior/posterior plane, SI 

= site, df = degrees of freedom. *** = p <.001, ** = p <.01, * = p <.05, • = p <.1, ns 

= non-significant. Epsilon values are shown in brackets and in lower case.

300-500 ms

df Hit vs CR CR vs RHit Hit vs RHit

CC

CC x SI 

CC x HM x SI

1,15 15.03*** 33.09*** ns

2,30 16.11(,57)*** 34.21(,64)*** ns
4,60 ns ns *(•60)

500-800 ms

CC

CC x SI 

CCx AP

1,15

2.30

2.30 ns

33.57*** 19.40*** 4.69*

39.89(63)*** 10.86(59)*** 8.35(.54)**
9.22( .58)

* * ns

800-1100 ms

CC

CCx SI 

CC X  AP x SI

1,15

2,30

32.03***

23.27(.57)**
4,60 5 .5 5 ( .70) * *

22.73***

13.11

ns
( .60)

ns

ns

ns
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For the hits versus repeated hits contrast there was a three-way interaction between 

category, AP and HM. Further analysis at each of the two levels of the HM factor 

revealed a significant interaction between category and AP over the left hemisphere 

only (F(1.2, 17.6) = 2.97, p<.05). This is because the greater relative positivity for 

hits is more pronounced at anterior than at posterior locations.

500-800 ms: 

Midline analyses:

The initial midline analysis revealed a main effect of category (F(1.6, 24.6) = 11.75, 

p<.001). The follow-up analyses revealed that the ERPs evoked by hits were reliably 

more positive-going than those elicited by correct rejections (F( 1,15) = 43.00, 

p<.001) and repeated hits (F(l,15) = 6.06, p<.05). The final contrast between 

repeated hits and correct rejections revealed a significant interaction between 

category and site, which came about because the greater positivity for hits is largest 

at Pz.

Global analyses:

The second set of analyses for this time window revealed a main effect of category 

(F(1.7, 25.4) = 17.78, p<.001), as well as an interaction between category and site 

(F(2.1, 31.8) = 18.85, p<.001). The follow-up contrasts (shown in the middle portion 

of Table 6.2) revealed that for hits and correct rejections there was an interaction 

between category and site (F(1.2,18.0) = 39.89, p<.001), indicating that the greater 

relative positivity for hits is most pronounced at midline sites.
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For the contrast between correct rejections and repeated hits, there were interactions 

between category and AP, and category and site, because the relatively greater 

positivity for repeated hits was largest at parietal and midline sites. The final contrast 

revealed that hits were more positive-going than repeated hits (F(l,15) = 4.69, 

p<.05), and an interaction between category and site reflected the fact that the 

greatest relative positivity for hits was at midline sites.

800-1100 ms: 

Midline analyses:

The initial analysis revealed a main effect of category (F(1.8, 27.3) = 9.03, p <.001). 

The follow-up analyses revealed that the ERPs evoked by hits were reliably more 

positive-going than those elicited by correct rejections (F(l,15) = 15.60, p <.001) and 

repeated hits (F(l,15) = 9.91, p<.01).

Global analyses:

The second set of analyses for this time window revealed a main effect of category 

(F(2.0, 29.7) = 18.56, p<.001), as well as an interaction between category and site 

(F(2.4, 35.4) = 12.60, p<.001). For the follow-up contrasts (shown in the lower 

portion of Table 6.2), there was a three-way interaction between category, AP and 

site in the contrast between hits and correct rejections. Further analysis at each of the 

three levels of the AP factor showed a relatively greater positivity for hits at all three 

levels (frontal: F(1,15) = 19.78, p<.001, central: F(1,15) = 28.20, p<.001 and parietal 

F(1,15) = 21.24, p<.001). There was a condition by site interaction for central sites 

only (F(2.0, 29.6) = 5.09, p<.001) which reflects the fact that the greater relative 

positivity for hits is largest at sites closest to the midline. The contrast between hits
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and repeated hits revealed an interaction between category and site, because the 

greater relative positivity for hits is smallest at inferior sites. There were no 

significant effects revealed in the contrast between repeated hits and correct 

rejections.

Mid-frontal ERP old/new effects:

As for experiments 1 and 2, in order to further investigate the mid-frontal old/new 

effect, an additional directed analysis was conducted. Figure 6.2 is relevant to the 

following statistical analyses and shows the ERPs elicited by the four critical classes 

of items at electrode sites F3, Fz and F4. The figure shows that from approximately 

300 ms hits are more positive-going than all other classes of item. Repeated hits are 

also more positive-going than misses and correct rejections, with misses being more 

positive-going than correct rejections. This pattern of differences continues until 

approximately 500 ms when the differences between misses and correct rejections 

become minimal.

The analyses revealed a main effect of category only (F(2.2, 33.0) = 5.39, p<.01). 

Paired contrasts within the experiment demonstrated old/new effects for hits (F(l,15) 

= 6.46, p<.05) as well as repeated hits (F(l,15) = 9.94, p<.01). An interaction 

between category and site (F(1.9, 29.1) = 3.86, p<.05) reflected the fact that the 

old/new effect for hits was maximal at Fz. The distributions of these two ERP 

old/new effects are shown in Figure 6.3, which shows topographic maps illustrating 

the scalp distributions of the differences between activity evoked by hits and 

repeated hits and that evoked by correct rejections over the 300-500 ms time 

window. It is worth noting that the old/new effects for repeated test items and misses
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both show more centro-parietal maxima than that exhibited by the studied items. One 

possible reason for this broad distribution is that fact that two distinct processes (with 

fronto-central and parietal maxima respectively) may be indexed in these contrasts 

(Rugg et al, 1998). This issue will be returned to in the mid-frontal ERP old/new 

effect section of the Discussion.

There were no significant effects for the contrasts between both classes of hits and 

misses, and between hits and repeated hits. There was an interaction between 

category and site for the contrast between misses and correct rejections (F(1.8, 26.5)

= 4.42, p<.05), which came about because of the greater relative positivity for misses 

than for correct rejections at Fz but not at F3 and F4. The pattern of differences 

between the old/new effects for the three classes of items at these mid-frontal 

electrodes is similar to that in experiments 1 and 2 (see Figure 6.5 for a bar graph 

showing old/new effects for hits, repeated hits and misses at mid-frontal electrodes, 

and compare to Figure 5.8 in Chapter 5) See also Figure 10.1 in the General 

Discussion.

Left-parietal ERP old/new effects:

To further investigate the parietal old/new effects, an additional directed analysis was 

conducted. This involved the mean amplitudes for hits, misses, repeated hits and 

correct rejections at P3, P5, P4 and P6 in the 500-800 ms time window. Figure 6.4 is 

relevant to the following statistical analyses and shows the ERPs elicited by the four 

classes of items at electrode sites P3/4 and P5/6. The figure shows that in the critical 

500-800 ms time window hits and repeated hits are equally more positive-going than
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misses and correct rejections, with minimal differences between these latter 

categories.

The initital analyses revealed a main effect of category (F(2.0, 30.7) = 17.68, 

p<.001). This was followed up by all possible paired contrasts, and the outcomes of 

these show that the ERPs evoked by hits and repeated hits were reliably more 

positive-going than those evoked by correct rejections (hits: F(l,15) = 59.85, p<.001 

and repeated hits: F(1,15) = 22.67, p<.001) and by misses (hits: F(l,15) = 23.43, 

p<.001 and repeated hits: F(1,15) = 9.34, p<.01). The greater positivity for both 

classes of old words relative to new is further illustrated in Figure 6.3, which shows 

topographic maps of the differences in scalp activity between hits and repeated hits 

respectively against correct rejections, and demonstrate clearly some degree of left 

hemisphere lateralisation for both old/new effects, although this was not borne out by 

the statistical analyses. The contrasts between the ERPs evoked by misses and by 

correct rejections, and by hits and repeated hits revealed no reliable effects over this 

time window at these posterior locations.

Experiment 4: The statistical outcomes for this experiment are described before the 

outcomes in Experiment 3 are discussed. In Experiment 4, repeated hits are targets, 

and studied words are non-targets; the reverse from the target/non-target designation 

in previous experiments, (as well as subsequent) in this thesis.

Hits, correct rejections and repeated hits

Figure 6.6 is relevant to the following statistical analysis and shows the ERPs elicited 

by hits, correct rejections and repeated hits at electrode sites F3/F4, C3/C4, P3/P4,

Fz, Cz and Pz. The figure shows that from approximately 300 ms onwards the ERPs
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elicited by targets are more positive-going than those elicited by non-targets and new 

items. This relatively greater positivity peaks at 600 ms and by the end of the 

recording epoch has attenuated with non-targets becoming marginally more positive- 

going, particularly at central and posterior midline sites. The old/new effect for non

targets is relatively small in magnitude from 300 ms until 600 ms where non-targets 

become more positive-going, particularly at central and right frontal sites.

300-500 ms: 

Midline analyses:

The initial midline analysis revealed a main effect of category (F(1.4, 24.5) = 10.76, 

p<.001). The follow-up analyses revealed that the ERPs evoked by hits and repeated 

hits were reliably more positive-going than those elicited by correct rejections 

(F(l,17) = 7.15, p<.05 and F(1,17) = 15.16, p<.001, respectively). ERPs evoked by 

repeated hits were also more positive-going than those elicited by hits (F(l ,17) = 

6.95, p<.05).

Global analyses:

The second set of analyses for this time window including the data from lateral scalp 

locations revealed a main effect of category (F(1.6, 27.2) = 14.28, p<.001), as well as 

an interaction between category and site (F(1.5, 26.1) = 6.66, p<0.01). The follow-up 

analyses comprised all possible paired contrasts of the three categories and the 

results are shown in Table 6.3. As for previous comparable tables, only those terms 

for which outcomes were reliable in at least one paired contrast are shown.
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Table 6.3. The outcomes of the paired contrasts between the mean amplitudes 

associated with hits, correct rejections and repeated hits for the global analyses over 

the 300-500, 500-800 and 800-1100 ms time windows. Nomenclature as for Table 

5.2, page 137.

300-500 ms

df RHit vs CR RHit vs Hit CR vs Hit

CC 1,17 24.73*** 6.92* 10.15**

CCx SI 2,34 9.73(53)*** ns 7.18(67)*

CC x AP 2,34 6.52(.79)** ns ns

500-800 ms

CC 1,17 39.01*** 32.26*** ns

CCx SI 2,34 39.83(54)*** 31.16(.56)*** 5.67(.65)*

800-1100 ms

CC 1,17 10.10** ns 11.53**
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The contrast between repeated hits and correct rejections revealed an interaction 

between category and site, which was due to the relatively greater positivity for 

repeated hits being largest at sites closest to the midline. There was also an 

interaction between category and AP, which reflected the fact that the old/new 

effects were largest at central sites. Repeated hits were also more positive-going than 

hits in this time window. For the contrast between hits and correct rejections there 

was a significant interaction between category and site which reflected the fact that 

the relatively greater positivity for hits was largest at midline sites.

500-800 ms: 

Midline analyses:

The initial midline analysis revealed a main effect of category (F(1.3, 22.5) = 35.78, 

p<.001). The follow-up analyses revealed ERP old/new effects for hits and repeated 

hits (F(l,17) = 8.42, p<.01 and F(l,17) = 43.58, p<.001, respectively). Repeated hits 

were also reliably more positive-going than hits (F( 1,17) = 33.18, p<.001).

Global analyses:

The second set of analyses for this time window revealed a main effect of category 

(F(1.5, 25.0) = 31.19, p<.001), as well as an interaction between category and site 

(F(1.6, 27.0) = 31.65, p<.001). The follow up paired contrast results are shown in 

Table 6.3.

The contrast between repeated hits and correct rejections revealed an interaction 

between category and site which was due to the relative greater positivity for
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repeated hits being largest at midline sites. For the contrast between correct 

rejections and hits there was an interaction between category and site because of the 

relative greater positivity for hits at midline sites. The final contrast between hits and 

repeated hits revealed an interaction between category and site that came about 

because the relatively greater positivity for repeated hits was maximal at midline 

sites.

800-1100 ms: 

Midline analyses:

The initial analysis revealed no significant effects; no follow-up analyses were 

conducted.

Global analyses:

The second set of analyses for this time window revealed a main effect of category 

(F(1.4, 23.4) = 7.34, p<.01). The follow-up contrast results are shown in Table 6.3. 

These revealed reliable positive-going old/new effects for hits and repeated hits. 

There were no significant effects in the contrast between hits and repeated hits.

Mid-frontal ERP old/new effects:

The directed analysis of the mid-frontal ERP old/new effects involved the mean 

amplitudes for hits, repeated hits and correct rejections at F3, Fz and F4 in the 300- 

500 ms time window. Figure 6.7 is relevant to the following statistical analyses and 

shows the ERPs elicited by the three classes of items at these electrode sites. The 

figure shows that from approximately 300 ms repeated hits are more positive-going 

than hits and correct rejections, with minimal differences between hits and correct
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rejections. This differentiation at frontal sites continues throughout the recording 

epoch.

The analyses revealed a main effect of category only (F(1.7, 28.3) = 14.25, p<.001). 

Paired contrasts within the experiment demonstrated that hits (F(l,17) = 5.80, p<.05) 

as well as repeated hits (F(l,17) = 20.03, p<.001) were both more positive-going 

than correct rejections at these mid-frontal electrode sites. Repeated hits were also 

more positive-going than hits (F(l,17) = 11.42, p<.005) with this relative greater 

positivity maximal at Fz (F(2.0, 33.4) = 3.70, p<.05). This can clearly be seen in 

Figure 6.3, which shows a topographic map illustrating the scalp distribution of the 

differences between activity evoked by repeated hits and that evoked by hits over the 

300-500 ms time window.

Left-parietal ERP old/new effects:

The parietal old/new effects directed analysis involved the mean amplitudes for hits, 

repeated hits and correct rejections at P3, P5, P4 and P6 in the 500-800 ms time 

window. Figure 6.8 is relevant to the following statistical analyses and shows the 

ERPs elicited by the three classes of items at electrode sites P3/4 and P5/6. The 

figure shows that in the critical 500-800 ms time window repeated hits are more 

positive-going than hits and correct rejections, with minimal differences between hits 

and correct rejections. This greater relative positivity for repeated hits is maximal at 

P3/4.

The further analysis revealed a main effect of category (F(1.4, 24.0) = 31.69, p 

<.001). This was followed up by all possible paired contrasts, and the outcomes of
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these showed that ERPs evoked by repeated hits were reliably more positive-going 

than those evoked by correct rejections (F(l,17) = 39.76, p<.001) and this relative 

greater positivity was maximal at midline sites (F(2.1, 35.7) = 5.04, p<.05). The 

greater positivity for repeated hits relative to correct rejections is illustrated in Figure 

6.3 (right-hand lower panel) which shows a topographic map of the differences in 

Scalp activity between repeated hits and correct rejections, and demonstrates clearly 

that the difference between the two conditions is maximal over central scalp regions. 

Repeated hits were also reliably more positive-going than hits (F(l,17) = 31.38, 

p<.001). The contrast between the ERPs evoked by hits and by correct rejections 

revealed no reliable effects over this time window.

Discussion

For experiments 1 and 2 parietally distributed ERP old/new effects were observed for 

correct responses to both studied and repeated test words. This is in stark contrast to 

the findings of Dywan et al. (1998, 2001, 2002) who utilised the same paradigm. 

Within the three publications of Dywan and colleagues there is little evidence for a 

relatively greater positivity for correct responses to repeated test words in 

comparison to correct rejections at parietal locations in the 500-800 ms time window.

One account for the disparities across studies arises from the fact that, in experiments 

1 and 2, the ratio of studied words to repeated test words was 2:1, in comparison to 

the 1:1 ratio in the studies of Dywan et al. This item imbalance is relevant because of 

the P300 ERP component. The P300 (P3b) potential is particularly sensitive to the 

relative probabilities of classes of stimuli, as well as their task-relevance (Donchin & 

Coles, 1988; Polich, 2007). By this account, the greater relative positivity for
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repeated test words relative to new words in experiments 1 and 2 but not in the work 

of Dywan et al. is simply a consequence of a larger P300 being elicited by the 

repeated test words in experiments 1 and 2 (see data for Pz shown in Figures 5.1 and 

5.7 in Chapter 5).

The motivation for Experiment 3 was to assess the impact on the left-parietal ERP 

old/new effects for hits and repeated hits of changing the probabilities of occurrence 

of these items to match the 1:1 ratio in the Dywan et al. studies. In the following 

sections there will be a discussion of the ERP findings of differences according to 

condition in the 300-500 ms time window and how these are relevant to the 

functional interpretation of the mid-frontal ERP old/new effect. This will be 

preceded by a discussion of the critical behavioural and ERP experimental findings 

relevant to the principal focus in these two experiments: the left-parietal ERP 

old/new effects that were obtained

Left-parietal ERP old/new effects

The 500-800 ms epoch is one in which left-parietal ERP old/new effects are typically 

assessed (Friedman & Johnson, 2000; Mecklinger, 2000; Wilding & Sharpe, 2003), 

and in this time wndow the directed analyses showed reliable ERP old/new effects 

for targets in both experiments, and for non-targets in Experiment 3 only (cf.

Bridson, Fraser, Herron, & Wilding, 2006). Targets were denoted as studied words in 

Experiment 3, and as repeated test words in Experiment 4. There was a trend for the 

left-parietal ERP old/new effect for targets in Experiment 3 to be larger than the 

effect for non-targets.
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The pattern of data obtained in Experiment 3 is the same as that obtained in 

experiments 1 and 2, and if the magnitude of left-parietal ERP old/new effects is an 

index of the extent to which recollection was engaged, then the findings are 

consistent with the view that participants did not prioritise recollection of studied 

words over repeated test words any more so in Experiment 3 than they did in 

experiments 1 and 2.

The change in the probability of occurrence of the repeated test words relative to 

studied words to match that used in the Dywan et al. studies did not, therefore, 

attenuate the parietal ERP old/new effect for the repeated test items. These findings 

lead to the conclusion that the disparity in findings across studies is most likely not 

due to a probability imbalance, which might have led to a relatively greater 

contribution of the P300 to parietal old/new effects for repeated test items in 

experiments 1 and 2 than in the studies reported by Dywan et al. (1998, 2001, 2002).

This conclusion draws added support from the fact that, at posterior scalp locations 

in Experiment 3 there was some degree of left hemisphere lateralisation for both 

old/new effects, (illustrated in Figure 6.3) although this was statistically reliable. In 

so far as the left-parietal ERP old/new effect has a left hemisphere bias that is not 

characteristic of the P300 (Azimian-Faridani & Wilding, 2006: Rugg & Allan, 2000), 

then the data are inconsistent with a P300 probability imbalance account.

There are two additional and compelling reasons, moreover, for rejecting the 

response probability account of the data. First, ERP old/new effects for words 

encoded in the same task employed here (read aloud) have been reported in exclusion
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tasks where the words encoded under these conditions were designated as targets, but 

the proportions of targets, non-targets and new test words were equal (Herron & 

Rugg, 2003b).

Second, Herron et al. (2003) conducted an ERP study in which old/new recognition 

memory judgments were required, and where, across blocks, the ratios of new to old 

test items were 3:1,1:1, and 1:3. Over the 500-800 ms period at left-parietal scalp 

sites, the positive-going ERP old/new effects that were obtained were of equal 

magnitude across these different ratios of old and new words. The 1:3 old/new ratio 

is directly comparable to the ratio of targets to the other (combined) classes of test 

stimuli in experiments 1 and 2 (for prior work relevant to the invariance of parietal 

old/new effects across other rations of old and new test items, see Friedman, 1990; 

Rugg & Nagy, 1989; Smith & Guster, 1993). These observations argue against a 

response probability account of the data in these experiments, and further support for 

this view stems from the fact that qualitatively similar findings to those in 

Experiment 3 were found in experiments 1 and 2 where studied words designated as 

targets comprised 40% of the test stimuli (see Chapter 5). The remaining possible 

reasons behind the disparities between the findings in experiments 1, 2 and 3 and 

those of Dywan et al. (1998, 2001, 2002) will be returned to later.

Target accuracy

By virtue of having the repeated test items as targets the mean level of target 

accuracy for Experiment 4 (0.82) was higher than in any case when studied words 

were targets (see the previous three experiments). This is most likely due to the 

shorter lag between first and second presentations of the repeated test items
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compared to the studied items. This experiment is also unlike the previous three in 

that, at parietal locations in the 500-800 ms time window, there was a complete 

absence of a left-parietal ERP old/new effect for the non-targets (studied items). 

When taken together with the previously presented experiments, the differential 

attenuation of non-target parietal old/new effects replicates findings in four other 

cases (Dzulkifli et al., 2006; Dzulkifli & Wilding, 2005; Herron & Rugg, 2003a; 

Herron & Rugg, 2003b; Wilding et al., 2005). In keeping with the findings in each of 

these pairs of experiments, the attenuation of the ERP old/new effects for non-targets 

that is reported in Experiment 4 occurred in an experiment in which the likelihood of 

a correct target judgment was much higher than in previous studies where there had 

been no observed attenuation (see experiments 1, 2 and 3). The findings of 

Experiment 4 therefore support the view that participants adopt strategies in 

exclusion tasks, whereby the extent to which recollection of information of targets is 

likely determines the extent to which recollection of information about non-targets 

will be prioritised (Herron & Rugg, 2003b).

The levels of target accuracy across experiments 1, 2 and 3 are comparable to those 

reported in previous exclusion studies (cf. Dzulkifli et al., 2006; Dzulkifli &

Wilding, 2005; Herron & Rugg, 2003a, 2003b; Wilding et al., 2005) where some 

degree of attenuation of non-target old/new effects has been reported. Why, 

therefore, is there no comparable degree of attenuation in experiments 1-3? As 

described previously, it may be the case that, in comparison to the tasks demands in 

standard study-test exclusion tasks, and the version of the paradigm used in 

Experiment 4, in experiments 1-3 participants experience a greater degree of 

difficulty in controlling recollection of the repeated test items because of the short
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lag between their first and second presentation. Therefore, the previous findings may 

be due to relatively lower degrees of difficulty in controlling the recollection of the 

non-target categories employed in those experiments. In order to assess this, one way 

is to provide a greater incentive to process selectively information about targets, by 

increasing the likelihood of recollecting information about targets. The issue of 

target/non-target accuracy levels in this paradigm will be addressed in Experiment 5.

Mid-frontal ERP old/new effect

Focusing now on the data acquired from 300-500 ms post-stimulus at anterior scalp 

locations; does the data contribute to one interpretation offered for findings in 

previous research (Curran, 2000), which is that frontally distributed ERP old/new 

differences in this time window are related to familiarity?

The directed analysis of the mid-frontal ERP old/new effect confirmed that there 

were reliable ERP old/new effects for both studied and repeated test items in both 

experiments. Whilst there were no differences between the two classes of old item 

and misses in Experiment 3, misses were more positive-going than correct rejections, 

as indicated by an interaction between category and site, which reflected a greater 

relative positivity for misses at Fz only. This pattern of differences between 

conditions is similar to that in experiments 1 and 2 (see Figure 6.5 for a bar graph of 

the mean amplitudes of the old/new effects for hits, misses and repeated hits across 

frontal sites in the 300-500 ms time window, which is directly comparable to the data 

shown in Figure 5.8 in Chapter 5). The data is in line with the proposal that an 

anteriorly distributed modulation occurring in this time window is an index of 

familiarity (for a comprehensive review, see Curran et al., 2006), although, because
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of the absence of reliable differences between the ERPs elicited by misses and by the 

two classes of hit, it is not as statistically compelling as in the earlier experiments.

Furthermore, the distributions of the old/new effects for repeated hits and misses 

within this time window (see Figure 6.3) show maxima with a somewhat more 

posterior loci than would be anticipated if they were solely reflecting mid-frontal 

ERP old/new effects. This may be due to the coexistence of two distinct processes in 

this time period. It has been proposed that two functionally distinct ERP old/new 

effects, with fronto-central and parietal scalp distributions respectively, are evident in 

the 300-500 ms post-stimulus time-window (Azimian-Faridani & Wilding, 2006; 

Rugg et al., 1998). Rugg et al. (1998) linked the posterior effect with implicit 

memory, since in their study the effect differentiated only the old/new status of test 

items and not the accuracy of memory judgments. The data shown in Figure 4 are 

consistent with this account, as at posterior sites correct responses to studied words 

and repeated test words, as well as incorrect responses to studied words, are more 

positive-going than correct rejections. The ERPs at the posterior locations thus index 

the old/new status of the test items but do not predict the accuracy of memory 

judgments. This pattern of data fulfils one criterion for being an index of implicit 

memory, but in this study, as in all prior studies to date where this has been 

demonstrated, the effect has not been accompanied by a behavioural index of implicit 

memory such as priming (Azimian-Faridani & Wilding, 2006).

Concluding remarks

The directed analysis of the mid-frontal ERP old/new effects confirmed that within 

both experiments there were reliable old/new effects for both classes of old items and
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that misses were also more positive-going than correct rejections at midline anterior 

sites only for Experiment 3. Furthermore, in Experiment 4, repeated hits were 

reliably more positive-going than hits. The pattern of data obtained here is in line 

with the proposal that an anteriorly distributed modulation occurring in the 300-500 

ms time window indexes familiarity (Rugg et al, 1998), because at anterior sites 

only, the ERPs elicited by correct responses to targets and non-targets were more 

positive-going than those elicited by correct rejections. This pattern of data is 

consistent with the view that frontally distributed ERP old/new differences 

(appearing between 300 and 500 ms) are related to familiarity (Curran, 2000).

For Experiment 3 there were reliable parietal ERP old/new effects for both studied 

and repeated test items, with the same pattern of differences as for experiments 1 and 

2. For Experiment 4, where the target/non-target designation was reversed, there 

were reliable parietal ERP old/new effects for the repeated test items only. 

Experiment 4 was primarily designed in order to formally assess the memorability of 

the repeated test items, and to this end the high level of target accuracy obtained 

suggests that information relating to the repeated test items could be recollected 

when required. This is an important distinction to make, in light of the fact that, in 

the previous versions of the paradigm where the studied items are targets, new items 

and non-targets share the same response. As a result, there is no way of assessing the 

behavioural data in experiments 1, 2, and 3 to determine whether repeated test items 

have been recollected or not and therefore to interpret confidently the parietal ERP 

findings in terms of the engagement of recollection processes. Consequently it is now 

reasonable to suggest that the repeated test items can be recollected when required 

and that when studied words are classified as targets the high levels of response
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accuracy for repeated test items are not due to the misclassification of these words as 

new items.

The lack of any attenuation of the parietal ERP old/new effect for repeated test words 

in Experiment 3 also continues to place the findings at odds with those reported in 

three previous studies (Dywan et al., 1998; Dywan et al., 2001; Dywan et al., 2002). 

This disparity remains despite the fact that the probability of occurrence of the 

repeated test items relative to the studied items in Experiment 3 was equated to a 1:1 

ratio comparable to that employed in the three Dywan et al. studies. The probability 

disparity across studies does not, therefore, explain the differences between the 

parietal ERP findings of these experiments and those of Dywan et al. (1998, 2001, 

2001). What other aspects of the experimental designs could impact on the electrical 

record in this way?

Dywan et al. employed shorter study and test blocks than those employed in 

experiments 1, 2 and 3, and while the encoding task was the same, Dywan et al. 

employed a 5 second inter-stimulus interval (ISI), while the ISI in experiments 1, 2 

and 3 was 2.4 seconds. The mean frequency of occurrence of the stimuli in 

experiments 1, 2 and 3 was 1-7 occurrences per million, while in the studies due to 

Dywan et al., the means were in excess of 120 occurrences per million (Dywan et al., 

2002; Dywan et al., 1998; Dywan et al., 2001). The procedures on each test trial 

were similar across these sets of experiments, suggesting that the reasons for the 

disparities in the ERP findings are not due to the individual test trial structures.
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The shorter study and test phases in the studies due to Dywan et al., together with the 

longer study time for each item, might have been expected to have led to superior 

accuracy at test in those studies in comparison to experiments 1, 2 and 3 reported 

here. It is likely, however, that the reason for the broadly similar levels of accuracy 

across those studies and the ones presented here arises because any accuracy 

advantages conferred by these factors are offset by the disparities in word frequency 

across studies. Low frequency words give rise to superior recognition memory 

accuracy relative to high frequency words (Mandler, Goodman, & Wilkes-Gibbs, 

1982), and this advantage is conferred by an increased likelihood of recollection and 

an increased likelihood of items being judged old on the basis of familiarity 

(Gardiner & Java, 1990, 1993). It seems reasonable to assume, therefore, that the use 

of lower frequency words in experiments 1, 2 and 3 than in the experiments due to 

Dywan et al., in combination with the differences in study time and study list length, 

explains the similar levels of accuracy that were obtained in these experiments.

The most pertinent issue here, however, is why, despite the similar levels of memory 

accuracy, and qualitatively similar patterns of reaction times at test, the left-parietal 

ERP old/new effects for non-targets were markedly more attenuated in the Dywan et 

al. studies. While it is not possible to rule out the prospect that these differences are 

only due to the different study-test intervals across studies, the ways in which this 

factor could be responsible are not clear-cut.

The most likely candidate for the disparities is the differences in word frequencies 

across experiments. In the studies due to Dywan et al., the moderate to high 

frequency repeated test items, when re-presented, were possibly less likely to be
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associated with recollection than the low frequency repeated test items in experiment 

1, 2 and 3. As a result of this, the marked attenuation of non-targets in the studies due 

to Dywan et al. is not a consequence of adopting a strategy of prioritising 

recollection of target over non-target information, but a reflection of the limited 

availability of information that would support recollection in these experiments. This 

is supported by the findings that left-parietal ERP old/new effects are typically 

smaller for high than for low frequency words (Rugg & Doyle, 1992), and that this is 

true even when words from the two frequency classes are associated with 

recollection (Rugg, Cox, Doyle, & Wells, 1995). These observations can in principle 

resolve the contrasting findings across studies, and in addition, if correct, mean that 

the findings of Dywan et al. do not challenge the view that the principal determinant 

of the conditions under which non-target left-parietal ERP old/new effects are 

attenuated is the likelihood of recollecting information about targets (Herron &

Rugg, 2003a).

The other noteworthy aspect of the present data is that fact that, in experiments 1, 2 

and 3, where targets were studied items, there has been no reliable attenuation of 

parietally distributed ERP old/new effects for the non-targets. These three 

experiments are consistent, therefore, with the view that, because of their short lag 

between presentation and re-presentation at test, repeated test items are ones over 

which little control of retrieval processes can be exerted. This possibility is broadly 

consistent with the fact that in previous studies, there has been at least some degree 

of attenuation of parietal old/new effects for non-targets where comparable levels of 

target accuracy to those in experiments 1-3 have been reported (Dzulkifli et al., 2006; 

Dzulkifli & Wilding, 2005; Herron & Rugg, 2003a, 2003b; Wilding et al., 2005). An
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alternative account, however, is that, in this incarnation of the exclusion task, the 

levels of target accuracy are not sufficiently high to encourage adoption of a strategy 

of relying on information about targets only. This was tested in Experiment 5.

198



Figure 6.1. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites F3/F4, C3/C4, P3/P4, Fz, Cz and Pz in

Experiment 3.
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Figure 6.2. Grand averaged ERPs elicited by hits, misses, correct rejections and repeated hits at sites F3, Fz, F4 in Experiment 3.
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Figure 6.3. Scalp distributions of the ERP old/new effects for hits and repeated Hits in experiments 3 and 4 and for misses in Experiment 3. The 

data are shown for three post-stimulus epochs: 300-500, 500-800 and 800-1100 ms. The maps were computed from scores obtained by 

subtracting mean amplitudes from the ERPs evoked by correct rejections from hits, repeated hits and misses. The paired values below each map 

denote the maxima and minima of the amplitude differences between response categories, which can be interpreted relative to the colour bar at 

the foot of the figure.
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Figure 6. 4. Grand averaged ERPs elicited by hits, misses, correct rejections and repeated hits at sites P3/4, P5/6 in Experiment 3.
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Figure 6.5. A bar chart of the mean amplitudes of the old/new effects for hits, repeated hits and misses averaged across sites F3, FZ and F4 in 

Experiment 3.
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Figure 6.6. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites F3/F4, C3/C4, P3/P4, Fz, Cz and Pz in Experiment

4.
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Figure 6.7. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites F3, Fz, F4 in Experiment 4.
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Figure 6.8. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites P3/4 and P5/6 in Experiment 4.
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Chapter Seven

Experiment 5 

Introduction

In experiments 1, 2 and 3 there were reliable parietal ERP old/new effects for both 

studied items (targets) and repeated test items (non-targets). This pattern of 

differences remained when the ratios of studied to repeated test items were either 2:1 

or 1:1 (compare in particular experiments 2 and 3). The levels of target accuracy in 

these experiments have been comparable to the levels shown in experiments where 

there has been some degree of attenuation of the non-target old/new effects in 

comparison to the target effects (Dzulkifli, Herron, & Wilding, 2006; Dzulkifli & 

Wilding, 2005; Herron & Rugg, 2003a, 2003b). One possibility, therefore, is that, 

irrespective of the level of target accuracy, restricting recollection to information 

about targets only cannot be accomplished when the non-targets are items that are 

repeated at short lags, and as a result presumably have strong memory 

representations. If this account were correct, then the findings in experiments 1-3 

would be important in so far as they identify one of the boundary conditions under 

which recollection can be restricted to task-relevant information.

An important caveat, however, is that the designs of the previous studies in which 

degrees of attenuation of the non-target left-parietal ERP old/new effect have been 

reported involved presentation of items in two different contexts at study. For 

example, Wilding & Rugg (1997) utilised auditorily presented words delivered by
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either a male or female speaker. Dzulkifli & Wilding (2005) reported old/new effects 

in a study where participants studied words initially, all of which were concrete 

nouns. For half of the words, the task was to decide how difficult the object denoted 

by each word would be to draw. For the remainder, the task was to generate uses for 

the object denoted by each word. Also in the two exclusion task experiments 

reported by Herron & Rugg (2003a), participants completed one identical and one 

different encoding task. The common task that was required for half of the study 

words in each experiment was to incorporate each word into a sentence and to say it 

aloud. For the second task in Experiment 1, participants were asked to rate words for 

pleasantness, while in Experiment 2 the second task was simply to read aloud each 

word that was presented.

In experiments 1-3, by contrast, all studied items were subjected to the same 

encoding operations, and the target/non-target distinction is between studied words 

and repeated test words. It may be the case that, under these circumstances, the levels 

of target accuracy necessary to observe attenuation of parietal old/new effects -  and 

therefore to license claims about selective recollection of task relevant information -  

need to be higher in this incarnation of the exclusion procedure. Experiment 5 was 

designed in order to assess this possibility.

This possibility can be tested by increasing the level of target accuracy. Two ways to 

accomplish this are to (i) shorten study and test list lengths, as it has been shown that 

increasing list length impairs recognition (Mumane & Shiffrin, 1991), and therefore, 

reducing list length should facilitate recognition and provide greater levels of target 

accuracy, and/or (ii) change the encoding task that is required for the study items; as
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information processing moves from shallow perceptual processing to more 

elaborative semantic-associative encoding, the strength of memory traces increases 

(Craik & Lockhart, 1972). The option of reducing study and test list lengths was 

chosen as this preserves the same encoding task across studies, preventing any 

possible encoding task confound in across study comparisons.

Method

Participants

19 participants completed Experiment 5; the data from three participants was 

discarded prior to analysis due to poor performance on the task (target accuracy 

below 50%). Of the remaining 16 participants, 11 were female, and the average age 

was 20 years (range 19 to 27). No participants were taking neuroleptic medication at 

the time of testing or reported a history of mental illness. All were paid at a rate of 

£7.50/hour and gave informed consent prior to commencing the experiments.

Stimuli and design

Stimulus and presentation parameters were as for Experiment 3. For the study and 

test list structures 400 critical words were split into sixteen equal groups of 25 words. 

One complete word task list comprised four study lists and four test lists. There were 

25 words (one whole group) on each study list. There were 125 words on each test 

list. These comprised the 25 words presented at study (one complete 25-word group) 

along with 50 unstudied words, and a further 25 unstudied words which then 

repeated once after 7-9 intervening words. The numbers of words re-presented after 

lags of 7, 8, and 9 words were approximately equal. No words appeared in both test 

lists. Rotating the groups of words across study and test lists, so that all words were
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presented at study and test as well as at test only, either as new words or as repeats, 

resulted in the creation of 16 complete task lists. The order of presentation of words . 

in the study lists was determined randomly for each participant. In total, each 

participant saw 600 presentations of words (100 study words, 500 test words).

Procedure

Prior to commencing either experiment, participants were informed that they would 

be presented with a series of words on the computer screen. In each study phase, 

participants completed one encoding task for all words: they were asked to read each 

word aloud. For all participants an asterisk before study words initiated each study 

trial and remained on the screen for 1000 ms. The screen was then blanked (100 ms) 

before the study word was presented for 300 ms. Participants were asked to give their 

response after the study word appeared. The next trial started 2500 ms after the study 

word was presented.

Each test trial started with a fixation asterisk (500 ms duration), which was removed 

from the screen 100 ms prior to presentation of a test word (300 ms duration). The 

screen was then blanked until the participant responded, and the next trial started 

1000 ms after the response. Response requirements were as for experiments 1,2 and 

3. The hands required for the binary test judgment were also balanced across 

participants and all participants were encouraged to respond quickly and accurately. 

Responses slower than 4000 ms and faster than 300 ms were regarded as errors and 

were discarded from behavioural and ERP analyses. An average of < 2% of trials per 

participant were excluded due to this criterion.
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EEG acquisition

These procedures were the same as for Experiment 3 (for specific details see 

Chapter 6).

Results

Behavioural Data

Table 7.1 shows response accuracies and reaction times (RTs) for correct and 

incorrect responses to targets, non-targets and correct rejections. As for experiments 

1-4 two measures of discrimination (Pr: Snodgrass & Corwin, 1988) were calculated. 

Pr was reliably greater than 0 for both studied and repeated test words (Pr values = 

0.75 and 0.66: t(15) = 33.57, p<.001 and t(15) = 17.35, p<.001), and these two Pr 

scores differed reliably from each other (t(15) = 4.23, p<.001).

Measures of response bias (Br = p(FA)/(l -  Pr) were also calculated. For the 

discrimination involving new words the mean value across participants of Br was 

0.13, while Br for the discrimination involving repeated test words was 0.32. Br 

scores differed reliably from each other (t(15) = 7.25, p<.001), with the values in 

each case indicating a more conservative bias for the discrimination involving new 

words (Snodgrass & Corwin, 1988).
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Table 7.1. Probabilities of correct (p(correct)) and incorrect (p(incorrect)) responses 

and reaction times in milliseconds (RT) to old, new and repeated test words in 

Experiment 5.

p(correct)

RT

p(incorrect)

RT

Old

0.79 (0.07) 

883 (442)

0.21 (0.07) 

1026 (584)

Word class

New_____

0.96 (0.05) 

788 (356)

0.04 (0.05) 

1454 (537)

Repeated Test

0.88 (0.13) 

815 (364)

0.12(0.13) 

1227 (462)
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A one-way ANOVA on the RTs for correct responses revealed significant 

differences between word class (F(1.7, 25.4) = 8.46, p<.005). Follow up paired 

comparisons showed that this was because the RTs for correct responses to new and 

repeated test words were quicker than those for correct responses to old words 

(F(l,15) = 12.76, p<.005 and F(l,15) = 6.99, p<.05 respectively). There was no 

significant difference between the RTs for correct responses to new and repeated test 

words.

ERP data

There are 6 possible response categories that ERPs could in principle be acquired for: 

correctly and incorrectly identified old, new and repeated test words. As for 

Experiment 4 too few participants made sufficient (16 or more) incorrect judgments 

to old, new and repeated test words (6, 2 and 2 participants respectively) to permit 

analysis of the ERP data for these response categories. Therefore baseline corrected 

averaged ERPs (100 ms pre-stimulus baseline) were formed for correctly identified 

old words (hits), new words (correct rejections) and repeated test words (repeated 

hits) and were analysed for the 16 participants in each experiment who contributed 

sufficient artefact-free trials to these critical response categories. Mean trial numbers 

for these response categories were 59 (range 28-76), 219 (range 93-295) and 64 

(range 28-95). As for experiments 1, 2, 3 and 4, the ERP data were analysed over 

three time windows: 300-500, 500-800 and 800-1100 ms. The analysis strategy 

matched that employed in the previous experiments (see Chapter 5 page 133).
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Hits, correct rejections and repeated hits

Figure 7.1 is relevant to the following statistical analysis and shows the ERPs elicited 

by hits, correct rejections and repeated hits at electrode sites F3/F4, C3/C4, P3/P4,

Fz, Cz and Pz. The figure shows that from approximately 300 ms onwards the 

waveforms differentiate between the three conditions in a graded manner. Hits are 

most positive-going, followed by repeated hits then correct rejections. The old/new 

effect for hits is larger in magnitude and sustained until the end of the epoch at 

posterior sites. At anterior sites the greater relative positivity for hits becomes 

attenuated at approximately 700 ms. This earlier attenuation of the old/new effect for 

hits is most evident at right frontal sites. Repeated hits are also more positive-going 

than correct rejections at frontal and central sites from 250 ms until approximately 

the end of the recording epoch, whereas at parietal sites the greater relative positivity 

reverses after 900 ms. It is only at frontal sites from around 650 ms that repeated hits 

become more positive-going than hits.

300-500 ms: 

Midline analyses:

The initial midline analysis revealed a main effect of category (F(1.8, 27.2) = 14.78, 

p<.001). The follow up analyses comprised all possible paired contrasts of the three 

categories, and these revealed positive-going old/new effects for both hits and 

repeated hits (F(l,15) = 22.47, p<.001 and F(1,15) = 9.69, p<.01). The final contrast 

revealed that the ERPs evoked by hits were reliably more positively going than those 

elicited by repeated hits (F(l ,15) = 7.79, p<.05).
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Global analyses:

The second set of analyses for this time window including the data from lateral scalp 

locations revealed a main effect of category (F(1.6, 23.8) = 15.46, p<.001), as well as 

an interaction between category and AP (F(2.6, 38.5) = 3.80, p<0.05). The follow-up 

analyses comprised all possible paired contrasts of the three categories and the 

outcomes are shown in the upper portion of Table 7.2. The contrast between hits and 

correct rejections revealed an interaction between category and site, which came 

about because the relatively greater positivity for hits was smallest at sites furthest 

from the midline. For the contrast between repeated hits and correct rejections there 

was a significant interaction between category and AP, which reflected the fact that 

the relatively greater positivity for repeated hits was largest at anterior sites.

For the hits versus repeated hits contrast there was a three-way interaction between 

category, AP and site. Further analysis at each of the three levels of the AP factor 

showed a relatively greater positivity for hits at central and parietal sites only 

(F(l,15) = 5.11, p<.05 and F(l,15) = 8.67, p<.05 respectively). There was also a 

condition by site interaction at central sites (F(2.8, 41.9) = 4.28, p<.05), which 

reflected the fact that the relatively greater positivity for hits was largest at central 

superior sites.
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Table 7.2. The outcomes of the paired contrasts between the mean amplitudes 

associated with hits, correct rejections and repeated hits for the global analyses over 

the 300-500, 500-800 and 800-1100 ms time windows. Nomenclature as for Table 

5.2, page 137.

df Hit vs CR CR vsRHit Hit vs RHit

300-500 ms

c c 1,15 20.06 *** 15.02*** 4.87*

CCxSI 2,30 16.51(58)*** ns 10.08(58)**

CC x AP 2,30 ns 7.37(.63)*** ns

CC x AP X SI 3,40 ns ns 3.40(.65)*

500-800 ms

CC 1,15 14.45** 13.38*** ns

CC x SI 1,15 13.34(.55)** ns 8.35(.57)**
CC x AP 1,20 7.10(55)* ns 19.66(62)***
CC x AP x SI 3,40 5.08(.70)** ns 5.34(.86)**

800-1100 ms

No significant effects observed
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500-800 ms:

Midline analyses:

The initial midline analysis revealed a main effect of category (F(1.5, 22.3) = 8.58, 

p<.005). The follow-up analyses revealed that the ERPs evoked by hits were reliably 

more positive-going than those elicited by correct rejections (F(l,15)= 13.58, 

p<.001). A significant interaction between category and site (F(1.4, 21.1) = 8.55, 

p<.001) reflected the fact that this relatively greater positivity for hits was largest at 

Pz. Repeated hits were also significantly more positive-going than correct rejections 

(F(l,15) = 9.02, p<.01). The final contrast between repeated hits and repeated hits 

revealed a significant interaction between category and site (F( 1.4, 21.2) = 8.31, 

p<.005) which reflected the greater relative positivity for hits at Pz.

Global analyses:

The second set of analyses for this time window revealed a main effect of category 

(F(1.6, 24.4) = 8.87, p<.01), as well as interactions between category and site (F(l .7, 

25.6) = 10.02, p<.001) and category and AP (F(1.5, 23.2) = 10.74, p<.001). These 

were all moderated by a three-way interaction involving category, AP and site (F(4.4,

66.2) = 4.71, p<.01).

The follow-up contrast (Table 7.2) between hits and correct rejections revealed a 

three-way interaction involving category, AP and site. Further analysis at each of the 

three levels of the AP factor showed a relatively greater positivity for hits at central 

and parietal sites only (central: F(l,15) = 14.25, p<.005 and parietal F(l,15) = 16.32, 

p<.001). There were also significant interactions between category and site at central
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and parietal sites (central: F(1.8, 26.6) = 5.19, p<.05 and parietal: F(2.2, 33.6) = 7.31, 

p<.005). These reflect the fact that the relatively greater positivity for hits was largest 

at central and parietal superior sites. Repeated hits were also reliably more positive- 

going than correct rejections (F(l,15) = 13.38, p<.005).

The final contrast between hits and repeated hits revealed a three-way interaction 

involving category, AP and site. Further analysis at each of the three levels of the AP 

dimension showed a relatively greater positivity for hits at parietal sites only (F(l ,15) 

= 10.01, p<.005). There were also significant interactions between category and site 

at central and parietal sites (central: F(2.1, 31.6) = 5.05, p<.05 and parietal: F(2.5,

38.2) = 3.67, p<.05), reflecting the fact that the relatively greater positivity for hits 

was smallest at inferior sites.

800-1100 ms: 

Midline and Global analyses:

The initial analyses revealed no significant effects, so no further analyses were 

conducted.

Mid-frontal ERP old/new effects:

An additional directed analysis was conducted a per previous experiments. Figure 7.2 

is relevant to the following statistical analyses and shows the ERPs elicited by the 

three classes of items at electrode sites F3, Fz, F4, The figure shows that from 

approximately 300 ms hits and repeated hits are more positive-going than correct 

rejections, with hits being more positive-going than repeated hits. This pattern of
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distribution continues until approximately 700ms where repeated hits become more 

positive-going than hits, particularly at F4.

The direct analyses revealed a main effect of category (F(1.7, 25.9) = 14.56, p<.001) 

and an interaction between category and site (F(3.3,49.2) = 3.51, p<.05). Paired 

contrasts within the experiment demonstrated that hits (F(l ,15) = 20.33, p<.001 ) as 

well as repeated hits (F(l ,15) = 15.59, p<.001) were both more positive-going than 

correct rejections at these mid-frontal electrode sites. There was a condition by site 

interaction for the contrast between the two classes of hits (F(1.9, 28.1) = 6.04, 

p<.01), because the greater relative positivity for hits was largest at Fz.

Left-parietal ERP old/new effects:

The parietal old/new effects directed analysis was conducted as per previous 

experiments. Figure 7.4 is relevant to the following statistical analyses and shows the 

ERPs elicited by the four classes of items at electrode sites P3/4 and P5/6. The figure 

shows that in the critical 500-800 ms time window hits are substantially more 

positive-going than repeated hits and correct rejections, with repeated hits exhibiting 

a slightly greater positivity than correct rejections, particularly at left-hemisphere 

sites P3 and P5.

The further analyses revealed a main effect of category (F(1.3, 20.0) = 13.15, 

p<.001). This was followed up by all possible paired contrasts, and the outcomes of 

these showed a reliable old/new effect for hits (F(l,15) = 17.35, p<.001), moderated 

by an interaction with site (F(1.7, 24.8) = 3.89, p<.05). This reflected the fact that the 

greater relative positivity for hits was largest at P3. This is further illustrated in
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Figure 7.3 which shows a topographic map of the differences in neural activity at the 

scalp between hits and correct rejections in the 500-800 ms time window. A clear 

degree of left lateralisation is observable. The ERPs evoked by repeated hits were 

also reliably more positive-going than correct rejections (F(l, 15) = 6.96, p<.05), as 

shown in Figure 7.3. There was no statistical evidence of left lateralisation for the 

parietal effect within this contrast. The contrast between the ERPs evoked by hits and 

repeated hits revealed a significant effect of category (F(l, 15) = 9.88, p<.01), 

reflecting the relatively greater positivity for hits.

Discussion

The motivation for the study described in this chapter was to assess the possibility 

that in this variant of the exclusion task the levels of target accuracy need to be 

higher than in a standard exclusion task in order to observe attenuation of non-target 

parietal old/new effects. Higher levels of response accuracy were achieved by 

shortening study and test list lengths. The behavioural and parietal ERP findings 

relevant to the main aim of this experiment will be discussed in the following 

section. No comment on the mid-frontal ERP old/new effects is made below, as the 

results in this experiment do not provide new information in comparison to that for 

the earlier experiments in this thesis.

Left-parietal ERP old/new effects

As intended, reducing the study and test list lengths in Experiment 5 increased the 

mean level of target accuracy (0.79) relative to experiments 1, 2 and 3 (mean level of 

target accuracy across experiments = 0.65). The directed analyses of the left-parietal 

ERP old/new effects revealed reliable old/new effects for targets and for non-targets,
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although the latter was significantly attenuated in comparison to the size of the effect 

for the former. The findings are consistent with the hypothesis that high target 

accuracy encourages participants to adopt a target-specific retrieval strategy (Herron 

& Rugg, 2003a).

The attenuation of the non-target left-parietal ERP old/new effects across 

experiments replicate previous findings (Dzulkifli et al., 2006; Dzulkifli & Wilding, 

2005; Herron & Rugg, 2003a, 2003b; Wilding et al., 2005), in that it occurred in an 

experiment in which the likelihood of a correct target judgment was much higher 

than in previous studies where there had been no observed attenuation (see 

experiments 1, 2 and 3). These findings are therefore consistent with the view that 

participants adopt strategies in exclusion tasks whereby the extent to which 

recollection of information about targets is likely determines the extent to which 

recollection of information about non-targets will be prioritised (Herron & Rugg, 

2003b).

Of further relevance here are the characteristics of the paradigm in which these 

findings occurred. In the variant on the exclusion task used here, all study items are 

subjected to the same encoding operations. In the subsequent retrieval task, studied 

words are presented alongside new words, a proportion of which are repeated after 

an intervening lag (repeated test items). The use of the studied items as targets 

Experiment 5 is likely to have led to the non-target (repeated test) items being 

associated with strong memory representations, by virtue of the short lag between 

first and second presentations. One question not addressed by the prior studies that 

have utilised this paradigm is whether, for these repeated test words recollection of
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task-relevant information can be controlled. It is possible that, by virtue of their 

relatively recent occurrence, selective recovery of information about targets might 

not be accomplished when test words repeating after relatively short lags are non

targets. The findings in Experiment 5, however, are consistent with the view that 

participants were able to exert considerable control over the conditions under which 

recollection of task-relevant information occurred. This was possible even when the 

information associated with non-targets is likely to have been accessed readily, as is 

evident from the high levels of response accuracy for non-targets.

Also at issue here were the boundary conditions under which recollection of some 

kinds of information can be prioritised at the expense of others. Experiment 5 

showed that when studied words are targets it is possible for the recollection of 

repeated test item information to be controlled. The attenutation of the parietal ERP 

old/new effect for studied items in Experiment 4 showed that likewise it is possible 

for the recollection of studied word information to be controlled when repeated test 

words are designated as targets. The findings are therefore consistent with the view 

that recollection of target information can be prioritised over non-target information 

whether the target class of item was either the studied words or the repeated test 

words. Overall, the findings converge on the view that the likelihood of recollecting 

information about targets is the principal (if not the only) determinant of conditions 

under which target and non-target old/new effects will either converge or diverge, 

and by extension the principal determinant of the conditions under which selective 

control of recollection is exerted in exclusion tasks.
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One explanation for why participants might adopt a strategy of prioritising targets 

over non-targets is cognitive economy: it is an efficient means of completing the task 

at hand. Relying on target recollection only, however, is never the optimal strategy if 

the aim is to complete the task as accurately as possible but this approach gains 

increasing utility as the likelihood of recollecting information about targets increases.

These considerations concerning cognitive economy also raise the possibility that 

factors other than the likelihood of recollecting information about targets may 

encourage the economical use of resources and a strategy of prioritising some forms 

of task relevant information over others. One of these factors is the time available to 

make a response, and this was investigated in Experiment 6 by limiting the time 

period in which participants had to make memory judgments. The rationale for this 

approach is that, when the time available to make responses is limited, participants 

might default to an approach whereby they rely only on the success or failure to 

recollect information about targets, irrespective of the likelihood of recovering such 

information.

Concluding remarks

There were reliable parietal ERP old/new effects for targets and non-targets. 

However, there was a significant attenuation of the parietal ERP old/new effect for 

non-targets relative to that for the targets. If the left-parietal ERP old/new effect is an 

index of recollection, then the findings within experiment 5 strengthen the view of 

Herron & Rugg (2003b) that it is the degree to which recollection of information of 

targets is likely that determines primarily the extent to which recollection of 

information about non-targets will be prioritised (Herron & Rugg, 2003b). It is of
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interest, however, that the level of accurate responding for targets in this incarnation 

of the exclusion task is markedly higher than in other experiments in which a 

different exclusion design has been employed and in which attenuation of non-target 

ERP old/new effects has been observed. This issue is returned to in the General 

Discussion, in the context of a consideration of how familiarity as well as 

recollection may contribute to judgments in some exclusion tasks.

One way in which it may be useful to consider the findings in the experiments 

described in this thesis to this point is with respect to the concept of cognitive 

economy. Natural intelligences represent the world in ways which filter out 

irrelevant information and allow them to function in a challenging environment. This 

seems to hold for the ways in which participants approach the task used here. When 

there is sufficient target information to complete the task successfully, as in 

Experiment 5, there is no need for the added process of recollecting non-target 

information, and as such, recollection of non-target information is strategically 

controlled. The categorisation of when non-target information is necessary for task 

responses allows for the provision of maximum relevant information with the least 

cognitive effort (Rosch, 1978), a key principle of cognitive economy. Rosch (1999) 

refers to cognitive economy as the means by which an organism acquires a 

substantial amount of information without having to undergo a search of all finite 

resources. In the broadest sense, cognitive economy has to do with avoiding the 

interference of cognitive processes relating to the processing of task irrelevant 

information.
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If cognitive economy is a likely explanation for the adoption of specific retrieval 

strategies, then it might be possible to encourage participants to adopt a target- 

specific recollection strategy by means other than manipulating the levels of target 

accuracy. This was explored in Experiment 6, which is a direct replication of 

Experiment 3 (where the findings suggest that such a strategy was not implemented) 

but with the addition of an enforced limit on the time period in which participants 

were asked to make a test response. The reasoning for this approach is that, when the 

time available to make responses is shortened, participants might be forced into 

relying on recollecting information about targets only, irrespective of the likelihood 

of recovering such information, because this would be the most economical way of 

employing cognitive resources to complete the task as well as it is possible to do so. 

Furthermore, defining the boundary conditions under which cognitive economy is 

potentially implemented, in the completion of this variant of the exclusion task, will 

help delineate a principled set of requirements for when the prioritisation of 

recollection of target information occurs, and the factors that facilitate strategic 

recollection.
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Figure 7.1. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites F3/F4, C3/C4, P3/P4, Fz, Cz and Pz in Experiment

5.
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Figure 7.2. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites F3, Fz, F4, in Experiment 5.
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Figure 7.3. Scalp distributions of the ERP old/new effects for hits and repeated hits 

in Experiment 5. The data are shown for three post-stimulus epochs: 300-500, 500- 

800 and 800-1100 ms. The maps were computed from scores obtained by subtracting 

mean amplitudes from the ERPs evoked by new items from targets and non-targets. 

The paired values below each map denote the maxima and minima of the amplitude 

differences between response categories, which can be interpreted relative to the 

colour bar on the right-hand side of the figure.
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Figure 7.4. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites P3/4 and P5/6 in Experiment 5.
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Chapter Eight

Experiment 6 

Introduction

In experiments 1, 2, 3 and 4 the left-parietal ERP old/new effect was evident for 

targets as well as for non-targets in all test phases, consistent with the view that 

participants recollected information about both of these classes of test word. These 

findings contrast with those of Experiment 5, in which the same task was used, and 

in which a significantly attenuated left-parietal ERP old/new effect was found for 

non-targets. For this study, however, the accuracy of correct target judgments was 

markedly higher. In summary, Experiment 5 showed that, in this particular paradigm, 

when accuracy for targets is sufficiently high, a significantly attenuated left-parietal 

ERP old/new effect can be observed for non-targets. However, when accuracy for 

task judgments is lower (as in experiments 1, 2 and 3), both classes of items elicit 

left-parietal ERP old/new effects. The motivation behind Experiment 6 was to carry 

out a further investigation into the boundary conditions that may influence the 

implementation of strategic control of recollection.

The fact that a selective strategy of prioritising recollection of task related 

information to targets was implemented successfully in Experiment 5 indicates that 

participants were able to exert considerable control over the conditions under which 

recollection of task-irrelevant information occurred within this particular incarnation 

of the exclusion task. The experiments are consistent, therefore, with the view that, 

even when there is only a short lag between presentation and re-presentation at test,
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repeated test items are ones over which some control of retrieval processes can be 

exerted.

Cognitive economy is one possible explanation for why participants might adopt a 

strategy of prioritising target information over non-target information, as commented 

on in the preceding chapter. As discussed at that point, it might be possible to 

encourage participants to adopt this same strategy (relying on recollection of 

information about targets to a greater degree than on recollection of information 

about non-targets) by means other than manipulating the levels of target accuracy, 

such as by restricting the time available for task responses. The rationale for this 

approach is that, when the time available to make responses is limited, an economical 

approach would be to rely upon one source of information rather than two in order to 

complete the task. When time to respond is limited, therefore, participants might 

default to an approach whereby they complete the task by relying only on whether 

they succeeded or failed to recollect information about targets, irrespective of the 

likelihood of recovering information about targets. This hypothesis was tested in 

Experiment 6, which replicates Experiment 3, but with the use of a limited time 

period of 1 second in which participants must make test responses.

Method

Participants

16 right-handed people (12 female) were paid at the rate of £7.50/hour and gave 

informed consent prior to participating in the experiment. The average age of the 

participants was 29 years (range 19 to 30). Participants were all right-handed native 

English speakers. No participants were taking neuroleptic medication at the time of
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testing or reported a history of mental illness. All were paid at a rate of £7.50/hour 

and gave informed consent prior to commencing the experiments.

Stimuli and design

Stimuli and study and test list structures were as for Experiment 3.

Procedure

The study phase and overall experiment testing conditions were as for Experiment 3. 

The only differences between the two experiments are that the test phase structure 

was slightly different in Experiment 6. Each test trial started with a fixation asterisk 

(500 ms duration), which was removed from the screen 100 ms prior to presentation 

of a test word (1000 ms duration). The participant was asked to respond during the 

presentation of the test word, and the next trial started 500 ms after stimulus offset. 

As for experiments 1, 2, and 3, participants responded with one hand to words that 

were seen at study (‘old words’), and with the other to unstudied test words (‘new 

words’) and unstudied test words which repeated during the test phase (‘repeated 

new words’). Responses were made on a key-pad with the left and right thumbs. The 

thumbs used for responses were balanced across participants. Participants were 

instructed that it was important for them to make their responses during the 1 second 

that the test stimulus was on screen. There was a 5 minute practice phase prior to the 

study phase to allow the participants to gain an idea of how much time they would 

have to respond. Items used in the practice phase were not re-presented in the study 

or test phases.
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EEG acquisition

EEG was recorded as for experiments 2-5. All trials on which participants did not 

respond within the 1000 ms presentation of the stimulus were rejected (mean 

proportion of trials not responded to in time <1%).

Results

Behavioural data

Table 8.1 displays the probabilities of correct responses to each class of test word. 

Two measures of discrimination (Pr: Snodgrass & Corwin, 1988) were calculated as 

for all previous experiments. In both cases Pr was reliably greater than 0 (Pr values = 

0.49 and 0.45: t(15)=14.74 , p<.001 and t(15) = 15.76, p<.001). These two Pr scores 

did not differ reliably. Measures of response bias (Br = p(FA)/(l -  Pr)) were also 

calculated. The value of Br for the discrimination involving new words was 0.14, 

while for the discrimination involving repeated new words Br was 0.19. Br scores 

did not differ reliably from each other, with the values in each case indicating a 

moderately conservative bias (Snodgrass & Corwin, 1988).

A one-way ANOVA on the RTs for correct responses revealed significant 

differences between word class (F(l .7,25.1) = 31.87, p<.001). Paired contrasts 

showed that this was due to RTs for hits being significantly longer than those for 

correct rejections and repeated hits (t(15) = 5.80, p<.001 and t(15) = 7.04, p<.001 

respectively). There was no significant difference between RTs for correct rejections 

and repeated hits.
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Table 8.1. Probabilities of correct (p(correct)) and incorrect (p(incorrect)) responses 

and reaction times in milliseconds (RT) to old, new and repeated test words in 

Experiment 6.

p(correct)

RT

p(incorrect)

RT

Old

0.56 (0.10) 

691 (100)

0.44 (0.10) 

635 (132)

Word class 

New_____

0.93 (0.04) 

631 (116)

0.07 (0.04) 

744 (121)

Repeated test

0.89 (0.07) 

630(119)

0.11 (0.07) 

723 (109)
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ERP data

Too few participants made sufficient (16 or more) false alarms to new and repeated 

test words (8 and 2 participants respectively) to permit analysis of the ERP data for 

these response categories. Therefore baseline corrected averaged ERPs (100 ms pre

stimulus baseline) were formed for correctly identified old words (hits), incorrectly 

identified old words (misses), new words (correct rejections) and repeated test words 

(repeated hits) and were analysed for the 16 participants who contributed sufficient 

artefact-free trials to these critical response categories. Mean trial numbers for these 

response categories were 50 (range 31-71), 37 (range 17-65), 227 (range 133-282) 

and 73 (range 44-93), respectively.

The ERP data were analysed over three time windows: 300-500, 500-800 and 800- 

1000 ms. As for the previous experiments, two sets of analyses were completed. In 

the first set (the Midline analyses) the analyses were restricted to 3 midline locations 

(Fz, Cz and Pz). In the other set of analyses (the Global analyses), data from lateral 

electrode locations was included (Chapter 5, page 133, for specific details).

Two additional directed analyses were conducted on data for incorrect responses to old 

words and correct responses to all three item classes at frontal and parietal sites in the 

300-500 and 500-800 ms epochs, as described previously (see Chapter 5 for details).

Hits, correct rejections and repeated hits

Figure 8.1 is relevant to the following statistical analysis and shows the ERPs elicited 

by hits, correct rejections and repeated hits at electrode sites F3/F4, C3/C4, P3/P4,

Fz, Cz and Pz. The figure shows that from approximately 300 ms onwards the ERPs
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elicited by hits and repeated hits are more positive-going than those elicited by 

correct rejections at anterior sites. There is a greater positivity for repeated hits than 

for hits which onsets at approximately 250 ms and is maximal over posterior parietal 

sites. This difference attenuates from approximately 600 ms, after which at anterior 

sites hits become more positive-going, and this pattern of data becomes evident 

approximately 100 ms later at central and parietal electrode sites and is sustained 

through to the end of the recording epoch.

300-500 ms: 

Midline analyses:

The initial midline analysis revealed a main effect of category (F(1.5, 21.8) = 12.92, 

p<.001). The follow-up analyses comprised all possible paired contrasts of the three 

categories, and these revealed that the ERPs evoked by hits and repeated hits were 

reliably more positive-going than those elicited by correct rejections (F(l ,15) =

13.44, p<.001 and F(1,15) = 50.27, p<.001 respectively). A condition by site 

interaction for the contrast between hits and repeated hits (F(l .2, 18.1) = 5.54, p<.05) 

reflected the fact that at frontal sites hits were more positive-going, whilst at central 

and parietal sites the relatively greater positivity was for repeated hits.

Global analyses:

The second set of analyses for this time window including the data from lateral scalp 

locations revealed a main effect of category (F(1.4, 21.5)= 12.70, p<.001), as well as 

an interaction between category and site (F(1.7, 24.8) = 12.46, p<.001). The follow- 

up analyses comprised all possible paired contrasts of the three categories and the 

outcomes are shown in Table 8.2.
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The contrast between hits and correct rejections revealed a four-way interaction 

between category, HM, AP and site. Further analysis at each of the three levels of the 

AP factor showed a relatively greater positivity for hits at frontal (F(l,15) = 6.75, 

p<.05) and central (F(l,15) = 6.33, p<.05) sites only. There were also significant 

interactions between category and site at frontal (F(1.2, 17.9) = 16.56, p<.001) 

central (F(l.l, 16.6) = 4.31, p<.05), and parietal (F(1.2, 17.8) = 10.98, p<.005) 

locations, which reflected the fact that the relatively greater positivity for hits was 

largest at frontal and central superior sites, however at parietal inferior sites there 

was a greater positivity for correct rejections. These interactions, however, do not 

explain the initial interaction with HM, which on inspection of Figure 8.3 is most 

likely due to the slight left lateralisation of the greater relative positivity for hits at 

anterior sites.

For the contrast between repeated hits and correct rejections there was a three-way 

interaction between category, AP and HM. Further analysis at each of the three levels 

of the AP factor showed a relatively greater positivity for repeated hits at all three AP 

levels (frontal: F(1,15) = 27.25, p<.001, central: F(l,15) = 33.99, p<.001 and 

parietal: F(1,15) = 29.45, p<.001). There were also significant interactions between 

category and site at all locations (frontal: F(1.2,17.4) = 20.61, p<.001, central: F(1.7, 

25.0) = 21.48, p<.001 and parietal: F(1.2,18.4) = 28.07, pc.001) which reflected the 

fact that the relatively greater positivity for repeated hits was maximal at sites closest 

to the midline.
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Table 8.2. The outcomes of the paired contrasts between the mean amplitudes 

associated with hits, correct rejections and repeated hits for the global analyses over 

the 300-500, 500-800 and 800-1000 ms time windows. Nomenclature as for Table 

5.2 (page 137).

df Hit vs CR CR vs RHit Hit vs RHit

300-500 ms

c c 1,15 8.35* 3 9  4 7 *** ns

CCxSI 2,30 14.8(55)*** 46.03(.60)*** ns

CC x HM 2,30 ns 6.40* ns

CC x AP x SI 2,30 ns ns 3.65(.65)*

CC x AP x HM 2,30 ns 3.95(.85)** ns

CC x AP x HM x SI 3,40 2.82(.82)* ns ns

500-800 ms

CC 1,15 40.88*** 47 01*** ns

CC x SI 1,15 35.26C58)* 12.72(,67)*** 19.65(55)***

CC X  AP x SI 3,40 3.73(,66)* ns 4.32(.7i)*

800-1000 ms

CC 1,15 18.05*** ns 15.03***

CC x SI 1,15 19.93(54)* ns 19.96(53)***

CC X  AP X  SI 3,40 4.40(.62)* ns 8.99(62)*
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There were significant interactions between category and HM at central (F(l,15) = 

5.83, p<.05) and parietal (F(l,15) = 18.48, p<.001) sites only. These reflected the 

fact that the relatively greater positivity for repeated hits was largest over the left- 

hemisphere across central and posterior sites but not at frontal scalp locations.

For the final contrast between hits and repeated hits there was a three-way interaction 

between category, AP and site. Further analysis at each of the three levels of the AP 

factor showed an interaction between category and site at central sites only (F(l, 15)

= 7.77, p<.05) which was due to the greater relative positivity for repeated hits at 

central superior sites.

500-800 ms: 

Midline analyses:

The initial midline analysis revealed a main effect of category (F( 1.4, 21.6) = 31.19, 

p<.001). The follow-up analyses revealed reliable ERP old/new effects for hits and 

repeated hits (F(l,15) = 44.51, p<.001 and F(1,15) = 35.55, p<.001 respectively).

The final contrast revealed that the ERPs evoked by hits were reliably more positive- 

going than those elicited by repeated hits (F(l ,15) = 14.46, p<.005).

Global analyses:

The second set of analyses for this time window revealed a main effect of category 

(F(1.6, 23.7)= 28.53, p<.001), as well as an interaction between category and site 

(F(1.6, 24.0) = 29.21, p<.001), which was moderated by a three-way interaction 

between category, AP and site (F(4.2, 63.1) = 3.33, p<.05).
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The follow-up contrasts (Table 8.2) show that between hits and correct rejections 

there was a three-way interaction between category, AP and site. Further analysis at 

each of the three levels of the AP factor showed a relatively greater positivity for hits 

at all three AP levels (frontal: F(l,15) = 17.44, pc.OOl, central: F(l,15) = 47.67, 

p<.001 and parietal F(1,15) = 45.59, p<.001). There were also significant interactions 

between category and site at all three levels of the AP factor (frontal: F(1.3, 20.2) = 

23.42, p<.001, central: F(1.2, 17.5) = 41.72, pc.OOl and parietal: F(1.3, 19.3) =

42.29, p<.001) which reflected the fact that the relatively greater positivity for hits 

was consistently smallest at inferior sites. Examination of Figure 8.1 shows that the 

initial three-way interaction was most likely because the old/new effects are larger at 

posterior superior sites.

For the contrast between correct rejections and repeated hits there was an interaction 

between category and site. This interaction was due to the relatively greater positivity 

for repeated hits being largest at sites closest to the midline. The final contrast 

between hits and repeated hits revealed a three-way interaction between category, AP 

and site. Further analysis at each of the three levels of the AP factor showed a 

relatively greater positivity for hits at central sites only (F(l,15) = 5.12, p<.05).

There were also a significant interaction between category and site at central sites 

(F(2.2, 33.1) = 4.62 p<.05), reflecting the fact that this relatively greater positivity 

for hits was maximal at central superior sites. There was also an interaction between 

category and site at parietal locations (F(1.7, 24.9) = 3.77, p<.05), reflecting the fact 

that there was a relatively greater positivity for repeated hits at P8 whereas across all 

other parietal locations hits were consistently more positive-going.
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800-1000 ms:

Midline analyses:

The initial midline analysis revealed a main effect of category (F(1.3,19.5) = 12.04, 

p<.001). The follow-up analyses revealed that the ERPs evoked by hits were reliably 

more positive-going than those elicited by correct rejections (F(l,15) = 12.44, p < 

.005) and repeated hits (F( 1,15) = 14.51, p<.005). The final contrast revealed no 

reliable differences between correct rejections and repeated hits.

Global analyses:

The second set of analyses for this time window revealed a main effect of category 

(F(1.7, 25.4)= 13.65, p<.001), as well as an interaction between category and site 

(F(1.3, 19.2) = 18.71, p<.001), which was moderated by a three-way interaction 

between category, AP and site (F(4.0, 59.9) = 5.72, p<.001).

The follow-up contrasts (Table 8.2) show that between hits and correct rejections 

there was a three-way interaction between category, AP and site. Further analysis at 

each of the three levels of the AP factor showed a relatively greater positivity for hits 

at all three AP levels (frontal: F(1,15) = 12.31, p<.001, central: F(1,15) = 27.35, 

p<.001 and parietal F(1,15) = 26.94, p<.001). There were also significant interactions 

between category and site at all three levels of the AP factor (frontal: F( 1.4,18.6) = 

18.25, pc.001, central: F(1.3, 19.5) = 25.36, pc.001 and parietal: F(1.4,18.3) = 32.30, 

pc.001). These reflected the fact that the relatively greater positivity for hits was 

consistently largest at superior sites. Examination of Figure 8.1 shows that the most 

likely reason for the initial three-way interaction is that the ERP old/new effects are
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smallest at anterior sites. For the contrast between correct rejections and repeated hits 

there were no reliable effects.

The final contrast between hits and repeated hits revealed a three-way interaction 

between category, AP and site. Additional analysis at each of the three levels of the 

AP factor showed significant interactions between category and site at frontal (F(1.4, 

16.9) = 7.89, p<.01), central (F(1.3, 15.3) = 6.71 p<.01), and parietal sites (F(l.l, 

15.3) = 18.16, p<.001) which reflected the greater relative positivity for hits being 

largest at sites closest to the midline. There was a main effect of category at central 

sites (F(l,15) = 8.49, p<.05) only, reflecting the fact that the relatively greater 

positivity for hits was maximal at central midline locations.

Mid-frontal ERP old/new effects:

To further investigate the mid-frontal old/new effect, an additional directed analysis 

was conducted. This involved the mean amplitudes for hits, misses, repeated hits and 

correct rejections at F3, Fz and F4 in the 300-500 ms time window. Figure 8.2 is 

relevant to the following statistical analyses and shows the ERPs elicited by the four 

classes of items at electrode sites F3, Fz, and F4. The figure illustrates that from 

approximately 300 ms hits and repeated hits are both more positive-going than 

misses and correct rejections, with minimal differences between the latter two classes 

of item.

The analyses revealed a main effect of category only (F(2.0, 30.6) = 5.08, p<.05). 

Paired contrasts revealed that hits (F(l,15) = 13.01, p<.05) as well as repeated hits 

(F(l ,15) = 28.32, p<.001) were both more positive-going than correct rejections at
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these mid-frontal electrode sites. The contrast between hits and correct rejections 

also revealed an interaction with site (F(1.9, 28.6) = 4.47, p<.05) which reflects the 

fact that the mid-frontal ERP old/new effect for studied words is largest at Fz. This is 

shown in Figure 8.3, which includes a topographic map of the differences in neural 

activity at the scalp between hits and correct rejections over the 300-500 ms time 

window. The contrast between misses and correct rejections revealed no significant 

effects. There were also no significant effects for the contrasts between both classes 

of hits and misses. The final contrast between hits and repeated hits revealed an 

interaction between category and site (F(1.9, 28.7) = 3.68, p<.05) because of a 

greater relative positivity for hits at F3 and FZ, with the reverse being true at F4.

Left-parietal ERP old/new effects:

This analysis involved the mean amplitudes for hits, misses, repeated hits and correct 

rejections at P3, P5, P4 and P6 in the 500-800 ms time window. Figure 8.4 is 

relevant to the following statistical analyses and shows the ERPs elicited by the four 

classes of items at electrode sites P3/4 and P5/6. The figure shows that in the critical 

500-800 ms time window there are large ERP old/new effects for both hits and 

repeated hits, with little difference between misses and correct rejections. The ERP 

old/new effect for hits is sustained throughout the recording epoch, whereas the ERP 

old/new effect for repeated hits becomes attenuated after 900 ms.

The directed analyses revealed a main effect of category (F(2.2, 32.5) = 26.23, p < 

.001). This was followed up by all possible paired contrasts, and the outcomes of 

these showed that ERPs evoked by hits and repeated hits were reliably more positive- 

going than those evoked by correct rejections (hits: F(l,15) = 49.27, p<.001, repeated
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hits: F(l,15) = 35.38, p<.001) and misses (hits: F(l,15) = 35.28, p<.001, repeated 

hits: F(l,15) = 27.75, pc.OOl). There were also interactions between category and 

site for the contrasts between repeated hits and correct rejections (F(2.8, 42.3) =

14.87, pc.001) and hits and correct rejections (F(1.8,26.7) = 4.82, pc.05) which 

reflected the fact that the relatively greater positivities for both hits and repeated hits 

were smallest at P4. The greater positivity for hits and repeated hits relative to 

correct rejections is further illustrated in Figure 8.3, which shows scalp distributions 

of the ERP old/new effects for hits and repeated hits. The data are shown for the 500- 

800 ms epoch in the middle panel and demonstrate a degree of left hemisphere 

lateralisation for both old/new effects. The contrast between hits and misses also 

showed an interaction between category and site (F(1.8,26.8) = 3.86, pc.05) which 

was because of the greater relatively positivity for hits at P3. The two contrasts 

between the ERPs evoked by hits and repeated hits, and misses and correct rejections 

revealed no reliable effects over this time window.

Discussion

At issue here were the boundary conditions under which recollection of some kinds 

of information can be prioritised at the expense of others. The findings in 

experiments 1, 2 and 3 are consistent with the view that it is not possible for the 

recollection of non-target information to be controlled within the paradigm utilised in 

all of the experiments presented here. The findings in Experiment 5, however, show 

that with a higher level of target accuracy it is possible for information relating to the 

target items to be prioritised over that for the non-target items.
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The motivation for the study described in this chapter was to assess the impact of 

limiting the available response time for making task judgments on the patterns of 

left-parietal ERP old/new effects observed. As such both the behavioural and ERP 

experimental findings relevant to this key issue will be discussed first in the 

following sections. The sections will conclude with a brief discussion of further ERP 

findings of differences according to condition that occur in the 300-500 ms time 

window and their relevance to the functional interpretation of the mid-frontal ERP 

old/new effect.

Left-parietal ERF old/new effects

An attenuated parietal old/new effect was observed for non-targets in Experiment 5, 

perhaps because participants probed each test cue judged to be old specifically for 

source information diagnostic of a target, and that this retrieval strategy was 

facilitated by the fact that memory for targets was reliable. Experiment 6 tested the 

hypothesis that limiting the time available to make task responses would result in the 

adoption of a similar retrieval strategy and result in attenuation of the left-parietal 

ERP old/new effect for non-targets. This hypothesis was examined by incorporating 

a response time limit of 1 second in the same paradigm as employed in Experiment 

3. Memory for targets was poorer in Experiment 6 than in Experiment 3 (probability 

of a correct target response was 0.56 compared to 0.62), and mean RTs for correct 

responses to targets were quicker (691 ms compared to 948 ms). However, the 

directed analyses of the modulations of parietal ERP old/new effects for targets and 

non-targets revealed that the ERP old/new effects were reliable for both targets and 

non-targets in the 500-800 ms time window. This pattern of data replicates that of 

experiments 1, 2 and 3 and is consistent with the view that participants did not
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prioritise the recollection of target information in order to complete the task. 

Conversely, in the later time window of 800-1000 ms there was a significant 

attenuation of the old/new effect for non-targets. This greater relative positivity for 

correct target judgments shows a bilateral distribution maximal at central sites (see 

Figure 8.3) that is not characteristic of a parietal ERP old/new effect. The effect is 

also maximal at 800 ms, which is after the approximate time window in which task 

responses were made, and this suggests that this modulation most likely does not 

reflect the engagement of a strategy of prioritising the recollection of target 

information in order to make accurate task judgments.

Therefore, the imposition of a limited test response time was insufficient to influence 

the strategic retrieval processes that are engaged during this variant of the exclusion 

task when target accuracy is not that high. The findings consequently, support the 

view of Herron & Rugg (2003b) that it is the degree to which the recollection of 

information of targets is likely that determines of the extent to which recollection of 

information about non-targets will be prioritised (Herron & Rugg, 2003b). The 

findings do not however, rule out the possibility that a strategy of prioritising target 

information over non-target information could be achieved by imposing a shorter 

deadline, or through the use of an additional task which might limit the available 

resources.

An additional task-load was imposed on participants in two studies conducted by 

Dywan, Segalowitz & Webster (1998). They found that, in the standard version of 

the paradigm employed here, older participants (mean age 69.8 years) were relatively 

poor at correctly rejecting repeated test items and showed parietal old/new effects for
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both these items and for studied items. Young participants (mean age 23.9 years) 

showed a superior ability to correctly reject the repeated test items but exhibited a 

parietal old/new effect for the studied items only. In a follow up experiment, the 

young participants completed the same task with additional task demands. The 

additional task requirements were that participants had to listen to a string of random 

numbers between 1 and 9 and to press a mouse key with the index finger of their 

non-dominant hand whenever they heard 3 odd numbers in a row. Under these 

divided attention conditions, the young participants showed the same pattern of 

behaviour as the old participants, and the same pattern of ERP old/new effects 

(Dywan, Segalowitz, & Webster, 1998).

Dywan et al. (1998) argued that the younger participants exercised greater selective 

attention, and that the fact that repeated test items did not elicit a parietal old/new 

effect reflected this control. Of interest of course is at what level this attentional 

control is hypothesised to operate; whether recollection itself or the use of 

recollected information was subject to control. It is possible that recollection of non

targets was itself actively inhibited. Alternatively, non-target information may have 

been available to episodic retrieval, but control processes prevented this information 

from being attended to. This point will be returned to later in the thesis. These 

previous findings suggest that in some circumstances increasing task demands does 

influence the strategic control of retrieval. The findings of this experiment suggest 

that response demands do not.
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Mid-frontal ERP old/new effect

The directed analysis of the mid-frontal ERP old/new effect confirmed that there 

were reliable ERP old/new effects for both studied and repeated test items. There 

were no differences between the two classes of old item and misses, and misses were 

also not reliably different in magnitude to correct rejections. There were, however, 

reliable differences between hits and repeated hits, with hits being more positive- 

going. The data does not contradict the proposal that an anteriorly distributed 

modulation occurring in this time window is an index of familiarity (for a 

comprehensive review, see Curran et al, 2006), but there would be stronger support 

for this functional interpretation of the mid-frontal ERP old/new effect had misses 

been of an amplitude reliably less positive-going than that associated with hits and 

repeated hits, but more positive-going than correct rejections, as discussed in Chapter 

6 .

Concluding remarks

At parietal electrode sites in the 500-800 ms time window ERP old/new effects were 

found for targets and non-targets, replicating the findings of experiments 1, 2 and 3. 

Furthermore, this pattern of data was obtained even when the time in which test 

responses had to be made was reduced.

The main issue here was the boundary conditions under which recollection of some 

kinds of information can be prioritised at the expense of others. Experiment 5 

showed that it was possible for the recollection of non-target information to be 

controlled in this paradigm. Experiment 6 was designed in order to determine 

whether factors other than the accuracy of target judgments influence the conditions
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under which strategic recollection processes are engaged. The reason for introducing 

a response deadline at test was to see if by limiting the time available to make 

responses participants would default to an approach whereby they relied on the 

success or failure of recollecting information about targets to complete the task 

successfully. However, the fact that there were significant left-parietal ERP old/new 

effects for both targets and non-targets provides little evidence to suggest that this 

manipulation encouraged the implementation of a strategy of prioritising the 

recollection of target information.
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Figure 8.1. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites F3/F4, C3/C4, P3/P4, Fz, Cz and Pz in Experiment

6.
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Figure 8.2. Grand averaged ERPs elicited by hits, misses, correct rejections and repeated hits at sites F3, Fz, F4 in Experiment 6.
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Figure 8.3. Scalp distributions of the ERP old/new effects for hits, repeated hits and 

misses in Experiment 6. The data are shown for three post-stimulus epochs: 300-500, 

500-800 and 800-1000 ms. The maps were computed from scores obtained by 

subtracting mean amplitudes from the ERPs evoked by correct rejections from hits, 

misses and repeated hits. The paired values below each map denote the maxima and 

minima of the amplitude differences between response categories, which can be 

interpreted relative to the colour bar on the right-hand side of the figure.
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Figure 8.4. Grand averaged ERPs elicited by hits, misses, correct rejections and repeated hits at sites P3/4, P5/6 in Experiment 6.
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Chapter Nine 

Experiment 7

Introduction

The purpose of the study described in this chapter is to explore the functional 

information that MEG data can provide in memory retrieval tasks. Since the 

introduction of magnetoencephalography (MEG) (Cohen, 1968; Cohen, 1972), this 

non-invasive method has been compared with EEG to determine how they may be 

used as complementary encephalographic techniques. Theoretical studies 

(Geselowitz, 1970; Grynszpan & Geselowitz, 1973; Cohen & Hosaka, 1976; Cuffin 

& Cohen, 1979; Meijs et al., 1987; Hamalainen & Sarvas, 1989), and an 

experimental study by Barth et al. (1986), have shown that MEG currents are 

uninfluenced by the skull (Kaufman et al., 1981), unlike EEG, where the signal is 

distorted. The amplitude of the magnetic current is also governed by two basic laws. 

The law of Biot and Savart states that the magnetic field falls off with the square of 

distance from a current source. Secondly, a radially orientated current element 

produces no magnetic field outside a concentrically homogeneous volume conductor 

(Sarvas, 1987). These two laws have given rise to the anecdotal assumptions (Tallon- 

Baudry, Bertrand & Pemier, 1999) that, unlike EEG, MEG is insensitive to 

tangential sources, and that it is also insensitive to deep sources. This is despite 

several papers (e.g. Hari, Joutsiniemi & Sarvas, 1988; Lutkenhoner, 1996) showing 

that deep sources can be localised and that source orientation is not a significant 

factor limiting localisation accuracy (Leahy et al., 1998, Hillebrand & Barnes, 2001).
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In spite of these differences in sensitivity to cortical activity, MEG and EEG are 

similar in many respects since they are both due to neuronal currents (Barth & 

Sutherling, 1988; Okada & Nicholson, 1988; Okada, 1989; Barth & Di, 1990; Lopez, 

Chan, Okada & Nicholson, 1991; Okada, Whu & Kyuhou, 1997) (see Figure 9.1.for 

details), hence both techniques provide real-time information about neural and 

cognitive processing. Comparisons of source localisation in MEG and EEG in 

humans have shown that these techniques are in some instances capable of providing 

very similar localisations, but discrepant localisations in other cases (Cohen and 

Cuffin, 1983; Wood et al., 1985; Sutherling et al., 1988; Sutherling et al., 1991; 

Nakasato et al., 1994). In general, the account of the differences given above 

provides reasons why source localisation should be superior for MEG than for EEG.

The question addressed here is a related one, with the key issue being the functional 

information that MEG may provide when analyses are restricted to surface 

potentials. This is of interest as MEG signals at a given sensor (or cluster of sensors) 

may index activity from fewer overlapping fields and neuronal generators than EEG 

signals, because of the relative insensitivity of the technique to deep sources due to 

the signal falling off rapidly over distance, and the absence of signal smearing by 

media lying between source and sensor.

Due to these properties, analysis of event-related field (ERF) surface potentials may 

provide functional information complementary to that which can be obtained by 

analysing ERPs: signals with different functional properties may be obscured in EEG 

but not MEG because for EEG signal distortion may not permit a separation of the 

signals at proximal electrode locations.
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Figure 9.1. Relationship between an electrical dipole and the associated magnetic 

field. An electrical dipole has a magnetic field running around it (A), and when the 

dipole is roughly parallel to the surface of the head (tangential), the magnetic field 

leaves and re-enters the head (B). If the dipole is oriented radially with respect to the 

head, the dipole does not have any magnetic field outside the head (C). When a 

dipole runs parallel to the surface of the head (represented by the arrow in D), there 

is a broad region of positive voltage at the positive end (solid lines) and a broad 

region of negative voltage at the negative end (dashed lines), separated by a line of 

zero voltage (represented by the dotted line). The magnetic field, in contrast, consists 

of magnetic flux leaving the head on one side of the dipole (solid lines) and re

entering the head on the other side (dashed lines), separated by a line of no net flux 

(dotted line). Image adapted from Luck (2005).
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Additionally, signals at a given sensor for MEG may provide clearer functional 

information because activity generated in deeper sources will contribute to a lesser 

degree than is the case for EEG, because the MEG signal falls off more rapidly with 

distance from the source.

In order to pursue this possibility, a MEG study was conducted, where the paradigm 

was only minimally different to that employed in Experiment 5. In that experiment, 

ERPs elicited by correctly identified studied words were more positive-going than 

those by correctly identified repeated test items, which in turn were more positive- 

going than new items. This effect occurred in the 500-800 ms post-stimulus time 

window and was maximal at parietal electrode sites, where it was larger over the left 

than the right hemisphere. In an earlier time window at fronto-central electrode sites, 

the old/new effects were equivalent for hits and for repeated hits.

These findings provide temporal guides for analysis of ERF old/new effects. If ERFs 

are also sensitive to these processes, then ERF effects with similar time courses, 

somewhat similar scalp distributions, and similar sensitivities to manipulations 

should be obtained. The forgoing observations, however, raise the possibility that not 

all ERP old/new effects will be evident in the magnetic record, that functionally 

comparable modulations may not be equally sensitive to experiment manipulations, 

and that there are ERF old/new effects with no electrical homologue.

There are only a small number of MEG studies of recognition memory, and in only a 

subset of these has the data been presented in a way that permits questions about the 

sensitivity of scalp-recorded ERFs to cognitive processes to be resolved. One reason
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for this is that in some experiments data from source space only has been reported, 

occasionally with surface potentials shown but not analysed (Duzel et al., 2005; Lee, 

Simos, Sawrie, Martin & Knowlton, 2005; Dhond, Witzel, Dale & Halgren, 2005). In 

other experiments, the contrasts have been restricted to differences between only a 

pair of experiment conditions (Walla et al., 1999; Tendolkar et al., 2000; Walla et al., 

2001; Duzel et al., 2003). For example, Tendolkar et al. reported an ERF effect with 

spatio-temporal characteristics akin to the left-parietal ERP old/new effect, and 

which differentiated between old and new words to which correct recognition 

memory judgments were made (Tendolkar et al., 2000).

While this contrast is sufficient to provide indicators of the spatio-temporal 

correspondence between ERP and ERF effects of interest, claims that effects 

obtained in the two modalities are functionally equivalent, or in fact index distinct 

processes, depend ultimately upon how the effects in question vary according to 

experiment manipulations. This requires at least three conditions.

In one study that fits this criterion (Staresina, Bauer, Deecke & Walla, 2005), ERF 

old/new effects were acquired in a task where participants made old/new judgments 

to words, and for the old words also made a binary distinction between items for 

which the old judgment was a high or a low confidence response. The analyses 

comprised paired contrasts between the ERFs associated with misses and with hits, 

separated according to confidence. The initial analyses revealed no effects that 

differentiated old items split according to confidence, but there were effects that 

differentiated these response categories from the ERFs associated with misses 

between 300 and 500 ms (Staresina et al., 2005). There was some evidence that two
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sets of generators were responsible for the effects, but functional specification and 

fractionation of the modulations is constrained by the fact that, at least in this 

experiment, they were sensitive only to whether old items attracted a correct or an 

incorrect response. The small effects that were obtained suggest that these findings 

will benefit from subsequent studies in which related contrasts are made.

In summary, the sensitivity of MEG to the multiple processes that support memory 

judgments is not well established. Consequently, Experiment 7 was designed to 

identify MEG correlates of memory processes in an exclusion task. At issue is the 

utility of analysing surface fields acquired in MEG studies as a means of 

complementing the functional claims that can be made on the basis of analysing 

event-related potentials.

Methods

Participants

17 right-handed people (14 female) were paid at the rate of £7.50/hour and gave 

informed consent prior to participating in the experiment. Data from 1 participant 

(female) was excluded due to poor performance on the task (probability of a correct 

judgment to a new word was 0.04). The average age of the remaining participants 

was 21 years (range 18 to 23). Participants were all right-handed native English 

speakers. No participants were taking neuroleptic medication at the time of testing or 

reported a history of mental illness. All were paid at a rate of £7.50/hour and gave 

informed consent prior to commencing the experiments.
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Stimuli and Design

Stimuli at both study and test were as for Experiment 5, (see Chapter 7).

Procedure

The study phase was preceded by a 20 min period during which participants were 

fitted with 3 head localisation coils (see below) and seated beneath the MEG device. 

Study and test phases were completed in a magnetically shielded testing chamber. In 

each study phase, participants completed one encoding task for all words. They were 

asked to say aloud the presented study word. An asterisk before study words initiated 

each study trial and remained on the screen for 500 ms. The screen was then blanked 

(100 ms) before the study word was presented for 300 ms. Participants were asked to 

give their response after each study word appeared. The next trial started 1000 ms 

after the previous study word offset.

Each test trial started with a ‘Blink Now’ screen (1500 ms duration) followed by a 

fixation asterisk (500 ms duration), which was removed from the screen 100 ms prior 

to presentation of a test word (300 ms duration). The screen was then blanked until 

the participant responded, and the next trial started 1700 ms afterwards. Test 

responses were as for Experiment 5. Responses were made on a key-pad with the 

index and middle fingers of the same hand. The fingers and hands used for responses 

were balanced across participants. Participants were also instructed to restrict their 

blinking to only when the ‘Blink Now’ screen was presented.

MEG acquisition

The MEG was a whole-head system (275channel) manufactured by CTF Systems 

Inc. (Canada). An additional 29 reference channels were recorded for noise
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cancellation purposes and the primary sensors were analysed as synthetic third order 

gradiometers (Vrba, 2001). 3 of the 275 channels were turned off due to excessive 

sensor noise. The sampling rate was 1200 Hz and recordings were filtered offline 

with a bandpass of 0.03 to 40 Hz. The coordinates of the MEG data sets were based 

on the participants’ nasion and left and right preauricular points in relation to the 

sensor locations. Intra-individual head movement was kept to a minimum, and head 

position was localised at the start and finish of each study-test block. Data were 

epoched off-line into 2000 ms epochs, with a 200 ms pre-stimulus baseline, relative 

to which all mean amplitudes were computed. Trials containing large artefact and 

those containing obvious blink related activity were rejected (mean number of trials 

rejected per participant = 8%).

Results

Behavioural Data

Table 9.1 displays the probabilities of correct and incorrect responses to each class of 

test word.

Two measures of discrimination (Pr: Snodgrass & Corwin, 1988) were calculated as 

in previous experiments. In both cases Pr was reliably greater than 0 (Pr values =

0.61 and 0.51: t(15)=21.02 , p<.001 and t(15) = 14.87, p<.001). These two Pr scores 

differed reliably from each other (t(15) = 5.63, p<.001) due to discrimination 

between old words and new words being superior to that between old words and 

repeated test words.

261



Table 9.1. Probabilities of correct (p(correct)) and incorrect (p(incorrect)) responses 

and reaction times in milliseconds (RT) to old, new and repeated test words in 

Experiment 7.

Word class 

Old_________New________ Repeated test

p(correct)

RT

p(incorrect)

RT

0.67 (0.15) 

929 (329)

0.33 (0.15) 

996(165)

0.93 (0.08) 

827(300)

0.07 (0.08) 

1111 (376)*

0.84 (0.12) 

887 (395)

0.16(0.12) 

1035 (307)

* includes data from the 15 participants who made at least 1 incorrect response to 

new items.
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Measures of response bias (Br) were also calculated. For the discrimination 

involving new words the value of Br was 0.19, while Br for the discrimination 

involving repeated test words was 0.34. Br scores differed reliably from each other 

(t(15) = 6.17, p<.001), with the values indicating a more conservative bias for new 

words (Snodgrass & Corwin, 1988).

A one-way ANOVA on the RTs for correct responses revealed significant 

differences between category (F(1.3, 19.9) = 6.10, p<.05). Follow up paired 

comparisons showed that RTs for correct responses to new words were quicker than 

those for correct responses to old words and repeated test words (t(15) = 7.74, p<.05 

and t(15) = 12.53, p<.01 respectively). A one-way ANOVA on the RTs for incorrect 

responses, for the 15 participants who provided at least 1 incorrect old word 

judgment, revealed significant differences between word class (F(1.9, 26.9) = 3.67, 

p<.05). Paired comparisons showed that RTs for incorrect responses to old words 

were quicker than those for incorrect responses to new words (t( 14) = 7.49, p<.05).

ERF data

ERFs could in principle be obtained for 6 response categories: correctly and 

incorrectly identified old, new and repeated test words. Too few participants made 

sufficient (16 or more) incorrect judgments to old, new and repeated test words (2,

10 and 8 participants respectively) to permit analysis of the ERF data for these 

response categories. As a consequence, the data from the correctly identified old 

words (hits), new words (correct rejections) and repeated test words (repeated hits) 

were analysed for the 16 participants who contributed sufficient artefact-free trials to
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the hit, correct rejection and repeated hit response categories. Mean trial numbers for 

these response categories were 63 (range 40-83), 267 (range 190-293) and 79 (range 

56-91), respectively.

For the ERF data analyses, 4 or 5 MEG sensor channels were clustered into groups in 

regions of interest (ROI). The ERP experiments within this thesis have used the 

International 10-20 system (Jasper, 1958) electrode locations. Thus, the ROIs for 

Experiment 7 were selected a priori, based approximately on the electrode locations 

used in experiments 1-6 (see Figure 9.2 for locations of ROIs, and Appendix 9.2 for 

full electrode array). Mean amplitudes were then calculated for each participant 

across the clustered sensor channels at each ROI. The sensor clusters are labelled 

according to the ROI, and these labels will be used hereafter to describe the cluster 

regions.

Due to the underlying differences in MEG and EEG acquisition the analysis strategy 

for the ERF data predominantly concentrated on the timing of functionally related 

effects, and as such used the time windows in which the reliable ERP modulations 

were found for Experiment 5. A broad range of locations were included in the 

analyses in order to identify modulations in the ERF that may occur across the scalp. 

Therefore, the ERF data were analysed over three time windows: 300-500, 500-800 

and 800-1100 ms. For the three time windows, one set of analyses were completed 

(Global analyses), in which data only from lateral electrode regions were included. 

Visual inspection of the ERF waveforms (see Appendix 13 for grand averaged data 

at all sensor locations) showed minimal item related differences at midline sites, as 

such no statistical analyses were conducted on the midline data.
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Figure 9.2. ROI locations. L— left, R — right, A= anterior, C= central, P= posterior, S 

= superior, M= mid-lateral, I = inferior, MD= midline.

LAI LAM LAS AMD RAS RAM RAI

LCI LCM LCS CMD RCS RCM RCI

RPS RPILPS RPMLPI LPM PMD

For the analyses including lateral locations, the data comprised ERFs acquired from 

18 ROIs, an equal number at left and right hemisphere sites at anterior (LAS, LAM, 

LAI, RAS, RAM, and RAI ), central (RCS, RCM, RCI, LCS, LCM, and LCI) and 

posterior (RPS, RPM, RPI, LPS, LPM, and LPI) locations. These analyses included
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the factors of category, location in the anterior/posterior plane (AP), location in the 

left-right plane (HM: left hemisphere, right-hemisphere) and site (inferior, mid

lateral, and superior). The analyses were conducted on the data from all 16 

participants for correct responses to old, new and repeated test words. Significant 

effects involving category were followed up by all possible paired contrasts between 

the three response categories. For the analyses including lateral scalp regions, 

interactions with the AP and/or HM dimension were followed up by analyses at each 

level of the relevant factor.

Two additional directed analyses were also conducted. The first was carried out to 

assess changes across conditions in the approximate region of the mid-frontal ERP 

old/new effect, and was carried out in the 300-500 ms time window. The analyses 

included data from inferior and midlateral locations only, and included the factors of 

category and site (four levels: LAI, LAM, RAI and RAM). The second directed 

analysis addressed directly changes across conditions relating to the left-parietal ERP 

old/new effects and included factors of category, hemisphere, and site (four levels: 

LPS, LPM, RPS and RPM), and was completed over the 500-800 ms time window. 

The results of the midline and global analyses for all 16 participants are reported first

followed by the findings for the two directed analyses.
\

Hits, repeated hits and correct rejections

Figure 9.3 is relevant to the following statistical analysis and shows the ERFs elicited 

by hits, correct rejections and repeated hits at left and right anterior, central and 

posterior inferior, and mid-lateral ROIs. The figure also shows that the distribution of 

effects at LAS and RAS are polarity reversals of each other and as such most likely
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represent the opposing ends of a single source dipole. The same is true, although to a 

lesser degree, of LPS and RPS. The figure shows that from approximately 250 ms 

until 550 ms at the left anterior locations repeated hits and hits are both more 

positive-going than correct rejections, with repeated hits being more positive-going 

than hits. From 600 ms this latter difference becomes reversed, but with both classes 

of old item remaining more positive-going than correct rejections. At the left 

posterior locations from 200—450 ms correct rejections are more positive-going than 

hits and repeated hits, with minimal differences between the two classes of old item. 

After 500 ms hits become more positive-going than both repeated hits and correct 

rejections, between which there are no discernible differences.

300-500 ms 

Global analyses:

The analyses revealed a three-way interaction between category, AP and HM 

(F(2.4,35.8) = 19.64, p<.001) plus a four-way interaction between category, AP, HM 

and site (F(3.7,55.2) = 4.81, p<.01). The follow-up analyses comprised all possible 

paired contrasts of the three categories.

Table 9.2 shows the outcomes of the paired contrasts in the global analyses for all 

three time windows. For the 300-500 ms time window the contrast between hits and 

correct rejections revealed two three-way interactions between category, AP and HM 

(F(1.7, 25.2) = 31.41, p<.001) and category, AP and site (F(2.8, 41.8) = 3.05, p<.05).
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Table 9.2. The outcomes of the paired contrasts between the mean amplitudes 

associated with hits, correct rejections and repeated hits for the global analyses over 

the 300-500, 500-800 and 800-1100 ms time windows. CR = correct rejection, RHit 

= repeated hit, CC = condition, HM = hemisphere, AP = anterior/posterior plane, SI 

= site, df = degrees of freedom. *** = p<.001, ** = p<.01, * = p<.05, ns = non

significant. Epsilon values are shown in brackets.

df Hit vs CR RHit vs CR Hit vs R

300-500 ms

CC x HM 1,15 ns 10.14** ns

CC x AP x HM 2,30 31.41(.84)*** 37.08(.72)*** ns

CC x AP x SI 4,60 3.05(.7o>* ns ns

CC x AP x HM x SI 4,60 ns 9.82(,44)*** ns

500-800 ms

CC x HM 1,15 42.87***

***C
O

00 10.92*

CC x AP x HM 2,30

**
oo00T“H 34.51(.82)*** ns

CC x AP x SI 4,60 3.59(.63)* ns ns

CC x HM x SI 4,60 6.48(80)** 6.12(.99)** ns

CC x AP x HM x SI 4,60 21.08(.72)*** 5.11(54)** 6.84(.63):

800-1100 ms

CC x HM 1,15 ns ns 4.76(.33):

CC x AP x HM 2,30 3.77(.97)* 11.30(73)*** ns

CC x HM x SI 4,60 5.60(.93)* ns ns

CC x AP x HM x SI 4,60 9.45(59)*** ns 3.83(.66):
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Further analysis at each of the three levels of the AP factor showed significant 

interactions between category, HM and site at anterior and posterior ROIs only 

(anterior: F(1.6, 24.6) = 5.22, p<.05, and posterior: F(1.5, 22.1) = 4.77, p<.05) which 

reflected, at anterior sites, a relatively greater positivity for hits in the left 

hemisphere, maximal at superior sites, with an opposing greater relative positivity for 

correct rejections in the right hemisphere. At posterior sites there was a greater 

relative positivity for correct rejections in the left hemisphere, maximal at superior 

sites, and an opposing greater relative positivity for hits in the right hemisphere, 

maximal at mid-lateral sites.

For the contrast between repeated hits and correct rejections there was a significant 

four-way interaction involving category, AP, HM and site (F(1.8, 26.8) = 9.82, 

p<.001). Further analysis at each of the three levels of the AP factor showed a 

significant interaction between category, HM and site at anterior ROIs (F(1.4, 21.0)

= 12.39, p<.001). This reflected a greater relative positivity for repeated hits at left 

hemisphere inferior sites with the reverse being true at the corresponding right 

hemisphere sites. At posterior ROIs there was also an interaction between category 

and HM (F(l, 15) = 3.95, p<.01) which was due to the relatively greater positivity 

for correct rejections in the left hemisphere, with the reverse being true in the right 

hemisphere. For the hits versus repeated hits contrasts there were no significant 

differences.
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500-800 ms 

Global Analyses:

An interaction between category and HM (F(2.0, 29.4) = 24.23, p<.001) was 

obtained alongside significant three-way interactions between category, AP and HM 

(F(3.0,45.4) = 14.70, p<.001), and category, HM and site (F(2.9, 43.9) = 3.89, 

p<.01). These were all moderated by a four-way interaction involving category, AP, 

HM and site (F(3.6, 54.3) = 10.95, p<.001).

For the 500-800 ms time window (middle portion Table 9.2) the highest order 

interaction in the contrast between hits and correct rejections involved category, AP, 

HM and site (F(2.9, 43.0) = 21.08, p<.001). Further analysis at each of the three 

levels of the AP factor showed significant interactions between category, HM and 

site at anterior and posterior sites only (anterior: F(1.4,20.8) = 24.50, p<.001 and 

posterior: F(1.6, 24.1) = 17.64, p<.005) which reflected a greater relative positivity 

for hits in left hemisphere inferior sites with the reverse being true at the 

corresponding right hemisphere sites.

The contrast between correct rejections and repeated hits also revealed a significant 

four-way interaction involving category, AP, HM and site (F(2.1, 32.2) = 5.11, 

p<.01). Analysis at each of the AP levels revealed interactions between category, 

HM and site at anterior sites only (F(1.5, 22.1) = 18.72, p<.001) which reflected a 

greater relative positivity for repeated hits at inferior sites in the left hemisphere, 

with the reverse being true at the corresponding sites in the right hemisphere.
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The final contrast between hits and repeated hits revealed a significant four-way 

interaction involving category, AP, HM and site (F(2.5, 38.0) = 6.84, p<.001). 

Analysis at each of the three levels of the AP factor showed significant interactions 

between category and HM at anterior and posterior ROIs (anterior: F(l,15) = 13.43, 

p<.005, and posterior: F(l,15) = 5.96, p<.05). At anterior ROIs this was due to the 

relatively greater positivity for hits at LAI, with the reverse being true at RAI. This 

pattern of data was reversed at posterior ROIs.

800-1100 ms: 

Global Analyses:

Revealed a significant three-way interaction between category, AP and HM (F(2.9,

43.1) = 3.58, p<.05) and a four-way interaction between category, AP, HM and site 

(F(4.0,59.7) = 5.52, p<.001). For the 800-1100 ms time window (lower portion Table 

9.2) the highest order interaction in the contrast between hits and correct rejections 

was a four-way interaction involving category, AP, HM and site (F(2.3, 35.2) = 9.45, 

p<.001). Analysis at each of the three levels of the AP factor showed significant 

interactions between category, HM and site at anterior ROIs only (F(1.3, 18.8) = 

13.18, p<.001). These were due to the relatively greater positivity for hits at inferior 

left hemisphere and superior right hemisphere ROIs.

The contrast between hits and repeated hits also revealed a significant four-way 

interaction involving category, AP, HM and site (F(2.6, 39.5) = 3.83, p<.05). 

Analysis at each of the three levels of the AP factor showed a significant interaction 

between category and HM and site at posterior ROIs only (F(l ,15) = 5.35, p<.05).
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This reflected the greater relative positivity for hits across the left hemisphere, with 

the reversed pattern observed across the right hemisphere.

The final contrast between correct rejections and repeated hits revealed a significant 

interaction between category, AP and HM (F(l. 5, 22.0) = 11.30, p<.001). Further 

analysis at each of the AP levels showed an interaction between category and HM at 

anterior sites only (F(l,15)= 6.66, p<.05), which reflected the greater relative 

positivity for repeated hits at ROIs in the left hemisphere.

Mid-frontal ERP old/new effects:

To further investigate changes in ERFs across condition that may reflect the 

magnetic equivalent of the mid-frontal old/new effect, an additional directed analysis 

was conducted. This involved the mean amplitudes for hits, repeated hits and correct 

rejections at LAI, LAM, RAI and RAM ROIs in the 300-500 ms time window, as 

illustrated in Figure 9.4. The topographic maps in Figure 9.6 are relevant to the 

following statistical analyses and show the distribution of the ERF old/new effects 

for hits and repeated hits over the 300-500ms time window. In both figures the 

anterior old/new differences are maximal at left-hemisphere inferior sites. The 

analyses revealed an interaction between category and site (F(2.2, 33.9) = 10.77, 

p<.001). Paired contrasts within the experiment revealed a category by site 

interaction for the contrast between hits and correct rejections (F(l .3, 19.5) = 5.61, 

p<.05) which reflected the greater relative positivity for hits at LAI, with an opposing 

greater relative positivity for correct rejections at RAI. There was also a category by 

site interaction for the contrast between correct rejections and repeated hits (F(1.7,

25.1) = 34.29, p<.001). This came about due to a greater relative positivity for
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repeated hits at LAI, whilst at RAI the greater positivity was for correct rejections. 

There was also a category by site interaction for the contrast between hits and 

repeated hits (F(1.3, 19.7) = 4.73, p<.05) which reflected the greater relative 

positivity for repeated hits at LAM and for hits at RAM.

Left-parietal ERP old/new effects:

To further investigate any relation between ERFs and ERPs relating to recollection 

and the parietal old/new effect, a further additional directed analyses was conducted. 

This involved the mean amplitudes for hits, repeated hits and correct rejections in the 

LPS, LPM, RPS and RPM ROIs in the 500-800 ms time window (as illustrated in 

Figure 9.5). Figure 9.6 shows topographic scalp maps relevant to the following 

statistical analyses. They show the differences in scalp activity between the two 

classes of old item and correct rejections. At the posterior sites there is a greater 

relative positivity for hits over correct rejections at sites close to the midline. This 

old/new effect is not present for repeated hits. Further analyses revealed an 

interaction between category and HM (F(1.8, 27.2) = 4.05, p<.05). This was 

followed up by all possible paired contrasts, and the outcomes of these revealed 

interactions between category and HM for both the contrasts between hits and correct 

rejections (F(l, 15) = 6.09, p<.05) and the contrast between hits and repeated hits 

(F(l, 15) = 7.34, p<.05). These reflected the greater relative positivity for hits at 

LPS/LPM. There were no significant effects for the contrast between repeated hits 

and correct rejections.
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Discussion

Experiment 7 explored the question of whether event-related fields (ERFs) provide 

functional homologues of ERP old/new effects that have been identified in 

electrophysiological studies of memory retrieval, as well as whether there are effects 

specific to one or other of these real-time measures of neural activity. This was 

earned out by replicating Experiment 5, in which there were distinct differences in 

the magnitudes of parietal ERP old/new effects for correct responses to targets and 

non-targets, and comparable mid-frontal ERP old/new effects. The patterns of 

response accuracy were markedly similar in the two experiments (see Tables 7.1 and

9.1), and the following section begins with a discussion of the critical ERF parietal 

data from Experiment 7 and its correspondence with the left-parietal ERP old/new 

effect data from Experiment 5. This is followed by discussions of the associations 

between the mid-frontal ERP data from Experiment 5, and two distinct fronto- 

temporal ERF old/new effects, one occurring from 300-500 ms post-stimulus, the 

other somewhat later from 500-800 ms.

Left-parietal ERF old/new effects

In Experiment 5, at parietal locations in the 500-800 ms time window, ERPs elicited 

by correct responses to targets were more positive-going than those elicited by 

correct responses to non-targets, and both of these classes of item were more 

positive-going than correct rejections. In Experiment 7 a similar pattern of data was 

observed within the 500-800 ms time window at posterior scalp locations, with a 

greater relative positivity for correct responses to targets than for correct responses to 

non-targets or new words which did not differ significantly. The spatial extent of the 

effect in MEG was somewhat more limited than the effect seen in EEG, and this is
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consistent with the fact that EEG but not MEG is ‘smeared’ by the media between 

source and scalp

These findings suggest that this ERF effect is a functional homologue of the left- 

parietal ERP old/new effect - a claim that could not be made with confidence on the 

basis of previous findings. Tendolkar et al. (2000) acquired ERFs in a recognition 

memory task and identified a modulation in the magnetic record that had spatial and 

temporal properties comparable to those of the left-parietal ERP old/new effect (for 

related findings, see Friedman, 1990; Paller & Kutas, 1992; Wilding & Rugg, 1997; 

Curran, 2000; Friedman & Johnson, 2000). They proposed that this effect was the 

ERF homologue of the left-parietal ERP old/new effect. Their contrast, however, was 

restricted to ERFs elicited by old and new test items that attracted correct responses. 

In order to claim with confidence that the ERF effect is a functional homologue of an 

ERP effect, it is necessary to demonstrate that the effect is sensitive to experimental 

manipulations in the same way. This experiment provides such a demonstration.

Frontal ERF old/new effect

An early ERF old/new effect at left-ffonto-temporal electrode locations in the 300- 

500 ms time window (see Figure 9.4) showed a graded positive-going response, with 

the old/new effect for non-targets being larger than that for targets. The time course 

of this effect suggests that it is a homologue of the mid-frontal ERP old/new effect, 

which has been identified as an ERP correlate of familiarity (Curran, 2000; Friedman 

& Johnson, 2000). The fact, however, that the effect is larger for non-targets than for 

targets does not correspond with the mid-frontal ERP old/new effect findings in 

Experiment 5, in which there was little differentiation between the old/new effects
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for correct responses to targets and non-targets. This insensitivity to target/non-target 

status has been observed in other experiments in this thesis (see experiments 2 and 3) 

as well as in published work (Herron & Rugg, 2003b; Dzulkifli & Wilding, 2005; 

Dzulkifli, Herron & Wilding, 2006).

An alternative, however, is that this MEG old/new effect is the functional homologue 

of the mid-frontal ERP old/new effect, and the graded response to non-targets and 

targets seen here is either: (i) a product of superior signal:noise ratio for MEG over 

EEG, or (ii) a consequence of the fact that the ERP old/new effects are contaminated 

with activity from other generators for which activity propagates to mid-frontal 

electrode locations, and which is sufficient to obscure differences between the 

magnitudes of the mid-frontal old/new effects for targets and for non-targets.

Some support for this account comes from the argument that non-targets should be 

on average more familiar than targets because of their shorter interval between first 

and second presentations. Data consistent with this claim comes from a study in 

which it was shown that the availability of familiarity declines over lags of between 

8 and 32 intervening items (Yonelinas & Levy, 2002). This support is only indirect, 

however, and in further investigations of the correspondence between putative 

indices of familiarity in magnetic and electrical records of neural activity it will be 

important to use paradigms in which the mid-frontal ERP old/new effect has been 

shown to respond differently to an experiment manipulation of interest (e.g. 

Azimian-Faradani & Wilding, 2006; Woodruff, Hayama & Rugg, 2006).
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Staresina and colleagues (see Introduction, this chapter) reported morphologically 

similar old/new effects to those reported here. These comprised old/new effects at 

anterior locations in the 300-500 ms epoch, and the effects did not differentiate 

reliably between studied items that attracted high or low confidence judgments and 

old judgments attracting incorrect (new) responses (Staresina et al., 2005). There 

were trends for the effect to be larger for high confidence judgments, and this would 

be consistent with a familiarity account of the effect. These data might also be 

considered to be broadly consistent with the view that this MEG effect is the 

functional homologue of the mid-frontal ERP old/new effect.

Importantly, a second ERF old/new effect was evident at fronto-temporal scalp 

locations, this one occurring in the 500-800 ms time window (see Figure 9.4) and 

comprising a greater relative positivity for targets and non-targets in comparison to 

new items, with targets also being more positive-going than non-targets. There is no 

comparable modulation evident in the ERP data, a point emphasised by comparing 

the scalp maps shown in Figure 9.6 with those of Figure 7.3 for Experiment 5 (page 

228). The absence of a comparable modulation in the electrical record is intriguing, 

and the fact that this effect differentiates between targets, non-targets and new items, 

in a graded manner with targets being most positive-going, indicates that it is 

functionally dissociable from both the earlier frontal old/new effect (which showed a 

graded response but with non-targets being more positive-going), as well as the 

lateralised parietal effect (for which there was only an old/new effect for targets) 

with which it is co-temporal. It is possible that this effect could be an index of 

implicit memory, however this claim would gain greater credence if there were data 

available for unrecognised studied items (misses) which showed a greater relative
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positivity than new items, but was attenuated in comparison to the positivity for 

targets and non-targets. As such, with the available data and the fact that this effect 

has not been reported previously, future work that ascertains how this effect is 

modulated across paradigms with varying retrieval requirements than the task used 

here is required, before any specific functional significance can be assigned to this 

effect.

Concluding remarks

Three functionally dissociable effects were revealed in analyses of ERF old/new 

effects in an exclusion task that mapped closely onto an experiment in which EEG 

data was collected (see Chapter 7). One of these effects is likely to be a functional 

homologue of the left-parietal ERP old/new effect. This claim is supported by the 

similar time courses and sensitivities to experiment manipulations of the two effects. 

A second ERP old/new effect may be a functional homologue of mid-frontal ERP 

old/new effect, but the similarities between the two time courses of the two effects 

are not matched closely by equivalent sensitivities to the target/non-target 

manipulation in this experiment. Some reasons for this apparent difference in 

sensitivity were discussed, and ways to assess the correspondence between these two 

effects in subsequent experiments were outlined.

Finally, an ERF old/new effect with no apparent corresponding ERP correlate was 

evident at frontal electrodes between 500 and 800 ms. This effect was sensitive to the 

difference between all three item classes that attracted correct judgments, but 

functionally dissociable from the left-parietal ERF effect and the early frontal ERF 

effect. In combination, these data points emphasise that three functionally dissociable
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retrieval processes are revealed in exclusion tasks, and that in this context at least the 

information about retrieval processing that surface analysis of ERFs and ERPs 

provides is not mutually redundant. Whether this is true more generally in retrieval 

tasks, and in other cognitive domains, remains to be determined, and it is something 

that can only be established on a case by case basis. None the less, for studies of 

memory retrieval, these findings suggest that acquiring MEG in retrieval tasks will 

provide information complementary to that obtained with EEG, with obvious 

benefits for the resolution of cognitive accounts of memory retrieval. An obvious 

way in which to take this work forward is to acquire EEG and MEG conjointly in 

future experiments. This would exploit the properties of the established ERP 

functional correlates of recognition memory alongside the potentially greater 

sensitivity of the MEG to some experiment manipulations.

279



Figure 9.3. Grand averaged ERFs elicited by hits, correct rejections and repeated hits at inferior and mid-lateral ROIs. L= left, R = right, A -

anterior, C= central, P= posterior, S = superior, M= mid-lateral, I = inferior, MD= midline.
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Figure 9.4. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at anterior inferior and mid-lateral ROIs. Nomenclature as

for Figure 9.3.
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Figure 9.5. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at posterior superior and mid-lateral ROIs. Nomenclature

as for Figure 9.3.
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Figure 9.6. Scalp distributions of the ERF old/new effects for hits and repeated hits 

in Experiment 7. The data are shown for two post-stimulus epochs: 300-500 and 500- 

800 ms. The maps were computed from scores obtained by subtracting mean 

amplitudes from the ERFs evoked by correct rejections from hits and repeated hits. 

The amplitude differences (fT) between response categories can be interpreted 

relative to the colour bar on the right-hand side of the figure.
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Chapter Ten

General Discussion 

Introduction

The experiments described in this thesis were designed in order to contribute to an 

understanding of controlled retrieval processing, using variations on a design derived 

from the exclusion component of the PDP (Jacoby, 1991). The version of the 

exclusion procedure employed in all of the experiments in this thesis was introduced 

initially by Jennings & Jacoby (1997). In this variant, all study items are subjected to 

the same encoding operations. In the subsequent retrieval task, a proportion of new 

(unstudied) test items are repeated after an intervening lag (repeated test items). 

Either studied items or repeated test items can be designated as targets or non-targets 

in this design.

The findings in the experiments in which this design was employed included 

identification of multiple ERP correlates of memory processes, a partial resolution of 

apparent inconsistencies in the existing literature, insights into the boundary 

conditions for when control over retrieval can be exerted, and data germane to the 

question of the functional significance of the mid-frontal ERP old/new effect. The 

findings in the final experiment in this thesis also provide insights into the 

correspondences between the sensitivities of ERPs and ERFs to memory retrieval 

processes.
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The critical aspects of the existing ERP data that motivated the designs employed in 

this series of ERP experiments were the ways in which parietal ERP old/new effects 

elicited by classes of items designated as targets and non-targets changed according 

to task demands (Dzulkifli et al., 2006; Dzulkifli & Wilding, 2005; Herron & Rugg, 

2003a, 2003b; Wilding et al., 2005). Experiments 1 and 2 were designed to establish 

the extent to which comparable patterns of selective attenuation of left-parietal ERP 

old/new effects could be obtained across tasks with somewhat different retrieval 

demands than a standard exclusion task (Jacoby, 1991) -  the task-type employed in 

the majority of previous ERP exclusion studies. The only difference between 

experiments 1 and 2 was the encoding task used at study; a rhyming task was used in 

Experiment 1, whilst in Experiment 2, and the remaining experiments in this thesis, 

participants were required to read study words aloud.

The task employed in Experiment 3 was designed primarily to address questions 

regarding the disparity between the patterns of left-parietal ERP old/new effects for 

targets and non-targets in experiments 1 and 2 and previously published work in which 

the same paradigm was employed (Dywan et al., 1998, 2000, 2002). One explanation 

for the disparities across studies stemmed from the fact that, in experiments 1 and 2, 

the ratio of studied words to repeated test words was 2:1, contrasting with the 1:1 ratio 

in the studies of Dywan et al. Therefore, in Experiment 3, the probability of 

occurrence of studied and repeated test words was altered to a 1:1 ratio to replicate the 

ratio employed in the Dywan et al. studies. The reasoning behind this was to determine 

whether the disparities between studied and repeated test word ERP old/new effects 

across studies could be explained by this ratio difference.
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Experiment 4 was a direct replication of Experiment 3 except for the fact that 

target/non-target designation was reversed at test, such that repeated test items were 

designated as targets. The reason for this manipulation was the fact that no direct 

indicator of the memorability of the repeated test items could be obtained when they 

were designated as non-targets, since correct responses to new items and non-targets 

are made on the same key in this variant of the exclusion task. The absence of such 

information made it difficult to interpret unequivocally any changes in the non-target 

ERP old/new effects as being due to the strategic control of recollection, since 

participants may have correctly classified a proportion of non-targets because these 

items were simply forgotten and misclassified as new words (Herron & Rugg, 

2003a). Consequently, for the interpretation of the findings in terms of the control of 

recollective processes it was important that memory for non-targets was assessed 

directly.

In previous studies with similar levels of target accuracy to those in experiments 1-3 

(Dzulkifli et al., 2006; Dzulkifli & Wilding, 2005; Herron & Rugg, 2003a, 2003b; 

Wilding et al., 2005), a degree of attenuation of the non-target left-parietal ERP 

old/new effect was observed. This contrasts with the findings in Experiments 1-3 in 

this thesis, where no marked attenuation was evident. One possibility is that the 

nature of the paradigm employed in experiments 1 -3 was such that the level of target 

accuracy required in order to observe this attenuation is higher than in other 

incarnations of the exclusion task. Experiment 5 was designed in order to assess this, 

via the use of shorter study and test list lengths than in the preceding studies.
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Experiment 5 provided evidence that a degree of control of retrieval processing could 

be exerted in the repeated test version of the exclusion task, because the left-parietal 

ERP old/new effect was attenuated for non-targets relative to targets. Experiment 6 

was designed to explore whether factors other than target accuracy could also 

encourage controlled retrieval processing. The experiment was a direct replication of 

Experiment 3 (where the findings suggested that such a strategy was not 

implemented) but with the addition of an enforced limit on the time period in which 

participants were asked to make a test response. The reasoning for this approach was 

that when the time available to make responses is shortened, participants might be 

forced into relying on recollection of information about targets only, irrespective of 

the likelihood of recovering such information, because this would be an economical 

way of employing cognitive resources to complete the task under time pressure.

The remainder of the discussion is broken down into four sections. The first two 

sections focus on the ERP findings, and how the findings in this thesis relate to 

previous work. The first section deals with the functional significance of the mid- 

frontal ERP old/new effect and other memory related effects that occur in the same 

epoch as the mid-frontal ERP old/new effect but which have a more posterior scalp 

distribution. The second section focuses on modulations of the left-parietal ERP 

old/new effect, and in keeping with the central focus on how these data points relate to 

issues concerning control of retrieval; this is the largest of the first three sections in the 

General Discussion. The third section will then address the MEG experiment findings. 

These sections each begin with a brief summary of the relevant principal findings from 

the experiments reported in this thesis. In the last section, summaries and conclusions

287



are provided, along with a discussion of broader issues, and some suggestions for 

future work.

Mid-frontal ERP old/new effects

Summary o f experimental findings

For all of the experiments presented in this thesis a set of directed analyses were 

conducted, which included factors of category and site (three levels: F3, Fz, F4), for 

the 300-500 ms time window. This analysis strategy was selected as it has been argued 

that, at anterior sites near the midline in this post-stimulus epoch, ERPs are sensitive to 

item familiarity (Curran, Tepe, & Piatt, 2006; Rugg et al., 1998).

In Experiment 1 correct judgments to targets and non-targets did not differ and the 

ERP mean amplitudes for both response categories were more positive-going than 

those elicited by correct rejections and incorrect responses to targets (misses). Misses 

were also reliably more positive-going than correct rejections. Experiment 2 showed a 

similar pattern of findings, except that there were no reliable differences between the 

magnitudes of the effects for targets, non-targets and misses.

The directed analyses in Experiment 3 showed that the ERPs elicited by targets as 

well as non-targets were more positive-going than those elicited by correct 

rejections. There were no significant effects for the contrasts between targets, non

targets and misses. The pattern of differences between the old/new effects for the 

three classes of items at these mid-frontal electrodes is similar to that for experiments 

1 and 2.
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For Experiment 4, in which targets were the repeated test words, the directed 

analyses demonstrated that targets and non-targets were both more positive-going 

than correct rejections at these mid-frontal electrode sites. Targets were also more 

positive-going than non-targets, with this greater relative positivity maximal at Fz. 

Due to the lack of sufficient trials following artefact rejection, there was no miss data 

available for inclusion in this experiment. Experiment 5 showed a similar pattern of 

findings to experiments 1, 2 and 3, with targets (in this case the studied words) as 

well as non-targets both being more positive-going than correct rejections. As for 

Experiment 4 there were insufficient miss trials for inclusion in analyses.

In Experiment 6 targets and non-targets were both more positive-going than correct 

rejections at these mid-frontal electrode sites. The contrast between misses and 

correct rejections revealed no significant effects. There were also no significant 

effects for the contrasts between targets and non-targets, targets and misses, and non

targets and misses.

Functional significance o f the mid-frontal ERP old/new effect 

Mid-frontal ERP old/new effect as an index of familiarity

Rugg et al. (1998) were the first to suggest that the mid-frontal ERP old/new effect 

indexes familiarity. Rugg et al. (1998) employed one shallow (orthographic) and one 

deep (semantic) encoding task, while at test participants were asked to make old/new 

recognition memory judgments. ERPs associated with hits were relatively more 

positive-going than those associated with correct rejections at anterior-superior sites. 

This anteriorly distributed effect was of equivalent size in both the shallow and deep 

conditions. However, the magnitude of the left-parietal ERP old/new effect was
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influenced by the depth of processing manipulation: the effect was larger for ERPs 

associated with hits in the deep than in the shallow encoding task. Rugg et al. 

suggested that the anterior modulation is an index of familiarity, a claim based upon;

1) the fact that this modulation preceded the putative index of recollection, 2) the ERP 

old/new effects associated with the deep and shallow conditions were of equivalent 

size, and 3) the effect was not present for misses. The results of Rugg et al. provide, 

however, equivocal evidence for the link between the mid-frontal ERP old/new effect 

and familiarity. This is because a number of studies have demonstrated that both 

recollection and familiarity are affected by depth of processing at encoding, though 

recollection is typically influenced more than familiarity (Gardiner, Java, & 

Richardson-Klavehn, 1996; Khoe, Kroll, Yonelinas, Dobbins, & Knight, 2000; Toth, 

1996; Wagner, Gabrieli, & Verfaellie, 1997; Yonelinas, Kroll, Dobbins, Lazzara, & 

Knight, 1998).

Despite this caveat, the findings in a number of subsequent studies have provided 

some empirical support for the link between this effect and the process of familiarity 

(Curran, 1999, 2000, 2004 -  Experiment 1; Curran & Dien, 2003; Curran & Friedman, 

2003; Curran, Tanaka, & Weiskopf, 2002; Duarte, Ranganath, Winward, Hayward, & 

Knight, 2004; Duzel, Vargha-Khadem, Heinze, & Mishkin, 2001; Finnigan, 

Humphreys, Dennis, & Geffen, 2002 - Experiment 2; Mecklinger, 2000; Nessler & 

Mecklinger, 2003; Nessler, Mecklinger, & Penney, 2001, 2005; Tendolkar et al.,

1999). The vast majority of these relevant findings had the same pattern of statistical 

outcomes. These took the form of changes in the amplitude of the left-parietal ERP 

old/new effect, accompanied by the absence of changes in the mid-frontal ERP 

old/new effect (see e.g. Curran, 2000; Curran & Cleary, 2003; Nessler, Mecklinger, &
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Penney, 2001). In a series of ERP studies, this pattern of effects has been obtained for 

different old/lure combinations, where lures that are similar to test items evoked the 

mid-frontal ERP old/new effect, while copy cues (study items re-presented unchanged 

at test) elicited both left-panetal and mid-frontal ERP old/new effects (see e.g. Curran, 

1999, 2000; Curran & Cleary, 2003; Nessler & Mecklinger, 2003; Nessler, 

Mecklinger, & Penney, 2001). Under the assumption that similar lures attract old 

responses on the basis of familiarity rather than recollection, these data points support 

the familiarity account of the mid-frontal ERP old/new effect (for additional review, 

see Chapter 3).

The findings in two recent ERP studies of recognition memory are also particularly 

important to the relevance of the mid-frontal ERP old/new effect as an index of 

familiarity as they suggest that the mid-frontal ERP old/new effect indexes the 

process of familiarity in a graded manner. First, Woodruff and colleagues (Woodruff, 

Hayama, & Rugg, 2006) showed that the mid-frontal ERP old/new effect increases in 

magnitude along with the level of confidence that accompanies a recognition 

memory decision. Second, the mid-frontal ERP old/new effect is sensitive to changes 

in criterion placement (Azimian-Faridani & Wilding, 2006, also see Curran, 2004; 

Bridson, Fraser, Herron & Wilding, 2006). Both of these factors have been 

associated with the process of familiarity to a greater degree than with recollection 

(see Yonelinas, 2002).

Additional data points relevant to the functional significance of the mid-frontal ERP 

old/new effect have come from the use of the same paradigm used in this thesis. 

Across three experiments, Bridson et al, (2006) showed that when participants were
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asked to respond on one key to studied words and on another to new as well as to 

repeated test words (experiments 1 & 2) at mid-frontal electrode locations in the 300- 

500 ms time window ERPs elicited by misses were reliably more positive-going than 

those elicited by correct rejections, however, when repeated test and studied words 

were assigned to the same key (Experiment 3) this was not the case. These findings 

support the link between this modulation of the electrical record and familiarity in so 

far as the designs of the experiments lead to the prediction that the average level of 

familiarity associated with misses should be higher in the first two experiments than in 

the third.

Mid-frontal ERP old/new effect as an index of conceptual priming

An alternative interpretation is that the mid-frontal ERP old/new effect indexes 

conceptual priming (Paller, Voss, & Boehm, 2007; Voss & Paller, 2006; 2007; Yovel 

& Paller, 2004), and the reason the mid-frontal ERP old/new effect varies according to 

response confidence is because the same processes that contribute to variations in the 

confidence with which responses are made are also those that introduce variations in 

the degree of conceptual priming.

One of the initial studies cited as challenging the link between the mid-frontal ERP 

old/new effect and familiarity is that of Olichney et al. (2000). During this study, 

participants (amnesic patients and controls) were required to decide whether study 

items were semantically congruent or incongruent (e.g. ‘yes’ for ‘baby animal: cub’; 

‘no’ for ‘water sport: kitchen’) and these cues were repeated up to three times during 

the task. The central maximum N400 was larger (more negative-going) for 

incongruent than congruent items, consistent with the view that the N400 is sensitive
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to the semantic correspondence between successive stimuli (Kutas, 1988). In addition, 

however, the N400 was less negative-going for repeated test items.

As this was true for patients and controls, Olichney et al. suggested that this repetition 

effect was an index of preserved implicit memory - conceptual priming. Yovel &

Paller (2004, see also Voss & Paller, 2006) suggested that this account may also apply 

to the mid-frontal ERP old/new effect. They supported this proposal by arguing that, in 

verbal memory tasks, familiarity and conceptual priming are typically confounded. In 

addition, they argued that their failure to obtain reliable mid-frontal ERP old/new 

effects for unfamiliar faces (Yovel & Paller, 2005) supported this account because 

their behavioral data indicated that these items were familiar, but are presumably not 

associated with conceptual priming.

One problem with this interpretation of the data due to Olichney et al. (2000) is the 

fact that there is little in the paper to encourage the view that their N400 modulations 

share the anterior distribution associated with the mid-frontal ERP old/new effect. In 

addition, the data were not obtained in a direct memory task, and the use of repetitions 

of category cues might also have prompted participants to recover the appropriate test 

item before it was presented. If this was the case it is unclear what is being indexed in 

ERPs time-locked to the subsequent items.

These data aside, the null result for unfamiliar faces reported by Yovel & Paller (2004) 

challenges the view that the mid-frontal ERP old/new effect is a generic index of 

familiarity, although the perspective is complicated by the fact that mid-frontal ERP 

old/new effects have been reported for unfamiliar faces in some experimental
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conditions (Johansson, Mecklinger & Treese, 2004; Curran & Hancock, 2007). In 

addition, reliable mid-frontal ERP old/new effects have been observed for non- 

nameable figures (Curran & Cleary, 2003), which are presumably not susceptible to 

conceptual priming. The reason for these inconsistencies for faces remains unclear (for 

discussion see Donaldson & Curran, 2007), and there are numerous design differences 

across these experiments that may be influential, one notable one being disparities in 

the interval between presentations at study and again at test. The rates of decay for 

different stimulus types may also contribute to some of the differences in the existing 

literature.

If conceptual priming is indexed by the mid-frontal ERP old/new effect, it should be 

possible to observe changes in the magnitude of the mid-frontal ERP old/new effect 

when conceptual priming is varied but familiarity is unchanged. However, to date, 

only the opposite pattern has been shown: that is changes in the magnitude of mid- 

frontal ERP old/new effects when conceptual priming is likely to have been constant 

but familiarity varies (Ecker, Zimmer, & Groh-Bordin, 2007; in press; Groh-Bordin, 

Zimmer, & Ecker, 2006; Groh-Bordin, Zimmer & Mecklinger, 2005; Schloerscheidt & 

Rugg, 2004). The fact that the mid-frontal ERP old/new effect varies according to 

study-test overlap in some circumstances - for example when test modality or intrinsic 

versus extrinsic features of a stimulus are manipulated - presents a strong challenge to 

conceptual priming accounts of the mid-frontal effect (Rugg & Curran, 2007).

In summary the validity of a conceptual priming account is challenged by its inability 

to account for various data points, including; the variability in the magnitude of the 

mid-frontal ERP old/new effect with differing response criteria (Woodruff et al,
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2006; see also Bridson et al, 2006), the occurrence of mid-frontal ERP old/new 

effects for false alarms and correctly recognized old items (Curran, 2000; Wolk et al,

2006), and the attenuation of the mid-frontal ERP old/new effect when old and new 

items are equated in familiarity strength (Woodruff et al, 2006). Furthermore, the 

mid-frontal ERP old/new effect demonstrates a positive across-participants 

correlation with familiarity-based recognition performance (Curran et al, 2006). As 

there is also evidence that the mid-frontal ERP old/new effect is not sensitive to 

format change between an item’s initial and subsequent encounter (Schloerscheidt & 

Rugg, 2004; Groh-Bordin et al, 2006), it is most likely that a conceptual priming 

account for the mid-frontal ERP old/new effect is too limited, even if priming 

invariably contributes to familiarity-driven recognition (Rugg & Curran, 2007).

The experiments presented in this thesis were designed primarily in order to address 

issues concerning control of retrieval via assessments of modulations of left-parietal 

ERP old/new effects. As such they were not designed to contribute to the question of 

the functional significance of the mid-frontal ERP old/new effect. The data do, 

however, provide a form of evidence that has not been reported consistently before, 

and below the extent to which the data provide support for each of the familiarity or 

conceptual priming accounts of the mid-frontal ERP old/new effect is assessed.

Functional interpretations o f  the mid-frontal ERP old/new effect data 

Across all six ERP experiments there were reliable mid-frontal old/new effects for 

targets and non-targets (see Figure 10.1). In the experiments in which miss data was 

available (experiments 1,2,3 and 6), the mean amplitudes for misses at mid-frontal 

electrode locations lay between that of the correctly identified old items (targets and
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non-targets) and correctly identified new items. The difference between misses and 

correct rejections was only reliable in experiments 1, 2 and 3, and across experiments, 

the pattern of statistically reliable differences between misses and old items attracting 

correct judgments was not entirely consistent. The very similar distribution of mean 

amplitudes across experiments that is shown in Figure 10.2 is quite striking, however.

Figure 10.1. Mean amplitudes o f mid-frontal ERP old/new effects (amplitudes 

averaged across F3, Fz, and F4) for hits and repeated hits in the 300-500 ms time 

window for experiments 1 -6.

Repeated hit

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6
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Figure 10.2. Mean amplitudes of mid-frontal ERP old/new effects (amplitudes 

averaged across F3, Fz, and F4) for hits, repeated hits and misses in the 300-500 ms 
time window for experiments 1, 2, 3, and 6.

Repeated hit

Experiment 1 Experiment 2 Experiment 3 Experiment 6

As mentioned previously (see Chapter 1), most dual-process models of recognition 

memory assume that familiarity reflects the assessment of a continuous index of 

memory strength. In terms of the Signal Detection Model (SDM), individual items can 

be assumed to fall somewhere along a continuous familiarity axis (Yonelinas, 1994). 

New items fall toward the lower end of this continuum, due to their lower familiarity 

value relative to studied items, and the distributions of old and new items overlap. It is 

assumed that, in order to use familiarity as a basis for old/new discrimination, a 

criterion must be set. Only items that exceed the criterion will receive an old response. 

Misses and false alarms occur when old and new items, respectively, fail to reach or 

exceed the criterion. According to the SDM model, therefore, the levels of familiarity



associated with misses should fall somewhere between the levels associated with hits 

and with correct rejections.

If the mid-frontal ERP old/new effect indexes familiarity, then misses should elicit 

mid-frontal ERP old/new effects that are of a smaller magnitude than those elicited by 

hits, but still differ from the ERPs elicited by correct rejections. This is the pattern of 

data that Figure 10.2 shows clearly, although as noted above, in not all cases were the 

differences between the critical response categories reliable. These findings mirror 

those in the previous literature; although in general, previous findings are that misses 

tend to differ only minimally (and not significantly) from correct rejections (e.g. 

Wilding, Doyle & Rugg, 1995; Wilding & Rugg, 1996, 1997; Curran & Hancock,

2007).

The absence of reliable differences between all of the critical response categories is 

perhaps unsurprising given the relatively small magnitude of the mid-frontal old/new 

effect (Curran, 2004; Azimian-Faridani & Wilding, 2006). So too is a greater 

similarity between misses and correct rejections rather than misses and hits in some 

studies: according to a SDM account differences in familiarity strength between hits 

and misses should on average be larger than the differences between misses and 

correct rejections because the latter two familiarity distributions should have more 

overlap (both falling below the new/old criterion).

Somewhat different considerations apply, however, for the task employed in the 

experiments in this thesis. First, because of the short repetition lag, the repeated test 

items are likely to be highly familiar, so in principle high levels of familiarity are a
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good cue for identifying a repeated item. Consider, however, studied items. If 

recollection and familiarity are independent bases for task judgments (Jacoby, 1998; 

Jacoby, Woloshyn, & Kelley, 1989), then some studied items will be familiar but not 

recollected. For these items, moderate to high levels of familiarity would not be a good 

basis for task judgments, assuming that many repeated test words are highly familiar 

because of the short lag between first and second presentations. As a result, familiar 

but not recollected studied words can attract incorrect responses despite relatively high 

levels of familiarity. This logic goes some way to explaining the magnitudes of the 

old/new effects elicited by misses in this series of experiments (see also Bridson et al., 

2006).

In summary, the findings in the experiments in this thesis provide some evidence that 

the mid-frontal ERP old/new effect is a functional correlate of familiarity. Stronger 

support, however, would have accrued if there were consistent statistical 

demonstrations that the mean amplitudes associated with misses were reliably less 

positive-going than those associated with targets, and more positive-going than correct 

rejections. It is not straightforward, however, to estimate the degree to which the ERPs 

associated with these categories should converge, since incorrect target responses are 

made on the same key as new items and correct non-target responses, hence an 

unknown proportion of incorrect target responses are presumably ‘forgotten’ items 

that are associated with relatively low levels of familiarity.

How do the findings in this thesis speak to the conceptual priming account of the mid- 

frontal ERP old/new effect? If it is assumed that some experiment manipulations that 

influence familiarity also influence conceptual priming (Voss & Paller, 2007), then in
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the absence of knowing which manipulations will do this, there is no way to adjudicate 

between a conceptual priming and a familiarity account of the mid-frontal old/new 

effect. If conceptual priming is uncorrelated with familiarity, and if the mid-frontal 

effect indexes conceptual priming, there is no reason for the ERPs associated with 

misses to differ from those associated with studied and repeated test items. As no 

attempts were made to manipulate familiarity and conceptual priming in the 

experiments in this thesis, the data cannot support unequivocally one or other of these 

functional accounts.

Overall, however, the evidence linking the mid-frontal ERP old/new effect to 

familiarity is strong; and the findings in this thesis provide further supportive data. 

However, the cognitive operations reflected by this effect remain to be refined. There 

are, for example, grounds for thinking that the mid-frontal ERP old/new effect does 

not reflect familiarity directly. Tsivilis et al. (2001) had participants study visual 

objects superimposed onto background scenes. During test, old and new objects were 

superimposed on either studied or new backgrounds. Correctly classified old objects 

superimposed on studied backgrounds elicited a mid-frontal ERP old/new effect, 

whereas objects superimposed on a new background did not, although a behavioural 

study revealed no differences between the two conditions in estimates of familiarity. 

Tsivilis et al. proposed that the mid-frontal ERP old/new effect reflects processes 

downstream from those responsible for computing the familiarity of the different 

components in a single event, and that an earlier old/new effect (onsetting at 

approximately 120 ms post-stimulus) might be a more direct reflection of the 

accumulation of familiarity information, although this suggestion has not resulted in 

published follow-up investigations to date. A recent study by Ecker et al. (2007)
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extended the findings of Tsivilis et al. (2001) by demonstrating that a test item on a 

novel background elicits a mid-frontal ERP old/new effect when attention is oriented 

to the item, but not when both item and background are attended to. Thus, the effect 

reflects attentionally mediated processing of multiple sources of information. In so 

far as conceptual priming is an implicit process, the sensitivity of the effect shown by 

Ecker et al. is arguably more consistent with a familiarity than a conceptual priming 

account.

Finally, it is worth noting that when reliable changes have been observed in the mid- 

frontal ERP old/new effects across at least two conditions (e.g. Azimian-Faridani & 

Wilding, 2006), they have occurred alongside relatively strong behavioural 

manipulations, which indicate that ERPs may not be as sensitive to fluctuations in 

familiarity as behavioural data (see Curran, 2004 for similar points). This observation 

is important, because it suggests that, despite the growing body of data linking the 

mid-frontal ERP old/new effect to familiarity, the utility of this index as a functional 

tool may be somewhat limited. This may be especially true for single-case/patient 

studies (although see Duzel et al., 2001), but also true in cases where paradigms do not 

permit clean separations between responses made on the basis of different processes, 

or when the design precludes acquisition of data on a sufficient number of trials to 

achieve excellent signal :noise.

Parietal ERP old/new effects in the 300-500 ms time window

It has been proposed that two functionally distinct ERP old/new effects, with fronto- 

central and parietal maxima respectively, are evident in the 300-500 ms post

stimulus time-window (Azimian-Faridani & Wilding, 2006; Rugg et al., 1998). Rugg
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et al. (1998) linked the posterior effect with implicit memory, since in their study the 

effect differentiated only the old/new status of test items and not the accuracy of 

memory judgments.

The findings in Experiment 3 are somewhat consistent with this account as at 

posterior sites correct responses to targets and non-targets, as well as incorrect 

responses to targets, were reliably more positive-going than correct rejections (see 

Figure 10.3). Therefore, the ERPs at these posterior locations index the old/new 

status of test items but do not predict the accuracy of memory judgments. This 

pattern of data fulfils one criterion for being an index of implicit memory, but in this 

experiment, as in all prior studies to date where this has been demonstrated, the 

effect was not accompanied by a behavioural index of implicit memory such as a 

measure of priming (Azimian-Faridani & Wilding, 2006).

However, the data from the remaining experiments are not as straightforward to 

interpret in this manner, as the old/new effect for misses is smaller than for targets 

and non-targets (see Figure 10.3). If this early parietal modulation is a functional 

correlate of implicit memory processes it would be anticipated that the effect should 

be of equal magnitude for all items that are re-presented at test, or at least for correct 

and incorrect responses to targets, and that across a series of appropriately counter

balanced experiments the findings should be similar. As such the findings from the 

experiments in this thesis offer only weak support for the view that this effect is a 

correlate of implicit memory.
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Figure 10.3. Mean amplitudes of ERP old/new effects (amplitudes averaged across 

P3, Pz, and P4) for hits, repeated hits and misses in the 300-500 ms time window for 
experiments 1, 2, 3, and 6.
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Summary o f experimental findings

For one set of directed analyses, the analyses within each experiment were conducted 

over the 500-800 ms time window, and included factors of category, hemisphere, and 

site (four levels: P3, P4, P5, P6). This time window was selected as it captures the 

period during which the left-parietal ERP old/new effect is primarily evident 

(Friedman & Johnson, 2000; Rugg, Herron, & Morcom, 2002).
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Experiment 1 established that in the 500-800 ms period, ERPs associated with targets 

and non-targets were relatively more positive-going than those associated with correct 

rejections. In Experiment 2, where the encoding task was changed to one in which the 

participants were required to read the study word aloud, the directed analysis 

confirmed that ERPs evoked by targets and non-targets were again more positive- 

going than those evoked by correct rejections. In both experiments there were no 

differences between the ERPs elicited by misses and correct rejections at parietal 

locations in the 500-800 ms epoch.

In Experiment 3, where the ratio of studied to repeated test items was changed to 1:1, 

the directed analyses again confirmed that ERPs associated with targets and non

targets were reliably more positive-going than those associated correct rejections.

There was, however, a trend for the target old/new effect to be larger than the non

target effect. This greater relative positivity for targets than for non-targets was 

significant in Experiment 4, where the targets were the repeated test items, and where 

there was no reliable parietal old/new effect for non-targets (studied words).

The pattern of findings in Experiment 4 was replicated in Experiment 5. In this 

experiment studied items were designated as targets, and the levels of target accuracy 

were increased relative to the earlier studies. The ERPs elicited by targets were 

significantly more positive-going than those elicited by non-targets, and non-targets 

were more positive-going than correct rejections. The directed analyses in Experiment 

6, where the response time at test was limited to 1 second, revealed the same pattern of 

parietal ERP old/new effects as for experiments 1, 2 and 3; targets and non-targets 

were both more positive-going than correct rejections and did not differ reliably from
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each other. See Figure 10.4 for an illustration of the magnitudes of the parietal ERP 

old/new effects for targets and non-targets in all six experiments.

Modulations o f the left-parietal ERP old/new effect

Two of the initial motivations behind the studies presented in this thesis were to 

assess the generality of the findings of two study context exclusion tasks to a 

paradigm with somewhat different task demands, and the generality of the 

explanation offered initially by Herron & Rugg (2003b) for the attenuation of left- 

parietal ERP old/new effects in exclusion tasks under some circumstances but not 

under others.

Figure 10.4. Parietal ERP old/new effects (amplitudes averaged across P3, Pz, and 

P4) for hits and repeated hits in the 500-800 ms time window for experiments 1-6.
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The ERP findings that are most relevant to the work in this thesis are those relating 

to the left-parietal ERP old/new effects elicited by correct judgments to targets and to 

non-targets in exclusion task studies. In a number of recent studies, the magnitude of 

the left-parietal ERP old/new effects has been markedly larger for targets than for 

non-targets (e.g. Czemochowski, Mecklinger, Johansson, & Brinkmann, 2005; 

Dzulkifli, Herron, & Wilding, 2006; Dzulkifli & Wilding, 2005; Herron & Rugg, 

2003a, 2003b; Homberger, Morcom, & Rugg, 2004). If it is the case that the left- 

parietal ERP old/new effect indexes recollection, then these data suggest that 

participants relied upon recollection of information about targets to complete the task 

to a markedly greater degree than on information about non-targets (Herron & Rugg, 

2003a, 2003b).

Turning to the data in this thesis, parietal ERP old/new effects were reliable for 

targets in all 6 ERP experiments, and for non-targets in experiments 1, 2 3, 5 and 6. 

The non-target left-parietal ERP old/new effect was significantly attenuated in 

magnitude in comparison to that for targets in experiments 4 and 5. Targets were 

denoted as studied words in experiments 1, 2, 3, 5 and 6, and as repeated test words 

in Experiment 4.

This example of differential attenuation of non-target parietal old/new effects across 

experiments replicates key prior findings (Dzulkifli et al., 2006; Dzulkifli & Wilding, 

2005; Herron & Rugg, 2003a, 2003b; Wilding et al., 2005). Consistent with these, 

the differential attenuation of the ERP old/new effects for non-targets occurred 

across a set of experiments in which the likelihood of a correct target judgment was
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lower in some than in others. As in previous cases, the greater attenuation of non

target old/new effects relative to the respective target effects occurred in the 

experiment in which the likelihood of a correct target judgment was higher. As in 

Experiment 5, target accuracy was higher than in all other comparable studies 

(Experiment 4 is a special case because repeated test items were designated as 

targets, so the direct contrast across experiments is weaker. None the less, the 

parietal old/new effects were larger for targets than for non-targets (studied items), 

and levels of target accuracy were high).

These findings are therefore consistent with the view that participants adopt 

strategies in exclusion tasks whereby the extent to which recollection of information 

of targets is likely determines the extent to which recollection of information about 

non-targets will be prioritised (Herron & Rugg, 2003b). Importantly, the findings 

generalise those obtained in previous experiments to circumstances under which one 

class of ‘old’ test items comprises items repeated during the exclusion test phases.

However, in the previous exclusion task studies where new items were not repeated, 

some degree of attenuation of non-target old/new effects has been reported with 

levels of target accuracy comparable to those reported in experiments 1,2,3 and 6, 

which resulted in no significant attenuation of the left-parietal ERP old/new effect 

for non-targets here (cf. Dzulkifli et al., 2006; Dzulkifli & Wilding, 2005; Herron & 

Rugg, 2003a, 2003b; Wilding et al., 2005). It may be the case that the reason for the 

findings here is due to the difficulty in controlling recollection of the repeated test 

items, with the findings in earlier studies reflecting relatively lower degrees of 

difficulty for the non-target categories employed in those experiments.
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Therefore, under the experimental circumstances of the paradigm employed in this 

thesis, the levels of target accuracy necessary to observe attenuation of lefl-parietal 

old/new effects — and therefore to license claims about selective recollection of task 

relevant information -  need to be higher than those at which attenuation is observed 

in standard exclusion task paradigms. The finding in Experiment 5 that increasing 

target accuracy (from a mean of 0.66 across experiments 1, 2 and 3 to 0.79 in 

Experiment 5) led to a significant difference in the magnitude of the left-parietal ERP 

old/new effects for targets and non-targets, suggests that there is some factor of the 

experimental paradigm and its associated cognitive demands that requires target 

accuracy to be even higher in order to enable participants to prioritise the recollection 

of target information over that of non-target information. These data suggest that the 

likelihood of recollecting information about targets is not the only factor influencing 

the strategy adopted by participants in exclusion tasks, in keeping with the findings 

of Herron & Wilding (2005).

What other factors could be influencing the strategy participants use to complete this 

incarnation of the exclusion task? One possibility, as outlined above, is that it is 

simply the fact that control of recollection for items presented very recently is 

somewhat more difficult than exerting control over recollection when longer periods 

intervene between presentation and re-presentation of critical stimuli. A more general 

consideration, however, is that the results in this thesis are due at least in part to the 

availability and use of different processes to support task judgments.
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In considering the variant of the exclusion task used here it is entirely possible that to 

correctly exclude non-target items one does not need to use recollection of either 

target or non-target information. Instead, the relative levels of familiarity for each 

item class can be used to complete the task. The repeated test items, by virtue of the 

short lag between presentations, are presumably associated with high levels of item 

familiarity (Yonelinas & Levy, 2002), whereas studied items would be associated 

with lower levels, under the assumption that familiarity declines appreciably more 

during the period between presentations of studied items than during the period 

between presentations of repeated test items.

Can a “familiarity only” account accommodate the findings in this thesis? One piece 

of relevant data comes from Experiment 5, in which there was attenuation of the non

target left-parietal ERP old/new effect in comparison to the target effect, an aspect of 

the electrical record linked with recollection and not with familiarity. The results of 

Experiment 5 suggest that recollection was used strategically to prioritise task

relevant information in order to complete the task. The key difference between 

Experiment 5 and the remaining experiments in the thesis, however, was the use of 

shorter study and test blocks (utilised in order to increase target accuracy levels), 

which could have resulted in a greater degree of similarity in the relative levels of 

familiarity for target and non-target items than in the other experiments. That is, the 

temporal difference between the re-presentation of each class of item was reduced, 

and as a result relative familiarity levels of targets and non-targets may have become 

less distinct, hence the usefulness of familiarity for task judgments was reduced far 

enough that participants relied primarily on recollection of target information in 

order to distinguish between targets and non-targets. According to this argument,
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therefore, a “familiarity only” account does not hold for Experiment 5, but the lack 

of any difference between the left-parietal ERP old/new effects for targets and for 

non-targets in the remaining experiments does not preclude an interpretation of their 

findings in terms of a reliance on different levels of familiarity.

If familiarity is the sole basis for task responses within this incarnation of the 

exclusion task then the patterns of data for the putative electrophysiological index of 

familiarity (the mid-frontal ERP old/new effect) become relevant. One argument 

would be that, if differences in familiarity are employed solely in order to complete 

some study/repeated test exclusion tasks, then correct responses to repeated test 

items (repeated hits) should elicit larger old/new effects than correct responses to 

studied items. Similarly, the mid-frontal effects for correct responses to studied 

words should be smaller than those for incorrect responses to studied words. This is 

not the case across any of the relevant ERP experiments reported in this thesis (see 

Figure 10.2).

One caveat to interpreting this pattern of mid-frontal ERP old/new effects, however, 

is the response requirements of the task. As correct rejections, repeated hits and 

studied misses are all associated with responses made on the same key it is 

impossible to determine which proportion of, for example, misses reflect studied 

items that are genuinely forgotten, and which proportion are due to their 

misinterpretation as repeated test items. Because of this, the averaged mid-frontal 

ERP old/new effects for repeated hits and studied misses are presumably some 

combination of forgotten and misinterpreted items. If the two kinds of trials 

contributing to the averaged waveforms are associated with different levels of
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familiarity, then it makes interpretation of similarities or differences between mid- 

frontal old/new effects for these categories somewhat difficult.

Perhaps the critical ERP data points are from Experiment 4, where repeated test 

items were designated as targets. According to the “familiarity only” interpretation 

above, in this case, the mid-frontal old/new effect for correct responses to repeated 

test items should be larger than that for studied items. The fact that it is not is 

important, because any attenuation of non-target effects in this experiment should 

actually be encouraging a difference between the magnitudes of these effects to 

emerge.

It is not possible from the data within this thesis alone to determine specifically the 

degree to which recollection or familiarity are used to complete the variant of the 

exclusion task used in experiments 1,2,3 and 6, and of course any explanation in 

terms of familiarity only needs also to accommodate the presence of robust parietal 

old/new effects for correct responses to studied as well as repeated test items (see 

Discussions in Chapters 5, 6 and 7). It is also worth emphasising that when target 

accuracy is increased recollection is more likely to be used (as in Experiment 5), and 

these data points argue strongly for the deployment of recollection in at least some 

circumstances.

These observations have particular relevance to which version of this task to use 

when inferences about the use of recollection are to be made. As the findings suggest 

that different strategies are employed dependent on task difficulty (as indexed by 

response accuracy), it is important to note that in populations who complete the same
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incarnation of the task, but who have different levels of response accuracy, it 

becomes difficult to make confident claims about task performance in regards to a 

deficit in a particular process.

This is a key issue should this task be employed in pursuit of defining memory 

changes across different populations in whom process-specific memory impairments 

may be present. However, by equating performance across different lags for different 

populations, it should in principle be possible to ascertain whether the selective 

control of retrieval exerted by one population can also be exerted, under comparable 

circumstances, by another.

This highlights one of the particular strengths of the paradigm employed here; that 

the use of varying lags in different populations provides a means of contrasting 

measures of neural activity across lags at which response accuracy is equated. 

Furthermore, it is precisely for this reason that Jennings & Jacoby (1997) argued that 

this task was well-suited to assessments of changes in memory processing according 

to age. There is also the added benefit that concerns over differences across groups in 

following task instructions can be ruled out by demonstrating high and comparable 

levels of response accuracy across groups at short lags (Jennings & Jacoby, 1997).

On another note, a number of the findings reported in this thesis do not concur with 

some of the assumptions underlying the PDP (for details, see Chapter 1, pages 45- 

50), suggesting that under some circumstances the PDP would not accurately 

estimate the contributions of familiarity and recollection to performance. One such 

assumption is that correctly classified non-targets are excluded on the basis of
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recollection (Jacoby, 1991). Electrophysiological support for this interpretation 

would, therefore, comprise reliable parietal ERP old/new effects associated with 

correct judgments to non-targets (Herron & Rugg, 2003b), and these are evident in 

experiments 1, 2, 3, 4 and 6. The ERP data reported in Experiment 5 however, 

suggests that, at least when response accuracy for targets is high, the assumption that 

recollection is the basis for non-target judgments is questionable, which in turn calls 

into question the accuracy of recollection and familiarity estimates derived from the 

process-dissociation procedure.

The present findings therefore highlight the fragility of the boundary conditions 

surrounding the use of the exclusion task to assess recollection, as participants may 

make differential use of non-target information depending upon the accessibility and 

distinctiveness of target information. The exclusion task employed here differed 

from the classical exclusion task only in two ways; non-targets were presented in the 

test phase rather than in the study phase, and only targets were encoded using a study 

task, whereas non-targets received only incidental encoding from an initial new 

response on their first presentation at test. It therefore appears that the boundary 

conditions of the PDP can be violated either by presenting the targets and non-targets 

with a considerable temporal gap, or by rendering targets sufficiently distinct from 

non-targets.

Functional significance o f  the left-parietal ERP old/new effect 

The left-parietal ERP old/new effect is one of the most established correlates in the 

ERP memory literature. Numerous studies have shown that the left-parietal ERP 

old/new effect is sensitive to manipulations that are thought to affect recollection.
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For example, as mentioned in Chapter 3, the effect is larger for correct than incorrect 

source judgments (Curran, 2000; Wilding, 2000; Wilding & Rugg, 1996), and for 

‘remember’ than ‘know’ responses (Duzel, Yonelinas, Mangun, Heinze, & Tulving, 

1997; Smith, 1993; Trott, Friedman, Ritter, Fabiani, & Snodgrass, 1999), for 

correctly recognised old words than for pseudowords (Curran, 1999), for deeply than 

for shallowly encoded items (Rugg et al., 1998; Rugg, Allan, & Birch, 2000), and for 

intact word-pairs than for rearranged pairs (Donaldson & Rugg, 1998). This wealth 

of convergent evidence strongly suggests that the parietal old/new effect is a 

correlate of recollection. So strong is the link between recollection and the parietal 

old/new effect, it has been argued that the detection of a parietal old/new effect for a 

particular response category indicates that this response category is associated with 

recollection (Paller, Kutas, & Mclsaac, 1995). This assumption is made when 

interpreting the work in this thesis, with the specific assumption being that the 

differences between the magnitudes of left-parietal ERP old/new effects in different 

experiment conditions can license inferences about the degree to which recollection 

is engaged.

In more detail, the experiments presented in this thesis were designed to investigate 

strategic recollection, using modulations of the left-parietal ERP old/new effect as one 

means of accomplishing this. If the left-parietal ERP old/new effect indexes 

recollection, then contrasts between the size of the effect across targets and non-targets 

in exclusion tasks can in principle provide data relevant to this issue, and allows for 

inferences to be made about the degree to which recollection can be strategically 

prioritised for task relevant information under appropriate circumstances.
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As mentioned above the experiments in this report were designed on the assumption 

that the left-parietal ERP old/new effect is an index of recollection. How are the 

findings consistent with this functional interpretation? To answer this question it is 

necessary to consider the response requirements of the task. Jacoby (1991) has 

argued that, in the exclusion task, participants rely upon recollection of targets as 

well as recollection of non-targets in order to make task judgments. This assumption 

is required if one wishes to estimate the contributions that recollection and 

familiarity make to recognition memory performance using the computational 

approach provided by Jacoby and colleagues (the Process Dissociation Procedure 

(PDP): Jacoby, 1991; Jacoby, 1998). If this assumption is correct, then both targets 

and non-targets attracting correct judgments should be associated with left-parietal 

ERP old/new effects, if  this aspect of the electrical record is linked to the process of 

recollection (Friedman & Johnson, 2000; Rugg & Allan, 2000; Wilding & Sharpe, 

2003). The findings of reliable left-parietal ERP old/new effects for targets and non

targets in all of the experiments within this thesis can therefore be accommodated 

within the functional interpretation of the left-parietal ERP old/new effect as an 

index of recollection.

However, recent findings employing the exclusion task suggest that the functional 

significance of the left-parietal ERP old/new effect may be more complex (Dywan, 

Segalowitz & Webster, 1998). Employing the exclusion task, some ERP studies 

(Dywan, Segalowitz & Arsenault, 2002; Dywan et al., 1998, Dywan et al., 2001; 

Herron & Rugg 2003a; 2003b) have shown that correctly rejected non-targets may 

sometimes fail to elicit a left-parietal ERP old/new effect. Furthermore within the 

experiments presented in this thesis the left-parietal ERP old/new effect for non
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targets was significantly attenuated relative to targets in experiments 4 and 5. 

Considering this effect is held to reflect processes of recollection, the findings in this 

thesis license discussions about a more specific functional account of the left-parietal 

ERP old/new effect.

The pattern of results pertaining to non-target parietal ERP old/new effects arguably 

leads to two other possible conclusions for the functional significance of the left- 

parietal ERP old/new effect. The first of these is that the left-parietal old/new effect 

is not an obligatory correlate of recollection, but rather that it reflects additional 

processing contingent on recollection (Dywan et al., 2002; Dywan et al., 1998; 

Dywan et al., 2001). That is the effect is a consequence of attending selectively to the 

outputs of retrieval. Dywan et al (1998) suggested that the absence of this effect for 

non-targets in younger but not older participants completing the task used in this 

thesis reflects the younger participants greater ability to inhibit attending to retrieved 

non-target information (see also Dywan et al., 2002; 2001).

Herron & Rugg (2003 a) reported similar findings across two experiments involving a 

depth of processing manipulation. At test, left-parietal ERP old/new effects were 

elicited for correctly identified non-targets in Experiment 2 in which the encoding 

task for targets was shallow. The authors initially proposed that non-target 

information was, in fact, retrieved in both experiments, but was only attended to in 

Experiment 2 (Herron & Rugg, 2003 a). This attentional hypothesis would state that 

the left-parietal ERP old/new effect reflects the attentional and/or control processes 

that act upon recollected information as opposed to the recollected information itself.
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It could alternatively be concluded that the attenuation of the left-parietal ERP 

old/new effect for correctly classified non-targets in experiments 4 and 5 reflects 

processes underlying the retrieval of partial or less specified aspects of source 

information (Johnson et al., 1993). This interpretation would be predicted on the 

basis of previous reports of successful source attributions based on the retrieval of 

partial source information (Donaldson et al., 1998) as well as the findings that the 

left-parietal old/new effect may index the amount of information retrieved from 

episodic memory in a graded rather than “all-or-none” fashion (Vilberg, Moosavi & 

Rugg, 2006; Wilding, 2000). This information recovery account is distinguishable 

from the attentional account by its implication that the information retrieved itself 

can be controlled, rather than supposing that, across the products of retrieval, 

attention is controlled and orientated to particular outputs.

Support for the information recovery account comes from a study by Vilberg, 

Moosavi & Rugg (2006) in which a modified remember/know paradigm was used in 

conjunction with a study task that required an association to be formed between two 

pictures. On each test trial, participants were presented with one of the two pictures 

that had been presented on a study trial, or an unstudied picture. The response 

options allowed them to signal that they could recollect the picture that had been 

associated with the test item at study (R2), that they could recollect a detail or details 

of the study episode other than the associate (Rl), that no details could be recollected 

although the test item was highly familiar or, that the test item was new. The 

rationale for this procedure rests on the assumption that whereas an R2 judgment 

depends on retrieval of enough information to facilitate the retrieval of the test item s 

pairmate, an Rl response can be made on the basis of only partial retrieval of the
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encoding episode. The left parietal old/new effect was sensitive to the amount of 

information recollected, demonstrated through greater amplitude when elicited by 

test items associated with full relative to partial recollection (also see Wilding, 2000). 

These findings support the proposal that the left parietal ERP old/new effect is 

sensitive to the amount of information recovered from episodic memory.

With regards to the findings from the experiments presented in this thesis; according 

to the attentional account target and non-target information may have been 

recollected in all six experiments, but at test in experiments 4 and 5 participants 

attended to and employed target information only to complete the task. The 

information recovery account would interpret the same findings as evidence that in 

experiments 4 and 5 less non-target information was recollected than in the 

remaining experiments. The left-parietal ERP old/new data in this set of experiments 

can feasibly be interpreted by either of the hypotheses, and the data therefore, lends 

no more credence to one hypothesis than the other. Similar ideas to those expressed 

here are included in considerations of mechanisms of selective retrieval processing, 

and these are discussed below.

Mechanisms underlying selective retrieval processing

In one influential review chapter, Anderson & Bjork (1994) discussed several types 

of mechanism that can permit selective retrieval. The first is target bias, which refers 

to processes that operate on the critical memory representations themselves. Memory 

representations associated with the target category may be activated, making them 

more accessible than the representations for other memory contents. Selective 

accessibility of memory representation could also occur if memory representations
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associated with non-targets were inhibited. It is possible that activation and/or 

inhibition of memory representations can support selective retrieval processing. One 

consequence of adopting a specific retrieval strategy might be the continuous 

activation and/or suppression of memory representations for as long as is necessary, 

although these processes could also in principle be initiated on a trial-by-trial basis.

A second process that might be responsible for selective control of recollection is cue 

bias, which refers to the way in which specific units or aspects of a retrieval cue are 

more likely to interact with memory representations because of the way that the cues 

are processed. Thus this mechanism also provides a means for the implementation of 

selective retrieval. The notion of cue bias is somewhat comparable to Burgess and 

Shallice’s (1996) notions of cue specification, as well as the concept of focusing in 

the CMF (Schacter et al., 1998). Anderson & Bjork (1994) argued that cue bias could 

either take the form of ‘meaning bias’ or ‘context bias’. The context bias hypothesis 

states that recollection will fail when the contextual representation used to conduct 

the memory search does not match the contextual representation that was present at 

encoding. Therefore, if participants in the present experiments employed a 

contextual representation during the memory search that only matched the contextual 

representation formed during the encoding of targets, non-targets would be rendered 

irretrievable. This account also has parallels with the principles of transfer 

appropriate processing (Morris, Bransford, & Franks, 1977) and encoding specificity 

(Tulving & Thomson, 1973), which state that the extent of retrieval success depends 

upon the degree of overlap between processes engaged at encoding and processes 

engaged at retrieval. The present findings can be interpreted within this kind of a 

framework by proposing that participants selectively probed memory for target
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information by recapitulating processing operations carried out during study phase in 

the test phase.

A third account -  the attention bias account - is also possible. According to this view, 

selective recollection does not come about because of processes that operate during 

the interaction between retrieval cues and memory representations. Rather, it occurs 

because only some of the products of retrieval are attended to. Anderson & Bjork

(1994) argued that this attentional suppression can be applied to any representation 

which is perceived to interfere with performance. This account therefore locates 

selective retrieval processing at a post-retrieval locus, and so the concept of attention 

bias shares some similarities with the notions of monitoring and evaluation (Burgess 

& Shallice, 1996). This hypothesis is also consistent with other evidence suggesting 

that the parietal old/new effect is sensitive to the ‘task relevance’ of retrieved 

information. For example, the magnitude of the parietal old/new effect is typically 

larger in direct tests of recognition memory than in indirect tests such as semantic 

classification when episodic retrieval is incidental to the task (Duzel et al., 1999; 

Paller, Kutas, & Mclsaac, 1995; Rugg & Wilding, 2000). Rugg & Wilding (2000) 

observed that these findings may reflect not so much the failure to retrieve study 

information in indirect tasks, as the failure to allocate processing resources to the 

information once retrieved (cf. Rugg, Fletcher, Frith, Frackowiak, & Dolan, 1997).

One or more of these classes of mechanism might be responsible for the selective 

control of recollection. Thus, correspondingly, neural correlates of retrieval may 

reflect any of these types of control operation. One approach to distinguishing 

between these could be to compare complementary data across ERP and fMRI
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studies using the same experimental paradigm to investigate both the anatomy and 

time course of brain activity associated with strategic and control processes in 

episodic memory retrieval.

Exploring which brain regions are involved in the retrieval of task-relevant 

information could help differentiate between each of the above hypotheses. For 

example, if an fMRI experiment, with the same paradigm employed in this thesis 

showed changes in relative levels of neuronal activation for targets and non-targets in 

regions implicated in the retrieval of memory contents (for example the medial 

temporal lobe (MTL) and in particular the hippocampus) this would be consistent 

with a selective retrieval and not a selective attention account. Conversely, if a 

selective attention mechanism was responsible one would anticipate changes in 

neural activity in regions implicated in the orientation and maintenance of attentional 

processes, such as the pre-frontal cortex (PFC).

The neural basis of ERP old/new effects

In Chapter 2 it was emphasised that it is difficult to make inferences about the neural 

basis of scalp-recorded ERPs unless converging information from other brain 

imaging modalities as well as data from patients with selective brain damage is 

available. It is also important to note that none of the functional conclusions drawn in 

this thesis depend upon claims about the specific brain regions that are responsible 

for old/new effects.

There are no strong conclusions that can be drawn about the neural basis of the left- 

parietal ERP old/new effect; although the data from patient studies suggests that the
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effect depends upon the medial temporal lobes being intact (Smith & Halgren, 1989; 

Duzel et al., 2001; Rugg, Roberts, Potter, Pickles, & Nagy, 1991; Tendolkar et al., 

1999). The effect is unlikely to be a direct reflection of hippocampal or medial 

temporal lobe activity, however (Johnson, 1989; Rugg, 1995; Stapleton, Halgren & 

Moreno, 1987), and it has been suggested recently that left-parietal cortex is the 

likely brain region that generates this effect (Henson, Shallice, & Dolan, 1999). This 

account is based principally on the finding that this region has been activated in 

several fMRI studies o f episodic retrieval (e.g. Wheeler et al., 1997; Henson et al.,

1999), and in particular the findings of direct functional parallels between left- 

parietal cortex activation and left-parietal ERP old/new effects (Yonelinas, Otten, 

Shaw & Rugg, 2005; Spencer, Vila Abad & Donchin, 2000; Herron, Henson &

Rugg, 2004; Vilberg, Moosavi & Rugg, 2006; Vilberg & Rugg, 2007; Herron,

Quayle & Rugg, 2003).

The relatively focal anterior distribution of the mid-frontal ERP old/new effect 

suggests that tissue located close to the F3, Fz and F4 electrodes is responsible for the 

effect. This locates the generators in frontal and most likely pre-frontal cortex. 

Consistent with this account, Yonelinas et al. (2005) identified regions of left 

prefrontal cortex as cortical regions likely to index familiarity as they were regions in 

which activity was correlated positively with the confidence associated with 

judgments based upon familiarity. The absence of a markedly lateralised distribution 

of the mid-frontal effect is also not an impediment in this regard, because the locations 

at which scalp recorded EEG will be largest are influenced by the orientations of 

cellular configurations, which vary according to structural factors.
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It is also worth noting, however, that cells in the medial temporal lobe are responsive 

to stimulus repetition (Zhu, Brown, & Aggleton, 1995), and that they do so within 

200 ms o f  the presentation of a repeated stimulus. The disparity between the time 

courses o f  these cellular responses and the mid-frontal ERP old/new effect argues 

that this effect is a downstream index of a raw familiarity signal, and suggests that 

the effect is a consequence of ffonto-temporal interactions signalling the familiarity 

of a stimulus. However, familiarity-sensitive neuronal responses have also been 

identified in a variety o f prefrontal regions in primates (Xiang & Brown, 2004), and 

have onset latencies o f  approximately 250 ms, which is more in keeping with the 

time-course of the mid-frontal ERP effect. These findings suggest that the mid- 

frontal effect originates from one or more regions of the prefrontal cortex. A more 

precise anatomical characterisation than this is not possible at the present time.

MEG experiment findings

Three functionally dissociable effects were revealed in analyses of ERF old/new 

effects in an exclusion task that mapped closely onto Experiment 5. One of these 

effects is likely to be a functional homologue of the left-parietal ERP old/new effect. 

This claim is supported by the similar time courses and sensitivities to experiment 

manipulations of the two effects. A second ERP old/new effect was identified which 

may be a functional homologue of the mid-frontal ERP old/new effect, but the 

similarities between the two time courses of the two effects were not matched closely 

by equivalent sensitivities to the target/non-target manipulation in the MEG 

experiment. Finally, an ERF old/new effect with no apparent corresponding ERP 

correlate was evident at frontal electrodes between 500 and 800 ms. This effect was 

sensitive to the difference between all three item classes, but the greater relative
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positivity was for targets, in contrast with the graded pattern of effects for the early 

frontal ERF effect in which the relative greater positivity was for non-targets, and for 

the left-parietal ERF effect in which there was only an old/new effect for targets.

In combination, these data points emphasise that three functionally dissociable 

retrieval processes are revealed in exclusion tasks by MEG, and that in this context at 

least the information about retrieval processing that surface analysis of ERFs and 

ERPs provides is not mutually redundant. Whether this is true more generally in 

retrieval tasks, and in other cognitive domains, remains to be determined, and it is 

something that can only be established on a case by case basis. None the less, for 

studies of memory retrieval, these findings suggest that acquiring MEG in retrieval 

tasks will provide information complementary to that obtained with EEG, with 

obvious benefits for the resolution of cognitive accounts of memory retrieval. An 

obvious way in which to take this work forward is to acquire EEG and MEG 

conjointly in future experiments.

Concluding remarks

The electrophysiological correlate of recollection is the left-parietal old/new effect, 

(Rugg, 1995) and the effect was observed for correctly classified target items in all 

six experiments but was significantly attenuated for non-target items in experiments 

4 and 5. This suggests that recollection of information associated with non-targets 

occurred markedly less often than recollection of information associated with targets 

in these two experiments. The accuracy of task judgments was also superior in 

experiments 4 and 5 than in experiments 1,2,3 and 6. This differential attenuation of 

non-target parietal ERP old/new effects across experiments replicates previous
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exclusion task findings (Dzulkifli et al., 2006; Dzulkifli & Wilding, 2005; Herron & 

2003a, 2003b; Wilding et al., 2005), with the attenuation of the non-target 

ERP old/new effect taking place in the experiment in which the likelihood of a 

correct target judgment was highest. These findings are therefore consistent with the 

view that participants adopt strategies in exclusion tasks whereby the extent to which 

recollection of information of targets is likely determines the extent to which 

recollection of information about non-targets will be prioritised (Herron & Rugg, 

2003b).

One important question which the work in this thesis attempted to answer was 

whether target accuracy is the sole factor influencing the nature of the retrieval 

strategy adopted by participants in the exclusion task. In the studies of Wilding & 

Sharpe (2004), a non-target left-parietal old/new effect was observed even when the 

accuracy o f target judgments was high (> .70). In Wilding & Rugg (1997), target 

recognition accuracy was low (.58) and they reported a left-parietal old/new effect 

for non-target items, whereas in the study of Dywan et al. (1998) a left-parietal 

old/new effect was observed for targets only, although target accuracy was relatively 

poor (.58). These data suggest that target accuracy is not the only factor influencing 

the strategy adopted by participants.

One other factor that may influence the adoption of a specific strategy is the 

correspondence between targets and non-targets. In studies where target accuracy has 

been relatively high yet ERP old/new effects for non-targets have been obtained, 

targets and non-targets have been associated with what can be regarded as relatively 

similar kinds of information. For example, in the studies of Wilding and colleagues
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(Wilding & Rugg, 1997; Wilding & Sharpe, 2004), the target/non-target distinction 

was gender o f study voice (male/female). In the study of Cycowicz, Friedman and 

Snodgrass (2001) the distinction was colour (red/green). It may be the case that for 

certain kinds of information -  perhaps perceptual information bound to a stimulus -  

there is less opportunity to adopt a specific strategy that results in the selective 

processing of information associated with targets only. According to this account, 

therefore, the reduced effects for non-targets comes about because the encoding 

operations associated with targets and non-targets were sufficiently distinct to 

support a strategy of processing targets relatively selectively. It remains to be seen 

whether this as well as other factors also influence the likelihood of the adoption of a 

strategy of prioritising recollection of information about targets only.

These findings concerning the boundary conditions under which recollection of some 

forms of information is prioritised at the expense of others -  either strategically or as 

a necessary consequence of task demands - are important for at least three reasons. 

First, with respect to the process-dissociation procedure, a core assumption is that, in 

the exclusion task component of the procedure, non-target judgments are made upon 

the basis of recollection (Jacoby, 1991, 1998).

The findings reported within this thesis did not concur with this prediction, as it 

appears that non-targets were not excluded on the basis of the recollection of 

associated source information in experiments 4 and 5, but rather through the failure 

to recollect source information associated with targets, this interpretation being 

contingent on the functional interpretation of the left-parietal ERP old/new effect as a 

correlate of the degree to which recollection is engaged. This finding either implies
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that some non-targets were not recollected at all, or that recollected information was 

not employed in the exclusion of these items.

This naturally has implications for the employment of this task in different 

populations, notably older participants, which Jennings & Jacoby (1997) have 

identified explicitly as one group for whom this would make a useful task to employ 

in order to identify deficits in recollection. Whist the task remains a practical tool for 

investigating memory impairment with age, due to the ability to vary the intervening 

lag of the repeated test items, it may be more useful in the discussion of questions 

regarding the understanding of how and when control over recollection changes with 

age, rather than for making claims about changes in the availability of recollection.

Investigation of the boundary conditions under which selective recollection occurs is 

a means of determining the mechanisms that are responsible for the recovery and use 

of some forms of information at the expense of others. Herron & Rugg (2003a) 

favoured the view that the reason for selective recollection of task-relevant 

information is the engagement of cue-specification processes, whereby internal 

representations generated by external cues are more likely to interact with some 

kinds of trace information than with others. Another possibility, however, is that the 

mechanism for selective recollection occurs further downstream, at the stage of 

attending to task-relevant outputs of retrieval processes (Dywan et al., 2002;

Dzulkifli et al., 2006). This remains an account that encompasses selective 

recollection, in so far as the definition of recollection incorporates the recovery and 

use of information in service of task demands (Herron & Rugg, 2003b; Jacoby & 

Kelley, 1992), and can also explain the majority of the relevant data described here.
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It may be the case that processes acting at these two stages are responsible for 

selective recollection of task-relevant information under different sets of 

circumstances, or that processes operating at both stages are typically involved 

(Dzulkifli et al., 2006). While the work described here does not speak directly to the 

accuracy o f one or other of these possibilities, in combination with other findings, it 

points to the fact that experiments incorporating electrophysiological measures of 

neural activity are likely to be useful in further elucidating these issues.

The focus of the work presented in this thesis is in line with recent developments in 

brain imaging studies of episodic memory that have seen a shift towards 

consideration of control processes that are important for modulating what is retrieved 

from memory (Fletcher & Henson, 2001; Rugg & Henson, 2001). The work also 

helps to extend current understanding of the ways in which retrieval of information 

from episodic memory may be controlled. This is important, as memory impairments 

in aging (Logan, Sanders, Snyder, Morris & Buckner, 2002), in Alzheimer’s disease 

(Grady, McIntosh, Beig, Keightley, Burian & Black, 2003) and following frontal 

brain damage (Stuss et al., 1994) may be due to the failure to engage such control 

processes.

Future research directions

A number of interesting avenues for further investigation arise from the main 

findings described in this thesis. Many of the interpretations discussed above rely on 

the ability to use ERP data to make inferences about behaviour. Although this is in 

line with the convergent operations approach adopted in neuroimaging, it is often 

possible to explain patterns of imaging data in more than one way. Further work is
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therefore required to examine the arguments made within this thesis in greater detail, 

and to test the hypotheses arising from these interpretations.

In particular, considerations over whether the probability of successfully retrieving 

target information influences the strategic retrieval of target information warrant 

further investigation. That is, will participants abandon a target-specific strategy if it 

is not reinforced by the frequent successful retrieval of target information? The 

density of targets re-presented at test could be varied within experimental blocks 

(high density = 80%, equal density = 50%, low density = 20%). The critical 

comparison would then be between the magnitudes of the left-parietal ERP old/new 

effect for targets and non-targets in each of the three conditions.

Also, the retrieval instructions employed within the task - “respond on one key to 

items from the study phase, and on another key to new items and any new items 

which repeat” may elicit different patterns of neural activity than retrieval instruction 

which stress the conceptual/perceptual/temporal differences between targets and non

targets, such as “respond on one key to items you saw in the first phase and on 

another key to items you have seen only within this second phase”. An experiment, 

in which instructions were varied, would permit an assessment both of the episodic 

control processes that vary according to task requirements and also of the impact 

these control processes have on known correlates of retrieval success.

The highest priority avenue of research arising from this thesis is arguably the future 

use of the incarnation of the exclusion task used here with different populations. The 

findings in this thesis indicate that under certain conditions healthy young adults are
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able to selectively retrieve task-relevant contextual information while inhibiting the 

recollection of less relevant information. One of the implications of the findings to 

date is that, under some circumstances, healthy young adults can exert considerable 

control over whether or not information is recollected. Moreover this restriction of 

recollection to task-relevant information can be observed in two imaging techniques. 

This in turn suggests that ERPs (and ERFs) acquired in episodic retrieval tasks may 

be useful functional tools for determining; (i) the conditions under which this 

selectivity can be achieved and (ii) the ways in which control of retrieval varies 

according to subject variables such as age, from childhood all the way through to 

older age.

Perhaps the most obvious future application of the paradigm used in this thesis would 

be in the areas o f aging, and memory impairment, as this particular paradigm has 

some advantages over the exclusion procedure in which targets and non-targets are 

both presented in a prior study-phase (Jennings & Jacoby, 1997). One advantage is 

that the use of very short repetition lags at test permits an assessment of whether 

different groups are able to understand task instructions equally well (Jennings & 

Jacoby, 1997). The short repetition lag makes the task possible for older adults and 

patients with mild memory impairment. Furthermore, by equating performance 

across different lags for different groups of individuals, it should in principle be 

possible to ascertain whether the selective control of retrieval exerted by healthy 

young adults can also be exerted, under comparable circumstances, by patient or 

older populations. The use of varying lags in different populations provides a means 

of contrasting measures of neural activity across lags at which response accuracy is 

equated. At the same time, however, as highlighting the utility of acquiring ERPs

330



alongside behavioural measures in appropriately titrated exclusion paradigms as a 

means of exploring changes in retrieval control according to age, this research is a 

precursor to establishing how such control operations vary according to variables 

including disease state and pharmacological interventions. In this sense, an important 

contribution of the work in this thesis is the provision of baseline data that will 

provide the springboard for subsequent research in more applied contexts.
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Appendix 1. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites FP1/2, F7/8, F5/6, F3/4, T7/8, C5/6, C3/4, T5/6,

P5/6, P3/4, Fz, Cz and Pz in Experiment 1.
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Appendix 2. Grand averaged ERPs elicited by misses, repeated hits and correct rejections at sites FP1/2, F7/8, F5/6, F3/4, T7/8, C5/6, C3/4,

T5/6, P5/6, P3/4, Fz, Cz and Pz in Experiment 1.
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Appendix 3. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites FP1/2, F7/8, F5/6, F3/4, T7/8, C5/6, C3/4, T5/6,

P5/6, P3/4, Fz, Cz and Pz in Experiment 2.
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Appendix 4. Grand averaged ERPs elicited by misses, repeated hits and correct rejections at sites FP1/2, F7/8, F5/6, F3/4, T7/8, C5/6, C3/4,

T5/6, P5/6, P3/4, Fz, Cz and Pz in Experiment 2.
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Appendix 5. Grand averaged ERPs elicited by hits, repeated hits and correct rejections at sites FP1/2, F7/8, F5/6, F3/4, T7/8, C5/6, C3/4, T5/6,

P5/6, P3/4, Fz, Cz and Pz in Experiment 3.
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Appendix 6. Grand averaged ERPs elicited by misses, repeated hits and correct rejections at sites FP1/2, F7/8, F5/6, F3/4, T7/8, C5/6, C3/4,

T5/6, P5/6, P3/4, Fz, Cz and Pz in Experiment 3.
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Appendix 7. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites FP1/2, F7/8, F5/6, F3/4, T7/8, C5/6, C3/4, T5/6,

P5/6, P3/4, Fz, Cz and Pz in Experiment 4.
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Appendix 8. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at sites FP1/2, F7/8, F5/6, F3/4, T7/8, C5/6, C3/4, T5/6,

P5/6, P3/4, Fz, Cz and Pz in Experiment 5.
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Appendix 9. Grand averaged ERPs elicited by hits, repeated hits and correct rejections at sites FP1/2, F7/8, F5/6, F3/4, T7/8, C5/6, C3/4, T5/6,

P5/6, P3/4, Fz, Cz and Pz in Experiment 6.
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Appendix 10. Grand averaged ERPs elicited by misses, correct rejections and repeated hits at sites FP1/2, F7/8, F5/6, F3/4, T7/8, C5/6, C3/4,

T5/6, P5/6, P3/4, Fz, Cz and Pz in Experiment 6.
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Appendix 11. Data from the 15 participants who provided incorrect response to new 

words in Experiment 7.
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Appendix 12. 272 whole-head MEG electrode array locations used in Experiment 7.
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Appendix 13. Grand averaged ERPs elicited by correct responses to hits, correct rejections and repeated hits at all electrode locations in

Experiment?.
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Appendix 14. Grand averaged ERPs elicited by hits, correct rejections and repeated hits at all ROIs in Experiment 7. L= left, R -  right, A -

anterior, C= central, P= posterior, S = superior, M= mid-lateral, I = inferior, MD= midline.

LAI LAM LAS AMD RAS RAM RAI

fT
100

50

0

•100

LCI

fT
100

50

0
•50

■100

LPI

fT

LCM LCS

LPM LPS

CMD RCS RCM RCI

PMD RPS RPM RPI

100

50

0

-100

1000 i?00 700 400 ‘300 0 POO 400 500 800 1000 0 200 400 600 600 1O00 1200 200 400 600 800 1000 12000 200 400 600 800 1000 12000

Hit

369

Repeated Hit Correct Rejection


